
• ^ODEWORKS
Issue 18 Jul/Aug 1988

CONTENTS 2*3!

Editor's Notes 2

Forum 3

Beginning BASIC 7

Mediator.B as 9

Outline.Bas 15

Random Files 23

Computing Notes 29

Conversions 30

Hard Disks 37

Order Form 39

Index Update 40

CODEWORKS Editor's Notes
Issue 18 Jul/Aug 1988

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmarm

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown

Technical Advisor
A1 Mashbum

(c) 1988 80-Northwest Publishing Inc.
No patent liability is assumed with respect
to the use of the information contained
herein. While every precaution has been
taken in the preparation of this publication,
the publisher assumes no responsibility for
errors or omissions. Unless otherwise
noted, all programs presented in this publi
cation are placed in public domain. Please
address all correspondence to:

CodeWorks, 3838 South Warner St
Tacoma, Washington 98409

Telephones
(206) 475-2219 voice

(206) 475-2356 modem
The CodeWorks download operates

around the clock (usually) and has the fol
lowing protocol: 300/1200 baud, 8 bits, no
parity and one stop bit

Authors: We constantly seek material from
contributors. Send your material and allow
4 to 6 weeks for editorial review. You may
send IBM compatible diskettes (please save
your programs in ASCII format). Also send
a hard copy listing of the program and ar
ticle. Media will be returned if return post
age is provided. Compensation will be made
for works which are accepted for publica
tion. CodeWorks pays upon acceptance
rather than on publication.

Subscription price $24.95 per year (six is
sues.) A subscription year runs from Nov/
Dec through Sep/Oct. Anyone subscribing
during the current subscription year re
ceives all issues for that year. VISA and
Master Card orders are accepted by mail or
phone. Charge card orders may also be left via
our on-line download system.

SAMPLE COPIES: If you have a friend
who would like to see a copy of Code-
Works, just send the name and address
and we will send a free sample copy.

We finally did it. This entire issue
was produced using PageMaker
and a laser printer. It was scary at
times. You push a little here and
things pop out there. And it took a
whole lot longer to do than it did
manually.

Of course, that's because we
were not as familiar with desktop
publishing as we were the manual
method. Supposedly, by the third
issue, we should be doing it faster
(and, I hope, better).

When it was all done, I had the
feeling that it just wasn't as "tight"
as we are accustomed to. There
seem to be little splotches of white
space peeking out here and there
that we couldn't seem to control as
well as we did manually. And mak
ing things fit and come out right is
what it's all about in design and
paste-up.

But why, you may ask, are we
even bothering with desktop pub
lishing? There are several good rea
sons. First of all, it is the state of the
art thing to do. If you don't keep up
you get lost in the dust. For another
thing, our conventional typesetting
gear was getting on in years, and the
longer we wait, the less it is worth to
anyone wanting to buy it. But that's
not all. Something unexpected
popped up while all this was going
on. We suddenly realized that with
desktop publishing we were no
longer tied to a building with a com
position room and a darkroom with
plumbing and all that. With desktop
publishing, you could work off of
your kitchen table if you had to.

Well, that gave us ideas. Why not
forsake the high rent district and
move into something a little more
economical. Desktop publishing
will let us do that, and we are look
ing around now for that new place.

We hate to think of changing ad
dresses, but heck, no matter how
good or bad a business is going it's
always smart to economize. Not
only that, but the sale of our old
typesetting equipment and dark
room will more than pay for the
laser printer we need.

It's that time of year again when
we have to sit down and decide if
CodeWorks is going to shoot for
another year. Do we just finish the
current year and drop it or do we
solicit your renewals and go for it
again?

By now you must all be aware
that we aren 't the big publisher from
the West. Actually, we are pretty
small potatoes, but are having a
good time trying to keep an interest
in BASIC programming alive and
well. We don't have to fight off
subscribers with sticks. On the con
trary, it's getting tougher and
tougher to find new lists to promote.

We have the material and the
dedicated people to help put it all
together. The big question is
whether subscription renewals and
diskette sales will support the op
eration for another year. Yes, we
look ahead for a whole year be
cause we don't exactly cherish the
thought of leaving you all high and
dry in the middle of a subscription
year. It's just not the proper thing to
do.

What this says is that it all de
pends on you, the readers. We are
ready, willing and able. If you will
renew promptly (and maybe buy a
disk or two of programs) we'll
sneak through yet another year of
CodeWorks programs and com
puter enjoyment for you.

We really want to. We hope you
do too.

Irv

CODEWORKS

Forum
An Open Forum for Questions and Comments

I have subscribed to CodeWorks since it started and
I am well pleased with its contents. In your Issue 17 you
described a program, "Genealogy on Display" and I
thought that it was just what I wanted, since I have
recently become very interested in detailing my ances
tors.

I wrote to the author of the program at the address
given and he wrote back saying that his release is
version 5.0 and it will only run on (MS DOS) com
patibles. Quoting from his letter, "although they are
BASIC programs, they make extensive use of the file
structure of the IBM PC DOS, together with extensive
use of the screen-positioning capabilities of PC BASIC.
Because of the above, it would be a major undertaking
to modify them to run on your Model IV (Tandy)."

Do you know of another similar program?
Walter Evans, Jr

Waco, TX
Read on.

I have just received Issue 17 of CodeWorks and as
always, I think it is great. Several times I have been
going to drop you a line but never found the time. What
you said in the first two letters (about genealogy) did
turn me on.

...I'm doing the Long family genealogy. My daugh
ter got me started and I have four cousins who are
involved with the research. First I got all the shareware
genealogy programs and evaluated them. Genealogy
on Display is a good program, but as you say, it will hold
only 500 records.

The best program that I found was Family History
System, by Phillip Brown (834 Bahama Drive, Tallahas
see, Florida 32301). As you say, it is a large system of
programs. In fact the programs are so large that they use
two disks and you do have to switch the disks when you
need some of the reports. The limit on the number of
records is 9,999 names in 99 generations. That will take
care of most families. With two floppy drives you are
limited to storing about 1,000 names, depending on the
information you have to save. You can keep a record of
everyone's address. There are files to store marriage,
education, occupation, military and health records. I
now have 817 name records in the file. Mr. Brown has
been very helpful when I have needed any help and
always answers my letters promptly...

Seymour E. Long
Margate, FL

The system of programs you refer to are, again, for MS
DOS and compatible computers. But there is still hope
for early Tandy users, read on.

In Issue 17 of your magazine there was some discus
sion of genealogy programs. A great one can be had for
$10.00 on shareware basis from Arthur C. Hurlburt.
This program is everything you claimed for Genealogy
on Display and more. It is random access and has no
limit on the number of names except for disk space. It
runs only on the (Tandy) Model III with TRSDOS 1.3,
but it will keep your Model III from becoming obsolete
if you are into family histories.

I would suggest you invest the ten dollars by sending
to the following address with a request for Version 1.1
of CLAN: Arthur C. Hurlburt, 1919 N. Clark, Daven
port, Iowa 52804. I have 465 family names in my file
with plenty of room to spare and the author claims to
have over 700 with space to spare.

Lawrence J. Carley
Mt. Morris, MI

Since Tandy Model TVs will also work in Model 111
mode, this ought to be an answer for many of you. We
are quite surprised at the interest shown in genealogy,
and welcome any other information we can pass along
for the general interest of all.

I was about to put the listing for Bio.Bas into an
envelope and send it to you when I decided to have one
more look, and sure enough, I found the error of my
ways. I had a double bracket (parentheses?) in line 160
and that was the culprit. What gets me is that I read the
line to you over the phone and I still didn't see it! My
wife keeps telling me to have my eyes checked and I
guess she's right. Both Bio.Bas and Etax88.Bas are
running fine now.

Ray Bowers
Las Vegas, NV

Murphy's Law runs rampant! Didn't you know that after
looking for an error for days some un-initiated person
will walk up, point right to the problem, and ask,
"What's that for?"

...I have no idea how to get my old CP/M programs

CODEWORKS 3

to my MS DOS 3.5 inch disks and no one I have asked
has been able to tell me, including the Tandy customer
service in Fort Worth.

Alton Munro
Lufkin, TX

If both machines have RS-232 ports, you can direct
connect them. Then on the CPIM machine, you can use
PIP to redirect the file to the RS-232 port and on the MS
DOS machine you can use any terminal program to
accept them and store them on the 3.5 inch disks. You
will need to make minor changes to the BASIC programs
you port over this way, but it sure beats typing them all
in by hand. Also, you will probably need to save the
programs on the CPIM machine in ASCII first before
you try to move them over to MS DOS.

I congratulate you on your magazine. It is expensive,
but it is a great learning tool. I have done a fair amount
of BASIC programming, but it has been to meet a
personal need; I can see that I use only the simpler
routines and forms of code. There is a lot of meat in your
publication; doubtless, I will ultimately feel compelled
to get the back issues - when I understand all that's in the
issues I have.

You seem sincere in encouraging questions. I need
some help in developing a program to evaluate the
performance of a stock portfolio over a given period of
time. It is, of course, very valuable to know how you are
doing in comparison to various market indices, mutual
funds, etc. If one has a sufficient number of different
stocks to be adequately diversified, a computer program
is almost essential to handle the math...

William V. Victor
Northridge, CA

We too, are interested in such a program and have been
gathering information on it for some time. When we get
it all together we'll publish it, of course. We do have a
mutual fund tracking program almost ready to go, but
are having fits trying to make it work on all models.
Aside from that, it's over 600 lines long and would take
the best part of an issue to list. We'll keep working on it.

...Like many other of your subscribers, I enjoy
learning to program in BASIC. Recently I undertook to
write a billing and accounts receivable program for our
local rural water district. Being slightly more advance
than a novice I found many routines in CodeWorks that
helped in making my efforts a success. Thanks for a
well-written, helpful publication.

...Recently I purchased a Tandy 1400LT to use in

connection with genealogical research in the archives of
the several states in which I am doing research. To make
the 1400LT compatible with my (Tandy) 1000SX, I
attempted to use a 5 1/4 inch drive which had been
removed from a Tandy 1000SX as an external drive for
the 1400LT. I connected the 5 1/4 inch drive to the
1400LT with a standard IBM cable only to find that the
wiring configuration is different on the 1400LT. The
local Radio Shack dealer checked with Tandy who
informed him that Tandy had not released the wiring
configuration for an external drive and has not placed an
external drive for the 1400LT on the market.

Can you provide me with the needed connection in
formation or a source from which I can obtain the
needed information? Any help would be appreciated.

J. Theron Woodward, Jr.
409 Tombfield Road

Camden, SC 29020
No, we can t. But anyone having this information can
contact you directly since we have included your com
plete address.

I am encountering a problem in running Bio.Bas on
my Model III. I get the statement "Undefined user
function in 1110."

W. P. Frakes
Cuyahoga Falls, OH

The problem is the CLEAR statement in line 190. For the
Model III (and any other machine that needs to clear
space) remove line 190 and put in a new line 140 CLEAR
2000. Yes, I did it again! CLEAR seems to be my nemesis.
That s probably the umpteenth time /' ve done that and
still can't learn the simple lesson that CLEAR clears all
variables and defined functions.

Issue 17, page 37. 'scuse please... at bottom of page
is statement... "Joe Magarac (our old buddy) born on 1
January 1900 was 58 years 2 months and 7 days old on
the 10th of March 1958."

Is this new computer math? For one like myself, who
counts on fingers, there does seem to be a slight proof
reading irregularity - the same thing I encounter when I
let a computer do my thinking for me..

I like the idea of a MS DOS booklet... keep up the
excellent work.

Joseph A. Dickerson
Baltimore, MD

You are right. We were wrong. Our figures lied about
Joe's age. And we should be able to announce the DOS
booklet in this issue.

4
CODEWORKS

...I wrote you some time ago about the availability
of a (Tandy) Model I upper/lower case kit. There is a guy
in your own backyard that has them:
Electronic Closet
Tim Worcester
8187 Blakely Court West
Bainbridge Island, WA 98110

One of your other subscribers found him for me.
Hope this helps and thanks for the great programs!

Bob Salisbury
El Cerrito, CA

I have just bought a TRS-80 Model III. I was buying
the 80-Micro magazines, and they quit on me! So, I have
signed up as a subscriber to your magazine, and have
also picked up the last year's issues. I didn't know what
to expect, as far as the magazine content might have
been, because I've seen quite a few where you pay
much for so little information, and mostly advertising.

And as it turned out, I like it! And I'm going to see
about getting the rest of the back issues that I missed,
since I'm so close to the beginning anyway. There is
only one question. Is there a way to program around
commands like:
CMD "J",X$ which changes a given date to a Julian
date.
CMD "B","OFF" which turns off the break key.
POKE 16916.X which protects a given number of lines
on the video screen from scrolling.

As far as the break key goes, I guess that's just
optional, but my program needs the scroll protect and
the CMD "J" command...

Pat Chong
Las Cruces, NM

We have no idea of how to change the CMD "J" and
Julian date thing. If we ever find a routine to do it we will
publish it.
As you said, the break key is just a convenience and
need not be bothered with too much.
The scroll protect can easily be accomplished if you use
our general purpose locate/print@ subroutine. Also see
Beginning BASIC in Issue 17. It talks a lot about cursor
positioning.

And, in a follow up letter from Mr. Chong, he gave us the
following bit of code to change a date like 03/01/88 to
a Julian date:

10 A$="03/01/88" ' Sample date
100B=0:M=VAL(LEFT$(A$,2)):DATA

31,28,31,30,31,30,31,31,30,31,30,31
110 IF M>1 THEN FOR X=1 TO (M-1):READ
A:B=B+A:NEXT X
120 B=B+VAL(MID$(A$,4,2))
130 Y=VAL(RIGHT$(A$,2)):IF B>59 AND INT(Y/
4)=Y/4 THEN B=B+1

Poker still cheats! I speak of Poker7, which I ordered
from you on disk when I got my new Packard Bell
computer. I have not tinkered with the program, but run
it as is on my MS DOS, GW BASIC machine.

I have caught it cheating twice. The first time every
one passed so the evidence was lost. But last night it
ventured forth again, and this time the foul deed was
manifest... The program refused to recognize my pair of
Kings as openers... I would appreciate your thoughts on
this latest skullduggery.

Also, I would like to do some experimenting with the
bluff factor in Poker7, but am unable to trace where in
the code the bluff is set. I am under the impression the
BL is the variable. It seems, too, that the game might be
made stronger by adding a subroutine that utilizes types
of bluffs other than the "one pair, pat hand" bluff it uses
now. For instance, after missing a possible straight or
flush, it might, on an average of one time in thirty odd
tries (approx.), bet as if it caught the desired card even
though it had a busted hand.

Thanks for your attention. My best to you and Code-
Works.

Arthur Melanson
Audubon, NJ

In a program the size and complexity of Poker, it is
sometimes quite difficult to trace isolated incidents like
not being able to open when you have legal openers.
What I'm saying is that I can't find a logical reason for
what happened, even though it has happened to me too,
on occasion.
Reference the bluffing: BL is the bluff variable. It first
appears in line 2010 and comes up at random when two
high cards are held. Then, to make the bluffer bet like a
mad man, in line 4130 and 4230, BL figures into the
raises. Notice also that HC (High Cards) figure in too,
in lines 4110 and 4220. So you see that the bluff has to
start with the hand determination and carry over to the
betting rounds, and that the two are tied together.
Knowing this, you should be able to work your own bluff
into a busted flush or straight, but remember that in that
case, you would also have to keep the hand from
showing a fold and keep that hand in the game.

I would like to cast a vote in favor of games. While

CODEWORKS 5

not much of a player of arcade type games, I do enjoy
the multi-player games such as Network (Issue 6). My
favorite for years has been Santa Paravia, typed in from
the December 1978 Softside magazine...

Clifton N. Duval
Star Lake, NY

Santa Paravia was a good game, written by our old
friend, George Blank, who was once on the staff at
Softside and was later on the editorial staff of Creative
Computing magazine. We would really like to see a
good game along those lines; one that had a realistic
approach to both economics and ecology, and one you
could learn something from. But that's a pretty tall
order, since even our best economists don't seem to
have economics under control yet. But the idea is
simmering, ever so slightly and quietly, on our back
burner.

When I first looked at the mail for this issue I thought
there wasn't too much there. You proved me wrong
again! Thank you all for the thought-provoking ques
tions and answers. Enjoy the good ole' summertime,
and we'll see you again around the start of football
season. -Irv

I learned one thing, there's no such thing as a little
error in a billion dollar corporation.

We have committed to another
year of Code Works!

Please help out by renewing early so that we can
set some sort of operating budget.

Order our program diskettes. The first two year's
disks are still available; this year's disk will be
ready about the 1st of September.

Check out our new MS DOS book on page 39.
Tell your computing friends about CodeWorks.
We have a great year planned. Stay tuned.

CODEWORKS

Beginning BASIC
A Look at Defined Functions

BASIC has many built-in functions. There is the
MOD function, the INT function, the MID$ function
and many others. These are all called intrinsic functions.
They are like little subroutines, and when called will
return a value which depends upon what the function
was designed to do.

BASIC also provides for user defined func
tions. With these, you can define any kind of function
you wish and it then becomes like the intrinsic functions
in that you can supply it with a variable value and it will
return whatever your function was designed to deliver.
Sounds almost like a subroutine, doesn't it? In a way, it
is like a subroutine, and in fact, you could make a
subroutine out of any user defined function. However,
with the user defined function you don't need to use the
GOSUB command or the RETURN either, for that
matter. You can simply treat the defined function as a
variable. Let's take a little example.

Suppose you wanted to design a function that
would take a first name and last name and print them
together with an appropriate space between them. Here
is one way to do it:

10 DEF FNC$(A$,B$)=A$+" "+B$
70 INPUT'What is your first name";F$
80 INPUT'What is your last name ";L$
90 PRINT'Your full name is ";FNC$(F$,L$)

With this little routine, we can talk a lot about defined
functions in general, and this one in particular. To begin
with, line 10 defines the function (in this case, function
C$(A$,B$)). A defined function starts with the function
name and an argument set equal to an expression of the
definition. In our case, we said that the function name is
C$, the argument is (A$,B$) and the definition of the
expression is A$+" "+B$. Now when you call this
function and give two string variables (any two string
variables!) to it, it will return the first string and the last
string separated by a space. Notice that even though our
defined function calls out A$ and B$, we can feed it F$
and L$ and it works. Also, just because we have used A$
and B$ in the defined function does not mean that these
variables are "used up." In no way do these variables
conflict with variables of the same name elsewhere in

the program. Further down in your program, for ex
ample, you could have A$="CAT" if you liked and it
wouldn't affect the defined function in any way.

Defined functions will work not only with string
variables, but with any legal variable in BASIC. They
must be contained in one program line (not one screen
line!) of less than 255 characters, and there can be no
colons used to separate statements in that line. However,
this restriction can be overcome easily because defined
functions can be nested, or once defined, one defined
function can become a part of another defined function
as we will see shortly.

We have already seen that variables used in
defined functions are "local" to the defined function and
do not affect the rest of program variables. We have also
seen that the specific variable we used in defining the
function need not be used when calling the function. For
this reason, these variables (A$ and B$ in our case) are
called dummy variables. They just indicate a place in the
function where a variable (any variable) can go. It
stands to reason, of course, that if your function uses
string variables you must call it using string variables.

In our example above, we could have changed
line 90 to read: NAME$=FNC$(F$,L$) and then
NAMES would have contained the full name. No
GOSUB and no RETURN, which brings up the question
of when to use a defined function. The example we have
just shown is a good one. There are many others. In our
Poker program a couple of years back we made exten
sive use of both the INT and the MOD functions to strip
off the suit and value of the cards from a three-digit
number. These were used very many times in the
program in lines that were already crowded with infor
mation. So we defined FNM(X)=X MOD 100 and
FNI(X)=INT(X/100) and then called FNM(M(I,J)) or
FNI(M(I,J)) whenever we needed either suit or value.
The M(I,J) array contained the three-digit card value in
question. It saved a lot of coding, it made it easier to see
and follow and most of all, it shortened some of those
long lines.

You cannot use a verb command in a defined
function, i.e., no PRINT, GOTO or anything like that.
Nor can you use IF...THEN either. But, you can do some
powerful logic operations in a defined function. Here is

CODEWORKS 7

an interesting one: Lumber 2 by 4's are sold in even two
foot lengths. That is, you cannot buy a 7 foot 2 by 4, you
must by an 8 footer and cut off one foot. In a program
recently, we had need to find the next greater two-foot
length, where the length was given originally in inches.
So we used this defined function:

10 DEF FN(M)=M MOD 24o0

and then later in the program, where HI was the length
in inches, we used this line to get the inches up to the
next two-foot length:

90 FOR 1=1 TO 25:IF FNM(Hl) THEN
H1=H1+1:NEXT I

Now when HI (in inches) was not evenly divisible by 24
we kept adding one to HI until it was evenly divisible.
You can read the second statement in line 90 like this: if
it is true that HI is NOT evenly divisible by 24 then add
one to it and try again until it is. There may be a more
clever way to have done this, but this one works. This is
another case where the length of the lumber had to be
determined many times in the program and the defined
function was an efficient way to do it. After having gone
through the function, HI was always 2, 4, 6, 8, 10, 12,
etc. feet long when divided by 12. It couldn't be
anything but.

What about errors? Do you remember the DATA
statements and the code that reads them? If there is an
error in the DATA statement itself, BASIC will tell you
that the error occurred in the line that read the line that
was actually in error. It's that way with defined func
tions too. If you have a syntax error in the line that
defines the function, then the error line will show as the
line that called the function, not the line containing the
defined function. And while we are at it, we may as well
add that the line defining the function must have been
read at least once by BASIC before it can be called. For
this reason, you generally put your defined function
near the start of the program; somewhere in the initiali
zation phase of the program. And again, while we are
there, we can add further that a defined function can be
re-defined later in the same program. The last function
that BASIC encountered will be the operative one,
assuming that there are two or more of them with the
same name.

In the last issue (Issue 17, Bio.Bas, page 34) we
used a very intricate trio of defined functions to deter
mine how many days there were in any given month.
The functions were:

DEF FNE(M)=(M-2*INT(M/2)=0)
DEF FNO(M)=NOT FNE(M)
DEF FNDA(M)=30+(M<8)*FNO(M)+

(M>7)*FNE(M)+2*(M=2)

The first function is to determine if a number is
even. The second says that the number is odd if it is NOT
even (since odd and even are mutually exclusive, we
can say that.) The third function determines the number
of days in any month (given the number of the month
and excluding leap years.) The even numbered months
from January through July are 30 days long, except for
February, and the odd numbered months from August
to December are 30 days long. Keep in mind that logic
functions always return a -1 when true and a zero when
false. With that in mind, you can go through the third
defined function, above, and tell that a month has either
30, 31 or 28 days.

That's quite a bit of logic to go through, but
once defined all you need do is give M a value from 1
to 12 and say PRINT FNDA(M) and you have the
number of days in that month.

The other nice thing about defined functions is
that once you have worked up some neat ones you will
find yourself stripping them out of older programs and
using them again in your current programs. In fact, it's
a good idea to start keeping a library of such functions.
That way, you won't have to keep re-inventing the same
wheel. •

If you are moving
from CP/M

or
TRSDOS to MS DOS

you can find everything about
starting out in MS DOS in

our new booklet,
"Starting with MS DOS"

and it's only $7 postpaid
see page 39 for

ordering information.

8 CODEWORKS

Mediator. Bas
Let Your Computer Help Settle Disputes

David Leithauser, New Smyrna Beach, Florida. Although disputes are not the most
pleasant of subjects, they do exist and must be dealt with. Most disputes are also rather emotional
affairs. A computer program, like Mediator.Bas, can assist in bringing both sides in a dispute
to some reasonable settlement.

Mediator.Bas is a simple computer program for me
diating disputes between two parties or groups. It is
written in BASIC and conversion to various machines
are given at the end of the program listing.

Using Mediator

When the program is run, it will first ask you for the
name of party #1 and party #2, the two parties in the
dispute. The names of the parties could be anything,
such as TOM and SUE, Management and Labor, or USA
and USSR. Once you have input the names of the
parties, the program will refer to the parties by name for
the remainder of the program.

The program next asks how many issues are to be re
solved. Input any number. Mediator then asks how
many of these are of the type that a numerical compro
mise can be achieved. These are issues such as how
much of a pay raise employees should get, or how much
money the defendant should pay the plaintiff in a civil
suit. In some cases, Mediator may split the difference
(not necessarily evenly) in numerical issues to achieve
a fair settlement.

Next, Mediator will ask for a description of each non-
numerical issue. Input a brief description of each issue
in the form of a question. Typical examples might be
"Who gets custody of the child" in a divorce case, or
"Do employees get a paid vacation on their birthday" in
a labor negotiation. Mediator will then ask for a similar
description of each numerical issue. In numerical ques
tions, it is important that the description be phrased so
that the question can be answered by a single number.
For example, if you were dividing up some money

between Tom and Fred, you should not phrase the
question as "How much money should Tom and Fred
each get," because this may involve a different number
for each one. Instead, the question should be phrased as
"How much money should Tom get." The amount of
money that Fred gets would then be the remainder of the
money.

Next, Mediator will ask for the position of the first
party on each issue. For example, in a management-
labor dispute, it might ask "For management, describe
your position on issue of 'Do employees get a paid
vacation on their birthdays."' Management would
probably input "NO." Mediator might then ask, "on the
issue of how big a pay raise do the employees get, what
is your desired value?" Management would probably
answer zero, or even a negative number to indicate a pay
cut. Mediator would then ask the same questions for the
second party.

Once both sides have input their positions on each
issue, Mediator will say: "It is now time for (name of first
party) to rate the importance of issues." It will then
provide a list of the issues and the positions of the two
sides on each issue. It will also ask if you want a hard
copy of this list. This will allow you to look over the
issues at your leisure. If you respond by pressing the
"Y" key and the return key, a list will be output by your
printer.

Mediator will then ask which of the issues is most
important to the first party. The representative of the first
party should input the number of the most important
issue from the list. The issues selected is given a value
of 10 on a scale of 1 to 10. Mediator then asks party

CODE WORKS 9

number 1 to rate each of the remaining issues in impor
tance from 1 to 10, as compared to the importance of the
issue chosen as most important. For example, if a certain
issue is half as important to party 1 as the most important
issue, that issue should be given a rating of 5. An issue
that is just as important as the main issue can be given a
rating of 10, and an issue of little importance can be
given a rating of 1. The user should understand that
Mediator evaluates how important each issue is to a
party in relation to the importance of the other issues for
that party. Therefore, it does not improve the bargaining
position of someone to say that all issues rate a 10.
Giving a particular issue a high rating automatically
reduces the importance rating of the other issues for that
party. Anyone who lies and says that all issues rate a 10
is decreasing their chances of getting what is really
important to them.

After the first party has input the importance rating of
each issue, the process will be repeated for the second
party. I suggest that each party input their importance
ratings in secret, to prevent the second party from trying
to hedge their answers based on the answers of the first
party.

Once the second party has input their importance
ratings, Mediator will output its decision on each issue.
It will also output a satisfaction index for each party.
This index indicates how much of what it wanted each
party got, weighted by how important each issue is rated
by that party. In most cases, the satisfaction index of
both parties will be over 50 percent.

The sample run shows a hypothetical divorce case
between Tom and Sue. The four issues involved are who
gets possession of the house, who gets custody of each
of the two children (Fred and Mary), and how much
alimony Tom pays Sue each month. The answers that
are input by the user are in boldface type.

Basic Principles of Mediator

Mediator evaluates how important each issue is to
each party, and gives each party what is most important
to that party. This tends to result in a satisfaction index
of over 50 percent for both parties, a desirable win-win
situation.

If a particular non-numerical issue is of equal impor
tance to both sides, a decision is made which will tend
to balance the satisfaction indexes of the two parties. For
example, if the indexes stand at 45 percent for party A
and 60 percent for party B, and the remaining non-
numerical issue is of equal importance to both parties,
the decision is made in favor of party A. If a numerical

issue is of equal value to both sides, the number is
distributed to balance the satisfaction indexes.

Advantages of Mediator

The first advantage of Mediator is that it forces the
two sides to sit down and evaluate how important each
issue really is to them. It actually forces them to assign
a numerical value to each issue relative to each other
issue, so they can improve their chances of getting what
they really want. This tends to cut through all the bluster
and posturing involved when people claim that issues
are non-negotiable.

The second advantage of Mediator is that it provides
a completely objective mediator. No one can accuse a
computer of having any biases in the disagreement. The
program makes its decision based entirely on what each
side wants and how badly they want it, not on some
external preconception of what is the "right" decision.

Disadvantages of Mediator

Mediator is not capable of generating any creative
new solutions to the problem, the way a human mediator
might. It merely takes the positions of the two sides and
tries to find the most equitable way to divide its deci
sions between the two parties.

Another problem is that Mediator does not really
understand the issues, and therefore its decisions may
not always be reasonable or practical. One side (or both)
could input a totally unreasonable position on some
issues to force the other side to devote all its efforts to
preventing that side from getting its way on that issue.
For example, in a management-labor dispute, labor
could input that it wants a raise of $ 1,000,000 per week,
to force management to give all its importance points to
that issue to insure that labor does not win that point. It
is therefore necessary that a human mediator be present
to oversee the process, to make certain that both sides
are inputing "good faith" positions on each issue.

In view of these problems, and the extreme simplic
ity of this program, Mediator should be viewed as a
potential tool in the mediation process and an interesting
demonstration of computer aided negotiation, not as
something that is about to replace human mediators. It
could also be an interesting starting point for a more
advanced system, perhaps something that could be
combined with an expert system program. •

1 0 CODEWORKS

%

Listing for MS DOS and Tandy IV

100 REM * Mediator.Bas * for CodeWorks by D. Leithauser *
110 *CLEAR 2000 * only if your BASIC is prior to ver 5.0
120 CLS
130 PRINT "COMPUTER MEDIATOR":PRINT: VERSION 1.1":

PRINT
140 DIM N$(2),SR(2),RT(2)
150 FOR X=1 TO 2
160 PRINT "NAME OF PARTY # ";X;
170 INPUT N$(X)
180 NEXT X
190 INPUT "NUMBER OF ISSUES TO BE RESOLVED ";N
200 INPUT "NUMBER OF THESE ON WHICH A NUMERICAL COMPROMISE CAN BE

ACHIEVED ";NU
210 NN=N-NU:DIM NP$ (N) ,S$ (NN,2) ,S(NU,2) ,R(N,'2) ,RV(N,2)
220 FOR X=1 TO NN
230 PRINT "DESCRIBE NON-NUMERICAL ISSUE # ";X
240 LINE INPUT NP$(X)
250 NEXT X
260 FOR X=1 TO NU
270 PRINT "DESCRIBE NUMERICAL ISSUE # ";X
280 LINE INPUT NP$(X+NN)
290 NEXT X
300 FOR Y=1 TO 2
310 CLS
320 PRINT "FOR ";N$(Y).
330 FOR X=1 TO NN
340 PRINT "DESCRIBE POSITION ON ISSUE OF":PRINT CHR$(34);

NP$(X);CHR$(34)
350 LINE INPUT S$(X,Y)
360 IF Y=2 AND S$(X,1)=S$(X,2) THEN PRINT "ERROR! BOTH PARTIES

APPEAR TO AGREE ON THIS ISSUE.":PRINT "SOMEONE MUST HAVE
MISUNDERSTOOD THE INSTRUCTIONS." : PRINT "REREAD MANUAL AND
START OVER.":END

370 NEXT X
380 FOR X=1 TO NU
390 PRINT "ON THE ISSUE OF ";CHR$(34);NP$(X+NN);CHR$(34)
400 INPUT "WHAT IS YOUR DESIRED VALUE ";S(X,Y)
410 IF Y=2 AND S(X,1)=S(X,2) THEN PRINT "ERROR! BOTH PARTIES

APPEAR TO AGREE ON THIS ISSUE.":PRINT "SOMEONE MUST HAVE
MISUNDERSTOOD THE INSTRUCTIONS.":PRINT "REREAD MANUAL AND
START OVER.":END

420 NEXT X
430 NEXT Y
440 FOR Y=1 TO 2
450 CLS
460 PRINT "IT IS NOW TIME FOR ";N$(Y) TO RATE THE IMPORTANCE

OF ISSUES."
470 PRINT "THIS IS A LIST OF THE ISSUES AND THE POSITIONS OF

EACH GROUP:"

NOTE:

0=zero
O=oh

CODEWORKS 1 1

480 FOR X=1 TO NN
490 PRINT X;") ";NP$(X)
500 FOR Z=1 TO 2:PRINT N$(Z);":S$(X,Z):NEXT Z
510 NEXT X
520 FOR X=1 TO NU
530 PRINT X+NN;") ";NP$(X+NN)
540 FOR Z=1 TO 2:PRINT N$(Z);":S(X,Z),:NEXT Z:PRINT
550 NEXT X
560 INPUT "DO YOU WANT HARD COPY OF THIS (Y/N) ";H$
570 H$=LEFT$ (H$, 1) : IF H$<>"N" AND H$<>"n" AND H$<>"Y" AND

H$<>"y" THEN 560
580 IF H$="N" OR H$="n" THEN 680
590 LPRINT "THIS IS A LIST OF THE ISSUES AND THE POSITIONS OF

EACH GROUP:"
600 FOR X=1 TO NN
610 LPRINT X;") ";NP$(X)
620 FOR Z=1 TO 2:LPRINT N$(Z);":S$(X,Z):NEXT Z
630 NEXT X
640 FOR X=1 TO NU
650 LPRINT X+NN;") ";NP$(X+NN)
660 FOR Z=1 TO 2:LPRINT N$(Z);":"S(X,Z):NEXT Z
670 NEXT X
680 PRINT "WHICH OF THESE ISSUES IS MOST IMPORTANT TO ";N$(Y);
690 INPUT M:IF M<1 OR M>N THEN PRINT "INVALID ANSWERGOTO 690
700 R(M,Y)=10:RT(Y)=10
710 PRINT "THE ISSUE OF ";CHR$(34);NP$(M);CHR$(34)
720 PRINT "NOW HAS A VALUE OF 10 ON A SCALE OF 1 TO 10."
730 PRINT "PLEASE RATE THE REST OF THE ISSUES ON A SCALE OF 1 TO

10 COMPARED TO"
740 PRINT CHR$ (34) ;NP$ (M) ;CHR$ (34)
750 FOR X=1 TO N
760 IF X=M THEN 810
770 PRINT CHR$(34);NP$(X);CHR$ (34)
780 INPUT "RATING ";R(X,Y)
790 IF R(X,Y)<1 OR R(X,Y)>10 THEN PRINT "INVALID ANSWER«"•GOTO

780
800 RT (Y) =RT (Y) +R (X, Y)
810 NEXT X
820 NEXT Y
830 FOR X=1 TO 2
840 FOR Y=1 TO N
850 RV(Y,X)=INT((R(Y,X)/RT(X)+.005)*100)
860 NEXT Y
870 NEXT X
880 CLS
890 PRINT "THE FOLLOWING IS THE DECISION ON EACH ISSUE-"
900 FOR X=1 TO NN
910 IF RV(X,1)=RV(X,2) THEN 950
920 PRINT NP$(X)
930 IF RV(X, 1) >RV(X,2) THEN PRINT S$ (X, 1) :SR(1) =SR(1)+RV(X, 1)
940 IF RV(X, 1) <RV(X,2) THEN PRINT S$ (X,2) :SR(2)=SR(2)+RV(X,2)
950 NEXT X
960 FOR X=1 TO NU

970 IF RV (X+NN, 1) =RV (X+NN, 2) THEN 1010
980 PRINT NP$(X+NN);":
990 IF RV(X+NN,1)>RV(X+NN,2) THEN PRINT S(X,1):SR(1)=SR(1)+RV(X+

NN, 1)
1000 IF RV (X+NN, 2) >RV (X+NN, 1) THEN PRINT S (X, 2) : SR (2) =SR (2)+RV(X+

NN, 2)
1010 NEXT X
1020 FOR X=1 TO NN
1030 IF RV (X, 1) ORV (X, 2) THEN 1090
1040 PRINT NP$(X)
1050 IF SR (1) >SR (2) THEN PRINT S$ (X, 2) : SR (2) =SR (2)+RV (X, 2) :G0T0

1090
1060 IF SR(2)>SR(1) THEN PRINT S$(X,1):SR(1)=SR(1)+RV(X,1):GOTO

1090
1070 IF RNDC.5 THEN PRINT S$(X,2) :SR(2)=SR(2)+RV(X,2) :GOTO 1090
1080 PRINT S$(X,1) :SR(1)=SR(1)+RV(X,1)
1090 NEXT X
1100 FOR X=1 TO NU
1110 IF RV (X+NN, 1) ORV (X+NN, 2) THEN 1200
1120 PRINT NP$(X+NN)
1130 T=SR (1) +RV (X+NN, 1) : IF T<=SR (2) THEN PRINT S (X, 1) : SR (1) =T:

GOTO 1200
1140 T=SR(2)+RV(X+NN, 2) : IF T<=SR(1) THEN PRINT S (X, 2) :SR(2) =T:

GOTO 1200
1150 VD=RV(X+NN,1)/ABS(S(X,1)-S(X,2)):SP=SGN(SR(1)+ABS(S(X,2)-

S(X,1))*VD-SR(2))
1160 FOR V=S (X, 1) TO S (X, 2) STEP (S (X, 2)-S (X, 1))/128
1170 S1=SR(1)+ABS(S(X,2)-V)*VD:S2=SR(2)+ABS(S(X, 1)-V)*VD
1180 IF SPOSGN (S1-S2) THEN PRINT V: SR (1) =S1: SR (2) -S2 :GOTO

1200
1190 NEXT V
1200 NEXT X
1210 FOR X=1 TO 2
1220 PRINT "SATISFACTION INDEX FOR ";N$(X) ;"=";SR(X) %

1230 NEXT X

Change lines for Tandy I/III

Changed->100 REM * Mediator/Bas * for CodeWorks by _ D. Leithauser *
Changed->110 CLEAR 2000 ' only if your BASIC is prior to ver 5.0

CODEWORKS 1 3
i

Sample Run for Mediator.Bas

COMPUTER MEDIATOR
VERSION 1.1

Name of party #1? TOM
Name of party #2? SUE
Number of issues to be resolved? 4
Number of these on which a numerical compromise can be
achieved ? 1
Describe non-numerical issue #1
WHO GETS THE HOUSE
Describe non-numerical issue #2
WHO GET CUSTODY OF FRED
Describe non-numerical issue #3
WHO GET CUSTODY OF MARY
Describe numerical issue #1
HOW MUCH ALIMONY DOES TOM PAY SUE PER
MONTH
For Tom
Describe position on issue of
"Who gets the house"
TOM
Describe position on issue of
"Who get custody of Fred"
TOM
Describe position on issue of
"Who gets custody of Mary"
TOM
On the issue of "How much alimony does Tom pay Sue per
month"
What is your desired value ? 0
For Sue
Describe position on issue of
"Who gets the house"
S U E
Describe position on issue of
"Who gets custody of Fred"
S U E
Describe position on issue of
"Who gets custody of Mary"
S U E
On the issue of "How much alimony does Tom pay Sue per
month"
What is your desired value? 1000
It is now time for Tom to rate the importance of issues.
This is a list of the issues and the positions of each group:
1) Who gets the house
Tom:Tom
Sue:Sue
2) Who gets custody of Fred
Tom:Tom
Sue:Sue
3) Who gets custody of Mary

Tom:Tom
Sue:Sue
4) How much alimony does Tom pay Sue per month
Tom: 0 Sue: 1000
Do you want hardcopy of this (Y/N) ? N
Which of these issues is most important to Tom? 4
The issue of "How much alimony does Tom pay Sue per
month"
now has a value of 10 on a scale of 1 to 10.
Please rate the rest of the issues on a scale of 1 to 10
compared to
"How much alimony does Tom pay Sue per month"
"Who gets the house"
Rating ? 2
"Who gets custody of Fred"
Rating ? 6
"Who gets custody of Mary"
Rating ? 4
It is now time for Sue to rate the importance of issues.
This is a list of the issues and the positions of each group:
1) Who gets the house
Tom:Tom
Sue:Sue
2) Who gets custody of Fred
Tom:Tom
Sue:Sue
3) Who gets custody of Mary
Tom:Tom
Sue:Sue
4) How much alimony does Tom pay Sue per month
Tom: 0 Sue: 1000
Do you want hardcopy of this (Y/N)? N
Which of these issues is most important to Sue ? 3
The issue of "Who gets custody of Mary"
now has a value of 10 on a scale of 1 to 10.
Please rate the rest of the issues on a scale of 1 to 10
compared to
"Who gets custody of Mary"
"Who gets the house"
Rating ? 6
"Who gets custody of Fred"
Rating ? 7
"How much alimony does Tom pay Sue per month"
Rating ? 3
The following is the decision on each issue:
Who gets the house: Sue
Who gets custody of Mary: Sue
How much alimony does Tom pay Sue per month: 0
Who gets custody of Fred: Tom
Satisfaction index for Tom = 72%
Satisfaction index for Sue = 61%

14 CODEWORKS

Out l ine .Bas
Part One of a Three-Part Outlining Program

Terry R. Dettmann, Associate Editor. Outliners and outlining programs are useful in
organizing your thoughts before you begin to write. Commercial programs of this type are
available in the $100 price range. In this series, Terry will build an outlining program that
will run in BASIC or can be compiled. Along the way, we will learn something about linked
list techniques and what makes them work.

One of the most useful tools to writing and thinking
in general is the outline processor. On the IBM PC and
Macintosh, this type of program has become quite
sophisticated. But outline processors can be expensive
and they aren't compatible with all machines. Over the
next several issues, we're going to put together an
outline processor with all of the basic features (and
you'll have the source code!).

The current plan for these articles is to cover the
subject in three segments. The first segment, we're
going to lay some theoretical foundations for the outline
program by explaining a technique known as 'List
Linking' which we'll need to build the outline proces
sor. A demonstration program in this article will show
the basic linking procedure.

The second article in the series will show the screen
display handling and build the screen control portion of
the outline program. The last article will add the two
together to give us a final program which is more than
either demonstration program.

When I first started on the program, I assumed one
article would be enough. But the program needed more
complexity than I could explain in one article. After that',
I thought two were enough. In trying to write two that
made the subject understandable, I've now added a
third article to lead into the other two. Whew! I just hope
I can keep it to three. If we get more questions between
issues than can be answered in a single article, 111 add
more material as necessary to make sure everyone
understands it.

When we're done, you'll have an outline processor
which will allow you to build outlines, print them, and
change them as needed. The program uses some pretty
sophisticated techniques, but we'll take them slowly
enough to make them simple to understand. Let's start
by building a very simple outline program which illus
trates list linking as we're going to need it for the full
scale outline processor.

List Linking

By now, you should be familiar with arrays in pro
gramming. Arrays are used for multiple pieces of infor
mation which can be organized by number, but what if
what we want to deal with isn't arranged by number?

Keeping track of generalized data, large lists of infor
mation, can often be done when each piece of informa
tion is related in some simple way to the other pieces of
information in the system. For example, if we have a list
of names, we could arrange them in ascending or
descending sorted order. There's no natural numeric
associated with this process, it's purely alphabetic. The
fact that the letter 'A' comes before 'Z' isn't a matter of
numbers.

To create a list of information, we use what's known
as a 'Linked List'. Each item in the list (called a NODE)
is 'linked' to the next node by a POINTER which tells
the program where to find the next one. Graphically, we
could show this like this:

CODEWORKS 1

FIGURE 1

Information

Pointer

where the top part of the box is the information part
of the node and the bottom part is the pointer. Let's say
we're going to link together the pieces of information
'one', 'two', and 'three' in alphabetic order. Graphi
cally, we might indicate this like this:

FIGURE 2

In this case, the 'one' node is linked to the 'three'
node (the next one alphabetically) and the 'three' node
is linked to the 'two' node. At the end of the list, we use
a special marker to indicate the end of the list.

Conceptually, the picture is nice, but how does this
help. We don't have linked lists in BASIC. Some lan
guages like Pascal and C make implementing this type
of structure pretty easy because they include special
structures which can be used to create linked lists.
BASIC doesn't though. BUT, we can make BASIC
work as if it had them.

What if we entered the three pieces of information

'one', 'two', and 'three' in their numeric order. If the
linked list is arranged in this order, then it would look
like this:

FIGURE 3

If we're entering them into a program, we could store
them in an array (which I'll call LN$ for lines). As we
enter each line, we could store them in LN$ at increasing
array locations like this:

FIGURE 4

Array

1
2
3

Information

one
two
three

If we wanted, we could run a sorting program on this
and put them in alphabetic order. But we could also put
them in order if we had a set of links which point from
each item to the next in order. Let's define an array we'll
call LK (for links). If LK(0) points to the smallest item
alphabetically and then the corresponding LK array
value points to the next, then our table would be:

FIGURE 5

Array

0

Information Links

1

16

<

CODEWORKS

1 one 3
2 two 0
3 three 2

In this case, LK(0) points to item 1 (the information
'one' which is the smallest in a sort). LK(1) points to
array location 3 (item 'three' which is next in alphabetic
order) and LK(3) points to array location 2 (item 'two',
the last in alphabetic order). Notice that LK(2) is zero.
This is used as the END OF LIST marker. When we
reach it, we know there are no more items in the list.
From a simple structure like this, we can build some
very sophisticated software.

To illustrate the linked list in a more practical sense,
I've included the sample program LINK.BAS in listing
1.

In our simple program, like the example we talked
through above, we have arrays LN$ to hold the lines
(maximum of 20) and LK to hold the links. NX (which
starts at 1) is the array location to put the next line when
we read it from the keyboard.

In the main loop of the program (lines 200-290), we
clear the screen, print the current list (subroutine 1000),
and then prompt for an input line. An input line consist
ing of nothing but DONE (in caps) will end the program
and cause it to print the list one more time (lines 400-
420). If the input line is not DONE, then we'll call
subroutine 1000 and add the line to the linked list.

To see how the linked list is built, we look at subrou
tine 1000. First, we start out by saving the next array
location in variable J, then we put the new line in the next
location of the array (LN$(NX)) and set its link value to
zero. We advance NX by one to get it ready for the next
line.

If the value of LK(0) is zero, (remember, it points to
the first actual information node), then we can assume
nothing has been added yet and we can simply set LK(0)
to point to the line we just added. If LK(0) is not zero,
then things get more complicated. With something
already in the list, we have to start with the first item in
the list and compare it to the new item we want to add.
To keep them in alphabetical order, we check them one
at a time until we find one which belongs after the one
we're looking for. We add the new one at that point.

FIGURE 6

We start out by setting I to the array location of the 1st
item in the list and K to array location of the pointer to
that item (initially zero). Now we check, if the new item
is less than the one we're checking, then we put it ahead
in the list. If it's not smaller, then we move on to the next
item and check for the end of the list (link value zero).
If we're at the end, we simply add the new item to the
end. If we're not already at the end, then we start again
from our comparison.

This method (or algorithm) is a pretty standard way to
deal with inserting items in a linked list. There are
several variations possible, but they are all basically the
same.

The subroutine at line 2000 steps through the linked
list one item at a time, in order, by following the links.
This is called 'Traversing the List'.

We start the subroutine by checking to see if anything
has been added to the list yet (line 2010). If not, there's
nothing to print and we leave. If there IS something, we
set I to point to the 1st item in the list and then print it.
Next we let I point to the next item (I = LK(I)). If I isn't
zero yet, we go back and print it.

This technique is powerful and can be quite fast for
simple lists. Try running the program for the following
series of entries:

one

CODEWORKS 17

I
two
three
four
five
six
seven
eight
nine
ten

When done, your printed output should look like this:

8 5 eight
5 4 five
4 9 four
9 1 nine
1 7 one
7 6 seven
6 10 six
10 3 ten
3
2

2 three
0 two

Since we entered each line in the list in alphabetical
order, we can print them out in the same order by
following the links. Try it on some other lists to see how
it works. When you're satisfied that you understand this
list linking concept, then read on to see how we can add
additional links and create a more sophisticated data
structure.

An Outline List

To create an outline, we have several levels of linked
lists. At a given level in an outline, the items could be
considered linked from one to the next in the order of the
outline. We could also consider the first item under a
given item to be linked to its parent. This sounds pretty
complicated, but look at the following outline:

I Introduction
A. Point 1
B. Point 2

II Detail
A. Point 3
B. Point 4

If we used our graphic representation of the nodes,
we could represent this outline like this:

I Introduction

FIGURE 7

Point 1

II Detail
Point 2

I
4- JL

Point 3

—

Point 4

-±--4-

By adding a second pointer to the node, we can now
go in two directions in linking, either to the next item at
the same level in the outline or to the first item just below
the current item. Traversing the list is now more com
plex since we'll have to be able to return to the previous
level whenever we hit the end of any one level. Hitting
the end of the highest level means we're done.

Starting with the first node of the outline, we could
print all nodes by the following method:

1. print the node
2. print all nodes subordinate to the current

node
3. go to the next node at the current level
4. if there is no next node, then return to the

next higher node level

1 8 COXWORKS

If you consider the whole procedure as 'print all
nodes subordinate to the current node' starting with
node zero, then this describes a RECURSIVE procedure
(one which calls itself). Let's see how we put this
together with lists linking to build a simple outliner in
Listing #2, LIST.BAS.

Like our simple linked list program, this one starts out
by declaring the line array LN$ and then link array LK.
Now however, the link array is declared as LK(100,1) so
that there are two links (LK(I,0) and LK(I,1)). We've
also declared the arrays LL (for the line level in the
outline) and LV for the last line at a given level in the
outline. We'll see what these, contribute as we start
working with the list.

Our main loop (lines 200-320) is basically the same
as before:

1. print the list
2. wait for a command
3. if the line is a command, process it
4. otherwise add the line to die list
5. restart at step 1

To keep from having to work with more complexity
than necessary to show how the list linking works,
we've used command words UP and DOWN for mov
ing up and down one level at a time within the outline.
Subroutines 1000 and 1100 move the level up or down
by one. Notice that the LV array keeps track of the
current line number in the array when we move down,
and then helps restore it to the current line when we
move back up again.

Adding a line to the outline works pretty simply. We
add it to the next open line in the array (CL = CL + 1...
add one to the current line). If the level of the last line is
not the same as the current level, we are linking a new
level (line 1240), otherwise, we're linking on the current
level (line 1220). The figure shows how the linking
might look after five entries into LN$ where we went
DOWN after the second entry and UP after the fourth.
As we've limited it (which we won't be able to do in the
final program), this is simpler than the list linking we ve
talked about before. But now, subroutine 2000 to print
the outline gets more complicated.

We start out as before at the beginning of the list. The
variable VI is introduced to incorporate a variable
indent for printing. Line 2025 prints a heading and then
we start by printing the first line in line 2040. Now we

have to decide what to print next.

After we've printed a line, we ALWAYS print the
lines under it next. This applies for EACH line we look
at. For example, if we print a level 1 line, then the next
line to print is any level 2 line below it. When we print
the first level 2 line, we check to see if there is a level 3
line below it before going on to the next level 2 line.

one
two

three

six
seven

four
five

eight

When we've linked this together, we'll get a picture
like this:

FIGURE 8

One

-U

Two
Three

Four

Eight

-I-

Six

-4.

Seven

..— —

Five

CODEWORKS 1 9

To print this in the correct order, we'll follow the links
as follows:

one -> two
two -> three
three -> four
four -> five
BACKUP ONE LEVEL to THREE
three -> six
six -> seven
BACKUP ONE LEVEL to TWO
two -> eight

To do this, first we check to see if the link to a lower
level (LK(I,1)) is non-zero. If it is, we save the current
location by calling subroutine 2100 and then move to
the next level down and go back and print. We'll keep
moving down to the lowest possible level as long as
LK(I,1) is not zero. When it DOES reach zero, we'll
move down on the same level in line 2050.

As long as we can move down the list along the same
level, we go back and print (line 2060), but if we reach
the end on this level, we check to see if we're at the
highest level (VI = 0), if we are at that level, then we're
done. If we're not at the top level, then we move UP one
level by calling subroutine 2200 and go on to the next
item at that level (line 2070) and then check for the end
at that level by returning to line 2060. If you follow
through carefully with the example above, you'll see
that it will work.

If you haven't already noticed, you could look back
and find that I've loaded the deck. In this program there
is NO WAY that the lines will ever be out of order. I
would get the same result by simply using a FOR loop
to print the array! BUT, using the list linking, I could
reorder one level (say sort it) and everything under it
would automatically be moved as well! I'm not going to
go into it now, we'll do that though before we're done
with outlining.

There is a little sleight of hand though here. I men
tioned that the subroutines at 2100 and 2200 will store
and retrieve the line number of the item from the last
level that we were at when we went DOWN in printing.
HOW? we'll, it's time to introduce another data struc
ture called the stack. A stack let's you keep track of

things where you want to get them back in the opposite
to the order you put them in. In the example above,
when I move down from array location 2 to 3,1 put the
location 2 on the stack (SP becomes 1, STK(l) = 2).
Similarly, when I go from 3 to 4,1 put location 3 on the
stack (SP becomes 2, STK(2) = 3).

When I'm done with the lowest level after printing
array location 5, I need to get the top of the stack
(STK(SP) is now 3), this takes me back up one level to
where I need to go. After I'm done printing at this level,
I do it again (STK(SP) is 2) and get back to array location
2.

Visually, most people imagine a stack like a stack of
dishes in a cafeteria. The last disk added to the stack is
the first one taken off. This allows us to backtrack one
level at a time as we need to. Let's illustrate with an
example.

Again, we'll start the program and do the following
steps:

1. type 'one'
2. type 'two'
3. type 'DOWN'
4. type 'three'
5. type 'four'
6. type 'DOWN'
7. type 'five'
8. type 'six'
9. type 'UP'
10. type 'seven'
11. type 'DOWN'
12. type 'eight'
13. type 'UP*
14. type 'UP*
15. type 'nine'
16. type 'ten'
17. type 'DOWN'
18. type 'eleven'
19. type 'twelve'
20. type 'UP*
21. type 'thirteen'
22. type 'fourteen'
23. type 'DONE'

If you've typed these lines correctly, then the pro
gram should display the following on the screen:

Line Number and Line
LINKS

20 CODE WORKS

1 one 2 0 13 thirteen 14 0
2 two 9 3 14 fourteen 0 0
3 three 4 0
4 four 7 5 The first column is printing the array location for the
5 five 6 0 current line, then (with an appropriate indent) the con
6 six 0 0 tents of LN$ at the current array location. The last two
7 seven 0 8 columns give the links. The first number is the link to the
8 eight 0 0 current level and the second number is the link to the
9 nine 10 0 next lower level. See if you can diagram it. You should
10 ten 13 11 sec almost immediately how each line is linked to the
11 eleven 12 0 next in order.
12 twelve 0 0

What have we learned?

Link.Bas - Demo Program

In this article, we've learned some basic data struc
tures which allow us to extend our program control. List
linking will be the primary structure for controlling our
outline program. The stack structure is needed to allow
us to 'Traverse' the list structure for a complicated list.

