
Radio/hack
62-2017

TWO DOLLARS AND NINETY-FIVE CENTS

ERCNM93462 BX
ERICKSON,MICHAEL

BOX 230
MONTE RIO. CA 93462

iaerstanaing
^Microprocessors

For the newcomer to microprocessors — what they are, what they
do, how they work — and how they can be used to solve problems
electronically. Written in everyday language. Ideal for self-paced,
individualized learning.

Developed and Published by
Texas Instruments Learning Center

Understanding
Microprocessors
Written By: Don L. Cannon, Ph.D

Assoc. Prof, of Electrical Engineering
University of Texas at Arlington
Staff Consultant, Texas Instruments learning Center

Gerald Luecke, MSEE
Mgr. Technical Products Development
Texas Instruments Learning Center

Radio /hack g A DIVISION OF TANDY CORPORATION
FT WORTH, TEXAS 76102

This book was developed by:
The Staff of the Texas Instruments Learning Center
P. 0. Box 225012 MS-54
Dallas, Texas 75265

With Contributions By:
Tim Shirey

Appreciation is expressed to Jim Muller, Steve Howard and Doug Luecke
for their valuable comments.

Artwork and Layout By:
Schenck, Plunk & Deason

Third Printing

IMPORTANT NOTICE REGARDING BOOK MATERIALS

Texas Instruments makes no warranty, either express or implied, including
but not limited to any implied warranties of merchantability and fitness for
a particular purpose, regarding these book materials and makes such
materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or
arising out of the purchase or use of these book materials and the sole and
exclusive liability to Texas Instruments, regardless of the form of action,
shall not exceed the purchase price of this book. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever
against the user of these book materials by any other party.
Copyright© 1979
Texas Instruments Incorporated, All rights Reserved
For conditions, permissions and other rights under this copyright, write to Texas
Instruments Learning Center, P.O. Box 225012, MS-54. Dallas. Texas 75265.

ii UNDERSTANDING MICROPROCESSORS

Table of Contents

Preface iv
Chapter Page

1 Th e World Of Digital Elect ronics 1-1
Quiz 1-31,32

2 Basic Concepts In Microcomputer Systems 2-1
Quiz 2-28

| 3 How Digital Integrated Circuits Provide The Functions 3-1
Quiz 2-40

4 Fundamentals Of Microcomputer System Operation 4-1
Exercise and Solution 4-55-58

5 A System Application With SAM 5-1
Quiz 5-40

6 Programming Concepts 6-1
Exercise and Solution 6-25,26

7 An 8-Bit Microprocessor Application 7-1
Exercise and Solution 7-26-28

8 A 16-Bit Microprocessor Application 8-1
Exercise and Solution 8-26

Glossary G-l
Index 1-1

UNDERSTANDING MICROPROCESSORS i"

Preface

This book is written for the person that has a curiosity about how
microprocessors and microcomputers work: Microprocessors that are being
used in appliance and automotive controls, microcomputers that are used in
toys and games, microprocessor systems that seem to be able to do so much
in such a small space.

With this book some knowledge of how digital electronics work and
how they are used is beneficial. However, it is not necessary. Basic concepts
and fundamentals are a prime ingredient of the book content to provide the^^
overall understanding desired. An understanding that should serve the I
reader well whether working directly with or on the fringe of I
microprocessors, or just wishing to be fully aware of the digital evolution
sweeping over us.

Microprocessors and microcomputers are causing a change in the
design of digital electronic equipment. Where prior systems might have
consisted of a set of hardware designed especially for a particular job, now
common hardware will be used for many different types of jobs. The only-
thing that changes is the program of operations that causes the hardware
to perform its task. Understanding how this can be done - from idea to
completed hardware - is a prime purpose of this book.

This book, like the other Understanding SeriesT"builds the
understanding of the subject step by step. For this reason, the book should
be read a chapter at a time starting at the beginning. Don't skip around to
get details on individual subjects but study the chapters until the basic
concepts are understood, then move on to a higher level of understanding in
the next chapter. The book also encourages the reader, through examples
and exercises, to actually try to use a microprocessor system.

Quizzes and exercises are provided for checks on the understanding
received from each chapter.

A glossary and index help to further expand the understanding of
the subject.

The world of digital electronics is very exciting. We hope this book
helps you to understand and enjoy it.

D.C.
G.L.

UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

The World of
Digital Electronics

We are all surrounded by examples of electronic devices that make
our lives simpler and more enjoyable. In the past, these devices were limited
to radios, televisions, stereos, tape recorders - so-called analog systems that
did not use digital electronics. More recently, electronic calculators have
brought the world of digital electronics to our very fingertips. Now there
are a variety of games, "smart" appliances, and even computers for the
home that are being made available to us through the use of a special type

_ of digital electronic device called a microprocessor.

^PvBOUT THE BOOK
This is a book about microprocessors, or more specifically, about

microcomputer systems which use a microprocessor as the central unit for
processing and control. It is a book for the person who is not familiar with
digital electronics, integrated circuits, analog systems, computers,
microprocessors, microcomputers, software, programs, programming,
source code, object code, machine code, assembly language, assembler, high-
level language, compiler, cross-support, eta It is written to provide
understanding of the basic concepts and fundamentals surrounding these
terms. It is designed to help provide insight into what makes up a
microprocessor, how the microprocessor fits into the microcomputer system,
what other system units are required for the microcomputer system, and
how one gets a microcomputer system to do something.

This all sounds very difficult and complicated. It's not. But to make
the task easier let's make sure we all have the same initial understanding
by discussing a few of the basic terms.

SOME BASIC DEFINITIONS

Computer
A computer is a system made up of units which are pieces of

hardware (electronic circuits, printed-circuif boards, switches, lights, eta)
that perform operations on given inputs to obtain required outputs. These
operations are performed by a particular set of steps arranged
(programmed) to occur in a particular order.

Computers can be made by using mechanical devices such as gears
and levers. Babbage's original analytical steam engine was made this way.

•

Or electromechanical devices such as motors and solenoids can be used for
systems such as an aircraft autopilot computer. A system such as the
handheld calculator can be made by using only electronic devices. This book
is about such electronic devices and how they are used to make computers.

I

hilt TJI

UNDERSTANDING MICROPROCESSORS 1-1

THE WORLD OF DIGITAL ELECTRONICS 1
Analog vs Digital Systems

Computers can be analog systems or they can be digital systems.
When a system such as a computer is an analog system the

quantities to be computed, transmitted or controlled are represented with
physical means that vary in a smooth continuous fashion. The
representation is not broken into discrete parts or separated into set levels
and the signal is usually carried on one or two wires.

In contrast, digital systems represent a system quantity by
breaking it into discrete parts, and usually several wires bundled in a group
are needed to carry the signals.

Let's look at Figure 1-1. A system that plays records or cassette
tapes is an example of an analog system. Continuous varying signals of
audio tones from the record or tape pass through the pickup head into the
amplifier and out the speaker. The sound impulses on the record or tape arej
converted to continuous electrical signals that are amplified and
reconverted to sound by the speaker. The electrical signals have provided an
"analog" or analogy of the sound signals. The circuits used to handle analog
information electronically are usually called linear circuits.

Digital systems on the other hand handle the information in
digital form. The system quantities or system information is made up of a
combination of separate parts called bits. The bits can have only set values,
usually two - 0 and 1. The particular combination of the bit values provides
a code to represent a particular value of the information. In the case of
Figure 1-1, there is a different code for each number.

AMPLIFIER

I PICKUP \
(fO|

CONTINUOUSLY
VARYING SIGNAL

a Analog System

SOUND
WAVES

di
d2

d,
do

KEY PRESSED

2 5 7 9

All four bits must
be used to identify
key pressed.

Different combinations of values tor bits
d, to d, for the different keys pressed

b Digital System

Figure 1-1. Analog and Digital Systems

1-2 UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

Digital Systems and Digital Electronics
Digital systems are systems that handle information in digital

form and digital electronics are the electronic circuits that make up digital
systems to handle the information in digital form.

Digital Functions
A digital function is an operation (like adding two numbers, or

selecting a code when a switch is thrown, or storing a combination of bits
that represent a number) that is performed with digital circuits using
digital information.

Digital Integrated Circuits
Figure 1-2 shows an "IC". That's the shortened name for an

integrated circuit. It is a means of constructing and manufacturing digital
Circuits whereby all the circuits can be made very small on one piece of
silicon semiconductor material so that the chip, about '4" (6.35 mm) square,
fits on a fingertip. Thus, digital integrated circuits are being called
"fingertip electronics". All the digital functions required to perform
complete system tasks can be put into such a small space that they fit on the
tip of a finger.

SILICON
INTEGRATED
CIRCUIT CHIP

Figure 1-2. Fingertip Electronics

UNDERSTANDING MICROPROCESSORS 1-3

Microcomputer

A microcomputer is a complete digital computer, available in a
variety of sizes from one or two printed circuit boards down to all circuitry
on a single monolithic (one piece) chip. When all of the functions of a digital
computer are available in one integrated circuit, it is called a single-chip
microcomputer. It is called a microcomputer because of its small size (micro
meaning small). It is usually in the smallest range of size and slowest range
of speed when compared with all digital computer systems. On the other
hand, it is a complete system and, as more and more digital functions are
included as "fingertip electronics" on a single chip, the functions the
microcomputer can do in a given size will increase rapidly.

A microcomputer has a microprocessor as its central functional
unit. In computer jargon such a circuit is called a CPU (spoken as if you
were spelling it — C - P - U) meaning Central Processing Unit. |
Microprocessor

The microprocessor is a digital integrated circuit (or a set of IC's)
that contains the digital functions necessary to be a CPU. It "processes"
information and controls and keeps the system working in harmony as it
responds to the step by step program that the CPU follows.

Throughout this book a microprocessor unit is considered to be
within a microcomputer and when material is discussed on microcomputers
it contributes to the understanding of microprocessors.
Computer-Like Circuits

In many cases digital functions are being accomplished by digital
integrated circuits that are not complete computers but use many of the
same circuits used in computers. These may be designed especially for a
given task (custom designed) or they may be combinations of standard
functions. Such circuits are referred to as "computer-like" circuits.
ABOUT THIS CHAPTER

There is no question that digital electronics has made significant
strides over the last few years. Take for example Figure 1-3 which shows
the major technology advances that have occurred to impact computer
technology since the abacus of 450 B.C. Examining the data shows that the
real advances in digital systems have occurred since the early 1940's. The
last 4 are directly related to advances in digital electronics and the
integrated circuit. In fact, as demonstrated in Figure 1-b, it took almost
2300 years to advance from the abacus to Babbage's mechanical calculator,
and it has taken only 28 years to advance from the Mark I relay computer to
a single-chip microcomputer.

1-4 UNDERSTANDING MICROPROCESSORS

1 THE WORLD OF DIGITAL ELECTRONICS | 7 || b II a |

[1 II' ^ 3 I

450 BC CHINESE ABACUS

1642 PASCAL MECHANICAL + . - MACHINE (GEARS & WHEELS)

1671 LEIBNIZ MECHANICAL + , - , X, + MACHINE (BINARY)

1833 BABBAGE ANALYTICAL ENGINE (STEAM)

1944 MARK 1 ELECTROMECHANICAL COMPUTER (RELAYS)

1946 VON NEUMAN STORED PROGRAM CONCEPT

1948 BELL LABS TRANSISTOR

1950 UNIVAC 1 VACUUM TUBE COMPUTER

1959 Tl INTEGRATED CIRCUIT

1971 Tl ONE-CHIP CALCULATOR

1972 Tl 4-BIT MICROCOMPUTER ON A CHIP

1976 Tl 16-BIT MICROPROCESSOR

1977 Tl 16-BIT MICROCOMPUTER ON A CHIP

Figure 1-3. Advances in Computer Technology

Figure 1-4. Computer Advances vs Time

Of the four computer eras shown in Figure 1-5, the last three are
tied directly to advances in solid-state technology, more digital functions on
a chip, and lower costs to provide more functions per dollar in a continually
reduced space.

1ST GENERATION 1950 S

2ND GENERATION 1960S

3RD GENERATION 1970'S
4TH GENERATION 1975

VACUUM TUBES

SOLID STATE

INTEGRATED CIRCUITS

COMPUTER-ON-A-CHIP

Figure 1-5. Typical Computer Eras

UNDERSTANDING MICROPROCESSORS 1-5

THE WORLD OF DIGITAL ELECTRONICS 1
This is what's so exciting about microprocessors and

microcomputers and computer-like digital circuits in general - they provide
such high-powered digital functional capability in such a small space at such
a low cost. This has caused an explosion in their use and a change in the
approach to digital system design. To understand how and why this has
happened is the subject of this chapter. Let's start with the use of digital
electronics.

WHO USES DIGITAL ELECTRONICS
Just about everyone uses digital electronics. We may not realize it,

but digital electronic systems using microprocessors and microcomputers
are appearing in more and more of the equipment that surrounds us each
day - in our homes, the place where we work, the places where we shop, the
places where we have fun. In our homes, in particular, the evolution is
underway. Digital electronic circuits are controlling home appliances. Hand
calculators are being changed into hand computers. More extensive
fingertip digital electronics are finding their way into the home in the form
of complete home systems.

Digital Electronics in the Home
To see how digital electronics in the form of computer-like controls

or microprocessors have become part of our everyday lives, let s look in on a
modern family just getting settled after moving into their new home. We
enter the scene with the man of the house working at his desk. He appears
to be typing, but as we move in closer, we see that there is a keyboard and a
small TV screen. We realize now that he is working with his home computer
(Figure 1-6). He is looking at some family expenses and getting ready to
study some possible investments.

Figure 1-6. Built-in Home Computer

1-6 UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

A Conversation — About a Home Computer
His son enters and interrupts him with a question: "Hi Dad, what are you

doing?" "Working on some bills," replies the father. The son continues, "I
was hoping I could play the space game; will you be through soon?" "Fairly
soon, then we'll both play," said the father. The son watched the father
making his entries and asked, "Dad, I was wondering the other day, are we
the only family that owns a home computer?" His father answers, "No,
there are many hobbyists who have them. We are probably one of the few
families who have a computer that is built-in to help control many things
around the house. But that's because we have just built a new house and we
invested in a fairly complete home computer system."

"It must have cost a lot," the son commented. "Well, not really.
About as much as we paid for Mom's used car," the father replies. "It's an

.investment that will last us a long time and it makes our lives easier and
more enjoyable. We can do a lot of things with it. It helps us keep track of
our expenses, supplies, and things we have to do. I can be a better investor,
by making more money from investments. It helps us compare quickly
things we want to buy so we can be better consumers and spend our money
more wisely. It controls our heating and cooling system so that we get the
most comfort for the least cost. It keeps our pool heated for the lowest cost."

"It even helps Mom in the kitchen. With the push of a few buttons,
she can control her cooking time and temperature to save energy and, of
course, time her cooking when she's away. It can keep track of her budget
and what she needs to buy and when. It helps her save recipes and to adjust
them for different meal sizes."

"It also keeps track of when we should fertilize the yard, when and
how long to water the lawn, when we should change our furnace filters, and
other simple schedules that we tend to forget without timely reminders."

"I've seen TV ads by companies that make computers and
calculators and they talk about these small electronic circuits. I think they
call them microelectronics or something like that - maybe integrated
circuits," the son responded. "Are there any in our computer?" he asked.

"Oh, yes," said the father, "that's what makes it all possible. If the
manufacturer didn't have integrated circuits, they would never be able to
do everything in such a small space and at such a low cost. I know there's a
central unit in here called a microprocessor. It does the main things, but I
understand there are several other units that are just as complicated as the
microprocessor that take care of getting the inputs in from this keyboard
and from the tape recorder. Remember how we must play in the tape for
the space game before we start. That's the program. It tells the computer
what to do as we play the game."

UNDERSTANDING MICROPROCESSORS 1-7

• • • era THE WORLD OF DIGITAL ELECTRONICS 1
About Appliances with Computer-like Controls

"My teacher says it's very unusual for people today to have
computers in their homes, but that many people will have them in the
future," said the son.

The father remarks, "That's particularly true since more and more
people will be buying homes with built-in computers. What many people
don't realize is that they already have computers of some form in their
homes but don't recognize them as such. Take the microwave oven we have
in the kitchen as an example (Figure 1-7). Contained inside it is a
microprocessor circuit that controls its operation and provides Mom * ith
many choices for cooking our food. She can tell the oven to defrost frozen
food, tell it exactly when she wants it to start cooking, when it is to keep the
food warm, and so on. She can program any sequence of these operations
that she needs for any meal she wants to cook and the oven does the rest.
Then, once the meal is prepared, the oven signals her with a buzzer. • iMr-ww ' &

1

Figure 1-7. Microwave Oven (Courtesy Litton Microwave)

"That's what's so nice about the new microprocessor control. The
step-by-step sequence of things that it does can be set-up easily and
changed easily; with the older controls you couldn't do that. They weren't
programmable."

"The controls in that oven seem quite small," said the son, "I
thought computers or controls like that were very large." "Well, they used
to be much larger years ago," said the father. "In fact, when computers
were first built (Figure 1-8), they required more room than the space in our
entire house. But today, digital electronics, and especially digital integrated
circuits, have changed that. They provide lots of functions in a very small
space and for a very reasonable cost."

J_G UNDERSTANDING MICROPROCESSORS

Figure 1-8. Early Large-Scale Digital Computer (Courtesy IBM Corp)

About Handheld Computers
"Hand me that calculator there on mother's desk," he said. The son

reached over and picked up the 4-function hand-held calculator they had
purchased at the department store (Figure 1-9). "Now here is really a
reduction in size," the father continued. "If you were to open this calculator
you would find that essentially all the electronics except the keyboard and
the display are in one package." "How much did we pay for it?" asked the
son. "$9.95," answered the father. "You mean that everything that's needed
for all those calculations is made at the same time and put in one package?"
asked the son. "That's right" said the father, "and that's why the cost is
low. It takes only a small amount of time to put it together and test it."

Figure 1-9. Handheld Calculator

UNDERSTANDING MICROPROCESSORS 1-9

THE WORLD OF DIGITAL ELECTRONICS

"I know they call these calculators, but is it really a computer?"
asked the son. "Yes, somewhat," replied the father, "but it's one designed
especially for certain problems and therefore limited in what it can do. It
only has a keyboard input and a display as an output. It has no large
memory for storing data or programs. It can't be changed in what it does
unless the circuits inside are changed."

The father picked up the handheld scientific programmable
calculator (Figure 1-10) he uses at work. "Now, here is a computer," he said.
"It is programmable - that means it can be changed easily to solve many
different problems. It has a magnetic card memory so that a program can be
saved and used again and it can be attached to a printer to print out what's
on its display. It's still limited in inputs and outputs and memory for
storage, but it can solve problems as well as some of the better computers of
the 1950's which were so large that they would have filled our living room.
The size reduction is over 15,000 times." "Gosh, that's some size reduction,"
replied the son. "It sure is," replied the father.

Figure 1-10 . Programmable Calculator

About A Computer-Controlled Camera
"Here, let me show you something else that really shows what

digital electronics can do in a small size," said the father as he found a page
in the photography magazine on the desk. "Take a look at the camera in this
ad (Figure 1-11). It has a computerized control in it. It has a microcomputer
with a microprocessor that was designed especially for this camera. It's
really something. When you use the camera, you tell the microcomputer in
the camera how you want the camera to act by simply setting switches on
the camera to certain positions. The microcomputer then sets up the camera
and automatically sets the exposure for you so that you get a perfectly

1-10 UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

Figure 1-11. Automatic Erposure Camera (Courtesy of Canon Inc.)

exposed picture every time. All you have to do is point the camera, focus,
and shoot." "Almost anyone could use one of those," the son observed. The
father agreed, "and there's another advantage of using digital circuits. The
camera settings can be displayed in number and letter form just as it is on
your digital watch." "And look here," the father continued, "here's a picture
(Figure 1-12) that gives you an idea of the small size of the computerized
control circuitry. You see that most of the space in this small camera is used
for film, viewfinder, lens, and mechanical controls. Only a very small space
is required for the digital electronics that controls all the settings."

UNDERSTANDING MICROPROCESSORS 1-11

Figure 1-12. Interior View of Camera (Courtesy of Canon Inc.)

THE WORLD OF DIGITAL ELECTRONICS 1
About Electronic Toys and Games

"Dad, do the electronic toys contain computers?" asked the son.
"Oh, yes, many of them do. That bowling game that Mary next door got
some time ago for Christmas (Figure 1-13), that has a microcomputer in it.
That ship game you received, (Figure 1-H). what do they call it?" "Code
Name: Sector," the son replied. "That has a microcomputer in it and so does
the one (Figure 1-15) that Steve gave Margo," continued the father, "And 1
found out something interesting about all of them from our engineer at
work. All three of these games use the same single-chip microcomputer.
Now, that really shows you the advantage of microprocessors and
microcomputers. The same unit can be used to do many different things.
Just by making it follow a different step-by-step procedure, the same
microcomputer is used to control each of the three games."

Figure 1-13. Bowling Game (Courtesy of MARX)

Figure 1-14. Electronic Game (Courtesy of Parker Brothers
CODE NAME: SECTORS game equipment @1977 Parker Bros, Beverly.MA.)

1-12 UNDERSTANDING MICROPROCESSORS

THE WORLD or DIGITAL ELECTRONICS

Figure 1-15. Computer Toy (Courtesy of Parker Brothers
M E R L I N ™ g a m e e q u i p m e n t @ 1 9 7 8 P a r k e r B r o s . B e v e r l y . M A)

"I'm sure you can see the advantages to that. Instead of making
three different microcomputers only one is made. The quantity of units for
the single unit is now the sum of the units used in each of the three units.
This reduces the cost." "Why is that?" asks the son. "It's just cheaper to
make one unit in larger quantity than it is to make three units in smaller
quantity," replied the father. "The game manufacturers use the same
standard part but just change the step-by-step procedure to make their
special game."

"That's what you said we do when we play games on our
computer," noted the son. "Yes," agreed the father. "We play in a cassette
and that programs the computer to: follow the position of the levers on our
controls, to keep the score, to keep track of the action and set up the screen
so we know what's happening."

1-13

THE WORLD OF DIGITAL ELECTRONICS

"You see the same thing for many of the video games on the
market. One central unit plays many different games by reprogramming it
from cassette tapes. The number of different games is limited only by the
number of cassettes that are available. This is why microcomputers and
microprocessors are having such an impact, one unit can do so many things.
They give you more for your money. Instead of having to buy a new game,
you buy a new program. You get many different games for about the same
price as older video games that were designed just to do a given set of
games."

About the Future

Thinking back on what they had talked about, the son said, "I
didn't realize that electronics was doing so much. If this continues, we are
going to be surrounded by electronics." "You're being surrounded already,"
was the father's reply. "We've just talked about what's going on in our
home. Every place - in industry, in business, in the schools - electronics,
and especially digital electronics, are doing things cheaper, more efficiently,
quicker and are just making our life a lot easier. And it's going to continue.
Microprocessors and microcomputers are bringing so much problem-solving
capability into our hands at such a reasonable cost that more and more
people are going to find ways to use them."

"Have you had anything on computers at school?" asked the father.
"We are just starting to get into them in science class," replied the son.
"You're going to be learning more about computers as you go on. You'll find
they are not difficult to understand. They use common ways of doing things.
Common names, terms, and functions are used over and over again. Once
these common ways and terms are known, you will be able to understand
how they are used over and over again in different ways to solve different
problems or do different tasks. You'll be able to understand "

Quite a story, what's behind it? How did it come about? Why is
digital electronics used? What made the so called digital electronic
evolution happen? Let's start answering these questions by looking at why
digital electronics are used.

WHY DO WE USE DIGITAL ELECTRONICS?

In Figure 1-1 two systems were described. An analog system that has
system quantities that vary continuously and a digital system where
combinations of bits form codes to represent system quantities.

Analog systems are all around us. It is the conventional way that
has been used for a long time to build systems. For some systems the analog
solution is still the most economical and practical way, but because digital
electronics can provide system solutions that solve the problem or do the
task with less cost, more efficiently, more effectively, quicker, more
accurately, digital systems are replacing analog systems.

1-14 UNDERSTANDING MICROPROCESSORS

System Solutions at Lower Cost
Providing system solutions at lower cost has been a prime mover

for digital electronic systems. The cornerstone for low cost has been solid-
state semiconductor technology and, even more so, integrated circuit
technology. Figure 1-2 showed an integrated circuit. Within such a chip of
silicon material (a semiconductor material) enough digital circuits can be
made to provide all the digital functions that are needed for a complete
computer - a microcomputer. Because the circuits on the chips are made all
at the same time, and because thousands of chips are processed together,
the cost per function has been reduced up to 2,000 times below the cost when
individual parts were wired together. All of this has occurred with improved
system performance, smaller size and weight, lower power, wider
temperature range operation, and much more reliable operation.

' A System Comparison
Perhaps this is best demonstrated by an example. Figure 1-16 is a

comparison of an advanced scientific calculator and a computer of the mid
1950's. The calculator is an earlier model of the type shown in Figure 1-10.
Within the calculator, which can be held in your hand, there is as much
computing capability as the computer - and the computer occupies 270
cubic feet (7.56 m1). It's amazing but, in addition, the handheld calculator
has better performance - adding 10 times faster, multiplying 5 times faster
and transferring at approximately the same rate. Power is reduced by
100,000 times, volume by 16,000 times, weight by 8,500 times and all this
with a cost reduction of almost 700 times. It seems impossible. Let's trace
how this capability came about.

IBM 650
COMPUTER

ADVANCED
SCIENTIFIC CALCULATOR

IMPROVEMENT
RATIO

Components 2.000 Tubes 166,500 Transistors 1 80
Power. KVA 17.7 0.00018 100.000:1
Volume, cu tt 270 0 017 16,000:1
Weight, lbs 5650 0 6 7 8.500:1
Air Conditioning 5 to 10 Tons None Uses None
Operation Stored Program.

Magnetic Drum
With 2.000 Words

Program Steps 160-960
Memory Locations . 100-0
Stored Program

per Module 5000 Bytes

Computing
Capability

Considered
Equal

Execution time,
milliseconds
Add
Multiply
Transfer

0.75
20 0
0.5

0070
40
04

10:1
5:1

Equal
Price $200,000

(1955 Dollars)
$299.95

(1977 Dollars)
700:1

Figure 1-16. Digital System Comparison

UNDERSTANDING MICROPROCESSORS 1-15

THE WORLD OF DIGITAL ELECTRONICS

1
The Digital Evolution

The digital codes of Figure 1-1 that carry the information in
digital systems are moved through the system by digital circuits. The
simplest of digital circuits is called a gate. Combinations of gates make
more complex circuits. More complex circuits provide more complex digital
functions. When more and more of these digital functions are combined,
more complex subsystems and finally full systems result.

Such an evolution of digital electronics is shown in Figure 1-17,1-
18,1-20, and 1-21.

1 /
9 J . !

a b c.

Figure 1-17. Early 1950's - Discrete Devices. Wired Together to Form Gates.

Early 1950's
In the early 1950's (Figure 1-17), there were individual discrete

solid-state devices such as diodes or transistors that had to be combined
with separate resistors in order to form a gate. All had to be wired together
by hand on terminal boards or printed circuit boards.

INTEGRATED CIRCUIT
CHIP

(All Gates)

=D-

a Gates

b. SSI c. 16-Pin Package

Figure 1-18. Early 1960's-Small Scale Integration (up to about 12 gates)

1-16 UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

Early 1960's
In the early 1960's (Figure 1-18), combining such components into

one piece of solid-state material called an integrated circuit became a
reality. This was called small-scale integration (SSI). Up to 12 gates were
put into a piece of square material that was about twice as thick as a piece
of paper and about as wide as a pencil lead. To interconnect the small
circuits to the outside world, 1 mil diameter (0.0254-mm) wires are bonded
from the silicon chip to a package lead frame (Figure 1-19). The complete
assembly is molded into a plastic package.

Figure 1-19. Integrated Circuit Bonded to Lead Frame
and Molded in Plastic Package

Late 1960's
Through the late 1960's (Figure 1-20) the number of gates

increased to over 1,000 on a single chip. First, using medium-scale
integration (MSI), system building blocks were designed; then complete
subsystems ushered in the age of large-scale integration (LSI).

INTEGRATED CIRCUIT
CHIP

(Building Blocks to Complete Subsystems)

a Subsystem b. MSI to LSI c. 28 Pin Package

Figure 1-20. Late 1960's - Medium Scale to Large Scale Integration
(up to about 1,000 Gates)

1-17

n a m THE WORLD OF DIGITAL ELECTRONICS

Through the 1970's
The LSI integration pace, launched by the handheld calculator with

all its circuitry on one chip (except the keyboard and the display), continued
through the 1970's (Figure 1-21). Advances were such that it was not
uncommon to put 50,000 gates on the same chip as before - '4 inch (6.35
mm) on a side and 1/100th of an inch (0.254 mm) thick. All the circuitry for
complete microcomputers on a single chip. This is very large-scale
integration, VLSI.

Note that the number of package pins increased from 16 in early
1960 to 64 in the late 1970's to handle more bits for inputs and outputs, more
bits for addresses and more control signals. The size of the integrated chip
on the other hand hardly has increased in size. (It has increased a great deal
by integrated circuit manufacturer's standards, but hardly by the user's
standards).

a Complete Systems or
Several Subsystems

0.2 to 0.3"
(5 1 to 7.6 mm)

INTEGRATED CIRCUIT
CHIP

(Complete System or Several Subsystems)

b LSI to VLSI
c. 40 Pin Package

(may extend to 64 pins)

Figure 1-21.
Thru the 1970's-LSI to Very Large Scale Integration (1,000 to 50,000 Gates)

Results of the Evolution

In Table 1-1 and 1-2 the evolution is summarized. In Table 1-1, the change in |
the number of gates from early 1960 thru the 1970's means that 5,000 times
more information can be handled digitally by VLSI integrated circuits than
by SSI integrated circuits.

1-18

1 THE WORLD or DIGITAL ELECTRONICS

TYPE TIME PERIOD NO. OF GATES CHANGE FROM SSI (ratio)

SSI Early 1960 10-12
MSI-LSI Late 1960 100-1000 100:1
LSI-VLSI Thru 1970 1000-50.000 5000:1

7b ble 1-1. Summary of Digital Evolution — Change in No. of Gates

NO OF CHIP AREA
TYPE TIME PERIOD GATES Au°CHIP SIZE (mlla*)

SSI Early 1960 10-12 (mils) (mm) 2.500
50x50 1.3x1.3

CHANGE
FROM

SSI (ratio)

MSI-LSI Late 1960 100-1000 1 50x150 3.8x3.8 22.500 9:1
LSI-VLSI Thru 1970 1000-50.000 250x250 6.4x6.4 62.500 25:1

7hble 1-2. Summary of Digital Evolution - Change in Chip Size

In contrast, the chip size has only changed by 25 times as shown in
Table 1-2. This means that the area of solid-state material used per gate has
been reduced by 200 times. To get an idea of how small a VLSI digital gate
is look at a period on this page. Using MOS (Metal-Oxide-Semiconductor)
integrated-circuit technology (this will be discussed in Chapter 3) over 20
logic gates can fit under the period at the end of a sentence.

Because the size of the integrated circuit chip has not increased
that much, and because manufacturers have improved the ways the complex
integrated circuits are made, the cost for processing each integrated circuit
chip has increased very little. But, because there are so many gates per chip,
the cost per gate has been reduced drastically!

For example, in the early 1960's, when SSI integrated circuits were
first manufactured and there were 10 gates in a package, the cost of the
package was $10 and the cost per gate equaled $1.

Contrast this with VLSI circuits with 50,000 gates which may sell
at $50 when first manufactured. The gate cost is 0.1C, resulting in a cost
reduction of 1000 times over the SSI circuit. As production volume increases
such packages may well sell for $10 and the cost reduction increases to 5,000
times.

UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS 1
Impact on Equipment Cost

The total impact of the digital evolution is best demonstrated by
the impact on end equipment costs. Figure 1-22 illustrates what has
happened to the cost of a medium-scale computer. While in the early 1960's
the hardware cost was $30,000, in 1980 it will be approximately $1,000, and it
is projected to be $100 in 1985. The result of increasing the number of
digital functions available in a small space has been the reduction of the
cost per function and the resultant lower end equipment cost — by as much
as 300 times for the computer example.

EARLY I960 $30,000
1970 $10,000
1977 $5,000
1980 $1,000
1985 $100

Figure 1-22. Cost of Medium-Scale Computer

In addition, the digital functions are available with the high
reliability, low power consumption, increased speed of operation, high
accuracy and light-weight features offered by digital integrated circuits.
Such advantages are contributing to the explosion in the use of computer
like digital electronic systems and, in particular, microprocessors and
microcomputer systems.
WHY DO WE USE COMPUTERS?

Of the digital devices available to us, why do we use computers?
What characteristics do these particular combinations of digital electronic
subsystems have that make us want to use them? We can get an idea of
what these characteristics are by looking at how computers have been used
in the past. Refer to Figure 1-23.

1. Computers are Fast and Accurate.

A Handle "Number Crunching" problems with ease
B Handle tedious and routine tasks without error.
C. Handle "Real Time" problems fast and accurately

2. What Computers Can Do Is Continually Increasing

A Doing more in a small size with less weight and less power
B Integrated circuit microprocessors and microcomputers

3. Computers are Easily Changed (Programmable)

A Applications are changed by changing programs and not hardware
B. Expansion is possible by adding to the hardware, not discarding it

Figure 1-23. Why do we use Computers?

1-20 UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

Computers are Fast and Accurate

Number Crunchers
Computers first were used to handle very difficult and lengthy

computations required for solutions to scientific problems. Because of their
speed of operation, computers can handle "number crunching" problems in
minutes that might take weeks or months to compute by hand. In addition,
liecause digital electronic circuits handle information as bits, problem
solutions and all computations can be computed with greater accuracy.

Tedious Jobs
As computer hardware became more common, the tedious kinds of

jobs of keeping track of records became a job for the computer. The same
routine of debiting and crediting for checking accounts, credit card

•
accounts, inventory, invoices, and receivables was accurately, consistently,
and concisely accomplished by computers. The computer easily handles
these routines and tedious tasks for us because it will happily repeat the
same procedure over and over again without error.

Fast Real Time
Business and project planning became the thing to do. Business

plans were projected for years ahead, and these plans could be changed to
try various approaches to determine the impact on profit or cash flow or
return on assets. All of this became possible because of the incredible speed
of modern computers and the increased computer capability in a given size.

Speed of computation is not critical to such business problems. It
just means that the problem solution is obtained quicker.

"Real-time" problem solutions may have requirements where the
computation speed is critical. For example, a system that checks that all
conditions are GO for a space shot must do so in the last ten seconds. Digital
computers do this job routinely with the necessary speed and accuracy.

What Computers Can Do is Continually Increasing
Refer again to Figure 1-23. With the increase in the applications

came the demand to continue to reduce the size, weight, and power
consumption of the computer. The digital integrated circuit fit right in.
Systems that could perform the same computations were reduced in size by
hundreds and thousands of times (See Figure 1-16).

Now microprocessors and microcomputers are available whereby
computer systems can be assembled with just a few packages, or often with
a single-chip microcomputer. This is enabling computer systems to be
applied to almost any task - large or small.

UNDERSTANDING MICROPROCESSORS
1-21

THE WORLD OF DIGITAL ELECTRONICS 1
Computers are Easily Changed (Programmable)

Common to all of the applications and advantages of the computer
is its programmable nature. This is a main reason why they are so versatile
and can be applied to such a wide variety of jobs. Refer again to Figure
1-23.

The computer performs exactly the operations we instruct it to. We
write down the things we want the computer to do in the order we want
them done. This list of instructions is called the program for the computer.
By changing the program, we change the behavior and thus the application
of the machine. The main difference between a scientific computer and a
business inventory computer is in the programs they are given. The
scientific computer is given a procedure for calculating some arithmetic
function to a desired accuracy. If we want to change the function or the
accuracy, we just change the procedure, not the computer. The business
computer is given a procedure to keep track of the business inventory as
shipments are received and products sold. If we want to change the
function or the accuracy, we just change the procedure, not the computer. If
we want to expand the computer to handle payroll and timekeeping, the
equipment is not changed to handle the job, just new programs are added.

Microprocessor and microcomputer systems bring this same
flexibility to their applications, no matter how small the task. With an
appropriate program and using basically the same hardware, a
microcomputer system can be a toy, an oven controller, a camera control,
part of a manufacturing line, etc. All that need be done is to make sure the
system is given the right procedure to follow so that it will do the exact task
that is required.

ARE COMPUTERS REALLY EASY TO UNDERSTAND?

Since computers have been used to perform very complex tasks,
most of us feel that they really must be complicated. In reality, computers
offer us a simple, organized way to build almost any electronic system. They
behave in ways that are similar to our own behavior. They are made up of
circuits or functions that are easily understood and readily available. With
microprocessors, we really only have to buy a few types of different circuits
and connect them together to make a computer. This is because the
computer consists of only a few different types of functional units.

As shown in Figure l-2i, all systems (including the human system)
can be broken into the functions of sense, remember (store) , decide, and
act. Once we can provide all these features, we can build anything we want.
The computer system provides all four of these functions, as shown in
Figure 1-25, in low cost units that are easy to connect together.

1-22 UNDERSTANDING MICROPROCESSORS

1 THE WORLD OF DIGITAL ELECTRONICS

DIGITAL SYSTEMS

Figure 1-24. Universal Digital System Organization
(G. McWhorter. Understanding Digital Electronics. Texas Instruments Incorporated.

Dallas, Texas, 197H)

Figure 1-25. Computer System Organization

Sense Function
In Figure 1-2J,, the sense function is what the name implies. It

senses information and transmits it to the machine for decoding
(interpretation) and response. This input information can be data about
surrounding conditions such as temperature, pressure, light, and so on, or it
can be communications and commands that set the machine in a given mode
and tell it where to start. By having such sense elements, the system can
receive information from humans or from other similar equipment In the
computer system of Figure 1-25, the functional units that perform the sense
function are simply called inputs.

" 193
UNDERSTANDING MICROPROCESSORS

THE WORLD OF DIGITAL ELECTRONICS

Remember Function
The remember (store) function (Figure 1-21,) is important to all

advanced machines. The machine must remember what it is to do, information
for use in what it does, and results of what it has done. It also must remember
a number of rules that must be used in making decisions, performing
arithmetic and controlling the system. The computer system name for this
function is memory, for obvious reasons. In the computer (Figure 1-25), the
memory serves the same function as the memory portion of the human
brain. It remembers the step-by-step sequence of operations (the program)
the computer is to perform. It also remembers the instructions and
information (data) that are used. Computer memory devices are available
as single integrated circuits that can be connected easily to the other
functional units of the computer system. ^
Decide Function ™

The decide function (Figure l-2\) is much like the reasoning
function of our brain. All the computations, logical operations, and
operational decisions are made here. These decisions take into account the
inputs (commands and information about the surroundings) and the
information in memory. In the computer (Figure 1-25), the decide function
is provided by the processor. It performs the basic arithmetic and logical
decisions required by the computer. It also controls the operation of the
computer by turning on and off the other functional units in the system at
the proper times. The processor in a microcomputer system is a
microprocessor. It may be in a separate package or be contained in the
single-chip microcomputer that fits on the tip of a finger.

Act Function
The act function (Figure 1-21,) is again what the name implies.

Once a decision has been made by the processor, the system carries out the
decision with the act units of the system. These may be devices that display
information so it can be communicated to humans. Or the act unit may turn
on a motor, or turn off a light, or light the gas in a furnace; or it may be to
position a drill bit, or some other similar control operation. The act units
allow the system to control something external to the system or to
exchange information (communicate) with humans or other machines. In
the case of the computer (Figure 1-25), the devices that implement the act
function are called the outputs of the system.

1-24 UNDERSTANDING MICROPROCESSORS

1 THE WORLD OF DIGITAL ELECTRONICS

The functions of sense or input, act or output, remember (memory),
and decide are functions that we can all understand easily. The computer
provides all of these functions. The way in which the step-by-step sequence
(the program) uses these functions defines the task that a particular system
performs. A system can be made a video game by placing the game
procedure or program from a magnetic tape cartridge into the system,
providing a television screen output, and using game position controls as
inputs. We can make a heating unit controller from the same basic set of
hardware by providing temperature sensor inputs, furnace fuel and blower
controls as outputs, and a program that will monitor temperatures and turn
on the furnace at the proper times. The list of such examples is almost
endless. We simply have to recall the conversation between the father and
son to see how varied the possibilities are.

| WHY ARE MICROPROCESSORS SO IMPORTANT?
Look at Figure 1-26. Even though we have shown the advances

that digital integrated circuits have made in providing more and more
digital functions within a single package (curve A), and the reduction in
cost per functional unit (curve B), the importance of microprocessors may
still not be apparent.

1.000

100

10

< a
CO
UJ
CL

(/) o o
UJ

5

1960 1970 1980

•Possibly Best Represented by a More All Encompassing Terrr
Like Active Element Group—AEG.

Figure 1-26. S u m m a r y of Semiconductor Technology Evolution

UNDERSTANDING MICROPROCESSORS 1-25

THE WORLD OF DIGITAL ELECTRONICS 1
Curve C will help to understand the final missing link. In the early

1960's the cost of developing an SSI integrated circuit was on the order of
$20,000. A 50,000-gate VLSI integrated circuit of the late 1970's may have cost
nearly one-half million dollars to develop. Unless the complex integrated
circuit with all its functions can be sold in large quantities so that the cost
per package can be low, the development costs will not be recovered and the
next design will not be financed. When the quantities manufactured are
low, the package cost would have to be so high to recover the development
costs, that no one would use them. Their end equipment cost would be too
high-

There are complex chip designs that are designed for specific
applications (custom designs), and the calculator integrated circuit is one of
these, where the quantities to be manufactured are large enough to support
the high cost of development. However, many systems are used only in
small quantity and another solution is necessary. Here is where the
microprocessor is so important.

A Standard Unit
To meet the needs of large quantity production a "standard"

integrated circuit was designed - the microprocessor - so it could be made
at low cost. One that many different people could use; one that could be
applied to many different applications by programming it differently. Thus,
the emphasis changed in the design of a system. Instead of designing a
particular set of hardware for each application that is dedicated to a
particular system solution, standard hardware units that have many types
of functions are made to solve different system tasks by changing the
program. The program, not the hardware, varies for each application.

Here is the importance of the microprocessor and its corresponding
single-chip microcomputers. They are units that can be told to solve many
different tasks by varying the step-by-step sequence they perform. All
systems use the same unit. Each system in itself may be produced in small
quantity and require only a small number of the standard unit. However,
large quantities of the standard unit are required when all of the smaller
quantities are added together. Manufacturing the unit in these large
quantities results in a low cost unit.
Learning Curve

Experience in the manufacture of integrated circuits is very
important. When a large quantity of a given unit is going to be
manufactured, the proper investment can be made in the automated
equipment, in personnel training, in manufacturing process improvements,
and in technical support people. These investments produce a learning
experience in manufacturing the integrated circuit which reduces its cost.
Such learning-experience cost reduction is shown in Figure 1-27, and, is
called a learning curve.

1-26 UNDERSTANDING MICROPROCESSORS

1 THE WORLD OF DIGITAL ELECTRONICS

$10 00 -r

$1 00

y
£
K
Z
D $ 0 1 0 - -

10M

200M I | 400M

. ixi Y i
IB

85%

100M 10B

CUMULATIVE UNITS
M-Millions
B-Billions

Figure 1-27. Learning Curve

The basic concept of a learning curve is that, after a product is
being manufactured in large quantities, each time the total number of units
manufactured doubles, the unit price reduces by a constant percentage. The
70% slope of Figure 1-27 is one that has been typical for the manufacture of
SSI and MSI integrated circuits. It says that if the total number of units
manufactured was 100 million and the price per package was $1.00, then
when the total number of units manufactured reached 200 million the price
had reduced to 70% of $1.00 or 70 cents. When the total volume reached 400
million then the price reduced to $0.70x70% or 49 cents.

The same learning experience has been true for the LSI and VLSI
circuits with the slope ranging from 75 to 85%. It is this kind of regular
reductions in the cost of a microprocessor as it is manufactured in large
quantities that will help to lower the price and contribute to continued
expansion of the applications.

Needless to say, if an integrated circuit is not manufactured in
large quantities, then the resulting cost reduction will not occur. But with
microprocessors this will be accomplished in a little different way.

They will be manufactured in large quantity even though they are
used in small quantities for any one individual design.

They will be made and sold at low cost and the cost will move down
a learning curve as the quantity of units manufactured accumulates,

ecause of the low cost more systems will be designed which, in turn, will
ower the cost. The cycle will continue until the unit is replaced with a new

and better design.

UNDERSTANDING MICROPROCESSORS 1-27

THE WORLD OF DIGITAL ELECTRONICS 1
System Design Trends

A Viable Alternative
Providing subsystems or even full systems within one package has

certainly changed the emphasis for the designer to a system orientation
rather than one concerned with each individual detailed circuit. In addition,
when the system design is being considered, if the system designer wants
to use VLSI integrated circuits he has several choices that depend on the
number of systems that will be manufactured. If the quantity is large, the
two choices that are available are listed below. The one chosen should meet
the system objectives in the most cost-effective way:

1. Have a special VLSI circuit designed which is dedicated to the
specific application. It's likely this will result in the lowest
equipment manufacturing cost but it will have limited chance
for change without redesigning.

2. Use a microprocessor and the different general purpose packages
that have been designed to work with it, and develop a program
that guides the system to do the task at hand.

When the quantity is small the same choices are available. The first choice
would result in development expenses that usually cannot be justified. In
addition, the end cost of the units would be higher.

However, the second choice is a very viable alternative. Because
standard units are used with a different program, all the cost advantages of
a unit manufactured in large quantity are available even for the system
manufactured in small quantity.
System Development Costs

Microprocessor and microcomputer systems are very important
because they can be developed at lower total cost due to all the functions
that are available within one package. Figure 1-28 is a curve showing how
total development costs have changed since the introduction of integrated
circuits.

Since fewer packages are used, fewer assemblies are used. This
requires fewer connectors, fewer cabinets, less power distribution, and less
air conditioning. The end result is that the hardware costs are reduced as
shown.

All the programming effort that is used to prepare the step-by-step
sequence to get the system to do a particular task is termed "software". The
name came about because most software is written or printed material.
Because of microprocessors^ind microcomputers the total development cost
has been reduced, even the software costs. Note, however, that the software^
cost becomes a much larger part of the total development cost.

1-28 UNDERSTANDING MICROPROCESSORS

Figure 1-28. System Development Costs

A Shift to Software
The percent of total costs for software increases because a

different program must be developed for each new application. This is a
significant change in the way systems are designed. Now the designer must
be concerned about how a program is written to make the step-by-step
procedure control the system. No longer is the major effort on the design of
the hardware. Now it is the creation and checkout of the software.

This change in design procedure is not easy for many designers.
However, it is going to be a continuing trend for the future and it is hoped
that the fundamental concepts developed in this book will aid in making the
change easier.

ADDITIONAL STANDARD UNITS

The ability to change the things a system can do by changing the
order of the things the microprocessor is told to do will extend to the other
units that are needed around the microprocessor to perform the sense and
act functions. Family units designed to work with similar types of
microprocessors will also be made programmable. Thus, they become
"standard" units as with the microprocessor, and are manufactured in
larger quantity at a lower cost.

The family of units also is an advantage when preparing the
Software. Because all the family units follow the same instructions, as step-
by-step procedures are developed for different applications, the things that
are learned and used begin to accumulate to make the next software job
easier.

UNDERSTANDING MICROPROCESSORS 1-29

THE WORLD OF DIGITAL ELECTRONICS 1
It is difficult to predict the overall impact of microprocessors and

microcomputers except to say that it is and will continue to be great. It is
hoped that this chapter has given some insight as to why this is so.
WHAT HAVE WE LEARNED?

• An analog system handles information with signals that vary
continuously.

• Digital systems handle information with signals in digital form—a
combination of separate parts called bits that have set values and occur
in codes to represent a particular letter, number, character or symbol.

• Digital electronics has provided the computer controls for many of the
products we use.

• The computer is a fast, accurate, and versatile digital electronics system
that can be programmed to perform the sequence of operations we need
for a given application and can be changed to do different tasks by
changing the program.

• Solid-state technology through integrated circuits has made digital
electronics the lowest-cost approach to building complex products
because it is possible to provide a large number of digital operations in a
small area of solid-state material.

• Medium-scale computers have been reduced in cost by 300 times as a
result of the digital evolution.

• The central control element of a computer, the processor, is available in
integrated circuit form in a device called a microprocessor.

• Connecting memory and input and output circuits to a microprocessor
forms a computer.

• A microcomputer is a complete digital system in a small size that is
usually in the smallest range of size and slowest range of speed when
compared to all digital systems.

• Microprocessors and microcomputers are bringing so much problem-
solving capability into our hands at such a reasonable cost that more and
more people are going to find ways to use them.

• The existence of programmable standard devices such as the
microprocessor and other units that surround it, allows all digital system
designers to share the benefits of solid-state technology at reasonable
costs.

WHAT'S NEXT?

In this chapter, we have seen some of the characteristics of
computers that make them so useful to us. We are now ready to begin
looking at the operation of the computer in detail. In the next chapter, we
will start by looking at each of the computer functional blocks and how they
work together to form a smoothly functioning system that can do almost
anything.

1-30 UNDERSTANDING MICROPROCESSORS

1 THE WORLD OF DIGITAL ELECTRONICS
• • •

Quiz for Chapter One
1. Answer the following

statements true or false:
a.

2.

Most of us will never use a
microcomputer.
Microcomputers are even
found in cameras.
Microcomputers and
microprocessors are hard to
understand.
Microcomputers are enabling
computers to be applied to
many tasks.
Computers behave much like
we do in many ways.
The microprocessor's main
disadvantage is that it is not
versatile.
Microprocessors are now
found in systems that were
originally built with analog
electronics.
It is easy to change a
computer's behavior or
application.

Match the following human
features with their computer
counterpart:

b.

c.

d.

e.

f.

9

h.

Human Computers
a. Eyes A. Sensor Input
b. Ears B. Memory
c. Memory C. Control Output
d. Voice D. Communication
e. Muscles Input
f. Reasoning E. Microprocessor

F. Communication
Output

3. Over the years solid-state
technology has:
a. Provided more digital

functions in a smaller area
of material.

b. Increased the cost per digital
function.

c. Has made it harder to
understand and build
electronic systems.

d. None of the above.
4. Microprocessors and single-chip

microcomputers are important
because:
a. They allow all of us to use

the same functional blocks in
building our systems so that
we can use low-cost units
which contain a large
number of digital functions.

b. They allow us to bring the
advantages of the computer
to all products, large or
small.

c. They can replace calculators..
d. a and b above
e. a and c above
f. None of the above.

5. Computers offer the following
advantages:
a. High speed operation
b. Accurate operation
c. Versatility
d. Programmability
e. All of the above

UNDERSTANDING MICROPROCESSORS 1-31

THE WORLD OF DIGITAL ELECTRONICS 1
6. The purpose of a microcomputer system is defined by its program, inputs,

and outputs. Show which inputs and outputs would be used to make the
following systems:

Inputs
A. Temperature Sensor
B. Typewriter
C. Moisture Sensor
D. Radio Receiver
E. Light Sensor

System
a. Home Computer
b. Camera
c. Furnace Controller
d. Lawn Watering System
e. Garage Door Opener

7. A device is said to be
programmable if:
a. Its behavior or operation can

be changed by changing
commands or instructions it
is given.

b. It can be adapted to many
applications by giving it a
suitable program.

c. Its operation is fixed and
unchangeable.

d. a and b above.

8. 100 million VLSI circuits are
produced at a cost of $2.00. If
the production is increased to
400 million, what will be the
new cost per device (Assume an
80% learning curve slope)?
a. $1.00
b. $1.28
c. $1.60
d. None of the above

Outputs
1. Motor
2. Water Valves
3. Television Screen
4. Gas and Air

Flow Valves
5. Aperture, Shutter

Speed, and LED
Indicator Control

9. Match the computer subsystems'^
with the system function:
a. Sense A. Outputs
b. Decide B. Memory
c. Act C. Inputs
d. Store D. Processor

10. Software for microcomputers:
a. Is mainly the computer

program
b. Is less expensive to design

than the hardware
c. Can be used only once
d. None of the above

e-0i:a-P6 'V-»6'a-<16 '0-«6
'q-8 'P"i • t'a-^9 tQ-P9 > ' V -»9 '9'3-q9 :e'0-«9 '»-c pt> e-g 'j-}z '0-*Z

'd-pz 'a-*z 'a-qs 'v-*z 'i-m 'j-ji 'i-ox 'i-pi 'j-oi 'i-qi 'j-bi

1-32 UNDERSTANDING MICROPROCESSORS

2
BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

Basic Concepts
in Microcomputer Systems
ABOUT THIS CHAPTER

As we saw in the last chapter digital systems have the basic
functions of sense, remember, decide and act.

In this chapter we will examine how the computer system satisfies
these functions and how the functional blocks work together - all the while
searching for understanding of the basic concepts.

)wHAT ARE THE MICROCOMPUTER BUILDING BLOCKS?

Microcomputer components can be purchased and interconnected
to provide a computer system with the functions of sense, remember, decide
and act. For the computer system, as shown in Figure 2-1, the sense
function is the inputs, the remember function is the memory, the decide
function is the processor or control, and the act function is the output.
Inputs and outputs, even though they perform different detailed functions,
are handled very similarly in the microcomputer system and can be
classified as a basic communications function. As a result three basic
computer system functions result: Processor or control, memory and
communications.
Microprocessor — The Central Control Function

The microprocessor tells all the other system components what to
do and when to do it. It does all the arithmetic and makes all the decisions
for the rest of the system. It is much like the control center of any other
system such as the brain of humans, the boss of a company, or the master
switching center of a train yard. All of these tell each part of their system
what to do and when to do it. As an example, the subconscious part of our
brain regulates all of our vital systems in correct order. The reasoning part
provides our decision making and other higher intellectual capabilities to
help us do what we want when we want.

The boss of a company assigns tasks to all the workers and makes
sure that each of them performs his job on time and in cooperation with the
other workers in the firm.

The train yard switching center selects and connects boxcars,
freighters, flatcars, tank cars, and so on, into cross-country trains by the

.flick of a lever which controls train yard switches.
| Similarly, the microprocessor turns on and turns off all the system

components in the proper order and at the proper time to make sure the
entire system works in harmony.

UNDERSTANDING MICROPROCESSORS 2-1

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
All of these systems, as shown in Figure 2-1, are not independent

of the outside world. They require inputs from the outside world to sense
and react to. They give outputs to the outside world to provide action as a
result of the inputs. They sense inputs and act on these inputs to provide
outputs. Even the memory of the system may receive inputs or provide
outputs to the outside world.

Figure 2-1. The Building Blocks of Computers

Memory
Let's look at memory. The microcomputer memory performs the

rather obvious function of remembering or storing information needed by
the system, the same function as the human memory. It is also similar to
the file systems and note pads that humans use to store information that
they want to refer to later but can't keep completely within their brain at
all times. Numbers, words or characters that the microcomputer system
must use in performing its tasks — its data - is stored in its memory. It
stores this information as bits, "l's" and "O's" as shown in Figure 2-2. The
arrangement of bits form codes to identify each number or character.

MEMORY WORD # 1

MEMORY WORD #2

MEMORY WORD #3

MEMORY WORD #4

MEMORY WORD #5

16-BIT WORDS 8-BIT BYTES 4-BIT
NIBBLES

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 l | | 0 1 1 0 0 1 1 0 | | 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 o | 0 0 1 1 1 1 0 0 0 0 10
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 10 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 o | | l 1 1 0 0 1 1 1 I 0 10 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 10 10 10 1 0 10 1

Figure 2-2. Information Stored as Groups of Bits

2-2 UNDERSTANDING MICROPROCESSORS

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

The memory is also used to store or remember the instructions or
sequence of operations the processor is to perform. Such a memory is called
a program memory. The instructions also are coded with "l's" and "O's".
The sequence of instructions, stored in order one word after another as
shown in Figure 2-2, is called the computer program.

Input and Output

Every system must have input and output blocks to provide the
sensing, action, and communications functions for the computer. The sense
input elements keep track of the system conditions such as temperature,
pressure, light levels, and so on. This is similar to the way our human senses
of seeing, hearing, smelling, tasting, and feeling make us aware of the
conditions around us. The output action elements enable the microcomputer

•
to turn on or off power units such as motors, relays, lights, and so on, much
like our brain can control our muscles to do work for us. The
communications inputs allow human operators to send information or
instructions to the computer using typewriter keyboards, calculator-like
keyboards, position controls, telephones, and so on. These devices are much
like our ears and eyes, since we use these organs to receive speech and to
read printed characters. The communications outputs allow the computer to
send information to human operators through character displays or
typewriters. These devices are similar to our speech, writing and printing
capabilities used for sending information to others.

HOW DO THESE BUILDING BLOCKS WORK TOGETHER?

The individual function of each block is evident from its name:
memory remembers, inputs and outputs communicate with the outside
external world, and the microprocessor processes information and controls
the operation of the entire system. How these functions work together to
achieve their assigned tasks is not so evident. The way the blocks work
together can be seen better by looking at the way we do our jobs. We, as
humans, act as a computer in many of our activities. We are given a list of
instructions in the form of a recipe and get the cake baked by following the
recipe instructions step-by-step. We are given a list of jobs that must be
done and get the jobs done by doing each in proper order. We behave
exactly like a microprocessor behaves in a microcomputer, following each
instruction and doing each job a step at a time.

UNDERSTANDING MICROPROCESSORS 2-3

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
An Example Program

Let's take as an example the situation we have when we are trying
to follow the instructions in a recipe. Assume we are trying to make
chocolate fudge from a recipe of the type shown in Figure 2-3. This recipe is
a list of instructions that we must follow exactly if the fudge is to be
successful. The list of instructions has been saved or stored on a piece of
paper. Some recipes are saved in the memory of some cook somewhere, but
this one is available to us in written form. This is similar to the use of the
memory in a computer. In the computer, the list of instructions, the
program, is stored in solid-state devices as a pattern of digital bits of
information. Just as the written instructions on paper are meaningful to us,
the digital form of instructions is meaningful to the processor of the
computer. In either case, the program or plan of operation is saved and
ready to be executed. In the case of the recipe, we must execute the |
instructions in the order listed without making any mistakes if we are to
produce fudge and not mud. Similarly, the processor must execute the
instructions in the order they are listed in the computer memory if the
computer is to behave as it was intended. Failure to execute the
instructions in the proper order and without error could cause an automatic
lawn mowing machine to become a berserk public menace or a furnace
control system to become a device that burns down the house.

1. Get a mixing bowl
2. Get 5 pounds of granulated sugar
3. Get two 8-ounce cans of evaporated milk.
4. Get 12-ounce jar of white corn syrup.
5. Get t package of pecans
6. Get 1 package of chocolate chips.
7. Get 1 stick ol butter.
8. Get 2-ounce bottle of vanilla extract.
9. Measure 214 cups of sugar into the mixing bowl.

10. Measure 44 cup evaporated milk into the mixing bowl.
11. Measure 14 cup white corn syrup into the mixing bowl
12. Measure 2 tablespoons butter into the mixing bowl.
13. Get a separate container.
14 Measure 1 cup of nuts and 12 ounces of chocolate chips into the

separate container and set aside for later use.
15. Mix all ingredients except nuts and chips together in the mixing bowl
16. Pour this mixture into a pan and bring to a boil.
17. Boil for exactly 5 minutes. Slowly stir mixture as it boils.
18 Remove from heat and stir in one teaspoon of vanilla extract.
19. Stir in nuts and chips (from Step 14) until chips are melted
20. Pour fudge into buttered pan.

