60 _leeeeiiCec | l
LU MOeeseCOrC0 ..-‘. .,'i
% COOLe (00008000 |

/N

ot
-

LOLCeOCee 3

L e e

:
i
Z f
| :

‘ROJERT’LAL CHI
ROY FNKEL
; '"-:.-‘S‘_,' N :

‘ -

BASIC

Second Edition

Robert L. Albrecht
LeRoy Finkel

Jerald R. Brown

Dymax

John Wiley & Sons, Inc.

New York * Chichester * Brishane * Toronto * Singapore

= "ot 2hl

Copyright © 1978 John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond
that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner
is unlawful. Requests for permission or further information
should be addressed to the Permissions Department, John ‘
Wiley & Sons, Inc.)

/LTS MEES paPCaAy il

Library of Congress Cataloging in Publication Data 4

Albrecht, Robert L <
BASIC.

(Wiley self-teaching guides)
Includes index.
1. Basic (Computer program language) - Programmed
instruction. 1. Finkel, LeRoy, joint author.
II. Brown, Jerald, 1940- , joint author.
III. Title.
QA 76.73.B3A4 1978 001.6’424 77-14998
ISBN 0-471-03500-9

A T LY ™ e

peTer L2

Printed in the United States of America

16

V4 W R S

Tothe Reader

Tens of thousands of people of all ages have used the first edition of
this book for a fast and thorough introduction to computer programming
in BASIC. We have revised and updated this second edition to eliminate
minor errors and typos, broaden the scope of the activities and examples,
and provide some new material to clarify and extend your understanding
of BASIC.

Since the appearance of BASIC, by Albrecht, Finkel and Brown, the
field of computer science and the availability of computers to all people
(non-professional computer users) has grown by leaps and bounds.
Especially noteworthy is the appearance of the so-called personal or home
computer. Integrated circuit technology has now provided us with com-
puters far less expensive than ever before, yet with the same computing
abilities as systems costing many times more. This means it will be easier
for you, the beginner, the get “hands-on™ computer programming practice
in the BASIC language.

The development of the computer over the past two decades has been
accompanied by much technical jargon and supposed complexity. We aim
to clear away the mystery. With this book, you can teach yourself to
control a computer. You will not only learn how to use the computer as a
tool, but will also dispel forever the mystical aura surrounding the device.
While there are certainly judgements to be made about how computers are
used, the electronic hardware itself, like any tool, is neither good nor bad,
and is not to be feared.

The computer language BASIC was developed at Dartmouth College
by John Kemeny and Thomas Kurtz who recognized the need for an all
purpose computer language that would be suitable for beginning programmers
whose educational backgrounds would be varied and diverse. Beginners
All-purpose Symbolic Instruction Code (BASIC) was originally designed as
a simple language which could be learned in a few short hours. Over the
years, improvements have been made in the language so that today, it may
take a few days to learn the complete language but you will find you can do
nearly anything you want in BASIC.

[n this Self-Teaching Guide, you are learning the most widely used .
form of BASIC. It is very similar to Dartmouth BASIC, the common
denominator of the versions of BASIC used by many computer manu-
facturers. Once you have mastered the basics of BAS.I.C: you will find it
quite easy to learn any variations or additional capabilities that may be
available for the computer you use now and in the future. You should
understand that not all BASICs are alike, though they are very similar.

An important feature of this book is the emphasis on reading and
understanding a computer program, soO that you can see why the program
causes the computer to perform the task for which the program was written |
You may have many occasions to adapt a program in BASIC written by ‘
someone else to your own needs. There is less and less need to write new
programs that “reinvent the wheel”. However, with the thorough grounding
provided by this introduction to the BASIC language, and with the
opportunity to practice and develop your skills, you will also be able to
write programs for your own needs when no others are available.

This book is the result of the combined efforts of three authors with
years of first hand experience in teaching college students and adults, and
children to use computers and to program in BASIC. (We think you'll
appreciate that as you successfully complete this book, especially if you have
looked at other materials for learning BASIC.)

The prime purpose of the book is to teach BASIC. Of course, the appli-
cation of the programming skills you learn will depend on your own interests.

For this text, we have chosen a variety of examples ranging from the fields ‘
of social science, business, humanities to the simple statistics used in psychology,
education and business. You do not need an extensive background in mathe-
matics or science.

We hope you enjoy this easy, step-by-step method for learning BASIC.

RLA
LPF
JRB

Menlo Park, California
November, 1977

NQTE TO INSTRUCTORS: Based on feedback provided by users of the first
edition of BASIC, we have included an extra self-test problem at the end of
each cha,pter for which we do not provide a solution. You can use this “Bonus
Pro_blel.n.’ as an assignment for students to turn in as a group project or as

an individual required assignment _ . or any way you like. Remember, for
most progra.mming problems, many details and approaches in the solution of
problems will differ from student to student. Yet, they may all still be |
correct in accomplishing the tasks set forth by the problem definition.

——

How to Use This Book

With the self-instructional format, you'll be actively involved in learning
BASIC. The material is presented in short numbered sections called |
frames, each of which gives you a question or asks you to write a program. |
Correct answers are given below the dashed line. For the best results, we urge
you to take pen or pencil in hand and to use a piece of thick paper or card-
board to keep the answers out of sight until you have written your answer in
the space provided. The questions are carefully designed to call your atten-
tion to important points in the examples and explanations, and to help you
learn to apply what is being explained or demonstrated.

At the end of each chapter is a Self-Test which provides an excellent
review of the material covered in the chapter. You may test yourself imme-
diately after reading each chapter. Another good way of using the book is to
do a chapter, take a break, and save the Self-Test as a review before you begin
the next chapter.

Each chapter begins with a list of objectives — what you will be able to
do after completing that chapter. If you have had some previous experience
using BASIC and these objectives look familiar, you can use the Self-Test as
both a review and a guide showing where you should start following the text.
Try the Self-Test before reading the chapter. If you do well, study only the
frames indicated for the questions you missed. If you miss many questions,
start work at the beginning of that chapter.

At the end of the book is a Final Self-Test which will allow you to test
your understanding of BASIC.

This is a self-contained teaching program for learning the computer lan-
guage called BASIC. However, what you learn will be theoretical until you
actually sit down at a computer terminal and apply your knowledge of the
computer language and programming techniques. We therefore strongly
recommend that you and this book get together with a computer. If you are
not enrolled in a course or employed in a business where computer terminals
are available, you can (with a little diligence) still get access to a computer
terminal. To practice using BASIC you have to have access to a system that
uses BASIC. Do some research on the availability of computer terminals
using BASIC in your community.

viii HOW TO USE THIS BOOK

There are probably computer terminals in the high schools, community J
colleges and universities in your area. Be persistent, friendly and sincere until
you find someone associated with the institution (faculty, graduate student,
technician) who will allow you some ““computer time’” on a system using
BASIC.
Some science museums and even a few libraries these days have com-
puter terminals for public use.
Many businesses use computers. They may have their own *“‘in-house”
computer, or they may use a computer time sharing service.
You can rent a computer terminal to use in your home. You might get
together with several friends to divide the cost. This is what is involved.
Computer terminal rental is about $65 a month, from a business that
rents terminals (such as Western Union), computer time sharing companies
and computer equipment companies. The terminal is equipped with a device
that fits your regular home telephone.
Computer time sharing companies are located in most metropolitan
areas. They are businesses that maintain computers that you “dial up”
using a regular telephone. You establish an account with the company, and
they issue you a telephone number and a code number, and then keep a
record of the time that your terminal is connected to their computer system.
However, you must also pay the telephone bill if the time sharing com-
pany you use is a long distance or toll call. Hourly rates for “*computer
connect time” may run from $5 to $15 an hour, with rates as low as $2 per "
hour for evening or night use from some companies. Try the yellow pages
of your phone book under “DATA PROCESSING” for time sharing services
in your area.
BASIC will be easier and clearer if you have even occasional access to a
teletype or other computer terminal so that you can try the examples and
exercises, make your own modifications, and invent your own programs for
your own purposes. However, computer access is not essential; all you need
is this Self-Teaching Guide. You are now ready to teach yourself how to
use BASIC.

Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Getting Started
Warming Up
Decision Making
FOR-NEXT Loops
Functions
Subscripted Variables
Double Subscripts
Subroutines

String Variables

Files

Final Self-Test

Index

ix

CHAPTER ONE

Getting Started

-

When you complete this chapter, you will be able to:

e specify the correct format for entering a computer program (written
in BASIC) into the computer;

e describe how to erase (SCRatch) an unwanted program from the
computers memory, how to LIST a program currently in the computer,
and how to RUN (process) a program;

e specify methodsfor correcting, editing, and deleting statements in a
computer program,

e translate into everyday numbers the scientific or “E” notation used
by computers for expressing extremely large numbers and extremely
small decimal fractions;

e write programs to print information and do arithmetic, using PRINT
statements and END statements and the correct BASIC notation for
arithmetic operations.

2 BASIC

1. This first section starts off slowly and simply, to kind of ease you into
things. There are several devices that are most commonly used for communi-

cation between a computer and the computer user.

Teletypewriter CRT (Commodore Business Machines, Inc.)
What characteristics do these devices have in common?

(a) television screen
(b) a typewriter-like keyboard
(c) a steering wheel

(b) a typewriter-like keyboard

2. A computer rerminal provides the means for communicating with the
computer. By means of a teletype or other terminal, a computer program
and data may be communicated to a computer. When the program is run or
processed, the computer sends signals to the terminal which provides output—
that is, the results of processing the program. Therefore. a terminal provides

way communication between the computer and
(one-two-)

the user.

0

S g T S»

GETTING STARTED 3

3. The reletypewriter is the most common device used for communication
between the computer and its user, and it is the most common computer
terminal. The teletype is used much as an electric typewriter. It prints the
numerals 1, 2,3, 4,5, 6,7,8,9,and 0 the letters of the alphabet; and some
special symbols. Letters are printed in upper case (capitals) only. You may

not use the lower case letter L to stand for the numeral

one (1)

4. So you want to know what computer programming is all about? Here’s
a computer program that will calculate a student’s grade point average.

REMARK PROGRAM T@ COMPUTE GRADE P@INT AVERAGE

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
999

RUN

HOW
HOwW
HOW
HOW
HOwW

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT

""HeW MANY UNITS OF A";
'A;NOH MANY UNITS OF B"™3
EHOH MANY UNITS @OF C"3
EHOH MANY UNITS @F D"; This is the program.
EHGH MANY UNITS OF F"3

LET U=A+B+C+D+F
LET G=C(A*A+3*B+2%C+1%D)/U

PRINT
PRINT
END

“YOUR GRADE POINT AVERAGE 15"36G

MANY UNITS OF A?74

MANY UNITS OF B?76
MANY UNITS OF C?6

This is the output or result
of running the program above.

MANY UNITS OF D70
MANY UNITS OF F?0

YOUR GRADE POINT AVERACE 1S 2.875

4 BASIC (

The program consists of 16 statements, each one on a separate line numbered
100 — 999. Each line begins with a line number. Following each line
number is a statement that contains instructions to the computer.

This program was typed a line at a time on the teletype (or other termi-
nal) and was saved in the computer’s memory. Then we told the computer
to RUN the program; that is, to follow the instructions in the program.
During the run the computer, following the instructions in the program,
asked for information (called input) to be supplied by the computer user -
How many units of A’s, B’s, C’s, etc., were received? The program then
directed the computer to do the computation and print the result. By the
end of Chapter Two, you will be able to understand and use all the BASIC
notation used in this program and more, so read on.

The distinct lines in a computer program are called

statements

5. The computer stores a program in its “memory.” Before the computer

user attempts to enter a new program into the computer, he will want to :
remove any previous instructions that may be currently in the memory. To .
erase previous instructions in the computer, type the letters SCR, then press y
the key marked RETURN. SCR stands for SCRatch, and scratches out or

any previous program in the computer.

€rases or removes

6. Before a new program is typed into the computer, any old instructions
held in the computer memory should be erased. To erase an old program,

type SCR and press the key marked

RETURN

GETTING STARTED 5

NOTE: Although most of the words and symbols in BASIC are the same for
all computer systems that use BASIC, there are some exceptions. This is
because there has not been a completely standardized form of the language
that is used by all computer manufacturers. Common variations will be
noted throughout this text. However, the concepts involved are the same,
even though a particular code word or symbol may be different from that
used here. When you have a grasp of BASIC, you will find it easy to make
the substitutions necessary to use the particular computer system at hand,
and a quick review of the BASIC reference manual for your system will
provide you with any variations you need to know. For example, words
such as NEW or CLEAR or START are used in place of SCRatch on some
computer systems,

7. Sample program:

1 LET A=S
10 LET B=10

. . : : £si
135 LET C=A+B This program, written in BASIC, consists of six

statements. Note that each statement begins

g;g s : ::; :’ B with a line number.
9999 END

From this example you can see that line numbers may range from

o

| to 9999

(NOTE: the upper limit is different on some computers.)

6 BASIC

8. The line numbers indicate to the computer the order in which it is to
follow the instructions in the program. It is not necessary for line numbers
to follow each other successively (e.g., 1,2, 3,4, ...) as you can see by
looking at the line numbers in the program in the previous frame. However,
it is more common to number by ten’s as we have in the program below.
Then, if we wish, more statements may be easily inserted in the program
between existing statements.

10 LET A=5

20 LET B=10 This is a common way of numbering a program.,
30 LET C=A+B Note that the line number for the END statement
40 PRINT A,B is 99. For convenience, we will use 99 or 999 or
50 PRINT C 9999 for the END statements, depending on the
99 END size of the other line numbers in the program.

How many new statements could be added between Lines 20 and 30?

9 (Lines 21,22, 23, 24,25, 26, 27, 28, and 29)

9. 10 PRINT 12 + 33
99 END

This is a very short program that is composed of only two statements.

Each statement begins with a line number. Circle the line number in each
statement.

(0) PRINT 12 + 33
®% END

¢

-

-

GETTING STARTED 7

10. 10 PRINT 12 + 33
99 END

In this mini-program, Line 10 instructs the computer to evaluate the
numerical expression 12 + 33, (i.e., do the arithmetic) and to PRINT the

result. When this program is run on the computer, what will it print?

45 (the sum of 12 and 33)

11. The computer follows instructions in line number order. In the pre-
ceding program (frame 10) which statement is done first, Line 10 or Line 997

Line 10

12. 10 PRINT 12 + 33
99 END

If you are seated at the computer terminal, and have erased any previous
programs in the computer, you are ready to type in this program. To enter

the program, type the first line, then press the RETURN key Then

type the second line and

press the RETURN key

Note. By now, you should have determined whether to type SCRATCH,
CLEAR, NEW or whatever is necessary to erase a program from the memory
of your computer.

R R T o Ry 11"

8 BASIC

13. 10 PRINT 12 + 33
99 END

Assume you have typed this program into the computer. Now you wish
the computer to process the program. Type RUN and press the RETURN
key. If you have not made any typing errors in entering the program, the
computer will evaluate 12 + 33, print the result 45, and stop. Here is what
you would see on the teletype printout.

10 PRINT 12 + 33 The program you typed in.
99 END

RUN

45

Circle the command that tells the computer to begin to follow the instruc-
tions contained in the program.

14. The program is not altered or erased from the computer’s memory when
you RUN it. Every time you type RUN and press RETURN the computer
will RUN the program. Every time you RUN a program with the same infor-

mation you will get result.
(the same/ a different)

the same
(An exception to this general rule will be discussed in Chapter Five.)

/o GETTING STARTED 9

15. 10 PRINT "12 + 33"
99 END

Look at this program. How is it different from the previous one

(frame 13)?

The numerical expression is enclosed in quotation marks.

16. Note that the computer evaluated these two programs differently when
it was told to RUN them.

10 PRINT "12 + 33" 10 PRINT 12 + 33

99 END 99 END
RUN RUN
12 « 33 45

The statement
‘ PRINT 12 + 33 (Without ** ")

tells the computer to evaluate the numerical expression 12 + 33 (i.e., do the
arithmetic) and print the result as a decimal numeral.

The statement
PRINT *™12 + 33" (with"“ ")

tells the computer to print the string enclosed in quotation marks exactly as
it appears. No arithmetic is performed.
In BASIC, a string is information in a PRINT statement that is enclosed

by

quotation marks

10 BASIC

17. Fill in the blank as the computer would print it.

20 PRINT 186 - 58"
25 END

186 — 58 (Note that the computer does not print the quotation marks.) 4

{

PRINT “MY HUMAN UNDERSTANDS ME" {

|

18. The underlined portion of the statement is a string. It is enclosed in |
{

quotation marks.

PRINT "12 + 33" PRINT 12 + 33 ?
This is a string. It is enclosed This is not a string. Itisa 1
in quotation marks. numerical expression.

A string may include

e T S

(a) numerals(0,1,2,...)

(b) letters(A,B,C,...)
(c) special characters (+, —, *, /, 4+, comma, period, semicolon, etc.)

-

Since quotation marks define the beginning and end of a string, they

be used as a character in the string.

(can/cannot)

cannot

GETTING STARTED 11

19. If you wish to change one or more statements in a program currently in
the computer, you may do so without SCRatching the program and starting
over. You merely type in a new statement, using the same line number as
the line you wish to replace. Look at the program below, and the change
made in it by replacing one line.

SCR .
SCRatch the preceding program.

10 PRINT 7 + 5

99 END Enter the new program.
RUN RUN the new program.
12 Here is the result.

Next . . .replace Line 10 with a new Line 10. (Replace means retype the
line, beginning with the line number.)

10 PRINT 6*9

Now tell the computer to LIST the current program. To do this, you type
LIST and press the RETURN key.

LIST

10 PRINT 6#%9 <«— Here is the new line 10,
99 END -<«=——and theold Line 99.

RUN RUN the modified program,
54 Here is the new result.

You may change or replace any line in your program by retyping it, using
the same line number as the line you wish changed. The new statement

the old one with the same line num-

replaces (or changes)
1
|

Remember. To tell the computer to type a copy of the current program, type
LIST and press the RETURN key.

12 BASIC

20. While we’re on the subject, suppose you wish to take a statement out of
a program without replacing it with another statement. Don't SCRatch and
start over. Merely type the line number of the statement you wish deletedor
removed and press RETURN.

10 PRINT 545 This program is in the computer,
20 PRINT 1243 = and wewish to delete (remove)
30 PRINT 6+4 - Lines20and 30.

99 END

20 <«+——— Type the line numbers only, and
30 — press RETURN after each.
LIST Now, LIST the program.

10 PRINT 5+5
99 END Presto! Lines 20 and 30 are gone.

Here is another program and a RUN of the program:

10 PRINT "MY COMPUTER UNDERSTANDS ME"™
20 PRINT "MY COMPUTER CONFUSES ME"
99 END

RUN
MY COMPUTER UNDERSTANDS ME

MY COMPUTER CONFUSES HE\

This offends us, so we want to delete the
statement in the program that caused the
computer to print it, and we want a RUN
of the program to look like this:

RUN /

MY C@MPUTER UNDERSTANDS ME

ol R oot

Y

o GETTING STARTED 13

(a) What would you do to remove the offending statement from the

program?

(b) Show a LISTing of the program with the offending statement
removed:

(a) Type 20 and press RETURN
(b) LIST

10 PRINT "MY COMPUTER UNDERSTANDS ME"
99 END

NOTE: The quotation marks are included because this isa LISTing of the
program itself, and not a R UN of the program.

) Summary of operations:
SCR. NEW or CLEAR — erases the current program
RUN — executes the current program
LIST — prints a list of the current program
Line number, RETURN — deletes the statement with line number indicated

14 BASIC O

21. When typing your programs into the computer, you may make a typing
error or some other mistake. Look at this example.

10 PTINT 2%3+4 We misspell PRINT.

SYNTAX ERROR The computer tells us we made a mistake.
(Some computer systems do not inform you !
of errors until you try to RUN the program.) C

The error message may be different on your computer. That’s not the point.
The point is, if you had noticed that you hit T when you meant to hit R,
you could have immediately corrected your mistake by using the back

arrow (<).

BEWARE! This method for correcting mistakes may not
work on your computer. If it doesn’t, ask someone how
to make corrections. .

The back arrow + is on the same key as the letter O. To type a back arrow,
hold the SHIFT key down and press:

‘a |

A

Here is an example of how to correct a typing error. ' {

\

SCR f
4

10 PT=RINT 2%3+4 The back arrow (+) deletes the character that d

99 END it points to. Note: no space(s) after the back arrow. (

LIST LIST the program by typing the word LIST and

pressing RETURN.
10 PRINT 2%3+4 The statement is 0.K.
99 END

Now look at this example: :

10 PRINT MY HUMAN UNN-DERSTANS «+DS ME"
99 END ,

Deletes second N. Deletes S and space.

A

GETTING STARTED 15

Show how the computer would print a LISTing of this latest program.

10 PRINT "MY HUMAN UNDERSTANDS ME™
99 END

Again, the quotation marks are included because this is merely a
LISTing of the program itself, not a RUN of the program.

22. Assume you just sat down at the computer terminal. You wish to
know if there is a program currently in the computer’s memory. Type LIST
and then press the RETURN key. The computer will automatically type
out the program (if there is one) that is in its memory. Here is an example.

LIST

10 PRINT *™12 + 33" The computer automatically typed all this.
99 END

Circle the command in the example above that caused the computer to type
out the program already stored in its memory.

16 BASIC

23. 10 PRINT ™12 + 33"
99 END

Assume that this program is currently in the computer’s memory. Now
you wish to add a new statement to the program, that says PRINT 12 + 33.
You want the new statement to be evaluated by the computer after
PRINT “12 + 33.” The line number for the new statement must be greater

than and less than

greater than /0 and less than 99.

24. 10 PRINT ™12 + 33"
99 END

This program is stored in the computer. We type in the following
statement:

20 PRINT 12 + 33

and then press the RETURN key. The new statement is then incorporated
into the existing program. To verify this, type LIST, then press the RETURN
key. The computer will type out the program with the new statement in line-
number order. Fill in the blanks to show what the computer will print.

LIST

10 PRINT ™12 + 33"
20 PRINT 12 + 33
99 END

D i Al Ay Al iy .ﬂ.

“ -~ e

.'-"4‘ o e b s ere

.
&
1

GETTING STARTED 17

25. If you type RUN with the preceding program in the computer, the
computer would print:

RUN

12 + 33
45

If you retype Line 10 and added a comma to the end of the statement, the
program would look like this when LISTed:

LIST
.10 PRINT ™12 + 33",

20 PRINT 12 + 33
99 END

RUN

12 ¢+ 33 45 Note that the two results are printed on one line.

Here is a variation of the program that causes the computer to print the
problem (i.e., the string enclosed by quotation marks) and the answer on the
same line.

10 PRINT *™12 + 33 =" , 12 + 33
99 END
RUN

12 + 33 = 45

Here is another program. Fill in the blank to show what the computer would
print. -

10 PRINT "TWELVE PLUS THIRTY THREE EQUALS"™ , 12 + 33
99 RUN

RUN

TWELVE PLUS THIRTY THREE EQUALS 45

18 BASIC

26. In BASIC, the comma and semicolon permit several expressions and/or
strings to be printed on the same line. Look at the results of these two
programs.

PROGRAM A PROGRAM B
10 PRINT ™12+33=", 12+33 10 PRINT "12+33="3 12433
99 END * 99 END
RUN comma RUN semicolon
12+33= 45 12+33= 45

Examine the first statement in each program. Program A has a comma sepa-
rating the string and the numerical expression, Program B has a semicolon.
The computer prints the results of the two parts of the PRINT statement

closer together if you use a instead of a__

semicolon instead of a comma

27. On most computers using BASIC, there are 5 standard print positions
across a teletypewriter line. A comma in a PRINT statement causes the
teletypewriter to move to the next available print position. For example,

10 PRINT 1, 25 32 45 5

99 END
Fill in the blanks.
RUN
1 2 3 4 5
ks % t ! t
Position 1 Position 2 Position 3 Position Position
4
S

NOTE: Some computer programs and RUNs have been reduced to save space.

-

, -

b Sl

JRPRPY R -*0-‘-—0'—0-“-0- el e B e D bl S A

)
D

GETTING STARTED 19

28. Did you notice that the little arrows in the above example seem to be
pointing to the space to the left of the number? This is where the print
position actually begins. When the computer prints a positive number or
zero, it prints a space first, then prints the digits of the number. Watch what
happens when negative numbers are printed below positive numbers.

10 PRINT 1, 2, 3, 4, S
20 PRINT =1, =2, =3, =4, =5

99 END
RUN
1 2 3 4 5
-1 -2 -3 -4 -5
¢ t { t t
Position 1 Position 2 Position 3 Position 4 Position 5
Negative numbers are printed with a followed by

the digits of the number, while positive numbers are printed with a
followed by the digits of the number.

minus sign (or negative sign; we’ll even accept “dash™)
space

20 BASIC

29. But what happens if there are more than 5 things in a PRINT statement?
Watch.

10 PRINT 15 25 35 45 55 65 75 B

99 END
RUN
1 2 3 B S
é 7 8
The computer prints the 8 numbers on 2 lines with ___ numbers on the
first line and numbers on the second line.
5
3

30. Got it? What will the computer print during the following RUN?

10 PRINT 1, 25 35 4, S» 65 T» 8s 95 10, 11, 12

99 END

RUN

1 2 3 4 S
6 7 8 9 10
11 £~

-~ .—‘—o— e s et e]

- 0‘..‘"—-0 st b -

o > : GETTING STARTED 21
D

31. Now check what happens when we use semicolons instead of commas
to separate things in a PRINT statement.

: 10 PRINT 13 23 33 43 5
99 END

RUN
B e LAY YR)

10 PRINT 13 23 33 43 53 65 73 8
99 END

RUN
PN A4S e R

: Semicolon spacing varies from computer to computer. The above RUNs
show how our computer does it. Things get printed closer together

when we use a instead of a comma.

semicolon

With semicolon spacing, most versions of BASIC print positive numbers as
space, digits, space. Negative numbers are printed as minus sign, digits, space.
For example,

1 12 123 1234 12345
-1 =12 =123 =-1234 -12345

Trailing space printed after the digits of the number.

22 BASIC

32. Now let’s see what happens when commas are used to separate two or
more strings in a PRINT statement.

10 PRINT “THIS","“1S","COMPUTER"»"PROGRAMMING?"

99 END

RUN

THIS IS COMPUTER PROGRAMMING?
t t t t

Position 1 Position 2 Position 3 Position 4

In this PRINT statement. there are 4 strings, separated by commas. Each
string is printed in a standard printing position. Here is a similar program
using semicolons instead of commas.

10 PRINT “THIS"s"IS"3“COMPUTER"3"PROGRAMMING?"

99 END

RUN

THISISCOMPUTERPROGRAMMING? «———— No spaces are printed.

As you can see, with semicolon spacing,
printed between strings.

____spaces are

no (or zero)

-

N e Bt W e QB e Rt PGP b o Bl AL.--;-“. el

.
i

3 - GETTING STARTED 23
0

33. If you want spaces, include them in the strings.

10 PRINT “THIS *3"™IS "“3“COMPUTER "3"PROGRAMMING?"
99 END { ¢ t

space space space

If we RUN this latest program, what will be printed?

THIS IS C@MPUTER PROGRAMMING?

(Yes, this really is computer programming, although somewhat rudimentary.
But read on!)

24 BASIC

34. You have probably noticed that the plus (+) symbol of arithmetic tells
the computer to add. The minus (—) symbol tells it to subtract. (It also
indicates negative numbers.) The symbol for multiplication in BASIC is the
asterisk (*), and the slash (/) is the symbol for division.

Té TELL THE COMPUTER T@ ADD, USE

T@ TELL THE C@MPUTER T@ SUBTRACT, USE
Té TELL THE COMPUTER T@ MULTIPLY», USE
Té@ TELL THE C@MPUTER T@ DIVIDE, USE

N#* e

Remember, when you want the computer to squeeze the answers or output
more closely together, use semicolons instead of commas in the PRINT
statement.

Here is a sample program to do simple arithmetic, with the results of a
RUN of the program. Note the use of commas, and the widely spaced
answers.

10 PRINT 745, 7-5, 7#%5, 7/5

=

Write a short program to do the following simple arithmetic. Group all of
the expressions in one PRINT statement, using commas to separate expres-
sions. Show the results you would predict for a RUN of your program, then
try it on the computer if one is available.

1I0+6 15-9 235 3x13

10 PRINT 1046, 15-9, 23/5, 3%13
99 END

RUN

16 6 4.6 39

1.4

- ’_A_‘.‘-—‘-—AAd l. b-‘

-

B T s i i

G e o ‘A‘» -~ P ANy

T —

. H.

GETTING STARTED 25

35. Here are some BASIC expressions in which two or more operations are
: used. For some of these expressions we have shown the value computed by
{ the computer after it does the indicated arithmetic. You complete the rest.

Expression Value Computed by Computer
2*3 -4 2

2+ 3%4 14

2%3 +4%5

2+3* -5

2%3 — 4%5 + 6*7

36. Here are some more examples and exercises, using division (/).

) Expression Value Computed by Computer
3/4+5 5.75
2 - 3/4 1.25
2*3 +4/5 6.8
3/4 +5%6
2—-3/4+5
30.75
6.25

26 BASIC

37.

The computer does arithmetic in left to right order, with all
multiplications (*) and/or divisions (/) performed before
additions (+) and/or subtractions (—).

* +
} before {
/ (Y

Now try these. (REMEMBER: Do arithmetic in left to right order.)

Expression Value Computed by Computer
2*3/4

3/4*5

3/4/5

2%3/4 + 3/4*5

1.5 Multiply 2 by 3, then divide result by 4.

3.75 Divide 3 by 4, then multiply result by 5.

.15 Divide 3 by 4, then divide result by 5.

5.25 First compute 2*3/4, then compute 3/4*5 then add the two
results.

38. If you want to change the order, use parentheses.
2*¥3+4 = 10

but 2*¥(3+4) = 14 Compute 3 + 4, then multiply result by 2.
2+3*4+5 =19

but (2+3)*(4+5) = 45 Compute 2 + 3, then compute 4 + 5, then

multiply those two results.

P NS ———

s

S S Bl £ O

¢ .

~

AP it g~ G

s el e o

)

GETTING STARTED 27 |

Complete the following. (REMEMBER : Operations in parentheses are done
first.)

Expression Value Computed by Computer
(2 + 3)/(4*5)

2+3%4+5)

1/(3 +5)

39. One last look at the order in which arithmetic is done. In the expression
below, the arrows in the circles show the order in which the operations are
carried out. Write the final value for each expression.

Expression Value Computed by Computer

98

3*(4-(5+6*17)

?

(3*¥4+5*6-7)/8

28 BASIC

40. Your next task is to write a correct BASIC expression to solve a given
problem. Do so for each of the following.

Remember to indicate all multiplication and division
operations with the proper BASIC symbol.

Problem BASIC Expression
2% 336 =T
16(33 — 21)
3.14x 2x 2

88 — 52
18 +47

2*3 + 6/7

16%(33 - 21) (Did you forget the asterisk?)
3.14*2%2

(88 — 52)/(18 +47)

GETTING STARTED 29

41. Write a complete BASIC program to compute and print the values of the
expressions in frame 40. A RUN of your program should produce the follow-
ing resultAs.

RUN

6.85714
192
12.56
553846

10 PRINT 2%3+6/7

20 PRINT 16%(33-21)

30 PRINT 3.14%2%2

40 PRINT (88-52)/7(18+47)
99 END

30 BASIC

42. There is a fifth arithmetic symbol in BASIC, which indicates raising a
number to a power. This operation is called exponentiation.

4+ means raise to a power
For example,

Volume of a cube: V = 83, where
S is the length of a side.

IfS=SandV=53,then
V=53=5x5x5=125,

5

Since a teletypewriter cannot print superscripts, you tell the computer to
raise a number to a power by using the symbol 4 . On the teletypewriter

’

depress the SHIFT key and hold it while you press the key.
10 PRINT St3 (543 means5° or 5 x 5 x 5)
99 END
RUN
125

Now, fill in the RUN for this one.

10 PRINT 216 (246 means 28 or2 x2x2x2x2 x 2)
99 END

—

~

= -

Kda

GETTING STARTED 31

43.

(@)
(b)

Write a BASIC expression for each problem.

Problem BASIC Expression
25 + 34

TR T TG T

245+344
TETXT*T*T*T*7 or 747

44. When evaluating a mixed expression of arithmetic operations, the com-
puter computes powers (4) before doing multiplication, division, addition,
or subtraction.

The formula for computing the area of a circle is

o)
A=mr-

Let’s use 3.14 as an approximate value of 7 and write a program to compute
the area of a circle of radius 7.

10 PRINT "1F RADIUS IS 7, AREA @F CIRCLE IS"J 3.14%712
99 END

RUN
IF RADIUS IS 7, AREA @F CIRCLE IS 153.86

In computing 3.14*7+ 2, the computer first computes , then

multiplies that result by

742 (742=7x 7=49)

32 BASIC

45. Computers use a special form of notation to indicate extremely large
numbers, or extremely small decimal fractions. This method of expressing
numbers is called scientific notation. Consider, for instance, a large number
like the population of the earth which is about 4.1 billion people:

4.1 billion = 4 100 000 000
We asked our* computer to print the population of the earth:

10 PRINT 4100000000
99 END

RUN

4.100000E+9 What's this?

Our computer printed the population of the earth in a form of scientific
notation. (It really isn’t especially scientific . . . it’s just called that by some

people.)

Scientific notation is simply a shorthand way of expressing very large
or very small numbers. In scientific notation a number is represented by a
mantissa and an exponent:

4.100000E+9

S L Y

mantissa exponent

The mantissa and the exponent are separated by the letter

* Your computer may do it somewhat differently.

> -

. o9 e -4

o o o~

-

GETTING STARTED 33

46. Here are some examples showing numbers written in good old every
day notation and again in scientific notation (well, scientific notation accord-
ing to our computer).

One trillion

ordinary notation: 1 000 000 000 000
scientific notation: 1 «+000000E+12

Volume of the earth in bushels

ordinary notation: 31 708 000 000 000 000 000 000
scientific notation: 3«170800E+22

Speed of a snail in miles per second

ordinary notation: .0000079
scientific notation: 7.9000000E=-6

In each number above expressed in scientific notation, underline the man-
tissa and circle the exponent.

1 .000000E Exponent is positive.
3.170800E Exponent is positive.
7.900000E @ Exponent is negative.

Have you noticed? Our computer always prints the mantissa with 7 digits,
one digit to the left of the point, 6 digits to the right.

34 BASIC

47. Numbers printed in scientific notation can be converted to ordinary

notation as follows.
CASE 1. Exponent is positive.

(1 Write the mantissa separately.

(2) Move the decimal point of the mantissa to the RIGHT the
number of places specified by the exponent. If necessary,

add zeros.
EXAMPLE: 6.123456E+4
(1) 6.123456 - (2) 6.1234.56
A NS
4 places
Therefore, 6.123456E+4 = 61234.56.
EXAMPLE: 3.600000E+9
(1) 3.600000 (2) 3.600000000.
\5/
9 places (we had to add zeros)
Therefore, 3.900000E+9 = 3900000000.
Now you try it: 1.234567E+13
(1) (2)

Therefore, 1.234567E+13 =

1.234567
1.2345670000000.
e e a—

13 places (add 7 zeros)

12345670000000.

-

RGOS TSN SO S S

*

GETTING STARTED 35

48. CASE 2. Exponent is negative.

(1) Write the mantissa separately.

(2) Move the decimal point of the mantissa to the LEFT the
number of places specified by the exponent. If necessary,
add zeros.

EXAMPLE: 7.900000E—6
(1) 7.900000 (2) .000007.900000
N
6 places (we added 5 zeros)
Therefore: 7.900000E—6 = .0000079
Your turn: 1.234567E-5
(1) (2)

Therefore, 1.234567E-5 = .

1.234567
00001 . 234567
"

5 places (we added 4 zeros)

00001234567

36 BASIC

1.

(]

SELF-TEST

If you can answer these questions, you are a budding computer user and are
ready to go on to Chapter Two.

The device used to communicate programs to a computer is called a

The individual lines of computer instructions in a program are called

What is missing from this short program?

PRINT 2+2
END

Assume that you are at a computer terminal, typing a statement into the
computer, and you notice that you have made a typing error. Describe
a method of correcting your error (other than completely retyping the
statement).

Describe a method for replacing a new statement for an old statement in

a program without erasing the entire program and starting over.

Assume that there is a program in the computer. How do you erase
that program from the computer’s memory?

Assume that there is a program in the computer. How do you tell the
computer to actually follow (or process) the program?

' J SELF-TEST 37

8. How do you cause the computer to type out a program stored in its

memory?
’
.
i 9. Assume that this program is in the computer.
' 10 PRINT 3%5
' 20 PRINT 813
99 END

: Describe how to delete (remove) the second statement without erasing
the entire program.

10. Write the symbols used in BASIC for the following arithmetic operations.

Refer to this program to answer questions 11 through 18.

§ addition |
’ subtraction |
‘) multiplication :

division |
1 powers -

‘! 10 PRINT *"MY COMPUTER IS A WHIZ AT ARITHMETIC.™
20 PRINT 5+2%41¢3
30 PRINT B-16/32
40 PRINT (5+2)%(8-3)
S0 PRINT "THAT'S ALL» FOLKS!"

99 END

11. Which statements contain strings?

A string begins and ends with X |

13. Describe the order in which the computer does the arithmetic in |
Line 20. l

BASIC

14,

19.

Describe the order in which the computer does the arithmetic in
Line 30.

Describe the order in which the computer does the arithmetic in
Line 40.

In Line 40, why does the computer do the addition before the sub-
traction?

In general the computer does multiplication and division before addi-
tion and subtraction. Why is the order changed in Line 40?

Show what the computer will print when the program is RUN.

What symbol is used between several strings or expressions in a PRINT
statement to cause the results to be printed close together when the

program is RUN?

Look at this program.

10 PRINT 10,20,30,40,50,60,70
99 END

How many lines will the results of RUNing the program occupy?

e s

'S

s

SELF-TEST 39

21. Convert the following numbers from scientific or “E” notation into
standard notation.

Scientific Notation Ordinary Notation

1.123456E+6
1.123456E+12
7.777777E-2
1.000000E~12

BONUS PROBLEM. Write a computer program to do the following arithmetic
and produce the results shown in the RUN below.

(a) 103

) 1012

() 18.56-9.35
2.12 +3.33

RUN

TEN RAISED T8 THE 3RD POWER = 1000
TEN RAISED T@ THE 12TH POWER = 1.000000E+12
THE ANSWER T@ PROBLEM (C) IS 1.689908

40

BASIC

L.

2
3.
4

AR

15.

16.

1%:

Answers to Self-Test

Computer terminal (e.g., teletypewriter). (frames I to 3)
Statements (frames 4 to 7)
Line numbers (frames 7 to 9)

Type a back arrow (<) to erase each character (right to left) that you
wish deleted until the mistake is erased. Then finish typing the state-
ment, beginning at the point where the error was made. (frame 21)

Using the line number of the statement you wish replaced, type in the
new statement. (frame 19)

Type SCR (for SCRatch), and press the RETURN key. (frames 5 & 6)
Type RUN and press the RETURN key. (frame 13)
Type LIST and press the RETURN key. (frames 19 to 22

Type the line number of the line to be deleted (20) and press the
RETURN key. (frame 20)

h addition

— subtraction

* multiplication

/ division

+ powers (frame 34)

Lines 10 and 50. (frames 15 to 18)
Quotation marks (frames 15 to 18)

+, *,+. First the computer computes 44 3, multiplies the result by 2,
then adds 5. (frames 35 to 37 and frame 44)

/, —. First the computer divides 16 by 32, then subtracts the result
from 8. (frames 35 to 37)

+, —, *. First the computer adds S and 2, next it subtracts 3 from 8,
and then it multiplies the two results. (frames 38 to 40)

The computer does the operations contained in parentheses in left to
right order. (frames 38 to 40)

The computer does arithmetic contained in parentheses first. (frames
38 to 40)

."-Q »

> oo g

P Y

-0

A e Ao oa L adeasdiis scatil il

-

SELF-TEST 41
18. RUN (frames 38 to 40)
MY COMPUTER IS A WHIZ AT ARITHMETIC.
133
75
35
THAT'S ALL, FOLKS!
19. Semicolon. (frames 26 and 31)
20. Two lines, like this:
'63 20 30 40 S0
7
° (frames 27 to 30)
21. 1e123456E+6 1123456
1.123456E+12 1123456000000+
7.777777E-2 «07777717
1.000000E~12 +000000000001 (frames 45 to 48)

CHAPTER TWO

Warming Up

This chapter introduces some of the most used and useful BASIC statements.

