

Oral History of Albert Meyer

Interviewed by:

David C. Brock

Recorded September 5, 2018

Cambridge, MA

 CHM Reference number: X8784.2019

© 2018 Computer History Museum

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 2 of 64

Brock: Well, thanks again, Albert, for talking with me. I saw that you were born in 1941, and I

wondered if you could tell me a little bit about your family background and your family of

origin.

Meyer: That’s very interesting because I formally retired almost two years ago now. So I have

much more time than usual, and I’m using it for various retirement projects, the latest of which

happens to be tracing family genealogy, and I have just accumulated a family tree with six

hundred and seventy nodes going back to the 1600s in one line. So, I have learned something or

other about my family. But specifically, my grandparents on the side that I understand fully were

immigrants from Eastern Europe – Belarus -- I think. And my grandparents were Yiddish

speakers, who spoke English haltingly, but at home, the conversation was in Yiddish, which was

irritating because I didn’t understand any. So, that’s what they could talk when I wasn’t there.

My parents-- my father, who was the child from that group that I’m talking about, understood

Yiddish but would not speak it because he was committed to being assimilated. He became a

lawyer, and all his brothers became professionals coming from a completely poverty-stricken

immigrant family.

Brock: When did they come?

Meyer: They-- I think that my grandmother emigrated as a five-years-old in the late 19th century.

Brock: Okay.

Meyer: As did her husband, although I know much less about that grandfather, who was

something of a pariah in the family for good reason. When you get into this genealogy stuff, this

stuff sort of turns up--

Brock: Oh yeah, human stories, right?

Meyer: I’m just exchanging email with a newly discovered second cousin, who doesn’t show up

in any of the family trees. I got her through 23andMe and the genetic link. And it turns out that

her father, who is a documented first cousin once removed of mine, never married her mother.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 3 of 64

So, there’s a whole branch of family that never showed up before, although she’s agreed to be

integrated into the tree. And so, this was a man with three wives and a mistress by whom he had

at least one child in the 1920s.

Brock: Wow.

Meyer: And it’s a story that I’m looking forward to going more into. But anyway, coming back

to me and my family, the immediate one was then my grandmother who was one of nine

siblings, all of whom either immigrated to the U.S. together or were born here. She came as a

five-year-old. That group of nine siblings produced about fifty offspring, who then become my

first cousins once removed and an army of second cousins that I haven’t managed to finish

counting yet. This grandmother had four sons of whom my father was the eldest. All of them

became-- well, three of whom became professionals, and one of whom became a successful

small businessman. And then comes-- but not very many children from those four. Basically, one

of them had no children, the second oldest, the doctor. My father had just one child, me. His

other brother had just one child, my cousin Barry [Barry M. Meyer], who became a very

distinguished businessman, CEO of Warner Bros.

Brock: Oh, my goodness.

Meyer: And the youngest brother was a veterinarian who had two children, one of whom was

murdered when he was in his twenties hitchhiking. It was in that era of the ’70s when people did

stuff like hitchhike.

Brock: Right.

Meyer: And then a daughter who became a professional woman. So, it’s an interesting rise from

absolutely poverty-stricken immigrants to the next generation a bunch of professionals and

successful businessmen, and the third generation, being me, a distinguished professor, and my

cousin the CEO of Warner Bros. So, it’s definitely a story of rise. I’m not sure that my own

children will contribute to the heights, but they’re doing fine. And so, that’s--

Brock: It’s a high bar to exceed.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 4 of 64

Meyer: Okay so, that’s kind of a little bit of background.

Brock: Was this-- was your family in the Boston area?

Meyer: New York.

Brock: Or the New York-- New York area, okay.

Meyer: The Bronx.

Brock: In the Bronx?

Meyer: Yeah, and a very large contingent of them kept up with each other. I remember, later as

a twenty-one-year-old, visiting the last maybe of my grandmother’s siblings, her youngest sister

Charlotte, whom I had a conversation with about the family. And I asked her what happened to

this very large family that was always around my grandmother’s house. Her little tiny apartment

was always filled with armies of people. And I said, “Well, you know, I don’t know. Grandma

died, and I never saw them all again. What happened? I mean they all loved each other. It was

wonderful having the family around.” And this aunt looks at me and said, “Loved each other, are

you kidding me? They hated each other. The only thing that kept them together was your

grandmother,” who was the matriarch. She died, and they turned their backs on each other, never

spoke again. Okay so, you know what a child knows and what you find out later.

Brock: Yeah, right.

Meyer: And then this same aunt was the one who told me about my grandfather about whom I

had known nothing, and it emerged that he had abandoned-- well, his wife to go live with

another woman leaving the wife with four young sons. And he very occasionally contributed

child support.

Brock: So, she must have been a very powerful figure to hold everyone together.

Meyer: She was a formidable figure. Her sons really were strongly attached, and I would say

intimidated by her actually. Her opinions were tremendously important and influenced them.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 5 of 64

Brock: Was learning and education sort of a central kind of a theme and impulse for the family?

Meyer: You know, I don’t know.

Brock: Yeah.

Meyer: I would say that there was-- these were people who were not intellectuals at all. I’m not

sure that I ever heard an intellectual conversation in the family. And I’m not sure that my

grandmother read. She only had an eighth-grade education. But a huge emphasis was placed on

being smart. That was what the family was. And I think that-- when I think now, as a seventy-six

year old, reminiscing about who I am and how I got to be this way, I realize that it was very

important to me to be smart because I also was persuaded, I think inaccurately, but persuaded

that I was a particularly difficult and obnoxious child and even continued so as an adult, and that

the compensation for that, the thing that would make me acceptable to other people, was how

smart I was and what I could do with it. And that I believe-- I’ve never-- I haven’t been through

psychoanalysis, although I’ve had a lot of therapy in my time. But my guess is that that was a

theme that added tremendous motivation to me to be doing smart stuff and excelling in my

education right through from elementary school on.

Brock: Was this a message that you were getting from your parents that you were difficult to

handle?

Meyer: I think it was, yeah. I think it was from both my mother and my grandmother and maybe

other-- I got the impression that that was kind of the shared model of Albert in the family and the

uncles and cousins that would talk about it.

Brock: What do you think that-- what’s your impression of what you were like that they

modeled in that way? Were you-- did you have a lot of energy?

Meyer: I think I was needy. I think I was needy. My father was a flawed, deeply flawed man,

was an alcoholic, a barbiturate addict, depressive, just-- and basically not there. So, I really had

essentially no relationship with him. He was around, but we never talked. He never paid attention

to me and so on. And my mother was a very complicated woman that still makes my head spin in

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 6 of 64

some ways. Everybody loved her because she was always happy, and that was her policy. And

she never ever would lay her concerns or anxieties or problems with other people. Those were

deeply hidden. And so, she made you crazy. I remember one time telling her, when I think it was

in college, and I said that I was unhappy about something. She said, “Oh, you’re not unhappy,”

you know, “You must be-- you’re really a happy person.” It’s like, “What the fuck?” So, that

was why everybody loved her. And in fact, I remain disappointed and pissed off at her, although

I also loved her and was-- I felt the loss when she died.

Brock: Yeah.

Meyer: But I think that she really made me crazy.

Brock: Well, yeah, because nobody’s ever happy all the time. So, how can you--

Meyer: Yeah.

Brock: Learn to deal with what you’re-- yeah, I--

Meyer: And her-- I mean her model was denial. It made me-- I think it’s another thing--

actually, I don’t know whether this is true, but it’s a good story about becoming an intellectual

because I remember sometime in high school or college, somebody asked me something. And I

immediately knew the answer or had an opinion about it. And then I remembered this flash in the

back of my mind saying, “Wait a minute, you got that from her.” It’s probably wrong. It’s time

to start footnoting all these opinions. Where the fuck did they come from? Do you really believe

that, because she was an endless source of misinformation telling me about all of these

wonderful people who cared about her and the family who turned out to be completely

indifferent then and not such nice people? And everybody was wonderful. Nothing was ever

wrong, and on, and on, and on, and then just completely unrealistic. So, her method of dealing

with the world was denial. And that’s not a terribly effective approach.

Brock: Yeah, a short-term approach.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 7 of 64

Meyer: And it continued to her death. I mean a few weeks before she died, she was giving me

detailed instructions about arranging for the hairdresser to be in the house so that the moment

that she got home she could have her hair done, so she’d be able to see company. And you

couldn’t have a realistic discussion with her about that. So, that’s who she was.

Brock: And so, where were you proving-- where were you proving your smarts? Was that at

school?

Meyer: College-- in school.

Brock: In school.

Meyer: I was sort of an extraordinary student early on. I guess now that I think about it in terms

of being difficult, I was something of a disciplinary problem in the fourth and fifth grades. And I

remember having a conversation with I think the-- maybe it was the junior high-- the elementary

school principal because they gave some standardized test in the fifth grade. And I broke it. I

mean I got all the vocabulary right and one reading comprehension question wrong, which I

actually knew the answer to, but I said it in a way that didn’t fit the standards template. And they

decided they would transfer me in the sixth grade to some intelligence-gifted program across

town on that. And the principal started saying, “Well, how come you never used all these words

that you proved you know.” It was the usual answer of the “oatmeal’s too salty,” if you know

that joke.

Brock: No, I don’t.

Meyer: Oh, I’ll come back to it. But the answer is nobody ever asked me before.

Brock: Right.

Meyer: And I think that I was-- school was slow and kind of tedious.

Brock: Right.

Meyer: And I was a brilliant kid. I mean--

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 8 of 64

Brock: Were you going--?

Meyer: I mean there’s documentary evidence of that.

Brock: I will take your word for it. Did you go to the public school--?

Meyer: Yeah, public school system, yeah.

Brock: And did you supplement with-- if it was kind of going too slow, a little boring for you,

did you supplement by going to the library and reading?

Meyer: Yeah, I read all the science fiction books in the local library.

Brock: I was just going to ask about science fiction.

Meyer: And like that. I’m not sure that I remember extensive other reading beyond that in

mutual sort of assigned books from high school, I think none of whom made a real impression.

Brock: But science fiction did?

Meyer: Science fiction from early on, I think even when I was in elementary school, I was

reading science fiction. And, I don’t know, I think I was interested in the museum. My mother

took me to the Museum of Natural History on many occasions. And I went-- I learned, when I

got a little older, to go myself and look at dinosaurs and stuff like that. But school was the thing

that I really did very well.

Brock: And did math kind of shine at that early time, or was it across the board?

Meyer: I would say so. I remember in whatever grade somebody was teaching us to do square

roots. I’ve learned how untrustworthy these memories are. But this is a sincere memory that

might be true: I have a distinct vision of being in a classroom, maybe the fourth or fifth grade,

when some teacher was explaining the mechanics of calculating square roots on a blackboard.

And I remember thinking about that and at the time thinking, “Well, yeah, I understand the

procedure now, but I would like to be the person who figures out how to do this. Okay, that’s

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 9 of 64

what I want to be.” And so, it’s one of these things where I wanted to be a sort of a-- essentially,

a research mathematician from fourth grade. And I have actually never wavered. I never changed

career, never stuck my head up to look around at broader opportunities and interests because

that’s what I wanted to do, and I stayed with it. And it was tremendously satisfying for decades.

Brock: Did you have a chance to meet some people who-- like, what was the first time that you

met someone who was doing that kind of work, so had a real vision of what the life was like?

Meyer: Well, not until really way late, the end of college. I think prior to that, the people that I

met that I kind of shared those interests in with were fellow students. I’d like the other smart

kids. So, in the sixth grade, they transferred me to this intelligence-gifted class where I was for

one-- just one term, the final term of sixth grade. Then I went to Bronx Science [the Bronx High

School of Science].

Brock: Okay.

Meyer: And there was an army of fellow students whose focus on this, again, entrance exam

school for smart kids was on being smart, being academically accomplished. And I made some

lifelong friends there and loved that and was I guess then considered to be one of the guys who’s

really good at math and starred at it. Although, I had a personal crisis in going between the

advanced placement junior year and advanced placement senior year for which you had to do

some homework. And I think at that time, I was kind of burned out. I’d gotten like a hundred

percent on the geometry Regents exam, which I was capable of teaching that class at the end of

it. But I was so over-involved and over intense that I think, when we had to go further into solid

geometry, it was, like, I don’t want to think about this anymore. I’m fed up. So, the result was

that I didn’t do that preliminary summer work to be admitted to the advanced math class in

senior year of high school. So, I took another non-calculus advanced class, which was fine. And I

enjoyed it. Although, there was always the sense of what happened to Albert. How come he

didn’t join us on the pre-calculus thing?

Brock: Yeah.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 10 of 64

Meyer: It didn’t do any harm. And to jump ahead, by-- there was an analogous situation that

happened to me in my senior year in college where I’d had mono at the end of my junior year

and skipped a bunch of exams. But I was also depressed. I think it was hard to separate out the

mono symptoms from the depression symptoms. And the result was that in order to-- I had a-- I

was excused from about three final exams. And I had to-- I made up one of them, and I didn’t--

just didn’t make up the other two. I didn’t feel like it, didn’t want to. To hell with it. So, the

result was that I was on academic probation my senior year in college. But I knew I needed some

As, so I took a mathematics for non-mathematicians class, which the other kids in the class were

incredibly pissed about. But it was fun. I enjoyed it. I actually learned something. And I got the--

one of the needed As that restored my record in senior year.