In our next article, we're going to learn how to set up
10 REM - Simple List Linking the screen display for our outline program so that we can
20 DIM LN$ (20), LK (20) combine what we've learned here with what we leam in
30 NX = 1 screen control to build an outline program we can use as
200 REM - Main Loop a thought processor. •
210 CLS:PRINT"Simple List Linking":PRINT
220 GOSUB 2000
230 PRINT
240 PRINT "DONE - End of input, print the list"
250 PRINT
260 LINE INPUT "»";IN$
270 IF IN$="DONE" THEN 400
280 GOSUB 1000
290 GOTO 200
400 REM - End of program
410 GOSUB 2000
420 END
1000 REM - Add line to linked list
1010 J=NX:LN$(NX)=IN$:LK(NX)=0:NX=NX+1
1020 IF LK(0)=0 THEN LK(0) = J:RETURN
1030 I = LK(0):K = 0
1040 IF LN$ (J) <LN$ (I) THEN LK (J) =1 :LK (K) =J: RETURN
1050 K=I:I=LK(I)
1060 IF 1=0 THEN LK (K) =J:RETURN
1070 GOTO 1040
2000 REM - Print linked list
2010 IF LK(0)<1 THEN RETURN
2020 I = LK(0)
2030 PRINT I;LK(I) ;LN$(I)
2040 I = LK (I) : IF 1=0 THEN RETURN
2050 GOTO 2030

CODEWORKS 21

List.Bas - Demo Program
10 REM - list Linking Demonstration
20 REM - Terry R. Dettmann for Codeworks Magazine
30 DIM LN$(100), LK(100,1), LL(100), LV(10)
40 CL = 0:LV = 1:LL = 0
200 REM - Main loop
210 CLS:PRINT "LIST LINKING DEMONSTRATION": PRINT
215 GOSUB 2000:PRINT
220 PRINT "ENTER LINE OR"
230 PRINT " UP - move up one level"
240 PRINT " DOWN - move down one level"
250 PRINT " DONE - done with entry, print list"
260 PRINT
270 LINE INPUT "»";IN$
280 IF IN$="UP" THEN GOSUB 1000:GOTO 200
290 IF IN$="DOWN" THEN GOSUB HOO:GOTO 200
300 IF IN$="DONE" THEN 400
310 GOSUB -1200
320 GOTO 200
400 REM - end of program, print the list
410 GOSUB 2000
420 END
1000 REM - Move up one level in the list
1010 IF LV=1 THEN RETURN
1020 LV = LV - 1
1030 LL = LV (LV)
1040 RETURN
1100 REM - Move down one level in the list
1110 IF LV=10 THEN RETURN
1120 LV(LV) = CL:LV = LV + 1
1130 RETURN
1200 REM - Enter a line in the list
1210 CL = CL + 1 :LN$ (CL) = IN$:LL(CL) = LV
1215 IF LL (LL) OLV THEN 1240
1220 LK(LL,0) = CL:LL = CL
1230 RETURN
1240 LK(LL, 0) = 0:LK(LL,1) = CL:LL = CL
1250 RETURN
2000 REM - Print the list
2010 IF CL<1 THEN RETURN
2020 I = 1:VI = 0:LI = 0
2025 PRINT-'Line Number and Line";TAB (60); "LINKS"
2040 PRINT I;STRING$(VI*5," ");LN$(I);TAB(60);LK(I,0) ;LK(1,1)
2045 IF LK(1,1) <>0 THEN LI=I :GOSUB 2100:VI=VI+1:I=LK(1,1) -GOTO

2040
2050 I = LK(1,0)
2060 IF I<>0 THEN 2040
2065 IF VI=0 THEN RETURN
2070 GOSUB 2200:1 = LK(LI,0) :VI = VI - 1
2080 GOTO 2060
2100 REM - Add li to the stack
2110 IF SP>=10 THEN RETURN

Random Files
Finally, a Ranidx that works!

Terry R. Dettmann, Associate Editor. After two unsuccessful attempts we have finally
got Ranidx.Bas completely checked out. The "Shell" calls in this program are for MS DOS
users; Tandy IV people will need to change this to "System" calls in three places. Tandy I/III
users should continue using Ranindex.Bas since we haven't found system calls for those
machines.

After the last issue appeared, we found (and some of
you pointed out) some errors in the random indexing
program. All we can do is ask you to accept our
apologies for letting the errors through. In this issue,
we're going to learn from them by correcting the errors
and by using them to show how you can avoid similar
errors.

The basic problems with the indexing programs
stemmed from special cases which were unfortunately
masked in testing because of the data base used to test
the system. What I'm going to do is show the changes in
the program, line for line and explain them, and then
give a full listing of the corrected version of the program
for your use.

First, let's start at line 250. How many of you caught
this one? If you look at your original listing, the line
reads:

250 IF FP$(1)="DELETED" THEN 270

However, it should read:

250 IF INSTR(FP$(1),"DELETED")>0 THEN 270

The reason (which hasn't really been pointed out
here before) is that the first field (FP$(1)) might be
greater than 7 characters long (the length of the word
DELETED). If .it is, then the string FP$(1) will be the
seven characters of the word DELETED for a deleted
record plus blank spaces to fill out the field.

When we're working with random files, fields are
always blank padded to fill them out completely. This

means we have to take into account the possibility that
this field is more than seven characters long by using the
INSTR function to locate the string if it's there. This also
raises another point, the first field cannot be less than 7
characters long! If it is, our unique marker (the word
DELETED) can't be fit into the field and it will be
truncated. We could use a shorter marker or another
method, but so far this is good enough.

Our next change is not a correction, it's a debugging
change only. We've changed line 510 from:

510 CLS:PRINT"A11 Done": CLOSE:END

to

510 PRINT'All Done":CLOSE:END

By eliminating the CLS, what is left on the screen
when we close will still be visible. You can add it back
in when you're confident everything is working alright.

With these changes done, everything else deals with
our final step in the sorting process, the multi-file
merging process which starts at line 4000. Our first
change is to get rid of the single output file opened in line
4020. We can't output to this file until the whole merge
is completed, so we change lines 4020-4030 from:

4020 OPEN "R",1,FI$,2
4030 FIELD 1, 2 AS XX$:NR = 1

to

CODE WORKS 23

I

4020 N=0
4030 NR=1

The variable N is introduced to handle a series of
output files which will be in the same format as the
temporary files. New line 4045 calls subroutine 440
where we'll create this:

4045 N = N + 1 :GOSUB 4400

Subroutine 4400 will concentrate on getting the right
file prepared for use by the program:

4400 REM — open intermediate file n
4410 FX$ = "TMP"+MID$(STR$(N),2)+".XXX"
4420 OPEN "0",1,FX$
4440 RETURN

Each intermediate output file will now be a simple
output file (like the temporary files) instead of a random
file (like the final index). We have to do this since if the
file size is too large (we can't sort it all in a single pass)
we may have to merge and remerge several times.

Next, we have to provide for temporary file handling,
so we change our closing step of the merge (if no open
file has another index record to read) by changing line
4060 and adding line 4075. The original line 4060:

4060 GOSUB 4200:IF NOT FOUND THEN 4080

is changed to refer to line 4075 instead of line 4080
so we can close out files and link in subroutines 4500
and 4600 which will deal with our temporary files and
setup the output file for the next merge step. Lines 4060
and 4075 now read:

4060 GOSUB 4200:IF NOT FOUND THEN 4075
4075 CLOSE:GOSUB 4500:GOSUB 4600

Subroutine 4500 deletes the temporary files which
have been merged into the current output file:

4500 REM — delete temporary files
4510 IF I+TX > TN THEN JX=TN ELSE JX=I+TX
4515 K=0
4520 FOR J=I TO JX:K=K+1
4530 TF=J:GOSUB 3200

4540 GOSUB 4570
4550 NEXT J
4560 RETURN
4570 REM — delete the named file
4580 SHELL "ERASE "+FTS
4590 RETURN

and subroutine 4600 renames the output file to make
it ready for the next merge cycle:

4600 REM — rename output file
4610 TF = N:GOSUB 3200
4620 SHELL "REN "+FXS+" "+FT$
4630 RETURN

New line, 4085 recognize that more than one output
merge file has been created and restarts from the begin
ning of the merge cycle (line 4000):

4085 IF N>1 THEN TN=N:GOTO 4000

Once only one merged file is left, line 4086 calls
subroutine 4700 where we read the merge file and write
out the index file in one pass and then delete the merge
file:

4086 GOSUB 4700

The actual work is done by subroutine 4700 as
follows:

4700 REM — build the final output file
4710 OPEN "R",1,FI$,2:RN = 1
4720 HELD 1, 2 AS XXS
4730 TF = 1 :GOSUB 3200
4740 OPEN T',2,FT$
4750 IF EOF(2) THEN 4800
4760 INPUT #2,IX,IX$
4770 LSET XXJ = MK1$(1X)
4780 PUT#1, RN:RN = RN • 1
4790 GOTO 4750
4800 CLOSE
4810 SHELL "ERASE "+FT$
4820 RETURN

One of the most subtle errors though was an array
naming error which only affected one record in the file-

24 QooeV/on ̂

You can see the change in looking at the old copy of
lines 4140-4141:

4140 OPEN 'T\K+1,FT$:
INPUT#K+1 ,IX(K),DA$(K)

4141 PRINT"FILE: ";K;" ENTRY=";IX(K);DA$(K)

vs. the new lines:

4140 OPEN
'T\K+l,FT$:INPUT#K-t-l,IDX(K),DA$(K)

4141 PRINT"FILE: ";K;" ENTRY=
";IDX(K);DA$(K)

The error, not obvious at the start, is that the array IX
is used instead of the array IDX. Since only one entry is
affected, the result was always to lose a record in each
pass through the merge cycle. OOPS!

The rest of the changes are part of the debugging
code which was used to find the error. I'm leaving them
in the program

for your interest:

old lines:

4265 PRINT'FILE: ";LW;"
ENTRY=";IX(LW);DA$(LW)

4310 PRINT "ITEM (";NR;") = ";IX$
4320 LSET XX$ = MKI$(IX):PUT

#1,NR:NR=NR+1

new lines:

4251 PRINT'IX = ";IX;" IX$ = ";IX$
4265 PRINT'FILE: ";LW;"
ENTRY=";IDX(LW);DA$(LW)

4266 PRINT'IX = ";IX;" IX$ = ";IX$
4310 PRINT "ITEM (";IX;") = ";IX$
4320 PRINT #1,IX;",";IX$

There is never an excuse for an incorrect program so
no apology is sufficient for presenting one. If a design
is executed correctly, the program will also come out
correct. However, even the best designs are subject to
human failures, and ultimately, we're all human. I can
only apologize for being more human than I thought I
was.

Despite the problems with Ranidx.bas, you should
know that a preliminary version of the random files
system has been in use for over a year handling a 25000
name mailing list. This series of articles is built on a
rewrite of the preliminary version which cleans up the
code and develops it in a simpler fashion and corrects
mistakes from the original. Sometimes though, the
rewrites (as in this case) are not all that they're intended
to be. Even now, with extended indexing, CodeWorks
is preparing to move the mailing list system to the
Random Files program both to have a better working
environment AND to provide for a more complete
testing platform for future additions to the program. If
we find other errors in using this code, you can be sure
you'll be the first to know.

Next time, we'll pick up again and add some more to
our random system. With indexing in hand, we have a
powerful system which allows considerable flexibility
in data base layout and design. It doesn't match any of
the standards and will never come to be the next Dbase
or Rbase, but you do have the source code and can make
it into anything you wish.

'10 REM - RANIDX.BAS - Random File Indexing - VERSION 2.0 JUN
20 REM - Terry R. Dettmann for Codeworks Magazine
25 MX=500
30 DIM FP$(20), SC$(24), XY(20,3)
31 DIM DA$(MX), IX(MX), IR(MX)
40 DEF FNCTR$(X$)=STRING$((WD-LEN(X$))/2," ")+X$
41 DEF FNLF(X) = LOF(X)/128
50 WD=80:LN=24
51 NX=0:TN=1:TX=10
60 FALSE=0: TRUE = NOT FALSE

88

CODE WORKS 25

100 REM - file setup
110 CLS:PRINT FNCTR$("RANDOM FILE INDEXING"):PRINT:PRINT
120 LINE INPUT"FILENAME: ";FF$
125 FD$=FF$+".dat":FS$=FF$+".stk"
130 OPEN "R",1,FD$:OPEN"R",2,FS$,4:FIELD 2, 4 AS SK$
135 IF LOF(2)=0 THEN LSET SK$=MKI$(1):PUT 2,1
140 FM$=FF$+".MAP":FX$=FF$+".SON"
150 GOSUB 5000: REM Read Map
170 GOSUB 5300: REM Setup Fielding
200 REM - main menu
210 CLS:PRINT FNCTR$("RANDOM FILE INDEXING"):PRINT:PRINT
215 LINE INPUT"Name of the index: w;FI$:FI$=FI$+".idx"
220 INPUT "Sort on what field number";FX
230 IF FX<1 OR FX>CX THEN PRINT"OOPS - no such field":GOTO 220
231 INPUT "Select field number (enter 0 for none)";SX
232 IF SX=0 THEN 240
233 IF SX<1 OR SX>CX THEN PRINT"No such field number":GOTO 231
234 LINE INPUT "Select Criteria: ";SX$
240 FOR RN=1 TO FNLF(l) :GOSUB 1400
250 IF INSTR(FP$ (1), "DELETED") >0 THEN 270
255 IF SX>0 THEN IF INSTR (FP$ (SX), SX$) =0 THEN 270
260 GOSUB 1000
265 IF NX>=MX THEN GOSUB 2000:TF=TN:GOSUB 3200:GOSUB 3300:NX=0

TN=TN+1
270 NEXT RN
280 IF NX>0 THEN GOSUB 2000:TF=TN:GOSUB 3200:GOSUB 3300
290 GOSUB 4000
500 REM - End of Program
510 PRINT"All Done":CLOSE:END
550 REM - Save the program
560 'SAVE "ranidx.bas"
570 RETURN
600 REM - input a character
610 C$=INKEY$:IF C$="" THEN 610
615 IF LEN(C$)>1 THEN GOSUB 700
620 RETURN
700 REM - look for arrows
710 C = ASC(MID$(C$,2,1))
720 IF C=72 THEN C$=UP$ ELSE IF C=77 THEN C$=RT$
730 IF C=80 THEN C$=DN$ ELSE IF C=75 THEN C$=LF$
740 RETURN
800 REM - GOTO XY ROUTINE
810 LOCATE X,Y: RETURN
900 REM - break line
910 FOR K=1 TO 10:BL$(K)="":NEXT K
920 JN$=IN$:NB=1
930 K = INSTR(JN$,":") : IF K=0 THEN BL$ (NB) =JN$:RETURN
940 BL$(NB) = MID$(JN$,1,K-l)

950 NB = NB + 1
960 JN$ = MID$(JN$,K+l)
970 GOTO 930
1000 REM - Add-the record to the index
1010 NX = NX + 1
1020 DA$(NX) = FP$(FX)
1030 IX(NX) = NX:IR(NX)=RN
1040 RETURN
1400 REM - get- record from data base
1410 IF RN<1 OR RN>FNLF (1) THEN RETURN
1420 GET 1,RN.
1430 RETURN
2000 REM - Sort the index
2010 DF = NX:PRINT "SORTING ..."
2020 IF DF = 1 THEN RETURN
2030 DF = INT (DF/2)
2040 SWP = FALSE
2050 FOR 1=1 TO NX-DF
2060 IF DA$(IX(I))>DA$(IX(I+DF)) THEN GOSUB 2100:SWP = TRUE
2070 NEXT I
2080 IF SWP THEN 2040 ELSE 2020
2100 REM - swap the data fields
2110 T = IX(I):IX(I) = IX(I+DF):IX(I+DF) = T
2120 RETURN
3200 REM - Select Temporary File Name
3210 FT$="SRT"+MID$(STR$(TF) , 2)+".TMP"
3220 RETURN
3300 REM - Save the Sorted data to a Temporary File
3310 PRINT "Saving Temporary File ";FT$
3320 OPEN "O", 3,FT$
3330 FOR 1=1 TO NX
3340 PRINT #3, IR(IX(I))";DA$(IX(I))
3350 NEXT I
336Q CLOSE #3
3370 RETURN
4000 REM - Merge Data from Temporary Files to Index
4010 CLOSE
4020 N=0
4030 NR=1
4040 FOR 1=1 TO TN STEP TX
4045 N = N + 1:GOSUB 4400
4050 GOSUB 4100
4060 GOSUB 4200:IF NOT FOUND THEN 4075
4070 GOSUB 4300:GOTO 4060
4075 CLOSE:GOSUB 4500:GOSUB 4600
4080 NEXT I
4085 IF N>1 THEN TN=N:GOTO 4000
4086 GOSUB 4700
4090 CLOSE:RETURN
4100 REM - open temporary files
4110 IF I+TX > TN THEN JX=TN ELSE JX=I+TX
4115 K=0
4120 FOR J=I TO JX:K=K+1
4130 TF=J:GOSUB 3200

CODEWORKS 27

4140
4141
4150
4160
4200
4210
4220
4230
4240
4245
4250
4251
4255
4260
4265
4266
4270
4300
4310
4320
4330
4400
4410
4420
4440
4500
4510
4515
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
5000

OPEN *1",K+l,FT$:INPUT#K+1,IDX(K),DA$(K)
PRINT"FILE: ";K;" ENTRY=";IDX(K);DA$(K)

NEXT J
RETURN
REM - get lowest entry
LW=1: FOUND = TRUE
FOR J=2 TO K

IF DA$ (J) <DA$ (LW) THEN LW=J
NEXT J
IF DA$ (LW) THEN FOUND=FALSE:RETURN
IX = IDX(LW):IX$ = DA$(LW)
PRINT"IX = ";IX;" IX$ = ";IX$
IF EOF (LW+1) THEN DA$ (LW) =" " rRETURN
INPUT#LW+1,IDX(LW),DA$(LW)
PRINT"FILE: ";LW;" ENTRY=";IDX(LW);DA$(LW)
PRINT"IX = IX;" IX$ = ";IX$
RETURN
REM - save to index
PRINT "ITEM (";IX;") = ";IX$
PRINT #1, IX;IX$
RETURN
REM - open intermediate file n
FX$="TMP"+MID$(STR$(N),2)+".XXX"
OPEN "O", 1, FX$
RETURN
REM - delete temporary files
IF I+TX > TN THEN JX=TN ELSE JX=I+TX
K=0
FOR J=I TO JX:K=K+1

TF=J:GOSUB 3200
GOSUB 4570

NEXT J
RETURN
REM - delete the named file
SHELL "erase "+FT$
RETURN
REM - rename output file
TF = N:GOSUB 3200
SHELL "ren "+FX$+" "+FT$
RETURN
REM - build the final output file
OPEN "R",1,FI$,2 :RN = 1
FIELD 1, 2 AS XX$
TF = 1:GOSUB 3200
OPEN "I",2,FT$
IF EOF(2) THEN 4800

INPUT #2, IX,IX$
LSET XX$ = MKI$ (IX)
PUT#1, RN:RN = RN + 1
GOTO 4750

CLOSE
SHELL "ERASE "+FT$
RETURN
REM - read data map

More on Laser Printing

Heard any good computing hor
ror stories lately? Wanna hear one?

We first ordered a NEC LC890
from one of those mail-order hard
ware outfits. They claimed they
ship orders within 24 hours. A
month later, with an anxious buyer
of our regular typesetting gear get
ting impatient, the printer still had
not arrived.

We finally told them to stuff it,
and bought an Apple LaserWriter
IINT locally. Problem was that it
doesn't have a parallel port on it. We
had to either stick an AppleTalk
board in our PC and try to run it that
way (for an extra $350 or so) or run
it off of our serial port.

It turns out that Apple calls a null
modem adapter a "modem elimina
tor" and that's what we needed.
Only problem was that no one
seemed to know how it had to be
wired up between a PC AT and the
Apple LaserWriter.

After three days of utter frustra
tion, trying the many combinations
that exist (and not knowing all the
while that we might have a defec
tive printer) we finally found the
right combination.

All we can say at this point is that
we are glad that's over - and it sure
works fine now.

Anyone having a similar prob
lem can write or call and we'll fill
you in on the details of the hookup.

Now all we have to do is learn
how to use it to make a better look
ing issue. We're working on it.

Actually, our computer is lying
to the printer and telling it that it's a
Linotronic 100/300 typesetter. And
the printer obviously believes it!

But that's what you gotta do
sometimes.

28 CODEWORKS

5001 CX = 0
5005 OPEN"I" / 3,FM$
5010 IF EOF(3) THEN 5035
5015 LINE INPUT#3,IN$
5020 GOSUB 900
5025 GOSUB 5100
5030 GOTO 5010
5035 CLOSE#3
5040 RETURN
5100 REM - decode map l ine
5110 IF BL$ (1)="FIELD" THEN GOSUB 5200:RETURN
5120 RETURN
5200 REM - def ine a f i e ld
5210 NF = VAL (BL$ (2)) :FL = VAL(BL$(4)) :FP = VAL(BL$(5))
5220 XY(NF,0)=FL:XY(NF,3)=FP
5225 CX = CX + 1
5230 RETURN
5300 REM - Map F ie lds
5310 FOR 1=1 TO CX
5320 NL = XY(I ,3)
5330 FIELD #1 , NL-1 AS X$,XY(I ,0) AS FP$ (I)
5340 NEXT I
5350 RETURN

Computing Notes

Here are some important Tandy Model \Jll\ addresses. If
you find some of these in programs you are trying to
convert you will know what they do and you should be
able to program around them. The starting location is
given in all cases. Some of these addresses would span
maybe two or three more locations after the one given.
Not all of them have exact counterparts in MS DOS,
while others are unnecessary in MS DOS. As we find
corresponding locations for MS DOS we will publish
them in these notes. If you have any more to add to this
list, please let us know about them.

14308 - address of cassette port relay
14316- I/O addresses
14336-15359 - keyboard memory
15360-16383 - video display memory
16384-16895 - BASIC vectors
16396 - BREAK key jump vector
16409 - Caps lock switch
16412 - cursor blink switch
16416 - cursor address
16419 - cursor character
16424 - max lines per page plus 1

16425 - number of lines printed plus 1
16427 - line printer max line length less 2
16429 - DOS entry point
16455 - address of lowest usable memory location
16546-16547 - contains line number currently being
executed
16548 - points to beginning of BASIC program
16561-16562 - holds end address of free string space
16598-16599 - holds end of memory address
16633 - end of BASIC program pointer
16633 - points to end of BASIC program
16635 - end of simple variables
16635-16636 - used for memory calculations
16637 - end of array variables pointer
16637-16638 - calculates FRE(X$)
16872 - RS-232 input buffer one byte
16880 - RS-232 output buffer one byte
16888 - baud rate code
16889 - parity/word length/stop bit
16890 - RS-232 wait switch
16896-20991 - TRSDOS
16913 - cassette baud rate switch
16916 - video display scroll protect

Continues on page 38

CODE WORKS 29

*«S

Convers ions •

Observations while moving from Tandy III to MS DOS

Robert A. Hood, Bremerton, Washington. In last issue's Forum we mentioned that this
article was in that issue. Space got us and it was left out. Here Mr. Hood tells about his
conversion from a Tandy Model III to one of the Tandy MS DOS machines. We think you will
find that there is more the same between them than there is different.

I recently purchased an MS-DOS computer with pose. - ED) PC Cross Zap transfers IRS-DOS 1.3 and
two drives and MS-DOS 3.20 and GW-BASIC 3.20. My LDOS 5.1 programs for the Model III and transfers TRS-
previous system was a Tandy Model III, and I also had DOS 6.2 programs for the Model IV. For the Model III
access to a Tandy Model IV. I found it desirable to convert it also inserts a space before and after each keyword and

* - r n o m a c u n t o v m r r p r t i n n c A f t r » r f h p n r n o r a m many programs to MS-DOS.

I have found several areas of difference between
the two computer systems. They are:

1. USR(?) calls
2. Syntax
3. Screen size
4. ASCII codes

(a) CHR$(?)
(b) POKE
(c) PEEK

5. Control keys
6. CMD"?"
7. Error codes
8. Timer loops

A detailed explanation for each of the above
areas is presented in this article. All the differences may
not have been found, and therefore, I would like to en
courage you to send any more you find to the CodeWorks
Forum.

Getting Started

makes some other syntax corrections. After the program
has been transferred, make a backup copy on the same
disk using extension .M3 for the Model III and ,M4 for
the Model IV. The original copy then becomes the work
ing copy to be converted. This is done so that if somehow
the working copy of the program becomes badly botched
you can go back to the original and start again.

Next, if you have a printer, make a printed listing
of the program (preferably double spaced.) This listing
may be marked up to show program flow and changes
made. You should now review the program listing, look
ing for ON ERROR GOTO statements. The first change
to be made is to REMARK all the ON ERROR GOTO
statements in the program and to mark the statements in
the listing for later replacement. This is necessary to make
the normal program errors appear on the video when
they occur instead of going to the error trap routine.

USR(?) Calls

This is the most difficult problem in the conver
sion of programs. This function is used to call machine
language subroutines from the BASIC program. To
convert, it is necessary to know exactly what the subrou-—— "7 — - - — J L IV. A 1 w TV vAUvl |T Vfll u I ̂ - —

tine being called does. Then you must write a BASIC
The first task is to get the BASIC program which routine or an MS-DOS machine language routine to

you wish to convert transferred to an MS-DOS formatted replace it. If you are unable to do either of these tasks and
disk. There are two ways to do this. One is to type the the routine cannot be omitted, then there is no purpose in
program listing in from the MS-DOS keyboard, remem- attempting to continue conversion of the program,
bering to insert a space before and after each keyword and
variable. Except for short programs, this can be a time- Syntax

This problem will occur often. Fortunately, it is
easily found. Just run the program and a syntax error
message will be displayed for each line in which it occurs.
I have found the following errors: (see table 1)

r i o > —•* ww «

consuming task and in addition to making corrections for
conversion it will be necessary to make corrections for
typing errors.

The other method is to use a commercial pro
gram to transfer from one system to the other. I am
presently using PC Cross Zap, by Hypersoft. (Trscross,
by Powersoft, is another excellent program for this pur-

30
The Model IV also uses PRINT@(row,col) and

CODEWORKS

MS-DOS uses LOCATE (row,col). If the PRINT@
statements are calculated values, the following subrou
tine may be used to convert the PRINT@ values for
Model IV.

1000 ROW=INT(C/80):IF ROW< 1 THEN ROW= 1
1010 COL=C MOD 80: IF COL< 1 THEN COL=l
1020 RETURN

Screen Size

The Model III screen is 16 lines at 64 characters
per line, the Model IV screen is 24 lines at 80 characters
per

line and MS-DOS is generally 25 lines at 80 characters per
line. For program conversion it is best to use 24 lines at 80
characters per line. This causes very few problems with
the display from a Model IV. For the Model III it is often
necessary to re-format the video display as lines which
previously wrapped around to the next screen line will
now be extended over the wider MS-DOS screen. Also,
the output on the MS-DOS screen without modification
will not be properly centered. The extra eight lines avail
able allow more data to be displayed and may be used to
improve the original Model III display.

Table 1

Model III Model IV MS-DOS

No keyword spaces Needs spaces Needs spaces
Print@ used Print@ used Locate used
Print Using % % Print Using \ \ Print Using \ \
Print Using [[Print Using Print Using
Kill"file/ext:0" Kill"file/ext:0" Kill"A:file.ext"
Load"file/ext:l" Load"file/ext:l" Load"B:file.ext"
Save"file/ext:l" Save"file/ext:l" Save"B:file.ext" — •
Filename in caps Filename u/1 case Filename u/1 case
THEN optional THEN for each IF THEN for each IF

Table 2

List of Equivalent Statements

Model III Model IV MS-DOS

CHR$(8) Backspace & erase Backspace & erase CHR$(29)+"
CHR$(14) Cursor ON Cursor ON Locate „1
CHR$(15) Cursor OFF Cursor OFF Locate „0
CHR$(21) Special Char, toggle Special Char.toggle Not required
CHR$(22) Alt. Char, toggle Alt. Char, toggle Not required
CHR$(23) Half-wide screen Half-wide screen WIDTH 40
CHR$(24) Cursor left Cursor left CHR$(29)
CHR$(25) Cursor right Cursor right CHR$(28)
CHR$(26) Cursor down Cursor down CHR$(31)
CHR$(27) Cursor up Cursor up CHR$(30)
CHR$(28) Cursor home Cursor home CHR$(11)
CHR$(29) Erase line restart Erase line restart See note 1
CHR$(30) Erase to end of line Erase to end line See note 2
CHR$(31) Erase to end display Erase to end disp. See note 3
CHR$(127) Plus or minus Plus or minus CHR$(241)
CHR$(192) Spade Spade CHR$(6)
CHR$(193) Heart Heart CHR$(3)
CHR$(194) Diamond Diamond CHR$(5)
CHR$(195) Club Club CHR$(4)
CHR$(196) Happy face Happy face CHR$(1)
CHR$(197) Frown face Frown face CHR$(2)

CODEWORKS 31

CHR$(198)
CHR$(199)
CHR$(200)
CHR$(201)
CHR$(203)
CHR$(204)
CHR$(207)
CHR$(208)
CHR$(215)
CHR$(217)
CHR$(218)
CHR$(220)
CHR$(224)
CHR$(225)
CHR$(226)
CHR$(227)
CHR$(228)
CHR$(229)
CHR$(233)
CHR$(235)
CHR$(237)
CHR$(241)
CHR$(242)

< with underline
> with underline
Alpha
Beta
Delta
Epsilon
Theta
Iota
Pi
Sigma
Tau
Phi
Omega
Square root
Divide
Sigma
Approx. equal
Delta
Percent
Infinity
6 over 9
Paragraph symbol
Cents

< with underline
> with underline
Alpha
Beta
Delta
Epsilon
Theta
Iota
Pi
Sigma
Tau
Phi
Omega
Square root
Divide
Sigma
Approx. equal
Delta
Percent
Infinity
6 over 9
Paragraph symbol
Cents

The following Model IV Print CHR$() are preceded by Print CHR$(0);

CHR$(6)
CHR$(26)
CHR$(3)
CHR$(10)

CHR$(9)

CHR$(13)

CHRS(l)

POKE 1 English pound
POKE 2 Vertical line
POKE 3 'over e
POKE 4 U umlaut
POKE 5 circle over A
POKE 6 top right corner
POKE 7 0 umlaut
POKE 8 slash O
POKE 9 'over u
POKE 10 "over n
POKE 11 * over u
POKE 14 A umlaut
POKE 16 "over N
POKE 17 o umlaut
POKE 18 Slash O
POKE 20 B
POKE 21 u umlaut
POKE 24 a umlaut
POKE 25 'over a
POKE 26 circle over a
POKE 27 6 over 9
POKE 30 ,under C
POKE 31

CHR$(242)
CHR$(243)
CHR$(224)
CHR$(225)
CHR$(235)
CHR$(238)
CHR$(233)
CHR$(168)
CHR$(227)
CHR$(229)
CHR$(231)
CHR$(232)
CHRS(234)
CHR$(251)
CHR$(246)
CHR$(228)
CHR$(247)
CHR$(127)
CHR$(37)
CHR$(236)
CHR$(21)
CHR$(20)
CHR$(155)

CHR$(10)
CHR$(8)

CHR$(11)

1. L=CSRLIN:LOCATE L,1:PRINT STRING$(79,32)--LOCATE L 1
2. C=POS(0):LOCATE ,C:PRINTSTRING$(79-C,32V-LOCATE C
3 L=CSRLIN:C=POS(0):LOCATE ,C:PRINTSTRING$(79-C32)"FOR

J = L + 1 T O 2 3 - L : P R I N T S T R I N G $ (7 9 , 3 2) ; : N E X T * J : L O C A T E L , C

CHR$(156)
CHR$(179)
CHR$(130)
CHR$(154)
CHR$(143)
CHR$(191)
CHR$(153)
CHR$(237)
CHR$(151)
CHR$(164)
CHR$(96)
CHR$(142)
CHR$(165)
CHR$(148)
CHR$(237)
CHR$(66)
CHR$(129)
CHR$(132)
CHR$(133)
CHR$(134)
CHR$(21)
CHR$(128)
CHR$(126)

32 CODEWORKS

Function

U/Lcase
Sp. Char Switch
Set Mem. size
Set Mem. size
Scroll protect

POKEs to non-screen addresses

Model III Poke Model IV Poke

POKE 16409,0
POKE 16420,1
POKE 16561,0-255
POKE 16562,0-255
POKE 16916,1-7

POKE 116,0
POKE 2964,8
Clear memsize
Clear memsize
POKE 2964,1-7

MS-DOS

See note 1
Not used
Clear memsize
Clear memsize
See note 2

1. Any number other than 0 sets Caps only for Models III/IV. For
MS-DOS DEF SEG=0:POKE 1047,32 sets num-lock, POKE 1047,64 sets
caps lock, POKE 1047,96 sets both and POKE 1047,0 resets all.

2. The number poked (1-7) determines the number of video display
lines to protect from scroll on Models III/IV. For MS-DOS you
may use VIEW PRINT nl to n2, where nl-n2 are the range of
lines to be unprotected.

PEEKs to ROM Addresses

The following PEEKs may be used in Models IIEIV

Function Model III Peek Model IV PEEK MS-DOS

Printer status
Check for key
Program start
Program start
Program end
Program end

PEEK(14312)
PEEK(14400)
PEEK(16548)
PEEK(16549)
PEEK(16633)
PEEK(16633)

INP(248)
PEEK(2300)
PEEK(28318)
PEEK(28319)
PEEK(29087)
PEEK(29088)

INP(889)
See note 1
See note 2
See note 2
See note 3
See note 3

1. This PEEK checks to see if a specific key has been pressed and
if so takes appropriate action. The following example for Model
III demonstrates the checking of the left and right arrow keys
where K=32 is the left arrow and K=64 is the right arrow. Note
that the values returned from PEEK(14400) are not the ASCII
values. These are values for specific keys: 1<ENTER>, 2<CLEAR>,
8<up-arrow>, 16<down arrow>, 32<left arrow>, 64<right arrow>,
128<space bar>.
500 K=PEEK(14400): IF K=32 OR K=64 THEN 1000 ELSE RETURN
The routine is the same for the Model IV, except that the PEEK
address is (2300) and the values are K=8 and K=9 for the keys.
For MS-DOS the 8 and 9 are the <BACK SPACE> and <TAB> keys and
the routine below may be substituted for the Model IIEIV
routine.
500 IK$=INKEY$:FOR J=1 TO 100:IF IK$< >"" THEN 510 ELSE NEXT J
510 IF IK$< >"" THEN IF ASC(IK$)=8 OR ASC(IK$)=9 THEN 1000
520 RETURN

2. This PEEK returns the least significant byte and the most
significant byte of the BASIC program start address.

3. This PEEK returns the least significant byte and the most
significant byte of the BASIC program end address.

CODEWORKS 33

Assignment of Control Keys

The use of the arrow keys, Shift-arrow keys and CLEAR key
with the INKEY$ function for control keys on the Models III/IV
need to be changed for use on MS-DOS because GW-BASIC returns
a two-character string for the arrow keys and does not have a
CLEAR key. The routine below demonstrates use of down-arrow
on the Models IILTV.

600 IK$=INKEY $: IF IK$="" THEN 600
610 IF ASC(IK$)=10 THEN 300

and for the down-arrow key in GW-BASIC, use this routine.

600 IK$=INKEY$:IF IK$="" THEN 600
610 IF LEN(IK$)=2 AND ASC(RIGHT$(IK$,1))=80 THEN 300

The following list provides the ASCII values for various keys:

Key used Model III Model IV MS-DOS

Left arrow 8
Right arrow 9
Down arrow 10
Up arrow 91
Shift l-arrow 24
Shift r-arrow 25
Shift d-arrow none
Shift u-arrow 27
CLEAR 31

8 75
9 77
10 80
91 72
24 135
25 136
26 134
27 133
31 none

The following routine returns the ASCII value of any key or
key combination:

800 CLS:PRINT" IKS LEN(IK$) ASC(IKS)
810 IK$=INKEY$:IF IK$="" THEN 810
820 PRINT TAB(3) IK$,LEN(IK$),ASC(RIGHT$(IK$,1))
830 GOTO 810

Missing Model III Commands

The Model III has 15 CMD functions which are not directly
supported by MS-DOS. Some of these commands need to be converted
for use on MS-DOS. CMD functions accessed from BASIC programs are:

Function Model III Model IV MS-DOS

Return to DOS
Enable/disable break
Display directory
Display directory
Execute DOS command
Chg. date display form
Load machine program

CMD"A"
CMD"B"
CMD"D:0"
CMD"D:1"
CMD'T","cmd"
CMD"J"
CMD"L"

System
See note 1
CAT0
CAT 1

System
See note 1
Files A:
Files B:

System "cmd" Shell "cmd"
Not used

System "file" Not used

IKS

Sort a string array
Check printer status
Move to DOS and return
Video & printer output

CMD"0"
CMD"P"
CMD"S"
CMD"Z"

System "cmd:

See note 3

None
INP(248)

<<7.
INP(889)
Shell
See note 4

See note 2

1. Enter BREAK ON or BREAK OFF from the DOS prompt.
2. SHELL "SORT [/R] [/+n] [cinput pathname] [>output pathname]"

reads input from keyboard or file specified by input pathname,
sorts the data, and writes it to screen or file specified by
output pathname. [] brackets indicate optional sort parameters,
/R reverses the sort (z to A). /+n begins the sort at column n
(default is 1).

3. Use SYSTEM "LINK *DO *PR"
4. This feature is not supported by MS-DOS but may be simulated.

1. To simulate CMD"Z" and to alternately display and print
text lines, the simplest method is to add LPRINT statements for
all PRINT statements where dual output is desired. Since MS-DOS
has a full screen editor and can edit line numbers, this is
easy to do. Simply duplicate the PRINT line number and add an
L to the PRINT in the duplicated line.

2. To alternately display and print video pages the following
BASIC subroutine may be used in MS-DOS. It replaces LCOPY and has
the advantage of allowing the user to specify the number of lines
to be printed.

100 NL=N:GOSUB 5000' N=number of lines to print
5000 IF NL< 1 OR NL>25 THEN NL=25
5010 DEF SEG=&HB800
5020 FOR ZX=0 TO NL*160 STEP 160:ZP$=""
5030 FOR ZY=0 TO 158 STEP 2
5040 ZP$=ZP$+CHR$(PEEK(ZX+ZY)
5050 NEXTZY
5060 LPRINT ZP$
5070 NEXT ZX
5080 RETURN

The above subroutine may be modified to print a variable number
of video screen lines by omitting printing of blank lines. To
omit printing blank lines make the following change to the
routine:

100 GOSUB 5000
5010 FOR ZX=0 TO 3998 STEP 160:ZP$=""
5035 IF PEEK(ZX+ZY)=32 THEN ZW=ZW+1
5055 IF ZW=80 THEN 5065
5065 ZW=0

Methods to provide dual output to both video and printer.

To force a blank line to be printed with the above changes, use
"PRINT CHR$(255)" in place of "PRINT'

3. GW-BASIC in MS-DOS allows the assignment of devices. Another
method that can be used to output to both screen and printer
is to open the screen for output as #1 and open LPT1 (the
printer output) for output as #1, then PRINT #1 to both of
them. Don't forget to CLOSE #1 when you are done.

Timer Loops

Many BASIC programs use FOR...NEXT loops to time program
delays. Because the Model III and IV have a slower clock speed
than most MS-DOS machines, the loop length must be increased
when using GW-BASIC. Some typical clock speeds are:

Model III
Model IV
8086 PC
80286 PC
80386 PC

2.02752 Mhz
4.055 Mhz
4.77-7.16 Mhz
8 -10 Mhz
16 - 20 Mhz

This means that when converting from the Model III, multiply
the value of the loop counter range by 2.35 or 3.53 and from
the Model IV multiply the value of the loop counter range
by 1.18 or 1.77.

Miscellaneous Differences

1. Model III/IV special characters CHR$(244)+CHR$(245)+CHR$(246)
produce a hand pointing right. No such feature is provided for
in MS-DOS.
2. On Models III/IV the statement 200 F=180:INPUT"Value (default=
180)";F produces F=180 if ENTER is pressed. For GW-BASIC use the
statement 200 INPUT "Value (default= 180)";F:IF F< 1 THEN F= 180.
3. Models III/IV search all drives for a requested filename.
MS-DOS searches only the current drive. However, by using the
PATH internal command, any drive or sub-directory may be
searched. The PATH can also be included in the MS-DOS
Autoexec.Bat file so that it is automatically invoked on
power up.
4. LOF() contains the number of the last record for Models
III and IV. LOF () contains the length of the file in bytes
for MS-DOS machines.
5. For the Models III/IV the function RND(X) produces random
integers 1 to X. In GW-BASIC use INT(RND*X+1).
6. Model III uses [for exponentiation. Model IV and GW-BASIC
use the caret (*).

7. The following statements are equivalent:

GW-BASIC 100 LOCATE X,Y:RETURN
Model III 100 PRINT@((X-1)*64) + (Y-1),;:RETURN
Model IV 100 PRINT@((X-1),(Y-1)),;:RETURN

36 CODEWORKS

t Hard Disks
Questions and Answers

AI Mashburn, Technical Advisor. In response to many requests, A1 has put together a
few questions and answers about hard disks. If enough interest is shown in this subject Al is
prepared to dig deeper and get into the more technical aspects of hard drives.

Rather than do another dry two-page article on
hard drives, I thought I'd go for the question-answer
format. Truth in print requires me to tell you that some
of the questions are ones I thought you should have
asked.

q. Why do I need a hard drive?
a. Because it is the quickest way to have something
better than your friends. Seriously there are people that
just plain do not need a hard drive. If you only use one
application and it doesn't need a lot of storage, you may
live happily ever after using only floppies. Those of you
with TRS-80s most likely do not and will not have one.
Most of the programs you use are designed to fit and run
on one floppy, putting data on the second floppy. But
when you get into the MS-DOS world, things change.
For instance QuickBASIC 4 comes on three diskettes.
Our business mailing list is over one megabyte long and
would be a real pain to try to span over three or four
floppies.

q. What are the differences between floppy drives and
hard drives?
a. Well, let's start with the physical differences. A floppy
disk is made of a flexible piece of plastic with a coating
of oxide on it to store information much like a cassette
tape. The head of the drive rubs right on the surface just
like the heads on a tape recorder. The disk is held in a
cover that has a soft lining on the inside to pick up oxide
that has been rubbed off or any dirt that may get in. The
3 1/2 inch disk has a metal cover that slides over the head
opening in the cover to keep dirt out, the 5 1/4 inch disk
is just open to the world. The head moves up and down
the opening to access the different tracks or cylinders of

information. On a single sided drive a pad is on the other
side of the disk to make sure that the head is actually
contacting the surface of the disk. On a double sided
drive the heads do this job for each other. The floppy
disk turns at 360 RPM.

The hard drive is a much different animal. The
first difference is the reason they call it a hard drive. The
hard drive is made up of one or more "platters" of
aluminum with an oxide or sometimes a metal coating
on them. The heads never come into contact with the
platter (well almost never, when they do it is called a
crash.) The oxide coating is very thin and can store bits
on it at a much greater density than a floppy. The disk
spins at 3600 rpm, and the heads "fly" over it at a
distance of about 1/4 the diameter of a human hair (red).
Obviously this makes the hard drive susceptible to
shock and you should take care when transporting a
computer with a hard drive installed.

With the greater speed and the higher bit den
sity, much higher data transfer rates are found with a
hard drive. Rates of 850,000 bytes per second are quite
within reach of a desktop computer with a hard disk,
compared with the floppy's 100,000 bytes. So speed is
another difference between the floppy and hard disk.

q. What all do I need?
a. Generally speaking, no matter what type of computer
you have you will only need two things. One is a
controller. This is the interface between the computer
and the drive. It has to know how to talk to both of them,
so the data can be transferred back and forth. Until the
IBM/AT class of computers, the controller had to be
configured for what type of drive it was going to run
with and if you added a second drive, it had to be the

CODE WORKS

same type. The newer controllers are capable of having
two completely different styles of hard drives hooked
up to them. For instance, I run one 30 meg and one 40
meg drive on my system at home. The second thing you
need, of course, is the hard drive.

q. How big of a hard drive do I need?
a. As big as you can afford, with exceptions. If you own
an MS-DOS machine, you can't have too big of a drive.
DOS can only "see" 32 megs at this time, (although I
have heard DOS 3.4 will break the barrier) but with
special drivers you can either break up big drives into 32
meg chunks, or fool DOS into seeing bigger drives.

You TRS-80 people are the exceptions. The
biggest drive that is really usable by you is 5 megs. The
reason for this is kind of a two-part whammy. One is that
the TRS-80 can only access 4 floppy and 4 hard drives
(on the TRS-80 you break one hard drive into 4 "logi
cal" hard drives). The other is that it can only keep track
of so many "chunks" on a drive. Let me define a chunk.

Lets say that on a TRS-80 floppy drive, the
sectors are 256k long. The system will usually group
them into one 512k "chunk." What this means to you
and me is that the smallest file I can write is going to be
512k long. Even if it is only a 100 byte BASIC file, it is
still going to take up 512k. Now if your system can only
keep track of so many chunks, and somebody hooks up
a hard drive, what's a system to do ? You, the guy in the
back, right! You make the chunks bigger! Hey, no
problem right? Wrong. Let's say we have a 5 meg drive,
broken into four 1.25 meg drives. The chunk size on

these drives could be as much as 8k long. Obviously if
you were trying to use a 10 meg drive, they would be
16k long. Tbal means that the 100 byte BASIC program
takes up 16k on the drive. You can see that there is a real
limit for the TRS-80.

q. Can I use my hard drive for my TRS-80 and my MS-
DOS machine?
a. Yes, although it isn't cost effective for just two
computers.

Tandy has a network system called Network4
that can let you hook up to 63 MS-DOS or TRS-80
Models 3 or 4 up to a single hard drive. One machine has
to be a "slave" and do nothing but be the traffic cop for
the system but the others have access to the drive just
like it was installed in their computers. Like I said, it it
not cost effective for just two computers, but for a school
or business that has a lot of either or both computers it
makes a lot of sense. The adapters to put the computers
on the net are only a couple of hundred dollars which is
a lot cheaper that the $500 that many vendors want for
just a 5 meg drive for the Model 3 or 4.

If there is enough interest in it, a later article can
cover the first steps on putting in a new hard drive.
Starting with formatting and going through the setting
up of sub-directories and paths. For once the TRS-80
guys have this one easy, since the hard drive is treated
like a big floppy there is little or no difference in
operation. The MS-DOS people have a real bag of
worms on their hands if the drive isn't set up right in the
first place.

Computing Notes, from page 29
16919 - time-date
16928 - route destination device designator
16930 - route source device designator
17129 - Level II BASIC pointer to 2nd program line
20992-28671 - Disk BASIC & DOS utilities
26810 - Disk BASIC pointer to 2nd program line
28672-65535 - user memory not used by DOS

Those of you who do not have WHILE and WEND
as statements in your BASIC can easily program
around them. WHILE basically says to do something
while a certain condition exists, then quit. Check out
the following code, which reads from a sequential
file:

100 WHILE NOT EOF
110 INPUT #1, LN$
120 WEND
130 CLOSE

which says that as long as we are not at EOF in the
file, to read in LN$. If we do reach EOF, then goto
130 and CLOSE the file.

Without WHILE and WEND, your code could look
like this:

100 IF EOF THEN 130
110 INPUT #1, LN$
120 GOTO 100
130 CLOSE

38 CODEWORKS

Handy Order Form
1 Q t v Item description Price Total

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95

All third year issues, Nov 87 through Sep 88 $24.95

All second year issues, Nov 86 through Sep 87 $24.95

All first year issues, Sep 85 through Sep 86 $24.95

1st Year Program Disk (issues 1 through 7)
(Specify computer type below) $20.00

2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00

3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available after 1 Sep 88 $20.00

NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

Total

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3),
TRSDOS 6.x (Tandy Model IV) and most CP/M MBASIC formats, on

5 1/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
O Charge to my VISA/MC

Ship to: Name

Address

City

exp.

State Zip

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only, we don't take American Express 788

CODEWORKS 39

Additions to CWINDEX.DAT

Ledger.bas, reference, issue 17, page 4
Misc, reference to Locate x,y, issue 17, page 4
Misc, reference to ArcSIN in issue 16, issue 17,
page 5
Misc, reference to TRSDOS 6.2 and date, issue
17, page 5
Beginning BASIC, direct cursor positioning,
issue 17, page 6
Misc, program, Cursor 1 .bas, issue 17, page 8
Misc, program Cursor2.bas, issue 17, page 9
Misc, program, Cusror3.bas, issue 17, page 10
Random files, issue 17, page 11, sorting big files
in Randemo
Ranidx2.bas, main program, issue 17, page 12,
big sorts
Misc, program, easydate.bas, issue 17, page 17,

standardizes date
Dmaker.bas, main program, issue 17, page 18,
aid to decision making
Etax88.bas, main program, issue 17, page 25, es
timating quarterly taxes
Bio.bas, main program, issue 17, page 30, plot
your biorhythms

If you are using Qkey.Bas to keep a run
ning index of CodeWorks articles and notes,
these are the changes to bring that index up to
date through the last issue.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
POSTAGE

PAID
Permit 774

Tacoma, WA

CODEWORKS
Issue 19 Sep/Oct 1988

CONTENTS

Editor's Notes

Forum

Beginning BASIC

Hard Disks

NFL88.Bas

Stat88.Bas

Correl.Bas

Outline.Bas

Random Files

Renewal Form ...

Index/Download .

CODE WORKS Editor's Notes
Issue 19 Sep/Oct 1988

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashburn

(c)lSS8 80-Northwest Publishing Inc. No
patent liability is assumed with respect to the
use of the information contained herein. While
every precaution has been taken in the prepa
ration of this publication, the publisher as
sumed no responsibility for errors or omissions.
Unless otherwise noted, all programs pre
sented in this publication are placed in
public domain. Please address all correspon
dence to CodeWorks. 3838 South Warner
Street, Tacorns, WA 98409

Telephones
(206) 478-2219 (voice)

(206) 478-2356 (modem download)
300/1200 baud. 8 bits, no parity and 1

stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned ifreturn postage is provided. Compen
sation will be made for works which are ac
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (206) 478-2219.
Charge card orders may also be left via our
on-line download system (206) 478-2356.

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Ncrv. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
a sample copy at no cost.

Well, after all the hoopla of
moving and switching to desktop
publishing, we finally settled for a
different office in the same build
ing. So, no address or phone
number changes and that's nice.
And with a little more experience
under our belts, this issue ought
to look a little better than the last.

During the move I ran across
and old book, entitled "Computers
and How They Work." It was pub
lished by Ziff-Davis Publishing
Co., in 1959. I remember it as
being one of the first books about
computers, and in those days
there weren't very many. I took a
few minutes to browse through the
book before I realized what ex
traordinary changes have taken
place in computing in the past 30
years.

The book gave a lot of coverage
to magnetic core memories and
shift registers. A core memory of
16K was considered state of the
art. There were no video display
terminals; everything printed out
on a typewriter-like printer.
Punched paper tape looked like
the input medium of choice in
those days.

Nowhere in thebook could I find
evidence of the concept of having
the program and free memory
occupy the same space. The pro
gram looked like it was wired up on
some kind of plug-in panel. There
was a whole chapter on "how com
puters remember." High speed
tape and card punching were cov
ered as though they were new
concepts, and they probably were.
Although they talked about serial
and parallel adders, serial or par
allel input or output was never
mentioned.

The coup de grace of the whole

affair was near the end of the book,
where they talked about then
current systems. Here I'll quote
directly from the book: "The IBM
704 requires 24 microseconds to
perform addition and 240 micro
seconds to perform multiplication
or division. Provisions are made
for storing up to eighty-six in
structions. Input-output rates via
magnetic tape may be as high as
2500 words per second. This
popular system carries a selling
price of $1,000,000 to
$2,500,000."

In case you missed it, those
figures are in the millions! For
contrast, the book itself, which
was a very well done hard-cover
book, had a price printed on its
jacket - $4.95.

Isn't it amazing that the price of
computers has come down so
much, while the price of books has
gone up? Not only that, but com
puters offer much more than ever
before for less money, while books
seem to offer less for more money.
Oh, well.

This issue marks the end of our
third year at CodeWorks. It has
been interesting and fun, and we
hope you have found it worth your
while too. It also means that we
must, once again, solicit your
renewals for another year. We
appreciate the many of you who
have already renewed and ordered
our third year diskette. We would
like to encourage the rest of you to
renew as soon as possible, so that
you don't miss out on the neat
things we have planned for you
during the coming year.

Aside from all that, it's football
season again, and Autumn, and
what could be nicer than that?

Irv

2 CODEWORKS

Forum
An Open Forum for Questions and Comments

...CodeWorks has been very helpful to me in
understanding how a computer and BASIC
programming work. Also, thanks for the tips on
Genealogy. I have ordered "Clan" from Mr.
Hurlburt (Forum, Issue 18) and am looking
forward to using it.

Walter Evans, Jr.
Waco, TX

.. Add one more to the list of people Interested
in Genealogy. I have seen a number of ads for
programs to do genealogy, but none of them to
be used with a Model III. Your note about the
program from Arthur C. Hurlburt, to run on a
Model III with TRSDOS 1.3 was of great interest.
I am ordering a copy from him immediately. I
have been told that the Mormon church has
published a program which is supposed to be
very good, but one needs an IBM PC or equiva
lent to run it, so I have never looked into it.

D. B. McRae
Grantsville, UT

I am glad to see that the genealogy business
Is creeping to the front. William A. Korroch (3806
Churchill, Lansing, MI 48911) has generated a
genealogy program "Pedigree" that enjoys pub
lic domain. If you are interested in learning more
about (the program) I am sure Bill will be pleased
to "go the second mile or more." Thanks to you
and your crew for CodeWorks!

S. A. Langell
North Canton, OH

Thanks for the information, but you didn't say
what computer it runs on. From the other informa
tion you have sent we assume it runs on a Tandy
Model III, although it does not say so explicitly.

This letter is in reference to one of your pro
grams, Card.Bas, which appears in Issue 2. It Is
a veiy useful program. However, the program
would be much more useful if, using option 4,
you could sort on a secondary key as well as a
primary key. In one of your future issues, could

you please publish a program that uses a secon
dary sort?

Anthony Ivy
Tuscaloosa, AL

We are working on version 2 of Card. Bos now,
which basically does nothing more than give you
the secondary sort you have asked for. In addi
tion, we have worked up a little demo program to
show how two-level sorting works. It will proba
bly appear in a future installment of Beginning
BASIC.

