

TRS-80 Pocket BASIC Handbook

by
William Barden, Jr.

Uy 4y Uy

)

Radio Shack
A Tandy Corporation

(8

wr

Second Edition
First Printing-1983

Copyright C 1982 by Radio Shack, Division
of Tandy Corporation, Fort Worth, Texas
76102. Printed in the United States of
America.

All rights reserved. Reproduction or use,
without express permission, of editorial or
pictorial content, in any manner, is prohib-
ited. No patent liability is assumed with
respect to the use of the information con-
tained herein.

Preface

This book is designed to be a quick refer-
ence guide to the BASIC languages used
on the Radio Shack TRS-80 Model |, Model
I1, Model 111, and Color Computers. It won't
replace the BASIC manuals that come with
those computer systems, but«it will help to
jog your memory about the types of BASIC
commands available, the format of the
commands, the operation of the com-
mands, and the commands that are related

The commands include all BASIC sym-
bols, such as * for multiply, all BASIC com-
mands, such as PRINT, and all BASIC func-
tions, such as ATN. We'll use the generic
term “command” to mean any of those
three items. The term “statement” will be
any use of commands in a single step, such
as A=SIN(B*C) or POKE 16523,(RR/67).
The term BASIC “line” will mean a single
statement or multiple statements with the
same line number

There are 255 commands in this refer-
ence book, one per page. They are orga-
nized in alphabetical order. The Contents
section on the next few pages lists all com-
mands and indicates for which systems
they are used. The systems are: Model |,
Level I; Model |, Level II; Model |, Disk
BASIC; Model Il BASIC; Model Il Level I:
Model 111, Level 111; Model 111, Disk BASIC,
Color Computer, BASIC; Color Computer
Extended BASIC; and Color Computer,
Disk BASIC. We'll keep this order in the
SYSTEM description on each page

Each command format is described
under “FORMAT" In those cases where the
command is normally used in a program

we've included “line#" under the format. In
those cases where the command is nor-
mally used in the command mode, we've
left out the “line#” In some cases the com-
mand is used in either command mode or
program execution, and we've indicated
both by two format statements, one with
“line#" and one without.

In those cases where a command re-
quires parentheses or double quotes, we've
included them in the FORMAT. Dots indi-
cate that the command may be embedded
in other commands and probably won't
stand by itself, as in the case of functions.

The EXAMPLES show one or more actual
examples of the use of the command. Des-
criptive text is sometimes included in lower
case in the right-hand portion of the
examples.

The DESCRIPTION section contains a
very brief explanation of the command. Any
peculiarities for specific systems are also
described here.

RELATED COMMANDS lists any com-
mands that may help in understanding the
action of the command in question.

To Babbage for starting the whole thing!

Contents

ABS

AND
ASC

ATN
AUDIO
AUTO
BACKUP
cDBL
CHR$
CINT
CIRCLE
CLEAR
CLOAD
CLOAD*-
CLOAD?
CLOAD?#-
CLOADM
CLOSE
CcLs

e

E:

CMD"“A"
CMD"“B"
CMD"“C"
CMD“D"(1)
CMD“D"(ll1)
CMD“E"

CMD“1"
CMD“J"
CMD“L"
CMD"“0"

DRAW

DSKI$
DSKINI
lE)SKOS

00O

000

O00000000000 -

.00

0000000000

000

(o]
00.00

000 . 000000

00

000
.00
. .00

00
000

00
00
Deuis
O..
RPIPY o)
o
00

0000000000

o
00

000.

000

000.

000
00

T

-

EDIT

Edit Mode A

Edit Mode Backspace
Edit Mode C

Edit Mode D

Edit Mode E

Edit Mode ENTER
Edit Mode ESC
Edit Mode H

Edit Mode |

Edit Mode K

Edit Mode L

Edit Mode Q

Edit Mode S

Edit Mode SHIFT,
up arrow

Edit Mode Space-Bar
Edit Mode X

END

EOF

EQvV

ERASE

ERL

ERR

ERROR

ERRS

EXEC

EXP

FIELD

FILES

FiXx
FOR...T7O...STEP
FRE

FREE

GET(disk)
GET(graphics)
GOsuB

GOTO

HEXS

IF...THEN
IF...THEN. . .ELSE
IMP

INKEYS

INP

INPUT

INPUT. . .;
INPUT#(disk)

000

o
3
888383 8888
888 388383 3888888

888

0000000000

08
o
o

INPUT#(non-disk)
INPUT#-1
INPUT#-2
INPUTS(disk)
INPUTS(non-disk)

LINE INPUT#
LIST

; Ok
0000000000
0000000000

000 . 00000

0000000000
0000000000
00..00.0
.000 . 00000
00..00. ..
i% Jhics v00

PRINT#-1
PRINT#-2(CC)
PRINT®-2(1)
PRINT#(disk)
PRINT#(non-disk)
PRINT USING
PRINT AT
PRINT @
PSET
PUT(disk)
PUT(graphics)
RANDOM
READ

REM
RENAME(CC)
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS

RND

ROW

RSET

RUN
RUN"prog”
SAVE

SAVEM
SCREEN

SET

SGN

SIN

SKIPF
SOUND
SPACES

é

88%80
8o0080

338
ssids

0
000.00.00
0000000000
000 . 00000
000 . 00000

0

SYSTEM(I/IIN) 00. .00

SYSTEM(II) o

TAB 0000000000

TAN 000.00 .00

TIMES 00

TIMER

TROFF 000

TRON 000

UNLOAD

USR 000

USRn 00

VAL 000

VARPTR

VERIFY

WRITE#

XOR

up arrow

reverse slash

VO vV U U U ¥ U Uy

COMMANDS
SPECIAL KEYS
ERROR CODES
ASCII CODES
BINARY, DECIMAL, HEXADECIMAL
EQUIVALENTS

0000000000

Configuration = |, LVL | 1
I, LVL Il_] I
I, Disk
]

I, LVL |

I, Lve m

111, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

T L e " T

SY

{
|

il

FO

STEM

Vi
Vi

BASI(
Ext BASIC

sk

RMAT

¢

variable name! .

EXAMPLES

DESCRIPTION

used to define single-precision
default vaniable type s single
pre the " 1" suffix can be used to define
a vaniable within a range used on 3 DEFDBL .
F1 or DEFSTR. Single-precision vanables
1 7 decimal digits of precision in memory and
fisplay 6 decimal digits. Single-precision variables

take up four bytes of RAM storage for each vanable

RELATED COMMANDS

vanables. Th
b
t

1
Ul

'

i

SYSTEM

I, LVL |

I, LvL il

I, Disk

Il

I, LVL 1

I, LVL 1

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#... “string literal”..

EXAMPLES
1000 A$=**THIS IS A STRING™"

DESCRIPTION

Double quotes are used to enclose string “literals”
String literals are the actual text of the string. They
are stored in the BASIC program line itself,
although they may be used to create new strings
that are stored in the string storage area. String
literals may generally be used any time that a string
variable can be used, such as in PRINT
statements, string comparisons, or other string
processing. Always enclose the string literal with
double quotes; failure to do so may cause errors in
program renumbering or other program processing.

RELATED COMMANDS
None

SYSTEM
I, LVL |

I, LVL NI

|, Disk

|

i, LVL I
i, LVL I
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#&...variable namett. . .

EXAMPLES

1000 AR=1234567890.1234567

12010

DESCRIPTION

The suffix "#" is used to define double-precision
variables. The default variable type is single
precision. Other numeric varnable types must be
defined by the %, #, D, or $ suffixes, or by
DEFINT, DEFDBL, or DEFSTR. The “#" suffix
can be used to define a double-precision variable
within a range used on a DEFINT, DEFDBL, or
DEFSTR. Double-precision variables hold 17
decimal digits of precision in memory and display
16 decimal digits. Double-precision variables take up
eight bytes of RAM storage for each variable
Double-precision variables should be used in place
of single-precision variables where extreme accuracy
1s desired and when the number of double-precision
variables will not be prohibitively large (as would be
the case in a large array)

RELATED COMMANDS
DEFDBL, DEFINT, DEFSNG, DEFSTR

SYSTEM
I, VLI

I, LVL Il

I, Disk

i

N, LvL |
I, LVL 11
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#...variable names. . .

EXAMPLES
1000 A$=**TELEPHONE #"*"*
1010 ZZ2$=STRINGS(100,***""

DESCRIPTION

The suffix "% is used to define string variables
String variables generally hold ASCII character data,
although they may hold other non-ASCI| data as
well. String vanables may be from 0 to 255
characters long, where each character corresponds
to one byte in RAM. The names of string vanables
follow the same rules for numeric variable names.
The first character must be alphabetic. One or two
character names may be used. (Model I/11l Level |
allows only A$ and BS.) The suffix "$" denotes the
variable as a string variable; the same name may be
used for a numeric and string variable, except that
the suffix will be different. AA$ and AA are a string
variable and numeric variable, respectively. The
suffix "$" may be used to define a string variable
within a range of other variables defined by a
DEFDBL, DEFSNG, or DEF INT,

RELATED COMMANDS
DEFDBL, DEFINT, DEFSNG, DEFSTR

“ WYY vV Y U U U

L= —

SYSTEM

I, IVLI

L AVL N

I, Disk

||

i, LvLl

M, LvyL

I, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

FORMAT

nes__vanable name
EXAMPLES

DESCRIPTION
" 15 used to define integer vanables
The default variable type is single precision, but the
" suffix can be used to define an integer variable
exphicitly or within a range used on 2 DEFDBL ,
DEFSNG, or DEFSTR. Integer vanables hold
values from -32768 through +32767. No fractions
are allowed. Integer vanables take up two bytes of
RAM storage for each variable, making them one of
the most efficient ways to store data, when the data
s in the hmited range of values

RELATED COMMANDS

£ 3

The s uthx °

SYSTEM ——

I, LVL |
I, LVL I
|, Disk
I .
I, LVL I

I, LVL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#...&Hdddd.

EXAMPLES

1010 FOR I=2HBOOG TO &HBOO3 set up loop
1010 PRINT PEEK (1) display contents
102@ NEXT 1 continuve

DESCRIPTION

The prefix “2H" is a special code that indicates
“hexadecimal digits following” Hexadecimal notation
is used in place of decimal or binary notation for

Z-80 instruction codes, data relating to machine-

language operation, and system addresses. The &H
prefix may be followed by 1 to 4 hexadecimal digits
Each hexadecimal digit is 0 through 9 or A through
F and represents a power of 16. The maximum
hexadecimal value that can be defined in TRS-80
systems is &HFFFF, representing binary
1111111111111111, or decimal 65,535.

RELATED COMMANDS

None

V V vV VUV VU VU UV U U uVU

SYSTEM

I, LVL
L LVL N
|, Disk

LvL
LYLIN
{)1&‘!
BASIC
Ext BASIC

FORMAT
ne#. 1.0ddaddd

EXAMPLES

T P§ print contents

-

1 lf»op

DESCRIPTION

1s a special code that indicates
octal digits following” Octal notation 1S sometimes
rarely) used in place of decimal or binary notation
for Z-80 instruction codes, data relating to machine-
anguage operation, and system addresses. The £C
prefix may be followed by 1 to 6 octal digits. Each
wctal digit is 0 through 7 and represents a power of
8. The maximum octal value that can be defined in
TRS-80 systems is 0177777, equivalent to binary
1111111111111111, or decimal 65535. The prefix

is equivalent to "20" and may be used in its
place

RELATED COMMANDS

None

The prefix ™2

SYSTEM SYSTEM
I, LVL I . I, LVL I .
I, VL . L AVL N .
|, Disk . I, Disk .
] . " .
I, LVL | “ o —— - i, LvL ! .
I, LvLE m © 5 M, e m -
I, Disk ©) . Disk .
CC, BASIC . = CC. BASK .
CC, Ext BASIC = CC, Ext BASIC e
CC, Disk B CC. Disk -
FORMAT FORMAT
line& " remark text ine#
line# .." remark text

EXAMPLES
EXAMPLES by, - =
1000 *THIS IS A REMARK LINE ;
1019 A=B *AND SO IS THIS PORTION DESCRIPTION

Parentheses are used to denote the order of
perations in expressions. In the example above, the
result should be B/(C+D); if the parentheses were
not included the operation would become B/C
followed by the addition of D. BRSIC always
evaluates the expressions inside parentheses before
evaluating the rest of the expression. Parentheses
may be “nested’ that is, there may be many levels
of parentheses, one within another. BASIC always
works from the innermost parentheses out in

evaluating parentheses

RELATED COMMANDS

None

DESCRIPTION

The single quote replaces the colon (), REM
commands. In effect, it is a shorthand way of
creating a new REM statement, either at the
beginning of a line or in the middle of 2 line Using
the single quote creates “pretty" listings that may
be much more readable. The single quote may be
placed anywhere in the line

RELATED COMMANDS
REM

|

VU U VUV VYV VvV VUV VvV U UV VUV VUV uU v w@u

SYSTEM

I, LVL I
e

I, Disk

Il

M, LVL |

I, LVL 1

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#..* . .

EXAMPLES

1000 C=3.14155*D find circumference
1010 C=SQR(R*A+B*B) find length of
hypotenuse

DESCRIPTION

The special character “#” is reserved as a BRSIC
operator signifying multiplication, except for the
Model 1/111 Level I, where it is also a logical "AND"
operator. It should not be used in variable names or
in any other context other than within text strings
enclosed by quotes. "*" may be used any number
of times within a BASIC statement as long as it is
not immediately followed by another operator

RELATED COMMANDS
*(AND)

U UV VUV U U U U U U U Uy u

SYSTEM
IV
L

I, Disk

]

i, v !
i, LvL
. Disk ity i

CC. BASIC 99T VNN,
CC. Ext BASIC ————

CC, Disk

FORMAT P A
line#..(expression) * (expression)
EXAMPLES

1000 If A< » THEN PRINT
‘MELPIT

) IF A * 3=3 THEN GOTO 8000

DESCRIPTION
In the Model 17111 Level |, “*" is an abbreviation for
the AND function in addition to representing a
multiplication operator. AND is used as a relational
operator and for bit manipulation. In the first use,
AND compares two constants, vanables, or
expressions. If both expressions are true, then the
AND function is true. In the example above,

A<2) * (B>5) 1s true only if vanable A is
less than 2 AND vanable B is greater than 5. The
THEN action would only be taken if both
expressions were true (expression 1 AND expression
2) In the bit manipulation case, AND 1s used to
logically AND integer variable bits, considered to be
binary numbers. An AND of binary values produces
a 1 for each bit position only if both operands have
a 1 bit in that bit position. An AND of the two
binary valves 10100000 and 11001111 would
produce 2 result of 10000000. The AND in this
application can be used to test bits, mask out fields,
and perform other bit-wise operations

RELATED COMMANDS

SYSTEM -
I, VLI
L

I, Disk

Il

I, LvL !

I, Lve

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT

line#...expression+expression

EXAMPLES

1000 C=1.5+32+N+M find total
DESCRIPTION

The special character “+" is reserved as the sign of
a constant or a BASIC operator signifying addition
or string concatenation. (It is also used in the Model
1711l Level | to specify a logical "OR") It should not
be used in variable names or in any other context
other than within text strings enclosed by quotes
“+" may be used any number of times within a
BASIC statement as long as it is not immediately
followed by another operator. When used as an
anthmetic operator, it has the same effect as the
usual “plus” sign - it adds two quantities, which
may be any mixture of constants, variables. or
expressions. When used as a string concatenation
operator (not 2 Model I/111 Level | function), it joins
two strings. The result string is made up of the first
string appended by the second string. If A$="NOW
IS THE TIME" and B$="FOR ALL GOOD
PROGRAMMERS.. then C$=A$+BS$ would set C$
equal to "NOW IS THE TIME FOR ALL GOOD
PROGRAMMERS..” When used as a sign, it must be
immediately followed by numeric data

RELATED COMMANDS

+(0R)

UV VU VU WV VUV VUV VU U U U

SYSTEM

I, IVLI .
LAVL

|, Disk

1!

i, LVL1 .
M, LVL I

I, Dusk

CC, BASIC

CC. Ext BASIC !
CC Disk EEEEEE———
FORMAT

inel__(expression) + (expression)

EXAMPLES

. -.‘E l : ' L
DESCRIPTION

In the Model 17111 Level |, “+" is an abbreviation for
the OR function along with representing an addibon
yperator. OR is used as a relational operator and for
bit manipulation. In the first use, OR compares two
ronstants, vaniables, or expressions. If either
expression is true, then the OR function is true. In
the example above, (R<2) + (B>5) is true i
variable A is less than 2 OR variable B is greater
than 5. The THEN action would only be taken i
either expressions was true (expression 1 + j
expression 2). In the bit manipulabion case, OR 1S
used to logically OR integer vanable bits, considered
1o be binary numbers. An OR of binary values
produces a 1 for each bit position if erther operand
has a 1 bit in that bit position. An OR of the two
binary values 10100000 and 11001111 would
produce a result of 11101111. The OR in this
apphication can be used to test bits, set indwidual
bits. and perform other bit-wise operabons

RELATED COMMANDS

SYSTEM

I LVL I
L

I, Disk

]

I, LVL |

I, LvLE

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# _PRINT item] item2
line&..LPRINT item] item2.

EXAMPLES

DD T

L L L I I I R T I

1S *
IS

DESCRIPTION

In addition to separating items in DATHA lists and
acting as a delimiter in certain BASIC commands
the comma has a special use in PR INT statements
Itis used in PRINT and LPRINT statements to
mean “tab to the next print zone” Both the video
display and line printer lines are divided into “print
zones’; which are similar to predefined typewriter
tabs. When a comma is encountered after a PRINT
item, the BASIC interpreter will tab to the start of
the next print zone. This allows for easy
columnization of displayed and printed data items
The print zones are predefined and dependent upon
the system used

RELATED COMMANDS

SYSTEM
VL
LtvL il

Disk

LvL |
LVL I
Disk

BASK

Ext BASH

FORMAT

s expre

EXAMPLES

find adjusted length

DESCRIPTION

pecial character IS reserved as a BH
g subtrachon or for negating
it be used in vanable names of
1 other than within text strings
L When used as an anthmetiC
may be used any number of himes
tatement as long as «t 1S not

nother operator. s

1 +4¢

RELATED COMMANDS

SYSTEM

I, LVLI

I, LV

|, Disk

]

i, Lve !

i, LvL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
used in Edit mode

EXAMPLES
EDIT.

DESCRIPTION

The period is used in Edit mode to mean “the
current Iine” The command EDIT. will result in an
Edit of the current line number. If line 400 was
LISTed just prior to the EDIT.. for example,
EDIT. will invoke an edit of line 400

RELATED COMMANDS

None

VU U VUV VU UUUUUUUYUUUuU

SYSTEM

VL |
tvL il
Disk

|

11

LvL |
LVL W

FORMAT

nes . expression - expression

EXAMPLES

find radians
) hind average score

DESCRIPTION

The special character IS reserved as a BASI

perator signifying division. It should not be used in |

vanable names or in any other context other than

within text strnings enclosed by quotes may be
ed any number of times within a2 BA

tatement as long as it 15 not immediately followed

by another operator

RELATED COMMANDS

None
.

SYSTEM

I, LML
I,V

I, Disk

Il

I, LVL I

I, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# ...:...z...

EXAMPLES
1000 R=C*2 : B=C*E4 : C$=AS 'A
MULTIPLE-STATEMENT LINE

DESCRIPTION

The colon is used to create multiple-statement lines
A multiple-statement line, just as the name implies,
has two or more separate statement groupings, with
a common line number, as in the above example. All
statements in the line will be executed in sequence,
just as if they were separate lines. GOTOs or
GOSUBs to the middle of the line, however, are not
possible. When statements are appended to
IF...THENor IF...THEN. . .ELSE
statements, the appended statements will not be
executed unless the THEN or ELSE condition is
satisfied. 1000 IF A=1 THEN B=0 : C=2 and
1010 IF A<>1 THEN B=1 ELSE B=0 : C=2

will set C equal to 2 only if A=1 (both cases)

RELATED COMMANDS
None

U VU WV v VvV VU U uUwv

SYSTEM b
I, LVL I
I, LVL N
|, Disk
]
i, LYL I
i, LvL W
N, Disk
CC. BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#_ PRINT item]item2:
line#_ LPRINT item].item2
EXAMPLES

000 PRINT A:

310 PRINT **NUMBER IS **:N.**NEXT

DESCRIPTION
In addition to acting as a delimiter in certain
t 1C commands, the semicolon has a special use
in PRINT statements. It 1s used in PRINT and
LPRINT statements to mean “do not space” Both
the video display and line printer lines are divided
into “print zones’, which are similar to typewriter
tabs. When 2 comma is encountered after a PRINT
item, the BASIC interpreter will tab to the start of
the next print zone. Using a semicolon, however,
inhibits this tabbing and positions the wideo display
cursor or the line printer print head over the next
character position. This allows data items to be
displayed or prninted directly after related text or
data tems as in “PRINT * *NUMBER IS

*+N," which would pnnt
NUMBER IS 123.56

RELATED COMMANDS

SYSTEM < s
|, LVL |

I, LVL I

I, Disk

Il

i, LVL |

I, LVL I

Ill, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#...expression<expression...

EXAMPLES

1000 IF (M-2)<N THEN GOTO 2000
1010 IF 22<23 THEN 2Z=ZZ+5 ELSE
22=2Z-1

1020 IF LEFT$(R$,1)<**M"* THEN
PRINT *“FIRST HALF®®

DESCRIPTION

The < character is used either as a relational
operator or as a string operator in BRSIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator, "<"
stands for “less than” and is used to test one
quantity against another, as in “IF A<23". In this
use, < is used in the IF ... THEN or
IF...THEN. ..ELSE commands. When used as
a string operator, < is used to test two strings
aﬁamst each other. Strings are compared on a
character by character basis, with each character
representinf a “weight” determined by its ASCI|
value. ASCII values roughly follow alphabetic

sequence. An “A" is “less than" a “B" in this
context. The < is again used in the IF...THEN
and IF...THEN. . .ELSE commands for strin
comparisons as in "IF A$<**CALIF """, whic
tests string A$ for “less than" string “CALIF".
RELATED COMMANDS

<E<SESS>S

U UUUU

o U

SYSTEM ——
I, LVL I \
I, LVL Il

|, Disk

I

I, LVL |

i, LVL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...expression<=expression..
EXAMPLES

1000 IF (M-2)<=N THEN GOTO 2000
1010 IF 22<=23 THEN Z2Z=2Z+5 ELSE
22=22-1

1020 IF LEFTS(RS,1)<=**M""
PRINT **FIRST HALF*"®
DESCRIPTION

The <= characters are used either as a relational
operator or as a string operator in BRSIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator “<="
stands for “less than or equal to” and is used to
test one quantity against another, as in “IF
A<=23" In this use, <= is used in the
IF...THENOr 1F...THEN. . .ELSE
commands. When used as a string operator, <= is
used to test two strings against each other. Strings
are compared on a character by character basis,
with each character representing a “weight”
determined by its ASCII value. ASCII values roughly
follow alphabetic sequence. An “A™ is “less than" a
“B" in this context. The <= is again used in the
IF...THEN and IF...THEN...ELSE
commands for string comparisons as in “IF
AS<=**CALIF """ which tests string AS for “less
than or equal to” string “CALIF"

RELATED COMMANDS
K KD = 2>

THEN

SYSTEM

I, LVLI

I, LVLII

|, Disk

I

I, LvL |

I, LVL 1l

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...expression<expression...
EXAMPLES

1000 IF (M-2)<>N THEN GOTO 2000
1010 IF 22<>23 THEN ZZ=2Z+5 ELSE
22=2Z2-1

1020 IF LEFT$(A$,1)<>**M"* THEN
PRINT “*“NOT M*°*

DESCRIPTION

The <> characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator
“<>" stands for “not equal to" and is used to test
one quantity against another, as in “IF R<>23".
In this use, <> is used in the IF. . .THEN or
IF...THEN...ELSE commands. When used as
a string operator, <> is used to test two strings
against each other. Strings are compared on 2
character by character basis, with each character
representh a "weight” determined by its ASCI|
value. ASCII values roughly follow alphabetic
sequence. An “A” is “less than" a “B" in this
context. The <> is again used in the
IF...THEN and IF...THEN. . JEE X
commands for string comparisons as in “IF
AS> “CALIF ™" which tests string A$ for
“not equal to” string “CALIF"

RELATED COMMANDS
S SE s

i [
0'0

I

U UUU U

()

3
-

2
-

SYSTEM : —
I, LVLI e
I, LVL I

|, Disk

Il

I, LVL

I, LVL

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT
line# variable=expression
line#...expression=expression
line#.._string=string
EXAMPLES
1000 PI=3.14159
101@ IF N=(23-M) THEN N=0
1020 IF A%$=B% THEN PRINT

‘FOUND"®"*
DESCRIPTION
The equals sign “=" is used to equate a variable to
a quantity, as a relational operator, or as a string
operator. When used as to equate a variable to a
quantity, it separates the variable from a constant, a
second variable, or an expression, and sets the
vanable on the left-hand side to the value of the
argument on the nght-hand side. When used as an
anithmetic relational operator, it compares one
expression with another, as in “IF (X-2)=1024"
It 1s used in this context with the IF ... THEN and
IF...THEN. . .ELSE commands. When used as
a string operator, it compares two strings with one
another, as in “IF A$=B$+C3S" or “IF
AS=**FALSE" """ It is also used in the
IF...THENor IF...THEN. . .ELSE
commands as a string operator.

RELATED COMMANDS

None

SYSTEM
I, LVL I

I, LVL Il

|, Disk

]

i, LVL !
0, LVL 1
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#...expression >expression..

EXAMPLES

1000 IF X>101 THEN GOTO 1050

1010 IF 22>23 THEN 22=22+5 ELSE
22=22-1

1020 IF LEFT$(A$,1)>**CA"* THEN
STOP

DESCRIPTION

The > character is used either as a relational
operator or as a string operator in BRSIC. A
relational o&erator compares two arithmetic
quantities. When used as a relational operator ">
stands for “greater than” and is used to test one
quantity against another, as in “IF A>23". In this
use, > is used in the IF .. .THEN or
IF...THEN. . .ELSE commands. When used as
a string operator, > is used to test two strings
against each other. Strings are compared on 2
character by character basis, with each character
representh a “weight" determined by its ASCI|
value. ASCII values roughly follow alphabetic
sequence. A “Z" is “greater than" a “W" in this
context. The > is again used in the IF ... THEN
and IF...THEN...ELSE commands for string
comparisons as in "IF A$>**CALIF**" which
tests string AS for “greater than” string "CALIF"
RELATED COMMANDS

<<ELDE>=

I, LVLI

L LVL I

|, Disk

I

i, tvL 1

I, tve m

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

ine#.__expression>=expression

EXAMP

1000 IF =N GOTO 1050
23 TH =ZZ2+S ELSE

*‘CA'" THEN

DESCRIPTION
The >= characters are used either as a relational
operator or as a string operator in BASIC. A
relational operator compares two arithmetic
quantities. When used as a relational operator

=" stands for “greater than or equal to” and is
used to test one quantity against another, as in “IF
A>=23", In this use, >= is used in the
IF...THENor IF...THEN. . .ELSE
commands. When used as a string operator, >= is
used to test two strings against each other Strings
are compared on a character by character basis,
with each character representing a “weight”
determined by its ASCII value. ASCII values roughly
follow alphabetic sequence. A “Z" is “greater than"
a “W" in this context. The >= is again used in the
IF...THEN and IF...THEN.. .ELSE
commands for string comparisons as in “IF
AS>=**CALIF """, which tests string AS for
greater than or equal to" string “CALIF"

RELATED COMMANDS

SYSTEM

I, LVL I

I, LVL Il

I, Disk

]

i, LvL |

I, LVL I

Ill, Disk

CC, BASIC
CC, Ext BASIC

CC, Disk
FORMAT

line#...ABS(expression)...

EXAMPLES

1000 REM FIND X DISTANCE
1010 XD=RABS(X1=X2)

DESCRIPTION

ABS returns the absolute value of a constant.
variable, or expression. It is a function that may be
used anywhere within a BASIC statement

ABS (X)=X for X equal to or greater than 0
ABS(X)=-X for X less than 0. In other words. the
result of the ABS is always positive.

RELATED COMMANDS
None

SYSTEM

L, IVL

I, LVL I -

|, Disk .

Il .

i, VLI

i, LVLE .

I, Disk .

CC, BASIC .