From here on, more interesting programs may be used as examples, some of
which may have application in the preparation of reports or studies required
in college courses in the social sciences, psychometrics and testing, and in
business.

In this chapter you can learn the function and format for the following
BASIC statements, and will practice writing short computer programs. You
will also learn and use the concept of variable and be able to assign values to
those variables in BASIC programming.

LET INPUT GO TO
READ DATA REMARK

When you have finished this chapter, you will be able to:

* write short programs where values are assigned to variables by means of
LET statements, INPUT statements, and the READ/DATA combination
of statements, all expressed in correct BASIC format and notation:

* write short programs where a value calculated by a BASIC expression
is assigned to a variable in a LET statement:

® construct a combination of statements to identify the value(s) called
for by an INPUT statement;

® write programs that use the GO TO statement to construct a repeated

“loop™ in some portion of a program (or to ‘“‘skip over” a portion of a
program).

¢

‘..--‘.— > -

4

L

e - —

WARMING UP 43

1. To illustrate the concept of variable and the function of the LET state-
ment in BASIC, imagine that there are 26 little boxes inside the computer.

Each box can contain one number at any one time:

I
i

8

G

We have already stored numbers in some of the boxes

. 7 isin box A
)) Sisin box B

What number is in box F?

—6 is in box

H

0

InJ?

and 2.5 isin box

P

=<

A5

. For example,

44 BASIC
2. BoxesC and N are shown again below. Use a pencil to do the following.
(a) Put 8 into Box C. In other words, write the numeral “8” in the

(b)
(c)

box labeled “C.”

Put 12 into N.

Put 27 into N. But wait! A box can hold only one number at a
time. Before you can enter 27 into N, you must first erase the 12
that you previously entered.

C
N
C 8
N 27

3.

When the computer puts a number into a box, it automatically erases

the previous content of the box, just as you did. In order to put “27” into
Box N, you first erased the previous content, *“12.”

We call A, B, C, . .., Z variables. The number in Box A is the value of

A; the number in Box B is the value of B; the number in C the value of C and
SO on.

Below is a program that uses the LET statement to instruct the comput-

er to “put a number in a box,” or more technically, to assign a numerical
value to a variable. This program tells the computer to

10 LET A=7 = Put7into BoxA.

20 PRINT A = Print the content of Box A
99 END

RUN

7

. - » ~—— A - A A i el

WARMING UP 45

In the preceding program, the variable is and the value assigned to

it in Line 10 is

4. Complete the following program to assign the value 23 to the variable
X and then print the value of X.

10V
201
99 END

10 LET X=23
20 PRINT X
99 END

RUN

23

46 BASIC

5:

Here is another example. This program adds four numbers, which
might be scores of some kind, and computes the mean (average).

10 LET A=S5
20 LET B=8
30 LET C=3
40 LET D=6

S0 PRINT "SCORES:"3A3B3C3D

60 PRINT ""MEAN:"3CA+B+C+D)/74 - Compute and print the mean

99 END
RUN

SCORES: S 8 3

MEAN: 5.5

]

<— Print the four scores

What do the LET statements in this program tell the computer to do?

6.

Assign numerical values to variables, in this case to put values 5, 8. 3
and 6 into boxes A, B, C, and D. These values are printed (Line 50) and
then the computer uses them (Line 60) to compute and print the mean.

Complete each of the following RUNSs as you think the computer would

do it. If possible, use a computer to find out if you are correct.

(a)

10 LET A=l (b) 10 LET A=7 (¢c) 10 LET A=1
20 LET A=2 20 LET B=A 20 PRINT A
30 PRINT A 30 PRINT B 30 LET A=2
99 END 99 END 40 PRINT A
RUN RUN 99 END

RUN
(a) < Note that the second value assigned to A in Line 20

replaced the value assigned to A by Line 10.

R e e St

o e e g

-

> DY -

e et SR S NI SR TRERSL A TEOU W W S v

B s B

Y,

WARMING UP 47

7. Look at programs (a), (b), and (¢) in the preceding frame. In which
program is the value of one variable used to assign a value to another variable?

program (b)

8. So it turns out that one variable can take its value from another variable.
Not only that, but a variable can get its value from computations involving
one or more other variables whose values have been previously assigned.
(That last part is important.)

We can illustrate this with a program that will calculate the grade point
average for a student. Assume the student received:

4 units of A
6 units of B
4 units of C
2 units of D
O units of F

100 REMARK GRADE POINT AVERAGE PROGRAM USING LET STATEMENTS
110 LET A=4

120 LET B=é6 -
130 LET C=a These statements tell how many units

140 LET D=2 of each grade the student received

150 LET F=0

160 LET U=A+B+C+D+F

170 LET G=CA*A+3+B+2*C+1%D)/U

180 PRINT "“Y@UR GRADE P@INT AVERAGE 15"36
999 END

RUN
YBUR GRADE POINT AVERAGE 1S 2.75

Look at Line 160. Here, U (for units) receives its value from the total of the
units of each letter grade. What numerical value does U receive when this

program is RUN? U=]
Which line of the program computes and assigns the computed value to

the variable G? Line

U=16
Line 170

48 BASIC

9. LET statements are all fine and good, but what a hassle to change all
those LET statements in Lines 110 to 150 everytime you want to calculate
the GPA (Grade Point Average) for a different set of grades. Ah, but leave
it to BASIC to come up with a clever solution — namely the INPUT state-
ment,

The INPUT statement allows the computer user to assign different
values to INPUT variables each time a program is RUN withour modifying
the program itself. When the computer comes to an INPUT statement in a
program, it types a question mark and waits for the user to enter a value for
the INPUT variables (or variable). Here is an example.

20 INPUT A
30 PRINT "THIS TIME A ="3A
99 END

RUN

?

After we type RUN and press the RETURN key, the computer types a ques-
tion mark. Then it just waits. What it’s waiting for is a value to assign to the
INPUT variable A. The computer user must supply a number by typing the
number after the question mark, and then pressing RETURN.

In our example, we typed in 3 as the value to be assigned to A, pressed
RETURN, and the computer then continued running the program, using
A = 3. Here’s the program again with the completed RUN:

20 INPUT A
30 PRINT "THIS TIME A ="3A
99 END

The value of A is printed
RUN after the string

23
THIS TIME A = 3

- - - e

e

-

—— el el

~—

o — & = 4

-

-

PR . *

mo. Aduse salE B o ol o ommemn e

v

R

WARMING UP 49

After we typed RUN and pressed the RETURN key, the computer typed a

. We then typed a 3, which is our value for

the INPUT variable . The computer then printed the string “THIS
TIME A =" followed by the numerical “ofA,

question mark
A

value

10. The program can be RUN again with a different value of A supplied by
the user. Show how a RUN would look if the user typed 7 as the value of A.

RUN

?27
THIS TIME A = 7

50 BASIC

11. Now, in order to make things really clear when dealing with INPUT :

statements, we need a way of informing the user what the INPUT statement Y
is asking for. Let’sadd this statement to our example program: 4
10 PRINT "WHAT IS YOUR VALUE FOR A"; 1

-

See the semicolon at the end of the PRINT statement? When a semicolon is

used at the end of a PRINT statement, the teletype stays on the same line '
instead of performing a “*carriage return” and going to the beginning of the 7
next line. Here is our revised program, and the beginning of a RUN. 1
10 PRINT "WHAT IS YOUR VALUE F@R A"; I

20 INPUT A T

30 PRINT *"THIS TIME A ='"3A s

99 END }

?

RUN 2
WHAT 1S YOUR VALUE F@R A? 1
M — A i

This much comes from Line 10 The question mark comes from ?

the INPUT statement in Line 20 “

Now we know exactly what the computer is waiting for — a value for the ‘
variable A. We use 350 as the value, type it in after the question mark, then
press RETURN.

—

+

.
-

RUN

WHAT IS YOUR VALUE FOR A?350
THIS TIME A = 350

Show another RUN of the program where the user enters 17 as the value of A.

RUN

WARMING UP 51

RUN

WHAT IS YOUR VALUE FOR A?17
THIS TIME A = 17

12. Now you do one. Write a program, using two INPUT statements, that
will result in the following printout when RUN.

RUN

VALUE @F X?5 Values supplied by user
VALUE @OF Y?10 |
THEN X + Y = 15 Value computed |

Either of these two programs is correct.

10 PRINT ™VALUE @F X"i 10 PRINT “VALUE @F X"'»
20 INPUT X 20 INPUT X
30 PRINT "“VALUE OF Y') 30 PRINT “VALUE @F Y"3
40 INPUT Y 40 INPUT Y
50 PRINT “THEN X + Y ="3X ¢+ Y 50 LET Z = X ¢+ Y
99 END 60 PRINT “THEN X + Y ="3Z
RUN 99 END
RUN
VALUE OF X?75
VALUE OF Y710 VALUE @F X75
THEN X ¢+ Y = 15 VALUE @F Y210 |

THEN X ¢+ Y = 15

52 BASIC

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
999

REMARK PROGRAM T@ COMPUTE GRADE POINT AVERAGE

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT

13. So much for theory. Now let’s apply the capabilities of the INPUT state-
ment to the Grade Point Average program (which you may recall seeing at the
beginning of Chapter One).

“HOW MANY UNITS OF A"}
ﬁHOU MANY UNITS OF B"»
EHGN MANY UNITS @F C"3
EHOH MANY UNITS @F D"3
EHON MANY UNITS OF F"3

LET U=A+B+C+D+F

LET G=

PRINT
PRINT
END

(4%A+3%B+2%C+1%D)/U

"YOUR GRADE POINT AVERAGE 15"36G

A PRINT statement with
nothing following it causes
the teletype to advance to

ing anything, leaving “line
spaces’’ as you can see in
the RUN below.

the next line without print-

\

_. WARMING UP 53

Here is a RUN of the preceding program featuring valuesof A, B,C,Dand F
‘ supplied by the user.

RUN
HOW MANY UNITS OF A?4 Following each question mark,
HOW MANY UNITS OF B?6 the user typed the requested

1 HOW MANY UNITS OF C?6 value, then pressed the RETURN

HOW MANY UNITS OF D?0 key
HOW MANY UNITS OF F?0

YOUR GRADE P@INT AVERAGE 1S 2.875

After all 5 values had been entered, the computer
computed the GPA and printed it

How many units of A did the user enter? How many units of

F?

3 0

-

54 BASIC

14. Let’s demonstrate another capability of the INPUT statement. One
INPUT statement can be used to assign values of two or more variables:

10 PRINT "VALUES @F X AND Y"3
20 INPUT X»Y

30 PRINT "THEN X + Y ="3X + Y
99 END

RUN

VALUES @F X AND Y?12,6
THEN X + Y = 18

There are two things to note:

(a) 20 INPUT X»Y < No comma after the last variable
P

No comma here Comma separates the variables

(b) RUN

VALUES OF X AND Y?1256 < Nocomma after last value
t

Comma between values

Note that 12 is the value assigned to the first INPUT variable X, and 6
will be assigned to the second INPUT variable Y.

Here is the summary; you fill in the blanks.
When a program containing an INPUT statement with multiple variables
is RUN, the first value typed in by the user after the INPUT question mark

will be assigned to the _variable that appears in the INPUT

assigned to the second variable appearing in the INPUT statement, etc. Both
the variables in the INPUT statement in the program, and the values typed in

statement; the ~_ value typed in by the user will be

by the user when the program is RUN, must be separated by -

first
second
commas

WARMING UP 55

15. Here is another RUN of the program in frame 14. We want to enter 73
as the value of X and 59 as the value of Y.

RUN

VALUES @F X AND Y?73 Whoops! We absentmindedly
s hit the RETURN key.

The computer typed another question mark.
This means “Didnt you forget something?"”

We then completed the RUN by entering the second number, the value of Y.
Here is the complete RUN:

RUN
VALUES @F X AND Y?73

? 59
THEN X + Y = 132

If we don’t enter a numerical value for every variable in an INPUT statement,

our computer types a

question mark (Then we can enter the rest of the required values)

I e L I\

56 BASIC
5 . 1!
L
16. Your turn. Write a program to compute and print the value of A*(B+C))
for INPUT values of A, B, and C. A RUN should look like the following.
.
RUN ¢
VALUES OF A»B»(C?2,3,4 s
THEN A%(B + C) = 14 N
Your program: !
!
4
4
‘.
__________________________ ¢
{
Here are two ways to do it. 2
¢
10 PRINT "VALUES OF A,B,C"3 }
20 INPUT A,B,C 1
30 PRINT "THEN A*(B + C) ="3A*(B + C) 1
99 END ’ .
\
10 PRINT "VALUES OF A,B,C"3 ‘
20 INPUT A,B»C !
30 LET D=A*(B + C) s
40 PRINT *"THEN A%(B + C) ="3D ¢

99 END

WARMING UP 57

17. Now, write a new version of the program to calculate Grade Point

Average that uses only one INPUT statement to tell the computer how many
units of A, B, C, D, and F you received (or expect to receive). Use a PRINT
statement before the INPUT statement to identify the INPUT values needed.

100 REMARK PROGRAM T@ COMPUTE GRADE PQINT AVERAGE
110 PRINT "UNITS @OF A,B,C,D AND F"3

120 INPUT A,B,C,DsF
130 LET U=A+B+C+D+F
140 LET G=(4*A+3%B+2*C+1x%D)/U

150 PRINT
160 PRINT "YOUR GRADE P@INT AVERAGE IS5'"36

999 END

You may have noticed the REMARK statement used as a heading for various
example programs. That's what it is, a remark by the programmer to identify
what a program or a section of a program does. REMARK statements exist
solely for the convenience of a person looking at a program, and (for a
change) don't tell the computer to do anything. We will use REMARK to
identify most of the programs that follow.

58 BASIC

18. Now show what a RUN of your program will look like if we enter 2
units of A, 5 units of B, 4 units of C, 3 units of D, and 3 units of F.

UNITS OF A,B,C»D AND F?25554,3,3

YOUR GRADE PO@INT AVERAGE 1S 2

19. Now. let’s consider a problem in the field of population growth.

PROBLEM: In year zero, we start with a population of P people. The
population increases by 1% each year. In N years, what will the popu-
lation be?

P is the initial population.

R is the growth rate in percent per year.
N is the number of years.

Q is the population after N years.

r__ 1% increase per year

Q=P(1 +1/100)N =~—N years
t— Initial population
Population at the end of N years
If the growth rate is 2.5% per year, then

Q="P(1 +2.5/100)N

And, if the growth rate is R% per year, then

Q=P(1 +R/100)N

N

) WARMING UP 59

For review, write this last formula as a LET statement for variable Q using
BASIC notation.

170 LETQ= _

170 LET @=P*(1 + R/100)*N

NOTE: This formula may actually be used to compute the growth rate for
anything that increases by a fixed proportion or percentage for a given length
of time (e.g., interest on money, bacteria culture growth, etc.).

60 BASIC

20. Here is one version of a population growth program.

100 REMARK PROGRAM T@ CALCULATE POPULATION GROWTH

110 PRINT “INITIAL POPULATION":

120 INPUT P

130 PRINT "RATE OF GROWTH"3
140 INPUT R

150 PRINT "NUMBER OF YEARS"™;
160 INPUT N

170 LET @=P*(1+R/100)N

180 PRINT

190 PRINT “P@PULATION AFTER"™3N3"YEARS 15";:@

999 END

RUN

INITIAL POPULATION?1000
RATE OF GROWTH?1

NUMBER @F YEARS?20

POPULATI@N AFTER 20 YEARS IS

1220.19
»

We'll call it 1220 people

It is now the year 1978. The population of the earth is about 4.1 billion
people. The growth rate is about 2% per year. Suppose this growth rate

persists until the year 2001. We want to know what the population will be

in 2001. Show how this information is entere
in the following part of 2 RUN.

RUN

INITIAL POPULATION?

d by completing the blanks

RATE OF GROWTH?
NUMBER @F YEARS?

¢

- - e — - -~ -~

Sihemadili e o Al

-

) WARMING UP 61

We think you did it this way.
RUN
INITIAL POPULATION?4100000000 = 4.1 billion =4 100 000 000
RATE OF GROWTH?2
NUMBER OF YEARS?23 ~———— 23=2001 — 1978

POPULATION AFTER 23 YEARS 1S 6.46529E+09
Or perhaps this way:

RUN

INITIAL POPULATION?4.1E9 <« 4.1billion=4.1E9
RATE OF GROWTH?2
NUMBER OF YEARS?23

POPULATION AFTER 23 YEARS 1S 6.46529E+09

) 21. According to our RUN in frame 20, in the year 2001 the population of
the earth will be 6.46529E+09 people. Here is another way to write that
number.

6.46529 billion

Now, you write it in good old everyday, people-type notation.

6,465,290,000, or 6465290000

ST i Con TP o T N R T e P

-

62 BASIC .

22. We could. of course, combine the INPUT variables P, R, and N into one
INPUT statement.

B ety O —

INPUT PsRsN A
. : t
Use the above INPUT statement (you choose the line number) in a new pro-
gram to compute population growth. A RUN might look like this. Y
¢
RUN
¢

POPULATION, RATE OF GROWTH, NUMBER 8F YEARS?1000,1,20

POPULATI@ON AFTER 20 YEARS 1S 1220.19

100 REMARK PROGRAM T@ CALCULATE POPULATIGN GROWTH

110 PRINT "“P@PULATION, RATE OF GROWTH, NUMBER OF YEARS"3:
120 INPUT PsRsN j
130 LET @=P*(1+R/100) N

140 PRINT

150 PRINT "POPULATION AFTER"JIN3I™YEARS 1S'3@
999 END

t

)

WARMING UP 63

23. Suppose you and a bunch of friends are gathered around the computer
terminal, and they are marvelling at your newly acquired computer program-
ming skills. You decide to demonstrate how the computer works by using
the program to calculate GPAs shown in the answer to frame 17. However,
you have to do a separate RUN of the program for each friend. But wait —
first add these two new statements to the program.

170 PRINT
180 G@ T@ 110

Now, LIST the program.

LIST

100 REMARK PROGRAM T@ COMPUTE GRADE POINT AVERAGE
110 PRINT "UNITS @F A,B,C,D AND F"3

120 INPUT A,B,C,D,F

130 LET U=A+B+C+D+F

140 LET G=C4*A+3%B+2%C+1%D)/U

150 PRINT

160 PRINT "YOUR GRADE PQINT AVERAGE 1S"3G

170 PRINT

180 GO T@ 110 &
999 END

In BASIC, the GO TO statement instructs the computer to “jump” forward
or backward in the program to the line number indicated after the GO TO,
and then to continue following the instructions in the program in line number
order from that point.

In the preceding example, the GO TO statement tells the computer to

jump from Line 180 to Line ___and start the program

over again.

Line 110

NOTE: Although the END statement (Line 999) is never executed, in most
versions of BASIC it must still be included simply to mark the end of the
program.

64

BASIC

24. What is the purpose of Line 170 in the preceding program?

235.

It causes the computer to print a line space after printing the grade

point average.

Let’s see what happens when the program is RUN.

RUN

UNITS OF A,B,C,D
YOUR GRADE P@INT
UNITS @OF A,B,C,sD
YOUR GRADE P@INT
UNITS OF A»B,C,D
YOUR GRADE P@INT
UNITS @F A»B,C,D
YOUR GRADE PO@INT

UNITS OF A,B,C,D

AND F?4,65,4,250
Don't forget the zero for no units of F.

AVERAGE IS 2.75
AND F?10,22512,8,4
This friend wants the GPA for 4 semesters

AVERAGE IS 2.464286

AND F21253,0,050

AVERAGE IS 38 Thisfriend is a genius
AND F?05053,10,2

AVERAGE IS 1.066667

This friend is on probation!
AND F? What again?

o

s

WARMING UP 65

The computer still wants more data. How do you get out of this situation?
Try these methods: Type STOP and press RETURN. If that doesn’t work,
hold the CTRL key down and press the C key. Then let go and press RE-
TURN, or try the BREAK key.

If that doesn’t work, press the ESC or ALT MODE key. If that doesn’t
work, ask for help or consult the reference manual for the system being used.
(If you haven’t guessed, various computer systems use different methods to
abort an INPUT statement. Later you’ll learn programming techniques to
avoid this problem.) .

Different computers may use different ways to abort or terminate an

INPUT statement. If these don’t work on your computer, what should you
do?

Yell for help.

(Either answer is 0.K.)
Consult your local reference manual

66 BASIC ¢ 1

26. Below is a population growth program.

100 REMARK PROGRAM T@ CALCULATE POPULATION GROWTH !
110 PRINT "POPULATION, RATE OF GROWTH» NUMBER @F YEARS:"
120 INPUT PasRLN

130 LET @=P*(1+R/100)*N

140 PRINT

150 PRINT "POPULATION AFTER"™IN3"YEARS 1S"3@

999 END A

Modify the program so that, after printing the result for input values of P, R,
and N, the computer returns to Line 110. Also include a statement to put a
line space following the printed results. Show your modifications below. ¢

Here is a LIST and RUN of the modified program. d

LIST

100 REMARK PROGRAM T@ CALCULATE POPULATION GROWTH
110 PRINT “P@PULATI@N, RATE OF GROWTH, NUMBER B8F YEARS"3 ‘
120 INPUT PsRsN
130 LET 0=P*(1+R/100)N
\
{

140 PRINT

150 PRINT "POPULATI@N AFTER"™3N3"YEARS 15"30 '
160 PRINT et

170 6o T8 1104— Hereare the modifications

999 END ¢
RUN

POPULATION, RATE OF GROWTH, NUMBER OF YEARS?1000,1,20 n
PE@PULATIBN AFTER 20 YEARS 1S 1220.19 '
POPULATI@N, RATE OF GROWTH, NUMBER @F YEARS?71000,2,20

PBPULATIBN AFTER 20 YEARS 1S 1485.947

PBPULATIGN, RATE @F GROWTH, NUMBER OF YEARS? Andsoon (

WARMING UP 67

L

27. Here’s a program that lets you use the computer as an adding machine,
by repeating an “adding routine” with a GO TO loop.

100
110
120

130
140
150

160
170
180
190
200
210

999

REMARK WORLD'S M@ST EXPENSIVE ADDING MACHINE
PRINT "1 AM THE WORLD'S M@ST EXPENSIVE ADDING MACHINE."
PRINT "EACH TIME 1 TYPE *X=2' THEN YOU TYPE A NUMBER AND"

PRINT "PRESS THE RETURN KEY. I WILL PKINT THE TOTAL OF ALL"
PRINT "THE NUMBERS YOU HAVE ENTEKED."
LET T=0

PRINT T Lines 160 through 210 are a
PRINT "X="3 GO TO loop. These lines are

INPUT X 2
LET T=T4X done for each input number

PRINT "TOTAL S@ FAR IS"3T
G@ To 160

END

Note the LET statements using the variable T in Lines 150 and 190.

150 LET T=0 190 LET T=T+X

Line 150 is outside the GO TO loop. It is done once before the loop begins,
setting T equal to zero. This is called “initializing,” giving an initial or start-
) ing value to a variable.
Line 190 is inside the GO TO loop. Therefore, it will be done each time

through the loop. In Line 190, a new value for T is computed by adding the

old value to T and the INPUT value of X.

190 LET T=T#+X

New value//'

Old value

(a) Suppose the old value of T is zero and the INPUT value of X is 12.

What is the new value of T? 3
(b) Suppose the old value of T is 12 and the INPUT value of X is 43.

What is the new value of T?

68 BASIC

28. Note how PRINT statements (Lines 110 — 140) are used to provide the
user with an explanation and instructions for using the program. These

PRINT statements are the GO TO loop.
(inside/outside)

outside

29. Now, let’s RUN the program and see how it works.

RUN

I AM THE WORLD'S M@ST EXPENSIVE ADDING MACHINE.
EACH TIME I TYPE *X=?' THEN YOU TYPE A NUMBEkK AND

PRESS THE RETURN KEY. I WILL PKINT THE TOTAL OF ALL
THE NUMBERS Y@U HAVE ENTERED.

X=?12
TOTAL S@ FAR 1S 12

X=743
TOTAL S@ FAR 1S 55

X=233
TOTAL S@ FAR 1S 88

X=292
TATAL S@ FAR 1S 180

X=2T76+25
TOTAL S@ FAR IS 256.25

X=? < Do youremember how to get out of this?
(If not, check frame 25.)

{
' ’ WARMING UP 69
L
For the preceding RUN, the first time through the program, the values of
I the variables on the right of the = symbol in 190 LET T =T + X will be
L
f. LETT=0+ 12
S
’ Value assigned to Value assigned to X
é T by Line 150 by INPUT
' So the new value of T is 12.
! For the second time through the “loop” section of the program, show
',' the values:
4
‘ LETT= +
' So the new value of T is
'
‘ ________________________
R 12
; 43 (LETT=12+43)
55
'

70 BASI

C

30. You've seen how LET statements and INPUT statements can be used to
assign values to variables. (We hope you’ve been able to use them at a termi-
nal too.) A third method uses two statements in combination, READ and

DATA, to assign values to variables.

10
20
30
40
99

RUN

THI
THI
THI
THI
THI

QUT OF DATA IN LINE 10

This state

10 READ X

READ X

PRINT "THIS TIME THROUGH
GO T 10

DATA 10>

END

S TIME
S TIME
S TIME
S TIME
S TIME

ment

THRBUGH THE
THROUGH THE
THROUGH THE
THROUGH THE
THROUGH THE

155 75 325, 11

LOOP.,
LOOP,»
LOOP.,»
LOOP»
LOOP»

THE LOOP, X=""3X

X=
X=
X=

10
15

3.25
11

the value to the variable X. Everytime the READ statement is executed (each
time through the loop), the computer reads the next value from the DATA
statement, and assigns the new value to the variable X. The computer keeps
track of each value as it is read out, in effect, moving a pointer down the line
of numbers in the DATA statement, one notch at a time.

How many numbers are in the DATA statement?

|
tells the computer to READ one value from the DATA statement, and assign ;
i

'\ WARMING UP 71

31. The computer read and printed all the numbers in the DATA statement
then tried to find still another number. Since it couldn’t find another num-

ber to read, what did it print?

@UT OF DATA IN LINE 10

72

BASIC

32. Look at the format for DATA statements:

40 DATA 10, 15, 15 3255 11
N il 5k No comma at the end
Commas between values of the DATA line

No comma here

DATA statements may contain whole numbers, numbers
"

CAN with decimal fractions, such as 3.25 above, numbers in
scientific or “E” notation, or negative numbers.

CAN'T DATA statements may not contain variables, arithmetic
operations, other functions. or Jfractions.

90 DATA X,Y,A (Well, at least most computers CANT,
95 DATA 2+3,1 7452755 7%8 What about yours? Try it and find out,)

Write a DATA statement for these values:

342
1256
205
60.25
—412
2.05E8

60 DATA 342,1256,205, 60.25, ~412,2.05E8

(Remember, no commas can be used in large numbers.
However, scientific or “E" notation may be used.)

Your line
number
may be
different

(]

~ - e, T

S et

.

WARMING UP 73

33. Notice that the DATA statement may be placed anywhere in the
P program (before the END statement).

10
15
20
30
99
RUN

READ X

DATA 3505557+5s2,~1
PRINT 'Xx='"3X

Ge Te 10

END

X=
X=
X=
X=
X=
X=

- uvow

QUT @F DATA IN LINE 10

10 KEAD X

20 PKRINT "X='"3X

30 GP T@ 10

70 DATA 350555755525 ~1

99 END

KUN

X= 3 Since Line 10 tells the

X= 0 computer to READ X,

Xx= § thecomputer will find

X= 7 the DATA statement

X6 (Line 70) read one

X= 2 number (into X) then
oS proceed to Line 20,

and so on,

QUT OF DATA IN LINE 10

Can the DATA statement be placed as shown below?

(a)

S DATA 3:055,75552,~1
10 READ X

20 PRINT "X=""3X

30 G@ T@ 10

99 END

answer

Yes.
No. The line number of the DATA statement cannot be larger

than the line number of the END statement.

(a)
(b)

(b)

10 READ X

20 PRINT "Xx="3X

30 G@ T 10

99 END

100 DATA 35055575552, ~1

answer

——‘

74 BASIC
(

34. As many DATA statements as are needed may be used to hold the data.
Sometimes you may wish to use a DATA statement to hold only one value
that you expect to change for various RUNS of the program. Sometimes you
may have more values than will fit on one line. When the computer has used
all the data in one DATA statement, it automatically goes on to the next
DATA statement, and continues reading values. But each new DATA state-

.~ - e e

ment must begin with a new line number and the word DATA. ¢
10 READ X)
20 PRINT "Xx="3X .
30 G T@ 10 i
70 DATA 3505557
75 DATA 5,251 <
99 END J
RUN '
X= 3)
= 0 A
=5 (
X= 7 :
= 2 1
s |
== . 1
QUT @F DATA IN LINE 10 1
If the computer has already used up all the numbers in all the DATA state- <
ments in a program and then tries to read another number, it will type an
error message and stop. Typical error messages are *
OUT OF DATA or DATA ERROR !
|

or some other indication that it can find no more DATA to assign to the !
READ variable.

What message did our computer print when it could find no more data i
to assign to the READ variable? '

PUT @F DATA IN LINE 10

L)

WARMING UP 75

.T)S. Write a “World’s Most Expensive Adding Machine” program (from
frame 27) using READ and DATA statements instead of an INPUT statement

so that a RUN of the program will look like this:

RUN

X= 12
TE@TAL

X= 43
TOTAL

X= 33
TeTAL

X= 92
TOTAL

X= 76

Se

Se

Se

S0

25

FAK

FAK

FAK

FAK

IS 12

IS 55

1S B

IS 180

Examine the RUN to determine
the values in the DATA statement

TOTAL SO FAk IS 256.25

QUT OF DATA IN LINE 30

This may be different
for your program

10 REMARK WORLD'S MOST EXPENSIVE ADDING MACHINE REVISITED

20 LET T=0
30 READ X

40 LET

50 PRINT
60 PRINT
70 PRINT
80 Ge T@ 30
90 DATA 12,43,33,92,76+25
99 END

T=T+X

.Ox=.l,x
“TOTAL S@ FAR IS"sT

76 BASIC

36. Find the “Program to Calculate Population Growth” (frame 26). In
that program, the INPUT statement looks like this:

120 INPUT PsRsN

Similarly, a READ statement can assign successive values from a DATA state-
ment to a series of READ variables:

120 READ PsRsN

The format is like the INPUT statement with multiple variables — the vari- ’
ables are separated by commas, with no comma after READ or after the last
variable.

100 REMARK PROGRAM T® CALCULATE POPULATION GROWTH
110 READ PsR

115 DATA 1000.,1 ¢
120 PRINT "INITIAL POPULATION IS"3P ,
130 PRINT "“GROWTH RATE IS™3Rs"™%" ,
140 PRINT {
150 READ N f
155 DATA 10,20,50,100 1
160 LET @=P*(1+R/7100)*N Q !
170 PRINT "POPULATION AFTER"3N3"YEARS 15":@ \
180 GO T@ 150

999 END

RUN

INITIAL POPULATI®BN IS 1000 < Valuesassigned to P and R
GROWTH RATE 1S 1 % < bylLine110

POPULATION AFTER 10 YEARS IS 1104.622
POPULATION AFTER 20 YEARS IS 1220.19 l
POPULATION AFTER 50 YEARS IS 1644.631
PePPULATI@N AFTER 100 YEARS 1S 2704.811

QUT OF DATA IN LINE 150

P

P — ~ N S

WARMING UP 77

To help clarify what happené when this program is RUN, we have placed the
DATA statements near the READ statements. However, the DATA state-
ments (Lines 115 and 155) could be combined into one DATA statement,
which could be placed anywhere in the program. The first two values from
the combined DATA statement would be assigned to the READ variables P
and R in Line 110, and the remaining values would be assigned (one at a time)
to N in Line 150, with one value used each time through the GO TO loop.

Now combine the two DATA statements in the preceding program into
a single DATA statement and write it as Line 900.

900

900 DATA 1000, 1, 10, 20, 50, 100

/ N 7
2 ¥ of)
Value of P /
Value of R

Values of N

37. After removing Lines 115 and 155 from the new population growth
program, Line 900 is added to the program. How will these changes affect

the RUN of the program?

There will be no effect on the RUN; it will be the same as before. (Try
it and see for yourself.)

78 BASIC

SELF-TEST

If you can successfully deal with the following problems, you have the first
two chapters down pat. If you have trouble, you’d better review the first
two chapters before going on. (Have you been writing out the answers before
looking at ours? That’s the best way to learn from this text.)

1. Each of the following BASIC statements contains an error. Mark the
error and show the statement in correct BASIC notation.
(a) 10 READ X3Y
(b) 10 "X+Y="3X+Y
(c) 30 LET X+3 = Y
(d) 20 INPUT P.,QsR»
(e) 90 DATAs» 5055505752100
(f) 10 PRINT "“St2=3St2

(3]

Each of the following BASIC programs contains an error. In the space
provided, describe the error.

(a) 10 READ A,B
20 PRINT A+B
99 END

(b) 10 INPUT X»Y
20 PRINT X*Y
30

Ge Te 10

LET P=5
LET @=22

LET S=(P+0)/7(Q=R)
PRINT MsN,S

END

(¢)

10
20
30
40
99

B SELF-TEST 179

3. Look at this short program. What will the computer print when the
program is RUN?
Why?

10 LET R=15
20 G2 Te 99
30 PRINT R

99 END

4. Write a program that will convert temperatures expressed in degrees
Celsius to degrees Fahrenheit, using this formula:

F=9/5C + 32
A RUN of your program should look like this:

RUN

THIS PROGRAM CONVERTS DEGREES: CELSIUS T) FAHRENHEIT.
c =232
32 DEGREES C = 89.6 DEUREES F.

c =782
82 DEGREES C = 176 DEGREES F.
C =2102 '
} 182 DEGREES C = 212 DEGUREES F. j
c =72 |
|

@ DEGREES C = 32 DEGRAREES F.

80 BASIC

5. Write a program that will convert the temperatures taken hourly for one :
day from degrees Fahrenheit to degrees Celsius. Use the READ
and DATA combination of statements in your program, and construct

your program to produce the following RUN. i
RUN Formula: C = 5/9(F — 32)
'
F = 52 C = 11.11111
F = 51 C = 1055556
F = 51 C = 1055556 :
F = §3 C = 11.66667)
F = 54 C = 12.22222
F = 60 C = 15.55556
F = 64 C = 1777778
F = 68 C = 20
F = 73 C = 22.77778
F =179 C = 26.11111
F = 82 C = 27.77778
F = 83 C = 28.33333
F = 85 C = 29.44444
F = 87 C = 30.55556
F = B4 C = 28.88889 ’
F = 83 C = 28.33333
F = 80 C = 26.66667
F =75 C = 23.88889
F = 69 C = 20.55556
F = 65 C = 18.33333 ;
F = 63 C = 17.22222 !
F = 60 C = 15.55556
F = 59 C =15 '
F = 57 C =

OUT OF DATA IN LINE 10

SELF-TEST 81

Congratulations! You are the big winner on a TV show. Your prize is
selected as follows.

A number between 10 and 1000 is chosen at random. Call it N.
You then select one and only one of the following prizes.

PRIZE NO. 1: You receive N dollars.
PRIZE NO: 2: You receive D dollars where D is computed as
follows:

D=1.01N

Perhaps you recognize the formula for D. It is the amount that you
would receive if you invested $1 at 1% interest per day, compounded
daily for N days.

The question, of course, is: For a given value of N, which prize do
you take, PRIZE NO. 1 or PRIZE NO. 2? Write a program to help you
decide. A RUN of your program should look like this:

RUN
N=7 100 i
PRIZE #1 = $ 100 PRIZE #2 =$ 2.70481
(Take PRIZE NO. 1)
N=? S00
PRIZE #1 = $ 500 PRIZE #2 =$ 144.7717
(Take PRIZE NO. 1)
N=? 1000
PRIZE #1 = $ 1000 PRIZE #2 =$ 2095885

N=? and soon (Take PRIZE NO. 2)

BASIC

BONUS PROBLEM. Write a program to help you perform that tiresome
task called “balancing the checkbook.” Here isa RUN of our program.
RUN

I WILL HELP YOU BALANCE YOUR CHECKBOOKe

ENTER CHECKS AS NEGATIVE NUMBERS AND

DEPOSITS AS POSITIVE NUMBERS.

OLD BALANCE? 123.45

CHECK OR DEPOSIT?-3.95 <«— Remember — enter checks as numbers.

NEW BALANCE: 119.5

CHECK OR DEPOSIT?-33
NEW BALANCE: 86.5

CHECK OR DEPOSIT?~73.69
NEW BALANCE: 13.11

CHECK OR DEPOSIT?-8.24
NEW BALANCE: 4.87

CHECK OR DEPOSIT? 50 <—— At last! A deposit, and just in time.
NEW BALANCE: 54.87

CHECK OR DEPOSIT?

...and so on.

- — - —— - BE

SELF-TEST 83

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer to these for quick review.

N

6.

() 10 READ X (3) ¥ 10 READ X,Y (frame 32)

(1) 100X + Y ="3X + Y 10 PRINT "X ¢ Y ="3X + Y (frames9and 12)
()30 LET(X*D = Y 30 LET Y=X+3 (frames 1 to 9)

(d)20 INPUT P, @, R®) 20 INPUT P» @5 R (frame 14)

(¢) 90 DATAB) 5.5,50,7+5,100 90 DATA 5+5,50,7:5,100 (frame 32)

() 10 PRINT "'St2 5 se2 10 PRINT *"St2="3St2 (frames9,12,and 16)

(a) Program lacks DATA statement to go with READ statement.
(frames 30 to 37)

(b) Missing END statement. (frame 23)

(¢) No value has been assigned to variable R used in Line 30 to cal-
culate a value to assign to S. M and N also have no value. (frame 8)

Nothing, because the GO TO statement causes the computer to jump
past the PRINT statement. (frame 23)

NOTE: Remember that there may be more than one program that will
solve the problem and produce the RUN shown. If yours doesn’t look
like our solution, and you think it will work, try it on a computer.

1¢ PRINT “THIS PAROLRAM CONVEATS DEGREES CELSIUS TO FAHREVHEIT. "™
22 PRINT "C=";

32 INPUT C

a@ LET F=C»9/5+32

5@ PRINT C;“DEUREES C =3 F;“"DEGREES F."

6@ PRINT

7¢ GO TO 280

99 END

(frames 12 and 20)

10 READ F
20 LET C=5/9%(F-32)

30 PRINT "F ="3F,"C =*3C

40 GO T@ 10

90 DATA 5205‘051053354:60:64068073:79:82083

1 DATA 85087084:83080075:69065063:60059057
9 END

0 0

(frame 30)
PRINT "N="3
INPUT N
PRINT "“PRIZE#]1 = $"IN,"PRIZE"2 = $"31.01*N

PRINT
Ge T® 10
END (frame 12)

888885

CHAPTER THREE

Decision Making |

Onward into conditional branching and the IF-THEN statement. The more
BASIC you learn, the more control you have over the capabilities of
computers.

