
TU.
BASIC

No. 1, April 1988 $3.00

For beginning
programmers with no prior

programming experience

CONTENTS

3 Teach Yourself BASIC
13 Browsing BASIC
23 Teach Yourself

QuickBASIC

PUBLISHER'S STATEMENT. The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
Francisco, CA 94110. Contents copyright o
1988 by Different Worlds Publications. All
rights reserved. Contents may be copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO. A 12-issuesub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

P R I N T E D I N T H E U . S . A .

Editorial HAPPY COMPUTING ! Bo
Do..

WELCOME TO the first issue of Tbe BASIC
Teacher. This issue contains opening articles on
three BASIC strands that will continue in future
issues:

"Teach Yourself BASIC" begins with a tutorial
on Microsoft BASIC (BASICA and GW-BASIC
for MS-DOS computers such as the Tandy
1000 TX, IBM PC, and a multitude of clones).
It starts at ground zero, square one, the begin
ning. No previous programming experience
required. In future issues, this strand will
include problems for you to solve and one or
more solutions to previously posed problems.

"Browsing BASIC" provides discussions about
randomly selected Microsoft BASIC and Quick
BASIC topics. The opening article explores the
use of function keys to provide shortcuts,
assigning new functions to the keys, and dis
abling functions previously assigned to the
keys. You can define function-key operations
to help you do what you want to do.

"Teach Yourself QuickBASIC" is a beginner's
series about Microsoft's revolutionary new
QuickBASIC, version 4, which ushers in a new
era of computer languages. Future articles in

this strand will slowly lead you through the
features of this structured programming lan
guage. If you have some background in Micro
soft's BASICA or GW-BASIC, you will find the
transition to QuickBASIC is gentle and easy. If
you have no previous experience in using
programming languages, begin here.

Additional strands will be added in future issues
of Tbe BASIC Teacher. Here are some possibil
ities:

"Imitations of Life" - A strand about the art and
science of simulation and simulation games.

"Adventures in FileLandia" — A strand that sure
ly, but slowly, explores the world of files.

"BASIC for Math & Science" - A strand that
explores the world of problem-solving in the
scientific world.

"Exploring Graphics" - Opening and closing
windows, color, geometric shapes, animation,
etc.

You, our readers, are welcome to send in sugges
tions for strands or specific areas of computer
application in which you are interested.

<

Special Reader Services
FOR THE further enjoyment of
your Volkscomputer, we
recommend the following books
for your computer library shelf:

Using QuickBASIC
By Don lnman and Bob Albrecht
(Osborne/McGraw-Hill, 436pp,
$19.95)

Here's an excellent programming guide
to Microsoft's newest version of
QuickBASIC by the authors of Tbe
BASIC Teacher. The book approaches
QuickBASIC's programming environ
ment in three stages so beginning and
experienced BASIC programmers can
find the appropriate level of instruc
tion.

The books below are available at local
bookstores. Or, as a special reader
service, you can order them thru us by
sending a check or money order to:
Tbe BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

DOS Made Easy
By Herbert Scbildt
(Osborne/McGraw-Hill, 385pp,
$18.95)

Previous computer experience is not
necessary to understand this concise,
well-organized introduction that's
filled with short applications and exer
cises. The book walks you thru all the
basics, beginning with an overview of a
computer system's inner components
and a step-by-step account of how to
run DOS for the first time.

Please add $2 for the first book and
$1 for each additional book to cover
postage and handling charges.
California residents must add
appropriate sales tax.

The Shareware Book
Using PC-Write, PC-File, PC-Talk
By Emil Flock, et al
(Osborne/McGraw-Hill, 688pp,
$14.95)

Covers the most popular "free"
programs: PC-Write, a word processor;
PC-File, a database manager; and PC-
Talk, a telecommunications program.
These programs are available thru user
groups or bulletin-board services in
return for a nominal registration fee.
The book has all the details on how
you can obtain these program disks.

0 April 1988 The BASIC Teacher

TU<
BASIC
'Z~c^f/icv

Teach Yourself BASIC
By Bob Albrecht and George Firedrake No. 1

Introduction RELAX, MAKE YOURSELF COMFORTABLE.
Get ready to go on an Adventure in Learning.

You can teach yourself how to read and understand BASIC, the People's
Computer Language, used by more people than any other computer
language.

You can learn how to use Microsoft GW-BASIC, also known as Microsoft
BAS1CA, built-into or bundled with more than 20,000,000 IBM PC, Tandy
1000, or compatible computers—today's Volkscomputers.

A computer language is a language used to communicate with a computer.

Compared to human languages—such as English, Spanish, or Japanese—a
computer language is very simple. BASIC has a small vocabulary (list of
words it knows), and a simple syntax (rules of grammar that it follows).

When you begin to understand a little BASIC, you may wish to tell the
computer to do what you want it to do the way you want the computer to
do it.

You may write your own original, never-before-seen-on-Earth-or-anywhere-
else programs-your programs!

A Program
A PROGRAM is simply a set of instructions, a
plan for doing something. You may have already
used or created a program. For example:

• A recipe for baking
cookies.

• Instructions for opening
a combination lock.

• Directions on how to get
to someone's house.

• Instructions for assem
bling a model or a toy.

A BASIC program is a set of instructions that tells
the computer what to do and how to do it in the
language the computer understands—BASIC. A
set of instructions to make the computer do what
you want it to do, following the rules of BASIC,
is called a program —your program.

The BASIC Teacher April 1988

YOU CAN DO
NOTHING WRONG

YOU CANNOT harm the computer by typing a
mistake. You may make some, but this is a
natural part of exploring and learning. Risk it!
Try it and find out what happens. You can learn
more from your own patient exploration than
from this or any other book. So explore, enjoy,
and tell us about your discoveries as you teach
yourself how to use, program, and enjoy your
computer.

Bob & George
PO BOX 7627

Menlo Park, CA 94026

a

2 Teach Yourself BASIC No. 1

life Assume
You Know
a Little DOS
WE ASSUME that you know how to use the Disk
Operating System (DOS) for your computer. Ours
is called MS-DOS, which means Microsoft Disk
Operating System. You use DOS to load BASIC
into the computer.

If you do not know a little
DOS, or know a little and
want to learn more, we rec
ommend the following book:

• DOS Made Easy
by Herbert Schildt
Published by Osborne
McGraw-Hill, 2600
Tenth Street, Berkeley,
CA 94710.

We use a Tandy 1000TX with MS-DOS and GW-
BASIC, version 3.20, both resident on a single
3V4" disk. To get started, we insert the MS-DOS
disk in drive A and turn on the computer. When
we see the MS-DOS prompt (the letter "A"
followed by a right arrow), we type BASIC and
press the ENTER key. If that does not work on
your system, try typing BASICA or GWBASIC or
GW-BASIC ... or look it up in the reference
manual that came with your computer.

Soon we see the opening GW-BASIC screen. The
upper left part of the screen looks like this:

The bottom of the screen is the key line, which
shows labels for the function keys. On our key
board, these keys are labeled Fl, F2, F3, and so
on, across the top of the keyboard. On your
computer they may be elsewhere.

On the screen, the key line looks like this:

For now, just ignore the function keys and the
key line. We will tell you more about them later

1LIST 2RUN 3LOAD" 4SAVE" 5C0NT 6,"LPT1 7TR0N 8TR0FF 9TR0N 10SCREE

GW-BASIC 3.20
(C) Copyright Microsoft 1983,1986,1985,1986
TANDY 1000 GWBASIC 3.20
Tandy Version 03.20.01
Licensed to Tandy Corporation
60525 Bytes free
0k

Blink, blink, blink-this is the cursor.

0 April 1988 The BASIC Teacher

Teach Yourself BASIC No. 1

Clearing
the Screen
WE LIKE to start with an empty screen. Well,
almost empty. Here is a way to clear, or erase, the
screen:

• Hold down the CTRL key and press the "L"
key.

Poof! The screen is empty, except for the cursor
in the upper left corner and the key line at the
bottom of the screen.

The cursor

The key line 1LIST 2RUN 3L0AD"...

When you see the blinking cursor, you know that
it is your turn to do something. The computer
will (blink, blink) wait patiently (blink, blink)
until you (blink, blink) do something.

Blink, blink, blink . ..

DO THIS:

• Type your name.

• Press the ENTER key.

Well, we do not know your name.

Here is what happened when Mariko typed her
name:

Mariko typed [M] [A] [R| [F] [K] [O]

As Mariko typed
her name, the
cursor moved to
the right.

MARIKO

Then she pressed the ENTER key.

MARIKO
Syntax error
Ok

We explained to Mariko that the computer did
not understand her. The word MARIKO is not
of those special BASIC words that the computer
understands.

"Aha!" exclaimed Mariko, and she began to learn
about special words the computer does under
stand.

The BASIC Teacher April 1988 0

Teach Yourself BASIC No. 1

Things to Try
Go ahead, press any key.

• Type your name and press the ENTER key.

Ignore any syntax error or other error messages.

• Use the CTRL key and the "L" key to clear
the screen.

• Hold down the CTRL key and press the
BREAK key. You will use this key combina
tion frequently to tell the computer to stop
doing what it is doing. Usually, when you
hold down CTRL and press BREAK, you
will see the computer's cheerful Ok message
and the cursor. EXPERIMENT!

If even that does not work, yell for help
There are so many people using computers
that someone might hear you and rescue you
from your predicament.

April 1988 The BASIC Teacher

But if that does not work, you might have to start
over. That's okay. Here are some ways to start
over:

• Press the CTRL. ALT, and DELETE keys
together, all at the same time. This causes
the computer to reload DOS. When you see
the prompt, type BASIC and press the
ENTER key. (The DELETE key may be
labeled DEL on your computer.)

• Our computer has a big red reset key on the
front panel. Press the reset key and it reloads
DOS. At the prompt, type BASIC and press
the ENTER key.

• If all else fails, remove the DOS disk, turn
the computer off, insert the DOS disk, and
then turn on the computer. Yes, it will load
DOS. When you see the prompt , type BASIC
and press the ENTER key.

• Hold down the ALT key and press a letter
key or any other key.

• Press lots of keys. Press combinations of
keys. Hold down a key.

Oops? Did the computer freeze and refuse to
cooperate?

If things go wrong, as well they might, and
nothing seems to work, try the following:

• Hold down the CTRL key and press the
BREAK key. If this works, the computer
will display Ok and, just below it, the cursor.
You have regained control.

Teach Yourself BASIC No. 1

BEEP
HERE IS your first BASIC keyword, a word that
BASIC understands: BEEP.

Your computer has a built-in beeper. You have
probably heard it many times.

Make the computer go beep.

• First, clear the screen.
Hold down the CTRL
key and press the "L"
key.

• Type B E E P and press
ENTER. trr„

BEEP
Ok

Did you hear a beep?

If you did not hear a beep, perhaps you typed
VEEP or BEP or BEAP or BLEAP.

BASIC keywords must be spelled correctly.

However, it is okay to type them in lower case.
For example, you can type beep and press the
ENTER key to make the computer go beep. Go
ahead, do it.

If you want to use the
magic of BASIC, you
must learn the few
words BASIC under
stands. Some people
call these keywords or
reserved words. BEEP
is a special BASIC
word, a keyword that
tells the computer to
go beep. Soon you will
learn more special
BASIC keywords.

Type beep and press
ENTER. beep

Ok

It is even okay to type Beep or BeeP or any
mixture of upper case and lower case letters.

However . . .

PLEASE REMEMBER

We will always use all upper-case letters for
BASIC keywords.

The BASIC Teacher April 1988 a

6 Teach Yourself BASIC No. 1

PRINT
YOUR SECOND BASIC keyword is one of the
most useful: PRINT.

Use PRINT to print information on the screen.

Your computer knows the date and time of day.
Well, it does if you set the correct date and time
when it first loads DOS. As you will see later, you
can set the date and time while in BASIC. You
can also tell the computer to print whatever date
and time it thinks is current.

Clear the screen by
holding down the
CTRL key and
pressing the L key.

Type P R I N T D A T E $
and press ENTER.
Here is what we saw
when we did it:

PRINT DATE*
01-25-1988
Ok

Type P R I N T T I M E S
and press ENTER.
Here is what we saw
when we did it:

PRINT TIME*
08i27:39
Ok

Of course, if you misspell PRINT, you will see the
dreaded syntax error. That is okay, just try again.
If you misspell DATE* or TIMES, you may see
nothing on the line below the line you typed.

Type P R I N T T Y M E S
and press ENTER.
We see an "empty
line":

PRINT TYME*

Ok

In addition to the date and time, the computer
keeps track of the number of seconds since
midnight. Well, midnight according to the
computer.

Type P R I N T T I M E R
and press ENTER.
We did it a few
seconds after we
typed PRINT
TIME*.

PRINT TIMER
30468.65

Ok

H m m m . . . i s t h a t a b o u t r i g h t ? W e d i d i t a f e w
seconds after finding out that the time (TIME*)
was 08:27:39. Let's check it:

• Type P R I N T 3 6 0 0 * 8 • 2 7 • 6 0 • 3 9
and press ENTER.

PRINT 3600
30459

0k

* 8 + 27 * 60 + 39

We used the computer
to do the arithmetic.

Next, we will tell you more about arithmetic.

a
April 1988 The BASIC Teacher

Teach Yourself BASIC No. 1

Arithmetic
YOU CAN tell the computer to do arithmetic and
PRINT the answer.

ADDITION: Use the

SHIFT key and press

• Type P R I N T 7 + 5
and press ENTER:

key. (Hold down a

PRINT 7+5
12

Ok

Well now, if you misplace your
$10 solar-powered calculator, just
crank up your Volkscomputer and
calculate, calculate, calculate. For
practice, try some of the examples
on the next two pages.

MULTIPLICATION: Use the
SHIFT key to type *.) m key. (Use a

• Type P R I N T 7 * 5
and press ENTER: PRINT 7*5

35
Ok

SUBTRACTION: Use the
a SHIFT key.) • key. (Do not use

• Type P R I N T 7 - 5 and
press ENTER:

DIVISION: Use the
SHIFT key.) m key. (Do not use a

PRINT 7-5
2

Ok

Type P R I N T 7 / 5
and press ENTER: PRINT 7 /

1.4
Ok

The BASIC Teacher April 1988 a

8 Teach Yourself BASIC No. 1

Mariko is 57 inches tall. How tall is she in
centimeters? Hmmm ... we seem to recall that
one inch equals 2.54 centimeters.

• You type P R I N T 57 * 2.54

• It prints 144.78

2.54 centimeters

32NDS
IHI I IH!

Easy! Just multiply the number of inches by 2.54
and print the result. But suppose you know the
number of centimeters and want to compute the
number of inches?

An ancient ruler named
Zalabar measured 100
centimeters from the tip of
his nose to the end of his
outstretched finger.

How long is that in inches?

You type
PRINT 100 / 2 .54

It prints 39.37008

Call it 39.37. Does that sound familiar? Perhaps
you recall that 100 centimeters is equal to one
meter, and one meter is equal to 39.37 inches, a
little more than one yard.

People usually give their
height in feet and inches. If
you ask Mariko how tall she
is, she will probably tell you
she is 4 feet, 9 inches tall.
Given feet and inches, it's
easy to write a PRINT
instruction to compute
height in centimeters:

• You type P R I N T 4 * 1 2 + 9

• It prints 57

Before he reached his full stature, King Kong was
once 37' 8" tall. How tall was he then in
centimeters?

• You type PRINT (37 * 12 + 8) * 2.54

• It prints 1148.08

Aha! Note how cleverly we sneaked in the use of
parentheses (). The rules for using parenthesis are
very similar to the rules you learned in elemen
tary school math classes. Your computer does the
arithmetic inside parentheses first, then does the
rest. More about that later.

REMEMBER: 1 inch = 2.54 centimeters
1 meter = 39.37 inches

In the above, we put in extra spaces to make
things easier for you to read and understand.
Instead of PRINT 57 * 2.54, you can, if you
wish, type PRINT 57*2.54. Instead of PRINT
4*12 + 9, you can type PRINT 4*12+9.

April 1988 The BASIC Teacher

Teach Yourself BASIC No. 1

Recently, we took a trip in our ever-faithful car,
Henrietta Honda. At the beginning of the trip,
Henrietta had 19,832 miles on her odometer. At
the end of the trip, her odometer read 20,219. We
filled her tank at the beginning and again at the
end. She burned 9.3 gallons of gas.

• You type P R I N T (20219 - 19832) / 9 .3

• It prints 41.6129

Well, let's call it about 41.6 miles to the gallon.

Thanks Henrietta!

/) kilometer
afuct'i /W

rne.Jt rS. ^

9

Most of the people on Earth use the metric
system. Someday, we who live in the U.S.A. will
also go metric. Instead of miles, we will use
kilometers.

1 kilometer = 0.621371 mile
1 mile = 1.609344 kilometers

How many kilometers did we travel on that trip
with Henrietta?

• You type
PRINT (20219 - 19832) * 1 .609344

• It prints 622.8161

In BASIC, the rules for arithmetic are very similar
to the rules we use in "everyday" math.
Remember though, to use an asterisk (*) for
multiplication and a slash (/) for division.

R E M E M B E R : 1 kilometer = 0.621371 mile (Okay to use 0.62)
1 mile = 1.609344 kilometers (Okay to use 1.61)

The BASIC Teacher April 1988

10
Teach Yourself BASIC No. 1

Things to
Remember
IF YOU can read a newspaper or a comic book,
you can learn to read and understand programs
written in BASIC, the People's Computer
Language. This is especially true if you have
Microsoft BASIC or QuickBASIC on a Volks-
computer, the very inexpensive, very powerful,
very useful MS-DOS, PC compatibles—the
computers for the rest of us.

BASIC has a small vocabulary and a simple syntax
(grammar). You already know two words of
vocabulary—BEEP and PRINT—and a little bit
about syntax, including a brief tete-a-tete with
the dreaded syntax error.

You know (we hope!) how to load DOS and
BASIC- and how to restart when everything goes
wrong.

You have seen, but not yet used, the key line at
the bottom of the screen, which shows labels for
the function keys Fl, F2, F3, and so on.

You know how to clear the screen by holding
down the CTRL key and pressing the L key.

You know that we will always type keywords in
all upper case (BEEP, PRINT). However, you
may, if you wish, type them in lower case or in a
mixture of upper and lower case.

You know how to get the computer to print the
date (PRINT DATES), the time of day (PRINT
TIMES), and the number of seconds since
midnight (PRINT TIMER). You can set the date
and time when you First enter MS-DOS. Next
time we will show you how to set them within
BASIC.

You know how to use the computer as the
world's most expensive calculator and do
arithmetic using and /.

Best of all, you know:

YOU CAN DO NOTHING WRONG
MISTAKES ARE OK
PART OF LEARNING

EXPERIMENT
TRY AGAIN
HAVE FUN

April 1988 The B AS IC Teacher

TUe
BASIC
'/"c^c/icv

Browsing BASIC No. 1

By Don Inman

IN THIS section of The BASIC Teacher, we assume that you have a little
knowledge of the use of your computer, including being able to load BASIC
from MS-DOS. We also assume that you know how to use the following
GW-BASIC commands and statements:

INTRODUCTION

CHR $(:
CLS
DATA
DIM
END

NEXT FOR
GOSUB
GOTO
I F . . . T H E N
INPUTS (n

LIST
LOAD
LOCATE
PRINT
READ

REM
RETURN
RUN
SAVE
SPACE (n)

TAB (n)
WIDTH

It would be helpful, although not completely necessary, to
know the use of the following commands and statements:

CONT LPT1 TRON TROFF SCREEN

In this issue, we will browse the uses of the KEY command which can be used as
an immediate command or as a statement within a program. A Tandy 1000 TX
computer is used for our demos.

FUNCTION KEYS
WHEN YOU first load GW-BASIC, the screen is set to the text mode with a
screen-width of 80 characters. Characters are displayed in white on a
black background. You can't help noticing the bottom line (line 25) of the
screen. This is the key line. It lists the functions that have been assigned
to the numbered function keys (F1 thru F10), located at the top of the

keyboard on most computers. KEY LINE

1LIST 2RUN* 3LOAD" 4SAVE" 5C0NT* 6,"LPT1 7TR0N* 8TROFF* 9KEY 10SCREE

USE U S
"LrLTu ^

Do you ignore the function keys when you are programming? You can use them
to reduce the number of keystrokes needed to enter programs and also reduce
the chance of making typing errors. Pressing one of the function keys gives
the same result as typing the command displayed for that particular key.

Some computers have more than ten function keys. The Tandy 1000 T X has
twelve numbered function keys. The numbered function keys should not be
confused with the four direction (arrow) keys or other user-defined keys, which
will be discussed in a future issue. No function has been assigned to keys Fll
and F12 on the Tandy 1000 TX. As discussed later, you are free to assign any
desired function to these two keys. You may also change the functions assigned

to any of the first ten function keys.

FUNCTION KEYS
of Tandy 1000 TX

The BASIC Teacher April 1988

Browsing BASIC No. 1

lotions of the functions performed by keys F1 thru F10.

F4

F5

F6

F7

F8

F9

SAVE"

CONTt

,"LPT1:

TRONf

TROFFf

KEY

F10 SCREEN 0,0,0

Use to list a program. Must be
followed by pressing [ENTER] •

Use to run a program. Active program
runs immediately.

Use to load a program. Name of desired
program must follow quote. Then press
[ENTER] to load the program.

Use to save a program. Name of program
to be saved follows quote. Then press
[ENTER] to save the program.

Used when a program has been interrupted
by STOP. It continues the execution of

the program.

Used to select printer as I/O device.
I/O command would precede the comma.
Command is executed immediately.

Turns on tracing function. Executed
immediately.

Turns off tracing function. Executed
Immediately.

Used for the KEY functions described
in this article. Complete the command
then press [ENTER].

Sets Text Mode. Executed immediately.

The key line is sometimes distracting when a program is running. Most
programmers turn the key descriptions off by a command or within a program
by a program statement.

Key descriptions may be turned off by
the command:

KEY OFF [ENTER]

Example of turning key descriptions
OFF within a program.

110 CLS
120 KEY OFF

Key descriptions may be turned back
on by using the command

KEY ON [ENTER]

Example of turning key descriptions
ON within a program.

520 CLS
530 KEY ON
540 END

Functions of
FUNCTION KEYS

Turning
KEY LINE
On and Off

O N

&
O M

Turning the key desenptioni back on
it the end of • program will rcmin
you of shortcut methods to LIS •
SAVE, etc

April 1968 Tht BASIC T«chcf

Browsing BASIC No. 1 3

The descriptions provided by KEY ON display up to five characters. When
displayed in the 40 characters/line mode, only the first five of the key
descriptions are displayed.

You may display a list of the complete description of all function keys by
entering the command:

KEY LIST [ENTER]

The
KEY LIST
Command

Ok
KEY LIST
Fl LIST

Here is the result of F2 RUN f-
using the KEY LIST F3 LOAD"

command on the FA C0NT4-
Tandy 1000 TX. F6 ,"LPT1:

Notice that no function F7 TRONf-
has been assigned to F8 TROFFt

the Fll or F12 key. F9 KEY
F10 SCREEN
Fll
F12
Ok

ASSIGNING FUNCTIONS TO THE KEYS

You can assign a function to any function key by using the KEY command.

KEY number, string

l—a string with at most 15 characters (extras are ignored)

—the key number; 1 for Fl, 2 for F2, 3 for F3, and so on.

For example, suppose you want to assign the string "CLS" to function key Fll.

Type:

KEY 11, "CLS" [ENTER]

Now press Fll (or the function key you chose instead of Fll).

The screen will look like this:
KEY 11, "CLS"
Ok
CLS

Press the (ENTER) key, and viola!, the screen is cleared, except for the prompt

(Ok) and the cursor (_).

The BASIC Teacher April 1988
\n\

Browsing BASIC No. 1

Now that you have assigned CLS to the F11 key, enter and run the following
GW-BASIC program that prints directions for clearing the screen.

EXAMPLE

1 REM ** Test the [Fll] Key **
2 REM ** Browsing BASIC #1 **
3 REM ** Microsoft GW-BASIC Filet KeyTest.001

100 REM ** Define Screen **
110 SCREEN 0: KEY OFF
120 WIDTH 80: CLS

200 REM ** Print Key Directions **
210 FOR n = 1 TO 3
220 PRINT "When I print 0k, press [Fll]."
230 NEXT n

After you run the program, the screen shows:

When I print 0k, press [Fll].
When I print 0k, press [Fll].
When I print 0k, press [Fll],
0k

Press Fll and the CLS command and cursor are added, as shown below:

When I print Ok, press [Fll].
When I print 0k, press [Fll].
When I print Ok, press [Fll].
0k
CLS _

ir. •-« *

Now, press [ENTER]. The screen is cleared.

Remember, the string assigned to a function key can have a maximum of 15
characters including blanks. Thus, the assignment to Fll could be longer,
as follows:

KEY 11, "CLS:KEY ON" •clear screen and turn key line on

Leave the "Test the [Fll] Key" program in memory and enter this new key
assignment. It will replace the shorter string assigned previously. Try the
program again with the change in line 160. Press F11 at the end of the
program. This time the output screen shows:

When I print 0k, press [Fll].
When I print 0k, press [Fll].
When I print 0k, press [Fll].
0k
CLS:KEY 0N_

Press the ENTER key to clear the screen and turn the key descriptions back on.
Notice again that only the first ten descriptions are displayed on line 25.

©
April 1988 The BASIC Teacher

Browsing BASIC No. 1

To see a description of all 12 keys type:

KEY LIST [ENTER]

Note that Fll now has a function
assigned to it—the function that
you assigned to it. This function
will remain assigned to Fll until
you change it, or exit BASIC, or
turn the computer off.

If you choose a different function,
your assignment would appear on
this list, opposite the chosen key.

KEY LIST
F1 LIST
F2 RUN
F3 LOAD
FA SAVE"
F5 CONT
F6 ,"LPT1:"
F7 TRON
F8 TROFF
F9 KEY
F10 SCREEN 0,0,0
Fll CLS:KEY ON
F12

You can use a function key as a short cut key in entering a program line.
Assume that, as above, the string "CLS: KEY ON" has been assigned to Fll.

Suppose you want to enter the line: 230 CLS: KEY ON.

DO THIS:

Type"230"

Press Fll

Press ENTER

SEE THIS:

230_

230 CLS:KEY 0N_

230 CLS:KEY ON

Use this method to enter line 230 in the following short program.

1 REM ** Use Fll to Enter Program Line **
2 REM ** Browsing BASIC 01 **
3 REM ** Microsoft GW-BASIC File: KeyTest.002 **

100 REM ** Define Screen **
110 SCREEN 0: CLS: WIDTH 80: KEY OFF

200 REM ** Use Fll to Enter Line 230 **
210 PRINT "Press any key to continue"
220 ky$ » INPUT$(1)

230 CLS: KEY ON

'Walt for a key press

•Enter as: 230 [Fll] [ENTER]

2A0 END

Run this program. It clears the screen,
turns off the key line, and waits at
line 220 with the screen shown at right.

Press most any key and line 230 clears
the screen and turns on the key line.

If you are writing a program in which
some lines appear many times, use this
method to save wear and tear on your
fingertips!

Press any key to continue^

0k

1LIST 2RUN 3L0AD.

The BASIC Teacher April 1988
®

ADDING A CHARACTER CODE

When a function was assigned to a function key in previous examples, it was
necessary to press the ENTER key to activate the assignment. The ENTER key
can be included by using its ASCII character code (13) in the assignment. The
CHR$ function is used to assign CLS:KEY ON [ENTER] to F12. CHRSU3) is
catenated (or concatenated if you prefer) with a plus (+) sign. It counts as on y
one of the 15 characters permitted in a key assignment.

You can make the assignment with the immediate command:

KEY 12,"CLS:KEY ON" + CHR$(13) [ENTER]

Now you can press F12 and get a clear screen with the function keys displayed at
the bottom of the screen. Now you do not have to press ENTER after pressing

F12.

You can use the F12 key to quickly clear the screen when it gets cluttered.

In addition to using such key assignments as immediate commands, you might
also find situations where you could use an assignment within a program. You
might want to change the function of a key while a program is running.

80 CHARACTERS PER LINE MODE: If Fll and F2 are defined as described
earlier, the first ten functions are displayed as shown below:

1LIST 2RUN 3L0AD" 4SAVE" 5C0NT 6,"LPT1 7TR0N 8TR0FF 9KEY 10SCREE

Press [CTRL] + [T]. You will see Fll, F12, and F1 thru F8.

11CLS:K 12CLS:K 1LIST 2RUN 3L0AD" 4SAVE" 5C0NT 6,"LPT1 7TR0N 8TR0FF

Press [CTRL] + [T] again. The key definitions disappear. Line 25 is blank.

Press [CTRL] + [T] once more. You will see the first ten definitions again.

1LIST 2RUN 3LOAD" 4SAVE" 5C0NT 6,"LPT1 7TR0N 8TR0FF 9KEY 10SCREE

Using [CTRL] + [T] in the 80 characters per line mode causes key definitions
to cycle, one step at a time, thru three displays:

[1] The first ten definitions are displayed.
[2] Fll, F12, and F1 thru F8 are displayed.
[3j- No definitions are displayed.

40 CHARACTERS PER LINE MODE: You can change from the 80 characters
per line mode to the 40 characters per line mode by typing WIDTH 40 and
pressing ENTER.

If the first ten definitions were showing at the bottom of the screen when
WIDTH 40 is typed, you will now see only five definitions at the bottom of
the screen.

.*'+1

1LIST 2RUN 3L0AD" 4SAVE" 5C0NT
EXPERIMENT!
Press [CTRL| • (T| several times
watch what happens.

and

April 1988 The BASIC Teacher

Browsing BASIC No. 1 7

DISABLING THE FUNCTION KEYS

Not only can you change the functions performed by the keys F1 thru F10
(thru F12 for extended keyboards), but you may also disable these functions.
We earlier said functions were assigned by:

KEY n, string

at integer or expression
that evaluates to an integer

a string of 15
characters or less

If the string assigned has no characters (the null string, ""), the function key is
disabled. This program disables keys F1 thru F10:

1 REM ** Disable Function Keys **
2 REM ** Browsing BASIC #1 **
3 REM ** Microsoft GW-BASIC File: KeyTest.003 **

100 REM ** Define Screen & Turn Keys On **
110 KEY ON: CLS

200 REM ** Erase Key Definitions **
210 FOR index = 1 TO 10
220 KEY index, ""
230 NEXT index

When this program
is run, the screen
is cleared and the
function keys are
disabled. All you
see are the Ok
prompt, the cursor,
and the ten function
numbers at the
bottom of the
screen-functions
are disabled.

You now have ten function keys with which to play (twelve if you have an
extended keyboard). The keys will remain disabled until you assign a new
function or leave BASIC and return. The ten standard functions are
automatically assigned on entering BASIC.

The following program uses three of the functions disabled by the Dibble
Function Keys program. Three data items (add, delete, and quit) are R
from a DATA statement and assigned to the function keys Fl, F , an

A menu is printed from which you make a selection. Selections are ma y

pressing Fl, F2, or F3.

'function keys Fl thru F10
'assign null string

1 did not actually write the subroutines
which would enhance your data file. I leave
that up to you—or will make it the subject
of a future issue if you, our readers, are
interested in data-file programming.

The BASIC Teacher April 1988
[jU

8
Browsing BASIC No. 1

1 REM ** Function Key Assignments **
2 REM ** Browsing BASIC #1 **
3 REM ** Microsoft GW-BASIC File: KeyTest.004 **

100 REM ** Define Screen **
110 SCREEN 0: KEY OFF
120 WIDTH 80: CLS

200 REM ** Assign Functions to [Fl], [F2], [F3] **
210 KEY 1, "add" + CHR*(13)
220 KEY 2, "delete" + CHR*(13)
230 KEY 3, "quit" + CHR*(13)

300 REM ** Print Menu **
310 PRINT TAB(35)j "MAIN MENU"
320 PRINT: PRINT TAB(25); "Add records to a file (Fl)"
330 PRINT TAB(25)j "Delete records from a file (F2)"
340 PRINT TAB(25); "Quit Program (F3)"

400 REM ** Turn Keys On & Get Choice **
410 KEY ON
420 LOCATE 10,1: PRINT SPACE*(79);
430 LOCATE 10,1: INPUT " Enter your choice:",
440 IF ky* = "add" THEN GOSUB 1010
450 IF ky* = "delete" THEN GOSUB 2010
460 IF ky$ = "quit" THEN GOSUB 3010: END

470 LOCATE 12,1: PRINT "Press any key to continue";
480 press* = INPUT*(1)
490 LOCATE 12,1: PRINT SPACE*(25);
500 GOTO 420

4;
C b

ky*

1000 REM ** SUBROUTINE: Add Records **
1010 LOCATE 10,1: PRINT SPACE*(79);
1020 LOCATE 10,1: PRINT "This routine would "; kv*:
1030 RETURN

records to a file."

2000 REM ** SUBROUTINE: Delete Records **
2010 LOCATE 10,1: PRINT SPACE*(79)
2020 LOCATE 10,1
2030 PRINT "This routine would "; ky*; " records from a file."
2040 RETURN

3000 REM ** SUBROUTINE: Quit Program **
3010 CLS
3020 RETURN

April 1988 The BASIC Teacher

Browsing BASIC No. 1 9

A menu is printed
by lines 310
thru 340.

Line 410 turns on
the key functions
at the bottom of
the screen, and
line 430 asks for
a selection from
the menu.

HA IN m«i

Add roc
Delete
Quit Pr

ords to a file (Fl)
record* f ree a f i l e (F2)
ojprut (F3)

Enter your choice:.

ladd- Zdelete 3gulf 4 B 6 7 B 9 IB

When a key (Fl, F2, or F3) is pressed, the appropriate subprogram is called by
line 440, 450, or 460.

Press Fl and this
message is printed:

The subprogram at
line 1000 would be
written to add
records to a data
file.

HAIH HEW

Add records to a file (Fl)
Delete records fran a file (F2)
Quit Projran (F3)

This routine would add records to a file.

Press any key to continue.

Press F2 and this
message is printed:

The subprogram at
line 2000 would be
written to delete
records from a data
file.

HA IN HEW

Add records to a file (Fl)
D e l e t e r e c o r d s f r o e a f i l e (F 2)
Quit Progrran (F3)

This routine would delete records free a file.

Press any key to continue.

Press F3 to leave the program. The subroutine at line 3000 clears the screen.
When the computer returns from this subroutine the program ends.

Remember, function keys Fl, F2, and F3 still have the functions assigned by
this program and the other keys are disabled. Type SYSTEM to access MS-DOS.
When you return to GW-BASIC the normal functions will be assigned to keys Fl
thru F10.

SYSTEM
The BASIC Teacher April 1988

10 Browsing BASIC No. 1

OTHER SHORTCUTS FOR BASIC KEYWORDS

If you arc lazy like 1 am, you may browse GW-BASIC for other shortcuts.
Anything that reduces the amount of typing also reduces the chance for typing
errors when entering programs or commands. For instance, ? can be entered as a
shortcut for PRINT in GW-BASIC. Many times I have typed PRONT, PRINDT,
or some other nonsensical variation. It is pretty hard to misspell a question
mark.

Tucked away in the back of my Tandy 1000 TX Quick Reference Manual, I
found the following list of GW-BASIC keywords that have shortcut keys when
used with the ALT key. Here is a table of these shortcuts:

Vt> -Flitsc, wo rk
/ on c?

Keyword Press Keyword Press

AUTO [ALT] + [A] NEXT [ALT] + [N]
BSAVE [ALT] + [B] OPEN [ALT] + [0]
COLOR [ALT] + [C] PRINT [ALT] + [P]
DELETE [ALT] +[0] •• [ALT] + [Q]
ELSE [ALT] + IE] RUN [ALT] +[R]
FOR [ALT] + [F] SCREEN [ALT] + [S]
GOTO [ALT] + [G] THEN [ALT] + [T]
HEXS [ALT] + [H] USING [ALT] + [U]
INPUT [ALT] + [l] VAL [ALT] + [V]
•• [ALT] + [J] WIDTH [ALT] + [W]

KEY [ALT] +[K] XOR [ALT] + [X]
LOCATE [ALT] + [L] •• [ALT] + [Y]
MOTOR* [ALT] + [M] »» [ALT] + [Z]

'MOTOR is a reserved keyword but is not recognized by this version of
GW-BASIC.

*'Sorry, I guess they couldn't find keywords beginning with J, Q,
Y, or Z.

You can use these ALT key combinations to enter the keyword in a program
statement or as a command when the cursor is blinking at you in anticipation of
a command. Remember, [ALT] + [letter] means hold down the ALT key while
you press the letter key.

Once again, if you are lazy like me, you will be tempted to use these shortcut
keys. However, if your memory is as bad as mine, you will never remember
which key represents which keyword. At least they were consistent in assigning
keys that correspond to the first letter of the keyword.

We hope this initial GW-BASIC browsing has been helpful to you. You may have
learned something new. You may have had your memory jogged about things
you already knew. Or. maybe you are one of those "power programmers" who If you have suggcstions for t ics t0

have been using these shortcuts all along. If so, be patient. We will browse a little be browsed, send them to
deeper in future issues.

The BASIC Teacher
"Browsing BASIC"

PO Box 7627
Menlo Park, CA 94026

April 1988 The BASIC Teacher

TUe
BASIC

TEACH YOURSELF
QuickBASIC

No. 1

By Bob Albrecht
and George Firedrake

ON MAY 1, 1964 at 4 a.m., John Kemeny and a student simultaneously
entered and ran separate BASIC programs at Dartmouth College. Thus
was born BASIC, the first computer language designed to be easy to
learn and use by just about anyone.

In 1975 or thereabouts, thanks to Bill Gates, BASIC became available on
the first personal computers. In one giant step and a series of short hops,
computers moved from the cloistered realm of the professional
programmer into the hands of enthusiastic amateurs, who collectively
created a new form of programming called "spaghetti code." BASIC
programs were a tangled skein, but the sauce was heady ...

In those days of yore, memory was dear, BASIC
was primitive, and programs were crunched into
the smallest possible space—unreadable by anyone
not a true believer. Fortunately, things got better.
Computers got better, memories got bigger,
BASIC got better and better. Now there is

QuickBASIC 4.0, the best BASIC yet. It is easy to
learn, easy to use, and very, very capable. You
can learn to write programs in QuickBASIC,
programs that tell the computer to do what you
want it to do the way you want it done.

QuickBASIC 4... the Package
QuickBASIC 4 comes in
an impressive package
containing three books
and three 5'4" disks or
two 3'/4" disks. The disks are not
copy-protected; you can make
copies for your own use. DO IT!
Make copies of the original disks,
then put the original disks in a
safe place away from the com
puter, perhaps an inconvenient place so you are
not tempted to use them, except for making
copies. Use the original disks that come in the
package only for making copies.

The three QuickBASIC books contain an
enormous amount of information. QB4 is
succinctly described in 1241 pages of documen
tation—obviously not written for beginners. That
is why we are writing this stuff in The BASIC
Teacher—to help you begin to learn QuickBASIC.
Later, you will appreciate the Microsoft books
more and more, as your knowledge of Quick
BASIC grows.

If you are a beginner, start with the Microsoft
book called Learning and Using Microsoft Quick
BASIC. Page 7 encourages you to make copies of
the disks. Do it! Pages 8 and 9 briefly describe
the files on the three disks. Relax. The only files
you need to get started are the QB.EXE file and
the QB.HLP file. Ignore pages 9 thru 15. We will
use a much simpler way to begin.

Off Qf>

Read pages 19 thru 27, skip 28 thru 32, read
pages 33 thru section 2.2.4 on page 38. Now go
to Chapter 3. The table of contents is on page 63.
This chapter will help you get started.

The BASIC Teacher April 1988

2 Teach Yourself QuickBASIC No. 1

What to Do After
Opening the Box
First, immediately, before you do anything else:

• Protect all disks from catastrophes such as
accidental erasure. If you are using 5V<"
disks, put tape over the write-protect notch;
if you are using 3V4" disks, slide the write-
protection switch to the "open" position so
so you can see through the little rectangular
hole.

After protecting all the original disks from
catastrophes such as accidental erasure, do the
following things:

• Make copies of all the disks. You can use the
DOS command called DISKCOPY to do this.
Are we correct in assuming you know a
dollop of DOS?

• Make at least two copies of the original
disks. More are better.

• Put the original disks in a safe place away
from the computer, perhaps an inconvenient
place so you are not tempted to use the
original disks, except for making copies. Use
the original disks that came with the package
only to make copies.

• Carefully label the copies. On the label, copy
the essential information from the original
disk which, of course, you had already
protected against accidental erasure (you
did, didn't you?). Include the date and any
thing else you feel is relevant, useful, or
inspiring.

• Make a directory for each copy. You can use
the MS-DOS command called DIR to do
this.

• If you have a printer, print the directory for
each disk and put a copy with the disk. The
easiest way to do this is to print the
directory to the screen (use the DIR
command), then use the Print Screen feature
to print the screen to the printer (just hold
down the SHIFT key and press the PRINT
key).

• If you do not have a printer, take pencil or
pen in hand and copy the information off
the screen. Keep a directory with each disk.

You now have the original disks in a safe place
and two or more sets of back-up disks, all
properly labeled. Each disk is accompanied by a
directory so you can quickly find the right disk.

Make Some
QuickBASIC
Work Disks
For ease in learning QuickBASIC, make several
QuickBASIC Work Disks.

• Use DOS to FORMAT several disks. Use the
/S option in order to make your QB Work
Disks self-booting. On a single drive system,
you can do i t by typing FORMAT A: /S.
This formats the disk and also copies certain
Files from DOS to the formatted disk. You
will be able to use this disk alone, without
having to first load DOS.

• Copy two files from the QuickBASIC disks.
Use the DOS command called COPY to do
this. We trust you know a dollop of DOS. If
you have trouble, send us a self-addressed
stamped envelope and we will try to help.
Copy the two files from the copies you
made of the original QuickBASIC disks. You
did make copies, didn't you? Copy only the
following two files: QB.EXE and QB.HLP.

That's it. You now have a QB Work Disk. Make
several copies of this QB Work Disk. If you use
the DOS command DIR to see the directory on
the disk, you should see it has the following
files:

COMMAND.COM From DOS
QB.EXE From QB
QB.HLP From QB

Now using QuickBASIC is easy! Just put the QB
Work Disk in disk drive A and turn on the
computer. When you see the familiar A-prompt,
type QB and press the ENTER key.

Next time, we'll do it together and take you
Window Shopping.

April 1988 The BASIC Teacher

T U *
BASIC
T̂ ê cli ci*

N o . 2 , J u l y 1 9 8 8 $ 3 . 0 0

For beginning
programmers with no prior
programming experience

CONTENTS

3 Teach Yourself BASIC
9 Browsing BASIC

19 Teach Yourself
QuickBASIC

PUBLISHER'S STATEMENT! The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
hrancisco, CA 94110. Contents copyright o
1988 by Different Worlds Publications. All
rights reserved. Contents may be copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO. A 12-issuc sub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

P R I N T E D I N T H E U . S . A .

I
/ \

HAPPY COMPUTING Editorial
GOOD NEWS FOR TEACHERS J

T a d a s h i E h a r a , p u b l i s h e r
B o b A l b r e c h t , e d i t o r

D o n I n m a n , e d i t o r

MICROSOFT CORPORATION has authorized
The BASIC Teacher to make available to
educators a limited quantity of QuickBASIC 4.0
Work Disks. This is the least-expensive way for
teachers to get a copy of the exciting new
computer-language program that is revolution
izing the way people use computers.

Microsoft is making this offer on a trial basis:

"Bob, as we have discussed, this is a trial of
exciting possibility—getting QuickBASIC
into the hands of teachers. Please keep in touch
as this program proceeds. After the users have had
these disks for a couple weeks, I would like to
talk with some of them to get their feedback on
the product, and your approach to teaching
BASIC.

"As you are aware, QB4 is being enhanced to be
as easy to use as possible. I hope we both gain
some valuable feedback from this test program.

—Gregory E. Lobdell
Product Manager, Languages

The Work Disk contains the two most-important
QuickBASIC files:

QB.EXE
QB.HLP

For a nominal fee, teachers can get a copy of the
QuickBASIC 4.0 Work Disk by making the
request on their school letterhead. The disks may
be used only by the person making the request

Microsoft QuickBASIC 4.0

and may not be duplicated. Names and addresses
of the recipients will be made available to
Microsoft.

To get a copy of the QuickBASIC 4.0 Work Disk,
send a check or money for $12 along with the
request on your school letterhead. When you get
the Work Disk, you will also receive a special
coupon good for $12 off the regular $36
subscription price to The BASIC Teacher which
you can use if you are not already a subscriber.

Also for those educators who are not already a
subscriber, you can order the QuickBASIC 4.0
Work Disk and subscribe to The BASIC Teacher
at the same time for only $30—$12 for the Work
Disk and $18 for the sub (50% off the regular
$36 price!)-you get both for less than the regular
price of the sub alone!

Order now, this is a limited first-come, first-served
offer and will not be available after all the avail
able disks have been spoken for.

Circumstances Beyonde Our Control A/\MAAAAAAAAW>M\
STARTING A new endeavor always takes longer
than originally expected and The BASIC Teacher
is no exception. This issue comes to you later
than our original schedule and we apologize for
that. Subscribers will not be short-changed,
however, as subscriptions are sold on an issue-by-
issue basis and you will still get the same number
of issues for which you originally paid, i.e., if you
subscribed for a year, you will still get twelve

issues. Issues are in number order and your sub
expires with a certain issue number (see mailing
label). If you are a charter subscriber, your sub
will expire with issue 12 (presently scheduled as
the May 1989 issue).

Again, we apologize for the lateness of this issue.
Please forgive us for circumstances beyond our
control and lhank you for your patience.

TUe
BASIC Teach Yourself BASIC

By Bob Albrecht and George Firedrake
IMo. 2

INTRODUCTION
IF YOU can read a newspaper or a comic book, you can learn to read and
understand programs written in BASIC, the People's Computer Language.
BASIC has a small vocabulary and a simple syntax (grammar). Last time,
you learned some special words that Microsoft BASIC knows. They are
called keywords or reserved words. Here are the keywords introduced and
described last time:

BEEP DATE$ TIMES TIMER PRINT

You also learned how to use the computer to do arithmetic,

using the four arithmetic operations: + — * /

You know how to clear the screen by holding down
the CTRL key and pressing the L key.

You have probably encountered the syntax error message. This simply means
the computer didn't understand you. That's OK, just try again-and learn
more BASIC keywords that the computer does understand.

Load BASIC
WE ASSUME you know how to lead the Disk
Operating System (DOS) and BASIC. Do so now.
If DOS asks for the date and time, please enter
them.

For example:

Current date is Tue 1-01-1980
Enter new date (ram-dd-yy)s 4-27-88

Current time is 0s00s27.90
Enter new times 13s30

Later we'll show you
how to set the date and
time from within BASIC.

WE LIKE to begin with a clean screen. Here are
two ways to clear the screen:

• Hold down the CTRL key and
press the L key.

cursor

1LIST 2RUN 3L0AD"...

You see only the blinking cursor at the top
of the screen and the key line at the bottom
of the screen.

Type CLS
and press
the ENTER
key.

Ok

1LIST 2RUN 3L0AD".,.

CLS is a BASIC keyword that tells the computer
to clear the screen. After doing so, it says "Ok"
and blinks the cursor. Your turn to do something.

Teach Yourself BASIC No. 2

KEY OFF, KEY ON
THE BOTTOM of the screen is the key line,
which shows labels for the function keys. On our
keyboard, these keys are labeled Fl, F2, F3, and
so on across the top of the keyboard. On your
computer they may be elsewhere.

You can turn the key line off and on:

• To turn off the key line,
type KEY OFF and press ENTER.

• To turn on the key line,
type KEY ON and press ENTER.

Go ahead ... do it a few times. If you misspell
KEY OFF or KEY ON, you will see a syntax
error, followed by the friendly Ok and the
blinking cursor. Try again.

PRINT tt ft

YOU CAN tell the computer to PRINT your
name by typing the keyword PRINT followed by
your name enclosed in quotation marks ().

Mariko will demonstrate:

• Mariko typed PRINT "MARIKO" and
pressed ENTER.

Mariko
typed this

It printed:
this

By "it," we mean the computer

PRINT "Mariko"
Mariko
Ok

Try it with your name, or
put anything you want in
quotation marks following
the word PRINT.

DATE# tt tt

IF YOU forgot to set the date when you loaded
DOS you can do it now in BASIC. We are writing
this on April 27, 1988. So we'll set the date to
today, then verify it by printing the date on the
screen:

• First clear the screen.

Type DATES = "4-27-88"

and press ENTER.

DATE$ = "4-27-88'
Ok
PRINT DATE$
04-27-1988
Ok

You can enter the date in several ways.

Some are shown below:

DATES = "4/27/88"

DATES = "4-27-1988"

DATES = "4/27/1988"

And here are some ways to make mistakes:

DATES = "1-32-88"
Illegal function call

DATES = "13-27-88"
Illegal function call

DATES = "4 27 88"
Illegal function call

DATES = 4/27/88
Type mismatch

DATE = "4-27-88"

Oops! Too many
days in that month.

And too many
months in that year.

Needs slashes (/)
or dashes (-).

Forgot the quota
tion marks (").

Forgot the $.

We tried to set the date to January 1, 1970
(DATES = "1/1/70"), but got an Illegal function
call message. Then we tried January 1, 1980
(DATES = "1-1-1980"). That was OK.

What is the earliest date allowed on your
computer? The latest date?

TIME# - ft ?¥

OUR COMPUTER uses a 24-hour clock. So
6:00 p.m. is 18:00:00. In this system, the time is
measured from midnight, which is 00:00:00.

m
12-Hour Clock 24-Hour Clock Comments

00:00:01 AM 00:00:01
00:01:00 AM 00:01:00
01:00:00 AM 01:00:00
06:00:00 AM 06:00:00
09:00:00 AM 09:00:00
10:30:00 AM 10:30:00
12:00:00 N 12:00:00
3:00:00 PM 15:00:00
7:00:00 PM 19:00:00

11:59:59 PM 23:59:59

One second after Midnight
One minute after Midnight
One hour after Midnight
Time to get up
Many companies begin work
Coffee break?
High noon
School's out!
Dinner?
One second before Midnight

What time is it?

(No, it's not 5 until 7.)

Let's set the time and PRINT it. First, set the
time to midnight:

• Type TIME$ = "00:00:00"

and press ENTER.

• Type PRINT TIMES

and press ENTER.

TIME$ = "00:00s00"
0k
PRINT TIMES
00:00:05
Ok

As you can see, it took us five seconds to type
PRINT TIMES and press ENTER.

You can set the time to midnight by typing
TIME$ = "0:0:0" or even by typing TIMES =

0". If you omit the seconds or minutes, the
computer will automatically supply zeroes.

Go ahead, try a few. If you don't make any
mistakes, try some of ours:

TIME - "12:00:00"
Type mismatch

TIMES = 10:23:37
Type mismatch

TIMES = "12:60:00'
Illegal function call

TIMES = "24:00:01"
Illegal function call

TIMES = " 1 2 - 0 - 0 "
Illegal function call

TIMES = "15/30/00'
Illegal function call

Forgot the dollar
sign in TIMES.

Forgot the
quotation marks.

Oops!
Too many minutes.

Too many hours. A
second after mid
night is "00:00:01

In setting time, use
colons (:) instead of
dashes (-) or slashes
(/) to separate the
hours, minutes, and
seconds.

If you make a mistake, the computer will type a
cryptic error message, then say Ok. It is very
patient and forgiving! Just try again.

Teach Yourself »IC No. 2

Wumber cPatterqs
MATHEMATICS IS a rich world of patterns. You
can use BASIC to explore this world. Try the
following number pattern. Remember to press
ENTER after you type something.

You type

It prints

You type

It prints

You type

It prints

You type

It prints

PRINT 11 * 11

121

P R I N T 1 1 1 * H I

12321

P R I N T 1 1 1 1 * 1 1 1 1

1234321

P R I N T 1 1 1 1 1 * 1 1 1 1 1

1.234543E+08

Usually the computer will print up to seven digits.
If a number is too big to fit into seven digits, it is
printed as a floating point number like the one
shown above. We'll tell you more about floating
point numbers later.

But first, here is a way to get the computer to
compute and print bigger numbers, up to 16
digits. To do this, put a number sign (#) at the
right end of one of the numbers.

• You type

It prints

• You type

It prints

• You type

It prints

• You type

It prints

Powers of
Numbers xrM

w

,yv
BASIC CAN do yet another arithmetic operation.

It can compute a power of a number.

For example, 52 = 5 x 5 = 25 is "5 to the second
power" or "5 squared."

To compute a power of a number, use the ^

• You type

It prints

PRINT 5~3

125

Of course, you can also use multiplication (*) to
compute a power of a number:

PRINT 11111 * 11111#

123454321

P R I N T 1 1 1 1 1 1 * 1 1 1 1 1 1 #

12345654321

P R I N T 1 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1 1 #

123456787654321

P R I N T 1 1 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1 1 1 #

1.234567898765432D+16

Oops! The last answer was too big to fit into 16
digits, so the computer printed it as a double-
sized floating point number. What do you think is
the exact answer? Will the pattern continue?

You type P R I N T

It prints 25

You type P R I N T

It prints 125

Here are some more examples of
powers of numbers:

You type

It prints

You type

It prints

You type

It prints

P R I N T 2 - ^ 5

32

P R I N T 1 C > " 6

lOOOOOO

PRINT 10~9

1E+09

COMPUTERS USE a very simple code, called
binary, to represent information. Binary is very
simple; it uses only two symbols, 0 and 1. The
symbols, 0 and 1, are called binary digits, or bits.

In a typical personal computer, information is
stored in the memory of the computer. The
memory consists of many thousands of bits
organized as bunches of bits in memory locations.

One memory location can hold eight bits of
information. A bunch of eight bits is called a
byte. So . . . one memory location can hold eight
bits, or one byte. The memory of a typical
personal computer has many thousands of
memory locations.

• One memory location can store eight bits.

• A group of eight bits is called a byte.

• So, a memory location can store one byte.

• A computer memory has many thousands of
locations. So the memory can store many
thousands of bytes.

Perhaps you have heard about the mysterious K.
People say a computer has 128K or 256K or
512K —or more—bytes of memory.

• IK bytes equals 21 ° bytes equals 1024
bytes.

Use the computer to change IK bytes or 256K
bytes or 512K bytes to ordinary numbers.

• You type PRINT 2^10

It prints 1024

• You type PRINT 256 * 2^10

It prints 262144

* You type PRINT 512 * 2 M 0

It prints 524288

REMEMBER

IK bytes = 21 ° bytes = 1024 bytes

Perhaps you have heard the ancient story about
the wise person who did a great service for a king.
The king asked her what reward would be
appropriate. Her request was simple. She asked
only for grains of wheat, computed as follows:

On the first square of a chessboard, one grain of
wheat. On the second square, two grains of
wheat. On the third square, four grains of wheat.
And so on, doubling at each new square.

On square number n, there are to be 2"'1 grains.
Let's find out how many grains on square 16:

• You type PRINT 2~15

It prints 32768

Inexorably, the grains pile up. How many on
square 64?

• You type PRINT 2^63

It prints 9. 223372E+18

Yup, that's a lot of wheat, more wheat than
existed in all the kingdoms everywhere. The king
realized that he had been duped.

The king was: a) chagrined b) overjoyed
c) amused d) befuddled
e) angry f) livid
g) Your choice.

Please pick one of the above and write the end of
the story.

Teach Yourself BASIC No. 2

BIG Numbers
THE POPULATION of the Earth
is about 5 billion people.

• 5 billion = 5,000,000,000

Tell the computer to print that very large number
on the screen:

It prints 5E+09

You type PRINT 5000000000

No commas
please!

The computer printed this very large number as a
floating point number.

Read it like this:

• 5E+09 is five time ten to the ninth power.

In math notation, we write it like this:

5 x 109

Floating point notation is simply a shorthand way
of expressing very big numbers. In floating point
notation, a number is represented by a mantissa
and an exponent. The mantissa and exponent are
separated by the letter E.

FT
mantissa E exponent

—^—

Here is another BIG number in good old everyday
notation and also in floating point notation:

One trillion. We usually write it like this:
1,000,000,000,000

• You type PRINT lOOOOOOOOOOOO

It prints 1E+12

• You type PRINT 10^12

It prints 1E+12

NO COMMAS PLEASE!

When you type big numbers, do not use commas,
as you usually do in writing numbers. BASIC does
not understand this use of commas. Commas have
a very special use in PRINT statements. Please be
patient. We will get to it later.

small numbers
WELL, AS we have seen, BASIC does a good job
on very big numbers. It is equally adept with very
small numbers.

Recently, we have had occasion to chase several
snails. We became curious about snail speed. The
results of our first experiment indicate that the
speed of a frightened snail is about 0.0000079
miles per second.

• The speed of a snail is about 0.0000079
miles per second.

• You type

It prints

PRINT 0.0000079

7.09E-06

BASIC printed this very small
number as a mantissa and an expo
nent, separated by the letter E.

~7 - 09>E-0<b
—7 —V

mantissa exponent

< f The exponent J
is negative. J

Read it like this: Seven point zero nine times ten
to the minus six. In math, science, or other
hi-tech books, you might see this number written
as 7.09 x 10'6

UNIVERSE STUFF

Hydrogen is universal stuff. It began with the big
bang that created the universe. It is here, there,
everywhere. The hydrogen atom is very small and
very light.

• The mass of the hydrogen atom is about
1.67 x 10 27 kilograms.

• You type PRINT 1. 67E-27

It prints 1. 67E-27

Yes, you can enter numbers in Floating point
notation. Saves time and finger fatigue:

.00000000000000000000000000167

NEXT TIME: Tiny Programs.

T U e
BASIC
Tc~cUc-

Browsing BASIC
By Don Inman

No. 2

LAST TIME, we browsed the KEY command and used it to change the
functions assigned to keys F1 thru F10 (also Fll and F12 if available). In this
issue, we 11 use what we learned about function-key assignments as we browse
viewports and other windowing techniques.

We assume you have added the KEY statement to the list of BASIC keywords
we started with. We also used SCREEN 0 to define the text screen and
STRINGS to define a string of ASCII-code characters. Here is the list of BASIC
keywords you should now know.

CHR*
CLS
DATA
DIM
END
FOR...NEXT

GOSUB
GOTO
IF...THEN
INPUTS
KEY
LIST

LOAD
LOCATE
PRINT
READ
REM
RETURN

In this issue we will add these keywords to the list:

COLOR
LINE INPUT

SCREEN(row, column)
STRINGS

RUN
SAVE
SCREEN
SPACES
TAB
WIDTH

VIEW PRINT

We will also use the logical operator OR.

SIZING YOUR CANVAS

WE WILL limit the discussion to a text screen that is 80 columns wide and 24
lines high (25 if you turn off the key line and use line 25). The methods used
here can also be applied to text screens of other sizes.

When a screen becomes full, text scrolls upward-the top line moves off the
screen as a new line is entered at the bottom. This poses some problems when
you want some specific text to remain on the screen.

It is possible to block off an area of the screen so that you can keep the text in
one area of the screen fixed while the text in another part of the screen scrolls.

2
Browsing BASIC No. 2

This technique is useful when you want to keep a menu or some instructions for
the use of a program on the screen while the program input and/or output is in
an area where the screen scrolls. The text screen can be partitioned in this way
by a VIEW PRINT statement.

VIEW PRINT
A VIEW PRINT statement specifies a top line and a bottom line. These two
values (ranging from 1 to 24) determine where the scrolling area of the screen is
located.

VIEW PRINT Ltop line TO bottom line 1

If no values are specified, the default values used are:

1 for top line

24 for bottom line

Once a VIEW PRINT statement has been executed, all text will occur in the
viewport defined by top line and bottom line. If you try to use a LOCATE
statement to print text outside the viewport, you will get an illegal function call
error message. Any printing you want outside the viewport should be done
before you define a viewport or by temporarily defining a new viewport. The
last VIEW PRINT statement executed controls the viewport used for printing
text.

Us ing VIEW PRINT

THE FOLLOWING program uses VIEW PRINT to provide an area for you to
enter short sentences in the viewport. The directions for using the program are
printed in an area outside the viewport so that they are always available to you.
Enter and run the program—then I'll explain how it works.

The instructions are enclosed in a rectangle at the bottom of the screen.

Type short sentences.
After each sentence press CEWTHU
Press Q to quit.

1 REM * * V iewpor t Demonst ra t ion * *
2 REM #* Brows ing BASIC #2 2 /1 /88 * *
3 REM * * Microsof t GW-BASIC F i le : V iewpr t .001 #*

100 REM * * Def ine Screen *#
110 SCREEN 0 : CLS : KEY OFF:

/

WIDTH 80

200
210
220
230

240
250

REM * * Def ine Ins t ruc t ion St r ings ##
Text * (1) = CHR*(218) + STRING*<76, 196)
Tex t * (2) = CHR*(179) +

CHR*<179) + Text * (3) =
CHR*(179)
Tex t * (4) =
Text* (5) =

+ CHR*(191)
Type shor t sentences. " + SPACE*(54) + CHR*(179)
A f te r each sentence press CENTER]" + SPACE*(42)

CHR*(179)
CHR*(192)

+ " Press Q to qu i t . '
+ STRING*(76, 196) +

+ SPACE*(59)
CHR*(217)

+ CHR*(179)

300 REM * * Pr in t Ins t ruc t ions ##
310 FOR row = 1 TO 5
320 LOCATE row + 19, 2 : PRINT Text * (row)5
330 NEXT row

400 REM *# Pr in t in Viewpor t *#
410 VIEW PRINT 1 TO 19
420 FOR Type l t = 1 TO 50

LOCATE 19, 1 : L INE INPUT Sentence*
440 IF Sentence* = "q"
450 NEXT Type l t

OR Sentence* = "Q" THEN Type l t =

500 REM * * Restore Ed i t Screen * *
510 VIEW PRINT
520 CLS
530 END

KEY ON

The instructions for the program's use are assigned as elements of a string array
(Text$(n)). An array was used so that the text can easily be placed where desired
on the screen.

Included in the text are ASCII character-codes that provide an outline for the
rectangular area that contains the instructions. To draw the top and bottom of
the rectangle, a single shape (CHR$(196)) is used consecutively many times.
Rather than print individual codes, you can "string" them all together with the
STRINGS function.

For example—to string together 76 consecutive CHR$(196) characters:

STRING*(76,196) =

76 in a row character code 76 CHR$(196) joined together

This STRINGS statement is used to form the top and also the bottom of the
rectangle.

Top corners are formed by:

Sides are formed by:

Bottom corners are formed by:

r
i

L

CHR$(218)

CHR$(179)

CH R$(192)

| C H R$(191)

| CHR$(179)

I CHR$(217)

The elements of the TextS array are placed by the FOR . . . NEXT loop.

310 FOR row = 1 TO 5
320 LOCATE row + 19, 2: PRINT Text*(row);
330 NEXT row

TextS(l) is printed on line 20.
Text$(2) is printed on line 21.
Text$(3) is printed on line 22.
Text$(4) is printed on line 23.
Text$(5) is printed on line 24.

Line 410 contains the VIEW PRINT statement that restricts the scrolling area to
lines 1 to 19.

410 VIEW PRINT 1 TO 19 L E A V E INSTRUCTIONS ALONEI

Top line = 1; bottom line = 19.

)NE! J
The FOR . . . NEXT loop (lines 420 to 450) provides an opportunity for you to
carry out the program's instructions. The upper bound of the loop is set for 50
sentences which will be more than enough to make the text scroll. In fact, you
may get tired of typing long before the loop reaches 50. The FOR . . . NEXT
loop contains a way for you to escape. Line 440 tells sets the control variable
(Typelt) to 50 if you type the letter q as a sentence—Q [ENTER]. When you
type Q [ENTER] as a sentence, the computer will think you have typed 50
sentences and will exit the loop.

420 FOR Typelt = 1 TO 50
430 LOCATE 19, Is LINE INPUT Sentence*
440 IF Sentence* = "q" OR Sentence* = "Q" THEN Typelt = 50
450 NEXT Typelt

Text is entered at row 19 (see line 430). When the ENTER key is pressed, this
t ex t l ine i s s c ro l l ed up one row making room fo r a new l ine a t row 19 . The LINE
INPUT statement accepts an entire line of input—up to the carriage return
casued by pressing ENTER. The input is assigned to Sentences.

Sometimes it's OK to fool the computer!

The OR keyword used in line 440 is called a logical operator. If either of the
conditions Sentence = "q" OR Sentences = "Q" is true, then the value of
Typelt will be set to 50 even if you haven't typed 50 sentences.

The INSTR function could be used in line 440 as follows:

MO IF INSTRf."Qq". Sentence*) <> 0 THEN Tyoelt = SO

Browsing BASIC No. 2
5

Notice that VIEW PRINT is used again in line 510. This time, the top line and
the bottom line are not given. Therefore, the default values (top line = 1 and
bottom line = 24) are used-this frees the entire screen for the statements that
conclude the program.

510 VIEW PRINT
520 CLS: KEY ON
530 END

•to

f*l I
Scr*«w
QEt>

The screen shot below shows a full page of text. The cursor is at the beginning of
line 19. When the next line of text is entered, the top line will scroll off the
screen. All other text lines in the viewport will move up one row.

Ihis is the first sentence 1 typed,
This is the second,

1 skipped a line,

1 skipped two lines*

llou three,
I'n getting la*j.

hou the first sentence is getting near the top.

Type short sentences.
After each sentence! press tEMTHM
Press Q to guit,

Cursor on line 19
is waiting for a
new Sentences. / • $

Browsing BASIC No. 2

Looking Through a Window
YOU HAVE probably noticed that many of the new commercial software
programs use windows that overlap the output screen to provide a means of
making choices for forthcoming actions. The problem in creating your own
windows is restoring the original screen when the pull-down window is removed.

The following program uses the key assignment techniques described in
"Browsing BASIC No. 1." The functions of keys F1 (LIST), F3 (LOAD), and F4
(SAVE) are slightly altered to provide use from within a program. These keys are
then used to make appropriate selections from a pull-down menu window.

An area of 6 rows by 31 columns is used to display the pull-down window-but
the characters that will be covered by the window must be preserved.