Brock: What did-- did you have other hobbies or activities outside of this intense kind of work

in the classroom? Reading still in high school?

Meyer: I don’t know. I think I read. I think that-- as far as I remember, all that intellectual work

was focused around high school, high school projects. I think I was on the high school science

team maybe, or not the math team that I remember. I did some research projects in social studies

and with-- but in class with fellow students. You know, it’s a good question. I do not remember

doing any extra-intellectual work beyond school.

Brock: Some people who I’ve talked to who have kind of had a life in mathematics or

computing, there’s sort of a-- there’s a kind of a visual camp, and then maybe there’s a-- I don’t

know what to call the non-visual camp. But some people, their mathematics is a strong kind of

spatial visual kind of intuition. And other people, it’s more pattern, kind of music, that sort of

thing. Which-- I mean if that’s at all gets at anything.

Meyer: That makes sense. It’s something I’ve actually thought about because one of the

experiences that sticks with me this day was as a freshman at Harvard, they give you this

vocational test or interest test. And I remember being advised that I didn’t look like the profile of

a mathematician, that I looked more like an engineer because mathematicians like music. And I

didn’t like music. To which I thought, “Fuck you.”

Brock: Yeah, probably the perfect response.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 11 of 64

Meyer: I didn’t say that, but I definitely thought that.

Brock: Yeah.

Meyer: And I would say that I have subsequently learned that there’s a whole string of

mathematicians. I think of them as the “analyst,” the continuous mathematicians, who very

typically have a deep connection and interest in music. But there’s another kind of people that

I’ve worked with in which I would consider myself more like, the symbolic people, the logical

people, the people who do discrete math, symbolic logic, and so on. And they are not particularly

musical that I’m aware of. I am really not musical at all.

Brock: Okay.

Meyer: I go to an occasional concert, and it’s fine. But it’s never something that’s much

interested me, and I absolutely can’t stand having music in the background. I find it a distraction.

You know, if somebody’s playing the radio in the house, I come and turn it off.

Brock: Well, could you talk about your-- the route that led you to be an undergraduate student at

Harvard?

Meyer: Well, yeah it was maybe one of the few times that my father actually interacted with me

when, at some point in senior year, he had asked me what my plans about college were. To

which I told him that I had already been admitted with scholarships to Cornell and Columbia and

maybe then-- of course, City College or something and that I thought I would go to Columbia.

To which his response was, “Well, what about Harvard?” To which I said, “Well, I didn’t bother

to apply to Harvard,” because I already had this early scholarship from Columbia. I thought that

was good enough. And he said, “Apply at Harvard.” So, I did, and I was admitted, again, with an

honorary scholarship because he had-- my father had been making enough money then as a

lawyer for a large union that we weren’t eligible for financial aid. So, I decided to go to Harvard

with another seven class-- another six classmates. There were seven of us from my year at Bronx

Science.

Brock: From your graduating year?

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 12 of 64

Meyer: Yeah, class of 1959 that went to Harvard.

Brock: Did you-- did that group stay together once you got to Cambridge or--?

Meyer: Oh, yeah.

Brock: Okay.

Meyer: We were in regular touch with each other all the time. And there was a group, at least

two of those people went on to really great heights, I think. One of them is one of the most

distinguished geneticists in the world, David Botstein, who’s the sort of co-inventor of the

genome sequencing project along with Eric [Lander]-- I’m blanking on his name at the moment,

the head of the Broad Institute.

Brock: Oh, I don’t know him. I’m sorry.

Meyer: Anyway, David’s been-- for thirty years, people have talked about his eligibility for a

Nobel Prize. He did get one of these super prizes. It’s not a Japan prize, but somebody’s giving

out three million dollar grants to distinguished scientists. He got one of those a few years ago.

And the other is a guy named Todd Gitlin, who was--

Brock: Oh, I’ve heard of Todd Gitlin.

Meyer: Well, Todd is a sort of a very prominent left-wing intellectual author of multiple books.

Brock: NYU or something?

Meyer: I think he’s at NYU now. He had been at Columbia. He’s a regular contributor to the op

ed of the New York Times, and the New York Review of Books and so on, very prominent sort of

left-wing intellectual. So, Todd was the first in our class in high school. I was second. But there

was always a sense that Todd really was head and shoulders above everybody.

Brock: And he was part of the group that came to--

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 13 of 64

Meyer: He was part of the group that came to Harvard and other-- and he, again, he was one of

the people who represented a kind of-- who was daunting to me in that in his sophomore year, he

decided to give up mathematics because it was too easy and not important enough, and to shift

over into politics and policy. Whereas-- and Todd, of course, had always been I thought better

than me at math. In freshman year, he was grading third year calculus.

Brock: Wow.

Meyer: And here I was, the thing that I wanted to do and aspired to, he was sort of saying well,

it’s too easy. He’s moving on to better things. But they were better for him, I guess. He then, I

remember him saying the one thing that he would do is he’d take the Putnam exam again

because that was an easy way to pick up five hundred dollars. He expected to win. I think he

came in second or something. He had that kind of mind. It was very impressive.

Brock: So, did you-- when you got to Harvard as an undergraduate, did you gravitate toward

mathematics?

Meyer: Oh, no, I was a math major. I wanted to do that from the beginning. But it was another

personal problem. I didn’t do well in math classes. And I had-- as would be inevitable for

somebody at that age and state, you wonder whether it’s you or them. And I suspected it might

be me, but I was sure it was them.

Meyer: That it was the Harvard maths department at that time, there was no concept of teaching.

There was the-- what they wanted to do for creating a program for gifted kids who got super high

scores on the SATs, which I was in. So, they put their young genius in charge of it, a guy named

Shlomo Sternberg, who was then twenty-five, very famous genius mathematician. So, he didn’t

have a clue about teaching. I remember the first lecture he gave. He stood in front of the class

and said, “Okay, a vector space is an additive group with a multiplicative ring attached and

connected by distributive law. And they’re called vector spaces.” He writes on the board, V.

That was enough for me. I dropped that class and felt, “Okay, whatever’s going on here, this is

not for me.” And it wasn’t until-- but I was looking for stuff to do. So, it wasn’t until my I think

junior year that I took a course called applied math. I didn’t know what was exactly. But they

were second class citizens. They were in the Harvard School of Engineering, a division of

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 14 of 64

Engineering and Applied Science, not on the mainstream liberal arts school and not in the math

department. So, they were much more defensive. And they actually felt the need to do what the

mathematicians didn’t do, which was they needed to justify what they were doing by explaining

the point to you.

Meyer: And I found that as soon as I understood the point, I could do it. I needed to know why

are we doing this, what are we aiming for, what are we trying to accomplish. And once I had

that, then I could run with it.

Brock: What was that view of the intent and intention of applied mathematics that they were

presenting?

Meyer: Okay, well this is the big idea and brings us back to Dennis [Ritchie] because this was a

time when the-- well, first of all, there were hardly even any computer science departments in the

country then. This was in the early ’60s. And there was just coming to be a vision that there was

something special about computation. In the 1930s and ’40s, the notion of what was and wasn’t

computable was very extensively worked on, was understood. There were logical limits due to

Gödel and Turing about what could be computed and what couldn’t be computed. But the new

idea was that, “Let’s try to understand what you can do with computation.” And in order to

understand what you can do with computation, that was when the idea of computational

complexity came into being that yeah, there were things you could do, all sorts of things you

could do with computation, but not all of it was easy. And you could actually try to get a theory

of which things were theoretically doable but were so impossibly hard that, pragmatically, you

couldn’t do them. So, there was a sudden new vision that was an extension of these ideas in the

’30s of “yes or no” computing where in the ’60s, it began to be a degree of computability. How

well could it be computed? Which led a decade later to the original work on the P = NP question,

which is now one of the Clay questions [Millennium Prize Problems] and is considered the

central question of theoretical computer science, which was formulated by a fellow graduate

student of Dennis and mine, Steve Cook, who was a year ahead of us in graduate school and who

we both interacted with.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 15 of 64

Brock: How did you-- can I-- would you mind indulging me? I would love to hear how you

explain that P=NP question.

Meyer: Okay.

Brock: For somebody who’s not an insider.

Meyer: Yeah, okay. I can try. I’ll-- let’s begin with P, which is the easier thing.

Brock: Yes.

Meyer: So, you want to have some notion of computations which are hopeless. And sort of the

definition of hopeless generally is if the effort of computing an answer grows exponentially with

the size of the question.

Brock: Yeah.

Meyer: That’s-- you’re going to wash out very quickly. It means that every time you increase

the size of the question by one bit, you increase the difficulty of computing the answer by a

constant factor that’s greater than one. Say, for the definition, it’s two. So, I make-- so, I go from

the question of a ten-bit question to an eleven-bit question. The eleven-bit question takes twice as

long to answer as the ten-bit. Twelve-bit is four times as long as the ten-bit and so on. That’s

exponential growth. And when that hits you, basically, you get stymied at very small numbers.

And you have to throw your hands up and--

Brock: Got it.

Meyer: You get to beyond astronomical numbers by the time you get to a few hundred digits,

which is the basis of modern crypto: That you have passwords of a few hundred digits long. It’s

impossible to crack them because the only way to crack them is by an exhaustive search that

exhausts all the resources of the known universe.

Brock: Yes.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 16 of 64

Meyer: Okay. So, that’s what we can’t do. If it’s exponential, it’s off the page, at least

conceptually. I mean those are broad strokes. And there’s various constant factors and things that

can impinge when this asymptotic growth becomes relevant and practical. But let’s just keep it

simple and say if it grows exponentially, it’s off the table. Well, the other standard thing that

doesn’t grow exponentially are polynomials, things like n2, n3, n4. So, as a broad stroke notion of

what’s not exponential is polynomial. Okay, so very roughly to the first-degree discussion,

polynomial means potentially feasible. The truth is, if it’s a hundredth-degree polynomial, it’s

just as off the table as an exponential, but nevertheless, the difference between polynomial and

exponential is a very dramatic one. And it’s a great breakthrough when you can show that some

exponential problem is actually, you can suddenly find a clever way to do it in polynomial, even

if it’s a high degree polynomial.

Brock: Okay.

Meyer: The optimization-- the optimistic approach-- assumption is if it’s a high degree

polynomial, that’s a first pass. Probably, you can knock it down. So, for example, prime

detection I think was originally an eleventh-degree polynomial. It’s down to about three now—

that is detecting primality, recognizing whether or not an integer is a prime.

Brock: Okay.

Meyer: So, the simple thing is exponential versus polynomial. Now, comes the weird idea of

problems where we may not know how to find the answer easily, but if you give me the answer,

there’s a way to check it in polynomial time.

Brock: Okay.

Meyer: I’m trying to think of a simple-minded example. I give you a whole bunch of boxes that

I want to pack them some optimal way into some container. If I want to show that some

particular proposed way is not optimal, all I have to do is show you a better way to do it. And it’s

very easy. If you give me the better way to do it, it’s very easy to check that. Okay? One other

hand, if I have to find the better way to do it, I’m floundering around through an exponential

search, typically.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 17 of 64

Brock: Okay.

Meyer: Okay. So, that’s an example of an NP complete problem. That is one where we don’t

know how to find the answer in polynomial time. The obvious way to find the answer to any

given question is one that requires a search that’s exponential in the size of the question or

appears to require that. But it has the property that if you give me that answer, I have a way to

check it very fast.

Brock: I have a way to check that it is indeed a good solution?

Meyer: Yes.

Brock: Okay.

Meyer: So, again, let’s go back to the business of packing boxes. We can-- simpler than boxes.

Just pack a bunch of different size intervals, integer intervals, and pack them into a container of

length-- on the line of a given length. Like I’ve got something that’s a hundred inches long. And

I give a bunch of pieces of various eleven inches, seventeen inches, four inches, and so on. And I

want you to get the boxes full as you can manage.

Brock: Right.

Meyer: Okay?

Brock: Mm-hmm.

Meyer: And so, you come up with one. And you say, well, I can’t fill up the whole hundred

inches, but I can fill up ninety-eight of them with the pieces of sizes you’ve given me. And I

claim that’s the best you can do. Well, it’s easy for me to show that that’s not the best if it’s not

because all I do is show you one that does ninety-nine or a hundred. So, I can instantly check

whether this new packing is better than a given packing.

Brock: Right.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 18 of 64

Meyer: Okay. On the other hand, if you say okay, I did ninety-eight. Let me see you do better.

Searching to determine whether the ninety-eight really is the best you can do is something we

don’t know how to do. Seems to be exponential, okay. That’s the characterization of the NP-

complete problem -- the Nondeterministic Polynomial time-complete problems -- never mind

where the nondeterministic comes from. The efficiently checkable problems, okay? Efficiently

in the sense of you can check the answer in polynomial time if, somebody gives it to you, but if

you not given it, then we don’t know how to find it, and the conjecture is that you can’t find it in

less than exponential time. The conjecture is that the NP-complete problems, these checkable

problems, do require exponential time to solve, but that’s the open problem. It’s been open for,

what, 50 years?