Figure 2-3. Chocolate Fudge Program

2-4 UNDERSTANDING MICROPROCESSORS

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

Getting Started
Since we have the program of instructions stored in some suitable

form (on paper or in the computer memory), we must read and interpret
(decode) the first instruction in the program. In the case of the recipe we
actually read the instruction with our eyes and find out its meaning with
our brain. The processor in a computer does the same thing by bringing
(transferring) the instruction code (in the form of a group of digital signals
or bits) into the processor and using the digital electronic circuits inside of
the processor to decide what operations the instruction wants done. In the
recipe, we see that once we have gotten together the supply of goods that
we need, the first thing we must do is measure 2 1/2 cups of sugar into a
mixing bowl. Once we do this, we go down to the next instruction, which is
to measure 3/4 cup of evaporated milk into the bowl. These types of

•
operations continue until all of the basic ingredients are combined and the
result placed into a pan for cooking. Up to this point, most of our activities
have been in the form of inputs and initializing the components of our
cooking system. The computer usually goes through these types of
operations early in the operation of the machine. It steps through
instructions that tell it to receive inputs which are digital code commands or
which set up system switch conditions that tell the system where to start,
when to stop, the limits of memory, etc. Also, it will save needed numbers in
some memory locations and clear others, just as certain quantities of
specified ingredients were measured into the 'storage locations of the
mixing bowl and, after everything was combined, poured from the bowl
into the cooking pan.
Setting Aside Results for Later Use

The act of measuring the nuts and chips and setting them aside for
later use is similar to the way computers save (store) numbers or characters
in memory that are important to the operation of the computer. Just as a
file cabinet can be used to save important letters for us, part of the
computer memory can be used to save information important to the
computer. Of course, we must be careful not to save this information in the
same cells of the memory as the ones saving our program, for we would lose
the program. A memory cell only has room for one piece of information at a
time The act of saving (storing) such information in memory is called
"writing into memory." This operation is done by having the processor do
an instruction that will bring (transfer) information from the processor to a
selected location in memory. In like fashion, "write to output No. 3" causes
the processor to perform an output instruction which transfers information
and control signals from inside the processor to an output device Number 3.

•
Both operations are similar to the way we use notepads to jot down
telephone numbers or other messages that we need to save for later
reference.

UNDERSTANDING MICROPROCESSORS 2-5

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
Doing the Work

Once our system has been set to start at the proper state, the
processor starts following instructions that actually begin performing
action or work to produce the desired end result. In the case of the recipe we
are instructed to boil the mixture in the pan for exactly 5 minutes stirring
it so it doesn't burn. Instructions that the processor might be receiving and
doing that are comparable could be: perform addition or subtraction of two
numbers, turn on some heater element, measure some temperature, decide
that a switch should be closed, and so on. In fact, we could program the
computer to do any or all of the operations in our recipe, in which case it
would turn on the heat to the pan, regulate the heat as it checked the
temperature of the mixture in the pan, and boil the mixture for five
minutes. After it finished this sequence of operations, it would go to the
next instruction, read it from memory, and execute it. The next instruction
the cook reads from the recipe is to remove the pan from the heat and stir in'
one teaspoon of vanilla. If the cook continues to read and do these
instructions in order and without error, excellent fudge will result. If the
processor continues to read instructions from the proper places in the
computer memory and interpret and execute them without error, a
perfectly operating machine will result.
Delivering the Results

Notice in the recipe, the last instruction is an output operation. We
output the product to a buttered pan for use by the outside world. This type
of operation must also be performed by the processor if the computer is to
do useful work for us. Thus, some of the last instructions in a program
sequence will be output instructions. For example, it might print out what
it has done so that humans can understand the result. It might control some
motor, or switch, or light located outside the computer.
Summary

This example has served to illustrate the basic relationships
between the functional blocks of the computer. Just as we work down
through a list of instructions saved in written form on a piece of paper, the
processor goes down step-by-step through a sequence of instructions saved
in computer memory, doing each instruction in order. The processor must do
the following things for each new instruction:
• It must locate (address) the instruction in memory.
• It must read (fetch) the instruction from memory, i.e. it must bring
(transfer) the instruction from memory to inside the processor.

• It must interpret the instruction to understand (decide) what must be
done. I

• It must then do the operations required by the instruction (act) to actually
execute the instruction.

2-6 UNDERSTANDING MICROPROCESSORS

2 g

These activities of locate, read, interpret and execute the instruction are
repeated for each instruction in sequence throughout the program. These
activities are exactly what we do when we follow a list of instructions to do
a job.

Throughout this discussion of the operation of processors and
computers we have used the action of humans as an example. We will return
to this tool later in the book in an exercise that is designed to further show
the operation of the various functional blocks of the computer. In the
meantime, let's turn our attention to how these blocks communicate with
each other.

HOW IS THIS INFORMATION TRANSFERRED IN MICROCOMPUTERS?

•

Since the microcomputer is a digital system, the information
within the system must be in digital form, that is, in binary form. Binary
signals are signals that can have only one of two values, on or off, present or
not present, a 1 or a 0, true or false, etc. These abstract concepts are
provided physical meaning by assigning one voltage or current value to be a
1 signal and another value to be or represent a 0 signal.

Single Digital Signals

A digital signal, shown in Figure 2-4a, changes from the 0 level to
the 1 level and back as time passes. In Figure 2-4b, the 1 level is represented
by a +5 volt value and the 0 level by 0 volt value. In Figure 2-4c this is done
with a switch. Each second the switch position is changed. Note that the 1
level is a more positive voltage than the 0 level. This is a common approach
to assigning the 0 and 1 levels and is called positive logic. This is the
approach we will use throughout this book. Thus, all of our digital signals
will be of the form of those shown in Figure 2-4• These signals will be
carried on electrical conductors called wires from one part of the system to
another. By measuring (sensing) the signal level on these wires at the
proper times, the system parts can determine which is being sent, a 1 or a 0.

UNDERSTANDING MICROPROCESSORS 2-7

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
.0 / ' \ o / i \ 0 / 1 \ 0

o 1

Volts

+ 5

Time (seconds)

5 Vblts

X-

Switches Back and
Forth Each Second

-O k X
0 Volts

?) Vdltmeter

Figure 2-4. Digital Signals Changing between Two Levels with Time

Multiple Digital Signals

While a single digital or binary signal is good for indicating an ON
or OFF state or a "yes" or "no" command, it is not enough to represent
entire numbers or letters. Several binary signals must be sent at once to
transmit this more complicated information. Suppose, forexample, that
three binary signals are sent along three wires as shown in Figure 2-5a and
that the voltage on the three wires is measured every second and a record
made of the measurements. The record is shown in Figure 2-5b. Different
combinations of these signals every second have been used to represent the
numbers 0 through 7. Since there are 8 different patterns of digital signal
combinations, eight different things could be assigned arbitrarily to these
eight possibilities. Not only numbers but, as shown in Figure 2-5b, the code
patterns can be assigned to represent commands or alphabetical characters.
In addition, the same given combination of digital signals could mean
different things at different times.

2-8 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

+ 5 Volts
-O 1

-O! J-^L-V
Y Sa

_L Switches Operated
Each Second —

a. Three Binary Digital Signals Sent Along Wires at the Same Time.

+ 5V- 1

OV-O

TIME
(SECS)

BINARY
SIGNALS

SZ SI SA

DECIMAL
NUMBER

EQUIVALENT

OTHER
POSSIBLE

EQUIVALENCES

1
2
3
4
5
6
7
8

EIGHT
DIFFERENT
TIMES

1 1
0 0

1 1

EIGHT
DIFFERENT
SIGNAL
PATTERNS

0
1
2
3
4
5
6
7

EIGHT
DIFFERENT
DECIMAL
NUMBERS

A
STOP

GO
B

OFF
ON

RIGHT
LEFT

EIGHT
DIFFERENT
CHARACTERS OR
COMMANDS

b. Using Binary Signals to Represent Numbers. Characters. Commands, or Time

8 Bits

MSB-Most Significant Binary Bit
LSB-Least Significant Binary Bit

MSB

d,

0

d,

0
d.

0
d,

1

d,

1

LSB

d.

0

c. 8-Bit Digital Signal

Figure 2-5. Digital Codes for Various Cases

Figure 2-5b shows that three digital signals (bits) offers only 8
different bit patterns, which is not really enough for use in a computer. In
general, if there are N bits, there are 2N different bit patterns of 0 and 1
combinations for these bits. In present day microprocessors, 4-bit, 8-bit, and
16-bit digital signals are used. Eight different digital signals can exhibit 256
different bit patterns and 16 bits of digital information can exhibit 65,536
different bit patterns. As shown in Figure 2-2, a 4-bit group is usually called
' a nibble, an 8-bit group of signals is usually called a byte; a 16-bit group is

usually called a word. Microprocessors typically use 8-bit and 16-bit digital
signals to transfer information to and from the other subsystem functional
blocks of the computer.

UNDERSTANDING MICROPROCESSORS 2-9

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
WHAT DO DIGITAL SIGNALS MEAN TO THE COMPUTER?

Digital signals can mean different things to different subsystem
functional blocks. Generally, a given pattern of digital signals is assigned
to represent a given number, alphabetical character, or a command or
instruction. When the patterns of O's and l's represent numbers, further
definition is required to tell what the number means. The number can mean
a subsystem location or a memory address in the computer; it can represent
a quantity to be used in some arithmetic operation, or it can represent a
time limit or other system limit that must not be exceeded. In all cases, the
pattern of O's and l's is a digital code that means a certain thing to a
certain functional subsystem. The subsystem must provide the circuitry
that will decipher the code and interpret its meaning, just as a spy must
interpret coded messages he receives in order to carry out his intended
mission. Since codes often are being used to send messages and
instructions, let's first look at this application of the digital signals within a
computer.
Instruction Codes

The 8-bit digital code of Figure 2-5c, 01001100, could represent an
instruction. Suppose it is the instruction to add one to a number stored at a
known memory location. Since one is added each time, a series of numbers
will be generated, each greater than the other by one. In other words, the
system is counting by ones. The instruction INCREMENT means the same
thing so it is the shortened code word to add one to a number. Thus, the
instruction INCREMENT A will add one to a number at location A. A is
some storage location inside the processor or in memory. Usually the
description of the instruction is shortened to simply INC A to make it easier
to write the instruction. While this shorthand code of INC A might be easy
for us to recognize, it would not be understood by the microprocessor, which
is a digital device and can only understand digital signals. Thus, the digital
code 01001100 is used to tell the processor that it is to increment the number
stored at location A. The digital circuits inside the processor then sense and
decode this pattern of O's and l's to decide that it is the instruction INC and
proceed to do the desired INCREMENT operation by adding one to the
number at location A. Thus, the 01001100 is a machine or processor code, or a
code that the digital circuits inside the processor can understand. The
shorthand code INC A is a human oriented code (called an instruction
mnemonic or abbreviation) that humans can understand. Of course, the
machine code 01001100 will mean different things to different processors.
Some processors won't even have a device at location A inside of them. To
help anyone work with a given processor, the processor data sheet includes a
complete table that relates each machine code pattern of O's and l's to the
corresponding instruction mnemonic or abbreviation for the total set of
instructions.

2-10 UNDERSTANDING MICROPROCESSORS

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

Usually both the pattern of O's and l's and the instruction descriptions are
presented in abbreviated form, but one can still see how the digital signal
patterns for a given processor have been assigned to represent all of the
instructions it is capable of performing.

Different codes then mean different instructions. These instruction
codes are what are stored in the computer memory in the order they are to
be read (fetched), interpreted (decoded), and executed (acted on) by the
processor. This is the program the processor follows. A small segment of a
program with instructions and codes is shown in Figure 2-6. After the first
instruction is sensed, decided on, and acted on, the steps are repeated for
the next instruction. The processor must then locate the instruction code
within the memory that is to be read next and bring that code inside the
processor for the decoding operations. As assigned in Figure 2-6, the first

^^^nstruction is at memory word location # 1, the second at memory word
^^iocation #2, and so forth in sequence in the memory for the length of the

program. Again, since the processor is a digital device, it must locate the
instruction in memory by sending digital signals to the memory to identify
which instruction it wants next. The process of locating the instruction is
called addressing and the digital code that represents the location of the
instruction in memory is called the address of the instruction.

INSTRUCTION LOCATION INSTRUCTION CODE

MEMORY WORD # 1 LOAD REFERENCE REGISTER 0000 0010 1110 0000

MEMORY WORD #2 LOAD REGISTER 0 0000 0010 0000 0000

MEMORY WORD # 3 LOAD REGISTER 1 0000 0010 0000 0001

MEMORY WORD #4 LOAD REGISTER 2 0000 0010 0000 0010

MEMORY WORD #5 DECREMENT REGISTER 0 0000 0110 0000 0000

Figure 2-6. Instructions and Their Digital Codes in Sequence
in a Portion of a Program

UNDERSTANDING MICROPROCESSORS 2-11

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

Address Codes to Indicate Memory Locations
The concept of an address is not new to us. We each have a street

address or a post office box number where mail can be sent to us. That
address is our location in the postal system. Our street address is our
location on earth. Similarly, the address of a memory location in a computer
is the code that represents where in the computer that memory location can
be found. Typically, the address code in microprocessors consists of 16 bits
which can exhibit 65,536 different combinations of l's and O's. Thus, such an
address code can directly distinguish one of 65,536 memory locations. To
illustrate how the address code is recognized, think of the part of memory
that contains the program or list of instructions as a residential street as
shown in Figure 2-7. The address in memory of a given instruction is
represented by a particular combination of l's and O's in the address code.
The memory device must be able to sense and decide which address the code
represents so that it will know which instruction is being asked for by the
processor. This deciding or decoding process is similar to the way a postman
determines a house location by correctly figuring out the street address.
Let's look at Figure 2-7. A package is to be picked up from 1000 Instruction
Avenue in a city. First the street is located, Instruction Avenue, then
locations along the street are checked until the 1000 address is found.
Similarly, if the information stored in location 1000 in memory is to be read,
an address code that represents location 1000 must be sent to memory. The
memory must have the digital circuitry to sense and decide on the address
code and send back the digital bits that are stored at location 1000 to the
processor.

INSTRUCTION AVENUE

Figure2-7. Instruction Location — Street Address Analog

2-12 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

The procedure that is used in reading or "fetching" an instruction
from memory is illustrated in Figure 2-8. The microprocessor sends out the
16-bit binary pattern of l's and O's that represents decimal location 1000 to
the memory (a straight binary code for this would be 0000 00111110 1000, as
shown). At the same time, it sends out a control digital signal to turn on the
memory so that the memory will read and transfer to the processor the
digital bits for the coded number in the bit cells of the word at the memory
location. As indicated in Figure 2-8, this control signal is a 1 if the memory
is to read the contents of the addressed word. The memory address decoder
is the digital circuitry that interprets the address code and sends back the
stored information. In the case shown in Figure 2-8, the memory word
contains an instruction which has the 16-bit code, 0000 0010 0000 0010. Once
the instruction code is inside the processor, the address code and the

•
memory will be turned off.

You must understand that the single lines going from
microprocessor to memory and back are really cables of 16 wires, each
carrying one of the bits of the code. That's why they are called buses -
address bus and instruction or data bus. As shown in Figures 2-1, 2-8, and 2-
9, buses that have a large number of wires are indicated on a diagram with
a broad arrow rather than just a line, usually with the number of bits shown
within or near the bus.

INSTRUCTION MEMORY
(PROGRAM MEMORY)

ADDRESS
INTERPRETER

LOCATION 999 •

OR
DECODER

LOCATION 1000 dt

LOCATION 1001 •
16

16

(0000 0011 1110 1000)
INSTRUCTION
CODE FROM
LOCATION 1000

\
ADDRESS
CODE FOR
LOCATION 1000 ^ J, (0000 0010 0000 0010)

INSTRUCTION
OR DATA BUS

MEMORY SIGNAL

1 FOR READ
0 FOR WRITE

MICROPROCESSOR \ /
ADDRESS BUS CONTROL LINE

Figure 2-8. Instruction Fetch Operation

UNDERSTANDING MICROPROCESSORS 2-13

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
Address codes are also used to locate which memory location is to

be used to save information until the processor is ready to use it. The latter
is called "writing into memory" and the addressing and sensing of the
address code are the same as for reading from memory. However, now the
digital code is to be stored in the memory word that has been addressed.
Therefore, the code is sent to the memory from the microprocessor rather
than from memory to the microprocessor. The memory knows it is going to
receive a code to be stored because the control line is now a zero to put the
memory in the "write" state.
Address Codes to Indicate Input or Output Locations

Addressing or locating a given input device is illustrated in Figure
2-9. Let's suppose the microprocessor receives the following instruction:
"Bring in information from input device number 10." It might have an
abbreviation of IN # 10. The microprocessor decodes the instruction and
acts on it by sending out to the input functional blocks an address code for
location 10 over the address bus. At the same time, as shown in Figure 2-9,
it will send out a 1 signal on the control line to turn on the input units.
Inside the input subsystem is an address code decoder, just as in the
memory blocks. This circuitry will sense and decide that the address code is
requesting the information from input device 10. The input information,
1111 0000 1111 0000 in the example of Figure 2-9, will then be sent
(transferred) from input device 10 into the processor. Once the processor
has received the information, the address code and input-on signals will be
removed by the processor, turning the input blocks off. This will complete
the execution of the INPUT LOCATION 10 instruction. Notice that within
the instruction, the sense, decide, and act functions occur in a set sequence.

-A INPUT ADDRESS INTERPRETER
OR DECODER

INPUT
DEVICE 9

INPUT
DEVICE 10

ADDRESS FOR
INPUT DEVICE 10

(0000 0000 0000 1010)

DATA BUS

16

INPUT
DEVICE 11

ADDRESS BUS

sz.

MICROPROCESSOR
CONTROL

LINE

INFORMATION FROM
INPUT DEVICE 10

(1111 0000 1111 0000)

Figure 2-9. Input Instruction Operation

INPUT BLOCK
READ SIGNAL
1 FOR ON
0 FOR OFF

MEMORY BLOCK
CONTROL SIGNAL
0 FOR ON
1 FOR OFF

2-14 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

ml

A similar sequence of events would occur on an output instruction
except the input-on signal would be replaced with an output-on signal. In
all of these cases, the address code is used to specify which location in the
computer is to be involved in a transfer of information to and from the
processor. In many cases for input and output, another memory control line
is involved shown dotted in Figure 2-9. When this control line is a 0 the
memory is ON. When it is 1 memory is OFF. The use of this control line
allows the same address bus to be used for both memory and the input
functional block. If the control line is a 1, the input block is ON, memory is
OFF and the address code on the address bus will be sensed, decided upon,
and acted on by the input block. The reverse occurs if the control line is a 0
- input is OFF, memory is ON and the address locates information in
memory.

umber and Character Data Codes
If the information transferred to a processor is not an instruction

code, it will be a set of digital signals that represents either a number, an
alphabetical character, or the on-off status of some aspect of the computer
system. All of these types of information are called data. As shown in
Figure 2-10, there are a number of paths for the transfer of data. Data is
transferred to the processor from the input or from memory, or from the
processor to an output device or to a memory location for storage.

Figure 2-10. Typical Data Paths Within a Microcomputer

UNDERSTANDING MICROPROCESSORS 2-15

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

When digital codes represent numbers, the more bits in the code,
the more accurate the arithmetic. With three bits, only one of 8 different
numbers can be used; while with 16 bits, 65,536 different numbers can be
used. The three-bit signals would be suitable only for very rough numerical
information, while the 16 bit group would be accurate enough for many
tasks, such as checkbook balancing or simple arithmetic operations. If more
accuracy is necessary, as might be required for scientific calculator type
applications, digital signals with more bits are used to represent the
numbers. For example, the 17 bit code in Figure 2-11 would provide 6 place
decimal accuracy or 1 part in 131,072 parts. By adding one more bit to a 16-
bit code, the accuracy is doubled.

Binary Coda

0000 0000 0000 0000
0000 0000 1000 0000
0001 0100 0100 0010
1111 1111 1111 1111

1 1111 1111 1111 1111

Dadmal Equlvalant

0
128

5186
65535

131071

Figure 2-11. Some Typical Number Codes.

The digital signals that represent characters, are generally one of
the standard codes that are available. One such code is the ASCII code
(American Standard Code for Information Interchange) which uses a
seven-bit code to cover the upper and lower case characters of the English
alphabet, as well as the common typewriter key symbols and operations. To
store or transfer entire sentences or paragraphs of such information, long
strings of such 7-bit codes are used and contain all the information needed
to send or receive. In microprocessor systems, as shown in Figure 2-12, 8-bit
bytes are used to handle this seven-bit code. The ASCII code is listed on pg.
2-27 in a table that identifies which character has been assigned to a given
pattern of seven l's and O's. Other codes or assignments could be used but
this is the most common one.

CHARACTER BINARY COOE

S 0101 0011
T 0101 0100
0 0100 1111
P 0101 0000

STOP can be sent as 0101 0011 0101 0100 0100 1111 0101 0000

Figure 2-12. Example Use of the ASCII Code

2-16 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

m,

HOW DOES THE COMPUTER CONTROL THESE DIGITAL SIGNALS?

Clocks and Other Timing Signals
We'll look at how the microprocessor system uses these signals, but

before we do, let's clarify one additional requirement of the functional
blocks of such systems. They must be timed (synchronized) to work
together. What does this mean? To assure accurate transfer of data and
proper operation, digital electronic circuits must have signals present and
signals must change at specific points in time. Figure 2-18 illustrates the
idea. The digital circuit, shown in a, is a register. It can store 1 or 0 levels on
its outputs to provide a temporary storage place for the digital codes as
they are moved from one place to another in the microprocessor system.
This is a 4-bit register. It is made up of digital circuits called clocked "flip-

ops" (They will be discussed later in more detail) which have a very
mportant property. The outputs will not change until the clock signal is

applied. For example, in Figure 2-13b, inputs 1,2,3 and 4 have the following
digital code on their lines at time zero on the time scale: 1,1,1,0 respectively.
They have these same values when the clock signal arrives at time period
one on the time scale. At time period zero, the output code is 0,0,0,0 on the
respective outputs 1,2,3 and 4. At time period one, triggered by the clock
signal, the output code changes to 1,1,1,0 the same as the inputs. Note,
however, no change occurred until the clock signal triggered it.

CLEAR

CLOCK

- OUTPUT #1

-OUTPUT #2

-OUTPUT #3

-OUTPUT #4

a. Register

INPUT # 1 -

INPUT # 2 •

INPUT #3 •

INPUT #4.

CLOCK

OUTPUT * 1

OUTPUT #2-

OUTPUT # 3

OUTPUT #4

b. Timing Diagram

Figure 2-13. System Timing

UNDERSTANDING MICROPROCESSORS 2-17

s
BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2

Now look at time period 2, the input code is now 1,0,0,0. The output
code does not change to 1,0,0,0 until the clock triggers it, even though the
input lines changed at different times between period 1 and period 2.
Further changes in the input cause a code of 0,0,0,1 at the outputs triggered
by the clock signal at time period 3.

Note that the clock signal occurs at a regular time period. That's
why it is called a clock. It keeps the system time and all events are made to
happen at the time when the clock signal appears. Just like the register
changes its outputs at the clock signal, control line signals, address codes,
input data, output action in the other functional blocks of the system do not
occur until a clock signal appears. Thus, in the following discussions on how
the microprocessor system uses the digital codes, the operational steps are
occuring in a timed sequence.

Signal Flow in a Microcomputer
Figures 2-8 and 2-9 show that the microcomputer functional blocks

get their addresses from the microprocessor. In a time sequence like the one
just talked about, the microprocessor sends out timing signal information
turning on or off the functional blocks that need to send back signals in
response to the address code. One time the microprocessor will receive an
instruction code, another time, a data code from memory, or another time a
data code from the input block. At other times the microprocessor will send
data out to other functional blocks rather than receiving it. In order to
provide these information transfers within the microcomputer, the signal
paths must be connected between the functional blocks as shown in Figure
2-U. Pins that carry the address signals coming out of the microprocessor
must be connected to the pins of the memory that receive the address
signals and to the connecting pins for the address lines of the input/output
digital circuits. (Remember all of these will be integrated circuits.) The
timing signal lines coming out of the microprocessor must be connected to
the timing signal lines of the other functional blocks. The control signal
lines must be connected to the on-off and read-write control lines of the
memory and, as required, to the input/output units in the system. The data
code and instruction code signal lines must be connected between input/
output, memory and microprocessor.

2-18 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

ADDRESS CODES FROM THE MICROPROCESSOR

TIMING &
CONTROL
SIGNALS

MEMORY c \
INSTRUCTION
AND DATA CODES j.}.

0 INPUTS INPUTS INPUTS
AND

OUTPUTS
c

OUTPUT
INFORMATION

INPUT
INFORMATION

DATA CODES

Figure 2-14. Signal Flaw in a Computer

With the functional blocks connected together each block can now
be looked at in more detail. The use of the signals in the input, output, and
memory blocks is fairly straight forward as shown in Figures 2-15, 2-16 and
2-17. They receive addresses and timing and control signals from the
microprocessor. They may receive or send information to the processor,
depending on what the processor tells them to do. The memory block is for
storing information for relatively long periods of time. It may be read from
or written to. The other blocks also have storage circuits, but ones that only
hold or store information temporarily. For the ones with address lines, each
must contain circuits that will determine when it has been addressed by the
microprocessor and if its storage circuits can be read from or written into.
The latter occurs at the time set by the control signals being sent by the
microprocessor.

ADDRESS SIGNALS
FROM MICROPROCESSOR

TIMING AND CONTROL SIGNALS
FROM MICROPROCESSOR

EXTERNAL SIGNALS
TO COMPUTER

DATA SIGNALS
TO MICROPROCESSOR

V

Figure 2-15. Signal Flow at the Input Block

UNDERSTANDING MICROPROCESSORS 2-19

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
ADDRESS SIGNALS
FROM MICROPROCESSOR

OUTPUT
BLOCK

TIMING & CONTROL SIGNALS
FROM MICROPROCESSOR

-A
V

7T

EXTERNAL SIGNALS
FROM COMPUTER

DATA SIGNALS
FROM MICROPROCESSOR

Figure 2-16. Signal Flow at the Output Block

ADDRESS SIGNALS
FROM MICROPROCESSOR

TIMING & CONTROL SIGNALS
FROM MICROPROCESSOR TV

INSTRUCTION CODES OR
DATA CODES TO MICROPROCESSOR
OR
DATA CODES FROM MICROPROCESSOR

Figure 2-17. Signal Flow at the Memory Block

HOW DOES THE MICROPROCESSOR USE THESE DIGITAL SIGNALS?
The units around the microprocessor have been discussed. Now let's

look inside the microprocessor. It's more complicated than the other blocks.
The addresses and timing and control signals, sent out to the other
functional blocks, are generated by circuits in the microprocessor. In
addition, it has circuits to sense instructions, decide on which instruction it
is (decode), and action circuits that cause appropriate events to occur in
order to execute the instruction. If the microprocessor is not receiving
instruction codes, then it is receiving or sending data codes between
memory and input and output units. All of these are synchronized (kept in
time) by the timing and control signals. How does the microprocessor do all
of this? This can best be understood by looking at each activity in detail in
terms of the microprocessor's internal functional blocks.

2-20 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

Address Circuits
Depending on whether the microprocessor is fetching an

instruction from memory or is transferring data to or from the other
functional blocks or from memory, the internal circuitry of the processor
must generate either an instruction address or a data address. Let's look at
Figure 2-18. The functional block which contains and sends out the memory
address which locates the next instruction is called the program counter. It
is a temporary storage register whose contents can be incremented
(changed by adding one to the value) so that the addresses of successive
instructions (next in order) in memory can be generated.

ADDRESS TO
OTHER FUNCTIONAL
BLOCKS

Figure 2-18. Address Circuits Inside Microprocessor

Usually data must be used by the processor when executing an
instruction. This data must be located by an address either in memory or
from an input. The microprocessor must keep track of this data address.
Such a data address may come into the processor as part of the instruction
or it may have been saved from an earlier instruction. The functional block
shown in Figure 2-18 that saves the data address is called a data address
register. As discussed previously, the term register means a storage device

|that can save a certain number of digital bits. In many microprocessors, the
address register and the program counter provide 16-bits of storage, since
these microprocessors use 16 address lines to select one of 65,536 different
memory locations.

UNDERSTANDING MICROPROCESSORS 2-21

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

Either the program counter or the data address register may
provide the signals that will be placed on the address lines. Therefore, as
shown in Figure 2-18, the processor must provide a switch that can select
which of these two addresses will be sent to the other functional blocks. This
switch is controlled by the timing circuitry (Figure 2-18) inside the
microprocessor. Thus, if the processor is about to fetch the next instruction
from memory, the timing circuit will switch the contents of the program
counter onto the address lines. If the processor is about to send data to
memory or an output device, the timing circuit will switch the data address
registers with the appropriate address onto the address lines. At the same
time the timing circuit will output the correct memory or input/output
control signal to turn on the functional block involved in the transfer. The
instruction that the processor is doing may require a number of steps to
complete. Some of these steps require data from one of the various sources.
The timing circuit thus is switching the source of the address on the addres^^
lines from program counter to data address register in the correct sequence
the processor requires. After an instruction has been executed, the timing
circuit will add one (increment) to the program counter so that it now
contains the memory address of the next instruction to be executed. All of
this is handled automatically by the components inside the processor.
Instruction Decoder Circuits

Once an instruction has been transferred from memory to inside
the processor, the processor must provide a storage device that will save the
instruction code so it can be decoded or interpreted by the decoder. Another
register is used, in this case, as shown in Figure 2-19, it is called an
instruction register. With the instruction code saved in the instruction
register, the decoder circuit decides which instruction is called for by the
code. The decoding circuit does the same decoding operation for the
instruction code that the address decoder does for the address code in the
memory and input/output blocks. However, as shown in Figure 2-19, there
is a difference between the two. The output of the instruction decoder must
cause the timing circuits to produce signals in a required step-by-step
sequence to execute the instruction. Depending on the instruction, this can
be a very complicated sequence. However, again, this is all handled
automatically by the microprocessor.

2-22 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

INSTRUCTION
ADDRESS TO
MEMORY

•T> O
PROGRAM
COUNTER

MICROPROCESSOR

INSTRUCTION
CODE FROM
MEMORY

©

kZ
INSTRUCTION

REGISTER

^Z

INSTRUCTION
DECODER

MEMORY READ
SIGNAL FROM
PROCESSOR

TIMING
CIRCUIT

©

Figure 2-19. Instruction Fetch Operation

Arithmetic-Logic Circuits
If the processor is to be able to do more than just transfer

information around the computer, it must have circuits that will perform
arithmetic and logic operations. This group of circuits is called the
arithmetic-logic unit or ALU. They are shown in Figure 2-20. It provides
the logical, computational, and decision-making capabilities of the
microprocessor that make it such a powerful digital system element.
Typically, the ALU provides addition, subtraction, and the basic logical
operations. Some ALU's even provide multiplication and division; if they do
not, then these functions are done by successive addition or subtraction
under control of a step-by-step sequence. Logic circuits such as AND, OR,
NOT will be discussed more later, but for now these circuits allow the
processor to make decisions such as greater than, less than, equal to,
positive, negative, etc. Data is brought from memory or from input/output
units. The ALU has storage devices (again, registers) that provide
temporary storage for the often used data. It is to and from these internal
jiata registers that information flows from the other functional blocks
within the computer.

UNDERSTANDING MICROPROCESSORS 2-23

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
FROM TIMING
& CONTROL

LOGIC
CIRCUITS

SELECT LOGICAL
OPERATION

SELECT ARITHMETIC
OPERATION

ALU SWITCHING
CIRCUITS

SELECT REGISTERS

ARITHMETIC
CIRCUITS

LOGICAL RESULT ARITHMETIC RESULT

TO DATA BUS

Figure 2-20. Arithmetic Logic Unit Features

The Overall Structure

Now that the individual parts have been examined, let's piece them
together into the internal structure of the microprocessor and show how the
microprocessor works as a complete unit to perform its job of fetching,
interpreting, and executing instructions. First consider the activity of
obtaining an instruction from memory, in terms of Figure 2-19:
Step 1) The program counter contains the address of the instruction to be

executed, so this address is sent to memory.
Step 2) In timed sequence, the timing circuit generates a memory read

signal.
Step 3) The instruction code comes from the memory block over the data bus

and is stored in the instruction register.
The instruction decoder interprets the instruction code and tells the timing
circuits what instruction is to be executed. The timing circuits then
generate the needed sequence of operations.

2-24 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

INPUT DEVICE
ADDRESS FROM
MICROPROCESSOR

DATA FROM
INPUT
DEVICE

INPUT READ
SIGNAL FROM
PROCESSOR

©

Figure 2-21. Input Instruction Operation

If the instruction is to transfer data from an input device to the
microprocessor, the events of Figure 2-21 would occur in the following
sequence:
Step 1) The address of the input device is obtained from the instruction code

and is sent out on the address lines.
Step 2) The timing circuits generate an input read signal.
Step S) The data comes into the microprocessor and is stored in one of the

registers inside the ALU portion of the processor.
Similarly, if the instruction is to transfer data from an ALU

register to an output device, the output address would be sent out on the
address lines and the timing circuit would generate an output write signal
as shown in Figure 2-22. At the same time, the data in the ALU register
would be placed on the data lines. This would cause the data to be stored in
the appropriate output device.

Sending data to and from memory would be handled in similar
ways; the main difference being in the source of the address. In memory
operations, the address is obtained from a data address register of the type Vindicated in Figure 2-16.
I All of these activities are automatically done by the
microprocessor. The designer just makes sure that the addresses and
instructions used by the processor are correct and occur in the proper order
to cause the system to behave in the desired manner.

UNDERSTANDING MICROPROCESSORS 2-25

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
OUTPUT DEVICE
ADDRESS FROM
MICROPROCESSOR

DATA TO
OUTPUT
DEVICE OUTPUT WRITE
FROM SIGNAL FROM
PROCESSOR PROCESSOR

©

Figure 2-22. Output Instruction Operation

WHAT HAVE WE LEARNED?
• Microcomputers behave in much the same way that we do, with the

microprocessor providing the master control for the system.
• The microprocessor goes down through the list of instructions stored in

memory in the proper order, deciding (decoding) and acting on (executing)
each instruction in turn.

• The microprocessor must locate (address) the instruction, cause the
instruction to be transferred to inside the processor (fetched), decide which
instruction it is (decode or interpret it) and act (execute) on it.

• Information is transferred inside the microcomputer system using digital
signals. A given pattern of digital signals (bits) can mean an instruction
code, an address code, a number, an alphabetical character, or the status of
some part of the system.

• The main components of memory and input/output devices are an address
decoder and storage locations.

• The term register is used to describe a storage device that saves a group of
digital bits such as an address code, instruction code, or a number/
character data code.

2-26 UNDERSTANDING MICROPROCESSORS

2 BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS

• The main components of the microprocessor are:
1) The Program Counter 4) The Instruction Decoder

(The Instruction Address Register), 5) The Timing Circuits
2) The Data Address Register 6) The Arithmetic and Logic Unit.
3) The Instruction Register

WHAT'S NEXT?
Now that we are getting an idea of how the various functional

blocks in a microcomputer work together to provide a smoothly functioning
digital system, we can begin looking at how these devices are built in order
to provide these functions. In the next chapter we will go further inside the
functional blocks to see how they are designed and manufactured.

The next chapter is designed to promote additional study. It is
litended to whet the appetite of the person less familiar with the digital

"terms that are used and the way digital integrated circuits are made.

"ASCII"

BIT POSITIONS

7

(American Standard Code
lor information Interchange)

1 i i .

0 0 0 0 i 1 1 1

1 i i .

0 0 1 1 0 0 1 1

1 i i .
0 1 0 1 0 1 0 1

1 i i .
0 0 0 0 NUL DLE SP 0 @ P \ P

0 0 0 1 SOH DC1 1 1 A Q a q

0 0 1 0 STX DC2 2 8 R b r

0 0 1 1 ETX DC3 # 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t

0 1 0 1 ENQ NAK % 5 E U e u

0 1 1 0 ACK SYN & 6 F V f V
0 1 1 1 BEL ETB 7 G w 9 w

1 0 0 0 BS CAN (8 H X h X

1 0 0 1 HT EM) 9 1 Y i y
1 0 1 0 LF SUB • J z j z

1 0 1 1 VT ESC + ; K 1 k f 1

1 1 0 0 FF FS . < L 1 1

1 1 0 1 CR GS - - M] m }
1 1 1 0 SO RS > N A n -

1 1 1 1 S1 US / ? O
—

0 DEL

UNDERSTANDING MICROPROCESSORS 2-27

BASIC CONCEPTS IN MICROCOMPUTER SYSTEMS 2
Quiz for Chapter 2
1. Indicate the order in which

the microprocessor provides
the operations on instructions:
a. Interpret
b. Fetch
c. Execute
d. Address or locate

2. Match the functions shown to
one of the units from a
microcomputer
a. Program Memory
b. Control Inputs
c. Data Memory
d. Control Outputs
e. Communications Inputs
f. Communications Outputs
g. Microprocessor

A. Store data.
B. Time and Control System

Elements.
C. Store Instructions.
D. Perform Work.
E. Monitor external

conditions.
F. Receive information from

operators.
G. Send information to

operators.
3. A 14-bit binary signal

could represent one of
different numbers.
a. 4096 c. 16384
b. 8192 d. 32768

4. A 12-bit binary number
has an accuracy equivalent to
the decimal fraction:
a. 1/2048
b. 1/4096
c. 1/8192
d. None of the above

5. The seven bit code 0101 0100 is
the ASCII code for the letter:
a. S c. T
b. O d. None of the above

6. Microprocessors examine
digital input signals:
a. When they change
b. All the time
c. At specific times

determined by the system
clock

d. None of the above
7. A pattern of 0's and l's could

represent the following in a
microcomputer:
a. An instruction code
b. A number code
c. A character code
d. An address code
e. Any of the above

8. In a microcomputer,
data can flow from:
a. processor to program

memory
b. program memory to

processor
c. input devices to output

devices
d. data memory to and from

the processor
e. input devices to processor
f. processor to output devices
g. All of the above
h. a, b, and c above
i. b, d, e, and f above

9. The program counter of a
microprocessor contains:
a. the address of data
b. the value of the data
c. the address of an

instruction
d. None of the above

'3-6 '1-8 'a-i '3-9 3-S 'q-f '3-8
S-3Z '0"J3 'Q-P3 'V-»3 '3<{Z D-*Z * t"PI 'fr-3I 'E-qi '0-*I

2-28 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

How Digital integrated
Circuits Provide the Functions

We now have seen the impact of digital electronics and the key
contribution made by integrated circuits - that of providing more and more
functions inside a small space at a very reasonable cost. In this chapter, we
will learn more about digital integrated circuits. How they are designed

•

and made so that they can provide the basic functions required,
f Even though a fair amount of detail is covered, the main purpose
of this chapter is to bring into focus the overall concepts of how digital
functions are executed using digital integrated circuits. It's not nearly as
important to understand the exact values of the resistors and the number of
transistors in a particular digital circuit, as it is to come away with the
concept of the AND and OR and NOT functions, and that a register is a
functional unit that provides temporary storage, and that a decoder selects
something as a result of a particular coded input.

The insight into how these basic functions occur will aid a great
deal in understanding what a microprocessor does in a microcomputer
system.

OVERVIEW

Digital electronic systems send signals made up of l's and O's in
the form of codes between subsystem parts to accomplish the sense, decide,
store, and act functions of the system. It has been shown that the l's and O's
of the digital codes can be formed by turning switches on or off. All of these
switches can be of the same type. Therefore, one of the advantages of
digital electronics is that all components are made up of combinations of
simple on-off switches of the same type.

Originally, this basic digital operation was provided by using
relays. These are switches that are electrically controlled. These were slow,
expensive, and noisy devices. Relays were replaced with faster and less
expensive vacuum tubes, operating either ON or OFF. Vacuum tubes were
in turn replaced by the very fast, small transistor, also operating as a
switch that is either ON or OFF. Using a transistor as a switch in a circuit
(called a gate) along with associated components (mainly resistors) had the

^^further advantage that all components could be fabricated at the same time
^B>n a small area of silicon material in the form of an integrated circuit. This

way of making digital devices offers the ultimate in speed, low cost, and
reliability. In this chapter, we will look at how digital integrated circuits
are designed and made.

ABOUT THIS CHAPTER

UNDERSTANDING MICROPROCESSORS 3-1

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
WHAT ARE INTEGRATED CIRCUITS?

Digital electronic circuits are made up of many identical switching
circuits called gates. Look at Figure 3-1. There are in the order of 12,000
gates on the chip shown. The individual digital gates are made in a space
much smaller than the point of a pin or a needle. Therefore, functional
blocks such as memory consisting of thousands of such gates can be
provided in an area the size of a pinhead, and microprocessors and
microcomputers can be made on a chip small enough to fit in the eye of a
needle. But all of this is only part of the story of integrated circuits. Let's
look in more detail to find out how all this is possible and what it means.

Figure 3-1. Picture of TMS1000 Chip

3-2 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

The Overall Process
The main feature of the overall way (process) of making

integrated circuits is that many copies of a given circuit are made at the
same time as shown in Figure 3-2b. The circuits are made on a round disc
(Figure 3-2a) of nearly pure crystalline semiconductor material (called a
slice) 3 to 4 inches (7.6 to 10.2 cm) in diameter and about one-hundredth of
an inch (0.254 mm) thick (about the thickness of five pages of this book). It
looks like a round thin piece of gray-blue tinted glass with a highly polished
surface on one side. The square or rectangular circuit area is repeated in a
regular pattern consisting of many rows and columns to form hundreds of
circuits on a single slice as shown in Figure 3-2b. By processing many slices
at once, thousands of the circuits can be made at the same time. Thus, it

^^^osts little more to make thousands of such circuits than it would to make
^ffust one. Once these circuits have been formed on the slice, the slice is cut

into individual circuit chips about Vi of an inch (6.35 mm) on a side (Figure
3-2c). Each of these chips is a complex digital component such as a memory,
microprocessor, or microcomputer. The one shown in Figure 3-1 is a
complete 4-bit microcomputer. These individual chips are then mounted in a
plastic, metal, or a ceramic package (Figure 3-2d) so that electrical
connection can be made to them through the pins shown on the package of
Figure 3-3.

3 INCHES
(75 mm) A. Slices 10 mils thick

TYPICA
0 25 IN
(6 mm)

Figure 3-2. Silicon Slice and Chips

3-3

Figure 3-3. Picture of W Pin Package

MOS Transistors
Let's look further inside the microcomputer chip (Figure 3-i). It

consists of digital functions of the types discussed in Chapter 2: memory
(program and data), registers, decoders, arithmetic-logic units, and input/
output. Each of these functions is made up of thousands of individual
transistor switches made from a sandwich consisting of semiconductor
material, an insulating layer of glass (silicon oxide) and a coating of metal.
This makes a simple MOS (Metal-Oxide-Semiconductor) transistor as shown
in cross section in Figure 3-5. This transistor consists of a gate input (a
metal strip sitting on top of the silicon oxide (glass) which covers the silicon
material), source and drain regions, and a substrate. Openings have been
made in the oxide surface above the drain and the source regions so that the
metal placed on top, which is insulated from the silicon by the oxide layer,
can make contact to these areas and electrical current can flow when
voltage is applied. The symbol used for this MOS transistor is shown to the
right. The substrate material of Figure 3-5 is the base material of the chip
of Figure 3-2c and the slice of Figure 3-2a that has been cut from the grown
crystal. It is one type of silicon (N or P type), the small islands called source
and drain regions are of the opposite type. Silicon can be either pure silicon,
N-type silicon, or P-type silicon. It is not necessary for us to understand the
details of what these different types of silicon are physically. We only have
to know that electric current flows easily in a piece of silicon that is all N-
type or all P-type, but that electric current cannot flow from an N region to
a P region and into another N region. Similarly current cannot flow from a
P region into an N region and into another P region.

3-4 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

UNDERSTANDING MICROPROCESSORS 3-5

MEMORY
PROGRAM DATA
MEMORY MEMORY

INPUT INSTRUCTION ALU OUTPUTS ACT
DECODE A »
CONTROL | CL()CK

SENSE DECIDE A TIMING
CIRCUITS

Figure 3-4. TMS1000 Chip Showing Functional Areas

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
GATE

METAL

\
SILICON OXIDE (GLASS)

. • ^ i mm rv - • v . .

II L_1 M 11

9UCON DR^P"^^ \ SOURCE

P SUBSTRATE

GATE

J T I DRAIN 1 | 1 SOURCE

SUBSTRATE

Figure 3-5 Cross-section of MOS Transistor

Thus, as the transistor of Figure 3-5 is originally made, no current
can flow from the drain N region through the P substrate region to the
source N region. The P region between the source and drain blocks this flow
as shown in Figure 3-6a. However, when the transistor is used as a switch, a
voltage is applied to the gate terminal that is more positive than the
voltage on the substrate. Figure 3-6b shows +10 volts. This causes a thin
channel of N material to form between the source and drain N regions.
When this occurs, current can flow from the drain to the source region or
vice versa provided a voltage is applied between drain and source
connections. In other words, the transistor acts like a voltage controlled
switch. With no gate voltage, the switch is open and no current flows
(Figure 3-6a). With a high enough gate voltage, the switch is closed and the
transistor acts like a resistor (Figure 3-6b) through which current can flow.
Note the dimension W of the gate of Figure 3-6a. By making the transistor
with a large W dimension for a long gate (which causes the transistor to
have relatively large area), this switch will have a low resistance so that it
acts almost like a metal wire. By using a short gate and smaller area, the
transistor acts like a large value resistor. Just by varying the dimension W,
the same type of structure can be used to fabricate the two types of
components needed to make all digital devices - switches and resistors.

3-6 UNDERSTANDING MICROPROCESSORS

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS
-V-

+ 10V

No
current
How

los CURRENT FLOWS

+
VpS ~ tsRd

DRAIN

turrenl flow *
Blocked by N-P barrier

A bridge or channel
of N-type allows current
to flow

a Switch open b Switch closed.

Figure 3-6. MOS Transistor as a Switch

The Detailed Steps
In order to create the very small regions that form the MOS

transistors on and in the silicon slice, these basic things need to be done to
the material:

1) Oxidation - a furnace process for growing a silicon oxide (glass) layer on
the top of the silicon (Figure 3-7a).

3) Photomasking - a photographic process that allows areas of material
(such as the oxide layer) to be selectively removed from off the top of the
silicon (Figure 3-7b).

3) Diffusion - a furnace process that allows an area of silicon not protected
by an oxide layer to be changed to an n type or p type by "diffusing in"

I other materials (dopants). (Figure 3-7c)
4) Metallization - the process of placing a thin metal layer over the top of

the slice (Figure 3-7d) for the purpose of connecting the transistors (or
diodes, or resistors) together electrically.

UNDERSTANDING MICROPROCESSORS 3-7

#-
11111

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
Oxide film
grown on silicon

0.04
MIL

THICK

_L
P-TYPE) T

SILICON SLICE)(1 fim)

Liquid "photoresist" plastic
applied & dried

a. Oxidation

ULTRAVIOLET LIGHT
Soli plastic spot
washed away & hole
dissolved in oxide

Plastic removed &
phosphorus diffused in

Light toughens
plastic film
except where
opaque spots
block light.

b Photcmasking

(2 ,vn)

^ ' r
V N)

P 1
0.08
MIL

DEEP

/

-4-B
TYPICALLY

1 MIL
ACROSS
(25 Mm)

New oxide grown
over hole

c. Diffusion (followed by oxidation)

Contact hole made & aluminum
deposited over entire slice

Aluminum removed
except where desired

d. Metallization (followed by photomasking)

Figure 3-7. Integrated Circuit Processes

3-8 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

When examining Figure 3-7, it must be remembered that the cross
sectional drawings are greatly magnified. Many dimensions are 1 or 2 mils
(0.025-0.05 mm) total (a mil is one thousandth of one inch), and the vertical
dimensions are made ten times taller than they really are to more clearly
explain the process. To build the MOS transistor within a very small area of
a few thousands of an inch on a side on the highly polished slice surface, the
basic processes above are used, sometimes more than once. The first step is
to oxidize a P-type silicon slice to form a protective and insulating layer of
glass (silicon oxide) over the entire surface by placing it in a furnace with
oxygen and steam (Figure 3-7a). A photomasking step comes next. A light-
sensitive chemical film that hardens wherever ultra-violet light hits it is
then spun onto the surface of the slice. This film will protect areas of the

I
oxide layer from being dissolved away. A mask with clear parts that pass
light and dark parts that block the light forms these areas on the film
surface when placed between the ultra-violet light and the slice. This is
shown in Figure 3-7b. The oxide is dissolved in the unprotected areas and
the hardened film coating removed afterwards by washing the slices in
chemical solutions. In this way, the oxide layer is removed over the very
small areas that are to become the N-type source and drain regions of
transistors (Figure 3-7b). Next, is a diffusion step. The original P-type
silicon substrate is now modified in the areas where oxide has been
removed. To do this, N-type atoms in a phosphorus gas are passed over the
slice while in a furnace at 1200°C to change the open areas of the silicon
from P to N type by the diffusion of N-type atoms as shown in Figure 3-7c.
The oxide layer prevents these atoms from entering the uncovered areas of
the silicon.

Now that the very small regions are formed, electrical connections
need to be made to them so they will function as a circuit. However, before
the metallization step, a photomasking step opens holes in the oxide layer
wherever the metal is to contact the silicon areas as shown in Figure 3-7d.
Then a metal layer is coated over the entire slice. Photomasking is again
used. This time to define the pattern of metal that connects the source and
drain of the transistors as well as the metal areas to make the gate of the
transistors. The plastic film again spun on the slice is exposed to the
ultraviolet light through the clear areas of the mask to protect the metal
that is to remain on the slice. All other metal will be washed away or
dissolved when the slice is dipped in a chemical solution for this purpose.
After this step, the forming and connecting together of the digital circuits
is complete. To allow for easy use of the circuits, they are cut apart from the
slice and packaged separately as shown in Figure 3-2 and 3-3.

UNDERSTANDING MICROPROCESSORS 3-9

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
The Need for Volume Production

The design of the circuits and the photomasks to form them is the
most expensive part of this entire process. However, this has to be done
only once. If the photomasks are used only once, as they would be in making
a small number of any one type of circuit, the circuits would cost thousands
of dollars each. However, if the photomasks are used over and over again to
fabricate millions of circuits, the cost of the circuit and photomask design is
only pennies for each circuit made. This is why integrated circuits must be
produced in large quantities in order for each to be bought at a low cost.

This quick overview of integrated circuit fabrication and MOS
transistor operation should give some understanding of the concepts of
integrated circuits and how more and more digital functions are being
made in a smaller and smaller space. It is useful to understand how these
circuits are designed and how they operate to see how microcomputer
building blocks work. Let's begin by reviewing the basic digital operations
that are a part of all digital systems.

WHAT ARE THE FUNDAMENTAL DIGITAL OPERATIONS?
Digital circuits can be separated into two different groups or types

of units: those that make decisions and those that remember or store
information. The storage or memory units are made up of the simpler
decision making units. We will first look at the simpler, more familiar
decision elements.
Digital Signals

Many of these decision elements affect our everyday lives. For
example (refer to Figure 3-8), an on-off light switch and the light bulb it
controls represents a simple digital system. When the switch is OFF, the
light is off; with the switch ON, the light comes on. There are only two
possibilities — OFF and ON. Thus, this is a binary circuit because it has two
conditions. The light switch allows power to flow or prevents power from
flowing to the light bulb. It is a simple digital gate. The term gate is needed
since its action is much like the gate to a horse corral. If the gate is in one
position, it allows the horses to run out of the corral. If the gate is in the
other position, the horses are kept in the corral.

Both of these situations are digital in nature. The flow or no flow of
power (electrical or horse) can be represented as a digital signal. Let's
arbitrarily give the light power a symbol A. Thus, if power flows, let's say A
is a 1 or is ON. If power doesn't flow, let's say A is 0 or is OFF. The A
represents the state of the gate. The output is a 1 if the gate allows power
flow and is a 0 if the gate does not allow power flow.

3-10 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

SWITCH OPEN
(POWER BLOCKED)

Figure 3-8. Simple Digital System

* ND Gates
Digital power or signals can be controlled by more complicated

gates. The lights in our homes again provide us with a simple example.
There is a fusebox or a circuit-breaker box in the house that determines
whether power is available to a certain portion of the house. The individual
light switch further decides whether or not a given light is to receive this
power. The circuit for this is shown in Figure 3-9. The light bulb will be ON
(power flows) only if both the circuit breaker AND the light switch are ON
(in the closed position) to complete the circuit. If either switch is OFF,
power will not flow to the light. It will be off. The state of the circuit
breaker can be represented with the symbol A, the state of the light switch
with the symbol B, and the state of the power flowing to the light bulb (or
whether the bulb is lit or not) by the symbol C. A, B and C represent digital
signals. In the case of the switches, A or B is a 0 if the appropriate switch is
OFF and A or B is a 1 if the appropriate switch is ON. If the light bulb is
OFF (no power flow) C is a 0. If the bulb is ON (power is flowing), C is a 1. A
and B must be On to make the light be ON. The relationship between these
particular signals is called the AND gate in digital electronics.

BREAKER SWITCH
OPEN OPEN

BREAKER SWITCH
CLOSED CLOSED

r̂ '
POWER
SOURCE

LIGHT
OFF POWER

SOURCE

LIGHT

Figure 3-9. Illustration of Simple AND Digital Operation

UNDERSTANDING MICROPROCESSORS 3-11

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
The operation of the AND gate, summarized in words earlier, can

also be summarized in table form showing a list of all the input and output
combinations. Figure S-lOa is such a table using the symbols ON and OFF.
Figure 3-10b is another choice. Here the 0 and 1 conditions are used to
represent the state of the inputs and outputs. This form of the table is
called a truth table. Truth tables also are written based upon signal levels.
Figure S-lOc is a table using L for a low or 0 level and H for a high or a 1
level. Recall that positive logic notation was mentioned earlier. When the H
level is a more positive voltage level than the L level in a digital circuit,
then Figure 3-10c defines the circuit in positive logic notation. All of these
tables contain the same information. They all fully describe the operation of
the AND gate. The gate has a 1 output only if all inputs are 1. If any or all
of the inputs are a 0, the output of the gate will be a 0.

INPUTS OUTPUT

A B C

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

INPUTS OUTPUT

A B C

0 0 0

0 1 0

1 0 0

1 1 1

INPUTS OUTPUT

A B C

L L L

L H L

H L L

H H H

Figure 3-10. AND Truth Tables

The AND gate is used for a decision to act only if all input
conditions are met. For example, in a furnace controller, the heater gas flow
is turned ON only if both of the following conditions are true: the house
temperature is below the thermostat setting and the pilot light is lit. This is
the AND decision.

A symbol represents the AND gate when it is used as a circuit
element in a digital system. A two-input AND gate is shown in Figure 3-11.
We should become familiar with this symbol and think of the operation of
the AND gate and its truth table everytime we encounter this symbol in
diagrams of digital system.

Figure 3-11. AND Symbol

3-12 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

OR Gate
Unlike the AND gate which requires all inputs to be a 1 before the

output is a 1, the OR gate outputs a 1 if any one of the inputs is a 1. This
operation is summarized in the truth table of Figure 3-12. The symbol for
the OR gate also is included. Familiar OR decisions are involved in driving a
car. We must stop a vehicle if we approach a stop sign, or if we approach a
stop light which is red, or if we are about to hit something. If any of these
conditions arise, we would want to stop.

INPUTS OUTPUT

A B C

0 0 0

0 1 1

1 0 1

1 1 1

Figure 3-12. OR Gate Truth Table and Symbol

Like the AND gate, the OR gate can be demonstrated by using
switches A and B and the light bulb C shown in Figure 3-13. Now power
flows to the light bulb (C = 1) when A is ON (A = 1) or B is ON (B = 1) or both
are ON. Power stops flowing (C = 0) only when both A and B are OFF (A = 0,
B =0). These switches can be made from regular switches, relays, vacuum
tubes, or transistors. If the OR gate is made in an integrated circuit form,
the entire gate can be made in such a small area that over 2,000 take no
more area than that taken by one letter of type in this book. Therefore,
many such circuits can be placed on the same chip of silicon to make a
complex integrated circuit such as a microprocessor.

SWITCH A

SWITCH B

PLIGHT

Figure 3-13. Simple OR Gate

UNDERSTANDING MICROPROCESSORS 3-13

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
NOT, NAND, and NOR Gates

The NOT function is really the simplest digital operation since it
has an output of a 1 if the input is a 0 and an output of a 0 if the input is a 1.
The circuit represented by the symbol in Figure 3-H performs this
operation and is called an inverter. The inverter is used when another
circuit has an output of 1 but a 0 output is needed. For example, if an AND
gate tests to see if all input conditions are 1 at the same time, then an
output of 1 will be obtained when this is true. However, due to a system
need, the output should be a 0. The AND gate output simply needs to be
connected to an inverter as shown in Figure 3-15.

INPUT OUTPUT

A C

0 1
1 0

Figure 3-14. Inverter

Figure 3-15. AND-NOT Combination

This combination is shown in Figure 3-16 where it is considered as
a complete gate, called the NAND (short for Not-AND) gate. The truth
table is just opposite (inverted) from that of the AND gate. This is a very
important type of gate since, in many cases, it is the easiest type to make in
integrated circuit form. Similarily, the OR gate can be followed with an
inverter to form the NOR gate of Figure 3-17 which also is made easily as a
complete gate in integrated circuit form.

3-14 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

INPUTS OUTPUT

A B C

0 0 1

0 1 1

1 0 1

1 1 0

Figure 3-16. NAND Gate Truth Table and Symbol

INPUTS OUTPUT

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Figure 3-17. NOR Gate Truth Table and Symbol

All of these basic digital gates (AND, OR, NOT, NAND, and NOR)
share the common feature of being decision elements. They provide certain
logical decisions based on their input signals. Any digital device or system
can be made by interconnecting enough of any of the following
combinations of such basic gate elements:

1) AND, OR and NOT elements

2) All NAND elements
3) All NOR elements

A little later these gates will be combined to form storage or memory
elements, complete memories, and even microprocessors and
microcomputers. But first, let's see how these elements are fabricated in
integrated circuit form.

UNDERSTANDING MICROPROCESSORS 3-15

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
HOW ARE THE FUNDAMENTAL DIGITAL ELEMENTS MADE?

An Inverter

A transistor structure that can be used in making a digital gate is
the MOS N-channel transistor which has already been discussed. (Refer
back to Figures 3-5 and 3-6; recall the W and L dimensions.) Using the fact
that such transistors can be made so they act as an almost ideal switch or as
a resistor component, let's construct a gate. When a MOS transistor is made
to be a high-value resistor, it will have a significant voltage drop across it
from drain to source when current is flowing. Therefore, two MOS
transistors can be connected very simply to form the simplest digital
element, the inverter of Figure 3-18. The top transistor is used as a resistor
(it is a relatively small area device because the ratio of the W over L
dimensions of Figure 3-6 is a small number, one or less) and it is called the I
load transistor. Because of the way the gate is electrically connected to the
drain, the top transistor is always ON, while the bottom transistor is turned
ON or OFF by the input signal. The bottom transistor is a relatively large
area device (its W/L ratio is usually greater than 10) so that it will act as a
good switch. Let's look at Figure 3-19a. If the bottom transistor is OFF due
to a 0 input (input connected to ground - zero volts on gate), no current will
flow in the bottom transistor. It will act as an open circuit, and the output of
the inverter gate will be near the Vdd supply voltage of +10 volts - a 1 level.

