UNIVAC

ASSEMBLER
UP-4133 Rev. 1

i UNIVAC SYSTEMS PROGRAMMING LIBRARY SERVICES —

UNIVAC 494 Library Memo 12 releases and announces the availability of the "UNIVAC 494
Real-Time System Assembler Reference Manual,” UP-4133 Rev. 1, covers and 144 pages.
This is o Standard Library Item (SLI).

The UNIVAC 494 Assembler is an integrated program which converts source code
programs (UNIVAC 494 SPURT or UNIVAC 494 Assembler (ASM) language) to relocatable
binary (RB) elements for use by the UNIVAC 494 Operating System. The Operating
System collects all the independent RB elements required to produce an absolute
object code program for execution.

The assembly language is a set of mnemonic statements which are directly con-
verted to relocatable binary code. Also contained in the assembly language
are directives which are instructions to the assembler to permit the user to
define symbols for complex operations and to control the assembly process.

This revision reflects changes in the 494 Assembler, adds a description of
pseudo-ops, and includes a description of the following assembly directives:
END, BLOCK-DATA, XREF, EDEF, Expression (SLEUTH, BITARRAY), INPUT or INPUTFORM,

. LET, UNLIST, and LIST. In addition, three appendices have been added. These
appendices describe the error flags that may appear in the listing at assembly
time, depict the order in which various sources are searched in order to define
symbols used in the operation field, and list the available options on the
#ASM card.

A listing of the contents of this manual followss l. Introduction; 2. Computer
Formats; 3. Source Language Format Requirements; 4. Basic Assembler Language
Instructions; 5. Assembly Directives; 6. PROC, FUNC, and Associated Directives;
Appendix A, Abbreviations and Special Symbols; Appendix B, Fieldata and Card
Codes for Character Representation; Appendix C, Assembler/SPURT Function Codes;
Appendix D, Error Flags; Appendix E, Operation Field Hierarchy; and Appendix F,
#ASM Options.

struction Notice: This manual, UP-4133 Rev. 1, supersedes and replaces
"UNIVAC 494 Real-Time System Assembler Reference Manual," [IP-4133, issued
on Library Memo 7 dated October 21, 1966. Please destroy all copies of
UP-4133 and/or Library Memo 7.

(See Reverse)

115 SHEET |

To LISTs10U, 217, 630, |ATTACHMENTS UP-4133 Rev. 1 plus Library ;§4 Reéi?Time System
‘ and 692 Library Memo |Memo 12 to S.P.L.S. lists 43 and 44. lLibrary Niomo 12y

12 only.

DATE

November 10, 1967

DIVISION OF SPERAY RAND CORPORATION, 5. P.L.S. P.O. BOX 5100 PHILADELPHIA, PA. 19101 UP-4050 Rev. 3




Distribution of this manual, UP-4133 Rev. 1, and/or the Library Memo 12 is being
made as indicated below. Additional copies may be ordered via a Sales Help
Requisition through your local Univac Manager, from Holyoke, Massachusetts.

MANAGER
Systems Programming Library Services



ASSEMBLER

UP-4133 Rev. 1



©1967 - SPERRY RAND CORPORATION

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor-
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re-
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

PRINTED INU.S.A




UP-4133 Contents
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
CONTENTS
CONTENTS lto7
1. INTRODUCTION 1-1to 1-1
2. COMPUTER FORMATS 2-1 to 2-8
2.1. GENERAL 2-1
2.2. DATA FORMATS 2-1
2.2.1. Single Precision Integer Word 2-1
2.2.2. Double Precision Integer Word 2-3
2.2.3. Decimal (BCD) Word 2-3
2.2.4. Exponential (Floating Point) Word 2-4
. 2.3. ADDRESSING 2-4
2.3.1. Data Addressing 2-5
2.3.2. Instruction Addressing 2-5
2.3.3. Standard (Fixed) Locations 2-5
2.4. INSTRUCTION FORMATS 2-5
2.4.1. Normal Instruction Word 2-5
2.4.2. 77 (Extended Repertoire) Instruction Word 2-8
3. SOURCE LANGUAGE FORMAT REQUIREMENTS 3-1to 3-20
3.1. GENERAL 3-1
3.2. SYMBOLIC LANGUAGE FIELDS 3-1
3.2.1. Label Field 3-4
3.2.1.1. Location Counters 3-4
3.2.1.2. Label 3-5
3.2.2. Operation Field 3-6
3.2.3. Operand Field 3-7
3.3. LINE CONTROL AND COMMENTS 3-7
3.3.1. Continuation 3-7
3.3.2. Comments 3-8
3.4. DATA WORD GENERATION 3-8
3.4.1. Single Word (30 Bits) 3-8
‘ 3.4.2. Double Word (60 Bits) 3-9
3.4.3. Variable Length Word 3-9



UP-4133 Contents 2

Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

3.5. EXPRESSIONS 3-9

3.5.1. ltems 3-9

3.5.1.1. Label 3-9

3.5.1.2. Location 3-10
3.5.1.3. Octal Values 3-10
3.5.1.4. Decimal Values 3-10
3.5.1.5. Character Strings in Expressions 3-10
3.5.1.6. Double Word Constants (60 Bits) 3-11
3.5.1.7. Literals 3-12
3.5.1.8. Parameters 3-13
3.5.2. Operators 3-13
3.5.2.1. Arithmetic Product * 3-13
3.5.2.2. Equal = 3-14
3.5.2.3. Greater Than > 3-15
3.5.2.4. Less Than< 3-15
3.5.2.5. Less Than or Equal <= 3-15
3.5.2.6. Greater Than or Equal > = 3-16
3.5.2.7. Not Equal To / = 3-16
3.5.2.8. Logical Sum ++ 3-16
3.5.2.9. Logical Difference —— 3-17
3.5.2.10. Logical Product ** 3-17
3.5.2.11. Arithmetic Sum + 3-17
3.5.2.12. Arithmetic Difference - 3-18
3.5.2.13. Arithmetic Division / 3-18
3.5.2.14. Covered Quotient // 3-18
3.5.2.15. Shift Exponent =/ 3-18
3.5.2.16. Comments Within Expressions /. ./ 3-19
3.5.3. Absolute and Relocatable Labels and Expressions 3-19

4. BASIC ASSEMBLER LANGUAGE INSTRUCTIONS 4-1to 4-69

4.1. GENERAL 4-1

4.2. DESIGNATOR INTERPRETATION 4-1
4.2.1. Interpretation of k Designators §-1
4.2.1.1. Standard Read Class k Designators 4-2
4.2.1.2. Standard Store Class k Designators 4-4
4.2.1.3. Standard Replace Class k Designators 4-6
4.2.1.4. Exceptions to Standard k Designator Interpretation 4-9
4.2.2. Interpretation of j Designators 4-9

4.3. DATA TRANSFER INSTRUCTIONS 4-15
4.3.1. Load Q (10) LQ 4-15
4.3.2. Load A (11) LA 4-15
4.3.3. Load B (12) LB 4-16
4.3.4. Clear B (12) ZB 4-16
4.3.5. No Operation (12) NOP 4-17
4.3.6. Double Precision Load (7721) DPL 4-17
4.3.7. Store Q (14) SQ 4-17
4.3.8. Clear Q (16) ZQ 4-18
4.3.9. Negate Q or Complement Q (14) NQ 4-18

4.3.10. Store A (15) SA 4-18




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER PRt (PRt
‘ 4.3.11. Negate A or Complement A (15) NA 4-19
4.3.12. Clear A (21) ZA 4-19
4.3.13. Store B; (16) SB 4-19
4.3.14. Clear \)(16) SZ 4-20
4.3.15. Double Precision Store (7725) DPS 4-20
4.3.16. Character Pack Lower (7731) CPL 4-21
4.3.17. Character Pack Upper (7732) CPU 4-21
4.3.18. Character Unpack Lower (7735) CUL 4-21
4.3.19. Character Unpack Upper (7736) CUU 4-22
4.3.20. Load B-Worker (7771) LBW 4-22
4.3.21. Store B-Worker (7775) SBW 4-22

4.4. SHIFT INSTRUCTIONS

4.4.1. Right Shift Q (01) RSQ

4.4.2. Right Shift A (02) RSA

4.4.3. Right Shift AQ (03) RSAQ

4.4.4. Left Shift Q (05) LSQ

4.4.5. Left Shift A (06) LSA

4.4.6. Left Shift AQ (07) LSAQ

4.4.7. Logical Right Shift Q (7751) LRSQ
4.4.8. Logical Right Shift A (7755) LRSA
4.4.9. Logical Right Shift AQ (7756) LRSAQ
4.4.10. Scale Factor Shift (7730) SFS

4.5. TEST (COMPARISON) INSTRUCTIONS
4.5.1. TestA (04) TA

4.5.2. TestQ(04) TQ

4.5.3. Test Range (04) TR

4.5.4. Test Logical Product (43) TLP

4.5.5. Double Precision Test Equal (7723) DPTE
4.5.6. Double Precision Test Less (7727) DPTL
4.5.7. Masked Alphanumeric Test Equal (7753) MATE
4.5.8. Masked Alphanumeric Test Less (7757) MATL

4.6. JUMP INSTRUCTIONS

4.6.1. Jump (61))

4.6.2. Jump on Test (60)JT

4.6.3. Store Location and Jump (65) SLJ

4.6.4. Store Location and Jump Test (64) SLIT
4.6.5. Execute Remote (7737) ER

4.6.6. Enter B, and Jump (7740 - 7747) LBP)J

4.7. SEQUENCE-MODIFYING INSTRUCTIONS
4.7.1. Repeat (70) R

4.7.2. Test Bj and/or Increment (71) TBI
4.7.3. Jump on B; and Decrement (72) JBD
4.7.4. Test and get (7752) TSET

4.7.5. Executive Return (7754) EXRN

et T — R A S R S
|

N RO N NN NN NN NN

SNSNSNOOOOOYON B s Ww

!
~
o

B B e B Pa e e e e
|

WwWwWwwN NN

-0 O O W oo o




UP-4133 4

Rev. 1 UNIVAC 494 ASSEMBLER oot e ens
4.8. ARITHMETIC INSTRUCTIONS 4-36
4.8.1. General 4-36
4.8.1.1. Integer (Fixed Point) Addition and Subtraction 4-36
4.8.1.2. Integer (Fixed Point) Multiplication and Division 4-37
4.8.1.3. Floating Point Arithmetic 4-38
4.8.1.4. Decimal (BCD) Arithmetic 4-38
4.8.2. Fixed Point Single Word Addition 4-38
4.8.2.1. Add A (20)A 4-39
4.8.2.2. Add Q (26) AQ 4-39
4.8.2.3. Load Y + Q (30) LAQ 4-39
4.8.2.4. Store A + Q (32) SAQ 4-39
4.8.2.5. Replace A+ Y (24) RA 4-40
4.8.2.6. Replace Y + Q (34) RAQ 4-40
4.8.2.7. Replace Y + 1 or Increment Y (36) Rl 4-40
4.8.3. Fixed Point Single Word Subtraction 4-40
4.8.3.1. Subtract A (21) AN 4-41
4.8.3.2. Subtract Q (27) ANQ 4-41
4.8.3.3. Load Y-Q (31) LANQ 4-41
4.8.3.4. Store A-Q (33) SANQ §-42
4.8.3.5. Replace A-Y (25) RAN 4-42
4.8.3.6. Replace Y-Q (35) RANQ 4-42
4.8.3.7. Replace Y-1 or Decrement Y (37) RD 4-43
4.8.4. Fixed Point Double Word Arithmetic 4-43
4.8.4.1. Double Precision Add (7722) DPA 4-43
4.8.4.2. Double Precision Subtract (7726) DPAN 4-43
4.8.4.3. Double Precision Complement (7724) DPN 4-44
4.8.5. Fixed Point Multiplication and Division 4-44
4.8.5.1. Multiply (22) M 4-44
4.8.5.2. Divide (23) D 4-46
4.8.6. Floating Point Arithmetic 4-53
4.8.6.1. Floating Point Add (7701) FA 4-53
4.8.6.2. Floating Point Subtract (7702) FAN 4-53
4.8.6.3. Floating Point Multiply (7703) FM 4-54
4.8.6.4. Floating Point Divide (7705) FD 4-54
4.8.6.5. Floating Point Pack (7706) FP 4-54
4.8.6.6. Floating Point Unpack (7707) FU 4-55
4.8.7. Decimal Arithmetic 4-55
4.8.7.1. Decimal Test AQ (7710) DT 4-55
4.8.7.2. Decimal Add (7711) DA 4-56
4.8.7.3. Decimal Add with Carry (7715) DAC 4-57
4.8.7.4. Decimal Subtract (7712) DAN 4-57
4.8.7.5. Decimal Subtract with Borrow (7716) DANB 4-57
4.8.7.6. Decimal Complement AQ (7714) DN 4-58
4.8.7.7. Decimal Test Less (7717) DTL 4-58
4.8.7.8. Decimal Test Equal (7713) DTE 4-58
4.8.7.9. Decimal Convert Lower (7733) DCL 4-59

4.8.7.10. Decimal Convert Upper (7734) DCU 4-59




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER e s

. 4.9. LOGICAL OPERATIONS 4-59
4.9.1. Load Logical Product (40) LLP 4-61
4.9.2. Store Logical Product (47) SAND 4-61
4.9.3. Replace Logical Product (44) RLP 4-61
4.9.4. Add Logical Product (41) ALP 4-62
4.9.5. Replace A + Logical Product (45) RALP 4-62
4.9.6. Subtract Logical Product (42) ANLP 4-62
4.9.7. Replace A - Logical Product (46) RANLP 4-62
4.9.8. OR (50) OR 4-63
4.9.9. Replace OR (54) ROR 4-63
4.9.10, Exclusive OR (51) XOR 4-63
4.9.11. Replace Exclusive OR (55) RXOR 4-64
4.9.12. NOT (52) NOT 4-64
4.9.13. Replace NOT (56) RNOT 4-64
4.9.14. Selective Substitute (53) SSU 4-64
4.9.15. Replace Selective Substitute (57) RSSU 4-65
4.9.16. Application of Logical Instructions 4-65
4.10. PSEUDO-OPS 4-67
4.10.1. Data Transfer Pseudo-Ops 4-67
4,10.2. Linkage Pseudo-Ops 4-67
4,10.2.1. NOP Pseudo-Op 4-67
4.10.2.2. ENTRY and EXIT Pseudo-Ops 4-69

. ASSEMBLY DIRECTIVES 5-1to 5-14

. 5.1. GENERAL 5-1
5.2. EQU (EQUATE) 5-1
5.3. RES (RESERVE) 5=2
5.4. LIT (LITERAL) 5-2
5.5. FORM (FORMAT) 5-3
5.6. START 5-4
5.7. END 5-4
5.8. DLD (DOUBLE LENGTH DATA) 5-5
5.9. UTAG 5-5
5.10. DO 5-6
5.11. COMMON 3
5.12, BLOCK-DATA 5-9
5.13. XREF (EXTERNAL REFERENCE) 5-9
5.14, EDEF (ENTRY DEFINITION) 5-10
5.15. EXPRESSION 5-10

‘ 5.15.1. Expression SLEUTH 5-11
5.15.2. Expression Bitarray 5-12




UP-4133 Contents 6
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

5.16. INPUT OR INPUTFORM 5-13

5.17. LET (GENERAL) 5-13

5.18. UNLIST 5-14

5.19. LIST 5-14
6. PROC, FUNC, AND ASSOCIATED DIRECTIVES 6-1 to 6-16

6.1. GENERAL 6-1

6.2. PROC (PROCEDURE) DIRECTIVE 6-2

6.2.1. PROC Directive Format 6-2

6.2.2. END Directive 6-3

6.2.3. Symbolic Lines Within Procedure 6-3

6.2.4. Call Line 6-4

6.2.5. Paraforms 6-5

6.2.6. Expanded Procedures 6-7

6.2.7. Efficient Use of Procedures 6-9

6.3. FUNC (FUNCTION) DIRECTIVE 6-11

6.3.1. Function Nesting 6-11

6.3.2. Function Calls 6-12

6.3.3. Function Paraforms 6-12

6.4. DIRECTIVES ASSOCIATED WITH PROCEDURES AND FUNCTIONS 6-14

6.4.1. NAME Directive 6-14

6.4.2. GO Directive 6-15

6.4.3. LET Directive 6-16
APPENDIX A. ABBREVIATIONS AND SPECIAL SYMBOLS A-1to A-1
APPENDIX B. FIELDATA AND CARD CODES FOR CHARACTER REPRESENTATION B-1to B-1
APPENDIX C. ASSEMBLER/SPURT FUNCTION CODES C-1to C-3
APPENDIX D. ERROR FLAGS D-1to D-2

Dl. GENERAL D-1

D2. U(UNDEFINED) D-1

D3. D(DOUBLY DEFINED) D-1

D4. R(RELOCATION) D-1

D5. L (LEVEL) D-1

D6. T(TRUNCATION) D-2

D7. E (EXPRESSION) D-2

D8. I(ILLEGAL) D-2

D9. P (PARAMETER) D-2
APPENDIX E. OPERATION FIELD HIERARCHY E-1to E-1

APPENDIX F. #ASM OPTIONS F-1to F-1




UP-4133 Contents
Rey. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
‘ FIGURES
2-1, Single Precision Integer Word Format 2-1
2-2. Double Precision Integer Word Format 2-3
2-3, Decimal Word Format 2-3
2—-4, Exponential (Floating Point) Word Format 2-4
2-5. Instruction Word Formats 2-5
3-1. UNIVAC 494 Assembler Coding Form 3-2
6-1. Typical Procedure Call Lines 6-5
6-2. Simple Paraform 6-5
6-3. Simple Function 6-13
TABLES
2-1. BCD Coding 2-4
2-2. Designator Interpretation 2-6
3-1. Operator Priority Within Expressions 3-14
3-2. Absolute and Relocatable Expressions 3-20
. 4-1. Exceptions from Standard k Designator Interpretation 4-10
4-2. Normal j Designator Interpretation 4-11
4-3. Special j Designator Interpretation for Test (Compare) Instructions §-11
4~-4. Special j Designator Interpretation for Jump Instructions 4-12
4-5, Special j Designator Interpretation for Repeat Instructions 4-13
4-6, Special j Designator Interpretation for Arithmetic and Logical Instructions 4-14
4~7. Data Transfer Pseudo-Ops 4-67
6~1. Evaluation of PROC Paraforms -6
6-2. Evaluation of FUNC Paraforms 6-12
A-1. Symbols and Abbreviations A-1
B-1. Fieldata and Card Codes for Character Representation B~-1
C-1. Assemblet/Spurt Function Codes C-1




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER e saoyn®

1. INTRODUCTION

The UNIVAC 494 Assembler is an integrated program which converts source code programs
(UNIVAC 494 Assembler (ASM) language) to relocatable binary (RB) elements for use by

the UNIVAC 494 Operating System. The operating system collects all the independent

RB elements required to produce an absolute object code program for execution. This manual
describes use of the assembly language. (For references in this manual to SPURT assembly
language, see “UNIVAC 494 SPURT Reference Manual,”” UP-4090 (current version).)

The assembly language is a set of mnemonic statements which are directly converted to
relocatable binary (RB) code which is accepted as instruction input by the UNIVAC 494
Operating System. Also contained in assembly language are directives which actually are
instructions to the assembler to permit the user to define symbols for complex operations
and greatly expand the power of the assembler. The term ‘‘relocatable binary'’ refers to the
values assigned by the assembler to symbols representing storage areas, instructions, and
constants. These values will later be changed by the operating system to provide the ab-
solute machine addresses required for execution. Thus,the relative addressing feature of
the central processor which optimizes use of core storage in conformance with the require-
ments of a real-time system is fully utilized.

A side-by-side listing of basic source language instructions and machine instructions is
provided. Directives may not require code generation. Errors detected by the assembler in
the use of source language are flagged.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: 7 PAGE: .

2. COMPUTER FORMATS

2.1. GENERAL

This section describes the computer data and instruction formats of interest to the
programmer. (See ‘“‘UNIVAC 494 Central Processor General Reference Manual,”
UP-4049 (current version) for a more detailed discussion of central processor hardware.)

2.2. DATA FORMATS

Data (operand) formats are of four distinct types: (1) single precision integer, (2)
double precision integer, (3) Fieldata or decimal, and (4) exponential or floating

point.

2.2.1, Single Precision Integer Word

The fundamental level of storage is the single precision (30-bit) integer word. This
word contains 30 binary bit positions as shown in Figure 2—1. Each of these bit
positions represents a binary value of 1 or 0. The highest order bit (bit 29) uses a
0 bit to represent a positive value; a 1 bit for a negative value.

HIGHEST LOWEST
ORDER ORDER
BIT BIT

h 4 v

29 |281 27126125124 123(22]|21|20|19]18|17|16 |15)14|13|12|11|10|9 |8 |7 |6 |5 43|21 |0O

SIGN

BIT

Figure 2—1. Single Precision Integer Word Format

Values may be expressed in binary notation for which the base is 2 instead of 10.
The following equivalence exists:

BINARY DECIMAL

1

10
11
100
101
110
111
1000
1001
1010
1011

O W 00NN S W N e

—

10110101 181




UP-4133 2 2

Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
The use of binary digits to represent large values is cumbersome. The use of octal
notation for which the base is 8 is used for convenience. The following equivalence
exists:

BINARY OCTAL
1 1
10 2
11 3
100 4
101 5
110 6
111 7
1000 10
111111 77
1100101 145

Binary values may be converted to octal notation by starting from the least significant
(rightmost) digit. Each group of three binary digits is expressed as a digit from 0 to 7.
By this method:

1 100 101
Nt N—p—

145 (octal)

111 101 000

N N gt s ot

750 (octal)
A computer word containing 30 binary bits could be expressed in octal notation as:
¢AL KA AN B Y (S T 1

Negative integer numbers are represented as the ones complement of positive numbers.
A value of -3 is represented as:

7 (O A i A e B A

The assembler will accept both octal and decimal numbers. To indicate a decimal
number, a “‘D'’ is placed at the right end of the number; otherwise, it is assumed

to be octal. Thus, 11D and 13 are equal. When the contents of a computer word are
displayed, or if reference is made to a computer instruction word, octal notation will
be assumed.

Most arithmetic instructions permit use of a half-word (15-bit) operand. If the lower
half is specified, then bits 14 through 0 make up the operand with bit 14 used as a
sign indicator. If the upper half is specified in the instruction, bits 29 through 15
make up the operand with bit 29 used as the sign indicator.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER 4

SECTION:

PAGE:

20 2:2:

Double Precision Integer Word

The double precision integer word requires two successive memory addresses for
storage or two 30-bit arithmetic registers combined for the 60 bit positions required.
The format of this operand is shown in Figure 2-2.

59 |58

A REGISTER OR ADDRESS M
30

29

Q REGISTER OR ADDRESS M+ 1

Rk

Figure 2-2. Double Precision Integer Word Format

The double precision format permits arithmetic operations upon operands having 59
significant bits where the single precision format permits operations upon operands
having 29 significant bits.

Decimal (BCD) Word

The decimal or binary coded decimal (BCD) format permits arithmetic operations upon
digits which are BCD encoded within a six-bit character code such as Fieldata code.
The decimal word requires two successive memory addresses for storage or two
arithmetic registers combined for the 60 bit positions required. The format of the
decimal word (Figure 2—3) permits use of ten decimal digits, each of which represents
a decimal digit 0 through 9. This format, just as the two preceding word formats,
represents a fixed point number — no provision is made for a decimal point.

A REGISTER OR ADDRESS M

Z9

59 58

57

Cc9

54

Z8
53 52

51

cs

48

27
47 46

c7

42

41

Z6
40

Cé

36

Z5
35 34

33

Cs

30

Q REGISTER OR ADDRESS

M+1

Z4
29 28

Cc4

24

Z3
23 22

21

C3

18

Z2
17 16

15

c2

12

11

Z1

10

Cl

Co

Figure 2-3. Decimal Word Format

Decimal operands are used when inputs arrive as a succession of 10 six-bit char-
acters in conformance with a code similar to the Fieldata code. The ‘‘Z’’ (zone)

bits shown in the format are arbitrary and are determined by the code itself, playing
no part in the arithmetic operation. They are unchanged by the arithmetic operation.
However, the lowest-order digit must indicate the sign in its fifth bit: a 1 for positive,
a 0 for negative. The ‘‘C'' (character) fields, which actually represent the binary-
coded decimal (BCD) digit, must be encoded as shown in Table 2—1. No other en-
coding is acceptable for the BCD arithmetic instructions in the instruction repertoire.
A positive decimal operand is exactly the same as the negative decimal operand
(having the same absolute value), except for the sign bit.




UP-4133
Rev. 1

2
UNIVAC 494 ASSEMBLER SECTION: PAGE:

2.2.4,

DIGIT CODING DIGIT CODING
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
B 0100 9 1001

Toble 2-1. BCD Coding

Exponential (Floating Point) Word

The exponential format (Figure 2—4) is used if the computer must ‘“‘remember’’ where

the decimal point is located in a series of operands, when each of the operands may
have the decimal point in a different position. This format permits storage of numbers
of high magnitude. The operand is expressed as a fraction (fixed point part) multi-
plied by 2", where n is the exponent shown in the format. This exponent is always
an integer.

A REGISTER OR ADDRESS M

S

59|58

EXPONENT FIXED POINT PART

(CHARACTERISTIC) (MANTISSA)
48 |47 30

Q REGISTER OR ADDRESS M + 1

29

FIXED POINT PART (continued)
(MANTISSA) (continued)

2:3:

Figure 2—4. Exponential (Floating Point) Word Format

Two successive memory addresses and/or the AQ register are required for floating
point operations. The sign bit represents the sign of the fixed point part and is a 0
for positive, a 1 for negative. A 1 bit is arithmetically added to the highest order bit
of the 11-bit exponent, thereby biasing the exponent by 210, This bias eliminates the
need for a sign but limits the exponent to a value less than ,102410 and greater than
~102519. The fixed point part is usually ‘“normalized’” (shifted left until its highest
order bit is different from the sign bit, with the exponent adjusted accordingly) so
that it represents a fraction between 0.5 and 1.0. The number zero is represented as
all zeros in both characteristic and mantissa.

ADDRESSING

Each word within the computer has a unique address. If it is a word that requires
successive 30-bit words in storage,it is addressed by the first of the consecutive
addresses. Addresses available to worker programs range from 00000 to 77777g.
This leaves a maximum of 15 bits for worker program addressing. However, the rel-
ative addressing feature of the central processor adds an increment — making for a
17-bit address — so that a program or parts of a program can be allotted to different
memory areas for optimum use of core memory. This relative addressing is under
executive control and in no way alters the program as written by the programmer.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER e e

2.3:1:

2.3.2:

2:3:3¢

2.4.

2.4.1.

Data Addressing

Data is addressed by instructions that are themselves contained in the memory of
the computer, When it is required to access data to complete an instruction, the
instruction will contain an address portion capable of containing a maximum value
of 77777.

Instruction Addressing

A basic computer instruction is contained in one computer word. An instruction is
accessed from memory, analyzed by the computer,and then executed. The next in-
struction is then accessed at the next sequential location unless a new sequence
is specified.

Standard (Fixed) Locations

Some memory locations serve as entrances to input/output control, fault procedures,
and executive routines not available to worker programs. Access to these addresses
is gained by interrupts. The contents of these addresses are loaded at computer
initialization time and supervised by the operating system.

INSTRUCTION FORMATS

Three different instruction formats are used for worker programs. The normal instruction
format and the 77 (extended repertoire) instruction format are shown in Figure 2-5,
Discussion of the third type — the 1/0 instruction — is beyond the scope of this
manual,

NORMAL INSTRUCTION WORD

f J K b y

29 24 |23 21120 18 |17 15 |14 0

(EXTENDED REPERTOIRE)
77 INSTRUCTION WORD

f g b y
111111
29 24123 18]17 15|14

Figure 2=5, Instruction Word Formats

Normal Instruction Word

The normal instruction word is applicable to all instructions of the machine instruc-
tion repertoire except the 77 instructions. The term ‘‘normal’’ has no particular
significance except to indicate that its f designator (described in the next paragraph)
may be any octal number between (but not including) 0 and 77. These instructions

are further subdivided into three classes: 1) read class instruction, which transfers
data from core storage to an appropriate register, 2) store class instruction, which
transfers data between registers or stores the contents of a register in core storage,
and 3) replace class instruction, which replaces the data from core storage with the
result of an operation performed upon the data. A replace class instruction is actually
a combination of read class and store class instruction. The class of an instruction
conditions interpretation of its designators, as shown in Table 2-2,




UP-4133

2 6
Suidd UNIVAC 494 ASSEMBLER o macE:

NORMAL Y OPERAND MODIFICATIONS
k READ STORE REPLACE
1 Lix)
2 Utx)
5 LX{x)
Fee
6 UX(=) | FL
s L]
3 Wix) Wix) Wix)
" L)
[(T=J- :
0 (8, ) » cccee 2
LEGEND:
: :
el R = ARITHMETIC REGISTER
M = MEMORY LOCATION
X = OPERAND SPECIFICATION
- WHOLE WORD
L = LOWER HALF
| ° I cece | M L U = UPPER HALF
X = SIGN EXTENSION
4 x (B} + cecce A CP = COMPLEMENT
A = AREGISTER
R L
8 = BREGISTER
R R
7| A CPW(x)
R L
—
COMPLEMENT

Toble 2-2. Designator Interpretation




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: % PAGE: 7

f

i

The different designators of the instruction word are:

A six-bit code (two octal digits) that specifies the basic operation to be
performed.