Brock: To show that that is-- to create a proof.

Meyer: Well, one way or the other. I’m going to find a way to knock them off in polynomial

time. Or prove that you can’t.

Brock: Find an example, right? Where you can check it and you can solve it in polynomial time.

Meyer: Well, no. Finding an example is not the difficulty, because one of the insights is that the

problems come in hundreds of different guises, but it’s really, in a certain sense, the same

problem.

Brock: Oh. Yeah.

Meyer: So we know exactly what examples of the-- like the packing problem I gave you is an

example of a problem. It’s enough to focus on that. If you can do that in polynomial time you

can do them all in polynomial time. If you could prove that that one requires exponential time,

they all require exponential time. End of story.

Brock: Okay, okay.

Meyer: Okay. So these are these peculiar things that are right on this funny boundary between

polynomial and exponential that can be done in exponential time but we-- and we wonder

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 19 of 64

whether you can do better, but they have this peculiar property that you can check the answer

fast, efficiently, and nobody really understands those.

Brock: Am I wrong to perceive, like, when I was reading Dennis Ritchie’s thesis and when I

was reading your paper with him of ’67 or 9?

Meyer: ’67.

Brock: ’67. “The Complexity of Loop Programs.”

Meyer: Right.

Brock: There’s very strong echoes of this kind of concern or pre-figuring, what we just talked

about of the P=NP, about the complexity of programs and--

Meyer: No, actually, so P=NP comes another half a dozen years later, but prior to that we were

very focused on this issue of “How do you recognize problems that can be solved by

computation but there’s no efficient way to do it?” Okay. And that was, those papers by Dennis

and me, was exactly about that. We were showing that structurally, in terms of syntax, they were

problems that could be solved by programs with a complicated nested loop syntax that couldn’t

be solved by programs with less nested syntax. So we were kind of trying to explain the power

of the programming description syntactically and say, “Yeah, there’s a payoff for having a

messier program. You can do more.”

Meyer: Okay? Okay. That’s intuitive, but now it becomes a theorem, and that’s pretty good

math, when you can actually prove that. Now, the insight that comes from both Dennis’s work

and my work and our joint work together was that in a certain sense, the trick to proving it and

understanding what’s going on is to get away from the syntax and realize that it’s simply talking

about how long the computations are allowed to run: That the programs that have depth of

nesting of loops to n are the ones that run in a certain amount of time that is the nth function in a

list. If they run in less time than that within that function-- these are, by the way, functions that

grow much more rapidly than exponential but, you know, we weren’t focused on exponential

then. If you can do it in time, in this amount of time, then it’s got a simple syntax description,

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 20 of 64

and if it takes more time than that it doesn’t have a simple syntax description. So what we were

really doing, the key theorem to understand the significance of the syntax, was that having more

time to compute you could do more, and that was a theorem that it was easy to prove using the

methods from the 1930s of diagonal arguments and Turing arguments. More time is better than

less, and then we connected these syntactic questions about the power of syntax by saying,

“Look. Don’t think of it as syntax. Realize that this level of nesting syntax just means it’s

computed on a certain amount of time, and if you give me deeper nesting, I can run for longer

and I can do more.” End of story.

Brock: When you were-- so when you were getting into applied math in the early ‘60s and

computability and these kind of questions were-- they were at the heart-- well, they were being

expressed as, you know, central to applied mathematics?

Meyer: Well, no. That’s much too broad. This was a small group of people that were working

on this. Applied mathematics was a huge subject in which this kind of theory of computation

was a tiny, new part.

Brock: I get it. A subfield.

Meyer: A subfield, okay.

Brock: Okay.

Meyer: That it was a very small community of researchers, but I happened to connect up with a

guy who was doing that, Patrick Fischer, who was my actual supervisor, as he was also Dennis’s

actual supervisor, although I think officially he left Harvard before either of us got our Ph.D. So

he’s not listed as our actual supervisor by Harvard.

Brock: Okay. I wondered about that. Yeah.

Meyer: Yeah. Yeah. But Patrick, our real supervisor: he supported us, he suggested the

research and so on. So he was our actual thesis supervisor. Patrick was very much interested in

this notion of understanding the nature of computation, what made things hard, what made things

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 21 of 64

easy, and they were approached in various ways. One of them was, by syntactic classifications,

“What kinds of things could different kinds of programs do?” Was related to that. Was

extensive effort at the time in automata theory, where you had these various restricted models of

things that were weaker than Turing machines, like pushdown machines and finite state

machines and so on, and you sort of ask, “Well, how do we understand what this more limited

model of computation can and can’t do?”

Brock: Oh, okay.

Meyer: Okay. So that was-- the idea was, we were trying to understand that to really understand

computation. You needed to understand what you couldn’t do with something. You didn’t really

understand the power of something until you understood the limits of it, and so that was a top-

level theme which I learned early, and I understood that point of that, and that was what underlay

a lot of the work that we were all doing at that time.

Brock: Okay. So when did you-- so you encountered, I think, in your junior year applied

mathematics. When does-- does that also involve starting to have direct experiences with

computers?

Meyer: Yeah. So that was-- it was in junior year. I took a course called Introduction to Applied

Math from a guy named Tony Oettinger who was a leading researcher in machine translation, of

syntactic translation, at the time, and I, you know, it was a very easy course for me. Not a

problem. But you got the sense that there was a point to it, that it had to do with this

understanding computing and how it worked, and then that led me to taking, I think, in my senior

year a couple of graduate seminars, one of which was taught by a young teaching assistant

named Shimon Even, who went on to become a very prominent theoretical computer scientist,

and another one I think was taught by Pat Fischer, which was an introduction to recursion theory.

That might’ve been first-year graduate school. I’m not quite sure.

Brock: Okay. Yeah.

Meyer: But that was the first time that I was actually meeting and learning from and working

with in an intimate seminar kind of setting with people who were really doing math and doing

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 22 of 64

research, and it was, you know, tremendously exciting and engaging, and it was what I wanted to

do.

Brock: Was Dennis Ritchie an undergraduate with you?

Meyer: You know, I--

Brock: I think he--

Meyer: He must’ve been.

Brock: Yeah.

Meyer: I don’t remember seeing him at any reunions or anything like that, so we had nothing to

do with each other, I think, as undergraduate classmates. We must’ve met at-- it must’ve been

the summer between first year of graduate school and second year of graduate school that Patrick

Fischer had hired both Dennis and me as research assistants, and this is the story I was going to

write up for you.

Brock: Yes.

Meyer: And he assigned us to work on the same problem and never told us.

Brock: Oh, my God.

Meyer: Not only that, I remember how exciting it was that I would finally get to, you know, I’d

taken his class. I got hired because I took his class and I think I got a hundred percent on the

final exam and so on, and it was another one of those classes that by the time that class was over

I could teach it. I knew it. I had, you know--

Brock: You really got it.

Meyer: --I was really into it, and again, I sort of understood the point of it. You were going to

figure out what you could and what you couldn’t do and why and the structure of all of that. So

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 23 of 64

Patrick offered Dennis and me these research assistantships for the summer. Dennis might have

been in that class, but I don’t remember having any interaction with him other than I knew that

he was another student of Pat’s and somebody that I thought would be interesting to kind of talk

to. But what happened was that, you know, Patrick says he’s going to hire me for the summer

and there’s this list of papers-- I actually found the paper-- there’s this list of 11 open problems,

he points to number four and says, “I want you to work on that one.” Okay. So, “Fine.” So I

said, “Okay.” Well, you know, I don’t know what the hell it was, but, “You want me to work on

that, that’s fine.” So I’m happy. “I’ll read the paper right away. When do you want to meet?”

And he looks at me and says, “Meet? I’m going to be away for the summer. Just work on it.”

Meyer: So I remember that as being one of the more miserable times in my life where I spent the

entire summer, and I’d sit at my desk for hours at a time reading this paper and rereading and

thinking about it. Have nothing to show for it. I could never tell whether I was actually working

or not.

Brock: Right.

Meyer: And it made you little crazy, and it was a kind of a, a first test of could I do research or

not, and I failed it. At the end of the summer I felt I had nothing to show for it. I told Pat that I

had this one result that I felt was very minor and he was-- he was a very encouraging guy. He

said, “Oh, well, that’s fine. Write it up.” I never did, because in fact I don’t believe it was worth

writing up, but it was nice of him to say that. But I remember telling him when-- at the end of

the summer when we got back together, that I said, “Well, listen. You know, I had decided that I

would give one year to graduate school, see whether in fact I really had talent for the subject, so

see whether I could get anywhere, and I worked, you know, I thought I worked really hard for

the summer. I just couldn’t get anywhere. Had nothing to show for it, so I think I’m going to

quit, try to find some other career and thing that I’m good at.” And Pat was kind of disappointed

but, you know, what are you going to do? But this was at a time when-- it was just the beginning

of the term and since I had no other plans it wasn’t as though I was going to drop out, had to

drop out then.

Brock: Right.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 24 of 64

Meyer: So again, this is a story that I believe is true, but I’ve told it so many times that who

knows the extent to which memory has embellished it. But after this conversation of saying,

“Well, I’ve decided to quit graduate school, because I didn’t get anywhere and I don’t see any

evidence that I have, that I’m going to excel in this field.” We’re walking down the hall towards

his graduate seminar, and I remember thinking, “Okay. If I had to give a presentation at the

graduate seminar explaining what the issues were, what he had assigned me to work on, what I

was trying to do and how to do it, what would I say?” and I’m sort of-- as we’re walking down

the hall I’m mentally thinking this through and I say, “So you put these pieces together and

here’s how you solve it.” I’m like, “Fucking solve this?!”

Brock: Walking down the hallway.

Meyer: Walking down the hall. I swear this is my sincere memory, whether true or not.

Brock: Yeah.

Meyer: It’s so many years later, but I do remember kind of excitedly at the end of class, or

maybe even before class, telling Patrick, “I solve it, I solved it, I solved it,” and he started saying,

well, you know, he’s got to give a-- he’s got to give a lecture now. Talk to him later, and I

remember afterward, you know, buttonholing him and trying to show him how to do it, that I

figured out how to do it, and he, again, well, he was kind of a encouragement, that guy, that way,

as a supervisor. Whether he understood it or not, I don’t know, but it was correct and sound. So

that was the story of me and this research and getting-- and so then that was my first result. I’d

solved the problem. Was an open problem that my advisor had said was important, so it proved

that I could go somewhere. So then a little while later, I was, I would say, surprised and a little

disappointed to hear that Pat said that Dennis had also solved the problem, which I--

Brock: Hm. Like weeks later or...

Meyer: I don’t know exactly the timing, but Dennis was working on it over the summer, and I

believe it. I believed it at the time, because first of all, it wasn’t that important to me whether or

not somebody else had done it. What was important was that I had done it. It was real. But the

other thing was that I learned either from Dennis or from Patrick, I don’t remember clearly, this

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 25 of 64

concept of loop programs, which was Dennis’s invention, and it was so beautiful and so

important and such a terrific expository mechanism as well as an intellectual one to clarify what

the subject was about, that I didn’t care whether he solved the problem. I was delighted to have

him as a co-author because loop programs alone were worth it. Okay. Loop programs made into

a very simple model that any computer scientist could understand instantly, something that the

traditional formulation as, you know, in terms of primitive recursive hierarchies and

Grzegorczyk hierarchy with very elaborate logician’s notation for complicated syntax and so on

that would make anybody’s eyes glaze over. Suddenly you had a three-line, four-line computer

science description of loop programs. So that’s-- never mind what these other formulations are.

That’s what primitive recursive functions are, and all we’re interested in is how much you can do

when you nest the loops to depth, a given fixed depth, and so on, so... So I believed, actually--

Brock: So Dennis saw the identity between--

Meyer: Dennis saw the identity--

Brock: --that a loop program was a recursive function.

Meyer: That loop programs were exactly a way to formulate the primitive recursive functions,

and the fact that they were a way to formulate-- well, what we proved was that they were exactly

a way to formulate the so-called Grzegorczyk hierarchy, which was a classification of the

primitive recursive functions.

Brock: Okay.

Meyer: By syntactic categories in terms of, again, the complexity of their definitions in terms of

this weird logic formalism and which were proved to be a proper hierarchy in the sense that the

next one, the nth one, definitely was larger than the n-1st, than the one that came before.

Brock: Okay.

Meyer: Okay?

Brock: So let me just try--

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 26 of 64

Meyer: Yeah.

Brock: --and replay it to you in a kind of, as I’m, to make sure I’m getting it, is that there is this

description of a set of mathematical functions, these primitive recursive functions, and there’s a

particular ordering of them, and that that is identical, that is the same thing, as these nested loops.

You know, that kind of description in terms of the depth of--

Meyer: Yeah, it’s--

Brock: --loops--

Meyer: Yes.