CC, Ext BASIC o

CC. Disk B — -
FORMAT

ned. (expression) AN (expression)
EXAMPLES ‘
DESCRIPTION

1S used as a relational operator and for bit
nanipulation. In the first use, AND compares two
nstants, vanables, or expressions. If both
expressions are true, then the AND funchon is true
In the example above, (A<2) AND (B>5) is true
only if vaniable A is less than 2 AND vanable B is
greater than 5. The THEN action would only be
taken if both expressions were true (expression 1
D expression 2). In the bit manipulation case
s used to logically AND integer variable bits
nsidered to be D:rary numbers An AND of binary
values produces a 1 for each bit position only if
both operands have a 1 bit in that bit position. An
of the two b"m values 10100000 and

0 in this a:r 3 ?'m can bﬂ used rn !N bits
mask out fields, and perform other bit-wise

”r"-r

RELATED COMMANDS

SYSTEM pbedy

I, LVLI
I, LVL I
|, Disk
I .
i, el

I, LVL 1N

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#...ASC(string)

EXAMPLES

1000 A=ASC(AS) pgel first character of AS in
numeric

1010 B=ASC(**NOW IS THE TIME" ") pet
“N" in numeric

DESCRIPTION

ASC finds the ASCII code of the first letter of the
specified string. In other words it takes the string
argument, strips off the first character, and returns
it as a numeric value, rather than a string character
It 1s a partial “convert to numenc” as in VAL, In
the second example above, RSC would take the
string “NOW IS THE TIME, strip off the “N" and
return the “N” as a decimal 78, the ASCI! code for
“N" ASC can be used for alphabetizing and other
string processing. ASC performs the inverse of the
CHR$ function

RELATED COMMANDS

CHR®, STRS, VA

' -
2
=
2
-
=
=
=

v

SYSTEM
VL
v il .
Disk -
i .
i, LVLI
i, LVL 1 .
i n B

FORMAT

nef._HTN(expression)

EXAMPLES

print angle

DESCRIPTION

TN finds the arc tw pent of the argument. The
arctangent 1s the angle in radians of the argument
assumed to be 3 !a",‘mr! value. The expression may
be a constant, vanable, or expression. The result of
ATN n radians. To find the result in degrees
multiply by ;'10 pi, or 57.29578. ATN 1s the

function, which finds the
gle in radians

RELATED COMMANDS

nver ,_.\' the

coant of an
tanpent of an

SYSTEM - e

I, LVL I
I, LVL NI

|, Disk

[

I, LVL | f— - I
I, LVL 1 f armaes LAl
I, Disk %’;ﬁ;’;@ L

CC, BASIC e Rt T

CC. Ext BASIC o

((“;\'r o

FORMAT

lined AUDI F ¥

EXAMPLES

turn on TV speaker
turn off TV speaker

DESCRIPTION

N routes the cassette fum,v to the TV
speaker. The TV speaker can now be used to
monitor CLOSDS and HDMs of cassette file
This can be helpful in positioning the 'HD' ar
\"17\174; that cassette data s valid. ¢
turns off the audio routing

RELATED COMMANDS

None

U UVUuvuuUuuvUuUuuUuUu

U v

SYSTEM

V .
. .
¥
¥ .
L -
'

X
X

FORMAT

EXAMPLES

DESCRIPTION

VORE
’
¥ ¥ c u
"
¥
V
1 R

RELATED COMMANDS

JMDE
reler w
mber, starting w
¥ er
4 r
pr
. ‘4
'
L. w
1
r '
pi
'

SYSTEM

I, LVL |

I, LVL I

I, Disk

Il

I, LVL |

I, LVL I

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk B

FORMAT
BACKUP 0@
BACKUP source drive TO destination drive

EXAMPLES
BACKUP 9
BACKUP @ TO 1

DESCRIPTION

BACKUP s a Color Computer Disk BASIC
command that duplicates the contents of one
diskette on a second diskette. The backup is an
exact copy of the original disk. If a single drive
system is used, the “BACKUP ©" form of the
command is used; the Backup program will prompt
you to switch diskettes at the proper times. If you
have two or more disk drives, either the BACKUP o
or two-drive version of the command may be used
The backup is made from the diskette in the
“source drive” to the diskette in the “destination
drive”

RELATED COMMANDS
None

SYSTEM

yvL
.
LA
v .
» L
ACH
0
il BA
.
on expre
T nt 4
i !
lorces pro § W 'L
f the vanables involved may be
eger or single-pre on operand £ 1S used
" the result 1s required to be of double
] 1¢ higit of
i course, if the processing done up to
point has been extensive, and only n
e pre f £ annot retneve the lost
| significance! In the example above
jrate because both 1% and J% are
f vanabies and have lost no signihcance in
g re fming a BL(A/B) will in many
nly to single-precision accuracy
nd B are single precision vanable

RELATED COMMANDS

SYSTEM

I, LVLI
I, LVL Il
|, Disk
I |)
I, VLI SR s
i, LtvL i LA

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#...CHR ${expression)

EXAMPLES

L I I
"
b
]

DESCRIPTION

The CHR$ function converts one numeric value to 2
one-character string. The one-character string can
then be appended to other strings or used as a
single-character string. CHR$ allows a way of
specifying non-ASCI! characters from the keyboard
Certain line printers expect to see numeric codes
which have no keyboard equivalent; CHRS permits
embedding these codes in a string sent to the line
printer. CHR$ can also be used to construct strings
used for graphics purposes. CHRS performs the
inverse of the ASC function

RELATED COMMANDS

ASC, STRs, VAL

done in mnleger

nstant, vanable, or expression |

SYSTEM
j‘l[| .
Fxt BASH
FORMAT
EXAMPLES
DESCRIPTION
I forces processing fo be
verted to an integer by the

from -32768 to +32767. The

nt t an 1nt
P

nteger vanable

rtion of the argument. If the argument

T tunchon

alues are held in two bytes and may range

T converts the

> by using only the

797 2 cnlt]
56.777. for example, the result of

1 be 1456 INT used anytime that a

+ r exXDresSIor an be
aD)ie X { a

n Drocesunge
up i '

RELATED COMMANDS

converted to integer

SYSTEM

I, LVL I

I, LVLII

|, Disk

Il

I, LVL 1

I, LvVL

I, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk ©
FORMAT
line# CIRCLE(xy)r circle

line# CIRCLE(x.y)r.c circle with color

line# CIRCLE(xy)r.c.hw ellipse

line# CIRCLE(x.y)r.c.hw,startend arc
EXAMPLES

1000 CIRCLE(129,96),4@ radius 40 circle
1010 CIRCLE(200,100),20,4,1,0,.25
red arc

DESCRIPTION

CIRCLE is used to draw a circle, ellipse, or arc at
any point on the current graphics screen. The x and
y parameters specify the center point for the circle,
ellipse, or arc. The ranges of x and y are 0 through
255 and 0 through 191, respectively. The r
parameter is the radius of the circle or 1/2 the
width of the ellipse. The ¢ parameter is the color
code (1 through 8) for the figure. The hw parameter
is the height/width ratio for the figure. A circle has
hw=1, ellipses hw ratios from 0 through large
values. The “start” and “end" parameters define the
start and end points of the arc. Any value from 0
(three o'clock) through 1 (clockwise back to three
o'clock) may be used to define the start and end
points. Commas may be used in place of the c, hw,
start, and end parameters. Defaults are
c=foreground, hw=1, start=0, and end=1
RELATED COMMANDS

None

SYSTEM
I, LVL I

I, LVL I

|, Disk

|

i, LvL !
H, LVL N
N, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
LEAR N (Model 1I11I1)
“LEAR N.M (Color Computer)
line# CLERR N or CLERR NM
EXAMPLES
1000 CLEARR 1000 clear 1000 bytes for strings
1010 CLEARR 100,165000 clear 100 bytes for
strings, protect memory

DESCRIPTION

EAR clears all vanables to 0 and sets aside a
specified number of bytes of RAM for a “string
storage area” This string storage area is used
exclusively as a working storage area for string
processing. Enough bytes should be set aside to
handle the maximum number of characters in string
vaniables during program execution. This is usually a
trial and error computation. If too few characters
are set aside, either an “out of string space” error
will occur, or some time will be lost while the
BASIC interpreter “cleans up” the string storage
area to make room for new strings. In the Color
Computer, a second parameter protects all RAM
from a given address up to “top of RAM"; this area
is normally used for storage of machine-language
programs or buffers
RELATED COMMANDS

FRE

SYSTEM i

I, LVL | '
e

|, Disk

!

i, Ll

W, LvL 1

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

CLOARD “file name™
CLORD

EXAMPLES

CLORD **RATTARIL"’

DESCRIPTION

CLOAD 1s used to load a BASIC program file from
cassette. The file name, if used, must be in quotes.
If no file name is specified in the CLORD
command, the next BASIC file from cassette will
be loaded. If a file name is specified, the cassette
tape will be searched for that specific file name. File
names are one character long in the Model | and Il
and up to six characters long in the Color Computer
As BASIC searches for the proper file, it will
display all files encountered on the video display
When the next or named file is found, it is assumed
to be a BASIC file, and will replace any current
BASIC program in RAM. In addition to initializing
the BASIC program area, a CLOARD also resets all
variables to 0 and initializes other BASIC program
parameters. For systems with two cassettes, see
CLORDH - .

RELATED COMMANDS

CLOARDH-, CLOAD?, CSAVE

SYSTEM

[, LVLI
L VLI .
I, Disk .
[

I, el .
1, Lve m | goomcas L
I, Disk CALEELLELELE "l 44 ¢
CC, BASIC 0 | D
CC, Ext BASIC

CC, Disk

FORMAT

Dt -1, “hie name”
=DK% -2, “file name™

EXAMPLES

ADN -]

‘s

DESCRIPTION

ORDH - 15 used to load a2 BASIC program file
from cassette when two cassettes are used in the
system. The file name, if used, must be in quotes. If
no file name 15 specified in the CLORDH -
command, the next BASIC file from cassette will
be loaded. If a file name 15 specified, the cassette
tape will be searched for that specific file name. File
names are one character long in the Mode! |. When
the next or named file 1s found, it is assumed to be
a BASIC file, and will replace any current BASIC
program in RAM. In addition to initializing the
BARSIC program area, a CLORDH - also resets all
vaniables to 0 and initializes other BASIC program
parameters

RELATED COMMANDS

CSAVES -

“:"YTHY

il

H-,

|

SYSTEM

I, LVL I

I, LVL Il .
I, Disk .
I

I, LVL I

M, tem e :
I, Disk . AR LR LR L Lk Al ©
CC BAS'C umizmr-kax:: «:'r:r" Ty

CC. Ext BASIC S -

CC, Disk R ——

FORMAT
CLORD? “file name"
CLORD

EXAMPLES

CLOAD? **RATTARIL’®

DESCRIPTION

CLOAD? is used to compare a program on cassette
with the BASIC program in RAM. It is normally
used directly after a CSAVE operation to compare
the BASIC file just saved with the contents of
RAM. This ensures that the BASIC program will not
be destroyed before a valid copy has been saved on
cassette. The “file-name” is optional. If no file name
1s specified, then the next file on cassette will be
Compared with the BASIC program in RAM. If a
file name is specified, the BASIC interpreter will
search cassette until the specified file is found. If
the file on tape is not identical with the contents of
RAM, 2 “BAD" message will be displayed and
another CSAVE operation must be done. The
BASIC program in RAM is not altered during the
comparison process. If the system used has two
Cassettes, see CLORD 788,

RELATED COMMANDS

LLOURD, CLOARD?8-, CSAVE

SYSTEM

I, LVL |

I, LVL Il .
|, Disk .
Il

I, tvL |

I, LVL I

I1l, Disk T Y, e
CC, BASIC o5 venen s gl P oM
CC, Ext BASIC - " "~ -
CC, Disk

FORMAT

LORD 78 - 1. “file name

RD 78 - 2, "file name"

EXAMPLES

——— i

LOARD 78 **RATTARIL"®
DESCRIPTION
| D78 - 15 used to compare a program on
cassette with the BASIC program in RAM for those
systems that have more than one cassetfte. It is
normally used directly after a CSAVEN - operation
to compare the BASIC file just saved with the
contents of RAM. This ensures that the BRSIC
program will not be destroyed before a valid copy
has been saved on cassette. The “file-name” is
optional. If no file name is specified, then the next
file on cassette will be compared with the BRSIC
program in RAM. If a file name is specified, the
51C interpreter will search cassette until the
specified file 1s found. If the file on tape is not
identical with the contents of RAM, a “BRD"
message will be displayed and another CSRVES -
operation must be done. The BRSIC program in
RAM is not altered duning the comparison process
The #1- 1 command will compare from cassette 1
and the CLOARD 7% -2 command will compare from

cassette 2

RELATED COMMANDS

» i - \J/ .
JADH - . CSAVES

SYSTEM

I, LVL I

I, LvL

I, Disk

Il

1, LVL |

I, LVL I

I, Disk

CC, BASIC B
CC, Ext BASIC o
CC, Disk .

FORMAT

CLOARDM
CLOARDM“filename”
CLORDM “filename’’ offset

EXAMPLES
CLOARDM * *GRAPHC®*
into RAM

DESCRIPTION
CLOARDM is used to load a machine-language file
from cassette tape. The cassette tape file may have
been generated by the Color Computer
Editor/Assembler or be in a format compatible with
the CLOARDM function. When CLORDM is used
alone, the next file on cassette is assumed to be a
machme-languafe file and is loaded into RAM. When
the “CLOADM"hilename"” " format is used, the
CLOADM routine will search for the specified file
name on cassette. When it finds the file, it will be
loaded into RAM as a machine-language file. When
the “CLOARDM"filename’, offset” format is used, the
named machine-language file will be loaded into
RAM at the normal locations specified in the file
plus the offset value. The offset value may be any
value except those that cause the load address to
be in “non-existent” RAM

RELATED COMMANDS
EXEC

- —— l-i

load file “GRAPHC"

.

|

U uuuuuuyu

SYSTEM

I, LVLI

I, LVL Ul

I, Disk -

I .

i, LtvL !

i, LVL Il

I, Disk .

CC, BASIC 2\
CC, Ext BASIC L 3 1)
CC, Disk .

FORMAT

line# CLOSE buf#] bufé2. . bufén

EXAMPLES

1000 CLOSE close files for buffers

] and 3

DESCRIPTION

£ “closes” a disk file or files. A disk file is

normally first OPENed for reading or writing. The

PEN command causes BASIC to find the hile
name in the directory and to establish the disk
location of the file, type of file, and other
parameters. OPEN also allocates a RAM “buffer” to
be used with the file. The RAM buffer is the memory
area used for reading or writing disk sectors. Buffers
are allocated by number, and the OPEN associates
a specified file name with the buffer number After
the records of the file have been read or written, a
CLOSE “flushes™ any remaining data in a buffer for
a write and properly terminates file operations for
the designated buffer or buffers. The “buf#”
parameters specify the buffer numbers and hence,
the files to be closed. One or more buffer numbers
may be specified

RELATED COMMANDS

SYSTEM

I, LVL I

I, LVL Il

I, Disk

I

M, LVL |

I, LvL i

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# CLS
line# CLS ¢ Color Computer

EXAMPLES

1000 CLS clears video display
2000 CLS 3 clears display to blue (Color
Computer)

DESCRIPTION

Model I/11/711l: CLS clears the entire video display
screen by outputting blanks to each of the screen
character positions. Note that this is an ASCII 32, an
alphabetic blank, rather than a graphics character
The screen cursor is then positioned in the upper
left-hand corner of the screen

Color Computer: CLS clears the entire screen to a
specified color, c. The ¢ parameter is a color code
of 0 through 8 (black, green, yellow, blue, red, buff,
Cyan, magenta, orange)

L L I I I I B

RELATED COMMANDS
None

LB

U

SYSTEM

I, LVL I

L LVL I

I, Disk

||

M, Ll
i, LVL I L s
I, Disk - 44
CC, BASIC) - rpw
CC, Ext BASIC

CC, Disk

FORMAT

EXAMPLES

DESCRIPTION

The CMD**A" " command allows you to return to
TRSDOS from BARSIC. Typing in “CMD**A"*" at
any time when in the command mode of BASIC
causes a return to TRSDOS

M 0

ION ABORTED

PERAT

TRSDOS RERD
RELATED COMMANDS
None

SYSTEM

I, LVL |

I, LVL Il

|, Disk

Il

i, LVL I

M, LvVL

I, Disk .
CC, BASIC :
CC, Ext BASIC 4T
CC, Disk

FORMAT
CMD* *B* ", * *ON""

CMD**B*", **OFF*°

EXAMPLES

CHMD* *B"" * *ON" " enables the BREAK key
operation

CMD**B* ", * “OFF * * disables the BREAK key
operation

DESCRIPTION

CrMD* *B" " is used to enable or disable the BREAK
key. The BREAK key is normally used to stop
execution of a BASIC program. When the BREAK
key is disabled with a CMD* *B* *, * *OFF * *, the
BREAK key will be ignored except during cassette,
printer, or serial input/output. CMD* *B* * can be
used to “lock out” the BREAK key to prevent
erroneous stops of critical BRSIC programs. The
double quotes around ON and OFF are necessary
The BREAK key will be enabled upon a return to
TRSDOS

RELATED COMMANDS

None

SYSTEM e
I, LVLI
LVL 1l
Disk
|
i, LvL
i, Ltve
I, Disk .
CC, BASIC

CC, Ext BASK(

CC, Dusk R — it
FORMAT
EXAMPLES

sopey compress program by deleting
DESCRIPTION

S @ command to “compress” a
program by deleting remarks and/or spaces
HSIC program remarks take up about one byte in
RAM for every PEM character They are most useful
ng program debugging and may be deleted after
nal version of the program has been reached
aces help readability, but also take up one byte

pa

{ RAM for every space. If the CMD* *C** format
ysed, text from both PEMs (and * type remarks)
1 spaces are deleted from the BASIC. If the

mats are used esther remarks or spaces are
paces except those inside string hiterals

be deleted. String literals (such as AS="STRING
TERAL”) must have double quotes at both

and end for the command ¢ ?[).”(?‘(J”

i A
ele A

)"

hE.LATED COMMANDS

SYSTEM . =

I, LVL I

I, LVL Il

I, Disk .
Il

i, LVL |

i, LvL T

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT

EXAMPLES
load DEBUG from disk

DESCRIPTION

BUG may be entered by pressing the BREAK key
at any time after DEBUG has been loaded. [
1S used to examine memory, execute machine
language programs, and perform other non-BEf
tasks. BASIC program text and vanables will be
lost after transfer of control to DEE

RELATED COMMANDS

None

U

SYSTEM

LVL |
LvL il
Disk
I"
M, LvLl A oo
LVL I
I, Disk .
CC. BASIC
Ext BASIC
C. Disk
FORMAT
copyod

EXAMPLES

e g Ty

display directory of drive |

DESCRIPTION
MD**D"*"* a BASIC command similar to the

TRSDOS DIR command. It aliows the user to

fisplay a diskette directory from inside BH

without transferrning to TRSDOS. The “d"” parameter
the drive number, 0 through 3. Only unprotected,
ble files will be displayed

RELATED COMMANDS

none

SYSTEM —

I, LVLI

I, LVL I

|, Disk

Il

I, LVL |

i, LvL

I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT

CMD**E""

EXAMPLES

CMD*“E™"

display last TRSDOS error

DESCRIPTION

CMD* “E" * displays the last TRSDOS error from
within BASIC. It is a way of getting further
information about the type of TRSDOS error that
occurred, rather than a “blanket” statement. If, for
example, BRSIC returned a

"DISK I-0 ERROR", entering CMD* *E* * would
expand on this by displaying the last TRSDOS error
message of “DISK DRIVE NOT IN SYSTEM”
This message would not have been displayed during
BASIC program execution

RELATED COMMANDS

None

SYSTEM

I, LVLI

I, LVL I

I, Disk

" !
1, LVL I PO ezt e
I, LvL I . Py
111, Disk . ‘_ e nnast sy PP P
CC, BASIC a 7
CC, Ext BASIC == =
CC, Disk

FORMAT

MI **, “command

ne## CMD**1" ", “command
EXAMPLES

: 1 MD**I"" A% ext to TRSDOS
and do dir
DESCRIPTION

M(* returns control to TRSDOS from
BASIC and passes a command. The command is

executed as the first TRSDOS action
RELATED COMMANDS

None

SYSTEM

I, LVLI
L

I, Disk

I

I, LVL |

i, Ltve m

I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk
FORMAT
line# CMD**J" ", “mm/dd/yy’ string

line# CMD**J" ", “yy/ddd’ string

EXAMPLES

1000 CMD**J"* ", 12/05-81 A% convert date
DESCRIPTION

CMD**J** converts a given date to “day-of-the-
year" format or converts the day of the year to
mm/dd/yy format. The “dd” or “ddd" parameter is
the day. The “mm™ and “yy" parameters are month
and year, respectively. This command is used to
convert the mm/dd/yy format to ddd format or the
yy/ddd format to mm/dd/yy format. The result of
CMD**J" " is the format opposite to the one
specified after the CMD* *J* *_ The result is held in
the specified string. CMD* *J* * is handy for
converting to and from “Julian” format (yy,mmm)
where the day of the year is 1 through 366. Julian
format facilitates processing of elapsed time. The
minus sign prior to the yy/ddd is required. The
command CMD**J" ", **12-05-81" " A$
produces A$="339". The command

CMD**J"* **-81-300" * A$ produces
A$="10/27/81"

RELATED COMMANDS

None

-

SYSTEM b, -

I, LVL I

I, Lven

|, Disk

I

i, LVL | T T SR

{1, LVL il Avsvessnnnnnsil ey ol

Il, Disk .« - >;_‘_‘;-~‘ ,“ v i
CC, BASIC = 3 ddd)
CC, Ext BASIC m—— SRR
CC, Disk

FORMAT

MD**L"* " "Nilename
I|L - .. L S,'/nk‘

EXAMPLES
-.'..... '”i ..L.....’*E‘.:.E_\"Ip:l.. /Oad
machine language

DESCRIPTION

MD**L" " loads in a2 machine-language file
created by the TRSDOS DUMP command or Disk
Editor/Assembler. The machine-language file would
normally contain code to be interfaced to BASIC
through the DEFUSRn and USRn commands. The
machine-language code cannot overiay the RAM
area protected by the MEMORY SIZE? prompt. If
the filename format is used, the filename must be
enclosed by quotes; if the string format is used,
quotes are not required. CMD* *L * *, A$ will load
in the file named in AS, assumed to be a machine-
language file

RELATED COMMANDS

DEFUSRN, USRN

- SYSTEM b -
SYSTEM I, LVL I |
I, LVL I L VLN ‘
L VLI I Disk |
|, Disk [l \
Il
I, LVL |

::: m :“ i, LvL I x," P 4’.._..1 |

i | v - -
I, Disk . o %';;IC 3 -ﬁ.ﬁfwm . _14w :"
CC, BASIC CC. Ext BASIC »
CC, Ext BASIC oC. Disk R
CC, Disk MAT
FORMAT ,FOR 3 N
line# CMD**0" * integer variable,string array(start) hne# CMD* *P* " stning
EXAMPLES EXAMPLES
1000 Z%=100 MD**P" 'A% get pnnter status
1010 CMD**D" ", 2%,A%(20) sort array DESCRIPTION

DESCRIPTION

CMD**0" " sorts a one-dimensional string array
from a specified starting element number through a
specified length. The sort will sequence the array
entries so that they are ordered in “ascending
sequence” based upon their ASCII codes and other
values. Normal string array entries will contain ASCII
representation of string variables. If the entries of
the string array contain non-ASCII characters, such
as control codes or graphics characters, the sort will
be on the basis of their numerical values from 0
through 256. The “string array(start)” parameter
defines the starting element of the string array. This
may be the first element (0) or any element of the
array. The integer vanable parameter defines the

P " reads in the system pninter status. The
pnn!er status 15 returned as a string varniable, the
string parameter. This command is used to test the
ready condition of the system line printer before
using an LPRINT or other command. The line
printer may not be ready because it is “off-line” or
because of an error condition such as being out of
paper. Printer status can be tested by converting
the stning result to numenc by the VAL command,
and ~NDing with 240 to obtain the most significant
4 bits of the status. Generally, if the result of the
VAL conversion and ANDing is not 48 (binary
001 1XXXX), the printer 1s not ready, although this
depends upon the printer type in your system
Sample code 1s

number of elements from this start element. The MD* F : “f“
sort will be performed on the array elements from — ol e, ;H:‘ ~;‘;‘ INT S PRINTEER
the start through the start+n-1. The array element - < ; ¢ N IN IN
stnngs may be of mixed lengths LA

o - [RELATED COMMANDS

RELATED COMMANDS

None

None

SYSTEM

I, LVL

I, LVL Il

|, Disk .
I

i, Ll

I, LVL

I, Disk .
CC, BASIC

CC, Disk

FORMAT
CMD* *R

EXAMPLES

CMD* “R* * turns on the real-time clock

DESCRIPTION

CMD* *R* " is used to turn on the real-time clock
from BASIC. The system real-time clock displays
the 24-hour time at the upper right-hand corner of
the screen. The time can be set by the TRSDOS
TIME command. When the real-time clock is on,
the time will be updated in fractions of a second
and displayed in seconds. The real-time clock is
always running except duning cassette or disk
input/output, CMD* *R* * simply enables the time
display during all BRSIC activity. The display can
be disabled by the CMMD* * T* * command

RELATED COMMANDS
CMD**T**, TIME (TRSDOS)

SYSTEM

I, VLI
(RA"N |

|, Disk

I

i, LVL |

i, LvL I

1. Disk

CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT

EXAMPLES
return to TRSDOS

DESCRIPTION
1D**S" " Is used lo return to TRSDOS from Disk

BAS 1C. Executing C *S** will exit Disk
IC and reload TRSDOS

RELATED COMMANDS

None

SYSTEM

I, LVL |

I, LVL Il

|, Disk .
I

I, LVLI

M, LVL 1

I, Disk .
CC, BASIC ;
CC, Ext BASIC e
CC, Disk

FORMAT

CMD**T**

EXAMPLES
CMD**T* " disables the real-time clock display

DESCRIPTION

CMD* *T* " turns off the system real-time clock
from the command mode of BASIC. The real-time
clock updates the time in fractions of a second and
displays the 24-hour time in seconds in the upper
right-hand corner of the screen. It is always

running, except during cassette or disk
input/output; using CMD* *T** simply disables the
screen display

RELATED COMMANDS

CMD**R**, TIME (TRSDOS)

.

SYSTEM ——

I, LVLI

I, LVL N

I, Disk

I

i, v

i, Lve m

I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT

ineg CMD* *X* * reserved wd
line# CMD* *X** “stning

EXAM PLES

D**X° . PRINT find all PRINTS

DESCRIPTION

* will search the current BASIC

program in RAM for either a reserved word such as
PRINT or GOTO, or for a given string literal such
as E,MPLOYEE # Iha line numbers of all
occurrences of the reserved word or string literal
will then be listed on the display. CMD* * X" * can
be used as a general search routine to facilitate
changes in a BARSIC program. A search for
PRINT, for example, could easily be done and the

RINTs could then be changed to LPRINTSs. The
reserved word must not be in quotes; a string literal
must be enclosed in quotes

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LVL Il

I, Disk

l

I, LVL I

11, LvL

IIl, Disk o A
CC, BASIC /
CC, Ext BASIC ‘
CC, Disk

FORMAT
CMD**2"* ", **ON""*
Cr.‘D- .:- v' - ‘DFF. .

EXAMPLES

CMDESE> 2 CON’ turn on printer output

DESCRIPTION

CMD**Z" " is used to enable or disable
simultaneous display and printer output. When
CMD**Z" " **ON" " is given, all output going to
the display is also sent to the system line printer
The printer must be in a “ready” condition. Due to
differences in character interpretation, display
output sent to the line printer may cause
unpredictable results, but in general, any text data
sent to the screen will be properly printed on the
system line printer. The printer output is disabled
by CMD**Z* ", **OFF " *. This command can be
used to provide a hard copy of BASIC program
output which normally would be displayed.

RELATED COMMANDS
None

SYSTEM

I, LVLI
LLVL N

|, Disk

I . s
i, LVL I == . . T
i, LVL I i
I, Disk UL - > o
CC, BASIC i — g © T
CC, Ext BASIC »

CC, Disk .

FORMAT

line# COLOR foreground background

EXAMPLES

1000 COLOR 2,3 select yellow on blue

DESCRIPTION

OLOR 1s used to select the foreground and
background colors in either the text or graphics
modes. The background is the field upon which
figures can be drawn; the foreground is the color
used to draw the figures. The color codes used are
the standard Color Computer codes of 0 through 8 -
black, green, yellow, blue, red, buff, cyan, magenta,
and orange, respectively. The color codes used in
the command must be valid colors in the current
mode. The current mode depends upon the current

REEN command in force (text or graphics) and
the graphics mode (PMODE). The background may
be selected to be the same color as the “border”
color, in which case there will be no border around
the screen

RELATED COMMANDS

O
f ve . mEEN

SYSTEM

I, LVLI

I, LVL I

I, Disk

]

I, VL

i, Lve

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
CONT

EXAMPLES
CONT (continue after stop)

DESCRIPTION

CONT is an abbreviation for “continue” Continue is
used after a STOP command has been executed
The STOP causes a temporary program halt,
valuable for examination of variables or
“breakpointing” during debugging. CONT is used
after the STOP to continue the program from the
point at which the STOP occurred. All variables will
be intact when the CONT is executed. CONT is
u§d in the command mode after a STOP has taken
place.

RELATED COMMANDS
STOP

SYSTEM

I, VLI

I, LVL N

|, Disk

||

i, VLI

I, LVL I

i, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk .

FORMAT

OPY “filenamel™ TO “filename2’

EXAMPLES
WPY ** TRANSF IL/BAS:0°* TO
*TRANSF IL F";‘?l:l.

DESCRIPTION

Py is a Color Computer Disk BASIC command
t copies a complete file from one diskette to
another diskette under the same or different file
name, or copies a file to the same diskette under a
different name. COPY is used to backup a single
file. or to duplicate a file on the same or different
diskettes. The file defined by “filenamel” is copied
as “filename2”. Each filename must have an
extension. The extension follows the main file name
and is a three-character designator preceded by a
slash character. The drive number is optional and is
used only when the copy will be done between two
different disk drives

RELATED COMMANDS

None

SYSTEM

I, LVL |

I, LVL I .

|, Disk .

I .

i, LVL |

M, LVL . ,

I, Disk . Ry
CC, BASIC =9 = " >
CC, Ext BASIC o — ——

CC, Disk .

FORMAT

line#&...COS(expression).

EXAMPLES

1000 R=COS(X+3.14155-2) sets variable A
equal to cosine of X+pi/2 (in rad/ans)

2000 ND=COS(X*.01745329) sets vanable
ND equal to cosine of X (in degrees)

DESCRIPTION

COS finds the cosine of a given constant, variable,
or expression. The quantity is assumed to be in
radians (180/pi degrees). COS is a “function” and
may be used anywhere within a BASIC statement
as long as the argument is enclosed within
parentheses. Multiply by .01745329 to convert
degrees to radians. Standard trigonometric rules
apply in regard to the sign of the result

RELATED COMMANDS

None

=
= -
=
=

-

SYSTEM

I, LVL) “
L LVL I .
|, Disk o
|
i, VL1 . <
i, LVL Il . .
i, Disk .
CC. BASIC . 5
CC, Ext BASIC o
CC, Disk -
FORMAT

AVE “file name

HVE
EXAMPLES

‘PRATTRIL®

DESCRIPTION
The CSAVE command i1s used to save the current

SIC program in RAM on cassette tape. The tape
must be positioned beyond the leader. Note the
position of the tape by the tape counter for restart
If a “file name"” is specified, the contents of RAM
will be written out as a file called “file name” If no
file name is specified, the name “NONAME"™ will be
used. Legitimate file names for the Model 1/11l are
single character names. Legitimate names for the
Color Computer are 1 to 6 character names

JA0D? may be used to verify that the file was
written properly. A subsequent CLORD will reload
the BASIC program and “overlay” any current
BASIC program in RAM. See CSAVEN - for

systems with more than one cassette

RELATED COMMANDS

VE
SHVER

I IVE

SYSTEM

I, LVLI

L e

|, Disk

]

I, LVL I

W, Lve

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

CSAVER -1, “file name”
CSAVESR -2, “file name”

EXAMPLES
CSAVER-, * *RATTAIL"®

DESCRIPTION

The CSAVE#R - command is used to save the
current BRSIC program in RAM on cassette tape
on those systems that have more than one cassette.
The tape must be positioned beyond the leader
Note the position of the tape by the tape counter for
restart. If a “file name" is specified, the contents of
RAM will be written out as a file called “file name”
If no file name is specified, the name “NONAME"
will be used. Legitimate file names for the Model |
are single character names. CLORD 78 - may be
used to verify that the file was written properly. A
subsequent CLORDH - will reload the BASIC
program and “overlay” any current BRSIC
program in RAM.

RELATED COMMANDS
CLOADH -, CLOAD?H-

SYSTEM

I, LVL I
I, LVL U
I, Disk

I
m, tvie

i, LVL I | e RN (] '-‘i_
NI, Disk ¢ rr&YL_fr;v::? 4 ‘,;“
CC, BASIC |y - M._‘ . 5\

CC, Ext BASIC e S
CC, Disk .