I have found a tremendous resource of inter
esting programs in your CodeWorks. Not only
good programs but also their depth have given
me a wonderful review of the whole BASIC
language. One seems to need only a few com
mands when coding his routine chores and
forgets the others and the power they provide...

J. M. Davis
Sun City, AZ

Isn't it the truth? We have found that the more
tools you have in your toolbox, the simpler and
less complex your code becomes.

You mentioned that you knew of no way to
recover files saved with the "P" option (in MS
DOS). B & J Enterprise, PO Box 485, Daleville,
AL 36322 lists disk #1049 to unprotect them at
$3.50 (public domain catalog). I've not used it
but thought you'd like to know.

Mrs. Ira Hynes
San Francisco, CA

Thanks. We solved the problem by never using
the "P" option.

...May I make a few comments that might be
worth considering? Many owners of the TRS-80
(I, II, III and IV) are either engineers or, at least
technically competent. I think that most are not
afraid to go into their machines and make
repairs and alterations. I myself have modified a
Model III and a IV to include an internal fan,
built-in power supplies to accommodate four
floppy disk drives, installed four half-inch high

CODEWORKS 3

drives (Teac seems to be the best) and, on the
Model III, addition of Shuffleboard III CP/M.

The above thoughts lead me to believe that a
really good attempt to change the I, III and IV
into 16, or even 32, bit machines would be
received with enthusiasm. Our babies should be
able to do all that they ever did, plus anything
new.

This is not really as crazy as it sounds. There
are many of us out here. In fact, some of the best
of us can be found in Australia, Canada, The
Netherlands and many foreign countries. I am
sure a fair percentage of us would be willing to
commit ourselves to a comprehensive program
of updating and modernizing. There is one thing
most of the powers that be seem to forget: there
are an awful lot of TRS-80's around.

One thing that might be a problem is the DOS.
But, even for this, I think that MISOSYS and
Logical Systems have shown a reasonable (more
than could reasonably be expected) support and
interest in the TRS-80. True, Logical Systems is
bowing out, but even now, not completely. You
can still get answers and friendly help simply by
writing or calling them.

It seems to me that a program of the type
suggested could extend the life of the old girls for
many years, in fact, even into the 21 st century...

Maxwell L. Hall
Chicopee, MA

I used to feel the same way about the Model A
Ford, but I don't any more. Comments, anyone?

How does one print quotation marks? You
have to use them in your programming but I
don't know how to print a quotation mark. It
cuts the balance of my sentence off if I try to use
one and I find nothing in the manuals on it.

Mrs. Ira Hynes
San Francisco, CA

CHR$(34) is the quote mark. You can insert it
into your print statement wherever you want a
quote mark to appear. As in: PRINT "Here is how
to put a";chr$(34); "mark in your print statement"

Do you know of any people who have typed at
least some portion of the Bible (NIV or RSV) onto
5 1/4" disks using a TRS-80 Model III/IV and
Superscripsit? I am interested In swapping what
I am doing for what they are doing. So far, I have
most of the book of Genesis on disk. It is in files

of three chapters per file which can be merged
into longer files using the Copy and/or Move
commands. So I can keep track of where I am,
the book name and chapter appear at least once
on each "video" page. My goal is to type the first
five books (Genesis through Deuteronomy). I am
especially interested in corresponding with
those who are working on the New Testament.
Thanks for your help.

Samuel Laswell
74214 Lambert Drive

South Haven, MI 49090
No, but someone else might

Please do not frighten me by considering the
discontinuing of CodeWorks. Your publication
is the only good resource for CP/M programs. I
am just old fashioned enough to stick to my
(Heath) H89A and CP/M, even though most
computer publications have completely forgot
ten 8-bit and CP/M. I am still the slowest
element in the system, so the hardware and
software speed does not bother me.

Still having problems with conversion of the
LOCATE command to CP/M. Just got to keep
working at it to get it straight. Beginning BASIC
in Issue 17 helped some, but I cannot get the
demo program to run correctly. Keep up the
good work. Cheers.

B. T. Jeavons
Ocean Springs, MS

We won't give up if you don't Will someone
with an H89A send us the exact syntax to make
our LOCATE/Print© routine work so that we can
pass it along?

I have the following disk cleaning program
which I use to clean disks in my TRS-80 Model
IV. It works very well with the IV and I tried to
convert it to my XT Clone using TRSCROSS but
it stayed the same as before and would not
convert.

10 CLS: INPUT REMOVE ALL DISKS IN ALL
DRIVES AND PRESS ENTER" ;A$

20 INPUTHOW MANY DRIVES DO YOU
HAVE";D

30 IF D<0 OR D>4 THEN 20
40 FOR C=0 TO D-l
50 PRINT'INSERT CLEANER INTO

DRTVE";C;

4 CODEWORKS

60 INPUT"AND PRESS ENTER" ;A$
70 FOR R=1 TO 9700:OUT 244,15:NEXT R,C

I would like to know if anyone at your facility
or any of your readers might have a similar pro
gram for the IBM PC or clones? I could use such
a program whether it is written In GW-BASIC,
QuickBASIC or MS-DOS.

Clyde W. Preble
Mill Valley. CA

Why go through all thai? At the DOS ready
prompljust put the cleaner disk into the drive you
want to clean and issue a DIR. - or are we missing
something? To make the program work with MS-
DOS you will need to identify your drives by letter
(string), not by number. That's why it wouldn't
convert with TRSCROSS.

Having been a CodeWorks subscriber from Is
sue 1 and having enjoyed and learned much
from each issue, I am reluctant to terminate my
subscription, However, it seems necessary at
this time. I just don't have time to read, copy and
use your articles which are not applicable to my
present experience.

A total surprise brought it about.
My three sons thought old dad ought to have

and gave me a new computer for my birthday. It
has 256K of memory, external drive, hard drive,
printer and programs for multi-tasking, word
processing, publishing, spreadsheet, drafting
and drawing. The only thing I had to get was an
Interpreter so I could transport the useful and
fun things from the two previous systems.

At first the whole thing was so formidable that
I almost wished they hadn't done it, but now,
after a few months of getting acquainted with
everything, it is special and may become profit
able as well as fun.

I guess I have become a user. There just
doesn't seem to be time to read and learn about
programming. With that said, it is time for # 194
to say thanks for the CodeWorks experience.

Louis B. Kelley #194
Crescent City, FL

I can understand the lure of commercial pro
grams, having switched to desktop publishing,
with a hand scanner for graphics and a CAD
program to do drawings. But I'm trying to let it not
overwhelm me. Thanks for your three years of
support and good luck.

Something moved me to re-read Editor's
Notes of the May/June issue and from there the
Forum...

.. About sixty years ago I had my first and only
encounter with a hydraulic ram as a lad of 11 at
my grandfather's. It was fascinating as it
rammed the water up a high hill and onto the
back porch of his home. You will do what you
will, but April Fool's jokes have no place in a
good publication like CodeWorks.

I remember quite vividly an article in the late
30's about a Lilliputian radio, if the publication
still exists, they've eaten their words many times
over. 'Course I fell for the article hook, line and
sinker.

September, ayearago, I sold my weekly news
paper, The Carlisle Mercury, in its 120th year of
continuous publication. In August 1962 we
changed our way of printing from letterpress to
offset...

In March 1987 I purchased Apple's Laser
Plus, two Mac's, one with 20 meg hard disk and
by April we had shoved the (typesetters) to the
sidelines. Type faces are not as esthetic, but
time and technology will cure that I'm surel
Costwise it's a time saver and frees one from a
silver coated paper and its chemicals. Consider
ing the size type faces used In CodeWorks there
are not too many who can tell the difference. It
might be the way to go...

Warren R. Fisher
Carlisle, KY

And we did. Since you got your laser printer
they have added Postscript, 13 type families in 35
fonts (cdl in the printer ROM) and the ability to set
type sizes in 5 to 127 point in half-point incre
ments. The Apple LaserWriter n also does
smoothing on those little "stair-step'' linesyouget
on your screen (but only with Draw-type graph
ics, not with bit-mapped). Thefirst commercial job
(a technical manual) I did with this system I had
to do over three times to get it right, but the
experience was worth it all and should show in
this issue. Sometimes you simply have to jump in
with both feet - and kick a little bit And no more
stinking chemicals to go sour and wasted, expen
sive silver coated paper to wrap around the
processor rollers. Isn't technology wonderful?

Although we don't normally do product re
views, we do from time to time get products that
may be of interest to you. It is especially interest
ing to note that two of the three following items
are for Tandy Models III/IV, after we had
thought that support for these machines had
faded.

John M. Gregg, of TRY-O-BYTE, 1008 Alton
Circle, Florence, SC 29501 (803) 662-9500
sent us his 1988version of TAX ESTIMATOR for
the TRS-80 Models HI, IV. MS DOS, and Tandy
Color Computer. The program is available to
users for the cost of shipping and handling,
$5.00. John also included a copy of his "Report
to Users," Summer 1988, and since it carried the
heading "Volume 1 Number 1," we assume this
report will be an on-going thing.

Subscriber Tim Sewell has sent us informa
tion on The File Cabinet - Public Domain
Software for your TRS-80," PO Box 4295, San
Fernando, CA91342. He says it's a "Download
through the mail." Over the years. The File
Cabinet has collected TRS-80 software from all
over the country. The programs have been
checked, sorted, and cataloged into the largest
collection of TRS-80 public domain software you

will find. There are programs separated into
categories such as, Utilities, Games, Education,
Business and Communication. He even has a
high resolution catalog available with a READ-
MAC picture file catalog in the works. A two-disk
catalog of TRS-80 Model IV software is available
for only $5.00 which is refundable with your first
order. Tim also has information (which you can
ask for) on a TRS-80 Model I/III catalog.'

Prime Solutions Inc., 1940 Garnet Ave.,
San Diego, CA 92109 makes some rather fan
tastic claims for their program, "Disk Techni-
cian+." It is an artificial Intelligence program
that, according to Prime Solutions, will predict,
detect and repair hard disk problems on the
most fundamental level possible: that of the
single bit soft error. In other words, it Is software
that repairs hardware! The program requires PC
or MS-DOS versions 2.1 or higher and at least
384K of RAM. But how can it do all that? Disk
Technician+ writes and reads to every single
byte and bit on the hard disk, occupied or not,
using special proprietary testing and repair
algorithms. This process makes certain that
every byte and bit is tested for soft error rate,

continues on page 38

It's RENEWAL time.

If you have not already
renewed your
subscription

then this is your
LAST

ISSUE!

Use the order form on
page 39 to keep it coming!

STOCK EXCHANGE

/Psri
(Sect. j irsUy
S E L L III Buy I

1 , / / / Buy /

6 CODEWORKS

Beginning BASIC
Exploring the PRINT USING command

It Is very likely that Print USING is one of the
most powerful statements in the BASIC lan
guage. It is equally likely that most program
mers do not use but a portion of the capability
of that statement. In this installment we will
take an in-depth look at Print USING. Before we
go on, however, let's say that everything you can
say about Print USING can be said for LPRINT
USING as well. In our discussion we will simply
refer to Print USING, keeping In mind that you
can also LPRINT USING.

Print USING is a formatting statement. You
first define a format and then assign a variable
to use that format. The syntax of the Print
USING command is: PRINT USING
format;variable. The trick part of this command
is in the format part. You can do very many
interesting things with it, as we will see shortly.
Print USING is used to format output, either to
the screen or to the printer. It automatically
right-sets numbers, so that dollars and cents
come out in nice columns, with the decimal
points all lined up. Let's take an example:

100 A=12.34
110 PRINT USING "##.##";a

will print: 12.34

That's simple enough, but watch what hap
pens in the next example:

100 A=12.34:B=1.35:C= 123.45
110 PRINT USING "###.##"A
120 PRINT USING "###.##";B
130 PRINT USING "###.##";C

This will print:

12.34
1.35

123.45

Now let's look at the above example in a little
more detail. The number signs are used to
represent numeric positions. The decimal point
will operate at the position where you put it in the
format string. If you only had one number sign
after the decimal point and variables A, B and C
were two decimal places, then the Print USING
statement would use automatic four-fifths
rounding. That's kind of nice. If you have more
positions to the right of the decimal than you
have in your variable, those positions will be
filled with zeros. If your format had three num
ber signs and variable A was four places before
the decimal, the Print USING command will
print the value of variable A but will put a
percent (%) sign in front of it to indicate to you
that there was an overflow. As we saw earlier, if
there are less positions in the variable than
there are positions in the format, the number
will always be right-justified.

If you are printing large numbers (especially
in dollar amounts) you can put just one comma
anywhere between two of the number signs
before the decimal point and the output will be
grouped in three's with a comma separating the
groups:

100 A= 123456789.23
110 PRINT USING "#####,####.##"A

will print: 123,456,789.23

You can even put other characters in the
format if you like. Here's an example:

100 A= 123.45
110 PRINT USING "@####.##"A

and it will print: @ 123.45

But what if you want to actually print a
number sign in the output? Well, you can do
that too, by putting an underscore before the

CODE WORKS 7

position you want to print out, as in:

inn A—19^ 4A
110 PRINT USING "_####.##"

which will print: # 123.45

You can place a plus sign at the beginning or
the end of the format. This will cause the sign of
the number, either a plus or a minus, to be
printed depending on where in the format you
placed the plus sign. Here's an example:

100 A=90.02:B=-80.99
110 PRINT USING "+##.##";A
120 PRINT USING "+##.##";B
130 PRINT USING "##.##+";A

will print:

+90.02
-80.99
90.02+

If you place a minus sign at the end of the
format it will cause a minus sign to be printed
after negative numbers only. Positive numbers
will not be affected.

Asterisks (*) placed at the beginning of the
format will cause leading spaces to be filled with
asterisks. The number of asterisks also indicate
that many more print positions In the format.
This one is especially useful in writing checks,
where you want asterisks leading right up to the
dollar amount.

Two dollar signs ($$) placed at the beginning
of the format will cause one dollar sign to be
printed to the immediate left of the first numeric
digit, as in: $12.34. One dollar sign at the
beginning of the format will print in the first
numeric position of the format. For example, if
the format is "$###.##" and the amount is
12.34, the output will be $ 12.34 (with a space
between the dollar sign and the first digit.) Note
that the dollar sign itself, in this case, acts like
an additional numeric position in the format.

At this point you are probably asking if you
can combine what we have covered so far. The

answer is yes! You can have dollar signs, deci
mal points, asterisks, commas and plus or
minus following the amount, all in one format.

Here's one that isn't used very much in every
day operations. If you put four carets (AAAA)
after the last number sign, the output will be
printed in exponential notation. If the variable
value is .00023 and the format is "##.##AAAA\
then the output will look like this: 2.30E-04

You can use the same format to print several
variables:

100 A= 12.34:B= 123.45:C= 1002.34
110 PRINT USING "#####.##" AB;C

will print: 12.34 123.45 1002.34

Did you notice that the format is always inside
quotes? That makes it a format string. This
means that you can define the string somewhere
early in your program, like in line 130
XX$="###.###". then later you can simply say:
PRINT USING XX$;A

You can also use more than one format. Look
at this:

100 A=123.45:B=23.12
110 PRINT USING "$$###.## ##.##"AB

which will print $123.45 23.12

and hints that you can build a complete
format line for a report, which you can.

Up to now we have only used numbers in our
format. How about string variables? Well, you
can use Print USING with strings too, but the
format changes slightly. Here's an example:

100 A$=" CodeWorks"
110 PRINT USING "\ \"A$

will print: CodeWorks

Not too impressive, is it? But you will learn to
appreciate it when you use it in a program. The
backslashes and the space between them define
the length of the string that will be printed. If we

8 CODEWORKS

take two spaces from between the backslashes
In the above example, the output will look like
this: CodeWor

If you insist on printing the entire string, you
can say: PRINT USING "&";A$ and the whole
string, regardless of length, will be printed. The
ampersand (&) tells it to do that.

Some BASICs (usually before version 5.0) use
the percent sign (%) instead of the backslash to
define the string Print USING.

If, in the above example we had said: PRINT

USING "!"A$ then only the C (first letter) of
CodeWorks would have been printed. We have
never figured out a practical use for this little
twist.

So there it is. All the things you wanted to
know about Print USING. You'll have to admit,
it's one powerful command. You will appreciate
it most when you have to format a printed
report, and that is, after all, what It is for. In
some languages they go through agony to do
that, but BASIC hands it to us on a platter. All
we have to do is use it.

Hard Disks
More about hard disks from A1

A1 Mashburn, Technical Advisor.

So you just got that new 20 Meg hard drive,
and you are going to put all your stuff on it and
life will be great from now on, right?

Of course not, you know by now that life isn't
that simple, and if it was, you would have to pay
taxes on it. You have to do some planning before
you put any files on it, or you will pay for your
sins later. What we are going to do today, is start
fresh and set up a new hard drive from scratch.
If you already have a hard drive and you have
found it to be a mess because you didn't do it
right the first time, back up all your files and
follow along.

I am going to start off by making a couple of
assumptions. One, that the drive you are using
is less than or equal to 30 megs, and the second
is that the low level format has been done. If the
drive is bigger that 30 megs, you will need
special software that lets you use all of it. I
suggest SpeedStore. You can find it or other,
just as good, programs in the back of most PC
magazines. If the drive is not low-level format

ted, you now know why that guy was cheaper
than the rest. You are on your own until you get
the low-level done, because there are too many
variations to cover here.

Before we lay a byte on the disk, lets do some
deciding. What DOS version are you going to
use? If you said anything below 3.1, go to the
back of the room. There are just too many
improvements in the new versions of DOS to
waste the time formatting your disk with an old
one. Bite the bullet and buy (yes, I said buy) a
copy of DOS and get the manuals so you have
them when you need them. At this time most of
us have the choice of DOS 3.1 or 3.2. The main
difference between them is the support of 3 1/2
inch disks in DOS 3.2. This support also costs
25k more of memory so it's up to you to decide
if you are going to go to the smaller disks any
time soon. If you buy PC-DOS from IBM and you
don't have a true blue IBM computer, remember
to bring your version of BASIC from your old
system. The BASIC for IBM makes calls to
ROM's that aren't in anything but an IBM. Also

CODEWORKS 9

If you don't have an IBM, don'tuse PC-DOS 3.3.
Some cases of constant hard drive crashing on
compatibles has been reported. In any case,
never SYS a newer version of DOS to your hard
drive, always re-format. I know some guys walk
on water and never have a problem, but it's just
a good idea. If the company that makes your
computer has an MS-DOS version of 3.3 then
you are OK to use it.

The first thing we have to do is the "high" level
format. This is basically the same as formatting
a floppy, except that it takes a lot longer. Assum
ing that we are doing the first drive, it -will be
drive 'C'. The command is FORMAT C: /S . The
/S puts the system files on the drive so it will
"boot" without a floppy. Depending on your DOS
version you will get a stern warning that you are
about to possibly end the world or at least lose
all your data, and should we proceed? Some of
the old Tandy systems would not even let FOR
MAT do a hard drive. They included a program
called HFORMAT to do it. Same thing.

You can also add a /V to the format com
mand, this will let you put a label on the drive.
Personally if I see one more directory that starts
with "Volume on drive C is Als_Disk" , I am going
to spit. Also if there is a label on the drive (if you
are re-formatting an old drive), the FORMAT
program might ask you what the name is, j ust as
extra insurance that you do want to do this. If
you forgot what the volume name is, just do a
directory and read the top line.

If all is right with the world, the computer will
start formatting the hard drive. Go get a cup of
something, this will take awhile. By the way, for
those of you new to computers who may be
having a hard time figuring out just what for
matting does, think of it this way. The hard drive
is like a giant warehouse. No matter how high it
goes, you can't really store anything in it until
you put some shelves up to store things on.
Formatting builds the "shelves" on the hard
drive so that data can be stored on them. The ID
information in each of the empty sectors is like
bin labels on shelves, identifying the position in
the warehouse. The FAT (file allocation table) is
like the master inventory showing what is on
each of the shelves.

When the drive is formatted, it is time to copy
files onto it. Do a DIR and make sure that
COMMAND.COM is there. If not, copy it from the
DOS disk. Now reboot, and make sure that the
drive will indeed boot up. If it doesn't, and you
get a NON-SYSTEM disk error, then you proba
bly didn't put the /s in the format command.
Back to square 1. If it does boot, great! Ya did
good. Now type PROMPT PG. This will make
the prompt show us what sub-directory we are
in, so we can tell where we are. Now type MD
DOS. This will make a sub-directory called DOS.
Now type CD\DOS. This will change the active
directory from the ROOT (no name) to the DOS
directory. Your prompt should look like
C: \DOS>. If not, make sure you did the PROMPT
thing and watch that the back-slash is indeed a
back-slash, and not the slash!

Put the DOS disk back into the floppy drive
and type COPY A:*.* to copy all the files from the
floppy to the current directory. I won't walk you
through anymore of these so if something goes
wrong later, go back to these examples. Do a
DIR, and you should see all your DOS files. If
not, go back and try again, ya screwed up.

If all is OK, type CD\ to go back to the root
directory. The Prompt should look like C:\>.
Now make another directory called BIN. Go into
that directory (the prompt should be C:\BIN>)
and copy all of your favorite utilities. This would
include mini text editors, listing utilities, color
changers, etc.

Go back to the root directory. Make one more
directory called MENU. You don't need to go
there right now, stay in the root. It is time to
make an AUTOEXEC.BAT file. AUTOEXEC.BAT
will automatically be run right after the com
puter boots up if it exists, and there are some
things we want to be done before we do anything
else.

Tfype COPY CON AUTOEXEC. BAT and press
ENTER. You should see the cursor sitting on the
left side of the screen blinking at you. Tfype these
lines exactly, except for the <ENTER> at the end
of each line. That just means to press ENTER

10 CODEWORKS

PROMPT PG <ENTER>
PATH C:\DOS;C:\BIN;C:\MENU <ENTER>
CDNMENU <ENTER>
MENU <ENTER>

Now press the F6 key and press ENTER You
should get the "1 file(s) copied" message. What
you have done is make a file that makes sure
every time your computer is booted up, it has a
prompt that tells you where you are, and a path
set up so the computer can find the files it uses
all the time. If you don't have a clock on board,
you will want to put the DATE and TIME com
mands in, if you do and the clock needs software
to set it, put the software in the BIN sub
directory and make sure you put the command
to make it work after the PATH command, or it
won't find it. Do not put the clock software in the
root directory, we are trying to keep it clean.

Making sure that we are still in the root direc
tory, type

COPY CON:CONFIG.SYS and press enter.
Now type

FILES=20 <ENTER>
BUFFERS=20 <ENTER>
DEVICE=\DOS\ANSI.SYS <ENTER>
F6 (the F6 key) <ENTER>

DOS always looks for a CONFIG.SYS file when
it boots up. What this one says is that we want
to have as many as 20 files open at one time, and
we want reads to grab 20 buffers worth of data
at a time. We also loaded ANSI.SYS. This file
allows extended video commands, including
changing colors, moving graphics, and re-defin
ing keyboard keys. You may not need it right
now, but it is a good idea to have it loaded, and
it takes almost no memory. As an aside, if you
have ever contacted a BBS and gotten all sorts
of strange characters coming all over the screen,
the BBS was probably putting out ANSI graph
ics which need ANSI.SYS to translate them into
screen graphics.

Now we are on the last leg of setup, the menu.
There are all sorts of "shell" programs out there
that are supposed to make your computing
easier, but I find that after you know DOS a little,

they just get in the way. The menu system we are
going to do here is simple, and doesn't get in the
way at all. Best of all you decide what you want
it to do for you.

The menu we are going to do will only do two
things, format a floppy disk and "park" the hard
drive. Parking the drive just means pulling the
read-write heads into a position where there is
no data. Then if the computer is dropped or hit
very hard and the heads "crash" into the media,
there won't be any damage to the data. If the
heads happened to be over your root directory
when that happened, well you get the picture.
Most all hard drives will come with a program to
park the head, the one I use is called ZPARK so
substitute your software's name where you see
ZPARK.

First we do the batch file that displays the
menu. Type

COPY CON:MENU.BAT <ENTER> then

ECHO OFF <ENTER>
CLS <ENTER>
TYPE MENU.TXT <ENTER>
F6 (the F6 key) <ENTER>

You should see the "1 file(s) copied" message.
If so, type

COPY CON:MENU.TXT <ENTER> then

My Menu System <ENTER>

1) Format a floppy disk <ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>

10) Park Hard drive <ENTER>

F6 (the F6 key) <ENTER>

After the " 1 file(s) copied" message, type

CODEWORKS 11

COPY CON: 1.BAT <ENTER> then

FORMAT A:<ENTER>
MENU <ENTER>
F6 (the F6 key) <ENTER>

Let's look at what this simple batch file does.
First it runs the format program, just like you
had typed in the FORMAT command yourself.
When it is done, it runs the MENU batch file
again. If you have already typed these things in,
you will notice that when the menu is displayed,
the DOS prompt shows afterward. That's the
nice thing about this type of menu, you can use
it if you want, or go ahead and type the com
mands yourself. The menu never gets in the
way. Let's do the last batch file, then you can fill
in those spaces in MENU.TXT with your own,
often used, commands. Type

COPY CON: 10.BAT<ENTER> then

ZPARK (replace with your parking software
name) <ENTER>

F6 (the F6 function key) <ENTER>

Notice that in this batch file, we didn't run
MENU again. That's because parking is the last
thing you do before shutting off the machine.

OK, now it's up to you, this magazine is for
learning and doing so now that you have
learned, do! One suggestion would be to make a
BASICP subdirectory, then add BASIC to the
menu, changing directories to BASICP, and
then running BASIC, returning to the MENU
subdirectory when you exit BASIC and re-run
ning MENU.

That is just one suggestion, it's your system
and you know what you need. If you have set up
your drive as outlined here, you have a good or
ganized system to build on. Go for i t!

NFL88.Bas
Our Oracle Tries Again

It's hard to believe, but it is that time again. As
I write this two pre-season games have already
been played.

We are printing both NFL88.Bas and
STAT.Bas for those of you who may not have
been with us during previous years. You old-
timers, however, need only pay attention to the
new schedule, contained in the DATA state
ments at the end of NFL88.Bas.

An easy way to incorporate these DATA state
ments into your existing program is to use
Maker.Bas (from our very first issue - and also
in the "March Sampler Issue" we put out at one
time) to enter them. Then, if you numbered your
lines properly when you used Maker, you can
simply use the MERGE command to incorporate

the DATA lines into your version of NFL88.Bas.

We are not listing changes for Tandy III or IV,
simply because we believe most of you have
those changes from last year's issues. In the
event you don't have them and would like them,
drop us a line and we will send them to you.
There have been no changes (other than the
schedule information contained in the DATA
lines) that need to be made. Well, you might
want to change the name of the program from
NFL87 to NFL88, but that's no big deal.

We will again, as in past years, put the
statistics (starting with week 4) on the download
so that you can get them from there if you like.

Let's see if Oracle can do better than 60%!

1 2 CODEWORKS

mm

The NFL

National
Football_
League
(NFL)

> •

National
Football

-Conference
(NFC)

American
Football

Conference
(AFC)

Team numbers are very important, since
they are used in the programs to identify
the teams.

AFC
' East"

_ AFC
Central

. AFC_
West

1. Redskins (Washington)

2. Cowboys (Dallas)

3. Eagles (Philadelphia)

4. Giants (New York)

5. Cardinals (Phoenix)

6. Bears (Chicago)

7. Vikings (Minnesota)

8. Packers (Green Bay)

9. Lions (Detroit)

10. Buccaneers (Tampa Bay)

11. 49'ers (San Francisco)

12. Rams (Los Angeles)

13. Saints (New Orleans)

14. Falcons (Atlanta)

15. Dolphins (Miami)

16. Patriots (New England)

17. Jets (New York)

18. Bills (Buffalo)

19. Colts (Indianapolis)

20. Steelers (Pittsburgh)

21. Browns (Cleveland)

22. Bengals (Cincinnati)

23. Oilers (Houston)

24. Seahawks (Seattle)

25. Raiders (Los Angeles)

26. Broncos (Denver)

27. Chargers (San Diego)

28. Chiefs (Kansas City)

CODEWORKS 13

100 REM ** NFL88.BAS * NFL PROJECTION PROGRAM * CODEWORKS MAGAZINE
*

110 REM ** 3838 S. Warner St. Tacoma,WA 98409 (206)475-2219 VOICE
120 REM ** (206)475-2356 300/1200 MODEM * Requires a data file

made
130 REM ** with the accompanying program STAT88.BAS
140 x

150 xCLEAR 10000:'Use only if your Basic requires cleared string
space.

160 x

170 DIM A(420,5),B(28,6),T$(28),F(28,5),P(364)
180 x

190 DATA REDSKINS,COWBOYS,EAGLES,GIANTS,CARDS,BEARS,VIKINGS
200 DATA PACKERS,LIONS,BUCS,NINERS,RAMS,SAINTS,FALCONS
210 DATA DOLPHINS,PATRIOTS,JETS,BILLS,COLTS,STEELERS, BROWNS
220 DATA BENGALS,OILERS,SEAHAWKS,RAIDERS,BRONCOS,CHARGERS,CHIEFS
230 x

240 REM * READ IN THE TEAM NAMES *
250 FOR 1=1 TO 28
260 READ T$(I)
270 NEXT I
280 x

290 REM * NOW READ IN THE SEASON SCHEDULE **
300 FOR 1=1 TO 364
310 READ S:P (I)=S
320 NEXT I
330 x

340 CLS:'This is a clear screen command, change to suit your
Scl S 3.0

350 PRINT STRING$(22,"-");" The CodeWorks ";STRING$(23,"-")
3 6 0 P R I N T " N F L F O O T B A L L O R A C L E "
370 PRINT" Projects Winner and point-spread"
380 PRINT STRING$(60,"-")
390 PRINT
400 PT=0
410 INPUT"Projection for which week number";W
420 IF W>16 THEN PRINT"Oracle can only project weeks 4 through 16."

:GOTO 410
430 IF W<4 THEN PRINT"Insufficient Data, wait until week 4 to

start":GOTO 410
440 INPUT"Enter 1 for printer output, else just Enter",-PT
450 Wl=W-l:W2=W-2:W3=W-3:W4=W-4
460 PRINT TAB(10)"The Oracle is busy ..."
470 WN=W1*28
480 x

490 REM ** READ STATISTICS FROM STAT.DAT FILE **
500 PRINT"Reading the statistics file ..."

14 CODEWORKS

510 PRINT'Throwing chicken bones over his shoulder...
520 OPEN "I",1,"STAT.DAT"
530 FOR 1=1 TO WN
540 IF EOF (1) THEN 590
550 FOR J=1 TO 5
560 INPUT #1,A(I,J)
570 NEXT J
580 NEXT I
590 IF I<WN THEN PRINT"Statistics for weeks 1 through";Wl;"not

complete.":END
600 CLOSE 1
610 1

620 REM * FIND AVERAGE FOR SEASON **
630 PRINT"Finding the season average for each team..."
640 FOR X=1 TO 28
650 FOR 1=1 TO WN
660 IF A (1,1) OX THEN 710
670 IF A(I,2)>=W THEN 710
680 FOR J=3 TO 5
690 N(J)=N(J)+A(I,J)
700 NEXT J
710 NEXT I
720 F(X,1)=X
730 FOR J=3 TO 5
740 F(X,J)=N(J)/W1
750 NEXT J
760 FOR J=1 TO 5:N(J)=0:NEXT J
770 NEXT X
780 x

790 REM ** FIND EACH TEAM AVERAGE FOR LAST THREE WEEKS
800 PRINT"Finding the last three week average for each team..."
810 FOR X=1 TO 28
820 FOR 1=1 TO WN
830 IF A (1,1) OX THEN 890
840 IF A(I,2)<W AND A(I,4)>A(I,5) THEN B(X,6)=B(X,6)+1
850 IF A (I, 2) <>W1 AND A(I,2)OW2 AND A(I,2)OW3 THEN 890
860 FOR J=3 TO 5
870 C(J)=C(J)+A(I,J)
880 NEXT J
890 NEXT I
900 B(X,1)=X
910 FOR J=3 TO 5
920 B(X, J)=C(J)/3
930 NEXT J
940 FOR J=1 TO 5:C(J)=0:NEXT J
950 NEXT X
960 CLS

CODEWORKS 15

970 *
980 PRINT"PROJECTION FOR WEEK ";W
990 PRINT"Week";W;TAB(16)"Oracle's";TAB(30)" 3 week

Averages "
1000 PRINT TAB(16)"Rating";TAB(25)"Won";TAB(30)"1st

downs";TAB(43)"Score";TAB(54)"Pts Allowed"
1010 IF PTOl THEN 1190
1020 LPRINT"The CodeWorks NFL ORACLE PROJECTION FOR WEEK \'W
1030 LPRINT" "
1040 LPRINT"Key to column headings"
1050 LPRINT TAB(10)" 1- Teams plus Oracle's Winner projection"
1060 LPRINT TAB(10)" 2- Oracle's overall rating number (not a

score)"
1070 LPRINT TAB(10)" 3- Number of games won this far in the season"

1080 LPRINT TAB(10)" 4- Last 3 weeks average 1st downs"
1090 LPRINT TAB(10)" 5- Last 3 weeks average points scored"
1100 LPRINT TAB(10)" 6- Last 3 weeks average points allowed"
1110 LPRINT TAB(10)" 7- Season average 1st downs"
1120 LPRINT TAB(10)" 8- Season average points scored"
1130 LPRINT TAB(10)" 9- Season average points allowed"
1140 LPRINT TAB(10)"10- Actual score (you fill in after the games)
1150 LPRINT TAB(10)"11- Actual point spread (fill in this too.)
1160 LPRINT" "
1170 LPRINT"1";TAB(16)"2";TAB(21)"3";TAB(26)"4";TAB(30)"5";TAB(34)"

6";TAB(41)"7";TAB(45)"8";TAB(49)"9";TAB(56)"10";TAB(66)"11"
1180 LPRINT" "
1190 SI=(((W—1)*28)+2)-84
1200 FOR S=SI TO SI+26 STEP 2
1210 X=P(S-1):X1=P(S)
1220 X$=T$(X):X1$=T$(XI)
1230 S0=F(X, 3) +B (X, 3) + (2*F (X, 4)) + (4*B (X, 4))+(40-F(X,5))+3*(40—

B (X, 5))
1240 T0=F(XI,3)+B(XI,3)+(2*F(XI,4))+(4*B(XI,4))+(40-F(XI,5))+

3*(4 0—B(XI,5))+20
1250 S5=INT(S0+.5):T5=INT(T0+.5)
1260 IF S5=T5 THEN X1$=X1$+" by 1"
1270 IF S5>T5 THEN X$=X$+" by"+STR$(INT(((S5-T5)+.5)/10)+1)
1280 IF S5CT5 THEN X1$=X1$+" by"+STR$(INT(((T5-S5)+.5)/10)+1)
1290 PRINT X$;TAB(16);S5;TAB(25);B(X,6);TAB(31);INT(B(X,3));

TAB(43);INT(B(X,4));TAB(55);INT(B(X, 5))
1300 PRINT X1$;TAB(16);T5;TAB(25);B(X1,6);TAB(31);INT(B(XI,3));

TAB(43);INT(B(XI,4));TAB(55);INT(B(XI,5))
1310 PRINT
1320 IF PTOl THEN 1360
1330 LPRINT X$;TAB(15);S5;TAB(20);B(X,6);TAB(25);INT(B(X,3));

TAB(29);INT(B(X,4));TAB(33);INT(B(X, 5));TAB(40); INT(F(X,3));

1 6 CODEWORKS

TAB(44);INT(F(X,4));TAB(48);INT(F(X,5));TAB(55)"
1340 LPRINT X1$;TAB(15);T5;TAB(20);B(X1,6);TAB(25);INT(B(XI,3));

TAB(29);INT(B(XI,4));TAB(33);INT(B(XI,5));TAB(40);INT(F(X1,
3));TAB(44);INT(F(XI,4));TAB(48);INT(F(XI,5));TAB(55)"
TAB (65)"

1350 LPRINT" ":GOTO 1400
1360 TC=TC+1
1370 IF TC=>4 THEN PRINT"Press Enter for more";:INPUT XX:CLS:

TC=0 ELSE 1400
1380 PRINT"Week";W;TAB(16)"Oracle's";TAB(30)" 3 week

Averages "
1390 PRINT TAB(16)"Rating";TAB(25)"Won";TAB(30)"1st

downs";TAB (43) "Score";TAB (54.) "Pts Allowed"
1400 NEXT S
1410 IF PT=1 THEN LPRINT CHR$(12):' Printer top of form command
1420 END
1430 REM * The 88-89 NFL schedule for weeks 4 thru 16
1440 DATA 1,5,14,2,3,7,12,4,6,8,17,9,10,13
1450 DATA 11,24,15,19,20,18,21,22,16,23,25,26,27,28
1460 DATA 4,1,2,13,23,3,5,12,18,6,7,15,8,10
1470 DATA 9,11,24,14,19,16,21,20,22,25,26,27,28,17
1480 DATA 1, 2, 4, 3, 20, 5, 6, 9, 10, 7, 16, 8, 26, 11
1490 DATA 12,14,13,27,15,25,17,22,19,18,24,21,28,23
1500 DATA 5,1,2,6,3,21,9,4,8,7,10,19,11,12
1510 DATA 13,24,14,26,27,15,22,16,18,17,23,20,25,28
1520 DATA 1,8,2,3,4,14,21,5,11,6,7,10,9,28
1530 DATA 24,12,25,13,17,15,16,18,19,27,26,20,23,22
1540 DATA 1,23,5,2,14,3,4,9,6,16,7,11,8,18
1550 DATA 15,10,12,13,26,19,20,17,22,21,27,24,28,25
1560 DATA 13,1,2,4,12,3,11,5,10,6,9,7,8,14
1570 DATA 15,16,17,19,20,22,21,23,18,24,25,27,28,26
1580 DATA 6, 1, 7,2, 3, 20, 4, 5, 19, 8, 10, 9,25, 11
1590 DATA 13,12,27,14,18,15,16,17,21,26,22,28,23,24
1600 DATA 1, 11, 22,2, 3, 4, 5, 23, 6, 10, 19, 7, 9,8
1610 DATA 27,12,26,13,14,25,16,15,17,18,20,21,24,28
1620 DATA 21,1,23,2,5,3,4,13,8,6,7,9,10,14
1630 DATA 11,27,12,26,15,17,18,22,16,19,28,20,25,24
1640 DATA 1,3,2,21,5,4,6,12,13,7,8,9,18,10
1650 DATA 11,14,19,15,24,16,20,23,27,22,26,25,17,28
1660 DATA 2,1,3,5,28,4,9,6,7,8,10,16,13,11
1670 DATA 14,12,21,15,25,18,19,17,22,23,26,24,20,27
1680 DATA 1,22,3,2,4,17,8,5,6,7,9,10,12,11
1690 DATA 14,13,15,20,18,19,23,21,24,25,16,26,28,27
1700 x END of 1988-89 schedule data

CODEWORKS

100 REM * STAT88.BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

110 REM * 98409 (206) 475-2219 VOICE (206) 475-2356 300/1200 MODEM
120 REM * Maintains the stats for NFL88.
130 REM * If no file exists then in command mode,type OPEN"0",1,"ST

AT.DAT"
140 REM * and press ENTER, then type CLOSE and press ENTER. This

creates an
150 REM * empty file called STAT.DAT. You can then run this

program.
160 '
170 PRINT"Loading STAT.DAT data file
180 * CLEAR 10000: ' Use only if your machine needs to clear

string space.
190 DIM A(420,5),T$(28),TS(28),TM(28),TM$(28)
200 '
210 REM * General purpose locate/print@ subroutine
220 GOTO 290
230 LOCATE X,Y:RETURN 'GW-BASIC
240 'PRINTS((X-l)*64)+(Y-l),;rRETURN 'Tandy I/III
250 'PRINTS((X-l),(Y-l)),;:RETURN 'Tandy IV
260 'PRINT CHR$(27)+"Y"+CHR$(31+X)+CHR$(31+Y);:RETURN ' CP/M
270 '
280 REM * Set up the team names in data lines
290 DATA Redskins,Cowboys,Eagles,Giants,Cards,Bears,Vikings
300 DATA Packers,Lions,Bucs,Niners,Rams,Saints,Falcons
310 DATA Dolphins,Patriots,Jets,Bills,Colts,Steelers,Browns
320 DATA Bengals,Oilers,Seahawks,Raiders,Broncos,Chargers,Chiefs
330 '
340 REM ** READ IN THE EXISTING STAT FILE **
350 WN=420
360 OPEN "I",1,"STAT.DAT"
370 FOR 1=1 TO WN
380 IF EOF(1) THEN 430
390 FOR J=1 TO 5

. 400 INPUT #1,A(I,J)
410 NEXT J
420 NEXT I
430 CLOSE 1
440 L1=I-1
450 '
460 REM * READ IN THE TEAM NAMES AND CLEAR TEMP (TS) ARRAY.
470 FOR 1=1 TO 28
480 READ T$(I):TS(I)=0
490 NEXT I
500 '

18 CODEWORKS

510 CLS: x Clear the screen and home the cursor.
520 PRINT STRING$(22,The CodeWorks ";STRING$(23,
530 PRINT" NFL WEEKLY STATISTIC S"
540 PRINT" Maintains statistics for 1988-89 NFL Football"
550 PRINT STRING$(60,"-")
560 PRINT
570 IF LI MOD 28 <>0 THEN PRINT"There is extra (or missing) data

in the file" ELSE PRINT"The file is currently updated through
week";LI/28

580 PRINT
590 PRINT TAB(10)"1 - Update the file"
600 PRINT TAB(10)"2 - Edit an item in the file"
610 PRINT TAB(10)"3 - View the entire file"
620 PRINT TAB(10)"4 - Show Divisional standings"
630 PRINT TAB(10)"5 - Save the updated file and END"
640 PRINT
650 INPUT" Your choice";X
660 IF X<1 OR X>5 THEN 650
670 ON X GOTO 710,880,1080,1370,1250
680 END
690 \

700 REM * UPDATE THE FILE ROUTINE **
710 CLS
720 INPUT"UPDATE STATISTICS FOR WHICH WEEK NUMBER";W
730 IF W=<Ll/28 THEN PRINT"The file appears to be updated through

that week.":GOTO 720
740 J=L1+1
750 FOR X=1 TO 28
760 PRINT"For the *T$(X);" for week ";W
770 INPUT"How many first downs ";A(J,3)
780 INPUT"How many points did they score -";A(J,4)
790 INPUT"and they allowed how many points-";A(J,5)
800 A(J, 1)=X:A(J,2)=W
810 PRINT
820 J=J+1:L1=L1+1
830 NEXT X
840 PRINT"Press Enter for menu";:INPUT X:GOTO 510
850 END
860
870 REM ** EDIT AN ITEM IN THE FILE ROUTINE **
880 CLS
890 PRINT "EDIT DATA - You supply the team number and week number."

900 PRINT
910 INPUT"What team number are you looking for ";X
920 INPUT"What week number are you looking for ";W
930 FOR 1=1 TO LI
940 IF A(1,1)=X AND A(1, 2)=W THEN 970

CODEWORKS 19

950 NEXT I
960 PRINT"That item is not in the file":GOTO 1040
970 PRINT T$ (A(1,1));A(1,1):PRINT"Week->";A(I,2):PRINT"lst Dns->";

A(I, 3):PRINT"Score->";A(I,4):PRINT"Pts Allowed->";A(I,5)
980 PRINT
990 INPUT"Enter correct team number -";A(I,1)
1000 INPUT"Enter correct week number —";A(1, 2)
1010 INPUT"Enter correct 1st downs —";A(I,3)
1020 INPUT"Enter correct score ";A(I,4)
1030 INPUT"Enter correct points allowed ";A(I,5)
1040 INPUT"Press Enter for menu";X:GOTO 510
1050 END
1060 *
1070 REM * VIEW THE FILE ROUTINE **
1080 CLS
1090 PRINT"TEAM # "/"WEEK VIST DOWNS "/"SCORE ";"PTS

ALLOWED"
1100 FOR 1=1 TO LI
1110 FOR J=1 TO 5
1120 PRINT USING "###";A(I,J);:PRINT" "; 'six spaces here
1130 NEXT J
1140 PRINT
1150 IF I MOD 14<>0 THEN 1200 ELSE PRINT"Press Enter for more, or

Q to quit.";
1160 XX$=INKEY$:IF XX$="" THEN 1160
1170 IF XX$="Q" OR XX$="q" THEN 510
1180 CLS
1190 PRINT"TEAM # "/"WEEK ";"1ST DOWNS "/"SCORE ";"PTS

ALLOWED"
1200 NEXT I
1210 GOTO 510
1220 END
1230 '
1240 REM * SAVE THE FILE AND END ROUTINE **
1250 OPEN "0",1,"STAT.DAT"
1260 FOR 1=1 TO LI
1270 FOR J=1 TO 5
1280 PRINT #1,A(I,J)
1290 NEXT J
1300 NEXT I
1310 CLOSE 1
1320 PRINT"THE FILE STAT.DAT IS NOW SAVED"
1330 PRINT"END OF PROGRAM."
1340 END
1350 '
1360 REM * find divisional standings *
1370 PRINT "Calculating ...";
1380 '

1390 REM * find games won and fill the TS() array
1400 FOR 1=1 TO LI
1410 IF A(I,4)>A(I,5) THEN TS(A(1,1))=TS(A(1,1))+1 ELSE IF A(I,

4)=A(1,5) THEN TS(A(1,1))=TS(A(1,1)) + .5
1420 NEXT I
1430 x

1440 REM * clear screen and print the headings *
1450 CLS
1460 X=l:Y=l:GOSUB 230:PRINT"-NFC East-";TAB(25);"-NFC Central-"/

TAB(50);"-NFC West-"
1470 X=8:Y=1:GOSUB 230:PRINT "-AFC East-"/TAB(25);"-AFC Central-"/

TAB(50)/"-AFC West-"
1480 P=1:Q=5:Y=1:GOSUB 1590
1490 P=6:Q=10:Y=25:GOSUB 1590
1500 P=ll:Q=14:Y=50:GOSUB 1590
1510 P=15:Q=19:Y=1:GOSUB 1590
1520 P=20:Q=23:Y=25:GOSUB 1590
1530 P=24:Q=28:Y=50:GOSUB 1590
1540 PRINT:INPUT"Press enter for menu"/XX
1550 RESTORE:GOTO 470
1560 END
1570 x

1580 REM * sort standings into descending order
1590 F=0
1600 FOR I=P TO Q-l
1610 L=I+1
1620 IF TS(I)=>TS(L) THEN 1660
1630 SWAP TS(I),TS(L) x or TM(I)=TS(I):TS(I)=TS(L):TS(L)=TM(I)
1640 SWAP T$(I),T$(L) 1 or TM$(I)=T$(I):T$(I)=T$(L):T$(L)=TM$(I)
1650 F=1
1660 NEXT I
1670 IF F=1 THEN 1590
1680 *
1690 REM * print each team's standing
1700 IF P<15 THEN X=1 ELSE X=8
1710 FOR I=P TO Q
1720 X=X+1
1730 GOSUB 230:PRINT USING "##.#"/TS(I)/:PRINT" "+T$(I)
1740 NEXT I
1750 RETURN

Yes! We are working on a program to predict the outcome of the post-season games and the
superbowl. It will be a standalone program, but will work with the Stat.Dat file that this program
makes and maintains. Look for it in the November/December issue, which should give you just
about enough time to get it in before the post-season playoffs start.

CODEWORKS 21

Correl.Bas
A Correlation Program with Lead/Lag Indication

Staff Project. Correlation is an interesting study. In this program we not only find
the coefficients of correlation, but also provide for a novel way to check to see if one
set of data "leads" or "lags" the other set.

The study of correlation theory is fascinating.
It is complex, and often misused, and some
times smacks of slight of hand or numerology.
When two measures of the same thing go to
gether so that it is possible to predict one
measure from the other, they are said to be
correlated.

The idea of correlation came first to Sir
Francis Galton (1822-1911), who, in his own
words was waiting at a roadside station for a
train, "poring over a small diagram in my note
book." What he envisioned was a method of
expressing multiple causality in a single for
mula. Galton had been working with the phe
nomena of characteristics in families being
carried through to later generations. He later
wrote, "It had appeared from observation, and it
was fully confirmed by this theory, that such a
thing existed as an 'Index of Correlation'; that is
to say, a fraction, now commonly written as r, that
connects with closer approximation every value
of deviation (from the median) on the part of the
subject, with the average of all the associated
deviations of the Relative as already described.
Therefore the closeness of any specified kinship
admits of being found and expressed by a single
term. If a particular individual deviates so much,
the average of the deviations of all his brothers
willbeadejinitefraction of that amount; similarly
as to sons, parents, first cousins, etc. Where there
is no relationship at all, r becomes equal to 0;
when it is so close that Subject and Relative are
identical in value, then r= 1. Therefore the value of
r lies in every case somewhere between the
extreme limits of 0 and 1. Much more could be

added, but not without using technical language,
which would be inappropriate here."

Galton was an amateur in many fields, and
was a first cousin to Charles Darwin. Perhaps it
is because there was yet so much to be discov
ered in those days that amateurs could make
such meaningful contributions. His correlation
theory certainly made an impact on our present-
day study of statistics.

There are several types of correlation: auto
correlation and multiple correlation among
them. By far the most commonly used is the
Pearson product-moment correlation coeffi
cient, called r, and is the one we will consider
here. This coefficient (r) can have values ranging
from -1 through zero to +1. The sign of the
coefficient indicates the direction of the rela
tionship, with both -1 and +1 indicating perfect
correlation and zero indicating no correlation
whatever. A measure that decreases when its
opposite measure increases will produce a
negative correlation, and when an increase in
one produces an increase in the other, it pro
duces a positive correlation.

An example of perfect negative correlation
would be the height above ground of two chil
dren on a seesaw, where there is no way the two
can be moving up or down together; one must
always be going up while the other is going down
and vice versa. On the other hand, the relation
ship between the radius and the circumference
of circles is an example of perfect positive corre
lation since a change in one will always produce

22 CODEWORKS

a change in the same direction in the other. Not
all things vary in such perfection; there are
degrees of correlation.

significance, standard error of estimates, and
more.

It is interesting to note that r is a dimension-
less term; one not expressed in terms of any
thing. Another interesting fact is that the rela
tive magnitude of the data sets being compared
makes no difference to correlation. For example,
the series

If you consider an X,Y plot with values plotted
in, then the correlation coefficient, r, is the
square root of the explained variation from the
mean of Y divided by the total variation from Y.
Or, r is the square root of the explained variation
divided by the total variation. It may seem, at
first, that a correlation coefficient of 0.6 would
indicate a good correlation between two vari
ables. To find out what percentage of the vari
ation is explained, simply square the value. This
will indicate that only 36 percent of the variation
is explained leaving 64 percent unexplained,
which is not as good as it first looked.

One of the more common mistakes made is
that if two values are closely correlated, then
there must be a cause and effect relationship.
That is simply not true. Author Kimble (see
references) cites a good example, he says:"There
is a positive correlation between the number of
storks' nests in Holland, year by year, and the
birth rate in that country, but this does not prove
the theory that storks bring babies. What it
means is actually sort of the reverse. As the
number of babies increases, for whatever rea
son, they need more houses to live in. Houses
have chimneys and that is where storks build
their nests."

In yet another example it was found that the
tree rings in the Southwest showed a variation
that correlated well with the sunspot cycle. One
would naturally assume that the sunspots,
somehow, had an effect on the growth of tree
rings. For all we know, there may even be such
a correspondence. But as far as correlation
theory goes, it would be just as valid to assume
that the tree rings caused the sunspots! This, of
course, sounds ludicrous but further empha
sizes the fact that correlation is not causation.

For those interested, the references given at
the end of this article treat the subject in great
mathematical detail, going into accounting for
variance, coefficients of determination, tests of

1, 2. 3. 4, 5, 6

will correlate perfectly with

10.1, 10,2, 10.3, 10.4, 10.5, 10.6

or even with

41, 46, 51. 56, 61, 66.

The Program

Our program, Correl.Bas, not only calculates
the correlation coefficient of two sets of data, it
allows you to create as many sets as you wish
and test for correlation between any of them. In
addition, we have included a feature that allows
you to shift either data set in relation to the
other and test for leading or lagging correlation.
The amount of this shift is controllable and
variable within limits. Just because correlation
does not indicate causation doesn't mean that if
you find a leading stock market indicator that
seems to be consistent you can't use it to your
advantage. That's the whole idea of playing
around with this program in the first place. You
never know what to expect or what you will find.
Making sense out of what you find is another
matter, however.

Program Notes

Line 140 should remain remarked for BASIC
versions past 5.0, otherwise, remove the re
mark. Line 150 sets the dimensions of four
single dimension arrays. Arrays A and B are
dimensioned at 50, and S and T for one-half that
number. This means you can have up to 50 data
points in each of the files you will be creating. If
you find the need for more data per file, increase

CODEWORKS 23

the number in the A and B arrays to whatever
you need and make the S and T arrays half that
amount. Line 160 sets an error trap for "file not
found." This error would occur when you ask for
a file that does not exist. Further down in the
program you will note that it does not create the
file then, it simply re-runs the program so that
you can start over and ask for a file that does
exist (or make one first.)

The main menu of the program allows you to
create and save data sets or read data sets and
find correlations. The third alternative is simply
a quit function. When you create data files you
can create as many as you wish (being sure to
give them each a unique name). The second
option in the main menu lets you read in any two
of the data sets you have created and check
them for correlation.

The block of code from lines 340 to 480 is
where files of data are created and saved. In line
340 you need to tell the program what the name
of the file will be, and in line 350, how many data
points you will be entering. Keep in mind that all
your data sets need not be the same length, but
the program will trim the longest file you call in
to correlate to the length of the shortest, since
correlation demands the same number of points
in each data set. The file is saved immediately
after you have entered the last of your data
points. This happens in lines 410 to 450. The file
is sequential, not random. You can remove a file
by going to DOS level and killing it, or you can
simply write a new file over the old one by using
the same name. Lines 470 and 480 give you the
option of continuing to add more data sets (files)
or quitting.

If you pick option 2 from the main menu, you
will come to the next section of code, starting at
line 510. The lines from 520 to 600 ask for a file
name, input the file and put the data into array
A. It also prints the data from that file on the
screen so you can see it. The lines from 630 to
710 do exactly the same thing, but with the data
going into array B this time. One other thing is
different between these two sections of code,
that being the variables N1 and N2. These tell
how many data items were in each file.

Lines 750 and 760 use N1 and N2 to deter
mine which is the shorter of the two files, and let
both N3 and N5 represent this number. The data
in the longer file is not lost. It's just that data in
the longer file past the length of the shorter file
will not be used in this case. (You may want to
use the longer file with an even longer one In a
later comparison for correlation.) The shift
range variable, K, is initialized to 3 in line 760.
This will allow a shift of data up to one-third of
the file's length. The reason for the "Press enter
to continue" in line 770 is so that you can
examine the data on the screen before going on.