When you complete this chapter, you will be able to:

e write programs correctly using the IF-THEN statement for conditional
branching, with any of the following comparisons

<=
>=
<>

* use the IF-THEN statement to check for a “*flag” in a program;

e use another form of BASIC variable notation, a letter with a digit,

B T

;, DECISION MAKING 85

In this chapter we present a very important computer capability
known technically as conditional branching. 1F a given condition is true,
THEN the computer branches off, or **skips™ to a specified line in the
program and continues following the instructions in the program. The
BASIC statement used for conditional branching in a program is the
[F-THEN statement. The IF part of the statement states the condition,
and the THEN part tells the computer where to branch or “skip” to when
the IF part is true.

1. An IF-THEN statement is shown below.

20 IF X < O THEN 10

This IF-THEN statement tells the computer

If the value of X is less than
zero then go to Line 10

If the value of X is greater than zero or equal to zero, the computer does
not go to Line 10. Instead it simply continues in normal line number
order. That is, it goes on to the next line number in the program sequence.
In the diagram below follow the arrows.

(This is the condition

20 IF X < O THEN 10

Line number < Follow this path Follow this path if
of the IF- if the condition the condition is TRUE
THEN statement is FALSE 37

What is the condition in the above IF-THEN statement?

X < 0 or X is less than zero

The condition is TRUE for some values of X and FALSE for
other values of X.

-

86 BASIC .

2. The condition in an IF-THEN statement is usually a comparison be-
tween a variable and a number, or between two variables, or in general,
a comparison between two BASIC expressions. For example,

G e ——

The statement: SO IF A = B THEN 100 v

tells the computer: If the value of A is equal to the value of B, ‘
then go to Line T00

The statement: 90 IF @ >= 2%P THEN 120

tells the computer: If the value of Q is greater than or equal to

2 times the value of P, then go to Line 120

Here is a handy table of comparison symbols that may be used in an
IF-THEN statement:

S S S —" e Y

BASIC Symbol Comparison Math Symbol
= is equal to =]
8 is less than <
> is greater than >
&= is less than or equal to <
= is greater than or equal to S
<> is not equal to #
Write the following as IF-THEN statements using the proper BASIC ‘
symbols.

(a) If the value of M is less than one then go to Line 50. A
(b) If the value of Z is greater than or equal to the value of A squared,

then go to Line 150.
(c) If the value of 3 times A is not equal to 12, then go to Line 80.

____________________________ !
(a) IF M < 1 THEN SO '
(b) IF Z »= At2 THEN 150 !
(c) IF 3%A <> 12 THEN 80
1
{

DECISION MAKING 87

3. The following program causes the computer to read numbers from a

DATA sta

tement and print only the numbers that are nor less than zero.

Numbers that are greater than zero or equal to zero are printed.

10
20

RUN

MK XXMM X
LB B B B)

euT

READ X

IF X<O THEN 10

PRINT "X ="3X

GO T 10

DATA 357505,-2555-15658,~3
END

MO UVOoOawW

@F DATA IN LINE 10

) Look at the numbers in the DATA statement. For which numbers is the

condition

Line

5.0 LK

X < 0 true?

10

< 0 is true, is the value of X printed? __

88 BASIC

6. For which numbers is the condition X < 0 false?

Line 30

8. If X < 0is false, is the value of X printed?

9. What will be the results of the following RUN?

10 READ X

20 IF X>0 THEN 10 The condition in the
30 PRINT "X ="3X IF-THEN statement
4 G@ TO 10 is X> 0 (X is greater
90 DATA 357505-2550-156585,-3 than zero)

99 END

RUN

QUT OF DATA IN LINE 10

-+

- — e -

W -

—— - -

P el — Ay il —Q

Ay -

>

)

DECISION MAKING 89

X =0
X ==2
X =-]
X ==3

OUT @F DATA IN LINE 10

10. Change the IF-THEN statement in the above program so that only
nonzero numbers are printed. That is, if X = 0, it is not printed.

20 IF THEN 10

20 IF X = O THEN 10

11. Change the IF-THEN statement so that only numbers greater than or
equal to 3 are printed. That is, if a number is less than 3, it is not printed.

20 IF X<3 THEN 10

90 BASIC

12. Show the results if we RUN the following program.

10 READ X

IF X<0 THEN 10

PRINT X3

G8 TO 10

DATA 55°35650585-152+056,7
END

38868

RUN

o 160 L8 8006 7
8UT OF DATA IN LINE 10

13. Rewrite Line 20 so that the results of a RUN are

RUN
P68 R 6T

@UT OF DATA IN LINE 10

20 IF X<=0 THEN 10

- ——.

Py S =

-

S

B e e e e B T WSy ST S |

B . e SR S
-

F

DECISION MAKING

91

14.

15.

Rewrite Line 20 so that the results of a RUN are

RUN

-3 -1

@UT @F DATA IN LINE 10
20

20 IF X>=0 THEN 10

Rewrite Line 20 so that the results of a RUN are

RUN
0 O
QUT OF DATA IN LINE 10

20 IF X<>0 THEN 10

(If X is not equal to zero then go to Line 10)

Remember, in BASIC we use <> to mean “not equal to.”

92 BASIC

16. Here is another IF-THEN statement.
40 IF X>25 THEN 60 '

The statement begins with a line number (40). It tells the computer to
compare the current value of X with 25, and if X is greater than 25, go to
Line 60 and continue running the program. If the computer finds that the .
current value of X is less than or equal to 25, it merely continues on to the
next statement in the program (Line 50).

To demonstrate:

10 LET X=0

0 PRINT "X ="3X

30 LET X=X+5

40 IF X>25 THEN 60

S0 G@ Te 20

60 PRINT

70 PRINT "NOW X ="3X3"S@ THE IF-THEN STATEMENT"™
80 PRINT "GOT ME OUT OF THE LO@P."™

99 END

RUN .

0
S
10
15
20
25

MM K XK XX
HNnnwunN

NEW X = 30 S@ THE IF-THEN STATEMENT
GOT ME @UT OF THE LeoP.

(a) Which lines comprise a loop in this program? Lines 1. 8 s
(b) Which line increased the “old” value of X by S each time through the

loop? _
(¢) How many times did the IF-THEN statement check the value of X

before it found the condition set to be true? + times.

(a) Lines 20, 30, 40, 50
(b) Line 30
(c) 6 times

4 »- o

“h — . e o« -

- ~

DECISION MAKING 93

17. Here is another demonstration of how the IF-THEN statement works.

S REMARK THIS PROGRAM COMPARES TWO NUMBERS
10 PRINT

20 PRINT "INPUT ANY TWO NUMBERS";
30 INPUT A,B

40 IF A<B THEN 70

SO IF A>B THEN 90

60 IF A=B THEN 110

70 PRINT A3*"1S LESS THAN ";B

80 GOTO 10

90 PRINT A3;*"1S GREATER THAN '3
100 GOTO 10 '

110 PRINT A;"1S EQUAL TO "B

120 GOTO 10

999 END

RUN

INPUT ANY TW@ NUMBERS?10,10
10 IS EQUAL T@ 10

INPUT ANY TW@ NUMBERS?50000,1
S0000 IS GREATER THAN 1

INPUT ANY TW@® NUMBERS?722 If you input only one number,
723 the computer types another
22 IS LESS THAN 23 question mark

INPUT ANY TW@ NUMBERS?-1,-2
=1 IS GREATER THAN -2

INPUT ANY TW@ NUMBERS?-4,0
-4 IS LESS THAN O

The last set of INPUT values make the condition true for which of the

three IF-THEN statements? Line

Line 40

94 BASIC

18. Which IF-THEN statement, when the condition is true, causes the

computer to jump to the line 70 PRINT statement? Line

Line 40

e ¥

e

19. Here’s an exercise in (if you’ll excuse the computerese) getting the
bugs out of a program. Debugging a program means to find out why the
program isn’t doing what the programmer intended. For the programmer,
it means checking the overall design, order, and placement of statements,
the use of the programming language, and (last but not least), typing and
copying errors made when entering the program.

»

5 REMARK FAULTY PROGRAM #1

10 PRINT

20 PRINT "INPUT ANY TWO NUMBERS';
30 INPUT A,B

40 1IF A<B THEN 70

S0 IF A>B THEN 80

60 IF A=B THEN 90

70 PRINT A;'"1S LESS THAN '';B

80 PRINT A;'"1S GREATER THAN ";B
90 PRINT A;"IS EQUAL TO ";B

100 GOTO 10

999 END

e e P i e S -

PRSP e

RUN

-

INPUT ANY TW@® NUMBERS? 1,1000
1 IS LESS THAN 1000
1 IS GREATER THAN 1000 No, the computer isn't

1 IS EQUAL T@ 1000 flipped out. It just
followed the program

v—— N

INPUT ANY TW@ NUMBERS? 123,5 '

123 1S GREATER THAN S ¢
123 IS EQUAL T8 S

INPUT ANY TWO NUMBERS?

DECISION MAKING 95

Follow through the preceding program very carefully. How can this program
be amended to perform properly?

(If you are at a computer terminal, try Your solution instead of looking at
the answer below.)

Add these statements.

75 G@ T@ 10
85 G@ TO 10

(If you found another solution which you think works, try it on the
computer.)

96 BASIC

20. Write a program. Your program should direct the computer to deter-
mine whether an INPUT value of X is positive, negative or zero and print
an appropriate message. A RUN might look like this:

RUN

WHEN I ASK» YOU ENTER A NUMBER AND I WILL TELL Y@U
WHETHER Y@UR NUMBER IS POSITIVE, NEGATIVE @R ZERG@.

WHAT 1S YOUR NUMBER?-3
=3 IS NEGATIVE

WHAT IS YOGUR NUMBER?0
0 1S ZERO

WHAT 1S Y@UR NUMBER?7
7 IS PBSITIVE

WHAT IS YPUR NUMBER? and so on

\

DECISION MAKING 97

Here is one solution.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
999

REMARK DETERMINE IF X IS POSITIVE, NEGATIVE @R ZER@

PRINT "WHEN I ASK, YBU ENTER A NUMBER AND I WILL TELL YOU"
PRINT "WHETHER YOUR NUMBER IS POSITIVE, NEGATIVE @R ZER@."™
PRINT

PRINT
INPUT

“WHAT
X

IF X>0 THEN
IF X<0 THEN
IF X=0 THEN

PRINT
G2 To
PRINT
GO Te
PRINT

GO Te
END

X3"1s
130
X3"1S
130
X3™1S
130

1S YOUR NUMBER"™:
190

210

230

POSITIVE"™
NEGATIVE"™

ZERO"™

Lines 160 through 240 in this program can be replaced by the slightly
shorter set of statements shown below.

160
170
180
190
200
210
220
230

IF X>0 THEN 200
IF X<0 THEN 220

PRINT
Ge TO
PRINT
Ge TO
PRINT
Ge Te

X3™1S ZER®™ -«—— If X/sn't positive or negative,
130 then it's got to be zero
X3"1S POSITIVE*

130

X3"1S NEGATIVE"™

130

98

BASIC

21.
of a

One common application of the IF-THEN statement involves the use
“flag™ (signal) that terminates one process and begins another:

10
20
30

170

180
999

RUN

REMARK C@MPUTE MEAN @F INPUT VALUES

PRINT "THIS PROGRAM COMPUTES THE MEAN @F THE VALUES"
WHEN YOU ARE"™

*X=2"' AND"™

PRINT "YBU TYPE IN AFTER EACH 'X=7'.

PRINT "DONE ENTERING VALUES.,
PRINT "I WILL CEMPUTE THE MEAN."
PRINT
LET T=0
LET N=0
PRINT "X="3

INPUT X

IF X=-1 THEN 150

LET T=T+X

LET N=N+1

GeTe 90

PRINT
PRINT
PRINT

PRINT
END

IIN ‘“,N
“TOTAL ="3T
“"MEAN ="3T/N

THIS PROGRAM COMPUTES THE MEAN OF THE VALUES

YeU TYPE IN AFTER EACH
DBNE ENTERING VALUES,

*X=2"+. WHEN YOU AKE

TYPE -1 AFTER 'X=7' AND

1 WILL C@MPUTE THE MEAN.

X=225
X=237
X=742

X=?19

X=7-

N = 4
TeTAL = 123

MEAN = 30.75

TYPE -1 AFTER

DECISION MAKING 99

The flag used in this program is —1. This statement
110 IF X=-1 THEN 150

checks each input value, and if it is —1, it jumps the computer to Line 150 of
the program, and the summary of the data is printed.

Modify the program so that, instead of using —1 for the flag, the oper-
ator uses 999999, You will have to change Lines 40 and 110.

40

40 1 |oraa

40 PRINT "DONE ENTERING VALUES, TYPE 999999 AFTER 'X=2° AND™

110 IF X=999999 THEN 150

100 BASIC

22. Here is how the same system can be used in DATA statements.

10 REMARK COMPUTE MEAN OF DATA STATEMENT VALUES
70 LET T=0

80 LET N=0

100 READ X

110 IF X=-1 THEN 150
120 LET T=T+X

130 LET N=N+1

140 GeTe 100

150 PRINT

160 PRINT "N ="JN

170 PRINT "TOTAL ="3T
180 PRINT "MEAN ="3T/N
900 DATA 25,37,42,19,~1
999 END

RUN
N = 4

TOTAL = 123
MEAN = 30.75

However, —1 may not be a good flag to use for some data if the values are
both positive and negative.
Here are temperatures recorded during one cold week in Minneapolis.

S M T W TH F S
10 3 -9 -15 =23 25 -30

We want to use the above program to compute the mean temperature for
that unpleasant week. Rewrite Lines 110 and 900 for this set of data.
Use 999999 as the flag.

110
900

110 IF X=999999 THEN 150
900 DATA 10,3,-9,-15,-23,-25,-30,999999

This is an unlikely value, and makes a good flag

D -~ o —

. -

-

AT T T e e S e R
S

®

?)

DECISION MAKING 101

23. Questionnaire.

DOES YOUR COMPUTER UNDERSTAND YOU?

1. YES
2. NO

We gave t

his questionnaire to 50 people and got 50 answers. Each answer

is 1 (YES) or 2 (NO). The answers are shown below in five DATA state-
ments. The last answer is followed by —1.

900
910
920
930
940
950

How many YES answers?
How many NO answers?

REMARK DATA: 1=YES», 2=N@, ~-1=END OF DATA
DATA 1,2,2,52,1:2515251,52

DATA 2,5151512251,2,2,2,1

DATA 2,2,2,1,25152,2,1,2

DATA 151515152,5152,2,51,1

DATA 2,2,2:251,151,25152,~1

Write the number of YES answers in the box labeled “Y” and the
number of NO answers in the box labeled SN

Y

23 YES answers
27 NO answers

Y

25

z7

102 BASIC

24. Here is a program to read the answers from the DATA statements and
count the number of YES answers and NO answers.

The variable Y is used to count YES answers.
The variable N is used to count NO answers.

100 REMARK QUESTI@GNNAIRE ANALYSIS PROGRAM
110 REMARK SET COUNTING VARIABLES T@ ZER@
120 LET Y=0

130 LET N=0

200 REMARK READ AND C@UNT ANSWERS

210 READ A

220 IF A=-1 THEN 410

230 IF A=l THEN 260

240 IF A=2 THEN 280

250 ¢€8Te 210

260 LET Y=Y+l

270 GOTe 210

280 LET N=N+1

290 GOTe 210

400 REMARK PRINT THE RESULTS

410 PRINT

420 PRINT "“YES:t'3Y

430 PRINT * NO:* 3N

900 REMARK DATA: 1=YES, 2=NG, =-1=END ©@F DATA
910 DATA 1,2,2,2,1525152,51,2

920 DATA 251,1515251,2,2,2,51

930 DATA 2,2,2,1,2,51,2,2,51,2

940 DATA 1,1,151,2515252,51,1

95C DATA 2,2,2,52,151515251525~1

999 END

RUN
YES: 23
NO1 27

Read through the program carefully. Here are some questions to see if you
understand how it works.

DECISION MAKING

103

(a)

(b)

(c)

(d)

(e)

When the program is RUN, which section of the program is included
in a “loop™ that is repeated for each value in the DATA statements?

Lines
Which statement in the program reads a value corresponding to one
vote and assigns it to variable A?

Which statement checks the “vote” (values of A) to find out if it is

really the end of data flag (—1)?

to

Which two statements in the program determine whether each vote is
a YES vote or a NO vote?

Which two statements keep a running tally or count of YES and NO
votes when the program is RUN?

(d)

(e)

Lines 210 to 290
210 READ A

220 IF A=-1 THEN 410

233 IF A=1 THEN 260
240 IF A=2 THEN 280

269 LET Y=Y+l
280 LET N=N+1l

104 BASIC :

25. New questionnaire.

DOES YOUR COMPUTER UNDERSTAND YOU?

1. YES
2. NO
3. SOMETIMES

Modify the program in frame 24 so that the computer counts the YES,
NO, and SOMETIMES answers.

Use the variable Y to count YES answers.
Use the variable N to count NO answers. 8
Use the variable S to count SOMETIMES answers.

Use the following data:
910 DATA 25123+25353515353+251025122+12123530~1

Using this DATA statement, the results should be printed as follows:

YES: 6
NO 3 S .
SOMETIMES s 7

L s

Our changes:

135 LET S=0

245 IF A=3 THEN 300

300 LET S=S+1

310 68 Te 210

420 PRINT “YES:™,Y

430 PRINT “N@:"™,N

440 PRINT "S@METIMES:™,S

h

DECISION MAKING 105

26. Now let’s put the IF-THEN statement to work in a program that tells
how long it would take to “double your money” at a given rate of interest.

This program uses a loop to calculate interest and to keep a running
total of principal plus interest, until the condition specified in the IF-THEN
Statement in Line 90 is true. Since there is no PRINT statement within the
GO TO loop, there is no external evidence that the loop has been performed
until the IF-THEN condition is true and the computer has “jumped out of”
the loop and printed Line 130. Check it out.

P Principal

R Rate of Interest
I = Interest

hd Year

Pl= Principal (more on Pl later)

S REMARK NUMBER OF YEARS T@ D@UBLE YBUR MONEY
10 PRINT “PRINCIPAL";

20 INPUT P

30 PRINT “RATE @F INTEREST CIN Z)%s

40 INPUT R

50 LET Y=i

60 LET P1=P

70 LET I=P1%(R/100)

80 LET Pl=P1+]

90 IF Pl >= 24P THEN 120

100 LET Y=ys!

110 68TE 70

120 PRINT

130 PRINT “AT"3R3"Zs IN"3Y3“YEARS YBU WILL HAVE $"3Pi
999 END

RUN

PRINCIPAL?2000
RATE OF INTEREST (IN 276

AT 6 X, IN 12 YEARS YOU WILL HAVE $ 4024.39
Which statements are included in the GO TO loop? Lines :
Which line keeps track of the number of years it takes to “double your

money?” Line

Lines 70, 80, 90, 100, 110
Line 100

106 BASIC

27. A brief digression regarding Line 60 of the program:
60 LET P1=P

We have used another variable notation which you haven’t seen before.

If the computer were limited to the 26 letters of the alphabet for
variables, its capacity for handling variables would be limited. You will
be introduced to a number of methods for overcoming this obstacle. Here
is one way to have more than 26 variables.

A letter of the alphabet with a single digit immediately following it
(e.g., Al, A2, M7, etc) is recognized by the computer as distinct from
any other variable with or without a digit. The letters A through Z
combined with any digit, O through 9, give the computer the capacity
to deal with 260 (26 letters times 10 digits) variables using this
particular notation.

Another use for this new form of variable notation is to point out the
relationship between two variables, such as in Line 60. Recall for a mo-
ment the “boxes” in the computer where values of variables are stored.
Each time through the GO TO loop, the value of P (principal) would be
erased and replaced with a new value (Principal plus interest) by Line 80
of the program. However, we need to keep the original value of P for use
in the IF-THEN statement in Line 90. So, we invent a new variable PI,
and set it equal to P.

60 LET Pi1=P

Now the value of P is stored in two places; in box P and in box P1. In the
program, the value of P is ““left untouched™ (or at least not changed), and
P1 is used to keep the tally of principal plus interest for each trip through
the loop. Note the use of Pl in Lines 70, 80, 90, and 130.

{—) DECISION MAKING 107
i -
Understand that we could have used any variable instead of P1, for
instance
60 LET X=P

and still have a variable holding the original value of P. Using P1 just helps
us keep things straight. Circle the variables below that are correct BASIC
variables.

108 BASIC

28. Now with that possible source of confusion cleared up, let’s delve
further into the inner workings of this program.

(a)

5 REMARK NUMBER @F YEARS T@ D@UBLE Y@UR MONEY
10 PRINT “PRINCIPAL"™3
20 INPUT P

30 PRINT “RATE OF INTEREST (IN Z2)"3
40 INPUT R

SO0 LET Y=1

60 LET P1=P

70 LET I=P1%*(R/100)

80 LET Pl1=Pl1+1

90 1IF P1 >= 2%P THEN 120

100 LET Y=Y+1

110 GeTe 70

120 PRINT

130 PRINT "AT"3R3"%, IN"3Y3;"YEARS Y@U WILL HAVE S$"3P1
999 END
RUN

PRINCIPAL?300
RATE OF INTEREST (IN %2)75

AT 5 %, IN 15 YEARS YOU WILL HAVE $ 623.678

Which line checks to see if the principal has doubled by the interest
compounding process? Line

What two values are compared by the IF-THEN statement?

(a) Line 90

(b) PI, the total of principal plus interest, is compared to 2 times P,
double the INPUT value of “PRINCIPAL.”

O Sl e g

-~

— - ——

P

0

SELF-TEST 109

SELF-TEST

If you can do the following set of problems, then you are ready to plow
right on into Chapter Four, where we unveil some further capabilities of
computers, and show you how to get them to do their tricks using BASIC.

1. List the comparisons available for use in the condition part of an
IF-THEN statement.

ro

Write the following conditions as IF-THEN statements.
(a) If the value of X is zero or less, go to Line 80. ;
(b) If the value of K divided by 10 is not equal to the value of A

times B, then go to Line 150.

(c) If the value of Bl is equal to or greater than B2, go to Line 350.

3. Here’s a little business problem. Let’s say that you sell some items by
the case, and also as units. Write yourself a little program that has
the following input:

Cost per case
Number of units per case

Here’s what you want the program to do:

(a) Compute the per item price based on the per case prices.

(b) If the per item price is one dollar or under, our item price is
marked up 10% over case prices. If the per item price is over
a dollar, the markup is only 5%.

For output, all you want is the amount to put on the price tags of
the items sold singly. If possible, check out and debug your program
at a terminal before looking at our solution.

110 BASIC

4. Another exercise in program writing. Write a program that will pro-
duce the RUN shown below, without using READ and DATA state-
ments.

RUN

MMM MMM My
oUW RN

RN ONUNDWN -
— .

BONUS PROBLEM. Write a program to compute the total pay for people who
are paid based on the number of pieces they produce in a week. The base pay
given to everyone is $200 a week, regardless of how many items are produced.
If a person produces more than a minimum quantity of 300 items, he is paid
the base pay plus $1 each for every item produced in excess of the minimum

300. Your program should produce the following RUN. X
AN "
HOW MANY ITEMS PR2DUCED? 150 {

T@TAL PAY 15 3200

H@Ww MANY ITEMS PRIDUCED? 350
TATAL PAY 135 $250

H@W MANY ITEMS PR32DUCED? 500
T@TAL PAY IS $400

SELF-TEST 111

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review,

I (frame 2)

valn

A

=
>=
<>

2. (a) IF X <= 0 THEN 80 (frames 1 to 15)
(b) IF K/Z/10 <> A*B THEN 150 (frame 27)
(c) IF B1 >= B2 THEN 350 (frame 28)

3. There’s more than one way to skin a cat; likewise there are many ways
to write a price tagging program. Here’s one that works. (frame 16)

10 REMARK PRICE TAGGING PROBLEM
20 PRINT "COST PER CASE";

30 INPUT C
40 PRINT "UNITS PER CASE";
S0 INPUT U

60 LET P=C/U

70 IF P>1 THEN 100

80 LET P=P+.1%P

90 GOTe 110

100 LET P=P+.05%P

110 PRINT "PER ITEM PRICE: $"3P

120 PRINT
130 6GOTe 20
999 END

RUN

COST PER CASE?3.45
UNITS PER CASE?24
PER ITEM PRICE: $.158125

COST PER CASE?18.95
UNITS PER CASE?4
PER ITEM PRICE: $ 4.97437

COST PER CASE?

112 BASIC

10
20
30
40
SO
99

LET F=1 (frame 21)
IF F>8 THEN 99

PRINT "F ="3F

LET F=F+1

G@ Te 20

END

)

)

CHAPTER FOUR

FOR-NEXT Loops

In this chapter we introduce the FOR-NEXT loop, the second of the two
important computer programming concepts that are sometimes confusing
to the beginner. The IF-THEN statement and the FOR-NEXT loop greatly
extend the usefulness of the computer as a tool. Close attention to the
explanations and problems in this chapter will provide an understanding of
the functions of these statements in BASIC and will open a new dimension
in your computer programming capability.

When you complete this chapter you will be able to use the FOR and
NEXT statements and the STEP clause in FOR statements in writing BASIC

programs.

1. PROGRAM A below is a “counting’’ program. Line 40 increases the
value of F by one each time through the program (that is, every time the
computer gets back to the NEXT statement). Line 20 checks the value of
F, and sends the computer to the END statement when F is greater than 8.

In PROGRAM A we used a GO TO statement to instruct the computer
to “jump” from the last line of the program (before the END statement) back
to Line 20 of the program, forming a continuous “loop’ that is traced and

retraced.

PROGRAM A PROGRAM B
10 LET F=1 10 FOR F=1 TO 8 i
20 IF F>8 THEN 99 20 PRINT “F ="3F This isa FOR-
30 PRINT “F ="3F 30 NEXT F NEXT loop
40 LET F=F+1 99 END
SO G¢ Te 20
99 END RUN
RUN F =1
Fe2
F=1 F=3
F=2 F = 4
F =3 F=3S
F = 4 F =6
F =5 F =27
F =6 F =8
F =7
F =8

113

114 BASIC .

Now, we present (fanfare!) the FOR-NEXT loop (PROGRAM B) to more
easily accomplish the same thing. Wwith the FOR and NEXT statement, we
tell the computer how many times to g0 through the loop. Then the com-
puter continues with the rest of the program after the FOR-NEXT loop.

The FOR statement and the NEXT statement appear in separate lines
of the program. The FOR statement is the beginning point of the loop and
appears first. The NEXT statement is the last statement in the loop. The
statements or statement between the FOR and NEXT statements are executed
in line number order over and over again, with the FOR statement indicating
to the computer how many times the loop is to be executed.

You can see from the RUN of PROGRAM B that each time through the
loop the value of F automatically increases by one. The computer stopped
after going through the loop eight times, because the FOR statement told it
to go from 1 to 8.

Fill in the blank: When you have a FOR statement in a program, you must

also have a statement.

NEXT

2. As can be seen in the program below, the computer goes on with the Q
rest of the program when it has completed the loop as specified by the FOR
statement:

10 FOR D=5 T® 10 - Note that the loop doesn’t have to start with one
20 PRINT "D ="3D

30 NEXT D

40 PRINT

50 PRINT "AH-HA! @UT OF THE L@OP BECAUSE"

60 PRINT "D ="3D3"WHICH EXCEEDS 10."™

99 END

RUN

DODODODODO
"ouonnnan
-0 N W

0

AH-HA! @UT OF THE L@@P BECAUSE
D = 11 WHICH EXCEEDS 10.

FOR-NEXT LOOPS 115

In the preceding program, the FOR-NEXT loop occupies Lines ’

Lines 10, 20, and 30

3. How does the FOR-NEXT loop work? Follow the arrows.
START HERE

¢

10 FBR N = 1 T@ 3 In Line 10, N is set equal to one

20 PRINT N

&

N<=3
30 NEXT N ﬁ In Line 30, N is increased by one
N>3

99 EN

o

As you can see, each time the computer comes to the NEXT N state-
ment, it increases the value of N by one, and checks the new value against
the limit for N. In this case, the limit is 3, because the FOR statement reads:
FOR N =1 TO 3. When the value of N is greater than 3, the computer con-
tinues on to the next statement after the NEXT statement.

Got that? Let’s see.

S S —" i D B N TRy | S —

10 FGR N =1 TO 3

means that for the first time through the loop, N =1
The second time through, N=N+1=1+1=2.

—

The third time through, N = = =

-

T —————— . —_——.. .

116 BASIC

-
-
P

—-—

4. Another thing to notice about FOR-NEXT loops is that variables may
be used instead of numbers, providing, of course, that the variables have
been assigned values earlier in the program. Examples speak louder than

words.
10 LET A=3 In this example, values are assigned by LET state-
20 LET B=8 ments. Values could also have been assigned by
30 FOR C=A T@ B INPUT or READ statements
40 PRINT C3-<——— Semicolon keeps printout on one line (remember
S0 NEXT C the semicolon at the end of the PRINT statements
99 END that identified INPUTSs?)
RUN

3 4 5 6 17 8 = Nocommasorsemicolons printed in the output

Rewrite the FOR statement
30 FR C=A TO B

substituting numerical values for variables A and B. Use the values that were
assigned by the program above. (

30 FOR C=3 TO 8

5. Play computer and show the RUN for this FOR-NEXT demonstration
program.

10 LET X=0

20 LET Y=4

30 FBR Z=X TO Y
40 PRINT Z3

50 NEXT Z

99 END

RUN

FOR-NEXT LOOPS 117

’ RUN
‘J 0 1 2 3 4
!
§ 6. In this program, an INPUT value (Line 50) is used to establish the upper

limit of the FOR statement (Line 110), which tells the computer how many
times to repeat “X=?"

E S5 REMARK MEAN CALCULATED FROM INPUT VALUES
10 PRINT "“FOR MY NEXT ENCORE, I WILL CeMPUTE"
¢ 20 PRINT *“THE MEAN (AVERAGE) OF A LIST OF NUMBERS."
y 30 PRINT
(40 PRINT "HOW MANY NUMBERS IN THE LIST":
! S0 INPUT N
{ 60 PRINT
' 70 PRINT "EACH TIME I TYPE °*X=2?' YOU TYPE IN ONE"
80 PRINT "“NUMBER AND THEN PRESS THE RETURN KEY."
j 90 PRINT
100 LET T=0
’ 110 FOR K=l T0 N When the program is RUN,
¥ a2 LT the PRINT statements in
130 INPUT X L
140 LET T=T+X Lines 10 — 90 tell the user -
" 150 NEXT K how to use the program
" ') 160 LET M=T/N |
170 PRINT |
180 PRINT “TOTAL ="3T
190 PRINT “MEAN ='"JM
999 END

e A ol S,

In the program above, the FOR-NEXT loop occupies Lines

110, 120, 130, 140, 150

d entered for Line 120?

} 7. Which line in the FOR-NEXT loop will keep a running tally of the values

140 LET T=T+X

Show the numerical value

118 BASIC

This is a RUN of the preceding program.

RUN

FO@R MY NEXT ENCORE, I wILL COMPUTE
THE MEAN (AVERAGE) gF A LIST @F NUMBERS.

HOW MANY NUMBERS IN THE LIST?5 < Value entered by user

EACH TIME I TypE 'X=?' YOU TYPE IN ONE
NUMBER AND THEN PRESS THE RETURN KEY.

X=?16
X=246
X=2?38
X=?112
X=?23

Values entered by user

TOTAL = 235
MEAN = 47

s in the FOR statement for the above RUN.

110 Fok Ks. .o - “Tg

110 FOR k=) T0 S (value entered for INPUT N was 5)

Here is the beginning of another RUN of the same program,

RUN

FOR MY NEXT ENCORE,

I WILL CoMPUTE
THE MEAN (AVERAGE) ¢

F A LIST oF NUMBERS.
HOW MANY NUMBERS IN THE LIST?4 Value entered by user

.

-

({) FOR-NEXT LOOPS 119

How many times will “X=?"" be printed? How many times will

the statements between the FOR-NEXT statements be executed?

Just to prove it to you, this is the rest of the same RUN.

EACH TIME I TYPE °'X=?' YOU TYPE IN ONE
NUMBER AND THEN PRESS THE RETURN KEY.

X=?19
Xx=712

X=215 } Values are entered by user
X=?13

TeTAL = 59

MEAN = 14.75

120 BASIC

10. Complete the following program to compute the product (P) of N num-

bers by filling in Lines 100, 110, and 140. Think carefully about the effect
of your statements when the program is RUN.

S REMARK PREDUCT CALCULATED FROM A LIST eF NUMBERS

10 PRINT "yvou WANT STILL ANSTHER ENCORE? I'Mm FLATTERED."
20 PRINT "I'LL CeMPUTE THE PREDUCT @F A LIST oF NUMBERS."
30 PRINT

40 PRINT "HOW MANY NUMBERS IN THE LIST";

S0 INPUT N

60 PRINT

70 PRINT “EACH TIME 1 TYPE 'X=7* YU TYPE IN oNE™

80 PRINT "“NUMBER AND THEN PRESS THE RETURN KEY."

90 PRINT

100

110

120 PRINT "x=";
130 INPUT X

140

150 NEXT Kk

160 PRINT

170 PRINT "PRODUCT =";p
999 END

RUN (

YeU WANT STILL ANBTHER ENCORE? I'm FLATTERED.
I'LL COMPUTE THE PRODUCT OF A LiIST OF NUMBERS.

HOW MANY NUMBERS IN THE LIST?S

EACH TIME I TYPE 'X=2' YU TYPE IN eNE
NUMBER AND THEN PRESS THE RETURN KEY.

X=27
X=712
X=24
X=2?3
X=719

PRODUCT = 9152

100 LET P=} Consider what would happen if P = 0 the first time
110 F@R K=l T9 N thmumnhebop
140 LET P=pPxX

-

-l ——— - .

e N
e i s E———"

o FOR-NEXT LOOPS 121

11. Any BASIC expression may be used to set both the initial and the
maximum value of a FOR variable, as, for example:

10 LET @=4
20 FOR P=Q TO 2*Q-1
30 PRINT P3

40 NEXT P
99 END

RUN

NS, 6 T

In the following program, fill in the blanks in Line 20 with expressions using
the variable Q, so that when the program is RUN, it will produce the printout
shown below.

10 LET Q=4

20 FOR P= TO
30 PRINT P3

40 NEXT P

99 END

O RUN

20 FOR P=Q@/2 TO 0%3
or
20 FOR P=0-2 TO Q+8

NOTE: If your answer is different and you think it is correct, try it ona
computer and see if you get the same R UN that we did.

—

122 BASIC (’

12. Inthe FOR-NEXT loops you have seen so far, the FOR variable takes
the first value given in the FOR statement, and keeps that value until the
computer comes to the NEXT statement. Then the FOR variable increases

its value by one (+1) each time through the loop until it reaches the maximum
value allowed by the FOR statement.

FGR X = S T@ 10
/ \

1st value of X Maximum value for X
X =5, then 6, then 7, then 8, then 9 and then 10

However, you can write a FOR statement that causes the value of the FOR
variable to increase by multiples of one, by fractional increments, or to 4
decrease each time through the loop.

10 FOR X=1 TO 10 STEP 2 {

Tells the computer to increase

the value of X by 2 every time \
through the FOR-NEXT loop ‘\
until X is greater than 10 {

10 FOR Y=3 TO 6 STEP 1.5 (

Tells the compute)e’r to increase ‘

the value of Y by 1.5 every time

through the FOR-NEXT loop,

until Y is greater than 6 {

10 FOR Z=10 T@ S STEP -1 ‘
X, it |

Note that Z Tells the computer to decrease
will start at the value of Z by 1 each time
Z=10and through the FOR-NEXT loop
gotoZ=5 until Z is less than 5

O FOR-NEXT LOOPS 123

Some demonstration programs will show these capabilities.

This first PRINT statement “bumps”
10 F@R B=1 TO 10 STEP 2 the computer off the line where it is

20 PRINT B3 = held by the semicolon at the end of
30 NEXT B Line 20. The second PRINT statement
40 PRINT causes the line space before Line 60
S0 PRINT = is printed.

60 PRINT "LOOP TERMINATES BECAUSE"

70 PRINT "B="3B3", WHICH IS GREATER THAN 10."
99 END

RUN
AR - S A

LOOP TERMINATES BECAUSE
B= 11 », WHICH IS GREATER THAN 10.

Note that the loop starts with the first value in the FOR statement (1)and
increases by increments of 2, until the value of B = 11 exceeds the maximum
value allowed (10). At that point, the computer terminates the loop and
’ continues running the rest of the program.
Play computer again, and fill in the RUN for this program.

10 LET D=3

20 F@R F=D TO 4%D STEP D
30 PRINT F3

40 NEXT F

99 END

RUN

124 BASIC (

13. A FOR-NEXT loop may be instructed to perform “backwards,” that is,
to decrease the value of the FOR variable in any size step, going from a large
value to a smaller one. For example:

10 FOR J=100 T@ 10 STEP ~-10
20 PRINT J3

30 NEXT J
99 END

RUN
100 90 80 70 60 50 40 30 20 10

Now you write one where the FOR variable E decreases in steps of 3 from
27 to 18. Show the program and the RUN.

10 F@R E=27 TO 18 STEP =3
20 PRINT E3

30 NEXT E

99 END

RUN

27 24 21 18

P T

FOR-NEXT LOOPS 125

14. One more thing. The steps in a FOR-NEXT loop can be fractional values .
as in the following example.

10 FOR X=5 T@ 7.5 STEP .25
20 PRINT X3

30 NEXT X

99 END

RUN

5 525 565 5575 6. 625 645 6475 T "T85 Ted
Predict the RUN for this program if we changed Line 10 to read
FOR X=5 T@ 7.5 STEP 5

RUN

S5 Ded 6 65T Ted

You'll be seeing a lot more FOR-NEXT loops as you continue on in this book.

126 BASIC ‘ “]

15. The FOR-NEXT loop is useful for such things as repeated calculations,
counting or keeping tallies, and dealing with cyclical or recurring events.
One such recurring event is the monthly compounding of interest on a
savings account or other financial investment.
In the program below, monthly interest (I) is calculated in Line 190 by
multiplying the initial amount of money (P for Principal) by the Rate of

interest (R). . \
The rate of interest is converted to a decimal fraction like this:

-

R =5 percent = 5/100 = .05.

——

Since 5 percent is the yearly rate of interest, only 1/12 of the calculated
amount of interest is added to the principal each month.

-

100 REMARK MONTHLY INTEREST COMPOUNDING PREGRAM
110 PRINT "PRINCIPAL":

120 INPUT P

130 PRINT "YEARLY INTEREST RATE C(IN %)"J

140 INPUT R

150 PRINT "HOW MANY MENTHS'"3

155 INPUT M

160 PRINT

170 PRINT “MONTH","PRINCIPAL™,"™INTEREST","PRIN«+INT."™
180 FOR K=1 TO M

190 LET I=(P*(R/100))/12

200 PRINT KeP,1,P+1
210 LET P=P+I1

220 NEXT K

999 END

RUN

PRINCIPAL?200

YEARLY INTEREST RATE (IN 23?5
HOW MANY MBNTHS?6

MONTH PRINCIPAL INTEREST PRIN«+INT.
1 200 «833333 200.833

2 200.833 «836805 201.67

3 201467 «840292 202.51

4 202.51 «843793 203.354

S 203.354 «847309 204.202

é 204.202 «85084 205.052

") FOR-NEXT LOOPS 127

(a) Which lines are included in the FOR-NEXT loop? Lines
(b) Which variable keeps track of and is used to print the number corres-

ponding to the month for each line in the table?

(¢) Line 170 prints the heading for the table. The words used in the heading
for the table are separated by commas. In Line 200, the values to be printed

, under the headings are also separated by commas, so that the spacing of head-
ings and the numbers that go under headings match up. What would happen
if the statement that prints the heading were included in the FOR-NEXT loop?