6 rows

31 col«« mn 5

F l F Z

The characters to be overlapped by the menu window are saved as ASCII
characters in six strings, one string for each row of characters that will be
covered by the window. When these characters have been safely stored, the
window is pulled down. Choices from the menu window are:

Press Fl to LIST the current program

Press F3 to LOAD a new program

Press F4 to SAVE the current program

Press ESC to leave the current program

Each of the keys Fl, F3, F4, and ESC are active while the menu is displayed.

• If you press Fl, the window is removed, the original characters are
replaced, and the command: LIST— is displayed. Press the ENTER key an
and the program is listed.

• If you press F3, the window is removed, the original characters are
replaced, and the command: LOAD"- is displayed. Type the file name of
the file you wish to load, press ENTER, and the new file is loaded.

• If you press F4, the window is removed, the original characters are
replaced, and the command: SAVE"- is displayed. Type the file name to
be used to save this program, press ENTER, and the current program is
saved under that name.

• If you press ESC, the window is removed, the original characters are
replaced, the BASIC prompt (Ok) is displayed with the cursor below it.

ENTER and run the program.

F + E S C

Browsing BASIC No. 2 7

1 REM ** Window Demonstrat ion #*
2 REM ** Browsing BASIC #2 2/2/B8 **
3 REM ** Microsof t GW-BASIC F i le : Window.001 **

100 REM ** In i t ia l ize **
110
120
130
140
150

200
210
220
230
240
250

300
310
320
330

DIM
KEY
KEY
KEY
CLS

Block ' / . (6 ,
1 , " LIST"
4," SAVE"
3 . " LOAD"

; i >

CHR*<34)
CHR*(34)

REM *# Pr int Messages on Screen **
PRINT "This program demonstrates the use of windows.
PRINT "When you press a key, a window is pul led down
PRINT "This message."
LOCATE 5,15: PRINT "PRESS A KEY NOW";
Ky* = INPUTS(1)

REM ** Use
GOSUB 1010
GOSUB 2010
GOSUB 3010

the Window **

400 REM ** End of Program #*
410 END

1000 REM ** SUBROUTINE: Copy Screen **
1010 LOCATE 1,19,0
1020 FOR row = 1 TO 6
1030 FOR column = 1 TO 31
1040 B1 ock ' / . (row, column) = SCREEN (row, column +
1050 NEXT column
1060 NEXT row
1070 RETURN

2000 REM ## SUBROUTINE:
2010 LOCATE 1,19: COLOR
2020 LOCATE 2,19: PRINT
2030 LOCATE 3,19: PRINT
2040 LOCATE 4,19: PRINT
2050 LOCATE 5,19: PRINT
2060 LOCATE 6,19: PRINT SPACE*(31);
2070 RETURN

Pr int Window **
4,3: PRINT SPACE*(31);

To L is t program
To SAVE program
To LOAD program
To leave program

Press
Press
Press

F1
F4
F3

Press ESC

3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100

REM ** SUBROUTINE: Replace Or ig inal Screen #*
COLOR 7,0
LOCATE 15,5: PRINT "PRESS A KEY TO RESTORE SCREEN";
Ky* = INPUT*(1) : LOCATE 15,5: PRINT SPACE*(29)
FOR row = 1 TO 6

FOR column = 1 TO 31
LOCATE row, column + 18
PRINT CHR* (Block ' / . (row, column)) ;

NEXT column
NEXT row
RETURN

Here is the text that is displayed before the menu window is pulled over it

This progran denonstrates the use of windows.
When you press a key, a window is pulled down
This nessage,

PRESS A KEY MOW

The following screen shows the menu window pulled down.

This progran denoni
When you press a k?
This nessage.

PRESI

PBESS A KEY TO RESTORE SCREEN

When the menu is displayed, press one of the keys Fl, F3 F4 or FSC if
press FT, F2, or F3, the menu window will be removed. Then the original te«
will be replaced and the program will end. BASIC'S Ok prompt will appear lust
below the prompt the appropriate text (LIST_, LOAD"_, or SAVE" will
appear. At this time you would do one of the following:

" listed*1- ^ diSPlayCd' PrCSS thC ENTER kCy and thc ProSram will be

' !f L,°AD"~ ^ dlSplayCd'type the fi,e name the program you want to
load at the prompt. Then press ENTER.

If SAVE"_ is displayed, type the file name under which you want rn «
the current program. Then press ENTER.

If you press ESC from the menu, the menu window will be removed Th
original text will be replaced and the program will end BASIC s o!
d»pUyed. The c™ ,p„„„ immedLfy be]ow ! OK P~n.pt«

Browsing BASIC No. 2 9

The important keys in Window Demonstration are the three subroutines which
control the window actions.

Copy Screen Subroutine
THIS SUBROUTINE copies the original characters that lie in the window area
into string arrays. Line 1010 places the cursor at the first row (1) and first
column (19) of the window area.

1010 LOCATE 1, 19, O ^ ' The 0 turns the cursor off so that
p its movement (as the characters

row 1 I are scanned) is not distracting,
column 19

The nested FOR .. . NEXT loop (lines 1020 to 1060) copies the characters in
this order:

for each row (1 to 6), the character in each column (19 to 40) is copied.

outside loop inside loop

FOR row = 1 TO 6
FOR column = 1 TO 31

Block%(row, column) = SCREEN(row, column + 18)

v —. r~ SCREEN(row, column + 18) Block%(row, column)
Block*/.(1, 1) is assigned the character at SCREEN<1, 19)
Block$(l, 2) is assigned the character at SCREEN(1, 20)
Blocked, 3) is assigned the character at SCREEN (1, 21)

B1 ock'/. <2, 1) is assigned the character at SCREEN(2, 19)
Block"/. (2, 2) is assigned the character at SCREEN (2, 20)

B1 oc k'/. < 6, 1) is assigned the character at SCREENC6, 19)

Block"/. <6,31) is assigned the character at SCREEN (d6f 49)

SCREEN(row, column + 18) returns the ASCII code of the character in position
row, column + 18. For example:

If row = 5 and column = 10, SCREEN (row, column +18) would return the
ASCII code of the character in position 5,28.

Since the two values are enclosed in parentheses, BASIC recognizes that you are
not specifying a SCREEN mode (which does not use parentheses). When all
characters in the window area have been stored in the Block% array, the
computer returns to the main program.

10 Browsing BASIC No. 2

Print Window Subroutine
THIS SUBROUTINE uses only one unusual technique. Under usual
circumstances, the entire screen is set to specified foreground and background
colors. In this program, we want the window to be distinct from the rest of the
screen. Therefore, the colors specified for the window are different than the rest
of the screen. The entire screen is originally set to white characters on a black
background. By changing the foreground color and background color—but not
clearing the screen, the new colors are set for printing the window. However, the
rest of the screen retains its original white and black colors.

2010 LOCATE 1, 19: COLOR 4, 3: PRINT SPACE*(31);

From this point (until a new COLOR statement is executed), a read (4)
foreground color will be printed on a cyan (3) background.

Replace Originul Screen
This subroutine first resets the orignal colors so that the replacement will match
the rest of the screen.

3010 COLOR 7,O iiitt on Black
Line 3020 then prints a prompt.

3020 LOCATE 15, 5: PRINT "PRESS A KEY TO RESTORE SCREEN";

Line 3030 accepts a one-key entry. When it is received, the message of line 3020
is erased.

3030 Ky* = INPUT*(1)s LOCATE 15, 5: PRINT SPACE*(29)

The FOR . . . NEXT loop at lines 3040 to 3090 uses the ASCII character-codes
(retrieved from Block%(row, column)) to place the characters back in their
original positions.

3040 FOR row = 1 TO 6
3050 FOR column = 1 to 31
3060 LOCATE row, column + 18
3070 PRINT CHR*(Block7.(row, column))-
3O80 NEXT column
3090 NEXT row

When finished, a return is made from the subroutine. The program ends with the
appropriate menu response on the screen. Press ENTER to carry out the action

Problem to ponder: Can you think of a quicker way than that used in the
Window Display program to display and erase a window?

TE^CH YOURSELF
QuickBASIC

No. 2

By Bob Albrecht
and George Firedrake

Introduction
MICROSOFT'S QuickBASIC is the best version of BASIC we have
used in 24 years of writing "Teach Yourself BASIC" books for
beginners. It's also the most useful, powerful, and capable.

We'd love to hear from people who would like to learn QuickBASIC.
We'd love to hear from teachers who are helping kids learn how to
use this great real-life problem-solving tool ... or would like to begin
doing so. Write to Bob & George, The BASIC Teacher, 2418 - 19th
Street, San Francisco, CA 94110. If you want a reply, please enclose
a self-addressed, stamped envelope.

Together we can create a Shareware for Schools Supernova, a
bonanza of very low-cost school computing.

WORK DISKS
LAST TIME you made copies of all the disks that
came in the QuickBASIC package. You did,
didn't you? If not, do so now.

Last time, you made several QuickBASIC Work
Disks (QB Work Disks). You did, didn't you? If
not, do so now.

We assume you have not one, not two, but a
bunch of QB Work Disks, each containing three
files, as follows:

COMMAND.COM

QB.EXE

QB.HLP

from MS-DOS

from QuickBASIC

from QuickBASIC
0

O

These QB Work Disks
will make learning and

using QuickBASIC
ever so much easier.

BEGIN
PUT A QuickBASIC Work Disk into disk drive A
and turn on the computer. Whirr goes the disk
drive. Soon you see something like this:

Current date is Tue 1-01-1980
E n t e r n e w d a t e (m m - d d - y y) :

Type the date and press the ENTER key. Next
you see:

C u r r e n t t i m e i s 0 : 0 0 : 3 7 . 8 4
E n t e r n e w t i m e :

Type the time of day and press ENTER. You will
then see a Microsoft copyright message and the
MS-DOS "A prompt" and a blinking cursor:

A > blink, blink, blink, . . .

When you see the familiar A prompt,

<$>
Type qb and press
ENTER.

The show begins.

2 Using QuickBASIC No. 2

House lights dim, curtain rises.
Act 1, Scene 1 begins. You see the QuickBASIC opening screen:

Menu Bar F i 1 • R.I i I. Mi,'..' Mi- in ii linn [ii-Ihi i • .. 1 • 1 1 'Mi
1 B^SSSESS 'Untitled* ^SEEESS Uh

View Window

Immediate
Window

Copyright
notice

— Innpil late

Hi ,• ritii i i |j i iju ji h;i'i .[i .|,hi- i.,

This screen is homebase, work central, the control
center. You can go from here to many other
interesting places in the QuickBASIC environ
ment. You can usually return here by pressing the
ESC key. Do it now: .

Press the ESC key. a
Zap! QuickBASIC returns you to the control
center, work central, the hub of the QuickBASIC
environment. Oh, you didn't see anything
happen? Well, QB is fast, very fast.

Besides, you were already in QB Control Center.

REMEMBER: To return to QB Control Center,
press the ESC key.

Let your eyes roam about the screen. Please
notice a few things:

• The screen has two windows.

• Most of the top part of the screen is the
View Window. At the top of this window,
near the center of the screen, you see

QB Control Center

ilit 11 1 n • i • I\I it 111

Untitled. Later, you will use the View
Window to write, view, and edit
QuickBASIC programs.

Near the bottom of the screen you see a
much smaller window, long and narrow.
It is the Immediate Window. You will use
the Immediate Window to tell the
computer to do something right now . . .
immediately.

Across the top of the screen you see a
Menu Bar. It has the names of other
windows you soon will see:

•*' »n li K«iM [iflm i

That's all you need to know right now. Next
time, you will go Window Shopping. Now read on
an earn how to use the Immediate Window to
te t e computer to do something immediately.

Using QuickBASIC No. 2 3

DO IT NOW
PRESS THE ESC key to make sure you are in OB
Control. The screen probably looks like this:

When you first enter QB Control, the cursor is in
the upper left corner of the View Window, as
shown above. Later, you will compose programs
in this window.

But first, use the Immediate Window to do some
things now, immediately . . .

• Press the F6 function key. The cursor
moves into the Immediate Window.

• Press the F6 key again. The cursor returns
to the View Window.

• Put the cursor in the Immediate Window-
press F6.

• Type BEEP and press the ENTER key.
You should hear a beep.

BEEP •CO
You told the computer to BEEP. So it beeped.
Yes, it is okay to type beep or Beep or even BeeP.
However, if you type BEAP or Boop or bleap,
you won't hear a beep. Instead, you will see a
Syntax Error box in the middle of the view

window.

Press the ENTER key. The Syntax Error box will
disappear. The cursor will return to the Immedi
ate Window and blink patiently on the word
Boop the computer does not understand.

You can use the DELETE key, the BACKSPACE
key, and the arrow keys to move the cursor and
correct errors.

• Use the arrow keys to move the cursor
within a window.

• Use the BACKSPACE key to delete
characters to the left of the cursor. Each
time you press BACKSPACE, the cursor
moves one space to the left and deletes
the character in that place.

. Use the DELETE key to delete the
character at the cursor position.
Characters to the right of the cursor will
move left one position.

Use the DELETE, BACKSPACE, and arrow keys
to correct the error (change Boop to Beep), then
press ENTER and hear another beep.

4 Using QuickBASIC No. 2

CLS
FOR YOUR next easy command, tell the
computer to clear the screen. The command for
this is CLS or els. Type CLS or els and press the
ENTER key. QB Control will disappear and you
will see an empty screen, except for one line at
the bottom of the screen that tells you "Press any
key to continue."

Press any key to continue

Press any key and you return to QB Control with
the cursor and the CLS (or els) command in the
Immediate Window.

CLS

Note that only one command is shown in the
Immediate Window. Each new command
"pushes" the previous command out of the
window. This happens when you press the
ENTER key. Later you will learn how to expand
the Immediate Window so it will hold more
commands at one time.

PRINT DATES
WHEN YOU began this session, did you set the
date and time? You can use the PRINT keyword
in commands to print the date and time. You can
also print your name or any other message.

• Type PRINT DATES and press the
ENTER key. ,

Press any key to return to QB Control. The
Immediate Window contains your last command.

PRINT DATE$

PRINT TIMES
NOW TELL the computer to print the time.

• Type PRINT TIMES and press ENTER:

April 1, 1988
08:37:23

Press any key to continue

Return to QB Control (press any key). Your last
command is in the Immediate Window.

PRINT TIME$

PRINT "
TELL THE computer to print your name. To do
so, type the word PRINT, followed by your name
enclosed in quotation marks, then press ENTER.

George Firedrake did it like this:

* George typed PRINT "George Firedrake"
and pressed the ENTER key.

April 1, 1988
08:37:23

George Firedrake

Press any key to continue

Well, that's all for this time. Play around in the
Immediate Window or press F6 to return to the
View Window.

April 1, 1988

Press any key to continue

NEXT TIME: Window Shopping.

Special Reader Services See How to Order
on next page

QuickBASIC: The Complete Reference
By Steven Nameroff
(Osborne/McGraw-Hill, 700pp, $24.95)

A comprehensive guide to Microsoft's extreme
ly powerful QuickBASIC compiler, this re
source is written for users at all levels of pro
gramming ability, from novices to pros. The
author has divided the book into sections to
help you easily locate the information you
need. The book begins with a quick introduc
tion to BASIC programming, followed by a
complete command reference section and a dis
cussion of QuickBASIC functions, procedures,
files, and graphics.

USING QuickBASIC
By Don Inman and Bob Albrecht
(Osborne/McGraw-Hill, 436pp, $19.95)

HERE'S AN excellent
programming guide to
Microsoft's newest version
of QuickBASIC by the
authors of The BASIC
Teacher. The book
approaches QuickBASIC's
programming environment
in three stages so begin
ning and experienced
BASIC programmers can
find the appropriate level of instruction

FOR ATARI
USERS

' QUICK

ALSO AVAILABLE:

Using QuickBASIC
Convenience Disk $14.95

Using QuickBASIC
Teacher's Guide $9.95

SPECIAL OFFERS:

Book & Disk
$31.41 (save $3.49)

Book & Guide
$26.91 (save $2.99)

Book, Disk & Guide
$38.12 (save $6.73)

ATARI BASIC: XL EDITION
By Bob Albrecht, Leroy Finkel,
and Jerald R. Brown
(Wiley Press, 388pp, $1^^)

THIS CLASSIC shows how to adapt
BASIC to Atari's XL series of micro
computers and its 400, 800, and 1200
machines. You need no math, science,
or computer background to learn to
read and write Atari BASIC. Empha-

Adtmced Color (
and Animation for the mm:

...1

llu«>

•fk & T r

I ••Ml llltlt.lll .MMl fcl|M lllllki"

ADVANCED COLOR
GRAPHICS AND ANIMATION
FOR THE IBM PC
By Don Inman and Kurt Inman
(Hayden, 248pp, $18.95)

ACHIEVE SOPHISTICATED screen
effects with this example-oriented text
that shows you how to use the extend
ed graphics capabilities of IBM
BASICA for programming displays.
Whether you're creating a business
chart or an artistic animation, you'll
learn the techniques that give your
work professional results.

sizing good programming style, this
self-paced, easy-to-understand guide
takes you step-by-step thru simple
techniques for creating programs for
home, schools, or business applica
tions. Lots of educational and recrea
tional activities and exercises—featur
ing sound, color, graphics, games,
and simulations-making learning easy
and fun.

NOW AVAILABLE FOR ONLY $7.50!

ATARI GAMES &
RECREATIONS
By Herb Kohl, Ted Kahn, and
Len Lindsay, with Pat Cleland
(Reston, 338pp, $1^^>)

THIS BOOK offers a very different
approach to introducing programming
to the novice computer user. The
authors encourage you to develop

your own ideas for computer games
and provide models from which to
draw ideas for such games. In addition
to games, you'll find a special section
on the graphics, sound, and color fea
tures of your Atari 400 or 800. The
book can also serve as a basic learning
guide for kids and adults alike, and as
a sourcebook for teachers.

NOW AVAILABLE FOR ONLY $7,501

The Shareware Book
Using PC-Write, PC-File, PC-Talk
By Emil Flock, et al
(Osborne/McGraw-Hill, 688pp,
$14.95)

Covers the most popular "free"
programs: PC-Write, a word processor;
PC-File, a database manager; and PC-
Talk, a telecommunications program.
These programs are available thru user
groups or bulletin-board services in
return for a nominal registration fee.
The book has all the details on how
you can obtain these program disks.

SHAREWARE
J.

I) o s

"5^" sr

DOS Made Easy
By Herbert Schildt
(Osborne/McGraw-Hill, 385pp,
$18.95)

Previous computer experience is not
necessary to understand this concise,
well-organized introduction that's
filled with short applications and exer
cises. The book walks you thru all the
basics, beginning with an overview of a
computer system's inner components
and a step-by-step account of how to
run DOS for the first time.

4 Tools in One
(Microsoft, boxed, $195)

EASY TO learn and use, Works
contains four of the most popular
computer tools:

Word Processor: Produce profes
sional-looking letters, reports, and
memos.

Spreadsheet: Develop budgets, fore
casts, and balance sheets.

Database: Organize and keep track
of names and business records.

Communications: Gain access to a
world of information.

Back Issue of
The BASIC Teacher
Available

Issue No. 1 $3.00

Microsoft Works
The package comes with understand
able training and reference materials
including a separate computer program
that actually teaches you how to use
the tools. And it operates in a way
that makes sense—even to novice users.

The best and easiest-to-use integrated
software on the market, Microsoft
Works does the work of many
different programs, and you have to
pay for and learn only one.

For IBM PC, IBM PS2, and com
patibles. Contains both 314" and 514"
disks.

TU.
BASIC fogrrmmimf rxpmrucr

CONTENTS
3 T«** Yourafl BASIC w'r~ • SIMUITTK

— *4} mi 23 Taacti Yourwlf QuickBASIC
nrm
WW! h

Microsoft
QuickBASIC 4.0
(Microsoft, boxed, $95)

How to Order
SEND CHECK or money order to
Different Worlds Publications,
2814 - 19th Street, San Francisco, CA
94110. Add $2 for first item and $1
for each additional item to cover
postage and handling. California
residents add appropriate sales tax.

SATISFACTION GUARANTEED

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

Different Worlds Publications
2814 - 19th Street
San Francisco, CA 94110

Address Correction Requested

7

No. 3 , September 1988 $3 .00

For beginning
programmers with no prior

programming experience

CONTENTS

3 Teach Yourself BASIC
11 Browsing BASIC
19 Teach Yourself

QuickBASIC

PUBLISHER'S STATEMENT! The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
Francisco, CA 94110. Contents copyright
1988 by Different Worlds Publications. All
rights reserved. Contents may copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO: A 12-issuesub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

PRINTED IN THE U.S.A.

Editorial HAPPY COMPUTING

T a d a s h i E h a r a , p u b l i s h e r
B o b A l b r e c h t , e d i t o r

D o n I n m a n , e d i t o r

BASIC stands for Beginner's All-purpose
Symbolic Instruction Code. Developed at
Dartmouth College by T.E. Kurtz and J.G.
Kemeny, BASIC was created to teach students
programming. It is widely used on microcom
puters and minicomputers for educational and
business applications. It is easy to understand and
learn and is appropriate for solving small
problems. BASIC is the most popular program
ming language available for computers.

"The Shareware Teacher"

Wendy Wiegard, Dean Brown, and Bob Albrecht
have started a new column in the Shareware
Magazine called "The Shareware Teacher." The
column is written "for all those with an interest
in designing, writing, and selling good, inexpen
sive, educational software—for school or for home
use." If you have written some teaching
programs, but don't know how to get them out to
teachers and learners, this column is for you. The
authors propose that QuickBASIC 4.0 be used as
the standard developmental programming
language because it is rich, powerful, portable,
and fast. The Shareware Magazine is available
from PC-SIG, 1030 D East Duane Avenue,
Sunnyvale, CA 94086, (800) 245-6717, (800)
222-2996 in California.

National survey says students aren't yet
in the computer age

Most U.S. students remain computer illiterates
and few schools use computers effectively to
teach basics despite a much-heralded "classroom
computer revolution," according to a recent
survey by the National Assessment of Educational
Progress.

The study of 24,000 third-, seventh-, and
11th graders found that access to computers is
too limited at school and at home, school cur
ricula haven't changed to make effective use of
computers, and teachers are inadequately trained.

The study found that most third graders
could identify the main parts of a computer, such
as the keyboard, floppy disk, and joystick. By
seventh grade, nearly all could. But only 32.3
percent of third graders, 34.3 percent of seventh
graders, and 46 percent of 11th graders could
correctly answer: "What is the main role of a
computer program?" (Answer: "To tell the

computer what to do.") And only three of ten
11th graders knew what an algorithm is ("a step
by step process for solving a given type of
problem").

Except for word processing, students general
ly scored poorly on questions dealing with
computer applications—making graphics or
working with databases, for example—because
students said they hardly ever got a chance to
practice. About two-thirds of those surveyed said
they had never written computer programs.

Despite their generally poor showing, 91.2
percent of third graders and 86 percent of seventh
graders said they liked using computers, and more
than half said they wished they used them more.

"Although some schools offer excellent
computer curricula, many other schools
apparently do not provide effective instruction, at
least in computer applications and programming,
to a large proportion of pupils," the survey
concluded.

Critical shortage of computer memory chips
hurts U.S. businesses

Within the past half year, the supply of DRAM
chips has fallen far short of U.S. demand, and
DRAM prices have risen to damagingly high
levels. Many would-be buyers arc delaying their
purchases until prices fall, 15 percent of the
respondents to a recent PC MagNet survey report
ed plans to put off purchases until DRAM prices
fall to acceptable levels.

These developments aggravate the continued
development of the PC, which is dependent on a
ready supply of reasonably priced RAM. OS/2
with the Presentation Manager requires a mini
mum of 5MB RAM, and this requirement shows
no signs of getting any smaller.

If we could get our hands on more DRAM,
we would be a much larger company in terms of
revenue,' says a Sun Microsystems spokeman.
The principal constraint we are under is a

shortage of DRAM, not a shortage of business."
Help is due to arrive in the form of 1-megabit

chips when their output is predicted to double
between the second and fourth quarter in 1988,
when manufacturers begin ramping up their
production.

0
September 1988 The BASIC Teacher

TU<
BASIC
CL c^chc-%-

Teach Yourself BASIC
By Bob Albrecht and George Firedrake No. 3

. • • 0.
introduction
WE BEGAN using BASIC in 1964 when it was very, very new. As year
followed year, BASIC became better and better, according to the needs of
the people who used it. Today, Microsoft's GW-BASIC and QuickBASIC are
truly the People's Computer Languages, running on more than 20 million
computers. BASIC continues to get better and better—you can count on it.

BASIC has a small vocabulary and a simple syntax (grammar). We have
already discussed some of the special words that Microsoft BASIC
understands. They are called keywords or reserved words.

Here are the keywords introduced and described previously:

BEEP CLS DATE$ KEY OFF KEY ON PRINT TIME$ TIMER

You also learned how to use the computer to do arithmetic, using the four
arithmetic operations: + — * /. You know how to read numbers expressed in
floating point notation such as 5E+09 or 1.67 E-27.

You have probably encountered the syntax error message. This simply means
the computer didn't understand you. That's OK, just try again-and learn
more BASIC keywords that the computer does understand.

Tiny Programs
INSTALL BASIC in your computer and try a tiny
program. Your first program is very simple. It
tells the computer print Mariko's name on the
screen, and continue printing it until someone
stops the computer.

10 PRINT "Mariko"
20 GOTO 10

This program has two
lines. Each line begins
with a line number.

1st Line:
2nd Line:

10 PRINT "Mariko
20 GOTO 10

t I n line numbers

We'll use the line numbers to
identify the lines. So the 1st
line is "line 10" and the 2nd
line is "line 20."

Each line of the program contains a BASIC
keyword. The keywords in this tiny program are
PRINT and GOTO. We have used PRINT
previously; GOTO is new.

Soon you will enter the program into the
computer's memory. You enter a program by
typing it, one line at a time, on the keyboard.

• After typing a line, press the ENTER key.

• If you make a typing mistake before you
press ENTER, use the BACK SPACE key
to erase the error.

• If you make a mistake and press ENTER,
the incorrect line will be in the
computer's memory. That's OK. Just
retype the line correctly and press
ENTER. The new line will replace the old,
incorrect line.

Read the above again
then

GOTO the next page

The BASIC Teacher September 1988 m

2 Teach Yourself BASIC

Enter the Program
BEFORE YOU enter a new program, tell the
computer you are entering a new program. Do
this by typing NEW and pressing ENTER. This
erases any old program that might be in the
computer's memory. We suggest you also clear
the screen before you begin.

• Clear the screen. Hold down the CTRL
key and press the L key. This erases the
screen and puts the cursor in the upper
left corner.

• Type NEW and press ENTER.

If you misspell NEW, you may see an error
message. That's OK, try again. Type NEW and
press ENTER.

GNU
Syntax error
Ok

Now enter the program slowly and carefully:

- Type 10 PRINT "Mariko"
and press ENTER.

• Type 20 GOTO 10
and press ENTER.

If you entered the program without making any
typing mistakes, the screen looks like this:

NEW
Ok
10 PRINT "Mariko"
20 GOTO 10

2 v— cursor

It's OK to type
NEW, PRINT,
and GOTO in
lower-case letters
as new, print,
and goto.

If you see a mistake, that's OK. Just ignore it and
read on . . . we will soon tell you how to fix
mistakes.

LIST the Program
THE PROGRAM is now stored in the computer's
memory. You can always find out what program
is in the memory by telling the computer to LIST
on the screen what is stored in memory. Let's do
it:

• Clear the screen. Hold down the CTRL
key and press the L key.

• Type LIST and press ENTER.

Quick as a wink, the computer lists the program
on the screen. Ours looks like this:

LIST
10 PRINT "Mariko"
20 GOTO 10
0k

Now is the time to correct any incorrect lines.
Just retype the line, including the line number,
and press ENTER. Then LIST the program again
to make sure it is correct.

Blackboard
•MM CkWfo Dm.V~
, wool f«lt, clatm tb« bond tbor-o n t n l y . J f t t v d u r t b l r

irdot.

If you see a line with line number 1 or 12 or 19
or any line number other than 10 or 20, please
get rid of it:

• To erase a line from memory, type only
the line number and press ENTER.

For example, to erase line 19:

• Type 19 and press ENTER.

This erases only line 19 from memory. All other
lines remain in memory. Line 19 might still show
on the screen, but it has been erased from the
computer's memory. LIST the program again. Is
t ere a line missing? If so type the missing line
an press ENTER. Fix any incorrect lines, then
move on.

September 1988 The BASIC Teacher

Teach Yourself BASIC 3

Run the Program
THE PROGRAM is in memory and ready to use.
Tell the computer to RUN the program:

• Type RUN and press ENTER.

In a twinkling, Mariko's name appears on every
line and you see this on the screen:

M a r i k o
Mari t:o
M a r i k o

M a r i k o
M a r i k o
1L 1ST 2RUN-*

That
The

bottom
line,

i f course,
3L0AD is the

Key Line .

A

The computer keeps printing Mar iko on the line
just above the Key Line. Each time it does this,
all the other Marikos are pushed up one place.
The top Mariko is "pushed off" the top of the
screen. This happens so quickly, however, that
only superhcroes with ultrafast eyes can see it
happen.

Stop the Computer
HOW DO you stop the computer? Easy.

• Hold down the CTRL key and press the
BREAK key.

The bottom part of the screen probably looks like
this:

M a r i k o
M a r i k o
M a r i k o

To stop the computer:

Hold down CTRL

and press BREAK.

B r e a k i n 1 0
Ok

1 L I S T 2 R U N * . 3 L 0 A D *1
The Key Line

How n^es It Work?
HOW DOES the program work? ; lere again is the
program:

10 PRINT "Mariko"
20 GOTO 10

Line 10 tells the computer to print the word
enclosed in quatation marks which, as you can
see , i s Mar iko .

Line 20 tells the computer to go to line 10 and
continue.

When you type RUN and press ENTER, the
computer starts running the program at the
smallest line number. It does line 10, then line 20,
then line 10, then line 20, then line 10, then line
20, and so on, and so on and so on . . . until
someone holds down CTRL and press BREAK.

REMEMBER: Line numbers tell the computer
the order in which to do things. Line numbers do
not have to be consecutive integers such as 1, 2,
3, 4, 5, and so on. Instead, it is better to number
by tens as we did in the above program. Then, if
you wish, you can easily insert or add more lines
between ones you already have. For example, in
the above program you can add nine more lines
between lines 10 and 20 (lines 11, 12, 13, 14, 15,
16, 17, 18, and 19).

The BASIC Teacher September 1988 0

Follow the arrows:

RUN

I
10 PRINT "Mariko"

I 1
20 GOTO 10

Around and
around and
around and
around. . .
until
CTRL+BREAK

4

Mistrakes
WHEN YOU type, you will probably make
mistrakes.

Oops! We mean you will probably make misteaks.

Uh . . . sorry . . . we think you might sometimes
press the wrong keez.

Oh well, you know what we mean, don't you?

There are so many ways to make mistakes in
entering a program. Here is a program we want to
enter in order to remind someone how to stop the
computer.

10 PRINT "Hold down CTRL and press BREAK"
20 GOTO 10

Unfortunately, we entered it as shown on the
screen below:

NEW
Ok
10 PRINT "Hold down CTRL and press BREAK"
20 GOTO 19 ^

Oops!

Well, you might expect some problems in running
this program. The GOTO has no place to go . . .
there is no line 19. Here is what happened when
we ran the program:

RUN
Hold down CTRL and press BREAK
Undefined line number in 20
0k

We could fix line 20 by retyping
the entire line correctly. Instead
let's do it a different way, using
the cursor control keys, also
called the arrow keys.

RIGHT ARROW moves the cursor right.

LEFT ARROW moves the cursor left.

UP ARROW moves the cursor up.

DOWN ARROW moves the cursor down.

LIST It & Fix It
CLEAR THE screen and LIST the program:

LIST
10 PRINT "Hold down CTRL and press BREAK"
20 GOTO 19
0k

Use the arrow keys to move the cursor up and
over until it is under the 9 in 19.

20 GOTO 19 •»<_r cursor

Type a zero (0) to correct the error. This is what
you then see:

20 GOTO 10 cursor

Now press ENTER. The computer stores the
corrected line 20 in its memory, replacing the old,
incorrect line 20. To see that this is true, clear the
screen and LIST the program:

LIST
10 PRINT "Hold down CTRL and press BREAK"
20 GOTO 10
0k

Now suppose you have just entered the following
program:

10 PRINT "Merry Christmas, Faather"
20 GOTO 10 +

1— Oops!

Position the cursor under the second a in Faather
and press the BACK SPACE key to erase the first
a. Then press ENTER.

Suppose the error is: Oops!

10 PRINT "Happy Birthday, Moter"

Put the cursor under the e
in Moter. Press INS, then
type an h to correct the
speling for Mother. OK?
Press ENTER.

a
September 1988 The B AS IC Teacher

Teach Yourself BASIC

Variations of Line 10
NOW YOU know several ways to make
corrections or desired changes to the program.
Experiment. Try some of these tiny programs.
When you type one of these programs, be sure to
inlcude the comma (,) or semicolon (;) at the
right end of line 10:

10 PRINT "Lucy",
20 GOTO 10

10 PRINT "Lucy";
20 GOTO 10

10 PRINT "Lucy "j
20 GOTO 10

"j

comma

semicolon

Put one space here.

The comma (,) at the end causes a "tab" to the
right to the next standard print position. There
are five standard print positions. The semicolon
(;) causes things to be printed close together.

Here are three programs:

1. 10 PRINT "Ha Ha"
20 GOTO 10

2. 10 PRINT "Ha Ha",
20 GOTO 10

3. 10 PRINT "Ha Ha";
20 GOTO 10

Which program above would produce the RUN
shown below?

Things to Do
1. TEACH THE computer to cry. Complete the

following program to fill the screen with Boo
Hoo.

10 PRINT
20 GOTO 10

2. Write a program to produce the following run.

Garfield
Garfield
Garfield
Garfield
Garfield

loves lasagna
loves lasagna
loves lasagna
loves lasagna
loves lasagna

We Did It Like This
1. HERE ARE two ways:

10 PRINT "Boo Hoo",
20 GOTO 10

comma

10 PRINT "Boo Hoo "; <c_ semicolon
20 GOTO 10

I 3 spaces
2. Here is our program:

10 PRINT "Garfield loves lasagna"
20 GOTO 10

Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha

Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha
Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha

Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha

Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha

Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha

. . . and so on.

The BASIC Teacher September 1988 0

Teach Yourself BASIC

Big Letters
YOU CAN tell the computer to display 80
characters across the screen or 40 characters per
line. Do it. Tell the computer to display 40
characters per line:

• Type WIDTH 40 and press ENTER.

When we did it, we saw a big Ok.

Now tell the computer to display 80 characters
per line.

- Type WIDTH 80 and press ENTER.

When we did it, we saw a smaller Ok.

We usually like 80 characters per line when we
enter a program.

Now tell the computer to display 80 characters
per line and enter the following program. When
you run the program, it tells the computer to
shift to 40 characters per line.

10 WIDTH 40
20 PRINT "My human likes me"
30 GOTO 20

Run the program and you will see "My human
likes me" in double-width letters on the screen:

My hi us m a n 1 i k es me
My human 1 i k es me
My human 1 i k e s me
My h u m a n I x k es me
My h u m a n 1 i k es me
My h u m a n 1 x k e me
My h i us in a n 1 i k es me

.. . and so on.

Stop the program (CTRL+BREAK). This will
leave the screen in 40 characters per line mode. If
you want 80 characters per line:

« Type WIDTH 80 and press ENTER.

When you run this program, the computer does
line 10 only once, then goes around and around
with lines 20 and 30. Note that line 30 tells the
computer to go to line 20.

Follow the arrows:

RUN

I
10 WIDTH 40

1
20 PRINT "My human likes me'

I
30 GOTO 20

Now draw arrows showing how the computer
runs the following program:

RUN

10 WIDTH 40

20 BEEP

30 PRINT "The time is", TIME$

40 GOTO 30

Enter the program and run it. You will see
something like the following, but in big letters.
Watch the seconds change ...

The
The
The
The
The
The
The
The
The
The
The

time is
time is
time is
time is
time is
time is
time is
time is
time is
time is
time is

1 2 : 3 7 : 0 0
1 2 : 3 7 : 0 0
1 2 : 3 7 : 0 0
1 2 : 3 7 : 0 0
1 2 : 3 7 : 0 1
1 2 : 3 7 : 0 1
1 2 : 3 7 : 0 1
1 2 : 3 7 : 0 1
1 2 : 3 7 : 0 1
1 2 : 3 7 : 0 1
1 2 : 3 7 : 0 1

. . . a n d s o o n .

s September 1988 The BASIC Teacher

Teach Yourself BASIC

The BASIC Rainbow
WHEN YOU first load BASIC, it prints on the
screen in gray on a black background. You can
tell the computer to print in any of 16 colors,
including black. Of course, black print on a black
background is somewhat hard to see. Go ahead,
tell the computer to print in red:

• Clear the screen (CTRL+L)

• Type COLOR 4 and press ENTER.

You will see Ok in red. The cursor remains white.

COLOR 4
Ok

- <r-

Tells the computer to use red.
This is in red.
The cursor remains gray.

Don't clear the screen. Tell the computer to print
in light green.

• Type COLOR 10 and press ENTER.

Now you see:

COLOR 4
Ok
COLOR 10 Still in red.
Ok

- * !

Tells the computer to use red.
Red.

Light green.
The cursor stays gray.

Don't clear the screen. Tell the computer to print
in light blue:

• Type COLOR 9 and press ENTER.

Now you see:

COLOR 4
Ok
COLOR 10
Ok
COLOR 9
Ok

Tells the computer to use red.
So this is in red.
Tells the computer to use green.
So this is in green.
Tells the computer to use blue.
So this is in blue.
The cursor is still gray.

Don't clear the screen. Tell the computer to print
in the original screen color, white:

• Type COLOR 7 and press ENTER.

Now you see:

COLOR 4 Red
Ok
COLOR 10 Green
Ok
COLOR 9 Blue
Ok
COLOR 7 Gray
Ok

The next experiment is tricky . .. black on black:

• Type COLOR 0 and press ENTER.

Now you don't see Ok!

COLOR 7
Ok
COLOR 0

<

Gray

Oops where is Ok?

Well, black print on a black screen is quite
invisible. You can now type COLOR 7, but you
won't see it. The cursor moves ... so you know
something is happening:

• Type COLOR 7 and press ENTER.

Now you see:

COLOR 7
Ok
COLOR 0

Ok <r

Gray

Ok is invisible.
COLOR 7 is invisible.
Aha! Visible again.

The BASIC Teacher September 1988 0

8
Teach Yourself BASIC

PRINT in COLOR
YOU CAN use the COLOR keyword to tell the
computer to PRINT in the color of your choice,
selected from the following list of 16 colors:

0 black 8 dark gray
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 gray 15 white

Mary Jane, Heidi, and Karl picked red, green, and
blue as the colors for their names everywhere on
the screen. Here are their programs:

Mary Jane's Program:

10 COLOR A Red
20 PRINT "Mary Jane
30 GOTO 20

Heidi's Program:

10 COLOR 2 Green
20 PRINT "Heidi ";
30 GOTO 20

Karl's Program:

10 COLOR 1 Blue
20 PRINT "Karl ";
30 GOTO 20

Tom couldn't decide between light green and
light magenta. So he did his program like this:

10 COLOR 10
20 PRINT "Tom";
30 COLOR 13
AO PRINT "Tom";
50 GOTO 10

Your turn. Pick a color
and write your program.
If you want to see your
name in BIG LETTERS,
include WIDTH 40 in
your program.

Random Colors
MARIKO COULDn't decide on just one color, or
two colors, or more colors. So she decided to let
the computer pick the colors at random, using a
special keyword called RND with the help of
another keyword called INT:

Mariko's Program:

10 COLOR INT(15*RND) + 1
20 PRINT "Mariko ";
30 GOTO 10

We encourage you to run Mariko's program. Of
course it is OK to use your name instead of
Mariko's.

Remember, to stop the program:

• Hold down CTRL and press BREAK.

It can stop in any of 15 colors. So tell the
computer to use gray:

• Type COLOR 7 and press ENTER.

If you were using BIG LETTERS (WIDTH 40)
and want to get back to small letters (WIDTH
80):

• Type WIDTH 80 and press ENTER.

Oh yes, next time we will tell you more about
RND and INT.

September 1988 The B AS IC Teacher

BASIC Browsing BASIC
CT~e^clie*- BV Don Inman

No. 3

WE DIGRESS from BASIC in this issue to talk a little bit about your Disk
Operating System (DOS). DOS is the master program that coordinates the flow
of information from your computer to your disks and from your disks to your
computer. Every computer that uses disks must have a disk operating system.
Despite its importance, DOS is quite often the most ignored part of a computer
system. If you're like me, you know DOS is necessary, but only use it for the
most basic things—like formatting and copying disks and disk files. Of course,
DOS is also necessary to load the software that we use.

In this issue, we will explore some of the basic tasks that MS-DOS (or PC-DOS)
can perform. As you read through the article, you should stop often to try out
any DOS commands that are new, or unfamiliar, to you. Seeing them work
immediately may entice you to use them in the future.

We'll begin by assuming that you know the following DOS commands
in their most elementary forms:

DIR DISKCOPY COPY FORMAT

We will discuss some options to the commands above and add some new DOS
features in this article. New terms discussed are:

COPY CON DEVICE DRIVER.SYS FORMAT /V LABEL

DOS features discussed here are for MS-DOS, version 3.2 and 3.3. If a feature
does not work on an earlier version, this fact will be stated in the discussion.
Here is the MS-DOS I am using:

Microsoft MS-DOS Uersion 3,20
(OCopwight Microsoft Corp 1981, 1986
Tandy version 93,20,21
Licensed to Tandy Corp.
All rights reserved,

Microsoft licenses MS-DOS to many computer manufacturers. Notice that the
MS-DOS version 3.20 used here is Tandy version 03.20.21. As you browse the
following discussion, remember that there may be slight differences between this
version and the version of MS-DOS that you are using.

In writing books and articles, I use a lot of disks and files. This article is saved to
a text file named BROWSE03.DOC. The extension (DOC) reminds me that this
is a document (text file). Other files pertaining to the article contain BASIC
programs with the extension BAS. Still other files contain artwork (screen
prints) used in the article. These files have the extension PIX or PIC (for
picture). I like to have all files of any given article on the same disk so that
everything related to the article can be easily found.

The BASIC Teacher September 1988 [»]

Browsing BASIC No. 3

LABEL YOUR DISKS

When I first looked at the directory of the disk used for this article, 1 was mildly
irritated when I saw:

A)DIR B:
Volume in drive B has no label
Directory of B:\

File not found < This means no files
on the disk yet

See "Volume in drive B has no label" at the top line? Because of my laziness, I
have not even used DOS to label my disk.

Most DOS commands allow you to add options, called switches. A switch
changes the way a command executes. It still performs the same basic function,
but the switch alters how the command is executed. For instance, you can put a
label on a disk when it is formatted by adding the V switch to the FORMAT
command as follows:

A > FORMAT B : /V

T f \
Format disk in drive B V sw,tcb causes the computer to pause

& prompts you for a label

Here is the sequence of information and prompts when the above command is
entered on my Tandy 1000TX.

A)FORMAT B:/V
Insert wn diskette for drive B
and strike ENTER when ready
Fornat complete ^ 2 Formatting takes place

Volume label (11 characters, ENTER for rone)?

A label can contain up to 11 characters. I entered BROWSING03 as my label:

Volume label <11 characters, ENTER for rone)?

Pause for label

BROHSING03 Label

2124% bytes total disk space
362496 bytes available on disk

Format another (¥/N)?N

More formatting info

September 1988 The BASIC Teacher

Browsing BASIC No. 3 3

The label isn't really necessary, but it immediately informs me of the disk
contents—this disk contains material for the third article in the "Browsing
BASIC" series.

So... . you forget, or aren't ready, to label the disk when it is formatted. You
save a file, or a few files, to the disk and then want to label it. If you have
MS-DOS version 3.0 or higher, you can do this with the command:

A>LABEL B:
For example, my disk has been formatted but not labeled. It contains the file
BROWSE03.DOC. Here is the directory:

AMIR B:
Volute in drive B has no label
Directory of B:\

BROWSE83 DOC 4814 5-13-88 9:51a
1 File(s) 357376 bytes free

I now use the LABEL command:

AMABEL B:
Volume in drive B has no label
Volume label (11 characters, ENTER for none)? BR0USING83

A look at the directory of the disk in drive B now shows:

AMIR B:
Volume in drive B is BROUSING03
Directory of B:\

BROWSE83 DOC , v 4814 5-i3-88 9:59a
1 File(s) 357376 bytes free

A>_
t

As you can see, the disk now has the label BROWSING03 and contains that part
of the article that has been saved at this time. Now that the disk is labeled, let's
move on to a more complicated problem:

1

The BASIC Teacher September 1988

COPYING A FILE TO THE SAME DRIVE

Browsing BASIC No. 3

Three different types of disks are commonly used with today's personal
computers: hard disks, 5V4" floppy disks, and 3V4" diskettes. We are now in a
disk transition period in which both hardware and software are changing from
5!4" drives and disks to 3V4" drives and diskettes. This poses some problems
when copying disks from one drive to another. The particular problem, discussed
here, is copying a file from a disk in one drive to another disk in the same drive.

1 have one 514" drive and one 3 Yi" drive installed in my Tandy 1000TX so that 1
can use files saved in either format. Now, suppose I want to save the present
version of my BROWSE03.DOC file to a different disk than the current one
which is in drive B. 1 want to save it to a new disk in drive B, the same drive.

DOS will not let me copy a file to the same drive. This is the message 1 get when
1 try to copy BROWSE03 to the same drive where it resides:

A>C0PV B:BROHSE03.DOC B:
File cannot be copied onto itself

8 File(s) copied

A>_

A similar message appears when I try to copy a file from Drive A to Drive A:

A>C0PV SPOOLER.SYS A:
File cannot be copied onto itself

8 File(s) copied
A>_

This problem can be solved by writing a DEVICE command to the CONFIG.SYS
file on the DOS disk. However, if you've ignored DOS capabilities as I have,
there is no CONFIG.SYS on your DOS disk. You can create the CONFIG.SYS
file in a word processor, save it in ASCII format, and copy it to your DOS disk.
However, since this file will be short, it can easily be done within DOS.

DOS has many capabilities, one of which is the ability to write files to itself
directly from the keyboard. In this instance, I want to write a CONFIG.SYS file
that will give each of my two disk drives two names. I presently have the 3V4"
drive installed as drive A. The 5lA" drive is installed as drive B. I want the
CONFIG.SYS file to add the designation C to drive A and the designation D to
drive B. Then I can copy a disk to the same physical drive with the command:

A>COPY B: BROWSE03.DOC D:

DOS will accept this command even though B and D are the same physical drive
DOS will even tell me when to insert the correct disk as you shall see later in the
article. However, we must first create CONFIG.SYS.

September 1988 The BASIC Teacher

Browsing BASIC No. 3 5

W R I T I N G A D O S F I L E

The DOS command:

A>COPY OON: CONFIG.SYS

opens a file named CONFIG.SYS for text. The term CON means console, a
combination of your monitor and keyboard. The DOS command COPY CON
means copy (from the console) the file that follows (CONFIG.SYS). Remember,
your DOS system disk should be in drive A and unprotected in order to write

The file is created by typing text and pressing the ENTER key at the end of each
line of text. The file is closed by typing CTRL Z and pressing ENTER. The file is
automatically sent to the disk in drive A.

The file entries are echoed on the screen as the file is created. Here is how the
final screen looks:

DRIVER.SYS is an installable device driver that enables your system to use
more than two floppy disk drives and more than two hard disk drives. It also
allows you to assign more than one logical drive letter to one physical drive.

Keep in mind that disk drives have physical drive numbers. Physical floppy
drives are numbered from 0 (zero). Since I have two physical drives, they are
numbered 0 and 1. The 3W" drive is number zero, and the 514" drives is number
one. I have no other drives.

We know and use the drives by their logical letter. My 3V4" drives is usually
known as drive A, and my 5V4" drive is usually known as drive B. If I had a third
drive, it would be logical drive C. A fourth drive would be logical drive D.

the file.

The ENTER key is pressed
at the end of each line

The fourth line results
from pressing CTRL Z i Fih(s) copied

6 3 Vi" drive

1 5% " drive

Logical
Drives

The BASIC Teacher September 1988
[01

6 Browsing BASIC No. 3

Let's look at each DEVICE command separately:

1. DEVICE = DRIVER. SYS /D:0 /F:2

This command causes MS-DOS to assign the next available drive letter (C in
this example) to the drive number that follows the /D switch (0). Since C is
the next available drive on my system, logical drive C is assigned to physical
drive 0. Now I have assigned two logical drive letters (A and C) to what the
computer knows as physical drive 0.

The value following the /F switch specifies the form factor index to this
drive. The index values are:

0 = 320/360K floppy 4 = 8" double-density floppy
1 = 1.2Mb floppy 5 = hard disk
2 = 720K floppy (3W") 6 = tape drive
3 = 8" single-density floppy 7 = other

Thus /F:2 tells the computer that the new logical drive (C) is a 720K
floppy 3V4" drive.

2. DEVICE = DRIVER. SYS /D:l /F:0

This command causes MS-DOS to assign the next available drive letter (D in
this example since we previously used C) to the drive number that follows
the /D switch (1). Thus, logical drive D is assigned to physical drive 1. Now I
have assigned two logical drive letters (B and D) to what the computer
knows as physical drive 1.

The switch value, /F:0, tells the computer that the new logical drive (D) is a
320/360K floppy drive.

Make sure that the CONFIG.SYS file has been saved by taking a directory of the
DOS disk. If it is there, you are ready to test the new disk drive designations:

TESTING THE NEW DEVICE

Turn off your computer. Then start your system with the DOS disk that
contains the CONFIG.SYS file. Here is what our opening screen shows:

BIOS ROM version dl.B3.B0
Compatibility Software
Copyright (C) 1984,1985.1986.1987
Phoenix Software Associates Ltd.
and Tandy Corporation,
fill rights W reserved.

Microsoft MS-DOS Hers ion 3.20
(C)Copyright Microsoft Corp 1981,
Tandy version 83.20.21
Licensed to Tandy Corp.
All rights reserved.

1986

Loaded External Disk Driver for Drive C
Loaded External Disk Driver for Drive D
Current date is Toe 1-81-1980
Enter new date (wn-dd-yy): _

New driver from
CONFIG.SYS file

September 1988 The BASIC Teacher

Browsing BASIC No. 3 7

Notice the two additional lines just above the display of the current date. The
CONFIG.SYS file causes the drivers for the two drives (C and D) to be loaded.

After entering the date and time, our DOS prompt reappeared. We put the disk
containing BROWSE03.DOC in drive B and executed the following command to
see if we could save the file to the same physical drive using the drive D
designation:

A>capy B:BROUSEB3.DOC D:

Insert diskette for drive B: and strike
any key lutein ready

File is copied to memory from drive B—
— then prompt to insert disk appears

When a key is struck, the file is copied to the disk in drive D:

A>C0PV B:BROWSE03.DOC D:

Insert diskette Tor drive D: and strike
any key nhen ready

1 File(s) copied

A>_

The same method can be used to save a file from drive A to drive C:

A>C0PV CONFIG.SVS C:

Insert diskette for drive C! and strike
any key nhen ready

1 File(s) copied

A>_

From time to time, The BASIC Teacher will include tips, suggestions, and uses
of MS-DOS that are often neglected. If you have particular DOS features that
you would like discussed, send suggestions to The BASIC Teacher.

The BASIC Teacher September 1988 0

Browsing BASIC No. 3

DOS COMMANDS

The actions performed by DOS can be divided into two parts:

1. Resident Commands

Perform actions that DOS can always perform. Once DOS is loaded, these
commands are always resident in memory. They can be executed immedi
ately, whenever you want.

2. Transient Commands

Small programs, really, that perform special functions. If you want to
perform any of these functions, you must have a disk containing these DOS
commands in the computer. Transient commands are only brought into
memory from a disk when you request them. It is your responsibility to
have them available when needed.

The following table shows resident and transient DOS commands.-

RESIDENT COMMANDS TRANSIENT COMMANDS

BREAK PATH APPEND FIND RECOVER
CHCP PROMPT ASSIGN FORMAT REPLACE
CHDIR RENAME ATTRIB GRAFTABL RESTORE
CLS RMDIR BACKUP GRAPHICS SELECT
COPY SET CHKDSK JOIN SHARE
CTTY TIME COMP KEYB SORT
DATE TYPE DISKCOMP LABEL SUBST
DEL VER DISKCOPY MODE SYS
DIR VERIFY EXE2BIN MORE TREE
ERASE VOL FASTOPEN NLSFUNC XCOPY
MKDIR FDISK PRINT

DOS has two parts:

1. Hidden files

Stored on the disk but do not appear on a disk directory.

2. COMMAND.COM file

Visible on the disk directory, used to boot up the system.

The hidden files and the COMMAND.COM file are copied to a
disk when it is system formatted. These files occupy almost
70K of memory as can be seen when a 5!4" disk is formatted.

Pf""

fWornat b:/s
Insert new diskette for drive
and strike BIIBI when ready

Format cmplete
Systen transferred

3621% bytes total disk space
68688 bytes used by systoe
283888 bytes auailable on disk

September 1988 The BASIC Teacher

T U e
BASIC
' (L'.'Vi/If 1*

TEvlCH YOURSELF
QuickBASIC

No. 3

By Bob Albrecht
and George Firedrake

INTRODUCTION
QUICKBASIC IS a great language for beginners. In our small town,
we'll give our time to help kids use QB to explore the right stuff, the
most powerful uses of computers: simulations, games, simulation
games, Imitations of Life. We will use real-life computers to help kids
learn, teach, and explore math, science, and other disciplines. We call
it Computer Kid, USA.

QuickBASIC is a great language for experts. We think it is the best
language for developing Educational ShareWare. So, we are helping
start a grass-roots effort to use QB as the common language for
developing a cornucopia of excellent low-cost educational ShareWare
for home or school use. If this piques your curiosity, read "The
Shareware Teacher" column by Wendy Wiegand, Dean Brown, and
Bob Albrecht in every issue of ShareWare Magazine from PC-SIG,
1030 East Duane Avenue, Suite D, Sunnyvale, CA 94086.

QB Control
WE ASSUME that you know how to load QB into
the computer and be rewarded by the sight of a
screen like the one shown below .. .

arch Hon Debug Calls
'Untitled> |

We call this screen the QuickBASIC Control
Center, or just QB Control. It is also known as the
Edit Screen. You compose and edit programs
here, in the large window called the View
Window.

The File Menu
IF YOU have just loaded QB, there is no QB
program showing in the View Window. If there is
a program showing, you can erase it by using the
File Menu. Even though no program is shown,
practice using the File Menu to tell the computer
to get ready for a New Program.

• Press the ALT key, then press the F key
to get the File Menu.

When you access the File
Menu, the top menu item,
New Program, is highlighted.

Good, That's the one we want.

Press the ENTER key.

The File Menu disappears.
You are ready to enter a new
program in the View Window.

mgyggmpas
^towTrogran^l

Open Pruyran.
Ilerye...
Saue
Saue As..,
Saue Oil

Create File..
toad File...
Unload File.,

IWaBBBBClEBlB

The BASIC Teacher September 1988

Teach Yourself QuickBASIC No. 3

A QB Program
FOR YOUR first QuickBASIC program, we
suggest a program to print the date, time, and
your name. While gazing at the Edit Screen,
George Firedrake typed:

CLS
PRINT DATE$
PRINT TIME$
PRINT "George Firedrake"

George typed each line of his program and
pressed the ENTER key. As he typed, his
program appeared in the View Window and was
also stored in the computer's memory, ready to
be used.

Your turn. Go ahead and enter George's program
in your View Window. If you wish, use your
name instead of George's! If you type els in lower
case, QuickBASIC will change it to upper case
when you press ENTER. The same for print,
date$, and time$. These are QuickBASIC
keywords. Type them any old way (but spell
them correctly), and QB will format them as all
caps. That's the way we want it, anyway.

Thanks QB.

If you make a typing mistake, use the arrow keys,
the BACKSPACE key, and the DELETE key to
correct the error.

Save the Program
We think it is a real good idea to immediately save
a program, even before you use it, print it, or
otherwise it. To save a program to a disk, use the
File Menu. Here's how:

Press the ALT key, then
press the F key. The File
Menu "drops down,"
with New Program
highlighted.

Use the DOWN
ARROW key to move
the highlight down to
SAVE AS . .. If you go
too far, use the UP
ARROW key to move
the highlight up the
FileMenu. *w> tin mil mnlii le uit.li

When Save As . . . i s h i g h l i g h t e d , p r e s s t h e
ENTER key. The Save As . .. Dialog Box
pops into view:

File Kane: _

OA

Format
(•) IjuicMttSlC - Fast Load and Save
() Tert - Readable by Other Programs

0 Cancel

Note the cursor blinking in the File Name box. If
you now type a file name for your program and
press ENTER, the program will be saved on the
disk in disk drive A, which we assume is your QB
Work Disk. Go ahead, do it:

• We typed QBDEMO.001 and pressed
ENTER.

The disk drive light came on, the disk drive
clicked a few times, and the Save As . . . Dialog
Box disappeared. We arc back in QB Control.
However, there is a small difference. In the top-
middle part of the View Window, we see the
name we gave the program: QBDEMO.001.

September 1988 The BASIC Teacher

Teach Yourself QuickBASIC No. 3

Run the Program
THE PROGRAM, now called QBDEMO.001, is
stored on the QB Work Disk. Later, we'll go get
it. But now, use the Run Menu to run the
program.

• Press the ALT key, then press the R key.
This highlights the word Run in the Menu
Bar and also selects the Run Menu.

I I If I'll. Uifti -rt" li J K>i i I |I| Ui<i i.,

Highlighted 5*1 SUrt aift*l
Kt sl.fl I
i <ul I mif P>
ri'lihi HWVINPJ...
fltki |>r I'IIH. .

l.i ir«r«i..
vi n. 11 ..

Imndljtf

Ready to run? Do it:

• Press the ENTER key to run the program.
Here is what we saw .. .

{ 07-04-1988
16 '05:39
George Flredrake

Press any key to continue

Here are the date, time,
and George's name.

5 Press any key to
return to QB Control.

Press any key and you return to QB Control.
Your program is still in the View Window.

You created a short QuickBASIC program, saved
it to the QB Work Disk, and ran it. Your program
is still in the momory of the computer, also
stored on the disk under the file name
OBDEMO.001, and visible in the View Window.

Keep up the good work!

Erase the Program
NEXT, ERASE the program from the computer's
memory and from the View Window. You can use
the New Program selection in the File Menu to do
this:

Press the ALT key, then press the F key.
You will see the File Menu with New
Program highlighted.

Press the ENTER key. The File Menu
disappears and you return to QB Control.
The program is gone from the View
Window and the Title Box says: Untitled.

File Eti il Unn Vrtn h Km Debug Cci lis n iii' 11' |
B <-11 itit.led • j

I mediate

fir 11 lint: t i»-»1 I miter. I'rnM.m not. wniun

The program has been erased from memory and
from the View Window, but is still stored on the
disk.

What's on the Disk?
Use the File Menu to find out what is on a disk:

• Press the ALT key, then press the F key.
You will see the File Menu with New
Program highlighted. That's not what we
want.

• Press the DOWN ARROW key once. The
highlight moves down to Open Program
.. . Good! That's what we want.

• Press the ENTER key. You will see the
Open Program .. . Dialog Box.

The BASIC Teacher September 1988 Hi]

•mmMHHI

Teach Yourself QuickBASIC No. 3

The Open Program
this:

Dialog Box looks like

File Nane;

AA

ED Cancel

<tkrtltled> Contort" Prosran not v wma

Hmmm . . . wonder what is on the disk in drive
A? Let's find out.

• Type *.* and press the ENTER key.

In the large box you will see a list of files now on
the disk in drive A. Our QB Work Disk now has
these files:

command.com
qb.exe
qb.hlp
qbdemo.001

Yes, tbe file names are
shown in lower case,

even if you typed tbem
in upper case. That's OK.

The first three files comprise the original QB
Work Disk. The fourth file (qbdemo.001) was
added this time.

Load QBDEMO.001
LOAD qbdemo.001 from the disk into memory,
as follows:

• Type qbdemo.001 and press the ENTER
key.

The light on drive A comes on, the disk drive
whirrs & clicks a bit, and the program is loaded
into memory. The dialog box disappears and the
program is shown in the View Window. Its name,
QBDEMO.001, appears in the Title Box.

as
PRIHT DOTES
PRIKI TIKES
PRINT "George Flreirake"

Imedlite

0, 11 ijHUulU.HHl inni-p.-. I'i ri<.i .n ml nimui'i

Now use the Run Menu to run the program.
Whenever you want to run the program known as
QBDEMO.001, use the File Menu to load it from
the disk into the computer's memory, then use
the Run Menu to run it.

We Hope
Everything
Went As
Planned

WELL, WE hope all the above happened when you did it.
If so, you now know how to:

Create a program in the View Window.

Use the File Menu to save the program to disk drive A.

Use the Run Menu to run the program.

At the end of a run, press any key to return to QB Control.

Use the File Menu to erase a program.

Use the File Menu to list the files on the disk in drive A.

Use the File Menu to load a program from drive A.

September 1988 The B AS IC Teacher

Special Reader Services
QB / 0 Work Disk
STILL AVAILABLE!

LAST ISSUE The BASIC Teacher
announced that it has received
authorization from Microsoft to make
available to teachers and educators a
limited quantity of QuickBASIC 4.0
Work Disks at a special low price. The
Work Disks, which contain the two
most-important QuickBASIC files,
QB.EXE and QB.HLP, are still
available.

Requests should be made on school
letterheads. The disks may not be
duplicated and may be used only by
the person making request. Recipients'
names and addresses will be made
available to Microsoft.

Educators, this is the least-expensive
way for you to get a copy of this
exciting new computer language that is
revolutionizing the way people use
computers. Take advantage now while
supplies last in this special offer.

MS-QBWD QuickBASIC
Work Disk $12.00

Using QuickBASIC
By Don Inman and Bob Albrecht

(Osborne/McGraw-Hill, 436pp)

Here's an excellent programming guide
to Microsoft's newest version of
QuickBASIC by the authors of The
BASIC Teacher. The book approaches
QuickBASIC's programming environ
ment in three stages so beginning and
experienced BASIC programmers can
find the appropriate level of instruc
tion.

OMH-881274 Using
QuickBASIC $19.95

Mathematics, Magic and Mystery
By Martin Gardner

115 diversions, magical tricks arising
from mathematical principles.

DOV-20335 paperbound 176pp $3.50

Mathematical Puzzles of
Sam Loyd
Selected and edited by Martin Gardner

One of the very few great innovators
of puzzles, Sam Loyd (1841-1911)

DOS Made Easy
By Herbert Schildt

(Osborne/McGraw-Hill, 385pp)

Previous computer experience is not
necessary to understand this concise,
well-organized introduction that's
filled with short applications and exer
cises. The book walks you thru all the
basics, beginning with an overview of a
computer system's inner components
and a step-by-step account of how to
run DOS for the first time.

OMH-881194 DOS Made
Easy $18.95

invented thousands of the most
valuable, ingenious, and popular
puzzles ever originated.

DOV-20498 paperbound 167pp $3.50

More Mathematical Puzzles of
Sam Loyd
Selected and edited by Martin Gardner

For more than 50 years, Sam Loyd's
ingenious posers appeared in innumer
able newspapers and magazines.

DQV-20709 paperbound 177pp $3.50

13
u o

B
u
O

Uh

(D i„
S - o P > c ° $ U

**-O
i l l
0 K •

V,
a

t 3.1 (0
•5 -8 -
Y £ S — ^

II

I! ho.

n Q. UJ
o a= a
>7 12 8 <2? O
% jj S 8£ H </) 5 tu ft- ^

UJ
-J
<

O

d> (13

Q
UJ
UJ

z <
cc
<
D
u
2
O
P-
u
<

t-
<
oo

-o <r
C

k_ o H-
CO o
f a o

T— c CD
k.

a -a
.9- S

I/O b O O a>
i- .ti o o F s_ CN <D CD .ti

"O O
< c o O O

— CO _c TJ CD
(0 u

c -C a (O
X CO a> CO
00 k. o

=)
Ul o "D

o in
o O. CD O

PC Magazine
Technical
Excellence
Award
Winner

A powerful, full-featured programming
language, QuickBASIC 4.0 takes
BASIC into an entirely new dimension
by adding source-level debugging, huge
arrays, unlimited string space, support
for Hercules graphics, and a wealth of
other important features. The most
impressive new feature of all is the
threaded p-code interpreter.
QuickBASIC 4.0 uses an incremental
compiler that converts each line of
source code as it is entered. What
makes this system impressive is its
ability to stop a program's execution,
examine variables and make changes
to the source code, and then resume
execution. Further, QuickBASIC
programs can now call routines written
in any of the other Microsoft lan
guages, and vice versa.

Back Issues
Available
TBT-1 Issue No. 1 $3.00
TBT-1 Issue No. 2 $3.00

"Even the most cynical 'structure'
fanatics and BASIC bashers must now
agree that BASIC is a serious develop
ment language . . . BASIC has indeed
come of age." —Ethan Winter

PC Magazine

MS-11407 QuickBASIC 4.0. . .$95.00

ADVANCED COLOR
GRAPHICS AND ANIMA TION
FOR THE IBM PC
By Don Inman and Kurt lnman

(Hayden, 248pp)

ACHIEVE SOPHISTICATED screen
effects with this example-oriented text
that shows you how to use the extend
ed graphics capabilities of IBM
BASICA for programming displays.

The Shareware Book
Using PC-Write, PC-File, PC-Talk
By Emil Flock, et al

(Osborne/McGraw-Hill, 688pp)

Covers the most popular "free"
programs: PC-Write, a word processor;
PC-File, a database manager; and PC-
Talk, a telecommunications program.
These programs are available thru user
groups or bulletin-board services in
return for a nominal registration fee.
The book has all the details on how
you can obtain these program disks.

OMH-881251 The Shareware
Book $14.95

QuickBASIC:
The Complete Reference
By Steven Nameroff

(Osborne/McGraw-Hill, 700pp)

Publication date pushed back to
November '88. Please do not order
this book until further notice.

Whether you're creating a business
chart or an artistic animation, you'll
learn the techniques that give your
work professional results.