1
LEVEL -

+ 10 VOLTS

LOW W/L RATIO
MOS TRANSISTOR

OUTPUT

HIGH W/L RATIO
MOS TRANSISTOR

— V„ = 0 VOLTS

Figure 3-18. N-channel Inverter Circuit

3-16 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

IINPL

V« - +10 VOLTS
\IM - +10 VOLTS

OUTPUT - +10V

+ 10 VOLTS

1 INPUT

1

OUTPUT -
0 VOLTS - X,

TRANSISTOR ON
(SHORT CIRCUIT)

V.

Figure 3-19. Two States of MOS Inverters

If the input is a 1 level (+10 volts) so that the bottom transistor is turned
ON (Figure 3-19b), the output Voltage will be a 0 level, which is close to the
V„ voltage of zero volts. The output versus input characteristics of this
circuit are shown in Figure 3-20. Note that as long as the input voltages are
less than a certain value called the threshold level, the output is 1. This
satisfies the 0 in 1 out condition of the inverter. Once the gate voltage
exceeds the threshold, the gate switches and the output of the inverter drops
to a 0 level, which satisfies the 1 in - 0 out condition. The output 1 level is
normally designed to be above a minimum level so noise pulses in the
system do not falsely trigger the next gate. This difference in 1 or 0 level
from the threshold level is called noise margin.

OUTPUT

1 LEVEL

INPUT

Figure 3-20. Inverter Characteristics

UNDERSTANDING MICROPROCESSORS 3-17

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
The way the inverter is made in integrated circuit form is shown in

Figure 3-21. The N islands are formed in the P substrate by diffusion and
the metal etched and defined to make the electrical connections as
previously described. An area of 12 square mils is required on the surface of
the silicon slice to make this inverter. This is a very small area. As an
example, the period on this printed page has an area of 219 square mils. 18
of the inverter gates can fit underneath the printed period on this page. The
top and bottom transistors and input and output leads are easily identified
in Figure 3-21. The difference in the size of the two transistors is also obvious.

OUTPUT
_ ABOUT 0.006 INCH A_

(150 urn) \

"Control Plates" N
ot MOS Transistors
are called "Gates"

\ "SUBSTRATE" AT-5 VOLTS
\

METAL

INPUT SILICON \
\

Figure 3-21. Inverter Structure

P-Channel Inverter
With little modification, the inverter structure can be converted to

a NAND structure. The inverter of Figure 3-21 used an N-channel MOS
transistor which requires positive gate and drain voltages in its operation
(the source is at ground — 0 volts). The positive voltage on the gate, +10
volts for the 1 level, turns the transistor ON and causes the output of the
inverter to be a 0 — a level near Wa. There is a second type of MOS
transistor, the P-channel device. This device has P-type diffusions into an
N-type substrate, therefore, it has a P-channel formed by applying gate
voltage when the unit turns on. The operation of the transistor is the same.
When the gate voltage is near the drain voltage, the transistor is ON; when
the gate voltage is near the source voltage, the transistor is OFF. However,
it uses negative voltages on its gate and drain (with the source grounded)
just reverse of the N-channel transistor.

Positive logic notation will still be used where a 1 is the most
positive voltage level and a 0 is the least positive (more negative) voltage
level. Therefore, for the circuit of Figure 3-22, a 0 is a negative voltage near
the drain voltage of — 5 volts and a 1 is a more positive level near the zero
volts, V„. A 0 on the input gate (- 5 volts) turns the transistor ON and pulls
the output close to Vu, a L With the gate near V„ (0 volts), a 1 level, the
transistor is OFF and the output is near — 5 volts, the 0 level.
3-18 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

V00 - -17 V

INPUT

OUTPUT

V„ - 0 V

Figure 3-22. P-channel Inverter

NAND Gate
Now by adding additional transistors in parallel with the bottom

one of Figure 3-22, the NAND gate of Figure 3-23 results. Compare the
truth table with that of Figure 3-16. If either or both inputs have a 0 level, a
voltage of -5 volts, the output will be near V„, the 1 level. Only when both
inputs are at the 1 level near V„ are the input transistors OFF and the
output near -5 volts, the 0 level. Thus, the result is a very simple circuit
that provides the NAND decision function.

Voo - -17 V

INPUTS OUTPUT

A B c
0 0 1

0 1 1

1 0 1

1 1 0

v„ - o v

Figure 3-23. P-Channel MOS NAND Gate and Truth Table

UNDERSTANDING MICROPROCESSORS a-19

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
The structure of this type of circuit in integrated form is shown in

Figure 3-21,. This 4-input NAND gate is fabricated with a very simple
geometry and again in a very small area of silicon. In fact, it uses less area
than the single inverter of Figure 3-21. This simple NAND gate structure,
repeated over and over again thousands of times is the secret to making the
digital functional blocks required for input/output, memories,
microprocessors, and complete microcomputers in integrated circuit form on
one chip of silicon. NOR gates structure are made in a very similar way and
used when necessary in the circuits. To further examine how circuits are
repeated and to look at the remaining type of digital circuit that stores
information, lets discuss how memory circuits are made in integrated
circuit form. INPUT

TRANSISTORS
5 VOLTS -17 VOLTS

Note: Surface
of chip is shown
as il oxide layer
were invisible.

Speckled areas
are metal
over oxide

Contact through
hole in oxide 2.3 MILS ,

(60fun)"~*l
Figure 3-24.1,-input NAND Gate Structure

HOW IS MEMORY MADE

Recall that memory in a digital system must store digital bits for
the system and remember them until the system needs them. The digital
bits are in the form of a code. They may be a single bit storing the binary
code of 0 or 1 or they may be a string of N bits storing any one of the 2N

codes available when using 0 and 1 to identify the value of each bit. Such
storage circuits are required, not only in the main memory of the system,
but in the input or output functional blocks and inside the microprocessor
itself. These circuits need to store one bit at a time or else several related
bits together as a unit to form a register, or a memory byte or a memory
word. Here are examples of what might be stored:

1 = One-bit code
01001101 = 8-bit code or byte from register or

memory location
1110001110011101 = 16-bit code or word from register

or memory location

3-20 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

All three types will be discussed, beginning with the simplest, the single bit
storage element, the "flip-flop.' It's called this because it "flips" into one
stable state as a result of a control signal and stays there and then "flops"
back into another stable state and stays there due again to an input control
signal.

Single-Bit Storage
Flip-flops can be made from combinations of NAND gates; as a

result, they can be made easily in integrated circuit form. The simplest
combination that will provide the storage needed is the R-S flip-flop which
can be made from just two such gates with inputs and outputs cross-
connected as shown in Figure 3-25. The operation of such a storage circuit is
best understood by examining the outputs, called "true" or Q and

fc "complement" or Q-bar (also called Q-Not), under various input conditions.
First, assume there is a 1 on the S input and a 0 on the R input. The output
of the S inverter is a 0 and the output of the R inverter is a 1. The 0 on the
output of the S inverter causes the output of the Q NAND gate to be a 1.
This 1, along with the 1 out of the R inverter, causes the output of the Q (Q-
Not) NAND gate to be a 0, which will hold Q at a 1 even if the 1 on S is
removed. Thus, a 1 on the S terminal sets Q to a 1 and resets Q (Q-Not) to a
0. By providing the appropriate S and R signals, the storage circuit will
store a 1 or a 0 on the output Q. This 1 or 0 will remain on the Q output even
after the S or R signals return to 0. Note that Q is the inverted state from
Q. Thus, Q is said to be the "complement" of Q.

While the R-S flip-flop is simple to build and understand, it does
have its drawbacks. First, it responds to a constant 1 on the S or the R
inputs. One can't be sure precisely when the outputs on Q and Q will change.
Secondly, system design must make certain that a 1 is not applied to the S
and R terminals at the same time (See truth table of Figure 3-25). This is an
indeterminate case. More complicated flip-flops overcome these problems by
providing additional NAND gates and inverters and an additional signal
called a clock or a latch signal. One such device is the D flip-flop, sometimes
called the gate-latch flip-flop.

INPUTS OUTPUTS

S R

Id

d

0 0

0 1

1 0

1 1

Qo Qo

0 1

1 0

? ?

Subscripts: 0 Before Inputs
1 After Inputs

Figure 3-25. R-S Flip-Flop and Truth Table

UNDERSTANDING MICROPROCESSORS 3-21

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
D Flip-Flop

To form this type of flip-flop as shown in Figure 3-26a, the same R-
S flip-flop (called the latch) is used along with two AND gates and a NOT
function. The NOT function on the input prevents R and S from being 1 at
the same time. The input line is labeled D for data input. The AND gates
keep the R and S inputs at a 0, because the gate or clock input is held at 0, so
that no input signal changes can change the state of the latch. When the
gate or clock signal changes to the 1 level, the input signal present on D will
feed thru the AND gates and provide a 1 level at either R or S to set the
latch and Q to the correct state: Q = 1 for D = 1, Q = 0 for D = 0, as shown in
the truth table of Figure 3-26.

r~

0 I

GATE LATCH

K
:=Q >=o

GATE OR CLOCK SIGNAL

a. AND-NOT-NAND Version

-=c>J=o

INPUT* OUTPUTS**

D Qi 0.

0 0 1

1 1 0

•Input Value at Clock

• * 1 Subscript means after clock
pulse; 0 subscript means
before clock pulse

GATE OR CLOCK SIGNAL

b. All NAND Version c- Truth Table

Figure 3-26. D Flip-Flop (Gated Latch)

3-22 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

Making such a flip-flop in integrated circuit form is made easier by
using the same type circuit over and over again. Figure 3-26b shows how
N AND gates are substituted for the AND - NOT function to provide a
NAND gate version. Trace through this circuit to verify that the operation
is the same.

Perhaps this D flip-flop description provides a better
understanding of the term "clock" signal because it determines the time at
which the data on the D line is accepted and latched or stored into the flip-
flop. To make this clearer, refer to what is called a "timing diagram" in
Figure 3-27. In this diagram, the signal levels at each input or output are
plotted against time to show exactly when the data present on the D line is
gated in and stored by the latch. The timing diagram begins with all signals
at the 0 level. The D level changes first to the 1 level but does not cause a

I change in the latch output Q until the clock level is a 1. Q then has stored the
1 ("latched it in") even though the clock returns to 0. No other change occurs
in the latch output Q until the clock again goes to a 1 and detects that D has
changed to a 0. It then gets latched to a 0. Note that the D input in Figure
3-27 changed during the clock signal time. This is not normal practice in
digital circuit design. Most circuits are designed so that signal D would be
in a "stable" state before the clock signal arrives so that signals are
transferred correctly and there is no chance for error.

Microcomputers use clock signals to time the operation of all their
circuits. Clocked flip-flops and other memory elements allow this timing to
be precise. The D flip-flop is but one type of clocked flip-flop. All clocked flip-
flops can be used individually to hold single bits of information. They can
also be used in groups to provide several related bits of storage in devices
called registers.

D INPUT

Q OUTPUT

Figure 3-27. D Flip-Flop Timing Diagram

UNDERSTANDING MICROPROCESSORS 3-23

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
Register

Once a single flip-flop is built that does what is needed, several of
these flip-flops can be combined along with additional NAND gates to
provide multiple-bit storage in a device called a register as shown in Figure
3-28.

INPUTS

CLOCK
OR LATCH

_» 1
SERIAL
DATA INPUT

GATED ^
BUFFERS

BITO BIT 1

I

v— V

BIT 2

V V v ~ V
u D I D u

1 I 2 i 3 4
3 I

I I Q i
l

BIT 3

OUTPUTS•

V- V

BIT 0 BIT 1 BIT 2

Figure 3-28. Parallel 1,-bit Register

SERIAL
DATA
OUTPUT

OUTPUT
ENABLE

BITS

Four D flip-flops can be used to provide a 4-bit register by
providing a common clock signal to the clock input of each flip-flop. When
this clock signal goes from 1 to 0, the four signals present on the four input
lines will be stored in flip-flops one through four. Whenever the code stored
in the register is to be read, the outputs of the flip-flops are gated onto the 4
output lines. This type of structure is a parallel register in that the input
information is taken 4 bits at the same time (in parallel) and the output
information is provided 4 bits at the same time. Control of when the output
information is read occurs by turning on an output gate (gated buffer) at
the correct time with a signal commonly referred to as an output enable
signal. When this signal is active, the outputs of the flip-flops are connected
to the output lines. When this signal is inactive, the output lines are in an
open circuit state. That is, the wires act as if they were not connected to
anything. Such an output control is called "three-state", since the output
can be a 0 or a 1 when output enable is active or open circuit when it is
inactive. This property is very useful in microcomputers since it allows a
very simple interconnection of elements within the structure. Not all
registers provide this type of output, but most registers designed for use in
microcomputer systems do have this feature.

3-24 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

The register of Figure 3-28 provides for parallel input and parallel
output of data. Not all registers are built this way. Some registers provide
for shifting information into the register on a single line or for shifting
information out of the register on a single line. (The dotted lines of Figure
3-28 indicate such a connection.) Bringing in data one bit at a time on a
single line is called a serial data transfer, while bringing all bits in at once
on several different lines is called a parallel transfer. Thus, there are
possibilities for serial input-parallel output registers; parallel input- serial
output registers; and so on. Also, there is a completely serial shift register
in which the inputs and outputs occur in serial form on a single input and
single output line. These special shift registers will come up again in more
detail when serial data communication is discussed in later chapters. For
now, the main interest for microcomputer systems lies in the parallel data
transfers from register to register using the type of registers already
discussed.

Memories that are used with microprocessors and microcomputers
store multiple-bit digital codes representing instructions, data, and control
signals. A memory for this purpose can be provided by using many
registers, or many lines of multiple flip-flop rows, for the multiple-bit
storage locations. An example of a memory to store 16 bits is shown in
Figure 3-29. Note the regular pattern of such an array consisting of rows
and columns. The row lines select 4 stored bits at the same time and the
column lines are common to 4 stored bit locations. The column lines can be
used as lines to carry inputs to the bit locations for storage or they can be
used as lines to read out the bits stored at a location. When the column lines
are used as inputs, a clock gate like the one previously described for the D
flip-flop, gates the inputs to the bit locations and stores the bit in the latch.
When the column lines are used as outputs, an output enable gate reads the
stored bit placed on the output lines by the latch. Storing inputs into the bit
locations is called "writing into memory"; reading out the stored bits is
called "reading memory." This is a Read-Write memory because both
functions can be accomplished.

A group of memory bits (in Figure 3-29 it is 4 bits but it could be
an 8-bit byte or a 16 or 32, or 64-bit word) are to be read out or written into
in parallel. Therefore, all need to be selected at the same time. This is done
by selecting a row in Figure 3-29. An address decoder is required for this.
Since there are 4 rows, only a 2-bit address is needed to choose any one of 4
rows. In the Figure 3-29 example, the third row is being selected by the
input address 10. A control Read/Write signal, 1 for write and 0 for read,
tells the memory to store the inputs, or read the outputs.

RAM's

UNDERSTANDING MICROPROCESSORS 3-25

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
Each little square
represents a storage

Figure 3-29. Basic RAM Structure Using Flip-Flop Elements.

Again, a memory, made to store thousands of bits, is realized by
combinations of many thousands of NAND gates. Figure 3-30 shows a
typical picture of such a device in its integrated circuit form. The array of
flip-flop memory cells and the decoder rectangular area are easy to identify.
It is the regular nature of the integrated circuit form of such devices that
makes them so economical to produce with high densities.

Figure 3-30. Picture of RAM Chip

UNDERSTANDING MICROPROCESSORS

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

A name is given to a read-write memory such as this where any
address location can be chosen at random and the bits stored at that
location arrive at the output in approximately the same time for any
address used. It is called a random-access memory or RAM. It is used for
storing both data and program information.

ROM's
Some of the memory that is used to store program instructions

need not be changed for a system. In this case, a memory that has fixed bits
stored in its cells will be used. This is called a read-only memory. When it is
addressed, it will always read out the same information from the addressed
location. If no writing is required, then the circuitry for the storage cells is
much simpler. In fact, in its simplest form, connecting two crossing wires in

•
a matrix or array stores a 1 and leaving them disconnected stores a 0. For
example, look at Figure 3-31, the same four rows that were used for the
RAM are shown here, except now the decoder gates are actually shown. The
outputs of the AND gates are the row selection lines and will be 1 when all
the inputs are 1. The 1 can be gated to the output line through an OR gate.
The only requirement is that the OR input be connected to the row line. The
required codes for the output lines for each row are shown in Figure 3-31.
The OR gate input for each output gate need only be connected or not
connected to the row line to produce the code of l's and O's for that address
location. When the connections are once established, the same code appears
on the output lines each time that memory location is addressed.

ROM (Read-Only Memory) means that the memory has a program
of bits that is fixed in its array during the time of manufacturing. The
connections are made by the photographic masks while the material is
processed.

PROM (Programmable Read-Only Memory) means that the
memory bits can be programmed into the array by the user. Usually the full
array is made with l's in each location and then the user burns away the
connection between the crossing wires by a pulse of current to make a 0 and
get the required code in the array.

EPROM (Erasable Programmable Read-Only Memory) means that
the code stored in the memory array can be programmed by the user,
erased, and then reprogrammed to a different code. Special equipment (e.g.,
ultraviolet light fixtures) are required to erase the units. They must be
removed from the system to be erased and reprogrammed.

EAROM (Electrically Alterable Read-Only Memory) means that
the memory array can be programmed and erased while still in the circuit.

Read-only memories are very important for the microprocessor

•
system or microcomputer system designer because sets of instructions
(programs) that are used over and over again are coded into ROM, PROM,
or EPROM. They are then connected into the system and used as required.

3-27
UNDERSTANDING MICROPROCESSORS

H o w DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
-O°-

STORAGE ARRAY

\

o o o
M O S T
S I G N I F I C A N T
B I T X

O U T P U T B I T S

R O W 0 0

R O W 0 1

ROW 10

R O W 1 1

0 0 0 0 L E A S T
S I G N I F I C A N T

/ B I T
1

R o w O u t p u t C o d e

3 2 1 0

0 0 1 1 1 1

0 1 0 1 1 0

1 0 1 0 0 1

1 1 0 1 0 0

Figure 3-31. Read-Only Memory
Dynamic RAMS

Integrated circuit designers found out that they didn't have to use
a flip-flop to provide the storage cell for RAM storage. MOS transistors
provided them with another solution. Recall from Figures 3-5 and 3-6 that
the gate of an MOS transistor is a metal plate over an insulator (oxide
layer) which is on top of a silicon substrate. This sandwich of material forms
a capacitor. This capacitor stores charge. This charge keeps the voltage on
the gate at the signal level until a discharge path changes the charge and
thus, the voltage level. Figure 3-32 shows how this is used for a dynamic
RAM cell. Ts is an MOS transistor just like the switching transistor of the
inverter circuit previously discussed. Cs is the gate storage capacitor. When
a 1 level voltage is placed on the gate of Ts, this gate voltage will turn Ts
ON to form a path for current to flow from drain D to source S. If the
voltage level on the gate is a 0 level, then Ts would be OFF and no current
path is provided.

3-28 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

Figure 3-32. Dynamic RAM Storage Cell

When used as a storage cell, current flow in Ts represents a 1 and
no current flow is a 0. To read the storage cell, another transistor, TR, is
connected to an output line. TR and Ts must be ON to have current flow. TR

is turned ON by a 1 level on the READ SELECT line (its gate) to provide a
current path to the output data line. If current flows, a 1 is stored in the cell.
If no current flows, the bit stored is a 0.

Writing into the storage cell occurs in somewhat the same way. A
transistor, Tw, connects the input data line to the gate of Ts. To store a 1
level voltage on Csof the gate, Tw is turned ON with a 1 level on its gate
with the WRITE SELECT line. The 1 level on the input data line then
charges the gate of Ts to the 1 level. The operation is similar for a 0 level
voltage, except that Cs is discharged to the 0 level voltage. ^ ^

The only problem with such a cell is that the charge "leaks off" Cs

due to stray current paths and thus the cell loses its information. Designers
have determined that the information will stay on Cs without error at least
about 0.002 seconds (2 milliseconds). Therefore, the bits stored in the cells
must be used in 2 milliseconds after they are stored or else all bits must be
brought back to full information level. This is why this memory cell is called
a dynamic RAM cell. It must be "refreshed" within a short period of time or
it will lose the bits stored. Extra circuitry is required to provide the

i "refreshing" and sometimes systems must be shut-down during the
' refreshing period. However, this has presented little problem to system
designers and the advantages of the dynamic RAM far outweigh this
refreshing requirement, especially for systems where large storage
capacity is required.

UNDERSTANDING MICROPROCESSORS 3-29

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
The main advantages of the dynamic cell over the flip-flop cell are:
1) The dynamic cell occupies a much smaller area so that this

approach permits a very high density memory (large number of bits in a
single integrated circuit) and thus a very low cost per bit stored. For
example, 64K(65,536) bits are available in a package of the size shown in
Figure 3-2.

2) It requires very little power when it is not being read from or
written into.
Static RAMs and Volatility

The main disadvantage of the dynamic cell is the refreshing since
the cell looses its charge. In contrast, the flip-flop holds its information as
long as power is applied, whether it is used or not. Thus, the flip-flop is
called a static memory. However, static memory cells take more silicon area |
than dynamic memory; therefore, the number of bits per package is less. In
many cases, because microprocessor/microcomputer systems tend to require
only limited memory, static memory is likely to be more important to these
systems than dynamic memory. One other note on semiconductor or solid-
state memory - RAM storage is volatile. This means that all data is lost if
power is turned off. Thus, system designs may have to include stand-by
power to RAM if data is to be saved when the system shuts down. ROM,
because of its fixed storage, is usually not volatile.

We've shown that single-bit storage flip-flops, decoder circuits,
registers, and memory cells are made of similar types of NAND gates.
Besides these, microprocessors and microcomputers also require circuits
that do arithmetic — addition, subtraction, multiplication, and division.
Let's see how these are formed by using the same basic decision gates.

HOW ARE ARITHMETIC LOGIC UNITS MADE?

Binary addition is much simpler than the addition of decimal
numbers familiar to all of us. If we add one bit to another, there are only
four possible results. A 0 plus a 0 is 0, a 1 plus 0 (or 0 plus 1) is a 1, and a 1
plus a 1 is 0 and a carry to the next place A 1 plus a 1 results in the two place
binary sum 10. The decimal equivalent of the binary number 10 is 2, which is
the decimal sum of the decimal numbers 1 + 1. The binary 1 plus 1 case
requires the existence of a carry; this carry must be considered when a
circuit is built from basic gates to add together the 1 and 1 bits. Not only
must the adder (the name of the circuit) be able to generate a carry if
necessary, but it must provide for adding a carry to a given bit sum if
necessary.

3-30 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

The example sum of two 4-bit binary numbers of Figure S-SS
shows how the two binary numbers are added. It starts with the LSB as
with decimal addition. Adding the least significant bits, with no input
carry, the sum of 1 + 0 is a 1 with no carry. Adding the second two bits, 1 + 1
yields a sum of 10. The 0 is the sum for the second bit position and the 1 is
the carry to the next (third) bit position. The sum of the third bits must
include the carry in the sum. The 1 of the carry and the 1 of the first number
give an intermediate sum of 10 with the carry going to the next (fourth) bit
position. The 1 of the second number sums with the intermediate 0 in the
third bit position to give a final 1 in the third bit position. The fourth bit
sum is then the carry 1 plus 0 plus 0 which is a 1 in this bit position.

MOST
SIGNIFICANT

BIT (MSB)

LEAST
SIGNIFICANT

BIT (LSB)

EQUIVALENT DECIMAL WEIGHT 8 4 2 1

CARRIES FROM BIT SUM TO RIGHT 1 —i 1 —| 0 0

BITS OF FIRST NUMBER TO BE ADDED 0 1
1 n

1 1 (4 + 2 + 1-7)

I u

BITS OF SECOND NUMBER TO BE ADDED 0 + 1 1 0 (4 + 2-6)

SUM BITS 1 1 1 (8 + 4 + 1 -13)

J

Figure 3-33. Binary Addition (7+6 = 13)

This example shows that the functional block that performs the
addition must use as inputs the corresponding bits from each of the two
numbers being added and a possible carry bit. It must provide for the input
of a carry that could come from the sum of the two bits in the bit position to
the right of the bits being added. The functional block must provide two
outputs to complete the function - the sum bit and a carry bit. It is shown
in Figure 3-31,. The truth table of Figure 3-31, shows that the sum bit is the
result of the addition of the bits inputted into the adder (including the
input carry, Cm, which is from the bit position to the right). The carry
output Ci must be sent to the adder handling the summing of the two bits to
the left of this adder. This circuit is called a full adder because it takes into
account the possibility of a carry from the summing of the two bits to the
right. Integrated circuits that add 4-.bits at a time are available as separate
packaged units. They can be constructed from all NAND gates or they can

|jbe fabricated using a mixture of the decision and storage functions that
Tiave been discussed. It depends on the type integrated circuit used.

UNDERSTANDING MICROPROCESSORS 3-31

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
c,_,
INPUT CARRY

OUTPUT
CARRY
C,

INPUTS

SUMS,

A

0
0
0
0
1

1

1

1

C,-i

0
1
0
1

0
1
0
1

OUTPUTS

S jT
0
0
0
1
0
1

1
1

Figure 3-34. Description of Full Adder

In microprocessor and microcomputer systems, single-bit, 4-bit, 8-
bit, 16-bit and larger multiple-bit numbers must be added. Once the full
adder design for a single bit is available, it can be repeated to build a
multiple-bit adder that will add two binary numbers of a given length. A
four-bit one is shown in Figure 3-35. The sum is sent to a result register
called an accumulator. Provision is usually made for a flip-flop to hold the
input carry to the least significant bit sum S0. This carry may result from
some previous addition of two binary numbers. The output carry from a
given adder is sent to the next adder to the left. A flip-flop is usually
provided to hold this output carry generated by the addition of the two most
significant bits of the two numbers. These two carry flip-flops can be the
same flip-flop if the adder timing and control circuitry is designed properly.
This control circuitry also determines how many different registers can be
used to send numbers to the adder and where the sum is to be sent. The
basic concepts of such circuitry will be covered when timing and control
functions are covered later in this chapter.

AJ B, A2B2 A, B, Ao Bo

Sum Bits to be Sent to Accumulator Register

Figure 3-35. Multiple-Bit Adder Circuit
3-32 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

Multiplication and Division
Other arithmetic operations that are needed in microprocessors are

multiplication and division of a number by 2. To do these operations,
registers and/or control circuitry that will shift a binary number one
position to the right (division by 2) or one position to the left (multiplication
by 2) are required. One way this could be done is to send the data out of the
register, returning it to the same register in the shifted position. A register
that shifts left or right is shown in Figure 3-S6. To perform the shift left, a
1 is placed on the SHIFT-LEFT signal line and the output of a given flip-
flop is sent to the input of the flip-flop immediately to the left by the gated
buffers. The SHIFT-LEFT signal is timed to the clock. The input carry flip-
flop is sent to the first flip-flop to set the LSB bit. An output carry flip-flop

_saves the MSB that was present before the shift. It may be required for
subsequent operation. A shift right is performed by the gating the buffers

rwith a 1 on the SHIFT-RIGHT signal line instead of the SHIFT-
LEFT line to send the output of each flip-flop into the input of the flip-flop
immediately to the right. If the number stored in the register is 0110
(binary equivalent of decimal 6) before the left shift, the number stored
after the shift operation is 1100 (binary equivalent of decimal 12). The shift
left has multiplied the number by 2. If the 1100 is now shifted right to
become 0110, the 12 would be divided by 2.

INPUT LATCH SIGNAL

SHIFT-LEFT SIGNAL TO GATED BUFFERS

Number Before Shift in 4-Bit Register: 0 110 (6)

Number After Shift in 4-Bit Register: 110 0 (12)

Figure 3-36. Shift Right or Left Operation.

UNDERSTANDING MICROPROCESSORS 3-33

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
Subtraction and Other Logic

Other arithmetic operations are provided by the arithmetic logic
unit (ALU), such as multiplication and division by numbers other than just
2, decimal code addition, and subtraction. Subtraction can be provided by
using a subtractor circuit, just as an adder circuit was used. However, in
order to limit the number of different circuits, subtraction in
microprocessors (and in most computers in general) is done by using the
adder circuit. To do this requires changing some of the binary numbers to
"2's complement" numbers. Look at Figure 3-37 which shows the 4-bit adder
of Figure 3-35 but with inverter gates on the inputs of the B bits. By
inverting the B bits before they are input to the adder, and by providing an
input carry, the adder subtracts. Notice that sending the number B through
inverters cause the bits to the adder to be 1001 instead of 0110 (the binary
equivalent of decimal 6). This is the complement or "l's complement" of
0110. Adding 1001 to the A number of 1100 (equal to the binary equivalent
of decimal 12) with an input carry of 1 yields the result 0110. Thus, the
desired subtraction is obtained (12-6 = 6) through addition. The added
carry provided the 2's complement of number B. With this procedure,
integrated circuit area can be saved because the adder circuits are used for
more than one function.

A,-1 A2-1 A, — 0 Ao-0
Bj —0 Bj - 1 B, -1 B© — 0

Q.-1

Si - 0 Si" 1 S,-1 So — 0

OUTPUT OF ADDER (6-12-6)

Figure 3-37. Subtraction Using Binary Adders.

3-34 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

In gaining an understanding of the basic arithmetic operations, we
have dealt with only 4-bit numbers and have shown most of the circuitry in
block diagram form. Further, we have shown only part of the circuitry, just
enough to see how that part of the arithmetic logic unit would work. You
can well imagine how complicated the drawings would have been if we had
drawn all of these circuits out in detail, showing all transistors and
resistors. This has to be done by the manufacturers of microprocessors and
microcomputers. Not only must the circuit diagrams be complete, but the
integrated circuit mask patterns must be drawn and photographed. This is
all a very expensive and time consuming process, which is why it would be
so expensive for the manufacturer to build just a few thousand of such

rOW DO THE TIMING AND CONTROL FUNCTIONS WORK?

As complicated as the arithmetic logic unit might be when it is
finished, there is another portion of the microprocessor that can be even
more complicated - the timing and control function. The timing and control
center of the microprocessor must turn on and off all the circuits within the
microprocessor as well as control all of the memory and input/output
functional blocks. The step-by-step way in which these devices come on and
off will vary from instruction to instruction. The timing and control
circuitry must keep track of it all. This is the reason it is one of the most
important portions of the microprocessor and the microcomputer.

Every operation that has been discussed from reading memory to
the arithmetic functions requires that certain events occur in a proper step-
by-step sequence for the operation to be successful. To successfully read
memory, addresses must be sent to memory, a signal must be sent to
perform the read, and then, after enough time delay to be sure the
information has been read, the bits must be sent to the proper destination.
As another example, suppose two numbers are sent to the adder from
different places and after the addition is completed, the sum is sent to the
proper location. A means of timing and control is required to keep track of
all the events in the system. Such timing and control is referenced to a
master timing signal called a clock.

This clock provides the heartbeat of the system. One or more clock
signals are used for the master timing. Some processors use a two-phase
clock as shown in Figure 3-38a, and further divide time into smaller
intervals as needed. Others use 4 phases to get the required time periods
(Figure 3-38b). By having such signals available throughout the
microcomputer system, any given element can do a given task in complete
harmony with the way all other elements are performing their tasks. Let's
ook at a couple of typical examples.

devices.

UNDERSTANDING MICROPROCESSORS 3-35

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
F I R S T C L O C K S I G N A L - < t > , \ / s r
S E C O N D C L O C K S I G N A L - J V.

T I M E I N T E R V A L S : 1 2 1 2 1

a. Two-Phase Clocks and Time Relationships.

Y \ /—

w / \ / v

/ \ r

A / V
TIME INTERVALS

1 2 3 4 1

b. Four-Phase Clocks and Time Relationships.

Figure 3-38. Master Clock Signals

An Instruction Fetch
The first operation that all processors have to do in order to carry

out an instruction is to fetch that instruction from RAM or ROM. To do this,
the processor must send out the contents of the program counter (the
address of the instruction) to the memory on the address lines and generate
a memory read signal. The read signal must last long enough to give the
memory time to output the desired instruction code (the contents of the
memory location addressed). At the proper time, this information is stored
or latched into the instruction register. The timing diagram of Figure 3-39
summarizes the signals needed at a particular time, all referenced to the
microcomputer clock signal. Let's assume that the memory can locate and
read out its information in the time between two clock pulses. Therefore,
during this period, the address and the memory read signals are on. At the
end of this period, but before these signals have returned to zero, a signal
must latch the information into the instruction register. The timing of this
signal is shown in Figure 3-39. Figure 3-iO shows how functional circuits
3-36 UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

derive these signals from the clock signal. The memory read signal is
formed using a clocked D flip-flop that stores a 1 on the trailing edge of the
clock. It will trigger again on the next trailing edge of the clock and return
to a 0 output. This control signal is sent to the output enable of the program
counter to send the instruction address out on the address lines. It is also
sent to memory as a memory enable or memory read signal. MEMORY
READ (MR) is NANDed with the clock to cause the instruction register to
latch information from memory at the proper time. Thus, the clock signal
along with information from the microprocessor controller (that an
instruction fetch is to be performed) can be used to provide the control and
timing signals needed.

3LOCK - <t> y-fc r

MR (ADDRESSES
OUT. MEMORY ON)

LATCH REGISTER

Figure 3-39. Timing Diagram for a Memory Read Operation.

7S
ADDRESS
CODE

PROGRAM
COUNTER

INSTRUCTION
FETCH CONTROL -

PROGRAM MEMORY

MEMORY READ
SIGNAL

OUTPUT
ENABLE

INSTRUCTION
CODE

F=C>-
LATCH

0 D

iz
.INSTRUCTION
V REGISTER

O

<f> (CLOCK)

MICROPROCESSOR SIGNAL FROM DECODER i

Figure 3-40. Timing and Control Circuit for Instruction Fetch.

UNDERSTANDING MICROPROCESSORS 3-37

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
The ADD Operation

The timing signals to control the adder operation behave in a very
similar manner as shown in Figure S-il. Again, a signal that lasts from one
trailing edge of the clock to another is used to time the addition. It is
required when the control center decides that the instruction is an addition.
Assume the instruction is to add the contents of register B to register A in
the arithmetic logic unit. The sum is to be stored in register A, which acts as
an accumulator register. Figure S-ltl contains the timing diagram and
shows how the timing and control signals are derived from the clock. The
sequence starts with both numbers already in register A and register B.
The control section of the microprocessor outputs a signal ADD B to A as a
result of the addition instruction. This signal is used, just as the instruction
fetch control signal, to generate the output enables that connect the outputs
of registers A and B to the adder. As before a latch signal is provided to
store the sum into register A after the addition is completed.

ADD B TO A AT

a. Operation

CLOCK - <f>

ADDER TIMING
INTERVAL = AT

(frAT - END OF ADD TIME SIGNAL

3-38

b. Timing Diagram

Figure 3-41. Simple Add Timing Within Arithmetic Logic Unit.

UNDERSTANDING MICROPROCESSORS

3 How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS

These two cases are very similar even though one involved a
memory operation and the other involved an arithmetic operation. Timing
and control signals for hundreds of other operations are similarly generated
within the timing and control section of the microcomputer. While each of
these timing signals may individually be generated very simply, the overall
timing control section can be a very complex and costly digital subsystem.
Fortunately, this subsystem is built into the microprocessors and
microcomputers and can be used throughout the system to time the
components outside the microprocessor. The microprocessor designers have
helped by providing signals that are relatively simple to use. All that needs
be done is to correctly connect these signals to the memory, input/output,
and microprocessor functional blocks.

WHAT HAVE WE LEARNED?
• Modern digital circuits are made in the form of integrated circuits with all
components fabricated on a single piece of silicon material called a chip or
wafer.

• In integrated circuit manufacture, many chips or wafers are made on a
single slice and many slices can be processed at the same time to produce
inexpensive complex digital circuits.

• All digital circuits can be made from simple transistor switches, inverters,
AND and OR gates. In many cases, using NAND or NOR gates makes it
easier to manufacture the circuits in integrated circuit form.

• Data Memory (RAM) is made by using flip-flop storage cells (static
memory) or by using the storage effect inherent in MOS transistors
(dynamic memory).

• NAND gates are used in RAM memories to decode addresses and thus to
select which storage cells (or rows or columns of storage cells) are to be
read from or written into.

• ROM Memory is made by using one set of NAND gates to decode address
signals and another set of NAND gates to output the instruction codes.

• Registers consist of a row of clocked flip-flops used to store a group of
related digital signals.

• The basic arithmetic-logic operations for the microcomputer are made up
of adder logic circuits and register transfer circuits,

• The microcomputer has a timing and control section that generates signals
that turn on or off all components in the system at the proper time.

WHAT'S NEXT?
We've found out what the basic functional blocks are of a

microcomputer system and how the functions are provided by digital
integrated circuits. It's time now to understand the system operation of all
of the units together as we will do in the next chapter.

UNDERSTANDING MICROPROCESSORS 3-39

How DIGITAL INTEGRATED CIRCUITS PROVIDE THE FUNCTIONS 3
Quiz for Chapter 3
1. Any digital system can be

completely fabricated using:
a. All NOR gates
b. All NAND Gates
c. AND and OR gates only
d. None of the above
e. a and b above

2. All N-channel MOS transistor
conducts current from drain to
source:
a. all the time
b. when the gate voltage is

the same as the substrate
voltage

c. when the gate voltage is
close to the drain voltage

d. when a bridge of N-type
material forms between
the source and drain
regions

e. None of the above
f. c and d above

3. An MOS transistor acts like a
wire when it is on and when:
a. its width W is large
b. its length L is large
c. its width W is small
d. its length L is small
e. a and d above
f. b and c above

4. The purpose of oxidation is to:
a. form a window to see the

silicon through
b. form an electrically

insulating layer over the
silicon

c. provide a protective layer
over the silicon

d. all of the above
e. b and c above

5. The process of photomasking
is:
a. a photographic process
b. used to selectively remove

areas of unwanted material
such as oxide or metal from
the top of the silicon

c. used to define areas that
will be diffused into

d. all of the above
6.. Diffusion is a process in the

fabrication of integrated
circuits that:
a. occurs at a high 4

temperature "
b. is used to make a selected

area of silicon p-type or n-
type

c. will not change the type of
silicon in areas covered by
oxide

d. all of the above
e. none of the above

7. A register is used to:
a. store a group of related

binary bits
b. provide random access data

memory
c. store a single bit of binary

information
d. none of the above

8. Indicate which of the
following digital gates would
output a 1 with an input of a 0
and an input of a 1:
a. OR
b. NOR
c. Inverter
d. NAND
e. AND
f. a and d above

1-8 'e-L 'p-9 'P-S 'a-fr 'a-g '»"Z "a-I

3-40 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION as
ii

Fundamentals of
Microcomputer System
Operation
ABOUT THIS CHAPTER

There are certain basic concepts involved in using all
microprocessors and microcomputers in systems. The concepts of digital
information, digital codes, microprocessors as the central control function,
memory, input-output functional blocks, addresses, instructions, timing and
control have been developed. This chapter is devoted to the fundamentals of

, system operation. System fundamentals that are needed to decide what the
system must do, what functional units are required for it to do what it
should, how the system units are interconnected and what system
instructions are normally available.

SYSTEM EVALUATION
System evaluation usually begins with the features available in the

microprocessor or microcomputer. Examining these features and what the
system must do determines what added functional units must be purchased
to complete the system. After purchase, all elements must be connected
together so the selected functional blocks will do all the tasks required with
efficiency and in harmony. The step-by-step sequence — the program —
must then be written, using the basic processor instructions so that the
microcomputer behaves in the proper way to perform the tasks.

HOW ARE THE SYSTEM UNITS SELECTED?
First of all, before any selection begins, what the end system must

do should be thought out carefully. An aid in doing this is to make a list in
table form, or in the form of a flow chart, of all the things the system must
do in the proper order to complete its tasks. With such a complete
understanding of what the system has to do, it will be much easier to match
the available microprocessors and other functional units to the system
requirements.

System Description
To illustrate the process of describing what the system must do,

let's take a simple familiar example and develop such a description. Let's
assume the system to be built is a machine that will play Tic-Tac-Toe with
another person. Recall that Tic-Tac-Toe is played on a piece of paper divided

I into nine adjacent spaces formed by three rows and three columns. Each
player, in turn, plays either an X or an 0 in any empty square. The first
player to get three X's or O's in line horizontally, vertically, or diagonally is
the winner.

UNDERSTANDING MICROPROCESSORS 4-1

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
First of all, the system must have some sort of game board that

shows the player's move and the state of the game after each play. The
system starts in an initial condition where it is waiting for a person to take
a turn to begin the game. The microprocessor must then accept the X or 0
input information when the person takes a turn. It must check to see if that
play won the game. Next, the system will have to make a play, and it will
have to check for a winner. In fact, the system checks for a winner after
each play. It must maintain the game board display in terms of the familiar
X and 0 symbols. It must keep score of the games won with the person
playing. It must start each new game with a cleared game board and must
have a provision for starting a new series of games with a new player. All
of these descriptions show that the normal step-by-step operation of a Tic-
Tac-Toe machine is relatively straightforward.

List Or Flow Chart
To more clearly understand the sequence, it should be summarized

in a flow chart form as shown in Figure i-1 or as a list of operations as
follows:
1) The machine is turned on. This should cause it to start out at the first

game of a series of games, waiting for a person to make a play. A switch
is also provided to cause the system to start a new series of games if the
machine has been played already.

2) The person's next play (it may be the first one) is received and displayed
on the game board.

3) The system checks to see if this is a winning play; if it is, one is added to
the player's score and a new game is started (Step 7).

4) If the game is not won, the system makes its play.
5) Again the system checks for a winner; if it has won, it will add one to its

score and start a new game (Step 7).
6) If there is no winner at this point, the machine will go to Step 2 to

continue play.
7) A new game is started by clearing the game board, displaying the scores,

and going to Step 2 to begin play.
In the flow chart form of description, rectangular blocks (I I) are

used to define operations and diamond blocks (<C>) are used to describe
decisions. It provides a graphic overview of what the system must do and
how the tasks relate to each other. For this reason it may be easier to use
and make reference to than the list form. However, a good descriptive list
will aid in defining a good flow chart. Once the system operation is
completely defined, the hardware requirements can be examined to see
what type of microprocessor is best for the system.

4-2 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION H"
TURN MACHINE ON

(OR REQUEST NEW GAME SEQUENCE)

Figure 4-1. Flow Chart Description of Tic-Tac-Toe Game.

UNDERSTANDING MICROPROCESSORS 4-3

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Microprocessor Selection

The factors that enter the microprocessor selection are the bit
length, the speed at which the system performs the steps in the task
solution, the instruction set, the timing and control signals available from
the microprocessor for controlling other functional units, and the interrupt
procedure. Of course, each must be related to the problem being solved;
some may be important, others may not. Let's look at these factors in terms
of some specific types of problems (Figure 1,-2).

Applications Requirements

Proceesor
Features

Simple
Controllers

High-Speed
Communications

Accurate
Arithmetic

Bit Length 4 8 or 16 16
Speed Low High High
Instruction Simple Efficient Efficient
Set Needs Data Transfers Arithmetic

& Comparisons Operations
Timing/Control Simple Simple Simple
Interrupt Simple. High Speed, Multiple
Structure Slow Multiple Level Level

Figure 4-2. Features Important in Processor Selection.

Bit Length
The bit length of the processor refers to the number of data bits

the processor handles at one time. Typically, microprocessors are designed
to handle data signals 4 bits at a time, 8 bits at a time, or 16 bits at a time.
For simple problems, such as the Tic-Tac-Toe machine, which require
limited accuracy of the numbers it uses and a small number of different
input codes, a 4-bit machine is more than enough. For problems requiring
higher number accuracy or where long strings of number or character codes
are involved, a 16-bit processor would be needed. For requirements in
between, with a relatively limited number of different input and output
codes, and requiring number accuracies in the 1% range, an 8-bit processor
can do the job. The number of different system conditions that an N-bit
processor can handle directly and rapidly is 2N. Thus, a 4-bit processor can
handle up to sixteen different numbers or conditions directly, while a 16-bit
machine can handle 65,536 such situations if necessary. The numerical
accuracy from an N-bit processor in a single operation would be 1/2N or 100/
2N per cent. Thus, the 4-bit unit only offers high speed number accuracy of
about 6% while an 8-bit processor would have numbers that it used in the
system accurate to 0.4%. All processors can be used to any accuracy desired
by simply processing more bits, but only with much more hardware and
usually at the sacrifice of system speed. Let's look at operating speed
(Figure 1,-2).

4-4 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Speed
Besides bit length, the speed at which a microprocessor can handle

a given type of problem is related to many other factors such as the power
of the instruction set, timing and control, interrupt procedures, and the
response of memory and/or the input and output functional blocks. Speed of
operation is important when sending and receiving information at a high
rate. Also, it is usually very important when performing difficult and
complex computations. In both of these cases, a processor that offers long-
bit-length operation with high-speed clocks and an efficient instruction set
is required. For systems, like the Tic-Tac-Toe problem, where the operations
are simple and the player is a slow opponent, speed is totally unimportant,
and almost any processor would suffice. However, in an automobile control
unit, where speed may be critically important, a fast 8-bit or 16-bit
processor would need to be selected. This is particularly true if the processor
has to respond to external conditions in real time at a rapid rate.

Instruction Set
Recall that the microprocessor or microcomputer follows steps in a

program. These steps are defined in terms of instructions that are
recognized by a given microprocessor or microcomputer. Thus, a close check
must be made to see that the instructions offered by a processor are
sufficient to handle the problem requirements. A calculator type of system
needs efficient arithmetic operations including addition, subtraction,
multiplication, division, absolute value, and so on. A communications
system needs a wide choice of input and output instructions that can
transfer information quickly. A logical system such as a chess game would
need extensive logical and comparison and decision-making instructions. A
simple system such as the Tic-Tac-Toe game would need only a very small
set of instructions to do all of its operations. In fact, any microprocessor on
the market offers enough instructions to handle the Tic-Tac-Toe problem.

Timing and Control Features
The timing features of a microprocessor must be studied to see if

its clock and instruction execution times are fast enough to solve the
problem at hand in the time available. This must be carried through to
include the other functional blocks to be connected to the microprocessor. In
addition, the ease with which the microprocessor timing signals can be
connected to outside units is very important. If the processor control signals
are such that they can be connected directly to the memory and input
devices, the system timing is made easier because additional time delays
through additional circuits are avoided. Obviously, this also saves system
design time and the cost of the additional circuits that would be required if
added circuits were needed.

UNDERSTANDING MICROPROCESSORS 4-5

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Interrupt Structure

A microprocessor operating in a system goes merrily on its way
doing one instruction after another. It would continue this way unless there
is a need to stop it at unexpected or at random times for input or output
information or at definite terminating times such as STOP or HALT. A
control signal that interrupts the processor in its sequence is called an
interrupt signal.

Many microprocessors do not accept interrupt signals in an
unexpected or random way. The microprocessor continues with its program
until it receives an instruction that tells it to check for a signal that would
interrupt it if the control signal is present. The system is only interrupted
when the microprocessor wants it to be. More advanced microprocessors
have an interrupt structure that does respond to the random interrupts at
unexpected times.

How fast a processor can respond to an interrupt determines
whether it is acceptable for many situations. If input information must be
received over and over again into a system at unpredictable or random
times, then whatever the processor is doing is interrupted quite often. The
processor must be able to get its other jobs done despite the many
interruptions. In the case of the Tic-Tac-Toe example, the only time the
processor needs to be interrupted is when a person makes a play or when a
new game is started. A person is so slow in comparison to the speed with
which all processors can respond to an interrupt, that the interrupt
structure is unimportant in this problem. On the other hand, if the processor
were receiving information from a satellite communications system and
had to respond quickly, the interrupt structure would be critical and only a
few processors would have the capability needed.

Figure k-2 provides summary statements about the five features
discussed for three types of applications. These statements can be used as
guidelines. In general, the capability of the system increases as the bit
length increases.
Single-chip Microcomputer Versus Microprocessor

Recall that to provide the sense, decide, remember and act
functions of a computer system, the microprocessor (the decide function)
must have input, output, and memory functional blocks surrounding it to
complete the system.

A single-chip microcomputer, on the other hand, has all of these
functions self-contained. As processors are evaluated for a given
application, available single-chip microcomputers should also be considered.
If the bit length, speed, instruction set, timing and control, and interrupt
structure that satisfy the system needs can be found in a single-chip
microcomputer, the system might be constructed using only one package
instead of many. Of course, the microcomputer chosen must supply enough
memory and enough input and output circuitry to meet the system needs;
otherwise, separate functional blocks must be added to meet these needs.'

UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Memory
The system program must be stored in memory and data to be used

by the system must be stored in memory. Estimates must be made to
determine how much memory will be required and, in addition, what type of
input and output circuits are needed. It may be difficult to accurately
estimate the memory needed for program requirements until the program
steps have been decided upon in some detail. However, the data memory
and the input and output requirements are fairly well determined by the
description of the system behavior. For example, the Tic-Tac-Toe machine
should only need 18 bits of information to keep track of the X's, O's, and
squares that haven't been played. As indicated in Figure i-S, 9 bits are
needed to indicate if a position is open (0 for used and 1 for unused).
Another 9 bits are used to indicate the play (0 for a 0 and 1 for an X

^^played). 4 bits of memory will hold the player's score (up to 16 games) and
^^Fsimilarly, 4 bits would hold the machine's score. Thus, 26 bits of memory

would meet the requirements of this simple game. If a 4-bit processor with
at least 7 internal 4-bit storage locations is used, there is no need for
external RAM. Similarly, if a microcomputer has this much on-chip storage,
there wouldn't be a need for any external memory devices. More
complicated systems require much more random access memory and, in
those cases, external RAM circuits must be provided.

a. 9 bits for X's and O's b. 9 bits for Used or Not Used

4 bits 4 bits

c. Player's Score d. Machine's Score

Figure 4-3. Memory Estimate

UNDERSTANDING MICROPROCESSORS 4-7

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Input/Output Units

A careful review of the system behaviour usually reveals what
types of input and output circuits are needed. In the game example, as
shown in Figure 1,-3, X lights (9 of them) and 0 lights (9 of them) are
needed as outputs. Inputs required are a power-on switch, a new games
switch, and a set of switches, perhaps in a calculator-like keyboard, to allow
the player to input his next move. This information must be connected
(interfaced) to the microprocessor or microcomputer so that the player and
computer can communicate with each other. More complicated systems
usually require more complicated input and output circuits. Carefully
evaluating the description of what the system must do should pin-point the
selection of the right units.

One of the principle means of an input/output interface to humans
is a typewriter or a keyboard and TV terminal. Most microprocessors will
have family units that match the microprocessor and provide an easy
interface to such units. In addition, some microprocessor families will have
low-cost terminals for the input of numbers, letters, and symbols in ASC II
code built into printed circuit board assemblies with the microprocessor and
interface circuits.

Once the right microprocessor or microcomputer is selected for the
job and the memory and input and output requirements are summarized,
interconnection of the units begins. Fortunately, the components are
designed so they can be connected rather directly to each other in fairly
obvious ways. Let's examine some of these in more detail.
HOW DO WE CONNECT THE SYSTEM COMPONENTS TOGETHER?

The microprocessor signal lines (Figure 1,-1,) must be connected to
the external components properly if the system is to work correctly as
desired. Most processors have:
1) Address lines — the digital code that appears on these lines defines the

location of instructions or data to be used next by the microprocessor or
microcomputer.

2) Data lines - the instruction and data codes are sent to and from the
processor on these signal lines.

3) Timing and Control lines — all the timing and control lines sent to and
from the processor for the external functional blocks are included. The
interrupt signals also are included.

4) Clock lines — for many processors the clock signals (the system's master
timing signals) are formed externally and sent to the processor. Other
processors and many microcomputers have circuits that generate these
clock signals internally.

5) Power lines — obviously, electrical energy must be provided to the
microprocessor and the other functional units in order for them to be able
to work properly.

4-8 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

TIMING AND
CONTROL LINES

Figure 4-4. Processor Signals

Separate distribution networks are usually used for the clock
signals and the power lines. All the functional blocks use power and most of
them must be timed by the clock signals. If the clock signals are generated
externally from the microprocessor, they are usually formed by an
integrated circuit built especially for that purpose. Special wiring layout
may be required at times to make sure the clock pulse edges have good clean
rise and fall waveforms. If they do not, circuits can be gated at the wrong
time and cause system errors.

Data Line Connections
As shown in Figure 1,-5, the data lines in a system go to many

integrated circuits from the microprocessor. Some circuits may be input,
others output, and others memory blocks. All units have their data lines
connected in order as shown in Figure J,-5. All the least significant bit lines
(d„) are connected together; all of the next least significant bit lines (d.) are
connected together; and so on. Such connections can be made directly only if
all devices have the three-state output feature. Recall this was mentioned
before (Figure 3-28). It is shown in more detail in Figure 1,-6. Figure J,-6a
shows the output of a latch that is feeding bits onto the data lines. There is
an output enable gate that was described in Chapter 3 between the Q flip-
flop output and the data lines (called the data bus). If the output enable line
is a 0, the output enable gate is inactive and the Q output of the flip-flop is
disconnected from the data lines as shown in Figure J,-6b. The data line
looks like it is not connected to anything. It sees an open-circuit to the Q
output of the flip-flop. If the output enable is a 1, the output enable gate is
active and acts as short circuit from the Q output to the data line as shown
in Figure J,-6c. If Q is a 1, this is fed to the data line. If it is a 0, this is fed to
the data line.

UNDERSTANDING MICROPROCESSORS 4-9

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4

Figure 4-5. Data Line Connections in a If-Bit Microprocessor System

OUTPUT
LINE

Q DISCONNECTED
FROM DATA LINE

OUTPUT Q

DATA LINE

Q CONNECTED TO
DATA LINE

a. Circuit b. Output Disabled
Gate Inactive

c Output Enabled
Gate Active

Figure 4-6. Operation of Three-State Output Circuits

4-10 UNDERSTANDING MICROPROCESSORS

When the signal level is coming from the output of an MOS
inverter, the usefulness of the three-state output option can be seen by
looking at what a signal of a 0 or a 1 level means in terms of electrical
power connected to the line. In Figure l,-7a, the bottom transistor of the
inverter is OFF and the load transistor is feeding the data line. Thus, the
VDD supply will be connected to the line through the load transistor.
Remember, it is really acting as a resistor. In Figure J,-7b, the bottom
transistor of the inverter is ON and the data line is switched to the V9S

voltage (usually zero volts or ground). Now suppose that the two outputs of
Figure 1,-7 are connected to the data line without a three-state output-
enable gate. The VDD power supply would be connected to the Vss power
supply through the MOS load transistor resistor as shown in Figure 1,-8. A
large current would flow, possibly damaging the output elements in each
device. Certainly, it would not be possible to tell just which signal was
appearing on the line, a 0 or a 1.

LOAD
TRANSISTOR
(RESISTOR)

Data Line
(Voltage - VDO)

a. Output -1
Output Enable On

Vss

Data Line
(Voltage - V$s)

B. Output-0
Output Enable On

Figure 4-7. MOS Circuit Output Conditions.

Device 1 (Output -1)

Data Line (Voltage Unknown)

LARGE
CURRENT FLOW

Device 2 (Output - 0)

— Vss-0

Figure 4-8. Effect of Placing a 0 and 1 on Same Data Line.

UNDERSTANDING MICROPROCESSORS 4-11

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
By using the 3-state feature on both devices as shown in Figure It-

9, they can share the same wire without any of these problems; assuming, of
course, that the output enable signals to the gates are timed correctly.
Many devices can share the same line, the only requirement is that just one
output-enable signal is ON at any given time. The device, whose output
enable is ON, would send its 0 or 1 on the line; all other outputs would be in
their open-circuit case. The device to send information on the line is
selected by controlling the output-enable signals.

Device 1 Output 1

Output Enable On

Data Line (Voltage - Voo, due to Device 1)

Output Enable Otf

Device 2 Output 0

a Device 1 Output Connected to Data Line. Device 2 Output Disconnected

<> Device 1 Output 1

Output Enable Oft

Data Line (Voltage - V«, due to Device 2)

Output Enable On

Device 2 Output 0
Va"^

b. Device 2 Output Connected to Data Une. Device 1 Output Disconnected

Figure 4-9. Use of Output Enables on Three-State Devices
to Control Access to Data Line.

4-12 UNDERSTANDING MICROPROCESSORS

When several devices are sharing the same set of lines and all the
lines form a common group of signals, the group of lines is referred to as a
bus. In diagrams in this book these are shown as a broad arrow. The data
bus provides the signal flow path for all data and instruction codes between
the microprocessor and the other functional blocks in the system. Similarly,
the set of lines that carry the address code is called the address bus.

Address Bus Connections
The connection of the address lines in most microcomputers is very

simple as shown in Figure 1,-10. The microprocessor develops the address
signals and these are sent to the address input pins of the other functional
blocks. There are only two considerations that may be involved in making
these connections:
1) Processor Current Capability - Can the processor address line output

circuit provide enough current to supply the input requirements of all the
devices connected to it?

2) Address Decoding - Can the decoders inside the memory and input and
output circuits handle the address decoding or do they need some help
from outside decoder circuits?

Let's examine these in more detail.

ADDRESS LINES

Az
ADDRESS

INPUTS

MEMORY
CIRCUITS

AZ-
ADDRESS

INPUTS

INPUT
CIRCUITS

ADDRESS
INPUTS

OUTPUT
CIRCUITS

4, 8, 16-BIT
ADDRESS CODES

ADDRESS
OUTPUTS

MICROPROCESSOR

Figure 4-10. Connection of Address Lines in Microcomputers.

UNDERSTANDING MICROPROCESSORS 4-13

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Processor Current Capability

Microprocessor output circuits providing the 0 or 1 level on the
address line have the ability to supply current to a line or to receive current
from a line. The maximum or minimum limits of this current are specified
by the manufacturer on a data sheet. The address inputs of memory and
input/output functional blocks have to be supplied a certain level of current
in the 0 input case and another level of current in the 1 input case. These
currents are similarly specified by the manufacturer on data sheets. In
addition, supplying or receiving current depends on the level of the output.

Look at Figure 1,-11. When the processor output is in the 1 state,
current will flow from the processor to the input device and will have to be
supplied by the processor. When the processor output is in the 0 state, the
current will flow from the input device to the processor and the processor
will have to be able to receive this level of current without damaging its
output circuit. The processor, in receiving this current, is said to be
"sinking" current.

PROCESSOR

, | CURRENT REQUIRED |
V FROM PROCESSOR

DATA LINE .
OR ADDRESS
LINE |

EXTERNAL
FUNCTIONAL
BLOCK
INPUT

a. Processor Outputs a 1
and Must Supply I current

PROCESSOR

CURRENT RECEIVED
BY PROCESSOR

DATA LINE
OR ADDRESS
LINE

EXTERNAL
FUNCTIONAL
BLOCK
INPUT

b. Processor Outputs a 0
and Must Receive I current

Figure 4-11. Current Loading of Processor Data and Address Lines.