(d) Which line keeps a running tally of Principal plus Interest? Line

(a) 180,190,200, 210,220
(b) The FOR variable K
(¢) The heading would be printed every time through the loop,

between each line of the table.
(d) 210

NOTE: If you want to brush up on your business math, a useful book would
be Locke, BUSINESS MATHEMATICS, John Wiley & Sons, New York, 1972,

128 BASIC

16. Below is a modification of the “Worlds’s Most Expensive Adding Ma-
chine Revisited™ program.

S REMARK WORLD'S M@ST EXPENSIVE ADDING MACHINE
10 LET T=0

20 READ N

30 FOR K=1 T@ N

40 READ X

SO LET T=T+X

70 NEXT K

80 PRINT “TOTAL ="3T

90 DATA 12, 43, 33, 92, 76.25

99 END

There are two READ statements in this program. One is inside the FOR-
NEXT loop. Which READ statement is only executed once when the pro-
gram is RUN?

20 READ N

17. The statement 20 READ N assigns the first value in the DATA state-
ment to the variable N. N is the number of values to be added by the pro-
gram. What number should appear in the blank we left in the DATA
statement (frame 16)?

18. Show the RUN for the program in frame 16.

TOTAL = 256.25

SELF-TEST 129

SELF-TEST

: Now that you have completed Chapter Four, you have acquired enough
understanding of computer programming to be able to learn a lot more by
experimenting at a computer terminal. As you look at our demonstration

programs, you may see some possibilities that we do not specifically deal

; with. Build on your knowledge by trying out your own ideas. What if ... ?
And now, find out if you really know how to use FOR-NEXT loops by
doing the following problems.

1. Show what will be printed if we RUN the following program.

10
20
30
40
S0
99

LET S=0

F@R K=1 TO 4
LET S=S+K
NEXT K
PRINT S

END

2. Show what will be printed if we RUN the following program.

10
20
30
40
S0
99

LET P=1

FOR K=1 To 4
LET P=P*K
NEXT K
PRINT P

END

130 BASIC

3. Examine this program. Which of the three RUNs was produced by the

program? RUN number

10 LET N=1

20 FOR K=1 TO N
30 PRINT "x';

40 NEXT K

S0 PRINT

60 LET N=N+1

70 IF N>10 THEN 99

80 GOTO 20
99 END
.
RUN 1 RUN 2 RUN 3 i
* ’
* ek ok ok ek ok *k
B e ok 3 o ok ok ok koK k +
ok %k ok ok ¥k o 3 ok ok ok ok Kok Aok kK ‘
e 3k ok ok ok ok Xk 3k 3k o ok %k Xk ok ek o ok ok
3 ok e 3 ok ok ok ok %k 3 2k % o %k ok %k %k ok ok 3k 3k ok .
3k e 3 ok e o ok ok ok ok ok ok e ok ok ok o ok Xk ek ok ok ok ok %k
sk 3 o o o ok ok o ke ok ok K sk ok ok ok ok K sk ok ke o o e r
e e 3 e 3 o ok e e ok ok ok ok 3k ok ok ok ok ok ok %k 3k ok A e ok ok ok ok % ‘

o 3k 3 o o o ok ok ok ok ‘
4. Write a program to print a table of N, N2 and N3. Use INPUT state- :

ments to indicate what list of numbers you wish included in the table.

-

A RUN should look like this: !
4

RUN .
FIRST NUMBER?40]

LAST NUMBER?45 .

N N-SQUARED N-CUBED
40 1600 64000+
41 1681 68921 .
42 1764 74088,
43 1849 79507.
LA 1936 85184.

45 2025 91125.

-

e R Sl g -0 -

SELF-TEST

131

X

6.

Show what will be printed if we RUN the following program.

100 10
20
30
40
S0
99

Help us complete this program to print a table projecting growth rate
of a population at sepcified intervals over a given time period (years).

LET S=0
FOR K=1 T@ 7 STEP 2
LET S=S+K

NEXT K

PRINT S

END

The formula for population growth is

Q= P(1 + R/100)N

where N is the number of years.

100
110
115
120
125
130
135
140
145
150
155
160
170
180
200

210
220
230
240

999

REMARK REQUEST DATA AND PRINT HEADING

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
PRINT
PRINT

"INITIAL POPULATIGN"3
iGRGNTH RATE"3
5INITIAL VALUE OF N"3
ﬁFINAL VALUE @F N"3
ESTEP SIZE"3

" N","POPULATION"

REMARK COMPUTE AND PRINT TABLE

END

132 BASIC

INI

INI

N

0

10
20
30
40

7. Write

ment.

RUN

TIAL POPULATI@ON?20S = For US.A., 1970 (in millions of people)

GROWTH RATE?1

TIAL VALUE OF N?0

FINAL VALUE OF N?100
STEP SIZE?10

POPULATI®@N

205 Results are expressed in millions
226.447
250.139
276.309
305.217

a program to compute and print the sum of whole numbers from

I to N where the value of N is supplied in response to an INPUT state-

For example, a RUN might look like this:

RUN

GIVE ME A WHOLE NUMBER (N) AND I WILL COMPUTE
AND PRINT THE SUM 2F THE WHOLE NUMBERS FRBM 1 T@ N.

WHAT IS N73
THE SUM IS 6 (Because 1+ 2 + 3=6)

WHAT IS N?5
THE SUM 1S 15 (Because 1 +2+3+4 +5 = 15)

WHAT IS N?

BONUS PROBLEM. Write a program to compute and print the product of
the positive integers from 1 to N where the value of N is supplied by the user
in an INPUT statement. A RUN might look like this:

GIVE ME A POSITIVE INTEGER(N) AND 1 VILL COMPUTE AND PRINT THE
PRODUCT OF THE POSITIVE INTEGERS FROM | TO N

VHAT IS N7 3

- e g This is called N FACTORIAL

WHAT IS N7 S
THE PRODUCT IS 120

-

— N e P e e ™

-

o) >

4. - e - -

SELF-TEST 133

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for a quick review.

1. RUN The answer is the sum of the values of K defined by the FOR
10 statement (K =1,2,3,and 4) (frames 1 to 6)

2. RUN The answer is the product of the values of K defined by the
24 FOR statement (K =1,2, 3,and 4) (frames | to 5 and 10)

3. RUN number 3 The FOR-NEXT loop (Lines 20, 30, 40) causes the computer
to print a row of N stars. The loop is donefor N=1,2,3,...10

(frames | to 5 and 17)

4. 10 PRINT "FIRST NUMBER"3;
20 INPUT A
30 PRINT "LAST NUMBER"3
40 INPUT B
S0 PRINT
60 PRINT " N","N-SQUARED","N-CUBED"
70 FOR N=A TO B
80 PRINT NsNt2,Nt3
90 NEXT N
99 END (frame 4)

5. RUN Similar to question 1, but this time the values of K defined by
16 the FOR statementare K =1,3,5,and 7 (frames 6 and 12)

6. 200 REMARK COMPUTE AND PRINT TABLE
210 FOR N=A TO B STEP H
220 LET @=P*(1+R/7100)*N
230 PRINT N»Q
240 NEXT N
999 END (frames 12 and 15)

7 19 PRINT "“GIVE ME A WHOLE NUMBER (N) AND I WILL C@MPUTE"

20 PRINT “AND PRINT THE SUM 2F THE WHOLE NUMBERS FROM 1| TO N."
30 PRINT

40 PRINT "“WHAT IS N3

SO INPUT N

SS LET S=0

60 FOR W=1 T@ N

70 LET S=S+W

80 NEXT W

90 PRINT “THE SUM 15"3S

999 END

CHAPTER FIVE

Functions

In the first four chapters, you have learned the most used and useful BASIC
statements:

PRINT END LET INPUT READ
DATA I[F-THEN FOR-NEXT GO TO

In this chapter you will meet another type of BASIC language instruc-
tion called functions. These handy little things do all sorts of jobs to make
the computer programmer’s work a little easier. Many computer systems
have versions of BASIC that include literally dozens of specialized functions
for your use. We have selected several of the more frequently used functions
to teach you in this chapter. Having learned how to use these few, vou will
have no trouble using others should the need arise. We also show you how
to incorporate into a computer program functions that you yourself invent.

When you finish Chapter Five, you will be able to write statements in
correct BASIC notation using the following functions:

INT() TAB()
SQR() DEF FN__ ()
RND()

You will also be able to use the following new statements in writing
programs:

RANDOM (for some systems)
ON ... GO TO (some computers use GO TO ... OF)

134

-~ ———

— il N e~ N — -

-

e B e S e S > —~ P

—

| :) FUNCTIONS 135

1. You may recall how to compute square roots, or perhaps how to use

square root tables and interpolate. With your handy-dandy computer and

: the square root function, you can rest easy and let the electronics do the
computations.

i 10 REMARK THE SQUARE ROQGT MACHINE
20 PRINT "ENTER A NUMBER AND I WILL CALCULATE"
30 PRINT "THE SQUARE R@OOT @F YOUR NUMBER."

» 40 PRINT
, S0 PRINT “NUMBER"j
| 60 INPUT N
‘ 70 PRINT “THE SQUARE R@@T @F"3N3"IS"3SQR(N)
, 80 GOT@ 40

99 END
' RUN

’ ENTER A NUMBER AND I WILL CALCULATE
THE SQUARE R@OT OF YOUR NUMBER.

: NUMBER? 43
THE SQUARE ROOT OF 43 IS 6.55744

) NUMBER?25
THE SQUARE ROOT OF 25 IS 5

NUMBER?

The square root function has the following form:

SQRC)
\

This is where you place the value for
which you want the square root
You can take the square root of a number SQR(25)
or a variable that has been assigned a value = SQRC(N)
or an expression SQR(At2+Bt2)

Write a program that will print a table of numbers from 1 to 25 and their
square roots. A RUN of such a program follows.

136 BASIC

RUN Q
.
NUMBER SQUARE R@OOT 3
1 1 z
2 lo4|42l 4
3 1.73205
4 2 !
5 2.23607 !
6 2.44949 :
7 2.64575 :
8 2.82843 {
9 3
10 3.16228 4
A,

TN N

IR

A G el

10 REMARK SQUARE R@OT TAEBLE

20 PRINT "NUMBER'",'"SQUARE ROOT"
30 FOR N=1 T@ 10

40 PRINT N»SQR(N)

S0 NEXT N

END

A

e eandl

=i~

3>

one Aton, emamn o _sea- oMK, Lo

T e, emmar: caeme o

D s (EREL. Toemme

FUNCTIONS 137

2. It is rather strange to see a ‘“dollars and cents™ answer, as in a RUN for
the interest compounding program, printed as $600.7442. Fortunately,
BASIC has a nifty method for rounding off numbers to convenient decimal
places or whole numbers. INT (for *““integer part’) chops off a number at

the decimal point, and drops the decimal fraction part of the number (the
part to the right of the decimal point). It functions (if you’ll excuse the pun)
like this:

10 LET A = 600.7442
20 PRINT "“A ="3A
30 PRINT "CHOPPED A ="3INT(A)

99 END }

RUN The value you want
chopped (in this case, A)

A = 600.7442 goes into parentheses

CHOPPED A = 600

Simple, right? As with the SQR() function, a value, variable, or expression
may be placed in the parentheses.

Write a statement using the INT() function for Line 170 of the program
to calculate population growth (Chapter Two, frame 36) such that “fractions
of a person” are dropped from the answers.

170 PRINT "POPULATION AFTER"3N3"YEARS IS"i@

170 PRINT “POPULATION AFTER"3N3"YEARS IS"3INT(@)

138 BASIC

3. However, when dealing with “dollars and cents” answers, we don’t want
to lose the cents — that is, the two places afrer the decimal point. So we deal
with that kind of situation in this way.

Look at the program below line by line, read the explanations and see
how and why the value of A changes.

S REMARK STEP BY STEP DEMONSTRATION @F ROUNDING
PRINT "NUMBER T@ BE ROUNDED"3
INPUT A
PRINT "AFTER LINE 20, A ="3A
LET A=A%*100
PRINT "AFTER LINE 40, A ="3A
LET A=A+.5
PRINT "AFTER LINE 60, A ="3A
LET A=INT(A)
PRINT "AFTER LINE 80, A ="3A
LET A=A/100
PRINT "AFTER LINE 100, A ="3A
PRINT "A IS NOW ROUNDED T@ 2 DECIMAL PLACES.™
END

28np=0883888885
ZwO OO0

NUMBER T@ BE ROUNDED?.3333

AFTER LINE 20, A = .3333

AFTER LINE 40, A = 33.33

AFTER LINE 60, A = 33.83

AFTER LINE 80, A = 33

AFTER LINE 100, A = .33

A IS NOW ROUNDED T@ 2 DECIMAL PLACES.

Look at Line 60, and then the printout for that line.

When rounding off numbers, you have to decide whether to round the
last significant digit up one, or leave it the same.

Say you want to round 33.333 to the nearest whole number (no deci-
mal fraction).

33.333

N

Last Next digit
significant after rounding
digit off place

If the next digit after the rounding off place is 5 or greater, then the last
significant digit is increased by one. If it is less than 5, the last significant
digit remains the same.

To accomplish the rounding off process in the computer, .5 is added to
A after it is multiplied by 100. Because the digit after the decimal point is
less than .5, adding .5 has no effect on the final result (as you see in Line 100

in our program).

s B el il o i el ol SRy Y e e llires i o« - P >

—lp— o~ Ty

-l -

S T

—

> £

A, AETas . e e,

TOREE S S o S

FUNCTIONS 139

However, examine the results of a RUN of the same program with an
input value greater than .5.

RUN

NUMBER T@ BE ROUNDED? .6666

AFTER LINE 20, A = 6666
AFTER LINE 40, A = 66466
AFTER LINE 60, A = 67.16
AFTER LINE 80, A = 67

AFTER LINE 100, A = «67
A IS NOW RGUNDED T@ 2 DECIMAL PLACES.

One more example. You fill in the values of A.

RUN

NUMBER T@ BE ROUNDED?.2345
AFTER LINE 20, A
AFTER LINE 40, A
AFTER LINE 60, A
AFTER LINE 80, A =

AFTER LINE 100, A =
A IS NOW ROUNDED T@ 2 DECIMAL PLACES.

140 BASIC

4. That seems like a lot of work just to round off a number. In fact, Lines
40, 60, 80, and 100 can be combined into one line as in the following pro-
gram.

10 REMARK NUMBER ROUNDING REUTINE

20 PRINT *"NUMBER 1@ BE K@UNDED'3

30 INPUT A

40 LET A1=INT(A%*100+.5)7100

50 PRINT A3"KOUNDED T@ 2 DECIMAL PLACES ="3Al

60 PRINT
70 GOTe 20
99 END

RUN

NUMBER T@ BE KOUNDED? .3333

«.3333 ROUNDED T@ 2 DECIMAL PLACES = .33
NUMBER T@ BE ROUNDED? 6666
«6666 ROUNDED T@ 2 DECIMAL PLACES = .67
NUMBER T@ BE ROUNDED?7.825
7.825 ROUNDED T@ 2 DECIMAL PLACES = 7.83

NUMBER T@ BE ROUNDED?.314999
«314999 ROUNDED T@ 2 DECIMAL PLACES = .31

NUMBER T@ BE ROUNDED?
Rewrite Line 40 so that the program rounds numbers to one decimal place.

40 LET Als=

40 LET AlI=INT(A%*10+.5)710

Al —— AP A —

-

+

) FUNCTIONS 141

5. Look back at the interest compounding program in frame 26, Chapter
Three. Write a line to insert in the program that will round off the final
balance of principal plus interest just before it is printed by the program. Use
an appropriate line number.

Any line number from 121 to 129 inclusive could be used:

125 LET P1 = INTC(P1*100 + .5)/100

6. Suppose we had put the statement to round off the final balance at
Line 115. What other statement would we also have to change?

Line 90 must be changed to direct the computer to Line 115 instead of
" Line 120. 90 IF P1 >= 2%P THEN 115

INT() works for negative numbers as well but probably not the way you
would expect.

INT(-3.5)=-4

INT(-.2) = -1
INT(-19.1) = =20

142 BASIC

7. Random numbers are numbers chosen at random from a given set of
numbers. Many games come with a pair of dice or a spinner or some other

device for generating random numbers. Roll the dice; they come up 8. Move

8 spaces.

In this section you will learn how to use the computer to generate ran-
dom numbers and use them in various ways. Let’s demonstrate. The fol-
lowing program shows the use of the RANDOM statement (Line 20) and the
RND function (Line 40) to print a list of 10 random numbers.

10 REM RAND@M NUMBERS <— REM is shorthand for REMARK.
20 RANDEM From now on we will sometimes

30 FER K=1 T0 10 use REM, sometimes use REMARK
40 PRINT RND(OQ)»

S0 NEXT K
60 PRINT
99 END
RUN

«5199228 «875198 «5718829 «554516 «1801495
«09025306 .9201733 «7087619 «9710124 «4472168

RUN

+9441895 « 6401857 «3434087 «2987809 « 7020067
«5230122 «8200131 «2129689 « 8976957 « 4694544

Two RUNs of the program are shown. Are the lists of random numbers in
the two RUNs the same?

8. The statement 20 RANDOM causes the computer to produce a different
list of random numbers each time the program is run.

The RND function is used to compute numbers that appear to be chosen
at random. On our computer, the RND function is written like this: RND(0)

We will always write the RND function in the above manne
(0) in parentheses following RND. Actually, on our computer, any number
can be used instead of zero without affecting the behavior of the liND
function. On some versions of BASIC, however. what is enclosed in paren-
theses following RND does make a difference. If you have trouble using
RND(0) on your computer, ask someone to explain how the RND function

works or consult the operating manual or reference manual for the version
of BASIC that you are using.

r with zero

- -

T T

el e~ —y

S TP TREche e | JosTy eteens v

FUNCTIONS 143

Examine the list of random numbers in frame 7.
(a) Isany number less than zero (negative)?

(b) Isany number equal to zero?

(¢) Isany number greater than one?

(d) Isany number equal to one?

(e) From the evidence, it appears that random numbers produced by the

RND function are zero and one.

No
Greater than
Less than

Important Note: Some versions of BASIC do not include the RANDOM
statement. In this case, an error message will be typed if you try to use the
program in frame 7. If this happens, simply omit the RANDOM statement
(Line 20) and try again. Then, if successive runs produce the same list of
random numbers, ask someone how to “"RANDOMIZE" your computer.

144 BASIC

9. [It’s true. Random numbers produced by the RND function are greater
than zero and less than one. Another way to say it: random numbers pro-
duced by the RND function are berween 0 and 1. Or, in still another way:

0 < RND(0) < 1

The random numbers produced by the RND function are uniformly distrib-
uted between 0 and 1. That is, they are “spread evenly” between O and 1.

A random number is just as likely to be between 0 and .5 as between .5 and 1.

In a long list of random numbers, about half of the numbers will be between
0 and .5 and the rest will equal .5 or be between .5 and 1.

(a) Ina long list of random numbers, about of the numbers
will be less than .S.

(b) Ina list of 1000 random numbers, about how many will be less than .5?

(¢) Ina list of 1000 random numbers about how many will be greater than

or equal to .5?

half Remember, we said “about half."” The actual proportion may vary with

500 each list of random numbers. For our first real use of the RND function,

500 the important thing is: the probability that RND(0) is between 0 and .5
is about .5

10. Here is a program to simulate (imitate) flipping a coin. The program
prints H for HEADS and T for TAILS.

100 REM COIN FLIPPER

110 RANDOM

120 PRINT "H@W MANY FLIPS":

130 INPUT N

140 PRINT

200 REM FLIP C@IN N TIMES

210 FOR K=1 T@ N

220 IF RNDCO)<«S5 THEN 250 = |f RND(O) is less than .5, the

230 PRINT "T "3 computer goes to Line 250 and
el I AL prints H for HEADS. Otherwise
250 PRINT "H "3 prints | EADS

260 NEXT K it continues with Line 230 and
270 PRINT prints T for TAILS

999 END

B ovase

y ——Y

145

FUNCTIONS

RUN

HOW MANY FLIPS?100

-
L
X b b
T X
= ==
=X
= b
= b b
X X
S
= XX
- A
=X
= X
ol
o
X
el
T =
Bxx
= X
IXXT
ol
I b
TITX
Ik+IXI
X
X b b
=X
T XX

RUN

HeW MANY FLIPS?100

XX
kX
e
XX
HH.—I
b
b
=X
X
T
T X
T~ x
=TT
L X b
b
- b
XX
=X
-
==X
= b= X
IX X
X
XX
=IXX
[l A T 5
T XX
XX s
XTI
XXX

The first RUN produced 43 HEADS and 57 TAILS. The second RUN pro-

HEADS and TAILS.

duced

146 BASIC

11. Why not let the computer count the number of heads and the number
of tails? Modify the program in frame 10 so that the computer counts the
number of heads and tails. Use the variable H to keep track of the number
of heads and the variable T to keep track of the number of tails. A RUN of
the modified program might look like the following:

RUN

HOW MANY FLIPS?100

T TIRSTTRAT T TARATAR HE R B T H TETRE SISt -F H B H
HETHBHETIITITHRAITHAERAETT RIS T HTHHT
HHHHHHTTTTHHHTTTHHTTHHHHHHTHHMH
HHTTHTHHHH

56 HEADS AND 44 TAILS

203 LET He=0

207 LET T=0

235 LET TeT+|

255 LET Hw=H+|

270 PRINT

280 PRINT

290 PRINT HI'“HEADS AND"JTJ“TAILS"

NOTE: The first “line space’ statement 270 PRINT causes the teletype to go
to the next line after the end of the H and T printout, in effect counteracting
the semicolons at the end of Lines 230 and 250. The second “line space”
statement 280 PRINT leaves a line space between the H and T printout and
the summary printout. If you are confused about this, try the program on a
computer and see the effect of omitting the “line space” statements.

'

—

-

FUNCTIONS 147

12. Random numbers between 0 and 1 are not always convenient. Some-
times a program requires the use of random digits or random whole numbers
or random integers. Below isa RUN in which the computer acts as a teaching
machine to teach one digit addition to children.

RUN

7 ¢+ 2 =29 Computer typed: 7 + 2 =2 Student
RIGHT ON...GOOD WORK! typed answer

3 + 3 =76
RIGHT ONe+««.GOOD WORK!

9 +5 =713
YOU GOOFED. TRY AGAIN. Student missed this one

9 + 5 =214 Computer repeats problem
RIGHT ON...GOOD WORK! This time the answer is correct

1 + 4 =? New problem ... and so on
Undoubtedly, you are anxious to see the program. Patience! Let’s

build it piece by piece.
First, how do we generate random digits?

RND(0) is between 0 and 1, but is never 0 or 1. Therefore, 10*RND(0) is

between 0 and

13. In other words, 10*RND(0) is zero and

ten.

Greater than
Less than

148 BASIC

14. Below is a program to print random numbers between 0 and 10.

10 REM RANDOM NUMBERS BETWEEN O AND 10
20 RANDOM

30 FOR K=1 T@ 10

40 PRINT 10%RNDCO),

S0 NEXT K

60 PRINT

99 END

RUN

1824652 6.206377 «8163955 9.040983 6.898341
«02119429 84042099 8.061842 S«992168 3.396425

RUN
6.449042 B.126422 «7171556 1165139 «5364313
2.732341 1.566163 4.805911 4.739998 S«18679

Now we are going to get tricky and use the INT and RND functions together.
First, complete the following:

(a) INT(1.824652)= (c) INT(.8163955) = =
(b) INT(6.206377) = (d) INT(9.040983) = e

15. Suppose RND(0) = .4739998.

Then 10¥RND(0) =
and INT(10*RND(0)) =

4.739998
4

0

&

FUNCTIONS 149

16. Now do vou see where we are going?

RND(0) is a random number between 0 and 1.
10*RND(0) is a random number between 0 and 10.

INT(10*RND(0)) is a random digit.

The following program causes the computer to generate and print
random digits, as many as you want.

100
110
120
130
140
150
160
170
180
190
200
999
RUN

HOW

-nOono

HOW

REM RANDOM DIGITS

RANDOM

PRINT "HOW MANY RANDGM DIGITS DO YQU WANT':
INPUT N

PRINT

FOR K=1 T@ N

PRINT INTC10*RNDCO));

NEXT K

PRINT

PRINT

G@ Te 120

END

MANY RANDOM DIGITS D@ Y@U WANT?100

9..f0) | 9F 9 =TITORET O T L S0 e g EEL T 7 0
2. .1 250 6.3 W19 . 91y 8 A6 60100 4 TR
C R R K T RC S G AL ST e s | R TR e e
€ 8 B MEOUASIHONL T BRgE 2@ L/6E ASENe T Y 18 909
A 0.7 SESVISAR LB B 2L i) LRNEESHIEANT &3 Y B

MANY RANDOM DIGITS D@ YBU WANT?

The first part of the addition drill program follows.

100 REM ADDITION DRILL PROGRAM
110 RANDOM

200 REM GENERATE RANDOM NUMBERS A AND B
210 LET A=INTC(10*%RNDCO))
220 LET B=INTC(10%RND(0))

Now follow this carefully. Lines 210 and 220 produce a random number
between 0 and 1 (but never 0 or 1), which is multiplied by 10, then chopped
by the INT function. Therefore, the value of A will never be greater than

150 BASIC

17. The value of B will be a random integer between and ___ ’
inclusive.]
{
0and 9 4
\
18. The next piece of the program is illustrated below. Y
‘
300 REM PRINT PR@OBLEM AND GET ANSWER
310 PRINT 1
320 PRINT As3*+"3B3"="3 {
330 INPUT C "
If A is 7 and B is 2, what will Line 320 cause the computer to print? “
4
7+2="1

19. After the student types an answer and presses the RETURN key, the %
computer continues.

400 REM IS ANSWER CORRECT?
410 IF C=A+B THEN 600

If the student’s answer (C) is correct, the computer will go to Line _

e e T

B FUNCTIONS 151

20. If the student’s answer is not correct, the computer next does the
following:

500 REM ANSWER 1S NOT CORRECT
510 PRINT "YOU GOOFED. TRY AGAIN."
520 G@ T@ 300

Assume an incorrect answer. The computer prints YOU GOOFED. TRY
AGAIN. and then goes to Line 300. What happens next?

The computer repeats the problem with the same values for A and B.

21. Review the information preceding frame 19. If the student’s answer is
correct. Line 410 of the program causes the computer to go to Line 600.

600 REM ANSWER 1S CORRECT
610 PRINT "RIGHT ON...GO0OD WORK!"
(“ 620 G@ T@ 200

Assume a correct answer. The computer prints RIGHT ON ... GOOD WORK!
and then goes to Line 200. What happens next?

Computer generates a new problem (new values for A and B) and prints
the new problem.

152 BASIC

22. Below

100
110

200
210
220

300
310
320
330

400
410

500
510
520

600
610
620

999

Change Line 210 so that the value of A is a random whole number between

is a listing of the complete ADDITION DRILL PROGRAM.

REM ADDITION DRILL PROGRAM
RANDOM

REM GENERATE RANDOM NUMBERS A AND B
LET A=INTC10%RND(CO))
LET B=INTC(10%*RNDCO))

REM PRINT PROBLEM AND GET ANSWER
PRINT

PRINT As3'"+"3B3"="3

INPUT C

REM IS ANSWER CORRECT?
IF C=A+B THEN 600

REM ANSWER IS N@T CORRECT
PRINT "YOU GOOFED. TRY AGAIN."

Go Te 300

REM ANSWER IS CORRECT

PRINT "RIGHT ©ON...GOOD WORK!"
GO To 200

END

0 and 19, inclusive.

210

210

23. Change Line 220 so that the value of B is a random whole number

LET A

LET A = INT(20%RND(0))

between 10 and 19, inclusive.

220

LET B =

FUNCTIONS 153

220 LET B = INTC10%RND(0))+10

We made the above changes and ran the modified program.

RUN

6 + 10 =716

RIGHT ON...GOOD WORK! Remember, a RUN on your
computer will probably show
19 + 12 =231 different problems

RIGHT @N+..GOOD WORK!

8 + 16 =723
YOU GOOFED. TRY AGAIN.

8 + 16 =724
RIGHT ©ONe«..GO0D WORK!

7, %33 =87

I 24. When the student’s answer is correct, the computer always prints:

. RIGHT ON ... GOOD WORK! In order to relieve the monotony, let’s modify
the program so that the computer selects at random from three possible
replies to a correct answer. The changes are in the portion of the program |
beginning at Line 600. |

600 REM ANSWER IS CORRECT

610 LET R=INT(3*%KNDCO)X)+1 Note that we added

620 IF K=1 THEN 630 +1 to our formula

623 IF R=2 THEN 650

627 IF R=3 THEN 670

630 PRINT "RIGHT ON.+.GPOD WORK!" |
640 G@ T@ 200

650 PRINT "YQU GOT IT! TRY ANBTHER."

660 G@ T@ 200

670 PRINT "THAT'S VERY G@@D. KEEP IT UP!II"™
680 G T@ 200

The possible values of R are _ \ , and

1,2,and 3 (NotO0, 1, and 2, because we added +1)

;

154 BASIC

25. If R isequal to 1, the computer PEAlS . e

THAT'S VERY G@@D. KEEP IT UP!!!

27. IfR isequal to 2, the computer prints

YU GOT IT! TRY ANOTHER.

28. To our original program (frame 22) we added the changes made in frame
24 and ran the program. The RUN is shown below. .
RUN

4 + 5 =29
RIGHT ©ON.«..GOOD WeRK!

4 + 4 =78 '
THAT'S VERY GO@N. KEEP IT UP!!! |
0+ 9 =29 |

RIGHT ©N...GB2OD WORK!

2 + 0 =22
THAT'S VERY G@OD. KEEP IT UPI!II! ‘

T ¢ 5 °=212 '
RIGHT ON...GO2D WERK!

b PR AR R K
YOU GOT IT! TRY AN@GTHER. !

6 +5 =713 ‘
YOU GOBFED. TRY AGAIN.

6 + 5 =2

') FUNCTIONS 155
If the student’s answer is incorrect, the computer always prints: YOU
’ GOOFED. TRY AGAIN. Modify the program in frame 24 so that for an
) incorrect response the computer selects randomly one of the following
responses:

YOU GOOFED. TRY AGAIN.
WRONG ANSWER. I'LL GIVE YOU ANOTHER CHANCE.

S00 REM ANSWER IS NOT CORRECT

S10 LET R =

520 IF

523 IF

S30 PRINT

540 G@ Te 300

S50 PRINT

560 G@ T@ 300

500 REM ANSWER IS NOT CORRECT
‘ 510 LET R=INTC(2*RNDC0))+1

520 IF K=1 THEN 530

523 1F K=2 THEN 550

530 PRINT "YQU GOOFED. TRY AGAIN."

540 G@ Te 300
550 PRINT "WRENG ANSWER. I'LL GIVE YOU AN@THER CHANCE."

560 G@ Te 300

* A NN ey e e G A A O AP e — e —

156 BASIC

29. The three statements

620 IF R=1 THEN 630
623 IF R=2 THEN 650

627 IF R=3 THEN 670
can be replaced by the single statement

620 ON R G@ T@ 630,650,670 @R G@ T@ R OF 630,650,670

7t

IfR=1 IfR=2 If R=3

in most versions of BASIC. Using ON R GO TO the program segment in frame
24 can be rewritten as follows:

600 REM ANSWER 1S CORRECT

610 LET R=INTC(3¥RNDCO))+]

620 BN K GO TO 630,650,670

630 PRINT "KIGHT @N...GRCD WBRKI!"

640 G@ T@ 200

650 PRINT "YOU GOT 1T! TRY AN@GTHER."

660 G2 TG 200

670 PKINT "“THAT'S VERY GO@D. KEEP IT upPI!!™
680 G2 Te 200

On most computer systems, the ON ... GO TO variable must have a
value of 1, 2, or 3 in order to be frue and to jump the computer to a specified
line. Otherwise, like a false IF-THEN condition, the statement is passed by
and the next statement after the ON ... GO TO is executed. Look at Line
610. What are the possible values of R that this statement can generate?

30. Suppose that on a RUN of the program, the random number generated
by RND(0) in Line 610 is .3434087. What value will R have?

Which line will the computer GO TO from Line 620?

¢

- -

- -

i A s - i

O FUNCTIONS = 157

31. The TAB() function in BASIC is used in PRINT statements. It’s like
the TAB on a typewriter, it automatically causes the computer to go to a
certain space in a printing line. Here are two programs.

10 PRINT " X %2
99 END
RUN Both programs cause

X’s to be printed in
the same place in a

X X line.
10 PRINT TABC10)3"X"3TAB(25)3"X"
99 END
RUN

X X

Recall from Chapter One that up to 72 characters may be printed in one
line of output. That is, there are 72 character printing spaces per line. For
7. purposes of using the TAB function, these character spaces are numbered
: from 0 to 71.
Write a statement using the TAB function, that will cause an X to be
printed in the last space in a line.

Write a statement that will cause an X to be printed in the 30th
character space and in the 41st character space.

20 PRINT TAB(T1)3"X"
30 PRINT TAB(29)3"X"3TAB(40);3"X"

158 BASIC

32. There are some limitations on the values that may appear ina TAB
function.

(a) The value in the parentheses should not be a negative number.
(b) The value should not exceed 71.

(¢) If the computer is at TAB character space number 55, the terminal
printing or display mechanism cannot tab “‘backwards™ to TAB(25);
that is, it cannot backspace to TAB character space number 25.

Keeping the above limitations in mind, the value in the parentheses of
the TAB function may be:

(d) a number TAB(23)
(e) avariable TAB(CA)
(f) an expression TABC(W+INTC10%RND(C0))

Which of the following three programs contain TAB instructions that violate

one or more of the limitations above?

PROGRAM A PROGRAM C

10 FOR K=1 T@ 12 10 LET M=43

20 PRINT TAB(K)3"*" 20 PRINT TAB(2%M)3M
30 NEXT K 99 END

99 END

PROGRAM B 3

10 READ Y

20 PRINT TAB(Y)3Y
30 GOTe 10

90 DATA 62,39555,53511,48
99 END

PROGRAM C

— - - -

- -

- —

159

O FUNCTIONS

33. Show the approximate appearance of a RUN of PROGRAM A in the
preceding frame. 7

RUN

160 BASIC

34. The most common uses for TAB functions are:
(a) for computer art and graphics.

(b) for printing mathematically desired graphs and curves. (For information

on programming graphs and mathematical functions, see, for example, ’
Kemeny and Kurtz, BASIC PROGRAMMING (2nd edition), John Wiley '
& Sons, 1971.) 4
Note also that the statement 4
60 PRINT TABC10)3Y3TAB(52);3Z ¢
t
means “‘print the value of Y at TAB character space 10 and the value of Z at 4
TAB character space 52.” !
It does not mean ““print the value of Z, 52 spaces past the print position '
where Y is printed.” ‘
Using READ and DATA statements, as well as the TAB function, write !
a program that will sort a list of yearly income figures into three categories !
and columns, using this data. v
DATA 3352, 10783, 22852, 19667, 4837, 8956 !
DATA 9112, 2522, 4890, 6556, 14936 ‘
A RUN of your program should look like this: !
'
RUN i
UNDER $5000 $5000 T@ 10000 BVER $10000
3352 ¥
10783 &
22852 !
19667 4
4837 |
8956
9112
2522
4890
6556
14936
@UT OF DATA IN LINE 20

FUNCTIONS 161

This is our solution. If possible, check yours on a computer if it is
different.

S REM INCOME SORTING PROGGRAM

10
15
20
30
40
S0
60
70
80
90
100
900
910
999

PRINT "UNDER $5000"3TAB(20)3*$5000 T@ 10000"3
PRINT TAB(S50)3"OVER $10000"
READ M
1F M<S000 THEN 90
IF M<10000 THEN 70
PRINT TAB(S50)3M
GoTe 20
PRINT TAB(22)3M
GOTe 20
PRINT M
GeT1e 20
DATA 3352,10783,22852,19667,4837,8956
DATA 9112,2522,4890,6556,14936
END

162 BASIC

35. A computer that uses BASIC has a number of functions, such as the INT,

SQR, RND, and TAB functions, preprogrammed into it as part of the BASIC
computer language itself. However, BASIC also provides a way of making up
your own functions that will do specialized jobs or calculations, just like the
specialized number chopping INT function. These special user-defined func-
tions are invented and written as a statement in a program, then used in the
program wherever needed, in the same way you would use the INT or any
other function.

It is just a bit tricky, so pay close attention. This is the form of a state-
ment that defines a function. In this case, we are defining the number-
rounding statement as FunctioN R, or FNR.

DEFine a FunctioN called “function R" (for Rounding).
Any letter A to Z may be used after
FN to identify the particular function
10 DEF FNR(X)=CINT(X*100+.5))7100
t t

Line number This is a “dummy variable.”
The same variable must be
used in the function definition

When the defined function is put to use in a program, the variable on which
the function is to operate is substituted for the “‘dummy variable” X.

In the program which follows, the expression used to round a value to
two decimal places has been defined as a function (FNR). When we want the
value of variable A rounded, that variable is placed in the parentheses follow-
ing FNR — the *“‘code word™ for the number-rounding function. See Line 40.

S REM USING A DEFINED FUNCTION TO RBUND NUMBERS
10 DEF FNRC(X)=CINT(X*100+.5))7100

20 PRINT “NUMBER TO@ BE ROUNDED'":

30 INPUT A

40 PRINT A3"ROUNDED T 2 DECIMAL PLACES ="j3FNR(A)

SO PRINT
60 GOTQ 20
99 END

RUN

NUMBER T@ BE R@UNDED?.333333
«333333 ROUNDED Te 2 DECIMAL PLACES = .33

NUMBER T@ BE ROUNDED? .666666
«666666 ROUNDED T0 2 DECIMAL PLACES = .67

NUMBER TO BE ROUNDED? 600.744

600.744 ROUNDED TO 2 DECIMAL PLACES 600.74

NUMBER TO0 BE ROUNDED?

- - -

S

—— -

-

B e

o FUNCTIONS 163

As with other functions, the value that appears in the parentheses of a defined
function may be:

(a)
(b)
(c)

(a) anumber
(b) a variable
(¢) anexpression

36. Modify the Fahrenheit to Celsius conversion program found in the
Self-Test for Chapter Two, so that a defined function is used to round the
temperature to the nearest 1/10 of a degree.

DEF FNT(X)=CINT(X*10+.5))/10

Note: Many computer systems use a version of BASIC that allows you to
define very complex functions using more than one statement in the defini-
tion. Consult a reference manual for your computer system to determine
how to define multi-statement functions.

164 BASIC

SELF-TEST

A word of encouragement: You are learning the functional use of a lot of
symbols; don’t get discouraged if you haven’t been able to write a chess-
playing program for your computer system yet. You will learn more about
computer capabilities as you learn more of BASIC. Remember, computer
programming is a tool to help you and not necessarily an end in itself. Begin
considering whether the computer as a tool can have useful applications in
those areas of most interest to you, and how you could write appropriate
programs.

1. Write the BASIC notation for the following functions:

square root

integer part

random number

carriage tab

Write a statement for a program that will define function A as 4 times

3.1416 times R2. A = 47 R? = surface area of a sphere.

(a)

(b)

(c)

(d)
2.

110
3.

You are a building contractor figuring an estimate on a geodesic dome

building (or perhaps you are considering building your own). You need
to know about how many square feet of wood or other material will be
needed to cover the outside surface of the dome, which is very much

like a half sphere. You defined a function to calculate the surface area of

a whole sphere in the problem preceding in this Self-Test. Use it in your
program. Design your program so that it prints a table of surface area
and materials cost for enclosing domes with diameters from 12 feet to
40 feet (the radius R is %2 the diameter).

(a)
(b)
(c)
(d)

(e)

This is the information the table should provide:

the diameter (from 12 feet to 40 feet, at Y2-foot intervals).

the surface area of the dome, rounded to the nearest square foot.
the cost of the surfacing material, at 10 cents per square foot,
rounded to the nearest cent.

the cost of the surfacing material at 12 cents per square foot,
rounded to the nearest cent.

the cost of the surfacing material at 15 cents per square foot,
rounded to the nearest cent.

>~ ~d -

B

0 SELF-TEST 165

(f) the cost of the surfacing material at 20 cents per square foot,
rounded to the nearest cent.