HAY-121 Advanced Color
Graphics $18.95

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

Different Worlds Publications
2814 - 19th Street
San Francisco, CA 94110

Address Correction Requested

No. 4 , Oc tober 1 988

PUBLISHER'S STATEMENT. The
Teacher is published monthly by Difi
Worlds Publications, 2814 - 19th Stree.
Francisco, CA 94110. Contents copyrigl.
1988 by Different Worlds Publications. A.
rights reserved. Contents may be copied anc
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

Editorial T a d a s h i E h a r a , p u b l i i h e r

HAPPY COMPUTING ! Bonb Al|>r*cht. •**<»
D o n I n m a n , e d i t o r

PUBLIC DOMAIN AND
SHAREWARE PROGRAMS

YOU CAN get many perfectly good programs for
the price of the disk and cost of distribution
alone. You pay registration fees only after you
try the program out and either decide you've
gotten some enjoyment out of it or if you decide
to use it on a regular basis. The cost of
registration is usually hundreds of dollars less and
many shareware programs have been rated better
than their comparable commercial versions.

You can get information on how to purchase
public domain and shareware programs from:

PC-SIG
1030D E Duane Ave
Palo Alto, CA 94086
800-245-6717
800-222-2996 in Calif.

California Freeware
1466 Springline Dr
Palmdale, CA 93550
(805) 273-0300

Micro Star
PO Box 4078
Leucadia, CA 92024
800-443-6103
800-443-7430 in Calif.

Lone Star Software
2100 Hwy 360, Ste 1204
Grd Prairie, TX 75050
800-445-6172

Innovative Technology
PO Box 726
Elk City, OK 73648
800-253-4001 ext. 78

Software Excitement!
PO Box 3072
Ctl Pt, OR 97502
800-444-5457

In the future The BASIC Teacher will offer many
of the best, most enjoyable, and most useful
shareware programs to its readers. If you know
any public domain or shareware programs which
would be of interest or of use to our readers,
please let us know. If you have a program which
you would like to share with our readers, send us
an evaluation copy for possible distribution by
The BASIC Teacher.

FAMILY COMPUTER FAIRE
November 26, 1988
RAF Mildenhall Air Force Base,
Suffolk, United Kingdom

Hosted by the Gateway Computer Club, 8 Church
End, Brandon, Suffolk IP 27 0JE, United
Kingdom, (0842) 814291. The Gateway
Computer Club is a multi-computer association
that supports Atari, Commodore, Amiga, Apple,
Macintosh, IBM, Tandy, Sinclair, BBC, Amstrad,
and MS-DOS type computers.

'~z j[

TANDY 1000 TL/SL

Tandy Corporation announces two new models
for their personal-computer line. The Tandy 1000
TL features the popular 80286 microprocessor
and the Tandy 1000 SL features the 8086
microprocessor. The TL comes with 640K RAM
and one 3W disk drive. The SL comes with 384K
RAM and one 5V4" drive. The TL also comes with
an internal clock/calendar.

Both models include MS-DOS 3.3 in ROM, a 101-
key enhanced keyboard, a parallel and a serial
port, and two joystick ports. They both also
come with DeskMate 3.0, ten applications in one
program: Text Processing, Worksheet, Electronic
Filing, Draw, Address Book, Spell Checker,
Hangman, PC-Link, and Calendar/Alarm.

Both models also come with sophisticated sound
and speech capabilities. They include both a
digital-to-analog converter and an analog-to-digital
converter. You can record sound, edit it, and play
it back. Y ou can also compose and play music.

Available thru Radio Shack.

0
October 1988 The BASIC Teacher

T U c
BASIC Teach Yourself BASIC

By Bob Albrecht and George Firedrake No. 4

• t'd-viiSSM it. • Introduction
KIDS CAN learn BASIC at an early age and use it to explore math, science,
and other disciplines in the most powerful ways: by designing simulations,
games, and simulation games . . . Imitations of Life. In our town, we'll do
this in after-school courses for 10- to 13-year-old learners. If you are
interested in this sort of thing, send a stamped, self-addressed envelope to
ComputerKid, USA, PO Box 1635, Sebastopol, CA 95473.

BASIC has a small vocabulary and a simple syntax (grammar). We have
already discussed some of the special words that Microsoft BASIC
understands. They are called keywords or reserved words.

Here are the keywords introduced and described previously:

BEEP CLS COLOR DATE$. GOTO KEY LIST NEW
OFF ON PRINT RUN TIME$ TIMER WIDTH

We also used, but did not describe:

INT RND

Number Boxes
IMAGINE THAT, in the computer's memory,
there are a bunch of number boxes. Each number
box can hold one number at any one time. Each
number box has a name. Here are some number
boxes that we named:

7 b 5 c 36

We named these boxes a, b, and c. The number 7
is in box a; the number 5 is in box b; the number
36 is in box c.

Here are more number boxes with a number in
each number box:

diameter 24 Price 29.95

(1) What number is in box diameter?

I (2) What number is in box Price?

ANSWERS: (1) 24; (2) 29.95.

Numeric Variables
THE NAMES of number boxes are called numeric
variables. A numeric variable can be a single letter
or any combination of letters and digits (0 to 9)
up to 40 characters in length. The first character
must be a letter.

These are okay: x R2D2

These are not okay: 2D2R a.b

The numberin a number box is called the value of
the variable that identifies the box. In the number
boxes on this page:

The value of b is 5.

The value of diameter is 24.

BASIC treats all letters in variable names as
upper-case letters, even if you type them in lower
case. However we will usually show variables in
lower case or a MiXtuRe of upper and lower case.
Keywords will always be shown in all upper-case
letters (BEEP, CLS, COLOR, and so on).

The BASIC Teacher October 1988 a

2
Teach Yourself BASIC No. 4

a = 7 nor «

HOW DO you put numbers in number boxes?
Easy!

e Clear the screen

• Type a = 7 and press ENTER

a = 7
Ok

The computer has put the number 7 into box a.
Or, in more formal language, the computer has
assigned the value 7 to the variable a.

a = 7
' assign this number

to this variable

The instruction: a - 7

Tells the computer to assign the value 7 to the
variable a.

PRINT a
IS THE number 7 in number box a? Is 7 the value
of a? Find out:

• Clear the screen

• Type PRINT a and press ENTER

PRINT a
7

Ok

The instruction:
PRINT a

Tells the computer to
print the value of the
variable a.

b = 5
TELL THE computer to assign 5 as the value of
b, then print the value of b.

• Clear the screen

• You type b = 5 and press ENTER

• You type PRINT b and press ENTER

b = 5
Ok
PRINT b

5
Ok

The value of b is now 5. The value of a, we
assume, is still 7. You can type PRINT a to make
sure. If not, go ahead and assign 7 as the value of
a (a = 7).

Now add, subtract, multiply, and divide the
numbers in a and b, as follows:

• You type PRINT

It prints 12

• You type PRINT

It prints 2

• You type PRINT

It prints 35

• You type PRINT

It prints 1.4

If your fingers didn't
stumble, the screen
probably looks like this:

PRINT a + b
12

Ok
PRINT a - b
2

Ok
PRINT a * b

35
Ok
PRINT a / b
1.4

Ok

(I

0

E October 1988 The BASIC Teacher

I

k

Teach Yourself BASIC No. 4

The Mysterious and
Unpredictable RND

FOR 11 = 1 TO 10 Tb's FOR • • • NEXT
PRINT RND loop tells the

NEXT n computer to PRINT
ten RND numbers

Enter and run this program. We ran the program
twice. Here is what happened:

Second Run

.1213501

.651861

.8688611

.7297625

.798853
7.369805E-02
.4903128
.1072496
.9505102

.1213501

.651861

.8688611

.7297625

.798853
7.369805E-02
.4903128
.1072496
.9505102

The BASIC Teacher October 1988

4 Teach Yourself BASIC No. 4

Well, you see, the RND function is a procedure,
algorithm, or whatever, designed to generate
numbers that we can use much like we would use
actual random numbers. Fortunately, there is a
way to start the RND function in places other
than the beginning. It is called RANDOMIZE. We
added a RANDOMIZE statement at line 15 to the
original program.

10 CLS

15 RANDOMIZE TIMER

20 FOR n = 1 TO 10
30 PRINT RND
40 NEXT n

Here are two runs. These runs produced different
sets of numbers.

First Run Second Run

.7321985 .5176142

.1434736 .3028516

.3590502 .334041

.5516148 .2672673

.8935375 .8247051

.7964193 .7685415

.2393242 2.608264E-02

.6434587 .1738084

.670008 .4070838

.5610022 .3653998
0k 0k
— —

bt^er-

Line 15 (RANDOMIZE TIMER) starts the RND
function at a number determined by the value of
TIMER which, please recall, is the number of
seconds since midnight, according to the
computer. Of course, if you run this program
every day at the exact same time, you will get the
same bunch of numbers every day. Not too
likely!

RND numbers are handy for games, simulations,
art, music, and probably other things we can't
think of just now. Look over the lists of RND
numbers.

• Every RND number is greater than zero.
Yes, even 2.608264E-02. This is a floating
point number, described in "Teach
Yourself BASIC No. 2."

• Every RND number is less than one.
Another way to read 2.608264E-02 is
0.02608264.

From the evidence, it seems that an RND number
is greater than zero and less than one. However
we haven't shown much evidence, only a few
numbers. We suggest you run a bunch more to get
more evidence.

E October 1988 The B AS IC Teacher

wen

Teach Yourself BASIC No. 4

It's true. RND numbers are greater than zero and
less than one. Another way to say it: RND
numbers are between zero and one. Or, in yet
another way:

O < R N D < 1

Unfortunately, that's usually not convenient.
Usually we want integers in some range. For
example, we might want the numbers 1, 2, 3, 4,
5, and 6 at random; or decimal digits 0 to 9; or
numbers from 1 to 100.

Hmmm . . . RND is between 0 and 1, but is never
0 or 1. Therefore 10 * RND must be a number
between 0 and 10, but never 0 and never 10. Do
you agree? If not, run the following program a
few times.

10 CLS

15 RANDOMIZE TIMER

20 FOR n = 1 TO 10
30 PRINT 10 * RND
40 NEXT n

Here are some examples:

First Run Second Run

4.029291
2.084068
9.266755
5.512639
7.852154
4.495108
2.956749
4.275316
4.584143
7.739081

0k

6.284968
2.139539
.6948411
6.54688
8.811932
9.428274
4.71975
9.298814
8.576147
8.575566

0k

a> 0 < 10 * RND <10

Yup, all values of 10 * RND are greater than zero
and less than ten. Each number has an integer
part to the left of the decimal point and a
fractional part to the right of the decimal point.

4 . 02929 1

3 . 2988 1 4.

integer part fractional part

Perhaps you are wondering about .6948411. The
integer part is zero (0).

For each number between 0 and 10, the integer
part is a single decimal digit, 0 to 9. Wouldn't it
be nice if you could tell the computer to throw
away the fractional part and keep the integer
part?

Weil, you can. BASIC has a clever and useful
function called INT. Here are some examples:

I NT (3) is 3 INT(9.298814) is 9

INT(4.029291) is 4 INT(.6948411) is 0

You can use the computer to verify this:

• You type PRINT INT(3)

It prints 3

. You type PRINT INT(4.029291)

It prints 4

1029291

The BASIC Teacher October 1988 m

6 Teach Yourself BASIC No. 4

. , iup'1
If number is any positive number or zero, then
INT (number) i s the in teger par t of number .
Instead of a number, you can put any numeric
variable, function, or expression in parentheses
following INT.

I NT" C >

Any BASIC number, numeric variable,
numeric function, or expression.

So it is OKto write INT(10 * RND) .

RND is a random number between 0 and 1.

10 * RND is a random number between
0 and 10.

INT(10 * RND) is a random integer from
0 to 9.

Now run this program to put random digits (0 to
9) on the screen.

10 CLS

15 RANDOMIZE TIMER

20 FOR n = 1 TO 10
30 PRINT INT(10 * RND)
40 NEXT n

As usual, here are two samples:

Firs t Run Second Run

8
0
0
4
4
9
6
7
8
2

0k

5
2
1
2
5
1
7
8
6
7

Ok

THINGS TO REMEMBER:

• RND is a number between 0 and 1.
Never 0 and never I.

• 2 * RND is a number between 0 and 2.
Never 0 and never 2.

INT(2 * RND) isOor 1.

• 3 * RND is a number between 0 and 3.
Never 0 and never 3.

INT(3* RND) is 0, 1, or 2.

• 6 * RND is a number between 0 and 6.
Never 0 and never 6.

INT(6 * RND) is 0, 1, 2, 3, 4, or 5.

So you can add one to get numbers from
1 to 6, like rolling a D6 (six-sided die).

Write it like this: INT(6 * RND) + 1 .

And so on. RND and INT are great tools for
making computer games and simulations.

a
October 1988 The B AS IC Teacher

Teach Yourself BASIC No. 4

The Sound
of SOUND

YOU CAN use the keyword BEEP to make the
computer go beep. Every beep sounds the same
... the same frequency (pitch) and the same
duration (length of time). Now use the keyword
SOUND to make less monotonous sounds. You
can make low sounds, high sounds, and in-
between sounds. You can make short sounds and
long sounds. The following SOUND instruction
tells the computer to make a sound of frequency
262 Hertz (cycles per second) for a duration of
18 clock ticks (about one second).

SOUND 262, 9
SOUND 440, 9
GOTO 20

What do you hear? A fire truck or ambulance
rushing to the rescue? Two sounds, with
frequencies 262 and 440, alternate until you uj
CTRL+BREAK to interrupt. You hear each
sound for 9 ticks, about half a second.

Add a third sound, as in the following program SOUND 262, 18
frequency duration

Musicians call this sound middle C. Go ahead
play it on your computer:

SOUND 262
SOUND 440
SOUND 349
GOTO 20 Type SOUND 262, 18 and press ENTER,

Now try a low sound. Use 37 as the frequency
Go ahead, make some music. The frequency can
be any number from 37 to 32767, but feel free to
try numbers outside this range to see what
happens. Here is a table of frequency numbers for
some well-known musical notes.

Type SOUND 37, 18 and press ENTER.

Then try the highest frequency the computer can
use . .. much too high for you to hear, unless you
are a bat or a dolphin or a whale:

Frequency

130.81
146.83
164.81
174.61
196.00
220.00
246.94
261.63
293.66
329.63
349.23
392.00
440.00
493.88

Frequency

523.25
587.33
659.26
698.46
783.99
880.00
987.77

1046.50
1174.70
1318.50
1396.90
1568.00
1760.00
1975.50

Type SOUND 32767, 18 and
ENTER.

I hear you

The BASIC Teacher October 1988

Teach Yourself BASIC No. 4

Strange Music
YOU CAN use R N D to make strange "music." To
hear some, enter and run this program:

10 CLS
20 frequency = 2000 * RND
30 duration = 1
40 SOUND frequency, duration
50 GOTO 20

The statement: frequency = 2000 * RND

Tells the computer to assign a random number
between 0 and 2000 as the value of the numeric
variable frequency. If you get an error message
while running this program, change line 20 to:
20 frequency = 2000 # RND + 37.

The statement: duration = 1

Tells the computer to assign the value 1 to the
numeric variable duration.

The statement: SOUND frequency, duration
Tells the computer to sound a tone using the
values of the numeric variables frequency and
duration.

Run the program, listen for a little while, then use
CTRL+BREAK to stop it. Change the duration to
0.125 as follows:

• Type 30 duration = 0.125 and press
ENTER.

This changes only line 30. LIST the program to
see your change:

LIST
10 CLS
20 FREQUENCY = 2000 * RND
30 DURATION = .125 <
40 SOUND FREQUENCY, DURATION
50 GOTO 20
0k

_ Here is the change

Yes, when you LIST a program, the computer
shows variables in all upper case, no matter how
you typed them. Nevertheless, we will show
variables in lower case or a mixture of upper and
lower case . . . makes programs a little easier to
read, we think.

October 1988 The BASIC Teacher

T U «
BASIC

ic i-

Browsing BASIC
By Don Inman

THE FOLLOWING topics were covered in previous installments of "Browsing
BASIC":

No. 1:

No. 2:

No. 3:

Browsed the KEY command and used it to change the function
assignments shown on the key line. We also looked at the ALT key
shortcuts for many BASIC keywords.

Browsed the VIEW PRINT statement and experimented with
scrolling and fixed portions on the screen. Then we looked at pull
down windows.

Browsed the COPY CON command to write a DRIVER.SYS file to
assign dual-drive specifications so that a file could be copied to the
same physical disk. We also labeled disks.

We started in April with a small list of keywords that we assumed you knew
how to use. The list grew a little in April, a little more in May, and a little more
in June. Here is a list of BASIC and DOS keywords that you should now know:

CHR$
CLS
COLOR
COPY
DATA
DEVICE
DIM
DIR
DISKCOPY
DRIVER

END
FOR...NEXT
FORMAT
GOSUB
GOTO
IF...THEN
INPUT
INPUTS
KEY
LABEL

LINE INPUT
LIST
LOAD
LOCATE
OR
PRINT
READ
REM
RETURN
RUN

This month we will add these keywords to the list:

INPUT
LEN

LINE
MID*

PSET
SCREEN 1

TEXT AND GRAPHIC POSITION RELATIONSHIPS

THE FIRST two "Browsing BASIC" articles discussed topics that are used in the
text screen mode (SCREEN 0). We will now browse the use of text, along with
graphics, on a graphics screen (SCREEN 1).

Quite often you will want to add some text to a graphics screen. For instance, if
you create a graph, you will want to add some text to describe what the graph
represents. You will want to display labels, scales, and a title for the graph.

You have used the LOCATE statement to position characters to be printed on
the display. .—•—

f Notice the order A
LOCATE row, column < 1 used to specify J

V row and column J

No. 4

SAVE
SCREEN(row, col)
SCREEN 0
SPACES
STRINGS
TAB
VIEW PRINT
WIDTH

tinej

FJ ir

The BASIC Teacher October 1988

2 Browsing BASIC No. 4

ORDER, ORDER!

Unfortunately when BASIC locates graphic pixels, it reverses the order of the
row and column values used in positioning text characters. This difference in
order is seen when comparing a LOCATE (text character) statement with a
PSET (graphics pixel) statement:

LOCATE TOW, column row first, then column

PSET (column, row) column first, then row

Another difference between the LOCATE statement and graphics location
statements such as PSET is the fact that parentheses are used to enclose the row
and column values in a graphics statement.

BIG TEXT CHARACTER, BUT SMALL PIXEL

A graphics pixel set by a PSET statement is much smaller than a text character.
Each text character occupies the same space as an eight by eight array of pixels.
Therefore the number of a pixel position in graphics does not correspond to the
same number used for a text position.

We will use SCREEN 1 to demonstrate the differences in text and graphics
numbering systems. SCREEN 1 is called the medium resolution graphics mode.
The text size used in this mode uses a maximum of 40 characters per line. The
top text line of the screen is specified as row 1. The left-most character position
in a line is specified as column 1. Thus the top line consists of position 1,1
through 1, 40.

1 £ n
f

1 , 1

Since eight graphics pixels occupy the same width as one text character, there
are 8 times 40 or 320 columns of pixels in each graphics row. The top graphics
row is specified as row 0 (zero). The left-most pixel position in a row is specified
as column 0 (zero). The top row of graphics pixels consists of positions (0,0)
through (319,0).

t
1,40

\ 1 /
(0 , 0) (160 ,0) (319 ,0)

Not only are the unit sizes different for text and graphics,
but the origin for numbering units is also different: (1,1)
for text and (0,0) for graphics. Of course, you must also
remember that the order of specifying row and column
are reversed for text and graphics.

You can use a method of trial and error to find the
correct LOCATE statement that will place the text where
you want it in relation to the graphics. However, there is a
direct relationship between text positions and graphics
positions which can be used to calculate corresponding
positions. Let's look first at column relationships.

October 1988 The B A S I C Teacher

Browsing BASIC No. 4

CORRELATING COLUMN POSITIONS

Starting with the left-most column position, we have the following relationship
between the first three text columns and the graphics columns that would
correspond to the upper-left corners of the text positions:

0 8 16 * — Pixel column numbers

1 2 3 ^ — Text column numbers

You can see that for each increase of one text column, the corresponding pixel
column (upper-left corner of the text position) increases by eight. However the
pixel column numbering begins with one less than the corresponding text
column. Therefore to locate the pixel position of the upper-left corner of the
corresponding text position, you must do the following arithmetic operation:

1. PixelColumn = 8 * (TextColumn - 1)

Examples:

For TextColumn = 1: PixelColumn =8*(1-1) =8*0=0
For TextColumn = 2: PixelColumn =8* (2-1) =8*1=8
For TextColumn = 3: PixelColumn =8*(3-l) =8*2= 16

The converse relationship is:

2. TextColumn = PixelColumn / 8 + 1

Examples:

For PixelColumn = 0: TextColumn = 0/8+1=0+1=1
F o r P i x e l C o l u m n = 8 : T e x t C o l u m n = 8 / 8 + 1 = 1 + 1 = 2
F o r P i x e l C o l u m n = 1 6 : T e x t C o l u m n = 1 6 / 8 + 1 = 2 + 1 = 3

From Equation 1: PSET(PixelColumn, PixelRow) is the same as:

PSET(8 * (TextColumn - 1), PixelRow)

From Equation 2: LOCATE TextROW, TextColumn is the same as:

LOCATE TextRow, PixelColumn / 8 + 1

The BASIC Teacher October 1988

4 Browsing BASIC No. 4

CORRELATING ROW POSITIONS

Now that we have solved the column relationships, let's look at how corres
ponding row positions can be calculated.

Pixel

0

8

16

Text

1

2

3

Once again, text row positions are numbered from the top of the page beginning
with number 1. Graphics pixel rows begin at the top of the page beginning with
number 0 (zero).

There are 25 rows of text and 200 rows of pixels. Therefore there arc again 8
rows of pixels for each row of text. The relationship of pixel rows and text rows
is the same as that for columns.

PixelRow = 8 * (TextRow - 1)

TextRow = PixelRow / 8 + 1

176

184

192

23

24

25

Examples:

For TextRow 1: PixelRow =
For TextRow 21: PixelRow :
For TextRow 25: PixelRow :
For PixelRow 0: TextRow =
For PixelRow 80: TextRow =
For PixelRow 192: TextRow =

8 * (l - 1)
8 * (21 - 1)
8 * (25 - 1)

0 / 8 + 1
8 0 / 8 + 1
1 9 2 / 8 + 1

0
160
192
1
11
25

That's enough heavy thinking for now. From here on, let's let the computer do
the calculating.

PUTTING PIXELS AND TEXT TOGETHER

Since you know a character and an eight by eight array of pixels occupy the
same area, you can draw a square around a character. The square should be a
little larger than eight by eight to give a nice, clean appearance. You can use the
relationships we have been discussing:

pool = 8 * (tool -1)
prow = 8 * (trow -1)

where:

pool = PixelColumn
prow = PixelRow
tool = TextColumn
trow = TextRow

To provide the space around the character, draw a rectangle whose upper-left
corner is three pixels left and three pixels above the upper-left corner of the
character.

The lower-right corner of the rectangle would be at position pcol + 7 + a nr

7 + 3. Thus the upper-left and upper-right corners of the rectangle would'be a7 +

(pcol-3, prow-3) and (pcol+10, prow+10), respectively
0)

October 1988 The BASIC Teacher

Browsing BASIC No. 4 5

You could have the computer print a string of letters, each enclosed in a
rectangle. To do so you would have to tell the computer where to start printing
the string (row and column). Of course, you would also have to tell it what
string you want to print. The input to such a program could look like this:

Text starting row : ? 12
Text starting column : ? 2

Vour word(s): ? Square Mordsl

The output of the program, for the information shown above would look like
this:

0 00000 00000
1 REM ** Squares Around Letters **
2 ' Browsing BASIC #4 5/15/88
3 ' Microsoft GW-BASIC File: FNCYW0RD.001

100 REM ** Set Graphics Screen and Get Information **
110 SCREEN 1: CLS: KEY OFF
120 INPUT "Text starting row : trowSK
130 INPUT "Text starting column : txtcol%
140 PRINT: INPUT "Your word(s): StrngS

200 REM ** Clear Screen and Print Words **
210 CLS: prow% = 8 * (trow% - 1)
220 FOR num% = 1 TO LEN(Strng$)
230 tcol% = txtcol% + 3 * (num% - 1)
240 LOCATE trow%, tcolfc: Letter$ = MIDS(StrngS, num%, 1)
250 PRINT Letter$
260 IF Letters <> " " THEN GOSUB 1010
270 NEXT num%

300 REM ** Wait for Keypress, Restore Screens **
310 ky% = INPUTS(1)
320 CLS: SCREEN 0: CLS: KEY ON: WIDTH 80
330 END

1000 REM ** SUBROUTINE: Square the Letters **
1010 pcolfc = 8 * (tcol% - 1)
1020 LINE (pcol% - 3, prow% - 3)-(pcol% + 10, prow* + 10), , B
1030 RETURN

Run the Squares Around Letters program with your own entries. The program is
designed to print on a single line, so start your words near the left side of the
screen. No provision is made for a line feed. Therefore, you will get the message
"Illegal function call in 240" if the line extends beyond text column 40.

The BASIC Teacher October 1988 EE

6 Browsing BASIC No. 4

After you make the initial entries, the screen is cleared and the pixel row
position is calculated at line 210 by our trusty text row to pixel row
relationship.

210 CLS: prow* = 8 * (trowX - 1)

The text column position (tcol%) moves three places to the right for each letter
in the string you entered so that there will be plenty of space between the
enclosed letters.

220 FOR numSt = 1 TO LEN(StrngS)
230 tcolfc = txtcol% + 3 * (numX - i)

starting text column
\ \

move right three
for each letter

We used a new keyword (LEN) in line 220. The LEN function returns the
number of characters in a string. Therefore if you enter a string (StrngS) of 12
characters, LEN(Strng$) = 12.

The computer examines your string letter by letter by means of MID$, another
new keyword.

220 FOR num* = 1 TO LEN(StrngS)
230 tcolX = txtcolfc + 3 * (num% - 1)
240 LOCATE trowX, tcol%: Letter$ = MIDS(StrngS, numX, 1)

The MID$ function returns a substring of a string. In this case, the string is
StrngS. The substring returned starts at the position num%. The number just in
front of the right parenthesis tells how many characters to return.

MIDS(StrngS, nunft, 1)

T
l— return 1 character

— — start at this position
examine this string

The value of num%, in the FOR .. . NEXT loop, starts at one
and increases each time from your string starting from the
left-most character and assigns it to the variable Letters.

For example: StrngS = "Word"

When num% = 1, jwj o r d Letters = W

When num% = 2, W [o] r d LetterS = o

When nunft = 3, W o | r] d Letters = r

When num% = 4, W o rjdj Letters = d

[»]
October 1988 The B AS IC Teacher

Browsing BASIC No. 4 7

So LEN(Strng$) finds the length of the string you enter. This length is the upper
limit of a FOR .. . NEXT loop that uses MlD$(Stmg$, num%, 1) to pick out
one letter of the string each time through the loop.

When a character is "picked off," it is printed. If the character is a space, no
square is drawn. If the character is not a space, a subroutine is called to draw a
rectangle around the character.

250 PRINT Letters
260 IF Letters <> " " THEN GOSUB 1010
270 NEXT num%

0 0 0 0 0

1000 REM ** SUBROUTINE: Square the Letters **
1010 pcolX = 8 * (tcolSK - 1)
1020 LINE (pcol% - 3, prow* - 3)-(pcol% + 10, prow% +10), , B
1030 RETURN

We sneaked in another new BASIC keyword in the subroutine. The rectangles
could be drawn by setting many points with the PSET statement. However, it is
quicker to draw a straight line made up of many pixels with a LINE statement.
All you need for the LINE statement are the two end points.

LINE (PixelColumnl, PixelRowl)-(PixelColumn2, PixelRow2)

J }
starting point ^ ending point '

We even went a little farther and used the B option (Box) with the LINE state
ment in line 1020 of the subroutine.

1020 LINE (pcolX - 3, prow* - 3)-(pcolX + 10, prow% +10), , B

The B option at the end of the LINE statement tells the computer to draw a box
using the two specified points as the opposite corners. The B option saves
drawing four separate lines to form the box. It is all done in one giant step.

There are many ways you could enhance the Square Around Letters program.
We used an INPUT statement to enter the test string. If you used LINE INPUT,
you could also use punctuation characters in your string. You could also add
features to provide a line feed and carriage return when you reach the end of a
line. You would probably want to add two line feeds to provide enough space
between lines to draw the rectangles without interfering with adjacent lines.
Then you could write a whole screenful of text.

The BASIC Teacher October 1988 ^

8 Browsing BASIC No. 4

Here is a QuickBASIC program that goes a little beyond the Squares Around
Letters program. This program draws a rectangle around words—even several
lines of words. I'm sure you GW-BASIC folks can translate it into your own
language:

REM ** General Rectangle/Text Demonstration **
' Browsing BASIC #4 8/24/88
' Microsoft QuickBASIC File: FNCYWORD.002

REM ** Initialize & Get Data **
SCREEN 1: CLS : DEFINT A-Z
INPUT "How many lines of text LineNum
INPUT "Row number for first line "; trow
INPUT "Column number for first line "J tcol
REDIM Array(l TO LineNum) AS STRING
Lng = 0
FOR num = 1 TO UB0UND(ArrayS)

PRINT "Enter line number"! num
LINE INPUT Array$(num)
temp = LEN(Array$(num))
IF temp > Lng THEN

Lng = temp
END IF

NEXT num
CLS

REM ** Print Array & Box #*
FOR lyne = 1 TO UB0UND(ArrayS)
LOCATE trow + lyne - 1, tcol: PRINT ArrayS(lyne)

NEXT lyne
pcol = (tcol - 2) * 8: prwl = (trow - 2) * 8
Pco2 = (tcol + Lng) * 8: prw2 = (trow + LineNum) * 8
LINE (pcol, prwl)-(pco2, prw2), , B

REM ** Wait for Keypress & End **
a$ = INPUT$(1): CLS : END

Hrap «. pffctAnsrl*

apouind mc , pi ease .

Put your thinking caps on for a minute. If you can draw rectangles
around a text character, there is no reason you couldn't draw a circle
around a character. To do this, you would have to reconsider the text/
pixel relationship we have been using. To draw a circle around a text
character, its center should be near the center of the text character.
For a circle whose radius is 10, the following scheme would work:

For Upper-Left Corner
of a Rectangle

pcol% - 3
prow% - 3

For Center
of a Circle

pcolX + 4
prow% + 4

We'll continue this subject next time, showing how to use text with
graphs to provide titles, scales, and labels. If you have graphic topics
you would like to have discussed, drop us a line at The BASIC Teacher.

n*1 >

-w
—

-3 it i T4

f" -

•
--

-• -

—

-4- —i
—

For
Circle

[w]
October 1988 The B AS IC Teacher

TU*
BASIC
'/ c^che »-

TEZICH YOURSELF
QuickBASIC

No. 4

By Bob Albrecht
and George Firedrake

Computer Kid, USA
THE MOST powerful way to use a computer is to learn a general-
purpose programming language and apply it to interesting problems.
QuickBASIC is the best language for learning and teaching this high-
level skill. Fifth or sixth grade is a good place to start. Serendipity!
QuickBASIC has a very capable built-in word processor. Kids can
learn the low-level skill of word processing as a by-product of
learning the high-level skill of programming. And, since QuickBASIC
works in a Windows environment, another by-product is learning
how to use windows, pull-down menus, and other things useful on
real-life computers, the 25 million IBM compatibles. Yet another
bonus, another by-product of learning QuickBASIC: the tools of file
management. Unfortunately schools don't teach real-life languages
on real-life computers, so we have to do it outside of school with
projects like Computer Kid, USA in our home town of Sebastopol,
California. You can do it in your town. For more information:

Computer Kid, USA, PO Box 1635, Sebastopol, CA 95473, USA.

DO . . . LOOP
The DO . . . LOOP is a fundamental control
structure in QuickBASIC. Go now to QB Control
and enter the following tiny program in the View
Window. Two versions of the program are shown,
one for the Tandy 1000 series of computers,
another for most other IBM PC compatibles.

If you are using an IBM PC or compatible (except
Tandy 1000), enter the following program:

DO
PRINT "Hold down CTRL and press BREAK"

LOOP

If you are using one of the Tandy 1000
computers, enter the following program:

DO
PRINT "Hold down CTRL and press HOLD"

LOOP

It is not necessary to indent the PRINT statement
as shown in the two programs, but it is very good
practice to do so. It is good programming style.
Programs written in good programming style are
easy to read and understand.

Run the Program
Use the Run Menu to run the program. Zip . . .
quickly the screen fills up with the message in the
PRINT statement. Look at the bottom line on the
screen. The bottom copy of the message seems to

) blink. Actually a new copy of the message is
being printed many, many times a second. The
new message printed at the bottom of the screen
"pushes" the other copies up one line .. . this is
called scrolling. The top copy is "pushed off the
screen." This happens so fast, though, that only
superheroes with ultra-fast eyes can see it happen.

The screen looks like this:

c

Hold down CTRL and press BREAK
Hold down CTRL and press BREAK
Hold down CTRL and press BREAK
Hold
•

down CTRL and press BREAK

•
•

Hold down CTRL and press BREAK
Hold down CTRL and press BREAK

The bottom line is a
little blurry.

The BASIC Teacher October 1988
m

2 Teach Yourself QuickBASIC No. 4

STOP the Program
Stop the program. For most IBM compatibles,
hold down the CTRL key and press the BREAK
key. For a Tandy 1000, hold down the CTRL key
and press the HOLD key. You will be rewarded
with the screen shown below:

File Edit Uieu Search Run Debuj Calls
<Untitled>

DO
PRINT "Hold down CTRL and press BREAK"

LOOP-

' This is highlighted

When you interrupt a DO . . . LOOP by using
CTRL BREAK or CTRL HOLD, you are returned
to QB Control. The instruction being executed
when you interrupted will be highlighted. On our
computer, it appears in a bright white, whiter
than the rest of the text. In this short program, it
is likely that LOOP will be highlighted. You will
also see the cursor at the first letter of the
highlighted word.

This is a nice feature of QuickBASIC ... it tells
you what it was doing when you interrupted.

The program in the View Window is a very simple
example of a DO .. . LOOP. The instruction
between DO and LOOP is repeated until you
interrupt.

PRINT TIMES
Another DO . . . LOOP is shown in the following
tiny program, which repeatedly prints the time
until you interrupt:

DO
PRINT TIME$

LOOP

Enter and run this program, then watch the
screen. You will notice the seconds changing, a
second at a time, of course. Watch for a while and
see the minutes change. If you watch long
enough, the hours will change.

PRINT TIMER
QuickBASIC has a keyword called TIMER that
keeps track of the number of seconds since
midnight. Enter and run the following tiny
program to see TIMER in action . . . lots of action
because TIMER shows hundredths of seconds.

DO
PRINT TIMER

LOOP

Freeze the screen. You can freeze the screen, stop
the scrolling and look at the now quiescent
number, then unfreeze the screen and let the
seconds fly by.

To freeze the screen:

Tandy 1000: Press the HOLD key.

IBM PC: Hold down CTRL and press S.

To unfreeze the screen:

Tandy 1000: Press the HOLD key.

IBM PC: Hold down CTRL and press S.

PRINT DATES
The following DO . .. LOOP will print the date
repeatedly on the screen.

DO
PRINT DATE$

LOOP

Of course, the date changes rather slowly, so you
must have great patience to notice anything
happening.

m
October 1988 The BASIC Teacher

Teach Yourself QuickBASIC No. 4 3

PRINT MMariko"
in Many COLORs
Enter and run all three of the following programs.
All three programs cause Mariko's name to be
printed in randomly selected colors from 16
available colors, including black, white, and very
white.

DO
COLOR INT(16*RND)
PRINT "Mariko"

LOOP

DO
COLOR INT(16*RND)
PRINT "Mariko",

LOOP

DO
COLOR INT(16*RND)
PRINT "Mariko";

LOOP

The three programs are the same except for the
comma (,) at the end of the PRINT instruction in
the second program and the (;) at the end of the
PRINT instruction in the third program. The first
program has neither a comma nor a semicolon.
Run all three programs to see the effect of the
comma and semicolon.

COLOR INT(16*RND)

picks a random color from 0 to 15.

Color Color
Number Color Number Color

0 black 8 gray

1 blue 9 light blue

2 green 10 light green

3 cyan 11 light cyan

4 red 12 light red

5 magenta 13 light magenta

6 brown 14 yellow

7 white 15 bright white

RND? INT?
RND is a random number between 0 and 1, but is
never exactly 0 nor 1. Could be, for example:
0.3760942. RND is greater than zero, but less
than one.

0 < RND < 1
16 * RND is a random number between 0 and 16,
but is never exactly 0 or 16. If RND happens to
be 0.3760942, then 16 * RND will be 6.017507.
Yes, 16 * RND is greater than zero and less than
16.

0< 16* RND <16
INT (16 * RND) is an integer from 0 to 15.
It can be 0 or 1 or 2 or 3 .. . and so on, up to 15.
INT (16 * RND) is an integer greater than or
equal to zero, but less than or equal to 15.

0 <= INT (16* RND] <= 15
Be sure to look up COLOR, INT, and RND in the
book, BASIC Language Reference that comes in
the box with QuickBASIC.

Make It Blink
You can use color numbers 16 to 31 to make
printed information blink. Use 16 for blinking
black which, of course, you can't see on the black
screen. Use 17 for blinking blue, 18 for blinking
green, and so on. To see only blinking colors, run
this program:

DO
COLOR INT(16*RND) + 16
PRINT "Mariko ";

LOOP

To see both blinking and non-blinking colors, use
this program:

DO
COLOR INT(32*RND)
PRINT "Mariko ";

LOOP

The BASIC Teacher October 1988

4 Teach Yourself QuickBASIC No. 4

SOUND Advice
You can use the keyword BEEP to make the
computer go beep. Every beep sounds the
same ... the same frequency (pitch) and the
same duration (length of time). You can make
less monotonous sounds by using the keyword
SOUND, which lets you control the frequency
and duration of the sound. The following SOUND
instruction causes the computer to play the note
musicians call Middle C for about one second.

SOUND 262, 18
frequency duration

If you would like to hear Middle C for about one
second, go to the Immediate Window and enter
the above SOUND instruction as an immediate
command. Then enter the following tiny
program, which plays two notes alternately until
you interrupt by pressing CTRL BREAK or
CTRL HOLD.

DO
SOUND 262,
SOUND 440,

LOOP

The instruction: SOUND 262, 9

tells the computer to sound a tone of frequency

262 Hertz (cycles per second) for 9 clock ticks,
about half a second. This toneis Middle C.

The instruction: SOUND 440, 9

tells the computer to sound a tone of frequency
440 Hz (Hertz, cycles per second) for 9 clock
ticks, about half a second. This tone is A, above
Middle C.

Go ahead, make some music. The frequency can
be any number from 37 to 32767. If you can hear
those high notes, you must be a dolphin. The
duration may be any number from 0 to 65535.
Here is a table of frequency numbers for some
well-known musical notes.

Note Frequency Note Frequency

c 130.81 C 523.25
D 146.83 D 587.33
E 164.81 E 659.26
F 174.61 F 698.46
G 196.00 G 783.99
A 220.00 A 880.00
B 246.94 B 987.77
C 261.63 C 1046.50
D 293.66 D 1174.70
E 329.63 E 1318.50
F 349.23 F 1396.90
G 392.00 G 1568.00
A 440.00 A 1760.00
B 493.88 B 1975.50

October 1988 The BASIC Teacher

Special Reader Services
QB 4.0 Work Disk
STILL AVAILABLE!

LAST ISSUE The BASIC Teacher
snnounced that it has received
authorization from Microsoft to make
available to teachers and educators a
limited quantity of QuickBASIC 4.0
Work Disks at a special low price. The
Work Disks, which contain the two
most-important QuickBASIC files,
Q3.EXE and QB.HLP, are still
available.

Requests should be made on school
letterheads. The disks may not be
duplicated and may be used only by
the person making request. Recipients'
names and addresses will be made
available to Microsoft.

Educators, this is the least-expensive
way for you to get a copy of this
exciting new computer language that is
revolutionizing the way people use
computers. Take advantage now while
supplies last in this special offer.

MS-QBWD QuickBASIC
Work Disk $12.00

Using QuickBASIC
By Don Inman and Bob Albrecht

(Osborne/McGraw-Hill, 436pp)

Here's an excellent programming guide
to Microsoft's newest version of
QuickBASIC by the authors of The
BASIC Teacher. The book approaches
QuickBASIC's programming environ
ment in three stages so beginning and
experienced BASIC programmers can
find the appropriate level of instruc
tion.

OMH-881274 Using
QuickBASIC $19.95

DOS Made Easy
By Herbert Schildt

(Osborne/McGraw-Hill, 385pp)

Previous computer experience is not
necessary to understand this concise,
well-organized introduction that's
filled with short applications and exer
cises. The book walks you thru all the
basics, beginning with an overview of a
computer system's inner components
and a step-by-step account of how to
run DOS for the first time.

OMH-881194 DOS Made
Easy $18.95

Mathematics, Magic and Mystery
By Martin Gardner

115 diversions, magical tricks arising
from mathematical principles.

DOV-20336 paperbound 176pp $3.50

Mathematical Puzzles of
Sam Loyd
Selected and edited by Martin Gardner

One of the very few great innovators
of puzzles, Sam Loyd (1841-1911)

invented thousands of the most
valuable, ingenious, and popular
puzzles ever originated.

DOV-20498 paperbound 167pp $3.50

More Mathematical Puzzles of
Sam Loyd
Selected and edited by Martin Gardner

For more than 50 years, Sam Loyd's
ingenious posers appeared in innumer
able newspapers and magazines.

DQV-20709 paperbound 177pp $3.50

U

•O
u* o

e
u
o

Us

CO

I I*
iVJ

\ \ h
* c 2 ~ $ a | 5
1111! Illll

1
2

i
u

*1 hf

IS

111
K-
Z
<
ec
<
3
a
z o
K-U < u.
to
p

*

2 E

H ' a ? 5
Ea o o ® *

^ I- - .2 § ii|
•- •- 9-

fill
I - s » s
X $ < 4 . 2
* S 3 ° 32

£•8 *

7

PC Magazine
Technical
Excellence
Award
Winner

A powerful, full-featured programming
language, QuickBASIC 4.0 takes
BASIC into an entirely new dimension
by adding source-level debugging, huge
arrays, unlimited string space, support
for Hercules graphics, and a wealth of
other important features. The most
impressive new feature of all is the
threaded p-code interpreter.
QuickBASIC 4.0 uses an incremental
compiler that converts each line of
source code as it is entered. What
makes this system impressive is its
ability to stop a program's execution,
examine variables and make changes
to the source code, and then resume
execution. Further, QuickBASIC
programs can now call routines written
in any of the other Microsoft lan
guages, and vice versa.

Back Issues
Available
TBT-1 Issue No. 1 $3.00
TBT-2 Issue No. 2 $3.00
TBT-3 Issue No. 3 $3.00

"Even the most cynical 'structure'
fanatics and BASIC bashers must now
agree that BASIC is a serious develop
ment language . .. BASIC has indeed
come of age." —Ethan Winter

PC Magazine

MS-11407 QuickBASIC 4.0. . .$95.00

ADVANCED COLOR
GRAPHICS AND ANIMATION
FOR THE IBM PC
By Don Inman and Kurt lnman

(Hayden, 248pp)

ACHIEVE SOPHISTICATED screen
effects with this example-oriented text
that shows you how to use the extend
ed graphics capabilities of IBM
BASICA for programming displays.

The SbareWare Book
Using PC-Write, PC-File, PC-Talk
By Emil Flock, et al

(Osborne/McGraw-Hill, 688pp)

Covers the most popular "free"
programs: PC-Write, a word processor;
PC-File, a database manager; and PC-
Talk, a telecommunications program.
These programs are available thru user
groups or bulletin-board services in
return for a nominal registration fee.
The book has all the details on how
you can obtain these program disks.

OMH-881251 The Shareware
Book $14.96

QuickBASIC:
The Complete Reference

By Steven Nameroff

(Osborne/McGraw-Hill, 700pp)

Publication date pushed back to
November '88. Please do not order
this book until further notice.

Whether you're creating a business
chart or an artistic animation, you'll
leam the techniques that give your
work professional results.

HAY-121 Advanced Color
Graphics $18.95

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

T L .
BASIC
T.^J, I

Different Worlds Publications
2814 - 19th Street
San Francisco, CA 94110

Address Correction Requested

No. 5 , December 1988 $3 .00

For beginning
programmers with no prior

programming experience

CONTENTS

3 Teach Yourself BASIC
9 Browsing BASIC

17 Teach Yourself
QuickBASIC

PUBLISHER'S STATEMENT: The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
Francisco, CA 94110. Contents copyright
1988 by Different Worlds Publications. All
rights reserved. Contents may copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO: A 12-issue sub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

PRINTED IN THF. U.S.A.

Editorial HAPPY COMPUTING !
T a d a s h i E h a r a , p u b l i s h e r

B o b A l b r e c h t , e d i t o r
D o n I n m a n , e d i t o r

The Nath Crisis
"UNLESS WE increase our own supply of
mathematicians, we are going to find by the
late 1990s that we will have to import
foreigners to train our next generation of
scientists." So declares Dr. Edward A.
Connors of the University of Massachusetts
at Amherst, who chairs a joint committee on
educational policy for the American
Mathematical Society and the Mathematical
Association of America.

In a recent conversation, Dr. Connors made
the following points:

• Fewer and fewer U.S. citizens are
interested in advanced mathematics.

• Last year marked a 20-year low in
the number of graduate math
degrees earned by Americans.

• Between July 1986 and June 1987,
fewer than 400 U.S. citizens were
awarded doctorates in math. During
that period, 51% of the math
doctorates awarded in the U.S. were

earned by foreign citizens studying
here.

The federal government should offer
incentives to students to pursue
math as a career-i.e., forgive its
"educational loans" to those who
major in math.

The decline in the number and
quality of math students in this
country can be traced to poorly
trained elementary-school teachers.
Many of them simply do not know
the subject or how to teach it.

Many of the teachers do not realize
that if they fail to interest a student
in math by the sixth grade, they've
lost the student forever.

Parents should consistently
encourage their children,
particularly girls, to consider math as
a career possibility. The traditional
belief that females have a "math
gene" missing in their heritage
structure is so much nonsense.

E
December 1988 The BASIC Teacher

T U c
BASIC Teach Yourself BASIC

By Bob Albrecht and George Firedrake No. 5

• •» , . ,,

".I ' • t • B ji

INTRODUCTION
BASIC HAS a small vocabulary and a simple syntax (grammar).
We have already discussed some of the special words that Microsoft
BASIC understands. They are called keywords or reserved words.

Here are the keywords introduced and described previously:

BEEP
CLS
COLOR
DATE$

GOTO
INT
KEY
LIST

NEW
OFF
ON
PRINT

RANDOMIZE
RND
RUN
SOUND

TIME$
TIMER
WIDTH

Last time we described numeric variable and values of numeric
variables. A numeric variable can be a single letter or a combination
of letters and digits up to 40 characters long. The first character must
be a letter. We will always show keywords (BEEP, CLS, etc.) in all
upper-case letters. We will usually show variables in lower-case
letters or a MiXtuRe of upper and lower-case letters.

FOR...NEXT Loops
You CAN use a FOR... NEXT loop to
assign a S6Cju©nc6 Of V3lu©S to a numeric
variable. The program shown below uses a
FOR ... NEXT loop to print the numbers 1,
2, and so on, up to 7. The FOR ... NEXT
loop is in lines 20,30, and 40.

10 CLS
20 FOR number = 1 TO 7
30 PRINT number
40 NEXT number

Enter and run this program. You should see
the numbers 1 to 7 on the screen.

A FOR...NEXT Loop
• BEGINS WITH a FOR statement;
• ends with a NEXT statement;
• usually has one or more statements

between FOR and NEXT.

A numeric variable must follow the word
FOR:

20 FOR number = 1 TO 7
^ numeric variable

The same numeric variable follows the word
NEXT:

40 NEXT number
— numeric variable

This numeric variable can be used in
statements between FOR and NEXT:

30 PRINT number
• numeric variable

The BASIC Teacher December 1988 0

2 Teach Yourself BASIC

A Sequence of Values
A FOR statement defines a sequence of
values for the numeric variable that follows
the word FOR.

The statement: FOR number = 1 TO 7
defines the following sequence of values
for the variable number:

1,2, 3, 4, 5, 6,7
When you ran the program on the preceding
page, you saw these numbers printed on the
screen by the PRINT statement in line 30.

In the following program, the FOR
statement defines a sequence of numbers
from 0 to 5 as the value of number.

10 CLS
20 FOR number = 0 TO 5
3 0 PRINT number;
40 NEXT number

Note the semicolon (;) at the end of line 30.
This causes the numbers to be printed close
together on the same line:

0
Ok

You can use any numeric variable after the
word FOR. Also use the same variable after
the word NEXT.

In the following program, the FOR
statement defines a sequence of numbers
from 10 to 13 as the values of the variable k.

10 CLS
20 FOR k = 10 TO 13
30 PRINT k;
40 NEXT k

Here is a run:

10 11 12 13
Ok

A Colorful
FOR...NEXT Loop
THE "NORMAL" screen colors are whitish
letters on a black screen. You can use the
COLOR statement to tell the computer to
print in any of 16 colors, including black
(COLOR 0) and the normal white (COLOR
7). The following program prints one line in
each of the 15 colors from 1 to 15 and tells
you the color number in which it was printed:

10 CLS
20 FOR kotor = 1 TO 15
30 COLOR kolor
40 PRINT "This is color number"; kolor
50 NEXT kolor
60 COLOR 7

Unfortunately we can't show you the
beautiful colors here. When you run the
program, you will see the following in 15
different colors:

This is color number 1
This is color mmber 2
Th i s is color number 3
This is color number 4
This is color mmber 5
This is color number 6
This is color mmber 7
This is color number 8
This is color number 9
This is color mmber 10
This is color mmber 11
This 1 s color number 12
This is color mmber 13
This is color mmber M
This is color number 15
Ok

Line 60 returns the screen to its normal
foreground color (COLOR 7). This is done
after the FOR ... NEXT loop has been
completed.

If you would like to see blinking colors,
change line 20 to the following:

20 FOR kolor = 17 TO 31

COLOR is a BASIC keyword and appears in
upper-case letters; kolor is a numeric
variable and appears in lower-case letters.
We couldn't use color as a variable because
COLOR is a keyword.

0
December 1988 The BASIC Teacher

SOUND Effects
HAVE YOU ever wondered how they make
all those strange sounds in arcade games?
Try the following program:

10 CLS
20 FOR frequency = 100 TO 300
30 SOUND frequency, 0.125
40 NEXT frequency

Run this program. You will hear a sound that
quickly rises from 100 Hertz (cycles per
second) to 300 Hertz.

FOR SOUND KtXT

The FOR ... NEXT loop causes a sequence
of very short sounds. Each sound is of
duration 0.125 ticks. A tick, as you may recall
from last time, is about 1/18 of a second. You
hear 201 very short sounds with frequencies
of 100 Hertz, 101 Hertz, 102 Hertz, and so
on, up to 300 Hertz. This all happens in a
little over a second.
With the above program, you hear one
whoop, quickly rising in pitch. Now make a
small change and get a program that goes
whoop, whoop, whoop,...

10 CLS
20 FOR frequency = 100 TO 300
30 SOUND frequency, 0.125
40 NEXT frequency
50 GOTO 20

When you have heard enough whoops, hold
down CTRL and press BREAK to stop all
the whooping.

Counting Backwards
ALL THE FOR ... NEXT loops we have used
so far define increasing sequences of
numbers:

• 1,2,3,4,5,6,7
• 0,1,2,3,4,5
• 10,11,12,13
. 100,101,102,...,300

You can tell the computer to count
backwards by using a STEP -1 clause in the
FOR statement, as shown in the following
program:

10 CLS
20 FOR frequency = 300 TO 100 STEP -1
30 SOUND frequency, 0.125
40 NEXT frequency
50 GOTO 20

Run this program to hear a familiar arcade
sound. This time you hear a falling pitch.
The sound goes quickly from 300 Hertz to
100 Hertz in steps of -1.

• 300,299,298,..., 100
Now put both programs together into a single
program that makes a sound sort of like a
siren. The sound goes up, down, up, down,
etc:

10 CLS
20 FOR frequency = 523 TO 1046
30 SOUND frequency, 0.125
40 NEXT frequency
50 FOR frequency = 1046 TO 523 STEP -1
60 SOUND frequency, 0.125
70 NEXT frequency
80 GOTO

The BASIC Teacher December 1988 0

4 Teach Yourself BASIC

INPUT Makes It Easier
THE INPUT statement is useful for putting
numbers into number boxes. It tells the
computer to print a question mark (?) and
wait for you to enter a number as a value of a
numeric variable. Here is a short program
with an INPUT statement:

10 CLS
20 INPUT number
30 PRINT number
40 PRINT
50 GOTO 20

Run the program. You see a question mark
and the blinking cursor:

?_

The computer wants something. It wants
what the INPUT statement tells it to want. It
wants a number, a value for the variable
number.
Type the number 7 and press ENTER:

? 7
7

?

It prints the number you enter, then asks for
another number, a new value of the variable
number. Go ahead, enter more numbers.
Press ENTER after each number. Each time,
the computer prints back your number, then
asks for another number:

? 7
7

? 123
123

0

20 INPUT number
TELLS THE computer to:

• print a question mark;

• turn on the cursor;

• wait for someone to enter a value of the
variable number.

The computer is very patient. It will wait and
wait and wait... until you type a number and
press ENTER. Then it continues with the
next line of the program.

The statement: 3 0 PRINT number
prints the value of number that was just
entered.

The statement: 4 0 PRINT
tells the computer to print an "empty line"
on the screen. Use this when you want a
line space.

The statement: 50 GOTO 20
sends the computer back to the INPUT
statement in line 20, where it will again
wait patiently for someone to enter a
number.

Follow the Arrows
10 CLS

I
20 INPUT number 4—

I 1
30 PRINT number

v
40 PRINT

V
50 GOTO 20 —

Around and around and around. Hold down
CTRL and BREAK to break out of this loop.

December 1988 The BASIC Teacher

Teach Yourself BASIC 5

INPUT " //

THE INPUT statement tells the computer to
print a question mark, turn on the cursor,
and wait for someone to enter something.
Wouldn't it be nice if, instead of a cryptic
question mark, the computer would tell you
what it wants? Easy. The following program
has an "enhanced" INPUT statement:

10 CLS
20 INPUT "Frequency"; frequency
30 SOUND frequency, 18
40 PRINT
50 GOTO 20

Line 20 tells the computer to:
• print Frequency on the screen;
• print a question mark (?);
• turn on the cursor;
• wait for someone to type a number and

press ENTER. The number is the value
of the variable frequency.

As usual, to find out what a program does,
enter it into the computer and run it.
It begins like this:

Frequency?

Type a number and press ENTER. You will
hear a sound of that frequency for about one
second ... if the frequency is within your
hearing range. Try some of these:

Frequency? 262

Frequency? 1000

Frequency? 37

Frequency? 32767

Frequency? _

A slightly different program lets you enter
both the frequency and duration of the
sound:

10 CLS
20 INPUT "Frequency"; frequency
30 INPUT "Duration "; duration
40 SOUND frequency, duration
50 PRINT
60 GOTO 20

You can use this program to hear low sounds,
high sounds, short sounds, long sounds, and
in-between sounds:

Frequency? 1000
Duration ? 36

Frequency? 440
Duration ? 1

Frequency? 440
Duration ? 0.5

Frequency? 440
Duration ? 0.125

Frequency? 1000
Duration ? 0.1

Sound Effects
USE THE following program to find sound
effects you like:

10 CLS
20 INPUT "First frequency"; first
30 INPUT "Last frequency "; last
40 INPUT "In steps of "; incr
50 INPUT "Duration "; duration
60 FOR frequency = first TO last STEP incr
70 SOUND frequency, duration
80 NEXT frequency
90 PRINT
100 GOTO 20

For example, try these:

First frequency? 100
Last frequency ? 1000
In steps of ? 100
Duration ? 0.25

First frequency? 1000
Last frequency ? 100
In steps of ? -100
Duration ? 0.25

The BASIC Teacher December 1988 m

6 Teach Yourself BASIC

Function Keys
WHEN YOU first enter BASIC, you are in
SCREEN 0 in 80 column text mode. The
screen is in a text mode with 25 rows (lines)
a n d 8 0 c h a r a c t e r p o s i t i o n s i n e a c h r o w . . .
excellent for writing programs. The bottom
row of the screen is the key line. The left
part of the key line looks like this:

1LIST 2RUN 3LOAD" 4SAVE

The key line tells you what happens when
you press a function key. On our keyboard,
these keys are in a row across the top of the
keyboard and are labeled Fl, F2, F3, and so
on. On other computers, they are at the left
side of the keyboard. You can save time by
using the function keys.

If you want to list a program on the screen,
you can press the Fl function key. The
computer prints LIST on the screen. Press
ENTER to list the program.

• To list a program:
Press Fl and then press ENTER.

You can press F2 to run a program. You
don't even have to press ENTER. The
computer will run the program as soon as you
press F2.

CAUTION! Before you press a function key,
make sure the cursor is on a line by itself.
Otherwise you might see a syntax-error
message. Use the arrow keys to put the
cursor on an otherwise empty line before you
press a function key.

We'll tell you about other function keys later,
when we need to use them. In the meantime,
you can read about them in the BASIC
Reference Manual that came with your
computer.

Shortcuts
ANYTHING THAT reduces the amount of
typing also reduces the likelihood of making
a typing mistake. For example, you can use
the function keys to more quickly LIST or
RUN a program.

Several BASIC keywords can be typed by
holding down the ALT key and pressing
another key. Here is a list of shortcuts for
some of the keywords we have used:

To type PRINT, bold\
down the ALT key and J

press tbe P key. y
Keyword Shortcut
COLOR ALT C
FOR ALT F
GOTO ALT G
INPUT ALT I
NEXT ALT N
PRINT ALT P
RUN ALT R
WIDTH ALT W

This is a short list of shortcuts. Others are
possible. Go ahead and try ALT plus any
other key and see what happens.

Practice using the shortcuts to enter and run
this program:

10 COLOR INT(16*RND)
^—ALT C

20 PRINT "Mariko
ALT P

30 GOTO 10
^—ALTG

To list the program:
• Press Fl, then press ENTER.

To run the program:
• Press F2.

B December 1988 The BASIC Teacher

T U <
BASIC
<~Cc^cVic-%-

Browsing BASIC
By Don Inman

No. 5

THE FOLLOWING topics were covered in previous installments of Browsing
BASIC:

No. 1: The KEY command and ALT key shortcuts.

No. 2: The VIEW PRINT statement and pull-down windows.

No. 3: The COPY CON command to write a DRIVER.SYS file and disk
labels.

No. 4: Test and Graphic Positions Relationships.

We started in Browsing BASIC No. 1 with a small list of keywords that we
assumed you knew how to use. The list grew a little in issue 2. Our BASIC
keyword list was static for one issue as we took a BASIC siesta to browse a bit of
DOS. We then returned to BASIC as Browsing BASIC No. 4 added a few more
keywords.

This month we will add one more:

CIRCLE

TEXT AND GRAPHIC POSITION RELATIONSHIPS

IN LAST month's Browsing BASIC, we discovered the following relationships
between the numbering schemes for text and graphics screen positions.

Text positions are set by the LOCATE statement with the row specified first,
followed by the column:

LOCATE row, column row first, then column

Unfortunately when BASIC locates graphic pixels, it reverses the order of the
row and column values used in positioning text characters. This difference in
order is seen when comparing a LOCATE (text character) statement with a
PSET (graphics pixel) statement:

PSET (column, row) column first, then row

Another difference between the LOCATE statement and graphics location
statements such as PSET is the fact that parentheses are used to enclose the
column and row values in a graphics statement.

We also discovered that each text character occupies the same space as an 8 x 8
array of pixels, and the number of a pixel position in graphics does not
correspond to the same number used for a text position.

The text size used in graphics mode SCREEN 1 uses a maximum of 40
characters per line. The top text line of the screen is specified as row 1. The left
most character position in a line is specified as column 1. Thus the top line
consists of positions 1,1, thru 1,40.

The BASIC Teacher December 1988 0

2 Browsing BASIC No. 5

Since eight graphics pixels occupy the same width as one text character, there
are 8 x 40, or 320, columns of pixels in each graphics row. The top graphics row
is specified as row 0 (zero). The left-most pixel position in a row is specified as
column 0 (zero). The top row of graphics pixels consists of positions (0,0) thru
(319,0).

\ (160 , 0)

- v /V-

(0 , 0)

Rows in text begin with 1 at the top and run thru 25 (positions 1,1 thru 25,1).

o, 0 » .

i

0, 199

The top row of pixels of SCREEN 1 is numbered 0
(zero) and the left-most pixels run from 0,0 thru
0,199.

Notice that the origin for numbering text and
graphics units is also different: (1,1) for text and
(0,0) for graphics.

Of course, you must also remember that the order of specifying row and column
values is reversed for text and graphics.

We found that there is a direct relationship between text positions and graphics
positions which can be used to calculate corresponding positions. They are:

1. PixelColumn = 8 * (TextColumn - 1)

2. TextColumn = PixelColumn / 8 + 1

3. PixelRow = 8 * (TextRow - 1)

4. TextRow = PixelRow / 8 + 1

We used these relationships in a program, Squares Around Letters, to place a
graphics rectangle around double-spaced text letters.

We concluded last month's episode with a few clues on drawing circles around
text characters. Since a circle is drawn around its center, we had to change the
reference point from:

Upper Left Corner f pcol% - 3
of a Rectangle L prow% - 3

Center of f pcol% + 4
a Circle 1 prow% + 4

The radius used to draw a circle around a text character should be
approximately one-half the diagonal of the rectangle used in last month's
discussion. The sides of that rectangle was 14 pixels long. Therefore, the
diagonal is 14 times the square root of 2 as shown at the right. Therefore
the radius of a corresponding circle is seven times the square root of 2, or
approximately 10.

(3 1 9 , 0)

I f

s
"5 \ "5 r

\

—

The BASIC Teacher December 1988

Browsing BASIC No. 5 3

Program 5-1, CIRCLES AROUND LETTERS, replaces the LINE statement with
box (B) option with the following CIRCLE statement:

CIRCLE (pcol% + 4, prow% +4), 10

^ radius
center of circle

Here is the program.

1 REM ** Circles Around Letters **
2 ' Browsing BASIC #5 6/1/88
3 ' Microsoft GW-BASIC File: FNCYWORD.002

100 REM ** Set Graphics Screen and Get Information **
110 SCREEN 1: CLS: KEY OFF
120 INPUT "Text starting row : trow%
130 INPUT "Text starting column : "txtcol%
140 PRINT: INPUT "Your word(s): "; Strng$

200 REM ** Clear Screen and Print Words **
210 CLS: prow% = 8 * (trow% - 1)
220 FOR num% = 1 TO LEN(Strng$)
230 tcol% = txtcol% + 3 * (num% - 1)
240 LOCATE trowSC, tcol%: Letters = MID$(Strng$, num%, 1)
250 PRINT Letters
260 IF Letters <> " " THEN GOSUB 1010
270 NEXT num%

300 REM ** Wait for Keypress, Restore Screens #*
310 ky$ = INPUTS(l)
320 CLS: SCREEN 0: CLS: KEY ON: WIDTH 80
330 END

1000 REM #* SUBROUTINE: Circle the Letters #*
1010 pcol% = 8 * (tcol% - 1)
1020 CIRCLE (pcol% + 4, kprow% +4), 10
1030 RETURN

Run the Circles Around Letters program and enter your text. When we did, we
saw these circled letters. The circles are not exactly round. Pixels are rectangular
in shape, and it is impossible to draw small, round-looking circles with
rectangular units.

)()(&) (W

The CIRCLE statement can also produce ellipses (ovals) by adding an optional
aspect ratio parameter (asp) to the statement:

CIRCLE (column, row), radius, color, start, end, asp

The BASIC Teacher December 1988 0

4
Browsing BASIC No. 5

The default color used to draw the circle is color number 3 of the palette being
used. The start and end options allow you to draw a portion of a circle (an arc),
by specifying where to start and where to end the drawing. If you want to
include aspect ratio, and not use the color, start, and end options, you must
provide the necessary commas so the computer knows which value is the aspect
ratio.

Example:

CIRCLE (pcol% + 4, prow% + 4), 10, , , , 1. 1

\
center

place holders for
color, start, and end

aspect ratto
(height to width)

The aspect ratio is a ratio of height and width. In general, values larger than 1
give ellipses that are higher than wide. Values less than 1 give ellipses that are
wider than high.

Examples:

o
.6

O 0 0
1 . 4

Add the comma placeholders and some value for aspect ratio in line 1020. Then
run the revised Circles Around Letters program. You can also experiment with
the value used for radius to ensure the letters are enclosed in the way you want
them to be. Here is the result of using an aspect ratio of 1.4 with a radius of 10.

@ © 0 0 0 © 0 0 0
If you use a very small value for the aspect ratio, you may have to provide more
space between letters.

You might want to write a program that places one ellipse around one or more
complete words. Instead of centering the ellipse at a single letter, you will want
to center the ellipse at the middle of the word or words. If the word has an odd
number of letters, this would be at the center of the middle letter.

,*• V

(Two words)

What happens when a word has an even number of letters? The ellipse should
then be centered between two letters.

1 . 8

December 1988 The BASIC Teacher

Browsing BASIC No. 5 5

If the left-most column of the first letter in the word is used as a reference point,
careful consideration leads to the following relationship:

Dra letter udmI • center *4 pixels to right

Ino letter wed QH center *8 pixels to right

Three letter nord center *12 pixels to right

Four letter nurd center *16 pixels to right
Therefore a slight modification is needed for our usual method of locating the
pixel column from a text column. The relationship needed to center an ellipse
about one or more letters is:

pcolSK = 8 * (txtcol% - 1) + 4 * longfc (O m e J)
where: pcol% is the column for centering the ellipse

txtcol% is the left-most text column of the word

long% is the number of letters in the word

The following program, Ellipse Around Words, draws ellipses around words. You
can enclose single words as shown at the right or a group of words as shown
below the program.

One more input is requested at line 230, the aspect ratio. In most cases, the
aspect ratio should be smaller than one. The radius is automatically adjusted to
the length of the word, or words.