4-14 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

If each address line feeds a certain N number of inputs, then the
total current the processor must supply when its output is in the 1 state is N
times the individual input current. Similarly for sinking current, the total
current the processor output must "sink" when it is in the 0 state is N times
the current flowing out of the input of a memory or the input/output
functional blocks. If the processor cannot handle these total currents, a
buffer driver integrated circuit must be used. It will take the current levels
of the processor output circuits and boost them to the levels required by all
the external inputs.

There is another feature of the inputs of memory and input/output
functional blocks that affects the currents required by the inputs. Each
input acts as a capacitor. A capacitor itself is a storage element as discussed
previously. Its voltage can change only if its charge changes. Its charge can
change only if current flows to or from the capacitor. Figure i-12a shows a
capacitor, representing an input, connected to a data or address line. Figure
1,-12b shows that the voltage across the capacitor needs a certain amount of
time, At, to change a certain amount AV. The amount of current required to
cause the change of AV in At is given in Figure lf-12a,

I = C ^
c At

DATA OR
ADDRESS LINE

le-C Av
AI

CAPACITANCE
OF INPUT

V

y\
/ i AV

|
i

i . - i
TIME

At

a. Circuit Model b Voltage Change

Figure 4-12. Effects of Line Capacitance on Processor Current I.

UNDERSTANDING MICROPROCESSORS 4-15

Output Current Required

Without going further into the physics of capacitors, the equation
of Figure 4-12a can be used to determine if the processor outputs can
deliver enough current. Take Figure 4-13a as an example. Here the
processor s address line output connects to eight address inputs of external
functional blocks. I„ I2 — I, represents the current that is required by each
input. From the manufacturer's data sheet for the functional blocks, I, is
0.01 milliamperes (flowing into the input) when the address line is a 1 level
and it is -1 milliampere when the line level is a 0. The minus sign means the
current is flowing opposite to the direction of the arrow in Figure 4-13a. In
other words, the output is sinking the current. In electronic circuits, the
currents tend to be much smaller than an ampere, the standard unit of
current. Therefore, a unit - milliamperes - is used that is 1/1,000th of an
ampere (0.001 amperes). The currents, IC1, I„ — Ic, of Figure 4-13a are
required to change the voltage on the input capacitors from the 0 level to
the 1 level (or 1 level to 0 level) in a time, At. From the data sheet
specifications, the input capacitor is 10 picofarads. Again, electronic
capacitors are much smaller than the farad, the standard unit of
capacitance, therefore microfarads (1 x 10 6 farads) or picofarads (1 x
10"12 farads) are used.

Figure 4-13a shows how to simplify the problem. All of the input currents
can be represented by one value, I,NPUT. All the individual capacitors can be
combined into one 80pF (8 x lOpF) capacitor, and all charging currents can
be combined into one value, Ir, as shown in Figure i-13b.

First, let's determine what charging current the processor output
must supply to change the input capacitor voltage. As shown in Figure 4-
13d, let's assume that the output is at a 0 level of 0.4 volt and it is to be
changed to the 1 level voltage of 2.4 volts or a AV = 2V. So that input circuits
will react correctly and the microprocessor can run at full speed, this
voltage change must occur in 0.0000001 seconds. Again, this is much smaller
than the standard unit of a second. Therefore, microsecond (1 x 10" sec) or
nanosecond (1 x 10" sec) are used as time units. At then is 100 nanoseconds.
Solving the equation,

Ic = 80 picofarads x
100 nanoseconds

gives i =80 x 10—farads x 2 volts _ q g ^ x jq.3 amDeres
100 x 10" seconds "•» x x tu amperes

or Ic = 1.6 milliamperes.

The microprocessor must supply 1.6 mA (milliamperes) to change the
voltage on the address line from the 0 level to the 1 level in 100
nanoseconds. The same amount of current is required to change the level
from a 1 to a O.The only difference is that the output must sink the current
rather than supply it. (Figure 4-13c)

4-16 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

-9-
ADDRESS LINE

'ill'" '•III1- '"ill1" 'ill'" ''ill'" Mil1" 'ill1" "ill1'
I I0p(—1— 10pf —I— 10pf -J— lOpf —1—1 Opt —1—1 Opt —1—1 Opt 1

I X I I I I I I
a. Attecl of 8 input devices on an address line

Opt

liwruT

'1 LEVEL- J
T

ADDRESS LINE

80 pt

TOTAL LOAD
CAPACITANCE

l c _ 0 O i M 1 6 m A

l1NfuI - 8 x 0.01 -0.08 mA

b. Equivalent Current
requirements tor a
1 signal on the line

1 LEVEL

0 LEVEL

0 LEVEL-

ADDRESS LINE |c

TOTAL LINE
CAPACITANCE

31
T

80pt

l c - 1 .6 ma

IINPUT - 8 x 1 mA - 8 mA

c Equivalent current
requirements for a
0 signal on the line

TIME

A t — 100 nsec A t — 100 nsec

d. Signal waveform for a change ot the line signal from a 0 to a 1 and Back to a 0

Figure 4-13. Current Requirements for a line with 8 Inputs.

UNDERSTANDING MICROPROCESSORS 4-17

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
This charging current lasts only for the time At. Once the capacitor

voltage level has changed, Ic is no longer required. Therefore, it is referred
to as a "transient" current.

Input current, on the other hand, is a "steady-state" current. It
must be present at all times. When the output is a 1 level, the amount of
current that must be suppled is IINPUT = 8 x 0.01 mA or 0.08 mA (Figure 4-
1 3 b) . W i t h a 0 l e v e l , t h e o u t p u t m u s t s i n k I I N P U T = 8 x 1 m A o r 8 m A
(Figure 4-13d.).

Table I summarizes the output requirements. The minus sign
indicating that the output must sink the current.

Ic IINPUT Processor Current
1 LEVEL 1.6 mA 0.08 mA 1.68 mA
0 LEVEL —1.6 mA —8 mA —9.6 mA

Table 4-1 — Output Current Requirements for Thriving 8 Inputs

If the microprocessor output cannot supply the required current
then buffer drivers must be added to boost the current. Figure 4-14 shows
an example. The IINPUT requirements of the buffer are now 0.05 mA for the 1
level and 1.6 mA for the 0 level but the output can supply 30-40 mA at each
level.

PROCESSOR
ADDRESS LINE "

0.05mA

1 6mA _ 30-40mA [> SYSTEM ADDRESS LINE

BUFFER
DRIVER

INPUTS TO MEMORY, INPUT/OUTPUT CIRCUITS
ADDRESS PINS

Figure 4-14. Buffer Amplifier Application.

Address Decoding
The need for additional address decoding units is best described by

looking at Figure 4-15. Each of the blocks being fed by the address bus from
the microprocessor is a memory that has 1024 words x N bits. N can be 4,8,
16 bits depending on the system used. To address the 1024 words, an address
code of 10 bits must be sent to the memory because 210 = 1,024. However,
suppose the microprocessor normally outputs a 16-bit address code such that
65,536 words could be located. How are the decoding circuits expanded to
allow for memory expansion? Figure 4-15 expands the 1024 words to 8,192
words.

4-18 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Figure 4-15. Basic Address Decoding Example, 8192 Location Memory.

UNDERSTANDING MICROPROCESSORS 4-19

•f" FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
To accomplish this, additional decoder circuits must be added and

another input to the memory must be used. The E signal shown on each
memory block of Figure 4-15 is called a memory enable. When E is a 0 level,
that memory block is active or enabled. Therefore, each of the eight 1024_
word x N bit blocks can be enabled at selected times by controlling the E
signal. The third block down is being enabled in Figure 4-15 because its E
signal is a 0 level. All others are a 1 level. The 3-line to 8-line decoder
accomplishes this by sensing the 3 most significant bits (A10, A,„ & A„)
beyond the 10 bits (A0 through A9) being fed to the 1024 memory blocks.
Therefore, the code on A10, A,„ and A,, is deciding which 1024 memory block
is active and the code on the 10 bits (A„ thru A,) is deciding the word
location required from the 1024 that are active. Thus, as the 8 blocks are
each selected and the individual locations of the active 1024 are selected,
8,192 words of program or data can be written into memory or read out of
memory as needed.

The 3-to 8-line decoder is a standard integrated circuit. Additional
decoders and/or different decoders would have to be added to expand the
memory to the full 65,536 words. But by using simple memory circuits and
decoders in the right combination, any size memory can be built, up to the
number of words that can be decided on by the microprocessor address code.

Figure 4-16 details further the 1024 blocks of Figure 4-15. Each
word location of memory must have as many bits of storage as the number
of data lines in the microprocessor. Figure 4-16 shows 4 bits, which would be
the N of Figure 4-15, with one bit coming from each 1024 block. Therefore,
the integrated circuit memory package has 1024 word locations of 1 bit
each. It is said to organized "1024 by 1." If the integrated circuit package
had contained 1024 bits but had 256 word locations, each with 4 bits stored,
then it would have an organization of "256 x 4." The number of integrated
circuit memory packages organized W, X B, to make a total memory of WM

x Bn is:
WM x BN.

No. of Memory Packages =—— —
Wj x Bj

If the 8,192 word memory of Figure 4-15 is to store 4 bits and is
built using memory circuit packages organized 1024 x 1, then the number
of packages used is:

8,192 x 4
1,024 1

= 32

Each individual package would have the 10 bits of the address code
connected to it as well as the data-in and the data-out linefor each bit. The
E signal shown in Figure 4-15 now is shown connected to CE on each
package. This signal is called "chip enable" or "chip select." When the E line^
is active, each CE activates a 1024 x 1 memory package. Therefore, all four
stored bits are activated at the same address so they are written or read at
the same time.
4-20 UNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

-9-
DATA INPUT LINES (4 BITS)

Each Block Is a I
1024 Location by 1 Bit
per location Integrated DATA OUTPUT LINES (4 BITS)
Circuit Memory. (1024 x 1)

CE is the Chip Enable
for each Circuit

Figure 4-16. 1024 Location Memory, 4 Bits!Location.

All the discussion has been with respect to random access memory,
RAM. The RAM shown can be used for program storage or data storage.
However, the same decoding principles apply for read-only memory, ROM.
Of course, the data-in lines and write signals would not be needed.

Additional decoding circuits can be used in like fashion for an
increased number of input or output units beyond that selected by the 10-
bit address bus from the microprocessor. These extra decoder circuits enable
the additional input/output units with an enable signal just like the
memory blocks were enabled. The address lines must be distributed to the
additional input or output functional blocks and the data input and output
lines gated onto the data bus using circuits previously discussed. Of course,
all memory and input/output circuits will be timed and controlled by
signals from the microprocessor.
Timing and Control Line Connections

The microprocessor must generate signals that tell the memory
• and input/output devices when they are to be turned on and whether they

are being read from or written into; otherwise, the system operation would
not be orderly. The microprocessor controls the operation of the external
components with the following basic types of signals:

UNDERSTANDING MICROPROCESSORS 4-21

Memory Enable Signal

Once the microprocessor knows that a memory operation is to be
performed and that the address signals are on the address lines, it must
turn on the memory and tell it to read or write. Some microprocessors send
out both signals as shown in Figure U-17. A memory enable control signal to
turn on the memory and a read/write signal to tell the memory if it is to
read or write. Both enable the memory so it carries out the operation in the
desired way. The memory enable, no matter how it is provided, must last
long enough for the read or write operation to be completed by the memory.
These signals must be understood and connected to the memory block
correctly if the memory is to behave properly.

MEMORY

R/W

ENABLE

—7">

ADDRESSES DATA

MEMORY ENABLE

R/W

MICROPROCESSOR

Figure 4-17. Memory Control ,

Input/Output Enable Signal
Some microprocessors are able to treat the input/output devices as

a system separate from the memory. In such a case shown in Figure i-18,
the microprocessors will send out an I/O enable signal that serves the same
purpose for the input/output devices that the memory enable serves for the
memory devices. If such an I/O enable signal is used, the read/write signal
generated by the microprocessor is used to indicate whether the I/O is
sending to the microprocessor or is receiving from the microprocessor. It is
also possible for the microprocessor to provide two separate control signals,
an I/O read and an I/O write. These signals can be used to turn on the
input/output block without turning on the memory blocks. This allows the
input/output units to share the same address codes as certain of the
memories. Microprocessors that do not support a separate input/output
block assume these devices are assigned memory locations, that is, they are
treated just as if they were a part of memory. This approach is called
memory-mapped I/O, since a certain number of memory locations are
assigned to the input and output devices of the system and reserved for
their use.

4-22 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

INPUTS S OUTPUTS

R/W

ENABLE

7V TV-

ADDRESSES DATA

I/O ENABLE

R/W

MICROPROCESSOR

Figure 4-18. I / O C o n t r o l

Read/Write Control Signals
This signal tells the external functional blocks whether they are to

send information to the processor (read operation) or receive information
from the processor (write operation). Normally, the signal is in the READ
state. It only enters the WRITE state for a brief time, during which the
microprocessor places data on the data lines. The WRITE state remains
long enough for the memory or input/output units to receive the data and
to complete the write operation. Microprocessors that provide memory read
and memory write control signals instead of the memory enable signal
provide a timing signal that can be used with these signals to generate the
needed Read/Write control.

Interrupt Signals
All of the timing and control signals discussed so far are ones that

come from the microprocessor to control external units. There is one control
that is sent to the processor by the external units in order to control the
microprocessor. This is the interrupt signal. It does just what it says. It
interrupts the microprocessor from what it is doing and causes it to do
something indicated by the interrupt signal. This is similar to the way a
traffic control policeman is interrupted to get him to handle some
emergency, such as a burglary. The policeman responds and tends to the
burglary but once he has taken care of it, he returns to his normal job of
traffic control. Similarly, when the microprocessor receives the interrupt

Isignal, it finishes whatever instruction it is doing at the time of the
piterrupt and then responds to the interrupt. This is shown in Figure 1,-19.

UNDERSTANDING MICROPROCESSORS 4-23

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
MEMORY

LOCATION

100
101
102
103
104
105
106
107

REGULAR _
PROGRAM

- INSTRUCTIONS -
-TO BE FOLLOWED

IF
INTERRUPT A -
IS RECEIVED -

BEFORE INTERRUPT A

INTERRUPT A

—j I This Group of Instructions Called
- —1 ? "Interrupt Service Routine"

750
751
752
753
754
755
756
757

Figure 4-19. Interrupt Procedure.

Special sets of instructions have been set up in program memory to
tell the microprocessor what to do in case a certain interrupt is received.
When the interrupt is received, the microprocessor switches and begins
following the special instructions until the interrupt requirements are
completed. It then switches back to what it was doing before the interrupt.
The circuits required to make sure the microprocessor goes to the right
sequence of instructions to handle the interrupt varies from microprocessor
to microprocessor. The details of these circuits will become clearer when
specific examples are discussed in later chapters. For now, it is enough to
know that the interrupt signal exists and that without it, information
cannot be sent or received from input or output units until the
microprocessor says it is ready. With the interrupt signal, in most cases, the
microprocessor can be made to receive or send information whenever
desired.

4-24 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OK MICROCOMPUTER SYSTEM OPERATION

Power Connections

All system units will require power. Many early microprocessors
made with MOS technology require three power supplies, e.g., + 12V, - 12V,
+ 5V. Later designs need only a + 5V supply and a ground connection. As
mentioned previously, when these connections are made through printed
wiring on a board, special layouts are required to make sure the conductors
are low resistance for the current they carry. Otherwise, errors will occur
due to noise signals.

The interconnection phase is now complete. All the address, data,
timing and control, interrupts and power lines have now been
interconnected between all the system units. What remains is to tell the
system what to do. This is done by entering the proper sequence of

^instructions into program memory. The sequence of instructions - the
JJirogram - must be written in terms of the instruction set available for the

particular microprocessor used.
While generating the program may not be as straightforward as

connecting the system together, certainly it is something anyone can do
with a little practice. It is difficult knowing where to start, but after a little
experience, people catch on quickly. To see what's involved, lets start with
the instruction set.

WHAT TYPE OF INSTRUCTIONS ARE THERE?
Most children are used to following instructions. "Wash your face."

"Comb your hair." "Eat your lunch." They hear the instructions (sense),
understand what the instruction is (decide), and do what is required (act).
They understand the language used for the instruction. There is no
conversion required.

The same is not true for computers. The language of the digital
electronic circuits inside the computer is one composed of the 1 and 0 codes
that represent the numbers, letters, symbols, commands used by humans to
give instructions to the computer. There is a conversion necessary. A
conversion from the human language to the digital codes that the machine
understands.

Any instruction that is to be given to the computer must be in the
digital code of the machine so it can sense it, decide which instruction it is,
and act to execute the instruction. Therefore, the digital code that the
machine understands is called machine code. Instructions for the computer
can be programmed directly in the code understood by the machine. If this
is done, then the program is being written in machine language, and is
called a machine language program. (See Figure Jr2<>.)

UNDERSTANDING MICROPROCESSORS 4-25

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
TYPE OF PROGRAM

Hlgh-L«v»l Language Program—Programmer writes program in a
powerful general purpose language that is organized in a way directly
related to the way humans solve problems. This is converted to the
machine language program with a compiler

PROGRAM
CONVERSIONS

REQUIRED

High-Level Language

Aaeambly-Language Program—Programmer writes the program
using instruction abbreviations called mnemonics This is converted
to a machine language program with an assembler

Machine-Language Program—Programmer writes the program
directly in terms of the binary codes the computer can understand
(decode) and execute No further conversion necessary Machine Language

Program
(Machine Code)

Figure 4-20. Conversions of High-Level Language
and Assembly Language Programs into Machine Language Programs

the Computer Can Understand.

This presents a problem. If the conversion is made by humans, it
becomes a tedious, detailed, slow task to get the codes down correctly, and
even much more difficult to correct if an error has been made. Computers
are good at making such conversions without error. Therefore, the task is
usually delegated to the computer. However, a program has to be written to
tell the computer what to do. The program that the computer follows is
called an Assembler.

Converting to machine code is thus moved one step closer to the
human language input. Humans can make their instruction choice by
selecting a mnemonic that is an abbreviation of what the instruction does.
This programming with mnemonic instructions is called assembly language
programming because, after the sequence is written, it is fed into the
assembler program which makes the conversion to machine code and
arranges it into memory in proper order.

Such mnemonic codes are still not like the normal language that
humans speak; therefore, additional thrusts have been made to be able to
write programs in a language closer to the human language. Such
programming is called higher-level language programming. Another type of
computer program is required to convert from the high-level language
statements to the machine code. It is called a compiler. It is more involved
now because the conversion is much more difficult. The easier the
programming is made by bringing the language closer to the human
language, the more complex the computer program needed to convert to
machine language statements in machine code. But once that conversion
program is available, it can be used over and over again as necessary.

4-26 LNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Microprocessor Instruction Set
The microprocessor instruction set has its instructions stated in

mnemonic assembly-language format, and it is understood that a
conversion is required to arrive at the necessary machine code. The
instructions that the microprocessor executes are very basic operations as
shown in Figure 4-21. By using these simple operations in the right
combination, the microcomputer system can be made to behave in almost
any way desired. These simple instructions will perform very accurate and
complicated mathematical operations or act as a very sophisticated
communications control center, depending on how they are combined into a
total program. Lets look at what basic operations are available. As shown in
Figure 4-21, a subset of the instructions will do arithmetic - add, subtract,

•
bsolute value, negation, multiply, divide. Other subsets provide
istructions to move data, to shift data, to perform logical operations, to

compare data, and to change program paths (branch) either directly or after
a decision is made.

Of all of these types of instructions, the simplest group is the data
movement instructions.

ARITHMETIC LOGICAL COMPARISON

Adds AND
Subtracts OR
Absolute Value NOT BRANCH
Negation Exclusive-OR
Multiply Unconditional
Divide DATA MOVEMENT Conditional
Shifts OR TRANSFER Subroutine

Move
Load
Store

Figure 4-21. General Types of Microprocessor Instructions

Data Movement Instructions
In the past discussions, there have been numerous times when

reference was made to moving or transferring digital codes from one
location to another. The data movement or transfer instructions are for this
purpose. They provide for moving the digital codes from one part of the
microcomputer system to another. Here are some examples:
1) Move data from memory to a register inside the microprocessor to

prepare for additional operations.
2) Move data from a microprocessor register to memory or to an output.

|B) Move program constants from program memory to initialize
microprocessor registers.

4) Initialize data memory locations or output unit registers with constant
values.
5) Move data from inputs to a register inside the microprocessor.

UNDERSTANDING MICROPROCESSORS 4-27

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Basically, these instructions take a digital code from one register or
memory location and put it in another register or memory location.
Mnemonics

Most microprocessors support all of these types of data movement
operations. Some processors may call these operations load or store. Other
processors simply call these operations "movement instructions."
Regardless of what the microprocessor manufacturer calls the instructions
a shorthand is required so that the full name of movement or load or store
does not need to be written everytime they are listed in a program
sequence. Here is where the mnemonics come in. These abbreviations are
very short (at most three or four letters long) and they usually are
relatively obvious abbreviations of the operation, such as: MOV for
movement instructions; LD for the LOAD operation; ST for the store
operation. Others are SWP for swap and XCHG for exchange. There will b^^
one for each instruction.

Operands
It must be understood that to make these instructions complete,

more information is included with the mnemonic to indicate which number,
register, or memory location contents are to be "operated on" by the
operation called for by the instruction.
For example:

MOV Rl, R2
means move the contents of register Rl to register R2. Rl and R2 are called
"operands" of the instruction. MOV is the data movement operation. Such
instructions are also diagrammed with symbols to describe what the
instruction means.
For example:

is summarized by
MOV Rl, R2

(Rl) — (R2).
The parenthesis means the contents; therefore, the instruction reads: Take
the contents of Rl and move these contents to register R2.

Remember the parenthesis notation and its meaning. It is very
important because careful separation must be made by the microprocessor
user between the contents of a memory word and the address. The
microcomputer system goes to an address to locate the place of storage.
What is contained in that place of storage is the contents. In the MOV Rl,
R2 instruction, register Rl may be at a storage location (address) identified
by the 16-bit code 0000 0101 0000 0001, but the contents of register Rl to be
used for the move operation might be the decimal number 32 represented
the binary code 0010 0000.

.o be ,
:ed b

4-28 UNDERSTANDING MICROPROCESSORS

fcj
Assemblying The Instructions

Refer to Figure 4-22. When the instruction sequence is written
using the language of mnemonics (the abbreviations) the person is
programming in assembly language. The assembly language abbreviations
for a given processor are easy to learn and are in a form for writing
programs. As shown in Figure 4-22, before the program is complete, the
program statements must be converted to machine code and stored in the
proper order in the program memory of the microcomputer system. They
must be assembled by the assembler.

This can be done by hand. Each instruction has a machine code
listing that corresponds to the mnemonics. The corresponding machine code
is recorded at each step in the program, as shown in Figure 4-22. Obviously,

•
t is much more convenient to have the program conversion done with the
issembler so that the listing is done automatically.

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

ASSEMBLY-LANGUAGE MACHINE-LANGUAGE MEANING OF
PROGRAM PROGRAM INSTRUCTION

CMA 0010 1111 Complement A Register

MOV B, A 0100 0111 Move Contents of B
Register to A Register

INR A 0011 1100 Increment Contents of
A Register

Figure 4-22. Microprocessor Program Languages.

Arithmetic Instructions and Number Codes
The microprocessor typically offers addition and subtraction as the

basic arithmetic operations. Some processors will offer multiplication,
division, negation (change sign), and absolute value as well. Others offer
adding or subtracting by one - increment and decrement.

The mnemonics for most of these instructions again are rather
obvious.
1) A or AD or ADD for addition
2) S or SU or SB for subtraction
3) MPY for multiply
4) DIV for divide
5) INC or INR for increment
6) DEC or DCR for decrement
7) NEG for change sign
*8) ABS for absolute value

UNDERSTANDING MICROPROCESSORS 4-29

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Binary Numbers And Decimal Equivalents

In arithmetic operations, numbers (data) are used as operands. A
microprocessor that acts on data N bits at a time has the capability of
distinguishing between 2* different numbers. If all the numbers are
positive they will range from 0 up to 2s - 1. Therefore, an 8-bit code can
represent 256 positive numbers from 0 to 255.

The method for converting from the binary digital codes to the
corresponding decimal numbers is shown in Figure 1,-23. If the least
significant binary code signal (dj is a 1, a 1 is added to the decimal
equivalent number, starting at zero. If d« is 0, nothing is added to the
decimal sum. If the next binary digit (d,) is a 1,2 is added to the decimal
sum; if d, is 0, nothing is added to the sum. Similarly, if d, is 1,4 is added to
the decimal sum, and so on. In general, if dN is 1,2N is added to the sum. Thi^^^
procedure, called an algorithm in computer terminology, can be summarize^^r
as:

Start with the decimal number zero and add 2> for each binary bit
d, that is a 1.

An algorithm means a procedure for a solution. It is an important
word in microprocessor jargon and will be used repeatedly throughout this
book.

Significant Bit:

Binary Number:

MSB

d,

1

d6

0

MSB—Most Significant Bit

LSB—Least Significant Bit

ds

1

d«

0

d2

0

d,

0

LSB

do

1

- 1x1 - + 1
- 0x2 - + 0
- 0x4 - + 0
- 1x8 - + 8
- 0x16 - + 0
- 1x32 = + 32
- 0x64 - + 0
- 1x128 = + 128

Decimal Equivalent 169

Figure 4-23. Conversion of a Binary Number to its Decimal Equivalent

4-30 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Negative Numbers

When a microprocessor performs arithmetic operations, it must
allow for the possibility that numbers will be negative. The algorithm of
Figure 1,-23 provided all positive numbers. The 256 binary codes could have
represented any 256 different numbers. Another algorithm is shown in
Figure 1,-21,. It is a two's complement decimal equivalent. Figure 1,-21,
illustrates how an 8-bit code can represent positive numbers from 0 to +127
and negative numbers from -1 to -128. A change has been made in the
definition of d7. Instead of adding +128 when d, = 1, as in Figure 1,-23, it
now means that the number is negative and -128 is added to the decimal
sum. Therefore, the positive numbers from 0 to +127 result when d, = 0
and the negative numbers from -1 to -128 result when d7 = 1. In this case d,

Lis no longer a significant bit for the decimal equivalent. It is what is called a
''sign bit." It also becomes a convenient check to determine if a number is
positive or negative (d7 = 0 means positive, d, = 1 means negative).

DECIMAL EQUIVALENT DECIMAL EQUIVALENT
8 BIT BINARY CODE OF MAGNITUDE CODE OF TWO'S COMPLEMENT

0000 0000 0 + 0
0000 0001 1 + 1
0000 0010 2 + 2

0111 1111 127 + 127
1000 0000 128 -128
1000 0001 129 -127
1000 0010 130 -126

1111 0001 241 - 15
1111 0010 242 - 14

11111111 255 - 1

Figure 4-24. Positive and Negative Numbers with 8-bit Code

Figure 1,-25 shows how these negative numbers (the two's
complement) are used directly for adding negative numbers or subtracting
positive numbers. As mentioned previously, subtraction is performed in
microprocessors by taking the two's complement of a number and adding it
to another number (which is the one it is to be subtracted from). Since the
negative numbers are already in two's complement form they are used
directly in adding a negative number to a positive number or in subtracting
a positive number from another positive number (Figure 1,-25).

UNDERSTANDING MICROPROCESSORS 4-31

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Decimal Problem: TWO'S COMPLEMENT SOLUTION:

28 0001 1100 (Equivalent of +28)
- 15 + 1111 0001 (Equivalent of - 15)
~13" 1 0000 1101

Carry Answer: Binary Equivalent of 13

Figure 4-25. Subtraction using Tu>o's Complement Addition

Binary-Coded-Decimal Code-BCD
Microprocessor systems also use other forms of number codes. One

of these is Binary-Coded-Decimal or BCD code. This code is most useful for^
doing decimal arithmetic with a binary arithmetic unit. In this code, as
shown in Figure i-26, the 8-bit code is grouped into two groups of 4 bits
each. Each 4-bit group represents a decimal number from 0 to 9 depending
on its code (Figure i-26a). The two groups side-by-side represent decimal
numbers from 0 to 99 (Figure i-26b).

BCD Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Decimal
Equivalent

0
1
2
3
4
5
6
7
8
9

8-Blt BCD
Coded Number

0000 0000
0000 0001

0001 0000
0001 0001

1001 1000
1001 1001

Decimal
Equivalent

0
1

10
11

98
99

a. BCD Code to Decimal
Conversion

b Range of BCD codes with 8 bits

Decimal Addition
Problem

45
+ 39

84

Binary Addition
of BCD Codes

0100 0101
+ 0011 1001

0111 1110

Effect of Decimal
Ad|ust Instruction*

0111 1110
+ 0000 0110

1000 0100

Illegal
Code

BCD Equivalent
of 84

•The DAA operation adds 0110 to illegal codes or incorrect decimal results
to produce the correct decimal result in BCD code

c. Decimal Addition

Figure 4-26. Binary Addition of BCD Coded Numbers

4-32 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Now, when adding in this fashion, the microprocessor must make
sure that the addition results in the proper code of 0000 through 1001
(binary equivalents of the decimal digits 0 through 9) for each 4-bit group.
This is accomplished by the processor by making an adjustment in the code.
Figure l,-26c illustrates this. The BCD codes for the numbers 45 and 39 are
being added. The result is an illegal code in one of the 4-bit group positions.
To get back the legal code the microprocessor must do an additional step
and add an adjustment code of 0110 to the 4-bit group that has the illegal
code. Any carrys resulting from this addition in the 4-bit group must be
added to the next-most-significant decimal-digit 4-bit group.

Microprocessors can be instructed to do an adjustment like this
with an instruction called a decimal adjust, often using the mnemonic DAA.

-The DAA not only checks for the illegal codes but it also makes any other
Adjustments automatically to get the correct decimal result. Therefore,
^following a binary addition instruction with a decimal adjust instruction
performs the BCD code addition. The result is 4-bit groups that are binary
equivalents of the decimal digits.

Hexadecimal Codes
Another code that is very useful is the hexadecimal code (for a

hexadecimal number system). It also groups the code in 4-bit groups and
replaces the 4-bit group with a single digit symbol. Figure 1,-27 shows this
code. The digits, 0 through F, are the single-digit symbols for the 16 possible
4-bit groups. Thus, this code is sometimes referred to as base 16 code and
numbers represented in this code are often shown as 0200The small
subscript 16 indicating hexadecimal representation. By using the
hexadecimal digits, an 8-bit binary code can be summarized with just two
symbols. For example, the binary code:

1010 0011
can be written simply with the hexadecimal equivalent:

A3
Similarly, the address code:

1111110100101110
can be simplified with the corresponding hexadecimal number.

FD2E.

UNDERSTANDING MICROPROCESSORS 4-33

-f- FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Hexadecimal Hexadecimal

Binary Coda Digit Binary Coda Digit

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A

0011 3 1011 B

0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Figure 4-27. Hexadecimal (Base 16) Digits and Binary Equivalents

If a code is written in the shorthand hexadecimal form, how does
one find the decimal equivalent? As shown in Figure i-28, a method is used
that is similar to the approach used in converting a binary code to its
decimal equivalent. Multiply the least significant hexadecimal digit (d„) by
1, the next digit (d.) by 16, the next digit (d,) by 16' (256) and the next digit
(ds) by 163 (4096). Then FD2E would be represented as a decimal number =
(15 x 4096 + 13 X 256 + 2 x 16 + 14 x 1) or 64,814. Throughout this book
the hexadecimal code will be used, since it greatly simplifies the writing of
binary signal patterns. It will always be a simple matter to convert the hex
code to binary form by just replacing each hex digit by its binary
equivalent. Thus, to convert the hex number 8B to an 8-bit binary code, the
8 is replaced with 1000 and the B with 1011 to get:

8B16 = 10001011,
The subscripts 16 and 2 are used to denote which base was used for the code
- 16 for hexadecimal, 2 for binary.

Significant Digit:
Hexadecimal Digit:

d)
F

d2

D
d,
2

do
E

14x1 - 14
2x16 - 32

13x256 = 3328
15x4096-61440

Decimal Equivalent - 64814

Figure 4-28. Conversion of Hexadecimal Number to Decimal Equivalent

4-34 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Status Bits - Zero and Sign
After arithmetic operations such as subtraction or addition, some

condition of the overall result of the operation is stored to be able to keep
track of the result. For example, if the result is zero, this may be important,
so processors save that fact in a flip-flop called the zero flip-flop. By
referring to the contents of the zero flip-flop with later instructions, a check
can be made to see if the results of a given operation was zero or not.
Additional actions by the microprocessor are then keyed to this fact.
Similarly, by saving the sign bit of a number code in a sign flip-flop, later
checks can be made to see if the result of an operation was positive or
negative. These are two examples of what are called status bits. Processors
contain a register, often called the status register, that is made up of these
individual sign, zero, and other condition flip-flops. Some processors call
these bits the condition code and others call them the status. They serve to
save the nature of the result of an operation for later reference by the
microprocessor.

Status Bits - Carry and Borrow
Another such status or condition bit that has already been

encountered is the carry condition as the result of an addition problem.
When two N-bit numbers are added and a carry out results from the bit
sum as shown in Figure i-29, this fact is saved in a flip-flop in the status
register called the carry status bit. Similarly, if in subtracting two numbers
a borrow is needed, that fact is also saved in the carry status bit. The carry
and borrow status are passed on to higher-order digit positions in addition
or subtraction. Many processors provide add-with-a-carry and subtract-
with-a-borrow instructions. This makes it easier to handle the carries and
borrows in problems using multiple 8-bit groups (multi-byte problems).

1000 0100
+ 1000 0100
1 0000 1000

Carry lo f
Carry Flip-
Flop

Sum to Register
\

Figure 4-29. Carry Status Bit

UNDERSTANDING MICROPROCESSORS 4-35

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Status Bit - Overflow

Another status bit that some processors provide is called an
overflow status bit. When using the two's complement code for binary
numbers, a given N-bit number can only express numbers within a certain
range. Figure 1,-21, showed how an 8-bit code represented numbers from
-128 to +127. The sum of +100 and +100 = +200 cannot be represented
properly by the code. Similarly, subtracting 100 from -100 results in -200
which cannot be represented properly by the code. The situation is much
like trying to put 2 gallons of water in a one gallon container. The water
overflows the container and spills out over the surrounding area after 1
gallon has been poured and pouring continues. Similarly, if the result of an
arithmetic operation is beyond the range of the two's complement code, an
overflow results, and this fact is stored by setting an overflow flip-flop in th
status register to a 1. In the next instruction the overflow flip-flop can be
checked to see if an overflow has occurred. If it has, action is taken to
correct the situation.

Some processors use other status bits. Carry, zero, sign and
overflow are the ones that are used the most.

Shift Instructions
Shifting is a microprocessor operation that is often considered to

be a type of arithmetic operation. In Chapter 3, it was shown that shifting a
number to the right in a register is the same as performing a divide-by-2
operation. Figure 1,-30 carries this a step further to show the end bits
inserted during the shifting. To divide a positive binary number by 2, a 0 is
shifted into the vacated most-significant-bit position (d,). To divide a
negative two's complement number by 2, a 1 is shifted into the vacated
leftmost position.

Shifting the Binary Equivalent of
+ 28 to Right One Bit Position:

Before Shift:
After Shift:

0001 1100
0000 1110

Carry - 0

(28)
(14)

Shifting the Binary Equivalent of
- 28 to Right One Bit Position:

Before Shift:
After Shift:

1110 0100
1111 0010

Carry-0

(- 2 8)
(-14)

Figure 4-30. Effect of Right Shift on Binary Numbers.

/

4-36 UNDERSTANDING MICROP

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Shift Right-Logical, Arithmetic, Circulate
Usually, there are 2 or 3 different shift operations to choose from,

depending on the microprocessor. Figure 1,-31 diagrams shifting right for 3
of them — logical, arithmetic and circulate. A logical shift right is one that
shifts the least-significant bit into the carry flip-flop and shifts a 0 in from
the left. This would be used for dividing an unsigned binary number by 2 or
for examining the least-significant bit of a number.

LOGICAL SHIFT RIGHT
1 1 1 1 1 1 1

d'i ! ! ! : ! ^

CARRY 1 1 1 1 1 1 1

d'i ! ! ! : ! ^ FLIP-FLOP

ARITHMETIC SHIFT RIGHT
! 1 I 1 1 1 I

D7I | 1 1 1 I LD0
1 I 1 1 I I 1
! 1 I 1 1 1 I

D7I | 1 1 1 I LD0
1 I 1 1 I I 1

CARRY
FLIP-FLOP

CIRCULATE RIGHT
• 1 i ' 1 1 1 d7' i * l i 1 i d0 1 < i l i t i
• 1 i ' 1 1 1 d7' i * l i 1 i d0 1 < i l i t i

CARRY FROM
PREVIOUS
OPERATION

CARRY
FLIP-FLOP

Figure 4-31. Microprocessor Shift-Right Operations.

An arithmetic shift right is one that shifts the least-significant bit
into the carry flip-flop and shifts the sign bit (d7) into the next bit (d„) to the
right. The sign bit is unchanged. This shift operation will divide a signed
(positive or negative) two's complement number by 2.

A right circulate operation sends the carry flip-flop value into the
left side of the number and shifts the least-significant bit into the carry
flip-flop. This operation is useful when a shift is performed on a multiple-
byte group of binary digits.

Shift Left - Logical, Circulate
When a binary number is shifted to the left, the number is being

multiplied by 2. Figure 1,-32 details these shifts. Most microprocessors have
at least 2 of these. The logical shift-left instruction shifts the leftmost bit
into the carry flip-flop and shifts a 0 into the vacated least-significant-bit
position. This instruction is useful for multiplying a number by 2 or for
examining the value of most significant binary bit (d7).

A left circulate does the opposite operation to the right circulate.
The value in the carry flip-flop is shifted into the vacated least-significant-
bit position. The bit being shifted out of the most-significant position is
stored in the carry flip-flop. This operation is useful for performing a shift
left on multiple groups of 8-bit codes (multiple-byte group of binary bits).

UNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
LOGICAL SHIFT LEFT:

CIRCULATE LEFT:

CARRY FROM
PREVIOUS
OPERATION

CARRY I 1 t 1 1 1 1 dji i i i i i i do
1 i i l l l i FLIP-FLOP

I 1 t 1 1 1 1 dji i i i i i i do
1 i i l l l i

BEFORE SHIFT:
00001110 (+ 14)

AFTER SHIFT:
,0 0001 1100 (+ 28)

CARRY-0

CARRY FLIP-FLOP

Figure 4-32. Microprocessor Shift-Left Operations

Logical Instructions
Microprocessors usually offer the basic logical operations of OR,

AND, and NOT on a bit-by-bit basis. What this means, as shown in Figure
Jt-33, is that each logical operation is performed as if the input were fed into
a 2-input gate, each bit position at a time. Like the OR gate operation
discussed in Chapter 3, the result bit (C) at a bit location is a 1 if either of
the input bits (A, B) is a 1. In the NOT operation, the result (C) is a 1 if the
input bit (A) is a 0. In the AND operation the result bit (C) is a 1 only if
both of the input bits (A, B) are a 1. Usually the logical operation called
exclusive-OR, often denoted by the abbreviation or mnemonic XOR, is also
provided. This is a logical gate that has not been mentioned before, but it is
very useful for comparisons. Figure lt-33 can be used as its truth table. The
XOR bit position result bit (C) is a 1 only if the 2 input bits are different
(A = 1 and B = 0 or A = 0 and B = 1). Otherwise, when the inputs are the
same the result bit is a 0.

>^~C B=0~C

Inputs:

Result:

OR
A—1010
B—1100
C-1110

NOT
1010

0101

AND
1010
1100
1000

XOR
1010
1100
0110

Figure 4-33. Microprocessor Logical Operations

4-38 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS or MICROCOMPUTER SYSTEM OPERATION

Use Of The NOT Function
A simple use of the NOT operation is to create the two's

complement of a binary number. One way of finding the two's complement
of a number is to invert all of its bits and add one to the number. This is
detailed in Figure 1,-31,. Thus, the two's complement of the binary number
0010 1001 01011010 is 11010110 1010 0101 (the NOT of the number) plus 1 or
11010110 1010 0110. Recall that in Figure 3-37 the adder had inverters on
the inputs. These inverters provided the NOT function to provide the two's
complement addition for the subtraction of numbers.

Use Of The OR Function
The OR operation is used to set certain bits to 1 without affecting

the other bits in the binary code. An example is shown in Figure 1,-35. A
system has 8 lights that can be turned on (output a 1) or off (output a 0).
They are controlled by an 8-bit binary output code. In Figure 1,-35, under
present conditions, lights 1 through 4 are turned on. In the next step these
will be left on, but lights 5 and 8 will be turned on also. An instruction to OR
the binary number 0000 1001 with the current on-off code of 11110000
results in the output code 11111001. This code controls the lights so that the
first four lights are left on, lights 5 and 8 are turned on, and lights 6 and 7
are left off.

Binary Number A:
Complement (NOT) of A:

Add 1:

0010 1001 0101 1010
1101 0110 1010 0101
0000 0000 0000 0001

Result is Two's Complement of A: 1101 0110 1010 0110

Figure 4-34. Use of NOT operation to form Two's Complement
of a Binary Number.

Light Number:

Present Output:

Output After ORing with
0000 1001:

2 3 4 5 6 7 8

1 1 1 0 0 0 0 1 - On; 0 — Off

0 0

Lights 1 through 4 are left on, lights 6 and 7 are left off, and
lights 5 and 8 are turned on.

Figure 4-35. Use of OR in Simple Control Operations

UNDERSTANDING MICROPROCESSORS 4-39

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Use Of The AND Function

The AND operation is used to mask out certain bits of a number.
For example, suppose an 8-bit code contains 2 decimal digits, such as the
code 1001 0011 representing the decimal number 93 shown in Figure J,-36a.
Suppose 3 is the only digit of interest. With an instruction to AND the
binary code 0000 1111 with 1001 0011, the most-significant four bits will be
masked off because in the result they go to 0, and the least four significant
bits remain unchanged at 0011. Thus, the 03 has been isolated from the 93.
The AND operation also is used to examine a single bit of a binary number.
For example (Figure i-36b), if the least significant bit d„ is the only bit of
interest, it can be examined by the instruction to AND the binary number
with 0000 0001. This will zero the first seven bits and leave d0 unchanged. If
d„ is 0, the zero flip-flop will be set to a 1; if d,= 1, the zero flip-flop will be
cleared to 0. Instructions that refer to the contents of the zero flip-flop later
on in the program will verify that do was a 1 or a 0 and react accordingly.

All of these operations have more complicated applications. Later
in the book we will look at these in more detail. Generally, they are all based
on variations of the examples that have been looked at here.

BCD Code for 93 1001 0011 10101101 Input Code
Masking Code 00001111 0000 00°1 AND Operation
Result of AND Operation 0000 0011 0000 0001 Result d0 - 1

Decimal Equivalent 0 3

a. Masking b. Examining do

Figure 4-36. Use of AND for Masking or Examining Bits

Use Of XOR For Comparison
One simple comparison of codes can be accomplished with the

exclusive-OR instruction. Referring back to Figure 4-33, each bit by bit
exclusive-OR result would be 0 if all bits in both codes were the same. If any
bit positions are different a 1 will result in that position. All the resulting
bits would be latched into a register at the same time and shifted out. If a 1
appears at the output during the shift, the codes were different and action
based on this fact is initiated.

4_40 UNDERSTANDING MICROPROCESSORS

1

j

Comparison Instructions
Microprocessor instruction sets usually contain comparison

instructions because many tests and comparisons must be made on binary
codes without changing the codes. These instructions cause the second
number in the comparison to be subtracted from the first. The subtraction
affects the status or condition code bits but does not change either number
involved in the comparison. The results of the comparison can be used later
by checking the condition code flip-flops. The most common checks made are
to the zero flip-flop to see if the two numbers or codes were the same, and
the sign flip-flop to see if the first number were greater than or equal to the
second number. By using these comparisons with related instructions called
conditional branch instructions, step-by-step sequences of instructions can
be written that make very complicated decisions.
Branch Instructions

Recall that the microprocessor executes the instructions addressed
by the program counter. Unless the processor is told to do otherwise, it will
continue taking instructions from memory in order, one right after another,
because the program counter is normally incremented automatically to the
next instruction in sequence. However, sometimes a change is required to a
sequence of instructions located somewhere else in memory. A case in point
is an interrupt. In such a case, instead of incrementing the program counter
to move the instruction address one memory location down from where it
was, the program counter is loaded with a new address to cause the next
instruction to be taken out of the normal sequence. The instruction that
does this is called the branch or jump instruction because the program
jumps to a new part of memory to take the next instruction. The result of
the jump or branch is to load the program counter with a new value or
address. Instructions will then be taken in sequence from that address until
another branch or jump instruction is encountered.

Unconditional Branch

I

Figure i-37 diagrams the sequence of events that happens when a
branch instruction occurs. In this case the JUMP mnemonic is used. Let's
follow the sequence of events. It starts at 1 with the program counter
asking for the next instruction at memory location 500 by placing that
address on the address bus. The memory decodes this address and at 2
locates the stored contents at location 500. At 3 it sends the instruction to
the instruction register of the microprocessor. The decode and control in the
microprocessor decides that the instruction says "JUMP to 1000". At 4 the
program counter is loaded with the address 1000. The program counter at 5
jumps the address of the next instruction to 1000 rather than sending the
normally incremented next instruction address of 501. At 6 the memory
decoder locates memory word 1000 and reads out its contents to the
instruction register as the next instruction. As a result of this sequence for

UNDERSTANDING MICROPROCESSORS 4-41

the JUMP instruction the program has departed from its normal
incremented sequence to a new sequence of instructions starting at a new
location. Such a branch or jump instruction is called an unconditional
branch because the instruction is to go directly to another location for the
next instruction. There are no conditions attached to the instruction.

MICROPROCESSOR

PROGRAM
COUNTER

(1000)

500

7^>

INSTRUCTION
ADDRESS
AT JUMP: 500
AFTER JUMP: 1000

Load Program
Counter with
1000 to Execute
JUMP Instruction

D 1
E N
C S
O T
D
E R
R E
a G
c 1
0 S
N T
T E
R R
0
L

Figure 4-37. Effect of a JUMP Instruction. (Unconditional Branch)

4-42 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Conditional Branch

-f-
Sometimes the jump to the new sequence of instructions should

occur only if certain conditions are met. One example that occurs is that the
jump to a new sequence should not be done until the present sequence has
been executed a certain number of times. Figure i-38a diagrams the events
in flow chart form. To help in the use and creating of this type of chart, let's
follow it in detail. What the flow chart is saying is this: The rectangle 2
identified by "Loop Sequence of Instructions" are instructions that the
microprocessor system will follow to be able to do a task over and over
again. An example would be a set of instructions to continue to double a
given number. The rectangle 3 is an arithmetic instruction that subtracts 1
from a register value. In this case the register is being used as a counter;

i therefore, it is named counter. The diamond block 4 is a decision block
'asking the question, "Is the counter (register) value equal to 0?" This is the
operation of the conditional branch. There are 2 paths. If the answer is
"No", the microprocessor system is directed along path 5 and will go back to
do again the sequence of instructions identified by 2. If the answer is "Yes",
the system moves out of this "loop" of instructions and on into a new
sequence of instructions. The block 1 identifies the instructions that are
necessary to load the register used as a counter with the initial value of the
number of times the system should do the loop sequence. As the flow chart
shows, each time the system does the sequence, the counter value is reduced
by 1 until it is 0. When it is 0, the loop sequence has been executed the
required number of times and the system goes on to do further instructions
in the program.

Figure b-38b details portions of what the program steps might look
like to instruct the system to perform the loop sequence 8 times. A data
movement instruction begins the sequence to set the initial value of the
counter to 8. The loop sequence is not detailed but covered by a general
notation (it does contain several instruction steps of different types).
However, after the loop sequence, the instruction DCR C is the next
instruction. This tells the system to reduce the value of the counter by 1.
Next is the conditional branch instruction JNZ LOOP. This instruction
means Jump on Not Zero to the location labeled LOOP. It is a "branch on
not equal to zero." The instruction checks the contents of the counter (zero
or not) and sets the zero flip-flop. The zero flip-flop is checked for its value.
If it is a 0, the system loops back through the sequence; if it is a 1 (if the
register value is zero, the zero flip-flop will be set to a 1), the system does
not loop back but goes on to the following instructions in the program. We'll
learn more about this later, but note that the sequence of instructions has
been labeled with the word LOOP rather than a specific address location.
This will make this instruction location easy to reference as it is used in the
program.

UNDERSTANDING MICROPROCESSORS 4-43

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4

I'LOOP Î
V

PROGRAM

MVI C.8

COMMENTS

(Counter - 8)

/
Called

a
Label

Loop
Instructions

DCR C
JNZ LOOP

(Decrement C)J
(Jump to LOOP
Location if C*0)

Next Sequence
of Instructions

b Program to repeat Loop ot
instructions 8 times

NEW SEQUENCE
OF INSTRUCTIONS

a. Loop Flow Chart

Figure 4-38. Use of Conditional Branch Instructions

Many other conditional jump instructions are usually available.
Some of these make simple checks, such as, "Was the last result positive?",
"Was there a carry?", "Was there a borrow?", and so on. Other conditional
branch instructions may make more complicated decisions using several of
the condition bits stored in a status register, such as the overflow and sign
bits which were mentioned previously. Such a variety of conditional branch
instructions means that most types of decisions can be written easily in a
program.

4-44 UNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Linking Back In Subroutines
There is one problem that may or may not be apparent with the

jump and branch instructions used thus far. The branch or jump instruction
changed from one sequence of the program to another sequence located in
some other part of memory. There is no way left to get back to the original
sequence of instructions. A branch instruction that provides this link back
to the normal sequence is called a subroutine branch or jump instruction.
The subroutine jump instruction does this by determining the address of
the next instruction after the jump instruction and saves this value
somewhere in the processor or system memory. When the subroutine is
finished and a return to the normal sequence is required, a return
instruction is used that causes the saved value to be reloaded back into the

•
program counter. The system returns to where it was at the time of the sub
routine jump.

Figure 1,-39 diagrams this operation. Everything is the same as
with the JUMP instruction of Figure 1,-37 through step 5 of the sequence,
except that the instruction at location 500 is now "JUMP to subroutine at
1000". Also, at step 5 because of the subroutine jump instruction, the
address of the next instruction in the normal sequence (502) is saved in a
storage register at 6. At 7 the program counter has directed the system to
the first address of the subroutine sequence, 1000, and the system continues
step-by-step to the end of the subroutine. At 8, the end of the subroutine,
there is another branch or jump instruction that is decoded and controls the
reloading of the 502 address from the storage register back to the program
counter at 9. When the 502 address is again placed on the address bus at 10,
the next instruction is obtained from location 502 at 11 and the system has
returned to the normal sequence it was following before the subroutine
jump instruction.

Let's summarize - a subroutine is a sequence of instructions, a
subprogram, that usually is developed to perform specific tasks that have a
likelihood they will be needed several times in a given program. The first
instruction of the subroutine is located by a branch or jump instruction, and
the subroutine sequence contains an end instruction that returns the
system back to the original point in the normal program sequence where
the subroutine instruction occurred. Arithmetic sequences with large-word-
length numbers, especially multiplication and division, are examples of
subroutines that are prepared and used over and over again in a program
when needed.

UNDERSTANDING MICROPROCESSORS 4-45

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
MICROPROCESSOR

1
500

INSTRUCTION AT JUMP:
ADDRESS:

S
(1000)

500

PROGRAM />
COUNTER \

^—6
SAVE
502 AT
JUMP

±2.

AFTER JUMP: 1000 I-
AFTER
SUBROUTINE: 502

10

LOAD PROGRAM
COUNTER WITH
1000 TO
EXECUTE JUMP

m
MEMORY

ADDRESS BUS

DECODER

STORAGE
REGISTER

•
RESTORE
502 AT
END OF
SUBROUTINE

N
D4

E C
S
T

C o R
0 N E
0 T G
E R 1
H 0 S

L T
E
R

DATA !
BUS j c

MEMORY
LOCATION

2
AT

^JUMP

I 11

• NEXT
ADDRESS
I AFTER

SUBROUTINE
IS EXECUTED

I
7

SUBROUTINE
ADDRESS

END OF
SUBROUTINE

8

MEMORY
CONTENTS

JUMP TO 3
SUBROUTINE AT

1000
NEXT

INSTRUCTION

SUB-
- ROUTINE -
SUBPROGRAM

498

500

502

1000

1002
Subroutine Jump Instruction
at Location 500 in Memory

Next Instruction at Location
502 in Memory

Subroutine begins at Location
1000 in Memory

Figure 4-39. Subroutine Jump Operation

Let's suppose that there is a subroutine that adds a pair of 32-bit
binary numbers. The normal program sequence is being followed. As it
proceeds there is a need to add the 32-bit binary numbers. Instead of the
next instruction being the first instruction of an addition sequence, it is a
jump instruction to the subroutine. The addition is performed by the
subroutine sequence which, after the addition is finished, returns the
system to the normal sequence. As the normal program sequence continues
another addition of the 32-bit binary numbers is called for. The subroutine
jump instruction again takes the system to the same subroutine and, at the
end of the subroutine, returns the system to the normal sequence of the
program. This happens each time the addition is called for. Instead of
writing all the steps of the addition sequence each time it is needed, it is
written once and called for by the subroutine jump instrucion. As one can
see this requires a lot less program memory. Also, as will be shown later, it
allows programs to be organized in a very efficient and easy to understand
manner.

4-46 UNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

HOW IS INFORMATION LOCATED IN A MICROCOMPUTER SYSTEM?
Throughout the discussion thus far, program counters have

provided addresses for instructions and instructions have provided
addresses for other instructions and for data in memory. The question
naturally arises, "How do the instructions indicate these addresses?" Such a
discussion comes under the general subject of addressing modes.
Addressing modes are the allowed ways that are used to locate information
in a microprocessor or microcomputer system.
Addressing Modes

The most common addressing modes used by microprocessors are
as follows:
a) Immediate Addressing
b) Register Addressing
c) Register Indirect Addressing
d) Indexed Addressing
e) Direct Addressing
f) Relative Addressing
Not all processors use all of these modes, but all processors use most of
them. However, before discussing addressing modes, let's cover a subject
tied very closely to them — instruction formats.

Instruction Formats
Format is a word that means the general plan or organization of

something. It means just that for the instruction. As with numbers, letters,
characters and symbols, the instruction comes to the microprocessor in a
digital code. The arrangement of the bits in the digital code, the number of
codes to be received and in which order, are all part of the organization of
the instruction, all part of the format. Look at Figure IrUOa. Here is shown
an instruction format for an 8-bit microprocessor. Instructions have the
possibility of taking three memory locations of a byte (8 bits) each. Some
will take only 1, some 2 and some 3. Note that the first byte always contains
the "OP CODE." OP CODE is an abbreviation for operations code. It is the
digital code that identifies what operation the instruction wants done. It is
the portion of the instruction code that corresponds to the mnemonic of
MOV for data movement, A for addition, S subtraction, etc. The additional
memory bytes are needed to provide the operand or the address of the
operand(s). These follow in the sequence shown.

UNDERSTANDING MICROPROCESSORS 4-47

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
ADDRESS 1-BYTE INSTRUCTIONS

(PC) D7 D6 D5 D4 D3 D2 D1 DO

2-BYTE INSTRUCTIONS

(PC) D7 D6 D5 D4 D3 D2 D1 DO

(PC) + 1 D7 D6 D5 D4 D3 D2 D1 DO

3-BYTE INSTRUCTIONS

(PC) D7 D6 D5 D4 D3 D2 D1 DO

(PC) + 1 07 D6 D5 D4 D3 D2 D1 DO |

(PC)+ 2 D7 D6 D5 D4 D3 D2 D1 DO

OP CODE

OP CODE

OPERAND

OP CODE

LOW ADDRESS OR OPERAND 1

HIGH ADDRESS OR OPERAND 2

a. 8-bit Instruction Format

1 -WORD INSTRUCTION
ADDRESS

(PC)

(PC)

SOURCE DATA ADDRESS

3-WORD INSTRUCTION

(PC)

(PC) + 2

(PC) + 4

SOURCE DATA ADDRESS

DESTINATION DATA ADDRESS

° I 1 • 2 3 4 , 5 6 7 8 9
1 1 I

10 11
i

12 13 14 15
I I I

OP CODE B To D Ts S

2-WORD INSTRUCTION

OP CODE B 0 0 D 1 0 s

OP CODE B 10 D 1 0 S

b. 16-blt Instruction Format

Figure 4-40. Instruction Formats

A 16-bit instruction format is shown in Figure i-iOb. Obviously,
with 16 bits more information can be contained in a one word instruction.
The first 4 bits are used for the OP CODE, B is a bit to tell the
microprocessor to use all 16 bits as a word or divide the 16 bits into 8-bit
bytes. D is a code identifying the DESTINATION portion of the instruction
and S identifies the SOURCE portion. TD and Ts are bits in the instruction
code that identify the kind of addressing mode being used to locate the
source and the destination of the instruction. As shown in Figure i-^Ob, 2 or
3 memory words are required depending on the addressing mode indicated
by Ts or TD.

4-48 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Microprocessors may have more than one instruction format for
the one word instructions. Its form depends on the type of instruction being
used. Instruction formats are not only important to indicate what the
instruction code means, but the additional byte or word locations in memory
required must be taken into account to determine the amount of memory
required to hold the program instructions. The number of memory locations
needed by an instruction depends on the addressing mode used. Examining
the addressing modes will clarify this. Let's begin with one of the most
common modes — immediate addressing.

Immediate Addressing
The word operand has been used previously and was referred to

again in Figure 4-40. Recall that it is what is to be operated on by the

•
operation called out in the instruction. When adding two numbers together
each number is an operand. Both numbers are the data to be used in the
addition operation.

The easiest way for the instruction to indicate the data to be used
is for the instruction to contain the data as part of the overall instruction.
Generally this is done by having the N-bit OP CODE in one memory
location and the data to be used as an N-bit number in the next memory
location. The 2-byte instruction in Figure 4-40a illustrates this. The
program counter addresses both the operation code and data. An
example is detailed further in Figure 4-41. The operation code for an 8-bit
microprocessor instruction would be in the memory location addressed hy
the program counter. This code would be read from memory, the program
counter would be incremented, and the data would then be read from the
next location in program memory. The number code representing data is
part of the program and thus is a constant; it is not changed by program
operations. As a result, immediate addressing normally is used for
initializing system registers and memory locations to desired values.

PROGRAM
COUNTER

MEMORY

(PC)

(PC) +1

ADDRESS OF INSTRUCTION

ADDRESS OF DATA

A
V

INSTRUCTION
OPERATION

CODE

DATA
PROGRAM

Figure 4-41. Immediate Addressing

UNDERSTANDING MICROPROCESSORS 4-49

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Recall the loop counter that was used for the JUMP instruction

example (Figure 4-38). It was initialized to a value of 8 with an instruction
using immediate addressing:

MVI C, 8
The MVI stands for move using immediate addressing; the C identifies the
counter register to be initialized; and the 8 is the value to be stored in the C
register. The 8-bit op code for MVI C is stored in the first 8-bit byte of the
instruction and the binary equivalent of the decimal number 8 is stored in
the second 8-bit byte of the instruction. The instruction requires a total of
16 bits — 2 8-bit bytes which take 2 memory locations.
Register Addressing

The MVI C, 8 instruction discussed in the last section is an exampl^^^
of another type of addressing: register addressing. The instruction says
that the register C is loaded with the constant 8. The instruction has
specified the register as one of the data locations involved in the operation.
This type of addressing is very often used in microcomputer programming
since once the register involved is identified, the operation can take place
immediately without having to go to the memory for more data address
information.