A three-bit code (one octal digit) which further defines the operation to be

performed, thus extending the power of the particular operation. Depending
on the basic operation to be performed, the j designator is interpreted as a

skip designator, register designator, or repeat modification designator. Its

most common interpretation is as a skip designator. For example, an add to
A (20) with the inclusion of a j designator becomes an add to A with a test
for the condition indicated by the j and a possible skip of the next instruc-
tion if the condition specified is met.

A three-bit code (one octal digit) that further defines, together with the class
of instruction, the source, form, size, and destination of the operand used by
the instruction. The interpretation of the k designator is different for the read,
store, and replace class categories of instructions. The k designator specifies
an operand to be in the upper or low=r 15 bit positions of a computer word, the
entire 30 bit positions of a computer word with or without additional modifica-
tion, or lower 15 bits of the instruction word itself. As an example: a read
class instruction with a k designator of 0 or 4 uses the effective operand

(see ¥, following) in the instruction; a read class instruction with k designator
of 1,2, or 3 uses, respectively, the lower 15 bits, the upper 15 bits, or the
entire 30 bits of the word (or instruction) at an address; a read class in-
struction with k designator of 7 uses the word in the A register (accumulator)

as the operand.

A three-bit code (one octal digit) in the range of 0 thru 7 which specifies the
B (index) register containing the value that is added to y to form the effective
operand or operand address. It is a nondestructive modification of the y por-
tion of an instruction forming an effective address but the y of the instruction
remains unchanged. Fourteen addressable B registers (index registers) are
included in the hardware for operand address modification, index code, and
modifier incrementation. Of these, seven are available to worker programs
and seven are reserved for exclusive use by executive control. The B registers
can operate in one of two modes as designated by the internal function regis-
ter (IFR). B registers are generally used in the 15-bit operational mode by
worker programs. An additional 17-bit operational mode is available for B
registers 4,5,6, and 7 of each group, specified under executive control, but
most worker programs will only be allowed the 15-bit operational mode; the
17-bit operational mode being reserved for real-time programs and common
subroutine communications.

In general usage, B registers 1 thru 7 are 15-bit registers that can be incre-
mented or decremented under program control. Register B7 has the additional
function of holding the repeat count during execution of the repeated instruc-
tion. Register B6 has the additional function of modification of the y portion
of the repeated instruction when the instruction is a replace class instruction,




UP-4133

2

Rev. 1 UNIVAC 494 ASSEMBLER secrion: PacE:

el

BO is not a hardware register but functions as a B register containing the
number + 0. It can never be entered with a value but can be used in store
and compare operations.

A fifteen-bit value (five octal digits) used to form the effective operand or
operand address of the instruction. It can also be used to form the shift
count, repeat count, and compare value. It is the portion of the instruction
modified when B register modification is specified.

The relative address (relative to an RIR of zero) or effective operand, formed
by the addition of y to the contents of the B register specified by the b
designator. Both numbers are treated as unsigned positive numbers. The
addition is always performed in the end-around-carry mode: any carry generated
at the highest order bit position is carried around for addition at the lowest
order bit position. This addition is normally a 15-bit addition but may, under
executive control, be a 17-bit addition. It is not possible to generate an
effective address or operand of all binary zeros unless y is zero and the con-
tents of the referenced B register is zero (or B0 is referenced). The following
examples illustrate operation of this addition (using octal notation):

15-BIT ADDITION 17-BIT ADDITION
y 77777 77777
(By) 00001 300001
00000 000000
1 1
y 00001 000001

Table 2-2 presents a general summary of the uses of the k designators;
Table 4-2, the j designators. Designators are shown together with their
corresponding mnemonics in source code. (A more detailed description of
designator application is presented in Section 4.)

2.4.2. 77 (Extended Repertoire) Instruction Word

In the format for the ‘‘77’’ instruction word, the f designator is 77g. Following the 77
is a two-digit (octal) g designator, which, together with the f designator, actually
defines the function to be performed. The b and y designators are similar to their
counterparts in the normal instruction word. No j and k designators can be used in
the 77 instruction word.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: £ PAGE:

3.1,

Aol

3. SOURCE LANGUAGE
FORMAT REQUIREMENTS

GENERAL

This section describes assembly language elements and format requirements for coding
program lines on the standard coding form (see Figure 3—1). The symbolic language
fields are described in 3.2; line control and comments in 3.3; data word generation

in 3.4; and basic elements, expressions, and operators in 3.5,

SYMBOLIC LANGUAGE FIELDS

The basic line of coding is made up of three or fewer fields. These are the label field
(not always required and sometimes prohibited), the operation field (always required),
and the operand field (not always required). Fields are separated from each other by at
least one space. Each field may be subdivided into subfields. A subfield is an expres-
sion which is terminated by a comma (followed by one or more spaces), except if it is
the last subfield. In this case, a space terminates both the subfield and field.

Columns 1-4 represent the card number and provide an external sequencing criterion.
Columns 5-6 represent the insertion number and are treated as the low order digits of the
card number to enable sequential insertion. Normally these are not initially assigned.
Column 7 contains a minus (=) to indicate that this line represents a continuation of the
preceding line of coding. If not a continuation, column 7 of the line is usually left blank.
Column 8 is the start of the label field. From this point on, the assembly language uses
a free field format for operation and operand field(s). A space followed by a period
(before column 80) after the last subfield terminates the scan of the line or column 80
terminates the scan of line (except if it is continued to the next line). Notes may be
printed between the period and column 80, These notes will be presented on a printout
of the program and in no way affect execution of the program. Notes may be used at
significant points in the program as an aid to debugging. Additional notes may be
written after column 80 for aid to the programmer but these will not be printed out.

Notes may be continued to the next line if a period and blank are placed in columns 8

and 9, respectively,of the next line.

For the basic instructions which are described in Section 4, the correspondence of the
subfield information with the designator information required in machine code (Figure
2-5) is shown in the following table.

OPERATION OPERAND
FIELD FIELD
General Instruction f,k L] y,b,j
B Register Instruction f.k b j.y,b
77 Instruction fg b y.b

NOTE: Both General and B Register instructions use Normal! machine instruction
format (Flgure 2-5).



PAGE:

SECTION:

uwuoy Buipo) sa|quassy péy JVAINN ‘L= #nBiy

UNIVAC 494 ASSEMBLER

UP-4133

Rev. 1

N R R R R R RN RE RN RN
T T T [T T T [T T T[T I [T T T[T T T [T T T T[T T[T T[T T[T [TooT]
R R R R R R AR RRRRE RN RERLE RS
——-—q- ~—-_——___———-———-qd-—-—-—quﬂA————-—ﬂ-Jd—-_—_——-———-—-_—
——-———— -——————q————-——__—_—-ﬁJ&\dd—ql—d-——-———-———--d—-——-_-—-—
T[T [ T[T [T T T T[T [T T[T [V [T T T[T T[T T[T I TroIT[TT
BN R RN AR RS AR R R R R RRREE RLRRE
L L L L B L R LR L R R LR R RS
T T T[T T T T[T T T[T I [T T T [ TI T[T T [ TI o T[T T T[T T[T oI [Toor]
AR RN R R RN RN AR RN R R LR BN RS R
L L LA L L L L L LR LR LR I RN BB
T T T T[T 7T T [T T[T T T[T T [T T T T[T I T T[T T [ TT T[T I [T I [TTTTT
R R R R R RN RN RN LN RN RS LR
__—___— ___—_—______—-———«-—____—___—__d—_————aa—-j—d\ﬁdaq—%d—d_
L L L L L R SRR AR ARG RREEE RAREE RARLE RERAN RS
-——_——u ~———-—--——--—_————u_—-ﬂﬂud-—-—_-ﬁd—-—u-——-——-———-—_
L L L L B B R IR LR RN LR RN LR
S0 L L3 LA PR R L LR R R LR S RLLALE R i RAREE
B R RN L RN LA REE RS AR LAY AL LR REREE
B I N R LR U B LR IR LR RN IR [LRRLLE AR R
RN RN R RS RS RAREE AR REREE R LERLE RAREE
R AR R R R RS AR AR AR RN R RN R
R R R N R R AR AR RN RS RN LR RAREE
R R L LR BT B BRI LIRS RLILSLI A LR RULEALE BLRULE ISURLLE SULELE N
R R N R AN R RS RS AR RN RAREE RN LAY RARRE
08 tZ|es 09 s ] ot ot

aNYH340 NOILY¥3dO
$39¥d 40~ 39vd HINWYHOO0Nd

PEY DYNAINN

WHO4 ONIWNWNYHOOUNd

d31anassv




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: % PAGE:

The f (or fg) designator must always be written as the mnemonic representation of the
operation to be performed (Section 4).

The j designator can be written as a number 0 through 7, a valid mnemonic representa-
tion (Section 4), an expression which will be evaluated as a number 0 through 7 (Section
3.5), or (for B register instructions only) as B0 through B7(BJ- ).

The k designator can be written as a number 0 through 7, an expression which will be
evaluated as 0 through 7, or as the mnemonic W, X, A, L, U, LX, Q, CPW, CPL, or CPU.

The b designator may be written as a number 0 through 7 or as B0 through B7 (By).

The y designator is an item or expression (see 3.5) representing a 15-bit number.
This y designator value is added to the contents of By, to form either the effective
operand or relative operand address, y. Thus, the B registers can be used for
indexing. The operating system will then add a relative index to all relative
operand addresses of a program to form the absolute operand addresses for the
program.

The f designator mnemonic is the only designator required of all instructions. When

other designators are not explicitly defined by the programmer or are blank, they are
evaluated as numerical zeros. The following are examples of the three general types
of instructions, where the first column is column 8.

1L LAQ, L TAG,, B3, APOS | | v 1

2| L,B;,,U; B2, TIAG, B0 4+ v 4+ | v 4 1
31 DRSS, TVAG,BIOy ¢ ¢ 4 v by
41 LAQ 31 APOS, s Ly

Line 1 is an example of a general type instruction. The instruction is; add the number
in the lower half of the memory word at location TAG + contents of B3 (where, for pur-
poses of description, TAG is 12345) to the number in the Q register and retain this

sum in the A register; then skip the next sequential instruction if this sum is positive.
In machine code this instruction would appear as 3061312345, The second line is an
example of a B register instruction. The instruction is: load index register 2 with the
number contained in the upper half of the memory word at location TAG. The machine
code for this instruction is 1222012345, The third line is an example of a 77 instruction.
The instruction is: store the contents of the AQ register at locations TAG and TAG

+ 1; the A portion at TAG, the Q portion at TAG + 1. In machine code, this instruction
would appear as 7725012345, In all of these instructions, it must be remembered that the
actual operand addresses would be biased by the relative index by the operating system.
The instruction in line 4, similar to that of line 1, is: add the contents of B3 to the
number in the Q register and skip if sum is positive. This would be machine coded as
3060300000 and the operands would not be affected by the relative index of the operat-
ing system (except, possibly, the contents of B3, from some prior instruction).




UP-4133 3 .
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

3.2.1. Label Field

The label field may contain two subfields, separated by a comma. The first subfield
is used for location counter declaration. The second subfield is used as identifica-
tion (for reference purposes) of a symbolic line of coding representing data or an
instruction. This second subfield is commonly called the label of an instruction (as
distinct from “‘label field’’). If either subfield is not entered, no comma should be
present in the label field. If the label field is not entered in a line of coding, column
8 must be blank unless a previous line is being continued on this line. The label
field must start in column 8.

3.2.1.1. Location Counters

There are 64 location counters, numbered 0 through 77g. They are used to control
assembly sequence of the lines of coding by assigning sequential relative
addresses (starting from 00000) under each location counter. Thus,at assembly
time, all lines of coding controlled by location counter 0 are assigned in sequence.
The same is done for those lines controlled by location counter 1, etc. In the
source coding, the location counters may be used in any sequence and this enables
regrouping and segmentation of programs as desired. If there is no location
counter declaration in a program, all lines are assumed to be under control of
location counter 0.

Location counter declaration has the form $(e ) where e is any valid entry with a
value of 0 through 31. A specified location counter will control its line of coding
and all succeeding lines until a new location counter is declared. Each initial
location counter declaration begins coding from zero for that location counter.
Coding under a previously specified location counter will start from the last value
used plus one for that location counter. The following illustration depicts use of the

location counter.

1 1 LB U 2,17

28,(,2)), ,L,AQ,L| T AG,, APOS|
30 ¢ 4y 448y, 4Y, 182, TAGH2 | |
4 18, (V) (LB, U, |8, TAGH1; ;|

5 31(141)1'1T1A16131 lLABl' 1T1A4GA ol S [
6 LAIGJ41 lLlBl'lul lBl4l'lTlAlGA =a—1__1

Lines 1 and 4 will be given sequential addresses under location counter 1.
Lines 2 and 3 are given sequential addresses under location counter 2.

Reference to the current location counter in a line of coding requires only the §
symbol. Reference to any other location counter requires $(e) where e is a valid
expression with a value of 0 through 31. The following illustration shows use of
the value in a location counter.




UP-4133
Rev. 1

3
UNIVAC 494 ASSEMBLER SECTION: PAGE:

3.2:1:2.

1 51(121)1 134 131+|3| U e O o WY 1 e E00 VN fog sy
2 LB, U B2, TIAG, | 4 4 v 4 4 o L a g 3
31 4LAQ,iL TIAG,,, AAPOS, |, ¢ ¢+ |41 1

1D)PS, yTWAG o v v v el e e b g gy
CI TP TR RO T N T T YO T O W AW WY VO O W VG W

When line 1 is executed, it will cause a jump to line 4. When line 5 is executed,

it will cause a jump to the last line (up to this point) controlled by location counter
1. It is dangerous to use such jumps (involving the $ in the operand), because such
a jump may cause a jump into part of a procedure or function (Section 6), or cause
erroneous skipping where any directive which generates more than one line of code
may appear between the jump instruction and its intended operand.

Label

The label is the second subfield of a label field. It identifies either a symbolic
line of instruction or data. Any name made up of no more than ten alphanumeric
characters may be used in a label, and it must start with an alphabetic character.
A label may be subscripted (up to two dimensions) to indicate that it is a unique
element of the array bearing the same name, but the subscript is not counted as
one of the ten (max.) characters permitted. Subscripts within subscripts (see
last line of example following) are permitted provided that the subscripted item
or expression is evaluated by execution time. A label is usually given a value
determined by the current location counter and the number of the location counter.

A label in one program unit can be referenced by another separately assembled
program unit only if the label has an asterisk immediately after its last character.

In this case, the label is ‘‘externally defined.”” To avoid ambiguity, the programmer
should avoid terms as A, Q, BO through B7, and labels beginning with the alphabetic
characters O or X. Labels are shown in the following:

CAMP, ,JB/Dy ;BI6,, T/ NY v v v L 1
$,G2),.,,A2,$,E [LA,,0,5.,6 , 1 1114

sl(lll)ll lclAiMlPl(l]l)l*l lslAlllwl 1 ICLAIMIPI I I IS
8lolBl(lslAlTJ( 111'121) l)l l-l llelL]'IDl lLlAlBlElLl 1




UP-4133 6
Rev. 1 UNIVAC 494 ASSEMBLER TR PaaE

3.2.2. Operation Field '

The operation field is the first field following the label field. If no label field is
used or there is no continuation of the preceding line, the first non-blank character
(except period or apostrophe) is considered the start of the operation field.

The operation field may be:

® an instruction mnemonic possibly followed by a k designator as a subfield

8 + or — to indicate a data word of octal, decimal, or alphabetic designation. In this
case, a space is not necessary to terminate the operation field. The operand may
immediately follow the + or —. As an example, +2 and +b2 are identical. If the
operation field is a number, the + may be omitted for positive numbers.

m an assembly directive (Sections 5 and 6)

® a label previously defined as an entry point into a procedure or function (Section
6)

In all of these cases, except the second, a space following any character except a
comma ends the operation field. If the operation field contains a directive (other than
RES or DO), the location counter is not affected. In all other cases (other than the
RES or DO directives) the location counter is incremented after the line has been
generated. The following shows examples of valid operation fields.

1IDs; 3J1 (MOsRISEBl ¢ ¢ ¢ 4 0t ¢ 0 o 0 0 s 3 2 4 2 1 3
20 GRVES, 010 0: 0,01 s 3 nen 3 b oa F o g g g b
3|HOR,SE RM, , |1,5D,,B2 | ; y | 4y yy 1111
4| LA,V ,TABLIE, ,0,,BZERO -y 4 4 4 1 111
5|BE, T\ A ,1,2,3,4,5|11,2,3,4,5 4 3 4 1 33 3 3 1 1 1 41
6 IN;U; 1 =1,2,3,4:5112,3:4:5; ¢ 4 ¢ o o 1| 34 1 0 1 3 3 11
R N N W 0.k ) (0TI vt U N LN O o i 1 R (O Ay Y TV O Y (Y 1 N

Line 2 increments the location counter by 512D. Line 5 contains a data word. At compila-
tion time the octal 1234512345 will be generated at address BETA. Line 6 indicates

that the octal 6543265432 will be generated at address NU (due to the ones complement
representation of negative numbers). Line 7 indicates that the alphabetic characters

AB will be generated, right justified, in their Fieldata code (Appendix B) representa-
tion. The apostrophes indicate that the characters are alphabetic. At compilation time,
the address following NU will contain 0000000607. Data generation is more fully de-
scribed in 3.4 and 3.5.1.5.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: * PAGE: 4

3.2.3.

3.3.

3:3uls

Operand Field

The operand field follows the operation field and must be separated from it by at least
one space not following a comma. An unlimited number of blanks may be used to
separate fields. The subfields of the operand field represent information necessary

to generate the type of line indicated by the operation field. The maximum number of
subfields is determined by the operation entry.

The subfields (except for the first and last) are enclosed within commas. A comma at
the end of a subfield indicates that more subfields are present and scanning of the line
will continue. Any number of spaces (or none at all) may precede the first character of
the next subfield. If the first subfield is to be omitted,a zero followed by a comma must
indicate this or, alternatively, this zero may be replaced by a space. If the last sub-
field or subfields are omitted, they are simply left blank but the field must not end with
a comma. If any subfield other than the first or last is to be omitted, two contiguous
commas or comma zero comma must indicate this. When subfield information is not ex-
plicitly defined by the programmer, the parameter represented by this subfield is as-
sumed to be zero. Format requirements demand only that subfields or the lack of a sub-
field definition be indicated as described in this paragraph. The following lines are ap-
plications of these rules.

118,0,8 LA, W NUMB,,, AZERO| | | y § 4 4 4|
2 |CLEAR 5B ,BO0,,T/AG,BO | | y 4 v v 44144
3ICLEAR, SB) y | TWAG 4 vy vy b vy vy o
SICGLIBAR (SiBi i 1003 TiAGL 1% 4+ o L i d s 00 4 a vl

In line 1, the b designator is zero. Lines 2, 3, and 4 are B register instructions and
are equivalent to each other. Any one of these has the effect of clearing the 30-bit
word at address TAG.

LINE CONTROL AND COMMENTS

A line may contain an instruction, data word, or assembler directive, followed by com-
ments or the line may contain only comments. Further operand information is not inter-
preted after the maximum number of subfields required by the operation has been
scanned or by the recognition of 80 characters, whichever occurs first. However, a
line may be continued and comments may be provided by the programmer for printout
as desired.

Continuation

A line is continued by the insertion of a minus (=) character in column 7 of the con-
tinuation, so long as the line has not been terminated by a period. If a line is broken
with a subfield, the next character should begin in column 8 of the next line. The
following illustrates use of the continuation feature.




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER sﬁchtlom3 pﬁi
1 (o300, MAENG Ly o000 o bow e e e 1
2—L1Al'l ) UET T (O | l W T T TR M MY [ | l 2 Ak =S == 0= B = =4 | l
o 1 I S T UG ROT 10 Y e R S ] N (I VY e WO P
| TABLET,,,  AZIERO | , oy v Loy gyl
5| 18163 ) M AN LAY  TIABLIENT,, , AZERO .|

Lines 1, 2, 3, and 4 contain the same instruction shown without continuations on
line 5.

3.3.2. Comments

Comments may be freely written by the programmer to aid in programming and debugging.
A comment is separated from the last field on the line by space, period, and space.

The comment may be continued to the next line, or a comment may be started on the
next line if a period is placed in column 8 followed by a space. If additional sub-

fields are required by the operation, they are assumed to be zero. The following is

an example.

AQ,,U, LABEL,, QNOT, ,., |ADD, , T HE NUMBER, ;, , |
ey 4N ,T/H,E ,UPPER ,HAL,F, |OF, , THE WORD, , ;7 ,
.y AT, (LABEL ,TO (NUMBER| ,I,N ,Q AND |SKIP 4y ‘
Py lNl|l l'lFl lslUlMl lllsl lNlolTl lzlELRlol'l | Ts) (S5 W B | 1 oo B et et 22 =X

3.4. DATA WORD GENERATION

Data words may be either 30 bits in length (single word) or 60 bits in length (double
word), and are generated as depicted below.

3.4.1, Single Word (30 Bits)

A list of one, two, three, or five expressions (see 3.5) may be used as arguments to
generate one computer word, as follows:

SOURCE CODE GENERATED CODE

texpy 30 bits

texpy.,expy 15 bits ] 15 bits
texpy,expy,exps 10 bits l 10 bits T 10 bits
texpy,exp),exp3,€Xpy,eXps 6 bits 16 bits l 6 bits ] 6 bits ] 6 bits

Note that the first expression must be signed for this application.

Examples:

LABEL 5 OPERATION 5 OPERAND

-2 7777777775
+10D, 1=1 00012 00001
-1+1,-4,0 0000 1773 0000

+‘A’,'B’, 1,2,3 06 07 01 02 03




UP-4133 3

Rev. 1 UNIVAC 494 ASSEMBLER SEcTion A
‘ 3.4.2. Double Word (60 Bits)
Sixty-bit constants may be specified by the use of the DLD directive (Section 5),

These constants may be:
a Octal

m Decimal

m Floating Point

m Internal Decimal

3.4.3. Variable Length Word

A string of characters enclosed by apostrophes can be inserted into the generated
code as a string of 6-bit Fieldata characters (Appendix B). Since the apostrophe

is a control character in this case, the apostrophe cannot be one of the characters

in the string. The number of computer words occupied by the string depends upon

the number of characters. The characters are left justified into consecutive computer
words, five characters to a word, Any remaining areas in the last word will be filled
with Fieldata spaces (05g). (This feature should not be confused with the one des-
cribed in 3,5.1.5, which refers to character strings in an expression and uses only
one word of computer storage.)

Examples:
‘ LABEL b OPERATION 5 OPERAND
‘ABC’ 0607100505
‘ABCDE’ 0607101112
‘~123ABCD’ 41616263060710110505

3.5. EXPRESSIONS

An expression is the combination of items or expressions by a logical, relational, or

arithmetic operator. It most commonly appears in the operand field of a symbolic line
as an entry in a subfield. Blanks are not permitted within an expression. Double word
items may not be used to form expressions except with double word operations or, in

the operation field, as literals preceded by DLD.

3.5.1. Items

This section describes the various items which may appear in an expression.

3.5.1.1. Label

Any label may be used as an item. Whenever a label is encountered within an ex-
pression, the value equated to the label is substituted for the label within the
expression.

Example:

LABEL 5 OPERATION 5 OPERAND

. VARI EQU 01000
LB Bl, VARIB2 12102 01000




UP-4133 3 10
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

3.5.1.2. Location ‘

A location may be used as an item by reflexive addressing. Reflexive addressing
may be achieved by referencing the current location counter, or a specific location
counter, within a symbolic line. This feature has already been described in
3.2:1.1:

Example:

LABEL 5 OPERATION 5 OPERAND

BOB J $+2 61 0 0 0 00502
LA BOB,6 11 0 0 6 00500
SA 0,B2 15 0 0 2 00000

The first line transfers control to the third line.
3.5.1.3. Octal Values

Octal digits (0-7) may appear as an item within an expression. The assembler
will create a binary equivalent of the item value. The binary representation of
the value will be right justified in a signed field.

Examples:

LABEL 5 OPERATION 5 OPERAND

+17 0000000017
-074 7777777703

3.5.1.4. Decimal Values

Decimal values may be represented as an item by following the desired digits
with an alphabetic D. A decimal value, containing the characters 0—9 will be
represented by a right justified and signed binary equivalent within the object
field, sign filled.

Examples:

LABEL 5 OPERATION 5 OPERAND

6D 0000000006
+6D 0000000006
+8D 0000000010

-6D 7777777771

3.5.1.5. Character Strings in Expression

An item within an expression can be source coded by up to five 6-bit Fieldata
characters (Appendix B). The desired characters are enclosed with apostrophes.
The leftmost apostrophe may be preceded by a plus or minus sign. Since the
apostrophe is a control character in this case, it may not be one of the characters
in the string. Because this item is an expression, it will be treated as an arith-

metic or logical value.




UP-4133
Rev. 1

3
UNIVAC 494 ASSEMBLER SECTION: PAGE:

11

If the leftmost apostrophe is preceded by a plus sign (or no sign at all), the
characters will be right justified in the computer word and empty spaces will

be filled with 0 bits; if preceded by a minus sign, the ones complement (of the
string preceded by a plus sign) will be the resultant value. Any characters to the
left of the rightmost five characters in the string will be disregarded.

Examples:

LABEL 5 OPERATION 5 OPERAND

+‘00CAT’ 6060100631
‘CAT’ 0000100631
—‘CAT’ 7777677146
‘~CAT’ 0041100631

3.5.1.6. Double Word Constants (60 Bits)

Double length constants may be floating point, octal, decimal, and internal decimal
(Fieldata). Only symbols which reference DLD constants are allowed in the operand

field.
Examples:

LABEL 5 OPERATION 5 OPERAND

DPL BOB,6 77 21 6 03000

FA BOB,6 77 01 6 03000
BOB DLD 16384.0 2017400000
0000000000

In this example, the contents of BOB are loaded into the A and Q registers and then
(via the Floating Point Add instruction) added to itself.

A floating point number is a number with a decimal point. The number is stored
with a normalized mantissa and biased characteristic to conform to the format
shown in Figure 2—-4. For example: the number 16384.0 is a floating point number
and, in octal form, corresponds to 40000. A shift of 15D or 178 is required to
normalize this mantissa, so that the unbiased characteristic is 0017g. The biased
characteristic is then 20178 and the complete floating point number is stored as
2017400000 0000000000g in two consecutive words. Since two words are required,
the DLD directive is used (see 5-8).

An internal decimal number is an integer appended with the alphabetic character
I. It is stored as its Fieldata coded equivalent, right justified into the second
word with Fieldata coded zero fill (see 5.8), requiring two words. The

number 6661 is stored as 6060606060 6060666666. The label refers to the first
portion (6060606060).




UP-4133 3 12
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

3.5.1.7. Literals I

A literal is a device for indicating operand constants requiring up to 30 bits with just
one line of coding. For example, if it is desired to load the A register with the

octal value 1234512345, the programmer could do this in two lines of coding with-
out the use of a literal. The first line of the following example would load the A
register with the entire word in location X. The second line of the figure is needed
to store the data word 1234512345 at location X. Instead, with the aid of a literal,
only one line of coding would be required. The load A instruction would have as the
operand, the literal 1234512345. When this instruction is scanned, the literal
1234512345 is automatically assigned a 15-bit address in the literal pool for the
location counter and it is this address that is automatically inserted into the operand
portion of this instruction. Thus, one line of coding serves the purpose of two lines.
All literals are placed in the literal table under control of location counter zero un-
less inserted under a LIT directive (see 5.4). Since most instructions enable

coding of operand constants requiring 15 bits or less, it is not necessary to

use literals for such constants.

