

BASIC
Second Edition

Robert L. Albrecht

LeRoy Finkel

Jerald R. Brown

Dymax

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Copyright © 1978 John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond
that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner
is unlawful. Requests for permission or further information
should be addressed to the Permissions Department, John
Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Albrecht, Robert L
BASIC.

(Wiley self-teaching guides)
Includes index.
1. Basic (Computer program language) - Programmed

instruction. I. Finkel, LeRoy, joint author.
II. Brown, Jerald, 1940- Joint author.
III. Title.
QA 76.73.B3A4 1978 001.6'424 77-14998
ISBN 0-471-03500-9

Printed in the United States of America

16

To the Reader

I ens of thousands of people of all ages have used the first edition of
this book lor a last and thorough introduction to computer programming
in BASIC. We have revised and updated this second edition to eliminate
minor errors and typos, broaden the scope of the activities and examples,
and provide some new material to clarify and extend your understanding
of BASIC. '

Since the appearance of BASIC, by Albrecht, Finkel and Brown, the
field of computer science and the availability of computers to all people
(non-professional computer users) has grown by leaps and bounds.
Especially noteworthy is the appearance of the so-called personal or home
computer. Integrated circuit technology has now provided us with com­
puters far less expensive than ever before, yet with the same computing
abilities as systems costing many times more. This means it will be easier
lor you, the beginner, the get "hands-on" computer programming practice
in the BASIC language.

The development of the computer over the past two decades has been
accompanied by much technical jargon and supposed complexity. We aim
to clear away the mystery. With this book, you can teach yourself to
control a computer. You will not only learn how to use the computer as a
tool, but will also dispel forever the mystical aura surrounding the device.
While there are certainly judgements to be made about how computers are
used, the electronic hardware itself, like any tool, is neither good nor bad,
and is not to be feared.

The computer language BASIC was developed at Dartmouth College
by John Kemeny and Thomas Kurtz who recognized the need for an all
purpose computer language that would be suitable for beginning programmers
whose educational backgrounds would be varied and diverse. Beginners
All-purpose Symbolic Instruction Code (BASIC) was originally designed as
a simple language which could be learned in a few short hours. Over the
years, improvements have been made in the language so that today, it may
take a few days to learn the complete language but you will find you can do
nearly anything you want in BASIC.

V

r thi<= SHf Teaching Guide, you are learning the most widely used
form of BASIC very similar to Dartmouth BASIC, the common
form of HAo ; • f BAsiC used by many computer manu-

thcturem Once you have mastered the bastes of MK - »-«
cuhe easy to learn any variations or additional capabilities that may be
available for the computer you use now and m the future. You should
understand that not all BASICs are alike, though they are very similar

An important feature of this book is the emphasis on reading and
understanding a computer program, so that you can see why the program
causes the computer to perform the task for which the program was written
You may have many occasions to adapt a program in BASIC written by
someone else to your own needs. There is less and less need to write new
programs that "reinvent the wheel". However, with the thorough grounding
provided by this introduction to the BASIC language, and with the
opportunity to practice and develop your skills, you will also be able to
write programs for your own needs when no others are available.

This book is the result of the combined efforts of three authors with
years of first hand experience in teaching college students and adults, and
children to use computers and to program in BASIC. (We think you'll
appreciate that as you successfully complete this book, especially if you have
looked at other materials for learning BASIC.)

The prime purpose of the book is to teach BASIC. Of course, the appli­
cation of the programming skills you learn will depend on your own interests.
For this text, we have chosen a variety of examples ranging from the fields
of social science, business, humanities to the simple statistics used in psychology,
education and business. You do not need an extensive background in mathe­
matics or science.

We hope you enjoy this easy, step-by-step method for learning BASIC.

RLA
LPF
JRB

Menlo Park, California
November, 1977

NOTE TO INSTRUCTORS: Based on feedback provided by users of the first
edition of BASIC, we have included an extra self-test problem at the end of
each chapter for which we do not provide a solution. You can use this "Bonus
Problem" as an assignment for students to turn in as a group project or as
an individual required assignment . . or any way you like. Remember, for
most programming problems, many details and approaches in the solution oi
problems will differ from student to student. Yet, they may all still be
correct in accomplishing the tasks set forth by the problem definition.

How to Use This Book

With the self-instructional format, you'll be actively involved in learning
BASIC. The material is presented in short numbered sections called
frames, each of which gives you a question or asks you to write a program.
Correct answers are given below the dashed line. For the best results, we urge
you to take pen or pencil in hand and to use a piece of thick paper or card­
board to keep the answers out of sight until you have written your answer in
the space provided. The questions are carefully designed to call your atten­
tion to important points in the examples and explanations, and to help you
learn to apply what is being explained or demonstrated.

At the end of each chapter is a Self-Test which provides an excellent
review of the material covered in the chapter. You may test yourself imme­
diately after reading each chapter. Another good way of using the book is to
do a chapter, take a break, and save the Self-Test as a review before you begin
the next chapter.

Each chapter begins with a list of objectives - what you will be able to
do after completing that chapter. If you have had some previous experience
using BASIC and these objectives look familiar, you can use the Self-Test as
both a review and a guide showing where you should start following the text.
Try the Self-Test before reading the chapter. If you do well, study only the
frames indicated for the questions you missed. If you miss many questions,
start work at the beginning of that chapter.

At the end of the book is a Final Self-Test which will allow you to test
your understanding of BASIC.

This is a self-contained teaching program for learning the computer lan­
guage called BASIC. However, what you learn will be theoretical until you
actually sit down at a computer terminal and apply your knowledge of the
computer language and programming techniques. We therefore strongly
recommend that you and this book get together with a computer. If you are
not enrolled in a course or employed in a business where computer terminals
are available, you can (with a little diligence) still get access to a computer
terminal. To practice using BASIC you have to have access to a system that
uses BASIC. Do some research on the availability of computer terminals
using BASIC in your community.

vii

viii HOW TO USE THIS BOOK

There are probably computer terminals in the high schools, community
colleges and universities in your area. Be persistent, friendly and sincere until
you find someone associated with the institution (faculty, graduate student,
technician) who will allow you some "computer time on a system using
BASIC.

Some science museums and even a few libraries these days have com­
puter terminals for public use.

Many businesses use computers. They may have their own in-house
computer, or they may use a computer time sharing service.

You can rent a computer terminal to use in your home. You might get
together with several friends to divide the cost. This is what is involved.

Computer terminal rental is about $65 a month, from a business that
rents terminals (such as Western Union), computer time sharing companies
and computer equipment companies. The terminal is equipped with a device
that fits your regular home telephone.

Computer time sharing companies are located in most metropolitan
areas. They are businesses that maintain computers that you dial up
using a regular telephone. You establish an account with the company, and
they issue you a telephone number and a code number, and then keep a
record of the time that your terminal is connected to their computer system.

However, you must also pay the telephone bill if the time sharing com­
pany you use is a long distance or toll call. Hourly rates for computer
connect time" may run from $5 to $15 an hour, with rates as low as S2 per
hour for evening or night use from some companies. Try the yellow pages
of your phone book under "DATA PROCESSING" for time sharing services
in your area.

BASIC will be easier and clearer if you have even occasional access to a
teletype or other computer terminal so that you can try the examples and
exercises, make your own modifications, and invent your own programs tor
your own purposes. However, computer access is not essential: all you need
is this Self-Teaching Guide. You are now ready to teach yourself how to
use BASIC.

Contents

Chapter 1 Getting Started 1

Chapter 2 Warming Up 42

Chapter 3 Decision Making 84

Chapter 4 FOR-NEXT Loops 113

Chapter 5 Functions 134

Chapter 6 Subscripted Variables 169

Chapter 7 Double Subscripts 209

Chapter 8 Subroutines 246

Chapter 9 String Variables 265

Chapter 10 Files 287

Final Self-Test 320

Index 325

"

>

CHAPTER ONE

Getting Started

When you complete this chapter, you will be able to:

• specify the correct format for entering a computer program (written
in BASIC) into the computer;

• describe how to erase (SCRatch) an unwanted program from the
computers memory, how to LIST a program currently in the computer,
and how to RUN (process) a program;

• specify methods for correcting, editing, and deleting statements in a
computer program;

• translate into everyday numbers the scientific or "E" notation used
by computers for expressing extremely large numbers and extremely
small decimal fractions;

• write programs to print information and do arithmetic, using PRINT
statements and END statements and the correct BASIC notation for
arithmetic operations.

1

2 BASIC

1. This first section starts off slowly and simply, to kind of ease you into
things. There are several devices that are most commonly used for communi­
cation between a computer and the computer user.

Teletypewriter CRT (Commodore Business Machines, Inc.)

What characteristics do these devices have in common?

(a) television screen
(b) a typewriter-like keyboard
(c) a steering wheel

(b) a typewriter-like keyboard

2. A computer terminal provides the means for communicating with the
computer. By means of a teletype or other terminal, a computer program
and data may be communicated to a computer. When the program is run or
processed, the computer sends signals to the terminal which provides output—
that is, the results of processing the program. Therefore, a terminal provides

.— way communication between the computer and
(one-two-)

the user.

two

GETTING STARTED 3

3. The teletypewriter is the most common device used for communication
between the computer and its user, and it is the most common computer
terminal. The teletype is used much as an electric typewriter. It prints the
numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0; the letters of the alphabet; and some
special symbols. Letters are printed in upper case (capitals) only. You may

not use the lower case letter L to stand for the numeral .

one (1)

4. So you want to know what computer programming is all about? Here's
a computer program that will calculate a student's grade point average.

100 REMARK PROGRAM T0 COMPUTE GRADE POINT AVERAGE
110 PRINT "HOW MANY UNITS OF A"J
120 INPUT A
130 PRINT "HOW MANY UNITS OF B"l
140 INPUT B
150 PRINT "HOW MANY UNITS OF C"J
160 INPUT C
170 PRINT "HOW MANY UNITS OF D"l This is the program.
180 INPUT D
190 PRINT "HOW MANY UNITS OF F"J
200 INPUT F
210 LET U=A+B+C+D«-F
220 LET G*<4*A+3*B-t2*C + l*D>/U
230 PRINT
240 PRINT "YOUR GRADE POINT AVERAGE IS"lG
999 END

RUN

HOW MANY UNITS OF A?4
HOW MANY UNITS OF B?6
HOW MANY UNITS OF C?6
HOW MANY UNITS OF D?0
HOW MANY UNITS OF F?0

This is the output or result
of running the program above.

YOUR GRADE POINT AVERAGE IS 2 .875

4 BASIC

The program consists of 16 statements, each one on a separate line numbered
100 - 999. Each line begins with a line number. Following each line
number is a statement that contains instructions to the computer.

This program was typed a line at a time on the teletype (or other termi­
nal) and was saved in the computer's memory. Then we told the computer
to RUN the program; that is, to follow the instructions in the program.
During the run the computer, following the instructions in the program,
asked for information (called input) to be supplied by the computer user -
How many units of A's, B's, C's, etc., were received? The program then
directed the computer to do the computation and print the result. By the
end of Chapter Two, you will be able to understand and use all the BASIC
notation used in this program and more, so read on.

The distinct lines in a computer program are called .

statements

5. The computer stores a program in its "memory." Before the computer
user attempts to enter a new program into the computer, he will want to
remove any previous instructions that may be currently in the memory. To
erase previous instructions in the computer, type the letters SCR, then press
the key marked RETURN. SCR stands for SCRatch, and scratches out or

any previous program in the computer.

erases or removes

6. Before a new program is typed into the computer, any old instructions
held in the computer memory should be erased. To erase an old program,

type SCR and press the key marked

RETURN

GETTING STARTED 5

NOTE: Although most of the words and symbols in BASIC are the same for
all computer systems that use BASIC, there are some exceptions. This is
because there has not been a completely standardized form of the language
that is used by all computer manufacturers. Common variations will be
noted throughout this text. However, the concepts involved are the same,
even though a particular code word or symbol may be different from that
used here. When you have a grasp of BASIC, you will find it easy to make
the substitutions necessary to use the particular computer system at hand,
and a quick review of the BASIC reference manual for your system will
provide you with any variations you need to know. For example, words
such as NEW or CLEAR or START are used in place of SCRatch on some
computer systems,

7 . Sample program:

9999 END

From this example you can see that line numbers may range from

to .

1 to 9999

(NOTE: the upper limit is different on some computers.)

1 LET A»5
10 LET B = 10

This program, written in BASIC, consists of six
statements. Note that each statement begins
with a line number.

135 LET CsA+B
2 7 7 P R I N T A # B
852 PRINT C

6 BASIC

8. The line numbers indicate to the computer the order in which it is to
follow the instructions in the program. It is not necessary for line numbers
to follow each other successively (e.g., 1, 2, 3, 4,. . .) as you can see by
looking at the line numbers in the program in the previous frame. However,
it is more common to number by ten's as we have in the program below.
Then, if we wish, more statements may be easily inserted in the program
between existing statements.

How many new statements could be added between Lines 20 and 30?

9 (Lines 21, 22, 23, 24, 25, 26, 27, 28, and 29)

9. !0 PRINT 12 • 33
99 END

This is a very short program that is composed of only two statements.

Each statement begins with a line number. Circle the line number in each
statement.

10 LET A*5
20 LET B«10 This is a common way of numbering a program.

Note that the line number for the END statement
is 99. For convenience, we will use 99 or 999 or
9999 for the END statements, depending on the
size of the other line numbers in the program.

30 LET C*A+B
40 PRINT A»B
50 PRINT C
99 END

(fo) PRINT 12+33
<93 END

GETTING STARTED 7

10. 10 PRINT 12 • 33
99 END

In this mini-program, Line 10 instructs the computer to evaluate the
numerical expression 12 + 33, (i.e., do the arithmetic) and to PRINT the

result. When this program is run on the computer, what will it print?

45 (the sum of 12 and 33)

11. The computer follows instructions in line number order. In the pre­
ceding program (frame 10) which statement is done first, Line 10 or Line 99?

Line 10

12. 10 PRINT 12 • 33
99 END

If you are seated at the computer terminal, and have erased any previous
programs in the computer, you are ready to type in this program. To enter

the program, type the first line, then press the RETURN key (T i s j) Then

type the second line and ;

press the RETURN key

Note. By now, you should have determined whether to type SCRATCH,
CLEAR, NEW or whatever is necessary to erase a program from the memory
of your computer.

8 BASIC

13. 10 PRINT 12 • 33
99 END

Assume you have typed this program into the computer. Now you wish
the computer to process the program. Type RUN and press the RETURN
key. If you have not made any typing errors in entering the program, the
computer will evaluate 12+.33, print the result 45, and stop. Here is what
you would see on the teletype printout.

10 PRINT 12 • 33 The program you typed in.

Circle the command that tells the computer to begin to follow the instruc­
tions contained in the program.

14. The program is not altered or erased from the computer's memory when
you RUN it. Every time you type RUN and press RETURN the computer
will RUN the program. Every time you RUN a program with the same infor-

99 END

RUN

45

mation you will get result.
(the same/ a different)

the same
(An exception to this general rule will be discussed in Chapter Five.)

GETTING STARTED 9

15. 10 PRINT "12 • 33"
99 END

Look at this program. How is it different from the previous one

(frame 13)?

The numerical expression is enclosed in quotation marks.

16. Note that the computer evaluated these two programs differently when
it was told to RUN them.

10 PRINT "12 • 33" 10 PRINT 12 • 33
99 END 99 END
RUN RUN

12 • 33 45

The statement

PRINT 12 • 33 (Without" ")

tells the computer to evaluate the numerical expression 12 + 33 (i.e., do the
arithmetic) and print the result as a decimal numeral.

The statement

PRINT "12 • 33" (With " ")

tells the computer to print the string enclosed in quotation marks exactly as
it appears. No arithmetic is performed.

In BASIC, a string is information in a PRINT statement that is enclosed

by __ •

quotation marks

10 BASIC

17. Fill in the blank as the computer would print it.

20 PRINT "186 - 58"
25 END
RUN

186 — 58 (Note that the computer does not print the quotation marks.)

PRINT "MY HUMAN UNDERSTANDS ME"

18. The underlined portion of the statement is a string. It is enclosed in
quotation marks.

A string may include

(a) numerals (0,1,2,...)
(b) letters (A, B, C,. . .)
(c) special characters (+, comma, period, semicolon, etc.)

Since quotation marks define the beginning and end of a string, they

PRINT "12 + 33" PRINT 12 • 33

This is a string. It is enclosed
in quotation marks. numerical expression.

be used as a character in the string.
(can/cannot)

cannot

GETTING STARTED 11

19. If you wish to change one or more statements in a program currently in
the computer, you may do so without SCRatching the program and starting
over. You merely type in a new statement, using the same line number as
the line you wish to replace. Look at the program below, and the change
made in it by replacing one line.

SCR
SCRatch the preceding program.

10 PRINT 7+5
99 END Enter the new program.

RUN RUN the new program.

12 Here is the result.

Next . . . replace Line 10 with a new Line 10. (Replace means retype the
line, beginning with the line number.)

10 PRINT 6*9

Now tell the computer to LIST the current program. To do this, you type
LIST and press the RETURN key.

LIST

10 PRINT 6*9 •*— Here is the new line 10,
99 END and the old Line 99.

RUN RUN the modified program.

Here is the new result.

You may change or replace any line in your program by retyping it, using
the same line number as the line you wish changed. The new statement

the old one with the same line num­
ber.

replaces (or changes)

Remember. To tell the computer to type a copy of the current program, type
LIST and press the RETURN key.

12 BASIC

20. While we're on the subject, suppose you wish to take a statement out of
a program without replacing it with another statement. Don t SCRatch and
start over. Merely type the line number of the statement you wish deleted or
removed and press RETURN.

10 PRINT 5+5
20 PRINT 12+3
30 PRINT 6+4
99 END

This program is in the computer,
and we wish to delete (remove)
Lines 20 and 30.

20
30

Type the line numbers only, and
press RETURN after each.

LIST

10 PRINT 5+5
99 END

Now, LIST the program.

Presto! Lines 20 and 30 are gone.

Here is another program and a RUN of the program:

10 PRINT "MY COMPUTER UNDERSTANDS ME M

20 PRINT "MY COMPUTER CONFUSES ME"
99 END

RUN

MY COMPUTER UNDERSTANDS ME
MY COMPUTER CONFUSES ME

This offends us, so we want to delete the
statement in'the program that caused the
computer to print it, and we want a RUN
of the program to look like this:

RUN

MY COMPUTER UNDERSTANDS ME

GETTING STARTED 13

(a) What would you do to remove the offending statement from the

program? _

(b) Show a LISTing of the program with the offending statement
removed:

(a) Type 20 and press RETURN

(b) L I S T

1 0 P R I N T " M Y C O M P U T E R U N D E R S T A N D S M E M

9 9 E N D

NOTE: The quotation marks are included because this is a LISTing of the
program itself, and not a RUN of the program.

Summary of operations:

SCR, NEW or CLEAR - erases the current program

RUN - executes the current program

LIST - prints a list of the current program
Line number, RETURN - deletes the statement with line number indicated

21. When typing your programs into the computer, you may make a typing
error or some other mistake. Look at this example.

10 PTINT 2*3 + 4 We misspell PRINT.

SYNTAX ERROR The computer tells us we made a mistake.
(Some computer systems do not inform you
of errors until you try to RUN the program.)

The error message may be different on your computer. That's not the point.
The point is, if you had noticed that you hit T when you meant to hit R,
you could have immediately corrected your mistake by using the back
arrow (-*-).

BEWARE! This method for correcting mistakes may not
work on your computer. If it doesn't, ask someone how
to make corrections.

The back arrow is on the same key as the letter O. To type a back arrow,
hold the SHIFT key down and press:

©
Here is an example of how to correct a typing error.

SCR

10 PT-RINT 2*3+4
9 9 E N D

LIST

10 PRINT 2*3+4
99 END

Now look at this example:

10 PRINT **MY HUMAN
99 END

Deletes second N. Deletes S and space.

The back arrow (-<-) deletes the character that
it points to. Note: no space(s) after the back arrow.

LIST the program by typing the word LIST and
pressing RETURN.

The statement is O.K.

UNN»DERSTANS ••••DS ME"

1 ^

GETTING STARTED 15

Show how the computer would print a LISTing of this latest program.

LIST

10 PRINT "MY HUMAN UNDERSTANDS ME"
99 END

Again, the quotation marks are included because this is merely a
LISTing of the program itself, not a R UN of the program.

22. Assume you just sat down at the computer terminal. You wish to
know if there is a program currently in the computer's memory. Type LIST
and then press the RETURN key. The computer will automatically type
out the program (if there is one) that is in its memory. Here is an example.

LIST

10 PRINT "12 • 33" The computer automatically typed all this.
99 END

Circle the command in the example above that caused the computer to type
out the program already stored in its memory.

16 BASIC

23. 10 PRINT **12 • 33"
99 END

Assume that this program is currently in the computer's memory. Now
you wish to add a new statement to the program, that says PRINT 12 + 33.
You want the new statement to be evaluated by the computer after
PRINT "12 + 33." The line number for the new statement must be greater

than and less than .

greater than 10 and less than 99.

24. 10 PRINT **12 • 33**
99 END

This program is stored in the computer. We type in the following
statement:

20 PRINT 12 • 33

and then press the RETURN key. The new statement is then incorporated
into the existing program. To verify this, type LIST, then press the RETURN
key. The computer will type out the program with the new statement in line-
number order. Fill in the blanks to show what the computer will print.

LIST

10 PRINT **12 • 33"
20 PRINT 12 • 33
99 END

GETTING STARTED 17

25. If you type RUN with the preceding program in the computer, the
computer would print:

RUN

12 • 33
45

If you retype Line 10 and added a comma to the end of the statement, the
program would look like this when LISTed:

LIST

. 1 0 P R I N T * * 1 2 • 3 3 " ,
20 PRINT 12+33
99 END

RUN

1 2 + 3 3 4 5 Note that the two results are printed on one line.

Here is a variation of the program that causes the computer to print the
problem (i.e., the string enclosed by quotation marks) and the answer on the
same line.

10 PRINT "12 • 33 «" » 12+33
99 END

RUN

12 • 33 « 45

Here is another program. Fill in the blank to show what the computer would
print.

J O P R I N T " T W E L V E P L U S T H I R T Y T H R E E E Q U A L S " . 1 2 * 3 3
9 9 R U N

R U N

TWELVE PLUS THIRTY THREE EQUALS 45

18 BASIC

26. In BASIC, the comma and semicolon permit several expressions and/or
strings to be printed on the same line. Look at the results of these two
programs.

PROGRAM A PROGRAMB

10 PRINT M12+33*M# 12+33 10 PRINT M12+33*MJ 12+33
99 END ^ 99 END |

comma semicolon RUN RUN

12+33* 45 12+33* 45

Examine the first statement in each program. Program A has a comma sepa­
rating the string and the numerical expression, Program B has a semicolon.
The computer prints the results of the two parts of the PRINT statement

closer together if you use a instead of a .

semicolon instead of a comma

27. On most computers using BASIC, there are 5 standard print positions
across a teletypewriter line. A comma in a PRINT statement causes the
teletypewriter to move to the next available print position. For example,

10 PRINT 1» 2* 3* 4* 5
99 END

RUN
Fill in the blanks.

1 2 3 4 5
t t t t t
Position 1 Position 2 Position 3 Position Position

4
5

NOTE: Some computer programs and RUNs have been reduced to save space.

GETTING STARTED 19

28. Did you notice that the little arrows in the above example seem to be
pointing to the space to the left of the number? This is where the print
position actually begins. When the computer prints a positive number or
zero, it prints a space first, then prints the digits of the number. Watch what
happens when negative numbers are printed below positive numbers.

JO P R IN T ! » 2 » 3 , At 5
20 P R IN T -1# -2# -3# -4
99 END

RUN

- 5

t
- I

t
Position 1

2
-2

t
Position 2

3
-3
t

Position 3

A
-A
t

Position 4

5
-5
t

Position 5

Negative numbers are printed with a followed by

the digits of the number, while positive numbers are printed with a
followed by the digits of the number.

minus sign (or negative sign; we'll even accept "dash")
space

20 BASIC

29. But what happens if there are more than 5 things in a PRINT statement?
Watch.

1 0 P R I N T I , Z , 3 , A , 5 » 6 , 1 , 8
9 9 E N D

R U N

1 2 3 4 5
6 7 8

The computer prints the 8 numbers on 2 lines with numbers on the

first line and numbers on the second line.

5
3

30. Got it? What will the computer print during the following RUN?

10 PRINT 1* 2* 3j A , 5# 6 , 7* 8# 9, 10* 1 1 , 12
99 END

RUN

1 2 3 4
6 7 8 9
11 12

GETTING STARTED 21

31. Now check what happens when we use semicolons instead of commas
to separate things in a PRINT statement.

10 PRINT 11 21 31 41 5
99 END

RUN

1 2 3 4 5

10 PRINT 11 21 31 41 51 61 71 8
99 END

RUN

1 2 3 4 5 6 7 8

Semicolon spacing varies from computer to computer. The above RUNs
show how our computer does it. Things get printed closer together

when we use a instead of a comma.

semicolon

With semicolon spacing, most versions of BASIC print positive numbers as
space, digits, space. Negative numbers are printed as minus sign, digits, space.
For example,

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5
- 1 - 1 2 - 1 2 3 - 1 2 3 4 - 1 2 3 4 5

Trailing space printed after the digits of the number.

22 BASIC

32. Now let's see what happens when commas are used to separate two or
more strings in a PRINT statement.

1 0 P R I N T " T H I S " , " I S " , " C O M P U T E R " , " P R O G R A M M I N G ? "
9 9 E N D

R U N

T H I S I S C O M P U T E R P R O G R A M M I N G ?

t t t t
Position 1 Position 2 Position 3 Position 4

In this PRINT statement, there are 4 strings, separated by commas. Each
string is printed in a standard printing position. Here is a similar program
using semicolons instead of commas.

1 0 P R I N T " T H I S " l " I S " J " C O M P U T E R " I " P R O G R A M M I N G ? "
9 9 E N D

R U N

T H I S I S C 0 M P U T E R P R O G R A M M I N G ? No spaces are printed.

As you can see, with semicolon spacing, spaces are
printed between strings.

no (or zero)

GETTING STARTED 23

33. If you want spaces, include them in the strings.

10 PRINT "THIS "*"IS "J"COMPUTER "j"PR0GRAMMING?'
99 END t t t

space space space

If we RUN this latest program, what will be printed?

THIS IS COMPUTER PROGRAMMING?

(Yes, this really is computer programming, although somewhat rudimentary.
But read on!)

24 BASIC

34. You have probably noticed that the plus (+) symbol of arithmetic tells
the computer to add. The minus (-) symbol tells it to subtract. (It also
indicates negative numbers.) The symbol for multiplication in BASIC is the
asterisk (*), and the slash (/) is the symbol for division.

T0 TELL THE COMPUTER T0 ADD# USE •
T0 TELL THE COMPUTER T0 SUBTRACT# USE
T0 TELL THE COMPUTER TO MULTIPLY# USE *
TO TELL THE COMPUTER TO DIVIDE# USE /

Remember, when you want the computer to squeeze the answers or output
more closely together, use semicolons instead of commas in the PRINT
statement.

Here is a sample program to do simple arithmetic, with the results of a
RUN of the program. Note the use of commas, and the widely spaced
answers.

10 PRINT 7+5# 7-5# 7*5# 7 /5
99 END

RUN

12 2 35 1*4

Write a short program to do the following simple arithmetic. Group all of
the expressions in one PRINT statement, using commas to separate expres­
sions. Show the results you would predict for a RUN of your program, then
try it on the computer if one is available.

1 0 + 6 1 5 - 9 2 3 v 5 3 x 1 3

10 PRINT 10+6# 15-9# 23/5# 3*13
99 END

RUN

1 6 6 4.6 39

GETTING STARTED 25

35. Here are some BASIC expressions in which two or more operations are
used. For some of these expressions we have shown the value computed by
the computer after it does the indicated arithmetic. You complete the rest.

2*3 + 4*5

2 + 3 * 4 - 5

2*3 - 4*5 + 6*7

26
9
28

36. Here are some more examples and exercises, using division (/).

Expression Value Computed by Computer

3/4 + 5 5.75

2 - 3 / 4 1 . 2 5

2*3 + 4/5 6.8

3/4 + 5*6

2-3/4 + 5

Expression

2*3 - 4

Value Computed by Computer

2
2 + 3*4 14

30.75
6.25

26 BASIC

37.
The computer does arithmetic in left to right order, with all
multiplications (*) and/or divisions (/) performed before
additions (+) and/or subtractions (—).

Now try these. (REMEMBER: Do arithmetic in left to right order.)

2*3/4

3/4*5

3/4/5

2*3/4 + 3/4*5

1.5 Multiply 2 by 3, then divide result by 4.
3.75 Divide 3 by 4, then multiply result by 5.
.15 Divide 3 by 4, then divide result by 5.
5.25 First compute 2*3/4, then compute 3/4*5 then add the two

I

before

Expression Value Computed by Computer

results.

38. If you want to change the order, use parentheses.

2*3 + 4 = 10

but 2*(3 + 4) = 14

2 + 3*4 + 5 = 19

Compute 3 + 4, then multiply result by 2.

but (2 + 3)*(4 + 5) — 45 Compute 2 + 3, then compute 4 + 5, then
multiply those two results.

GETTING STARTED 27

Complete the following. (REMEMBER : Operations in parentheses are done
first.)

(2 + 3)/(4*5)

2 + 3*(4 + 5)

1/(3 + 5)

.25
29

.125

39. One last look at the order in which arithmetic is done. In the expression
below, the arrows in the circles show the order in which the operations are
carried out. Write the final value for each expression.

Expression Value Computed by Computer

Expression Value Computed by Computer

2 + 3 * (4 - (5 + 6 * 7))

(3 * 4 + 5 * 6 - 7) / 8

-127
4.375

40. Your next task is to write a correct BASIC expression to solve a given
problem. Do so for each of the following.

Remember to indicate all multiplication and division
operations with the proper BASIC symbol.

Problem

2 x 3 + 6 + 7

16(33-21)

3.14 x 2 x 2

88 - 52
18 +47

BASIC Expression

2*3 + 6/7
16*(33 — 21) (Did you forget the asterisk?)
3.14*2*2
(88 - 52)/(18 + 47)

GETTING STARTED 29

41. Write a complete BASIC program to compute and print the values of the
expressions in frame 40. A RUN of your program should produce the follow­
ing results.

R U N

6 . 8 5 7 1 4
1 9 2
1 2 . 5 6
• 5 5 3 8 4 6

1 0 P R I N T 2 * 3
2 0 P R I N T 1 6 *
3 0 P R I N T 3 . 1
4 0 P R I N T (8 8
9 9 E N D

• 6 / 7
< 3 3 - 2 1)
4 * 2 * 2
- 5 2) / < 1 8 + 4 7)

30 BASIC

42. There is a fifth arithmetic symbol in BASIC, which indicates raising a
number to a power. This operation is called exponentiation.

•f means raise to a power

For example,

5

Since a teletypewriter cannot print superscripts, you tell the computer to
raise a number to a power by using the symbol + . On the teletypewriter,

10 PRINT 5t3 (5f 3 means 53 or 5 x 5 x 5)
99 END

RUN

1 2 5

Now, fill in the RUN for this one.

10 PRINT 2*6 (2f 6 means 26 or 2 x 2 x 2 x 2 x 2 x 2)
99 END

RUN

o
Volume of a cube: V = S , where
S is the length of a side.

If S = 5 and V = 53, then

V = 53 = 5x5x5 = 125.

depress the SHIFT key and hold it while you press the (T)key-

64

GETTING STARTED 31

43. Write a BASIC expression for each problem.

Problem BASIC Expression

(a) 25 + 34

(b) 7x7x7x7x7x7x7

2 + 5 + 3 + 4
7 * 7 * 7 * 7 * 7 * 7 or 7 \ 7

44. When evaluating a mixed expression of arithmetic operations, the com­
puter computes powers (+) before doing multiplication, division, addition,
or subtraction.

The formula for computing the area of a circle is

A =irr-

Let's use 3.14 as an approximate value of t t and write a program to compute
the area of a circle of radius 7.

1 0 P R I N T " I F R A D I U S I S 7 » A R E A 0 F C I R C L E I S " J 3 . 1 4 * 7 f 2
9 9 E N D

R U N

I F R A D I U S I S 7 # A R E A 0 F C I R C L E I S 1 5 3 . 8 6

In computing 3.14*7+ 2, the computer first computes , then

multiplies that result by .

7 + 2 (7 + 2 = 7 x 7 = 4 9)
3.14

32 BASIC

45. Computers use a special form of notation to indicate extremely large
numbers, or extremely small decimal fractions. This method of expressing
numbers is called scientific notation. Consider, for instance, a large number
like the population of the earth which is about 4.1 billion people:

4.1 billion = 4 100 000 000
We asked our* computer to print the population of the earth:

10 PRINT 4100000000
99 END

RUN

4 . 100000E+9 What 's th is?

Our computer printed the population of the earth in a form of scientific
notation. (It really isn't especially scientific . . . it's just called that by some
people.)

Scientific notation is simply a shorthand way of expressing very large
or very small numbers. In scientific notation a number is represented by a
mantissa and an exponent:

4.IOOOOOE+9

mant issa exponent

The mantissa and the exponent are separated by the letter .

E

* Your computer may do it somewhat differently.

GETTING STARTED 33

46. Here are some examples showing numbers written in good old every
day notation and again in scientific notation (well, scientific notation accord­
ing to our computer).

One trillion

ordinary notation: 1 000 000 000 000
s c i e n t i f i c n o t a t i o n : 1 . 0 0 0 0 0 0 E + 1 2

Volume of the earth in bushels

ordinary notation: 31 708 000 000 000 000 000 000
s c i e n t i f i c n o t a t i o n : 3 . 1 7 0 8 0 0 E + 2 2

Speed of a snail in miles per second

ordinary notation: .0000079
s c i e n t i f i c n o t a t i o n : 7 . 9 0 0 0 0 0 0 E - 6

In each number above expressed in scientific notation, underline the man­
tissa and circle the exponent.

Exponent is positive.

Exponent is positive.

Exponent is negative.

Have you noticed? Our computer always prints the mantissa with 7 digits,
one digit to the left of the point, 6 digits to the right.

34 BASIC

47. Numbers printed in scientific notation can be converted to ordinary
notation as follows.

CASE 1. Exponent is positive.

(1) Write the mantissa separately.
(2) Move the decimal point of the mantissa to the RIGHT the

number of places specified by the exponent. If necessary,
add zeros.

EXAMPLE: 6.123456E+4

(1) 6.123456 (2) 6. 1234.56

4 places

Therefore, 6.123456E+4 = 61234.56.

EXAMPLE: 3.600000E+9

(1) 3.600000 (2) 3. 600000000.

9 places (we had to add zeros)

Therefore, 3.900000E+9 - 3900000000.

Now you try it: 1.234567E+13

(D (2)

Therefore, 1.234567E+13 =

1.234567
1.2345670000000.

13 places (add 7 zeros)

12345670000000.

GETTING STARTED 35

48. CASE 2. Exponent is negative.

(1) Write the mantissa separately.
(2) Move the decimal point of the mantissa to the LEFT the

number of places specified by the exponent. If necessary,
add zeros.

EXAMPLE: 7.900000E-6

(1) 7.900000 (2) .000007^-900000

6 places (we added 5 zeros)

Therefore: 7.900000E-6 = .0000079

Your turn: 1.234567E—5

(1) (2)

Therefore, 1.234567E-5 = ±

1.234567
.00002. 234567

5 places (we added 4 zeros)

.00001234567

p
f

i
i
«
i
*
i
T

2. The individual lines of computer instructions in a program are called

3. What is missing from this short program?

PRINT 2+2
END

4. Assume that you are at a computer terminal, typing a statement into the
computer, and you notice that you have made a typing error. Describe
a method of correcting your error (other than completely retyping the
statement).

0

5. Describe a method for replacing a new statement for an old statement in
a program without erasing the entire program and starting over.

6. Assume that there is a program in the computer. How do you erase
that program from the computer's memory?

7. Assume that there is a program in the computer. How do you tell the
computer to actually follow (or process) the program?

i

0
i

36 BASIC

SELF-TEST

If you can answer these questions, you are a budding computer user and are
ready to go on to Chapter Two.

1. The device used to communicate programs to a computer is called a

8. How do you cause the computer to type out a program stored in its
memory?

9. Assume that this program is in the computer.

10 PRINT 3*5
20 PRINT 8*3
99 END

Describe how to delete (remove) the second statement without erasing
the entire program.

10. Write the symbols used in BASIC for the following arithmetic operations.

addition

subtraction

multiplication

division

powers

Refer to this program to answer questions 11 through 18.

10 PRINT M HY COMPUTER IS A WHIZ AT ARITHMETIC."
20 PRINT 5+2*4*3
30 PRINT 8-16/32
40 PRINT C5+2)*<8-3)
50 PRINT "THAT'S ALL* FOLKS I"
99 END

11. Which statements contain strings?

12. A string begins and ends with _•

13. Describe the order in which the computer does the arithmetic in
Line 20.

38 BASIC

14. Describe the order in which the computer does the arithmetic in
Line 30.

15. Describe the order in which the computer does the arithmetic in
Line 40.

16. In Line 40, why does the computer do the addition before the sub­
traction?

17. In general the computer does multiplication and division before addi­
tion and subtraction. Why is the order changed in Line 40?

18. Show what the computer will print when the program is RUN.

19. What symbol is used between several strings or expressions in a PRINT
statement to cause the results to be printed close together when the

program is RUN?

20. Look at this program.

10 PRINT 10*20*30* 40* 50* 60*70
99 END

How many lines will the results of RUNing the program occupy?

SELF-TEST 39

21. Convert the following numbers from scientific or "E" notation into
standard notation.

Scientific Notation Ordinary Notation

1.12345 6E+6

1.123456E+12

7.777777E—2

1.000000E—12

BONUS PROBLEM. Write a computer program to do the following arithmetic
and produce the results shown in the RUN below.

(a) 103

(b) 1012

(c) 18.56-9,35
2.12 + 3.33

RUN

TEN RAISED T0 THE 3RD POWER = 1000
TEN RAISED T0 THE 12TH P0WER * 1 .000000E+12
THE ANSWER T0 PROBLEM CC) IS 1 .689908

40 BASIC

Answers to Self-Test

1. Computer terminal (e.g., teletypewriter), (frames 1 to 3)

2. Statements (frames 4 to 7)

3. Line numbers (frames 7 to 9)

4. Type a back arrow (•<-) to erase each character (right to left) that you
wish deleted until the mistake is erased. Then finish typing the state­
ment, beginning at the point where the error was made, (frame 21)

5. Using the line number of the statement you wish replaced, type in the
new statement, (frame 19)

6. Type SCR (for SCRatch), and press the RETURN key. (frames 5 & 6)

7. Type RUN and press the RETURN key. (frame 13)

8. Type LIST and press the RETURN key. (frames 19 to 22)

9. Type the line number of the line to be deleted (20) and press the
RETURN key. (frame 20)

10. + addition
— subtraction
* multiplication
/ division
4 powers (frame 34)

11. Lines 10 and 50. (frames 15 to 18)

12. Quotation marks (frames 15 to 18)

13. + ,*,+. First the computer computes 4+3, multiplies the result by 2,
then adds 5. (frames 35 to 37 and frame 44)

14. /, —. First the computer divides 16 by 32, then subtracts the result
from 8. (frames 35 to 37)

15. +, —, *. First the computer adds 5 and 2, next it subtracts 3 from 8,
and then it multiplies the two results, (frames 38 to 40)

16. The computer does the operations contained in parentheses in left to
right order, (frames 38 to 40)

17. The computer does arithmetic contained in parentheses first, (frames
38 to 40)

SELF-TEST 41

18. RUN (frames 38 to 40)

MY COMPUTER IS A WHIZ AT ARITHMETIC.
1 3 3
7 . 5
3 5

THAT'S ALL# FOLKS!

19. Semicolon, (frames 26 and 31)

20. Two lines, like this:

t o
60

21. W123456E + 6
1 .123456EM2
7 .777777E-2
t .OOOOOOE-12

20
70

3 0

1 1 2 3 4 5 6 .
11 2 3 4 5 6 0 0 0 0 00 .
. 07777777
.000000000001

40

(frames 27 to 30)

(frames 45 to 48)

50

CHAPTER TWO

Warming Up

This chapter introduces some of the most used and useful BASIC statements.
From here on, more interesting programs may be used as examples, some of
which may have application in the preparation of reports or studies required
in college courses in the social sciences, psychometrics and testing, and in
business.

In this chapter you can learn the function and format for the following
BASIC statements, and will practice writing short computer programs. You
will also learn and use the concept of variable and be able to assign values to
those variables in BASIC programming.

LET INPUT GO TO
READ DATA REMARK

When you have finished this chapter, you will be able to:

• write short programs where values are assigned to variables by means of
LET statements, INPUT statements, and the READ/DATA combination
of statements, all expressed in correct BASIC format and notation;

• write short programs where a value calculated by a BASIC expression
is assigned to a variable in a LET statement;

• construct a combination of statements to identify the value(s) called
for by an INPUT statement;

• write programs that use the GO TO statement to construct a repeated
"loop" in some portion of a program (or to "skip over" a portion of a
program).

42

WARMING UP 43

1. To illustrate the concept of variable and the function of the LET state­
ment in BASIC, imagine that there are 26 little boxes inside the computer.
Each box can contain one number at any one time:

A 1 H 0 V

B 5* I p w

C J 4- Q X

D K R Y

E L S -6 Z

F Z M T

G N U

We have already stored numbers in some of the boxes. For example,

7 is in box A

5 is in box B

What number is in box F? In J?

—6 is in box and 2.5 is in box

2
4
5
X

44 BASIC

2. Boxes C and N are shown again below. Use a pencil to do the following.

(a) Put 8 into Box C. In other words, write the numeral "8" in the
box labeled "C."

(b) Put 12 into N.
(c) Put 27 into N. But wait! A box can hold only one number at a

time. Before you can enter 27 into N, you must first erase the 12
that you previously entered.

C

N

C

N

8

27

3. When the computer puts a number into a box, it automatically erases
the previous content of the box, just as you did. In order to put "27" into
Box N, you first erased the previous content, "12."

We call A, B, C, . . . , Z variables. The number in Box A is the value of
A; the number in Box B is the value of B; the number in C the value of C and
so on.