After you have read in both files and pressed
enter to continue, you come to line 790, which
clears the screen. Line 800 then clears out the
temporary arrays T and S, and line 810 sets N3
equal to N5. Back in line 760 we had set N5
equal to N3, so why do this? Well, when we start
shifting the data in either of the files, N3 will get
changed and we want to always know what the
length of the shorter file is and N5 will always
hold that number.

Line 820 tells you which two data files you are
working with. Lines 850 through 890 are a sub
menu that tells you what you can do with the
data you have just read in. You can find the
correlation between the two, shift the first set of
data and find correlation, shift the second set of
data and find correlation, adjust the shift range
or return to the main menu.

Note that in three places in this menu we are
using variable data in the menu prompts them
selves. This makes the menu prompt a little
more informative than just a simple print state
ment would. In both lines 860 and 870 the name
of the file is inserted into the menu prompt, and
in line 880 the fraction representing the shift
range is included inside the prompt itself. In
addition, line 880 tells not only the fraction, but
the total number of data points in the file. These
"dynamic" menu prompts are interesting and
easy to do, yet make the operation of the pro
gram easier to follow.

Note first that each of the following sections of
code, corresponding to the different sub-menu
items, each send program flow back to line 790

24 CODEWORKS

until you choose to return to the main menu.
This means that once you have selected a pair of
data files to work with, you can "play" with them
with any of the sub-menu choices until you are
satisfied.

Lines 940 through 970 are where the shift
range can be adjusted (Option 4 of the sub
menu). Here, you can enter 2 for 1/2, three for
1/3, etc., to adjust how many of the total
number of data points you can shift. You can
change the default amount of shift by changing
the value of K in line 760, so that it will always
come up with 1/10th, for example. Keep in mind
that data in your two files should correspond,
that is, if one of them represents a value per
month the other should also, otherwise, your
results may not have any meaning (nonsense
correlation). Also, when you shift, say three
periods, then the other file will have three peri
ods cut off its opposite end since we always need
to be comparing an equal number of items.

The section of code from line 1000 to 1110
finds the unshifted correlation of the two data
sets. The loop at line 1000 counts as many times
as there are items in the shorter of the two data
sets. When the loop is done, B contains the sum
of all the values in the first data set, C contains
the sum of the values in the second data set, D
contains the sum of the squares of all values in
the first data set and E contains the sum of the
squares of all values in the second data set. F
contains the sum of the products of each data
pair (one from each data set.) Line 1070 sends
us to the subroutine to calculate the coefficient
of correlation.

In the section of code from 1140 to 1330 we
find the coefficient of correlation again, but this
time we shift data set one by the amount S by
looking at A(I+S) In each iteration of the loop.
Since we want to print out a range of coeffi

cients, the array S() will hold the results until we
have them all calculated, then the loop at 1280
will print them all out for us. The same thing
happens in the next section of code, from lines
1360 to 1550, except that we shift the second
data set by the value of T and store the results
in the T() array until we print them out. Because
we are calculating the coefficient of correlation
several times inside these loops, line 1620 in the
subroutine must clear out the intermediate
values held in variables B, C, D, E and F after
each calculation.

There is no guarantee that you will find the
correlation you are looking for when you shift
the data; if there is no correlation it just won't
show up. But if one set of data indeed leads or
lags the other it will show. It will also tell you how
many periods of lead or lag to consider. For this
reason, the periods corresponding to both sets
of data should be the same.

The last little section of code is the error trap.
If your BASIC is prior to version 5.0 remark line
1650 and un-remark line 1660. The trap checks
for "file not found" errors and simply runs the
program again to allow to you ask for the correct
file or make one first.

Be careful when making assumptions about
correlation. It gets rather involved and can be
tricky, but in any case, have fun with it.

References:
How to Use (and misuse) Statistics, Gre

gory R. Kimble, Prentice-Hall, Inc., Englewood
Cliffs, NJ 07632, 1978

Forecasting Methods for Management,
Steven C. Wheelwright & Spyros Makridakis,
Fourth Edition, John Wiley & Sons, New York,
1985

Theory and Problems of Statistics, Murray
R. Spiegel, McGraw-Hill Book Co., New York,
1961

Correl.Bas for MS-DOS & Tandy IV

CODEWORKS 25

100 REM * Correl.Bas * CodeWorks Magazine 3838 S. Warner St.
110 REM * Tacoma, WA 98409 (c)1988 & placed in public domain
120 REM * (206)475-2219 voice and (206)475-2356 300/1200 modem
130 *
140 *CLEAR 1000 * use if your BASIC is prior to ver. 5.0
150 DIM A(50),B(50),S(25),T(25)
160 ON ERROR GOTO 1650
170 CLS
180 PRINT STRINGS(22,45);" The CodeWorks "/STRINGS(23,45)
1 9 0 P R I N T " C O R R E L A T I O N P R O G R A M
200 PRINT" finds coefficient of correlation in data sets
210 PRINT STRINGS(60, 45)
220 PRINT
230 PRINT TAB(10);"1 - Create and save data sets
240 PRINT TAB(10);"2 - Read data and find correlation
250 PRINT TAB(10);"3 - Quit
260 PRINT
270 INPUT"The number of your choice";Q
280 ON Q GOTO 330,510,300
290 GOTO 270
300 CLS:PRINT"Done":END
310 *
320 * input data
330 CLS
340 INPUT"What will you name this file ";F1$
350 INPUT"How many data points will you enter ";N1
360 FOR 1=1 TO N1
370 PRINT"Enter point I;:INPUT A(I)
380 NEXT I
390 '
400 *save the data in a file
410 OPEN "0",1,Fl$
420 FOR 1=1 TO N1
430 PRINT #1, A(I);
440 NEXT I
450 CLOSE
460 '
470 INPUT"Enter more data files (y/n)";Y$
480 IF LEFTS(Y$,1)="Y" OR LEFTS(Y$,1)="y" THEN 330 ELSE 170
490 »
500 ' read in two files
510 CLS
520 INPUT"What is the filename of the 1st data set ";F1$
530 OPEN "I",1,Fl$

540 FOR 1=1 TO 50
550 IF EOF (1) THEN 590
560 INPUT #1,A(I)
570 PRINT A(I);
580 NEXT I
590 N1=I-1
600 CLOSE
610 PRINT
620 *
630 INPUT"What is the filename of the 2nd data set ";F2$
640 OPEN "I",1,F2$
650 FOR 1=1 TO 50
660 IF EOF (1) THEN 700
670 INPUT #1,B (I)
680 PRINT B (I);
690 NEXT I
700 N2=I-1
710 CLOSE
720 PRINT
730 *
740 ^trim the longest file to the length of the shortest file
750 IF N2=<N1 THEN N3=N2 ELSE N3=N1
760 N5=N3:K=3
770 INPUT"Press Enter to continue ";Q1
780 *
790 CLS
800 FOR 1=0 TO 25:T (I)=0:S(I)=0:NEXT
810 N3=N5
820 PRINT"You are working with data files ";F1$;" and ";F2$
830 PRINT
840 PRINT"You can:"
850 PRINT TAB(10);"1 - find their un-shifted correlation
860 PRINT TAB(10);"2 - Shift ";F1$;" and find correlation
870 PRINT TAB(10);"3 - Shift ";F2$;" and find correlation
880 PRINT TAB(10);"4 - Adjust shift range. It's now 1 /";K;" of ";

N3
890 PRINT TAB(10);"5 - Return to main menu
900 INPUT"Your choice";Q1
910 PRINT
920 ON Q1 GOTO 1000,1140,1360,940,170
930 GOTO 900
940 PRINT"Shift range is how far shifting will occur.
950 PRINT"Enter 2 for 1/2, 3 for 1/3, etc.";:INPUT K
960 IF K<2 THEN 950
970 GOTO 790
980 1

990 *find unshifted correlation

CODEWORKS 27

1000 FOR 1=1 TO N3
1010 B=B+A(I)
1020 C=C+B (I)
1030 D=D+(A(I)A2)
1040 E=E+(B(I)A2)
1050 F=F+(A(I)*B(I))
1060 NEXT I
1070 GOSUB 1580 * to calculate the coefficient
1080 PRINT
1090 PRINT"The coefficient of correlation is "/USING "##.##";CC
1100 INPUT"Press Enter to continue";Q
1110 GOTO 790
1120 '
1130 xshift Fl$ data and find correlation
1140 N4=INT(N3/K)
1150 FOR S=0 TO N4
1160 N3=N5-S
1170 FOR 1=1 TO N3
1180 B=B+A(I+S)
1190 C=C+B(I)
1200 D=D+(A(I+S)A2)
1210 E=E+(B(I)A2)
1220 F=F+(A(I+S)*B(I))
1230 NEXT I
1240 GOSUB 1580
1250 S(S)=CC
1260 NEXT S
1270 PRINT"The un-shifted coefficient of correlation is

"/USING "##.##"/S(0)
1280 FOR 1=1 TO N4
1290 IF 1=1 THEN P$="period" ELSE P$="periods"
1300 PRINT USING "##.##"/S(I)/:PRINT TAB(8)/"when "/Fl$/

" leads "/F2$/" by"/I/P$
1310 NEXT I
1320 INPUT"Press Enter to continue"/Ql
1330 GOTO 790
1340 1

1350 *shift F2$ data and find correlation
1360 N4=INT(N3/K)
1370 FOR T=0 TO N4
1380 N3=N5-T
1390 FOR 1=1 TO N3
1400 B=B+A(I)
1410 C=C+B (I+T)
1420 D=D+(A(I)A2)
1430 E=E+(B(I+T)A2)
1440 F=F+(A(I)*B(I+T))

28 CODEWORKS

1450 NEXT I
1460 GOSUB 1580
1470 T (T)=CC
1480 NEXT T
1490 PRINT"The un-shifted coefficient of correlation is

"/USING "##.##";T(0)
1500 FOR 1=1 TO N4
1510 IF 1=1 THEN P$="period" ELSE P$="periods"
1520 PRINT USING "##.##";T(I);:PRINT TAB(8)/"when "/F2$/

" leads "/Fl$/" by"/I/P$
1530 NEXT I
1540 INPUT"Press Enter to continue"/Ql
1550 GOTO 790
1560 *
1570 'calculate cc subroutine
1580 AA=((N3*D)-(BA2))*((N3*E)-(CA2))
1590 BB=SQR(AA)
1600 CC=((N3*F)-(B*C))/BB
1610 CC=INT(CC*100)/100
1620 B=0:C=0:D=0:E=0:F=0
1630 RETURN
1640 '
1650 IF ERR <>53 THEN ON ERROR GOTO 0
1660 'IF (ERR/2)+1 <>54 THEN ON ERROR GOTO 0
1670 PRINT"There is no file with that name."
1680 INPUT"Press Enter to start over"/Ql
1690 RUN 100
1700 END ' of program

Correl.Bas change lines for Tandy I/in

Changed->100 REM *Correl/Bas *CodeWorks Magazine 3838 S.Warner St.
Changed->140 CLEAR 1000 ' use if your BASIC is prior to ver. 5.0
Changed->1030 D=D+(A(I)[2)
Changed->1040 E=E+(B(I)[2)
Changed->1200 D=D+(A(I+S)[2)
Changed->1210 E=E+(B(I)[2)
Changed->1420 D=D+(A(I)[2)
Changed->1430 E=E+(B(I+T)[2)
Changed->1580 AA=((N3*D)-(B[2))*((N3*E)-(C[2))
Changed->1650 'IF ERR <>53 THEN ON ERROR GOTO 0
Changed->1660 IF (ERR/2)+1 <>54 THEN ON ERROR GOTO 0

CODEWORKS 29

Outline. BAS
Screen control for the outline program

Terry R. Dettmann, Associate Editor. The second of a series of three articles on
an outlining program.

Last issue, we introduced some basic con
cepts which are fundamental to writing a useful
outline program. We covered list linking and
related issues, now we'll move on and cover the
screen display structure. The sample program,
outline.bas, illustrates what we're going to do
and forms a shell for our final outline program.
We'll modify this shell and add the actual outline
code in the next issue.

Let's start right at the beginning where we've
set up the program. Line 30 defines all variables
to be integers unless specifically typed other
wise. Doing this makes the program faster (par
ticularly in loops). While I could just use the
percent sign (%) to mark only those variables as
integer that I want to be integer, I find that it
makes sense to force it this way because I'm
basically lazy. If I don't do this I often forget to
put the % on the variable name.

Line 40 introduces some constants that we'll
need for the program. Some in particular will
need to be changed to work on other computers
(screen width, screen length, and so forth). The
definitions are self explanatory. Line 50 intro
duces some arrays that well need in the final
program to keep track of our outline lines. Line
60 defines some important characters which
we'll need later in input routines and line 70
introduces the TRUE/FALSE variables which
we use for decision making.

Next we go off to the subroutine at line 3550
to tell the program that no outline has been de
fined yet and then to line 3450 to set the
program's COMMAND MODE. How the program
will treat what you type in will depend on what

mode the program is in. We'll define several
entry modes for the computer and whether we're
entering a command or a line for an outline will
depend on this mode. We could design a mode
less program (one where no matter what you
enter, the program interprets it), but that's quite
a bit more complicated and we'll leave that for
another series of articles.

The lines from 200 through 240 now are the
main part of the program. It's pretty simple
really when you get right down to what's going
to happen:

1) Print the screen title and information area
at the top of the screen (subroutine 1100)

2) Display whatever part of the outline should
presently be visible (subroutine 1000)

3) Enter a command (subroutine 2000) and
figure out what it is (subroutine 2500)

4) Execute whatever command was entered

The possible commands are:

Subroutine Command
3400 Go into the ADD mode
3500 Go into the EDIT mode
3600 Go into the DELETE mode
4000 Load a new file
4100 Save the current outline
500 End the program

3450 Go into the COMMAND mode

Each possible operation with the program is
controlled by setting an appropriate mode.

30 CODEWORKS

Subroutines to execute the operations are pro
vided In the 5000 series of line numbers (most
are Just stubs right now with no function, Just
there to hold down the space and allow the
program to run at this level).

Let's start looking at the implementation rou
tines now. At line 400 we have our screen
position subroutine GOTOXY. We pass it the
variables X (row) and Y (column) and It places us
at the right place on the screen. If you're working
with a non-MS DOS system, you'll replace this
with the standard PRINT @ routine as always.
Line 500 is our standard end routine, just to let
you know it happened by the correct path.

The subroutine at 1000 is interesting because
it shows us a little of the way the outline itself
will go. I is our line counter (we're going to print
no more than 20 lines to the screen). NM is set
to the top line to show on the screen. From this,
we simply print one line at a time onto the screen
(subroutine 1200) and then move to the next
line as determined by our linking scheme. If you
don't remember what LIST LINKING is all about,
then you better go back and review last Issue's
article in this series. Play with the programs
until you understand them. While moving
through the list, if we get to the end of a list of
lines and there are no lines to go back to (the
stack pointer SP is minus one), then there's
nothing more to print. If we're at a line which
we've printed and there are subordinate lines to
this one (LK(2,NM)>=0) then we move down a
level. If there's another line after the current
one, we move to that, otherwise we move up a
level.

Subroutine 1100 prints our top title line and
the command menu line with the allowed com
mands. Subroutine 1200 prints a single outline
line to the screen. I is the screen line number
and NM is the outline line number. It's printed
in the form:

<SPACES>NN. <LINE>

where <SPACES> is a number of spaces de
termined by the indent level of the particular line

(2 spaces per level) and <LINE> is the line itself.
NN represents the line's position in the outline.

Subroutines 1300 and 1350 are used for
backtracking by implementing a STACK data
structure. Whenever we move down a level, we
add the last line number to the stack with sub
routine 1300. When we're done at this new level
and want to go back, the top number on the
stack is the line number we have to go back to.

When we reach line 2000, we're starting to
really interact with the user. Subroutine 2000
implements a simple command interaction:

Prompt for a command
Wait for an answer

Line 2010 goes to the command entry point,
line 2015 clears that line and positions to the
entry point, and line 2020 prompts for the
command. We set the number of characters to
accept equal to the width of the line minus 10
and then branch to the input subroutine (2100).
Finally subroutine 2500 figures out what was
entered.

If you've been reading my programs in Code-
works, you've seen subroutine 2100 before in
many guises. Being dissatisfied with normal
entry procedures and wanting more control, I
created this entry routine to do the basic opera
tions in a way that I could see and control them
the way I wanted.

Line 2110 blanks the entry string (IN$). Line
2120 gets a single character and if it's a RE
TURN or ENTER key, the subroutine ends. In
line 2130 we check for a backspace to see if we
need to make a correction (subroutine 2300
handles that). Line 2135 allows only PRINT
ABLE characters into our entry string and line
2140 allows the line to grow to no more than NC
characters. If all the tests are passed, then line
2150 adds the character to the string and prints
it on the screen.

Subroutine 2200 is our single character entry
routine. It's been built to support arrow key

CODEWORKS 31

recognition (subroutine 2250 which at present
does nothing). If an arrow key is found, it's
handled immediately and another character is
looked for. Subroutine 2300 handles BACK
SPACES when they occur (blank the character
on the screen and eliminate it from the end of the
string). Subroutine 2400 is our CLEAR TO END
OF LINE routine. It just prints BLANK charac
ters to the screen.

Subroutine 2500 checks for a command (first
letter matches a command letter) if we're in the
command mode. If we're in another mode we
process it (line 2540). Subroutines 3000, 3100,
3200, and 3300 for moving on the screen with
arrows are stubbed for the moment (we'll worry
about them next time). Subroutines 3400,
3450, 3500, and 3600 are our mode switching
routines. Each sets the correct mode AND a
string which will appear on the screen to tell us
which mode we're in. Subroutine 3550 is initiali
zation for an empty outline.

The only other routines which are of any im
portance are the load and save routines. Sub
routine 4000 loads an outline file. We enter the
filename, add a '.OUT* extension to it and then
let subroutine 5400 load it and create the out
line from it. Subroutine 4100 does the same
except it calls subroutine 5500 to save the file.

Subroutines 5100, 5200, and 5300 are the
stubs for the most important functions in the
program, the actual adding, editing, and delet
ing of lines. This will be the primary subject of
the next article of the series.

The load routine (subroutine 5400) has a
pretty simple structure (just wait 'til we get deep
enough into it though!). It reads one line at a
time from the input file. It determines the line's

level in the outline and then puts it into the list
of lines (LN$0). Once the line has been added, it
lines it into the list (subroutine 5700). By repeat
ing this process line for line, we eventually get
the whole outline in. Subroutine 5600 is key
here. It determines the line's level by counting
the blank spaces at the front of the line and
eliminating them as it counts. Subroutine 5700
is the most complicated process. Each line has
to be added into the list at the appropriate level,
linked to the lines before it and after it. Let's
follow the subroutine's decisions and see what
it does:

5705 if there is no line presently linked, then
make this the first one.

5710 if the new line is at the current level (LL for
LAST LEVEL) then link it in at this level
(line 5800).

5720 if the new line is at a lower level, then start
a new level for it at line 5850

5730 the new line should be linked to the line
one level up

Each linking procedure goes to line 5900 at its
end to do common linking tasks for the current
line.

If we're going to save the current outline, we
loop through the lines one at a time printing
each one with one blank per outline level as we
go. Everything about the routine is organized to
follow the outline through level by level just as
we did when printing a portion of it to the screen.

This installment we've laid out the screen
control for our outline program. We'll tie it to the
actual outline generation and control in the next
issue. See you there.

Testing for Outline.Bas

__

32 CODEWORKS

10 REM - Outline.bas, a Program for Codeworks Magazine
20 REM - by Terry R. Dettmann
30 DEFINT A-Z
35 ^max number of lines, nl=number of existing lines
36 *tl=top line on screen, cl=current line
37 *wd=screen width, ln=screen length
40 N = 200:NL = 1:TL = 0:WD = 80:LN = 24:CL = 0:SP = -1
45 ,ln$()=text for each node, lk()=dynamic linking array
46 ,lv()=indent level of current text line
47 *nm()=sequence number of current text line
50 DIM LN$(N), LK(2,N), LV(N), NM(N), LL(10), STK(10)
55 ,cr$=carraige return, bs$=backspace
60 CR$=CHR$(13):BS$=CHR$(8):ESC$=CHR$(27)
70 FALSE = 0:TRUE = NOT FALSE
80 GOSUB 3550
190 CLS:GOSUB 3450
200 REM - Main Program Loop
205 GOSUB 1100
210 GOSUB 1000
220 GOSUB 2000
230 ON CMD GOSUB 3400,3500,3600,4000,4100,500,3450
240 GOTO 200
400 REM - gotoxy
410 LOCATE X,Y:RETURN
500 REM - End of program
510 CLS:PRINT "Thank you for coming":END
1000 REM - Display the current outline segment on the screen
1010 1=0:NM=TL
1020 IF I>= 20 THEN RETURN
1030 GOSUB 1200
1035 IF SP=-1 AND LK(0,NM)=-1 AND I>0 THEN RETURN
1036 1=1+1
1040 IF LK(2,NM)>=0 THEN GOSUB 1300:NM=LK(2,NM):GOTO 1020
1050 IF LK(0,NM)>=0 THEN NM=LK(0,NM):GOTO 1020
1060 GOSUB 1350:IF NM<0 THEN RETURN
1070 IF LK(0,NM)>=0 THEN NM=LK(0,NM):GOTO 1020
1080 GOTO 1060
1100 REM - Print Title Line
1110 X=1:Y=1:GOSUB 400:PRINT "Codeworks Outline Processor";
1120 X=1:Y=WD-15:GOSUB 400:PRINT MD$;
1130 X=LN-2:Y=1:GOSUB 400:PRINT STRINGS(WD,"-");
1140 X=LN-1:Y=1:GOSUB 400:PRINT "(A)dd (C)ommand (D)elete (E)dit

(L)oad (Q)uit (S)ave";
1150 RETURN
1200 REM - print a single line
1210 X = I + 2:Y=3:GOSUB 400
1220 PRINT STRINGS(LV(NM)*2," ");

CODEWORKS

1230 PRINT USING "##. ";NM(NM);:PRINT LN$(NM);
1240 RETURN
1300 REM - push level onto stack
1310 IF SP>=10 THEN RETURN
1320 SP = SP + 1:STK(SP) = NM
1330 RETURN
1350 REM - pop top level off stack
1360 IF SP<0 THEN NM=-1:RETURN
1370 NM •= STK(SP):SP « SP - 1
1380 RETURN
2000 REM - command entry
2010 X=LN:Y=1:GOSUB 400
2015 NC=WD:GOSUB 2400:GOSUB 400
2020 PRINT "Command=>";
2030 NC=WD-10:GOSUB 2100
2040 GOSUB 2500
2050 RETURN
2100 REM - input a line
2110 IN$=""
2120 GOSUB 2200:IF C$=CR$ THEN RETURN
2130 IF C$=BS$ THEN GOSUB 2300
2135 IF C$<" " OR C$>"~" THEN 2120
2140 IF LEN(IN$)>=NC THEN 2120
2150 IN$=IN$+C$:PRINT C$;:GOTO 2120
2200 REM - read one character
2205 ARROW = FALSE
2210 C$=INKEY$:IF C$="" THEN 2210
2220 GOSUB 2250:IF ARROW THEN 2200
2230 RETURN
2250 REM - check for arrow keys
2260 RETURN
2300 REM - backspace
2310 IF LEN(IN$)=0 THEN RETURN
2320 IN$=LEFT$(IN$,LEN(IN$)-1)
2330 X=CSRLIN:Y=POS(0)-1:GOSUB 400
2340 PRINT" :GOSUB 400
2350 RETURN
2400 REM - Clear to end of line
2410 PRINT STRING$(NC," ");:RETURN
2500 REM - Parse the command line
2510 CS$="AaEeDdLlSsQqCc"
2515 IF MDO0 THEN 2540
2520 CMD = INT((INSTR(CS$,LEFT$(IN$,1))+1)/2)
2530 IF CMDO0 THEN 2590
2540 ON MD GOSUB 5100,5200,5300
2590 RETURN
3000 REM - move up one line

Missing Code

When I talked about things
popping out here and there in
the last Issue I had no idea that
it was taking me literally.

It turns out that four lines of
one of Terry's programs got
pushed right off the page and
into limbo. And no one caught
it, until some of you called to
ask what was going on.

The code was from the pro
gram List.Bas in Issue 18.
There were four lines missing
from the end of that program.
The four lines are:

2120 SP=SP+1 :STK(SP)=LI:
RETURN

2200 Rem-Remove LI from
stack
2210 IF SP=0 THEN LI=0:

RETURN
2220 LI=STK(SP) :SP=SP-1

RETURN

We're just now catching on
to the way this new fangled way
of publishing works. This time,
we checked last line numbers
for each program to make sure
they were all there.

34 CODEWORKS

3010 RETURN
-

3100 REM - move down one line
3110 RETURN
3200 REM - move up one level
3210 RETURN
3300 REM - move down one level
3310 RETURN
3400 REM - set add mode
3410 MD=1:MD$="ADD MODE :RETURN
3450 REM - set command mode
3460 MD=0:MD$="COMMAND MODE" :RETURN
3500 REM - set edit mode
3510 MD=2:MD$="EDIT MODE :RETURN
3550 REM - initialize new outline
3560 LN$(0) = "Outline Title ":LK(0,0)=-1:LK(1,0)=-1:LK(2,0)=-1:

LV(0)=0:NM(0)=1
3570 RETURN
3600 REM - delete lines
3610 MD=3:MD$="DELETE MODE " :RETURN
4000 REM - Load file
4010 X=LN:Y=1:GOSUB 400
4020 NC=WD:GOSUB 2400:GOSUB 400
4030 PRINT "Filename=> ";
4040 NC = WD-10:GOSUB 2100
4050 IF IN$="" THEN RETURN
4060 FF$ = IN$ + ".OUT"
4070 GOSUB 5400:RETURN
4100 REM - Save file
4110 X=LN:Y=1:GOSUB 400
4120 NC=WD:GOSUB 2400:GOSUB 400
4130 PRINT "Filenames ";
4140 NC = WD-10:GOSUB 2100
4150 IF IN$="" THEN RETURN
4160 FF$ = IN$ + ".OUT"
4170 GOSUB 5500:RETURN
5100 REM - Add
5110 RETURN
5200 REM - Edit
5210 RETURN
5300 REM - Delete
5310 RETURN
5400 REM - Load
5410 OPEN "I",1,FF$
5420 IN=0:LL(0)=0:LL=0
5430 IF EOF(1) THEN 5495
5440 LINE INPUT#1,IN$
5450 GOSUB 5600

CODEWORKS 35

5460 LN$(IN) = IN$
5470 GOSUB 5700
5480 IN = IN + 1
5490 GOTO 5430
5495 CLOSE:RETURN
5500 REM - Save
5505 OPEN "O",1,FF$
5510 1=0:NM=0:SP=-1
5520 REM - start of loop
5530 GOSUB 6000
5535 IF SP=-1 AND LK(0,NM)=-1 AND I>0 THEN CLOSE:RETURN

5540 IF LK(2,NM)>=0 THEN GOSUB 1300:NM=LK(2,NM):GOTO 5520
5550 IF LK(0,NM)>=0 THEN NM=LK(0,NM):GOTO 5520
5560 GOSUB 1350:IF NM<0 THEN RETURN
5570 IF LK(0,NM)>=0 THEN NM=LK(0,NM):GOTO 5520
5580 GOTO 5560
5600 REM - determine the line's level
5610 LV(IN) = 0
5620 IF MID$(IN$,1,1)<>" " THEN RETURN
5630 LV (IN) = LV (IN) + 1
5640 IN$ = MID$(IN$,2)
5650 GOTO 5620
5700 REM - link line into structure
5705 IF IN=0 THEN LK(0,0)=—1:LK(1,0)=—1:LK(2,0)=—1:NM(0)—1:GOTO

5900
5710 IF LV(IN) = LL THEN 5800
5720 IF LV(IN) > LL THEN 5850
5730 LK(0,IN) = -1:LK(1,IN) = LL(LV(IN)):LK(2,IN) = -1
5740 LK(0,LL(LV(IN))) = IN:NM(IN) = NM(LL(LV(IN)))+1
5750 GOTO 5900
5800 LK(0,IN) = -1:LK(1,IN) = IN-1:LK(2,IN) = -1
5810 LK(0;IN-1) = IN:NM(IN) = NM(IN-1)+1
5820 GOTO 5900
5850 LK(0,IN) = -1:LK(1,IN) = -1:LK(2,IN) = -1
5860 LK(2,IN-1) = IN:NM(IN) = 1
5870 GOTO 5900
5900 LL(LV(IN)) = IN:LL = LV(IN)
5910 RETURN
6000 REM - save one line to file
6010 PRINT#1, STRING$(LV(NM)*1," ");LN$(NM)
6020 RETURN

Random Files
Adding Column Totals to Ranprint.Bas

Last issue we corrected some mistakes in the
random indexing program, starting with this
issue, we're going to start adding more sophis
ticated features to the print program
(RANPRINT.BAS). Some of the features we're
going to be working on over the next few issues
include:

1) Report totals
2) Subtotals on break fields (doing subtotals

whenever a field value changes)
3) Field math to create fields that aren't in the

data base
4) Output formatting

and much, much more. I've told Irv that we
could cany this series for a long time yet just in
terms of important features to have.

I'd like to thank all of you that have been
writing to say you're making use of the random
files programs. I've been hearing about applica
tions people are building for themselves with the
program and it's really special. There's no
greater kick than knowing that people are using
something you designed.

This issue, we're going to make a pretty simple
change to the RANPRINT.BAS program which
will allow us to get totals at the bottom of
columns where we want them. We'll take a
simple approach where we'll create a line, just
like the report line with the field numbers we
want to total. This will format the line just like it
does for the values themselves. It's bare bones
at the moment, but it will be enough to start
with. Later, we'll introduce formatting and other
useful features.

To start the change, we have to make an array
to hold the values (TOT#0) which is defined in
the new line 30:

OLD: 30 DIM FP$(20), SC$(24), XY(20,3)
NEW: 30 DIM FP$(20), SC$(24), XY(20,3).

TOT# (20)

We also add a new line 70 which defines a
string (TS$) which will hold the string total
pattern string IF it's defined. If TS$ is then we
won't bother to print any totals.

A minor correction (the same as we put into
the RANIDX.BAS program in the last issue)
changes line 250 like this:

OLD: 250 IF FP$(1)="DELETED" THEN 270
NEW: 250 IFINSTR(FP$(1),''DELETED'')<>0

THEN 270

This makes sure that we take out the deleted
records correctly no matter how long the field
length of the first field (REMEMBER - the first
field MUST be at least 7 characters in length in
order to hold the DELETED word. Another,
shorter word could be used, just so long as it's
unique and you change all programs identi
cally.).

Line 275 is added to do a GOSUB to line 4100
where the data will be printed in a total line.
Then line 2140 is changed to allow totaling for
each selected record:

OLD: 2140 GOSUB 2450
NEW: 2140 GOSUB 2450:GOSUB 4000

New line 2965 adds a check for a TOTAL line
(starts with a capital T) which-will show the
pattern for the total printout and lines 3300
through 3330 set the TS$ and zero the totals.

The actual work is done in subroutines 4000
(total the fields at each selected record) and
4100 (print the totals at the end of the printout).
Subroutine 4000 takes the simple approach to
totals by simply totaling ALL fields without
regard to type. At worst, this should create a lot
of zeros and waste some time. We'll get better
about this as we start to do more sophisticated

CODEWORKS 37

things. That's a subject for later articles.

If you look closely at the routine for laying out
a printed line, you'll find that the subroutine at
4100 is an EXACT model of that one with only
minor differences. We insert totals where we find
field numbers just like Inserting record values.
The special feature is that If there is NO value of
TS$, we simply Ignore this and return. Other
wise our sample line (LN$) is set to TS$. When
the line is filled, we print it in line 4195.

The listing gives the merge file needed to
create this version of RANPRINT.BAS from the
original available in Issue 14 (Nov/Dec 87) and
on the download.

30 DIM FP$(20), SC$(24), XY(20,3),
TOT#(20)

70 TS$=""
250 IF INSTR(FP$(1),"DELETED")<>0 THEN
270

275 GOSUB 4100
2140 GOSUB 2450:GOSUB 4000
2965 IF LEFT$(LN$,1)="T" THEN GOSUB
3300:RETURN

3300 REM - Total Fields
3310 TS$ = LN$

Forum, from page 6
magnetic retentivity, and the ability to write and
read perfectly. Data in the areas being tested is
removed and temporarily stored in your
computer's RAM. If testing reveals an error, Disk
Technician+ repairs it by writing a single new
track using a factory low-level, real format. This
new track is then thoroughly retested, and only
if it has been perfectly repaired, will the program
allow your programs and data to use it again. If
the testing shows that any area is not repair
able, your data will be relocated to a good area
and the bad area will be safely blocked from
future DOS use - all automatically without
operator intervention. After Disk Techniclan+
repairs an area, it specially monitors that spot
on all subsequent tests to make certain it stays
repaired.

The program is copy protected, and is always
booted and run from its original diskette and
does not get installed on the hard disk. The

3320 FOR ZI=0 TO 20:TOT#(ZI)=0:NEXT ZI
3330 RETURN
4000 REM - Add to field totals
4010 FOR ZI=0 TO 20:TOT#(ZI) = T0T#(ZI)
+ VAL(FP$(ZI)):NEXT ZI

4020 RETURN
4100 REM - Print field totals
4105 IF TS$="" THEN RETURN ELSE LN$=TS$
4110 FS$=LN$
4120 IF INSTR(LN$ /'#")<>0 AND
LEN(LN$)<WD THEN LN$=LN$+STRING$(WD-
LEN(LN$)," n)

4130 IF INSTR(LN$,"#")=0 THEN 4195
4140 X = INSTR(LN$,"#")
4150 Y = VAL(MID$(LN$,X+1))
4160 MID$(LN$,X)
MID$(STR$(TOT#(Y)), 2) +" "

4170 IF X>1 THEN MID$(LN$,X-l)=" "
4180 MID$(FS$,X)=" "
4190 GOTO 4130
4195 PRINT LN$:LC = LC + 1:RETURN

No part of this change is very difficult, but it's
important to be careful. Next issue, we're going
to start going more and more into reporting and
working out ways to develop more sophisticated
reports for the system. Good luck 'til then.

program can be reset to operate on a new
machine or hard disk by calling the factory. The
first time you run the program it may take up to
four hours to check out a 20 meg hard drive.
After that it only takes a few minutes per day to
run the program. It keeps a history database on
the hard drive and makes comparisons every
time you run the program.

It's a lot of program for $99.00, and It provides
you with good insurance.

Thanks again for the great letters. Many of
you have remarked that I always note the pass
ing of the seasons. Yes, I do. I think the seasons
are great. Where we live there really are only two,
wet and dry. I very much enjoy the seasons in
the midwest, all four of them. You certainly
know which one you are in at any time there.

Actually, if it weren't for the seasons on Earth,
I think I'd find another planet on which to live.

Irv

38 CODEWORKS

-

Handy Order Form
RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95

All third year issues, Nov 87 through Sep 88 $24.95

All second year issues, Nov 86 through Sep 87 $24.95

All first year issues, Sep 85 through Sep 86 $24.95

1st Year Program Disk (issues 1 through 7)
(Specify computer type below) $20.00

2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00

3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available after 1 Sep 88 $20.00

NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x
(Tandy Model IV) and most CP/M MBASIC formats, on

5 1/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
O Charge to my VISA/MC

Ship to: Name

Address

City

_exp-

State Zip

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only, we don't take American Express
988

CODEWORKS 39

Index & Download
What's happening with both

Here are the updates to bring Cwindex.Dat up
to date through the last issue. The entire index
for the first three year s of CodeWorks, including
this issue, will be on the download and on our
yearly diskette.

Bio.bas, correction, issue 18, page 4
Poker.bas, reference, issue 18, page 5
Beginning BASIC, user defined functions, is
sue 18, page 7
Mediator.bas, main program, issue 18, page 9,
mediates disputes
Outline.bas, part 1 of 3, issue 18, page 15
Link.bas, main program, issue 18, page 21, part
of Outline.bas
List.bas, main program, issue 18. page 22, part
of Outline.bas
Random files, article, fixing Ranidx.bas, issue
18. page 23
Ranidx.bas, main program, issue 18, page 25.
randemo indexing
Notes, Model I/III memory addreses, issue 18,
page 29
Conversions, article, issue 18, page 30, con
verting to MS DOS

Hard disks, article, issue 18, page 37, ques
tions and answers
Notes, converting WHILE and WEND, issue
18, page 38
Cwindex.dat. updates to this index, issue 18,
page 40

The download, which characteristically has
gone down in January and July, waited until
August this year. It's down as I write this, having
suffered from a mild case of high-voltage arcing.
A lot of power switching has been going on in our
building, which may or may not account for the
problems. In any case, it is at the repair center
now. and we expect it to be up and running
normally by the time you receive this issue.

Once we get it back up. you can renew your
subscription via the download. Just leave your
name and charge card number in the comments
section and we will take it from there.

s

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
Postage

PAID
Permit #774
Tacoma, WA

* CODEWORKS
Issue 20 Nov/Dec 1988

CONTENTS

Editor's Notes 2

Forum 3

Beginning BASIC 7

Playoff.Bas 14

Notes 20

Cword.Bas 21

Randemo Recap 28

Split.Bas 37

Renewal/Order Form 39

Index 81 Download 40

CODEWORKS Editor's Notes
Issue 20 Nor/Dec 1968

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashbum

(c)1988 SO-Northweat Publishing Inc. No
patent liability is assumed with respect to the
use of the information contained herein. While
every precaution has been taken in the prepa
ration of this publication, the publisher as
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre
sented in this publication are placed in
public domain. Please address all correspon
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 98409

Telephones
(206) 475-2219 (voice)

(206) 475-2356 (modem download)
300/1200 baud. 8 bits, no parity and 1

stop bit

Authors: We constantly seek materia] from
contributors. Send your materia] (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned if return postage is provided. Compen
sation will be made for works which are ac
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (206) 475-2219.
Charge card orders may also be left via our
on-line download system (206) 475-2356.

CodeWorks is published bimonthly in Jan.
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, Just
send the name and address and we will send
a sample copy at no cost.

It's almost Thanksgiving time
again. It seems like just yesterday
that I was writing Poker. Bas dur
ing a rare snowstorm around this
time of the year, but it was three
years ago!

Have you seen the announce
ment that Steven Jobs has un
veiled his new NeXT computer?
From what they showed on the Tee
Vee, it looked like it had some
pretty impressive graphics. I
wonder how long it will take for the
industry "power users" to start
calling it a "NeXt Box" like they
now call "386 Boxes" and the like.
Or maybe they'll call it the "Jobs
Box."

Microsoft is moving their CD
Rom affair from Seattle to Califor
nia this year. It's been here since it
first started. Perhaps Seattle is
getting too provincial for the
mighty MS.

They have also released MS
DOS version 4.0 but don't run out
and buy it. Wait for the bugs to get
fixed first. I've always been a be
liever in buying 400 horsepower
and only using 200 of it. That way,
you get long life, good service and
dependability. You can call me a
"Half Horse Power User."

There have been many requests
to us from readers to recommend
an MS DOS machine. We like MS
DOS and think it will be around
for a while. Even OS-2 didn't make
the dent they thought it would. It's
hard, though, to recommend spe
cific machines. There are a lot of
them out there at fantastic prices.
Some 286 machines (read PC AT)
with hard disks are going for
around $1500.00 and that has to
be a buy. We would recommend
staying away from off-shore odd
balls however. Who's going to fix it

when it breaks? Is it really com
patible? You never know until it's
too late. Names? Well, there's
Compaq, AT&T, AST, and if you're
not a red-neck about the name,
Tandy has some very good ma
chines at fair prices. 'Course, you
can always be true blue and go for
IBM. Check prices, service and
compatibility and you won't go
wrong.

Speaking of MS DOS, it's inter
esting to see how many of you who
don't have it are buying our book
let on getting started in it. But I
guess that makes sense, sinceyou
want to see what you may be in for.
It's getting good comments from
most of you. One person though,
called in and said it had a "gross"
mistake in it. Seems he took issue
with the statement that you can
have 115 files in a directory on a
hard disk. He says you can have
as many as you want in the sub
directory but only 115 in the root
directoiy. Picky, what?

And speaking of books, guess
who is the author of a new one put
out by Que, called "DOS Program
mer's Reference?" Well, no one
other than our own Terry
Dettmann. It's a monster book,
over 800 pages, and technical
reading cover to cover. Now, don't
get the wrong Idea. That's not why
he missed the deadline for this
issue! The book has been out for
some time now, and should be on
your local bookstore shelf. Take a
look.

Thank you all for your early re
newals. It sure helps when we
don't have to keep harping on it.
We appreciate it.

Irv

Issue 20 CODEWORKS

Forum
An Open Forum for Questions and Comments

I have enjoyed trying (the program Correl.Bas
In Issue 19). The leading/lagging correlation
feature is veiy nice.

You may wish to point out to your readers that
the program's accuracy is somewhat limited in
calculating the correlation coefficient. I'm using
GW BASIC under MS-DOS 3.2. I get accurate
results when the values in the input files have
no more than two significant figures. There can
be a slight error when these values have three
significant figures. On a test set of files whose
values contain four significant figures, the pro
gram gives a correlation coefficient of 0.62 ver
sus the correct value of 0.7853 (determined by
using a 10-digit hand calculator)...

...The sources of error appear to be (1) the use
of single precision variables in the calculations,
and (2) the use of the exponentiation operator (A)
to square values instead of multiplication of the
value by itself.

In GW BASIC exponentiation appears to re
turn a single precision value even if the variable
is double precision. For example:

10 DEFDBL A
20 A=98.18
30 PRINT "A="A
40 PRINT "A*A="A*A
50 PRINT "Aa2="Aa2
Run
A = 98.18000030517578
A*A = 9639.312459924317
AA2 = 9639.312
The correct value is 9639.3124. The error in

the fourth decimal place may seem trivial, but
when differences between squared terms used
(such as in program line 1580), one can wind up
with only three or four significant figures for
subsequent calculations. Thus, the round-off
error can be appreciable as in the first example
above.

When I added line 142 DEFDBL
A,B,C,D,E,F,N and changed the following lines
to use multiplication instead of exponentiation,

the revised program gives the correct value for
the coefficient of 0.78527 which is rounded to
0.79 by line 1610 and/or line 1090.

1030 D=D+(A(I)*A(I))
1040 E=E+(B(I)*B(I))
1200 D=D+(A(I+S)*A(I+S))
1210 E=E+(B(I)*B(I))
1420 D=D+(A(I)*A(I))
1430 E=E+(B(I+1j*B(I+T))
1580 AA= ((N3*D) - (B*B)) * ((N3*E) - (C*C))
A better alternative for GW BASIC is to call

BASIC with the /D option. This loads BASIC
with the double precision transcendental math
package and provides double precision values
for exponentiation and square root functions. I
don't know if other versions of BASIC operate in
the same manner.

One further program note: Line 1610 rounds
CC to two decimal places. This line seems re
dundant in view of the Print Using format ##.##
which is found in lines 1090, 1270, 1300, 1490
and 1520. The program seems to work fine with
line 1610 deleted...

Robert L. Anderson
St. Albans, WV

You are right Although we knew about the
accuracy problem, we simply overlooked it when
we wrote the program.

As an experienced BASIC programmer I re
cently purchased Microsoft's QuickBASIC and
fell in love with it the first time I used it. While
many typical, small BASIC programs do not
really need the speed up from compiling, there
are several other major benefits, such as the fine
BASIC editor, the pull-down menus, the dialog
boxes, and most important, its powerful debug
ging features. BASICAs and GW BASICs editors
are primitive by comparison.

How about some articles and examples of the
QuickBASIC programs. I am sure many others
would appreciate it. Keep up the good work.

Paul G. Delman

CODEWORKS Issue 20 3

Ft. Lauderdale, FL
Although half our readers don't have the ma

chine to run QuickBASIC, we have been thinking
about running a regular column on it for those
who do. Since we are not experts at it either, it
would be a case of learning from scratch, to
gether.

Issue 19 has just arrived, and I agree that
switching to desktop publishing has improved
the appearance of your magazine; but, unless
my copy was an exception, the collating attach
ment on your photocopier needs adjustment...
(It was missing pages, ED.)

Although I still am devoting all of my free time
to compiling a family history and genealogy, and
my interest in learning to program in BASIC
remains "on hold" for the immediate future, I do
want my CodeWorks collection to be complete
when I get around to it...

Russell Bond
Buffalo, NY

Yours seems to be a common complaintfor that
issue. Several others have made remarks about
desktop publishing and the missing pages prob
lem. The two have absolutely nothing to do with
each other. Desktop publishing only produces the
camera-ready page masters for the magazine.
Those master pages are then photographed,
printing plates are made and the plates go onto
the printing presses to produce the magazine.
The pages must then be collated and sent to the
bindery for stitching and trimming. We don't own
the presses or the bindery, we send that work out
to commercial printers. The problem with Issue
19 was in the bindery, where it seems, things got
a little bit out of sync. We will certainly pay more
attention to it this issue. And darn, isn't it always
like that? Seems to be one thing or another that
keeps youfrom putting out a "perfect" issue - but
it's fun trying.

Will Randemo be down-loadable at some fu
ture time as a complete file rather than "pieces?"

F. V. Bruch
Troy, NY

It will probably always be in three major
pieces. You can tie them all together, however,
with a small menu program, as we did with
CarcLBas.

Do you have a program in BASIC that I could

run on my Model IV to keep track of payments on
a Trust Deed? The payments are interest first,
but any amount after that will be applied to the
principal. The amount of the payments may
vary, but the due date is firm, with a balloon
payment at that time. Thanks for your time in
this matter.

Richard L. Wright
Buena Park, CA

We do now. It's called TrusLBas and should
appear in these pages within the next few issues.
(Actually, we have already sent Mr. Wright an
advance copy of the program for check out and
suggestions for improvements. - ED)

Is there anything in the future to upgrade
"NFL Oracle" where you can enter the play-off
games and Superbowl? It Is a great predictor
and I am very pleased with your magazine. Keep
it up. I am over 65 and have learned most of my
hobby computing through CodeWorks. It sure
helps a novice like me. You should get a super
gold star for such detailed explanations.

Ivor J. Fosmo
Sparks, NV

Thanks for the nice comments, and you will
find the play-off program in this very issue. It's
called Playoff. Bas.

...CodeWorks is almost a "cult" piece, notable
for its erudition and clarity. Thus, it is not at all
difficult for me to see the jumble in which I
sometimes write...

R. J. Richardson
Valencia, CA

And write he did. His program, BudgeLBas,
will be appearing in a future issue.

...I have recently moved up from a Model III to
a Model 1000 TX and when (Issue 18) arrived I
immediately saw listed on the cover a thing
called "Conversions, page 30." I raced into the
house and in my excitement, nearly tore the
cover off. There on pages 34 and 351 found some
"missing Model III commands." Although they
are veiy welcome, I was nearly heartsick to find
my beloved CMD"X" is still missing. There are
lots of things missing from my dear old "pro
grammer's dream" but that CMD"X" is the one I
miss the very most. Can you please help? I know
that the Model 1000 does have the "FIND" but
that seems to work only for text files, and what

4 Issue 20 CODEWORKS

I am primarily looking for is the line numbers of
those lines in data statements and in files other
than text files which contain my search string.
In desperation I once renamed a sequential file,
giving it a .TXT extension, but alas, it did not fool
my TX at all!

I also noticed in Issue 18a letter from a reader
heartily endorsing the genealogy program,
CLAN, written by Arthur C. Hurlburt of Daven
port, Iowa. I have had his program for almost
four years now and have had one book pub
lished, using that program. I have over 850
family names in that one with room for more. I
am currently working on another book and have
over 600 names in it! It is indeed, a wonderful
program, I have seen others but I like this one
the best...

Betty Berg
Milan, EL

The MS DOS FIND command works just fine if
you save your programs in ASCII format, i.e.,
SAVE "filename" A-

..As usual, the articles in Issue 18 are both
informative and thought-provoking. I would like
to add a few comments to the article by Al
Mashbum regarding hard disks. I currently
have two hard disks in operation, one on an XT
clone (30 meg) and one on a Tandy Model IV (5
meg). In answering the question of recom
mended disk size, he implies that only the
TRSDOS operating system has a "problem" with
chunk size. In fact, MS DOS has an identical
problem. Using MS DOS 3.1 to format a 20 meg
hard disk will give a cluster (chunk) size of 8,192
bytes minimum. This was improved in MS DOS
3.2 to a size of 2,048 bytes. Thus, a 100 byte file
under MS DOS will occupy either 8,192 or 2,048
bytes of disk space. Confusion comes from the
use of the DIR command, which lists file length
for MS DOS and disk usage in TRSDOS. When
you issue the DIR command in TRSDOS, the
100 byte file will show up as a 4K file (5 meg disk
partitioned into four equal logical drives). Issu
ing the DIR command from MS DOS will show
the file length as 100 bytes, but if you compare
the free space on the disk before and after
writing the file, you will find that 8,192 or 2,048
(depending on DOS version) have been used.
The information about division of the drive into
logical drives also needs to be expanded. While

you can break one physical drive into four
logical drives, it is not required. You may divide
it into two or three or use it as a single logical
drive. One arrangement is to create on or two
drives of 1.25 meg, with the remainder (3.75 meg
or 2.5 meg) used as a single drive for large data
files (at one time I had a 1.6 meg inventory file
and a 1.2 meg sales files sharing the 3.7 meg
second logical drive). He is correct in stating that
the drivers supplied by Radio Shack do not
support sub-directories and paths, however,
the DiskDisk utility available from Misosys will
allow a similar type of file organization. In either
case, the proper use of file library and archive
utilities will greatly enhance the utility of your
hard disk. I plan to expand the Model IV hard
disk to 20 meg as soon as possible, and feel
confident that I won't waste any of it. With used
5 meg drives currently in the $300 range, no
Model IV user should be without one if he can
afford it. Note: TRSDOS in the above applies to
TRSDOS 6.2 and LS-DOS 6.3.

I hope the above information is useful. Keep
up the good work.

Tom Blggar
Fairview, TN

...I have a Model III, two Model IVs and now an
AT&T 6300 Plus with Unix. There is so much to
leam about I may never get the roof on the house
reshingled...

R. C. Chittenden
Amarillo, TX

If you get into that Unix, you will be setting out
drip-buckets for sure.

Qkey.Bas, Issue 10, is a great program! I have
a problem making corrections to the data. How
do I change typing errors after ENTER?

R. H. Saunders
Epping, NH

To correct or delete a line with Qkey, you use
the .EDIT command. Let's say you wanted to find
something and forgot to put the period before
FIND and then pressed ENTER. If you then .EDIT
FIND it willfind the word "find" and then you can
delete it or replace it with something else. Unfor
tunately, the program is not sophisticated
enough to edit within a line, you must retype the
entire line to change it

CODEWORKS Issue 20 5

In Issue 18 you published a letter from me and
a letter from Mr. Lawrence J. Carley of Mt.
Morris, Michigan.

Mr. Carley's letter advised that a good geneal
ogy program could be purchased from Arthur C.
Hurlburt and I immediately purchased this
program and find it to be all that he said that it
was and I am very well pleased with it. It is easy
to run and gives out wonderful reports. Mr.
Hurlburt says that he has over 700 names in his
program on one disk. I have entered over 400
names on my disk and have room for many
more. Mr. Hurlburt is a real nice person to deal
with and this is the best $10 that I have ever
spent on a program. The program is for a Tandy
Model III.

I want to thank you for taking an interest in
my letter and publishing the letter that allowed
me to get the genealogy program from Mr.
Hurlburt. I also extend my appreciation to Mr.
Carley for writing to you about this program...

Walter Evans, Jr.
Waco, TX

And the interest in genealogy goes on and on.
We were happy to he of assistance and act as a
clearinghouse.

.. .The MS DOS book is neat. All MS DOS users
should buy one and keep it handy for reference
before attacking the intimidating, thick, some
times too technical and unreadable, sometimes
incomplete, DOS manual.

I hope A1 Mashburn will do more writing for
CodeWorks. His work on "Shareware" (Issue 5)
and hard disk are welcome. I would like to see
more on the subject for hard disks, perhaps the
various formats (MFM and RLL and others),
causes of a crash, need for a disciplined backup
program, good habit of running SHIP with each
time you turn off power, etc.

I have noticed that CodeWorks has grown, top
to bottom, and left to right. All issues up to 15
were the same size, and all after have been
different. The cause?

John R. Miller
Anderson, SC

Three different printers, so far, have printed
and bound the magazine. They all insist on doing
it their way. We too, would like to see it be a little
more consistent

Thanks once again for the interesting letters
and comments. Enjoy the football and the
Thanksgiving turkey, and the new administra
tion (whoever it turns out to be), and we'll see
you again around the first of the year.

Irv

NOTICE
Due to unavoidable

circumstances
Terry's Outline program

and his
Ran demo article will

NOT APPEAR
in this issue.

We will, however, pick them
up again in the next issue.

U. SdWYSTHCR, I
) prfoWeKf j
1 AT Wsw

"Don't worry. In fraudulent tax cases
your computer can't testify against you."

6 Issue 20 CODEWORKS

Beginning BASIC
Error Messages for Beginners

If you are new to BASIC, you probably see a lot
of error codes and cryptic messages when you
program. Wouldn't it be nice if the error message
told you a little more about what the error was
than "TM error in 300" or some such? And
wouldn't it help if you had some idea of where
the error line was?

Errmsg.Bas is a program designed to serve as
a crutch until you become more familiar with
the error codes of your computer's BASIC. It's
not a program that will run by itself, but is a
program you can merge into your programming
during checkout and debugging time. It will
then give you a full description of the errors
encountered, and will display the line of code
where the error has probably occurred.

The full treatment of error trapping is a sub
ject by itself, and is beyond the scope of Begin
ning BASIC. It will be treated separately in a
later article either in this issue or in an upcom
ing one.

How to use Errmsg.Bas

Type in the program (Errmsg.Bas) or get it
from our download. Be sure you have saved it in
ASCII (SAVE "ERRMSG.BASA"). When you
type in a program from a magazine, or write your
own from scratch, just go ahead and write as
you normally would. You can use line numbers
in your program from 11 through 29998. Line 10
and the numbers from 29999 on will be used
when you merge Errmsg.Bas. When you get
ready to check out your program, load your
program and then at the ready prompt type:
MERGE'ERRMSG.BAS"

Now, when you run your program, any errors
will be displayed with a full description of the
error, as well as the line (not just the line
number) where the error probably occurred. If
the error was a syntax error the line containing

the error will be displayed and you will auto
matically be in the EDIT mode. All other errors
will show the line and give you the BASIC ready
prompt. The error messages you now receive will
give you enough information so that you can
probably fix the error and continue checking out
your program.