Brock: --is the same as this hierarchy.

Meyer: Yes, yeah.

Brock: Okay.

Meyer: I mean, the thing is that we’re talking about a class of mathematical functions, functions

on the non-negative integers to the non-negative integers. But the way that they’re defined is by

the structure of the definition that you give such a function. Okay. So we have, it’s a kind of a

historical irony that Gödel originally formulated the concept of the primitive recursive functions,

because he wanted what he considered to be some very simple class of functions that no one

could deny that these were mechanically computable. He wanted the simplest possible definition

that would be self-evident that, “Oh, yeah. If it’s that kind of thing, I definitely know how to

compute it.”

Brock: Like an increment by one. This is this sort of thing?

Meyer: Oh, well, it was by-- basically it was functions that were defined incrementally that you

define the n+1st thing in terms of the nth thing and some operations on it that you know how to

do. That’s the essence of--

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 27 of 64

Brock: That’s a recursive function.

Meyer: That’s the essence of primitive recursion. Okay. And so Gödel wanted those because he

needed some class of functions that nobody would doubt that they were computable, and then he

could use those as a basis to come up with a much broader general definition of computability in

general, which was something that at the time it was considered to be-- needed justification

because it was a sweeping generalization, calling all of these functions are exactly the

computable functions. Before you can get to there you need some core of functions that nobody

has any doubts about.

Brock: That nobody’s going to argue with.

Meyer: So Gödel’s motivation was he needed this so-called very simple set of functions. But

from our new perspective in terms of computational complexity, was to realize this set of

functions may obviously be computable, but they grow at a rate that is beyond astronomical

description, even, like, at the second or third level. So although logically it’s very easy to see

that they are very computable, they are in fact so impossibly complicated that you wouldn’t even

try computing the value of a function value at 5, say, because it would be a number that was--

couldn’t be usefully described in any other simpler way. If you actually tried to compute it, the

number of digits would -- it’s one of these--

Meyer: Fill the universe with atoms kind of thing.

Brock: So the-- because I was wondering when I was reading, both-- well, I was wondering in

my reading, you know, “Why the attention on recursive functions?” and it’s precisely because of

their relationship to computability or algorithmic sort of solving or something like that; is that

correct?

Meyer: Yeah, I think so. Look, there’s the central question that we begin with here in theory of

computation that goes back to the ‘30s, the work of Gödel and Turing, is “What’s computable

and what’s not?” Okay, and in order to answer, “What’s not?” you need a definition. What does

it mean for a function to be computable? So what we’re talking about are functions for

definiteness from non-negative integers to non-negative integers. You know, like, addition.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 28 of 64

Well, a pair of non-negative integers to a non-negative integer. You can add them, you can

multiple them, you can take one to the power of the other, you can do all kinds of stuff. Okay.

You could map it to 0 or 1 depending on whether it’s odd or even. Okay. So there’s all sorts of

mathematical functions and arbitrarily definable functions. How can we come up with a

persuasive general definition of which ones can be computed by a program and which can’t? If

you ignore issues of efficiency. You sort of say, “Is there a program where I put in the number n

and I get out f(n), eventually?”

Brock: Right. Right.

Meyer: You know, eventually.

Brock: Right, right.

Meyer: And so the puzzle in the ‘30s that Turing and Gödel faced was, “What is that definition?

What is the definition of the computable functions? How can we define them?” And there were

many proposals. I mean, Gödel had one, I think Alonzo Church had another in terms of Lambda

Calculus. I forget whether Post was one of the contributors, but--

Brock: I think so.

Meyer: --there was a system called Post, Post rewriting rules. So rewriting systems, and then

Turing came along with his description of a very simple computer-like abstraction that you could

see, understand, how it works step by step, and he made the argument that was very persuasive,

and I’ve heard anecdotally said that it was Gödel who said, “Yes, Turing is what made it

convincing.” That this was the general definition of what was computable. Okay. If it could be

computed, then it could be computed by a Turing machine, and certainly if it could be computed

by a Turing machine, that was a very convincing and persuasive definition that it really was

computable in any reasonable, intuitive sense about what a digital computer could do.

Brock: Got it.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 29 of 64

Meyer: So that was sort of this big idea, and the-- and again, it’s a thesis. It’s not a theorem. It’s

a definition that you’re trying to justify. We’re trying to define what are the computable

functions? I mean, you haven’t defined them yet, so you can’t say whether it’s right or wrong.

Brock: Right.

Meyer: And it’s historical evidence, that the people who were thinking about this thing, there

were four or five major proposals for mechanisms that could be considered to be mechanisms of

general computation, that looked different. One was in terms of Lambda Calculus and, you

know, formula-- calculating with formulas by substitution. Another one was by rewriting

patterns of symbols. Another one was by recursive definition. Another one was by this atomic

Turing machine, computing step-by-step model, and then a wonderful theorem was they all

compute exactly the same class of functions. Given one description in terms of rewriting rules,

you can find a Turing machine that’ll do it.

Brock: That does--

Meyer: Give me a Turing machine and I can find rewriting rules that will do the same thing as

the Turing machine does. So that was one of these great, wonderful ideas. All of these systems

could be shown to be offering different definitions of the same class of computable functions that

is now universally accepted as, “Those are the computable functions.”

Brock: Okay.

Meyer: And that was what we were building on, but the insight in the ‘60s was, “It’s time to

refine that,” because what is and isn’t computable now, within the computable functions, there is

structure that matters because we need to know how computable it is, and it became a way to

reprise all those ideas in the ‘30s.

Brock: Oh, oh. Yeah, yeah. I see.

Meyer: In the context of, “How computable is it?”

Brock: Right.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 30 of 64

Meyer: And again, many definitions of what that should mean, of how computable it should be.

It could mean computable by certain kinds of restricted automaton computational devices, like

pushdown automata or-- I forget. There were various kinds of pushdown machines, and finite

automata and so on, and counter machines was the thing that I worked on extensively then with

Pat Fischer and other collaborators. But the other approach was about just asking how long it

took the computer, how much space it took the computer.

Brock: Right.

Meyer: And so the problem that Pat had picked out was this business about creating within this

class of functions that Gödel thought was very simple and straightforward and obviously

computable.

Brock: The primitive recursive functions.

Meyer: The primitive recursive functions. The challenge was, well, this guy Grzegorczyk --

Polish mathematician, logician -- had come up with a way to classify them.

Brock: The primitives?

Meyer: The primitive recursive functions, and broken up into an infinite hierarchy of successive

classes of zero, the first and second, all the way up, such that each class was able to do more than

the previous one. So it provided this kind of hierarchy within the primitive recursive functions

that you could sort of say, “Okay. That’s got something to do with how primitive recursive they

are, how complicated they are.”

Brock: Right.

Meyer: But it was a syntactic definition, and so in a certain sense, you know, the nth class could

do more than the previous class. Each class could do more than the previous class. But what

more could it do? I mean, how would you explain that?

Brock: Yeah, yeah.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 31 of 64

Meyer: And in a certain sense, what-- the particular open problem that Patrick sent Dennis and

me to work on was to try to explain Grzegorczyk’s definition, which, in a certain sense, has an

ad hoc element to it, whether it could be explained simply in terms of the depth of nesting of

these recursive definitions, of primitive recursive definitions, which-- so that was the question

that Pat was setting. Does the Grzegorczyk hierarchy coincide with the depth of nesting of

primitive recursions? And Dennis’s wonderful insight was he got rid of all his horrible syntax

and cumbersome technical definitions of the closure properties of these functions and even the

definition of what primitive recursive was, and replaced them with loop programs. They’re a

gem. Yeah.

Brock: Which seemed to me just like just a very beautifully simple computer program.

Meyer: Exactly. Exactly.

Brock: You know, and I wondered about, when reading his work and your work together, what I

wondered about was these loop programs itself. You know, like, there’s this idea a Turing

machine can compute anything that can compute. Can any computer-- how generalizable is the

loop program? You know, that’s what I didn’t understand.

Meyer: Okay. Okay, fine. The loop programs have a property which guarantees that they can’t

do everything.

Brock: Okay.

Meyer: Which is that loop programs, from the very way they’re defined, they always eventually

stop. You run a loop program on a given set of initial values, you know it’s going to stop. That

was the property that Gödel wanted with the primitive recursive functions. He wanted to be

evident-- you definitely could compute these. There was no problem about getting into infinite

loops or any other difficulty. Primitive recursive functions were evidently computable.

Brock: Okay, okay.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 32 of 64

Meyer: Loop programs just capture it in a more explicit, computer science way. Now, the fact

that they always stop is an interesting little induction proof. It’s not completely obvious from the

way they’re defined, but it’s a very elementary proof from the way they’re defined that they’re

guaranteed to always stop.

Brock: Okay. Okay.

Meyer: And so that says that they automatically can’t do everything.

Brock: Okay, got it.

Meyer: But then it becomes a puzzle of, “Well, okay. They can’t do everything. They do some

hunk of things.” But within the hunk of things that they do, can you-- Is there structure there?

Can you clarify the degree of computability by these loop programs?

Brock: Right, right.

Meyer: And it turned out that there was, and that this syntactic depth of nesting was a way to

explain the Grzegorczyk hierarchy, which was the open problem that Pat had assigned us. But

more than that, the real insight was that you solved the syntactic problem by realizing it and

reformulating it as a question about what you can compute in a certain time bound.

Brock: Yeah.

Meyer: Okay. That when you say, “Okay. I have a certain function that I’ve defined,” in a nice,

simple, recursive way, but it’s a particular definition of a function that grows rapidly, and what

I’m asking is, “What can you do by computations that never take more time than that function

says they should take?” and so the insight was that all of these syntactic questions about loop

programs and primitive recursive functions and so on were really computational complexity

questions. They were asking questions about how much you could compute with a given time

bound, and you give me more time, I can do more.

Brock: Right.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 33 of 64

Meyer: Yeah.

Brock: Right.

Meyer: Which was, again, an easy result based on the 1930s diagonal argument approaches, and

so in a certain sense it was a problem we’d been assigned to solve in which we wrote up-- we

won a Best Paper Award at an A.C.M. meeting for this paper, which none of the people who

gave the award understood, but so be it.

Meyer: They didn’t understand the significance of it. They thought it was important. It wasn’t.

Was a highly theoretical result that had no relevance to practical computation, but they got

excited about it and they were happy to have some young theoretician graduate students giving a

paper at an A.C.M. conference, so they gave us this award. But the insight was that we disposed

of the syntax, stopped worrying about it, because it was really about time bounds and

complexity.

Brock: Hm. It seemed that-- I have a lot of questions, but one that has been burning in my mind

is about it seemed just like-- well, my understanding of part of what, like, Turing and Gödel were

up to were to use compute-- to translate questions about provability or completeness of

mathematics, foundations of mathematics, to turn that into questions about computability and

learn something about. Use computability to find out things about the foundations of

mathematics or mathematical results or about mathematical--

Meyer: I think that’s fair, yeah.

Brock: --objects.

Meyer: Yeah, I think that’s fair.

Brock: And it seemed that, to me, when I was trying to understand Dennis Ritchie’s thesis, it

was also, it seemed, he was doing a similar thing there, where he’s like, “I can create loop

programs and talk about their structure and the depth of loops, and that tell us about practical

computability and the time,” but that then I’m-- and I didn’t fully understand it.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 34 of 64

Meyer: Got it.

Brock: But the structure of it seemed to me, and like once I translate these questions about

mathematical objects into these questions about computability and loop programs, then what I’m

learning about is stuff about the recursive functions, and I don’t know if that’s correct or not but

that’s...

Meyer: I need to think about that for a second, so...

Brock: Yeah.

Meyer: Well, look. There’s this, there are these classes of functions that are definitely

mathematical objects, and-- but there’s, you know, endless classes of functions. There’s

polynomials, there’s trigonometric functions, there’s functions definable by infinite series and so

on.

Brock: Right.

Meyer: So what we were looking at was, what turned out to be the fundamental concept, was

classes of functions that could be computed within a given-- with a given amount of time and

space resources. Where the amount of resource was defined by a function that was computed

from the size of the input. You tell me I’m working on inputs of size a hundred, you can have a

hundred times this amount of time steps to do it or a constant to the power of one hundred steps

to do it or whatever, but as a function of the size of the input, that’s how much time I’m going to

get to do it and I wonder can I do it in that much time or not?

Brock: Okay.

Meyer: And so the fundamental question was, “As you tell me about the amount of resource that

you’re willing to allocate to the computation, what can I say about what you can accomplish with

that or not?”

Brock: Ah. Okay.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 35 of 64

Meyer: Mm-hm, and the simple insight, it’s very intuitive, but-- and it was also easily proved

using the methods of diagonalization from the 1930s, was, “Give me more time, I can do more.”

Okay.

Meyer: Okay. Duh.

Brock: Right. Right.

Meyer: But then, it turned out that that notion of, “Give me more time, I can do more,”

connected up very nicely with these, with this other approach to try to classify the difficulty of

computing functions that was based on the complexity of how they were defined as opposed to

how they behaved or how they ran.