Below is a program that uses the LET statement to instruct the comput­
er to "put a number in a box," or more technically, to assign a numerical
value to a variable. This program tells the computer to

10 LET A = 7 •*- Put 7 into Box A.
20 PRINT A Print the content of Box A
99 END
RUN

7

WAR M ING U P 45

In the preceding program, the variable is and the value assigned to

it in Line 10 is .

A
7

4. Complete the following program to assign the value 23 to the variable
X and then print the value of X.

10

20

99 END

10 LET X=23
20 PRINT X
99 END
RUN

23

46 BASIC

5. Here is another example. This program adds four numbers, which
might be scores of some kind, and computes the mean (average).

10 LET A = 5
20 LET B=8
30 LET C=3
40 LET D=6
50 PRINT "SCORESJ" jA jB jC jD •*- Print the four scores
60 PRINT "MEAN! " J (A + B+C+D)/4 Compute and print the mean
99 END
RUN

SCORES! 5836
MEAN! 5 .5

What do the LET statements in this program tell the computer to do?

Assign numerical values to variables, in this case to put values 5,8,3
and 6 into boxes A, B, C, and D. These values are printed (Line 50) and
then the computer uses them (Line 60) to compute and print the mean.

6. Complete each of the following RUNs as you think the computer would
do it. If possible, use a computer to find out if you are correct.

(a) 10 LET A = 1 (b) 10 LET A = 7 (c) 10 LET A = 1
20 LET A=2 20 LET B=A 20 PRINT A
30 PRINT A 30 PRINT B 30 LET A=2
99 END 99 END 40 PRINT A
RUN RUN 9 9 END

RUN

(a) 2 Note that the second value assigned to A in Line 20
(b) 7 replaced the value assigned to A bv Line 10
(c) 1

2

WARMING U P 47

7. Look at programs (a), (b), and (c) in the preceding frame. In which
program is the value of one variable used to assign a value to another variable?

program (b)

8. So it turns out that one variable can take its value from another variable.
Not only that, but a variable can get its value from computations involving
one or more other variables whose values have been previously assigned.
(That last part is important.)

We can illustrate this with a program that will calculate the grade point
average for a student. Assume the student received:

4 units of A
6 units of B
4 units of C
2 units of D
0 units of F

1 0 0 R E M A R K G R A D E P 0 1 N T A V E R A G E P R O G R A M U S I N G L E T S T A T E M E N T S
1 1 0 L E T A = 4

1 5 0 L E T E = 0
1 6 0 L E T U = A + B + C + D + E
1 7 0 L E T G = C 4 * A + 3 * B + 2 * C + 1 * D) / U
1 8 0 P R I N T " Y O U R G R A D E P O I N T A V E R A G E I S " J G
9 9 9 E N D

Y O U R G R A D E P O I N T A V E R A G E I S 2 . 7 5

Look at Line 160. Here, U (for units) receives its value from the total of the
units of each letter grade. What numerical value does U receive when this

program is RUN? U = .
Which line of the program computes and assigns the computed value to

the variable G? Line

130 L E T C = 4 > These statements tell how many units
140 LET D=2 J of each grade the student received

R U N

U= 16
Line 170

48 BASIC

9. LET statements are all fine and good, but what a hassle to change all
those LET statements in Lines 1 10 to 150 everytime you want to calculate
the GPA (Grade Point Average) for a different set of grades. Ah, but leave
it to BASIC to come up with a clever solution — namely the INPUT state­
ment.

The INPUT statement allows the computer user to assign different
values to INPUT variables each time a program is RUN without modifying
the program itself. When the computer comes to an INPUT statement in a
program, it types a question mark and waits for the user to enter a value for
the INPUT variables (or variable). Here is an example.

20 INPUT A
30 PRINT "THIS TIME A =";A
99 END

RUN

?

After we type RUN and press the RETURN key, the computer types a ques­
tion mark. Then it just waits. What it's waiting for is a value to assign to the
INPUT variable A. The computer user must supply a number by typing the
number after the question mark, and then pressing RETURN.

In our example, we typed in 3 as the value to be assigned to A, pressed
RETURN, and the computer then continued running the program, using
A = 3. Here's the program again with the completed RUN:

20 INPUT A
30 PRINT "THIS TIME A ="jA ,
99 END

The value of A is printed
RUN after the string

?3
THIS TIME A = 3

WARMING UP 49

After we typed RUN and pressed the RETURN key, the computer typed a

. We then typed a 3, which is our value for

the INPUT variable . The computer then printed the string "THIS

TIME A =" followed by the numerical of A.

question mark
A
value

1 0 . The program can be RUN again with a different value of A supplied by
the user. Show how a RUN would look if the user typed 7 as the value of A.

RUN

R U N

? 7
T H I S T I M E A 8 7

50 BASIC

11. Now, in order to make things really clear when dealing with INPUT
statements, we need a way of informing the user what the INPUT statement
is asking for. Let's add this statement to our example program:

10 PRINT "WHAT IS YOUR VALUE FOR A"f

See the semicolon at the end of the PRINT statement? When a semicolon is
used at the end of a PRINT statement, the teletype stays on the same line
instead of performing a "carriage return" and going to the beginning of the
next line. Here is our revised program, and the beginning of a RUN.

10 PRINT "WHAT IS YOUR VALUE FOR A";
20 INPUT A
30 PRINT "THIS TIME A ="jA
99 END

RUN

WHAT IS YOUR VALUE FOR A?
v ^ ' X

This much comes from Line 10 The question mark comes from
the INPUT statement in Line 20

Now we know exactly what the computer is waiting for — a value for the
variable A. We use 350 as the value, type it in after the question mark, then
press RETURN.

RUN

WHAT IS YOUR VALUE FOR A?350
THIS TIME A = 350

Show another RUN of the program where the user enters 1 7 as the value of A.

RUN

WARMING UP 51

R U N

W H A T I S Y 0 U R V A L U E F O R A ? 1 7
T H I S T I M E A = 1 7

12. Now you do one. Write a program, using two INPUT statements, that
will result in the following printout when RUN.

R U N

V A L U E 0 F X ? 5 V a l u e s s u p p l i e d b y u s e r

V A L U E 0 F Y ? 1 0
T H E N X • Y = 1 5 V a l u e c o m p u t e d

Either of these two programs is correct.

1 0 P R I N T - V A L U E 0 F X " J
2 0 I N P U T X
3 0 P R I N T " V A L U E 0 F Y " J
4 0 I N P U T Y
5 0 P R I N T " T H E N X • Y = " » X • Y
9 9 E N D
R U N

V A L U E 0 F X ? 5
V A L U E 0 F Y ? 1 0
T H E N X • Y - 1 5

1 0 P R I N T " V A L U E 0 F X " »
2 0 I N P U T X
3 0 P R I N T " V A L U E 0 F Y " l
4 0 I N P U T Y
5 0 L E T Z = X • Y
6 0 P R I N T " T H E N X • Y = " I Z
9 9 E N D
R U N

V A L U E 0 F X ? 5
V A L U E 0 F Y ? 1 0
T H E N X • Y = 1 5

52 BASIC

13. So much for theory. Now let's apply the capabilities of the INPUT state­
ment to the Grade Point Average program (which you may recall seeing at the
beginning of Chapter One).

100 REMARK PROGRAM T0 COMPUTE GRADE POINT AVERAGE
110 PRINT "HOW MANY UNITS OF A"J
120 INPUT A
130 PRINT "HOW MANY UNITS OF B"J
140 INPUT B
150 PRINT "HOW MANY UNITS OF C"J
160 INPUT C
170 PRINT "HOW MANY UNITS OF D"J
180 INPUT D
190 PRINT "HOW MANY UNITS OF F"J
200 INPUT F
210 LET U=A+B+C +D+F
220 LET G=<4*A+3*B+2*C+1*D)/U
230 PRINT —
240 PRINT "YOUR GRADE POINT AVERAGE IS"lG
999 END

A PRINT statement with
nothing following it causes
the teletype to advance to
the next line without print­
ing anything, leaving "line
spaces" as you can see in
the RUN below.

Here is a RUN of the preceding program featuring values of A, B, C, D and F
supplied by the user.

R U N

H O W M A N Y U N I T S O F A ? 4
H O W M A N Y U N I T S O F B ? 6
H O W M A N Y U N I T S O F C ? 6
H O W M A N Y U N I T S O F D ? 0
H O W M A N Y U N I T S O F F ? 0

Y O U R G R A D E P O I N T A V E R A G E

Following each question mark,
the user typed the requested
value, then pressed the RETURN
key

t
After all 5 values had been entered, the computer
computed the GPA and printed it

How many units of A did the user enter?

F?

How many units of

4
0

54 BASIC

14. Let's demonstrate another capability of the INPUT statement. One
INPUT statement can be used to assign values of two or more variables:

10 PRINT "VALUES 0F X AND Y"I
20 INPUT X#Y
30 PRINT "THEN X • Y ="iX + Y
99 END

RUN

VALUES 0F X AND Y?12,6
THEN X + Y = 18

There are two things to note:

(a) 20 INPUT XJY No comma after the last variable

t
No comma here Comma separates the variables

(b) RUN

VALUES 0F X AND Y?12,6 •*- No comma after last value

t
Comma between values

Note that 12 is the value assigned to the first INPUT variable X, and 6
will be assigned to the second INPUT variable Y.

Here is the summary; you fill in the blanks.
When a program containing an INPUT statement with multiple variables

is RUN, the first value typed in by the user after the INPUT question mark

will be assigned to the variable that appears in the INPUT

statement; the value typed in by the user will be
assigned to the second variable appearing in the INPUT statement, etc. Both
the variables in the INPUT statement in the program, and the values typed in

by the user when the program is RUN, must be separated by .

first
second
commas

WARMING UP 55

15. Here is another RUN of the program in frame 14. We want to enter 73
as the value of X and 59 as the value of Y.

RUN

VALUES 0F X AND Y?73 Whoops! Weabsentmindedly
? hit the RETURN key.

•v.
The computer typed another question mark.
This means "Didn't you forget something?"

We then completed the RUN by entering the second number, the value of Y.
Here is the complete RUN:

RUN

VALUES 0F X AND Y?73
? 59
THEN X + Y = 132

If we don't enter a numerical value for every variable in an INPUT statement,

our computer types a •

question mark (Then we can enter the rest of the required values)

16. Your turn. Write a program to compute and print the value of A*(B+C)
for INPUT values of A, B, and C. A RUN should look like the following.

RUN

VALUES 0F A,B*C?2*3,4
THEN A*(B + C> = 14

Your program:

Here are two ways to do it.

10 PRINT "VALUES 0F
20 INPUT A#B«C
30 PRINT "THEN A*(B
99 END

10 PRINT "VALUES 0F
20 INPUT A»B»C
30 LET D=A*CB + C)
40 PRINT "THEN A*CB
99 END

A,B,C"J

• C) ="JA*(B + C)

A,B,C"J

+ C> ="JD

WARMING U P 57

17. Now, write a new version of the program to calculate Grade Point
Average that uses only one INPUT statement to tell the computer how many
units of A, B, C, D, and F you received (or expect to receive). Use a PRINT
statement before the INPUT statement to identify the INPUT values needed.

1 0 0 R E M A R K P R O G R A M T 0 C O M P U T E G R A D E P O I N T A V E R A G E
1 1 0 P R I N T " U N I T S O F A , B , C # D A N D F " l
1 2 0 I N P U T A # B * C # D # F
1 3 0 L E T U = A + B + C + D + F
1 4 0 L E T G = C 4 * A + 3 * B + 2 * C + 1 * D) / U
1 5 0 P R I N T
1 6 0 P R I N T " Y O U R G R A D E P O I N T A V E R A G E I S " l G
9 9 9 E N D

You may have noticed the REMARK statement used as a heading for various
example programs. That's what it is, a remark by the programmer to identify
what a program or a section of a program does. REMARK statements exist
solely for the convenience of a person looking at a program, and (for a
change) don't tell the computer to do anything. We will use REMARK to
identify most of the programs that follow.

58 BASIC

18. Now show what a RUN of your program will look like if we enter 2
units of A, 5 units of B, 4 units of C, 3 units of D, and 3 units of F.

RUN

UNITS 0F A#B»C#D AND F?2,5,4,3*3

Y0UR GRADE P0INT AVERAGE IS 2

19. Now, let's consider a problem in the field of population growth.

PROBLEM: In year zero, we start with a population of P people. The
population increases by 1% each year. In N years, what will the popu­
lation be?

P is the initial population.
R is the growth rate in percent per year.
N is the number of years.
Q is the population after N years.

j 1% increase per year

Q = P(1 + 1/100)N "* NVears

^— Initial population

Population at the end of N years

If the growth rate is 2.5% per year, then
T

Q = P(1 + 2.5/100)N

And, if the growth rate is R% per year, then

WARMING U P 5 9

For review, write this last formula as a LET statement for variable Q using
BASIC notation.

170 LET Q =

170 LET Q=P#(1 + R/100)»N

NOTE: This formula may actually be used to compute the growth rate for
anything that increases by a fixed proportion or percentage for a given length
of time (e.g., interest on money, bacteria culture growth, etc.).

20. Here is one version of a population growth program.

100 REMARK PROGRAM T0 CALCULATE POPULATION GROWTH
110 PRINT "INITIAL POPULATION";
120 INPUT P
130 PRINT "RATE OF GROWTH";
140 INPUT R
150 PRINT "NUMBER OF YEARS";
160 INPUT N
170 LET Q=P*(1+R/ lOO)tN
180 PRINT
190 PRINT "POPULATION AFTER";N;"YEARS IS";Q

RUN

INITIAL POPULATION?1000
RATE OF GROWTH?1
NUMBER OF YEARS720

POPULATION AFTER 20 YEARS IS 1220 .19

X
We'll call it 1220 people.

It is now the year 1978. The population of the earth is about 4 1 billion
people. The growth rate is about 2% per year. Suppose this growth rate
hfbnni ^ year 2001 • We want to ^ow what the population will be
in 2001 Show how this information is entered by completing the blanks
in the following part of a RUN.

RUN

INITIAL POPULATION?
RATE OF GROWTH?
NUMBER OF YEARS?

WARMING UP 61

We think you did it this way.

RUN

INITIAL POPULATION?41 00000000 4.1 b i l l ion = 4 100 000 000
RATE OF GR0VTH72
NUMBER OF YEARS ?23 23 = 2001 - 1978

POPULATION AFTER 23 YEARS IS 6 .46529E+09

Or perhaps this way:

RUN

INITIAL P OPULATI 0 N ? 4 • 1 E9 — 4.1 b i l l ion = 4 .1 E9
RATE OF GR0UTH72
NUMBER OF YEARS?23

POPULATION AFTER 23 YEARS IS 6 .46529E+09

21. According to our RUN in frame 20, in the year 2001 the population of
the earth will be 6.46529E+09 people. Here is another way to write that
number.

6.46529 billion

Now, you write it in good old everyday, people-type notation.

6,465,290,000, or 6465290000

62 BASIC

22. We could, of course, combine the INPUT variables P, R, and N into one
INPUT statement.

I N P U T P , R * N

Use the above INPUT statement (you choose the line number) in a new pro­
gram to compute population growth. A RUN might look like this.

RUN

POPULATION* RATE 0F GROWTH* NUMBER OF YEARS?1000*I*20

POPULATION AFTER 20 YEARS IS 1220.19

100 REMARK PROGRAM TO CALCULATE POPULATION GROWTH
110 PRINT "POPULATION* RATE OF GROWTH* NUMBER OF YEARS"!
120 INPUT P*R*N
130 LET Q=P*(1+R/100)»N
1 AO PRINT
150 PRINT "POPULATION AFTER"JNI"YEARS IS"JQ
999 END

WARMING U P 6 3

23. Suppose you and a bunch of friends are gathered around the computer
terminal, and they are marvelling at your newly acquired computer program­
ming skills. You decide to demonstrate how the computer works by using
the program to calculate GPAs shown in the answer to frame 17. However,
you have to do a separate RUN of the program for each friend. But wait —
first add these two new statements to the program.

1 7 0 P R I N T
1 8 0 G 0 T 0 1 1 0

Now, LIST the program.

L I S T

1 0 0 R E M A R K P R O G R A M T 0 C O M P U T E G R A D E P 0 I N T A V E R A G E
1 1 0 P R I N T " U N I T S 0 F A , B # C # D A N D F " J
1 2 0 I N P U T A » B * C » D » F
1 3 0 L E T U = A + B + C + D + F
1 4 0 L E T G = C 4 * A + 3 » B + 2 * C + 1 * D) / U
1 5 0 P R I N T
1 6 0 P R I N T " Y O U R G R A D E P 0 I N T A V E R A G E I S " i G
1 7 0 P R I N T
1 8 0 G O T 0 1 1 0 >
9 9 9 E N D

In BASIC, the GO TO statement instructs the computer to "jump" forward
or backward in the program to the line number indicated after the GO TO ,
and then to continue following the instructions in the program in line number
order from that point.

In the preceding example, the GO TO statement tells the computer to

jump from Line 180 to Line and start the program
over again.

Line 110

NOTE: Although the END statement (Line 999) is never executed, in most
versions of BASIC it must still be included simply to mark the end of the
program.

64 BASIC

24. What is the purpose of Line 170 in the preceding program?

It causes the computer to print a line space after printing the grade
point average.

25. Let's see what happens when the program is RUN.

R U N

U N I T S 0 F A * B j C » D A N D F ? 4 , 6 > 4 > 2 # 0
Don't forget the zero for no units of F.

Y 0 U R G R A D E P 0 I N T A V E R A G E I S 2 . 7 5

U N I T S 0 F A » B » C « D A N D F ? 1 0 , 2 2 # 1 2 , 8 » 4
This friend wants the GPA for 4 semesters

Y O U R G R A D E P O I N T A V E R A G E I S 2 . 4 6 4 2 8 6

U N I T S O F A # B , C # D A N D F ? 1 2 < 3 # 0 # 0 * 0

Y O U R G R A D E P O I N T A V E R A G E I S 3 . 8 This friend is a genius

U N I T S O F A » B « C . D A N D F ? 0 # 0 # 3 # I 0 # 2

Y O U R G R A D E P O I N T A V E R A G E I S 1 . 0 6 6 6 6 7
This friend is on probation!

UNITS OF A,B,C#D AND F? What again?

WARMING UP 65

The computer still wants more data. How do you get out of this situation?
Try these methods: Type STOP and press RETURN. If that doesn't work,
hold the CTRL key down and press the C key. Then let go and press RE­
TURN, or try the BREAK key.

If that doesn't work, press the ESC or ALT MODE key. If that doesn't
work, ask for help or consult the reference manual for the system being used
(If you haven't guessed, various computer systems use different methods to
abort an INPUT statement. Later you'll learn programming techniques to
avoid this problem.)

Different computers may use different ways to abort or terminate an
INPUT statement. If these don't work on your computer, what should you
do?

Yell for help.
Consult your local reference manual

(Either answer is O.K.)

66 BASIC

26. Below is a population growth program.

100 REMARK PROGRAM TO CALCULATE POPULATION GROWTH
110 PRINT "POPULATION* RATE OF GROWTH* NUMBER OF YEARS"!
120 INPUT P*R*N
130 LET Q=P*<l+R/100)tN
140 PRINT
150 PRINT "POPULATION AFTER"!Nl"YEARS IS"jQ
999 END

Modify the program so that, after printing the result for input values of P, R,
and N, the computer returns to Line 1 10. Also include a statement to put a
line space following the printed results. Show your modifications below.

Here is a LIST and RUN of the modified program.

LIST

100 REMARK PROGRAM TO CALCULATE POPULATION GROWTH
110 PRINT "POPULATION* RATE OF GROWTH* NUMBER OF YEARS"!
120 INPUT P*R»N
130 LET Q=P*(1•R/100)»N
140 PRINT
150 PRINT "POPULATION AFTER"IN!"YEARS IS"lO

170 Go'to^I 10-*—*" Here are the modhications
999 END

RUN

POPULATION* RATE OF GROWTH* NUMBER OF YEARS?1000*1*20

POPULATION AFTER 20 YEARS IS 1220.19

POPULATION* RATE OF GROWTH* NUMBER OF YEARS?1000*2*20

POPULATION AFTER 20 YEARS IS 1485.947

POPULATION* RATE OF GROWTH* NUMBER OF YEARS? And SO on

WARMING UP 67

27. Here's a program that lets you use the computer as an adding machine,
by repeating an "adding routine" with a GO TO loop.

1 0 0 R E M A R K W O R L D ' S M O S T E X P E N S I V E A D D I N G M A C H I N E
1 1 0 P R I N T " I A M T H E W O R L D ' S M O S T E X P E N S I V E A D D I N G M A C H I N E . "
1 2 0 P R I N T " E A C H T I M E I T Y P E * X = ? ' T H E N Y O U T Y P E A N U M B E R A N D "

1 3 0 P R I N T " P R E S S T H E R E T U R N K E Y . I W I L L P R I N T T H E T O T A L O F A L L "
1 4 0 P R I N T " T H E N U M B E R S Y O U H A V E E N T E R E D . "
1 5 0 L E T T = 0

1 6 0 P R I N T L i n e s 1 6 0 t h r o u g h 2 1 0 a r e a
1 7 0 P R I N T " x = " i GO TO loop. These lines are
1 8 ° I N P U T X d o n e f o r e a c h i n p u t n u m b e r
1 9 0 L E T T = T + X
2 0 0 P R I N T " T O T A L S O F A R I S " J T
2 1 0 G O T O 1 6 0

Note the LET statements using the variable T in Lines 150 and 190.

Line 150 is outside the GO TO loop. It is done once before the loop begins,
setting T equal to zero. This is called "initializing," giving an initial or start­
ing value to a variable.

Line 190 is inside the GO TO loop. Therefore, it will be done each time
through the loop. In Line 190, a new value for T is computed by adding the
old value to T and the INPUT value of X.

1 9 0 L E T T = T + X

(a) Suppose the old value of T is zero and the INPUT value of X is 12.

What is the new value of T?
(b) Suppose the old value of T is 12 and the INPUT value of X is 43.

What is the new value of T?

9 9 9 E N D

1 5 0 L E T T = 0 1 9 0 L E T T = T + X

New value
Old value

1 2
55

28. Note how PRINT statements (Lines 1 10 - 140) are used to provide the
user with an explanation and instructions for using the program. These

PRINT statements are the GO TO loop.
(inside/outside)

outside

29. Now, let's RUN the program and see how it works.

R U N

I A M T H E W 0 R L D * S M 0 S T E X P E N S I V E A D D I N G M A C H I N E .
E A C H T I M E I T Y P E * X = ? ' T H E N Y 0 U T Y P E A N U M b E h A N D
P R E S S T H E R E T U R N K E Y . I W I L L P R I N T T H E T 0 T A L 0 F A L L
T H E N U M B E R S Y 0 U H A V E E N T E R E D .

X = ? 1 2
T 0 T A L S 0 F A R I S 1 2

X = ? 4 3
T 0 T A L S 0 F A R I S 5 5

X = ? 3 3
T 0 T A L S 0 F A R I S 8 8

X = ? 9 2
T 0 T A L S 0 F A R I S 1 8 0

X = ? 7 6 . 2 5
T 0 T A L S 0 F A R I S 2 5 6 . 2 5

X=? •*- Do you remember how to get out of this?
(If not, check frame 25.)

WARMING UP 69

For the preceding RUN, the first time through the program, the values of
the variables on the right of the = symbol in 190 LET T = T + X will be

LET T = 0 + 12

t \
Value assigned to Value assigned to X
T by Line 150 by INPUT

So the new value of T is 12.
For the second time through the "loop" section of the program, show

the values:

LET T = +

So the new value of T is .

12
43 (LETT =12+ 43)
55

70 BASIC

30. You've seen how LET statements and INPUT statements can be used to
assign values to variables. (We hope you've been able to use them at a termi­
nal too.) A third method uses two statements in combination, READ and
DATA, to assign values to variables.

10 READ X
20 PRINT "THIS TIME THROUGH THE LOOP * X="JX
30 GO TO 10
40 DATA 10* IS* 7* 3.25* 11
99 END

RUN

THIS TIME THROUGH THE LOOP* X = 10
THIS TIME THROUGH THE LOOP* x= 1 5
THIS TIME THROUGH THE LOOP* X = 7
THIS TIME THROUGH THE LOOP* x= 3.25
THIS TIME THROUGH THE LOOP* x= 1 1

OUT OF DATA IN LINE 10

This statement

10 READ X

tells the computer to READ one value from the DATA statement, and assign
the value to the variable X. Everytime the READ statement is executed (each
time through the loop), the computer reads the next value from the DATA
statement, and assigns the new value to the variable X. The computer keeps
track of each value as it is read out, in effect, moving a pointer down the line
of numbers in the DATA statement, one notch at a time.

How many numbers are in the DATA statement?

5

WARMING UP 71

31. The computer read and printed all the numbers in the DATA statement
then tried to find still another number. Since it couldn't find another num­
ber to read, what did it print?

0 U T 0 F D A T A I N L I N E 1 0

72 BASIC

32. Look at the format for DATA statements:

40 DATA 10, 15# 7# 3.25# 11

X * f ' \i No comma at the end
Commas between values of the DATA line

No comma here

CAN

t
DA TA statements may contain whole numbers, numbers
with decimal fractions, such as 3.25 above, numbers in
scientific or "E" notation, or negative numbers.

CAN'T DA TA statements may not contain variables, arithmetic
operations, other functions, or fractions.

90 DATA X# Y#A ,,
95 DATA P + n \ / J ^ ,Wel1'at least most computers CANT.

2 + 3 , 1 / 4 , 2 / 5 , 7 * 8 W h a t a b o u t y o u r s ? T r y i t a n d f i n d o u t .]

Write a DATA statement for these values:

342
1256
205
60.25
-412
2.05E8

60 DATA 342,1256,205,60.25,-412,2.0528

(Remember, no commas can be used in large numbers
However, scientific or "E" notation may be usT)

Your line
number
may be
different

WARMING UP 73

33. Notice that the DATA statement may be placed anywhere in the
program (before the END statement).

1 0 H E A D X
1 5 D A T A 3 , 0 , 5 , 7 , 5 , 2 , - 1
2 0 P R I N T " X = " ; X
3 0 G 0 T 0 1 0
9 9 E N D
H U N

1 0 R E A D X
2 0 P R I N T " X = " ; X
3 0 G 0 T 0 1 0
7 0 D A T A 3 , 0 , 5 , 7 , 5 , 2 ,
9 9 E N D
R U N

X = 3
X = 0
X = 5
X = 7
X = 5
X = 2
X = - 1

X = 3
X = 0
X = 5
X = 7
X = 5
X = 2
X = - 1

Since Line 10 tells the
computer to READ X,
the computer will find
the DATA statement
(Line 70) read one
number (into X) then
proceed to Line 20,
and so on.

O U T 0 F D A T A I N L I N E 1 0 O U T 0 F D A T A I N L I N E 1 0

Can the DATA statement be placed as shown below?

(a) 5 D A T A 3 , 0 , 5 , 7 , 5 , 2 , - 1
1 0 R E A D X
2 0 P R I N T M X = " I X
3 0 G O T 0 1 0
9 9 E N D

(b) 1 0 R E A D X
2 0 P R I N T " X = " ! X
3 0 G 0 T O 1 0
9 9 E N D
1 0 0 D A T A 3 , 0 , 5 , 7 , 5 , 2 ,

answer answer

(a) Yes.
(b) No. The line number of the DATA statement cannot be larger

than the line number of the END statement.

74 BASIC

34. As many DATA statements as are needed may be used to hold the data.
Sometimes you may wish to use a DATA statement to hold only one value
that you expect to change for various RUNS of the program. Sometimes you
may have more values than will fit on one line. When the computer has used
all the data in one DATA statement, it automatically goes on to the next
DATA statement, and continues reading values. But each new DATA state­
ment must begin with a new line number and the word DATA.

1 0 R E A D X
2 0 P R I N T " X s ' D X
3 0 G 0 T 0 1 0
7 0 D A T A 3 , 0 , 5 , 7
7 5 D A T A 5 , 2 , - 1
9 9 E N D

R U N

X = 3
X = 0
X = 5
X = 7
X = 5
X = 2
X = - 1

0 U T 0 E D A T A I N L I N E 1 0

If the computer has already used up all the numbers in all the DATA state­
ments in a program and then tries to read another number, it will type an
error message and stop. Typical error messages are

OUT OF DATA or DATA ERROR

or some other indication that it can find no more DATA to assign to the
READ variable.

What message did our computer print when it could find no more data
to assign to the READ variable?

0 U T 0 E D A T A I N L I N E 1 0

WARMING UP 75

35. Write a "World's Most Expensive Adding Machine" program (from
frame 27) using READ and DATA statements instead of an INPUT statement
so that a RUN of the program will look like this:

R U N

X = 1 2
T 0 T A L S 0 F A R I S 1 2

X = 4 3
T 0 T A L S 0 F A R I S 5 5

Examine the RUN to determine
the values in the DATA statement

X = 3 3
T 0 T A L S 0 F A R I S 8 8

X = 9 2
T 0 T A L S 0 F A R I S 1 8 0

X = 7 6 . 2 5
T 0 T A L S 0 F A R I S 2 5 6 . 2 5

0 U T 0 F D A T A I N L I N E 3 0
T - This may be different

for your program

1 0 R E M A R K W O R L D ' S M O S T E X P E N S I V E A D D I N G M A C H I N E R E V I S I T E D
2 0 L E T T * 0
3 0 R E A D X
4 0 L E T T = T + X
5 0 P R I N T " X = " 1 X
6 0 P R I N T " T O T A L S O F A R I S " » T
7 0 P R I N T
8 0 G O T O 3 0
9 0 D A T A 1 2 . 4 3 . 3 3 . 9 2 . 7 6 . 2 5
9 9 E N D

76 BASIC (
36. Find the "Program to Calculate Population Growth" (frame 26). In
that program, the INPUT statement looks like this:

120 INPUT P*R*N

Similarly, a READ statement can assign successive values from a DATA state­
ment to a series of READ variables:

120 READ P*R*N

The format is like the INPUT statement with multiple variables — the vari­
ables are separated by commas, with no comma after READ or after the last
variable.

100 REMARK PROGRAM T0 CALCULATE POPULATION GROWTH
110 READ P*R
115 DATA 1000*1
120 PRINT "INITIAL POPULATION IS"*P
130 PRINT "GROWTH RATE IS"jRl"X"
140 PRINT
150 READ N
155 DATA 10*20*50*100
160 LET Q*P*<1+R/100 > *N
170 PRINT "POPULATION AFTER"JNJ"YEARS IS" |Q
180 GO TO 150
999 END
RUN

INITIAL POPULATION IS 1000 •+- Values assigned to P and R
GROWTH RATE IS 1 X by Line 110

POPULATION AFTER 10 YEARS IS 1104.622
POPULATION AFTER 20 YEARS IS 1220.19
POPULATION AFTER 50 YEARS IS 1644.631
POPULATION AFTER 100 YEARS IS 2704.811

OUT OF DATA IN LINE 150

WARMING UP 77

To help clarify what happens when this program is RUN, we have placed the
DATA statements near the READ statements. However, the DATA state­
ments (Lines 115 and 155) could be combined into one DATA statement,
which could be placed anywhere in the program. The first two values from
the combined DATA statement would be assigned to the READ variables P
and R in Line 110, and the remaining values would be assigned (one at a time)
to N in Line 150, with one value used each time through the GO TO loop.

Now combine the two DATA statements in the preceding program into
a single DATA statement and write it as Line 900.

Values ot N

37. After removing Lines 115 and 155 from the new population growth
program, Line 900 is added to the program. How will these changes affect
the RUN of the program?

There will be no effect on the RUN; it will be the same as before. (Try
it and see for yourself.)

900

900 DATA 1000* 1* 10# 20# 50# 100
J

78 BASIC

SELF-TEST

If you can successfully deal with the following problems, you have the first
two chapters down pat. If you have trouble, you'd better review the first
two chapters before going on. (Have you been writing out the answers before
looking at ours? That's the best way to learn from this text.)

1. Each of the following BASIC statements contains an error. Mark the
error and show the statement in correct BASIC notation.

(a) 10 READ XIY -—

(b) 10 "X+Y»"lX+Y - —

(c) 30 LET X+3 « Y

(d) 20 INPUT P*Q*R* _

(e) 90 DATA* 5 .5*50*7.5*100

(f) 10 PRINT M S»2*lS»2

2. Each of the following BASIC programs contains an error. In the space
provided, describe the error.

(a) 10 READ A*B
20 PRINT A+B
99 END

(b) 10 INPUT X*Y
20 PRINT X*Y
30 G0 T0 10

(c) 10 LET P»5
20 LET Q=22
30 LET S«<P+Q)/(Q-R)
40 PRINT M*N*S
99 END

SELF-TEST 79

3. Look at this short program. What will the computer print when the

program is RUN?

Why?

10 LET R = I5
20 60 T0 99
30 PRINT R
99 END

4. Write a program that will convert temperatures expressed in degrees
Celsius to degrees Fahrenheit, using this formula:

F = 9/5C + 32

A RUN of your program should look like this:

R U M

T H I S P R O G R A M C O N V E R T S D E G R E E S - C E L S I U S T O F A H R E N H E I T .
C = 7 3 2

3 2 D E G R E E S C = 3 9 . 6 D E G R E E S F .

C - ? 8 0
8 3 D E G R E E S C = 1 7 6 D E G R E E S F .

C = 7 1 0 0
1 0 3 D E G R E E S C = 2 1 2 D E G R E E S F .

C = 7 0
0 D E G R E E S C = 3 2 D E G R E E S F .

80 BASIC

5. Write a program that will convert the temperatures taken hourly for one
day from degrees Fahrenheit to degrees Celsius. Use the READ
and DATA combination of statements in your program, and construct
your program to produce the following RUN.

RUN Formula: C = 5/9(F — 32)

* 52
a 51
• 51
= 53
a 54
a 60
a 64
a 68
a 73
a 79
a 82
a 83
a 85
= 87
a 84
a 83
a 80
a 75
a 69
a 65
« 63
a 60
« 59
a 57

C a 1 1 . 1 1 1 1 1
C a 10.55556
C a 10.55556
C a 11.66667
C a 12,22222
C a 15.55556
C a 17.77778
C a 20
C a 22.77778
C a 2 6 . 1 1 1 1 1
C a 27.77778
C a 28.33333
C a 29.44444
C a 30.55556
C a 28.88889
C a 28.33333
C a 26.66667
C a 23.88889
C a 20.55556
C a 18.33333
C a 17.22222
C a 15.55556
C = 15
C a 13.88889

0UT 0F DATA IN LINE 10

Congratulations! You are the big winner on a TV show. Your prize is
selected as follows.

A number between 10 and 1000 is chosen at random. Call it N.
You then select one and only one of the following prizes.

PRIZE NO. 1: You receive N dollars.
PRIZE NO. 2: You receive D dollars where D is computed as

follows:

D = 1.01N

Perhaps you recognize the formula for D. It is the amount that you
would receive if you invested $1 at 1% interest per day, compounded
daily for N days.

The question, of course, is: For a given value of N, which prize do
you take, PRIZE NO. 1 or PRIZE NO. 2? Write a program to help you
decide. A RUN of your program should look like this:

RUN

Ns? IOO
PRIZE #1 a S 100 PRIZE #2 =$ 2.70481

(T a k e P R I Z E N O . 1)

N«? 500
PRIZE #1 » S 500 PRIZE #2 «S 144.7717

(T a k e P R I Z E N O . 1)

N*? 1000
PRIZE #1 « S

N*7 and so on.

1000 PRIZE #2 »$ 20958.85

(T a k e P R I Z E N O . 2)

82 BASIC

BONUS PROBLEM. Write a program to help you perform that tiresome
task called "balancing the checkbook." Here is a RUN of our program.

RUN

I WILL HELP YOU BALANCE YOUR CHECKBOOK.
ENTER CHECKS AS NEGATIVE NUMBERS AND
DEPOSITS AS POSITIVE NUMBERS.

OLD BALANCE? 123 .45

CHECK OR DEPO S I T? - 3 . 95 Remember - enter checks as numbers.
NEW BALANCE: 119 .5

CHECK OR DEPO SIT?-33
N E W B A L A N C E : 8 6 . 5

CHECK OR DEPOSIT?- 73•69
N E W B A L A N C E : 1 3 . 1 1

CHECK OR DEPOSIT?-8•24
N E W B A L A N C E : 4 . 8 7

CHECK OR DEPOSIT? 50 At last! A deposit, and just in time
NEW BALANCE: 54 .87

CHECK OR DEPOSIT? . . . and so on.

SELF-TEST 83

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer to these for quick review.

1 (a) 1 0 R E A D X (S) Y 1 0 R E A D X / Y (f r a m e 3 2)
(b) 1 0 0 " X + Y = " J X • Y 1 0 P R I N T " X • Y = " < X • Y (f r a m e s 9 a n d 1 2)
(c) 3 0 L E T (X * 3) e Y 3 0 L E T Y * X * 3 (f r a m e s 1 t o 9)
(d) 2 0 I N P U T P / Q / F t £) 2 0 I N P U T P > Q / R (f r a m e 1 4)
(e) 9 0 D A T A 0 5 . 5 / 5 0 * 7 . 5 / 1 0 0 9 0 D A T A 5 . 5 / 5 0 / 7 . 5 / 1 0 0 (f r a m e 3 2)
(f) 1 0 P R I N T " S t 2 A S » 2 i o P R I N T " S » 2 » " J S t 2 (f r a m e s 9 , 1 2 , a n d 1 6)

2. (a) Program lacks DATA statement to go with READ statement.
(frames 30 to 37)

(b) Missing END statement, (frame 23)
(c) No value has been assigned to variable R used in Line 30 to cal­

culate a value to assign to S. M and N also have no value, (frame 8)

3. Nothing, because the GO TO statement causes the computer to jump
past the PRINT statement, (frame 23)

4. NOTE: Remember that there may be more than one program that will
solve the problem and produce the RUN shown. If yours doesn t look
like our solution, and you think it will work, try it on a computer.

1 0 P A I * J T " T H I S P R O G R A M C O N V E R T S D E G R E E S C E L S I U S T O F A H R E I J H E I T . "

2 2 P R I N T M C * " J
3 2 I N P U T C
4 0 L E T F = C * 9 / 5 « - 3 2
5 0 P R I N T C ; " D £ U R E E S C = " ; F ; " D E G R E E S F .
6 0 P R I N T
7 0 G O T O 2 0
9 9 E N D

(frames 12 and 20)

5 . 10 READ F
20 LET C=5/9»<F-32>
30 PRINT "F e"jF#"C s"*C

90 DATA 52#51#51#53#54#60#64#68#73#79#82#83
91 DATA 85#87#84#83#80#75#69#65#63# 60#59# 57
99 END

(frame 30)
6. 10 PRINT "N«"I

30 PRINT "PRIZE#1 « $"JN#"PRIZE"2 = $"*1.01*N
40 PRINT
50 60 T0 10
99 end (frame 1_)

CHAPTER THREE

Decision Making

Onward into conditional branching and the IF-THEN statement. The more
BASIC you learn, the more control you have over the capabilities of
computers.

When you complete this chapter, you will be able to:

• write programs correctly using the IF-THEN statement for conditional
branching, with any of the following comparisons

• use the IF-THEN statement to check for a "flag" in a program;

• use another form of BASIC variable notation, a letter with a digit.

84

DECISION MAKING 85

In this chapter we present a very important computer capability
known technically as conditional branching. IF a given condition is true,
THEN the computer branches off, or "skips" to a specified line in the
program and continues following the instructions in the program. The
BASIC statement used for conditional branching in a program is the
IF-THEN statement. The IF part of the statement states the condition,
and the THEN part tells the computer where to branch or "skip" to when
the IF part is true.

1. An IF-THEN statement is shown below.

80 IF X < O THEN 10

This IF-THEN statement tells the computer

If the value of X is less than
zero then go to Line 10

If the value of X is greater than zero or equal to zero, the computer does
not go to Line 10. Instead it simply continues in normal line number
order. That is, it goes on to the next line number in the program sequence.
In the diagram below follow the arrows.

This is the condition

80 IF X < 0 THEN 10 VTo Line 10>

Line number
of the IF-
THEN statement ,,

Follow this path
if the condition
is FALSE

Follow this path if
the condition is TRUE

What is the condition in the above IF-THEN statement?

X < 0 or X is less than zero

The condition is TRUE for some values of X and FALSE for
other values of X.

86 BASIC

2. The condition in an IF-THEN statement is usually a comparison be­
tween a variable and a number, or between two variables, or in general,
a comparison between two BASIC expressions. For example,

The statement: 50 IF A » B THEN 100

tells the computer: If the value of A is equal to the value of B,
then go to Line TOO

The statement: 90 IF Q >" 2*P THEN 120

tells the computer: If the value of Q is greater than or equal to
2 times the value of P, then go to Line 120

Here is a handy table of comparison symbols that may be used in an
IF-THEN statement:

BASIC Symbol Comparison Math Symbol

= is equal to =

< is less than <
> is greater than >
< = is less than or equal to _<
>= is greater than or equal to >
<"> is not equal to J

Write the following as IF-THEN statements using the proper BASIC
symbols.

(a) If the value of M is less than one then go to Line 50.
(b) If the value of Z is greater than or equal to the value of A squared,

then go to Line 150.
(c) If the value of 3 times A is not equal to 12, then go to Line 80.

(a) IF M < 1 THEN 50
(b) IF Z »« At2 THEN 150
(c) IF 3*A «> 12 THEN 80

DECISION MAKING 87

3. The following program causes the computer to read numbers from a
DATA statement and print only the numbers that are not less than zero.
Numbers that are greater than zero or equal to zero are printed.

10 READ X
20 IF X<0 THEN 10
30 PRINT "X «M*X
AO 60 TO 10
90 DATA 3#7,0>-2,5#-l#6,8#-3
99 END

RUN

X « 3
X « 7
X = 0
X « 5
X « 6
X * 8

OUT 0F DATA IN LINE 10

Look at the numbers in the DATA statement. For which numbers is the

condition X < 0 true?

-2, -1,-3

4. When X < 0 is true, what line does the computer go to?

Line 10

5. If X < 0 is true, is the value of X printed?

No

88 BASIC

6. For which numbers is the condition X < 0 false?

3 , 7 , 0 , 5 , 6 , 8

7. When X < 0 is false, what line does the computer go to?

Line 30

8. If X < 0 is false, is the value of X printed?

Yes

9. What will be the results of the following RUN?

10 READ X
20 IF X>0 THEN 10 The condition in the
30 PRINT **X eM lX IF-THEN statement
40 60 T0 10 is X> 0 (X is greater
90 DATA 3«7#0«-2»5»*l #6,8,-3 than zero)
99 END

RUN

OUT 0F DATA IN LINE 10

DECISION MAKING 89

RUN

X • 0
X —2
X »- l
X *-3

BUT 0F DATA IN LINE 10

10. Change the IF-THEN statement in the above program so that only
nonzero numbers are printed. That is, if X = 0, it is not printed.