A literal may be represented on an instruction line by immediately preceding the
constant with a colon (:) and immediately ending the constant with a semicolon (;)
in the y subfield to generate a word containing the constant. Literals are assigned
addresses at the end of the program, and duplicates will be eliminated. When
location counters are employed, these literals will be assigned to the end of the
coding associated with a particular counter (see 5.4. LIT). In this case, duplicates
are only eliminated for the counter itself.

In addition to a constant data word, the line item may be an instruction word (line ‘
4 in the example). This will be assembled in the constant area at the end of
the coding. Line items within line items, e.g., cascaded addresses, are permitted.

In the case of an instruction word line item, a label is not permitted. The first char-
acter following the colon must be the start of the operation field.

If a literal is split by a comma (see line 7 following) the two portions will constitute
the upper and lower halves, right justified with sign fill, of the literal. Line 8 shows
nested literals. Line 9 shows use of a double length literal (see Section 5 for DLD

directive).
1 TR TR AR (TP P T OO (O P T U (T Y0 I SO VA 20 VN VRN Wt M (Y VIR TN T VO O
2 IX, 0,2,3,451,2,314,5, 3 ¢+ v o 04 0 Lyoyoaovovvovyon by
3| LAY 61,23]4,51,23 4,504 3 |4 osowov o Loy a1y
4 | LAWY NOPLGy 4y (THE A L s g b gy
51y REGISTER WMOULD , , o | 4 5 v v v g v ol v s 40
6 l.; CLONT AL N 17,2,0,0,0,0,0,0,0.00 ¢+ ; ¢ ¢+ v ¢ ¢ v 0 Ly v 01 4
7 | LA W o5:313243], 0~ 45154 4.y oLyV|T 4048, 40,0,1,2,317,7,7,3,2, ,
8| LA W LB W B3y T2y 0o ox w0 Lo
9] D,PL, DLD 317:3:0:8, 76D 5 o Loy 400w g0l oy iy ngy




UP-4133 3 13

Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: PAGE:
. 3.5.1.8. Parameters
A PROC or FUNC parameter may also be an item. Parameters will be discussed in

detail in the section pertaining to PROC’s and FUNC'’s (Section 6).

3.5.2. Operators

An operator is a mathematical, logical, or relational symbol representing an operation
to be performed.

Items may be combined into expressions by means of operators.

There are 15 operators which designate the method and, implicitly, the sequence to
be employed in combining items or expressions within a subfield. Blanks are not
permitted within an expression. Evaluation of an expression begins with substitution
of values for each element. The operations are then performed from left to right in
order of hierarchy (see Table 3—~1). No two operators may appear in immediate
succession, but parentheses may be used for separation.

Each operator has a position in the precedence hierarchy which determines the se-
quence (highest precedence first) of evaluation of an expression: consecutive opera-
tions with the same precedence are executed from left to right. Interruption of the
normal precedence is accomplished by using parentheses. If an item or an expression
is enclosed in parentheses and an operator appears adjacent to the parentheses, the
function of the parentheses in this instance is that of algebraic grouping. The value
of this quantity is the algebraic solution of the items or expression enclosed in

parentheses. There is no restriction on the number of nested parentheses within an
expression. (See 5.2 for a description of the EQU directive used in the following
examples.)

3.5.2.1. Arithmetic Product *

The value of the first item is used as the multiplicand, the value of the second is
used as the multiplier; the value of the expression is the product obtained by the
multiplication of the two items or expressions.

Example:

N EQU 17D
N*010

The value of the expression is 13610.




UP-4133 3 14

Rev.1 UNIVAC 494 ASSEMBLER secTion: PAGE:
PRECEDENCE | OPERATOR DESCRIPTION

6 */ a*/b is equivalent to a*2 b (see text)

5 * arithmetic product

5 / arithmetic quotient

5 // covered quotient (a//b) is equivalent
to (a+b—-1)/b

4 + arithmetic sum

- - arithmetic difference

3 ** logical product

2 ++ logical sum

2 - logical difference

1 = a=b has the value 1 if true, 0 otherwise

1 > a>b has the value 1 if true, 0 otherwise

1 < a<b has the value 1 if true, 0 otherwise

1 <= a<b has the value 1 if true in either
case, otherwise 0

1 >= a>b has the value 1 if true in either
case, otherwise 0

1 /= a#b has value 1 if true and 0 otherwise

NOTE: Operations with the higheat precedence are executed lirat.

Taoble 3-1. Operator Priority Within Expressions

3.5.2.2. Equal =

The ‘‘equal’’ operator compares the value of two items or expressions. If the two
values are equal, the assembler will assign a value of 1 to the combined expression.
If the values are not equal, the value of the combined expression is 0.

A=l

If A is equal to 1, the value of the expression is 1 (true). If A is unequal to 1,
the value of the expression is 0 (false).

Example:
DO A=3, RES3

If A is equal to 3, the controlling location counter will be incremented by 3; if
not, the line will be skipped.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: * PAGE:

15

S PRI

3.5.2.4.

3:9:2:9,

Greater Than >

The “‘greater than'’ operator compares two items or expressions. If the value of
the first operand is greater than the value of the second operand, the combin ed
expression is assigned the value 1 (true). If the value of the first is equal to or
less than that of the second, a value of 0 (false) is assigned.

B>2

If B is greater than 2, the expression value is 1. If B is not greater than 2, the
expression value is 0.

Example:
(A>2) *5

If A is greater than 2, the value of the expression is 5, otherwise the expression
is 0. Note that the parentheses interrupt the normal order of precedence. If the

parentheses are omitted, the result is a 1 (if A is greater than 107g) or a 0 (if A
is not greater than 1010).

Less Than <

The ““less than’’ operator compares the values of two items or expressions. If
the first is less than the second, the combined expression is assigned the value
1 (true); otherwise, a value of 0 (false) is assigned.

C<1

If C is less than 1, the expression value is 1. If C is not less than 1, the expression
value is 0.

Example:
(A<2) *2
If A is less than 2, the expression value is 2, otherwise the value is 0

Less Than or Equal <=

The ‘“less than or equal’’ operator compares two items or expressions. If the value
of the first operand is less than or equal to the value of the second operand, the
combined expression is assigned the value 1 (true); otherwise, a value of 0 (false)
is assigned.

D<= 2

If D is less than or equal to 2, the expression value is 1. If D is not less than or
equal to 2, the value of the expression is 0.




UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER SECTION: & PAGE: -

3.5.2.6.

S At

3.5.2.8.

Example:

(B<=2) *2
If B <2, the combined expression value is 2, otherwise the expression value is 0.

Greater Than or Equal >=

The ‘‘greater than or equal’’ operator compares two items or expressions. If the
value of the first operand is greater than or equal to the value of the second
operand, the combined expression is assigned the value 1 (true); otherwise,a
value of 0 (false) is assigned

E>=4

IfE is greater than or equal to 4, the expression value is 1. IfE is not greater
than or equal to 4, the value of the expression is 0.

Example:
(F>=5) *3
If F2> 5, the combined expression value is 3, otherwise the expression value is zero.

Not Equal To /=

The ‘‘not equal to’’ operator compares two items or expressions. If the two values .
are not equal, the assembler will assign a value of 1 (true) to the combined ex-
pression. If the values are equal, the value of the expression is 0 (false).

A /=2

If A is not 2, the value of the expression is 1, if A is 2, the value of the expression
is 0.

Example:
(C/=D) *4

If C is not equal to D, the value of the expression is 4. If C is equal to D, the
value of the expression is zero.

Logical Sum ++

The ‘‘logical sum’’ operator provides the logical sum of values of two items or
expressions. The assembler will produce the logical sum and use it as the value
of the combined expression. The operation tests the bits in corresponding bit
positions of both operands. The result will contain a 1 bit where either, or both,
bits is a 1 bit. Thus, the logical sum corresponds to a bit-by-bit OR operation.




UP-4133
Rev. 1

3

UNIVAC 494 ASSEMBLER SECTION: PAGE:

17

3.5.2.9,

3.5.2.10.

P O

Example:

A EQU 3
A++5

The value of the expression is 7.

Logical Difference --

The ‘‘logical difference’’ operator produces the logical difference between the
values of two expressions or items. The operation compares the bits in corre-
sponding bit positions of the two expressions or items. Where the bits are unlike,
the logical difference will contain a 1 bit; if alike, a 0 bit. Thus, the logical
difference corresponds to a bit-by-bit Exclusive OR operation.

Example:

A EQU 6
A--5

The value of the expression is 3.

Logical Product **

The “‘logical product’ operator produces the logical product of the values of two
expressions or items. The two operands are compared, bit-by-bit. Where both are
1 bits, the logical product will have a 1 bit; otherwise, a 0 bit. Thus, the logical
product corresponds to a bit-by-bit AND operation.

Example:

N EQU 17D
N**3D

The value of the combined expression is 1.

Arithmetic Sum +

The ‘“‘arithmetic sum’’ operator produces the algebraic sum of the values of two
items or expressions. The value of the combined expression will be the sum of
the value of the items or expressions.

Example:

A  EQU 74D
A + (A**061)

The value of the combined expression is 74D.




UP-4133
Rev. 1

3 18
UNIVAC 494 ASSEMBLER SECTION: PAGE:

3.5.2.12.

3.5.2.13.

3.5.2.14.

3.5.2.15.

Arithmetic Difference — .

The ‘‘arithmetic difference’’ operator produces the algebraic difference between
the values of two items or expressions. The assembler will subtract the value of
the second operand from the value of the first, and the difference is the value of
the combined expression.

Example:

B EQU 0662
(B--0511)-B

The value of the combined expression is -0267.

Arithmetic Division /

The value of the first item or expression is the dividend, the value of the second
item or expression is the divisor; the result of the operation is the quotient. The
remainder is discarded by the assembler.

Example:

B EQU 17D
(B**3=1)*B/4

The value of the combined expression is 4. Note that the remainder is discarded.

Covered Quotient // .

The covered quotient operates in the same fashion as the arithmetic quotient with
this modification: if a remainder greater than 0 is created during the division, the
quotient is increased by 1.

Example:

A EQU 3
(A--3=0)*A//2

The value of the combined expression is 2.

Shift Exponent */

The shift exponent indicates that the operand (preceding the shift exponent) shall
be shifted by the number of positions denoted by the value immediately after the
shift exponent. The shift is left or right according to the sign of the exponent
(negative will produce a right shift). a*/b is equivalent to a*2b, where b must be
an integer and no sign or significant bits are shifted out. ‘‘a’’ will be shifted as
though it were a binary quantity, with zero fill.

Examples:

A EQU 2
A*/3 (Result is 2x23 or 16D)
B EQU 16D
B*/(-3) (Result is 16D x2 3 or 2)




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER et .

19

3.5.2.16. Comments Within Expressions /. ./

8:5-3:

Comments can be inserted within expressions by means of the two delimiters
/. and ./ as shown in the examples. Insofar as processing is concerned,
these comments will be ignored.

Examples:

+ TAPE=5/.TAPE =5 IS SYSTEM. /-1
+ TAPE=5-1

The same data will be stored for the two examples.
Absolute and Relocatable Labels and Expressions

The value assigned to a label is either relocatable or absolute. If the values
assigned to label entries in the source statement are later displaced by a constant
number from their originally assigned relative addresses, the labels are termed
‘““relocatable’’ items. (This displacement normally occurs when the object program

is loaded into storage locations other than those originally assigned by the assembler
program.) If the values assigned to labels are unaffected by relocation procedures
and remain set equal to a constant absolute value, the labels are termed ‘‘absolute’’
items. As examples, a label may be set absolute by an EQU or a LET directive

(see Sections 5 and 6 for descriptions of these directives).

When plus (+) or minus (—) operators alone are used to form an expression, the
expression is absolute if: 1) it has an even number of relocatable items (zero is
considered an even number), and 2) each relocatable item is paired with a relocatable
item of opposite sign (not necessarily contiguous), controlled by the same location
counter. An expression is relocatable if: 1) it has a positive value, and 2) it has an
odd number of relocatable items, and 3) the relocatable items (except one) are

paired under the same location counter, with opposite signs.

When the other operators (all but plus and minus) are used to form an expression,
the immediate result is an absolute item. (This absolute item can be used to form
a relocatable item in the same line of coding.) If either, or both, of the items used
in forming this absolute item are relocatable, the result will be flagged with a
relocation error.

A literal is also a relocatable item since, in the source coding, it is represented by
an assembler-assigned address. However, literals cannot be combined, by means of
operators, to form expressions. A reference to a location counter with the symbol $
is also a relocatable item.




UP-4133 3 20
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

Examples of absolute and relocatable expressions are shown in Table 3-2.

EXPRESSION TYPE RELOCATION ERROR FLAG?
A+B absolute no
A+B-3 absolute no
A+R12 relocatable no
A+R12-R23-R22+R13 absolute no
B+R12+R13-R22 relocatable no
A//B absolute no
R12-A/ /B relocatable no
R22*A absolute yes
R12-R22*A relocatable yes
R22*1 relocatable no
(R12-R22)*A absolute no
R12-R22*A relocatable yes
R12/R22 absolute yes

NOTE: A and B are absolute items (unequal to 1).
R12 and R22 are relocatable items under location counter 2.

R13 and R23 are relocatable items under location counter 3.

Table 3-2. Absolute and Relocatable Expressions




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER e O T

4.1.

4.2.

4.2.1.

4. BASIC ASSEMBLER
LANGUAGE INSTRUCTIONS

GENERAL

The basic instructions are those instructions used by ‘‘worker’’ programs. Where the
same instruction may operate differently under executive control, indication is provided
in text. Basic assembler instructions consist of:

® Transfer instructions, to move data between memory storage and registers.

® Shift instructions, to move the contents of a selected register to the right or left as
many bit positions as specified.

® Comparison instructions, to compare two operands either arithmetically or alpha-
numerically and skip (as determined by the comparison) the next instruction.

® Jump instructions, to transfer control of the program to another area within memory
Storage.

® Special sequence-modifying instructions, to enable repetitions, conditional skips,
programmed interrupts, or use of programmed ‘‘electronic switches’’.

® Arithmetic instructions, to perform arithmetic operations in fixed point, floating point,
or binary coded decimal (BCD) mode.

W Logical instructions, to operate upon and edit selected portions of a word.

In some cases, the classification may seem arbitrary, since an instruction may perform
more than one function. For example: the RANQ (Replace Y-Q) incorporates both an
arithmetic and a transfer function but, since its greatest utility lies in the arithmetic
function, it is listed only under arithmetic instructions.

The format of each instruction is followed by an example written in assembly language.
The executable instruction that is generated from the assembler mnemonics is shown at
the right.

When the label is used in the examples, it is written as LABEL. The assembler-assigned
computer address represented by LABEL will be 01234. This will maintain a consistent
reference in the examples. For actual coding, any valid label could be used.

DESIGNATOR INTERPRETATION

This subsection contains a detailed description of the k and j designators used in the
instructions and is to serve as a reference in the descriptions of the instructions which
follow:

Interpretation of k Designators

The first three subsections which follow deal with standard k designator interpreta-
tion for read class, store class, and replace class instructions, in that order. The
fourth subsection presents a table showing the deviations from standard interpretation.



UP-4133 4 2
Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: PAGE:

4.2.1.1. Standard Read Class k Designators

k =1 indicates that the value is obtained from the lower 15 bits of the memory
location specified by the operand and is transferred into the lower 15 bits

L
= of an arithmetic register. The remaining bits, i.e., the upper 15 bits, are
filled with zeros.
1 Memory
ZERO Arithmetic
FILL Register
In the 17-bit B register operational mode, bits 15 and 16 of the value are lost.
k = 2 indicates the value is obtained from the upper 15 bits of the memory
U location specified by the operand and placed in the lower 15 bits of the

register.

Note: The transfer is to the lower 15 bits of the arithmetic register. The
upper 15 bits are zero filled.

Memory
ZERO Arithmetic
FILL Register

k =3 specifies that the entire 30 bits of the value at the memory location indicated
by the operand are to be transferred to an arithmetic register.

1=

Memory

Arithmetic
Register

k =5 indicates transfer of the lower 15 bits of the value in the memory location
——  specified by the operand to the lower 15 bits of an arithmetic register. The
LX difference between L and LX is that with an LX specification, a sign ex-
tension is obtained in the arithmetic register, i.e., the highest order bit
(the sign bit) of the 15-bit value is extended through the upper 15 bit posi-
tions of the register. ‘




UP-4133 4
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
. Memory
1
SIGN Arithmetic
EXT. Register

NOTE: An X in the alphabetic notation for the k designator always indicates
sign extension,

=
"
o

'°|

]

indicates transfer of the upper 15 bits of the value at the specified memory
location to the lower 15 bits of an arithmetic register. With X present in the
alphabetic notation, there is a sign extension in the upper 15 bits of the
register, otherwise it is identical to a k of 2.

Memory
SIGN Arithmetic
EXT. Register

indicates transfer of the 15 bits of the operand portion of the instruction.
The 15 bits contained in the instruction word after B register modification
are transferred into the low order 15 bits of an arithmetic register and the
remainder of the register is zero filled. In this case, the operand is a datum
rather than the address of a datum.

b y Memory
i
ZERO Arithmetic
FILL Register

indicates transfer of the 15 bits contained in the instruction word after B
register modification into the low order 15 bits of an arithmetic register.
The upper 15 bits of the arithmetic register are filled with the sign bits, i.e.,
sign extension occurs.




UP-4133 4 4
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
b y Memory
SIGN , Arithmetic
EXT. Register

k = 7 indicates transfer of the entire 30 bits in the A register into the A or Q

A register.
Arithmetic
Register
y
Arithmetic
Register
NOTE: For Load B Register instructions, only the low order 17 bits are
transferred.
4.2.1.2. Standard Store Class k Designators
A store class instruction involves transfer of a value from an operational register ‘

to a register or memory address. Again there are eight possible k designations
for this class.

k =1 indicates that the lower 15 bits from an arithmetic register are to be stored as

L the lower 15 bits of word at memory address y. The upper 15 bits at location
- y are undisturbed.

Arithmetic
Register

Memory

k = 2 indicates storage of the lower 15 bits from an arithmetic register as the
upper 15 bits of the word at memory address y. The lower 15 bits at location

y are undisturbed.

I




UP-4133

4
Rev. 1 UNIVAC 494 ASSEMBLER

SECTION: PAGE:

‘ Arithmetic

Register

Memory

k =3 indicates storage of the entire 30 bits of the register as the word at the
w memory address .

Arithmetic
Register

Memory

k =5 indicates that the ones complement of the lower 15 bits of an arithmetic

register is to be stored as the lower 15 bits of the word at memory address
CRL. " = A Vi .
—— v, the upper 15 bits are not changed. It is identical to a k of 1 except that
the value is ones complemented.

‘ Arithmetic

Register

CP

Memory

k =6 indicates that the ones complement of the lower 15 bits of an arithmetic

register is to be stored as the upper 15 bits of the word at memory address
CPU _ A
—— ¥; the lower 15 bits of the word are unchanged.

Arithmetic
Register

CP

Memory




UP-4133 4 6
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
k =0 indicates that there is to be an entire word transfer from a register to the Q .
register.
Q
Register
Y
Q
Register

NOTE: Contents of the B register (B;) are stored in the lower 17 bits of Q;
the upper 13 bits of Q will be zero filled.

k =4 indicates that there is to be an entire word transfer from a register into the A
A register,

Register

A
Register

NOTE: Contents of the B register (B.) are stored in the lower 17 bits of A;
the upper 13 bits of A will be zero filled.

k =7 indicates transfer of the ones complement of the entire 30 bits of a register
e LA 4
cpw into the 30-bit word of the specified memory location.

Arithmetic
Register

CP

Memory

4.2.1.3. Standard Replace Class k Designators

A replace class instruction involves transfer of a value from the address in

memory specified by the operand in the instruction to an arithmetic register where
the operation designated by the operator field takes place. The result then replaces
the initial contents of the memory location. The k designators of 0, 4, and 7 are in-
valid for use with replace class instructions.




UP-4133 4 7

Rev. 1 UN|VAC 494 ASSEMBLER SECTION: PAGE:
' k =1 indicates transfer of the lower 15 bits of the word at the specified memory address
to the lower 15 bits of the arithmetic register where the operation takes place.

17 The result is then transferred from the lower 15 bits of the arithmetic register
into the lower 15 bits of the memory location, i.e., the original contents of the
memory location are destroyed and the value obtained as a result of the com-

putation replaces the original value in the memory address.

Memory

Arithmetic
Register

Memory

k =2 indicates transfer of the upper 15 bits of the word at the specified memory
address into the lower 15 bits of the arithmetic register where computation
specified by the operation field of the instruction takes place. After compu-
tation, the result then replaces the original 15 bits of the memory location.
The lower 15 bits of the memory location remain unchanged.

c

Memory

Arithmetic
Register

Memory




UP-4133
Rev. 1

4

UNIVAC 494 ASSEMBLER SECTION: PAGE:

134

| =

indicates transfer of the entire 30 bits of the word in the specified memory
location into the entire 30 bits of the arithmetic register, where the oper-
ation is performed. The entire 30 bits of the result will replace the previous
contents of the memory address.

Memory

Arithmetic
Register

Memory

indicates transfer of the upper 15 bits of the word in the specified memory
address to the lower 15 bits of the arithmetic register, with sign extension.
When the logical or arithmetic operation is completed, the result, i.e., the
lower 15 bits of the arithmetic register, replaces the upper 15 bits of the
memory address.

Memory
SIGN Arithmetic
EXT. Register

Memory

indicates transfer of the lower 15 bits of the word in the specified memory
address into the lower 15 bits of the arithmetic register, with sign extension,
where the operation takes place. The result replaces the lower 15 bits of the
memory location.




UP-4133 4 9
Rev. 1 UN'VAC 494 ASSEMBLER SECTION: PAGE:
L]
® i
Reseseseted Memory
Seteser
SIGN Q : Arithmetic
EXT. > Register

Memory

4.2.1.4. Exceptions to Standard k Designator Interpretation

4.2.

N

Table 4-1 lists deviations from standard k designator interpretation,
previously described, for particular instructions. These instructions are grouped
by functions with function code and mnemonic code reference.

Interpretation of j Designators

The most common use of the j portion of the instruction word is to specify a skip
condition. If the specified condition (such as a negative value or a value of zero)
in an arithmetic register is present, the next instruction will be skipped. This
permits the user to control program sequence based on the result of an operation.
For those instructions that do not have skip conditions, this portion of the in-
struction word may have other uses.

In the majority of instructions, the normal j designator is used, i.e., the result in
a particular register, the A or Q, is tested and a transfer of control takes place if the
tested condition exists,

The following figures list the interpretation of the j designator for various instruc-
tions. Table 4—2 shows the ‘“normal’’ j designator interpretation; Table 4-3,
deviations from the normal interpretation for test (compare) instructions; Table
4-4, deviations for jump instructions; Table 4—5, the repeat instructions; Table
4-6, arithmetic and logical instructions. Abbreviations and special symbols used
in these tables are explained in Appendix A.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

4

PAGE:

10

FUNCTION k
TYPE MONI DEVIATION
Cope | MNEMONIC | ©eqionaTOR
Transter 12 LB 0 17-bit y—=- B
1 15-bit {y) --Bj with zeto il
at high end of B;
1=4,5,6, 2 15-bit {y), =By with zero fill
o 7 st high end of Bl
3 17-o1t ‘HO-IG"B]
4 15-b1t ;-.e, with sign extension
- 15-bit l'y‘)L-.B’ with sign extension
6 15-bit (y'lU-B] with sign extension
7 17-b1t ‘A'O-le"a|
0 15-bit i-—B‘
1 15-bit (y\_-.B‘
j=1,2 2 15-bit ‘;‘U OB’
or 3 =
3 1561t mo.“..ai
4 15-bit ;-BI
-1 15-bit (y)L-bB‘
6 15-bit (7)u-o8’
7 15-bit (A)o_“..s'
j=0 NO OPERATION
14 sQ 0 CPIQ)=—aQ
15 SA 4 CP{A)=——s=A.
16 sa 0 (8) —»QL with zeto till,
3 (B) et i
4 [B) == A with zeto Till.
? CP(B) === (¥ ) with sign extension.
Shift 01, RSQ, 1,3.5 Shift count is Flge.0p -
02, RSA, -
03, RSAQ, 2,6 Shift count is (¥)z9.15-
0s, LsQ. 0,4 Shift count is ¥ :
06, and LSA, and 05-00
07 LSAQ ! Shift count is (Algs.00-
Jump 60, JT, 1,95 Address of next instruction is (§) .
61, J, 2,6 Address of next instruction is (§)y.
64, and SLJT, and 0.4 Address of next instruction is Y.
65 SLJ 7 Address of next instruction is (A) .
Seq.-mod. 70 3 0 Repeat count is 17-bit y.
14,55 Repeat count 15 15-bit (y)y .
201 6 Repeat count is 15-bit l;'ru
3 Repeat count is 17-bit (¥)0p.16
7 Repeat count is 17-dit Ago-16.
72 J8D 1,35 Jump to (V) fot next instruction.
2,6 Jump to (¥l for next instruction.
0,4 Jump to § for next instruction.
7 Jump to 'AoL for next instruction.
Logical 47 SAND 0 LP =0
1 LP (] .
2 LP = (5.
3 LP = (¥).
4 LP e A
5 CPILP) e () .
€ CPILPY —e(F)y

NOTE: For abbreviations and symbols, see Appendix A.

Table 4=1. Exceptions from Stondard k Designator Interpretation




NOTE: XX indicates illegal (invalid) uase.
X indicates nonexistence (not used); causes incorrect, but valid shilt

Table 4=3. Special j Designator Interpretation for Test (Compare) Instructions

UP-4133 4 11
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:!
‘ MACHINE
CODE (OCTAL) : gg;zgﬁ;cm RESULT
J DESIGNATOR J

0 EXECUTE NI

1 SKIP ~ SKIP NI

2 QPOS SKIP NI IF (Q) POS.

3 QNEG SKIP NI IF (Q) NEG.

4 AZERO SKIP NI IF (A) =0

5 ANOT SKIP NI IF (A) £ 0

6 APOS SKIP NI IF (A) POS.

7 ANEG SKIP NI IF (A) NEG.

Table 4-2. Normal j Designotor Interpretotion
‘ MACHINE TA (04) TQ (04) TR (04)
CODE (OCTAL
; DES,(GNATOR) i MNEMONIC | RESULT |jMNEMONIC |[RESULT | j MNEMONIC |RESULT
0 XX XX XX XX XX XX
1 SKIP SKIP NI SKIP SKIP NI SKIP SKIP NI
IFY< Q
2 . X YLESS SKiP 1 X X
3 X X YMORE IFY>Q X X
SKIP NI
IFQ2Y>A
4 X X X X YIN SKIP NI
IF Q<Y<A
5 X X X X YOUT S
IF Y<A
6 YLESS SKiP N1 X X X X
IF Y>A

7 YMORE R X X X X




UP-4133 4 12

Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
cog:C(HlNE o J(61)/5LI(65) JT(60) SLJT(64)
OCTA - = -
;DESIGNATOR JMNEMONIC |RESULT JMNEMONIC | RESULT JMNEMONIC RESULT
0 b ALWAYS RIL RELEASE SIL SET
OR JUMP INTERRUPT INTERRUPT
UNDEFINED LOCKOUT LOCKOUT
1 KEY 1 JUMP IF RILJP RELEASE SILJP SET
KEY1 SET INTERRUPT INTERRUPT
LOCKOUT LOCKOUT
AND JUMP AND JUMP
2 KEY 2 JUMP IF QPOS JUMP IF QPOS JUMP IF
KEY 2 SET (Q) POS. (Q) POS.
3 KEY3 JUMP IF QNEG JUMP IF QNEG JUMP IF
KEY 3 SET (Q) NEG. (Q) NEG
4 STOP ALWAYS AZERO JUMP IF AZERO | JUMP IF
STOP (A)=0 | (A)=0
5 STOPS STOP IF ANOT JUMP IF ANOT | JUMP IF
KEY 5 SET (AYZ0 (A)Z0
|
3 STOP6 STOP IF APOS JUMP IF APOS ' JUMP IF
KEY 6 (A) POS. \ (A) POS.
|
7 STOP 7 STOP IF ANEG JUMP IF ANEG JUMP IF
KEY 7 SET (A) NEG, (A) NEG.

Table 4-4. Special § Designator Interpretation for Jump Instructions




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

4

PAGE:

13

MACHINE R (70)
(j%%il(soNcATTAoL; j MNEMONIC RESULT
0 NE:y=y

1 ADV NE:y=y+1

2 BACK NE:y=y-1
3 ADDB NE:y=y+(By)
4 R NE:y=y

5 ADVR NE:y=y+l

6 BACKRNE NE:y=y~1
7% ADDBR NE:y=y+(Bp)

NOTES:

1. For the R (70) instruction j designators 0, I, 2 and 3 are exclusive to

read and/or store class ingtructions and 4, 5,6 and 7 exclusive to

replace class inatructions, In repeat of replace class instructions, the
result is storod at y (of NE) plus (86).