Brock: Right, right.

Meyer: And the insight was, “Hey, the two really ought to connect up.” That I can tell you from

the structure and the complexity of its definition how much computational resource it’s going to

need, and conversely, this is the mindblower, if you tell me that you can compute it using a

certain bounded amount of resource, I can guarantee you it has this syntactically simple

description.

Brock: Ah.

Meyer: Okay. So it meant that if you were interested in the syntax, you could understand it in

terms of how much time you were spending computing things, but more than that, it told you if

you were fundamentally interested in what made computations resource-demanding, you didn’t

have to think about the syntax. Because it wasn’t relevant.

Brock: Okay, okay.

Meyer: The syntax was just another way of talking about the basic questions you were interested

in, which is, “How much time and space does it take to accomplish this task?”

Brock: Okay.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 36 of 64

Meyer: So that’s the key insight in Dennis’s thesis, and in my, that early first work of mine, and

the stuff that we published together.

Brock: Right.

Meyer: So coming back to Dennis and part of the anecdote was I have never read Dennis’s

thesis. I never checked on it, because I didn’t care. As I told you, I believed that he probably got

it, but it didn’t matter, you know, even if it turned out he didn’t quite get it. It was fine. The

Loop programs were enough. I was delighted to have him as a co-author, okay. But in response

to the correspondence with you, I went and looked at his thesis, which I had on my shelf for 40

years, <claps> and I actually said, “Well, I should look at it,” and sure-- and I still-- to tell you

truth, I haven’t read it. But I read the 20- or 30-page introduction.

Brock: Yes, the summary.

Meyer: And it was clear that he did indeed. He figured it out his way. It was the same idea as

mine, but he had figured it out independently. Okay.

Brock: So this was the solution to--

Meyer: -- to the problem that we had both been assigned--

<overlapping conversation>

Brock: -- the summer problem.

Meyer: -- over the summer. Yeah.

Brock: Oh, my gosh! What a trip!

Meyer: Yeah. So that was the crazy story. I mean, what kind of a supervisor? You know, I feel

great affection for Pat, really. He led me-- he made this career possible for me. He supported us,

he was encouraging, he defined the problems we were working on. He was a tremendous

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 37 of 64

influence, both intellectually and professionally. But what a way to manage two students, you

know? But it's so wonderful to have someone to talk to about this.

Brock: I know!

Meyer: It was such a painful, lonely summer! And somehow or other, it didn't occur to him to

link Dennis and me. He was off doing whatever he was doing for the summer.

Brock: Well, could you tell me a little bit about how-- once you got to know Dennis Ritchie,

and you have this very early, important collaboration, what was that like? Yeah!

Meyer: I mean, what's poignant about it, I never got to know Dennis Ritchie.

Brock: Huh!

Meyer: Okay? Dennis and I really had just a-- I liked him. He was a very sweet, easy-going,

unpretentious guy. Clearly very smart, but also kind of taciturn. I'm kind of a voluble, you know,

conversational person.

Brock: Yeah, right.

Meyer: And I love talking about things, and arguing about them, and stuff like that. And that

was not Dennis' style, at all. So we talked a little, and we talked about this paper that we wrote

together, which I wrote, I believe. I don't think he wrote it at all, but he read it. The first one he

read and made comments on, and so on, and he explained loop programs to me. But we never

actually collaborated. It was a disappointment. I would have loved to collaborate with him,

because he seemed like a smart, nice guy who'd be fun to work with, but yeah, you know, he was

already doing other things. He was staying up all night playing Spacewar in the basement of

MIT.

Brock: Oh, okay.

Meyer: And it wasn't-- was it called Spacewar, or it was some kind of space thing with early--

very early computer game of a--

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 38 of 64

Brock: Shooting ships?

Meyer: Well, the main thing was that they were in the gravitational pull of a strong sun. I mean,

you can navigate in trajectory, so that you didn't fall into the sun, but you could use it to make

amazing curves, getting up behind your opponent. So apparently Dennis was all caught up in

that. That summer apparently that we were both working on this problem, he was spending many

hours at night hacking this computer game. And so, in fact, I would say that although we

collaborated on that paper, we never really worked together. And there was a second paper that

we-- he was a co-author with me on which was stuff of mine that was related to what we were

doing, and I felt that he should be a co-author, because it grew right out of what we were doing.

And, but, and I think I remember trying to get his attention, and maybe even his formal

permission to put his name, and I never heard from him. He never responded. He just wasn't

interested anymore.

Brock: Well, it's a very collegial thing of you to do, was--

Meyer: Well, I didn't feel like I was giving away undue credit, but it was something that kind of

grew out of all the ideas that he had worked out and that I had worked out. But the second paper

was a technical paper that was sort of saying, “Hey, once you get the idea that all of this

syntactic hierarchies you're talking about is how much time and resource things take, well, once

you're talking about resources, there's lots of weird ways to put limits on how much resource,

wavy functions of a kind that aren't so nicely uniform. And they'll create hierarchies, too!” So

the next paper was about how you could have classes that were like this hierarchy classes, but

neither one contained the other. It wasn't that one was bigger than the other. Each of them had

functions the other didn't have. And they went all the way up! So that once you got the idea

that, “Hey, you know, the syntax is really just talking about computational resource.”

Computational resource is something you can easily see lots of ways to manipulate.

Brock: Oh, I see.

Meyer: And make choices of, and then you could come back and have these so-called

hierarchies that are unlike any of the other hierarchies.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 39 of 64

Brock: Oh, that's interesting. It's a novel kind of hierarchy of functions if you did something

kind of unusual with the resource and distinction. Like throttling it up and down.

Meyer: That's right. So you could get them so where they throttled up and down out of sync. So

one is big when the other is little, and vice versa. That means that each one of them can do things

when it's big that the other can't do.

Brock: Oh.

Meyer: But neither one does what the other one does. So that was one idea that you could have

these incomparable classes and build hierarchies out of them, and all kinds of stuff like that. So

that was what the second paper was about. And to the best of my knowledge, Dennis never read

it and wasn't interested in it.

Brock: Huh.

Meyer: Now a reference that I was going to try to chase down on your behalf, but I will leave to

you is-- when was this? At some point, when I was-- maybe when they had that celebration in

honor of Dennis after he died.

Brock: Yeah, at Bell Labs.

Meyer: Yeah, of-- but I think it was even earlier than that. Well, I came upon a published

interview with Dennis that was published, I don't know, some findable place-- New York Times,

Science Magazine, something like that, in which Dennis was being interviewed by his own

background, and how got into the systems stuff. And he says something like, "Well, you know, I

was a graduate student in theory at Harvard, but that experience made me realize, when I

finished my Ph.D., that I wasn't smart enough for theory, and so I shifted over into systems."

And I like to say that my major contribution to computer science was driving Dennis out of

theory! By convincing him that he wasn't as smart as me, and that, you know, he ought to go

work where his talents lay--

Brock: Build something. Yeah.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 40 of 64

Meyer: -- instead. I have no idea whether that's really true, but it's a good story. I can't-- and

you'll find a quote in a passage that--

Brock: Yeah, I'll look.

Meyer: Saying that he wasn't smart enough to do theory, so he shifted over into systems.

Brock: Isn't that interesting?

Meyer: Yeah.

Brock: And do you think that's why-- I mean, there's-- in speaking with his surviving siblings,

you know, who tracked down and found a copy-- or who found a copy of his thesis, his copy of

his thesis, and tried to track it down with Harvard University at status and found--

Meyer: Did I tell you that story?

Brock: No.

Meyer: Or do you want that one?

Brock: I would love to hear that story.

Meyer: That's another good story. This is how true we-- well, we were just finishing up

something else you were going to say. So you want to--

Brock: No, we'll get back to it. I would love to hear that now. Yeah.

Meyer: So the story as I heard from Pat Fischer, I believe, told this to me. I'm sure that it was

Pat who told it to me. I've never had it confirmed elsewhere, though, but I believe it, was that it

was definitely true at the time that the Harvard rules were that you needed to submit a bound

copy of your thesis to the Harvard -- you needed the certificate for the library in order to get your

Ph.D. And as Pat tells the story, Dennis had submitted his thesis. It had been approved by his

thesis committee, he had a typed manuscript of the thesis that he was ready to submit when he

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 41 of 64

heard that the library wanted him to have it bound, and give to them. And the binding fee was

something noticeable at the time. I forget whether it was, you know, $50, $250, something or

other. But it was a-- not an impossible, but a non-trivial sum. And as Pat said, Dennis' attitude

was, "If the Harvard Library wants a bound copy for them to keep, they should pay for the book,

because I'm not going to!" And apparently, he didn't give on that. And as a result, never got a

Ph.D. So he was more than everything but thesis. He was everything but bound copy.

Brock: EBT.

Meyer: But he apparently drew the line at that. It was a matter of principle, and didn't get a

Ph.D.

Brock: Oh, I guess it just shows how kind of a self-contained creature.

Meyer: Or something!

Brock: Or-- yeah, and who kind of-- as a result, I don't think--

Meyer: Didn't hurt his career any.

Brock: It didn't, no, but as a result nobody really has-- I mean, I guess they've seen in your co-

published paper a lot of that.

Meyer: Well, the co-published paper is not really what was in the thesis. The thesis was his

version of--

Brock: Of solving that--

Meyer: -- of solving the problem. Yeah.

Brock: -- problem. Okay. Okay. Okay, wow, that-- and what--

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 42 of 64

Meyer: And my version, by the way, was in the joint paper about Loop programs, because by

the time that that was done, I was already doing lots of other stuff. And I think that this was not

part of my thesis.

Brock: Oh.

Meyer: His work.

Brock: Oh, right, because you-- now did you-- in your thesis did you extend the use of Loop

programs, or did you use the concept of resource?

<overlapping conversation>

Meyer: No, no. As I remember, I didn't use any of the joint work.

Brock: Okay.

Meyer: My thesis was about other aspects of complexity theory.

Brock: Okay.

Meyer: And computability theory. Maybe the second paper might have been in my thesis. I

should look that up, but I don't remember. I don't think so. I think that the work with Dennis was

going to be his thesis; and I didn't need it because I had lots of other stuff already. But--

Brock: How did-- now it seemed to me-- well, just to finish the Dennis Ritchie thread, did you

have any contact with him over the years after your--

Meyer: No, not really.

Brock: -- time together?

Meyer: I remember arranging a visiting-- a lecture invitation when I was in my first or second

year after we graduated with our Ph.Ds. I was at Carnegie-- it started as Carnegie Tech, and the

following year it became Carnegie Mellon University, when they acquired the Mellon Institute.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 43 of 64

And I arranged for Dennis to be invited as a speaker, because, you know, I was impressed with

him and I liked him. And I thought that-- I'm not sure exactly what I thought, maybe just because

I'd like to see him, or because-- the department might be interested in making him an offer, or

whatever, or maybe he was just doing interesting stuff. So he came and gave a lecture on what at

that time was B, not C.

Brock: Oh, uh huh.

Meyer: And I remember-- of course, it didn't mean anything to me, because I was wary of real

programming language stuff. I didn't do that. But I remember Alan Perlis, who was the

department head at that time, who was maybe the most distinguished figure in programming

languages -- at least American figure in the programming language business -- and he said he

was very unimpressed, and he just didn't think that there were many important ideas in this B

language, that it was going anywhere. So Alan didn't get that one right. Because B became C,

and C became a core aspect of UNIX, and remains for decades, generations, an enormously

important and influential programming language. So I had positive enough feelings and was

interested enough in what Dennis was doing, felt it might be important to arrange that interview,

and an invitation to come to speak at Carnegie. But then it didn't go anywhere, because Perlis

wasn't interested, and I didn't really know anything about that idea in order to defend it and say

Perlis was wrong. So it dropped and that was the end of it. And I don't think I had any further

contact with Dennis after that.

Brock: Well, could we spend a little bit of time talking just-- I had some questions just about,

you know-- not "just"-- about the arc of your career.

<Break>

Meyer: And maybe we can invent some other ways to explain what's happening. But it was a

great-- again, it's an illustration of this intellectual concept which I thought, and was

tremendously excited by, at the very beginning of my career, which is that computation is a

universe-- a crucial, almost universal lens through which to view other problems. And that

looking at things through a computational lens suddenly reveals phenomena that had been not

even noticed by the practitioners in the field. Equilibrium in economics is a wonderful example.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 44 of 64

But I remember early on one of my own results was about, in algebraic geometry, I didn't even

know what algebraic geometry was exactly. But there were these various results about behaviors

of polynomials, and when we looked at them as computational problems, we could prove results

that the algebraic geometers had never even thought of proving! And they were very interested in

when we pointed it out to them by saying, "Well, you know, let's not think about them as

numerical things, and ask about the varieties and shapes geometrically, let's just think of them as,

well, suppose I used a compu-- a polynomial expression to compute with, what sorts of values

could I get it to compute?" And when you ask that, you suddenly got into a way to apply all the

computational theory that we could bring to bear.