20 IF THEN 10

20 IF X * 0 THEN 10

11. Change the IF-THEN statement so that only numbers greater than or
equal to 3 are printed. That is, if a number is less than 3, it is not printed.

20 IF X<3 THEN 10

90 BASIC

12. Show the results if we RUN the following program.

10 READ X
20 IF X«0 THEN 10
30 PRINT XI
40 GO TO 10
90 DATA 5#6*0#8*•1#2*0#6#7
99 END

RUN

RUN

5 6 0 8 2 0 6 7

OUT 0F DATA IN LINE 10

13. Rewrite Line 20 so that the results of a RUN are

RUN

5 6 8 2 6 7

BUT OF DATA IN LINE 10

20

20 IF X<*0 THEN 10

DECISION MAKING 91

14. Rewrite Line 20 so that the results of a RUN are

RUN

-3 -1

0UT 0F DATA IN LINE 10

20

20 IF X»«0 THEN 10

15. Rewrite Line 20 so that the results of a RUN are

RUN

0 0

0UT 0F DATA IN LINE 10

20

20 IF X«»0 THEN 10

(If X is not equal to zero then go to Line 10)

Remember, in BASIC we use <> to mean "not equal to."

92 BASIC

16. Here is another IF-THEN statement.

40 IF X>25 THEN 60

The statement begins with a line number (40). It tells the computer to
compare the current value of X with 25, and if X is greater than 25, go to
Line 60 and continue running the program. If the computer finds that the
current value of X is less than or equal to 25, it merely continues on to the
next statement in the program (Line 50).

To demonstrate:

10 LET X*0
20 PRINT "X *MlX
30 LET X«X+5
40 IF X>25 THEN 60
50 G0 T0 20
60 PRINT
70 PRINT MN0W X «MlXl**S0 THE IF-THEN STATEMENT*4

80 PRINT **60T ME 0UT 0F THE L00P."
99 END

RUN

X * 0
X « 5
X > 10
X > 15
X * 20
X * 25

N0W X • 30 S0 THE IF-THEN STATEMENT
G0T ME 0UT 0F THE L00P.

(a) Which lines comprise a loop in this program? Lines .
(b) Which line increased the "old" value of X by 5 each time through the

loop?
(c) How many times did the IF-THEN statement check the value of X

before it found the condition set to be true? times.

(a) Lines 20, 30, 40, 50
(b) Line 30
(c) 6 times

17. Here is another demonstration of how the IF-THEN statement works.

5 REMARK THIS PROGRAM COMPARES TWO NUMBERS
10 PRINT
20 PRINT "INPUT ANY TWO NUMBERS";
30 INPUT A* B
40 IF A<B THEN 70
50 IF A>B THEN 90
60 IF A = E THEN 1 10
70 PRINT A;"IS LESS THAN " ;B
80 GOTO 10
90 PRINT A;"IS GREATER THAN " S B
100 GOTO 10
110 PRINT A>"IS EQUAL TO " ;B
120 GOTO 10
999 END

RUN

INPUT ANY TW0 NUMBERS? 10* 10
10 IS EQUAL T0 10

INPUT ANY TWO NUMBERS? 50000* 1
50000 IS 6REATER THAN 1

INPUT ANY TWO NUMBERS722
?23
22 IS LESS THAN 23

INPUT ANY TWO NUMBERS? *1 #-2
-1 IS GREATER THAN -2

INPUT ANY TWO NUMBERS?-4*0
-4 IS LESS THAN 0

The last set of INPUT values make the condition true for which of the

three IF-THEN statements? Line

I f you input on ly one number ,
the computer types another
ques t ion mark

Line 40

94 BASIC

18. Which IF-THEN statement, when the condition is true, causes the

computer to jump to the line 70 PRINT statement? Line

Line 40

19. Here's an exercise in (if you'll excuse the computerese) getting the
bugs out of a program. Debugging a program means to find out why the
program isn't doing what the programmer intended. For the programmer,
it means checking the overall design, order, and placement of statements,
the use of the programming language, and (last but not least), typing and
copying errors made when entering the program.

5
1 0
20
30
40
50
60
70
8 0
90
100
999

REMARK FAULTY PROGRAM #1
PRINT
PRINT "INPUT ANY TWO
I N P U T A / B
IF A<B THEN
IF A>B THEN
IF A=B THEN
PRINT A;"IS
PRINT
PRINT

GOTO
END

A; " i s
AJ "IS
10

70
80
90
LESS THAN "JB
GREATER THAN ";B
EQUAL TO ";B

RUN

INPUT ANY TW0 NUMBERS? 1*1000
1 IS LESS THAN 1000
1 IS 6REATER THAN 1000 No, the computer isn't
1 IS EQUAL T0 1000 flipped out. It just

followed the program

INPUT ANY TWO NUMBERS? 123*5
123 IS GREATER THAN 5
123 IS EQUAL T0 5

INPUT ANY TWO NUMBERS?

DECISION MAKING 95

Follow through the preceding program very carefully. How can this program
be amended to perform properly?

(I f y o u a r e a t a c o m p u t e r t e r m i n a l , t r y y o u r s o l u t i o n i n s t e a d o f l o o k i n g a t
the answer below.)

Add these statements.

7 5 G 0 T 0 1 0
8 5 G 0 T 0 1 0

(If you found another solution which you think works, try it on the
computer.)

96 BASIC

20. Write a program. Your program should direct the computer to deter­
mine whether an INPUT value of X is positive, negative or zero and print
an appropriate message. A RUN might look like this:

RUN

WHEN I ASK* Y0U ENTER A NUMBER AND 1 WILL TELL Y0U
WHETHER Y0UR NUMBER IS POSITIVE# NEGATIVE 0R ZER0.

WHAT IS Y0UR NUMBER?-3
-3 IS NEGATIVE

WHAT IS Y0UR NUMBER70
0 IS ZER0

WHAT IS Y0UR NUMBER?7
7 IS P0SITIVE

WHAT IS Y0UR NUMBER? and SO on

DECISION MAKING 97

Here is one solution.

100 REMARK DETERMINE IF X IS POSITIVE* NEGATIVE 0R ZER0
110 PRINT "WHEN I ASK* Y0U ENTER A NUMBER AND I WILL TELL Y0U"
120 PRINT "WHETHER Y0UR NUMBER IS POSITIVE* NEGATIVE 0R ZER0."
130 PRINT "
140 PRINT "WHAT IS YOUR NUMBER"i
150 INPUT X
160 IF X»0 THEN 190
170 IF X<0 THEN 210
180 IF X»0 THEN 230
190 PRINT Xj"IS POSITIVE"
200 G0 TO 130
210 PRINT Xl"IS NEGATIVE"
220 G0 TO 130
230 PRINT XJ"IS ZERO"
240 GO T0 130
999 END

Lines 160 through 240 in this program can be replaced by the slightly
shorter set of statements shown below.

160 IF X>0 THEN 200
170 IF X<0 THEN 220
180 PRINT Xj"IS ZERO"
190 G0 T0 130
200 PRINT Xl"IS POSITIVES'
210 G0 T0 130
220 PRINT XJ-IS NEGATIVE"
230 G0 T0 130

If X isn't positive or negative,
then it's got to be zero

98 BASIC

21. One common application of the IF-THEN statement involves the use
of a "flag" (signal) that terminates one process and begins another:

1 0 R E M A R K C O M P U T E M E A N O F I N P U T V A L U E S
2 0 P R I N T " T H I S P R O G R A M C O M P U T E S T H E M E A N O F T H E V A L U E S "
3 0 P R I N T " Y O U T Y P E I N A F T E R E A C H ' X = T . W H E N Y O U A R E "
4 0 P R I N T " D O N E E N T E R I N G V A L U E S * T Y P E - 1 A F T E R ' X « ? ' A N D "
5 0 P R I N T " I W I L L C O M P U T E T H E M E A N . "
6 0 P R I N T
7 0 L E T T = 0
8 0 L E T N = 0
9 0 P R I N T " X = " J
1 0 0 I N P U T X
1 1 0 I F X = - l T H E N 1 5 0
1 2 0 L E T T = T + X
1 3 0 L E T N = N + 1
1 4 0 G O T O 9 0
1 5 0 P R I N T
1 6 0 P R I N T " N = " » N
1 7 0 P R I N T " T O T A L = " ; T
1 8 0 P R I N T " M E A N = " J T / N
9 9 9 E N D

R U N

T H I S P R O G R A M C O M P U T E S T H E M E A N O F T H E V A L U E S
Y O U T Y P E I N A F T E R E A C H • X * ? ' . W H E N Y O U A R E
D O N E E N T E R I N G V A L U E S * T Y P E - 1 A F T E R , X = ? ' A N D
I W I L L C O M P U T E T H E M E A N .

X = ? 2 5
X = ? 3 7
X = ? 4 2
X * ? 1 9
X = ? - l

N = 4
T O T A L * 1 2 3
M E A N * 3 0 . 7 5

DECISION MAKING 99

The flag used in this program is — 1. This statement

110 IF X«-l THEN 150

checks each input value, and if it is —1, it jumps the computer to Line 150 of
the program, and the summary of the data is printed.

Modify the program so that, instead of using —1 for the flag, the oper­
ator uses 999999. You will have to change Lines 40 and 110.

40

110 __

40 PRINT "DONE ENTERING VALUES# TYPE 999999 AFTER *X»?* AND"

110 IF X=999999 THEN 150

100 BASIC

22. Here is how the same system can be used in DATA statements.

1 0 R E M A R K C O M P U T E M E A N O F D A T A S T A T E M E N T V A L U E S
7 0 L E T T * 0
8 0 L E T N = 0
1 0 0 R E A D X
1 1 0 I F X = - l T H E N 1 5 0
1 2 0 L E T T * T + X
1 3 0 L E T N = N + 1
1 4 0 G O T O 1 0 0
1 5 0 P R I N T
1 6 0 P R I N T " N = " | N
1 7 0 P R I N T " T O T A L = " l T
1 8 0 P R I N T " M E A N = " J T / N
9 0 0 D A T A 2 5 , 3 7 , 4 2 , 1 9 , - 1
9 9 9 E N D

R U N

N = 4
T O T A L = 1 2 3
M E A N = 3 0 . 7 5

However, —1 may not be a good flag to use for some data if the values are
both positive and negative.

Here are temperatures recorded during one cold week in Minneapolis.

S M T W TH F S

10 3 -9 -15 -23 -25 -30

We want to use the above program to compute the mean temperature for
that unpleasant week. Rewrite Lines 110 and 900 for this set of data.
Use 999999 as the flag.

110^

900

110 IF Xs999999 THEN 150

900 DATA 10»3«~9*~15«-23#-25#-30»999999
/

This is an unlikely value, and makes a good flag

DECISION MAKING 101

23. Questionnaire.

DOES YOUR COMPUTER UNDERSTAND YOU?

1. YES

2. NO

We gave this questionnaire to 50 people and got 50 answers. Each answer
is 1 (YES) or 2 (NO). The answers are shown below in five DATA state­
ments. The last answer is followed by —1.

900 REMARK DATA! 1=YES.» 2=N0> -1=END 0F DATA
910 DATA \ » 2 » 2 , 2 , \ » 2 » \ » 2 » \ » 2
920 DATA 2 , \ » \ » \ > 2 > \ , 2 , 2 » 2 » \
930 DATA 2 , 2 » 2 $ \ » 2 » \ » 2 , 2 » \ » 2
940 DATA l , l , l » \ » 2 » l , 2 , 2 , l > l
950 DATA 2 » 2 » 2 » 2 » \ » \ » \ » 2 i , \ » 2 » - \

How many YES answers?
How many NO answers?

Write the number of YES answers in the box labeled "Y" and the
number of NO answers in the box labeled "N."

Y

N

23 YES answers
27 NO answers

Y

N

23
27

102 BASIC

24. Here is a program to read the answers from the DATA statements and
count the number of YES answers and NO answers.

The variable Y is used to count YES answers.
The variable N is used to count NO answers.

100 REMARK QUESTIONNAIRE ANALYSIS PROGRAM
110 REMARK SET COUNTING VARIABLES TO ZERO
120 LET Y=0
130 LET N«0
200 REMARK READ AND COUNT ANSWERS
210 READ A
220 IF A=-l THEN 410
230 IF Asl THEN 260
240 IF A=2 THEN 280
250 GOTO 210
260 LET Y«Y+1
270 GOTO 210
280 LET N=N+1
290 GOTO 210
400 REMARK PRINT THE RESULTS
410 PRINT
420 PRINT "YES t"J Y
430 PRINT " NO I"JN
900 REMARK DATA: 1=YES» 2=N0, -1 =END OF DATA
910 DATA 1*2,2,2*1>2,1>2,1>2
920 DATA 2,1,1,1,2,1,2,2,2,1
930 DATA 2,2,2,1,2,1,2,2,1,2
940 DATA 1,1,1,1,2,1,2,2,1,1
950 DATA 2,2,2,2,1,1,1,2,1,2,-1
999 END

RUN

YES« 23
N0I 27

Read through the program carefully. Here are some questions to see if you
understand how it works.

DECISION MAKING 103

(a) When the program is RUN, which section of the program is included
in a "loop" that is repeated for each value in the DATA statements?

Lines to _ .

(b) Which statement in the program reads a value corresponding to one

vote and assigns it to variable A?

(c) Which statement checks the "vote" (values of A) to find out if it is

really the end of data flag (—1)?

(d) Which two statements in the program determine whether each vote is
a YES vote or a NO vote?

(e) Which two statements keep a running tally or count of YES and NO
votes when the program is RUN?

(a) Lines 210 to 290

(b) 2 1 0 R E A D A

(c) 2 2 0 I F A = - l T H E N 4 1 0

(d) 2 3 0
2 4 0

I F A = 1 T H E N
I F A = 2 T H E N

2 6 0
2 8 0

(e) 2 6 0
2 8 0

L E T Y = Y + 1
L E T N = N + 1

t

25. New questionnaire.

104 BASIC

D O E S Y O U R C O M P U T E R U N D E R S T A N D Y O U ?

1 . Y E S

2 . N O

3 . S O M E T I M E S

Modify the program in frame 24 so that the computer counts the YES,
NO, and SOMETIMES answers.

Use the variable Y to count YES answers.
Use the variable N to count NO answers.
Use the variable S to count SOMETIMES answers.

Use the following data:

910 DATA 2#1#3»2#3J3#I/3»3#2»1/2#1>2/1»1#3/3»-1

Using this DATA statement, the results should be printed as follows:

YES* 6
NO * 5
SOMETIMES* 7

135 LET S»0
245 IF A«3 THEN 300
300 LET S«S+1
310 GO TO 210
420 PRINT MYES*M,Y
430 PRINT MN0*,*,N
440 PRINT MS0METIMES*M#S

Our changes: j

I i

DECISION MAKING 105

26. Now let's put the IF-THEN statement to work in a program that tells
how long it would take to "double your money" at a given rate of interest.

~~fls ProSram uses a loop to calculate interest and to keep a running
total ot principal plus interest, until the condition specified in the IF-THEN

ro m UuS 90 iS tme• SinC6 there is no PRINT statement within the
iS eXternal evidence that the loop has been performed

until the IF-THEN condition is true and the computer has "jumped out of
the loop and printed Line 130. Check it out.

P = Principal
R = Rate of Interest
I = Interest
Y = Year
Pl= Principal (more on PI later)

5 R E M A R K N U M B E R O F Y E A R S T 0 D 0 U B L E Y 0 U R M 0 N E Y
1 0 P R I N T " P R I N C I P A L " !
2 0 I N P U T P
3 0 P R I N T " R A T E 0 F I N T E R E S T < I N X > " i
4 0 I N P U T R
5 0 L E T Y = 1
6 0 L E T P 1 = P
7 0 L E T I = P 1 * (R / 1 0 0)
8 0 L E T P 1 = P 1 * I
9 0 I F P I » = 2 * P T H E N 1 2 0
1 0 0 L E T Y * Y * 1
1 1 0 G O T O 7 0
1 2 0 P R I N T

9 9 9 E N D ^ " A T " , R , " S ' I N " ; Y ; " Y E A R S Y O U W I L L H A V E $ " ; P I

R U N

P R I N C I P A L 7 2 0 0 0
R A T E 0 F I N T E R E S T C I N % > ? 6

A T 6 X , I N 1 2 Y E A R S Y 0 U W I L L H A V E S 4 0 2 4 . 3 9

Which statements are included in the GO TO loop? Lines
Which line keeps track of the number of years it takes to "double your
money?" Line

Lines 70, 80, 90, 100, 110
Line 100

J

106 BASIC

27. A brief digression regarding Line 60 of the program:

60 LET P1*P

We have used another variable notation which you haven't seen before.
If the computer were limited to the 26 letters of the alphabet for

variables, its capacity for handling variables would be limited. You will
be introduced to a number of methods for overcoming this obstacle. Here
is one way to have more than 26 variables.

A letter of the alphabet with a single digit immediately following it
(e.g., Al, A2, M7, etc) is recognized by the computer as distinct from
any other variable with or without a digit. The letters A through Z
combined with any digit, 0 through 9, give the computer the capacity
to deal with 260 (26 letters times 10 digits) variables using this
particular notation.

Another use for this new form of variable notation is to point out the
relationship between two variables, such as in Line 60. Recall for a mo­
ment the "boxes" in the computer where values of variables are stored.
Each time through the GO TO loop, the value of P (principal) would be
erased and replaced with a new value (Principal plus interest) by Line 80
of the program. However, we need to keep the original value of P for use
i n t h e I F - T H E N s t a t e m e n t i n L i n e 9 0 . S o , w e i n v e n t a n e w v a r i a b l e P I ,
and set it equal to P.

60 LET PI=P

Now the value of P is stored in two places; in box P and in box PI. In the
program, the value of P is "left untouched" (or at least not changed), and
PI is used to keep the tally of principal plus interest for each trip through
the loop. Note the use of PI in Lines 70, 80, 90, and 130.

DECISION MAKING 107

Understand that we could have used any variable instead of PI, for
instance

60 LET X»P

and still have a variable holding the original value of P. Using PI just helps
us keep things straight. Circle the variables below that are correct BASIC
variables.

A X X8 BB 4X N2

@ (*) ®

28. Now with that possible source of confusion cleared up, let's delve
further into the inner workings of this program.

5 R E M A R K N U M B E R 0 F Y E A R S T 0 D 0 U B L E Y 0 U R M 0 N E Y
1 0 P R I N T " P R I N C I P A L " !
2 0 I N P U T P
3 0 P R I N T " R A T E 0 F I N T E R E S T C I N 2 > " !
4 0 I N P U T R
5 0 L E T Y * 1
6 0 L E T P 1 = P
7 0 L E T I = P 1 * < R / 1 0 0)
8 0 L E T P 1 " P I + I
9 0 I F P I > « 2 * P T H E N 1 2 0
1 0 0 L E T Y = Y + 1
1 1 0 G 0 T 0 7 0
1 2 0 P R I N T
1 3 0 P R I N T " A T " ! R l " X # I N " ! Y l " Y E A R S Y 0 U W I L L H A V E $ " | P 1
9 9 9 E N D

R U N

P R I N C I P A L 7 3 0 0
R A T E 0 F I N T E R E S T (I N X > ? 5

A T 5 X , I N 1 5 Y E A R S Y 0 U W I L L H A V E $ 6 2 3 . 6 7 8

(a) Which line checks to see if the principal has doubled by the interest

compounding process? Line .

(b) What two values are compared by the IF-THEN statement?

(a)
(b)

Line 90
P I , t h e t o t a l o f principal plus interest, is compared to 2 times P,
double the INPUT value of "PRINCIPAL."

SELF-TEST 109

SELF-TEST

If you can do the following set of problems, then you are ready to plow
right on into Chapter Four, where we unveil some further capabilities of
computers, and show you how to get them to do their tricks using BASIC.

1. List the comparisons available for use in the condition part of an
IF-THEN statement.

2. Write the following conditions as IF-THEN statements.

(a) If the value of X is zero or less, go to Line 80.

(b) If the value of K divided by 10 is not equal to the value of A

times B, then go to Line 150. * .

(c) If the value of B1 is equal to or greater than B2, go to Line 350.

3. Here's a little business problem. Let's say that you sell some items by
the case, and also as units. Write yourself a little program that has
the following input:

Cost per case
Number of units per case

Here's what you want the program to do:

(a) Compute the per item price based on the per case prices.
(b) If the per item price is one dollar or under, our item price is

marked up 10% over case prices. If the per item price is over
a dollar, the markup is only 5%.

For output, all you want is the amount to put on the price tags of
the items sold singly. If possible, check out and debug your program
at a terminal before looking at our solution.

110 BASIC

4. Another exercise in program writing. Write a program that will pro­
duce the RUN shown below, without using READ and DATA state­
ments.

RUN

F = 1
F = 2
F = 3
F = 4
F = 5
F « 6
F = 7
F = 8

BONUS PROBLEM. Write a program to compute the total pay for people who
are paid based on the number of pieces they produce in a week. The base pay
given to everyone is $200 a week, regardless of how many items are produced.
If a person produces more than a minimum quantity of 300 items, he is paid
the base pay plus $ 1 each for every item produced in excess of the minimum
300. Your program should produce the following RUN.

3 UN
H0V MANY I TEMS PRODUCED? 1 50
TOTAL PAY 13 5 200

H0V MANY I TEMS PRODUCED? 350
T0TAL PAY 13 S 250

HOW MANY I TEMS PRODUCED? 500
T0TAL PAY IS $ A 00

SELF-TEST 111

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1. = (frame 2)

2. (a) IF X <s 0 THEN 80 (frames 1 to 15)
(b) IF K/10 <> A*B THEN 150 (frame 27)
(c) IF B1 >= B2 THEN 350 (frame 28)

3. There s more than one way to skin a cat; likewise there are many ways
to write a price tagging program. Here's one that works, (frame 16)

10 REMARK PRICE TAGGING PROBLEM
20 PRINT "COST PER CASE"*
30 INPUT C
40 PRINT "UNITS PER CASE"*
50 INPUT U
60 LET P*C/U
70 IF P>1 THEN 100
80 LET P=P+.1*P
90 G0T0 110
100 LET P=P + .05*P
110 PRINT "PER ITEM PRICE: $"*P
120 PRINT
130 G0T0 20
999 END

RUN

COST PER CASE73.45
UNITS PER CASE724
PER ITEM PRICE: $.158125

C0ST PER CASE?18.95
UNITS PER CASE?4
PER ITEM PRICE: S 4.97437

COST PER CASE?

112 BASIC

4. 10 LET F = 1 (frame 21)
20 IF F>8 THEN 99
30 PRINT "F ="JF
40 LET F=F+1
50 60 T0 20
99 END

CHAPTER FOUR

FOR-NEXT Loops

In this chapter we introduce the FOR-NEXT loop, the second of the two
important computer programming concepts that are sometimes confusing
to the beginner. The IF-THEN statement and the FOR-NEXT loop greatly
extend the usefulness of the computer as a tool. Close attention to the
explanations and problems in this chapter will provide an understanding of
the functions of these statements in BASIC and will open a new dimension
in your computer programming capability.

When you complete this chapter you will be able to use the FOR and
NEXT statements and the STEP clause in FOR statements in writing BASIC
programs.

1. PROGRAM A below is a "counting" program. Line 40 increases the
value of F by one each time through the program (that is, every time the
computer gets back to the NEXT statement). Line 20 checks the value of
F, and sends the computer to the END statement when F is greater than 8.

In PROGRAM A we used a GO TO statement to instruct the computer
to "jump" from the last line of the program (before the END statement) back
to Line 20 of the program, forming a continuous "loop" that is traced and
retraced.

P R O G R A M A P R O G R A M B

10 LET F = 1
20 IF F»8 T H E N 99
30 P R IN T "F = "JF
40 LET F = F+1
50 G0 T0 2 0
99 END

T h i s i s a F O R -
N E X T l o o p

RUN

R UN

= 1
= 2
= 3
= 4
= 5
= 6
= 7
• 8

= 2
= 3
= 4
= 5
= 6
= 7
= 8

113

Now we present (fanfare!) the FOR-NEXT loop (PROGRAM B) to more
easily accomplish the same thing. With the FOR and NEXT statement we
tell the computer how many times to go through the loop. Thenthecom-
puter continues with the rest of the program after the FOR;NF* R

The FOR statement and the NEXT statement appear in separate lines
of the program. The FOR statement is the beginning point of the loop an
appears first. The NEXT statement is the last statement in the loop,
statements or statement between the FOR and NEXT statements are executed
in line number order over and over again, with the FOR statement indicating
to the computer how many times the loop is to be executed.

You can see from the RUN of PROGRAM B that each time through the
loop the value of F automatically increases by one. The computer stoppe
after going through the loop eight times, because the FOR statement told 1

FilHn^he'blank: When you have a FOR statement in a program, you must

also have a - statement.

NEXT
2. As can be seen in the program below, the computer goes on with the
rest of the program when it has completed the loop as specified by the FOR
statement:

10 FOR D = 5 T0 10 Note that the loop doesn't have to start with one
2 0 P R I N T " D = " } D

30 NEXT D
40 PRINT
50 PRINT "AH-HA! OUT 0F THE L00P BECAUSE
6 0 P R I N T M D = " J D J " W H I C H E X C E E D S 1 0 . "
99 END

RUN

D = 5
D = 6
D = 7
D = 8
D = 9
D = 10

AH-HA! 0UT 0F THE L00P BECAUSE
D = 1 1 W H I C H E X C E E D S 1 0 .

FOR-NEXT LOOPS 115

In the preceding program, the FOR-NEXT loop occupies Lines

, and .

Lines 10, 20, and 30

3. How does the FOR-NEXT loop work? Lollow the arrows.

START HERE

10 F0R N = 1 T0 3 In Line 10, N is set equal to one

O
20 PRINT

30 NEXT N
N>3

99 END

As you can see, each time the computer comes to the NEXT N state­
ment, it increases the value of N by one, and checks the new value against
the limit for N. In this case, the limit is 3, because the FOR statement reads:
FOR N = 1 TO 3. When the value of N is greater than 3, the computer con­
tinues on to the next statement after the NEXT statement.

Got that? Let's see.

10 F0R N = 1 T0 3

means that for the first time through the loop, N = 1.
The second time through, N = N+1=1 + 1=2.

The third time through, N = = =

N<=3
In Line 30, N is increased by one

N + 1 = 2 + 1 = 3 ,

4. Another thing to notice about FOR-NEXT loops is that variables may
be used instead of numbers, providing, of course, that the variables have
been assigned values earlier in the program. Examples speak louder than
words.

10 LET A=3
20 LET B=8
30 FOR C=A T0 B
40 PRINT Ci*
50 NEXT C
99 END

In this example, values are assigned by LET state­
ments. Values could also have been assigned by
INPUT or READ statements

• Semicolon keeps printout on one line (remember
the semicolon at the end of the PRINT statements
that identified INPUTs?)

RUN

3 4 5 6 7 8 •- No commas or semicolons printed in the output

Rewrite the FOR statement

30 FOR C=A T0 B

substituting numerical values for variables A and B. Use the values that were
assigned by the program above. .

30 F0R C=3 T0 8

5. Play computer and show the RUN for this FOR-NEXT demonstration
program.

10 LET X=0
20 LET Y=4
30 F0R Z=X T0 Y
40 PRINT ZS
50 NEXT Z
99 END

RUN

FOR-NEXT LOOPS 117

R U N

0 1 2 3 4

6. In this program, an INPUT value (Line 50) is used to establish the upper
limit of the FOR statement (Line 110), which tells the computer how many
times to repeat "X=?"

5
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
999

REMARK
PRINT
PRINT
PRINT
PRINT
INPUT
PRINT
PRINT
PRINT
PRINT
LET T
FOR K
PRINT
INPUT
LET T
NEXT
LET M
PRINT
PRINT
PRINT
END

MEAN CALCULATED FROM INPUT VALUES
"FOR MY NEXT ENCORE/ I WILL COMPUTE"
"THE MEAN (AVERAGE) OF A LIST OF NUMBERS."

"HOW MANY NUMBERS IN THE LIST")
N

"EACH TIME I TYPE ,X=?* YOU TYPE IN ONE"
"NUMBER AND THEN PRESS THE RETURN KEY."

=0

\ TO N
"X=")
X
=T+X
K
=T/N

"TOTAL ="JT
"MEAN =")M

When the program is RUN,
the PRINT statements in
Lines 10 - 90 tell the user
how to use the program

In the program above, the FOR-NEXT loop occupies Lines

110,120,130,140, 150

7. Which line in the FOR-NEXT loop will keep a running tally of the values

entered for Line 120?

1 4 0 L E T T = T + X

118 BASIC

8- This is a RUN of the preceding program.

RUN

r £ e n c 0 R E , , W I L L C 0 M P U I E
T H E MEAN (AVERAGE) 0F A LIST 0F NUMBERS.

H0W MANY NUMBERS IN THE LIS T ? 5 Valueentered by user

N"SBHERTIAND 'TS%RES*S 'T^E "RETURN 'KEY^

Values entered by user

T0TAL = 235
M E A N a 4 7

Show the numerical values in the pod + * values in the FOR statement for the above RUN.
> 1 0 F 0 R K = T 0

K - l 1 0 5 (V a l u e e n t e r e d f o r I N P U T N w a s 5)

9- Here is the beginning of another RUN of the same program.

RUN

3£ M^̂ ^V V???,™
V f A L I S T 0 F n u m b e r s .

H0W MANY NUMBERS IN THE LIST'S, - „ ,
• "I — Value entered by user

FOR-NEXT LOOPS 119

How many times will "X=?" be printed? How many times will

the statements between the FOR-NEXT statements be executed?— .

4
4

Just to prove it to you, this is the rest of the same RUN.

EACH TIME I TYPE 'X=?* Y0U TYPE IN 0NE
NUMBER AND THEN PRESS THE RETURN KEY.

Values are entered by user

59
14 .75

T0TAL
MEAN

120 BASIC

£ byZtXItae"1°mg, 7gr7;:nczpme the produci (p> °f n "»•

5 REMARK
10 print
20 PRINT
30 print
40 PRINT
50 INPUT
60 PRINT
70 PRINT
80 PRINT
90 PRINT

"Y0UUWANTASTIJLLTANPlTWrM * LIST NUMBERS
••r«. . rn AN0THER ENCORE? I'M FLATTFRFD ••

I LL C0MPUTE THE PRODUCT 0F A Lisf

HOW MANY NUMBERS IN THE LIST"J
N

"NUMBER'AND'tHEN^PRESS'THE^RETURN 'KET^"'

100

110

1 AO

PRINT "X=";
INPUT X

NEXT K
160 PRINT
170 PRINT "PRODUCT =".P
999 END

RUN

HOW MANY NUMBERS IN THE LIST75

X=?7
X=? 12
X= ? 4
X=?3
X=? 1 9

(

PRODUCT = 19152

100 LET p=l
110 F0R K=1 T0 N

140 LET P=P*x
.chCerrrPouMhappe"'' ,p-o'»«< i-<™

(

FOR-NEXT LOOPS 121

11. Any BASIC expression may be used to set both the initial and the
maximum value of a FOR variable, as, for example:

10 LET 0 = 4
20 FOR P=0 T0 2*0-1
30 PRINT Pi
40 NEXT P
99 END

RUN

4 5 6 7

In the following program, fill in the blanks in Line 20 with expressions using
the variable Q, so that when the program is RUN, it will produce the printout
shown below.

10 LET 0=4
20 FOR P = T0
30 PRINT PI
40 NEXT P
99 END

RUN

2 3 4 5 6 7 8 9 1 0 1 1 1 2

20 F0R P=0/2 T0 0*3

or

20 F0R P =0-2 T0 0+8

NOTE: If your answer is different and you think it is correct, try it on a
computer and see if you get the same R UN that we did.

122 BASIC

12. In the FOR-NEXT loops you have seen so far, the FOR variable takes
the first value given in the FOR statement, and keeps that value until the
computer comes to the NEXT statement. Then the FOR variable increases
its value by one (+1) each time through the loop until it reaches the maximum
value allowed by the FOR statement.

F0R X = 5 T0 10
/ \

1st value of X Maximum value for X

X = 5, then 6, then 7, then 8, then 9 and then 10

However, you can write a FOR statement that causes the value of the FOR
variable to increase by multiples of one, by fractional increments, or to
decrease each time through the loop.

10 F0R X=1 T0 10 STEP 2
/

Tells the computer to increase
the value of X by 2 every time
through the FOR-NEXT loop
until X is greater than 10

10 F0R Y=3 T0 6 STEP 1 .5

Tells the computer to increase
the value of Y by 1.5 every time
through the FOR-NEXT loop,
until Y is greater than 6

10 F0R Z=10 T0 5
\ /

Note that Z
will start at
Z= 10 and
go to Z = 5

STEP -1
t

Tells the computer to decrease
the value of Z by 1 each time
through the FOR-NEXT loop
until Z is less than 5

FOR-NEXT LOOPS 123

Some demonstration programs will show these capabilities.

This first PR INT statement "bumps"
10 F0R B=1 T0 10 STEP 2 the computer off the line where it is

60 PRINT "L00P TERMINATES BECAUSE"
70 PRINT "B="J B;"» WHICH IS GREATER THAN 10."
99 END

1 3 5 7 9

L00P TERMINATES BECAUSE
B: 11 > WHICH IS GREATER THAN 10.

Note that the loop starts with the first value in the FOR statement (1) and
increases by increments of 2, until the value of B = 11 exceeds the maximum
value allowed (10). At that point, the computer terminates the loop and
continues running the rest of the program.

Play computer again, and fill in the RUN for this program.

10 LET D=3
20 F0R F=D T0 4*D STEP D
30 PRINT Fl
40 NEXT F
99 END

20 PRINT B i
30 NEXT B
40 PRINT
50 PRINT

held by the semicolon at the end of
Line 20. The second PRINT statement
causes the line space before Line 60
is printed.

RUN

RUN

RUN

3 6 9 12

124 BASIC

13. A FOR-NEXT loop may be instructed to perform "backwards," that is,
to decrease the value of the FOR variable in any size step, going from a large
value to a smaller one. For example:

10 FOR J=100 T0 10 STEP -10
20 PRINT JJ
30 NEXT J
99 END

RUN

100 90 80 70 60 50 40 30 20 10

Now you write one where the FOR variable E decreases in steps of 3 from
27 to 18. Show the program and the RUN.

10 FOR E=27 T0 18 STEP -3
20 PRINT Ei
30 NEXT E
99 END

RUN

27 24 21 18

1 4 . One more thing. The steps in a FOR-NEXT loop can be fractional values
as in the following example.

1 0 F 0 R X = 5 T 0 7 . 5 S T E P . 2 5
2 0 P R I N T X I
3 0 N E X T X
9 9 E N D

R U N

5 5 . 2 5 5 . 5 5 . 7 5 6 6 . 2 5 6 . 5 6 . 7 5 7 7 . 2 5 7 . 5

Predict the RUN for this program if we changed Line 10 to read

F 0 R X = 5 T 0 7 . 5 S T E P . 5

R U N

R U N

5 5 . 5 6 6 . 5 7 7 . 5

You '11 be seeing a lot more FOR-NEXT loops as you continue on in this book.

126 BASIC

15. The FOR-NEXT loop is useful for such things as repeated calculations,
counting or keeping tallies, and dealing with cyclical or recurring

One such recurring event is the monthly compounding ot interest on a
savings account or other financial investment.

In the program below, monthly interest (I) is calculated in Line 1 '0 by
multiplying the initial amount of money (P for Principal) by the Rate ot
interest (R).

The rate of interest is converted to a decimal fraction like this:

R = 5 percent = 5/100 = .05.

Since 5 percent is thz yearly rate of interest, only 1/12 of the calculated
amount of interest is added to the principal each month.

too REMARK MONTHLY INT E RE ST COMPOUNDING PROGRAM
1 1 0 PRINT "PRINCIPAL"*
120 INPUT P
130 PR IN T "YEARLY INTER EST RATE CIN X>" !
140 INPUT R
150 PR IN T "HOW MANY MONTHS"!
155 INPUT M
160 PR INT
170 PRINT "MO N TH 'S "PR I N C IPAL 'S " INTEREST 'S "PRIN •+ INT. "
180 FOR K=1 T O M
190 LET I=CP*CR/100)> /12
200 PRINT K»P , I ,P+ I
2 1 0 LET P=P+I
220 NEXT K
999 END

RU N

PR I N C IP A L ?2 00
Y EA R LY INT EREST RATE (IN X>?5
HOW MANY MONTHS?6

MONTH PR I NCI PAL
200

INTEREST
•833333
. 836805
. 840292
•843793
•847309
. 85084

PRIN.+ INT
200 .833
201 .67
202 .51
203 . 354
204 . 202
2 0 5 .0 5 2

2
3
4
5
6

200 .833
201 .67
202 .51
203 .354
204 .202

FOR-NEXT LOOPS 127

(a) Which lines are included in the FOR-NEXT loop? Lines ' .

(b) Which variable keeps track of and is used to print the number corres­

ponding to the month for each line in the table? .

(c) Line 170 prints the heading for the table. The words used in the heading
for the table are separated by commas. In Line 200, the values to be printed
under the headings are also separated by commas, so that the spacing of head­
ings and the numbers that go under headings match up. What would happen
if the statement that prints the heading were included in the FOR-NEXT loop?

(d) Which line keeps a running tally of Principal plus Interest? Line

(a) 180,190,200,210,220
(b) The FOR variable K
(c) The heading would be printed every time through the loop,

between each line of the table.
(d) 210

NOTE: If you want to brush up on your business math, a useful book would
be Locke, BUSINESS MATHEMATICS, John Wiley & Sons, New York, 1972.

128 BASIC

16. Below is a modification of the "Worlds's Most Expensive Adding Ma­
chine Revisited" program.

5 REMARK WORLD'S MOST EXPENSIVE ADDING MACHINE
10 LET T =0
20 READ N
30 FOR K = 1 TO N
40 READ X
50 LET T=T+X
70 NEXT K
80 PRINT "TOTAL ="|T
90 DATA 12, 43, 33, 92, 76.25
99 END

There are two READ statements in this program. One is inside the FOR-
NEXT loop. Which READ statement is only executed once when the pro­
gram is RUN?

20 READ N

17. The statement 20 READ N assigns the first value in the DATA state­
ment to the variable N. N is the number of values to be added by the pro­
gram. What number should appear in the blank we left in the DATA
statement (frame 16)?

5

18. Show the RUN for the program in frame 16.

RUN

TOTAL = 256.25

SELF-TEST 129

SELF-TEST

Now that you have completed Chapter Four, you have acquired enough
understanding of computer programming to be able to learn a lot more by
experimenting at a computer terminal. As you look at our demonstration
programs, you may see some possibilities that we do not specifically deal
with. Build on your knowledge by trying out your own ideas. What if... ?

And now, find out if you really know how to use FOR-NEXT loops by
doing the following problems.

1. Show what will be printed if we RUN the following program.

10 LET S=0
20 FOR K=1 T0
30 LET S=S+K
40 NEXT K
50 PRINT S
99 END

2. Show what will be printed if we RUN the following program.

10 LET P = 1
20 FOR K=1 TO
30 LET P=P*K
40 NEXT K
50 PRINT P
99 END

1 3 0 B A S I C

3. Examine this program. Which of the three RUNs was produced by the

program? RUN number .

10
20
30
40
50
60
70
80
99

LET N=1
FOR K=1 T0 N
PRINT
NEXT K
PRINT
LET N=N+1
IF N>10 THEN 99
G0T0 20
END

R U N 1

*

R U N 2

R U N 3

*
**

4. Write a program to print a table of N, N~ and N^. Use INPUT state­
ments to indicate what list of numbers you wish included in the table.
A RUN should look like this:

RUN

FIRST NUMBER? 40
LAST NUMBER? 45

N N-SQUARED N-CUBED
40 1 600 64000.
41 1681 68921.
42 1 764 74088.
43 1 849 79507.
44 1936 85184.
45 2025 91125.

SELF-TEST 131

5. Show what will be printed if we RUN the following program.

10 10 LET S=0
20 F0R K=1 T0 7 STEP 2
30 LET S=S+K
40 NEXT K
50 PRINT S
99 END

6. Help us complete this program to print a table projecting growth rate
of a population at sepcified intervals over a given time period (years).
The formula for population growth is

Q = P(1 +R/100)N

where N is the number of years.

100 REMARK REQUEST DATA AND PRINT HEADING
110 PRINT " INITIAL POPULATION";
115 INPUT P
120 PRINT "GROWTH RATE";
125 INPUT R
130 PRINT " INITIAL VALUE OF N";
135 INPUT A
140 PRINT "FINAL VALUE OF N";
145 INPUT B
150 PRINT "STEP SIZE";
155 INPUT H
160 PRINT
170 PRINT " N","POPULATION"
180 PRINT
200 REMARK COMPUTE AND PRINT TABLE

210

220

230

240

999 END

132 BASIC

RUN

INITIAL P0PULATI0N72O5 — For U.S.A., 1970 (in millions of people)
GR0WTH RATE?1
INITIAL VALUE 0F N?0
FINAL VALUE 0F N?100
STEP SIZE?10

N POPULATION

0 205 R e s u l t s a r e e x p r e s s e d i n m i l l i o n s

10 226.447
20 250.139
30 276.309
40 305.217

7. Write a program to compute and print the sum of whole numbers from
1 to N where the value of N is supplied in response to an INPUT state­
ment. For example, a RUN might look like this:

R U N

G I V E M E A W H 0 L E N U M B E R (N) A N D I W I L L C O M P U T E
A N D P R I N T T H E S U M 0 F T H E W H 0 L E N U M B E R S F R 0 M 1 T 0 N .

W H A T I S N ? 3
THE SUM IS 6 (Because 1 + 2 + 3 = 6)

W H A T I S N ? 5
THE S U M IS 15 (Because 1 + 2 + 3 + 4 + 5 = 15)

W H A T I S N ?

BONUS PROBLEM. Write a program to compute and print the product of
the positive integers from 1 to N where the value of N is supplied by the user
in an INPUT statement. A RUN might look like this:

G I V E M E A P O S I T I V E I N T E G E R (N) A N D I W I L L C O M P U T E A N D P R I N T T H E
P R O D U C T O F T H E P O S I T I V E I N T E G E R S F R O M 1 T O N

W H A T I S N ? 3

T H E PRODUCT IS 6 This is called N FACTORIAL
V H A T I S N ? 5
T H E P R O D U C T I S 1 2 0

SELF-TEST 133

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for a quick review.