2. NE refors to exocution of next repetition in terms of previous 7.

* ForMth execution; =y +Mx(

Bb)'

Table 4=5. Special j Designator Interpretation for Repeat Instructions
P J g P




UP-4133 4 14
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
MACHINE AQ(26)/ANQ(27) LLP(40)/RLP(44) D(23)
CODE (OCTAL)
jDESIGNATOR | MNEMONIC RESULT | MNEMONIC | RESULT |MNEMONIC| RESULT

0 EXECUTE NI EXECUTE NI EXECUTE NI

1 SKIP SKIP NI SKIP SKIP NI SKIP SKIP NI

2 APOS SKIP NI EVEN SKIP NI NOOF SKIP NI
IF (A) IF (A) IF NO
| POS. EVEN NO. OVERFLOW

OF 1 BITS

3 ANEG SKIP NI 00D SKIP NI OF SKIP NI
IF (A) IF (A) IF OVERFLOW
NEG. 0DD NO.

OF 1 BITS

3 QZERO SKIP NI AZERO |SKIP NI AZERO SKIP NI IF
IF IF A=0
(Q)=0 (A)¥=0

5 QNOT SKIP NI ANOT SKIP NI ANOT SKIP NI IF
IF IF (A)20
Q)20 (A)Z0

6 QPOS SKIP NI APOS SKIP NI APOS SKIP NI IF
IF IF (A) {A) POS.
(Q) POS. POS.

7 QNEG SKIP NI ANEG SKIP NI ANEG SKIP NI IF
IF (Q) IF (A) \(A) NEG.
NEG. NEG. |

Table 4=6. Special | Designotor Interpretation for Arithmetic and Logical Instructions




UP-4133
Rev. 1

4

SECTION:

UNIVAC 494 ASSEMBLER

PAGE:

15

4.3.

4.3.1.

4.3.2.

DATA TRANSFER INSTRUCTIONS

Transfer instructions are used to move data within the central processor: core memory
locations to registers, registers to core memory locations, registers to registers. All
transfers are nondestructive in that the original source of data remains unchanged except
in replace class instructions. Transfers may consist of 15 bits, 30 bits, or in character
packing and unpacking, 6 bits, as determined by the k designator or the instruction

itself. Transfers may consist of the original bits or their ones complements, as specified.

Load Q (10) LQ

Transfer the operand, ¥, as determined by k, to the Q register.

Operation k Space y b j
LQ NORMAL b READ CLASS| Note NORMAL
Examples:
LQ,W LABEL 10 03 0 01234
LQ,A 10 0 7 0 00000

NOTE: If the k designator is 7, y is effectively zero and no B register modification is
possible; Q and A registers will be the same after instruction execution,

Load A (11) LA

Transfer the operand , ¥ , as determined by k, to the A register.

Operation k Space y b i
LA NORMAL b READ CLASS| Note NORMAL
Examples:
LA, 2,B2 11 0 0 2 00002
LA,U LABEL + 3, B2 11 0 2 2 01237

LAA 11 0 7 0 00000

NOTE: If the k designator is 7, y is effectively zero and (By,) has no effect; the A
register remains unchanged.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

4

PAGE:

16

4.3.3. Load Bj (12) LB

Transfer the operand, ¥, to the active (executive or worker) B register (1-7) specified
by the j designator.

Operation k Space j y b
LB See Table 4-1 B Bj (Note 1) READ CLASS By
Examples:
LB,W B7,00005 12 7 3 0 00005
LB,L 6,LABEL+1,B2 12 6 1 2 01235

NOTE 1: The j designator specifies the selected B register; consequently, a skip
condition cannot be programmed in this instruction. The j of the Bj notation
may be 0,1,2,3,4,5,6, or 7, to specify the B register of the operation. With

a j designator of 0, no operation is performed; the program advances to the NI.

Transfers of data into and out of 17-bit B registers usually are full words (k
of 0, 3, or 7), but can be half words (k of 1, 2, 4, 5, or 6) if desired. The
lower 17-bit value is stored in the lower 17 bits of a 30-bit location. When
half-words are transferred into a B register, the upper two bits of a 17-bit

B register are 0’s. Half-word transfers out of a 17-bit B register result in the
loss of the upper two bits.

NOTE 2:

NOTE 3: This instruction may not be used immediately following an Enter IFR (7761)

or Enter RIR (7766) instruction, each of which is used under executive control.

4.3.4. Clear Bj (12) ZB

The contents of a specified B register are cleared to zero. The particular B register
to be cleared is specified by the j designator. This is a variation of the Load Bj
instruction, where By is B0 and y is zero.

Operation k i y b
ZB none b Bj none none
Example:
LB, 0 B3 12 3 0 0 00000

ZB

B3

12 3 0 0 00000




UP-4133 4 17
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

‘ 4.3.5. No Operation (12) NOP

No operation is performed and the program advances to the next instruction. This is
actually a variation of the Load Bj instruction where Bj is BO.

Operation k i y b
NOP none b none optional none
Example:
LB BO 12 0 0 0 00000
NOP 12 0 0 0 00000

See 4.10.2.1 for examples using y portion.

4.3.6. Double Precision Load (7721) DPL

This operation loads the AQ register.

Operation y, b

DPL b base address

The double length register AQ will be loaded. The contents of ¥ are placed in A and
the contents of y+1 are placed in Q.

Examples:

DPL LABEL 77 21 0 01234
DPL LABEL, B3 77 21 3 01234

4.3.7. Store Q (14) SQ

Store the contents of the Q register in the k designated portion of the storage location

specified by ¥.

Operation k Space y b j
SQ See Table 41 b STORE CLASS By, NORMAL
Examples:
SQ,W LABEL 14 0 3 0 01234
SQ,1  01234,3,2 14 213 01234
SQ,1 LABEL,B3,QP0OS 14 2 13 01234
SQ,1 LABEL,B3,2 14 2 1 3 01234



UP-4133
Rev. 1

4 18

PAGE:

UNIVAC 494 ASSEMBLER

SECTION:

4.3.8.

4.3.9.

Clear Q (16) ZQ

The contents of the Q register will be cleared to zero by this instruction. This is a
variation of the Store B; instruction where B; is B0 and the transfer is to the Q register
because the k designator is 0 (see Table 4-2).

Operation k j y b
ZQ none | b none none none
Example:
SB, Q BO 16 0 0 0 00000
ZQ 16 0 0 0 00000

Negate Q or Complement Q (14) NQ

The contents of the Q register will be ones complemented as a result of this operation
and stored in a memory location. This is a variation of the Store Q instruction where k

is 0.

Operation k y b i
READ
N
Q none b CLASS By NORMAL
Example:
SQ TAG 14 00 0 01234

NQ TAG 14 00 0 01234

4.3.10. Store A (15) SA

Store the contents of the A register in the storage location specified by ¥, per k.

Operation k Space & b j
SA See Table 4-1 5 STORE CLASS Bb NORMAL
Examples:
SA,2 LABEL 150 2 0 01234
SA,W LABEL-2,3 15 0 3 3 01232




UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION: PAGE: i

4.3.11. Negate A or Complement A (15) NA

The contents of the A register are ones complemented as a result of this operation and
stored in a memory location. This is a variation of the Store A instruction where the

k designator is 4.

Operation k y b j
NA none | b SC{?A};iSE By none
Example:
SAA TAG 1504 0 01234
NA TAG 1504 0 01234

Clear A (21) ZA

The contents of the A register will be cleared to zero by this operation. This is a
variation of the Subtract A instruction where the A register is subtracted from itself
due to a k designator of 7 (see 4.8.3.1).

Operation k y b j
ZA none | B none none NORMAL
Example:
AN,A 21 07 0 00000
ZA 21 07 0 00000

Store B (16) SB

Store the contents of a selected B register, indicated by the j designator, in the k
designator-modified portion of the storage location specified by ¥.

Operation k Space j y b
Note 2 b Bj (Note 1) STORE CLASS By
Examples:
SB,1 B7,LABEL 16 7 1 0 01234
SB,1 B7,LABEL-3,B2 16 7 1 2 01231
SB,1 BO,LABEL 16 0 1 0 01234

(L(LABEL) is cleared to zero by the preceding instruction.)
SB,CPL BO,LABEL 16 0 5 0 01234

(L(LABEL) is set to all ones by the preceding instruction.)




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

4

SECTION:

PAGE:

20

NOTE 1:

NOTE 2:

condition cannot be programmed in this instruction.

The j designator specifies the selected B register; consequently, a skip

The j of the Bj notation may be 0, 1, 2, 3, 4, 5, 6, or 7 to specify the B register

of the operation. With a j designator of 0, all zeros are stored at the ¥ specified;

program advances to NI.

store the contents of an active 17-bit index register.

4.3.14. Cleor Y (16) SZ

The k determined portion of a storage location specified by V is cleared to zero. This

is a variation of the Store Bj instruction where Bj is BO.

Operation k i y b
See STORE
SZ 4'3.13 s none CLASS Bb
Example:
SB,W B0, TAG 16 03 0 01234
SZ.W TAG 16 03 0 01234

4.3.15. Double Precision Store (7725) DPS

The contents of the AQ register will be stored iny and y+1; (A) in ¥ and (Q) in

g+1.

Operation v, b

DPS 5 base address

Examples:

DPS LABEL
DPS LABEL, B4

e B |

N~
NN
vt n

0 01234
4 01234

It is necessary to use a full word (30-bit) transfer k of 0, 3, 4, or 7 in order to




UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION: PAGE:

21

4.3.16.

4.3.17.

4.3.18.

Character Pack Lower (7731) CPL

This operation packs five 6-bit characters into the A register.

Operation y, b

CPL 5 base address

Initiate a transfer to A of five 6-bit characters located in bits 5-0 of the addresses
specified by y through y+4. (y)g5.o will enter Agg.n4; (¥+1)5.0 will enter Ap3_18;
etc.

Examples:

CPL LABEL 77 31 0 01234
CPU LABEL, B2 77 31 2 01234

Character Pack Upper (7732) CPU

This operation packs five 6-bit characters into the A register,

Operation y, b

CPU 5 base address

Initiate a transfer to A of five 6-bit characters located in bits 20-15 of the addresses
specified by ¥ through ¥+4. (y) 20-15 will enter Apg.94; (V+1) 20-15 will enter
A23.18; etc.

Example:

CPU LABEL 77 32 0 01234
CPU LABEL, B4 77 32 4 01234

Character Unpack Lower (7735) CUL

This operation unpacks the A register intoy through y+4.

Operation y, b

CUL 5| base address

Five 6-bit characters are taken from the A register and distributed into bits 00
through 05 of the five locations, y through y+4. An4.79 is transferred to (i)OO-OS;

A18'23 to (}—’*1)00-05, etc.
Examples:

CUL LABEL 77 35 0 01234
CUL LABEL, B3 77 35 3 01234




UP-4133
Rev. 1

UN'VAC 49‘ ASSEMBLER SECTION: 4 PAGE: 22

4.3.19.

4.3.20.

4.3.21.

Character Unpack Upper (7736) CUU

This instruction unpacks the A register into the upper half of addresses y through
y+4.

Operation y,b

Cuu L) base address

Five 6-bit characters are taken from the A register and distributed successively
into bits 15 through 20 of the five locations y through y+4. A24_29 is transferred

‘0 ()7)0-5' A18'23 to (y-'l)o-s g e ey AO'S to (?'4)0_5
Examples:

cuu LABEL 77 36 0 01234
cuu LABEL, B5 77 36 5 01234

Load B-Worker (7771) LBW

This instruction transfers the lower 15 (or 17) bits from seven successive memory
locations to the seven worker B registers. The first transfer is from the base
address to Bl; the second, from the next address to B2, etc. Transfers to B1, B2,
and B3 are 15 bits; to B4, B5, B6, and B7, 17 bits. The initial contents of the B
registers are available for base address modification.

Operation y, b
LBW b base address
Example:
LBW LABEL, B0 77 71 0 01234

Store B-Worker (7775) SBW

This instruction transfers 15 (or 17) bits from the seven worker B registers to
seven successive memory locations. The first transfer is from Bl to the base
address; the second, from B2 to the next address, etc. Transfers from B1, B2,
and B3 are 15 bits; from B4, B5, B6, and B7, 17 bits. Transfers are made to the
lower 15 (or 17) bits of the memory word with the upper 15 (or 13) bits zero filled.
The B registers are unchanged and are available for base address modification.

Operation y, b

SBW B base address

Example:

SBW LABEL, B2 77 75 2 01234




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION: PAGE:

23

4.4, SHIFT INSTRUCTIONS

Shift instructions move the contents of a selected register to the right or left as many
positions as indicated. In a right shift, all bits shifted out at the right are lost. In the
basic right shift, vacated bit positions are sign extensions; in the logical right shift,
zero filled. All left shifts are circular, i.e., bits shifted out at the left are returned

at the right. Except for the Scale Factor Shift (SFS) instruction, the number of positions
to be shifted (the shift count) is determined by the number formed by the lowest order
six bits of the operand specified under y. A shift count greater than 59 10(73g) will
cause an incorrect shift. In all logical right shifts the first subfield (if used) of the
operand must be a number; the second subfield (if used), a B register.

The k designators operate as follows for all shift instructions:

m k of 1,3, or 5 — the shift count is the low order six bits contained in the lower
half of the word at address 7.

B k of 2 or 6 — the shift count is the low order six bits contained in the upper
half of the word at address V.

® k of 0 or 4 — the shift count is the low order six bits contained in the instruction
word after B register modification — the number V.

m k of 7 — the shift count is the low order six bits contained in the A register.

4.4.1. Right Shift Q (01) RSQ
Shift contents of the Q register to the right the number of positions specified by the
shift count with sign extension. If the shift count is equal to 29, or ranges be-
tween 2910 and 591 all bit positions of the Q register will be filled with the orig-
inal value of the sign position.
Operation k Space y b i
See
RSQ Figure 4-1 b READ CLASS By NORMAL
Examples:
RSQ,U LABEL 0101001234
Initial (Q) =100100101111111011100001110101
Shift Count =8
Final (Q) =111111111001001011111110111000
RSQ 29D 01 0 0 0 00035

Initial (Q) =011111111111111111111111111111
Shift Count =291
Final (Q) =000000000000000000000000000000




UP-4133 4 24
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE!: 2

4.4.2. Right Shift A (02) RSA

Shift contents of A register to the right the number of positions specified by the shift
count, with sign extension. If the shift count is between 2910 and 591 all bit
positions of the A register will be filled with the original sign.

Operation k Space y b j
RSA See Table 4-1 b READ CLASS Bp NORMAL
Examples:
RSA,L LABEL 02 010 01234

4.4.3. Right Shift AQ (03) RSAQ

Shift contents of the AQ register to the right the number of positions specified by the
shift count, with sign extension. Both A and Q may be considered as a single combined
register, AQ, containing 60 bit positions.

Bits that are shifted off the right end of the Q register are lost; bits that are shifted
off the right end of the A register replace the shifted high order positions of the Q
register. The sign value (bit position 29 of the A register) will be extended through
the shifted high order positions of the A register and into the Q register. If the shift
count is between 291 and 591 all bit positions of the A register will contain the
initial sign value. If the shift count is 59 all bit positions of both the A and Q
registers will contain the initial sign value of the A register.

Operation k Space y b j
RSAQ See Table 4-1 5 READ CLASS By NORMAL
Examples:
RSAQ 12D 03 000 00014
Initial contents of AQ:
(A) (Q)
11101001111111111011010001100 001110101101010010100011001001

Final contents of AQ:

(A) Q)
111111111111111010011111111111 011010001100001110101101010010
RSAQ,2 00035,B2 03 0 2 2 00035




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

4

PAGE:

25

The shift count will be obtained from the sum of the value in the upper half

of word 00035 modified by B2. A shift count 5910 is assumed.

Initial contents of AQ:

(A)

101111000011101010000000000001
Final contents of AQ:

(A)

I11111111111111111111111111111

Q)

111111111100000101010101010101

Q)

I11111111111111111111111111111

4.4.4. Left Shift Q (05) LSQ
Shift contents of the Q register to the left, circularly, the number of positions specified
by the shift count. If the shift count is 301, the Q register will be restored to its
initial condition.
Operation k Space y b i

LSQ See Table 4-1 b READ CLASS By, NORMAL

Examples:
LSQ,L LABEL+1 05 01 0 01235

Initial (Q) = 001110101101010010100011001001
Shift Count= 1510
Final (Q) =010100011001001001110101101010

LSQ 30D 05 0 0 0 00036

Initial (Q) = 010111111100000110000010011100
Shift Count= 3010

Final (Q) =010111111100000110000010011100

4.4.5. Left Shift A (06) LSA

Shift contents of the A register to the left, circularly, the number of positions specified
by the shift count. If the shift count is 301, the A register will be restored to its
initial condition.

Operation 3 Space y b j

LSA See Table 4-1 ] READ CLASS By NORMAL




UP-4133 4 26
Rev. 1 UNIVAC 494 ASSEMBLER

SECTION: PAGE:

4.4.6. Left Shift AQ (07) LSAQ

Shift contents of the AQ register to the left, circularly, the number of positions speci-
fied by the shift count. For this instruction, the A and Q registers function as a single
60-bit register, AQ, in which high order bit positions are contained in the A register.
The bit positions shifted off the left end of the A register replace the bit positions
vacated from the right end of the Q register. Bit positions shifted off the left end of the
Q register replace the bit positions vacated from the right end of the A register. If the

shift count is 3010 the contents of the A register and the Q register will be inter-

changed.
Operation k Space y b i
LSAQ See Table 4-1 5 READ CLASS By NORMAL
Examples:
LSAQ 6D 07 0 0 0 00006

Initial (AQ):

(A)
111010011111111111011010001100

Final (AQ):
(A)
011111111111011010001100001110

LSAQ 30D,,ANEG
Initial (AQ):

(A)
101111101010001100010011101101

Final (AQ):
(A)
000000011111111010101010011001

4.4.7. Logical Right Shift Q (7751) LRSQ

Q
001110101101010010100011001001

Q)
101101010010100011001001111010

07 7 0 0 00036

Q)
000000011111111010101010011001

Q)
101111101010001100010011101101

This operation shifts the Q register right by the shift count with zero fill.

Operation y, b

LRSQ ] Number

The shift count N, must be a number and may be modified by a B register. It must
not be an address.



UP-4133
R 27

Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
. Examples:
LRSQ 11D 77 51 0 00013
LRSQ 0, B1 77 51 1 00000
LRSQ 6, B4 77 51 4 00006

4.4.8. Logical Right Shift A (7755) LRSA

This operation shifts the A register right by the shift count with zero fill.

Operation y, b
LRSA B Number
Example:
LRSA 20 77 55 0 00020

4.4.9. Logical Right Shift AQ (7756) LRSAQ

This operation shifts the AQ register right by the shift count with zero fill.

Operation y, b
‘ LRSAQ 5 Number
Example:
LRSAQ 20 77 56 0 00020

4.4.10. Scale Factor Shift (7730) SFS

This instruction shifts the contents of the A register to the left until the two highest
order bits are unlike and records the number of shifts required in the Q register as
the six lowest order bits. All bits shifted out at the left are returned, in turn, at the
right in a circular shift. If all bits in the A register are alike, a count of 281 will
be recorded in the Q register, the A register will remain unchanged, and the program
will proceed to the next instruction. This instruction is used to ‘“‘normalize’’ the
fixed point part (mantissa) of a number in the exponential (floating point) word
format (Figure 2—4), and is used in floating point arithmetic (see 4.8.6).

Operation y, b

SFS ] none

Example:

. SFS 77 30 0 00000




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

4

SECTION: PAGE:

28

4.5.

4.5.1.

4.5.2.

4.5.3.

TEST (COMPARISON) INSTRUCTIONS

The following test (comparison) instructions extend the ability to perform comparisons
over that already available in most instructions by use of the j designator. These compari-
sons may be either alphanumeric or arithmetic. In an arithmetic comparison, the sign bit
is recognized as such, so that a negative number is always treated as less than a posi-
tive number, thereby using the following scale of values: any negative number < -0 <+0<
any positive number. In an alphanumeric comparison, no sign bit is recognized as such;
the rule is that a 1 bit is greater than a 0 bit. Therefore, as an example, in an alpha-
numeric comparison, -0 > +0.

Test A (04) TA

Compare the signed value of the operand with the signed (A) and skip the next instruc-
tion as determined by the j designator. This comparison can be used on fixed point or
floating point binary operands but may not be used for operands in the zoned BCD mode.

Operation

k

Space

y b i

TA

NORMAL

5

READ CLASS

By,

See Table 4-3

Example:

04 7 3 0 01234
04 6 1 3 01232

LABEL, YMORE
LABEL-2,B3,6

TA,W
TA,L

Test Q (04) TQ

Compare the signed value of the operand with the signed (Q) and skip the next instruc-
tion as determined by the j designator. This comparison can be used on fixed point or
floating point binary operands but may not be used for operands in the zoned BCD mode.

Operation k Space y b ]

TQ NORMAL b READ CLASS | By See Table 4-3

Examples:

01234
01234

TQ,W

LABEL, YMORE 0
TQ,1 0

01234,3,YLESS

& B
N W
-
w o

Test Range (04) TR

Compare the signed value of the operand with the signed (A) and (Q) and skip the
next instruction as determined by the j designator. It is a range test; the operand
must be within a specified range in order to skip NI. This comparison can be used
on fixed point or floating point binary operands but may not be used for operands in

the zoned BCD mode.




UP-4133

Rev. 1 UN'VAC 494 ASSEMBLER SECTION: PAGE: 29
. Operation k Space y b j
TR NORMAL b READ CLASS By, | See Table 4-3
Example:
TR,W LABEL,,YIN 04 43 0 01234
TR,1 LABEL-2,B3,5 04 51 3 01232

4.5.4,

Test Logical Product (43) TLP

Compare the contents of the A register to a masked operand. The comparison is made
by forming the logical product (LP) of the Q register and the operand specified as V.
(See ““Logical Product’’ under LOGICAL INSTRUCTIONS.) The logical product is
subtracted from the contents of the A register to form a difference. Skip the NI if
conditions denoted by the j designator are met. The logical product is then added
back to the A register. There is no change in the contents of any of the operational
registers as a result of this instruction.

Operation k Space y b i
TLP NORMAL ] READ CLASS | By Note
Example:
TLP,W LABEL, AZERO 43 4 3 0 01234

100100001100111000101101110111
000000000000000000000000111111

Operand contents =
Contents of Q

000000000000000000000000110111
000000000000000000000000111111
000000000000000000000000001000

LP (Y and Q)
Contents of A =
A-LP(Y and Q)

The jump condition is not present, i.e., A is not zero. The result of the logical
operation is then added back to A to return the register to the initial condition.

Note that the difference is stored in the A register for j sensing before the A register
is returned to its original state.

NOTE: The normal j designator is interpreted as follows:

No skip.

Skip.

Skip if sign in (Q) is positive.

Skip if sign in (Q) is negative.

Skip if difference is + 0.

Skip if difference is not + 0.

Skip if difference has positive sign.
Skip if difference has negative sign.

L o S I
i
NN B WN = O




UP-4133 4 30
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

4.5.5 Double Precision Test Equal (7723) DPTE ‘

Compare the signed contents of the AQ register with the signed contents of the
designated double word memory location. (The sign and most significant bits are
in the A register and in the first word of the double word location.) If the numbers
are equal, the next instruction will be skipped; if unequal, the next instruction will
be performed. The AQ register remains unchanged.

Operation y, b
DPTE b base address
Examples:
DPTE LABEL 77 23 0 01234
DPTE LABEL, B7 77 23 7 01234

4.5.6. Double Precision Test Less (7727) DPTL

This instruction will cause a skip if the signed number in the AQ register is less
than the signed number in the designated double word memory location. The AQ
register remains unchanged.

Operation vy, b
DPTL t |base address
Examples:
DPTL LABEL 77 27 0 01234
DPTL LABEL, B7 77 27 7 01234

4.5.7. Masked Alphanumeric Test Equal (7753) MATE

This instruction causes a skip if the masked A register is equal to the masked
operand, where the Q register is the mask, in an alphanumeric comparison. (The
masked A register is the logical product of A and Q. The masked operand is the
logical product of ¥ and Q.)

Operation y, b

MATE 5 address

Example:

MATE LABEL 77 53 0 01234
MATE LABEL, B7 77 53 7 01234




UP-4133
Rev. 1

4 31
UNIVAC 494 ASSEMBLER SECTION: PAGE:

‘ 4.5.8. Masked Alphanumeric Test Less (7757) MATL

4.6.

4.6.1.

This instruction causes a skip if, in an alphanumeric comparison, the masked A
register is less than the masked operand.

Operation y, b
MATL b address
Example:
MATL LABEL 77 57 0 01234
MATL LABEL, B6 77 57 6 01234

JUMP INSTRUCTIONS

Instructions are normally executed in sequential order. Jump instructions are used
to depart from this sequential order and may also specify a point in the program at
which the sequential order will again be resumed (return jump). The jump may be un-
conditional or it may be based on various conditions. Manual jumps (depending on
manual key settings) should be used with caution for programs under control of the
Executive. Table 4—-1 describes interpretation of the k designator for jump in-
structions; Table 4-4, the j designator.

A read class operand may be specified with the following restrictions:

m If the A register is specified, only the 15 low order bit positions will be meaningful.
m If a B register is specified, no sign extension is permitted.

m If an actual computer address is used, it cannot exceed 77776 or the decimal
equivalent.

Jump (61) J

A jump instruction may be unconditional or manual (depending upon a manual key
setting). If the jump condition is not satisfied, control proceeds to the next sequential

instruction.

Operation k Space y b j
] See Table 4-1 b See 4.6. By, See Table 4-4
Examples:
1 ALY LABEL,KEY 1 6112001234
J. U LABEL 6102001234




UP-4133
Rev. 1

4

SECTION!

UNIVAC 494 ASSEMBLER

PAGE:

32

4.6.2.

4.6.3.

4.6.4.

Jump on Test (60) JT

This jump may be conditioned by an arithmetic test of the A or Q registers
or it may condition the state of interrupt lockout.

Operation k Space y b j
JT See Table 4-1 B See 4.6 By, | See Table 4-4
Examples:
L LABEL,,Q POS 6021001234

Jx: LABEL,,ANOT 6050001234

Store Location and Jump (65) SLJ

This return jump may be unconditional or manual (depending on a manual key setting).
If an unconditional jump is specified, or if the jump condition exists, a jump is

made to the address specified in ¥ incremented by 1, i.e., y + 1. The address of

the instruction immediately following this jump is stored in the lower portion of

the storage location at the address specified in y. If the jump condition is not
satisfied, the instruction immediately following the return jump instruction is
executed.

Operation 3 Space y b j
SL) See Table 4-1 L See 4.6 By | See Table 4-4
Examples:
SL] LABEL, KEY 6530001234
SL] LABEL 65000 01234

If the SL] instruction shown above is located at address 23344, location 01234
will appear as follows:

LABEL 00000 23345 (y)

G+1D

A jump instruction could terminate the sequence of instructions and bring the

program back to the instruction following the SL] instruction as follows:
T, L LABEL

Store Location and Jump Test (64) SLIT

This instruction is arithmetic; i.e., it depends upon the contents of an arithmetic
register. If the jump condition exists, a jump is made to the address specified by

y incremented by 1, i.e., y + 1. The address of the instruction immediately following
is stored in the lower portion of the storage location at the address y. If the jump
condition is not satisfied, the next sequential instruction is executed.




UP-4133

4 33
Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: PAGE:
. Operation k Space y b i
SL]T See Table 4-1 b See 4.6 By, | See Table 4-4

4.6.5.

4.6.6.

Example:
SL]T LABEL, ANEG 647 0001234

Execute Remote (7737) ER

Jump to the instruction at location ¥. If that instruction does not skip or jump,
return to the instruction following the Execute Remote after its execution.

Operation Space y. b
ER 5 remote address
Examples:
ER LABEL 77 37 0 01234
ER LABEL, B6 77 37 6 01234

Enter By ond Jump (7740-7747) LBP)J

Load the B register specified by the x designator (where x = B0 through B7) with the

current setting of the P register (of NI) and jump to y. If x = B0, an unconditional

jump occurs. The x designator specifies the B register to be loaded; the b designator,

the B register used for address modification.