A more specific example is shown in Figure 4-43a. Completely
contained in the instruction code is all the information necessary to add
register 2 to register 3 and store the results in register 3. The instruction
would be executed as soon as it is decoded, since all data locations are in the
processor. No additional memory references are required.

Op Code T.

0 , 1 , 2 . 3 4 1 5 6 , 7 , 8 , 9 10,11 12,13,14,15

10 10 0 0 0 0 11 0 0 0 0 10

INSTRUCTION

A R2, R3
COMMENT

Add R2 to R3

Operation: The data located at the address indicated by S, in this
case R2, is added to the data located at the address
specified by D. in this case R3. The resulting sum is
placed in the D location, in this case R3.

a. Adding Register 2 to Register 3

SELECT REGISTER

INSTRUCTION
REGISTER

REGISTER
INSTRUCTION

REGISTER
INSTRUCTION

REGISTER 0 OPERAND

b Summary of Register Addressing

Figure 4-42. Register Addressing

V7
DATA FOR
INSTRUCTION

4-50 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Ts and TD are bits to indicate the addressing mode. The 00 in each
of these bit fields for this format indicates that register addressing is used
for both the source and destination. The op code is 1010, identifying the
instruction to the microprocessor as an ADD operation.

Register Indirect Addressing
With this type of addressing, the address of the data in memory is

contained in a register on the processor. This is different from register
addressing because now the content of the register is the address of the
data rather than the data itself. All the instruction need do is indicate
which register contains the address to be used. Figure U-JtS illustrates an
example. The instruction from the instruction register is decoded and a
register is selected that contains the data address. The data address from
(the register is sent out to memory to locate the data which is sent back to
the microprocessor on the data bus. While time must be taken to read
memory to fetch the data or to write the data into its memory location, the
instruction coding can be very simple.

Generally, for an N-bit processor, the N-bit instruction op code
contains all the information needed: what operation is to be performed, and
which register holds the data address. In an application where it is required
to access from memory a group of data in some sequence, the indirect
addressing approach is very useful. The same instruction is used but the
register value is incremented by one to address the next memory location.
Easy changes can be made to the data address by loading new values or
doing some arithmetic operation on the register containing the address.

MICROPROCESSOR MEMORY

SELECT
REGISTER

DATA ADDRESS

Instruction indicated which Data Address Register is to be used

Figure 4-43. Register Indirect Addressing

UNDERSTANDING MICROPROCESSORS 4-51

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Indexed Addressing

A variation on indirect addressing that some processors use is
indexed addressing shown in Figure IrUk. In this addressing mode the
operand or data address is in two locations. There is a base value in a
register called the index register. There is also an offset value in the
instruction code. When the instruction is executed, the offset value is added
to the index register value to determine the final data address. With this
procedure the address can be modified by operating on the contents of the
index register. Groups of data spaced in some regular manner throughout
memory can be accessed by using the proper value in the instruction. With
this type of addressing, the instruction must contain two code groups. The
first is the instruction operation code group to indicate the operation and
that indexed addressing is being used. The second group of bits represents
the address offset that is to be added to the contents of the index register to^
form the full data address. Because the program memory is read twice (once
for the op code, once for the offset) and RAM once for the data, this
instruction addressing approach takes longer than register indirect
addressing. Register indirect addressing only requires that program
memory be read to get the instruction code (one operation) and then RAM
to get the data.

PROGRAM
COUNTER

MICROPROCESSOR

(PC) INSTRUCTION ADDRESS

(PC)+ 2

INSTRUCTION
DECODE

OFFSET
VALUE

BASE ADDRESS

INDEX
REGISTER

Instruction contains
Address Offset and Indicates
that Indexed Addressing is to
be used.

MEMORY

5

c

INSTRUCTION

ADDRESS OFFSET
I I

DATA
I BUS

DATA
ADDRESS

5

I

DATA

Figure 4-44. Indexed Addressing

4-52 UNDERSTANDING MICROPROCESSORS

4 FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

Direct Addressing
Refer back to Figure A-AO. In the 3-byte instruction format for the

8-bit processor and in the 2-word and 3-word format for the 16-bit
microprocessor, the byte or word after the op code contains a data address
rather than data. The address for the data is contained right in the
instruction as a byte or word in program memory. Unlike the 2-byte
instruction for immediate addressing (Figure A-Al) where the second byte
contained the data itself, now the second byte (or maybe the third, too)
contains the address of the data. This is direct addressing (also sometimes
called symbolic addressing). Direct addressing is often used when a
microprocessor register is not available for use in storing data.

As shown in Figure A-A5, the program counter addresses program
memory to get the first part of the instruction which contain the op code

) and a code that says that direct addressing is being used. This directs the
program counter to be incremented so that program memory can be read
again to get the data address or addresses. RAM is then read to get the
data. This type of addressing is a very slow approach to locating data,
requiring possibly four memory operations to get the data location. It is
usually used only when register addressing is not possible, or when a single
data variable, such as a program counter or control word, is used only once
in awhile.

Figure 4-45. Direct Addressing

UNDERSTANDING MICROPROCESSORS 4-53

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
Relative Addressing

All of the addressing modes looked at so far have been ways of
locating data to be used by the instruction being executed. Sometimes
instructions themselves are addressed in the program and these must be
located. Branch and jump instructions are prime examples. A type of
addressing that is often used in branch operations to specify where the next
instruction is located (the instruction to be branched to) is relative
addressing. This has some similarities to indexed addressing in that the
instruction contains an offset number to be added to a base address to
determine the total address to be used. The difference is that the base
address is the value in the program counter. The sequence of relative
addressing is as follows: The program counter addresses the next
instruction and the instruction containing the op code is read. The
microprocessor decodes the instruction and finds that program-counter
relative addressing is being used. The program counter is incremented and
the next location in program memory is read. This is the binary number
representing the address offset. The offset value is added to contents of the
program counter and the result placed in the program counter. The new
program counter value is the address of the next instruction branched to by
the branch instruction. The advantage of locating the next instruction
branch address in this fashion is that it is faster than direct addressing The
disadvantage is that the offset value is limited. For example, as discussed
previously, an 8-bit signed (two's complement) offset value is limited to
from -128 to +127. As a result, a jump or offset from the present program
counter value is limited to the same value. If the next instruction branch
address is not in this range, the slower direct or some other addressing
approach would have to be used. In fact, people writing programs for
microprocessors or microcomputer systems are constantly faced with this
problem - which addressing procedure is best for each instruction in the
program.

HOW DO PROGRAMS RESULT FROM INSTRUCTIONS

As further discussion continues in this book, the emphasis will be
directed to help answer the question, "How do you use a microprocessor or
microcomputer in a system?" Obviously, the use of instructions and how
they are combined to make a system solve a particular problem by following
a program is of prime importance.

The game plan for programming should be clear. Break the
overflow chart for the system into many simple flow charts, even down to
the instruction level of operation if necessary. Write the instruction
sequences or subprograms to implement the elementary operations and
combine these to build back to an overall program. Each subprogram should
be verified as it is written. If the system is fairly simple, the actual system
hardware might be used; otherwise, some type of system development
hardware will have to be used. In like fashion, the complete program should

4-54 UNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

be verified to make sure that all subprograms are connected together
(linked) into one harmonious overall system program.
WHAT HAVE WE LEARNED?
• The first step in building any system is to completely summarize the
operation of the system in tabular or flow chart form.

• From the system flow chart decide what microprocessor or single-chip
microcomputer and other components will be needed to build the system.

• Choose the best microprocessor for a system by looking at its bit length,
speed, instruction set, and timing features, to see if they will be suitable
for the task at hand.

• Connect the components together, using the timing and control signals
from the processor to control the operation of the other components.

•

Microprocessors provide basic instructions to move data, perform
arithmetic, logical, comparison, and branching operations. When these
instructions are familiar and are combined correctly the microprocessor
can perform very complicated decisions and solve complex programs.

• Develop a program with the same organized, systematic, detailed approach
used for other projects. Break the program into many simple
understandable tasks.

• Write and verify the subprograms for each of these tasks and combine
them into the required overall program.

WHAT'S NEXT?
In this chapter we have covered a lot of the general terminology

and considerations involved in interconnecting and operating
microprocessors and microcomputers. In order to make this information
meaningful, we need to go through an example design problem using a
typical microprocessor. In the next chapter we will do just that, using an
imaginary microprocessor and a simple design problem that will illustrate
the concepts and fundamentals we have discussed thus far.

To aid in understanding the design problem make sure that you
work the microprocessor exercise that follows.
MICROPROCESSOR EXERCISE

This exercise is designed to illustrate the operation of
microprocessors and the interaction of microprocessors and memory. You
are to provide the action for the microprocessor, incrementing the program
counter, fetching the next instruction, interpreting and executing that
instruction, and reading and writing into data memory and microprocessor
registers when needed. As each instruction is executed, enter the results in
the processor registers and any memory locations into which data has been

^^ritten. The Microprocessor Exercise Work Sheet will provide a convenient
^^Ryay to summarize the effects of each instruction on all the microprocessor

registers. Assume A & B registers and memory locations can hold only a
single decimal digit.

UNDERSTANDING MICROPROCESSORS 4-55

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
PROGRAM MEMORY

Address Contents
100 Instruction: Clear Carry flip-flop (CY) to zero.
101 Instruction: Place 5 in the B register.
102 Instruction: Place 204 in Data Address Register 1 (DAR 1).
103 Instruction: Place 214 in Data Address Register 2 (DAR 2).
104 Instruction: Place 224 in Data Address Register 3 (DAR 3).
105 Instruction: Move data addressed by DAR 1 to A register.
106 Instruction: Add carry and data addressed by DAR 2 to data in

A register, Place the sum in the A register. Set the
Carry flip-flop with any carry generated.

107 Instruction: Move data from A register to data location
addressed by contents of DAR 3.

108 Instruction: Decrement all DARs and B register. If B register
contains zero, set the EQ flip-flop.

109 Instruction: If EQ = 1, Stop; If EQ =0, put 105 in the Program Counter.

DATA MEMORY

Address Data

200 4

1 201 2

202 3

1 203 5

204 7
< > i

• 210 2
211 4

212 9

213 8

214 2

> i

220 0

| 221 0

222 0

223 0

224 0

MICROPROCESSOR

VALUES
AFTER
INST 107:
(Fill m)

Program Counter

Data Address Register 1

Data Address Register 2

Data Address Register 3

A Register B Register

Carry
Flip-

Equal
Flip-r"W I 1 ' "K | 1

Flop CY Flop EQ

Questions:
1. What does the program stored in memory locations 100 through 109 do?
2. Does a Read Memory operation affect the contents of the location?
3. Does a Memory Write Operation affect the content of the location?
4. Why are three separate Data Address Registers used?

4-56 UNDERSTANDING MICROPROCESSORS

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION

MICROPROCESSOR EXERCISE WORK SHEET

STEP
PROGRAM
COUNTER

DATA
ADDRESS

REGISTER 1

DATA
ADDRESS

REGISTER 2

DATA
ADDRESS

REGISTER 3

B
REGISTER

A
REGISTER

EQ CY
FLIP-

FLOPS

1 100 0 0 0 0 0 0 0

2

3
4

5

6

7

8

9
10

11

12

13
14

15

16
17

18

19

20
21

22

23
24

25

26

27

28

29

30

31

32

33
34

35

•
Fill in the Program Counter Value for the next instruction. Then fill in the
register contents as they would appear after the execution.

UNDERSTANDING MICROPROCESSORS 4-57

FUNDAMENTALS OF MICROCOMPUTER SYSTEM OPERATION 4
PROBLEM SOLUTION

WHENEVER AN ACTION CHANGES A NUMBER THAT NUMBER IS MADE BOLD

MICROPROCESSOR EXERCISE WORK SHEET

STEP
PROGRAM
COUNTER

DATA
ADDRESS

REGISTER 1

DATA
ADDRESS

REGISTER 2

DATA
ADDRESS

REGISTER 3

B
REGISTER

A
REGISTER

EQC
FLIP
FLOP

1 100 0 0 0 0 0 0 0
2 101 0 0 0 5 0 00
3 102 204 0 0 5 0 00
4 103 204 214 0 5 0 00
5 104 204 214 224 5 0 00
6 105 204 214 224 5 7 00
7 106 204 214 224 5 9 00
8 107 204 214 224 5 9 00
9 108 203 213 223 4 9 00

10 109 203 213 223 4 9 00
11 105 203 213 223 4 5 00
12 106 203 213 223 4 3 01
13 107 203 213 223 4 3 01
14 108 202 212 222 3 3 01
15 109 202 212 222 3 3 01
16 105 202 212 222 3 3 01
17 106 202 212 222 3 3 01
18 107 202 212 222 3 3 01
19 108 201 211 221 2 3 01
20 109 201 211 221 2 3 01
21 105 201 211 221 2 2 01
22 106 201 211 221 2 7 00
23 107 201 211 221 2 7 00
24 108 200 210 220 1 7 00
25 109 200 210 220 1 7 00
26 105 200 210 220 1 4 00
27 106 200 210 220 1 6 00
28 107 200 210 220 1 6 00
29 108 199 209 219 0 6 10
30 109 199 209 219 0 6 10

Numbers stored in memory locations 220 thru 224: 67339

Answers:

1. 5 digit decimal addition:
42357

+ 24982
67339

2. No 3. Yes
4. There are three areas of

memory being referenced to
locate data.

4-58 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

A System
Application with SAM
ABOUT THIS CHAPTER

In previous chapters we have seen what microprocessors and
microcomputers are and generally how they are used. We are ready to start
looking at some specific applications of these devices. In this chapter we will
go through the application of a microprocessor to a specific problem. To
simplify the discussion, we'll use a fictitious microprocessor with limited
.capabilities that has a small instruction set and a four-bit data bus.

WHAT FEATURES ARE FOUND IN A TYPICAL MICROPROCESSOR?
This question has been answered in general terms in the last

chapter. How specific features are used to solve problems will now be
discussed. While the processor being used does not exist, it illustrates most
of the basic features of microprocessors presently available.

Internal Features
First, one must understand the internal architecture of the

microprocessor in terms of the functional building blocks it contains. This
internal structure of functional blocks is used for addressing, internal data
storage, arithmetic and logical operations, and timing. The way the
functional blocks work together when they are connected to memory or input
and output units determines the features of the microprocessor and its
instruction set. In fact, the instruction set can be understood best only in
terms of these internal features.

A microprocessor with a very simple internal structure, as shown
in Figure 5-1, will be used for this example. Of course, the detailed circuits
that would be required to implement such a structure would be very
complicated. Fortunately, the microprocessor user does not have to concern
himself with the detailed circuits, but only the overall functions provided by
the blocks that contain the circuits.

In the case of the microprocessor of Figure 5-1, which is named
SAM (Simplified Architecture Microprocessor), many of the internal
registers are the same as those found in integrated-circuit microprocessors.
For example, all processors must have a program counter, an instruction
register, and an accumulator, and SAM is no exception. SAM has a 12-bit
program counter and a 12-bit address bus that enables SAM to address any

i of 4096 (212) memory locations.When an instruction addressed by the
Program Counter is received, the instruction register (IR) provides 4 bits of
storage for the instruction operation code (OP code) and a 12-bit address
register (DAR) holds any direct data addresses contained in the instruction.
All information is received from memory by the 4-bit data bus coming into SAM.

ti UNDERSTANDING MICROPROCESSORS

A SYSTEM APPLICATION WITH SAM 5
PROGRAM
COUNTER
(PC)

INSTRUCTION
DECODE —

ft ADDRESS BUS (12 BITS)

4 4 4
I I

4

TT TT
INSTRUCTION DIRECT ADDRESS
REGISTER (IR) REGISTER (DAR)

3 INDIRECT
ADDRESS
REGISTER
(IAR)

MEMEN

R/W

IOC

TIMING
AND

CONTROL

CLOCK

INDIRECT
ADDRESS

BUFFER (IAB)

ACCUMULATOR (A)

STATUS
FLIP-FLOP

ALU

SINGLE-BIT
DATA OUTPUT

SINGLE-BIT
DATA INPUT

DATA BUS (4 BITS)

Figure 5-1. SAM Internal Structure

Note that the program counter (PC) can be loaded with a address
contained in the direct-address register (DAR) portion of the instruction
register. This enables the processor to jump or branch from one part of
memory to another to obtain its next instruction. The accumulator register
(A) can be loaded with a value obtained from a memory location or by a
value which may be a constant contained in the instruction. It can send data
to and receive results from the arithmetic logic unit (ALU). The contents of
the accumulator can be stored in memory. Since SAM is a 4-bit processor,
the accumulator register provides 4 bits of storage.

In addition to the basic registers (PC, IR, and A), there is an
indirect-address register (IAR) which can be used to quickly indicate the
location of data in memory for a given instruction. This register can be
initialized to some value by an instruction and later used to locate data
whenever it is needed in the problem. There is an indirect-address buffer
register (IAB) that can be used to save data addresses that are not
currently being used for later transfer to the IAR register. There is a single
status flip-flop used to summarize the results of arithmetic and logic
operations. The combination of registers, ALU, timing and control
functions in SAM is not nearly as extensive as one might find in an actual
IC microprocessor. However, even with this simple internal structure, SAM
has just about all the features that any problem might require.

5-2 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

Instruction Set
To simplify the discussion, SAM is limited to the 16 instructions

shown in Figure 5-2. This is because the 4-bit operation code that SAM
receives can only distinguish 16 different instruction codes. Most IC
microprocessors have an 8-bit or 16-bit instruction code to provide a much
more expanded instruction set. For the intended applications of SAM, a 4-
bit op code is entirely adequate.

INSTRUCTION
MNEMONIC
(Abbreviation) OPERATION AFFECT ON STATUS

Arithmetic:

Addition

Subtraction

Decrement

Rotate Lett

ADD

SUB

DEC
ROL

A —A + M

A —A - M

M — M - 1

Status - Carry
Status - Borrow

Status - 1 if M - 0
Status - left bit rotated
out ot A

Logical;

AND

OR

AND

OR

A — A A N D M

A —A OR M

Status - 1 it A - 0 after
operation
Status - 1 if A - 0 after
operation

Data Movement:
Accumulator-
to-Memory
Memory-to-
Accumulator

Constant-to-
Accumulator
Input Bit to
Status
Output Bit
From Status

TAM

TMA

LDA n

IN

OUT

M — A

A -—M

A-"—n

S -—Single Data
Input Value

Single Data
Output -—S

None

None

None

Status - Value of Input
Signal

None

Branching:
Jump

Conditional
Branch

JMP loc

BS loc

PC-— loc

PC -— loc
It S- 1

None

None

Indirect Address:

Initialize IAR

Decrement IAR

Exchange IAR &
IAB Contents

LDX value

DEX

XCHG

IAR-—Value

IAR — IAR-1

IAR ——IAB

None

None

None

0<ns15: loc is an address value (12 bits); value is an address containing 12 Bits. M
indicates the memory data at the location indicated by the contents of the IAR.

Figure 5-2. SAM Instruction Set

UNDERSTANDING MICROPROCESSORS

A SYSTEM APPLICATION WITH SAM 5
The instruction set consists of five data movement operations, six

arithmetic-logical operations, two branch instructions, one operation to load
an address code into the indirect-address register, one instruction that
decrements the contents of the indirect-address register, and one
instruction that exchanges the contents of the IAR and IAB registers.

Data Movement Instructions
These instructions are used to move data from the accumulator to

memory (named TAM mnemonic), move data from memory to the
accumulator (named TMA), to input or output a binary signal (to or from
the status flip-flop) on the serial input and output lines (named IN and OUT),
and to initialize the accumulator data to a given value (with the LDA
instruction).

The LDA instruction uses immediate addressing, since the data is
contained in the instruction. The sequence of steps is shown in Figure 5-3.
The other data transfers use the contents of the indirect-address register to
specify the location of the data in memory involved in the transfer. The
sequence of steps is shown in Figure 5-It. Thus, the effect of each of these
instructions can be summarized as follows:

TAM The contents of A are sent to the memory location
specified by the address code in the IAR register.

TMA The contents of the memory location specified by the
contents of the IAR register are sent to A.

LDA n The value n (0 through 15) is sent to the A register in
binary form (0000 through 1111).

IN The bit selected by the contents of the IAR register is
sent to the status flip-flop.

OUT The contents of the status flip-flop is sent out to the
external flip-flop selected by the address code in the
IAR register.

Indirect-Address Register Control Instructions
There are two instructions that can be used to control the indirect-

address register. The LDX instruction is used to initialize the contents of
the IAR to some desired address-code value. The DEX instruction is used to
decrement the contents of the IAR. By using the LDX instruction, the IAR
address code can be set to some desired starting value and then the DEX
instruction is used to go through successive locations in data memory. The
LDX instruction uses immediate addressing, i.e., the address code (12 bits)
is contained in program memory along with the instruction code. Figure 5-5
shows the steps to initialize the IAR to contain the address code for location
10016 (256 in base 10), when the program contains the following instruction:

LDX 100

5-4 UNDERSTANDING MICROPROCESSORS

5
A SYSTEM APPLICATION WITH SAM

PROGRAM MEMORY

ADDRESS CONTENTS
PROGRAM
COUNTER

100

1 ADDRESS OF LDA

C> 100 f
PC + 1 - ADDRESS) 3 101

OF DATA

2 LDA TO IR

R
INSTRUCTION

REGISTER

H
INSTRUCTION
DECODER AND

TIMING

LDA CODE

4
DATA TO
ACCUMULATOR

<w>

ACCUMULATOR

Figure 5-3. Effect of the LDA 8 Instruction

PROGRAM MEMORY DATA MEMORY

PROGRAM
COUNTER 1 PC HAS ADDRESS

OF INSTRUCTION

100

ADDRESS CONTENTS ADDRESS CONTENTS

3 100 TMA CODE

INSTRUCTION
REGISTER

2 TMA CODE
TOIR

3
DATA

ADDRESS
FROM IAR

JL 200

INSTRUCTION
DECODER AND

TIMER

200

4
DATA TO

ACCUMULATOR

INDIRECT
ADDRESS
REGISTER

ACCUMULATOR

Figure 5-4. Indirect Addressing Example—the IMA Instruction

UNDERSTANDING MICROPROCESSORS 5-5

El
PROGRAM
COUNTER

100

INSTRUCTION
REGISTER c

Steps:
1 Contents of PC

Addresses Instruction
2 Instruction to IR

A SYSTEM APPLICATION WITH SAM

5
PROGRAM MEMORY

ADDRESS

1
100

101

102

103

CONTENTS

5 PC + 2 Addresses 2nd
part of IAR value

6 0000 sent to IAR

Hi

LDX CODE

0 0 0 1

0 0 0 0

0 0 0 0

<*>

100,4 to
be sent
to IAR

jL>

INDIRECT ADDRESS REGISTER

3 PC + 1 Addresses 1st 7 PC + 3 Addresses 3rd
part of IAR value

4 0001 to 1st part ot
IAR

part of IAR value

8 0000 sent to IAR

Figure 5-5. Effect of a LDX Instruction

Arithmetic Instructions
The basic arithmetic operations are addition (ADD), subtraction

(SUB), decrementing (DEC), and shifting left - called rotation left (ROL).
These are performed on the memory location indicated by the address in the
indirect-address register and on the accumulator (in the case of ADD and
SUB). ADD, SUB, DEC and ROL operations are defined to be:

ADD Add the contents of the memory location specified by
the address in IAR to the contents of the accumulator.
Place the sum in the accumulator. A carry sets the
status flip-flop (S = 1).

SUB Subtract the contents of the memory location specified
by the address in IAR from the contents of the
accumulator and place the difference in the
accumulator. A borrow sets the status flip-flop (S = 1).

DEC Decrement the contents of the memory location
specified by the address in IAR. A zero result sets the
status flip-flop. The results of the operation are stored
in the same memory location.

5-6 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

The ROL rotate left instruction is best explained with a diagram
(Figure 5-6). The contents of the accumulator are shifted left one position;
the vacated right-most bit is filled with the value of the status flip-flop.
Then, the status flip-flop is set to the value of the bit shifted out of the left
end of the A register. Thus, if the status flip-flop contains a 0 before the
ROL operation and the A register contains a 1001 before the operation, the
ROL will change the contents of the A register to 0010 and the contents of
the status flip-flop to a 1.

A Register Status FF

o

o
 0 BEFORE OPERATION

• AFTER OPERATION

Figure 5-6. The Rotate Left Operation

Logical Instructions
The basic logical functions of OR and AND are provided by the

instruction set. These operations are performed bit-by-bit on the contents
of the accumulator and the contents of the memory location specified by the
IAR register. The result is sent to the accumulator. The status flip-flop is set
to 1 if the result is a 0, i.e., all bits of all results are 0's. This is reviewed in
Figure 5-7.

The AND operation is usually used for selectively clearing a bit to
0 and the OR operation is usually used for selectively setting a bit to a 1.

UNDERSTANDING MICROPROCESSORS 5-7

A SYSTEM APPLICATION WITH SAM 5
M 1 0 0 0
A 0 0 1 0

MOR A 1 0 1 0

M 0 0 0 1
A 1 1 0 1

M AND A 0 0 0 1

OR Function AND Function

Figure 5-7. SAM Logical Instructions

Jump and Branch Instructions
The instruction set of SAM supports an unconditional jump to an

instruction in another part of memory with the JMP instruction. The form
of this instruction is:

where location is the address to be jumped to, that is, the address of the next
instruction to be executed. This address value is loaded into the program
counter to cause the jump to occur. For example, to cause the next
instruction to be taken from memory location 100, the following instruction
would be used:

A conditional branch instruction is also available (BS) which will
make a jump only if the status flip-flop contains a 1. Thus, the instruction:

will cause the next instruction to be taken from memory address 100 if
S = 1. Such a conditional jump or branch is needed if decision making is to
be built into a microcomputer system.

More detail is contained in Figure 5-8. The address part of the
branch instruction is contained in the memory locations right after the
instruction operation code. The processor reads the instruction code to
determine that the instruction is a branch, either JMP or BS. Then the next
three memory locations will be read and the information sent to the
memory address portion (DAR) of the instruction register. Once the
complete address to be jumped to is in the DAR, the program counter is
loaded directly with this address code if the instruction is JMP; or if the
instruction is BS, loaded only if S = 1.

Of course, SAM's sixteen instructions are a very limited
instruction set for a microprocessor. However, they are the basic ones that
are found in all microprocessors, and they are more than sufficient to solve
many problems that will be encountered.

JMP location

JMP 100.

BS 100

5-8 UNDERSTANDING MICROPROCESSORS

5A SYSTEM APPLICATION WITH SAM pTTTI _Ba

PC ADDRESSES INSTRUCTION CODE . 0

PROGRAM
COUNTER

1 FOR STEP 9

JUMP ADDRESS
100,t

Figure 5-8. Operation of Branch Instructions

Timing Features
The last area that needs to be examined is how SAM tells the

external world what is going on and how the external world communicates
with SAM.

Memory Read Operation
A timing diagram for a memory READ is shown in Figure 5-9.

When memory is to be read, SAM outputs a memory enable signal
(MEMEN = 1) to turn on the memory circuits. It also sends out a signal on
the read/write (R/W = 1) line to indicate that a read operation is being
performed. To assure correct timing, the addresses are sent to memory at
the same time MEMEN = 1.

UNDERSTANDING MICROPROCESSORS 5

A SYSTEM APPUCATION WITH SAM 5
CLOCK

60 MICROSECONDS •

J V
MEMEN & ADDRESSES

READ/WRITE - 1

54 MICROSECONDS

V

LATCH DATA INTO SAM

Figure 5-9. Memory Read Operation Timing

SAM inputs the data from memory on the leading edge of the clock
pulse. Thus, the memory must respond with correct data within the time
between the trailing edge of one clock pulse and the leading edge of the
next clock pulse. In Figure 5-9 this is approximately 54 microseconds, which
is more than enough time for semiconductor memory devices.

Memory Write Operation
When memory is to be stored (receive data from the processor), the

address, data, and memory enable signals are sent to memory at the same
time as shown in Figure 5-10. The read/write signal goes low (R/W =0) to
indicate a write operation. In the write case the memory must be able to
store the information within the MEMEN time, which is 60 microsecond.

CLOCK

60 MICROSECONDS
h H

_T~\ / V
MEMEN, DATA & ADDRESSES /

READ/WRITE

a r

Figure 5-10. Memory Write Operation Timing

5-10 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

Input Operations
Figure 5-11 shows an input data device that is treated as if it were

a memory location. It is called a memory-mapped input. A 4-bit register is
assigned a memory address and an address decoder is designed to generate
an enable control signal in response to the correct address, R/W = 1, and
MEMEN = 1. The input device places its data on the data bus when SAM
wants the data read from the memory address for the input device.

DATA FROM
EXTERNAL
SOURCE

INPUT REGISTER

Figure 5-11. Memory-Mapped, Input Control Circuits.

The SAM microprocessor also supports an input port through its IN
instruction as shown in Figure 5-12. When this instruction is executed, the
address in the IAR is sent out on the address lines, the input/output control
(IOC) signal is generated and the read/write signal is maintained at a 1. To
provide the single-bit input that this instruction expects, the address is
decoded and the input signal from a selected flip-flop is gated onto the
single-bit data line of SAM. The single bit is sent to the status flip-flop
inside SAM. After the IN instruction, S will contain the same binary
value that the selected input flip-flop had stored. This special-purpose input
scheme is useful in testing single-bit digital signals throughout the system
and in setting up serial data transfers from other systems.

ADDRESSES

Figure 5-12. Single-Bit Input Port Control.

UNDERSTANDING MICROPROCESSORS 5-11

A SYSTEM APPUCATION WITH SAM 5
Output Operations

As in the case of the input operations, SAM supports memory-
mapped outputs and single-bit outputs (Figures 5-13 and 5-11,). Just as in
the input operation, a 4-bit register is used as if it were a memory location.
However, now it receives signals from SAM and stores outputs. A decoder
that detects the address and the memory write conditions (MEMEN = 1, R/
W = 0) outputs a control signal that latches the data on the data bus from
SAM into the output register. For single-bit outputs, the output control
signals (IOC and R/W) are used along with the addresses to provide a
control signal that latches the data into the output flip-flop. The data comes
out from the status flip-flop onto SAM's single-bit data output line.

By using the timing features of SAM properly (as illustrated in
Figures 5-9 through 5-H), memory and input/output functional blocks can
be connected to SAM to form a smoothly operating system.

Figure 5-13. Memory-Mapped, Output Control

OUTPUT FLIP-FLOP

Figure 5-14 Single-Bit Output Port Control

SINGLE-BIT
OUTPUT TO

- EXTERNAL
DESTINA
TION

5-12 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

WHAT CAN BE BUILT WITH SUCH A MICROPROCESSOR?
The hardware features and instruction set of SAM are complete

enough to satisfy the needs of many applications. To illustrate the power of
this simple microprocessor, let's go through the solution of an example
problem. Let's assume that SAM is required to receive a total of 32 binary
data bits, one at a time (that is, serially) on the single-bit input line. It must
then convert this 32-bit binary number to its decimal equivalent consisting
of 10 binary-coded-decimal (BCD) 4-bit groups. The codes for these ten
digits are then to be displayed using seven-segment LED display devices.
In other words, part of SAM's job is to convert numerical information m the
binary number system to its decimal equivalent and display the resulting
10-digit decimal number.

properties of BCD Numbers
" To understand the details of this problem a review of the BCD code
would be useful. The BCD code is simply the binary equivalent of the
decimal numbers 0 through 9 as shown in Figure 5-15. Any code other than
the ones listed (such as the binary equivalent of 15 which is 1111) is illegal
and must be corrected. One way in which such an illegal code could be
generated is illustrated in Figure 5-16. Here a two-decimal-digit number is
shifted to the left one bit position. Such a left shift should multiply the
number by two. If the BCD number is 04 with a code of 0000 0100 as shown
in Figure 5-16a, this is exactly what happens. This 04 code, when shifted
left, becomes 0000 1000, the code for 08 (2 x 04). The answer is correct and
contains only legal BCD codes.

Decimal BCD
Digit Code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Figure 5-15. BCD Code for Decimal Numbers

UNDERSTANDING MICROPROCESSORS 5-13

A SYSTEM APPUCATION WITH SAM 5
BEFORE LEFT SHIFT AFTER LEFT SHIFT

a. 2x4-8 0 0 0 0 0 10 0 0 0 0 0 1 0 0 0 Correct

b. 2x5-10 0 0 0 0
+ 0 0 0 0

0 10 1
0 0 11

0 0 0 0 1 0 1 0 Incorrect (OA)

0 0 0 0 10 0 0 0 0 0 1 0 0 0 0 Correct (10)

C.2X8-16 0 0 0 0
+ 0 0 0 0

10 0 0
0 0 11

0 0 0 1 0 0 0 0 Incorrect (10*16)

0 0 0 0 10 11 0 0 0 1 0 1 1 0 Correct (16)

Figure 5-16. Effect of Left Shift on BCD Coded Numbers

Look at Figure 5-16b. The BCD number is now 05 with a code of
0000 0101. When this is shifted left the result is 0000 1010, which contains
the illegal code 1010. The answer should have been 0001 0000 for 10
(5x2 = 10). The correct answer would have been obtained if a 0011 had been
added to the 0101 prior to the shift. Then the resultant code 0000 1000
shifted left would have given the correct code for the answer 0001 0000.

Similarly, if the BCD code has been 0000 1000 (for 08) prior to the
shift, as shown in Figure 5-16c, the shift left would yield 0001 0000, which is
a legal BCD code but, unfortunately, it is the wrong answer. Twice 8 is 16,
not 10. Thus, the result should have been the BCD code 0001 0110. Again, '
this result could have been obtained if prior to the shift the number 0011
had been added to the 0000 1000 to give 0000 1011. Shifting this left yields
0001 0110 (BCD for 16) which is correct. Apparently, if the BCD code for a
digit is 0100 or less (h or less) the code will be correct after a left shift.
However, if the code is 0101 or greater (5 or greater), 0011 must be added to
that digit code prior to the shift in order for SAM to provide the correct code
after the shift. Recall the definition for an algorithm that was discussed
previously. This simple rule is an algorithm. In this conversion it must be
used whenever a BCD coded number is shifted left one bit position.
Binary-to-BCD Conversion

The procedure for performing a binary-to-BCD conversion is
stated simply in flow chart form in Figure 5-17. If the binary number to be
converted is 32 bits, a shift counter must be initialized to a value of 32. It
will take a 10-digit decimal number to hold the decimal equivalent of the
largest binary number. Since each decimal digit is represented by a 4-bit
group, then 40 bits of storage are required to hold the decimal number in
BCD code. As shown in Figure 5-18a, the 40 BCD bits along with 32 bits to
hold the binary number forms a 72-bit "number" in the system memory.

5-14 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM u
The 4-bit SAM microprocessor must handle such a 72-bit group as 18 4-bit
groups, 10 BCD digit groups and 8 binary number groups. Given this data in
memory in 18 successive 4-bit memory locations, the conversion procedure
for 32 bits is as follows:

1) Input the binary number and store in the 32-bit binary number
locations.

2) Clear the BCD digit groups to 0000.
3) Set the binary bit counter to 32.
4) Repeat the following sequence of operations 32 times:

A) Add 0011 to any BCD code greater than 0100 (BCD coded 4-bit
groups only)

B) Shift the 72-bit combined BCD-Binary number to the left one
bit position.

C) Decrement the counter.

Figure 5-17. Binary to BCD Conversion Flow Chart

UNDERSTANDING MICROPROCESSORS 5-15

A SYSTEM APPLICATION WITH SAM 5
After the 32nd shift, the BCD equivalent of the original binary number is
contained in the 10 BCD digit storage locations. This information can then
be displayed using readily available display devices. An example of the
conversion is shown in Figure 5-18b using 4-bits.

71

MSB

MSB
31

T—T— D 16
I I I

LSB
0

I I 1

» • •

48 32
i i i

a. 72-Bit Formal

ADD? BCD Binary Condition

0000 0000 1110 Initial
No - 0000 0001 1100 SH 1
No 0000 0011 1000 SH 2
No — 0000 0111 0000 SH 3

0011
Yes 1010 SH 4

0001 0100 0000 Answer
1 4

LSB

BCD
4-Bit Group

32-Bil
Binary Number

40-Bit
BCD Number

b. 4-Bit Example

Figure 5-18. J,-Bit Binary to BCD Conversion

Seven-Segment LED Display Devices
The seven-segment Light-Emitting-Diode (LED) display device

shown in Figure 5-19 is commonly used to display decimal numbers. When a
specific current is passed through one of these diode segments, it emits
light. By turning on the appropriate light-emitting diode segments, any of
the decimal numbers can be displayed. For example, turning on all the LED
segments except the ones on the left side of the display unit will show the
number 3. The display units can be purchased as individual devices or as an
array. A BCD-to-seven-segment decoder must be used to convert the BCD-
code signals (4 lines) to the seven-segment display signals. As shown in
Figure 5-20a, these signals must be amplified with driver amplifiers to
provide the energy necessary to turn on the LED lights. Alternatively,
single units are available for purchase containing the BCD-code decoder,
the drivers, the LED seven-segment display, and even a storage register to
hold or remember the BCD code being displayed. One such self-contained
unit is the TIL311. To use such a device, the BCD code to be displayed is
latched into the TIL311 4-bit register and the device does the rest,
displaying the decimal number for the code stored inside the device.

5-16 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPUCATION WITH SAM

ARRANGEMENT OF
LIGHT EMITTING
DIODE ELEMENTS

DISPLAY OF THE
NUMBER 3

Figure 5-19. Seven Segment LED Displays

BCD
CODE -
INPUT

a. Individual display units need drivers

BCD CODE
INPUT

LATCH

TIL311

b. Drivers and decoder included in display units

Figure 5-20. LED Display Circuit Requirements

UNDERSTANDING MICROPROCESSORS 5-17

A SYSTEM APPUCATION WITH SAM 5
Basic Serial Data Transmission

One of the tasks the microprocessor is to perform in the example
problem is to receive the binary number from some device one bit at a time
until the full 32-bit binary number has been received and stored in the
appropriate portion of memory. Many different formats are used for
sending data. One common format for serial data is shown in Figure 5-21.
8 bits are sent at a time beginning with a start bit and ending with one or
two stop bits. The system receiving such a signal must monitor the signal
line to determine when the start bit occurs. It then must determine the
center of the start bit interval, and check for the value of the 8 data bits by
checking the input line at the appropriate intervals. Finally, a stop bit must
be detected, after which the data transmission is over for that 8-bit group.
The interval times involved in this type of reception depend on how many 8-
bit groups (bytes) are sent per second. 10 bits are sent for each 8-bit data
byte. Thus, if 15 such bytes are sent per second, the bits would be arriving
at the rate of 150 bits/second. Each bit interval is 0.0067 seconds (6.67
milliseconds). This rate is referred to as 150 Baud in computer terminology.
Each 8-bit data group is received in this way. Four such 8-bit data groups
would be used to send the entire 32-bit binary number to the SAM
conversion system.

8 DATA BITS

1
START BIT f 1

START BIT
TRANSITION

STOP BIT

H*+" •+• •+• •+•
D/2 D D D D

D - 6.667 milliseconds For 15 Codes/second; 10
Bits/code (150 Bits/second) D/2 - 3.333 milliseconds

Figure 5-21. Serial Data Transmission - not synchronized

Summary of Tasks
Taken individually, the three tasks that our system is to perform

are relatively simple. The processor must input the serial data and send it to
the microcomputer memory. It must determine when all 32 bits have been
received and then convert this binary number to its decimal equivalent. It
must then display the decimal numbers and wait for the next binary
number to be received. The total system is simply implementing the basic
operations of sense (received the input binary number), decide (decide what
its decimal equivalent is), and act (output the result to the display devices).
SAM, with the additional appropriate hardware devices, will do these tasks
according to instructions contained in a program.

5-18 UNDERSTANDING MICROPROCESSORS

A SYSTEM APPLICATION WITH SAM

HOW IS THE PROGRAM DEVELOPED?
The program is developed for the microcomputer by breaking the
programming effort down into simpler subprograms. Each subprogram will
handle a specific task that the microcomputer is to perform. In the case of
the number converter, the program for SAM will consist of three
subprograms:
1) Input Subprogram - This subprogram will handle the task of receiving

the serial data and storing it in memory.
2) Conversion Subprogram - This subprogram will handle the task of

converting the binary number to its decimal equivalent.
3) Output Subprogram - This subprogram will output the decimal codes to

the display devices.
The overall program will start out with the input subprogram. After this
task is complete the conversion subprogram will be used, followed by the
output subprogram. Then the processor will jump back to the input
subprogram to await new data. Thus, the overall programming effort can be
broken down into subprograms that are directly related to the operations
required of the system.

The Input Subprogram
The Input Subprogram shown in Figure 5-22 must perform the

following operations:
1) It must determine when the start bit transition occurs. This can be done

by continually checking the serial data line for a zero. Once a zero is
detected, the processor can go to the next input operation.

2) It must determine the mid-point of the start bit. It can do this by
checking for a zero 3.333 milliseconds (for a 150 Baud signal) after it has
detected the start bit transition. If the input line still has a zero on it at
this time, the subprogram can start looking for data bits. If not, the
subprogram will have to return to the first task of checking for a start bit
transition.

3) Once the start bit has been verified, the program will input a data bit
once every 6.667 milliseconds until 8 data bits have been received and
stored in memory.

4) After 8 bits have been received, the program must wait 6.667 milliseconds
to see if the input is a 1. If it is, the transmission terminates properly,
and a byte has been received. If the input is a zero, the transmission is
incorrect and the program must request a retransmission of the same
byte.

Steps 1) through 4) are repeated until all four bytes of binary data have
been received. The Conversion Subprogram then will be used.

UNDERSTANDING MICROPROCESSORS 5-19

A SYSTEM APPLICATION WITH SAM 5

SET BYTE
COUNTER TO 4

SET BIT
COUNTER TO 4

WAIT FOR 6 667
MILLISECONDS

INPUT BIT

DECREMENT BIT
COUNTER

NO
/ COUNTER N,

Figure 5-22. Input Subprogram Flow Chart

5-20 UNDERSTANDING MICROPROCESSORS

SET BIT
COUNTER TO 4

DECREMENT
BIT COUNTER

COUNTER
-(P

SAVE 4-BIT GROUP

DECREMENT
BYTE COUNTER

BYTE COUNTER

^ 07

5 A SYSTEM APPLICATION WITH SAM

Timer Instruction Sequences
The basic recurring operation that the input subprogram must

provide is that of a timer. First, it must provide 3.333 millisecond time
intervals to find the center of the start bit. Second, it must be able to time
6.667 milliseconds to determine the interval between data bits. A program
sequence, discussed previously, that provides such a timing operation
consists essentially of a counter and a program loop that will continue
decrementing the counter until the counter is zero. Figure 5-23 shows such a
sequence for the SAM system. By computing the time it takes to perform
the loop operations from data sheet specifications, the total loop time of 420
microseconds is determined. The time that is consumed in setting up the
loop counter value and the location of the counter in memory is 420
microseconds. This value is subtracted from the 3333 or 6667 before division
by 420. Dividing 3333 minus 420 microseconds, the time desired, by the loop
time of 420 microseconds determines the value to initially place in the
counter. Therefore the counter should be initialized to 7. Similarly, to time
an interval of 6667 microseconds, the counter would be initialized to 15.

Set Counter
to Value

LOOP DEC
BS END
JMP LOOP

LDX ADDRESS
LDA TIMER
TAM

Set up counter address in IAR
Set up count value in A
Send value to memory
Decrement counter
It counter - 0 Go to END
Otherwise, continue loop

END
Decrement

Counter
Next Sequence
of Instructions

Total time = 3333 microseconds
Time to Spend in Loop = 3333 - 420 = 2913
TIMER = 2913 +420 = 7

Time to enter Loop
Loop Time

420 microseconds
420 microseconds

Figure 5-23. Interval Timer Flow Chart and Program Sequence

UNDERSTANDING MICROPROCESSORS 5-21

A SYSTEM APPLICATION WITH SAM

Accumulation of Data Bits
Another basic operation of the input subprogram is to store the 4-

bit groups as they are accumulated. To do this the program must keep track
of how many bits have been received. After 4 bits have been received, the
program must store the completed 4-bit group in memory. Assuming
successive memory locations are to be used for these groups as they are
received, the program must also keep track of the next memory location to
be used to store the next group of 4 bits. The program also must keep track
of the 8-bit bytes as they are stored to know when 4 bytes have been
received. Thus, a byte counter must be initialized to 4 at the beginning of
the input subprogram, and a bit counter must be initialized to 4 after each
4-bit group has been sent to its memory location.

The Flow Chart
Each of these basic tasks can be identified in the overall input

subprogram flow chart of Figure 5-22. A byte counter is first initialized to 4
and the program starts looking for a start-bit transition from high to low.
Once this transition occurs, the program times 3.333 milliseconds and checks
the start bit again. If it is still 0, the program inputs a bit once every 6.667
milliseconds, until 4 bits are in the accumulator. This information is sent to
memory to the location for the least significant 4 bits (assuming
information is coming in least-significant bit first). Again, the program
inputs bits every 6.667 milliseconds until the next 4 bits are in the
accumulator. This information is sent to the next 4-bit memory location.
Since 8 bits have been received, the byte counter is decremented and the
procedure is repeated until all 4 bytes have been received and stored in
memory. After this step the work assigned to the input subprogram is
completed and the microcomputer can go on to the conversion subprogram.

Instruction Sequences for Flow Chart Operations
Much of the input subprogram flow chart can be implemented

rather directly with SAM's instructions. The timer operations have already
been examined (Figure 5-23) and the sequence of instructions for interval
timing can be used to implement these operations in the flow chart. Initial
values must be placed in the counters. This is accomplished easily by loading
the accumulator with the desired constant value with an LDA instruction,
loading the IAR address register with the desired counter location address
in memory with the instruction LDX, and sending the counter value to this
address with the instruction TAM. The sequence is shown in Figure 5-2U- As
long as the IAR contents remain unchanged, the DEC instruction can be
used to directly decrement the count value in this memory location.

5-22 UNDERSTANDING MICROPROCESSORS

A SYSTEM APPLICATION WITH SAM

LDA VALUE Set up counter value in A
LDX ADDRESS Set up counter address in IAR
XAM Transfer counter value to its memory location

Figure 5-24. Initialization of a Counter Value in Memory.

SAM detects what is on the serial input line when given an IN
instruction. The bit value is stored in the S flip-flop and is shifted into the
accumulator with an ROL instruction. Four such shifts would accumulate an
entire 4-bit group. Storing the 4-bit group requires keeping track of the last

•
memory location used. Refer to Figure 5-25. By using the LDX instruction,
the IAR can be initialized to the address of the last four-bit group location
in memory (Figure 5-27 shows this to be the least-significant binary group.)
XCHG can be used to save this in the indirect address buffer register (IAB)
until it is needed again. When the binary memory storage address is needed
again, another XCHG will restore this value back to the IAR. The XCHG
operation provides a means of saving an address that is referred to from
time-to-time while a counter address is used in the IAR register in the
meantime.

IAR

IAB
\s

XCHG OPERATION

LDX LAST BINARY Set up address of last binary group in IAR
XCHG Save this address in IAB
LDX COUNT ADDRESS Set up counter address in IAR

i 1 Instructions that
: f use Count Address

XCHG Restore address of binary group
DEX Decrement binary group address
XCHG Save new binary group address in IAB,

Restore counter address to IAR

Figure 5-25. Use of XCHG Instruction to Maintain two Addresses

UNDERSTANDING MICROPROCESSORS 5-23

A SYSTEM APPLICATION WITH SAM 5
The complete input subprogram is shown in Figure 5-26 written in

terms of the basic instruction sequences for each flow chart block. The
entire program is written in easy-to-understand mnemonic form using
symbols (labels) such as PI, P2, etc. for locations of instructions in memory.
Figure 5-27 details the assignment of memory locations. The symbol
START is used to denote the address of the most-significant BCD digit. 10
locations away in order (START + 9) is the address of the least-significant
BCD digit. START + A16 (START +10, the 11th location) is the address of
the most-significant 4-bit group of the binary number, so that START +11,„
(the 18th location) is the address of the least-significant 4-bit group of the
binary number. The locations START +12,„ through START +1516 are
reserved for the 6.667-millisecond counter value, the bit counter, the 3.333-
millisecond counter value, and the byte counter, respectively. By setting up
the memory in this way, most of the locations can be accessed in order
(sequentially) by simply decrementing the contents of the IAR for each new^
location.

Label INST Operand Comment*
INPUT LDX

XCHG
START+ 11l6 Set address for least significant binary group

Save in IAB
LDX START+ 15,» Set up Byte Counter address in IAR
LDA 4 Set up Byte Counter value in A
TAM Save Byte Counter in memory

P1 IN Check for Start Bit = 0
BS P1 If not, keep checking
LDA 7 Set up timer value in A
DEX Decrement address to point to timer storage
TAM Send timer value to memory

P2 DEC I I
BS P3 • Perform 3.333 millisecond interval timing
JMP P2 }

• Perform 3.333 millisecond interval timing

P3 IN Check to see if Start Bit still 0
BS P1 If not, check for new Start Bit
LDA 4 Set up Bit Counter value in A
DEX Change address to that of Bit Counter
TAM Save counter value in memory

LP DEX I
LDA 15 j • Set up 6.667 millisecond timer value
TAM | \

P4 DEC I
BS P5 • Perform 6.667 millisecond timing
JMP P4 '

• Perform 6.667 millisecond timing

Figure 5-26a. First Half of Input Subprogram

5-24 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

P5

P6

LPA

P4A

P5A

P6A

PS

PSA

P7

INST Operand Comments

IN Input data bit to S flip-flop
ROL Rotate into accumulator
LDX START + 13it Get Bit Counter address into IAR
DEC Decrement Counter
BS P6 If 4 bits inputted, go to save operation
JMP LP If not, go to 6.667 millisecond timer for next bit
XCHG Restore current binary group address
TAM Send 4-bit binary group to memory
DEX Set up address for next 4-bit group
XCHG Save Address in IAB
LDX START+ 13,4 Set up Bit Counter address in IAR
LDA 4 Set up Bit Counter value in A
TAM Save Bit Counter in memory
DEX
LDA 15
TAM -Same operations as in LP to P6
DEC
BS P5A
JMP P4A
IN
ROL
LDX START + 13|t
DEC
BS P6A
JMP LPA
XCHG
TAM
DEX
XCHG
LDX START + 12h
LDA 15 I Set up address for 6.667 millisecond counter
TAM and repeat sequence to implement 6.667
DEC millisecond timer.
BS PSA \
JMP PS /
IN Check for Stop Bit
BS P7 If 1 continue
JMP INPUT If not, start over
LDX START+ 15,6 Get address of Byte Counter in IAR
DEC Decrement Counter
BS CONVERT If Byte Counter = 0, go to conversion subprogram
JMP P1 If not, wait for receipt of next byte.

Figure 5-26b. Last Half of Input Subprogram

UNDERSTANDING MICROPROCESSORS 5-25

A SYSTEM APPLICATION WITH SAM 5
Program
Label
(Hexadecimal
Numbers)

START
START+1
START+9

START+9
START + A

Hexadecimal
(Base 16)
Addrass

900
901
909

909
90A

Decimal
Addrass

519
513
514

591
599

Storage
Allocation

1st (Most-Significant) BCD Code
2nd BCD Code
3rd BCD Code

10th BCD Code (Least-Signiticanl Digit)
First (Most-Significant) Binary Group

START+B 90B 593 2nd Binary Group

START +11 911 599 8th (Least-Significant) Binary Group
START+19 919 530 6.667 millisecond Counter Value
START +13 913 531 Bit Counter Value
START +14 914 539 3.333 millisecond Counter Value
START +15 915 533 Byte Counter Value
START+16 916 534 0011
START + 17 917 535 0101

Figure 5-27. RAM Memory Assignments (Assuming START = 200\&)
for Programs

Development of the Conversion Subprogram
The flow chart of Figure 5-17 identifies two basic operations for

the conversion subprogram. The fundamental operation is the shifting of
the combined BCD and binary numbers (a 72-bit group) to the left one bit
position. Prior to the shift, 0011 must be added to all BCD digits greater
than 0100. This is the second basic operation. This procedure is repeated
until all binary bits have been shifted.

Since the data is already in memory, the subprogram begins with
the clearing of the 10 BCD-digit storage locations. The program steps are
shown in Figure 5-28. The bit counter at START +1316 is used as a digit
counter to keep track of the BCD digits cleared to 0. It is initialized to a
value of 10 in the first three instructions. The counter address is saved in
IAB with the XCHG instruction. Now the IAR can be loaded with the
address of the least-significant BCD digit, START+ 9. Next, the
accumulator is cleared to 0 with the LDA 0 instruction; then a TAM sends
the 0 in the A register to the location directed by IAR. One is subtracted
(decremented) from IAR with the DEX instruction, and the XCHG brings
in the counter address so the counter can be decremented with DEC. A
second XCHG restores the BCD digit address before the digit counter is
checked by the BS instruction for zero. Recall from the instruction set
(Figure 5-2) that when a DEC instruction is carried out by SAM, the status

5-26 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

FF is set equal to 1 if the memory location value equals 0. If the digit
counter has not been decremented to zero, this loop sequence will be
repeated. If the loop counter is zero all 10 BCD digits have been cleared to 0
and the conversion procedure will be entered.

LOOP

LDX
LDA
TAM
XCHG
LDX
LDA
TAM
DEX
XCHG
DEC
XCHG
BS
JMP

START +13|»
10

START+9
0

CORR
LOOP

Set up counter address in IAR
Set up counter value of 10 in A
Send 10 to Memory
Save counter address in IAB
Set up BCD address (LS Digit) in IAR
Clear A
Send O to BCD location
Decrement BCD address
Get counter address; save BCD address
Decrement counter
Set up BCD address in IAR; save counter address
If counter - 0 go to BCD digit correction prog.
If not, repeat loop

Figure 5-28. Subprogram to Clear BCD Digits

BCD Digit Corrections
As shown in Figure 5-17, prior to entering the BCD correction

procedure the counters and data to be used by the program must be
initialized. This is done by using several times the same sequence of
instructions that was used in Figure 5-24 - LDA n to set up the counter
value, LDX to set up the counter address, and TAM to send this value to the
counter memory location. Thus, as shown in Figure 5-29, 0011 is sent to
START +16 to save the correction code; 0101 is sent to START +17 to save
the BCD reference value; and 32 is sent to START +1416 and START + 15,6

to save the shiftcounter value (an 8-bit number).
With these values in memory, the basic BCD correction scheme

would be to bring the BCD code from memory and subtract 0101 from it. A
borrow would set the S flip-flop indicating the memory digit was 4 or less
(no correction needed). If S =0 after the subtraction, 0011 must be added to
the BCD digit code and the result is stored in the digit location in memory.
This process is repeated until all 10 BCD digits have been corrected. The
program to accomplish this activity, along with the initializations required
by the entire conversion program, is shown in Figure 5-29. The first nine
instructions store the constants 0011,0101, and 32 as discussed. The next

•

four instructions, starting with the label BEGIN, set up the Bit Counter
used as a BCD digit counter to 10 and start the address for data at the
least-significant BCD digit (START+ 9).

UNDERSTANDING MICROPROCESSORS 5-27

A SYSTEM APPLICATION WITH SAM 5
CORR LDA

LDX
TAM
LDA
LDX
TAM
LDA
LDX
TAM

BEGIN LDA
LDX
TAM
LDX

LOOP1 TMA
XCHG
LDX
SUB
BS
XCHG

TMA
XCHG
DEX
ADD
XCHG
TAM
XCHG
LDX
DEC
BS
XCHG
DEX
JMP

DIG OK

START+16,,

START+17,,

START +14,,

10
START+13,,

START+9

START+17,,

DIGOK

START+13,,

SHIFT

L00P1

Set up 0011 in A
Set up memory address tor 0011 storage
Send 0011 to memory
Set up 0101 in A
Set up memory address for 0101 storage
Send 0101 to memory
Set up shift counter to 32 (2 in 14, 0 in 15)
Set up address of higher part of shift count
Send 32 out to 8-bit counter location
Set up BCD digit counter value of 10 in A
Set up counter address in IAR
Send 10 to Memory
Set up address for least significant BCD Digit
Get BCD digit to A
Save BCD digit address;
Set up address lor 0101 location in IAR
Subtract 0101 from BCD digit code
If borrow, BCD <5; Digit OK
Otherwise, must add 0011 to digit, restore BCD
address
Get digit to A
Save digit address in IAB
Get 0011 address in IAR
Add 0011 to BCD digit
Restore digit address to IAR
Send corrected digit to memory
Save digit address in IAB
Get BCD counter address in IAR
Decrement counter
II counter - 0, go to shift sequence.
Restore digit address
Move digit address back to next digit
Go back through loop to correct next digit

Figure 5-29. BCD Digit Pre-Shift Correction Subprogram

Starting with the label LOOP 1, the rest of the program is a loop of
instructions which, when repeated 10 times, will examine and modify BCD
digits as needed. The addressed digit is brought into the accumulator and
0101 is subtracted from it (first four instructions of the loop). The BS
instruction is used to branch around the correction sequence if there was a
borrow ((A) = BCD digit less than 5) to the instruction labelled DIGOK.

If there was no borrow, the digit address is returned from the IAB
with the XCHG instruction and again the digit is sent to the accumulator
with the TMA. The digit address is again saved with XCHG, but this
instruction also restores the address for the location storing 0101 into the
IAR. A DEX decrements the address down to the 0011 correction code
The digit address is restored with the XCHG and the corrected digit sent
to memory (TAM) and the digit address once again saved in IAB.

5-28 UNDERSTANDING MICROPROCESSORS

5 "—""""" El
The last 6 instructions (beginning with DIGOK) decrement the

digit counter, decrement the digit address, and return to the beginning of
the loop of instructions if the digit counter has not been decremented to
zero. The loop is completed when the counter goes to 0.

Shift-Left Operation
At this point in the program, the microprocessor will branch to the

shift subprogram sequence of instruction shown in Figure 5-S0a. The first
part of this subprogram contains instructions to load the IAR data address
register with the address of the least-significant 4-bit group of the binary
number (START +11,6) since the 72 bits of data (10 BCD digits and 8 Binary
4-bit groups) are to be shifted left or up through memory as shown in
Figure 5-30b. The entire shift requires performing the following sequence

^^^f instructions 18 times:

TMA Send 4-bit group to accumulator A
ROL Rotate 4-bit group Left, using S to save bit rotated out of group. S also sends to the next

most-significant group the bit rotated out of the previous least-significant group.
TAM Send shifted group back to memory
DEX Decrement address to move up to the next most-significant group.

Two of these are shown detailed in Figure 5-30a. Ideally these four
instructions would be programmed in a loop with a loop counter set to 18 as
follows:

Count = 18
Loop TMA

ROL
TAM
DEX
•EC Count
Branch on Not Zero to Loop

However, with SAM's limited status information, this cannot be done very
easily. S is saving the bit rotated out of the previous 4-bit group to be
rotated into the next 4-bit group. But the decrement count operation would
affect and possibly change this value, so the loop structure cannot be set up
easily. As a result, a lot more memory locations (17 x 4 instructions extra)
are used to implement the 18 repeated operations. Six instructions could be
substituted if a loop structure could be used.