1. RUN The answer is the sum of the values of K defined by the FOR
10 statement (K = 1, 2, 3, and 4) (frames 1 to 6)

2. RUN The answer is the product of the values of K defined by the
2 4 FOR statement (K = 1, 2, 3, and 4) (frames 1 to 5 and 10)

3. RUN number 3 The FOR-NEXT loop (Lines 20, 30, 40) causes the computer
to print a row of N stars. The loop is done for N = 1,2,3,...10
(frames 1 to 5 and 17)

4. 10 PRINT "FIRST NUMBER"J
20 INPUT A
30 PRINT "LAST NUMBER"!
40 INPUT B
50 PRINT
60 PRINT " N"#"N-SOUARED"#"N-CUBED"
70 FOR N=A T0 B
80 PRINT N#Nt2,N»3
90 NEXT N
99 END (frame 4)

5. RUN Similar to question 1, but this time the values of K defined by
the FOR statement are K = 1, 3, 5, and 7 (frames 6 and 12)

6. 200 REMARK COMPUTE AND PRINT TABLE
210 FOR N=A TO B STEP H
220 LET 0=P#<1+R/100)*N
230 PRINT N#Q
240 NEXT N
999 END (frames 12 and 15)

10 PRINT "GIVE ME A WH0LE NUMBER (N) AND I WILL COMPUTE"
20 PRINT "AND PRINT THE SUM 0F THE WH0LE NUMBERS FR0M 1 T0 N."
30 PRINT
AO PRINT "WHAT IS N"J
50 INPUT N
55 LET S=0
60 FOR W=1 T0 N
70 LET S*S+W
80 NEXT W
90 PRINT "THE SUM IS"*S
100 G0T0 30 (frame 15)
999 END

CHAPTER FIVE

Functions

In the first four chapters, you have learned the most used and useful BASIC
statements:

PRINT END LET INPUT READ
DATA IF-THEN FOR-NEXT GO TO

In this chapter you will meet another type of BASIC language instruc­
tion called functions. These handy little things do all sorts of jobs to make
the computer programmer's work a little easier. Many computer systems
have versions of BASIC that include literally dozens of specialized functions
for your use. We have selected several of the more frequently used functions
to teach you in this chapter. Having learned how to use these few, you will
have no trouble using others should the need arise. We also show you how
to incorporate into a computer program functions that you yourself invent.

When you finish Chapter Five, you will be able to write statements in
correct BASIC notation using the following functions:

INT() TAB()
SQR() DEFFN ()
RND()

You will also be able to use the following new statements in writing
programs:

RANDOM (for some systems)
ON ... GO TO (some computers use GO TO ... OF)

134

FUNCTIONS 135

1. You may recall how to compute square roots, or perhaps how to use
square root tables and interpolate. With your handy-dandy computer and
the square root function, you can rest easy and let the electronics do the
computations.

THE SQUARE R00T MACHINE
ENTER A NUMBER AND I WILL CALCULATE'
THE SQUARE R00T 0F Y0UR NUMBER."

NUMBER"#

THE SQUARE R00T 0F";N;"IS";SQR<N>

10 REMARK
20 PRINT "
30 PRINT "
40 PRINT
50 PRINT "
60 INPUT N
70 PRINT "
80 G0T0 40
99 END
RUN

ENTER A NUMBER AND I WILL CALCULATE
THE SQUARE R00T 0F Y0UR NUMBER.

NUMBER?43
THE SQUARE R00T 0F 43 IS 6 .55744

NUMBER725
THE SQUARE R00T 0F 25 IS 5

NUMBER?

The square root function has the following form:

SQR ()

\
This is where you place the value for
which you want the square root

You can take the square root of a number
or a variable that has been assigned a value
or an expression

Write a program that will print a table of numbers
square roots. A RUN of such a program follows.

SQR <25)
SQR(N)
SQR <A »2+B*2)

from 1 to 25 and their

136 BASIC

RUN

NUMBER SQUARE R00T
1 1
2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
8 2.82843
9 3
10 3.16228

10 REMARK SQUARE R00T TABLE
20 PRINT "NUMBER"*"SQUARE R00T"
30 F0R N=1 T0 10
40 PRINT N* SQR CN)
50 NEXT N
99 END

FUNCTIONS 137

2. It is rather strange to see a "dollars and cents" answer, as in a RUN for
the interest compounding program, printed as $600.7442. Fortunately,
BASIC has a nifty method for rounding off numbers to convenient decimal
places or whole numbers. INT (for "integer part") chops off a number at
the decimal point, and drops the decimal fraction part of the number (the
part to the right of the decimal point). It functions (if you'll excuse the pun)
like this:

10 LET A = 600 .7442
20 PRINT M A =";A
30 PRINT "CHOPPED A ="JINT<A>
99 END t
RUN The va lue you want

chopped (in th i s case , A)
A = 600 .7442 goes in to parentheses
CHOPPED A = 600

Simple, right? As with the SQR() function, a value, variable, or expression
may be placed in the parentheses.

Write a statement using the INT() function for Line 170 of the program
to calculate population growth (Chapter Two, frame 36) such that "fractions
of a person" are dropped from the answers.

1 7 0 P R I N T " P O P U L A T I O N A F T E R " J N I " Y E A R S I S " j Q

1 7 0 P R I N T " P O P U L A T I O N A F T E R " J N l " Y E A R S I S " J l N T < Q)

138 BASIC

3. However, when dealing with "dollars and cents" answers, we don't want
to lose the cents — that is, the two places after the decimal point. So we deal
with that kind of situation in this way.

Look at the program below line by line, read the explanations and see
how and why the value of A changes.

5 R E M A R K S T E P B Y S T E P D E M 0 N S T R A T I 0 N 0 F R 0 U N D I N G
1 0 P R I N T " N U M B E R T 0 B E R 0 U N D E D " J
2 0 I N P U T A
3 0 P R I N T " A F T E R L I N E 2 0 , A = " l A
4 0 L E T A = A * 1 0 0
5 0 P R I N T " A F T E R L I N E 4 0 , A = " J A
6 0 L E T A = A + • 5
7 0 P R I N T " A F T E R L I N E 6 0 , A = " j A
8 0 L E T A = I N T (A)
9 0 P R I N T " A F T E R L I N E 8 0 , A = " J A
1 0 0 L E T A = A / 1 0 0
1 1 0 P R I N T " A F T E R L I N E 1 0 0 , A = " J A
1 2 0 P R I N T " A I S N 0 W R 0 U N D E D T 0 2 D E C I M A L P L A C E S . "
9 9 9 E N D
R U N

N U M B E R T 0 B E R 0 U N D E D ? . 3 3 3 3
A F T E R L I N E 2 0 , A = . 3 3 3 3
A F T E R L I N E 4 0 , A = 3 3 . 3 3
A F T E R L I N E 6 0 , A = 3 3 . 8 3
A F T E R L I N E 8 0 , A = 3 3
A F T E R L I N E 1 0 0 , A = . 3 3
A I S N 0 W R 0 U N D E D T 0 2 D E C I M A L P L A C E S .

Look at Line 60, and then the printout for that line.
When rounding off numbers, you have to decide whether to round the

last significant digit up one, or leave it the same.
Say you want to round 33.333 to the nearest whole number (no deci­

mal fraction).

If the next digit after the rounding off place is 5 or greater, then the last
significant digit is increased by one. If it is less than 5, the last significant
digit remains the same.

To accomplish the rounding off process in the computer, .5 is added to
A after it is multiplied by 100. Because the digit after the decimal point is
less than .5, adding .5 has no effect on the final result (as you see in Line 100
in our program).

33.333

Last Next digit
significant after rounding
digit off place

FUNCTIONS 139

However, examine the results of a RUN of the same program with an
input value greater than .5.

RUN

NUMBER T0 BE R0UNDED?.6666
AFTER LINE 20, A = .6666
AFTER LINE 40, A = 66.66
AFTER LINE 60, A = 67.16
AFTER LINE 80, A = 67
AFTER LINE 100, A = .67
A IS N0W R0UNDED T0 2 DECIMAL PLACES.

One more example. You fill in the values of A.

RUN

NUMBER T0 BE R0UNDED?.2345

AFTER LINE 20, A =

AFTER LINE 40, A =

AFTER LINE 60, A =

AFTER LINE 80, A =

AFTER LINE 100, A =
A IS N0W R0UNDED T0 2 DECIMAL PLACES.

.2345
23.45
23.95
23
.23

140 BASIC

4. That seems like a lot of work just to round off a number. In fact, Lines
40, 60, 80, and 100 can be combined into one line as in the following pro­
gram.

1 0 R E M A R K N U M B E R R O U N D I N G R O U T I N E
2 0 P R I N T " N U M B E R T O B E R O U N D E D " !
3 0 I N P U T A
4 0 L E T A 1 = I N T (A * 1 0 0 + . 5) / 1 0 0
5 0 P R I N T A ! " R O U N D E D T O 2 D E C I M A L P L A C E S = " i A l
6 0 P R I N T
7 0 G O T O 2 0
9 9 E N D
R U N

N U M B E R T O B E R O U N D E D ? . 3 3 3 3
. 3 3 3 3 R O U N D E D T O 2 D E C I M A L P L A C E S = . 3 3

N U M B E R T O B E R O U N D E D ? . 6 6 6 6
. 6 6 6 6 R O U N D E D T O 2 D E C I M A L P L A C E S = . 6 7

N U M B E R T O B E R O U N D E D ? 7 . 8 2 5
7 . 8 2 5 R O U N D E D T O 2 D E C I M A L P L A C E S = 7 . 8 3

N U M B E R T O B E R O U N D E D ? . 3 1 4 9 9 9
. 3 1 4 9 9 9 R O U N D E D T O 2 D E C I M A L P L A C E S = . 3 1

N U M B E R T O B E R O U N D E D ?

Rewrite Line 40 so that the program rounds numbers to one decimal place.

4 0 L E T A 1 =

4 0 L E T A l = I N T C A * 1 0 + . 5) / 1 0

FUNCTIONS 141

5. Look back at the interest compounding program in frame 26, Chapter
Three. Write a line to insert in the program that will round off the final
balance of principal plus interest just before it is printed by the program. Use
an appropriate line number.

Any line number from 121 to 129 inclusive could be used:

1 2 5 L E T P I = I N T C P 1 * 1 0 0 + . 5 1 / 1 0 0

6. Suppose we had put the statement to round off the final balance at
Line 115. What other statement would we also have to change?

Line 90 must be changed to direct the computer to Line 115 instead of
L i n e 1 2 0 . 9 0 I F P I > = 2 * P T H E N 1 1 5

INT() works for negative numbers as well but probably not the way you
would expect.

INT(—3.5) = -4
INT(—.2) = —1
INT(—19.1) = —20

142 BASIC

7. Random numbers are numbers chosen at random from a given set of
numbers. Many games come with a pair of dice or a spinner or some other
device for generating random numbers. Roll the dice; they come up 8. Move
8 spaces.

In this section you will learn how to use the computer to generate ran­
dom numbers and use them in various ways. Let's demonstrate. The fol­
lowing program shows the use of the RANDOM statement (Line 20) and the
RND function (Line 40) to print a list of 10 random numbers.

1 0 R E M R A N D O M N U M B E R S
2 0 R A N D O M
3 0 F O R K = 1 T O 1 0
4 0 P R I N T R N D (0) »
5 0 N E X T K
6 0 P R I N T
9 9 E N D
R U N

REM is shorthand for REMARK.
From now on we will sometimes
use REM, sometimes use REMARK

. 5 1 9 9 2 2 8

. 0 9 0 2 5 3 0 6
. 8 7 5 1 9 8
. 9 2 0 1 7 3 3

. 5 7 1 8 8 2 9

. 7 0 8 7 6 1 9
. 5 5 4 5 1 6
. 9 7 1 0 1 2 4

. 1 8 0 1 4 9 5
• 4 4 7 2 1 6 8

R U N

. 9 4 4 1 8 9 5

. 5 2 3 0 1 2 2
. 6 4 0 1 8 5 7
. 8 2 0 0 1 3 1

• 3 4 3 4 0 8 7
. 2 1 2 9 6 8 9

. 2 9 8 7 8 0 9

. 8 9 7 6 9 5 7
. 7 0 2 0 0 6 7
. 4 6 9 4 5 4 4

Two RUNs of the program are shown. Are the lists of random numbers in
the two RUNs the same?

No

8. The statement 20 RANDOM causes the computer to produce a different
list of random numbers each time the program is run.

The RND function is used to compute numbers that appear to be chosen
at random. On our computer, the RND function is written like this- RND(O)

We will always write the RND function in the above manner with zero
(0) in parentheses following RND. Actually, on our computer, any number
can be used instead of zero without affecting the behavior of the RND
function. On some versions of BASIC, however, what is enclosed in paren­
theses followmg RND does make a difference. If you have trouble using
RND(O) on your computer, ask someone to explain how the RND function
works or consult the operating manual or reference manual for the version
of BASIC that you are using.

FUNCTIONS 143

Examine the list of random numbers in frame 7.

(a) Is any number less than zero (negative)?

(b) Is any number equal to zero?

(c) Is any number greater than one?

(d) Is any number equal to one?

(e) From the evidence, it appears that random numbers produced by the

RND function are zero and one.

No
No
No
No
Greater than
Less than

Important Note: Some versions of BASIC do not include the RANDOM
statement. In this case, an error message will he typed if you try to use the
program in frame 7. If this happens, simply omit the RANDOM statement
(Line 20) and try again. Then, if successive runs produce the same list of
random numbers, ask someone how to "RANDOMIZE"your computer.

144 BASIC

9. It's true. Random numbers produced by the RND function are greater
than zero and less than one. Another way to say it: random numbers pro­
duced by the RND function are between 0 and 1. Or, in still another way:

0 < RND(O) < 1

The random numbers produced by the RND function are uniformly distrib­
uted between 0 and 1. That is, they are "spread evenly" between 0 and 1.
A random number is just as likely to be between 0 and .5 as between .5 and 1.
In a long list of random numbers, about half of the numbers will be between
0 and .5 and the rest will equal .5 or be between .5 and 1.

(a) In a long list of random numbers, about of the numbers
will be less than .5.

(b) In a list of 1000 random numbers, about how many will be less than .5?

(c) In a list of 1000 random numbers about how many will be greater than

or equal to .5?

half Remember, we said "about half." The actual proportion may vary with
500 each list of random numbers. For our first real use of the RND function,
500 the important thing is: the probability that RND(0) is between 0 and .5

10. Here is a program to simulate (imitate) flipping a coin. The program
prints H for HEADS and T for TAILS.

100 REM COIN FLIPPER
110 RANDOM
120 PRINT "HOW MANY FLIPS"J
130 INPUT N
140 PRINT
200 REM FLIP COIN N TIMES
210 FOR K=1 TO N
220 IF RND<0) <«5 THEN 250 — If RND(0) is less than .5, the
230 PRINT "T "} computer goes to Line 250 and

is about .5

240 GO TO 260
250 PRINT "H "S
260 NEXT K
270 PRINT
999 END

prints H for HEADS. Otherwise
it continues with Line 230 and
prints T for TAILS

FUNCTIONS 145

R U N

H 0 W M A N Y F L I P S ? 1 0 0

H T H T H H H T T T H H T T T T T T H T H H T T T T H H H H
H T T T T T T T H T H T T T H T H T H H H H T T T T H T T T
T T T H H H T T H H H T T H T T T H T H H T T T H H T T H H
H H T T H H T H H T

R U N

H 0 W M A N Y F L I P S ? 1 0 0

H H H H T T H H H T T T T T T T H T H H H H T T T H T H H H

H T H H H H T H H T T T H H T T H H T H H T H T T H H T T T

H H H H T H T T H T H T T H T T T H H T H T T T T T H T H H

T H H T H H H T T H

The first RUN produced 43 HEADS and 57 TAILS. The second RUN pro­

duced HEADS and TAILS.

52
48

146 BASIC

11. Why not let the computer count the number of heads and the number
of tails? Modify the program in frame 10 so that the computer counts the
number of heads and tails. Use the variable H to keep track of the number
of heads and the variable T to keep track of the number of tails. A RUN of
the modified program might look like the following:

R U N

H 0 W M A N Y F L I P S ? 1 0 0

T T H T H T T T T H T H H H H T H T T T T H T T T T T H H H
H H T H H H T T T T H H H T H H H H T T H T T H T H T H H T
H H H H H H T T T T H H H T T T H H T T H H H H H H T H H H
H H T T H T H H H H

5 6 H E A D S A N D A A T A I L S

2 0 3 L E T H - 0
2 0 7 L E T T - 0
2 3 5 L E T T - T + l
2 5 5 L E T H * H + I
2 7 0 P R I N T
2 8 0 P R I N T
2 9 0 P R I N T H I " H E A D S A N D " ! T I " T f l I L S "

NOTE: The first "line space" statement 270 PRINT causes the teletype to go
to the next line after the end of the H and T printout, in effect counteracting
the semicolons at the end of Lines 230 and 250. The second "line space"
statement 280 PRINT leaves a line space between the Hand T printout and
the summary printout. If you are confused about this, try the program on a
computer and see the effect of omitting the "line space" statements.

FUNCTIONS 147

12. Random numbers between 0 and 1 are not always convenient. Some­
times a program requires the use of random digits or random whole numbers
or random integers. Below is a RUN in which the computer acts as a teaching
machine to teach one digit addition to children.

RUN

7 + 2 = ? 9
W0RK!

W0RK!

AGAIN.

W0RK!

1 + A =?

Computer typed: 7 + 2 =? Student
typed answer

Student missed this one

Computer repeats problem
This time the answer is correct

New problem ... and so on

RIGHT 0N.. .G00D

3 + 3 = ? 6
RIGHT 0N.. .G00D

9 + 5 = ? 13
Y0U G00FED• TRY

9 + 5 =?1 A
RIGHT 0N.. .G00D

Undoubtedly, you are anxious to see the program. Patience! Let's
build it piece by piece.

First, how do we generate random digits'?

RND(O) is between 0 and 1, but is never 0 or 1. Therefore, 10*RND(0) is

between 0 and .

10

13. In other words, 10*RND(0) is zero and

ten.

Greater than
Less than

148 BASIC

14. Below is a program to print random numbers between 0 and 10.

1 0 R E M R A N D O M N U M B E R S B E T W E E N 0 A N D 1 0
2 0 R A N D O M
3 0 F O R K = 1 T O 1 0
4 0 P R I N T 1 0 * R N D (0) .
5 0 N E X T K
6 0 P R I N T
9 9 E N D
R U N

1 . 8 2 4 6 5 2 6 . 2 0 6 3 7 7 . 8 1 6 3 9 5 5
. 0 2 1 1 9 4 2 9 8 . 0 4 2 0 9 9 8 . 0 6 1 8 4 2

9 . 0 4 0 9 8 3 6 . 8 9 8 3 4 1
5 . 9 9 2 1 6 8 3 . 3 9 6 4 2 5

R U N

6 . 4 4 9 0 4 2 8 . 1 2 6 4 2 2 . 7 1 7 1 5 5 6 1 . 1 6 5 1 3 9 . 5 3 6 4 3 1 3
2 . 7 3 2 3 4 1 1 . 5 6 6 1 6 3 4 . 8 0 5 9 1 1 4 . 7 3 9 9 9 8 5 . 1 8 6 7 9

Now we are going to get tricky and use the INT and RND functions together.
First, complete the following:

(a) INT(1.824652)= (c) INT(.8163955) =

(b) INT(6.206377) - ____ (d) INT(9.040983) = •

(a) 1
(b) 6
(c) 0
(d) 9

15. Suppose RND(O) = .4739998.

Then 10*RND(0) =

and INT(10*RND(0)) =

4.739998
4

FUNCTIONS 149

1 6 . Now do you see where we are going?

RND(O) is a random number between 0 and 1.
10*RND(0) is a random number between 0 and 10.

INT(10*RND(0)) is a random digit.

The following program causes the computer to generate and print
random digits, as many as you want.

t O O R E M R A N D O M D I G I T S
1 1 0 R A N D O M
1 2 0 P R I N T " H O W M A N Y R A N D O M D I G I T S D O Y O U W A N T " J
1 3 0 I N P U T N
1 4 0 P R I N T
I S O E O R K = 1 T O N
1 6 0 P R I N T I N T (1 0 * R N D < 0)) *
1 7 0 N E X T K
1 8 0 P R I N T
1 9 0 P R I N T
2 0 0 G O T O 1 2 0
9 9 9 E N D
R U N

H O W M A N Y R A N D O M D I G I T S D O Y O U W A N T 7 1 0 0

0 9 0 9 3 9 7 0 7 0 1 1 7 0 1 9 8 7 7 0
2 2 1 2 0 6 3 6 9 9 1 8 A 9 6 6 0 9 4 2
0 8 1 0 9 5 3 3 8 6 0 7 9 0 1 1 6 2 5 2
s 5 8 6 A 9 5 0 7 8 8 2 6 5 9 3 4 8 9 9
1 4 0 7 s 7 7 7 8 8 9 2 1 2 5 6 9 3 1 8

H O W M A N Y R A N D O M D I G I T S D O Y O U W A N T ?

The first part of the addition drill program follows.

1 0 0 R E M A D D I T I O N D R I L L P R O G R A M
1 1 0 R A N D O M

2 0 0 R E M G E N E R A T E R A N D O M N U M B E R S A A N D B
2 1 0 L E T A = I N T (1 0 * R N D < 0))
2 2 0 L E T B = I N T < 1 0 * R N D < 0))

Now follow this carefully. Lines 210 and 220 produce a random number
between 0 and 1 (but never 0 or 1), which is multiplied by 10, then chopped
by the INT function. Therefore, the value of A will never be greater than

17. The value of B will be a random integer between
inclusive.

and

0 and 9

18. The next piece of the program is illustrated below.

300 REM PRINT PROBLEM AND GET ANSWER
310 PRINT
320 PRINT Al"+"jB)"s"J
330 INPUT C

If A is 7 and B is 2, what will Line 320 cause the computer to print?

7 + 2 = ?

19. After the student types an answer and presses the RETURN key, the
computer continues.

400 REM IS ANSWER CORRECT?
410 IF C=A+B THEN 600

If the student's answer (C) is correct, the computer will go to Line

600

FUNCTIONS 151
r,

20. If the student's answer is not correct, the computer next does the
following:

5 0 0 R E M A N S W E R I S N 0 T C O R R E C T
5 1 0 P R I N T " Y O U G O O F E D . T R Y A G A I N . "
5 2 0 G O T O 3 0 0

Assume an incorrect answer. The computer prints YOU GOOFED. TRY
AGAIN, and then goes to Line 300. What happens next?

The computer repeats the problem with the same values for A and B.

21. Review the information preceding frame 19. If the student's answer is
correct, Line 410 of the program causes the computer to go to Line 6UU.

6 0 0 R E M A N S W E R I S C O R R E C T
6 1 0 P R I N T " R I G H T O N . . . G O O D W O R K ! "
620 GO TO 200

Assume a correct answer. The computer prints RIGHT ON ... GOOD WORK!
and then goes to Line 200. What happens next?

Computer generates a new problem (new values for A and B) and prints
the new problem.

I)

152 BASIC

22. Below is a listing of the complete ADDITION DRILL PROGRAM.

1 0 0 R E M A D D I T I O N D R I L L P R O G R A M
1 1 0 R A N D O M

2 0 0 R E M G E N E R A T E R A N D O M N U M B E R S A A N D B
2 1 0 L E T A = I N T (1 0 * R N D (0))
2 2 0 L E T B = I N T (1 0 * R N D (0))

3 0 0 R E M P R I N T P R O B L E M A N D G E T A N S W E R
3 1 0 P R I N T
3 2 0 P R I N T A l ' V l B l " ^ ')
3 3 0 I N P U T C

4 0 0 R E M I S A N S W E R C O R R E C T ?
4 1 0 I F C = A + B T H E N 6 0 0

5 0 0 R E M A N S W E R I S N O T C O R R E C T
5 1 0 P R I N T " Y O U G O O F E D . T R Y A G A I N . "
5 2 0 G O T O 3 0 0

6 0 0 R E M A N S W E R I S C O R R E C T
6 1 0 P R I N T " R I G H T O N . . . G O O D W O R K ! "
6 2 0 G O T O 2 0 0

9 9 9 E N D

Change Line 210 so that the value of A is a random whole number between
0 and 19, inclusive.

2 1 0 L E T A =

2 1 0 L E T A = I N T < 2 0 * R N D < 0))

23. Change Line 220 so that the value of B is a random whole number
between 10 and 19, inclusive.

2 2 0 L E T B =

FUNCTIONS 153

220 LET B = INT(10*RND(0) > • 1 0

We made the above changes and ran the modified program.

RUN

6 + 1 0 = ? 1 6
RIGHT 0N.. .G00D

19 + 12 =?31
RIGHT ON.. .GOOD

8 + 1 6 = ? 2 3
YOU G00FED. TRY

8 + 1 6 = ? 2 4
RIGHT 0N.. .G00D

7 + 13 =?

24. When the student's answer is correct, the computer always prints:
RIGHT ON ... GOOD WORK! In order to relieve the monotony, let's modify
the program so that the computer selects at random from three possible
replies to a correct answer. The changes are in the portion of the program
beginning at Line 600.

600 REM ANSWER IS CORRECT
610 LET R = INT (3*RND CO)> +1 Note that we added

620 IF R=1 THEN 630 +1 to our formula

623 IF R=2 THEN 650
627 IF R=3 THEN 670
630 PRINT "RIGHT 0N.. .G00D WORK!"
640 G0 T0 200
650 PRINT "YOU GOT IT! TRY ANOTHER."
660 G0 T0 200
670 PRINT "THAT'S VERY GOOD . KEEP IT UP!
680 G0 T0 200

The possible values of R are , , and

W0RK!

W0RK!

AGAIN.

Remember, a RUN on your
computer will probably show
different problems

WORK!

1, 2 , a n d 3 (Not 0, 1, and 2, because we added +1)

25. If R is equal to 1, the computer prints

RIGHT 0N...G00D W0RK!

26. If R is equal to 3, the computer prints

THAT'S VERY G00D. KEEP IT UP!!!

27. If R is equal to 2, the computer prints

Y0U G0T IT! TRY AN0THER•

28. To our original program (frame 22) we added the changes made in frame
24 and ran the program. The RUN is shown below.

R U N

4 * 5 = ? 9
R I G H T 0 N . . . G 0 0 D W 0 R K !

4 + 4 = ? 8
T H A T ' S V E R Y G 0 0 H . K E E P I T U P ! ! !

0 + 9 = ? 9
R I G H T 0 N . . . G 0 0 D W 0 R K !

2 + 0 = ? 2
T H A T ' S V E R Y G 0 0 D . K E E P I T U P ! ! !

7 + 5 = ? I 2
R I G H T 0 N . . . G 0 0 D W 0 R K !

3 + 9 = 7 1 2
Y 0 U G 0 T I T ! T R Y A N 0 T H E R .

6 + 5 = ? 1 3
Y 0 U G 0 0 F E D . T R Y A G A I N .

6 + 5 = ?

FUNCTIONS 155

If the student's answer is incorrect, the computer always prints: YOU
GOOFED. TRY AGAIN. Modify the program in frame 24 so that for an
incorrect response the computer selects randomly one of the following
responses:

YOU GOOFED. TRY AGAIN.
WRONG ANSWER. I'LL GIVE YOU ANOTHER CHANCE.

5 0 0 R E M A N S W E R I S N O T C O R R E C T

5 1 0 L E T R =

5 2 0 I F

5 2 3 I F

5 3 0 P R I N T

5 4 0 G 0 T 0 3 0 0

5 5 0 P R I N T

5 6 0 G 0 T 0 3 0 0

5 0 0 R E M A N S W E R I S N 0 T C O R R E C T
5 1 0 L E T R = I N T (2 * R N D (0)) • 1
5 2 0 I F R = 1 T H E N 5 3 0
5 2 3 I F R = 2 T H E N 5 5 0
5 3 0 P R I N T " Y O U G O O F E D . T R Y A G A I N . "
5 4 0 G O T O 3 0 0
5 5 0 P R I N T " W R O N G A N S W E R . I ' L L G I V E Y O U A N O T H E R C H A N C E . "
5 6 0 G O T O 3 0 0

•

1 5 6 B A S I C

29. The three statements

620 IF R = 1 THEN 630
623 IF R=2 THEN 650
627 IF R=3 THEN 670

can be replaced by the single statement

620 0N R G0 T0 630*650*670 0R G0 T0 R 0F 630 * 650* 670

/ / /
I f R = 1 I f R = 2 I f R = 3

in most versions of BASIC. Using ON R GO TO the program segment in frame
24 can be rewritten as follows:

6 0 0 R E M A N S W E R I S C O R R E C T
6 1 0 L E T R = 1 N T (3 * R N D (0)) + 1
6 2 0 O N R G O T O 6 3 0 , 6 5 0 , 6 7 0
6 3 0 P R I N T " R I G H T O N . . . G O O D W O R K ! "
6 4 0 G O T O 2 0 0
6 5 0 P R I N T " Y O U G O T I T ! T R Y A N O T H E R . "
6 6 0 G O T O 2 0 0
6 7 0 P R I N T " T H A T ' S V E R Y G O O D . K E E P I T U P ! ! ! "
6 8 0 G O T O 2 0 0

On most computer systems, the ON ... GO TO variable must have a
value of 1, 2, or 3 in order to be true and to jump the computer to a specified
line. Otherwise, like a. false IF-THEN condition, the statement is passed by
and the next statement after the ON ... GO TO is executed. Look at Line
610. What are the possible values of R that this statement can generate?

1 , 2 , 3

30. Suppose that on a RUN of the program, the random number generated

by RND(O) in Line 610 is .3434087. What value will R have?

Which line will the computer GO TO from Line 620?

R = 2
Line 650

FUNCTIONS 157

31. The TAB() function in BASIC is used in PRINT statements. It's like
the TAB on a typewriter, it automatically causes the computer to go to a
certain space in a printing line. Here are two programs.

P R I N T " X X "
E N D

Both programs cause
X's to be printed in
the same place in a

X X line-

P R I N T T A B C 1 0) J " X " ; T A B C 2 5) J " X "
E N D

X X

Recall from Chapter One that up to 72 characters may be printed in one
line of output. That is, there are 72 character printing spaces per line. For
purposes of using the TAB function, these character spaces are numbered
from 0 to 71.

Write a statement using the TAB function, that will cause an X to be
printed in the last space in a line.

Write a statement that will cause an X to be printed in the 30th
character space and in the 41st character space.

10
99

RUN

1 0
99

RUN

2 0 P R I N T T A B (7 1) J M X "
3 0 P R I N T T A B < 2 9) t " X " 1 T A B (4 0) J " X "

158 BASIC

32. There are some limitations on the values that may appear in a TAB
function.

(a) The value in the parentheses should not be a negative number.

(b) The value should not exceed 71.

(c) If the computer is at TAB character space number 55, the terminal
printing or display mechanism cannot tab "backwards" to TAB(25);
that is, it cannot backspace to TAB character space number 25.

Keeping the above limitations in mind, the value in the parentheses of
the TAB function may be:

(d) a number T A B (2 3)

(e) a variable T A B (A)

(f) an expression T A B (W + I N T (1 0 * R N D (0) >

Which of the following three programs contain TAB instructions that violate

one or more of the limitations above?

PROGRAM C

1 0 L E T M = 4 3
2 0 P R I N T T A B (2 * M) J M
9 9 E N D

PROGRAM B

1 0 R E A D Y
2 0 P R I N T T A B (Y > J Y
3 0 G 0 T 0 1 0
9 0 D A T A 6 2 # 3 9 # 5 # 5 3 # 1 1 # 4 8
9 9 E N D

PROGRAM A

1 0 F O R K = 1 T 0 1 2
2 0 P R I N T T A B (K) J
3 0 N E X T K
9 9 E N D

PROGRAM C

FUNCTIONS 159

33. Show the approximate appearance of a RUN of PROGRAM A in the
preceding frame.

RUN

RUN

160 BASIC

34. The most common uses for TAB functions are:

(a) for computer art and graphics.

(b) for printing mathematically desired graphs and curves. (For information
on programming graphs and mathematical functions, see, for example,
Kemeny and Kurtz, BASIC PROGRAMMING (2nd edition), John Wiley
& Sons, 1971.)

Note also that the statement

6 0 P R I N T T A B (1 0) ; Y J T A B C 5 2) J Z

means "print the value of Y at TAB character space 10 and the value of Z at
TAB character space 52."

It does not mean "print the value of Z, 52 spaces past the print position
where Y is printed."

Using READ and DATA statements, as well as the TAB function, write
a program that will sort a list of yearly income figures into three categories
and columns, using this data.

D A T A 3 3 5 2 * 1 0 7 8 3 * 2 2 8 5 2 * 1 9 6 6 7 * 4 8 3 7 * 8 9 5 6
D A T A 9 1 1 2 * 2 5 2 2 * 4 8 9 0 * 6 5 5 6 * 1 4 9 3 6

A RUN of your program should look like this:

R U N

U N D E R $ 5 0 0 0 $ 5 0 0 0 T 0 1 0 0 0 0 0 V E R $ 1 0 0 0 0
3 3 5 2

1 0 7 8 3
2 2 8 5 2
1 9 6 6 7

4 8 3 7
8 9 5 6
9 1 1 2

2 5 2 2
4 8 9 0

6 5 5 6
1 4 9 3 6

B U T B E D A T A I N L I N E 2 0

FUNCTIONS 161

This is our solution. If possible, check yours on a computer if it is
different.

5 R E M I N C 0 M E S 0 R T 1 N G P R 0 G R A M
1 0 P R I N T " U N D E R $ 5 0 0 0 " J T A B C 2 0 > J " $ 5 0 0 0 T 0 1 0 0 0 0 " J
1 5 P R I N T T A B (5 0 > J " 0 V E R $ 1 0 0 0 0 "
2 0 R E A D M
3 0 I E M < 5 0 0 0 T H E N 9 0
A O I E M < 1 0 0 0 0 T H E N 7 0
5 0 P R I N T T A B < 5 0) J M
6 0 G 0 T 0 2 0
7 0 P R I N T T A B < 2 2) 1 M
8 0 G 0 T 0 2 0
9 0 P R I N T M
1 0 0 G 0 I 0 2 0
9 0 0 D A T A 3 3 5 2 * 1 0 7 8 3 * 2 2 8 5 2 > 1 9 6 6 7 * 4 8 3 7 * 8 9 5 6
9 1 0 D A T A 9 1 1 2 * 2 5 2 2 * 4 8 9 0 * 6 5 5 6 * 1 4 9 3 6
9 9 9 E N D

162 BASIC

35. A computer that uses BASIC has a number of functions, such as the INT,
SQR, RND, and TAB functions, preprogrammed into it as part of the BASIC
computer language itself. However, BASIC also provides a way of making up
your own functions that will do specialized jobs or calculations, just like the
specialized number chopping INT function. These special user-defined func­
tions are invented and written as a statement in a program, then used in the
program wherever needed, in the same way you would use the INT or any
other function.

It is just a bit tricky, so pay close attention. This is the form of a state­
ment that defines a function. In this case, we are defining the number-
rounding statement as FunctioN R, or FNR.

DEFinea FunctioN called "function R" (for Rounding).
Any letter A to Z may be used after
FN to identify the particular function

1 0 D E F F N R (X) = < I N T < X * 1 0 0 + « 5)) / 1 0 0

/ t t
Line number This is a "dummy variable."

The same variable must be
used in the function definition

When the defined function is put to use in a program, the variable on which
the function is to operate is substituted for the "dummy variable" X.

In the program which follows, the expression used to round a value to
two decimal places has been defined as a function (FNR). When we want the
value of variable A rounded, that variable is placed in the parentheses follow­
ing FNR — the "code word" for the number-rounding function. See Line 40.

5 R E M U S I N G A D E F I N E D F U N C T I O N T 0 R O U N D N U M B E R S
1 0 D E F F N R < X) = (I N T C X * 1 0 0 + . 5 >) / 1 0 0
2 0 P R I N T " N U M B E R T O B E R O U N D E D " ;
3 0 I N P U T A
4 0 P R I N T A ; " R 0 U N D E D T O 2 D E C I M A L P L A C E S = " ; F N R (A >
5 0 P R I N T
6 0 G O T O 2 0
9 9 E N D
R U N

N U M B E R T O B E R O U N D E D ? . 3 3 3 3 3 3
. 3 3 - 3 3 3 3 R O U N D E D T O 2 D E C I M A L P L A C E S = . 3 3

N U M B E R T O B E R O U N D E D ? . 6 6 6 6 6 6
. 6 6 6 6 6 6 R O U N D E D T O 2 D E C I M A L P L A C E S = . 6 7

N U M B E R T O B E R O U N D E D ? 6 0 0 . 7 4 4
6 0 0 . 7 4 4 R O U N D E D T O 2 D E C I M A L P L A C E S = 6 0 0 . 7 4

N U M B E R T O B E R O U N D E D ?

FUNCTIONS 163
— "

As with other functions, the value that appears in the parentheses of a defined
function may be:

(a)

(b) :

(c)

(a) a number
(b) a variable
(c) an expression

36. Modify the Fahrenheit to Celsius conversion program found in the
Self-Test for Chapter Two, so that a defined function is used to round the
temperature to the nearest 1/10 of a degree.

DEF FNT<X)=<INTCXK10+.5)>/10

Note: Many computer systems use a version of BASIC that allows you to
define very complex functions using more than one statement in the defini­
tion. Consult a reference manual for your computer system to determine
how to define multi-statement functions.

164 BASIC

SELF-TEST

A word of encouragement: You are learning the functional use of a lot of
symbols; don't get discouraged if you haven't been able to write a chess-
playing program for your computer system yet. You will learn more about
computer capabilities as you learn more of BASIC. Remember, computer
programming is a tool to help you and not necessarily an end in itself. Begin
considering whether the computer as a tool can have useful applications in
those areas of most interest to you, and how you could write appropriate
programs.

1. Write the BASIC notation for the following functions:

(a) square root

(b) integer part

(c) random number

(d) carriage tab

2. Write a statement for a program that will define function A as 4 times
3.1416 times R~. A = 4ttR- = surface area of a sphere.

110

3. You are a building contractor figuring an estimate on a geodesic dome
building (or perhaps you are considering building your own). You need
to know about how many square feet of wood or other material will be
needed to cover the outside surface of the dome, which is very much
like a half sphere. You defined a function to calculate the surface area of
a whole sphere in the problem preceding in this Self-Test. Use it in your
program. Design your program so that it prints a table of surface area
and materials cost for enclosing domes with diameters from 12 feet to
40 feet (the radius R is Vi the diameter).

This is the information the table should provide:

(a) the diameter (from 12 feet to 40 feet, at 'A-foot intervals).
(b) the surface area of the dome, rounded to the nearest square foot.
(c) the cost of the surfacing material, at 10 cents per square foot,

rounded to the nearest cent.
(d) the cost of the surfacing material at 12 cents per square foot,

rounded to the nearest cent.
(e) the cost of the surfacing material at 15 cents per square foot,

rounded to the nearest cent.

(f) the cost of the surfacing material at 20 cents per square foot,
rounded to the nearest cent.

Use the TAB function to arrange the columns about the same dis­
tance apart across the printout. If you are using a terminal, check the
reference manual for your system to see if it has a PRINT USING state­
ment for designing output format. Also, you may need to know wheth­
er your system requires 12 or more character spaces to print non-
integers, even when rounded off. Isn't computer programming a real
challenge?

4. Write a program that will give your little brother, sister, son, or daughter
(etc.) practice in multiplication. Design the program so that the user
can select one-digit or two-digit multipliers by means of an INPUT
statement.

5. Which RUN was produced by this program?

1 0 F 0 R X = 1 T 0 8
2 0 P R I N T T A B < X - 1 > J
3 0 F 0 R A = 1 T 0 8
AO P R I N T , , * " J
5 0 N E X T A
6 0 P R I N T
7 0 N E X T X
9 9 E N D

RUN A RUNB

*

BONUS PROBLEM. Write a program that will produce the other RUN in
question 5.

166 BASIC

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review

1. (a) SQRO (frame 1)
(b) INTO (frame 2)
(c) RND(O) (frames 7 and 8)
(d) TAB() (frame 31)

2. 110 DEF FNA CR) = 4*3.1416*R»2 (frame 35)

Dummy variable

Any variable is okay

3. (frames 31 and 35)

1 0 0 R F M D O M E S U R F A C E A R E A A M D M A T E R I A L S C O S T
1 1 0 D E F F V A C R > = 4 * 3 . 1 4 1 6 * R t 2
1 2 0 D E F F M F f C X) = C I M T C X * 1 G 0 + . 5)) / 1 0 0
1 3 0 P R I M T " D I A M . " J T A B C 1 0) ; " S O . F T . " 5 T A B C 2 0) ; " ? • 1 0 / S O F T " ;
1 3 5 P F i l M T T A B C 3 0) ; " J . 1 2 / S 0 F T " ; T A B C 4 0) ; " S . 1 5 / S O P T " ;
1 4 0 P R I M T T A B C 5 0) ; " 5 • 2 0 / S B F ' T "
1 5 0 F O R D = 1 2 T O 4 0 S T E P . 5
1 6 0 L E T A = I M T C F M A . C D / 2) / 2)
1 7 0 P K I M T D I T A B C 1 0) ; A) T A B C 2 0) 1 F M P C A * . 1) 1 T A B C 3 0) ;
1 8 0 P R I M T F M R C A * . 1 2) ; T A B C 4 0) S F M R C A * . 1 5) ! T A B C 5 0) 1 F M R C A * . 2)
1 9 0 M F X T D
9 9 9 E ' M D

H U M

S O . F T . S . 1 0 / S O F T S . 1 2 / S O F T S . 1 5 / S G F T ? . 2 0 / S O F T
1 2 2 2 6 2 2 . 6 2 7 . 1 2 3 3 . 9 4 5 . 2
1 2 . 5 2 4 5 2 4 . 5 2 9 . 4 3 6 . 7 5 4 9

1 3 2 6 5 2 6 . 5 3 1 . 8 3 9 . 7 5 5 3
1 3 . 5 2 8 6 2 8 . 6 3 4 . 3 2 4 2 . 9 5 7 . 2

1 4 3 0 7 3 0 . 7 3 6 . 8 4 4 6 . 0 5 6 1 . 4

1 4 . 5 3 3 0 3 3 3 9 . 6 4 9 . 5 6 6
1 5 3 5 3 3 5 . 3 4 2 . 3 6 5 2 . 9 5 7 0 . 6

(We have cut off the rest of the RUN to save space.)