FORMAT
AVEM “filename’startaddr,endaddr execaddr

EXAMPLES
SAVEM **SORTPR® ', 2H3000,ZH3FFF,

2 H 3008

DESCRIPTION

AVEM 1s used to save a machine-language
program in RAM as a cassette file. The “filename”
parameter is a standard cassette file name

SAVEM can be used to save any binary data in
RAM whether it is a 6809E machine-language
program, data, or both. The startaddr parameter
specfies the starting address of the data to be
saved. The endaddr parameter specifies the end of
the data. The execaddr specifies the address of the
start of the program, if applicable, or to a dummy
parameter. The resulting file is stored as a binary
file and can be loaded and executed by the

LOADM and EXEC commands

RELATED COMMANDS

LOARDM ,EXEC

SYSTEM

I, LVLI

L VLN

I, Disk

]

I, LVL |

I, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#..cC SNG(expression)

EXAMPLES

lk‘.‘. FFI _-”lJI- H*Nmi convert lo Sﬁ
\ J

DESCRIPTION

CSNG converts a constant, variable, or expression
to single precision. Single-precision numbers can
hold up to 7 decimal digits and occupy four bytes
of storage. CSNG is used whenever it is convenient

to convert from integ
er precision or double pr
to single precision . v

RELATED COMMANDS
COBL, CINT

SYSTEM
I, LVL |
I, LvL il
|, Disk .
| .
1, LVL
I, LvL
I, Disk . 143 ’ P
CC, BASIC e : 4
CC, Ext BASIC "
CC, Disk
FORMAT
line#&...CVD(string)
EXAMPLES
1000 AR=CVD(BALS convert BALS fo
numernc
DESCRIPTION
s used to convert a string variable to a
double-precision variable. CVD is normally used to
retrieve a data value from a random-file buffer. The
typical sequence in retrieving data from a random-
file buffer is to define the fields in a random-access
buffer with F IELD, to read in the disk file (see
SET), and then to retrieve data with CVD, CVI, or
5. CVD is the inverse of MKD$, which is
normally used to store double-precision data in the
random-file buffer in character string form. The
0 function converts a field from the buffer to
numeric form. The field is assumed to contain an 8-
character string created by MKD$. An error or
invalid results would normally occur for a field size
other than 8 characters. CVD can also operate on a
tring variable other than a FIELD variable. In this
case the variable should have been created by

RELATED COMMANDS

SYSTEM : =
I, LVLI

I, LVL I

I, Disk <
] .
I, LvL !

I, LVL I

I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT
line&...CV1(string).

EXAMPLES

1000 AX=CVI(EMPS) convert EMPS fo
numeric

DESCRIPTION

CVI is used to convert a string variable to an
integer variable. CVI is normally used to retrieve a
data value from a random-file buffer. The typical
sequence in retnieving data from a random-file
buffer is to define the fields in a random-access
buffer with FIELD, to read in the disk file (see
GET), and then to retrieve data with CVD. CVI. or
CVI. CVI is the inverse of MKI$, which is
normally used to store integer data in the random-
file buffer in character string form. The CV1
function converts a field from the buffer to numeric
form. The field is assumed to contain a 2-character
string created by MKKIS$. An error or invalid results
would normally occur for a field size other than 2
characters. CVI can also operate on a string
variable other than a F IELD variable. In this case
the variable should have been created by MKIS.
RELATED COMMANDS

FIELD, MKIS

i

|

SYSTEM
|, Ll

L, v

|, Disk

)

I, LVL ! - —
I, e m sl disiniss bk

1, Disk 'ﬁz “‘;l"":"'f}_'}:‘i. > » ™
CC, BASIC , t{r{‘“:’ }3:,
CC. Ext BASIC :

CC., Disk * - -

FORMAT

lined..CVN(string)

EXAMPLES

1000 ASCYN(ZIP$) convert Z1P$ lo
numernc

DESCRIPTION

UN is used to convert a string vanable to a
numeric variable. CVN is normally used to retrieve
3 data value from a direct-file buffer. The typical
sequence in retrieving data from a direct-file buffer
s to define the fields in direct-file buffer with
FIELD, to read in the disk file (see GET), and then
to‘r.etneve data with CVN. CVN is the inverse of
Mk NS, which is normally used to store nurtnenc

in the direct-file buffer in character stning

;1;(; Ihte CVN function converts a field from the
buffer to numeric form. The field is assumed to
contain a 5-character string created by MKNS. An
error or invalid results would normally occur for a
field size other than 5 characters. CVN can also
operate on a string variable other than a FIELD
variable. In this case the variable should have been
created by MKNS.
RELATED COMMANDS

S LE MKNS

SYSTEM —
I, LVL |
I, LVL Il
I, Disk .
I .
I, LVL |
I, LvL o
IIl, Disk . B LY
CC, BASIC L

CC, Ext BASIC . =i et
CC. DISk T R R . BT —
FORMAT

line#...CVS(string).

EXAMPLES

1000 R=CVS(ZIPS$)| convert ZIPS lo
numeric

DESCRIPTION

CVS is used to convert 2 string variable to a
double-precision variable. CVS is normally used to
retrieve a data value from a random-file buffer. The
typical sequence in retrieving data from a random-
file buffer is to define the fields in a random-access
buffer with F IELD, to read in the disk file (see
GET), and then to retrieve data with CVD. CVI. or
CVI. CVS is the inverse of MKS$, which is
normally used to store single-precision data in the
random-file buffer in character string form. The
CVS function converts a field from the buffer to
numeric form. The field is assumed to contain a 4-
character string created by MKSS$. An error or
invalid results would normally occur for a field size
other than 4 characters. CVS can also operate on a
string variable other than a F IELD variable. In this
case the variable should have been created by
MKSS.

RELATED COMMANDS

FIELD, MKSS

=8B _ _aeaae. _ . & 1 4

414

SYSTEM

I, LVLI

I, LvL il

|, Disk

I

I, LVL I

i, LVL Il

I, Disk

CC., BASIC
CC. Ext BASIC
CC, Disk

FORMAT

ine#. x xxxxDyy

EXAMPLES

) M=
He=2

N ToH=1
L LawNTL

DESCRIPTION

1s used to denote double-precision numbers with
scientific notation. The format of such a number
consists of a fraction or mixed number, a “D", and
a power of ten. The power of 10 may be positive
{plus sign or no leading sign) or negative (negative
sign). The fraction or mixed number may consist of
up to 17 decimal digits. The decimal point may be
located anywhere within the number. The decimal
point i1s optional. The variable associated mth the
double-precision number must have a “#" type
suffix, or be defined in a DEFDBL range (i.e. it
must be a double-precision variable)

RELATED COMMANDS
#,DEFDBL

SYSTEM

I, LVL |

I, LVL Il

|, Disk

Il

11, LVL |

I, LvL Il

111, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# DATH item 1, item 2, item 3,

item 4, ... item N

EXAMPLES

1000 DATA 5.2, 2, -3, 5, -1 defines a list
of 6 numeric items

2000 DATA ORANGE , PEACH, PEAR defines a

list of three string items
3000 DATA S,PLUM,-2,7.58,6,PEARR,
-5,-10.2 defines a mixed list

DESCRIPTION

DATA is used to define a list of numeric or string
values to be used in the program. More than one
DATA statement results in one large list. Values can
be read by using the READ command. RESTORE
is used to “reset the pointer” to the beginning of
the list. The following statements read 1, -2.5, and
PEAR into variables A, B, and AS$:

1000 DATA 1.-2.5.PEAR establishes list
1010 READ A,B,A%T reads values

1020 RESTORE resets pointer

Double quotes must enclose a string value if the
string has leading blanks, commas, or colons.

RELATED COMMANDS
READ, RESTORE

SYSTEM
[, LVLI
[, LVL II
|, Disk

11, LVL 11 f n
I, Disk (R
CC, BASIC

CC, Ext BASIC

CC, Disk

FORMAT
line# ..DATES. ..

EXAMPLES
1000 PRINT **“TODAY'S DATE IS*"3
DATES

DESCRIPTION

DATES returns the current date and information
about the date as a text string. When TRSDOS is
started up, the operator enters the current date.
DATES returns this information in BASIC. The
format of the DATE® string is
WWWMMMDDYYYYJJIXXY where WWW is the day of
the week, MMM is the month, DD is the numbered
day of the month, YYYY is the year, JJJ is the Julian
day (numbered day of the year), XX is the
numbered month of the year, and Y is the
numbered day of the week. A typical string returned
by DATES is: WedDec301981364122. Weeks start
with Monday, the Oth day; all other parameters
count from 1.

RELATED COMMANDS

None

R

SYSTEM

I, LVL I

I, LVL Il

|, Disk o

I .

I, LvL !

I, LvL

I, Disk .

CC, BASIC

CC, Ext BASIC »

CC, Disk ©

FORMAT

line# DEF FNname(argl,arg2...argn)=formula
EXAMPLES

1000 DEF FNZ(A,B)=SOQR(R*A+E*B)
DESCRIPTION

DEF FN is used to define a function. A function is
a predefined operation that can be “invoked” by
using the characters “FN" followed by the function
name. Functions are useful if the same basic
operation is repeated many times within a BARSIC
program. In the above example, suppose that the
operation SQR(A*A+*B*B) were to be repeated at
100 different places in a BRSIC program. Defining
it as DEF FNZ would permit code such as

“2000 PRINT FNZ(101,50)"; the “FNZ"
would execute the function called

“7" and perform SQR(101*101+50*50). The

name parameter may be any varniable name; any
variable type suffix may be used, such as A%, A!, or
AS. The arg parameters define the arguments to be
used in the function; they are “dummies” in the
DEF FN command and serve only as “place
markers” for definition of the procedure. The
dummies do not affect variable values. Only one
argument may be used in the Color Computer.
RELATED COMMANDS

None

SYSTEM

I, LVLI

I, VL .

I, Disk .

I ©

i, el \ -)
i, LvL . fo R Xarr”
I, Disk . ,;mﬁ*&iﬁ o\
CC, BASIC o T%g
CC. ERERASIC b (o=t)
CC, Disk

FORMAT

line# DEFDBL letter range

EXAMPLES

1000 DEFDBL A-B
3000 DEFDBL I-k

DESCRIPTION

DEFDBL defines all variables within the specified
letter range as double-precision numeric variables
(17 decimal digits of precision stored, 16 displayed).
Variables with type suffixes of “%" 1" “$" or “E’,
however, are not affected. The letter range defines a
range of letters for the beginning letter of the
variable. A letter range of I-K, for example, would
include |, J, and K. After definition of this letter
range by a DEFDBL, all variables beginning with |,
J, or K would automatically be assumed to be
double-precision variables, except for those with
type suffixes. DEFDBL is a convenient way to
define a range of variables as double-precision
variables without having to define each variable
separately with the # type suffix. DEFDBL would
normally be used at the beginning of 3 BASIC
program

RELATED COMMANDS
1,8,%,%,DEFINT, DEFSNG, DEFSTR, E

SYSTEM b,

I, LVL

I, LVL N .

|, Disk .

] .

M, LVL I . QTR LR '
I, Disk . ~““" a«‘» ap

CC, BASIC , i""‘“)
CC, Ext BASIC 2 . .
CC, Disk N i
FORMAT

line# DEF INT letter range

EXAMPLES

1000 DEF INT R-B

3000 DEF INT I-k

DESCRIPTION

DEF INT defines all variables within the specified

letter range as integer variables (capable of holding

32768 to *32767) Variables with type suffixes of
“D' “$' or “E" however, are not affected

The letter range defines a range of letters for the

beginning letter of the variable. A letter range of I-K,

for example, would include I, J, and K. After
definition of this letter range by a DEF INT, all
variables beginning with |, J, or K would
automatically be assumed to be integer variables,
except for those with type suffixes. DEF INT is a
convenient way to define a range of variables as
integer vanables without having to define each
variable separately with the % type suffix. DEF INT
would normally be used at the beginning of a
BASIC program

RELATED COMMANDS

',8,%,%,0, DEFDBL, DEFSNG,
DEFSTR, E

SYSTEM .
I, LVLI

I, LvL il ©

I, Disk B

] .

i, VL /
I, LVL I . {

I, Disk B

CC, BASIC

CC, Ext BASIC

CC, Disk

FORMAT

line# DEF SNG letter range

EXAMPLES

1000 DEFSNG R-B
3000 DEFSNG I -k

DESCRIPTION

DEF SNG defines all variables within the specified
letter range as single-precision variables (7 decimal
digits of precision stored, 6 displayed). Variables
with type suffixes of “%"] “#' "D’} or “$’) however,
are not affected. The letter range defines a range of
letters for the beginning letter of the variable. A
letter range of |-K, for example, would include |, J,
and K. After definition of this letter range by a

DEF SNG, all variables beginning with |, J, or K
would automatically be assumed to be single-
precision variables, except for those with type
suffixes. Single-precision variables are the “default”
mode for BASIC varnables, and DEFSNG would
not have to be used except to redefine variables
that were previously assigned to other variable
types

RELATED COMMANDS

1,8, 8, X, D, DEFDBL, DEFINT,
DEFSTR, E

SYSTEM
I, LVL I

I, LVL Il

I, Disk

I ©
I, LVL
I, LVL
1N, Disk
CC, BASIC J
CC, Ext BASIC \
CC, Disk

FORMAT
line# DEFSTR letter range

EXAMPLES
1000 DEFSTR A-B
3000 DEFSTR I-+

DESCRIPTION

DEFSTR defines all variables within the specified
letter range as string variables. Variables with type
suffixes of “%", “I', “#" “D" or “E" however, are not
affected. The letter range defines a range of letters
for the beginning letter of the variable. A letter
range of |-K, for example, would include |, J, and K.
After definition of this letter range by a DEFSTR,
all variables beginning with I, J, or K would
automatically be assumed to be string variables,
except for those with type suffixes. DEFSTR is a
convenient way to define a range of variables as
string variables without having to define each
variable separately with the $ type suffix. DEFSTR
would normally be used at the beginning of 2
BASIC program.

RELATED COMMANDS

', 8,8, X, D, DEFINT, DEFDBL,
DEFSNG, E

SYSTEM =

I, LVLI

I, LvL il

I, Disk .

I .

i, LVL I

i, LVL I

M, Disk - :

CC, BASIC {

CC, Ext BASIC o R
CC, Disk .
FORMAT

linef# DEFUSRn=address
EXAMPLES

1000 DEFUSR3I=LHB00O define subroutine for
Model |

DESCRIPTION

DEFUSR 15 used to define the location of a
machine-language subroutine. The subroutine
consists of machine language for the system in use.
The n parameter in the DEFUSR command may be
any number from 0 through 9; this allows up to 10
machine-language subroutines to be defined for
interface to BASIC programs. The address value on
the right-hand side of the DEFUSR command is the
starting point for the machine-language code. The
machine-language subroutine may consist of any
number of instructions. The subroutine 1s called by
the USRn call, in which n matches the n of the
DEFUSR. USR3, for example, would match the
DEF USR3 definition.

RELATED COMMANDS

USRkn

SYSTEM - ——
|, LVL I | ‘
I, Lve i

|, Disk

Il

I, LVL 1

i, Lve

I, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk o

FORMAT

DEL -

DEL line#-line#

DEL line#-

DEL -line#

line# DEL line#-line#

EXAMPLES

DEL 100- delete lines 10@ through end

DESCRIPTION

DEL deletes a range of BRSIC lines from RAM.
The BASIC interpreter “repacks” the BASIC
program to utilize the deleted area. If the “DEL-"
format is used, the entire program is deleted from
memory. If the “line#-line#” format is used, all lines
including the start and end lines are deleted. If the
“line#” format is used, all lines from the beginning
of the program through the specified end number
are deleted. If the “line#-" format is used, all lines
from the specified start number through the end of
the program are deleted. DELETE may be used to
delete lines from the command mode for program
editing purposes, or to delete program lines
“dynamically” to release portions of BASIC
programs that are no longer needed to create room
for variables.

RELATED COMMANDS
None

=3

SYSTEM

I, LVL |
I, LVL I
I, Disk
Il =
I, LVL |

i, LvL i

1, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

DELETE line#-line# (in command mode)
DELETE line#

DELETE -line#

line# DELETE line#-line#

EXAMPLES

DELETE 10@- delete lines 10@ through end
DESCRIPTION

DELETE deletes a range of BRSIC lines from
RAM. The BASIC interpreter “repacks” the BASIC
program to utilize the deleted area. If the “line#-
line#" format is used, all lines including the start
and end lines are deleted. If the “-line#" format is
used. all lines from the beginning of the program
through the specified end line number are deleted.
If the “line##” format is used, the specified line
number is deleted. DELETE may be used to delete
lines from the command mode for program editing
purposes, or to delete program lines “dynamically”
to release portions of BRSIC programs that are no
longer needed to create more room for variables.

RELATED COMMANDS

DELETE

None

SYSTEM —" n
I, LVL I

I, LVL Il

|, Disk

Il

M, LVL 1

I, LVL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# DIM name(diml)

line# DIM name(dim],dim2)

line# DIM name(diml,dim2....dimk)

EXAMPLES

1000 DIM A%(10,40) 11 by 41 int array
DESCRIPTION

DIMis used to allocate space for 2 BASIC array
The name parameter names an integer, single
precision, double precision, or string array (numeric
or string in the Color Computer). The name must
adhere to the name conventions for the vaniable
type involved. The dimensions are one less than the
number of elements for each dimension of the
array. The DIM statement only names and allocates
the array; it does not initialize it to any value,
although the elements are zeroed on power up
automatically. Elements within the array are
accessed by using the element number with the
array name, The first element of 2 two-dimensional
array might be A(0,0), the second A(0,1). and so
forth. The last element in the array has the element
numbers defined in the DIM statement. Each array
element requires the same memory that 2 vanable
of the same type would require

RELATED COMMANDS

None

T S . W

| SOCOONLS NS ety
":"‘;?r‘l':zﬁ:";:"t' o P P 2
famssves v anad —7}"
- =9 - s

CLULU LU

ot

-

e -

SYSTEM

I, LVLI

[, LVL Il

I, Disk

I

i, LVL |

i, LVL Il

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk .

FORMAT

——— s — e — -

I Rdnves

EXAMPLES

DESCRIPTION
1R displays the disk directory of the disk drive
number specihed. If the drive number 1s not used,
1~ will display the directory of the current disk
frive (last specified by DRIVE) or drive 0, the
jefault drive number if DRIVE has not been used
The directory will be displayed with the file name,
extension of the file (BAS, BIN, DATA, or other
user- or system-specified extension), file type
0=BAS1C data file, 1=BASIC data file,
) machine-language file, 3=editor source file), file
f. yymat (A=ASCII, B=binary), and file length
n pranules (2304 bytes). A typical display line
might be

ndicating file & 5/DATA, a BASIC data file in
binary that is 5 granules or 11520 bytes long
RELATED COMMANDS

None

v rnaT

SYSTEM

I, LVLI

I, LVLII

|, Disk

]

I, LvL |

i, LVL 1

I, Disk

CC, BASIC /
CC, Ext BASIC o ¢
CC, Disk .

FORMAT
line# DRAW “string”

EXAMPLES

1000 DRAW * *BM128,96:M0,0;M255,2"°
DESCRIPTION

The DRAW command is used to draw a series of
connected line segments in various lengths and
directions. The line segments may be drawn in 8
directions in any length. The “string” parameter
specifies a string of DRAW subcommands, each
defined by a single text character. To draw 2 line of
n pixels up, 45 degrees, right, 135 degrees, down,
215 degrees, left, or 325 degrees, use the text
strings “Un.", “En;", “Rn;", “Fn;", “Dn;",
“Gn;",“Ln;", or “Gn;”, where n is the number of
pixels. To move to any x,y coordinate, use the text
string “Mx.y;" where x and y are 0-255 and 0-191.
respectively. Precede x and y with “+" or “-" for
moves relative to the current position. Use “B” after
the M or “B;" at any time for a “blank” line. Use
“N" before the motion command for 2 “no update”
of the position. Use “Cn;” to change color. Use
"Ax.” for rotates of 0, 90, 180, or 270 degrees
(x=0,1,2.3). Scale the draw by “Sx;” where x equals
2 scale factor of 1 through 65‘ Execute a substring
by “X(string);".

RELATED COMMANDS

None

uuuu

=

-
=

-

SYSTEM

I, LVLI

I, LVLI

|, Disk

)

I, LvL I
i, LVL I
I, Disk .
CC, BASIC v =
CC, Ext BASIC
CC, Disk -

FORMAT

DRIVE dnve#

EXAMPLES

DRIVE 1

DESCRIPTION

DRIVE is a Color Computer Disk BASIC command
It is only used on systems with more than one drive
to change the “default” disk drive number. The
default drive number is used when the dnve
number is not specified in a filename (the standard
filename format is name/extension:drive number)

RELATED COMMANDS

None

SYSTEM

I, LVL |

I, LVL I

|, Disk

Il

M, LVL I

i, LvVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk .

FORMAT

line# DSK 1% drives, track sector,string var 1.string
var 2

EXAMPLES
1000 DSKIS$ 0,12,3,.A%,.B% dnve Otrack 12
sector 3

DESCRIPTION

0DSKI% is a Color Computer Disk BASIC command
that permits direct access of a specified physical
location on disk. It is used to process special files
created by the system user or to process disk
contents without using disk “file manage” The
drive# parameter specifies the drive, the track
parameter one of the diskette tracks (0 through 34),
the sector number one of the sectors within the
track (0 through 17). The two string vaniables
receive the 256 bytes of data from the track, sector
String vaniable 1 receives the first 128 bytes from
the sector, while string vaniable 2 receives the
second 128 bytes. Data from the disk may or may
not represent valid ASCIl characters, depending
upon the data output to the disk

RELATED COMMANDS

DSKNS

UVOr U3

SYSTEM

I, LVLI
L

|, Disk

]

i, Ll
i, LVvL I
I, Disk
CC, BASIC
CC, Ext BASIC =
CC, Disk .

FORMAT

DSK IN1dnve#

EXAMPLES
DSKINI®

DESCRIPTION

DSKINT is a Color Computer Disk BASIC
command that “formats” a diskette in the specified
drive number. The formatting process prepares the
diskette for receiving data files and 1S a necessary
process before doing any BASIC disk operations.

RELATED COMMANDS

None

SYSTEM
I, LVLI

I, LVLII

I, Disk

Il

I, LVL I
I, LVL I
I, Disk
CC, BASIC
CC, Ext BASIC

FORMAT

lined DSKO$ drive# track,sector,string 1,string 2

EXAMPLES
1000 DSKOS 0,12
sector 3

DESCRIPTION

DSKO$ is a Color Computer Disk BASIC command
that permits direct access of a specified physical
location on disk. It 1s used to create special files
defined by the system user. The drive#f parameter
specifies the drive, the track parameter one of the
diskette tracks (0 through 34), the sector number
one of the sectors within the track (0 through 17)
The two string vaniables define the 256 bytes of
data to be output to the track, and sector. String
variable 1 defines the first 128 bytes for the sector
while string variable 2 defines the second 128
bytes. Literal strings may be used in either case
Data in the variables may or may not represent
valid ASCIl characters, depending upon the data to
be output. DSK 1% is normally used to input the
disk data output by DSKOS .

RELATED COMMANDS
DSKIs

.3,A%.B% dnive Otrack 12

CC, Disk . g

|
U

i

[

o—

X

L

SYSTEM

|, LVL I

I, LVL I o

|, Disk .

I ®

i, il

i, LvL i .

1, Disk v ,

CC. BASIC i]
CC, Ext BASIC

CC, Disk

FORMAT

line#__x xxxxtyy
EXAMPLES

1000 A=1.1112E-5
1010 Z21=3 SE7E+34
DESCRIPTION

c is used to denote scientific notation for single-
precision numbers The format consists of a fraction
or mixed number, followed by a D, followed by a
power of ten. The power of ten may be posmveT
(plus sign or no sign) or negative (minus sign) ?e
fraction or mixed number may be any number o
decimal digits up to 7, with the decimal point
located anywhere within the digits. The decimal
point is optional The variable associated with the £
format must be a single-precision variable. This is
the default condition for BRSIC variables and n'o “

" suffix is necessary unless the variable name falis
in a DEFDBL or DEFSTR range

RELATED COMMANDS

1 . DEFSNG

SYSTEM

I, LWL

I, LVLII .

I, Disk -

] o

i, e (=

I, Disk - 2 ‘v ‘
CC, BASIC

CC, Ext BASIC o

CC, Disk B]
FORMAT

EDIT line# (in command mode)
EDIT. (except Color Computer)
EXAMPLES

EDIT 1000 edit line # 1000

EDIT. edit last line entered, altered, or in
error
DESCRIPTION

EDIT is a command mode command that invokes
the BASIC interpreter Edit mode. The edit mode is
used to modify BASIC program lines by adding,
deleting, or modifying characters to the line. Any
existing line number may be specified in the EDIT
command. After the EDIT command has been
given, the BRSIC interpreter will display the line
number and will position the cursor to the first
character of the line. Subsequent Edit mode
commands will allow editing of the line. To get out
of the Edit mode, press ENTER. The

“EDIT.” format displays the last line entered,
altered, or in which an error occurred. Entening the
Edit mode automatically clears all vaniables. If
BASIC encounters a syntax error duning program
execution, it automatically enters the Edit mgge for
the erroneous line. Entering “Q" will allow you to
Quit the Edit mode and examine vanables and
program conditions

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM =
I, LVLI
I, LVLII
|, Disk
I .
M, LVL

i, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Edit Mode: A keypress

EXAMPLES
1000 FOR I=1 TR J- (pressing A cancels
changes and restarts the Edit)

DESCRIPTION

The Edit mode is entered by the EDIT line#
command. The A subcommand is used to cancel all
changes to the line that have been made and to
restart the Edit at the beginning of the line. The A
subcommand differs from the Q subcommand in
that the Q subcommand cancels changes and Quits
the Edit mode, while the A subcommand cancels
changes but keeps the Edit mode in force. In the
example above, the result would have been

Edit
Mode A

2 FOR I=J TR J

The line can now be reedited with the proper
changes

RELATED COMMANDS
Edit Mode Subcommands

—

SYSTEM
I, LVLI

I, LVL I

|, Disk °
I °
I, LvL |

M, Lve i

IIl, Disk .

‘-_!?'T—ﬂ-
CC, BASIC

R Tﬁ:
CC ExtBASIC o |(— "=t :

CC, Disk < -
FORMAT

Edit Mode: Backspace keypress (backspace is left
arrow)

Edit Mode: nBackspace keypress

EXAMPLES

1000 FOR I=1 TO - (pressing 5 and
Backspace backspaces to the left 5 characters on
the line)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor 1S
positioned somewhere along the line To backspace
the cursor to the left one character position, press
Backspace (left arrow). Jo backspace to the left
more than one character position, enter a2 number of
1 through n and press Backspace. In the example
above, 5 was entered, followed by Backspace; this
positioned the cursor 5 character positions to the
left. The 5 characters previously displayed were
unaltered but erased from the display. Backspace
can be used to space back along the line until the
proper place is found to insert, delete, or modify
characters by the other Edit Mode subcommands
RELATED COMMANDS

Edit Mode Subcommands

s

SYSTEM ———
I, LVL I
I, LVL I
|, Disk
I .
i, LVL |

i, LvL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
Edit Mode: C keypress

Edit Mode: nC keypress

EXAMPLES

1000 FOR 1=1 TO - (pressing 5 and C begins
change operation for next 5 characters)
DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The C
subcommand is used to change 1 or more
characters to new characters. To change the current
character at the cursor position, press C followed by
the new character. To change n additional
characters, enter a number of 1 through n and
press C. Then type the characters to replace the
number specified. In the example above, 5 was
entered, followed by C. If (K-5) was then entered,
the new line up to that point would read

1000 FOR I=1 TO (K-5)-

The number of characters for the change must be
exactly equal to the number replaced

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I, LVLI

I, LVL I

|, Disk

I o
0, Lve |

I, LVL 1N

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Edit Mode: D keypress
Edit Mode: nD keypress

EXAMPLES
1000 FOR I=1 TO - (pressing 5 and D deletes
next 5 characters)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor 1s
positioned somewhere along the line. The D
subcommand is used to delete 1 or more
characters. To delete the current character at the
cursor position, press D. The character deleted will
be displayed bracketed by exclamation points. To
change n additional characters, enter a number of 1
through n and press D. The characters deleted will
be displayed bracketed by exclamation points. In
the example above, 5 was entered, followed by D
The display would show:

1000 FOR I=1 TO 1(K-5)!-

The characters (K-5) would have been deleted from
the line.

RELATED COMMANDS
Edit Mode Subcommands

-y

SYSTEM

I, LVL I
I, LvL
I, Disk
I -
i, Ltve |

i, Lve

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Edit Mode: E keypress

EXAMPLES
1000 FOR I=1 TO J-5 STEP - (press E)

DESCRIPTION

The Edit mode is entered by the EDIT line#
command. Pressing the E key while in the Edit
Mode records all changes made while in Edit mode
and returns to the BASIC interpreter command
mode. E 1s not active while in any Insert mode such
as |, X, or H. E is logically equivalent to pressing
ENTER

RELATED COMMANDS

Edit Mode Subcommands

SYSTEM — SYSTEM —
l, LVL | l, VLI S
I, LVLII . |, LVL It Edit
I, Disk o |, Disk Mode ESC
] N ly I . 2
i, LvL | - T (i, LvL !
M, L o [eupaaseeen (Ertl I, LVL I
11, Disk . ﬁ 5«3«?;31 ol IIl, Disk
CC, BASIC [% i '.L“}, CC, BASIC , |
CC, ExtBASIC » . ST T - CC, Ext BASIC e
CC, Disk B CC, Disk
FORMAT FORMAT
Edit Mode: ENTER keypress e Edit Mode: ESC keypress
EXAMPLES | EXAMPLES
1000 FOR I=1 TO J-5 STEP (press — 1000 FOR I=1 TO - (pressing ESC resets the
ENTER) Insert mode)
3
DESCRIPTION . DESCRIPTION
The Edit mode is entered by the EDIT line# —l The Edit Mode is entered by the EDIT line#
command. Pressing the ENTER key while in the command. While in the Edit Mode, the current line
£01T mode records all changes made while in Edit is displayed in whole or in part The cursor 1S
mode and returns to the BRSIC interpreter — positioned somewhere along the line. Text may be
command mode inserted by the |, X, or H subcommands. While in
—— the edit portion of these subcommands, characters
RELATED COMMANDS are entered until the ESC key is pressed. The Insert
Edit Mode Subcommands — submode is then ended. ESC should be pressed at
any time to “reset” the current Edit mode to a
known condition
“-rer

RELATED COMMANDS
T Edit Mode Subcommands |, H, X

SYSTEM
I, LVL I

I, e

|, Disk

I .
I, LVL |

i, e

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Edit Mode: H keypress

EXAMPLES
1000 FOR I=- (pressing H deletes remainder of
line and invokes the Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To delete the
remainder of the line from the current cursor
position, press H. This “Hacks off" the remainder of
the line and invokes the Insert mode. In the
example above, pressing H and then entering “2 T0
K-6" would have resulted in the following line
1000 FOR I=2 TO K-6-

At this point the Insert mode would still be in force
and additional characters could be added to the end
of the line. To terminate the Insert mode, press
SHIFT, up arrow together, or press ENTER. ENTER
enters the current changes and returns to the
command mode, while SHIFT, up arrow terminates
the Insert mode but keeps the Edit mode active

RELATED COMMANDS
Edit Mode Subcommands

°
P~

= =
-
= e

SYSTEM

I, LVL I

I, LVLII o

|, Disk .