1 REM ** Ellipse Around Words **
2 ' Browsing BASIC #3 6/1/88
3 ' Microsoft GW-BASIC File: FNCYWORD.003

100 REM ** Set Graphics Screen **
110 SCREEN 1: CLS: KEY OFF

200 REM ** Get Information **
210 INPUT "Text starting row :
220 INPUT "Text starting column :
230 INPUT "Aspect ratio : "; asp!
240 PRINT
250 INPUT "Your Word(s): "; StrngS
260 long% = LEN(StrngS)

trow3»
txtcol%

WO pel

C at 5

t iwe

CONTINUED .

The BASIC Teacher December 1988

Browsing BASIC No. 5

300 REM *# Clear Screen and Print Words **
310 CLS: prow% = 8 * (trow% - 1)
320 FOR num% = 1 TO long%
330 tcol% = txtcol% + num% - 1
340 LOCATE trow%, tcol%: Letter$ = MID$(Strng$, num%, 1)
350 PRINT Letters
360 NEXT num*
370 GOSUB 1010

400 REM *# Wait for Keystroke Restore Screen and End Program *#
410 KY$ = INPUTS(1)
420 CLS: SCREEN 0: CLS: KEY ON: WIDTH 80
430 END

1000 REM ** Subroutine: Draw Ellipse #*
1010 pco1% = 8 * (txtcol% - 1) + 4 * long%
1020 CIRCLE (pcol%, prow% +4), long% * 4 + 16,,,, asp!
1030 RETURN

Now that we've got the basics out of the way, let's tackle a more practical
application that mixes text and graphics. Here is the output of a program that
places a title, labels, and a scale on a graph.

Mean Temperatures - 1988

Jul • i

Aug i 1

Sep i ~i

Oct » i

Nov • 1

Dec i i
i—i—i—i—i—i—i i • i •
0 20 40 60 80 100

0 December 1988 The BASIC Teacher

Browsing BASIC No. 5 7

The title is placed at the top of the graph, labels are placed for each bar along
the side, and a scale is located at the bottom of the graph. The text and graphics
are printed and drawn from the top of the graph downward. The title is printed
first. Each label and its associated bar is drawn in a FOR .. . NEXT loop using
the graphics-to-text relationships we have been discussing.

310 pcolX =8*8: num% = 2
320 LOCATE 3, 8: PRINT TextS(l) 'Title
330 FOR trow* = 6 TO 16 STEP 2
340 LOCATE trow%, 5: PRINT Text$(num%) 'Label
350 prowX = 8 * (trowX - 1)
360 LINE (pcolX, prowXWpcolX + 2 * TempXfnumX), prowX + 7), , B
370 numX = num% + 1
380 NEXT trow*

The scale is placed below the bars using mixed text and graphics.

410 LOCATE 19, 9: PRINT "0 20 40 60 80 100"
420 LINE (64, 140)-(264, 140)
430 FOR tick% = 64 TO 264 STEP 20
440 LINE (tickX, 136)-(tick%, 139)
450 NEXT tick*

The following program produces the Mean Temperatures graph. Enter it then
run it to verify the results shown.

1 REM ** Bar Graph **
2 ' Browsing BASIC 4/2/88
3 ' Microsoft GW-BASIC File: BARGRAPH.001

100 REM ** Define Screen #*
110 SCREEN 1: CLS : KEY OFF

200 REM ** Define Text Strings *#
210 Text$(1) = "Mean Temperatures - 1988"
220 FOR num% = 2 TO 7
230 READ TextS(numX), TempX(numX)
240 NEXT numX
250 DATA Jul,80, Aug,87, Sep,79, Oct,68, Nov,54, Dec,50

300 REM ** Place Text, Draw Bars and Wait for Keypress **
310 pcolX =8*8: numX = 2
320 LOCATE 3, 8: PRINT TextS(l)
330 FOR trowX = 6 TO 16 STEP 2
340 LOCATE trowX, 5: PRINT TextS(num%)
350 prow* = 8 * (trow* - 1)
360 LINE (pcolX, prowX)-(pcol% + 2 * Temp%(num%), prowX + 7), , B
370 numX = numX + 1
380 NEXT trowX

December 1988 The BASIC Teacher

Browsing BASIC No. 5

400 REM ** Draw Scale **
410 LOCATE 19, 9: PRINT "0 20
420 LINE (64, 140W264, 140)
430 FOR tick* = 64 TO 264 STEP 20
440 LINE (tick*, 136)-(tick*, 139)
460 NEXT tick*

500 REM #* Restore the Screen & END **
510 CLS: SCREEN 0: CLS : KEY ON: WIDTH 80
520 END

40 60 80 100"

•p|T|Tp jpppy I' ' ||' I' |' I' |' I'

INCHES 1 2

,c PICAS i (e * 12 r t) I f 12

l l l l l l l l l l l i l l i l l l l l l l l l

This program draws a specific bar graph. The program would have to be
rewritten for a different set of data. Can you write a more general program that
would let you enter the data and automatically print the title, scale, and labels?
The placement of the bars would depend upon how many entries you have.
Their size would vary with the data entered. If you come up with such a
program, send it to The BASIC Teacher.

CIRCLES

WE USED the CIRCLE statement in the Ellipse Around Words program to
specify the center, radius, and aspect ratio of the ellipse. If you look at that
statement, you will see a bunch of commas between the radius and the
aspect ratio.

C I R C L E (p c o l p r o w " / . + 4) , l o n g " / . * 4 + 1 6 , , , , a s p !

center ratio aspect ratio

The commas hold a place for optional circle specifications: color, start point,
and end point. The color option allows you to choose the drawing color from a
four-color palette in SCREEN mode 1. The start-point and end-point options
allow you to draw an arc instead of a complete circle. The start point, stated in
radians; tells where to start drawing the arc. The end point, also stated in
radians, tells where to stop drawing the arc. Here are some examples:

C"7
More on circles in future issues of The BASIC Teacher.

December 1988 The BASIC Teacher

T U <
BASIC

hc\-

TEACtl YOURSELF
QuickBASIC

No. 5

By Bob Albrecht
and George Firedrake

QuickBASIC 4.5
QUICKBASIC CONTINUES to get better and better, especially
for beginners. Microsoft recently announced QuickBASIC 4.5,
which includes a hypertext-based help facility and other fea
tures to make it even easier to learn and use by first-time users.
QB 4.5 includes QB Express, an on-line tutorial to help you get
started, and the hypertext-based QB Adviser to help you keep
learning.

We have just finished writing a beginner's book on the new QB
4.5. It's called QuickBASIC Made Easy and will be published by
Osborne/McGraw-Hill in very early 1989. We know QB 4.5 is
great for kids 'cause our 4th-grade to 8th-grade Computer Kids
are learning it just fine. QuickBASIC is by far the best com
puter language we have used in 24 years of teaching kids and
teachers how to use, program, and enjoy computers.

Computer Kid, USA, PO Box 1635, Sebastopol, CA 95473, USA

Characters
YOU CAN print many different characters on
the screen. You can see some of these
characters on the keyboard.

• upper-case letters: A B C D

• lower-case letters: a b c d

• digits: 1 2 3 4

• punctuation: > > '•

• special characters: @ # $ %

There are also computer characters you don t
see on the keyboard. Some are shown below.

card characters:

Greek letters:

math symbols:

V • $ •

a P e 7T 2

J ± < ^ *

graphics characters: L "L b T f"

ASCII
EVERY COMPUTER character has an ASCII
code. An ASCII code is an integer in the
range of 0 to 255. ASCII means American
Standard Code for Information Interchange.
Here are some examples:

The ASCII code for A is 65

The ASCII code for B is 66

The ASCII code for a is 97

The ASCII code for b is 98

The ASCII code for * is 42

The ASCII code for ¥ is 3

You have probably guessed that the ASCII
code for C is 67. For the upper-case letters A
to Z, the ASCII codes are 65 to 90. For the
lower-case letters a to z, the ASCII codes are
97 to 122. Digits also have ASCII codes-the
codes for the digits 0 to 9 are 48 to 57.

The BASIC Teacher December 1988

CHR$
YOU CAN use the CHR$ function to print
any ASCII character on the screen. CHR$ is
a string function. Its value can be any single
character. A string function always ends in a
dollar sign.

To see CHR$ at work, go to QB Control and
enter the following program in the View
Window:

CLS
PRINT CHR$(1)
PRINT
PRINT CHR$(3)

Run this program to see characters 1 and 3.

You can see that CHR$(1) is a tiny face and
CHR$(3) is a heart. Go ahead and try some
more. ASCII numbers less than 32 are used
for special control purposes ... so funny
things may happen. For example, you can
make the computer beep by trying to print
CHR$(7).

• CHR$(32) is a space, so an invisible
space is printed.

• CHR$(36) is a dollar sign ($).

• CHR$(42) is an asterisk (*).

• CHR$(57) is the digit 9.

• CHR$(65) thru CHR$(90) are the
upper-case letters, A thru Z.

• CHR$(97) thru CHR$(122) are the
lower-case letters, a thru z.

• CHR$(128) thru CHR$(255) are
foreign alphabets, graphics charac
ters, math symbols, and other stuff.

Teach Yourself QuickBASIC

ASCII Soup
ENTER AND run the following program to
see lots of character in 15 gorgeous colors.

CLS
RANDOMIZE TIMER
DO

COLOR INT(15 * RND) + 1
ascii = INT(223 * RND) + 32
PRINT CHR$(ascii) ;

LOOP

The program quickly fills the screen with
randomly-selected characters in randomly-
selected colors. Since some characters from 0
to 31 can cause funny things to happen, this
program selects only from characters 32 to
255, as follows:

ascii = INT(223 * RND) + 32

This statement computes a random integer
from 32 to 255 and assigns it as the value of
the variable called ascii.

ascii = INT(223 * RND) + 32
(>—̂ ̂ ——'

variable = integer from 32 to 255

REMEMBER: INT(223 * RND) is a random
integer from 0 to 222. Add 32 to get a ran
dom integer from 32 to 255.

The statement: COLOR INTCIS * RND> • 1
picks a random color from 1 to 15.

The statement: PRINT CHR$ (ascii)
prints the random character.

The statement: RANDOMIZE TIMER
uses the value of TIMER (seconds since
midnight) to start the RND function at a
different place for each possible value of
TIMER.

To stop the program:

Tandy 1000: CTRL HOLD

IBM PC: CTRLBREAK

December 1988 The BASIC Teacher

Teach Yourself QuickBASIC 3

INPUT ascii
USE THE following program to see individual
ASCII characters. To see a character, you
type its ASCII code (0 to 255) and press
ENTER.

CLS
DO
INPUT ascii
PRINT CHR$(ascii)
PRINT

LOOP

Run the program. It begins like this:

I

You see a question mark and the blinking
cursor. The computer wants something. It
wants you to INPUT a value of the variable
ascii. Do it. Type any number from 0 to 255
and press the ENTER key. Try some of
these:

7
0

7
¥

7
*

To stop the program:

Tandy 1000: CTRL HOLD

IBM PC: CTRL BREAK

42

Your turn. Type a number in the range 0 to
255 and press ENTER. What happens if you
enter a number outside this range? Try it and
find out.

The statement: INPUT ascii
tells the computer to:

• print a question mark;

• turn on the cursor;

• wait for someone to enter a number.

When you type a number and press ENTER,
the computer puts your number into the
number box called ascii. Your number is
now the value of the numeric variable
called ascii.

After accepting your number as the value of
ascii, the computer goes on to the next state
ment and prints the ASCII character you re
quested.

The statement: PRINT CHR$ (ascii)
tells the computer to print the character
whose ASCII number is the value of the
numeric variable called ascii.

The BASIC Teacher December 1988 [»)

4
Teach Yourself QuickBASIC

INPUT " n

THE INPUT statement tells the computer to
print a question mark, turn on the cursor,
and wait patiently for someone to enter
something. Wouldn't it be nice if, instead of a
cryptic question mark, the computer would
tell you what it wants? Easy. The following
program has an "enhanced" INPUT state
ment.

CLS
DO

INPUT "ASCII number, please"; ascii
PRINT CHRSfascii)
PRINT

LOOP

The INPUT statement tells the computer to:

• print ASCII number, please on the
screen;

• print a question mark;

• wait for someone to type a number
and press ENTER. The number is
the value of the numeric variable
ascii.

As usual, to find out what a program does,
enter it into the computer and run it. It
begins like this:

ASCII number, please?

Try some numbers:

ASCII number, please? 1
0

ASCII number, please? 3

ASCII number, please? 90
Z

ASCII number, please? _

ASC
QUICKBASIC HAS a function called ASC
that is just the opposite of CHR$. ASC is a
numeric function that gives the ASCII
number of a character. Run the following
program to see ASC in action:

CLS
PRINT ASC("A")
PRINT
PRINT ASC("a")
PRINT
PRINT ASC("*")

Run this program to see the ASCII codes
(numbers) for the characters A, a, and \

65 <— code for A

9 7 ̂ —- code for a

42 code for *

The statement: PRINT ASC ("A")
tells the computer to print the ASCII code
(number) for the character enclosed in
quotation marks in parentheses following
the word ASC:

ASC ("A") is 65
ASC ("a") is 97
ASC("*") is42

If you put two or more characters in quotes,
the ASC function will give you the ASCII
code of the first character:

ASC ("abc") is 97
ASC("123") is49

Yes, digits also have ASCII codes!

PRINT ASC(" ")
Put your character here

m December 1988 The BASIC Teacher

Teach Yourself QuickBASIC 5

Fancy PRINT
INSTEAD OF printing the character all by it
self on a line, let's have it "say something."
Use the arrow keys to put the cursor on the C
in CHR$, as shown below:

CLS
DO

INPUT "ASCII nunber, please"; ascii
PRINT CHRS(ascii)
PRINT

LOOP cursor

Now type stuff so that the program looks like
the one below:

CLS
DO

INPUT "ASCII number, please"; ascii
PRINT "That's my nurber! "; CHRS(ascii)
PRINT S

LOOP cursor —^

As you typed, the cursor moved to the right.
CHR$(ascii) also moved to the right. The
cursor is still on the C in CHR$.

Don't press ENTER. Use the down-arrow
key to move the cursor off the line. The
program is ready to run.

However if you did press ENTER, the
program might now look like this:

CLS
DO

INPUT "ASCII nunber, please"; ascii
PRINT "That's my number! ";
CHRS(ascii)
PRINT

LOOP

If that happened, press the BACKSPACE
key to rejoin CHRS(ascii) with its PRINT
statement.

Run It
WHEN WE ran the program, here is what we
saw:

ASCII number, please? 1
That's my number! ©

ASCII number, please? 3
That's my number! *

ASCII number, please? 65
That's my number! A

ASCII number, please?

The statement:
PRINT "That's my number! "; CHRS (ascii)

tells the computer to:

• print That's my number!

• then print the value of CHR$(ascii)

Note that That's my number! plus a space
is enclosed in quotation marks:

.— quotation marks •—

"That's my number! "

/ space

The information contained in quotation
marks is called a string.

"That's my number! "
^ ;

string

Note that the quotation marks are not
printed. Only the string, which is enclosed in
quotation marks, is printed.

Between the string (enclosed in quotation
marks, of course) and CHR$(ascii), you see a
semicolon (;). If you forget to type it, Quick
BASIC will put it in when you move the cur
sor off the line. Also try a comma (,) here.

The BASIC Teacher December 1988

6 Teach Yourself QuickBASIC

A Graceful Exit from
DO . . . LOOP

THE DO... LOOPs shown so far must be in
terrupted by using CTRL BREAK for the
IBM PC or CTRL HOLD for the Tandy
1000. Below is yet another version of our
ASCn character program. If you enter zero
(0) as the ASCII number, it quits.

CLS
DO

INPUT "ASCII number (0 to quit)"; ascii
IF ascii « 0 THEN EXIT DO
PRINT "That's my number! »; CHRS(ascii)
PRINT

LOOP

Here is a sample run. We entered zero (0) to
quit:

ASCII number (0 to quit)? 97
That's my number! a

ASCII number (0 to quit)? 122
That's my number! z

ASCII number (0 to quit)? 0

5T
^ U l L J • K J

cgy
Press any key to continue

You can also quit by pressing ENTER
without typing anything. This enters zero as
the value of ascii in the INPUT statement.

IF . . . THEN
THE STATEMENT:

IF ascii = 0 THEN EXIT DO

tells the computer to compare the value of
ascii with zero (0). If the value of ascii is
z e r o , t h e c o m p u t e r l e a v e s (e x i t s) t h e D O . . .
LOOP.
If the value of ascii is not zero, the computer
does not exit the DO... LOOP. Instead it
just goes on to the next line and prints the
string in quotation marks and the value of
CHRS(ascii).
IF ascii = 0^ THEN vEXIT DO,

If this is true then do this.

IF ascii = 0 THEN EXIT DO

If this is false then don't do this.

Remember
ASCII CODES are numbers in the range 0 to
255. Most, but not all, ASCII codes represent
characters you can print on the screen.

New keywords this time,
in order of appearance:

CHR$
RANDOMIZE
INPUT
ASC
IF...THEN
EXIT

We also talked about a numeric variable
called ascii and strings in INPUT and
PRINT statements. Read about all of this in
the book BASIC Language Reference that
comes in the QuickBASIC package.

D Decemoer 1988 The BASIC Teacher

Special Reader Services
1 QB 4.0 Work Disk

STILL A VAILABLE!

LAST ISSUE The BASIC Teacher
announced that it has received
authorization from Microsoft to make
available to teachers and educators a
limited quantity of QuickBASIC 4.0
Work Disks at a special low price. The
Work Disks, which contain the two
most-important QuickBASIC files,
QB.EXE and QB.HLP, are still
available.

Requests should be made on school
letterheads. The disks may not be
duplicated and may be used only by
the person making request. Recipients'
names and addresses will be made
available to Microsoft.

Educators, this is the least-expensive
way for you to get a copy of this
exciting new computer language that is
revolutionizing the way people use
computers. Take advantage now while
supplies last in this special offer.

MS-QBWD QuickBASIC
Work Disk $12.00

Using QuickBASIC
By Don Inman and Bob Albrecht

(Osborne/McGraw-Hill, 436pp)

Here's an excellent programming guide
to Microsoft's newest version of
QuickBASIC by the authors of The
BASIC Teacher. The book approaches
QuickBASIC's programming environ
ment in three stages so beginning and
experienced BASIC programmers can
find the appropriate level of instruc
tion.

OMH-881274 Using
QuickBASIC $19.95

DOS Made Easy
By Herbert Schildt

(Osborne/McGraw-Hill, 385pp)

Previous computer experience is not
necessary to understand this concise, -
well-organized introduction that's
filled with short applications and exer
cises. The book walks you thru all the
basics, beginning with an overview of a
computer system's inner components
and a step-by-step account of how to
run DOS for the first time.

OMH-881194 DOS Made
Easy $18.95

1

QB 4.0 Work Disk
STILL A VAILABLE!

LAST ISSUE The BASIC Teacher
announced that it has received
authorization from Microsoft to make
available to teachers and educators a
limited quantity of QuickBASIC 4.0
Work Disks at a special low price. The
Work Disks, which contain the two
most-important QuickBASIC files,
QB.EXE and QB.HLP, are still
available.

Requests should be made on school
letterheads. The disks may not be
duplicated and may be used only by
the person making request. Recipients'
names and addresses will be made
available to Microsoft.

Educators, this is the least-expensive
way for you to get a copy of this
exciting new computer language that is
revolutionizing the way people use
computers. Take advantage now while
supplies last in this special offer.

MS-QBWD QuickBASIC
Work Disk $12.00

Mathematics, Magic and Mystery
By Martin Gardner

115 diversions, magical tricks arising
from mathematical principles.

DOV-20335 paperbound 176pp $3.50

Mathematical Puzzles of
Sam Loyd
Selected and edited by Martin Gardner

One of the very few great innovators
of puzzles, Sam Loyd (1841-1911)

invented thousands of the most
valuable, ingenious, and popular
puzzles ever originated.

DOV-20498 paperbound 167pp $3.50
I

More Mathematical Puzzles of
Sam Loyd
Selected and edited by Martin Gardner

For more than 50 years, Sam Loyd's
ingenious posers appeared in innumer
able newspapers and magazines.

DQV-20709 paperbound 177pp $3.50

5 5 ° >
h-i

IS Q. UJ

C
A

o
Z

1 ? 5 * ? fi
17 M </>

©

3
CA *

8
+->
©

a
(0
O

2
a

£ Ul
-J

I
Q
UJ ill I-
Z <
cc
<
3
u

E ni D)

h"
u < LL
M

<
CO

3 '-5

PC Magazine

Technical
Excellence
Award
Winner

A powerful, full-featured programming
language, QuickBASIC 4.0 takes
BASIC into an entirely new dimension
by adding source-level debugging, huge
arrays, unlimited string space, support
for Hercules graphics, and a wealth of
other important features. The most
impressive new feature of all is the
threaded p-code interpreter.
QuickBASIC 4.0 uses an incremental
compiler that converts each line of
source code as it is entered. What
makes this system impressive is its
ability to stop a program's execution,
examine variables and make changes
to the source code, and then resume
execution. Further, QuickBASIC
programs can now call routines written
in any of the other Microsoft lan
guages, and vice versa.

"Even the most cynical 'structure'
fanatics and BASIC bashers must now
agree that BASIC is a serious develop
ment language . . . BASIC has indeed
come of age." —Ethan Winter

PC Magazine

MS-11407 QuickBASIC 4.0. . .$95.00

ADVANCED COLOR
GRAPHICS AND AN1MA TION
FOR THE IBM PC
By Don Inman and Kurt Inman

(Hayden, 248pp)

ACHIEVE SOPHISTICATED screen
effects with this example-oriented text
that shows you how to use the extend
ed graphics capabilities of IBM
BASICA for programming displays.

The Shareware Book
Using PC-Write, PC-File, PC-Talk
By Emit Flock, et al

(Osborne/McGraw-Hill, 688pp)

Covers the most popular "free"
programs: PC-Write, a word processor;
PC-File, a database manager; and PC-
Talk, a telecommunications program.
These programs are available thru user
groups or bulletin-board services in
return for a nominal registration fee.
The book has all the details on how
you can obtain these program disks.

OMH-881251 The Shareware
Book $14.95

QuickBASIC:
The Complete Reference

By Steven Nameroff

(Osborne/McGraw-Hill, 700pp)

Publication date pushed back to
February '89. Please do not order
this book until further notice.

Whether you're creating a business
chart or an artistic animation, you'll
learn the techniques that give your
work professional results.

HAY-121 Advanced Color
Graphics $18.95

Back Issues
Available

TBT-1 Issue No. 1 $3.00
TBT-2 Issue No. 2 $3.00
TBT-3 Issue No. 3 $3.00
TBT-4 Issue No. 4 $3.00

Different Worlds Publications
2814- 19th Street
San Francisco, CA 94110

Address Correction Requested

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

s—
MIACHEL K ERICKSON # 14
BOX 250
MONTE RIO CA 95462-0250

TU.
BASIC

No. 6 , February 1989 $3 .00

For beginning
programmers with no prior

programming experience

CONTENTS

3 Teach Yourself BASIC
13 Browsing BASIC
23 Teach Yourself

QuickBASIC

PUBLISHER'S STATEMENT: The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
Francisco, CA 94110. Contents copyright ©
1989 by Different Worlds Publications. All
rights reserved. Contents may be copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO. A 12-issuc sub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

PRINTED IN THE U.S.A.

Editorial HAPPY COMPUTING

T a d a s h i E h a r a , p u b l i s h e r
B o b A l b r e c h t , e d i t o r

D o n I n m a n , e d i t o r

Microsoft's New
QuickBASIC 4.5
WITH QB4.5, Microsoft takes another major
leap forward in language technology. As
Microsoft QuickBASIC 4.0 brought together
the latest threaded interpreter together with
the most advanced BASIC programming
lanugage, Microsoft QuickBASIC 4.5 brings
together state-of-the-art on-line help tech
nology with QB Advisor as well as a flexible
user interface that grows with the sophistica
tion of the user, a step-by-step printed
tutorial, and the QB Express on-line tutorial.
Microsoft QuickBASIC is the easiest tool to
master for solving programming problems.

The following are the key new QB4.5 fea
tures and their associated benefits:

• QuickBASIC now gives you the
most important information in the
easiest and most accessible way-at
your fintertips, with QB Advisor.

» Complete hypertext electronic reference
lets the user access info quickly and
easily when he gets into trouble.

» Cut and paste examples to your program
ming window to execute the examples.

» New context-sensitive help on errors
(syntax and runtime)-dialog boxes and
menus is always there when the user
needs it.

• New easy-to-use interface with Easy
Menus lets the beginner type in and
run programs with the minimum of
menu choices. The more seasoned
user may elect to use Full Menus to
get the full power of QB.

• Superior integrated debugging lets
you see exactly what the program is
doing.

» Instant WATCH command available at all
times for any variable or expression.

» Variable Help provides type and scoping
information about procedures, variables,
and data structures used in a program
without searching through the source code.

• QB Express on-line tutorial program
gets you started in the QuickBASIC
environment quickly and painlessly.

• Step-by-step printed tutorial lets the
beginner learn how to program
quickly by working through a com
plete functional application (an
electronic cardfile).

• Improved setup program makes set
ting up QuickBASIC a snap even on a
floppy-based system.

• Intermediate values of complex ex
pressions are now kept on the math
co-processor chip, thus enhancing
speed and removing any chance of

. propagating errors in rounding.

• ON UEVENT, UEVENT
ON/OFF/STOP, and SLEEP state
ments added for industrial and
instrumentation-control applications
where interrupt processing is used.

• Multi-module error handling saves
code size by allowing for a common
error handler in a multi-module
program.

As you can see, QB4.5 addresses the "ease-
of-mastery" or how quickly the user becomes
productive in solving programming problems
as well as having all of the power for which
QB4.0 was famous. QB4.5 reduces the learn
ing hurdles to programming for PC power
users who have run out of steam with their
app ication products. QB will become even
more entreached as the "Swiss Army Knife"
oi programming tools.

E
February 1989 The BASIC Teacher

Ssk. Teach Yourself BASIC
Y By Bob Albrecht and George Firedrake No. 6

• \ •: J.'.' VHAjl
Introduction
BASIC HAS a small vocabulary and a simple syntax (grammar).
We have already discussed some of the special words that Microsoft
BASIC understands. They are called keywords or reserved words.

Here are the keywords introduced and described previously:

BEEP
CLS
COLOR
DATE$
FOR

GOTO
INPUT
INT
KEY
LIST

NEW
NEXT
OFF
ON
PRINT

RANDOMIZE
RND
RUN
SOUND
TIME$

TIMER
WIDTH

We always show keywords in all upper-case letters. We show vari
ables in lower-case or a MiXtuRe of upper- and lower-case letters.
We think this makes programs easier to read and understand.
However, when you LIST a program, unfortunately, variables will
probably appear in all upper-case letters.

Strings Are Handy
A STRING is a bunch of characters, one after
another in, well, a string. All strung together as
one entity called a string.

A string can be:

• a name: Mariko

• a telephone number:
707-555-1212

• a message:
Trust your psychic tailwind

• gibberish: i2 3Bz#m%@

A string might be enclosed in quotation marks:

••Take a dragon to lunch"

^—•— This string is enclosed
in quotation marks.

The quotation marks enclose the string, but
are not part of the string.

String Variables
A STRING can be the value of a string vari
able. Think of string variable as a labeled box
that can hold, or store, a string.

FirstName$ George

PhoneNumber$ 707-555-1212

The value of the string variable FirstName$
is the string: George.

The value of the string variable PhoneNum-
ber$ is the string: 707-555-1212.

A string variable is a name followed by a dol
lar sign ($). It may consist of letters, numbers,
a point (.), up to 40 characters if you like long
names. The first character must be a letter.

Ok: City$ word$ abc.l2 3$

Oops: City word 123.abc

The BASIC Teacher February 1989 0

2
Teach Yourself BASIC No. 6

Numeric Variables,
String Variables
CITY AND WORD are legal numeric vari
ables, handy for storing numbers to use in cal
culations. However, a string variable must end
in a dollar sign.

Numeric variables:
k x number price TIMER

String variables:
k$ x$ word$ DATE$ TIME$

DATES, TIMES, and TIMER are also BASIC
keywords, so we show them in all upper-case
letters. However, other keywords in our list
cannot be used as variables, although they can
be used as part of a variable name.

• You can't use COLOR as a variable,

• but ColorSet is Ok.

Don't worry about it. If you slip up, BASIC
will remind you with an error message.

Here is one way to tell the computer to stuff a
string in a string box. That is, here is one way
to tell the computer to assign a string as the
value of a string variable. Tell the computer to
put the string George into a string box called
FirstName$.

Type:

FirstName$ = "George"

and press ENTER.

Print the Value of a
String Variable
NOW FIND out what is in string box
FirstName$. Tell the computer to print the
value of the string variable FirstName$.

Type:

PRINT FirstName$

and press ENTER.

FirstName$
Ok
PRINT FirstName$
George
Ok

"George"

.X feme.rr\l?et George

FirstName$ = "George"
Ok

REMEMBER how to assign a string value to a
string variable:

FirstName$ = "George"

string variable = string value in quotation marks

R E M E M B E R how to print the value of a
string variable:

PRINT FirstName$

* PRINT keyword string variable

February 1989 The BASIC Teacher

Teach Yourself BASIC No. 6 3

Practice
PRACTICE ASSIGNING a value to a string vari
able and then printing the value.

You type:
JedilCm'ghtS = "Obi-wari ICenobi"

You type: PRINT JedilCnightS

It prints: Obi-uan Kenobi

You type:
JediNoviceS = "Luke Skywalker"

You type: PRINT JediNoviceS

It prints: Luke Skywalker

}• I'«« Jedi J

If you didn't see any error messages, try these:

You type:
JedilCnightS = Obi-wan ICenobi

It prints: Type mismatch

(quotation marks missing)

You type:
JediNovice = "Luke Skywalker"

It prints: Type mismatch

(dollar sign missing)

You type:
Jedi NoviceS = "Luke Skywalker"

It prints: Syntax error

(space in variable name)

Use INPUT to Stuff
String Boxes
YOU CAN use the INPUT statement to put
strings into string boxes. INPUT causes the
computer to print a question mark, then wait
for someone to enter a value for a variable.
Try this tiny program:

10 CLS
20 INPUT StrngS
30 PRINT StrngS
40 PRINT
50 GOTO 20

Strng$ is a string variable. We didn't use
String$ because it is a BASIC keyword
(STRINGS), which we haven't discussed yet,
but will sometime.

Enter the program and run it. The program
begins by clearing the screen (CLS). Then it
prints a question mark, blinks the cursor, and
waits for you to enter a value for the string
variable Strng$.

The computer prints a question mark and
waits. It is waiting for a string value to stuff
into the string box Strng$. The computer is
very patient. If you don't cooperate by typing a
string and pressing the ENTER key, it will
wait, and wait, and wait.

So cooperate with your ever-patient computer.
Type a string and press ENTER. George did it
like this:

? George
George

George typed his name and pressed ENTER.
His name became the value of Strng$ (line
20 of the program) and then was printed (line
30). The computer then printed a line space
(thanks to line 40) and, as ordered by line 50,
went back to line 20. It is now waiting for a
new value of Strng$.

The BASIC Teacher February 1989

4
Teach Yourself BASIC No. 6

? _

WHEN YOU see the question mark and the
blinking cursor, type a string and press the
ENTER key. The string you enter will replace
George as the value of the string variable
Strng$.

Type: New string

and press ENTER.

? George
George

? New string
New string

Note that the strings are not enclosed in
quotation marks. That's Ok, unless you want to
enter a string that contains a comma.

? Firedrake, George
? Redo from start
?

If a string contains a comma, it must be
enclosed in quotation marks, as shown below:

? "Firedrake, George"
Firedrake, George

REMEMBER: If a string contains a comma,
enclose it in quotation marks when you enter
it in response to an INPUT statement.

Try a few more, then stop the computer. To
stop the computer, hold down CT RL and
press BREAK:

Hold, down CTRL <£ press BREAK

Break in 20
Ok

The computer tells you that a break occurred
while it was doing line 20-and everything is
Ok.

INPUT n n

INPUT PUTS a question mark on the screen,
turns on the blinking cursor, then waits for
someone to enter something. Wouldn't it be
nice if, instead of just a cryptic question mark,
the computer would tell you what it wanted?
Easy! The following program has an
"enhanced" INPUT statement in line 20:

10 CLS
20 INPUT "String, Please"; StrngS

30 PRINT StrngS
40 PRINT
50 GOTO 20

Line 20 has a prompt string enclosed in
quotation marks. Line 20 tells the computer
to:

• print the string enclosed in quotation
marks;

• print a question mark;

• wait for someone to enter a value for
the string variable Strng$.

Run it. It begins like this:

String, please?

Enter a string and press enter:

String, please? "Skywalker, Luke"
Skywalker, Luke

String, please?

Go ahead. Type the string of your choice and
press enter.

When you tire of entering strings, stop the
computer with CTRL + BREAK.

A Shortcut for INPUT
You can use ALT +1 as a shortcut for typin
INPUT. Hold down the ALT key and press
I key. The computer will print INPUT and
space. Then you type the rest of the INPLD
statement.

February 1989 The BASIC Teacher

Teach Yourself BASIC No. 6 5

Your Message?
HERE IS a program that lets you enter a mes
sage, then prints it again and again and
again-until you use CTRL + BREAK to stop
the computer:

10 CLS
20 INPUT "Your message"; msg$
30 COLOR I NT(15 * RND) + 1
40 PRINT msgS
50 GOTO 30

Run the program. It begins like this:

Your message? _

Type any message and press ENTER. Quickly
the screen fills up with many copies of your
message, in 15 colors. But your obedient com
puter continues printing the message at the
bottom of the screen. Each new message
"pushes" all the previous messages up a
line-this is called scrolling. The message on
the top line is "pushed off' the screen.

Stop the computer:
• Hold down CTRL and press BREAK.

The computer stops with many copies of your
message on-screen, in many colors. At the bot
tom of the screen, you see the following, or
something similar:

Break in 30
Ok

Oops-when you stop the computer, it can end
in any of 15 colors, probably not the usual light
gray (or is it dark white?). If you want to get
back to the standard color for text,

Clear the screen (CTRL + L)

Type:

COLOR 7
and press ENTER.

Put Your Name Here,
There, Everywhere
NOW TRY the following program. It puts your
name (or whatever you enter) in random
places all over the screen. It also selects ran
dom colors, including black (invisible) and
blinking colors. The secret to this program is
the LOCATE statement in line 70. LOCATE
positions the cursor at the row and col
(column) selected at random in lines 40 and
50. In lines 30 and 80 we used Naym$ as a
string variable because NAME is a BASIC
keyword.

10 CLS
20 RANDOMIZE TIMER
30 INPUT "Your name"; NaymS
40 row = I NT(24 * RND) + 1
50 col = I NT(80 * RND) + 1
60 COLOR INT<32 * RND)
70 LOCATE row, col
80 PRINT NaymS;
90 GOTO 40

Go ahead-run the program. It begins like this:

Your name? _

Type your name and press ENTER. You will
quickly see it here, there, anywhere on the
screen in both blinking and non-blinking
colors. Use CTRL + BREAK to stop the com
puter, then use a COLOR 7 statement to
return to the normal screen color.
Lines 10,20, and 30 are done only once. Then
lines 40 thru 90 are repeated in a "loop" until
you stop the computer. Like this:

RUN

10 CLS
20 RANDOMIZE TIMER
30 INPUT "Your name"; NaymS

I
40 row = I NT < 24 * RND)
50 col = INT(80 * RND)
60 COLOR I NT(32 * RND)
70 LOCATE row, col
80 PRINT NaymS;
90 GOTO 40 —

The BASIC Teacher February 1989
a

6 Teach Yourself BASIC No. 6

SCREEN O
WHEN YOU first enter GW-BASIC, you are in
SCREEN 0 in 80-column text mode. The
screen is set up in a text mode having 25 rows
(horizontal lines) and 80 columns (character
positions across a row or line).

The bottom row of the screen is the key line.
You can turn it off with KEY OFF, and on
with KEY ON.

Rows & Columns
Rows ARE numbered from 1 (top of screen)
to 25 (bottom of screen). Print positions across
the screen (columns) are numbered from 1
(left edge of screen) to 80 (right edge of
screen).

column

row

•\
one print position

Use the LOCATE statement to print stuff
anywhere on the screen:

LOCATE row, col

1 to 25 1 to 80

A SCREEN MAP:
Here is a map of the
left half of the
screen. Use it to
practice finding
things on the screen.

I
2.
3
4
s
u
7
t
I
to
I I
IZ
I 3
I t
I S
It
n
I S
i* 20
zl
fl
2)
at
2S"

A H I ft t
i •j o i V i J i 0 7 U 1 L. 3 1 J k> 1 8 1 0

•

T H E R
E
1?
E
H

— 11 o W —

o J J

c
o
L

U * n
N

T* i L I S T 2 K u <• 3 L o A D u 9 s A V E •i 5 c o w T
ROW is in row 10, COLUMN is in column 30.

A is in row 1, column 1. A lonely star (*) is in
row 19, column 20.

HERE is in row 1, columns 10,11,12, and 13.

THERE is in row 5, columns 16 to 20.

Row 25 is the key line. To turn it off, type
KEY OFF and press ENTER.

Where is Z?

Where is the word NOWHERE?

Z is in row 24, column 40.

NOWHERE is in column 12, rows 12, 11, 10, 9, 8 7, and
6. We suspect that, at first, you thought NOWHERE was,
well, nowhere.

s February 1989 The BASIC Teacher

TL*
BASIC
T̂ ĉ cU cv By Don Inman

Browsing BASIC No. 6

A Little Bit More About DOS
WE DIGRESS from BASIC in this issue to talk a little bit more
about your Disk Operating System (DOS). DOS is the master
program that coordinates the flow of information from your
computer to your disks and from your disks to your computer.
Every computer that uses disks must have a disk operating
system. Despite its importance, DOS is quite often the most
ignored part of a computer system. DOS is necessary, but it is
usually used only for the most basic things-like formatting, and
copying disks and disk files. Of course, DOS is also necessary to
load the software that you use.

In Browsing BASIC No. 3, we discussed how to label disks and how to use
DOS to write a short CONFIG.SYS file to the DOS disk. We began with a
short list of DOS commands that we assumed you knew how to use:

DIR DISKCOPY COPY

We added the following terms:

COPY CON
DEVICE

DRIVER.SYS
FORMAT /V

FORMAT

LABEL

In this issue, we will use COPY CON to turn DOS into a note pad so that we
can write short text files. As you read through the article, you should follow
the procedures described. The notes that we save will contain information
about using DOS.

DOS features discussed here are for MS-DOS, version 3.2 and 3.3. If a
feature does not work on an earlier version, this fact will be stated in the
discussion. If you have a version of DOS that is compatible with ours, use the
text described. Otherwise, use notes that will apply to your version of DOS.

The MS-DOS version 3.20 used here is Tandy version 03.20.21. As you
browse the following discussion, remember that there may be slight
differences between this version and the version of MS-DOS that you are
using.

Microsoft MS-DOS Version 3.20
(C)Copyright Microsoft Corp 1981,
Tandy Version 03.20.21
Licensed to Tandy Corp.
All rights reserved.

1986

The BASIC Teacher February 1989 0

There are two distinct types of DOS commands:

1. Resident commands: If you have loaded DOS into memory,
resident commands can be performed whether or not your DOS
system disk is in the computer. These commands are placed in memory
when DOS is loaded.

Examples: COPY CLS DATE DIR TIME TYPE

2. Transient commands: These commands are really small,
special-purpose programs that are on the DOS system disk but are not
placed in memory when DOS is loaded. They are "brought in" from
the system disk when you enter the command. Therefore you must
have a DOS system disk in the computer when the commands are
used.

Examples: BACKUP DISKCOPY FORMAT
GRAPHICS LABEL

The DOS commands used in this article are resident commands. Therefore
everything discussed can be done after you have loaded DOS, whether your
DOS system disk is in the computer or not.

Writing DOS Files
DOS HAS many capabilities, one of which is to write files to itself directly
from the keyboard as described in Browsing BASIC No. 3.

A>COPY CON: filename opens a file for text input

Remember, the term CON means console, a combination of your monitor
and keyboard. The DOS command COPY CON means copy (from the
console) the file that follows (filename).

A DOS file is created in ASCII format by typing text at the DOS prompt and
pressing the ENTER key at the end of each line of text. The file is closed by
typing CTRL Z and pressing ENTER. The file is sent to the default disk drive
(A in the above example) or to the disk drive specified in the filename. The
file entries are echoed (displayed) on the screen as the file is created.

DOS:
The Lazy Man's Word Processor

FORGETFUL PEOPLE often write notes to themselves in an effort to ORGANIC
their work and play. I frequently write notes of things to be done in the future
A sequential data file is quite handy for note taking. These files are usually
created from a word processor.

Being lazy by nature, my notes are quite often never made. The thought of
loading a word processor (I do not have a hard disk), typing in the notes and
saving them to disk seems like too much trouble. So the note taking is usually
put off until a later time. Usually, they are forgotten. Notes should be
recorded quickly while still fresh in memory.

You could load EDLIN, a word processor file that is on the DOS disk.
However, you found out in Browsing BASIC No. 3 that DOS could create an
ASCII text file directly from the keyboard. Why not use the same method to
record notes quickly? As long as the notes are short, a fancy word processor
isn't really needed. From time to time, you can merge these files into a larger
file using your favorite word processor. Or, you may use the COPY command
as shown in Note Taking Session #2 to combine files.

Note Taking Session #1
SINCE LEARNING more about DOS has been a long postponed project, I
decided to use DOS to make notes about how to use DOS.

My first session with DOS note taking consisted of entering a few short lines
of disk directory information. Since I usually save my files in disk drive B, I
switched the default drive to B and entered the following DOS command.

A>B:

B>COPY CON: Notel.txt_

COPY is a resident command. Note1.txt is the name of the DOS ASCII text
file to be created.

After entering the command, I typed in a title and several short statements
about directory commands. Remember, I am creating a short note pad file
without a word processor. Each line is entered in the file as a record when I
press the ENTER key. If a typing mistake is made, I must correct it before
pressing the ENTER key. Otherwise the record has already been entered,
mistake and all. The backspace key can be used to back up and correct
mistakes in a record as long as the ENTER key has not been pressed.

After the last entry, I pressed CTRL Z which marks the end of the file. The
records were then sent to the file on the disk in drive B. Here is a screen print
of the records as they were echoed to the screen when entered:

A>B:

B>COPY CON: Note1.txt

MISCELLANEOUS DIRECTORY INFO

DIR /W prints directory items across the screen.
DIR /P pauses after printing each page of items.

DIR A* lists just those files beginning with letter A.
DIR *.TXT lists all files that have the TXT extension.
DIR ????.COM lists all 4 letter or less files with COM extension.
DIR ??S?*.* lists files with S as the third character in its name.

'Z
1 Filets) copied

B>

The BASIC Teacher February 1989

Browsing 3ASIC No. o

Checking The File
To WRAP up my first DOS note taking session, I decided to check the file to
see what it looked like. There are several ways to do this. Some of them will
be discussed in the future. Since we have been using the COPY command, I
used it to check the file with this command:

B>COPY Notel.txt LPT1:

This tells the computer to copy the file (Notel .txt) to my printer (LPT1:).
Here is how the file was printed:

MISCELLANEOUS DIRECTORY INFO

DIR /U prints directory items across the screen.
DIR /P pauses after printing each page of items.

DIR A* lists just those files beginning with letter A.
DIR *.TXT lists all those files that have the TXT extension.
DIR ????.COM lists all 4 letter or less files with COM extension.
DIR ??S?*.* lists files with S as the third character in its name.

When the computer finished printing the file the following message was
displayed on the screen:

B>COPY Notel.txt LPT1:
1 File(s) copied

B>

Each note in the Notel.txt file is saved as a single record in the file. Each
blank line space in the file is also saved as a record. The file contains eleven
records:

1. A blank line at the beginning.
2. The title MISCELLANEOUS DIRECTORY INFO.
3. A blank separating the title from the notes.
4-5. Notes on DIR /W and DIR /P.
6. A blank line.

7-10. Wild card directory notes.
11. A blank line.

If you haven't used DOS to create files before, stop now and experiment with
this procedure. You may want to add more disk directory notes to the file
Or, you may want to store information on an entirely different subject.

February 1989 The BASIC Teacher

Browsing BASIC No. 6 5

Note Taking Session #2
THIS SESSION includes two sections of related DOS features. Several ways are
given to use the COPY command. The first section contains some uses that
will be familiar to you. Some were used in Note Taking Session #1. The
second section tells how to use the COPY command to combine two or more
files.

Section 1 - COPY Files
Two important commands are listed first. They show how to "backup" files.
Text and data files are often modified. You can make a secondary copy of a
working file on the same disk. Then you can make modifications to the
original file while a copy of the unmodified file is still available as a backup.

Example: A>COPY TCTQB1.DOC TCTQB1. BAK

I used the above command to copy a text file for a teacher's guide for our
QuickBASIC book, Using QuickBASIC. The command copies the file
TCTQB1.DOC to the same disk (in drive A) with a new name (different
extension).

You can also make a backup copy of a file to a different disk. Then put the
second disk away in a safe place. This would provide protection for
inadvertent damage to the original or a loss of the file.

Example: A>COPY PHONENUM.DAT B:

The PHONENUM.DAT file is copied from the disk in drive A to the disk in
drive B. The name is unchanged.

Additional uses of the COPY command are listed in Section 1, including
copying data from a disk file to a device other than a disk drive.

Section 2 - Combine Files
The two items in this section tell how to combine multiple files.

A>COPY Notel.txt + Note2.txt
A>COPY *.dat ALL.txt

The first command combines two text files, Note1.txt and Note2.txt. We will
use this command in Note Taking Session #3. The second command
combines all files that have the .dat extension into one file named All.dat.

Disk drive B was used once again to copy the files. The name of the file
copied to the console is Note2.txt. Session 2 opened with the following
command:

A>B:

B>COPY CON: Note2.txt

A new text file is created from the keyboard. When finished, it will be copied
to the disk in drive B.

The BASIC Teacher February 1989 (Hi

6
Browsing BASIC No. 6

After entering the command, the file was entered in the same way as
Notel .txt in Note Taking Session #1. Line spaces were again inserted before
and after the title, as well as between sections of the file. The ENTER key is
pressed to create the line spaces. ENTER is also pressed at the end of each
line of text. Here is how the screen looked just before the file was completed:

B>C0PY CON: Note2.txt

COPY FILES

A> COPY TCTQB1.TXT TCTQB1.BAK makes a secondary copy of file.
A> COPY PHONES.TXT copies file from Drive A to Drive B.
A> COPY *.COM B: copies all COM files from Drive A to Drive B.
A> COPY *.* B: copiest all files from Drive A to Drive B.

A> COPY N0TE1.TXT CON:
A> COPY N0TE1.TXT LPT1:
A> COPY CON: N0TE2.TXT

COMBINE FILES

copies N0TE1.TXT file to screen
copies N0TE1.TXT file to printer,

opens N0TE2.TXT file for text. Type in
text pressing ENTER after each line. End
with CTRL Z. Press ENTER to return to DOS.

A> COPY N0TE1.TXT + N0TE2.TXT NOTEF.TXT combines N0TE1.TXT with
N0TE2.TXT to make NOTEF.TXT

A> COPY *.TXT ALL.TXT combines all .TXT files into one .TXT file.

Once again the file is closed by pressing CTRL Z, and the file is copied to the
disk in drive B.

Stop now and make a copy of this file or a file of your choice. Copy it to the
same disk that you used in Note Taking Session #1. In the next note taking
session, we'll combine the two files.

Note Taking Session #3
WE WILL combine our two text files, Notel .txt and Note 2.txt, into one file
named NoteF.txt by entering the following command:

B>COPY Notel.txt + Note2.txt NoteF.txt

combine these two files copy result to this file

Before using the command, be sure both files, Note1.txt and Note2.txt, are
on a disk in Drive B. Our directory, taken before combining the files, is shown
below:

Directory of B:\

COMMAND COM 23612 7-21-87 3:00p
NOTE1 TXT 391 6-05-88 3:02p
NOTE2 TXT 804 6-05-88 3:06p

3 File(s) 291840 bytes free

February 1989 The BASIC Teacher

Browsing BASIC No. 6 7

After entering the COPY command to combine the files, the red light on
Drive B flickered and the disk whirred as the files were combined. Then this
message appeared on the screen:

B>COPY Notel.txt + Note2.txt NoteF.txt
NOTEl.TXT
NOTE2.TXT

1 File(s) copied

B>

The files that were combined are listed directly below the command. Note
that DOS tells you that one file was copied. This indicates that the two
original files were combined. Of course, you will probably want to confirm
that the NoteF.txt file has been created.

NoteF.fxt

Checking The File
AFTER THE files were combined, a directory of the disk b Drive B was taken.
The result is shown below:

Directory of B:\

COMMAND COM 23612 7-21-87 3:00p
NOTE1 TXT 391 6-05-88 3:02p
NOTE2 TXT 804 6-05-88 3:06p
NOTEF TXT 1196 6-05-88 3:17p

4 File(s) 289792 bytes free

The NoteF.txt file does appear on the directory. As a final check, I decided I
should send a copy to the printer with the command:

B>COPY NoteF.txt LPT1:

The BASIC Teacher February 1989

8
Browsing BASIC No. 6

When the command was entered, the red light on Drive B flickered, the disk
whirred, and the following text appeared line by line (or record by record
from the disk's viewpoint) on my printer:

MISCELLANEOUS DIRECTORY INFO

DIR /U prints directory items across the screen.
DIR /P pauses after printing each page of items.

DIR A* lists just those files beginning with letter A.
DIR *.TXT lists all files that have the TXT extension.
DIR ????.COM lists all 4-letter or less files with COM extension.
DIR ??S?*.* lists files with S as the third character in its name.

COPY FILES

A>COPY TCTQB1.TXT TCTQB1.BAK makes a secondary copy of file.
A>COPY PHONENUM.TXT B: copies file from Drive A to Drive B.
A>COPY *.COM B: copies all COM files from Drive A to Drive B.
A>COPY *.* B: copies alt files from Drive A to Drive B.

A>COPY Note1.txt CON:
A>COPY Note1.txt LPT1:
A>COPY CON: Note2.txt

COMBINE FILES

copies Note1.txt file to screen,
copies Note1.txt file to printer,

opens Note2.txt file for text. Type in
text pressing ENTER after each line. End
with CTRL Z. Press ENTER to return to DOS.

A>COPY Note1.txt + Note2.txt NoteF.txt combines Note1.txt with
Note2.txt to make NoteF.txt.

A>COPY *.TXT ALL.TXT combines all .TXT files into one .TXT file.

We now have three files made from DOS:

1. MISCELLANEOUS DIRECTORY INFO is in Note1.txt.

2. COPY FILES and COMBINE FILES is in Note2.txt.

3. Both files are contained in NoteF.txt.

Since both files were combined to make NoteF.txt, Note1.txt and Note2.txt
can be erased from the disk with these two commands:

B>ERASE Notel.txt
B>ERASE Note2.txt

c.V\

From time to time, Browsing BASIC will include tips, suggestions, and uses of
MS-DOS. If you have particular DOS features that you would like discussed
send suggestions to The BASIC Teacher, 2814 - 19th Street, San Francisco,
CA 94110. If there is enough demand, we might start a "Browsing DOS"
section.

February 1989 The B AS IC Teacher

TU*
BASIC

TE>1CH YOURSELF
QuickBASIC

No. 6

By Bob Albrecht
and George Firedrake

QuickBASIC 4.5
FOR 24 years we have been writing beginners' books about
BASIC. More than 20 books so far and continuing. For 24 years
we have been teaching kids how to use BASIC as a general-
purpose problem-solving tool. We began with the very first
BASIC, Dartmouth BASIC, and grew along with BASIC as it
became better and better, according to the needs of people.
QuickBASIC 4.5 is by far the best BASIC, in a class by
itself-best for beginners, best for experts. If you want to learn
BASIC, QB 4.5 is the place to start!

The most powerful way to use a computer is to learn a general-
purpose programming language and apply it to interesting
problems. QuickBASIC 4.5 is the best language for learning
and teaching this high-level skill. You can use it to write beauti
ful software.

ComputerKid USA • PO Box 1635 • Sebastopol, CA 95473 • USA

Number Crunching
IF YOU misplace your $10 solar-powered cal
culator, relax... you can use your computer as
a calculator. You can use the Immediate
Window to tell the computer to do arithmetic
and print the results in the Output Screen. Use
+ , -, *, and / to specify arithmetic operations,
as follows:

Operation

Addition
Subtraction
Multiplication
Division

Example
3 + 4
3 - 4
3 * 4
3 / 4

Go now to QB Control. Press the F6 function
key to position the cursor in the Immediate
Window, as shown here:

jm

1 •
Ha in: <Untitle<t> Context: Prograri not running

The cursor is in the Immediate Window.

Clear the
Output Screen
WHEN THE cursor is in the Immediate Win
dow, you can tell the computer to do
something-immediately. Tell it to clear the
Output Screen.

Type:

CLS

and press ENTER.

The Output Screen is now clear of any distract
ing information. It contains only the message
"Press any key to continue," as shown below:

The Output Screen is clear except for the bot
tom line.

The BASIC Teacher February 1989

2 Teach Yourself QuickBASIC No. 6

Return to QB Control
»

PRESS A key to return to QB Control. Your
last command (CLS) and the cursor are still in
the Immediate Window, as shown here.

I 1 I
els

1

Hain: <Untitled> Contexts Program not running

Do
Some
Arithmetic
Now TELL the computer to add two numbers,
then subtract a number from another number,
then multiply two numbers, then divide a num
ber by another number. After each operation,
you will see the result in the Output Screen.
Press any key to return to the Immediate Win
dow.

Type:

PRINT 3 + 4 (addition)

and press ENTER.

Type:

PRINT 3-4 (subtraction)

and press ENTER.

Type:

PRINT 3*4 (multiplication)

and press ENTER.

Type:

PRINT 3/4 (division)

and press ENTER.

After doing all four of the above, the top of
the Output Screen should look like this:

7
-1

12
. 7 5

Numeric Expressions
To TELL the computer to do arithmetic and
print the result, you can use a PRINT state
ment consisting of the keyword PRINT fol
lowed by a numerical expression.

PRINT 3 + 4^

numerical expression

The computer evaluates the numerical expres
sion (does the arithmetic), then prints the^
result, a single number. —C i

Notice how the numbers
are printed, as shown below:

7
-1

12
. 7 5

A negative number is printed with a minus
sign (-) followed by the digits of the number.
A positive number (or zero) is printed as a
space followed by the number.

You can put two or more numerical expres
sions in a PRINT statement. If you do, use
commas or semicolons (;) to separate them.

You type:

PRINT 3 + 4, 3 - 4

It prints:

Commas between numbers
in a PRINT statement cause
answers to be printed in
standard PRINT positions,
up to 5 on a line. Semicolons
cause numbers to be printed close together.

February 1989 The BASIC Teacher

Teach Yourself QuickBASIC No. 6

Mariko is 57 inches tall. How tall is she in cen
timeters? Hmmm... we seem to recall that
one inch equals 2.54 centimeters.

You type: PRINT 5 7 * 2 . 5 4

It prints: 1 4 4 . 7 5

2.54 centimeters

0 1 2

Easy! Just multiply the number of inches by
2.54 and print the result. But suppose you
know the number of centimeters and want to
compute the number of inches?

An ancient ruler named Zalabar measured 100
centimeters from the tip of his nose to the end
of his outstretched finger.

How long is that in inches?

You type: PRINT loo / 2 . 5 4

It prints: 3 9 . 3 7 0 0 8

Call it 39.37. Does that sound familiar?
Perhaps you recall that 100 centimeters is
equal to one meter, and one meter is equal to
39.37 inches, a little more than one yard.

People usually give their height in feet and
inches. If you ask Mariko how tall she is, she
will probably tell you she is 4 feet, 9 inches tall.
Given feet and inches, it's easy to write a
PRINT instruction to compute height in cen
timeters:

You type: PRINT 4 * 12 + 9

It prints: 5 7

In evaluating the numerical expression 4 * 12
+ 9, the computer first does the multiplication
(4 * 12), then does the addition (+ 9). In
BASIC, the rules for doing arithmetic are very
similar to the rules we use in "everyday" math.
Remember, though, to use an asterisk (*) for
multiplication and a slash (/) for division.

Before he reached his full stature, King Kong
was once 37' 8" tall. How tall was he in cen
timeters?

You type: PRINT (37 * 12 + 8> * 2.54

It prints: 1148.08

We cleverly sneaked in the use of parentheses
(). The rules for using parenthesis are very
similar to the rules you learned in elementary
school math classes. Your computer does the
arithmetic inside parentheses first, then does
the rest.

REMEMBER: 1 inch = 2.54 centimeters
1 meter = 39.37 inches

Recently, we took a trip in our ever-faithful
car, Henrietta Honda. At the beginning of the
trip, Henrietta had 19,832 miles on her
odometer. At the end of the trip, her
odometer read 20,219. We filled her tank at
the beginning and again at the end. She
burned 9.3 gallons of gas.

You type: PRINT (20219 - 19832) / 9.3

It prints: 41.6129

Well, let's call it about 41.6 miles to the gallon.

Most people on Earth use the metric system.
Someday, we who live in the USA will also go
metric. Instead of miles, we will use
kilometers.

1 kilometer = 0.621371 mile
1 mile = 1.609344 kilometers

How many kilometers did we travel on that
trip with Henrietta?

You type: PRINT (20219 - 19832) * 1.609344

It prints: 622.8161

The BASIC Teacher February 1989 [»]

Teach Yourself QuickBASIC No. 6

A
6

SHIFT

~A~
6

Powers of Numbers
QUICKBASIC CAN do yet another arithmetic
operation.

It can compute a power of a number.

For example, 52 = 5 x 5 = 25 is "5 to the
second power" or "5 squared."

To compute a power of a number, use the *
symbol.

To type * hold down SHIFT and press

You type: PRINT 5*2

It prints: 2 5

Next, compute 5 to the third
power, also called 5 cubed:

You type: PRINT 5*3

It prints: 12 5

Of course, you can also use multiplication (*)
to compute a power of a number:

You type: PRINT 5*5

It prints: 2 5

You type: PRINT 5*5*5

It prints: 125

Here are some more examples of powers of
numbers:

You type:

It prints:

You type:

It prints:

You type:

It prints:

Oops!
What is IE+ 09?
It's a floating
point number.
Read on...

nil H i .

'Ill

1

P
The Mysterious
COMPUTERS USE a very simple
code, called binary, to represent
information. Binary is very simple; it
uses only two symbols, 0 and 1. The symbols 0
and 1 are called binary digits, or bits.

In a typical personal computer, information is
stored in the memory of the computer. The
memory consists of many thousands of bits
organized as bunches of bits in memory
locations.

One memory location can hold eight bits of in
formation. A bunch of eight bits is called a
byte. So... one memory location can hold
eight bits, or one byte. The memory of a typi
cal personal computer has many thousands of
memory locations.

• One memory location can store 8 bits.

• A group of eight bits is called a byte.

• So, a memory location can store one
byte.

• A computer memory has many
thousands of locations. So the
memory can store many thousands of
bytes.

Perhaps you have heard about the mysterious
K. People say a computer has 128K or 256K or
512K-or more-bytes of memory.

• IK bytes equals 210 bytes equals 1024
bytes.

Use the computer to change IK bytes or 256K
bytes or 512K bytes to ordinary numbers.

You type: PRINT 2*10

It prints: 1024

You type: PRINT 256 * 2*10

It prints:- 26214 4

You type: PRINT 512 * 2*10

It prints: 524288

February 1989 The BASIC Teacher

Teach Yourself QuickBASIC No. 6 5

Computer memories are getting bigger. Your
computer might have a megabyte or two or
more. The term mega is borrowed from the
metric system. It means one million. However
in referring to the size of computer memories,
it means 2 "20 (2 to the 20th power, or the 20th
power of 2). How many bytes in a megabyte?
Use the computer to find out.

You type:

It prints:

PRINT 2"20

1048576

So, one megabyte is really 1048576 bytes. How
many bytes in a 20-megabyte hard disk?

You type: PRINT 20 * 2 "20

It prints: 2.097152E+07

20 megabytes is a rather large number. Quick
BASIC printed this number in floating point
notation, which is quite similar to scientific
notation used in math and science books.

Floating point notation: 2.097152E + 07
Scientific notation: 2.097152 x 107

Say it like this:

Two point zero nine seven one five two times
ten to the seventh power.

That's
a Lot of
Bread!
PERHAPS YOU have heard the ancient story
about the wise person who did a great service
for a king. The king asked her what reward
would be appropriate. Her request was simple.
She asked only for grains of wheat, computed
as follows: On the first square of a chessboard,
one grain of wheat. On the second square, two
grains of wheat. On the third square, four
grains of wheat. And so on, doubling at each
new square.

On square number n, there are to be 2n l

grains. Let's find out how many grains on
square 16:

You type: PRINT 2 "15

It prints: 32768

Inexorably, the grains pile up.
How many on square 64?

PRINT 2"63

9.223372E+18

You type:

It prints:

Yup, that's a lot of wheat, more wheat than ex
isted in all the kingdoms everywhere.
The king realized that he had been duped.

The king was: a) chagrined b) overjoyed
c) amused d) befuddled
e) angry f) livid
g) (your choice)

Please pick one of
the above and write
the end of the story.

The BASIC Teacher February 1989 GD

6 Teach Yourself QuickBASIC No. 6

m BIG Numbers
THE POPULATION of the
Earth is about 5 billion people.

5 billion = 5,000,000,000

You can write this big number as a floating
point number in several ways, such as:

5E+09 or 5E+9 or 5E9

Floating point notation is simply a shorthand
way of expressing very big numbers. In floating
point notation, a number is represented by a
mantissa and an exponent. The mantissa
and exponent are separated by the letter E.

5E+09

/ \ \
mantissa E exponent

Here is another BIG number in good old
everyday notation and also in floating point
notation: One trillion. We usually write it like
this:

l , o o o , o o o , o o o , o o o

In floating point, you can write this humun
gous number as:

1E+12 or 1E12

BIG numbers that are powers of ten have
fancy Latin names. Here are some:

Latin name

quadrillion
quintillion
sextillion
septillion
octillion
nonillion
decillion
undecillion
duodecillion

Oops! You type: PRINT 1E+39

The Overflow error box comes on. Well, looks
like a good subject for a future discussion. In
the meantime, explore QB's wonderful on-line
Help system.

Power of 10 Floatingpoint

1015 IE+ 15
1018 IE+ 18
1021 IE+ 21
1024 IE+ 24
1027 IE+ 27
to30 IE+ 30
1033 IE+ 33
1036 IE+ 36
1039 oops!

small numbers
As YOU have seen, QuickBASIC does a good
job on very big numbers. It is equally adept
with very small numbers.

Recently, we have had occasion to chase
several snails. We became curious about snail
speed. The results of our first experiment indi
cate that the speed of a frightened snail is
about 0.0000079 miles per second. You can
write this very small number as a floating point
number with a mantissa and an exponent,
separated by the letter E.

7.09E-06
TT

mantissa exponent

Read it like this: Seven point zero nine times
ten to the minus six. In math, science, or other
hi-tech books, you might see this number writ
ten as 7.09 x 10"6.

Hydrogen is universal stuff. It began with the
big bang that created the universe. It is here,
there, everywhere. The hydrogen atom is very
small and very light. The mass of the hydrogen
atom is about 1.67 x 10"27 kilograms.

You type: PRINT 1.67E-27

It prints: 1.67E-27

Yes, you can enter numbers in floating point
notation. Saves time and finger fatigue. To
see this for yourself, think about entering the
mass of the hydrogen atom like this:

0.00000000000000000000000000167
OB will print this as a double precision
floating point number with the mantissa and
exponent separated by the letter D.

1.67D-27

7^ T
mantissa exponent

Next time we'll
tell you more about
number crunching
in QuickBASIC.

February 1989 The BASIC Teacher

Special Reader Services
Microsoft QuickBASIC
Version 4.5
When you can't find the programs you want, don't get mad. Get
Microsoft QuickBASIC version 4.5 and write them yourself.
Microsoft QuickBASIC is the easiest way to learn how to
program. And the industry's most innovative and comprehen
sive learning tools make it the fastest way, too!

System Requirements

» 384K available user memory

» DOS 2.1 or higher

» Two double-sided disk drive

Sometimes you just can't find the
right software. Maybe it's a program
that performs an unusual task or ex
ecutes a common one in a different
way-a special utility, a unique con
version program, or even a complete
application. With Microsoft Quick
BASIC 4.5, you can learn to do it
yourself instead of doing without.
And you can do it fast.

Microsoft QuickBASIC 4.5 is a com
plete BASIC learning system. The
new interactive, on-disk tutorial,
Microsoft QB Express, quickly and
easily introduces you to the Microsoft
QuickBASIC environment. A new
stcp-by-stcp tutorial guides you
through an actual application. And

numerous example programs help
you master BASIC programming.

Once you begin to write your own
programs, Microsoft QuickBASIC 4.5
boosts your productivity with innova
tive technology. Microsoft QB Ad
visor is a hypertext-based, electronic
help system with instant cross-
referencing that lets you quickly work
through related topics as fast as you
can click the mouse or press the F1
key. It's a complete reference at your
fingertips-no more time-consuming
hunting through pages of information.
With all this help, there's no excuse
for doing without the programs you
want.

• New! Automatic setup makes in
stallation easy-even on a floppy-
disk-based system.

• New! Easy Menus simplify the
menu-driven user interface.

• Superior integrated debugging
helps you get your program up
and running faster because you
can see exactly what it's doing.

• No recompiling! Just stop your
program, correct errors, and con
tinue running.

• "Instant" compilation at 150,000
lines per minute (at 8 MHz)
means no waiting for long com
piles.

MS-04366 QuickBASIC 4.5£3fe«q;
Now only $79.00

QuickBASIC Made Easy
by Bob Albrecht, Wenden Wiegand,
and Dean Brown
(Osborne/McGraw-Hill, 350pp)

Learn how to program with
Microsoft's QuickBASIC using
Osborne/McGraw-Hill's popular
"Made Easy" format. For beginning
programmers or those experienced in
other languages, QuickBASIC Made
Easy is a step-by-step introduction to
reading and writing programs with
versions of QuickBASIC through ver
sion 4.5. You'll find information on
creating files, building a toolkit, edit
ing, and debugging. QuickBASIC
Made Easy will keep you up-to-date
with the latest changes in Microsoft's
outstanding compiler.