Operation Space | x, y, b
LBP] b By | address
Examples:
LBP] Bl, LABEL 77 41 0 01234

LBP] B4, LABEL, B2 77 44 2 01234

4.7. SEQUENCE-MODIFYING INSTRUCTIONS

These instructions permit modification of the normal sequential execution of instruc-

tions and include:

Repeat instruction — enabling repetition of an instruction.

Test B and/or Increment instruction — enabling the contents of a specified B
register to condition a skip.

Jump on B and Decrement instruction — enabling the contents of a specified B
register to condition a jump to a specified location.

Test and Set instruction — enabling generation of an interrupt and a jump to
address 00030 as conditioned by bit 14 of the selected operand.

Executive Return instruction — enabling generation of an interrupt and a jump
to address 00007.




UP-4133
Rev. 1

4 34

PAGE:

SECTION:

UNIVAC 494 ASSEMBLER

4.7.1.

4.7.2.

Repeat (70) R

This instruction causes the instruction immediately following it to be repeated
the number of times specified by a 15-bit or 17-bit value in the ¥ operand. The
value may be equal to or greater than zero but cannot be greater than 131,0714p.
The value determined by ¥ is placed in B7. If the value is zero the instruction
immediately following the Repeat instruction is skipped. If the value is not zero,
the repeat mode which is determined by the j portion of the instruction is initiated.
Any modifications to the initial instruction are performed in transient registers;
the instruction as it is stored in the computer is not altered. If a conditional skip
is performed over a storage location containing a Repeat instruction, the next in-
struction (following the Repeat instruction) will be executed once. If the repeated
instruction specifies a skip condition with its j designator, this designator may
cause termination of the repeat mode (a skip of the Repeat instruction) when the
skip condition is satisfied, even though the repeat count is not satisfied.

Operation k Space y b i
R See Table 4-1| s By, | See Table 4-5
Table 4-1 BT ASP
Example:

The following example shows how the Repeat instruction can be used to clear
30 successive locations in storage.

ZA 21 07 0 00000
R 30D,,ADV 70 1 0 0 00036
SA, W BUFFER 1500 3 BUFFER

Test Bj and/or Increment (71) TBI

This operation tests the contents of a specified B register. If the value in the B
register is equal to the value in a memory location specified by y, the B register

is cleared and the next operation is skipped. If the value in the B register is not
equal to the operand location, the value in the B register is incremented by 1 and the
normal sequence of operations continues.

Operation k Space i y b

TBI See Table 4-1 1) B’- Note By,

jmay be 0, 1, 2, 3, 4, 5, 6, or 7 to specify the B register being tested.

NOTE: A read class operand. The form TBI,W refers to the low order 15 bits of
the operand location.




UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION: PAGE:

85

4.7.3.

4.7.4.

Examples:

TBI, L B2,LABEL+3 7121001237
TBI B2,,B2 7120 2 00000
(This instruction will clear B2 and skip.)

Either of the above instructions will result in the low order 15 bits of
01237 being referenced as .

TBILLW Bl1,LABEL+3 71130 01237
TBI,L B2,LABEL +3 7121001237

Jump on Bj and Decrement (72) JBD

This instruction tests the content of a specified B register. If the value in the
register is zero, the normal sequence of operations continues. If the value in the
register is not zero, the register is decremented by 1 and a new sequence of oper-
ations begins at the address specified by the ¥ operand.

Operation k Space j y b

]BD Note b B; Note By,

jmay be 0, 1, 2, 3, 4, 5, 6, or 7 to specify the B register being tested. If j is 0,
a No Op results.

NOTE: A read class operand. The form JBD,W refers to the low order 15 bits
of the operand location,

Examples:

JBD,W B4,LABEL,B2 7243201234
JBD,L. B4,LABEL,B2 7241201234

Test and Set (7752) TSET

Test bit 14 of y. If this bit is a 0, set bits 0 through 14 to 1 and proceed to the next
instruction; if bit 14 is already a 1, interrupt to location 308.

Operation Space y, b
TSET 1 address
Examples:
TSET LABEL 77 52 0 01234
TSET LABEL, B4 77 52 4 01234




UP-4133
Rev. 1

4 36
UNIVAC 494 ASSEMBLER SECTION: PAGE:

R —

4.7.5. Executive Return (7754) EXRN .

4.8.

4.8.1.

4.8.1.

This instruction interrupts the computer to a fixed address (00007) in memory enabling
the executive program to capture the P register value of the program which is
interrupting.

Operation Space vy, b

EXRN B Note

NOTE: The y portion of this instruction may contain a constant or an address, with or
without B register modification, as needed by the user. It has no bearing on the
executable instruction.

Examples:

EXRN 77 54 0 00000
EXRN 10 77 54 0 00010
EXRN LABEL 77 54 5 01234
EXRN LABEL+10,B5 77 54 5 01244

ARITHMETIC INSTRUCTIONS

This section describes the various arithmetic operations provided by the instruction
repertoire of the assembler — addition, subtraction, multiplication, division, and
(for decimal instructions) testing of results.

General

Arithmetic operations may be performed upon different types of operands — fixed
point binary, floating point, and BCD (binary coded decimal). The following
paragraphs summarize assembler features for each of the different operand modes.

1. Integer (Fixed Point) Addition and Subtraction

The actual mechanics of the arithmetic operations are beyond the scope of this
manual but the following characteristics of these operations are of interest to

the programmer:

® The programmer must guard against overflow conditions. For single word
ogerations, the absolute value of the operands and results should not exceed
2 9—1; for double word operations, 259_1. In the event of an overflow the

result will be incorrect.

B A sum of negative zero cannot be generated unless both addend and augend
are negative zeros. A difference of negative zero cannot be generated unless
the minuend (the A register) is a negative zero and the subtrahend (Y) is a
positive zero. In all other cases involving an operand of negative zero, the
same result is obtained as if a positive zero were used in its place. These cases
are shown in the following:

Generation of negative zero:

77777 77777
+ 77777 -00000

77777 77777




UP-4133

Rev. 1

UNIVAC 494 ASSEMBLER Sl o 18

37

4.8.1.2.

Integer (Fixed Point) Multiplication and Division

Fixed point multiplication and division are performed as a series of additions
and/or subtractions. The following characteristics of these operations are of
interest to the programmer:

® The result of multiplication will have the correct algebraic sign. Where signs
of operands are alike, the product will be positive; where unlike, negative.
In division, the sign of the quotient (which will be in the Q register) will have
its sign determined in the same manner. The remainder (which will be in the
A register) will have the same sign as the quotient.

® In multiplication, the entire product will be in the Q portion of the AQ register
if bit position 28-n of the multiplier contains a sign bit, where n is the most
significant bit position of the multiplicand. (The most significant bit position
is the highest order bit position containing a 1 in a positive number or a 0 in
a negative number.) The entire product may be in the Q portion if bit position
28-n has the most significant bit. The entire product will spill over into the
A portion of the AQ register if bit position 29-n does not contain a sign bit,
No product can be generated that will overflow the AQ register. The maximum
positive product is 17777777770000000001g; the maximum negative product,
60000000007777777776g.

® In division, the quotient is retained in the Q portion of the AQ register. The
dividend in the AQ register may have up to 59 significant bits while the
divisor may have as few as 1. In these cases, a quotient may be generated
that has as many as 59 significant bits. Since the Q register has a 30-bit
capacity, an overflow situation will result when a quotient is generated that
has more than 29 significant bits. An overflow will not occur if the dividend
has no significant bits past bit position n + 28 where n is the most significant
bit position of the divisor. An overflow will occur if the dividend has a signficant
bit past bit position n + 29. An overflow may occur if the most significant bit
of the divident is in bit position n + 29. If overflow does occur, the quotient
will appear as +0 or —0 (depending upon the similarity of signs in divisor and
dividend). For j interpretation, the Q register will contain =0 if an overflow
occurs.

A negative zero in the A or Q portion of the AQ register may have an adverse
affect on further calculations and will be caused by the following conditions:

®m The dividend is an integral multiple of the divisor (within the limits of resolution),
the signs of both are different, and both values are not 0 (+ or —=). The quotient
will be correct but (A) will be —0. For j sensing, (Q) will appear as the absolute
value of the quotient and (A) will be +0.

®m The absolute value of the divisor is greater than the absolute value of the
dividend, signs are different, and both are nonzero. In this case, (Q) will be
—0 and (A) will be the ones complement of the absolute value of the dividend.
For j sensing, (Q) is +0 and (A) is the absolute value of the dividend.




UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION: PAGE:

38

Division by +0 or —0 has the following results:

B If a positive number is divided by +0, (Q) will be —0 and the remainder in (A)
will be the initial (Q). For j sensing, these final (Q) and (A) are used.

MW If a negative number is divided by +0, (Q) will be +0 and the remainder in (A)
will be the initial (Q). For j sensing, (Q) will be —0 and (A) will be the com-
plement of the initial (Q).

B If a positive number is divided by —0, (Q) will be +0 and the remainder in (A)
will be the ones complement of the initial (Q). For j sensing, (Q) will be -0,
and (A) will be the initial (Q).

B If a negative number is divided by -0, (Q) will be —0 and the remainder in (A)
will be the ones complement of the initial (Q). For j sensing, these final (Q)
and (A) are used.

4.8.1.3. Floating Point Arithmetic
In floating point arithmetic, the following are of interest to the programmer:

B During execution, a floating point overflow interrupt is generated (tuming
control over to the executive) if an exponent of an operand is greater than
10231 or when division by a $0 (floating point) is attempted.

B During execution, a floating point underflow interrupt is generated if the
exponent is less than —1023qp.

4.8.1.4. Decimal (BCD) Arithmetic

BCD (binary coded decimal) addition and subtraction can be programmed directly,
where the BCD digits are present in the form of zoned BCD digits — six bits per
character — such as Fieldata code, for example. The zone bits are disregarded
during the arithmetic operation but are returned in the result. These decimal
operations are available for single precision (ten or less BCD digits per operand
and result) or for multiprecision operations. Instructions are present to test for
an overflow borrow or carry after an operation.

4.8.2. Fixed Point Single Word Addition
These instructions consist of the following:

Add A

Add Q

Load Y + Q
Store A + Q
Replace A + Y
Replace Y + Q

Replace Y + or Increment Y




UP-4133
Rev. 1

4

UNIVAC 494 ASSEMBLER

SECTION:

PAGE:

39

4.8.2.1.

4.8.2.2.

4.8.2.3.

4.8.2.4,

Add A (20) A

This instruction adds a specified operand to the contents of the A register and
retains the sum in the A register,

Operation k Space y b i
A NORMAL b READ CLASS By NORMAL
Examples:
A LX LABEL,2 2005201234
A 773 2000000773

Add Q (26) AQ

Add a specified operand to the contents of the Q register and retain the sum in
the Q register.

Operation k Space y b j
AQ NORMAL ] READ CLASS | By |See Table 4-6
Example:
AQ,U LABEL,,QNOT 2652001234

Load Y +Q (30) LAQ

Add a specified operand to the contents of the Q register and retain the sum in
the A register. The contents of the Q register and operand are undisturbed by
this instruction.

Operation k Space y b j
LAQ NORMAL ) READ CLASS By NORMAL
Example:

LAQ,W LABEL 3003001234

Store A +Q (32) SAQ

Add the contents of the A and Q registers, retain the sum in the A register, and
store the sum in the storage location specified.

Operation k Space y b i
SAQ NORMAL i) STORE CLASS | B, | NORMAL
Example:

SAQ,U LABEL,B3 3202301234




UP-4133
Rev. 1

4

SECTION: PAGE:

UNIVAC 494 ASSEMBLER

4.8.2.5.

4.8.2.6.

4.8.2.7.

Replace A + Y (24) RA

Add a specified operand to the contents of the A register. Retain this sum in the
A register and replace the original operand with this sum.

Operation k Space y b j
RA NORMAL b REPLACE CLASS | By NORMAL
Example:

RA,UX LABEL +3 2406 001237

Replace Y + Q (34) RAQ

Add the specified operand to the contents of the Q register, retain the sum in the
A register, and store the sum in the storage location from which the operand was
obtained.

Operation k Space y b j
RAQ NORMAL 5 REPLACE CLASS By, NORMAL
Example:
RAQ,W 0,B7 34 0 3 7 00000

Replace Y + 1 or Increment Y (36) RI

Increment the specified operand by 1, retain the sum in the A register, and store
this sum in the storage location from which the operand was obtained.

Operation k Space y b i
RI NORMAL B REPLACE CLASS | By | NORMAL
Example:

RIL,LUX LABEL,B3,AZERO 36 46 301234

4.8.3. Fixed Point Single Word Subtraction

These instructions consist of the following:

Subtract A
Subtract Q
Load Y-Q
Store A-Q
Replace A-Y
Replace Y-Q

Replace Y—-1 or Decrement Y




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

PAGE:

41

Subtract A (21) AN

Subtract a specified operand from the contents of the A register and retain the
difference in the A register.

Operation k Space y b i

NORMAL

AN NORMAL b READ CLASS By,

Examples:

2153001234
2153301234

AN,W LABEL, ANOT
AN,3 LABEL,3,5

Subtract Q (27) ANQ

Subtract a specified operand from the contents of the Q register and retain the
difference in the Q register.

Operation k Space y b j

ANQ NORMAL b READ CLASS By |See Table 4-6

Examples:

27500 00014
27404 00014

ANQ  12D,,QNOT
ANQ  12D,4,4

Load Y-Q (31) LANQ

Subtract the contents of the Q register from a specified operand and retain the
difference in the A register. The contents of the Q register are not disturbed
by this instruction.

Operation k Space y b i
LANQ NORMAL 5 READ CLASS By, NORMAL
Example:
LANQ,L LABEL 3101001234
LANQ,U LABEL,3,2 3122301234
LANQ,W LABEL,5,AZERO 3143501234




UP-4133
Rev. 1

4

UNIVAC 494 ASSEMBLER

SECTION: PAGE:

42

4.8.3.4. Store A-Q (33) SANQ

Subtract the contents of the Q register from the A register, retain the difference
in the A register, and store this difference in the storage location specified.

Operation k Space y b j
SANQ NOTE B STORE CLASS | By NORMAL
Examples:
SANQ,6 LABEL,3 3306 301234
SANQ,CPL LABEL 3305001234

NOTE: The k designator governs storage in both the memory and A register.

Replace A=Y (25) RAN

Subtract a specified operand from the contents of the A register, retain the dif-
ference in the A register, and store this difference in the storage location from
which the operand was obtained.

Operation k Space y b i
RAN NORMAL 5 REPLACE CLASS | By | NORMAL
Examples:

RAN,L LABEL 2501001234
RAN,U LABEL, AZERO 25420 01234

Replace Y -Q (35) RANQ

Subtract the contents of the Q register from a specified operand, retain the dif-
ference in the A register, and store this difference in the storage location from

which the operand was obtained.

Operation k Space y b i
RANQ NORMAL 5 REPLACE CLASS By | NORMAL
Example:

RANQ,L LABEL 3501001234




UP-4133 4 43
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
. 4.8.3.7. Replace Y~1 or Decrement Y (37) RD

Decrement a specified operand by 1, retain the difference in the A register, and
store this difference in the storage location from which the operand was obtained.

Operation k Space y b j
RD NORMAL B REPLACE CLASS By, | NORMAL
Examples:
RD,UX LABEL,,AZERO 3746001234
RD,6 LABEL+2,B3 3706 301236

4.8.4. Fixed Point Double Word Arithmetic

The fixed point double word arithmetic instructions use ones complementation
arithmetic for addition, subtraction, and ones complementation (or negation) upon
60-bit operands. In fixed point double word arithmetic, the sign and high order

bits are retained in the A register or stored in the first of two consecutive addresses
referenced by y. The Q register retains the low order 30 bits; the next consecutive
address stores the low order 30 bits. These instructions include:

m Double Precision Add
m Double Precision Subtract
‘ m Double Precision Complement

4.8.4.1. Double Precision Add (7722) DPA

The contents of y andy + 1 are added to the contents of the double length AQ
register, The sum will be in AQ.

Operation | Space y, b
DPA ] base address
Examples:
DPA LABEL 77 22 0 01234
DPA LABEL, B2 77 22 2 01234

4.8.4.2. Double Precision Subtract (7726) DPAN

The contents of y andy + 1 are subtracted from the contents of the double length
register AQ. The difference will be in AQ.

Operation Space y, b
DPAN 5 base address
‘ Examples:
DPAN LABEL 77 26 0 01234

DPAN LABEL, B3 77 26 3 01234




UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER S Crron;: PAGE:

4.8.4.3. Double Precision Complement (7724) DPN

The contents of the AQ register are converted to its ones complement.

Operation Space vy, b
DPN b none
Example:
DPN 77 24 0 00000

4.8.5. Fixed Point Multiplication and Division

The fixed point multiplication and division instructions use ones complementation
arithmetic, and include:

® Multiply
m Divide
4.8.5.1. Multiply (22) M

This instruction multiplies the contents of the Q register by the operand specified
in the instruction. The product is formed in the 60 bit positions of the combined
AQ register.

Operation k Space y b i

M NORMAL b READ CLASS By Note

The following rules apply for multiplication:

® If a positive number is multiplied by a positive number or a negative number
by a negative number, the product will be positive.

m If a positive number is multiplied by a negative number or a negative number
by a positive number, the product will be negative.

m If positive 0 is multiplied by positive 0 or negative 0 by negative 0, the
product will be positive 0.

m If positive 0 is multiplied by negative 0 or negative 0 by positive 0, the
product will be negative 0.

No product can be generated which will overflow AQ. The maximum positive
product is:

17777 77777 00000 00001
e — NN

A Q

The maximum negative product is:

0000 00000 77777 77776

A Q




UP-4133
Ray, i UNIVAC 494 ASSEMBLER e g

‘ Example:
M, W LABEL 2203001234

The result of operations for various values contained in the Q register and the
A register (initially the location defined by LABEL) follows:

A Q AQ

00000 00000 00000 00120
77777 77777 77777 77657
00000 00000 00000 00120

00000 00012 X 00000 00010
77777 77767 X 00000 00012
77777 77765 X 77777 77767

NOTE: The skip condition is tested prior to any final sign conversion. The sig-
nificance of the normal skip condition for a multiple operation may be outlined
as follows:

j Machine J MNEMONIC SKIP CONDITION

0 (absent) No skip.
1 SKIP Skip next instruction.
2 QPOS Skip next instruction if there is no overflow into

the A register. If a skip does not occur, a double
length product is indicated since there is a sig-
nificant bit in bit position 29 of the Q register.

‘ (The highest order bit that is different from the
sign bit is the most significant bit.)

3 QNEG Skip next instruction if there is an overflow into
the A register. If a skip occurs, a double length
product is indicated since there is a significant
bit in bit position 29 of the Q register.

4 AZERO Skip next instruction if the product is entirely
within the Q register. If a skip occurs, it indicates
that the product has 30 or less significant bits,
and that the A register contains only sign bits.
This does not mean the Q register contains the
correct product, since bit position 29 of the Q
register may contain a significant bit of the
product, thus making bit position 0 of the A
register the first sign bit. If a skip does not
occur, it indicates that significant bits of the
product are in the A register.

5 ANOT Skip next instruction if product overflows. If a
skip occurs, it indicates that significant bits of
the product are in the A register. If a skip does
not occur, it indicates the same condition that
exists when a skip occurs with AZERO.

' 6 APOS Skip next instruction.

7 ANEG Do not skip next instruction.



UP-4133 4 46
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

4.8.5.2. Divide (23) D '

This instruction divides the contents of the combined AQ register by the operand
specified in the instruction and retains the quotient and remainder in the Q and

A registers, respectively.

Operation k Space y b j

D NORMAL 5 READ CLASS By |See Table 4-6

The following rules apply for division:

m If a positive number is divided by a positive number or a negative number by
a negative number, the quotient and remainder will be positive numbers.

m If a positive number is divided by a negative number or a negative number by
a positive number, the quotient and remainder will be negative numbers.

Negative Zero Quotients and Remainders

Division, if handled improperly, may generate a negative 0 quotient or remainder
that can have an adverse affect on further calculations. This situation can occur
in the following four cases:

s Remainder is zero, the dividend and divisor have unlike signs, and are
both nonzero.

s Absolute value of divisor is greater than the absolute value of the dividend, ‘
signs are unlike, and both are nonzero.

s Division by positive or negative zero
s Division of positive or negative zero by nonzero divisor with an unlike

sign.

(1) Remainder is zero, the dividend and divisor have unlike signs and are
both nonzero:

The result of such a division is that the correct quotient will be in the Q
register and the remainder in the A register will be a negative 0.

When the j designator is interpreted, the Q register will appear as the absolute
value of the quotient and the A register will appear as a positive 0. For example:

000000000000000000000000000000  000000000000000001010011100101  (dividend)

111111111111111110101100011010 (divisor)
000000000000000000000000000010  (quotient)

At j
interpretation 000000000000000000000000000000 (remainder)

111111111111111111111111111101  (quotient in the
Final Result Q register)
111111111111111111111111111111  (remainder in

the A register) ‘




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: PAGE:

4

47

(2

Absolute value of the divisor is greater than the absolute value of
dividend, signs are unlike, and both are nonzero:

When division is performed in this case, the quotient in the Q register will
be a negative 0 and the remainder in the A register will be the ones comp-
lement of the absolute value of the dividend. When the j designator is
interpreted, the Q register will appear as a positive 0 and the A register
will appear as the absolute value of the dividend. For example:

000000000000000000000000000000  000000000000000000000000000011  (dividend)

111111111111111111111111111010  (divisor)

3)

At j
interpretation 000000000000000000000000000011 (remainder)
111111111111111111111111111111  (quotient in the
Final Result Q register)

000000000000000000000000000000 (quotient)

111111111111111111111111111100  (remainder in
the Q register)

Division by positive or negative zero:

If a positive number is divided by positive 0, the quotient in the Q register
will be a negative 0 and the remainder in the A register will be the initial

contents of the Q register. For j designator interpretation, the final contents

of the Q and A registers are used.

If a negative number is divided by a positive 0, the quotient in the Q
register will be a positive 0 and the remainder in the A register will be
the initial contents of the Q register. For j designator interpretation the
Q register will appear as negative 0 and the A register will appear as the
ones complement of the initial contents of the Q register.

If a positive number is divided by negative 0, the quotient in the Q
register will be a positive 0 and the remainder in the A register will

be the ones complement of the initial contents of the Q register. For j
designator interpretation, the Q register will appear as a negative 0 and
the A register will appear as the initial contents of the Q register.

If a negative number is divided by negative 0, the quotient in the Q
register will be a negative 0 and the remainder in the A register will be
the ones complement of the initial contents of the Q register. For j desig-
nator interpretation, the final contents of the Q and A registers are used.




UP-4133

Bor. i} UNIVAC 494 ASSEMBLER T -

48

The following examples illustrate these rules:

A positive number divided by positive 0.

000000000000000000000000000001  000000000000000000000000000001
000000000000000000000000000000

111111111111111111111111111111

At j
interpretation 000000000000000000000000000001

111111111111111111111111111111

Final Result
000000000000000000000000000001

A negative number divided by a positive 1.
1111111111111111111111121111111 111111111111111111111111111110

000000000000000000000000000000
111111111111111111111111111111

At j
interpretation 000000000000000000000000000001

000000000000000000000000000000

Final Result
111111111111 111111111111111111

A positive number divided by a negative 0.
010111111111111111111111111111  110111111111111111111111111111

111111111111111111111111111111
111111111111111111111111111111

At j
interpretation 110111111111111111111111111111

000000000000000000000000000000

Final Result
001000000000000000000000000000

(dividend)
(divisor)

(quotient)

(remainder)

(quotient in the

Q register)
(remainder in
the A register)

(dividend)

(divisor)

(quotient)

(remainder)
(quotient in the

Q register) .
(remainder in

the A register)

(dividend)
(divisor)

(quotient)

(remainder)

(quotient in the
Q register)

(remainder in
the A register)




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: g PAGE: i
A negative number divided by a negative 0.
. 100111111111111111111111111111  110111111111111111111111111111  (dividend)
111111111111111111111111111111  (divisor)
111111111111111111111111111111  (quotient)

At j
interpretation

Final Result

001000000000000000000000000000

111111111111111111111111111111

000000000000000000000000000000

(remainder)

(quotient in the
Q register)
(remainder in
the A register)

(4) Division of positive or negative zero by a nonzero divisor with an unlike

sign:

When division is performed in this case, the quotient in the Q register and the
remainder in the A register will be a negative 0. When the j designator is
interpreted, both the Q and A register will appear as a positive 0. The
following examples will illustrate this:

000000000000000000000000000000

000000000000000000000000000000
111111111111111111111111111110

At j
interpretation

Final Result

111111111111111111111111111111

000000000000000000000000000000

000000000000000000000000000000

111111111111111111111111111111

111111111111111111111111111111

II1111111111111111111111111111
000000000000000000000000000000

At j
interpretation

Final Result

000000000000000000000000000000

000000000000000000000000000000

111111111111111111111111111111

111111111111111111111111111111

(dividend)
(divisor)

(quotient)

(remainder)

(quotient in the
Q register)

(remainder in
the A register)

(dividend)

(divisor)

(quotient)

(remainder)

(quotient in the
Q register)
(remainder in
the A register)




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

4

PAGE:

50

Divide Overflow with Nonzero Divisor and Dividend

In division, the dividend in the AQ register may have up to 59 significant bits
while the divisor may have as few as 1. In these cases, a quotient may be gen-
erated that has as many as 59 significant bits. Since the Q register has a 30-bit
capacity, an overflow situation will result when a quotient is generated that has
more than 29 significant bits. If overflow does occur, the quotient in the Q register
will be a positive 0 if the divisor and dividend have unlike signs, or it will be a
negative 0 if the signs were the same. At the time the j designator is interpreted,
the Q register will appear as a negative 0.

The following rules govern the occurrence of a divide overflow:

m If the most significant bit of the divisor is in bit position n, a divide overflow
will not occur if the dividend has no significant bits beyond bit position n+28.

m If the most significant bit of the divisor is in bit position n, a divide overflow
will occur if the dividend has a significant bit in bit position n+30 or beyond.

m If the most significant bit of the divisor is in bit position n, a divide overflow
may occur if the most significant bit of the dividend is in bit position n+29.

The following examples illustrate these rules:

] No overflow.

000000000000000000000000000000

000000000000000010110001011100
000000000000000000001010011100

At j
interpretation

Final Result

El Overflow occurs.

000000000000000100011001100011

000000000000000000000000010001

000000000000000000000000000000

000000000000000000000000010001

000000000000000000000000000000

010011110111100111100110101011
00000000000000100000000 1000000

At j
interpretation

Final Result

111111111111111111111111111111

010011110111100001100111101011

111111111111111111111111111111

010011110111100001100111101011

(dividend)
(divisor)

(quotient)

(remainder)

(quotient in the
Q register)
(remainder in the
A register)

(dividend)
(divisor)

(quotient)

(remainder)

(quotient in the
Q register)
(remainder in the
A register)



UP-4133 4
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

m  Overflow may occur.
‘ 111111111111111011100101011100  101100001000011010001100111111 (dividend)

000000000000000010000001000000 (divisor)
111111111111111111111111111111  (quotient)

At j
interpretation 010011110111100111110011000000 (remainder)

000000000000000000000000000000 (quotient in the
Final Result Q register)

101100001000011000001100111111 (remainder in the
A register)
(In this example, overflow occurs).
000000000000000000000000000001  000000000000000000000000000000 (dividend)
000000000000000000000000000011 (divisor)
000010001000100010000111101101 (quotient)

At j
interpretation 000000000000000000000000000001 (remainder)

000010001000100010000111101101  (quotient in the

Final Result Q register)
000000000000000000000000000001 (remainder in the

‘ A register)

(In this example, overflow does not occur.)

The remainder in overflow division is difficult to determine and the value of such
information, when obtained, is questionable. The rules that are stated below are
valid at least in the above examples. They should not, however, be considered

universal rules.

— If the dividend and divisor are positive numbers, add the dividend and
divisor. The remainder in the A register will be the low order 30 bits of
the sum that is formed. At the time the j designator is interpreted, the final
contents of the A register will be used.

— If the dividend and divisor are negative numbers, complement the dividend
and divisor, and then add them. The remainder in the A register will be the
low order 30 bits of the sum that is formed. For interpretation of the j desig-
nator, the final contents of the A register will be used.

— If the dividend is a positive number and the divisor is a negative number,
the divisor should be ones complemented and then added to the dividend. The
final remainder in the A register will be the ones complement of the low order
30 bits of the sum that is formed. For interpretation of the j designator, the
contents of the A register will appear as the low order 30 bits of the sum that
is formed.



UP-4133 4 52
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
— If the dividend is a negative number and the divisor is a positive number, the
dividend should be ones complemented and then added to the divisor. The ‘

final remainder in the A register will be the ones complement of the low order
30 bits of the sum that is formed. For j designator interpretation the contents
of the A register will appear as the low order 30 bits of the sum that is formed.

