
Radio aek

U.S.A. $6.95

TRS-80 Pocket BASIC Handbook

by
William Barden, Jr.

Radio Shack
A Tandy Corporation

Second Edition
First Printing-1983

Copyright C1982 by Radio Shack. Division
of Tandy Corporation, Fort Worth, Texas
76102. Printed in the United States of
America.

All rights reserved. Reproduction or use,
without express permission, of editorial or
pictorial content, in any manner, is prohib
ited. No patent liability is assumed with
respect to the use of the information con
tained herein.

Preface
This book is designed to be a quick refer

ence guide to the BASIC languages used
on the Radio Shack TRS-80 Model I, Model
II. Model III. and Color Computers. It won't
replace the BASIC manuals that come with
those computer systems, but-it will help to
jog your memory about the types of BASIC
commands available, the format of the
commands, the operation of the com
mands. and the commands that are related.

The commands include all BASIC sym
bols. such as * tor multiply, all BASIC com
mands. such as PRINT, and all BASIC func
tions. such as ATN. We'll use the generic
term "command" to mean any of those
three items. The term "statement" will be
any use of commands in a single step, such
as A=SIN(B*C) or POKE 16523.(RR/67).
The term BASIC "line" will mean a single
statement or multiple statements with the
same line number

There are 255 commands in this refer
ence book, one per page. They are orga
nized in alphabetical order. The Contents
section on the next few pages lists all com
mands and indicates for which systems
they are used. The systems are: Model I.
Level I; Model I. Level II; Model I. Disk
BASIC: Model II BASIC: Model III. Level I;
Model III. Level III; Model III. Disk BASIC,
Color Computer. BASIC; Color Computer
Extended BASIC; and Color Computer,
Disk BASIC. We'll keep this order in the
SYSTEM description on each page.

Each command format is described
under "FORMAT*.' In those cases where the
command is normally used in a program

we've included "line#" under the format. In
those cases where the command is nor
mally used in the command mode, we've
left out the "line#'.' In some cases the com
mand is used in either command mode or
program execution, and we've indicated
both by two format statements, one with
"line#" and one without.

In those cases where a command re
quires parentheses or double quotes, we've
included them in the FORMAT. Dots indi
cate that the command may be embedded
in other commands and probably won't
stand by itself, as in the case of functions.

The EXAMPLES show one or more actual
examples of the use of the command. Des
criptive text is sometimes included in lower
case in the right-hand portion of the
examples.

The DESCRIPTION section contains a
very brief explanation of the command. Any
peculiarities for specific systems are also
described here.

RELATED COMMANDS lists any com
mands that may help in understanding the
action of the command in question.

To Babbage for starting the whole thing!

Contents

Command
I
m

S
*
A H
A O

P
'(AND)
+
• (OR)

/

<
<«
<>
•
>
>«
ABS
AND
ASC
ATN
AUDIO
AUTO
BACKUP
CDBL
CHR$
CINT
CIRCLE
CLEAR
CLOAD
CLOAD*-
CLOAD?
CLOAD?!-
CLOADM
CLOSE
CLS

Configuration
ooo.oo...

oooooooooo
ooooo

oooooooooo
OO oo
oo o oo
oo o oo

oooooooooo
oooooooooo
oooooooooo
o
oooooooooo
O . . . 0
oooooooooo
oooooooooo
.000 00
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
.000 00000
000 00000
000 00.00

000
000 00...

o
000 00...

.000.00000
000.00...

.00
. 000 00000
000 000000
00
00. 00...
00

000
. . 0 0 . . 0 . . 0
oooooooooo

CMD'A"
CMD"B"
CMD"C"
CMD"D"(I)
CMD"D"(III)
CMD"E"
CMDT'
CMD"J"
CMD"L"
CMD'O"
CMD'P"
CMD"R"
CMD'S"
CMD"T"
CMD"X"
CMD'Z"
COLOR
CONT
COPY
COS
CSAVE
CSAVE#-
CSAVEM
CSNG
CVD
CVI
CVN
CVS
D
DATA
DATES
DEF FN
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEFUSR
DEL
DELETE
DIM
DIR
DRAW
DRIVE
DSKIS
DSKINI
DSKOS
E

o . . .
o . . .
o . . .

. . 0
o . . .
o . . .
o . . .
o . . .
o . . .
o . . .
o . . .

. . 0 . . . 0 . . .

. . 0 . . . 0 . . .

. . 0 . . . 0 . . .
o . . .
O . . .

o o
o o o o o o o o o o

o
. O O O . 0 0 . 0 0
o o o . o o o o o o
. o o

o o
. o o o . O O . . .
. . 0 0 . . o . . .
. . o o . . o . . .

o
. . o o . . o . . .
. o o o . o o . . .
o o o o o oo o o o
. . . 0
. . o o . . o . o o
. 0 0 0 . o o . . .
. o o o . o o . . .
. o o o . o o . . .
. O O O . 0 0 . . .
. . O O . . O . 0 0

o o
. 0 0 0 . o o . . .
. o o o . o o o o o

o
00

o
o
o
o

. o o o . o o . . .

E D I T .ooo oo o o
E d i t M o d * A .ooo.oo oo
E d i t M o d * B a c k t p a c * ooo oo.oo
E d i t M o d * C .ooo.oo oo
E d i t M o d * 0 OOO 00 oo
E d i t M o d * E .ooo oooo
E d i t M o d * E N T E R .ooo oo oo
E d i t M o d * E S C 0
E d i t M o d * H .ooo oo.oo
E d i t M o d * 1 .ooo oooo
E d i t M o d * K .ooo oo.oo
E d i t M o d * L ooo.oo.oo
E d i t M o d * Q ooo.oo.oo
E d i t M o d * S ooo.oo.oo
E d i t M o d * S H I F T .
u p a r r o w ooo oooo
E d i t M o d * S p * c * - B a r ooo oo.oo
E d i t M o d * X ooo.oo.oo
E N D oooooooooo
E O F . oo..0..0
E Q V . . .0
E R A S E o
E R L ooo.oo...
E R R ooo.oo...
E R R O R ooo.oo...
E R R S 0
E X E C ooo
E X P ooo.oo.oo
F I E L D . O O . . O . . 0
F I L E S 0
F I X ooo oo.oo
F O R . . . T O . . . S T E P oooooooooo
F R E ooo.oo...
F R E E o
G E T (d l » k) . G O . . O . . 0
G E T (g r a p h l c ») oo
G O S U B oooooooooo
G O T O oooooooooo
H E X S . . . o o o
I F . . . T H E N oooooooooo
I F . . . T H E N . . . E L S E ooo.ooooo
I M P . .0
I N K E Y S ooo ooooo
I N P oo. oo...
I N P U T oooooooooo
I N P U T . . . ; oooooooooo
I N P U T # (d i » k) o

o

§

INPUT# (non-disk) 0
INPUT#-1 .00..00000
INPUT#-2 .00
INPUTS(dlsk) . . .0
INPUTS(non-dlsk) . . .0
INSTR . . 00. . 0.00
INT OOOOOOOOOO
JOYSTK 000
KILL ..00..0..0
LEFTS .000 00000
LEN .000.00000
LET OOOOOOOOOO
LINE 00
LINE INPUT .. 00.. 0.00
LINE INPUT# . . 0 0 . . 0 . . 0
LIST OOOOOOOOOO
LLIST .000000000
LOAD . . 0 0 . . 0 . . 0
LOADM 0
LOC . . 0 . . 0 . . 0
LOF . . 0 0 . . 0 . . 0
LOG .000.00.00
LPRINT .000000...
LPRINT USING . 0 0 0 . 0 0 . . .
LSET . . 0 0 . . 0 . . 0
MEM OOOOOOOOOO
MERGE . . 0 0 . . 0 . . 0
MIDS .000.00000
MID$= . . 0 0 . . 0 . 0 0
MKDS . . 0 0 . . 0 . . .
MKIS . . 0 0 . . 0 . . .
MKNS 0
MKSS . . 0 0 . . 0 . . .
MOD . . .0
MOTOR 0 0 0
NAME(renumber) 0 . . .
NEW OOOOOOOOOO
NEXT OOOOOOOOOO
NOT .000.00000
OCTS . . . 0
ON ERROR GOTO . 0 0 0 . 0 0 . . .
ON . ..GOSUB OOOOOOOOOO
ON. ..GOTO OOOOOOOOOO
OPEN . . 0 0 . . 0 0 . 0
OR .000.00000
OUT . 0 0 . . 0 0 . . .
PAINT 0 0

PCLEAR
PCLS
PCOPY
PEEK
PLAY
PMOOE
POINT
POKE
POS
PPOINT
PRESET
PRINT
PRINT*-1
PRINT«-2(CC)
PRINT*-2(I)
PRINT#(dlsk)
PR I NT* (non-disk)
PRINT USING
PRINT AT
PRINT @
PSET
PUT(dlsk)
PUT(grsphlcs)
RANDOM
READ
REM
RENAME(CC)
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS
RNO
ROW
RSET
RUN
RUN'prog"
SAVE
SAVEM
SCREEN
SET
SGN
SIN
SKIPF
SOUND
SPACES

.OO
OO
OO

00..00000
. 0 0

OO
000 000000
00 .00000
000 00.00

OO
OO

OOOOOOOOOO
00 00000

000
.00
. OO .0..0
o
.000 00.00
o...0
.000 00000

00
. 00..0..0

00
.000 00
OOOOOOOOOO
OOOOOOOOOO

.0
o 00

000 000000
OOOOOOOOOO
000 00...

OOOOOOOOOO
000.00000

OOOOOOOOOO
.. .0
. 00..0..0
OOOOOOOOOO
. 00..0..0
..00..0..0

o
00

000 000000
000 00000
000 00000

000
000

.. .0

1

SPC
SQR
STOP
STRS
STRINGS
SWAP
SYSTEM(I/III)
SYSTEM(II)
TAB
TAN
TIMES
TIMER
TROFF
TRON
UNLOAD
USR
USRn
VAL
VARPTR
VERIFY
WRITE#
XOR
up arrow
reverse slash

. . . o
000 oo oo

oooooooooo
ooo ooooo
ooo.ooooo

. . . 0
00 oo...

. . . 0
oooooooooo
.000.00.00
. 00 oo...

oo
000 00 00
000 OO 00

o
000.ooooo

. . 00 . o oo
ooo ooooo

. 000 00 . oo
o
o

. . . 0
oooooooooo
. . . 0

SPECIAL KEYS
ERROR CODES
ASCII CODES
BINARY. DECIMAL. HEXADECIMAL

EQUIVALENTS

Configuration = I. LVL l_
I. LVL II.
I, Disk
II

oooooooooo
±1

III. LVL l_
III. LVL III.
Ill, Disk.
CC. BASIC
CC, Ext BASIC.
CC. Disk

COMMANDS

SYSTEM
I. LVl I
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line#, variable name •

EXAMPLES
1O0C A'=123456
1010 22'=99999

DESCRIPTION
The suffix "is used to define single-precision
variables The detault variable type is single
precision, but the " I" suffix can be used to define
a variable within a range used on a OEFDBL.
DEF INT. or DEFSTR Single-precision variables
hold 7 decimal digits of precision in memory and
display 6 decimal digits Single-precision variables
take up four bytes of RAM storage for each variable

RELATED COMMANDS
DEFC'BL. DEF I NT. DEFSNG. DEFSTR

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#..."string literal'.'..

EXAMPLES
1000 R$=''THIS IS ft STRING''

DESCRIPTION
Double quotes are used to enclose string "literals"
String literals are the actual text of the string. They
are stored in the BASIC program line itself,
although they may be used to create new strings
that are stored in the string storage area. String
literals may generally be used any time that a string
variable can be used, such as in PRINT
statements, string comparisons, or other string
processing. Always enclose the string literal with
double quotes; failure to do so may cause errors in
program renumbering or other program processing.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I
III. LVL III •
III, Disk •
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
line#., variable namett

EXAMPLES
1000 £8=1234567890.123456?
1010 2Z8=99999999999
DESCRIPTION
The suffix "8" is used to define double-precision
variables. The default variable type is single
precision. Other numeric variable types must be
defined by the %, #, D, or $ suffixes, or by
DEFINT, DEFDBL, or DEFSTR. The "8" suffix
can be used to define a double-precision variable
within a range used on a DEFINT, DEFDBL, or
DEFSTR. Double-precision variables hold 17
decimal digits of precision in memory and display
16 decimal digits. Double-precision variables take up
eight bytes of RAM storage for each variable.
Double-precision variables should be used in place
of single-precision variables where extreme accuracy
is desired and when the number of double-precision
variables will not be prohibitively large (as would be
the case in a large array).

RELATED COMMANDS
DEFDBL, DEFINT, DEFSNG, DEFSTR

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...variable names
EXAMPLES
1000 R$=" TELEPHONE 0"
1010 ZZ$=STRING$(100,"*")
DESCRIPTION
The suffix is used to define string variables.
String variables generally hold ASCII character data,
although they may hold other non-ASCII data as
well. String variables may be from 0 to 255
characters long, where each character corresponds
to one byte in RAM. The names of string variables
follow the same rules for numeric variable names.
The first character must be alphabetic. One or two
character names may be used. (Model l/lll Level I
allows only A$ and B$.) The suffixdenotes the
variable as a string variable; the same name may be
used for a numeric and string variable, except that
the suffix will be different. AA$ and AA are a string
variable and numeric variable, respectively. The
suffix "$" may be used to define a string variable
within a range of other variables defined by a
DEFDBL, DEFSNG, or DEFINT.
RELATED COMMANDS
DEFDBL, DEFINT, DEFSNG, DEFSTR

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
line# variable nameX...

EXAMPLES
1000 **=-12345
1010 ZZX=3333

DESCRIPTION
The suffix "X" is used to define integer variables
The default variable type is single precision, but the
"X' suffix can be used to define an integer variable
explicitly or within a range used on a DEFDBL,
DEFSNG. or DEFSTP. Integer variables hold
values from -32768 through •32767. No fractions
are allowed Integer variables take up two bytes of
RAM storage for each variable, making them one of
the most efficient ways to store data, when the data
is in the limited range of values

RELATED COMMANDS
DEFDBL, DEFINT. DEFSNG, DEFSTR

SYSTEM
I, LVL I
I. LVL II
I, Disk ••
II •
III, LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
linett...tHdddd...

EXAMPLES
1010 FOR I=&H8000 TO &H8003 set up loop
1010 PRINT PEEK(I) display contents
1020 NEXT I continue

DESCRIPTION
The prefix "g,H" is a special code that indicates
"hexadecimal digits following'.' Hexadecimal notation
is used in place of decimal or binary notation for
Z-80 instruction codes, data relating to machine-
language operation, and system addresses. The &H
prefix may be followed by 1 to 4 hexadecimal digits.
Each hexadecimal digit is 0 through 9 or A through
F and represents a power of 16. The maximum
hexadecimal value that can be defined in TRS-80
systems is &HFFFF, representing binary
1111111111111111, or decimal 65,535.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC, Disk

FORMAT
line* i.Odddddd

EXAMPLES
1010 FOR 1=1.0100000 TO 80100003 setup
loop
1020 PRINT PEEK(11 pnnt contents
1030 NEXT I loop

DESCRIPTION
The prefix "1.0" is a special code that indicates
"octal digits following" Octal notation is sometimes
(rarely) used in place of decimal or binary notation
for Z-80 instruction codes, data relating to machine-
language operation, and system addresses The 80
prefix may be followed by 1 to 6 octal digits. Each
octal digit is 0 through 7 and represents a power of
8 The maximum octal value that can be defined in
TRS-80 systems is 8-0177777, equivalent to binary
1111111111111111. or decimal 65535. The prefix
"8" is equivalent to "80" and may be used in its
place

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# ' remark text
line# remark text...

EXAMPLES
1000 'THIS IS A REMARK LINE
1010 A=B 'AND SO IS THIS PORTION

DESCRIPTION
The single quote replaces the colon (:), REM
commands. In effect, it is a shorthand way of
creating a new REM statement, either at the
beginning of a line or in the middle of a line. Using
the single quote creates "pretty" listings that may
be much more readable. The single quote may be
placed anywhere in the line.

RELATED COMMANDS
REM

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
fine#

EXAMPLES
1000 A=B'(C*0)

DESCRIPTION
Parentheses are used to denote the order of
operations m expressions In the example above, the
result should be B/(C+D); if the parentheses were
not included the operation would become B/C,
followed by the addition of D. BASIC always
evaluates the expressions inside parentheses before
evaluating the rest of the expression Parentheses
may be nested" that is. there may be many levels
of parentheses, one within another BASIC always
works from the innermost parentheses out in
evaluating parentheses

RELATED COMMANDS
None

SYSTEM
LVL I
LVL II
Disk

I. LVL I
I, LVL III
I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line

EXAMPLES
1000 C=3.14159*D find circumference
1010 C=SQR (A*A+B*B) find length of
hypotenuse

DESCRIPTION
The special character "*" is reserved as a BASIC
operator signifying multiplication, except for the
Model l/lll Level I, where it is also a logical "AND"
operator. It should not be used in variable names or
in any other context other than within text strings
enclosed by quotes. may be used any number
of times within a BASIC statement as long as it is
not immediately followed by another operator.

RELATED COMMANDS
*(AND)

4

SYSTEM
I. LVL I
I. LVL II
I. Disk
II

LVL I
LVL III
Disk
BASIC
Ext BASIC
Disk

III.
III.
III.
CC.
CC,
CC.
FORMAT
hneH (expression) * (expression)...
EXAMPLES
1000 IF (A<2) * (B>5) THEN PRINT
••HELP!*'
1010 IF A « 3=3 THEN GOTO 0000
DESCRIPTION
In ttie Model l/lll Level I. is an abbreviation for
the AND function in addition to representing a
multiplication operator AND is used as a relational
operator and for bit manipulation. In the first use.
AND compares two constants, variables, or
expressions. If both expressions are true, then the
AND function is true In the example above.
(A<2) * (B>5) is true only if variable A is
less than 2 AND variable B is greater than 5. The
THEN action would only be taken if both
expressions were true (expression 1 AND expression
2) In the bit manipulation case, AND is used to
logically AND integer variable bits, considered to be
binary numbers An AND of binary values produces
a 1 for each bit posibon only if both operands have
a 1 bit in that bit position. An AND of the two
binary values 10100000 and 11001111 would
produce a result of 10000000 The AND in this
apphcabon can be used to test bits, mask out fields,
and perform other bit wise operations.
RELATED COMMANDS
*. •(OR)

SYSTEM
I. LVLI
I, LVL II
I, Disk
II
III, LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
linett...expression+expression...
EXAMPLES
1000 C=1.5+32+N+M find total
DESCRIPTION
The special character is reserved as the sign of
a constant or a BftSIC operator signifying addition
or string concatenation. (It is also used in the Model
l/lll Level I to specify a logical "OR".) It should not
be used in variable names or in any other context
other than within text strings enclosed by quotes.
"+" may be used any number of times within a
BASIC statement as long as it is not immediately
followed by another operator. When used as an
arithmetic operator, it has the same effect as the
usual "plus" sign • it adds two quantities, which
may be any mixture of constants, variables, or
expressions. When used as a string concatenation
operator (not a Model l/lll Level I function), it joins
two strings. The result string is made up of the first
string appended by the second string. If A$="N0W
IS THE TIME" and B$="FOR ALL GOOD
PROGRAMMERS..: then C$=A$+B$ would set C$
equal to "NOW IS THE TIME FOR ALL GOOD
PROGRAMMERS. " When used as a sign, it must be
immediately followed by numeric data.
RELATED COMMANDS
•(OR)

te n

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line* (expression) * (expression)

EXAMPLES
1000 IF (A<2) • I B>5 I THEN PRINT
••HELP?"
1010 A=A • 8 set bit 3
DESCRIPTION
In the Model l/lll Level I. is an abbreviation for
the OR function along with representing an addition
operator OR is used as a relational operator and for
bit manipulation In the first use. OR compares two
constants, vanables, or expressions If either
expression is true, then the OR function is true. In
the example above. (A<2 i • (B>5) is true if
variable A is less than 2 OR variable B is greater
than 5. The THEN acbon would only be taken it
either expressions was true (expression 1 •
expression 2) In the bit manipulation case. OR is
used to logically OR integer variable bits, considered
to be binary numbers An OR of binary values

oduces a 1 for each bit position if either operand
I bit position An OP of the two

binary values 10100000 and llOOl^^would 1

produ
has a

produce a result of 11101111 The OP in this
application can be used to test bits, set individual
bits and perform other bit wise operations
RELATED COMMANDS
• (AND). •

SYSTEM
I, LVLI
I, LVL II •
I, Disk •
II •
III, LVL I
III. LVL III
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •

FORMAT
/me#...PRlNT iteml,item2...
/me#...LPRINT iteml,item2. ..

EXAMPLES
1000 PRINT A,
1010 PRINT "NUMBER IS "*N "NEXT
IS ";M
DESCRIPTION
In addition to separating items in DATA lists and
acting as a delimiter in certain BASIC commands,
he comma has a special use in PRINT statements

It is used in PRINT and LPRINT statements to
mean "tab to the next print zone" Both the video
display and line printer lines are divided into "print
zones, which are similar to predefined typewriter
tabs. When a comma is encountered after a PRINT
item, the BASIC interpreter will tab to the start of
the next print zone. This allows for easy
columnization of displayed and printed data items.
The print zones are predefined and dependent upon
the system used.

RELATED COMMANDS

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line« expression • expression ..

EXAMPLES
1O00 L=L-1 -N find ad/usted length

DESCRIPTION
The special characteris reserved as a BASIC
operator signifying subtraction or for negating
values It should not be used in variable names or
in any other context other than within text strings
enclosed by quotes When used as an arithmetic
operator.may be used any number of times
within a BASIC statement as long as it is not
immediately followed by another operator Its
meaning is identical to the normal use of the
subtract sign When used to negate quantities, it
must be immediately followed by a numerical
constant, as in

1000 DATA -5.-67.89.*45.*1

RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II •
I, Disk •
II •
III, LVL I
III. LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
used in Edit mode

EXAMPLES
EDIT.

DESCRIPTION
The period is used in Edit mode to mean "the
current Irne'.' The command EDIT, will result in an
Edit of the current line number. If line 400 was
LISTed just prior to the EDIT., for example,
EDIT. will invoke an edit of line 400.

RELATED COMMANDS
None

rgwroreeBaaaL norsruQl

f ̂VrYhVj A

SYSTEM
I. LVL I

LVL II
Disk

II
III,
III.
III.
CC.
CC.
CC.

LVL I
LVL III
Disk
BASIC
Ext BASIC
Disk

FORMAT
ImeU expression expression

EXAMPLES
1000 R=2*D'3.14159 hnd radians
1010 TO=SUf,t '100 find avenge score

DESCRIPTION
The special character is reserved as a BASIC
operator signifying division. It should not be used in
variable names or in any other context other than
within text strings enclosed by quotes. V" may be
used any number of times within a BASIC
statement as long as it is not immediately followed
by another operator.

RELATED COMMANDS
None

SYSTEM
LVL I
LVLII
Disk

III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#

EXAMPLES
1000 A=C*2 : B=C*64 : C$=A$ 'A
MULTIPLE-STATEMENT LINE

DESCRIPTION
The colon is used to create multiple-statement lines.
A multiple-statement line, just as the name implies,
has two or more separate statement groupings, with
a common line number, as in the above example. All
statements in the line will be executed in sequence,
just as if they were separate lines. GOTOs or
GOSUBs to the middle of the line, however, are not
possible. When statements are appended to
IF...THEN or IF...THEN...ELSE
statements, the appended statements will not be
executed unless the THEN or ELSE condition is
satisfied. 1000 IF A=1 THEN B=0 : C=2 and
1010 IF A<>1 THEN B=1 ELSE B=0 : C=2
will set C equal to 2 only if A=1 (both cases).

RELATED COMMANDS
None

IS 44;N,4 'NEXT

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III, LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC, Disk
FORMAT
//neJf.PRINT iteml;ilem2;..
line# ..LPPINT iteml;item2:
EXAMPLES
1000 PRINT A;
1010 PRINT 4"NUMBER
I S 4 4 ; M
DESCRIPTION
In addition to acting as a delimiter in certain
BASIC commands, the semicolon has a special use
in PRINT statements It is used in PRINT and
LPRINT statements to mean "do not space" Both
the video display and line printer lines are divided
into "print zones',' which are similar to typewriter
tabs When a comma is encountered after a PRINT
item, the BASIC interpreter will tab to the start of
the next print zone. Using a semicolon, however,
inhibits this tabbing and positions the video display
cursor or the line printer print head over the next
character position This allows data items to be
displayed or printed directly after related text or
data items as in "PRINT 4 'NUMBER IS
44 ;N." which would print
NUMBER IS 123.56
RELATED COMMANDS

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...expression<expression...
EXAMPLES
1000 IF (M-2)<N THEN GOTO 2000
1010 IF ZZ<23 THEN ZZ=ZZ+5 ELSE
ZZ=ZZ-1
1020 IF LEFTS(A$,l)<''M* * THEN
PRINT ' 'FIRST HALF''
DESCRIPTION
The < character is used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator, "<"
stands for "less than" and is used to test one
quantity against another, as in "IF A<23". In this
use, < is used in the IF.. .THEN or
IF.. .THEN.. .ELSE commands. When used as
a string operator, < is used to test two strings
against each other. Strings are compared on a
character by character basis, with each character
representing a "weight" determined by its ASCII
value. ASCII values roughly follow alphabetic
sequence. An "A" is "less than" a "B" in this
context. The < is again used in the IF... THEN
and IF.. .THEN.. .ELSE commands for string
comparisons as in "IF A$<' 'CALIF"", which
tests string A$ for "less than" string "CALIF".
RELATED COMMANDS
<=,<>,= >,>=

SYSTEM
I. LVL I •
I. LVL II •
I, Disk •
II •
III, LVL I •
III, LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
line#...expression<=expression...
EXAMPLES
1000 IF (M-2)<=N THEN GOTO 2000
1010 IF ZZ<=23 THEN ZZ=ZZ+5 ELSE
ZZ=ZZ-1
1020 IF LEFTS(AS,1)<=' *M" THEN
PRINT * 'FIRST HALF"
DESCRIPTION
The <= characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator "<="
stands for "less than or equal to" and is used to
test one quantity against another, as in "IF
A<=23'.' In this use, <= is used in the
IF...THEN or IF. . .THEN...ELSE
commands. When used as a string operator, <= is
used to test two strings against each other. Strings
are compared on a character by character basis,
with each character representing a "weight"
determined by its ASCII value. ASCII values roughly
follow alphabetic sequence. An "A" is "less than" a
"B" in this context. The <= is again used in the
IF...THEN and IF...THEN...ELSE
commands for string comparisons as in "IF
A$<=' 'CALIF''" which tests string A$ for "less
than or equal to" string "CALIF'.'
RELATED COMMANDS
<,<>,=,>,>=

SYSTEM
I, LVL I •
I, LVL II •
I, Disk •
II •
III, LVL I •
III, LVL III •
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
line#. ..expressionOexpression...
EXAMPLES
1000 IF fM-2)<>N THEN GOTO 2000
1010 IF ZZ<>23 THEN ZZ=ZZ+5 ELSE
ZZ=ZZ-1
1020 IF LEFT$(fl$,l)<>"M" THEN
PRINT ''NOT M''
DESCRIPTION
The <> characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator
<> stands for "not equal to" and is used to test

one quantity against another, as in "IF A<>23"
In this use, <> is used in the IF.. .THEN or*
IF.. .THEN.. .ELSE commands. When used as
a string operator, O is used to test two strings
against each other. Strings are compared on a
character by character basis, with each character
representing a "weight" determined by its ASCII
value. ASCII values roughly follow alphabetic
sequence. An "A" is "less than" a "B" in this
context. The <> is again used in the
IF...THEN and IF...THEN...ELSE
commands for string comparisons as in "IF
fl$<>' ' CALIF''" which tests string A$ for
not equal to string "CALIF"

RELATED COMMANDS
<,<=,=,>,>=

SYSTEM
I. LVL I
I, LVL II
I. Disk
II
III. LVL I
III, LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# variable-expression
line#... expressionOexpression...
bne#...stringostring...
EXAMPLES
1000 PI=3.14159
1010 IF N=(23-M) THEN N=0
1020 IF A$=B$ THEN PRINT
*'FOUND''
DESCRIPTION
The equals sign "=" is used to equate a variable to
a quantity, as a relational operator, or as a string
operator. When used as to equate a variable to a
quantity, it separates the variable from a constant, a
second variable, or an expression, and sets the
variable on the left-hand side to the value of the
argument on the right-hand side. When used as an
arithmetic relational operator, it compares one
expression with another, as in "IF (X-2)=1024'.'
It is used in this context with the IF... THEN and
IF.. .THEN.. .ELSE commands. When used as
a string operator, it compares two strings with one
another, as in "IF A$=6$+C$" or "IF
A$='' FALSE''It is also used in the
IF...THEN or IF...THEN...ELSE
commands as a string operator.
RELATED COMMANDS
None

SYSTEM
I, LVLI
I, LVL II •
I, Disk •
II •
III. LVL I •
III. LVL III •
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
line#. ..expression Expression...
EXAMPLES
1000 IF X>101 THEN GOTO 1050
1010 IF ZZ>23 THEN ZZ=ZZ+5 ELSE
ZZ=ZZ-1
1020 IF LEFTS (A$,l)>* *CA'' THEN
STOP
DESCRIPTION
The > character is used either as a relational
operator or as a string operator in BASIC A
relational operator compares two arithmetic
quantities. When used as a relational operator ">"
stands for "greater than" and is used to test one
quantity against another, as m "IF A>23" In this
use, > is used in the IF... THEN or
IF.. .THEN.. .ELSE commands. When used as
a string operator, > is used to test two strings
against each other. Strings are compared on a
character by character basis, with each character
representing a "weight" determined by its ASCII
value. ASCII values roughly follow alphabetic
sequence A T is "greater than" a "W" in this
context. The > is again used in the IF...THEN
ana IF.. .THEN.. .ELSE commands for string
compansons as ,n "IF A$>- 'CALIF which
tests string A$ for greater than" string "CALIF"
RELATED COMMANDS «=,<>,=>=

SYSTEM
I. LVL I
I. LVL II
I. Disk
II

LVL I
LVL III
Disk
BASIC
Ext BASIC
Disk

III.
III.
III.
CC.
CC.
CC.
FORMAT
lineH. expression>=expression..
EXAMPLES
1000 IF X>=101 THEN GOTO 1050
1010 IF ZZ>=23 THEN ZZ=ZZ»5 ELSE
ZZ=ZZ-1
1020 IF LEFT$(A$,1)>=*«CA" THEN
STOP
DESCRIPTION

W The >= characters are used either as a relational
operator or as a string operator in BASIC. A

^ relational operator compares two arithmetic
** quantities. When used as a relational operator

' >=" stands for "greater than or equal to" and is
^ used tp test one quantity against another, as in "IF

A>=23". In this use, >= is used in the
- IF...THEN or IF...THEN...ELSE

commands. When used as a string operator, >= is
used to test two strings against each other Strings

^ are compared on a character by character basis.
^ with each character representing a "weight"

determined by its ASCII value. ASCII values roughly
£ follow alphabetic sequence. A "Z" is "greater than"

a "W" in this context. The >= is again used in the
IF...THEN and IF.. .THEN.. .ELSE
commands for string comparisons as in "IF
A$>=* 'CALIF' which tests string A$ for
"greater than or equal to" string "CALIF.'