If the program you are copying from an article
contains a line that starts out with "ON ERROR
GOTO...", then temporarily remark that line
while you use Errmsg.Bas. Don't forget to acti
vate that line again later.

When you are satisfied that your program is
checked out, you can delete line 10 and from
29999 to 31130. At the ready prompt, simply
type the number 10 and press enter, then type:
Delete 29999-31130 and press enter. That will
get rid of Errmsg.Bas and leave your program
ready to go.

How Errmsg.Bas works

When BASIC encounters an error, it auto
matically sets two internal variables, ERR and
ERL. ERR is the error number and ERL is the
line number where the error was detected. In
fact, when you get an error, you can tell BASIC
to print ERR and ERL and see what they are.

Line 10 of Errmsg.Bas sets the "error trap" so
that on any error program flow will jump to line
30000. The END statement in line 29999 is just
there to keep your program from crashing into
this part of the program. In line 30000 we let X
equal the error number that BASIC found.

In lines 30010 through 30055 we use the
value of the error number to go to the appropri
ate lines to display the correct information
about the error in question. If the error number
encountered was 3 then line 30010 will send us
to line 30035, and the third number in the ON X

CODEWORKS Issue 20 7

GOTO line 30035 is 30130. If we go to line
30130, we find that it is the "Return without
GOSUB error." The program will print this error
and the following lines on the screen for you.
Notice line 30145. It ends with a GOTO 31125.
Line 31125 lists the line in question on the
screen, right under the error message that is
already there. Now you have the error message

in full, and the line that probably caused the
error displayed right there on the screen. All the
other error numbers work the same way. The
only exception to this is the syntax error, which
automatically puts you into the EDIT mode
anyway, so way up in line 30120 we go to line
31130 instead of 31125.

Errmsg.Bas written for GW BASIC
see note for other machines.

10 ON ERROR GOTO 30000
29999 END
30000 X=ERR
30005 CLS
30010 IF X=<10 THEN 30035
30015 IF X=<20 THEN X=X-10:GOTO 30040
30020 IF X=<30 THEN X=X-20:GOTO 30045
30025 IF X=<60 THEN X=X-49:GOTO 30050
30030 IF X=<71 THEN X=X-60:GOTO 30055
30035 ON X GOTO 30065,30100,30130,30155,30185,30240,30260,30285,

30300,30330
30040 ON X GOTO 30355,30370,30390,30425,30445,30465,30485,30510,

30530,30550
30045 ON X GOTO 30570,30590,30610,30625,30645,30660,30685,30570,

30700,30720
30050 ON X GOTO 30740,30760,30785,30810,30830,30860,30570,30885,

30905,30570,30570
30055 ON X GOTO 30925,30940,30970,30990,30570,31015,31035,31055,

31075,31090,31110
30060 ' error 1
30065 PRINT''NEXT without FOR ERROR"
30070 PRINT" BASIC executed a NEXT statement without previously
30075 PRINT"executing a FOR statement, or a variable in a NEXT
30080 PRINT" statement does not correspond to a previously
30085 PRINT" executed FOR statement. The error may or may not be in
30090 PRINT"the line being displayedGOTO 31125
30095 ' error 2
30100 PRINT" Syntax ERROR
30105 PRINT''BASIC encountered a line that contains an incorrect
30110 PRINT" sequence of characters (such as unmatched parentheses,
30115 PRINT''misspelled statement, incorrect punctuation, spacing,

etc.)
30120 PRINT''The error is in the line being displayed. GOTO 31130

30125 ' error 3
30130 PRINT" Return without GOSUB ERROR
30135 PRINT" BASIC executed a RETURN statement without previously
30140 PRINT" executing a GOSUB statement. The error is NOT

necessarily in
30145 PRINT" the line being displayed. ":GOTO 31125
30150 ' error 4
30155 PRINT''Out of data ERROR
30160 PRINT''While executing a READ statement, BASIC could not find
30165 PRINT" any DATA statements or un-read data items. Ths error
30170 PRINT" shows the line that READS as the error line, but the

error
30175 PRINT" is probably in the DATA line or lines." :GOTO 31125
30180 » error 5
30185 PRINT" Illegal function call ERROR
30190 PRINT"A parameter that is out of range was passed to a math

or
30195 PRINT" string function. This error may also be caused by a
30200 PRINT" negative array subscript or an unreasonably large
30205 PRINT''subscript, a negative or zero argument with LOG, a
30210 PRINT''negative argument with SQR, a negative mantissa with a
30215 PRINT" noninteger exponent, an invalid exponential number, an
30220 PRINT" improper argument to MID$, LEFT$, RIGHT$, etc., or a
30225 PRINT" negative record number with GET or PUT.": GOTO 31125
30230 ' error 6
30235 PRINT" Overflow ERROR
30240 PRINT''The result of a calculation was too large to be
30245 PRINT''represented in BASIC numeric formatGOTO 31125
30250 ' error 7
30255 PRINT''Out of Memory ERROR
30260 PRINT"A program is too large, has too many FOR loops or
30265 PRINT''GOSUBs, has too many variables, or has expressions
30270 PRINT''that are too complicated to untangle.": GOTO 31125
30275 ' error 8
30280 PRINT''Undefined line number ERROR
30285 PRINT"A nonexistent line was referenced in a GOTO, GOSUB,
30290 PRINT" IF. .THEN. .ELSE, or DELETE statement.": GOTO 31125
30295 ' error 9
30300 PRINT" Subscript out of range ERROR
30305 PRINT''An array element is referenced with a subscript out-
30310 PRINT''side the dimensions of the array or with the wrong
30315 PRINT" number of subscripts. Try printing the value of^the
30320 PRINT"variable contained in the subscript for clues." :GOTO

31125
30325 » error 10
30330 PRINT''Redimensioned array ERROR
30335 PRINT" BASIC encounterd two DIM statements for the same array,

30340 PRINT" or a DIM statement after the default dimension of 10
30345 PRINT' 'had already been established for that array. :GOTO

CODEWORKS Issue 20

30350
30355
30360

30365
30370
30375

30380
30385
30390
30395
30400
30405
30410
30415
30420
30425
30430
30435
30440
30445
30450
30455
30460
30465
30470
30475

30480
30485
30490
30495
30500
30505
30510
30515
30520
30525
30530
30535
30540
30545
30550
30555
30560
30565
30570

No one can.'':GOTO

31125
' error 11
PRINT''Division by zero ERROR
PRINT''You simply cannot divide by zero,
31125
' error 12
PRINT" Illegal direct ERROR
PRINT''A statement that is illegal as a command was
encountered
PRINT''at BASICS promptGOTO 31125
' error 13
PRINT''Type mismatch ERROR
PRINT A string variable name was assigned a numeric value or
PRINT''the other way around. A string function was given a
PRINT''numeric argument or the other way around. You cannot
PRINT mix strings and integers without converting them
PRINT'' firstGOTO 31125
1 error 14
PRINT" Out of string space ERROR
PRINT''The amount of memory used by string variables exceeded
PRINT''the amount of free memory.":GOTO 31125
' error 15
PRINT" String too long ERROR
PRINT''An attempt was made to create a string more than 255
PRINT" characters long.":GOTO 31125
' error 16
PRINT" String formula too complex ERROR
PRINT The string expression is too long or too complex. The
PRINT 'expression should be broken into smaller expressions "
GOTO 31125
' error 17
PRINT''Can't Continue ERROR
PRINT''An attempt was made to continue a program that halted
PRINT^because of an error, was modified during a break in
PRINT'' execution or does not exist.": GOTO 31125
' error 18
PRINT" Undefined user function ERROR

°SR.!uno"on "" before providing a function
PRINT definition (DEF USR statement).":GOTO 31125
' error 19
PRINT''No RESUME ERROR

PRINT''BASIC executed an error-handling routine that did not
PRINT"have a RESUME statementGOTO 31125
' error 20
PRINT" RESUME without ERROR

executed a RESUME statement when no error
PRINT had occurred. " :GOTO 31125
' error 21
PRINT''Unprintable ERROR

10
Issue 20 CODE WORKS

30575 PRINT''An error message is not available for the error
30580 PRINT" that occurredGOTO 31125
30585 1 error 22
30590 PRINT''Missing operand ERROR
30595 PRINT''Basic encountered an expression that contained an
30600 PRINT'' operator but no operand. GOTO 31125
30605 1 error 23
30610 PRINT''Line buffer overflow ERROR
30615 PRINT''The line being input is too long.":GOTO 31125
30620 ' error 24
30625 PRINT''Device timeout ERROR
30630 PRINT''Basic did not receive information from an I/O device
30635 PRINT'' within a predetermined amount of time.":GOTO 31125
30640 ' error 25
30645 PRINT''Device fault ERROR
30650 PRINT''An incorrect device designation has been entered.'':

GOTO 31125
30655 ' error 26
30660 PRINT''FOR without NEXT ERROR
30665 PRINT''BASIC executed a FOR statement that did not have a
30670 PRINT"matching NEXT. Also check for FOR J= with NEXT I,
30675 PRINT" for example GOTO 31125
30680 1 error 27
30685 PRINT''Out of paper ERROR
30690 PRINT" Basic received an out of paper status from the

p r i n t e r G O T O 3 1 1 2 5
30695 ' error 29
30700 PRINT''WHILE without WEND ERROR
30705 PRINT" Basic encountered a WHILE statement that did not have

a
30710 PRINT"matching WEND.":GOTO 31125
30715 ' error 30
30720 PRINT''WEND without WHILE ERROR ,
30725 PRINT" Basic executed a WEND statement before executing a
30730 PRINT" WHILE statementGOTO 31125
30735 ' error 50
30740 PRINT" Field overflow ERROR
30745 PRINT"A FIELD statement is allocating more bytes than the
30750 PRINT''specified record length of the direct access file.

GOTO 31125
30755 1 error 51
30760 PRINT" Internal ERROR
30765 PRINT''An internal malfunction has occurred in BASIC. There

isn't
30770 PRINT''one heck of a lot you can do about it. BASICs internal

stack
30775 PRINT' ' is probably garbled. You lose. Re-load BASIC.":GOTO

31125
30780 ' error 52
30785 PRINT''Bad file number ERROR

30790 PRINT''BASIC has encountered a reference to a buffer number

that
30795 PRINT''is not open or is out of the range of the number o

files
30800 PRINT''specified when BASIC was first loadedGOTO
30805 * error 53
30810 PRINT" File not found ERROR
30815 PRINT''A LOAD, KILL, or OPEN statement referenced a file that
30820 PRINT''does not exist on the current disk.GOTO 31125
30825 ' error 54
30830 PRINT''Bad file mode ERROR
30835 PRINT''An attempt has been made to use PUT, GET or LOF with a
30840 PRINT''sequential file, to LOAD a direct file, or to execute
30845 PRINT''an OPEN statement with a file mode other than I,0,R,
30850 PRINT' ' E or D.":GOTO 31125
30855 ' error 55
30860 PRINT" File already open ERROR
30865 PRINT" BASIC encountered an OPEN statement for sequential
30870 PRINT" output, or a KILL statement, for a file that is
30875 PRINT" already open.":GOTO 31125
30880 * error 57
30885 PRINT" Device I/O ERROR
30890 PRINT" An input/output error occurred. This is a fatal error
30895 PRINT" and the operating system cannot recover from it.":GOTO

31125
30900 ' error 58
30905 PRINT''File already exists ERROR
30910 PRINT" The filename specified in a NAME statement is

identical
30915 PRINT' ' to a file specification in use on the disk.":GOTO

31125
30920 * error 61
30925 PRINT" Disk full ERROR
30930 PRINT''All of the diskette space is already in use.":GOTO

31125
30935 " error 62
30940 PRINT" Input past end ERROR
30945 PRINT''BASIC executed an input statement after all the data

in
30950 PRINT"the file has already been read, or BASIC executed an
30955 PRINT" input statement to a null (empty) file. To avoid this
30960 PRINT" error, use the EOF function to detect end of file.":

GOTO 31125
30965 ' error 63
30970 PRINT''Bad record number ERROR
30975 PRINT" In a GET or PUT statement, the record number is either
30980 PRINT" greater than the max allowed, or is equal to zero.":

GOTO 31125
30985 ' error 64
30990 PRINT''Bad file name ERROR

I
12 Issue 20 CODEWORKS

30995 PRINT''An illegal name was used with a LOAD, SAVE, KILL or
OPEN

31000 PRINT''statement, for example, a file name with illegal
31005 PRINT" characters in it.":GOTO 31125
31010 ' error 66
31015 PRINT''Direct statement in file ERROR
31020 PRINT''Information in a non-ASCII format was encountered

while
31025 PRINT''loading an ASCII format file. The load is terminated."

GOTO 31125
31030 ' error 67
31035 PRINT" Too many files ERROR
31040 PRINT''The disk already contains the max number of files

allowed.
31045 PRINT''It can also occur with a double extension

(NAME.DAT.BAS) GOTO 31125
31050 ' error 68
31055 PRINT" Device unavailable ERROR
31060 PRINT" An attempt was made to open a file to a non-existent
31065 PRINT" device, or when a device has been disabled.": GOTO

31125
31070 ' error 69
31075 PRINT" Communication buffer overflow ERROR
31080 PRINT" Not enough space has been reserved for the comm

buffer.'':GOTO 31125
31085 * error 70
31090 PRINT" Disk write protected ERROR
31095 PRINT" Occurs when an attempt is made to write to a diskette

that
31100 PRINT" is write protected with a write-protect tab.": GOTO

31125
31105 ' error 71
31110 PRINT" Disk not ready ERROR
31115 PRINT"Occurs when the drive door is open or there is no

diskette
31120 PRINT" in the drive." :GOTO 31125
31125 LIST .
31130 END

Note: Some machines will not call all the errors listed
in the program because they don't apply. This is
especially true for BASICs prior to version 5.0.
Also, those with BASIC prior to 5.0 should change
line 30000 to X=(ERR/2)+l (Tandy Models I & III
particularly will need to do this.
Don't forget the space and period in line 31125, it's
what lists the offending line for you.

CODEWORKS Issue 20 13

Playoff. Bas
Oracle takes on the post-season play

Staff Project. Here is an additional program that will work with the Stat.Dat data
file from NFL88.Bas to help predict the outcome of the post-season games and the
Super Bowl. Let's hope it does as well this year as it did on last year s games during
checkout.

Well, here it is, football fans: A playoff/Super-
Bowl prediction program. You have been asking
for this since we first published NFL86. Bas back
in 1986. Our thinking on the subject must have
been a bit prejudiced because we kept thinking
in terms of the original NFL program and wor
ried a lot about how to get the playoff schedule
into the program. But after the umpteenth such
request, we finally sat back and asked ourselves
why not?

The program, of course, had to be based on
the season standings. Therefore it would have to
use Stat88.Dat as a source of input. One prob
lem came up here. Stat88.Bas only allowed for
15 weeks of data because we projected the 16th
week only and didn't need the week 16 stats.
Tbis program should use the stats from week 16
as well. So there are two changes to make in
Stat88.Bas: Change the DIM in line 190 from
420 to 448 and in line 350, change WN=420 to
WN=448. This will allowyou to enter the week 16
statistics with Stat88.Bas. Our new program,
Playoff.Bas, will use the last four weeks of the
regular season as a base upon which to project
the playoff winners.

The other mental block we had to overcome
was the scheduling of the playoff games. There
Is no way to know that in advance. So we simply
let you enter which teams are playing and let it
go at that. This has another advantage in that
you can play "what if?" and see what would have
happened if Team X were playing Team Y in the
playoffs.

Our playoff program works slightly differently
than NFL88.Bas does. It uses a different algo
rithm to calculate the winner, for one thing. For
another, it gives you probable scores for the
games. It still gives the home team a two point
advantage, except when you predict the Super-
Bowl, then it removes the home team advan
tage. You should use a separate "run" of the AJI
program when trying to project the Superbowl ¥ •
winner.

The way we figure the winner is not as compli
cated as in NFL88.Bas, but by trial and error, we
found that the defense of the opposing team had
to be figured in more prominently (by using
points allowed.) This makes the predicted scores
rather interesting in that the same team pitted
against several other teams will result in differ
ent scores for each, depending on the points
allowed by the opposing team. In other words,
Team X will show different scores when matched
against TeamY and Team Z because the defense
of Teams Y and Z figures into the score for Team
X.

We tried many variations on the calculation
routine using last year's data and playoffs. The
one that finally worked the best was to look at
the last four games of the season. The net result
was that it picked seven of nine of last year s
playoffs. The two games it missed were the
maverick Vikings, who didn't have the stats
going in, but upset both the Saints and the %JA
49'ers. And if you could predict an upset it
wouldn't be an upset, would it? See figure 1 for

how the predictions actually went.

14 Issue 20 CODE WORKS

Since the playoff teams are usually matched
rather well, we had a problem coming up with tie
scores. We use two tie-breakers. The first is the
number of first downs, then if there is still a tie
score, we use the won/lost record of the teams.
This may or may not be valid, but is the best we
could come up with, given the stats that we
have. It is conceivable that we could still come
up with a tie, which we may as well use to signify
a game too close to call.

Just because it worked rather well on last
year's games is no guarantee that it will perform
this year. Given the statistics, however, it
should do just about as well - we hope. It will be
interesting to see how it stands up.

The Program

The program starts off with code that looks
suspiciously like that in Stat88.Bas. This is
because we borrowed most of that starting code
from that program. In line 160 we dimension the
double A array to hold the stats we will be
reading in (Including week 16 stats). Then we
dimension the T$ array to hold the team names.

The code from 180 to 230 is our familiar
locate/print® subroutine, which you all know
about by now. Un-remark the appropriate line
for your computer and remark the rest. The
team names are held in data statements in lines
260 through 290.

In lines 320 through 410 we read in the
existing statistics file and put them into the
A(I,J) array, and in lines 440 to 460 we read the
data statements Into the T$ array to get the
team names.

Lines 480 through 630 print the CodeWorks
heading on the screen and prompt for user input
as regards printer output. Super Bowl predic
tion (yes or no) and checks to make sure that the
stat file was updated properly.

Something a little different from Stat88.Bas
happens from here on. In lines 690 through 750
we print the teams and their team numbers on
the screen. They will stay there, at the top of the

screen for the rest of the program. This is
necessary so that you can pick the teams by
number for the playoff projections. We don't
have a schedule for the playoff games, remem
ber? So you need something easy to pick from.
Notice the little mechanism we use to get the
team number attached to the proper team in line
710. The loop counters alone wouldn't have
done this for us. Also note the comma at the end
of line 720, used to space the four columns of
teams on the screen.

Next we use our locate/print® scheme to pro
vide for a "dialogue" area Just below the teams
on the screen. Here (lines 780 through 820) we
prompt for the number of the visiting and home
teams or zero to terminate the program. The
visiting team becomes XI and the home team
X2.

The loop from 850 to 910 reads the statistics
file and collects the information we will need.
B(l) through B(4) holds information on the
visiting team, while C(l) through C(4) holds the
same information for the home team. Lines 860
and 870 collect information on won/loss record
for the entire season. In line 880, if the week
number is less than 13, we simply go on through
the file. This results in the following data being
collected only for weeks 13 through 16, which is
what we want. In lines 890 and 900 we accumu
late the data for both teams for weeks 13
through 16.

The calculation of who has the power is made
in lines 940 through 1000. Here, we find the av
erage for the values we just accumulated (in
lines 940 and 950.) In lines 960 and 970 we take
the points scored for the team times two and add
the points allowed by the other team. In line 970,
if we are not predicting the Super Bowl game, we
add two to the home team. In line 980 we add
first downs if the two teams are already equal. If
they are not equal, we ignore the first downs. In
line 990we take the two values for the two teams
and divide them by three and take the integer.
This is to get the scores down to something that
is more in line with actual scores. After this (in
line 1000) if the two scores are still equal, we add
the won/loss record to each team.

CODEWORKS Issue 20 15

Lines 1030 to 1090 print the results on the
screen and if the printer was selected earlier, on
the printer as well. Next, we clear the accumu
lating arrays in preparation to finding the scores
for another set of teams (lines 1120 to 1150.)
Then, we clear the input area on the screen
(lines 1180 to 1210) and loop back (line 1240) for
another pair of teams.

As you can see, you can play any team against

any other team with this setup. Of course, it's
water under the bridge, but if your favorite team
didn't make it into the playoff schedule, you can
at least see how they might have done. Don't
forget that to predict the Super Bowl, you should
do a separate run for it. otherwise there will be
no home team advantage for your other games.

There it is. If it does as well this year as it did
in the season just passed, it will please us no end
- and we're sure, you too.

Predicted Actual

Seahawks
Oilers

21
23

20
23

Vikings
Saints

20
31

44
10 missed

Broncos
Oilers

22
20

34
10

Colts
Browns

14
19

21
38

Redskins
Bears

26
17

21
17

Vikings
Niners

14
32

36
24 missed

Broncos
Browns

21
20

38
33

Redskins
Vikings

24
20

17
10

Redskins
Broncos

34
33

42
10

Here is how Playoff.Bas predicted last year's post-season games and the Super-
Bowl. In both cases where it missed, it was the Vikings upsetting the Saints and the

iners. Some of the point spreads are amiss, but others are close. Anyway, seven out of
nine isn t bad.

Figure 1

Playoff.Bas for MS DOS machines. Changes
for other machines follow this listing.

100 REM * PLAYOFF.BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

110 REM * 98409 (206) 475-2219 VOICE (206) 475-2356 300/1200 MODEM
120 REM * Projects winners and scores in NFL playoff games
130 '
140 PRINT''Loading STAT.DAT data file .."
150 * CLEAR 10000: ' Use only if your machine needs to clear

string space.
160 DIM A(448,5),T$(28)
170 *
180 REM * General purpose locate/print@ subroutine
190 GOTO 260
200 LOCATE X,Y:RETURN 'GW-BASIC
210 'PRINTS((X-l)*64) + (Y-l),;:RETURN 'Tandy I/III
220 'PRINTS((X-l),(Y-l)),;:RETURN 'Tandy IV
230 'PRINT CHR$ (27) +" Y' ' +CHR$ (31+X) +CHR$ (31+Y) ; : RETURN ' CP/M
240 '
250 REM * Set up the team names in data lines
260 DATA Redskins, Cowboys, Eagles, Giants, Cards,Bears, Vikings
270 DATA Packers, Lions, Bucs, Niners, Rams, Saints, Falcons
280 DATA Dolphins, Patriots, Jets, Bills, Colts, Steelers, Browns
290 DATA Bengals, Oilers, Seahawks, Raiders, Broncos, Chargers, Chiefs
300 '
310 REM ** READ IN THE EXISTING STAT FILE **
320 WN=448
330 OPEN "I" , 1, "STAT.DAT"
340 FOR 1=1 TO WN
350 IF EOF (1) THEN 400
360 FOR J=1 TO 5
370 INPUT #1,A(I,J)
380 NEXT J
390 NEXT I
400 CLOSE 1
410 L1=I-1
420 '
430 REM * READ IN THE TEAM NAMES
440 FOR 1=1 TO 28
450 READ T$ (I)
460 NEXT I

470 '
480 CLS: ' Clear the screen and home the cursor. ^ ^
490 PRINT STRING$(22' The CodeWorks '1;STRING? (23,)
500 PRINT" NFL PLAYOFF PROJECTIONS
510 PRINT" Projects results of playoff games and superbowl

520 PRINT STRING$ (60, "-")
530 PRINT
540 IF LI MOD 28 <>0 THEN PRINT"There is extra (or missing) data

in the file" ELSE PRINT"The stat file is currently updated

through week";Ll/28
550 PRINT
560 INPUT"Are you projecting the Super Bowl game (y/n) " ;XX$
570 IF XX$="y" OR XX$="Y" THEN SB=1 ELSE SB=0
580 INPUT"Do you want hardcopy output too (y/n)";PR$
590 IF PR$="y" OR PR$="Y" THEN PR=1 ELSE PR=0
600 IF PR=0 THEN 650
610 LPRINT' 'NFL Playoff games, real or what if?"
620 LPRINT STRING$(60,45)
630 LPRINT"
640 '
650 INPUT''Press ENTER to continue" ;XX
660 CLS
670 '
680 ' print the teams and their numbers on the screen
690 FOR 1=1 TO 7
700 FOR J=1 TO 4
710 TM=TM+1
720 PRINT TM;T$(TM),
730 NEXT J
740 PRINT
750 NEXT I
760 '
770 'input playoff teams routine
780 X=9:Y=1:GOSUB 200:PRINT"Enter playoff teams by number, 0 to

quit''
790 INPUT" Visiting team number" ;X1
800 IF X1=0 THEN IF PR=1 THEN LPRINT CHR$(12)
810 IF X1=0 THEN END
820 INPUT" Home team number '';X2
830 '

840 'read the stat file and collect information
850 FOR 1=1 TO WN

860 IF A(I,1)=X1 THEN IF A(I,4)>A(I,5) THEN B(4)=B(4)+1
870 IF A(I,1)=X2 THEN IF A(I,4)>A(I,5) THEN C(4)=C(4)+1
880 IF A(I,2)<13 THEN 910

890 IF A(1,1)=X1 THEN B(1)=B(1)+A(1,3) :B(2)=B(2)+A (1,4) :

B(3)=B(3)+A(I/5)
900 IF A(1, 1)=X2 THEN C(1)=C(1)+A(I,3) :C(2)=C(2)+A(1,4)

C(3)=C(3)+A(I,5)
910 NEXT I
920 '
930 ' calculate who is gonna win
94 0 B(1)=B(1)/4:B (2)=B(2)/4:B(3)=B(3) /4
950 C(l)=C(l)/4:C(2)=C(2)/4:C(3)=C(3)/4
960 Tl=(2*B(2))+C (3)
970 T2=(2*C(2))+B (3) :IF SB=0 THEN T2=T2+2
980 IF T1=T2 THEN T1 = INT(Tl+B(1)) :T2 = INT(T2+C(1))
990 T1=INT(Tl/3):T2=INT(T2/3)
1000 IF T1=T2 THEN T1=T1+B(4):T2=T2+C(4)
1010 '

1020 ' print the results
1030 PRINT T$(XI),T1
1040 PRINT T$(X2), T2
1050 IF PR=0 THEN 1090
1060 LPRINT T$(X1),T1
1070 LPRINT T$(X2),T2
1080 LPRINT "
1090 INPUT''press ENTER for next pair or to quit'';XX
1100 '
1110 'clear the accumulating arrays
1120 FOR 1=1 TO 4
1130 B(I)=0
1140 C(I)=0
1150 NEXT I
1160 '

1170 'clear the input area
1180 Y=1

1190 FOR X=9 TO 14
1200 GOSUB 200:PRINT STRING$(60,32)
1210 NEXT X
1220 '
1230 'loop back for another pair of teams or quit
1240 GOTO 780
1250 '
1260 END 'of program

Changes in Playoff. Bas for Tandy
Models I and in

Changed->100 REM * PLAYOFF/BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.
Changed->140 PRINT''Loading STAT/DAT data file .
Changed->150 CLEAR 10000: ' Use only if your machine needs to clear string
space.
Changed->200 'LOCATE X,Y:RETURN 'GW-BASIC
Changed->210 PRINT0((X-l)*64) + (Y-l),;:RETURN 'Tandy I/III
Changed->330 OPEN "I" , 1, " STAT/DAT"
Changed->720 PRINT TM;T$(TM),;
Changed->740 ' PRINT

Changes in Playoff.Bas for Tandy
Models n and IV

Changed->100 REM * PLAYOFF/BAS * CODEWORKS MAGAZINE *
TACOMA WA.
Changed->140 PRINT''Loading STAT/DAT data file
Changed->200 'LOCATE X,Y:RETURN 'GW-BASIC
Changed->220 PRINT0((X-l),(Y-l)),;:RETURN 'Tandy IV
Changed->330 OPEN "I" , 1, " STAT/DAT"

3838 S. WARNER ST.

Notes
Where do you check for EOF? We have been

writing code like this and it works on all MS
DOS machines using GW BASIC:

FOR 1= 1 TO 5
IF EOF(l) THEN...
FOR J=1 TO 6

etc..

When we run that code on other machines,
it gives an error, and we had to change where
we checked for EOF to correct the problem:

FOR 1= 1 TO 5
FOR J= 1 TO 6
IF EOF(l) then ...

etc.
It seems that MBASIC and BASIC prior to

version 5.0 want it this way.

20 Issue 20 CODEWORKS

C word. B as
A Chain-Word Game using States & Capitols

Staff Project. Once a year or so we feature a game program. This one
is supposed to be educational. With it, you can test your knowledge of
states and state capitols.

Previously we had published one or two
games of chance. This time, we thought an
educational game would be in order. The game
is called Cword.Bas (for Chain Word) and
roughly follows the game children like to play
while on extended automobile trips. In that
game, one person picks a name seen on a road
sign, another car or truck, or anything along the
highway. The next person must then find an
other such sign whose first letter Is the same as
the last letter of the first item picked. The game
then progresses until one person finds names
ending in hard to match letters, and stumps the
other person.

Cword.Bas is similar to that just described
except that it allows a match of letters at both
ends of the word. The words, however, are not
just anything, but are the states of the United
States and their capitol cities. This, of course,
gives a total of 100 names from which to pick. It
turns out that there Eire seven capitol cities
which have no possibility of being chained to
other names. The computer will not pick from
these seven. If you try to pick one of them it will
be rejected as an "easy win" and you will be
asked to pick another.

If we were only dealing with state names, then
the state of Maine would be impossible to match.
But since we are including the capitol cities as
well, Maine can be matched with Salem, the
capital city of Oregon. Some names have only
one possibility of being matched. For example.

Juneau will only match with Utah, since no
other name starts with the letter U or ends with
the letter J. There is only one way to "win" in this
game: you must take the first move and connect
every name the computer picks. Even then, you
only win by one point.

After the chaining of the states and capitols is
over, you get the opportunity to test your knowl
edge of state capitols. In this portion of the
program you simply try to correctly pick as
many state capitol cities as possible. Be careful
with St. Paul. It must be entered exactly as
shown in the data statements or you will lose the
point. You can, however, enter your names in
upper case, lower case or mixed case; the com
puter will automatically change all entries into
upper case so as to find the match with the
names in the data statements.

When you tire of states and state capitols, you
might want to try to modify the program to use
Presidents and Vice-Presidents. We haven't
tried it, but it might be an interesting challenge.
If you do that, be sure to look for "impossible to
connect" names and exclude them by putting
them first in the data statements.

The Program

The program starts with the usual Code-
Works heading, followed by the universal
print®/locate subroutine. This is followed by
the upper case converter subroutine. Anything

CODEWORKS Issue 20 21

we enter into this program will first be filtered
through the upper case converter so that the
program will see only upper case letters. This is
so that you can enter your responses any way
you like and the program will still find a match
in the data statements.

The initialization section (between lines 320
and 350) follows next. Here, we clear some string
space In line 320 if your BASIC is prior to version
5.0 and randomize the random generator using
parts of DATE$ (in line 330). A double sub
scripted array is dimensioned next in line 340.
This array, S$, will hold all the names and in the
second subscript of the array, a flag to indicate
whether or not a name has already been chosen.
Line 350 contains a time delay variable, TD. If
your computer runs faster than 4.7 Mhz you
may want to change the value for TD to 3000 or
more. On the other hand, if your speed is slower
you can change TD to 500 or even 300.

The data statements follow, with the state
capitols first and then the state names. The
seven state capitol cities that won't chain are
listed first, so that later we can easily exclude
them. We could have just as well not put them
there at all, but then in the second part of the
program we would have missed them when we
tiy to match states to their capitol cities.

Lines 570 through 600 read the data state
ments into the S$(x,x) array. Note that we are
putting a string "1" into the second element of
the array with each name we enter. Later, when
we use a name, we will null that second position
of the array to indicate that that name has
already been picked.

Lines 620 to 780 print the heading on the
screen and give a little identification and in
struction to the user. Lines 810 to 860 set up the
playing screen with a scoreboard and ask if you
want to go first (if you want to win you should
always go first.)

The computer's first move is unique in that it
doesn't have to match anything. So, if the
computer gets the first move, lines 890 to 920
make that first pick. In line 890 we pick a name
at random. Note that in line 900 if the random
number picked is seven or less we pick a differ

ent number. This is where we discriminate
between those first seven capitol cities that
won't chain. If we make it through line 900 we
can assume we have a valid name, and so we
null the second element in the array for the
name picked. This happens in line 910. The
computer is "ME" and "TO" are you. In line 920
the score for ME gets incremented by one, we go
to the subroutine at 1760 to update the score on
the screen, then to subroutine 1630 to place the
name picked properly on the screen.

The computer's moves are relatively simple
compared to the user's moves. With the user, we
need to check for all sorts of simple things that
can go wrong. Is the name a valid name? Has the
name been used already? Is the user tiying to
cause a cheap win by using one of the un-
chainable names? Is the name valid but won't fit
either end of the name the computer picked? Is
the user crying for help? Checks for all of these
conditions are made between lines 950 and
1190.

The first thing we do between lines 950 and
1190 is position the prompt on the screen to tell
the user it's his turn. The response is held in A$.
Next, in line 960, we clear the area where the
user entered his response (to show that it was at
least conditionally accepted). Then we go to the
subroutine at 240 to change A$ into all upper
case letters. Next, in line 980 we check to see if
the user asked for help. If he did, we go to line
1260 and let the computer pick for him and then
let the computer take the next turn.

Next, we check to see (in lines 990 to 1010) if
the name entered is actually a valid name in the
B$(x,x) array. If not, we ask the user to try again.
After that, at line 1050 we check for the "cheap
win" shot and ask the user to try again if it is.
Then we go through the array checking to see
that the name picked has not yet been used
(lines 1060-1090). If it has been used we ask the
user to try another name.

If you got the first move then the score was
zero to zero, and your entry doesn't have to
match anything (but it still has to be a valid
name), so line 1120 takes care of that case and
simply prints your choice on the screen and

22 Issue 20 CODCWORKS

updates the scoreboard and gives the next move
to the computer. If it Is not the first move and the
user has picked a valid name we check right
strings against left strings on the name picked
and the name on the screen (lines 1130-1160)
and if there is a match we give the next move to
the computer (lines 1150-1160) and update the
user score. If there is no match (line 1170) we tell
the user to tiy again. The score (when there is a
match) is actually updated in lines 1210, just
before we give the next pick to the computer. At
the same time. In line 1210, we null the second
element in the B$ array to show that the name
has been used.

The computer's moves are similar but sim
pler. They happen in lines 1260 through 1350.
The computer simply goes through the B$ array,
looking for a name that has not yet been used
and that matches either end of the user's pick.
If it finds one, it puts it up on the screen and if
there are no names left that will match it ends
the game.

The second part of the program is where you
match state capitols to states. If you don't want
to play this part and answer no to the play
question, the program ends in line 1400. Other
wise, if you do want to try your luck, line 1410
clears the screen and line 1420 puts up a screen
heading. Since all the states and their capitol
cities are still in the B$(x,x) array, all we have to
do is go through the array and show that none
of them have been used yet. We do this in lines

1450 to 1470, where we set the second element
of the array to a string "1".

Next, the computer picks states at random,
from array position 51 through 100. If the name
has already been picked, it makes another se
lection. When it finds an unused state name, it
puts it on the screen and nulls the array position
so that that name will not be used again. Then
checks to see if your answer was correct. If it was
your score is Incremented by one and it goes on
to the next state. If It wasn't, it tells you what the
correct answer is and goes on to the next state.
When all the states have been used up, line 1590
prints out how many of the 50 you got right.
Notice that the order of the data statements is
such that the first capitol city will match with
the first state, and so on. This way, when we pick
K between 51 and 100, then array location
B$(K-50,1) will be the corresponding capitol
city.

Lines 1620 through 1780 are prompt posi
tioning subroutines for the various prompts
used in both parts of the program. Note that
some of them first clear the position and then
print there, while others simply print over what
was already at that location on the screen.

It's not enough to know the capitol city of a
given state. You must also know how to spell it
correctly. That holds for the states as well. Have
fun with it.

100 REM * Cword.Bas * a state and state capitol game *
110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem
130 REM * (c)1988 80-NW Publishing Inc. & placed in public domain.
140 *
150 'Generalized Locate/PrintS subroutine. Unremark as needed.
160 GOTO 310
170 LOCATE X,Y:RETURN ' MS-DOS, GW-BASIC

CODEWORKS Issue 20 23

180 'PRINTS ((X-l) *64)+ (Y-1),;-.RETURN ' Tandy Models I/III
190 'PRINTS((X-l), (Y-l)),;:RETURN ' Tandy Models II/IV

200 'PRINTS(X,Y)RETURN ' Some MBASIC machines.
flO 'PRINT CHR$ (27) +' ' Y' ' +CHR$ (31+X) +CHR$ (31+Y) ; -.RETURN ' CP/M

220 '
230 'upper case converter subroutine

240 FOR 1=1 TO LEN(A$)

250 C$=MID$(A$,1,1)
260 IF C$=>''a'' AND C$=<"z" THEN C$=CHR$ (ASC (C$) 32)

270 MID$(A$,I,1)=C$

280 NEXT I

290 RETURN

300 '
310 ' Initialization
320 'CLEAR 2000 'only if you need to clear string space

330 RN=VAL(MID$(TIME$,4,2)+MID$(TIME$,7,2)):RANDOMIZE RN

340 DIM S$ (100,2)
350 TD=1000 ' time delay variable

360 *
370 DATA PHOENIX,BATON ROUGE,JEFFERSON CITY,CARSON CITY,PROVIDENCE

380 DATA PIERRE,CHEYENNE,MONTGOMERY,JUNEAU,LITTLE ROCK,SACRAMENTO

390 DATA DENVER,HARTFORD,DOVER,TALLAHASSEE,ATLANTA,HONOLULU,BOISE

400 DATA SPRINGFIELD,INDIANAPOLIS,DES MOINES,TOPEKA,FRANKFORT

410 DATA AUGUSTA,ANNAPOLIS,BOSTON,LANSING,ST. PAUL,JACKSON,HELENA

420 DATA LINCOLN,CONCORD,TRENTON,SANTA FE,ALBANY,RALEIGH,BISMARCK

4 30 DATA COLUMBUS, OKLAHOMA CITY,SALEM,HARRISBURG,COLUMBIA

440 DATA NASHVILLE,AUSTIN,SALT LAKE CITY,MONTPELIER,RICHMOND

450 DATA OLYMPIA,CHARLESTON,MADISON
460 DATA ARIZONA,LOUISIANA,MISSOURI,NEVADA,RHODE ISLAND,SOUTH

DAKOTA
470 DATA WYOMING,ALABAMA,ALASKA,ARKANSAS,CALIFORNIA,COLORADO

480 DATA CONNECTICUT,DELAWARE,FLORIDA,GEORGIA,HAWAII,IDAHO

490 DATA ILLINOIS, INDIANA,IOWA,KANSAS,KENTUCKY, MAINE,MARYLAND

500 DATA MASSACHUSETTS,MICHIGAN,MINNESOTA,MISSISSIPPI,MONTANA

510 DATA NEBRASKA,NEW HAMPSHIRE,NEW JERSEY,NEW MEXICO,NEW YORK

520 DATA NORTH CAROLINA,NORTH DAKOTA,OHIO,OKLAHOMA,OREGON

530 DATA PENNSYLVANIA,SOUTH CAROLINA,TENNESSEE, TEXAS,UTAH,VERMONT

540 DATA VIRGINIA,WASHINGTON, WEST VIRGINIA,WISCONSIN

550 '
560 'read in all the data

570 FOR 1=1 TO 10C

580 READ S$ (1,1)

590 S$(I,2)="1"

600 NEXT I

610 '

620 CLS

630 PRINT STRING$ (23, 45) ;' ' The CodeWorks '';STRINGS(22,45)
6 4 0 P R I N T ' ' C H A I N W O R D P R O G R A M
650 PRINT'' a word game with states and state capitols
660 PRINT STRING$(60,45)
670 PRINT
680 PRINT'' In this game you must enter a state or capitol city
690 PRINT''that starts with the last letter of the one already
700 PRINT''picked or ends with the first letter of the word already
710 PRINT''picked. Seven capitol cities cannot be matched and will
720 PRINT''be rejected as easy wins. You can only win if you start
730 PRINT''and pick every name correctly. If you ask for help the
740 PRINT''computer gets the point.
750 PRINT'' As an example, if the computer picks OLYMPIA, you
760 PRINT''can answer with either IDAHO or ALBANY.
770 PRINT
780 INPUT''Press enter to start'';X
790 *
800 'set up the screen
810 CLS
820 X=2 : Y=2 6 : GOSUB 170: PRINT" C HAIN-WORD"
830 X=3:Y=31:GOSUB 170:PRINT''Scoreboard"
840 X=4:Y=28:GOSUB 170:PRINT "Me You"
850 GOSUB 1670: INPUT" Do you want to go first (y/n) ";AN$
860 IF AN$ = "y" OR AN$ = "Y" THEN 950
870 '
880 'if the computer gets the first move
890 R=INT(RND(1)*100)+1
900 B$=S$(R,1):IF R=<7 THEN 890
910 S$ (R, 2) =' ' ' '
920 ME=ME+1:GOSUB 1760:Q$=B$:GOSUB 1630:PRINT Q$
930 '
940 'your moves, including your first move
950 GOSUB 1670:INPUT" Pick a state or capitol city (or help) " ;A$
960 X=8:Y=1:GOSUB 170:PRINT STRINGS(15,32)
970 GOSUB 240 ' to make all caps
980 IF A$=''HELP'' THEN GOTO 1260
990 FOR 1=1 TO 100
1000 IF A$=S$(1,1) THEN 1050
1010 NEXT I
1020 GOSUB 1720:PRINT''That is not a valid state or capitol name.

Try again.''
1030 FOR T=1 TO TD:NEXT T
1040 GOTO 950
1050 IF I=<7 THEN GOSUB 1720:PRINT"That's a cheap win...try

another please .": GOTO 1030
1060 FOR 1=1 TO 100

CODEWORKS Issue 20 25

1070 IF A$=S$(I,1) AND S$(I,2)="1" THEN 1120
1080 NEXT I

1090 GOSUB 1720:PRINT" That name has already been used. Try
another.''

1100 FOR T=1 TO TD:NEXT T
1110 GOTO 950

1120 IF ME=0 AND YO=0 THEN S$ (I, 2) =" " ; GOSUB 1630 : Q$=A$: PRINT 0$
YO=YO+l:GOSUB 1760:GOTO 1260

1130 R$=RIGHT$(Q$,1)
1140 L$=LEFT$(Q$,1)
1150 IF RIGHTS(A$,1)=L$ THEN 1210
1160 IF LEFTS(A$,1)=R$ THEN 1210

1170 GOSUB 1720:PRINT''That name does not fit either end. Try
again." *

1180 FOR T=1 TO TD:NEXT T
1190 GOTO 950
1200 '
1210 S$ (I, 2) =" " : YO=YO+l
1220 GOSUB 1630
1230 Q$=A$:PRINT Q$
1240 '

1250 'the computer picks here
1260 FOR T=1 TO TD:NEXT T ' delay loop
1270 X=8:Y=5: GOSUB 170 .-PRINT "I pick..
1280 R$=RIGHT$(Q$,1)
1290 L$=LEFT$(Q$,1)
1300 FOR 1=1 TO 100
1310 IF S$ (I, 2) =" " THEN 1330

GOSURF,i7!:n$n<-tV1)=R$ 0R RIGHT$(S$(I'1>'1>=l$ THEN ME=ME+1
GOSUB 1760:Q$-S$(I,1) :S$(I,2)="" :GOSUB 1630.-PRINT Q$:GOTO

1330 NEXT I

1340 ̂ tch^70:PRINT"Y- 9ot Th«e nothing left that will

1350 PRINT
1360 '

1370 ' part 2, test your knowledge of capitols
1380 PRINT''Would you like to check your knowledge of
1390 INruT'' state capitols (y/n)";A$
1400 IF A$="n" OR A$="N" THEN END
1410 CLS

1420 X=8:Y=1:GOSUB 170:PRINT"what is the state eapitol of:

1440 'reset the array flag in S$(x,2)
1450 FOR 1=1 TO 100
1460 S$(I,2)="1"

1470 NEXT I
1480 '
1490 'pick states at random
1500 K=INT(RND(1)*50)+51
1510 IF S$(K,2)="" THEN 1500
1520 CT=CT+1:S$ (K,2)=" "
1530 GOSUB 1670:PRINT S$(K,1),:INPUT A$
1540 GOSUB 230:IF A$=S$(K-50,1) THEN SC=SC+l:GOTO 1560
1550 PRINT TAB (30) ; "No, it's ' 1; S$ (K-50,1)
1560 FOR T=1 TO TD:NEXT T
1570 IF CT<50 THEN 1500
1580 PRINT
1590 PRINT''Your score is ' ';SC;'' out of 50.''
1600 END
1610 '
1620 'prompt locating subroutines
1630 X=8:Y=32:GOSUB 170:PRINT STRINGS(15,32)
1640 X=8:Y=32:GOSUB 170
1650 RETURN
1660 '
1670 X=10:Y=1:GOSUB 170:PRINT STRINGS(63,32)
1680 X=11:Y=1:GOSUB 170:PRINT STRINGS(63,32)
1690 X=10:Y=1:GOSUB 170
1700 RETURN
1710 '
1720 X=11:Y=1:GOSUB 170:PRINT STRINGS(63,32)
1730 X=11:Y=1:GOSUB 170
1740 RETURN
1750 '
1760 X=5:Y=27:GOSUB 170:PRINT ME
1770 X=5:Y=39:GOSUB 170:PRINT YO
1780 RETURN

Changed->100 REM * Cword/Bas * a state and state capitol game *
Changed->140 CLEAR 2000
Changed->170 'LOCATE X,Y:RETURN ' MS-DOS, GW-BASIC
Changed->180 PRINTS((X-l)*64)+(Y-l),;:RETURN ' Tandy Models I/III
Changed->330 'RN=VAL (MID$(TIMES,4,2)+MID$(TIMES,7, 2)) :RANDOMIZE RN
Changed->350 TD=400 ' time delay variable
Changed->890 R=RND(50)+50
Changed->1500 K=RND(50)+50

Changed->100 REM • Cword/Bas • a state and state Capitol game *
Changed->170 xLOCATE X,Y:RETURN ' MS-DOS, GW-BASIC

Changed->190 PRINTS((X-l),(Y-l)),; :RETURN • Tandy Models II/IV

Changed >330 'RN-VAL(MID$(TIMES,4,2)+MIDS(TIMES,7,2)):RANDOMIZE RN
Changed >350 TD=400 ' time delay variable
Changed->890 R=RND(50)+50
Changed->1500 K=RND(50)+50

Randemo Recap
It-that toe of year again to review the Randemo series and bring up

to date all the changes for the various machines. We'll start by giving the
Sck'of space) Ranprnt2'BaS (last lssue we gave the merle, due to

10
20
30

40
41
42
50
51
60
70
100
110

120

125

130
135
140
150

170
180
185

REM - RANPRINT.BAS - GW BASIC Random File Printing
REM - Terry R. Dettmann for Codeworks Magazine
DIM FP$ (20), SC$ (24), XY(20,3), TOT#(20)

DEF FNCTR$(X$)=STRING$ ((CL-LEN(X$))/2, " » M + v S
DEF FNLF(X) = LOF(X)/128
DEF FNLX(X) = LOF (X)/2
CL=80:RW=24
NX=0

FALSE=0:TRUE = NOT FALSE
TS$ = ''''

REM — file setup

CLS: PRINT FNCTR$ ("RANDOM FILE REPORTS "): PRINT : PRINT
LINE INPUT "FILENAME: ";FF$

FD$=FF$ + ' ' . dat' ' : FS$=FF$+' ' . stk"

OPEN ' ,R",l,FD$:OPEN"R",2,FS$,4:FIELD 2, 4 AS SK$
IF LOF (2)=0 THEN LSET SK$=MKI$(1) ;PUT 2,1
FM$=FF$+''.MAP'':FX$=FF$+''.SCN''
GOSUB 5000: REM Read Map

GOSUB 5300: REM Setup Fielding
GOSUB 2000
IDX = FALSE

28
Issue 20 CODEWORKS

190 LINE INPUT" INDEX NAME (or NONE): ";FF$:IF FF$=" " OR FF$ = "NONE"
THEN 200

191 FI$=FF$+''.IDX''
192 OPEN''R'',3,FI$,2:FIELD 3,2 AS IX$
193 IDX = TRUE
200 REM — main menu
210 CLS:PRINT FNCTR$(x,RANDOM FILE REPORTS"):PRINT:PRINT
220 IF IDX THEN MR=FNLX(3) ELSE MR=FNLF(1)
230 FOR RX=1 TO MR:IF IDX THEN GET#3,RX:RN=CVI(IX$) ELSE RN=RX
240 GOSUB 1400
250 IF INSTR(FP$ (1) , "DELETED")<>0 THEN 270
260 GOSUB 2120
270 NEXT RX
275 GOSUB 4100
280 IF LOO THEN GOSUB 2670
500 REM — End of Program
510 CLS:PRINT''All Done" :CLOSE:END
600 REM — input a character
610 C$=INKEY$: IF C$=" " THEN 610
615 IF LEN(C$)>1 THEN GOSUB 700
620 RETURN
700 REM — look for arrows
710 C = ASC(MID$(C$,2,1))
720 IF C=72 THEN C$=UP$ ELSE IF C=77 THEN C$=RT$
730 IF C=80 THEN C$=DN$ ELSE IF C=75 THEN C$=LF$
740 RETURN
800 REM — GOTO XY ROUTINE
810 LOCATE X,Y:RETURN
900 REM — break line
910 FOR K=1 TO 10:BL$ (K)='''':NEXT K
920 JN$=IN$:ZB=1
930 K = INSTR(JN$,'' : ") :IF K=0 THEN BL$(ZB)=JN$:RETURN
940 BL$(ZB) = MID$(JN$,1,K-1)
950 ZB = ZB + 1
960 JN$ = MID$(JN$,K+l)
970 GOTO 930
1400 REM — get record from data base
1410 IF RN<1 OR RN>FNLF(1) THEN RETURN
1420 GET 1,RN
1430 RETURN
2000 REM — Initialize Report
2010 HDR=TRUE:FTR=FALSE
2020 V=200:NF=8:ML=10
2030 PG=66:WD=80:TP=3:BT=3
2040 NT=0:NB=0:NC=0
2050 PN=0:SF=-1:SC$=" "

CODBWORKS Issue 20 29

2060
2070
2080

2090
2100

2110
2120
2130
2140
2150
2160
2170
2180

2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500

DIM HD$(ML),RC$(ML),FT$(ML)
IF DATE$=' THEN INPUT''Enter the date of the reportDATE$
PRINT

LINE INPUT x'NAME OF REPORT FORMAT FILE: ,,;RF$
GOSUB 2780
RETURN
REM — main loop
IF HDR THEN GOSUB 2190
GOSUB 2450:GOSUB 4000
IF FTR THEN GOSUB 2670

RETURN
REM
*

REM — print header
FOR 1=1 TO TP:LPRINT'' * *:NEXT I
PN=PN+1
FOR 1=0 TO NT-1

LN$=HD$(I)
GOSUB 2310
GOSUB 2400
LPRINT LN$

NEXT I
HDR=FALSE:LC=NT+TP
RETURN

REM — insert into header/footer lines
IF INSTR(LN$,''#'')<>0 AND LEN(LN$)<WD THEN LN$=LN$+STRING$(WD-
LEN (LN$) , ' ' ")
IF INSTR(LN$,''#'')=0 THEN RETURN
X = INSTR (LN$, " #")

THEN MID$(LN$,X)=DATE$
THEN MID$(LN$,X)=STR$(PN)
THEN MID$(LN$,X)=FF$

IF MID$ (LN$,X+1, 1)="D
IF MID$(LN$,X+l,1)=''P
IF MID$ (LN$,X+1,1) ="F

GOTO 2330

REM — strip off trailing blanks
LN=LEN(LN$):IF LN=0 THEN 2430
IF MID$(LN$,LN,1)='' ' * THEN LN$=MID$(LN$,1,LN-1) :GOTO 2410
RETURN

REM — print data record
FOR 1=0 TO NC-1
LN$=RC$(I)
GOSUB 2560
GOSUB 2400
LPRINT LN$

30
Issue 20 CODEWORKS

2510 LC=LC+1
2520 NEXT I
2530 IF LC+NC+BT+NB>=PG THEN FTR=TRUE
2540 RETURN
2550 *
2560 REM — put together a data line
2570 FS$=LN$
2580 IF INSTR(LN$<>0 AND LEN(LN$)<WD THEN LN$=LN$+STRING$(WD-

LEN(LN$),'' xy)
2590 IF INSTR (LN$, "#") =0 THEN RETURN
2600 X = INSTR (LN$, "#")
2610 Y = VAL(MID$(LN$,X+l))
2620 MID$ (LN$, X) =FP$(Y)+"
2630 IF X>1 THEN MID$ (LN$, X-l) ="
2640 MID$ (FS$,X)="
2650 GOTO 2590
2660 x

2670 REM — print footer
2680 FOR I=LC TO PG-BT-NB: LPRINT" ,X:NEXT I
2690 FOR 1=0 TO NB-1
2700 LN$=FT$(I)
2710 GOSUB 2310
2720 GOSUB 2400
2730 LPRINT LN$
2740 NEXT I
2750 FOR 1 = 1 TO BT: LPRINT" X,:NEXT I
2760 HDR=TRUE:FTR=FALSE:LC=0:RETURN
2770 '
2780 REM — load print file
2790 RF$=RF$ + " .PRT"
2800 PRINT *'Loading Report Format File ";RF$
2810 OPEN * 'I" ,3,RF$
2820 IF EOF (3) THEN 2870
2830 LINE INPUT#3,LN$
2840 GOSUB 2900
2850 GOTO 2820
2860 »

2870 REM — declare data area
2880 CLOSE#3:RETURN
2890 x

2900 REM — decode the line
2910 REM DEBUG: PRINT LN$
2920 IF LEFT$ (LN$, 1)="D" THEN GOSUB 2990:RETURN
2930 IF LEFT$ (LN$, 1) = " H" THEN GOSUB 3080:RETURN
2940 IF LEFT$ (LN$, 1) ="R" THEN GOSUB 3120: RETURN
2950 IF LEFT$ (LN$, 1)="F" THEN GOSUB 3160:RETURN

CODE WORKS Issue 20 31

2960 IF LEFT$(LN$,1)="S" THEN GOSUB 3200:RETURN
2965 IF LEFT$ (LN$, 1)="T" THEN GOSUB 3300: RETURN
2970 RETURN
2980 *
2990 REM — declare report parameters
3000 IF MID$(LN$,2,5)=''LINES' ' THEN NF=VAL(MID$(LN$,8)) :GOTO 3050
3010 IF MID$(LN$,2,4)="PAGE" THEN PG=VAL (MID$ (LN$, 7)) : GOTO 3050
3020 IF MID$(LN$,2,5)=''WIDTH'' THEN WD=VAL(MID$(LN$,8)):GOTO 3050
3030 IF MID$ (LN$,2, 3)="TOP" THEN TP=VAL (MID$ (LN$, 6)) : GOTO 3050
3040 IF MID$(LN$,2,6)=''BOTTOM'' THEN BT=VAL(MID$(LN$,9)):GOTO 3050
3050 REM DEBUG: PRINT NF,PG,WD,TP,BT
3060 RETURN
3070 *
3080 REM — header line
3090 HD$(NT)=MID$(LN$,2):NT=NT+1
3100 RETURN
3110 *
3120 REM — record line
3130 RC$(NC)=MID$(LN$,2):NC=NC+1
3140 RETURN
3150 1

3160 REM — footer line
3170 FT$(NB)=MID$(LN$,2):NB=NB+1
3180 RETURN
3190 1

3200 REM — selection criteria
3210 SF=VAL(MID$(LN$,2))
3220 X = INSTR(LN$
3230 IF X=0 THEN SF=-1 .-RETURN
3240 SC$=MID$(LN$,X+1)
3250 RETURN
3300 REM — Total Fields
3310 TS$ = LN$
3320 FOR ZI=0 TO 20:TOT# (ZI)=0:NEXT ZI
3330 RETURN
4000 REM — Add to field totals
4010 FOR ZI=0 TO 20:TOT#(ZI) = TOT#(ZI) + VAL(FP$(ZI)):NEXT ZI
4020 RETURN
4100 REM — Print field totals
4105 IF TS$ = "" THEN RETURN ELSE LN$=TS$
4110 FS$=LN$

4120 IF INSTR(LN$<>Q AND LEN(LN$)<WD THEN LN$=LN$ + STRING$ (WD-
LEN (LN$) , ' ' ' ')

4130 IF INSTR (LN$, "#")=0 THEN 4195
4140 X = INSTR (LN$, "#")
4150 Y = VAL(MID$(LN$,X+1))

32 Issue 20 CODEWORKS

4160 MID$ (LN$, X) = MID$ (STR$ (TOT# (Y)) , 2)+"
4170 IF X>1 THEN MID$(LN$,X-l)='' v'
4180 MID$ (FS$,X)=" 1 '
4190 GOTO 4130
4195 PRINT LN$:LC = LC + 1:RETURN
5000 REM — read data map
5001 CX = 0
5005 OPEN' ' I" , 3, FM$
5010 IF EOF (3) THEN 5035
5015 LINE INPUT#3,IN$
5020 GOSUB 900
5025 GOSUB 5100
5030 GOTO 5010
5035 CLOSE#3
5040 RETURN
5100 REM — decode map line
5110 IF BL$ (1) = ' ' FIELD' ' THEN GOSUB 5200.-RETURN
5120 RETURN
5200 REM — define a field
5210 NF = VAL(BL$ (2)) :FL = VAL(BL$(4)) :FP = VAL(BL$(5))
5220 XY(NF,0)=FL:XY(NF,3)=FP
5225 CX = CX + 1
5230 RETURN
5300 REM — Map Fields
5310 FOR 1=1 TO CX
5320 NL = XY(1,3)
5330 FIELD #1, NL-1 AS X$,XY(I,0) AS FP$(I)
5340 NEXT I
5350 RETURN

Ranprnt2.Bas changes for Tandy I/in

Changed->30 DIM FP$ (20), SC$ (16) , XY(20,3), TI#(20)
Changed->41 DEF FNLF(X) = LOF(X)
Changed->50 CL=64:RW=16
Changed->125 FD$=FF$+"/dat" :FS$=FF$ + "/stk"
Changed->140 FM$=FF$ + "/MAP" :FX$=FF$ + "/SCN"

Changed->191 FI$=FF$ + "/IDX"
Changed->810 PRINTS ((X-l)*64) + (Y-l),;:RETURN

Changed->2790 RF$=RF$+''/PRT''
Changed->3320 FOR ZI=0 TO 20:TI# (ZI)=0:NEXT ZI
Changed->4010 FOR ZI=0 TO 20:TI#(ZI) = TI#(ZI) + VAL(FP$(ZI)):NEXT ZI

Changed->4160 MID$(LN$,X) = MID$ (STR$ (TI# (Y)) , 2)+"

CODEWORKS Issue 20

Ranprnt2.Bas changes for Tandy n/IV

1

Changed->10 REM - RANPRINT/BAS - GW BASIC Random File Printing
Changed->41 DEF FNLF(X) = LOF(X)
Changed->125 FD$=FF$+''/dat'':FS$=FF$+''/stk''
Changed->140 FM$=FF$ + ''/MAP'':FX$=FF$+' '/SCN' '
Changed->191 FI$=FF$+''/IDX''
Changed->2790 RF$=RF$+''/PRT''

Next, we 11 give the changes for Randemo7.Bas. These changes apply to
the original listing in Issue 14 (Randemo5.Bas) and the merge files in
Issue 15 that made Randemo7.Bas from Randemo5.