OMH-881421 QuickBASIC Made Easy $19.95

Advanced QuickBASIC
by Don Inman, Bob Albrecht, and
Ame Jamtgaard
(Osborne/McGraw-Hill, 500pp)

As an experienced programmer you'll
learn how to write professional-level
programs using the advanced tech
niques found in the 4.5 version of
QuickBASIC. Advanced Quick
BASIC, written by three highly
regarded professional programmers,
provides you with the tools to
produce sophisticated programs.
Graphics, construction kits, and data
bases are some of the topics dis
cussed. Find information on Quick
libraries, macros, keyed, sequential,
and unsequential files and more. Ad
vanced QuickBASIC is packed with
applications, examples, and models
that will soon have you programming
like an expert.

OMH-881361 Advanced QuickBASIC $21.95

Back Issues
BASIC

TBT-1 Issue No. 1
TBT-2 Issue No. 2
TBT-3 Issue No. 3
TBT-4 Issue No. 4
TBT-5 Issue No. 5

c ̂ chc\-

$3.00
$3.00
$3.00
$3.00
$3.00

Using QuickBASIC
By Don Inman and Bob Albrecht
(Osborne/McGraw-Hill, 436pp)

Here's an excellent programming
guide to Microsoft's newest version of
QuickBASIC by the authors of The
BASIC Teacher. The book ap
proaches QuickBASIC's program
ming environment in three stages so
beginning and experienced BASIC
programmers can find the ap
propriate level of instruction.

OMH-881274 Using QuickBASIC $19.95

QB4.5 Work Disk
LAST CHANCE!
Final chance for teachers and
educators to get the exclusive Quick
BASIC 4.0 Work Disk from
Microsoft, available only thru The
BASIC Teacher. The Work Disk con
tains QB.EXE and QB.HLP, the two
most-important QuickBASIC files.

Requests must be made on school let
terheads. The disk must not be dupli
cated and may be used only by the
person making the request.

MS-QBWD QuickBASIC Work Disk $12.00

DOS Made Easy
By Herbert Schildt
(Osborne/McGraw-Hill, 385pp)

Previous computer experience is not
necessary to understand this concise,
well-organized introduction that's
filled with short applications and ex
ercises. The book walks you thru all
the basics, beginning with an overview
of a computer system's inner com
ponents and a step-by-step account of
how to run DOS for the first time.

OMH-881194 DOS Made Easy $18.95

The Shareware Book
Using PC-Write, PC-File, PC-Talk
By Emil Flock, et al
(Osborne/McGraw-Hill, 688pp)

Covers the most popular "free"
programs: PC-Write, a word proces
sor; PC-File, a database manager; and
PC-Talk, a telecommunications
program. These programs are avail
able thru user groups or bulletin
board services in return for a nominal
registration fee. The book has all the
details on how you can obtain these
program disks.

OMH-881251 The Shareware Book $14.95

Different Worlds Publications
2814- 19th Street
San Francisco, CA 94110

Address Correction Requested.

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

BMC250 ^ ERIO<S0N # 14

"0NTE RI° C« ^2-02S0

• cttzd
r̂ 1 i

I

r \

T U .
1 BASIC

v X
\ 11 HO=.

No. 7 , May 1989 $3 .00

For beginning
programmers with no prior

programming experience

CONTENTS

3 Teach Yourself BASIC
13 Browsing BASIC
23 Teach Yourself

QuickBASIC

PUBLISHER'S STATEMENT: The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
Francisco, CA 94110. Contents copyright ©
1989 by Different Worlds Publications. AU
rights reserved. Contents may be copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO. A 12-issuc sub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

PRINTED IN THE U.S.A.

Happy Computing!
T a d a s h i E h a r a , p u b l i s h e r

B o b A l b r e c h t , e d i t o r
D o n I n m a n , e d i t o r

This issue we present many new
resources for your learning pleasure.
Use order form on page 23.

Advanced QuickBASIC
by Don Inman, Bob Albrecht, and
Ame Jamtgaard
(Osborne/McGraw-Hill, 500pp)

As an experienced programmer you'll
learn how to write professional-level
programs using the advanced tech
niques found in the 4.5 version of
QuickBASIC. Advanced Quick
BASIC, written by three highly
regarded professional programmers,
provides you with the tools to
produce sophisticated programs.
Graphics, construction kits, and data
bases are some of the topics dis
cussed. Find information on Quick
libraries, macros, keyed, sequential,
and unsequential files and more. Ad
vanced QuickBASIC is packed with
applications, examples, and models
that will soon have you programming
like an expert.

OMH-881361 Advanced QuickBASIC $21.95

Using QuickBASIC 4.5
Second Edition
By Don Inman and Bob Albrecht
(Osborne/McGraw-Hill, 500pp)

Here's an excellent programming
guide to Microsoft's newest version of
QuickBASIC by the authors of The
BASIC Teacher. The book ap
proaches QuickBASIC's program
ming environment in three stages so
beginning and experienced BASIC
programmers can find the ap
propriate level of instruction. You'll
learn about subprograms, libraries,
meta-commands, dynamic debugging,
and the important advantage of
QuickBASIC's speedy graphics.

OMH-881514 Using QuickBASIC 4.5 $22.95

Still Available
OMH-881274 Using QuickBASIC 4.0 $19.95

QuickBASIC Made Easy
by Bob Albrecht, Wenden Wiegand,
and Dean Brown
(Osborne/McGraw-Hill, 350pp)

Learn how to program with
Microsoft's QuickBASIC using
Osborne/McGraw-Hill's popular
"Made Easy" format. For beginning
programmers or those experienced in
other languages, QuickBASIC Made
Easy is a step-by-step introduction to
reading and writing programs with
versions of QuickBASIC through ver
sion 4.5. You'll find information on
creating files, building a toolkit, edit
ing, and debugging. QuickBASIC
Made Easy will keep you up-to-date
with the latest changes in Microsoft's
outstanding compiler.

OMH-881421 QuickBASIC Made Easy $19.95

Microsoft QuickBASIC
Version 4.5

Microsoft QuickBASIC 4.5 is a com
plete BASIC learning system. The
new interactive, on-disk tutorial,
Microsoft QB Express, quickly and
easily introduces you to the Microsoft
QuickBASIC environment. A new
step-by-step tutorial guides you
through an actual application. And
numerous example programs help
you master BASIC programming.

MS-04366 QuickBASIC 45 $99,00
Now only $79.00

DOS Made Easy
By Herbert Schildt
(Osborne/McGraw-Hill, 385pp)

Previous computer experience is not
necessary to understand this concise,
well-organized introduction that's
filled with short applications and ex
ercises. The book walks you thru all
the basics, beginning with an overview
of a computer system's inner com
ponents and a step-by-step account of
how to run DOS for the first time.

OMH-881194 DOS Made Easy $18 9s

Special Note
to Subscribers

Due to circumstances beyond our
control, this issue is late. The authors
have been extremely busy writing
several computer books. But they are
now finished and we should be back
on schedule. Subscribers will get the
full number of issues promised. The
number next to your name on the
mailing label on the back page is the
last issue in your sub.

P.S.-The books Bob and Don were
writing are QuickBASIC Made Easy,
Advanced QuickBASIC, a new edition
of Using QuickBASIC, and GW-
BASIC Made Easy. Except for the
GW-BASIC book, all arc available
now and can be ordered thru The
BASIC Teacher.

QuickBASIC:
The Complete Reference
by Steven Nameroff
(Osborne/McGraw-Hill, 700pp)

A comprehensive guide for users of
all levels of programming ability from
novices to pros. Nameroff has divided
the book into sections to help you
easily locate the information you
need. QuickBASIC: The Complete
Reference begins with a quick intro
duction to BASIC programming, fol
lowed by a complete command
reference section and a discussion of
QuickBASIC functions, procedures,
files, and graphics. Advanced tech
niques and applications are grouped
together in the last section of the
book for the professional Quick
BASIC programmer.

OMH-881362-X QuickBASIC The Complete
Reference $26.95

0
May 1989 The BASIC Teacher

T U c
BASIC Teach Yourself BASIC

By Bob Albrecht and George Firedrake No. 7

Introduction
BASIC HAS a small vocabulary and a simple syntax (grammar).
We have already discussed some of the special words that Microsoft
BASIC understands. They are called keywords or reserved words.
Here are the keywords introduced and described previously:

BEEP
CLS
COLOR
DATE$
FOR

GOTO
INPUT
INT
KEY
LIST

LOCATE
NEW
NEXT
OFF
ON

PRINT
RANDOMIZE
RND
RUN
SOUND

TIME$
TIMER
WIDTH

We always show keywords in all upper-case letters and variables in
lower-case or a MiXtuRe of upper- and lower-case letters. We think
this makes programs easier to read and understand. However, when
you LIST a program, unfortunately, variables will probably appear in
all upper-case letters.

Happy Birthday, Mom!
HERE IS a tiny program
to print a birthday
message for mom in big
letters near the center
of the screen.

*

10 CLS : KEY OFF
20 WIDTH 40
30 msg$ = "Happy Birthday, Mom!"
40 COLOR 5
50 LOCATE 12, 9, 0: PRINT msg$
60 anykey$ = INPUT$(1)
70 WIDTH 80: CLS

Enter and run the
program. If all goes
well, you will see:

Happy Birthday, Mom!

in marvelous magenta
near the center of
the screen.

Make It Blink
WHILE MOM gazes appreciatively at the
screen, bring in the cake. After the party is
over, you can press a key and the program will
stop with the screen in
its normal 80 characters
per line mode.

Ok

Now change line 40
so that the message
blinks the next time
you run the program.
Use a color number
from 17 to 31. To blink
in magenta, use color
number 21, then run
the blinking program.

i * 4 * * * t
I I I I I I I
/yvyVN

The BASIC Teacher May 1989 S

2
Teach Yourself BASIC No. 7

It Works Like This
HERE IS a line-by-line description of the
program:

Line 10 has two statements separated by a
colon (:). The first statement (CLS) clears the
screen; the second statement (KEY OFF)
turns off the key line.

10 CLS : KEY OFF

J 1st statement colon 2nd statement
Line 20 sets the screen to 40 characters per
line instead of the "normal" 80 characters per
line. Each character will
be double width. The ^
screen still has 25 lines. (D

2 0 WIDTH 4 0 /

Line 30 assigns the string:

Happy Birthday, Mom!

as the value of the string TT\ \
variable m s g $. U £J
30 msg$ = "Happy Birthday, Mom!"

Line 40 chooses non-blinking magenta as the
color in which text will be printed.

40 COLOR 5

Line 5 has two statements separated by a colon
(:). The first statement (LOCATE 12, 9,
0) puts the cursor at line 12, row 9, and makes
it invisible (o). The second statement (PRINT
msg$) prints the value of variable msg$. This
value was assigned in line 30. It will be printed
in the color selected by line 40.

50 LOCATE 12, 9, 0: PRINT msg$

Line 60 tells the computer to wait for one key
press. Almost any key will do. The string value
of the key is assigned as the value of the string
variable anykey$. If you press a key, the
computer goes on to line 70.

60 anykey$ = INPUT$(1)
Line 70 has two statements separated by a
colon (:). The first statement returns the
screen to 80 characters per line for new text.
The second statement (CLS) clears the screen.

70 WIDTH 80: CLS

Use REM and
Apostrophes (')
HERE IS an annotated version
of the happy birthday program.
It uses REM statements and
apostrophes (•) to begin
comments that tell you about
the program.

n™
J
'f! BIRTHDAY!
p—

1 REM ** Happy Birthday, Mom! **
2 ' The BASIC Teacher #7. Filename: TYB0701.ASC

10 CLS : KEY OFF
20 WIDTH 40
30 msg$ = "Happy Birthday, Mom!"
40 COLOR 5
50 LOCATE 12, 9, 0: PRINT msg$
60 anykey$ = INPUT$(1)
70 WIDTH 80: CLS

'Clear screen & turn off key line
'Set screen width to 40 characters
'Here is the message to be printed
'Magenta
Print message centered on screen
'Wait for a key press
Return screen to normal

0 May 1989 The BASIC Teacher

Teach Yourself BASIC No. 7

REN
IT IS good practice to put information in a
program to tell people about the program. The
REM (REMark) statement allows you to do
this. Any text that follows REM in a program
line is ignored when you run the program. You
can use an apostrophe (') as an abbreviation
for REM.

From now on, most of our programs will begin
with a REM statement in line 1 that has the
name of the program.

1 REM ** Happy Birthday, Mom! **

Line 2 will tell where the program appears and
its file name, as stored on our disk.

2 ' The BASIC Teacher #7. Filename: TYB0701.BAS

Line 2 tells you the program can be found in
issue 7 of Tfie BASIC Teacher. Its file name is
TYB0701.BAS, which means "Teach Yourself
BASIC #7, program #1."

You can use an apostrophe to put a comment
on a line. Everything to the right of the
apostrophe is ignored when the computer runs
the program.

10 CLS : KEY OFF 'Clear screen & turn off key line

SAVE TYB0701.BAS
Enter program TYB0701 .BAS, including all
remarks, into the computer's memory. You
can save the program to a disk, then load it
back into memory whenever you wish.

Save the program to disk drive A. Well, if you
prefer drive B, change A to B in what follows.

Type: SAVE "A:TYB0701"

and press ENTER.

The computer will add the file extension
.BAS and save the program under the file
name TYB0701.BAS.

Well, that's the long way to save the program.
There is also a short way. You can press the F4
function key to type SAVE and a quotation
mark ("). Then type the file name and press
ENTER. Do it. Press F4 and you will see:

SAVE"_

Then type the file name and press ENTER.

Type: A:TYB07 01"

and press ENTER.

That's it!

LIST Program TYB0701.BAS
UNFORTUNATELY, MANY older versions of
BASIC list programs as shown below, with line
spacing removed and variables in all upper
case letters. That's one reason why we do all
our work in QuickBASIC, except when we are
writing stuff about other BASICs.

1 REM ** Happy Birthday, Mom! **
2 1 The BASIC Teacher #7.
10 CLS : KEY OFF
20 WIDTH 40
30 MSG$ = "Happy Birthday
40 COLOR 5
50 LOCATE 12, 9, 0: PRINT MSG$
60 ANYKEY$ = INPUT$(1)
70 WIDTH 80: CLS

Mom!"

Filename: TYB0701.ASC
'Clear screen & turn off key line
'Set screen width to 40 characters
'Here is the message to be printed
'Magenta
'Print message centered on screen
'Wait for a key press
'Return screen to normal

The BASIC Teacher May 1989 0

4
Teach Yourself BASIC No. 7

Is It on the Disk?
Is THE program really stored on the disk in
drive A (or the disk drive you used)? Use the
keyword FILES as a direct statement to find
out what is on the disk in drive A.

Type: FILES "A:"
and press ENTER.

The computer displays all files on the disk in
drive A. We don't know what is on the disk in
your drive A, but here is what is on the disk in
our drive A:

A:\
COMMAND.COM GWBASIC.EXE
586973 Bytes free

Ok

TYB0701.BAS

On our disk drive A (A: \) there are three
files: COMMAND.COM (from MS-DOS),
GWBASIC.EXE, and the program we just
stored, TYB0701.BAS.

If you want to list the files on the disk in disk
drive B, type the FILES command like this:

FILES "B:"
If the disk contains many files, you may wish to
list the names of only the BASIC programs
with the .BAS file extension. In this case, type
the FILES command like this:

FILES "A:*.BAS"
or

FILES "B:*.BAS"
The asterisk (*) is called
a "wild card." It can be
used in certain MS-DOS
commands as well as in
GW-BASIC. Consult your
MS-DOS reference manual
for more information on
the use of the asterisk as
a wild card.

The Default Disk Drive
WE USE a Tandy 1000TX with two floppy disk
drives, drive A and drive B. We load MS-DOS
into drive A, then load GW-BASIC at the
MS-DOS command line, as follows:

A>GWBASIC
So, disk drive A is our default disk drive. It is
automatically used if we do not designate a dif
ferent drive. If we want to save a program on
our default drive (drive A), we can do it
without mentioning the drive letter, like this:

SAVE "TYB0701"
The above SAVE command saves program
TYB0701 to the default disk drive with the file
name TYB0701.BAS.

If we want to see a list of names of files on the
default disk drive, we use the FILES command
as shown below.

FILES
If we want to see only the names of BASIC
programs (.BAS) on the default disk drive, we
do it like this:

FILES "*.BAS"

If you have a hard disk perhaps you are work
ing out of it. You see a C> instead of A>. In
this case, your hard disk is your default disk
drive.

nim [j

0
May 1989 The BASIC Teacher

Teach Yourself BASIC No. 7 5

LOAD TYB0701
You CAN load a program stored on a disk into
the computer's memory. For example, suppose
you want to load program TYB0701 .BAS
from the default disk drive. You can do it in
two ways, the short way or the long way. First,
the long way.

Type: LOAD "TYB0701"

and press ENTER.

And now, the short way. Use the F3 function
key as a shortcut for typing LOAD", as follows:

Press the F3 key. The keyword LOAD, a
quotation mark, and
the blinking cursor
appear.

F3

LOAD"_

Type: TYB0701"

and press ENTER.

After using the short
way to load the
program, the screen
should look like this:

LOAD"TYB0701"
Ok

The program is in memory, ready for your use.
You can list it, run it, or do whatever else you
want to do with it. Note that you do not have
to type the file extension (.BAS) as part of the
file name, altho it is Ok to do so. The space
between LOAD and the first quotation mark
(") is optional. The final quotation mark (after
the file name) may be omitted.

If you misspell the file name or try to load a
non-existent file, you will see a "File not
found" message. That's Ok-just try again.

Saving in ASCII
EARLIER, YOU saved program TYB0701 to a
disk. It is saved in compressed binary for
mat, a format peculiar to GW-BASIC. This
format is very efficient, using a minimum
amount of disk space.

You can also save a program as an ASCII text
file. This method is less efficient-the program
occupies more space on the disk. However,
there is an advantage: the program can be read
by a word processor. You can also use the
MS-DOS TYPE command to type an ASCII
program on the screen.

Save program TYB0701 as an ASCII text file.
But give it a new file name so you don't erase
the previously stored binary file. Call it
TYB0701A.

Type: SAVE"TYB0701A", A

and press ENTER.
Of course, you can save time by using the F4
function key to type SAVE". In the above
SAVE command, the letter A following the
comma tells the computer to save the program
as an ASCII text file.

SAVE"TYB0701A", A
I

save in ASCII-—'
Use a FILES command to verify that the
program is on the disk. Its file name should
appear as TYB0701A.BAS. The file name
does not tell you that the program is an ASCII
file. This presents no problem to GW-BASIC.
You can load the program into memory in the
same way you load a program stored in com
pressed binary format.

You can also save the program as as ASCII
text file with a file extension that tells you it is
an ASCII file. For example, save the program
one more time by using the following SAVE
command:

SAVE"TYB0701.ASC", A

The BASIC Teacher May 1989 0

6

Return to MS-DOS
CLEAR THE screen, then use a SYSTEM com
mand to return to MS-DOS.

Type: SYSTEM
and press ENTER

If disk drive A is your default disk drive, you
will see the familiar "A prompt."

A>_
Use the DIR command to display a list of file
names on the screen.

Type: DIR
and press ENTER.

Here is what we see:

COMMAND COM 23612 7-21-87 3:00p
GWBASIC EXE 72240 7-21-87 3:00p
TYB0701 BAS 549 3-11-89 7:49a
TYB0701A BAS 562 3-11-89 8:23a
TYB0701 ASC 562 3-11-89 8:24a

5 File(s) 583966 bytes free

The disk now contains our "Happy Birthday,
Mom!" program stored three times under
three different file names. Since
TYB0701 A.BAS and TYB0701 .ASC are AS
CII files, you can use the MS-DOS TYPE
command to display them on the screen. Do
this now. Tell the computer to display the
TYB0701 .ASC file.

Type: TYPE TYB07 01. ASC
and press ENTER.

Well, we hope you now see the program on
the screen.

E

Practice
LOAD BASIC again and
enter this tiny program:

1 REM ** Beep, Date, and Time **
2 1 The BASIC Teacher #7. Filename: TYB0702.BAS

10 CLS
20 BEEP
30 PRINT DATES
40 PRINT TIMES

Save the program as a compressed binary file.

SAVE"TYB07 02"
Remember, GW-BASIC adds .BAS. Now save
the program as an ASCII file.

SAVE"TYB0702.ASC", A
The program is now on the disk in two ways:
(1) as a compressed binary file with file name
TYB0702.BAS, and (2) as an ASCII file with
file name TYB0702.ASC.

Load file TYB0702.BAS like this:

LOAD"TYB0702"
Load file TYB0702.ASC like this:

LOAD"TYB0702.ASC"
Of course, also list the program and run it.
Then use SYSTEM to exit BASIC and return
to MS-DOS. While in MS-DOS, TYPE the
program on the screen.

A>TYPE TYB0702.ASC
What will happen if you try to TYPE the
TYB0702.BAS file on the screen?
Try it and find out.

What would you like us to talk about in
"Teach Yourself BASIC"?

REMEMBER: This series is for beginners.
Write to:

Bob & George
PO Box 1635

Sebastopol, CA 95473

May 1989 The BASIC Teacher

T i c
BASIC
ĉ̂ c/icv

Browsing BASIC
By Don Inman

No. 7

THE FOLLOWING topics were covered in previous installments of "Browsing
BASIC":

#1: The KEY command and ALT-key shortcuts

#2: The VIEW PRINT statement and pull-down windows

#3: The COPY CON command to write a DRIVER. SYS file and
disk labels

#4: Text and Graphic Position Relationships

#5: Enclosing Text in Ellipses

#6: Using DOS Text Files

In "Browsing BASIC #5" we demonstrated text and graphics position
relationships by enclosing text within a graphic shape. We will delve deeper
into the uses that may be made of these relationships this month. We will ex
plore the movement of a graphics shape within a block of text. To do this, we
must introduce the following graphics keywords and related terms:

GET POINT PUT PSET VAL XOR

GRAPHICS ARRAYS
INFORMATION ABOUT a graphic shape can be placed in an array by using
GW-BASIC's GET graphics statement. The shape can be put back on the
screen at any position with a PUT statement. The following short program
draws a small rectangle in the upper left corner of the screen, stores it in an
array with GET, and places it in the upper right corner of the screen with

100 REM ** Initialize **
110 SCREEN 1: CLS
120 DIM Kursor%(10)

200 REM ** GET and PUT Box **
210 LINE (1, 1) - (8, 8), 1, B
220 GET (1, 1) -(8, 8), Kursor%
230 Begin! = TIMER
240 WHILE TIMER < Begin! + 2
250 WEND
260 PUT (310, 1), Kursor%
270 key$ = INPUT$(1)

• dimension array

draw 8x8 box
save in array named Kursor
start timer
loop for 2 seconds

• put box in new position
' wait for a keypress

The BASIC Teacher May 1989 a

2 Browsing BASIC No. 7

After the screen is cleared, the array is dimensioned. The size of the array is
dependent on the SCREEN mode used and the numeric type used for the ar
ray. The smaller the array, the quicker it can be stored and retrieved.

SCREEN 1, which is used in this program, needs 2 bits per pixel to describe a
pixel. Since integers require less space than other numeric types, we used an
integer array for the shape named Kursor. The dimension size is calcu
lated as follows:

bytes = 4 + INT(((col2
«•

col1 + 1) * 2 + 7) / 8) * ((row2 - rowl) + 1)

difference in first
and last column

bits per
pixel

difference in first
and last row

= 4 + I NT C(C 8 - 1 + 1) * 2 + 7) / 8) * ((8 - 1) + 1)

= 4 + I NT(23 / 8) * 8 = 4 + 2*8 = 20

For an integer array, the number of bytes per element is two. Therefore, the
number of array elements needed for the dimension statement is 20 / 2, or 10.

DIM Kursor%(10)

The LINE statement draws a cyan (color = 1) box.

A graphics array is saved as a rectangular area. The GET statement specifies
the coordinates of opposite corners of the rectangular area to be saved. A
comma separates the coordinates from the array name.

GET (1, 1)—(8, 8), Kursor%

V / \ opposite comers array name

We then inserted a two-second time delay so that you could see the original
shape first-then the placement of the shape in a new position.

The upper left corner of the rectangular area will be placed at the position
specified in the PUT statement. This position is followed by a comma and the
name under which the array was saved (by GET).

PUT (310, 1), Kursor%

The PUT statement can include an action verb that determines the interaction
between the shape and the pixel colors that are already on the screen when
the PUT statement is executed. The action verbs are: PSET, PRESET, AND,
OR, and, XOR. The GW-BASIC default action verb is PSET. When you do
not specify an action verb, PSET is used. If you are programming in Quick
BASIC, XOR is the default action verb.

The two action verbs of immediate concern are PSET and XOR.

PSET Transfers the shape point-by-point to the screen using the
colors the shape had when it was taken from the screen by a
GET statement.

XOR Causes the points on the screen to be inverted where a point ex
its in the shape stored in the array. When a shape is put on the
screen a second time at the same position using XOR, the
original screen is restored. This allows you to move a shape
around on the screen without destroying the original screen.

May 1989 The BASIC Teacher

Browsing BASIC No. 7

The second small program draws the same box as the first program, saves it in
an array, and places the box at a new position with the PSET action verb. It
then puts it on the screen at this new position with the XOR action verb. This
last action erases the box, restoring the original screen.

1 REM ** Draw Box, PUT It, Erase It **
2 1 Program 7-2 8/10/88
3 • Microsoft GW-BASIC File: TINYPRO.002

<<
100 REM ** Initialize **
110 SCREEN Is CLS
120 DIM Kursor%(10) • dimension array

200 REM ** Draw Box, PUT It Twice **
210 LINE (1, 1)-(8, 8), 1, B
220 GET (1, 1)-(8, 8), Kursor%
230 GOSUB 1010
240 PUT (310, 1), Kursor%, PSET
250 GOSUB 1010
260 PUT (310, 1) , Kursor%, XOR

draw 8x8 box
save in array named Kursor
delay
display box in new position
delay
erase box

300 REM ** Wait for Keypress and End **
310 ky$ = INPUT$(1) • wait for keypress
320 END

1000 REM ** Subroutine: Time Delay **
1010 Begin! = TIMER
1020 WHILE TIMER < Begin! + 2
1030 WEND
1040 RETURN

The box is drawn first in the upper left corner of the screen. The first PUT
statement then puts the same box with its upper left corner at position 310,1
with the PSET statement. The top of the screen shows:

The second PUT statement (with action verb XOR) then erases the box in the
upper right corner of the screen.

•

The BASIC Teacher May 1989 0

4 Browsing BASIC No. 7

MOVING THE BOX
THIS TECHNIQUE of using a second PUT statement at the same position is
used to animate graphic shapes. The box can be "moved" across the screen by
successively placing the box at a new location with a PUT statement and eras
ing it with a second PUT statement.

Program 7-3, Moving Box, uses this technique to move the box across the
screen:

1 REM ** Moving Box **
2 ' Program 7-3 8/15/88
3 ' Microsoft GW-BASIC File:

100 REM ** Initialize **
110 SCREEN 1: CLS
120 DIM KURSOR%(10)
130 LINE (1, 1) -(8, 8) , 1, B
140 GET (1, 1)-(8, 8), KURSOR%
150 GOSUB 1010

TINYPRO.003 X*TTD

dimension array
draw 8x8 box
save in array named Kursor

200 REM ** Move the Box **
210 FOR COLUMN% = 1 TO 310 STEP 10
220 PUT (COLUMN%,
230 GOSUB 1010
240 PUT (COLUMN%,
250 GOSUB 1010
260 NEXT COLUMN%

10), KURSOR%, XOR

10), KURSOR%, XOR

' turn on

' turn off

300 REM ** Wait for Keypress, Then End **
310 A$ = INPUT$(1)
320 END

1000 REM ** Delay Subroutine **
1010 BEGIN! = TIMER
1020 WHILE TIMER < BEGIN! + .1
1030 WEND
1040 RETURN

Enter and run Program 7-3. Each time through the FOR . . . N E X T l o o p , t h e
box is PUT on the screen at row 10 and the current column value. After a
short time delay (shortened to one-tenth of a second), the box is PUT again at
the same position. This erases the box. After another short time delay the
column% is incremented by 10 for the display of the box at a new position.
The result is that the box apparently moves across the screen from left to
right.

If you want to move the box across the screen in smaller steps, you can change
the STEP value in the FOR statement. You may also want to remove the time
delay caused by the GOSUB in line 250. This would place the box at a new
position immediately after it is erased from the previous position. You could
also add to the program by moving the box down a line each time so that it
moves from left to right, down a line and right to left, down a line and left to
right, etc.

<(STQP>

I

May 1989 The BASIC Teacher

Browsing BASIC No. 7

CHANGING TEXT COLORS
WHEN YOU are working in the SCREEN 1 graphics mode, text is printed in
the default color value 3 within the palette selected in a COLOR statement.

COLOR 0, 1 / \
background palette 1 (cyan, magenta, white)

If no COLOR statement has been executed, the default palette of 1 is used
with a black background. Therefore, the text would be printed as white (color
value 3) on black.

At times, you may want to highlight a character, a word, or a group of words
in a block of text by changing colors. You can use PUT and GET statements
to move a cursor (such as the box of Program 7-3) along a line of text. Then
you can change the color of the character by using PSET to set the color of
each pixel under the cursor. Program 7-4 allows you to do this.

A line of text is printed, and the cursor positioned over the first character in
the line.

1. Use the left and right arrow keys to move the cursor from character to
character in the line.

2. Press a number (1, 2, or 3) to change the color of the character under
the cursor.

1 = cyan 2 = magenta 3 = white

3. Press the ENTER key when colors have been set as desired. This
removes the cursor from the screen so that you can examine the result.

4. Press any key to end the program.

Here is some colored text from a sample run of Program 7-4.

Move the cursor or charge color.

The BASIC Teacher May 1989

6 Browsing BASIC No. 7

1 REM ** Move Cursor and Change Text Colors **
2 ' Program 7-4 8/20/88
3 « Microsoft GW-BASIC File: TINYPR0.004

100 REM ** Initialize **
110 SCREEN 1: CLS
120 DIM Kursor%(10) ' dimension array
130 LINE (1, 1) - (8, 8), 1, B ' draw 8x8 box
140 GET (1, l)-(8, 8), Kursor 1 save in array named Kursor
150 CLS: LOCATE 2,2
160 PRINT "Move the cursor or change color.";

200 REM ** Put Cursor and Make Changes **
210 column% = 2: row% = 2
220 col% = column% * 8 - 8: lyne% = row% * 8 - 8
230 PUT (col%, lyne%), Kursor% • Kursor on
240 WHILE ky$ <> CHR$(13)
250 ky$ = ""
260 WHILE ky$ = ""
270 ky$ = INKEY$
280 WEND
290 IF ky$ > "0" AND ky$ <= "3" THEN GOSUB 3010
300 IF ky$ <> CHR$(0)+"M" AND ky$ <> CHR$(0)+"K" AND

ky$ <> CHR$(13) THEN GOTO 250
310 PUT (col%, lyne%), Kursor%, XOR 'Kursor off
320 IF ky$ = CHR$(0) + "M" THEN GOSUB 1010
330 IF ky$ = CHR$(0) + "K" THEN GOSUB 2010
340 WEND
350 ky$ = INPUT$(1)
360 END

1000
1010
1020
1030
1040

REM ** Subroutine: Move Right **
col% = col% + 8
IF col% > 256 THEN col% = 8
PUT (col%, lyne%), Kursor%, XOR
RETURN

' turn on

2000 REM ** Subroutine: Move Left **
2010 col% = col% - 8
2020 IF col% < 8 THEN col% = 256
2030 PUT (col%, lyne%), Kursor%, XOR
2040 RETURN ' turn on

3000 REM ** Subroutine: Color **
3010 PUT (col%, lyne%), Kursor%, XOR
3020 kolor% = VAL(ky$)
3030 FOR pnt% = col% TO col% + 8
3040 FOR tier% = lyne% TO lyne% + '
3050 IF POINT(pnt%, tier%) <> o '
3060 NEXT tier%
3070 NEXT pnt%
3080 PUT (col%, lyne%), Kursor%, XOR
3090 RETURN

FOR tier% = lyne% TO lyne% + 7

??™»<pnt%' tier%) <> 0 ™EN PSET(pnt%, tier%), kolor%

' turn on

' turn

May 1989 The BASIC Teacher

Browsing BASIC No. 7 7

The left and right arrow keys allow you to move the cursor along the line of
text. The arrow keys use two ASCII codes (called Extended codes) for
recognition:

Right arrow: Null code (CHR$(0)) + ASCII code for letter M
Left arrow: Null code (CHR$(0)) + ASCII code for letter K

The INKEY$ function is used to look for a press of the left or right arrow keys
in Program 7-4.

250 ky% = ""
260
270
280 WEND

WHILE ky$ = ""
ky$ = INKEY$ 0) tJ~LpJ !T

UT?XTn

320 IF ky$ = CHR$(0) + "M" THEN GOSUB 1010
330 IF ky$ = CHR$(0) + "K" THEN GOSUB 2010

If the right arrow key is pressed, control is passed to the Move Right sub
routine:

1010 col% = col% + 8 ' move right 8 pixels
1020 IF col% > 256 THEN col% =8 'if end, go to beginning
1030 PUT(col%, lyne%), Kursor%, XOR ' turn on
1040 RETURN

If the left arrow key is pressed, control is passed to the Move Left subroutine:

2010 col% = col% - 8 ' move left 8 pixels
2020 IF col% < 8 THEN col% = 256 ' if beginning, go to end
2030 PUT(col%, lyne%), Kursor%, XOR ' turn on
2040 RETURN

Provision is made in the Move subroutines to "wrap around" when reaching
either end of the line.

The change color option is provided in another subroutine which is accessed
by pressing one of the number keys: 1,2, or 3.

290 IF ky$ > "0" AND ky$ <= "3" THEN GOSUB 3010

3010 PUT (col%, lyne%), Kursor%, XOR ' turn off
3020 kolor% = VAL(ky$)
3030 FOR pnt% = col% to col% + 8 ' all columns of area
3040 FOR tier% = lyne% to lyne% + 7 1 all rows of area
3050 IF POINT(poynt%, tier%) <> 0 THEN PSET(pnt%, tier%), kolor%
3060 NEXT tier%
3070 NEXT pnt%
3080 PUT (col%, lyne%), Kursor%, XOR ' turn on
3090 RETURN

The BASIC Teacher May 1989 ®

8
Browsing BASIC No. 7

This subroutine first turns off the cursor so that its colors will not interfere
with the area being examined. The subroutine looks at each pixel within the
selected character block. If the color is different from the background color
(zero), the pixel is PSET to the color whose number has been pressed (1,2,
or 3). When all the pixels have been set, the cursor is put back on the screen.
Control is then returned to the main program.

Two functions that we have not discussed are used in the Color subroutine.

VAL This function returns the numeric value of a string. Since
INKEY$ reads the value of the specified color number as a
string, the input must be converted to numeric format before it
can be used to set the color of a point.

3020 kolor% = VAL(ky$)

POINT

numeric value of kyS assigned to kolor%

This function can either read the color number of a pixel from
the screen, or it can return a pixel's coordinates. In this
program, we want to read the color number of a pixel from the
screen.

IF POINT(pnt%, tier%) <>

v" !

False if point is black
(background color) - leave it alone.

THEN PSET(pnt%,
V v—

tier%), kolor%

Set point to kolor%
if point is not black.

NEXT TIME
WE WILL continue this discussion next time as we extend the program so that
more than one line of text can be scanned. Then you will be able to move the
cursor anywhere on the screen and change colors wherever you desire.

In the meantime, study the Move Right and Move Left subroutines. We will
have to use a similar technique to move up and down the screen. We will also
want to modify these two subroutines so that moving right at the end of a line
wraps around to the beginning of the line below. Similarly, moving left at the
beginning of a line should wrap around to the end of the line above.

We will put Move Up and Move Down blocks in separate subroutines. In ad
dition, we'll show how QuickBASIC can perform the same tasks much more
efficiently.

4 3 C

May 1989 The BASIC Teacher

T U *
BASIC
'P cyclic »*

Teach Yourself
By Bob Albrecht and George Firedrake No. 7

QuickBASIC
Interpreter
YES, ANOTHER big step forward in Microsoft's
quest for the ultimate computer language. The
QuickBASIC Interpreter: Academic Edi
tion is here. It is even better for beginners
than QB 4.5, and much less expensive.
However, it is available only to the academic
world-you must provide "educational iden
tification" at time of purchase (it says on the
package). QBI is a disk set only-no paper
documentation. However, the disks contain an
on-line tutorial and a hypertext-based help sys
tem, including a complete reference guide.

If you are an interested educator, contact:

Microsoft Corporation
PO Box 97017

Redmond, WA 98073-9717

Integers
INTEGERS ARE the counting numbers (1,2,3,
and so on), the opposites, or negatives, of the
counting numbers (-1, -2, -3, and so on), and
the number zero (0). The counting numbers
(1,2, 3,...) are also called positive integers.
The opposites, or negatives, of the counting
numbers (-1, -2, -3, and so on) are also called
negative integers.

-3 -2 -1
negative
integers zero

positive
integers

Integers go on forever, in both the positive and
negative directions.

QuickBASIC Integers
QUICKBASIC CAN handle a finite set of in
tegers. It has two ways of representing integers
for computational purposes. These are called
short integers and long integers.

• A short integer is an integer in the range
-32,768 to 32,767. It occupies only two
bytes of the computer's memory.

• A long integer is an integer in the range
-2,147,483,648 to 2,147,483,647. It oc
cupies four bytes of the computer's
memory.

Type an integer without using commas and
without a decimal point. QuickBASIC will
recognize, say, 32000 as a short integer and,
for example, 40000 as a long integer.

The BASIC Teacher May 1989

2
Teach Yourself QuickBASIC No. 7

A Number Pattern
TO LEARN more about short and long integers,
explore a number pattern. Press the F6 func
tion key to put the cursor in the Immediate
Window, like this:

lnnediate

- - Cursor

First, clear the Output screen:

Type: CLS

and press ENTER.

You will see an empty Output screen, except
for the message "Press a key to continue."
Press a key to return to the Immediate Win
dow. Now do a little number-crunching with
short integers. You type direct PRINT state
ments in the Immediate Window. It (the com
puter) prints answers in the Output screen.

You type: PRINT 11 * 11

It prints: 121

You type: PRINT ill * ill

It prints: 12321

In both of these examples, a short integer is
multiplied by a short integer. The result is also
a short integer. But what happens if the result
is not in the range (-32768 to 32767) for short
integers? Well, let's find out.

You type: PRINT 1111 * llll

Oops! Instead of seeing the answer, you see
the Overflow dialog box.

Ouerflou

HE
QuickBASIC is telling you that the result of
the multiplication would be too large to be
represented as a short integer. It would
"overflow" the space (two bytes) allowed for
short integers. Here are some interesting
things you can do:

• Press the TAB key to move the highlight
in the Overflow dialog box to Help, then
press ENTER and explore Quick
BASIC's wonderful on-line help system.

• Remove the Overflow dialog box and
read on to learn how to fix the problem.
When OK is highlighted, you can press
ENTER to remove the box. Or, you can
press the ESC key to remove the dialog
box.

When you remove the Overflow dialog box,
you will see the cursor blinking on the PRINT
statement in the Immediate Window.

PRINT llll * mi
\— cursor

You can solve this problem by making one of
the numbers into a long integer. Then Quick
BASIC will treat the entire problem as a long
integer problem and produce a long integer
answer.

Overflow
THE OVERFLOW dialog box looks like this:

Oh, sorry. That's not it. It really looks more
like this:

HI May 1989 The BASIC Teacher

Teach Yourself QuickBASIC No. 7 3

Use St for Big Integers
YOU CAN convert a short integer into a long
integer by adding an ampersand (&) to the
right end. This tells QuickBASIC to regard the
number as a long integer. So move the cursor
to the right end of the PRINT statement.

PRINT 1111 * 1111_

Type an ampersand (&) so it looks like:

PRINT nil * llll&_

and press ENTER.

It prints: 12 34 321

Since either number can be changed to a long
integer to correct the overflow problem, you
can also do the following:

You type: PRINT 1111& * llll

Itprints: 1234321

Note that the result of this multiplication is
too large to be a short integer, but is within the
range for a long integer (-2147483648 to
2147483647).

REMEMBER: If you multiply a short integer
and a long integer, the result (product) is a
long integer. Now continue this number pat
tern.

You type: PRINT 11111 * 11111&

Itprints: 123454321

Of course, you can also type the PRINT state
ment like this:

PRINT 11111& * m i l

What? Overflow Again?
WELL, THE answers keep getting bigger. What
will happen if... ? Let's try the next one and
see.

You type: PRINT linn * 111111&

There's that Overflow box again. The answer
is too big to be a long integer. What do you
think the answer is? Write it here:

The answer:

We will soon tell you about another kind of
QuickBASIC number that you can use to
check the answer you wrote. But first, try
these:

You type: PRINT 11 * ill

Itprints: 1221

You type: PRINT 11 * llll

Itprints: 12221

You type: PRINT 11 * mil

The Overflow box pops up. Both 11 and llll
are recognized by QuickBASIC as short in
tegers, but the result of this multiplication is
too big to be a short integer. You know how to
fix it.

You type: PRINT 11 * 11111&

Itprints: 122221

Betcha the next one surprises you.

You type: PRINT 11 * 111111

Itprints: 1222221

QuickBASIC recognizes mill as a long in
teger and treats the entire problem as a long
integer problem!

The BASIC Teacher May 1989 nu

4
Teach Yourself QuickBASIC No. 7

Single Precision
A SINGLE precision number can be an in
teger or non-integer with up to seven digits.
You can designate a number as a single preci
sion number by including a decimal point in
the number, by using an explanation point (!)
at the right end of the number, or by using the
floating point notation described last time.
The following numbers are recognized by
QuickBASIC as single precision numbers.

3.14
1111.
5E+09

or
or

1111!
5E9

Try some single precision numbers in the
number pattern.

You type: PRINT l l l l * 1111.

It prints: 1234321

You type: PRINT l l l l * 1111!

It prints: 1234321

Since l l l l . and l l l l ! are single precision
numbers, QuickBASIC treated these multi
plications as single precison problems and
produced a single precision result. Now let's
see what happens if the result would require
more than seven digits.

You type: PRINT 11111 * 11111.

It prints: 1.234543E+08

Of course! QB prints the result as a single
precision floating point number. This result is
a 7-digit approximation to the true result
(123454321), which has 9 digits.

A single precision number can represent a
number in the range -3.37E + 38 to 3.37E + 38.
It occupies 4 bytes of memory space.

Double Precision
A DOUBLE precision number can have up to
16 digits. QuickBASIC will recognize a num
ber as double precision if it has a decimal
point and is too big to be a single precision
number. You can also designate a number as
double precision by using a number sign (#) at
the right end of the number or by using float
ing point notation with a D instead of an E.
The following numbers are recognized as
double precision numbers.

12345678,
11111#
5D9

. 0 6 #
1D23

Try some double precison numbers in the
number pattern.

You type: PRINT 11111 * 11111#

It prints: 123454321

You type: PRINT 111111 * l l l l l l#

It prints: 12345654321

If you keep going, you will soon see a double
precison floating point number.

You type:
PRINT 111111111 * 111111111#

It prints:
1.234567898765432D+16

A double precision floating point number con
sists of a mantissa and an exponent separated
by the letter "D." The mantissa can have up to
16 digits; the exponent is an integer in the
range -308 to -I- 308. A double precision num
ber occupies 8 bytes of memory space.

REMEMBER: The symbols used to designate
number types:

% for short integer
& for long integer
! for single precision
for double precision

May 1989 The BASIC Teacher

Teach Yourself QuickBASIC No. 7

Trouble!
PEOPLE USE decimal numbers to represent
numbers and do arithmetic. A $7 solar-
powered calculator does decimal arithmetic
correctly. Let's do some simple arithmetic.

Our local sales tax is 6%. To compute the sales
tax, multiply the amount of the sale by .06.

Amount of sale: 100
Sales tax: 100 x .06 = 6
Amount of sale: 10000
Sales tax: 10000 x .06 = 600
Amount of sale: 1000000
Sales tax: 1000000 x .06 = 60000

Now let's do it in QuickBASIC. Enter and run
the following program.

CLS
TaxRate = .06
PRINT 100 * TaxRate
PRINT 10000 * TaxRate
PRINT 1000000 * TaxRate

We ran the program and got the following
answers.

6
600
59999.99865889549

Oops! 6 and 600 are OK, but how about the
3rd answer? It is supposed to be exactly
60000. Well, it's only off a little, less than a
penny, but that's bothersome.

The Binary Blues
ALAS, QUICKBASIC uses binary numbers to
represent numbers and do arithmetic, thus in
troducing tiny errors in some numbers. The
decimal numbers you type into the computer
are converted to binary numbers. That's OK
for integers, but commonly used decimal frac
tions, such as .06, cannot be exactly repre
sented in binary.

QuickBASIC's binary numbers are close
enough to the real thing for most purposes,
but keep in mind that a tiny error can exist.
When in doubt, use double precision numbers,
which are more precise. That is, the error in
converting from decimal to binary is less for
double precision numbers than for single
precision numbers. Run the following tiny
program, which uses double precision num
bers (. 06# and loooooo#) and a double
precision variable (TaxRate#).

CLS
TaxRate# = .06#
PRINT 1000000# *

We ran it and got:
TaxRate#

60000

Inside the computer, this apparently correct
result is still not quite exact, but is real close.
Go ahead and try some even larger amounts of
sale. Go for a trillion or even more.

REMEMBER: QuickBASIC has no problem
with integers and represents them quite well.
But non-integers might have tiny errors. To
minimize the binary blues, you can use double
precision numbers.

The BASIC Teacher May 1989
[H]

6
Teach Yourself QuickBASIC No. 7

Experiment!
YOU CAN learn more about QuickBASIC by
experimenting. Try things and see what hap
pens. For example, try this tiny program.

CLS
x = 1 / 3
PRINT X
PRINT 10 * X
PRINT 100 * X
PRINT 1000 * X

After running the program, change the second
line from the top to the following:

x# = 1 / 3#

Also change x to x# in all the PRINT state
ments, then run the program again. Do the
results look better?

Here is another one. Run this program.

CLS
x = .01
PRINT 10 * x
PRINT 100 * x
PRINT 1000 * X
PRINT 10000 * x
PRINT 100000 * X
PRINT 1000000 * X

Now change . 01 to double precision as .01#
and change x to x# everywhere in the
program. Run the program again. Better?

Suppose you change x to x#, everywhere, but
forget to change . 01 to .01#? Try this
program.

CLS
x# - .01
PRINT 10 * X#
PRINT 100 * X#
PRINT 1000 * X#
PRINT 10000 * X#
PRINT 100000 * X#
PRINT 1000000 * X#

Little Errors Can
Accumulate
THE ERROR, if any, in a double precision num
ber is quite small. However, if you add a bunch
of numbers with tiny errors, they accumulate.
The next program assigns the double precision
value . l# to the double precision variable x#,
then computes the double precision value of
sum# by adding x# ten thousand times to the
previous value of sum#. This program also
prints the value of TIMER before and after it
does the work so you can see how long it took.

CLS
x# = .1#
sum# = 0
PRINT TIMER
FOR k = 1 TO 10000

sum# = sum# + x#
NEXT k
PRINT TIMER, sum#

Here's a run. You can see that it took about 14
seconds. You can also see the accumulated er
ror on the right end of the value of sum#.

22734.65
22748.32 1000.000000000159

What might happen if you change x# to a
single precision variable in both places where
it occurs in the program?

Try it and find out.

DON'T WORRY; EVERYTHING
IS GOING TO BE ALL RIGHT

lOCAtS
3TUMNED
11| I. I >• 111 .4 ,1, |
ll|l.l.|<.ll.I ...
Il>,|ll..lill.ll,
.I,!...,!...!.,.!
I.ltl|.llll|.l|l,
• l.|.ll,.l...,ll.
lkk|llll|*lltll
I I . I | , . 1 , 1
• •(••ll, ,1111,1

CHICAGO
• l| Inn 111 ai, ul
U|l.l.|..l..l...
lk»,lli.llM.Ni
• l|liii|li.at .|,l
Im»I|m- lli|
• ki ll

TORONTO, AT HI HI,
L0KDD1UARIZ.. *0M!
MOI DO Vj. WASHINGTON
i.iii.iii|....k
• I 11 IMll| |l III ,|
U , l . . 1 1 . .
• ••lll.illll.lt.
•I|IIM|NMII|.I
II,I.,....1,.Mi.
•*t«H|»'»i»»lfc

SEATTLE

*Mm*I IM Njlml
II,1.4.,. .4..4...
III.,41..Mil,II.
• l|*MI|lMlk|ll
l.»l.|.M.I|.ll.|
• l»|.ll|ila,iil|i
• III.,..4.,.I...I
11 il |., •• .1... I. I
• I,..II..Illl.II,
• l(4a,iili|.lii|i
Mv.Mk|„l,l
l,|lk|Mi.,i|lil
.•M,.,.4
II|Im,mIi >|i In
• I|«.IIMI«.I|II,
ili4- * •>laii|

WO rftOBlEM!
• ftifil»i.t,«•••••
ll,|MlrtHlkll
Il,l.4>fi«4.i4l.
,k.|ll.illMiMi
.1,1M.,4
Ii|li|,ui4|i4li

iiii.,i.i.,ii.ii

I,,a4.Ml,.M.I.
•hi
II,I.I.,..k.III.
III,11MIIIllII.
.l|l...|kMll|M
H|I,,I.MI«.HM
I.,.ll,.l...illi
.••l.,.l4.|llllM
II.l,i,.Mk.rfH

GENEVA
5H0CKEP
• |,H*M*l|l«illl
• 1,1M, .41, .kill
• lllrfip ll.l4.ll
I.a.^lMkiMll.
• l|lM,|4Mlk|ll
li*l«(iM(l|«lk|
.I.I»4I|.IHMII.
.I.••I.ili,>L..I
II.I,.|M.4.MIII
.l,.^I..NIkll|
ll.l|.|...4,..l.l
,I,..II».I4II.H|

SAN TRANCISCO

HOUSTON
. 11114 ill l| • il • • •
.I,lwi4«»«k.il

May 1989 The BASIC Teacher

Special Reader Services

Codes, Ciphers
and Secret Writings
by Martin Gardner
(Dover, %pp)

Cipher and decipher codes: transpor
tation, polyalphabetical, famous
codes, typewriter and telephone
codes, much more to challenge
minds.

DOV-247661-9 Codes, Ciphers and Secret
Writings $2.95

Mathematics in the Time of
the Pharaohs
by Richard Gillings
(Dover, 286pp)

First book-length study-from simple
commercial computations to
trigonometric functions used in con
struction of pyramids. Fascinating,
provocative.

DOV-24315-X Mathematics in the Time of the
Pharaohs $6.95

timiufmm
A message in the Dancing Men cipher, solved by Sherlock Holmes

"Why, Holmes, it is a child's drawing," cried Dr. John
Watson when he first saw the above figures penciled on a page
torn from a notebook. But Sherlock Holmes recognized it im
mediately as a substitution cipher. The message is: AM HERE
ABE SLANEY. The little flags mark the ends of words.

"I am fairly familiar with all forms of secret writing,"
Holmes declared, "and am myself the author of a trifling mono
graph upon the subject, in which I analyze one hundred and
sixty separate ciphers. . . ."

Test Your Logic
by George J. Summers
(Dover, lOOpp)

50 more truly new puzzles with new
turns of thought, new subtleties of in
ference.

DOV-22877-O Test Your Logic $2.50

The BASIC Teacher
Back Issues Available
TBT-1 Issue No. 1 $3.00
TBT-2 Issue No. 2 $3.00
TBT-3 Issue No. 3 $3.00
TBT-4 Issue No. 4 $3.00
TBT-5 Issue No. 5 $3.00
TBT-6 Issue No. 6 $3.00

Perplexing Puzzles and
Tantalizing Teasers
by Martin Gardner
(Dover, 256pp)

93 riddles, mazes, illusions, tricky
questions, word and picture puzzles,
other entertainments for youngsters.
Many hilarious drawings. Solutions.

DOV-25637-5 Perplexing Puzzles
and Tantalizing Teasers $3.95

More Mathematical Puzzles
of Sam Loyd
edited by Martin Gardner
(Dover, 177pp)

166 more problems from Cyclopedia.
Arithmetic, algebra, speed and dis
tance problems, game theory, more.

DOV-20709-9 More Mathematical Puzzles of
Sam Loyd $3.95

The Shareware Book
Using PC-Write, PC-File, PC-Talk
By Emil Flock, et al
(Osborne/McGraw-Hill, 688pp)

Covers the most popular "free"
programs: PC-Write, a word proces
sor; PC-File, a database manager; and
PC-Talk, a telecommunications
program. These programs are avail
able thru user groups or bulletin
board services in return for a nominal
registration fee. The book has all the
details on how you can obtain these
program disks.

OMH-881251 The Shareware Book $14.95

Ingenious Mathematical
Problems and Methods
by Louis A. Graham
(Dover, 237pp)

Sophisticated material from
Graham's Dial, applied and pure;
stresses solution methods. Logic,
number theory, networks, inversions,
etc.

DOV-20545-2 Ingenious Mathematical
Problems and Methods $4.95

The Surprise Attack in
Mathematical Problems
by Louis A. Graham

Second volume from Dial. Difficult,
sophisticated, challenging situations,
stressing optimal approaches. Ap
plied and pure.

DOV-21846-5 The Surprise Attack in
Mathematical Problems $4-50

Mathematical Brain
Benders
by S. Ban
(Dover, 224pp)

"Another collection of devilish
problems, everyone original.'-Martin
Gardner. Over 100 fresh paradoxes,
word and number games with wit,
humor. Answers.

DOV-24260-9 Mathematical
Brain Benders $4.95

Martin Gardner's
Mathematical Puzzles
by Martin Gardner
(Dover, 112pp)

Entertaining collection includes
stimulating puzzles involving arith
metic, money, speed, plane and solid
geometry, topology, more. Solutions.

DOV-25211-6 Martin Gardner's Mathematical
Puzzles $2.95

Mathematical Puzzles of
Sam Loyd
edited by Martin Gardner
(Dover, 167pp)

Bizarre, original, whimsical puzzles
by America's greatest puzzler.
Elementary math.

DOV-20498-7 Mathematical Puzzles
of Sam Loyd $3.95

Mathematics, Magic and
Mystery
by Martin Gardner
(Dover, 176pp)

Math behind card tricks, stage mind
reading, coin and match tricks, etc.
Plus more than 400 tricks, guaranteed
to work.

DOV-20335-2 Mathematics, Magic and
Mystety $3.95

A Short Account of the
History of Mathematics
by W. W. Rouse Ball
(Dover, 522pp)

One of the clearest, most authorita
tive surveys from the Egyptians and
Phoenicians thru 19th-century figures
such as Grassman, Galois, Riemann.

DOV-20630-0 A Short Account of the History
of Mathematics $9.95

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

Different Worlds Publications
2814 - 19th Street
San Francisco, CA 9411Q

Address Correction Requested

BOX 2S0 TTe
Ri°. w

No. 8, September 1989 $3.00

For beginning
programmers with no prior

programming experience

CONTENTS
3 Teach Yourself BASIC
9 Browsing BASIC

23 Teach Yourself
QuickBASIC

PUBLISHER'S STATEMENT: The BASIC
Teacher is published monthly by Different
Worlds Publications, 2814 - 19th Street, San
Francisco, OA 94110. Contents copyright ©
1989 by Different Worlds Publications. AU
rights reserved. Contents may be copied and
distributed freely. Address all correspon
dences to The BASIC Teacher, 2814 - 19th
Street, San Francisco, CA 94110.

SUBSCRIPTION INFO. A 12-issue sub in
the U.S. and Canada is $36. Overseas subs
are $42 by surface mail, $54 by air.

PRINTED IN THE U.S.A.

]

HAPPY COMPUTING!
T a d a s h i E h a r a , p u b l i s h e r

B o b A l b r e c h t , e d i t o r
D o n I n m e n , e d i t o r

BASIC
Books

Use Order Form
on page 23.

GW-BASIC Made Easy by Bob Albrecht and
Don Inman. If you've always wanted to learn
BASIC programming skills on your personal
computer, but weren't sure where to start,
here's the book you need. Bob Albrecht and
Don Inman have written GW-BASIC Made
Easy for the millions who already have GW-
BASIC (or its nearly-identical cousin,
BASICA) installed on their computers. GW-
BASIC Made Easy is designed to teach you
how to satisfy your curiosity about program
ming, while establishing excellent program
ming fundamentals for your future ventures
into QuickBASIC or Turbo BASIC. In par
ticular, Albrecht and Inman emphasize foun
dation skills needed to develop a "clean" style
of programming, through detailed explana
tions and numerous sample programs. (OMH-
881473 $19.95)

fc - <*-»•-
QuickBASIC

QuickBASIC Made Easy by Bob Albrecht,
Wenden Wiegand, and Dean Brown
(Osborne/McGraw-Hill, 350pp). Learn how to
program with Microsoft's QuickBASIC using
Osbome/McGraw-Hill's popular "Made Easy"
format. For beginning programmers or those
experienced in other languages, QuickBASIC
Made Easy is a step-by-step introduction to
reading and writing programs with versions of
QuickBASIC through version 4.5. You'll find
information on creating files, building a
toolkit, editing, and debugging. QuickBASIC
Made Easy will keep you up-to-date with the
latest changes in Microsoft's outstanding
compiler. (OMH-881421 $19.95)

BASIC
Celebrates
25th
Anniversary

ft -
/vvyvN /vvVv^ t

BASIC, the computer language,
turns 25 this year. Darthmouth
professors John G. Kemeny and
Thomas E. Kurtz developed the
original BASIC language as an in
structional tool for training novice
programmers.

Microsoft, the developers of the
most widely-used PC versions of
BASIC, claims it has sold half a mil
lion copies of QuickBASIC
worldwide and 200,000 alone in
1989. It is the best-selling Microsoft
language in Europe and among the
best sellers in the U.S. and Japan.
Microsoft estimates its retail BASIC
business will grow by 50% in 1990.
BASIC is also the most widely
taught language in secondary and

higher institutions of education.
Microsoft has targeted the business
programming market as a potential
market for BASIC expansion.

Addressing BASIC developers in
Seattle, Bill Gates, Microsoft chair
man and CEO, as well as the
codeveloper of the first PC version
of BASIC in 1975, reconfirmed his
company's commitment to the
venerable language, saying it "is a
pivotal member of our language
family and an important element in
our future applications strategy."

Microsoft has ambitious plans for
BASIC, the language upon which
the company was founded. More on
this next issue.

using QuickBASIC 4.5 Second Edition by
D o n I n m a n a n d B o b A l b r e c h t
(Osbome/McGraw-Hill, SOOpp). Here's an ex
cellent programming guide to Microsoft's
newest version of QuickBASIC by the authors
of The BASIC Teacher. The book approaches
QuickBASICs programming environment in
three stages so beginning and experienced
BASIC programmers can find the appropriate
level of instruction. You'll learn about sub
programs, libraries, meta-commands, dynamic
debugging, and the important advantage of
QuickBASIC's speedy graphics. (OMH-
881514 $2295)

Still Available
Using QuickBASIC 4.0 (OMH-881274
$19.95)

QuickBASIC: The Complete Reference by
Steven Nameroff (Osborne/McGraw-Hill,
700pp). A comprehensive guide for users of all
levels of programming ability from novices to
pros. Nameroff has divided the book into sec
tions to help you easily locate the information
you need. QuickBASIC: The Complete
Reference begins with a quick introduction to
BASIC programming, followed by a complete
command reference section and a discussion
of QuickBASIC functions, procedures, files
and graphics. Advanced techniques and ap
plications are grouped together in the last sec
tion of the book for the professional Quick
BASIC programmer. (OMH-881362-X$26.95)

Advanced QuickBASIC by Don Inman, Bol
A l b r e c h t , a n d A r n e J a m t g a a r i
(Osbome/McGraw-Hill, 500pp). As an ex
perienced programmer you'll learn how U
write professional-level programs using th<
advanced techniques found in the 4.5 versioi
of QuickBASIC. Advanced QuickBASIC, writ
ten by three highly regarded professions
programmers, provides you with the tools U
produce sophisticated programs. Graphics
construction kits, and data bases are some o
the topics discussed. Find information ot
Quick libraries, macros, keyed, sequential, ant
unsequential files and more. Advanced Quick
BASIC is packed with applications, examples
and models that will soon have you program
ming like an expert. (OMH-881361 $21.95)

TU.
BASIC Teach Yourself BASIC

By Bob Albrecht and George Firedrake #8

Introduction
BASIC HAS a small vocabulary and a simple syntax (grammar).
We have already discussed some of the special words that Microsoft
BASIC understands. They are called keywords or reserved words.
Here are the keywords introduced and described previously:

BEEP
CLS
COLOR
DATE$
FILE
FOR

GOTO
INPUT
INPUT$
INT
KEY
LIST

LOAD
LOCATE
NEW
NEXT
OFF
ON

PRINT
RANDOMIZE
REM
RND
RUN
SAVE

SOUND
SYSTEM
TIME$
TIMER
WIDTH

We always show keywords in all upper-case letters and variables in
lower-case or a MiXtuRe of upper- and lower-case letters. We think
this makes programs easier to read and understand. However, when
you LIST a program, unfortunately, variables will probably appear in
all upper-case letters.

Handbook of BASIC
by David L. Schneider

IF YOU don't have a GW-BASIC (or BASICA)
reference manual, or can't understand the one
you have-get this one. As a reference guide,
it's downright excellent, thoroughly covering
keywords from A to Z-er, well-from ABS to
WRITE#. At 750+ pages, this book is more
than twice the size of the reference manual
that comes with GW-BASIC and perhaps
seven times more readable. It's fun to open it
to a random page and just browse. It even has
a long appendix on QuickBASIC and Turbo
BASIC. You can order it thru Tfie BASIC
Teacfier's Special Reader Services (see page
23).

David Ahl's BASIC
Computer Adventures
JOURNEY THRU time and space; experience
travel in other cultures, other times, from dis
tant past to a future perhaps within the
lifetime of a young child. These are educa
tional adventures in the form of a book with
listings in Microsoft BASIC and a disk contain
ing the programs. If you are a teacher or
parent with no previous experience in adven
ture games-loved by millions of kids-this is
the way to learn something about them. Book:
$9.95 plus $1.65 postage. If you have a Tandy
1000, IBM PC, or compatible computer, buy
the disk and go a'venturing! Disk: $20.00 plus
$1.00 postage. Learn some history and, while
doing so, learn why kids love adventure games.
From: David H. Ahl, 13 Indian Head Road,
Morristown, NJ 07960.

The BASIC Teacher September 1989 a

Sales Tax Program
OUR LOCAL sales tax is 6%, this year. Unfor
tunately, it seems to have a propensity to grow.
Program TYB0801, shown at the bottom of
this page, computes the sales tax for a sales
amount you enter from the keyboard. It then
prints the sales amount, the amount of sales
tax, and the total amount of the sale, including
tax. Here is a sample run.

Amount of Sale? 1

Amount of sale is 1
Amount of sales tax is .06
Total amount is 1.06

Amount of Sale? 123.45

Amount of sale is 123.45
Amount of sales tax is 7.407
Total amount is 130.857

Amount of Sale? _

Use CTRL + BREAK to stop the program.

A GOTO Loop
PROGRAM TYB0801 has a GOTO loop in
lines 210 thru 290. This loop repeats until you
interrupt by using CTRL + BREAK (Hold
down the CTRL key and press the BREAK
key).
To call your attention to the GOTO loop, we
indented the lines between the top of the loop
(line 210) and the bottom of the loop (line
290). We also put the comment 1 Top of
loop in line 210 and the comment 1 Bottom

of loop in line 290.

MONTGOMERY WARD & CO.'S CATALOGUE No
Puzzle*

25472 Tbo Fvrrlt Wheel
puzzle con>i-u of ft neatly
made box with a jtlaMUip
ln»lde t» ft perfect minia
ture FerrU \V heel revolved
bv • button underneath.
I'nc puzzle it to place a
pH*«ent;er tbftll) Intoench
vacant car. Can you do

l*rlce each |0.20 Ihrtce. per dot 2.10
Postage. be.

1 REM ** Sales Tax Program #1 **
2 ' The BASIC Teacher #8. Filename: TYB0801.BAS

100 REM ** Set up **
110 CLS : KEY OFF
120 TaxRate = 6 / 100

200 REM ** GOTO loop to compute and print information **

'6 percent

210 INPUT "Amount of Sale"; SalesAmount
SalesTax = SalesAmount * TaxRate
TotalAmount = SalesAmount + SalesTax
PRINT
PRINT "Amount of sale is "; SalesAmount
PRINT "Amount of sales tax is "; SalesTax
PRINT "Total amount is •'; TotalAmount
PRINT : PRINT

220
230
240
250
260
270
280
290 GOTO 210

•Top Of loop

•Bottom of loop

0 September 1989 The BASIC Teacher

Teach Yourself BASIC

TAB
YOU CAN use the TAB function within a
PRINT statement to position information
where you want it on a line. Program
TYB0802 uses TAB functions in lines 250,
260, and 270 to tell the computer to begin
printing at column 30 (print position 30).

TAB(30)
THE FUNCTION: TAB(30)

tells the computer to move the cursor to
column 30. In line 250, the value of
SalesAmount will be printed beginning at
column 30.

1 REM ** Sales Tax Program #2 (with TAB function) **
2 • The BASIC Teacher #8. Filename: TYB0802•BAS

100 REM ** Set up **
110 CLS : KEY OFF
120 TaxRate = 6 / 100 '6 percent

200 REM ** GOTO loop to compute and print information **

210 INPUT "Amount of sale"; SalesAmount
220
230
240
250
260
270
280
290 GOTO 210

'Top of loop
SalesTax = SalesAmount * TaxRate
TotalAmount = SalesAmount + SalesTax
PRINT
PRINT "Amount of sale is"; TAB(30); SalesAmount
PRINT "Amount of sales tax is"; TAB(30); SalesTax
PRINT "Total amount is"; TAB(30); TotalAmount
PRINT : PRINT

1 Bottom of loop

Here is a sample run.