J RELATED COMMANDS
<.<=.<>.=,>

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
/me#... f\BS(expression)...

EXAMPLES
1000 REM FIND X DISTANCE
1010 XD=AB5(X1IX2)

DESCRIPTION

ABS returns the absolute value of a constant
variable, or expression. It is a function that may be
used anywhere within a BASIC statement.
ABS(X)=X for X equal to or greater than 0.
ABS (X) =-X for X less than 0. In other words, the
result of the ABS is always positive.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III, LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line* (expression) AND (expression) ..
EXAMPLES
1000 IF (A<2) AND (B>5 | THEN PRINT
"HELP'"
1010 IF (A AND 3=31 THEN GOTO 8000
DESCRIPTION
AND is used as a relational operator and for bit
manipulation. In the first use. AND compares two
constants, variables, or expressions. If both
expressions are true, then the AND function is true
In the example above, (A<2) AND (B>5) is true
only if variable A is less than 2 AND variable B is
greater than 5. The THEN action would only be
taken if both expressions were true (expression 1
AND expression 2) In the bit manipulation case.
AND is used to logically AND integer variable bits,
considered to be binary numbers An AND of binary
values produces a 1 for each bit position only if
both operands have a 1 bit in that bit position. An
AND of the two binary values 10100000 and
11001111 would produce a result of 10000000 The
AND in this application can be used to test bits,
mask out fields, and perform other bit wise
operations
RELATED COMMANDS
NOT. OR

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line*...f\SC(string)...

EXAMPLES
1000 A=ASC (A$) gel first character of A$ in
numeric
1010 B=ASC(* 'NOW IS THE TIME" I get
"N" in numeric

DESCRIPTION
ASC finds the ASCII code of the first letter of the
specified string. In other words it takes the string
argument, strips off the first character, and returns
it as a numeric value, rather than a string character
It is a partial "convert to numeric" as in VAL. In

! the second example above, ASC would take the
I string "NOW IS THE TIME" strip off the "N" and

return the "N" as a decimal 78, the ASCII code for
"N" ASC can be used for alphabetizing and other
string processing. ASC performs the inverse of the

I CHR$ function.

RELATED COMMANDS
CHR$, STR$, VAL

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line* ATU(eipression)...

EXAMPLES
1000 PRINT ATN(X)*57.29578 print angle

DESCRIPTION
ATM finds the arctangent of the argument The
arctangent is the angle in radians of the argument,
assumed to be a tangent value The expression may
be a constant, variable, or expression The result of
ATN is in radians. To find the result in degrees,
multiply by 180/pi. or 57.29578. ATN is the
inverse of the TAN function, which finds the
tangent of an angle in radians.

RELATED COMMANDS
TAN

SYSTEM
I, LVL I
I. LVL II
I. Disk
II
III, LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC •
CC, Disk •

FORMAT
AUDIO ON
/me# AUDIO ON
AUDIO OFF
/me# AUDIO OFF

EXAMPLES
1000 AUDIO ON turn on TV speaker
3000 AUDIO OFF turn ott TV speaker

DESCRIPTION
AUDIO ON routes the cassette output to the TV
speaker. The TV speaker can now be used to
monitor CLOADs and CLOADMs o« cassette tiles.
This can be helptul in positioning the tape and
veritying that cassette data is valid. AUDIO OFF
turns off the audio routing

RELATED COMMANDS
None

SYSTEM
I. IVl I
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
AUTO
AUTO /me#
HUTO /me#.increment

EXAMPLES
AUTO 100.2 number lines 10O.102,10-t.efc

DESCRIPTION
HUTO invokes the automatic line numbering mode
of BASIC The BASIC interpreter will
automatically display a line number, starting with
the line# start specified in the AUTO command, and
will increment the line numbers by the increment
number specified in AUTO. AUTO is used primarily
in creating new programs: the user fills out the
remainder of the BASIC line, terminates it with
ENTER, and then continues with the next AUTO
line number The line# and increment are optional
If the increment is not specified, the default
increment is 10 If neither the line number nor
increment are specified, the starting line number is
10 AUTO is not related to TRSDOS AUTO.

RELATED COMMANDS
None

SYSTEM

FORMAT
BACKUP 0
BACKUP source drive TO destination drive

EXAMPLES
BACKUP 0
BACKUP 0 TO 1

DESCRIPTION
BACKUP is a Color Computer Disk BASIC
command that duplicates the contents of one
diskette on a second diskette. The backup is an
exact copy of the original disk. If a single drive
system is used, the "BACKUP 0" form of the
command is used; the Backup program will prompt
you to switch diskettes at the proper times. If you
have two or more disk drives, either the BACKUP 0
or two-drive version of the command may be used.
The backup is made from the diskette in the
"source drive" to the diskette in the "destination
drive.

RELATED COMMANDS
None

I, LVL I
I. LVL II
I, Disk
II
III, LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk •

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
linen ..CDBL (expression)

EXAMPLES
1000 PPINT CDBL l IVJ* | print 17 digits

DESCRIPTION
CDBL forces processing in double precision, even
though some of the variables involved may be
integer or single-precision operands. COBL is used
whenever the result is required to be of double-
precision accuracy (17 decimal digits of
significance) Of course, if the processing done up to
a particular point has been extensive, and only in
single precision. CDBL cannot retrieve the lost
digits of significance! In the example above CDBL
(IVJ%) is accurate because both l°« and J% are
integer variables and have lost no significance in
processing Performing a CDBL(A/B) will in many
cases be accurate only to single-precision accuracy
as A and B are single precision variables

RELATED COMMANDS
CINT. CSNG

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#.. .CHPi(expression)...

EXAMPLES
1000 PRINT * 'ESCAPE
SEQUENCE'';CHRS(27);CHR$(101)

DESCRIPTION
The CHRS function converts one numeric value to a
one-character string. The one-character string can
then be appended to other strings or used as a
single-character string. CHPS allows a way of
specifying non-ASCII characters from the keyboard.
Certain line printers expect to see numeric codes
which have no keyboard equivalent; CHPS permits
embedding these codes in a string sent to the line
printer. CHRS can also be used to construct strings
used for graphics purposes. CHRS performs the
inverse of the ASC function.

RELATED COMMANDS
ASC, STRS, VAL

SYSTEM

CC.
CC.
CC.

LVL I
LVL I'
Disk

. LVL I

. LVL III
Disk
BASIC
Ext BASIC
Disk

C I N T

FORMAT
lme#..C I NTfexpression/..

EXAMPLES
1000 A=CIMT i BO i*CINT| CO) convert and
multiply

DESCRIPTION
CINT forces processing to be done in integer
mode The constant, variable, or expression is
converted to an integer by the CINT function
Integer values are held in two bytes and may range
from -32768 to *32767 The CINT converts the
argument to an integer variable by using only the
integer portion of the argument If the argument
were 3456 777, for example, the result of CINT
would be 3456 CINT is used anytime that a
variable or expression can be converted to integer
to speed up processing.

RELATED COMMANDS
CDBL, CSNG

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
line# CI RCLEfr,y),r circle
line# CI RCLEfx,y),r,c circle with color
line# ClRCLEfx,y),r,c.hw ellipse
line# ClRCLEfx,y),r,c,hw,start,end arc
EXAMPLES
1000 CIRCLE(129,96),40 radius 40 circle
1010 CIRCLE(200,100),20,4,1.0,.25
red arc
DESCRIPTION
CIRCLE is used to draw a circle, ellipse, or arc at
any point on the current graphics screen. The x and
y parameters specify the center point for the circle,
ellipse, or arc. The ranges of x and y are 0 through
255 and 0 through 191, respectively. The r
parameter is the radius of the circle or 1/2 the
width of the ellipse. The c parameter is the color
code (1 through 8) for the figure. The hw parameter
is the height/width ratio for the figure. A circle has
hw-1, ellipses hw ratios from 0 through large
values. The "start" and "end" parameters define the
start and end points of the arc. Any value from 0
(three o'clock) through 1 (clockwise back to three
o'clock) may be used to define the start and end
points. Commas may be used in place of the c, hw,
start, and end parameters. Defaults are
c=foreground, hw=l, start=0, and end=l.
RELATED COMMANDS
None

CLEAR

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
CLEAR N (Model 1,11,111)
CLEAR N.M (Color Computer)
line# CLEAR N or CLEAR N.M
EXAMPLES
1000 CLEAR 1000 clear 1000 bytes for strings
1010 CLEAR 100.16000 clear 100 bytes for
strings, protect memory
DESCRIPTION
CLEAR clears all variables to 0 and sets aside a
specified number of bytes of RAM for a "string
storage area" This string storage area is used
exclusively as a working storage area for string
processing. Enough bytes should be set aside to
handle the maximum number of characters in string
variables during program execution This is usually a
trial and error computation. If too few characters
are set aside, either an "out of string space" error
will occur, or some time will be lost while the
BASIC interpreter "cleans up" the string storage
area to make room for new strings. In the Color
Computer, a second parameter protects all RAM
from a given address up to "top of RAM"; this area
is normally used for storage of machine-language
programs or buffers.
RELATED COMMANDS
FRE

SYSTEM
I. LVL I
I, LVL II

Disk

LVL I
III. LVL III
III, Disk
CC. BASIC
CC. Ext BASIC
CC, Disk

FORMAT
CLOAD "file name"
CLOAD
EXAMPLES
CLOAD "RATTAIL"

DESCRIPTION
CLOAD is used to load a BASIC program file from
cassette. The file name, if used, must be in quotes.
If no file name is specified in the CLOAD
command, the next BASIC file from cassette will
be loaded. If a file name is specified, the cassette
tape will be searched for that specific file name. File
names are one character long in the Model I and III
and up to six characters long in the Color Computer.
As BASIC searches for the proper file, it will
display all files encountered on the video display.
When the next or named file is found, it is assumed
to be a BASIC file, and will replace any current
BASIC program in RAM. In addition to initializing
the BASIC program area, a CLOAD also resets all
variables to 0 and initializes other BASIC program
parameters. For systems with two cassettes, see
CL0AD8-.

RELATED COMMANDS
CLOADO-, CLOAD?, CSAVE

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
CLOADfl - l."Me name"
CLOAD a-2, "file name"

EXAMPLES
CLOADO-1, ••RATTAIL"

DESCRIPTION
CLOADO- is used to load a BASIC program file
from cassette when two cassettes are used in the
system The file name, if used, must be in quotes. If
no file name is specified in the CLOADO-
command. the next BASIC file from cassette will
be loaded If a file name is specified, the cassette
tape will be searched for fhat specific file name File
names are one character long in the Model I When
the next or named file is found, it is assumed to be
a BASIC file, and will replace any current BASIC
program in RAM In addition to initializing the
BASIC program area, a CLOADO - also resets all
variables to 0 and initializes other BASIC program
parameters

RELATED COMMANDS
CLOAD^0-. CSAVEfl-

CLOADtt-

SYSTEM
I. LVL I

LVL I
Disk

I, LVL I
I, LVL III

III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
CLOAD? "file name"
CLOAD
EXAMPLES
CLOAD? "RATTAIL"
DESCRIPTION
C[:P1D? IS used t0 comPare 3 program on cassette
with the BASIC program in RAM. It is normally
used directly after a CSAVE operation to compare
the BASIC file just saved with the contents of
RAM. This ensures that the BASIC program will not
be destroyed before a valid copy has been saved on
cassette. The "file-name" is optional. If no file name
is specified, then the next file on cassette will be
compared with the BASIC program in RAM If a
file name is specified, the BASIC interpreter will
search cassette until the specified file is found. If
the file on tape is not identical with the contents of
RAM, a "BAD" message will be displayed and
another CSAVE operation must be done. The
BASIC program in RAM is not altered during the
comparison process. If the system used has two
cassettes, see CLOAD?».
RELATED COMMANDS
CLOAD. CLOAD?«-, CSAVE

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC, Disk
FORMAT
CLOAD?B-l.'Y//e name"
CLOAD?8 -2,'hie name"
EXAMPLES
CLOAD?B-2,* 'RATTAIL"
DESCRIPTION
CLOAD?H- is used to compare a program on
cassette with the BASIC program in RAM for those
systems that have more than one cassette. It is
normally used directly after a CSAVEtt - operation
to compare the BASIC file just saved with the
contents of RAM This ensures that the BASIC
program will not be destroyed before a valid copy
has been saved on cassette The "file name" is
optional. If no file name is specified, then the next
file on cassette will be compared with the BASIC
program in RAM If a file name is specified, the
BASIC interpreter will search cassette until the
specified file is found. If the file on tape is not
identical with the contents of RAM, a "BAD"
message will be displayed and another CSAVEB-
operation must be done. The BASIC program in
RAM is not altered during the comparison process.
The fl-1 command will compare from cassette 1
and the CL0AD?8-2 command will compare from
cassette 2
RELATED COMMANDS
CLOADO-, CSAVEB-

load file "GPHPHC"

SYSTEM
, LVL I
, LVL II
, Disk
I
II, LVL I
II, LVL III
II, Disk

CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
CLOADM
CLOADM'Wename"
CLOADM "filename','offset
EXAMPLES
CLOADM "GRAPHC"
into RAM
DESCRIPTION
CLOADM is used to load a machine-language file
from cassette tape. The cassette tape file may have
been generated by the Color Computer
Editor/Assembler or be in a format compatible with
the CLOADM function. When CLOADM is used
alone, the next file on cassette is assumed to be a
machine-language file and is loaded into RAM. When
the "CLOADM'nlename" " format is used, the
CLOADM routine will search for the specified file
name on cassette. When it finds the file, it will be
loaded into RAM as a machine-language file. When
the "CLOADM"filename',' offset" format is used, the
named machine-language file will be loaded into
RAM at the normal locations specified in the file
plus the offset value. The offset value may be any
value except those that cause the load address to
be in "non-existent" RAM
RELATED COMMANDS
EXEC

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk •
FORMAT
Imett CLOSE buttt 1 .buftt2....,bufttn

EXAMPLES
1000 CLOSE 1.3 close files for buffers
I and 3

DESCRIPTION
CLOSE "closes" a disk file or files. A disk file is
normally first OPENed for reading or writing. The
OPEN command causes BASIC to find the file
name in the directory and to establish the disk
location of the file, type of file, and other
parameters. OPEN also allocates a RAM "buffer" to
be used with the file. The RAM buffer is the memory
area used for reading or writing disk sectors. Buffers
are allocated by number, and the OPEN associates
a specified file name with the buffer number. After
the records of the file have been read or written, a
CLOSE "flushes" any remaining data in a buffer for
a write and properly terminates file operations for
the designated buffer or buffers. The "bufff"
parameters specify the buffer numbers, and hence,
the files to be closed One or more buffer numbers
may be specified
RELATED COMMANDS
OPEN

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# CLS
line# CLS c Color Computer

EXAMPLES
1000 CLS clears video display
2000 CLS 3 clears display to blue (Color
Computer)

DESCRIPTION
Model l/ll/lll: CLS clears the entire video display
screen by outputting blanks to each ol the screen
character positions. Note that this is an ASCII 32, an
alphabetic blank, rather than a graphics character.
The screen cursor is then positioned in the upper
left-hand corner of the screen.
Color Computer: CLS clears the entire screen to a
specified color, c. The c parameter is a color code
of 0 through 8 (black, green, yellow, blue, red, buff,
cyan, magenta, orange).

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
CMD**A* *

EXAMPLES
CMD**A"

DESCRIPTION
The CMD* 'A' ' command allows you to return to
TRSDOS from BASIC. Typing in "CMD* *A* *" at
any time when in the command mode of BASIC
causes a return to TRSDOS.

>CMD**A"
OPERATION ABORTED
TRSDOS READY

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
CMD " B " ON "
CMD' 'B'\' 'OFF"

EXAMPLES
CMD"B", "ON" enables the BREAK key
operation
CMD " B " OFF " disables the BREAK key
operation

DESCRIPTION
CMD"B" is used to enable or disable the BREAK
key. The BREAK key is normally used to stop
execution of a BASIC program. When the BREAK
key is disabled with a CMD' 'B",' 'OFF" the
BREAK key will be ignored except during cassette,
printer, or serial input/output. CMD' *B" can be
used to "lock out" the BREAK key to prevent
erroneous stops of critical BASIC programs The
double quotes around ON and OFF are necessary
The BREAK key will be enabled upon a return to
TRSDOS.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
CMO"C"
CMD " C ". P
CMD"C",S
EXAMPLES
CMD " C ". S compress program by deleting
spaces

DESCRIPTION
CMD' 'C" is a command to "compress" a
program by deleting remarks and/or spaces
E HSIC program remarks take up about one byte in
RAM for every PCM character They are most useful
during program debugging and may be deleted after
a final version of the program has been reached
Spaces help readability, but also take up one byte
of RAM for every space. If the CMD' 'C" format
is used, text from both PEMs (and ' type remarks)
and spaces are deleted from the BASIC. If the
other formats are used either remarks or spaces are
deleted All spaces except those inside string literals
will be deleted String literals (such as A$-STRING
LITERAL") must have double quotes at both
beginning and end for the command to function
properly
RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III, LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT
CMD''D'*

EXAMPLES
CMD " D *' load DE BUG from disk

DESCRIPTION
CMD' 'D" loads the DEBUG program from disk.
DEBUG may be entered by pressing the BREAK key
at any time after DEBUG has been loaded. DEBUG
is used to examine memory, execute machine-
language programs, and perform other non-BASIC
tasks. BASIC program text and variables will be
lost after transfer of control to DEBUG.

RELATED COMMANDS
None

SYSTEM

CC.
CC.
CC.

LVL I
LVL II
Disk

, LVL I
, LVL III

Disk
BASIC
Ext 8ASIC
Disk

FORMAT
CMD*'D:d"

EXAMPLES
CUD "D:l" display directory ot drive 1

DESCRIPTION
CMG* *D* * is a BhSIC command similar to the
TRSDOS DIR command. It allows the user to
display a diskette directory from inside BASIC
without transferring to TRSDOS The "d" parameter
is the drive number. 0 through 3. Only unprotected,
visible files will be displayed

RELATED COMMANDS
None

SYSTEM
I, LVL I

III, LVL I
IN. LVL III f ftrnTrmrun rmi^Qf

S. £ c • g f f m
CC. Ext BASIC I <
CC, Disk

FORMAT
CMD"E"

EXAMPLES
CMD"E" display last TRSDOS error

DESCRIPTION
CMD' *E" displays the last TRSDOS error from
within BASIC. It is a way of getting further
information about the type of TRSDOS error that
occurred, rather than a "blanket" statement. If, for
example, BASIC returned a
"DISK 1^0 ERROR", entering CMD* *E" would
expand on this by displaying the last TRSDOS error
message of "DISK DRIVE NOT IN SYSTEM".
This message would not have been displayed during
BASIC program execution.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
CMD' * I' '.'command''
linett CMO * * I *'. "command"

EXAMPLES
1000 AS=* *DIR* *
1010 CMD* * I * \ AS exit to TRSDOS
and do dir

DESCRIPTION
CMD * * I' * returns control to TRSDOS from
BASIC and passes a command. The command is
executed as the first TRSDOS action

RELATED COMMANDS
None

SYSTEM
I. LVL I
I, LVL II
I, Disk
II
III. LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
linett CMD' 'J*',"mm/dd/yy"string
linett CMD' 'J' ̂ ,"-yy/ddd" string
EXAMPLES
1000 CMD" J' ', 12/05/81. A$ convert date
DESCRIPTION
CMD' 'J" converts a given date to "day-of-the-
year" format or converts the day of the year to
mm/dd/yy format. The "dd" or "ddd" parameter is
the day. The "mm" and "yy" parameters are month
and year, respectively. This command is used to
convert the mm/dd/yy format to ddd format or the
yy/ddd format to mm/dd/yy format. The result of
CMD " J " is the format opposite to the one
specified after the CMD" J". The result is held in
the specified string. CMD" J" is handy for
converting to and from "Julian" format (yy.mmm)
where the day of the year is 1 through 366. Julian
format facilitates processing of elapsed time. The
minus sign prior to the yy/ddd is required. The
command CMD" J " 12/05 /81 ' ' ,A$
produces A$="339". The command
CMD'' J", " -81/300' '.AS produces
A$=" 10/27/81".
RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
CMD' 'L' '."filename"
CMD' *L".string

EXAMPLES
1000 CMD'*L".*'ASSEMP:1" load
machine language

DESCRIPTION
CMD' *L" loads in a machine-language file
created by the TRSDOS DUMP command or Disk
Editor/Assembler The machine-language file would
normally contain code to be interfaced to BASIC
through the DEFUSRn and USRn commands. The
machine-language code cannot overlay the RAM
area protected by the MEMORY SIZE? prompt. If
the filename format is used, the filename must be
enclosed by quotes; if the string format is used,
quotes are not required. CMD' 'L",A$ will load
in the file named in AS. assumed to be a machine-
language file.

RELATED COMMANDS
DEFUSRn. USRn

SYSTEM
LVL I
LVL II
Disk

I, LVL I
I. LVL III
I, Disk •

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# CMD* *0",integer variable,string array(start)
EXAMPLES
1000 ZS=100
1010 CMD " 0 Z%, AS f 20) sort array
DESCRIPTION
CMD' *0" sorts a one-dimensional string array
from a specified starting element number through a
specified length. The sort will sequence the array
entries so that they are ordered in "ascending
sequence" based upon their ASCII codes and other
values. Normal string array entries will contain ASCII
representation of string variables. If the entries of
the string array contain non-ASCII characters, such
as control codes or graphics characters, the sort will
be on the basis of their numerical values from 0
through 256. The "string array(start)" parameter
defines the starting element of the string array. This
may be the first element (0) or any element of the
array. The integer variable parameter defines the
number of elements from this start element. The
sort will be performed on the array elements from
the start through the start+n-1. The array element
strings may be of mixed lengths.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line# CMD"P",string
EXAMPLES

gel pnnter status

c:

1000 CMD"P".A$
DESCRIPTION
CMD •• p " reads in the system printer status The
printer status is returned as a string variable, the
string parameter This command is used to test the
ready condition of the system line printer before
using an LPPINT or other command The line
printer may not be ready because it is "off-line" or
because of an error condition such as being out of
paper Printer status can be tested by converting
the string result to numeric by the VAL command,
and ANDing with 240 to obtain the most significant
4 bits of the status Generally, if the result of the
VAL conversion and ANDing is not 48 (binary
0011XXXX), the printer is not ready, although this
depends upon the printer type in your system
Sample code is
1000 CMD* *P' \A$
1010 A=VAL(A$) AND 240
1020 IF A<>48 THEN PRINT "PRINTER
NOT READY"
RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk •
II
III. LVL I
III. LVL III
III. Disk •
CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT
CMD * * R "

EXAMPLES
CMD " R " turns on the real time clock

DESCRIPTION
CMD' * R " i s u s e d t o t u r n o n t h e r e a l t i m e c l o c k
from BASIC. The system real time clock displays
the 24-hour time at the upper right-hand corner of
the screen. The time can be set by the TRSDOS
TIME command. When the real-time clock is on,
the time will be updated in fractions of a second
and displayed in seconds. The real-time clock is
always running except during cassette or disk
input/output; CMD' *R" simply enables the time
display during all BASIC activity. The display can
be disabled by the CMD"T'' command.

RELATED COMMANDS
CMD"T'\ TIME (TRSDOS)

SYSTEM
I. LVL I

LVL II
Disk

LVL I
I. LVL III
I. Disk

CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
CMD " S *'

EXAMPLES
CMD *'S * * return to TRSDOS

DESCRIPTION
CMD " S " is used to return to TRSDOS from Disk
BASIC. Executing CMD"5' * will exit Disk
BASIC and reload TRSDOS.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
CMD"T"

EXAMPLES
CMD " T " disables the real time clock display

DESCRIPTION
CMD"T" turns off the system real time clock
from the command mode of BASIC. The real-time
clock updates the time in fractions of a second and
displays the 24-hour time in seconds in the upper
right-hand corner of the screen. It is always
running, except during cassette or disk
input/output; using CMD• • j *• simply disables the
screen display.

RELATED COMMANDS
CMD * *R TIME (TRSDOS)

3

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk •
CC. 8ASIC
CC. Ext BASIC
CC. Disk

FORMAT
//ne# CMD' 'X' '.reserved wd
line# CMD"X"."string"

EXAMPLES
1000 CMD' 'X' '.PRINT

DESCRIPTION
CMD' 'X" will search the current BASIC
program in RAM for either a reserved word such as
PRINT or GOTO, or for a given string literal such
as "EMPLOYEE The line numbers of all
occurrences of the reserved word or string literal
will then be listed on the display. CMO"X'' can
be used as a general search routine to facilitate
changes in a BASIC program. A search for
PRINT, for example, could easily be done and the
PRINTS could then be changed to LPRINTs. The
reserved word must not be in quotes; a string literal
must be enclosed in quotes.

RELATED COMMANDS
None

find all PRINTS

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
CMD"Z". "ON"
CMD"Z", "OFF"

EXAMPLES
CMD " Z " ON " turn on printer output

DESCRIPTION
CMD' 'Z" is used to enable or disable
simultaneous display and printer output. When
CMD"Z"ON" is given, all output going to
the display is also sent to the system line printer.
The printer must be in a "ready" condition. Due to
differences in character interpretation, display
output sent to the line printer may cause
unpredictable results, but in general, any text data
sent to the screen will be properly printed on the
system line printer. The printer output is disabled
by CMD "Z", " OFF''. This command can be
used to provide a hard copy of BASIC program
output which normally would be displayed.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line# COLOR foreground,background

EXAMPLES
1000 COLOR 2.3 select yellow on blue

DESCRIPTION
COLOR is used to select the foreground and
background colors in either the text or graphics
modes. The background is the field upon which
figures can be drawn; the foreground is the color
used to draw the figures. The color codes used are
the standard Color Computer codes of 0 through 8 •
black, green, yellow, blue, red, buff, cyan, magenta,
and orange, respectively. The color codes used in
the command must be valid colors in the current
mode The current mode depends upon the current
SCREEN command in force (text or graphics) and
the graphics mode (PMODE). The background may
be selected to be the same color as the "border"
color, in which case there will be no border around
the screen.