Changes to Randemo7.Bas for
Tandy Models I/in

Added—>15 CLEAR 2000
Changed->30 DIM FP$(20), SC$(16), XY(20,3)
Changed->41 DEF FNLF (X) = LOF(X)
Changed->50 WD=64:LN=16

Changed->52 UP$=CHR$(91):DN$=CHR$(10):RT$=CHR$(9):LF$=CHR$(8)
Changed->125 FD$=FF$ + "/dat" : FS$=FF$ + "/stk"

Changed->130 OPEN ''R'' , 1, FD$: OPEN'' R" , 2, FS$, 4 : FIELD 2, 4 AS SK$
Changed->140 FM$=FF$+''/MAP'':FX$=FF$ + ''/SCN' '
Changed->810 PRINTS((X-l)*64)+(Y-l),;:RETURN
Changed->1070 IF MR THEN 1010
Changed->1730 GOSUB 1800:IF DUN THEN RETURN
Changed->1810 IN$=" " :DUN=FALSE:MR=FALSE:CF=FALSE
Changed->1831 IF C$=CM$ THEN DUN=TRUE:MR=FALSE:GOTO 1880
Changed->1835 IF C$=NX$ THEN DUN=TRUE:MR=TRUE:GOTO 1880
Changed->2050 IF MR AND MID$ (SF$, 1, 1) <>" # " THEN FR=RN+l:GOTO 2030
Changed->3050 IF MR AND MID$ (SF$, 1,1) <>" #" THEN FR=RN+l:GOTO 3030
Changed->3250 X=16:Y=1:GOSUB 800

Note: For Tandy Model III only. When you enter BASIC and are asked the "How many files?"
question, be sure to answer with 3V (for 3 variable length files) or you will get a Bad File Mode
error when you run Randemo7.Bas. Yes, we know that the program creates more than three files,
but there are never more than three open at any one time. Also (this applies to all machines) do
not use the number sign (#) in your data input, as in an apartment number on an address. If
you do it will cause loads of trouble when you tiy to print the file with either Ranprint.Bas or
Ranprnt2.Bas.

34 Issue 20 CODEWORKS

Changes to Randemo7.Bas for
Tandy Models II and IV

Changed->10 REM — RANDEM07/BAS - Random Files with Screen Control
Changed->41 DEF FNLF (X) = LOF(X)
Changed->52 UP$=CHR$ (11) :DN$=CHR$(10) :RT$=CHR$(9) :LF$=CHR$(8)
Changed->125 FD$=FF$+''/dat'':FS$=FF$+''/stk''
Changed->130 OPEN 1 'R" , 1, FD$: OPEN" R" , 2, FS$, 4 : FIELD 2, 4 AS SK$
Changed->140 FM$=FF$+''/MAP'':FX$=FF$+''/SCN''
Changed->810 PRINTS((X-l),(Y-l)),;:RETURN

The next set of changes apply to Tandy Models II and IV, and are to be
applied to Ranidx.Bas from Issue 18. Ranidx.Bas uses the "System" or
"Shell" commands, for which we have found no counterpart for Models 1/
III nor for some other machines. They should use Ranindex.Bas, changes
for which will come later in this article.

Changes to Ranidx.Bas for Models n/IV

Changed->41 DEF FNLF (X) = LOF(X)
Changed->125 FD$=FF$ + " /dat' ' :FS$=FF$ + "/stk"
Changed->140 FM$=FF$+''/MAP'':FX$=FF$+''/SCN''
Changed->215 LINE INPUT''Name of the index: ";FI$:FI$=FI$+"/idx"
Changed->560 'SAVE ' 'ranidx/bas''.
Changed->810 PRINTS ((X-l), (Y-l)),;:RETURN
Changed->3210 FT$=''SRT''+MID$(STR$(TF),2)+' ' /TMP' '
Changed->4410 FX$ = "TMP" +MID$ (STR$ (N) , 2) +" /XXX"
Changed->4580 KILL FT$
Changed->4 620 SYSTEM "RENAME "+FX$ + " " + "TO"+" "+FT$
Changed->4810 KILL FT$

The next changes are for Tandy Models I and III and are to be applied to
the original listing for Ranindex.Bas in Issue 13. These users, as well as a
few others, will need to use this program instead of Ranidx.Bas because

ft of the inability to leave BASIC, perform a system command and return to
BASIC.

CODEWORKS Issue 20

on

Changes to Ranindex.Bas for Models I/ID

Changed->10 REM — RANINDEX.BAS - Random File Indexing
Added—>15 CLEAR 1000
Changed->30 DIM FP$(20), SC$(16), XY(20,3)
Changed->41 DEF FNLF(X) = LOF(X)
Changed->50 WD=64:LN=16
Changed->125 FD$=FF$+''/DAT'':FS$=FF$+''/STK''
Changed->140 FM$=FF$+''/MAP'':FX$=FF$+''/SCN''
Changed->215 LINE INPUT"Name of the index: ' ';FI$:FI$=FI$ + "/IDX"
Changed->231 INPUT''Select on what field (0 for none)'';SX
Changed->233 IF SX<1 OR SX>CX THEN PRINT"NO SUCH FIELD" : GOTO 231
Changed->234 LINE INPUT"SELECT CRITERIA: ' \-SX$
Changed->255 IF SX>0 THEN IF INSTR(FP$(SX),SX$)=0 THEN 270
Changed->810 PRINT@((X-l)*64)+(Y-l),;:RETURN

K
All these changes were checked out when we prepared our yearly disk

ettes for the 3rd year. It saddens us not to be able to give more specific
details for CP/M machines and the PC Jr. We just don't have those ma
chines to play with.

We have been running various files using the Randemo series programs
on a PC. In general, they have worked well. The speed of the programs is
more than acceptable, but we did compile them and realized a great im
provement in speed. We noted several points while running the programs:
Never use a number sign (#) in your data! It will cause grief when you
print because the number sign is used for a delimiter. Also, be veiy care
ful when you create your .PRT files. Count spaces! Each field must have
one more space than the field length. We did have problems printing
across 132 spaces with Ranprnt2.Bas until we included a statement in
that program to set the width of lprint to 132. Making a .PRT file to print
across 132 characters is a bit tricky too, but again, you must count
spaces.

The programs could use a little "user" streamlining, and possibly a bet
ter name, now that we are past the "demo" stage. Some of the prompts, jf)1
especially in indexing and printing should be reworded to avoid confu
sion. Look for more in upcoming issues.

36 Issue 20 CODEWOBKS

Split. Bas
Breaking up Cwindex.Dat

Staff mini-project. When we ran into this little problem on the Model
III and IV disks for this year we had to come up with a way to fix it. Here
it is.

So Cwindex.Dat has been growing slowly over
the months, and all of a sudden you try to load
it with Qkey.Bas to look up something and lo
and behold, you get an "out of memory" error!
What to do?

The first thing you think of is to eliminate all
those help statements in Qkey.Bas, since you
probably know them all by heart now anyway.
But that's not going to solve the long-range
problem, is it?

How about a program to partition the file into
smaller files? Nothing elaborate, Just something
to break that big file up into two, smaller files.
You may just have found this problem if you got
our disk for year 3. It has the whole 2IK of
Cwindex.Dat on it. When we tried to load it with
Qkey.Bas (from Issue 10) we ran into the mem
ory problem with the Models III and IV. Well, not
to worry, here's a fix.

First off, you must enter BASIC with at least
three files specified, so tell it 3 when it asks for
how many files. Some computers default to
three anyway, so it may not matter for them.

The next question is where to break the file?
We arbitrarily decided to put all issues up to and
including Issue 13, into one file and the rest in
another. There were about 388 records in
Cwindex.Dat, and that would give the second
file some space to grow for a while. The question
after that was how would we know if a line
contained an issue number that was higher
than 13? WeU, we could just INSTR to the

number, couldn't we? Not really, there might be
other numbers in the record that would throw
us off. No, we would have to look specifically for
"Issue 13" and that would do it. But, what if we
were not consistent and sometimes used a
capital I and sometimes a lower-case i? To get
around that, we look for "ssue" and add four to
it. That puts our INSTR search right after the
word "issue."

But we're getting ahead of ourselves. Let's
take the little program and break it down to see
what and how it does. First, we open the three
files that we will need. Line 120 opens buffer 2,
through which we will channel data into the file
Indexl.dat. Line 130 opens buffer 3 to channel
data into the file Index2.dat. We have to get our
data from the file, so line 140 opens Cwindex.dat
through buffer 1 for input. Note the other two
files are opened for output.

Now all we need to do is loop through
Cwindex.dat and read in one record (line) at a
time and examine it. That's what our loop in line
150 does. We set the loop count to more than the
number of records in Cwindex.Dat so that we
will get them all. In line 160, we check for end of
file (EOF) in buffer 1 so that when we get to the
end of the file we know we are done and can quit.
Now we line input (not just input, or It would
stop at the first comma in the record!) from the
Cwindex.Dat file and put the record into A$. We
then (in line 180) print A$ on the screen for all to
see. A typical A$ might look like this:

Conversions, article, issue 18, page 30,

CODEWORKS Issue 20 37

converting to MS DOS

In line 190, we use the INSTR function to find
the character combination "ssue" and then we
add four to P at that point. That gives P the value
of the character position in the line of the space
after the word "issue." In line 200, we are going
to use the MID$ function to find the next three
characters after the position of P. That will give
us the space and the two digits of the issue
number. We let B$ equal that little substring.
Yes, It's still in string form, we got it out of the file
in string form - it couldn't have been anything
but because of the way we put it there in the first
place. So in line 210 we let B equal the value of
B$. Well, the space is ignored by the VAL func
tion and so B will end up being just the issue
number and it will be In integer form. Just what
we always wanted!

Now we can play "greater than" on that inte
ger in B. In line 220 if B is greater than 13 we
print to buffer number 3, which is the file
Index2.Dat, otherwise we print to buffer number
2, the file Indexl.Dat.

So we just go along like that, taking one line
(record) out of Cwindex.Dat at at time and
finding out if the issue number is greater than

100 REM * Split.Bas * partitions
sequential files *
110 x

120 0PEN"0",2, "indexl.dat"
130 OPEN"0",3, "index2.dat"

140 OPEN''I'',l,''Cwindex.dat''
150 FOR 1=1 TO 450
160 IF EOF(1) THEN 240
170 LINE INPUT #1, A$
180 PRINT A$
190 P=INSTR(A$,''ssue'')+4
200 B$=MID$(A$,P,3)
210 B=VAL(B$)

220 IF B>13 THEN PRINT #3,A$ ELSE
PRINT #2,A$
230 NEXT I
240 CLOSE
250 END

13. If it is, we put it in one file, if not we put it in
the other file. When we are done, line 240 will
close all files, and we will have all issues up to
and including 13 in one file and the rest in
another. Cwindex.Dat, Itself, will still be intact
because all we did was to read it.

Can you see the value of consistency in com
puting? If we had been indiscriminate about the
way we entered our data in the first place it
would be quite a chore to pick out those issue
numbers. At least it would have complicated the
process considerably - if not make it impossible.

Now that you know how it's done, you can
make a little program that will break up virtually
any sequential file into smaller files. It will have
the same form as this one. only the specifics of
where you break might be different - but you can
handle that now that you know how.

One more thing. INSTR is case sensitive. It
won't find "ssue" if we had input ISSUE, for
example. Makes another point for consistency. I
Maybe we should make a bumper sticker that
says: "Computers like consistency!"

When we got done
pasting this issue

this space just
"happened"

to be left over.
Is it a coincidence that \

it's right next to the order
form, or what?

If you haven't renewed
yet, would you please?

Thanks

Handy Order Form
RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95

All third year issues, Nov 87 through Sep 88 $24.95

All second year issues, Nov 86 through Sep 87 $24.95

All first year issues, Sep 85 through Sep 86 $24.95

1st Year ProgramDisk (issues 1 through 7)
(Specify computer type below) $20.00

2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00

3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available now $20.00

NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS13 (Tandy Model 3), TRSDOS 6.x
(Tandy Model IV) and most CP/M MB ASIC formats, on

51/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE.

O Check/MO enclosed
O Charge to my VIS A/MC. _exp

Ship to: Name.

Address _

City. State.

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only

CODEWORKS Issue 20

1188

39

Index & Download He
What's happening with both

Here are the updates to bring Cwindex.Dat up
to date through the last issue. The entire index
for the first three years of CodeWorks is on the
download and on our yearly diskette.

Notes, using the P option in MS DOS, issue
19, page 3

Card.bas, reference, two level sorting, issue
19, page 3

Notes, using an actual quote mark in print
lines, issue 19, page 4

Notes, using disk drive cleaners, issue 19,
page 4

Beginning BASIC, exploring PRINT USING,
issue 19, page 7

Hard disks, article, setting one up, issue 19,
page 9

NFL88.bas, main program, issue 19, page 14,
NFL for 1988-89

Stat88.bas, main program, issue 19, page
18, stats for NFL88

Correl.bas, main program, issue 19, page 22,
correlation with lead/lag

Outline2.bas, demo program for outline.bas,
issue 19, page 30

List.bas, correction, missing lines, issue
19, page 34

Random files, article, adding column
totals. Issue 19, page 37

Ranprnt.bas, merge program, issue 19,
page 38

Download, notes on download, issue 19,
page 40

The download has been a little erratic lately,
still due to power changes and switching, but
mostly it has been up and running.

We have been putting the NFL stats on the
download every week, usually by Tuesday noon.
Don't forget that the program in this issue for
predicting the post-season play will need week
16 stats. We'll be sure and put them up as soon
as we have them so that you can get into the
playoff picture.

D

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
Postage

PAID
Permit # 774
Tacoma, WA

*

CODEWORKS
Issue 21 Jan/Feb 1989

CONTENTS

Editor's Notes 2

Forum 3

Beginning BASIC 6

Writing Filters in BASIC (Fileutil.Bas) 7

Frame.Bas 14

Trust.Bas 32

Notes 38

Order Form 39

Index & Download 40

CODEWORKS Editor's Notes
Issue 21 Jan/Feb 1989

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashburn

(c)1989 80-Northwest Publishing Inc. No pat
ent liability is assumed with respect to the use
of the information contained herein. While
every precaution has been taken in the prepa
ration of this publication, the publisher as
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre
sented in this publication are placed in
public domain. Please address all correspon
dence to CodeWorks, 3838 South Warner
Street, Tacoma. WA 98409

Telephones
(206) 475-2219 (voice)

(206) 475-2356 (modem download)
300/1200 baud, 8 bits, no parity and 1

stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper /lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned if return postage is provided. Compen
sation will be made for works which are ac
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all Issues
for that year. VISA and Master Card orders are
accepted by mall or phone (206) 475-2219.
Charge card orders may also be left via our
on-line download system (206) 475-2356.

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
a sample copy at no cost.

As many of you have proba
bly guessed by now, not all the
names shown on our masthead
are here in the office, working
on the magazine. No, some of
those names have full-time jobs
elsewhere and are kind enough
to give a helping hand as
"friends" of the magazine. A1
Mashburn is our technical ad
visor, and writes occasional
pieces for us. His main occupa
tion is in sales and service for a
well-known motorcycle com
pany. Cam Brown is a high
school instructor at a local pri
vate school. His assistance is in
the form of ideas and sugges
tions on the editorial content
and layout of the magazine it
self.

You all know Terry
Dettmann, since he has been a
regular contributor to the
magazine from day one. Terry
has the title of "Chief Scientist"
at a local electronics company.
His company recently ex
panded sales and now covers
the entire United States.
Lately, Terry has spent more
time flying around the country
than he usually does. In fact, he
told me, in one of his rare week
ends at home, that he has spent
six of the last seven weeks
away from home. He also re
cently had a catastrophic hard
disk crash, and a backup sys
tem that apparently failed.
Consequently, when he is
home, he is busy trying to re
construct the many programs,
articles and projects he had on
that system.

All this sounds like a sneaky

way of telling you that his ar
ticles are not going to appear in
this issue of CodeWorks either.
Which is true. We hope to have
the finish to Outline.Bas ready
for the next issue, but from the
way things are looking for
Terry, we can't make that a
hard promise. Rest assured,
that we will get it in eventually.
Ditto for more of the Randemo
series.

In spite of all that, we appre
ciate the efforts of all those who
actively assist in the produc
tion and content of CodeWorks.
For the most part their work is
pro bono, and we appreciate
that even more. At this time of
the year it is more than appro
priate that we say "thanks" to
all of you.

If you notice a subtle change
in this issue, it is because I have
decided to go back to good old
New Century Schoolbook as a
typeface for the body text.
When we first got the laser
printer and looked at its avail
able fonts, Bookman stood out
and called for attention. It's a
nice face, but after a couple of
issues it just seemed too robust
for the body copy. We are still
using it, and it looks very good,
when used as headings. Actu
ally, CodeWorks had been in
New Century Schoolbook since
the very first issue, back in
September of 1985. We had
decided then that Times Ro
man was too anemic and that

continues on page 38

2 Issue 21 CODEWORKS

Forum
An Open Forum for Questions and Comments

NFL88 got 13 of 14 this week (6-7 Nov). Know
any good bookies? Now, if we can only get
Lpick.Bas to work as well.

Jim Brandenburg
Lewiston, ID

I intended to write sometime ago, comment
ing on the interest in genealogy I have seen in
CodeWorks.

I have by no stretch of the imagination tried
all of the genealogy programs available for the
various systems, but have looked at several
public domain and shareware programs for the
MS DOS machines. The one I finally settled on
was Personal Ancestral File. It is $39.95, includ
ing shipping, and well worth it. Contact:

The Church of Jesus Christ of Latter-day
Saints

Genealogical Department
Ancestral File Operations Unit
50 East North Temple Street
Salt Lake City, Utah 85150
(801) 531-2584

PAF consists of several programs which rec
ord family data, information on references, re
port printing and a data communications capa
bility. File size is limited by available storage
space. It is well documented and includes tutori
als in the manual.

I believe PAF is also available for CP/M ma
chines and Apple.

John M. Gregg
Florence, SC

Several local people we know also have said
that this is a very good program.

...Your Beginning BASIC column is the best
thing since the wheel. Issue 19, Exploring the
Print Using command is terrific. I suppose if all
the command possibilities were in the manual, it
would turn out to be quite a tome. I have learned
quite a bit from that column. Keep up the good

work.
Richard L. Bacon

Tivoli, NY
Yes, it would be quite a tome. It seems that most

applications programs today need more explana
tion. Look at the number of books being written
(and bought and read) on WordStar, PageMaker,
Lotus 1-2-3 and the like.

...In reply to the letter by M. L. Hall in Issue
19,1 agree! As a living, I repair stereo equipment
and as a hobby, computers. I have opened my
TRS-80 Model III up more than once to install
more memory, disk drive controller board and an
RS-232 board. So yes, I agree with him in adding
to his TRS-80. At this time I do not wish to
convert to a 16 or 32 bit machine, although this
may appeal to me in the future. What I'm trying
to say is that I'd be interested in other technical
projects for my computer and I'm sure others
would be too...

...Because of the availability of "modern" com
puters, there seems to be a lot of unused, forgot
ten, broken, and other TRS-80s waiting to be
used. You can get them cheap if you look. And
what an easy way to get into computers...

Pat Chong
Las Cruces, NM

They were great computers in their day. Unfor
tunately, almost no one is writing anything for
them these days. In spite of all the advertising
hoopla, the new applications are a giant leap
ahead of what passed for applications software in
days past. And you can't really appreciate it until
you actually make the switch yourself.

I enjoy your magazine even though I have an
Amiga 1000, and know that most programs are
for MS DOS machines. Therefore, I'd like to ask
if there are subroutines I can substitute for Shell
Commands. In Ranidx.Bas there are several
commands: Shell "erase"+FT$ and Shell
"ren"+FX$""+FT$. If the first command erases
FT$ then a subroutine would work, however, I

CODEWORKS Issue 21 3

don't know what "ren" does.
Allan W. Wardell

Providence, RI
Erase and kill are one and the same, and either

can be done from within a BASIC program, as in:
100 KILL"filename". REN is the rename com
mand, and cannot always be done from within a
BASIC program as it can be with GW BASIC and
the Shell command. We have been looking in vain
for a way around the Shell problem and can't
seem to find one. Perhaps we have painted our
selves into a corner. My version of MS DOS is 2.11
and it has the SHELL and works fine. We'll keep
looking, but in the meantime, you will probably
need to use Ranindex.Bas instead ofRanidx.Bas.
We know that will restrict you somewhat, but it's
the best we can offer for now. But also look into
this: some computers use "SYSTEM" instead of
"SHELL" and that may work for you. Tandy
Models II and IV use System; their Models I and
III won't allow it at all.

I have been a subscriber to CodeWorks since
Issue 1 and have thoroughly enjoyed it. There
must still be a few of us who program in BASIC,
so keep up the good work!

I moved up to MS DOS about a year ago
(before that I had a Model III TRS-80) and still
like to work in BASIC. However, I miss some of
the features of the Model III, especially the
ability to scroll up or down a program at random
(another thing I miss is the machine automati
cally looking on other drives for a program if it
isn't in the default drive.)

Anyway, getting back to the scrolling: is there
any program that would allow you to list 330 and
then scroll up or down from there, the same way
it did on the Model III...

...I own a small business and we took your
payroll program (which is pretty good as it
stands) and reworked it so that it prints out the
weekly, monthly, quarterly, yearly and also fis
cal-yearly reports, accumulating all the data as
it goes. It also prints out the checks on a Swintec
typewriter. We are in the process of converting it
into MS DOS with TRSCROSS (a great pro
gram!)...

Francis C. Williams
Honolulu, HI

Scrolling backward and forward in a BASIC

program is one thing that GW BASIC lacks. Look
up the PATH command in MS DOS. It can make
the computer search any of the drives for a given
program. We have incorporated several cosmetic
changes to Pay.Bas and will publish them when
space permits.

...I currently use a TRS-80 Model IV with
128K of RAM. When running any BASIC pro
gram only 64K is usable, to the best of my
knowledge. Has anyone come across a way to
make the full 128K accessible to a BASIC pro
gram?

I am seriously considering switching to an
IBM compatible. I note that they have a much
larger RAM. If I have an IBM compatible with
512K will that full 512K be accessible to a
BASIC program under GW BASIC, or will I still
be limited to 64K? Also, if you have 512K ini
tially and later add on more RAM, does the
added on RAM automatically get recognized by
the CPU?

Marc Miller
Long Beach, CA

You can stuff machine language that your
BASIC program will call into the upper 64K of
your Model IV. Same for MS DOS. GW BASIC
still only uses 64K for BASIC, although with the
Microsoft QuickBASIC compiler, for example,
you can designate a whole 64K chunk for arrays
and another 64K chunk for your BASIC pro
gram. All that extra memory is used primarily for
machine language applications programs, which
can span 64K boundaries. Yes, if you have 256K,
for example, and add more RAM, MS DOS will
recognize that it's there. On most machines you
need to move a jumper on one of the boards to tell
it the extra memory is there.

I once had a Heath H-89 computer which
should be the same as the H-89A. The locate
cursor sequence as given in Dmaker.Bas, Issue
17, page 20, program fine 250 worked fine on my
machine. I suspect the problem B.T. Jeavons
(Forum, Issue 19) is having in getting demo pro
grams Cursor 1, 2 and 3 to run correctly lies in
the sequence given on page 6 of Issue 17: PRINT
CHR$(27)+"Y"+CHR$(31+X)+CHR$(31+Y).
This sequence needs a semicolon at the end to
avoid a carriage return/fine feed. The semicolon

4 Issue 21 CODEWORKS

was used in line 250 of Dmaker.Bas...
Robert L. Anderson

St. Albans, WV

...In Issue 20, page 7 there is an Error Mes
sage article that is very nice if you don't have a
TRS-80 Model III. For this Model there is a
simple PATCH that will give you text instead of
an error number. It patches the system program
on the disk and from then on it will give the text
shown on page 90 of the Model III manual.

PATCH *4 (ADD=4E28,FIND=20,CHG=18)

At the TRSDOS Ready, typing this in exactly
will modify the disk in the drive so that error
message will be in text and not in stupid num
bers.

Keep up the good work. I have used the
Card.Bas program for a couple of different
things. Each one is a modification of the original,
to suit the situation.

I'm the roster keeper for our organization of
survivors from the USS Abner Read (DD 526).
Each name has nine sub items and using this
main data base we can print out various lists
sorted on Rate/Rank or ZIP or any other way
that is needed. It is a very handy program.

W. J. Pottberg
Burlingame, CA

Thanks for the patch, and glad you are getting
some use out of Card.Bas.

Back in the dark ages, eons ago, when my
TRS-80 Model I was the best and easiest com
puter around, I obtained from Tandy a program
called "Cross Reference."

This was a machine language program which,
among other things, would go through a BASIC
program and pick out all the variables. It would
then provide a printed list of these in alphabeti
cal order and would also make a list of each line
in which each variable appeared.

I found this program very handy in program
writing when I would lose track of what vari
ables I had already used or for a reference sheet
I kept with long programs for use when later
modifications were in order.

I'm sure you recall this program. My question

is whether there is something like it available
now for use with BASIC in an MS DOS machine
such as my Tandy 1400LT. If you know of such
a utility, where could I obtain it? If not, how
about putting it on your list of programs to work
on for publication in CodeWorks? I am sure
many of your subscribers would find it as useful
as I did.

Charles B. Steele
La Jolla, CA

We published that program (in BASIC, but it
could be compiled) in Issue 5, back in May /Jun
1986. It was called VXREF.Bas. As I recall, that
program wasn't the last word in such utilities,
and was rather lumpy in spots. If it wasn't com
piled, it was also rather slow. Perhaps a re-write
and an update of that program would be in order
- especially one that could be compiled. Thanks
for the nudge.

Thank you again for the interesting and varied
input. You would be surprised at how many of
our programs are in direct response to your let
ters, and that's how it should be, after all. So now
it's time for us to tell all of you: Keep up the good
work!

Irv

CODEWORKS Issue 21 5

Beginning BASIC
A Look at Variable Types

When you first turn on your computer it auto
matically defaults to single precision accuracy
for variables. Single precision gives you six
places of accuracy. The exclamation point is used
to denote single precision, but since this is the
default value anyway, you don't need to vise it.
Naturally, you would ask why have it then?
Well, you can define all variables to some other
accuracy at the beginning of the program, and
then, if you wanted some selected variable to be
single precision, you could use the exclamation
mark for just that variable. In this case, variable
A and variable A! both refer to the same value,
because they are one and the same variable.

The percent sign (%) used after a variable de
notes that that variable is an integer variable.
The range of integer variables is from -32768 to
+32767. If you input 7.7 for variable A% and
then print A% you will find that it prints 8. That
is because BASIC rounds off integer variables to
the nearest whole number. Notice that A and A%
are two entirely different variables, not like
single precision variables, above. Integer vari
ables take up less memory space than other
types and will compute faster. For this reason, it
is usually good practice to declare loop counters
as integers because it tends to speed up execu
tion of your programs. If you know that you will
be using variables I, J and K for loop counters,
then at the beginning of your program you can
put a statement like this: DEFINT I,J,K (or
DEFINTI-K, which is the same thing).

But why should integer variables go from -
32768 to +32767? Well, it turns out that one byte
of 8 bits can hold up to 256 different values. If we
use two bytes, then, to hold a number we have
256 * 256 different values. That turns out to be
65536 discrete values, which is the number of
values between -32768 and +32767.

There is a so-called double precision variable.
It is so-called because it is actually almost three
times as accurate as single precision. You can
use the number sign (#) after a variable to denote
double precision, as in A#. Double precision can
be accurate up to 16 places. But be careful. Ifyou
define one variable as double precision and
multiply it by another that is not, and then put
the result into another single precision variable,
it may print out 16 places but only the first six
would be significant. To get the full benefit of
double precision, at least one of the variables and
the output variable should be in double preci
sion. You can give a "global" definition to your
variables to make them double precision:
DEFDBL A-C, for example, would make all
variables from A to C double precision. Again, A
and A# are two entirely different variables. (But
if you DEFDBL A then all variables starting
with A will be double precision.) A "global" vari
able designation means that it applies to the
entire program.

In addition to the numeric variable types we
have just discussed; integer, single precision and
double precision, there is also the string variable
designator that you all already know about, the
$ after a variable shows that that variable is a
string variable. You can also define string vari
ables globally, as in DEFSTR A-F, but we tend to
stay away from these types of designations since
they can become rather confusing, even to expe
rienced programmers. And again, A and A$ are
two entirely different variables.

So there is a quick look at the various variable
types^you can use. Play with them and see what
they do. Then add them to your arsenal of com
puting tools. Once you know what they do, you
will certainly find uses for them.

6 Issue 21 CODEWORKS

Fileutil.Bas
Writing Filters in BASIC

Irene P. Governale, Port Jervis, NY. Here is a collection of useful file
utilities which you can use individually or with the menu driven program
following this article.

When I tried to define filters, I kept coming up
with phrases that would be just as applicable to
the word "program." So, I looked in my MS DOS
Reference Manual (when all else fails, read the
documentation, right?) and this is what I found:

A filter is a command that reads input, trans
forms it in some way, and then outputs it, usu
ally to the screen or to a file. Thus, data is said to
have been filtered by the command."

Not very helpful, is it? Filters usually work on
text files. They do things like removing extrane
ous control characters or changing text from
upper case to lower case. Although some filters
work on files a word or a line at a time, the
program SORT that comes with the MS DOS
operating system for instance, the programs
we're going to write here work on one character
at a time.

When written in either assembly language or
a compiled language, filters get their input from
STDIN (the standard input device, usually the
keyboard) and send the transformed output to
STDOUT (the standard output device, usually
the screen.) That doesn't seem very useful at
first glance, but both MS DOS and UNIX allow
you to redirect either or both of these devices to
another device (perhaps the printer?) or file.
Redirection won't work with interpreted BASIC,
but you can still write filters that will do their
jobs.

The pseudocode for a filter written in BASIC
would look something like this:

1. Get input and output file names
2. Open the files in random mode with a record

length of one
3. Read a byte from the input file
4. Do something to it
5. Write the byte to the output file
6. If we haven't reached the end of file, go back

to step 3 and get the next byte
7. Close the files

Now, if you look closely at this pseudocode,
you'll see that most of the code will remain the
same from program to program. The only place
we need to make changes is where we "do some
thing." The following listing provides a skeleton
for a BASIC filter, all we'll have to do is fill in the
subroutine.

10 CLS:CR=13:LF=10:RTN=0: 'cr=
carriage return, lf=line feed

20 INPUT"Enter input file name:";FI$
30 INPUT"Enter output file name: ";FO$
40 OPEN "R", 1 ,FI$, 1 :OPEN "R",2,FO$,l
50 FIELD #1,1 AS IN$:FIELD #2,

1 ASO$
60 I=1:J=1
70 GET #1,1
80 A=ASC(IN$)
90 GOSUB 500
100 LSET 0$=CHR$(A)
110 PUT #2,J
120 I=I+1:J=J+1
130 IF NOT (EOF(l)) AND A<>26

THEN 70

COOEWORKS Issue 21 7

140 CLOSE
150 END

It's always nice to clear the screen at the
beginning of a program, and that's the first thing
we do. (You will need to change the CLS to
whatever command your computer uses to clear
the screen.) Then we set up some standard vari
ables: CR is the ASCII code for carriage return,
LF is the code for a line feed, and RTN will be
used by programs that need to count carriage
returns.

The next two lines get the input and output
file names from the user. These can be standard
file names or, on MS DOS computers you can use
CON for the keyboard or screen, or PRN for the
printer.

In line 40 we open the files in random mode
with a record length of one. I thought about
saving some processing time by reading more
characters at once and then processing them,
but if the last record is shorter than the record
length defined by the program, you end up pad
ding your output file with unnecessary charac
ters.

Line 50 sets up the buffer variables for the two
files and fine 60 initializes the two variables we'll
be using for file pointers. Now that we've done all
the set-up, we can get down to business. Lines 70
and 80 get a character from the input file and
convert it to an ASCII code in the variable A.

Line 90 then calls the subroutine that will do
the actual processing. The only reason for put
ting this code in a subroutine is to make it easy
to write new filters simply by replacing the
subroutine code. If you save this skeleton in
ASCII format, you can simply merge it into your
subroutines as you write them.

Once we've returned from the subroutine, we
move the character code into the output buffer
and send it to the file. Then we increment our
two pointers, and if we haven't reached the end
of file, we loop back to fine 70 to get the next
character. For a more detailed explanation of

fine 130, see the sidebar "Finding EOF."

Now for the first filter. If you've ever used the
TYPE command to examine a WordStar file on
the screen, you've seen a lot of weird characters.
WordStar turns on bit seven of some characters,
for instance fine feeds within paragraphs. Turn
ing on bit seven adds 128 to the character's
ASCII code. Since characters with ASCII codes
above 127 are graphics characters, this makes
for the weird display. To convert these charac
ters back to standard ASCII, all you have to do is
turn off bit seven. The lines of code in the next
fisting (WSCONVRT) will do that.

490' WSCONVRT - convert WordStar files to
Standard ASCII

500 A=A AND 127
510 IF AoLF THEN PRINT CHR$(A);
520 RETURN

Line 500 ANDs the value of A with 127. Since
the binary value of 127 is 01111111, ANDing
127 with a number like 130 (1 0 0 0 0 1 0), would
result in (0 0 0 0 0 0 1 0). AND performs a logical
AND on the two numbers on a bit by bit basis.
The only bits in the resulting number that will be
set to 1 are those which were set to one in both
numbers. You can visualize it this way:

1 0 0 0 0 0 1 0 (d e c i m a l 1 3 0) a n d
0 1 1 1 1 1 1 1 (d e c i m a l 1 2 7)

0 0 0 0 0 0 1 0 (d e c i m a l 2)

Line 510 is not really necessary, but I can't
stand to sit there looking at a blank screen. I
know the computer is working, but I'd rather
have the program run a bit slower and show me
what it's doing. It's up to you whether you want
that fine. If you'd rather speed up the processing
of the file, leave it out.

The reason that fine 510 checks the ASCII
code and doesn't print line feeds is that GW-
BASIC treats carriage returns and line feeds the
same way. It returns the carriage to the left side
of the screen and advances a fine. If you printed
a carriage return/fine feed pair, the document
would appear to be double spaced.

8 Issue 21 CODEWORKS

Now for two filters that do a similar job. The
first is called UCASE.lt converts all lower case
letters in the input file into upper case. Take a
look at the fisting which follows.

490 ' UCASE - convert file to
all upper case

500 IF A>=97 AND A<=122 THEN A=
A-32

510 IF AolO THEN PRINT CHR$(A);
520 RETURN

The ASCII codes for lower case letters fall
between 97 and 123. Since these are the only
characters we want to work on, we test the value
of the variable A for codes in that range. The
difference between the code for 'A' and the code
for 'a' is 32, but if you simply subtracted 32 from
the ASCII value of all the characters in the file,
you'd end up with a pretty strange file! Now for
the other filter, which I'm sure you have already
figured out, which is called LCASE. To convert
upper case letters to lower case, use this code.

490 ' LCASE - convert file to
lower case

500 IF A>=65 AND A<=90 THEN A=A
+32

510 IF AolO THEN PRINT CHR$(A);
520 RETURN

The only difference between this subroutine
and the last one is that the letters we want to
work with here have ASCII values in the range
65 to 90. Now for a pair of programs that change
the fine spacing of a file.

Listing SSPACE, changes a file from double
space to single space. The first thing this subrou
tine does is check to see whether or not we've
found a carriage return. If we haven't, we simply
print the character and return. When we find the
first carriage return, we set RTN to one and
return. This way, the first carriage return/line
feed pair will be printed to the output file. The
next time we find a carriage return, we incre
ment I and get the next character from the input
file.

490' SSPACE convert file to single space
500 IF AoCR THEN PRINT CHR$(A)

;:RETURN
510 IF A=CR AND RTN=0 THEN RTN=

1:RETURN
520 IF A=CR AND RTN>0 THEN 1=1+

1:GET #1,I:A=ASC(IN$):IF A=
LF THEN I=I+1:GET #1,I:A=AS
C(IN$):GOTO 520

530 PRINT CHR$(A);:RTN=0:RETURN

If the next character is a line feed, which it
should be on a standard text file, the variable I is
incremented again, then we get the next charac
ter and execute fine 520 again. As long as we
keep finding carriage return/fine feed pairs, well
keep executing fine 520. As soon as we find
something other than a carriage return, we drop
down to the next line which sets RTN to zero,
prints the character on the screen and returns.

This is probably the most complicated ex
ample we'll have, so now you can breathe a sigh
of relief and go on to the next filter, DSPACE,
which will double space a single spaced file.

490 ' DSPACE - convert single
spaced file to double space

500 IF AoCR THEN PRINT CHR$(A)
-RETURN

510 GET #1,(I+1):A=ASC(IN$)
520 IF A=LF THEN LSET 0$=CHR$(C

R):PUT #2,J:J=J+1:LSET 0$=C
HR$(LF):PUT #2,J:J=J+1

530 GET #1,I:A=ASC(IN$):RETURN

Once again we check to see if we've got a
carriage return. If we don't, we print the charac
ter and return. When we find a carriage return,
we check to see if the next character is a fine feed.
If it is, we print the carriage return/line feed pair
to the output file, incrementing the output file
pointer as we do so, then we get the current
character (the carriage return) again, print it,
and return.

If you'd like to display a file on the screen with-

out having to leave BASIC, the next listing is for
you. Since we know that the output will be on
the screen, we can remove any code that deals
with an output file. This leaves only the request
for the input file name, and the code to open and
read from the file.

10 CLS:CR=13:LF=10:RTN=0
20 INPUT"Enter input file name:M;FI$
30 OPEN "R",1,FI$,1
40 FIELD #1,1 AS IN$
50 1=1
60 GET #1,1
70 A=ASC(IN$)
80 GOSUB 500
90 1=1+1
100 IF NOT (EOF(l)) AND A<>26

THEN 60
110 CLOSE
120 END
497«.
498 'BTYPE - displays a file on

the screen
499'
500 IF AoLF AND A<>26 THEN PRI

NT CHR$(A);
510 IF A=CR THEN RTN=RTN+1 ELSE

RETURN
520 IF RTN=21 THEN PRINT"<more>

ELSE RETURN
530 IF INKEY$="" THEN 530
540 PRINT:RTN=0:RETURN

When we get to the subroutine, the first thing
we do is check to see if the character is either a
fine feed or the end of the file. If it is neither, we
print it. Then, since we don't want the text to
scroll off the screen before we can read it, we
check for a carriage return. If we do have a
carriage return, we increment RTN. If the char
acter is anything other than a carriage return,
we're done processing this character.

The next thing we need to do each time we find
a carriage return is check to see if we've printed
a screenfull of lines. If RTN=21, then we've filled
the screen and we print "<more>" and wait for a
key press at line 530. The last thing we need to
do is PRINT, so that the next character will be

printed on a blank line, set RTN back to zero so
we can start counting again and return.

I saved the easiest filter of all for last. It
doesn't do anything to the input file. It just copies
it to the output file. The subroutine in Listing
BCOPY is only there to cover the case where the
input file might be "CON" (the keyboard in MS
DOS). Its sole reason for existence is to let you
see what you're typing.

480' BCOPY - simply copies input to output
500 IF FI$="CON" OR FI$="con"

THEN PRINT CHR$(A);:IF A=CR
THEN LSET 0$=CHR$(A):PUT

#2,J:J=J+1:A=LF
510 RETURN

What possible use would we have for this
program? Well, depending on the input and
output files we choose, we can use it to create
simple text files, print a file on the printer, or
copy files. How's that for simplicity? Of course,
you'd better be a pretty good typist to use this
program to create files because a CHR$(8) (back
space) would be printed to the file just like any
other character.

One final word of warning. If you want to use
BCOPY to copy program files, youll have to
remove the check for CHR$(26) from fine 130.
Remember, the occurrence of CHR$(26) in a
program file might not necessarily signal end of
file. If we stopped processing a program file the
first time we encounter CHR$(26), we might end
up copying only part of the file.

There's still room for improvement in our
program skeleton and even in the subroutines.
We could add error checking for the read and
write process, or we could add code to check for
the existence of the input file, or code to prevent
over-writing existing output files. Those ele
ments were left out so we could concentrate on
the filters themselves. But, as they say, no pro
gram is ever really completed.

Now, why write filters in BASIC? Well, for one
thing it's easy. Besides, if you don't have a
compiler or assembler, what other way is there?

10 Issue 21 CODEWORKS

These short examples have gotten you started,
now here are a couple of ideas you can work on
yourself. How about a filter to expand tab char
acters to the correct number of spaces to carry
you to the next tab stop? You could add a variable
for the size of the tab and request it from the user
at run time. Or how about a word counting
program? Or . . . now it's your turn. Have fun
with BASIC filters.

(Editor's Note: We have compiled these frag
ments of code into one menu-driven program
(FileUtil.Bas) for your convenience. Listing fol
lows. This is the version which will appear on the
CodeWorks download and on the yearly disk
ette.)

Finding EOF

Line 130 of our program skeleton says:

130 IF NOT (EOF(l)) AND A <> 26 THEN 60

Why the double check? Well, normally finding

the end of a file is easy. The BASIC function
EOF(filenumber) will tell us when to stop proc
essing. Actually though, under MS DOS there
are two ways of determining the end of a text file.
You can use the actual length of the file in bytes,
or you can look for a CHR$(26) which is Control-
Z.

Most programs that produce text files end
them with Control-Z, but programs like Word
Star may pad the file with more than one Con
trol-Z in order to make the size of the file evenly
divisible by 128. This is one more place where
MS DOS's CP/M ancestry shows. CP/M creates
files in blocks of 128 bytes which means that the
only way to determine the actual end of the file
is that terminal Control-Z.

Since we're dealing with our files on a byte by
byte basis, those of us using MS DOS have a
choice of processing all the way to the end of the
file or stopping at the first Control-Z. Only one
Control-Z is necessary to terminate a text file, so
there's no reason to pass along any padding we
might find. We still check for EOF though, just in
case we come across a program that doesn't use
the Control-Z.

FileutiLBas for all models

100 REM * FileUtil.Bas * A file utility program by
110 REM * Irene P. Governale, Port Jervis, NY for
120 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
130 REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem
140 REM * (c)1988 80-NW Publishing Inc. & placed in public domain.
150 'CLEAR 2000 ' use only if you need to clear string space
160 CLS
170 PRINT STRINGS (22,45); " The CodeWorks STRINGS (23, 45)
1 8 0 P R I N T ' ' F I L E U T I L I T Y C O L L E C T I O N
190 PRINT'' a group of 7 file utilities

CODEWORKS Issue 21 11

200 PRINT STRING$(60,45)

210 PRINT
220 PRINT TAB(10);''l ~ convert WordStar files
230 PRINT TAB(10);''2 - convert file to all UPPER CASE
240 PRINT TAB(10);''3 - convert file to all lower case
250 PRINT TAB(10);''4 - convert file to single space
260 PRINT TAB(10);''5 - convert file to double space
270 PRINT TAB(10);''6 - display a file on the screen
280 PRINT TAB(10); " 7 - copy a file
290 PRINT
300 INPUT''Number of your choice" ;XX
310 IF XX=6 THEN 850
320 '
330 ' Mainline of program
340 *
350 CLS:CR=13:LF=10:RTN=0: 'cr=carriage return, lf=line feed
360 INPUT''Enter input file name: '';FI$
370 INPUT''Enter output file name: '';FO$
380 OPEN ''R'',1,FI$,1:OPEN "R",2,FO$,l

390 FIELD #1,1 AS IN$:FIELD #2,1 AS 0$

400 1=1:J=1

410 GET #1,1
420 A=ASC(IN$)
430 ON XX GOSUB 530,590,650,710,780,850,1050

440 LSET 0$=CHR$(A)

450 PUT #2,J
460 1=1+1:J=J+1
470 IF NOT (EOF(1)) AND A<>26 THEN 410

480 CLOSE

490 END
500 '
510 'convert WordStar files to standard ASCII

520 '
530 A=A AND 127
540 IF AOLF THEN PRINT CHR$ (A) ;

550 RETURN

560 '
570 'convert file to all upper case

580 '
590 IF A>=97 AND A<=122 THEN A=A-32

600 IF A<>10 THEN PRINT CHR$(A);

610 RETURN
620 '
630 'convert file to all lower case

640
650 IF A>=65 AND A<=90 THEN A=A+32

1 2 Issue 21 CODEWORKS

660 IF AO10 THEN PRINT CHR$ (A) ;
670 RETURN
680 »

690 'convert file to single space
700 '

710 IF AOCR THEN PRINT CHR$ (A) RETURN
720 IF A=CR AND RTN=0 THEN RTN=1:RETURN
730 IF A=CR AND RTN>0 THEN I=I+1:GET #1,I:A=ASC(IN$):IF A=LF THEN

1=1+1:GET #1,1:A=ASC(IN$):GOTO 730
740 PRINT CHR$(A);:RTN=0:RETURN
750 '

760 'convert single spaced file to double space
770 '

780 IF AOCR THEN PRINT CHR$ (A) RETURN
790 GET #1, (1 + 1) :A=ASC(IN$)
800 IF A=LF THEN LSET 0$=CHR$(CR):PUT #2,J:J=J+1:LSET 0$=CHR$(LF):

PUT #2,J:J=J+1
810 GET #1, I:A=ASC(IN$) :RETURN
820 '

830 'display a file on the screen
840 '
850 CLS:CR=13:LF=10:RTN=0
860 INPUT''Enter input file name: '';FI$
870 OPEN "R",1,FI$,1
880 FIELD #1, 1 AS IN$
890 1=1
900 GET #1,1
910 A=ASC(IN$)
920 GOSUB 970
930 1=1+1

940 IF NOT (EOF(1)) AND A<>26 THEN 900
950 CLOSE
960 END

970 IF AOLF AND A<>26 THEN PRINT CHR$ (A) ;
980 IF A=CR THEN RTN=RTN+1 ELSE RETURN
990 IF RTN=21 THEN PRINT" <more>''; ELSE RETURN
1000 IF INKEY$=" " THEN 1000
1010 PRINT:RTN=0:RETURN
1020 '

1030 'simply copies input to output
1040 '

1050 IF FI$="C0N" OR FI$ = "con" THEN PRINT CHR$ (A) ; : IF A=CR THEN
LSET 0$=CHR$(A):PUT #2,J:J=J+1:A=LF

1060 RETURN

Frame. Bas
Cost & Materials to Frame and Cover a Building

Staff Project. This is another of those long winter night projects where you
can plan what you will be doing in the spring. With it, you can define a build
ing (or part of one) and get a materials and cost list. Trim, paint and nails are
extra.

Long winter nights are an excellent time to
plan spring and summer projects. Our major
project for this issue is Frame.Bas. It is a long
and involved program that will determine quan
tity and prices for a wide variety of building
projects. It takes into account the many choices
available in framing and covering a building.
The program covers the basic requirements
only, and does not include such things as trim,
nails, paint or stain or the cost of windows or
doors.

Frame.Bas does take into account such things
as studs, siding, plywood sheathing, drywall, felt
paper, insulation, preformed rafters and both
wood and composition shingles. It has the ability
to include interior walls, and if you are adding to
an existing structure, the ability to exclude one
or more walls. Further, it can be used to calcu
late interior walls only, as when you already
have an unfinished structure in which you wish
to add partitions.

Programs of this sort have the tendency to be
input intensive. There are so many different
items that need to be entered, and several
choices for each item. There seems to be no other
way to do it than to swallow hard and dig in. But
there is a neat way around doing that for every
project. Once a basic structure has been entered,
you can call it up and edit in changes to it and
save it back as an entirely new project. The

program allows you to have as many different
structures as your disk will hold. You can call
any project in, change it and save it back under
its original name or give it a new name and save
it.

The program uses one other file, that being
the unit price file called "Prices." A menu option
allows you to create this file and another option
lets you call it up and make changes to it. There
is only one "Prices" file, and it is used for all
projects.

There are two outputs to this program. One is
a list of specifications for any project, the other is
a material and cost list for a project. The mate
rial and cost output will combine similar items,
so that you get a total, for example, of all 12 foot
2x4's used in the structure. It also calculates the
total dollar amount of the project. See the accom
panying figures for examples of the output for a
hypothetical garage.

We won't go into an excruciating detail on the
program because that would take an entire is
sue, but we will go through it and note those
things that should be of interest to you. Let's
start at the top. The defined function in line 180
is going to assist us in getting studs to their next
largest two foot increment. That's because that
is the way they are sold. Line 190 sets our error
trap. Let's go to fine 5710 and see what happens

there.
The error trap at the end of the program (line

5710 and on) checks for the error "file not found."
But there are two files involved with this pro
gram. In one case we may be asking for a project
file that doesn't exist. In the other case the
program may have tried to read the "Prices" file
and didn't find one. If we asked for a project file
from the main menu, then the variable XX would
be 3. In that case the error trap simply tells us
that there is no file like that and sends us back to
the main menu. If the "Prices" file is missing
then when we get to this error trap line 5730 will
come into play. All we do in that case is set H$
equal to "Do this First" and return to the main
menu. Back at the main menu, you will note that
H$ figures into fine 640. It will be printed right
there on the screen along with the other menu
items. When we first run the program, H$ will be
a null string. If the "Prices" file is not there, H$
will be set to our little reminder and when we
come back to the menu, the menu itself will tell
us to input a "Prices" file first. After that, line
680 will reset H$ to a null string and we won't see
it in the menu again. If there is a "Prices" file
when we run the program, the error trap will not
be sprung and H$ will remain a null string. This
is another example of "dynamic" menu items
(see Issue 19, Correl.Bas, for other examples of
this.)

Having gotten that all out of the way, we can
go back and try to continue our top-down ap
proach to the description of the program. The
construction trade is rife with its own terminol
ogy. Wood shingles are sold by the pack, for
example, while composition shingles are sold by
the "Square." There are actually three "packs" of
composition shingles to one square. Felt paper
comes in 36-inch wide rolls, 160 feet long; insu
lation comes in rolls too, but is measured by the
square foot. Two by fours come in even two foot
lengths, so if you need 8 feet, 1 inch, you must
buy 10 footers and waste the difference. That's
just the way it is.