Amount of sale? 1

Amount of sale is
Amount of sales tax is
Total amount is

Amount of sale?

Amount of sale is
Amount of sales tax is
Total amount is

Amount of sale?

123.45

123.45
7.407
130.857

In the sample run, the numbers are printed
beginning in column 30.

REMEMBER: A positive number is printed
with a leading space. So the first digit of the
number (or the decimal point for . 06) ap
pears in column 31. Try entering a negative
sales amount. The minus sign is printed in
position 30, like this:

Amount of sale? -1

Amount of sale is
Amount of sales tax is
Total amount is

The BASIC Teacher September 1989

4
Teach Yourself BASIC

PRINT USING
WELL, THE numbers were almost lined up ver
tically, but not quite. We would like to see
them lined up vertically at the decimal point.
We would also like to see the amounts
rounded to the nearest cent. Here is what we
would like to see:

Amount of sale? 1

Amount of sale is
Amount of sales tax is
Total amount is

Amount of sale?

Amount of sale is
Amount of sales tax is
Total amount is

Amount of sale? _

The PRINT USING statement can do this.
Look for it in lines 255,265, and 275 of
program TYB0803, shown here:

PRINT USING #####.##
THE FOLLOWING pair of statements prints one
line on the screen:

PRINT "Amount of sale is TABOO);
PRINT USING "#####.##"; SalesAmount

The first line prints the string "Amount of
sale is" and then tabs over to column 30.
The semicolon at the end of the statement
holds the cursor at column 30, so that the in
formation printed by the second statement will
begin there.
The second statement prints the value of
SalesAmount as specified by the format
string, "#####.##." This format string tells
the computer to print a number with up to 5
digits before the decimal point, then print a
decimal point, then print 2 digits after the
decimal point. If necessary, the digits after the
point are rounded to the nearest hundredth
(the nearest cent).

1.00
0.06
1.06

123.45

123.45
7.41

130.86

1 REM ** Sales Tax Program #3 (with PRINT USING) **
2 1 The BASIC Teacher #8. Filename: TYB0803.BAS

100 REM ** Set up**
110 CLS : KEY OFF
120 TaxRate = 6 / 100 '6 percent

200 REM ** GOTO loop to compute and print information **

210 INPUT "Amount of sale"; SalesAmount 'Top of loop
220 SalesTax = SalesAmount * TaxRate
230 TotalAmount = SalesAmount + SalesTax
240 PRINT
250 PRINT "Amount of sale is"; TAB(30) ;
255 PRINT USING "#####.##»; SalesAmount
260 PRINT "Amount of sales tax is"; TAB(30);
265 PRINT USING »#####.##"; SalesTax
270 PRINT "Total amount is"; TAB(30) ;
275 PRINT USING "#####.##"; TotalAmount
280 PRINT : PRINT
290 GOTO 210 'Bottom of loop

0 September 1989 The B AS IC Teacher

Teach Yourself BASIC

Format String
THE FORMAT string: #####.##

reserves space for printing numbers up to
99999.99, as follows:

Format string: #####.##
Largest number: 99999.99

If a number has fewer digits to the left of the
decimal points, leading spaces are printed.

Format string:
Number:

. # #
1 2 3 . 4 5

This format string allows no more than 5
characters to the left of the decimal point. So
the most negative number that can be printed
is:

Format string: #####.##
Most negative number: -9999.99

What happens if a number is bigger than
99999.99 or less than -9999.99? As usual, find
out by experimenting.

Amount of sale? 99999.99

Amount of sale is 99999.99
Amount of sales tax is 6000.00
Total amount is %105999.99

Amount of sale? -9999.99

Amount of sale is -9999.99
Amount of sales tax is -600.00
Total amount is X-10599.99

Aha! If a number doesn't fit, the computer
puts a percent sign (%) in front of it.

Please note that program TYB0803 uses
single-precision variables, which can represent
numbers with up to seven decimal digits. The
format string used in the program
(#####.##) allows up to seven digits to be
printed. Quite appropriate, we think.

Variations
INSTEAD OF "#####.##"
try one of these:

" $ # # # # # • # # "

" $ $ # # # # # . # # "

" $ $ # # , # # # . # # "

" $ $ # # # # # , . # # "

For one of the above format strings, the results
are as shown below. We added a "ruler" so
you can see where print position 30 is located.

Amount of sale? 12345.67

Amount of sale is $12,345.67
Amount of sales tax is $740.74
Total amount is $13,086.41

1234567890123456789012345678901234567890

We used the same format string in all the
PRINT USING statements. Try different for
mat strings in different PRINT USING state
ments and adjust the TAB function so that
decimal points line up.

EXPERIMENT!

The BASIC Teacher September 1989 0

A Sales Tax Program
for Big Spenders
THE THREE programs shown previously all use
single-precision numbers and variables. The
format string we used (#####.##) is about
right for single-precision work. However, it
won't do for big spenders. Instead, use
program TYB0804, which uses double-
precision numbers and variables.

Program TYB0804 assigns a format string as
the value of the string variable f ormat$. This
variable is then used in all the PRINT USING
statements.

Formats = »SS###, ###,###, ###.##"

PRINT USING formats; SalesAmount#
PRINT USING formats,- SalesTax#
PRINT USING formats; TotalAmount#

REMEMBER: You use a number sign (#) to
designate a variable as a double-precision
variable. Sal esAmount#, SalesTax#, and
TotalAmount# are double-precision vari
ables.

Teach Yourself BASIC

$ $ # # # , # # # , # # # , # # # . # #
THE FORMAT string:

$ $ # # # , # # # , # # # , # # # • # #

tells the computer to print a number as fol
lows:

• The double dollar sign ($ $) causes a dollar sign
to be printed to the left of the number.

• The 12 number signs (#) separated by commas al
low up to 12 digits of the number to be printed,
with commas inserted every three digits. If fewer
than 12 digits are printed, spaces are printed in
stead, in this case to the left of the dollar sign.

• The decimal point causes a decimal point to be
printed in the number.

• The two number signs to the right of the decimal
point cause two digits to be printed to the right of
the decimal point. If necessary, the number being
printed is rounded to two places.

Your turn. Try this program with big sales, .
such as 1 million or 1 billion or more.

1 REM ** Sales Tax Program #4 (double precision) **
2 ' The BASIC Teacher #8. Filename: TYB0804.BAS

100 REM ** Set up **
110 CLS : KEY OFF
120 TaxRate# = 6 / 100#
130 format$ = "$$###,###,###,###.##"

'Double precision
'Format string

200 REM ** GOTO loop to compute and print information **

210 INPUT "Amount of sale"; SalesAmount#
220 SalesTax# = SalesAmount# * TaxRate#
230 TotalAmount# = SalesAmount# + SalesTax#
240 PRINT
250 PRINT "Amount of sale is TAB(25);
255 PRINT USING format$; SalesAmount#
260 PRINT "Amount of sales tax is"; TAB(25);
265 PRINT USING format$; SalesTax#
270 PRINT "Total amount is "; TAB(25);
275 PRINT USING format$; TotalAmount#
280 PRINT : PRINT
290 GOTO 210

'Top of loop

'Bottom of loop

a September 1989 The BASIC Teacher

T U e Browsino BASK " #8 BASIC mmm WW JBB " #8
By Don Inman

THE FOLLOWING topics were covered in previous installments
of "Browsing BASIC":

#1: The KEY command and ALT-key shortcuts ,

#2: The VIEW PRINT statement and pull-down windows

#3: The COPY CON command to write a DRIVER .SYS file and
disk labels

#4: Text and Graphic position relationships

#5: Enclosing text in ellipses

#6: Using DOS text files

#7: PUT and GET and coloring text

In "Browsing BASIC #7," we used GET and PUT statements to move a box
from one place to another. You should be aware that the keywords, GET and
PUT, are used in two ways. We have been using the graphics form of GET
and PUT. These keywords can also be used as file input and output state
ments.

MOVING THE CURSOR
LEFT AND RIGHT
WE USED two subroutines in Program 7-4 (last month) to move our cursor
shape left and right. Since we only had one line of text, the subroutines
(shown here again) were simple.

1000 REM ** Subroutine: Move Right **
1010 col% = col% + 8
1020 IF col% > 256 THEN col% = 8
1030 PUT (col%, lyne%), Kursor%, XOR ' turn on
1040 RETURN

2000 REM ** Subroutine: Move Left **
2010 col% = col% - 8
2020 IF col% < 8 THEN col% = 256
2030 PUT (col%, lyne%), Kursor%, XOR ' turn on
2040 RETURN

Now we want to modify our Move Cursor and Change Text Colors program
so that the cursor can be moved up and down as well as left and right. When
the cursor reaches the end of a line, we want it to move down a line as well as
moving back to the extreme left column. When the cursor reaches the begin-

•
' I N

\ I / •
' I s

The BASIC Teacher September 1989 0

2 Browsing BASIC

ning of a line, we want it to move up a line as well as to the extreme right. This
will allow a smooth cursor movement throughout the entire screen.

To accomplish these two feats, we will leave the Move Right and Move Left
subroutines largely unchanged. We'll modify only one line in each of the sub
routines.

1020 IF COl% > 312 THEN GOSUB 4010

2020 IF COl% < 8 THEN GOSUB 5010
•

Of course, we'll have to add two new subroutines to make the necessary ad
justments. These new subroutines must not only move the cursor to a new
line, they must also check to make sure the cursor has not moved off the
screen at the top or bottom.

4000
4010
4020
4030

5000
5010
5020
5030

Notice the repetition of the IF... THEN statements in the subroutines and
the lines that call the subroutines. This was done so that these two subroutines
could also be used when the cursor moves off the top or the bottom of the
screen. You will see this more clearly later.

MOVING THE CURSOR
UP AND DOWN
Now WE are ready to add up and down movements for the cursor. We first
move the three closing lines of the main program (Put Cursor and Make
Changes block) to make room for two IF statements that detect the up and
down arrow keys.

340 IF ky$ = CHR$ (0) + "P" THEN GOSUB 6010 N ,>t K
350 IF ky$ = CHR$(0) + "H" THEN GOSUB 7010 I •
360 WEND 1 • J 1 * 1
370 ky$ = INPUT$(1) *
380 END

We must also modify line 300 to check for illegal key presses. Legal key
presses are now right arrow, left arrow, down arrow, up arrow, and a carraige
return. Line 300 now becomes monstrously large.

300 IF KY$ <> CHR$ (0) + HM" AND KY$ <> CHR$ (0)+»K" AND KY$ <>
CHR$ (13) AND KY$ <> CHR$ (0) +MPM AND KY$ <> CHR$ (0)+,,H" THEN
GOTO 250

> ? <

REM ** Subroutine: End Adjustment **
IF col% > 312 THEN col% = 8: lyne% = lyne% + 8
IF lyne% > 192 THEN lyne% = 8
RETURN

REM ** Subroutine: Start Adjustment **
IF coll < 8 THEN coll =312: lynel = lynel - 8
IF lynel < 8 THEN lynel = 192
RETURN

y—
1 t

September 1989 The B AS IC Teacher

Browsing BASIC 3

Next, we must write the Move Down and Move Up subroutines. Not only
must we update the cursor position, but a check must be made to see if the
cursor has moved off the screen at the top or bottom. If it has, the subroutines
of block 4000 or 5000 are used as they were when the cursor moved off the
screen to the left or to the right.

The subroutine of block 4000 is used to check and adjust (if necessary) the
cursor position for a cursor movement off the screen at the right and at the
bottom. The subroutine of block 5000 checks and adjusts cursor movement
off the screen at the left and at the top.

Here are the Move Down and Move Up subroutines.

6000 REM ** Subroutine: Move Down **
6010 lyne% = lyne% + 8
6020 IF lyne% > 192 THEN GOSUB 4010
6030 PUT (col%, lyne%), Kursor%, XOR
6040 RETURN

7000 REM ** Subroutine: Move UP **
7010 lyne% = lyne% - 8
7020 IF lyne% < 8 THEN GOSUB 5010
7030 PUT (col%, lyne%), Kursor%, XOR
7040 RETURN

PUTTING IT ALL TOGETHER
ONLY ONE more modification is needed to complete the new program. We
must add more text to the screen so that there will be more than one line to
scan. Lines 150-190 contain the text.

150 CLS: LOCATE 2,2: PRINT "Press an arrow key to move the cursor"
160 PRINT " from letter to letter."
170 LOCATE 5, 2: PRINT "Press a number: 1, 2, or 3 to change"
180 PRINT " the color of the character."
190 LOCATE 8, 2: PRINT "Press the ENTER key to quit."

Here is Program 8-1, Scan a Screenfull and Color.

1 REM ** Scan a Screenfull and Color **
2 ' Program 8-1 8/28/88
3 • Microsoft GW-BASIC File: PRO0801.BAS

100 REM ** Initialize **
110 SCREEN 1: CLS: KEY OFF
120 DIM Kursor%(10) ' dimension array
130 LINE (1, 1)- (8, 8), 1, B 1 draw 8x8 box
140 GET (1, 1)-(8, 8), Kursor% 1 save in array named Kursor
150 CLS: LOCATE 2,2: PRINT "Press an arrow key to move the cursor"
160 PRINT " from letter to letter."
170 LOCATE 5, 2: PRINT "Press a number: 1, 2, or 3 to change"
180 PRINT " the color of the character."
190 LOCATE 8, 2: PRINT "Press the ENTER key to quit."

O f f at

•

0/7= - i f f f

The BASIC Teacher September 1989

4 Browsing BASIC

200 REM ** Put Cursor and Make Changes **
210 column% = 2: row% = 2
220 col% = column% * 8 - 8: lyne% = row% * 8 - 8
230 PUT (col%, lyne%), Kursor% • Kursor on
240 WHILE KY$ <> CHR$(13)
250 ky$ = ""
260 WHILE ky$ = ""
270 ky$ = INKEY$
280 WEND
290 IF ky$ > "0" AND ky$ <= "3" THEN GOSUB 3010
300 IF ky$ <> CHR$(0)+MM" AND ky$ <> CHR$(0)+"K" AND ky$ <>

CHR$ (13) AND ky$ <> CHR$(0)+"P" AND ky$ <> CHR$ (0) + "H" THEN
GOTO 250

Kursor%, XOR 'Kursor off
"M" THEN GOSUB 1010
"K" THEN GOSUB 2010
"P" THEN GOSUB 6010
"H" THEN GOSUB 7010

PUT (col%, lyne%),
IF ky$ = CHR$(0) +
IF ky$ = CHR$(0) +
IF ky$ = CHR$(0) +
IF ky$ = CHR$(0) +

360 WEND
370 ky$ = INPUT$(1)
380 END

310
320
330
340
350

1000 REM ** Subroutine: Move Right **
1010 col% = col% + 8
1020 IF col% > 312 THEN GOSUB 4010
1030 PUT (col%, lyne%), Kursor%, XOR
1040 RETURN

' turn on

2000 REM ** Subroutine: Move Left **
2010 col% = col% - 8
2020 IF col% < 8 THEN GOSUB 5010
2030 PUT (col%, lyne%), Kursor%, XOR
2040 RETURN

• turn on

' turn off
3000 REM ** Subroutine: Color **
3010 PUT (col%, lyne%), Kursor%, XOR
3020 kolor% = VAL(ky$)
3030 FOR pnt% = col% TO col% + 8
3040 FOR tier% = lyne% TO lyne% + 7
3050 IF POINT(pnt%, tier%) <> 0 THEN PSET(pnt%, tier%), kolor%
3060 NEXT tier%
3070 NEXT pnt%
3080 PUT (col%, lyne%), Kursor%, XOR ' turn on
3090 RETURN

4000 REM ** Subroutine: End Adjustment **
4010 IF col% > 312 THEN col% = 8: lyne% = lyne% + 8
4020 IF lyne% > 192 THEN lyne% = 8
4030 RETURN

5000 REM ** Subroutine: Start Adjustment **
5010 IF col% < 8 THEN col% = 312: lyne% = lyne%
5020 IF lyne% < 8 THEN lyne% = 192
5030 RETURN

- 8

September 1989 The BASIC Teacher

Browsing BASIC

6000 REM ** Subroutine: Move Down **
6010 lyne% = lyne% + 8
6020 IF lyne% > 192 THEN GOSUB 4010
6030 PUT (col%, lyne%), Kursor%, XOR
6040 RETURN

7000 REM ** Subroutine: Move UP **
7010 lyne% = lyne% - 8
7020 IF lyne% < 8 THEN GOSUB 5010
7030 PUT (col%, lyne%), Kursor%, XOR
7040 RETURN

RUNNING PROGRAM 8-1
WHEN YOU start the program, the text is printed and the cursor is placed over
the first character in the first line. The text indicates the actions you can take.

(Press an arrow key to Move the cursor
froM letter to letter.
Press a number: lf 2« or 3 to chanye
the color of the character.

Press the ENTER key to quit.

Move the cursor around in the text to position it where you want. The next
figure shows the cursor moved to the first letter of the word arrow.

Press an Irrow key to move the cursor
from letter to letter.

Press a number: 1, 2, or 3 to ohanye
the color of the character.

Press the ENTER key to quit.

To color a character, press one of the numbers 1,2, or 3. Press the right arrow
key to move to the next character. Press a number to color it. Repeat this
process until an entire word, or group of words, is colored. The next figure
shows the word arrow changed to color 1 (cyan). The cursor is on the last let
ter of the word.

0 U 0
The BASIC Teacher September 1989

Browsing BASIC

Press an appofi keu to Move the cursor
froM letter to letter.

Press a mtwber: 1, 2 , or 3 to change
the color of the character.
Press the ENTER key to quit.

Move on and color other letters, words, or phrases if you want. When you
have the text colored just the way you want, press the ENTER key. The cur
sor is erased, and only the finished text shows. The next figure shows a com
pleted screen with most characters displayed in white. The exceptions are:

cyan

arrow
number
1
ENTER

magenta

cursor
color
2
quit

Press an arrow
froM letter to

key to Move the cursor
letter.

Press a mmberj i, 2, or 3 to change
the color of the oharaoter.
Press the ENTER key to quit.

QuickBASIC VERSION
THE QUICKBASIC version of Scan a Screenfull and Color checks and up
dates the cursor and colors text in one large IF... END IF block instead of
using the many subroutines of the GW-BASIC version. The block IF... END
IF structure is not available in GW-BASIC. Another difference is the use of
the DO... LOOP structure in the QuickBASIC program in place of WHILE
... WEND. The QuickBASIC IF... END IF block uses the following form.

0 September 1989 The BASIC Teacher

Browsing BASIC 7

IF ky$ = CHR$(0) + "M" THEN
•

Each group of three
ELSEIF ky$ = CHR$ (0) + "K" THEN vertical ellipses contains

a block of QuickBASIC code
equivalent to a subroutine

ELSEIF ky$ = CHR$(0) + "P" THEN in the GW-BASICversion.
•
•

ELSEIF ky$ = CHR$(0) + "H" THEN
•
•

ELSEIF ky$ > CHR$(0) AND ky$ <= "3" THEN
•
•

ELSE PUT (col%, lyne%), Kursor%, XOR
END IF

The QuickBASIC version uses subprograms in place of the Start Adjustment
and End Adjustment subroutines of the GW-BASIC version. Subroutines can
be used in QuickBASIC, but the subprogram procedure (SUB ... END
SUB) is more versatile.

Here is the QuickBASIC program.

DECLARE SUB Adjust2 ()
DECLARE SUB Adjustl ()

REM ** Scan a Screenfull and Color - QuickBASIC **
• Program 8-2 8/28/88
' Microsoft QuickBASIC File: PR00802.BAS

REM ** Initialize **
DIM SHARED col AS INTEGER, lyne AS INTEGER
DIM Kursor(1 TO 11) AS INTEGER 'dimension array
SCREEN 1: CLS
LINE (1, 1)-(8, 8), 1, B 'draw 8x8 box
GET (1, l)-(8, 8), Kursor% 'save in array
CLS : LOCATE 2, 2: PRINT "Press an arrow key to move the cursor"
PRINT " from letter to letter."
LOCATE 5, 2: PRINT "Press a number: 1, 2, or 3 to change"
PRINT " the color of the character."
LOCATE 8, 2: PRINT "Press the ENTER key to quit."

REM ** Put Cursor and Make Changes **
column% = 2: row% = 2
col% = column% * 8 - 8: lyne% = row% * 8 - 8
PUT (col%, lyne%), Kursor%, XOR 'Kursor on
DO
DO

ky$ = INKEY$
LOOP WHILE ky$ = ""
PUT (col%, lyne%), Kursor%, XOR 'Kursor off
IF ky$ = CHR$(0) + "M" THEN

The BASIC Teacher September 1989

8
Browsing BASIC

col% = col% + 8
IF col% > 312 THEN CALL Adjustl
PUT (col%, lyne%), Kursor%, XOR

ELSEIF ky$ = CHR$(0) + "KM THEN
col% = col% - 8
IF col% < 8 THEN CALL Adjust2
PUT (col%, lyne%), Kursor%, XOR

ELSEIF ky$ = CHR$(0) + "P" THEN
lyne% = lyne% + 8
IF lyne% > 192 THEN CALL Adjustl
PUT (col%, lyne%), Kursor%, XOR

ELSEIF ky$ = CHR$(0) + "H" THEN
lyne% = lyne% - 8
IF lyne% < 8 THEN CALL Adjust2
PUT (col%, lyne%), Kursorl, XOR

ELSEIF ky$ > "0" AND ky$ <= "3" THEN
kolor% = VAL(ky$)
FOR pnt% = col% TO col% + 8

FOR tier% = lyne% TO lyne% + 7
IF POINT(pnt%, tier%) <> 0 THEN

PSET (pnt%, tier%), kolor%
END IF

NEXT tier%
NEXT pnt%
PUT (col%, lyne%), Kursor%, XOR

ELSE PUT (col%, lyne%), Kursor%# XOR
END IF

LOOP WHILE ky$ <> CHR$(13)
PUT (col%, lyne%), Kursor%, XOR
END

SUB Adjustl
IF col% > 312 THEN

col% = 8
lyne% = lyne% + 8

END IF
IF lyne% > 192 THEN lyne% = 8

END SUB

SUB Adjust2
IF col% < 8 THEN

col% = 312
lyne% = lyne% - 8

END IF
IF lyne% < 8 THEN lyne% = 192

END SUB

The QuickBASIC program "paints" characters very fast. You can see the in
dividual points of a character being set in the GW-BASIC program. The
QuickBASIC program sets the points so fast that the complete character
seems to be instantly placed on the screen.

That's all for now. Happy Screen Coloring!

•move Kursor right

•Kursor on

'move Kursor left

'Kursor on

•move Kursor down

•Kursor on

'move Kursor up

'Kursor on

'color text

'Kursor on
'Kursor on

r
[w] September 1989 The B AS IC Teacher

T U e
BASIC

Teach Yourself QuickBASIC #8
By Bob Albrecht and George Firedrake

The Family Computer Club
WE WENT to meetings of several computer clubs and found that
they were no place for beginners! The people there (98.3%
male-no kids) all mumbled in advanced computerese.

So we are helping start The Family Computer Club here in
our town, Sebastopol, CA. This club is primarily for beginners,
especially families who have, or plan to acquire, a Tandy 1000,
IBM PC, or compatible computer.

Kids are very welcome. After all, this is the Family Computer
Club. We'll use Tandy's DeskMate to help beginners begin.
We are reviewing hundreds of shareware disks to find the best
educational and home business programs. And, of course, we'll
use QuickBASIC for many purposes.

FOR...NEXT Loops
You CAN use a FOR ... NEXT loop to assign
a sequence of values to a numeric variable.
T h e p r o g r a m s h o w n b e l o w u s e s a F O R . . .
NEXT loop to print the numbers 1,2,3, and
so on, up to 7.

CLS
FOR number = 1 TO 7
PRINT number

NEXT number

Enter and run this program. You should see
the numbers 1 to 7 on the Output screen.

A FOR...NEXT Loop
• BEGINS WITH a FOR statement;

• ends with a NEXT statement;

• usually has one or more statements be
tween FOR and NEXT.

A numeric variable must follow the word
FOR:

FOR number = 1 TO 7
numeric variable

The same numeric variable follows the word
NEXT:

NEXT number
numeric variable

This numeric variable can be used in state
ments between FOR and NEXT:

PRINT number
numeric variable

The BASIC Teacher September 1989 m

2 Teach Yourself QuickBASIC

A Sequence of Values
A FOR statement defines a sequence of values
for the numeric variable that follows the word
FOR.
• TTie statement: FOR number = l TO 7

defines the following sequence of values for
the variable number:

1, 2, 3, 4, 5/ 6, 7

When you ran the program on the preceding
page, you saw these numbers printed on the
screen by the PRINT statement.

In the following program, the FOR statement
defines a sequence of numbers from 0 to 5 as
the value of number.

CLS
FOR number = 0 TO 5

PRINT number;
NEXT number

Note the semicolon (;) at the end of the
PRINT statement. This causes the numbers to
be printed close together on the same line:

You can use any numeric variable after the
word FOR. Also use the same variable after
the word NEXT.

In the following program, the FOR statement
defines a sequence of numbers from 10 to 13
as the values of the variable k.

CLS
FOR k = 0 TO 13

PRINT k;
NEXT k

Here is a run:

10 11 12 13

A Colorful
FOR...NEXT Loop
THE "NORMAL" screen colors are white letters
on a black screen. White is the foreground
color; black is the background color. You
can use the COLOR statement to tell the com
puter to print in any of 16 colors, including
black (COLOR 0) and the normal white
(COLOR 7). Of course, if you print in black
letters on a black background, you won't see
anything.

The following program prints one line in each
of the 15 colors from 1 to 15 and tells you the
color number in which it is printed:

CLS
FOR kolor = 1 TO 15

COLOR kolor
PRINT "This is color number"; kolor

NEXT kolor
COLOR 7

Unfortunately, we can't show you the beautiful
' colors here. When you run the program, you

will see the following in 15 different colors:

This
This
This
This
This
This
This
This
This
This
This
This
This
This
This

is color
is color
is color
is color
is color
is color
is color
is color
is color
is color
is color
is color
is color
is color
is color

nunber 1
number 2
nunber
number
number
number
number
nunber 8
number 9
nunber
number
number
nunber
nunber
number

The last line of the program (COLOR 7)flj\
returns the screen to its normal foreground
color. This is done after the FOR ... NEXT
loop has been completed.

If you would like to see blinking colors, change
line 20 to the following:

FOR kolor = 17 TO 31

September 1989 The BASIC Teacher

Teach Yourself QuickBASIC

SOUND Effects
HAVE YOU ever wondered how they make all
those strange sounds in arcade games? Try the
following program:

CLS
FOR frequency = 100 TO 300
SOUND frequency, .125

NEXT frequency

Run this program. You will hear a sound that
quickly rises from 100 Hertz (cycles per
second) to 300 Hertz.

The FOR ... NEXT loop causes a sequence of
very short sounds. Each sound is of duration
0.125 ticks. A tick is about 1/18 of a second.
You hear 201 very short sounds with fre
quencies of 100 Hertz, 101 Hertz, 102 Hertz,
and so on, up to 300 Hertz. This all happens in
a little over a second.

With the above program, you hear one whoop,
quickly rising in pitch. Now make a small
change and get a program that goes whoop,
whoop, whoop,...

CLS
DO
FOR frequency = 100 TO 300
SOUND frequency, .125

NEXT frequency
LOOP

When you have heard enough whoops, hold
down CTRL and press BREAK to stop all the
whooping.

3

Counting Backwards
ALL THE FOR... NEXT loops we have used
so far define Increasing sequences of num
bers:

• 1,2,3,4,5,6,7
• 0,1,2,3,4,5
• 10,11,12,13
• 100,101,102,. . . , 300

You can tell the computer to count backwards
by using a STEP -1 clause in the FOR state
ment, as shown in the following program:

CLS
DO

FOR frequency = 300 TO 100 STEP -1
SOUND frequency, .125

NEXT frequency
LOOP

Run this program to hear a familiar arcade
sound. This time you hear a falling pitch. The
sound goes quickly from 300 Hertz to 100
Hertz in steps of -1.

• 300,299,298,..., 100

Now put both programs together into a single
program that makes a sound sort of like a
siren. The sound goes up, down, up, down,
etc.:

CLS
DO

FOR frequency = 523 TO 1046
SOUND frequency, .125

NEXT frequency
FOR frequency = 1046 TO 523 STEP -1
SOUND frequency, .125

NEXT frequency
LOOP

The BASIC Teacher September 1989
I

4 Teach Yourself QuickBASIC

STEP
IF YOU don't use a STEP clause in a FOR
statement, the variable following the word
FOR will increase by one each time. For ex
ample, in the following FOR statement, the
value of frequency goes from 523 to 1046 in
steps of 1.

FOR frequency = 523 TO 1046

If you use a STEP clause, then you must
specify the step size. Try this variation of the
preceding program.

CLS
DO

FOR frequency = 523 TO 1046 STEP 2
SOUND frequency, .125

NEXT frequency
FOR frequency = 1046 TO 523 STEP -2
SOUND frequency, .125

NEXT frequency
LOOP

In the first FOR ... NEXT loop, the value of
frequency goes from 523 to 1046 in steps of
2.

523,525,527,..., 1045

Note that the final frequency (1046) is not ac
tually attained. Only odd numbered fre
quencies will occur.

In the second FOR... NEXT loop, the value
of frequency goes from 1046 to 523 in steps
of-2.

1046,1044,1042,..., 524

The final frequency (523) is not actually at
tained. Only even numbered frequencies oc
cur.

You can get many different sound effects by
trying various combinations of beginning fre
quency, final frequency, step size, and dura
tion. For example, try this tiny program.

CLS
DO

FOR frequency = 1000 TO 10000 STEP 1000
SOUND frequency, .5

NEXT frequency
LOOP

The frequency increases from 1000 to 10000 in
steps of 1000. Note that the duration is .5 ticks.
How would it sound if you change the duration
to 1? Try it and find out.

Now let's see how it sounds if the frequency
decreases from 10000 to 1000 is steps of-1000.

CLS
DO

FOR frequency = 10000 TO 1000 STEP -1000
SOUND frequency, .5

NEXT frequency
LOOP

Also try a duration of 1.

Your turn. You pick the beginning frequency,
final frequency, and step size.

FOR frequency = TO STEP

Also choose the duration for each sound.

SOUND frequency,

September 1989 The BASIC Teacher

Teach Yourself QuickBASIC

Sound Effects
Experimenter
YOU CAN use Program TYQB0806, Sound Ef
fects Experimenter, to experiment with FOR.
.. NEXT loops and find sound effects to your
liking. We saved this program under the
filename TYQB0806, which means "Teach
Yourself QuickBASIC (TYQB), Tfie BASIC
Teacher #8 (08), the 6th program saved (06)."

Enter and run the program. To get a falling
pitch, enter a larger number for the beginning
frequency, a smaller number for the final fre
quency, and a negative step size, as shown in
the following sample run.

Beginning frequency? 2000

Ending frequency ? 1000

Frequency step size? -100

Duration each sound? .25

Press the ESC key to quit

The sound generated by the FOR... NEXT
loop repeats until you press the ESC key. This
stops the program. If you liked the sound, jot
down the numbers on the screen. Run the
program again and enter your numbers.

INKEY$
INKEY$ IS a string function. It scans the
keyboard to see if a key has been pressed. If
no key has been pressed, the value of INKEY$
becomes the empty string (" "). If a key has
been pressed, the value of INKEY$ becomes a
one- or two-character string. You can use this
value to "detect" which key or key combina
tion was pressed.

In Program TYQB0806, the statement:

DO UNTIL INKEY$ = CHR$(27)

tells the computer to continue the DO ...
LOOP UNTIL the value of INKEY$ is the
string character whose ASCII code is 27. This
is the ESC key.

Try the following tiny program. It continues
until you press the ESC key.

DO UNTIL INKEY$ = CHR$(27)
PRINT "Press ESC to stop me"

LOOP

REM ** Sound Effects Experimenter #1 **
' The BASIC Teacher #8. Filename: TYQB0806.BAS

CLS

LOCATE 1, 1
LOCATE 3, 1
LOCATE 5, 1
LOCATE 7, 1
LOCATE 9, 1

INPUT "Beginning frequency"; BeginFreq
INPUT "Ending frequency "; FinalFreq
INPUT "Frequency step size"; StepSize
INPUT "Duration each sound"; duration
PRINT "Press the ESC key to quit"

DO UNTIL INKEY$ = CHR$(27) .
FOR frequency = BeginFreq TO FinalFreq STEP StepSize
SOUND frequency, duration

NEXT frequency
LOOP

END

The BASIC Teacher September 1989

6 Teach Yourself QuickBASIC

REN
It is good practice to put information in a
program to tell people about the program. The
REM (REMark) statement allows you to do
this. Any text that follows REM in a program
line is ignored when you run the program. You
can use an apostrophe (') as an abbreviation
for REM.
From now on, most of our programs will begin
with a REM statement that has the name of
the program. For example:

KEN " Sound Effects Experimenter #1 "

The second line will tell where the program
appears and its filename, as stored on our disk.

1 The BASIC Teacher #8. Filename: TYQB0806.BAS

This line tells you the program is in issue #8 of
The BASIC Teacher. Its filename is
TYQB0806.BAS, which means "Teach Your
self QuickBASIC #8, program #6."

Programs TYQB0801 thru TYQB0805
You HAVE seen Program TYQB0806 as it is saved on our disk.
We also saved five other programs, as shown here.

REN ** Color Niabars 1 to 16 "
' The BASIC Teecher #8. Filename: TYQB0801.BAS

CLS
FOR kolor • 1 TO 15

COLOR kolor
PRINT "This is color mmfcer"; kolor

NEXT kolor
COLOR 7

REN " Uhoop, Whoop, Whoop,
• The BASIC Teacher M. Fil

CLS
DO

FOR frequency • 100 TO 300
SOUND frequency, .125

NEXT frequency
LOOP

: TYQB0802.BAS

REN •* Whoop, Whoop - Decreasing Frequency "
• The BASIC Teacher *8. Filename: TYQB0803.BAS

CLS
DO

FOR frequency • 300 TO 100 STEP -1
SOUND frequency, .125

NEXT frequency
LOOP

I TYQB0804.BAS \ J TYQB0805.BAS

TYQB0801 •BAS 1 J^TYQBOBOa.BAS TVQB0803.BAS 1

REM ** Siren #1 **
1 The BASIC Teacher #8. Filename: TYQB0804.BAS

CLS
DO

FOR frequency = 523 TO 1046
SOUND frequency, .125

NEXT frequency
LOOP

REM ** Siren #2 **
1 The BASIC Teacher #8. Filename: TYOB0805.BAS

CLS
DO

FOR frequency = 523 TO 1046 STEP 2
SOUND frequency, .125

NEXT frequency
FOR frequency = 1046 TO 523 STEP -2

SOUND frequency, .125
NEXT frequency

LOOP

September 1989 The BAS IC Teacher

Special Reader Services
For
Power Users!
Microsoft QuickBASIC
Version 4
Microsoft QuickBASIC 4.5 is a complete
BASIC learning system. The new interactive,
on-disk tutorial, Microsoft QB Express,
quickly and easily introduces you to the
Microsoft QuickBASIC environment. A new
step-by-step tutorial guides you through an ac
tual application. And numerous example
programs help you master BASIC program
ming.
MS-04366 QuickBASIC 4.5 $99.00

Now only $79.00

DOS Made Easy by Herbert Schildt
(Osbome/McGraw-HUl, 385pp). Previous com
puter experience is not necessary to under
stand this concise, well-organized introduction
that's filled with short applications and exer
cises. The book walks you thru all the basics,
beginning with an overview of a computer
system's inner components and a step-by-step
account of how to run DOS for the first time.
(OMH-881194 $18.95)

The Shareware Book: Using PC-Write,
PC-File, PC-Talk by Emil Flock, et al
(Osbome/McGraw-Hill, 688pp). Covers the
most popqlar "free" programs: PC-Write, a
word processor: PC-File, a database manager;
and PC-Talk, a telecommunications program.
These programs are available thru user groups
or bulletin board services in return for a
nominal registration fee. The book has all the
details on how you can obtain these program
disks. (OMH-881251 $14.95)

The BASIC Teacher
Back Issues Available

S3.00
$3.00
S3.00
$3.00
S3.00

TBT-1 Issue No. 1.
TBT-2 Issue No. 2.
TBT-3 Issue No. 3.
TBT-4 Issue No. 4.
TBT-5 Issue No. 5.
TBT-6 Issue No. 6. . S3.00
TBT-7 Issue No. 7. . S3.00

Our apologies ...
THIS ISSUE is even later
than usual. For this,
profuse apologies.

We are planning to expand
The BASIC Teacher to 32
pages within the next issue
or two. This development,
along with our other
commitments, are the

causes of the delay. Expect
to see issue number 9 in
November. We should be
back to a regular monthly
schedule thereafter.
Subscribers will get the full
number of issues promised.
The number next to your
name on the mailing label
on the back page indicates
the last issue of your
subscription.

*!

i!

z
<
EC
<
D
O

<
u.
00
p

*

? . I f

S 1 ill 5 z 2 ! f
o Z ! 3 * f- - JS

• § I I a l t I
lla* m iiSj
" Jli

NEW BOOKS
ON BASIC

HANDBOOK OF BASIC:

THIRD EDITION

FO* THE IBM PC. XT. AT. PS/2.
AND COMPATIBLES

B»N» I. IWIMU
UMnntn at Htnuw

HTN*

Handbook of BASIC: Third Edition by
David I. Schneider. "I can recommend [this
book] without reservation to everyone,
whether you're a beginner, semi-professional,
or professional programmer. Anyone who
takes the time to look between the covers will
find that this book is indeed a very valuable
reference. "-Richard Aarons, PC Magazine.
Update your programming library with this
third edition of the most thorough and com
plete reference book on the BASIC language
for PCs and compatibles ever put together.
Complete and detailed explanations of state
ments are illuminated by over 600 examples.
Each listing has the most popular form of the
BASIC command, followed by subtle varia
tions and extensions. Both a ready source and
a tutorial, this is the most comprehensive
BASIC reference manual available! (BRA-
372582-0$24.95)

Advanced BASIC for the IBM PC and
Compatibles: Tipa and Techniques by
Larry Joel Goldstein. Now that you're ready to
make more sophisticated use BASIC, this
book will help you develop your skills right.
This book is a thorough, hands-on guide to
BASICs complex commands for creating
more powerful programs. As you work through
the key principles in the text, you'll literally
build a program called the Bar Chart Genera
tor. This practical case study reinforces all the
valuable techniques you'll learn, to let you go
on to create your own applications programs.
(BRA-010307-1 $19.95)

Hands-On QuickBASIC by Larry Joel
Goldstein. You've chosen Microsoft's bestsell-
ing compiler to get programs up and running
quickly. Now choose Hands-On QuickBASIC
to get all the information you need to learn
and use it quickly and efficiently. Clear, con
cise tutorials teach you everything you need to
know. First-time programmers will find author
Larry Joel Goldstein's approach both acces
sible and complete. Experienced users will
benefit from his coverage of advanced topics.
Hands-On QuickBASIC starts as a tutorial,
then becomes a reference that you'll return to
over and over again. (BRA-383480-8 $21.95)

Math
History
et
Fun

A Short Account of the History of Mathe
matics by W.W. Rouse Bali (Dover, 522pp).
One of the clearest, most authoritative surveys
from the Egyptians and Phoenicians thru
19th-century figures such as Grassman, Galois,
Riemann. (DOV-20630-0$9.95)

Mathematics in the Time of the Pharaohs
by Richard Gilhngs (Dover, 286pp). First
book-length study-from simple commercial
computations to trigonometric functions used
in construction of pyramids. Fascinating,
provocative. (DOV-24315-X$6.95)

Perplexing Puzzles and Tantalizing
Teasers by Martin Gardner (Dover, 256pp). 93
riddles, mazes, illusions, tricky questions, word
and picture puzzles, other entertainments for
youngsters. Many hilarious drawings. Solu
tions. (DOV-25637-5 $3.95)

Martin Gardner's Mathematical Puzzles by
Martin Gardner (Dover, 112pp). Entertaining
collection includes stimulating puzzles involv
ing arithmetic, money, speed, plane and solid
geometry, topology, more. Solutions. (DOV-
25211-6 $295)

Mathematics, Magic and Mystery by Martin
Gardner (Dover, 176pp). Math behind card
tricks, stage mind reading, coin and match
tricks, etc. Plus more than 400 tricks,
guaranteed to work. (DOV-20335-2 $3.95)

2814 - 19th Street
San Francisco, CA 941 ID

Address Correction Requested

Ingenious Mathematical Problems and
Methods by Louis A. Graham (Dover, 237pp>
Sophisticated material from Graham's Dial,
applied and pure; stresses solution methods.
Logic, number theory, networks, inversions,
etc. (DOV-20545-2 $4.95)

The Surprise Attack in Mathematical
Problems by Louis A. Graham. Second
volume from Dial. Difficult, sophisticated,
challenging situations, stressing optimal ap
proaches. Applied and pure. (DOV-21846-5
$4.50)

Mathematical Brain Benders by S. Ban
(Dover, 224pp). "Another collection of devilish
problems, everyone original."-Martin
Gardner. Over 100 fresh paradoxes, word and
number games with wit, humor. Answers.
(DOV-24260-9 $4.95)

Mathematical Puzzles of Sam Loyd edited
by Martin Gardner (Dover, 167pp). Bizarre,
original, whimsical puzzles by America's
greatest puzzler. Elementary math. (DOV-
20498-7 $3.95)

More Mathematical Puzzles of Sam Loyd
edited by Martin Gardner (Dover, 177pp). 166
more problems from Cyclopedia. Arithmetic,
algebra, speed and distance problems, game
theory, more. (DOV-20709-9 $3.95)

The Master Book of Mathematical
Recreations by Fred Schuh (Dover, 430pp).
Possibly the finest book work ever prepared on
mathematical puzzles, stunts, recreations.
(DOV-22134-2 $695)

Test Your Logic by George J. Summers
(Dover, lOOpp). 50 more truly new puzzles with
new turns of thought, new subtleties of in
ference. (DOV-22877-0$250)

Codes, Ciphers and Secret Writings by
Martin Gardner (Dover, 96pp). Gpher and
decipher codes: transportation, polyalphabeti-
cal, famous codes, typewriter and telephone
codes, much more to challenge minds. (DOV-
247661-9 $295)

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Permit No. 11798

MICHAEL K EPTCKSQN # ^
COMMUNICATIONS ASSOCIATE

BOX 250
MONTE RIO,

CA 95462-0250

Different Worlds Publications

TU.
BASIC
Xc^c/icr

Issue 9

For beginning
programmers with no

prior programming
experience

CONTENTS
3 Teach Yourself BASIC
9 Browsing BASIC

23 Teach Yourself
QuickBASIC

$3.00

PUBLISHER'S STATEMENT: The BASIC
Teacher is published monthly by Different Worlds
Publications, 2813 - 19th Street, San Francisco,
CA 94110. Contents copyright © 1990 by Dif
ferent Worlds Publications. All rights reserved.
Contents maybe copied and distributed freely.
Address all correspondences to The BASIC
Teacher, 2813 - 19th Street, San Francisco, CA
94110.

SUBSCRIPTION INFO: A 12-issue sub in the U.S.
is $36. Foreign subs are $42 by surface mail, $54
by air.

PRINTED IN THE U.S.A.

BASIC
BAS]
BA.SIC
Bj
Bj
BASIC
BJ
BASIC
BASIC
BASIC |
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
BASH
BASK
BASIC

- *

BASIC
BASIC

[C
BAf
BASIC
BASIC
BASIC
BASIC
JASB

BASIC
T* i t

:sicj
SH

BASIC
BASIC
BASIC
BA^

IIC
BASIC
BASIC
BASIC
BASIC

i

HAPPY COMPUTING!
T a d a t h i E h a r a , p u b l i t h a r

B o b A l b r e c h t , a d i t o r
D o n I n m a n , a d i t o r

BASIC
Books

Use Order Form
on page 23.

GW BASIC

GW-BASIC Made Easy by Bob Albrecht and
Don Inman. If you've always wanted to learn
BASIC programming skills on your personal
computer, but weren't sure where to start,
here's the book you need. Bob Albrecht and
Don Inman have written GW-BASIC Made
Easy for the millions who already have GW-
BASIC (or its nearly-identical cousin,
BASICA) installed on their computers. GW-
BASIC Made Easy is designed to teach you
how to satisfy your curiosity about program
ming, while establishing excellent program
ming fundamentals for your future ventures
into QuickBASIC or Turbo BASIC. In par
ticular, Albrecht and Inman emphasize foun
dation skills needed to develop a "clean" style
of programming, through detailed explana
tions and numerous sample programs. (OMH-
881473 $19.95)

j QuickBASIC

QuickBASIC Made Easy by Bob Albrecht,
Wenden Wiegand, and Dean Brown
(Osbome/McGraw-Hill, 350pp). Learn how to
program with Microsoft's QuickBASIC using
Osbome/McGraw-Hill's popular "Made Easy"
format. For beginning programmers or those
experienced in other languages, QuickBASIC
Made Easy is a step-by-step introduction to
reading and writing programs with versions of
QuickBASIC through version 4.5. You'll find
information on creating files, building a
toolkit, editing, and debugging. QuickBASIC
Made Easy will keep you up-to-date with the
latest changes in Microsoft's outstanding
compiler. (OMH-881421 $19.95)

Your BASIC Backpack
Coming to Tfie BASIC Teocfier

"Your BASIC Backpack," the
popular column in The Computer
Shopper is coming to The BASIC
Teocfier. For over two years
"Your BASIC Backpack"
provided tutorials for beginners
who want to learn how to use
Microsoft BASIC and Quick
BASIC. Starting with the next
issue, "Your BASIC Backpack"
will now appear in The BASIC
Teocfier, posing problems for you
to think about, play with, and
solve.

Copies of past issues of "Your
BASIC Backpack" are available
as follows:

#7 (lOpp) $2.00
#2-4 (14pp each) $2.50 ea.
#5 - 29 (16-24pp each) $3.00 ea.

These are full-size (8.5"xll")
copies, not the reduced print pub
lished in The Computer Shopper.

Prices include paper, toner, wear
and tear on our trusty Canon
copier, out time spent over a hot
copy machine, shipping and han
dling. If you order 5 or more
issues, deduct 10% from the total.
For 10 or more issues, deduct
20%. The entire 29-issue set is
available for $65. Remember,
there is no additional
shipping and handling charges for
these items.

Using QuickBASIC 4.5 Second Edition by
D o n I n m a n a n d B o b A l b r e c h t
(Osborne/McGraw-Hill, SOOpp). Here's an ex
cellent programming guide to Microsoft's
newest version of QuickBASIC by the authors
of The BASIC Teacher. The book approaches
QuickBASIC's programming environment in
three stages so beginning and experienced
BASIC programmers can find the appropriate
level of instruction. You'll learn about sub
programs, libraries, meta-commands, dynamic
debugging, and the important advantage of
QuickBASIC's speedy graphics. (OMH-
881514 $2295)

Still Available
Using QuickBASIC 4.0 (OMH-881274
$19.95)

QuickBASIC: The Complete Reference by
Steven Nameroff (Osbome/McGraw-Hill,
700pp). A comprehensive guide for users of all
levels of programming ability from novices to
pros. Nameroff has divided the book into sec
tions to help you easily locate the information
you need. QuickBASIC: The Complete
Reference begins with a quick introduction to
BASIC programming, followed by a complete
command reference section and a discussion
of QuickBASIC functions, procedures, files
and graphics. Advanced techniques and ap
plications are grouped together in the last sec
tion of the book for the professional Quick
BASIC programmer. (OMH-881362-X $26.95)

Advanced QuickBASIC by Don Inman, Bob
A l b r e c h t , a n d A r n e J a m t g a a r d
(Osbome/McGraw-Hill, SOOpp). As an ex
perienced programmer you'll learn how to
write professional-level programs using the
advanced techniques found in the 4.5 version
of QuickBASIC. Advanced QuickBASIC, writ
ten by three highly regarded professional
programmers, provides you with the tools to
produce sophisticated programs. Graphics,
construction kits, and data bases are some of
the topics discussed. Find information on
Quick libraries, macros, keyed, sequential, and
unsequential files and more. Advanced Quick
BASIC is (lacked with applications, examples,
and models that will soon have you program
ming like an expert. (OMH-881361 $21.95)

Teach Yourself BASK TU*
BASIC

By Bob Albrecht and George Firedrake #9

• »v' .
Introduction
BASIC HAS a small vocabulary and a simple syntax (grammar).
We have already discussed some of the special words that Microsoft
BASIC understands. They are called keywords or reserved words.
Here are the keywords introduced and described previously:

BEEP
CLS
COLOR
DATE$
FILE
FOR
GOTO

INPUT
INPUT$
INT
KEY
LIST
LOAD
LOCATE

NEW
NEXT
OFF
ON
PRINT
RANDOMIZE
REM

RND
RUN
SAVE
SOUND
SYSTEM
TAB
TIME$

TIMER
USING
WIDTH

We always show keywords in all upper-case letters and variables in
lower-case or a MiXtuRe of upper- and lower-case letters. We think
this makes programs easier to read and understand. However, when
you LIST a program, unfortunately, variables will probably appear in
all upper-case letters.

GW-BASIC Made Easy
By Bob Albrecht & Don Inman
FINALLY, IT'S finished! GW-BASIC Made Easy
is the last of four big books (400 + pages each)
that have occupied our time-and-a-half for 18
months. We have been overworked! No more
BIG writing projects for a while.

GW-BASIC Made Easy is for beginners,
people with no previous programming ex
perience.

Chapters: Getting Started; Do It
Now-Immediate Operations; Introduction to
Programming; Number Crunching; Making
Programs More Useful; Control Structures;
Function Junction; Subroutines; Arrays; Se
quential Files; Random Access Files;
Graphics.

PCM
WE USE Tandy computers for work and play.
If you do, too, be sure to look at PCM, the
magazine for Tandy computer users (Models
1000,1200,1400, 2000,3000, and 4000).
Usually has several BASIC programs and a
couple of BASIC tutorials. Ranks high on our
"must read" list. PCM, P.O. Box 385, Prospect,
KY 40059. $28/year (12 issues).

CodeWorks
A MAGAZINE entirely about BASIC on MS-
DOS computers and the Tandy Models I, III,
and IV. Each issue has long BASIC programs
plus tutorials, hints, letters, and other stuff.
Seems oriented to intermediate to advanced
users. CodeWorks, 3838 S Warner St.,
Tacoma, WA 98409. $24.95/year (6 issues).

The BASIC Teacher s

2 Teach Yourself BASIC

Decisions, Decisions
THE IF statement tells the computer to make
a simple decision. It tells the computer to do a
certain operation If a given condition is true.
However, if the condition is false, the opera
tion is not done. Here is a simple IF state
ment:

IF number = 0 THEN PRINT z$

This IF statement tells the computer:

• If the value of the numeric variable
number is equal to zero (o), then
print the value of the string variable
z$.

• If the value of the numeric variable
number is not equal to zero, then
don't print the value of the string vari
able z$.

Here is another way to think about it:

• If the condition number = 0 is
true, then do the statement following
the keyword THEN.

• If the condition number = 0 is
false, then don't do the statement fol
lowing the keyword THEN.

IF condition
THEN statement
AN IF statement can consist of the keyword IF,
followed by a condition, followed by the
keyword THEN, followed by a statement. The
statement can be any GW-BASIC statement.
The condition is usually a comparison be
tween a variable and a value, between two
variables, or between two expressions. Below
is a handy table that shows some comparison
symbols in both math notation and GW-
BASIC notation.

Comparison Math GW-BASIC
is equal to 3

=

is less than < <

is greater than > >

is less than or equal to < < =

is greater than or equal to > >3

is not equal to < >

THIS IS the condition

IF number = O THEN PRINT z$
/ ^~Do this if the condition is trur

Don't do this if the condition is false
Suppose the value of number is 1.2 3.
The condition is false and the computer does not print the value of z$.
Suppose the value of number is 0.
The condition is true and the computer prints the value of z $.

Suppose the value of number is - 2

ne condition is false and the computer does no, print the value of «*.

0
The BASIC Teacher

Teach Yourself BASIC 3

Negative, Zero,
or Positive
HERE IS an easy problem. We want to write a
program to ask for a number, then tell whether
the number is negative, zero, or positive.
When we run the program, we want it to go
like this:

Type a number and press the ENTER key.
I will tell you whether your number is
negative, zero, or positive.

Number, please? 0
zero

Number, please? 1.23
positive

Number, please? -2
negative

Number, please?

IF Statements
Can Do It!
PROGRAM TYB0901 uses three IF statements.
Look for them in lines 340,350, and 360.
Line 320 acquires a value of the numeric vari
able number that you enter from the
keyboard. This value is then checked by lines
340,350, and 360.
If the value of number is negative, line 340
prints the value of the n$, which is "negative."
(See line 110.)
If the value of number is zero, line 350 prints
the value of z$, which is "zero." (See line
120.)
If the value of number is positive, line 360
prints the value of p$, which is "positive." (See
line 130.)
For any number, only one message is printed.

Program TYB0901
Negative, Positive, or Zero #1
1 REM ** Negative, Positive, or Zero #1 ***
2 • The BASIC Teacher #9. Filename: TYB0901.BAS

100 REM ** Assign messages to string variables **
110 n$ = "negative"
120 z$ = "zero"
130 p$ = "positive"

200 REM ** Tell what to do **
210 CLS : KEY OFF
220 PRINT "Type a number and press the ENTER key."
230 PRINT "I will tell you whether your number is"
240 PRINT "negative, zero, or positive."

300 REM ** GOTO loop: Get number and tell about it **

310 ' Ask for a number
320 PRINT : INPUT "Number, please"; number 'Top of loop

330 ' Tell about number
340 IF number < 0 THEN PRINT n$
350 IF number = 0 THEN PRINT z$
360 IF number > 0 THEN PRINT p$

370 GOTO 320 'Bottom of loop

The BASIC Teacher E

4 Teach Yourself BASIC

Checkbook Balancer
SUPPOSE YOU have misplaced your $7 solar-powered cal
culator and are faced with the dreary prospect of balancing
your checkbook. Relax-use your computer to do the work.

We wrote a bare-bones, no frills program to help you use
your $1000 computer instead of your $7 calculator to
balance your checkbook. A sample run is shown below.
Program TYB0902 is on the next page.
When you run the program, remember to enter checks as
negative numbers and deposits as positive numbers. After
you have entered all checks and deposits, then enter zero
(0) to quit. The program checks every entry to see if it is
zero. This program knows when to quit, if you enter zero to
tell it when.

A Sample Run
The date is 08-05-1989
The time is 19:20:05

I will help you balance your checkbook.
When I ask, type your old balance and press ENTER.
Type a check as a negative number and press ENTER.
Type a deposit as a positive number and press ENTER.
To quit, type zero (0) and press ENTER.

Old balance? 123.45

Check or deposit? -3.95
The new balance is 119.5

Check or deposit? -25
The new balance is 94.5

Check or deposit? -89.25
The new balance is 5.25

Check or deposit? 50
The new balance is 55.25

Check or deposit? 0

The final balance is 55.25
Ok

First, enter the old balance.

Enter checks as negative numbers.

At last, a deposit! And just in time.

Enter zero (0) to quit.

HI
The BASIC Teacher

Teach Yourself BASIC 5

Program TYB0902
1 REM ** World's Most Expensive Checkbook Balancer **
2 ' The BASIC Teacher #9. Filename: TYB0902.BAS

100 REM ** Set up **
110 CLS : KEY OFF
120 PRINT "The date is "; DATE$
130 PRINT "The time is "; TIME$

200 REM ** Tell what to do **
210 PRINT
220 PRINT "I will help you balance your checkbook."
230 PRINT "When I ask, type your old balance and press ENTER."
240 PRINT "Type a check as a negative number and press ENTER."
250 PRINT "Type a deposit as a positive number and press ENTER."
260 PRINT "To quit, type zero (0) and press ENTER."

300 REM ** Get the old balance **
310 PRINT
320 INPUT "Old balance"; Balance

400 REM ** Get checks & deposits, compute & print new balance **
405 ' Use GOTO loop — exit on zero
410 PRINT 'Top of loop
420 INPUT "Check or deposit"; CheckOrDeposit
430 IF CheckOrDeposit = 0 THEN 510
440 Balance = Balance + CheckOrDeposit
450 PRINT "The new balance is"; Balance
460 GOTO 410 'Bottom of loop

500 REM ** Print final balance & end program **
510 PRINT
520 PRINT "The final balance is"; Balance
530 END

USE TAB and PRINT USING to make the
new balances line up as shown here.

A Minor Modification Total Checks?
Total Deposits?

Old balance? 123.45

Check or deposit? -3.95
The new balance is 119.50

It WOULD be nice to have the computer keep
a running total of the checks and deposits,
then print these totals along with the old
balance and new balance, perhaps like this:

Check or deposit? -25
The new balance is 94.50

The old balance is
Total of checks is

123.45
-118.20
50.00
55.25 Check or deposit?

Total of deposits is
The new balance is

Note that two digits are printed to the right of
the decimal point. "May the dragons of good fortune keep your

balances positive."
-Laran Stardrake

The BASIC Teacher 0

6 Teach Yourself BASIC

Your Turn
HERE ARE some problems for you to ponder:

PROBLEM 1
Negative, Zero, or Positive #2
We showed you one way to solve our Negative, Zero, or Posi
tive problem. There's always another way. We know several
more ways and will show at least one next time. We challenge
you to write another program, different from ours:

• Don't use IF statements
• Look up ON... GOTO and SGN in your BASIC

reference manual. You can use these to do it a dif
ferent way.

• O r . . . s u r p r i s e u s w i t h y o u r o r i g i n a l m e t h o d .

PROBLEM 2
English Name of a Decimal Digit

The decimal digits are 0,1,2,3,4,5,6, .7,8, and 9.
Their English names are zero, one, two, three, four, five, six,
seven, eight, and nine.
Write a program to ask for a decimal digit (0 to 9), then print
the English name of the digit. Our program goes like this:

Decimal digit? 3
three

Decimal digit? 10
That's not a decimal digit!

Decimal digit? 0
zero

Decimal digit? -1
That's not a decimal digit!

Decimal digit? 2.5
That's not a decimal digit!

Decimal digit?

Can you solve this problem in at least two quite different ways?
More ways?!

0 The BASIC Teacher

T U e
BASIC Browsing BASIC

By Don Inman

*9

WE WILL talk a little bit more about your Disk Operating System (DOS) in
this issue. We've talked about how DOS is quite often the most ignored part
of a computer system. DOS is necessary, but it is usually used only for the
most basic things-like formatting, copying disks and disk files, and loading
the software that we use.

In "Browsing BASIC #3," we discussed how to label disks and how to use
DOS to write a CONFIG. SYS file to the DOS disk. In "Browsing BASIC
#6," we used COPY CON to turn DOS into a notepad to write short text
files. We also discussed the two distinct types of DOS commands: Resident
commands and Transient commands. The DOS features discussed were for
MS-DOS, version 3.2 and 3.3.

In this episode, we will browse information on a disk's main directory (called
the root directory), subdirectories, and file paths.

The MS-DOS version 3.20 used here is Tandy version 03.20.21. As you
browse the following discussion, remember that there may be slight dif
ferences between this version and the version of MS-DOS that you are
using.

Organizing Disk Files
MANY OF US only use the root directory when saving files to a disk. If you
have not specified a file path for DOS to use when searching for a file, it will
look only in the root directory. For many purposes the root directory is all
that is needed.

As the number of files on a disk grows, it is often
beneficial to separate the files into some type of or
ganized system. This can be done by using subdirec
tories. You can visualize the organization of your files
in such a system as an inverted tree with its roots up in
the air and its branches reaching downward and out
ward.

The root directory of a disk is represented by the roots
of the inverted tree. Subdirectories are represented by
the branches. The first level of subdirectories are ac
cessed directly from the root directory. The next level
ofsubdirectories are accessed through the first-level
subdirectories.

fitnsDft IE-MS Itosion 3,28
(Ofowrijit Hicnttft Cut 1*1 Mi
Ianfa Uminin 83,28.21
Liaised in Tandy far.
All fdjilts leswed.

The BASIC Teacher a

•SBBSI

Browsing BASIC

When preparing "Browsing BASIC" articles for The BASIC Teacher, I use
one disk for several articles. I save the text of the articles in the root directory
of the disk. Files used to produce figures are placed in a subdirectory related
to the article as shown in the following figure.

UDI

HMEH.HC
HHMK.KK
HOC 93 .IOC

1
1

RMS FIB

KBIET.W1 HIKHMl.PIX
XQIET.H2 HIKHK.PIX

IIDVtT.Hl UIDGtll.M
•

DOS Directory Commands
THE transient DOS commands used for manipulating directories include:

MKDIR - to make a new directory
CHDIR - to change to a different directory
RMDIR - to remove a directory
DEL - to delete a file (when used with a directory name)

The root directory is created when a disk is formatted. A disk has only one
root directory. You must create any subdirectories you wish to add.

Creating A Subdirectory
WE WILL now go through the process of creating a subdirectory called FIGS
that will store figures used in "Browsing BASIC #6." These files now exist in
a hodgepodge with others on what I will call a master disk. The files will be
transferred from the master disk to a subdirectory of a newly formatted disk
that is given the title, BROWSING.

The BASIC Teacher

Browsing BASIC 3

The names used for the drives in this demonstration are drive A, drive B, and
drive D. Drives B and D are the logical names that I assigned to my 5-1/4"
drive in "Browsing BASIC #3." Assuming you are starting in disk drive A, the
disk is formatted and the subdirectory is created by the following steps:

1. Put the new disk in drive B and format it with the V option:

AtfUMAT Bl/V
Insnt mi diskett* for friut B:
and stub Uffll uhti rudy

Fttmat nw couplet*

UdImc label (11 charactenj HID) far anntl? _

2. Label the disk BROWSING:

A>FQRflAI B:A>
Insert neu diskette for driue B=
and strike EMTER uhen ready

Fornat conplete

Uolune label (11 characters! ENTER for none)? BROWSING

3624% bytes total disk space
3624% bytes available on disk

Fornat another (V<41)?

3. Access drive B with the command:

A>B:

4. The command to create the BROWS6 subdirectory on the new disk is:

B>MKDIR \PROGS or B>MD \PROGS

Note that you use the backslash (\), not the regular slash that is used as a
division sign when performing arithmetic. A backslash is a delimiter that
precedes any subdirectories name. The backslash is used to specify to DOS
that the name represents a subdirectory. It also is used at times to separate
the subdirectory's name from the directory in which the subdirectory is found.

When step 3 has been completed, the top of the screen
appears as shown at the right. Drive B was accessed, the
MKDIR command given with the specified subdirectory.
The subdirectory is created, and the computer waits for
the next command.

A>B:

B>NKDIR VPROGS

B>

The BASIC Teacher

4 Browsing BASIC

If you look at the directory of the disk after the subdirectory has been
created, you will see the subdirectory's name (PROGS). Notice that the
letters, DIR, are enclosed in left and right carets <DIR> in place of
the extension used for files. Also note that the subdirectory is included
in the file count of the root directory.

Adding Files to the
PROGS Subdirectory
AFTER THE subdirectory has been created, you can add files to it. The basic
DOS commands (COPY, ERASE, etc.) will work with subdirectories.

To add the first program file from "Browsing BASIC #1," the following steps
were used.

1. The master disk with the programs from "Browsing BASIC #1" was
placed in drive B.

2. Drive B was accessed and the file name entered. The target drive and
the subdirectory where the copy is to be placed follows the file name.

B>COPY KEYTEST.001 D:\PROGS

B>DIR

Uolune In driue B is BROWS IMG
Directory of B:>»

PROGS <DIR> 8-04-88 10:24a
1 Filets) 361472 bytes free

B>

DOS
command

source
file name

target disk and
subdirectory

Since I am using drive B and drive D to name the same physical 5-1/4"
disk drive, the computer prints a prompt to insert the diskette in drive
D: and strike any key when ready.

3. Put the newly formatted disk in the 5-1/4" drive (B/D) and press
ENTER. The file is copied.

mn musT.ni p;ms

Insnt Jisbtt* fur frift >: M strife
arj fey «hei rtada

i wfieJ

!>_

To see that the file has been copied to the desired subdirectory, the subdirec
tory is included with the DIR command as follows:

B>DIR \PROGS

The BASIC Teacher

Browsing BASIC

When this directory command is executed, the directory appears on the
screen as follows:

B>DIR MTOGS

Uolune In driue B is BROWSING
Directory of BAPROGS

<D1R> 8-84-88 10:24a
<DIR> 8-84-88 10:24a

KEV1ESI 001 287 1-23-88 3:33p
3 Filets) 356352 bytes free

B>

The disk title (BROWSING) is given on the first line of the directory. The
second line shows the subdirectory title. The one-dot and two-dot entries are
references to the current directory and the parent directory and are seldom
used. Ignore them for the present. Then the KEYTEST.001 file is listed, fol
lowed by the number of files and the number of free bytes left on the disk.
The one-dot and two-dot entries are counted as files.

I continue copying program files from "Browsing BASIC #1" and "Browsing
BASIC #2" using the same three-step process. When all the program files for
these two articles have been entered, the PROGS subdirectory displays the
following:

B>DIB MWGS

Uolune in drive B is BROWSING
Directory of BAPROGS

<DIR> 8-04-88 10:24a
<DIR> 8-04-88 10:24a

KEVTEST 001 287 1-23-88 3:33p
KEVTEST 082 382 1-23-88 3=32p
KEVIEST 083 279 1-23-88 3:38p
KEVTEST 004 1136 1-23-88 3=5?p
OIEWPRT 001 506 1-30-88 3:42p
WINDOW 001 1620 1-31-88 6:10p

8 Filets) 353280 bytes free

B>

JSC®

The BASIC Teacher m

6 Browsing BASIC

Creating and Adding Files
to the FIGS Subdirectory
A NEW subdirectory is created in the same way as the PROGS subdirectory.
This time it is named FIGS and is created on the same disk.