After the 18th rotation, the 8-bit shift counter is decremented and
when it has been decremented to zero, the processor would go to the output
subprogram. Otherwise, the program would branch back to the point
labelled BEGIN — the beginning of the conversion program.

UNDERSTANDING MICROPROCESSORS 5-29

A SYSTEM APPLICATION WITH SAM 5
SHIFT

CHECK

LDX
TMA
ROL
TAM
DEX
TMA
ROL
TAM
DEX

LDX
DEC
BS
JMP
DEX
DEC
BS
JMP

START +11 u Get least-significant binary group address in IAR

— Shift first 4-bit group

START+ 15,t

CHECK
BEGIN

OUTPUT
BEGIN

— Shift second 4-bit group

16 Repeats of TMA, ROL, TAM, DEX sequence
to shift remaining 16 4-bit # groups

Get shift counter address into IAR
Decrement Shift Counter
If low-order counter - 0, go check high-order count j
Otherwise, repeat sequence from BEGIN
Set address to high-order counter value
Decrement high-order Shift Count
If high-order count - 0 (32 bits shifted) go to OUTPUT
Otherwise, repeat sequence from BEGIN

a. Shift Subprogram

S
FLIP-FLOP MEMORY

Most Significant BCD Group

Next BCD Digit Group

Next BCD Digit Group

Least Significant Binary Group

b. Shifting a 72-Bit Number Left One Bit Position

Figure 5-30. Shift-Left Operation

5-30 UNDERSTANDING MICROPROCESSORS

A SYSTEM APPLICATION WITH SAM

Development of the Output Subprogram
The Output Subprogram shown in Figure 5-31 is the simplest

program to write. All that is required is to send the 10 BCD digits out to the
10 LED display register units. Again, the following loop structure would be
very advantageous:

Count-=10
LDX LEDLSB Set up address tor LSB LED
XCHG Save address in IAB
LDX START+ 9 Set up address tor least-significant BCD digit

Loop TMA Get BCD digit to Accumulator
OEX Decrement BCD address
XCHG Swap BCD and LED addresses
TAM Send Accumulator to LED
DEX Decrement LED address
XCHG Swap BCD and LED addresses
Decrement Count Decrement Loop Counter
Branch to Loop if Count# 0

However, the limited addressing capability of SAM precludes this. Thus,
again the program is simply 10 repeats of the 6 loop instructions, at a cost
of 52 extra memory locations (6 X 9 = 54 minus the last two loop operation
instructions).

Once the BCD digits have been outputted, the program will jump
back to INPUT to start waiting for new binary information to be received
on the single data-input line.

OUTPUT LDX LEDLSB Set up address of LSB LED unit in IAR
XCHG Save this address in IAB
LDX START+9 Set up address of LSB BCD digit in IAR
TMA Get BCD code to accumulator
DEX Move BCD address up to next most-significant digit
XCHG Save BCD address; get LED address
TAM Send BCD code to LED
DEX Move LED address up to next most-significant LED
XCHG Save LED address; get BCD digit address

9 Repeats of previous six instructions
- to complete transfer of all 10 BCD digits

to all 10 displays

JMP INPUT Go and wait for next binary input

Figure 5-31. Output Subprogram

UNDERSTANDING MICROPROCESSORS 5-31

A SYSTEM APPLICATION WITH SAM 5
Program Requirements

The total memory required consists of program memory and data
memory. Figure 5-32 shows the total memory locations required for the
program. All instructions require one location except LDA n (2 locations
required) and LDX, JMP, and BS (4 locations required for each). Thus, the
total ROM or program memory requirement is 413 four-bit locations
(nibbles). The total RAM data requirement is 34 four-bit locations, the 24 of
Figure 5-27 and the 10 LED locations. For simplicity, the program is
assumed to start at hexadecimal location 000,6 in memory and extends down
through the hexadecimal location 19C16. Arbitrarily RAM can be assigned
the 24 addresses from 200,6 through 217,6, and the LED'S the 10 addresses
from 300I6 through 309,6

Memory Requirements
Subprogram (Number ot 4-Blt Groups)

INPUT 148
CONVERSION 192
OUTPUT 73

Total 413

Figure 5-32. Program Memory Requirements of Problem

These address assignments will be important to the hardware
design portion of the problem, and they fix the meaning of the labels for the
instruction and RAM addresses in the program. Thus, BEGIN has the
address 000, START has the address 200, LED LSB has the address 309, and
so on. Since the LED devices are assigned the hexadecimal addresses 300,6

through 309,6, they are addressed just like portions of RAM. These
assignments (memory map) and chosen conditions of the enable signals are
shown in Figure 5-33.

Value of 1st 4 Address Bits

type of Storage Address Range An Aio A? A,

Program (ROM) 000-1FF 0 0 0 0 or 1
Data (RAM) 200-217 0 0 1 0
LEO Units 300-309 0 0 1 1

ROM ENABLE = MEMEN • X,
RAM ENABLE = MEMEN • A,-A7
LEO ENABLE = MEMEN -A,-A,

Figure 5-33. Memory Map and Subsystem Enables

5-32 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM H UI _____ = U
HOW IS THE SYSTEM BUILT?

Once the program memory and RAM requirements of a system are
known and once the addresses for each portion of the system have been
assigned it is possible to design the system memory (including any input
output devices assigned memory addresses). All that s required is that an
appropriate address decoder be provided along with correct connection of
the processor memory control signals to appropriate memory and input
output integrated circuits.

Design of the Program Memory
The program instructions occupy addresses 000,„ through 19C,. is a

total of 413 locations. One programmable read-only memory (PROW
integrated circuit is the SN74S287. This device provides 2o6 locations

A iW location so that two such circuits would provide adequate storage
" the 413 instruction locations of the program hat has been

Apvploned The first device would hold the first 256 instruction locations
(addresses 000 through 0FFJ, and the second device would provide storage
locations with addresses from 100,,, through IF! Dr,r»M locations w.tn^ _ ^ ̂ ̂ interconncction of the program PROM.

Since each device offers 256 locations, an 8-bit address code must be sent to
tch device to determine which of the 256 locations is being requestedby
the processor Thus, address lines A„ through A; would be sen
fhe ad"ins of the two memory circuits. Address lines A through A
would have to be used to distinguish these two the RAM a
LED devices. Both PROM circuits will be turned on whenMEMEN
and when the address bit A„ has a 0 on it. One of the two PROMS will be
selected bv the condition of A,. ,

RAM will be turned on when MEMEN »1 and when k -1 and
A =n I ED'S will be activated when MEMEN is 1 and when A„ and A, are
a "th l's Thus the memory subsystems and output subsystem can be easily
distinguished'by loTking at the address bits A,, and A, Address line outputs
A* and A,, are available from SAM but since limited memory and output

if purM i onH A = 0 and provides one of the chip

which of the two SN74S298's is to be on at any given time. If A. is a 0, the

aTL^'tion in the range 100 through IFF is requested. The overall
PROM memory design, including timing and address »

t 1 very simple as an examination of Figure indicates The three-state
™ ' outputs of the SN74S283 provide easy interface to the data bus.

UNDERSTANDING MICROPROCESSORS
5-33

A SYSTEM APPUCATION WITH SAM 5
SN74S287

Figure 5-34. Connection of SAM to the program PROM subsystem

Design of the Data Memory
The RAM requirements of 24 storage locations can be satisfied, as

shown in Figure 5-35, by using two 16 locations, 4 bits per location
integrated circuits such as the SN74S189. This device, like the SN74S287,
offers three-state outputs so that it can be connected directly to the data
bus of the system. It has address pins for A0 through A3 to distinguish
which of the 16 internal locations is requested. It has 4 data-input lines and
4 data-output lines which can be connected together to serve as a
bidirectional data bus. It has a Read/Write control line and single chip-
enable line CE (The bar over the CE indicates that when the line is a low
level the chip-enable is active).

5-34 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

DOi DO; DOi DO< |

DATA OUTPUTS

Figure 5-35. Organization of SN7bSl89 RAM

The only peculiarity of this device is that the outputs are the
complements of the data stored in the device. To avoid inverting the data
from the write operation to the read operation, the input data should be
inverted before it is stored in memory. The connections of this device to
SAM to form a 32x4 RAM memory are otherwise straightforward, as
shown in Figure 5-36. The Chip Enable is driven low on the first '189 when
A, is a zero and when RAM is enabled (MEMLN-A9*AK). The chip enable of
the second '189 is driven low when A, is a 1 and when RAM is enabled. The
Read/Write signal generated by SAM is sent to both circuits and only
controls the enabled unit. The data bus coming from SAM is inverted to
store the complement of the data in the RAM circuits. Then, when the RAM
locations are read, the inversion built into the '189 on the output lines
brings the data back to what it was when SAM sent it to the RAM. Other
than this slight problem caused by the design of the memory circuits, the
connections of the RAM subsystem to SAM are again straightforward.

A SYSTEM APPLICATION WITH SAM 5
SN74S189

Figure 5-36. Connection of SAM to RAM Subsystem

Design of the Output Subsystem
Since each TIL311 LED display device contains an internal

register for storing the 4-bit code for the decimal number to be displayed,
these devices are treated just like any other memory location except data is
not read from these locations; it is only written to these locations. This is
shown in Figure 5-37. The 4-bit data bus coming from SAM is sent to the data
inputs of all 10 TIL311 devices. These represent the memory locations 300,6
through 30916. An address decoder must be provided to select 1 of the 10
'311's to receive the data when a WRITE signal is received. This decoding
can be done directly with a 4-to-16-line decoder such as the SN74154. By
sending the address lines A„ through A3 to such a decoder, a low level will
appear on one of the output lines from 0 to 9 of the decoder, which in turn
will latch the data on the data bus into the corresponding TIL311. The
decoder has two enables that can be used to further decode addresses,
control and time the subsystem. Read/Write is connected to one of these
enables to turn on the decoder only when a write operation is being M
performed by SAM. The other enable is driven low when the LED output ^
enable is active, that is when MEMEN, A9, and A„ are all 1 (Figure 5-33). As
a result, the decoder, and one of the TIL311's will be activated only when
SAM wants to write data to one of the addresses 300,6 through 309,„.
5416 UNDERSTANDING MICROPROCESSORS

5 A SYSTEM APPLICATION WITH SAM

TIL311

Figure 5-37. Connection of SAM to Output Subsystem

Design of the Input Subsystem
Since the system is monitoring only one input line with the single

data-input line, there are no address decoding or timing circuits required.
Other examples of interconnecting the single-input and single-output data
line with circuits controlled by a memory address or receiving or sending
data by the data bus under address control were shown (Figures 5-11,12,13,
lk). If a specific application calls for using these techniques, the
programming and interconnection is similar to what has already been
shown.

A SYSTEM APPLICATION WITH SAM 5
If the subsystems of Figure 5-31, 36 and 37 are combined, the

overall system design will be completed (Figure 5-38). The details of the
design of the subsystems have been fairly simple, even though the final <
system is performing some fairly sophisticated tasks. A non-microprocessor
system would have been much more complicated, but would not have
required a program to be written. However, this is one of the advantages
that has been pointed out for microprocessors, it is generally far easier to
write the system program and connect the microprocessor to the appropriate
subsystem elements than it is to design a complete equivalent non-
programmed digital system.

WHAT HAVE WE LEARNED?

• Designing a microprocessor system requires the development of the
system program and the design of the hardware structure. >

• In order to effectively use the instructions to build the system program,
the internal features (architecture and instruction set) of the
microprocessor must be understood.

• The basic concepts of the system input, output and microprocessor
functions can be understood best by defining an overall system flowchart

• The program development task is broken down into simpler subprograms
whose basic operations are implemented easily by simple sequences of the
microprocessor instructions.

• Generally, the more extensive the instruction set, status register
information, and addressing capability, the easier it is to write the system
program.

• In order to be able to design the system hardware, the microprocessor
timing and control signals must be understood.

WHAT'S NEXT?

In this chapter a fictional microprocessor has been applied to a
simple but useful problem. This has served to illustrate how microprocessor
instructions are combined to form subprograms to perform solutions to
parts of the overall problem. These subprograms are combined to complete
the solution of the problem. Similarly, designing memory and input/output '
subsystems as separate tasks and combining these complete the design for
the entire system. In the next few chapters, other problems will be solved to
further illustrate how a system is designed. The difference being that real
microprocessors and microcomputers will be used in the problem solutions.

Hopefully the foundation established in this chapter will help to
understand how these real microprocessors with their individual
architectures and instruction sets are used in systems and are programmed
to perform given tasks.

5-38 UNDERSTANDING MICROPROCESSORS

A SYSTEM APPLICATION WITH SAM

Figure 5-38. Complete System Wiring

UNDERSTANDING MICROPROCESSORS 5-39

A SYSTEM APPLICATION WITH SAM 5
Quiz for Chapter 5
1. Which of the following data

addressing modes are not
available in SAM?
a. Immediate
b. Register Indirect
c. Register
d. Direct
e. Indexed
f. d and e above
g. b through e above

2. SAM has the capability of
distinguishing how many
memory locations?
a. 1024
b. 2048
C. 4096

3. A SAM memory write
operation is indicated by the
following:
a. MEMEN = 1
b. R/W = 0
c. MEMEN = 1, R/W = l
d. MEMEN = 0, R/W = l
e. MEMEN = 1, R/W = 0

4. If serial transmission at 1000
Baud is required, what time
interval is required after
detection of the first l-to-0
transition before the start
bit = 0 check is made?
a. .5 milliseconds
b. 1 millisecond
c. 3.33 milliseconds

5. How many 4-bit memory
locations are required to hold
the machine code for the
subprogram of figure 5-28?
a. 13
b. 26
c. 27

6. What value would be used for
TIMER in the program of
figure 5-23 to achieve a delay
of 4.6 milliseconds?
a. 8
b. 10
c. 12

7. The LED's are assigned
separate addresses from the
BCD data storage locations.
Why not use the LED
registers to provide the data
storage locations 2001B

through 209,6?
a. The LED's are set up as a

write-only device and the
BCD data locations must be
read as well as written into

b. The LED register
information would
continually change until
the conversion was
completed, causing a
confusing display

c. The LED's will be storing
previous BCD numbers
while a new conversion is
in progress

d. All of the above
8. If the LED's had been

assigned hexadecimal
addresses 400 through 409,
what address bit could have
been used to directly
distinguish the LED's from
RAM and ROM?
a. AI2

b. A„
c. A,0

d. None of the above

d-8 'P-I 'd-9 'o-e 'b-P 'a-8 'o-z 'l-I

5-40 UNDERSTANDING MICROPROCESSORS

PROGRAMMING CONCEPTS 6
Programming
Concepts
ABOUT THIS CHAPTER

In past chapters the importance of the program in developing
microprocessor systems has been emphasized. In the SAM application, the
basic procedures involved in writing programs were illustrated. Since
developing the program is such a basic requirement in all microcomputer
applications, these procedures will be examined in more detail in this

1 chapter, starting with basic concepts of program development.

HOW ARE PROGRAMS DEVELOPED?
Developing a program is just like developing any other type of

design in terms of the sequence of tasks that have to be performed. First,
the system performance must be completely described before the design
effort can begin. The program is to be built from the instructions of a given
microprocessor. Therefore, the system performance description must be
precise enough so there will be no problem building the component parts
with the available instructions. The task of providing such a description is
an interative one which ultimately results in breaking the original system
into many elementary functional modules. Each of these elementary
functional modules (subprograms) can be converted rather directly into
instruction sequences. These subprogram modules can then be interfaced
together to form the overall desired system program. The basic procedure is
as follows:
1. Write a general description of the desired overall system performance.
2. Identify the overall system inputs, outputs, and general subsystem

operations.
3. Describe each subsystem operation, identifying inputs, outputs, and the

tasks involved.
4. Continue subdividing system tasks and developing task descriptions until

they are defined at the most elementary level.
5. Write the instruction sequences that implement all the elementary

subsystem tasks.
6. Combine the individual subsystem task instruction sequences into the

desired overall system program.

UNDERSTANDING MICROPROCESSORS 6-1

a PROGRAMMING CONCEPTS /I h
Program Descriptions

Program development involves three key elements that must be
understood. The first element, as mentioned, is that of description, and it
includes almost the total procedure because every step in the programming
procedure is one of describing. There are a number of ways in which the
descriptions can be written. One way is to simply write down the
description in paragraph form as was done in the first paragraph of this
section to describe the programming development procedure. This offers the
most compact method of describing what is to be done. However,
descriptions written in this form are often difficult to refer back to later.

An alternative form for a written description is to make a list of
the things to be done. This was done above for the program development
procedure and since it is a type of check-list it can be referred to easily. The
onlj difficulty with this form is that again complete sentences have to be
read and the relationship of one step to another may not be immediately
evident.

For this reason, another form of description, the flow chart, can be
used that will graphically show the relationship of the steps in the
procedure as well as carry the description. To illustrate the use of this form
a flow chart for the program development procedure is shown in Figure 6-
la. It has the advantage that it presents the overall procedure in a form
that's easy to understand and that may be referred to easily. It's only
disadvantage is that it takes somewhat more effort and most often a more
detailed description and more space to draw the flow chart than is required
for the list or paragraph form of descriptions.

As a result, a form that combines the list and the flow chart
descriptions is illustrated in Figure 6-lb alongside the flow chart. This
mnemonic form has the readability of the list and the structure of the flow
chart. It does not require as much space and certainly somewhat less effort
than the flow chart form. It can be the same form as the final main
program, and the mnemonics may even be the names of the major
subprograms in a system description. Notice, however, that the mnemonics
used are really abbreviated sentence structure and not abbreviated words
as in the case of instructions. These macro-mnemonics (macro-meaning
larger scope) also have a one-to-one correlation to the statements and
structure of certain higher-level languages such as BASIC or PASCAL,
making it possible to start describing the program for system operations
directly in a programming language. In this chapter, both the flow chart
form and the mnemonic form of descriptions will be used as much as
possible.

6-2 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

DESCRIBE THE
GENERAL SYSTEM

PERFORMANCE
REQUIREMENTS

IDENTIFY
SYSTEM INPUTS.
OUTPUTS, AND

OPERATIONS

SPLIT PRESENT
LEVEL OF

DESCRIPTION
INTO SIMPLER

SUBTASKS

B

WRITE INSTRUCTION
SEQUENCES FOR

EACH SUBTASK
MODULE

GENERAL PERFORMANCE DESCRIPTION

DESCRIBE I/O & OPERATIONS

CONTINUE
SUBTASK DESCRIPTIONS

— UNTIL
ELEMENTAL SUBTASK REACHED

WRITE SUBPROGRAMS

INTERFACE ALL
MODULES TO

GENERATE
OVERALL PROGRAM

a. Flow Chart Form

COMBINE

b. Mnemonic Form

Figure 6-1. Description of Program Development Procedure

Subprogram Modules
A second key element in the program development procedure is the

method of thinking of each system and subsystem module as a component
with inputs, outputs, and operations that relate outputs to inputs^ This is
described by the general system model shown in Figure 6-2. By thinking of
each task and subtask in this way it will be easy to interface modules later
once the subprogram for each module has been written. This approach also
provides an organized approach to analyzing each subsystem task so that
the program requirements for that task can be quickly recognized and
described.

UNDERSTANDING MICROPROCESSORS 6-3

PROGRAMMING CONCEPTS

INPUTS OUTPUTS

Figure 6-2. General System Model for Program Descriptions

Modular Programming

The third key element of the programming procedure is the
strategy of breaking a single large system task into many simple subtasks,
each of which will be handled by a simple subprogram module. This modular
approach to programming makes each separate subprogram effort a simple
and manageable problem. It also simplifies program testing of each
subprogram and the combining of all the program modules into the desired
final overall system program. Such a modular programming approach might
not be necessary for simple systems, but it certainly is a necessity for very
complicated systems.

Each elemental subtask that results from the program
development procedure is a description of the requirements that that task
must perform. This description is a concept level description that must be
detailed further by describing the algorithm or procedure that will meet the
requirements of the task and provide a problem solution. Once this
algorithm has been developed, it must be described in sufficient detail so
that the final stages of program development can be completed, that of
writing the actual instruction sequences that will implement the algorithm
for the task. Some programmers will be able to write the instruction
sequence directly from the module description. Others, particularly
beginner programmers, will have to describe the algorithm down to a very
detailed level before they can implement it with a subprogram. In either
case, the modular approach will aid in reducing the overall programming
task into manageable portions.

Relating Programs To Hardware

Thus far the program development has been discussed as if it were
totally independent of the way the system hardware is connected together.
If the system is to complete its task in an efficient manner, the hardware
and software must work in harmony. For example, in order for the
microprocessor to direct the operation of the system components correctly it
must identify the parts properly at the appropriate time and in the right
sequence. It does this with addresses, control signals and timing signals. As
a result, one of the first tasks for the hardware designer is to choose certain
address ranges for program memory and for data memory.
6-4 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

In many cases these are chosen to simplify the hardware circuits
required to interpret or decode the addresses coming from the
microprocessor. In other cases these addresses are dictated by the processor
and the designer has no choice in the matter. For example, in responding to
system interrupts in many cases, the location of subprograms or addresses
of interrupt subprograms are dictated to be at certain locations. The exact
location varies depending on the microprocessor or microcomputer used.
Likewise, certain processors limit input/output subsystems (not memory
mapped input/output) to certain ranges of addresses. Throughout the
system operation, the program must use the correct addresses for the
instructions in sequence, for the data to go with these instructions or for
the input/output units requires.

When all of these factors have been considered, the designer
iassigns addresses to the various memory and input/output subsystems.
This assignment is called memory mapping, since it maps or relates the
devices to the addresses the program must use to locate and interact with
those devices. By using these addresses, the program is related directly to
the circuits that make up the hardware part of the system. By assuring that
control and timing signals occur in the correct sequence and at the correct
time and by providing enough drive and decode power, the hardware
system can be completed.

An Example
Possibly these concepts are best solidified by a programming

example. One simple example is a temperature control system in a house;
more specifically — the control of the heating system. To begin, the system
performance requirements will be described in paragraph form:

The system is to monitor eight temperature sensors per room area.
When a majority of those sensors fall below a preset reference temperature
the furnace will be turned on (if it is not already on) and the flow-control
valve will be positioned to permit hot air to flow to that room area. This flow
will continue until the majority of sensors indicate a temperature above the
reference level.

This system can be described in terms of the general system model
as shown in Figure 6-3. The values of the room and reference level
temperatures are inputs from the sensors. The outputs control the valve
position for the air flow and turn the furnace on or off. The decide function
or process that relates these outputs to the inputs must implement the
conditions described above. The flow chart description (Figure 6-i) and the
corresponding mnemonic description (Figure 6-5) can be written rather
directly from the paragraph system description. This level of flow chart
description is at the algorithm level for all operations except for the sensor
sample block. Thus, it would be a simple matter to write most of the
instruction sequences directly from this flow chart.

UNDERSTANDING MICROPROCESSORS ft-5

PROGRAMMING CONCEPTS 6
SENSORS ") DECIDE

REFERFNCF ^
ON

REFERFNCF ^ OPERATION
TEMPERATURE

OPERATION

SENSE DECIDE

FURNACE ON/OFF
3 CONTROL

AND AIR FLOW VALVE

ACT

Figure 6-3. Furnace Control System Structure

CONTINUE
SAMPLE SENSORS

UNTIL
MAJORITY LOW

IF FURNACE OFF
THEN TURN ON FURNACE

ELSE NEXT STEP

TO SAMPLE SENSORS
SEQUENCE

TURN ON FLOW TO AREA

CONTINUE
_ FLOW & SAMPLE SENSORS

UNTIL
MAJORITY OK

TURN OFF FLOW & FURNACE

GO TO SAMPLE SENSORS

Figure 6-4. Flow Chart Description Figure 6-5. Mnemonic Form of
of Furnace Controller Description of Furnace Controller

6-6 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

As an example, the furnace-on decision block can be further
described in terms of hardware related blocks as shown in the instruction
level flow chart of Figure 6-6b. The furnace-on decision sequence can be
thought of as a decision block, with furnace status as input, furnace control
as an output, and a simple decision (if the furnace is not on, turn it on) as
the process block.

To illustrate the one-to-one correspondence between instruction
and flow chart at this level, the program sequence is shown in Figure 6-6c,
implemented with the corresponding TMS8080A microprocessor
instructions. The other blocks in the flow chart of Figure 6-1, could be
detailed to this level and converted to the corresponding instruction
sequences just as easily. Of course, the precise instruction sequence that
implements a given flow chart depends on the microprocessor instruction

i set being used.

IF FURNACE IS
OFF, TURN ON
(OUTPUT A 1)

(FURNACE ON/OFF
OUTPUT

INPUT (STATUS)
CONTROL)

a. System Model of Furnace Check Operation

INPUT
FURNACE

STATUS
INP STATUS

JNZ NEXT

OUTPUT A
1 TO FURNACE

CONTROL
OUT TURNON

U

TO NEXT
MODULE

b. Flow Chart of Furnace
Check Operation

c. TMS8080A Program

Figure 6-6. Development of Furnace Check Program Module

UNDERSTANDING MICROPROCESSORS 6-7

PROGRAMMING CONCEPTS 6
HOW DO INSTRUCTION SETS DIFFER?

Each microprocessor family supports its own unique instruction
set. However, there are similarities from one instruction set to another. All
microprocessors support the instructions used by the fictional SAM
microprocessor of the last chapter, but they can support many other
instructions as well. Generally, the more bits the processor can handle at
one time, the more extensive its instruction set. To illustrate some of the
typical differences between processors, three microprocessor instruction
sets will be summarized in this section. The 4-bit processors will be
represented by the TMS1000 microcomputer instruction set, which is
basically an expansion of the SAM architecture and instructions used in the
last chapter. The 8-bit processors will be represented by the TMS8080A
instruction set, and the 16-bit microprocessors by the instruction set for the
TMS9900 family of devices. One of the first features that is of interest in
comparing instruction sets is how versatile they are in locating system
data, that is, how extensive are the addressing modes they support.

Addressing Modes
A comparison of the addressing modes available in the three

devices is shown in Figure 6-7. It shows that the 16-bit unit supports all
addressing modes currently used by microprocessors, the 8-bit unit supports
all but indexed addressing, and the TMS1000 4-bit unit offers only limited
addressing options. As a result, it is much more difficult to write a program
using the TMS1000 unit than it is using the TMS9900 unit, not just because
it is a 4-bit processor, but simply because with the TMS1000 it is often more
awkward to locate needed data. This is a problem that has already been
experienced in the SAM example of the last chapter. It must be
remembered however, that the TMS1000 is a self-contained microcomputer
with included memory and therefore limited to using what memory is
available. Not only do the many addressing modes aid in programming but
having a more extensive instruction set helps as well. This can be seen by
looking at the arithmetic-logic instructions of the three devices.

Addressing Mode TMS1000 TMS8080A TMS9900

Immediate Yes Yes Yes
Register Yes Yes Yes
Register Indirect Yes Yes Yes
Data Counter Yes No Yes
Indexed No No Yes
Direct No Yes Yes

Figure 6-7. Comparison of Microprocessor Addressing Capability

6-8 UNDERSTANDING MICROPROCESSORS
*•

6 PROGRAMMING CONCEPTS

Arithmetic-Logic Instructions
Figure 6-8 compares the arithmetic-logic instructions for the three

microprocessors. While all processors have increments, adds, decrements,
and subtract, only one processor supports add with carry and subtract with
borrow (TMS8080A). Only the 16-bit unit supports all arithmetic and logic
operations listed, including absolute value, multiplication, and division. The
latter two can be accomplished with one instruction rather than a complete
sequence of instructions made up to do the operation. By contrast, the 4-bit
unit has a rather limited ALU offering.

Operation TMS1000 TMS8080A TMS9900

Addition:
Incrementing
Without Carry
With Carry

Subtraction:
Decrementing
Without Borrow
With Borrow

Negation

Absolute Value

Multiplication

Division

OR

AND

Exclusive OR

NOT

Clear

Set

Shifts (S) or
Rotates (R)

fDisplacement 6, 8 or 10

IMAC.IA.IYC
AMAAC.ActAAC

DMAN.DAN.OYN

CPAIZ

RBIT.CLA

SBIT

INR.INX
ADD.ADI.DAD
ADC.ACI

DCR.DCX
SUB.SUI
SBB.SBI

ORA.ORI

ANA.ANI

XRA.XRI

CMA

RLC.RRC
RAL.RAR

INC.INCT
A,AB,AI

DEC.DECT
S.SB

NEG

ABS

MPY
DIV

ORI

ANDI

XOR

INV

CLR

SETO

SLA.SRA
SRC.SRL

Figure 6-8. Comparison of Microprocessor Arithmetic-Logic Operations

Data Movement Instructions
The devices have somewhat comparable data movement operations

as shown in Figure 6-9. All provide for moving program constants into
registers or memory. All provide single-bit or multiple-bit input and output
instructions and all provide for moving data from registers to and from
memory. The TMS8080A needs and provides stack control operations, the
PUSH and POP instructions. These are about all the data movement
options that could be available and all three devices are quite adequate in
this area.

UNDERSTANDING MICROPROCESSORS 6-9

PROGRAMMING CONCEPTS 6
Operation TMS1000 TMS8080A TMSMOO

Input

Output

TKA

SETR.RSTR
TDO.CLO

INP

OUT

TBIT.STCR

SBO.SBZ.LDCR

Memory-Register
& Register-Register

TAY.TYA
TAM.TMA
TMY.TYM
TAMZA.TAMIY
XMA

MOV.LDA.STA MOV.MOVB
LOAX.STAX
LHLD.SHLD
SPHL

Constants TCY.TCMIY
LDP.LDX

MVI.LXI LI.LWPI.LIMI

Stack Operations PUSH,POP.
XTHL

Figure 6-9. Comparison of Microprocessor Data Movement Operations

Comparison And Branch Instruction*
The range of comparison and branch operations are summarized in

Figure 6-10. The TMS1000 is the most limited in this area, offering less than
or equal comparisons between the accumulator and memory or a constant,
and checks to see if the accumulator, Y register, or memory is not equal to
zero. The Branch (BR) checks a status flip-flop which has saved the results
of a comparison or a carry resulting from a previous arithmetic operation.
One level of conditional branch (subroutine call) is possible depending on
the condition of the status flip-flop.

The TMS8080A offers arithmetic comparisons, unconditional
branches, an unconditional subroutine jump (call) and conditional branches,
subroutine jumps (calls), and subroutine returns. The allowed TMS8080A
condition checks include carry, no carry, zero, not zero, plus, minus, odd
parity, and even parity.

The TMS9900 offers arithmetic and logical comparisons, the same
branch and jump options of the 8080A, as well as additional branch
conditions and broader scope subroutine calling procedures. These
additional options enable the TMS9900 programmer to implement decision
making, subroutine structures, and input/output subprograms more
efficiently when compared to what's available with the TMS8080A and
especially the TMS1000 device.

6-10 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS wQ
Operation

Arithmetic
Comparison

Logical
Comparison

Unconditional
Branch

Unconditional
Subroutine
Jump

Conditional
Branch

TMS1000 TMS80S0A TMS9900

ALEM.ALEC CMP, CPI C.CB.CI

MNEZ.YNEA. COC.CZC

YNEC.KNEZ

—
JMP.RET B.JMP

CALL BL.BLWP,
RTWP.XOP.X

BR,CALL. Jcond.Ccond Jcond
RETN Rcond
Conditioned Conditions: Conditions:
on Status Z—zero EQ -
Flip-Flop NZ—not zero NE ¥•

C—carry OC Carry
NC—no carry NC No carry
P—plus GT >
M—minus LT <
PO—odd parity OP Odd Parity
PE—even parity NO No Overflow PE—even parity

H Higher Than
HE Higher or =
LE Lower or =
L Lower

Figure 6-10. Microprocessor Comparison and Branch Operations

Summary
Obviously, the microprocessors chosen (the TMS 1000 is really a

microcomputer) are examples of three that are used widely. There are many
others used also and different variations of instructions result. A complete
understanding of the use of an instruction set for a given microprocessor
can occur only by designing systems with them. In the remaining chapters
of this book, applications of the TMS8080A and one of the TMS9900 family
of microprocessors will show how a limited number of these instructions are
used to perform system tasks. It is beyond the scope of this book to explain
how each instruction is used in detail. It remains for the reader to acquire
and study the necessary manufacturer's specifications for any
microprocessor or microcomputer chosen to gain the details and insight
required for good design.

Here, however, are some general overall comparison statements
for 4,8, and 16-bit microprocessors. Reviewing again Figures 6- , thru 6-10
indicates, as one would expect, more capability in the instruction set for the
16-bit over the 8-bit over the 4-bit microprocessor. That does not mean that
the 4-bit microprocessor or microcomputer does not have a place in system
designs. It does and has. Automotive and appliance controls, electronic
games and toys are evidence of that.

fi-1 UNDERSTANDING MICROPROCESSORS

PROGRAMMING CONCEPTS 6
A 16-bit microprocessor processes four times as much data as does

a 4-bit unit in a given instruction. This means that the 16-bit unit will be at
least four times more efficient in processing data and other information
than the 4-bit unit. Similar advantages exist for the 8-bit over the 4-bit or
the 16-bit over the 8-bit. However, many applications do not require the
efficiency and power the 16-bit unit instruction set features. They need only
the capabilities of an 8-bit unit, or of a 4-bit unit. Or for a given application
it may be that one instruction of the 4-bit microprocessor or microcomputer
may mean that it performs as well as a 16-bit unit in that application.
Whichever unit is chosen for a given task, the programs must be written for
the application and stored in the microcomputer memory. Generally these
programs are written in a program-oriented language in order to simplify
the program development task.
WHAT TYPES OP PROGRAMMING LANGUAGES ARE AVAILABLE?

As an end result, the program must be in machine code form so it
can be interpreted and the operations performed by the microprocessor.
However, these machine codes are not meaningful to the programmer.
Thus, it is not desirable or even very feasible to write the programs initially
in this machine language. Instead, the programs are written in either
assembly language (mnemonic) form or in a higher-level language. The
conversion of the higher-level language to the assembly language form is
called compiling (see Figure 1,-20), and the conversion of an assembly
language program to machine code form is called assembling.

Assembling can be done fairly easily by the programmer or by a
computer program called an Assembler. In either case, the assembly
procedure is to look up the machine code that corresponds to each assembly
language statement and fill out the complete machine code program. The
compiling of a high-level language program into machine code form is
somewhat more complicated and generally requires a special purpose
compiler computer program to successfully perform the conversion.

Assembly Language Programming
The assembly language for a given microprocessor instruction set

is simply a list of abbreviations that represent the operations and
addressing modes for the processor. Since these abbreviations or
mnemonics are meaningful to the programmer it is far easier to write the
program in this language than it is to write it directly in machine language.
Several examples have already been presented of programs written in this
form, including the short sequence of TMS8080A instructions in Figure 6-6.
To get a better idea of the effort involved in assembly language
programming and how that effort is dependent on the instruction set used,
an addition example will be considered in this section.

6-12 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

An Addition Example
Assume the problem is to add two 32-bit binary numbers and store

the result in place of the second number. It is also assumed that the
hardware design has fixed the location of data memory at 8000,, through
8FFF„, and that it has been decided to locate the first 32-bit number in
locations 8000,, through 8003,, and the second 32-bit number (and the sum)
in locations 8010,, through 8013,,. Each location stores an 8-bit byte, so four
locations are needed for a 32-bit number.

The algorithm for this addition is the same procedure that would
be used if the addition were to be done on paper. The least significant group
of bits are added first, with the carry out of the group noted. The next least
significant group of bits are added with this input carry. This process is
continued until the most significant group of bits and their input carry have

' been added.
This procedure is shown diagramatically in terms of memory

locations in Figure 6-11 and in flow chart form in Figure 6-12. Figure 6-12
implies a repetitive loop structure, which would best be implemented with a
program loop in the case of the 4-bit and 8-bit processors. A program loop
would not be necessary in a program written for a 16-bit processor. The
TMS8080A program of Figure 6-12b that will perform 32-bit binary
addition is almost directly related on a one-to-one basis to the flow chart as
shown in Figure 6-12a. H and D registers are set initially to the address of
the least significant bytes of the two numbers, and a loop counter (C
register) is initialized to 4 (for the four bytes to be added). The carry is
cleared with the XRA A instruction, after which the repetitive loop is
entered. If the Exclusive Or function, bit by bit, is performed by the
accumulator on itself, the accumulator will be cleared to zero.

8000 8010 8010

8003 8013 8013

Figure 6-11. 32-bit Addition Memory Structure

UNDERSTANDING MICROPROCESSORS 6-13

PROGRAMMING CONCEPTS

D
Inside the loop, the first byte of the first number is moved into the

accumulator with the LDAX D and the first byte of the second number is
added to it with the ADC M. The byte sum is sent back to the second
number location with the MOV M, A operation. After this, the address
registers are decremented to indicate the next least significant bytes and
the loop counter is decremented.

If the loop counter has been decremented to zero, the addition is
complete; otherwise, the loop is repeated. This program requires 12
assembly language statements. Each of these instructions requires either 1,
2, or 3 bytes of program memory as shown in Figure 6-12b. Therefore, the
machine code version of this program requires 19 bytes in program memory.

INST OPERAND BYTES

LXI H.8013H 3
LXI D.8003H 3
MVI C.4 2
XRA A 1
LDAX D 1
ADC M 1
MOV M.A 1
DCX H 1
DCX D 1
DCR C 1
JNZ LOOP 3
RET 1

19

H Indicates hexadecimal

12 Assembly Language
Statements

19 Bytes of program Memory

b. TMS8080A Program

RETURN

a. 32-bit Addition Flow Chart

Figure 6-12. 32-Bit Addition Flow Chart and Program

6-14 UNDERSTANDING MICROPROCESSORS

PROGRAMMING CONCEPTS

For comparison, the TMS9980 version of a 16-bit binary addition is
shown in Figure 6-13. The TMS9980 acts like a 16-bit microprocessor, even
though it actually operates on data one byte at a time. It processes two
bytes per instruction. In this case, the address is set initially by loading a
register called the workspace pointer with 8000,, with the LWPI >8000
instruction. No loop counter is needed so locations 8002,„ and 8003,„ can be
added to locations 8012,„ and 8013,. with the A Rl, R9 instruction. The JNC
SI checks for a carry to the next 16-bit addition. If there is a carry, 1 is
added to the second 16-bit number (most significant 16 bits) located in
workspace register R8 with the INC R8 instruction. Then the most
significant 16-bit groups are added with the A R0, R8 instruction.

LWPI >8000
A Rl,R9
JNC S1 High Level Language Equivalent
INC R8 N - N + M

SI A R0.R8
RT

> Indicates hexadecimal

6 Assembly Language Statements

16 Bytes ot Program Memory

Figure 6-13. TMS9900 32-Bit Addition Program

This program requires only 6 assembly language statements which
is a two-to-one reduction over the requirements for the 8-bit microprocessor
program. The 16-bit unit only requires 16 bytes of program memory to store
the machine code for the program of Figure 6-13. The advantage of
processing data 16 bits per instruction is evident even in this simple
example - 6 assembly language statements and 3 bytes of memory are
saved.

High-Level Languages
While going to the longer-bit processors can simplify the assembly

language programs, using a high-level language to write the programs can
simplify this task even further. Examples of such languages include
FORTRAN, BASIC, and PASCAL. In each of these languages, the add
operation indicated by the assembly language programs of Figure 6-12 and
Figure 6-13 can be written simply as:

N = N + M.
• Thus a single statement replaces 6 TMS9980 statements or 12 TMS8080A

statements.

It certainly is easier to write the initial program in the high-level
language. In order to arrive at the assembly language program, everytime
this high-level language statement is encountered the program sequences
of Figure 6-12 or Figure 6-13 are substituted depending on the
microprocessor being used. To make this an efficient approach, the
manufacturer must provide the program that will automatically perform
these substitutions. This is the compiler program. To program, the
programmer writes relatively short high-level language programs, and the
compiler converts these to assembly language equivalents. Finally, an
assembler program will convert the assembly language program to its
machine language equivalent. Of course, if the manufacturer does not
provide the high-level-language-to-assembly-language converter, this type
of programming approach would not really be feasible.

Further examples of the features of typical high-level language
statements are shown in Figure 6-1L Examples of arithmetic and
decision making formats are shown in Figure 6-Ha.

All three of the example languages use the. same single line
statement for multiplication. Their decision statement structures are
similar and allow for reasonably complicated arithmetic and logic tests to
be made to decide which of two program sequences are to be executed.

Language

FORTRAN

PASCAL

BASIC

FORTRAN

Multiplication Decisions

Z-W'Y

Z = W'Y

Z = W*Y

IF (condition) GO TO condition true sequence
condition not true sequence

IF condition
THEN condition true sequence

ELSE condition not true sequence

IF condition THEN condition true sequence
condition not true sequence

a. Arithmetic and Decision Making Formats of High-Level Languages

PASCAL BASIC

DO 10 I - I.N
Loop Statements

10 CONTINUE
• N DO

1 = 1

WHILE l< •
BEGIN

Loop Operations
END

FOR N = 1 TO 25 STEP 1
Loop Statements

NEXT

b Loop Structure Formats of High-Level Languages

Figure 6-14. Comparison of High-Level Language Formats

6-16 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

The loop control statements of Figure 6-Ub are very similar,
allowing the programmer to control quite easily the number of repetitions
of the loop and the extent of the loop subprogram. All of these operations
would have assembly language equivalents for any given microprocessor.
Again, the advantage of the high-level language is that a system
subprogram can be described in a short easy-to-understand high-level
language program instead of a lengthy assembly-language program.

PROGRAM VERIFICATION

Minimum System

Regardless of the level of the language used to write the system
program and subprograms, the programmer must verify the operation of

.these programs before they can be used to control the microcomputer
system. The various options available for program verification are listed in
Figure 6-15. The most tedious of these options (A) is where the entry of the
machine code is made directly into the microcomputer memory and
execution is done on the microcomputer. Such an option is available by
using microcomputer modules with keyboard entry and LED display. The
programmer must hand-assemble the program and then enter the
hexadecimal machine codes for the program into the microcomputer.

PROGRAM ENTRY FORM EXECUTION

A. Hexadecimal Machine Code entered into
Microcomputer Board

B. Assembly Language Code entered into
Microcomputer

C. High-Level Language Code entered into
Microcomputer

D Assembly Language Code entered into
General Purpose Computer

E. High-Level Language Code entered into
General Purpose Computer

Machine Code program executed on
Microcomputer

Assembly and Machine Code program
executed on Microcomputer

Compiling, Assembly, and Execution on
Microcomputer

Assembly by Computer; Simulation of
Microcomputer execution by General Purpose
Computer or Execution of Machine Code on
actual Microcomputer.

Compiling and Assembly done on General
Purpose Computer. Execution simulated on
General Purpose Computer or executed on
actual Microcomputer.

Figure 6-15. Program Verification Options

UNDERSTANDING MICROPROCESSORS 6-17

Assembler System
A more convenient approach shown in B, using some available

microcomputer program development boards or any of the microcomputer
development systems, is to enter the assembly language programs into the
microcomputer in mnemonic form and let the microcomputer perform the
assembly and execution of the program. Some microcomputer development
systems also offer the option (C) of entering the desired program in high-
level language form and the microcomputer performs the compiling,
assembly, and execution of the program. This option offers the most
efficient way to develop programs from the standpoint of program
development time.

General Purpose Computer
As shown in D and E, even if a microcomputer is not availabe,

many manufacturers provide program development software on general
purpose computers that will perform the assembly and compiling
operations. Once the machine code has been generated, the general purpose
computer will then execute the machine code program just as the
microcomputer would. This is called simulating the execution of the
program and will verify the program operation. The only problem that may
arise from this type of program verification is that the program does not
run in the actual environment of the final microcomputer system. Thus,
some timing or interrupt problems may not be detected by this approach.

The Choice
The advantage of using a general purpose computer, if one has

access to such a machine, is that it allows programs to be developed and
verified without having to buy an actual microcomputer. The advantage of
using an approach with a microcomputer is that the program verification is
on a system that is identical to the final system on which the program is
going to be used. Also, developing the program on an actual microcomputer
opens up the option of using this microcomputer directly to build the desired
system, thus avoiding an extra purchase. Which approach is used ultimately
depends on the resources and goals of the programmer.

WHAT ARE SOME TYPICAL PROGRAM REQUIREMENTS?
There are certain types of subprograms that must be developed for

all systems. For example, all systems must have some form of input and
output subprograms. Usually there is some requirement for arithmetic or
logical operations on the system data. Often a decision table or a look-up
table procedure is required. To further illustrate the relationship between
high-level language programs and the corresponding microprocessor
programs some typical examples of these operations will be considered.

6-18 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS is
Input/Output Subprograms

In Chapter 5 using SAM, BCD codes had to be sent as outputs to 10
LED displays to display 10 decimal digits. The same task will be used as an
output subprogram example. The BCD information is located in 10
successive memory locations, and the LEDs occupy 10 successive addresses.
The programs for accomplishing this transfer are shown in Figure 6-16.
There is no difference in the length of the TMS1000 and the TMS8080A
assembly-language programs. Each require 10 statements. The TMS1000
program occupies 10 program memory locations while the TMS8080A
program requires 17 bytes of program memory. The TMS9980 program can
be written in only 6 assembly language statements since no program loop is
involved. It requires 16 bytes of program memory. The equivalent BASIC
statement is a single line statement, which certainly is the most efficient
ivay to summarize the program being written.

TMSIOOOPi rogram TMSS080A Program TMSBM0 Program

OUTPUT LDX 2 OUTPUT: LXI D.200H OUTPUT LI R2.>200
TOY O LXI H.300H LI R3,>300

LOOP TMA MVI C,5 MOV »R2+*R3+
TDO LOOP: LDAX D MOV *R2+,»R3 +
SETR MOV M.A MOV »R2 + ,*R3 +
RSTR INX D RT
IYC INX H
YNEC 10 DCR C
BR LOOP JNZ LOOP
RETN RET

Assembly
10 10 Language 10 10 6

Statements:

Machine 10 17 16
Code
Memory
Locations:

Figure 6-16: Comparison of Output Subprograms

All of these equivalent programs are much shorter than the output
program for SAM. This is due to the limited instruction set of SAM
compared to the processors of Figure 6-16. All of these programs are simply
transferring a group of bits from the microcomputer memory to the LEDs
arranged to display the 10 digits, continuing this process for successive

> groups of bits and LEDs until all BCD codes have been transferred. The
reader should study the program segments of Figure 6-16,17,18 and 19

' again after reading Chapter 7 and 8 to gain further insight into the writing
and understanding of microprocessor programs.

UNDERSTANDING MICROPROCESSORS 6-19

PROGRAMMING CONCEPTS 6
TMSSOSOA Program

MVI B.16
CALL CLEAR

LOOP: CALL SRT
JNC ARND
CALL ADDER

ARND: DCR B
JNZ LOOP
CALL SRT
RET

CLEAR: LXI H.PROD
MVI C.2
XRA A

LPC: MOV M,A
INX H
DCR C
JNZ LPC
RET

SRT: LXI H.PROD
MVI C,4

LPS: MOV A,M
RAR
MOV M.A
INX H
DCR C
JNZ LPS
RET

ADDER: LXI D.MCNDL
LXI H.PRDL
LOAX D
ADD M
MOV M,A
DCX H
DCX D
LDAX D
ADC M
MOV M,A
RET

TMS9980 Program Laval Language

MPY R2.R4 Z-Z*Y

Figure 6-17. Microprocessor Multiplication Programs

6-20 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

Arithmetic Operation Subprograms
An example of an arithmetic operation is multiplication. If the

system requires the multiplication of one 16-bit binary number by a second
16-bit binary number to yield a 32-bit binary product, the programs would
look like those in Figure 6-17. The TMS1000 version is not shown, since it is
much too long to be clearly understood. Again, the high-level language
statement takes only one line. In this case, the TMS9980 assembly language
subprogram only takes one line, since this is one of the inst™crJ1°"®
available on the TMS9900 family devices. By comparison, the TMS808UA

multiplication program requires 37 assembly language statements which
would require 64 bytes of program memory. The flow chart forAhe
TMS8080A multiplication program is shown in Figure 6-16 to help t e
-eader understand the program structure. The algorithm is much the same

•
\) ocedure that one would follow if the multiplication were being performed
oy hand on a sheet of paper. Without going through this program in detail
it is easy to see the advantage of the more powerful instruction set offered
by the 16-bit microprocessor.

SET BIT COUNTER
TO 16

1 1

CLEAR PRODUCT

1 1 1

SHIFT PRODUCT
AND MULTIPLIER

RIGHT

f
Figure 6-18. 32-bit Multiplication Flow Chart (16-bit X 16-bit Problem)

UNDERSTANDING MICROPROCESSORS
6-21

PROGRAMMING CONCEPTS 6
Look-Up Table Procedures

There are many situations that require the microcomputer to refer
to a table for a value or address location that is needed for a given
operation. One such situation occurs when the program must jump to a
subroutine to serve an input or an output or some other need. Assume that a
pattern of l's and O's are stored in register R1 in a TMS9900 system. A 1 in
the least-significant-bit location indicates that the subsystem related to
that bit location is to be serviced in a way described by a subprogram
located in program memory. Since R1 is 16-bits long it can save the service
request status for 16 subsystems. The 16 subsystems would require 16
subprograms located at different places scattered throughout program
memory. In order to locate the needed subprogram, an address table is
established in memory, starting at the address BASE. The contents of the
BASE memory location contains the address of the first instruction of the |
subprogram which services the system identified by the least-significant-bit
of R1 (system 1). The contents of the memory location at BASE+ 2 contains
the address for the beginning of the subprogram that services the system
identified by the next least-significant-bit of R1 (system 2), and so on
through the next 14 bits.

A system will be serviced with a subprogram when a 1 appears at
the output of R1 when the contents are shifted right. Thus, by rotating the
contents of R1 until a 1 is encountered (it may have to be rotated 16 times)
the subsystem to be serviced can be determined. By incrementing a counter
register from 0 by 2 while this shifting is occurring, the displacement down
the address table from BASE is maintained.

The overall program and table structure is shown in Figure 6-19
for a TMS9900 implementation. First the counter register R2 is cleared
with a CLR R2. Then, the repetitive loop is entered with the first operation
being to shift the register R1 right. If there is a carry (a 1 shifted out of
Rl), the most important system requiring service has been identified and
the table location is BASE + R2 for the address of the subprogram. If the
carry is zero, R2 is incremented by two with the INCT R2 and if it has not
been incremented to 20,6 (decimal 32), the loop will be repeated. Once a 1 in
Rl is detected, the next instruction is a subroutine jump (BL) using indexed
addressing. As a result the address of the first instruction is located at the
contents of R2 plus the BASE address, which is the correct entry through
the address table.

Of course, a similar program could be written for the TMS8080A
processor, though it would probably be somewhat longer in terms of
assembly language statements. A comparable type of program activity in
BASIC or FORTRAN would be obtained by using the computed GO TO in
which a counter k is incremented until the proper condition is met. This
value indicates the subprogram address. The program statement is again a
single entry of the form (BASIC format):

ON K GO TO 10,20,46,87

6-22 UNDERSTANDING MICROPROCESSORS

scheme ^f^TtZre'L many other types of program requirement,

and overwhelming efficiency.

I

BASE

BASE+2

ADDRESS OF
SUBROUTINE FOR

SUBSYSTEM 1

BASE+ 30

ADDRESS FOR
SUBROUTINE FOR

SUBSYSTEM 2

ADDRESS FOR
SUBROUTINE FOR

SUBSYSTEM 16

LOOP

S2

CLR R2
SRA R1. 1
JOC S2
INCT R2
CI R2.32
JNE LOOP
BL (a)BASE(R2]

a Table in Memory

R1 contains system request code
R2 acts as an index register

b. Subprogram

Figure 6-19. Table-Look-up Example TMS9900

WHAT CAN WE EXPECT IN THE FUTURE IN PROGRAMMING
TECHNIQUES? , ,,

As more and more manufacturers provide high-level language

Mf tware support, it will become J*. while this

£Sass~ss-jsw
1 S=s=52H=S—-

UNDERSTANDING MICROPROCESSORS
6-23

complete microcomputer development systems with their higher capability,
offering assemblers, floppy-disc memory, and typewriter terminals. A few
programmers will make use of the assembler and simulator programs
available on general purpose computers through time-sharing companies or
private computer installations.

In all cases, the overall procedure will remain essentially as
described at the first of this chapter: Describe the overall system operation.
Divide the overall task into manageable elementary task descriptions.
Write the programs that implements these elementary tasks. Verify the
subprograms and then recombine into the overall program and verify it.
This will lead to a very successful overall system program development.

WHAT HAVE WE LEARNED?

• Designing programs is very similar to designing hardware systems: the 1

design effort is broken down into manageable functional parts and the
designs for each of these parts are completed before combining all the
parts into one overall system design.

• The higher the level of programming language used to write the programs
the simpler it is to write and verify the programs. However, a much
greater amount of software aid is required as support for the product.

• The more bits that are processed at a time and the more extensive the
instruction set of a microprocessor, the shorter the assembly language
programs.

• Program requirements at any given level can be described in terms of the
general system model by defining the module inputs, outputs, and
operations.

• Program requirements at any given level can be described in a variety of
forms, with the flow chart and macro-mnemonic coding forms being the
most directly related to the final program organization.

WHAT'S NEXT?

In the last three chapters the basic concepts involved in the design
and programming on microcomputers have been covered. In the rest of the
book these concepts will be applied to the design and programming of real
microcomputer systems, beginning with 8-bit microprocessors in the next
chapter.

Programming Exercise

Write a TMS 8080A subprogram called CONTROL for the furnace
Controller example (Flow Chart in Figure 6-J,) for a system with the
following features:

a. An external timer will interrupt the processor causing it to jump to the
subroutine CONTROL beginning at location 56 in ROM.

6-24 UNDERSTANDING MICROPROCESSORS

6 PROGRAMMING CONCEPTS

i

oFf.!re r00m areas with 8 sensors each> w'th each sensor providing
an 8-bit temperature code (0 through 255 degrees). The first 8 sensors
(area 1) are assigned memory addresses 100016 through 100716i the next 8
sensors are assigned addresses 100816 through 100P16, and so on so that

e last 8 sensors are assigned the addresses 1048]6 through 104F16 The
reference temperature 8-bit code is at address 105016.

c. The furnace on-off control is assigned to output 0. The furnace on-off
status is assigned to be input port 0.

d. The 10 area flow controls are assigned output ports 1 through 10 to turn

area ^ °UtpUt 1)0118 11 through 20 to turn the flow for a given

« i,Th? Cf°o TR°L subprogram must implement the first four blocks of the
flow chart of Figure 6-1 using the memory assignments above. Assume the
•iardware automatically turns the furnace and valves off after five minutes.
Solution

CONTROL:

EXAM:

ALOOP:

OK:

ORG
PUSH
PUSH
PUSH
PUSH
MVI
LXI
LDA
MVI
MVI
CMP
JM
INR
INX
DCR
JNZ
MOV
CPI
CP
INX
DCR
JNZ
POP
POP
POP
POP
EL
RET

56
PSW
B
D
H
C,10
H.1000H
1050H
B.8
E,0
M
OK
E
H
B
ALOOP
A.E
5
ON
H
C
EXAM
H
D
B
PSW

)

Save contents of processor registers in the stack
in RAM

Set C to 10 to count number of areas
Set HL address register to first sensor
Get reference temperature in A register
Initialize B counter to number of sensors/area
Clear Sensor low counter
Compare reference value in A to sensor value
If A s M, sensor ok
If not, sensor is low — increment E
Increment address to next sensor
Decrement sensor counter
If counter ^0 repeat loop
Check E value by moving it to A,
compare it to 5,
If E > 5, call the turn-on subroutine
If not, increment address to next sensor area
Decrement area counter
Repeat sequence for next area if counter =^0

If counter = 0 all areas have been
handled so restore registers from stack

Enable interrupt system
Return to interrupted program

Figure a. Sensor Examination Interrupt Subprog ram

UNDERSTANDING MICROPROCESSORS
6-25

PROGRAMMING CONCEPTS 6
ON:

CHK:

TABLE:

FIRST:

OUT 0 Turn on furnace'
LXI D,4 load DE with distance between OUT instructions

in instruction table. (4 bytes)"
PUSH H Save HL contents (sensor address) in stack
LXI H,FIRST Set HL address to first instruction in table
MOV B,C Copy current area counter value into B
DCR B Decrement counter
JNZ TABLE If not zero, update instruction address in HL
PCHL If zero, jump to instruction indicated by HL
DAD D Add table displacement (4) to HL address value
JMP
OUT

CHK
10

Go to decrement counter

POP H
RET
OUT 9
POP H
RET
OUT 8
POP H
RET

I Repeat this three instruction sequence for
OUT 7 through OUT 2"

1 OUT 1
POP H
RET

•It is assumed that the furnace and flow valve remains on for 5 minutes after it is turned
on by the OUT 0 instruction. This time is controlled by a hardware timer as the time
intervals between entering the CONTROL subprogram.

•Each instruction in the table takes 4 bytes of program memory as follows:
n Turn on appropriate flow valve n (2 bytes)
H restore H to CONTROL subprogram value (1

byte)
Return to CONTROL Subprogram (1 byte)

OUT
POP

RET

Figure b. ON Subroutine

6-26 UNDERSTANDING MICROPROCESSORS

7 AN 8-BIT MICROPROCESSOR APPLICATION

An 8-Bit
Microprocessor Application
ABOUT THIS CHAPTER

Thus far in the book only the applications of a 4-bit microprocessor
and microcomputer have been considered. These units did not have
interrupt capability so that they had to initiate the time they would receive
an input from the outside world. This meant timer subprograms had to be
used to determine when the microprocessor should check to see if external

i information was being sent on its input lines. This is a simple method of
maintaining communications but it is not always effective. If an external
signal occurs between the times the microprocessor examines the external
inputs, the microprocessor would miss the external signal; or if more than
one signal occurs between processor checks, one of the signals would be

An interrupt-driven processor, one that has an interrupt signal
input, can let the external signals tell the microprocessor when
communication is needed. This way all inputs will be received and the
processor only spends the time required to fetch an input. It does not waste
time looking for inputs that are not there. Some 4-bit processors have the
interrupt feature, and almost all 8-bit and 16-bit units have an interrupt
capability. In this chapter an example application will be developed that
depends almost entirely on the interrupt features of the TMS8080A
microprocessor. Examining this application should provide insight into the
features of the architecture and instruction set of a very popular 8-bit
microprocessor.
WHY USE AN 8-BIT MICROPROCESSOR?

Since there are 4-bit microprocessors with an interrupt capability
and a relatively extensive instruction set, why would an 8-bit
microprocessor be used at all? The most obvious answer is that the 8-bit
processor offers double the speed of handling arithmetic and
communications operations over a 4-bit unit with the same instruction set
and timing features. This is simply due to the fact that the 8-bit processor
handles twice the information in a given instruction as a 4-bit unit, this
would not be an advantage in simple control situations involving operations
using single bits to 16 bits, but it becomes an important advantage in
dealing with the transmission of 8-bit ASCII characters or in arithme IC

)) operations requiring accuracies of greater than one part in 16. Even in
machines that need decimal arithmetic, the 8-bit units process two decimal
digits at once, as compared with the one-digit-at-a-time performance o
bit machines.
UNDERSTANDING MICROPROCESSORS 7-1

0
0 1 0

AN 8-BIT MICROPROCESSOR APPLICATION

In summary, the applications that are easily handled by 8-bit
microprocessors include:

Simple to Relatively Sophisticated Controllers
Medium-Accuracy Numerical Processing
Medium-Speed Communications Systems
Sophisticated Games involving Numerical Accuracy or
Alphabetical Manipulation Capabilities

To better understand the features offered by 8-bit microprocessors that
make them useful in applications in these areas, the TMS8080A will be
examined as a representative 8-bit device.
WHAT ARE THE FEATURES OF A TYPICAL 8-BIT PROCESSOR?