Use the TAB function to arrange the columns about the same dis-
tance apart across the printout. If you are using a terminal, check the
reference manual for your system to see if it hasa PRINT USING state-
ment for designing output format. Also, you may need to know wheth-
er your system requires 12 or more character spaces to print non-

integers, even when rounded off. Isn’t computer programming a real
challenge?

4. Write a program that will give your little brother, sister, son, or daughter
(etc.) practice in multiplication. Design the program so that the user

can select one-digit or two-digit multipliers by means of an INPUT
statement.

5. Which RUN was produced by this program?

10 FOR X=1 TO 8
20 PRINT TAB(X-1)3
30 FOR A=1 TO 8
40 PRINT “*'3

(') S0 NEXT A
60 PRINT
70 NEXT X
99 END
RUN A RUN B
* e ok ok ok o o ok
* kK ok ok ok ok ok e ok ok
Jropeapeaprages o 3 ok ok ok ok ok
ok ok o ok ok ok ok 3 o o ok e ok ok ok
o ke ke o ke o ok o ok 3 ook ok o ok ok
ook o ok ok ok ok ok ok ok o ok e e ok ok ook
s ok e 2 ke e o ok ok ook ok e o o ok e ok ok oK
sk ok ok o ok o ok ok ok Kok ok k e ok o ke o ok ok

BONUS PROBLEM. Write a program that will produce the other RUN in
question 5.

166 BASIC .

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1. (a) SQR() (frame 1)
(b) INT() (frame 2)
(¢) RND(0) (frames 7 and 8)
(d) TAB() (frame 31)

2. 110 DEF FNACR) = 4%3.1416%Rt2 (frame 35)
¢ pi
Dummy variable
Any variable is okay

3. (frames 31 and 35)

100 RFM DOME SURFACE AREA AND MATERIALS COST

110 FEF FVACK)=4%3. 1416+R12

120 DEF FYRCX)=CINT(X:100+5))7100

132 PRINT "DIQM-";T{J’(lﬂ);"sf’-PT.";'ﬁPP(2(');""-XG/SOP‘]";

135 PRINT TAPC30)3"S«12/S0FT"8 TARPCAD) 3" Se 15/SQFTS

140 PRINT TABC53)3"S.20/S0FT"

150 FOR D=12 10 40 STEP 5

160 LET A=INTCFNACD/2)/2) .
170 PRINT D3 TARC10)3 A3 TARC20)3 FURCA®.1)3 TARC30) S

186 PRINT FNRCA%.12)3 TARCA) 5 FURC A« 15 TARC50)3 FURC A%+ 2)

190 NFXT D
999 END
KUN

SCeFTs S 1B/7SCFT €4 12/S0FT S.15750FT 2.2G750F1
12 226 228+ C 2712 33.9 4542
12.5 245 24.5 294 36+ 75 49
13 265 26«5 31.8 39. 75 53
13.5 286 28. 6 34,32 4249 S57.2
14 307 307 3684 L6425 6l.4
14.5 330 33 39. ¢ 4945 €€
15 358 35.3 42436 52.95 0. ¢

(We have cut off the rest of the RUN to save space.)
Note: 160 LET A=INT(FNA(D/2)/2)

Half the diameter is radius Half the surface of a sphere is a dome

Note also that we used two PRINT statements to print one line of the
table. A semicolon was used at the end of Lines 130 and 170.

»> - e -— ki -~ -a -

2 i =i

o ——

St

-

SELF-TEST 167

i

(frames 12 to 22)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
300
310
320
330
340
400
410
420
430
500
510
520
530
999
RUN

REM MULTIPLICATI@N PRACTICE: ONE @R TwO DIGIT

PRINT "AFTER THE QUESTION MARK, TYPE 1 IF YOU WANT TO DO"
PRINT *"ONE DIGIT MULTIPLICATION (5 TIMES 5 = 25) OR"™
PRINT “TYPE 2 IF YOU WANT TO DO Twd DIGIT MULTIPLICATION"
PRINT *'C12 TIMES 20 = 240)."

PRINT *'1 @R 2'3

INPUT M

PRINT

IF M=1 THEN 210

IF M=2 THEN 230

GOTe 110

LET X=10

GRTO 240

LET X=100

LET A=INT(X*RND(O)J)

LET B=INT(X*RND(O))

REM PRCBLEM AND STUDENT ANSWER

PRINT A3"TIMES"3Bj3"='3

INPFUT P

IF P=AxB THEN 400

GOTe 500

REM CQMPUTER RESPONSE T@ CORRECT ANSWER

PRINT *'GO@D SHOW! TRY ANOTHER."

PRINT

GE@Te 240

REM CEMPUTER RESPONSE T@ INCERFECT ANSWER

PRINT "SORRY 'BOUT THAT. TRY AGAIN."

PRINT

GeTe 300
END

AFTER THE QUESTI@N MARK, TYPE 1 IF YOU WANT T@ Do
@NE DIGIT MULTIPLICATION (S TIMES S = 25) @K

TYPE 2 IF YOU WANT T@ DO Tue¢ DIGIT MULTIPLICATION
€12 TIMES 20 = 240).
1 BR 271

3

TIMES 1 =23

GOOD SHew! TRY ANGTHEK.

7

TIMES 8 =758

SGRRY 'BOUT THAT. TRY AGAIN.

7

TIMES 8 =756

GOOD SHEW! TRY ANOTHER.

6

TIMES O =70

GABD SHeW! TRY ANBTHER.

5

TIMES 8 =?

RUN B (frames 31 to 34)

168 BASIC

CHAPTER SIX

Subscripted Variables

In Chapters Six and Seven we will present a useful tool, the subscripted
variable. In this chapter we will discuss BASIC variables with a single sub-
script, and introduce a new instruction, the DIMension statement.

One of the most common uses for subscripted variables is in representing
arrays or matrices of numbers; in a matrix the numbers are arranged in rows
and columns. A matrix with only one row or one column (represented by a
single subscripted variable) is also termed a list or a vecror.

Many versions of BASIC contain a special set of instructions called
MATrix functions. You will learn to use four of these:

MAT ZERO

MAT PRINT

) MAT INPUT
/ MAT READ

i 169

170 BASIC

1. The next concept we will discuss will require your close attention. Take
it slowly, and read carefully as we enter the mysterious realm of subscripted
variables.

Until now. we have used only simple BASIC variables. A simple variable
consists of a letter (any letter A to Z) or a letter followed by a single digit
(any digit 0 to 9).

For example, the following are simple variables:

Pt R KPL P2

Now we want to introduce a new type of variable, called a subscripted

variable.
/— Variable

Subscripted variable: P(5)

Subscript ——/

Say it like this: “P sub 5™
A subscripted variable consists of a letter (any letter A to Z) followed by
a subscript enclosed in parentheses.

P(3) isa subscripted variable.
P3 is not a subscripted variable.

Which of the following are subscripted variables? Circle the answer(s).

X X X1 C(23) D

KNOW THIS: X, X1, and X(1) are three distinct variables. All three can
appear in the same program. They may confuse you, but the computer will
recognize them as three different variables.

o ———

O e

0

SUBSCRIPTED VARIABLES 171

2

A subscripted variable (like the simple variables we have been using)

names a location inside the computer; you can think of it as a box, a place
to store a number.

EIGHT SUBSCRIPTED VARIABLES

P(1)
P(2)
P(3)
P(4)
P(5)
P(6)
P(7)
P(8)

A set of subscripted variables is also
called an array. This set of subscripted
variables is a one-dimensional array,
also know as a list or vector. Later we
will discuss two-dimensional arrays

Pretend you are the computer, and LET P(2) = 36. In other words use

your pencil or pen and write
Then LET P(3) = 12 (do it).
‘ ‘ by looking below.

the number 36 in the box labelled P(2) above.
Now LET P(7) = P(2) + P(3). Check yourself

%6

| Z

48

172 BASIC

3. So what’s so wonderful and mysterious about subscripted variables? y
Here comes the boggler: Subscripted variables can have variables for
subscripts. 1
This subscripted variable, Y(J), has a variable for a subscript. ‘5
IfJ=1 then Y{J) is Y(1) 4
fJ=2 then YWJ) is Y(2)
fJ=7 then YWJ) is Y(7) i
Let us assume that the following values (in the boxes) have been assigned :
to the corresponding variables. Note that there are both simple and sub- 1

scripted variables.

Y(1)| 4 Z(H)| 4.7 A 1 j;
Y(2)] -3 Z(2)| 9.2 B 2 1}
Y(3)| S X(| 2 6 3 !
Y(4) 6 X(2)] 3 D 1 !
Write the value of each variable below: J
Y(1)= =l YEAY= A= ’
YQ2) = =P SRR) Bt ‘ }

Y(C) =

[T

i
|

j SUBSCRIPTED VARIABLES 173

4. So far we have only used single variables as subscripts. However, the
subscript of a subscripted variable can be more complex. Here are two
examples, still using the variables and values in the boxes in frame 3.

YA+ 1))=Y +1)=Y(2)=-3
Y(2*B)=Y(2*2)=Y(4) =6

Now you complete these examples. Fill in the value corresponding to the
subscripted variable.

Y CAGE Y= L, 1 = YA+3)=
Y(2*A — 1) = YD -3)=
Y(A +B)= Y(D-C+A)=
Y(B*C — D)=
5 6
4 4
5 -3

-3

174 BASIC

100
110
120
130
140

150
160
170
180

190
200
210
220
230

240
999

RUN

HOWw

operator and stored in X(1) through

5. So how can subscripted variables contribute to the ease and versatility
of programming in BASIC?
One common use of subscripted variables is to store a list of numbers
entered via INPUT statements or READ statements. This can be done by
use of a FOR-NEXT loop which causes the subscript to increase by one each
time a new number is entered. To illustrate, we will turn once again to our
old friend, The World’s Most Expensive Adding Machine.

REMARK W@RLD'S MBST EXPENSIVE ADDING MACHINE (AGAIN)
PRINT

PRINT ""HOW MANY NUMBERS"3

INPUT N

PRINT

FOR K=1 T@ N N numbers are entered by the user

PRINT "'X="3 and stored in X(1) through X(N)
INPUT X(K)

NEXT K

PRINT

LET T=0 First T is set to zero. Then the numbers
FER K=1 T@ N in X(1) through X(N) are added to T

LET T=T+X(K)
NEXT K

PRINT "“THE TOTAL IS"3T
END

MANY NUMBERS?S

X=737
X=?23
X=746
X=778
X=759

THE TOTAL IS 243

For the RUN shown, N is 5. Therefore, 5 numbers will be entered by the

Sl i - o

e

; j SUBSCRIPTED VARIABLES 175

6. Suppose the computer is RUNning the program. It has just completed
the FOR-NEXT loop in Lines 150 through 180. The numbers entered by
the user are now stored as follows.

N 5
X(1) | 37
X@) | 23
X(3) | 46 |
X4 | 78 E
X(s) | 59

The computer is ready to proceed with Line 200. Show the value of T after
Line 200 has been executed.

7. Next, the computer will do the FOR-NEXT loop in Lines 210 through

230. How many times will Line 220 be done?

5, because Line 210 says FOR K =1 TO N and N is equal to 5.

176 BASIC

8 Line 220 will be done 5 times, first for K = | then for K = 2, forK =3,
for K = 4, and finally for K = 5. Let’s look at Line 220.

220 LET T=T+X(K)

K is used as a subscript

Line 220 tells the computer to add the value of X(K) to the old value
of T and then assign the result as the new value of T.

What is the value of T after Line 220 has been done for K=1? ___ 5
For K=27 For K=3? For K = 4? For K=5?7 ;
i
________________________ .
37
1
60
106
184 .
243
'
.
9. Let’s use the World’s Most Expensive Adding Machine to compute the " J
sum of whole numbers, 1 through 12. 1

RUN]

HOW MANY NUMBERS?12

xX=7?1
X=22 ‘
X=73
X=74
X=?5 .
X=26
X=27
X=78 1
X=?9
X=210
X=?11 .
SUBSCRIPT ERROR AT LINE 170

SUBSCRIPTED VARIABLES 177

Everything seemed to be going all right, but apparently something is
wrong. Help! Complete the following analysis. The first 10 numbers we

entered (after ‘X=?") were stored in X(1) through . Then we

entered the 11th number which was supposed to be stored in
At this point the computer printed an error message telling us that a sub-
script error had occurred. Apparently our computer doesn’t accept sub-

scripts greater than

10. That’s right. The computer does not permit a subscript to be greater
than 10, unless we specify otherwise.

If subscripts greater than 10 are to be used, special instructions must be
included in the program to reserve additional space. We must tell the
computer the largest subscript it is to permit in a subscripted variable by
using a DIM statement. DIM is short for “dimensions’ of an array of
subscripted variables.

10S DIM X(100)

Variable for / Maximum subscript
which space permitted
is being reserved

The above DIM statement specifies a subscripted variable which can have a

maximum subscript of

Note. The mimimum subscript, or smallest possible subscript, is zero or one,
depending on your computer and the version of BASIC you are using. In
this book, we will assume that the smallest subscript is one.

178 BASIC ‘

11. Suppose we wanted to specify that the maximum subscript is 50. Write
the DIM statement.

105

105 DIM X(50) t

12. We will add the DIM statement from frame 10 to the program from
frame 5. Below isa LIST and RUN using the 12 numbers that gave us trouble
before.

LIST

100 REMARK WORLD'S MOST EXPENSIVE ADDING MACHINE CAGAIN)

105 DIM XC100)

110 PRINT

120 PRINT "HOVW MANY NUMBERS";

130 INPUT N

140 PRINT

150 FOR K=1 T0 N

160 PRINT "'X="3

170 INPUT X(K)

180 NEXT K

190 PRINT ‘
200 LET T=0

210 FOR K=1 TO N

220 LET T=T+X(K)

230 NEXT K

240 PRINT "THE TOTAL 1S"3T

999 END 3

s T N W S S B g

RUN
HOW MANY NUMBERS?12 !

X=71
X=22
X=?3
X=?4 ‘
X=?75

xX=?6
X=27
X=7?8 1
X=?9
X=710
xX=711
X=712 1

Sty

THE T@TAL 1S 78

-

gty

o

SUBSCRIPTED VARIABLES 179

>

Now the program can be used to compute the sum of at most how many

numbers?

100 If 100 numbers are entered they will be stored in X(1) through
X(100), the limit specified by the DIM statement in Line 105.
We can, of course, also use the pregram to compute the sum of
fewer than 100 numbers

" RRBREURRTI 1Ak ¢ STy . St R0 pr

2%

180 BASIC (

13. Instead of using an INPUT statement to get values for X(1), X(2), and
so on, we can use READ and DATA statements. We'll put the value of N and
the values of X(1) through X(N) in a DATA statement, as follows:

DATA 55, 37s 23, 465 78, 59
\ g

S »

Value of N Values of X(1) through X(5)

The program is shown below.

100 REMARK WORLD'S MOST EXPENSIVE ADDING HACﬁlNE CAGAIN) Y
110 DIM X(C100)

200 REMARK READ N AND X(1) THROUGH X(N)
210 READ N '
220 FOR J=1 TO N

230 READ X(J) {
240 NEXT J

300 REMARK PRINT N AND X(1) THROUGH X(N)

310 PRINT “N="3N \
320 PRINT "X(1) THROUGH X(N) ARE:"

330 FOR K=1 T2 N *
340 PRINT X(K)3

350 NEXT K {
360 PRINT

410 LET T=0

420 FOR L=1 TO N
430 LET T=T+X(L))
440 NEXT L

400 REMARK COMPUTE TOTAL @F X(¢1) THROUGH XC(N) 6

S00 REMARK PRINT TOTAL AND G@ BACK FOR NEW DATA

S10 PRINT "“THE TOTAL IS'"3T 1
520 PRINT

530 G2 T@ 210 1

900 REMARK HERE ARE TW@ SETS @F DATA 4

910 DATA S5, 37, 23, 46, 78, 59
920 DATA 12, 15> 25 35 45, S, 65 75 B> 9» 105 11, 12 {

999 END

In the first FOR-NEXT loop (Lines 220 - 240), we used J as the subscript.
This choice was entirely arbitrary. What subscript did we use in Lines 330

t0'350%. - Lines 420 to 4407

j SUBSCRIPTED VARIABLES 181

14. If we had wanted to, could we have used J in all three places?

Yes These are three separate and distinct FOR-NEXT loops. We
could have used any variable as the subscript except N or T

15. Now the big one. Suppose we RUN the program in frame 13. Show
what the RUN will look like. (Hint: check all the PRINT statements.)

RUN

N= 5

XC(1) THROUGH X(N) ARE:
37 23 46 178 59
THE TOTAL IS 243

N= 12

X(1) THROUGH X(N) ARE:

AT e L T RN RS A - T T s s b b o B
THE TOTAL 1S 78

QUT @F DATA IN LINE 210

182 BASIC

(

16. Here’s a little more practice at doing what a computer does when dealing
with subscripted variables, so that you can better understand and use sub-
scripted variables in your programming.

For this segment of a computer program, fill in the boxes, showing the

values of D(I) at the affected locations after this FOR-NEXT loop has been
run.

10 FOR I=1 TO 3
20 LET DCI1)=2%I-]
30 NEXT I

D(1) D(2) Dm! |

1 forI= 1,281 —1="2%1 —]=2_]=] :
3 forl="2,241-1=2%2_1=4_1=3 .;
5 forl=3,2%1—1=2%3_|=¢6_]=5 |

17. For the following FOR-NEXT loop, fill in the boxes showing the values ‘
in R(1) through R(4) after the loop has been carried out.

10 FBR R=1 T@ 4

20 LET RCR1=Rt2 J
30 NEXT R

R(1) R(2) R(3) R(4) } 1

]
W0 -
> >

(S S S Y
]]

>

nn

— 0 A
o

LSS ST S T

¥

SUBSCRIPTED VARIABLES

183

18. Let’s do one more of these.

10 FOR N=1 T@ 6
20 LET PINJ=2tN

P(3)

P(6)

, assume that numbers are stored in C(1) through C(5), as follows:

C(3)

12

30 NEXT N
P(1) P(2)
P(4) P(5)
2 4 8
16 32 64
19. Next
C(l) 18 C(2) 34
C4) 20 C(5) 17

What will be printed if the following FOR-NEXT loop is carried out?

45 FOR A=1 T@ 5

53 PRINT CL[Al;

67 NEXT A

RUN

RUN

18- 34, 12 .20 7

('v‘| J

184 BASIC

20. Suppose numbers are stored in C(1) through C(5) as shqwn in frame 19.
What will be printed if the following FOR-NEXT loop is carried out?

45 FOR A=5 T@ 1 STEP -1
53 PRINT CL[A]3
67 NEXT A

RUN

17 20 12 34 18 They are printed backwards

21. Assume that there is an election approaching and you have conducted a)
poll among your friends, using the following questionnaire.

Who will you vote for in the coming
election? Circle the number to the
left of your choice. ‘

1. Sam Smoothe
2. Gabby Gruff b

Let’s write a program to count the votes each candidate received in the
poll. You have 35 responses to your questionnaire, each response being
either a “1”” ora “2.” First, record the votes in a DATA statement.

DATA 151525252515132525251515152515251051
DATA 2525151212251525252515152515152,515~1

End of DATA flag
Not a vote !

How many votes did Sam Smoothe receive? {

f,
‘|

SUBSCRIPTED VARIABLES 185

22. How many votes did Gabby Gruff receive? (Do your
answers total 35?)

23. In order to answer those last two questions, you probably counted the
I’s in the DATA statements to find out how many votes Sam Smoothe
received. Then you counted the 2’s to find out how many votes Gabby Gruff
received.

The computer can count votes by using subscripted variables to keep
a running total of the 1’sand 2’s read from the DATA statements. When
it comes to the end of data flag (—1) it stops counting and prints the results.

100 REMARK V@TE COUNTING PKOGRAM

110 DIMm C(2)
120 LET C<1)>=0
130 LET C¢2)=0

200 REMARK KEAD AND CQUNT VOTES

210 READ V

220 IF V=-1 THEN 310

230 LET C(V)=C(V)+] «——— (Crucial vote-counting statement
240 G2 T© 210

300 REMARK PRINT RESULTS
310 PRINT "SAM SMEGOTHE:"3C(C1)
320 PRINT "GABBY GKUFF:'3C(2)

900 REMARK VOTES FOLLOWED BY FLAG (FLAG = =1)
910 DATA 15132,2,251515232525151515251525151
920 DATA 2,251:15152515252525151525151,251,-1
999 END

RUN

SAM SM@@THE: 19
GABBY GkKUFFt 16

Is the DIM statement really necessary?

No, since only C(1) and C(2) are involved, no subscript exceeds 10.
However, we feel it is good practice always to use a DIM statement.

R,

186 BASIC

24. After the computer carries out Lines 120 and 130, what are the values
of C(1) and C(2)?

C(1)

C(2)

0 These are the initial values prior
0 toreading and counting any votes

25. Look again at the crucial vote-counting statement.
230 LET CC(V)=C(VY)+1

It is the subscripted variable equivalent of a similar statement which has
been used in earlier programs to keep count:

LET N=N+1]

Note how the variable subscript of C is used to determine whether either the
value of C(1) is increased by one, or the value of C(2) is increased by one.
Since V can have only two values, either | or 2, Line 230 is actually a double-
purpose line. Depending on the value of V., Line 230 is actually equivalent to

LET CC1)=CC1)+1 or LET C(2)=C(2)+1

When the preceding program is RUN. what values will the computer have
stored for C(1) and C(2) after the first vote has been read and processed?

(That is, Lines 210 through 230 have been done for the first vote in the first
DATA statement.)

C(1) C(2)

)

SUBSCRIPTED VARIABLES 187

What values will be stored for C(1) after the second vote has been read and
processed?

C(1) C(2)

What values will be stored in C(1) and C(2) after the third vote has been read
and processed?

c(1) CQ)
c() | c@) o)
(1) 2 | c@ o
() 2 e |

188 BASIC (“

26. Suppose the following poll is conducted.

Which candidate will you vote for in
the coming election? Circle the num-
ber to the left of your choice.

1. Sam Smoothe

2. Gabby Gruff *

3. No Opinion

The results of this poll are shown below.

-—'IJ

b5
S5

IJ (J

w lJ
—'IJ

2
35
Modify the vote-counting program to process this data. You will have to add
a line to set C(3) to zero, a PRINT statement to print the NO OPINION total,

and, of course, you will have to change the DATA statements for the new
data. And, you will have to change the DIM statement.

1

L4

_________________________ ‘

There are the modifications. |

110 DIM C(3) ¢

140 LET C(¢3)=0

330 PRINT "N@ @PINIGN: "3C(3) {
910 DATA 2,2,2515251515251515321:3,2,1,3,2,1

920 DATA 1535153+2525151353525123515152515231315~1 ¢

t 1

Did you remember this?)

{

-

™ et

SUBSCRIPTED VARIABLES 189

27. Suppose we have a questionnaire with 4 possible answers, or 5 or 6.
Instead of writing a separate program for each case, let’s write a program to
count votes for a questionnaire with N possible answers. The value of N
will appear in a DATA statement prior to the actual answers, or votes. For
example, the data for the questionnaire in frame 21 would look like this:

900 REMARK VOTES FOLLOWED BY FLAG (FLAG = ~-1)
905 DATA 2

910 DATA 15152525251515252525151513251,25151
920 DATA 252,1515152515252,25151525151:251,5~-1

Line 905 is the value of N. In this case, N is 2 and possible votes are 1 or 2.

How should the data for the questionnaire in frame 26 be placed in DATA
statements?

900 REMARK VOTES FOLLOWED BY FLAG (FLAG = =1)

905 DATA

910 DATA

920 DATA

905 DATA 3

910 DATA 2,2525152,1515251,153515352,1,3:251
920 DATA 153,1,3,2:2515153,25153512152512201515-1

This time N = 3 (Line 905) and possible votes are 1, 2, or 3.

190 BASIC (
|

28. Your turn. Write a program to read and count votes for a questionnaire
with N different possible answers (votes) where N is less than or equal to 20.
You will have to do the following things.

(1) DIMension for the maximum subscript for C. Remember, we said N is \
less than or equal to 20.

(2) Read the value of N.

(3) Set C(1) through C(N) to zero. (Use a FOR-NEXT loop.)

(4) Read and count votes until a flag is read.)

(5) Print the results. Results should be printed like this:

Example: N = 2 Example: N =3

ANSWER #1: 19 ANSWER #1: 18
ANSWER #2: 16 ANSWEK #2: 12
ANSWEK #3: 7

SUBSCRIPTED VARIABLES 191

Here is the way we did it.

100 REMARK VOTE COUNTING PROGRAM

110 DIM C(20) Maximum subscript = 20
120 READ N

130 FOR K=1 T@ N Lines 130-150 set C(1)
140 LET C(K)=0 through C(N) to zero
150 NEXT K

200 REMARK READ AND COUNT VOTES

210 KREAD V This part of the program is
220 IF V=-1 THEN 310 the same as the program

230 LET C(V)I)=C(V)+1 shown in frame 23

240 G@ T@ 210

300 REMARK PRINT RESULTS Print totals for answers 1

310 FOR K=1 T@ N through N

320 PRINT '"ANSWER #''3K3":"3C(K)

330 NEXT K

900 REMARK VOTES FOLLOWED BY FLAG (FLAG = =-1)
905 DATA 2 = ValueofN
910 DATA 151,25252515152525251515152515251351)‘l

920 DATA 2525151515251525252515152515152515~1
999 END
Data from

frame 21

The rest of this chapter is about MATrix statements. Most versions of BASIC
include these statements, but not all. If your BASIC does not provide the
following MATrix statements, you can skip to the Self-Test.

MAT ZER

MAT READ
MAT INPUT
MAT PRINT

NOTE: Most versions of BASIC permit zero subscripts. Therefore, the state-
ment 10 DIM X(5) actually defines a list with 6 members, X(0) through X(5).
However, X(0) is not used by MAT operations. All MAT operations assume
that lists begin with subscript 1.

192 BASIC

29. Here again is the first part of the vote-counting program given as our
answer to frame 28.

100 REMARK VOTE COUNTING PROGKAM
110 DIM C(20)
120 READ N

130 FOR K=1 T@ N
140 LET C(K)=0
150 NEXT K

Lines 130 through 150 can be replaced by a single MAT statement, as
follows.

130 MAT C=ZER(N)

The above MAT statement tells the computer to set C(1) through C(N) to

zero. What is the largest value that N may have?

20, because-the DIM statement (Line 110) specifies 20 as the maximum
possible subscript for C.

30. Here are some additional examples of how to use the MAT ZER state-
ment. In these examples we will omit line numbers.

Instead of LET C(C1)=0 we write: MAT C=ZER(2)
LET C(2)=0

Instead of LET C(C1)=0 we write: MAT C=ZEK(3)
LET C(2)=0
LET C¢3)=0

Instead of LET C(C1)=0 you write:
LET C(2)=0
LET C(3)=0
LET C(4)=0

MAT C=ZER(4)

B i

e S sl e

| g SUBSCRIPTED VARIABLES 193

31. What’s wrong with the following statements?

110 DIM D(4)
120 MAT D=ZER(S5)

\).
i Line 120 tells the computer to set D(1) through D(5) to zero. But
' there can’t be a D(5) because the DIM statement (Line 110) says that
b the maximum possible subscript for D is 4. The computer will print
¢ an error message.
t
' 32. For each of the following, replace the indicated statements by a MAT
ZER statement. (Line numbers are omitted.)
" (a) DIM Z<(T)
LET ZC1)=0
LET Z(2)=0
) LET Z(¢3)=0 replace with:
{
L (b) DIM P(99)
{ FOR J=1 T@ 99
LET PC(J)=0
NEXT J replace with:

(a) MAT Z=ZER(3)
(b) MAT P=ZER(99)

)

194 BASIC

33. Next,the MAT PRINT statement. An example is shown.

10
20
30
40
50
60
70
99

RUN

DIM
LET
LET
LET
LET
LET
MAT
END

ALS]
AlL11=7
AL21=0
A(31=4
AL4)=-3
A[S)=2.3
PRINT A Print the values of A(1) through A(5)

A(3), A(4), A(S)

34. Modify Line 70 so that the computer will print only the values of A(1)
through A(3).

70 MAT PRINT_

NOTE: You don’t need a subscript in a MAT PRINT statement if you wish
the entire list to be printed.

B SRR S S

) SUBSCRIPTED VARIABLES 195
| 35. Suppose we RUN the modified program. What will be printed?
RUN
RUN
i The values of A(1) through A(3) are printed
0
4

f‘ 36. What will be printed if we RUN the following program?

20 MAT B=ZER(4)
30 MAT PRINT B(4)

| 10 DIM B(T)
) 99 END
RUN
!
!

The values of B(1) through B(4) are printed

(o lleNele

196 BASIC

37. Write a MAT PRINT statement to replace the following FOR-NEXT
loop. (Line numbers omitted.)

FOR K=1 TO N

PRINT C(K)
NEXT K Your answer: |

MAT PRINT C(N)

38. Let’s move on to MAT INPUT. (
Instead of INPUT X(1),X(2)

we wrife MAT INPUT X(2)
Instead of INPUT X(1),X(2),X(3)
we write MAT INPUT X(3)

Instead of INPUT XC1),X(2),X(3),XC4),X(5)»X(6),X(7)

you write

_________________________ ‘ |

MAT INPUT X(7)

39. Write a MAT INPUT statement to replace the following FOR-NEXT
loop.

TN el S P QgD e T LIEST |

FOGR J=1 T@ S

INPUT P(S)
NEXT J Your answer: '

MAT INPUT P(S)

.i) SUBSCRIPTED VARIABLES 197

40. This program is designed to input and print a list.

100 REMARK INPUT AND PRINT A LIST
110 DIM X(50)
120 PRINT *'HOW MANY NUMBERS"3:
130 INPUT N
\ 140 PRINT

150 MAT INPUT X(N)

160 PRINT

170 PRINT "HERE ARE Y@UR NUMBERS:"
‘ 180 MAT PRINT X(N)

999 END

y RUN
HOW MANY NUMBERS?5

77+0,4,-3,2.3 We typed all 5 numbers on the same
line with commas between numbers

HERE ARE Y@UR NUMBERS:

7

0

4
-3

2.3

Could the numbers be entered as shown in the following RUN?

) RUN

H2W MANY NUMBERS?S

27

70

74 We pressed RETURN after each number
?-3

?72.3

HERE ARE Y@UR NUMBERS:

7
0

N R N TSGR ———

Yes, the computer will continue typing question marks until N (in this
case, N = 5) numbers have been entered.

D T Ry ST o R e T AZTPRAS. T

)
R e s s R i TR A

198 BASIC

41. All right, science fiction fans. Imagine yourself in a school of the
future, called a “Personalized Instructive Learning Environment™ and located
in your very own electronically comfort-controlled mini-living space in an
over-population urban center. You have just taken the final examination in
a course entitled “Scientific Managerial Cost Effectiveness Procedures in
Development of Electronic Sensing Devices for Bio-chemical Analysis
Techniques 186.37," usually abbreviated to SMCEPDESDBCAT.
Your P.I.L.E. includes a computer terminal. A program in the com-
puter’s memory can score the multiple-guess exam you have just taken.
Here is how you use the program. ‘

RUN

YOUR ANSWERS?3,2,4,1,4,2,1,4 Your exam answers (
YOUR SC@RE IS 7

YOUR ANSWERS?3
71 !
23

74 Someone else’s answers
24

22

3

274

YOUR SCORE IS 5

™ P

YBUR ANSWERS?4,3,3
21,2

74,3,2

YBUR SC@RE IS 2 4

YBUR ANSWERS?

4
Now we shall allow you to write the program, under the gentle guidance
of your (by now) beloved authors — Albrecht, Brown, and Finkel.
First write a DIM statement as Line 110 that will allow the program to]}
compare up to 100 correct answers, to be stored by subscripted variable C,
with an equal number of student answers, to be stored by subscripted *
variable A. t

100 REMARK TEST SCORING PROGRAM

100 REMARK TEST SC@ORING PROGRAM
110 DIM CC100),AC100)

Note: You can DIMension more than one array in one DIM statement.

SUBSCRIPTED VARIABLES 199

42. The number (N) of items in the exam, and the correct answers for the
exam are stored in DATA statements.

900 REMARK VALUE @F N AND C(1) THRU C(N)
910 DATA 8

920 DATA 3,253:154,2,1:4

999 END

With that information, you can now write two statements to complete this
section of the program: one to assign a value to N, the number of items in
the exam, and the other to assign all the exam answers to subscripted
variable C. Line 220 should be a MAT READ statement. Can you figure out
how it should look?

43.

200 REMARK READ CORRECT ANSWERS INT@ C(1) THRU C(N)

210

220

200 REMARK READ CORRECT ANSWERS INT@ CC1) THRU C(N)
210 READ N
220 MAT READ C(N)

Look back at the RUN of the program (frame 41); then complete this

section of the program:

300 REMARK INPUT STUDENT'S ANSWERS, A(C1) THRU A(N)

310

320

300 REMARK INPUT STUDENT'S ANSWERS, AC1) THRU A(N)

310 PRINT "YOUR ANSWERS"3
320 MAT INPUT A(N)

200 BASIC

44. Now comes the crucial part. Consider what this section of the program
must accomplish; then complete the program.

400 REMARK C@MPUTE AND PRINT SC@RE

410 LET $=0

420 FeR @=1 To

430 IF THEN 450

440 LET S=

450 NEXT

460 PRINT <— Check the RUN
in frame 41

470 PRINT

480 GO T@ 300

400 REMARK COMPUTE AND PRINT SCORE
410 LET S=0

420 FOR @=1 Te N

430 IF AC@)<>C(@) THEN 450

440 LET S=S+1

450 NEXT @ .
460 PRINT "YBUR SC@ORE 1S";3S

470 PRINT

480 GB T@ 300

. — e e— -

——

Y SENE .

-

SUBSCRIPTED VARIABLES 201

The

100
110

200
210
220

300
310
320

400
410
420
430
440
450
460
470
480

900

910
920

999

RUN

completed TEST SCORING PROGRAM is shown below.

REMARK TEST SCORING PROGRAM
DIM CC100),AC100)

REMARK READ CORRECT ANSWERS INT@ CC1) THRU C(N)
READ N
MAT READ C(N)

REMARK INPUT STUDENT'S ANSWEKRS, AC1) THRU ACN)
PRINT "YQUR ANSWERS'3
MAT INPUT ACN)

REMARK COMPUTE AND PRINT SCORE
LET S=0

FOR G=1 T N

IF A(0)<>C(@) THEN 450

LET S=S+1

NEXT @

PRINT "“YOUR SCORE IS5'"3S

PRINT

Ge Te 300

REMARK VALUE @F N AND CC1) THRU C(N)
DATA 8

DATA 3,2,3,1,4,2,1,4

END

YOUR ANSWERS?3,2,4,1,4,2,1,4
YGUR SCERE 1S 7

202 BASIC 0 '

SELF-TEST

So much for science fiction. Back to reality. If you can complete the Self-
Test on subscripted variables, you will be ready for the next chapter, which
will expand your programming ability to include the use of more complex
subscripted variables. Therefore, it is important that you have the informa-
tion in this chapter well in hand.

1. Which of the following are legal BASIC subscripted variables?

(a) X (b) X2 (c) X(2) (d) 2(X)

(&) XX(2) () X(K) (8) X, (h) X(I-J)
2. For each of the following subscripted variables, write the subscript

separately.

(@) C(3) subscript is

(b) Q(A2) subscript is

(c) S(2*B+(C) subscript is

(d) W(INT(10*RND(0)) + 1) subscript is }
3. In 2(d) above, what are the possible values for the subscript of W? .

4. Assume that values have been assigned to variables as shown below.

Note that both simple and subscripted variables are shown. 1
Q 2 A(l)l 37 t
3 A(2) E
1
Al 1 A(3) 23
A(4) 19 :

Remember, A, A1, and A(1) are distinct variables. Write the value of p
each variable below,

@ A@)=_ - oS (b) A(A)=
(¢ AAD)= (d) AA(2)=
(e) A(A(Q))=

SELF-TEST 203

5. What will be printed if we RUN the following program?

100
110
120
130
140
150
160
170
180
900
910
920
999

REMARK MYSTERY PROGRAM
READ N

FBR K=1 T N

READ X(K)

NEXT K

FOR K=1 T@ N

IF X(K)<0 THEN 180
PRINT X(K)3

NEXT K

REMARK VALUES OF N AND X(1) THRU X(N)
DATA 7

DATA 235,-44,37,05,-12,~-58,87

END

6. There is no DIM statement in the preceding program (question 5).
Therefore, what is the largest value of N for which the program can be

used?

What would happen if we tried to RUN the

program using the following DATA?

910 DATA 12
920 DATA 3565-250592057535-5545-157

7. Modify the vote-counting program of frame 23 so that the total votes
(for both candidates) are also printed. The printout might look like

this:

RUN

SAM SM@OTHE: 19
GABBY GRUFF: 16

TOTAL VOTES: 35

204 BASIC ﬁ)

8. Modify the vote-counting program of frame 23 so that the printout is
% of total votes, rounded to the nearest whole number %.

RUN

SAM SMOOTHE: 54 2
GABBY GRUFF: 46 %

9. Modify the vote-counting program (our answer for frame 28) so that
results are printed in % of total votes, rounded to the nearest whole
number %.

Example: N =2 Example: N =3

RUN RUN

ANSWER #1: 54 % ANSWER #1: 49 2
ANSWER #2: 46 % ANSWER #2: 32 %

ANSWER #3: 19 2%

10. Replace each FOR-NEXT loop below with one or more MAT ZERO
statements. (Line numbers omitted.)

FOR-NEXT Loop MAT ZERO Statement ?
(a) F@R A=1 T@ Q@+1

LET PCA)Y=0 '

NEXT A ¢
(b) F@R J=1 T@ S

LET ACJ)=0

LET B(J)=0 Y

NEXT J

SELF-TEST 205

11. Show the printout if we RUN each program.

" PROGRAM A

10 DIM NIS)
20 FOR 1I=1 T0 5
30 LET NC{I)=I

40 NEXT I
SO MAT PRINT N
99 END

PROGRAM B

10 DIM WIB]

20 LET wl11l=2
30 FOR P=2 TG 8

40
S0
60
99

LET WLPJ)=2%W[(P~-1]

NEXT P
MAT PRINT W
END

12. Use a MAT INPUT statement in a program to input a list of numbers,
then find and print the largest number in the list. A RUN might look

!)) like this:
] RUN

HOW MANY NUMBERS? 7

WHAT ARE THE NUMBERS? 57,43,75,82,51,68,73
THE LARGEST NUMBER IS 82

! BONUS PROBLEM. Your boss gives you a series of values that represent

sales figures from five (5) geographic sales territories across the United

States. Each piece of data is two numbers: The sales territory and the dollar

' amount of the sales. (eg: DATA 1, 4000, 5, 2500, 3, 6000, 1, 2500.)

. use a single array in your solution.