RELATED COMMANDS
PMODE, SCREEN

SYSTEM
I. LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT
CONT

EXAMPLES
CONT (continue after stop)

DESCRIPTION
CONT is an abbreviation for "continue" Continue is
used after a STOP command has been executed.
The STOP causes a temporary program halt,
valuable for examination of variables or
"breakpointing" during debugging. CONT is used
after the STOP to continue the program from the
point at which the STOP occurred. All variables will
be intact when the CONT is executed. CONT is
used in the command mode after a STOP has taken
place.

RELATED COMMANDS
STOP

is. I. J. i . i .l i. I ! _ T ~] >

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk •

FORMAT
COPY "filename 1" TO "tilename2"

EXAMPLES
COPY '•TRANSFIL'BAS:0'* TO
••TRPNSFIL/BAS:1"

DESCRIPTION
COPY is a Color Computer Disk BASIC command
It copies a complete file from one diskette to
another diskette under the same or different file
name, or copies a file to the same diskette under a
different name COPY is used to backup a single
file, or to duplicate a file on the same or different
diskettes. The file defined by "filenamel" is copied
as "filename2". Each filename must have an
extension The extension follows the main file name
and is a three-character designator preceded by a
slash character. The drive number is optional and is
used only when the copy will be done between two
different disk drives.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I. Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
lme#...COS(expression)...

EXAMPLES
1000 A=C0S(X+3.14159/2) sets variable A
equal to cosine of X+pi/2 (in radians)
2000 ND=COS(X*.01745329) sets variable
ND equal to cosine of X (in degrees)

DESCRIPTION
COS finds the cosine of a given constant variable,
or expression. The quantity is assumed to be in
radians (180/pi degrees). COS is a "function" and
may be used anywhere within a BASIC statement
as long as the argument is enclosed within
parentheses. Multiply by .01745329 to convert
degrees to radians. Standard trigonometric rules
apply in regard to the sign of the result.

RELATED COMMANDS
None

CSAVE

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
CSAVE "file name"
CSAVE

EXAMPLES
CSAVE *'RATTAIL''

DESCRIPTION
The CSAVE command is used to save the current
BASIC program in RAM on cassette tape. The tape
must be positioned beyond the leader Note the
position of the tape by the tape counter for restart.
If a "file name" is specified, the contents of RAM
will be written out as a file called "file name" If no
file name is specified, the name "NONAME" will be
used. Legitimate file names for the Model l/lli are
single character names. Legitimate names for the
Color Computer are 1 to 6 character names.
CLOAD? may be used to verify that the file was
written properly. A subsequent CLOAD will reload
the BASIC program and "overlay" any current
BASIC program in RAM. See CSAVEH- for
systems with more than one cassette

RELATED COMMANDS
C L O A D C S A V E H -

e-

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT
CSAVE8-l,"Me name"
CSAVE8-2,"Me name"

EXAMPLES
CSAVE8-,''RATTAIL'*

DESCRIPTION
The CSAVE8 - command is used to save the
current BASIC program in RAM on cassette tape
on those systems that have more than one cassette.
The tape must be positioned beyond the leader.
Note the position of the tape by the tape counter tor
restart. If a "file name" is specified, the contents of
RAM will be written out as a file called "file name"
If no file name is specified, the name "NONAME"
will be used. Legitimate file names for the Model I
are single character names. CL0AD?8- may be
used to verify that the file was written properly. A
subsequent CL0AD8- will reload the BASIC
program and "overlay" any current BASIC
program in RAM.

RELATED COMMANDS
CLQAD8-, CL0AD?8-

CSflVEB-

/< <•> \

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC •
CC. Disk •

FORMAT
CSAVEM "filename'.'starladdr.endaddr.execaddr

EXAMPLES
CSAVEM *'SORTPR'\&H3000,&H3FFT,
&H3000

DESCRIPTION
CSAVEM is used to save a machine-language
program in RAM as a cassette file The "filename"
parameter is a standard cassette file name
CSAVEM can be used to save any binary data in
RAM whether it is a 6809E machine-language
program, data, or both. The startaddr parameter
specfies the starting address of the data to be
saved The endaddr parameter specifies the end of
the data. The execaddr specifies the address of the
start of the program, if applicable, or to a dummy
parameter. The resulting file is stored as a binary
file and can be loaded and executed by the
CLOADM and EXEC commands.

RELATED COMMANDS
CLOADM.EXEC

SYSTEM
I, LVL I

LVLII
Disk

III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC, Disk

FORMAT
linett...cSNG(expression)...

EXAMPLES
1000 PRINT CSNGf STtt*Nrin) convert to sp
and print

DESCRIPTION
CSNG converts a constant, variable, or expression
to single precision. Single-precision numbers can
hold up to 7 decimal digits and occupy four bytes
of storage. CSNG is used whenever it is convenient
to convert from integer precision or double precision
to single precision.

RELATED COMMANDS
CDBL, CINT

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC, Disk
FORMAT
lmett...CVB(string).
EXAMPLES
1000 An=CVD(BAL$) convert BAL$ to
numeric
DESCRIPTION
CVD is used to convert a string variable to a
double-precision variable. CVD is normally used to
retrieve a data value from a random-file buffer. The
typical sequence in retrieving data from a random-
file buffer is to define the fields in a random-access
buffer with FIELD, to read in the disk file (see
GET), and then to retrieve data with CVD, CVI, or
CVS. CVD is the inverse of MKD$, which is
normally used to store double-precision data in the
random-file buffer in character string form. The
CVD function converts a field from the buffer to
numeric form. The field is assumed to contain an 8-
character string created by MKD$. An error or
invalid results would normally occur for a field size
other than 8 characters. CVD can also operate on a
string variable other than a FIELD variable. In this
case the variable should have been created by
MKD$.
RELATED COMMANDS
FIELD, MKD$

convert EMP$ to

SYSTEM
I. LVLI
I, LVL II
I. Disk •
II •
III, LVL I
III, LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC. Disk
FORMAT
HneU..£Ml(string)...

EXAMPLES
1000 ASS=CVI (EMPS|
numeric

DESCRIPTION
CVI is used to convert a string variable to an
integer variable. CVI is normally used to retrieve a
data value from a random-file buffer. The typical
sequence in retrieving data from a random-file
buffer is to define the fields in a random-access
buffer with FIELD, to read in the disk file (see
GET), and then to retrieve data with CVD, CVI, or
CVI. CVI is the inverse of MKIS, which is
normally used to store integer data in the random-
file buffer in character string form. The CVI
function converts a field from the buffer to numeric
form. The field is assumed to contain a 2-character
string created by MKIS. An error or invalid results
would normally occur for a field size other than 2
characters. CVI can also operate on a string
variable other than a FIELD variable. In this case
the variable should have been created by MKIS.
RELATED COMMANDS
FIELD, MKI$

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III, Disk
CC. BASIC
CC. Ext BASIC
CC. Disk •
FORMAT
hne*...CVtMstring).

EXAMPLES
1000 A=CVN(ZIPS) convert ZIP* to
numeric

DESCRIPTION
CVN is used to convert a string variable to a
numeric variable CVN is normally used to retrieve
a data value from a direct-file buffer The typical
sequence in retrieving data from a direct-file buffer
is to define the fields in direct-file buffer with
FIELD, to read in the disk file (see GET), and then
to retrieve data with CVN. CVN is the inverse of
MKNS, which is normally used to store numeric
data in the direct-file buffer in character string
form. The CVN function converts a held from the
buffer to numeric form. The held is assumed to
contain a 5-character string created by MKNS. An
error or invalid results would normally occur for a
field sire other than 5 characters. CVN can also
operate on a string variable other than a FIELD
variable. In this case the variable should have been
created by MKNS.
RELATED COMMANDS
FIELD, MKNS

SYSTEM
I, LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
lmett...CVS(string)...
EXAMPLES
1000 A=CVS(ZIPS l convert 21P$ to
numeric

DESCRIPTION
CVS is used to convert a string variable to a
double-precision variable. CVS is normally used to
retrieve a data value from a random-tile buffer. The
typical sequence in retrieving data from a random-
file buffer is to define the fields in a random-access
buffer with FIELD, to read in the disk file (see
GET), and then to retrieve data with CVD, CVI, or
CVI. CVS is the inverse of MKS$, which is
normally used to store single-precision data in the
random-file buffer in character string form. The
CVS function converts a field from the buffer to
numeric form. The field is assumed to contain a 4-
character string created by tn<S$. An error or
invalid results would normally occur for a field size
other than 4 characters. CVS can also operate on a
string variable other than a FIELD variable. In this
case the variable should have been created by
MKS$.
RELATED COMMANDS
FIELD, MKS$

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
hnett...x.xxxxDyy...

EXAMPLES
1000 A«=3.14152653589293230+30
1010 ZZ8=1•76D-5

DESCRIPTION
D is used to denote double-precision numbers with
scientific notation. The format of such a number
consists of a fraction or mixed number, a "D", and
a power of ten. The power of 10 may be positive
(plus sign or no leading sign) or negative (negative
sign). The fraction or mixed number may consist of
up lo 17 decimal digits. The decimal point may be
located anywhere within the number. The decimal
point is optional. The variable associated with the
double-precision number must have a type
suffix, or be defined in a DEFDBL range (i.e. it
must be a double-precision variable).

RELATED COMMANDS
U.DEFDBL

SYSTEM
I, LVLI •
i, LVL II •
I, Disk •
II •
III, LVL I •
III, LVL III •
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
lineft DATA item 1, item 2, item 3,
item 4, ... item N
EXAMPLES
1000 DATA 5.2, 2, -3, 5, -1 defines a list
of 6 numeric items
2000 DATA ORANGE,PEACH,PEAR defines a
list of three string items'
3000 DATA 5,PLUM,-2,7.58,G,PEAR,
-5,-10.2 defines a mixed list
DESCRIPTION
DATA is used to define a list of numeric or string
values to be used in the program. More than one
DATA statement results in one large list. Values can
be read by using the READ command, RESTORE
is used to "reset the pointer" to the beginning of
the list. The following statements read 1, -2.5, and
PEAR into variables A, B, and A$:
1000 DATA 1,-2.5,PEAR establishes list
1010 READ A,B,A$ reads values
1020 RESTORE resets pointer
Double quotes must enclose a string value if the
string has leading blanks, commas, or colons.
RELATED COMMANDS
READ, RESTORE

SYSTEM
I, LVL I
I, LVL II
I, Disk

•
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
linett ...DATES...

EXAMPLES
1000 PRINT
DATES

'TODAY'S DATE 1:1

DESCRIPTION
DATES returns the current date and information
about the date as a text string. When TRSDOS is
started up, the operator enters the current^date.
DATES returns this information in BASIC. The
format of the DATES string is
WWWMMMDDYYYYJJJXXY where WWW is the day of
the week, MMM is the month, DD is the numbered
day of the month, YYYY is the year, JJJ is the Julian
day (numbered day of the year), XX is the
numbered month of the year, and Y is the
numbered day of the week. A typical string returned
by DATES is: WedDec301981364122. Weeks start
with Monday, the Oth day; all other parameters
count from I.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II
I, Disk •
II •
III, LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
/me# DEF FHname(argl,arg2,...,argn)=tormula
EXAMPLES
1000 DEF FNZ(A,B)=SQR(A*A+B*B)
DESCRIPTION
DEF FN is used to define a function. A function is
a predefined operation Jhat can be "invoked" by
using the characters "FN" followed by the function
name. Functions are useful if the same basic
operation is repeated many times within a BASIC
program. In the above example, suppose that the
operation S0R(A*A*B*B) were to be repeated at
100 different places in a BASIC program. Defining
it as DEF FNZ would permit code such as
"2000 PRINT FNZ(101,501"; the "FNZ"
would execute the function called
"Z" and perform SQR(101*101+50*50). The
name parameter may be any variable name; any
variable type suffix may be used, such as A%, A!, or
A$. The arg parameters define the arguments to be
used in the function; they are "dummies" in the
DEF FN command and serve only as "place
markers" for definition of the procedure. The
dummies do not affect variable values. Only one
argument may be used in the Color Computer.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I, LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC, Disk

FORMAT
hnett DEFDBL letter range

EXAMPLES
1000 DEFDBL A-B
3000 DEFDBL I-K
DESCRIPTION
DEFDBL defines all variables within the specified
letter range as double-precision numeric variables
(17 decimal digits of precision stored. 16 displayed).
Variables with type suffixes of "%" or "E"
however, are not affected. The letter range defines a
range of letters for the beginning letter of the
variable A letter range of l-K, for example, would
include I. J, and K. After definition of this letter
range by a DEFDBL. all variables beginning with I,
J. or K would autpmatically be assumed to be
double-precision variables, except for those with
type suffixes. DEFDBL is a convenient way to
define a range of variables as double-precision
variables without having to define each variable
separately with the # type suffix. DEFDBL would
normally be used at the beginning of a BASIC
program

RELATED COMMANDS
!,tt,$,*,DEFINT, DEFSNG, DEFSTR, E

SYSTEM
I, LVL I
I. LVL II •
I, Disk •
II •
III, LVL I
III, LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# DEFINT letter range

EXAMPLES
1000 DEFINT A -B
3000 DEFINT I -K
DESCRIPTION
DEFINT defines all variables within the specified
letter range as integer variables (capable of holding
-32768 to +32767). Variables with type suffixes of

"D" or "E" however, are not affected.
The letter range defines a range of letters for the
beginning letter of the variable. A letter range of l-K,
for example, would include I, J, and K. After
definition of this letter range by a DEFINT, all
variables beginning with I, J, or K would
automatically be assumed to be integer variables,
except for those with type suffixes. DEFINT is a
convenient way to define a range of variables as
integer variables without having to define each
variable separately with the % type suffix. DEFINT
would normally be used at the beginning of a
BASIC program.

RELATED COMMANDS
! , t t ,S ,X ,D , DEFDBL, DEFSNG,
DEFSTR, E

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III, LVL I
III. LVL III •
III. Disk •
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
line# DEFSNG letter range

EXAMPLES
1000 DEFSNG A-B
3000 DEFSNG I -K

DESCRIPTION
DEFSNG defines all variables within the specified
letter range as single-precision variables (7 decimal

—^ digits of precision stored, 6 displayed). Variables
with type suffixes of "D',' or however,
are not affected. The letter range defines a range of

^9 letters for the beginning letter of the variable. A
letter range of l-K, for example, would include I, J,
and K. After definition of this letter range by a
DEFSNG, all variables beginning with I, J, or K

—would automahcally be assumed to be single-
^ precision variables, except for those with type

suffixes. Single-precision variables are the "default"
mode for BASIC variables, and DEFSNG would
not have to be used except to redefine variables
that were previously assigned to other variable
types.

RELATED COMMANDS
0. S. %. D, DEFDBL, DEFINT,

DEFSTR. E

SYSTEM
I, LVL I
I. LVL II •
I, Disk •
II •
III, LVL I
III. LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
f/ne# DEFSTP letter range

EXAMPLES
1000 DEFSTR A-B
3000 DEFSTR I-K

DESCRIPTION
DEFSTR defines all variables within the specified
letter range as string variables. Variables with type
suffixes of "It" "D" or "E" however, are not
affected. The letter range defines a range of letters
for the beginning letter of the variable. A letter
range of l-K, for example, would include I, J, and K.
After definition of this letter range by a DEFSTR,
all variables beginning with I, J, or K would
automatically be assumed to be string variables,
except for those with type suffixes. DEFSTR is a
convenient way to define a range of variables as
string variables without having to define each
variable separately with the $ type suffix. DEFSTR
would normally be used at the beginning of a
BASIC program.

RELATED COMMANDS
! , 0 , $, %, D , DEFINT, DEFDBL,
DEFSNG, E

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC, Ext BASIC •
CC. Disk •

FORMAT
linett DEFUSRn=address

EXAMPLES
1000 DEFUSR3=&H8000 define subroutine for
Model I

DESCRIPTION
DEFUSR is used to define the location of a
machine-language subroutine. The subroutine
consists of machine language for the system in use.
The n parameter in the DEFUSR command may be
any number from 0 through 9; this allows up to 10
machine-language subroutines to be defined for
interface to BASIC programs. The address value on
ttie right-hand side of the DEFUSR command is the
starting point for the machine-language code. The
machine-language subroutine may consist of any
number of instructions. The subroutine is called by
the USRn call, in which n matches the n of the
DEFUSR. USR3, for example, would match the
DEFUSR3 definition.

RELATED COMMANDS
USRn

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
DEL -
DEL lined-lined
DEL //ne#-
DEL -lined
lined DEL lined-lined
EXAMPLES
DEL 100- delete lines 100 through end
DESCRIPTION
DEL deletes a range of BASIC lines from RAM.
The BASIC interpreter "repacks" the BASIC
program to utilize the deleted area. If the "DEL-"
format is used, the entire program is deleted from
memory. If the "line#-line#" format is used, all lines
including the start and end lines are deleted. If the
"•line#" format is used, all lines from the beginning
of the program through the specified end number
are deleted. If the "line#-" format is used, all lines
from the specified start number through the end of
the program are deleted. DELETE may be used to
delete lines from the command mode for program
editing purposes, or to delete program lines
"dynamically" to release portions of BASIC
programs that are no longer needed to create room
for variables.
RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II •
I, Disk •

III, LVL I
III, LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
DELETE lined-lined (in command mode)
DELETE lined
DELETE -lined
lined DELETE lined-lined
EXAMPLES
DELETE 100- delete lines 100 through end
DESCRIPTION
DELETE deletes a range of BASIC lines from
RAM. The BASIC interpreter "repacks" the BASIC
program to utilize the deleted area. If the "line#-
line#" format is used, all lines including the start
and end lines are deleted. If the "-line#" format is
used, all lines from the beginning of the program
through the specified end line number are deleted.
If the "line#" format is used, the specified line
number is deleted. DELETE may be used to delete
lines from the command mode for program editing
purposes, or to delete program lines "dynamically"
to release portions of BASIC programs that are no
longer needed to create more room for variables.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I, LVL II
I, Disk •
II •
III. LVL I
III. LVL III •
III. Disk
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
lined DIM name(diml)
lined DIM name(diml.dim2)
lined DIM name(diml,dim2,...dimk)
EXAMPLES
1000 DIM A*(10.40) U by 41 mt array
DESCRIPTION
DIM is used to allocate space for a BASIC array.
The name parameter names an integer, single
precision, double precision, or string array (numeric
or string in the Color Computer). The name must
adhere to the name conventions for the variable
type involved. The dimensions are one less than the
number of elements for each dimension of the
array. The DIM statement only names and allocates
the array; it does not initialize it to any value,
although the elements are zeroed on power up
automatically. Elements within the array are
accessed by using the element number with the
array name. The first element of a two-dimensional
array might be A(0,0), the second A(0,1), and so
form The last element in the array has the element
numbers defined in the DIM statement. Each array
element requires the same memory that a variable
of the same type would require.
RELATED COMMANDS
None

SYSTEM
LVL I
LVL II
Disk

I. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk •
FORMAT
DIP
DI Pdnved

EXAMPLES
DIR0
DESCRIPTION
DIP displays the disk directory of the disk drive
number specified If the drive number is not used.
DIP will display the directory of the current disk
drive (last specified by DRIVE) or drive 0, the
default drive number if DRIVE has not been used.
The directory will be displayed with the file name,
extension of the file (BAS, BIN, DATA, or other
user- or system-specified extension), file type
(0=BASIC data file, 1=BASIC data file,
2=machine-language file, 3=editor source file), file
format (A=ASCII, B=binary). and file length
in granules (2304 bytes). A typical display line
might be:

ACCTS DATA IBS
indicating file ACCTS DATA, a BASIC data file in
binary that is 5 granules or 11520 bytes long.
RELATED COMMANDS

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III, LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
line# DRAW "string"

EXAMPLES
1000 DRAW "BM128.9G;M0,0;M255,2"
DESCRIPTION
The DRAW command is used to draw a series of
connected line segments in various lengths and
directions. The line segments may be drawn in 8
directions in any length. The "string" parameter
specifies a string of DRAW subcommands, each
defined by a single text character. To draw a line of
n pixels up, 45 degrees, right 135 degrees, down,
215 degrees, left, or 325 degrees, use the text
strings Un;", "En;", "Rn;", "Fn;". "On;",
"Gn; '."Ln;", or "Gn;", where n is the number of
pixels. To move to any x,y coordinate, use the text
string "Mx,y;" where x and y are 0-255 and 0-191
r e s p e c t i v e l y . P r e c e d e x a n d y w i t h " • " o r f o r
moves relative to the current position. Use "B" after
the M or "B," at any time for a "blank" line. Use
"N" before the motion command for a "no update"
of the position. Use "Cn;" to change color. Use
"Ax," for rotates of 0, 90, 180, or 270 degrees
(x=0,1,2,3). Scale the draw by "Sx;" where x equals
a scale factor of 1 through 62. Execute a substring
by "X(string);".
RELATED COMMANDS
None

•
SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC, Disk •

FORMAT
DRIVE drive*

EXAMPLES
DRIVE 1

DESCRIPTION
DRIVE is a Color Computer Disk BASIC command.
It is only used on systems with more than one drive
to change the "default" disk drive number. The
default drive number is used when the drive
number is not specified in a filename (the standard
filename format is name/extension:dnve number).

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line# DSKIS drive#,track.sector.string var 1.string
var 2
EXAMPLES
1000 DSKIS 0,12,3,H$,B$ drive O.track 12,
sector 3
DESCRIPTION
DSKIS is a Color Computer Disk BASIC command
that permits direct access of a specified physical
location on disk. It is used to process special files
created by the system user or to process disk
contents without using disk "file manage" The
drive# parameter specifies the drive, the track
parameter one of the diskette tracks (0 through 34),
the sector number one of the sectors within the
track (0 through 17). The two string variables
receive the 256 bytes of data from the track, sector.
String variable 1 receives the first 128 bytes from
the sector, while string variable 2 receives the
second 128 bytes. Data from the disk may or may
not represent valid ASCII characters, depending
upon the data output to the disk.
RELATED COMMANDS
DSKOS

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC, Disk

FORMAT
DSKINIdrrve#

EXAMPLES
DSKINI0

DESCRIPTION
DSKINI is a Color Computer Disk BASIC
command that "formats" a diskette in the specified
drive number. The formatting process prepares the
diskette for receiving data files and is a necessary
process before doing any BASIC disk operations.

RELATED COMMANDS
None

SYSTEM
I. LVLI
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT
line# DSKO$ drive#, track, sector.string 1.string 2
EXAMPLES
1000 OSKOS 0,12,3.HS.e$ drive 0.track 12.
sector 3
DESCRIPTION
DSKOS is a Color Computer Disk BASIC command
that permits direct access of a specified physical
location on disk. It is used to create special files
defined by the system user. The drive# parameter
specifies the drive, the track parameter one of the
diskette tracks (0 through 34), the sector number
one of the sectors within the track (0 through 17).
The two string variables define the 256 bytes of
data to be output to the track, and sector. String
variable 1 defines the first 128 bytes for the sector,
while string variable 2 defines the second 128
bytes. Literal strings may be used in either case.
Data in the variables may or may not represent
valid ASCII characters, depending upon the data to
be output. DSKIS is normally used to input the
disk data output by DSKOS.
RELATED COMMANDS
DSKIS

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
Imett.x.xxxxZyy

EXAMPLES
1000 A=1.1112E-5
1010 ZZ!=3.567E>34

DESCRIPTION
E is used to denote scientific notation for single-
precision numbers. The format consists of a fraction
or mixed number, followed by a D, followed by a
power of ten. The power of ten may be positive
(plus sign or no sign) or negative (minus sign). The
fraction or mixed number may be any number ot
decimal digits up to 7, with the decimal point
located anywhere within the digits. The decimal
point is optional. The variable associated with the E
format must be a single-precision variable. This is
the default condition for BASIC variables and no
"!" suffix is necessary unless the variable name falls
in a DEFDBL or DEFSTR range.

RELATED COMMANDS
I, DEFSNG

SYSTEM
LVLI
LVL II
Disk

LVL I
L LVL III •

.... Disk •
CC. BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
EDIT line# (in command mode)
EDIT, (except Color Computer)
EXAMPLES
EDIT 1000 edit line It 100©
EDIT. edit last line entered, altered, or in
error
DESCRIPTION
EDIT is a command mode command that invokes
the BASIC interpreter Edit mode. The edit mode is
used to modify BASIC program lines by adding,
deleting, or modifying characters to the line. Any
existing line number may be specified in the EDIT
command. After the EDIT command has been
given, the BASIC interpreter will display the line
number and will position the cursor to the first
character of the line. Subsequent Edit mode
commands will allow editing of the line. To get out
of the Edit mode, press ENTER. The
"EDIT." format displays the last line entered,
altered, or in which an error occurred. Entering the
Edit mode automatically clears all variables. If
BASIC encounters a syntax error during program
execution, it automatically enters the Edit mode for
the erroneous line. Entering "Q" will allow you to
Quit the Edit mode and examine variables and
program conditions.
RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC •
CC. Disk •

FORMAT
Edit Mode: A keypress

EXAMPLES
1000 FOR 1=1 TA J- (pressing A cancels
changes and restarts the Edit)

DESCRIPTION
The Edit mode is entered by the EDIT line#
command. The A subcommand is used to cancel all
changes to the line that have been made and to
restart the Edit at the beginning of the line. The A
subcommand differs from the Q subcommand in
that the Q subcommand cancels changes and Quits
the Edit mode, while the A subcommand cancels
changes but keeps the Edit mode in force. In the
example above, the result would have been

1000 FOR I=J TA J
1000 -

The line can now be reedited with the proper
changes.

RELATED COMMANDS
Edit Mode Subcommands

E d i t

Mode A

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II •
III. LVL I
III. LVL III •
III, Disk •
CC. BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
Edit Mode: Backspace keypress (backspace is left
arrow)
Edit Mode: nBackspace keypress
EXAMPLES
1000 FOR 1=1 TO - (pressing 5 and
Backspace backspaces to the left 5 characters on
the line)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To backspace
the cursor to the left one character position, press
Backspace (left arrow). Jo backspace to the left
more than one character position, enter a number of
1 through n and press Backspace In the example
above. 5 was entered, followed by Backspace; this
positioned the cursor 5 character positions to the
left. The 5 characters previously displayed were
unaltered but erased from the display. Backspace
can be used to space back along the line until the
proper place is found to insert, delete, or modify
characters by the other Edit Mode subcommands.
RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC. Disk
FORMAT
Edit Mode: C keypress
Edit Mode: nC keypress
EXAMPLES R „ K
1000 FOR 1=1 TO - (pressing 5 and C begins
change operation for next 5 characters)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The C
subcommand is used to change 1 or more
characters to new characters. To change the current
character at the cursor position, press C followed by
the new character. To change n additional
characters, enter a number of 1 through n and
press C. Then type the characters to replace the
number specified. In the example above, 5 was
entered, followed by C. If (K 5) was then entered,
the new line up to that point would read
1 0 0 0 F O R 1 = 1 T O (K - 5) -
The number of characters for the change must be
exactly equal to the number replaced.
RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
LVL I
LVL II
Disk

I, LVL I
I. LVL III
I. Disk

CC, BASIC
CC. Ext BASIC
CC, Disk
FORMAT
Edit Mode: D keypress
Edit Mode: nD keypress

EXAMPLES
1000 FOR 1=1 TO - (pressing 5 and D deletes
next 5 characters)

DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The D
subcommand is used to delete 1 or more
characters. To delete the current character at the
cursor position, press D. The character deleted will
be displayed bracketed by exclamabon points. To
change n additional characters, enter a number of 1
through n and press D. The characters deleted will
be displayed bracketed by exclamation points. In
the example above, 5 was entered, followed by D.
The display would show:
1000 FOR 1=1 TO ! (K-5) !-
The characters (K-5) would have been deleted from
the line.
RELATED COMMANDS
Edit Mode Subcommands

E d i t

Node E

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III, LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC •
CC. Disk •

FORMAT
Edit Mode: E keypress

EXAMPLES
1000 FOR 1=1 TO J-5 STEP - (press E)

DESCRIPTION
The Edit mode is entered by the EDIT line#
command. Pressing the E key while in the Edit
Mode records all changes made while in Edit mode
and returns to the BASIC interpreter command
mode E is not active while in any Insert mode such
as I. X. or H. E is logically equivalent to pressing
ENTER

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Edit Mode: ENTER keypress

Edit Mode
ENTER

EXAMPLES
1000 FOR 1=1 TO J-
ENTER)

5 STEP - (press

DESCRIPTION
The Edit mode is entered by the EDIT line#
command. Pressing the ENTER key while in the
EDIT mode records all changes made while in Edit
mode and returns to the BASIC interpreter
command mode.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I.
I.
I.
II
Ml.
III.
III.
CC.
CC.
CC.