The TMS8080A is a microprocessor that supports a relatively
complete instruction set and a simple, effective interrupt structure. Its
timing features are relatively straightforward, though not as simple as
some other 8-bit and most 16-bit microprocessors. It depends primarily on
register indirect addressing for locating data in memory, and it provides 7
general-purpose 8-bit registers internally for high-speed data
manipulation. The internal features of the device will be examined first.

Internal Features
The registers available for use by the programmer are shown in

Figure 7-1. The A register is the accumulator and is involved in all
arithmetic and logic operations. The status register contains the zero, sign,
carry, half-carry (used in BCD-arithmetic with the DAA instruction), and
parity flip-flops. The parity flip-flop is set equal to 1 when the number of
ALU bits equal to 1 is even. There is also an interrupt flip-flop and an
interrupt-enable flip-flop that is used to monitor and control the interrupt
signalling for the microprocessor. Commonly, the B, C, D, E, H and L
registers are used as general purpose 8-bit data registers; however, they can
be used in pairs (B-C, D-E and H-L) to act as 16-bit data address registers
(register indirect addressing mode). The program counter (PC) contains the
instruction address.

A special set of memory locations are set aside as operating or
working registers. This set of memory locations is usually called a stack.
The name is derived from the fact that information is stacked one location
on another. A specific register, used to keep track of where information is or
can be stored in the stack, is called the stack pointer (SP). It contains the
address of the currently available empty location in the stack. Information
is normally pushed down the stack one location after the other or it is pulled
up from the stack one location after another. In some microprocessors the
stack of registers is located within the microprocessor; for the 8080A the
stack of registers must be provided for in external RAM storage outside the
microprocessor.

7-2 UNDERSTANDING MICROPROCESSORS

0 7

STATUS (Program Status Word—PSW)

(8-Bit Data Registers or
16-Bit Indirect Address
Registers)

15

PROGRAM COUNTER (Instruction Address)

STACK POINTER (Address of Stack Area in RAM)

Figure 7-1. TMS8080A Internal Registers Available to the Programmer

Whenever a subroutine is called for in the program, the contents of
the program counter needed for the next instruction after the call is saved
in the stack. A RETURN instruction fetches this value off the stack and
sends it to the program counter to effect the return from the subroutine.
There are also instructions that allow the programmer to push the
microprocessor registers to the stack 16 bits at a time and to pull them back
from the stack 16 bits at a time.

In order to use these stack operation features, an additional
storage area must be set aside in the RAM data memory. The address of
this additional storage area (last byte in the area) must be loaded into the
stack pointer when the processor goes through its first initialization
procedures in order to load the correct initial values into the stack.

Of course, there are many registers and logic units in the
microprocessor that are not shown in Figure 7-1. Obviously there must be
an instruction register, instruction decoder, arithmetic-logic unit, as
discussed for the general microprocessor. The user of the microprocessor
knows these are present but need only be concerned with the registers that
are accessible through the instructions and the operational features
provided. Additional features that are of interest to the hardware designer
are the timing and control signals that are sent and received by the
processor.

" n .
UNDERSTANDING MICROPROCESSORS

Timing and Control Features
These features include the address and data signal timing, the

interrupt signals, and the memory and input/output control signals. 65,536
memory locations can be addressed by the 16-bit address bus of the
TMS8080A. In addition, the TMS8080A can address 256 input and output
devices. The same address bus is used for selecting one of the input or
output devices, but only the least 8 bits of the address are meaningful in
input/output operations.

The TMS8080A alerts the external components as to which
operations will occur at any given time by providing an 8-bit operational
status byte at the beginning of each operation. This status byte contains
the information that a memory write, a memory read, an input read, an
output write, an interrupt acknowledge, and so on is in progress. These
signals are not the enables themselves but are used as the source to provide
the memory enables to turn on the memory subsystem and the input/output
enables to turn on the input/output subsystems. As a result, the necessary
read/write signals can be generated for each subsystem.

Read/Write Signals
The simplest way to generate these control signals is to use two

peripheral integrated circuits designed especially for the 8080A. One is the
SN74S428 System Controller and Bus Driver and the other is the
SN74LS424 Clock Generator. The control structure is shown in Figure 7-2.

INT

AO-A|5
TMS80S0A DO-D7

WR
DBIN

•1 *2 SYNC RESET

CLOCK
GENERATOR
SN74LS424

• INTERRUPT SIGNAL

STSTB

RSTN

_LL A<rA|j AQ-A; AQ-AJ

GATED
BUFFERS

OE

CONTROLLER
ANO
BUS

DRIVER
SN74S428

SYSTEM
RESET

iORY

7S

INPUT
OE

OUTPUT
LATCH

MEMR
MEMW

MEMEN

CH
IOR

SYSTEM
DATA BUS

IOW

Figure 7-2. TMS8080A System Timing and Control

7-4 UNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPLICATION

DBIN is a read timing pulse. WR is a write timing pulse. When
these signals are fed to the SN74S428 along with the operational status
word on the data bus, the System Controller provides the correct control
signals of the proper duration at the correct time to interface the
TMS8080A to external memory or to external I/O units.

For example, MEMEN (memory enable) and R/W for external
memory are shown in Figure 7-2. MEMEN is the NAND result of MEMR
(memory read) and MEMW (memory write). R/W results directly from
memory write, MEMW. Similarly, IOR (Input/Output Read) out of the
controller is used directly to control sending information from inputs to the
microprocessor. In like fashion, IOW (I/O Write) is used to latch
information coming from the microprocessor into an output unit. These
signals are somewhat straightforward. The use of the INTA (interrupt
acknowledge) signal is not so obvious, and requires an examination of the
way the TMS8080A responds to an interrupt to fully understand its
purpose.

Interrupt Control
When the TMS8080A receives an interrupt signal on its INT pin, it

will respond to that interrupt after it has finished its current instruction
operations if the interrupt enable flip-flop has been set with the EI (enable
interrupt) instruction. It responds to an interrupt by sending out an
interrupt acknowledge signal and then waits for a special subroutine jump
instruction to be returned to the microprocessor. This instruction is called a
RESTART instruction (RST n) and must be generated by hardware
external to the TMS8080A. The INTA signal provided by the controller is
used to gate RST n onto the data bus for receipt by the microprocessor at
the proper time. The format of the instruction is shown in Figure 7-2.

The 3-bit code in the RST n instruction is generated by the
hardware and causes a jump to the address in ROM formed by the 3-bit code
followed by three zeroes. Thus, if the 3-bit code is 000, a jump to location 0
in ROM will occur. If the 3-bit code is 001, a jump to location 8 will occur,
and so on.

8-bit Instruction

RST n

This 3-bit code
will be a value from

000 to 111 depending
on value of n

Result:
RST n instruction causes a subroutine Jump to location
8 X n in ROM

Figure 7-3. TMS8080A RESTART Instruction Code and Operation

7-5

0 °fe=-4
0 1 i o ;— =
0 0^ 3

AN 8-BIT MICROPROCESSOR APPLICATION

At each of these addresses in ROM the programmer must provide
instructions that start a subroutine to respond to a given interrupt
situation so that the subsystem or the event that caused the interrupt can
be serviced. When any of these subsystems need to interrupt the processor,
the hardware designer must generate the INT signal and the correct
restart code for each interrupting subsystem.

Once the subroutine has serviced the interrupt the TMS8080A will
return to whatever it was doing in the program at the time of the interrupt,
provided the programmer ends his interrupt subroutine with a RET
instruction. Prior to the interrupt, the programmer had to enable the
interrupt system with an EI (enable interrupt) instruction. After an
interrupt, he must re-enable the interrupt system somewhere in his
interrupt subroutine with an EI instruction. Otherwise the processor will
ignore any INT signal until it does encounter an EI instruction. For all the
interrupt procedures it is assumed that the hardware designer has provided
a RAM storage area in data memory to save, in the register stack, the
program information being executed before the interrupt occurred. It is
with these interrupt related instructions of EI (enable interrupt), RST
(subroutine jump to interrupt procedure) and DI (disable interrupt) which
locks out an interrupt, that the communications with the TMS8080A system
can be established and controlled. The rest of the TMS8080A instruction set
provides the normal data manipulation and program control capabilities of
a microprocessor.

INSTRUCTION SET

Data Movement Instructions
Like most processors the TMS8080A offers a variety of data

movement, arithmetic, logical, comparison, and branch operations. Of these,
the data movement instructions of Figure 7-k are the simplest to
understand and use. The basic instruction is the MOV d,s where the source s
and destination d can be one of the microprocessor registers A, B, C, D, E, H
or L. S or d also can be the memory data location specified by the address in
the HL 16-bit register, in which case the s or d operand will be denoted M.
The result of the operation is that the data in the source location will be
copied into the destination location.

There are also indirect addressing load and store operations of the
accumulator through the LDAX rp and STAX rp instructions, in which rp is
D (for the DE pair) or B (for the BC pair). The direct-addressing version of
load and store accumulator is the LDA address and STA address with the
address of the memory data location contained in the 3-byte instruction
(Figure JriO). The INP address and OUT address instructions move data to
the accumulator or from the accumulator to an input/output register
specified by the address, which must represent a number between 0 and 255.

7-6 UNDERSTANDING MICROPROCESSORS

7 AN 8-BIT MICROPROCESSOR APPLICATION

Data Move Instruction:
MOV d,s s—d Move contents of s to d.
s and d can be A,B,C,D,E,H,L, or M with M being the memory location whose address is
in the HL register pair.

8-Blt Loads and Stores of the Accumulator:
INDIRECT ADDRESSING MODE:
LDAX rp Load the accumulator with data in memory whose address is in the

register pair indicated.
STAX rp store the accumulator contents in the memory at the address

contained in the register pair.
rp can be the BC, DE, or the HL register pair.

DIRECT ADDRESSING MODE:
LDA address Load the accumulator with data from the memory at the address

contained in the instruction.
STA address Store the accumulator into the memory at the address contained in the

instruction.

Initializing Registers and Register Pairs:
8-BIT REGISTER INITIALIZATION:
MVI d.data Send data from instruction into register d with d being A,B,C,D,E,H,L.

or M

16-BIT REGISTER INITIALIZATION.
LXI rp,value Place 16-bit value from instruction into the register pair indicated, rp

can be B,D,H, or SP.

16-Bit Transfers:
XCHG Exchange contents of HL register pair with DE register pair
PUSH rp Push the register pair contents to the stack.
POP rp Pop the register pair contents from the stack.
SHLD address Store the contents of the HL register pair in memory starting at the

address in the instruction.
LHLD address Load the HL register pair with the 16 bits in memory addressed by the

address in the instruction.

Input/Output Transfers:

INP address Input data to the accumulator from the input device at the location
specified by the address in the instruction.

OUT address Output the accumulator data to the device at the location specified by
the address in the instruction.

Figure 7-4. TMS8080A Data Movement Instructions

UNDERSTANDING MICROPROCESSORS 7-7

AN 8-BIT MICROPROCESSOR APPLICATION 7
Other special purpose movement instructions are available to

exchange the contents of the DE pair with the HL pair (XCHG) and to load
and store the contents of the HL pair in two successive memory bytes
(LHLD address and SHLD address). Register pairs may be pushed to and
down the stack with PUSH rp or popped from or off the stack into a register
pair with POP rp. For stack operations the register pair (rp) can be specified
as PSW (accumulator and status registers), D (DE), B (BC), or H (HL).

There are immediate addressing instructions for initializing
registers or register pairs with data. The M VI d, data instruction causes the
data in the 2-byte instruction to be loaded into the destination indicated by
d (A, B, C, D, E, H, L, or M). The LXI rp, value causes 16 bits to be loaded
into the register pair specified, which can include SP for stack pointer.
Arithmetic Instructions

The arithmetic instructions of Figure 7-5 provide for addition to
or subtraction from the accumulator data with the result stored in the
accumulator. There are additions (ADD), addition with carry (ADC),
addition of data from the instructions (ADI data and ACI data),
subtractions (SUB), subtraction with borrow (SBB), and subtraction of data
in the instruction (SUI data and SBI data). The increment register (INR),
decrement register (DCR), increment register pair (INX), and decrement
register pair (DCX) instructions are also a form of addition and
subtraction, since one is added or subtracted from the operand data. The
DAD rp instruction provides the addition of 16 bits of data from the BC,
DE, or HL pairs to the 16 bits contained in the HL pair with the result
stored in the HL pair. The DAA (decimal adjust) instruction provides for
BCD addition. The four rotate instructions RAL, RAR, RLC, RRC are also a
form of arithmetic operations, with the RAR (rotate right) and RAL (rotate
left) rotating through the carry to provide for the possibility of multi-byte
shifts.

Logical Instructions
The logical operation instructions (Figure 7-6) provide for the basic

operations of the AND, OR, Exclusive OR, and complement to be performed
with the data in the accumulator. The result is stored in the accumulator.
The two operand instructions allow for the non-accumulator operand to be
A, B, C, D, E, H, L, M, or instruction data. The mnemonics are ANA (AND),
ANI (AND immediate), XRA (Exclusive OR), XRI (Exclusive OR
Immediate), ORA (OR), ORI (OR Immediate) and CMA (Complement the
Accumulator). With the immediate operations the data used is contained in
the second byte of the instruction code. (Figure 4-40)

7-8 UNDERSTANDING MICROPROCESSORS

7 AN 8-BIT MICROPROCESSOR APPLICATION
0 A 0 1 I —\
1 o
0 0 1 ;

Addition Instructions:
ADD r Add contents ot register r to A register and place sum in A; r can be

A,B,C,D,E,H,L, orM.
ADC r Add contents of register r plus the carry to the A register and place the

results in A.
ADI data Add data in instruction to A and place sum in A.
ACI data Add data in instruction plus carry to A and place sum in A.
DAD rp Add 16 bits in register pair indicated to contents of HL pair and place

sum in HL. rp can be B,D, or H.
INR r Add one to the contents of register r.
INX rp Add one to the 16-bit contents of the register pair.
DAA Adjust the result of the previous addition so that both 4-bit codes in the

A register are correct BCD codes.

Subtraction Instructions:

SUB
SBB

SUI
SBI

DCR
DCX

r
r

data
data

r
rp

Subtract contents of register r from A and place result in A.
Subtract contents of register r and carry from contents of A and place
result in A.
Subtract data in instruction from contents of A and place result in A.
Subtract data in instruction and carry from contents of A and place
result in A.
Subtract 1 from contents of the register r.
Subtract 1 from 16-bit contents of the register pair.

Rotations ol the Accumulator Data:

RAL
I

CY A I
CY A

RAR
.1

A CY .1
A CY

RLC CY A CY A

RRC A CY A CY

Figure 7-5. TMS8080A Arithmetic Instructions

UNDERSTANDING MICROPROCESSORS 7-9

o 0 4_ 0 i r^- i
1 o ' {
o o ;

AN 8-BIT MICROPROCESSOR APPUCATION 7
AND Instructions:

ANA r The contents of the register r are ANDed with the contents of the A
register; results to the A register, r may tie A,B,C,D,E,H,L, or M.

ANI data The data in the instruction is ANDed with the contents of the A register
with the results to the A register.

OR Instructions:

ORA r The contents of the r register are ORed with the contents of the A
register and the results to the A register.

ORI data The data in the instruction is ORed with the contents of the A register
with the results to the A register.

Exclusive OR Instructions:
XRA r The contents of the register r are exclusive ORed with the contents of

the A register; results to the A register.
XRI data The data in the instruction is exclusive ORed with the contents of the A

register; results to the A register.

Complement
CMA Complement the contents of A register, results to A register.

Figure 7-6. TMS8080A Logical Instructions

Comparison Instructions
The Comparison Instructions are all arithmetic comparisons

(Figure 7-7). The data in the accumulator is compared to data in the
instruction (CPI) or to data in one of the processor registers or in the
memory location addressed by the contents of the HL register pair (the
CMP instruction). In both cases, the data specified by the operand is
subtracted from the accumulator and the status bits are affected. Neither
data is affected by the comparison operation. It is left to the conditional
branch instructions to test the results of the comparisons.
Branch Instructions

The Branch Instructions (Figure 7-7) provide for unconditional
branching with the JMP address instruction or conditional branching with
the JNZ (not zero), JZ (zero), JNC (no carry), JC (carry), JP (positive), JM
(minus), JPO (odd parity), and JPE (even parity). The subroutine calls can
similarly be unconditional (CALL) or conditional (CNZ, CZ, CNC, CC, CP,
CM, COP, or CPE). The subroutine returns can be unconditional (RET) or
conditional (RZ, RNZ, RNC, RC, RP, RM, RPO, or RPE). The restart
instruction (RST n) discussed under timing and control is also a subroutine
jump to address n«8 (meaning n x 8) where n is a value from 0 to 7 as
specified by the restart instruction (RST n). The PCHL is an indirect
address unconditional branch since the contents of the HL register pair are
loaded into the program counter to cause the jump.

7-10 UNDERSTANDING MICROPROCESSORS

7 AN 8-BIT MICROPROCESSOR APPLICATION

Instructions:
The contents of the register r are subtracted from the contents of the
accumulator affecting the status bits, r can be A,B,C,D,E,H,L, or M.
The data in the instruction are subtracted from the contents of the A
register, affecting only the status bits.

Branch Instructions:
JMP address The address in the instruction is loaded into the program counter.
Jcond address If the condition is true, the address in the instruction is loaded into the

program counter, cond is Z (zero), NZ (not zero), C (carry), NC (no
carry), P (plus), M (minus), PO (odd parity) or PE (even parity).

CALL address The address is loaded into the program counter and the old program
counter value for the next instruction is saved on the stack.

Ccond address A subroutine CALL operation occurs if the condition is met. Same
condition possibilities as the Jcond.

RET The top of the stack is sent to the program counter.
RCOnd If the condition is met, the top of the stack is sent to the program

counter.
RST n The program counter value for the next instruction is saved in the stack

and the program counter is loaded with n x 8.
PCHL The program counter is loaded with the contents of the HL register

pair.

Miscellaneous Instructions:
B Enable the interrupt signal.
Di Disable the interrupt signal.
rLT Halt the processor; wait for an interrupt or RESET.
NOP No Operation; time delay of 4 x clock period.
CMC Complement the carry flip-flop.
STC Set the carry flip-flop.

Figure 7-7. Comparison, Branch and Miscellaneous TMS8080A Instructions

Comparison
CMP r

CP I data

Miscellaneous Instructions
In addition to the instructions surveyed thus far there are some

miscellaneous instructions (Figure 7-7) that are often used. The enable
interrupt system (EI) and disable interrupt system (DI) instructions have
already been discussed under the timing and control features of this
chapter. The CMC is used to complement the carry flip-flop and the STC is
used to set the carry flip-flop. The HLT or halt instruction causes the
microprocessor to stop executing instructions and wait for a reset or an
interrupt before continuing operations. The NOP is a no operation which is

•
inserted to use up time while waiting for some timer to end or some other
event to occur.

This instruction set is relatively complete, allowing the TMS8080A
to be used in a wide variety of applications with relative ease. One such
application will be examined in this chapter.

7-1 JNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPLICATION 7
AN EXAMPLE APPLICATION

Assume a mechanical device has been built that will sort coins by
denomination. Coins of a given denomination will be sent down a trough so
that they interrupt a light beam as they pass a certain point in the trough
on their way to an automatic packager. There is a need for a control and
monitoring system that will start the sorter and maintain a running total
of the value of all coins sorted. There also likely would be a need to maintain
a running total of the number of each denomination sorted, however, in this
example this task will not be considered as a part of the microprocessor
system problem solution. The reader may develop this.

The system to be designed must respond to a given light beam
interruption by adding an appropriate amount to the total. It must also
provide for a switch that will command the system to display the total
dollar value of the coins sorted. This switch could serve to turn off the sorter
as well.

HOW COULD THE COIN SORTER HARDWARE BE DESIGNED?

Interrupt Signal Circuits

From Figure 7-3 recall that the TMS8080A can handle 8 interrupt
signals and that there are eight different restart instructions. Since there
are only six light beams being interrupted by coins of six different
denominations (penny, nickel, dime, quarter, half-dollar and dollar), these
signals can be used to generate six different restart instructions as shown
in Figure 7-8. The switch that requests a display of the total dollar value
sorted can be used to generate a seventh restart instruction. Thus, a display
switch will cause a subroutine jump (RST 7) to location 56 in memory, a
penny detection will cause a jump to location 48 in memory, and so on up to
a dollar detection causing a subroutine jump to location 8 in memory.
Restart 0 is not used. Only a RESET signal will cause a jump to location 0 of
memory. The subroutine programs that service the interrupts will cause the
appropriate amount to be added to the accumulating total when a coin
causes the interrupt or will cause the total to be displayed and the sorter
stopped in case the display switch is activated. The INTA gates the
generated restart code onto the data bus which is sent to the
microprocessor.

The 8-line-to-3-line encoder SN74148 will generate a 3-bit code
corresponding to the complement of the input line number that is brought
low. If input line 0 is brought low, the 3-bit output will be 111. This will be
the case for a display request interrupt. If input line 6 is brought low, the
output will be 001 for a restart 1, which is used for the dollar coin detection.
If more than one input line is brought low, the 3-bit output corresponds to
the highest number input that is low. If the first six input lines are low, the
output will be the code for input line 5 which is a 010. Thus the SN74148 is a
priority encoder, with the input line 7 (output code 000) the highest priority.

7-12 UNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPLICATION

The INT signal to the TMS8080A is received from the GS output of the
encoder. This output is low everytime an input low signal is received.

Input Interface Circuits
With the restart generation circuitry of Figure 7-8, the input

signals need to be developed and held low until the input has been
responded to by the TMS8080A. A TIL147 (Optoelectronic Source-and-
Darlington Sensor Assembly) can be used to detect the presence of a coin of
a given denomination as shown in Figure 7-9. Only the penny detector,
which is to generate an input 1 for the SN74148 priority encoder, is
shown.The other coin detectors would be duplicates of this circuit. When the
coin passes through the slot of the TIL147, the light beam is cut off and the
transistor current changes from 4 mA to 0 mA, providing a 0 or low to the
CLOCK input terminal of the D flip-flop. When the coin passes out of the
slot, the transistor current is restored and the positive transition on the
clock terminal of the flip-flop causes the 1 on the D input to set Q to a 1 and
Q to a 0. The active low on Q is applied to input 1 of the SN74148 producing
the INT signal and the restart code at the correct time to the TMS8080A. In
the case of the display flip-flop an active low from a switch is applied to the
R terminal of a S-R flip-flop to reset Q to a 0. This low from Q (not Q) is fed
to input 0 to generate the restart code. (Figures 7-8 and 7-11).

+ 5 VOLTS INTA

LOWEST PRIORITY
(DISPLAY)

(PENNY)

(NICKEL)

(DIME)

(QUARTER)

(HALF-DOLLAR)

(DOLLAR)

HIGHEST PRIORITY

INPUT 0

INPUT 1

INPUT 2

INPUT 3

INPUT 4

INPUT 5

INPUT 6

INPUT 7

PRIORITY
ENCODER

INTA

SN74125
QUAD GATED
BUFFERS

TO
TMS8080A

Figure 7-8. Restart Generating Circuits

UNDERSTANDING MICROPROCESSORS 7-13

AN 8-BIT MICROPROCESSOR APPLICATION 7
The restart code shifts the program to the subroutine located by

the restart code address. Within the subroutine that performs the
operations to recognize the coin detected (starting at address 48 in ROM for
the penny) there is an OUTPUT instruction (OUT 1 for the penny). When
executed by the TMS8080A, this instruction sends out an address code and
an output enable signal that identifies that the coin has been recognized
(Figure 7-9). The address code is used to sendan active low to the CLEAR
terminal of the D flip-flop, clearing Q to a 0, Q to a 1 and releasing the
active low signal on the priority encoder (on input 1 for the penny) so that it
can recognize the next coin detected.

- 5 VOLTS (+ 5 VOLTS)

Decoder Outputs
A2 At Ao Activated Low by

Execution of OUT 0 through
OUT 7 Instructions.

Figure 7-9. Coin Detection Circuitry

The active low for the CLEAR terminal is provided by an SN74138
3-line-to-8-line decoder as shown in Figure 7-9. It detects the address code
and the enable signals produced by the OUTPUT operation and outputs the
CLEAR signal on the appropriate line. Gl, an active-high enable for the
decoder, is provided by IOW and is ANDed with an active-low enable to G2
provided by the address bit A3. Thus, the decoder responds to output
instruction addresses 0 through 7 when an output instruction is executed.

7-14 UNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPLICATION

Output line 1 is shown connected to the D flip-flop in Figure 7-9.
The other outputs of the decoder are connected to the appropriate CLEAR
terminals of the D flip-flops for the other coins. For example, OUT 2 clears
the nickel flip-flop, OUT 3 clears the dime flip-flop, and so on so that OUT 6
clears the dollar flip-flop. The display flip-flop is also set back to an
uninterrupted condition by an OUT 0, but in_a little different fashion. In
this case the active low on line 0 goes to the S terminal of the display flip-
flop to reset the Q output to a 1, releasing the input 0 of the priority
encoder. After the coin detector and display switch detector flip-flops are
cleared or set back they wait for a new coin or switch closure detection.

In all of these cases the circuits detect the execution of an
appropriate output instruction by the TMS8080A and use this information
to determine which flip-flop to clear. During this execution the accumulator
data will be placed on the data line, but since neither the memory or display
devices have been addressed the data will be ignored by these units.

Display Circuits
The other output circuitry that must be devised is that required to

display the dollar total of the coins sorted. This can be done by latching the
BCD codes for the digits to be displayed into TIL308 LED displays with
logic integrated circuits. The 8 bits on the data bus represent 2 BCD digits
and come from the accumulator on an OUTPUT instruction. They can be
latched into two TIL308's to display two decimal numbers. By assigning a
total of 6 digits to the dollar amount and 2 digits to the cents amount, 8
TIL308's will be needed. If these four pairs of TIL308's are assigned the
OUTPUT addresses 8,9,10, and 11, respectively, the instruction, OUT 11,
will access the cents display (2 digits) and the instruction, OUT 8, will access
the most significant dollar digits. Again a SN74138 3-to-8-line decoder can
be used (Figure 7-10). It is activated when A3 is high and IOW is low to
generate the latching signals for the TIL308's. Thus, it responds to
addresses A0 through A3 during the execution of an output instruction.
When an OUTPUT operation with address 1011 is being executed (as a
result of an OUT 11 instruction) A3 will be high, IOW will be low and output
pin 11 of the SN74138 will be low, latching the available data to be
displayed into the two TIL308's used for cents data. Corresponding address
codes will latch data into the other three pairs of TIL308's.

The entire display can be turned on and off by controlling the
signal applied to the BI inputs of the TIL308's. Thus, as shown in Figure 7-
10, by performing an OUT 12 instruction (the output address code assigned
to turning off the display), the decoder will deliver a low to the R terminal
of a BI flip-flop which will cause Q and the BI line to be low and turn off the
display. When an_OUT 13 instruction is executed, the decoder output will
send a low to the S terminal of the BI flip-flop to set Q and the BI line to a 1
turning the display on. Address code 13 is the one assigned to turn on the
display.

UNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPUCATION 7
DB,-DB«

TO INPUTS C
OF OTHER
DISPLAYS

DBJ-DBO

TIL 306
Bl

STB

TO Bl OF
OTHER DISPLAYS

TO OTHER
TIL308
STROBES

TIL 308

Bl
STB

IOW

TURN OFF DISPLAY

TURN ON
DISPLAY

Bl
FF

% OF SN74LS279

8 9 10 11 12 13 14 15
G1 SN74138

»qG2 3:8 DECODER

A2 Ai AQ

Outpuls Activated by
Executing Output Instructions
Out 8 through OUT 11 and OUT 13
OUT 12 De-Activates.

Figure 7-10. Total Dollar Value Display—Cents Digits

The request for a display is signalled as shown in Figure 7-11 by
pushing a momentary contact switch, which resets the Q output of the
display flip-flop to an active low. Since this is connected to input 0 of the
SN74148 priority encoder, as shown in Figures 7-8 and 7-12, a Restart 7 will
be generated causing a subroutine branch to location 56 in ROM. If in that
subroutine an OUT 0 instruction is executed, the output of the first SN74138
decoder will set the display flip-flop Q output back to a 1, a non-requesting
state that would release the display.

Reset Sequence And Sorter Control
The display request switch can also be used to turn the sorter off if

it is used to control the sorter flip-flop as shown in Figure 7-11. When
display is requested, sorter FF output Q will go low turning the sorter
motor off. Q output of the sorter FF is also fed to an OR gate with the
RESET signal. If the sorter is on, Q will be a 1 and a RESET cannot be
generated. With Q at 0 (sorter off) an active low can be generated on the
RESET line. When a RESET switch is pushed, a momentary reset signal is
generated to force the TMS8080A to start executing instructions at location
0 in ROM. This RESET condition will also set the sorter flip-flop output to a
1 to turn the sorter on again. Thus, the RESET switch could be labeled a
sorter-on switch and the display switch could be labelled a sorter-off/display
switch.

7-16 UNDERSTANDING MICROPROCESSORS

Figure 7-11. Display Interrupt and Sorter Control Connections

The sorter control circuit is designed so that the sorter can be
started by the reset switch only after the sorter has been previously stopped
by a display request. To start the sorter for the first time the operator must
first press the DISPLAY switch and then the RESET switch.

Memory Design
The problem as stated only needs four bytes of data storage for the

8-digit coin value total. The 6 8-bit registers provided within the TMS
8080A will be used for this purpose. If a more complicated program were
required for the system, external RAM would have to be provided to save
the information in the stack registers when a subroutine is required. This is
so that the system will correctly continue with what it was doing before it
was interrupted.

Since the coin sorter system uses a program structure that is
totally dependent on interrupts there is no need to save the stack
information and there is no need for external RAM in this present system
design.

The ROM memory design depends on the number of bytes required
for the program, which cannot be determined until the program has been
written. As will be seen later, the total program requirement for this
system is less than 128 bytes. To allow for an expansion of the system
capabilities, a 256 byte PROM will be used for the program memory using
the SN74S471 Fuse-Link Programmable Memory. Thus, a single integrated
circuit will provide more than enough memory for the coin sorter.

UNDERSTANDING MICROPROCESSORS 7-17

AN 8-BIT MICROPROCESSOR APPLICATION 7
The Overall Design

If the individual circuit designs of Figure 7-8 through 7-11 are
combined into one overall diagram, the complete system design results as
shown in Figure 7-12. This figure includes the ROM circuit, the SN74S471.
To simplify the drawing, only block diagram representations of the circuits
are shown. The details of the connections of these circuits can be found in
Figure 7-8 through 7-11.

As stated previously, the TMS8080A provides more than enough
data registers for the needs of the coin sorter. The internal registers B, C,
D, and E will be used to store the sorted money total.

HOW WOULD THE PROGRAM BE DEVELOPED?

System Flow Chart
The program for the coin sorter is relatively straightforward, as

shown in the flow chart of Figure 7-13. Each restart or interrupt subroutine
simply loads the A register with the coin value to be added to the
accumulating dollar total stored in registers B, C, D, and E. It then outputs
a signal to the coin flip-flop CLEAR terminal with an OUT instruction, and
jumps to a subprogram to perform the addition of the coin value in the A
register to the total. Of course, the display subroutine must output the
digits contained in the total storage area (registers B, C, D, and E) to the
TIL308 display devices. Further, when the system is first turned on with the
RESET switch, the contents of the processor registers and the state of the
display must be cleared. Thus, six coin and one display interrupt
subroutines, a subprogram that maintains a running total, and a sequence
to set the initial conditions must be written.
Setting Initial Conditions

When the RESET switch causes the program counter to clear to a
ROM address of zero ("Reset" flow chart of Figure 7-13), the first
instruction of Figure 7-U, OUT 12, turns off the total display. Then the A
register is cleared with the XRA A instruction (when a register is XOR'ed
with itself the result is all zeros in the register). Registers B through E are
cleared by moving the A register contents (now all zeros) to these other
registers. At the end of this sequence the interrupt signal is enabled with
the EI instruction and a HLT (halt) instruction causes the processor to wait
for an interrupt (or another RESET). Unfortunately this sequence would
require 9 bytes of ROM and there are only 8 bytes available between
address 0 where RESET starts and address 8 where the RST 1 subprogram
for the first coin detection starts. Thus, after B and C have been cleared, a
jump to a new location (80) in ROM is required. A JMP CONT is used to get
to the MOV D,A and MOV E,A instructions which clear the D and E
registers. These are followed by the instructions EI and HLT to complete
the sequence.

7-18 UNDERSTANDING MICROPROCESSORS

7 AN 8-BIT MICROPROCESSOR APPLICATION

Figure 7-13. Coin Sorter Flow Charts

7-20 UNDERSTANDING MICROPROCESSORS

LaM Inst. Oparand Comments

RESET OUT 12 Turn off display
XRA A Clear Accumulator
MOV B.A Clear B
MOV C.A Clear C
JMP CONT Go to rest of sequence

CONT MOV D.A Clear D
MOV E,A Clear E
El Enable Interrupts
HLT Wait for Interrupt or RESET

CONT is at location 80 in ROM; RESET is at location 0 in ROM.

Figure 7-14. Initialization Sequence for Coin Sorter

The Interrupt Subroutines
Coin Detection

All of the coin detection subroutines are of the same form shown in
Figure 7-15. They begin by initializing the A register with the coin value to
be added to the total/The MVI A, constant instruction is used for this.
Thus, in the case of the penny the constant is 1, in the case of the nickel the
constant is 5, and so on until for the dollar the constant 0A016 (hexadecimal
equivalent of binary 1010 0000) is loaded into the A register. The H on the
end of the constant indicates to the TMS8080A that the number is a
hexadecimal number. Once the constant is in the A register, an OUTPUT
instruction clears the appropriate coin detection flip-flop Q output back to 1.
For example, the dollar flip-flop is cleared with an OUT 6 instruction, the
penny flip-flop is cleared with an OUT 1 instruction, and so on. Once the
coin detection flip-flop has been cleared, a JMP TOTAL instruction causes a
jump to the subprogram that will add the constant in the A register to the
total in the B through E registers.

UNDERSTANDING MICROPROCESSORS 7-21

AN 8-BIT MICROPROCESSOR APPLICATION 7
Label Inst. Operand Comments

DOLL MVI A.OAOH Initialize A to 10100000
OUT 6 Clear Dollar flip-flop
JMP TOTAL Add $1 to total

FIFTY MVI A.50H Initialize A to 50 cents
OUT 5 Clear '/j-dollar flip-flop
JMP TOTAL Add 50 cents to total

QUAFIT MVI A.25H Initialize A to 25 cents
OUT 4 Clear Quarter flip-flop
JMP TOTAL Add 25 cents to total

DIME MVI A.10H Initialize A to 10 cents
OUT 3 Clear Dime flip-flop
JMP TOTAL Add 10 cents to total

NICKEL MVI A,5 Initialize A to 5 cents
OUT 2 Clear Nickel flip-flop
JMP TOTAL Add 5 cents to total

PENNY MVI A,1 Initialize A to 1 cent
OUT 1 Clear Penny flip-flop
JMP TOTAL Add 1 cent to total

Note: An H after a number in the operand
indicates that it is a hexadecimal
number.

Figure 7-15. Interrupt Subprograms for Coin Sorter

Display Request
The display request interrupt program of Figure 7-16 at location

56 of ROM is more complicated than the other interrupt sequences.
Basically, the E register contents are written (sent) to output port 11, the D
register contents are written to output port 10, the C register contents are
written to output port 9, and the B register contents are written to output
port 8. Of course, since the contents of the A register are sent out on the
data bus during an OUT instruction, the contents of the appropriate B, C,
D, or E register must be moved over to the A register just prior to the OUT
instruction. For example, to output the contents of the E register first a
MOV A,E is used to get the contents of E over to A. Then an OUT 11
instruction sends this data out to the two least significant digit LED's (the
cents display). Once all outputs have been sent to the displays, the OUT 13
instruction turns on the display. Next, after a program delay sequence, an
OUT 0 instruction clears the display request to avoid an endless display
request loop. Then an EI and HLT sequence re-enables the interrupt system
and causes the processor to wait for a new interrupt or a RESET.

7-22 UNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPLICATION

LaM Inst. I Dparand Commants

DISPLAY MOV A,E Move Register E to A
OUT 11 Output cents digits to display
MOV A.D Move Register D to A
OUT 10 Output two least-significant dollar digits to display
MOV A.C Move Register C to A
OUT 9 Output next most-significant dollar digits to display
MOV A.B Move Register B to A
OUT 8 Output most-significant dollar digits to display
OUT 13 Turn on Display

DELAY LXI B. 08F9H Load BC with Hex Counter value
DIS DCR C Decrement LS byte of Counter

JNZ DIS Jump if not zero
DCR B Decrement MS byte of Counter
JNZ DIS Jump if not zero
OUT 0 Set Display Request flip-flop
El Enable Interrupts
HLT Wait for Interrupt or Reset

Figure 7-16. Display Subprogram for Coin Sorter

The program provides for a 15 millisecond delay starting at the
LXI instruction to allow time for the display switch to stop bouncing before
the microprocessor releases the interrupt input from the display flip-flop.
Otherwise, there would be a number of continuous display interrupt
requests. In addition, this delay is accomplished with software rather than
hardware so it can be adjusted easily if need be.

Subprogram For Maintaining A Total
The TOTAL subprogram shown in Figure 7-17 performs the

operation of adding the constant loaded into the A register by one of the
interrupt subprograms to the current total contained in registers B, C, D,
and E. It does this by first adding E to A, with the result stored in A (ADD
E). A decimal adjust (DAA) instruction corrects the 2 4-bit BCD codes and
makes the addition decimally correct; at which time the result is stored in E
with the MOV E,A instruction. A condition jump on no carry (JNC) to
ENABLE occurs if there is no carry out of this first byte addition. If there is
a carry, 1 must be added to the contents of D by using the MOV A,D to
bring D to A, followed by the ADI1 for the addition to A and the DAA
instructions for the necessary correction. The result in A is sent to D with
the MOV D,A operation. Similarly, another jump conditioned on a carry
(JNC) is used to see if the program is to jump to ENABLE or add 1 to the
contents of C with similar program steps as for register D. If 1 is added to
C, the carry must again be checked to see if the program is to jump to
ENABLE or add 1 to the contents of B. Once the complete sum is formed,
the program re-enables the interrupt system with the EI instruction at
location ENABLE followed by a HLT to force the processor to wait for the
next coin or display interrupt.
UNDERSTANDING MICROPROCESSORS 7-23

TOTAL

ENABLE

ADD E Add contents of E to A
DAA Decimal Correction
MOV E.A Send Result to E
JNC ENABLE If no Carry go to Enable
MOV A.D ~ - Otherwise, add 1 to D with decimal correction
ADI 1
DAA
MOV D.A _
JNC ENABLE IF no Carry, go to Enable
MOV A,C ~ -Otherwise, add 1 to C with decimal correction
ADI 1
DAA
MOV C.A _
JNC ENABLE If no Carry, go to Enable
MOV A.B ~ -Otherwise, add 1 to B with decimal correction
ADI 1
DAA
MOV B.A _
El Enable Interrupts
HLT Wait for Interrupt

Figure 7-17. Subprogram to Compute Dollar Total

Summary
The program requirements are now complete. The system is simple

and straightforward, but very useful for organizations that must count
large numbers of coins and generate the total value in dollars and cents.
The features of the system are readily expandable. By adding a sequence of
instructions at the end of the DISPLAY subprogram that would cause the
total value to be sent out in serial ASCII character form, the system could
communicate directly with a bank computer. Of course, a serial-data
hardware interface would have to be added to the hardware design as an
output port 14, but this would be no real problem. If the number of each
coins counted were required, this circuitry and its display could be added.

Much of the simplicity of both the hardware and the software of
this example is due to the 8-bit microprocessor capability and the relative
efficiency of the instruction set of the TMS8080A. This is one of the
advantages of using an 8-bit processor for such a problem.

The program would have to be assembled before it can be used by
the system. That means that the mnemonic instructions would have to be
converted to their respective machine codes, all multiple byte instructions
locations included with their data and addresses, and all labels assigned
addresses. This normally would be done by computer but it can be done by
hand. An exercise has been included using the TOTAL subprogram of
Figure 7-17 to demonstrate the techniques used for assemblying a
program.
7-24 UNDERSTANDING MICROPROCESSORS

AN 8-BIT MICROPROCESSOR APPLICATION

WHAT HAVE WE LEARNED?
• 8-bit microprocessors offer instruction and interrupt features that make

them very useful for control, communications, and numerical
computational problems that require medium-speed data transfers and
relatively accurate numerical results.

• Microprocessors that have internal registers may provide enough on-chip
data storage that external random-access data memory may not be needed
for many applications.

• The availability of an interrupt system in a microprocessor can greatly
simplify the exchange of information between the processor and external
devices, resulting in simple hardware and programs.

• To provide the most cost-effective solution to any problem, the full

•
capabilities of the microprocessor must be used in the most efficient way.
Full use should be made of the high performance versatile integrated
circuit support devices to simplify both the hardware and the software
design.

• As with all processors, the overall design effort in developing an 8-bit
system must be defined by a flow chart and then broken down into
hardware subsystem designs and the development of their related
subprograms.

WHAT'S NEXT?
In this chapter the advantages and applications of 8-bit

microprocessors have been examined. But what about 16-bit
microprocessors? Do these units offer advantages over the 8-bit processors
just as the 8-bit processors have over the 4-bit units? The answer to this
question will be the subject of the next chapter.

UNDERSTANDING MICROPROCESSORS 7-26

AN 8-BIT MICROPROCESSOR APPLICATION 7
Assembly Exercise

Write the machine code for the TOTAL subprogram of Figure 7-17
by filling out the table of Figure 7-19. The following information will be
helpful:
1) A given instruction may require one, two, or three bytes as shown in

Figure 4-lfOa.
2) The OP CODES for the TMS8080A instructions used in TOTAL are given

in Figure 7-18.
3) The location of the first instructions of the coin sorter subprograms are as

follows:
ogram or Label Location (Base 10) Location (E
RESET 0 0
CONT 80 50
DOLL 8 8
FIFTY 16 10
QUART 24 18
DIME 32 20
NICKEL 40 28
PENNY 48 30
DISPLAY 56 38
TOTAL 96 60

4) In determining the machine code for the three bytes of JNC ENABLE, the
address for the location called ENABLE will not be known until the entire
machine code program has been written.

OP CODE Number ot Instruction Bytes Instruction
ADD E
ADI
DAA
El
HLT
JNC
MOVA.B
MOVA.C
MOVA.D
MOVB.A
MOVC.A
MOVD.A
MOVE.A

83
C6
27
FB
76
D2
78
79
7A
47
4F
57
5F

Figure 7-18. TMS8080A Instruction Codes for TOTAL Subprogram

7-26 UNDERSTANDING MICROPROCESSORS

7 AN 8-BIT MICROPROCESSOR APPLICATION

Address Code Instruction
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B

Figure 7-19. Work Table
0060 ORG 60H
0060 83 TOTAL: ADD E
0061 27 DAA
0062 5F MOV E.A
0063 D27BOO JNC ENABL
0066 7A MOV A.D
0067 C601 ADI 1
0069 27 DAA
006A 57 MOV D.A
006B D27B00 JNC ENABL
006E 79 MOV A.C
006F C601 ADI 1
0071 27 DAA
0072 4F MOV C,A
0073 D27B00 JNC ENABL
0076 78 MOV A.B
0077 C601 ADI 1
0079 27 DAA
007A 47 MOV B.A
007B FB ENABL: EL
007C 76 HLT

Figure b. Computer Assembly Solution
UNDERSTANDING MICROPROCESSORS 7-27

AN 8-BIT MICROPROCESSOR APPLICATION

Exercise Solution (Codes in hexadecimal)

7
Address Code Instruction*

60 83 ADD E
61 27 DAA
62 5F MOV E,A
63 02 JNC ENABLE*
64 7B*
65 00*
66 7A MOV A.D
67 C6 ADI 1
68 01
69 27 DAA
6A 57 MOV D,A
6B D2 JNC ENABLE*
6C 7B*
6D 00*
6E 79 MOV A,C
6F C6 ADI 1
70 01
71 27 DAA
72 4F MOV C,A
73 02 JNC ENABLE*
74 7B*
75 00*
76 78 MOV A.B
77 C6 ADI 1
78 01
79 27 DAA
7 fit 47 MOV B.A
7B (ENABLE) FB EL
7C 76 HLT

'ENABLE was determined to be 007B only after the entire code was listed,
reserving two bytes for each ENABLE address in the JNC instructions.
Then, once ENABLE was determined, this value was filled in the reserved
bytes. Compare your solution to the Computer Assembled Solution in b.

Figure a. Hand, Assembly Solution

,

7-28 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION

lildi
A 16-Bit Microcomputer
Application
ABOUT THIS CHAPTER

In the last chapter an application of a typical 8-bit microprocessor
was examined, with a survey of the applications areas that would be
compatible with 8-bit processing. In this chapter a similar survey of 16-bit
microprocessor applications is examined concluding with a 16-bit
microcomputer system application example. An opportunity exists to carry
through this application with "hands on" work by using a microcomputer
completely assembled on a printed circuit board (a microcomputer module).
In this way the complete range of microprocessors and microcomputer
devices will have been examined, starting with a 4-bit microprocessor, SAM,
in Chapter 5, continuing with the 8-bit application in Chapter 7, and ending
with the 16-bit microcomputer application in this chapter. Such a range
spans the integrated circuit technology from LSI to VLSI.

WHY SELECT A 16-BIT MICROPROCESSOR OR MICROCOMPUTER?
Some of the reasons for selecting 16-bit microcomputers have

already been explored in the last two chapters. Generally, processing data in
longer bit groups provides for faster system operation, whether the system
is oriented towards control, communications, or requires a great deal of
computation. Further, a longer bit-length processor usually offers a more
extensive instruction set with expanded capability. Thus, for any given
operation, twice to four times as much information can be processed by a
16-bit device, and often instructions that accomplish more complete
operations are available, resulting in shorter and more efficient programs.
If these advantages in system performance are important in a given
application, then the selection of a 16-bit microcomputer is the reasonable
approach, and selection of a 4-bit or an 8-bit system would be difficult to
justify.

Application Areas
Figure 8-1 lists a number of the areas of application that benefit

from 16-bit processing in terms of lower program requirements and
improved system operating speed. Foremost are the application areas that
require high computational accuracy or complex computations. Obviously
when the system is to be used as a computer such as minicomputers,
personal computers or "smart" terminals, this requirement may well be
overriding.

UNDERSTANDING MICROPROCESSORS 8-1

m A16-BIT MICROCOMPUTER APPLICATION 8
Minicomputers
Personal Computers
"Smart" Terminals
Complex Controllers
Display Terminals

Plotters
Graphics Terminals

High-Speed Communications Networks
Word Processing Systems
Special Military Systems
Diagnostic Systems
Advanced Games

Figure 8-1. Applications Areas for 16-Bit Processors

Even if the system is not obviously a "number-cruncher" type of
system, it may still require fast and accurate numerical performance of its
processing element. Controllers that require mathematical expressions to
be evaluated or precise numerical control information to be generated are
examples of such systems, and missile and other vehicle controllers are
prime examples that fall into this category. Even special purpose display
terminals such as flat-bed or drum plotters or cathode ray tube (CRT) curve
plotters usually require the high speed and complex numerical
computational capability offered by 16-bit systems.

Additional applications occur in systems that must provide high
speed data or alphabetical communications with another system.
Communications switching networks that operate under constantly
changing priorities and interrupt conditions are examples of such systems.

Word processing, diagnostic systems, and special military systems
are additional examples. Advanced games that interract with players
through alphanumeric commands and instructions and with complicated
game displays may be designed with 8-bit systems but would be designed
best with 16-bit systems. Certainly computers which offer high-level
language capabilities (BASIC, FORTRAN, APL, and so on) would be
simpler to implement using 16-bit systems.

Expansion For the Future
When selecting a microprocessor or microcomputer element for a

given application, it would be well to keep in mind that future system
performance requirements may dictate the use of a 16-bit device. Even if
present system operation does not absolutely require a 16-bit element,
future expansions of the system may cause the system to evolve into a 16-
bit version. In that case, it may be better to design the initial system with
16-bit devices, so that expansions and improvements do not require any
major redesign costs. Additional benefits occur when family units are used
that keep the same software as the system expands.

8-2 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION

A 16-bit microprocessor or microcomputer can do all the operations
that a 4-bit or an 8-bit unit can do. However, the reverse is not necessarily
true and each application should be examined carefully. If the 16-bit system

• makes sense, given comparable costs and availability, the 16-bit
microprocessors or microcomputers are a better buy. The question would be
which type of 16-bit element to buy: a microprocessor, a microcomputer, or a
microcomputer module?

WHAT ADVANTAGES DO MICROCOMPUTERS AND MICROCOMPUTER
MODULES OFFER?

Microprocessor Approach

Figure 8-2 shows a comparison of the advantages and

•
disadvantages available to a microprocessor system designer when using
any one of three approaches. Microcomputers and microcomputer modules
offer certain advantages to the system designer that are not available when
the system design starts with a microprocessor. An advantage of the
microprocessor approach is that it allows the designer to custom design the
memory and input/output structure to meet the present and future system
needs. However, once such a design has been developed on paper, the
designer must design an interconnect system, assemble the parts, and test
the system, to arrive at a working system. This can be a time-consuming,
tedious, and expensive exercise, especially if only a few copies of the system
are to be built.

Approach Advantages Disadvantages

Microprocessor Can be configured to meet
any system requirements.

Must be assembled into final
system form.

Microcomputer Single-chip systems with low
assembly costs possible.

Microcomputer Pre-wired as a microcomputer
Modules module with provisions tor memory

Relatively expensive if large
numbers of identical systems are
required.

Fixed input/output configurations.
Memory is not easily expandable.

and input/output expansion.
Ideal for initial low cost start on
small system.

Figure 8-2. Comparison of Microcomputer Alternatives

UNDERSTANDING MICROPROCESSORS 8-3

M
A16-BIT MICROCOMPUTER APPUCATION 8

Microcomputer Approach
The same steps must occur, perhaps, to a lesser extent, when a

single-package microcomputer integrated circuit is used. The main
difference is that since the memory and processor are contained within the
microcomputer, there are few circuits to assemble and wire together.
However, because the memory and I/O are contained in the microcomputer
the memory and input/output structure is limited by the microcomputer
architecture. If the microcomputer does offer sufficient on-chip memory and
if the input/output structure of the device is easily adaptable to the system
requirements, then the microcomputer approach will result in a simpler and
less expensive system than is possible with the microprocessor approach.
However, the problem of assembling and testing the final system still
remains even with the microcomputer approach.
Microcomputer Module Approach

The microcomputer module is a completely wired and tested
microcomputer, containing the microprocessor, read-only-memory, (sometimes
containing a monitor program to allow for assembling and running user
programs), a limited amount (typically 1 to 2k locations) of RAM for data
memory and program development, and an input/output structure
dedicated to inputting information from a keyboard and outputting
information to a display. The advantage of such a module is that it is
already wired and tested and can be used immediately for program
development and verification. In many cases it can then be modified slightly
and used in the intended system application. Such an approach offers the
simplest and quickest way of building small numbers of systems. It may
even be the least expensive way to develop limited production systems.

However, there are also disadvantages to the approach. Once
designed, it is not the least expensive way to build a large number of copies
of a given system. The microcomputer module may have been set up
primarily as a developmental tool. This may make it awkward to match the
fixed module structure to the system requirements. However, for most
designers dealing with small numbers of a given type of system, the module
approach is the easiest, most inexpensive, and least time-consuming
approach available. The savings of the time and effort required to construct
an operating system usually outweighs the structure limitations and initial
cost disadvantages of the microcomputer module approach.

Even if a large number of copies of a system are to be made, the
development of the first design can be made easily and quickly with the
microcomputer module. This design then can be converted to the
appropriate microprocessor or microcomputer version as required for
producing the large number of copies inexpensively. Since this approach is
likely to be the easier design procedure for the beginning designer, it will
be used to develop the concepts and problem solution for the 16-bit system
application contained in the remainder of the chapter.

8-4 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION m
WHAT ARE THE FEATURES OF A TYPICAL 16-BIT MICROCOMPUTER
MODULE?

One example of a 16-bit microcomputer module is the Texas
Instruments TM 990/U89 microcomputer board shown in Figure 8-3. The
block diagram of this module is shown in Figure 8-1,. The basic hardware
features of this module can be summarized by examining this block
diagram.

CL 5
D

jS

f . DC

_J
o

JU
M

PE
R

S
FO

F
TT

Y
 O

PT
IO

N

P
3

O
PT

IO
N

A
L

R
S-

23
2-

C
 P

O
I

P4

O
FF

B
O

A
R

D
 D

AT
A.

A

D
D

R
ES

S.
 C

O
N

TF

< oc
If) <
Q- CL

Figure 8-3. TM 9901U89 Board Layout

8-5

m A16-BIT MICROCOMPUTER APPUCATION 8
PROCESSOR
(TM89M0A)

TV

EPROM contains fixed
program caHed UNIBUG
which monitors the
system and provides
software interface to
units in the microcomputer
Also it provides a program
to assemble
users program.

A
4K EPROM
MEMORY

B
1K RAM

Allows adding
additional memory.

RAM provides storage
for user's program
and data

C=>
H

BUS
EXPANSION
INTERFACE

For serial data interface
to external EIA terminal
for keyboard entry and
printer output

G
SERIAL

COMMUNICATIONS
INTERFACE

r G
SERIAL

COMMUNICATIONS
INTERFACE

G
SERIAL

COMMUNICATIONS
INTERFACE

G
SERIAL

COMMUNICATIONS
INTERFACE

G
SERIAL

COMMUNICATIONS
INTERFACE

\

For storing or
recalling programs
or data

TV

LOAD
INTERRUPT

GENERATOR

Allows adding
additional I/O

H
USER
l / O A

INTERRUPT
PORT

F
AUDIO

CASSETTE
INTERFACE

SYSTEM
I/O PORT

T>

Inputs program
instructions, assembler
commands, data into RAM
and I/O

C
KEYBOARD

(ASCII)

D
DISPLAY

(10
CHARACTER

LED)

(PIEZOELECTRIC
SPEAKER)

Displays keyboard
inputs, program
memory and data
memory.

Figure 8-4. TM 990 / U89 System Block Diagram

8-6 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION 4U
Hardware Features

The central feature of the module is the microprocessor, the
TMS9980A, which behaves like the TMS9900 family 16-bit microprocessors
and-microcomputer in that its instruction set operates on 16-bit words in
memory. In the case of the TMS9980A, data and instructions are
transferred in the system 8 bits at a time on the 8-bit data bus. This makes
the basic architecture of the data bus similar to 8-bit microprocessor.
However, as far as the person that programs the system is concerned, the
device is behaving as if it were a 16-bit microprocessor. Any program
developed on the TMS9980A will run on the TMS9900 family of devices with
a 16-bit data bus or on the TMS9940 16-bit microcomputer.

In addition to the TMS9980A microprocessor, the TM 990/U89
microcomputer module has the following components:
A) 4k ROM/EPROM, which contains a monitor called UNIBUG which
provides a symbolic assembler and the software interfacing to the input/
output components on the board. There is room on the board to directly
expand this ROM/EPROM memory by an additional 2k by simply mounting
another memory circuit on the board.
B) lk RAM which can be used for data or user program storage. There is
room on the board for an additional lk of RAM.
C) A keyboard that allows alphanumeric entry of program instructions,
assembler commands, and data into the RAM and input/output locations.
This keyboard resembles that of an advanced scientific calculator with
many of the keys devoted to alphanumeric characters and system
commands. Full ASCII character entries are possible.
D) A 10-character LED display for displaying the information inputted
through the keyboard or for displaying program and data memory
information as commanded by the keyboard entries. Not all alphanumeric
characters are displayed in true form. Some have symbols that can be
accommodated by the display. Thus, it is called a psuedo ASCII display.
E) A piezoelectric speaker for outputting audio information such as
prompting tones to the programmer/user.
F) An audio cassette interface that allows the user to connect a standard
audio tape recorder to the module for storing or recalling program or data
information. This allows the user to add bulk memory easily and
inexpensively.
G) A serial data interface for connecting the module to an external EI A
terminal for keyboard entry and printer output.
H) Memory and input/output expansion connectors provide for adding
additional memory and input/output boards to the microcomputer module
for expansion of memory and input/output to the full addressing capability
of 16k bytes of the TMS9980A microprocessor.

UNDERSTANDING MICROPROCESSORS 8-7

m A 16-BIT MICROCOMPUTER APPLICATION 8
While the basic board structure and features tend to make the TM

990/U89 a system development and laboratory component, the expansion
connector features allow the board to act as the central microcomputer of a
complete special or general purpose system. The designer simply has to
define the on-board program memory and the additional memory and
input/output board designs to match the requirements of the system being
built. Once the program is developed for the system and the module is to be
included in the operating system, the program can be written into the
EPROM or ROM circuits on the TM 990/U89. If there is not enough memory
space additional memory boards can be used as needed.

Architecture Of Microprocessor

The 9900 series of devices all use a memory-to-memory
architecture in which all program data is stored in memory and not in the
processor circuit. While the processor contains various working registers,
arithmetic-logic-unit circuits, decoders, and so on, the programmer is only
concerned with the three registers that are used to locate data and
instructions in memory and save the status information. These registers
are shown in Figure 8-5. However, 16 working registers contained in the
workspace are defined by the workspace pointer and can be addressed by
the programmer.

MICROPROCESSOR MEMORY

PROGRAM

WORKSPACE
REGISTERS

RETURN (PC) VALUE
CRU ADDRESS

RETURN WP, PC .
AND ST VALUE9

Figure 8-5. 9900 Family Memory-to-Memory Architecture.
8-8 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPUCATION m
The (PC) program counter maintains the address of the instruction

to be executed. The (ST) status register keeps track of the results of the
previous instruction. The (WP) workspace pointer stores the address of the
first of 16 successive locations in data memory, called workspace registers.
These workspace registers are actually memory locations, though they are
treated by the processor as if they were registers in the processor. They can
be used to store data or data addresses. They may be used as index registers
for indexed addressing (Figure 4-W-

Certain of the workspace register locations have special dedicated
purposes. For example, register 12 contains the address of the serial input/
output bit that is accessed through a serial data link called the CRU
(Communications Register Unit). Special instructions to execute such
operations are called CRU instructions. Register 11 contains the program
counter value of the main program while a subroutine (BL called) is being
executed. Registers 13,14, and 15 contain the program counter, workspace
pointer, and status register values as they existed before a subroutine call
(BLWP instruction). By using the information in register 11 or registers 13,
14, and 15, the program can return back to the main or calling program
from a subroutine.

Addressing Modes
The 9900 family of devices support the following addressing modes:

Register Addressing
The workspace register indicated in the instruction by a number
between 0 and 15 contains the data.
Register Indirect Addressing
The workspace register indicated by an asterisk (*) followed by a
number between 0 and 15 is used as an address register to hold the
address of the data. If the number is followed by a plus (+) in the
instruction mnemonic coding, the contents of the address register are
incremented following the instruction. This causes the address
register to act as a data counter that contains the address (points) to
successive data locations as the instruction is executed.
Direct Addressing
The address in the instruction is the location in memory to be used by
the instruction. The mnemonic coding used to indicate this type of
addressing is @ followed by the direct address value or symbol.