TERRITORY TO@TAL SALES

1 7500
2 6000
3 3200
4 7200
5 1800
S 25700

Write a program to prepare a report like the one shown below. Be sure to

(the total is a SUPER bonus addition)

206

BASIC

Answers to Self-Test

The frame numbers in parenthe
the topic is discussed. You may

2

(c), (f), and (h) are legal subscripted variables. (frame 1)

(a) 3 (frame 1)
(b) A2

(¢c) 2*B+C

(d) INT(10*RND(0)) + 1

1,2,3,4,5,6,7,8,9,and 10 are possible values. (frame 1)

(a) 4 (b) 23
(c) 37 d) 19 A(A2)=A@4)=19
(e) 19 A(A(Q)=A(A2) = A(4)= 19

(frames 2 and 3)

RUN (frames 7 and 8)
23 37 0 87

10 (frame 10)
The computer would print an error message. Our computer printed:

SUBSCRIPT ERRGR AT LINE 130
Add the following statements. (frame 23)

330 PRINT
340 PRINT "TOTAL VBTES:"3CC1)+Cc(2)

Beginning at Line 310, make these changes. (Chapter S, frame 48 and
Chapter 6, frame 23)
310 LET T=C(1)+Cc2)
320 LET S=INTC100%CC1)/T + «5)
330 LET G=INTC100*C(2)/T + .5)
340 PRINT "“SAM SMOBTHE:*"3S3"%"
350 PRINT "GABBY GRUFF:"3G3"g"

ses refer to the frames in the chapter where
7 wish to refer back to these for quick review,

SELF-TEST 207

Someone else did it like this:

205 LET T=0
235 LET T=T+1
310 PRINT "SAM SME@THE: "3 INTC100%C(1)/T++5)3"%"

320 PRINT "GABBY GRUFF:'3 INTC100*%C(2)/T++5)3"%"

9. Our modifications:

(Chapter 5, frame 4, and chapter 6, frame 28)

300
310
320
330
340
400
410
420
430
500
510
520
530

REMARK C@MPUTE TOTAL FOR ALL QUESTIONS
LET T=0

FeR K=1 T@ N

LET T=7+CL[K]

NEXT K

REMARK CONVERT CC1) THRU C(N) T@ %
FOR K=1 T@ N

LET CCKI=INTC100%CLKI/T+.5)

NEXT K

REMARK PRINT RESULTS

FOR K=1 TO N

PRINT “ANSWER #"3X3'":"3CCKI13"2"
NEXT K

Super programmer strikes again! He did it like this:

205 LET T=0
235 LET T=T+1
320 PRINT "ANSWER V3K S INTCI00%CCKI/ T+ 523 "R"

10. (a) MAT P=ZER(Q+1) (frame 29)

(b) MAT A=ZER(S)
MAT B=ZER(S)

11. PROGRAM A

RUN

(S0 S AN VR

PROGRAMB (frames 33, 34, 35, 36) |
RUN

2 !
4

8

16

32

64

208

BASIC

12.

We did it like this:

100
110
120
130
140
150
160
170
180
190
200
210
999

(frames 39 and 40)

REMARK PROGRAM T@ FIND LARGEST NUMBER

DIM XC1003

PRINT "How MANY NUMBERS";
INPUT N

PRINT "WHAT ARE THE NUMBERS";
MAT INPUT XIN)

LET L=X(1)

FOR K=2 To N

IF L >= XCKJ THEN 200

LET L=X[K)

NEXT Kk

PRINT "'THE LARGEST NUMBER IS"sL
END

PP o4

CHAPTER SEVEN

Double Subscripts

In the previous chapter you learned to use

DIM

MAT ZERO
MAT PRINT
MAT INPUT
MAT READ

for writing programs using single-subscripted variables. Now we will extend
the use of these BASIC statements to variables with fwo subscripts. Double-
subscripted variables are used to represent matrices or arrays of numbers
with several columns and rows; a table of numbers is an example of such a
matrix.

209

210 BASIC

. In Chapter Six. we described subscripted variables such as X(7) and
T(K). These are singly-subscripted variables. That is, each variable has
exactly one subscript.

X(7) T(K)
f t
One subscript One subscript

In this chapter, we will use ¢/uu/’/1'-w/>s'c'ri/f/m/ variables, variables that
have rwo subscripts.

T(2,3)
t/

Two subscripts. The subscripts
are separated by a comma

T(3)isa subscripted variable with S subscript(s).
(How many?)

T(7,5) isa subscripted variable with __Subscript(s).

(How many?)

2. It is convenient to think of douhly-subscripted variables arranged in an
array of rows and columns, as shown below.

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4

ROW 1 A(1,1) A(12) A(1.3) A(1.4) ?
ROW 2 A(2,1) A(2,2) A(2.3) A(2,4) ,
ROW 3 A(3.1) A(3,2) A(3.3) A(3.4)

The above array has rows and columns,

LI

(0

DOUBLE SUBSCRIPTS 211

3. With the arrangement shown in frame 2, we can relate subscripts to
particular places (locations, or “boxes” for values) in rows and columns.
For example:

A(2.3)

Row
Column

A(1,1)isinrow 1, column 1. A(1,2) is in row 1, column 2. What subscripted

variable is in row 3, column 2?

4. The rectangular arrangement of doubly-subscripted variables shown in
frame 2 is called a rable, or matrix, or two-dimensional array.

In Chapter Six we described arrays of singly-subscripted variables called
lists, or vectors, or one-dimensional arrays.

This is a list: X(1) X(2) X(3)

Thisisa table: C(1,1) C(1,2) C(1,3)
€218 (2.2 C(2,3)
@B €3B2) C(3:3)

A list is also called a ora and
a table is also called a _ OEa’ i

vector

one-dimensional array (one subscript)

matrix

two-dimensional array (two subscripts)

212 BASIC

le is simply the name of a location in the

it A doubly-subscripted variab
a place to store a number. Here isa

computer; you can think of it as a box.
table (matrix, array) of doubly-subscripted variables.

B(1.,1) EB(I..‘) [:BH.R) E
L ey o Thses (TS

B(2.1) B(2.,2) B(2.,3)

Pretend you are the computerand LET B(2,1) = 73

In other words, take pencil in hand and write the number 73 in the box

labelled B(2,1). Then do the following:

LET B(1,3)=0

LET BC1,1)=49

LET B(2,3)=B(2,1) - BC1,1)
LET B(1,2)=2%B(2,1)

LET B(2:2)=INT(B(2:])/5(2,3))

BLD | 49 [Ba2 [446 [ea]

The subscripted variable P(R,C) has

6. The subscripts can be variables.
variable subscripts.

If R=1and C=2 then P(R,C) is P(1,2)
IfR=4and C = 3 then P(R,C) is P(4,3)

IfR=7and C=5 then P(R,C) is

D DOUBLE SUBSCRIPTS 213

7. Let’s assume that the following values (in the boxes) have been assigned
to the corresponding variables. Note that there are both simple and sub-
scripted variables.

(9]

T(1,1) |0 2) 0 | TA,3) | —-12

T(2,1) 9 | T2,2) 5 | T2,3) 8

FAeTeS:1) 16 | T(3,2) 135 1 T(EE:3) 10

o o» Qs
(5%)

Write the value of each variable below:

@) T2,3)= (b) T(1,1)=
= A:
= TOAA) = 8 an
T(RC) = T(B,R) =
T(A B) = T(R,A)= __
) T(R+1,C-2)= _
(a) 8 (b) 7
2 1
3 7
8 5
0 9
16 T(R+1,C-2)=T(2+1,3-2)=T(3,1)

8. Election time again. (Before starting on this, you may wish 1o review
frames 21 — 26 of Chapter Six.)
The questionnaire below requires two answers.

[Q1. Who will you vote for in the coming election? Circle
the number to the left of your choice.

" Sam Smoothe
2. Gabby Gruff
3. No Opinion

Q2. What age group are you in? Circle the number to the
left of your age group.

1. Under 30
2. 30 or over

Since there are two questions, each reply consists of two numbers
answer to question 1 and the answer to question 2. We will use V to

represent the answer to question 1 and A to represent the answer to
question 2.

the

V,A
/ o
Answer to question 1 (V for VOTE) (

Answer to question 2 (A for AGE GROUP) ;

The possible values of V are 1,2, or 3. What are the possible values of A? A
or ‘

9. We sent out some questionnaires. Some typical replies are shown below. !
REPLY MEANING {

1.1 one vote for Sam Smoothe, voter is under 30 T
1,2 one vote for Sam Smoothe, voter 30 or over
3,1 no opinion, voter is under 30

What does the reply 2.2 mean?

A vote for Gabby Gruff, voter is 30 or over.

L

e R SRS A RN S

DOUBLE SUBSCRIPTS 215

10. We want to write a program to summarize data for a two-question ques-
tionnaire. We will use subscripted variables to count votes as shown below.

SAM SMOOTHE C(1,1)
GABBY GRUFF C(2,1)

NO OPINION C(3,1)

UNDER 30

C(1,2)
C(2,2)

C(3,2)

30 OR OVER

In other words, C(1.1) will hold the count for Sam Smoothe by people under
30. C(1.2) will hold the total for Sam Smoothe by people 30 or over. C(2,1)

will hold the total for

by people

What subscripted variable will hold the NO OPINION count for people 30

OR OVER?

GABBY GRUFF
UNDER 30
C(3,2)

216 BASIC

—

11. Here are 29 replies to our questionnaire. Remember, each reply isa
pair of number and represents one vote. The first number of each pair is
the answer to question 1. The second number of each pair is the answer

to question 2.

341 2,2 3,2 1,2 1,2 2,1
2,2 1,1 1,2 3,1 3,2 2,2
341 2.1 2,2 1,1 1,1 1,2
1,1 2,1 2,1 1,2 2,1 3,1
2,1 3.1 2,1 3,1 2.2
Write the appropriate count in each box below.
UNDER 30 30 OR OVER
SAM SMOOTHE C(1,1) C(1,2)
GABBY GRUFF (C(2,1) C(2,2)
NO OPINION C(3,1) C(3,2)
| ’
c(1,1) 4 C(1,2) 5 (R
C(2,1) 7 C(2,2) 5 1
C(3,1) 6 C(3.2) =L

12. Naturally, we want the computer to do the counting. Below is the
beginning of our program.,

100 REMARK VOTE COUNTINGs..TWQ QUESTI®ONS
110 DIM C(3,2) !

The DIM statement (Line 110) defines an array with at most 3 rows and 2

columns. That is, the DIM statement defines an array of doubly-subscripted Y
variables in which the maximum value of the first subscript is 3 and the

maximum value of the second subscript is 2.

DIM C(3,2)

Maximum value Maximum value
of 1st subscript of 2nd subscript

B N o e TS TR e

DOUBLE SUBSCRIPTS 217

Next, we want to set all counts to zero. That is, we want to assign zero to

((1.1), C(1,2), and so on up to C(3,2). You complete this part of the pro-
gram.

200 REMARK SET ALL COUNTS T@ ZERO

Here are three ways to do it!
METHOD 1 METHOD 2

210 LET C(1,1)=0 210 F@R K=1 T0 3
220 LET C(1,2)=0 220 LET C(K»1)=0
230 LET C(2,1)=0 230 LET C(K,2)>=0
240 LET C(¢2,2)=0 240 NEXT K
250 LET C(3,1)=0

3 260 LET C(3,2)=0

METHOD 3 We will use METHOD 3 because it is easily

generalized to arrays of different sizes. We
2‘22 :22 t':: ::_g g can add more rows by changing Line 210,
=

more columns by changing Line 220. (Of
230 LET C(K,L)>=0

course, we would also have to change the
240 NEXT L DIM statement)

250 NEXT K

1)

13. The array is now set up. Next, let’s READ and count the votes.

300 REMARK READ AND COUNT VOTES

310 READ V,A
320 IF V=-1 THEN 400

330 LET C(V,A)=C(V,A)+]! <*— (rucial vote-counting statement

340 Go T@e 310

Since Line 310 is a READ statement. there must be some DATA statements
somewhere. Here they are, featuring the data from frame 11.

900 REMARK VBTE AND AGE~-GROUP DATA C(FLAG = =1,-1)
910 DATA 3,1, 2,2, 3,2, 1,2, 1,2, 2,1
920 DATA 2,52, 1s1s 1,2, 351, 3,2, 2,2
930 DATA 3,1, 2515 2,2, 11, 1,1, 1,2
940 DATA 1,51, 2,15 2,1, 1.2, 2,15 3,1

950 DATA 251, 351, 2,1, 3,1, 2,2,

ot FRJ |

Remember, each reply is a pair of numbers representing one vote. To emphasize
this, we have typed a space after each reply in the DATA statements above.

Why is the flag —1,—1 instead of just —1?

If the computer could not find a value for READ variable A (Line 310).
it would print a data error message and stop.

A e

P .

r—+

DOUBLE SUBSCRIPTS 219,

14. Only one task remains — print the results! For the data shown in frame
13. the results should look like the following:

RUN

CANDIDATE UNDER 30 30 @K OVEK
SAM SMO@THE “ S

GABBY GRUFF U S

NG @PINION 6 2

You do it. Complete the program segment o print the results C(1,1), C(1,2),
and so on, as shown above.

400 REMARK PRINT THE RESULTS |

We did it like this:

400 REMARK PRINT THE RESULTS

410 PRINT “CANDIDATE" " UNDER 30","30 @R @VER"
420 PRINT

430 PRINT "SAM SMR@THE",CC121),C(1,2)

440 PRINT "GABBY GRUFF",C(2,1),C(2,2)

450 PRINT "'NO @PINION",C(3,1),C(3,2)

220 BASIC

15. Here is the complete vote-counting program, except for data.

100 REMARK VOTE COUNTING++«.TW@ QUESTIGNS
110 DIM C(3,2)

200 REMARK SET ALL CRUNTS 7@ ZERe®

210 FOR K=1 T8 3

220 F@R L=1 Te 2

230 LET C(K,L)=0 NOTE: When you LIST a
240 NEXT L program your computer
250 NEXT K

may print [] instead of
300 REMARK READ AND C@UNT VBTES (). It's all the same so
310 READ V,A ;

320 IF Vs=1 THEN 400 let’s not worry about it
330 LET C(V,A)=C(V,A)+]

340 G@ T@ 310

400 REMARK PRINT THE RESULTS

410 PRINT "CANDIDATE'","UNDER 30%",'"30 @R @VEKR"

420 PRINT

430 PRINT "SAM SMBOTHE"™,C(1.,1),CC1,2)

440 PRINT "GABBY GRUFF",C(2,1),C(2,2)

450 PRINT "NO GPINION"5C(3,1),C(3,2)

Suppose the questionnaire had been the following:

Q1. Who will you vote for in the coming election? Circle
the number to the left of your choice.
1. Sam Smoothe
2. Gabby Gruff
3. No Opinion
Q2. What is your political affiliation? Circle the number
to the left of your answer.
1. Democrat
2. Republican
3. Other

CANDIDATE DEMOCRAT REPUBLICAN OTHER

SAM SMOOTHE C(1,1) C(1,2) C(1,3)
GABBY GRUFF C(2,1) C(2,2) C(2,3)
NO OPINION C(3,1) C(3,2) C(3,3)

Modify the vote-counting program so'that answers are counted as follows:

(1)

- DOUBLE SUBSCRIPTS 221

You will have to change Lines 110, 220, 410, 430, 440, and 450.
110

220
410
430
440
450

110 DIM C(€3,3)

220 FOR L=1 TO 3

410 PRINT “CAND]DATE"o“DEMGCRAT“p"REPUBLlCAN"n"OTHER"
430 PRINT “'SAM SMOGTHE"-C(l,I)aC(l;Q);C(\p3)

440 PRINT “'GABBY GRUPF";C(251)pC(2n2)oC(2:3)

A50 PRINT "'NO OPXNIQN":C(S:I)pC(3:2).C(3:3>

Note. Even though we changed the questionnaire, We did not have to change
the crucial vote-counting statement (line 330).

222 BASIC

16. In Chapter Six, we described some of the MAT statements as they are
used with lists (one-dimensional arrays). The MAT statements can also be

used with tables (two-dimensional arrays). For example, in the program in
frame 15 we can replace Lines 210 through 250 with a single MAT ZERO

statement.

MAT C=ZER(3,2)

The above MAT statement causes the computer to set up a zero matrix
with 3 rows and 2 columns, like this:

c(1,1) 0 |ca2 0
c2,1) 0 |ieces 0
C(3,1) 0 |ca2 0

The statement MAT Z=ZER(2,5)
sets up a zero matrix Z with 2 rows and 5 columns.
The statement MAT T=ZER(25, 4)

sets up a zero matrix T with rows and columns.

17. Write a MAT statement to set up a zero matrix B with 7 rows and 13
columns.

MAT B=ZER(7,13)

NOTE: MAT ZERO establishes the “working” dimensions of the matrix.
However, the program must have an appropriate DIM statement preceding
the MAT ZERQO statement.

DOUBLE SUBSCRIPTS 223

18. Write a MAT statement to set up a zero matrix D with M rows and N
columns.

MAT D=ZER(M,N)

19. This complete program sets up a zero matrix with M rows and N
columns and then prints the zero matrix.

100 REMARK PROGRAM TO SET UP AND PRINT M BY N ZERO MATRIX
110 DIM T€10,10)
120 PRINT "1 WILL SET UP AND PRINT A ZER® MATRIX FER YOU."
130 PRINT
140 PRINT *"HEW MANY ROWS'"3
150 INPUT M
160 PRINT "HOW MANY COLUMNS'3
170 INPUT N
I 180 PRINT
190 MAT T=ZER(M,N)
200 PRINT '"HERE 15 YOUR™3M3 "BY" 3sN3“ZEKO MATRIX:1"
210 PRINT
220 MAT PRINT T

. 999 END |
|

: Line 190 tells the computer to set up a zero matrix called T with M rows
and N columns. How does the computer get the values of M and N?

’ The values of M and N are entered by the user at RUN time as directed
i by Lines 150 and 170.

224 BASIC

20. In frame 19, the statement
220 MAT PRINT T

tells the computer to print a matrix T. The printed matrix will have M rows

and N columns. Why? el el

The number of rows and columns is originally dimensioned by the DIM
statement, Line 110. However, Line 190 redimensions the matrix to
have M rows and N columns.

21. Let’s look at an actual RUN of the program in frame 19.

RUN
1 WILL SET UP AND PRINT A ZER® MATRIX FOR Y@U.

HOW MANY R@WS?3
HeW MANY COLUMNS?4

HERE 1S YOUR 3 BY 4 ZER@ MATRIX:

0 0 o (¢} Each row ison
a separate line
0 0 (4] 0 e

0 0 0 0

The computer printed a zero matrix with 3 rows and 4 columns because the

user entered as the value of M and 4 as the value of

B

' spaces between rows.

')

————

' DOUBLE SUBSCRIPTS 225
72. Here is another RUN.

RUN

§ WILL SET UP AND PRINT A ZER@ MATRIX FOR Y@U.

HOW MANY ROWS?3

HOW MANY COLUMNS?8

HERE 1S YOUR 3 BY 8 ZER® MATRIX®

0 0 0 0 0
0 0 0

0 (V) 0 0 0
0 0 0

() 0 0 0 0
0 0 0

The computer prints up 10 5 numbers per line. Since each row of this matrix

O i numbers, the computer couldn’t print the entire row on one
line. Instead, it printed each row 0

n two lines, with numbers on the

first line and _ ~__numbers on the second line. Note that it double

8 Since the matrix has 8 columns, each row has 8 numbers
5

w

226 BASIC

What happened? (If you need a hint, check the program in frame

23. One more RUN.

RUN
I WILL SET UP AND PRINT A ZER@ MATRIX FOR Y@U.

HOW MANY ROWS?12
HOW MANY COLUMNS?4

SUBSCRIPT ERR@GR AT LINE 190

19.)

The DIM statement in the program defines T as a matrix with at most
10 rows and at most 10 columns. Therefore, we cannot ask the com-
puter for a matrix with 12 rows. (Unless, of course, we first change

the DIM statement.)

Let’s change the MAT PRINT statement (Line 220, frame 19) as follows:

220 MAT PRINT T3 = Note the semicolon

With this change, here is another RUN of the program.
RUN
I WILL SET UP AND PRINT A ZER@ MATRIX FOR YOU.

HOW MANY ROWS?3
HOW MANY COLUMNS?8

HERE IS YOUR 3 BY 8 ZER® MATRIX:
O 0 9.0 -0 6 040
0 0 08")0 -TN0I0LE0

(o YO < S 5 J o MR ¢ /TR0l

-

T R WS

What is the effect of this change? I L i

The semicolon following T causes the computer to print numbers more

closely together. (Compare with frame 22.)

25. Suppose we RUN the following program:

10 DIM AL2,3]

20 FOR R=1 T0 2
30 F@R C=1 TO 3
40 LET ACR,C1=R+C

S0 NEXT C

60 NEXT R

70 MAT PRINT A3
99 END

What will be printed?

{

' RUN

L§ 2 3 4
’

‘,‘ 3 “)

O

228 BASIC

26. Let’s change Line 40 as follows:
4 LET A(R,C)=Rx*C

If we now RUN the program, what will be printed?

RUN
1 2 3
2 4 6

27. Let’s change Line 40 again.
40 LET A(RsC)=10%R+C ‘ \

Now, if we RUN the program, what will be printed?

RUN
(
11 12 13 The number in a given row and column is 10 times)
the row number plus the column number. Keep in {
21 22 23 mind the order in which the computer performs 4
!

the arithmetic functions

T e R D e e N e

. DOUBLE SUBSCRIPTS 229

28. We have used MAT ZER and MAT PRINT. Let’s take a look at MAT
READ and MAT INPUT. First, MAT INPUT.

10 DIM AL2,3]
20 MAT INPUT AL2,3)

30 PRINT

4 MAT PRINT A3
99 END

RUN

27,053 = Enter ROW 1
2225451 = Enter ROW 2

7 0 3

2 gl 1

Could we have entered both rows in response to the first question mark as
shown below?

g 27:0532254,51

Yes, as long as the computer receives 6 (2 x 3= 6) numbers for the
matrix. We could also enter each number on one line (by pressing

RETURN). The computer would simply keep typing question marks
until all 6 numbers had been entered.

230 BASIC

110 DIM A[20,201]

29. Complete the following program [0 input and print an M by
(M rows, N columns).

“HOW MANY ROWS'3

M

"HOW MANY COLUMNS"})

N

“"PLEASE ENTER YOUR MATRIX."

"HERE IS YGUR MATRIX:"

|
!

N matrix

|
100 REMARK PRBGRAM TO INPUT AND PRINT AN M BY N MATRIX \

120 PRINT
130 INPUT
140 PRINT
150 INPUT
160 PRINT
170 PRINT
180 PRINT
190

200 PRINT
210 PRINT
220 PRINT
230

999 END

are the scores:

Student 1
Student 2
Student 3
Student 4
Student 5
Student 6
Student 7
Student 8

190 MAT INPUT ACM,N)
230 MAT PRINT A Or

QuUIZ 1

65
80
78
45
83
70
98
85

230 MAT PRINT A3 C

30. In a small class of 8 students, each student has taken 4 quizzes. Here

Quiz2 QuIZ3

57 7
91
82 77
44
82 79
83
92 100
73 80

QuIZ 4 |

75
88
86
46
85
59
97
77

F S e e e N T e 1

D ' DOUBLE SUBSCRIPTS 231

Let S(1,)) be the score obtained by student [on quiz J. S(5,2) is the |

score obtained by student _ on quiz . What is the value of

Y. -

wn

o0 o
(89]

31. Another class might have 30 students and 5 quizzes per student. Still
another class might have 23 students and 7 quizzes per student, and so on.
Let’s begin a program to read a matrix of scores for N students and Q quizzes

per student.

100 REMARK QUIZ-SCORE PROGRAM
110 DIM S(50,101

The DIM statement permits up to students and up to

’) quizzes.

32. Next. we want to read the values of N and Q for a particular set of
scores — in this case, the scores shown in frame 30. For this set of scores

i - .

the value of N (number of students) is _ __and the value of Q (number

of quizzes) is

——

0

R A

232 BASIC

33. We will put the values of N and Q and the scores in DATA statements.
Now the program looks like this.

100 REMARK QUIZ-SCORE PROGRAM
110 DIM S[50,10)

900 REMARK VALUES @F N AND @ FOLLOWED BY SCORES
905 DATA 8,4 -————— ValuesofN,Q

911 DATA 65557571575

912 DATA 80,90,91,88 \

913 DATA 78,82,77,86 N by Q array of quiz

914 DATA 45,38,44,46 scores from frame 30

915 DATA 83,82,79,85

916 DATA 70,68,83,59

917 DATA 98,92,100,97
918 DATA 855,73,80,77
999 END <«+—— \\e also added an END statement

Your turn. Complete Line 120, below, to READ the values of N and Q.
120

120 READ N»@ (That’s all there is to it!)

34. The values of N and Q read by Line 120 (in frame 33) will be read from C

which DATA statement? Line

35. Next, let’s read the N by Q array of scores.
130 MAT READ S(N»Q)

This MAT READ statement tells the computer to read an N by Q array.

That is, it tells the computer to read a matrix with rows and
__ columns.

N (Remember, the values of N and Q are read by Line 120.)
Q

DOUBLE SUBSCRIPTS 233

36. The numerical values read by Line 130 are stored in the DATA state-

ments, Lines through

37. Now that we have the matrix in the computer, what shall we do with it?
One thing someone might want is the average for each student. Let’sdo it,
beginning at Line 200.

200 REMARK C@MPUTE AND PRINT AVERAGES FOR ALL STUDENTS
210 PRINT "STUDENT #",'AVERAGE"
220 FOR I=1 T@ N

230 LET T=0 Compute total of all
240 FOR J=1 T0 @ scores for student
250 LET T=T+S(1,J)

260 NEXT J

270 LET A=T/@ -e—— Compute average for student |

280 PRINT I1,A <—— Print student number and average
290 NEXT I

Lines 230 through 280 are done for each student. That is, for I =1, then
I=2,and soonuptoI=N. ForI=1, what is the value of T computed by

Lines 230 through 260? T=

268 This is the sum of the 4 scores for student 1. Remember, Q = 4.
Therefore, Line 250 will be done forJ=1,J=2,J=3and] =4.

38. For =1, what is the value of A computed by Line 270?
A=T/Q=

67 (A=T/Q=268/4=67)

234 BASIC

39. Here is the complete program and a RUN.

100 REMARK QUIZ SCORE PROGRAM
110 DIM S¢50,10)

120 READ N»@

130 MAT READ S(N»,0)

200 REMARK C@OMPUTE AND PRINT AVERAGES FOR ALL STUDENTS
210 PRINT "STUDENT #'","AVERAGE"
220 FOR I=1 TO N

230 LET T=0

240 FOR J=1 TO ©

250 LET T=T+S(1,J)

260 NEXT J

270 LET A=T/@

280 PRINT I,A

290 NEXT I

900 REMARK VALUES OF N AND @ FOLLOWED BY SCORES
905 DATA 8,4

911 DATA 65,57,71,75
912 DATA 80,90,91,88
913 DATA 78,82,77.,86
914 DATA 45,38,44,46
915 DATA 83,82,79,85
916 DATA 70,68,83,59
917 DATA 98,92,100,97
918 DATA 85,73,80,77
999 END

RUN

STUDENT # AVERAGE
67

87.25
B0.75
43.25
B2.25
70

96475
78.75

RO UD WN -

Your turn. Beginning with Line 300 write a program segment to compute
and print the average SCORE for each quiz. For the data used in the program
the results might look like this: |

RUN

eulz # AVERAGE '
755

7275
78.125
76+625

b WN=-

' ’ DOUBLE SUBSCRIPTS 235

Your program segment:

300 REMARK COMPUTE AND PRINT AVERAGES OF ALL QUIZZES
310 PRINT "QUIZ #","AVERAGE"

320 FOR J=1 TO ©

330 LET T=0

340 FOR I=1 T@ N

350 LET T=T+5(1,J)

360 NEXT 1

370 LET A=T/N

380 PRINT JsA
)] 390 NEXT J

236 BASIC

—_———ﬁ

40. Just suppose a bunch of students take a multiple-guess quiz, 10 ques-
tions with 4 possible answers per question. We want to know how many
students gave answer number 1 to question number 1, how many gave ans-

wer number 2 to question number 1 and so on.

Here are the answers given by 7 students. Each set of answers is in a
DATA statement. The last DATA statement is a “fictitious student” and

really means “end of data.”

911 DATA 2,351515152,4535451
912 DATA 2,3,2,45152,4,2,1,1
913 DATA 2,35351515453,354,51
914 DATA 3,2,4515152,35354,1
915 DATA 25354515153545354,51
916 DATA 2515253515254,3,4,2

917 DATA 35451515154,3,1,4,2

In each line of data, the first

number is the answer to ques-

tion 1, the second number is
the answer to question 2, and
SO on

918 DATA ~1,050,0,05050,05050 “Fictitious student”

Student 1 (Line 911) gave answer | to question 3,

Student 5 (Line 915) gave answer to question 9.

Student 7 (Line 917) gave answer ___to question 1.

41. Complete the following table showing the number of students giving

each answer (1, 2, 3, 4) to questions 1,2, and 3.

ANSWER 1 ANSWER 2 ANSWER 3 ANSWER 4

QUESTION 1 0 5 2 0
QUESTION 2 1 1
QUESTION 3

4 1

o
o
o

= e e e

0

_—— e -

e e

DOUBLE SUBSCRIPTS 237

42. Inframe 41, with your help, we have shown how the seven students
answered the first 3 questions. The totals look like a 3 by 4 matrix. If we
had continued for all 10 questions the totals would have looked like a

by 4 matrix.

43. So inside the computer, let’s define a matrix T with 10 rows and 4
columns to hold the totals. Complete the following DIM statement.

100 REMARK QUIZ ANALYSIS PROGRAM

110 DIM

T(10,4)

44. For each student there are 10 answers. Let’s define a list of answers
A(1) through A(10). Complete the following DIM statement.

120 DIM

238 BASIC * N '

45. But we can save space by combining the two DIM statements into ope
DIM statement.

110 DIM TC10,4),AC10)

The above DIM statement definesa called T with at
most 10 rows and 4 columnsand a _ called A with at most 10
members.

matrix (or table or two-dimensional array)
list (or vector or one-dimensional array)

Note that a comma is used to separate T(10,3) and A(10).

46. Here is the beginning of a program to read the students’ answers and
compute the totals matrix.

100 REMARK QUIZ ANALYSIS PROGGRAM
110 DIM T(1054),AC10)

-
—

Next, we want to initialize the totals matrix. That is, we want it to be a zero
matrix. Youdo it.

120 REMARK SET ALL TOTALS T@ ZERO
130

MAT T=ZERC(C10,4)

47. Write a MAT statement to read the list A of answers for one student.

140 REMARK READ @NE SET OF ANSWERS !
150

MAT READ A(10)

*) DOUBLE SUBSCRIPTS 239

48. Now. is this a real student or a fictitious student? Recall that a fictitious
student signals end of data. If this is the case we want to print the answers,
beginning with Line 300. Complete the IF statement.

160 REMARK CHECK FOR END OF DATA

170 IF THEN 300

i 49. If the data are for a real student, we want to update the running tally
in the T matrix. We did it this way.
180 REMARK UPDATE THE TOTALS MATRIX
190 FOR Q=1 T@ 10
200 LET T(Q,ACR))I=TC(R,A(Q))+]
210 NEXT @

Here are the answers for one student. These are the values of A(1) through

4 A(10).
2) 2,301, 1, 1,20403045]

Suppose Q = 1. Then A(Q) = and T(Q,A(Q)) is T(; e

T(1:2) (Since Q=1 and A(Q) =2)

. 50. In the above case (frame 49) what happens when the computer obeys

Line 2007

The total in T(1,2) is increased by one. (It’s just like counting votes!)

240 BASIC

51. Since Line 200 is in a FOR-NEXT loop, it will be done for each valye

of Q specified by the FOR statement. That is, it will be done for A = 1,2
3,4,5,6,7,8,9,and 10. When Q = 10, which element of the T matrix is

increased by one? T{(3).

T(10,A(10)) or T(10,1) for the data in frame 49,

52. Let’s move on. After tallying the answers for one student, we want the
computer to return to Line 140 and read another set of answers. (See frame '
47.) (

220 REMARK G@ BACK F@R AN@THER SET @F ANSWERS
230 GO T 140

Then the IF statement (frame 48) is encountered again. The [F statement
causes the computer to £0 to Line 300 if a fictitious student has been read.
In that case, we want to print the results and STOP,

300 REMARK PRINT THE TOTALS MATRIX

310
e PRl e S TG

320 SToP

310 MAT PRINT T or 310 MAT PRINT T3

e W—

DOUBLE SUBSCRIPTS 241

Now put it all together. Ours looks like this.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
300
310
320
900
211

912
913
914
915
916
917
918
999
RUN

O © 9 v n

REMARK QUIZ ANALYSIS PROGRAM
DIM TL(10,4),AC101]

REMARK SET ALL TOTALS T@ ZERO
MAT T=ZER[10,4]

REMARK READ ONE SET OF ANSWERS
MAT READ AL10)

REMARK CHECK FOR END OF DATA
IF AC13)=-1 THEN 300

REMARK UPDATE THE TOTALS MATRIX
FOR @=1 T@ 10

LET TILO,ACLQ))=TLO,AL0)]+]
NEXT @ »

REMARK GO BACK FOR ANOTHER SET OF ANSWERS
GOTO 140

REMARK PRINT THE TOTALS MATRIX
MAT PRINT T

STOP

REMARK STUDENTS' ANSWERS

DATA 2,3,5151,152,4535451

DATA 253,25451525452,51,1

DATA 2535351215453,53,4,1

DATA 3,2545,1515253535451

DATA 253,4,15153,453,4,1

DATA 251:2,351,2,453,4,2

DATA 3,4,151,1,4,351,4,2

DATA ~1,0,0,0,0,0,0,0,0,0

END

S e 0
1 4 1
2 1 2
0 1 1
0 0 0
4 1 2
0 3 4
1 S 0
0 0 6
2 0 0

——ﬁ

242 BASIC q a
(.

SELF-TEST

Good for you! You have reached the Chapter Seven Self-Test. Thc:‘\c prob-
lems will help you review the BASIC instructions you have lcurncq for
dealing with arrays of numbers. using variables with double subscripts,
1. Which of the following are legal BASIC double-subscripted variables?
(@) X2+2) (b) X(5,5) (¢) XI1(100,100)
(d) X(A+B,C) (e) X(X(l 2),, (X(2,1)) () X(A.A)

Questions 2 through 7 refer to the following array, A.

COLUMN 1 COLUMN 2 ‘

ROW 1 1 2 ‘
ROW 2 3 4
ROW 3 5 6

3]

What are the dimensions of A?

—_— |

3. Write a DIMension statement for A, using Line number 100.
100 { -
I (

4. What variable locates the “box™ in row 3, column 2 of A?

5. What is the value of: !
(a) A(lL,1) <Ll (b) A(3,1) i
6. LetX=3,Y=2. Whatis the value of:
(@) A(X.Y) (b) A(X-1,Y-1)
7. What is the value of A(A(1,2), A(2,1) — 1)? M

8. Write a program which uses two FOR-NEXT loops to fill a 10 by 10
matrix (M) with zeros.

SELF-TEST 243

9. Write another program to fill M, a 10 by 10 matrix, with zeros. This
time, use a MAT ZERO instruction instead of the FOR-NEXT loops.

10. Write a program using MAT READ to fill a 4 by 4 matrix C with 1’s.
MAT PRINT the result. A sample RUN might look like:

RUN
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

11. Now write another program to fill matrix C (4 by 4) with 1’s (or any-
thing you want) using MAT INPUT. Print the result.

BONUS PROBLEM. Certain teachers in your school are complaining of grade
deterioration, meaning that some teachers are giving too many A and B grades
and are generally not grading hard enough. You are asked to write a computer
program to prove or disprove this theory. While you are at it, the local chapter
of a Women’s group has asked you to prove that women are being discriminated
against in grading, receiving poorer grades than men, especially in math and
computer science.

The school Registrar provides you with the data you need in DATA statements
as follows: DATA 1,2 2,4 2,2 etc. Where the first item indicates sex
(1=male, 2=female) and the second item indicates the letter grade (1=A, 2=B,
3=C, 4=D, 5=F). You are essentially counting votes. Write your program

so that your report looks like this:

GRADE MALE FEMALE TOTAL

A 35 50 85
B 35 40 75
c 20 20 40
D 30 30 60
F 15 15 30
TO@TAL 135 155 290

244 BASIC

The frame numbers in parentheses refer to the frames in the cha
the topic is discussed. You

12

Answers to Self-Test

pter where
1 may wish to refer back to these for quick review.

(b), (d), (e), and (f) are legal double-subscripted variables. (frames 5
and 6)

2. 3.2 meaning 3 rows, 2 columns. (frames 2,3,and 4)
3. 100 DIM A(3,2) (frame 12)
4. A(3,2) (frames 9, 10,and 11)
So@) il (b) 5 (frame 11)
65+ (a)s6r i(b)" 3 (frame 11)
7. 4 (framell)
8. Here is our program. (frame 12)
10 DIM M[10510) ‘
20 FOR R=1 T@ 10
30 FOR C=1 T@ 10
40 MIR,C1=0
S0 NEXT C
60 NEXT R
99 END
9. Remember the DIM statement. (frames 16,17, and 18)
10 DIM ML10,101]
20 MAT M=ZER
99 END
10. (frames 25 and 26) {

10 DIM CL4,4) '
20 MAT READ C 1
30 MAT PRINT C3 ‘
40 DATA 1515151515151 515151515150515151
99 END

SELF-TEST 245

|' 11. (frames 28 and 29)

! 10
20
30
99

DIM C[4,4)]
MAT INPUT C
MAT PRINT C3
END

CHAPTER EIGHT
Subroutines

We’re about to enter the realm of programs within programs, called
subroutines. Subroutines provide an excellent method for organizing com-
puter programs and help make programs easier to understand by breaking
them down into functional parts — parts that may be reused in other pro-
grams as appropriate.

The format of this chapter is a bit different. If you know some statis-
tics you’ll have an opportunity to practice programming in that field; other-
wise, you can by-pass the programming of statistical concepts and deal just
with organizing programs with subroutines, which is the main concept of
this chapter.

When you finish this chapter, you will be able to design programs in
subroutine format, write appropriate main programs to access subroutines,
and be able to use the following BASIC statements:

GOSUB
RETURN
STOP

1. We’ve shown two computer program building processes. The first
method was analogous to remodeling: the modification of an existing pro-
gram. The second was building a program from the ground up. Now let us
try building with prefabricated parts. This technique is handy for organi-
zing a program according to the function performed by a group of one or
more statements such as the sections of some programs you have seen
earlier.

The prefabricated sections, or groups of statements, are called sub-
routines. The statement that tells a computer to go to a subroutine is,
appropriately enough, the GOSUB statement. Like the GO TO statement,
it is followed by a line number that corresponds to the first statement in
the subroutine.

20 G@BSUB 100 means skip to the subroutine in this program that
has 100 as the line number of its first statement

246

e SRR SRR R T S i

SUBROUTINES 247

)

The last statement in a subroutine is the RETURN statement. It auto-
matically causes the computer to RETURN to the main program, i.e., to the
line number immediately following the GOSUB statement that originally
“called up” the subroutine. For example:

130 RETURN

This demonstration program shows how GOSUB and RETURN state-
ments work.

S REMARK HGW THE GOSUB STATEMENT WBRKS
10 REMARK MAIN PROGRAM

20 GOSUB 100

30 G@SUB 200

| 40 GOSUB 300

S0 PRINT “THIS 1S THE END OF THE MAIN PROGRAM."
60 STeP

100 REMARK SUBROUTINE #1 STARTS HERE
110 PRINT “THIS 1S SUBROUTINE #1 (OR 100)."

120 PRINT
130 RETURN

200 REMARK SUBROUTINE #2 STARTS HERE
210 PRINT "THIS LINE COURTESY OF SUBRGUTINE #2 (@R 200)."

220 PRINT
230 RETURN

) 300 REMARK SUBRGUTINE #3 STARTS HERE
310 PRINT "SUBROUTINE #3 (@R 300 IF YBU PREFER) AT YOQUR SERVICE.™

' 320 PRINT
{ 330 RETURN

RUN

J 999 END
/ THIS 1S SUBROUTINE #1 (OR 100).

1 TH1S LINE COURTESY @F SUBROUTINE #2 (GR 200).
' SUBROUTINE #3 (OR 300 IF YEU PREFER) AT YOUR SERVICE.

THIS IS THE END @F THE MAIN PROGRAM.