Note: 1 6 0 L E T A = I N T C F N A (D / 2 > / 2 >

/ \
Half the diameter is radius Half the surface of a sphere is a dome

Note also that we used two PRINT statements to print one line of the
table. A semicolon was used at the end of Lines 130 and 170.

SELF-TEST 167

4. (frames 12 to 22)

1 0 0 R E M M U L T I P L I C A T I O N P R A C T I C E S O N E O R T W O D I G I T
1 1 0 P R I N T " A F T E R T H E Q U E S T I O N M A R K # T Y P E 1 I F Y O U W A N T T O D O *
1 2 0 P R I N T " O N E D I G I T M U L T I P L I C A T I O N (5 T I M E S b = 2 5) O R "
1 3 0 P R I N T " T Y P E 2 I F Y O U W A N T T O D O T W O D I G I T M U L T I P L I C A T I O N '
1 4 0 P R I N T " < 1 2 T I M E S 2 0 = 2 4 0) . "
1 5 0 P R I N T " 1 O R 2 " ;
1 6 0 I N P U T M
1 7 0 P R I N T
1 8 0 I F M = 1 T H E N 2 1 0
1 9 0 I F M = 2 T H E N 2 3 0
2 0 0 G O T O 1 1 0
2 1 0 L E T X = 1 0
2 2 0 G O T O 2 4 0
2 3 0 L E T X = 1 0 0
2 4 0 L E T A = I N T < X * R N D (0))
2 5 0 L E T B = I N T < X * R N D < 0 >)
3 0 0 R E M P R O B L E M A N D S T U D E N T A N S W E R
3 1 0 P R I N T A ; " T I M E S " ; B l " = " J
3 2 0 I N P U T P
3 3 0 I F P = A * B T H E N 4 0 0
3 4 0 G O T O 5 0 0
4 0 0 R E M C O M P U T E R R E S P O N S E T O C O R R E C T A N S W E R
4 1 0 P R I N T " G O O D S H O W ! T R Y A N O T H E R . "
4 2 0 P R I N T
4 3 0 G O T O 2 4 0
5 0 0 R E M C O M P U T E R R E S P O N S E T O I N C O R R E C T A N S W E R
5 1 0 P R I N T " S O R R Y ' B O U T T H A T . T R Y A G A I N . "
5 2 0 P R I N T
5 3 0 G O T O 3 0 0
9 9 9 E N D
R U N

A F T E R T H E Q U E S T I O N M A R K # T Y P E 1 I F Y O U W A N T T O D O
O N E D I G I T M U L T I P L I C A T I O N < 5 T I M E S 5 = 2 5) O R
T Y P E 2 I F Y O U W A N T T O D O T W O D I G I T M U L T I P L I C A T I O N
< 1 2 T I M E S 2 0 = 2 4 0) .
1 O R 2 7 1

3 T I M E S 1 = 7 3
G O O D S H O W ! T R Y A N O T H E R .

7 T I M E S 8 = 7 5 8
S O R R Y ' B O U T T H A T . T R Y A G A I N .

7 T I M E S 8 = 7 5 6
G O O D S H O W ! T R Y A N O T H E R .

6 T I M E S 0 = 7 0
G O O D S H O W ! T R Y A N O T H E R .

5 T I M E S 8 = 7

5. RUN B (frames 31 to 34)

168 BASIC

l

*

*

CHAPTER SIX

Subscripted Variables

In Chapters Six and Seven we will present a useful tool, the subscripted
variable. In this chapter we will discuss BASIC variables with a single sub­
script, and introduce a new instruction, the DIMension statement.

One of the most common uses for subscripted variables is in representing
arrays or matrices of numbers; in a matrix the numbers are arranged in rows
and columns. A matrix with only one row or one column (represented by a
single subscripted variable) is also termed a list or a vector.

Many versions of BASIC contain a special set of instructions called
MATrix functions. You will learn to use four of these:

MAT ZERO
MAT PRINT
MAT INPUT
MAT READ

169

1. The next concept we will discuss will require your close attention. Take
it slowly, and read carefully as we enter the mysterious realm ot subscripted
variables.

Until now, we have used only simple BASIC variables. A simple variable
consists of a letter (any letter A to Z) or a letter followed by a single digit
(any digit 0 to 9).

For example, the following are simple variables:

P R K PI P2

Now we want to introduce a new type of variable, called a subscripted
variable.

Subscripted variable

Subscript —

Say it like this: "P sub 5"
A subscripted variable consists of a letter (any letter A to Z) followed by

a subscript enclosed in parentheses.

P(3) is a subscripted variable.
P3 is not a subscripted variable.

Which of the following are subscripted variables? Circle the answer(s).

X(l) X XI C(23) D

j— Variable

: P(5)

•X(1)J
'C(23)J

KNOW THIS: X, XI, and X(1)are three distinct variables. All three can
appear in the same program. They may confuse you, but the computer will
recognize them as three different variables.

SUBSCRIPTED VARIABLES 171

2. A subscripted variable (like the simple variables we have been using)
names a location inside the computer; you can think of it as a box, a place
to store a number.

EIGHT SUBSCRIPTED VARIABLES

P(l)

P(2)

P(3)

P(4)

P(5)

P(6)

P(7)

P(8)

A set of subscripted variables is also
called an array. This set of subscripted
variables is a one-dimensional array,
also know as a list or vector. Later we
will discuss two-dimensional arrays

Pretend you are the computer, and LET P(2) = 36. In other words use
your pencil or pen and write the number 36 in the box labelled P(2) above.
Then LET P(3) = 12 (do it). Now LET P(7) = P(2) + P(3). Check yourself
by looking below.

P(l)

P(2)

P(3)

P(4)

P(5)

P(6)

P(7)

P(8)

3b
I t .

3. So what's so wonderful and mysterious about subscripted variables?
Here comes the boggier: Subscripted variables can have variables for
subscripts.

This subscripted variable, Y(J), has a variable for a subscript.

I f J = 1 t h e n Y (J) i s Y (1)

I f J = 2 t h e n Y (J) i s Y (2)

I f J = 7 t h e n Y (J) i s Y (7)

Let us assume that the following values (in the boxes) have been assigned
to the corresponding variables. Note that there are both simple and sub­
scripted variables.

Y(l) 4 Z(l) 4.7 A 1

Y(2) -3 Z(2) 9.2 B 2

Y(3) 5 X(l) 2 C 3

Y(4) 6 X(2) 3 D 4

Write the value of each variable below:

Y(l) = A = Y(A)

Y(2) = B = Y(B)

Y(C) = X(A) = X(B)

Z(A) = Z(B) = Y(D)

4 1 4
-3 2 -3

5 2 3
4.7 9.2 6

SUBSCRIPTED VARIABLES 173

4. So far we have only used single variables as subscripts. However, the
subscript of a subscripted variable can be more complex. Here are two
examples, still using the variables and values in the boxes in frame 3.

Y(A + 1) = Y(1 + 1) = Y(2) = —3
Y(2*B) = Y(2*2) = Y(4) = 6

Now you complete these examples. Fill in the value corresponding to the
subscripted variable.

Y(B*C — D) =

5 6
4 4
5 -3

-3

Y(A + 2) = Y(A + 3) =

Y(D - 3) = ___

Y(D — C + A) =

Y(2*A - 1) =

Y(A + B) =

174 BASIC

5. So how can subscripted variables contribute to the ease and versatility
of programming in BASIC?

One common use of subscripted variables is to store a list of numbers
entered via INPUT statements or READ statements. This can be done by
use of a FOR-NEXT loop which causes the subscript to increase by one each
time a new number is entered. To illustrate, we will turn once again to our
old friend, The World's Most Expensive Adding Machine.

1 0 0 R E M A R K W O R L D ' S M O S T E X P E N S I V E A D D I N G M A C H I N E C A G A I N)
1 1 0 P R I N T
1 2 0 P R I N T " H O W M A N Y N U M B E R S " !
1 3 0 I N P U T N
1 4 0 P R I N T

1 5 0 F O R K = 1 T O N
1 6 0 P R I N T " X = " J
1 7 0 I N P U T X C K)
1 8 0 N E X T K

1 9 0 P R I N T

2 0 0 L E T T = 0
2 1 0 F O R K = 1 T O N
2 2 0 L E T T = T + X (K)
2 3 0 N E X T K

2 4 0 P R I N T " T H E T O T A L I S " J T
9 9 9 E N D

R U N

H O W M A N Y N U M B E R S 7 5

X = ? 3 7
X = ? 2 3
X = ? 4 6
X = ? 7 8
X = ? 5 9

T H E T O T A L I S 2 4 3

For the RUN shown, N is 5. Therefore, 5 numbers will be entered by the

operator and stored in X(1) through .

N numbers are entered by the user
and stored in X(1) through X(N)

First T is set to zero. Then the numbers
in X(1) through X(N) are added to T

X(5)

SUBSCRIPTED VARIABLES 175

6. Suppose the computer is RUNning the program. It has just completed
the FOR-NEXT loop in Lines 150 through 180. The numbers entered by
the user are now stored as follows.

N 5

X(l) 37

X(2) 23

X(3) 46

X(4) 78

X(5) 59

The computer is ready to proceed with Line 200. Show the value of T after
Line 200 has been executed.

T

0

7. Next, the computer will do the FOR-NEXT loop in Lines 210 through

230. How many times will Line 220 be done?

5, because Line 210 says FOR K = 1 TO N and N is equal to 5.

176 BASIC

8. Line 220 will be done 5 times, first for K - 1 then for K - 2, for K - 3,
for K = 4, and finally for K = 5. Let's look at Line 220.

2 2 0 L E T T = T + X C K >

/
K is used as a subscript

Line 220 tells the computer to add the value of X(K) to the old value
of T and then assign the result as the new value of T.

What is the value of T after Line 220 has been done for K= 1 ?

For K=2? For K=3? For K = 4? For K=5?

37
60
106
184
243

9. Let's use the World's Most Expensive Adding Machine to compute the
sum of whole numbers, 1 through 12.

R U N

H 0 W M A N Y N U M B E R S 7 1 2

X = ? 1
X = ? 2
X = ? 3
X = ? 4
X = ? 5
X = ? 6
X = ? 7
X = ? 8
X = ? 9
X = ? 1 0
X = ? 1 1
S U B S C R I P T E R R O R A T L I N E 1 7 0

SUBSCRIPTED VARIABLES 177

Everything seemed to be going all right, but apparently something is
wrong. Help! Complete the following analysis. The first 10 numbers we

entered the 11th number which was supposed to be stored in ;
At this point the computer printed an error message telling us that a sub­
script error had occurred. Apparently our computer doesn't accept sub­

scripts greater than .

10. That's right. The computer does not permit a subscript to be greater
than 10, unless we specify otherwise.

If subscripts greater than 10 are to be used, special instructions must be
included in the program to reserve additional space. We must tell the
computer the largest subscript it is to permit in a subscripted variable by
using a DIM statement. DIM is short for "dimensions" of an array of
subscripted variables.

1 0 5 D I M X (1 0 0)

is being reserved

The above DIM statement specifies a subscripted variable which can have a

maximum subscript of .

entered (after 'X=?') were stored in X(l) through . Then we

X(10)
X (l l)
10

num subscript
which space permitted

100

Note. The mimimum subscript, or smallest possible subscript, is zero or one,
depending on your computer and the version of BASIC you are using. In
this book, we will assume that the smallest subscript is one.

178 BASIC

11. Suppose we wanted to specify that the maximum subscript is 50. Write
the DIM statement.

105

105 DIM X(50)

12. We will add the DIM statement from frame 10 to the program from
frame 5. Below is a LIST and RUN using the 12 numbers that gave us trouble
before.

L I S T

1 0 0 R E M A R K W O R L D ' S M O S T E X P E N S I V E A D D I N G M A C H I N E (A G A I N)
1 0 5 D I M X C 1 0 0)
1 1 0 P R I N T
1 2 0 P R I N T " H O W M A N Y N U M B E R S " ;
1 3 0 I N P U T N
1 4 0 P R I N T
1 5 0 F O R K = 1 T O N
1 6 0 P R I N T " X = " ;
1 7 0 I N P U T X (K)
1 8 0 N E X T K
1 9 0 P R I N T
2 0 0 L E T T = 0
2 1 0 F O R K = 1 T O N
2 2 0 L E T T = T + X (K)
2 3 0 N E X T K
2 4 0 P R I N T " T H E T O T A L I S " ; T
9 9 9 E N D

R U N

H O W M A N Y N U M B E R S ? 1 2

X = ? l
X = ? 2
X = ? 3
X = ? 4
X = ? 5
X = ? 6
X = ? 7
X = ? 8
X = ? 9
X = ? 1 0
X = ? l 1
X = ? 1 2

T H E T O T A L I S 7 8

SUBSCRIPTED VARIABLES 179

Now the program can be used to compute the sum of at most how many

numbers?

100 If 100 numbers are entered they will be stored in X(1) through
X(100), the limit specified by the DIM statement in Line 105.
We can, of course, also use the program to compute the sum of
fewer than 100 numbers

180 BASIC

13. Instead of using an INPUT statement to get values for X(1), X(2), and
so on, we can use READ and DATA statements. We'll put the value of N and
the values of X(l) through X(N) in a DATA statement, as follows:

DATA 5 , 37* 23* 46* 78* 59

Value of N Values of X(1) through X(5)

The program is shown below.

1 0 0 R E M A R K W O R L D ' S M O S T E X P E N S I V E A D D I N G M A C H I N E (A G A I N >
1 1 0 D I M X (I O O)

2 0 0 R E M A R K R E A D N A N D X (l > T H R O U G H X (N)
2 1 0 R E A D N
2 2 0 F O R J = i T O N
2 3 0 R E A D X (J >
2 4 0 N E X T J

3 0 0 R E M A R K P R I N T N A N D X (l > T H R O U G H X (N)
3 1 0 P R I N T " N = " ; N
3 2 0 P R I N T " X (l > T H R O U G H X C N) A R E S "
3 3 0 F O R K = 1 T O N
3 4 0 P R I N T X (K) I
3 5 0 N E X T K
3 6 0 P R I N T

4 0 0 R E M A R K C O M P U T E T O T A L O F X (l) T H R O U G H X (N >
4 1 0 L E T T = 0
4 2 0 F O R L = 1 T O N
4 3 0 L E T T = T + X (L >
4 4 0 N E X T L

5 0 0 R E M A R K P R I N T T O T A L A N D G O B A C K F O R N E W D A T A
5 1 0 P R I N T " T H E T O T A L I S " J T
5 2 0 P R I N T
5 3 0 G O T O 2 1 0

9 0 0 R E M A R K H E R E A R E T W O S E T S O F D A T A
9 1 0 D A T A 5 / 3 7 , 2 3 . 4 6 , 7 8 , 5 9
9 2 0 D A T A 1 2 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2
9 9 9 E N D

In the first FOR-NEXT loop (Lines 220 - 240), we used J as the subscript.
This choice was entirely arbitrary. What subscript did we use in Lines 330

to 350? Lines 420 to 440?

K
L

SUBSCRIPTED VARIABLES 181

14. If we had wanted to, could we have used J in all three places?

Yes These are three separate and distinct FOR-NEXT loops. We
could have used any variable as the subscript except N or T

15. Now the big one. Suppose we RUN the program in frame 13. Show
what the RUN will look like. (Hint: check all the PRINT statements.)

RUN

RUN

N= 5
X < 1) T H R O U G H X C N) A R E J

37 23 46 78 59
THE TOTAL IS 243

N= 12
X C 1) T H R O U G H X < N > A R E :

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
THE TOTAL IS 78

OUT OF DATA IN LINE 210

182 BASIC

16. Here s a little more practice at doing what a computer does when dealing
with subscripted variables, so that you can better understand and use sub­
scripted variables in your programming.

For this segment of a computer program, fill in the boxes, showing the
values of D(I) at the affected locations after this FOR-NEXT loop has been
run.

1 0 F 0 R 1 = 1 J 0 3
2 0 L E T D C I] = 2 * I - 1
3 0 N E X T I

D(l)

1 for 1= 1,2*1 — 1= 2*1 — 1= 2 — 1 = 1
3 for I = 2, 2*1 - 1 = 2*2 - 1 = 4 - 1 = 3
5 for I = 3,2*1-1 = 2*3-1 = 6 - 1 = 5

'' pn w„the f°"°Wing F0R'NEXT '""P. f"'<he boxes showing the values
in R(]) through R(4) after the loop has been carried out.

10
20
3 0

R(l)

F0R R=1 T 0 A
L E T R C R j = R t 2
N E X T R

R(2) R(3) R(4) |

1 for R = 1, Rf 2 = 1 f 2 = 1
4 for R = 2, R-t-2 = 2 \2 = 4
9 for R = 3, Rf 2 = 3 + 2 = 9
16 for R = 4, Rf 2 = 4t2 = 16

SUBSCRIPTED VARIABLES 183

1 8 . Let's do one more of these.

1 0 F O R N = 1 T O 6
2 0 L E T P E N] = 2 t N
3 0 N E X T N

P(D

P(4)

P(2) P(3)

P(5) P(6)

2 4 8
16 32 64

19. Next, assume that numbers are stored in C(l) through C(5), as follows:

C(l)

C(4) 20

C(2)

C(5) 17

34 C(3) 1 2

What will be printed if the following FOR-NEXT loop is carried out?

4 5 F O R A = 1 T O 5
5 3 P R I N T C [A] ;
6 7 N E X T A

R U N

R U N

1 8 3 4 1 2 2 0 1 7

20. Suppose numbers are stored in C(1) through C(5) as shown in frame 19
What will be printed if the following FOR-NEXT loop is carried out.1

45 F0R A=5 T0 1 STEP -1
5 3 P R I N T C C A 3 J
67 NEXT A

RUN

RUN

17 20 12 34 18 They are printed backwards

21. Assume that there is an election approaching and you have conducted a
poll among your friends, using the following questionnaire.

Who will you vote for in the coming
election? Circle the number to the
left of your choice.

1. Sam Smoothe
2. Gabby Gruff

(

Let's write a program to count the votes each candidate received in the
poll. You have 35 responses to your questionnaire, each response being
either a "1" or a "2." First, record the votes in a DATA statement.

DATA \ » \ » 2 » 2 » 2 » \ » \ » 2 » 2 » 2 » \ » \ » \ » 2 » \ » 2 » \ » \
DATA 2 » 2 » \ » \ » \ » 2 » l » 2 , 2 , 2 > \ » \ » 2 , \ , \ > 2 » l , - \

/
End of DATA flag
Not a vote

How many votes did Sam Smoothe receive? ___

19

SUBSCRIPTED VARIABLES 185

22. How many votes did Gabby Gruff receive? (Do your
answers total 35?)

1 6

23. In order to answer those last two questions, you probably counted the
l's in the DATA statements to find out how many votes Sam Smoothe
received. Then you counted the 2's to find out how many votes Gabby Gruff
received.

The computer can count votes by using subscripted variables to keep
a running total of the l's and 2's read from the DATA statements. When
it comes to the end of data flag (—1) it stops counting and prints the results.

1 0 0 R E M A R K V O T E C O U N T I N G P R O G R A M
1 1 0 D I M C (2 >
1 2 0 L E T C C I) = 0
1 3 0 L E T C (2) = 0

2 0 0 R E M A R K R E A D A N D C O U N T V O T E S
2 1 0 R E A D V
2 2 0 I E V = - 1 T H E N 3 1 0
2 3 0 L E T C (V) = C (V) + l Crucial vote-counting statement
2 4 0 G O T O 2 1 0

3 0 0 R E M A R K P R I N T R E S U L T S
3 1 0 P R I N T " S A M S M O O T H E s C < 1 >
3 2 0 P R I N T " G A B B Y G R U F F : " ; C (2 >

9 0 0 R E M A R K V O T E S F O L L O W E D B Y F L A G (F L A G = - 1)
9 1 0 D A T A 1 j 1 J 2 * 2 # 2 J 1 J 1 * 2 * 2 * 2 » 1 # 1 # 1 # 2 * 1 J 2 # 1 J 1
9 2 0 D A T A 2 * 2 # 1 > 1 # 1 # 2 * 1 J 2 J 2 » 2 # 1 * I # 2 # 1 J 1 * 2 # 1 > ~ 1
9 9 9 E N D

R U N

S A M S M O O T H E : 1 9
G A B B Y G R U F F : 1 6

Is the DIM statement really necessary?

No, since only C(l) and C(2) are involved, no subscript exceeds 10.
However, we feel it is good practice always to use a DIM statement.

186 BASIC

24. After the computer carries out Lines 120 and 130, what are the values
of C(l) and C(2)?

C(D |

C(2)

These are the initial values prior
to reading and counting any votes

25. Look again at the crucial vote-counting statement.

2 3 0 L E T C < V) = C (V) + 1

It is the subscripted variable equivalent of a similar statement which has
been used in earlier programs to keep count:

LET N =N +1

Note how the variable subscript of C is used to determine whether either the
ualue of C(1) is increased by one, or the value of C(2) is increased by one
Since V can have only two values, either 1 or 2, Line 230 is actually a double-
purpose line. Depending on the value of V, Line 230 is actually equivalent to

LET C(l)=CCl) + i or L E T C (2) = C (2 > + 1

When the preceding program is RUN, what values will the computer have
stored for C(l) and C(2) after the first vote has been read and processed?
(That is, Lines 210 through 230 have been done for the first vote in the first
DATA statement.)

C(l) C(2)

I

SUBSCRIPTED VARIABLES 187

What values will be stored for C(l) after the second vote has been read and
processed?

C(l) C(2)

What values will be stored in C(1) and C(2) after the third vote has been read
and processed?

C(l) C(2)

C(l) J C(2) 0

C(l) % C(2) O

C(l) X C(2) 1

D

188 BASIC

26. Suppose the following poll is conducted.

Which candidate will you vote for in
the coming election? Circle the num­
ber to the left of your choice.

1. Sam Smoothe

2. Gabby Gruff
3. No Opinion

The results of this poll are shown below.

2 , ' 2 , 2 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 3 , 1 , 3 , 2 , 1 , 3 , - 2 , 1
1 , 3 , 1 , 3 , 2 ' , 2 , 1 _ , 1 , 3 , 2 , 1 , 3 , 1 , 1 , 2 , 1 , 2 , 1 , 1

Modify the vote-counting program to process this data. You will have to add
a line to set C(3) to zero, a PRINT statement to print the NO OPINION total,
and, of course, you will have to change the DATA statements for the new
data. And, you will have to change the DIM statement.

There are the modifications.
] 1 0 D I M C C 3)
1 4 0 L E T C (3 > = 0
330 PRINT "N0 0PINI0N: ";CC3>
9 1 0 D A T A 2 > 2) 2 > l i 2 > l > l > 2 > l i l > 3 > l i 3 < 2 i l > 3 i 2 i l
920 DATA 1,3,1,3,2,2,1,1,3,2,1,3,1,1,2,1,2,1,1,-1

t
Did you remember this?

SUBSCRIPTED VARIABLES 189

27. Suppose we have a questionnaire with 4 possible answers, or 5 or 6.
Instead of writing a separate program for each case, let's write a program to
count votes for a questionnaire with N possible answers. The value of N
will appear in a DATA statement prior to the actual answers, or votes. For
example, the data for the questionnaire in frame 21 would look like this:

9 0 0 R E M A R K V O T E S F O L L O W E D B Y F L A G (F L A G = - 1)
9 0 5 D A T A 2
9 1 0 D A T A 1 * 1 * 2 * 2 * 2 * 1 * 1 * 2 * 2 * 2 * 1 * 1 * 1 * 2 * 1 * 2 * 1 * 1
9 2 0 D A T A 2 * 2 , 1 * 1 * 1 * 2 * 1 * 2 * 2 * 2 * 1 * 1 * 2 , 1 * 1 , 2 , 1 * - 1

Line 905 is the value of N. In this case, N is 2 and possible votes are 1 or 2.
How should the data for the questionnaire in frame 26 be placed in DATA
statements?

9 0 0 R E M A R K V O T E S F O L L O W E D B Y F L A G (F L A G = - 1)

9 0 5 D A T A

9 1 0 D A T A

9 2 0 D A T A

9 0 5 D A T A 3
9 1 0 D A T A 8 , 2 , 2 . h 2 » l < l » 2 J l - l » 3 . l » 3 » 2 » I . 3 i l ! » l
9 2 0 D A T A 1 * 3 * 1 * 3 * 2 * 2 * 1 * 1 * 3 * 2 * 1 * 3 * 1 * 1 * 2 * 1 * 2 * 1 * 1 * - 1

This time N = 3 (Line 905) and possible votes are 1, 2, or 3.

190 BASIC

28. Your turn. Write a program to read and count votes for a questionnaire
with N different possible answers (votes) where N is less than or equal to 20.
You will have to do the following things.

(1) DIMension for the maximum subscript for C. Remember, we said N is
less than or equal to 20.

(2) Read the value of N.
(3) Set C(l) through C(N) to zero. (Use a FOR-NEXT loop.)
(4) Read and count votes until a flag is read.
(5) Print the results. Results should be printed like this:

Example: N =2 Example: N = 3

A N S W E R * l t 1 9 A N S W E R * 1 : 1 8
A N S W E R # 2 : 1 6 A N S W E R » 2 i 1 2

A N S W E R # 3 : 7

SUBSCRIPTED VARIABLES 191

Here is the way we did it.

1 0 0 R E M A R K V O T E C O U N T I N G P R O G R A M
1 1 0 D I M C C 2 0)
1 2 0 R E A D N
1 3 0 F O R K = 1 T O
1 4 0 L E T C C K) = 0
1 5 0 N E X T K

N

Maximum subscript = 20

Lines 130-150 set C(1)
through C(N) to zero

2 0 0 R E M A R K R E A D A N D C O U N T V O T E S
2 1 0 R E A D V
2 2 0 I F V = - 1 T H E N 3 1 0
2 3 0 L E T C (V) = C (V) + 1
2 4 0 G O T O 2 1 0

This part of the program is
the same as the program
shown in frame 23

300 REMARK PRINT RESULTS
3 1 0 F O R K = 1 T O N
320 PRINT "ANSWER #"iK;"J"tCCK)
330 NEXT K

Print totals for answers 1
through N

900 REMARK VOTES FOLLOWED BY FLAG (FLAG = -1)
90 5 DATA 2 — Value of N
9 1 0 D A T A 1 , 1 , 2 , 2 , 2 * 1 > 1 , 2 , 2 , 2 , 1 , 1 , 1 , 2 » 1 , 2 , 1 « 1 x
9 2 0 D A T A 2 , 2 » \ * \ , \ , 2 , \ , 2 , 2 , Z , \ , \ , 2 , \ , \ > 2 > \ , - \ J
9 9 9 E N D

Data from
frame 21

The rest of this chapter is about MATrix statements. Most versions of BASIC
include these statements, but not all. If your BASIC does not provide the
following MATrix statements, you can skip to the Self-Test.

MAT ZER
MAT READ
MAT INPUT
MAT PRINT

NOTE: Most versions of BASIC permit zero subscripts. Therefore, the state­
ment 10 DIM X(5) actually defines a list with 6 members, X(0) through X(5).
However, X(0) is not used by MA T operations. All MA T operations assume
that lists begin with subscript I.

192 BASIC

29. Here again is the first part of the vote-counting program given as our
answer to frame 28.

1 0 0 R E M A R K V O T E C O U N T I N G P R O G R A M
1 1 0 D I M C C 2 0)
1 2 0 R E A D N
1 3 0 F O R K = 1 T O N
1 4 0 L E T C C K) = 0
1 5 0 N E X T K

Lines 130 through 150 can be replaced by a single MAT statement, as
follows.

1 3 0 M A T C = Z E R (N)

The above MAT statement tells the computer to set C(l) through C(N) to

zero. What is the largest value that N may have?

20, because-the DIM statement (Line 110) specifies 20 as the maximum
possible subscript for C.

30. Here are some additional examples of how to use the MAT ZER state­
ment. In these examples we will omit line numbers.

Instead of L E T C O > = 0
L E T C < 2) = 0

Instead of L E T C C 1 > = 0
L E T C C 2) = 0
L E T C (3) = 0

Instead of L E T C C 1 > = 0
L E T C (2) = 0
L E T C (3) = 0
L E T C (4) = 0

we write:

we write:

you write:

M A T C = Z E R C 2)

M A T C = Z E R < 3)

M A T C = Z E R (4)

SUBSCRIPTED VARIABLES 193

31. What's wrong with the following statements?

1 1 0 D I M D (4)
120 MAT D = ZER < 5)

Line 120 tells the computer to set D(1) through D(5) to zero. But
there can't be a D(5) because the DIM statement (Line 110) says that
the maximum possible subscript for D is 4. The computer will print
an error message.

32. For each of the following, replace the indicated statements by a MAT
ZER statement. (Line numbers are omitted.)

(a) DIM Z < 7)
LET ZC1)=0
L E T Z C 2) = 0
LET Z(3)=0 replace with:

(b) DIM P C 99)
FOR J=1 T0 99
L E T P (J) = 0
NEXT J replace with:

(a)
(b)

MAT Z=ZER(3)
M A T P = Z E R (9 9)

33. Next, the MAT PRINT statement. An example is shown.

1 0 D I M A C 5 3
2 0 L E T A C 1] = 7
3 0 L E T A C 2] = 0
4 0 L E T A C 3 3 = 4
5 0 L E T A C 4 3 = - 3
6 0 L E T A C 5 3 = 2 . 3
7 0 M A T P R I N T A
9 9 E N D
R U N

7
0
4

- 3
2 . 3

Print the values of A(1) through A(5)

The computer printed the values ot A(l), A(2), and

A(3), A(4), A(5)

34. Modify Line 70 so that the computer will print only the values of A(l)
through A(3).

7 0 M A T P R I N T

A(3)

NOTE: You don't need a subscript in a MAT PRINT statement if you wish
the entire list to be printed.

SUBSCRIPTED VARIABLES 195

35. Suppose we RUN the modified program. What will be printed?

R U N

R U N

7 The values of A(1) through A(3) are printed
0
A

36. What will be printed if we RUN the following program?

1 0 D I M B (7 >
2 0 M A T B = Z E R (4 >
3 0 M A T P R I N T B C 4 >
9 9 E N D
R U N

R U N

The values of B(1) through B(4) are printed

196 BASIC

37. Write a MAT PRINT statement to replace the following FOR-NEXT
loop. (Line numbers omitted.)

F0R K = 1 T0 N
P R I N T C C K)
NEXT K Your answer:

MAT PRINT C (N)

38. Let's move on to MAT INPUT.

Instead of
we write

Instead of
we write

Instead of

you write

INPUT XC1) » X (2)
MAT INPUT X(2)

INPUT XC1)#XC2) .»X(3>
MAT INPUT XC3)

INPUT X(1>#X(2)#X(3)*X(4)>X(5)*X(6)*X(7)

MAT INPUT XC7)

39. Write a MAT INPUT statement to replace the following FOR-NEXT
loop.

F0R J=1 T0 S
I N P U T P C S)
NEXT J Your answer:

MAT INPUT PCS)

SUBSCRIPTED VARIABLES 197

40. This program is designed to input and print a list.

100 REMARK INPUT AND PRINT A LIST
110 DIM XC50)
120 PRINT "H0W MANY NUMBERS"!
130 INPUT N
140 PRINT
150 MAT INPUT XCN)
160 PRINT
170 PRINT "HERE ARE Y0UR NUMBERS!"
180 MAT PRINT X(N>
999 END

RUN

HOW MANY NUMBERS?5

?7»0»4#-3»2«3 We typed all 5 numbers on the same
line with commas between numbers

HERE ARE Y0UR NUMBERS:
7
0
4

-3
2.3

Could the numbers be entered as shown in the following RUN?

RUN

H0W MANY NUMBERS75

?7
?0
?4 We pressed RETURN after each number
7-3
72.3

HERE ARE Y0UR NUMBERS!
7
0
4

-3
2.3

Yes, the computer will continue typing question marks until N (in this
case, N = 5) numbers have been entered.

198 BASIC

41. All right, science fiction fans. Imagine yourself in a school of the
future, called a "Personalized Instructive Learning Environment" and located
in your very own electronically comfort-controlled mini-living space in an
over-population urban center. You have just taken the final examination in
a course entitled "Scientific Managerial Cost Effectiveness Procedures in
Development of Electronic Sensing Devices for Bio-chemical Analysis
Techniques 186.37," usually abbreviated to SMCEPDESDBCAT.

Your P.I.L.E. includes a computer terminal. A program in the com­
puter's memory can score the multiple-guess exam you have just taken.
Here is how you use the program.

RUN

Y0UR ANSWERS73/2/ A , 1 , 4 t 2 i 1 , A Your exam answers
Y0UR SC0RE IS 7

Y0UR ANSWERS73
?1
?3

Someone else's answers
74
?2
73
74
Y0UR SC0RE IS 5

Y0UR ANSWERS74/3/3
71,2
74/3# 2
Y0UR SC0RE IS 2

Y0UR ANSWERS?

Now we shall allow you to write the program, under the gentle guidance
of your (by now) beloved authors - Albrecht, Brown, and Finkel.

First write a DIM statement as Line 110 that will allow the program to
compare up to 100 correct answers, to be stored by subscripted variable C,
with an equal number of student answers, to be stored by subscripted
variable A.

1 0 0 R E M A R K T E S T S C O R I N G P R O G R A M

1 1 0

1 0 0 R E M A R K T E S T S C O R I N G P R O G R A M
1 1 0 D I M C C 1 0 0) # A (1 0 0)

Note: You can DIMension more than one array in one DIM statement.

SUBSCRIPTED VARIABLES 199

42. The number (N) of items in the exam, and the correct answers for the
exam are stored in DATA statements.

9 0 0 R E M A R K V A L U E 0 E N A N D C C 1) T H R U C C N)
9 1 0 D A T A 8
9 2 0 D A T A 3 * 2 * 3 * 1 * 4 * 2 * 1 * 4
9 9 9 E N D

With that information, you can now write two statements to complete this
section of the program: one to assign a value to N, the number of items in
the exam, and the other to assign all the exam answers to subscripted
variable C. Line 220 should be a MAT READ statement. Can you figure out
how it should look?

2 0 0 R E M A R K R E A D C 0 R R E C T A N S W E R S I N T 0 C (l) T H R U C C N)

2 1 0

220

2 0 0 R E M A R K R E A D C O R R E C T A N S W E R S I N T 0 C C 1) T H R U C C N)
2 1 0 R E A D N
2 2 0 M A T R E A D C C N)

43. Look back at the RUN of the program (frame 41); then complete this
section of the program:

3 0 0 R E M A R K I N P U T S T U D E N T ' S A N S W E R S * A C 1) T H R U A C N)

3 1 0

3 2 0

3 0 0 R E M A R K I N P U T S T U D E N T ' S A N S W E R S * A C 1) T H R U A C N)
3 1 0 P R I N T " Y 0 U R A N S W E R S ")
3 2 0 M A T I N P U T A C N)

200 BASIC

44. Now comes the crucial part. Consider what this section of the program
must accomplish; then complete the program.

4 0 0 R E M A R K C O M P U T E A N D P R I N T S C O R E

4 1 0 L E T S = 0

4 2 0 F O R 0 = 1 T O

4 3 0 I F . T H E N 4 5 0

4 4 0 L E T S =

4 5 0 N E X T

4 6 0 P R I N T — Check the RUN
4 7 0 " P R I N T i n f r a m e 4 1

4 8 0 G O T O 3 0 0

4 0 0 R E M A R K C O M P U T E A N D P R I N T S C O R E
4 1 0 L E T S = 0
4 2 0 F O R Q = 1 T O N
4 3 0 I F A C Q) < > C C O) T H E N 4 5 0
4 4 0 L E T S = S + 1
4 5 0 N E X T 0
4 6 0 P R I N T " Y O U R S C O R E I S " i S
4 7 0 P R I N T
4 8 0 G O T O 3 0 0

SUBSCRIPTED VARIABLES 201

The completed TEST SCORING PROGRAM is shown below.

100 REMARK TEST SCORING PROGRAM
110 DIM C C100)*A C100)

200 REMARK READ CORRECT ANSWERS INTO C<1> THRU CCN)
210 READ N
220 MAT READ CCN)

300 REMARK INPUT STUDENT'S ANSWERS* AC1) THRU ACN)
310 PRINT "YOUR ANSWERS";
320 MAT INPUT ACN)

400 REMARK COMPUTE AND PRINT SCORE
410 LET S=0
420 FOR 0=1 TO N
430 IF ACQ)«CCQ) THEN 450
440 LET S=S+1
450 NEXT Q
460 PRINT "YOUR SCORE IS";S
470 PRINT
480 GO TO 300

900 REMARK VALUE OF N AND CC1) THRU CCN)
910 DATA 8
920 DATA 3*2*3*1*4*2*1.4
999 END

RUN

YOUR ANSWERS?3*2*4»1 * 4*2*1 * 4
YOUR SCORE IS 7

202 BASIC

SELF-TEST

So much for science fiction. Back to reality. If you can complete the Self-
Test on subscripted variables, you will be ready for the next chapter, which
will expand your programming ability to include the use of more complex
subscripted variables. Therefore, it is important that you have the informa­
tion in this chapter well in hand.

1. Which of the following are legal BASIC subscripted variables?

(a) X (b) X2 (c) X(2) (d) 2(X)

(e) XX(2) (f) X(K) (g) X2 (h) X(I-J)

2. For each of the following subscripted variables, write the subscript
separately.

(a) C(3) subscript is

(b) Q(A2) subscript is

(c) S(2*B+C) subscript is

(d) W(INT(10*RND(0)) + 1) subscript is

3. In 2(d) above, what are the possible values for the subscript of W?

4. Assume that values have been assigned to variables as shown below.
Note that both simple and subscripted variables are shown.

Q 2 A(1) 37

A 3 A(2) 4

A1 1 A(3) 23

A(4) 19

Remember, A, A1, and A(1) are distinct variables. Write the value of
each variable below.

(a) A(Q) - (b) A(A) =

(c) A(A 1) = (d) A(A(2)) =

(e) A(A(Q)) =

SELF-TEST 203

5. What will be printed if we RUN the following program?

I O O R E M A R K M Y S T E R Y P R O G R A M
1 1 0 R E A D N
1 2 0 F O R K = 1 T O N
1 3 0 R E A D X < K >
1 4 0 N E X T K
1 5 0 F O R K = 1 T O N
1 6 0 I F X (K) < 0 T H E N 1 8 0
1 7 0 P R I N T X < K > J
1 8 0 N E X T K
9 0 0 R E M A R K V A L U E S O F N A N D X C 1 > T H R U X C N)
9 1 0 D A T A 7
9 2 0 D A T A 2 3 * - 4 4 # 3 7 > 0 » - 1 2 > - 5 8 > 8 7
9 9 9 E N D

6. There is no DIM statement in the preceding program (question 5).
Therefore, what is the largest value of N for which the program can be

used? What would happen if we tried to RUN the
program using the following DATA?

9 1 0 D A T A 1 2
9 2 0 D A T A 3 * 6 > - 2 # 0 > 9 » 0 # 7 » 3 * - 5 > 4 * - l # 7

7. Modify the vote-counting program of frame 23 so that the total votes
(for both candidates) are also printed. The printout might look like
this:

R U N

S A M S M 0 0 T H E * 1 9
G A B B Y G R U F F : 1 6

T O T A L V O T E S : 3 5

204 BASIC

8. Modify the vote-counting program of frame 23 so that the printout is
% of total votes, rounded to the nearest whole number %.

RUN

SAM SM00THE: 54 Z
GABBY GRUFF: 46 Z

9. Modify the vote-counting program (our answer for frame 28) so that
results are printed in % of total votes, rounded to the nearest whole
number %.

Example: N = 2 Example: N = 3

RUN RUN

ANSWER #1: 54 Z ANSWER #1: 49 Z
ANSWER #2: 46 % ANSWER #2: 32 X

ANSWER #3: 1 9 X

10. Replace each FOR-NEXT loop below with one or more MAT ZERO
statements. (Line numbers omitted.)

FOR-NEXT Loop MAT ZERO Statement

(a) F0R A = 1 T0 Q + i
LET P (A) =0
NEXT A

(b) F0R J=1 T0
LET A C J)=0
LET B(J)=0
NEXT J

11. Show the printout if we RUN each program.

P R O G R A M A P R O G R A M B

10 DIM NC53 10 DIM WC83
20 F0R 1=1 T0 5 20 LET WC13=2
30 LET NCI 3 = 1 30 F0R P=2 T0 8
40 NEXT I 40 LET WCP 3=2*WCP
50 MAT PRINT N 50 NEXT P
99 END 60 MAT PRINT W

99 END

12. Use a MAT INPUT statement in a program to input a list of numbers,
then find and print the largest number in the list. A RUN might look
like this:

RUN

H0W MANY NUMBERS? 7
WHAT ARE THE NUMBERS? 57 ,43*75#82,51 *68,73
THE LARGEST NUMBER IS 82

BONUS PROBLEM. Your boss gives you a series of values that represent
sales figures from five (5) geographic sales territories across the United
States. Each piece of data is two numbers: The sales territory and the dollar
amount of the sales, (eg: DATA 1, 4000, 5, 2500, 3, 6000, 1, 2500.)
Write a program to prepare a report like the one shown below. Be sure to
use a single array in your solution.