Brock: Yeah, it's an interesting-- I can see how it'd be an interesting new perspective to bring to

bear on different areas of mathematics, but also different areas of culture that use mathematics to

get at various things about the human world, the natural world.

Meyer: Mm hm.

Brock: Yeah.

Meyer: Yep.

Brock: It is that when you got into this computational complexity and computability in applied

mathematics, it was like a subfield of a subfield in applied mathematics. When-- I'd be interested

to hear you talk about like when and how computer science becomes kind of disciplinary-- like

the disciplinary history. When does it really start to become distinct, when people say, "I'm a

computer scientist," instead of saying, "I'm an applied mathematician"? And does the stuff that

you were working on in terms of what we were just talking about with the loop programs and

computational complexity, does that-- is that kind of more at the center of what was going on

with theoretical computer science, as opposed to being just kind of a sub-section of applied

math?

Meyer: Well, basically, the Loop programs are historical-- not artifact, but an historical event

that are no longer relevant, nobody thinks about it.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 45 of 64

Brock: Yeah.

Meyer: They're not important. What was important as this idea of resource bound and

computation which remains a central theme in modern complexity theory and computability

theory. I'm not quite sure how to answer the question except that I always felt that I was lucky to

be doing what I was doing when I was doing it, because it was this brand new field where very

little had been worked out. And a smart person who was not a serious scholar, who wasn't

willing to spend years learning all sorts of stuff in order to be able to get to the research frontier--

and I've never done that kind of thing, and I don't have the patience for it-- but you could look at

it and the odds are that very little work had been done, and you could immediately do it better.

And that was exciting to me, tremendous source of satisfaction. So when I started off, there

wasn't all these different some disciplines. There was theoretical computer science. And my early

work with collaborators, we worked on algorithms, we worked on automata theory, we worked

on algebraic automata theory, and we worked on time-bounded computation, and we worked on

the syntactic issues in programming. And we did them all. You know? I have early publications

on shortest path algorithms and graphs, and algebraic decomposition of automata theory. And we

did some other work, highly technical work on the complexity of multiplying integers. Which

remains an open problem, actually, to this day. People just don't know how hard it is to multiply

two integers. There are methods known that are way more efficient than the nutty way that you

learn in elementary school. But as of this moment, there are I think no non-linear lower bounds,

knowing on how hard it is to multiply. Nobody can prove that multiplying is harder than adding.

Although we have, but we had some technical results that put some limitations on the way you

compute it, that it was a little bit harder than linear multiplying.

Brock: Hm.

Meyer: So that was an example of the stuff that we were doing. And at that time, working with

my collaborator at that time, Mike Fischer, who was the younger brother of Patrick Fischer, my

supervisor.

Brock: Oh!

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 46 of 64

Meyer: And Mike, you know, was a-- Mike was a graduate student a year behind me, very

smart and a wonderful guy to work with. And you know, we would look at the papers that were

coming out in the one or-- in the two leading semiannual symposia in computability, and we'd

look at a paper that appeared, and we'd study it at the seminar, and the immediate test was,

"Okay, let's see what he's got and we'll do it better!" And we could do that consistently! Because

it just happened--

Brock: Yeah, it was wide open.

Meyer: But it wasn't very deep.

Brock: Yeah.

Meyer: So that was my hump, and very easy to be productive. And also very versatile covering

all these different areas. By the time I got the-- what I felt was my own pinnacle results, the

results that had accomplished what I always wanted to accomplish, and I, at that point, had a

kind of maybe-- maybe it was a crisis of confidence that sort of, "Oh, my god! This is amazing!

I've actually done what I have dreamed of doing." It was really very lucky, because all the pieces

fit together. I happened to be the right person at the right time. And, "I'll never do anything this

good again! So do I want to continue in this field where everything I do is going to be not quite

as good as that? It's time to change fields!" And I switched from working in complexity to

working in logic and semantics of programming. This was in the late '70s.

Brock: Which-- what was the result that you felt was that kind of crowning achievement in that

area?

Meyer: What was it I felt was my crowning achievement? People, by that time in the early '70s,

'72 -- 1972 was Steve Crook's paper defining the concept of NP Completeness. And that became

a center of research. But it was also the case that we had all sorts of these abstract theorems

about how more time gave you the ability to do more stuff.

Brock: Yeah.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 47 of 64

Meyer: We had no concrete examples of real problems that were not just contrived by these

diagonal constructions of something real that was hard to compute. There weren't any examples.

And I found the first ones, and that was my major achievement and tremendously exciting.

Brock: How did you find them?

Meyer: It was-- it's a story of itself maybe we could go into, but it was just, I would say, a

combination of luck and brilliance, of putting together a whole bunch of pieces that I happened

to have learned about in my education, taught by teachers who may or may not have even seen

that they were relevant, but they would fit together, but somehow or other they thought they were

relevant, and they all came together, and bang, I had two results that were exactly what I had

been looking for. One of them was-- or better yet, I'm not sure which one is easier to explain.

There was this notation that had to do with what you could do with finite automata. It's a notation

that's still used actually in programming language to describe-- it's a natural way of describing

certain kinds of patterns of strings of dig-- strings of characters. It's called regular expressions. I

don't know whether that's ever…

Brock: I've heard the expression, regular expressions, but--

Meyer: Well, you know, when you're trying to do like you're looking in a textbook, and you

want you to search for certain kinds of patterns, you might sort of say things like, "Okay, I'm

looking for a name that starts with some number of A's. I'm not quite sure how many-- at least

one, but maybe two or three, and followed by an unknown amount of stuff, but it always ends I-

N-G, or S-O-N, or something," right? So yeah, there's a little notation that says, Okay, you're

right. “A* alphabet* I-N-G or S-O-N.” And that's a description that says where the star means

any number of occurrences.

Brock: Right.

Meyer: So any-- so “(whole alphabet)*” means “anything at all in here.” A* means only A's,

but zero or more A's. So see how you can write that little expression that describes that set of

strings. And it's very easy to implement the scan that will look at some large text document, and

find all the segments of a document that match exactly that scan, or that pattern. So it's a pattern

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 48 of 64

with description, right, and it's a very concise one, and widely implemented. Most programming

language use operating system languages to support this. And the explanation behind it is one of

the early beautiful results in finite automata theory, which is there's a certain set of notations that

you could use involving-- taking-- if you have an expression that describes one set of patterns,

and another expression that describes the second set of patterns, if you put them next to each

other, the two expressions, that you interpret as a description of all the strings that have, begin

with the thing that matches the first pattern, and continue with the thing that matches the second

pattern. It couldn't be a more natural idea. Okay, so concatenation of expressions.

Brock: Got it.

Meyer: And concatenation of patterns. So you have concatenation, this star operation, which

means any number of these can occur. And an "or" operation, which means it could be this

pattern or that pattern. Okay. You could take the whole thing and put a star on it, which means,

"Okay, it looks like some number of repeated occurrences of this pattern or that pattern. Maybe

it's all this pattern, maybe it's all that pattern, maybe they alternate. But it's only a string that is a

sequence of these patterns." Okay. So the beautiful theorem was that what's describable by this

particular set of regular expressions that just involve union concatenation and star, are exactly

the languages that can be recognized by finite automata. Beautiful example of a syntactic

characterization of something that was otherwise characterized by a computational mechanism.

And an early result, Rabin and Scott got a Turing Award for working this out in a very beautiful

and general way, back in the '70s, probably. Okay, so it turns out that-- actually one of my

results, now that I think about it, but it was sort of a minor throwaway in the context of the later

results was that determining whether or not two of these regular expressions describe the same

set of patterns was actually a harder problem than the NP problems. Sounds easy, but it's actually

harder. As a matter of fact, just telling whether one of these expressions describes all possible

strings is harder than one of these NP problems. Or at least it's a sort of doable in space that's--

and actually technically, it's linear space. Okay, maybe not deterministic linear space. I forget.

But it doesn't matter which space, okay. But then what I realized, and it came out of some work

with a student, an absolute genius student, but that if you add a simple abbreviation to this

notation, namely, instead of writing a pattern and putting it next to itself and saying, "I'm looking

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 49 of 64

for strings that consist of two occurrences of the pattern, one followed by the other, I just write

"squared.""

Brock: Okay.

Meyer: So I write pattern.

Brock: Squared.

Meyer: Abbreviation squared, it means two occurrences, of the pattern. That's the only

abbreviation in the whole notation. All I'm adding to the notation of the operations of union,

concatenation, and star is squaring. I can prove that that problem is exponential. Okay. So it was-

- in a certain sense, it was the first example of a real uncontrived, not described by some process

of diagonalization, but a very simply, easily described problem you could point to and say, "Here

it is. It's easy to understand, it's easy to see how to compute it. You just build a finite automata

that does the job. But hey, look! Every time, because you could have missed its squarings, this

expression that looked like two to the two to the two to the two is describing a finite automaton

that takes an exponential number of states, and by the way, you can't beat that!" That was the

insight. You can't beat that. Okay? That it absolutely requires exponential effort to determine

whether or not one of these expressions with squaring describes all possible strings.

Brock: Hm.

Meyer: And that was the mind-blowing result that I wanted. You know, it solved a real problem

that we could finally say, "Here's an example, our methods allow us to prove that this obviously

computable, routinely computable problem is one that's-- that pragmatically it's hopeless. That is

exponential." And then related to that, once we knew how to do that kind of thing, there were a

whole bunch of other problems that we could knock off similarly.

Brock: That were-- had a family resemblance to this.

Meyer: Well, the simplest one would be to take this one, forget squaring, just add complement.

So it's well known that the languages that can be recognized by a finite automaton, if you can

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 50 of 64

recognize it by saying Yes or No to it, you can obviously recognize it by saying No or Yes to it.

Therefore, if you can recognize something with a finite automaton, you can recognize and know

strings just as well as you can recognize-- the definition of recognizing says that you say Yes to

the Yes strings, and No to the No strings. Well, that means that if I just switch the roles of Yes

and No, I can say Yes to the No things, and No to the Yes things, which means I am, in effect,

saying, "Yes, to the things that aren't in the pattern."

Brock: Mm hm!

Meyer: So it's describing the complement.

Brock: I get it. I get it. I get it.

Meyer: So you just add that operation of complement, and again, it's trivially computable in the

same way as before, because you're just building a finite automaton that does the job that the

pattern recognizes or specifies. But now you discover that the “Nots,” in order to convert that, an

expression that works, an automaton that works on one expression, when you have to apply it to

the Not, the automaton, the Not automaton blows up exponentially. The reason was is it's a little

bit harder than just saying Yes or No. If the original automaton, the usual way that these

automata work is they're so-called non-deterministic automata, which is that they really have lots

of different ways that they can act on a string, and the string is said to be accepted if there is a

way to say Yes.

Brock: I see.

Meyer: Okay? And that sounds like one of these NP complete things, because they don't know

how to say No.

Brock: Yeah.

Meyer: But it turns out that there's a standard construction, one of the basic facts in the

elementary theory of what finite state machines is. You can take one of these non-deterministic

automata and convert it into a deterministic one that plays in exactly one way and definitely says

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 51 of 64

Yes or No. But the conversion is an exponential blowup. To take a nondeterministic automaton

and convert it into a deterministic one involve-- requires an exponential blowup in states in

certain cases. That was a well-known result. But that was just sort of, you know, one finite

automaton description in terms of another finite automaton description. And finite automata have

already limited kind of descriptive mechanism and computation mechanism.

Brock: Yeah.

Meyer: But so the naïve way of working with one of these pattern matching things and trying to

figure out how it behaved when you were allowed to talk about complements, you had a non-

deterministic one, you complemented it, it blew up exponentially. Now you did some more

stuff, became deterministic, but you did some more stuff and became non-deterministic again.

And then you complement it again, it'd blow up again. And the result was that when you take

these regular expressions extended with complement, now you can prove that this naïve

approach can't be beat. That basically the complexity of telling whether or not a-- one of these

non-determinant-- one of these regular expressions with complement describes the set of all

patterns. Grows not exponential, not doubly exponentially, but like a growing stack of

exponentials.

Brock: Oh, yeah.

Meyer: It grows like two to the two to two to the two to … height N … to the Nth power.

Brock: Uck! Yeah.

Meyer: I mean, numbers that vary-- for very small N. Actually, we have some example in a

joint paper with student, Larry Stockmayer, where we did a similar example in saying, "Okay,

suppose you're going to build a circuit that correctly answered whether or not a formula's in a

certain logical language of length, 2000 of length, that could be expressed in 2000 bits, if you

coded them into bits.”

Brock: I think I was reading this paper.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 52 of 64

Meyer: And the circuit would, if the transistors were built out of protons, and you ignore the

size of the wires, the circuit would fill the known universe. Okay. So just building a hard-wired

circuit to solve this finite problem of whether or not these 2000-bit formulas were true or false,

was again, an example of an uncontrived problem, logical language, it so happened, a known

decision procedures to tell whether or not a formula in this language was true or not. But

computationally, it's infeasible, you can't do it. Okay. So those were the results that I got in 1975

working with this student, Larry Stockmayer, and then we brought in a bunch of other students.