Because we are going to give options when you
input specifications, we will need to keep all the
possible names and lengths someplace. And

since we are going to be using those names and
lengths many times, we may as well put them
into their own separate arrays, so we can always
come back and find what we need. Lines 210
through 490 are data statements containing all
the names and lengths we will need for the
program, as well as the little loops that will read
the data into arrays for us. The arrays are all
string arrays, and are A$() through E$().

In line 510 we go to the subroutine at line 2250
to read in the "Prices" file. We have already
talked about what happens if that file does not
exist. Line 520 checks to see if your computer
uses DATE$ and if it does, it sets DT$ equal to
DATE$. If you have no date in your computer,
the prompt in line 520 comes into play and asks
you to enter a date - which becomes DT$.

The menu follows, from line 530 to 710. Stan
dard stuffhere, but note that the "Prices" file will
be automatically loaded (and saved that way
too), but your projects must be explicitly saved or
loaded (menu options 2 and 3, respectively.) If all
we ever wanted to do was work with just one
project, we could make it automatic. But we
want the option of loading a file, editing it, and
saving it as a different file.

Our input routine goes all the way from line
730 to line 1960. The first section of that input
routine (line 750 to 870) asks for dimensions.
Here, we have a problem with feet and inches. To
make things simple for the program, we input
feet and inches like a decimal number, that is,
10.6 would be ten feet, six inches. It may be a
little unorthodox, but it's effective and does
simplify things. Obviously, with this method, we
don't want to try and specify half-inch incre
ments; they aren't needed and would only com
plicate things.

In the next part of the input routine, from 880
to 1960, the names and numbers of the choices
are printed on the screen for you. You select the
one you want and the program goes on to the
next. Most choices also have a "no choice" entry,
so that you can ignore whatever part of the
project (like ignoring the floor joists because the

CODEWORKS Issue 21
15

floor is a concrete slab, for example.) After a te
dious session of input, line 1960 takes us back to
the main menu in line 530.

The section of code from 2000 to 2080 is where
we save the specifications file to disk. The next
section, from 2120 to 2210 lets us load any
specifications file from disk.

In lines 2250 through 2300 we open and read
the "Prices" file. The program automatically
comes here when we first run the program. Note
that it is a subroutine, with a RETURN at its
end.

The option to enter new unit prices goes from
2340 to 2440. Again, note that when we have
entered new unit prices the program keeps right
on going and writes the "Prices" file back out.

The "Edit Specifications" routine comes next,
from lines 2480 to 2700. If we have not input
specifications or loaded a specifications file, then
R(7,4) will be 0, otherwise, it will always contain
a 4. T ine 2490 tests the condition of R(7,4) and if
it is zero the following two lines come into play.
They inform you that you must have input a file
or new data in order to edit, and send you back to
the main menu to make another selection. If
R(7,4) contains other than a zero, the next two
fines are skipped and we get to the editing
portion of this routine. Since the first six items of
the specifications are slightly different than the
rest, we handle them in their own loop. Then we
deal with items seven through 29 in the follow
ing section of code. It may be of interest here to
note that the R(x,x) array is a 29 item array, five
deep. R(X,1) always contains the number of your
selection, while R(X,2) through R(X,5) contain
the possible choices you could have made. As an
example, let's take R(25,X). R(25,X) is "Exterior
sheathing" and R(25,2) contains the choice "1/2
inch ply", R(25,3) has the choice "3/4 inch ply",
R(25,4) has the choice "1x6 board" and R(25,5)
has the "none" choice. R(25,l) will contain the
number of the choice you made when you first
input (or edited) the specifications. Further, the
number in R(25,2), for example, will indicate the
array number in the B$() array that says, 1/2
inch ply" if R(25,2) contained a 5. And, inciden

tally, the "25" in R(25,X) indicates the 25th item
in the A$() array, which is "Exterior sheathing."

In fines 2740 through 2790 we clear out the
M(x,x) array. This array will be used to carry all
of our information until print-out time. Again,
this array will carry integer numbers that will
refer to the A$() array through the E$() array.
There are six positions in the M(x,x) array. They
are: item name, size, length, quantity, price and
price per. In the final output, the total price will
be calculated from the quantity and price per, or
in some cases, the length times the quantity
times the price per. We clear this array now in
preparation to filling it with the calculations for
our project.

In fines 2810 through 3040 we set up a lot of
calculations that will simplify later calculations.
Notice, in line 2810 for example, that we are
taking our feet and inches figure (remember that
it was input as a decimal?) and taking it apart to
find the total number of inches. Let's say that we
input the length of the building as 20 feet, six
inches (20.6). In fine 2810 we take the integer
part of that number (20) and multiply it by 12 to
get inches. Then we subtract the integer part of
the number from itself and have .6 left over. Now
we multiply the .6 by 10 and get 6, which we add
to the number of inches we obtained earlier. We
now have the length of the wall in inches. In fines
2980 and following we use some trigonometry to
determine the area of the gable ends of the
building and also the size of the roof. Roof over
hang, both on the gable ends and on the sides, is
figured in as a fixed amount in lines 3000 and
3020. You can adjust these amounts to whatever
you think is right.

From 3060 to 3210 we find the number and
length of exterior studs needed. Exterior studs
are those that form the outside walls of the
structure. Here we need to figure in the thick
ness of the stud plates that will be used on top
and bottom of the studs. There can be one or two
such plates, and if the wall height was specified
at eight feet, 6 inches, for example, you can still
get by with eight foot studs if you have double
plates top and bottom. Line 3080 sets CI to the
value for studs on 16 or 24 inch centers. In fine

16 Issue 21 CODEWORKS

3090 we subtract one half of the excluded wall
length (we'll be multiplying by two later to get
the right wall length.) The "P" variables set in
lines 3100 to 3130 will be used later, in the plate
section of the code. In line 3150 we figure out how
many studs we need by dividing the length of the
wall by either the 16 or 24 (centers) we found
earlier. We then add three studs to each dimen
sion. We do that because you need at least two
studs at the ends of the wall (corner, if you will)
to form a nice corner to nail drywall to. That, plus
you may not have a wall evenly divisible by the
16 or 24 inch centers, so you need one extra one
there to fill out. In line 3170 we use our defined
function (way up in line 180) to get our studs to
the next nearest two-foot length. It does it by
adding one inch at a time to the length of the stud
(HI) until the defined function is not true, at
which time HI divided by 12 will always be a
length in feet evenly divisible by two. Lines 3200
and 3210 then stuff the values we just found into
the M(x,x) array for later use.

The next sections of code, all the way to line
4690, find all the values we will need and fill the
remainder of the M(x,x) array. Ceiling joist
sheathing, in fine 4030, is that sheathing that
you may want to put on top of your ceiling joists
to form a storage space, for example.

The program only considers preformed roof
rafters. This seems to be the way everyone is
going these days. Also, if the roof will be covered
with composition shingles then a sheathing is
required, whereas if it will be covered with wood
shingles or shakes, then only 1x3 inch nailing
strips will be needed (so the roof can "breathe.")

When we get to line 4710 we have completed
our list of needed items for the structure. Now we
go through the M(x,x) array and combine similar
items (you might be using 10-foot 2x4's for both
the exterior wall studs and the ceiling joists, for
example.) Then, starting at line 4810, we sort
the list into ascending order by item name.

In line 4940 we finally get around to getting
some output from this whole affair. All the infor
mation we need (except for one item) is now in

the M(x,x) array. All we need to do is print it out
and extend the unit price to the quantity for a
total price per item. Note that on the studs, we
need to take the length times the number of
studs times the unit price in line 5110 to get the
total stud price. While printing out individual
items total prices, we accumulate that amount
in variable TL, and this becomes the total price
of the project in line 5150.

If we don't want printed output line 5170
takes us back to the main menu, otherwise, flow
of the program goes right on to the following code
and repeats what we just did on the screen to the
printer.

The "Edit unit prices" routine follows in line
5430. This little routine lets you display the
whole price list on the screen and then pick
whatever line you want to change and change it.
When you are done editing prices, the program
sends control back to line 2390, which first saves
the updated file and then sends control back to
the main menu.

The last section of code, from line 5570 to
5680, prints the list of specifications for any
project you have currently loaded on the line
printer. See the accompanying figure for an
example of our garage project.

The program will let you do any part of a
larger project. Don't forget, if you are doing only
interior walls, to specify wall height - it's still
needed and will give unpredictable results if you
leave it out. You can leave out the floor entirely
in case you are going to have a concrete slab
floor. Actually, the floor was the most difficult
part of this program because there are so many
different ways to cover a floor. So we took it to
sub-floor sheathing and insulation and left it at
that. Keep in mind also the things that the
program does not cover, like paint, nails, trim,
doors and windows. Unless you are considering a
large garage door, the number of studs and cover
material will not be very much affected by the
addition of windows and doors.

So there it is. Now you can play "what if?" and

CODEWORKS Issue 21
17

find comparative prices for your next backyard
(or front yard) project. A trip to your local lumber
yard should get you all the unit prices you will

Frame.Bas for MS DOS Machines
and Tandy Models II/IV

need. The ones we have shown in our garage
sample figures are probably not valid in your
area.

100 REM * Frame.Bas * Building estimate program written for
110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem
130 REM * (c)1988 80-NW Publishing Inc. & placed in public domain.
140 '
150 ' Initialization
160 'CLEAR 5000 ' use only if you need to clear string space.
170 DIM R(30,5),A$(30),B$ (22),C$(20),D$(20),E$(20) ,L(20),M(20,6),

P (20)
180 DEF FNM(M)=M MOD 24 <> 0 ' nearest two ft. length function
190 ON ERROR GOTO 5710
200 '
210 DATA length ft.in,width ft.in,wall hgt ft.in
220 DATA length excluded wall ft.in,total length interior walls
230 DATA roof pitch degrees,floor joists,floor joist centers
240 DATA sub-floor sheathing,floor felt paper,floor insulation
250 DATA exterior studs,ext. studs on center,# top plates
260 DATA # bottom plates,interior studs,int.studs on center
270 DATA ceiling joists,ceiling joists on center,ceiling joist

sheathing
280 DATA roof spans,rafters on center,roof felt paper,roof finish

cover
290 DATA ext sheathing type,exterior felt paper
300 DATA siding,insulate outside walls,drywall
310 FOR 1=1 TO 29:READ A$(I):NEXT I
320 1

330 DATA None,ft.in,2x4,2x6,2x8,1/2 in.ply,3/4 in.ply,16 in.,24
in.

340 DATA 1x6 board,yes,no,one,two,degrees,wood shingle,composition
shingle

350 DATA 1x6 siding,1/2 in.drywall,5/8 in.drywall,width,length
360 FOR 1=0 TO 21:READ B$(I):NEXT I
370 1

380 DATA stud,stud,stud,board,board,siding,plywood,plywood
390 DATA drywall,drywall,felt paper,insulation,insulation
400 DATA preformed rafter,wood shingle,composition shingle
410 FOR 1=1 TO 16:READ C$(I):NEXT I
420 '
430 DATA 2x4,2x6,2x8,1x3,1x6,1x6,3/4"x4'x8',l/2"x4' x8 *, 1/2"x4'x8'

18 Issue 21 CODEWORKS

440 DATA 5/8"x4'x8',36"xl60',15",23",-
450 FOR 1=1 TO 16:READ D$(I):NEXT I
460 '
470 DATA ft.,ft.,ft.,ft.,ft.,ft.,panel,panel,panel,panel, roll
480 DATA sq.ft.,sq.ft.,each,pack,square
490 FOR 1=1 TO 16:READ E$(I):NEXT I
500 '
510 GOSUB 2250 ' read in the prices file
520 IF DATE$='" ' THEN INPUT"What is today's date' ' ;DT$ ELSE

DT$=DATE$
530 CLS
540 PRINT STRING$ (22, 45);'' The CodeWorks '';STRING$(23, 45)
550 PRINT'' BUILDING ESTIMATE PROGRAM
560 PRINT'' cost and materials to frame and cover
570 PRINT STRING$(60,45)
580 PRINT
590 PRINT TAB(10)''1- Create new specifications
600 PRINT TAB(10)''2- SAVE specifications to disk
610 PRINT TAB(10)''3- LOAD specifications from disk
620 PRINT TAB(10)''4- EDIT specifications
630 PRINT TAB(10)''5- Calculate and display material & costs
640 PRINT TAB(10)''6- Create new unit prices ";H$
650 PRINT TAB (10) "7- EDIT unit prices
660 PRINT TAB(10)''8- Print out the specifications
670 PRINT TAB (10) "9- Quit
680 H$=""
690 INPUT ''The number of your choice ";XX
700 ON XX GOTO 730,2000,2120,2480,2740,2340,5450,5590,720

710 GOTO 690
720 CLS:END
730 CLS:1=1 , .
740 PRINT''Please use a period to separate feet and inches (ft.in)

PRINT
750 PRINT ''Dimensions'':PRINT
760 INPUT''overall length (enter ft.in)'';N
770 R(1,1)=N:R(I,2)=1:1=1+1
780 INPUT''overall width (enter ft.in)'';N
790 R(1,1)=N:R(I,2)=1:1=1+1
800 INPUT''wall height (enter ft.in)";N
810 R(I,1)=N:R(I,2)=1:1=1+1
820 INPUT''Length of excluded wall (ft.in)'';N
830 R(I,1)=N:R(I,2)=1:1=1+1
840 INPUT''Total length of interior walls (ft.in) ;N
850 R(1,1)=N:R(1,2)=1:1=1+1 ^
860 INPUT ''How many degrees pitch to roof (20 to 45) ;N
870 R(1,1)=N:R(I,2)=1:1=1+1
880 CLS
890 PRINT''Floor'':PRINT
900 PRINT A$ (7) , "choices are:''
910 PRINT ''0 ";B$(0),''3 ";B$(3),''4 ";B$(4)

CODEWORKS Issue 21

920 INPUT''Number of your choice ";N
930 R(Ifl)=N:R(I,2)=0:R(I,3)=3:R(I,4)=4:1=1+1
940 PRINT A$ (8) , "choices are:"
950 PRINT "0 ";B$(0),"7 ";B$(7),"8 ";B$(8)
960 INPUT''Number of your choice ";N
970 R(If 1) =N:R(I, 2) =0 :R (I, 3) =7 :R(I, 4) =8 :1=1+1
980 PRINT A$(9), 1'choices are:"
990 PRINT "0 ";B$(0),"6 ";B$(6),"9 ";B$(9)
1000 INPUT"Number of your choice ";N
1010 R(I,1)=N:R(I,2)=0:R(I,3)=6:R(I,4)=9:I=I+1
1020 PRINT A$(10), ''choices are:''
1030 PRINT "10 ";B$ (10) , " 11 ";B$(11)
1040 INPUT''Number of your choice ";N
1050 R(1,1) =N:R (I, 2) =10 :R(I, 3) =11: 1=1+1
1060 PRINT A$ (11) , "choices are:"
1070 PRINT "10 ";B$ (10) , " 11 ";B$(11)
1080 INPUT''Number of your choice ";N
1090 R(1,1)=N:R(I,2)=10:R(I,3)=11:1=1+1
1100 '

1110 CLS :PRINT" Exterior walls" :PRINT
1120 PRINT A$ (12) , "choices are :"
1130 PRINT "0 ";B$ (0) , " 2 ";B$(2),"3 ";B$(3)
1140 INPUT"Number of your choice ";N
1150 R (I» 1) =N:R(I, 2) =0 :R (I, 3) =2 :R (If 4) =3: 1=1+1
1160 PRINT A$ (13) , "choices are: "
1170 PRINT "0 ";B$(0),"7 ";B$(7),"8 ";B$(8)
1180 INPUT''Number of your choice ";N
1190 R(1/1) =N:R (I, 2) =0 :R (I, 3) =7 :R (I, 4) =8 : 1=1+1
1200 PRINT A$(14), "choices are: "
1210 PRINT "12 ";B$ (12) , " 13 ";B$(13)
1220 INPUT"Number of your choice ";N
1230 IF N=0 THEN N=12
1240 R (1,1) =N:R (I, 2) =12 :R (I, 3) =13 : 1=1+1
1250 PRINT A$ (15) , "choices are:"
1260 PRINT "12 ";B$ (12) , " 13 ";B$(13)
1270 INPUT''Number of your choice ";N
1280 IF N=0 THEN N=12
1290 R (1,1) =N:R (I, 2) =12 :R (I, 3) =13: 1=1+1
1300 '
1310 CLS :PRINT" Interior walls" :PRINT
1320 PRINT A$ (16) , "choices are:"
1330 PRINT "0 ";B$ (0) , " 2 ";B$(2),"3 ";B$(3)
1340 INPUT''Number of your choice ";N
1350 R (1,1) =N:R (I, 2) =0 :R (I, 3) =2 :R (I, 4) =3 : 1=1+1
1360 PRINT A$ (17) ," choices are:"
1370 PRINT "7 ";B$ (7) , " 8 ";B$(8)
1380 INPUT''Number of your choice ";N
1390 R(If 1)=N:R(I,2)=7:R(I,3)=8:1=1+1
1400 '

20 Issue 21 CODEWORKS

1410 CLS:PRINT''Ceiling joistsPRINT
1420 PRINT A$ (18) , "choices are:"
1430 PRINT "0 ";B$(0),"2 ";B$(2),"3 ";B$(3)
1440 INPUT"Number of your choice ";N
1450 R(I,1)=N:R(I,2)=0:R(I,3)=2:R(I,4)=3:1=1+1
1460 PRINT A$ (19) , "choices are:"
1470 PRINT "7 ";B$(7),"8 ";B$(8)
1480 INPUT"Number of your choice ";N
14 90 R(1,1) =»N:R (I, 2) =7 :R(I, 3) =8 : 1=1+1
1500 PRINT A$ (20) , "choices are:"
1510 PRINT "0 ";B$(0),"5 ";B$(5),"6 ";B$(6),"9 ";B$(9)
1520 INPUT"Number of your choice " ;N
1530 R(I,1)=N:R(I,2)=0:R(I,3)=5:R(I,4)=6:R(I,5)=9:1=1+1
1540 1

1550 CLS: PRINT" The Roof" .-PRINT
1560 PRINT A$ (21), "choices are:"
1570 PRINT "20 ";B$(20),"21 ";B$(21)
1580 INPUT''Number of your choice ";N
1590 R(I,1)=N:R(I,2)=20:R(I,3)=21:1=1+1
1600 PRINT A$ (22) ," choices are:"
1610 PRINT "7 ";B$ (7) ,' ' 8 ";B$(8)
1620 INPUT''Number of your choice ";N
1630 R(I,1)=N:R(I,2)=7:R(I,3)=8:1=1+1
1640 PRINT A$ (23) ," choices are:"
1650 PRINT "10 "; B$ (10) , " 11 ";B$(11)
1660 INPUT''Number of your choice ";N
1670 R(I,1)=N:R(I,2)=10:R(I,3)=11:1=1+1
1680 PRINT A$ (24) choices are:"
1690 PRINT "15 ";B$(15),"16 ";B$(16)
1700 INPUT" Number of your choice ";N
1710 R(I,1)=N:R(I,2)=15:R(I,3)=16:1=1+1
1720 1

1730 CLS:PRINT "Exterior sheathing" :PRINT
1740 PRINT A$(25),''choices are:''
1750 PRINT "5 "; B$ (5), " 6 ";B$(6),"9 ";B$(9)
1760 INPUT" Number of your choice ";N
1770 R(I,1)=N:R(I,2)=5:R(I,3)=6:R(I,4)=9:1=1+1
1780 PRINT A$ (26) ," choices are:"
1790 PRINT "10 "; B$ (10) , " 11 ";B$(11)
1800 INPUT"Number of your choice ";N
1810 R(I,1)=N:R(I,2)=10:R(I,3)=11:1=1+1
1820 PRINT A$ (27) , "choices are:"
1830 PRINT "15 ";B$(15),"17 ";B$(17)
1840 INPUT"Number of your choice ";N
1850 R(I,1)=N:R(I,2)=15:R(I,3)=17:1=1+1
1860 '

1870 CLS:PRINT''Interior covering" :PRINT
1880 PRINT A$ (28) ," choices are:"
1890 PRINT "10 "; B$ (10) , " 11 ";B$(11)

1900 INPUT''Number of your choice '';N
1910 R(1,1) =N:R(I, 2) =10 :R (1,3) =11: 1=1+1
1920 PRINT A$ (29) choices are:"
1930 PRINT "18 ";B$(18),"19 ";B$(19)
1940 INPUT''Number of your choice '';N
1950 R(1,1)=N:R(I,2)=18:R(I,3)=19:1=1+1
1960 GOTO 530
1970 '
1980 'save specifications to disk routine
1990 '
2000 INPUT''Please name the disk file (8 chars or less)'';FF$
2010 OPEN "0",1,FF$
2020 FOR 1=1 TO 29
2030 FOR J=1 TO 5
2040 PRINT #1, R(I,J)
2050 NEXT J
2060 NEXT I
2070 CLOSE 1
2080 GOTO 530
2090 '
2100 'load specifications from file routine
2110 '
2120 INPUT''What file name do you want to load '';FF$
2130 OPEN "I" , 1,FF$
2140 FOR 1=1 TO 29

2150 IF EOF(1) THEN 2200
2160 FOR J=1 TO 5
2170 INPUT #1, R(I,J)
2180 NEXT J
2190 NEXT I
2200 CLOSE 1
2210 GOTO 530
2220 '
2230 'read the unit price file
2240 '
2250 OPEN "I" , 1, "PRICES"
2260 FOR 1=1 TO 16
2270 INPUT #1,P(I)
2280 NEXT I
2290 CLOSE 1
2300 RETURN
2310 '

2320 'Enter new unit prices routine
2330 '
2340 CLS
2350 FOR 1=1 TO 16

2360 PRINT C$ (I) ; " "; D$ (I) ; :PRINT" Enter price per ";E$(I);:
INPUT P(I)

2370 NEXT I
2380 '

22 Issue 21 COOEWORKS

2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830

2840

2850

OPEN ' 'O" , 1, "PRICES"
FOR 1=1 TO 16
PRINT #1,P(I)

NEXT I
CLOSE 1
GOTO 530

'edit the specifications routine
X

CLS
IF R(7,4)<>0 THEN 2520
PRINT''You must have input a file or new data to edit.''
PRINT''press any key for main menu'INPUT X:GOTO 530
FOR 1=1 TO 6
PRINT A$(I);'' ' ';R(1,1)
INPUT''Change to, or enter to keep '';N$
IF N$="" THEN ELSE R (1,1) =VAL (N$)

NEXT I
FOR 1=7 TO 29

CLS
PRINT TAB(10);A$(I)
PRINT ' ' (' 'R(I,2) ")
PRINT ' '(' 'R (I, 3)'')
PRINT "("R(I,4)")
PRINT ' ' (''R(I, 5) ")

";B$ (R (I, 2))
' '; B$ (R (I, 3))
''; B$ (R (1, 4))
'';B$ (R(I, 5))

PRINT''You chose ("R(1,1) ") ''; B$(R(1,1))
PRINT
INPUT''Change to #, or enter to keep, or Q to quit'
IF XX$="Q" OR XX$="q" THEN 2700
IF XX$<>'''' THEN R(I,1)=VAL(XX$)

NEXT I
GOTO 530
X

'first, clear the m array then convert ft to inches
X

PRINT''Calculating.
FOR 1=1 TO 20
FOR J=1 TO 6

M(I, J)=0
NEXT J

NEXT I

;XX$

'length in inches
'width in inches
'wall height in

L=(INT(R(l,l))*12)+(R(1,1)-INT(R(1,1)))*10
W-(INT(R(2,1))*12)+(R(2,1)-INT(R(2,1)))*10
H=(INT(R(3,1))*12) + (R(3,1)-INT(R(3,1)))*10
inches
Ll=(INT(R(4,l))*12)+(R(4,1)-INT(R(4,l)))*10
length in inches
L2=(INT(R(5,l))*12)+(R(5,1)-INT(R(5,l)))*10 'interior wall

'excluded wall

CODEWORKS Issue 21 23

length in inches
2860 IF R(1,1)=0 THEN 2910
2870 XA=((Ll/12)*(H/12)) 'area in sq ft of excluded wall
2880 FA=((L/12)*(W/12)) 'floor (or ceiling) area in sq ft.
2890 LA=((L/12)*(H/12)) 'area in sq ft of one long wall
2900 WA=((W/12)*(H/12)) 'area in sq ft of one short wall
2910 IA=((L2/12)*(H/12)) 'area of interior walls in sq ft.
2920
2930 'figure the roof angles and the roof and gable area
2940
2950 IF R(21,1)=0 THEN 3080
2960 IF R(21,1)=20 THEN B=.5*W
2970 IF R(21,1)=21 THEN B=.5*L
2980 Q=TAN(R(6,1)/(180/3.1416)) *B 'height of roof triangle in

inches
2990 HY=SQR(QA2+BA2) 'hypotenuse, or 1/2 roof in

inches
3000 RF=HY+18:RF=INT(RF/12)+1 'rf is roof in ft. allow for 18 in

overhang
3010 GA=INT((Q/12)*(B/12))*2 'total gable area on both ends in

sq.ft.
3020 RR=RF*((L+24)/12) 'half the roof area in sq ft allow for

extra ft at ends
3030 RT=RR*2 'total roof area in sq ft.
3040 RX=2*(LA+WA)+GA-XA ' total outside area in sq ft excluding

roof
3050
3060 'find number and length of exterior studs
3070
3080 IF R(13,1)=7 THEN Cl=16 ELSE IF R(13,l)=8 THEN Cl=24
3090 L=L-(LI*.5)
3100 IF R(14,1)=12 THEN H1=INT(H-l.5):P=P+1
3110 IF R(14,1)=13 THEN H1=INT(H-3):P=P+2
3120 IF R(15,1)=12 THEN H1=INT(H-l.5):P=P+4
3130 IF R(15,1)=13 THEN H1=INT(H-3):P=P+8
3140 IF R(12,1)=0 THEN 3250
3150 SA=((L/Cl)+3)*2:SB=((W/Cl)+3)*2
3160 TS=INT(SA+SB) 'total studs
3170 FOR 1=1 TO 25:IF FNM(Hl) THEN H1=H1+1:NEXT I
3180 LS=H1/12 'length of studs in even 2 ft.
3190 H1=0
3200 IF R(12,1)=2 THEN M(1,2)=1:M(1,5)=1 ELSE IF R(12,l)=3 THEN

M(1,2)=2:M(1,5)=2
3210 M (1,1) =1 :M(1, 3) =LS :M (1, 4) =TS :M (1, 6) =1
3220 *

3230 'find number and length of interior studs
3240 *

3250 IF R(16,1)=0 THEN 3390
3260 IF R(14,1)=12 THEN H1=INT(H-l.5)
3270 IF R(14,1)=13 THEN Hl=INT(H-3)

Issue 21 CODE WORKS

3280 IF R(15,1)=12 THEN H1=INT(H-l.5)
3290 IF R(15,1)=13 THEN Hl=INT(H-3)
3300 IF R(17,1)=7 THEN Cl=16 ELSE IF R(17,l)=8 THEN Cl=24
3310 SA=((L2/Cl)+3):TS=INT(SA) ' total studs
3320 FOR 1=1 TO 25:IF FNM(Hl) THEN H1=H1+1:NEXT I
3330 LS=H1/12 'length of studs in even 2 ft.
3340 IF R(16,1)=2 THEN M(2,2)=1:M(2,5)=1 ELSE IF R(16,l)=3 THEN

M(2, 5)=2:M(2,5)=2
3350 M(2,1)=1:M(2,3)=LS:M(2,4)=TS:M(2,6)=1
3360 '
3370 'find number and length of floor joists
3380 '
3390 IF R(7,1)=0 THEN 3510
3400 IF R(8,1)=7 THEN Cl=16 ELSE IF R(8,l)=8 THEN Cl=24
3410 SA=(L/Cl)+3:TS=INT(SA) ' total joists
3420 W1=W
3430 FOR 1=1 TO 25:IF FNM(Wl) THEN W1=W1+1:NEXT I
3440 LS=W1/12 'length of joists in even 2 ft.
3450 W1=0
3460 IF R(7,1)=3 THEN M(3,2)=2:M(3,5)=2 ELSE IF R(7,l)=4 THEN M(3,

2)=3:M(3,5)=3
3470 M(3,1)=1:M(3,3)=LS:M(3,4)=TS:M(3,6)=1
3480 '
3490 'find number and length of ceiling joists
3500 '
3510 IF R(18,1)=0 THEN 3620
3520 IF R(18,1)=7 THEN Cl=16 ELSE IF R(18,l)=8 THEN Cl=24
3530 SA=(L/Cl)+3:TS=INT(SA) ' total ceiling joists
3540 W1=W
3550 FOR 1=1 TO 25:IF FNM(Wl) THEN W1=W1+1:NEXT I
3560 LS=W1/12 'length of ceiling joists in even 2 ft.
3570 IF R(18,1)=2 THEN M(4,2)=1:M(4,5)=1 ELSE IF R(18,l)=3 THEN

M(4,2)=2:M(4,5)=2
3580 M(4,1)=1:M(4,3)=LS:M(4,4)=TS:M(4,6)=1
3590 '
3600 'find number and length of plate studs for exterior walls

3610 '
3620 IF R(1,1)=0 OR R(2,l)=0 THEN 3740
3630 Pl=((L+W)*2)-LI 'one perimeter less excluded walls
3640 IF P=5 THEN Pl=Pl*2
3650 IF P=9 OR P=6 THEN Pl=Pl*3
3660 IF P=10 THEN Pl=Pl*4
3670 TS=INT((Pl/144)+1)
3680 LS=12
3690 M(5,1)=1:M(5,2)=M(1,2):M(5,3)=LS:M(5,4)=TS:M(5,6)=1
3700 M(5,5)=M(1,2)
3710 '
3720 'find number and length of plate studs for interior walls

3730 '

CODEWORKS Issue 21

3740 IF R(16,l)=0 THEN 3850
3750 IF P=5 THEN P1=L2*2
3760 IF P=6 OR P=9 THEN P1=L2*3
3770 IF P=10 THEN P1=L2*4
3780 TS=INT((Pl/144)+1)
3790 LS=12
3800 M(6,1)=1:M(6,2)=M(2,2) :M(6, 3)=LS:M(6,4)=TS:M(6, 6)=1
3810 M(6,5)=M(2,2)
3820 '
3830 'find sub-floor sheathing
3840 '
3850 IF R(9,1)=0 THEN 4050
3860 IF R(9,1)=6 THEN TS=INT(FA/32)+1:M(7,1)=7:M(7, 2)=7:M(7,4) =TS :

M(7,5)=7:M(7,6)=7
3870 IF R(9, 1)=9 THEN TS=INT(FA*2.3) :M(7,1)=5:M(7,2)=5:M(7,4) =TS :

M(7,5)=5:M(7, 6)=5
3880 '
3890 'find floor felt paper needed
3900 '
3910 IF R(10,1)=0 OR R(10,l)=ll THEN 3970
3920 TS=INT(FA/500)+1
3930 M(8,1)=11:M(8,2)=11:M(8,4)=TS:M(8,5)=11:M(8,6)-11
3940 '
3950 'find floor insulation needed
3960 '
3970 IF R(11,1)=0 OR R(ll,l)=ll THEN 4050
3980 TS=INT(FA*.9)
3990 IF R(8,1)=7 THEN M(9,2)=12:M(9,5)=12:M(9,6)-12
4000 IF R(8,1)=8 THEN M(9,2)=13:M(9,5)=13:M(9,6)=13
4010 M(9,1)=12:M(9,4)=TS
4020 '
4030 'find ceiling joist sheathing (top of joists)
4040 '
4050 IF R(20,1)=0 THEN 4120
4060 IF R(20,1)=5 OR R(20,l)=6 THEN TS=INT(FA/32)+1:M(10,4) =TS :

M(10,6)=8

4070 IF R(20,1)=9 THEN TS-INT(FA*2.3) :M(10,1)-5:M(10,2)-5:M (10,
4)=TS:M(10,5)=5:M(10,6)=5

4080 IF R(20,1)=5 THEN M(10,1)=8:M(10,2)=8:M(10,5)=8:M(10, 6) =8
ELSE IF R(20,1)=6 THEN M(10,1)=7:M(10,2)=7:M(10,5)-7 :M (10,
6) =7

4090 '

4100 'find number of preformed rafters needed
4110 '
4120 IF R(22,1)=0 THEN 4200

4130 IF R(22,1)=7 THEN Cl=16 ELSE IF R(22,l)=8 THEN Cl-24
4140 IF R(21,l)=20 THEN M(ll,4)-INT(((L+24)/CI)+2)-M(11

3)=INT((W/12)+3) '

4150 IF R(21,1)=21 THEN M(11,4)=INT(((W+24)/CI)+2):M(11,

3)=INT((L/12)+3)
4160 M(11,1)=14:M(11,5)=14:M(11,6)=14
4170 '
4180 'find amount of roof felt paper needed
4190 '
4200 IF R(23,1)=0 OR R(23,l)=ll THEN 4260
4210 TS=INT(RT/500)+1
4220 M(12,1)=11:M(12,2)=11:M(12,4)=TS:M(12,5)=11:M(12,6)=11
4230 '
4240 'find the amount of finish roof cover
4250 '
4260 IF R(24,1)=0 THEN 4380
4270 IF R(24,1)=16 THEN 4300
4280 IF R(24,1)=15 THEN M(13,1)=4:M(13,2)=4:M(13,4)=INT (RT*1.2) :

M(13,5)=4:M(13,6)=4
4290 M(14,1)=15:M(14,4)=INT(RT/25)+1:M(14,5)=15:M(14,6)=15:GOTO

4380
4300 IF R(24,1)=16 THEN M(14,1)=16:M(14,4)=INT(RT/100):M(14,5)=16:

M(14,6)=16
4310 IF R(25,1)=5 OR R(25,l)=6 THEN M(13,4)=INT(RT/32)+1:M(13,1)=7:

M(13,6)=7
4320 IF R(25,1)=9 THEN M(13,4)=INT(RT*2.3) :M(13,1)=5:M (13,5)=5:

M(13,6)=5
4330 IF R(25,1)=5 THEN M(13,1)=8:M(13,2)=8:M(13,5) =8
4340 IF R(25,1)=6 THEN M(13,1)=7:M(13,2)=7:M(13,5)=7
4350 '
4360 'find exterior sheathing needed
4370 '
4380 IF R(25,1)=0 THEN 4450
4390 IF R(25,1)=5 THEN M (15,1)=8:M(15,2)=8:M(15,4)=INT(RX/32)+1:

M(15,5)=8:M(15,6)=8
4400 IF R(25,1)=6 THEN M(15,1)=7:M(15,2)=7:M(15,4)=INT(RX/32)+1:

M(15,5)=7:M(15,6)=7
4410 IF R(25,1)=9 THEN M(15,1)=5:M(15,2)=5 :M (15, 4)=INT(RX*2.3) :

M(15,5)=5:M(15,6)=5
4420 '
4430 'find exterior felt paper needed
4440 '
4450 IF R(26,1)=0 OR R(26,l)=ll THEN 4500
4 4 60 M(16,1)=11:M(16,2)=11:M(16,4) =INT (RX/500) +1:M(1-6,5)=11:M(16,

6) =11
4470 '
4480 'find exterior siding needed
4490 '
4500 IF R(27,1)=0 THEN 4560
4510 IF R(27,1)=15 THEN M(17,1)=15:M(17,4)=INT(RX/25) :M(17, 5)=15:

M(17,6)=15
4520 IF R(27,1)=17 THEN M(17,1)=6:M(17,2)=6:M(17,4)=INT(RX*2.3):

M(17,5)=6:M(17,6)=6

CODE WORKS Issue 21 27

4530 ' . .
4540 'find insulation for ext walls and ceiling

4550 '
4560 IF R(28,1) =0 OR R(28,1)=H THEN 4640
4570 M(18,1)=13:M(18,2)=13:M(18,4)=INT(2*(LA+WA)-XA):M(18,5) 13:

4580 IF R(12,1)=7 THEN M (18,1)=12:M(18,2)-12:M(18, 5)=12:M (18, 6)-12
4590 M(19,1)=13:M(19,2)=13:M(19,4)=INT(FA*.9) :M(19, 5)=13:M(19,

6) =13
4600 IF R(19,1) =7 THEN M(19,1) =12 :M(19, 2) =12 :M(19, 5) =12 :M (19, 6) =12

4610 '
4620 'find the amount of drywall needed
4630 '
4640 IF R(29,1)=0 THEN 4730
4650 Tl=(2*(LA+WA)-XA)
4660 T2=2*IA
4670 TS=T1+T2+FA
4680 IF R(29,1)=18 THEN M (20,1)=9:M(20,2)=9 :M (20, 4)-INT(TS/32) +1:

M(20, 5)=9:M(20, 6)=9
4690 IF R (29,1) =19 THEN M (20,1) =10 :M (20, 2) =10 :M (20, 4) -INT (TS/32) +1

M(20,5)=10:M(20,6)=10
4700 '
4710 'combine identical items in the list
4720 '
4730 FOR 1=1 TO 20
4740 FOR J=I+1 TO 19
4750 IF M(1,1)=M(J,1) AND M(I,2)=M(J,2) AND M(I,3)=M (J, 3) THEN

M(J,4)=M(J,4)+M(1,4):M(I,1)=0
4760 NEXT J
4770 NEXT I
4780 '
4790 'sort the list into ascending order by item
4800 '
4810 FOR 1=1 TO 19
4820 L=I+1
4830 IF C$(M(I,1))=<C$(M(L,1)) THEN 4910
4840 SWAP M(I,1),M(L,1)
4850 SWAP M(I,2),M(L,2)
4860 SWAP M(I,3),M(L,3)
4870 SWAP M(I,4),M(L,4)
4880 SWAP M(I,5),M(L,5)
4890 SWAP M(I,6),M(L,6)
4900 F=1
4910 NEXT I
4920 IF F=1 THEN F=0:GOTO 4810
4930 '
4940 ' print out the results on the screen
4950 '
4960 CLS

Hi

4970 TL=0
4980 PRINT''Materials and prices for Project: '';FF$;TAB(60);DT$
4990 PRINT STRING$(70,45)
5000 PRINT''Item'';TAB(22); " Size" ;TAB(34);' ' Length'';TAB(42);''Qty'';

TAB(48);''Price'';TAB(56);''Per'';TAB(64);''Total''
5010 PRINT STRING$(70,45)
5020 FOR 1=1 TO 20
5030 IF C$ (M(1,1)) =" " THEN 5140
5040 PRINT C$(M(1,1));TAB(22) ;
5050 PRINT D$(M(I,2));TAB(34) ;
5060 PRINT M(I,3);TAB(42) ;
5070 PRINT M(I,4);TAB(48) ;
5080 PRINT P(M(I,5));TAB(56);
5090 PRINT E$(M(I,6));TAB(62) ;
5100 ST-M(I,4)*P(M(I,5))
5110 IF C$(M(I,1))=''stud'' THEN ST=M (I, 3) *M (I, 4) *P (M (I, 5))
5120 PRINT USING "##,###.##"; ST
5130 TL=TL+ST
5140 NEXT I
5150 PRINT:PRINT TAB(51); "Total is ";USING "$###,###.##''; TL
5160 INPUT''Do you want hardcopy of this (y/n)";XX$
5170 IF XX$="N" OR XX$="n" THEN 530
5180 '
5190 'printer output goes here
5200 '
5210 TL=0
5220 LPRINT''Prices and materials for Project: '';FF$;TAB(60) ; DT$
5230 LPRINT STRING$(70, 45)
5240 LPRINT''Item'';TAB(22);''Size'';TAB(34) ;' 'Length'';TAB(42);''Qty'';

TAB (48) Price' ' ; TAB (56) ; "Per' ' ; TAB (64) ; "Total' '
5250 LPRINT STRING$(70,45)
5260 FOR 1=1 TO 20
5270 IF C$ (M(1,1))=" " THEN 5380
5280 LPRINT C$(M(1,1));TAB(22) ;
5290 LPRINT D$(M(I,2));TAB(34) ;
5300 LPRINT M(I,3);TAB(42) ;
5310 LPRINT M(I,4);TAB(48) ;
5320 LPRINT P(M(I,5));TAB(56) ;
5330 LPRINT E$(M(I,6));TAB(62) ;
5340 ST=M(I,4)*P(M(I,5))
5350 IF C$(M(I,1))=''stud'' THEN ST=M (I, 3) *M (I, 4) *P (M (I, 5))
5360 LPRINT USING "##,###.##''; ST
5370 TL=TL+ST
5380 NEXT I
5390 LPRINT" ' ' :LPRINT TAB(51); "Total is ";USING "$###,###.##'';TL
5400 LPRINT CHR$(12) ' give a printer page eject
5410 GOTO 530
5420 '
5430 'edit the prices routine
5440 '

CODEWORKS Issue 21

5450 CLS :PRINT TAB (15) Change Unit Prices
5460 FOR 1=1 TO 16
5470 PRINT I;" ' '; C$ (I) ; TAB (26) ; D$ (I) ; TAB (38) ;' ' price per '';

TAB(48);E$(I);TAB(56);P(I)
5480 NEXT I
5490 PRINT
5500 INPUT''Number of item to change is (or 0 for none) '';XX
5510 IF XX=0 THEN 2390
5520 INPUT" Change price to ";XY
5530 P(XX)=XY
5540 INPUT'' Change more prices (y/n)";XX$
5550 IF XX$="Y" OR XX$="y" THEN 5500 ELSE 2390
5560 '
5570 'print out the specifications on the printer routine
5580 '
5590 LPRINT "Project: ";FF$ TAB (30);" Specif ications ' ';TAB(60);DT$
5600 LPRINT STRING$(70,45)
5610 FOR 1=1 TO 6
5620 LPRINT A$(I);TAB(30);R(I,1)
5630 NEXT I
5640 FOR 1=7 TO 29
5650 LPRINT A$(I);TAB(30);B$(R(1,1))
5660 NEXT I
5670 LPRINT CHR$(12)
5680 GOTO 530
5690 '
5700 'error trap
5710 IF ERR <>53 THEN ON ERROR GOTO 0
5720 'IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0 'BASIC prior to 5.0
5730 IF XX<>3 THEN H$=" < DO THIS FIRST":GOTO 530
5740 IF XX=3 THEN PRINT" There is no file called ";FF$
5750 INPUT"Press ENTER to continue '';XX:GOTO 530
5760 END 'of program

Changes for Tandy Model I/III

use only if you need to clear string space Changed->160 CLEAR 5000
Changed->170
R(30,5),A$(30),B$(22),C$(20),D$(20),E$(20),L(20) ,M(21, 6),P(20)
Changed->180 DEF FNM(M) = (INT(M-24)*INT(M/24))<>0

HY=SQR(Q[2) + (B[2)

DIM

Changed->2990
Changed->4840
Changed->4850
Changed->4 860
Changed->4870
Changed->4880
Changed->4890
Changed->5710
Changed->5720

T1=M(1,1)
T1=M(1,2)
T1=M(I,3)
T1=M(1,4)
T1=M(I,5)
T1=M(1,6)

'IF ERR <>53

:M(I,1)=M(L,1):M(L,1)=T1
:M(I,2)=M(L,2):M(L,2)=T1
:M(I,3)=M(L,3):M(L,3)=T1
:M(I,4)=M(L,4):M(L,4)=T1
:M(I,5)=M(L,5):M(L,5)=T1
:M(I,6)=M(L,6):M(L,6)=T1

THEN ON ERROR GOTO 0
IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0 'BASIC prior to 5.0

30 Issue 21 CODCWOUKS

Materials and prices for Project: : garage 01-01-1980

Item Size Length Qty Price Per Total

board 1x3 0 936 .17 ft. 159 .12

board 1x6 0 2001 .21 ft. 420 .21

drywall 5/8"x4'x8' 0 48 3.05 panel 146 .40

felt paper 36"xl60' 0 3 8. 95 roll 26 .85

insulation 15" 0 432 .19 sq.ft. 82 .08

insulation 23" 0 1136 .22 sq.ft. 249 .92

plywood 3/4"x4'x8' 0 16 23.5 panel 376 .00

plywood l/2"x4'x8' 0 16 21.5 panel 344 .00

preformed rafter 23 15 32.8 each 492 .00

siding 1x6 0 2001 .29 ft. 580 .29

stud 2x4 8 91 .21 ft. 152 .88

stud 2x8 20 21 .38 ft. 159 .60

stud 2x4 20 21 .21 ft. 88 .20

stud 2x4 12 37 .21 ft. 93 .24

wood shingle 0 32 13.4 pack 428 .80

Total is $ 3,799.59

Project: garage Specifications

length ft.in
width ft.in
wall hgt ft.in
length excluded wall ft.in
total length interior walls
roof pitch degrees
floor joists
floor joist centers
sub-floor sheathing
floor felt paper
floor insulation
exterior studs
ext. studs on center
top plates
bottom plates
interior studs
int.studs on center
ceiling joists
ceiling joists on center
ceiling joist sheathing
roof spans
rafters on center
roof felt paper
roof finish cover
ext sheathing type
exterior felt paper
siding
insulate outside walls
drywall

24
20
8
0
20
40

2x8
16 in.
3/4 in.ply
yes
yes
2x4
16 in.
two
two
2x4
24 in.
2x4
24 in.
1/2 in.ply
width
24 in.
no
wood shingle
1x6 board
yes
1x6 siding
yes
5/8 in.drywall

Below is a dump of the file called
•Prices." To the left are the specifi
cations for an imaginary garage.
The figure above is the final output
for the garage. You can use these
same figures to check that you have
entered the program correctly. You
should get the same answers as
shown here.

.21

.32

.38

.17

.21

.29
23.5
21.5
2.86
3.05
8. 95
.19
.22
32 .8
13.4
24.49

CODEWORKS Issue 21

Trust.Bas 1

computerize your loan payments booklet

Staff Project. This program was written at the request of Mr. Richard L.
Wright, of Buena Park, California. It takes the place of that little book that is sent
back and forth between lender and borrower. In addition, it gives you selective
printouts for any period of time, with totals.

Trust.Bas is another reader-requested pro
gram. It takes the place of that little green (or
blue) booklet that borrowers and lenders send
back and forth to each other with the payments
on a loan. So, if you have the booklet already,
what's the use of this program?

The program makes the calculations neces
sary to determine how much of a payment is
going to interest and how much to the principal.
It also lets you pick a portion of the payment
history and gives totals only for that portion.
This is handy at the end of the year if you are the
lender, because you can then give the borrower a
statement of what he paid that year. It's some
thing he will need for his income tax preparation.

The program allows any amount of payment
on a loan and figures it correctly. And, it even
uses negative amortization if the payment is
insufficient to cover the interest. That is, it adds
the difference to the principal! This is the type of
thing that was going on back in the late '70s,
when so many farms were going belly-up. It's
enough to warm the cold heart of any slum lord.

One of the problems that many computer
programs will be running into shortly is making
the gap between the year 1999 and the year
2000. To get around this problem, the program
uses a date format that is slightly unconven
tional. The date is entered as YYYYMMDD. It is

also a double precision number in the program.
This lets you find dates greater than and less
than a given date.

The program will work with as many files
(loans) as you wish. The files are sequential, and
contain the initial principal amount and the
interest rate, along with the record of payments
made. Provision is made to print the payment
history on the screen or on a line printer. When
on the line printer, provision is made for paging
the output into 36 payments per page (three
years worth if payments are made monthly.)

When the program asks for starting and end
ing dates, those dates are inclusive. If you don t
remember what dates are in the file and want to
see them all you can enter 00000000 for a start
ing date and 99999999 for an ending date. The
size of the file is adjusted so that each file can
hold 30 years of monthly payments. This should
cover most loans.

Program Details

The program starts with initialization in line
150. In line 160 we clear some string space for
those machines using BASIC prior to version
5.0. The rest of us can leave this line remarke •
In line 170 we dimension the variables that wil
hold the information on each payment. Here is
where we adjust the size of the file to 30 years

32 Issue 21 CokWokks

(360 monthly payments). line 180 is just a
"calibration" line, so that you can get the spacing
of the following lines properly. Since Fl$
through F4$ will be used several times in the
program, and at various places in the program,
we set them up as formatted strings here, in
lines 190 to 220. Putting them all in one nice
chunk like this makes it easy to adjust the
spacing should you want to change it. The last
line of the initialization section, line 230, sets our
error trap. The only error we will be trapping for
is the "file not found" error.

The section of code from 250 to 340 loads the
particular file we wish to work with. If the file
does not yet exist, the error trap will be sprung
and we will go to line 1150 to create the file. Let's
go there now and see how a file is initialized.

If your BASIC is prior to version 5.0 you
should remark line 1150 and un-remark line
1160. These lines "reset" the error trap so that
normal errors will still show properly. Line 1180
tells you that the file you requested does not yet
exist and line 1190 asks if you want to create it.
If no, we just end the program so you can start all
over. Otherwise, we open the file in line 1210 and
then, in line 1220, ask what the beginning bal
ance is. Then we ask for the interest rate in line
1240. Line 1250 prints these values to the file as
BA and IR, respectively. We then close the file in
1260 and go to line 270. Let's go back there now.

In line 270 we open the file for input and im
mediately input the two values, B A and IR. Then
the loop between 290 and 320 reads in (if there is
any) the data. D#(I) is the date, P(I) is the
payment amount, IA(I) is the interest portion of
the payment, PI(I) is the principal portion of the
payment and B(I) is the new balance amount. In
line 330 we let N1 equal the number of array
items in the file. We will need to know that
number later on when we read the array. Line
340 simply closes the file, because we are now
done with the file and all the data is in the
appropriate arrays.

Lines 360 to 490 are the heading and the
menu options that will print on the screen. We

use a simple ON XX GOTO statement in line 480
to take us to the appropriate sections of the pro
gram depending on our menu choice. Line 490 is
there so that if the number we choose is less than
one or more than four, the question will auto
matically be asked again.

The "quit" routine is at line 520. It simply
closes any open files, clears the screen and ends
the program, returning us to the BASIC ready
prompt.

The "enter payments" routine is from 540 to
680. This is also where we figure out how much
of the payment is interest and how much goes off
the principal. First of all, fine 550 asks for the
date of the payment, and line 560 asks for the
amount. These become D# and P, respectively.
Now we have to worry about the very first
payment on a loan because all the information
we have at that point is the balance and the
interest rate. We can check array element B(l) to
see if it is zero to tell us if this is the very first
payment. We do just that in line 580. If it is then
T1 (the amount of interest in the payment) is
calculated by taking the balance times the inter
est rate and dividing that by 12 to get the
monthly amount. If it is not the first payment we
have to use the last ending balance, so the ELSE
portion of fine 580 takes the last balance times
the interest rate and divides by 12.

In line 590 we take care of the case where the
payment is not enough to cover the interest
portion. Here, we apply the whole payment
amount to the interest portion, nothing to the
principal payment portion, and add the differ
ence between the interest amount and the pay
ment to the principal balance! Awful, no?

In line 610 we again look to see if this is the
very first payment and again make adjustments
appropriately. Next we print the format strings
we established early in the program, Fl$ and
F2$. Then, using the format string F3$, we print
the date, the payment amount, the amount
going to interest, the amount going off the prin
cipal and the new balance amount. Now we have
to add these values to the array (up till now they

CODEWORKS Issue 21 33

were just printed on the screen). So, in line 650
we "Hump" the array count by one to make a new
place for the latest information and then in line
660 we put the information into the new array
position (N1 plus one).

If there are more entries to make, line 680 will
take us back to line 550 where we can enter
more. Otherwise, normal program flow will take
us to line 700, where we automatically save the
freshly updated array to the disk file. Having
done this, line 770 takes us back to line 360 to
display the heading and menu options again.
One interesting thing to note in saving the file
(or reading it, for that matter) is that the file does
not have to be identical items. Note that the first
two items in the file are BA and IR, and then the
array items follow. If you do this, you must
always be sure to read in those two items first
and when you save, save them first. You can
actually put a variety of different sized items in
a file this way.

The code from line 790 to 960 lets you select a
range of entries to display on the screen and get
totals for that portion. This is where you can get
totals for a given year, for example. Whatever
portion of the file you specify, by dates, will be
totaled by this section of code. You are asked for
the starting and ending dates. Remember that
these dates are inclusive. We again use our
format strings, Fl$ and F2$ to print the heading
on the screen, and then loop through the array
pulling out dates that fit our specifications. In
line 860 we set SI, S2 and S3 to zero, since they
will be used as accumulating registers to keep a
running track of the totals. Those totals will be
for payment, interest amount and payment on
principal amount. We print the entries selected
on the screen using another of our format
strings, F3$, in line 890. When all selected en
tries have been printed, another format string,
F4$, will print our totals. The input statement in
fine 950 simply stops the program at this point so
we can inspect our results before we continue.
When we do continue, program flow takes us
back to the main menu.

The last section of code from 980 to 1120 is
almost a repeat of the section we just went

through. This time, however, it sends output to
the printer. In addition, it provides for paging
the output, 36 entries per page with a heading on
each page. Like the previous section, running
totals are kept, again using SI, S2 and S3, which
are set to zero again in line 1000. Also in line
1000, we set the page counter, PA, to zero and
the line counter, CT, as well. These counters will
be used to tell us when a page is full (CT) and the
page number we are on (PA). Note that we are
not using a For...Next loop here as we did in the
screen print section. Sometimes it is easier to use
a home made loop in situations like this one.
Jumping into and out of it is a little more grace
ful. The LPRINT CHR$(12) in line 1110 is a page
eject command to the printer, so that we can
index to the next page. It appears again in 1120.
The page eject in fine 1110 is there so that the
page will eject when we are done printing the
report. The one in line 1120 is there to advance
us to the next page during the printing of the
report. Our loop is incremented in line 1110,
where 1=1+1 appears as the first item in that
fine. Our loop actually operates between fines
1080 and 1120. Note in line 1120 that if the fine
count is equal or less than 36 (the number of
items to print on one page) we go back to fine
1080 to get more items. Once we exceed 36 lines
(items) on the page we advance the page counter
by one, set the fine counter (CT) back to one,
issue a page eject and go back to line 1030 so that
we can print the heading on the new page. This
is why a For...Next would have been a bit cum
bersome in this case.

Operating Notes

No provision has been made to prevent scroll
ing on the screen. The assumption being that
you probably don't want more than one screen-
full at a time there anyway. The printed output
will provide neatly paged entries, however. The
program does not have an edit mode. You only
make two entries, the date and the payment
amount. The rest of the information is calculated
by the program itself. If you make a mistake in
the payment amount, it will reflect errors in all
the following entries. For that reason, enter your
amounts carefully. The data file created by this

program can be called up and edited with any
text editor, since it is nothing more than a pure
ASCII file. At any time during the life of the loan
that a balloon payment is called for, the "balance
unpaid" amount will be the balloon payment
amount.

You can have as many data files (loans) as you
wish with this program. To get from one to
another, you must exit and type "RUN" and then

give the name of the file you wish to use. This is
possible because we have included the interest
rate and beginning balance in the data file itself,
instead of hard coding them into the program
structure.