B>MKDIR \FIGS

After the directory has been created, the root directory of the disk titled
BROWSING shows the following:

B>DIR

Uolune in drive B is BROWSING
Directory of B:N>

FIGS <DIR> 8-04-88 3=35p
PROGS <DIR> 8-04-88 10:24a

2 Filets) 352256 bytes free

B>

The figure files are copied from the master disk in the same way the program
files were copied. For example:

B>COPY VIEWPRT1.PIX D:\FIGS

After all six of the figure files had been copied into their subdirectory, the
new subdirectory contains:

B>DIR ^FIGS

Wolune in drive B is BROWSING
Directory of B^FIGS

I <DIR> 8-84-88 3:35p
I l <DIR> 8-04-88 3=3Sp
UIEUPRT1 PIX 2091 3-14-88 6=43p
UIEWPRT2 PIX 2328 3-14-88 7=20p
UIND0U1 PIX 1969 1-30-88 i:07p
UIND0U2 PIX 2099 1-31-88 6:23?
WINDOW PIX 1981 1-30-88 l = 41p
UIHD0U4 PIX 1973 1-38-88 2: B4p

0 Flle(s) 334848 bytes free

IP-

One chore remains. That is copying the text file for "Browsing BASIC #1"
and "Browsing BASIC #2" into the root directory. We have used the root
directory many times before, so this is an easy job with the copy command.

B>COPY BROWSEl.DOC D: or B>COPY BROWSE1.DOC D:\
B > C O P Y B R O W S E 2 . D O C D : o r B > C O P Y B R O W S E 2 . D O C D : \

0 The BASIC Teacher

Browsing BASIC 7

The backslash, when used alone following the disk drive letter, specifies the
root directory. It is optional in this case since we are operating from the root
directory. When using subdirectories, the backslash gives a clear indication
that you are referring to the root directory.

When these two documents have been copied to the root directory, the disk
organization for two articles is complete. The root directory shows the titles
of the two subdirectories plus the two text files for "Browsing BASIC #1" and
"Browsing BASIC #2."

Dili

Iblio* ia tin B is BUBIIKi
Dinctoy B:\

m <»m B-M-tt J:35p
fflOGS m> B-H-R l«:24a
HKKE2 HC 17GH 3-S-B »:4fl*
HOEEi IOC 23151 1-H-R 12:31p

4 FileCs) »4912 IvUs

The same procedure is carried out for other "Browsing BASIC" articles.

Accessing A Directory
THE ROOT directory is normally the default directory for a disk. However,
DOS allows you to select (or change) the default directory. Changing to a
given directory or subdirectory, allows you to work directly with the files con
tained in the selected directory or subdirectory. Then you don't have to enter
the directory name in order to access a file tucked away in a seemingly distant
subdirectory.

For example, suppose I want to erase a file that resides in the subdirectory,
PROGS. It can be done in either of the following two ways.

1. From the root directory, give the ERASE command followed by the
file path that will locate the file you wish to erase:

B>ERASE \PROGS\WINDOW.001

2. Change the default directory to the subdirectory, PROGS. Then give
the ERASE command directly. No file path is needed.

B>CHDIR \PROGS
B>ERASE WINDOW.001

Either method will work.

The first method leaves you in the root directory. Any DOS commands for
files in the PROGS subdirectory must use the long file path to find the
desired file.

The second method leaves you in the PROGS subdirectory. Any DOS com
mands for files in this subdirectory can be given directly without the file path.

The BASIC Teacher

Browsing BASIC

Files for this Article i
The writing that I do is sent to various publishers. I find the organization of
files discussed is useful for myself as well as for copying disks to be sent to
publishers. For this particular article, the root directory of the publisher's
disk is:

Uolune in driue B is BR0USE89
Directory of

FIGS <DIR> 9-28-89 l-22p
BR8US89 DOC 10092 9-15-89 3:46p

2 Filets) 312328 bytes free

There are no programs in this article. Therefore, there is no program sub
directory. The FIGS subdirectory is:

Uolune in drive B is BR0USE89
Directory of B^FIGS

1 <D1R> 9-28-89 l;22p
1 • <DIR> 9-28-89 l:22p
FIG9-1 PIX 3433 9-11-89 6:4Sp
FIG9-2 PIX 3462 9-11-89 6:48p
FIC9-3 PIX 3842 9-11-89 6 ;51p
FIG9-4 PIX 3419 9-11-89 6:53p
FIC9-5 PIX 1677 9-11-89 6:55p
FIC9-6 PIX 1379 9-12-89 10:14a
FIG9-7 PIX 1528 9-12-89 10:15a
FIC9-8 PIX 3267 9-12-89 10:28a
F1G9-9 PIX 1586 9-12-89 1071a
FIG9-18 PIX 1668 9-12-89 10:28a
FIG9-11 PIX 1549 9-12-89 10:38a
FIG9-12 PIX 1659 9-12-89 10:32a
FIG9-13 PIX 3751 9-12-89 10:34a
FIG9-14 PIX 1527 9-28-89 12=31p
FIC9-15 PIX 1787 9-28-89 12:33p

17 Filets) 388224 bytes free

We will continue DOS file manipulation at a later time. If you have particular
DOS features that you would like discussed, send suggestions to The BASIC
Teacher, 2814 - 19th Street, San Francisco, CA 94110.

*

The BASIC Teacher

TU<
BASIC

Teach Yourself QuickBASIC
By Bob Albrecht and George Firedrake *9

The People's
Computer Language
QUICKBASIC is rapidly replacing GW-BASIC as the
standard general-purpose programming language, the
People's Computer Language. Universities will adopt
QuickBASIC as the language for students in engineer
ing, business, science, and most any discipline other than
computer science (who will use a language called C).
QuickBASIC, or something very similar, will become the
macro language in applications software, such as word
processors, database managers, and spreadsheets. If you
know QuickBASIC, you can tell the computer to do it
your way!

Screen Nodes
YOUR COMPUTER probably has at least three
screen modes, as follows:

• Text only

• Medium-resolution graphics

• High-resolution graphics

The text mode allows you to print ASCII
characters on the screen: letters, numbers,
punctuation, special characters ($, #, etc.),
foreign alphabets, and graphics Characters.
The graphics modes allow you to plot tiny dots
called pixels on the screen; draw lines, boxes,
circles, and more complex shapes; and also
print text and other characters.

SCREEN O
WHEN YOU first start QuickBASIC, it
automatically selects the text mode for the
Output Screen. This is SCREEN 0. You can
use a SCREEN 0 statement in your program
or in the Immediate Window to select this
mode.
In SCREEN 0 you can print text and other
ASCII characters in 16 foreground colors on
8 background colors. You use the COLOR
statement to select colors. Of course, you must
have a color monitor to see these colors!

Text is normally printed in 25 lines with 80
characters per line. However, you can use a
WIDTH 40 statement to tell the computer to
print in 2$ lines with 40 characters per line.

The BASIC Teacher 0

2 Teach Yourself QuickBASIC

Graphics Modes
If YOUR computer has a Color Graphics
Adapter (CGA), it has at least two color
graphics screens:

• SCREEN 1 is a medium-resolution
graphics screen with 16 background
colors and 4 foreground colors at any
one time. Text is printed 40 characters
per line.

• SCREEN 2 is a high-resolution
graphics screen with one background
color (black) and one foreground
color (white). These colors may be
different on a monochrome monitor.
Text is printed 80 characters per line,
the same as in SCREEN 0.

If your computer has an Extended Graphics
Adapter (EGA) or Video Graphics Array
(VGA), it has additional screen modes. The
Tandy 1000 computers also have enhanced
CGA with additional screen modes.

SCREEN 1
WE WILL start with standard CGA capabilities
and begin with things you can do in SCREEN
1. For text, you can use SCREEN 1 just like
you use SCREEN 0 in its 40 characters per
line mode. Enter this tiny program in the View
Window and run it.

SCREEN 1
PRINT "This is SCREEN 1"

The Output Screen will appear as shown
below in big letters (same as WIDTH 40 in
SCREEN 0):

This is SCREEN 1

Press any key to continue

For graphics, the screen is divided into 64,000
tiny rectangles called pixels. Pixel is short for
"picture element." A pixel position is iden
tified by two coordinates, a column number
(0 to 319) and a row number (0 to 199), as
shown below:

columns 0 to 319 319

rows
0 to 199

t
199

one pixel position (column,row)

[5] The BASIC Teacher

Teach Yourself QuickBASIC 3

Background Colors
In SCREEN 1, the dGfault background color
is color #0, black. You can use a COLOR state
ment to select any of 16 background colors,
including black. Use the following tiny
program to color the entire screen blue.

SCREEN 1
COLOR 1

Run the program. You will see a blue screen,
empty except for the familiar "Press any
key to continue — " on the bottom line
of the screen. Note that this message is in
double-width letters. The statement COLOR
l selects blue as the background screen color.
Press any key to return to the View Window,
then change the program slightly, as follows:

SCREEN L
COLOR 2

Run the program. Now you see a green screen.
The statement COLOR 2 selects green as the
background screen color. Press a key to return
to the View Window and change the program
again:

SCREEN 1
COLOR 3

Run the program. This time you see a cyan
screen. Cyan is a pale blue color. Press a key to
return to the View Window and change the
program to the one shown here:

SCREEN 1
COLOR 7

Run the program to get a light gray screen.
Oops! What happened to the "Press any
key to continue..." message? Well, it's
there, but in the same light gray color as the
background color-so it is invisible.

You Pick a
Background Color
You CHOOSE a color number from 0 to 15 and
complete the program.

SCREEN 1
CO LOR < - your color number

Here is a table of available background colors
and color numbers.

COLOR Color COLOR Color
number selected number selection

0 black 8 dark gray
1 blue 9 bright blue
2 green 10 bright green
3 cyan 11 bright cyan
4 red 12 bright red
5 magenta 13 bright magenta
6 brown 14 yellow
7 light gray 15 white

Of course, the colors you see on your color
monitor might be somewhat different, depend
ing on how you set your color control dials &
knobs. On our screen, COLOR 6 ("brown")
looks more like orange. Good! We can use
red, orange (COLOR 6), yellow, green, blue,
and magenta for the six colors of the rainbow.

What happens if you try COLOR 16 or
COLOR 17 or COLOR 120? Try it and find
out. Then try this program:

REM ** SCREEN 1 Background Colors **
' The BASIC Teacher #9. Filename: TYQB0901.BAS

SCREEN 1

ColorNumber =0 _

DO
COLOR ColorNumber
CLS
PRINT "COLOR"; ColorNumber
akeyS = !NPUT$(1)
ColorNumber = ColorNumber + 1

LOOP

Run this program. It begins with the message
"COLOR 0" on a black screen. Press a key to
see "COLOR l" on a blue screen. And so on.
Run through colors 0 thru 15, then 16,17,18,
and so on.

The BASIC Teacher

4 Teach Yourself QuickBASIC

Pick a Palette
THINK OF the screen as a canvas available in
16 background colors. You can pick a palette
of foreground colors for drawing on the
screen. The Color Graphics Adapter (CGA)
provides two palettes, each with four colors
numbered 0,1,2, and 3.

Palette #0 has the following colors:

0 is the background color
1 is green
2 is red
3 is brown (orange on our screen)

Palette #1 has the following colors:

0 is the background color
1 is cyan
2 is magenta
3 is light gray

Remember, the above numbers are palette
color numbers, not to be confused with the
numbers that pick background colors for the
screen.

You pick a palette by including the palette
number, 0 or 1, in a COLOR statement. For ex
ample:

The statement: COLOR 0, 1
picks black as the background color and
palette #1 for the foreground colors. So the
foreground colors will be 0 for black, 1 for
cyan, 2 for magenta, and 3 for light gray.

The statement: COLOR 15, 0
picks bright white for the background color
and palette #0 for the foreground colors. The
foreground colors will be 0 for bright white, 1
for green, 2 for red, and 3 for brown. Brown
looks like orange on our screen

Note that text is printed in palette color #3,
brown (or orange) in palette #0, or light gray
in palette #1.
A COLOR statement to select a background
color and a palette consists of the word
COLOR, a number from 0 to 15, a comma,
and 0 or 1.

COLOR ,

a number, Oto 15 Oorl

Well, it's time to pick a canvas color
(background color), a palette of four colors,
and plot some pixels.

Plot a Pixel
A pixel is a picture element, a tiny rectangle
on the screen. Use a PSET statement to plot a
pixel. PSET means pixel set. If you want to plot
a pixel, you must tell the computer where to
put it. To do so, you name the column and row
where you want your pixel to go. You also tell
what color you want (0,1,2, or 3) in a previ
ously selected palette. For example:

The statement: PSET (0, 0) , l

tells the computer to plot a pixel at column 0,
row 0 in palette color number 1. In palette 0,
this is green; in palette 1, it is cyan. Column 0,
row 0 is the upper left corner of the screen.

The statement: PSET (319, 199), 2

tells the computer to plot a pixel at column
319, row 199 in palette color number 2. In
palette 0, this is red; in palette 1, it is magenta.
Column 319, row 199 is the bottom right cor
ner of the screen.

The BASIC Teacher

Teach Yourself QuickBASIC

Plot Pixels
in Pour Corners
PROGRAM TYQB0902, shown at the bottom
of this page, plots a pixel in each of the four
corners of the screen. The pixels appear on a
black background.

The statement: COLOR 0, l

picks black as the background color and
palette 1 for the foreground colors.

COLOR 0, 1

black background palette #/

The statement: PSET (0, o), 1

plots a pixel in the upper left corner. This pixel
is cyan. Why? Because palette #1 was previ- »
ously picked.

PSET (0, 0), 1

location of pixel palette color number

The statement: PSET (319, 0), 2

plots a pixel in the upper right corner. This
pixel is magenta in palette #2.

The statement: PSET (319, 199), 3

plots a pixel in the lower right corner. This
pixel is light gray in palette #1.

The statement: PSET (0, 199), o

plots a pixel in the lower left corner. This pixel
is the background color, so you can't see it. A
pixel plotted in palette color number 0 is al
ways invisible-so why bother? Well, you can
use it to erase a pixel that was previously
plotted in another color.

After plotting four pixels in four corners of the
screen, the computer waits for someone to
press a key. Press a key and the program ends.

The statement: akey$ = INPUT$ (1)

tells the computer to wait for someone to
press one key. When a key is pressed, the
string value of the key is assigned as the value
of the string variable akeyS and the computer
moves on to the next statement. In this
program, there isn't any next statement, so the
program ends with the usual message, "Press
any key to continue..."

Program TYQB0902
REM ** Plot Pixels in the Four Corners of SCREEN 1 **

1 The BASIC Teacher. Filename: TYQB0902.BAS

SCREEN 1

COLOR 0, 1

PSET (0, 0), 1
PSET (319, 0), 2
PSET (319, 199), 3
PSET (0, 199), 0

akey$ = INPUT$(1)

'Black background, palette 1

•Upper left corner, palette color 1
'Upper right corner, palette color 2
'Lower right corner, palette color 3
•Lower left corner, palette color 0

'Wait for a key press to end program

The BASIC Teacher i
/

6 Teach Yourself QuickBASIC

Zappy Artist
Plots Pixels
WHILE WE were writing this episode of
"Teach Yourself QuickBASIC," Zappy Artist
stopped by. Zappy likes to zap around the
screen plotting random pixels, and drawing
random lines, boxes, circles, and other stuff.

Zappy spent an hour or so humming to himself
and entering programs. Then, "Gotta go," said
Zappy. Without further ado, he handed us a
disk and left, promising to return soon and ex
plain how his programs work.

One of Zappy's programs is shown below.
Since you don't have Zappy's disk, enter it
from the keyboard and run it. Also try a varia
tion, as follows:

Instead of: COLOR O, L
Try: COLOR 15, 0

Or, you pick the background color number (0
to 15) and palette number (0 or 1).

Program TYQB0903
REM ** Zappy Artist Plots Pixels Everywhere **
• The BASIC Teacher. Filename: TYQB0903.BAS

REM ** Set up **
DEFINT A-Z
RANDOMIZE TIMER
SCREEN 1
COLOR 0, 1

'Medium resolution graphics
'Black background, palette #1

REM ** Plot pixels in random places & colors, with sound **

DO

•Compute random place and color
COl = INT(320 * RND)
row = INT(200 * RND)
Pcolor = INT(3 * RND) + 1

•Plot a pixel
PSET (col, row), Pcolor

•Make a short random sound
frequency! = 4000 * RND + 37
SOUND frequency!, .25

'Random column: 0 to 319
'Random row: 0 to 199
•Random palette color: i, 2, or 3

'Try other frequency ranges
'Try other durations

LOOP

To stop the program, hold down CTRL and press BREAK. If you have
a Tandy 1000TX or older Tandy 1000, hold down CTRL and press HOLD.

The BASIC Teacher

Special Reader Services
For
Power Users!
Microsoft QuickBASIC
Version 4.5
Microsoft QuickBASIC 4.5 is a complete
BASIC learning system. The new interactive,
on-disk tutorial, Microsoft QB Express,
quickly and easily introduces you to the
Microsoft QuickBASIC environment. A new
step-by-step tutorial guides you through an ac
tual application. And numerous example
programs help you master BASIC program
ming.
MS-04366 QuickBASIC 4.5 $90.00

Now only $79.00

DOS Made Easy by Herbert Schildt
(Osbome/McGraw-HUl, 385pp). Previous com
puter experience is not necessary to under
stand this concise, well-organized introduction
that's filled with short applications and exer
cises. The book walks you thru all the basics,
beginning with an overview of a computer
system's inner components and a step-by-step
account of how to run DOS for the first time.
(OMH-881194 $19.95)

Tha Shareware Book: Using PC-Write,
PC-Flle+ l< PC-Calc-f, Second Edition by
Ramon Zamora, et al (Osbome/McGraw-Hill,
744pp). This outstanding guide combines in
struction and reference material into one
single resource that you'll use again and again.
Learn to use PC-Write (word processor), PC-
File + (database) and PC-Caic+ (spreadsheet)
with ease and efficiency. (OMH-881591
$2195)

i flififi

} I) o s TU.
BASIC

The BASIC Teacher
Back Issues Available
TBT-l Issue No. 1.
TBT-2 Issue No. 2.
TBT-3 Issue No. 3.
TBT-4 Issue No. 4.
TBT-5 Issue No. 5.
TBT-6 Issue No. 6.
TBT-7 Issue No. 7.
TBT-8 Issue No. 8.

$3.00
$3.00
$3.00
$3.00
$3.00
$3.00
$3.00
$3.00

Our apologies. .
Due to circumstances
beyond our control, this
issue is late again. Our
landlord sold the building
and we had to make an
emergency move. Luckily
we found suitable quarters
across the street. And then
the earthquake hit. No one

was hurt but it threw our
schedule off like we never
imagined. Please bear with
us and we should be back
on schedule soon. Sub
scribers will get the full
number of issues promised.
The number next to your
name on the mailing label
on the back page is the last
issue in your sub.

SJ t-£

II £u>

2 1

o
Z

1 £ =

O
UJ

<
a:
<
3
C3
Z
o
p
o <

3

?.ll

ill §
* " 1 3 o o ® *
Z - 2 ijll
<li^
fip 3! *!
"Ill 1

NEW BOOKS
ON BASIC

HANDBOOK OF BASIC:

THIRD EDITION

FOR THE IBM PC, XT, AT, PS/2,
AND COMPATIBLES

n»n» |. Scnwtinu
UMVUOITT OF MAIWAVU

Handbook of BASIC: Third Edition by
David I. Schneider. "I can recommend [this
book] without reservation to everyone,
whether you're a beginner, semi-professional,
or professional programmer. Anyone who
takes the time to look between the covers will
find that this book is indeed a very valuable
reference. "-Richard Aarons, PC Magazine.
Update your programming libraty with this
third edition of the most thorough and com
plete reference book on the BASIC language
for PCs and compatibles ever put together.
Complete and detailed explanations of state
ments are illuminated by over 600 examples.
Each listing has the most popular form of the
BASIC command, followed by subtle varia
tions and extensions. Both a ready source and
a tutorial, this is the most comprehensive
BASIC reference manual available! (BRA-
372582-0 $24.95)

Advanced BASIC for the IBM PC and
Compatibles: Tips and Techniques by
Larry JoeI Goldstein. Now that you're ready to
make more Sophisticated use BASIC, this
book will help you develop your skills right.
This book is a thorough, hands-on guide to
BASICs complex commands for creating
more powerful programs. As you work through
the key principles in the text, you'll literally
build a program called the Bar Chart Genera
tor. This practical case study reinforces all the
valuable techniques you'll learn, to let you go
on to create your own applications programs.
(BRA-010307-1 $19.95)

Hands-On QuickBASIC by Larry Joel
Goldstein. You've chosen Microsoft's bestsell-
ing compiler to get programs up and running
quickly. Now choose Hands-On QuickBASIC
to get all the information you need to learn
and use it quickly and efficiently. Clear, con
cise tutorials teach you everything you need to
know. First-time programmers will find author
Larry Joel Goldstein's approach both acces
sible and complete. Experienced users will
benefit from his coverage of advanced topics.
Hands-On QuickBASIC starts as a tutorial,
then becomes a reference that you'll return to
over and over again. (BRA-383480-8 $21.95)

Math
History
&
Fun

A Short Account of the History of Mathe
matics by W.W. Rouse Ball (Dover, 522pp).
One of the clearest, most authoritative surveys
from the Egyptians and Phoenicians thru
19th-century figures such as Grassman, Galois,
Riemann. (DOV-20630-0 $9.95)

Mathematics in the Time of the Pharaohs
by Richard Gillings (Dover, 286pp). First
book-length study-from simple commercial
computations to trigonometric functions used
in construction of pyramids. Fascinating,
provocative. (DOV-24315-X$695)

Perplexing Puzzles and Tantalizing
Teasers by Martin Gardner (Dover, 256pp). 93
riddles, mazes, illusions, tricky questions, word
and picture puzzles, other entertainments for
youngsters. Many hilarious drawings. Solu
tions. (DOV-25637-5 $3.95)

Entertaining Mathematical Puzzles by
Martin Gardner (Dover, 112pp). Entertaining
collection includes stimulating puzzles involv
ing arithmetic, money, speed, plane and solid
geometry, topology, more. Solutions. (DOV-
25211-6 $195)

Mathematics, Magic and Mystery by Martin
Gardner (Dover, 176pp). Math behind card
tricks, stage mind reading, coin and match
tricks, etc. Plus more than 400 tricks,
guaranteed to work. (DOV-20335-2 $3.95)

2813 - 19th Street
San Francisco, CA 94110
Address Correction Requested

Ingenious Mathematical Problems and
Methods by Louis A. Graham (Dover, 237pp).
Sophisticated material from Graham's Dial,
applied and pure; stresses solution methods.
Logic, number theory, networks, inversions,
etc. (DOV-20545-2 $5.95)

The Surprise Attack In Mathematical
Problems by Louis A. Graham. Second
volume from Dial. Difficult, sophisticated,
challenging situations, stressing optimal ap
proaches. Applied and pure. (DOV-21846-5
$5.95)

Mathematical Brain Benders by S. Barr
(Dover, 224pp). "Another collection of devilish
problems, everyone original."-Martin
Gardner. Over 100 fresh paradoxes, word and
number games with wit, humor. Answers.
(DOV-24260-9 $4.95)

Mathematical Puzzles of Sam Loyd edited
by Martin Gardner (Dover, 167pp). Bizarre,
original, whimsical puzzles by America's
greatest puzzler. Elementary math. (DOV-
20498-7 $3.95)

More Mathematical Puzzles of Sam Loyd
edited by Martin Gardner (Dover, lTJpp). 166
more problems from Cyclopedia. Arithmetic,
algebra, speed and distance problems, game
theory, more. (DOV-20709-9 $4.50)

The Master Book of Mathematical
Recreations by Fred Schuh (Dover, 430pp).
Possibly the finest book work ever prepared on
mathematical puzzles, stunts, recreations.
(DOV-22134-2 $695)

Test Your Logic by George J. Summers
(Dover, lOOpp). 50 more truly new puzzles with
new turns of thought, new subtleties of in
ference. (DOV-22877-O $295)

Codes, Ciphers and Secret Writings by
Martin Gardner (Dover, 96pp). Cipher and
decipher codes: transportation, polyalphabeti-
cal, famous codes, typewriter and telephone
codes, much more to challenge minds. (DOV-
247661-9 $295)

BULK RATE
U.S. Postage

P A I D
San Francisco, CA
Peimit No. 11798

MICHAEL K ERICKSON # 14
COMMUNICATIONS ASSOCIATES
BOX 250
MONTE RIO, CA 95462-0250

I

Different Worlds Publications

Different Worlds
2814-19th Street
San Francisco CA 94110 [415] 282-0999

BACK ISSUES OF
" Y O U R B A S I C B A C K P A C K
FROM THE COMPUTER SHOPPER

IF YOU can read a comic book or a newspaper,
you can learn to read and understand
programs in BASIC. "Your BASIC Backpack,"
the popular column in the World's Biggest
Computer Magazine, The Computer Shopper,
provides tutorials for beginners who want to
learn how to use Microsoft BASIC and
QuickBASIC.

"Your BASIC Backpack" also poses problems for you to think about,
play with, and solve.

Copies of past issues of "Your BASIC Backpack" are available as
follows:

Number 1 Sep •87 lOpp $2.00
Number 2 Oct •87 14pp $2.50
Number 3 Nov •87 14pp $2.50
Number 4 Dec •87 14pp $2.50
Number 5 Jan •88 18pp $3.00
Number 6 Feb •88 20pp $3.00
Number 7 Mar •88 23pp $3.00
Number 8 Apr •88 22pp $3.00
Number 9 May •88 23pp $3.00
Number 10 Jun •88 24pp $3.00
Number 11 Jul •88 20pp $3.00
Number- 12 Aug •88 22pp $3.00
Number 13 Sep •88 16pp $3.00
Number 14 Oct •88 16pp $3.00

Prices include paper, toner, wear & tear on our trusy Canon
copier, our time spent over hot copy machine, envelope, and
first-class postage.

These are full-size (8-1/2" x 11") copies, not the reduced print
published in The Computer Shopper. Perfect for all of you who
don't have hyperscopic eyes.

Please order from Different Worlds Publications, 2814 - 19th
Street, San Francisco, CA 94110.

Publishers of Different Worlds Magazine, Empire of the Petal Throne/Tekumel, Thieves' Guild, Haven

ASK DR. JOHN
by John Heilborn

BASIC Difficulties

Dear Dr. John:
I enjoy reading your articles in

Computer Shopper. I am 41 years
young and have been programing in
BASIC for about six years. I first
learned to program on my Texas
Instrument TI-99/4A, then pro
gressed to my Atari 800XL. I now
have an MS-DOS computer and
need your help with several pro
gramming questions.

Problem #1: Input. For example:
10CLS
20 LOCATE 10,2:INPUT "",K$
30 LOCATE 20,2:PRINT K$
40 LOCATE 10,2:INPUT K$
50 LOCATE 21 SPRINT K$
When I run this program and

input "CAT," then K$="CAT" will
be displayed on row 30. Now at the
second input, enter "R" and press
the Enter key to change from CAT to
RAT. Now K$="R." My Atari would
have accepted the second input as
RAT even though you pressed the
Enter key after the letter "R." The
only way I can do this with my MS-
DOS computer is to either enter the
word completely or to move the cur
sor to the end of the word. Will I
have to write a subroutine to get
each character as it is entered, then
place it into a string?

Problem #2: Explain how to pro
gram the function keys. For exam
ple

If F1 is pressed then...(go to sub
routine)

If F2 " ", etc, etc.
Problem #3: How can I differenti

ate the numeric pad from the cursor
keys? Using the ASCII codes did not
help.

Problem #4: How can I read the
directory from BASIC so I can dis
play it as it appears at the DOS
level? I do not like the BASIC FILES
command.

Leonard M. Briones
Baton Rouge, La.

Dear Leonard:
I am assuming that you are refer

ring to GW-BASIC in these ques
tions. Although most interpreted
BASICs are quite similar, some of
these questions would be answered

differently for different BASICs such
as QuickBASIC, which, by the way,
can operate in either the compiled or
interpreted mode.

NOTE: Computers do not really
understand BASIC, or any other
high-level languages. So in order to

computer store a whole word con
sisting of the new first character and
all of the previous ones you might
try this approach:

10CLS
20 LOCATE 10,2:INPUT "",K$
30 LOCATE 20,2:PRINT K$

Computers do not really
understand BASIC, or any other
high-level languages.

run the programs we write in those
languages, they must translate each
command into machine code (some
thing they do understand). And this
must be done before they can per
form the tasks outlined in our pro
grams. One way of translating the
instructions (the programs we write)
is by using an interpreter like the
one that is a part of GW-BASIC.

In interpreted mode, BASIC com
mands are "interpreted" as they are
encountered, while the program is
running. As a result, the program
must be translated each time it is
run, making interpreted languages a
bit slower than programs that are
written in something the computer
can understand directly. Compiled
languages like QuickBASIC or
QuickC are compiled into some
thing the computer can understand
the first time they are written. As a
result, when they are run, they can
operate much more quickly than
interpreted languages. The disad
vantage of this is that the computer
is running one thing and you are
writing another, which can make
trouble-shooting a bit more com
plex. However, these issues are bet
ter dealt with in another column.

So, keeping in mind that there are
always lots of solutions to every
problem in programming, here are
the answers to your questions:

#1: First of all, you're right, GW-
BASIC for the IBM computers will
not read the screen characters unless
the cursor has passed over them or
you have entered them yourself.
However, if your goal is to be able to
enter a single character and have the

35 Kl$ = RIGHT$(K$,(LEN(K$H))
40 LOCATE 10,2: INPUT "",K$
45 K$=K$+K1$
50 LOCATE 2UPRINT K$
By the way, this is actually your

program with just three changes.
Fust, I changed line 40. In your ver
sion, the computer inserts a space
and question mark over your previ
ous entry because you omitted the
double quotes before your variable
(K$). Incidentally, this alternatively
could have been solved by remov
ing the double quotes from 20 if
you'd prefer the question mark as a
prompt for each entry.

The second change I made was to
store all of the data entered into K$
(to the right of the first character) in
a second variable, Kl$. This allows
us to reuse K$ in line 40 without los
ing the information we got in line 20.

Now, since I used a couple of new
commands in this line, let me
explain exactly how this works. The
RIGHTS command returns the
selected rightmost characters of a
string. For example, if you entered
the command:

PRINT RIGHTS! "BANANA",4)
the computer would respond by

printing: NANA, the four rightmost
characters of BANANA. Now in this
instance, I used a specific word, and
if you were always entering the
same word, you could simply put
that word in the RIGHTS statement
and the computer would return the
right thing every time. But since
you're using a variable and might
have any word in that string, we'd
want to use a variable in place of
"BANANA" like K$ perhaps.

Secondly, if all of the words that
you'd be entering in your program
were of the same length, you could
simply enter the number of charac
ters in the variables (minus 1, since
you want to replace the first charac
ter) and you'd be done. For example,
if K$ was "BANANA" then:

PRINT RIGHT$(K$,5)
would return the string: ANANA.
But since your entries might be any
length, we use LEN to obtain the
length of the variable that was
entered and subtract 1 from it, giv
ing us all but one character (the left
most one) from the string.

PRINT RIGHT$(K$,(LEN (K$)-l)
The last (third) change I made

was to add a line that put your
newly entered character together
with your old string so line 50 can
print it.

45 K$=K$+K1$
#2: Your question on how GW-

BASIC accesses the function keys
(F1-F10) is answered by looking at
the operation of the ON KEY com
mand. To get an idea of how this
works, here's an sample program
(with details following):

10CLS
20 PRINT "This program demon

strates the use of the function keys (Fl-
F10)"

30 PRINT "to test the function keys,
press any key from F1 to F10"

40 PRINT
50 PRINT 'NOTE: Fll and F12 are

not supported by GW-BASIC"
60 KEY(l) ON
70 KEY(2) ON
80 KEY(3) ON
90 KEY(4) ON
100 KEY© ON
110 KEY© ON
120 KEY© ON
130 KEY© ON
140 KEY© ON
150 KEY(10) ON
160 ON KEY(l) GOSUB 290
170 ON KEY© GOSUB 300
180 ON KEY(3) GOSUB 310
190 ON KEY(4) GOSUB 320
200 ON KEY© GOSUB 330
210 ON KEY© GOSUB 340
220 ON KEY© GOSUB 350
230 ON KEY© GOSUB 360
240 ON KEY© GOSUB 370
250 ON KEY(10) GOSUB 380
260 A$=INKEY$: IF A$="x" OR

A$="X" THEN END

u

ttu LUIVIfUltK SNUrt-tK, HUUUSI J.S3U

• ASK DR. JOHN

270 GOTO 170
280 CLS:PRINT "YOU PRESSED

THE F1 KEY,":PRINT:PRINT "to try
another function key":PR!NT "press
another, to exit, press the x
key.":RETURN

290 CLS:PRINT "YOU PRESSED
THE F2 KEY,":PRINT:PRINT "to try
another function key":PRINT "press
another, to exit, press the x
key.":RETURN

300 CLS:PRINT "YOU PRESSED
THE F3 KEY,":PRINT:PRINT "to try
another function key":PRINT "press
another, to exit, press the x
key.":RETURN

310 CLS:PRINT "YOU PRESSED
THE F4 KEY,":PRINT:PRINT "to try
another function key":PR]NT "press
another, to exit, press the x
key.":RETURN

320 CLS:PRINT "YOU PRESSED
THE F5 KEY,":PRINT:PRINT "to try
another function key":PRINT "press
another, to exit, press the x
key.":RETURN

330 CLS:PRINT "YOU PRESSED
THE F6 KEY,":PRINT:PRINT "to try
another function key":PRINT "press
another, to exit, press the x
key.":RETURN

340 CLS:PRINT "YOU PRESSED
THE F7 KEY,":PRINT:PRINT "to try
another function key":PRlNT "press
another, to exit, press the x
key.":RETURN

350 CLS:PRINT "YOU PRESSED
THE F8 KEY,":PRINT:PR1NT "to try
another function key":PRlNT "press
another, to exit, press the x
key.":RETURN

360 CLS:PRINT "YOU PRESSED
THE F9 KEY,":PRINT:PRINT "to try
another function key":PRINT "press
another, to exit, press the x
key.":RETURN

370 CLS:PRINT "YOU PRESSED
THE F10 KEY,":PRINT:PRINT "to try
another function key":PRINT "press
another, to exit, press the x
key.":RETURN

Now, at first glance, the program
above may seem a bit complex, but
it's actually pretty simple. Line 10,
for example, just clears the screen.
And lines 20-50 print an introduc
tory message that tells the user what
the program does.

The program is based on a princi
ple called trapping. You see, the
function keys don't operate exactly

the same way that other keys do.
Instead of generating an ASCII code
when they're pressed, you need to
trap them for your program to use
them. This makes using the function
keys a two-step process. First, you
need to enable key trapping by

turning it on and then you need to
detect the trap and tell the program
what to do.

Lines 60-150 turn on the key trap
ping (which must be re-turned on
after each trap). The syntax of this
process is:

KEY(n) ON
in which "n" is the number of the
function key you want to detect—1-
=F1,2=F2, and so on. So lines 60-150
turn on key trapping for all of the
function keys.

Lines 160-250 check for function
key entries and direct the program
to a subroutine that corresponds to
each different key (lines 280-370 are
these lines). And finally, line 270
simply tells the program to keep
looking if it hasn't found a key yet.

#3: The answer to this question is
almost identical to the one above. The
cursor keys are trapped just the same
way as the function keys. The main
difference is trap numbers. While the
function keys are numbers 1 through
10, the cursor keys are: 11 (for cursor
up), 12 (for cursor left), 13 (for cursor
right), and 14 (for cursor down). To
give you an idea how you might use
the cursor keys in a program, here's
another program example:

10CLS
20 X=14:Y=40
30 PRINT "This program demon

strates the use of the cursor keys."
40 PRINT "To move the pound

sign around on the screen,"
50 PRINT " press any of the four

arrow keys..."
60 PRINT "TO END THE

DEMONSTRATION, PRESS THE 'X'
KEY"

70 LOCATE X,Y: PRINT
80 KEY(ll) ON
90 KEY(12) ON
100 KEY(13) ON •
110 KEY(14) ON
120 ON KEY(ll) GOSUB 240
130 ON KEY(12) GOSUB 200

140 ON KEY(13) GOSUB 220
150 ON KEY(14) GOSUB 180
160 A$=INKEY$: IF A$="x" OR

A$="X" THEN END
170 GOTO 120
180 KEY(14) ON: LOCATE X,Y:

PRINT " ";:X=X+1: IF X>24 THEN
X=5

190 LOCATE X,Y: PRINT
"#";:RETURN

200 KEY(12) ON: LOCATE X,Y:
PRINT " ";:Y=Y-1: IF Y<1 THEN Y=80

210 LOCATE X,Y: PRINT
"#";:RETURN

220 KEY(13) ON: LOCATE X,Y:
PRINT " ";:Y=Y+1: IF Y>80 THEN
Y=1

230 LOCATE X,Y: PRINT
"#";:RETURN

240 KEY(ll) ON: LOCATE X,Y:
PRINT " ";:X=X-1: IF X<5 THEN X=24

250 LOCATE X,Y: PRINT
"#";:RETURN

In this example, as before, line 10
clears the screen. Then line 20 sets
up the initial position of the screen
object (in this case, the pound sign).
Lines 30-60 print some information
about the program and line 70 prints
the pound sign at its initial position
near the center of the screen.

Then, just like the previous pro
gram, lines 80-110 set up the cursor-
trapping parameters. Lines 120-150
check for a pressed cursor key and
send the program off to the appro
priate subroutine (up, down, left, or
right), depending upon which cur
sor key was pressed.

Line 160 tests for an X key (if the
user wants to end the program) and
170 repeats the key-searching pro
cess. Finally, lines 180-250 actually

move the pound sign around. Note
that if the pound moves off of the
edge of the screen or into the text at
the top or bottom of the screen, it
wraps around to the opposite side.

#4: To read the directory the way
that DOS does it, all you need to do
is go out to DOS, read the directory,
and put the information into a file.
That way, when you return to
BASIC, you can read the directory
any way you want. Here's an exam
ple of how that might be done:

10 KEY OFF: CLS: X=0
20 SHELL "DIR > BASDIR"
30 OPEN "I",l,"BASDIR"
40 IF EOF(l) THEN 100
50 INPUT#1, A$
60 PRINT A$
70 X=X+1
80 IF X=23 THEN 110
90 GOTO 40
100 END
110 PRINT
120 X=0: PRINT " paused, press

any key to continue..."
130 A$=INKEY$: IF A$="" THEN

GOTO 130
140 GOTO 90
In this example, line 10 turns off

the keys that are usually present at
the bottom of the screen in CW-
BASIC, clears the screen and sets the
line counter (X) to 0.

Line 20 uses the SHELL com
mand to execute a DOS command.
In this case, the DOS command puts
the contents of the directory into a
file called BASDIR.

In line 30, the program returns to
BASIC and opens the file called
BASDIR. Line 40 checks to make
sure that we haven't gone past the
end of the file and lines 50 and 60 get
the data from the file and print it.

Line 70 increments the line
counter and line 80 tests the line
count to see if we've got a full page
yet. If not, then the program returns
to line 40 to get more data. But if we
have a full line, the program prints a
pause message and waits for the
user to press a key in line 130. And
when a key is pressed, line 140 con
tinues with the next page of direc
tory listings.

Got a question about computers?
Send your queries on any computer-
related topic to: Ask Dr. John, P.O.
Box 20102, Castro Valley, CA 94546.

Cursor keys are trapped just
the same way as the function keys.
The main difference is trap
numbers.

U

COMPUTER SHOPPER, APRIL 1990 213

ASK DR. JOHN
by John Heilborn

Using a DataVue 25

Dear Dr. John:
1 have a used DataVue 25 com

puter and a Panasonic KX-1091i
printer. They work just fine with
programs such as EasyWriter, but
will not print graphics with share
ware products such as World Atlas
or PC Picture. Additionally, it will
not run Ninja or NCR Golf although
it will run Microsoft Flight Simu
lator. I also don't get the RAM drive
when I type the command as in the
manual.

What I'd like to know is: where
can I obtain meaningful information
on this machine? Also, where can I
get information on the Xerox 4020
Color Ink Jet printer that I just
bought, as well? I am getting a little
too old to not know what I am
doing, but 1 can't resist the adven
ture of learning about computers.

I'd appreciate any answers or
suggestions you may have.

John Martin
New York, N.Y.

Dear John:
The DataVue 25 is a fairly old

computer, so you may find that a lot
of the newer software will simply
not be compatible with it. For exam
ple, the DataVue 25 has an LCD type
display that emulates the older IBM
CGA display.

However, instead of being a color
display, it displays shades of gray. If
the software you are running is
designed for an EGA or mono
chrome display, it won't run on the
DataVue 25.

As far as your RAM drive is con
cerned, that is controlled by a setup
routine that is offered each time the
computer boots up. To enable the
RAM drive, you'll need to enter the
setup routine and tell the computer
how large you want the RAM drive
to be and so on. After that, it should
behave as listed in the manual.

Regarding your Panasonic 1091 i
printer, most printers will be able to
print simple text from almost any
word processor. However, when
you try to run graphics on printers,
you need to specify the printer
much more carefully. If you have a

setup routine with your applica-
tion(s), you'll need to select the cor
rect printer from the options list(s)
before it will work properly. This is
so because although there is a text
standard that nearly everyone fol
lows—ASCII (though at one time
there were more text standards,
too)—there are no real graphics stan
dards that are universally followed
for printers. As a result, if your
graphics program doesn't specifi
cally support your printer, it may
not print properly (or at all).

As I recall, though, the KX-1091i
has an emulation mode that behaves
like the IBM Proprinter. To set this
up, you'll need to set the DIP
switches in the KX-1091i.

To find the DIP switches from the
front of the printer, look straight
down into the open area that holds
the printer ribbon and print head.
Slide the print head over to one side
and look straight down near the cen
ter of the printer. You will see a
small, clear plastic sheet. Beneath
this sheet is an 8-switch DIP switch.
To put your printer in IBM
Proprinter emulation mode, move
switch No. 1 (the far left switch) into
the ON position. Once you've done
this, just install your software as you
would for an IBM Proprinter, and
you should be in business.

As far as getting "meaningful
information on your machine" goes,
I'd suggest trying the technical sup
port folks at DataVue. Their number
is (404) 564-5555. If you cannot get
the information you want through
them, then, as always, I'd recom
mend finding a good, local user's
group in your area.

Finally, for information about
your Xerox 4020, call Xerox
American;: 1-800-334-6200.

Large Type for the
Visually Impaired

Dear Dr. John:
Let me begin by saying that I am

visually impaired. The trouble is,
even the large text size I type with
(24 point) is becoming too small for
me to read.

In an effort to create larger text on
my computer and printer, I called
Berkeley Softworks some time ago
and asked about larger print sizes.

They suggested I get a copy of
FontPack Plus. So I purchased the
program and, although the resident
fonts in that package were no larger
than the ones in Geos 2,1 thought I
would make my own with GeoFont.

Poring over the screen with a
magnifying glass for many hours, I
was able to enlarge one of the fonts
to 36 points, pixel by pixel. During
the process, I ran and printed out the
partial alphabet. Since everything
seemed to be in order, I redoubled
my efforts to finish. But when 1 had
completed the font, Geos would not
call it up.

I read the Geos 2 manual and dis
covered Geos will not support
"megafonts," but it did not define
that term. So 1 called Berkeley
Softworks again, but they no longer
have phone support. Unfortunately,
I can't use their modem help, be
cause I can't read the small text I get
over the modem.

If there is a way for me to use the
font I have made, please let me
know. I have a C64 computer, a 1541,
a 1764 REU, and an Okimate 10
printer.

John H. Fajen
Wisconsin

Dear John:
Actually, you're on the right track

already. The trouble is, the C64
doesn't have enough memory to
support a full 36-point character set.
What's happening is that you are
simply running out of memory and
Geos is selecting a font that is small
enough to fit in memory.

The solution to this problem is to
break your 36-point font into two
halves: uppercase and lowercase.
That way, your font will fit into the
4K of space that the C64 allows for
fonts. To do this, make a copy of the
font and delete the uppercase char
acters from one set and delete the
lowercase characters from the other.

Once this is done, you can write
your documents in, for example,
lowercase (initially) and add the
uppercase as a different font

DecisionMate V
Operating System

Dear Dr. John:
I have a pair of NCR Deci

sionMate V computers that I wish to
utilize. The problem is, I can't find
any software to run on the comput
ers. I understand that the computers
are no longer manufactured, but
there should be someone who
knows something about the sys
tems—even if they are discontinued.

NCR's customer service has not
been helpful. 1 have tried NCR
DOS on the computers with no
positive results. The computer
responds with: A:MOUNT O.S.
Disk <CR>.

Additionally, I cannot find an
owner's manual. What can I do to
get these computers running? Any
comments you may make will be
greatly appreciated.

Lany E. Hardy
Pennsylvania

Dear Larry:
Your computers will not run

under NCR DOS. They require
CP/M to be able to operate. Unfor
tunately, CP/M, like all operating
systems, is customized for every
computer it operates. So although
you could get a generic copy of
CP/M from Digital Research (the
company that created it), you might
not be any better off than you are
now.

Technically, NCR should be able
to supply you with a properly cus
tomized version of CP/M. How
ever, as you discovered, it's a bit dif
ficult to get through to them.

If you want to persist with NCR,
let me suggest that you try Kim
Wamock who is in charge of the PC
Division of their public relations
department. Her number is (513)
445-4732. Or you may want to try
your luck with Digital Research.
Their number is (408) 443-4200.

And finally, if all else fails (or
sometime before that), you may
want to contact the First Osborne
Group (FOG). They are a national
user's group for CP/M and MS-
DOS computers. They have more
information on old computers than
almost anyone. You can reach FOG
at (415) 755-2000.

Cot a question about computers?
Send your letters to John Heilborn, Ask
Dr. John, P.O. Box 20102, Castro Valley,
CA 94546.

Larry Cotton

Last month, I promised that I'd of
fer help in finding the average
speed of each car in our Smalltown
500 race. To do that, we must re
write the program slightly:
10 PRINT CHR$(147)
20 DIM S(4,5),SP(4)

Recall that the DIM statement
reserves space in the computer's
memory—in this case, for the
speed data. The first array is two-
dimensional (four cars by five laps)
and will contain each car's individ
ual lap speed. The second array is
reserved for the four cars' five-lap
speed totals. This will become clear
in a minute.

For purposes of this discussion,
we'll assume that all four cars sur
vive five laps. We now need to set
up a nested FOR-NEXT loop to read
the speeds (which will be in DATA
statements) into the computer's
memory:
30 FOR C = 1 TO 4
40 FOR L = 1 TO 5

The speeds are read with the
READ statement:
50 READ S(C,L)

Let's close the FOR-NEXT
loops:
60 NEXT L:NEXT C

When the program is run, C
starts as 1. While C is 1, L incre
ments from 1 to 5. The L loop finish
es. C increments to 2. L loops again
five times, and so on until C is 4, at
which time all 20 speeds have been
read into the computer's memory.

Up to this point, our program
looks very similar to last month's.
But now we must calculate the
average speed of each car. This
could be done inside the above
FOR-NEXT loops, but for clarity
we'll create separate loops for the
math calculations:
70 FOR C = 1 TO 4

| 80 FOR L = 1 TO 5

90 SF(C) = SP(C) + S(C,L)
100 NEXT L:NEXT C

Here's where the SP(C) array is
used. At the end of all this looping,
SP(1) will be the sum of the speeds
of all five laps of car number 1,
SP(2) will be the sum of all five laps
of car number 2, and so on.

Average Speeds
We still haven't found the cars' av
erage speeds. Let's do that now
with still another FOR-NEXT loop:
110 FOR T = 1 TO 4
120 PRINT"CAR"T"'S AVERAGE

SPEED = "SP(T)/5
130 NEXT T

We must, of course, have the
cars' speed data to read:
200 DATA 108,110,122,120,117
210 DATA 118,114,116,114,110
220 DATA 120,123,119,124,125
230 DATA 100,112,115,117,119

As mentioned, the two sets of
FOR-NEXT loops could be com
bined into one. Replace lines 60
and 70 with these, and remove
lines 80-100:
60 SP(C) = SP(C) + S(C,L)
70 NEXT L: NEXT C

Another Approach
If all this has been slightly difficult
to understand, let's go back and
look at arrays in a slightly different
light.

Here's the most important con
cept: Any time you need to use your
computer to deal with a number of
related items, be they lap speeds in
the Smalltown 500 or insects in a
collection, array variables should
be used to represent the data. That
data can come from several sources:
input from the user, DATA state
ments, and so on.

Last month we looked at one-
and two-dimensional arrays, which
serve most purposes quite well. But
you should be aware that most ver
sions of BASIC support arrays (at
least theoretically) with a maximum

of 255 dimensions. The maximum
number of elements allowed in
each dimension is 32,767. Rarely,
however, will you need arrays of
more than 2 or 3 dimensions.

Here's an illustration which
may help make the concept of ar
rays clearer:
10 PRINT CHR$(147)
20 ROW = 5: COLUMN=7
30 DIM XfROW, COLUMN)
40 X(3,4) = 21
50 FOR J = 1 TO ROW
60 FOR K = 1 TO COLUMN
70 PRINT X(J,K);: NEXT K
80 PRINT
90 NEXT J

If you enter and run this pro
gram, you'll see a graphic display
(on your TV or monitor screen) of
the contents of the 35 allocated
memory locations—X(l,l) through
X(5,7). All will be 0 except the one
that was given a value of 21 in line
30. It will be printed in the third
row of the fourth column.

Line 20 defines two constants,
ROW and COLUMN, which become
t h e s i z e l i m i t s o f o u r t w o -
dimensional array. They can be
changed to any values for which
the computer has sufficient memory.

Borrowing an analogy from last
month, we have a grid of five by sev
en pigeonholes. Line 30 dimensions
the array of 35 elements. Line 40 as
signs a value of 21 to one particular
pigeonhole in the third row of the
fourth column. Lines 50-90 contain
nested FOR-NEXT loops which print
the array as a 5 X 7 grid.

Numeric vs. String Arrays
This example uses numeric-variable
arrays; the lack of the $ character
indicates that. As numeric vari
ables, the values that are stored in
the slots can be mathematically ma
nipulated, as they were in our)
speed-averaging example.

But if you expect the computer
to handle a lot of letters or names
(not numbers), you must use a
string-variable array, which is

38 COM PUT El's Gazette October 1988

denoted by the $ character. Here's a
modification of the above program
which does just that:
10 PRINT CHR$(147)
20 ROW=2: COLUMN = 13
30 DIM LTR$(ROW, COLUMN)
40 FOR J=1 TO ROW
50 FOR K=1 TO COLUMN
60 READ LTR$(ROW,COLUMN)
70 PRINT LTR$(ROW,COLUMN)"
80 NEXT K
90 PRINT
100 NEXT J
110 DATA A,B,C,D,E,F,G,H,I,J,K,L,M
120 DATA N,0,P,Q,R,S/T,U,V,W,X,Y,Z

Memory Requirements
for Arrays
To conserve memory in long BASIC
programs, you should dimension
any arrays (single- or multidimen
sional) only to the maximum number
of elements you expect the program
to use. If the user will be entering
data and you don't know how many
entries to expect, you can ask him or
her to furnish this number:
10 PRINT CHR$(147)
20 PRINT " DO YOU KNOW HOW

MANY": PRINT" ENTRIES YOU
WILL MAKE?

30 GET R$:IF R$o"Y" THEN IF
R$o"N" THEN 30

40 IF R$="Y" THEN PRINT
CHR$(17);.INPUT "HOW MANY";X:
DIMA$(X): GOTO 60

50 DIMA$(1000)
60 PRINT CHR$(17)"DIMENSIONED

TO"X"ELEMENTS

Run the program and try dif
ferent responses to the questions.
When the user knows how many
entries will be made, A$(X) will be
automatically dimensioned to that
size. (On a Commodore 64, the ac
tual maximum number of elements
this short program can be dimen
sioned to is 12,898.)

If the user types an N, this ar
ray will be dimensioned to 1000.
You, the programmer, should
choose a number that you know
will be at least as great as—but, to
avoid wasting memory, no greater
than—the number of entries the
user will make. To make sure that
the computer has room for that
number of entries, you need to
know how much memory is avail
able for the arrays and how much
memory the array variables use.

To determine how much mem
ory is free on a 64, type (in the im
mediate mode)
PRINT FRE(0) — (FRE(0)<0)*65536

On a Commodore 128, type

PRINT FRE(0)

to see the number of free bytes for
BASIC programs. Or type
PRINT FRE(l)

to see the number of free bytes for
BASIC variable storage.

FRE is a BASIC function that
returns the number of available
bytes in memory. It's usually used
in immediate mode but can be used
within a program. Sometimes the
execution of FRE is very time-
consuming.

Any variable (or constant)
takes up a certain amount of the
computer's memory, whether or
not it's an array variable. The Pro
grammer's Reference Guide for the
128 explains very clearly how much
memory each type of array requires:

5 bytes for the array name
+ 2 bytes for each dimension
+ at least 2 bytes for each element

We haven't studied the type of
variables that use the least amount
of memory—integer variables.
These simply represent whole
numbers. Integer variables must be
identified by a percent sign, such as
A%(3). The DIM statement could
look like this:
100 DIM A%(X)

X should be whatever number
of elements you decide to use as the
maximum.

If you identify the array vari
able without the percent sign, as in
A(3), add three more bytes for each
element. This is called a floating
point variable because the number it
represents contains a decimal and
as many as nine digits following it.

If you identify the array vari
able as a string, such as A$(3), each
element will require three bytes
(not three additional bytes—just
three bytes) plus one byte per char
acter in each string element. Of

COMPUTERS Gazette is looking for
utilities, games, applications,
educational programs, and tutorial
articles. If you've created a pro
gram that you think other readers
might enjoy or find useful, send it,
on tape or disk, to: Submissions
Reviewer, COMPUTE! Publications,
P.O. Box 5406, Greensboro, NC
27403. Please enclose an SASE if
you wish to have the materials
returned. Articles are reviewed
within four weeks of submission.

Catalog

Software, Accessories
& Leroy's Cheatsheetsf

128D

IBM ^
32 pages - filled with goodies

for your computer.
What are you waiting for? Clip and

mail the coupon, today, and start
shopping (and saving)!

*- Canadian residents - $1.00 (U.S.) shipping
NAME

STREET

CITY

STATE ZIP

CPi - Cheatsheet Products, Inc
P.O. Box 111368 Pgh, Pa. 15238

Dept. G10 412-781-6811

GREENSBORO
COMPUTER
CENTER

AN AUTHORIZED
COMMODORE RERMR CENTER

72-HOUR TURNAROUND
FOR MOST COMPUTERS

C64 $55.00
C128 $87.50
1541 $65.00
1541 and 1571 $27.95

Perm-alignment only
1571 $75.00
A1000 $45.00 hr.

(plus parts)
CBM PRINTERS $45.00 hr.

(plus parts)

FOR OTHER PRICING CALL!

Please enclose $7.50 for return shipping.

All repairs come with a 30-day warranty
and we guarantee the entire keyboard to
work properly not just the repaired section.
POWER SUPPLIES ARE NOT INCLUDED
IN THE ABOVE PRICING AND ARE PUR
CHASED SEPARATELY.

If you have any questions about our
services, please call me at 919-855-5792.
Thank you.

1109 S. Chapman St.
Greensboro, NC 27403

Tom R. Halfhill

Each month, COMPUTEl's Gazette
tackles some questions commonly
asked by Commodore users. If you
have a question you'd like to see
answered here, send it to this
column, c/o COMPUTEI's Gazette,
P.O. Box 5406, Greensboro, North
Carolina 27403.

I bought a BASIC compiler
for my Commodore 64 to make
my programs run faster. Why is it
that the compiled programs are so
much larger than the uncompiled
programs?

• To answer this question,
we'll have to briefly review what a
BASIC compiler is and how it works.

Normally, when you run a
BASIC program on a Commodore
64 or 128, you're using the comput
er's built-in BASIC interpreter. An
interpreter takes each individual in
struction in a program and trans
lates it into the corresponding
machine language instructions that
the computer really understands.

When you run a BASIC pro
gram, the interpreter does its job—
translating BASIC statements one
at a time. Note that even a seeming
ly simple BASIC instruction such as
PRINT may translate into a fairly
large number of machine language
instructions. Due to these two fac
tors, BASIC interpreters run pro
grams at a relatively slow speed.

Machine language programs,
on the other hand, run at the com
puter's top speed. That's because
the program is already written in
the true language that the computer
understands, so no interpretation or
translation is necessary.

It would be great if all pro
grams were written in machine lan
guage, but that just isn't practical.
Machine language (a term that we
use synonomously with assembly
language, by the way) is more diffi

cult to master than higher-level lan
guages like BASIC, and machine
language programs take longer to
design, write, and debug. As with
all labor-intensive tasks, sometimes
the high quality of the results aren't
judged to be worth the investment
in time.

That's why compilers were in
vented. A compiler lets you write a
program in a familiar high-level
language like BASIC. When you
have a debugged version of the pro
gram working, the compiler trans
lates the program into machine
language instructions.

Unlike an interpreter, howev
er, a compiler does not carry out
this translation "on the fly" as the
program runs. Instead, it translates
the BASIC instructions into ma
chine language instructions just
once, during a step known as com
pilation. The translated machine
language instructions are then
stored in a disk file that usually can
be run like any other machine lan
guage program.

As you've noticed, though, this
compiled program is much longer
than the original BASIC program
with which you started. It's also
much longer than an equivalent pro
gram would be if written directly in
machine language in the first place.

The main reason is that all of
the machine instructions required
to carry out a BASIC instruction
such as PRINT must be included in
the program when it's compiled.
Every command you use in the
BASIC program forces the compiler
to add a whole series of machine
language instructions to the final,
compiled version.

In addition, the compiler must
include many more instructions to
handle such routine jobs as keeping
track of variables, translating deci
mal numbers into binary, perform
ing mathematical computations,
and so forth. Most compilers auto
matically include all of the machine

instructions for executing these
functions whether they're actually
used in the program or not. This is
referred to as overhead, and it ex
plains why even a one-line pro
gram compiles into a file several
kilobytes long.

An interpreted BASIC program
doesn't need to include this over
head because it's built into BASIC
itself. The machine language instruc
tions for PRINT and all other BASIC
commands are permanently stored
in the computer's read-only memory
(ROM) chips. When the computer
encounters a PRINT command in a
BASIC program, the BASIC inter
preter jumps to the appropriate ma
chine instructions in ROM that print
a character on the screen. fl

To put things into perspective,
you could consider the BASIC in
terpreter in ROM as the "over
head" for an interpreted BASIC
program. The BASIC interpreter in
a Commodore 64 occupies 10K of
ROM; when you add this to the
length of an interpreter BASIC pro
gram, it's more in line with the
length of an equivalent compiled
BASIC program.

In case you're also wondering
why even a compiled BASIC pro
gram runs more slowly than a simi
lar program written directly in
machine language, it's because to
day's compilers aren't nearly as ef
ficient as the competent machine
language programs. If you were to
examine the compiled code (with a
disassembler), you'd find numerous
examples of sloppy programming.

Much more efficient compilers
(known as optimizing compilers) are
available for larger computers.
These compilers analyze and im
prove the code that they produce, (

resulting in smaller and faster pro-®
grams. Unfortunately, it will proba
bly take several years for advanced
optimizing techniques to "trickle
down" to compilers made for home
computers like your 64. <0t

COMPUTE' S Gazette July 1988 37

Larry Cotton

Now that we've learned how to
program the four BASIC math func
tions, let's find some ways to put
our new abilities to practical use.

Geometry is a good start. Sup
pose you wanted to calculate the
distance around certain figures,
such as triangles, rectangles,
squares, and circles. The distance
around a plane (flat) figure is called
the perimeter, except in the special
case of the circle, where it's known
as the circumference.

The accompanying illustra
tions show various geometric fig
ures. As we write our programs,
refer to these illustrations to see the
logic behind the mathematic for
mulas we use.

Let's start with the triangle.
We'll find its perimeter. Type in this
program:
10 INPUT "LENGTH OF FIRST SIDE IN

INCHES";X
20 INPUT "LENGTH OF SECOND SIDE

IN INCHES";Y
30 INPUT "LENGTH OF THIRD SIDE

IN INCHES";Z
40 P=X+Y+Z
50 PRINT
60 PRINT "THE PERIMETER OF THE

TRIANGLE IS"
70 PRINT P'TNCHES."

40 PRINT
50 PRINT "THE PERIMETER OF THE

RECTANGLE IS"
60 PRINT P'TNCHES."

Last month we learned about
My Dear Aunt Sally—the mne
monic phrase that reminds us that
multiplication and division are per
formed before addition and sub
traction. In line 30, variable L is
multiplied by 2, W is multiplied by
2, and then the two results are
added together and are assigned to
the variable P. Note that line 30
could be replaced by this mathe
matical equivalent:
30 P = 2*(L +W)

The parentheses keep My Dear
Aunt Sally from multiplying L by 2
and then adding W. Parentheses
are the only way to short-circuit My
Dear Aunt Sally.

Here's a program to calculate
the perimeter of a square. Since all
four sides of a square are of equal
length, we can simply multiply one
side by 4.
10 INPUT "LENGTH OF SQUARE'S

SIDE IN INCHES";S
20 P=4*S
30 PRINT
40 PRINT "THE PERIMETER OF THE

SQUARE IS"
50 PRINT P'TNCHES."

The three INPUT statements
get the lengths of the three sides.
Line 40 calculates the perimeter, line
50 prints a blank line, and line 60
prints the answer in sentence form.

Notice that the variable P in
line 70 is not within the quotation
marks. If it were, the letter P would
be printed instead of the value that
the variable P holds.

Suppose we want to calculate a
rectangle's perimeter. Since there
are four sides, but only two differ-

•
ent lengths, we can use multiplica
tion and addition:
10 INPUT "LENGTH OF RECTANGLE

IN INCHES";L
20 INPUT "WIDTH OF RECTANGLE IN

INCHES";W
30 P = 2*L+2*W

38 COMPUTE! s Gazette July 1988

The Ever-Popular Pi
Calculating the value of circle's pe
rimeter is a little trickier. We can en
vision a triangle's, a rectangle's, or a
square's sides and logically arrive at
the correct mathematical opera
tions to total their lengths. But for a
circle we'll need this formula:
Circumference = n X Diameter

Pi (or it) is a constant used in
problems which involve circles. You
can see the value of pi by entering
this line and pressing RETURN:
PRINT*

This never-ending decimal
number is a subject unto itself, so
for now, just think of pi as the con

stant 3.14. The diameter of a < le
is its width through the center 'ti
ter this program:

10 INPUT "CIRCLE'S DIAMETER .
INCHES";D

20 C = tu*D
30 PRINT
40 PRINT "THE CIRCLE'S CIRCU ;

FERENCE IS"C"INCHES."

Your answer will be aboe nine
digits long with a decimal. Fr :his
month, let's leave it that way e'll
save rounding—the shortenii of a
number to fewer decimal pla. s—
for next month.

Calculating Areas
The areas of plane figures a ex
pressed in square units, s; as
square inches. The simplest nu-
la for calculating the area of an
gle uses the length of the tr ;le's
base (B) and its height (H). R r to
the accompanying illustrati The
formula is:
A = B X H / 2

Here's one possible prog/ m to
calculate a triangle's area:
10 PRINT "ALL MEASUREMENT;:. ARE

IN INCHES."
20 PRINT
30 INPUT "WHAT IS THE TRIANGLE'S

HEIGHT";H
40 INPUT "WHAT IS THE TRIANGLE'S

BASE";B
50 A = B*H/2
60 PRINT
70 PRINT "THE TRIANGLE'S AREA IS"
80 PRINT A"SQ. IN."

The other formulas for areas are
somewhat easier. For a rectangle,
one side is multiplied by the other:
A = L X w

The program:
10 INPUT "LENGTH OF RECTANGLE

IN INCHES";L
20 INPUT "WIDTH OF RECTANGLE IN

INCHES";W
30 A = L*W
40 PRINT
SO PRINT "THE AREA OF THE

RECTANGLE IS"
60 PRINT A"SQ. IN."

Now we return to the square.

Square

) IN
SI

) A"
0 PR!
0 PR1

IN."

w we return to the square,
ne way it can be calculated.
"LENGTH OF SQUARE'S

M INCHES";S

SQUARE'S AREA IS"A"SQ.

lumbers and Powers
triable S times variable S can a so
,e expressed as SJ, which is called
'raising S to a power of two or sim
)ly "S-squared." S2 on a computer.s
entered by typing S 2. The i (
least on Commodore computers)
incidentally on the same key t a

on. The 2 is the number of times 5
multiplied by itself. Try this:
S = 5:PRINT S*2

Enter this in the immediate
mode and press RETUI •
should see 25. Try making eS

> other numbers. You always
le "square" of S (S multip ie
self) as the answer.

The final exercise for this
nonth will be to find the area o
ircle. For this we need to know
:ircle's radius, which is hal is
imeter. The formula for a circ e

area is
A = it X R*2

Here we use both n and The
formula in words is: The

equals pi times R-squared or simp y
pi R-square. We are multiplying*
(the constant equal to about 3.14)
times the radius multiplied by itself.
Here's the program:

10 INPUT "CIRCLE'S DIAMETER IN

20 RN=D/^REM RADIUS IS HALF THE
DIAMETER

30 A = JT*R"2

50 PRINT "THE CIRCLE'S AREA
IS"A"SQ. IN."

Mv Dear Aunt Sally doesn t
address raising numbers to a pow
er Numbers are raised to powers
before any multiplication division,
addition, or subtraction takes pkctN
If that were not true, line 3
have to look like this.
30 A=IT*(R*2)

The parentheses then would
miarantee that the radius is multi
plied by itself before the result is

WUl TPhaTs ourPmathematical work-

Use the handy
Reader Service Card

in the back of the
magazine to receive

additional information
on our advertisers.

of

out for this month. We should now
be familiar with adding, subtract
ing, multiplying, dividing, using
parentheses, and squaring numbers.

Don't be discouraged if all this
has been a bit difficult to absorb in
one sitting. As I've said before he
only way to learn anything well is
to practice-so spend a little time
playing with these exercises, enter
ing various values at the input
prompts. Next month we 11 take^a
look at rounding.

COMPUTE' S Gazette July 1988 39

(qFow(§F©M The Intimate Mach-ne

Fred D'lgnazio
Contributing Editor

A term that is growing in popularity
these days is WYSIWYG (What You
See Is What You Get). It refers to
the way newer computer programs
let you see your final output on the
screen—just as it will look when
you print it out.