And those were the pinnacle results that I wanted. And I thought that the purpose of sort of

complexity theory is to have some real problems that people know how to do and want to do, and

you can point to and say, it really is hard. Our methods enable us to prove that there is no way to

do this efficiently. That it’s exponentially-- or worse. And once I had that, it was like, okay, well,

what’s next? Well, the important thing, and what people still care about, is the NP-complete

problems, which remain open. But my feeling was, you know, I did what I wanted to do. I mean,

yes, it would be wonderful to understand the NP problems, it’s maybe more important, but I

wanted to show that all this theorizing about abstract complexity theory was real, that it would

get at some problems that were not contrived and made up to be hard, but preexisting. And we

had a rich set of those. Lots of different logical theories that were-- systems of logic that were

known to be decidable. Lots of problems related to automata, and then the stuff I was telling you

about with polynomials, and their complexity, and the degrees of polynomials that define certain

kinds of ideals in algebraic geometry, and stuff-- oh, and then the membership problem for

communitive semigroups, another algebra problem. We knew how to get at these problems, and

it was a huge number of them, where we could suddenly say to the guys doing communitive

algebra, “Hey, you never thought about this. You thought you were finished with the problem

when you showed it was decidable, but did you know we can prove that you can’t decide it

efficiently?” Yeah. So that was what-- those were the results that, by-- in ’75, with a bunch of

students, and we kept working on that for a couple more years that I had. And by ’79, my feeling

was, okay, well, I could keep working on NP-completeness and those problems, and probably

continue to be a useful contributor. But, you know, the excitement, the magic, wouldn't be there.

I don't think-- I can’t think of anything I could do that would match this, except maybe solve the

NP problem. But I don't think anybody-- nobody has laid a hand on that yet. So I changed fields.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 53 of 64

Brock: May I ask you two quick questions about that? One is, how-- you’ve mentioned

diagonalization several times. And I’ll confess, I’m ignorant about what that is and how that

works. But could you maybe, just for me and others, contrast the kind of examples or problems

generated using that method, versus the kind of real-world example that you-- examples that you

came up with in the mid-70s?

Meyer: Okay. So let me see whether I can pull this off.

Brock: I’m sorry if that’s unfair-

Meyer: No, that’s fine, no, it’s a good expository challenge. So, the idea of diagonalization

comes from an argument, due to a mathematician named Cantor in the late-19th century. Late-

1900s-

Brock: No, late-19th century.

Meyer: Late-19th century, 1890s. And what he was arguing was, suppose you're looking at

functions, again, say for definiteness-- from the non-negative integers to the non-negative

integers. And you want to know, is it possible to write down a list of them all? Could you write

them down so there was a function, call it number zero, and another function, number one, and

another function, number two, and in such a way that the only things in your list were these

functions from non-negative integers to non-negative integers. You could make it even simpler,

just the ones that go from non-negative integers to zero or one. So these would be kind of the

yes/no questions, okay? And such that every such function appeared in your list, yeah?

Eventually, somewhere. And only those appeared. Is that possible? And Cantor’s answer was no,

no, very simple argument, diagonal argument, showed that you can’t do that. So this was saying-

- the first result that says there are-- it’s not countable-- there are not a countable number of

functions on the non-negative integers, even into zero, one, because the definition of countable

was you can write them in this list.

Brock: Got it.

Meyer: You can count them. This is zero, the first one, second one. You can’t do it. Okay? And-

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 54 of 64

Brock: Too many.

Meyer: There’s too many, yeah. And there’s a very simple diagonal argument that proves it, and

the argument is-- if you can visualize this, I’d do it on the board for you, but probably you can

visualize it. Think of one of these functions. Remember it’s going to-- it gives the value of zero

or one for every number. So it’s either zero or one at zero, and it’s zero or one at one, and it’s

zero or one at two, and it’s zero or one at three. So you can represent such a function by an

infinite sequence of zeros and ones. So the nth element, the nth bit in the list is one if the

function’s one at n and zero if the function’s zero at n. It’s just the value of the function at n. So

every one of these possible zero or one functions is simply an infinite sequence of bits. A row,

yeah? So, now, what Cantor is asking is, okay, can you have a rectangular matrix that’s infinite

to the right and infinite down, where the first row is an infinite sequence of zeros and ones, the

second row is an infinite sequence of zeros and ones, the third row is an infinite sequence of

zeros and ones. So it’s just this two-dimensional matrix of zeros and ones, but it’s infinite down,

it's infinite to the right. Can you have one of those where every infinite sequence of zeros and

ones appears as a row? That’s the question, yeah? Reasonable question. I mean, I can write down

an infinite number of these rows. Is it possible that every-- could I possibly have every

conceivable row in my particular list of rows that are numbered zero, one, two, and so on? And

the answer is no. And the proof is a trivial example of one-- you give me your list of rows, and

I’ll show you a row that you don’t have. And the row that you don’t have is defined as follows--

go down the diagonal and flip the bits. Take the infinite sequence of zeros and ones who’s nth bit

is the opposite of your nth row at position n. It’s just different. So, by definition, your diagonal

sequence of zeros and ones is not a row, because pick a row, the 55th row, it differs from in

position 55. It’s not 107, because that’s different from your 107th row at position 107. End of

story. I’ve just described to you an infinite sequence of zeros and ones that’s not a row of your

list, okay? That’s a diagonal argument, because you're going down a diagonal of this matrix,

flipping the bits from zeros to ones.

Brock: And this became like a paradigmatic-

Meyer: This is a paradigmatic argument for how do you, when you have a countable list of

things, numbered zero, one, and so on-- how do you find something that’s not there? It’s easy to

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 55 of 64

do. You just go down the diagonal. And of course, you don’t have to go down a diagonal, you

could go down a 2/3 diagonal. You get another one. You could even have ones where you differ

in a complicated pattern, and you not only differ from everything in every row, but you differ at

infinitely many places from every row. And so on. It’s just-- you can play all sorts of stuff with

it. That was diagonal arguments.

Brock: Okay. And this was an example of a very-- so how does that become-- the diagonal

arguments become a model example of something that’s hard to compute?

Meyer: Well, they’re the basic idea for how do you find something that’s not there. When you

give me a countable list of functions, how do I find one that’s not there, okay? So, now, there’s

another-- now, this is the idea of how it applies to complexity theory. Okay. It’s very easy to

make a list of all the computable functions, because a computable function is defined by a little

object, like a Turing machine. A Turning machine, I can always code it to some set of bits. A set

of bits is a number, okay? So I can, in a sense, number all the Turing machines. This is the zero

Turing machine, the first Turing machine, and so on. And whatever the function is that’s

computed by the nth Turing machine, I’ll make that row n. Assume that we translate-- whatever

the output of the Turing machine is, we translate it into zeros and ones. Or, the thing about

Turing machines that makes it slightly complicated is that it might not give an answer at all. So I

need to deal with that. And let’s say-- I don't care what you do. Change all the place where it

doesn't give an answer, make those zeros. Okay. So, now, given a Turing machine that’s going to

be applied to inputs that are numbered zero, one and so on, with every Turing machine, I can

associate this computable function of zeros and ones that it produces, and I definitely can list all

of those, because the Turing machines are little, finite bit strings, and I can list them one after

another by length of bit strings in alphabetical, and so on. So, in short, that’s a hand-waving

argument that says, the computable functions can be listed, by listing the Turing machines.

Because every one of them is computable by a Turing machine. You can make a list of all

possible Turing machines. Okay. That immediately gives you a way to get functions that are not

computable, because the general diagonal argument says, give me a list of functions, here’s how

to make a new one. The computable ones are list-able, so there’s easy to find non-computable

functions. Okay? Easy. Same thing applies, if you talk about the functions that are computable

within a given timebound. Suppose I’m interested in the functions that are computable in time n-

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 56 of 64

squared, okay? How do I do that? Well, if it’s computable in time n-squared, it’s computable by

a Turing machine that always stops after n-squared steps. How do I make a list of those? Well,

it’s easy. Take all the Turing machines, and put, on each Turing machine, a monitor that shuts it

off after n-squared steps. So add to the program, a thing that counts what the program is doing,

and stops after n-squared steps. It computes n-squared and only lets the other one for that many

steps. So I can take every Turing machine and put a little monitor on it, and the monitor won’t

have any effect if the thing already stops at time n-squared, and if it doesn't, it forces it to. The

result is, I’ve just proved to you that I can list all the programs that run in n-squared steps. And

that means I can, by diagonal arguments, find one that’s not doable in n-squared steps. But, the

key thing is that in fact, when I’m trying to figure out what’s on the nth diagonal, well, I have to

figure out, what’s the nth machine in my list, and I have to run it for n-squared steps. Well,

simulating it may cause a little overhead that it takes a constant times n-squared to simulate it.

But with a little bit more than n-squared steps, I can simulate it, which means that the function,

the diagonal function, can be computed in just a little bit more than n-squared steps. So,

suddenly, by a diagonal argument, I’ve shown, ah, give me a little bit more than n-squared time,

I can find something that can’t be done in n-squared time. A little bit more can actually be quite--

little more like log of n. So there’s something that’s computable in n-squared log n steps that are

not computable in n-squared steps. Okay? So routine extension of those 1930 ideas in diagonal

arguments, okay?

Brock: Okay, and so these were the kinds of model problems, examples, used in the-

Meyer: Well, these were paradigmatic solutions.

Brock: Solutions to the questions.

Meyer: These were said that-- these indicated, how do you carry over the 1930s proof methods

and concepts of yes or no-- can be, or can’t be, computed. We can routinely carry those over

into: Can it be computed fast? Can it be computed in n-squared or n-cubed? And we know more

time gives you more, by a diagonal argument, which I just sketched for you. So that was all well,

and then we did all kinds of cool stuff with sophisticated diagonal arguments, and proved all

sorts of things, but it was all this-- what they accused at the time of being “Cantor’s paradise,”

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 57 of 64

the mathematicians thought that he was, you know, he’s theorizing about a world that nobody

cares about, it’s all abstract and there’s nothing real about it. The same issue was what plagued

me and other people, which is, we have this wonderful theory of you can do more with more

time, but what? What was it that you can do more? Don’t tell me it’s this diagonal function. I

don't care about that. I mean, yeah, you show me this diagonal function that I can simulate all the

slow ones with a slightly slower one, and therefore I can do more, well, big deal. It’s not

interesting, okay? It’s a theoretical result that doesn't give me anything concrete. And the

connection was that when we learned how to recognize, in various real problems, their ability to

describe computations that took a limited amount of time, that meant that those problems

required that much time to solve. Okay? That was the connection that was made. So that was the

thing that, you know, I remember being criticized by giving one of these abstract complexity

theory talks, and a very famous logician, Hilary Putnam, was in the audience. And he said,

“What does this have to do with checking satisfiability?” The NP belief. And I said, “Well, it

doesn't really have anything to do with that that we can see. These are abstract results.” They

shrugged, and politely walked away. So could we connect up all these abstract ideas with some

real problems? And that was what I did. And it was the kind of pinnacle result of my career that I

felt, Jesus, I’ll never do one like this again.

<Break>

Meyer: You were asking about how the field had grown and changed into things--

Brock: Yeah, become computer science.

Meyer: Yeah. So, what happened was, and it was just starting to happen at the time that I

decided to shift fields altogether, was that by the late-70s, this tiny subject of theoretical

computer science and theory of computation, which involved a few researchers who did

everything, suddenly grew into a significantly larger community of researchers, five, ten times as

large, and began breaking up into disciplines. So they came to be algorithms and semantics and

complexity theory and logic. And each of those got to be specialized enough that they started

having their own symposia, and there are now, I don't know, probably a dozen or more different

annual technical symposia that represent papers in these sub areas. And all of the sub areas, now,

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 58 of 64

are many years deep. So that to get to the point where you're doing forefront research and

solving open problems, it takes a couple of years of reading and study to catch up. And it is no

longer the style that I enjoyed and I was good at. So I switched from this sort of general area of

complexity over into doing logic and semantics. And I think I-- it’s fair to say that I got to be a

visible figure, and made some modest, basically expository contributions, but never was the kind

of intellectual force that I had been earlier. But that’s sort of the way it went. And I continued to

have a productive and enjoyable research career for about 25 years, I guess, until I got to be 50

years old. And at that point, I stopped doing research. I decided I just couldn't do it anymore. I

felt like I wasn’t-- something was no longer working for me. I would still seem like a smart,

quick guy, but I knew that it wasn’t the same kind of thing. And that I wouldn't be fair to work

with students anymore, because I couldn't give them the same kind of commanding vision and

insight that I had previously. And I think that that’s right. I mean, you never can be sure about a

judgment like this, but I think it was sound.

Brock: You stopped taking on graduate students?