TERRIT0RY T0TAL SALES
1 7500
2 6000
3 3200
4 7200
5 1 8 0 0

T0TALS 25700 (t h e t o t a l i s a S U P E R b o n u s a d d i t i o n)

206 BASIC

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1 • (c), (f), and (h) are legal subscripted variables. (frame I)

2- (a) 3 (frame 1)
(b) A2

• (c) 2*B + C
(d) INT(10*RND(0))+ 1

3. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are possible values, (frame 1)

4- (a) 4 fM 97
OA 77 To ,, (frames 2 and 3) (c) 37 (d) 19 A(A(2)) = A(4)= 19
(e) 19 A(A(Q)) = A(A2)) = A(4) = 19

5- RUN (frames 7 and 8)

2 3 3 7 0 8 7

'0 (frame 10)
The computer would print an error message. Our computer printed:

S U B S C R I P T E R R 0 R A T L I N E 1 3 0

7. Add the following statements. (frame 23)

3 3 0 P R I N T
3 4 0 P R I N T " T 0 T A L V 0 T E S : » , C C 1) + C (2)

" KMS0- m3ke """ <*« « and

3 1 0 L E T T = C (1) + C (2)
3 2 0 L E T S= I N T C 1 0 0 *C(1) / T + . 5)
3 3 0 L E T G = I N T (1 0 0 * C (2) / T + . 5)
3 4 0 P R I N T " S A M S M 0 0 T H E t " f S i
3 5 0 P R I N T " G A B B Y G R U F F G ;

Someone e lse d id i t l ike th is :

205 LET T =0
235 LET T=T+1
310 PRINT "SAM SM00THE S " J INT < 1 00*C C 1 > /T+. 5 > i
320 PRINT "GABBY GRUFF:" i INTC100*C(2) /T+.5) i"%"

9. Our modif ica t ions :

(Chapter 5 , f rame 4 , and chapter 6 , f rame 28)

3 0 0 R E M A R K C O M P U T E T O T A L F O R A L L Q U E S T I O N S
3 1 0 L E T T = 0
3 2 0 F O R K = 1 T O N
3 3 0 L E T T = T + C C K I
3 4 0 N E X T K
4 0 0 R E M A R K C O N V E R T C < 1 > T H R U C C N) T O X
4 1 0 F O R K = 1 T O N
4 2 0 L E T C C K I = I N T (1 0 0 * C C K l / T + . 5 >
4 3 0 N E X T K
5 0 0 R E M A R K P R I N T R E S U L T S
5 1 0 F O R K = 1 T O N
5 2 0 P R I N T " A N S W E R # " j K i " : " i C C K U " Z "
5 3 0 N E X T K

Super programmer s t r ikes again! He did i t l ike th is :

2 0 5 L E T T = 0
2 3 5 L E T T = T + 1 „ %
3 2 0 P R I N T " A N S W E R # " I K ; " : " S I N T (1 0 0 * C < K) / T + • 5) J Z

10. (a) MAT P=ZER<Q + 1> (f rame 29)

(b) MAT A = ZER(5>
MAT B = ZER C 5)

11. PROGRAM A PROGRAM B (f rames 33, 34 , 35, 36)

RUN RUN

1 2
2 A

3 8
A 1 6
5 32

64
128
256

208 BASIC

1-. We did it like this: (frames 39 and 40)

100
1 1 0
120
130
140
150
160
170
180
190
200
210
999

of:Â :rAM tb fino l**gesi numb"
PR INT "HOW MANY NUMBERS"t
INPUT N

PRINT "WHAT ARE THE NUMBERS"j
MAT INPUT XCN J
LET L=X[1 J
FOR K=2 TO N
IF L >= XCKJ THEN 200
LET L=XCKI
NEXT K

PRINT "THE LARGEST NUMBER IS"JL

CHAPTER SEVEN

Double Subscripts

In the previous chapter you learned to use

DIM
MAT ZERO
MAT PRINT
MAT INPUT
MAT READ

for writing programs using single-subscripted variables. Now we will extend
the use of these BASIC statements to variables with two subscripts. Double-
subscripted variables are used to represent matrices or arrays of numbers
with several columns and rows; a table of numbers is an example of such a
matrix.

209

210 BASIC

JYK) InShapter Six< we described subscripted variables such as X(7) and
2 ^ - * , , r

X(7) T(K)

t f
One subscript One subscript

have rto^ubstfptT ^ """ doubly-subsc"P'ed variables, variables that

1X2,3)

\ t
Two subscripts. The subscripts
are separated by a comma

T(3) is a subscripted variable with

T(7,5) IS a subscripted variable with
(How many?)

(How many?)

subscript(s).

__ subscript(s).

^ o/ T ~ " i P t e d r a r i a b t e S ™ * »
ROW 1
ROW 2
ROW 3

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4

A(1,1)
A(2,1)
A(3,1)

The above array has

A(1,2)
A(2,2)
A(3,2)

_ rows and

A(1,3)
A(2,3)
A(3,3)

A(1,4)
A(2,4)
A (3,4)

columns.

3
4

DOUBLE SUBSCRIPTS 211

3. With the arrangement shown in frame 2, we can relate subscripts to
particular places (locations, or "boxes" for values) in rows and columns.
For example:

A(2,3)

M
Row |
Column

A(1,1) is in row 1, column 1. A(1,2) is in row 1, column 2. What subscripted

variable is in row 3, column 2?

A(3,2)

4. The rectangular arrangement of doubly-subscripted variables shown in
frame 2 is called a table, or matrix, or two-dimensional array.

In Chapter Six we described arrays of singly-subscripted variables called
lists, or vectors, or one-dimensional arrays.

This is a list: X(l) X(2) X(3)
This is a table: C(1,1) C(l,2) C(l,3)

C(2,l) C(2,2) C(2,3)
C(3,l) C(3,2) C(3,3)

A list is also called a or a and

a table is also called a or a •

vector
one-dimensional array (one subscript)
matrix
two-dimensional array (two subscripts)

2 1 2 BASIC

5. A doubly-subscripted variable is simply the name of a location in the
ajmputer; you can think of it as a box, a place to store a number Hetc nr
table (matrix, array) of doubly-subscripted variables.

B(1,1) B(I,2) B(I,3)
B(2,l) B(2,2) B(2,3)

c•
CD

Pretend you are the computer and LET b (2 , 1) - 73

'rSnTcrw^"•—«™«*
LET BC1,3)=0
L E T B C 1 » 1) = 4 9
LET B(2 * 3) = B (2 * 1) - B C 1 > l)
LET BC],2)=2*B(2*1)
LET BC2,2) = INTCBC2,1)/BC2,3))

B f l . l) | 4 9] B(1,2) I ! 4 b I B(l,3) | 5~J

B(2,» [75 >(2.2) | 3 | B(2,3) fj^~|

variable subscript's'5 ^ VarIaWes' "le subscripted variable P(R,C) has

If R = 1 and C = 2 then P(R,C) is P(1,2)
If R - 4 and C = 3 then P(R,C) is P(4,3)

If R = 7 and C = 5 then P(R,C) is

(

P(7,5)

DOUBLE SUBSCRIPTS 213

7. Let's assume that the following values (in the boxes) have been assigned
to the corresponding variables. Note that there are both simple and sub­
scripted variables.

R

C

A

B

Write the value of each variable below:

(a) T(2,3) = (b) T(1,1) =
R = A =

C =

T(R,C) =

T(A,B) =

T(A,A) =

T(B,R) =

T(R,A) =

T(1,1) 7 T(l,2) 0 T(l,3) -12

T(2,l) 9 T(2,2) 5 T(2,3) 8

T(3,l) 16 T(3,2) 13 T(3,3) 10

T(R+1 ,C—2) =

8 (b) 7
2 1
3 7
8 5
0 9

16 16 T(R+1 ,C—2) = T(2+l ,3—2) = T(3,l)

214 BASIC

8. Election time again. (Before starting on this, you may wish to review
frames 21-26 of Chapter Six.)

The questionnaire below requires two answers.

Q1. Who will you vote for in the coming election? Circle
the number to the left of your choice.

1. Sam Smoothe
2. Gabby Gruff
3. No Opinion

Q2. What age group are you in? Circle the number to the
left of your age group.

1. Under 30
2. 30 or over

Since there are two questions, each reply consists of two numbers the
answer to question 1 and the answer to question 2. We will use V to

question 2 '° qUeSti°" ' A t0 rePresent answer to

/
V, A

- / Answer to question 1 /
Answer to question 2

(V for VOTE)
(A for AGE GROUP)

Hie possible values of V are 1, 2, or 3. What are the possible values of A?
or

(

We sent out some questionnaires. Some typical replies are shown below.
REPLY MEANING

1.1
1.2
3,1

one vote for Sam Smoothe, voter is under 30
one vote for Sam Smoothe, voter 30 or over
no opinion, voter is under 30

What does the reply 2,2 mean?

A vote for Gabby Gruff, voter is 30 or over.

\

DOUBLE SUBSCRIPTS 215

10. We want to write a program to summarize data for a two-question ques­
tionnaire. We will use subscripted variables to count votes as shown below.

U N D E R 3 0 3 0 O R O V E R

S A M S M O O T H E C (1 , 1)

G A B B Y G R U F F C { 2 , 1)

N O O P I N I O N C (3 , 1)

C (1 , 2)

C (2 , 2)

C (3 , 2)

In other words, C(1,1) will hold the count for Sam Smoothe by people under
30. C(1,2) will hold the total for Sam Smoothe by people 30 or over. C(2,l)

will hold the total for by people
What subscripted variable will hold the NO OPINION count for people 30

OR OVER?

GABBY GRUFF
UNDER 30
C(3,2)

216 BASIC

11. Here are 29 replies to our questionnaire. Remember, each reph is a

pair of number and represents one vote. The first number of each pair is

the answer to question 1. The second number of each pair is the answer
to question 2.

3,1 2,2 3,2 1,2 1,2 2,1
2,2 1,1 1,2 3,1 3,2 2,2
3,1 2,1 2,2 M 1,1 1,2
M 2,1 2,1 1,2 2,1 3,1
2,1 3,1 2,1 3,1 2,2

Write the appropriate count in each box below.

UNDER 30 30 OR OVER

SAM SMOOTHE C(1,1)

GABBY GRUFF C(2,1)

NO OPINION C(3,1)

C(1,2)

C(2,2)

C(3,2)

C(1,1)
1 C(1,2) 5*

C(2,1) 7 C(2,2) 5

C(3,1) (o 0(3,2) 2.

12. Naturally, we want the computer to do the counting. Below is the
beginning of our program.

100 REMARK V0TE COUNTING.. .TW0 QUESTIONS
110 DIM C(3*2)

The DIM statement (Line 110) defines an array with at most 3 rows and 2
columns. That is, the DIM statement defines an array of doubly-subscripted
variables in which the maximum value of the first subscript is 3 and the
maximum value of the second subscript is 2.

DIM C(3 , 2)

/ N
Maximum value Maximum value
of 1st subscript of 2nd subscript

t

DOUBLE SUBSCRIPTS 217

Next, we want to set all counts to zero. That is, we want to assign zero to
C(1,1), C(1,2), and so on up to C(3,2). You complete this part of the pror
gram.

200 REMARK SET ALL COUNTS T0 ZERO

Here are three ways to do it!

METHOD 1

210 LET C<1>1)=0
2 2 0 L E T C < 1 > 2) = 0
2 3 0 L E T C (2 * 1) = 0
2 4 0 L E T C (2 » 2) = 0
2 5 0 L E T C < 3 # 1) = 0
260 LET C < 3 # 2) = 0

METHOD 2

210 FOR K=1 TO 3
2 2 0 L E T C (K * 1) = 0
230 LET C C K* 2 > =0
240 NEXT K

METHOD 3

210 FOR K=1 TO 3
220 FOR L=1 TO 2
2 3 0 L E T C < K » L) = 0
240 NEXT L
250 NEXT K

We will use METHOD 3 because it is easily
generalized to arrays of different sizes. We
can add more rows by changing Line 210,
more columns by changing Line 220. (Of
course, we would also have to change the
DIM statement)

218 BASIC

13. The array is now set up. Next, let's READ and count the votes.

3 0 0 R E M A R K R E A D A N D C O U N T V O T E S
3 1 0 R E A D V , A
3 2 0 I E V = - 1 T H E N 4 0 0
3 3 0 L E T C C V , A) = C < V , A) + l — Crucial vote-counting statement
3 4 0 G O T O 3 1 0

Since Line 310 is a READ statement, there must be some DATA statements
somewhere. Here they are, featuring the data from frame 11.

9 0 0 R E M A R K V O T E A N D A G E - G R O U P D A T A C E L A G = - 1 , - 1)
9 1 0 D A T A 3 , 1 , 2 , 2 , 3 , 2 , 1 , 2 , 1 , 2 , 2 , 1
9 2 0 D A T A 2 , 2 , 1 , 1 , 1 , 2 , 3 , 1 , 3 , 2 , 2 , 2
9 3 0 D A T A 3 , 1 , 2 , 1 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 2
9 4 0 D A T A 1 , 1 , 2 , 1 , 2 , 1 , 1 , 2 , 2 , 1 , 3 , 1
9 5 0 D A T A 2 , 1 , 3 , 1 , 2 , 1 , 3 , 1 , 2 , 2 , - 1 , - 1

Remember, each reply is a pair of numbers representing one vote. To emphasize
this, we have typed a space after each reply in the DATA statements above.
Why is the flag —1,-1 instead of just —1 ?

If the computer could not find a value for READ variable A (Line 310)
it would print a data error message and stop.

DOUBLE SUBSCRIPTS 219.

14 Only one task remains — print the results! For the data shown in frame
13, the results should look like the following:

R U N

C A N D I D A T E U N D E R 3 0 3 0 0 R O V E R

S A M S M 0 0 T H E A 5

G A B B Y G R U F F 7 5
N 0 O P I N I O N 6 2

You do it. Complete the program segment to print the results C(1,1), C(1,2),
and so on, as shown above.

4 0 0 R E M A R K P R I N T T H E R E S U L T S

We did it like this:

4 0 0 R E M A R K P R I N T T H E R E S U L T S c v j i t r "
4 1 0 P R I N T " C A N D I D A T E " , " U N D E R 3 0 * 3 0 0 R O V E R
4 2 0 P R I N T
4 3 0 P R I N T " S A M S M 0 0 T H E " * C < 1 # 1 > ' C (1 # 2)
4 4 0 P R I N T " G A B B Y G R U F F " » C < 2 # 1 > # C < 2 > 2)
4 5 0 P R I N T " N 0 0 P I N I 0 N " * C < 3 # 1 > * C < 3 » 2)

)

220 BASIC

15. Here is the complete vote-counting program, except for data.

100 REMARK V0TE C0UNTING...TW0 QUESTIONS
110 DIM CC3,2>
200 REMARK SET ALL C0UNTS T0 ZERO
210 F0R K=1 T0 3
220 FOR L=1 T0 2
230 LET C (K, L > =0 NOTE: When you LIST a
240 NEXT L program your computer

300 REMARK READ AND COUNT VOTES ^ ' ,nstead o f

310 READ v,A i l s all the same so
320 IF v=-l THEN 400 let's not worry about it
330 LET CCV,A)=CCV,A)+1
340 G0 TO 310
400 REMARK PRINT THE RESULTS
410 PRINT "CANDIDATE","UNDER 30","30 0R OVER"
420 PRINT
430 PRINT "SAM SM00THE",C (1,I >,CC1,2>
440 PRINT "GABBY GRUFF",C(2,1),CC2,2)
450 .PRINT "N0 OPINION",C(3,1>,C(3,2)

Suppose the questionnaire had been the following:

Q1. Who will you vote for in the coming election? Circle
the number to the left of your choice.

1. Sam Smoothe
2. Gabby Gruff
3. No Opinion

(J
Q2. What is your political affiliation? Circle the number

to the left of your answer.

1. Democrat
2. Republican
3. Other

Modify the vote-counting program so that answers are counted as follows:
CANDIDATE DEMOCRAT REPUBLICAN OTHER

SAM SMOOTHE C(1,1) C(1,2) C(1,3)
GABBY GRUFF C(2,1) C(2,2) C(2,3)
NO OPINION C(3,1) C(3,2) C(3,3)

•

*

DOUBLE SUBSCRIPTS 221

You will have to

110

220

410

430

440

450

change Lines 110,220, 410,430,440, and 450.

4 3 0 P R I N T " S A H S M M T H E ' 2 , 0 , C < 2 , 2 > , C < 2 , 3 >
4 4 0 P R I N T
4 5 0 P R I N T

SSB™-:cca:w cc^-c<-3>
' N 0 0 P I N 1 0 N " * C (3 » I) . C C 3 / 2) a

Note. Even though we changed the tire, we did no, have to change
the crucial vote-counting statement (line

222 BASIC

16. In Chapter Six, we described some of the MAT statements as they are
used with lists (one-dimensional arrays). The MAT statements can also be
used with tables (two-dimensional arrays). For example, in the program in
frame 15 we can replace Lines 210 through 250 with a single MAT ZERO
statement.

MAT C=ZER(3#2)

The above MAT statement causes the computer to set up a zero matrix
with 3 rows and 2 columns, like this:

C(l,l) 0 C(1,2) 0

C(2,l) 0 C(2,2) 0

C(3,l) 0 C(3,2) 0

The statement MAT Z=ZERC2,5>

sets up a zero matrix Z with 2 rows and 5 columns.

The statement MAT T=ZER(25»4)

sets up a zero matrix T with rows and columns.

25
4

17. Write a MAT statement to set up a zero matrix B with 7 rows and 13
columns.

MAT B=ZER(7*13)

NOTE: MAT ZERO establishes the "working" dimensions of the matrix.
However, the program must have an appropriate DIM statement preceding
the MA T ZERO statement.

DOUBLE SUBSCRIPTS 223

18. Write a MAT statement to set up a zero matrix D with M rows and N

columns.

MAT D*ZERCM#N)

19. This complete program sets up a zero matrix with M rows and N
columns and then prints the zero matrix.

,OO REMARK PROGRAM TO SET UP AND PRINT M BY N ZERO MATRIX

U°0 P^NV-M'IILL SET UP AND PRINT A ZERO MATRIX EOR YOU."
, 30 PRINT
MO PRINT "HOW MANY ROWS J
, 50 INPUT M
, 60 PRINT "HOW MANY COLUMNS 1
, 70 INPUT N
, 80 PRINT

YBUK-.m-BV.N.-ZEM MATRIX."
2 ,0 PRINT
220 MAT PRINT T
999 END

Line 190 tells the computer to set up a zero matrix called T with M rows
and N columns. How does the computer get the values of M and N.

The values of M and N are entered by the user at RUN time as directed
by Lines 150 and 170.

>)

20. In frame 19, the statement

220 MAT PRINT T

tells the computer to print a matrix T. The printed matrix will have M rows

and N columns. Why?

The number of rows and columns is originally dimensioned by the DIM
statement, Line 110. However, Line 190 redimensions the matrix to
have M rows and N columns.

21. Let's look at an actual RUN of the program in frame 19.

R U N

I W I L L S E T U P A N D P R I N T A Z E R 0 M A T R I X F 0 R Y 0 U .

H O W M A N Y R O W S ? 3
H O W M A N Y C 0 L U M N S 7 4

H E R E I S Y O U R 3 B Y A Z E R O M A T R I X :

0 0 0 0

0 0 0 0

0 0 0 0

The computer printed a zero matrix with 3 rows and 4 columns because the

user entered as the value of M and 4 as the value of .

Each row is on
a separate line

3
N

DOUBLE SUBSCRIPTS 225

72 Here is another RUN.

R U N

I W I L L S E T U P A N D P R I N T A Z E R O M A T R I X F O R Y O U .

H O W M A N Y R O W S ? 3
H O W M A N Y C O L U M N S 7 8

H E R E I S Y O U R 3 B Y 8 Z E R O M A T R I X »

0
0

0
O

0
0

°o

0

0

o
o

0
0

0
0

0

0

0

The computer prints up to 5 numbers per line. Since each row of this matr.x
numbers, the computer couldn't print the entire row on one

Une. lnstead.it printed each row on two lines, with ___. n"™bS"°nt "
to, line and numbers on the second line. Note that ,t dou

spaces between rows.

8
5
3

S i n c e t h e m a t r i x h a s 8 c o l u m n s , e a c h r o w h a s 8 n u m b e r s

226 BASIC

23. One more RUN.

R U N

I W I L L S E T U P A N D P R I N T A Z E R O M A T R I X F 0 R Y 0 U .

H 0 W M A N Y R O W S ? 1 2
H 0 W M A N Y C 0 L U M N S ? A

S U B S C R I P T E R R 0 R A T L I N E 1 9 0

What happened? (If you need a hint, check the program in frame 19.)

11

The DIM statement in the program defines T as a matrix with at most
10 rows and at most 10 columns. Therefore, we cannot ask the com­
puter for a matrix with 12 rows. (Unless, of course, we first change
the DIM statement.)

24. Let's change the MAT PRINT statement (Line 220, frame 19) as follows:

220 MAT PRINT T; Note the semicolon

With this change, here is another RUN of the program.

R U N

I W I L L S E T U P A N D P R I N T A Z E R O M A T R I X F 0 R Y 0 U .

H 0 W M A N Y R 0 W S ? 3
H O W M A N Y C O L U M N S ? 8

H E R E I S Y O U R 3 B Y 8 Z E R O M A T R I X :

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

DOUBLE SUBSCRIPTS 227

What is the effect of this change?

The semicolon following T causes the computer to print numbers more
closely together. (Compare with trame —)

25. Suppose we RUN the following program:

10 DIM AC2#3 3
20 F0R R=I T0 2
30 F0R C=1 T0 3
40 LET A[R*C]=R+C
50 NEXT C
60 NEXT R
70 MAT PRINT A1
99 END

What will be printed?

RUN

2 3 4

3 4 5

)

228 BASIC C I
26. Let's change Line 40 as follows:

4 0 L E T A C R J C) = R * C

If we now RUN the program, what will be printed?

R U N

1 2 3

2 4 6

27. Let's change Line 40 again.

40 LET A(R*C)=10*R+C

Now, if we RUN the program, what will be printed?

R U N

jj |2 13 The number in a given row and column is 10 times
the row number plus the column number. Keep in

2 j 22 23 mind the order in which the computer performs
the arithmetic functions

i

DOUBLE SUBSCRIPTS 229

28. We have used MAT ZER and MAT PRINT. Let's take a look at MAT
READ and MAT INPUT. First, MAT INPUT.

1 0 D I M A [2 * 3 3
2 0 M A T I N P U T A C 2 » 3 3
3 0 P R I N T
4 0 M A T P R I N T A l
9 9 E N D
R U N

?7 #0 # 3 —Enter ROW 1
??2#4#1 — Enter ROW 2

7 0 3

2 4 1

Could we have entered both rows in response to the first question mark as

shown below?

? 7 * 0 # 3 # 2 # 4 » 1

Yes, as long as the computer receives 6(2 x 3 = 6) numbers for the
matrix. We could also enter each number on one line (by pressing
RETURN). The computer would simply keep typing question marks
until all 6 numbers had been entered.

)

29. Complete the following program to input and print an M by N matrix
(M rows, N columns).

100 REMARK PROGRAM TO INPUT AND PRINT AN M BY N MATRIX

110 DIM AC20.201
120 PRINT "HOW MANY ROWS"!
130 INPUT M
140 PRINT "HOW MANY COLUMNS"!
150 INPUT N
160 PRINT
170 PRINT "PLEASE ENTER YOUR MATRIX.
180 PRINT

190

200 PRINT
210 PRINT "HERE IS YOUR MATRIX:"
220 PRINT

230

999 END

190 MAT INPUT ACM,N>
230 MAT PRINT A or 230 MAT PRINT Ai

30. In a small class of 8 students, each student has taken 4 quizzes. Here
are the scores:

QUIZ 1 QUIZ 2 QUIZ 3 QUIZ 4

Student 1 65 57 71 75

Student 2 80 90 91 88

Student 3 78 82 77 86

Student 4 45 38 44 46

Student 5 83 82 79 85

Student 6 70 68 83 59

Student 7 98 92 100 97

Student 8 85 73 80 77

"

DOUBLE SUBSCRIPTS 231
—

Let S(I,J) be the score obtained by student I on quiz J. S(5,2) is the

score obtained by student on quiz . What is the value of

S(5,2)?

5
2
82

31. Another class might have 30 students and 5 quizzes per student. Still
another class might have 23 students and 7 quizzes per student, and so on.
Let's begin a program to read a matrix of scores for N students and Q quizzes
per student.

1 0 0 K E M A R K Q U I Z - S C O R E P R O G R A M
1 1 0 D I M S C 5 0 # 1 0 3

The DIM statement permits up to students and up to
quizzes.

50
10

32. Next, we want to read the values of N and Q for a particular set of
scores - in this case, the scores shown in frame 30. For this set of scores

the value of N (number of students) is and the value of Q (number

of quizzes) is .

8
4

33. We will put the values of N and Q and the scores in DATA statements.
Now the program looks like this.

100
110

900
905
91 1
912
913
91 4
91 5
91 6
91 7
918
9 9 9

R E M A R K Q U I Z - S C O R E P R O G R A M
D I M S t S O * 1 0 3

R E M A R K V A L U E S
DATA Br A -+—

65*57*71
80*90*91

O F N A N D Q F O L L O W E D B Y S C O R E S
Values of N,Q

D A T A
D A T A
D A T A
D A T A
D A T A
D A T A
D A T A
D A T A
E N D

75
8 8

78*82*77*86
45*38*44*46
83*82*79*85
70*68*83*59
98*92*100*97
85*73*80*77 .

N by Q array of quiz
scores from frame 30

We also added an END statement

Your turn. Complete Line 120, below, to READ the values of N and Q.

120

120 READ N(That's all there is to it!)

34. The values of N and Q read by Line 120 (in frame 33) will be read from

which DATA statement? Line .

905

35. Next, let's read the N by Q array of scores.

130 MAT READ S(N,Q)

This MAT READ statement tells the computer to read an N by Q array.

That is, it tells the computer to read a matrix with rows and
columns.

N (Remember, the values of N and Q are read by Line 120.)
Q

DOUBLE SUBSCRIPTS 233

36. The numerical values read by Line 130 are stored in the DATA state­

ments, Lines through .

911
918

37. Now that we have the matrix in the computer, what shall we do with it?
One thing someone might want is the average for each student. Let's do it,
beginning at Line 200.

2 0 0 R E M A R K C O M P U T E A N D P R I N T A V E R A G E S F O R A L L S T U D E N T S
2 1 0 P R I N T " S T U D E N T # " » " A V E R A G £ "
2 2 0 F O R 1 = 1 T O N A
2 3 0 L E T T = 0 t Compute total of all
2 4 0 F O R J = 1 T O G) scores for student
2 5 0 L E T T = T + S (I j J) (
2 6 0 N E X T J J
2 7 0 L E T A = T / Q C o m p u t e a v e r a g e f o r s t u d e n t I
2 8 0 P R I N T I JA « Print student number and average
2 9 0 N E X T I

Lines 230 through 280 are done for each student. That is, for I = 1, then
I = 2, and so on up to I = N. For 1=1, what is the value of T computed by

Lines 230 through 260? T = .

268 This is the sum of the 4 scores for student 1. Remember, Q - 4.
Therefore, Line 250 will be done for J = 1, J = 2, J = 3 and J = 4.

38. For 1=1, what is the value of A computed by Line 270?

A = T/Q = .

67 (A = T/Q = 268/4 = 67)

39. Here is the complete program and a RUN.

1 0 0 R E M A R K Q U I Z S C 0 R E P R O G R A M
1 1 0 D I M S C 5 0 » 1 0 >
1 2 0 R E A D N , Q
1 3 0 M A T R E A D S C N , Q >
2 0 0 R E M A R K C O M P U T E A N D P R I N T A V E R A G E S F O R A L L S T U D E N T S
2 1 0 P R I N T " S T U D E N T # " , " A V E R A G E "
2 2 0 F O R 1 = 1 T O N
2 3 0 L E T T = 0
2 4 0 F O R J = 1 T O Q
2 5 0 L E T T = T + S < I , J >
2 6 0 N E X T J
2 7 0 L E T A = T / Q
2 8 0 P R I N T I , A
2 9 0 N E X T I

9 0 0 R E M A R K V A L U E S O F N A N D Q F O L L O W E D B Y S C O R E S
9 0 5 D A T A 8 > 4
9 1 1 D A T A 6 5 , 5 7 , 7 1 > 7 5
9 1 2 D A T A 8 0 * 9 0 * 9 1 * 8 8
9 1 3 D A T A 7 8 , 8 2 , 7 7 , 8 6
9 1 4 D A T A 4 5 , 3 8 * 4 4 , 4 6
9 1 5 D A T A 8 3 , 8 2 , 7 9 , 8 5
9 1 6 D A T A 7 0 , 6 8 , 8 3 , 5 9
9 1 7 D A T A 9 8 , 9 2 , 1 0 0 , 9 7
9 1 8 D A T A 8 5 , 7 3 , 8 0 , 7 7
9 9 9 E N D
R U N

S T U D E N T P A V E R A G E
1 6 7
2 8 7 . 2 5
3 8 0 . 7 5
A 4 3 . 2 5
5 8 2 . 2 5
6 7 0
7 9 6 . 7 5
8 7 8 . 7 5

Your turn. Beginning with Line 300 write a program segment to compute
and print the average SCORE for each quiz. For the data used in the program
the results might look like this:

R U N

Q U I Z » A V E R A G E
1 7 5 . 5
2 7 2 . 7 5
3 7 8 . 1 2 5
A 7 6 . 6 2 5

Your program segment:

DOUBLE SUBSCRIPTS 235

3 0 0 R E M A R K C O M P U T E A N D P R I N T
3 1 0 P R I N T " Q U I Z " A V E R A G E "
3 2 0 F O R J = 1 T O Q
3 3 0 L E T T = 0
3 4 0 F O R 1 = 1 T O N
3 5 0 L E T T = T + S (I . » J)
3 6 0 N E X T I
3 7 0 L E T A = T / N
3 8 0 P R I N T J > A
3 9 0 N E X T J

A V E R A G E S O F A L L Q U I Z Z E S

40. Just suppose a bunch of students take a multiple-guess quiz, 10 ques­
tions with 4 possible answers per question. We want to know how many
students gave answer number 1 to question number 1, how many gave ans­
wer number 2 to question number 1 and so on.

Here are the answers given by 7 students. Each set of answers is in a
DATA statement. The last DATA statement is a "fictitious student" and
really means "end of data."

9 1 1 D A T A 2 , 3 , 1 , 1 , 1 , 2 , 4 , 3 , 4 , 1
9 1 2 D A T A 2 , 3 , 2 , 4 , 1 , 2 , 4 , 2 , 1 , 1
9 1 3 D A T A 2 , 3 , 3 , 1 , 1 , 4 , 3 , 3 , 4 , 1
9 1 4 D A T A 3 , 2 , 4 , 1 , 1 , 2 , 3 , 3 , 4 , 1
9 1 5 D A T A 2 , 3 , 4 , 1 , 1 , 3 , 4 , 3 , 4 , 1
9 1 6 D A T A 2 , 1 , 2 , 3 , 1 , 2 , 4 , 3 , 4 , 2
9 1 7 D A T A 3 , 4 , 1 , 1 , 1 , 4 , 3 , 1 , 4 , 2
9 1 8 D A T A - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

In each line of data, the first
number is the answer to ques­
tion 1, the second number is
the answer to question 2, and
so on

"Fictitious student'

Student 1 (Line 911) gave answer 1 to question 3.

Student 5 (Line 915) gave answer to question 9.

Student 7 (Line 917) gave answer to question 1.

41 Complete the following table showing the number of students giving
each answer (1, 2, 3, 4) to questions 1, 2, and 3. g

QUESTION 1 ANSW0ER1 ANSWSER2 ANSWER3 ANSWER4
5 2 Q

QUESTION 2 1 •,

QUESTION 3

4 1
2 2 1 2

DOUBLE SUBSCRIPTS 237

42. In frame 41, with your help, we have shown how the seven students
answered the first 3 questions. The totals look like a 3 by 4 matrix. If we
had continued for all 10 questions the totals would have looked like a

by 4 matrix.

10

43. So inside the computer, let's define a matrix T with 10 rows and 4
columns to hold the totals. Complete the following DIM statement.

100 REMARK QUIZ ANALYSIS PROGRAM

110 DIM

T(10,4)

44. For each student there are 10 answers. Let's define a list of answers
A(l) through A(10). Complete the following DIM statement.

120 DIM

A(10)

238 BASIC •

45. But we can save space by combining the two DIM statements into one
DIM statement.

1 1 0 D I M T < 1 0 , 4) , A < 1 0)

The above DIM statement defines a called T with at

most 10 rows and 4 columns and a called A with at most 10
members.

matrix (or table or two-dimensional array)
list (or vector or one-dimensional array)

Note that a comma is used to separate T(10,3) and A(10).

46. Here is the beginning of a program to read the students' answers and
compute the totals matrix.

1 0 0 R E M A R K Q U I Z A N A L Y S I S P R O G R A M
1 1 0 D I M T C 1 0 » A) , A (1 O J

Next, we want to initialize the totals matrix. That is, we want it to be a zero
rnatrix. You do it.

1 2 0 R E M A R K S E T A L L T O T A L S T O Z E R O

1 3 0

M A T T = Z E R C 1 0 , 4 >

47. Write a MAT statement to read the A of answers for one student.

1 4 0 R E M A R K R E A D O N E S E T 0 F A N S W E R S

1 5 0

MAT READ AC1Q)

DOUBLE SUBSCRIPTS 239

48. Now, is this a real student or a fictitious student? Recall that a fictitious
student signals end of data. If this is the case we want to print the answers,
beginning with Line 300. Complete the IF statement.

160 REMARK CHECK F0R END 0F DATA

170 IF THEN 300

A < 1) = - l

49. If the data are for a real student, we want to update the running tally
in the T matrix. We did it this way.

180 REMARK UPDATE THE TOTALS MATRIX
190 FOR Q=1 T0 10
200 LET T(Q>A(Q))=T(Q#A(Q))+1
210 NEXT Q

Here are the answers for one student. These are the values of A(1) through
A(10).

2, 3, 1, 1, 1,2,4,3,4, 1

Suppose Q = 1. Then A(Q) = and T(Q,A(Q)) is T(,)•

2
T(1,2) (Since Q = 1 and A(Q) = 2)

50. In the above case (frame 49) what happens when the computer obeys

Line 200?

The total in T(1,2) is increased by one. (It's just like counting votes!)

240 BASIC

ofO^ViX 2°u V" 3 F0R"NEXT l0°P> ^ will be done for each value
3 4 ffi 7ie« a A°R statement- That is> it will be done for A = I 2
' ' 5' 6' 7' 8> 9> and 't). When Q = 10, which element of the T matrix'is'

increased by one? T(

T(10,A(10)) or T(10,l) for the data in frame 49.

toTi"etl'40in8rt hC 7"™* f°r °"e S'udent' we wam the
47.) r another set of answers. (See frame

So SM?0Kmo BACK F0R flN0™ER SET 0E answers

~ s again-The ,f
In that case, we want to print the results and STOP* S,Udent ^ been

300 REMARK PRINT THE TOTALS MATRIX
310

320 ST0P

310 MAT PRINT t or 310 MAT PRINT Tj

DOUBLE SUBSCRIPTS 241

Now put it all together. Ours looks like this.

1 0 0 R E M A R K Q U I Z A N A L Y S I S P R 0 C R A M
1 1 0 D I M T C 1 0 , 4] , A C 1 0 I
1 2 0 R E M A R K S E T A L L T O T A L S T O Z E R O
1 3 0 M A T T = Z E R [1 0 * 4 3
1 4 0 R E M A R K R E A D O N E S E T O F A N S W E R S
1 5 0 M A T R E A D A C 1 0 1
1 6 0 R E M A R K C H E C K F O R E N D O F D A T A
1 7 0 I F A C 1] = - l T H E N 3 0 0
1 8 0 R E M A R K U P D A T E T H E T O T A L S M A T R I X
1 9 0 F O R Q = 1 T O 1 0
2 0 0 L E T T C Q , A C Q] J = T C Q , A C Q 3 I + 1
2 1 0 N E X T Q
2 2 0 R E M A R K G O B A C K F O R A N O T H E R S E T O F A N S W E R S
2 3 0 G O T O 1 4 0
3 0 0 R E M A R K P R I N T T H E T O T A L S M A T R I X
3 1 0 M A T P R I N T T
3 2 0 S T O P
9 0 0 R E M A R K S T U D E N T S ' A N S W E R S
9 1 1 D A T A 2 , 3 , 1 , 1 , 1 , 2 , 4 , 3 , 4 , 1
9 1 2 D A T A 2 * 3 , 2 , 4 , 1 , 2 , 4 , 2 , 1 , 1
9 1 3 D A T A 2 , 3 , 3 , 1 , 1 , 4 , 3 , 3 , 4 , 1
9 1 4 D A T A 3 , 2 , 4 , 1 , 1 , 2 , 3 , 3 , 4 , 1
9 1 5 D A T A 2 , 3 , 4 , 1 , 1 , 3 , 4 , 3 , 4 , 1
9 1 6 D A T A 2 , 1 , 2 , 3 , 1 , 2 , 4 , 3 , 4 , 2
9 1 7 D A T A 3 , 4 , 1 , 1 , 1 , 4 , 3 , 1 , 4 , 2
9 1 8 D A T A - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
9 9 9 E N D
R U N

0

1

2

5

7

0

0

1

1

5

1

2

0

0

4

0

1

0

2

4

1

1

0

1

3

5

0

0

1

2

1

0

2

4

0

6

5 2 0 0

242 BASIC

Good for you! You have reached the Chapter Seven Self-Test. These prob­
lems will help you review the BASIC instructions you have learned for
dealing with arrays of numbers, using variables with double subscripts.

1. Which of the following are legal BASIC double-subscripted variables?

(a) X(2 + 2) (b) X(5,5) (c) XI (100,100)

(d) X(A+B,C) (e) X(X(1,2),# (X(2,l)) (f) X(A,A)

Questions 2 through 7 refer to the following array, A.

COLUMN 1 COLUMN 2

ROW 1 1 2

ROW 2 3 4
ROW 3 5 6

2. What are the dimensions of A?
>

3. Write a DIMension statement for A, using Line number 100.
100

4. What variable locates the "box" in row 3, column 2 of A?.

5. What is the value of:

(a) A0,l) (b) A(3,l)

6. Let X - 3, Y - 2. What is the value of:

(a) A(X,Y) (B) A(X-1,Y-1)

7. What is the value of A(A(1,2), A(2,l)- l)?_

8' Zl'mT* Tr'of UXS ,W° F0R'NEXT ,OOPS a 10 ^

SELF-TEST 243

9. Write another program to fill M, a 10 by 10 matrix, with zeros. This
time, use a MAT ZERO instruction instead of the FOR-NEXT loops.

10. Write a program using MAT READ to fill a 4 by 4 matrix C with 1 's.
MAT PRINT the result. A sample RUN might look like:

RUN

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

11. Now write another program to fill matrix C (4 by 4) with 1 's (or any­
thing you want) using MAT INPUT. Print the result.

BONUS PROBLEM. Certain teachers in your school are complaining of grade
deterioration, meaning that some teachers are giving too many A and B grades
and are generally not grading hard enough. You are asked to write a computer
program to prove or disprove this theory. While you are at it, the local chapter
of a Women's group has asked you to prove that women are being discriminated
against in grading, receiving poorer grades than men, especially in math and
computer science.

The school Registrar provides you with the data you need in DATA statements
as follows: DATA 1,2 2,4 2,2 etc. Where the first item indicates sex
(l=male, 2=female) and the second item indicates the letter grade (1=A, 2=B,
3=C, 4=D, 5=F). You are essentially counting votes. Write your program
so that your report looks like this:

GRADE MALE FEMALE T0TAL
A 35 50 85
B 35 40 75
C 20 20 40
D 30 30 60
F 15 15 30

T0TAL 135 155 290

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick rev.ew.

1. (b), (d), (e), and (f) are legal double-subscripted variables, (frames 5
and 6)

2. 3,2 meaning 3 rows, 2 columns, (frames 2, 3, and 4)

3. 100 DIM A(3,2) (frame 12)

4. A(3,2) (frames 9, 10, and 11)

5. (a) 1 (b) 5 (frame 11)

6. (a) 6 (b) 3 (frame 11)

7. 4 (frame 11)

8. Here is our program, (frame 12)

1 0 D I M M t l 0 > 1 0 3
2 0 F O R R = 1 T 0 1 0
3 0 F O R C = 1 T O 1 0
4 0 M C R # C] = 0
5 0 N E X T C
6 0 N E X T R
9 9 E N D

9. Remember the DIM statement, (frames 16, 17, and 18)

1 0 D I M M C 1 0 , 1 0 3
2 0 M A T M = Z E R
9 9 E N D

10. (frames 25 and 26)

1 0 D I M C C 4 * 4]
2 0 M A T R E A D C
3 0 M A T P R I N T C I
4 0 D A T A
9 9 E N D

(frames 28 and 29)

10 DIM C C 4* 4 3
20 MAT INPUT C
30 MAT PRINT Cj
99 END

CHAPTER EIGHT

Subroutines

We're about to enter the realm of programs within programs, called
subroutines. Subroutines provide an excellent method tor organizing com­
puter programs and help make programs easier to understand by breaking
them down into functional parts — parts that may be reused in other pro­
grams as appropriate.

The format of this chapter is a bit different. If you know some statis­
tics you'll have an opportunity to practice programming in that tield; other­
wise, you can by-pass the programming of statistical concepts and deal just
with organizing programs with subroutines, which is the main concept of
this chapter.

When you finish this chapter, you will be able to design programs in
subroutine format, write appropriate main programs to access subroutines,
and be able to use the following BASIC statements:

GO SUB
RETURN
STOP

1. We've shown two computer program building processes. The first
method was analogous to remodeling: the modification of an existing pro­
gram. The second was building a program from the ground up. Now let us
try building with prefabricated parts. This technique is handy for organi­
zing a program according to the function performed by a group of one or
more statements such as the sections of some programs you have seen
earlier.

The prefabricated sections, or groups of statements, are called sub­
routines. The statement that tells a computer to go to a subroutine is,
appropriately enough, the GOSUB statement. Like the GO TO statement,
it is followed by a line number that corresponds to the first statement in
the subroutine.

20 GOSUB 100 means skip to the subroutine in this program that
has 100 as the line number of its first statement

246

SUBROUTINES 247

The last statement in a subroutine is the RETURN statement. It auto­
matically causes the computer to RETURN to the main program, i.e., to the
line number immediately following the GOSUB statement that originally
"called up" the subroutine. For example:

130 RETURN

This demonstration program shows how GOSUB and RETURN state­
ments work.

5 R E M A R K H 0 W T H E G O S U B S T A T E M E N T W O R K S
1 0 R E M A R K M A I N P R O G R A M
2 0 G O S U B 1 0 0
3 0 G O S U B 2 0 0
4 0 G O S U B 3 0 0
5 0 P R I N T " T H I S I S T H E E N D O F T H E M A I N P R O G R A M . "
6 0 S T O P

1 0 0 R E M A R K S U B R O U T I N E # 1 S T A R T S H E R E
1 1 0 P R I N T " T H I S I S S U B R O U T I N E » \ (O R 1 0 0) . "
1 2 0 P R I N T
1 3 0 R E T U R N

2 0 0 R E M A R K S U B R O U T I N E # 2 S T A R T S H E R E
2 1 0 P R I N T " T H I S L I N E C O U R T E S Y O F S U B R O U T I N E # 2 (O R 2 0 0) . "
2 2 0 P R I N T
2 3 0 R E T U R N

3 0 0 R E M A R K S U B R O U T I N E * 3 S T A R T S H E R E
3 1 0 P R I N T " S U B R O U T I N E # 3 (O R 3 0 0 I F Y O U P R E F E R) A T Y O U R S E R V I C E . "
3 2 0 P R I N T
3 3 0 R E T U R N

9 9 9 E N D

R U N

T H I S I S S U B R O U T I N E # 1 (O R 1 0 0) .