I B

I, LVL !

W, LWL e =
I, Disk . ¥
CC, BASIC -

CC ExtBASIC o | ==t
CC, Disk B I—
FORMAT

Edit Mode: | keypress

EXAMPLES

100@ FOR I=1 TO - (pressing | enters Insert
submode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the fine. To insert
characters at any point press |. All characters
entered from that point until the SHIFT, up arrow
keys were pressed simultaneously would be entered
into the line. In the example above, if the onginal
line was “100@ FOR I=1 TO 100", entering |
followed by “J-" and then SHIFT, up arrow would
result in a line consisting of:

1000 FOR I=1 TO J-

The SHIFT, up arrow would not terminate the Edit of
the line; the cursor would be positioned after the
last character inserted and the remainder of the line
would not be visible. Pressing the ENTER key will
also terminate the Insert

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM
I, LVLI

L LvLn

I, Disk

I

M, LVL |
I, LVL
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
Edit Mode: Kc keypress
Edit Mode: nKc keypress

EXAMPLES

1000 - (pressing 2, K, and : searches for the
second occurrence of the character “" and kills all
characters to that point)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. The K subcommand is used to search for
the first or “nth” occurrence of a single character
and to delete all characters preceding the search
character from the current cursor position. To
search for the first occurrence of a character, press
K followed by the search character. The cursor will
move to the right until positioned over the character
and delete all characters from the cursor position to
that point. The deleted text will be displayed
bracketed by exclamation points. The search
character will not be displayed. To search for the
nth occurrence of a character, enter a number from
1 to n, enter a K, and enter the search character
The cursor will be positioned over the nth
occurrence of the character with a similar delete
action

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM < mdrach. Y

I, LVL I

, LVL N .

I, Disk .

I . A = :

i, LVL | | — e re—
m, tvem e f gax ISAVEEP 2|
1Il, Disk . % - vl|
CC, BASIC w“%’ll
CC, ExtBASIC » |)
CC, Disk -

FORMAT

Edit Mode: L keypress

EXAMPLES

1000 FOR I=-~ (pressing L displays remainder of
line)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display the
remainder of the line, press L. The remainder of the
line will be displayed and a new line will be started
with the cursor positioned on the first character of
the new line. In the example above, the result would
have been

1000 FOR I=1 to J-5 STEP 3

1000 -

The Edit Mode L subcommand lets you see the
remainder of the line without having to space along
the line. The L subcommand is not active while in
an insert mode such as |, X, or H.

RELATED COMMANDS
Edit Mode Subcommands

T ||

SYSTEM

I, LVLI

I, LVL I .
I, Disk .
] .
i, e i

I, LvL Il .
I, Disk .
CC, BASIC

CC, Ext BASIC »
CC, Disk .
FORMAT

Edit Mode: Q keypress
EXAMPLES

1000 FOR I=1 TR d-
changes and Quits the Edit)

DESCRIPTION

The Edit mode is entered by the EDIT line#
command. The Q subcommand is used to cancel all
changes to the line that have been made and to
Quit the Edit. The Q subcommand differs from the A
subcommand in that the Q subcommand cancels
changes and Quits the Edit mode, while the A
subcommand cancels changes but keeps the Edit
mode in force. In the example above, the result
would have been

1000 FOR I=J TA J
(BASIC command mode)

(pressing Q cancels

The Q subcommand is used when changes have
been erroneously made to a BASIC program line

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, LVL I

I, LVL I .
|, Disk .
|| .
I, VL1

i, LvL m .
i, Disk ©
CC, BASIC

CC, Ext BASIC
CC, Disk B
FORMAT

Edit Mode: Sc keypress
Edit Mode: nSc keypress

EXAMPLES

1000 - (pressing 2, C, and O searches for the
second occurrence of the letter 0)
DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. The S
subcommand is used to search for the first or “nth”
occurrence of a single character. To search for the
first occurrence of a character, press S followed by
the search character. The cursor will move to the
right until positioned over the character. The
character will not be displayed. To search for the
nth occurrence of a character, enter a number from
1 to n, enter an S, and enter the search character.
The cursor will be positioned over the nth
occurrence of ther character. The line up until the
nth occurrence will be displayed. If the character is
not found in the search, the entire line will be
displayed with the cursor positioned at the end.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, LVL 1

A"/ .
I, Disk .
Il .
M, LvL |

I, LVL 1N B
11, Disk .
CC, BASIC

CC, Ext BASIC o
CC, Disk .
FORMAT

Edit Mode: SHIFT, up arrow
EXAMPLES

1000 FOR I=1 TO -
resets the Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. Text may be
inserted by the |, X, or H subcommands. While in
the edit portion of these subcommands, characters
are entered until the SHIFT, up arrow keys are
pressed simultaneously. The Insert submode is then
ended. SHIFT, up arrow should be entered at any
time to “reset” the current Edit mode to 2 known
condition

RELATED COMMANDS
Edit Mode Subcommands |, H, X

(pressing SHIFT, up arrow

snn "
-

1 11

3

-
REERERR

L

~F T

SYSTEM

(A S

I, LVL Il B

|, Disk . e

I . ‘. - b D (O L |

I, LVL | \ —
i, LVL I . | g S A
Ry
CC, BASIC o - X -
CC, Ext BASIC » £ Ll
CC, Disk o

FORMAT

Edit Mode: Space-Bar press
Edit Mode: nSpace-Bar press

EXAMPLES
1000 FOR I=1 TD -

(pressing 5 and space bar
displays and spaces 5 additional characters on the
line)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
is displayed in whole or in part. The cursor is
positioned somewhere along the line. To display an
additional character, press Space-Bar. To display n
additional characters, enter a number of 1 through
n and press Space-Bar. In the example above, 5
was entered, followed by Space-Bar; this displayed 5
additional characters on the line and positioned the
cursor after the 5 additional characters. Space-Bar
can be used to space along the line until the proper
place is found to insert, delete, or modify characters
by the other Edit Mode subcommands.

RELATED COMMANDS
Edit Mode Subcommands

SYSTEM

I, VLI

,LvL il .

|, Disk .

I -

i, LVL I

I, LVL .

I, Disk .

CC, BASIC

CC, Ext BASIC » \)
CC, Disk B =
FORMAT

Edit Mode: X press
EXAMPLES

1000 - (pressing X displays remainder of line
and invokes the Insert mode)

DESCRIPTION

The Edit Mode is entered by the EDIT line#
command. While in the Edit Mode, the current line
15 displayed in whole or in parl. The cursor is
positioned somewhere along the line. To display an
additional character, press Space-Bar. To display the
remainder of the line and position the cursor to the
end of the line in the Insert mode, press X. In the
example above, pressing X would have displayed
1000 FOR I=1 TO J-5 STEP 3

At this point the Insert mode would be in force and
additional characters could be added to the end of
the line. The X command is an “Extend Line”
command and 1s used for that purpose. To terminate
the Insert mode, press SHIFT up arrow together, or
press ENTER, ENTER enters the current changes
and returns to the command mode, while SHIFT up
arrow terminates the Insert mode but keeps the Edit
mode active

RELATED COMMANDS

Edit Mode Subcommands

SYSTEM _ N

I, LWL

I, LVL I

I, Disk

I

i, tviL |

i, LVL Wl

i, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# END

EXAMPLES

1009 END stops execution and returns fo the
command mode

DESCRIPTION

£ND determines an end point of the BASIC
program, When encountered by the BRSIC
interpreter, END causes the interpreter to stop
program execution and return to the command
mode. There may be any number of ENDs in the
BASIC program. It does not define the physical
end of the program, but is only relevant during
program execution

RELATED COMMANDS

None

SYSTEM : —
I, LVL |
I, LVL Il
I, Disk ©
I ©

i, e !

TRERE ST T T—

I, LVL ' PP\

* F:;".', ‘M > o
,A-J-v‘rx gt vy
| =l e

I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk -

FORMAT
line&...EOF (buf#)

EXAMPLES

1000 IF EOF (1) THEN CLOSE(1):60TOD
2000

DESCRIPTION

EOF is 2 Disk BASIC function that indicates
whether the “end-of-file” of a disk file has been
reached. It is normally used during a disk read
operation to test for the read of the last data from
the file. Two types of reads might be done. In one
type, the user knows exactly how many records are
in a disk file and reads that exact number. In the
second type, the user tests for EOF to determine
when all of the data has been read. In the EOF
case, a 0 is returned when more data remains in
the file, and a -1 is returned when all data has been
read and an EOF condition exits. The EOF is used
in this context as a “logical” function which
specifies a true/false condition

RELATED COMMANDS

None

T ——— e I N L s s

P et

SYSTEM e r—

I, LVLI

I, LVLII

1, Disk

| .
i, LvL | Ss—]
M, LVL | Gononeas S (At
I, Disk s
CC, BASIC = el PP e
CC, Ext BASIC

CC, Disk

FORMAT

line# ..expressionEQVexpression

EXAMPLES
1000 C=R EQV B

DESCRIPTION

£0QV is a logical or bit manipulation operator that
processes two operands in similar fashion to the
more common AND or OR. EQV compares both
operands (constants, variables, or expressions on a
bit by bit basis. For each bit position, the result bit
is a 1 when both bits are the same. @ IMP @=1;
® IMP 1=0: 1 IMP 0=0; and 1 IMP 1=1.
£0V is the inverse of the XOR function. The
expressions are converted to 16-bit integers and
then compared on a bit basis. If A is binary
01010000 and B is 00111111, above, then C is

10010000
RELATED COMMANDS

-

SYSTEM b

I, LVL I

VLI

I, Disk

I .
I, LVL |

i, LVL I

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT

hne# ERASE arrayl arrray2array3

EXAMPLES
1000 ERASE XX A% ,.AS erase three
arrays

DESCRIPTION

ERASE 1s used to “de-allocate” one or more arrays
When ERASE is executed, the specified arrays are
removed from RAM space, and the area allocated
for the arrays is released to the free memory area
ERASE 1s the opposite of DIM. Arrays deleted in
an ERASE may be redimensioned. ERASE removes
the entire array and cannot be used to remove one
or a few entries of the array

RELATED COMMANDS

DIM

SYSTEM = —

I, LVLI

I, LVL I o

|, Disk °

I .

i, tvL |

i, LVL I -

I, Disk .

CC, BASIC

CC, Ext BASIC !
CC, Disk R — S
FORMAT

line#l _ERL . ..

EXAMPLES

1000 IF ERL=2000 THEN STOP stop if invalid
read in line 2000

DESCRIPTION

ERL 1s a special error-processing function which
returns the line number in which an error occurred
The ERL is normally used within an error-
processing routine defined by the line number in an
ON ERROR GOTO command. When any error
occurs and the user error-handling mode is in force,
the error-processing routine takes suitable actions
for the error, such as displaying the type of error,
line number, and corrective action. The ERL allows
the error-processing routine to determine the line
number and therefore further information about the
manner of error and action to take. If a program
error has occurred since power up, ERL returns the
line number of the last error. If an error occurred in
the command mode (such as entering LLLIST),
65535 is returned as the ERL argument to signify
that no line number was involved.

RELATED COMMANDS
ERR,ERROR, ON ERROR GOTD, RESUME

e m

SYSTEM

I, LVLI
I, LVL Il
I, Disk
I .
M, LvL
i, Ltve i
I, Disk
CC, BASIC - e
CC, Ext BASIC

CC, Disk

FORMAT
line# ERR. . .

EXAMPLES

1000 IF ERR-2+1=4 THEN STOP stop if out
of data

DESCRIPTION

ERR is a special error-processing function which
returns the error code for the error that just
occurred. ERR is normally used within an error-
processing routine defined by the line number in an
ON ERROR GOTO command. When any error
occurs and the user error-handling mode is in force,
the error-processing routine takes suitable actions
for the error, such as displaying the type of error,
line number, and corrective action. The ERR allows
the error-processing routine to determine the type of
error and therefore define the manner of error and
action to take. The expression ERR~2+1 is used to
find the true error code for the Models | and 1|

RELATED COMMANDS
ERL, ERROR, ON ERROR GOTO, RESUME

.
.

-
o
ats
)_»_.
sl
:
I
v
)
i.

SYSTEM

I, VLI

I, LVL I .

|, Disk .

! .

M, LVL I

I, LVL 1 .

I, Disk .

CC, BASIC |
CC, Ext BASIC

CC, Disk

FORMAT

line# ERROR code
EXAMPLES

1000 ERROR 4 simulate out of data error
DESCRIPTION

ERROR 1s used to simulate an error condition
ERROR 1s pnmanly used to test a user error-
processing routine. The error-processing routine is
established by an ON ERROR GOTO command
with appropniate error handing code

RELATED COMMANDS

N ERROR GOTO

SYSTEM

I, LVL I

I, LVL Il

I, Disk

I .
i, LvL |

I, Lve m

I, Disk

CC, BASIC . -
CC, Ext BASIC E——
CC, Disk

FORMAT

line# . ERRS. ..

EXAMPLES
1000 PRINT **ERROR: ' :ERRS

DESCRIPTION

ERRS returns 2 text string containing the number
and description of the TRSDOS error related to the
latest BASIC disk error. BASIC normally displays
3 "DISK I-0" error indication. ERRS is a way of
further defining the error in TRSDOS. ERRS would
normally be used in BASIC error handling routines
to notify the user of errors and to determine some
corrective action. If no TRSDOS error occurred
ERRS returns a null string

RELATED COMMANDS

ON ERROR GOTC

SYSTEM

I, LVLI

L, LVL

|, Disk

Il

i, LVL |

", LVL I

I, Disk

CC, BASIC .
CC, Ext BASIC o
CC, Disk °

FORMAT

EXEC address
EXAMPLES

EXEC execute last loaded machine-language
program

DESCRIPTION

EXEC causes a transfer to the last CLORDM
address or to the specified address value. EXEC is
used primarily after a2 CLOADM command to
transfer control to the machine-language file,
assumed to be a major program (one not generally
interfacing to BASIC via the USR command)
EXEC may also be used in the “EXEC address”
format to transfer control to any machine-language
code at any time while in the command mode. The
address parameter specifies the starting address for
execution

RELATED COMMANDS

I 1
o L

SYSTEM

L VLI

L LVL N B

I, Disk .

] .

i, LVL |

i, LvLE .

I, Disk .

CC, BASIC

CC, Ext BASIC o P—" e —
CC, Disk -

FORMAT

line#...EXP(expression)

EXAMPLES

1000 R=EXP(

DESCRIPTION

EXP 1s the inverse of the L0OG function. It returns

the natural exponential of X, or e (2.718.) to the X
power. Natural logarithms and exponentials are used
in a vaniety of mathematical and scientific
applications

RELATED COMMANDS
LOG

ST e—

e

SYSTEM
I, LVL I

I, LVL I

I, Disk ©
| .
I, LVL |

I, LvL m

I, Disk -
CC, BASIC _
CC, Ext BASIC e

CC DlSk o T E— -

FORMAT
line# FIELD bufé,n AS namel.n AS name2,...n AS
namen

EXAMPLES

1000 FIELD 1,20 RS LNAMES. 20 AS
FNAMES ,40 RS ADDRS

DESCRIPTION

FIELD 1s used to define fields of specified length
within a random-file buffer. Fields are subdivisions
of a record. Each field has a name specified in the
field statement. The field name may be used in
LSET, RSET or other commands to easily store or
retneve character data from the record without
having to specify the relative location of the data in
numeric form. It would be much more convenient to
reference “FNAME" for “first name” than the 20th
through 39th characters in a record, for example
The buf# parameter defines the buffer number to be
used when referencing data. The buffer number is
associated with a file by the OPEN command. The n
parameters define the length of the field in
characters. The name parameters define 2 field
string vanable name. (DUMMY'$ can be used to
space over” characters.) The total number of
characters used for the fields must equal the record
length defined in the OPEN

RELATED COMMANDS

SYSTEM

I, LVLI

I, LVL I

|, Disk

|

i, LVL I

i, Lve m

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk B

FORMAT

FILES number of bufsbuffer size
line# F ILES number of bufsbuffer size

EXAMPLES

FILES 3,256

DESCRIPTION

FILES specifies how many disk buffers to reserve
in memory and how large the buffers should be. The
buffer size parameter is optional: if not used. a
buffer size of 256 bytes is used. Disk BASIC uses
buffers to assemble records on output to disk and to
read in sectors of the disk on input. Sectors are 256
bytes long, and this is the normal length for RAM
buffers. If FILES is never specified, two buffers of
256 bytes are assumed

RELATED COMMANDS ——

None

reserve 3 bufs of 256 bytes

-y -

SYSTEM

I, VLI

I, LVL I .

|, Disk .

I .

i, VL1

i, LvL Il . _
I, Disk ¢ N
CC, BASIC : d
CC, Ext BASIC e -
CC, Disk .

FORMAT

line#...F 1 X(expression)

EXAMPLES

Y00 REM FIND INTEGER PORTION OF X
@10 IN=FIX(X) put integer portion in IN

DESCRIPTION

finds the integer portion of a constant,
vanable, or expression. Unlike INT, it finds the true
integer portion of a negative argument. The integer
portions of +1.12, +100.45, 0, -5.567, and -999.999
are 1, 100, 0, -5, and -999, respectively. The
argument must be within parentheses. The argument
does not have to be an integes value (-32768 to
+32767)

RELATED COMMANDS

SYSTEM
I, LVLI

I, LVLII

|, Disk

Il

M, LVL |
i, LVL Il
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# FOR variable=expression TO expression
STEP expression

EXAMPLES

1000 FOR I=0 TO 100 loop 101 times

2000 FOR I=7 TO 100 STEP 2 loop 47 times
3000 FOR I=101 TO © STEP -2 loop 51
times

DESCRIPTION

The FOR. . .TO...STEP commands, together
with NEXT, set up and execute a program loop. The
“variable” is executed from the starting value given
in the expression 1 TO an ending value given in
expression 2. The two start and end values may be
constants, vanables, or expressions. If no STEP size
IS given, the variable is incremented by one each
time the loop is repeated, until the vanable equals
the end value. If a2 STEP size is given, the vanable
increments by the STEP size each time through the
loop. The start and end values may be positive or
negative. If the start is less than the end value, 2
STEP of a negative value is mandatory. A NEXT
command later in the program defines the end of
the loop and transfers control back to the
FOR...TO...STEP statement for the next
iteration of the loop. Any number of loops may be
“nested”’

RELATED COMMANDS

NEXT

T

-
d"'.‘-'

SYSTEM = o

I, LVLI

I, LvL i B
|, Disk B
Il .
i, LvL |
I, LVL 11
I, Disk . prve RERE >
CC, BASIC [D
CC, Ext BASIC .

CC, Disk

FORMAT
FRE(string)
line#_..F RE(string)

EXAMPLES
1000 PRINT FRE(ARS)

DESCRIPTION

FRE returns the amount of free string storage space
available in bytes. In finding the amount of string
storage, the BASIC interpreter “cleans up” the
string storage area near the top of RAM to create
the maximum free string space. The string storage
area size was first specified in a CLEAR statement.
If no CLEAR statement was encountered, 50 bytes
of string storage space is automatically saved. The
“string” parameter within parentheses is a
dummy” argument; the string vaniable specified
has no significance. FRE is usually entered from
the command mode, although it can be used within
a BASIC program as a check on free string space
If the argument in FRE 1S numeric, FRE returns
the total amount of free memory

RELATED COMMANDS

-

o
5
ass
<
1
i
L

SYSTEM

I, LVL

I, LVLII

I, Disk

I

I, LVL 1

i, LvL

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk «

FORMAT
line# . .FREE(drive#)

EXAMPLES
PRINT FREE(1

DESCRIPTION

FREE 15 a Color Computer Disk BASIC command
that returns the number of free granules on the
diskette for the specified disk drive. A granule is the
minimum unit of disk drive space allocated by the
BASIC “file manage™ handler and is equal to 5
sectors, or 2304 bytes. FREE is used either in the
command mode or embedded in a program to find
the space remaining on a diskette for user programs
or data

RELATED COMMANDS
None

SYSTEM

I, LVL I

(R A'/ N

I, Disk

I

I, LVL I

I, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# GET buf#
line# GET buf# rec#

EXAMPLES

1000 GET 3,100 pget 100th record

DESCRIPTION

GET 15 used to read a random-access file record
from disk. A random-access file allows records to be
read or written on a random basis (not in
sequence). The GET permits either the next record
in sequence or any record number of the file to be
read into the buffer associated with the file. Prior to
the GET, an OPEN with the “R" option must have
been executed. The OPEN defines the filename and
buffer associated with the file. The

‘GET buf#” form of GET reads in the current
record, the number whose number is one higher
than the last access. If no record has been read,
this is the first record of the file. The second form
of GET reads in the specified record defined by
‘recq

RELATED COMMANDS

SYSTEM
I, LVL
e

|, Disk

I

M, LVL I e

1, LVL I = ~)

11, Disk ". W T4 ,Avf.
CC, BASIC J. 2350
CC. ExtBASIC o |- t== .

CC, Disk - S—
FORMAT

hine# GET(x1yl)(x2.y2)array nameg
EXAMPLES

1000 GET (0,0)-(50,50) ,AA,.6 save
area in array AA

DESCRIPTION

The GET command is used in conjunction with the
PUT command. GET stores any rectangular area on
a graphics screen in a two-dimensional array. The
PUT later retrieves the graphics data from the array
and displays it in any other area of the graphics
screen. GET/PUT can be used to save portions of
a graphics screen or to create animation effects. The
x1yl coordinates define one corner of the rectangle
to be stored in the array; The x2,y2 define the
opposing corner. The x1,x2 and yl,y2 values are in
“high-resolution™ graphics coordinates of 0-255 and
0-191, respectively. The “array name” is the name
of a2 two-dimensional array previously defined by a
DIM statement. In general, the array size must be
equal to the dimensions of the graphics area to be
stored, although certain space-saving tricks may be
used. The g option is “G”; if used, full graphic detail
1s saved in the array

RELATED COMMANDS

PUT

SYSTEM
I, LVL I

I, LVL I

I, Disk

]

i, e
", Lve m
11, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

linef GOSUB line#

EXAMPLES

1000 REM DO SEARCH SUBROUTINE
1010 GOSUB 12000

1020 REM RETURN HERE AFTER
SUBROUT INE

DESCRIPTION

GOSUB 1s used to “call” a subroutine. A subroutine
is any set of BASIC statements that is used
repeatedly. Making the statements a subroutine in
one spot rather than repeating the code when
required saves RAM space. The GOSUB causes the
BASIC interpreter to branch to the line number
specified after the GOSUB. Unlike the GOTO, the
GOSUB action saves the return point after the
GOSUB. After the subroutine has been executed,
the last statement of the subroutine, a RETURN,
returns control to the statement after the GOSUB
In the example above, the subroutine at line
12000 would be executed; it could consist of from
one to many statements. The last statement,
however, is a RETURN, which causes a return to
line number 1©2@. Subroutines may be “nested” in
many levels. One subroutine may call another by a
50SUB, which may call yet another, etc.

RELATED COMMANDS
ON GOSUB. RETURN

GOSUB

f \
| RSO Tt
FRRRER ‘,’B‘A:’;,

—)

L XL —

/.

§

SYSTEM

|, LVLI

I, LVL Il

|, Disk

]

I, LVL I

i, LvL

i, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# GOTO line#
GOTO hne#

EXAMPLES

1000 BOTO 2000 transfers control to line #

2000
GOTO 2000 continues at line 2000

DESCRIPTION

GOTO is used in BASIC programs to transfer
control from one statement to another. It is the
normal way of “unconditionally branching” in the
program. Any number of GOTOs may be used in a
program. When 2 GOTO is executed, no record of
where the GOTO occurred is kept by the BRSIC
interpreter, unlike 2 GOSUB. When a GOTO 15 used
in the command mode, the BASIC program
continues from the specified line number with all
variables and BASIC parameters intact. The GOTO
in this use may be used in lieu of a CONT
(continue) to restart the program at any point

RELATED COMMANDS

IN]

. ; !
! AL iy deas ,A"‘“_'.J
e o g r d

see e

LR SRR Leh S
€t s ALl kel © > » ol
=1 ey

SYSTEM — —

I, LVL I

I, LVL Il

|, Disk

I o

i, Ll a1 2

I, LVL 1 wu s AL (Laia\
I, Disk »' v < _:f;;f y
CC, BASIC =
CC, Ext BASIC o = = =
CC, Disk °

FORMAT

line&...HE X $(expression)

EXAMPLES

1000 PRINT HEX$(A) find hex value of A
DESCRIPTION

HE X% is a special function that will convert a
constant, variable, or expression to a string that
represents the hexadecimal value of the argument.
HEX$ (1000), for example, will be converted to
the string “3E8". Hexadecimal notation is used
primanly for machine-language operations in
specifying addresses, instruction codes, and data
values

RELATED COMMANDS

£EH

SYSTEM
I, LVL I

I, e

1, Disk

I

I, WLl
i, LvL
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# 1F true/false expression THEN action

EXAMPLES
1000 IF A<2S THEN A=25 festA
1010 IF (A=3 OR B=6) THEN GOTO 4000

DESCRIPTION

The IF...THEN command is used to test 2
true/false condition and to take some action if the
result is true. If the result is not true, the next
statement in sequence is executed. The true/false
expression may contain any relational operators,
such as test for equality (A=B), sense (A<B), string
comparisons (A$<BS), and others. Constants,
vanables, or expressions may be used in the
true/false expression in any mixture. The action to
be taken if the true/false expression is true may be
any one statement action, such as "THEN PRINT
A" or “THEN A=(3.66%1-2)". The THEN 1§
not necessary in the case of a transfer to a line#
such as “THEN GOTO 3000" |f multiple
statements are on a single line after the THEN, all
ctatements after the THEN will be executed if the
true/false expression is true. The line

“1000 IF A<2 THEN A=1:B=23:PRINT 4
will result in A set equal to 1, B set equal to 23 and
C being printed if A 1s less than 2

RELATED COMMANDS
IF...THEN. . .ELSE

L . = :—

-Q:'.-
S
S -

— D

ln:‘

Q"':‘

SYSTEM
I, LVLI

I, VL

|, Disk

Il

i, tvel
I, LVL 1
111, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# IF true/false expression THEN action ELSE
action

EXAMPLES

1000 IF A<2 THEN A=A+4 ELSE A=A+
1010 IF B=(1+37) THEN C=5 ELSE I
B=(I+38) THEN C=6

DESCRIPTION

The IF...THEN. ..ELSE command is used to
test a true/false expression and to take the THEN
action if the statement is true and the ELSE action
if the statement is false. The true/false expression
may use any relational operators as in “IF A=2"
“IF A<2" “IF A$<BS$" If the true/false
expression is true, the THEN action is taken and
the ELSE action disregarded. The THEN action
may be a single statement action of any type. If the
true/false expression is false, the ELSE action is
taken and the THEN action disregarded. The THEN
action may be any single statement action. A line
number may be used without a GOTO following the
THEN or ELSE. “Nested” IF...THEN. ..ELSE
commands may be used as shown in the example
above. If multiple statements follow the ELSE, then
all actions up to the end of the line are taken in the
false condition

RELATED COMMANDS

IF...THEN

LE i THEN
Gt o B S

Mwn

SYSTEM A b

I, LVLI

I, LVLII

I, Disk

Il .
i, VL

i, LVvL

I, Disk

CC, BASIC

CC ExtBASIC | L,

CC, Disk

FORMAT
line# . expressionIMPexpression

EXAMPLES

1000 C=A IMP B

DESCRIPTION

IMP 1s a logical or bit manipulation operator that
processes two operands in similar fashion to the
more common AND or OR. IMP compares both

operands on a bit by bit basis. For each bit position,

the result bit is a 1 unless the bit of the first
operand is a 1 and the bit of the second operand is
a0.0 IMP ©=1; © IMP 1=1; 1 IMP 0=0:
and 1 IMP 1=1. The expressions are converted to
16-bit integers and then compared on a bit basis. If
A is binary 01010000 and B is 00111111, above,
then Cis 10111111

RELATED COMMANDS
None

SYSTEM

I, LVL I
I, LVL I o
I, Disk

]

M, LVL I

I, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

hneR,.. INKEYS. ..

EXAMPLES
1000 IF INKEY$S< >** ** THEN GOTD
2000 go if key press

DESCRIPTION

INKEYS 1s a special string function that allows you
to read the keyboard at “real-time” rates. If no key
15 being pressed on the keyboard, INKEYS$ is set
equal to a “null” string of zero length, defined by

7 If a key is being pressed, INKEY'S is set equal
to the current key press on the keyboard for a brief
period. If the key is not released, INKEYS is
shortly set equal to a “null” string. If one key is
being depressed and a second i1s pushed, INKEYS
15 set equal to the second key (for a brief period).
Successive pushes of the same key result in short
bursts where INKE'YS is set equal to the key
craracter mterspersed with longer periods where

r$=""" INKEY$® can be used in a loop to

test 1or key presses at real-time rates. The following
code builds up a string of keypushes:
1000 BS=INKEYS

-"ix‘ IF B$=** *" THEN GOTO 1000 ELSE
AS=A$+E%: GOTO 1000

RELATED COMMANDS

None

SYSTEM

I, LVL I
L Lven
I, Disk
]

I, Lve |
i, LVL .
I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT
line# 1NP(port)

EXAMPLES
1000 R=INP(255) read cassette on Model 1/111

DESCRIPTION

INP inputs a one-byte value from a system
input/output port. The Model I/11/111 uses
input/output ports for certain system devices such
as cassette and RS-232-C operations. The INP is 2
BASIC command that will enable the user to
directly read these 1/0 ports. The port parameter is
an address value of 0 through 255 that defines the
port address. It must be within parentheses. INP
returns a one-byte (8-bit) value representing input
data on the specified port address

RELATED COMMANDS
ouT

SYSTEM
I, LVL |

I, LVL Il

I, Disk

I

M, LVL |
i, LvL m
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

lined INPUT item list

EXAMPLES
1000 INPUT AS.EN.AG input
name,number,age

DESCRIPTION

INPUT 1s used to enter data from the keyboard,
Data i1s entered as a list of items. For each item in
the data list, INPUT accepts a numeric or string
vanable. Entries may be entered one at a time from
the keyboard or all entries may be entered with
each individual item separated by commas. The type
of entry must match the data item type - numeric
items cannot include text. If an invalid item type is
entered, a “"REDO" message is output. BRSIC
prompts the user by a “?" when INPUT is
expected. If more than one item is in the INPUT
list and not all entries have been entered when the
ENTER key is pushed, BARSIC indicates that more
items are expected by “??" Entering more items
than there are in the list causes an “?EXTRA
IGNORED"™ message.