LVL I
LVL II
Disk

Edit.
Mode ESC

LVL I
LVL III
Disk
BASIC
Ext BASIC
Disk

FORMAT
Edit Mode: ESC keypress

EXAMPLES
1000 FOR 1=1 TO - (pressing ESC resets the
Insert mode)

DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. Text may be
inserted by the I. X, or H subcommands. While in
the edit portion of these subcommands, characters
are entered until the ESC key is pressed. The Insert
submode is then ended. ESC should be pressed at
any time to "reset" the current Edit mode to a
known condibon.

RELATED COMMANDS
Edit Mode Subcommands I, H, X

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
Edit Mode: H keypress
EXAMPLES
1000 FOR I=- (pressing H deletes remainder ot
line and invokes the Insert mode)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To delete the
remainder of the line from the current cursor
position, press H. This "Hacks off" the remainder of
the line and invokes the Insert mode. In the
example above, pressing H and then entering "2 TO
K-6" would have resulted in the following line:
1000 FOR 1=2 TO K-6-
At this point the Insert mode would still be in force
and additional characters could be added to the end
of the line. To terminate the Insert mode, press
SHIFT, up arrow together, or press ENTER. ENTER
enters the current changes and returns to the
command mode, while SHIR, up arrow terminates
the Insert mode but keeps the Edit mode active.
RELATED COMMANDS
Edit Mode Subcommands

Edi t
Node I

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC. Disk
FORMAT
Edit Mode: I keypress
EXAMPLES
1000 FOR 1=1 TO - (pressing I enters Insert
submode)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To insert
characters at any point press I. All characters
entered from that point until the SHIR, up arrow
keys were pressed simultaneously would be entered
into the line. In the example above, if the original
line was "1000 FOR 1=1 TO 100", entering I
followed by "J-" and then SHIR, up arrow would
result in a line consisting of:
1000 FOR 1=1 TO J-
The SHIR, up arrow would not terminate the Edit of
the line; the cursor would be positioned after the
last character inserted and the remainder of the line
would not be visible. Pressing the ENTER key will
also terminate the Insert.
RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I
III. LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
Edit Mode: Kc keypress
Edit Mode: nKc keypress
EXAMPLES
1000 - (pressing 2, K, and: searches tor the
second occurrence of the character and kills all
characters to that Doint)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. The K subcommand is used to search (or
the first or "nth" occurrence of a single character
and to delete all characters preceding the search
character from the current cursor position To
search for the first occurrence of a character, press
K followed by the search character. The cursor will
move to the right until positioned over the charactei
and delete all characters from the cursor position to
that point. The deleted text will be displayed
bracketed by exclamation points. The search
character will not be displayed. To search for the
nth occurrence of a character, enter a number from
1 to n, enter a K, and enter the search character.
The cursor will be positioned over the nth
occurrence of the character with a similar delete
action.
RELATED COMMANDS
Edit Mode Subcommands

E d i t

Mode L

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III, LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
Edit Mode: L keypress

EXAMPLES
1000 FOR I=- (pressing L displays remainder of
line)

DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display the
remainder of the line, press L. The remainder of the
line will be displayed and a new line will be started
with the cursor positioned on the first character of
the new line. In the example above, the result would
have been

1000 FOR 1=1 to J-5 STEP 3
1000 -

The Edit Mode L subcommand lets you see the
remainder of the line without having to space along
the line. The L subcommand is not active while in
an insert mode such as I, X, or H.

RELATED COMMANDS
Edit Mode Subcommands

w

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II •
III, LVL I
III. LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
Edit Mode: Q keypress

EXAMPLES
1000 FOR 1=1 TA d- (pressing Q cancels
changes and Quits the Edit)

DESCRIPTION
The Edit mode is entered by the EDIT line#
command. The Q subcommand is used to cancel all
changes to the line that have been made and to
Quit the Edit. The Q subcommand differs from the A
subcommand in that the Q subcommand cancels
changes and Quits the Edit mode, while the A
subcommand cancels changes but keeps the Edit
mode in force. In the example above, the result
would have been

1000 FOR I=J TA J
(BASIC command mode)

The Q subcommand is used when changes have
been erroneously made to a BASIC program line.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I, LVL I
I, LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
Edit Mode: Sc keypress
Edit Mode: nSc keypress
EXAMPLES
1000 - (pressing 2, C, and 0 searches for the
second occurrence of the letter 0)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The S
subcommand is used to search for the first or "nth"
occurrence of a single character. To search for the
first occurrence of a character, press S followed by
the search character. The cursor will move to the
right until positioned over the character. The
character will not be displayed. To search for the
nth occurrence of a character, enter a number from
1 to n, enter an S, and enter the search character.
The cursor will be positioned over the nth
occurrence of ther character. The line up until the
nth occurrence will be displayed. If the character is
not found in the search, the enbre line will be
displayed with the cursor positioned at the end.
RELATED COMMANDS
Edit Mode Subcommands

Edit Mode
SHIFT.

up arrow

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
Edit Mode: SHIFT, up arrow

EXAMPLES
1000 FOR 1=1 TO - (pressing SHIFT, up arrow
resets the Insert mode)

DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. Text may be
inserted by the I, X, or H subcommands. While in
the edit portion of these subcommands, characters
are entered until the SHIFT, up arrow keys are
pressed simultaneously. The Insert submode is then
ended. SHIFT, up arrow should be entered at any
time to "reset" the current Edit mode to a known
condition.

RELATED COMMANDS
Edit Mode Subcommands I, H, X

Edit Mode
Space-Bar

SYSTEM
I, LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
Edit Mode: Space-Bar press
Edit Mode: nSpace-Bar press

EXAMPLES
1000 FOR 1=1 TO - (pressing 5 and space bar
displays and spaces 5 additional characters on the
line)

DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display an
additional character, press Space-Bar. To display n
additional characters, enter a number of 1 through
n and press Space-Bar. In the example above. 5
was entered, followed by Space-Bar; this displayed 5
additional characters on the line and positioned the
cursor after the 5 additional characters. Space-Bar
can be used to space along the line until the proper
place is found to insert, delete, or modify characters
by the other Edit Mode subcommands.

RELATED COMMANDS
Edit Mode Subcommands

E d i t

Mode X

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
Edit Mode: X press
EXAMPLES
1000 - (pressing X displays remainder of line
and invokes the Insert mode)
DESCRIPTION
The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display an
additional character, press Space-Bar. To display the
remainder of the line and position the cursor to the
end of the line in the Insert mode, press X. In the
example above, pressing X would have displayed
1000 FOP 1=1 TO J-5 STEP 3-
At this point the Insert mode would be in force and
additional characters could be added to the end of
the line. The X command is an "Extend Line"
command and is used for that purpose. To terminate
the Insert mode, press SHIFT up arrow together, or
press ENTER. ENTER enters the current changes
and returns to the command mode, while SHIFT up
arrow terminates the Insert mode but keeps the Edit
mode active.
RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III. LVL III
III, Disk
CC. BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# END

EXAMPLES
1000 END stops execution and returns to the
command mode

DESCRIPTION
END determines an end point of the BASIC
program. When encountered by the BASIC
interpreter, END causes the interpreter to stop
program execution and return to the command
mode. There may be any number of ENDs in the
BASIC program. It does not define the physical
end of the program, but is only relevant during
program execution.

RELATED COMMANDS
None

SYSTEM
I, LVLI
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk •

FORMAT
line#..£OF(buf#)...

EXAMPLES
1000 IF EOF(1) THEN CLOSE(l):GOTO
2000

DESCRIPTION
EOF is a Disk BASIC function that indicates
whether the "end-of-file" of a disk file has been
reached. It is normally used during a disk read
operation to test for the read of the last data from
the file. Two types of reads might be done. In one
type, the user knows exactly how many records are
in a disk file and reads that exact number. In the
second type, the user tests for EOF to determine
when all of the data has been read. In the EOF
case, a 0 is returned when more data remains in
the file, and a -1 is returned when all data has been
read and an EOF condition exits. The EOF is used
in this context as a "logical" function which
specifies a true/false condition.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I, Disk

III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
line# ...expressionEQVexpression...

EXAMPLES
1000 C=A EQV B

DESCRIPTION
EQV is a logical or bit manipulation operator that
processes two operands in similar fashion to the
more common AND or OR. EQV compares both
operands (constants, variables, or expressions on a
bit by bit basis. For each bit position, the result bit
is a 1 when both bits are the same. 0 IMP 0=1;
0 IMP 1=0; 1 IMP 0=0; and 1 IMP 1=1.
EQV is the inverse of the XOR function. The
expressions are converted to 16-bit integers and
then compared on a bit basis. If A is binary
01010000 and B is 00111111, above, then C is
10010000.

RELATED COMMANDS
XOR

A

SYSTEM
I. LVL I
I, LVL II
I. Disk
II •
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
linett ERhSE array l,arrray2,array3

EXAMPLES
1000 ERASE XX.AS.AS erase three
arrays

DESCRIPTION
ERASE is used to "de-allocate" one or more arrays.
When ERASE is executed, the specified arrays are
removed from RAM space, and the area allocated
for the arrays is released to the free memory area.
ERASE is the opposite of DIM. Arrays deleted in
an ERASE may be redimensioned. ERASE removes
the entire array and cannot be used to remove one
or a few entries of the array.

RELATED COMMANDS
DIM

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC, Ext BASIC
CC. Disk
FORMAT
/rr?e#...ERI
EXAMPLES
1000 IF ERL=2000 THEN STOP stop if invalid
read in line 2000
DESCRIPTION
ERL is a special error-processing function which
returns the line number in which an error occurred.
The ERL is normally used within an error-
processing routine defined by the line number in an
ON ERROR GOTO command. When any error
occurs and the user error-handling mode is in force,
the error-processing routine takes suitable actions
for the error, such as displaying the type of error,
line number, and corrective action. The ERL allows
the error-processing routine to determine the line
number and therefore further information about the
manner of error and action to take. If a program
error has occurred since power up, ERL returns the
line number of the last error. If an error occurred in
the command mode (such as entering LLLIST),
65535 is returned as the ERL argument to signify
that no line number was involved.
RELATED COMMANDS
ERR,ERROR, ON ERROR GOTO, RESUME

SYSTEM
I, LVL I
I, LVL II •
I. Disk •
II •
III, LVL I
III. LVL III •
III. Disk •
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
/me#...ERR...

EXAMPLES
1000 IF ERR/2+l=4 THEN STOP Stop it out
ot data

DESCRIPTION
ERR is a special error-processing function which
returns the error code for the error that just
occurred. ERR is normally used within an error-
processing routine defined by the line number in an
ON ERROR GOTO command. When any error
occurs and the user error-handling mode is in force,
the error-processing routine takes suitable acbons
for the error, such as displaying the type of error,
line number, and correcbve action. The ERR allows
the error-processing routine to determine the type of
error and therefore define the manner of error and
action to take. The expression ERR/2+1 is used to
find the true error code for the Models I and III.

RELATED COMMANDS
ERL, ERROR, ON ERROR GOTO, RESUME

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
linett ERROR

EXAMPLES
1000 ERROR 4 simulate out of data error

DESCRIPTION
ERROR is used to simulate an error condition.
ERROR is primarily used to test a user error-
processing routine. The error-processing routine is
established by an ON ERROR GOTO command
with appropriate error handing code.

RELATED COMMANDS
ON ERROR GOTO

code

SYSTEM
I. LVLI
I. LVL II
I. Disk
II •
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC, Disk

FORMAT
line# ...ERRS...

EXAMPLES
1000 PRINT "ERROR: ";ERR$

DESCRIPTION
EPRS returns a text string containing the number
and description of the TRSDOS error related to the
latest BASIC disk error. BASIC normally displays
a "DISK I/O" error indication. ERRS is a way of
further defining the error in TRSDOS. ERRS would
normally be used in BASIC error-handling routines
to notify the user of errors and to determine some
corrective action. If no TRSDOS error occurred
ERRS returns a null string.

RELATED COMMANDS
ON ERROR GOTO

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC •
CC. Ext BASIC •
CC, Disk •

FORMAT
EXEC
EXEC address

EXAMPLES
EXEC execute last loaded machine-language
program

DESCRIPTION
EXEC causes a transfer to the last CLOADM
address or to the specified address value. EXEC is
used primarily after a CLOADM command to
transfer control to the machine-language file,
assumed to be a major program (one not generally
interfacing to BASIC via the USR command).
EXEC may also be used in the "EXEC address"
format to transfer control to any machine-language
code at any time while in the command mode. The
address parameter specifies the starting address for
execution.

RELATED COMMANDS
CLOADM

SYSTEM
I, IVL I
I. LVL II
I. Disk •
II •
III, LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC •
CC, Disk •

FORMAT
hne#...E.XP(expresston)...

EXAMPLES
1000 A=EXP(X)

DESCRIPTION
EXP is the inverse of the lOG function. It returns
the natural exponential of X, or e (2.718...) to the X
power. Natural logarithms and exponentials are used
in a variety of mathematical and scientific
applications.

RELATED COMMANDS
LOG

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III, Disk •
CC. BASIC
CC. Ext BASIC
CC, Disk •
FORMAT
ImeH FIELD bufti.n AS namel.n AS name2 n AS
namen

EXAMPLES
1000 FIELD 1,20 PS LNAMES,20 AS
FNAMES,40 AS ADDRS
DESCRIPTION
FIELD is used to define fields of specified length
within a random-file buffer. Fields are subdivisions
of a record. Each field has a name specified in the
field statement. The field name may be used in
LSET, RSET or other commands to easily store or
retrieve character data from the record without
having to specify the relative location of the data in
numeric form. It would be much more convenient to
reference "FNAME" for "first name" than the 20th
through 39th characters in a record, for example
The buf# parameter defines the buffer number to be
used when referencing data. The buffer number is
associated with a file by the OPEN command The n
parameters define the length of the field in
characters. The name parameters define a field
string variable name. (DUMMYS can be used to
"space over" characters! The total number of
characters used for the fields must equal the record
length defined in the OPEN.
RELATED COMMANDS
LSET, RSET

F I E L D

F I L E

SYSTEM
I, LVL I

LVL II
Disk

III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk •

FORMAT
FILES number of bufs.buffer site
line# FILES number of bufs.buffer site

EXAMPLES
FILES 3,256 reserve 3 bufs of 256 bytes

DESCRIPTION
FILES specifies how many disk buffers to reserve
in memory and how large the buffers should be. The
buffer size parameter is optional; if not used, a
buffer size of 256 bytes is used Disk BASIC uses
buffers to assemble records on output to disk and to
read in sectors of the disk on input. Sectors are 256
bytes long, and this is the normal length for RAM
buffers. If FILES is never specified, two buffers of
256 bytes are assumed.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk

III. LVL I
III. LVL III
III, Disk
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
linett...F I /.(expression)...

EXAMPLES
1000 REM FIND INTEGER PORTION OF X
1010 IN=FIX(X) put integer portion in IN

DESCRIPTION
FIX finds the integer portion of a constant,
variable, or expression. Unlike INT, it finds the true
integer portion of a negative argument. The integer
portions of *1.12, +100.45, 0, -5.567, and -999.999
are 1, 100, 0, -5, and -999, respectively. The
argument must be within parentheses. The argument
does not have to be an integer value (-32768 to
+32767).

RELATED COMMANDS
INT

SYSTEM
LVLI
LVL II
Disk FOR. . .

TO. . .STEP III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line# FOR variable-expression TO expression
STEP expression
EXAMPLES
1000 FOR 1=0 TO 100 loop 101 times
2000 FOR 1=7 TO 100 STEP 2 loop 47 bmes
3000 FOR 1=101 TO 0 STEP -2 loop 51
times
DESCRIPTION
The FOR — TO—STEP commands, together
with NEXT, set up and execute a program loop. The
"variable" is executed from the starting value given
in the expression 1 TO an ending value given in
expression 2. The two start and end values may be
constants, variables, or expressions. If no STEP size
is given, the variable is incremented by one each
time the loop is repeated, until the variable equals
the end value. If a STEP size is given, the variable
increments by the STEP size each bme through the
loop. The start and end values may be positive or
negative If the start is less than the end value, a
STEP of a negative value is mandatory. A NEXT
command later in the program defines the end of
the loop and transfers control back to the
FOR.. .TO — STEP statement for the next
iteration of the loop. Any number of loops may be
"nested'.'
RELATED COMMANDS
NEXT

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC, BASIC
CC. Ext BASIC
CC. Disk

FORMAT
FRZ(string)
linett.. FREfstring)...

EXAMPLES
1000 PRINT FRE(A$)

DESCRIPTION
FPE returns the amount of free string storage space
available in bytes. In finding the amount of string
storage, the BASIC interpreter "cleans up" the
string storage area near the top of RAM to create
the maximum free string space. The string storage
area size was first specified in a CLEAR statement.
If no CLEAR statement was encountered, 50 bytes
of string storage space is automatically saved. The
"string" parameter within parentheses is a
"dummy" argument; the string variable specified
has no significance. FRE is usually entered from
the command mode, although it can be used within
a BASIC program as a check on free string space.
If the argument in FRE is numeric, FRE returns
the total amount of free memory.

RELATED COMMANDS
CLEAR

SYSTEM
I. LVL I
I, LVL II
I. Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC. Disk •

FORMAT
Imen ...FREE(drive*)...

EXAMPLES
PRINT FREE(l)

DESCRIPTION
FREE is a Color Computer Disk BASIC command
that returns the number of free granules on the
diskette for the specified disk drive. A granule is the
minimum unit of disk drive space allocated by the
BASIC "file manage" handler and is equal to 5
sectors, or 2304 bytes. FREE is used either in the
command mode or embedded in a program to find
the space remaining on a diskette for user programs
or data.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III, LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC, Disk •

FORMAT
linen GET bufn
linen GET butn.recn

EXAMPLES
1000 GET 3,100 get 100f/r record

DESCRIPTION
GET is used to read a random-access file record
from disk. A random-access file allows records to be
read or written on a random basis (not in
sequence). The GET permits either the next record
in sequence or any record number of the file to be
read into the buffer associated with the file. Prior to
the GET. an OPEN with the "R" option must have
been executed. The OPEN defines the filename and
buffer associated with the file. The
"GET bufff" form of GET reads in the current
record, the number whose number is one higher
than the last access. If no record has been read,
this is the first record of the file. The second form
of GET reads in the specified record defined by
"recff"

RELATED COMMANDS
PUT

SYSTEM —-X.
L V L 1

MHpM
I£1k]SJU3=||

hi LVL i
III, LVL III
III. Disk
CC, BASIC
CC. Ext BASIC •
CC, Disk •
FORMAT
line# GET(xl,yl)-(x2.y2),array name.g
EXAMPLES
1000 GET (0,0)-(50,50),AA,G save
area in array AA
DESCRIPTION
The GET command is used in conjunction with the
PUT command. GET stores any rectangular area on
a graphics screen in a two-dimensional array. The
PUT later retrieves the graphics data from the array
and displays it in any other area ol the graphics
screen. GET'PUT can be used to save portions ol
a graphics screen or to create animation effects. The
xl.yl coordinates define one corner of the rectangle
to be stored in the array; The x2,y2 define the
opposing corner. The xl,x2 and yl,y2 values are in
"high-resolution" graphics coordinates of 0-255 and
0-191, respectively. The "array name" is the name
of a two-dimensional array previously defined by a
DIM statement. In general, the array size must be
equal to the dimensions of the graphics area to be
stored, although certain space-saving tricks may be
used. The g option is "G"; if used, full graphic detail
is saved in the array.
RELATED COMMANDS
PUT

SYSTEM
I, LVL I
I, LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line* GOSUB /me#
EXAMPLES
1000 REM DO SEARCH SUBROUTINE
1010 GOSUB 12000
1020 REM RETURN HERE AFTER
SUBROUTINE
DESCRIPTION
GOSUB is used to "call" a subroutine. A subroutine
is any set of BASIC statements that is used
repeatedly. Making the statements a subroutine in
one spot rather than repeating the code when
required saves RAM space. The GOSUB causes the
BASIC interpreter to branch to the line number
specified after the GOSUB. Unlike the GOTO, the
GOSUB action saves the return point after the
GOSUB. After the subroutine has been executed,
the last statement of the subroutine, a RETURN,
returns control to the statement after the GOSUB.
In the example above, the subroutine at line
12000 would be executed; it could consist of from
one to many statements. The last statement,
however, is a RETURN, which causes a return to
line number 1020. Subroutines may be "nested" in
many levels. One subroutine may call another by a
GOSUB, which may call yet another, etc.
RELATED COMMANDS
ON...GOSUB, RETURN

SYSTEM
I, LVL I •
I. LVL II •
I, Disk •
II •
III. LVL I •
III. LVL III •
III. Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
line# GOTO line#
GOTO line#

EXAMPLES
1000 GOTO 2000 transfers control to line #
2000
GOTO 2000 continues at line 2000

DESCRIPTION
GOTO is used in BASIC programs to transfer
control from one statement to another. It is the
normal way of "unconditionally branching" in the
program. Any number of GOTOs may be used in a
program. When a GOTO is executed, no record of
where the GOTO occurred is kept by the BASIC
interpreter, unlike a GOSUB. When a GOTO is used
in the command mode, the BASIC program
continues from the specified line number with all
variables and BASIC parameters intact. The GOTO
in this use may be used in lieu of a CONT
(continue) to restart the program at any point.

RELATED COMMANDS
CONT, GOSUB

SYSTEM
I. LVL I
I, LVL II
I, Disk
II •
III, LVL I
III, LVL III
III. Disk
CC. BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
lme#...HEX%(expression)...

EXAMPLES
1000 PRINT HEX$(A) find hex value of A

DESCRIPTION
HEX$ is a special function that will convert a
constant, variable, or expression to a string that
represents the hexadecimal value of the argument.
HEX$(1000), for example, will be converted to
the string "3E8". Hexadecimal notation is used
primarily for machine-language operations in
specifying addresses, instruction codes, and data
values.

RELATED COMMANDS
*.H

IF...THEN

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk
FORMAT
/me# IF true/false expression THEN action

EXAMPLES
1000 IF A<25 THEN A=25 fesf A
1010 IF (A=3 OR B=6) THEN GOTO 4000
DESCRIPTION
The IF.. .THEN command is used to test a
true/false condition and to take some action if the
result is true. If the result is not true, the next
statement in sequence is executed. The true/false
expression may contain any relational operators,
such as test for equality (A=B), sense (A<B). string
comparisons (A$<B$), and others. Constants,
variables, or expressions may be used in the
true/false expression in any mixture. The action to
be taken if the true/false expression is true may be
any one statement action, such as "THEN PRINT
A", or "THEN A=(3.66*1-2)". The THEN is
not necessary in the case of a transfer to a line#
such as "THEN GOTO 3000" If multiple
statements are on a single line after the THEN, all
statements after the THEN will be executed if the
true/false expression is true. The line
"1000 IF A<2 THEN A=1:B=23:PRINT C"
will result in A set equal to 1, B set equal to 23 and
C being printed if A is less than 2.
RELATED COMMANDS
IF...THEN...ELSE

SYSTEM
I. LVL I
I, LVL II •
I, Disk •
II •
III. LVL I
III. LVL III •
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
/me# IF true/false expression THEN action ELSE
action
EXAMPLES
1000 IF A<2 THEN A=A+4 ELSE A=A+5
1010 IF B=(I+37) THEN C=5 ELSE IF
B=(1+38) THEN C=6
DESCRIPTION
The IF...THEN ELSE command is used to
test a true/false expression and to take the THEN
action if the statement is true and the ELSE action
if the statement is false. The true/false expression
may use any relational operators as in "IF A=2','
"IF A<2',' "IF A$<BI" If the true/false
expression is true, the THEN action is taken and
the ELSE action disregarded. The THEN action
may be a single statement action of any type. If the
true/false expression is false, the ELSE action is
taken and the THEN action disregarded. The THEN
action may be any single statement action. A line
number may be used without a GOTO following the
THEN or ELSE. "Nested" IF...THEN.. .ELSE
commands may be used as shown in the example
above. If multiple statements follow the ELSE, then
all actions up to the end of the line are taken in the
false condition.
RELATED COMMANDS
IF...THEN

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III, LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# ...expression I MP expression...

EXAMPLES
1000 C=A IMP B
DESCRIPTION
IMP is a logical or bit manipulation operator tbat
processes two operands in similar fashion to the
more common AND or OR. IMP compares both
operands on a bit by bit basis. For each bit position,
the result bit is a 1 unless the bit of the first
operand is a 1 and the bit of the second operand is
a 0. 0 IMP 0=1; 0 IMP 1=1; 1 IMP 0=0;
and 1 IMP 1=1. The expressions are converted to
16-bit integers and then compared on a bit basis. If
A is binary 01010000 and B is 00111111, above,
then C is 10111111.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC. Ext BASIC
CC, Disk
FORMAT
/me#...INKEY$...
EXAMPLES
1000 IF INKEY$< >* * " THEN GOTO
2000 go if key press

DESCRIPTION
INKEYS is a special string function that allows you
to read the keyboard at "real-time" rates. If no key
is being pressed on the keyboard, INKEYS is set
equal to a "null" string of zero length, defined by
" .' If a key is being pressed, INKEY$ is set equal
to the current key press on the keyboard for a brief
period. If the key is not released, INKEYS is
shortly set equal to a "null" string. If one key is
being depressed and a second is pushed, INKEYS
is set equal to the second key (for a brief period).
Successive pushes of the same key result in short
bursts where INKEYS is set equal to the key
character interspersed with longer periods where
INKEY$=" INKEY$ can be used in a loop to
test for key presses at real-time rates. The following
code builds up a string of keypushes:
1000 B$=INKEY$
1010 IF B$= * * " THEN GOTO 1000 ELSE
A$=A$+B$: GOTO 1000
RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II
III. LVL I
III. LVL III •
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line# INP(port)

EXAMPLES
1000 A=INP(255) read cassette on Model l/lll

DESCRIPTION
INP inputs a one-byte value from a system
input/output port. The Model l/ll/lll uses
input/output ports lor certain system devices such
as cassette and RS 232-C operations. The INP is a
BASIC command that will enable the user to
directly read these I/O ports. The port parameter is
an address value of 0 through 255 that defines the
port address. It must be within parentheses. INP
returns a one-byte (8-bit) value representing input
data on the specified port address.