T H I S L I N E C O U R T E S Y O F S U B R O U T I N E # 2 (O R 2 0 0) .

S U B R O U T I N E # 3 (O R 3 0 0 I F Y O U P R E F E R) A T Y O U R S E R V I C E .

T H I S I S T H E E N D O F T H E M A I N P R O G R A M .

Another helpful little statement often used in conjunction with GOSUB
and RETURN is STOP. STOP has been used at the end of the GOSUB sec­
tion of this program (Line 60). If it were not there, the computer would
continue on down the program in line number order and once again process
the subroutines, line by line, just as they appear in the program. To stop
that from happening, a STOP statement is used. It acts like an END state­
ment (but doesn't replace it). END must appear as the last line of all pro­
grams, and cannot be used anywhere else. STOP may be used whenever

248 BASIC

needed in a program, and, as a general rule, should appear at the end ol the
main program, before the subroutines start. In effect, the STOP statement
tells the computer "GO TO END" (on some systems), or "END HERE."

Now examine the program, line by line, and see how it causes the out­
put of the RUN. As an aid and an exercise, use the following blanks to show
the actual order in which the statements in the program are processed. Place
line numbers in each blank in the order that the computer will process the
program.

t i

5 220
10 230
20 40
100 300
110 310
120 320
130 330
30 50
200 60
210 999

2. We have modified a portion of the main program only of the program in
frame 1. Notice how it changes the printout of the RUN.

2 0 G 0 S U B 3 0 0
3 0 G 0 S U B J 0 0
4 0 G 0 S U B 2 0 0

K U N

S U B R O U T I N E # 3 (0 R 3 0 0 I F Y O U P R E F E R) A T Y O U R S E R V I C E .

T H I S I S S U B R O U T I N E # 1 (O R 1 0 0) .

T H I S L I N E C O U R T E S Y 0 F S U B R O U T I N E # 2 (O R 2 0 0) .

T H I S I S T H E E N D O F T H E M A I N P R O G R A M .

Here is another modification of the main program. What will the computer
type when the program is RUN?

5 R E M A R K H O W T H E G O S U B S T A T E M E N T W O R K S
1 0 R E M A R K M A I N P R O G R A M
2 0 G O S U B 1 0 0
5 0 P R I N T " T H I S I S T H E E N D O F T H E M A I N P R O G R A M . "
6 0 S T O P

R U N

R U N

T H I S I S S U B R O U T I N E # 1 (O R 1 0 0) .

T H I S I S T H E E N D 0 F T H E M A I N P R O G R A M .

3. Now try this one. What will the computer print when the prognrm is

RUN?

5 R E M A R K H 0 W T H E G 0 S U B S T A T E M E N T W 0 R K S
J O R E M A R K M A I N P R O G R A M
2 0 G 0 S U B 1 0 0
3 0 G 0 S U B 1 0 0

SO ?R?N? "°TSI S I S T H E E N D O F T H E M A I N P R O G R A M . "

6 0 S T 0 P

R U N

R U N

T H I S I S S U B R O U T I N E # 1 (O R 1 0 0) .

T H I S I S S U B R O U T I N E # 1 C O R 1 0 0) .

T H I S I S S U B R O U T I N E # 1 (O R 1 0 0) .

T H I S I S T H E E N D O P T H E M A I N P R O G R A M .

SUBROUTINES 251

4. Obviously, each of the little subroutines in our example could be
changed or expanded to perform specific duties other than PRINT statements.
In fact, each subroutine could be a complete program itself, to be accessed by
a main program in any order that is convenient to the user and that also
provides the results desired. Below is the TEST-SCORING PROGRAM which
was developed in the last section of Chapter Six. (For a RUN, see Chapter
Six, frame 44).

J O O R E M A R K T E S T S C O R I N G P R O G R A M
1 1 0 D I M C C 1 0 0) * A C 1 0 0)

2 0 0 R E M A R K R E A D C O R R E C T A N S W E R S I N T O C C 1 > T H R U C C N)

2 1 0 R E A D N
2 2 0 M A T R E A D C C N)

3 0 0 R E M A R K I N P U T S T U D E N T ' S A N S W E R S * A C 1) T H R U A C N)
3 1 0 P R I N T " Y O U R A N S W E R S " !
3 2 0 M A T I N P U T A C N)

4 0 0 R E M A R K C O M P U T E A N D P R I N T S C O R E
4 1 0 L E T S = 0
4 2 0 F O R Q = 1 T O N
4 3 0 I F A C Q) < > C (Q) T H E N 4 5 0
4 4 0 L E T S = S + 1
4 5 0 N E X T Q
4 6 0 P R I N T " Y O U R S C O R E I S ") S
4 7 0 P R I N T
4 8 0 G O T O 3 0 0

9 0 0 R E M A R K V A L U E O F N A N D C < 1 > T H R U C C N)
9 1 0 D A T A 8
9 2 0 D A T A 3 * 2 * 3 * 1 » 4 » 2 * 1 > 4
9 9 9 E N D

How many times is the section beginning at Line 200 processed when the

program is RUN?

How many times are the sections beginning at Line 300 and 400 processed

when the program is RUN?

one time (or as many times as the user wants to supply INPUT data)
as many times as the user want to supply INPUT data

5. As an exercise in the use of GOSUB's, modify the program in frame 4 to
subroutine format. The main program should include Line 1 10 DIM as its
first statement. All subroutines should be "called up by statements in the
main program only. Show your modifications below.

1 1 0 D I M C < 1 0 0) # A (1 0 0 >

120 G0SUB 200
130 G0SUB 300
140 G0SUB 400
150 G0 T0 130
230 RETURN
330 RETURN
480 RETURN Substitutes for old Line 480, whose function is now

performed by Line 150 in the main program

The next section of this chapter will take you through the process of
assembling a program from subroutine blocks that can perform a variety of
common statistical computations. Using subroutines, the program is con­
veniently organized according to functions performed; that is, each sub­
routine does a particular part of the statistical computations.

The statistical measures to be discussed are: mean, variance, and
standard deviation.

If you are familiar with these statistical measures and wish to sharpen
your programming skills, continue on in this section of text. Otherwise turn
to page 256, frame 10.

In this section you will have the opportunity to develop the computa­
tional subroutines themselves. Perhaps more important, however, you will
gain skill in using subroutines as prefabricated mini (or not so mini) programs
by assembling previously written subroutine units into a complete program.
(To learn or review statistics, we recommend Donald J. Koosis: STATISTICS,
from this same series of Self-Teaching Guides published by John Wiley &
Sons.)

SUBROUTINES 253

6. The statistical measure used in previous examples in this book is the
average or mean of values or scores obtained through some method of meas­
urement or observation. The mean (referred to in statistics as one measure
of central tendency of the data) is calculated by adding all the values and
dividing that sum by the total number of values. In common statistical nota­
tion, the formula for the mean is:

Greek letter, capital sigma which stands for
/ "the sum of"

_ The values or scores
^ n The number of values or scores

Greek letter mu,
which stands for mean

Each score in a set of scores lies some distance from the computed mean
of the set; some scores may be just at the mean, some higher, some lower.
The variance and its square root, the standard deviation, are measures of the
"average" distance of all the scores in the set from the mean of the set.
Statisticians call these "measures of variability (or dispersion).

This is a computational formula for finding the variance of a set ot
scores or values:

"The sum of"

-The scores or values squared
q2 - T.X' ^2 ^— yhe mean squared

• "
Greek letter sigma
squared, stands for variance

The standard deviation is the square root of the variance, and in stat­
istical notation looks like this:

a ' J a 2 - / S - V

We will use the following BASIC variables in the program:

N = n (the number of scores or values)
X = x (the scores or values)
M = y (the mean)
T = lx (the sum or total of scores)
D = I x 2 (the sum or total of each score squared)
V = o2 (the variance)
S = a (the standard deviation)

O)

So let's get down to it. Write a subroutine to provide us with values for
N, T, and D which are needed to calculate the mean and variance. The scores

300 REMARK SUBROUTINE: COMPUTE N* SUM X * S UM X t2

300 REMARK SUBROUTINE: COMPUTE N> S UM X , SU M Xt2
310 LET N =0
320 LET T=0
330 LET D=0
340 READ X
350 IF X<0 THEN 3 9 9
360 LET T=T+X
370 LET D=D+Xt2
380 L E T N=N+1
390 GOTO 340
399 RETURN

7. Circle the parts of the following formulas for which subroutine 300
calculates values.

are provided in a DATA statement: 4

900 R EMA R K DATA FOLLOWS. DATA L IST ENDS WITH - 1 .
910 DATA 7 5 #67*38#89>23>97*75#18»56»37 * - 1

Begin.

SUBROUTINES 255

8. Now write a subroutine to finish the computations for the statistical

measures.

5 0 0 R E M A R K S U B R O U T I N E : C O M P U T E M E A N , V A R I A N C E , S T D . D E V .

5 0 0 R E M A R K S U B R O U T I N E : C O M P U T E M E A N , V A R I A N C E , S T D . D E V .

5 1 0 L E T M = T / N
5 2 0 L E T V = D / N - M * 2
5 3 0 L E T S = S Q R (V >
5 4 0 R E T U R N

9. We want a RUN of the program to look like this:

R U N

N = 1 0
M E A N = 5 7 . 5
V A R I A N C E = 6 8 0 . 6 5
S T A N D A R D D E V I A T I O N = 2 6 . 0 9 3 1

Complete the subroutine to print the results.

6 0 0 R E M A R K S U B R O U T I N E : P R I N T R E S U L T S

6 0 0 R E M A R K S U B R O U T I N E : P R I N T R E S U L T S
6 1 0 P R I N T " N = " » N
6 2 0 P R I N T " M E A N = " J M
6 3 0 P R I N T " V A R I A N C E " " ' V _
6 4 0 P R I N T " S T A N D A R D D E V I A T I O N = J S
6 5 0 R E T U R N

256 BASIC

10. All you non-statisticians rejoin us here. We statisticians have written the
following subroutines:

3 0 0 R E M A R K S U B R O U T I N E : C O M P U T E N » S U M X * S U M X » 2
3 1 0 L E T N = 0
3 2 0 L E T T = 0
3 3 0 L E T D = 0
3 4 0 R E A D X
3 5 0 I F X < 0 T H E N 3 9 9
3 6 0 L E T T = T + X
3 7 0 L E T D = D + X t 2
3 8 0 L E T N = N + 1
3 9 0 G 0 T 0 3 4 0
3 9 9 R E T U R N

5 0 0 R E M A R K S U B R O U T I N E : C O M P U T E M E A N * V A R I A N C E * S T D . D E V .
5 1 0 L E T M = T / N
5 2 0 L E T V = D / N - M » 2
5 3 0 L E T S = S Q R C V)
5 4 0 R E T U R N

6 0 0 R E M A R K S U B R O U T I N E : P R I N T R E S U L T S
6 1 0 P R I N T " N = " J N
6 2 0 P R I N T " M E A N = " ; M
6 3 0 P R I N T " V A R I A N C E = " ; V
6 4 0 P R I N T " S T A N D A R D D E V I A T I O N = " i S
6 5 0 R E T U R N

9 0 0 R E M A R K D A T A F O L L O W S . D A T A L I S T E N D S W I T H - 1 .
9 1 0 D A T A 7 5 * 6 7 * 3 8 * 8 9 * 2 3 * 9 7 * 7 S * 1 8 * 5 6 * 3 7 * - 1

9 9 9 E N D

R U N

N = 1 0
M E A N = 5 7 . 5
V A R I A N C E = 6 8 0 . 8 5
S T A N D A R D D E V I A T I O N = 2 6 . 0 9 3 1

SUBROUTINES 257

Complete the main program so that the program will function as indicated
in the preceding RUN.

1 0 0 R E M A R K M E A N j V A R I A N C E A N D S T A N D A R D D E V I A T I O N
1 1 0 R E M A R K C O M P U T E N » S U M O F X > S U M O F X t 2

1 2 0 -

1 3 0 R E M A R K C O M P U T E M * V » S

1 4 0

1 5 0 R E M A R K P R I N T R E S U L T S

1 6 0

1 9 9 -

1 2 0 G 0 S U B 3 0 0
1 4 0 G 0 S U B 5 0 0
1 6 0 G O S U B 6 0 0
1 9 9 S T O P

258 BASIC

11 Now a nice thing about subroutines is that they may easily be changed
or interchanged. (Non-statisticians can skip to frame 1 2.) Suppose that our
data contained only two values or kinds of score. For example, we could
score a voter poll using the value 1 to represent an aye vote and the value
2 to represent "nay" or "no opinion. The scores can then be tabulated or
grouped by listing each kind of score (X) opposite its frequency (F), the
number of times that that kind of score occurred in the data.

Suppose these are the data of two kinds:

1 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 1

We can set up a table showing the "frequency of appearance of each
kind of data.

Kind of data
(only two
possible values)

X F

'1 12

2 8 } Grouped data (two groups or kinds)

So here are the data for the computer:

900 REMARK GROUPED DATA FOLLOWS* DATA LIST ENDS WITH -1#-I.
910 DATA 1 * 12»2*8»-1 »•! There's the flaq

7 \
There are 12 There are 8 cases of value 2
cases of value 1

The table below compares the formulas for mean, variance, and standard
deviation for "ordinary" data versus grouped data.

STATISTIC "ORDINARY" GROUPED

mean y = I *
n y= where (n = Z f)

n

variance i y 2 o = LX y
n

a 2 = Z (f x 2) u 2
n

S.D. Q
 II
 o =J7-

•

SUBROUTINES 259

Translated into BASIC, we require values for 3 variables:

T = Ex or I f - x

D = Ex 2 or I f - x2 ,

N = the number of scores (n = I f for grouped data)

In the DATA statement for grouped data, there are pairs ofValues: a
score (XI followed by the frequency (F) of appearance of the score. There^
is also a double flag, which should be a programming clue y
are to be read in pairs. This is a sample DATA statement.

,00 REMARK GROUPED DATA FOLLOWS. DATA LIST ENDS WITH
,10 DATA 1»12 #2* 8»"1»"I

subroutines for ordinary (ungrouped) data.

400 REMARK SU8R0UT.NE. COMMUTE N. SUM K. SUM X.E <0R0UPE0 OATA.

I

400 REMARK SUBROUTINE! COMPUTE N
410 LET N*0
420 LET T»0
430 LET D»0
440 READ X.F
450 IF X«0 THEN 499
460 LET T-T+F4X
470 LET D»D+F*X*2
480 LET N«N*F
490 GOTO 440
499 RETURN

SUM X, SUM X»2 (GROUPED DATA)

12. Non-statisticians rejoin us here. Look at subroutine 400 in frame 1 1

For which BASIC variables are values computed?

T, D, N (any order)

13. Look at subroutine 500 below, from our program in frame 10.

5 0 0 R E M A R K S U B R 0 U T I N E J C O M P U T E M E A N # V A R I A N C E # S T D . D E V .
5 1 0 L E T M = T / N
5 2 0 L E T V = D / N - M » 2
5 3 0 L E T S » S Q R < V >
5 4 0 R E T U R N

What variables must have values computed previously in order for subroutine

500 to compute M, V and S?

T, D, N (any order)

14. Got the idea? Subroutine 400 for grouped data computes values for
the same variables that subroutine 300 (frame 10) computes "ordinary"
(ungrouped) data. Therefore, merely by substituting subroutine 400 for
subroutine 300 in the program you have a complete program for computing
the statistics for grouped data.

If the DATA statement for grouped data is provided, show what mod­
ification of the main program (frame 10) is needed to RUN the complete
program for grouped data.

Change one line in the main program: 120 G0SUB 400

SELF-TEST 261

SELF-TEST

This problem is intended to encourage you to examine any programming you
do to determine whether subroutines will help make your program more
efficient. It also provides an algorithm (algorithm? Well, a recipe is an algo­
rithm. An algorithm is a well-defined procedure, or process, or step-by-step
method for solving some kind of problem) that may be useful if you need to
create programs to perform various clerical and filing tasks, or to sort any
kind of numerical data.

1. Start with a list of numbers.

3 , 8 , 3 , 7 , 8 , 2 , 9 , 7 , 3 , 2 , 6 , 4

Sort them (arrange them) in increasing order:

2 , 2 , 3 , 3 , 3 , 4 , 6 , 7 , 7 , 8 , 8 , 9

We want a computer to do it for us. In fact, we'll also have the com­
puter make up the original list of numbers, like this:

RUN

HOW MANY NUMBERS IN THE LIST T0 BE SORTED?8
UNS0RTED RANDOM NUMBERS: 85 51 27 67 12 87 98 72

NUMBERS AFTER SORTING: 12 27 51 67 72 85 87 98

HOW MANY NUMBERS IN THE LIST TO BE S0RTED72
UNSORTED RANDOM NUMBERS: 26 79

NUMBERS AFTER SORTING: 26 79

HOW MANY NUMBERS IN THE LIST TO BE S0RTED750
UNSORTED RANDOM NUMBERS: 18 98 22 96 22 5 7 15
15 83 13 91 69 40 66 57 22 56 74 87
23 50 63 28 62 62 17 30 39 83 53 83
98 29 90 89 97 19 36 81 25 13 63 15
36 6 81 41 34 17

NUMBERS AFTER SORTING: 5 6 7 13 13 15 15 15
17 17 18 19 22 22 22 23 25 28 29 30
34 36 36 39 40 41 50 53 56 57 62 62
63 63 66 69 74 81 81 83 83 83 87 89
90 91 96 97 98 98

HOW MANY NUMBERS IN THE LIST TO BE S0RTED751

SUBSCRIPT ERROR IN LINE 320

o
I

262 BASIC

(a) If you would like to meet a real programming challenge, then try
your hand at creating these subroutines. Otherwise, continue right
on to reach part (b) and take a look at the subroutines in the An­
swers to Self-Test.
Subroutine 300 should generate a list of N random numbers from
0 to 99 stored by subscripted variable X.

Subroutine 400 should print the list of numbers stored by sub­
scripted variable X.
Subroutine 500 should sort the numbers from smallest to largest.

(Programming hints: Use two FOR-NEXT loops, and a temporary
storage variable to switch numbers from one subscripted variable loca
tion to another if the value of a variable with a smaller subscript is
greater than the value of a variable with a larger subscript.)

(b) Now, look carefully at the RUN; then complete the main program.
Our version of the main program contains 12 statements in addition
to the REMARK statement.

too REMARK NUMBER SORTING PROGRAM

110

120

130

140

ISO _

160

170

180

190

200

210

220 •

SUBROUTINES 263

BONUS PROBLEM. Look back to Problem 4 in the Self-test on page 165.
Write a new solution to this problem using subroutines. (You may want to
modify the solution on page 167 but you will probably find it easier to
rewrite the entire program.

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1. (frames 1, 4, and 15)

(a) Here are the subroutines:

3 0 0 R E M A R K S U B R O U T I N E ! G E N E R A T E N U M B E R S X < 1 > T H R U X C N)
3 1 0 F 0 R K s l T 0 N
3 2 0 L E T X C K J = I N T < 1 0 0 * R N D < 0))
3 3 0 N E X T K
3 4 0 R E T U R N
4 0 0 R E M A R K S U B R O U T I N E ! P R I N T N U M B E R S X C 1) T H R U X < N >
4 1 0 F 0 R K » t T 0 N
4 2 0 P R I N T X C K I I
4 3 0 N E X T K
4 4 0 P R I N T
4 5 0 P R I N T
4 6 0 R E T U R N

o

500 REMARK SUBROUTINE! SORT NUMBERS - ASCENDING ORDER
510 FOR K*1 TO N-J
520 FOR J»K+1 TO N
530 IF XtKl «• XCJ1 THEN 570
540 LET T«XCKI
550 LET XCK 3"Xt J J
560 LET XtJI-T
570 NEXT J
580 NEXT K
590 RETURN
999 END

100 REMARK NUMBER SORTING PROGRAM
110 DIM XC501
120 PRINT "HOW MANY NUMBERS IN THE LIST TO BE SORTED"!
130 INPUT N
140 GOSUB 300
150 PRINT "UNSORTED RANDOM NUMBERS!"!
160 GOSUB 400
170 GOSUB 500
180 PRINT "NUMBERS AFTER SORTING!"!
190 GOSUB 400
200 PRINT
210 PRINT
220 GO TO 120

CHAPTER NINE

String Variables
til now will work on most

version ot BAB ..trine variables and ji'£ • though . u » c\c instructions,string vanu instructions vary, thougn anced BASH insu that do the insiru ,nstruC.
tave these capab.l tea. In^ So. tf you may

:h system uses a stm taught in these p , computet JS using the exampies on yout »"r în8yone method well. V0" ̂We suggest that after
onetheless, by Earning computer systen . com.

SZS?5$ssS2S!XZ»>"<-
wter system to identi y P" ^ instructions
/our mind. ... iearn about string van- ^mnletion of this

In this chapter y°u habetic information. P°^statements with string
that permit you to u> ^ programs using
chapter you will be aoie vu

l3b T PRINT rEAD

DIM INPUT Pr^T

i F T I F - T H E N
DATA UE1

i

1 So far your use of alphanumeric (that's mixed alphabetic and numeric)
phrases has been limited to the use of strings in PRINT statements like this
one.

1 0 P R I N T " T H I S I S A S T R I N G "

Now we can add a new feature to BASIC, a string variable.

1 0 L E T T S = " S T R I N G F O R T H E S T R I N G V A R I A B L E T S "

t
This is a string variable

You identify a string variable by using a letter (A - Z) followed by a
dollar sign ($). String variables permit you to manipulate alphanumeric data
with greater ease. String variable instructions include. DIM, LET, PRINT,
INPUT, READ, DATA, IF-THEN.

On most computers, each string variable that will be longer than one
character must be DIMensioned to indicate the maximum size of the string
it may contain. (A space is counted as one character.)

" T H E L E N G T H 0 F T H I S S T R I N G I S 4 3 C H A R A C T E R S "

" S A M 1 2 3 " This is a 7 character string (an auto license plate)

Here are examples of how you DIM string variables.

1 0 D I M A $ (5) Defines the string variable A$ with a
maximum size of 5 characters

2 0 D I M B $ (1 0) # C $ (2 0 >-*-Defines two string variables: B$ with
10 characters, C$ with 20

You can DIM numeric arrays and string variables in the same statement.

1 0 D I M A $ < 1 0) * B $ C 2 0 > * C (1 4 > » D < 5 * 6 >

/ \ /
String variable Numeric array

The maximum possible size permitted for a string variable will vary
from system to system. Refer to your system reference manual for the limits
of your system. It may be as small as 6, though 72 is most common. A
maximum of 255 characters is available on many newer computers.

1 0 D I M X $ < 1 4)

STRING VARIABLES 267

Up to how many characters are permitted in the string variable X$?

14

2. You can enter values of string variables in a program using an INPUT
statement. First let's try a program with just one string variable to enter.

1 REM STRING NAME
5 DIM A$(15)
10 PRINT "WHAT IS YOUR NAME"J
20 INPUT AS
30 PRINT "YOU SAY YOUR NAME IS"<A$
99 END

RUN

WHAT IS YOUR NAME7HAR0LD Lines 10 and 20

YOU SAY YOUR NAME IS HAROLD Line 30

Look what happened when we ran this same program again.

WHAT IS YOUR NAME7WEIRD HAROLD YOUNG New string
variable

BAD INPUT# RETYPE FROM ITEM 1
? WEIRD HAROLD ? from our computer means INPUT again

YOU SAY YOUR NAME IS WEIRD HAROLD Itworksthis
time

Look carefully at the program above. Why did the entering ot the string
variable WEIRD HAROLD YOUNG cause the computer to print the error

message? _

The string variable AS is only DIMensioned for 15 characters. WEIRD
HAROLD YOUNG is 18 characters and therefore unacceptable.

3. Modify the program in frame 2 to ask "WHAT IS YOUR STREET
ADDRESS?" and have the computer print name and address on two con­
secutive lines.

5 DIM ASCI53#B$[20]
10 PRINT "WHAT IS Y0UR NAME"J
15 INPUT A$
20 PRINT "WHAT IS Y0UR STREET ADDRESS"!
30 INPUT BS
50 PRINT
60 PRINT "NAMEt "»A$
70 PRINT "ADDRESS : " ,B$
99 END
RUN

WHAT IS YOUR NAME?HAR0LD Y0UN6
WHAT IS Y0UR STREET ADDRESS?1327 WRIGHT STREET

NAME:
ADDRESS :

HAR0LD Y0UNG
1327 WRIGHT STREET

STRING VARIABLES 269

4. On many systems if your INPUT statement asks for more than one
string, you must enter each one enclosed in quotes and separated by a comma.

1 REM STRING D0UBLE INPUT
5 DIM AS£201>BSC203*CSC2]
10 PRINT "WHAT IS YOUR NAME";
20 INPUT AS
30 PRINT "WHAT IS YOUR CITY AND STATE";
40 INPUT BS,CS
50 PRINT
60 PRINT AS,BS#CS
99 END

RUN

WHAT IS YOUR NAME?GEORGE YOUNG
WHAT IS YOUR CITY AND STATE?"SAN FRANC I SCO'S "CA"

GEORGE YOUNG SAN FRANCISCO CA

Show how you would enter the data requested in this question.

ENTER YOUR NAME AND SEX <M OR F>

"GEORGE YOUNG'S "M"

NOTE: For ease of operation, it might be wise to design your programs so
that each string INPUT statement calls for only one value to be entered,
thereby eliminating the use of quotes and a lot of confusion.

270 BASIC

5. Keeping in mind that you can only enter alphanumeric data using string
variables, you are permitted to mix string variables and numeric variables in
one INPUT statement, but the string variable must still be entered enclosed
in quotes.

5 REM STRING/VARIABLE INPUT
10 DIM A$[153
15 PRINT "ENTER Y0UR NAME AND AGE"l
20 INPUT A$,B
25 PRINT
30 PRINT B*A$
99 END

RUN

ENTER Y0UR NAME AND AGE?"GE0RGE Y0UNG"#24

24 GE0RGE Y0UNG

Show how George Young would respond to this question if he was born
August 9, 1953.

ENTER Y0UR YEAR 0F BIRTH AND ASTR0L0GICAL SIGN

1953, "LEO"

6. Write a program to enter and print an auto license plate that has a 3
letter alphabetic string and a 3 digit number (i.e., SAM 123). Enter the
letters as a string variable and the number as a numeric variable.

STRING VARIABLES 271

5 DIM A$[3 I
1 0 I N P U T A $, b
20 PRINT A$iB
99 END

RUN

?*'SAM"» 1 23
SAM .123

Where did the space come from? BASIC reserves a
RUN P|ace for the s'9n of the number (see next example)

?"MAX".» -456 If you enter a negative number (which you normally
MAX-456 wouldn't for this problem) it will look like this

272 BASIC

7. You can also enter string variables by using READ and DATA state­
ments.

1 REM STRING READ/DATA C0URSE LIST
5 DIM ASC123
10 PRINT "COURSE"#"HOURS"#"GRADE"
20 READ AS# B#C$
30 PRINT AS,B#CS
40 GOTO 20
50 DATA "ENGLISH 1A"# 3#"B"#"S0C 130"#3#"A"
55 DATA "PHYSICS 2A",5#"C"#"STAT 10"#3#"C"
60 DATA "BUS ADM 1 A"#4#"b"#"ECON 100"#4#"B"
65 DATA "HUMANITIES"#3#"A","HISTORY 17A",3,"B"
70 DATA "CALCULUS"#4,"C"
99 END

RUN

COURSE HOURS GRADE
ENGLISH 1A 3 B
S0C 130 3 A
PHYSICS 2A 5 C
STAT 10 3 C
BUS ADM 1A 4 B
ECON 100 4 B
HUMANITIES 3 A
HISTORY 17A 3 B
CALCULUS 4 C

Examine DATA statements 50, 55, 60, and 65 in the program above. What
is the difference in format between the string data in these DATA statements
and the numeric data in DATA statements you have used before?

When used in DATA statements, alphanumeric strings must be enclosed
in quotes.

STRING VARIABLES 273

8. In the program in frame 7, why is there no DIM for C$?

C$ is not more than one character and therefore does not need to be
dimensioned. (B is a numeric variable and therefore is not dimensioned.).

9. 30 PRINT A$«B#C$

Look at the output produced by Line 30 in the program in frame 7. What is
the function of the comma (,) in a string variable PRINT statement?

Causes the output to be printed in up to five columns across the page
(though here we only used three columns), just as with numeric variables.
Note. If the string variable size is greater than 15 characters, the PRINT
column sequence will not be followed.

10. The string LET assigns a particular string to a string variable. Note
that you must enclose the string in quotes as in these two examples.

10 DIM Af C 1 2] »BSC 9]
20 LET AS=" G00D EXAMPLE"
30 LET B$=" THIS IS A "

10 DIM A$(3)*B$(2)»C$(3)
20 LET A$="YES"
30 LET B$="N0"
40 LET CS=A$ C$ now contains "YES"

Write a string LET statement that assigns the course name Sociology to the
variable S$.

5 DIM SS<10)
10 LET S$*"S0CI0L0GY"

274 BASIC

11. The string IF-THEN allows you to compare two string variables.

10 DIM ASC3]*B$C2I
15 LET BS="N0"
20 PRINT "D0 YOU WANT INSTRUCTIONS? YES 0R N0"l
30 INPUT AS
40 I F A$=B$ THEN 140
50 PRINT "THIS SIMULATION PERMITS YOU T0 REGULATE

If you responded YES to the INPUT statement the comparison in Line
40 will be comparing the string variable A$ (YES) to the string variable B$
(NO). Because they are not equal the computer will execute the next state­
ment, Line 50. If you responded NO, the program would jump to Line 140.

The comparison in Line 40 is between two

T

string variables, A$ and BS

12. You can compare a string variable to a string.

5 DIM ASC31
10 PRINT "D0 Y0U WANT INSTRUCTIONS? YES 0R N0"»
20 INPUT AS
30 IE A$="N0" THEN 140
40 PRINT "THIS SIMULATION PERMITS YOU T0 REGULATE

The comparison in Line 30 is between a and a

string variable (A$)
string (NO)

You can't compare a numeric variable to a string variable.

IF A = BS THEN 140 •*- This is not permitted

STRING VARIABLES 275

13. In a string IF-THEN, the comparison is made one character at a time.
For example, if a space is introduced in the wrong place, it may cause a
comparison other than what you expect.

10 INPUT AS

20 IF AS = "MCGEE" THEN 140

If the user enters

? MC GEE

the comparison will not be equal. Why will this comparison not be equal?

The space between C and G is a character which is not present in
"MCGEE."

276 BASIC

14. In addition to equal (=) comparisons, you can compare strings using the

following:

<>, «# >* < = ' > =

\
This means not equal to

It's a little tricky so you should use caution if you try them
The comparison is still made one character at a time trom e o right.

The first difference found determines the relationship. The relationship is
based on position in the alphabet; C is "less than" S; T is "greater than" M.

10 LET AS="SMITH"
20 LET BS="SMYTH"
30 IF A$<BS THEN 100

In line 30 above, will the program branch to line 100 or continue to the next

statement in sequence? .

Jump to line 100. The first difference is the third character and since 1
is "less than" Y, the IF THEN condition is true.

(

15. When you compare two strings of different length, the rule of first
difference also applies. If the first difference is that one string ends before
the other, then the shorter string is considered to be "less than" the longer
one.

10 LET C$="SMALL"
20 IF C$<"SMALLER" THEN 140
30 LET D$="LARGEST"
40 IF D$>"LARGE" THEN 140

t

I

}

STRING VARIABLES 277

In the comparisons in line 20 and line 40 above, the program will jump to
line 140 in both cases as the IF THEN condition is true in each case.

20 LET D$="COMPUTE"
30 LET E$="COMPUTER"
40 I F D$<E$ THEN 80
50 PRINT D$

What statement number will be executed next after the comparison in

line 40?

line 80 as D$ (compute) is "less than" E$ (computer)

16. In frame 15, change Line 40 to read

40 IF ES> DS THEN 80

Which statement will now be executed after the comparison?

Line 80. E$ is "greater than" D$.

278 BASIC

17. Before you proceed, we need to introduce the RESTORE statement and
its use in connection with READ and DATA. A READ statement causes the
next item(s) of data to be read from the DATA statements. If you want to
start reading from the beginning of the data again, use a RESTORE statement
which causes the next READ to begin at the first item of data in the first
DATA statement.

Now that you have seen how to use string variable comparisons, you can
understand this simple information retrieval program that permits retrieving
information from DATA statements.

The program in frame 7, prints courses, hours, and grades. The program
below permits the operator to enter the course; the computer will then print
the course, hour, and grade.

10 REMARK STRING COURSE INFO RETRIEVAL
20 DIM Ait 121, DlC 121
30 PRINT "ENTER COURSE NAME "I
AO INPUT DS
5 0 READ Ai,B, CS
60 IF AS»DS THEN 80
7 0 GOTO 50
8 0 PRINT A$,B, CS
9 0 RESTORE
100 PRINT
1 10 GOTO 30
120 DATA "ENGLISH 1 A", 3, "fa"/ "SOC 130", 3, "A"
130 DATA "PHYSICS 2A", 5, "C", "STAT 10", 3,"C"
1 AO DATA "BUS ADM 1 A",4,"B","ECON 100",4,"B"
150 DATA "HUMANITIES", 3, "A", "HISTORY 17A", 3, "B"
160 DATA "CALCULUS", A, "C "
1 70 END

RUN

ENTER COURSE NAME? ECON 100
ECON 100 4 B

ENTER COURSE NAME? HI STORY 17A
HISTORY 17A 3 B

ENTER COURSE NAME? ECON 2
i

OUT OF DATA IN LINE 50 *

Whoops, no such course. The computer
read through all the data and found no
such course; therefore, it printed this
error message

Let's look at another RUN of the program.

RUN

ENTER C0URSE NAME?S0C130

0UT 0F DATA IN LINE 50

STRING VARIABLES 279

Why did we get the error message this time?

The course name is stored SOC 130, but the user typed SOC130 without
a space between SOC and 130.

18. What is the purpose of Line 60? IF A$ = D$ THEN 80

To test whether or not the course READ from the DATA statement is
the course requested in the INPUT statement.

19. Which DATA items will be read when executing the READ statement
in Line 50 after execution of RESTORE in Line 90?

)
English 1 A, 3, B, the first data items.

20. Modify the program in frame 17 so it will print the message "NO SUCH
COURSE" instead of the data error message if the course you entered does
not exist on the files. (You might try putting a "flag" at the end of the regu­
lar data as we did earlier in this book.)

55 IF AS*"END" THEN 115
115 PRINT "NO SUCH COURSE"
1 1 8 G 0 T 0 3 0
165 DATA "END"* 0*"0"

™ in frame 17 write a program that will
M. Using the data from the programm Jw^d
mint a list of courses for which B grades we

1 REM STRING B LISTING
5 DIM ASC123
10 READ A$,B,C$
20 IF C$="B" THEN 30
25 G0T0 10
30 PRINT AS,6,CS

to DATA "ENGLISH 1 A",3,"IT*^S0C 1 30'',3,"JT
55 DATA "PHYSICS 2A",5,"C *, STAT 10 , , _ t

6 0 D A T A " B U S A D M I A " , 4 , " B " , " E C 0 N 1 0 0 , » (

65 DATA "HUMANITIES",3,"A","HIST0RY 17A »3,
70 DATA "CALCULUS",A,"C"
99 END

RU N

ENGLISH 1A
B U S A D M 1 A
EC0N 100
HISTORY 17A

3
A
A
3

B
B
B
b

0UT 0F DATA IN LINE 10

STRING VARIABLES 281

22. Modify your program in frame 21 by adding one line so that the pro­
gram lists courses with grades of A or B.

22 IF CS»"AM THEN 30
RUN

ENGLISH 1A
S0C 130
BUS ADM 1A
EC0N 100
HUMANITIES
HIST0RY 17A

0UT 0F DATA IN LINE 10

3 B
3 A
A B
A B
3 A
3 B

23. Now we're getting down to some nitty gritty rules that are only used
once in awhile. Read through these so you will know they exist but don't
memorize them. Look 'em up next time you need 'em.

A substring is a part of a string and is defined by using subscripts after
the string variable, A$(l 0) or A$(l ,5).

5 DIM AS(30)
10 LET A$s"MY HUMAN UNDERSTANDS ME"
9 9 E N D N T A S < , 0 > T h e s u b s t r i n g b e g i n s a t t h e 1 0 t h c h a r a c t e r

and includes all the characters that follow

RUN

UNDERSTANDS ME

Replace Line 20 with PRINT A$(15). What will be printed when the new
Line 20 is RUN?

STANDS ME

24. Now look at these examples. To isolate one character you need to use
the value twice indicating the first and the last character of the substring.

S DIM ASC30J
10 LET A$« M MY HUMAN UNDERSTANDS ME
20 PRINT ASC 4# A } Will print H, the 4th character in the string.
99 END (A space counts as one character)

RUN

H
Here we have a substring that starts at character 1 and includes all of

the characters through and including the 9th character.

5 DIM ASt 30 3
10 LET AS="MY HUMAN UNDERSTANDS ME
20 PRINT AS 11# 9 I
99 END

RUN

MY HUMAN

In the program directly above, change Line 20 to read PRINT A$(4,8). What

will be printed when the new Line 20 is executed? _

HUMAN

25. What will be printed by the following program?

10 DIM AS<20>
20 LET A$="GAMES COMPUTERS PLAY
3 0 P R I N T A S < 7 * 1 5) # A S < 1 7 > » A S (1 # 5 >
99 END

RUN

COMPUTERS PLAY

STRING VARIABLES 283

26. Here are parts of a program to print the string variable A$ backwards,
one character at a time. Fill in the blanks and show the RUN.

5 DIM A$()

10 LET AS=,,ABCDEFGHIJKLMN0PQRSTUVWXYZ"

20 FOR X = TO STEP -1

30 PRINT AS(X# >J

40

99 END

5 DIM ASC26]
10 LET A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ'
20 FOR X=26 TO 1 STEP -1
30 PRINT A$tX*X If
40 NEXT X
99 END

RUN

ZYXWVUTSRQPONMLKJIHGFEDCBA

SELF-TEST

Write a program to permit INPUT of a 5 letter word and then print the
word backwards.

Read a series of 4 letter words from DATA statements. Print only those
words that begin with the letter A. Write the program.

Modify the program of exercise 2 to print the words that begin with
either the letter A or B.

Again, modify the program in exercise 2 to print only words that begin
with A and end with S.

Some years ago, the auto industry was hard-pressed to come up with
names for new ars. They used a computer to generate a senes of 5
letter words. Write a program to generate 100 5 letter: wordsi wdh
randomly selected consonants in the first and third and f p
and randomly selected vowels in the second '>nd <»,r̂ I' a"' n
might want to refresh your memory on the use of random numbers
bv reviewing Chapter Five.)

BONUS PROBLEM. You have the following DATA statements containing
names in last-name-first order. Write a program to print these names first-
name-first without the comma.

9000 DATA "BUTLER* LINDA"*"0LIVER* RACHELLE'
9010 DATA "DANIELS*JAMES"*"JOHNSON*DIANE"
9020 DATA "CASH*BETTY"*"BROWN*JERALD"
9030 DATA "SMI THEY*B0B"*"ARLINE*KATHY"

Answers to Sel f -Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

(frame 26)

10 REMARK STRING SELF TEST 9-1
20 DIM ASC53
30 INPUT AS
40 FOR X*5 T0 1 STEP -1
50 PRINT ASCX»XIJ
60 NEXT X
65 PRINT
70 G0T0 30
99 END

2. (frames 7,11, and 24)

1 REMARK STRING SELF TEST 9-2
20 DIM ASC43
30 READ AS
40 IF ASCI,13 <> "A" THEN 30
50 PRINT AS
60 G0T0 30
65 DATA "ANTS","GNAT","L0VE","BALD"
70 DATA "APES","BAKE","MIKE","KARL"
75 DATA "BARD","ALAS"
99 END

3. Modifications only, (frames 7,11, and 24)

40 IF AS <1,1>s"A" THEN 50
45 IF AS<1,1)<>"B" THEN 30

4. Modifications only, (frames 7,11, and 24)

45 IF AS(4,4) <> "S" THEN 30

5. (Chapter Five, frames 24 and 25, and Chapter Nine)

1 REM- STRING SELF TEST 9-5
5 DIM A£C5I>B£C21J
15 LET A£="AEI0U"
20 LET B$="BCDFGHJKLMNPGRSTVWXYZ
25 FOR X=1 TO 100
30 FOR Z=i TO 2
40 LET B=INT<21*RND<0> + 1)
50 PRINT BStB»BJJ
60 LET A=INT<5*RND<0>*1>
70 PRINT A$[A#AIJ
75 NEXT Z
80 LET B=INT(21*RND<0>+1)
90 PRINT BSCB/BJ,
95 NEXT X
99 END

RUN

ZOKUC BITUR SODUG K0ZEM PA TAR

TIMUQ SOZIC BAGUY FIRIF FULAD

FIZUX
STOP

NULUZ DEXUJ T0BIC P0XAZ

(This is our RUN. Yours will be different.)

CHAPTER TEN

Files

The use of BASIC files is an advanced concept you may not find useful right
away. How and when to use files is difficult to learn for the novice and you
may find this chapter takes two or three readings to be fully understood. We
suggest that you read this chapter once now to get a general idea of what
files are all about. Then after you do some more BASIC programming and
are comfortable with computers, come back and work carefully through this
chapter.

When you have completed this chapter you will be able to:

• differentiate between serial and random access files.

• write data onto serial and random access files using FILE PRINT
statements.

• read data from serial and random access files using FILE READ
statements.

• use the following file commands with serial and random access files.

FILES IF END TYP

287

288 BASIC

1. Files are used to store numeric data and string variables for use at any
time. Up to now you have had to enter your data using DATA statements
as part of your program. Using files, you can enter and store large quantities
of data using one program and then access the data at a later time using a
different program. You can access the data or file with many different
programs, something you have been unable to do before.