Another helpful little statement often used in conjunction with GOSUB
and RETURN is STOP. STOP has been used at the end of the GOSUB sec-
tion of this program (Line 60). If it were not there, the computer would
continue on down the program in line number order and once again process
the subroutines, line by line, just as they appear in the program. To stop
that from happening, a STOP statement is used. It acts like an END state-
ment (but doesn’t replace it). END must appear as the last line of all pro-
grams, and cannot be used anywhere else. STOP may be used whenever

248 BASIC

needed in a program, and, as a general rule, should appear at the end of the
main program, before the subroutines start. In effect, the STOP statement
tells the computer “GO TO END” (on some systems), or “END HERE."
Now examine the program, line by line, and see how it causes the out-
put of the RUN. Asan aid and an exercise, use the following blanks to show
the actual order in which the statements in the program are processed. Place
line numbers in each blank in the order that the computer will process the

program.

5 220 ‘
10 230

20 40

100 300

110 310

120 320

130 330

30 50 ¢
200 60

999 (or not, depending on your system)

) SUBROUTINES 249

2. We have modified a portion of the main program only of the program in
frame 1. Notice how it changes the printout of the RUN.

20 GOSUB 300
30 GOSUB 100
40 GOSUB 200

RUN

SUBRGUTINE #3 (@R 300 IF YOU PREFER) AT YBUR SERVICE.
THIS IS SUBREUTINE #1 (OR 100).
THIS LINE CQURTESY OF SUBROUTINE #2 (@R 200).

THIS IS THE END ©F THE MAIN PROGRAM.

Here is another modification of the main program. What will the computer
type when the program is RUN?

5 REMARK HOW THE G@SUB STATEMENT WORKS

10 REMARK MAIN PROGKRAM

20 GOSubB 100

50 PRINT "THIS IS THE END OF THE MAIN PRGGRAM."
60 STOP

‘) RUN

TH1S 1S SUBROUTINE #1 (OR 100).

THIS 1S THE END OF THE MAIN PROGRAM.

250 BASIC

3. Now try this one. What will the computer print when the program is

RUN?
S REMARK HOW THE GOSUB STATEMENT WORKS
10 REMARK MAIN PROGRAM

20 GosuB 100
30 G@suB 100

40 GOSUB 100 I
S0 PRINT "THIS IS THE END OF THE MAIN PROGRAM.
60 STOP
RUN

_______________ TP = ‘\‘
RUN ‘,

THIS IS SUBRBUTINE #1 (OR 100).
THIS IS SUBROUTINE #1 (OR 100).
THIS IS SUBROUTINE #1 (OR 100).

THE MAIN PROGRAM.

1S THE END @F

)

SUBROUTINES 251

4. Obviously, each of the little subroutines in our example could be
changed or expanded to perform specific duties other than PRINT statements.
In fact. each subroutine could be a complete program itself, to be accessed by
a main program in any order that is convenient to the user and that also
provides the results desired. Below is the TEST-SCORING PROGRAM which
was developed in the last section of Chapter Six. (For a RUN, see Chapter
Six, frame 44).

100 REMARK TEST SCORING PREGRAM
110 DIM CC100),AC100)

200 REMARK READ CORRECT ANSWERS INTO C(1) THRU C(N)
210 READ N
220 MAT READ C(N)

300 REMARK INPUT STUDENT'S ANSWERS» AC1) THRU ACN)D

310 PRINT "YOUR ANSWERS"3
320 MAT INPUT ACN)

400 REMARK COMPUTE AND PRINT SC@RE
410 LET S=0

420 FOR @=1 T@ N

430 IF ACE)<>C(O) THEN 450

440 LET S=5S+1

450 NEXT @

A60 PRINT "YGUR SCORE 1S5"3S

470 PRINT

480 GO Te 300

900 REMARK VALUE OF N AND C(1) THRU CIN)D
910 DATA 8

920 DATA 3,2,3:1,4:25154
999 END

How many times is the section beginning at Line 200 processed when the

program is RUN?

How many times are the sections beginning at Line 300 and 400 processed

when the program is RUN?

one time (or as many times as the user wants to supply INPUT data)
as many times as the user want to supply INPUT data

252 BASIC

5. Asan exercise in the use of GOSUB’s, modify the program in frame 4 to
subroutine format. The main program should include Line 110 DIM as its
first statement. All subroutines should be “called up” by statements in the
main program only. Show your modifications below.

110 DIM CC100),AC100)

120 G@SUB 200
130 GOSUB 300
140 G@SUB 400
150 G@ T@ 130
230 RETURN
330 RETURN

480 RETURN Substitutes for old Line 480, whose function is now
performed by Line 150 in the main program

The next section of this chapter will take you through the process of
assembling a program from subroutine blocks that can perform a variety of
common statistical computations. Using subroutines, the program is con-
veniently organized according to functions performed; that is, each sub-
routine does a particular part of the statistical computations.

The statistical measures to be discussed are: mean, variance, and
standard deviation.

If you are familiar with these statistical measures and wish to sharpen
your programming skills, continue on in this section of text. Otherwise turn
to page 256, frame 10.

In this section you will have the opportunity to develop the computa-
tional subroutines themselves. Perhaps more important, however, you will
gain skill in using subroutines as prefabricated mini (or not so mini) programs
by assembling previously written subroutine units into a complete program.
(To learn or review statistics, we recommend Donald J. Koosis: STATISTICS,
from this same series of Self-Teaching Guides published by John Wiley &
Sons.)

¢

—-——

0)

SUBROUTINES 253

6. The statistical measure used in previous examples in this book is the
average or mean of values or scores obtained through some method of meas-
urement or observation. The mean (referred to in statistics as one measure
of central tendency of the data) is calculated by adding all the values and
dividing that sum by the total number of values. In common statistical nota-
tion, the formula for the mean is:
Greek letter, capital sigma which stands for
/ “the sum of”
n= L. X -e——— The values or scores
f 11 -«——— The number of values or scores

Greek letter mu,
which stands for mean

Each score in a set of scores lies some distance from the computed mean
of the set: some scores may be just at the mean, some higher, some lower.
The variance and its square root, the standard deviation, are measures of the
“average” distance of all the scores in the set from the mean of the set.
Statisticians call these “‘measures of variability (or dispersion).”

This is a computational formula for finding the variance of a set of
scores or values:

“The sum of”
“//The scores or values squared

ol
o? = X uz <— The mean squared

’ n
Greek letter sigma
squared, stands for variance

The standard deviation is the square root of the variance, and in stat-
istical notation looks like this:

[/ 2
g=Jao? = N S E e u2
n

We will use the following BASIC variables in the program:

=n (the number of scores or values)

x (the scores or values)

y (the mean)

vx (the sum or total of scores)

7x2 (the sum or total of each score squared)
o]

o]

N Z

2 (the variance)

M
T
D
\Y
S (the standard deviation)

254 BASIC

So let’s get down to it.
N. T. and D which are needed to calculate the mean
are provided in a DATA statement: /

900 REMARK DATA FOLL@WS. DATA LIST ENDS WITH =1.
910 DATA 75:67'38;89;23'97:75:18:56&37:'|

Begin.

300 REMARK SUBRGUTINE: COMPUTE N» SUM X, SUM X12

300 REMARK SUBROUTINE: C@MPUTE N, SUM X, SUM X2
310 LET N=0

320 LET T=0

330 LET D=0

340 READ X

350 IF X<0 THEN 399
360 LET T=T+X

370 LET D=D+X12

380 LET N=N+1

390 GOTO 340

399 RETURN

7. Circle the parts of the following formulas for which subroutine 300
calculates values.

Write a subroutine to provide us with values f
and variance. The scors

SUBROUTINES 255

8. Now write a subroutine to finish the computations for the statistical

measures.

500 REMARK SUBROUTINE: COMPUTE MEAN, VARIANCE. STD. DEV.

S00
510
520
530
540

REMARK SUBROUTINE: COMPUTE MEAN. VARIANCEs STDe« DEVe
LET M=T/N

LET V=D/N-Mt2

LET S=SQR(V)

RETURN

9. We want a RUN of the program {0 look like this:

RUN
N = 10
MEAN = 57«5

VARIANCE = 680485
STANDARD DEVIATION = 26.0931

Complete the subroutine to print the results.

600

REMARK SUBROUTINE: PRINT RESULTS

REMARK SUBROUTINEZ PRINT RESULTS
PRINT "N ="3N

PRINT “MEAN ="JM

PRINT "VARIANCE ='"3V

PRINT *'STANDARD DEVIATIGN ="3S
RETURN

256

BASIC

300
310
320
330
340
350
360
370
380
390
399

500

510
520

530
540

600
610
620
630
640
650

900
910

999

RUN

N =

MEAN
VARIANCE = 680.85
STANDARD DEVIATION = 26.0931

REMARK SUBROUTINE: C@MPUTE N, SUM X, SUM Xr2
LET N=0

LET T=0

LET D=0

READ X

IF X<0 THEN 399
LET T=T+X

LET D=D+Xx12

LET N=N+1

GOTe 340

RETURN

REMARK SUBROUTINE: COMPUTE MEAN, VARIANCE, STD.
LET M=T/N

LET V=D/N-Mt2

LET S=SQR(V)

RETURN

REMARK SUBROUTINE: PRINT RESULTS
PRINT "N ="3N

PRINT "MEAN ='""3M

PRINT "VARIANCE ="3V

PRINT "STANDARD DEVIATI@N ='3S
RETURN

REMARK DATA FOLL@WS«. DATA LIST ENDS WITH =1.
DATA 75,67,38,89:23597575518,56,37,~1

END

10
= 57-5

10. All you non-statisticians rejoin us here. We statisticians have written the
following subroutines:

DEV.

—,—7

9 SUBROUTINES 257

Complete the main program so that the program will function as indicated
in the preceding RUN.

100 REMARK MEAN. VARIANCE AND STANDARD DEVIATION
110 REMARK COMPUTE N, SUM OF Xs SUM OF Xt2

120

130 REMARK COMPUTE M, Vs S

140

150 REMARK PRINT RESULTS

160

199

120 G@SUB 300
140 GOSUB 500
160 GOSUB 600
199 STOP

258 BASIC

11. Now a nice thing about subroutines is that they may easily be changed
or interchanged. (Non-statisticians can skip to frame 12.) Suppose that our
data contained only two values or kinds of score. For example, we could
score a voter poll using the value 1 to represent an “aye” vote and the value
2 to represent “‘nay” or “‘no opinion.” The scores can then be tabulated or
grouped by listing each kind of score (X) opposite its frequency (F), the
number of times that that kind of score occurred in the data.

Suppose these are the data of two kinds:

9] Y-)
0 M D ey T, . b bl I 20 S Wi ol s 2

We can set up a table showing the “frequency of appearance” of each
kind of data.

Kind of data
(only two

;)
possible values) =

} Grouped data (two groups or kinds)

So here are the data for the computer:

900 REMARK GROUPED DATA F@LLEWSe DATA LIST ENDS WITH =1.-1.
910 DATA 1,12,2s8s~12=1 = There's the flag

There are 12 There are 8 cases of value 2
cases of value 1

The table below compares the formulas for mean, variance, and standard
deviation for “ordinary™ data versus grouped data.

STATISTIC “ORDINARY" GROUPED
mean U=Tx u=z—%l where (n=1f)
: 2 D2 2 2T -22) 2
variance g2 =il Loy o= 27 -

n

n
S.D. g= ,/o" g =yo?

i——e

/)

SUBROUTINES 259

Translated into BASIC, we require values for 3 variables:
1%
D

N = the number of scores (n = vf for grouped data)

Tx or BfiX

£x? or Bf* x?

In the DATA statement for grouped data, there are pairs of values: a
score (X) followed by the frequency (F) of appearance of the score. There
is also a double flag, which should be a programming clue for you that values
are to be read in pairs. Thisisa sample DATA statement:

900 REMARK GROUPED DATA FOLLOWS. DATA LIST ENDS WITH “1s=le
910 DATA 1s12:2s85=15~1

With careful reference to the formulas presented, you should be able to com-
plete the subroutine, particularly if you worked through the earlier statistics
subroutines for ordinary (ungrouped) data.

400 REMARK SUBROUTINE? CEMPUTE N» SUM X» SUM X2 (GROUPED DATA)

400 REMARK SUBREUTINE? COMPUTE N» SUM X» SUM Xr2 (GROUPED DATA)

410 LET N=0

420 LET T=0

430 LET D=0

440 READ X»F

450 IF X<0 THEN 499
460 LET TsT+F*X

470 LET D=D+F#Xt2
480 LET N=N+F

490 G@T® 440

499 RETURN

260 BASIC

12. Non-statisticians rejoin us here. Look at subroutine 400 in frame 11,

. < . 3 1
For which BASIC variables are values computed” e A BN A

13. Look at subroutine 500 below, from our program in frame 10.

500 REMARK SUBRBUTINE: C@MPUTE MEAN», VARIANCE., STD« DEV.

510 LET M=T/N

520 LET V=D/N-M12 !
530 LET S=SQR(V)

540 RETURN

What variables must have values computed previously in order for subroutine

500 to compute M, V and S?

T,D,N (any order) Q \‘

14. Got the idea? Subroutine 400 for grouped data computes values for
the same variables that subroutine 300 (frame 10) computes “ordinary™
(ungrouped) data. Therefore, merely by substituting subroutine 400 for
subroutine 300 in the program you have a complete program for computing
the statistics for grouped data.

If the DATA statement for grouped data is provided, show what mod-
ification of the main program (frame 10) is needed to RUN the complete
program for grouped data.)

Change one line in the main program: 120 G@SUB 400

SELF-TEST 261

SELF-TEST

This problem is intended to encourage you to examine any programming you
do to determine whether subroutines will help make your program more
efficient. It also provides an algorithm (algorithm? Well, a recipe is an algo-
rithm. An algorithm is a well-defined procedure, or process, or step-by-step
method for solving some kind of problem) that may be useful if you need to
create programs to perform various clerical and filing tasks, or to sort any
kind of numerical data.

1. Start with a list of numbers.

308.3.7.8.2,9.7.-3,2:6,4
Sort them (arrange them) in increasing order:
2. 2,3,3,3,4,6,7,7,8,8,9

We want a computer to do it for us. In fact, we’ll also have the com-
puter make up the original list of numbers, like this:

RUN
HEW MANY NUMBERS IN THE LIST TO BE S@RTED?8
| UNSE@RTED RANDOM NUMBERS: 85 S1 27 67 12 87 98 72
’ NUMBERS AFTER SORTING: 12 27 S1 67 72 85 87 98

HOW MANY NUMBERS IN THE LIST T@ BE S@RTED?2
UNS@RTED RAND@M NUMEERS: 26 79

NUMBERS AFTER SORTING: 26 79

HOW MANY NUMBERS IN THE LIST T@ BE S@RTED?50

{ UNS@RTED RANDOM NUMBERS: 18 98 22 96 22 S 7 15
15 83 13 91 69 40 66 57 e2 56 74 87
23 S0 63 28 62 62 17 30 39 83 53 83
98 e9 90 89 97 19 36 g1 25 13 63 15
' 36 6 81 41 34 17
NUMBERS AFTER S@RTING: 5 6 7 13 13 15 15 15
17 17 18 19 22 ez 22 23 25 28 29 30
5 3a 36 36 39 40 41 S50 53 56 57 62 62
63 63 66 69 T4 81 81 83 83 83 87 89
90 91 96 97 98 98

HEW MANY NUMBERS IN THE LIST T@ BE S@RTED?51

SUBSCRIPT ERROR IN LINE 320

262 BASIC

(a) If you would like to meet a real programming challenge, then try
your hand at creating these subroutines. Otherwise, continue right
on to reach part (b) and take a look at the subroutines in the An-

swers to Self-Test.

Subroutine 300 should generate a list of N random numbers from

0 to 99 stored by subscripted variable X.

Subroutine 400 should print the list of numbers stored by sub-

scripted variable X.

Subroutine 500 should sort the numbers from smallest to largest.
(Programming hints: Use two FOR-NEXT loops, and a temporary
storage variable to switch numbers from one subscripted variable loca-

tion to another if the value of a variable with a smaller subscript is
greater than the value of a variable with a larger subscript.)

(b) Now, look carefully at the RUN; then complete the main program.
Our version of the main program contains 12 statements in addition
to the REMARK statement.

100 REMARK NUMBER S@RTING PROGRAM

110

130

140

150

SUBROUTINES 263

BONUS PROBLEM. Look back to Problem 4 in the Self-test on page 165.
Write a new solution to this problem using subroutines. (You may want to
modify the solution on page 167 but you will probably find it easier to
rewrite the entire program.

N

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1. (frames 1,4, and 15)

(a) Here are the subroutines:

300 REMARK SUBROUTINE: GENERATE NUMBERS X(1) THRU X(N)
310 FOR K=1 T@ N

320 LET XC{K)=INTC100#RNDC0))

330 NEXT K

340 RETURN

400 REMARK SUBREUTINE: PRINT NUMBERS X(C1) THRU X(N)
410 FeR K=1 T@ N

420 PRINT XIK1:

430 NEXT K

440 PRINT

450 PRINT

460 RETURN

264 BASIC

(b)

500
510
520
530
540
550
560
570
580
590
999

100
110
120
130
140
150
160
170
180
190
200
210

REMARK SUBROUTINE: S@RT NUMBERS =~ ASCENDING BRDER

F@R K=1 T@ N-1

FOR J=K+1 TO N

IF XCK) <= X[J) THEN 570
LET T=x(K]

LET X{KJ)=X(J]

LET X(JI)=T

NEXT J

NEXT K

RETURN

END

REMARK NUMBER S@RTING PREGRAM
DIM XL50)

PRINT "HOW MANY NUMBERS IN THE LIST T@ BE SORTED"™)
INPUT N

G@SUB 300

PRINT “UNS@RTED RANDGM NUMBERS:";
GosSuB 400

GOSUB 500

PRINT "NUMBERS AFTER SORTING1™s
G@SUB 400

PRINT

PRINT

Go To 120

\

\

String Variables
.

1 now will work on most

at follow will teach you about the
and files. Some computers do
structions vary, though
follow the instruc

ters, you may
puter.

The BASIC instructions you have learned up unti

any version of BASIC. The chapters th
advanced BASIC ir ariables
not have these cap that do, the in
each system uses @ simila s. So,if you
tions for using string variables and files taught in these chap
encounter some difficulty running the examples on your purticulur com
Nonetheless, by |earning one method well, you will have an easier time
learning the same processes for your computer system. We suggest that after
you complete these chapter ad the reference materials for your com-

puter system to identify po hile the material is fresh in
your mind.
In this chapter y

{hat permit you to use a
chapter you will be able to W

ystructions, string)

abilities. In those
r set of instruction

g you re
gsible differences W
ariables, the instructions

Upon completion of this
hese gtatements with string

about string v
formation.
1s using t

ou will learn
\phuhctic in
rite progran

-

variables.
pPIM INPUT PRINT READ
DATA LET IF-TH EN

266 BASIC

1. So far, your use of alphanumeric (that’s mixed alphabetic and numeric)

phrases has been limited to the use of strings in PRINT statements like this

one.

10 PRINT "THIS IS A STRING"
Now we can add a new feature to BASIC, a string variable.

10 LET T$="STKING F@K THE STKING VARIABLE T$"
t

This is a string variable

You identify a string variable by using a letter (A — Z) followed by a
dollar sign ($). String variables permit you to manipulate alphanumeric data
with greater ease. String variable instructions include: DIM, LET, PRINT,

INPUT, READ, DATA, IF-THEN.

On most computers, each string variable that will be longer than one
character must be DIMensioned to indicate the maximum size of the string
it may contain. (A space is counted as one character.)

“THE LENGTH OF THIS STRING IS 43 CHARACTERS"

“SAM 123" Thisisa 7 character string (an auto license plate) 0 \,
Here are examples of how you DIM string variables.

10 DIM A$(S5) «——— Defines the string variable AS with a
maximum size of 5 characters

20 DIM B$(10),C$(20) < Defines two string variables: BS with
10 characters, CS$ with 20

You can DIM numeric arrays and string variables in the same statement.)
10 DIM AS(IO);BS(20)»C(IA/);D(S:6) !
String variable / Numeric array
‘
The maximum possible size permitted for a string variable will vary §
Y

from system to system. Refer to your system reference manual for the limits
of your system. It may be as small as 6, though 72 is most common. A
maximum of 255 characters is available on many newer computers. !

10 DIM X$(C14)

' |D STRING VARIABLES 267
Up to how many characters are permitted in the string variable X§?
14
] 2. You can enter values of string variables in a program using an INPUT

statement. First let’s try a program with just one string variable to enter.

1 REM STRING NAME

S DIM ASC(15)

10 PRINT "WHAT IS YOUR NAME"3

20 INPUT AS

30 PRINT "YOU SAY YOUR NAME IS"3AS$

99 END

RUN

WHAT IS YOUR NAME?HAROLD Lines 10 and 20
YOU SAY YOQUR NAME IS HARELD Line 30

Look what happened when we ran this same program again.

>

WHAT IS YOUR NAME?WEIRD HAROLD YOUNG New string

variable
BAD INPUT» RETYPE FROM ITEM 1
7?7 WEIRD HARGLD ? from our computer means INPUT again
YOU SAY Y@UR NAME IS WEIRD HAROLD It works this
time

Look carefully at the program above. Why did the entering of the string
variable WEIRD HAROLD YOUNG cause the computer 10 print the error

message?

The string variable AS is only DIMensioned for 15 characters. WEIRD
HAROLD YOUNG is 18 characters and therefore unacceptable.

268 BASIC

10
15
20
30
50
60
70
99
RUN

PRINT
INPUT
PRINT
INPUT
PRINT
PRINT
PRINT
END

NAME 3
ADDRESS @

3. Modify the program in frame 2 to ask “WHAT IS YOUR STREET
ADDRESS?”” and have the computer print name and address on two con-
secutive lines.

S DIM AS[151,B%[(20]

"“"WHAT IS YBUR NAME'3

AS

“WHAT IS YOUR STREET ADDKRESS"3
BS

“NAME: ",AS
"ADDRESS :",BS%

WHAT IS YOUR NAME? HARGLD YOUNG
WHAT IS YBUR STREET ADDRESS?1327 WRIGHT STKEET

HARGLD YOUNG
1327 WRIGHT STREET

— T

i g, g gt Bt

STRING VARIABLES 269

3

4. On many systems if your INPUT statement asks for more than one
string, you must enter each one enclosed in quotes and separated by a comma.

1 REM STRING DOUBLE INPUT

S DIM AS(20),B$(201),CSs(2)

10 PRINT "“WHAT IS YOUR NAME":

20 INPUT AS

30 PKINT "WHAT IS YOUR CITY AND STATE":

40 INPUT BS,CS

S0 PRINT

60 PRINT A$,B$,C$
99 END

RUN

WHAT 1S YOUR NAME?GE@RGE Y@UNG
WHAT IS YOUK CITY AND STATE?"SAN FRANCISC@","CA"

GEORGE YOUNG SAN FRANCISC@® CA

Show how you would enter the data requested in this question.

ENTER YOGUR NAME AND SEX (M OR F) il <Y |

“GEORGE Y@UNG", 'M"

NOTE: For ease of operation, it might be wise to design your programs so
that each string INPUT statement calls for only one value to be entered,
thereby eliminating the use of quotes and a lot of confusion.

270 BASIC '

5. Keeping in mind that you can only enter alphanumeric data using string
variables, you are permitted to mix string variables and numeric variables in
one INPUT statement, but the string variable must still be entered enclosed

in quotes.

S REM STRING/VAKIABLE INPUT

10 DIM AS(15)
15 PRINT “ENTER YOUR NAME AND AGE'3

20 INPUT AS,B

25 PRINT

30 PRINT B,AS$
99 END

RUN

ENTER YOUR NAME AND AGE?"GEORGE YBUNG",24

24 GEOKGE Y@UNG

Show how George Young would respond to this question if he was born
August 9, 1953.

ENTER YOUR YEAR @F BIKTH AND ASTKROLOGICAL SIGN

1953’ “LEO"

6. Write a program to enter and print an auto license plate that hasa3
letter alphabetic string and a 3 digit number (i.e., SAM 123). Enter the
letters as a string variable and the number as a numeric variable.

STRING VARIABLES

o
o |

1

S DIM AS[3)
10 INPUT AS,B
20 PRINT AS$3B

99 END
RUN
?""SAM",123
SAM ’L23 ;
Where did the space come from? BASIC reserves a
RUN place for the sign of the number (see next example)

?"MAX'" , =456 <«—— If you enter a negative number (which you normally
MAX =456 wouldn’t for this problem) it will look like this

272 BASIC

7. You can also enter string variables by using READ and DATA state-
ments.

1 REM STRING READ/DATA COURSE LIST
5 DIM AS[12)

PRINT "C@URSE','"HOURS","GRADE"
20 READ A$,B,CS
30 PKINT A$,B,CS
40 GOTe 20
SO0 DATA "ENGLISH 1A",3,"B'","S@C 130",3,"A"
55 DATA "PHYSICS 2A",5,'"C","STAT 10",3,"C"
60 DATA "BUS ADM 1A™,4,"B","ECON 100",4,"B"
65 DATA "HUMANITIES",3,"A","HISTORY 17A",3,"B"
70 DATA "CALCULUS'",4a,"C"™

99 END

RUN

COURSE HBURS GRADE
ENGLISH 1A 3 B
Sec 130 3 A
PHYSICS 2A S C
STAT 10 3 C
BUS ADM 1A 4 B
EC@N 100 4 B
HUMANITIES 3 A
HISTORY 17A 3 B
CALCULUS 2 C

Examine DATA statements 50, §5, 60, and 65 in the program above. What
is the difference in format between the string data in these DATA statements
and the numeric data in DATA statements you have used before?

When used in DATA statements, alphanumeric strings must be enclosed
in quotes.

-

STRING VARIABLES 273

8. In the program in frame 7, why is there no DIM for C$?

CS$ is not more than one character and therefore does not need to be
dimensioned. (B is a numeric variable and therefore is not dimensioned.) .

9. 3@ PRINT AS$,B,CS

Look at the output produced by Line 30 in the program in frame 7. What is
the function of the comma (,) in a string variable PRINT statement?

Causes the output to be printed in up to five columns across the page

(though here we only used three columns), just as with numeric variables.
: Note. If the string variable size is greater than 15 characters, the PRINT
" column sequence will not be followed.

10. The string LET assigns a particular string to a string variable. Note
that you must enclose the string in quotes as in these two examples.

10 DIM AS[12]1,B%$(9]
20 LET AS=" GOOD EXAMPLE"
30 LET B$=" THIS IS A "

10 DIM A$(3),B$(2),C$(3)

20 LET AS="YES"
30 LET BS$="NO"
40 LET C$=A$ -<«—— C$ now contains “YES"”

Write a string LET statement that assigns the course name Sociology to the
variable S§.

S DIM S$(10)
10 LET Ss="SecieLecy"

274 BASIC

11. The string IF-THEN allows you to compare fwo string variables.

10
15
20
30

.....88

DIM AS[31,BS$(2)

LET BS="NO"

PRINT "DO@ YOU WANT INSTRUCTIONS? YES @R NO")

INPUT AS

IF A$=BS$S THEN 140

PRINT "THIS SIMULATI@N PERMITS YOU T® REGULATEsessses™

If you responded YES to the INPUT statement the comparison in Line
40 will be comparing the string variable AS (YES) to the string variable BS
(NO). Because they are not equal the computer will execute the next state-

ment, Line 50. If you responded NO, the program would jump to Line 140.

The comparison in Line 40 is between two

string variables, AS and BS

12. You can compare a string variable to a string.

S DIM AS[3]

10 PRINT "D@ YOU WANT INSTRUCTIONS? YES @R N@';

20 INPUT AS

30 IF AS="N@" THEN 140

40 PRINT "THIS SIMULATION PERMITS YOU T@ REGULATE ecesee™
.

.

.

The comparison in Line 30 is between a and a

string variable (AS)
string (NO)

You can’t compare a numeric variable to a string variable.

IF A = B$ THEN 140 - Thisisnot permitted

STRING VARIABLES 275

13. Ina string IF-THEN, the comparison is made one character at a time.
1 For example, if a space is introduced in the wrong place, it may cause a
comparison other than what you expect.

10 INPUT AS
20 IF AS = "MCGEE"™ THEN 140

If the user enters
? MC GEE

the comparison will not be equal. Why will this comparison not be equal?

The space between C and G is a character which is not present in
{ “MCGEE.”

@

276 BASIC

14. In addition to equal (=) comparisons, you can compare strings using the

following:

<>, <» > <=» >=

\
This means not equal to
It’s a little tricky so you should use caution if you try therp
The comparison is still made one character at a time from left to right.
The first difference found determines the relationship. The relationship is
based on position in the alphabet; C is “less than” S; T is “‘greater than” M.

10 LET A$="SMITH"
20 LET B$=""SMYTH"
30 IF A$<B% THEN 100

In line 30 above, will the program branch to line 100 or continue to the next

statement in sequence?

Jump to line 100. The first difference is the third character and since |
is “less than” Y, the IF THEN condition is true.

15. When you compare two strings of different length, the rule of first
difference also applies. If the first difference is that one string ends before
the other, then the shorter string is considered to be “less than™ the longer
one.

10 LET Cs$=""SMALL"

20 IF C$<"SMALLER" THEN 140
30 LET D$="LARGEST"

40 IF D$>"LARGE'"™ THEN 140

PN v

STRING VARIABLES 277

In the comparisons in line 20 and line 40 above, the program will jump to
line 140 in both cases as the IF THEN condition is true in each case.

20 LET D$="COMPUTE"
30 LET E$="COMPUTER"
40 IF D$<ES THEN 80
50 PRINT D$

What statement number will be executed next after the comparison in

line 407

line 80 as DS (compute) is *““less than™ E$ (computer)

16. In frame 15, change Line 40 to read
40 IF ES> D$ THEN 80

Which statement will now be executed after the comparison?

Line 80. ES is “greater than™ DS.

278 BASIC

17. Before you proceed, we need to introduce the RESTORE statement and
its use in connection with READ and DATA. A READ statement causes the
next item(s) of data to be read from the DATA statements. If you want to
start reading from the beginning of the data again, use a RESTORE statement
which causes the next READ to begin at the first item of data in the first
DATA statement.

Now that you have seen how to use string variable comparisons, you can
understand this simple information retrieval program that permits retrieving
information from DATA statements.

The program in frame 7, prints courses, hours, and grades. The program
below permits the operator to enter the course; the computer will then print
the course, hour, and grade.

10 REMARK STRING CUURSE INF@ RETRIEVAL

20 DIM Aasfl2l,Ds(12)

30 PRINT “ENTER COURSE NAME '3

40 INPUT DS

S0 READ AS,B.CS

60 1IF AS=DS THEN BO

70 GoTe SO

80 PRINT AS,B.CS

90 RESTORE

100 PRINT

110 GeTe 30

120 DATA "ENGLISH 1A",3,"B","S6C 130", 3,"A"
130 DATA "PHYSICS 2AY,S,"C", "STAT 10',3,"C"
140 DATA "BUS ADM lA“,4,"B","ECUN 100", 4,"B"
150 DATA "HUMANITIES",3,"A', "HISTURY I17A",3,"B"
160 DATA "“CALCULUS",4,"C"

170 END

RUN

ENTER CQURSE NAME?EC@N 100
ECeN 100 4 B8

ENTER CBURSE NAME?HIST@RY 17A
HISTBRY 17A 3 8

ENTER C@URSE NAME?7ECON 2

OUT OF DATA IN LINE S0

Whoops, no such course. The computer
read through all the data and found no
such course; therefore, it printed this
error message

Let’s look at another RUN of the program.
RUN
ENTER C@URSE NAME?S@C130

@UT OF DATA IN LINE 50

P TS Bl W) NNy T RN

é . STRING VARIABLES 279

Why did we get the error message this time?

§ The course name is stored SOC 130, but the user typed SOC130 without
a space between SOC and 130.

18. What is the purpose of Line 60? IF A$=D$ THEN 80

|
|
To test whether or not the course READ from the DATA statement is !
the course requested in the INPUT statement.

19. Which DATA items will be read when executing the READ statement
in Line 50 after execution of RESTORE in Line 90?

) St A s

English 1A, 3, B, the first data items.

20. Modify the program in frame 17 so it will print the message “NO SUCH

COURSE” instead of the data error message if the course you entered does

not exist on the files. (You might try putting a “flag” at the end of the regu-
} lar data as we did earlier in this book.)

I 55 IF A$="END" THEN 115
115 PRINT "NO SUCH COURSE"
118 G@ T8 30

165 DATA "END",0,"0"

280 BASIC

print a list of

21. Using the data from the

program in frame 17, write a program that will

courses for which B grades were received.

1 REM STRING B LISTING
s DIM ASC12]

10 READ A$,B,CS$S
20 1IF C$="B" THEN 30

25 GOTO 10

30 PRINT AS$,B,CS

40 GOTe 10

50 DATA "ENGLISH 1A%,3,"E","SEC 130",3,"A"
55 DATA "PHYSICS 2A%,5,"C","STAT 10",3,"C"
60 DATA “BUS ADM 1A%, 4, B","EC@N 100", 4,"B"
65 DATA “HUMANITIES™,3,"A","HISTORY 17A",3,"B"
70 DATA *“CALCULUS"™,4,"C"

99 END

RUN

ENGLISH 1A 3 B

BUS ADM 1A 4 B

ECON 100 4 B

HISTORY 17A 3 B

@UT ©F DATA IN LINE 10

STRING VARIABLES 281

22. Modify your program in frame 21 by adding one line so that the pro-
gram lists courses with grades of A or B.

22 IF C$="A" THEN 30

RUN

ENGLISH 1A 3 B
SeC 130 3 A
BUS ADM 1A B B
ECeN 100 & B
HUMANITIES 3 A
HIST@RY 17A 3 B

@UT @F DATA IN LINE 10

23. Now we’re getting down to some nitty gritty rules that are only used
once in awhile. Read through these so you will know they exist but don’t
memorize them. Look 'em up next time you need ‘em.

A substring is a part of a string and is defined by using subscripts after
the string variable, AS$(10) or AS$(1.5).

S DIM A$(30)
10 LET AS$="MY HUMAN UNDERSTANDS ME"

20 PRINT AS$C10) < The substring begins at the 10th character
99 END and includes all the characters that follow

RUN
UNDERSTANDS ME

Replace Line 20 with PRINT AS$(15). What will be printed when the new
Line 20 is RUN?

STANDS ME

282 BASIC

24. Now look at these examples. To isolate one character you need to use
the value twice indicating the first and the last character of the substring.

S DIM AS[30]

10 LET AS=*MY HUMAN UNDERSTANDS ME"™

20 PRINT AS[4,4) <«—— Will print H, the 4th character in the string.
99 END (A space counts as one character)

RUN
H

Here we have a substring that starts at character | and includes all of
the characters through and including the 9th character.

S DIM ASC30]
10 LET AS="MY HUMAN UNDERSTANDS ME"

20 PRINT AS[1,91]

99 END
RUN
MY HUMAN

In the program directly above, change Line 20 to read PRINT A$(4,8). What

will be printed when the new Line 20 is executed?)

25. What will be printed by the following program?

10 DIM AS(20)
20 LET AS$S="GAMES C@MPUTERS PLAY"

30 PRINT ASCT7,15)5A8C17),A8(155)
99 END

COMPUTERS PLAY GAMES

i

P

el et s

)

i.~)

‘)

STRING VARIABLES 283

26. Here are parts of a program to print the string variable A$ backwards,
one character at a time. Fill in the blanks and show the RUN.

S DIM ASC_)

10 LET A$="ABCDEFGHIJKLMN@PORSTUVWXYZ"
20 FOR X=___T@____STEP ~-1

30 PRINT ASCXs___)3

40

99 END

S DIM AS[26]

10 LET AS$="ABCDEFGHIJKLMN@PQRSTUVWXYZ"
20 FOR X=26 T@ 1 STEP =~1

30 PRINT AS[X»X13

40 NEXT X
99 END
RUN

ZYXWVUTSROPONMLKJIHGFEDCBA

SELF-TEST

Write a program to permit INPUT of a 5 letter word and then print the
word backwards.

Read a series of 4 letter words from DATA statements. Print only those

words that begin with the letter A. Write the program.

Modify the program of exercise 2 to print the words that begin with

either the letter A or B.

Again, modify the program in exercise 2 to print only words that begin
p p

with A and end with S.

to industry was hard-pressed to come up with
names for new cars. They used a computer to generate a series of 5
letter words. Write a program to generate 100, 5 letter words with
randomly selected consonants in the first and third and fifth places
and randomly selected vowels in the second and fourth places. (You
might want to refresh your memory on the use of random numbers

by reviewing Chapter Five.)

Some years ago, the au

PR SRS

— i S e ———

SELF-TEST 285

')

BONUS PROBLEM. You have the following DATA statements containing
names in last-name-first order. Write a program to print these names first-

name-first without the comma.

9000 DATA "BUTLER,LINDA","@LIVER, RACHELLE"
9010 DATA "DANIELS,JAMES",'"JOHNSON,DIANE"
9020 DATA "CASH,BETTY",'BROWN,JERALD"

9030 DATA "SMITHEY,B@B".,'"ARLINE,KATHY"

0)

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1. (frame 26)

10
20
30
20
S0

60
65

70
99

REMARK STRING SELF TEST 9-1
DIM ASLS)

INPUT AS

FOR X=5 T@ 1 STEP ~-]

PRINT AS[X»X13

NEXT X

PRINT

GeTe 30

END

s o e R

286 BASIC

-

PN

1

20
30
40
50
60
65
70
5
99

15
20
25
30
40
S0
60
70
75
80

90
95
99

RUN

ZOKUC
TIMUQ

FIZUX
SToP

2. (frames 7, 11,and 24)

REMARK STRING SELF TEST 9-2

DIM ASL4)
READ A%

IF ASC1,1] <> "A"™ THEN 30

PRINT AS
GoTO 30

DATA "“ANTS","GNAT",'LOVE","BALD"
DATA “APES","BAKE","MIKE","KARL"

DATA "BARD","ALAS"

END

REM- STRING SELF TEST 9-5
5 DIM ASCS),BS(21)

LET AS="AEIOU"

LET BS="BCDF GHJKLMNPQRSTVWXYZ"

FAR X=1 T@ 100
FeR Z=1 T0 2

3. Modifications only. (frames 7,11, and 24)

40 IF ASC1,1)="A" THEN 50
45 IF A$C1,1)<>"B" THEN 30

4. Modifications only. (frames 7,11, and 24)

45 IF A$C4,4) <> *"S" THEN 30

LET B=INT(21%RNDCOY+1)

PRINT BS(B»B13

LET A=INT(S*RNDCO)+1)

PRINT AS[A.,ALS
NEXT Z

LET B=INT(21%RNDCO)+1)

PRINT BS(BsEl»
NEXT X
END

BITUR
SezicC

NULUZ

Sebue
BAGUY

DEXUJ

(This is our RUN. Yours will be different.)

5. (Chapter Five, frames 24 and 25, and Chapter-Nine)

KQZEM
FIRIF

TeBIC

PATAR
FULAD

P@XAZ

CHAPTER TEN

Files

The use of BASIC files is an advanced concept you may not find useful right
_ away. How and when to use files is difficult to learn for the novice and you
may find this chapter takes two or three readings to be fully understood. We

suggest that you read this chapter once now to get a general idea of what
‘ files are all about. Then after you do some more BASIC programming and
) are comfortable with computers, come back and work carefully through this
‘ chapter. :

When you have completed this chapter you will be able to:

! e differentiate between serial and random access files.

e write data onto serial and random access files using FILE PRINT
3 statements.

{ .) e read data from serial and random access files using FILE READ

| statements.

|

‘ e use the following file commands with serial and random access files.

FILES IF END TYP

288 BASIC

1. Files are used to store numeric data and string variables for use at any
time. Up to now you have had to enter your data using DATA statements
as part of your program. Using files, you can enter and store large quantities
of data using one program and then access the data at a later time using a
different program. You can access the data or file with many different
programs, something you have been unable to do before.

One way to look at the file is to imagine that it is a separate item from
the BASIC program. Programs are used to read from or write onto the file.
In an application that uses a file to hold all name and address information
for the student body of a school, we might have a whole series of programs
all using one file.