RELATED COMMANDS
OUT

SYSTEM
I. LVL I
I, LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
lined INPUT item list

EXAMPLES
1000 INPUT A$,EN,AG input
name,number,age

DESCRIPTION
INPUT is used to enter data from the keyboard.
Data is entered as a list of items. For each item in
the data list, INPUT accepts a numeric or string
variable. Entries may be entered one at a time from
the keyboard or all entries may be entered with
each individual item separated by commas. The type
of entry must match the data item type - numeric
items cannot include text. If an invalid item type is
entered, a "REDO" message is output. BASIC
prompts the user by a "?" when INPUT is
expected. If more than one item is in the INPUT
list and not all entries have been entered when the
ENTER key is pushed, BASIC indicates that more
items are expected by Entering more items
than there are in the list causes an "?EXTRA
IGNORED" message.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I •
III. LVL III •
III, Disk •
CC, BASIC •
CC. Ext BASIC •
CC, Disk •
FORMAT
ImeU INPUT "text";item list
EXAMPLES
1000 INPUT "ENTER
NAME,0, AGE'';A$,EN,AG input
name,number,age
DESCRIPTION
INPUT...; is identical to the normal INPUT
statement except that a message is displayed before
me INPUT. The text of the message is enclosed by
double quotes and separated from the item list by a
semicolon, INPUT IS used to enter data from the
keyboard. Data is entered as a list of items For
each item in the data list INPUT accepts a
numeric or string variable. Entries may be entered
one at a time from the keyboard or all entries may
be entered with each individual item separated by
commas. The type of entry must match the data
item type • numeric items cannot include text If an
invalid item type is entered, a "REDO" message is
output. BASIC prompts the user when INPUT IS

, b.y 3 " more than one item is in the
INPUT list andI not all entries have been entered
when the ENTER key is pushed, BASIC indicates
that more items are expected by "7T\ Entering more
items than there are in the list causes an "?EXTRA
IGNORED" message.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III. LVL I
III, LVL III i r*.•%nvivmm rTTO

&S &C *
CC. Ext BASIC
CC, Disk •
FORMAT
linett INPUTtJ buftt,item list
EXAMPLES
1000 INPUT83, A,B,C$ input from disk file
DESCRIPTION
INPUTtJ is used to input a list of items from a
sequential file on disk. It is similar to the keyboard
INPUT statement except that the data items are
read from a disk file. The disk file must have been
previously OPENed; the OPEN associates the buf#
parameter with a sequential disk file. Normally the
data items have been output to the disk file with a
PRINTS statement. The item list must follow the
same sequence as the items in the disk file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in sequential files is written onto disk as
a succession of ASCII characters. Even numeric data
is output as a string of characters. The INPUTB
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.
RELATED COMMANDS
PRINTB

INPUTtt
I d i s l i

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk
FORMAT
line# INPUTa.rfe/n list

EXAMPLES
1000 INPUTS,A,B,CS
DESCRIPTION

INPUT#
(non-disk T

input from cassette

INPUTS is used to input a list ol items Irom a
cassette file. It is similar to the keyboard INPUT
statement except that the data items are read from
a cassette file. Normally the data items have been
output to the cassette file with a PPINT8
statement. The item list must follow the same
sequence as the items in the cassette file; il two
numeric items are followed by one string item, then
the three variables read must be numeric, numenc
string Data in cassette files is written as a
succession of ASCII characters Even numenc data
is output as a stnng of characters. The INPUTn
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables. 6

RELATED COMMANDS
PRINTa

SYSTEM
I. LVL I
I. LVL II •
I. Disk •
II
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC •
CC. Ext BASIC •
CC, Disk •
FORMAT
linett INPUTB -1,item list
EXAMPLES
1000 INPUT8-1,A,B,C$ input
from cassette
DESCRIPTION
INPUTa -1 is used to input a list of items from a
cassette file. It is similar to the keyboard INPUT
statement except that the data items are read from
a cassette file. Normally the data items have been
output to the cassette file with a PRINTS-l
statement. The item list must follow the same
sequence as the items in the cassette file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string Data in cassette files is written as a
succession of ASCII characters. Even numeric data
is output as a string of characters. The INPUT8-1
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.
RELATED COMMANDS
PRINT8-1

SYSTEM
I. LVL I
I, LVL II •
I, Disk •
II
III. LVL I
III, LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
lined INPUTB-2,rfem list
EXAMPLES
1000 INPUT8 - 2, A, B, CS input Irom cassette
DESCRIPTION
I NPUTB-2 is used to input a list of items from a
cassette file. It is identical to INPUTB-i except
that the cassette file is on the second cassette drive
It is similar to the keyboard INPUT statement
except that the data items are read from a cassette
file. Normally the data items have been output to
the cassette file with a PRINTB- statement The
item list must follow the same sequence as the
items in the cassette file; if two numeric items are
followed by one string item, then the three variables
read must be numeric, numeric, string. Data in
cassette files is written as a succession of ASCII
characters. Even numeric data is output as a string
of characters. The INPUTB-i reads in the
character data, detects the terminators between
data items, and converts each item to the proper
type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.
RELATED COMMANDS
PRINTB-l,PRINTB-2

INPUT'S
(d i s k j

SYSTEM
I. LVL I
I. LVL II
I. Disk
II •
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
lined ...INPUT%(length.bufd)...
EXAMPLES
100O h$=input$(10,3) input 10 characters
from disk
DESCRIPTION
INPUTS is a function that specifies the number of
characters that will be read from a sequential disk
file. It is somewhat similar to LINE INPUTS
except that the input string is terminated by a
number of characters rather than the ENTER key.
The length parameter is a value from 1 through
255. The butd is the number of the sequential file
input buffer specified in the OPEN statement
associated with the file name. When INPUTS is
executed, BHSIC will wait until the specified
number of characters are read from the disk file
and then return all characters as a string. All
characters read will be returned, including those
that would normally be delimiters, such as commas.
1000 hS=INPUT$i 10,3), for example, would
specify that A$ would be set equal to the next 10
characters input from the disk file associated with
buffer 3 and that the next line would not executed
until those 10 characters were input.
RELATED COMMANDS
LINE INPUTS

SYSTEM
I. LVLI
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC, Disk

FORMAT
lined ... INPUTs(length)...

EXAMPLES
1000 A$= I NPUT$ (10) input 10 characters
from keyboard

DESCRIPTION
INPUTS is a keyboard (unction that specifies the
number of keyboard characters that will be read It
is somewhat similar to LINE INPUT except that
the input string is terminated by a number of
characters rather than the ENTER key The length
parameter is a value from 1 through 255. When
INPUTS is executed, BASIC will wait until the
specified number of characters are typed and then
return all characters as a string. All characters
typed will be returned, including those that would
normally be delimiters, such as commas The
characters input will not be displayed on the screen
1000 A$= INPUTS110|. tor example, would
specify that A$ would be set equal to the next 10
characters input from the keyboard and that the
next line would not executed until those 10
characters were input.

RELATED COMMANDS
LINE INPUT

SYSTEM
I, LVL I
I, LVL II
I. Disk •
II •
III, LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
/me#... INSTPfstrmg 1,strmg2)
lined... IN5T9(position.strmgl,string2)
EXAMPLES
1000 A=INSTR(A$,* 'ISS'') look for "ISS"
in A$
DESCRIPTION
INSTR is a function that searches for a substring
within a larger string. The stringl and string2
parameters are string literals or variables. (String
literals will be enclosed in quotes; string variables
will have the "$" suffix or DEFSTR definition.) If
the first format is used, INSTR will search for
string2 in stringl. If string2 is found within stringl,
the starting position of the first occurrence of
string2 will be returned. If string2 is not found
within stringl, 0 will be returned. Positions of
strings are numbered from 1 through the length of
the string in characters. If the second format is
used, the "position" parameter is a constant,
variable, or expression that specifies the starting
position for the search. In the example above, if
A$="MISSISSIPPI',' INSTR would set A to 2. The
second occurrence of ISS would have to be found
by specifying a position greater than 2.
RELATED COMMANDS
None

SYSTEM
I. LVLI
I. LVL II
I, Disk
II
III, LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
/me#... INT(expression)...
EXAMPLES
1000 REM POKE ADDRESS
1010 POKE I+l, INT (AD/256): POKE
I,AD-(INT(AD/256)*256)
DESCRIPTION
INT returns the integer portion o(a positive
number and the next highest integer for a negative
number. The argument may be a constant, variable,
or expression and must be within parentheses For
arguments of +1.12. +999 45. 0, 1.11, and -234 56.
INT returns +1. +999, 0. -2. and -235, respectively
INT is commonly used to find the two bytes of a
16-bit address for POKES of addresses as in the
example above, or for rounding operations, as in
1000 FIND X ROUNDED TO 2 DEC PLACES
1010 XR= INT(X*100*. 5)^100
INT should be used to find the integer portion of
positive numbers only; Fix should be used when
both positive and negative numbers are involved.
The argument in INT may be any size.
RELATED COMMANDS
FIX

SYSTEM
I, LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
/me#...JOYSTKfaL
EXAMPLES
1000 A=JOYSTK(3) get y coordinate of
/oystick 2

DESCRIPTION.
JOYSTK is a special function that reads the
joystick value. (The optional joysticks must be
connected to the joystick plugs on the back of the
Color Computer.) The n parameter defines the
position parameter to be read. Each of the two
joysticks will return an "x" coordinate and a "y"
coordinate. Arguments of n=0 and n=l read the x
and y coordinates from the left joystick,
respectively. Arguments of 2 and 3 read the x and y
coordinates from the right joystick. The value
returned for any of the 4 positions is 0 through 63
The up and left positions are 0 and the down and
right positions are 63. Intermediate positions are
proportional, for example, the center position of a
joystick is 32,32. JOYSTK(0) must first be
returned before JOYSTK(l) -J0YSTK(3) can
be read.

RELATED COMMANDS
None

SYSTEM
I. LVLI
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk •

FORMAT
KILL "filename"
line# KILL "filename"

EXAMPLES
KILL "ACCOUNTS^BftS:!" kill accounts
payable

DESCRIPTION
KILL deletes a file on disk. It is identical to the
TRSDOS KILL command except that it may be
performed inside BASIC in the command or
execution modes. (Always CLOSE an open hie
before executing a KILL; if this is not done, the
disk contents may be destroyed) The "filename" is
a filespec for a BASIC program stored on disk; it
conforms to the general requirements for filespecs •
name, extension, password, and drive number. If no
drive number is specified, KILL will delete the file
from the first disk that contains the filename (The
order for the search is drive 0, 1, 2, and 3.)

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I
III, LVL III •
III. Disk •
CC. BASIC •
CC. Ext BASIC •
CC. Disk •

FORMAT
hneti...LEFTS(string.n)...

EXAMPLES
1000 A$=LEFT$|BS.4) get the first 4
characters of B$
1010 C$=LEFTS(B$, I) get the first I
characters of B$
1020 D$=LEFTS(BS, (1*2)) get the first 1*2
characters of B$

DESCRIPTION
LEFTS finds the last n characters of a given string
The n parameter may be 0 to 255. The "string"
parameter is a previously defined string. If
B $ = " H E R O I N E 7 f o r e x a m p l e , A $ = L E F T $ (B S , 4)
will set AJ="HER0" If n is greater than the length of
the specified string, LEFTS will return the entire
string. HS=LEFTS(BS,20), for example, returns
A$="HEROINE" The n argument may be a constant,
variable, or expression. LEFTS may be used to
process "substrings" where a large string is made
up of a number of substrings concatenated
together for ease of handling.

RELATED COMMANDS
fllDS, RIGHTS

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I
III. LVL ill •
III. Disk •
CC. BASIC •
CC. Ext BASIC •
CC. Disk •

FORMAT
hnetf...LEN(string)

EXAMPLES
1000 LA=LEN| A$ i find h of characters in A$
1010 LB=LEN(B$ | find It of characters in B$

DESCRIPTION
LEN finds the length in characters of a specified
string. The length is the actual number of characters
in the string, not counting string pointers The
"string" variable must be a valid string variable and
may be a string expression such as A$+B$ or
5TRING$(5, * **"). LEN produces a numeric
variable of 0 to 255 which can be used in string
processing. IF A$="THE ONLY ISM FOR ME IS
COMPUTERISM'; then LEN(A$p34.

RELATED COMMANDS
None

SYSTEM
I. LVL I

LVL II
Disk

II. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
lineft LET variable=expression

EXAMPLES
1000 LET A=1.2345E-10: LET
B=3.14159

DESCRIPTION
LET is used primarily for compatibility with older
versions of BASIC. LET was used on older
BASICS prior to setting a variable equal to a value
or expression. On all TRS-80 BASICS, LET is
optional and the variable may be set without the
LET, as in

1000 A=1.2345E-10: B=3.14159

RELATED COMMANDS
None

SYSTEM
I. LVLI
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC. Disk
FORMAT
linen LW€(xl,yl)(x2.y2).PSZJ
linen LI HE (xl.ylMx2.y2). PRESE T
linen LINE(*J,yJH*Zy2J,PSET.B
linen LINE(xl,yl)-(x2,y2).PRESE T,B
linen LIm*l,yl)(*2,y2).PSZJ,BF
linen LINt(xl,yl)-(>t2,y2).PRE SE T, BF
EXAMPLES
1000 LINE (23.23)-
(100,100) .PSET draw line
1010 LINE (200.150)-
(220,170),PRESET,BF erase filledin box
DESCRIPTION
LINE is used to draw
filled in box on the

aw a line, box (rectangle), or
current graphics page The xl.yl

and x2,y2 parameters specify two points on the
graphics screen The values used tor xl and x2 are
0 through 255. The values used for yl and y2 are 0
through 191. The x and y ranges are for the highest
resolution graphics mode. The ...PSET form draws a
line in the current foreground color between xl.yl
and x2,y2; the ...PRESET form draws the line in
the current background color. The ...PSET. B and
... PRESET, B forms draw the outline of a box in
the current foreground and background color,
respectively. The ...PSET.BF and ...PRESET,BF
forms fill in the box with the current foreground or
background color.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I, LVL II
I, Disk •
II •
III. LVL I
III, LVL III
III. Disk
CC, BASIC
CC. Ext BASIC •
CC, Disk •

FORMAT
linen LINE INPUT string variable
linen LINE INPUT "text";string variable

EXAMPLES
1000 LINE INPUT "ENTER STREET,
CITY, STATE" ;AD$

DESCRIPTION
LINE INPUT inputs a line of text entered from
the keyboard. The input is terminated by an ENTER.
All keyboard characters are entered as legitimate
characters. LINE INPUT is unlike INPUT in that
commas and other delimiters are treated as normal
text characters and included as part of the result
string. The "text" parameter is optional. If included,
the text message is displayed just prior to the input
operation. The resulting string variable includes all
characters not including the ENTER character. In
the example above, a valid input might result in
AD$="250 N.S. MEMORY LANE, COMPUTER CITY
CA."

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC, Ext BASIC
CC. Disk •

FORMAT
lined LINE INPUTnbufd.stnng variable

EXAMPLES
1000 LINE INPUTB3.ADS input line
from disk

DESCRIPTION
LINE INPUTB inputs a line of text from a disk
file. LINE INPUTB is unlike INPUTB in that
commas and other delimiters are treated as normal
text characters and not as data items. The line is
input from the disk file up to an ENTER character
(not preceded by down arrow), the end of file, or
the 255th data character. The resulting string
variable includes all characters not including the
ENTER character. The but# parameter is the disk
buffer associated with the file by a prior OPEN
statement. LINE INPUTB can be used to input
BASIC program lines when the program has been
saved in ASCII format or for other applications
involving line-oriented text files.

RELATED COMMANDS
LINE INPUT

LINE
INPUTB

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC, Disk
FORMAT
LIST
LIST nnn mmm
LIST mmm
LIST nnn-
lined LIST
EXAMPLES
LIST 100-999 lists all statements from 100
through 999
LIST -9000 lists all statements from beginning
through 9000
LIST 100- lists all statements from 100 through
end
DESCRIPTION
LIST is normally used in the command mode to
list the current BASIC program in RAM to the
video display. Listing will occur as rapidly as the
BASIC interpreter can display the BASIC
statements, and the display will "scroll" as
successive statements are displayed. The program
will be listed as a succession of BASIC statements
in ASCII format. The display can be temporarily
stopped at any time by pressing "SHIFT,
pressing any key will restart the listing. LIST used
in the "nnn-mmm" "-mmm" or "nnn-" formats will
list from a beginning line through an ending line
RELATED COMMANDS
LLIST

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I •
III. LVL III •
III. Disk •
CC, BASIC
CC. Ext BASIC •
CC, Disk •
FORMAT
LLIST
LLIST nnn mmm
LLIST mmm
LLIST nnn-
line# LLIST
EXAMPLES
1000 PEM LLIST PROGRAM TO LINE
PRINTER
3000 LLIST
LLIST 100-999 lists all statements from 100
through 999
LLIST -9000 lists all statements Irom beginning
through 9000
LLIST 100- lists all statements from 100
through end
DESCRIPTION
LLIST is normally used in the command mode to
list the current BASIC program in RAM to the
system line printer. LLIST is logically equivalent
to LIST, used for displaying the program on the
video display. Only BASIC statements will be
listed; no variables or other program parameters will
be displayed. The program will be listed as a
succession of BASIC statements in ASCII format.
LLIST used in the "nnn mmm',' " mmm" or "nnn-"
formats will list from a beginning line through an
ending line. LLIST alone lists the entire program.
RELATED COMMANDS
LIST

LORD

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III, Disk •
CC. BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
LOAD "filename"
LOAD "filename'.'R
I melt LOAD "filename"
lined LOAD "filename'.'R

EXAMPLES
LOAD * *ACCOUNTS/BAS:l*' load accounts
payable

DESCRIPTION
LOAD loads a BASIC program from disk. If LOAD
is used without the R option, LOAD will clear all
variables, close all open files and return to the
BASIC command mode. If LOAD is used with the
"R' option. LOAD will clear all variables, will not
close open files, and will load and execute the
BASIC program from its first line. LOAD in either
form may be used in a BASIC statement during
BASIC program execution. The "filename" is a
filespec for a BASIC program stored on disk; it
conforms to the general requirements for filespecs -
name, extension, password, and drive number.
LOAD may be used in BASIC programs to "chain"
programs, allowing one program to call another in a
chain of "overlays'*
RELATED COMMANDS
RUN

J

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk •
FORMAT
LOADM"Mer?aroe"
LOADM "filename'.'offset
EXAMPLES
LOADM •' GRAPHC'' load hie "GRAPHC "
into RAM

DESCRIPTION
LOADM IS a Color Computer Disk BASIC command
used to load a machine-language file from disk. The
disk file must have been created by the SAVEM
command. If the filename is specified without an
extension. BASIC assumes that the extension is
"/BIN", this is the normal default extension for the
SAVEM command If the file is a machine-language
program, an EXEC can be performed after the
LOADM to execute the program; BASIC will start
execution at the execution address specified in the
file. If an optional offset is included, the offset
constant will be added to the normal file load
address, and the program or data will be
"relocated" to the resulting RAM addresses If the
normal load address was &H3000 to &H30FF and
the offset was &H500. for example, the data would
be loaded into RAM locations &H3500 to &H35FF
Specifying an offset bias will not properly relocate
machine-language code.
RELATED COMMANDS
EXEC, SAVEM

SYSTEM
I. LVL I
I. LVL II
I, Disk
II •
III, LVL I
III. LVL III
III. Disk •
CC, BASIC
CC. Ext BASIC
CC. Disk •

FORMAT
lined...LOC(bufd)...

EXAMPLES
1000 IF L0C(3)=5 THEN S=1 test for fifth
record

DESCRIPTION
LQC is used to find the number of the current
record in a file. The buf# parameter specifies the
buffer number associated with the file. An OPEN
must have been performed for the buffer (file)
involved. As records are read in from the file by
GET (or INPUTtt for sequential files), BASIC
maintains the current record number of the file and
returns this number when LOC is executed. LOC is
used to detect a specific record number as records
are read in from disk, or in any processing that is
"record dependent'.'

RELATED COMMANDS
LOF, OPEN

SYSTEM
I. LVLI
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC, BASIC
CC. Ext BASIC
CC. Disk •

FORMAT
line*...LOF (but*)...

EXAMPLES
3/0R 1 TO LOF (3) loop through n

DESCRIPTION
LOF is used to find the number ol the last record
in a tile. The but# parameter specifies the buffer
number associated with the file An OPEN must
have been performed for the buffer (file) involved

°PE.N 'S ?one- BftSIC kn°»s the number
of records contained in the file and returns this
number when LOF is executed. The LOF can be
•ho r . 3 p r o c e s s i n B 'oop fo r t he reco rds i n
he hie. LOF is used as an alternative to detecting

the last record number by EOF or knowing the
number of records in the file beforehand.

RELATED COMMANDS
EOF, OPEN

SYSTEM
LVL I
LVL II
Disk

I. LVL I
I. LVL III
I. Disk

CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line*... LOG(expression)...

EXAMPLES
1000 DB=10*(LOGi P2/PlKLOG(10)) find
decibels

DESCRIPTION
LOG finds the natural logarithm of a constant,
variable, or expression, the logarithm to the base e,
or 2.718 . To find the logarithm of the argument to
another base, use the formula log of X to base b=log
of X to base e/log of X to base b, as in the example
above. Natural logarithms are commonly used in
mathematical and scientific applications.

RELATED COMMANDS
EXP

SYSTEM
I. LVL I
I. LVL II •
I, Disk •
II •
III. LVL I •
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC, Disk
FORMAT
line# LPRINT item Iisi
EXAMPLES
1000 LPRINT "THIS IS THE
RESULT ";RS,"N=";N
DESCRIPTION
LPRINT is used to print a list o< items on the
system line printer. LPRINT is the line printer
equivalent of the PRINT command The items may
be string literals (text), string variables, or numeric
variables. Commas may be used between the items
to tab to the next print zone, or semicolons may be
used to avoid spaces between items (see and
; 1 There may be any number of items in the list

compatible with the maximum BASIC line length
Positive numbers are printed with a leading and
trailing blank. Negative numbers are printed with a
minus sign and trailing blank. Strings are printed
with no leading or trailing blanks. If the last item in
toe item list is terminated by a semicolon, the next
U T !1 starts ,rom where ,he current PRINT left

oft There are certain codes unique to various line
printers which control line feeds, expanded printing,
and special functions. These may be embedded in
the item list by use of CHP$ or STRINGS
RELATED COMMANDS

PRINT

LPRINT
USING

SYSTEM
I, LVL I
I, LVL II •
I. Disk •
II •
III, LVL I
III. LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
linett LPRINT USING stringntem list
EXAMPLES
1000 A$="**$nntt.na DOLLARS" define
string
1010 LPRINT USING AS; TOTAL print check
DESCRIPTION
LPRINT USING is used for printing special
formats on the system line printer, primarily dollar
amounts and accounting values. The string
parameter is a literal or variable string that defines
the format to be used in the printing. The item list
is a list of numeric or string variables that define
the items to be printed. If there is more than one
item, all items will be printed in the format defined
by the string. The string uses "field specifiers" to
define certain formats. A specifies a digit
position. A is a decimal point position and is
printed in the position specified. A is printed in
the position specified. Asterisks (*) fill unused
positions left of the decimal with asterisks. "$$" or
"**$" indicate a floating dollar sign, printed before
the number. The string "**$###,###.## DOLLARS"
used with variable A=96654.678 generates
*$96,654.68 DOLLARS. Other specifiers include up
arrows, plus sign, minus sign, %spaces%, and
exclamation point.
RELATED COMMANDS
PRINT USING

SYSTEM
I. LVLI
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC, BASIC
CC. Ext BASIC
CC. Disk •

FORMAT
hnetf L5ET field name-string

EXAMPLES
10O0 L5ET NM$=A$ store addressee name

DESCRIPTION
LSET is used to place character data into a
random-file buffer. The normal sequence of
operations establishing a random-file buffer is as
follows: Define the fields of the buffer by a FIELD
statement. The FIELD establishes the field names
in the buffer. The PSET and LSET are then used
to store character data in the fields of the buffer
The FIELD statement establishes the size for each
buffer field If the data to be stored by LSET is not
as great as this field size, "filler spaces" would be
filled on the right. If the field NM$ was 20
characters, the name "SPIRO SMITH" would be
stored as "SPIRO SMITH " |f data to be
stored by LSET is greater than the field size
!io^ters are ,runcated on the right. The data
••CD DA ^OUPOPOPODOUPOLIS" would be stored as
SPIRO AGOUPOPOPODOUP"

RELATED COMMANDS
FIELD. PSET

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk

FORMAT
/me#...MEM...

EXAMPLES
PRINT MEM
1000 PRINT MEM display memory left

DESCRIPTION
MEM is a special system function that computes the
amount of RAM memory currently available. The
BASIC interpreter finds the amount of memory
used for BASIC programs, variables, arrays,
strings, stack, and reserved memory in upper RAM,
subtracts it from the maximum RAM initially
available and reports the result for the MEM
function. This MEM value changes "dynamically" as
new variables are added, string variables are
computed, and so forth. MEM may be used from the
command mode to find the size of a BASIC
program indirectly (MEM before loading minus MEM
after loading) or in a BASIC program to compare
the memory currently available with memory
required.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk •
FORMAT
MEPGE "filename"
MERGE "filename'."R (Color Computer)
EXAMPLES
MERGE * 'ACCOUNTS/BAS:1" merge
accounts payable
DESCRIPTION
MERGE loads a BASIC program Irom disk and
appends it to the BASIC program in RAM The
program specified in the MEPGE command must be
in ASCII format. (It must have been SAVEd with the
"A" option.) The "filename" is a filespec for a
BASIC program stored on disk; it conforms to the
general requirements for filespecs • name,
extension, drive number, and password. In general,
the numbering of the program lines to be MERGEd
from disk and the program in RAM must be
mutually exclusive. If the line numbers are different,
the resulting program will be made up of the line
numbers from both programs in sequence. If any
line numbers are the same, the lines from the disk
program will replace the lines of the program in
RAM. The "R" option for the Color Computer runs
the program after the merge,
RELATED COMMANDS
LOAD, SAVE

MEPGE M I D 3

SYSTEM
I, LVL I
I, LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC •
CC. Ext BASIC •
CC, Disk •
FORMAT
/me#... MI D$(string, p,n)...
EXAMPLES
1000 A$=MID$(BS, 5,2I set A$ equal to the
5th and 6th characters of B$
1010 CS=MID$(B$,1,5) set C$ equal to
LEFTSIBS.5)
DESCRIPTION
MIDS returns a "substring" within a larger string.
The "string" parameter is the larger string to be
used. The p parameter is the beginning position of
the substring and may be 1 through 255. The n
parameter is the length of the substring to be
created and may be 1 through 255. This command
takes the specified portion from the middle of the
larger string and creates a new string. Suppose we
have the string "MISSISSIPPI" for A$. Setting
B$=MIDS(AS,1.4), B$-MIDTA,2,4),
B$=MID$IAS,3,4).and BS=MIDS(AS,8,4)
produces B$ of "MISS" "ISSI" "SSIS',' and "IPPI" re
spectively. If n is larger than the remaining portion
of the string, the entire remainder of the string is
returned. MIDS is useful for processing substrings
located within larger strings for ease of handling.
RELATED COMMANDS
LEFTS, RIGHTS

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC •
CC. Disk •
FORMAT
(me# MI D%(stnng,p.n)=replacement string
EXAMPLES
1000 MID$(AJ.V,5)=4*93555* * change
to new IIP
DESCRIPTION
HI OS normally returns a substring within a larger
string. mid$= uses MID$ to find the substring and
replace it with a given string or portion of a given
string. The substring and replacement strings are
normally the same length The string parameter is a
string variable containing the substring The p
parameter is the beginning position of the substring
and may be 1 through 255 The n parameter is the
length of the substring If A$ in the above example
was "COMPUTER CITY. CA 92692 and V was 19.
then the substring would be "92692" The MIDJ
function replaces the substring with the given string
if found In this example, the new string would be
"COMPUTER CITY, CA 93555" If the replacement
string is greater than the length n, only n characters
of the replacement stnng will be used If the
replacement string in the above example was
"93555 1234", only the first 5 characters would be
used
RELATED COMMANDS
MID*

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III, Disk •
CC, BASIC
CC. Ext BASIC
CC, Disk
FORMAT
line#...MKD$(double precision variable)..
EXAMPLES
1000 A$=MKD$(Att) convert AH to string
DESCRIPTION
MKDS is used to convert a double-precision
numeric variable to a "string-type" variable. MKD$
is normally used to fill a random-access buffer with
data values (see LSET, RSET). The typical
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
EI ELD, to convert numeric variables using MKD$,
MRU. and MKS$, to store the result with LSET
and RSET and other commands, and to write out
the buffer to disk. The MKD$ function converts a
iven double-precision variable to an 8-byte string,
he 8 bytes of the string are the double-precision

encoding of the numeric data and do not represent
ASCII characters. They are simply a convenience in
storing the data in the random-access buffer. The
CVD reconverts the data to numeric form on a
subsequent read. The MKD$ command can also be
used to convert to a normal string variable, which is
unrelated to a random buffer field name. In this
case also, the string variable will be 8 bytes long
RELATED COMMANDS
CVD. CVI, CVS, FIELD, MKI$, MKSS,
LSET, RSET

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CO. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line#... MKI Sfinteger variable)...
EXAMPLES
10O0 A$=MK I $ (A*) convert A% to string

DESCRIPTION
MK 1$ is used to convert an integer numeric
variable to a "string-type" variable. MKIS is
normally used to fill a random-access buffer with
data values (see LSET, PSET). The typical
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
FIELD, to convert numeric variables using MKD,
MKIS, and MKSS, to store the result with LSET
and PSET and other commands, and to write out
the buffer to disk. The MK I s function converts a
given integer variable to a 2-byte string The 2 bytes
of the string are the integer encoding of the
numeric data and do not represent ASCII characters
They are simply a convenience in storing the data in
the random-access buffer. The CVI reconverts the
data to numeric form on a subsequent read The
MKIS command can also be used to convert to a
normal string variable, which is unrelated to a
random buffer field name. In this case also the
string variable will be 2 bytes long and be made up
of the numeric data of the integer variable.
RELATED COMMANDS
CVO, CVI. CVS, FIELD. MKDS, MKSS.
LSET, RSET

SYSTEM
I. LVL I
I. LVL II
I, Disk
I!
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
/ine#...MKN$(VanaWej...
EXAMPLES
1000 AS=MKN$ (ft) convert A to string

DESCRIPTION
MKNS is used to convert a numeric variable to a
"string-type" variable. MKNS is normally used to fill
a direct-access buffer with data values (see LSET,
RSET). The typical sequence in filling a direct-
access buffer is to define the fields in a direct-
access buffer with FIELD, to convert numeric
variables using MKNS, to store the result with
LSET and RSET and other commands, and to
write out the buffer to disk. The MKNS function
converts a given variable to a 5-byte string. The 5
bytes of the string are the binary encoding of the
numeric data and do not represent ASCII characters.
They are simply a convenience in storing the data in
the direct-access buffer. The CVN reconverts the
data to numeric form on a subsequent read. The
MKNS command can also be used to convert to a
normal string variable, which is unrelated to a
buffer field name. In this case also, the string
variable will be 5 bytes long and be made up of the
numeric data of the numeric variable.
RELATED COMMANDS
CVN, FIELD, RSET, LSET

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
hnett...MK S%(single-precision variable)
EXAMPLES
1000 A$=MKS$I A) convert A to string
DESCRIPTION
MKS$ is used to convert a single-precision numeric
variable to a "string-type" variable. MI-S$ is
normally used to fill a random-access butler with
data values (see LSET, PSET). The typical
seauence in tilling a random-access buffer is to
delme the fields in a random-access butler with
FIELD, to convert numeric variables using MKD$.
MKI$, and MKSS, to store the result with lSET
and PSET and other commands, and to write out
the buffer to disk. The FLKS$ function converts a
given single-precision variable to an 4 byte string.
The 4 bytes of the string are the double-precision
encoding of the numeric data and do not represent
ASCII characters. They are simply a convenience in
storing the data in the random-access buffer. The
CVS reconverts the data to numeric form on a
subsequent read. The MKSS command can also be
used to convert to a normal string variable, which is
unrelated to a random buffer field name. In this
case also the string variable will be 4 bytes long.
RELATED COMMANDS
CVD, CVI, CVS. FIELD. MKDS. MKIS.
LSET. PSET

MI<S$

SYSTEM

II •

III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
linett ...expression MOD expression...