Examples:

Examples are for normal division, where all results are shown following final
sign correction, if correction is required.

= 00000 00000 00000 26134 = 00000 01234

quotient in Q = 00000 00021
remainder in A = 00000 00000
(A) and (Q) used for j interpretation

m 00000 00000 00000 26152 = 00000 01234

quotient in A = 00000 00021
remainder in A = 00000 00016
(A) and (Q) used for j interpretation

m 777777 777777 777777 51625 + 77777 76543

quotient in Q = 00000 00021
remainder in A = 00000 00016
final (A) and (Q) used for j interpretation

m 02400 21166 21233 52654 + 5400 16354

quotient in Q 67777 03046
remainder in A = 54733 20156
(A) and (Q) appear as their ones complements for j interpretation

Fn

m 75377 56611 56544 25123 - 23777 61423

quotient in Q = 67777 03046
remainder in A = 54733 20156
(A) and (Q) appear as their ones complements for j interpretation

= 00000 00000 00000 12345 = 77777 65432

quotient in Q = 77777 77776
remainder in A = 77777 77777 (even division)
(A) and (Q) appear as their ones complements for j interpretation




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

4

PAGE:

53

4.8.6. Floating Point Arithmetic

Floating point arithmetic enables uses of the exponential (floating point) format
(Figure 2—4) for arithmetic with operands having the decimal point in different

positions. These instructions include:
Floating Point Add

Floating Point Subtract

Floating Point Divide

|
k]
m Floating Point Multiply
]
m Floating Point Pack

=

Floating Point Unpack

in addition to the Scale Factor Shift (see 4.4.10),

4.8.6.1. Floating Point Add (7701) FA

The signed floating point number contained iny andy + 1 is added to the floating
point number in the AQ register. The adjustment to AQ is made by a comparison

of the characteristics involved. The contents of v andy + 1 are added to AQ after
the comparison. The sum will be contained in AQ.

Operation Space y, b
FA ] base address
Examples:
FA LABEL, Bl 7701101234
FA LABEL 77 01 0 01234

4.8.6.2. Floating Point Subtract (7702) FAN

The signed floating point number contained in §y and § + 1 is subtracted from the
floating point number in the register. The adjustment to AQ is made by a comparison

of the characteristics involved. The contents of y and ¥ + 1 are subtracted from

AQ after the comparison. The difference will be contained in AQ.

Operation Space v, b
FAN b base address
Example:
FAN LABEL, BS 77 02501234
FAN LABEL 77 02001234




UP-4133
4

Rev. 1 UNIVAC 494 ASSEMBLER SECTION: l PAGE: 4

4.8.6.3. Floating Point Multiply (7703) FM

The signed floating point number contained in the AQ register is multiplied by
the signed floating point number iny and ¥ + 1. The product is contained in AQ.
This product will be normalized and correct only if both numbers were originally

normalized.
Operation Space y, b
FM 5 base address
Examples:
FM LABEL 77 03 0 01234
FM LABEL, B2 77 03 201234

4.8.6.4. Floating Point Divide (7705) FD

The signed floating point number in the AQ register is divided by the signed
floating point number in y and y + 1. Both numbers must be normalized prior to
the divide sequence. The normalized quotient will be in the AQ register; any
remainder will be discarded.

Operation Space y, b
FD 5 base address
Examples:
FD LABEL 77 05 0 01234
FD LABEL, Bl 77 05 1 01234

4.8.6.5. Floating Point Pack (7706) FP

This operation forms a floating point number in A and Q using as its mantissa,
the value in AQ, and as its characteristic, the biased value represented by Y-

Operation Space y, b

FP 5 base address

The mantissa in the combined AQ register is normalized. A biased characteristic
is then taken from y and inserted in bits A29 — A18 of the AQ register.

Example:

FP LABEL 77 06 0 01234
FP LABEL, B6 77 06 6 01234




UP-4133
Rev. 1

UNIVAC 494 ASSEMBL

SECTION!:

4

PAGE:

55

4.8.6.6. Floating Point Unpack (7707) FU

This operation separates the characteristic and mantissa of the floating point

number in AQ.

Operation

Space

y, b

FU

b

address

A positive, biased characteristic is taken from the AQ register and stored at

y. Bits A29 — A18 of the AQ register are sign filled.

Examples:
FU LABEL
FU LABEL, B4

4.8.7. Decimal Arithmetic

77 07 0 01234
77 07 4 01234

These operations expect fixed point, zoned binary-coded-decimal, double precision
operands which consist of 10 six-bit characters conforming to a predetermined code
similar to the Fieldata code. The ‘‘Z’’ (zone) bits shown in Figure 2—3 are arbitrary

and have no effect on arithmetic operations. However, the fifth bit of the lowest
order digit is a sign bit. A positive zoned BCD operand is the same as a negative
zoned BCD operand (having the same absolute value), except for the sign bit.

(See Figure 2-3.)

Decimal arithmetic instructions include:

4.8.7.1.

Decimal Test AQ
Decimal Add
Decimal Add With Carry

Decimal Subtract

Decimal Subtract With Borrow

Decimal Complement AQ
Decimal Test Less
Decimal Test Equal
Convert Lower

Convert Upper

Decimal Test AQ (7710) DT

This operation tests the decimal contents of AQ for one or more of the

options listed below.

Operation

Space

y, b

DT

b

See list which follows




UP-4133 4 56
Rev, 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

Wherever there is a 1 bit in the operand, perform the test indicated in the following
table for that bit position. If a condition is satisfied in one or more of the tests
(more than one test may be specified), skip the next sequential instruction. If
none of the conditions is satisfied, or no tests are indicated, advance to the

next sequential instruction.

If there is a 1 and then
in bit position

0 overflow designator = 1 (on)

1 overflow designator = 0 (off)

2 (AQ) # 0 and sign is +

3 (AQ) = 0 (neglecting sign)

4 (AQ) #0 and sign is — skip next

5 sixth decimal digit in AQ # 0 ls::::z::::’

6 seventh decimal digit in AQ #0

7 eighth decimal digit in AQ # 0

8 ninth decimal digit in AQ # 0

9 tenth decimal digit in AQ # 0

10 (AQ) # 0 (neglecting sign)

NOTES: 1. All tests on (AQ) assume decimal format. Zone bits are not tested.
2. Bit positions 5 through 9 may be used to detect a decimal number
exceeding one word in length.
3. Bit positions 11 through 17 of the instruction word have no
effect upon the instruction.

Examples:

DT 2000 77 10 0 02000
DT 1*/11D 77 10 0 02000

(Skip the next instruction if AQ £0)

4.8.7.2. Decimal Add (7711) DA

This operation adds two decimal numbers.

Operation Space y, b

DA b base address

The ten-character decimal contents of AQ are added to the decimal contents of
Vv and ¥ + 1. The sum will be left in the AQ register. The zone bits of AQ will ’
not be changed.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SEC TION: PAGE:

57

4.8.7.3.

4.8.7.4.

4.8.7.5.

Examples:
DA LABEL 77 11 0 01234
DA LABEL, B6 77 11 6 01234

Decimal Add With Carry (7715) DAC

This operation adds two decimal numbers and a carry if present.

Operation Space y, b

DAC ) base address

The contents of y andy + 1 are added to the AQ register. If the carry has been
generated from a previous decimal operation, the carry is added into the least
significant position to enable multiprecision operations.

Examples:
DAC LABEL 77 150 01234
DAC LABEL, Bl 77 15 101234

Decimal Subtract (7712) DAN

This operation subtracts two decimal numbers.

Operation Space y, b

DAN b base address

The ten-character decimal contents of y and ¥ + 1 are subtracted from the con-
tents of the AQ register. The signed result will be in AQ. The zone bits which
were in AQ will not be changed.

Example:

DAN LABEL 77 120 01234
DAN LABEL, B3 77 12 3 01234

Decimal Subtract With Borrow (7716) DANB

This operation subtracts two decimal numbers and a ‘‘borrow’’ if necessary.

Operation Space y, b

DANB ) base address

The contents of ¥ and ¥ + 1 are subtracted from the contents of the AQ register.
If a borrow has been generated from a previous decimal operation, the borrow is
subtracted starting from the least significant position. If this operation requires
a borrow, the borrow is stored for a succeeding decimal operation to enable
multiprecision operations.



UP-4133 - 58

Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
Examples:
DANB LABEL 77 16 0 01234
DANB LABEL, Bl 77 16 1 01234

4.8.7.6. Decimal Complement AQ (7714) DN

The decimal number in the AQ register is converted to its decimal complement. If
¥ is odd, the nines complement results (each digit is replaced by its difference
from 9); if even, the tens complement (the nines complement plus one). The sign
is unchanged.

Operation Space y, b
DN 5 Number
Example:
DN 12345 77 14 0 12345

4.8.7.7. Decimal Test Less (7717) DTL

Skip the next instruction if the decimal number in AQ is less than the decimal
number inV and ¥ + 1. Zone bits are ignored.

Operation Space y, b
DTL 5 base address
Examples:
DTL LABEL 77 17 0 01234
DTL LABEL, BS 77 17 5 01234

4.8.7.8. Decimal Test Equal (7713) DTE

Skip the next instruction if the decimal contents of AQ equals the decimal
contents of ¥ and ¥ + 1. Zone bits are ignored.

Operation Space y, b
DTE 5 base address
Example:
DTE LABEL 77 13 0 01234

DTE LABEL, B7 77 13 7 01234




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: * PAGE:

59

4.8.7.9. Decimal Convert Lower (7733) DCL

This operation converts decimal to binary.

Operation Space y, b

DCL B base address

Initiate a transfer and conversion of (y)i by converting the decimal numbers
in bits 3—0 of y throughy + 4 to binary in AQ. The AQ register must have been
initially cleared.

Examples:
DCL LABEL 77 33 0 01234
DCL LABEL, B6 77 33 6 01234

This operation is a successive convert-and-shift-left operation into the AQ
register. Only the first 34 bit positions of the AQ register can be used for this
instruction. Thus, it is possible to convert 9,999,999,999 to binary by two
successive conversions of 99999 since this does not require more than 34 bit
positions. The result of this operation is not affected by any sign bit in a decimal
number; only the absolute decimal digits are converted.

4.8.7.10. Decimal Convert Upper (7734) DCU

This operation converts decimal to binary.

Operation Space y, b

DCU 5 base address

Initiate a transfer and conversion of (¥)i by converting the decimal numbers in
bits 18—15 of y through y + 4 to binary in AQ. The AQ register must have been
initially cleared. As described for the DCL operation (see 4.8.7.9) only 34
bits are available in the AQ register for this convert-and-shift-left operation.

Examples:
DCU LABEL 77 34 0 01234
DCU LABEL, Bl 77 34 101234

4.9. LOGICAL OPERATIONS

Logical instructions provide the programmer with the means of operating upon specific
bits of a word. These logical operations are the logical product (LP), the OR operation,
the NOT operation, the Exclusive OR operation, and the selective substitute. The
logical operation is performed upon the bits in the same corresponding bit positions

of each of the words to form the resulting word. For all j interpretations which use the
contents of a register to determine a skip, it is always the final state of the register
which is used for j interpretation.




UP-4133
Rev. 1

4 60
UNIVAC 494 ASSEMBLER SECTION: PAGE:

The logical product is generally used for “masking’’ (lifting the selected bits of a
word and using 0 bits for unselected positions). This is accomplished by placing
1’s in the mask to select bits and 0’s for the other bits. Wherever there is a 1 in
the mask, the corresponding bit of the operand will appear in the logical product.
Wherever there is a 0 in the mask, a 0 will appear in the logical product. Thus, the
logical product corresponds to the AND function — the logical product is a 1 when
the mask and the operand are both 1's; otherwise it is a 0. The following example
illustrates the logical product:

Mask 111 000 001 010 011 100 101 110 111 000
Operand 010 100 110 000 001 011 110 111 101 100
LP 010 000 000 000 001 000 100 110 101 000

The OR operation (selective set) is used to force 1's into selected bits of the A
register. Wherever there is a 1 in the operand a 1 is forced into the A register. If
the A register bit is already a 1, it remains undisturbed. Wherever there is a 0 in
the operand the A register bit remains undisturbed. Described differently, the result
is a 1 if the A register bit is a 1 or the operand bit is a 1, or both. The following
example illustrates operation of the selective set.

Operand 010 100 110 000 001 011 110 111 101 100
A register (initial) 111 000 001 101 011 100 101 110 111 000

OR 111 100 111 101 011 111 111 111 111 100

The NOT operation (selective clear) forces 0's into selected bits of the A register.
Wherever there is a 1 in the operand a 0 will be forced into the A register. If the A
register bit is a 0 it remains undisturbed. Wherever there is a 0 in the operand the
A register bit remains undisturbed. The selective clear can also be regarded as a
modified masking operation. Wherever there is a 0 in the operand (mask) the cor-
responding bit of the accumulator is lifted and placed in the final result. The fol-
lowing example illustrates operation of the NOT operation:

Operand 010 100 110 000 001 011 110 111 101 100
A register (initial) 111 000 001 101 011 100 101 110 111 000

A register (final) 101 000 001 101 010 100 001 000 010 000

The Exclusive OR operation (selective complement) operates upon selected bits

of the A register. Wherever there is a 1 in the operand, the A register bit is ones
complemented. Described differently, if either of the two corresponding bits, but not
both, is a 1, the result is a 1 bit.

Operand 010 100 110 000 001 011 110 111 101 100
A register (initial) 111 000 001 101 011 100 101 110 111 000

Exclusive OR 101 100 111 101 010 111 011 001 010 100




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

PAGE:

61

4.9.1.

4.9.2.

4.9.3.

The selective substitute replaces selected bits in the A register with the corres-
ponding bit of the operand. Selection is performed by the Q register — for each 1 bit
in the Q register the substitution is made. The following example illustrates oper-
ation of the selective substitute:

Q register 101 010 000 111 100 011 110 001 110 O11
Operand 010 100 110 000 001 011 110 111 101 100
A register (initial) 111 000 001 101 011 100 101 110 111 000
A register (final) 010 000 001 000 011 111 111 111 101 000

Load Logical Prod

uct (40) LLP

This instruction forms the logical product of the contents of the Q register and an
operand and retains it in the A register.

Operation k Space y b i
LLP NORMAL b READ CLASS | B See
b | Table 4-6
Example:
LLP,W LABEL,EVEN 4023001234

Store Logical Product (47) SAND

This instruction forms the logical product of the contents of the Q register and the
A register and stores this product in a storage location.

Operation k Space y b i
SAND See Table 4-1 B STORE CLASS | B, | NORMAL
Example:
SAND,L LABEL,BS5 47 0 1501234

Replace Logical Product (44) RLP

This instruction forms the logical product of the contents of the Q register and an
operand, retains the logical product in the A register, and stores this logical pro-
duct in the storage location from which the operand was obtained.

Operation k Space y b j
RLP NORMAL b REPLACE CLASS | By See
Table 4-6
Example:
RLP ,W LABEL,,0ODD 44 33001234



UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER sl-:c'nom4

PAGE:

62

4.9.4.

4.9.5.

4.9.6.

4.9.7.

Add Logical Product (41) ALP

This instruction adds the contents of the A register to the logical product of the
contents of the Q register and an operand. The sum is retained in the A register.

Operation k Space y b i
ALP NORMAL 5 READ CLASS By NORMAL
Example:
ALP.X 77773 4104077773

Replace A + Logical Product (45) RALP

This instruction forms the logical product of the contents of the Q register and an
operand, then adds this product to the contents of the A register. The sum is re-
tained in the A register and is stored in the location from which the operand was
obtained.

Operation k Space y b i
RALP | NORMAL 13 REPLACE CLASS | B, | NORMAL
Example:
RALP,LX LABEL,B4 4505401234

Subtract Logical Product (42) ANLP

This instruction subtracts the logical product of the contents of the Q register
and an operand from the contents of the A register. The difference is retained in
the A register.

Operation k Space y b j
ANLP NORMAL b READ CLASS By NORMAL
Example:
ANLP W LABEL,,QPOS 4223001234

Replace A — Logical Product (46) RANLP

This instruction forms the logical product of the contents of the Q register and an
operand, then subtracts this product from the contents of the A register. The dif-
ference is retained in the A register and is stored in the location from which the
operand was obtained.

Operation k Space y b j

RANLP | NORMAL B REPLACE CLASS By, | NORMAL




UP-4133
Rev. 1

4 3
UNIVAC 494 ASSEMBLER SECTION: PAGE: 2

4.9.8.

4.9.9.

4.9.10.

Example:

RANLP,UX LABEL,B3 46 0 6 3 01234

OR (50) OR

This instruction forces 1 bits into selected bit positions of the A register. For
corresponding bit positions of operand and A register, a 1 bit will be forced into
the final A where either, or both, the initial A register or the operand has a 1 bit;
otherwise, a 0 bit will occur in the final A register,

Operation k Space y b i
OR NORMAL b READ CLASS By NORMAL
Example:
OR,W LABEL 5003001234

Replace OR (54) ROR

This instruction compares the bits of the initial A register with corresponding bits
of the operand. Where at least one bit is a 1 bit, a 1 bit is forced into the final A
register; otherwise, a 0 appears in the final A register. After the selective set
operation is performed, the result is retained in the A register and is also stored
in the location from which the operand was obtained.

Operation k Space y b j
ROR NORMAL b REPLACE CLASS By NORMAL
Example:
ROR,UX LABEL,1 5406 1 01234

Exclusive OR (51) XOR

This instruction compares the bits of the operand with the corresponding bits of the
initial A register to form the Exclusive OR function in the final A register. Wherever
either, but not both, of the corresponding bits is a 1, a 1 is forced into the final A
register; otherwise, a 0 occurs in the final A register.

Operation k Space y b i
XOR NORMAL b READ CLASS | By NORMAL
Example:
XOR 77777 51000 77777



UP-4133 4 64
Rev. 1 UN'VAC 494 ASSEMBLER SECTION: PAGE:

4.9.11. Replace Exclusive OR (55) RXOR .

This instruction forms the Exclusive OR function of ¥ and A as described for the
previous instruction and also replaces the original § by the Exclusive OR function.

Operation . Space y b i
RXOR NORMAL ] REPLACE CLASS B, | NORMAL
Example:
RXOR,U LABEL 5502001234

4.9.12. NOT (52) NOT

This instruction will clear selected bit positions of the A register to zero. A 1
bit in an operand bit position clears the corresponding bit position in the A

register,
Operation k Space y b j
NOT NORMAL b READ CLASS By NORMAL
Example:
NOT,W LABEL,B6 5203601234

4.9.13. Replace NOT (56) RNOT

This instruction clears selected bit positions of the A register. The bit positions
that are cleared are determined by the presence of 1 bits in the corresponding

bit positions of the operand. After the NOT operation is performed, the result is
retained in the A register and is also stored in the storage location from which
the operand was obtained.

Operation k Space y b j
RNOT NORMAL 5 REPLACE CLASS By NORMAL
Example:
RNOT,L LABEL,,SKIP 5611001234

4.9.14. Selective Substitute (53) SSU

This instruction replaces the contents of selected bit positions of the A register
with the content of corresponding bit positions in an operand. The bit positions
selected for replacement are determined by the presence of 1 bits in the corres-
ponding bit positions of the Q register.




UP-4133 4
Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: PAGE:
‘ Operation k Space y b j
SSuU NORMAL b READ CLASS By NORMAL
Example:
SSu.X 11000 53040 11000

4.9.15.

4.9.16.

Replace Selective Substitute (57) RSSU

This instruction replaces the contents of selected bit positions of the A register
with the contents of selected bit positions of the operand. The bit positions that
will be replaced are determined by 1 bits in the corresponding bit positions of the
Q register. After the selective substitute operation is performed, the result is
retained in the A register and is also stored in the location from which the
operand was obtained.

Operation k Space y b j
RSSU NORMAL B REPLACE CLASS | By | NORMAL
Example:
RSSU,LX LABEL 5705001234

Application of Logical Instructions

The uses of logical instructions are varied. An individual example is meaningless
unless seen in its context. The portion of coding presented below is designed to
add two numbers in Fieldata code to produce a sum in Fieldata code.

MASK 6060606060

AD] 5252525252
LQ,W FD1 (1)
ANQ,W AD] (2)
AQ,W FD2 3)
LLP,W MASK (4
LSAQ 30D (5)
LSQ 27D (6)
OR,W MASK (7)

SANQ,W FDSUM (8)




UP-4133
Rev. 1

4

UNIVAC 494 ASSEMBLER SECTION:

66

PAGE:

As an example: FD1 = 12345 and FD2 = 1234.
The result will be 24690 (FDSUM). The following operations are performed:

(1) The first number is entered in the Q register.
(2) An adjusting value (AD]) is subtracted from this number, and

(3) the second number is added to the first number as follows:
6162636465 (FD1, in Fieldata)
5252525252 (AD])

0710111213
6162636465 (FD2, in Fieldata)

7072747700 (Contents of Q register)

(4) The logical product of the contents of the Q register and the operand MASK
is formed and entered in the A register as follows:

111000 111010 111100 111111 000000 (Q)
110000 110000 110000 110000 110000 (MASK)

110000 110000 110000 110000 000000 (A)

(5) The contents of A and Q are interchanged by a 30-bit left shift of AQ, and

(6) the resulting contents of Q are shifted to account for a carry from one
Fieldata digit to the next. The result of these operations appears in Q
as follows:

000110 000110 000110 000110 000000
(7) An OR operation, and
(8) a storage of AQ results in the sum of the two Fieldata numbers as follows:

111000 111010 111100 111111 000000 (A)
110000 110000 110000 110000 110000 (MASK)

111000 111010 111100 111111 110000 (A)
000110 000110 000110 000110 000000 (Q)

110010 110100 110110 111001 110000 (FDSUM)

T —— ——— T ——

62 64 66 71 60 (24690 in Fieldata)




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

4

SECTION:

PAGE:

67

4.10. PSEUDO-OPS

The term ‘‘pseudo-ops’’ refers to that group of instructions which are actually
specific variations of a basic instruction. A pseudo-op is a facility offered by
the UNIVAC 494 Assembler to the programmer, whereby often-used instructions
can be source coded without j and k designators and with implicit operands. This
feature is similar to the single-ops of UNIVAC 494 SPURT. Each pseudo-op

occupies one word of memory.

Pseudo-ops fall into two classes — data transfer and linkage pseudo-ops. Although

the NOP (No Operation) pseudo-op is technically a data transfer pseudo-op, it
merits description as a linkage pseudo-op because of its many applications in this

area.

4.10.1. Data Transfer Pseudo-Ops

The pseudo-ops of this group have already been described in 4.3 and are listed
here (Table 4—-7) for reference purposes together with their counterparts in

UNIVAC 494 SPURT.

494 SEE 494
ASSEMBLER SECTION SPURT
ZB 4.3.4 CL*B,
ZQ 4.3.8 CL*Q
NQ 4.3.9 CP*Q
NA 4.3.11 CP*A
ZA 4.3.12 CL*A
SZ 4.3.14 CL*Y

Table 4=~7. Data Tronsfer Pseudo-Ops

4.10.2. Linkage Pseudo-Ops

Linkage pseudo-ops are used for block and subroutine control and comprise the

NOP, ENTRY, and EXIT pseudo-ops.

4.10.2.1. NOP Pseudo-OP

The NOP pseudo-op (see 4.3.5) corresponds to the NO-OP of UNIVAC 494
SPURT. Applications of the NOP in subroutine linkage include its use as:
(1) a logical switch to alter program flow; (2) a furnisher of arguments to

a called subroutine; (3) an entry point of a subroutine. The following examples

illustrate these uses.




UP-4133
Rev. 1

4
UNIVAC 494 ASSEMBLER SECTION: PAGE:

68

Example as logical switch:

SWITCH2 NOP

LA,W SWITCHX
SA,W SWITCH2

SWITCHX ] ouUT

Example as argument list:

SL] SUBR
NOP 50D
NOP 10-A
NOP B

In this example, each of the NOP’s contains data in the rightmost portion of the
word which can be as an argument in subroutine SUBR. When control is returned
to the instruction following the SL] instruction, the NOP’s act as a ““fall-through”
sequence, and control will actually be returned to the first instruction following

the last NOP.

Example as entry point:

SUBRN NOP A

J,L SUBRN

The return address is represented by A.




UP-4133
Rev. 1

4 69
UNIVAC 494 ASSEMBLER SECTION: PAGE:

4.10.2.2. ENTRY and EXIT Pseudo-Ops

The ENTRY and EXIT pseudo-ops are the standard entrance to, and exit from,

a subroutine. Each of these pseudo-ops is a special form of the Jump instruction
(see 4.6.1). The difference between the two is that a k designator of 0 is generated
for the ENTRY and a k designator of 1 for the EXIT.

The ENTRY mnemonic is the first line of the subroutine and, therefore, should have
a label which is the name of the subroutine. The jump to a subroutine is the SL]
instruction (see 4.6.3) which places the return address in the rightmost half

(lower half) of the computer instruction generated by ENTRY.

An EXIT pseudo-op can appear wherever an exit from the subroutine is desired.
More than one EXIT can be used in a subroutine if alternate paths are present,
The computer instruction generated will refer back to the return address that was
placed in the computer address associated with ENTRY. The use of j designators
is permitted.

LABEL OPERATION y j
name ENTRY none none
OPERATION y j
see
EXIT none 4.6.1
Example:

Computer Code

CHKINPUT ENTRY 02244 6100000000
EXIT 02277 6101002244
SLJ] CHKINPUT 04322 6500002244
(return address) BE32F N S e i ate ae



UP-4133
Rev. 1

5
UNIVAC 494 ASSEMBLER SECTION: PAGE:

o1,

2.2

5. ASSEMBLY DIRECTIVES

GENERAL

Symbolic assembly directives direct and control the assembly processor just as oper-
ation codes direct and control the central processor. Directives are represented by
mnemonics written in the operation field of a line of symbolic coding. Their uses are
varied: to equate expressions; to adjust the location counter value; to offer the pro-
grammer special controls over the generation of object coding. Directives are pro-
cessed as encountered by the assembler.

Some directives do not cause generation of object code while others cause generation
of more than one line of object code. Some directives may appear anywhere within an
assembly while others are limited to PROC's and FUNC’s. Those directives which are
limited to PROC and FUNC directives are discussed in the next section (Section 6).

The directives, discussed in this section, not limited to PROC’s and FUNC's are:

s EQU (Equate) = BLOCK-DATA
s RES (Reserve) s XREF

s LIT (Literal) s EDEF

s FORM (Format)

= EXPRESSION

s START
s INPUT or INPUTFORM
s END
s LET
s DLD (Double Length Data)
s UTAG s UNLIST
5 DO " LIST
s COMMON

EQU (EQUATE)

The EQU directive equates the label (in the label field) to the value of the expression
or item in the operand field.

This value may be referenced in any succeeding line by use of the label equated to
it. If a label is to be assigned a value by the programmer, it must appear in the label
field of an EQU line before it is considered defined. Only then may it be used or
referenced in subsequent lines of symbolic coding. If it is referenced prior to the
EQU line in which it was equated, the label is considered undefined.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER o £

53

5.4.

Example:
T3 EQU 30D
T1 EQU 0500
LA 1 11000 00500
LA,1 T3,B2 11012 00036

The EQU directive does not permit redefinition of a label. Thus,

A EQU A+2

is invalid since it involves redefinition of a label.

RES (RESERVE)

The RES directive may be used to create work ‘areas for data or to specify absolute
location counter positioning to the assembler. If a label is placed on the coding line
which contains a RES directive, the label is equated to the present value of the lo-
cation counter, which is in effect the address of the first reserved word. Its immediate
effect is to increment (or decrement) the controlling location counter by the number

of words specified by an item or expression in the operand. The RES directive may
not be used as the first code-generating statement of a program.

Example:

TABLE RES 50D
SA,W TABLE +5

The SA instruction will store the contents of the A register in the sixth word of the
area reserved for TABLE.

LIT (LITERAL)

The LIT directive defines a class of literals which are placed under the control of a
specific control counter. Only one LIT directive is allowed under each control counter.
The directive may have a label.

Use of the label with a literal will place the literal generated in the table of literals
associated with the control counter current at the time the related LIT directive was
encountered. The origin of the literal table follows the last coding line of the spec-
ified control counter. Duplicate literals are discarded in each table, but may exist in
separate literal tables.

Through the use of LIT directives, a number of separate literal tables can be created.
In the absence of a LIT directive, all literals will be placed in the literal table under
control of location counter zero. The entries in the label field of a LIT directive com-
ply with the rules of labeling.