RELATED COMMANDS
None

SYSTEM
I, LVL 1

I, LVL I

I, Disk

|}

I, tve |
i, LvL
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# INPUT “text™item list

EXAMPLES

1000 INPUT **ENTER

NAME,# ,AGE" " ;AS$,EN,AG input
name,number,age

DESCRIPTION

INPUT... is identical to the normal INPUT
statement except that a message is displayed before
the INPUT. The text of the message 1s enclosed by
double quotes and separated from the item list by a
semicolon. INPUT is used to enter data from the
keyboard. Data is entered as a list of items. For
each item in the data list, INPUT accepts a
numeric or string vaniable. Entries may be entered
one at a time from the keyboard or al{entnes may
be entered with each individual item separated by
commas. The type of entry must match the data
item 3pe - numeric items cannot include text. If an
invalid item type is entered, a “REDD" message is
output. BRSIC prompts the user when INPUT is
executed by a “7” If more than one item is in the
INPUT list and not all entries have been entered
when the ENTER key is pushed, BASIC indicates
that more items are expected by “77" Entering more
items than there are in the list causes an "PEXTRA
IGNDRED" message.

RELATED COMMANDS
None

L T

- —

-~ :—

SYSTEM mnleeh. "

I, LVL I

I, LVL Il

I, Disk .

I B

I, Lve |

I, LVL 1

111, Disk . /

CC, BASIC o .—.{) =\
CC, Ext BASIC { o5 =
CC, Disk -

FORMAT

line# INPUTH buf# item list

EXAMPLES

1000 INPUTH3,A,B,CS input from disk file
DESCRIPTION

INPUTH is used to input a list of items from a
sequential file on disk. It is similar to the keyboard
INPUT statement except that the data items are
read from a disk file. The disk file must have been
previously OPENed; the OPEN associates the buf#
parameter with a sequential disk file. Normally the
data items have been output to the disk file with a
PRINT# statement. The item list must follow the
same sequence as the items in the disk file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in sequential files is written onto disk as
a succession of ASCII characters. Even numeric data
is output as a string of characters. The INPUTH
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
vanables

RELATED COMMANDS

PRINTH

SYSTEM : duenh,
L VLI .
L LVL I

I, Disk

]

I, L) v“_:-‘

I, LvL e
CC. BASIC Eapss

CC, Ext BASIC
Cc' D'Sk LW a. o

FORMAT
line# INPUTH item list

EXAMPLES

1000 INPUTH .A.B.CS input from cassette
DESCRIPTION

INPUTH is used to input 2 list of tems from a
Cassette file. It is similar to the keyboard INPUT
statement except that the data fems are read from
a cassette file. Normally the data items have been
output to the cassette file with a PRINTH
statement. The item kst must follow the same
sequence as the items in the cassette file; if two
numenc items are followed by one string item, then
the three variables read must be numenic, numenc
string. Data in cassette files is written asa :
succession of ASCIl characters. Even numenc data
IS output as a string of characters. The INPUTSH
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item hist. Blanks and the ENTER
character generally serve as terminators between

numenc data items, while commas se ra
vaniables e

RELATED COMMANDS
PRINTH

SYSTEM
I, LVL I

I, LVL) ‘
|, Disk ,
1

I, et ’
I,Lve m

1, Disk

CC, BASIC

CC, Ext BASIC

CC, Disk

.)
— - J—
| LRI (¥ ")‘
’;‘ - ﬂ%"‘ \
f - =4
FORMAT

line# INPUTS - 1.item st

EXAMPLES

1000 INPUTH-1,A,B,.CS input

from cassette

DESCRIPTION

INPUTH -1 1s used to-input a list of tems from a
cassette file. It is similar to the keyboard INPUT
statement except that the data items are read from
a cassette file. Normally the data items have been
output to the cassette file with a PRINTH -1
statement. The item list must follow the same
sequence as the items in the cassette file; if two
numeric items are followed by one string item, then
the three variables read must be numeric, numeric,
string. Data in cassette files is written as a
succession of ASCII characters. Even numeric data
1s output as a string of characters. The INPUT# -1
reads in the character data, detects the terminators
between data items, and converts each item to the
proper type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
vanables

RELATED COMMANDS

PRINTH-1

SYSTEM
I, LVLI
L

I, Disk .

]

I, VLI

I, LVL

I, Disk

CC, BASIC (
CC, Ext BASIC ¢
CC, Disk

FORMAT
line# INPUTSH -2 item list

EXAMPLES

1000 INPUTR-2.A,B.C% input from cassette

DESCRIPTION

INPUTH-2 is used to input a list of items from a
cassette file. It is identical to INPUTH-1 except
that the cassette file is on the second cassette drive
It is similar to the keyboard INPUT statement
except that the data items are read from a cassette
file. Normally the data items have been output to
the cassette file with 2 PRINTH - statement. The
item hst must follow the same sequence as the
items in the cassette file; if two numenc items are
followed by one string item, then the three variables
read must be numeric, numeric, stnng. Data in
cassette files is written as a succession of ASCI|
characters. Even numenic data is output as a stning
of characters. The INPUT# -1 reads in the
character data, detects the terminators between
data items, and converts each item o the proper
type for the item list. Blanks and the ENTER
character generally serve as terminators between
numeric data items, while commas separate string
variables.

RELATED COMMANDS

PRINTH®-1 .PRINTH-2

.y

—
P
e

SYSTEM

I, LVL |

I, LvL i

I, Disk

Il o
I, LVL!

M, LVL I

N, Disk

CC, BASIC /i
CC, Ext BASIC {
CC, Disk

FORMAT
line# ... INPUT $(length, buf#)

EXAMPLES
1000 A$=INPUTS(10,3 input 10 characters
from disk

DESCRIPTION

INPUTS is a function that specifies the number of
characters that will be read from a sequential disk
file. It is somewhat similar to L INE INPUTH
except that the input string is terminated by a
number of characters rather than the ENTER key
The length parameter is a value from 1 through
255. The buf# is the number of the sequential file
input buffer specified in the OPEN statement
associated with the file name. When INPUTS is
executed, BASIC will wait until the specified
number of characters are read from the disk file
and then return all characters as a string. All
characters read will be returned, including those
that would normally be delimiters, such as commas.
1000 A$=INPUTS(10,3), for example, would
specify that A$ would be set equal to the next 10
characters input from the disk file associated with
buffer 3 and that the next line would not executed
until those 10 characters were input.

RELATED COMMANDS

LINE INPUTH

SYSTEM

I, VLI

I, L

I, Disk

Il .
I, et

I, LtvyL m

N, Disk

CC, BASIC = \
CC, Ext BASIC J
CC, Disk

FORMAT
line& ... INPUT$(length)

EXAMPLES
1000 AS=INPUTS(10) input 10 characters
from keyboard

DESCRIPTION

INPUTS is a keyboard function that specifies the
number of keyboard characters that will be read. It
is somewhat similar to LINE INPUT except that
the input string is terminated by a number of
characters rather than the ENTER key. The length
parameter is a value from 1 through 255. When
INPUTS 15 executed, BASIC will wait until the
specified number of characters are typed and then
return all characters as a string. All characters
typed will be returned, including those that would
normally be delimiters, such as commas. The
characters input will not be displayed on the screen
1000 AF=INPUTS(10, for example, would
specify that AS would be set equal to the next 10
characters input from the keyboard and that the
next line would not executed until those 10
characters were input

RELATED COMMANDS
LINE INPUT

SYSTEM

I, LVLI

I, LVLII

I, Disk .
] .
i, tvL 1

I, LVL

I, Disk -
CC, BASIC

CC, Ext BASIC o
CC, Disk ©
FORMAT

line#... INSTR(string1,string2)
line#... INSTR(position,stringl,string2)

EXAMPLES
1000 A=INSTR(AS,**ISS" ") look for “/SS"
in AS

DESCRIPTION

INSTR is a function that searches for a substring
within a larger string. The string] and string2
parameters are string literals or variables. (String
Iiterals will be enclosed in quotes; string variables
will have the “$" suffix or DEFSTR definition.) If
the first format is used, INSTR will search for
string2 in stringl. If string2 is found within string1,
the starting position of the first occurrence of
string2 will be returned. If string2 is not found
within stringl, 0 will be returned. Positions of
strings are numbered from 1 through the length of
the string in characters. If the second format is
used, the “position” parameter is a constant,
vaniable, or expression that specifies the starting
position for the search. In the example above, if
A$="MISSISSIPPI'' INSTR would set A to 2. The
second occurrence of ISS would have to be found
by specifying a position greater than 2.
RELATED COMMANDS

None

SYSTEM —
I, VLI F

I, LVL I

I, Disk

I

M, LVL |

I, LVL 1

1, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#... INT(expression)

EXAMPLES

I,AD-(INT[AD/256 %256

DESCRIPTION

INT returns the integer portion of a positive
number and the next highest integer for a negative
number. The argument may be a constant, variable,
or expression and must be within parentheses. For
arguments of +1.12, +999.45, 0, -1.11, and -234 56
INT returns +1, +999, 0, -2, and -235, respectively
INT 1s commonly used to find the two bytes of a
16-bit address for POKES of addresses as in the
example above, or for rounding operations, as in
1000 FIND X ROUNDED TO 2 DEC PLACES
1010 XR=INT(X*100+.5)/100

INT should be used to find the integer portion of
positive numbers only; F I should be used when
both positive and negative numbers are involved
The argument in INT may be any size

RELATED COMMANDS
FIX

-

—3
—3

SYSTEM

I, LVLI

I, LVL Il

I, Disk

]

i, LVL |

i, LVvL I

I, Disk

CC, BASIC °
CC, Ext BASIC o
CC, Disk °

FORMAT

line#...JOYSTK(n).
EXAMPLES

1000 R=JOYSTK(3)
Joystick 2

DESCRIPTION.

JOYSTK is a special function that reads the
joystick value. (The optional joysticks must be
connected to the joystick plugs on the back of the
Color Computer.) The n parameter defines the
position parameter to be read. Each of the two
joysticks will return an “x” coordinate and a -4
coordinate. Arguments of n=0 and n=1 read the x
and y coordinates from the left Joystick,
respectively. Arguments of 2 and 3 read the x and y
coordinates from the right joystick. The value
returned for any of the 4 positions is 0 through 63.
The up and left positions are 0 and the down and
nght positions are 63. Intermediate positions are
proportional, for example, the center position of a
joystick is 32,32. JOYSTK(®) must first be
returned before JOYSTK(1)-JOYSTK(3] can
be read

RELATED COMMANDS

None

get y coordinate of

SYSTEM

I, VL1
I, LVL I
I, Disk .
] .
I, LvL |

i, LvL

I, Disk .
CC, BASIC | —— .
CC, Ext BASIC —
CC, Disk

FORMAT

KILL “filename”
line# KILL “filename”

EXAMPLES
KILL **ACCOUNTS/BAS:1"*"*
payable

DESCRIPTION

KILL deletes a file on disk. It is identical to the
TRSDOS KILL command except that it may be
performed inside BASIC in the command or
execution modes. (Always CLOSE an open file
before executing a KILL; if this is not done, the
disk contents may be destroyed.) The “filename” is
a filespec for a BASIC program stored on disk: it
conforms to the general requirements for filespecs -
name, extension, password, and drive number. If no
drive number is specified, K ILL will delete the file
from the first disk that contains the filename (The
order for the search is drive 0, 1, 2, and 3)

RELATED COMMANDS
None

kill accounts

SYSTEM

I, LVLI

I, LVL Il B

I, Disk B

I . b

I, LVL | =3 . Trmmy
i, LvL m . J DRS00 '\
w0k o RS
CCBASIC o /elllilfdls
CCEtBASICe (. J
CC, Disk . 1=
FORMAT

hine#...LEF T %(string,n)

EXAMPLES

1000 AS=LEFT$(B%,4) get the first 4
characters of BS

1010 CS=LEFTS(B%,1) get the first |
characters of BS

1020 DS=LEFTS$(BS, (1+2)) get the first 1+2
characters of BS

DESCRIPTION

LEFTS finds the last n characters of a given string.
The n parameter may be 0 to 255. The “string”
parameter is a previously defined string. If
B$="HEROINE for example, A3=LEF T$(B3%. 4 |
will set A$="HERO" If n is greater than the length of
the specified string, LEF T will return the entire
string. A3=LEFT$(B$,20), for example, returns
A$="HEROINE" The n argument may be a constant,
vanable, or expression. LEF T$ may be used to
process “substrings” where a large string is made
up of a number of substrings concatenated
together for ease of handling.

RELATED COMMANDS

MIDS, RIGHTS

SYSTEM b

I, LVL I

I, LvL il

|, Disk

I

i, LVL I

I, Lve i

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

hne#...LEN(string)

EXAMPLES

1000 LA=LEN(RS)

find & of characters in AS
101@ LB=LEN(BS) find # of characters in BS

DESCRIPTION

LEN finds the length in characters of a specified
string. The length is the actual number of characters
in the string, not counting string pointers. The
“string” vanable must be a valid string variable and
may be a string expression such as A$+BS$ or
STRINGS(S, LEN produces a numeric
vanable of 0 to 255 which can be used in string
processing. IF A$="THE ONLY ISM FOR ME IS
COMPUTERISM? then LEN(AS$ =34

RELATED COMMANDS
None

....

-

J

[

|
\

SYSTEM

I, LVLI

I, LvL

|, Disk

I

M, VLI

M, LVL 1N
I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

linef LET

':‘; 5 v J",’A,.J
:&zr—»w-«wj

variable=expression

EXAMPLES
000 LET A=1.

B=3.14159

DESCRIPTION

LET is used primarily for compatibility with older
versions of BASIC. LET was used on older
BASICs prior to setting a variable equal to a value
or expression. On all TRS-80 BASICs, LET is
optional and the variable may be set without the
LET, as in

2345E-10: LET

y =1
JOU H=1.

345E-10: B=3.14159

RELATED COMMANDS

None

B

T Sl e T

SYSTEM

I, LVL |

I, LVL I

I, Disk

I

i, LvL !

i, LvL i

I, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk .
FORMAT
line# LINE(x1yl)}{x2y2)PSET

line# LINE(x1yl)}{(x2y2)PRESET

line# LINE(xlyl){x2y2)PSET B

line# LINE(xlylMx2y2)PRESET B

line# LINE(x1ylx2y2)PSET ,BF

line# LINE(x1yl)-(x2y2)PRESET ,BF
EXAMPLES

1000 LINE (23,23)-

(100,100) ,PSET draw line

1010 LINE (200,150)-

(220,170) ,PRESET ,BF erase filled-in box
DESCRIPTION

LINE is used to draw 2 line, box (rectanglez'. or
filled-in box on the current graphics page. The x1y1
and x2,y2 parameters specury two points on the
raphics screen. The values used for x1 and x2 are
8thr0ugh 255. The values used for y1 and y2 are 0
through 191. The x and y ranges are for the highest
resolution graphics mode. The . .PSET form draws 2
line in the current foreground color between x1,yl
and x2,y2; the ..PRESET form draws the line in
the current background color. The . .PSET B and
PRESET.B forms draw the outline of 2 box in
the current foreground and background color,
respectively. The . .PSET,BF and ., PRESET ,BF
forms fill in the box with the current foreground or
background color

RELATED COMMANDS
None

SYSTEM | ——,

I, LVL I

I, LVL Il

|, Disk ©

Il .

n, VL1 | — T T T

i, L i | arpossoion oa i)
I, Disk B R R e et

CC. BASIC .ﬁ}i..:,.:;__.,u A A

CC, Ext BASIC o | J
CC, Disk . e
FORMAT

line# LINE INPUT string variable
line# LINE INPUT “text”string variable

EXAMPLES

1000 LINE INPUT **ENTER STREET.
CITY, STATE® *:ADS

DESCRIPTION

LINE INPUT nputs a line of text entered from
the keyboard. The input is terminated by an ENTER.
All keyboard characters are entered as legitimate
characters. LINE INPUT is unlike INPUT in that
commas and other delimiters are treated as normal
text characters and included as part of the result
string. The “text” parameter is optional. If included,
the text message is displayed just prior to the input
operation. The resulting string variable includes all
characters not including the ENTER character. In
the example above, a valid input might result in
AD$="250 N.S. MEMORY LANE, COMPUTER CITY,
CA"

RELATED COMMANDS

None

SYSTEM

I, VLI

I, LVL I

I, Disk .
I .
I, LVL I

I, LvL m

I, Disk .
CC, BASIC

CC, Ext BASIC

CC, Disk o

FORMAT
line# LINE INPUTRbUIE string variable

EXAMPLES

1000 LINE INPUTH3,ADS input line
from disk

DESCRIPTION

LINE INPUTH inputs 2 line of text from 2 disk
file. LINE INPUTH is unlike INPUTS in that
commas and other delimiters are treated as normal
text characters and not as data items. The line is
input from the disk file up to an ENTER character
(not preceded by down arrow), the end of file, or
the 255th data character. The resulting string
vaniable includes all characters not including the
ENTER character. The buf# parameter is the disk
buffer associated with the file by 2 pnor OPEN
statement. LINE INPUTH can be used to input
BASIC program lines when the program has been
saved in ASCII format, or for other applications
involving line-oniented text files

RELATED COMMANDS
LINE INPUT

-
-

SYSTEM
I, LVL I

I, LVL Il

I, Disk

]

I, LVL |
m, Lve m
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
LIST

LIST nan-mmm
LIST -mmm
LIST nnn-
hine# LIST

EXAMPLES

LIST 100-39SS lists all statements from 100
through 999

LIST -5000 lists all statements from beginning
through 3000

LIST 100- lists all statements from 100 through
end

DESCRIPTION

LIST 1s normally used in the command mode to
Iist the current BASIC program in RAM to the
video display. Listing will occur as rapidly as the
BASIC interpreter can display the BASIC
statements, and the display will “scroll” as
successive statements are displayed. The program
will be listed as a succession of BASIC statements
in ASCII format. The display can be temporarily
stopped at any time by pressing “SHIFT, @™
pressing any key will restart the listing. LIST used
in the “nnn-mmm’", “-mmm" or “nnn-" formats will
list from a beginning line through an ending line.

RELATED COMMANDS

(. |

SYSTEM _ -
I, LVL |
I, LVL Il
|, Disk
Il
I, LVL |
i, LVL I
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk SN,
FORMAT
LLIST
LLIST nnn-mmm
LLIST -mmm
LLIST nnn-
line# LLIST
EXAMPLES
1000 REM LLIST PROGRAM TO LINE
PRINTER
3000 LLIST
LLIST 100-999 lists all statements from 100
through 339
LLIST -S00@ hsts all statements from beginning
through 3000
LIST 100- hsts all statements from 100
through end
DESCRIPTION

LLIST is normally used in the command mode to
hist the current BASIC program in RAM to the
system line printer. LLIST is logically equivalent
to LIST, used for displaying the program on the
video display. Only BASIC statements will be
listed; no variables or other program parameters will
be displayed. The program will be listed as a
succession of BASIC statements in ASCII format

reT

LLIST used in the “nnn-mmm” “-mmm" or “nnn-"

formats will list from a beginning line through an
ending line. LLIST alone lists the entire program
RELATED COMMANDS

LIST

SYSTEM

I, LVL

I, LVL Il

|, Disk .
l °
i, LVL | < — e
i, LVL I AL, o)
I, Disk . T e s ense
CC, BASIC —
CC, Ext BASIC e
CC, Disk - e

FORMAT
0RD “filename”
AD “filename’R
line& LORD “filename”
line# LOARD “filename’R

EXAMPLES
AD * *ACCOUNTS-BAS:1'* load accounts

l.):? yab/e
DESCRIPTION

AD loads a BASIC program from disk. If LOAD
is used without the R option, LOARD will clear all
vanables, close all open files and return to the
BASIC command mode. If LOAD is used with the

R" option, LOAD will clear all variables, will not
close open files, and will load and execute the
BASIC program from its first line. LOARD in either
form may be used in a BASIC statement during
BASIC program execution. The “filename” is a
filespec for a BASIC program stored on disk: it
conforms to the general requirements for filespecs -
name, extension, password, and drive number.

JAD may be used in BASIC programs to “chain”
programs, allowing one program to call another in 2
chain of “overlays”

RELATED COMMANDS

SYSTEM

I, LWL
e

I, Disk

I

I, LVL |

W, Lve

Il, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk .

FORMAT
LORDM filename”
LOARDM “filename "offset

EXAMPLES
LOADM * *GRAPHC"*
into RAM

DESCRIPTION

LOADM 1s a Color Computer Disk BRSIC command
used to load a machine-language file from disk. The
disk file must have been created by the SAVEM
command. If the filename is specified without an
extension, BRSIC assumes that the extension is
“/BIN"; this is the normal default extension for the
SAVEM command. If the file is 2 machine-language
program, an EXEC can be performed after the
LOADM to execute the program; BASIC will start
execution at the execution address specified in the
file. If an optional offset is included, the offset
constant will be added to the normal file load
address, and the program or data will be
“relocated” to the resulting RAM addresses. If the
normal load address was &H3000 to &H30FF and
the offset was &H500, for example, the data would
be loaded into RAM locations &H3500 to &H3SFF
Specifying an offset bias will not properly relocate
machine-language code

RELATED COMMANDS

EXEC, SAVEM

load file “GRAPHC "

e —

- -

= -

SYSTEM

I, LVL |

I, LVL I

|, Disk

I .
I, LVL)

i, LVL I ,
I, Disk o |
CC, BASIC ('
CC, Ext BASIC
CC, Disk ©

FORMAT
line#.. . _LOC(buf#)...

EXAMPLES

1000 IF LOC(3)=5S THEN 5=1
record

DESCRIPTION

L0OC is used to find the number of the current
record in a file. The buf# parameter specifies the
buffer number associated with the file. An OPEN
must have been performed for the buffer (file)
involved. As records are read in from the file by
GET (or INPUTH for sequential files), BASIC
maintains the current record number of the file and
returns this number when LOC is executed. LOC is
used to detect a specific record number as records
are read in from disk, or in any processing that is
“record dependent”

RELATED COMMANDS

LOF . OPEN

test for fifth

SYSTEM

I, LVL I

VLN

I, Disk

I

I, LvL T

I, Disk AL T
CC. BASIC =
CC. Ext BASIC

CC, Disk

FORMAT

line&...._OF (buf#)

EXAMPLES

1000 FOR] TO LOF (3 [
4 rl3) 00p thr
records p through n

DESCRIPTION

LOF 15 used to find the number of the iast record
in 2 file. The buf# parameter specifies the buffer
number associated with the file. An OPEN must
have been performed for the buffer (file) involved
Once the OPEN is done, BASIC knows the number
of records contained in the file and returns this
number when LOF is executed The LOF can be
used to set up a processing loop for the records in
the file. LOF is used as an alternative to detecting
the last record number by EOF or knowing the
number of records in the file beforehand

RELATED COMMANDS

EQF, OPEN

SYSTEM

I, LVL |

I, LVL1I

I, Disk

]

I, LVl

I, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#.. L OG(expression)

EXAMPLES
1000 DB=10*(LOG(P2/P1)7L0OG(1@)) find
decibels

DESCRIPTION

0G finds the natural logarithm of a constant,
vanable, or expression, the logarithm to the base e,
or 2.718...To find the loganthm of the argument to
another base, use the formula log of X to base b=log
of X to base e/log of X 1o base b, as in the example
above. Natural logarithms are commonly used in
mathematical and scientific applications.

RELATED COMMANDS

.

SYSTEM

I, VLI

I, LVLII

I, Disk

Il

I, LVL |

fHl, LVL N
IIl, Disk

CC, BASIC
CC, Ext BASIC

CC, Disk

FORMAT
line# LPRINT stem list

EXAMPLES
1000 LPRINT **THIS IS THE
RESULT **:RS,**N="" +N

DESCRIPTION

LPRINT is used to print a list of items on the
system line printer. LPRINT is the line printer
equivalent of the PRINT command. The items may
be string literals (text), string vanables, or numenic
variables. Commas may be used between the tems
to tab to the next print zone, or semicolons may be
used to avoid spaces between items (see “." and
“,"). There may be any number of items in the list,
compatible with the maximum BASIC line length
Positive numbers are printed with a leading and
trailing blank. Negative numbers are printed with a
minus sign and trailing blank. Strings are printed
with no leading or trailing blanks. If the last tem in
the item list is terminated by a semicolon, the next
PRINT starts from where the current PRINT left
off. There are certain codes umque to various line

printers which control line feeds, expanded printing,

and special functions. These may be embedded in
the item list by use of CHRS or STRINGS.

RELATED COMMANDS
g e SN DRTINTY

SYSTEM
I, LVLI

I, LvL il

|, Disk

I

N, LVL I
M, LVL I
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# LPRINT USING string:item list

suun . un DOLLARS® * define
string

1010 LPRINT USING A$; TOTAL print check
DESCRIPTION

LPRINT USING is used for printing special
formats on the system line printer, primarily dollar
amounts and accounting values. The string
parameter is a literal or variable string that defines
the format to be used in the printing. The item list
is @ list of numeric or string variables that define
the items to be printed. If there is more than one
item, all items will be printed in the format defined
by the string. The string uses “field specifiers” to
define certain formats. A “#" specifies a digit
position. A “." is a decimal point position and is
printed in the position specified. A " is printed in
the position specified. Asterisks (*) fill unused
positions left of the decimal with asterisks. “$$" or
“**$" indicate a fioating dollar sign, printed before
the number. The string “**$### ### ## DOLLARS”
used with variable A=96654.678 generates
*$96,654.68 DOLLARS. Other specifiers include up
arrows, plus sign, minus sign, %spaces%, and
exclamation point.

RELATED COMMANDS
PRINT USING

SYSTEM ==
I IVLI
LIVLN
I, Disk .
Il o

NI LVL |

e pweowe R et 8
I, LVL 111 f axn :

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk -

FORMAT

line# LSET field name=string

EXAMPLES
1000 LSET NM$=RS

DESCRIPTION

LSET is used to place character data nto a
random-file buffer. The normal sequence of
operations establishing a random-file buffer 15 as
follows: Define the fields of the buffer by a FIELD
statement. The F IELD establishes the field names
in the buffer. The RSET and LSET are then used
to store character data in the fields of the buffer
The FIELD statement establishes the size for each
buffer field. If the data to be stored by LSET is not
as great as this field size, “filler spaces” would be
filled on the right. If the field NMS$ was 20
characters, the name “SPIRO SMITH" would be
stored as “SPIRO SMITH " If data to be
stored by LSET is greater than the field size,
characters are truncated on the right. The data
“SPIRO AGOUPOPOPODOUPOLIS” would be stored as
“SPIRO AGOUPOPOPODOUP"

RELATED COMMANDS

FIELD, RSET

LY
*Jf': Tuvvusm? Pl
J s

store addressee name

SYSTEM
I, LVL |

I, LVL Il

I, Disk

Il

I, LVL I
i, LVL
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#..MEM. . .

EXAMPLES
PRINT MEM
1000 PRINT MEM display memory left

DESCRIPTION

MEM Is a special system function that computes the
amount of RAM memory currently available. The
BASIC interpreter finds the amount of memory
used for BASIC programs, variables, arrays,
strings, stack, and reserved memory in upper RAM,
subtracts it from the maximum RAM initially
available and reports the result for the MEM
function. This MEM value changes “dynamically” as
new variables are added, string variables are
computed, and so forth. MEM may be used from the
command mode to find the size of a BASIC
program indirectly (MEM before loading minus MEM
after loading) or in a BASIC program to compare
the memory currently available with memory
required

RELATED COMMANDS

None

SYSTEM —- -
I, VLI

I, VLI

I, Disk .

Il .

M, LVL | —
I, LVL I o= "
IIl, Disk . SI AN 2
CC, BASIC (923 esnans s mm ,11., :
CC, Ext BASIC ¥ ——
CC, Disk « e S e 5
FORMAT

MERGE “filename”

IERGE “filename’R (Color Computer)
EXAMPLE

MERGE **ACCOUNTS/BRS:1°* merge
accounts payable

DESCRIPTION

MERGE loads a BASIC program from disk and
appends it to the BASIC program in RAM. The
program specified in the MERGE command must be
in ASCII format. (It must have been SAVEd with the
“A" option.) The “filename” is a filespec for a

IC program stored on disk; it conforms to the
general requirements for filespecs - name

extension, drive number, and password. In general
the numbering of the program lines to be MERGEd
from disk and the program in RAM must be
mutually exclusive. If the line numbers are different
the resulting program will be made up of the line
numbers from both programs in sequence. If any
line numbers are the same, the lines from the disk
program will replace the lines of the program in
RAM. The “R" option for the Color Computer runs
the program after the merge

RELATED COMMANDS

U™ SHVE
LUNU ., DOHRVE

BaS

.

-

P -

SYSTEM —
I, LVL I f
I, LVL Il

I, Disk

Il

i, LVL |

I, LVL I

11, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...M10D%(string.p.n)

EXAMPLES

1000 A$=MIDE(B%$,5,2) set AS equal to the
5th and 6th characters of BS

1010 C$=MID$(B%,1,5) set C$ equal to
LEFTS$(B%$,5)

DESCRIPTION

MID$ returns a “substring” within a larger string.
The “string” parameter is the larger string to be
used. The p parameter is the beginning position of
the substring and may be 1 through 255. The n
parameter is the length of the substring to be
created and may be 1 through 255. This command
takes the specified portion from the middle of the
larger string and creates a new string. Suppose we
have the string “MISSISSIPPI"” for AS. Setting
B$=MID$(AS,1.4), BS=MIDS(RS$,2,49),
B8%=MID$(A%,3,4), and BS=MID$(R$,8,4)
produces B$ of “MISS’, “ISSI’; “SSIS’ and “IPPI’; re-
spectively. If n is larger than the remaining portion
of the string, the entire remainder of the string is
returned. MID$ is useful for processing substrings
located within larger strings for ease of handling.

RELATED COMMANDS

LEFTS, RIGHTS

| |

SYSTEM

I, VL1

I, LVL N

|, Disk .

i .

W, LVL I

I, LVL

1, Disk .

CC, BASIC s

CC, Ext BASIC » {

CC, Disk . -
FORMAT

line# M1D3$(stning.p,n)=replacement string
EXAMPLES

1000 MID$(AS,.V,5)=**93555""
to new ZIP
DESCRIPTION

MIDS$ normally returns a substring within a larger
string. MID$= uses MIDS to find the substring and
replace it with a given string or portion of a given
string. The substring and replacement strings are
normally the same length, The string parameter is a
string vanable containing the substning. The p
parameter is the beginning position of the substring
and may be 1 through 255, The n parameter is the
length of the substring. if AS in the above example
was “"COMPUTER CITY, CA 92692" and V was 19,
then the substring would be “92692" The M103
function replaces the substring with the given string
if found. In this example, the new string would be
“COMPUTER CITY, CA 93555”. If the replacement
string 1s greater than the length n, only n characters
of the replacement string will be used. If the
replacement string in the above example was
“93555-1234", only the first 5 characters would be
used

RELATED COMMANDS
MIDS

change

O R

]

LN J

L]

L]

"

LN)

\

\

SYSTEM ——
I, LVLI

I, LVL Il

I, Disk o

] . ‘

i, e -)
I, LVL o T
NI, Disk . ¢ e _0
CC, BASIC i d"""" "
CC, Ext BASIC e =
CC, Disk — —r
FORMAT

line#...MKD$(double-precision variable)...
EXAMPLES

1000 A$=MKDS(AR) convert A# to string
DESCRIPTION

MKDS 1s used to convert a double-precision
numeric vanable to a “string-type” variable. MKD$
is normally used to fill a random-access buffer with
data values (see LSET, RSET). The typical
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
FIELD, fo convert numeric variables using MKDS .,
MiKI$, and MKSS, to store the result with LSET
and RSET and other commands, and to write out
the buffer to disk. The MKD% function converts a
given double-precision variable to an 8-byte string.
he 8 bytes of the string are the double-precision
encoding of the numeric data and do not represent
ASCII characters. They are simply a convenience in
storing the data in the random-access buffer. The
VD reconverts the data to numeric form on 2
subsequent read. The MKD$ command can also be
used to convert to a normal string variable, which is
unrelated to a random buffer field name. In this
case also, the string variable will be 8 bytes long.