EXAMPLES
1000 C=A MOD B

DESCRIPTION
MOD is a numeric operator that performs a
"modulus" arithmetic operation on two operands
and returns a result. The two operands involved
(constants, variables, or expressions) are converted
to two-integer operands. A modulus operation
divides the first operand by the second operand and
finds the remainder. The remainder is then returned
as the result of the modulus operation. If the first
operand is 100, and the second is 44, the result of
100 MOD 44 is the remainder of 100/44, or 12.
Modulus arithmetic is useful in such processing as
finding the "12-" or "24-hour clock" times (elapsed
hours MOD 12 or 24).

RELATED COMMANDS

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC •
CC. Ext BASIC •
CC, Disk •

FORMAT
MOTOR ON
line# MOTOR ON
MOTOR OFF
line# MOTOR OFF

EXAMPLES
1000 MOTOR ON
3000 MOTOR OFF

DESCRIPTION
MOTOR ON turns on the cassette motor by
activating the cassette "remote" output. The motor
will remain on until a MOTOR OFF command is
executed, MOTOR ON can be used to automatically
control the cassette motor for positioning or other
uses from within a BASIC program. (The motor is
automatically turned on. however, by the CLOAD
and CLOADM commands.) MOTOR OFF deactivates
the remote output and turns the cassette motor OFF.

RELATED COMMANDS
CLOAD, CLOADM

in

SYSTEM
LVL I
LVL II
Disk

LVL I
I. LVL III
I, Disk

CC, BASIC
CC, Ext BASIC
CC. Disk
FORMAT
NAME newline,startline,increment
EXAMPLES
NAME 100,300.5 from line 100 with start of
300, increment of 5
DESCRIPTION
NAME renumbers the current BASIC program in
RAM. All line numbers in the program will be
changed to a new range of numbers, starting with a
given number, and with a given increment. This
includes not only statement line numbers at the
beginning of BASIC lines, but line numbers
referenced by GOTOs, GOSUBs, THENs,
ON — GOTOs, and ON.. .GOSUBs. The newline
parameter is the starting line number of the
program after renumbering. The startline parameter
is the first line number of the current program from
which renumbering is to occur. The increment
parameter is the increment to be used between new
line numbers. All parameters are optional. Defaults
are 10 for "newline',' 10 for "increment',' and the
entire program for "startline'.' Commas can be used
for missing parameters, or NAME can be used by
itself without parameters to renumber the entire
program with new line numbers from 10 in
increments of 10.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk

III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk

FORMAT
NEW
line# NEW

EXAMPLES
NEW erase old BASIC program

DESCRIPTION
NEW clears any current BASIC program in RAM,
resets all variables to 0. and generally reinitializes
all BASIC parameters. It does not affect non-
BhSIC data, such as reserved memory areas for
machine-language programs NEW should be used to
"erase" the current BASIC program in memory in
preparation for entering a new program from the
keyboard. NEW does not have to be used prior to
loading in a new BASIC program from disk or
cassette. NEW would not normally be used in a
BASIC program statement as it produces
catastrophic results and destroys the program.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II
I. Disk
II
III, LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
line# NEXT variable
line# NEXT
EXAMPLES
1000 FOR 1=1 TO 100 loop 100 times
1010 PRINT I print variable
1020 NEXT I loop
DESCRIPTION
The NEXT command is used together with
FOR.. .TO.. .NEXT to set up and execute a
program loop. The FOR.. .TO.. .NEXT statement
defines the start, end, and increment values for a
variable "counter" used to determine the number of
passes through the loop. Any number of statements
may be placed between the FOR.. .TO STEP
and NEXT statements. The variable in NEXT is
optional. Any number of FOR TO STEP
loops may be "nested'.' In this case, the innermost
NEXT must always use the variable associated with
the innermost FOR.. .TO.. .NEXT statement.
The NEXT statement increments the loop variable
by the STEP size, and if the variable has not
exceeded the end value, control is returned back to
the FOR TO STEP statement. The loop may
be broken with a GOTO or similar transfer at any
time. The variable controlling the loop may also be
altered in statements other than the NEXT.
RELATED COMMANDS
FOR..- TO...STEP

SYSTEM
I, LVL I
I. LVL II
I. Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...HOJ(expression)...

EXAMPLES
1000 IF NOT (R<B) THEN PRINT
"HELP!"
1010 A=NOT (B-l) two's complement

DESCRIPTION
NOT is used as a relational operator and for bit
manipulation. In the first use, NOT tests a constant,
variable, or expression. If the expression is false,
then the NOT function is true. In the example
above, NOT (A<B) is true if variable A is greater or
equal to variable B. The THEN action would not be
taken if A was less than B. In the bit manipulation
case, NOT is used to perform a one's complement
on an integer variable or end product of an
expression. A one's complement operates on binary
values. It "inverts" each bit, changing a one to a
zero and a zero to a one. The NOT in this
application can be used to invert bits and perform
other bit-wise operations.

RELATED COMMANDS
AND, OR

SYSTEM
I, LVL I
I, LVL II
I, Disk
II •
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#... OCT $(expression)...

EXAMPLES
1000 PRINT OCT$(A) find octal value of A

DESCRIPTION
OCT$ is a special function that will convert a
constant, variable, or expression to a string that
represents the octal value of the argument.
OCT$(1000), for example, will be converted to
the string "1750'.' Octal notation is used primarily
for machine-language operations in specifying
addresses, instruction codes, and data values.

RELATED COMMANDS

SYSTEM
I,

I.

LVl I
LVl II
Disk

III. LVL I
III. LVL III •
III. Disk •
CC. BASIC
CC. Ext BASIC
CC, Disk
FORMAT
linett ON ERROP GOTO line#
lined ON ERROR GOTO 0
EXAMPLES
lOOO ON ERROR GOTO 10000 define error
processing routine
DESCRIPTION
ON ERROR GOTO is used to define the line
number ol a user error-processing routine ON
ERROR GOTO should be defined early in the
program before errors can occur After ON ERROR
GOTO is executed with a valid line number, the
user error-processing mode is in force, and all
errors that occur will cause a transfer to the line
number of the error-processing routine. The user
error-processing routine can be disabled by
executing an ON ERROP GOTO 0 command.
Disabling user error-processing will return to the
BASIC interpreter's normal error action. The error
processing routine normally contains code that will
detect the type of error (see EPR) and the line in
which the error occurred (see EPL|, in addition to
code to report the error to the user and recommend
corrective action In some cases, the normal BASIC
error action will be reinstated (see RESUME).
RELATED COMMANDS
EPL, ERR. ERROR, PESUME

SYSTEM
I. LVL I
I. LVL II
I. Disk

III, LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
hnett ON expression GOSUB /me# I, /me#
2 /me# n
EXAMPLES
1000 ON AX GOSUB
100,200,300,400,500 does a GOSUB to
100 if AX-1, 200 if AX=2,...
2000 ON (B-5) GOSUB
1000,2000,3000,234 does a GOSUB to
1000 if (B-5)=l, 2000 if (B-5)=2 .
DESCRIPTION
This is a "computed GOSUB'.' The quantity before
the GOSUB may be a constant (trivial), variable, or
expression. The integer portion of the quantity is
found. If this is 1, 2, 3, etc., the first, second, third,
etc. line number is found and a GOSUB to the line
number performed. If the integer portion is 0, or
greater than the number of line numbers, the next
statement in sequence is executed. If the integer
portion is negative or greater than 255, an error
occurs. The computed GOSUB allows "branching
out" to a number of subroutines based on a single
variable:
1000 PEM BRANCH OUT ON MENU
SELECTION 1-5
1010 ON N GOSUB
1000,2000,3000,4000,5000
1020 REM NOT 1-5 HERE OR RETURN
POINT
RELATED COMMANDS
GOSUB, ON...GOTO

« . . . G O T O

GOTO lineft 1, line#

.500

SYSTEM
I, LVLI
I, LVL II
I, Disk

III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# ON expression
2,....line# n
EXAMPLES
1000 ON AX GOTO 100,200,300,400
does 3 GOTO to 100 if AX=1, 200 if AX-2,...
2000 ON (B-5) GOTO
1000,2000,3000,234 does a GOTO to 1000
if (B-5)=l. 2000 if (B-5)=2,...

DESCRIPTION
This is a "computed GOTO". The quantity before
the GOSUB may be a constant (trivial), variable, or
expression. The integer portion of the quantity is
found. If this is 1, 2, 3, etc., the first, second, third,
etc. line number is found and a GOTO to the line
number performed. If the integer portion is 0, or
greater than the number of line numbers, the next
statement in sequence is executed. If the integer
portion is negative or greater than 255, an error
occurs. Normally the quantity would be a single
variable or expression. The computed GOTO allows
"branching out" to a number of lines based on a
single variable, such as a menu selection:
1000 REM BRANCH OUT ON MENU
SELECTION 1-5
1010 ON N GOTO
1000,2000,3000,4000,5000
1020 REM NOT 1-5 HERE
RELATED COMMANDS
GOTO, ON...GOSUB

SYSTEM
I, LVL I
I, LVL II
I, Disk •
II •
III, LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
lined OPEN mode,buftf,filename
lined OPEN mode,bufd,filename,rec-length
EXAMPLES
1000 OPEN "0",1,'' PAYABLE :1*'
open payables file

DESCRIPTION
OPEN causes BASIC to initiate, extend, or locate a
disk file, to establish a RAM buffer for disk
operations, and to establish a record length. The
mode parameter is a one-character string that
establishes the basic operation. "I" specifies
sequential input starting at the first record. "0"
specifies sequential output starting at the first
record. If the filename does not exist, a new file is
created. "E" (not used in the Color Computer.)
appends output to the end of an existing file (or
creates a new file). "R" ("D" in the Color Computer
for "direct-access" file) specifies random
input/output of a file. If mode is a constant, it must
be enclosed in quotes. The buf# parameter is a
numeric value specifying the buffer number. The
filename parameter is a standard file specification. A
constant must be enclosed in quotes. The rec-length
parameter is optional for the "R" mode. If not used,
256 bytes is used for the length.
RELATED COMMANDS
CLOSE

SYSTEM
I, LVLI
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
hnett(expression) OR (expression) ..
EXAMPLES
1000 IF (A<2) OR (B>5) THEN PRINT
••HELP!"
1010 A=A OR 8 set bit 3
DESCRIPTION
OR is used as a relational operator and for bit
manipulation In the first use, OR compares two
constants, variables, or expressions If either
expression is true, then the OR funcbon is true. In
the example above, (A<2) AND (B>5) is true if
variable A is less than 2 OR variable B is greater
than 5. The THEN action would only be taken if
either expression was true (expression 1 OP
expression 2). In the bit manipulation case, OR is
used to logically OR integer variable bits, considered
to be binary numbers An OR of binary values
produces a 1 for each bit position if either operand
has a 1 bit in that bit position. An OP of the two
binary values 10100000 and 11001111 would
produce a result of 11101111. The OR in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations
RELATED COMMANDS
AND, NOT

SYSTEM
I. LVL I
I, LVL II •
I, Disk •
II
III. LVL I
III. LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
line# OUT port,value

EXAMPLES
1000 OUT 255,2
1010 OUT 255,1
1030 GOTO 1000

DESCRIPTION
OUT is a command that outputs a one-byte value to
a system I/O port. The Model l/ll/lll use I/O ports
for certain system devices such as cassette or RS-
232-C. The OUT enables a BASIC program to
directly output data to these I/O ports. The port
parameter is an address value of 0 through 255 that
defines the I/O address. The value parameter is a
one-byte value of 0 through 255 that represents the
data to be output to the I/O port.

RELATED COMMANDS
INP

turn cassette on
turn cassette off
loop

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC. BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
lined PAINTfr,yj.c.b

EXAMPLES
1000 PHINT (120,100),3,4 paint with
blue until red

DESCRIPTION
The PAINT command colors an area on a graphics
screen. The x.y coordinate defines a starting point
for the paint. The x.y coordinates are in "high-
resolution" coordinates of 0-255 and 0-191. The c
and b parameters are standard color code of 1
through 8 (green, yellow, blue, red, buff, cyan,
magenta, and orange). The c parameter defines the
color for the paint; the b parameter defines the
"boundary" color. The painting will "spread out"
from the starting point until the specified boundary
color is encountered . If the boundary color is not
found, or if it does not completely contain the
PAINT area, the PAINT operation will continue
over the entire screen (or until a proper boundary
condition).

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III. Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
lined PCLEAR n

EXAMPLES
lined PCLEAR 8 clear 8 graphics pages

DESCRIPTION
PCLEAR reserves n number of graphics pages. The
graphics pages are separate from the text screen in
the Color Computer. Each graphics page is 1536
bytes long, and up to 8 pages may be used for
display of graphics data. Depending upon the
PMODE in force, anywhere from 1 to 4 pages may
be on display at any time; the remaining pages are
used as storage for additional graphics data. The
starting page number may be changed by the
PMODE command. If PCLEAR is never executed,
the default number of graphics pages reserved is 4.
PCLEAR does not clear the graphics pages (see
PCLS).

RELATED COMMANDS

PCLEfiR

PCLS, PMODE, SCREEN

SYSTEM
I. IVII
I. IVI II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC •
CC, Disk •

FORMAT
lined PCLS color

EXAMPLES
1000 PCLS 8 cleat the screen to orange

DESCRIPTION
PCLS is the Extended Color BASIC equivalent ol
the CLS command It clears the current graphics
screen with the specified color Valid colors are 1
through 8, representing green, yellow, blue, red.
buff, cyan, magenta, and orange, respectively The
color specified must be in the color set currently
selected If the color selected is not in the current
color set. the screen will be cleared to a
"corresponding" color in the current color set.
PCLS 8 while in color set 0, for example, will clear
the graphics display to red if in a four-color mode
PCLS 8 while in color set 0 and a twocolor mode
will clear the graphics screen to black. The graphics
screen does not have to be on display for the PCLS
to take effect As the graphics pages are separate
from the text screen, they can be cleared
independently.

RELATED COMMANDS
SCPEEN

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
lined PCOPY n TO m

EXAMPLES
1000 PCOPY 1 TO 8

DESCRIPTION
PCOPY is used to copy the contents of one graphic
page to another graphics page. There are 8 graphics
pages in Extended Color BASIC in the Color
Computer, numbered 1 through 8. Any page may be
copied to another page for purposes of initialization
or temporary storage. PCOPY copies only the 1536
bytes of one page (n) to another (m). If the graphics
mode in force uses more than one page for graphics
display, then more than one PCOPY may have to
be done to display all of the graphics data. The
"source" page, the page to be copied, remains
unaltered after the copy.

RELATED COMMANDS
PMODE

SYSTEM
I, LVLI
I. LVL II •
I, Disk •
II
III, LVL I
III, LVL III •
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •

FORMAT
fine#... PEE K (expression)..

EXAMPLES
1000 FOR 1=31000 TO 31000+14 set up
loop
1010 PRINT PEEK (I) print byte
1020 NEXT I continue

DESCRIPTION
PEEK is a function that allows you to look at a byte
of memory in ROM, RAM, or "memory-mapped" I/O
device. It returns the contents of a single memory
location whose address is specified by a constant,
variable, or expression within parentheses after the
PEEK. As all memory locations in the TRS-80
systems contain 8 bits or one byte of data, the
contents will be a value from 0 through 255. PEEK
can be used in conjuncbon with POKE to process
bytes of memory for combining BASIC programs
with machine-language programs. PEEK can also be
used to examine certain I/O devices whose
addresses simulate memory locations.

RELATED COMMANDS
POKE

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
HI, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
line# PLAY string

EXAMPLES
1000 PLAY "C;D;E;F;G;A;B;C" p,ay

DESCRIPTION
PLA, plays a string of musical notes with control of
frequency, note length, tempo, volume, and pauses.

string argument is a string constant or
variable that defines the PLAY operations. The
general format is a series of "subcommands"
separated by semicolons. The letters from A through
0 specify note value subcommands. A suffix of "+"
indicates a sharp, and indicates a flat. (A#

is A sharp.) N1 through N12 also indicate note
values. 0 followed by 1 through 5 indicate the
octave. L followed by 1 through 255 indicates the
note length (1 is a whole note, 2 a half note, 4 a
quarter note, etc.) T followed by 1 through 255 is
tempo, slow to fast. V followed by I through 31 is
volume, low to high. P followed by 1 through 255 is
pause length. Substrings may be executed by X
followed by substring to be executed.

RELATED COMMANDS
None

.

SYSTEM
I, LVL I
I, LVL II
I, Disk

FORMAT
/me# PMODE mode,start-page
EXAMPLES
1000 PMODE 3,1 select PMODE 3, start page 1
DESCRIPTION
PMODE is used to select the graphics resolution
and starting graphics page number in Extended
Color Basic. The mode parameter selects one of 5
modes, numbered 0 through 4. The resolution of the
graphics screen increases with the mode number
Mode 0 is a two-color 128 by 96 mode, mode 1 is a
°oort ini by 96 mode' mode 2 IS a two-color

128 by 192 mode, mode 3 is a four-color 128 by
192 mode, and mode 4 is a two-color 256 by 192
mode. The color set displayed depends upon the
SCREEN command Two-color modes display black
on green (set 0) or black on buff (set 1). Four color
modes display green, yellow, blue, red (set 0) or
buff, cyan, magenta, orange (set 1). The start-page
may be any graphics page from 1 to 8. The PMODE
command does not cause a display of the graphics
page; SCREEN sets either a text display or graphics

RELATED COMMANDS
SCREEN

III. LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
l i ne# POINTS/J
EXAMPLES
1010 A=POINT (63,31) read contents of pixel
DESCRIPTION
Model l/lll: POINT is used to test one graphics
"pixel'.' There are 6144 pixels, divided up as 128
horizontal elements by 48 vertical elements. The
POINT command tests one of these pixels for "on"
or "off" status. Each of the 6144 pixels can be
uniquely tested. The x coordinate specifies the
horizontal position of 0-127. The y coordinate
specifies the vertical position of 0-47. If the point is
"on" POINT returns a -1. If the point is "off"
POINT returns a 0.
Color Computer: POINT is used to test one
graphics "pixel" for "off" or "on'.' There are 2048
pixels, divided up into 64 horizontal elements by 32
vertical elements. The x coordinate specifies the
horizontal position of 0-63. The y coordinate
specifies the vertical position of 0-31. If the point is
"off',' a 0 is returned. If "on" in the graphics mode,
the color code of 1 through 8 (green, yellow, blue,
red, buff, cyan, magenta, orange) is returned. If in
the character mode, a -1 is returned.
RELATED COMMANDS
CLS, RESET, SET

P O I N T

SYSTEM
I. LVL I
I, LVL II •
I, Disk •
II
III. LVL I
III. LVL III •
III. Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •

FORMAT
/me#...POKE expression,value ..

EXAMPLES
1000 FOR 1=31000 TO 31000+14 setup
loop
1010 POKE 1,0 clear bytes
1020 NEXT I continue

DESCRIPTION
POKE is a function that allows you to store data in
memory locations in RAM, or "memory-mapped" I/O
devices. A value of 0 through 255 is stored in the
memory location specified by a constant, variable,
or expression. As all memory locations in the TRS-80
systems contain 8 bits or a byte of data, values
greater than 255 are not valid. POKE can be used
in conjunction with PEEK to process bytes of
memory for combining BASIC programs with
machine-language programs. POKE can also be
used to output to certain I/O devices whose
addresses simulate memory locations.

RELATED COMMANDS
PEEK

SYSTEM
I, LVL I

LVL II
Disk

LVL I
LVL III

III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
lme#...POS(dummy)...

EXAMPLES
1000 PRINT V;TAB(POS(0)+3)
spaces

insert 3

DESCRIPTION
POS is a function that returns the current cursor
position of the video display, from 0 through 63
(Model l/lll), 0 though 79 (Model II), or 0 through
31 (Color Computer). POS may be used for
columnization or word-processing applications.

RELATED COMMANDS
None

I, LVLI
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
M PPOINTfx.yj

EXAMPLES
1000 PPOINT (128,96) test middle element

DESCRIPTION
PPOINT is used to test one graphic element on the
current graphics page. The "x" and "y" parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area tested depends upon the current
PMODE resolution for graphics. The element will be
tested even if the current display is of the text
page. PPOINT returns the color code for the
graphics element defined by x and y. Color codes
are 1 through 8 defining colors of green, yellow,
blue, red, buff, cyan, magenta, and orange.

RELATED COMMANDS
PRESET, PSET

SYSTEM SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
lineH PRESET (x,y)

EXAMPLES
1000 PRESET (129,96) reset middle dot

DESCRIPTION
PRESET is used to reset one graphic element on
the current graphics page. The x and y parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area reset depends upon the current PMODE
resolution set for graphics. The element will be reset
regardless of the display of the current page. The
color used for the reset action is the current
background color. If SCREEN has specified the text
page, no action will be seen, but the PRESET
action has occurred. "PRESET" is also used in the
LINE command, where it means "draw the line or
box in current background color',' effectively
"resetting" the line.

RELATED COMMANDS
LINE, PSET

J

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# PRINT item list
EXAMPLES
1000 PRINT ' 'THIS IS THE
RESULT ";RS,"N=";N
DESCRIPTION
PRINT is used to display a list of items on the
video display. The items are generally printed on
one line or a portion of one line. The items may be
string literals (text), string variables, or numeric
variables. Commas may be used between the items
to tab to the next print zone, or semicolons may be
used to avoid spaces between items (see and

The example above prints one line of "THIS
IS THE RESULT XXX N- XXX" where XXX
represents the value of variables RS and N. There
may be any number of items in the list, compatible
with the maximum BASIC line length. Positive
numbers are printed with a leading and trailing
blank. Negative numbers are printed with a minus
sign and trailing blank. Strings are printed with no
leading or trailing blanks. If the last item in the item
list is terminated by a semicolon, the next PRINT
starts from the point at which the current PRINT
left off.
RELATED COMMANDS

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
linett PR I NTH - l,item list

EXAMPLES
1000 PRINTtt-l,A,B,C$, "****''

DESCRIPTION
PRINTtt-l outputs the specified item list to
cassette tape. The cassette tape must have been
positioned to the proper point for file output.
PRINTtt-l is similar to the PRINT display
statement. It outputs character strings to the
cassette after converting numeric variables. Any
number of items may be used in the item list in any
combination of constants, numeric variables, string
literals, or string variables. Each item must be
separated by a delimiter of a comma or semicolon.
The maximum length of characters output to tape
must not exceed 248; this is a function of the
number and lengths of items in the list. Items
output to a cassette file can be read in by the
INPUTtt-1 command; input must be in the same
sequence as output.

RELATED COMMANDS
INPUTtt-1,PRINT

SYSTEM
I. LVLI
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
line# PRINT8-2, item list
EXAMPLES
1000 PRINT8-2, "THIS IS THE
RESULT" ;RS,"N=";N
DESCRIPTION
PRINT8-2 is used to print a list of items on the
system line printer. PRINTS-2 is the line printer
equivalent of the video display PRINT command.
The items may be string literals (text), string
variables, or numeric variables. Commas may be
used between the items to tab to the next print
zone, or semicolons may be used to avoid spaces
between items (see and There may be any
number of items in the list, compatible with the
maximum BASIC line length. Positive numbers are
printed with a leading and trailing blank. Negative
numbers are printed with a minus sign and trailing
blank. Strings are printed with no leading or trailing
blanks. If the last item in the item list is terminated
by a semicolon, the next PRINT starts from the
last PRINT position. There are certain codes
unique to various line printers which control line
feeds, expanded printing, and special functions.
These may be embedded in the item list by use of
CHR$or STRINGS.
RELATED COMMANDS

PRINT

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
linett PRINTS-2,item list

EXAMPLES
1000 PRINT8-2,A,B,C$,''****' '
DESCRIPTION
PRINT8-2 is identical to PRINT8-1 except that
it is used for the second cassette of the system.
PRINTS-2 outputs the specified item list to
cassette tape. The cassette tape must have been
positioned to the proper point for file output.
PRINT8-2 is similar to the PRINT display
statement. It outputs character strings to the
cassette after converting numeric variables. Any
number of items may be used in the item list in any
combination of constants, numeric variables, string
literals, or string variables. Each item must be
separated by a delimiter of a comma or semicolon.
The maximum length of characters output to tape
must not exceed 248; this is a function of the
number and lengths of items in the list. Items
output to a cassette file can be read in by the
INPUT8-2 command; input must be in the same
sequence as output.
RELATED COMMANDS
INPUT8-2,PRINT

P R I N T t t
(d i s k)

SYSTEM
I, LVLI

LVL II
Disk •

, LVL I
, LVL III
, Disk •

CC, BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
line ft PRINTttbuftt.item list
line# PRINTtt bufit, USING si ring.item list
EXAMPLES
1000 PR I NTtt 3, ft; B; C$ output to file
DESCRIPTION
PRINTtt performs a write to a sequential disk file.
The file must have been previously OPENed. The
OPEN command specifies a buffer for the file name,
and this buffer number is used in the PRINTtt
command. PRINTtt outputs a list of items to the
buffer (file). The items may be any number of
numeric or string variables. All items are
transformed into character strings and written to the
disk buffer. The PRINTtt output to the file is
similar to the display output of PRINT. If commas
are used to separate the items, spaces for tabs will
be written. If semicolons are used, no spaces will be
used between items. String variables should use
CHR$(34) to bracket the variables with double
quotes if the string variables contain delimiters such
as commas or semicolons; otherwise string variables
can be used in the list as required. The USING
option outputs the list in the format specified by the
USING string. The format is identical to that used
in PRINT USING.
RELATED COMMANDS
PRINT USING

P R I N T t t
f n o n - d i s k

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# PRINTtt,/Yem list

EXAMPLES
1000 PRINTtt.P,B,C$,''****''

DESCRIPTION
PRINTtt outputs the specified item list to cassette
tape. The cassette tape must have been positioned
to the proper point for file output. PRINTtt is
similar to the PRINT display statement. It outputs
character strings to the cassette after converting
numeric variables. Any number of items may be
used in the item list in any combination of
constants, numeric variables, string literals, or string
variables. Each item must be separated by a
delimiter of a comma or semicolon. The maximum
length of characters output to tape must not exceed
248; this is a function of the number and lengths of
items in the list. Items output to a cassette file can
be read in by the INPUTtt command; input must
be in the same sequence as output.