If a literal table which is not under the control of control counter zero is required, a

LIT directive is used. If a LIT directive has no label, all literals which are not pre-

ceded by a label will be placed in the literal table designated by this LIT directive.

There may be only one LIT directive in a program which does not have a label asso- .
ciated with it.




UP-4133
Rev. 1

5

UNIVAC 494 ASSEMBLER SECTION: PAGE:

If a LIT directive has a label, all literals to be placed in this literal table must be
preceded by the label associated with this LIT directive.

Example 1:
LA,3 :05;

The octal literal 0000000005 will be placed in the literal table controlled by counter
zero.

Example 2:

$(3) LIT
LA, W :05;

The octal literal 0000000005 will be placed in the literal table controlled by counter

three.
Example 3:
$(3),BILL LIT
LA,3 :5D;
LB,W 2,BILL:0100;

The octal literal 0000000005 will be placed in the literal table controlled by counter
zero. The octal literal 0000000100 will be placed in the literal table controlled by
counter three.

5.5. FORM (FORMAT)

The FORM directive is a means of describing a special word format designed by the
user. This word format may comprise fields of variable length (within the word). The
length in bits of each field is defined by the user through expressions in the operand
field of a FORM line. The value of each expression specifies the number of bits
desired in its respective field.

The number of bits specified by the sum of the values of the operand expressions
cannot exceed 30 (the size of a UNIVAC 494 word). The assembler uses the values
of the operand expressions within the FORM line to create a control pattern that
dictates a word format.

A reference to the word format is accomplished by writing the label of the FORM
directive in the operation field followed by a series of expressions in the operand
field which specify the value to be inserted in each field of a generated word. A
reference to a specific FORM label will always create a word composed of fields in
the same format. Of course, the contents of the fields may vary according to the
expression values in the referencing line.




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER T L et
Example:
11111|1|l|11111111l111111111|||||1114_
1 U NS, TRy y 1 1 ( IFFORM | 4 4 4 4 16,,:3:,43301345, 4051 4 4 3 3011
20 ) g gy gy NS TR, )G 0,,4,09,,,4.09,]9,5000 , ,

The relocatable instruction that will be generated alongside the second line will be
14 0 4 0 05000.

5.6. START

The START assembly directive defines the starting line entry point of a program
portion. No label is used with this directive. The operation field is START; the
operand field is the label of a line to which control will be transferred.

Example:
| Ny e e s IS B AR T 1 a s IBEG N g by b 1)
5.7. END

The characters END in the operation field signal the end of an assembly. This
end-of-assembly indicator may be omitted, but such a practice is not recommended.
When this directive is omitted, the required OMEGA #END will indicate the final
source card of an element.




UP-4133
Rev. 1

5

UNIVAC 494 ASSEMBLER

5.8. DLD (DOUBLE LENGTH DATA)

The DLD assembly directive permits a two-word literal to be specified by one line

of coding. The assembler will generate the literal and assign it to two consecutive
memory locations. A label may be used, if required. The operation field is DLD. The
operand is the literal and may be an octal, decimal, floating point, or internal decimal
(Fieldata) value, as shown in the following:

lllllllllllJJllllllllllllllllllllllll

AA 7 v e DD o V7,743,6i4,3.2,117:6:6,412¢ 4 ¢
sy AP DR ESS HAA S T ORE: S, [0,0,0.00 43, 2:7:3): 200 qon 4 e
w0 A DDRESTES A A T g i 1R 3023 TS B2 g
B8 v vy 120y 0 15,3,6,87,091,20) 0y
. /ADDRESS |BB S, TORES 10,00,0000000] ;
+y ADDRESS, |BB+ 1, v 4y v 4y |4,000,00000,0] , , ;4 4 4
CC vy vy g 1280y g 116,3,8,40000 0 Ly
.y ADDRESS |CC ,5TORES, [2,01,7,40,000,0] ; ,
«y ADD,RESS 1CC+. YV, ., ,,,, 10,0,0,0000.000] ;.33 141
00, v 4y ¢y 4y IO4LD gy 1606650 oy g
- ADDRESS DD ,5TORES, 16060606060 , , ,
+°w ADORESS PO+ vy 4y , 16/0,6066,6666] , , 4 14,
5.9. UTAG

The UTAG assembly directive enables division of a computer word into upper and
lower halves. Any valid expression, constant, or variable can be supplied for the
upper and lower portions. The assembler will evaluate each and generate the resultant
values as the upper and lower portions of the word. This directive is particularly use-
ful for the preparation of jump tables.

A label may be used, if required. The operation is UTAG. The operand consists of two
subfields, each of which may be a valid arithmetic expression or a constant. The value
of the first subfield is stored in the upper portion of the computer word; the second, in
the lower portion. A maximum of 15 bits is available for each portion.

SECTION: PAGE:



UP-4133

5
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
Examples: ‘
T,ABLE , ,, , IUWTAG, , 4, |ABLE,BAKER 4 1 1111
LA lTlHIEI lclolMlPll’J_1.lElRl“‘iAlstll lGlNIElDl IAJDIDIRIEISISIELSI R e (== |
., ABLE AND BAKER, W, ,L|L, B,E ,5UB,STI,TUTED ,
| 1' lNl 1T1H1£1 lslulBlFlllElLlDJsl Pl Y s TR iy W T i 7 iy 1 1T
VA/LUES, , , , |UTAG , , ,, |D+,QU+ 1,0,D ,,Al1,+,C/ 4 , |

= lEllelLlUlAlTlllolNl lonFl 151A1clﬂl IELlelRlElslslllo‘Nl WLk

1

B,E S, UBS TI TUTED ,IN |S,UBF, IL,ELDS, | v ¢ ¢ 11

28 |

5.10. DO

The DO directive is used within a procedure or function to generate a specified
line of coding a number of times. The operation DO is followed by at least one
blank and then the expression which conditions the number of times a line of
coding is to be generated. This expression is followed by one blank, a comma,
and then the coding which is to be done. If there are no intervening blanks
between the comma and the first character of the second operand entry, the
symbolic line to be produced is assumed to have a label. The line of coding
associated with the DO directive starts with the first column following the
comma as though this first column were the first column of a separately written

line.

If the DO directive is labeled, the value of the label will be N the Nth time the
line is coded. The label serves as a counter and not as a reference name. A
typical example is the following:

]
llllllllllllllllllllllllllllllLlllLlll

vy gty oy D40y 3207 g1y ox Theky, Wi ¢y 3 1 2 BraBadr 1 14

The ““I"’ is set to one immediately after the first operation DO and is available for
use only in the coding line to be done. This ‘‘I’’ cannot be obtained outside the
coding to be done unless the coding stores it (as in the example shown) at a point
where it can be obtained.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER e e

The following illustrates the use of a DO directive with an arithmetic, relational,
and/or logical condition determining coding of the instruction:

TlAlGlll 1M 1 s K IDlol lAl<121 122 —1 ILlAlllwl lDIOIGl | | RO A N T Y |

2 l'lFl lAI lllsl lLlEls]sl lTlHlAINI |2lll IGIEINElRlAlTlel lTlHlEl == 24 |

S lLlllNIEl lolFl lclolDlEl | Sl S e l | L St PSR S| =) l | = B e S SN [ |

L 11 1D0 S ASN*I*3 UL, (LB, W, B3, IBARB 1 1 1 1

ey 4 I,F T HE, RIELIAT LONAL | 1 1 01111 PO I 7 X Tt P

lEllelRlElslsll |01Nl l'lsl lTlRlUlEl'lTlHlEl 1' INISITIRIUICITI'IOINI e

LR 16151N|EIR|A171£101‘1F101R1 E|X,AMPLE LET N=17,0 .,

-y ! F A=0 TIHE I NSTRUCTION IS,  GENERATED,,,

= B (e el

‘a1 il F (A=1, TIHE, NS TIRUCIT I ON, (1S NOILTL & 1 4 4 4 o 1

lGIElNIElRlAlTlElDl'lllllllllIlllllllllILllllll

5.11. COMMON

The COMMON directive defines an area of core to be shared by two or more in-
dependently compiled program units (main program, PROC’s, and FUNC’s),
permitting these program units to communicate with each other. The format of
this directive is:

m Label field:
optional

m Operation field:
COMMON

m Operand field:
number of a location counter (0 through 31)

The COMMON directive must appear in each program unit which is to share a
common area. If the label field contains a normal label subfield (up to ten
characters, starting with an alphabetic character), the common area so defined
is termed a labeled common block; if not, it is a ‘““blank common block’”. The
control counter assigned to a common block by the COMMON directive in one
program unit need not be the same as the control counter assigned to the same
block in another program unit. However, within a program unit, once a control
counter has been assigned to a common block, all instructions and data under
that control counter will form part of that common block. Similarly, all instructions
and data to be shared by that common block must be governed by that control
counter assigned in the COMMON directive as shown in the following example:



UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER AR SAue

BlLlKl‘j 1.2 1 R l I lclolMluolNl 1 l lzlsl I 1 1 1 1 l i A | 1 P e ¢ e L

B|L1K151 =3 AALIllclolMlMOINllL1213lll AlLlllAAl LS T A L

PROGRAM

J'lllllllllllllllllllljAAlljllll\l
[ UNIT)

L‘lllLlJAllLlLLJJlLlllLllllllllllllllll

s;(;ztaj)u lTAAAG‘zl A IRAEJSA el et l |91°1 ¢ LT VR e | l UL D el M e e

sl(l‘l,l SEJRUSE ) ek l ' IRL e AL T l l’lDIIAIlAADLvl i l PR S e B

1’111111:111.111...‘l11|AA111111A11111'

14 1 1 1 ' 1 1 L 1 L 1 L 1 3 A ' L L l L A 1 1 1 1 ' L 1 l 1 I 1 '
et P T e 1N ] B 1 VIR T Vot R (S U R 1J (LT T N S W T e l = S 4§
BiliKiS: ¢+ 1o 1 1l g dCOMMON, ¢ | 307y 8o n gy (SgeTy

L1 2
T T TR O TS LU e oo P o o o o W NS I T B L T e T
S U7 LB S RSy T2 ] .\. PROGRAM
T R Dl T DR T TN Ry T

ST e i llAllLLlsl‘J'AA IILJBIGLAA'LNICIRIIl o RS D BE = =

lRlAllllJllallLllAlDLleAllllllllAA

R 1 w | ,L.,8L,3+8D , |

As can be seen from the example, all references to a given block, within the
same program unit, use the name assigned to that block by the RES directive.
Identification of the common blocks among program units is accomplished by
the label (or blank) assigned to that block in the COMMON directive. In this
example, if program unit 1 and program unit 2 are the only references affecting
the contents of the labeled common block BLKS, this common block will
consist of 12D words — the first nine will contain zeros; the tenth, 1; the
eleventh, 2; the twelfth, 3.




5

UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:
. 5.12. BLOCK-DATA
This directive creates an element that is recognized by the UNIVAC 494 Operating
System as a FORTRAN-compatible element (see ‘‘UNIVAC 490/491/492/494 FORTRAN
IV Programmers Reference,’’ UP-4087 (current version)). This element may not con-
tain EDEF/XREF references or a start address.
OPERATION
BLOCK-DATA
5.13. XREF (EXTERNAL REFERENCE)

The XREF lists those symbols that are used in this assembled portion of the program
(program element) but are defined in another program element. Since references to
these symbols cannot be satisfied at assembly time, they must be satisfied (that is,
the symbols must be defined) at collection time by a corresponding EDEF (see 5.14).
No XREF may appear as a program label (excluding labels for PROC, FUNC, DO, and
FORM).

The number of symbols in the list is limited only by card continuation requirements.
A program element may contain more than one XREF,

Format of the XREF directive is:

m Label:

none

m Operation:
XREF

m Operand:
list of symbols, each separated from the next by a comma

An alternate method of specifying external references is to pass on all undefined
unsubscripted symbols to OMEGA to be satisfied at load time. However, the use of
XREF's is preferred because it avoids the confusion caused by U (undefined) flags
(see Appendix D). The use of the U option on the #ASM card (see Appendix F) will
insure that only those symbols listed as XREF’s will be considered valid external
references. If a reference in this element cannot be satisfied by a label within the
element and is not listed as an XREF, the U (undefined) flag will be generated
(when the U option is used).




UP-4133
Rev. 1

5 10
UNIVAC 494 ASSEMBLER SECTION: PAGE:

5.14. EDEF (ENTRY DEFINITION) .

5.15.

This directive lists all labels which are defined within this program element and may
be used by other program elements. This directive, together with the XREF directive in
the other program element(s), provides linkage between program elements. During the
collection process of the operating system, each XREF is satisfied by an EDEF. The
number of symbols in an EDEF directive is limited only by card continuation require-
ments. More than one EDEF directive may be used in an assembled program element.

Format of the EDEF directive is:

m Label:
none

m Operation:
EDEF

m Operand:
list of labels, each separated from the next by a comma

An alternate method of specifying entry definitions is the use of an asterisk
immediately after a label. This convention is derived from the use of entry points
in PROC’s and FUNC’s (Section 6).

Example:
Error Flag
EDEF TAG1,TAG2,TAG3 .LINE1 U
TAG1 NOP .LINE 2
TAG2 NOP .LINE 3

The error flag was generated because, in this particular example, TAG3 has not
been used in a source statement of this program element.

EXPRESSION

This directive permits changing conventions in source coding constants used in
expressions. Two different versions of this directive are available. In the first,
the operand field contains the characters SLEUTH; in the other, the characters
BITARRAY.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER secno»a? PAGE:

11

5:15:1.

Expression SLEUTH

This directive changes the method of specifying constants as follows: if the constant
has a leading 0 (zero), it is assumed to be an octal number; if the leading digit

is different from 0, the number is assumed to be a decimal number. If a string

of digits is preceded by 0 and contains an 8 or 9, an error flag will be printed

(see Appendix D).

Format of the directive is:

m Label:

none

m Operation:
EXPRESSION

m Operand:
SLEUTH

Example:

Source Code Generated Code

EXPRESSION SLEUTH
+ 10-010 0000000002




UP-4133

5 12
Rev. 1 UNIVAC 494 ASSEMBLER

SECTION: PAGE:

5.15.2. Expression BITARRAY ‘

This directive permits partial word values to be used as items within assembly-
time expressions.

Example:
Source Code Generated Code

EXPRESSION BITARRAY

A EQU 01010 0000001010
C EQU 1 0000000001
LB B5,2 00000 12 50 0 00002
LB B6,3 00001 12 6 0 0 00003
+ A 00002 0000001010
+ W(T1+B5) 00003 0000000002
+ L(T2-(C*1)+B6) 00004 0000000012
+ A+W(T1+B5)-L(T2-(C*1)+B6) 00005 0000001000
T1.-1% 0 00100 0000000000
+ 1 00101 0000000001
+ 2 00102 0000000002
g 3 L i 0000,010 00200 00000 00010
+ 0111,011 00201 00111 00011
+ 0222,012 00202 00222 00012

+ 0333,013 00203 00333 00013




UP-4133
Rev. 1

5 13
UNIVAC 494 ASSEMBLER SECTION: PAGE:

5.16.

INPUT OR INPUTFORM

The INPUT directive and the INPUTFORM directive are alternate names for the
directive which is used to alter the format of source cards to be assembled.

Format of the directive is:

LABEL |5 OPERATION |B OPERAND
INPUT or
none INPUTF ORM expyp,eXpp,exp3,expy,€xps

where expq through expg are expressions which specify the following:

Expression exp; specifies the start of label field.
Expression expy specifies end of card.

Expression expg specifies the continuation column.
Expression expy specifies start of sequence number.

Expression expg start of operation field (fixed format).

Example:
CARD COLUMNS

1 7 8
1 9,0 01234567890
PUTFORM 1,71D,72D,73D,12 00000001
ABCDEFGHILA W BOB 00000002
00000003
\J_/\_/_J

LET (GENERAL)

The LET directive is actually a variation of the EQU directive (see 5.2) but its use
is confined to variables which may require redefinition. It is intended to avoid the
possible confusion that may arise when an EQUated variable is redefined, causing
generation of a possible error indicator. Although use of the LET directive is not
confined to PROC’s and FUNC's, it is most generally used within a procedure or
function. For this reason, it is described in detail in 6.4.3.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

SECTION:

5

PAGE:

14

5.18.

5.19.

UNLIST

This directive completely suppresses output listing after the line containing the

UNLIST directive is printed.

OPERATION

UNLIST

LIST

This directive will allow normal printout of the assembly listing from (and including)

the line on which the LIST direc

tive occurs.

OPERATION

LIST




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: 6 PAGE:

6.1.

6. PROC, FUNC, AND
ASSOCIATED DIRECTIVES

GENERAL

PROC and FUNC directives are used to define often-used sequences of coding which
are not necessarily identical but are similar enough so that repetition of the coding
requires only the insertion of parameters or arguments when the sequence is called.
For both directives, the lines of coding representing the definition must precede the
reference (or references) to the sequence and this coding is saved when encountered.
The PROC directive is different from the FUNC directive in that the PROC directive
usually generates lines of object code at assembly time at its point of reference to
be executed at object time. The FUNC directive is executed entirely at assembly
time and stores its results into the program at this time. The FUNC directive cal-
culates a value when referenced and does not cause generation of object code. For
purposes of this discussion, the PROC (procedure) directive will be described first
and the FUNC (function) directive will be described afterwards in terms of its diff-

erences,

The first line that defines a procedure is the PROC directive. The last line must be
an END line to indicate its logical termination. Between the PROC directive and the
END line, the special following directives may be used (in addition to the universal
directives described in Section 5):

m NAME
m GO
m LET




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER o i

6.2. PROC (PROCEDURE) DIRECTIVE
The PROC directive is the header for a procedure that is terminated by an END line.
The following is a simple procedure:

LOZER*  , , IPROC v 4 vy o v 0 g v ala oy
A F et PRTAL 0 5 e g g g g g g L P
o AT D0 BT Tl ol O . I o P W G O T A T O N L A TN Y ATV (0 O 0
Lines 1 and 3 are the limits of the procedure. LDZER is the label by which this
PROC may be referenced. The asterisk after the label is necessary, to indicate
that the label LDZER can be used to call this PROC. Each time this PROC is
called by a source line containing the word LDZER, the code provided by line 2
will be generated. Thus, the sequence:

START LDZER .CALL LINE
SA DOG,B2
LDZER .CALL LINE
STOP ] KAT
is equivalent to (expanded source code):
START LA,0
SA DOG,B2
LA,
STOP ] KAT
and each time the PROC LDZER is called, the A register is cleared.
6.2.1. PROC Directive Format

The label, operation, and operand of the PROC line are as follows:

m Label:

Any normal unsubscripted label is acceptable as identification of the PROC sequence.
Every PROC line must be labeled. This label can be used as an entry point for the
sequence if the label is concluded with an asterisk.

= Operation:

PROC

s Operand:

Some expression or item may be given to indicate the number of lines of code that
will be generated as a result of a call on this procedure. This value may only be
supplied if the number of words generated will always be the same and only if the
PROC contains no forward references. (See 6.2.7 for example.)




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION: ? PAGE: 2

6.2.2. END Directive

6.2.3.

The END directive signals the logical end of a sequence. In a procedure, its format
is as follows:

m Label:

None required since it serves no purpose.

m Operation:
END

m Operand:

None since it serves no purpose. (In a function, the operand field provides the value
of the function.)

Symbolic Lines Within Procedure

The formats of the lines within a procedure (except NAME directives) are as follows:

m Label:

Any normal label may be employed; however, its definitions will be restricted to the
bounds of the PROC, unless it is an entry point. Any label may be available immediately
outside the bounds of the PROC that contains it by appending an asterisk to the label;
this label is then referred to as a reference point. Multiple reference points are per-
missible and multilevels are permissible. A label is raised one level for each asterisk
following it. An asterisk following the label of a PROC or NAME directive indicates an
entry point.

w Operation:

Any mnemonic, meaningful special character, label of a PROC, or directive is permissible.

m Operand:

Any operand appropriate to the operation code is acceptable. The operand may also be
taken from the Call line by means of a paraform. (Paraforms are described in 6.2.5.)




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER sEctinu o 4
|
|

The following example shows nesting of PROC’s and use of multilevel reference ‘
points:
etc.
FR—— A* PROC
| ——B* PROC
: { r—c* PROC
: = | Wee= +1 ‘CARRIES 3 LEVELS
| qof xee +2 ‘CARRIES 2 LEVELS
i { : y* +3 ‘CARRIES 1 LEVEL
o [ +4 ‘KNOWN HERE ONLY
: : P D END
5 %
| { +Z ‘UNKNOWN
: | + W,X,Y ‘KNOWN
} (SR - Sy END
| 3
I YA ‘UNKNOWN
| +W, X ‘KNOWN
S e END
A .
XY, 7 ‘UNKN OWN
s W ‘KNOWN
etc.

6.2.4. Call Line

A Call line is a symbolic line of code which uses an external label of a procedure
in its operation field as an entry point into a procedure. (An external label of a
procedure is an asterisked label of a PROC or NAME line. Any other asterisked
labels are ‘‘reference points’’.) It informs the assembler that generation and
modification of a procedure (or part of a procedure beginning at an entry point)
should begin at this point. The Call line provides any required parameters for use
in the procedure. A Call line must not appear in the program until the procedure
has been defined by the PROC and END directives, including any optional NAME
directives. The format of the Call line is as follows:

u Label:

Any normal label is acceptable. It refers to the first line of code generated, unless
an asterisk is located in column 1 of some part of the procedure. The asterisk is a
flag indicating that the label is to be applied on this line of code.

s Operation:

An entry point label of a procedure. (An entry point label of a procedure is an asterisked
label prefixing a PROC or NAME directive within the procedure.) Additional subfields
(separated by commas) may be added to furnish parameters to the procedure called.




UP-4133 6 5
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

. » Operand:

Any number of fields and subfields, in any sequence, is acceptable. Fields are separated
by one or more blanks not preceded by a comma. The use of an asterisk preceding a
subfield is explained in the evaluation of paraforms. An example, for a hypothetical
procedure entry point ““COMPAR’’ is shown in Figure 6-1.

VS O T g e e l D e L= = T e 1 l e R e l - LA Ll 1 ] i [ Ll P b L.l ' l L By D
Ay v 41y ICOMP AR, X IT.O Y 4 o4 gesXi |l (100 AND Y IARE 13 (FILELIDISE 1 8
vt v 11 IGOMPAR X T,0,,%Y , 0, |FLELD,, 3 SIUBFI ELDS, |, ,,

Figure 6=1. Typical Procedure Call Lines
6.2.5. Paraforms

A paraform (parameter reference form) is the means whereby an operation within
the procedure can obtain values of parameters used in the operation from the Call
line or entry point. This enables the same procedure to be used many times with
the Call line or point of entry furnishing a different set of parameters each time

the procedure is called.

A paraform appears in the operand portion of the symbolic coding within the pro-
cedure. It consists of the name of the procedure called, followed by a set of
parentheses. The parentheses enclose a double coordinate reference system ex-
pressed as n,e. The n refers to the nth operand field of the call line; the e, to the

. eth subfield within that field. A typical paraform, using the same hypothetical pro-
cedure COMPAR is shown in Figure 6—2, where the reference is to field 3, subfield
1 of the operand of the Call line. This paraform can be used with the first of the
two Call lines shown in Figure 6—1, since the second has only one field in its
operand portion.

Figure 6~=2. Simple Paraform

In addition to the simple paraform just described, paraforms may be written in dif-
ferent forms to extend their applicability. The general rules regarding their inter-
pretation are presented in Table 6—1 for a hypothetical procedure headed by a
PROC directive with the label L. (All directives used within the procedure not
previously described, such as the NAME directive, are described in 6.4.)

If a paraform is not supplied, its value is zero.




UP-4133 € 6
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

If the paraform is it is given the numerical value equal to
written as, or in the
form
L the number of fields in the operand of the Call line.

If entry is by a NAME directive, this value is in-
creased by 1.

L(0) the total number of subfields, minus 1, in the
operation field of the Call line. If the entry
point is a PROC directive, this value is 0.

L(N) the number of subfields of the Nth field in the
operand of the Call line.

L(0,0) the operand of the NAME line used for entry into
the procedure. If the entry point is a PROC dir-
ective, this value is 0.

L(0,C) the Cth subfield after the entry point label in the
operation field of the Call line.

L(A,*B) 1 (on) if an asterisk precedes subfield B of
field A in the operand of the Call line; if no
asterisk, the value 0 (off).

Table 6=1. Evoluation of PROC Paroforms.

To illustrate use of these special paraforms, two Call lines are shown.

T N TR S T Loy 0 s e VNI ELATYY B R TR BTV RATOR o OO T e

-
N T T i (8T W) YOI TV ik (1 SN T TR ST ] I O T

The procedure to which these call lines refer is

11111L11111111~111111111111'AILL1114'411111
-
Pl I e P T [ JP1R1°1C1 1xu 1Y1 1s llelEL lNlollLEl 18151‘-101'1 LN W7 O T T VY

-
AlillllllllNlALMEIIallllLllJllLJllllllllilllllll

L
B° i1 43 3¢  NAME 3.0, , 00500809 00 ol rsss g gl

v v e b gy sy BTG, ANY, PARAFORM (1IN TIHE |,

AT O ey AR s e l 1 = L & S SR IS ] l‘lTl‘LBJLlEl lBlElLlolwl J_MIAIY! 18151 lulslelol 1




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

6

SECTION:

PAGE:

6.2.6.

© N OO AW oN

The following table shows the values assigned to different paraforms within this

procedure.

If the Call line is

and the paraform is

then its value is

A 7,G P 2
P(0) 0
P(1) 2
P(1,1) 7
P(1,2) G
P(1,3) 0
P(1,*2) 0 (off)
P(0,0) 8
P(0,1) 0
P(0,*0) 0 (off)
B,*14 8,*13 6 P 3
P(1,2) 13
P(2,1) 6
P(1,*2) 1 (on)
P(2,2) 0
P(0) 1
P(0,0) 10
P(0,1) 14
P(0,2) 0
P(0,*1) 1 (on)

Expanded Procedures

The following example illustrates the use of the NAME

and GO directives.

3 | L R O ) L | lPlRlolCl |

LOAID*) | | (NJAIME,

111111|L1Al,|w11

10,0,6, 4 | |

I UV Y O (1T, M Y T

(FrlyNy 1S H|

S TORE™ | NAME |

Y R T T (S P

fo ) SR SR SEAl W

KIAT ]

Fil NISH | (NAME, |

L1 11 11 1 1E/NDy 4




UP-4133 8
Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: e PAGE:

Line 1 provides a label P which is the name of the procedure, but cannot be used
to call the procedure. It must be used, however, when referencing parameters; this
method is explained later.

Lines 2 and 5 contain the NAME directive and provides the labels: LOAD and
STORE. Since each label is flagged, each may be used to call the procedure.
These are external definitions or entry points.

Line 4 contains a GO directive; the operand of a GO must always be the label

of a NAME line or PROC line. If the label appears in the same procedure as the
GO, it may be flagged with an asterisk. If it appears in a different procedure, it
must be flagged. It is not possible to reference an entry point which has not yet
been encountered by the assembler. The effect of the GO directive is to skip over
lines S and 6.

Assume the following calls:

SATARIT, L t50lADy v g 9 1 g v b i (0 b L
e o T IR T e N T S N M T S S O T IO [ty
L g TR I L A o S [T OO U S Y e g
Bl NSy 3 o (STIOWRE 5 4 9 v o | 110 100 121 Jaftaigy ),

This would be equivalent to (expanded source code):

S o o A T T A N S AT O N i B
slTlAlRlTl A | |L1Al'lwl = IDIOIGI 1 l g e e ek L
P o A e Y PO T V.V 1 N e i v O |
T T T T e Y. A PN T VI T N VAT T A ik 1
EL S ¢ oSiAL W g KM by g e o i

Notice that each call generates only that code which is encountered in the procedure.

It is possible to provide parameters on the line calling the procedure, thus:

S\ TiAiRITi 1 ¢ 1EOlAD (SiToARITs o 1 o e 0 10 2 10 15
Lt L1 g STIORE S TTART, |y 0 10111 e
C 11t 41 g qk©OAD, START | 3 4 1 111 11 |

. S, TIOR E SiTART #2, § 4 15 390 ¢ ¢ 1




UP-4133
Rev. 1

6
UNIVAC 494 ASSEMBLER SECTION: PAGE:

N OO oA W

[=-]

0,257

It is also possible to select the desired parameter via the parameter construction:

UM R A T ) T 55 A T A W e T e e e | 8 TS T |
By gty jesy PIRNOVCS S it S ) il SR Rk SR
LlOlAl Dl*l = 1NIAIMIEI T A T (O L Yy 1|

g ey kiAW YR Y g O R )
O 1 O UL 0. O [T U e | |
SIVORE™ , WAME , 4 o v ¢ v 0]y 0 b a b giql
T TV U Y P A I M L7 i ) O WY o ol S
BEND) g i aNAIMEY e L g o kg ]
T AT UG 1% (> T TR R o 1 | S ot R

The construction P (1,1) on line 6 is a paraform. P is the label of the procedure and
is the common reference. The coordinates in parentheses indicate field 1 of the
operand, and subfield 1 of field 1, respectively.