RELATED COMMANDS
CvD, CVI, CVS, FIELD, MKIS, MKSS.

LSET, RSET

SYSTEM A —

I, LVL I

I, LVL Il

|, Disk .

I .

M, LVLI '

I, LvL i - " 4 SR T
I, %ZEC © Ji, Ty
CC, | e SSEN > »'p
CC, Ext BASIC e LB L ad A
CC, Disk e PeR— T
FORMAT T

line#... MK 1 $(integer vanable)

EXAMPLES

1000 A$=MKIS(A%) convert A% lo strning
DESCRIPTION

MK I% is used to convert an integer numenc
vanable to a “stnng-type” vanable. MKI$ s
normally used to fill a random-access buffer with
data values (see LSET, RSET). The typical
sequence in filling a random-access butfer is to
define the fields in a random-access buffer with
FIELD, to convert numeric vaniables using MkD,
MKIS$, and MKSS, to store the result with LSET
and RPSET and other commands, and to write out
the buffer to disk. The M 1% function converts a
given integer variable to a 2-byte string. The 2 bytes
of the string are the integer encoding of the

numeric data and do not represent ASCII characters
They are simply a convenience in storing the data in
the random-access buffer. The CVI reconverts the
data to numeric form on a subsequent read. The
MKI% command can also be used to convert to 2
normal string vanable, which is unrelated to a
random buffer field name. In this case also the
string variable will be 2 bytes long and be made up
of the numeric data of the integer vanable
RELATED COMMANDS
CVvD, CVI, CVS, FIELD

LSET, RSET

MkDs

w
o
.

SYSTEM

I, LVL I

I, LVL Il

|, Disk

I

I, LvL !

i, LvLE

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk °

FORMAT
line#...MKN$(variable)...

EXAMPLES

1000 A$=MKNS(A) convert A to string
DESCRIPTION

MKNS is used to convert a numeric variable to a
“string-type"” vanable. MKN$ is normally used to fill
a direct-access buffer with data values (see LSET .,
RSET). The typical sequence in filling a direct-
access buffer is to define the fields in a direct-
access buffer with FIELD, to convert numeric
variables using MKN$, to store the result with
LSET and RSET and other commands, and to
write out the buffer to disk. The MKN$ function
converts a given variable to a 5-byte string. The 5
bytes of the string are the binary encoding of the
numeric data and do not represent ASCII characters.
They are simply a convenience in storing the data in
the direct-access buffer. The CVN reconverts the
data to numeric form on a subsequent read. The
MKN$ command can also be used to convert to a
normal string variable, which is unrelated to a
buffer field name. In this case also, the string
variable will be 5 bytes long and be made up of the
numeric data of the numeric variable.

RELATED COMMANDS
VN, FIELD, RSET, LSET

SYSTEM e
I, LVLI

I, Lven

|, Disk .

I L |
i, LVL I — o
i, LVL 1

] A E LA A Pl b |
I, Disk . CREEXLEEIRE gl 44 =
cC. BIASIC “ﬁw “"‘"“""“:ﬂ J:T};‘Z s
CC, Ext BASIC

CC Disk T S — R 1 —
FORMAT

line#..My S$(single-precision variable)
EXAMPLES

1000 A$=MKSS(A) convert A fo string
DESCRIPTION

MKS$ 1s used to convert a single-precision numeric
vaniable to a “string-type” variable. MKS$ is
normally used to fill a2 random-access buffer with
data values (see LSET, RSET). The t(pacal
sequence in filling a random-access buffer is to
define the fields in a random-access buffer with
FIELD, to convert numeric variables using MKDS
MKIS, and MKSS, to store the result with LSET
and RSET and other commands, and to write out
the buffer to disk. The MikS$ funchion converts a
%wen single-precision variable to an 4-byte string
he 4 bytes of the string are the double-precision
encoding of the numeric data and do not represent
ASCII characters. They are simply a convenience in
storing the data in the random-access buffer. The
CVS reconverts the data to numeric form on a
subsequent read. The MKKS$ command can also be
used to convert to a normal string variable, which is
unrelated to a random buffer field name. In this
case also the string vanable will be 4 bytes long

RELATED COMMANDS

CVD, CVI, CVS, FIELD, MKDS, MKIS,

SYSTEM X

I, LVL |

I, LVL NI

I, Disk

I .
i, LVL |

I, LVL

I, Disk 1 phALIT Ll 444 ©
CC, BASIC b p— 7 P
CC, Ext BASIC

CC, Disk

FORMAT

line# ...expression MOD expression..

EXAMPLES
1000 C=A MOD B

DESCRIPTION

MOD 1s @ numeric operator that performs a
“modulus” arithmetic operation on two operands
and returns a result. The two operands involved
(constants, variables, or expressions) are converted
to two-integer operands. A modulus operation
divides the first operand by the second operand and
finds the remainder. The remainder is then returned
as the result of the modulus operation. If the first
operand is 100, and the second is 44, the result of
1@ MOD 44 is the remainder of 100/44, or 12.
Modulus arithmetic is useful in such processing as
finding the “12-" or “24-hour clock” times (elapsed
hours MOD 12 or 24)

RELATED COMMANDS

None

e -

SYSTEM

I, LVLI

I, LVLII

|, Disk

I

i, LVL |

i, LvL I

I, Disk

CC, BASIC .
CC, Ext BASIC o
CC, Disk .

FORMAT
MOTOR ON

line# MOTOR ON
MOTOR OFF
line# MOTOR OFF

EXAMPLES

1000 MOTOR ON
3000 MOTOR OFF

DESCRIPTION

MOTOR ON turns on the cassette motor by
activating the cassette “remote” output. The motor
will remain on until 3 MOTOR OFF command 1S
executed. MOTOR ON can be used to automatically
control the cassette motor for positioning or other
uses from within 2 BASIC program. (The motor is
automatically turned on, however, by the CLORD
and CLOARDM commands.) MOTOR OF F deactivates
the remote output and turns the cassette motor OFF

RELATED COMMANDS
CLOAD, CLOADM

SYSTEM
I, LVLI

I, LvL

I, Disk

I

i, Ll
i, LVL I

I, Disk . fsvs %
CC, BASIC - : -
CC. Ext BASIC - =)

CC, Disk
FORMAT

NAME newline,startline,increment

EXAMPLES
NAME 100,300,5 from line 100 with start of
300, increment of 5

DESCRIPTION

NAME renumbers the current BRSIC program in
RAM. All line numbers in the program will

changed to a new range of numbers, starting with a
given number, and with a given increment. %hls
includes not only statement line numbers at the
beginning of BASIC lines, but line numbers
referenced by GOTOs, GOSUBS, THENS,
ON...BOTOs, and ON. . .GOSUBSs. The newline
parameter is the starting line number of the
program after renumbering. The startline parameter
i1s the first line number of the current program from
which renumbering is to occur. The increment
parameter is the increment to be used between new
line numbers. All parameters are optional. Defaults
are 10 for “newline’ 10 for “increment” and the
entire program for “startline” Commas can be used
for missing parameters, or NAME can be used by
itself without parameters to renumber the entire
program with new line numbers from 10 in |
increments of 10

RELATED COMMANDS

None

SYSTEM

, LVLI

I, LVL Il

|, Disk

I

i, LVL I

I, LVL 1

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

NEW
line# NEW

EXAMPLES

NEW erase old BASIC program

DESCRIPTION

NEW clears any current BASIC program in RAM
resets all variables to 0, and generally reinitializes
all BARSIC parameters. It does not affect non
BASIC data, such as reserved memory areas for
machine-language pfograms NEW should be used to
“erase” the current BASIC program in memory in
preparation for entering a new program from the
keyboard. NEW does not have to be used pnor to
loading in 3 new BRSIC program from disk or
cassette. NEW would not normally be used in a
BASIC program statement, as it produces
cataslrophnc resuits and destroys the program

RELATED COMMANDS

None

SYSTEM
I, LVL I
I, LV

, LWL |
L LvL
Disk
CC BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# NEXT vanable
Iine# NEXT
EXAMPLES
1000 FOR I=1 TO 100 loop 100 times
1219 PRINT I print variable
1020 NEXT I loop
DESCRIPTION
Ihe NEXT command is used together with
.TO...NEXT to set up and execute a
program loop. The FOR...TO...NEXT statement
defines the start, end, and increment values for a
variable “counter” used to determine the number of
passes through the loop. Any number of statements
may be placed between the FOR...T0O...STEP
and NEXT statements. The variable in NEXT is
optional. Any number of FOR. . .TO...STEP
loops may be “nested’’ In this case, the innermost
EXT must always use the variable associated with
the innermost FOR. . . TO. . .NEXT statement.
The NEXT statement increments the loop variable
by the STEP size, and if the variable has not
exceeded the end value, control is returned back to
e FO STEP statement. The loop may
be broken with a GOTO or similar transfer at any
time. The variable controlling the loop may also be
altered in statements other than the NEXT.
RELATED COMMANDS
FOR...TO...STEP

SYSTEM

I, LVLI

I, LVL I

I, Disk

I

I, VL

1L, LVL 1

11, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#..NOT(expression)

EXAMPLES

1000 IF NOT (R<B) THEN PRINT
COHELPAY

1010 A=NOT(B-1) two's complement
DESCRIPTION

NOT is used as a relational operator and for bit

manipulation. In the first use, NOT tests a constant,

variable, or expression. If the expression is false,
then the NOT function is true. In the example
above, NOT (A<B) is true if variable A is greater or
equal to variable B. The THEN action would not be
taken if A was less than B. In the bit manipulation
case, NOT 1s used to perform 2 one's complement
on an integer varniable or end product of an
expression. A one’s complement operates on binary
values. It “inverts” each bit, changing 2 one to 2
zero and a zero to 2 one, The NOT in this
application can be used to invert bits and perform
other bit-wise operations

RELATED COMMANDS
AND, OR

SYSTEM s > 4

I, LVLI

I, LVLII

|, Disk

Il .
I, LvL |

[H, LVL 1 f R
Il Disk / *fg;;'rz.i%
CC, BASIC “‘

CC, Ext BASIC \ >4l
CC, Disk]

FORMAT
line#...0CT $(expression)...

EXAMPLES
1000 PRINT OCT$(AR) find octal value of A

DESCRIPTION

OCT$ is a special function that will convert a
constant, variable, or expression to a string that
represents the octal value of the argument.
OCT$(1000), for example, will be converted to
the string “1750" Octal notation is used primarily
for machine-language operations in specifying
addresses, instruction codes, and data values.

RELATED COMMANDS
&0

SYSTEM e
I, LVL |
L VLIl
|, Disk
| .
I, LVL1
I, LVL I
I, Disk
CC, BASIC
CC, Ext BASIC !
CC, Disk

FORMAT

line# ON ERROR GOTO hne#

Iine# ON ERROR GOTO 0

EXAMPLES

1000 ON ERROR BOTO 10000 define error-
processing routine

DESCRIPTION

ON ERROR GOTO s used to define the line
number of a user error-processing routine. ON
ERRPOR GOTO should be defined early in the
program before errors can occur. After ON ERROR
GOTO 1s executed with a valid ine number, the
user error-processing mode is in force, and all
errors that occur will cause a transfer to the line
number of the error-processing routine. The user
error-processing routine can be disabled by
executing an ON ERPROR GOTO @ command
Disabling user error-processing will return to the
BASIC interpreter's normal error action. The error
processing routine normally contains code that will
detect the type of error [see ERRP) and the line in
which the error occurred (see ERL), in addition to
code to report the error to the user and recommend
corrective achon. In some cases, the normal BASI
error action will be reinstated (see PESUME)

RELATED COMMANDS

. oD CODAE T
FR f £ SUME
CRL, CEF, LREFUN, FESUME

SYSTEM
I, LVL I

I, LVL Il

|, Disk

I

I, VL

ON...
GOSUB

I, LvL

1, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# ON expression GOSUB line# 1, line#

2. line# n

EXAMPLES

100@ ON AX GOSUB

100,200,300,400, S00 does a GOSUB to

100 if AX=1, 200 if AX=2,

2000 ON (B-5) GOSuB

1000, 2000, 3000, 234 does a GOSUB to

1000 if (B-5)=1, 2000 if (B-5)=2....

DESCRIPTION

This is a “computed GOSUB" The quantity before

the GOSUB may be a constant (trivial), variable, or

expression. The integer portion of the quantity is

found. If this is 1, 2, 3, etc., the first, second. third.

etc. line number is found and a GOSUB to the line

number performed. If the integer portion is 0, or

greater than the number of line numbers, the next

statement in sequence is executed. If the integer

portion is negative or greater than 255, an error

occurs. The computed GOSUE allows “branching

out” to a number of subroutines based on a single

variable
100 REM BRANCH OUT ON MENU

LECTION 1-5

ON N GOSUB
S

] NOT 1-5 HERE OR RETURN
RELATED COMMANDS

ON. . .GOTOD

SYSTEM
I, LVLI

I, LVLII

|, Disk

I

I, el
I, LVL 1N
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

RMAT
,:?ed ON expression BOTO line# 1, line#
2. line# n
EXAMPLES e
1000 ON AX GOTO 100,200,300,400,500
does a GOTO to 100 if AX=1, 200 if AX=2,.
2000 ON (B-5) GOTO oy
1000, 2000, 3000, 234 does a GOTO fo 1000
if (B-5)=1, 2000 if (8-5)=2,..
DESCRIPTION
This is a “computed GOTO". The quantity before
the BOSUB may be a constant (trivial), variable, or
expression. The integer portion of the quantity is
found. If this is 1, 2, 3, etc., the first, second, third,
etc. line number is found and a GOTO to the line
number performed. If the integer portion is 0, or
greater than the number of line numbers, the next
statement in sequence is executed. If the integer
portion is negative or greater than 255, an error
occurs. Normally the quantity would be a single
variable or expression. The computed GOTO allows
“branching out” to a number of lines based on 2
single vanable, such as a menu selection:
1000 REM BRANCH OUT ON MENU
SELECTION 1-5
1010 ON N GOTO
1000,2000, 3000 ,4000, 5000
1020 REM NOT 1-S HERE
RELATED COMMANDS
GOTO, ON...GOSUB

SYSTEM
I, LVL I

I, LVL Il

I, Disk

| °
i, LVL |
i, LvL
I, Disk
CC, BASIC /] -
CC, Ext BASIC { S— —
CC, Disk °

FORMAT

line# OPEN mode,buf# filename

line# OPEN mode,buf# filename,rec-length
EXAMPLES

1000 OPEN **0D°°1,**PAYARBLE:=1""
open payables file

DESCRIPTION

DPEN causes BASIC to initiate, extend, or locate a
disk file, to establish a RAM buffer for disk
operations, and to establish a record length. The
mode parameter is a one-character string that
establishes the basic operation. “I" specifies
sequential input starting at the first record. “0"
specifies sequential output starting at the first
record. If the filename does not exist, a new file is
created. “E" (not used in the Color Computer.)
appends output to the end of an existing file (or
creates a new file). “R" (“D" in the Color Computer
for “direct-access” file) specifies random
input/output of a file. If mode is a constant, it must
be enclosed in quotes. The buf# parameter is a
numeric value specifying the buffer number. The
filename parameter is a standard file specification. A
constant must be enclosed in quotes. The rec-length
parameter is optional for the “R" mode. If not used,
256 bytes is used for the length.
RELATED COMMANDS

CLOSE

SYSTEM
I, LVL |

I, LVL Il

I, Disk

]

M, VLI
i, Lve m
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line#...(expression) OR (expression)

EXAMPLES

1002 IF (AR<2) OR [(B>S) THEN PRINT
‘*HELPI*®

1012 A=A OR B set bit 3

DESCRIPTION

OR 1s used as a relational operator and for bit
manipulation. In the first use, OR compares two
constants, variables, or expressions. If either
expression 1S true, then the OR function is true. In
the example above, (A<2) AND (B>5) is true if
variable A is less than 2 OR variable B is greater
than 5. The THEN action would only be taken if
either expression was true (expression 1 OR
expression 2). In the bit manipulation case. OR is
used to logically OR integer variable bits, considered
to be binary numbers. An OR of binary values
produces a 1 for each bit position if either operand
has a 1 bit in that bit position. An OR of the two
binary values 10100000 and 11001111 would
produce a result of 11101111. The OR in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations
RELATED COMMANDS

AND. NOT

SYSTEM

I, LVLI

I, LVL I

I, Disk

]

I, LVL |

i, LVL

I, Disk

CC. BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# OUT portvalue

EXAMPLES

turn cassette on
101@ QUT 255, turn cassette off

1030 GOTO 1000 loop

DESCRIPTION

JUT 1s a command that outputs a one-byte value to
a system 1/0 port. The Model I/11/111 use 1/0 ports
for certain system devices such as cassette or RS-
232-C. The OUT enables a BASIC program to
directly output data to these 1/0 ports. The port
parameter is an address value of 0 through 255 that
defines the /0 address. The value parameter is a
one-byte value of 0 through 255 that represents the
data to be output to the 1/0 port.

RELATED COMMANDS

-

SYSTEM e

I, LVL I

I, Lven

|, Disk

I

M, Lve i

M, LVL I

I, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk .

FORMAT
line# PRINT(xy).c.b

EXAMPLES
1000 PRINT (120,100),3.4 paint with
blue until red

DESCRIPTION

The PAINT command colors an area on a graphics
screen. The x,y coordinate defines a starting point
for the paint. The x.y coordinates are in “high-
resolution” coordinates of 0-255 and 0-191. The ¢
and b parameters are standard color code of 1
through 8 (green, yellow, blue, red, buff, cyan,
magenta, and orange). The ¢ parameter defines the
color for the paint; the b parameter defines the
“boundary” color. The painting will “spread out”
from the starting point until the specified boundary
color is encountered . If the boundary color is not
found, or if it does not completely contain the
PARINT area, the PARINT operation will continue
over the entire screen (or until a proper boundary
condition).

RELATED COMMANDS

None

SYSTEM

I, LVL |

I, LVL Il

|, Disk

I

i, LvL |

1, LvL

I, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk B

FORMAT

line# PCLERR n

EXAMPLES
line# PCLERR 8 clear 8 graphics pages

DESCRIPTION

PCLERR reserves n number of graphics pages. The
graphics pages are separate from the text screen in
the Color Computer. Each graphics page is 1536
bytes long, and up to 8 pages may be used for
display of graphics data. Depending upon the
PMODE in force, anywhere from 1 to 4 pages may
be on display at any time; the remaining pages are
used as storage for additional graphics data. The
starting page number may be changed by the
PMODE command. If PCLEAR is never executed,
the default number of graphics pages reserved is 4.
PCLEFRR does not clear the graphics pages (see
PCLS).

RELATED COMMANDS
OMODE, SCREEN

Prl S
gl) S

SYSTEM

, VLI

L AVL

|, Disk

]

M, LVL |

I, LVL

I, Disk

CC, BASIC

CC, Ext BASIC »

CC, Disk .
FORMAT

line# PCLS color

EXAMPLES

1000 PCLS 8 clear the screen fto orange

DESCRIPTION

PCLS 1S the Extended Color BASIC equivalent of
the CLS command. It clears the current graphics
screen mth the specified color. Valid colors are 1
through 8, representing green, yellow, blue, red.
buff, cyan, magenta, and orange, respectively. The
color specified must be in the color set currently
selected. If the color selected is not in the current
color set, the screen will be cleared o a
“corresponding™ color in the current color set
PCLS 8 while in color set 0, for example, will clear
the graphics display to red if in a four-color mode
PCLS B while in color set 0 and a two-color mode
will clear the graphics screen to black. The graphics

screen does not have to be on display for the PCLS

to take effect. As the graphics pages are separate
from the text screen, they can be cleared
independently

RELATED COMMANDS

SCREEN

SYSTEM ——,

I, LVLI
I, LVL I
I, Disk
I

i, LvL i

I, LVL It f axos ?&M—_\ -7
‘#%ééﬁ

IIl, Disk A A
CC, BASIC oy

CC, ExtBASIC o |
CC, Disk .

FORMAT
line# PCOPY n TOm

EXAMPLES
1000 PCOPY 1 TO 8B

DESCRIPTION

PCOPY 1s used to copy the contents of one graphic
page to another graphics page. There are 8 graphics
pages in Extended Color BASIC in the Color
Computer, numbered 1 through 8. Any page may be
copied to another page for purposes of initialization
or temporary storage. PCOPY copies only the 1536
bytes of one page (n) to another (m). If the graphics
mode in force uses more than one page for graphics
display, then more than one PCOPY may have to
be done to display all of the graphics data. The
‘source” page, the page to be copied, remains
unaltered after the copy.

RELATED COMMANDS
PMODE

SYSTEM

I, LVLI

I, LVL I .

I, Disk .

I

I, LVL |

i, LVL ©

11, Disk .

CC, BASIC .
L
>

CC, Ext BASIC
CC, Disk

FORMAT
line&.. PEEK (expression)

EXAMPLES

1000 FOR I=31000 TO 31000+14 sef up
loop

1010 PRINT PEEK (1) print byte

102@ NEXT I continue

DESCRIPTION

PEEK is a function that allows you to look at a byte
of memory in ROM, RAM, or “memory-mapped” 1/0
device. It returns the contents of a single memory
location whose address is specified by a constant,
vanable, or expression within parentheses after the
PEEK. As all memory locations in the TRS-80
systems contain 8 bits or one byte of data, the
contents will be a value from 0 through 255. PEEK
can be used in conjunction with POKE to process
bytes of memory for combining BASIC programs
with machine-language programs. PEEK can also be
used to examine certain 1/0 devices whose
addresses simulate memory locations

RELATED COMMANDS
POKE

SYSTEM

I, LVL |

I, LVL I

I, Disk

I

I, LVL |

I, LVL I

I, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk o

FORMAT
line# PLAY string

EXAMPLES

1000 PLAY **C;D;E;F;6;A:B:C" " play
scale

DESCRIPTION

PLAY plays a string of musical notes with control of
frequency, note length, tempo, volume, and pauses.
The “string” argument is a string constant or
vanable that defines the pLaY operations. The
general format is a series of "subcommands”
separated by semicolons. The letters from A through
G specify note value subcommands. A suffix of “+"
“#" indicates a sharp, and “-" indicates a flat. (A#
is A sharp.) N1 through N12 also indicate note
values. O followed by 1 through 5 indicate the
octave. L followed by 1 through 255 indicates the
note length (1 is a whole note, 2 2 half note, 4 a
quarter note, etc.) T followed by 1 through 255 is
tempo, slow to fast. V followed by 1 through 31 is
volume, low to high. P followed by 1 through 255 is
pause length. Substrings may be executed by X
followed by substring to be executed.

RELATED COMMANDS

None

SYSTEM
L IVLI
I, LVL I
I, Disk

Il

I, LvL

I, LVL

I, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk .

FORMAT
line# PMODE mode,start-page

EXAMPLES

1000 PMODE 3,1 select PMODE 3, start-page |
DESCRIPTION

PMODE is used to select the graphics resolution
and starting graphics page number in Extended
Color Basic. The mode parameter selects one of 5
modes, numbered 0 through 4. The resolution of the
graphics screen increases with the mode number
Mode 0 is a two-color 128 by 96 mode, mode 1 is a
four-color 128 by 96 mode, mode 2 IS a two-color
128 by 192 mode, mode 3 is a four-color 128 by
192 mode, and mode 4 is a two-color 256 by 192
rpode The color set displayed depends upon the
SCREEN command. Two-color modes display black
on green (set 0) or black on buff (set 1). Four color
modes display green, yellow, blue, red (set 0) or
buff, cyan, magenta, orange (set 1). The start-page
may be any graphics page from 1 to 8. The PMODE
command does not cause a display of the graphics

gatge; SCREEN sets either a2 text display or graphics
ata.

RELATED COMMANDS
SCREEN

— ———

-

T -t

-—!:—

T T—

-

-

SYSTEM

I, LVL |]
I, LVvL Il *
I, Disk 4
Il

I, LvL ! .
I, LvL .
Il Disk .
CC, BASIC .
CC, Ext BASIC »
CC, Disk .
FORMAT

line# POINT(X,Y)
EXAMPLES
1010 A=POINT(63,31) read contents of pixel
DESCRIPTION

Model 1/1ll: POINT is used to test one graphics
“pixel” There are 6144 pixels, divided up as 128
horizontal elements by 48 vertical elements. The
POINT command tests one of these pixels for “on”
or “off” status. Each of the 6144 pixels can be
uniquely tested. The x coordinate specifies the
horizontal position of 0-127. The y coordinate
specifies the vertical position of 0-47. If the point is
“on’] POINT returns a -1. If the point is “off"
POINT returns a 0.

Color Computer: POINT is used to test one
graphics “pixel” for “off" or “on”’ There are 2048
pixels, divided up into 64 horizontal elements by 32
vertical elements. The x coordinate specifies the
horizontal position of 0-63. The y coordinate
specifies the vertical position of 0-31. If the point is
“off' a 0 is returned. If “on” in the graphics mode,
the color code of 1 through 8 (green, yellow, blue,
red, buff, cyan, magenta, orange) is returned. If in
the character mode, a -1 is returned.

RELATED COMMANDS
LS, RESET, SET

SYSTEM

I, LVL I

I, LvL i

|, Disk

Il

i, LVL I

i, LvL

I, Disk

CC, BASIC
CC. Ext BASIC
CC, Disk

FORMAT

line#...POKE expression,value

EXAMPLES

1000 FOR I=31000 TO 31000+14 set up
loop

1010 POKE 1,0 clear bytes

1020 NEXT 1 continue

DESCRIPTION

POKE is a function that allows you to store data in
memory locations in RAM, or “memory-mapped” 170
devices. A value of 0 through 255 is stored in the
memory location specified by a constant, variable,
or expression. As all memory locations in the TRS-80
systems contain 8 bits or a byte of data, values
greater than 255 are not valid. POKE can be used
in conjunction with PEEK to process bytes of
memory for combining BRSIC programs with
machine-language programs. POKE can also be
used to output to certain 1/0 devices whose
addresses simulate memory locations.

RELATED COMMANDS
PEEW

-
auClI -
-

SYSTEM

I, LVL |

I, LVL I ©
|, Disk .
I .
I, LVL |

M, LvL .
I, Disk .
CC, BASIC

CC, Ext BASIC o
CC, Disk ©
FORMAT
line#...POS(dummy)...
EXAMPLES

1000 PRINT V:TAB(POS(@)+3) insert 3
spaces

DESCRIPTION

POS is a function that returns the current cursor
position of the video display, from 0 through 63
(Model 1/111), 0 though 79 (Model 1), or 0 through
31 (Color Computer). POS may be used for
columnization or word-processing applications.

RELATED COMMANDS
None

SYSTEM

I, LVLI

I, Lve i

I, Disk

I

I, LVL
i, Lve
111, Disk AL
CC, BASIC ,

CC, Ext BASIC e
CC, Disk B

FORMAT
line# PPODINT(xy)

EXAMPLES
1000 PPOINT (128,96)

DESCRIPTION

PPOINT is used to test one graphic element on the
current graphics page. The “x" and “y" parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area tested depends upon the current
PMODE resolution for graphics. The element will be
tested even if the current display is of the text
page. PPOINT returns the color code for the
graphics element defined by x and y. Color codes
are 1 through 8 defining colors of green, yellow,
blue, red, buff, cyan, magenta, and orange

RELATED COMMANDS
PRESET, PSET

test middle element

-

-

- :
——

-

-

e

-

-

-

-

camy T s

) (-

S —

-

o

-

-

SYSTEM

I, LVLI

I, LVL Il

|, Disk

Il

I, LVL |

1, LvL

I, Disk

CC, BASIC

CC, Ext BASIC o

CC. DlSk L B ——— = =

FORMAT
line# PRESET (x,y)

EXAMPLES
1000 PRESET (129,96)

DESCRIPTION

PRESET is used to reset one graphic element on
the current graphics page. The x and y parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from 0 through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area reset depends upon the current PMODE
resolution set for graphics. The element will be reset
regardless of the display of the current page. The
color used for the reset action is the current
background color. If SCREEN has specified the text
page, no action will be seen, but the PRESET
action has occurred. “PRESET" is also used in the
L INE command, where it means “draw the line or
box in current background color’) effectively
“resetting” the line.

reset middle dot

RELATED COMMANDS
LINE, PSET

SYSTEM
I, LVLI

I, LVL I

I, Disk

Il

M, LVLI
M, LVL
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
lined PRINT item list

EXAMPLES

1000 PRINT **“THIS IS THE

RESULT **:RS,*““N="":N

DESCRIPTION

PRINT is used to display a list of items on the
video display. The items are generally printed on
one line or a portion of one line. The items may be
string literals (text), string variables, or numeric
variables. Commas may be used between the items
to tab to the next print zone, or semicolons may be
used to avoid spaces between items (see " and
“"). The example above prints one line of “THIS
IS THE RESULT XXX N= XXX" where XXX
represents the value of variables RS and N. There
may be any number of items in the list, compatible
with the maximum BASIC line length. Positive
numbers are printed with a leading and trailing
blank. Negative numbers are printed with a minus
sign and trailing blank. Strings are printed with no
leading or trailing blanks. If the last item in the item
list is terminated by a semicolon, the next PRINT
starts from the point at which the current PRINT
left off.

RELATED COMMANDS

SYSTEM
I, LVL I

I, LVL Il

|, Disk

Il

I, LVL I
I, LVL I
Il, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# PRINTH -1 item list

EXAMPLES
1000 PRINTH-1,A,B,CS$, ***¥xxx""

DESCRIPTION

PRINTH#-1 outputs the specified item list to
cassette tape. The cassette tape must have been
positioned to the proper point for file output.
PRINTH-1 is similar to the PRINT display
statement. It outputs character strings to the
cassette after converting numeric variables. Any
number of items may be used in the item list in any
combination of constants, numeric variables, string
Iiterals, or string variables. Each item must be
separated by a delimiter of a comma or semicolon.
The maximum length of characters output to tape
must not exceed 248; this is a function of the
number and lengths of items in the list. Items
output to a cassette file can be read in by the
INPUTH-1 command; input must be in the same
sequence as output.

RELATED COMMANDS
INPUTH-1,PRINT

SYSTEM
I, LVL I

I, LVL I

I, Disk

Il

i, LVLI
I, LVL I

NI, Disk TR (e
CC, BASIC o _4ﬁtggfj‘ = éig;‘*
CC. Ext BASIC o
CC. Disk .