RELATED COMMANDS
INPUTtt,PRINT

m R I n • S I IV
M

3

SYSTEM
I, LVL I
I, LVL II
I. Disk
II
III, LVL I
III, LVL III
III, Disk
CC. BASIC
CC, Ext BASIC
CC. Disk
FORMAT
line# PRINT USING stnng;item list
EXAMPLES
1000 H$="**$nna.»a DOLLARS'* define
string
1010 PRINT USING A$; TOTAL print check
DESCRIPTION
PRINT USING is used lor displaying special
formats, primarily dollar amounts and accounting
values. The string parameter is a literal or variable
string that defines the format to be used in the
display. The item list is a list of numeric or string
variables that define the items to be printed If
there is more than one item, all items will be
printed in the format defined by the string. The
string uses "field specifiers" to define certain
formats. A "ft" specifies a digit position. A is a
decimal point position and is printed in the position
specified. A is printed in the position specified
Asterisks (*) fill unused positions left of the decimal
with asterisks. $$ or "**$" indicate a floating
dollar sign, printed before the number The string
"**$###,###.## DOLLARS" used with variable
A=96654 678 generates *$96,654.68 DOLLARS.
Other specifiers include up arrows, plus sign, minus
sign, %spaces%, and exclamation point
RELATED COMMANDS
LPRINT USING

SYSTEM
I, LVL I •
I, LVL II
I, Disk
II
III, LVL I •
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# PRINT AT position,item list
EXAMPLES
1000 PRINT AT 128, "THIS IS THE
RESULT '';RS,''N='';N
DESCRIPTION
PRINT AT is used to display a list of items on the
video display at a specified starting location. The
items are generally printed on one line or a portion
of one line. The items may be string literals (text),
string variables, or numeric variables. Commas may
be used between the items to tab to the next print
zone, or semicolons may be used to avoid spaces
between items (see and In the example
above, the message is printed beginning at print
position 128. The Model I has 1024 print positions;
each line starts with a multiple of 64. There may be
any number of items in the list, compatible with the
maximum BASIC line length. Positive numbers are
printed with a leading and trailing blank. Negative
numbers are printed with a minus sign and trailing
blank. Strings are printed with no leading or trailing
blanks. If the last item in the item list is terminated
by a semicolon, the next PRINT starts from the
point at which the current PRINT left off
RELATED COMMANDS

PRINT

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# PRINT ^position.item list

EXAMPLES
1000 PRINT 6128, "THIS IS THE
RESULT ";RS,"N=";N
DESCRIPTION
PRINT 6 is used to display a list of items on the
video display at a specified starting location. The
items may be string literals (text), string variables,
or numeric variables. Commas may be used between
the items to tab to the next print zone, or
semicolons may be used to avoid spaces between
items (see and The Model I and III have
1024 print positions; each line starts with a multiple
of 64. The Model II has 1920 print positions; each
line starts with a multiple of 80. The Color Computer
has 512 print position; each line starts with a
multiple of 32. Print positions are numbered starting
from 0. There may be any number of items in the
list, compatible with the maximum BASIC line
length. Positive numbers are printed with a leading
and trailing blank. Negative numbers are printed
with a minus sign and trailing blank. Strings are
printed with no leading or trailing blanks.
RELATED COMMANDS

PRINT

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
lineH PSET (x,y,c)
linen PSET (x,y)

EXAMPLES
1000 PSET (129,96,3) set middle dot to
blue

DESCRIPTION
PSET is used to set one graphic element on the
current graphics page. The x and y parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area set depends upon the current PMODE
resolution set for graphics. The color parameter, c,
may be any valid color number of 1 through 8
(green, yellow, blue, red, buff, cyan, magenta, and
orange). Again, valid color codes depend upon the
PMODE mode. The c parameter is optional; if c is
omitted, the current foreground color is used. If
SCREEN has specified a text page, no action will
be seen, but the PSET action has occurred.
"PSET" is also used in the LINE command, where
it means "draw the line or box in current
foreground color'.'
RELATED COMMANDS
LINE, PRESET

PUT(disk)

SYSTEM
I. LVL I
I, LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
toe# PUT bufti
line# PUT but#,recti
EXAMPLES
1000 PUT 3,100 output 100th record
DESCRIPTION
PUT is used to output a random access file record
to disk. A random-access file allows records to be
read or written on a random basis (not in
sequence). The PUT outputs the contents of the
current record as the next record in sequence or as
the specified record number of the random file. The
"current record" is the entire buffer contents if the
record length defined by the QPEN was 256, or a
portion of the buffer if the record length was less
than 256. Prior to the PUT, an OPEN with the "R"
option must have been executed. The OPEN defines
the filename and buffer associated with the file, and
the file length. The PUT buf# form of PUT outputs
the current record in the buffer as a record whose
number is one higher than the last access. If no
record has been written, this becomes the first
record of the file. The second form of PUT writes
the current record as the specified record number
defined by "recti"
RELATED COMMANDS
GET

PUT
graphics

SYSTEM
I, LVL I
I, LVL II
I, Disk

CC,
CC,
CC,

LVL I
LVL III
Disk
BASIC
Ext BASIC
Disk

FORMAT
toe# P\JT(xl,yl)-(x2,y2),array name,action
EXAMPLES
1000 PUT
(205,141)-(255,191), AA,PSET
DESCRIPTION
GET stores any rectangular area on a graphics
screen in a two-dimensional array. A PUT later
retrieves the graphics data from the array and
displays it in any other area of the graphics screen.
GET/PUT can be used to save portions of a
graphics screen or to create animation effects. The
xl,yl coordinates define one corner of the screen
area for the PUT operation; The x2,y2 coordinates
define the opposing corner. The xl,x2 and yl,y2
values are in "high-resolution" graphics coordinates
of 0-255 and 0-191, respectively. The "array name"
is the name of a two-dimensional array previously
filled by a GET statement. In general, the PUT area
must be equal to the dimensions of the GET area.
The "action" option is PSET, PRESET, AND,
OR, or NOT. If a "G" option was used in the GET,
then an action item must be used in the PUT.
PSET transfer the data in the same way, PRESET
inverts the colors, and AND, OR, and NOT can be
used to perform logical operations on the graphics
data.
RELATED COMMANDS
GET

SYSTEM
I, LVL I
I. LVL II •
I, Disk •

•
III. LVL I
III. LVL III
III, Disk •
CC. BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line# RANDOM

EXAMPLES
1000 RANDOM "reseeds" the random number
generator for RND
1010 PRINT PND(100): GOTO 1010 print
list of random numbers from 1 to 100

DESCRIPTION
RANDOM initializes the random number generator
for the RND function. The RND function is used to
generate pseudo random numbers from 0 to N.
Pseudo random numbers are "repeatable" numbers,
that is, the same sequence of numbers is repeated
from the same starting number. If RANDOM is never
used, the same sequence of numbers will be
generated on system power up or restart. The
sequence will be quite long, but RANDOM ensures
that a true random starting point is used for an
unpredictable sequence of numbers.

RELATED COMMANDS

RftNDOM

RND

SYSTEM ^
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# READ variable 1, variable 2, variable
3,...variable N
EXAMPLES
1000 READ A,B,XY reads three numeric values
1010 READ Z%, XX& reads two integer values
1020 READ A$,BS reads two strings
DESCRIPTION
READ reads a value or values from a DATA list.
The variables in the READ are set to the next
values in the DATA list. The variable types in the
DATA list must correspond to the variable types in
the READ statement. Variable types in the READ
statement may be intermixed as long as they appear
that way in the DATA list. The following statements
read 5, 13, ORANGE into variables X, Y, and XY$,
and then read -37, 2, and BANANA into variables A,
B, and B$.
1000 DATA 5,13,ORANGE,-37,2,BANANA
establishes list
1010 READ X, Y,XY$ reads first three values
1020 READ A, B, B$ reads next three values
RELATED COMMANDS
DATA, RESTORE

SYSTEM
I. LVL I
I, LVL II
I, Disk
II
III. LVL I
HI. LVL III
III. Disk
CC. BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Imett REM

EXAMPLES
1000 REM THIS PROGRAM SEGMENT IS A
SORT
1010 REM IT SORTS TWO-O ARRAY ZZ

DESCRIPTION
REM is an abbreviation for "remark'.' The REM
command may be followed by descriptive text
defining the program statements. REMarks "text" is
not executed, but does take up BASIC program
space. As many REMS as required may be used
Delete the REM statements in the final program
version to save program space and increase
program execution speed.

RELATED COMMANDS

RENAMEfCC

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
RENAME "old file" TO "new file"

EXAMPLES
RENAME "ACCTS/PAY:0" TO
''ACCTS/REC:0''

DESCRIPTION
RENAME is a Color Computer Disk BASIC
command that changes the name of a file. The "old
file" and "new file" parameters are valid file names;
both require extensions. File names are in the
name/extension:drive# format. The drive# is
optional. RENAME is normally used to rename a file
on the same disk.

RELATED COMMANDS

SYSTEM
I, LVL I

LVL II
Disk

I, LVL I
I, LVL III
, Disk

CC. BASIC
CC. Ext BASIC •
CC, Disk •
FORMAT
RENUM newline,starthne,increment (all arguments
optional)
EXAMPLES
RENUM 100,300,5 from line 100 with start ot
300, Increment of 5
DESCRIPTION
RENUM renumbers the current BASIC program in
RAM All line numbers in the program will be
changed to a new range of numbers, starting with a
given number, and with a given increment. This
includes not only statement line numbers at the
beginning of BASIC lines, but line numbers
referenced by GOTOs, GOSUBs, THENs,
ON.. .GOTOs, and ON.. .GOSUBs. The newline
parameter is the starting line number of the
program after renumbering. The starttine parameter
is the first line number of the current program from
which renumbering is to occur. The increment
parameter is the increment to be used between new
line numbers. All parameters are optional. Defaults
are 10 for newline, 10 for increment, and the entire
program for startline. Commas can be used for
missing parameters, or RENUM can be used alone.
RELATED COMMANDS
None

:*
<*

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# RESETS,y)

EXAMPLES
1010 RESET (0,0) reset upper left-hand pixel

DESCRIPTION
Model l/lll: RESET is used to reset one graphics
"pixel" to black. There are 6144 pixels, divided up
as 128 horizontal elements by 48 vertical elements.
The RESET command resets one of these pixels to
"off'.' Each of the 6144 pixels can be uniquely
RESET. The x coordinate specifies the horizontal
position of 0-127. The y coordinate specifies the
vertical position of 0-47.
Color Computer: RESET is used to reset one
graphics "pixel'.' There are 2048 pixels, divided up
into 64 horizontal elements by 32 vertical elements.
The x coordinate specifies the horizontal position of
0-63. The y coordinate specifies the vertical position
of 0-31. The reset turns off the pixel to a black
color.

RELATED COMMANDS
CLS, POINT, SET

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk

FORMAT
linett RESTOPE

EXAMPLES
1000 RESTORE resets the pointer to the DATA

DESCRIPTION
RESTORE resets the internal DATA list pointer to
the beginning of the DATA list All DATA
statements scattered throughout a BASIC program
or appearing consecutively) create one contiguous
KA fil •*?*EST0RE resets «he 'nternal
the nexHJFon i. ,irSt e"try ,he l,sf so ,hat
he next READ results in a read of that entry. The

following statements read 5, -27.5, and 3 into
variables A, B, C and then into variables D, E, and F

1000 DATA 5,-27.5,3,5.2,13 establishes

\VS, nrcSnR,B'C read flrSt ,hree V3lues
1020 RESTORE resets pointer
1030 READ D,E,F reads first three values

RELATED COMMANDS
DATA,READ

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II •
III, LVL I
III, LVL III •
III, Disk •
CC. BASIC
CC, Ext BASIC
CC, Disk
FORMAT
linett RESUME
linett RESUME 0
linett RESUME linett
linett RESUME NEXT
EXAMPLES
1000 RESUME NEXT resume after error
DESCRIPTION
RESUME is the last executed statement of a user
error-processing routine. A user error-processing
routine is defined by a ON ERROR GOTO
command. The error-processing is entered every
time an error occurs so that the program may
investigate the type of error. RESUME is used after
investigation of the type of error, line number,
messages, and corrective action, if any. RESUME
without a line number or with a line number of 0
causes the BASIC interpreter to return to the line
in which the error occurred. This mode would be
used after the normal BASIC error action was
reinstated by an ON ERROR GOTO 0. RESUME
with a line number causes a branch to the specified
line number; it is a way of taking further action
related to the occurrence of the error. RESUME
NEXT causes a continuation of the program after
the line in which the error occurred.
RELATED COMMANDS
ERL, ERR, ERROR, ON ERROR GOTO

SYSTEM
I. LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC. BASIC
CC, Ext BASIC
CC. Disk

FORMAT
toe# RETURN

EXAMPLES
1000 GOSUB 12000 alls subroutine it 12000
1010 (return point) return point from 12090

12000 (subroutine: from 1 to miny statements)
12090 RETURN returns to statement after
GOSUB

DESCRIPTION
RETURN defines the last statement in a subroutine.
A subroutine is a set of 1 to many statements that
perform a specific function. Rather than writing the
statements many times in a program, the subroutine
is used once for the function, saving RAM space.
The subroutine is called by a GOSUB. The RETURN
statement of a subroutine returns control to the
statement immediately following the GOSUB. No line
number is required for the PETURN as the BASIC
interpreter automatically records the line number
after the GOSUB.

RELATED COMMANDS
GOSUB. ON...GOSUB

RETURN

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
toe#... RIGHT %(string,n)

EXAMPLES
1000 A$=RIGHT$(B$,4) get the last 4
characters of B$
1010 C$=R I GHT $ (B$, 5) get the last 5
characters of B$

DESCRIPTION
RIGHTS finds the last n characters of a given
string. The n parameter may be 0 to 255. The string
parameter is a previously defined string. If
B$="HER0INE" for example, A$=RIGHTS(BS,4)
will set A$="OINE'.' If n is greater than the length of
the specified string, RIGHTS will return the entire
string. fi$=RIGHT$(BS,20), for example,
returns A$="HEROINE" The n argument may be a
constant, variable, or expression. RIGHTS may be
used to process "substrings" where a large string is
made up of a number of substrings concatenated
together for ease of handling.

RELATED COMMANDS
lefts, mids

*

SYSTEM
I, LVL I
I. LVL II
1, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
fine#...RND (0)...
line#...PUD(integer)...
EXAMPLES
1000 A=RND(10) generates a random number
from 1 to 10
1010 IF A=1 THEN PRINT "STARSHIP
MALFUNCTION'' simulates a chance condition 1
out of 10 times
DESCRIPTION
RND is a function that generates a pseudo-random
number. If the RND(0l form is used, the number
is between 0 and less than 1. Typical numbers
might be .6789 2344.... and 1.2222 If the
RND(N) form is used, where N is not 0, then RND
generates a number from 1 to N. If N were 1000,
for example, the number generated would range
from 1 to 1000 and might typically be 23. 999, 456,
2, 45, etc. Pseudo-random numbers are
"repeatable'.' that is, they produce the same
sequence of numbers from a given starting number.
A starting number of 23 might always produce the
sequence 23, 456, 888, for example. Over a long
period, the numbers in the range tend to be evenly
distributed; there will be an equal number of Is, 2s,
3s, 4s, etc
RELATED COMMANDS
RANDOM

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# ...ROW(dummy)...

EXAMPLES
1000 R=ROW(0)

DESCRIPTION
ROW finds the current row on which the cursor is
located and returns the row number. Rows on the
Model II are numbered from 0 through 23. The
"dummy" parameter is any value enclosed in
parentheses; it has no effect on the function. ROW
is used along with POS to define the cursor position
for word processing and other applications.

RELATED COMMANDS
POS

SYSTEM
I. LVLI
I. LVl II
I, Disk •
II •
III, LVl I
III, LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
line# RSET field name-string

EXAMPLES
1000 RSET NM$=A$ store addressee
name

DESCRIPTION
RSET is used to place character data into a
random-file buffer. The normal sequence of
operations establishing a random-file buffer is as
follows: Define the fields of the buffer by a FIELD
statement. The FIELD establishes the field names
in the buffer. The RSET and LSET are then used
to store character data in the fields of the buffer
The FIELD statement establishes the size for each
buffer field. If the data to be stored by RSET is not
as great as this field size, "filler spaces" would be
filled on the left. If the field NM$ was 20
characters, the name "SPIRO SMITH" would be
stored as "SPIRO SMITH'.' If data to be stored by
RSET is greater than the field size, characters are
truncated on the right. The data
SPIRO AG0UP0P0P0D0UP0LIS" would be stored as

"SPIRO AG0UP0P0P0D0UP"
RELATED COMMANDS
FIELD, LSET

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
RUN
RUN line#
line# RUN

EXAMPLES
RUN in command mode starts BASIC program
from beginning
RUN 1000 in command mode starts program from
line 1000
1000 RUN in program restarts program from
beginning

DESCRIPTION
RUN clears all variables and resets other BASIC
program parameters. RUN in the command mode
starts the current BASIC program from the
beginning. The RUN line# form in the command
mode starts the program from a specified line
number. Note that all variables are cleared before
the start occurs. The RUN form within a program
restarts the program from the beginning (or a
specified line #); it may be used to restart the
program on completion of a game or other
continuous task.
RELATED COMMANDS
GOTO

SYSTEM
I. LVLI
I. LVL II
I, Disk •
II •
III, LVL I
III. LVL III
III. Disk •
CC, BASIC
CC, Ext BASIC
CC. Disk •
FORMAT
RUN "filename"
RUN "filename'.'R
lineIf RUN "filename"
linen PUN "filename '.R
EXAMPLES
RUN * * ACCOUNTS- BAS: 1" . P load, keep
files open
DESCRIPTION
PUN loads and executes a BASIC program Irom
disk. Variables are not cleared as is the case with
LOAD. If RUN is used without the R option, RUN
will close all open files, load the specified program,
and execute it. If RUN is used with the "R" option.
RUN will will not close open files, and will load and
execute the BASIC program. PUN in either form
may be used in a BASIC statement during BASIC
program execution. The "filename" is a filespec for
a BASIC program stored on disk; it conforms to
the general requirements for filespecs • name,
extension, password, and drive number. PUN may
be used in BASIC programs to "chain" programs,
allowing one program to call another in a chain of
"overlays" One program may utilize file variables
from another program when PUN is used instead of
LOAD.
RELATED COMMANDS
LOAD

SYSTEM
I, LVL I
I, LVL II
I, Disk •
II •
III, LVL I
III, LVL III
III, Disk •
CC, BASIC
CC, Ext BASIC
CC, Disk •
FORMAT
SAVE "filename"
SAVE "filename','A

EXAMPLES
SAVE ''ACCOUNTS/BAS:l'' save accounts
payable

DESCRIPTION
SAVE saves a BASIC program from RAM to disk.
If the "A" option is not used, the program is SAVEd
in "compressed format'.' Compressed format uses
special codes for BASIC commands and binary
data for line numbers; it is best for economical disk
storage. If the "A" option is used, the program is
SAVEd in ASCII format. ASCII format is required for
subsequent use by the MERGE and APPEND
(TRSDOS) commands. ASCII format also allows
transfers of disk files for special applications, such
as transferring files by data communications. ASCII
files take up more disk storage than compressed
format. The "filename" is a filespec for a BASIC
program stored on disk; it conforms to the general
requirements for filespecs - name, extension,
password, and drive number.
RELATED COMMANDS
MERGE

SYSTEM
I, IVLI
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC. Disk •
FORMAT
SH VEI1 "filename '.'startaddr.endaddr.execaddr
EXAMPLES
SAVEM ' * SOPTPP ' \ &H3000. T H3FFF
S.H3000
DESCRIPTION
SAVEM is a Color Computer Disk BASIC command
generally used to save a machine-language program
in RAM as a disk file. The "filename parameter is a
standard Disk BASIC file name in the
name/extension .drive# format The extension and
drive # are optional. If no extension is given,
BASIC will use the extension "BIN" If no drive# is
given, the standard OPIVE default will be used
SAVEM can be used to save any binary data in
RAM whether it is a machine-language program,
data, or both. The startaddr parameter specifies the
starting address of the data to be saved The
endaddr parameter specifies the end of the data.
The execaddr specifies the address of the start of
the program, if applicable. The resulting file is
stored as a binary file and can be loaded and
executed by the LGADM and EXEC commands.
RELATED COMMANDS
EXEC. LOFTOH

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III, LVL I
III, LVL III
III. Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
lined SCREEN type,color set

EXAMPLES
1000 SCREEN 0,1 set text, color set 1

DESCRIPTION
SCREEN is used to set the type of display, graphics
or text, and to select one of the two color sets
available in the Color Computer. The type parameter
is either a 0 for a text screen, or a 1 for graphics
screen. If a text screen is selected, the text screen
starting at location $400 is displayed. This is the
"normal" text display mode used to display
alphanumeric data. If the graphics mode is selected,
the current graphics page is displayed in the
current graphics resolution. The current graphics
resolution and page are determined by the PMODE
command. The "color set" parameter selects one of
two color sets. In the text mode, color set 0 is black
on green and color set 1 is red on orange. In the
graphics mode, the colors depend upon the color
set and resolution. (See PMODE.)

RELATED COMMANDS
PMODE

SYSTEM
I. LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk
FORMAT
/me# SETfx.yj Model I/III
linen SET(x.y.c) Color Computer
EXAMPLES
1000 SET (RND (127), RND147)) set random
point l/lll
1010 SET (RND (63 J ,RNO(31] ,3) set
random point to blue (CC)
DESCRIPTION
Model l/lll: SET is used to set one graphics "pixel"
to white. There are 6144 pixels, divided up as 128
horizontal elements by 48 vertical elements. Each of
the 6144 pixels can be uniquely SET. The x
coordinate specifies the horizontal position of 0127.
The y specifies the vertical position of 0-47.
Color Computer: SET is used to set one graphics
"pixel" to a specified color, c. There are 2048
pixels, divided up into 64 horizontal elements by 32
vertical elements. The x coordinate specifies the
horizontal position of 0-63. The y coordinate
specifies the vertical position of 0-31. The c
parameter is a color code of 0 through 8 (black,
green, yellow, blue. red. buff. cyan, magenta,
orange).
RELATED COMMANDS
CLS, POINT, RESET

SYSTEM
J. LVL I
I. LVL II
I, Disk
II
III. LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
lineft...SGN(expression)...

EXAMPLES
1000 IF SGN(X)=0 GOTO 2000 ELSE IF
SGN(X)=1 GOTO 3000 ELSE GOTO 4000
goto 2000 if X-0, 3000 if X positive, or 4000 if
X negative

DESCRIPTION
SGN is a sign function. It finds the sense of a
constant, variable, or expression. The argument
must be enclosed within parentheses. If the
argument is negative, SGN returns a -1; if the
argument is 0, SGN returns a 0; if the argument is
positive, SGN returns a +1. SGN is a convenient
replacement for code such as:

1000 IF X<0 THEN fi=-l
1010 IF X=0 THEN R=0
1020 IF X>0 THEN fi=+l

RELATED COMMANDS
None

SYSTEM
I, LVLI
I. LVL II
I, Disk
II
III. LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
/me#... SI ̂ (expression)..

EXAMPLES
100O C=SIN(2+3.14159/2) sefs variable C
equal to sine of X+pi/2 (in radians)
2000 ND=SIN(X*.01745329) sets variable
ND equal to sine of X (in degrees)

DESCRIPTION
SIN finds the sine of a given constant, variable, or
expression. The quantity is assumed to be in radians
(180/pi degrees). SIN is a "function" and may be
used anywhere within a BASIC statement as long
as the argument is enclosed within parentheses.
Multiply by .01745329 to convert degrees to
radians. Standard trigonometric rules apply in
regard to the sign of the result.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC •
CC, Ext BASIC •
CC, Disk •

FORMAT
SKIPF
SKIPF "filename"

EXAMPLES
SKIPF "MYPROG" skip over MYPROG

DESCRIPTION
SKIPF is used to skip over an indicated file on
cassette. Executing SKIPF with a filename will
cause BASIC to search for the file name and
position the tape after the end of file. It is therefore
positioned to read the next file after "filename'.'
Executing SKIPF without a filename will cause
BASIC to skip the next file on cassette and
position the tape after the end of the file, ready to
read the next file.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC •
CC, Ext BASIC •
CC, Disk •

FORMAT
line# SOUND freq,duration

EXAMPLES
1000 FOR 1=1 TO 255 set frequency loop
1010 SOUND 1,2 output tone
1020 NEXT I loop

DESCRIPTION
SOUND outputs a tone to the TV speaker. The
frequency of the tone is specified by a "freq" count
of 1 to 255 Middle C corresponds roughly to a
count of 89. The remaining counts range roughly
over four octaves; the lower the count, the lower the
note. The frequency count is "linear"; a count of
1/2 the value of another count is 1/2 the
frequency. The duration value of 1 through 255
determines the duration of the tone. Each count is
roughly 1/16th of a second, making the range of
durations l/16th second to 16 seconds. SOUND
can be used to output warning tones or to play
musical notes in songs or games.

RELATED COMMANDS
PLAY

SYSTEM
I, LVL I
I, LVL II
I. Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# ...SPACEt(expression)...

EXAMPLES
1000 A$='' NAME''+SPACES(23)
+ ' 'ADDRESS"

DESCRIPTION
SPACES returns a string of spaces. It is logically
equivalent to STRINGS!" ",n), where n is the
number of characters to return. The constant,
variable, or expression for SPACES must be a
numeric value from 0 through 255. Spaces (blanks)
are commonly used in PRINT or LPRINTing
reports and other text processing. SPACES
provides a convenient way of generating spaces.

RELATED COMMANDS
STRINGS

SYSTEM
I. IVl I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk

FORMAT
line# ...SPC(expression)...

EXAMPLES
1000 PRINT
"ADDRESS'

'NAME* * SPCf23 i

DESCRIPTION
SPC prints a line of blanks or spaces SPC does
not use string space. The expression parameter
must be a numeric value from 0 through 255 The
left parentheses must immediately follow the SPC
characters. SPC is similar to SPACE % and can be
used with PRINT. LPPINT. and PPINTO to
generate spaces or blanks whenever required.

RELATED COMMANDS
SPACES

SYSTEM
LVL I
LVL II
Disk

I, LVL I
I, LVL III

Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#...SQR(expression)...

EXAMPLES
1000 C=SQR(A*A + B*B) find length of
triangle side

DESCRIPTION
SQR is the square root function. It returns the
square root of a constant, variable, or expression
argument. It can be used anywhere within a
BASIC statement as long as the argument is
enclosed in parentheses. It is faster than finding the
1/2 power of an argument and should be used in
place of this method.

RELATED COMMANDS
None

STOP

SYSTEM
I. LVl I
I, LVL II
I, Disk
II
III. LVL I
HI. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# STOP

EXAMPLES
1000 REM STOP HERE TO LOOK AT
VARIABLE I
1010 STOP

DESCRIPTION
STOP is used to temporarily stop BASIC program
execution. The program may be restarted at the
STOP point by the CONT (continue) command.
STOP is normally used during program debugging
so that intermediate results may be investigated. It
is also used as a "breakpoint" to determine if a
certain portion of the program is executed.
Execution of STOP produces a "BREAK AT
XXXXX" message, where XXXXX is the line number.
After the stop occurs, variables may be examined by
the PRINT or other commands; all intermediate
results are left intact

RELATED COMMANDS
CONT

*

at

*

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
lineti...STR$(expression)...

EXAMPLES
1000 A$=STR$(X) convert X to a string
2000 PRINT STR$(X j print X as a string
DESCRIPTION
STR$ converts a numeric constant, variable, or
expression to a string. The argument must be within
parentheses. In the example above, if X is equal to
-34.678, it is converted to the seven-byte ASCII
character string of A$="-34.678". If X is equal to
34.678, it is converted to the seven byte ASCII
string of A$=" 34.678" with a leading blank for the
missing sign. 5TR$ is used for certain printing or
string concatenation functions. The converted value
does not have a trailing blank on printing as a
numeric value would. Leading zeroes in the numeric
value are ignored. A byte is always allocated for the
sign and a minus sign or blank is used. An ASCII
decimal point is generated in the proper place. The
number of fractional characters is somewhat
unpredictable and depends upon the value of the
expression; trailing zeroes are not generated.
RELATED COMMANDS
None

SYSTEM
I. LVLI
I. LVL II •
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk •
CC. BASIC •
CC. Ext BASIC •
CC, Disk •
FORMAT
line# STRI NGsfn, "char")
linett STRINGS(n,va/ue)
EXAMPLES
1000 A$=STRING$(100, •) create
A$="ANtMA..A"
1010 B$=STRING$(50,23) create
Bf=CHRS(23)*CHf)$(23)...*CHR$(23)

DESCRIPTION
STRINGS is used to create a 1 to 255 character
string made up of the same character. The n
parameter is the number of characters in the string,
from 0 to 255. It may also be a variable or
expression that resolves to 0 to 255. The "char"
parameter is a single ASCII character that defines
the characters in the string. Alternatively, a value of
0 to 255 may be used in place of "char" In the
latter case, the equivalent string will be made up of
n characters of that value (equivalent to
CHRs(value)+CHR$(value)+...). STRINGS is used
to create strings made up of the same character for
screen graphics use, borders, filling dummy data, or
other uses.