This is an admirable trend. But
think of its long-range implications.
Futurist writers have already de
scribed advanced CAD/CAM
(computer-aided design and manu
facturing) systems installed in ev
ery person's basement which will
fabricate new consumer products
on demand. For example, if you
want a new pair of shoes, just de
sign them on your computer and
"print" them out.

The concept of WYSIWYG has
already reached an astounding
stage in advanced laboratories. A
newspaper recently reported on a
new compact disc (CD ROM) drive
in which the search time for the
disk had been reduced dramatically
by replacing the physical lens,
which had to be moved mechani
cally, with a laser-simulated lens.
Think of it. A real-world object—a
lens—was created out of nothing
but pure light. Something from
nothing. WYSIWYG!

Multimedia Hackers
As computers become more inti
mate and personalized, the concept
of WYSIWYG may extend to how
we think about machines. When we
look at a computer in the future,
what will we see? What will we get?

I'm reading a great book which
I recommend to anyone interested

•
in personal computers of the future.
It's called The Media Lab, and it was
written by Stewart Brand, the au
thor of The Last Whole Earth Catalog.
(The Media Lab, from Viking Press,
came out in late 1987, and should
be out soon in paperback.) It de-

40 COMPUTEI's Gazette July 1988

scribes the experiments underway
at MIT's prestigious Media Lab by a
group of ingenious, multimedia
"hackers."

Much of the group's work falls
under the heading "transmission of
presence." Transmission of pres
ence is reminiscent of Star Trek.
However, since we don't have the
Starship Enterprise's transporter to
beam people from place to place,
we have to figure out other ways to
send people electronically to dis
tant locations. One method is "talk-
ing heads." A TV signal of a
person's face is beamed onto a plas
tic bust of a human's head. It's re
markable how lifelike the bust
becomes with the TV picture super
imposed onto its generic features—
almost like having the person in the
room with you.

Look into My Eyes
Another goal of MIT's researchers
is to make technology more person
al and more intimate. They have
developed joysticks that fight back
in a videogame; touch screens
which let you "feel" data; cartoons
with intelligent characters (sharks,
skeletons, and worms); playful,
cuddly robot blimps, chairs, and
stuffed animals which interact with
children; and computers that read
lips and track eye movements so
they can tell where you're looking
on the screen.

Brand described an eerie ex
periment in which the intelligent
character in a computer cartoon
turned and faced him while he was
staring at the computer screen. The
character looked Brand directly in
the eye. If this character had had
the ability to gauge where Brand
was looking, it would have known
Brand was looking into its eyes.

Brand describes the experience
as almost hypnotic and a little
scary. The day is not far off when
we'll come eye to eye with a com
puter. Will this be WYSIWYG?

What will we see? What will e
think we see?

You can get intimate with co -
puters, but you can also use cc v.- i
puters to get intimate with ot' r
people—perhaps unintentional!v.
If you ever want to get personal
with a member of the opposite sex,
just chat with them for a few min
utes in computerese. Have you e\ r
noticed how many computer buz.'
words have a kind of TV date •
game feeling about them? For <•>.
ample, baud describes the transm
sion rate of data from one compu
to another, but it sounds to the .
erage listener like you are desc:
ing the computer ("bod") as a hu
or a "number 10." Or else, e\
worse, it sounds as if you are ta!
ing about a computer with an oi
color, risque sense of humor (.
computer "bawd").

And we chatter mindless! . '
about computers, printers, moni
tors, and so on, as being compatible
or incompatible. Again, the com- i
puter dating game. Just think how
this sounds to other people.

Careful with Those Semantics!
An example of this blindness to our
own lingo happened recently when
1 made a presentation to elementary
school teachers. I talked for an hour
about mating male and female ca
bles with lots of vivid examples of
P'ugging cables together.

Suddenly I noticed the blushes
on several teachers' faces, and I re
alized how I sounded. Mating in
compatible machines using male
and female connectors so they'll
share the same baud sounds more
like a talk on sex education than a
lecture on high tech.

To all you computer jocks out
there, my advice is, when talking to
noncomputerists, mind your man
ners and watch what you say. You
may think you're talking high tech,
but to your audience you sound like
Dr. Ruth. ®)

mm©m Viral Infections

Todd Heimarck
Contributing Editor

A biological virus is a germ that en
ters your system, replicates, and
makes you sick. An influenza virus
gives you the flu, for example.
Before you're actually ill, you may
not know that you've got a bug; you
might unwittingly spread it to others.

A computer virus acts similar
ly. It's a program that gets into a
computer, spreads contagiously by
making copies of itself (usually
before anyone guesses that the
computer has been infected), and
eventually does something nasty.

One of the first examples of a
computer virus is a key element in
the book Shockwave Rider by John
Brunner. Written before the advent
of personal computers, the book
presents a society that uses a huge
supercomputer hooked up to mil
lions of dumb terminals located
around the country. (A dumb ter
minal isn't a real computer. It only
works if it's connected to a remote
computer—sort of like having a 64
that only works in conjunction with
QuantumLink.)

The hero of the novel is a ge
nius who controls his very own
computer virus. Whenever he
wants to change his identity, he ac
tivates the program. It creates the
new identity and erases all records
of the old one.

Trojan Horses
Viruses are sometimes called Trojan
Horses because computer users
willingly invite them into their
computers only to find something
unpleasant inside.

The contagious program may
be downloaded from a bulletin
board system, borrowed from a
friend, or obtained at a user group
meeting. Perhaps it prints a calen
dar, calculates mortgage payments,
or plays tic-tac-toe. On the surface,
it looks like an innocent program.

But it contains an active virus.
When you exit the original pro

gram, the virus remains in memory.
Without resetting your computer,
you continue using it. At some
point, you look at a directory or
load or save a file. During disk ac
cess, the virus checks the disk's
boot sector for a copy of itself. If it's
not there, the virus copies itself to
the disk. If the virus does exist on
disk, it might decrement a counter.
Whenever you boot from that disk
in the future, the virus copies itself
into memory. If you switch disks,
the virus spreads.

There's more. The virus's in
ternal counter counts down until it
hits 0. It might wait for 10 or 250
disk accesses before going into ac
tion. At that point, it formats the
disk in the drive or scrambles your
data files. The screen then flashes a
message like Ha Ha. Gotcha.

The 64's Natural Immunity
Most computers load the disk oper
ating system (DOS) into memory
from a disk. A DOS is a program
that knows how to move around
the disk, reading or writing disk
sectors. It also protects sectors in
use and frees them up when you
scratch a program. It takes care of
updating the directory, formatting
disks, and other disk-oriented jobs.

If the disk-based DOS is later
upgraded, you simply get a new
boot disk. The DOS disk is the place
where viruses live. To infect such a
disk, all you need is a single pro
gram that puts the virus in the boot
sector that loads DOS. The virus
then copies itself to any other disks
that might come along.

The 64 and 128 have their op
erating system in read only memo
ry (ROM). The DOS is built into the
disk drive. The disadvantage to this
approach is clear: To upgrade, you
must install replacement ROM
chips.

But there's also an advantage:

Viruses can't be installed on Com
modore boot disks because the 64
doesn't use them. The DOS is al
ready in the disk drive.

The 128 does make provision
for booting from disk, but most 128
owners don't use boot disks for 64
or 128 mode.

It's possible to create a 128 vi
rus, but it probably wouldn't spread
very far.

Survival of the Fittest
Several years ago, Scientific Ameri
can published an idea for a com
puter game called Core Wars (core is
an old name for computer memo
ry). The battlefield is a section of
memory that wraps around from
the highest byte to the lowest byte.
The combatants include two or
more computer programs that use a
simple language, with instructions
for branching, conditional branch
ing, looping, math, copying a byte
from one location to another, and
so on. There is also a STOP com
mand that halts a program.

The goal of the game is surviv
al. You can pursue several interest
ing strategies. The all-out offensive
program sprays STOPs throughout
memory, attempting to hit the other
program. Defensive tactics include
building buffer zones of STOPs
around the program's perimeters,
and copying the program to anoth
er location and jumping there if the
enemy gets too close.

You might discover that pro
gram A usually beats program B,
but B beats C, and C beats A. You
might attempt to write a program
that adjusts its actions according to
the opponent it's facing. However,
the longer the program is, the more
memory it uses, which makes it
more vulnerable.

If you're interested in explor
ing viruses, don't write one that for
mats disks or scrambles data files.
Instead, try inventing your own
Core Wars language. <B)

COMPUTEI's Gazette July 1988

0)@ ©MM Super Printer Driver

Douglas M. Blakeley

This new printer driver for Epson,
Star, and compatible dot-matrix
printers offers near-laser-printer-
quality printing with both GEOS
and GEOS128. A customizer is
also included to allow you to fine-
tune the driver.

If you have an Epson or compatible
printer and you use GEOS or
GEOS128, this new printer driver
can give you near-laser-printer-
quality printouts with print densi
ties of 60, 72, 80, 120, 144, or 240
dots per inch (depending on your
printer's capabilities). The driver
comes with preinstalled codes for
Epson FX-85/86e, Epson LX80/86,
and Star SG-10/15; it also has an
option that allows you to customize
the driver for other Epson-family
printers as well.

The printer driver program
comes in two parts. "Driver" (Pro
gram 1), is the machine code for the
printer driver. "Customizer" (Pro
gram 2), tailors the driver to a spe
cific printer and converts the driver
to a GEOS-format file. Program 2
also permits you to select the printer
device number (4 or 5) and disable
the paper-out sensor to permit
single-sheet printing with Writer's
Workshop.

Getting Started
Since Driver is written in machine
language, you'll need to enter it
with "MLX," the machine language
entry program printed elsewhere in
this issue. When you run MLX,
you'll be asked for the starting and
ending addresses of the data you'll
be entering. Here are the values to
use for Driver:
Starting address: 7804
Ending address: 7F33

Follow the MLX instructions
carefully, and be sure to save a copy
of the Driver data with the filename
PR.OBJ before you leave MLX.
2 COMPUTE' S Gazette July 1988

Customizer is written in
BASIC, so simply type it in, save a
copy on the same disk as Driver,
and type RUN. Customizer sets the
top of BASIC memory to 30720 to
provide a safe work area and then
loads PR.OBJ into memory address
es 30720 to 32557. Please note that,
although the driver you create with
customizer can be used with either
GEOS or GEOS128, you must cus
tomize the driver on the 64 (or a
128 in 64 mode).

When you run Customizer, it
asks you for your printer type,
printer address (4 or 5), and wheth
er you want the paper sensor dis
abled. After these questions are
answered, Customizer patches the
Driver's object code in memory and
saves the customized Driver to
disk. This Driver is then converted
to a GEOS format file. The filename
EPSON FH-85, EPSON LH-80, or
STAR SG-10 is used depending on
the printer you specified. The
PR.OBJ file is not destroyed in this
process, so if you make a mistake,
you can start over.

Once the file has been convert
ed, treat the disk just like a GEOS
disk. Don't use the standard disk
validate command; use the GEOS
validate command instead. As a re
minder that the printer driver is
multidensity, the file icon is modi
fied to include the letter M in the
upper left corner.

Using the Printer Driver
Once the conversion program has
been run, load the GEOS operating
system and transfer Driver to a
GEOS work disk. If the disk con
taining the printer driver has not
been used under GEOS, you'll be
asked if you want the disk convert
ed. You should answer yes, or you
won't be able to transfer the file
with a single disk drive.

The new printer driver can be
activated by selecting the GEOS
menu in the upper left corner of the
screen and choosing the Select

Printer option. After choosing to
print a geoWrite or geoPaint docu
ment, a new dialog box will appear,
allowing you to select the printer
density. Choose the density you
want by clicking once on the corre
sponding icon. The F icon selects
the filled 240-dots-per-inch mode,
while the 240 icon selects the en
hanced mode.

Once the density has been cho
sen, the printer initializes to this
format and prints your document.
For those owning Writer's Work
shop, the new driver's menu will
appear after the initial print menu,
which permits you to select starting
and ending pages as well as high,
draft, or NLQ modes. If draft or
NLQ modes are selected, the sec
ond menu will still appear. In this
case, select 80 dots per inch to con
tinue printing.

When using printer densities of
72 and 144 dots per inch, geoWrite
and geoPaint will make adjustments
on the printed page width. GeoWrite
will widen the text by two-thirds of
an inch while maintaining the same
number of characters per line as
shown on the monitor, making up
the difference by narrowing the
margins. GeoPaint will not print the
rightmost three-fourths of an inch
of the graphic. For this reason,
don't use this rightmost area when
planning on using 72- or 144-dots-
per-inch densities.

Customizing
For those with printers that are in
the Epson or Gemini family but
whose printer control codes differ,
there is an option to customize your
own printer driver. The use of this
option requires careful consultation
of your printer manual and should
only be used once you understand
the correct codes.

After this option is selected,
you'll be asked for the codes to se
lect certain features. For each ques
tion, the customizer will display the
number of bytes it expects for that

COMPUTER SHOPPER, DECEMBER 1989
Your- rtAM IC Bnckpn. -k

by Hub Albre, ht I Bon I,,,,

If ytrir run read „ ralk book or s nxuspapei ,
I r°"d °"d underst»"'1 Pit.srx.x5
| .In BASIC. y.,11, you can If the pioRrans a. •

written an an In pncouraga huinana I., under.ilan.l

»v nl.M !! " "" try to vrltB l-fgraire In Your flAWC Pfi. hpnck."

You (in learn to rend and understand PASTC,
exproRB youi r.o 1 f In BASIC, and use It to m-tke
the riiMpiiioj do what you want it In do tho
way ynn want It done.

I t:;:: r m°\\n i-r | 3p,ny with' "d -01"- "°b»'*•»•p *• £
• • • • • • •

645

T\ y .

BASIC
1 **><1 i

Tkn BASIC Tcxckx. — a pppR In..,, I fluhn... iptlon «^j|f

The BASIC Tescbxr lt am TOp,,|„. learnlng and

teaching Mcroault CV-BASIC an.l (|ul. kBASlC.. B.ery Issue

cv'n ^h,roT "!f 9ultlMS"" '»««?»
GV BASIC for begInner., an.) "II,owning BASIC" lor people
ai" pant the nowl.^ level |#< n.Ih n "your BASIC
Backpack" arxy bare a FEP1. eh- I 1 on (3 Issues).

a ?°5t!rir I"1""-" ' »ASIC le.cher,
, 2814 19th St., I.aa Francie .. 'I ..III.. Thlo offer

expires Rnvenboi 10, lOO'i

'urnnlf Qu I okB f\.B I '

Thle ee,• I I|„.g„n ln Your B(SIC || k k .

that »,.,u„ated with £ OB , 1 T"
proce.ltn ex. II,era are arore than ".ill heyvo. .la It. kBAlllc'a vn. abulnry""

Thle M. us. th. fol Inning k.,wo, . {£T.f£Vs

t <tlSO O>* r V J* J

a

Tor* i

AS DIN
CIIRN IX)
CI MSB Hill
CI .11 Bill'
Diirmr PUT

Fanrina ln»,n Pllrn.

FOR
GET
IF
IirUT
IRrUT#

LFR
LIRE
LOCATI'
I.0F
I.OOP

OFEI
PRIPT
PUT
RABPON
RPR

MINI 1i|
IIIKN
III M
HP| II
view

chop. I, ,he r t gbt "r.Ir.* "7^, x"'7r T'" QuickBASIC

a ".7; 7'"r»d l,»" '•"« 7 re. „rdx at 504 „
Here "™ the recr.i.le we p..l 1„< „ lb. f||.,

Rn» n» d
R u who r Record

Last 11
recordn
sequent|

In pan!
a sequnn
display
Quick li A::
as foil

A>

This Is the RotePad.Han file.
BntePad.Ran Is a raitrina-accenn f||p

Brfnorr. 1° T "'"°5 ""d n characters.
U'G BotePad. Ran for Notes of any kind
, °t with Jester at noon on 4 l.
Library book, due 4/lb - ,lr„
Realtty expand, to fulfill tbe available la.,laB,eB.

«" re. showed you program YBIB'BOIQ to creel.. II,a (lie by anterior,
fron the keyboard and progiae YBB26i'?Q In m 11,„ fllo 5

lally fron the top (record »l> to the

'Plrudee, you learned how I., use the It; BOB |,| t„ d, .
Pxl I |, on the screen l l.'s see whal I. || „„ u6„ Type
h" ' "In on th- ucreen. O... ...il.ix.1 !L ,n' ,1 "

IC vurk Disk In dick drive A The l,)S A •• |r on u,„ scrB°^

trihe i Sn I prtnte tnle long sequence of characters
the f? ' ! ,Sb"r"C " P" ",l* th»l tk» "mt line contalna
seen d S J character.), pl0. the flret eight characters ol the

characters) and theEf l^t !cont""" tb* "at of the eecond record (64
characters), and the flret Id characters of the third record. And so It
goes to th# end of the fl]#. lz

RBM ** Set up t t
DPFIRT A-Z
CIS

Create the BntePad.Ran File with Fin Character.,

file. If ton wiint ftip r-s-rr-^t ' creating a rando.-access
' " "ou want E(JR character a, you miat include then as D*rt nf o,.

record type definition. Progra. TBB2701Q dues thle.

fEJ ** Sr"i'„th; P"» »lth Bnd of Record Characters t«
Your BASIC Backpack #27. 0/31/1089 "
Kicroeoft QuickBASIC. P1lenane YBB2701Q, BAS

Oti l)il» ^rijrXC)

tlit I'N iw.~I . '"XD

MoJifv YlKtOIQ |
PPM t \ Define record structure tt 'i »u *->

Tv«nV°C°rd ",th 72 tharactera
TYPE RecoidType

Bo^Afl^STRIio°t:V:ini ,U,d wlth 72 characters*
FED TYPE r#C°rd char,ct#rs. c* * LF

RPR *t Declare a variable nf above type tt
DIN Re< ord AS RecordTypa

Record. Ror - CHRt (13) t CMRK10) .R„d of record ch.r„ct.r.

RHN tt Open BntePad.Ran on dafault drive tt
OPRB "BotePad. Ran" FOR BABDON AS #1 LBB - 74

- P.RL'd\i::r.°ro' ,*t'" Mt r,rord to »

RR» «» Ruler record, fro. keyboard, »rlt. to lot.P.d.Rea »»

CIS

PrIIJ 3nlt nr annih#r k®y *0 '"t-r a record"
R RT to the BntePad.Ran fllw «k#y# . JipUTSll)

IF nkeyk • CIIRX27) THRU RJIT 1)0
RecordRuubor - RecordRunher (1

"I"; uiri^xr"*",cord,u-t^ •••»d pr- »p"
PUT #1, RecordBueber, Record

LOOP

RERrM prlnt length of Ml., do.. Ml., end progre. M

Pf'!I '''ot'P",R"n ha." | LQP(1)| "byt..,"
LLUoo V1
BED

A Sawple Bun _

n sneple run. It begins like thl., "" * h"* '* " r"P'"T of

fn'theT/n 27' "otl,,r k»Y • r.cord to the RotePad.Ran flla.

Press a key other then BSC and next you .

Therefore, drive A Is now the defanll drive ft, „

Type,

ty|*» mil npnil . i nn

and pi urn FN I I'R

Tke '""I''aye the RotePad.Bar, file like 11,1,

tn"?h T.7 2°i' °r •nolk,r k,Y to '"inr • record
to the RotePad.Ran file.

rieaee type record # 1 and preee RITRR,

Type . record. Before pressing R„R», ,h. ecr„. „ght lo„k ilk. this.

AXype notepad ran
TM« la • Notepad. Ran file.
R/»" Ie n i mi.I.,n access file.

• *•tInx field with exactly 72 ch*i e-ter-

Llbmiy |.
Ft 311ty expands • >

Nf

iw^m
RotePad.

Each record Is o
«' • Nntepad. Pun for note

11 h l*fi.r at niinn on 4/1.
It,a 4 in - - a]g„ B,J 1 tax

••mil IU aval lnMe fantnr.l

T, 'I' T'i1 "r »,«'tk*r k«T to enter . r.cord .
to the RotePad.Ran file. . \ wG-

- 1 ^ \ Vs

Please type record # 1 and pre.. RBTIR. ^

Thle la the BotePed.Ran flla. O,® r„,«f ^
L \,e>°

sr "u",~,:ru.";,r

The slrsuR,. eppue. nnce of the Rotelx.l.Rnn f||„ |„ i.„

fo7h T.7 2"il "r "n°tb,r to • record to the BotePad.Ran file.

* k " o t h , r t b - , 9 c i ° - i " ̂ «

646 COMPUTER SHOPPER, DECEMnFR I960

Preee ISC to quit or another key to inter • record
to the lotePad.San file.

Plaaae type record # 2 and press BTTIR.
Iota that the computer Is keeping track of the reoord nunber. It is
waiting for record #2. Enter record #2 as foilowe. Before pressing EITHR,
the ecreen looks like this.

Preen ISC to quit or another key to enter ft reoord
to the lotePad.Ran file. a

',5 £ n (trf-
PI.... typs record t 2 and p,.SB BITIB. J/ At'C ,('i*d

*l° nl.l
lotePad. Kan Is a random-acceee file.^

Preen BITIR, then continue entering recorde up to and including record #7.
After entering record #7, prese ESC to quit. Thle finishes the creation of
the lotePad. Ran file. The prograe computes the number of bytes In the
file, displays it for your reading pleaaure, end doees the file. Our
ecreen looks like this:

Press BSC to quit or another key to enter a record
to the lotePad.Ran file.

lotePad. Ran file has 518 bytes.

lots that the file has 518 bylee, 14 bytes erne than the lotePad.Ran file
created last tine by program IBB2601Q. Barh of the 7 records has 2 sore
bytes, the end-of-record chararlers, CI and IP. The file now contains 7
records. Bach record has 72 characters plus I end nf record characters.

7 records * 74 bytes/record - 518 bytes

flew the lotePad.Ran Film in the View

Too load the lotePad.Ran file into QB'e View Vlndnw and view It-
However, since it Is not a progtas, If you try to edit It, you will see a
Syntai error dialog bo*. Of rnurse, ymi can Invoke the Full Menus and turn
off the syntax checking. Ve aaause you know how to change fros QB 4.5's
laay Menus to Pull Menus, and ennversely. Is our assumption correct?

If you are using the QuickBASIC Interpietet, A<sdesln Edition, you can load
tha InlaPad Ran file Into the flew Vlndnw onia aeelly — load It as a
Donusant Inatead of as a program. Ve nee (he QB Interpreter for most of
our BAHIC brainstorming. Veil, QB 4.5 or QUI. here la the lotePad.Ian file
In the View Vlndow.

This It the Notepad.Ran file.
IkiWfad.Ran Is a random access flit,
tack record Is one string field with exactly 72 rhararUn. '
IF-.e RitrM.Ran for notes of ami kind.
fc*t ulLh Jester at noon on VI.
Library hooks due V15 - also Mil tax relMrn.
kMlltv expands to fulfill the available fantasia*,

Bam tha KM? TTPB Command to Dlmplay tha Him

Inw that tha lotePad. Ran file has end-nf-rarntd charaoters, It will be
eealer to read when displayed by the WB TTPI comMnd. Bxlt to DOS and try
it. Vhaa wa did It, our screan looked like this.

A>TTPI fotePad.Ran
This Ift the fotePad.Ran film.
lotsPad.Raa la a randoa-aoreaa file.
lack f.curd la DM string fold wllh eiactly Tl charactara.
Ilia In I afad. Ian for Betas nf any kind.
Meet with Jester at noon os 4/1.
Library books due 4/15 — also mall tax return.
Meslity expands to fulfill the available fanUftlftft.

Scan the lotePad.Ran Rtl«

laat ttae «« sbowad you progiaa TBB2602Q tl) — an tha lotePad. Ban file ee It
was creeled by prograa.TBB2601Q Ve mdlfled tbet prngrea eo tbot It can
eenn the new eerelon of lotePad. Ban, an craatad by prograa TBB2701Q. Vhan
you run tba progran, It beglna with the following aaiange.

Tha BntaPad.Ban file has 7 records with a
total of 518 bytes.

The bottom line tells you: frees a ksy to gat a record.

Mere la a complate sample run of progran TBB2702Q.

Tha lotaPad. Ran file has 7 records with ft
total of 518 bytem.

Thle in the VotePad.Ran file.

lotePad.Ran le a random-aonass film.

Bach record la one string field with exactly f| characters.

Baa lotePad. Ran for note* ei In; kind.

mrj i

t tr
Meet with Jester at noon on 4/1.
\

Library hooka due 4/16 — Bleo all tan return
.. V t'-k • . 1 * * " «« 'VS. "IT

Ramlity expanda to fulfill tbft Available fAfitaeiaa.

•" ... ot tn. in

Praaa any hay to continue

" *7 «Mmg a few change, in laat
tine m program TBB2802Q. The changed (or new) lines ars aarksd by arrowi

REM tt Bean the lotePad. Ran (with ROM) File tt +*
Tour BASIC Backpack #17. 8/31/1080 •*"

' Microsoft QuickBASIC. 71lane mat TBB2702Q. BAB *

REM tt Set up tt
DBFIIT i-Z n
CLfl

J« wn mt
•:H> ner 'tSftf-W
I** IZmntettT i

P.J >'&

& BBI tt Define record etructure tt
TIPI SecordType

Iota AS 8TI1I0 t 73 'Strlnf field with 72 characters
lor AS STB 110 t 3 1 Ind of record characters, CI ft LF

BID TTPI P It 1 h '.'IKihl

REM tt Declare a variable of above type tt
DIR Record AS RecordType

-VReoord. Bor - CHRSdl) f CSRK10) ' Bed of reoord characters

RBM tt Opan lotePad.Ran on default drive tt
OPRI "lotePad. Ian" FOR RAIDOM AS #1 LRI • 74

RBM tt Put en inetrootion la Use 25 8 define e view port tt
LOCATB 25, It PRIIT "Press a key to get e record";
VIRf PRIIT 1 TO 23 .

fr*Tf • f*twn * • «•• •
RBX tt Print number of bytee and number of recorde tt
CLS 2t PRIIT "The lotePad.Ian file hae"i L0I(1> / 74; "recorde with •"
PRIIT "total of"; LOF(l>| "bytee."

RBI tt Start at first record le file tt
Recordlumber "1

«* >, • • J - -« *r - r * • W {
RBM tt Oat recorde from file end print to scream tt
do mrriL «of<i>

BkayB • IkPtTM(l) taw
OKT *1. Bacordluabar, tecord
PB1BT i PBIIT Bacord.Iota T '
Bacordluabar w Bacordluabar • 1

LOOP
• ' . .

BBI «« Cloaa file, return no real to aoraal, and prograa »k
PF1IT "... Ind of f11b *»«-
CL06B II
VIIV PBIIT
BID .in «s« i

In both prograaa, IBB2T01Q had TBB2702Q, tha
tha following prograa blookl

racord atroctura la daflaad hy

BIB ». Daflaa racord atrootore tt
TTPI BocordType *

Iota IS STB 110 » ra 'String (laid with 72 characters
lor IS STIIBG t 6 'ltd 0? racord characters, C8 > LP

116 TIPI

This daflaas a racord aa hawing two flalds. Tha first field Hotel has
exactly 72 characters; tha second field HOT) has exactly two characters.
Therefore, a racord haa axactly 7. charactara. IscordTypa la tha naaa of
tha racord atroctura. Ve ohoaa this naaa arbitrarily and capriciously. V.
could hawa usad DonaldDock or Prodo or KradarVDn or any naaa that
confer aa to tba eoowaotloM for easing 9ulckB4SIC xarlablas.

kaxt, tha following block daclaraa tacord aa a .arlabia of tha typa
*" xwdTypw This autoaatlcally daflaas two wnrlables

~ * ' * r. i value is than aaalgnad to Bscord.Bor. callad Bacord. lota and

BM »» Daclara a variable of abova typa tt
611 Bacord AS IscordTypa
Bacord. lor • CHB.HS) • CBF.I10) 'lad of racord charactara

Tha value of Bacord.la • 2-charactar string consisting of tha snd-of-
racord charactara, CB ft LB, Taluss of 1000x4.1010 ars acqulrod latsr, whan
aoasoaa inters thaw froa tha kayboard. low opaa tha flla. Iota that tha
length of a racord la Td charactara ail • ?d>

BIB tt Open lotePad.las on dafault drive »»
»H "lotaPad. Ian" BOB 1AB60X U tl LI* • T«

1 battar way to opan tha ftla la shows below:

OTtt -lotaPad. Ian KM IftBlxn U I llO> LDI Bscord)

Vby la this way battarT liiti Suppose you radaalgn tha Ilia structure i
that a racord la longar or shorter than Tt characters.

COMPUTER SHOPPER DECEMBER 1989

Queen ay number

You guenaad ay nuaberl

To play again, presa any key,

Designing n program like tbia la i
storyboard to help you write thla
Good luck, and keep up thn Rood -Vhon 111 (la k Ida push koys and hear A e..0 things h«i | «

ba long hefiue I bay figure out what k»y does what. II,
push Interesting se,,ue_nc«e of keys and anke lDlere«U„

'"•at I ana called "atorybnardlng. " Dee our
pingraa, or daalgn your own etoryboard.

11 pi nimbly won't
maybe they will
"'1'iances of thlng6

y°° us» II,. A:
SOUBI) (icfirnn, 1 ft,,, on array. U.-a tl,o Brv
background mlm and border color for the i
display lha colore for that key. Dlfferen-
colore.

Problem 71. flosss By lumber for Youngunn.

Here le a Ooan* By Bumbcr game wa play wit
papm and pern f I ot a blackboard Pliat,
"IM» to NInn.

» for a kay to select a
< inla In . naputa a
"in.ml lha BOOID and

ill f fm mil sounds and

counting,

Prese the npace bar to atop

Press any kay and I'll baa! i wn eaci#
guenune 1, guess

Aba! Perhaps she will sen that
It Is gmalnr than 1 (>3> and 1«
guesses the narint number — anc
guess.

ay w-let nual-er Jo . aughl between 3 and '
ITS than 9 <<9) v., continue until she
I put an equals sign (> above her correct

To play again, prasa a kay

Vrlte a pr ogi am to pla
sentences at a renter ad

The PC-fllC Encyclopedia of RharaVare
book describes and reviews the shars
programn in PC-SIO'e annrenue librar
counted 1127 disks. If it can ba do
prohably be dona with low-coet share*
and you can find It In this boot. Pi
PC-SIG, 1030D B. Duana Ave., Bunnyva
94088. 417.01.

(Ilines

-one presses a key, pick a sen at numbm and

If yon ara already beyond
Using QuickBASIC by Don Ii
Advanced QuickBASIC by Doi

ir beginners' book,
in A Bob Albrecht c
nman, et al. !•• thinking nf a number, 1 to 0

my number

your guess?

640 COMPUTER SHOPPER, DECEMRm 1909

Mont of the work is done by th* following |U ugi as blink. It acquires an
• ntiia m<oid (value.of Secdrd* and dl*«|>la y •« I Im |«i I Inent pai t of the
i•nitd (value of Record.fote> on the 6- i eeii II round and round until
II. tcachet I he end of file.

RUM If (iet records from file and print I • • • man 44
W) llll II F0F(1)

akeyl - IIPUTI(l)
ORI II, Recordluaber, Re> "id
I'RIII i PR I IT Pecord. Iota

mdlunber = Recordlun) «i + 1
i.mr

last ttma wa'll continue with i andon-a- ceo* Mine What would you like to
know aIwiiiI I hen?

'I'nno li Yourself MW-BASI'

GV M/ilC la the generic forn uf Klcroei'ft MAMIi . If you have an KS-DOS
computer, ynu probably have GW BASIC. BASH A la alallar to 0V-BAS1C,
licensed to and sold by IBM. tfn use the Tamly vaialua of GV BASIC, called
BASIC on lha disk supplied with our Tandy 1 •»!»«!I. (IV BASIC ha6 nearly 200
keywords. This tine, we'll u«a only a few, Hated !»elow.

ABS IP LOCATB RID VI Bill
Cf?R» IIPUT OFF SCRPni
CLS 1IPUTI PRIIT TAB
DRPIIT IIT RAID0MI7R THE!
OOTO KEY REM TIMER

Ve show keywords In all upper rase letters and vaitables In lower case or a
•1store of upper and lower caaa letter*. Ve do thta to sake prograns easy
for you to read and understand. HOVEVMR, whan you LIST a progran, GV-BASIC
llate variables la upper case.

Stare — a Guessing On en

Stare flint appeared In Peopla'n Crmpuler Co-p-my, Pe< ember, 1072. Last
tin*, wn po^ed Stars as Troblna 71. Ilara In a pilalll-e prograa you can
una to play Stars. A run Bight go Ilka this. In VIDIH 40 letters.

Velrnee to ny galaxy. Let'« play a

gen*. I'll think of a nu»'"»r froa I

to 100. Gues6 ay nuaber. If you ales,

I'll print sone star6. Th* closer you

am, the nore stars you will see.

If you nee 7 stars (* * t • t * t),

ynu am vary, very close to By nunW!

Tout guess? 10 *

^ Tow gu*rts? 20 t *

Your guess? 30 t t

T o m g u a r s ? 9 0 t i l t

Your guess? 95 t t t

Your guess? 80 I t t I M I

Your guars? 81 * * * * 1 •

/fV

On•» owe alai lot close!

V«ll, a III Me closer.

Ii.I tanking eurh headway.

Thai'a heI lei .

0'|e

Oil

Ahal I Ihlnk I know...

loui guess? 79
that's 111!!

Pi ess a key to play again

Vhnt IV» the Stars Irnn? _

lei D • distance of goons fnHI Gtcrel nuel«>i *
Value of D

84 or Bore
32 to 63
18 to 31
8 to 15
4 to 7
2 to 3
1

luflber of Stars

1
2
3
4
«
t)
7

For you people who know
a Mllle Bathi

I * secret nuaber

0 = player's guess

n . | x - c I

(>i, In GV BASIC, we'll use (ha following vai tables and the ABS function:

ferret 16 the secret numi-ar

Guens 16 the player's giw»nn

Dlntanre = ABSfSecret - Guars)

Prngma YnR2703G begins with Ibe usual til la blin k, followed by a setup
bln« k and Instructions on bow to pla».

1 FFM t t Stars — a Guessing Oame t t
2 ' Your BASIC Backpack #27. 8/31/89
3 ' Microsoft GV-BASIC. Filename: YBB2703G.BAS

100 REM ** Set up **
110 SCRFBI 0: CLS : KEY 0PMi VIDTH 40
120 DEFIIT A-Z
130 RAIDOMIZB TIMER

200 REM t t Tall how to play t t
210 CLS
220 LOCATB 1, 1: PRIIT "VelcoBi to ay galaxy. Let's play a"
230 LOCATB 3, 1: PRIIT "gam. I'll think of a nuaber froa 1"
240 LOCATB 5, It PRIIT "to 100. Ouese ay number. If you aiss,'
250 LOCATB 7, 1: PRIIT "I'll print soae stare. The closer you"
260 LOCATB 9, 1: PRIIT "ere, the aor* stare you will sea."
270 LOCATB 11, Is PRIIT "If you see 7 etare (****** *>,»
280 LOCATB 13, 1: PRIIT "you are very, very close to ay number!'

At thle point, we ran the prograe to see If everything Is working.
Fortunately, It was. Bo... hare is the next block, wherein the coaputer
"thinks" of a nuaber, selected at randoa. The nuaber le an Integer In the
range, 1 to 100. The secret nuaber la called Secret.

300 RBI tt Coaputer 'thinks' of a nuaber tt
310 Secret » IITtlOO t RID) • I 'Random Integer, 1 to 100

low everything le reaay. Tim to get e guess. This Is the top of a GOTO
loop 'cause we'll probably get aore than one guess. lote the 6ealcolon (j)
following IIPUT. This prevents a carriage return and line feed after
soaeona typaa a guasa and praeeaa BITER. V* do this eo we can print the
stare on the saaa line as the gueea.

400 REM tt Get a guess tt *1+
410 PRIIT : IIPUT ; "Tour guess"; Guess 'P

OK. now wa have a guess. V# coaput* the Distance of the guess froa the
secret number. This le the absolute value (ABS) of the difference between
the secret nuaber and the gueea.

500 REM tt Coaput* distance froa secret nuaber tt a
510 Distance • ABS(Ser.ret - Ouese) *

Veil, if the distance Is sero, the guess le right on. Let's check for
that. If tha distance la xaro, tooa down to line 810 and tell the lucky
player she or he is a winner.

600 PRM tt Check for a win tt
610 IP Distance * 0 THPI 610

The first goeee or two or ante probably aren't winners. So let's print an
appropriate hint and go back for another guess. Because of that sealcolon
following IIPUT in line 410, the hint (stars) will be on the sane line as
tbe guess.

700 RBM tt lo win, so print a hint A go for new guess tt
710 IF Distance > = 64 TRRI PRIIT TAB(20); " GOTO 410
720 IP Distance >• 32 TIIFI PRIIT TAB(20);
730 IF Distance >• 16 THRR PRIIT TAR(20>;
740 IP Distance >* 6 THFI PRIIT TAB(20>;
750 IF Distance >• 4 THPI PRIIT TAB(20);
760 IP Distance >> 2 TIIRR PRIIT TAB(20);
770 IP Distance = 1 THRR PRIIT TAB(20)j "

t t": GOTO 410
t t t": GOTO 410

t t t GOTO 410
t t t t t": GOTO 410
t t t t t t": GOTO 410
t t t t t t": GOTO 410

Back In line 610, If the distance really wae zero, you get here.

800 RER tt Vlnnerl Press a key to play again tt
810 PRIIT
820 PRIIT " t t t t t t t t t t t t t That's It!!!"
830 PRIIT
840 PRIIT "Pres6 a key to play again."|
850 akeyl » IIPUT*(1)« OOTO 210

That's about it. The prograa works 01, but w* don't like it such. Too
many GOTOe. feeds sone color and sound. Hard to change for another nuaber
range. Oh well, next tlm. . .

Tha Solution P*op)^

Two readers have solved arret of the problem that have been poeed here.

Rd lyres, 029 Manaachueette Ave., #2 H, Caabridge, U 02139 solves
everything In good programing style using QuickBASIC and True BASIC.
He also solves problem we haven't yet posed.

John Straob, 17 Lakeelde Dr. Ext., Ildgefleld, CT 06877 uses GV-BASIC.
If we show • ways to aolvs a problsa, John sends method 1*1.

Vrlte to Ed and John for eolutione. Please include a self-addressed
etaaped envelope to nake it eaay for then to handle lots of requests.

Now Pr-nhl Otnci

Problem 72. Keyboard Kapere for Little lids

COMPUTER SHOPPER, FEBRUARY 1990 493

Your BASIC Baa olc panes* #28

by Bob Albrecht A Don Inman

If you can raad a comic book or a nawmpaper,
you can laarn to raad and undaratand program*
In BASIC. Vail, you can If tha program ara
written so aa to encourage buaans to undarstand
than. That's how wa try to wrlta programs In
"Your BASIC Backpack."

You can laarn to raad and undarstand BASIC, t
express yoursalf In BASIC, and uaa It to aaka A
tha congiuter do what you want It to do tha 1
way you want it dona.

"Your BASIC Backpack" provldas tutorials for baglnnara who want to laarn
how to uaa Klcroaoft QV-BASIC and QuickBASIC. Va also posa problem for
you to think about, play with, and solve. Bob & Don, P.O. Box 1035,
Sabastopol, CA 90473.

Tha BASIC Taachar ~ a PKBB Short Subscription &JP

Tha BASIC Taachar la our magazine about laamlng and
taachlng Microsoft 0V-BASIC and QuickBASIC. Bvary iasua
haa "Taach Yoursalf QuickBASIC" and "Taach Yoursalf
0V-BASIC" for baglnnara, "Browsing BASIC" for paopla who
ara paat tha novlea level, and a naw aactlon callad
<aurprlaa) "Your BASIC Backpack" with problaaa and
solutions for everyone, Raadara of "Your BASIC Backpack"
In CEOTTHB 88QPPKR any hava a FKBH short subscription (3
las uaa) to Tha BASIC Taachar. Sand your raquaat to
Tadaahl Hhara, Tha BASIC Taachar, 2614 - 10th St. , San
Francisco, CA 94110. Of far axplras Dacaabar 31, 1MD

Tha Family Coaputar Club

Va* va baan looking at lota of educational aharawera. Hara ara aoma good
onas for klda of pra-school to aarly alaaantary school aga. Look for thaaa
In tha aharawara ada In uarvllv fflDPPIB.

a ABC Fua lays. Baa four gamaa to halp klda laarn tha alpha bat.

• Aay'a First Prlaar. Six gaaaa to halp klda laarn about tha alpha bat,
nunbara, ahapaa and pattarna.

• Fun with Lattars A Wards. A personalized First Raadar to halp klda
laarn rsading and spalllng.

• Vard Prorsaanr for Klda. For kids froa about aga fl on up. If you hava
never used a word processor, you night try thla one yoursalf — whan tha
klda aren't watching.

Va'll Include aora Information on thaaa and other educational aharawara
program in DragonSaokn #2, ao send for your free copy.

Taaoh Yoursalf QulokBASIC.

This aactlon began in Tour BASIC Backpack «6, April 1966. So wa now assuaa
that you ara acquainted with several of QB's windows, nanus, and operation
procedures. There ara mora than 200 keywords in QuickBASIC's vocabulary.

This time wa will uaa only tha following keywords:

AS DIM IF LI IB PRUT THBI
CBR1 DO IIPUT LOCATB PUT TYPB
CLOSE BID IIPUT! LOP RAIDQX UCASE!
CLS BUT LBPT! LOOP RIM
DIP I IT FOR LSI OPBI 8TB110

Va continue with our slow tutorial on random-access files. This tlna wa'll
create tha Japanese.San file, a file you can uaa to study Japanese. Or,
you can uaa our program to create files to study aomthlng alas: Spanish
or antonym or definitions of fancy wxrda (In English) ar Just about
anything you might una verbal f lanhcardn to halp you laarn.

Create the Jap Ft la.

Tha Japanaaa.Ban file la a random-access file that contains Japanese worda
and phraaaa and their Bngllah equivalent a. Bach record In thla file haa
thrae string fields;

Phrase. J a pa nam

Phrase.Bngllah

Phrase.Eor

A Japanese word or phre
36 characters.

with a length of exactly

Tha Bngllah equivalent, or near equivalent, of tha
Japanese word or phrase. Thla field la also
exactly 36 characters long.

End of record characters, CB (ASCII 13) and LP
(ASCII 10).

Va chose field lengths of 36 characters aach for tha Phrase.Japanese and
Phrase. Bngllah flalds ao that thay can be placed side-by-side on ona line
of tha screen. Tha Phrase.Eor field is included so that you can use the
DOS TYPB command to display tha file on tha screen, or tha DOS PKIIT
command to print tha file to your printer.

You can create the Japanaaa.San file, or a file of your choice, by entering
records froa tha keyboard. Sample records are shown below. Tha spelling
conventions ara consistent with those used in Laarn Japanese by John Young
and Klmiko BakaJ1ma-Okano (Honolulu: University of Hawaii Press, 1964). If
you want to laarn Japanese, this la an excellent book to uaa for self-study
Va'd love to hear froa people who ara learning Japanaaa, or who would Ilka
to begin learning Japanaaa.

Record
lumbar

1
2
3
4
3
6
7

Plrmt Field
(Phrase.Japanaaa)

•lhon'go
Qhayoo gozalaaau
Kon'nlchl wa
Kon' ban wa
Sayoonara
Doozo

Second Plaid
(Phrase. Bngllah)

Japanaaa language
Oood morning
Hallo, Oood day
Oood evening
Ooodbye
Please

Arlgatoo gozalmau Thank you

And now, on to tha program. Va'll show you Program YBB2601Q a place at a
tlm. Bare'a tha first place, our usual title and setup blocks.

IBM tt Create a Random-access 'Flashcard' Pile II
' Your BASIC Backpack #26. 9/30/69
' Microsoft QuickBASIC. Filename: YBB2601Q.BAS

RBM St Sat up S«
DBF IIT A-Z
CLS

Va anticipate mklng aaveral files to halp ue etudy Japanaaa. So tha next
block gats tha nam of tha file and tha dlak drive. It than puta thaaa
together to create tha value of tha etrlng variable files

RBM St Oat nam of file A dlak drlva tt
LOCATE 1, 1; PR IIT "Craata a rendom-eccaaa flashcard flla."
LOCATE 3, 1: IIPUT "Pile nam "| namt
L0CATB 3. 1: IIPUT "Disk drlva"; drival
filename! - drive! • • nam!
L0CATB 7, 1: PRIBT "Craata tha "f nam!; " flla on drlva drlva!
LOCATB 9, 1: PB1IT "Press a kay to bagln.": akay! - IIPUT!(1)
PI I IT

You can try this much of tha program now. It might go Ilka thla:

Craata n random-accaaa flashcard flla.

Pile nam ? Japanese. Ren

Disk drive? b

Create tha Japanaaa.Ran flla on drlva b

The flla nam and dlak drlva lattar can ba in uppar case, lower case, or a
mixture of both. For example, you can type tha flla p*— aa shown, or aa
JAPAVESE. SAI, or aa Japanese.ran.

Tha next block uses TYPB. . . BID TTPE to define tha structure of tha flla.
It speciflaa that aach record will consist of three string flalda.

RBM tt Dafina structure of random-aocesa flla record tt
TYPB RecordType

Japanese AS STRII0 t 36
Bngllah AS STIIYQ t 36
Eor AS STRUG t 2

BID TYPB

'String field with 36 characters
'String flald with 36 charactars
'String flald with 2 charactars

Thla daflnaa a racord aa having thraa flalds. Tha first flald (Japanaaa)
has axactly 36 charactars. Tha second flaid'(Bnglleh) haa exactly 36
characters. Tha third flald (Bar) has axactly 2 charactars. Therefore,
every record has axactly 76 charactars. RecordType la tha nam of the
racord structura. Ve chose this nam arbitrarily and capriciously. Va
could have used Gmndalf or PlashCard or ValtxlnglathlIda or any nam that
conform to tha conventions for naming QuickBASIC varlablas. Va think
RacardTypa is reasonably mnemonic. Other memonlc choices might ba
RecordStrocture or FleldDef lnltlam or . .. well, you can probably invent
name that tickle your memory.

494 COMPUTER SHOPPER, FEBRUARY 1990

low that the record structure la defined, we need to dtclan a varlabla of
the type defined aa RecordType This varlabla will ba uaad to atora an
antlra racord. Since each record conslata of^phrnaes. we decide to nana
our varlabla Phrmas. Thle automatically craataa three field variables,
Phrase.Japanese, Phrase.Sag11ah, and Phrase.HOT. A value la than assigned
to Phrase.Bar.

REX ** Declare a varlabla of above type AA
DIX Phrase AS RecordType
Phrase. lor - CERA(13) * CERA (10) ' Bnd of record characters

The value of Phrase.Bcr la a two-character string consisting of the and-of-
record characters, CR A LP. Values of Phrase. Japanese and Phrase. English
are acquired later, when sosaone enters then fras the keyboard, low open
the file.

REX AS Open the file nasad by the varlabla, fllenaaei SS
OPHI flianasaA FOR RAIDOX AS #1 LEI • LEI(Phrasa)

Iota that wa didn't specify the length of a record aa 70 characters. The
clause LEI • LEI(Phrase) takes cars of that autoaatlcally. This OPEI
statasant Is pretty general. The nase of the file la the value of
flleaaasA. If you wish, you can use a variable to also specify the file
number. Aa tlsa goes by, we'll introduce other ways to sake our progress
sore general.

Vhen you open a random-access file, It Is open for both Input and output.
You can write Information to the file or read Information from the file.

Records In a random-access file era numbered 1, 2, 3, and so on. Vhan you
want a racord, you use Its record number. The next program block seta the
Rscordlumber variable to zero (0). This varlabla Is than used In a
DO. . . LOOP to keep track of records by the numbers — as you eater them and
they are put Into the file.

REX *» lo records yet, so set record number to zero t$
Record!umber • 0

Xow wa are ready for the part of the program that does most of the work.
The following DO...LOOP acquires records entered from the keyboard and PUTs
(writes) them to the file. You can quit by entering the letter "Q" aa the
Japaneae phrase. This causes aa exit from the DO. .. LOOP.

REX AS Bntar records from keyboard, put Into file AA
DO

LIVE IIPUT "Japanese <Q to quit)? "; Phrase
FiratLatterA • LEFT*(Phrase. Japanese, 1>
IP UCASBA(FirstLettarA) • "Q" THE! EXIT DO
LIIB IIPUT "English ? Phrase
PRUT
RecordIumber • Rscordlumber V 1
PUT #1, RecordIumber, Phrase

LOOP

The statement: LIVE IIPUT "Japanese (Q to quit)?

acquires a string entered from the keyboard and assigns It as the value of
Phrase Japanese. If you enterv fewer than 36 characters, spaces are added
to make a total of 36 characters. If you enter mora than 38 characters,
the first 36 are assigned aa the valua and the rest are ignored. For
example, suppose you enter Ilhon'go and press BITER. This string has eight
characters. The value of Phrmsm..Japanese will consist of these eight
characters followed by 30 spaces, for a grand total of 36 charactara.

If you press the Q key to quit, 37 specea are automatically appended and
the result Is stored as the valoe of Phrase.Japanese. Veil, there aren't
any Japaneae words beginning with Q. If the first letter of the value of
Phrmms. Jape ansa Is Q (or q), the following lines cause aa exit from the
DO. . .LOOP.

FlrstLetterA • LEFTA(Phrase. Japanese, 1)
IF UCA8IA(FlrstLetterA) • "<T THBI IIIT DO

Remember, if the value of PirstLstterA is either "9" or "q", than the value
of UGASEA(FlrstLetterA) will bp "Q".

After the exit from the DO. . .LOOP, all that Is left Is a little mop-up.

REX AA Print length of file, close file, end program At
PR! IT
PR I IT "The •; nameA, " file has"; LOF(l); "bytes."
CLOSE #1
BID

Hrnma. . . Perhaps we should have elso printed the number of records In the
file. Tou can sake that change, can't you?

Time for a teat run. We'll enter the eeven records shown previously.

Create a random-access flashcard file.

File nam* ? Japanese Ran

Disk drive? b

Create the Japanese.Ran file on drlva b

Press a key to begin.

Japanese (Q to quit)? Ilhon'go
English ? Japanese language

Japanese (Q to quit)? Ohayoo gozalsesu
English ? Good morning

Japanese (Q to quit)? Kon'nlchl wa
Bngllsh ? Hello, Good day

Japanaea (Q to quit)? Kon'ban wa.
English ? Good evening

Japanese (Q to quit)? Sayoonara
English ? Goodbye

Japanese (Q to quit)? Doozo
English ? Plsase

Japanese (Q to quit)? Arlgetoo gozalmeeu
English ? Thank you

Japanase (Q to quit)? q

The Japanese. Ran file has 546 bytss.

Press any key to continue

Let'a aee now — we entered seven records end wa know that each record
should occupy 76 bytes. So...

7 x 76 - 546 AQK!

View the Japanese. Ram File la the View Window

You can load the Japaneae.Ran file Into QB's View Window and view it.
However, since It la not a program, If you try to edit It you will see a
Syntax error dialog box. Of course, you can Invoke the Full Menus and turn
off the syntax checking. We assume you know how to change from QB 4.5's
Easy Menus to Pull Menus, and conversely. Is our assumption correct?

If you are using the QuickBASIC Interpreter, Academic Edition, you can load
the Japanese. Ran file Into the View Window mora easily — load It as a
Document Instead of aa e Program. We uae the QB Interpreter for moat of
our BASIC brainstorming. Well, QB 4.5 or QBI, hare le the Japanese. Ran
file in the View window, loaded as a Document.

Use DOB TTPB to Display the Japanmma.Raa Pile

Since each record of the Japanese.Ran file has end-of-record characters,
you can use the DO6 TYPE command to display the file on the screen, one
record per line of the screen. Remember, each field la 36 characters long,
so the two fields will fit alde-by-sida on one line. Suppose the
Japanase. Ran file la on the disk in drive B. At tba D06 A prompt <A>_) or
whatever DOS prompt you see, do the following.

Type:

TTPB b: Japanese. Ran (It Is 01 to type: type)

and prase KITBR. x

Vhen we did it, our screen looked like this: W -

A>TYPB b:Japanese. Ran
Ilhon'go
Ohayoo gozalmasu
Kon'nlchl we
Kan'baa wa
Sayoonara
Doozo
Arlgatoo gozalmasu

Japanese language
Good morning
Hello, Good day
Good evening
Goodbye

Thank you

COMPUTER SHOPPER, FEBRUARY 1990 495

Preview of Coming Attraction*

Ve'll uu tha Japanese. Ran flla to demonstrate aaaortad program. For
example:

a A progran to acan tha flla sequentially fron raoord fl to the and of the
flla. Praas a kay to aaa tha next ant Ira racord.

c*>f'
• 1 progrxx to son ths flla to son ths tils ssqusntlslly, • phrnss at a

tl*a — first tlia Japanaaa phrase, than tha Bngllah phrase. Or, if you
prefer, you Cor we) can change the program to show tha Bngllah phrase
flrat, than tha Japanaaa phraoa.

e A program to son tha flla randomly, an eatlra racord aach time you
press a kay (or a designated kay),

a A program to son the file randomly and present either the Japanese or
English phrase first, then the corresponding phrase In ths other
language. For example, you might presa tha J key to get the Japanese
phrase first, then prams B when you want to eae the correepondlng
Bngllah phrase. It would be easy to change this program to gat a timet
drill Press J to get the Japanese phrase or B to get the Bngllah
phrase. Than, la m seconds (you choose tha value of *>, the
corresponding phrase appears.

• A program to adit tha filet change, add, or daleta records.

You can modify program T1B2601Q and oumtomlie It for your use. For
example, suppose you want to study Spanish Instead of Japanaaa. Changs ths
prograa block that defines the record structure to, for example, the
following.

RBI AA Define etruoture of random-access fll* record AA
TYPB B*cordTyp*

Spanish Afl STRUG. * 38 'String flald with 38 character*
Bngllah AS STRIIO A 38 'String flald with 38 charactara
Bor AS STRIIO * 2 'String flald with 2 charactara

BID TTPB

Having aada tha abova changa,
DO...LOOP, *a follow*:

you now mat oak a two alnor changao la tha

RBI AA later racorda from keyboard, put lato file AA
DO

LIVB IIPUT "Spanish (Q to quit)? Phraoa.Spaniah
PiratLattarA • LIFTA(Phraoa. 8paniah, 1)
IP UCASHA(PiratLattarA) • "Q" Till IXIT DO
LI IB IIPUT "lag lloh T "j Phraoa. Bngllah
PRUT
Racordluobar • Racordluobar • 1
PUT #1, Racordluobar, Phraoa

LOOP

Toooli Your aaa If QV-BASIC

0V-BASIC la tha ganeric for* of Mlcroaoft BASIC. If you have an MS-DOS
coaputar, you probably have QV-BAB1C. BAS1CA ia alollar to GV-BABIC,
11canoed to and aold by IBM. Va uaa tha Tandy varolon of QV-BABIC, called
BASIC on tha dlak auppllad with our Tandy 1000TX. OV-BASIC haa naarly 200
keyword*. Thla tiee, we'll uaa only a faw, llatad below..

ABS IP
CHBA IIPUT
CLS IIPUTA
DBFIIT IIT
GOTO KEY

LBFTA
LOCATE
OPF
PR I IT
RAIDOMIZB

RBI
RID
SCRBBI
TAB
THBI

TIXBR
WIDTH

Va show keyword* in all upper caaa latter* and varlablea in lower case or a
mixture of upper and lowar case letters. Va do thla to aaka program assy
for you to road and understand. HOVBVBR, whan you LIST a prograa, OV-BASIC
lists variables in upper case.

Queealag Gam, Varalan 2 . Stars

Ve hope you enjoyed playing Stars and oade som loprovemnts to our
primitive progras. Here is another program to play Stars. The first part
of Program YBB2802G la almost the same as the first pert of Prograa
YBB27030, shown last tim*.

1 RBM AA Stare — a Ouesalng 0am, Version 2 AA
2 ' Your BASIC Backpack #27. 0/30/80
3 ' Mlcroaoft GV-BASIC. Filename: YBB2802G.BAS

100 RBM AA Set up AA
110 SCRBBI 0(CLS i XBY OFF: WIDTH 40
120 DBF IIT A-Z wrf
130 RAIDOMIZB TIMBR 'T

200 RBM AA Tell how to play AA
210 CLS

If
It
It
If
If

If

*
220 LOCATE 1,
230 LOCATE 3,
240 LOCATB S,
2S0 LOCATB 7,
280 LOCATB 0,
270 LOCATB 11,

PI I IT "Welcome to ay galaxy. Ufa play *"
PRlIT "gam. I'll think of a number from 1"
PRUT "to 100. Quaes ay number. If you miss,"
PR I IT "I'll print som stars. The closer you"
PR I IT "era, tha mora stare you will me."

PRUT "If you oae 7 stars (A A A A A A A),"
280 LOCATB 13, It PBIIT "you are vary, vary dome to my number!"

300 RBI AA Computer 'thinks' of a number AA
310 Sacrst • IIT(100 A RID) t 1 'Random integer, 1 to 100

400 RBM AA Get a guess AA v__
410 PR I IT : IIPUT j "Your guess"; Guam

SOO RBM AA Compute distance from secret number AA
510 Distance • ABS(Secret - Quern)

You can mke the program seem even more general (to the casual reader) by
changing three prograa blocks as shown below.

RBI AA Define structure of randoa-scceom flla record AA
TYPB RacordTypa

SldaA AS STRIIO A 38 'String field with 38 characters
SideB AS STRIIO A 38 'String field with 38 characters
Bor AS STRIIO A 2 'String field with 2 characters

BID TYPB

RBM AA Declare a variable of above type AA
DIM FlashCard AS RecordType
PlashCard.Bor - CHBA(13) • CHRl(lO) 'End of record characters

RBM AA Bnter records from keyboard, put into file AA
DO

LIMB IIPUT "Flamhcard, aids A <Q to qult)?^"!
PiratLattarA - LBFTA(FlamhCord.SideA, 1)
IF UCASBA (FlrstLetterA) - "Q" THBI HXIT DO
LlIB IIPUT "Flaahcard, aide B ? "; FlashCard. SideB
PRIIT
RacordIumber • RecordIumber • 1
PUT #1, Recordlumber. FlashCard

LOOP

Veil, that Juat scratches the surface of possibilities. Vhat would tqu
like to see? Remaber, all of the above will work for files other then the
Japanese. Ran file. Vhat would you like to study by tha flesh card method?

FlashCard.SldeA

600 RBM AA Check for a win AA X *c
610 IF Distance - 0 THBI 810

Block 700 is the work horse of the prograa. It figures out how many stare
to print if the player didn't guess the secret number. Last time we did it
on* way. Here is another my.

700 RBM AA Bo wis, so print a hint 8 go for new guaea AA
7 1 0 S t a r s A - " A A A A A A A A "
720 IF Distance >• 64 THBI PRIIT TA£(20); LEFT A (StarsA, 2)> GOTO 410
730 IF Distance >• 32 THBM PRIIT TAB(20); LBFTA(StarsA, 4): GOTO 410
740 IF Distance >• 16 THBI PRIIT TAB(20); LBFTA (StarsA, 6U GOTO 410
750 IF Distance >• 6 THBI PRIIT TAB(20>; LBFTA (StarsA, 8): GOTO 410
760 IF Distance >• 4 THBI PRIIT TAB(20>; LBFTA (StarsA, 10): GOTO 410
770 IF Distance >- 2 THBI PRIIT TAB(20); LBFTA (StarsA, 12): OOTO 410
780 IF Distance - 1 THBI PRIIT TAB(20)j LIFTA (StarsA, 14): OOTO 410

Ve also mde a small change in the final program block (block 800). low
the computer prints the secret number at the end of the gam This mkas
it easier to find out if the prograa is really mrking properly.

800 RBM AA Vlnner! Pram a key to play again AA
810 PRIIT
820 PRIIT "I A A A A A I I A A I A A That's ltlil"
830 PRIIT
840 PRIIT "My secret number la"; Secret
830 PRIIT
860 PRIIT "Press a key to play again.";
870 akeyA - IIPUTA (1): GOTO 210

Veil, go ahead and play this version. Compere block 700 of thla program
with* block 700 of last month's program. Then remember, there's almys
another my — change only the title block (black 1) and block 700. as
shown below, then mve the modified program as Y182803G.

1 REM AA Stars — a Guessing
2 ' Your BASIC Backpack #27.
3 • Microsoft OV-BASIC.

tern, Version 3 At
0/30/80
Filename: YBB2803G. BAS

7

700 RBM AA lo win, so print a hint 8 go for new guess AA
7 1 0 S t a r s A « " A A A A A A A A "
720 PowsrOfTwo - 64
730 ImbrOfStara - 1
740 IP Distance >• PowsrOfTwo THBI 780
750 ImbrOfStara • ImbrOfStara • 1
760 PowsrOfTwo • PowsrOfTwo / 2
770 OOTO 740
780 PRIIT TAB (20); LBFTA (StarsA, 2 A ImbrOfStara):

496 COMPUTER SHOPPER, FEBRUARY 1990

Let's run that last version, tha ana with tba rather boggling block 700.
Hera are the guasses. ,

Problem 70. Putting Things la Order.

Tour guess? 50

Tour guess? 60

Tour guess? 40

Tour guess? 30

Tour guess? 45

* * * < *

t * »

t t t t t

M l *

1 * * 1 * * 1

Tour guess? 44
* l * * t l t l * * t t (T h a t ' s i t 1 1 1

My secret nuaber is 44

Press a key to play again.

In case you have forgottaa what tha stars aesn, hare is a handy table. Of
course, don't tell tha player what the stars man. Part of the gaas is
gathering data (by playing) and figuring out what tha stars mean.

Let D • distance of

Pot you people who know
a little asth:

X • secret nuaber

0 • player's guess

D • |X - 0|

Value of D lumber of Stars

64 or aore 1
32 to 63 2
16 to 31 3
6 to 15 4
4 to 7 8
2 to 3 6
1 . T

The Solution Paopla

Two readers have solved aost of tha problaas that have bean posed hara.

Bd Ayres, 020 Massachusetts Ave., #2-1, Caabrldge, KA 02130 solves
everything in good programing style using QuickBASIC and True BASIC.
Ha also solves pro bless wa haven't yet posed.

John Straub, IT Lakeside Dr. 1st., Bldgsfleld, CT 00677 uses GV-BASIC.
If we show V Maya to solve a problem, John sends aethod 141.

Vrlte to Bd and John far solutions. Pisses include a self-addressed
staaped envelope to asks It easy for thaa to handle lots of requests.

Saw PrrtHI

Problea 75. Biasing Towels Spelling Drill

Vrlte a prograa to help a kid learn to spell. Pick a word froa a bunch of
DATA stateaents, an array, or perhaps a randan-access file. Display the
word on the screen with all vowels replaoed by the underline character <),
then mlt patiently for soaeons to type the entire word and press BITES. ~
For ezasple, display "DRAGQF* like this:

Uee big letters (VIDTH 40). Remember, soaetlass there sight be two or aore
responses that are legltiante words. The assy way out is to say aoaetbing
like, "I'a thinking of a different word. Please try again." Or, you sight
have a short list of possible words sad check thaa all.

Tou should accept any alx of upper and lower case letters in a correct
response. For ezasple, dragon. DKAGQI. and Oregon are all correct
responses far the above. This is easy to do in QuickBASIC (use OCASBS or
LCASEA), but a little aore difficult in GV-BASIC. In past episodes, we
have shown a subroutine to take care of this problea.

Of course, think about including color, sound, interesting graphics, stuff
to sake the prograa aore fen to use. Keep up the good work.

How about a "putting things in order" gaas? First a gaae in which you put
nuaber blocks in order with the smallest nuaber on top and the largest
nuaber on the bottom. It sight begin like this.

•

Can you figure out how block 700 works? This block is easy to change for s
different range of nuabers (1 to 50 or 1 to 200 or 1 to 1000, etc.).

There's always another way. Try rewriting block TOO using the LOO
function.

Use the srrow keys (14 > to aova the on-ecreen srrow to the block you
want to aova to the top. Make it thpnk againet the nuaber blook and "lock-
on" to it. Than "pull" tha block out. The blocks above the one you pull
out drop down into tha eapty apace (thuakt). low use the up arrow key to
aova the block up the screen, then use the left arrow key to put it on the
top of the atack of blocks. Looks like we need a way to tell the big arrow
to let go. Space bar? L key? Tou decide.

The goal is to put the blocks in order, with block #1 on top and block id
on the bottom. Vhen this is dons, give a nice reward.

Variations

Instead of numbers 1 to 6, choose eight nuabers froa a larger set; 1 to 20,
or 1 to 00, or -10 to 10, or your choice.

Instead of nuabers 1 to 6, use letters A to H; or use eight letters
selected froa the entire alphabet.

Instead of using a big arrow to aova the blocks, create a shape of your
choice.

Problea TT. Boat the Rurkle in SCEKKI 0 .

SCREBI Q la the tart screen with 25 rows and 80 columns. Hide the Hurkle
somewhere in row 1 to 20, column 1 to 80. For example, the Hurkle could be
at row 8, column 73. Tou might use Brow and Bcol as variables for the
Hurkle's hiding place.

Mo** tell the player to hunt the Hurkle. A guess consists of a row nuaber
and a column nuaber. Tou might use Orow and Geol as variables for the
guess.

After a guess, compute the distance of the guess from the Hurkle'a hiding
place, like this:

Distance « SQIUHrow - Grow) "2 + (Bcol - Qool)"2»

If the distance is zero, reward the player far finding the Hurkle.
Otherwise, color the screen location (Grow, Gcol), as follows.

Distance condition

Distance < 2
2 < • Distance < 6
6 < » Distance < 24
24 < - Distance < 120
120 < * Distance

Color

light magenta
light red
yellow
light green
light blue

Color an

13
12
14
10
9

Use the bottom flva lines of the screen far communication with the player.
Of course, you may want to begin with some instructions on how to play.
Don't tell the player exactly what the colors asan. Just say or show that
light aaganta is very close (HOT!), light red is close (very warm), yellow
is warm, and so on. If you need more room for caaaonicatlon with the
player, feel free to reduce the area where the Hurkle can hide. Good
hunting, but please don't hurt the friendly Burkle!