FORMAT
line# PRINTH-2, item list

EXAMPLES
1000 PRINT#-2, **THIS IS THE
RESULT"®* 3RS, **N="":N

DESCRIPTION

PRINT#-2 is used to print a list of tems on the
system line printer. PRINT# -2 is the line printer
equivalent of the video display PRINT command
The items may be string literals (text), string
variables, or numenic variables. Commas may be
used between the items to tab to the next print
zone, or semicolons may be used to avoid spaces
between items (see “," and “,"). There may be any
number of items in the list, compatible with the
maximum BARSIC line length. Positive numbers are
printed with a leading and trailing blank. Negative
numbers are printed with a minus sign and trailing
blank. Strings are printed with no leading or trailin
blanks. If the last item in the item list is terminat
by a semicolon, the next PRINT starts from the
last PRINT position. There are certain codes
unique to various line printers which control line
feeds, expanded printing, and special functions
These may be embedded in the item list by use of
CHRS or STRINGS.

RELATED COMMANDS

RS A Tee Y DRINT

PRINTH-

SYSTEM

I, LVL |

I, LVL Il ®
|, Disk .
I

i, Ve !

I, Lve

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT
line# PRINTH -2, item list

EXAMPLES
1000 PRINTH-2.R,B,CS, * *¥¥*%+

DESCRIPTION
PRINT#-2 is identical to PRINT#-1 except that
it is used for the second cassette of the system.
PRINTH-2 outputs the specified item list to
cassette tape. The cassette tape must have been
positioned to the proper point for file output.
PRINT#-2 is similar to the PRINT display
statement. It outputs character strings to the
cassette after converting numeric variables. Any
number of items may be used in the item list in any
combination of constants, numeric variables, string
literals, or string variables. Each item must be
separated by a delimiter of 2 comma or semicolon.
The maximum length of characters output to tape
must not exceed 248; this is a function of the
number and lengths of items in the list. Items
output to a cassette file can be read in by the
INPUTH -2 command; input must be in the same
sequence as output.

RELATED COMMANDS
INPUTH-2,PRINT

SYSTEM

I, LVLI

I, LVL I

I, Disk .
Il .
I, LVL I

1, LvL

I, Disk -
CC, BASIC

CC, Ext BASIC
CC, Disk =
FORMAT
line# PRINTHbufH, item list

line# PRINTH buf#,USING string,item list
EXAMPLES

1000 PRINTH3,A;B;C% output to file
DESCRIPTION

PRINT# performs a write to a sequential disk file
The file must have been previously OPENed. The
OPEN command specifies a buffer for the file name,
and this buffer number is used in the PRINT#
command. PRINT# outputs a list of items to the
buffer (file). The items may be any number of
numeric or string variables. All items are
transformed into character strings and written to the
disk buffer. The PRINT# output to the file is
similar to the display output of PRINT. If commas
are used to separate the items, spaces for tabs will
be written. If semicolons are used, no spaces will be
used between items. String vanables should use
CHR$(34) to bracket the variables with double
quotes if the string variables contain delimiters such
as commas or semicolons; otherwise string variables
can be used in the list as required. The USING
option outputs the list in the format specified by the
USING string. The format is identical to that used
in PRINT USING.

RELATED COMMANDS

PRINT USING

SYSTEM = m— e
I, LVL I g

I, LVL I FRINTH
:I Disk | [non-disk]
I, LVL | —
11, LVL 1
Il, Disk Y
CC, BASIC ;)
CC, Ext BASIC L)
CC, Disk

FORMAT
line# PRINTH, item list

EXAMPLES
1000 ppINT”.F{.E(.CS' CeXXEEYY

DESCRIPTION

PRINTH outputs the specified item list to cassette
tape. The cassette tape must have been positioned
to the proper point for file output. PRINTH is
similar to the PRINT display statement. It outputs
character strings to the cassette after converting
numeric variables. Any number of items may be
used in the item list in any combination of
constants, numeric variables, string literals, or string
variables. Each item must be separated by a
delimiter of a comma or semicolon. The maximum
length of characters output to tape must not exceed
248; this is a function of the number and lengths of
items in the list. Items output to a cassette file can
be read in by the INPUT# command; input must
be in the same sequence as output.

RELATED COMMANDS |
INPUTH ., PRINT '

SYSTEM

I, LVL I

I, LVL I .

|, Disk .

Il .

i, VLl

I, LvL .

I, Disk .

CC, BASIC .
CC, Ext BASIC e),
CC, Disk B

FORMAT

line# PRINT USING stringitem list
EXAMPLES

1000 A$=***=3uu un DOLLARS®* define
string

1010 PRINT USING A$: TOTAL print check
DESCRIPTION

PRINT USING 1s used for displaying special
formats, primarily dollar amounts and accounting
values. The string parameter is a literal or variable
string that defines the format to be used in the
display. The item list is a list of numeric or string
variables that define the items to be printed. If
there is more than one item, all items will be
printed in the format defined by the string. The
string uses “field specifiers” to define certain
formats. A “#" specifies a digit position. A " is a
decimal point position and is printed in the position
specified. A “," is printed in the position specified
Asterisks (*) fill unused positions left of the decimal
with astensks. “$8” or “**$” indicate a floating
dollar sign, printed before the number. The string
“SSHHEH BiH 88 DOLLARS" used with variable
A=96654.678 generates *$96,654.68 DOLLARS
Other specifiers include up arrows, plus Sign, minus
sign, %spaces%, and exclamation point

RELATED COMMANDS
LPRINT USING

SYSTEM

I, LVL I .
I, LVL Il

I, Disk

Il

I, LVL I .
I, LVL 1

Il, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT
line# PRINT AT position,item list

EXAMPLES

1000 PRINT AT 128, **THIS IS THE
RESULT * "3RS, **N="":N

DESCRIPTION

PRINT AT is used to display a list of items on the
video display at a specified starting location. The
items are generally printed on one line or a portion
of one line. The items may be string literals (text),
string variables, or numeric variables. Commas may
be used between the items to tab to the next print
zone, or semicolons may be used to avoid spaces
between items (see “,” and “"). In the example
above, the message is printed beginning at print
position 128. The Model | has 1024 print positions:
each line starts with a multiple of 64. There may be
any number of items in the list, compatible with the
maximum BASIC line length. Positive numbers are
printed with a leading and trailing blank. Negative
numbers are printed with a minus sign and trailing
blank. Strings are printed with no leading or trailing
blanks. If the last item in the item list is terminated
by a semicolon, the next PRINT starts from the
point at which the current PRINT left off,
RELATED COMMANDS

e v sscvs. DRINT

SYSTEM
I, LVLI
I, Lve il
I, Disk .
I

i, LVL I

i, LVL N

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# PRINT ®position,item list

EXAMPLES

1000 PRINT 128, **THIS IS THE
RESULT ""3:RS,**N="":N

DESCRIPTION

PRINT @ is used to display a list of items on the
video display at a specified starting location. The
items may be string literals (text), string vanables,

or numeric variables. Commas may be used between
the items to tab to the next print zone, or
semicolons may be used to avoid spaces between
items (see “," and “,”). The Model | and Il have
1024 print positions; each line starts with a2 multiple
of 64. The Model Il has 1920 print positions; each
line starts with a2 multiple of 80. The Color Computer
has 512 print position; each line starts with a
multiple of 32. Print positions are numbered starting
from 0. There may be any number of tems in the
list, compatible with the maximum BASIC line
length. Positive numbers are printed with a leading
and trailing blank. Negative numbers are printed
with a minus sign and trailing blank. Strings are
printed with no leading or trailing blanks.
RELATED COMMANDS

.- ". CQ:Q'.ppI'\JT

.

~ ——

54
=4

))
ot) .‘gf.&-v-.«— ?a-‘ \
§ Ar:r:t.gj) : g,",-._u > 2 -
J - o n

SYSTEM

I, LVL |

I, LVL Il

|, Disk

I

1, LvL I

I, LVL

I, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk ©

FORMAT

line# PSET (x,y.c)
line# PSET (x.y)
EXAMPLES

1000 PSET (129,96,3) set middle dot to
blue

DESCRIPTION

PSET is used to set one graphic element on the
current graphics page. The x and y parameters
define the horizontal and vertical element numbers,
respectively. The x value can range from 0 through
255; the y value can range from % through 191. The
coordinates specify an element in the highest
graphics resolution of 256 by 192 elements. The
actual area set depends upon the current PMODE
resolution set for graphics. The color parameter, c,
may be any valid color number of 1 through 8
(green, yellow, blue, red, buff, cyan, magenta, and
orange). Again, valid color codes depend upon the
PMODE mode. The ¢ parameter is optional; if ¢ is
omitted, the current foreground color is used. If
SCREEN has specified a text page, no action will
be seen, but the PSET action has occurred.
“PSET" is also used in the L INE command, where
it means “draw the line or box in current
foreground color”

RELATED COMMANDS
LINE, PRESET

SYSTEM

I, LVLI |
I, LVL NI ‘
|, Disk .

I .

I, LVL |

i, LVL

I, Disk .

CC, BASIC

CC, Ext BASIC

CC, Disk °

FORMAT

line# PUT buf#
line# PUT buf# rec#

EXAMPLES
1000 PUT 3,100 output 100th record

DESCRIPTION

PUT 1s used to output 3 random-access fife record
to disk. A random-access file allows records to be
read or written on a random basis (not in
sequence). The PUT outputs the contents of the
current record as the next record in sequence or as
the specified record number of the random file. The
“current record” is the entire buffer contents if the
record length defined by the OPEN was 256, or 2
portion of the buffer if the record length was less
than 256. Prior to the PUT, an OPEN with the “R"
option must have been executed. The OPEN defines
the filename and buffer associated with the file, and
the file length. The PUT buf# form of PUT outputs
the current record in the buffer as a record whose
number is one higher than the last access. If no
record has been written, this becomes the first
record of the file. The second form of PUT writes
the current record as the specified record number
defined by “rec#”

RELATED COMMANDS

GET

*mTT
-
-
-
aumIT
-
MawT
-
e
-
-‘.
T,
-
-—T
. -

SYSTEM

I, LVLI

I, LVL Il

|, Disk

Il

I, LvL !

I, Lve

Il, Disk

CC, BASIC

CC, Ext BASIC o
CC, Disk ©

FORMAT

line# PUT(x1,y1)-(x2,y2),array name,action
EXAMPLES

1000 PUT

(205,141)-(255,191) ,AR,PSET
DESCRIPTION

GET stores any rectangular area on a graphics
screen in a two-dimensional array. A PUT later
retrieves the graphics data from the array and
displays it in any other area of the graphics screen. .
GET~PUT can be used to save portions of a
graphics screen or to create animation effects. The
x1,y1 coordinates define one corner of the screen
area for the PUT operation; The x2,y2 coordinates
define the opposing corner. The x1,x2 and yl1,y2
values are in “high-resolution™ graphics coordinates
of 0-255 and 0-191, respectively. The “array name"
is the name of a two-dimensional array previously
filled by a GET statement. In general, the PUT area
must be equal to the dimensions of the GET area.
The “action” option is PSET, PRESET, AND,
OR, or NOT. If a “G” option was used in the GET,
then an action item must be used in the PUT.
PSET transfer the data in the same way, PRESET
inverts the colors, and AND, OR, and NOT can be
used to perform logical operations on the graphics
data

RELATED COMMANDS

GET

SYSTEM

I, LVL 1

I, LVLI - b1 £ A
|: t)lslk : : p’f‘” J['I_l d |
I .

I, LvL |

i, LvLE .

I, Disk .

CC, BASIC

CC, Ext BASIC

CC, Disk

FORMAT

line# RANDOM

EXAMPLES

1000 RANDOM “reseeds” the random number
generator for RND

1010 PRINT RND(10@): GOTO 1@1@ print
list of random numbers from 1 to 100

DESCRIPTION

RANDOM initializes the random number generator
for the RND function. The RND function is used to
generate pseudo-random numbers from 0 to N
Pseudo-random numbers are “repeatable” numbers.
that is, the same sequence of numbers is repeated
from the same starting number. If RANDOM is never
used, the same sequence of numbers will be
generated on system power up or restart. The
sequence will be quite long, but RANDOM ensures
that a true random starting point is used for an
unpredictable sequence of numbers

RELATED COMMANDS

PND

SYSTEM
I, LVL I

I, LVL I

|, Disk

Il

I, LVL I
I, LvL
IIl, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# RERD variable 1, variable 2, variable
3,...variable N

EXAMPLES |
1000 REARD A,B, XY reads three numeric values
1010 REARD Z%,XX¥% reads two integer values

1020 READ A%,B$ reads two strings

DESCRIPTION

RERD reads a value or values from a DATA list.
The variables in the READ are set to the next
values in the DATA list. The variable types in the
DATA list must correspond to the variable types in
the READ statement. Variable types in the RERD
statement may be intermixed as long as they appear
that way in the DATA list. The following statements
read 5, 13, ORANGE into variables X, Y, and XY$,
and then read -37, 2, and BANANA into variables A,
B, and BS.

19000 DATA 5,13,0RANGE, -37,2,BANANA
establishes list

1010 RERD X,Y,XY% reads first three values
1020 REARD A,B,B%$ reads next three values
RELATED COMMANDS !
DATA, RESTORE

I —

SYSTEM ——

I, LVLI

I, LVL Il

|, Disk

Il

M, LVL |

M, Lve m
I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# REM

EXAMPLES

100@ REM THIS PROGRAM SEGMENT 1S &
SORT

1010 REM IT SORTS TWD-D ARRAY 27

DESCRIPTION

REM is an abbreviation for “remark” The RPEM
command may be followed by descriptive text
defining the program statements. REMarks “text” is
not executed, but does take up BASIC program
space. As many REMs as required may be used
Delete the REM statements in the final program
version to save program space and increase
program execution speed

RELATED COMMANDS

O T r—

R esvensshoand

+

4y

400’0‘0_

ra——
-
Sema
-
-
[

'

‘

]

‘

" olo () ol'

SYSTEM

I, LVL I
[, LVL 1l
I, Disk

Il »
I, LVL | S— e

I, LVL i e AR\
CC, BASIC = el
CC, Ext BASIC e '
CC, Disk B

FORMAT
RENAME “old file” TO “new file"

EXAMPLES
RENAME **RCCTS/PRY:2°* TO
*‘ACCTS/REC:0"’

DESCRIPTION

RENAME is a Color Computer Disk BRSIC
command that changes the name of a file. The “old
file” and “new file" parameters are valid file names;
both require extensions. File names are in the
name/extension:drive# format. The drive# is
optional. RENAME i1s normally used to rename a file
on the same disk.

RELATED COMMANDS
None

SYSTEM

I, LVLI

I, LVL U

I, Disk .
I .
I, LVL I

i, LVL I

1Il, Disk

CC, BASIC

CC, Ext BASIC *
CC, Disk B
FORMAT
RENUM newline,startline,increment (all arguments
optional)

EXAMPLES

RENUM 100,300,5 from line 100 with start of
300, increment of 5

DESCRIPTION

RENUM renumbers the current BARSIC program in
RAM. All line numbers in the program will be
changed to a new range of numbers, starting with a
given number, and with a given increment. This
includes not only statement line numbers at the
beginning of BASIC lines, but line numbers
referenced by GOTOs, GOSUBS, THENS,

ON. ..GOTOs, and ON. . .GOSUBS. The newline
parameter is the starting line number of the
program after renumbering. The startline parameter
is the first line number of the current program from
which renumbering is to occur. The increment
parameter is the increment to be used between new
line numbers. All parameters are optional. Defaults
are 10 for newline, 10 for increment, and the entire
program for startline. Commas can be used for
missing parameters, or RENUM can be used alone

RELATED COMMANDS

None

SYSTEM

I, LVLI .
I, LVL Il .
|, Disk .
Il

I, LvL I .
i, Lve .
I, Disk .
CC, BASIC .
CC, Ext BASIC o
CC, Disk o
FORMAT

line# RESET(xy)
EXAMPLES
1010 RESET(@,@) reset upper left-hand pixel
DESCRIPTION

Model I/11l: RESET is used to reset one graphics
“pixel" to black. There are 6144 pixels, divided up
as 128 horizontal elements by 48 vertical elements.
The RESET command resets one of these pixels to
“off”’ Each of the 6144 pixels can be uniquely
RESET. The x coordinate specifies the horizontal
position of 0-127. The y coordinate specifies the
vertical position of 0-47.

Color Computer: RESET is used to reset one
graphics “pixel” There are 2048 pixels, divided up
into 64 horizontal elements by 32 vertical elements.
The x coordinate specifies the horizontal position of
0-63. The y coordinate specifies the vertical position
of 0-31. The reset turns off the pixel to a black

color.

RELATED COMMANDS
CLS, POINT, SET

SYSTEM

I, VL1

L LVL I

I, Disk

]

i, tve |

I, LvL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# RESTORE

EXAMPLES

)

FESTORE

list
DESCRIPTION

RESTORE resets the in DATA

the beginning of the Zut::nﬁ,sth All £ 'l‘:;tpomter &
statements scattered throughout a BRST program
(or ap;aegnng consecutively) create one (énl.ngus
I'IS! of DATA values RESTORE resets the znt‘?mal
DATA hist pointer to the first entry in the list so that
the next READ results in a read of that entry. The
following statements read 5-275 and 3into
vanables A, B, C and then into vanables D, E, and F

V0 RESTORE resets the pointer to the D& Te

3 establishes

J B.C read first three values
STORE resets pointer

930 RERD D,E,F reads first three values

RELATED COMMANDS

TG DEAr
HTA.RFA
.

SYSTEM

I, LVL I

I, LVL Il °

|, Disk .

Il °

I, LVL

i, LVL I . 3
I, Disk . Wy P
CC, BASIC ald” > =\
CC, Ext BASIC - o
CC, Disk e W
FORMAT

line# RESUME

line# RESUME @

line# RESUME line#

line# RESUME NEXT

EXAMPLES

1000 RESUME NEXT resume after error

DESCRIPTION

RESUME 1s the last executed statement of a user
error-processing routine. A user error-processing
routine is defined by a ON ERROR GOTO
command. The error-processing is entered every
time an error occurs so that the program may
investigate the type of error. RESUME is used after
investigation of the type of error, line number,
messages, and corrective action, if any. RESUME
without a line number or with a line number of 0
causes the BASIC interpreter to return to the line
in which the error occurred. This mode would be
used after the normal BASIC error action was
reinstated by an ON ERROR GOTO @. RESUME
with a line number causes a branch to the specified
line number; it is a way of taking further action
related to the occurrence of the error. RESUME
NEXT causes a continuation of the program after
the line in which the error occurred.

RELATED COMMANDS
FRL. ERR, ERROR, ON ERROR GOTO

SYSTEM

I, LVLI

I, LVL I

I, Disk

I

M, LVL |

I, Lve m

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# RETURN

EXAMPLES

1000 GOSUB 1200 calls subroutine at 12000
1010 (return point) return point from 12090

12000 (subroutine: from 1 to many statements)
12090 RETURN returns to statement after
GOSUB

DESCRIPTION

RETURN defines the last statement in a subroutine
A subroutine is a set of 1 to many statements that
perform a specific function. Rather than writing the
statements many times in a program, the subroutine
15 used once for the function, saving RAM space

The subroutine is called by a GOSUS. The RETURN
statement of a subroutine returns control to the
statement immediately following the GOSUB. No line
number is required for the RETURN as the BRSIC
interpreter automatically records the line number
after the GOSUB

RELATED COMMANDS

G0SuUB, ON...GOSUB

'

)

L)

LR]

L)

L) ol')

=)

‘.
\

-

SYSTEM

I, LVL I
I, LVL Il o
|, Disk .
I ©
I, Lve !

M, LYL

11, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#..RIGHT $(string,n)

EXAMPLES

1000 A3=RIGHT$(B%$,4) get the last 4
characters of B
1010 C3=RIGHT$(B%,5) get the last 5
characters of B$

DESCRIPTION

RIGHTS finds the last n characters of a given
string. The n parameter may be 0 to 255. The string
parameter is a previously defined string. If
B$="HEROINE for example, A$=RIGHT$(B%.4)
will set A$="0INE" If n is greater than the length of
the specified string, RIGHT$ will return the entire
string. A$=RIGHT$(B%,20), for example,
returns A$="HEROINE" The n argument may be a
constant, variable, or expression. RIGHT$ may be
used to process “substrings” where a large string is
made up of a number of substrings concatenated
together for ease of handling.

RELATED COMMANDS
LEFTS, MIDS

SYSTEM .
I, LVL I '
I, LVL I

I, Disk

I

M, LVL |

M, LVL 1
I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
lined. RND(@ ~
line#...RND(integer)

EXAMPLES
1000 R=RNDI
from 1 to 10
1010 IF A=1 THEN PRINT **STARSHIF
MARLFUNCTION® * simulates a chance condition
out of 10 times

DESCRIPTION

RND is a function that generates a pseudo-random
number. If the RND(@) form is used, the number
is between 0 and less than 1. Typical numbers
might be .6789..., 2344..., and 1.2222.... If the
RND(N) form is used, where N is not 0, then RNC
Fenerates a number from 1 to N. If N were 1000,
or example, the number generated would range
from 1 to 1000 and might typically be 23, 999, 456
2, 45, etc. Pseudo-random numbers are
“repeatable’; that is, they produce the same
sequence of numbers from a given starting number
A starting number of 23 might always produce the
sequence 23, 456, 888, for example. Over a long
period, the numbers in the range tend to be evenly
distributed; there will be an equal number of 1s, 2s.
35, 4s, efc

RELATED COMMANDS

RANDOM

1@) generates a random number

1

-
——
T
—TT
-

'

[)

'

‘e

L}

L]

v

-
LI]

SYSTEM P e
I, LVLI

I, LVLII

|, Disk

I .
I, LVL |

I, LVL

I, Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT
line# ...ROW(dummy)...

EXAMPLES
1000 R=ROM(®)

DESCRIPTION

ROW finds the current row on which the cursor is
located and returns the row number. Rows on the
Model Il are numbered from 0 through 23. The
“dummy’’ parameter is any value enclosed in
parentheses; it has no effect on the function. RO
is used along with POS to define the cursor position
for word processing and other applications.

RELATED COMMANDS

SYSTEM

I, LVLI

I, LVL Il

|, Disk =
] o
i, L |

I, LVL I

I, Disk .
CC, BASIC

CC, Ext BASIC
CC, Disk .

FORMAT
line# RSET field name=string

EXAMPLES
1000 RSET NM$=RS$ store addressee
name

DESCRIPTION

RSET is used to place character data into 2
random-file buffer. The normal sequence of
operations establishing a random-file buffer is as
follows: Define the fields of the buffer bya FIELD
statement. The FIELD establishes the field names
in the buffer. The RSET and LSET are then used
to store character data in the fields of the buffer
The FIELD statement establishes the size for each
buffer field. If the data to be stored by RSET is not
as great as this field size, “filler spaces” would be
filled on the left. If the field NM$ was 20
characters, the name “SPIRO SMITH" would be
stored as “SPIRO SMITH" If data to be stored by
RSET is greater than the field size, characters are
truncated on the right. The data

“SPIRO AGOUPOPOPODOUPOLIS” would be stored as
“SPIRO AGOUPOPOPODOUP"

RELATED COMMANDS
FIELD, LSET

SYSTEM
I, LVL I

I, LVL I

I, Disk

I

I, LvL !
I, LvL
Il, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
RUN

RUN line#
line# RUN

EXAMPLES

RUN in command mode starts BASIC program
from beginning

RUN 1000 in command mode starts program from
line 1000

1000 RUN in program restarts program from
beginning

DESCRIPTION

RUN clears all variables and resets other BASIC
program parameters. RUN in the command mode
starts the current BASIC program from the
beginning. The RUN line# form in the command
mode starts the program from a specified line
number. Note that all variables are cleared before
the start occurs. The RUN form within a program
restarts the program from the beginning (or a
specified line #); it may be used to restart the
program on completion of a game or other
continuous task.

RELATED COMMANDS

GOTO

SYSTEM
I, LVL I

I, LVL1I

I, Disk .
] .
M, LVL I

i, Lve i

I, Disk .
CC, BASIC

CC, Ext BASIC .
CC, Disk B R s & -y

FORMAT

RUN “filename”

RUN “filename’R

line# PUN “filename
line# RPUN “filename’'R

EXAMPLES

RUN **ACCOUNTS BAS:1"*.R load, keep
files open

DESCRIPTION

RUN loads and executes a BASIC program from
disk. Variables are not cleared as is the case with
LOARD. If RUN is used without the R option, PUN
will close all open files, load the specified program,
and execute it. If RUN s used with the “R" option,
RUN will will not close open files, and will load and
execute the BASIC program. RUN in either form
may be used in a2 BASIC statement during BASIC
program execution. The “filename” i1s a filespec for
a BASIC program stored on disk; it conforms to
the general requirements for filespecs - name,
extension, password, and drive number. PUN may
be used in BASIC programs to “chain” programs,
aHmeg one program to call another in a chain of
“overlays” One program may utilize file vanables
from ano!her program when PUN 1s used instead of
L b-

RELATED COMMANDS

LOARD

SYSTEM
I, LVL |

I, LVL Il

|, Disk

Il .
I, LVL |

I, LVL

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk ©

FORMAT
SAVE “filename”
SAVE “filename’A

EXAMPLES
SAVE **ACCOUNTS/BAS:1°* save accounts
payable

DESCRIPTION

SAVE saves a BASIC program from RAM to disk.
If the “A™ option is not used, the program is SRVEd
in “compressed format” Compressed format uses
special codes for BASIC commands and binary
data for line numbers; it is best for economical disk
storage. If the “A” option is used, the program is
SAVEd in ASCII format. ASCII format is required for
subsequent use by the MERGE and RPPEND
(TRSDOS) commands. ASCII format also allows
transfers of disk files for special applications, such
as transferring files by data communications. ASCI|
files take up more disk storage than compressed
format. The “filename” is a filespec for a BRSIC
program stored on disk; it conforms to the general
requirements for filespecs - name, extension,
password, and drive number.

RELATED COMMANDS
MERGE

SYSTEM
I, VLI

I, LVLII

I, Disk

I

M, LVL |
M, LVL Il
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk .

FORMAT
EM “flename “startaddr.endaddr execaddr

EXAMPLES

DESCRIPTION

s 3 Color Computer Disk BAS I command
z‘nevaII) used to save a machine-language program
in RAM as a disk file. The “filename parameter is a
standard Disk ¢ IC file name in the
name/extension drlwr-' format. The extension and
dnw # are optional. If no extension 1s piven
will use the extension “BIN" If no drive# i
given, the standard DR IVE default will be used
I can be used to save any binary data in
RAM whether it is a machine-language propram
data, or both. The Startaddr parameter specifies the
starting address of the data to be saved The
endaddr parameter specifies the end of the data
The execaddr ¢ pecifies the address of the start
the program. /f apphcable. The resulting file it
stored as a binary file and can be loade (
executed by the LORDM and £ FC comman

RELATED COMMANDS

f
0

SYSTEM — .

I, LVL I
I, LVL Il
Disk

n, el

I, LVL I

I, Disk

CC, BASIC

CC, Ext BASIC e
CC, Disk .

FORMAT
line# SCREEMN type,color set

EXAMPLES
1000 SCREEN @,1 set text, color set 1
DESCRIPTION

SCREEN Is used to set the type of display, graphics
or text, and to select one of the two color sets
available in the Color Computer. The type parameter
is either a 0 for a text screen, or a 1 for graphics
screen. If a text screen is selected, the text screen
starting at location $400 is displayed. This is the
“normal” text display mode used to display
alphanumeric data. If the graphics mode is selected,
the current graphics page is displayed in the
current graphics resolution. The current graphics
resolution and page are determined by the PMODE
command. The “color set” parameter selects one of
two color sets. In the text mode, color set 0 is black
on green and color set 1 is red on orange. In the
graphics mode, the colors depend upon the color
set and resolution. (See PMODE.)

RELATED COMMANDS
PMODE

J
TTw——— —_ = e —

SYSTEM
I, VL

I, e

I, Disk .
I

i, el

i, LVvL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk
FORMAT
line# SET(xy) Model I/1ll

line# SET(x,y.c) Color Computer

EXAMPLES

1000 SET(RND(127),RND(47)) set random
point 17111

1010 SET(RND(63) ,RND(31),.3) sef
random point to blue (CC)

DESCRIPTION

Mode! I/111: SET is used to set one graphics “pixel”
to white. There are 6144 pixels, divided up as 128
horizontal elements by 48 vertical elements. Each of
the 6144 pixels can be uniquely SET. The x
coordinate specifies the horizontal position of 0-127
The y specifies the vertical position of 0-47

Color Computer: SET is used to set one graphics
“pixel” to a specified color, c. There are 2048
pixels, divided up into 64 horizontal elements by 32
vertical elements. The x coordinate specifies the
horizontal position of 0-63. The y coordinate
specifies the vertical position of 0-31. The ¢
parameter is a color code of 0 through 8 (black,
green, yellow, blue, red, buff, cyan, magenta,
orange)

RELATED COMMANDS

S. POINT, RESET

—_'—""'——

L

'

)

1}

"0 jl o'o o!')

L)

SYSTEM

I, LVL I

I, LVL I

I, Disk

Il

I, LVL |

1, e m

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line#...SGN(expression)...

EXAMPLES

1000 IF SGN(X)=0 GOTO 2000 ELSE IF
SGN(X)=1 GOTO 3000 ELSE GOTO 4000

goto 2000 if X=0, 3000 if X positive, or 4000 if

X negative |

DESCRIPTION

SGN is a sign function. It finds the sense of a
constant, variable, or expression. The argument
must be enclosed within parentheses. If the
argument is negative, SGN returns a -1 if the
argument is 0, SGN returns a 0; if the argument is
positive, SGN returns a +1. SGN is a convenient
replacement for code such as:

1000 IF X< THEN A=-1
1010 IF X=0 THEN A=0 |
1020 IF X>0 THEN A=+1 |

RELATED COMMANDS

None :

SYSTEM | —

I, LVLI

I, LVL Il

|, Disk

]

I, LVL I

N, LvLE

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#...S IN(expression)

EXAMPLES

1000 C=SIN(Z+3.1415%5-2) sets vanable
equal to sine of X+pi/2 (in radians)

2000 ND=SIN(X*.01745329) sefs variable
ND equal to sine of X (in degrees)

DESCRIPTION

SIN finds the sine of a given constant, variable, or
expression. The quantity is assumed to be in radians
(180/pi degrees). SIN is a “function” and may be
used anywhere within 2 BASIC statement as long
as the argument is enclosed within parentheses
Multiply by 01745329 to convert degrees to

radians. Standard trigonometric rules apply in
regard to the sign of the result

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LVL Il

I, Disk

Il

I, LVL |

I, LVL 1

Il, Disk

CC, BASIC .
CC, Ext BASIC »
CC, Disk 2

FORMAT
SKIPF
SKIPF “filename”

EXAMPLES
SKIPF **MYPROG'® skip over MYPROG

DESCRIPTION

SKIPF is used to skip over an indicated file on
cassette. Executing SIKIPF with a filename will
cause BASIC to search for the file name and
position the tape after the end of file. It is therefore
positioned to read the next file after “filename’
Executing SKIPF without a filename will cause
BASIC to skip the next file on cassette and
position the tape after the end of the file, ready to
read the next file.