RELATED COMMANDS
None

SYSTEM ^
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
//ne# SWAP varlablel,variable2

EXAMPLES
1000 SWAP A,B swap variables

DESCRIPTION
SWAP swaps the values of two variables. The
variables must have been previously defined (had
values assigned to them). Either or both of the
variables may be array variables. The variable types
of both variables must be the same. SWAP can be
used in place of code such as "1000 C=A: A=B:
B=C".

RELATED COMMANDS
None

SYSTEM
IVLI
LVL II

, Disk
I

SYSTEM
(I / I I I)

LVL I
LVL III •
Disk •

CC. BASIC
CC. Ext BASIC
CC. Disk
FORMAT
SYSTEM
EXAMPLES
SYSTEM enter system mode
DESCRIPTION
SYSTEM puts BASIC into the System mode. This
is a mode in which machine-language files can be
loaded from cassette tape After SYSTEM is
executed, the BASIC interpreter will respond with
the prompt *?. To load a machine-language
program from cassette, position the cassette, and
type in the cassette file name, followed by ENTER.
BASIC will now load the cassette file, flashing
asterisks as it does so. After the load, another *?
prompt will be displayed. Another machine-language
program can now be loaded or control transferred to
the machine-language program. In the latter case,
type a slash (/) followed by the decimal address for
execution, followed by ENTER. If no address is
entered after the slash, control will be transferred to
the starting address of the file from cassette. (You
do not have to know the starting address for a
typical cassette load.)
RELATED COMMANDS
None

*
<*
*

SYSTEM
, LVL I
, LVL II
, Disk
I
II, LVL I
II, LVL III
II, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
SYSTEM
SYSTEM "command"

EXAMPLES
SYSTEM return to TRSDOS

DESCRIPTION
SYSTEM causes an exit from BASIC and a return
to TRSDOS. If there is no command, the operation is
complete. If there is a TRSDOS command, the
command is executed and a return made back to
BASIC. The command must be enclosed in quotes,
unless it is a string expression. If the command
involves loading and executing a TRSDOS utility
program that involves high memory and
"overlay" of BASIC, return will not be made to
BASIC. SYSTEM allows a BASIC program to
execute a TRSDOS command within the program
and then return back to the program. 1000
SYSTEM "DIR", for example, would exit
BASIC, boot TRSDOS, perform a directory listing,
and then return to the next statement after the
SYSTEM command.
RELATED COMMANDS
None

SYSTEM
I, LVL I
I. LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk

FORMAT
/me#... T AB (expression)..

EXAMPLES
1000 PRINT TAB(25) * 'BALANCE OFF!"

DESCRIPTION
TAB is a special (unction used with PRINT or
LPRINT to "tab over" to a given tab position. The
"expression" in TAB must be between 0 and 255.
It may be a constant, variable, or expression. The
value defines the tab position. When used with
PRINT, the cursor is moved to the right to this tab
position, and any remaining print items are printed
from that point. Valid tab positions for the Model
l/lll are 0 to 63, for the Model II are 0 to 79, and
for the Color Computer are 0 to 31. Values above
these will be "modulo" 64, 80, or 32, respectively.
When used with LPRINT, the line printer outputs
the number of spaces required to effect the tab.
TAB cannot move the cursor or line printer print
position to the left. If the tab point has already been
reached or exceeded, the TAB is ignored.

RELATED COMMANDS
LPRINT, PRINT

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II •
III, LVL I
III, LVL III •
III, Disk •
CC, BASIC
CC, Ext BASIC •
CC, Disk •

FORMAT
/me#... T AN (expression)...

EXAMPLES
1000 A=TAN(Y+3.14159/2) sets variable A
equal to tangent of Y+pi/2 (in radians)
2000 ND=TAN(X*.01745329) sets variable
ND equal to tangent of X (in degrees)

DESCRIPTION
TAN finds the tangent of a given constant, variable,
or expression. The quantity is assumed to be in
radians (180/pi degrees). TAN is a "function" and
may be used anywhere within a BASIC statement
as long as the argument is enclosed within
parentheses. Multiply by .01745329 to convert
degrees to radians. Standard trigonometric rules
apply in regard to the sign of the result.

RELATED COMMANDS
None

SYSTEM
I. LVL I
I. LVL II
I. Disk •
II •
III. LVL I
III. LVL III •
III. Disk
CC. BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# ...TIMES...

EXAMPLES
1000 PRINT "TIME IS ";TIME$

DESCRIPTION
TIMES returns the current time as a text string.
When TRSDOS is started up. the operator may enter
the current time. TIMES returns this information in
BHSIC. The format of the Model II TIMES string
is HH MM SS where HH is the hours. MM is the
minutes, and SS is the seconds. The format of the
Model l/lll TIMES string is DD/MM/YY HH MM SS.
where the date is also included.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC •
CC, Disk •
FORMAT
line#... TIMER...
line# TIMER=I/alue

EXAMPLES
1000 TIMER=G0 set timer to 12:01
1010 PRINT INT(TIMER/60) print elapsed
time in seconds

DESCRIPTION
TIMER is used to control a built-in "real-time
clock" in the Color Computer. The real-time clock
increments by one every l/60th of a second. It
counts from 0 through 65,535, at which point it
"recycles" back to 0 and begins the counting
sequence over again. TIMER can be set to any
value by the TIMER=value command; the value
represents the starting time in 60ths of a second.
After TIMER is set, "reading" TIMER will
represent the elapsed time in 60ths of a second,
modulo 60. The maximum elapsed time for TIMER
is 65,535/60, or about 1092 seconds (18.2
minutes), however, TIMER can be used to control
variables that represent any elapsed time by
maintaining more precision.
RELATED COMMANDS
None

SYSTEM
I. LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
TROFF
lined TROFF

EXAMPLES
TROFF turn trace off in command mode

DESCRIPTION
TROFF turns oft the Trace function previously
turned off by a TRON command. TROFF is the
default condition after BASIC has been initialized.

RELATED COMMANDS
TRON

SYSTEM
LVL I
LVL II
Disk

I, LVL I
I, LVL III
I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
TRON
lined TRON

EXAMPLES
1000 TRON turn line trace on
3000 TROFF turn line trace off

DESCRIPTION
TRON turns on the BASIC line Trace function. The
Trace function executes the program as in normal
execution but displays each line number as it is
executed within brackets. This trace is useful in
following the program flow during program
debugging. The SHIFT and @ keys can be pressed
simultaneously at any time to stop the display for
scrutiny. Pressing any key will restart program
execution. Normal display data generated by
PRINT or other commands will be interspersed
with the Trace line numbers.

RELATED COMMANDS
TROFF

SYSTEM
I. LVLI
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC. Ext BASIC
CC. Disk •

FORMAT
UNLOAD
UNLOAD drivett

EXAMPLES
UNLOAD 1 close all open hies

DESCRIPTION
UNLOAD is a Color Computer Disk BASIC
command that is a "blanket" CLOSE. It closes all
open files tor the specified disk drive number If no
disk drive number is specified, UNLOAD closes all
open files in the default disk drive (the one
specified in the last DRIVE command, or drive 0 if
no DRIVE command was ever executed). UNLOAD
is primarily used when switching diskettes. The
UNLOAD properly closes all open files. Failure to
properly CLOSE a disk file may result in loss of all
or a portion of the file data on the old or new
diskette.

RELATED COMMANDS
None

SYSTEM
LVL I
LVL II
Disk

I. LVL I
I, LVL III
I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...\JSR(expression)...
EXAMPLES
1000 A=USR (B) call machine-language routine
DESCRIPTION
USR is a function that allows a BASIC program to
call a machine-language subroutine. The machine-
language subroutine must have been previously
loaded into memory and its starting location defined
by a special sequence. In the Model l/lll this
sequence is to POKE the least significant byte of
the start address into location 16526 and the most
significant byte of the address into location 16527.
In the Color Computer the starting address is
POKEd into locations 275 (msb) and 276 (Isb).
Thereafter, a USR call will cause the BASIC
interpreter to transfer control to the code at the
machine-language subroutine. The machine-language
subroutine will normally return back to the
statement following USR. The expression parameter
is a constant, variable, or expression that can be
resolved down to an integer number. The 16-bit
value is passed to the machine-language subroutine
under certain conditions. The machine-language
subroutine may also return a 16-bit integer value.
RELATED COMMANDS
USRn

USRn

SYSTEM
I. LVL I
I. LVL II
I, Disk •
II •
III. LVL I
III. LVL III
III. Disk •
CC. BASIC
CC. Ext BASIC •
CC. Disk •
FORMAT
/me#... USPn(expression)..
EXAMPLES
1000 A=USR3(B I call machine-language
routine
DESCRIPTION
USRn is a function that allows a BASIC program
to call up to 10 machine-language subroutines The
machine-language subroutine must have been
previously loaded into memory and its starling
location defined by a DEFUSRn. The n parameter
in the USRn command matches the n parameter in
the DEFUSR command. DEFUSR5, for example,
calls the machine-language subroutine defined by
DEFU5R5. A USRn call will cause the BASIC
interpreter to transfer control to the code at the
machine-language subroutine The machine-language
subroutine will normally return back to the
statement following the U5R. The expression
parameter is a constant, variable, or expression that
can be resolved down to an integer number. The
16-bit value is passed to the machine-language
subroutine under certain conditions. The machine-
language subroutine may also return a 16-bit integer
value.
RELATED COMMANDS
DEFUSR

1000 A=VAL (PAYABLE!) convert to numeric
DESCRIPTION
The VAL function converts a string, assumed to be
a string representing a number, to a numeric value.
Typical strings that could be used with VAL are
"123.56',' "000100" and "999.9E-34" Often, strings
that primarily contain numeric data may be
represented in string form for input and output
operations. VAL provides a way to convert these
strings to numeric form for efficient processing.
VAL follows these rules in conversion: If the string
contains no numeric characters or is null, VAL
returns a 0. If the string contains all numeric
characters, VAL converts the string to an integer if
possible, or to a single-precision number, or to a
double-precision number. If the string contains a
decimal point, VAL converts the string to a single-or
double-precision number. (The Color Computer has
only one numeric data type.) VAL ignores
alphabetic characters that do not have significance
or which it cannot interpret. VAL performs the
inverse of the STR$ function.
RELATED COMMANDS
ASC, CHR$, STR$, VAL

SYSTEM
I, LVL I
I, LVL II •
I, Disk •
II •
III. LVL I
III, LVL III •
III, Disk •
CC, BASIC •
CC, Ext BASIC •
CC, Disk •
FORMAT
lineH...\/f\L(string)...
EXAMPLES

SYSTEM
I. LVL I
I, LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC. Disk

VRRPTP

FORMAT
//ne#...VARPTR(vanaWe name)...

EXAMPLES
1000 B=VARPTR(AS j get location ot A$

DESCRIPTION
VARPTR is a function that finds the address of any
BASIC variable. It is primarily used for
"parameter" passing to machine-language
subroutines called by the USR or (JSRn commands.
If the variable in question is a string vanable.
VARPTR returns the location of a string parameter
block. The first byte of the parameter block is the
string length, and the second and third (third and
fourth in Color Computer) are the location of the
string. If the variable is a numenc variable.
VARPTR returns either the location (Models l/lll)
or a pointer to the value (Color Computer). VARPTR
will also return the location of arrays.

RELATED COMMANDS
None

VERIFY is a Color Computer Disk BASIC
command that turns ON or OFF disk record
verification. Records are written out to disk from the
disk buffer specified in the OPEN command; a
buffer represents one sector's worth of data. When
VERIFY is ON, the sector just written is read in to
a second buffer and compared with the original
data. When VERIFY is OFF, this compare is not
done. The verification process is a safeguard against
disk I/O errors, but does increase the "overhead"
for disk writes. Invalid data will normally be
detected on a read, but verification provides
detection during the write operation.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk •

FORMAT
VERIFY ON
VERIFY OFF

EXAMPLES
verity disk writes

DESCRIPTION

VERIFY ON

SYSTEM
LVL I
LVL II
Disk

III. LVL I
III. LVL III
III. Disk
CC, BASIC
CC, Ext BASIC
CC, Disk <

FORMAT
line# UPntHbufti.item list
EXAMPLES
1000 WPITE03,A;B;C$ output to file

DESCRIPTION
WRITEO performs a write to a sequential disk file
The file must have been previously OPE Ned. The
OPEN command sepcifies a buffer for the filename,
and this buffer number is used in the WRITEU
command. WRITEO outputs a list of items to the
buffer (to the file). The items may be any number of
numeric or string variables. All items are
transformed into character strings and written to the
disk buffer. The WRITEtJ output to the file is
similar to the display output of PPINT. If commas
are used to separate the items, spaces for tabs will
be written. If semicolons are used, no spaces will be
used between items. String variables should use
CHR$ (34) to bracket the variables with double
quotes if the string variables contain delimiters such
as commas or semicolons; otherwise string variables
can be used in the list as required.

RELATED COMMANDS
None

SYSTEM
I, LVL I
I, LVL II
I, Disk
II
III. LVL I
III. LVL III
III, Disk
CC. BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...(expression) XOR (expression)...
EXAMPLES
1000 IF ((R<29) XOR (B>5)) THEM C=1

DESCRIPTION
XOR is used as a relational operator and for bit
manipulation. In the first use, XOR compares two
constants, variables, or expressions. If either
expression is true, but not both are true, then the
XOR function is true. In the example above, the
expression is true if variable A is less than 2 OR
variable B is greater than 5. The THEN action
would be taken if either expression, but not both
was true (expression 1 XOR expression 2). In the
bit manipulation case, XOR is used to logically XOR
integer variable bits, considered to be binary
numbers. An XOR of binary values produces a 1 for
each bit position if either operand but not both has
a 1 bit in that bit position. An XOR of the two
binary values 10100000 and 11001111 would
produce a result of 01101111. The XOR in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations.

RELATED COMMANDS
AND, NOT

SYSTEM
I. LVL I
I. LVL II
I. Disk
II
III. LVL I
III. LVL III
III. Disk
CC. BASIC
CC. Ext BASIC
CC, Disk

FORMAT
/me# ...t(expression)...

EXAMPLES
1000 T=(1*1) tY find amount over Y years

DESCRIPTION
Up arrow is used to represent exponentiation,
raising a number to a power. The power may be a
constant variable, or expression Fractional powers
are permitted In some systems the up arrow prints
as a left bracket The Model II up arrow is SHIFT,6

RELATED COMMANDS
None

SYSTEM
I. LVL I
I, LVL II
I, Disk
II
III, LVL I
III, LVL III
III, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
lineff ...expression \ expression...

EXAMPLES
1000 C=R \ B

DESCRIPTION
Reverse slash (CTRL,9) is a numeric operator that
performs an "integer division" on two operands and
returns a result. The two expressions involved are
converted to two integer operands. An integer
division operation divides the first operand by the
second operand and finds the quotient. Any
fractional part of the quotient is ignored and the
integer portion is then returned as the result of the
operation. If the first operand is 100, and the
second is 44, the result of 100 \ 44 is the integer
portion of 100/44, or 2. This integer division is
similar to the INT function except that the two
operands here must be in the range of -32768
through +32767.

RELATED COMMANDS
INT

APPENDICES

0
c

o
0
c in

e

CO —

< C c c
CD o 0 •_

0
fc_ k_

0
"O
o
E
"O
c
CO
E
E
o
o

0
•d
o
E

? c

€?.2

CO —
13 - ° »

a) <D

C CO o

.Stj 2

1 i"

CD ®

C

2 fS
; o

D
O
0 (1)

0 T3 X - X >
- c ® 5! ® §

|®*g>* u>°|£

= = C £ T "= ® m " "= °

»£ >-c C"d£ ®

e * i g g c » - > . E S - E ® "
» 3 3 £ W CD. : 0

>> 0
CO >
t; ©

o " Q- 5
o

o
cn w
>» 0
^ Q

o

1LS

c
CO ©

0 •*—• 0 -»-i .r: o o >
g$ o clg-o O "S^l 9-T3 2 <0O 9"
o_ co ro q)

> » ,

I I S g 8 * 3 8 g 1 * * 3 R S ^ S
w-O coi:- — Eo00oE00ccC0C10O

IjlUCQC^OO'-JKQCaiCO-Jl-XliJCQQCCOll-

(/)
I I o

I o
l o
0 o

1 o
I o
I o

O O I
O O I
O O I

o
o
o I I I

o o o o

I I o
I I o
I I o
0 o o
1 o o
I I o

o o
o o
o o
o o
o o

I I I I I
I
I

I O O O O O I I
O O I I O I o o
0 O I I O I o o

1 O I I O I i I

0
c

E
CO i_
CD
o

CO
m

>N
0
*

o@o °

c h.
3
©

©
C

©
o
E
Ik ©
c. 9
8

£

c
c

§

t- O I
111
I ®
to

c. g>
•to

- S
- o

!t t
X 10
en

c
o
3
|

C ® _

E
!® ~ 3 C

•Z-oz
© 3

Q C

^ o ci a
to — © 3

©T5 =
- c A- °
«n® an 5
Zj CD CO X CO

o
. I 0 o 1 I
I I
I I
o o

a i-
3 9 i i
. §§
^ o ® £ ̂
T I: © CD © ©
X® a< aa
CO CO h- D 3

O-c -
o-c -
o -
c -c -
o-
o -
0-1

> > £ JJQ

O
CO

_ i J { < ; «
>> -SCDUJO J J Q . . .
•r-.'UOO

--.•-•zzEEuuu

c
o
o

CO
©
T3 o
O

© Q

CD
D
CO
O

CE O

2 1

h% I <U£D
x £ — I— © D O

x*£i-~ UJ >,LU 3
zcocrO

© C3) >%
C ©
© t

©

.2 o
o E <= ©
3 ̂ E

© t o
O) Q) •*-> © > 3
E O O

a> E 3 c O «_ _ „ — o o >, o ™ c

'5 So E <„ co <u °

D«cr Q = HO

X ©
Q.

C E § •I 81
O O c
O O o

o O) cn„
.£ .£ c ^ ̂ CD
CO IflO

ID

- z o o
:cocrO

O>^_IC0O_
i I O O D m o ^

q^WCOH
SI-O JCO 03

« « « « * * « < * * « « * * * * « i i i i i i i 1 1 1 1 1 1 1 1 1 1
* * * * * * * * * * * « * « « «

1 1 1 1 1 1 1 1 I 1 * * * * * * * * * * 1
1 1 1 1 1 1 1 > 1 1

CMco-<friocor^-ooo)Oi-T— T—
i i i i i i i CM CO "<T LO CO H»

| | I 1 1 1 1 1 1 1 C\JCO^-lO©N®©Oi-T— 1— CM co 4- io co h^-
1 1 1 1 1 1 1 1 1 1 CNCO ^ J - L O C O r ^COOOI - CM co 4- in co h^- co
1 1 1 1 1 1 1 1 1 I cxjco^Lncof-cccnoT- CM co 4* co co r^-
i ' ' ' 1 1 J* J* A 1

C\JCO^J"LOCDr^-cOO)OT— CM co 4 io co r^-

o o

I I I I I *1 I I I I I I *1 I I I *1 I I I
• •

> I I I I #l I I I I I I I I C *1 I I I I

I S 8 S S 2 S 8 8 S 8 3

5 c i i d J - ' w « J >
5; CM CM CM CM

9 d > i ^ C M C O ' 1 Q ^ C M C O M T l A c i f ^ O O c i c i ' ^ C M
s C M C M C M C M m m i o m i n m i n i f l m m o t t i D

§ 00<io J- CM CO © *— CM CO MT ' f**» ' CM CO
(\ CM CM CM CM tO tO lO tO l/) lO (O CD CD

cUd>J- ' cW
*- *- CM CM CM CM

i pipiiff! Il«i
.«"§ cS ® £2 5 I® EC

E . s a » j « ' t § £ 8 e g ^ ^ o - g ^ o , -
0) O <D C CO CO *- .O Q.**- ~ qj C O

O

n -o

c £ g J 2 8
— — ^ co n *-0)
- - g . 2 T o p ® w

S E s S S s i

0
0

0 o
0 0
»- O Q_

•2 ~o JXL CO
o c CO C *-
s® TD 0 0

Q.S=

CO CO "O ° 2

X © 0) ' < - o (B c r o a ! ' - o Q . — • < - » - * -

Q T J - D T J S ^ O - S o j i j T I > T 3 " U " O -
O r n . b c n . ™ - - ® © O c o t a c a

I TT _

c o

3
O)

c
o
o

S L U co_i

S3 O n .

i *i I 1 1

1 1 i i i

LUCC ZCCSZCOMJOSSK
<CD OLULI_U_LI__ — ZZO

I

I I I t i l l
m h- co a> o
CD CD CD CD h-

I I I I I I I I

I I I I I 1 1

ro rf CO CD
CD CD CD CD
II I I I I I

CD K- "r

CD CD
h- CO Gi
CD CD CD

I I I I I I I I

1

j5

y
3>

o<

Q>

s U
c
3

> £ o u j Q -
-J Q . • . c
.•-•ouo;

-•-rrrouu?

c
o

3
g»
c
o
O

3
O
c
o
E
?

Common ASCII Characters Used in BASIC
CHAR
space

$
%
&

(
)

/
0
1
2
3
4
5
6
7
8
9

<
>
@
A
B
C
D
E
F
G
H
I
J
K
L
M

HEX
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D

DEC
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

N
O
P
0
R
S
T
U
V
w
X
Y
z

b
c
d
e
I
9
h
i
1
k
I
m
n
o
P
9
r
s
t
u
V
w
X
y
2

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5C
50
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

Decimal/Binary/Octal/
Hexadecimal Conversions

:<*

DEC BIN OCT HX
0 00000000 000 00
1 00000001 001 01
2 00000010 002 02
3 00000011 003 03
4 00000100 004 04
5 00000101 005 05
6 00000110 006 06
7 00000111 007 07
8 00001000 010 08
9 00001001 011 09

10 00001010 012 OA
11 00001011 013 0B
12 00001100 014 OC
13 00001101 015 OD
14 00001110 016 OE
15 00001111 017 OF
16 00010000 020 10
17 00010001 021 11
18 00010010 022 12
19 00010011 023 13
20 00010100 024 14
21 00010101 025 15
22 00010110 026 16
23 00010111 027 17
24 00011000 030 18
25 00011001 031 19
26 00011010 032 1A
27 00011011 033 1B
28 00011100 034 1C
29 00011101 035 1D
30 00011110 036 1E
31 00011111 037 1F
32 00100000 040 20
33 00100001 041 21
34 00100010 042 22
35 00100011 043 23
36 00100100 044 24
37 00100101 045 25
38 00100110 046 26
39 00100111 047 27
40 00101000 050 28
41 00101001 051 29
42 00101010 052 2A

DEC BIN OCT HX
43 00101011 053 2B
44 00101100 054 2C
45 00101101 055 2D
46 00101110 056 2E
47 00101111 057 2F
48 00110000 060 30
49 00110001 061 31
50 00110010 062 32
51 00110011 063 33
52 00110100 064 34
53 00110101 065 35
54 00110110 066 36
55 00110111 067 37
56 00111000 070 38
57 00111001 071 39
56 00111010 072 3A
59 00111011 073 3B
60 00111100 074 3C
61 00111101 075 3D
62 00111110 076 3E
63 00111111 077 3F
64 01000000 100 40
65 01000001 101 41
66 01000010 102 42
67 01000011 103 43
68 01000100 104 44
69 01000101 105 45
70 01000110 106 46
71 01000111 107 47
72 01001000 110 48
73 01001001 111 49
74 01001010 112 4A
75 01001011 113 4B
76 01001100 114 4C
77 01001101 115 4D
78 01001110 116 4E
79 01001111 117 4F
80 01010000 120 50
81 01010001 121 51
82 01010010 122 52
83 01010011 123 53
84 01010100 124 54
85 01010101 125 55
86 01010110 126 56
87 01010111 127 57
88 01011000 130 58

DEC BIN OCT HX
89 01011001 131 59
90 01011010 132 5A
91 01011011 133 5B
92 01011100 134 5C
93 01011101 135 5D
94 01011110 136 5E
95 01011111 137 5F
96 01100000 140 60
97 01100001 141 61
98 01100010 142 62
99 01100011 143 63

100 01100100 144 64
101 01100101 145 65
102 01100110 146 66
103 01100111 147 67
104 01101000 150 68
105 01101001 151 69
106 01101010 152 6A
107 01101011 153 6B
108 01101100 154 6C
109 01101101 155 6D
110 01101110 156 6E
111 01101111 157 6F
112 01110000 160 70
113 01110001 161 71
114 01110010 162 72
115 01110011 163 73
116 01110100 164 74
117 01110101 165 75
118 01110110 166 76
119 01110111 167 77
120 01111000 170 78
121 01111001 171 79
122 01111010 172 7A
123 01111011 173 7B
124 01111100 174 7C
125 01111101 175 7D
126 01111110 176 7E
127 01111111 177 7F
128 10000000 200 80
129 10000001 201 81
130 10000010 202 82
131 10000011 203 83
132 10000100 204 84
133 10000101 205 85
134 10000110 206 86

DEC BIN OCT HX
135 10000111 207 87
136 10001000 210 88
137 10001001 211 89
138 10001010 212 8A
139 10001011 213 8B
140 10001100 214 8C
141 10001101 215 8D
142 10001110 216 8E
143 10001111 217 8F
144 10010000 220 90
145 10010001 221 91
146 10010010 222 92
147 10010011 223 93
148 10010100 224 94
149 10010101 225 95
150 10010110 226 96
151 10010111 227 97
152 10011000 230 98
153 10011001 231 99
154 10011010 232 9A
155 10011011 233 9B
156 10011100 234 9C
157 10011101 235 90
158 10011110 236 9E
159 10011111 237 9F
160 10100000 240 AO
161 10100001 241 A1
162 10100010 242 A2
163 10100011 243 A3
164 10100100 244 A4
165 10100101 245 A5
166 10100110 246 A6
167 10100111 247 A7
168 10101000 250 A8
169 10101001 251 A9
170 10101010 252 AA
171 10101011 253 AB
172 10101100 254 AC
173 10101101 255 AD
174 10101110 256 AE
175 10101111 257 AF
176 10110000 260 BO
177 10110001 261 B1
178 10110010 262 B2
179 10110011 263 B3
180 10110100 264 B4

DEC BIN OCT HX
181 10110101 265 B5
182 10110110 266 B6
183 10110111 267 B7
184 10111000 270 B8
185 10111001 271 B9
186 10111010 272 BA
187 10111011 273 BB
188 10111100 274 BC
189 10111101 275 BD
190 10111110 276 BE
191 10111111 277 BF
192 11000000 300 CO
193 11000001 301 C1
194 11000010 302 C2
195 11000011 303 C3
196 11000100 304 C4
197 11000101 305 C5
198 11000110 306 C6
199 11000111 307 C7
200 11001000 310 C8
201 11001001 311 C9
202 11001010 312 CA
203 11001011 313 CB
204 11001100 314 CC
205 11001101 315 CD
206 11001110 316 CE
207 11001111 317 CF
208 11010000 320 DO
209 11010001 321 D1
210 11010010 322 D2
211 11010011 323 D3
212 11010100 324 D4
213 11010101 325 D5
214 11010110 326 D6
215 11010111 327 D7
216 11011000 330 D8
217 11011001 331 D9
218 11011010 332 DA
219 11011011 333 DB
220 11011100 334 DC
221 11011101 335 DD
222 11011110 336 DE
223 11011111 337 DF
224 11100000 340 EO
225 11100001 341 E1
226 11100010 342 E2

DEC
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

OCT HX
343 E3
344 E4
345 E5
346 E6
347 E7
350 E8
351 E9
352 EA
353 EB
354 EC
355 ED
356 EE
357 EF
360 F0
361 F1
362 F2
363 F3
364 F4
365 F5
TCC *500 F6
367 F7
370 F8
371 F9
372 FA
373 FB
374 FC
375 FD
376 FE
377 FF

B I N
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