Indexed Addressing
The address of data is formed by adding the offset contained in the
instruction to the value contained in the index register specified
(registers 1 through 15). The mnemonic coding for this type of
addressing is @ followed by the offset value or label followed by the
register number in parenthesis.

I UNDERSTANDING MICROPI CESSORS 8-9

m A 16-BIT MICROCOMPUTER APPLICATION 8
Examples of the mnemonic assembly language coding for these

addressing modes for the CLR (clear) instruction are shown in Figure 8-6.
This instruction will cause 16 zeroes to be sent to the location specified by
the addressing mode in the instruction.

Addressing
Mod*
Register

Register
Indirect

Index

Direct

Mnemonic
Coding for CLR
Instruction
CLR R1

CLR *1

CLR *1 +

CLR@ >10 (R1)

CLR @>200

Effect of Instruction
If R1 Contains 10016

R1 cleared to all zeroes.

Location 100n is cleared to all
zeroes, R1 not effected
Location 100^ is cleared to all
zeroes. The contents of R1 are
incremented to 102it.
The location 100it +10itor 110,t
is cleared to all zeroes. R1 is not
changed.

The location 200u is cleared to all
zeroes.

Notes: the symbol > denotes a Base 16 (hexadecimal) value

Figure 8-6. Addressing Modes for 16-bit Microprocessor (TMS 9900 Family)

Instruction Set
The instructions available on the 9900 family devices are

summarized in Figure 8-7. Most of these operations can use all the
addressing modes listed in Figure 8-6 and 8-7, though there are exceptions.
For example, immediate operations (those whose mnemonics end in I) use
immediate addressing to indicate data constants that are to be loaded into
registers. The data is contained right in program memory as the second
word of the instruction. Register addressing is used to locate a data
variable from a workspace register involved in an instruction. The multiply
and divide instructions use register addressing for the destination data
locations, that is, the product or quotient/remainder are stored in two
successive workspace registers. The shift operations use register addressing
only. The jump instructions use a special kind of indexed addressing called
program-counter relative addressing. In this case the displacement
contained in the instruction is added to the contents of the program counter
(acting as the index register) to determine the instruction address to which
the program jumps.

Arithmetic Instructions
The arithmetic operations of the 9900 family devices include addition and
subtraction (byte (8-bit) or word (16-bit) operations), negation, absolute
value, increment and decrement (by one or two), and multiplication and
division. Absolute value means the unsigned value of the number.

8-10 UNDERSTANDING MICROPROCESSORS

8 A16-Bit Microcomputer Application m
o z

Q. ^
O of

X
K
5? 5

CL
2

O !
UJ

g 5 *

ill

l i s

1 1 i l l
5 2 I
" | g

O £ a O g 1 m

CO
©

f - CO
2 5>
© ©

2 O X

5
© ©
o O

a 2 55

CO
Q
O O

o
N
o

8"
o o o

O £
S o
0 0) 0

I I ? i n o o n
O O 2

£

.2
sr
c

1 * 8
O l5

© in
c E a O p ® = S Q:

5 S-o -O
S S § §
O </3 -J _J

n, ® Q
.2 o *
o c P

1 1 1
1 * 2

I
w

® ® ® "§
52 .22 .52 x O
? } ; ! !
a: co tr £ O

o.
O

X X

>
ffl

0
1
s

I

a

1

S g o
LLI

< CO z 2 S:
< 2

>
Q

h- O
O UJ
Z Q
O °
^ UJ
? Q

®
3

§ 3
CO

£ ^ X
3 — »-
O ^ -O
^ 3 CO
< 2 C,

n
CO

c +
§ ̂
I S

i
1

c
1

1 o
© o
2 1

—J

_ CO
£D Q
X N O CO

oS

8 ? .

Z £ ^ ' ? o <

o

o 75
IZ x
O < UJ

M
8> o
O -J
™ g

CD
CD jj
© Q.
O) ir
C 3

CO 2

%
CD

I
CD

©
c
2
o

©
2

Figure 8-7.16-bit Microprocessor (TMS9900 Family) Base Instruction Set*

Understanding Microprocessors 8-11

EUJ A 16-BIT MICROCOMPUTER APPLICATION 8
Data Movement Instructions

The data movement operations include byte and word movement
instructions and instructions to store the status and workspace registers.

Initialization Instructions
Initialization operations include clearing a data word to all zeroes

or setting a data word to all ones. The workspace pointer, interrupt mask,
(this is a special interrupt control) and workspace registers can all be loaded
with constants from the program with Load instructions.

Logical Instructions
Logical operations include the OR, AND, Invert, and Exclusive-OR

operations as well as some special logical OR operations (SOC, SOCB).

Compare Instructions
Memory data can be compared to a constant or to another memory

byte or word. Again special compare provisions are provided in COC and
CZC to select specific words or bits to check system limits or status of
subsystems.

Shift Instructions
The shift operations include arithmetic shifts left or right, logical

shift right, and a circular right shift (right circulate).

Branch Instructions
There are two types of subroutine calls and two types of

unconditional branches. There are twelve conditional jump operations that
can check status bits for conditions of carry, parity, equal, and arithmetic
and logical greater than, less than, and so on.

Input/Output Instructions for CRU
There are some special instructions that can move data serially

over an input and output serial data link which is called the
Communications Register Unit. With the CRU the same type of serial data
input performed by SAM in Chapter 5 can be performed with the CRU
Instructions. Individual bits can be tested at an input with TB or set or
cleared with SBO or SBZ. Multiple bits (and the number can be
programmed) can be stored in memory from the CRU or loaded into the
CRU with the STCR or LCDR instructions, respectively.

All of these instructions are available on the TM 990/U89
microcomputer module, which permits programmers to enter these
instructions directly in mnemonic form.

8-12 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION m
Interrupt Features

Unlike the TMS8080A which has one interrupt input, the
TMS9980A has an interrupt structure which allows 8 levels of interrupts,
which can be given a priority and any of which can be made non-active
(masked off) by the programmer. The interrupt levels are indicated to the
processor by a 3-bit interrupt code whose bits are IC0, ICi, and IC2. These
signals are generated by a TMS9901 Programmable Systems Interface
circuit on the TM 990/U89 board. This interface circuit is especially designed
to mate to the TMS9980A. By these means the user can control which
interrupts are to be active and what they mean.

The TMS9980A responds to a given interrupt by performing a
"context switch." This is a form of subroutine jump to a subprogram
designed to service the interrupt. When the interrupt occurs and the
context switch is made, the program goes to the reserved location in
memory specified by Figure 8-8 for the respective interrupt code. (For
interrupt 1 the location is 0004 for the workspace pointer and 0006 for the
program counter.) The contents of these memory locations contain the
values for the workspace pointer and at the next adjacent location the value
for the program counter. The program counter value addresses the first
instruction of the subprogram to service the interrupt. The workspace
pointer value defines the location of the workspace registers to be used by
the subprogram. Recall in the discussions on subroutines and interrupts
that a provision is made to link back the main program after a subroutine is
completed. The values of the workspace pointer, program counter, and
status register that existed at the time of the interrupt are saved in
registers 13,14, and 15 of the new workspace for the subprogram. Then, at
the end of the subprogram, an RTWP instruction causes these values to be
restored to the three processor registers to provide the link back and to
cause program execution to resume from the interrupted point in the
system program.

Location of Location of
Address of Workspace

Interrupt Code Function 1st Instruction Pointer
ICo IC, IC2 (PC Value) (WP Value)

0 0 0 Reset 0002 0000
0 0 1 Reset 0002 0000
0 1 0 Load 3FFE 3FFC
0 1 1 Interrupt 1 0006 0004
1 0 0 Interrupt 2 000A 0008
1 0 1 Interrupt 3 000E OOOC
1 1 0 Interrupt 4 0012 0010
1 1 1 —

Figure 8-8. 16-bit Microprocessor (TMS9980A) Interrupt Codes

UNDERSTANDING MICROPROCESSORS 8-13

A 16-BIT MICROCOMPUTER APPLICATION 8
One interrupt level that is of special interest in Figure 8-8 is

Interrupt 1. Within the TM 990/U89 microcomputer, any input signal that
initiates a signal on the INT 3 input of the TMS9901 triggers Interrupt 1, or
it can be initiated when an interval timer inside the TMS9901 has been
decremented to zero. The Interval timer reaching zero generates an INT 3
out of the 9901 which is interpreted by the TMS9980A as an Interrupt 1.
This particular feature will be used in the application example of this
chapter.

Input/Output Features

Some of the input/output features of the TM 990/U89 module have
been mentioned already, such as the cassette interface which is controlled
by a keyboard input that is monitored and responded to by the monitor
program stored in EPROM in the system. Most of the components on the
board and many single-bit control or input lines off the board are accessed
by using the CRU instructions of the TMS9980A. Control signals and
signals placed on the address lines are used to locate I/O units as well as
memory cells. Each individual bit in the system input/output structure is
assigned a CRU address just like memory locations are assigned addresses.
Their addresses are made relative to a base address of a particular I/O unit.
These bits can be accessed one bit per input/output instruction using the
single bit CRU instructions SBO (Set CRU Bit to One), SBZ (Set CRU Bit
to Zero), and TB (Test value of CRU Bit). The address of the bit accessed is
contained in a special place — bits 4 through 14 of workspace register 12. I
A Single-Bit Example

As an example of such an operation, the piezoelectric speaker is
assigned the CRU address 21EI6 in the TM 990/U89 system. Thus, to turn
the speaker on the following instruction sequence would be used: '

Label Mnemonic Operand Comment

The signed displacement in the instruction (0 in this case, n in the general
case) is added to the CRU address in R12 (1/2 of the value loaded into R12)
to form the address of the CRU bit to be set to one. The CRU address is 1/2
the value in R12 because bit 15 is disregarded. This is just like shifting bits
right one position (Remember, this divided a binary number by 2). The
overall addressing procedure is shown in Figure 8-9.

If the instruction had been SBO 5, then 5 would have been added to
the base address in Figure 8-9 to set the 6th bit to a 1.

Similarly, a SBZ 0 instruction with 43C16 in R12 would turn the
speaker off.

LI
SBO

12, >43C Set up 43Ci6 (twice 21E,6) in R12
0 Set Bit 21Ei6 + 0 to a one

8-14 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION

R12 CONTENTS (043C,6)

Bit No. 0 15
1 1 1

0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0

CRU BASE
ADDRESS - 43C,» + 2-21 E,»

3©:

SBO

DISPLACEMENT
FROM

O INSTRUCTION

O 21E,t + 0-21E,6

ADDRESS OF CRU BIT
TO BE SET TO ONE
(SPEAKER)

(n in general case)

Figure 8-9. Single-Bit CRU Addressing

Multiple-Bit Example
The individual CRU bits can be accessed several bits at a time with

the multiple-bit CRU instructions LDCR (Send the number of bits specified
to successive CRU locations (obtained from a RAM location called out in the
instruction), starting at the base address contained in R12) and STCR
(receive the number of bits specified from the CRU, starting at the location
specified in R12, and send the successive bits to the memory location
specified in the instruction).

As an example of such an operation, Figure 8-10 illustrates the
procedure for initializing the interval timer in the TMS9901 at position U10
in the TM 990/U89 microcomputer for a 500 millisecond (0.5 second) time
interval. The bits for initializing the timer, are assigned the CRU addresses
1 through 14. To gain access to the timer, a requirement of the 9901 is that
CRU bit 0 must first be set to a one. Thus, the first operation is to initialize
R12 to 0 with the LI R12,0 instruction. The timer value is to be initialized to
>3D09]6.

This value arises from the fact that the interval time is given by:
T = Timer/31250 seconds

For 0.5 seconds, Timer must equal 15625 (base 10) or 3D09I6. Then, the
3D09I6 is placed in R1 in bits 1 through 14, with bit zero a 0 and bit 15 a 1 as
shown in Figure 8-10. With this bit combination, 7A13i6 is the number
loaded into R1 with the LI R1,>7A13 instruction. With the instruction LDCR
RL, 15 the 15 bits are loaded into the CRU bits to set the timer register in
the TMS9901. The 1 in CRU bit zero gains access to the timer.

The three remaining instructions of Figure 8-10a are required to
enable the INT3 signal (generated by the internal timer in the TMS9901
going to zero) to pass through to the TMS9980A as an interrupt.

UNDERSTANDING MICROPROCESSORS 8-15

lEiil
A 16-BIT MICROCOMPUTER APPLICATION 8

LI R12.0 Set CRU Address to zero
LI R1.>7A13 Set up the timer interval count

of 3D09i(,in bits 1 through 14
at R1. Set bit 15 to a one.

LDCR R1.15 Send the least significant 15
Bits of R1 to CRU Bits 0 through

SBZ 0 t 14 to initialize timer
SBO 3 > Enable Timer Interrupt
LIMI 1 I

a. Instruction Sequence to Load TMS9901 Timer.

MSB LSB
0 15 Bit No.

b. Effect of LDCR R1.15 Instruction (Setting CRU Bit 0
provides access to timer register)

Figure 8-10. Multiple-Bit CRU Transfer
When the timer decrements to zero 0.5 seconds later, the interrupt

level 1, properly enabled, will cause the program to jump to the subprogram
address contained in memory location 0006. At the same time it sets up the
16 workspace registers defined by the workspace pointer value contained in
memory location 0004. The current workspace pointer, program counter,
and status register values will be saved in registers 13,14, and 15 of the
subprogram workspace so that this information is restored when the
program returns.

Other components on and off the board can be similarly accessed
with the CRU instructions. The off-board expansion modules, if used, can be
made active by addressing the appropriate assigned CRU addresses 0C00,6
through 0C3EI6.

Not all of the microcomputer features have been discussed but it
can be seen from this brief discussion the TM 990/U89 microcomputer
module it is a very versatile unit. It has considerable on-board system
development capabilities as well as offering easy expansion of memory and
input/output to allow the unit to be directly applied to a microcomputer
system problem.

8-16 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION m
WHAT WOULD BE A TYPICAL APPLICATION OF A MICROCOMPUTER
MODULE?

Since the microcomputer module is a self-contained computer, it
can be applied to any system problem that is compatible with the operating
speed of the microcomputer. In fact, it can be used to handle any number of
tasks by using the interrupt signals to notify the microcomputer when a
task needs attention.

As a simple example, consider using the TM 990/U89 as a simple
version of a "grandfather clock," which chimes out the hour count on the
hour. The application could be designed to be much more complicated. For
example, the system could be designed to play certain tunes on the 15
minute intervals, maintain an hour and minutes display, and chime and
play a tune on the half hour. All of these features can be illustrated by
just considering what's involved in the version that on the hour simply
chimes the hour count.

Since a microcomputer module is being used, there is no need for
any hardware design in this application, especially since the module already
contains a piezoelectric speaker and interval timers on the board. All that
really has to be considered is the program that will access these various
components in the appropriate manner. It also serves to show how easy it is
to begin applying a microcomputer by using the microcomputer modules.

HOW WOULD THE PROGRAM BE DEVELOPED?

Most of the programming required in this application will set
various timers to determine when system conditions need to be changed.

System Flow Chart

One possible flow chart description of system activities is shown in
Figure 8-11. First, the programmer must allow for the system to be started
initially at the current hour and minutes when the system is turned on. In
other words, the "clock" must be set. Then the programmer can cause the
program to start executing by setting the TMS9901 interval timer to 0.5
seconds and waiting for the timer to interrupt the processor with a level 1
interrupt. While the processor is waiting for this interrupt, it can be
handling other system operation tasks. When the interrupt occurs, the 1/2
second counter will be decremented. If it is not zero, the 0.5 second interval
timer in the 9901 will be reinitialized and another wait for interrupt will
occur. If the 1/2 second counter is zero, the hour is up so that the chimes
must be sounded.

Assume that the chime tones are to be 1 kilohertz notes, so that the
speaker is on for 0.5 millisecond and then is off for 0.5 millisecond. This
pattern is to be repeated to sustain the tone for 1 second. There will then be
one second of silence, and, if necessary/another tone will be sounded for 1
second, until the number of 1 second tones equals the hour count. Once all
required tones have been sounded, the xk second counter will be reinitialized
and the sequence repeated for the next hour.

UNDERSTANDING MICROPROCESSORS 8-17

A 16-BIT MICROCOMPUTER APPLICATION 8
TIME SET AND CLOCK SUBPROGRAM

ST (START)

C WAIT FOR \
INTERRUPT J

TURN OFF SPEAKER

SET TONE DURATION
COUNTER TO 1 SEC

TIME OUT 0 5 MSEC
(LOOP 3) L3

DECREMENT TONE
DURATION COUNTER

TONE SUBPROGRAM

r TIMER *\
INTERRUPT J

SET HOUR AND
MINUTE COUNTERS
FOR PRESENT TIME

SET 0 5 SEC COUNTER

ADJUST FOR PRESENT
TIME AND SET

INTERRUPT POSITIONS

SET TMS9901
TIMER FOR

0 5 SECONDS

ENABLE INTERRUPT
PATH

i r -

J

J

DECREMENT V,
SECOND COUNTER

COUNTER
- 0?

DISABLE INTERRUPT

INCREMENT AND OR
RESET HOUR COUNT

ADDRESS SPEAKER

SET TONE
DURATION COUNTER

TO 1 SEC

TURN ON OFF
SPEAKER

TIME OUT
0 5 MSEC L1
(LOOP 1)

_l

Figure 8-11. Grandfather-Clock Flow Chart

8-18 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION

The tone sounding sequence involves processor timing loops
performed with software instead of the hardware timing available in the
TMS9901. Every 0.5 millisecond the speaker is changed from on to off or
from off to on. This is repeated until there have been 2000 such changes (1
second tone duration). Then the hour counter is decremented. If it is not
zero, the tone generation sequence is repeated.

Data Requirements

Most of the data requirements for this flow chart are associated
with the timer and counter functions required. One possible assignment of
the workspace registers and memory locations is shown in Figure 8-12.
Registers 0 through 5 contain the basic timer and interval values used for
control in the problem. Register 6 contains the hour counter used in the
program while register 5 keeps the hour value. Register 7 is used to hold the
current minute count when the time is initially set. Register 12 must be
used to hold the CRU address value, and Registers 13 through 15 are used to
hold the return values for the workspace pointer, program counter, and
status register that existed at the time of the 0.5 second interrupt
(interrupt level 1).

General Uee Memory Location (Starting Address)

Time Set and Clock Subprogram 200i»
Tone Subprogram 250)t

Workspace 300,6

Interrupt Transfer Vector
(WP) 0004
(PC) 0006

a. TM 990/U89 RAM Memory Allocation

Workspace Register Address Use

R0 300 1 /2 counter 7200K,
R1 302 TMS9901 Interval Timer value 3D09i»
R2 304 0.5 millisecond timer value
R3 306 1-second counter 2000i<>
R4 308 Speaker Control
R5 30A Hour Counter
R6 30C Hour Counter Copy
R7 30E Minutes-Set Register

R12 318 CRU Address
R13 31A Main Program Workspace Pointer Valui
R14 31C Main Program Program Counter Value
R15 31E Main Program Status Value

b. Workspace Register Allocation.

Figure 8-12. TM 990 / U89 Memory Allocation

UNDERSTANDING MICROPROCESSORS 8-19

Eh] A 16-BIT MICROCOMPUTER APPLICATION 8
The workspace is located in RAM addresses 300i6 through 31EIB.

The timesetting program sequence is assumed to start at location 200,„ in
RAM, while the 9901 interrupt service subprogram starts at address 22616 in
RAM.

The Program
The program for the flow chart of Figure 8-11 is shown in Figure

8-1-1. This is relatively straightforward implementation of the flow chart,
beginning with the time-setting sequence at the label ST(Set) (which would
be at location 200,«). Before executing the program, the programmer defines
the values for HOUR and MIN (Minutes). Hour and minutes values of 10 or
greater must be converted to their hexadecimal equivalents before entering.
He would load the program counter with 20016 and the workspace pointer
with 300I6 and press the execute command of the keyboard to run the
program. This will be discussed later.

Once the current hour and minutes values are initialized into R5
and R7 the LI 9,120 and MPY 7,9 instruction convert current minutes to
current % seconds. Multiplying two 16-bit numbers results in a 32-bit
product which is placed in R9 and R10. R10 will be the significant part and it
is moved to R7 which then holds the current number of 1/2 seconds. R0 is then

LI 5.HOUR Set R5 with current hour value at 202|t
LI 7,MIN Set R7 with current minutes value at 206it

LI 9,120 Set R9 to 54 seconds in a minute
MPY 7.9 Multiply current minutes by 120 for 54 seconds
MOV 10,7 Move current 54 seconds (in R10) to R7
LI 0,7200 Initialize RO with number of 54 seconds in hour
S 7,0 Subtract current 54 seconds to get those left
LI 9, >300 Load R9 with WP value to be used by interrupt
MOV 9,(34 Send this value to transfer vector location
LI 9,>226 Load R9 with PC value for interrupt sequence
MOV 9,(36 Send this value to transfer vector location
LI 12,0 Set R12 to 0 (CRU Base Address for 9901 Timer)
LI 1 ,>7A13 Load R1 with timer access (bit 15 a one) and timer

value of 3D09|6in bits 1 through 14.
LDCR R1.15 Send R1 contents to CRU to initialize timer to 54 second
SBZ 0)
SBO 3 } Enable User 9901 Timer Interrupt
LIMI 1 J
DEC 0 Decrement 54 second counter R0
JEQ TN If zero, go to tone sounding sequence
IDLE If not, wait for next interrupt

Figure 8-13a. Time Set and Clack Subprogram - Grandfather Clock

UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION ieMJ
Disable Timer Interrupt
Increment current hour count
Compare hours to 13
It less than 13, hours OK
If not, reset hour count to 1
Copy hour count to R6
Set up Speaker address in R12
Set alternating 1 -0 pattern in R4
Set 0.5 millisecond counter (tone duration) in R3
Send bit 7 of R4 to speaker
Shift bit pattern in R4 to complement bit 7
Set speaker on or oft time to 0.5 milliseconds
Decrement speaker on/oft counter
If not zero, continue timing
Decrement tone duration counter
If not zero, continue sounding tone
If zero, turn speaker off
Set tone off counter to one second value
Set up 0.5 millisecond timer value

Implement 1 second time delay

Decrement hour count
If not zero, sound another tone
If zero, move number of tones sounded to R7
Initialize R9 with number of V2 seconds/tone
Multiply by number of tones to get time used by tones
and get this value into R7
Load R0 with number of V2 seconds per hour
Subtract time used by tones to get V4 seconds
remaining into R0
Turn on Timer interrupt
Wait for timer interrupt

Figure 8-13b. Tone Subprogram — Grandfather Clock

TN LIMI 0
INC 5
CI 5,13
JLT OK
LI 5,1

OK MOV 5.6
LI 12, >43C
LI 4,> AAAA

NX LI 3,2000
RP LDCR 4,1

SRC 4,1
LI 2,>22

L1 DEC 2
JNE L1
DEC 3
JNE RP
SBZ 0
LI 3,2000

L2 LI 2,>22
L3 •EC 2 ^ JNE L3 I

DEC 3
JNE L2 J
DEC 6
JNE NX
MOV 5.7
LI 9,4
MPY 7.9
MOV 10,7
LI 0,7200
S 7,0

LIMI 1
IDLE

initialized to 7200 (the number of M> seconds in an hour). The current xk
second value is then subtracted from R0 to get the 1/2 seconds remaining in
the hour. The next four instructions load the workspace pointer value of 30016

into memory location 4 and the program counter value of 226,6 into memory
location 6. The interrupt level 1 procedure uses those values in jumping to
the sequence beginning at IT(Interrupt).

UNDERSTANDING MICROPROCESSORS 8-21

m A 16-BIT MICROCOMPUTER APPLICATION 8
When the timer causes an interrupt level 1 of Figure H-H, the 300,B

stored in location 0004 and the 226l6 stored in location 0006 of RAM cause
the microcomputer to start executing instructions at location 226,B (label
IT) using the workspace starting at location 300,B. In the IT sequence
the timer is reinitialized and the interrupt enabled as shown in Figure H-lo.
Next, the register 0 counter is decremented. If it is not zero, IDLE causes
the program to wait for the next interrupt. If the xk second counter is zero,
the program jumps to the tone generating sequence starting at TN(Tone).

Tone Subprogram
At TN the interrupt is disabled with the LIMI 0 instruction

then the hour count is incremented. If the hour count has been incremented
to 13 it is reset to 1 with the next three instructions. The hour count is
copied to R6 to use as a counter for the number of tones, preserving R5.
Register 12 is set to the speaker address (43C,6), and register 4 is initialized
to a pattern of alternating l's and O's (AAAA,6). The tone duration is set at
one second in R3 with LI R3.2000. At RP(Repeat), the least significant hit of
the first byte of R4 (Bit 7 which is initially a zero) is sent to the speaker
with the LDCR R4,l instruction. The register 4 is circulated (SRC 4,1) to
complement the least significant bit (now bit 7 is a 1). R2 is the counter that
determines the time of the half-period of the tone. With 22„. loaded in R2
and the time it takes to execute the instructions starting at RP through
LI 2,>22, the half-period time is 0.5 milliseconds. The two instruction loop
beginning at Llfloop 1) is used to time the 0.5 millisecond half-period, either
on or off, for the 1000 cycle tone. After LI. register 3 is decremented to see if
the tone has been sounded for 1 second. If it hasn't, the program jumps to
RP to change the speaker input and time out the next half-period. If it has,
the next seven instructions are used to keep the speaker off for 1 second, at
which time the hour count in register 6 is decremented and checked for zero.

If not enough tones have been sounded, the sequence is repeated
starting at NX(Next). If enough tones have been sounded, RO is initialized
to 7200 minus 4 times the number of tones sounded. Thus, the instructions
from MOV 5,7 to S 7,0 are correcting the next '•> second hour count for the
time it took to sound the tones. The interrupt is again enabled with the
LIMI 1 instruction so that the next 9901 time interval will generate an
interrupt. The IDLE causes the processor to wait for the next timer
interrupt.

8-22 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION

Running the Program

The loading of this program into memory, the initialization of the
memory locations 202I6 (for the current hour), and 20616(for the
current minutes) and the starting of the program execution at address 200,6

once these locations have been set are all accomplished by the
keyboard commands supported by the monitor program of the TM 990/U89
microcomputer. This monitor offers several program execution and
debugging capabilities that would allow this program to be verified and
implemented with a minimum of time and effort.

The first step in setting up the 189 microcomputer for any
application is connecting the ± 12 volt and +5 volt power supplies to the
board. Once the board displays CPU READY, the programs and constants
can be entered into the microcomputer with the following procedure:

1. Press Return

2. When board displays ? Press A200 and Return. When the board
displays 0200, the label for that address can be entered as a two
letter symbol such as ST for SET. Once the label is entered the
mnemonic can then be entered. If the instruction does not have a
label, the label is omitted by pressing the space key followed by
the instruction mnemonic, once the instruction address has been
displayed.

3. After each instruction is entered, its assembled code will be
displayed. Pressing successive returns will get the address to the
next instruction location. Instructions and their assembled code
can continue to be entered and displayed until the entire
program of Figure 8-13 has been entered.

4. To enter the current time data, the user presses the M key
followed by the address code and the data code. Thus, to enter
the hour value in location 20216 and the minute value in location
206,6, the following sequence would be used.

M202
Return
Hour Value
Space
Space
Minute Value
Return

UNDERSTANDING MICROPROCESSORS 8-23

A 16-BIT MICROCOMPUTER APPLICATION

5. The program is started by first setting the program counter
(PC) to 20016 and the workspace pointer (WP) to 30016 and
pressing the execute key:

P
Return
200
Return
W
Return
300
Return
E
Return

The program will run without further user control unless the
user decides to modify the time or program sequence.

6. To stop the program or to start over in entering a program
enter a system RESET.

HOW COULD THE SYSTEM PERFORMANCE BE IMPROVED AND
EXPANDED?

Once the basic clock program has been written, it would be a
relatively simple matter to add subprograms that would maintain hours and
minutes and seconds displays. Similarly, the microcomputer clock could be
used to time events such as cooking time or lawn watering times and so on.
The musical capability of the clock can be improved by adding subprograms
that will generate tunes instead of just sounding a steady tone. By
generating a sequence of tones of different pitch and duration (and even
different sound levels), any tune could be played by the microcomputer. The
programming would be very similar to that of Figure 8-13, just more
extensive timing sequences, all controlled by the values contained in the
tone period generation registers and the tone duration registers.

A decimal-to-binary conversion subprogram could be added to
allow the user to enter current hour and minute values in familiar decimal
form. The development of such a program is saved as an exercise for the
reader at the end of this chapter.

Since programs that run on the TMS 990/U89 microcomputer will
also run on other 9900 family devices, the clock system could be
implemented with a TMS9940 single-chip microcomputer with almost no
extra components.

8-24 UNDERSTANDING MICROPROCESSORS

8 A 16-BIT MICROCOMPUTER APPLICATION

lili
If in addition to a clock the user wants to go into music synthesis

with the TM 990/U89 (or other 9900 family devices), the same basic
procedures used in the clock can be used. The main difference is that since
several tones would need to be sounded at once, probably with different
intensities and waveforms, these tones would have to be generated by a
bank of oscillators, whose on-off, output level, and waveform could be
controlled by the CRU bits of the microcomputer. In this case the cassette
interface capability would be very convenient since different musical
compositions (different programs) could be stored onto magnetic tapes or
read from magnetic tapes, just as a player piano uses paper rolls to store
the piano control patterns. In fact, the complexity of the application
features are limited only by the time the U89 board user is willing to spend
on the project.

Other applications areas would be similarly expandable, limited
only by the imagination of the user. Games is one obvious example of such
an applications area. Control of home lighting, heating, burglar alarms, are
other examples of an area with almost limitless possibilities. In all these
areas the advantage of using the U89 microcomputer is that it allows the
designer to concentrate on the application and not on the details of
interconnecting integrated circuits together.

WHAT WE HAVE LEARNED?

• 16-bit microprocessors and microcomputers are required in high
performance systems such as those requiring high numerical accuracy or
high-speed communications.

• 16-bit microcomputers would be chosen for applications requiring high
performance with minimum assembly costs.

• 16-bit microcomputer modules would be chosen for high performance
systems that are to be produced in limited quantities.

• 16-bit microcomputer modules save the user time in developing both the
system hardware (its already built) and system software.

• The TMS 990/U89 is an example of a microcomputer module that can be
used as a learning tool, as a software development system and has the
potential to be used for an actual system application.

UNDERSTANDING MICROPROCESSORS 8-25

m A 16-BIT MICROCOMPUTER APPLICATION 8
PROGRAMMING EXERCISE

Write a subprogram called CONVERT that will convert the hour
BCD value (0 through 12) in R5 to its binary equivalent. It will also convert
the BCD number minutes entry (0 through 59) stored in R7 to binary form.

A simple algorithm for converting the hour value of 0 through 12 to
its binary equivalent of 0 through C is as follows:

YES ANDI R5.000F

•
At R5.000A

1

If the contents of Ro are less than 10, the number in R5 is correct. If the
contents of R5 are 10 or more, remove the tens digit and add A to the units digit.

A comparable algorithm exists for converting a two digit decimal
code to its binary equivalent. The only difference is that A is added to the
units digit the number of times represented by the tens digit. Again, the
tens digit is removed from the number before these additions are
performed.

Solution
CONVERT MOV 5.8 Copy Hour value into R8

ANDI 5,>F Remove tens digit from contents of R5
ANDI 8,>F0 Remove units digit from contents of R8
CI 8,>10 Compare tens digit in R8 to 1
JNE OK If digit 0, number in R5 is binary equivalent
Al 5,>A If not, add A to R5 to get binary equivalent

OK MOV 7,8 Copy minutes value into R8
ANDI 7,>F Remove tens digit from contents of R7
SRL 8,4 Get tens digit into least four bits in R8

LOOP CI 8.0 Is tens digit 0?
JEQ FIN If it is, conversion of minutes is complete
Al 7,> A If not, add A to contents of R7
DEC 8 Decrement tens counter in R8
JMP LOOP Go Check current value of tens counter

FIN RTWP Conversion complete, return to calling program

NOTE: When this subprogram is completed it may be added to the end of
the main program inserting the instruction BL CONVERT after the first
two instructions of the Time Set and Clock Subprogram of Figure 8-13a and
substituting B *11 for RTWP in the last instruction of the above solution.

8-26 UNDERSTANDING MICROPROCESSORS

G GLOSSARY

Glossary
Address: A pattern of characters that identifies a unique storage location.
Adder: A building block which provides a sum and a cany when adding two numbers.
Algorithm: A term used to describe a set of procedures by which a given result is obtained.
ALU: Arithmetic and Logic Unit. A subsystem that can perform arithmetic and logical operations
on words sent to it.
Analog: Analog circuitry, also called "linear" circuitry, is circuitry that varies certain properties of
electricity continuously and smoothly over a certain range.
AND Gate: A device or circuit with two or more inputs of binary digital information and one
output, whose output is 1 only when all the inputs are 1.
ASCII: (American National Standard Code for Information Interchange, 1968). See USASCII.
Assembler: A computer program that prepares a machine language program from a symbolic
language program.
Base Address: A given address from which a final address is derived by combination with a
relative address.
Baud: A unit of signaling speed equal to the number of signal events per second.
Binary Number System or Code: A method of writing numbers by using two numeral digits, 0 and
1. Each successive bit position in a binary number represents 1,2,4,8, and so forth.
Binary Coded Decimal (BCD): A binary numbering system for coding decimal numbers in groups
of 4 bits. The binary value of these 4-bit groups ranges from 0000 to 1001, and codes the decimal
digits "0" through "9".
Bit: The smallest possible piece of information. A specification of one out of two possible
alternatives. Bits are written as 1 for "yes" and 0 for "no."
Borrow: An arithmetically negative carry in subtraction operations.
Branch: A program is said to "branch" when an instruction other than the next instruction in the
program sequence is executed.
Bus: Two or more conductors running in parallel used for carrying information.
Byte: A sequence of adjacent binary digits operated upon as a unit - usually 8 bite.
Carry: When the sum of two digits is equal to or greater than 10, then 10 is subtracted from this
sum, and 1 is added to the next more significant digit of the sum.
Central Processor Unit (CPU): Part of a computer system which contains the main storage,
arithmetic unit, and special register groups. It performs arithmetic operations, controls
instruction processing, and provides timing signals.
Character: A symbol whose image is formed by a display system for representation of
information. Examples are numerals, letters, decimal point, punctuation marks, and special
symbols indicating status of an electronic system.
Clear: To remove data and return all circuitry to an initial condition, usually "0."
Chip-Enable Input: A control input that when active permits operation of the integrated circuit
and when inactive causes the integrated circuit to be inactive.
Clock Input: An input terminal on a building-block typically used for receivings timing control-
clock signal, but used in some applications for a control signal or even data.
Clock Generator: A building block that generates clock signals.
Compiler: A program that prepares a machine language program from a program written in
another language.
Code: A set of meanings or rules assigned to groups of bite. Each combination of bite has a certain
meaning based on following certain rules.
Complement: Usually means the "ones complement" of a bit, which is simply the inverse of the
bit. To "complement" a number means to subtract it from a certain number (from one, in the case
of ones complement).
Computer: A digital computer consists of at least one CPU, together with input, output and
memory units. '

UNDERSTANDING MICROPROCESSORS

GU>SSARY £ 1

VJ
Conditional Jump: A jump that occurs if specified criteria are met.
CRU: Communications Register Unit A bit addressable serial data link for I/O .
Cycle: 1. An interval of space or time in which one set of events or phenomena is completed. 2. Any
set of operations that is repeated regularly in the same sequence.
Data: Another name for information.
Data Bus: One method of input-output for a system where data are moved by way of a group of
wires forming a common bus.
Decimal Digit: In decimal notation, one of the characters 0 through 9.
Decimal Number System or Code: Also called "Arabic" number system. A method of writ,ng
numbers by using ten numeral digits. The "decimal digits are 0,1,2,3,4.5.6,7,8, and 9.
Decoder: A combinational building-block receiving several parallel inputs,
which "recognizes" one or more combinations of input bits and puts out a signal « hen these
combinations are received.
D Flip-Flop: A clocked flip-flop with one data input (called "D"), whose "true output changes a a
clock signal to the state maintained at D during the clock signal.
Digital: Information in discrete or quantized form; not continuous.
Direct Addressing: Method of programming that has the address of data contained in the
instruction that is to be used.
Dopant, Doping: A substance added to semiconductor material to make it p-type or n-type.
Edit: To modify the form or format of data, e.g., to insert or delete characters.
Effective Address: The address that is derived by applying any specified indexing or indirect
addressing results to the specified address and that is actually used to identify the current

EPROM: Eraseable and programmable read-only memory. An IC memory chip whose stored date
can be read at random. The data can be erased and new data can be stored.
Error: Any discrepancy between a computed, observed, or measured quantity and the true,
specified, or theoretically correct value or condition.
Exclusive-OR Gate: A device or circuit with two (not more) inputs of binarydigital information
and one output, whose output is 1 when either input is 1 and 0 if neither or both inputs are
Execute: That portion of a computer cycle during which a selected instruction is accomplished.
Fetch: That portion of a computer cycle during which the next instruction is retrieved from
memory. ,. ,
Flip-Flop: A building-block having two stable states that stores one bit by means of two gates
(ordinarily N AND or NOR gates) "cross-coupled" as a latch, with the output of each forming an
input to the other. .
Flow Chart: A graphical representation for definition, analysis, or solution of a problem, in which
symbols are used to represent operations, data, flow, equipment, etc.
Format: The arrangement of data.
FORTRAN: (FORmula TRANslating system) A language primarily used to express computer
programs by arithmetic formulas.
Frequency: How often regular waves or pulses occur in a circuit or other transmission medium
such as radio. Frequency is measured in hertz (cycles per second).
General-Purpose Computer: A computer that is designed to handle a wide variety of problems.

IC: See "Integrated Circuit"
Immediate Address: Pertaining to an instruction which contains the value of an operand.
Indexed Address: An address that is modified by the content of an index register prior to or
during the execution of a computer instruction.
Indirect Addressing: The initial address is the storage location of a word that contains another
address used to obtain the data to be operated upon.
Input/Output Devices (I/O): Computer hardware by which data is entered into a digital system or |
by which data are recorded for immediate or future use.
Instruction: A statement that specifies an operation and the values or locations of its operands.
Instruction Cycle: The period of time during which a programmed system obeys an instruction.

Q 2 UNDERSTANDING MICROPROCESSORS

G GLOSSARY

Integrated Circuit ("IC"): A small package with electrical terminals, containing a chip of silicon.
The surface of the silicon is processed to form hundreds or thousands of transistors and other
devices that are connected to make an electronic circuit.
Interrupt: To stop a process in such a way that it can be resumed.
Inverter: A binary digital building-block with one input and one output. The output state is the
inverse (opposite) of the input state.
Jump: A departure from the normal sequence of executing instructions in a computer.
Label: One or more characters used to identify a statement or an item of data in a program.
Language: A set of representations, conventions, and rules used to convey information.
LED: See "Light-emitting diode."
Light-Emitting Diode (LED): A semiconductor "light bulb" made of semiconductor material (such
as gallium phosphide) that makes light when electric current is passed through it in a particular
direction, by way of two terminals.
Linear Circuitry: See "Analog."
Load: In Programming, to enter data into storage or working registers.
Logic Gate: See "AND, OR, NAND, NOR, NOT, and Exclusive-OR."
Logic Symbol: A symbol used to represent a logic element graphically.
LSB or LSD: Least-significant bit or digit. The bit or digit at the end of a number which has the
smallest numerical value.
Machine Code: An operation code that a machine is designed to recognize.
Mask: 1. A pattern of characters that is used to control the retention or elimination of portions of
another pattern of characters. 2. See photomask.
Memory: In a digital system, the part of the system where information is stored.
Microcomputer: A computer in the lowest range of size and speed, generally smaller, slower, and
less sophisticated than a "minicomputer."
Microprocessor: An IC (or set of a few ICs) that can be programmed with stored instructions to
perform a wide variety of functions, consisting at least of a controller, some registers, and some
sort of ALU (that is, the basic parts of a simple CPU).
Minicomputer: A computer in a certain range of size and speed, generally smaller, slower, and less
sophisticated than a "computer."
MOS Integrated Circuit: A digital integrated circuit whose transistors are MOS transistors.
Varieties include n-channel MOS, p-channel MOS, and CMOS.
MSB or MSD: Most-significant bit or digit. The bit or digit at the end of a number which has the
largest numerical value.
NAND Gate: A binary digital building-block that acts as an AND gate followed by an inverter.
NOR Gate: A binary digital building-block that acts as an OR gate followed by an inverter.
NOT Gate: Occasionally used to mean "inverter."
Object Code: Output from a compiler or assembler which is itself executable machine code or is
suitable for processing to produce executable machine code.
OR Gate: A device or circuit with two or more inputs of binary digital information and one output,
whose output is 1 when any one or more inputs are 1.
Output: An information signal going out of a system or a part of a system.
Output Enable: A signal that when true connects the outputs of a storage cell to the output lines
of the device.
Parity Check: A check to see if the number of ones in an array of binary digits is odd or even.
PC: Program Counter.
Photomask: A transparent glass plate carrying an intricate, very precise pattern of
microscopically small opaque (dark) spots photographically reduced from a larger pattern.
Photoresist: A liquid that, when spread in a thin film and dried, quickly hardens into a tough
plastic substance when struck by ultraviolet light. When the unhardened areas have been washed
away, the material beneath is exposed for etching by an acid.
Priority Interrupt: A method of providing some commands to have precedence over others.
Program: A series of actions proposed in order to achieve a certain result.

G-3
sL

GLOSSARY

Programmable Read-Only Memory (PROM): A fixed program, read only, semiconductor memory
that can be programmed after packaging.
Programmed System: A system that operates by following a series of stored instructions.
Pushdown Stack: A set of registers which implement a pushdown list.
RAM: A random-access memory where words may be "written" (stored) or "read" (recovered) in
any order at random.
Refresh: To refresh a dynamic storage unit means to restore its charge to the desired vo tage
level
Register: A certain type of temporary storage unit for digital information.
Relative Address: The number that specifies the difference between the absolute address and
the base address.
Reset: To "reset" a stored bit means make it a "0."
ROM: A read-only memory containing data permanently stored when the unit was made.
Routine or Programmed Routine: A series of instructions followed by a programmed system in
doing a particular job. Usually contained within a main program.
Semiconductor: Semiconductor material such as silicon.
Serial Data Transmission: Two or more bits of a group are said to be transmitted in series when
one at a time is transmitted through the same wire.
Set: To "set" a stored bit means make it a "1."
Shift: A movement of stored data right or left.
Shift Register: A register in which the stored data can be moved to the right or left
Significant Digit: A digit that is needed to preserve a specific accuracy or precision.
Simulator: A computer program that represents the behavior of a system.
Software: A set of computer programs, procedures, and possibly associated documentation
concerned with the operation of a data processing system, e.g., compilers, library routines,
manuals, circuit diagrams.
Source Code Program: A computer program written in a source language.
Stored Program: A set of instructions in memory determining the order of the problem solution.
Substrate: The semiconductor material of a slice or chip that lies beneath the diffused and
expitaxially deposited regions.
Subroutine: A routine that is part of another routine.
Subsystem: A smaller system inside a larger system. Each subsystem can be thought of as a
separate system with its own job to do.
Sum: In arithmetic, the result of an addition.
Terminal: A computer terminal is an input (usually a keyboard) or output device (usually a
printer or CRT screen) operated by a person.
Truth Ihble: A table showing the logic state of each output that results from each combination of
logic states at the inputs. The logic states are 1 (yes, true) and 0 (no, false).
TTL or TT.: Transistor-transistor logic.
USACII: See "ASCII." A standard code for alphanumeric characters.
Wo^: A group of bits handled as a unit usually stored at a certain address in a RAM.
Workspace: In the 9900, a set of 16 consecutive words of memory used as registers.

G-4 UNDERSTANDING MICROPROCESSORS

I INDEX

. Index
Add Instructions: 3-38; 5-3; 6-9; 7-8,9;

8-11
Addition: 3-30, 31, 32, 38; 4-35; 5-13,16;

6-13; 7-21,23
Address Bus: 2-13,14; 4-8,13; 5-2,11,

12, 34, 35, 36, 37, 39; 7-4, 14
Addressing Modes: 4-47-54; 5-2-5; 6-8,9,

22; 7-6, 7,9,10; 8-9,10,11
Algorithm: 4-30; 5-14; 6-4,13, 21
ALU: 2-23,24; 3-30, 33, 34; 4-29; 5-2; 6-9
Applications: 1-11,12,13,21,22,25; 5-

13; 6-5; 7-12; 8-17
Assembly: 4-26, 29, 43, 47,48; 5-24; 6-12,

14,17,18,19, 20, 21; 7-7, 9, 10,11,
24

Bit Length: 2-16; 3-20,32; 4-4,20, 21
Branch And Jump Instruction: 4-41,43,

46; 5-3, 8,9; 6-10,11,15, 23; 7-10,
11, 21; 8-11

Byte: 2-9; 3-20; 4-48
Carry Bit: 3-30-34; 4-35; 6-9,11,13
Chip (I/C): 1-3,16,17,18; 3-2, 3, 5, 26
Clock: 2-17; 3-2,22,23, 24,35-38; 4-8; 5-2;

7-13
Codes -

Address: 2-12,13,14,19; 3-37
BCD: 4-30, 32; 5-13; 6-19; 7-21,23
Binary: 2-9,16; 3-20; 4-19, 30,31
Character: 2-16
Conversion: 2-16; 5-14, 26-30
Ch. 8 Ex; Ch 12 Ex.
Data: 2-13,14,19; 4-30; 7-21
Hexadecimal: 4-33, 34; 6-14; 8-10
Instruction: 2-10,11,13,14,19,

20; 3-37
Two's (2's) Complement: 3-34; 4-

31,39
Comparison Instructions: 4-40,41; 6-10,

11,13; 7-10,11; 8-11
Compilers: 4-26; 6-17
Computers: 1-1,9,15, 21, 22, 23; 2-19; 5-

1; 6-18; 7-2, 3; 8-8
Control Bus (Timing and Control): 2-18,

19,21, 22; 3-2,35-38; 4-5, 8, 37,46,
52; 5-9-12, 32,33; 6-5; 7-4, 5

AA (Decimal Adjust Instruction): 4-
32,33; 7-8,9

ata Bus: 2-13,14,15; 4-8,9,10; 5-2,11,
12,34,36, 37, 39

Data Address Register: 2-21; 4-51; 5-3;
8-8

Data Transfer Instructions: 4-27; 5-3, 4,
5; 6-10; 7-6, 7

Decoder: 2-10,13,14, 21,22, 23; 4-13,18,
19,20,27,37, 46,51, 52, 53; 5-11,
12,17,32, 34-39; 7-14,16,19,21

Decrement Instructions: 5-3; 7-9; 8-11
Digital Systems: 1-2,3,14, 23; 2-7, 8; 3-

10,11
Display: 5-13,16,17,37; 7-15,16, 22
Enable: 3-28,37, 38; 4-9,18-23; 5-9-12
Flag (Status Bit): 4-35,36; 5-2; 6-11
Flip-Flop (FF): 3-21-24,32,33,37; 7-13,

14,17
Flow Chart: 4-2, 3; 5-15,20, 21; 6-2, 3, 6,

7,19, 21; 7-20; 8-18
Hardware: 5-34-37,39; 6-4; 7-4,13,14,

16,17,19; 8-6,11
HLL (High-Level Language): 4-21; 6-2,

15-20, 22
IC (Integrated Circuit): 1-3,16,17,18;

3-1,2,3,4,7,8,9,16,18,20
Increment Instruction: 6-9; 7-9; 8-11
Initialization: 4-4, 5-21,23; 7-18, 21; 8-

17,20
Input: 1-6, 23; 2-3,14,19,25; 3-2; 4-8,22,

23; 5-11,19-25; 6-7,10,19,24;
7-6, 7,12,13; 8-7,11, 14,15,16

Instruction Cycle: 3-36
Instruction Register: 2-22,23,37; 4-37,

46,50
Instruction Set:

General: 2-6,13,22,23,24; 3-36,
37; 4-5,25,27,47, 48; 5-
3

TMS1000: 6-9,10,19
TMS8080A: 6-9,10,14,19, 20,22;

7-6-11
TMS9900: 6-9,10,15,19, 20, 22,

23; 8-10,11, 12
Interrupt: 4-6,23, 24; 6-11; 7-1,5,11,12,

13, 21-24; 8-13
I/O Structure: 1-6; 2-19; 4-8; 5-2,3,11,

12,37; 6-19; 7-6, 7,12-17; 8-14,15,
16

Latch: 3-37, 38; 5-12
LED (Light-Emitting Diode): 5-13,16,

17, 37; 6-19; 7-15,16,19; 8-7
Loading: 2-21; 4-13-18
Logic: 3-7,8,9,11-21,34; 4-38, 39, 40; 5-

3, 7; 6-8,9; 7-8,9,10; 8-11
Logical Instructions: 4-38,5-3,7; 7-6; 8-

11

UNDERSTANDING MICROPROCESSORS 1-1

INDEX I
Loops: 4-43,44; 5-21,27,29,31; 6-13,15,

20,21
Machine Code (See Machine Language)
Machine Language: 2-10; 4-25,29; 6-13,

19
Memory:

Allocation: 4-7; 5-26,32, 33; 6-5,
14,15; 8-7,8,19

Dynamic: 3-28,29,30
General: 1-23,24; 2-2,12, 20; 3-20-

30; 4-7,37 46, 49,51,53
Mapped I/O: 4-22; 5-11,12,26; 6-

19
RAM: 2-13; 3-2,25, 26,27,37; 5-

32, 35,36; 8-7
ROM: 3-27,28; 5-34; 7-17,18,19;

8-7
Static: 3-30

Microcomputer 1-4,15,21; 2-19; 3-2,5;
4-6; 6-23; 8-1

Microcomputer Modules: 3-7; 6-23; 8-1
Microcomputer Development System:

6-24
Microprocessor. 1-4,21,25; 2-1; 4-4,6,9,

20,37, 46, 51,53; 7-2, 3; 8-1
Mnemonic: 2-10; 4-26,28; 5-3,24; 6-2,3,

6,9,10,11; 7-11,24; 8-11
Modular Programming: 5-19; 6-1,3,4;

7-18
MOS (Metal-Oxide-Semiconductor): 1-

19; 3-6,7,10,17,18,19; 4-11
Multiple Precision Arithmetic: 4-37; 5-

27,28; 6-14, 20
Multiplication: 3-33; 6-20,21; 8-11
Object Code: (See Machine Language)
Operand: 4-28,48,49,50; 8-10
Output 1-23,24; 2-3,20,25, 26; 3-2; 4-11,

12 22,23; 5-12,31,36,37; 6-7,19;
7-6, 7,14,15; 8-14,15,16

Package: 1-16,17,18; 3-3,4
Parallel Data Transfer 3-24,25; 5-11,

12; 6-10
Positive Logic: 2-7; 3-12,18
Program Counter: 2-21,3-40,4-37,39,

49,52,53; 7-2,3; 8-8
Program:

Design: 4-55; 5-22,23,24; 6-1,2,
24

General: 1-7,22; 2-4,11; 4-44; 6-7,
14,15,19, 20, 21, 23; 7-
21-24; 8-21,22

Verification: 6-17

Random Access Memory (See-Memory,
RAM)

Read-Only Memory (See-Memory,
ROM)

Read/Write Signal: 4-23; 5-10,11,12
Register 2-17, 21; 3-24, 33; 4-46, 50; 7-2,

3
Reset: 7-16,17,18,21
Return Instructions: 6-10,11; 7-3,11,

13,19
Serial I/O: 3-25; 5-18; 8-7,14,15,16
Shift Instructions: 3-25,33; 4-36,37,38;

5.7.5.9- 7.9

Software: 1-28,29; 5-24,25,28, 29,31; 6-
4

Stack (PUSH, POP Instructions): 6-10,
7-2,3,7

Status Register. 4-35; 8-8,9
Subroutine: 4-45,46; 6-10,11; 7-11
Subtraction Instructions: 3-34; 4-32; 5-3,

6; 6-9,7-9
System Description: 4-1,2; 5-13; 6-1,5;

7-12
Timing and Control: 2-13,17-20; 4-21,

22,23; 5-9,10,11,18,21; 8-15,16,
21,22

Timing Loops: 5-21; 6-16; 8-21, 22
Three-State Outputs: 3-28; 4-9-12
Unconditional Branch or Jump: 4-41; 6-

10,11; 8-11
Voltage Levels: 2-7; 3-17,18
Workspace: 8-8,19
Word: 2-9; 3-20,8-7,10

1-2
UNDERSTANDING MICROPROCESSORS

f

The era-of The microprocessor is here — ushered in by the digital electronics revolution Its
impact lsMRSrent irv appliances, games, toys and computers for the home, as well as in
systems for business, manufacturing, and govenment applications. The heart ot such systems
is a microprocessor. How they work and what they cah'do is something you need to know.

UNDERSTANDING MICROPROCESSORS
Brings you basic knowledge of microprocessors in a language you can understand.

Basic concepts, fundamentals, program development and applications are presented as
follows:
1) The World ol Digital
Electronics
What are digital systems,
(unctions, circuits? How and
why are they making such an
impact on the world around us?
Why are microprocessors
important to the future?

2) Basic Concepts In
Microcomputer Systems
What are the building blocks of a
microcomputer system and how
do they work together? Find out
how digital signals are used for
addresses, instructions,
numbers and characters

3) How Digital Integrated
Circuits Provide the Functions
What are integrated circuits?
How is logic performed digitally
and how are these circuits
made? The overall concepts of
how digital functions are
provided by digital integrated
circuits are brought into focus.

4) Fundamentals ol
Microcomputer System
Operation
Learn what an instruction set is
and the kinds ot instructions that
are normally provided when
using microprocessors. How do
you select the microprocessor to
use? How are the components
of a microcomputer connected
to make them work together?

5) A System Application With
SAM
Learn how to apply
microprocessors to a specific
problem by using the features of
a fictitious Simplified
Architecture Microprocessor.
Get the feel of what software
and programming means and
how hardware is selected to
accomplish a task

6) Programming Concepts
The steps necessary to get from
an idea to software — the
program for a system — are

defined and applied Instruction
set differences, assembly
language programming, high-
level language, program
verification, I/O subprograms
are some of the subiects
covered using examples

7) An 8-Bit Microprocessor
Application
Bringing things together by .
designing a coin sorter system A
using an 8-txt (TMS8080A) ™
microprocessor How do the 8-
bit features and instruction set
capabilities dictate the design7

Follow the design step by step
from idea to hardware

8) A 16-Bit Microprocessor
Application
Find out when and why to jse a
16-brt microprocessor Examine
the instruction set. explore the
operation and features, and
apply a unit (TMS9980) to
develop a "grandfather clock."
Encourages "hands on" work
with a microcomputer module

The series of books from Radio Shack form a library written for Anyone who
wants to learn easily and quickly more about today's electronic technology and
the era of personal computing, its impact on our world, and its application in our
lives. Each book is written in bright, clear, down-to-earth langugage and focuses
on one aspect of what's new in today's electronics. Whether you're a serious
hobbyist, experimenter, or otherwise involved in electronics technology — or just
curious about what goes on inside today's consumer electronics, appliances,
calculators and the new microcomputers — there are titles you'll enjoy:

Understanding Solid-State Electronics —
3rd Edition

Understanding Communications Systems
Understanding Automotive Electronics

Understanding Optronics
Understanding Digital Electronics
Understanding Digital Computers
Understanding Microprocessors
Understanding Computer Science

Radio /haok
SA DIVISION OF TANDY CORPORATION

FT WORTH TEXAS 76102

288 PAGES PRINTED IN U S A

*

Understanding
Microprocessors
Written By: Don L. Cannon, Ph.D

Assoc. Prof, of Electrical Engineering
University of Texas at Arlington
Staff Consultant, Texas Instruments Learning Center

Cerald Luecke, MSEE
Mgr. Technical Products Development
Texas Instruments Learning Center

Radio /hacK
SA DIVISION OF TANDY CORPORATION

FT WORTH. TEXAS 76102

i

The era of-the microprocessor is here — ushered in by the digital electronics revolution. Its
impact is4efferent in appliances, games, toys and computers for the home, as well as in
systems for business, manufacturing, and govenment applications. The heart of such systems
is a microprocessor. How they work and what they cah'do is something you need to know.

UNDERSTANDING MICROPROCESSORS

Brings you basic knowledge of microprocessors in a language you can understand.

Basic concepts, fundamentals, program development and applications are presented as

follows:
defined and applied. Instruction
set differences, assembly
language programming, high-
level language, program
verification, I/O subprograms
are some of the subjects
covered using examples.

1) The World of Digital
Electronic#
What are digital systems,
(unctions, circuits? How and
why are they making such an
impact on the world around us?
Why are microprocessors
important to the luture?

2) Basic Concepts In
Microcomputer Systems
What are the building blocks of a
microcomputer system and how
do they work together? Find out
how digital signals are used for
addresses, instructions,
numbers and characters.

3) How Digital Integrated
Circuits Provide the Functions
What are integrated circuits?
How is logic performed digitally
and how are these circuits
made? The overall concepts of
how digital functions are
provided by digital integrated
circuits are brought into focus.

4) Fundamentals of
Microcomputer System
Operation
Learn what an instruction set is
and the kinds of instructions that
are normally provided when
using microprocessors. How do
you select the microprocessor to
use? How are the components
of a microcomputer connected
to make them work together?

5) A System Application With
SAM
Learn how to apply
microprocessors to a specific
problem by using the features of
a fictitious Simplified
Architecture Microprocessor.
Get the feel of what software
and programming means and
how hardware is selected to
accomplish a task.

6) Programming Concepts
The steps necessary to get from
an idea to software — the
program for a system — are

7) An 8-Bit Microprocessor
Application
Bringing things together by
designing a coin sorter system
using an 8-bit (TMS8080A)
microprocessor. How do the 8-
bit features and instruction set
capabilities dictate the design?
Follow the design step by step
from idea to hardware.

8) A 16-Bit Microprocessor
Application
Find out when and why to use a
16-bit microprocessor. Examine
the instruction set, explore the
operation and features, and
apply a unit (TMS9980) to
develop a "grandfather clock."
Encourages "hands on" work
with a microcomputer module.

The series of books from Radio Shack form a library written for Anyone who
wants to learn easily and quickly more about today's electronic technology and
the era of personal computing, its impact on our world, and its application in our
lives. Each book is written in bright, clear, down-to-earth langugage and focuses
on one aspect of what's new in today's electronics. Whether you're a serious
hobbyist, experimenter, or otherwise involved in electronics technology or just
curious about what goes on inside today s consumer electronics, appliances,
calculators and the new microcomputers — there are titles you'll enjoy:

Understanding Solid-State Electronics —
3rd Edition

Understanding Communications Systems
Understanding Automotive Electronics

Understanding Optronics
Understanding Digital Electronics
Understanding Digital Computers
Understanding Microprocessors
Understanding Computer Science

Radio /haek J
M A DIVISION OF TANDY CORPORATION

FT WORTH. TEXAS 76102

288 PAGES PRINTED IN U.S.A.