RELATED COMMANDS

None

SYSTEM - e SYSTEM s

I, LVL | I, LVL |

I, LVL Il I, LVL I

|, Disk I, Disk

] I .

i, LVL | I, LVL |

i, Lve m i, LVL I

I, Disk I, Disk

CC, BASIC .« CC, BASIC — \
CC, Ext BASIC e CC, Ext BASIC T TR
CC, Disk © CC, Disk

FORMAT FORMAT

line# SOUND freq,duration line# ...SPACE%(expression)

EXAMPLES " EXAMPLES

1000 FOR I=1 TO 255 sef frequency loop 1000 A$="* *NAME* "+SPACES$(23

1010 SOUND 1.2 output tone + * *ADDRESS"*

1020 NEXT I A

3 b DESCRIPTION

DESCRIPTION

SOUND outputs a tone to the TV speaker. The
frequency of the tone is specified by a “freq” count
of 1 to 255. Middle C corresponds roughly to 2
count of 89. The remaining counts range roughly
over four octaves: the lower the count, the lower the
note. The frequency count is “linear™ a count of
1/2 the value of another count is 1/2 the
frequency. The duration value of 1 through 255
determines the duration of the tone. Each count is
roughly 1/16th of a second, making the range of
durations 1/16th second to 16 seconds. SOUNI
can be used to output warning tones or to play
musical notes in songs or games

RELATED COMMANDS

PLAY

{CES returns a string of spaces. It is logically
equivalent to STRINGS(" ".n), where n is the
number of characters to return. The constant,
vanable, or expression for SPACES must be a
numeric value from 0 through 255. Spaces (blanks)
are commonly used in PRINT or LPRINTINg
reports and other text processing. SPRCES
provides a convenient way of generating spaces

RELATED COMMANDS

SYSTEM

I, VLI
L AVL N
I, Disk

Lve m
Disk
BASIC

.. Ext BASIC

FORMAT
nnes Hi(expression)
EXAMPLES

DESCRIPTION

prints a line of blanks or Spaces PC does
not use stnng space. The expression parameter
must be a numeric value from 0 through 255. The
eft parentheses must immediately follow the Sf
Characters. SPC 1s similar to SPRCES and can be
used with PRINT, LPRINT. and PRINTS to
generate spaces or blanks whenever required

RELATED COMMANDS

L]

OlO 'l 'II OlO Ol

SYSTEM

I, LVL I

[, LVL Il .

|, Disk .

Il .

I, LVL |

i, LVL I .

I, Disk .

CC, BASIC

CC, Ext BASIC o ==
CC, Disk ° i i
FORMAT

line#...SQR(expression)...

EXAMPLES

1000 C=SQR(A*RA + B*B) find length of
triangle side

DESCRIPTION

SQR is the square root function. It returns the
square root of a constant, variable, or expression
argument. It can be used anywhere within a
BASIC statement as long as the argument is
enclosed in parentheses. It is faster than finding the
1/2 power of an argument and should be used in
place of this method.

RELATED COMMANDS
None

SYSTEM ~

I, VLI

L, LVL I

I, Disk

]

I, LVL |

I, LVL 1

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line# STOP

EXAMPLES
1000 REM STOP HERE TO LOOK AT
VARIABLE 1

1010 STOF

DESCRIPTION

P

5TOP 1s used to temporarily stop BRSIC program
execution. The program may be restarted at the
STOP point by the CONT (continue) command
STOP is normally used during program debugging
so that intermediate results may be investigated. It
1S also used as a “breakpoint” to determine if a
certain portion of the program is executed
Execution of STOP produces a “BRERK AT
XXXXX" message, where XXXXX is the line number
After the stop occurs, variables may be examined by
the PRINT or other commands: all intermediate
results are left intact

RELATED COMMANDS

CONT

1

mEEEEEnE

‘-

i

<

SYSTEM = e
I, LVL)

I, LvL

I, Disk

Il

I, LVL |

I, LVL I

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line#...STR%(expression)...

EXAMPLES
100@ A3=STR$(X) convert X to a string
2000 PRINT STR$(X) print X as a string

DESCRIPTION

STR$ converts a numeric constant, variable, or
expression to a string. The argument must be within
parentheses. In the example above, if X is equal to
-34.678, it is converted to the seven-byte ASCII
character string of A$="-34.678". If X is equal to
34.678, it is converted to the seven byte ASCII
string of A$=" 34.678" with a leading blank for the
missing sign. STR$ is used for certain printing or
string concatenation functions. The converted value
does not have a trailing blank on printing as a
numeric value would. Leading zeroes in the numeric
value are ignored. A byte is always allocated for the
sign and a minus sign or blank is used. An ASCI|
decimal point is generated in the proper place. The
number of fractional characters is somewhat
unpredictable and depends upon the value of the
expression; trailing zeroes are not generated.

RELATED COMMANDS
None

SYSTEM
I, LVLI
LLvL

|, Disk

I

0, LVLI
i, Lve
I, Disk
CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT
line# STRINGS(n, “char”)
line# STRINGS(n,value)

EXAMPLES

1000 AS=STRINGS(100,*“*A" ") create
AS="AAMAAA A"

1010 B$=STRINGS(50,23) create
B$=CHR$(23)*CHR$(23)..+CHR$(23)

DESCRIPTION

STRINGS 1s used to create a 1 to 255 character
string made up of the same character. The n
parameter is the number of characters in the string,
from 0 to 255. It may also be a variable or
expression that resolves to 0 to 255. The “char”
parameter 1s a single ASCI| character that defines
the characters in the string. Alternatively, a value of
0 to 255 may be used in place of “char” In the
latter case, the equivalent string will be made up of
n characters of that value {equivalent to
CHR$(value)*CHR $(value)+..). STRINGS is used
to create strings made up of the same character for
screen graphics use, borders, filling dummy data, or
other uses

RELATED COMMANDS

None

'lO Vl' 'l' OIC OIQ 0l0 L)]

H!ﬂ

SYSTEM ’ —— W
I, LVL I |
I, LVL1I
|, Disk

Il .
i, LVL |
I, LVL

IIl, Disk : Mg A

CC, BASIC g —— %’P\
CC, Ext BASIC '

CC. Disk

FORMAT
line# SWAP variablel,variable2

EXAMPLES

1000 SWAP A,B

DESCRIPTION

SWAP swaps the values of two variables. The
variables must have been previously defined (had
values assigned to them). Either or both of the
variables may be array variables. The variable types
of both variables must be the same. SWAP can be
used in place of code such as “1000 C=A: A=B:
B=C"

RELATED COMMANDS

None

swap variables

SYSTEM
I, LVLI

L LvL Nl

I, Disk

]

i, LVLI
I, LvL

I, Disk TR
CC, BASIC } 5:“'”’ _ﬁ;

CC, Ext BASIC

CC DISk S —— T -

FORMAT

=y :Tf"

EXAMPLES

SYSTEM enter system mode

DESCRIPTION

SYSTEM puts BASIC into the System mode. This
1s 2 mode in which machine-language files can be
loaded from cassette tape. After SYSTEM is
executed, the BASIC interpreter will respond with
the prompt *?. To load a machine-language
program from cassette, position the cassette, and
type in the cassette file name, followed by ENTER
BASIC will now load the cassette file, flashing
asterisks as it does so. After the load, another *?
prompt will be displayed. Another machine-language
program can now be loaded or control transferred to
the machine-language program. In the latter case,
type a slash (/) followed by the decimal address for
execution, followed by ENTER. If no address is
entered after the slash, control will be transferred to
the starting address of the file from cassette. (You
do not have to know the starting address for a
typical cassette load.)

RELATED COMMANDS

None

EIREE

A

'

.

SYSTEM
I, LVL | | g

ILVL Il = ZITEM
|, Disk

I .
I, LVL |

I LVL i

111, Disk

CC, BASIC JORARL dda
CC. Ext BASIC r =T
CC, Disk

FORMAT
SYSTEM
SYSTEM “command”

EXAMPLES
SYSTEM return to TRSDOS

DESCRIPTION

SYSTEM causes an exit from BASIC and a return
to TRSDOS. If there is no command, the operation is
complete. If there is a TRSDOS command, the
command is executed and a return made back to
BASIC. The command must be enclosed in quotes,
unless it is a string expression. If the command
involves loading and executing a TRSDOS utility
program that involves high memory and

“overlay” of BASIC, return will not be made to
BASIC. SYSTEM allows a BRSIC program to
execute a TRSDOS command within the program
and then return back to the program. 1000
SYSTEM * *DIR**, for example, would exit
BASIC, boot TRSDOS, perform a directory listing,
and then return to the next statement after the
SYSTEM command.

RELATED COMMANDS

None

SYSTEM

I, LVLI
LvL i

I, Disk

]

W, LVL |

i, Lve

I, Disk

CC, BASIC
CC, Ext BASIC
CC, Disk

FORMAT

line&... TAB(expression)

EXAMPLES

1000 PRINT TRB(25)**BALANCE OFF1**

DESCRIPTION

TAB 15 a special function used with PRINT or
LPRINT to “tab over” to a given tab position. The
“expression” in TAB must be between 0 and 255
It may be a constant, variable, or expression. The
value defines the tab position. When used with
PRINT, the cursor 1s moved to the right to this tab
position, and any remaining print items are printed
from that point. Valid tab positions for the Model
17111 are 0 to 63, for the Model Il are 0 to 79, and
for the Color Computer are 0 to 31. Values above
these will be “modulo” 64, 80, or 32, respectively
When used with LPRINT, the line printer outputs
the number of spaces required to effect the tab
TAB cannot move the cursor or line printer print
position to the left. If the tab point has already been
reached or exceeded, the THB s ignored

RELATED COMMANDS

LPRINT, PRINT

v——

bl _Smelmme. =]

| R
£ TR ‘ s
n

[' -

|

‘

A

11

.

SYSTEM

[, LVLI

I, LvL il .

|, Disk .

I .

I, LVL |

i, LVL 1 .

11, Disk .

CC, BASIC

CC, Ext BASIC e P 1) 5 17~
CC, Disk °
FORMAT

line#... TAN(expression)...
EXAMPLES

1000 A=TAN(Y+3.14159-2) sets variable A
equal to tangent of Y+pi/2 (in radians)

2000 ND=TAN(X*.01745329) sefs varable
ND equal to tangent of X (in degrees)
DESCRIPTION

TAN finds the tangent of a given constant, variable,
or expression. The quantity is assumed to be in
radians (180/pi degrees). TAN is a “function” and
may be used anywhere within a BRSIC statement
as long as the argument is enclosed within
parentheses. Multiply by .01745329 to convert
degrees to radians. Standard trigonometric rules
apply in regard to the sign of the result.

RELATED COMMANDS
None

SYSTEM SYSTEM
I, VL) I, LVL |
L e I, LVL I
I, Disk . |, Disk
| . I
I, et I, LvL |
I, LVL I B { oo Py 1, LVL I
IIl, Disk . i NSy «-*gf« al I, Disk
CC, BASIC o - - 1) CC, BASIC
CC, Ext BASIC ' =5 = CC, Ext BASIC
CC, Disk / CC, Disk °
FORMAT
FORMAT line#.. . TIMER...
line# .. TIMES. .. line# TIMER=value
EXAMPLES
EX,AM = 1000 TIMER=60 set timer to 12:01
1000 PRINT **TIME IS **;TIMES 1010 PRINT INT(TIMER-E@) print elapsed
DESCRIPTION time in seconds

DESCRIPTION

TIMER is used to control a built-in “real-time
clock” in the Color Computer. The real-time clock
increments by one every 1/60th of a second. It
counts from 0 through 65,535, at which point it
“recycles” back to 0 and begins the counting
sequence over again. TIMER can be set to any
value by the TIMER=value command; the value
represents the starting time in 60ths of a second.
After TIMER is set, “reading” TIMER will
represent the elapsed time in 60ths of a second,
modulo 60. The maximum elapsed time for TIMER
is 65.535/60, or about 1092 seconds (18.2
minutes), however, TIMER can be used to control
variables that represent any elapsed time by
maintaining more precision.

RELATED COMMANDS

None

TIMES returns the current time as a text string
When TRSDOS is started up, the operator may enter
the current time. TIMES returns this information in
BASIC. The format of the Mode! Il TIMES string
1s HH.MM.SS where HH is the hours, MM is the
minutes, and SS is the seconds. The format of the
Model 171l TIMES string is DD/MM/YY HH:MM:SS
where the date is also included :

RELATED COMMANDS

None

1fannnannnn

F

.

SYSTEM

I, LVL I

I, LVL I B

|, Disk B

I ©

I, LvL !

i, Ltve i © Yt v (it
IIl, Disk . L L LR il At
CC, BASIC .
CC, Ext BASIC o i =

CC, Disk .

FORMAT

TROFF

Imed TROFF

EXAMPLES

TROFF turn trace off in command mode
DESCRIPTION

TROFF turns off the Trace function previously
turned off by a TRON command. TROFF is the
default condition after BASIC has been initialized

RELATED COMMANDS

TRON

—
—t
=
—
-
ez
-,
—

v

SYSTEM

I, LVL I

I, LVLII °

|, Disk °

Il B

I, LVL |

I, LvL I ©

I, Disk .

CC, BASIC [& 3 ol
CC, Ext BASIC e — -
CC, Disk ©

FORMAT

TRON

line# TRON

EXAMPLES

1000 TRON turn line trace on
3000 TROFF turn line trace off

DESCRIPTION

TRON turns on the BASIC line Trace function. The
Trace function executes the program as in normal
execution but displays each line number as it is
executed within brackets. This trace is useful in
following the program flow during program
debugging. The SHIFT and @ keys can be pressed
simultaneously at any time to stop the display for
scrutiny. Pressing any key will restart program
execution. Normal display data generated by
PRINT or other commands will be interspersed
with the Trace line numbers.

RELATED COMMANDS

TROFF

SYSTEM pdead. S

I, LVL I
I, LVL I
|, Disk
1]
i, LvL | P —— ST TYTE
I, LVL It | it © Ll gt
CC, BASIC [el .
CC, Ext BASIC \ —
CC, Disk .
FORMAT

LOAL dnve#
EXAMPLES
INL OAL close all open files
DESCRIPTION
L AD 1s a Color Computer Disk BASI(
command that 1s a2 “blanket” CLOSE. It closes all
open files for the specified disk dnve number. If no
disk drive number 15 specified, UNLORD closes all

open files in the default disk drive (the one
specified in the last DRIVE command, or drive 0
no DRIVE command was ever executed)

is pnmanly used when switching diskettes. The
UNLOAD properly closes all open files. Fallure to
properly CLOSE 2 disk file may result in loss of all
or a portion of the file data on the old or new
diskette

RELATED COMMANDS

None

SYSTEM

I, LVL I

I, LVL Il ©

I, Disk .

I .

i, VL 1

I, LVL Il .

I, Disk .

CC, BASIC °

CC, Ext BASIC e

CC, Disk .
FORMAT
line#...USR(expression)...
EXAMPLES

1000 AR=USR(B) call machine-language routine
DESCRIPTION

USR is a function that allows a BRSIC program to
call a machine-language subroutine. The machine-
language subroutine must have been previously
loaded into memory and its starting location defined
by a special sequence. In the Model I/1ll this
sequence is to POKE the least significant byte of
the start address into location 16526 and the most
significant byte of the address into location 16527.
In the Color Computer the starting address is
POKEd into locations 275 (msb) and 276 (Isb).
Thereafter, a USR call will cause the BRSIC
interpreter to transfer control to the code at the
machine-language subroutine. The machine-language
subroutine will normally return back to the
statement following USR. The expression parameter
is a constant, variable, or expression that can be
resolved down to an integer number. The 16-bit
value is passed to the machine-language subroutine
under certain conditions. The machine-language
subroutine may also return a 16-bit integer value.

RELATED COMMANDS
USkn

SYSTEM

I, LVL |

I, LVL I

|, Disk B

! .

N, LVL

H, LvL i

I, Disk B

CC, BASIC

CC, Ext BASIC »

CC, Disk . emammme Znecom ¢ (R
FORMAT

line#...USRn(expression)

EXAMPLES

1000 A=USR3(E call machine-language
routine

DESCRIPTION

USRn is a function that allows a BRSIC program

to call up to 10 machine-language subroutines. The
machine-language subroutine must have been
previously loaded into memory and its starting
location defined by a DEFUSRn. The n parameter
in the USRn command matches the n parameter n
the DEFUSR command. DEF USRS, for example
calls the machine-language subroutine defined by
DEFUSRS. A USRn call will cause the BASII
interpreter to transfer control to the code at the
machine-language subroutine. The machine-language
subroutine will normally return back o the
statement following the LUSR. The expression
parameter is a3 constant, variable, or expression that
can be resolved down to an integer number. The
16-bit value 1s passed to the machine-language
subroutine under certain conditions. The machine-
language subroutine may also return a 16-bit integer
value

RELATED COMMANDS

SYSTEM e ——

I, LVLI

I, LVLII °
|, Disk .
Il o
i, LVL |

i, LVL 1 ©
II, Disk -
CC, BASIC .
CC, Ext BASIC e
CC, Disk °
FORMAT

line&... VAL (string)
EXAMPLES
1000 A=VAL (PAYABLES$) convert to numeric
DESCRIPTION

The VAL function converts a string, assumed to be
a string representing a number, to a numeric value.
Typical strings that could be used with VAL are
“123.56'' “000100°; and "999.9€-34" Often, strings
that primarily contain numeric data may be
represented in string form for input and output
operations. VAL provides a way to convert these
strings to numeric form for efficient processing.
vAL follows these rules in conversion: If the string
contains no numeric characters or is null, VAL
returns a 0. If the string contains all numeric
characters, VAL converts the string to an integer if
possible, or to a single-precision number, or to a
double-precision number. If the string contains a
decimal point, VAL converts the string to a single-or
double-precision number. (The Color Computer has
only one numeric data type.) VAL ignores
alphabetic characters that do not have significance
or which it cannot interpret. VAL performs the
inverse of the STR$ function.

RELATED COMMANDS

“HRS. STR$, VAL

SYSTEM

I, LVL I

I, LVL Il .

|, Disk -

I .

i, LvL

i, LvL .

I, Disk .

CC, BASIC

CC, Ext BASIC e ———
CC, Disk .

FORMAT

line#. VARPTR(variable name)
EXAMPLES

1000 B=VARPTR|(A%) gel location of AS
DESCRIPTION

VARPTR is a function that finds the address of any
BASIC vanable. It is primanly used for
“parameter” passing to machine-language
subroutines called by the USR or USRn commands
If the vanable in question is a string vanable,
VARPTR returns the location of a string parameter
block. The first byte of the parameter block is the
string length, and the second and third (third and
fourth in Color Computer) are the location of the
string. If the vaniable i1s 2 numenc vanable,
VARPTR returns either the location (Models 1/111)
or 2 pointer to the value (Color Computer). VARPTR
will also return the location of arrays

RELATED COMMANDS

None

SYSTEM

I, LVLI

I, LVLII

I, Disk .

Il :

I, LVL | BT T—

I, LVL RosnsssonsssntlPnr i
IHl, Disk %“W# 5\
CC, BASIC | - g =
CC, Ext BASIC U A]
CC, Disk o
FORMAT

ERIFY ON

ERIFY OFF
EXAMPLES

ERIFY ON verify disk writes
DESCRIPTION

VERIFY is a Color Computer Disk BASIC

command that turns ON or OFF disk record
verification. Records are written out to disk from the
disk buffer specified in the OPEN command; a
buffer represents one sector’'s worth of data. When

JERIF'Y is ON, the sector just written is read in to

a second buffer and compared with the original
data. When VERIFY is OFF, this compare is not
done. The verification process is a safeguard against
disk
for disk writes. Invalid data will normally be
detected on a read, but verification provides
detection during the write operation

RELATED COMMANDS

None

1/0 errors, but does increase the “overhead™

SYSTEM
I, LVL I

I, LvL il

1, Disk

I

"I' LVL l L -

L, LVL I

CC, Ext BASIC
CC, Disk -

FORMAT

line# WRITE#bufH item list

EXAMPLES

1000 WRITER3 ,A:B:C3 output to file

DESCRIPTION

WRITEN performs a write to a sequential disk file
The file must have been previously OPENed. The
OPEN command sepcifies a buffer for the filename,
and this buffer number is used in the WRITER
command. WRITEH outputs a hst of items to the
buffer (to the file). The items may be any number of
numeric or string variables. All items are
transformed into character strings and wnitten to the
disk buffer. The WRITEH output to the file is
similar to the display output of PRINT. if commas
are used to separate the items, spaces for tabs will
be written. If semicolons are used, no spaces will be
used between items. String vanables should use
CHRS(34) to bracket the vanables with double
quotes if the string vaniables contain delimiters such
as commas or semicolons; otherwise string vaniables
can be used in the st as required

RELATED COMMANDS
None

Avssansseseaniny pird
I, Disk 22 3&.}.&’5' » v
CC, BASIC ‘ﬁ ”..J”J#'&’f

SYSTEM

I, LVLI

I, LvL i

I, Disk

I .

I, LVL | e =

i, LVL I),“‘J’“"'}r) , q.,-;—‘ ' ’4’,44‘).‘
I, Disk [HRERREEAAS S S0 \
CC. BASIC %ﬁfi’m}:&“"fia by
CC, Ext BASIC f— =
CC D|Sk e SIS T T e
FORMAT

line#...(expression) XOR (expression)...
EXAMPLES

1000 IF ((AR<29) XOR (B>S)) THEN C=1
DESCRIPTION

OR is used as a relational operator and for bit
manipulation. In the first use, XOR compares two
constants, variables, or expressions. If either
expression is true, but not both are true, then the

OR function is true. In the example above, the
expression is true if variable A is less than 2 OR
variable B is greater than 5. The THEMN action
would be taken if either expression, but not both
was true (expression 1 XOR expression 2). In the
bit manipulation case, XOR is used to logically XOR
integer variable bits, considered to be binary
numbers. An XOR of binary values produces a 1 for
each bit position if either operand but not both has
a 1 bit in that bit position. An XOR of the two
binary values 10100000 and 11001111 would
produce a result of 01101111. The XOR in this
application can be used to test bits, set individual
bits, and perform other bit-wise operations.

RELATED COMMANDS
AND, NOT

SYSTEM ‘ -

I, LVL I
LLVL N

I, Disk

!

I, LVL I

M, LtvL

. Disk

CC, BASIC

CC, Ext BASIC
CC, Disk

FORMAT

line# _.‘(expression)

EXAMPLES

1000 T=(1+1)1Y find amount over ¥ years

Up arrow 15 used to represent exponentiation
raising a number to a power. The power may be a
constant, vaniable, or expression, Fractional power:

o

b i, oy v_.,_;-x‘»..‘
PR SO 35 e e R

sl 3

e e

are permitted. In some systems the up arrow print:

as a left bracket. The Model Il up arrow i1s SHIFT 6

RELATED COMMANDS

None

SYSTEM :

I, LVL I

I, LVL Il

I, Disk

I o
I, LVL I S —(
I, LVL I G : - i)
I, Disk foessvesoverm’

CC, BASIC o o gl P 00\,

CC, Ext BASIC

CC, Disk

FORMAT

line# ..expression \ expression

EXAMPLES

1000 C=A \ B

DESCRIPTION

Reverse slash (CTRL.9) is a numeric operator that
performs an “integer division” on two operands and
returns a result. The two expressions involved are
converted to two integer operands. An integer
division operation divides the first operand by the
second operand and finds the quotient. Any
fractional part of the quotient is ignored and the
integer portion is then returned as the result of the
operation. If the first operand is 100, and the
second is 44, the result of 100 \ 44 is the integer
portion of 100744, or 2. This integer division is
similar to the INT function except that the two
operands here must be in the range of -32768
through +32767

RELATED COMMANDS

APPENDICES

i - e * e - . -
"y

TUU0y L _ ._._..::_;H_

‘.

aull wesboid jise| i1sN

9Sed J1amo| JO asienas 816601
uonnoaxe Buunp Aejdsip ieH
qe} jxeu 0} aoeds

Aoy o|buis e jeadey

lgjorieyd aja|ep pue aoedsyoeg
au|| ejelpawwl 10} 8pow }p3 J8jul
uonnoaxe buunp Aeidsip JeH
induy sejeujwie)

pua jnoyym pasj auln

i1s1) Buunp umop (10108

Bul| juesind ueisey

aull juauno adAlay

uonouny Aeidsip o|660)

pua noyym pasj eul

apow Jeyo 9 jesal pue Jes|d
usaIos Jea|n

apow puBwWWOD sjas ‘sdojs
aords)oeq

aul| juaund p3

aul| juaund 1SN

uonduoaseq

00000~~-00~
00000~~-00~

0000000000
~==00=~00~-

Byuon

1SV 10 shay |ejdads

Mmole
umop ‘1 4IHS
0 'LdIHS
@ ‘L4IHS
mode jJybu
1v3d3d
MOLIB }J8|
H3LIN3 ‘14
aT10H

H3LN3
MOLIB UMOP

MOLIB UMOP
N 1410

H 1410

O 41O

M THLO
Hv310
Hv310
AV3HE
30VdSHOVvE

Aoy

L iR | e T

uoloUNy 188N Paulapun
anuiuoo Jued

x9|dwoo 00} Bums

B6uoj oo} Buins

aoeds Buuys jo 1IN0
yojewsiw adA |

10841p |eBay||

0 Aq uoisiaig

Aesie pauoisuswipay
abuel Jo N0 1duosqgns
aul| pauyapun

Alowaw Jo N0

MO|LIBAD

|1eo uonouny |ebaj||
v.1va joino

gNSOO oYUM NHNLIH
10118 XBJUAS

HO4 noyim I X3N

uopduoasag

181y Buunp dn 0108
uonnoaxe Buunp Aeidsip jjeH
qe} xeu 0} eoeds

nuelg

aul wesbosd suy 18N

apow Jeyo-ze 198

ale1eQ

uines ‘eul)

sapo) 1ou3

4n -8l
NO o= =« ~Lb=Lb=LL=LL=LL
1S .~ -. -91-91-91-91-9L
S .= = -GL-Gi-GL-GL-GL
SO v= =« VL-PL-VL-PL-bL
WL .. - -€L-EL-EL-EL-EL
al .-, -. -2L-2t-2l-el-2t
0/ o=e =o =bb=bb=bL=LL-LL
aa .-. -. -0+-01-01-04-01
Sg.-.-.6 6 6 6 -6
N.-.-.-8 -8 -8 -8 -8
WO om0 =0 =L =L =L =L =L
AO .-, -. -9 -9 -9 -9 -9
Od ==+ =G -G -G -G -G
QO e~ b ¥ ¥ ¥ ¥
OH .~. -, € -€ -€ -€ €
NS .-« = =2 ¢ ¢ -¢ -
AN o= = =L =k =L =} -1

uopesnbyuod

¥$iQ 'O00
2ISvE X3 '00
JIsved ‘00
¥$1Q ‘i
HEIATY I
1 TAT '
"
¥$1Q |
—I__ M
QOOO0O00000 — ->J .— c;coo
0~0~~~0 Mmoue dn
““““ O==~0 Mmoue dn
mealmme av.i
0000000000 i1eq eords
~==Qem———- mousie
an ‘1 4IHS
-00~~00 mosie
Wby ‘L4IHS
000000~00~ mose

Hel ‘LJIHS

aoeds Jaynq Jo 1IN0
uado jou 9|14

8|1} ¥SIp puyy Jued
10118 Q/)

8|1} JO pua jsed jndu|
ainonis 9l peg
aweu 9|l peg

apow 8|l} peg

p10281 JO pus ised O/|
10148 Jaquinu 8djAeQ

Jjaquinu pioda) peg
s)sixa ApeaJje 9|4
paluap ssadde 8ji4

pajoajoid ajum ¥siq
sa|1) Auew 00}

OISV 1| POW pauljapufn
8|1} ul Juawa)e)s J0811Qq
aweua|l} peg

1018 paulepun
yojewsiw apow

uopduosaq

-
-
-
-
-
-
-
.

2ISVE 1| POW pauyapun
Jaquinu pJOda peg

pua ised indu)

"y %819

10458 pauyepun

QISVE || POW paulepun
Jou8 O/) ¥81Q

uedo ApeaJie a4

apow a|l} peg

puUNoj Jou 914

Jjaquinu 8y peg

J0OLI8 jewieju)

MO|}JBAD ploI4

Ajuo DISvE ¥810

Blep 9|1} peg

MOJBAO Jayng

puesado Buissiyy

10440 a|qeiuudun

1008 INOYIM JWNS3Y
FNNS3H ON

uopduoseq

-0L- - -69-
69- - -89-
-89- - -19-
- - I@OI -
-19- -§9-99-
69~ - ~¥9-
- - Ole -
- - lmwl -

-1§- -0§-05-

€262~ €262
2222~ -2
LSS -

-12-12-22-42-42
02-02-12-02-02
-61-61-02-61 61
81-81-61-81-8)

uopmnByuo)d

— —

Set to non-fielded string

Verification error

Write protected

* SE
-* VF
* WP

=

mnemonic used in lieu of code

o

1 (<2
=

= = 33{
_ e x2
<% |>souwo
>= |40 ...
-0 | . 000U
—wa==2=2000
:,
Cc
o
z
=)
g
o

Common ASCII Characters Used in BASIC

CHAR DEC HEX
space 32 20
! 33 21

34 22
35 23
$ 36 24
% 37 25
& 38 26

39 27

40 28
) 41 29
4 42 2A
$ 43 2B

44 2C
3 45 2D

46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

58 3A

59 38
< 60 3C
- 61 3D

62 3E

;r‘X(——Imﬂmoom)@ 2 \/
[=2]
©o
&
(4]

N<XXE<C-HOUDOTVOZ

N<~‘<C"V’"DUOJS""—‘70"@Q(‘\om

Decimal/Binary/Octal/
Hexadecimal Conversions

DEC BIN
00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010

DEC
43
L)
45
46
47

49

00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000

077

101
102
103
104
105
106
107
110
m
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130

01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110

ocT
131

DEC
135

137

14
142

10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100

ocT

207
210
21
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264

BIN OCT HX

10110101 265 BS
10110110 266 B6
10110111 267 B7
10111000 270 B8
10111001 271 B9
10111010 272 BA
10111011 273 BB
10111100 274 BC
10111101 275 BD
10111110 276 BE
10111111 277 BF
11000000 300 CO
11000001 301 C1
11000010 302 C2
11000011 303 C3
11000100 304 C4
11000101 305 C5
11000110 306 C6
11000111 307 C7
11001000 310 C8
11001001 311 C9
11001010 312 CA
11001011 313 CB
11001100 314 CC
11001101 315 CD
11001110 316 CE
11001111 317 CF
11010000 320 DO
11010001 321 D1
11010010 322 D2
11010011 323 D3
11010100 324 D4
11010101 325 DS
11010110 326 D6
11010111 327 D7
11011000 330 D8
11011001 331 D9
11011010 332 DA
11011011 333 DB
11011100 334 DC
11011101 335 DD
11011110 336 DE
11011111 337 DF
11100000 340 EO
11100001 341 E1
11100010

NN
L. T TS
1OnC

NN A

OCT HX
343 E3
344 4
345 E5
346 E6
347 E7

350

h b wh b wd

pooanannnn