One way to look at the file is to imagine that it is a separate item from
the BASIC program. Programs are used to read from or write onto the file.
In an application that uses a file to hold all name and address information
for the student body of a school, we might have a whole series of programs
all using one file.

PROGRAM 1 ENTER NEW DATA FOR STUDENT
PROGRAM 2 DELETE STUDENT DATA ^
PROGRAM 3 CHANGE NAME OR ADDRESS OR

PHONE
PROGRAM 4 PREPARE NAME AND ADDRESS

LABELS FROM FILE DATA —
PROGRAM 5 PREPARE ZIP CODE LISTING

FROM FILE DATA
PROGRAM 6 PREPARE PHONE LIST FROM

FILE DATA

One advantage of placing data into files instead of using DATA statements is

You can access the data with more than one program.

2. Later we will explain the use of serial files and random access files.
This first section will deal only with serial files.

Information stored in a serial file can be viewed as a continuous series
of data packed densely in the computer memory.

GEORGE/YOUNG/25/94191/BOB/HARR IS/42/83107/ . . .

To get to data in the middle of a serial file you must read from the beginning
of the file, one piece of data at a time, until you reach the data you need.

FILES 289

Before you RUN a program using file commands you must create a file
using the system command OPEN. Since OPEN is a system command it does
not need a line number. Type,

OPEN — (name)

/ I
Hyphen Rules for name vary with each system. Generally any name beginning

with an alphabetic character and not exceeding 6 alphanumeric charac­
ters is acceptable. It is a good idea to use "reasonable" names so you
can keep track of what they mean. A file of master student informa­
tion might be called MASTER, a list of phone number PHONE.

What would you type to open the file that will contain student grades?

OPEN - GRADES (or any other name that makes sense to you)

3. Which of the following file names will not be accepted by a computer
that follows our general rules?

EYESORE 1ZERO GRADEPOINT A

3 PHONES THREE

EYESORE (too big)
GRADEPOINT (too big)
1ZERO (begins with a number)
3 (begins with a number)

:„t0

-—- • - -
up file words as follows.

Numeric variables- Each numeric variable uses 2 ™?° °rJ£*»a!-
whether the number has one digit or more.

String variables - Each character of a string variable takes appro*.-
mately V2 word.

As an example, a file that will contain 100 names, each with as many as 20

letters or spaces will use:
String variable = 100 x 20 = 2000 characters

= 2000 x y2 = 1000 words of file space

A file that will contain 100 numbers will use.

100 x 2 = 200 words
A oopVi of tbese sets of data will fill in & serial file. Calculate how many words each ot these se

(a) 140, 15-character names

(b) 140, 20-character addresses
(c) 140, 5-character zip codes (string variable)

(d) 420 numbers (representing responses to an opinion poll. Responses

are 1, 2, or 3.) _

(a) 140 x 15 x V2 - 1050
(b) 140 x 20 x 1/2= 1400
(c) 140 x 5 x V2 = 350
(d) 420 x 2 = 840

5 At the beginning of a program that uses files you must include a state­
ment which tells the computer which files are to be used by the program.
The files statement looks like this:

10 FILES ABLE# CI00# ZER0
\ 4 /
12 3

FILES 291

The order of the names in the FILES statement determines how they
are referenced later in the program. The file named ZERO will now be ref­
erenced as file 3 in the program.

10 FILES ZERO ,ABLE, C100

In this case, the file named ZERO will be referenced as file 1.
Write a FILES statement that will prepare the computer to use files

named GRADES and MASTER.

10 FILES GRADES,MASTER

6. A serial file READ statement permits reading data from an existing file.
The general form is shown below:

READ # (file number) ; (variables)

Note the punctuation

For example:

20 READ #1 JA

will read one piece of numeric data from the first file in the FILES statement
and assign it to the variable A.

30 READ #3t A,B

will read two pieces of numeric data from the third file in the FILES state­
ment and assign them to variables A and B.

Given the FILES statement, write a statement that will read three
numeric variables from the file named ZERO.

10 FILES ABLE, C100, ZERO

20 READ #3I A,B,C

I

292 BASIC

Z~ZZ^>«• ,a,ue for the fi,e number in a tile EEAD

statement.

20 READ #XJ AS*B

t Y has been calculated as equal to 2, the statement
If in a previous statement, the plLES statement. The string

tTablI(A$)1n7the numeric variable (B) will be read each lime L,ne 20 is

eXeCUWhich file will be read in the following:

10 FILES PH0NE* MASTER* ZEM
20 LET Y«3-l
30 READ #YJ A$*B

MASTER

beginning of the first file in the FILES statement.

10 READ #1*1

Write a statement to set the pointer to the beginning of file CI00 in this

FILES statement.

10 FILES ABLE* C1OO*ZER0

20 READ #2*1

I

FILES 293

9. The pointer advances one piece of data (a complete string variable or one
numeric variable) for each variable named in the file READ statement. (Re­
member, the pointer points to the next piece of data to be read.)

10 READ #1 ,1 Set the pointer to the beginning of the file

JOHN/JERR Y/MARY/PETER/HAL/BOB/MIKE/ MI Ml /KARL/DAN

20 READ # l jAS Reads the first value, assigns it to A$ and advances
the pointer one data position to the second piece
of data in the file. (A$=JOHN)

JO H N /JE R R Y/MARY/PETER/HAL/BOB/MIKE/MI M l / KARL / DAN

I (Now set to the second piece of data)

30 READ #1JB$,CS Reads the next two pieces of data, assigns them
t o B$ and C$ a nd adva nc e s t he p o in t e r t o t he 4 th
p i ece o f da t a wh ich wi l l b e r ead nex t . (B$ = JERRY
C$= MARY)

1 2 3 4 5 6 7 8 9 1 0
JOHN/JERRY/MAR Y / P ETER / H A L/ B O B / M IK E/MI MI /KARL/DAN

\
Indicate where the pointer will be positioned after execution of each of the
tile READ statements in this program.

1 REMARK FILE POINTER
5 FILES DEMO
10 READ #1 ,1
20 READ # 1 iAS
25 PRINT AS
30 READ # 1 i B$
40 READ #1;CS,DS
50 READ # 1 j ES
60 PRINT BS,C$,DS,ES
99 END

12 3 4 5 6 7 8 9 10
JOHN/J E RRY/MARY/PETER/HAL/B0 B/MIKE/MIMI /KARL/DAN

8 9 10 1 2 3 4 5 6 7
JOH N/J ER R Y /MARY/PETER/HAL/B0B/MIKE/MIMI /KARL/DAN

l i t i \
1° 20 3 0 40 50

0

_

10. A file we've called MASTER is in the format below, with name and
address information for about 20 people.

NAME/ADDRESS/CITY/STATE/ZIP/PHONE NO/NAME/ADDRESS/CITY

Below is a simple program to read and print the contents oi the tile

MASTER.

1 REMARK MASTER FILE READ _ . r K , rcnoi
1 0 D I M A $ t 1 5 3 # B S C 2 0 D # C $ C 1 0 D S [2 3 # E S C 5 3 # F $ C 1 2 3
15 FILES MASTER . .
20 READ #1#1 -* Sets the pointer to the beginning of the file
30 READ # 1 |AS#BS#C$#D$#ES#F$ Read from file 1. Each
.an PRINT time this statement is
50 PRINT AS executed, new values
^ print RS are assigned to A$, B$,
60 PRINT C$,D$,E$, and F$
70 PRINT CS*D$*ES
80 PRINT F$
85 PRINT
90 G0T0 30 ~* Go back to read more of the file

99 END

RUN

Below is the printout for the first two people from a RUN of the pro­

gram above.

GEORGE YOUNG
1327 RIGHT STREET Q j 4 ,m
BERKELEY CA 94107
405-321 -171 1

SANDY Y0UNG
8 SHADY PLACE
OAKLAND CA
4 0 5 - 1 2 2 - 1 6 1 1

How many places does the pointer mc

94203

each time Line 30 is executed?

FILES 295

11. What output (frame 10) would result if Line 90 read

90 G0 T0 20

The data printed for George Young would be repeated indefinately
because Line 20 resets the pointer back to the beginning of the file.
The rest of the file would not be read. This is a program error!

12. The program below prepares a list of names from the same MASTER
file used in the preceding program.

1 REMARK MASTER FILE NAMES
10 DIM ASC153* BSC20 J*CSC 10]* D$ C2]*E$C5D»FSC12]
15 FILES MASTER
20 READ #1*1 Sets the pointer to the beginning of the file
30 READ #1JAS Read the name
40 PRINT A$ Print the name
50 READ #1JBS,C$*DS*ES*F$
60 G0T0 30
99 END

RUN

GE0RGE YOUNG
SANDY YOUNG

What is the purpose of Line 50?

Moves the pointer forward 5 places to the next name.

296 BASIC (I
13. Write a program that will print name and phone numbers from the file
MASTER described in frame 10.

1 REMARK MASTER FILES NAME/PH0NE
10 DIM A$C15 3 #BSC20 3»CSC10 3# DS12 3 »ES C53»FSC12J
15 FILES MASTER
20 READ * 1#1
30 READ #1jA$#BS#C$#D$*E$#FS
40 PRINT AS,F£
50 G0T0 30
99 END

14. When the preceding programs are RUN, the computer prints an error
message when the pointer detects that it has reached the end of the data. To
avoid this error message, use the IF END statement, which causes the pro­
gram to jump to another instruction when the end of the data is reached.
IF END is also used to detect the physical end of the file. You may run out
of data before reading to the physical end of the file and while loading a file
you may reach the physical end of the file before all your data is entered.
The IF END statement is used to avoid an error message in either of these
cases. The general form of the IF END is shown below.

IF END # (file number) THEN (line number)

RUN

6E0RGE Y0UNG
SANDY Y0UNG

405-321-1711
405-122-1611

c

Once executed, the IF END statement does not have to be executed again
and again. It is like a 'flag'. Once "set", it stays "set" until the end of the
data is reached, or the end of the file is reached, or until a new IF END
statement is executed cancelling the earlier one. You should place the IF
END statement before the read statement in a file reading program.

Add an IF END statement to our file MASTER program below, that
will cause the program to jump to the end of the program when it reaches
the end of the data or the end of the file.

1 REMARK MASTER FILE NAMES

15 ?IRES$MASTER$ C 2 0 3'C $ U 0 3'D S C 2 3'E S T 5 3'F S N 2 3

20 READ #1,1
25

30 READ #1JAS
40 PRINT AS
50 READ #1JBS,CS,DS,E$,FS
60 GOTO 30
99 END
RUN

)
GEORGE YOUNG
SANDY YOUNG

25 IF END #1 THEN 99

15. The file PRINT statement is used to print data onto the file as opposed
to printing data that is contained in the file. You use it to load your tile with
data. Here is the general form:

PRINT # (file number) ; (variables)

FILE #1 (EMPTY)

5 READ #1,1
10 PRINT #1JA,B,C$

FILE #1 A/B/C$/

20 PRINT #1,D,E,F$

FILE #1 A/B/C$/D/E/F$

Set the pointer to the begin­
ning of the file. Line 10
causes this information to be
entered into the file. (A, B
and C$ have already been
assigned values elsewhere)

Line 20 causes D, E, and F$
to be printed onto the file
immediately following the
previous data (from the
pointer)

A sample program sets up a small file of names and phone numbers from
READ and DATA statements.

1
10
15
20
22
25
30
40
45
50
55
60
90
99

Sets the pointer to the beginning of the file
A safety check to avoid possible errors

REMARK FILES PRINT
DIM A$C153,BSC123
FILES PHONE
READ #1*1
IF END #1 THEN 90
READ A$,B5
IF A$="N0 MORE DATA" THEN 99 TEST-Have we
PRINT #1)A$,B$ reached the end of the data? If not, print
GOTO 25 what we have onto the file
DATA "GEORGE YOUNG","408-331-2234"
DATA "HAROLD JACKS","514-206-2056"
DATA "NO MORE DATA","DUMMY DATA "
PRINT "ERROR•••END OF FILE"
END

If you RUN the preceding program nothing happens that you can see—it's
all inside!—unless you hit the end of the file and Line 90 is executed.

(a) Which statement tests for the end of file condition?

(b) If the end of the file is encountered what will be printed?

(c) Which statement causes the information to be printed into the file?

(a) 2 2 I F E N D # 1 T H E N 9 0
(b) ERROR... END 0F FILE

(c) 4 0 P R I N T # l l A $, B S

16. Fill in the missing blanks for the following program that READS the
data trom the MASTER file described earlier and creates a second file,
PHONE, of names and phone numbers.

1 R E M A R K D O U B L E F I L E U S A G E
5 F I L E S M A S T E R , P H O N E
1 0 D I M A $ (1 5) , B $ C 2 0) , C $ (1 0) , D & (2) , E S (b) , F $ (l L)
2 0 R E A D # 1 , 1
2 5 I F E N D # 1 T H E N 9 9
3 0 I F E N D # 2 T H E N 9 0

3 5 b E A D # l A $, B 2 > , C $, D S , E $, F $

4 0 P R I N T # l A $, F $

5 0 G O T O
9 0 P R I N T " E R R O R . . . E N D O F F I L E 2 "
9 9 E N D

3 5
4 0
5 0

R E A D # U
P R I N T # 2 l
G O T O 3 5

Read from file 1
Print onto file 2
Go back for more data

300 BASIC

17. Now let's combine some earlier problems with file capabilities. Write
a program to load a file called RND with 200 random integer numbers from
1 to 4. (You might want to review the use of random numbers by rereading
Chapter Five.)

1 REMARK RAND0M L0ADER
5 FILES RND
7 READ * \ , l
9 IF END #1 THEN 90
10 FOR X = 1 T0 200
20 LET Y=INTC4*RND<0)•1)
30 PRINT # 1 J Y
40 NEXT X
45 GOTO 99
90 PRINT "ERROR.. . .END OF FILE"
99 END

FILES 301

18. Write a program that will read and print the 200 numbers in the RND
file.

Here are two possible solutions:

1 REMARK RAND0M READER
5 FILES RND
10 READ #1*1
15 IF END #1 THEN 99
20 READ #1JA-*-•Notice we can assign
25 PRINT Al this variable any

30 G0T0 20 legitimate letter

99 END

1 REMARK RAND0M READER A
5 FILES RND
10 READ #1*1
15 IF END #1 THEN 99
20 F0R X=1 T0 200
25 READ #1 JA
30 PRINT Aj
35 NEXT X
99 END

302 BASIC

19. Write a program that will read the 200 numbers in RND file and print a
frequency distribution indicating how many times each number (1 to 4)
appeared in the file. This is very similar to the voter-analysis problems in
Chapter Six and Chapter Seven. Here is a sample RUN.

1 REMARK RAND0M DISTRIBUTION
5 FILES RND
10 DIM A < 4)
12 MAT A=ZER
15 READ #1>1
20 IF END #1 THEN 60
30 READ #1IY
40 LET A<Y)=A<Y)+1
50 G0 T0 30
60 PRINT "VALUE'VHOW MANY TIMES"
80 F0R Y=1 T0 4
85 PRINT Y*A<Y>
90 NEXT Y
99 END

VALUE H0W MANY TIMES

2
3
4

60
30
50
60

FILES 303

20. The TYP function detects the "type" of data that will be read next in
the tile. The TYP function looks at the data that the pointer is pointing at
and indicates their type. It is used to avoid file read errors and to detect the
end of the file. For example, if READ A$ is the next statement, but the
pointer is at a number you will get a FILE READ error message, since A$
is looking for a string variable not a numeric variable. The TYP function
may be used to avoid that kind of error. These TYPE rules apply to most
computer systems:

TYPE 1 means next item is a number.
TYPE 2 means next item is a string variable.
TYPE 3 means end of file.

To test the type of data next in a file, we use the IF-TYPE statement.
The general form of the IF TYP statement is

IF TYP (file number) = (type) THEN (line number)

10 IF TYP CI) =2 THEN 50 If the next data item in file 1 is a
string variable, then go to Line 50

20 IF TYP CG) = 1 THEN 80 If data in file G (numeric equiv­
alent) is a number, go to Line 80

30 IF TYP (2)=3 THEN 99 If next data item in file 2 is end
of file, then go to Line 99

Write a statement that tests to see if the next item of data in the file ZERO
in the files statement is the end of the file. If so, go to Line 70.

10 FILES ABLE# C100# ZER0

20

20 IF TYPC3)=3 THEN 70

304 BASIC

21. Here is an obvious use of the TYP function.

1 0 R E M A R K F I L E S T Y P D E M 0
2 0 D I M A S C 7 2]
3 0 F I L E S E X A M
A O R E A D # \ j 1
5 0 I F T Y P (1 > = 1 T H E N 8 0 Test t o see i f next item is a number
6 0 I F T Y P (1) = 2 T H E N t 1 0 Test t o see i f item is string variable
7 0 I F T Y P (1) = 3 T H E N 1 4 0 Test t o see i f item is the end of file
8 0 R E A D # 1 1 A
9 0 P R I N T A J
1 0 0 G 8 T 0 5 0
1 1 0 R E A D # i ; A $
1 2 0 P R I N T A S
1 3 0 G 0 T 0 5 0
1 4 0 P R I N T " E N D 0 F D A T A "
9 9 9 E N D

What does this program do?

Lines 50, 60, and 70 test the next data item in the file, determine the
type, and then cause that data item to be read and printed in Lines
80-90, 110-120, or 140, depending on the type. This process repeats
itself through the file to the end of the data. This program could be
used to read and print the contents of a tile when you are not sure
what the file contains and you want to know (that happens some­
times!).

FILES 305

22. You may encounter some difficulties with serial files. Serial files are
fine for data that do not change. If you want to add new data past the last
piece of data simply read to the end of the data marker and then make your
additions.

1 REMARK ADD T0 FILE DEM0
10 FILES PH0NE
20 DIM AS(15) *BS(12)
30 READ #1*1
35 IF END #1 THEN 70 \ Read to end of data
40 READ # 1J AS J
60 G0 T0 40
70 IF END #1 THEN 100-*—Test for end of file
75 PRINT"ENTER NAME"* Y
80 INPUT AS) Enter new data
85 PRINT"ENTER PH0NE # M lJ
90 INPUT B$
95 PRINT #1 |A$#BS
97 60 T0 75
100 PRINT"ERR0R••• END 0F FILE"
1 1 0 E N D

Which statement caused the new data to be printed onto the file?

95 PRINT#1 IAS#BS

306 BASIC

23. If you want to alter the contents in the middle of the file — watch out!
Here's our file. We will demonstrate how to insert data or change data in the
middle of this file.

NAME/PHONE/NAME/PHONE/NAME/PHONE/NAME

For this example, assume you have been notified that the second name in the
file has a new phone number. If this were a file of 3 x 5 cards, you would
simply pull the second card, change it and insert the card back into its pre­
vious position. However, this is a computer serial file. If you followed that
logical procedure - read to the old number type in the new number and
stop — the remainder of the file will be lost! That's the way serial files work!

To get out of this dilemma you have to "play games" with your com­
puter. The easiest way is to create a new file that is used as a scratch pad;
that is, a temporary place to store the information from the original file.
Here is a step-by-step procedure.

(a) Read from the file copying it onto the scratch pad until you reach the
data to be changed.

(b) Make your change and enter it on the scratch pad.
(c) Read the remainder of the file onto the scratch pad.
(d) When you reach the end of the file, read the corrected scratch pad back

into the old file position.

Here is our program to change the phone numbers. This procedure may
seem cumbersome but it will take very little computer time.

FILES 307

1 REM-FILES ALTER
5 DIM A$[20] #BSC12]«CS[123
10 FILES PH0NE #PAD
20 PRINT "ENTER OLD PHONE
30 INPUT C$
40 READ #1,1
42 READ #2>1
45 IF END #1 THEN 200
50 READ #1IA$,BS
55 IF B$=C$ THEN 100
60 PRINT #2jA$,B$
70 GOTO 50
100 PRINT "ENTER NEW PHONE
105 INPUT B$
110 PRINT #2JA$>B$
120 IF END #1 THEN
125 READ #1 JA$*BS
130 PRINT #2iA$,B4
135 GOTO 125
140 READ #1#1
145 READ #2#1
150 IF END #2 THEN
155 READ #2JA$*B$
160 PRINT #1 JA$>B$
165 GO TO 155
200 PRINT "OLD NUMBER
210 GOTO 20
999 END

140

999

C$ is the old number
Set the pointer to the
beginning of both files

Read the old file.
Test the file phone num­
ber you are looking for
If the numbers do not

match print old file
onto PAD

Write the new data onto
PAD. Lines 120 to 135
read remainder of the
old file and print it onto
the PAD

Reset pointers on both
files
Lines 150 to 160 read
PAD and print onto
PHONE file

NOT IN FILE

(a) Which statement searches the file PHONE for the old phone number?

(b) Which statements transfer the data from PHONE to PAD?

fc) Which statement puts the name and new phone number in PAD?

(a) 50 READ $1JA$,B$
(b) 60 PRINT #2JAS#B$ and 130 PRINT $2jA$#B$
(c) 110 PRINT # 2 ; A $, B $

308 BASIC

24. If Line 200 is executed, what is it telling the operator?

Old number is not part of the file.

25. Suppose one of your clients sends a note with his name and new phone
number and does not include his old phone number. Modify the program in
frame 23 so that the person's name (instead of the old phone number) is
entered and used to compare with the PHONE file. You can do it with just
4 changes.

t REM - FI LES ALTER
5 DIM ASt201 ,B$£12I ,C$C20]
10 F IL E S PHONE,PAD
20 P RINT "EN TER N A M E"J
3 0 INPU T C$
40 READ #1 ,1
42 R EAD #2 ,1
45 IF END #1 THEN 200
50 R EAD #1 JA$,B$
55 IF AS=CS THEN 100
6 0 PRINT #2JA$,B$
70 GOTO 50
100 P RINT "ENTER NEW PHONE # " l
1 0 5 INPUT BS
1 1 0 PRINT #2 jA$,B$
120 IF END #1 THEN 140
1 2 5 R EAD #1 lAS ,B$
1 3 0 PRINT #2 jAS ,BS
135 GOTO 125
140 READ #1 ,1
145 READ #2 ,1
1 5 0 IF EN D #2 T H E N 999
155 READ #2 jAS ,B$
1 6 0 PRINT #11AS ,B S
1 7 0 GOTO 155
2 00 PR IN T "NAME IS NOT I N F I LE AS ENTERED"
210 GOTO 20
999 END

F I L E S 3 0 9

As you can see, serial files are best used when you know in advance that
you will not be making many changes in the file once it's set up. It's fine to
READ from serial files but if you know you will have changes to make it
might be best to start out by creating a random access file.

26. A random access file is divided into a number of separate, discrete divi­
sions called RECORDS. Each record has an assigned number. Each record
may be viewed as a small serial file.

1 2 3 4 5

R A N D O M A C C E S S F I L E

Records may be accessed directly or randomly without having to read
through the entire file. Records may be changed easily without having to go
through the procedure outlined for serial files.

The data in our previous example (the name and address file called
MASTER) could be arranged in a RANDOM ACCESS FILE so that the infor­
mation for each person would be assigned to a separate record.

1 2
N A M E / A D D R E S S / C I T Y / S T A T E / Z I P / P H O N E / N A M E / A D D R E S S / C I T Y . . .

One advantage of random access files over serial files is

You can make changes in the data of a random access file without going
through the cumbersome procedure necessary to change data in a serial
file.

310 BASIC

27. The random file instructions are very similar to serial file instructions.
You use the same OPEN command and the same FILE statements. Here is
the general form of random file READ

READ # (file number) , (record number) ; (variables) !

This statement causes data to be read from a random access file (notice the ;
use of comma and semicolon punctuation). i

Here are some examples of random file READ statements. t

1 0 F I L E S Z E R O , A B L E

2 0 R E A D # 2 , 3 j A $, B $ Will read A$, B$ from the file ABLE,
3rd record

3 0 R E A D # 1 , 1 J X , Y , Z Reads X, Y, and Z from the 1st record
in file ZERO

4 0 R E A D # 2 , 1 Sets the pointer to the beginning of
file ABLE (same format as that used
with serial files)

More examples.

1 0 F I L E S C 1 0 0 , P H O N E
2 0 L E T A = 2
3 0 L E T B = 3
4 0 R E A D # A , B l D S , E $

5 0 R E A D # 1 , A ; A S , B $

Which file number and record number will be read by Line 50?

0
Since A = 2 the statement says read
from the file PHONE, 3rd record
(B = 3)

File 1
Record 2

0
- -

FILES 311

28. If this is your file, what data will be read by each of the READ state­
ments below?

1 2 3 4 5
JEAN/564-3231/NANCY/322-9038/MAR Y/311 -6124/ANN/512-6014/DIANE/924-30786

1 0 F I L E S P H 0 N E
2 0 R E A D # 1 * 3 J A $ * B $
3 0 R E A D # 1 , 1 1 B £ * C $
4 0 L E T K = 5
5 0 R E A D # 1 * K J A $ * B £

2 0 M A R Y * 3 1 1 - 6 1 2 4
3 0 J E A N * 5 6 4 - 3 2 3 1
5 0 D I A N E * 9 2 4 - 3 0 7 8

29. This program reads the MASTER file (now arranged as a RANDOM file
with each person assigned to one record) and prints its contents.

1 R E M A R K - R A N D O M F I L E R E A D
1 0 D I M A £ C 1 5] * B $ [2 0 3 * C $ [1 0] * D $ [2 3 * E $ C 5 I * F £ C 1 2]
1 5 F I L E S M A S T E R
1 8 L E T K = 1
2 0 R E A D # 1 * 1 Set the pointer to the beginning of the file
2 5 I F E N D # 1 T H E N 9 9
3 0 R E A D # 1 * K ; A $ * B $ * C £ * D $ * E $ * F £ K is the record number.
4 0 P R I N T Watch what happens in
5 0 P R I N T A $ L i n

6 0 P R I N T B $
7 0 P R I N T C S * D $ * E $
8 0 P R I N T F S
8 5 P R I N T
8 8 L E T K = K + 1 Got that?
9 0 G 0 T 0 3 0
9 9 E N D

What statements were added or changed from the program
* "Vs.

make this program use random files?

Statements 18, 30, 88

in frame 10 to

h-

312 BASIC

30. Write a program that will print the name and record location number
for each entry in file MASTER.

1 R E M A R K F I L E S N A M E / L 0 C A T I 0 N
1 0 D I M A $ C 1 5 3 # B S C 2 0] # C $ [1 0 1 * D S C 2 3 # E S t 5] # F $ C 1 2]
1 5 F I L E S M A S T E R
1 8 L E T K = 1
2 0 READ # 1 , 1
2 5 P R I N T " N A M E " L O C A T I O N "
3 0 I F E N D # 1 T H E N 9 9
3 5 R E A D # 1 # K > A $, B $ # C $ # E S # F $
4 0 P R I N T A $, K
4 5 L E T K a K + 1
5 0 G 0 T 0 2 5
9 9 E N D

31. The general form of random file PRINT is:

PRINT # (file number) , (record number) ; (data)

This statement prints data onto a random file. Here is an example:

10 PRINT Pr in t A$ and BS onto record 1 of f i l e 1

1 0 P R I N T # A , B ; A $, B $

In frame 30 you wrote a program to generate a list of names and the
record location number of each set of AAa. Using this list you can make
changes in so met.) .e's record.

First look up the name on the list and get the file record location num­
ber. Then, enter tins information into this file and change or update the pro­
gram.

FILES 313

1 REM-RAND0M FILE UPDATE
10 DIM A$[15]#B$C203»CSC10]#D$C2]*E$C53#F£C123
15 FILES MASTER
20 PRINT "ENTER REC0RD
25 INPUT K Enter the record number of the party to be corrected

27 IF END #1 THEN 99
30 READ # 1 * K Set pointer to beginning of record to be changed
35 PRINT "ENTER NAME"J
40 INPUT A$
45 PRINT "ENTER ADDRESS"!
50 INPUT B$
55 PRINT "ENTER CITY"
60 INPUT C$
65 PRINT "ENTER STATE C0DE"!
70 INPUT DS
75 PRINT "ENTER Z I P C 0 D E " J
80 INPUT ES
85 PRINT "ENTER PHONE #"l
90 INPUT F$
92 PRINT #1#K*A$»B$,C$»D$,E$,FS
95 G0T0 20
99 END

What does Line 92 do?_

Print the new data onto the file in record location K.

Use the following for quick reference.

To delete an entire record:

1 0 P R I N T
This statement will place an end-of-record mark at the beginning
tfl.Sd numb.. 5 th.r.by deleting ,ny data in that particular

record.

In random files, IF END works the same as with.serialI files.
IF END also detects end of record marks in random files.

The TYP function also works the same with random f.lesjn
addition to detecting numbers; strings, and endI of file. TYP
will detect an end of record using the number 4. The following
statement tells the computer to go to Line 400 at the end of

record.

1 0 I F T Y P (1 > = 4 T H E N 4 0 0

SELF-TEST 315

SELF-TEST

You made it to THE END. This Self-Test reviews some of the problems you
worked with in earlier chapters and applies these familiar concepts (says
who?) to files.

1. Voter-analysis problems are a very common application of files. Refer
back to page 191.

(a) Write a small program that will load the responses in the DATA
statements (910 to 920) into a serial file called VOTES.

(b) Rewrite the main program so the data will be read from the file
VOTE instead of DATA statements.

2 Refer to page 272 of Chapter Nine. This course listing could, or should
be placed in a file.

(a) Write a small program to load the data in Lines 50, 60, and 70
into a file called GRADES.

(b) Now write a program to print the contents ot this file.

3. Refer to page 278, Chapter Nine. Write an information-retrieval pro­
gram to retrieve data from the file GRADES you prepared in question
2A above.

SELF-TEST 317

BONUS PROBLEM. Assume you have administered a 10-question multiple
guess test, with 4 possible responses per question. The correct answers
(1, 2, 3, or 4) are loaded into a file called KEY. Another file, ANSWER,
contains a student number followed by the student's 10 responses for 90
students. Your task is to write a program that will print each student number
and tell how many questions were responded to correctly.

Answers to Self-Test

The frame numbers in parentheses refer to the frames in the chapter where
the topic is discussed. You may wish to refer back to these for quick review.

1. (a) (frame 15)

1 REMARK-FILES SELF TEST-10-1
5 FILES V0TE
10 READ #1*1
15 IF END #1 THEN 930
20 READ V
25 IF V=-l THEN 999
30 PRINT #1 I V
40 G0T0 20 «« . . ,© t p
910 DATA l, l , 2 , 2 , 2 , U l , l , 2 > 2 , 2 , l i b > 2 , 1 , 2
9 2 0 D A T A 2 , 2 , l > l » l ^ L 2 » 2 , 2 , l . W 2 U » b 2 , l

930 PRINT " E R R 0 R . - - E N D 0 F F I L E "
999 END

318 BASIC

(b) (frames 10, 17)

1 REMARK -FILES SELF TEST 10-1B
5 FILES V0TE
10 DIM CC203
20 MAT CsZER
30 READ #1,1
40 READ #1JV
50 IF V=-l THEN 80
60 LET CtV7=C[V 3 + 1
70 G0T0 40
80 F0R K=1 T0 2
90 PRINT "ANSWER N0
100 NEXT K
199 END

2. (a) (frame 15)

1 REMARK-FILES SELF TEST 10-2
5 FILES GRADES
10 DIM A$C12]
20 READ #1,1
30 IF END #1 THEN 90
35 READ AS,B,C$
40 PRINT #1 JAS,B,C$
45 G0T0 35
50 DATA "ENGLISH 1 A",3 ,"B","S0C 130",3 ,"A"
55 DATA "PHYSICS 2A",5,"C","STAT 10",3 ,"C"
60 DATA "BUS ADM 1A",4,"B","EC0N 100",4 ,"B"
65 DATA "HUMANITIES",3,"A","HISTORY 17A",3,"B"
70 DATA "CALCULUS",4,"C"
90 PRINT "ERROR.. .END 0F FILE"
99 END

(b) (frames 10, 17)

1 REMARK FILES SELF TEST 10-2B
5 FILES GRADES
10 DIM ASC123
15 IF END #1 THEN 99
20 READ #1,1
25 READ #1JAS,B,C$
30 PRINT A$,B,C$
40 G0T0 25
99 END

3. (frames 23, 24, 25)

1 REMARK FILES SELF TEST 10-3
5 FILES GRADES
10 DIM A$C 12] ,DSC 12]
15 PRINT "ENTER COURSE NAME"J
20 INPUT DS
25 READ Ib l
30 IF END #1 THEN 90
40 READ # 1 JA$*B#C$
50 IF A$»DS THEN 70
60 G0T0 40
70 PRINT A$#B*CS
75 PRINT
80 G0T0 15
90 PRINT "COURSE NAME NOT IN FILE"
95 GOTO 15
99 END

Final Self-Test

1. Look at Chapter Two Self-Test, question 6. The program you wrote
calculated the value of two possible prizes:

PRIZE NO. 1: N dollars
PRIZE NO. 2: D dollars, where D = 1.01N

Write a program (or modify the one we used) to find the smallest whole
number N for which PRIZE NO. 2 is greater than PRIZE NO. 1. Only
this number should be printed.

2. Write a program to simulate the game of "craps." In this game two dice
are rolled, and the total of the two dice is observed. On the first roll
(of 2 dice), 2, 3, and 12 are losers ("craps"); 7 and 11 are winners. If
the first roll totals 4, 5, 6, 8, 9, or 10, the dice are rolled again until
the total is repeated (which wins) or until a 7 is rolled (which loses).
(Hint: use a subroutine to throw the two dice each time.)

Here are two sample RUNs.

0 N T H E F I R S T R 0 L L > T H E D I C E T 0 T A L E D 9
R 0 L L E D A G A I N D I C E T 0 T A L E D 5
R 0 L L E D A G A I N D I C E T 0 T A L E D 9
I T S A W I N N E R ! ! ! ! H E R E W E G 0 A G A I N !

0 N T H E F I R S T R O L L * T H E D I C E T O T A L E D 3
I T S A L O S E R L E T ' S T R Y A G A I N .

320

FINAL SELF-TEST 321

3. Now, try a problem with matrices. Write a program that will transpose
a 2 x 3 matrix. When a matrix is transposed, the rows become columns,
and the columns become rows. The transposed matrix will be 3 x 2.
For example:

RUN

HERE IS THE 0RIGINAL!
1 2 3

4 5 6

AND HERE IS THE TRANSPOSE:
1 4

2 5

3 6

4. Write a program that will convert any input number from centimeters
to inches, and/or from inches to centimeters, depending on the wishes
of the user. Answers should be rounded to two decimals. (Use DEF FN)

Conversion factors:

1 inch = 2.540 centimeters
1 cm = .39370 inch

Use a string IF to decide in which direction the conversion is to be made.
Here is a sample RUN.

R U N

L E N G T H ? 1
I S T H A T I N C E N T I M E T E R S * 0 R I N I N C H E S ? I N C H E S
1 I N C H E S E Q U A L S 2 . 5 4 C E N T I M E T E R S .

L E N G T H ? I 0 0
I S T H A T I N C E N T I M E T E R S j 0 R I N I N C H E S 7 C E N T I M E T E R S

1 0 0 C E N T I M E T E R S E Q U A L S 3 9 . 3 7 I N C H E S .

L E N G T H ?
D 0 N E

322 FINAL SELF-TEST

Answers

1. Here is our shortest program.

1 0 F 0 P N = 1 0 T 0 1 0 0 0
2 0 I F I • 0 1 t N > N T H E N 4 0
3 0 N E X T N
4 0 P R I N T " T H E S M A L L E S T N I S : " ; N
9 9 E N D

Here is the RUN

R U N

T H E S M A L L E S T N I S : 6 5 2

D 0 N E

2. Here is our program.

'20 S2"t2"L TE£T °U"T,0N " M"E
3 0 L E T C I = A + B

t°o ? ,%*"M L L ' 7 H E D I C E

6 0 I F C I = 3 T H E N 1 7 0
7 0 I F C 1 =] 2 T H E N 1 7 0
8 0 I F C 1 = 7 T H E N 2 1 0
9 0 I F C I = 1] T H E N 2 1 0
1 0 0 R E M A R K C l I S N 0 W T H E " P 0 I N T . •
1 1 0 G 0 S U B 2 6 0
1 2 0 L E T C 2 = A + B
1 3 0 P R I N T " R 0 L L E D A G A I N T (, T / , , r n . . _
M O I F C 2 = C 1 T H E N 2 1 0 " - D I C E T O T A L E D " , C :
I S O I F C 2 = 7 T H E N 1 7 0
1 6 0 G 0 T 0 1 1 0

IIS " , t s a l o s e r L E T - S T R Y A G A I N . "

1 9 0 P R I N T
2 0 0 G 0 T 0 2 0
2 1 0 P R I N T " I T S A W I N N E R ! ! ' ! HFRF L<F
2 2 0 P R I N T * W E G 0 A G A I N ! "
2 3 0 P R I N T
2 4 0 G 0 T 0 2 0
2 6 0 R E M A R K A A N D b A R E T H E D I C E .
2 7 0 L E T A = I N T (6 * R N D < 0)) + 1
2 8 0 L E T B = I N T (6 * R N D (0)) + 1
2 9 0 R E T U R N
9 9 9 E N D

FINAL SELF-TEST 323

3. Here is our answer.

1 0 R E M A R K F I N A L T E S T G U E S T I 0 N 3 : M A T R I X T R A N S P O S E
2 0 D I M A [2 » 3 3 # b C 3 # 2 3
3 0 M A T R E A D A
4 0 D A T A 1 # 2 i 3 « 4 # 5 « 6
5 0 F O R 1 = 1 T O 2
6 0 F O R J = 1 T O 3
7 0 B t J - I 3 = A C I , J 3
8 0 N E X T J
9 0 N E X T I
1 0 0 P R I N T " H E R E I S T H E O R I G I N A L : "
1 1 0 M A T P R I N T A j
1 2 0 P R I N T
1 3 0 P R I N T " A N D H E R E I S T H E T R A N S P O S E : "
1 4 0 M A T P R I N T B j
9 9 9 E N D

4. Here is one solution. Note that the rounding is done in the same step as
the conversion, using DEF FN.

1 R E M A R K F I N A L T E S T Q U E S T I O N 4 : C O N V E R T E R
1 0 D I M A S C 1 2 3
2 0 D E F F N C < X) = I N T (2 5 4 * X) / 1 0 0
3 0 D E F F N I (X) = 1 N T C 3 9 . 3 7 * X) / 1 0 0
4 0 P R I N T " L E N G T H " J
5 0 I N P U T L
6 0 P R I N T " I S T H A T I N C E N T I M E T E R S # O R I N I N C H E S " J
7 0 I N P U T A S
8 0 I F A S = " C E N T I M E T E R S " T H E N 1 2 0
9 0 I F A S = " I N C H E S " T H E N 1 5 0
1 0 0 P R I N T " T R Y A G A I N . . . " I
1 1 0 G O T O 6 0
1 2 0 P R I N T L i " C E N T I M E T E R S E Q U A L S " J F N I < L > i " I N C H E S . "
1 3 0 P R I N T
1 4 0 G O T O 4 0
1 5 0 P R I N T L J " I N C H E S E Q U A L S " I F N C (L > 3 " C E N T I M E T E R S . "
1 6 0 P R I N T
1 7 0 G O T O 4 0
9 9 9 E N D

References

Question Chapters)
1 1-4
2 1-5
3 7
4 7-10

Index

Arithmetic operation symbols, 24, 28, 30
order of, 26, 31

Array, 169, 210
one-dimensional, 211
two-dimensional, 211

Comma spacing, 18, 22
Conditional branching, 85
Correcting statements, 11, 13
CRT, 2

DATA statement, 70, 77, 87, 101, 180
errors, 74
flag, 100, 185

Debugging, 94
Defining a function, 162
DIM statement, 177, 216
Double subscripts, 209

Electric typewriter, 2
END statement, 63
Exponent, 32

GOSUB, 246
GO TO statement, 63, 105, 113
Grade Point Average, 47, 52, 57, 63
Growth rate formula, 58, 105

IF-END statement, 296, 314
IF-THEN statement, 85, 92, 98, 103, 156

conditions of, 86
Initializing, 67
Input, 4
INPUT statement, 48, 54, 62, 117

comma spacing, 54
termination of, 65

Interest rate problem, 105, 108, 126, 137
INT function, 137, 149

LET statement, 43, 67, 103 171, 192
Line number, 5, 11, 16
LIST,11
List, 169,211
Loops, 113

Exponentiation, 30
in scientific-notation, 32

Flag, 98, 185
File PRINT statement, 290, 312
File READ statement, 291

random access, 310
serial, 292

File size, 290
FILES statement, 290

random access, 309
serial, 288

FOR statement, 113, 121, 174, 180
STEP clause, 122

Functions, 134

Main program, 247
Mantissa, 32
MAT operations, 191

MAT INPUT, 196, 229
MAT PRINT, 194, 224
MAT ZER, 192, 222

Matrix, 169, 209
Mean, 46, 117

NEXT statement, 113, 174, 180
Number sorting program, 263
Numerical expression, 9

ON...GO TO statement, 156
OPEN file command, 289

324

325 INDEX

Population growth, 58, 60, 66, 76
Powers of a number, 30
Print positions, 18
PRINT statement, 50, 64, 117, 146, 153

semicolon spacing, 50
Program, 4

Random access files, 309
Random numbers, 142
RANDOM statement, 142
READ statement, 70, 76, 128, 180
Records, 309
REMARK statement, 57, 142
RETURN statement, 246
RND function, 142, 147
Rounding, 138
RUN, 8

Scientific notation, 32
SCRatch, 4, 11
Semicolon spacing, 18, 21, 50
Serial files, 288
SQR function, 135
Standard deviation, 253
Statement, 4, 6

correcting, 11,13
replacing, 11,13

String, 9, 22
String DIM, 266
String IF-THEN, 274
String INPUT, 267
String LET, 273
String PRINT, 267, 281

String READ/DATA, 272
String variable, 265
STOP statement, 246
Subscripted variable, 170, 182

double subscript, 209
single subscript, 170
subscript errors, 177
variable subscript, 172, 176, 186, 212

Substring, 281

TAB function, 157
limitations of, 158

Teletypewriter, 2
Terminal, 2
Test scoring program, 198, 201, 251
TYP function, 303, 314

Variable, 43, 50, 106
dummy, 162
value of, 44

Variance, 253
Vector, 169, 211
Vote counting program, 185, 191, 214, 220

Words, 290
World's Most Expensive Adding Machine

program, 67, 75, 128, 174