This procedure call when expanded will appear as:

SITARCEY & - (LN W SRR T o g popalhy el e
b (SaAL G Wl S FEARY T gt v Sl i
fe o b sbgAl WGy SSETIARITE [0 5 e el el
E\NiD ¢ )y SIAL W g SITIARITIHI2) g g T

Efficient Use of Procedures

When a procedure is used many times, e.g., as a code generating method in compil-
ation, care should be taken in its construction to avoid time consumring operations.
Several simple devices may be used to advantage in this regard.

® Parameters

If a parameter to a procedure is referenced many times, efficiency is increased by
equating the parameter to a simple label. (This device should not be used, however,
if the parameter may be preceded by an asterisk in the call, as the equivalence

will not retain the indirect flag. However, when the same parameter preceded by

an asterisk is called indirectly via several nested paraforms, each reference
includes the asterisk.)

m Call lines

Use of the period to terminate each call line saves time by stopping the scan
of the line for possible parameters.




UP-4133
Rev. 1

: 6 10
UNIVAC 494 ASSEMBLER SECTION: l PAGE:

m Procedure levels '

Where practical, the depth of nesting of procedures should be limited. Use of
distributed NAME lines and the GO directives may be helpful in decreasing the
depth required.

m Specification of the number of object lines to be generated

A feature has been included to greatly reduce assembly time for procedures
which produce a predetermined number of lines of object code. This number
will be indicated as the operand field in a PROC line, as follows:

COMPAR,* | , IPROC, vy v v s v vt v v b g a

Procedures which define an external label, or which make a forward reference
to a label defined within the procedure, may not use this feature. Where possible,
procedures should be constructed to take advantage of this feature.

® Summary
PROC’s may be nested, i.e., they may be included within each other. Nesting

may be physical or it may be implied.

— Physical nesting means that the procedure is physically located within the
bounds of another procedure.

— Implied nesting means that although a procedure is not physically contained
within another, it may be temporarily considered so by implication, i.e., its
reference line is contained within another PROC.

The primary purpose of nesting procedures is to restrict labels should they inter-
fere with labels from other procedures, or the main program. Another purpose is
to re-equate labels for homogeneity. Nesting allows simpler block building
techniques but requires longer assembly time.

The Conditional DO statement allows symbolic lines to be created or negated.
The GO may also be employed to include or skip lines of code.

The NAME directive allows alternate entrances into a procedure. This is a method
for qualifying a procedure.

PROC’s employ all directives. Since procedures allow the presence of all dir-
ectives their power is enhanced. Of special value are the NAME, GO, DO, and

EQU directives.

PROC’s are reflexive and may refer to themselves.




UP-4133 6 11
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

‘ m Restrictions

While restrictions may help develop unique situations, they may also hinder
general methods. Therefore, careful analysis should precede their usage.

Labels are local to procedures; they must be flagged to make them more
universal by levels.

Nesting further restricts the locale of labels of inner procedures, but
enlarges the locale of labels of the outer procedures.

The redefinition of labels is a restrictive process since it destroys pre-
vious values. It may not always be intentional.

6.3. FUNC (FUNCTION) DIRECTIVE

The FUNC directive enables the user to obtain a value at assembly time contingent
upon a set of parameters. The function is a device which will cause certain prede-
termined lines of coding to be saved when encountered during assembly and, when
referenced subsequently during the assembly, a computation will be made according
to this coding. The evaluated quantity is then substituted for the reference call with-

in the program.

The function is similar to the procedure in that the lines of coding representing the
definition must precede any call (reference point) and this delineation of code is

. saved when encountered. The function is different from the procedure in that a value
is calculated when a function is referenced and, unlike the procedure, no object lines
of coding are ever generated. The procedure usually generates lines of object code
at assembly time at its point of reference to be executed at object time. The function
executes entirely at assembly time and stores its results into the program at this time.

The general rules of definition are similar to the PROC. A FUNC directive must start
the function area. This line must have an unsubscripted label which may be flagged.
If this line is an entry point into the function, it must be flagged. The delineation of
code is terminated with an END directive which must have an operand. This operand
field will be an expression whose evaluation will result in the proper quantity being
substituted into the reference point in the program.

NAME lines may be alternate entry points into the function. The labels associated
with these NAME lines must be flagged in this event. NAME lines may also be used
as local reference points within the function. Forward references should be avoided.

6.3.1. Function Nesting

When a function is nested it is not necessarily assembled when the outer code is
called; assembly occurs only if the function has been specifically called, Until
a function has been called, no information contained in it, except the label and
code level of its entry points, is available to the assembler. Following a call,
information is available according to the standard code level rules.




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER e a0 N,

12

6.3.2.

6.3.3.

Function Calls

A function is called by coding one of its entry points in any operand expression. This
differs from a procedure which is called from the operation field. Parameters for the
function may be specified by the programmer by following the call with a paren-
thesized single list of items or expressions. The items may not be logically forward
referenced.

Function Paraforms

Parameters supplied with a function call can be substituted in programmer-designated
places within the function coding through the use of paraforms. Unlike PROC, how-
ever, FUNC paraforms are, at most, singly subscripted labels, whose primary is the
label of the FUNC directive.

The paraforms of a function are evaluated as shown in Table 6—2, where F is
the label of the FUNC directive.

If the paraform is it is given o numerical value equal to
written as, or in the
form
F the number of parameters (items or expressions)

supplied with the call, plus 1 if the entry
line is a NAME directive.

F(0) the value of the expression, if any, in the
operand field of the NAME directive used for
entry into the function. If the entry line is
the FUNC directive, this value is 0.

F(K) the Kth expression in the parameter list
supplied in the call. If less than K
expressions are supplied, this value is 0.

Table 6=2. Evaluation of FUNC Paraforms

Note that F is a true implicitly defined subscripted label, whose value is derived
from the call line and the method of call. Paraforms differ from true subscripted
labels in one respect: when a function is terminated, a paraform that was referenced,
but not otherwise defined,is given the value of zero. Additional subscripted labels
whose primary is the label of the FUNC directive may be defined within the function
and will affect the appropriate previously defined paraform, if not externalized.
Paraforms of a function are available to the function called by the FUNC.

An example of the function is the case where a certain average calculation is made
throughout the coding. The programmer should keep in mind that this calculation could
have been made by hand and is not dependent upon the execution of the object

code. If ‘‘a’’ is the number of first type objects and ‘‘b’’ is its unit price and “‘c”’

is the number of second type objects and ‘‘d”’ is its unit price and it is necessary

to calculate the average price of the combined number of objects, a mathematical

expression which would calculate this value would be:

Average cost = M

a+c




UP-4133 6
Rev. 1 UN'VAC 494 ASSEMBLER SECTION: PAGE:

‘ If at assembly time, a, b, ¢, and d are known to have the values 1, 2, 3, and 4,
respectively, the calculation can be accomplished by a FUNC directive as shown

in Figure 6-3.
DS N 1S (S O Ly P A S IO R (AT S ety D VA 1 ) T (e s e T R O W s

AVIGIC1OS* - yRFyUINC: o g 4 g g Joge e g g gy e e B )

AGly)y ¢y EQIYU (AVGCOS (1) * AVGCOS (12])1 1 1 4

B, (yVy)y 4y 4 4EQU, AV,6C0S5,(,3]),* AV GCOS (4]); 4 ¢+ 1 |

COHVYy (1 EQU AGYD) B G o v i 0 vl b

DI(J]l)l S =] | lElQlUl lAllelclolSl(J]l)I+1A1VJGlclolsl(l3l)l =1

o010 g GEND GOV DG b e

-y A LTHOUGH ,THE ,CALCULATION ,COULD, BE,

IDlolNlEl lllNl IIL JSILEJPl'lllTl l'lsl IMOI&EJ_lnglPIEIDI|1°I

2 |
- ,ENT ,TO USE SEPARATE EXPRESSI|ONS, |
-y AND  THEN COMBINE |, |, v 00l 4 30

(O T V(T T N O (17 (0 YR 1 () o e Yo 8 ) (1 T O (U

T R Yo\ (e S 1 e 0 1 YRS T VOO IO ) Y T Y |

' L1111 g gLB) oy 46, AVGCO ST ,020 03, 040)0,120 1.y 1

(A/BOVE, ;I S|] |CALL;, WHI CIH, |C,AU S ES: |GIENER-,

.y jAT/I ,ON OF VALUE AT, |AS S EMBLY T|I ME , |

Figure 6=3. Simple Function



UP-4133 6 14
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

The next example shows a function which has a procedure embedded within it. The
problem is to find the square root of the largest square which is less than or equal ‘
to a given number. Although it is not the most elegant method, it illustrates coding

features of interest to the programmer.

Er i g o o NV O MU P YR T G e 7 I o A O v = £ T
1 ISQRT:*: (FUNG: 5 5 ¢ v 4 g 3 by g e 0 00 0] v g1
- IS W O I L v\ L O T O A T Y 0 A L I R (O ] I Y
<Yt (- V0 R W -1 v O L TN W (N ) (L T AT S W N Y T Y TR T Gl 1 1 |
0 e o S Tl o VN T e S O (T (ST Y Y Y v T Y L
5 A1), %, JEQU L, AT 12,80 g ] s
G IBGCT) Y o v B oo B G ) Y g 0o el a1
7 L AT A T e T I S RV Y U Gl T (S Ty OO () NN T U O
A e O N T YT SR U VT W T VAT CRRN N T T SN M YIS VL
9 T I e e Ry 0] O Yoy 0, TR0 0 S O VAN T VA VA O S NNY W 7 ) il S T F
0|, ,,,,,,,00 ;4 SQRT (1) >ACTY), 4,y 160, D) 4
MW, v v s 1 ENDy oy 1B ) = GSIQRTGTD) I AICT ) 1)
12|, SRT(6,40)y 4oy g | (FILRST CIALL ‘
13 st o4t 2, ISQRT(G,3) 4] 4.y 4S,EICOND, |C,ALL
2 S S 7, | O I YO N YU W N 0 TR I N T ) W VY VA T A VAT O S

The calculation is based upon the equation (a 4»1)2 = a2 +2a +1. Line 6 supplies
successive a’s while line 5 contains successive az’s. Lines 1 through 11 are the
function with a nested procedure which, in turn, contains a nested DO. The first
call upon the procedure, line 12, will produce the object code 0000000010. The
second call upon the procedure, line 13, will produce the object code 0000000006.
Line 14 terminates the assembly or program.

6.4. DIRECTIVES ASSOCIATED WITH PROCEDURES AND FUNCTIONS

This section describes the following directives, which are associated with procedures
and functions: NAME, GO, and LET.

6.4.1. NAME Directive

The NAME directive has three functions: to act as a local reference point within

a procedure or function, to act as an alternate entrance into a procedure or function,

and to assign a value to a procedure. It must be located between the PROC (or FUNC)
directive and its associated END line. Those variables in the procedure or function

defined previous to the NAME directive are considered undefined. The operand

portion of the NAME can be used to supply a parameter, P(0,0), to the procedure

or function. (See Tables 6—1 and 6—2 for evaluation of paraforms, and 6.4.4 for

an example.) .

e R T N R e et N T L AR




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER SECTION:

6

PAGE:

15

6.4.2. GO Directive

The GO directive is used within a procedure or function to transfer control of the
assembler to the line whose label is in the operand field of this directive. This

operand field must be one of the following:

® The label of a NAME directive in the same procedure. If this is a forward transfer,
the label must end with an asterisk (in the NAME directive).

® An external label of a NAME directive of any procedure.

® The label of a PROC or FUNC directive which must be suffixed by an asterisk

if in another program unit.

Examples:

A simple example is the following:

I (5 M Vi e AN, 6P L ABELY, |y e s el
PE U iy [ AT VAT 8 VS R TR (VNN I e e ol O T s ) [ 1 O
hu it Ry I TN TR VIR 7300 TG 1507 T DO 0 30T Ly T (O (1 L ] 1 1 ) e S
I T A 9% 2 I Y LR 116 0 o T (0l Y Y W LR Sl O T
LIAIBIEILLII 1 1 INJAlMlEl L4441 1 l 1 ol Ml (S 8 S0 ) T | I Ui

Another example

is shown in 6.2.6.




UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: PAGE!

6.4.3. LET Directive ‘

A LET directive is generally used within a procedure or function (see 5.17). It is

used to assign (and reassign, if required) values to assembly variables which may later
require reassignment. The variables upon which it may operate must not have been
defined elsewhere (e.g., by an EQU directive). The format of the LET directive is
LET V =e where V is a LET-defined variable and e is any expression, as in the
following:

T T TR A I T =7 o T oy e VANV VO ) Y SO A (B 0 T 0 i 0 S O 1 S

DOIG*y g qop g INGAMEL gl [ ¢ ¢ 100 iy o f vee ] gyt A gy

lllllllLllLlElTlllllllLAl=lollllllllllllll

BiAMCaKe o 1 ia INGAIMEY ¢ ¢ ¢ g oy pegeg g g qeg ) gl gty g g
ey iy ¢ gy K0y w g oy 1 ¢ TCGRTY( ALY

-
-
-
-
b

Lt 1 11 11 1 ISA ™ 441 |1D0G(A+,2,)

-
-
-

P R TR T T TR O L O T T O . i o W e S O TR SR Y

=1 i1 0111 lolol lAl(‘lzlsl e ) lqu LBLAlclKl =3 l (1 5 T b -

T VT . R0 lNlAlMAEA i 1 L€ I U l 1 R | 4 ' 1 1 l 1 | 1 1 §

LT LT TIRT VT SR O T LT 3% U M UMY [, 1L M DO L M [ A (o o

BiK;l, ;o4 g INVAME, g0 b oy o e bt
ot 03 v ot g3 g AWy p o IPCAT 8 g 0 ] gy
Vet T 25 e ey ) | L ls lAlllwl = S 1 lPl( 1] iz lBl )l 1 1 l L {1 | |

llllllllllLIElTllllllllallel+lzlllllllllll

TS TR 1oy O VA T | lolol lBl(‘lzlolll | IGlol lBlKl‘l t=od l SIS ==

P Ty o O T L - ) /Y T VD O A T W O ol S W (10 7 /D A T L W




UP-4133
Rev. 1 UNIVAC 494 ASSEMBLER

Appendix A

SECTION:

PAGE:

’ APPENDIX A. ABBREVIATIONS AND
SPECIAL SYMBOLS

The following is an explanation of special symbols and abbreviations used in text:

SYMBOL
OR MEANING
ABBREVIATION
—_— direction of data transfer.
(a) the contents of a location or register, ““a'".
(a), the n'h bit of (a).
(a)y, the lower 15 bits of (a).
(a)y the upper 15 bits of (a)
A 30-bit A register (accumulator).
AQ 60-bit register made up of A and Q.
2 ] blank.

b designator

B

By

B;

BCD

CP(x)

f designator

g designator

IFR

j designator
k designator

LP

nines complement

ones complement

NI
P

Q
RB
RIR

tens complement

y designator

designator

“|

Y designator

three-bit designator in an instruction word indicating an index
register whose contents are added to the y designator to form
the effective address or effective operand, ¥, of an instruction
(also termed “‘buse address’’ or ‘“‘base operand address’’),

index register,

index register determined by b designator.

index register determined by j designator

binary coded decimal

ones complement of the contents of x.

six-bit function designator in instruction word

six-bit designator in 77 instruction word which supplements the
{ designator.

internal function register

three-bit designator in instruction word which usually defines
a condition for skipping the NI

three-bit designator in instruction word for defining source of
operand and/or destination of result.

logical product.

value formed by subtracting each decimal digit from the number 9.

value formed by subtracting each bit from the number 1.

next sequential instruction.

Program register—containing address of next instruction during
execution of current instruction.

30-bit Q register
relocatable binary.

relative index register.

value formed by adding 1 to the nines complement (performing
all carries).

lower 15 bits of an instruction word.

value formed by addition of contents of By to y to be used
either as effective operand or relative (relative to RIR) address
of operand.

operand, from whatever source derived.

Table A-1.

Symbols and Abbreviations



UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

Appendix B

SECTION:

PAGE:

APPENDIX B. FIELDATA AND CARD

CODES FOR CHARACTER

FIELDATA HIGH CARD FIELDATA HIGH CARD
CODING SYMBOL | CODE | SPEED | copg| COPING SYMBOL | CODE | SPEED | cooe
(OCTAL) PRINTER (OCTAL) PRINTER
V (Master Space) 00 g 7-8 ) (Right Parenthesis) 40 ) 12-4-8
[ (Left Bracket) 01 [ 12-58 | - (Minus) 41 - 11
| (Right Bracket) 02 ] 11-58 | + (Plus) 82 + 12
# (Pound) 03 4 12-7-8 | < (Less Than) 43 12-6-8
A (Caret) 04 A 11-7-8 | = (Equal) 44 3-8
(Blank) 05 (Space) (Blank)] > (Greater Than) 45 > 6-8
A 06 A 12-1 |} & (Ampersand) 46 & 2-8
B 07 B 12-2 | § (Dollar) 47 $ 11-3-8
Cc 10 C 12-3 | * (Asterisk) 50 . 11-4-8
D 11 D 12-4 | ( (Left Parenthesis) 51 ( 0-4-8
E 12 E 12-5 | % (Per Cent) 52 % 0-5-8
F 13 F 126 | : (Colon) 53 - 58
. G 14 G 12-7 | ? (Question) 54 ? 12-0
H 15 H 12-8 | ! (Exclamation) 55 ! 11-0
| 16 | 1249 |, (Comma) 56 , 0-3-8
J 17 J 11-1 |\ (Stant) 57 \ 0-6-8
K 20 K 112 J O 60 0 0
L 21 L 11-3 |1 61 1 1
M 22 M 11-4 | 2 62 2 2
N 23 N 11-5 | 3 63 3 3
0 0 116 | 4 64 4 4
P 25 P 11-7 |5 65 5 5
Q 26 Q 11-8 | 6 66 6 6
R 27 R 118 | 7 67 7 7
S 30 S 0-2 8 70 8 8
T 31 T 0-3 19 71 9 9
U 32 u 0-4 + (End Statement) 72 '(Apos.) 4-8
v 33 v 0-5 | ; (Semicolon) 73 s 11-6-8
w 34 w 0-6 | /(Virgule) 74 0-1
X 35 X 0-7 | . (Period) 75 12-3-8
Y 36 Y 0-8 | XX (Lozenge) 76 0-7-8
Z 1 37 Z 0-9 Not Used 77 3 0-2-8
NOTE: (NP) Signifies that the printers will substitute a space for this character.
‘ Table B-1. Fieldota and Card Codes for Choracter Representation




UP-4133
Rev. 1

UNIVAC 494 ASSEMBLER

AT

PAGE:

APPENDIX C. ASSEMBLER / SPURT
FUNCTION CODES

The following table (Table C—1) lists both Assembler and SPURT mnemonics by function

code.
F MNEMONIC DESCRIPTION ASSEMBLER SPURT
01 Right Shift Q RSQ RSH*Q
02 Right Shift A RSA RSH*A
03 Right Shift AQ RSAQ RSH*AQ
04 Test A, Test Q, Test R TA, TQ, TR |COM*A*Q*AQ
05 Left Shift Q LSQ LSH*Q
06 Left Shift A LSA LSH*A
07 Left Shift AQ LSAQ LSH*AQ
10 Load Q LQ ENT*Q
11 Load A LA ENT*A
12 Load Bj LB Bj ENT*B;
14 Store Q SQ STR*Q
15 Store A SA STR*A
16 Store Bi SB Bj STR'BJ-
20 Add A A ADD*A
21 Subtract A AN SUB*A
22 Multiply M MUL
23 Divide D DIV
24 Replace A + Y RA RPL*A+Y
25 Replace A~ Y RAN RPL*A-Y
26 Add Q AQ ADD*Q
27 Subtract Q ANQ SUB*Q
30 Load Y + Q LAQ ENT*Y+Q
31 Load Y- Q LANQ ENT*Y-Q
32 Store A + Q SAQ STR*A +Q
33 Store A - Q SANQ STR*A-Q
34 Replace Y + Q RAQ RPL*Y +Q
35 Replace Y - Q RANQ RPL*Y-Q
36 Replace Y + 1 (Increment Y) RI RPL*Y +1
37 Replace Y — 1 (Decrement Y) RD RPL*Y-1

Table C=1. Assembler/SPURT Function Codes (part 1 of 3)




UP-4133

Rev. 1 UNIVAC 494 ASSEMBLER et = | maew
F MNEMONIC DESCRIPTION ASSEMBLER SPURT
40 Load Logical Product LLP ENT*LP
41 Add Logical Product ALP ADD*LP
42 Subtract Logical Product ANLP SUB*LP
43 Test Logical Product TLP COM*MASK
44 Replace Logical Product RLP RPL*LP
45 Replace A + Logical Product RALP RPL*A+LP
46 Replace A — Logical Product RANLP RPL*A-LP
47 Store Logical Product SAND STR*LP
50| OR OR SEL*SET
51 Exclusive OR XOR SEL*CP
52 NOT NOT SEL*CL
53 Selective Substitute SSu SEL*SU
54 Replace OR ROR RSE*SET
55 Replace XOR RXOR RSE*CP
56 Replace NOT RNOT RSE*CL
57 Replace Selective Substitute RSSU RSE*SU
60 Jump on Test JT JP
61 Jump ] P
64 Store Location and Jump on Test SLJT RJP
65 Store Location and Jump SL] R]JP
70 Repeat R RPT
71 Test B and/or Increment TBI B j BSK"‘Bj
72 Jump on B and Decrement JBD B’. B‘]P*Bj

7701 Floating Add FA FADD
7702 Floating Subtract FAN FSUB
7703 Floating Multiply FM FMUL
7705 Floating Divide FD FDIV
7706 Floating Point Pack FP FPP
7707 Floating Point Unpack FU FPU
7710 Decimal Test DT DTEST
7711 Decimal Add DA DADD
7712 Decimal Subtract DAN DSUB

Table C=1. Assembler/SPURT Function Codes (port 2 of 3)




UP-4133 Appendix C
Rev. 1 UNIVAC 494 ASSEMBLER SECTION: PAGE:

‘ F MNEMONIC DESCRIPTION ASSEMBLER SPURT
7713 Decimal Test Equal DTE DCME
7714 Decimal Complement AQ DN DCP
7715 Decimal Add with Carry DAC DADDC
7716 Decimal Subtract with Borrow DANB DSUBB
7717 Decimal Test Less DTL DCML
7721 Double Precision Load DPL DPENT
7722 | Double Precision Add DPA “ |[pPADD
7723 Double Precision Test Equal DPTE DPCME
7724 Double Precision Complement DPN DPCP
7725 Double Precision Store DPS DPSTR
7726 Double Precision Subtract DPAN DPSUB
7727 Double Precision Test Less DPTL DPCML
7730 Scale Factor Shift SFS SFSH
7731 Character Pack Lower CPL CREL
7732 Character Pack Upper CPU CREU
7733 Convert Lower DCL DCVL
7734 Convert Upper DCU DCVU

‘ 7735 Character Unpack Lower CUL CRSL
7736 Character Unpack Upper Cuu CRSU
7737 Execute Remote ER XQT
7740 Unconditional Jump LBP] B0 EBJP*B0
7741 Load Bl with contents P register and Jump LBP] Bl EBJP*Bl1
7742 Load B2 with contents P register and Jump LBP] B2 EBJP*B2
7743 Load B3 with contents P register and Jump LBP] B3 EB]JP*B3
7744 Load B4 with contents P register and Jump LBP] B4 EBJP*B4
7745 Load B5 with contents P register and Jump LBP]J B5 EBJP*B5
7746 Load B6 with contents P register and Jump LBP] B6 EBJP*B6
7747 Load B7 with contents P register and Jump LBP] B7 EBJP*B7
7751 Logical Right Shift Q LRSQ LRSQ
7752 Test and Set TSET TSET
7753 Masked Alphanumeric Test Equal MATE MACE
7754 Executive Return EXRN EXRN
7755 Logical Right Shift A LRSA LRSA
7756 Logical Right Shift AQ LRSAQ LRSAQ
7757 Masked Alphanumeric Test Less MATL MACL
7771 Load B-Worker Registers LBW EWB
7775 Store B-Worker Registers SBW SWB

Table C=1. Assembler/SPURT Function Codes (part 3 of 3)



UP-4133
Rev. 1

Appendix D
UNIVAC 494 ASSEMBLER SECTION: PAGE:

D1.

D2.

D3.

D4,

DS.

APPENDIX D. ERROR FLAGS

GENERAL

The following error flags may appear in the listing at assembly time.

F

L

AG INDICATION

Undefined symbol
Doubly defined
Relocation

Level

Truncation
Expression error
Illegal operation
Parameter error

i el o B B = T

U (UNDEFINED)

If a symbol has not been defined in its own program element, the U flag will result,
even though the symbol may be listed as an external reference (in an XREF directive)
Thus, this flag may not always indicate a logical error (see 5.13).

D (DOUBLY DEFINED)

The D flag will result when a label has been defined more than once in a program
element. In some cases, this may be desired by the programmer and the LET directive

avoids any such confusion (see 5.17).

R (RELOCATION)

The R flag indicates that a relocatable item in an expression has lost its relocatability
property due to an arithmetic operation. (See 3.5.3 for those operations causing the R

flag.)

L (LEVEL)

The L flag indicates that some capacity of the assembler has been exceeded. Possible
causes of the L flag are:

m nesting of PROC’s and FUNC’s beyond the maximum of 16

m nesting of DO-loops beyond the maximum of 8




(S

UP-4133 P
Rev. 1 UNIVAC 494 ASSEMBLER T g phidhs

D6. T (TRUNCATION) ‘

The T flag indicates that a value is too large for its destined field. As an example,
in the source-coded line ALPHA

ALPHA +‘A’, ‘B’, 1, 2, 67D

the decimal 67 is too large for the rightmost six bits of the word, and the T flag
will be generated.

D7. E (EXPRESSION)

The E flag indicates an invalid expression. Possible causes are (but are not restricted
to) the inclusion of a decimal digit in an octal number (e.g., 080) or a fractional ex-
ponent with the shift exponent operator (e.g., A*/3.5D).

D8. I (ILLEGAL)

The I flag indicates that the first source coded subfield does not contain the name
of a directive, nor the name of an available procedure, nor a legitimate mnemonic.
The one exception to this is the case where the operation field starts with a plus

or minus sign to indicate data.

D9. P (PARAMETER)

The P flag indicates faulty specification of argument(s) for an operation. For example,
the pseudo-op ZA W would result in a P flag because no operand (argument) is re-
quired for the instruction to clear the A register.




UP-4133 Appendix E
Rev. 1 UNIVAC 494 ASSEMBLER SEC TION: PAGE:

APPENDIX E. OPERATION FIELD
HIERARCHY

A symbol in the operation field may be defined in different areas of the UNIVAC 494
Operating System. The following sources are searched, in the order shown, until the
symbol is defined. As soon as it is defined, the search ends.

The sources are:

FORM labels (see 5.5)

m Assembler directives
m PROC entry points

m Assembler mnemonics
m SPURT directives

m SPURT mnemonics

m SPURT macro labels
m SPURT poly-ops

m system operators (OMEGA packets)



UP-4133
Rev. 1

Appendix F 1
UNIVAC 494 ASSEMBLER SECTION: PAGE:

APPENDIX F. #ASM OPTIONS

The following table lists available options on the *ASM card (see ‘““UNIVAC 494 Operating

System Programmer Reference Manual,”” UP-7504 (current version)).

OPTION

X O T U O w

G O OO &R s

N < X = C

FUNCTION

Inhibit basic mnemonics

Check sequence numbers

Delete sequence numbers from listing

Inhibit PROC’s and FUNC's

Allow extended language features

Reverse normal operation field hierarchy

Use single spaced listing

Print relocation information

Print outline of UNIVAC 494 Assembler Reference Manual
Suppress listing except for errors

Inhibit OMEGA packets

Punch deck

Absolute assembly

Produce cross referencing

Place SDEF’'s (Symbol DEFinitions) with RB element
Only symbols listed in XREF directives are valid external references
Suppress error printout

Abort job on errors

Do not indicate errors in TOC

Abort task on errors




UNIVAC |

uP-133 Rev. | /2 /05 547/