Meyer: I stopped-- at age 50, after a very productive research career, in which I was a, you

know, world-famous and influential figure, certainly in complexity theory, and to a lesser degree,

but still noticeable, in semantics and logic, I decided that I just couldn't do this anymore. Maybe

I couldn't or I wouldn't. That I was tired of living a life in which I basically wasn’t fully there,

most of the time. Because I could be standing on line in the supermarket, talking to people, and I

would really be proofing theorems. Okay, I mean, that’s what I was doing, and that’s what I was

obsessed with, and thinking about, all the damn time. And I got to the point where I just couldn't

do it anymore. Burned out. And so, you know, so I spent another 25 years as a professor. The

nice thing about being a professor is you're a professor forever, they can’t fire you. So just out of

trying to earn my keep, I spent a lot of energy on teaching, and I took on a whole bunch of

academic administrative responsibilities of, you know, being the head of the graduate program,

head of the undergraduate program, secretary of faculty, all kinds of middle-level management

things, academic management. Plus working a lot on teaching an introductory course in discrete

mathematics, and we’ve written a 1000-page textbook that we have yet to publish, but it’s been

widely adopted and used, because it’s available for free online. So that’s what I have done kind

of professionally. But I haven't done research since I was about 50 years old.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 59 of 64

Brock: And while you were taking on graduate students, about how many students-

Meyer: 28.

Brock: 28?

Meyer: Yeah. Which I didn't realize at the time, but it was a very unusually large number. I

always felt that it was kind of a slowing down, inadequate, that I was only getting about one

Ph.D. a year. Because there were some years-- there was one year where I think I had six PhD’s

finish, that year when we got-- when we learned how to proof all these problems that were hard,

suddenly there was just an open-ended amount of effort from lots of people to develop all of this.

So it was very easy to find thesis topics for all these things. But-- so that was an accomplishment,

and it was very nice, when they had a retirement party for me a couple years ago, that many of

them showed up and talked about what a wonderful supervisor I was. And I guess I was. But it

was just that period of my career. And then I learned another thing, which is, I thought that I had

always loved-- I did love what I was doing, and was tremendously enthusiastic about it, excited

about it, and I communicated that excitement and enthusiasm to my students and others. But,

again, it’s a poignant realization, it wasn’t that I liked the subject. I liked being good at it. And

once I felt that I wasn’t as good at it as I wanted to be, I didn't want to do it anymore. So it

wasn’t a matter of, you know, I undoubtedly could have continued to be a competent, modest

contributor. But not in the way where I was producing results that people would say, “Oh my

god, that’s amazing, astonishing, beautiful,” and so on, which is what I had done, repeatedly,

earlier in my career. And that was what I got satisfaction out of. And once that was no longer a

realistic aspiration, I, in fact, lost interest. So it’s interesting now that in my retirement I’m just

going back and looking, again, at some of the amazing work in complexity theory that has gone

on since I stopped paying attention. And I think it’s fair to say that some of the stuff, the early

stuff that I contributed, continues to be very influential. But what the field has become is really

quite amazing and impressive, and I’m starting to learn it again, just out of curiosity. I don’t

expect to be really working on it, aiming to make contributions, but I just read an absolutely

masterful, extensive survey of the field by a junior colleague named Scott Aaronson, who wrote

the most extraordinary comprehensive monograph on the state of research on P=NP two years

ago. And in fact, I read it and was tremendously impressed with it, but there are a couple of

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 60 of 64

things in there that I think aren’t quite right. And which I am-- I need to work them out a little bit

more, but I plan to write to Scott about it. Well, one is a misattribution of a theorem that’s

actually due to me that he credits to Steve Cook. But the other is a result that’s widely cited,

about optimal problems for NP-complete problems, that I think is misleadingly stated and

actually wrong, in the sense that there isn’t an optimal program. Although it’s widely said that

there is. There’s an optimal recognizer, but not acceptor, which is a technical distinction. But it

turns out-- it gets the yes answers in about the best possible time, but any given program will do

badly on infinitely many no answers. That’s unnecessarily large amounts of time on some no

answers. You can look at it and figure out how to make it better on and infinite number of no

answers, which is very cool. And an example of a so-called speedup phenomenon, which was

another thing that we were very concerned with showing was real. There were these-- out of

diagonal arguments came this weird phenomenon that there were certain programs that were

computable. But it was no best way to compute them. Given any program that computed them,

there was another program that did much better on all but finitely many inputs.

Brock: And I think I saw some result that you published with Stockmeyer? That there is-

Meyer: Yes, well, not with Stockmeyer, although there was one related with Stockmeyer.

There’s stuff published with Robbie Moll, and on effective operator speedup, and I’m not sure

what other speedup papers I may have written. Did some related stuff with Mike Paterson, but

this was-- the basic result about speedup was due to Manuel Blum, who proved this really

remarkable speedup theorem. He showed, for example, pick your favorite rapidly growing

function, let’s say two to the x, okay? And we’ll say that one function is much slower than

another function. If it’s-- it’s at least as big as two to the first function. So two to the f is much

bigger than f, okay? Okay. So there are certain kinds of computable functions, where any

program that computes them, whatever amount of time that program takes, there’s another

program that also computes them, and the one you had is much bigger than the one that I have.

So my program, in effect, takes the logarithm of the amount of time of your program. But it

keeps going, because now that I got one that’s log faster, I can beat that by a log. And you can

beat that one, I can beat that one by a log. So any finite number of logs, I can keep making them

better and better and better. There simply is no best program. For any program, there’s a much

better one.

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 61 of 64

Brock: That was the result that I saw, just that way that you put it. That really-

Meyer: It’s a mindblower, okay? So the puzzle there is, there has yet to be, and may never be, a

realistic example of a problem where that happens. It’s one of these things where you can make

it happen by a diagonal argument, but all you have is, okay, this artificial example that I can

build by a diagonal argument has this property. Does anything real have the property? And no

one has ever figured out how to make that happen with a real example. But there’s a weaker kind

of result, but it’s got a similar flavor, which is, Blum’s speedup is amazing, because the speedup,

the new program, is much faster than the old program, at all but a finite number of places. It

really is exponentially faster, except maybe at the first million inputs. For the first million inputs,

you can’t improve it, because the first program does those inputs instantly, the second program

can’t do better than instantly. But once the first one gets going and starts to take a very large

amount of time, I can beat that. But a weaker kind of speedup but still interesting is something

where it doesn't happen at all possible large inputs, but just it happens infinitely often. It still

means whatever program you have, I can find another program that, on infinitely many different

inputs, I’m much faster than you are. So-- and of course, that one, it’s another program. So I can

beat it in infinitely many places. And so on, all the way down, and it still means there’s no best

one. But they’re not best, just getting better everywhere, they’re just getting better in an infinite

number of places. It still means there’s no-- doesn't make sense to talk about a best one. Okay?

That’s a real phenomenon. And that was what was proved by jointly with my student Larry

Stockmeyer, and it appears in his thesis. First of all, the existence of problems with this kind of

infinitely-often speedup-- of course, that’s immediate, because it’s a weaker result than the

everywhere speedup that Manuel Blum had. But the insight was that this infinitely often speedup

property was one that could get communicated to real problems. And you could take the abstract

problem and show how a real problem, like decision procedure in logic, or some problem about

regular expressions, could simulate the diagonal construction, which meant it inherited the

property. So the result is that, essentially, all of the NP-complete problems have this property

that we don’t know how well you can do, but given any program that did them, I can get a-- I can

look at the program that does them fast, and I’ll find you another program that beats them in

infinitely many places, okay? Because they have to be doing stupidly on an infinite number of

inputs, and I can find those and suddenly find a program that’s smarter than they are at these

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 62 of 64

infinitely set of inputs, yeah? So that was, again, a connection with trying to take the diagonal

abstract problems and make them real.

Brock: Right, right.

<Break>

Brock: Yeah. Well, maybe I’ll just ask you to-- I mean, reflect on, you know, you have been

involved with what has become computer science, from its earliest incarnations.

Meyer: Well, theoretical computer science, yeah.

Brock: Theoretical computer science from its earliest incarnation. I would just be fascinated to

hear you talk about how the community of people engaged with theoretical computer science has

changed, stayed the same, just in terms of where it’s happening, who’s doing it, just what the

picture of that community looks like.

Meyer: Well, I haven't-- I haven't been actively involved in that community in 25 years, so I

hesitate to give an authoritative answer, or even one that I fully believe in. But what strikes me,

when I go back and start to-- as I said, I was reviewing this subject that I left 25-- more, 35 years

ago, or so, the computational complexity subject that I let go of probably in the late-70s. And

what’s happened since is really awesome and impressive. And I’m struck, simply, that there’s

what seems like an army of very smart people who have done deep, extensive work, building on

each other’s efforts. And all of the areas, as I said, that looked to us in those early years, like one

subject, theory of computation, and what is the significance of computation, and its role in other

subjects, now has turned into at least a dozen different sub-disciplines. And I haven't taken a

count of how many people are involved, but it’s probably at least ten times the number that was

involved at the time that I was an active researcher. And there are very few people, anymore,

who even try to keep up with more than a couple of those sub-areas, because they’re just too

rich, and there’s too much going on, and too much to know about. There are a few, very few,

old-timers that have continued to practice. Dick Karp is maybe a notable example, just absolutely

extraordinary guy, who absolutely did it all and continues to do it all. I think he’s worked on

everything from abstract complexity to algorithms to probabilistic algorithms, to approximate

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 63 of 64

algorithms, and so on, and continues to be a productive figure. He must be in his early-80s now.

He just retired as the director of the MSRI, Mathematical System Science Research Institute at

Berkeley. So he is an extraordinary figure. A couple of others-- I guess Silvio Micali would

count, I think, as one of these people who’s working in multiple areas. Silvio is, of course,

famous because of his work in crypto, and the notion of zero knowledge, and is a seminal figure

in modern cryptology and security, code-- working jointly with Shafi Goldwasser. They got the

Turing Award jointly about five years ago, six years ago. And Shafi is now the new director of

MSRI. Silvio, I think, would count as one of these people who worked definitively in at least the

areas of algorithms. He’s got the, I think, the best perfect matching-- or optimal matching

algorithm for general graphs, is due to him and Vijay Vazirani. And it’s extraordinary technical

contribution in that area. Has nothing, whatsoever, to do with crypto or complexity theory. And

also, a seminal figure in crypto and zero knowledge. Not many other people, that I can think of,

that cross areas like that. Maybe [Michael] Rabin, who’s, you know, a towering genius, but-- and

worked in logic and automata theory, and moved over into crypto 20 years ago, but I don't think

his approach to crypto has, in fact, been a significantly influential one. So I’m not aware, now,

and I may-- probably I’m overlooking some eminences, but I’m not aware of other people that

would fit that pattern of world-class contributors in multiple areas. I think, even Shafi

Goldwasser, who was a co-author with Silvio, I’m not aware that she’s made those kind of

contributions in other areas. She’s made extraordinary contributions in complexity theory and

cryptology theory, but I’m not aware that she’s worked in algorithms or other kinds of sub-fields

like that. Dick Lipton, I guess, is another one who’s done everything, and is an amazing guy, and

runs a wonderful blog, and has run a fascinating blog for 20 years or more. I don't know whether

you’ve heard of him.

Brock: I’ll confess I haven't, I’m sorry to say.

Meyer: He’s just an amazing figure, who, again, he’s been in this business for as long as I have,

just about. I think he was a student of mine, like I’m five years older than he is. And I mean,

literally, not a PhD student of mine, but he was literally a student. He took some courses from

me when I was a young instructor and he was a graduate student at Carnegie. And he’s worked

on everything, and made significant contributions on everything. Just an amazing guy. Not many

figures like that anymore. Maybe-- now that I think about it, maybe Avi Wigderson, at the

Oral History of Albert Meyer

CHM Ref: X8784.2019 © 2018 Computer History Museum Page 64 of 64

Institute for Advanced Study, would also count as a-- such a universal contributor. And now that

I think about it, Les Valiant, who I think is still active, and is a Turing Award winner, what else

did he win? He won some other major award recently. I don't think it was the Japan Prize, but

something very-

Brock: I’ll look it up.

Meyer: And he’s another kind of guy who’s worked across the board. Early work on context-

free language parsing and matrix multiplication, and connecting it up to computational

complexity concerns, which he got the Nevanlinna Prize thirty years ago, and a later Turing

Award prize, and continues to be enormously influential. He invented the paradigm of probably

approximately correct, which turns out to be a wonderful, rich, important theoretical idea. And

he was the one who saw that you could take this naively sloppy idea and turn it into something

crisp and beautiful and important. So he’s worked on algorithms. He worked on complexity, he’s

worked on language theory, and been a visionary, even, in working on things like theory of

evolution, theory of mind, and how these ideas might be applicable to the way memory works.

So there are a few people like that, who are these innovative field builders, but not-- very few. I

mean, people like that. So that’s really about all I can tell you. When I look back at-- when I look

more recently at this literature in complexity theory, I am impressed by how many absolutely

first-rate people, by what were the standards when I was active in the field, these are countless

first-rate people, and there’s dozens of them now. It’s amazing how many very smart people

have gotten into this area and made really worthwhile and genius contributions. Those are my

impressions.

Brock: That’s a very posi-- well, maybe that’s a very positive note to end on.

Meyer: Yeah, that’s a good note to end on, if you like. Yeah.

END OF THE INTERVIEW