PROGRAM 1 ENTER NEW DATA FOR STUDENT
PROGRAM 2 DELETE STUDENT DATA _

PROGRAM 3 CHANGE NAME OR ADDRESS OR
e P —
PHONE ~a

PROGRAM 4 PREPARE NAME AND ADDRESS —— FILE
LABELS FROM FILE DATA

PROGRAM 5 PREPARE ZIP CODE LISTING

FROM FILE DATA /
PROGRAM 6 PREPARE PHONE LIST FROM

FILE DATA

One advantage of placing data into files instead of using DATA statements is

You can access the data with more than one program.

2. Later we will explain the use of serial files and random access files.
This first section will deal only with serial files.

Information stored in a serial file can be viewed as a continuous series
of data packed densely in the computer memory.

GEORGE/YOUNG/25/94191/BOB/HARRI1S/42/83107/ . . .

To get to data in the middle of a serial file you must read from the beginning
of the file, one piece of data at a time, until you reach the data you need.

: . FILES 289

Before you RUN a program using file commands you must create a file ‘

ISRV SN -

using the system command OPEN. Since OPEN is a system command it does
not need a line number. Type,

OPEN — (name)
A0

Hyphen Rules for name vary with each system. Generally any name beginning
with an alphabetic character and not exceeding 6 alphanumeric charac-
ters is acceptable. It is a good idea to use “reasonable’” names so you
can keep track of what they mean. A file of master student informa-
tion might be called MASTER, a list of phone number PHONE.

What would you type to open the file that will contain student grades?

OPEN — GRADES (or any other name that makes sense to you)

3. Which of the following file names will not be accepted by a computer
that follows our general rules?

EYESORE 1ZERO GRADEPOINT A
) 3 PHONES THREE

e P s/, g

? EYESORE (too big)

' GRADEPOINT (too big)
1ZERO (begins with a number)
3 (begins with a number)

290 BASIC

4. The amount of data (the number of pieces of data) that you can write
onto the file will depend on the size of the file. The size of the file will vary
from computer to computer. In some computers you determine the size of
the file. in others, an opened file has a fixed size. (Consult your computer
manual to find out how the file size is determined.)

File size is measured in units called words. Data written on a file uses
up file words as follows.

Numeric variables— Each numeric variable uses 2 words of file space,
whether the number has one digit or more.
String variables — Each character of a string variable takes approxi-
mately ¥2 word.
As an example, a file that will contain 100 names, each with as many as 20
letters or spaces will use:

String variable = 100 x 20 = 2000 characters
=2000 % Y2 = 1000 words of file space

A file that will contain 100 numbers will use:
100 x 2 =200 words
Calculate how many words each of these sets of data will fill in a serial file.

(a) 140, 15-character names _

(b) 140, 20-character addresses

(c) 140, S-character zip codes (string variable)

(d) 420 numbers (representing responses 1o an opinion poll. Responses

are 1,2, or 3.)

(a) 140x 15x %= 1050
(b) 140 x 20 x %= 1400
(c) 140 x 5x %=350
(d) 420 x 2=2840

5. At the beginning of a program that uses files you must include a state-
ment which tells the computer which files are to be used by the program.
The files statement looks like this:

10 FILES ABLE, C100, ZER®
N 3 A

()

FILES 291

The order of the names in the FILES statement determines how they
are referenced later in the program. The file named ZERO will now be ref-
erenced as file 3 in the program.

10 FILES ZER® »ABLE» C100

In this case, the file named ZERO will be referenced as file 1.

Write a FILES statement that will prepare the computer to use files
named GRADES and MASTER.

10 FILES GRADES»MASTER

6. A serial file READ statement permits reading data from an existing file.
The general form is shown below:

READ # (file number) ; (variables)

Note the punctuation

For example:
20 READ #13A

will read one piece of numeric data from the first file in the FILES statement
and assign it to the variable A.

30 READ #33 A,B

will read two pieces of numeric data from the third file in the FILES state-
ment and assign them to variables A and B.

Given the FILES statement, write a statement that will read three
numeric variables from the file named ZERO.

10 FILES ABLE, C100, ZEKRO

20 READ #33 AsBsC

292 BASIC

7. You can also use d calculated value for the file number in a file READ

statement.

20 READ #X3 AS,B

been calculated as equal to 2, the statement

file in the FILES statement. The string
be read each time Line 20 is

If in a previous statement, X has
above will read from the second ;
variable (AS) and the numeric variable (B) will

executed. .
Which file will be read in the followng:
10 FILES PHONE » MASTER» ZERO

20 LET Y=3-1
30 READ #Y3 AS,B

MASTER

8 Files use a pointer A that is always set to the NEXT piece of data to b
read in the file. At the beginning of your program you should set the pointer
to the beginning of the file. This file READ statement sets the pointer (0 the

beginning of the first file in the FILES statement.

10 READ #1,1

Write a statement to set the pointer to the beginning of file C100 in this
FILES statement.

10 FILES ABLE» C100,ZER®

20 READ #2,1

FILES 293

9. The pointer advances one piece of data (a complete string variable or one
numeric variable) for each variable named in the file READ statement. (Re-
member, the pointer points to the next piece of data to be read.)

10 READ #1,1 Set the pointer to the beginning of the file

1 2 3 4 5 Ok 8 9 10
JOHN/JERRY/MARY/PETER/HAL/BOB/MIKE/MIMI/KAR L/DAN

t

20 READ #13AS Reads the first value, assigns it to A$ and advances

the pointer one data position to the second piece
of data in the file. (A$ = JOHN)

1 2 3 4 5 6 7 8 9 10
JOHN/JERRY/MARY/PETER/HAL/BOB/MIKE/MIMI/KARL/DAN
f (Now set to the second piece of data)

30 READ #13BS$,C$ Reads the next two pieces of data, assigns them
to BS and C$ and advances the pointer to the 4th
piece of data which will be read next. (B$ = JER RYS
C$ = MARY)

1 2 3 4 5 6 7 8 9 10
JOHN/JERRY/MARY/PETER/HAL/BOB/MIKE/MIMI/KARL/DAN

() 4
Indicate where the pointer will be positioned aftrer execution of each of the
file READ statements in this program.

1 REMARK FILE POINTER
S FILES DEM®

10 READ #1,1

20 READ #13AS

25 PRINT AS

30 READ #1;3B$

40 READ #13Cs$,Ds

S0 READ #13ES

60 PRINT BS,CSS,DS$,ES
99 END

1 2 3 4 5 6 7 8 9 10
JOHN/JERRY/MARY/PETER/HAL/BOB/MIKE/MIMI/KARL/ DAN

1 2 3 - 5 6 7 8 9 10
JOHN/JERRY/MARY/PETER/HAL/B@B/MIKE/MIMI/KARL/ DAN
Sl t Pt
10 20 30 40 50

294 BASIC :
(P

10. A file we’ve called MASTER is in the format below, with name and
address information for about 20 people.

NAME/ADDRESS/CITY/STATE/ZIP/PHONE NO/NAME/ADDRESS/CITY

Below is a simple program to read and print the contents of the file
MASTER.

1 REMARK MASTER FILE READ

10 DIM AS(I5]:B$[20]oC$[lOJ:D$[2)oE$[5]:FS[I2J
1S FILES MASTER

20 READ #1,1 -— Sets the pointer to the beginning of the file

30 READ #13AS$,B$,C$,D$,ES,F$ < Read from file 1. Each

40 PRINT . time this statement is
S0 PRINT AS executed, new values
60 PRINT BS are assigned to AS, BS,
70 PRINT CS$,D$,ES C$,DS ES, and F$

80 PRINT F$

85 PRINT

o0 GOTO 30 =— Go back to read more of the file

99 END

RUN

Below is the printout for the first two people from a RUN of the pro-
gram above.

GEORGE YOQUNG

1327 RIGHT STREET

BERKELEY CA 94107
405-321-1711

SANDY YOUNG

8 SHADY PLACE

@AKLAND CA 94203
405-122-1611

How many places does the pointer move each time Line 30 is executed?

- o

-

s

SN N N RN ST WS =

ol

- o

S

~.

.

S e e e

T A —" a——

()

FILES 295

11. What output (frame 10) would result if Line 90 read

90 GO T@e 20

The data printed for George Young would be repeated indefinately
because Line 20 resets the pointer back to the beginning of the file.
The rest of the file would not be read. This is a program error!

12. The program below prepares a list of names from the same MASTER
file used in the preceding program.

1 REMARK MASTER FILE NAMES
10 DIM AS[15),BS[20),CS(101,DSL21,ES[51,FS(12]
15 FILES MASTER
20 READ #1,1 Sets the pointer to the beginning of the file
30 READ #13AS Read the name
.) 40 PRINT AS Print the name
50 READ #13B$,C$,DS,ES,F$
60 G@TO 30
99 END
RUN

GEORGE YBUNG
SANDY YBUNG

What is the purpose of Line 50?

Moves the pointer forward 5 places to the next name.

‘)

296 BASIC

13. Write a program that will print name and phone numbers from the file
MASTER described in frame 10. :

1 REMARK MASTER FILES NAME/PHONE
10 DIM AS[lS]aBS(20]oCS(lO]pDS[Q]pES[S].FS[l2J
15 FILES MASTER

20 READ #1,1

30 READ #13A$,BS$,C$,DS,ES,F$

40 PRINT AS,FS

50 G@Te 30

99 END

RUN

GEORGE YOUNG 405-321~-1711
SANDY YOUNG 405-122-1611

14. When the preceding programs are RUN., the computer prints an error
message when the pointer detects that it has reached the end of the data. To
avoid this error message, use the IF END statement, which causes the pro-
gram to jump to another instruction when the end of the data is reached.

IF END is also used to detect the physical end of the file. You may run out
of data before reading to the physical end of the file and while loading a file
you may reach the physical end of the file before all your data is entered.
The IF END statement is used to avoid an error message in either of these
cases. The general form of the IF END is shown below.

IF END # (file number) THEN (line number)

9?.)

")

")

FILES 297

Once executed, the [F END statement does not have to be executed again
and again. It is like a ‘flag’. Once “set”, it stays “‘set” until the end of the
data is reached, or the end of the file is reached, or until a new IF END
statement is executed cancelling the earlier one. You should place the IF
END statement before the read statement in a file reading program.

Add an IF END statement to our file MASTER program below, that
will cause the program to jump to the end of the program when it reaches
the end of the data or the end of the file.

1

10
15
20

25

2B 888

RUN

REMARK MASTER FILE NAMES

DIM AS(ISJ:BS[20).C$(IO]:DS(2JaES[S]nFS[l2J
FILES MASTER

READ #1,1

READ #13AS

PRINT AS

READ #13BS,CS,DS,ES,FS
GeTe 30

END

GEPRGE YOUNG
SANDY YOUNG

25 IF END #1 THEN 99

—_—f—

298 BASIC

15. The file PRINT statement is used to print data onto the file as opposed
to printing data that is contained in the file. You use it to load your file with
data. Here is the general form:

PRINT # (file number) ; (variables)

FILE #1 C(EMPTY)
Set the pointer to the begin-
5 READ #1.,1 ning of the file. Line 10
10 PRINT #13A,B,C$ causes this information to be
entered into the file. (A, B
FILE #1 A/B/CS/ and C$ have already been
assigned values elsewhere)
20 PRINT #1,D,E,F$
FILE #1 A/B/C$/D/E/FS Line 20 causes D, E, and F$

to be printed onto the file
immediately following the
previous data (from the
pointer)

A sample program sets up a small file of names and phone numbers from
READ and DATA statements.

1

10
15
20
22
25
30
40
45
S0
55
60
90
99

REMARK FILES PRINT

DIM ASL151,BS$(12)

FILES PHONE

READ #1,1 Sets the pointer to the beginning of the file
IF END #1 THEN 90 Asafety check to avoid possible errors
READ AS$,BS

IF AS$S="N@® MORE DATA'" THEN 99 TEST — Havewe
PRINT #13A%$,B$ reached the end of the data? If not, print
GOTe 25 what we have onto the file

DATA “GEORGE YOUNG","408~331~-2234"

DATA "HAROLD JACKS":"S!4-206-2056"

DATA "N@ MPRE DATA","DUMMY DATA "

PRINT "ERR@OR..«.END OF FILE"

END

P 1

D

FILES 299

If you RUN the preceding program nothing happens that you can see——it’s
all inside!——unless you hit the end of the file and Line 90 is executed.

(@) Which statement tests for the end of file condition?

(b) If the end of the file is encountered what will be printed?

(¢) Which statement causes the information to be printed into the file?

(a) 22 IF END #1 THEN 90
(b) ERK@K...END OF FILE
(c) 40 PRINT #13AS$,B$

16. Fill in the missing blanks for the following program that READS the
data from the MASTER file described earlier and creates a second file,
PHONE, of names and phone numbers.

1 REMAKK DOUELE FILE USAGE
S FILES MASTEK,PHONE

10 DIm A$(l5):B$(20);C$(lO);D$(2)pE$(5):F$(12)

20 KEAD #1,1
25 IF END #1 THEN 99
30 IF END #2 THEN 90

35 KEAD # 3A%,B%,C5,DS,E$,F %

40 PRINT # 3AS,FS

50 GOTe
90 PRINT "Ekk@OKe«+END @F FILE 2"

99 END

35 READ #13; Read from file 1

40 PRINT #23 Printonto file 2
S0 G@ T@e 35 Go back for more data

300 BASIC

17. Now let’s combine some earlier problems with file capabilities. Write
a program to load a file called RND with 200 random integer numbers from
1 to 4. (You might want to review the use of random numbers by rereading
Chapter Five.)

REMARK RAND@OM LOADER
FILES RND

READ #1.,1

IF END #1 THEN 90
FOR X=1 T@ 200

LET Y=INT(4%RND(O)+1)
PRINT #13Y

NEXT X

GOATo 99

PRINT "“ERRORse«+END OF FILE"™
END

$85888cv T

e IR AN R T S R T TR U LR e — I — e T T

FILES 301

‘ 18. Write a program that will read and print the 200 numbers in the RND
: file.

Here are two possible solutions: ‘

1 REMARK RANDOM READER
S FILES RND

F 10 READ #1,1
15 IF END #1 THEN 99

\ 20 READ #1 3 A—=Notice we can assign
| 25 PRINT A3 this variable any
! 30 GBTE® 20 legitimate letter
¢ 99 END
| “‘
1 REMARK RAND@OM READER A
S FILES RND
10 READ #1,1
! 15 IF END #1 THEN 99

; 20 FOR X=1 T@ 200
25 READ #13A

30 PRINT A3

35 NEXT X

99 END

302 BASIC ‘

19. Write a program that will read the 200 numbers in RND file and print a
frequency distribution indicating how many times each number (1 to 4)
appeared in the file. This is very similar to the yoter-analysis problems in
Chapter Six and Chapter Seven. Here is a sample RUN.

VALUE HOW MANY TIMES
1 60
2 30
3 S0
4 60

1 REMARK RAND@M DISTRIBUTION
S5 FILES RND

10 DIM A(4)

12 MAT A=ZER

15 READ #1,1

20 IF END #1 THEN 60

30 READ #13Y

40 LET ACY)=A(Y)+1

SO G Te 30

60 PRINT "VALUE","HOW MANY TIMES"
80 FOR Y=1 T@ 4

85 PRINT Y,A(Y)

90 NEXT Y
99 END

PR A NI N—

=

FILES 303

20. The TYP function detects the “type” of data that will be read next in
the file. The TYP function looks at the data that the pointer is pointing at
and indicates their type. It is used to avoid file read errors and to detect the
end of the file. For example, if READ AS is the next statement, but the
pointer is at a number you will get a FILE READ error message, since A$

is looking for a string variable not a numeric variable. The TYP function
may be used to avoid that kind of error. These TYPE rules apply to most
computer systems:

TYPE 1 means next item is a number.
TYPE 2 means next item is a string variable.
TYPE 3 means end of file.

To test the type of data next in a file, we use the IF-TYPE statement.
The general form of the IF TYP statement is

IF TYP (file number) = (type) THEN (line number)

10 IF TYP(1)=2 THEN S0 If the next data item in file 1 isa
string variable, then go to Line 50

20 IF TYP(G)=1 THEN 80 If data in file G (numeric equiv-
alent) is a number, go to Line 80

30 IF TYP(2)=3 THEN 99 If next data item in file 2 is end
of file, then go to Line 99

Write a statement that tests to see if the next item of data in the file ZERO
in the files statement is the end of the file. If so, go to Line 70.

10 FILES ABLE, C100, ZERO

20

20 IF TYP(3)=3 THEN 70

304 BASIC

10
20
30
40
S0
60
70
80
90
100
110
120
130
140
999

What does this program do?

REMARK FILES TYP DEM@
DIM A$(72]

FILES EXAM

READ #1,1

IF TYP(l)=1 THEN 80

IF TYP(1)=2 THEN 110
IF TYP(1)=3 THEN 140
READ #1:A
PRINT A’

GAT2 SO

READ #13AS$

PRINT A%

G8TE@ 50

PRINT "END @F DATA"

END

21. Here is an obvious use of the TYP function.

Test to see if next item is a number
Test to see if item is string variable
Test to see if item is the end of file

time

Lines 50, 60, and 70 test the next data item in the file, determine the
type, and then cause that data item to be read and printed in Lines
80-90, 110-120, or 140, depending on the type. This process repeats
itself through the file to the end of the data. This program could be
used to read and print the contents of a file when you are not sure
what the file contains and you want to know (that happens some-

sh).

Q FILES 305

22. You may encounter some difficulties with serial files. Serial files are
fine for data that do not change. If you want to add new data past the last

piece of data simply read to the end of the data marker and then make your
additions.

1 REMARK ADD T® FILE DEM@
10 FILES PHENE
20 DIM AS(15),BS8(12)
30 READ #1,1]
35 IF END #1 THEN 70 Read to end of data
40 READ #13AS%
60 GO To 40
70 IF END #1 THEN 100-=—Test for end of file
75 PRINT"ENTER NAME"3
80 INPUT AS } Enter new data
85 PRINT"ENTER PHONE #';
' 90 INPUT B$
| 95 PRINT #13A$,BS$
97 GO T® 75
100 PRINT"ERRORe«.+ END OF FILE"
110 END

Which statement caused the new data to be printed onto the file?

95 PRINT#13A%,B%

306 BASIC

23. If you want to alter the contents in the middle of the file — watch out!
Here’s our file. We will demonstrate how to insert data or change data in the
middle of this file.

NAME/PHONE/NAME/PHONE/NAME/PHONE/NAME

For this example, assume you have been notified that the second name in the

file has a new phone number. If this were a file of 3 x 5 cards, you would

simply pull the second card, change it and insert the card back into its pre-

vious position. However, this is a computer serial file. If you followed that

logical procedure — read to the old number type in the new number and

stop — the remainder of the file will be lost! That’s the way serial files work!
To get out of this dilemma you have to “play games’ with your com-

puter. The easiest way is to create a new file that is used as a scratch pad;

that is, a temporary place to store the information from the original file.

Here is a step-by-step procedure.

(a) Read from the file copying it onto the scratch pad until you reach the
data to be changed.

(b) Make your change and enter it on the scratch pad.

(¢) Read the remainder of the file onto the scratch pad.

(d) When you reach the end of the file, read the corrected scratch pad back
into the old file position.

Here is our program to change the phone numbers. This procedure may
seem cumbersome but it will take very little computer time.

=

e . St el p— .

» ol

3 FILES 307

1 REM~-FILES ALTER

S5 DIM AS[20),Bs$(121,Cs8(121]

10 FILES PHONE,PAD

20 PRINT "ENTER OLD PHONE #"3

30 INPUT Cs CS$ is the old number
40 READ #1,1 Set the pointer to the
42 READ #251 beginning of both files
45 IF END #1 THEN 200
S0 READ #13A%,BS Read the old file.
S5 IF B$=CS$ THEN 100 Test the file phone num-
60 PRINT #23A%,BS% ber you are looking for
70 GOT@ 50 If the numbers do not
100 PRINT "ENTER NEW PH@NE #°'3 match printold file
105 INPUT BS onto'PAD
110 PRINT #23A%,B% Write the new data onto
120 IF END #1 THEN 140 PAD. Lines 120 to 135
125 READ #13A%$,BS% read remainder of the
130 PRINT #23AS$,B4 old file and print it onto
135 GOTe 125 the PAD
140 READ #1,1 Reset pointers on both
145 READ #2,1 files
1SO0 IF END #2 THEN 999 Lines 150 to 160 read

! 155 READ #23AS$,BS PAD and print onto

a) 160 PRINT #13AS,BS PHONE file

165 GO T® 155

200 PRINT "0LD NUMBER NOT IN FILE *

210 GOTe 20
999 END

(a) Which statement searches the file PHONE for the old phone number?

(b) Which statements transfer the data from PHONE to PAD? __

(¢) Which statement puts the name and new phone number in PAD?

(a) S0 READ $13AS$,BS
(b) 60 PRINT #23A$,B$ and 130 PRINT $23A$,B%
(c) 110 PRINT #23A%$,B$%

308 BASIC

24. If Line 200 is executed, what is it telling the operator?

Old number is not part of the file.

25. Suppose one of your clients sends a note with his name and new phone
number and does not include his old phone number. Modify the program in
frame 23 so that the person’s name (instead of the old phone number) is
entered and used to compare with the PHONE file. You can do it with just
4 changes.

! REM-FILES ALTER
S DIM ASC201,BS$[121,C$(20)

10 FILES PHONE,PAD

20 PRINT "ENTER NAME"}

30 INPUT Cs

40 READ #1,1

42 READ #2,1

45 IF END #1 THEN 200

S0 READ #13AS,BS

5S IF A$=CS THEN 100

60 PRINT #23AS,BS

70 GOTe S0

100 PRINT "ENTER NEW PHONE #';
105 INPUT BS

110 PRINT #23;AS,BS

120 IF END #1 THEN 140

125 READ #13AS,BS

130 PRINT #23AS,BS

135 GOTOP 125

140 READ #1,1

145 READ #2,1

150 1F END ¢2 THEN 999

155 READ #23AS$,BS

160 PRINT #13AS,BS

170 GOT@ 155

200 PRINT *"NAME IS N@T IN FILE AS ENTERED"™
210 GOT2 20

999 END

S

®

. S N TR SN S W — .

e S o N S P S S

FILES 309

As you can see, serial files are best used when you know in advance that
you will not be making many changes in the file once it’s set up. It’s fine to
READ from serial files but if you know you will have changes to make it
might be best to start out by creating a random access file.

26. A random access file is divided into a number of separate, discrete divi-
sions called RECORDS. Each record has an assigned number. Each record

may be viewed as a small serial file.

RANDOM ACCESS FILE

Records may be accessed directly or randomly without having to read
through the entire file. Records may be changed easily without having to go

through the procedure outlined for serial files.

The data in our previous example (the name and address file called
MASTER) could be arranged in a RANDOM ACCESS FILE so that the infor-
mation for each person would be assigned to a separate record.

1
NAME/ADDRESS/CITY/STATE/ZIP/PHONE/

2

NAME/ADDRESS/CITY ...

One advantage of random access files over serial files is 2

You can make changes in the data of a random access file without going
through the cumbersome procedure necessary to change data in a serial

file.

310 BASIC

27. The random file instructions are very similar to serial file instructions.
You use the same OPEN command and the same FILE statements. Here is
the general form of random file READ

READ # (file number) , (record number) ; (variables)

This statement causes data to be read from a random access file (notice the
use of comma and semicolon punctuation).
Here are some examples of random file READ statements. :

10 FILES ZERO,ABLE

20 READ #2,33A%$,B$ Will read AS, BS from the file ABLE,
3rd record

30 READ #1,13X5Y»2Z Reads X, Y, and Z from the 1st record
in file ZERO

40 READ #2,1 Sets the pointer to the beginning of
file ABLE (same format as that used
with serial files)

More examples.

10 FILES C100,PHONE

20 LET A=2 (’
30 LET B=3

40 READ #A,B3 DS$SHES Since A = 2 the statement says read

from the file PHONE, 3rd record
(B =3)

SO READ #1,A; AS$,BS

Which file number and record number will be read by Line 50?

File 1
Record 2

FILES 311

28. If this is your file, what data will be read by each of the READ state-
ments below?

1 2 3 4 5
JEAN/564-3231/NANCY/322-9038/MARY/311-6124/ANN/512-6014/DIANE/924-30786

10 FILES PHONE

20 READ #1,33A%,B$%

{ 30 READ #1,13 BS%,CS
40 LET K=5

S0 READ #1,K3A%$,BS

- - T -

\ 20 MARY, 311-6124
30 JEAN, 564-3231
50 DIANE, 924-3078

: 29. This program reads the MASTER file (now arranged as a RANDOM file

{ with each person assigned to one record) and prints its contents.

! | REMARK-RAND@OM FILE READ

¢ 10 DIM AS[151,B%(201,C$[10),DS[2),ES[S),F$C12]
® 15 FILES MASTER

' 18 LET K=1

20 READ #15,1 Set the pointer to the beginning of the file
25 1IF END #1 THEN 99
30 READ #1,K3A$,B$,C$,D$,ES,F$ K is the record number.

40 PRINT Watch what happens in
S0 PRINT AS Line 88
1 60 PRINT BS
' 70 PRINT C$,D$,ES
80 PRINT F$
) 85 PRINT
, 88 LET K=K+l Got that?
i 90 GOTO 30
99 END
What statements were added or changed from the program in frame 10 to
| make this program use random files? g S, T
f
| N A DL LT N T
! Statements 18, 30, 88

312 BASIC

1

10
15
18
20
25
30
35
40
45
S0
99

gram.

30. Write a program that will print the name and record location number
for each entry in file MASTER.

REMARK FILES NAME/LOCATION
DIM ASC151,B$[201,C$S[101,DS[(21,ES[S5)1,F$(12]
FILES MASTER
LET K=l
READ #1.,1
PRINT "NAME *,*"LOCATION"
IF END #1 THEN 99
READ #1,K3A$,B$5,CS,ES,F$
PRINT AS,K
LET K=K+l
GOTE@ 25
END

31. The general form of random file PRINT is:
PRINT # (file number) , (record number) :; (data)

This statement prints data onto a random file. Here is an example:

10 PKINT #1,13A%,E% Print A$ and BS onto record 1 of file 1
10 PRINT #A,B3A%$,E%

In frame 30 you wrote a program to generate a list of names and the
record location numuver of each set of #.ta. Using this list you can make
changes in some§ .¢’s record.

First look up tiie name on the list and get the file record location num-
ber. Then, enter tfus information into this file and change or update the pro-

- P -t

[)

FILES 313

1

10
15
20
25
27
30
35
40
45
S0
55
60
65
70
75
80
85
90
92
95
99

What does Line 92 do?

REM=-RANDOM FILE UPDATE
DIM AS[151,B$[201,C$[101,D$[21,ES(51,F$(12]

FILES
PRINT

INPUT

MASTER
“ENTER RECGRD #"3
K Enter the record number of the party to be corrected

IF END #1 THEN 99
READ #1,K Set pointer to beginning of record to be chanaed

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT

"ENTER NAME"3;

AS

“"ENTER ADDRESS"3

BS

"ENTER CITY"™

C$

“"ENTER STATE CODE"3
D$

"ENTER ZIP CODE"3
ES

“"ENTER PHONE #"3

F$
#1,K3A%,B$,C$,D3,ES,F$

GOTe 20

END

Print the new data onto the file in record location K.

314 BASIC

Use the following for quick reference.

To delete an entire record:

10 PRINT #1.,5

an end-of-record mark at the beginning

This statement will place
by deleting any data in that particular

of record number 5 there
record.

In random files, |F END works the same as with serial files.
IF END also detects end of record marks in random files.

The TYP function also works the same with random files. In

addition to detecting numbers; strings, and end of file, TYP
will detect an end of record using the number 4. The following
statement tells the computer to go 1o Line 400 at the end of the

record.
10 IF TYP(1)=4 THEN 400

Q SELF-TEST 315

SELF-TEST

You made it to THE END. This Self-Test reviews some of the problems you |
worked with in earlier chapters and applies these familiar concepts (says
who?) to files.

; 1. Voter-analysis problems are a very common application of files. Refer
back to page 191.

‘ (a) Write a small program that will load the responses in the DATA
statements (910 to 920) into a serial file called VOTES.

(b) Rewrite the main program so the data will be read from the file
ﬂ VOTE instead of DATA statements.

316 BASIC Q

2. Refer to page 272 of Chapter Nine. This course listing could, or should
be placed in a file.

(a) Write a small program to load the data in Lines 50, 60, and 70
into a file called GRADES.

(b) Now write a program to print the contents of this file.

3. Refer to page 278, Chapter Nine. Write an information-retrieval pro-
gram to retrieve data from the file GRADES you prepared in question

2A above.

SELF-TEST 317

BONUS PROBLEM. Assume you have administered a 10-question multiple
guess test, with 4 possible responses per question. The correct answers
(1,2, 3, or 4) are loaded into a file called KEY. Another file, ANSWER,

{ contains a student number followed by the student’s 10 responses for 90

students. Your task is to write a program that will print each student number
and tell how many questions were responded to correctly.

0 Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

. (a) (frame 15)

S
10
15

20
25

30
40

910
920

925
930

999

REMARK-FILES SELF TEST-10-1
FILES VOTE

READ #1.,1

IF END #1 THEN 930 |
READ V

IF V==1 THEN 999

PRINT #13V
GOTOe 20
DATA Iol:202)2:1110132)2:2019191&29192

DATA 252515151 9201023212110112.01:1)201

DATA -1 il
PRINT “ERROR.«+END OF FILE

END

318 BASIC

(b) (frames 10, 17)

1 REMARK ~-FILES SELF TEST 10-1B
S FILES VOTE

2% (a)

10
20
30
35
40
45
S0
S5
60
65
70
90
99

(b)

8832888853

IF

DIM CL201]
MAT C=ZER
READ #1,1
READ #13V

V==1 THEN 80

LET CLVI=CLV1+1

GOTOe 40

FOR K=1 T@ 2

PRINT "ANSWER N@."3K3":"3C(K]

(frame 15)

REMARK-FILES SELF TEST 10-2

S FILES GRADES
DIM AS[12]

READ

#1,1

IF END #1 THEN 90
READ A$,B»C$S
PRINT #13A%$,B,C$

GOTo
DATA

DATA
DATA
DATA
DATA

35

“ENGLISH 1A"™,3,"B"»"S@C 130",3,"A"
"“PHYSICS 2A",5,"C","STAT 10",3,"C"
“BUS ADM 1A",4,"B","EC@N 100",4,"B"
"HUMANITIES",3,"A","HISTORY 17A",3,"B"
"CALCULUS",4,"C"

PRINT "ERRORe««+END OF FILE"

END

(frames 10, 17)

1 REMARK FILES SELF TEST 10-2B
S FILES GRADES

10 DIM AS[12)]

15 IF END #1 THEN 99

20 READ #1,1

25 READ #13A%$,B,CS

30 PRINT A$,BsCS

40 GOTe 25

99 END

—_

0 |

SELF-TEST 319

3 (frames 23, 24, 25)

| REMARK FILES SELF TEST 10-3
5 FILES GRADES

10 DIM AS[121,DS[12]

{S PRINT “ENTER COURSE NAME";
20 INPUT DS

25 READ #1,1

30 IF END #1 THEN 90

40 READ #13AS$,B,CS

50 IF A$=DS THEN 70

60 GeTe 40

70 PRINT AS$,B,CS

75 PRINT

80 GeTe 15

90 PRINT "COURSE NAME NOT IN FILE"
95 GeTe 15

99 END

Final Self-Test

Look at Chapter Two Self-Test, question 6. The program you wrote
calculated the value of two possible prizes:

PRIZE NO. 1: N dollars
PRIZE NO. 2: D dollars, where D= 1.01N

Write a program (or modify the one we used) to find the smallest whole
number N for which PRIZE NO. 2 is greater than PRIZE NO. 1. Only
this number should be printed.

Write a program to simulate the game of “craps.” In this game two dice
are rolled, and the total of the two dice is observed. On the first roll
(of 2 dice), 2, 3, and 12 are losers (“‘craps™); 7 and 11 are winners. If
the first roll totals 4, 5, 6, 8, 9, or 10, the dice are rolled again until
the total is repeated (which wins) or until a 7 is rolled (which loses).
(Hint: use a subroutine to throw the two dice each time.)

Here are two sample RUNs.

ON THE FIRST ROLL, THE DICE T@TALED 9
ROLLED AGAINe¢sssses+DICE TRTALED S
ROLLED AGAIN«essseess+DICE TOTALED 9

ITS A WINNER!!!! HERE WE G@ AGAIN!

@N THE FIRST R@OLL», THE DICE T@TALED 3
ITS A LOSER«««+LET'S TRY AGAIN.

320

0

()

T e e e, 4

O S ——

FINAL SELF-TEST 321

Now, try a problem with matrices. Write a program that will franspose
a 2 x 3 matrix. When a matrix is transposed, the rows become columns,
and the columns become rows. The transposed matrix will be 3 x 2.
For example:

RUN
HERE IS THE @RIGINAL:
1 2 3

4) 6

AND HERE 1S THE TRANSPOSE:

1 4
2 S
3 6

Write a program that will convert any input number from centimeters
to inches, and/or from inches to centimeters, depending on the wishes
of the user. Answers should be rounded to two decimals. (Use DEF FN)

Conversion factors:

| inch = 2.540 centimeters
1 em=.39370 inch

Use a string IF to decide in which direction the conversion is to be made.
Here is a sample RUN.

RUN
LENGTH?1
IS THAT IN CENTIMETERS», @R IN INCHES? INCHES
1 INCHES EQUALS 2.54 CENTIMETERS. |
LENGTH?100
IS THAT IN CENTIMETERS», OR IN INCHES?CENTIMETERS
100 CENTIMETERS EQUALS 39.37 INCHES .«
LENGTH?

D@NE

322 FINAL SELF-TEST

Answers

1. Here is our shortest program.

10
20
30
40
929

F@k N=10 Te 1000
IF 1.01t*N>N THEN 40

NEXT N
PKINT “THE SMALLEST N IS:':N

END

Here is the RUN
RUN

THE SMALLEST N IS: 652

DONE

2. Here is our program.

10
20
30
40
S0
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
260
270
280
290
999

REMARK FINAL TEST QUESTION 2: GAME oF CKkAPS
GOSUB 260 .

LET Cl=A+B
PRINT “ON THE FIRST ROLL, THE DICE TeTALED";C1
IF C1=2 THEN 170

IF Ci1=3 THEN 170

IF C1=12 THEN 170

IF C1=7 THEN 210

IF Cl=11 THEN 210

REMARK C1 1S new THE 'POINT."

GOSUB 260

LET C2=A+B

PRINT “K@LLED AGAINeseeeeseeDICE TeTALED *3c2
IF C2=C1 THEN 210

IF C2=7 THEN 170

GeTe 110

PRINT "ITS A LOSER.++..LET'S TRY AGAIN.*
PRINT

PRINT

GeTe 20

PRINT "ITS A WINNEK!!!! HERE WE G@ AcAaIn!"
PRINT

PRINT

GoTe 20

REMARK A AND B ARE THE DICE.

LET A=INTCE6*RNDCO))+

LET B=INTC6*RNDCD))+]

RETURN

END

FINAL SELF-TEST

323

3.

4.

Here is our answer.

10
20
30
40
S50
60
70
80
90

REMAKK FINAL TEST OQUESTION 3: MATRIX TRANSPOSE
DIM AL2,31,B(3,2)

MAT READ A

DATA 1,2,3,4,5,6

FOR 1=1 Te 2

FOR J=1 T0 3

BlJs1)=A(1,J)

NEXT J

NEXT 1

100 PRINT “HERE IS THE ORIGINAL:*

110 MAT PRINT A3

120 PRINT

130 PRINT "AND HERE 1S THE TRANSP@SE:"
140 MAT PRINT B3

999 END

Here is one solution. Note that the rounding is done in the same step as
the conversion, using DEF FN.

REMARK FINAL TEST QUESTION 4: CONVERTER

10 DIM ASC12]

20 DEF FNC(X)=INT(254%X)/100

30 DEF FNICX)=INT(39.37%X>/100

40 PRINT “LENGTH"3

50 INPUT L

60 PKINT "IS THAT IN CENTIMETERS», @R IN INCHES'"3
70 INPUT AS

80 IF AS="CENTIMETERS" THEN 120

90 IF AS="INCHES'" THEN 150

100 PRINT "TRY AGAIN«s«'3

110 GOT@ 60

120 PRINT L3"CENTIMETERS EQUALS"3FNICL)3;"INCHES."
130 PRINT

140 GeTe 40

150 PRINT L3“INCHES EQUALS"3FNCCL)3"CENTIMETERS."
160 PRINT

170 GeTe 40

999 END

References

Question Chapter(s)

1 1-4
2 1-5
3 7

7-10

B EN

Index

Arithmetic operation symbols, 24, 28, 30
order of, 26, 31

Array, 169, 210
one-dimensional, 211
two-dimensional, 211

Comma spacing, 18, 22
Conditional branching, 85
Correcting statements, 11, 13
CRT, 2

DATA statement, 70, 77, 87, 101, 180
errors, 74
flag, 100, 185

Debugging, 94

Defining a function, 162

DIM statement, 177, 216

Double subscripts, 209

Electric typewriter, 2
END statement, 63
Exponent, 32
Exponentiation, 30

in scientific notation, 32

Flag, 98, 185
File PRINT statement, 290, 312
File READ statement, 291
random access, 310
serial, 292
File size, 290
FILES statement, 290
random access, 309
serial, 288
FOR statement, 113, 121, 174, 180
STEP clause, 122
Functions, 134

GOSUB, 246

GO TO statement, 63, 105, 113
Grade Point Average, 47, 52, 57, 63
Growth rate formula, 58, 105

IF-END statement, 296, 314

[F-THEN statement, 85, 92, 98, 103, 156
conditions of, 86

Initializing, 67

Input, 4

INPUT statement, 48, 54, 62, 117
comma spacing, 54
termination of, 65

Interest rate problem, 105, 108, 126, 137

INT function, 137, 149

LET statement, 43, 67,103 171, 192
Line number, 5, 11, 16

LIST, 11

List, 169, 211

Loops, 113

Main program, 247

Mantissa, 32

MAT operations, 191
MAT INPUT, 196, 229
MAT PRINT, 194, 224
MAT ZER, 192, 222

Matrix, 169, 209

Mean, 46, 117

NEXT statement, 113, 174, 180
Number sorting program, 263
Numerical expression, 9

ON...GO TO statement, 156
OPEN file command, 289

3

325 INDEX

Population growth, 58, 60, 66, 76

Powers of a number, 30
Print positions, 18

PRINT statement, 50, 64, 117, 146, 153

semicolon spacing, 50

Program, 4

Random access files, 309
Random numbers, 142
RANDOM statement, 142

READ statement, 70, 76, 128, 180

Records, 309

REMARK statement, 57, 142

RETURN statement, 246
RND function, 142, 147
Rounding, 138

RUN, 8

Scientific notation, 32

SCRatch, 4, 11

Semicolon spacing, 18, 21, 50

Serial files, 288

SOR function, 135

Standard deviation, 253

Statement, 4, 6
correcting, 11, 13
replacing, 11, 13

String, 9, 22

String DIM, 266

String IF-THEN, 274

String INPUT, 267

String LET, 273
String PRINT, 267, 281

String READ/DATA, 272
String variable, 265
STOP statement, 246
Subscripted variable, 170, 182
double subscript, 209
single subseript, 170
subscript errors, 177
variable subscript, 172, 176, 186, 212
Substring, 281

TAB function, 157

limitations of, 158
Teletypewriter, 2
Terminal, 2
Test scoring program, 198, 201, 251
TYP function, 303, 314

Variable, 43, 50, 106
dummy, 162
value of, 44
Variance, 253
Vector, 169, 211
Vote counting program, 185, 191, 214, 220

Words, 290
World's Most Expensive Adding Machine
program, 67, 75, 128, 174