You can use this program if you are a borrower
or a lender. We use it to check up on the lender of
our own loans to make sure that each payment is
being credited properly by the lender.

Trust.Bas listing for MS DOS and
Tandy Models II and IV. Tandy
Model I and III changes follow listing.

100

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

REM * Trust.Bas * payments on a deed of trust
REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem
REM * (c)1989 80-NW Publishing Inc. & placed in public domain.

'Initialization
'CLEAR 2000 ' use only with BASIC prior to ver. 5.0
DIM D#(360),P(360),IA(360),PI(360),B(360)
'012345678901234567890123456789012345678901234567890123456789
Fl$=''Date of Amount Credited on Balance
F2$=" Payment Paid Interest Principal Unpaid
F3$=' ' ######## ####.## ####•## ####•## #######•##
F4$=" $$#,#####.## $$#,####•## $$#,####•##
ON ERROR GOTO 1150

'load the data file, if it doesn't exist, make^it
INPUT''What filename do you wish to work with ";FF$
OPEN "I",l, FF$

INPUT #1, BA, IR
FOR 1=1 TO 361

IF EOF (1) THEN 330
INPUT #1, D# (I),P(I),IA(I),PI(I),B(I)

NEXT I
N1=I-1

CLOSE 1

CLS
PRINT STRING$(22, 45);'' The CodeWorks ";STRING$(23, 45)
PRINT'' RECORD OF PAYMENT

PRINT'' Records payment on a Deed of Trust

CODEWORKS Issue 21 35

400 PRINT STRING$(60, 45)
410 PRINT
420 PRINT TAB(15);''1 - Enter payments
430 PRINT TAB(15);''2 - Print history of payments
440 PRINT TAB(15);''3 - Hardcopy history of payments
450 PRINT TAB (15);" 4 - Quit
460 PRINT
470 INPUT" Number of your choice '';XX
480 ON XX GOTO 540,800,990,520
490 GOTO 470
500 '
510 'quit routine
520 CLOSE:CLS:END
530 '
540 CLS
550 INPUT"Date of payment (YYYYMMDD) '';D#
560 INPUT"Amount of payment ";P
570 PRINT
580 IF B(1)=0 THEN Tl=(BA*IR)/12 ELSE T1=(B(N1)*IR)/12
590 IF P<T1 THEN T3=B(N1)+(Tl-P):T2=0:T1=P:GOTO 620
600 T2=P-T1
610 IF B(1)=0 THEN T3=BA-T2 ELSE T3=B(N1)-T2
620 PRINT Fl$
630 PRINT F2$
640 PRINT USING F3$;D#;P;T1;T2;T3
650 N1=N1+1
660 D#(N1)=D#:P(N1)=P:IA(N1)=T1:PI(N1)=T2:B(N1)=T3
670 INPUT" Any more payments to record (y/n)";XX$
680 IF XX$="Y" OR XX$="y" THEN 55.0
690 '
700 'save the updated file
710 OPEN''O'',1,FF$
720 PRINT #1,BA,IR
730 FOR 1=1 TO N1
740 PRINT #1,D#(I);P(I);IA(I);PI(I);B(I)
750 NEXT I
760 CLOSE 1
770 GOTO 360
780 '
790 'print payment history on screen
800 CLS
810 INPUT" Starting date (YYYYMMDD) ";Dl#
820 INPUT' ' to ending date (YYYYMMDD) "; D2#
830 PRINT Fl$
840 PRINT F2$
850 PRINT
860 S1=0:S2=0:S3=0
870 FOR 1=1 TO N1
880 IF D# (I)<D1# OR D#(I)>D2# THEN 910

890 PRINT USING F3$;D#(I);P(I);IA(I);PI(I) ;B (I)
900 S1=S1+P(I):S2=S2+IA(I):S3=S3+PI(I)
910 NEXT I
920 PRINT
930 PRINT USING F4$;S1;S2;S3
940 PRINT
950 INPUT''press enter to continue'';XX
960 GOTO 360
970 '
980 'make hardcopy of payment history and page it
990 CLS
1000 PA=1:1=1:S1=0:S2=0:S3=0:CT=1
1010 INPUT" Starting date (YYYYMMDD) " ;Dl#
1020 INPUT" to ending date (YYYYMMDD) D2#
1030 LPRINT FF$;TAB (60) ; "Page ";PA
1040 LPRINT" "
1050 LPRINT Fl$
1060 LPRINT F2$
1070 LPRINT" "
1080 IF D*(I)<D1# OR D#(I)>D2# THEN 1110
1090 LPRINT USING F3$;D#(I);P(I);IA(I);PI(I) ;B (I)
1100 S1=S1+P (I) :S2=S2+IA (I):S3=S3+PI(I):CT=CT+1
1110 I=I + 1:IF I>Nl THEN LPRINT" '':LPRINT USING F4$;SI;S2;S3:LPRINT

CHR$(12):GOTO 360
1120 IF CT<=36 THEN 1080 ELSE PA=PA+1:CT=1:LPRINT CHR$ (12) :GOTO

1030
1130 '
1140 'error trap for file not found
1150 IF ERR <>53 THEN ON ERROR GOTO 0
1160 'IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0
1170 CLS
1180 PRINT" That file does not exist yet.
1190 INPUT''Do you wish to create it (y/n)";XX$
1200 IF XX$="N" OR XX$="n" THEN 520 ' to close, clear and END
1210 OPEN''O'',1,FF$
1220 INPUT''What is the beginning balance '';BA
1230 PRINT''What is the interest rate."
1240 INPUT"enter as a decimal, like .085";IR
1250 PRINT #1, BA,IR
1260 CLOSE 1
1270 GOTO 270
1280 END 'of program

Change lines for Tandy I and III I
Changed->160 CLEAR 2000 ' use only with BASIC prior to ver. 5.0
Changed->1150 'IF ERR <>53 THEN ON ERROR GOTO 0
Changed->1160 IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO

Editor's Notes, from page 2
Souvenir was too clutzy. It turns out that School-
book is just a little heavier than Times Roman,
but not so overpowering as Bookman. I think
we'll keep it for a while. Aside from that, School-
book's italics stand out a lot better than in any of
the other typefaces we have available. And just
in case you are interested in the difference, our
listings are all done in 11 point Courier. We use
that because Courier is a mono-spaced face,
which means that it prints 10 characters to the
inch like a typewriter. If we didn't do that, we
would lose the spacing in the listing between
quotes, for example. As you can see, there's more
going on in publishing a magazine than selecting
the editorial content.

Ever since we started with the NFL Oracle,
back in 1986, we have been keeping track of how
well it does. So far, this year, it is way ahead of
what it did in previous years. Even though there
are still two regular season games to be played
as I write this, NFL88 is picking at 66 percent!
Now I suppose after that boasting, it will die on
us for the last two weeks of the season. What it
really says, though, is that the teams are playing
at just about their calculated strengths, in spite
of an occasional upset. That's good, because it
will up our averages for the year and also give us
a better chance at picking the post season games
and the Super Bowl with Playoff.Bas. This year,
we will be putting the week 16 statistics on the
download so you can use Playoff.Bas. In prior
years, of course, we only needed the stats for the
first 15 weeks. It's interesting to note that with
only two weeks of regular season play left, there
are several divisional championships still up for

grabs (ours included.) Of course, by the time you
read this, we will all know a little more about it
all. But right now, I'd say that the Super Bowl
will be played between the Vikings and the Bills.
Oh well, I've been wrong many times before.

Did you know that anything you can print on
the screen or printer can also be printed to a disk
file? Including tabs, print USING and all the
rest? We found that out when we tried to capture
an output screen so that we could import it into
PageMaker and put it directly into the issue. We
couldn't think of a better way to do it, so we just
went into the program and wherever it prints
out, we added an identical line that instead of
just saying PRINT, said PRINT #1,. Naturally,
you open a disk file first so that you can input all
that information. After the program has printed
all its stuff on the screen and into the disk file,
you close the file. Then, you can load the file with
a text editor and clean it up if necessary, and
then import it directly into the desktop pub
lisher. If you choose 10 point Courier for a type
face, it will even space out correctly in the type
setting program. Well, it isn't 100 percent yet,
but you can see some of the results we got on
page 31 of this issue. Our efforts are to make this
a totally desktop published issue. We even scan
in the cartoon (you can tell by the little jagged
edges on curved lines) and hope the author of
those cartoons doesn't mind too much.

Another new year is upon us, and we wish to
take this opportunity to thank each and every
one of you for supporting CodeWorks and our
efforts to bring good BASIC programming to
you. We hope your new year will be peaceful and
prosperous. Happy New Year to you all. Irv

Notes

As you know, MS DOS and GW BASIC have
on-screen editing capability. This makes it easy
to duplicate lines of code because you can edit
line numbers. Something not so obvious was
that you can re-execute a direct statement
(statement without a line number), simply by
moving the cursor under the first letter of the
command and pressing ENTER. We had this

demonstrated quite by accident lately when we
entered the following line to check out a random
number sequence:
FOR 1=1 to 100:PRINT INT(RND{1)*15)+1;:
NEXT I
We were checking to see that the numbers were
in the range we asked for. By putting the cursor
under the F in FOR, and pressing ENTER, the
whole sequence executes again. You can do the
same with RUN or LIST.

Handy Order Form
RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95

All third year issues, Nov 87 through Sep 88 $24.95

All second year issues, Nov 86 through Sep 87 $24.95

All first year issues, Sep 85 through Sep 86 $24.95

1st Year Program Disk (issues 1 through 7)
(Specify computer type below) $20.00

2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00

3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available now $20.00

NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TOSDOS 6.x
(Tandy Model IV) and most CP/M MBASIC formats, on

51/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE.

O Check/MO enclosed
O Charge to my VISA/MC. _exp

Ship to: Name.

Address _

City State. .Zip.

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders maybe called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only
189

CODE WORKS Issue 21 39

Index & Download
What's happening with both

Here are the updates to bring Cwindex.Dat up
to date through the last issue. The entire index
for the first three years of CodeWorks is on the
download and on our yearly diskette.

CorreLbas, reference, issue 20, page 3
Notes, MS DOS FIND command, issue 20,

page 4
Notes, on hard disks, issue 20, page 5
Qkey.bas, reference, how to edit errors, Issue

20, page 5
Errmsg.bas, main program, issue 20, page 8,

expanded error messages
Beginning BASIC, error messages for begin

ners, issue 20, page 7
Playoff.bas, main program, issue 20, page

14, post season predictions
Cword.bas, main program, issue 20, page 21,

a chain word program
Random files, yearly recap of changes, issue

20, page 28
Ranprnt2.bas, main program, issue 20, page

29, column totals

Split.bas, main program, issue 20, page 37,
split ASCII files

Download, notes on the download, issue
20, page 40

Notes, where to check for EOF, issue 20,
page 20

The download has been running rather
smoothly for the past two months. Our power
shifting has finally come to an end and things
have settled down nicely.

Keep in mind (if you are a football fan) that
this year we will be utilizing the statistics for
week 16 of regular play. This will be needed for
the program Playoff.Bas (from the last issue) to
predict playoff games and the Super Bowl. We
will have the week 16 stats on the download by
Tudesday noon of the week following the last
week of regular season play. The file size by then
will be at least 10 to 12K

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
U.S. Postage

PAID
Permit 774

Tacoma, WA

2910
ERIGKSON, MIKE / KR.JB
BOX 250
MONTE RIO OA 95462

• CODEWORKS
Issue 22 Mar/Apr 1989

CONTENTS

Editor's Notes 2

Forum 3

Beginning BASIC 6

Budget.Bas 9

Notes 18

Sort on Input 19

Flow.Bas 24

Pay2.Bas 30

CWindex &, Download 40

CODEWORKS Editor's Notes
Issue 22 Mar/Apr 1989

Editor/Publisher
Irv Schmidt

Associate Editor
Teny R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashburn

(c)1989 80.Northwest Publishing Inc. Nopat-
ent liability is assumed with respect to the use
of the information contained herein. While
every precaution has been taken in the prepa
ration of this publication, the publisher as
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre
sented in this publication are placed in
public domain. Please address all correspon
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 98409

Telephones
(206) 475-2219 (voice)

(206) 475-2356 (modem download)
300/1200 baud, 8 bits, no parity and 1

stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned if return postage is provided. Compen
sation will be made for works which are ac
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all Issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (206) 475-2219.
Charge card orders may also be left via our
on-line download system (206) 475-2356.

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
a sample copy at no cost.

As many of you found out, we were
n't answering our phone for a couple of
days in early February. This area, in
spite of being more than 47 degrees
North, hardly ever gets to see snow.
Hardly ever happened, in fact, on the
1st of February. Not only did we get
snow, but it stayed cold for over two
weeks, keeping the stuff right there
on the roads. In an area like this,
where it snows so seldom, people just
don't know how to drive in it and so
there were lots of interesting acci
dents and fender benders. Anyway,
we all did the prudent thing and
stayed home during the worst couple
of days. Now that it has thawed out,
the auto body people and the plumb
ers are having a field day.

During the cold snap I took the
opportunity to start researching and
writing a feature article for the maga
zine on Artificial Intelligence. The
search of available material led me
down some surprising paths. In
trying to answer the questions that
came up I was led into the realm of
quantum physics, of all things. I
found two books on that subject that
were totally absorbing -1 couldn't put
them down, even though they had
strayed from the primary focus of
what I was trying to write about. Still,
there were several questions that are
frequently asked by both the propo
nents of AI and quantum physics. One
of them asks "what's real?" and the
other is "just what is intelligence?"
Both are interesting and intriguing
questions when you stop to think
about them. From what I could
gather, physics is now down to the
level where they don't know if it's
really physics or philosophy. The
physicist Heisenberg (uncertainty
principle) says that the mere act of
measuring anything at the quantum
level forever changes it into some
thing else and excludes all possibility
of performing a different measure
ment on that same thing.

There are several schools of
thought on these subjects. Niels Bohr

and Albert Einstein had several inter
esting exchanges in regards to quan
tum mechanics and reality. One the
ory has it that if you can't see some
thing it really doesn't exist, or that
reality is in the eyes of the beholder.
Yet another says that when one
course of action is chosen, all the other
possible courses of action take place
too, in another reality. In all there
were about six or seven different theo
ries like this. Amazing stuff - and
these guys got paid for sitting around
and thinking up these things. It's
interesting to note that Bohr and Co.
occupied facilities in Copenhagen
donated by a beer company. Then
there is the Austrian physicist Erwin
Schroedinger's cat - but by now I was
so far off the course of AI that I reluc
tantly put away the quantum books
and got back to the subject.

Ifwhatlhavejust said piques any
one's imagination, the two books on
quantum physics (very readable, by
the way) were: Quantum Reality:
Beyond the New Physics, Nick Her
bert, Anchor Press/Doubleday, Gar
den City NY 1985 and Beyond the
Quantum, Michael Talbot, Bantam
Books, 1988.

Meanwhile, back in the real world,
I began to wonder if Dettmann had
deserted us. I got a phone call from
him just after midnight one night. He
was calling from the airport and was
on his way again on yet another of his
seemingly endless trips. He told me
that he had the Outline program in
his portable and would send it to me
via modem from wherever he hap
pened to be. A few days later I found a
few of the opening lines of Outline on
my computer and nothing else. It was
just about one screenful. There's still
a little time before we close this issue,
and he just might show up yet - but
I'm not holding my breath. Have faith,
good people, we will get that program
published yet!

Irv

2 Issue 22 CODCWORKS

Forum
An Open Forum for Questions and Comments

I am trying to get information on how Dollar
(packed) or "packed decimal" works, the basic
code used and how to read it in a hexadecimal
file. I have a program that uses it and would like
to be able to change error amounts by using a file
editor. I have not found any books or articles on
it under these names. Do you have any recom
mendations?

E. A. Hamer
Lighthouse Point, FL

Although I'm not quite sure what you are
asking, it sounds a little like "string packing."
String packing is a technique whereby you assign
a string variable with, say, ten spaces between
quotes. Then you put the data which will be
packed into that string into data statements.
Then, with a loop, you read the data statements
and poke the data into the empty string. Then you
can delete the data statements themselves and the
loop which poked the data into the string. You can
put machine code into such a string, and when it
executes in Basic, it will execute the machine code.
It also takes up less memory space than conven
tional methods. On some earlier machines, it was
the only way to get fast graphics on the screen.
This scheme was never documented in any manu
facturer's literature, but was the subject of vari
ous articles in some computer magazines (80-
Micro comes to mind as one of them.)

I have a correction you can make in Issue 20,
page 35, under changes to Ranidx.Bas for Mod
els II/IV.

Line 4620 SYSTEM "RENAME "+FX$+"
"+TO"+" "+FT$

change to
Line 4620 NAME FX$ AS FT$

Loyd G. Orr
Bellevue, NE

Now that you mention it, you certainly are
right.

. . .is there any reason that Bio.Bas won't

"VXREF?" I have not been able to get a printout
of it.

S. A. Langell
North Canton, OH

Can't think of any reason Bio will not VXREF,
except, if it is not saved in ASCII format first. Try
this: SAVE "BIO.BAS",A

. . .1 have been reading and entering some
programs from the book "Modems and Commu
nication on IBM PCs" by W. David Schwaderer.
There is some fun stuff here. Much of the simple
material is covered in your Beginning BASIC
series. Some of the more complicated material
on communications software could be useful.
The author writes strictly for BASICA. If this
were converted to generic BASIC, those of us
who use other machines could benefit.

I like your magazine. There isn't much left for
the casual programmer, except you. May you
live a thousand years.

Tom Witt
Rochester, NY

This is something we'll have to put on our to-do
list. Thanks, and may you too, live long and
prosper.

. . .1 too, have been with you since issue
number one. Your editorial in number 19 was
very interesting. I do believe that we will see as
many improvements in the next twenty years..

.. .Phil Brown wrote me a letter and thanked
me for the plug he got in Issue 17 when I wrote
you about the Family History System genealogi
cal program. My Long Family History file now
has 967 records and the disk is only 3/4 full. I
may have to get a hard card if I find many more
cousins.

Seymour E. Long
Margate, FL

As a charter subscriber to your magazine you
are to be congratulated on publishing the very

CODEWORKS Issue 22

best computer programming publication I have
been able to find in over 10 years of work and
play with computers. Thanks, and keep it up.

For some time I have been searching for a
program which would compare paying for a loan
with any selected interest rate versus paying
with cash from a bank account, and repaying
yourself over the period of the loan with deposits
equal to the monthly loan payments, compound
ing the interest as the bank account is replen
ished to the amount of the withdrawal.

To clarify, you take a $10,000 loan, with a
12.5% APR, which would carry an interest
amount of $1295, and a monthly payment of
roughly $450. Against this you wish a compari
son should you have a $10,000 bank account
which you can withdraw and pay cash, but each
month you deposit $450 back into the bank
account, and assuming certain selectable bank
interest rates, with compounding at variable
selectable periods, you get a gain or loss over and
above the interest you would receive if the
money remained in the savings account? ...

Otto Kinbacher
Babylon, NY

Back when they started the world, there was a
little footnote in the charter that said, 'You will
always pay more interest than you receive," and
apparently, no one has ever changed it. But get
ting back to reality, we have several different
types of loan programs floating around here.
We'll work on putting something together that
will make the comparison.

.. .1 have a lot of fun with your programs and
the feature articles are very helpful. I am taking
a local Basic programming course and doing
some home study, so your magazine helps every
thing fit together.

My problem with line 1000 in the NFL88
program coming up "Subscript out of range"
finally cleared up. Although I could find no dis
cernible error, when I retyped the line com
pletely the problem disappeared. I have had
this happen occasionally before. ..

There are two errors, however, in the NFL88
program that I found and had to clear up to get
the program to run properly. Lines 1240 and
1250 each have terms TO which should read SO.

Donald E. Williams

Tucson, AZ
Retyping entire lines has happened to us too on

occasion. Sometimes, it's hard to explain it. As to
the errors in lines 1240 and 1250: Those vari
ables are T-zero and S-zero, not TO and SO. In
fact, there is already an S-zero in the previous
lines. If you changed TO to SO, you probably
have gotten yourself into even more trouble.
Check line numbers to see what a zero looks like
and the word "FOR" to see what an "OH" looks
like. We used to slash our zero, but with our new
way of putting the magazine together it doesn't
work anymore.

.. .Thank you very much for the many hours of
information and pleasure that have been gained
from your magazine. After reading The Forum, I
want to add my dittos to Mr. Jeavons' comments
about hanging in there with this great work of
education and enjoyment - don't give up the ship.
Concerning Mr. Kelley ($194), I also am very
busy (travel for a living), but you can always
make time for some pleasures in this life consid
ering the time spent is both rewarding, educa
tional and affords you many time-saving con
cepts and ideas that are most rewarding.

Bill Dahlstrom
Cliffs Notes, Inc

Lincoln, NE
Thanks for the nice comments. We'll try.

I am virtually a charter subscriber to Code-
Works and after all this time, I still don't know
why. I have 1-2-3, DBase, and WordPerfect on a
clone and lack for little in the way of software
that I need. Your magazine is well-written, by
computer standards, and informative. What I
would like to see is material directed more to
wards applications that are not likely to be
provided by the major software houses. There
are already terrific database and modeling tools
available. Why not explore new areas, graphics,
for example.

Attached is an article from Scientific Ameri
can describing a set of curves that can be devel
oped, iteratively, with truly impressive results,
at least as reported by the author.

(Following) is a short program which I had
hoped to be the basis of an integrated set of
programs described in the article. I started with

4 Issue 22 CODE WORKS

a simple exercise, draw a circle, the hard way,
point by point. Only with the most egregious of
finagling constants could I get a round circle.

10 SCREEN 2
20 WINDOW (0,0)-(330,100)
30 INPUT "ENTER SCALE <50";C
40 CLS
50 FOR T=0 TO 360
60 R=T*3.1415/180
70 X=(C*600/240*COS(R)+165)
80 Y=(C*SIN(R)+50)
90 A=PMAP(X,2)
100 B=PMAP(Y,3)
110 PSET (X,Y)
120 PSET (A,B)
130 NEXT T
140 END

Why do I have to finagle the X coordinate to
get a round circle? Shouldn't the WINDOW cor
rect for the differences in the physical and logical
coordinates?...

David Charlton
Corning, NY

(We) tried (the above) program to plot circles
and found it to be rather impressive. Getting
round circles is always a problem. This is because
even though the digital circuits in your computer
may define a perfect circle, the video amplifiers in
your video display are analog. Both vertical and
horizontal deflection amplifiers have gain and
linearity problems. You don't see it, usually, with
just text on the screen. But with graphics these

14

13

12
Games ^
picked 10

cor- 9
rectly 8

I
1

H H

1 1 1 1 1 1 • 1 1 1 1 •
• 1 1

1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14 15 16

Week Number
This is how NFL88 picked them for the past

season. We were over 50% for every week but
one, for an over-all performance of 66.48%
Playoff.Bas did worse, picking only 55%.

come into apparent display. Even when you
fiddle with the gain to make a circle round, it still
may not be, because the amplification is not
constant over the entire sweep of the amplifier.
Higher quality video display units exhibit less of
these tendencies, but still have them.

Well, if you take a look at the lower left of this
page, you will see the results of NFL88 for this
year. Not too bad - actually, the best we have
ever done with it in the three years it's been
around. Not so with our Playoff.Bas program.
Out of the nine games (including the Super-
Bowl) we only picked five correctly. Not so very
good, and we can't even blame it all on the
Vikings this year! And what happened to my
prediction in the last issue? You win some and
you lose some.

Thanks once again for the good input, and
we'll see you next in the Spring. Irv

An old man, a computer and the sea.

CODEWORKS Issue 22 5

Beginning BASIC
Two-Level Sorting

i

Sorting on two levels is not really that big a
deal when you get into it. Let's take an example
where we have two arrays, with the information
in the first array tied somehow to the informa
tion in the second. (Like name and age, or item
and price.) The steps necessary to do a two level
sort on these arrays are:

1. Sort the first array in the normal manner,
making sure that when a switch is required that
you also switch the corresponding item in the
second array.

2. Sort again, this time on the second array -
but make switches only when the corresponding
item in the first array is the same as the item
following it.

Let's say we have two makes of television,
Brand X and Brand Y, and that we have three
different models of each. We want to sort by
make, and within make, we want the model
numbers to be in ascending order. The unsorted
list might look like this:

After doing the above, our two arrays would
look like this:

Brand X4008
Brand X4000
Brand X4002
Brand Y3003
Brand Y3002
Brand Y3001

Now we can do the second level sort. Again, in
pseudo-code, it would look like this:

FOR 1=1 TO 5
nextmodel = 1+1
if brand is NOT equal to nextbrand then goto

NEXT I
if model# is equal or less than nextmodel#

then goto NEXT I
else switch model# with nextmodel#
NEXT I

Now we are done and the list looks like this:

I

Brand X4008 Brand X4000
Brand Y3003 Brand X4002
Brand Y3002 Brand X4008
Brand X4000 Brand Y3001
Brand X4002 Brand Y3002
Brand Y3001 Brand Y3003

We first sort on the Brand, carrying the model
number along when we must make a switch. In
pseudo-code, it would look like this:

FOR 1=1 TO 5
nextbrand = 1+1
if brand is equal or less than nextbrand then

goto NEXT I
else switch brand with nextbrand, and...
also switch the corresponding model numbers
NEXT I

Which is what we wanted in the first place.

An example of the actual code that will do all
of the above is given in the accompanying listing.
In it, we have ten month names and ten numbers
representing some quantity. For our purposes it
doesn't make any difference what those num
bers represent. The month names and the
numbers are held in data statements, but could
just as well have been brought in from a disk file.
Since we have them in data statements, we need
to read them into their respective arrays. Note

6 Issue 22 CODEWORKS

that one array is a string array and the other is
integer. This doesn't have to be like that, but is
there to show that you can sort either or both.

Our arrays are set up from the data state
ments in lines 140-170 and 190-220. For pur
poses of illustration only, we next go to the
subroutine at line 530 to print the arrays out so
you can see them.

Our first level sort takes place between lines
280 and 340. Notice that our loop count goes to
one less than the number of items to sort. This is
because in line 290 we are looking ahead one,
and so that last item will be taken into account.
In fine 300 if the item we are looking at is equal
or less than the next item in the list, we leave it
alone and go on to the next item in the list. If the
item we are looking at is larger (larger ASCII
value) than the next item in the list, we switch
the two in line 310. Then we switch the corre
sponding items in the second array in line 320.
Also in line 320 we set the flag F, equal to one.
This flag is used to tell us that we have just made
a swap. In line 340 we will check to see if that flag
is set, and if it is we reset it to zero and go through
the list again, looking for more things to swap.
When we can get through the entire list without
making a swap (F does not get set to one) it
means that the list is now sorted and we drop
through line 340 to the next section of code.

In line 370 we again print out the list to see
what it looks like after the first level sort is
completed.

The second level sort is similar, but not exactly
the same as the first level sort was. The flag
works the same way. So does the swap, except
this time we switch items in the second array.
The trick here is in line 420. It works this way:
We don't even look at the second array if the item
and next item in the first array are not equal.
And we never move items in the first array, since
they are already sorted into the proper order. It
is only when the item and next item in the first
array are equal that we look at the second array
locations. And then we only make a switch if the
array two item is larger (in ASCII value) than
the next array two item. This is how we can get
a "sort within a sort."

In line 490 we again print out the two arrays
to see how they look. In the subroutine to print
out the arrays, at line 560 we increment a C
count, and at line 570 we print a prompt on the
screen to press ENTER. The last time we print
the arrays C will equal 3 and we bypass the
prompt and just quit because we are done.

We used bubble sorts in our example. In ac
tual practice you might want to use a faster sort,
especially for the first sort. In fact, you could use
any sort routine in either place. Since the second
level usually does not take as many items into
account a bubble sort there will usually suffice.

The idea of two level sorting could just as well
be extended to three level or more sorting. It just
takes more time and more code, but the idea is
the same.

The program Flow.Bas, in this issue, shows a
good example of how two-level sorting works.

TwoLevel.Bas for all models

100 REM * Twolevel.bas * a two level sort demo
110 DATA Mar,Jan,Feb,Jan,Feb,Mar,Jan,Mar,Mar,Feb
120 DATA 2,2,4,1,3,6,4,3,5,1
130 *
140 *Read in the 1st 10 data items
150 FOR 1=1 TO 10 :
160 READ A$(I)

CODEWORKS Issue 22 7

170
180

190
200
210
2 2 0
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

NEXT
\

' Read in the 2nd set of 10 data items
FOR 1=1 TO 10

READ B(I)
NEXT I
*

'print out the unsorted arrays
GOSUB 530

'Do the first level sort - swap both arrays
FOR 1=1 TO 9

L=I+1
IF A$(I)=<A$(L) THEN 330
T $(I)=A$(I) :A$(I)=A$(L) :A$(L)=T$(I)
T(I)=B (I) :B(I)=B(L) :B(L)=T(I) :F=1

NEXT I
IF F=1 THEN F=0:GOTO 280
*

'Print out the 1st level sorted list
GOSUB 530
\

' Do the second level sort
FOR 1=1 TO 9

L=I+1
IF A$(I)<>A$(L) THEN 450
IF B (I) =<B (L) THEN 450
T(I)=B(I):B(I)=B(L):B(L)=T(I):F=1

NEXT I
IF F=1 THEN F=0:GOTO 400
A

'print out 2nd level sorted list
GOSUB 530
END
\

'subroutine to print out the list
FOR 1=1 TO 10
PRINT A$ (I) ,B(I)

NEXT I
C=C+1:PRINT

IF C<3 THEN INPUT''Press Enter to continue'';XX
RETURN

8 Issue 22 CODEWORKS

Budge t.Bas
A Personal Budget Program

R. J. Richardson, Valencia, California.

If money is the root of all evil, then surely the
lack of it is all the rest of the forest. While a
paucity of pennies is cold and horrid, a glut of gelt
conveys the warmth and goodness of Mom, apple
pie, and the American Way. Love may conquer
all, but the guy who said that never tried it when
he was broke.

Budget.Bas provides a means to be as thor
ough as you wish in recording how much money
comes in, and why, where and when it goes out.
The program is designed to be run monthly, but
the interval is up to you. It is dimensioned for 20
categories, although only 19 are used, since #20
does a little sweeping and dusting (internal
housework) for the program itself. Each of the 19
categories is dimensioned for 20 entries, and has
its own "page," selectable from the main menu.
This construct allows the program to operate
exactly like a ledger, providing instant access to
any page. Category 20 contains summary, print,
and disk access functions.

To personalize the program, you should install
your own Data statements (category names) in
lines 40 through 74. However, the second state
ment in line 74 (Summaries and Disk Access)
must remain as it is. This group of data state
ments must total 20, lest it cause an "out of data"
error, something which produces brain fatigue
by being mis-diagnosed by the error trapping
subroutine. By the way, deleting line 2900 will
prevent this mis-diagnosis, but at the risk of
having a loaded program dumped before the
data is saved.

Line 140 contains the amount budgeted for
each category, and its data entries should total

18. The "Reconcile:" label which appears in each
page of the budget indicates by how much you
are over, or under, budget. If you went over, the
figure will be negative.

In the interest of clarity, a data read loop is
placed directly above its own data.

Operation of the program requires a few ex
tras. A small spiral notebook is used to record
daily spending as it occurs. (It will not work if you
wait until evening, and then try to recall every
thing you spent during the day.) A calendar of
the month is photo-copied (19 copies), three-hole
punched, and copies placed in a three-ring
binder. Each copy is numbered (one page for
each category) with a marking pen, and you may
"screen print" the program's main menu to ob
tain your index.

Expenditures are noted as they are made in
the small notebook, and copied into the three-
ring binder (proper date and category) at your
convenience. Don't forget to include expenses
paid by check. The program is run from the
three-ring binder at the end of each month, and
the print-out can provide data for income tax
preparation or other financial review.

You should expect to revise your category
names after using the program for a time, since
some categories will prove redundant, and other
(new) ones will be needed. However, remember
to change the three-ring binder (calendar) pages,
and the index at the same time.

It is important that you remember the follow-

CODEWORKS Issue 22 9

ing: There are four entries to be made for each
expense on a category "page," the date (08/88),
the description of the expenditure, the amount
(rounded up to integers, and cash or check
number.) Please remember that you must
PRESS ENTER after each entry. You cannot go
across the page with either the right arrow, or
the space bar. OK?

Variables are identified in fines 600 to 740,
and the entire program (excepting the fines be
low 100) was renumbered using CodeWorks'
own Renum.Bas (Issue 9, Jan/Feb 1987), a
mega-algorithm for the serious programmer.

Well, can you

1. Write a subroutine which figures what per
centage of the total expenditure is spent in each
category?

2. Compare your percentages with those rec
ommended by business advisors?

3. Re-write the program into an appointment
scheduler which prints out an appointment fist
ing either daily, or by the month. (The mecha
nisms - the big guys always say algorithms - are
all here. You only have to change some of the
fluff.)

Thanks for your time.
And so, what s next?

Budget.Bas for GW BASIC, with minor
modifications will run on TRS-80 IV

54
60
62
64
66
70
72
74
80
8 2
84
8 6
88
90
92

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
FOR

20:READ CT$(N):NEXT N
'Income TaxHouse & Assn. Payment:''

5 'Budget.Bas * R J Richardson *
10 ' Read Data - Dimension Arrays
20 KEY OFF
30 ON ERROR GOTO 2870
40 DIM CT$ (20) :FOR N=1 TO
50
52 DATA "House: Ins-Tax-MaintGas-Electric-Telephone :' '

''Food and Sustenance: " , " Trash-H20-Paper-Cable :' '
''Auto: Gas-Repair-MiscAuto: Insurance-License:
"Aircraft FuelAircraft Expense: Gen'l:''
"Toni: Necessaries Bobby: Necessaries:''
"Medical: Pres-Ins-Mis : " , " Toni : Beauty-Grooming:"
"Charge Cards TONI-Personal Acct: "
"BOBBY-Personal AcctMisc.- (Other Things):"
Monthly Income:'','' Summaries & Disk Access —

1=1 TO 6:READ W$(I):NEXT I
DATA
DATA
DATA
DATA
DATA
DATA

100 HD$=''File
Amount $:

"(P)rint existing file to screen:"
"(L)ine print file to printer:"
"(A)dd to existing file:"
"(E) dit existing file:"
"(Q)uit category:"

"(Enter . for Date to Terminate Entry:)''
#. Date: Description:

Check #:"

M

110 ZW$="#####.##"
120 DIM DT$(20,20),DS$(20,20),AM(20,20),CK$(20,20),ST(20) ,PT$(20),

TT(20),BD (20)
130 FOR 1=1 TO 18:READ BD(I):NEXT I
140 DATA 175, 44 0, 14 5, 185, 4 00, 7 5, 175,150, 300, 100, 60, 100, 60, 7 5,250,

200,400,100
150 GOTO 240
160 A

170 * Universal PrintO / Locate Subroutine: UNremark as
needed.

180 LOCATE X,Y:RETURN * MS-DOS GW-BASIC
190 1 PRINT@((X-l* 64) + (Y-l), ; :RETURN A TANDY MODELS I / III
200 x PRINT6(X-l),(Y-l)),;:RETURN y TANDY MODEL IV
210 ' PRINT0(X,Y),;:RETURN A SOME MBASIC MACHINES
220 * PRINT CHR$ (27)+" Y"+CHR$ (31+X)+CHR$ (31+Y) RETURN A CP/M

ADJUST TO SUIT
230 *
240 CLS:X=5:Y=10:GOSUB 170;
250 INPUT''Please Enter Month and Year (jan88) :'';MN$
260 ' Print main menu
270 CLS
280 X=2:Y=18:GOSUB 170:PRINT''Your Ever-lovely Hot-dog Financial

Report!'':PRINT
290 FOR N=1 TO 20: IF ST(N)=0 THEN PT$(N)="" ELSE PT$(N)="*"
300 NEXT N
310 FOR N=1 TO 19:PRINT N; " . ";:PRINT PT$(N); " ";:PRINT CT$(N) :

NEXT N
320 N=20:PRINT N;'' . "; :PRINT PT$ (N); " ";: PRINT CT$(N) :X=4:Y=63:

GOSUB 170 .-PRINT"* = Data"
330 X=25:Y=62 : GOSUB 170 : PRINT" (999 To Quit)"
340 X=25:Y=30: GOSUB 170 : INPUT" Select CategoryCT: IF CT=20 THEN

2050 ELSE IF CT=0 THEN 340
350 IF CT=999 THEN 2910 ELSE IF CT>20 THEN 340
360 GOSUB 370:GOTO 430
370 ' Print Individual Page Heading
380 CLS
390 X=1:Y=1:GOSUB 170:PRINT STRING$(80, 205)
400 X=2:Y=1: GOSUB 170 : PRINT" Page" ; CT; " : ";MN$
410 X=2:Y=27: GOSUB 170 : PRINT" Category" ; CT; CT$ (CT) ; " (";BD(CT);

y y y ,

420 PRINT STRING$ (80,205) :RETURN
430 x Draw Box for Internal Menu
440 X=5:Y=15:GOSUB 170:PRINT STRINGS(50, 223)
450 X=14:Y=15:GOSUB 170:PRINT STRINGS(50, 220)
460 FOR P=5 TO 14:X=P:Y=15:GOSUB 170:PRINT CHR$(222):NEXT P
470 FOR P=5 TO 14:X=P:Y=65:GOSUB 170:PRINT CHR$(221):NEXT P

CODEWORKS Issue 22 11

480 ' Print Menu Inside Box '

490 W=1
500 FOR X=7 TO 11
510 Y=20:GOSUB 170:PRINT W$(W)

520 W=W+1:NEXT X
530 X=13:Y=45: GOSUB 170:PRINT" ?"
540 G$ = INKEY$: IF G$=" " THEN 530
550 IF G$ = "P" OR G$="p" THEN ZQ=l:GOTO 750
560 IF G$="L" OR G$="l" THEN ZQ=2: GOTO 880
570 IF G$="A" OR G$="a" THEN ZQ=3:GOTO 1620
580 IF G$="E" OR G$="e" THEN ZQ=4: GOTO 1730

590 IF G$=''Q'' OR G$=''q'' THEN 260
600 ' Identification of variables:

610 ' CT$ - Name of Category

620 ' CT - Category Number
630 11 MN$ - Report Month
640 ' TT - Total spent in a category
650 ' BD - Amt budgeted for a category
660 * AM - Amt of money
670 * DS$ - Description of expenditure
680 1 CK$ - Check number - or cash
690 ' TB - Total budgets for all categories
700 ' GT - Total of all money spent - all categories

710 1 TR - Total reconciliation: amt over or under budget
720 * ST - 'Stop' number for each file: i. e. EOF
730 11 Note: 'Reconcile' does not have an assigned variable.

740 ' It is figured (BD-TT) as needed. (Don't ask.)
750 ' List File to Screen

760 GOSUB 3240
770 IF ST (CT) =0 THEN PRINT : PRINT; CT$ (CT) ; " EMPTY :": GOSUB

3020:GOSUB 370:GOTO 430
780 TT(CT)=0
790 FOR 1=1 TO ST(CT)
800 GOSUB 3290
810 TT(CT)=TT(CT)+AM(CT,I)

820 NEXT I

830 PRINT: PRINT TAB (25) Budget: $ BD (CT) ;: PRINT TAB(58);
840 PRINT USING ZW$;TT(CT)

850 PRINT:PRINT TAB(40);''Reconcile: $ PRINT TAB(58);
860 PRINT USING ZW$;BD(CT)-TT(CT)

870 INPUT'' <Enter> for MenuZQ$: CLS : GOSUB 370:GOTO 430

880 ' Line Print
890 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT W$(ZQ)
900 X=5:Y=15:GOSUB 170:PRINT STRINGS(50,223)

910 X=14:Y=15:GOSUB 170:PRINT STRINGS(50,220)

920 FOR X=5 TO 14:Y=15:GOSUB 170:PRINT CHR$(222):NEXT X

1 2 Issue 22 COOEWORKS

930 FOR X=5 TO 14:Y=65:GOSUB 170:PRINT CHR$(221):NEXT X
940 X=7 :Y=20 : GOSUB 170 : PRINT" Select letter:"
950 X=9:Y=25:GOSUB 170:PRINT" (L)print this category only.''
960 X=10: Y=25: GOSUB 170:PRINT" (P)rint entire expense report."
970 X=ll: Y=25 : GOSUB 170 : PRINT" (R) eturn to main menu."
930 X=13:Y=48: GOSUB 170:PRINT" ?":G$=INKEY$
990 IF G$ = " " THEN 980 ELSE IF G$="P" OR G$ = "p" THEN 1210
1000 IF G$="R" OR G$="r" THEN 260
1010 * Lprint category only
1020 X=18 :Y=20 : GOSUB 170 : PRINT" Printer OnLine:"
1030 X=19:Y=2 0: GOSUB 170 : PRINT" Paper - Top of Form:"
1040 X=21 :Y=20 : GOSUB 170 : INPUT" <Enter> - Starts PrinterZQ$
1050 X=1:Y=1:GOSUB 170:LPRINT STRING$(80, 205)
1060 X=2:Y=1: GOSUB 170 : LPRINT" Page" ; CT; " : ";MN$
1070 X=2:Y=30: GOSUB 170 : LPRINT" Category" ; CT; CT$ (CT)
1080 LPRINT STRING$(80,205):TT(CT)=0
1090 IF ST(CT)=0 THEN PRINT:PRINT CT$(CT); " is empty."
1100 IF ST(CT)=0 THEN LPRINT:LPRINT CT$(CT); " is empty." :GOTO 1170
1110 X=15:Y=15:GOSUB 170:PRINT" Printing ' ' : LPRINT HD$
1120 FOR 1=1 TO ST(CT)
1130 LPRINT I;TAB (12);DT$(CT,I);TAB (26);DS$(CT,I);TAB(58) ;
1140 LPRINT USING ZW$;AM(CT,I); :LPRINT TAB(73);CK$(CT, I)
1150 TT(CT)=TT(CT)+AM(CT,I)
1160 NEXT I
1170 LPRINT:LPRINT TAB(58);:LPRINT USING ZW$;TT(CT)
1180 LPRINT:LPRINT TAB(20);''Budgeted:'';BD(CT) ;TAB(46) ;' 'Reconcile:'';

1190 LPRINT TAB(58);:LPRINT USING ZW$;BD(CT)-TT(CT)
1200 LPRINT: LPRINT" End of File:":GOSUB 370:GOTO 430
1210 1 Lprint Entire Expense Report —
1220 X=18 : Y=20 : GOSUB 170 : PRINT" Ad just paper to top of form:"
1 2 3 0 X = 2 0 : Y = 2 0 : G O S U B 1 7 0 : I N P U T " < E n t e r > s t a r t s p r i n t e r Z Q $
1240 X=16 :Y=17 : GOSUB 170 : PRINT" Printing Complete Report - -
1250 FOR K=1 TO 19
1260 TT (K) =0 : LPRINT STRING$ (80, 254): LPRINT: LPRINT" PageK; "

MN$
1270 LPRINT''Category'';K; " : " ;CT$ (K) :LPRINT STRINGS(80, 250)
1280 IF ST(K)=0 THEN LPRINT CT$(K); " — Empty.":LPRINT:GOTO 1380
1290 LPRINT HD$
1300 FOR 1=1 TO ST(K)
1310 LPRINT I;TAB (12);DT$ (K,I);TAB (26);DS$(K,I) ; TAB(58) ;
1320 LPRINT USING ZW$;AM(K,I);:LPRINT TAB(73);CK$(K,I)
1330 TT(K)=TT(K)+AM(K,I)
1340 NEXT I
1350 LPRINT:LPRINT TAB(58);:LPRINT USING ZW$;TT(K)

CODE WORKS Issue 22 13

1360 LPRINT:LPRINT TAB(20);''Budget:'' ; BD(K) ; TAB(40);''Reconcile :' ' ;
1370 LPRINT TAB(58)LPRINT USING ZW$;BD(K)-TT(K) Q
1380 NEXT K
1390 ' Line Print Budget Summary
1400 LPRINT:LPRINT''Category:'';TAB(30);''Budgeted:'';
1410 LPRINT TAB (46) ; " Amt. SpentTAB (65) Reconcile' ': LPRINT
1420 FOR K=1 TO 18
1430 LPRINT K;'' .'';CT$(K);TAB(30);:LPRINT USING ZW$;BD (K) ;: LPRINT

TAB(46);
1440 LPRINT USING ZW$;TT(K);:LPRINT TAB(65);:LPRINT USING ZW$;

BD(K)-TT(K)
1450 NEXT K
1460 1 Prepare & Print 'Bottom Line'
1470 TB=0:GT=0:TR=0
1480 FOR K=1 TO 18
1490 TB=TB+BD(K):GT=GT+TT(K):TR=TR+(BD(K)-TT(K))
1500 NEXT K
1510 LPRINT:LPRINT TAB (25); "The Bottom Line:":LPRINT
1 5 2 0 L P R I N T T A B (1 0) T o t a l B u d g e t T B
1530 LPRINT TAB (30)Total Cash Spent:";
1540 LPRINT TAB(55);:LPRINT USING ZW$;GT
1550 LPRINT TAB (30) ;" Less Cash Income: -" ;
1560 LPRINT TAB(55);:LPRINT USING ZW$;TT(19) ^
1570 LPRINT: LPRINT TAB (30) ;" Reconciliation: "; TAB (55) ; W
1580 LPRINT USING ZW$;TT(19)-GT:LPRINT
1590 IF SGN(TT(19)—GT)=—1 THEN LPRINT" Congratulations ! You have a

Negative Cash Flow!"
1600 IF SGN(TT(19)-GT)=1 THEN LPRINT" Congratulations! You took in

More than you Spent!''
1610 GOSUB 370:GOTO 430
1620 ' Add to Existing File
1630 GOSUB 370 :X=4 :Y=1:GOSUB 170:PRINT W$(ZQ);" ";W$(6)
1640 X=6:Y=1:GOSUB 170:PRINT HD$
1650 X=7:Y=1:GOSUB 170:PRINT STRINGS(80,196):R=8:M=ST(CT)
1660 M=M+1:X=R:Y=1:GOSUB 170:PRINT M:Y=ll:GOSUB 170:LINE INPUT

DT$(CT,M)
1670 IF DT$ (CT,M)= ' ' .'' THEN M=M-1:ST(CT)=M:GOSUB 370:GOTO 430
1680 Y=26:GOSUB 170:LINE INPUT DS$(CT,M):Y=58:GOSUB 170;
1690 INPUT AM(CT,M):Y=72:GOSUB 170:LINE INPUT CK$(CT,M)
1700 R=R+1

1710 IF M=>20 THEN GOSUB 3160:GOTO 430
1720 GOTO 1660

1730 ' Edit Existing File
1740 '

1750 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT W$(ZQ) M

14 Issue 22 CODEWOPKS

1760 X=6:Y=1:GOSUB 170:PRINT HD$
1770 X=7:Y=1:GOSUB 170:PRINT STRING$(80,196)
1730 IF ST(CT)=0 THEN GOSUB 3200:GOTO 430
1790 * print file as is
1800 FOR 1=1 TO ST (CT)
1810 GOSUB 3290
1820 NEXT I
1830 PRINT:INPUT''Enter File # of Entry to be Edited:'';I
1840 CLS:GOSUB 3240:GOSUB 3290
1850 X=ll :Y=20 : GOSUB 170:PRINT"Do you wish to:?"
1860 X=13 : Y=2 5 : GOSUB 170 : PRINT" (C) hange the line:?"
1870 X=14 : Y=2 5 : GOSUB 170 : PRINT" (R) emove the line:?"
1880 X=16 : Y=4 0 : GOSUB 170:PRINT" ?":PRINT
1890 G$ = INKEY$: IF G$=" " THEN 1890
1900 IF G$ = "C" OR G$ = "c" THEN 1980
1910 x Remove the line
1920 IF ST(CT)=1 THEN ST (CT)=0:CLS:X=12:Y=35:GOSUB 170:

PRINT" Gone !" : GOSUB 3020: GOTO 750
1930 XX=ST(CT) :DT$ (CT,I)=DT$(CT,XX) :DS$ (CT,I)=DS$(CT,XX)
1940 AM(CT,I)=AM(CT,XX) :CK$(CT,I)=CK$(CT,XX) :ST (CT)=ST(CT)-1
1950 CLS:X=12:Y=35:GOSUB 170:PRINT" Done! "
1960 FOR Z=1 TO 3000:NEXT Z:GOTO 750
1970 ' Change the line
1980 X=14 : Y=1: GOSUB 170:PRINT STRING$(80," "SPRINT STRING$(80,

1990 PRINT" Please Enter Correct Line Now: ,A:PRINT:
X=18

2000 PRINT I:Y=10:GOSUB 170:LINE INPUT DT$(CT,I)
2010 Y=24:GOSUB 170:LINE INPUT DS$(CT,I)
2020 Y=59:GOSUB 170:INPUT AM(CT,I)
2030 Y=72:GOSUB 170:LINE INPUT CK$(CT,I)
2040 GOSUB 3020:CLS:GOTO 430
2050 * Summary and Disk Access
2060 CLS:GOSUB 370
2070 X=5:Y=15:GOSUB 170:PRINT STRING$(50, 223)
2080 X=14:GOSUB 170:PRINT STRING$(50,220)
2090 FOR P=5 TO 14:X=P:GOSUB 170:PRINT CHR$(222)
2100 NEXT P
2110 FOR P=5 TO 14:X=P:Y=65:GOSUB 170:PRINT CHR$(221)
2120 NEXT P
2130 X=6: Y=20 : GOSUB 170:PRINT"Do you wish to:"
2140 X=8:Y=25: GOSUB 170 : PRINT" (P) rint Results on This Screen:?"
2150 X=9 : GOSUB 170 : PRINT" (L) ine Print Entire Report:?"
2160 X=10: GOSUB 170: PRINT" (S) ave All Files to Disk:?"
2170 X=ll: GOSUB 170 : PRINT" (R) etrieve Files from Disk:?"
2180 X=12 : GOSUB 170 : PRINT" (G) o Back to Main Menu:?"

CODE WORKS Issue 22 15

2190 X=13 : Y=52 : GOSUB 170:PRINT" ?
2200 G$=INKEY$: IF G$=" " THEN 2200
2210 IF G$="S" OR G$=''s'' THEN 2520
2220 IF G$ = "L" OR G$="l" THEN 1210
2230 IF G$=''R" OR G$="r" THEN 2680
2240 IF G$ = "G" OR G$="g" THEN 260
2250 ' Screen print Budget Summary
2260 CLS:PRINT''Category:'';TAB(30);''Budgeted:' ';TAB(4 6);

**Amt. Spent:'';TAB(65);''Reconcile:' '
2270 GOSUB 3090
2280 FOR K=1 TO 18
2290 PRINT K; ;CT$ (K) ;: PRINT TAB (30);: PRINT USING ZW$;BD(K);
2300 PRINT TAB(46);:PRINT USING ZW$;TT(K);
2310 PRINT TAB(65);:PRINT USING ZW$;BD(K)-TT(K)
2320 NEXT K
2330 A Last minute total of Category 19 (Income)
2340 TT(19)=0
2350 FOR J=1 TO ST (19)
2360 TT (19)=TT (19) +AM(19, J)
2370 NEXT J
2380 A Calculate totals - bottom of page
2390 TB=0:GT=0:TR=0
2400 FOR K=1 TO 18
2410 TB=TB+BD(K):GT=GT+TT(K)
2420 TR=TR+(BD(K)-TT(K))
2430 NEXT K
2440 PRINT:PRINT TAB(30);:PRINT USING ZW$;TB;:PRINT TAB(46);
2450 PRINT USING ZW$;GT;:PRINT TAB(65);
2460 PRINT USING ZW$;TR:PRINT" Less Income: (Cat. 19): '
2470 PRINT TAB(46);:PRINT USING ZW$;TT(19)
2480 PRINT TAB (31) ; "Reconcile: :PRINT TAB(46);
2490 PRINT USING ZW$;GT-TT (19)
2500 INPUT" <Enter>: " ;ZQ$:GOTO 260
2510 INPUT' 'Enter: "; ZQ$: GOTO 260
2520 A Disk Access Save Data
2530 CLS:M1$=MN$ + " .dat"
2540 X=5:Y=5:GOSUB 170:PRINT" CAUTION
2550 PRINT" Be sure that program data and file name are correct."
2560 PRINT"An incorrect file name can erase an existing file."
2570 PRINT" If you wish to double check, enter M or m"
2580 PRINT" at the prompt to return to the main menu.": PRINT
2590 PRINT''Else, this data will be saved as: ";M1$
2600 PRINT: INPUT" <Enter> to proceed or M for Menu:";ZQ$
2610 IF ZQ$="M" OR ZQ$="m" THEN 260
2620 OPEN Ml$ FOR OUTPUT AS 1
2630 PRINT #1,M1$:FOR K=1 TO 19:PRINT #1,ST(K)

16 Issue 22 CODEWORKS

2640 FOR J=1 TO ST(K)
2650 PRINT #1, DT$ (K, J) ; " , " ; DS$ (K, J) ; " , " ;AM(K, J) ; " , " ;CK$(K,J)
2660 NEXT J,K
2670 CLOSE:GOTO 260
2680 ' Data Rerieval
2690 CLS:X=5:Y=1:GOSUB 170:PRINT STRING$(80, 177)
2700 X=7:Y=10: GOSUB 170 : PRINT" Data Retrieval:"
2710 X=10:Y=15:GOSUB 170
2720 INPUT" Enter Month and Year (mmmyy) to Retrieve:"; MN$
2730 M1$=MN$+''.dat''
2740 OPEN Ml$ FOR INPUT AS 1
2750 INPUT #1,Ml$
2760 X=15 : Y=25 : GOSUB 170 :PRINT" Retrieving: ";MN$
2770 FOR K=1 TO 19:INPUT #1,ST(K)
2780 FOR J=1 TO ST(K)
2790 INPUT #1, DT$(K,J),DS$(K,J),AM(K,J) ,CK$(K, J)
2800 NEXT J,K
2810 CLOSE
2820 FOR K=1 TO 19:FOR J=1 TO ST(K)
2830 TT(K)=TT(K)+AM(K,J)
2840 NEXT J,K:TT(K)=—TT(K)
2850 MN$=LEFT$(Ml$,5):GOTO 260
2860 END
2870 ' Error Trap (don't fall in) —
2880 CLS
2890 CLS : IF ERR=53 THEN X=10 : Y=15 : GOSUB 170:PRINT"I can't find

file: ,X;MN$:GOSUB 3020:GOTO 260
2900 CLS: IF ERR <> 53 THEN X=10: Y=15: GOSUB 170:PRINT"An Error has

Occurred: ":GOSUB 3020:GOTO 260
2910 THE 'save your data' routine at the end
2920 CLS
2930 X=12:Y=20:GOSUB 170
2940 PRINT" Have you saved the data (Y/N)??"
2950 PRINT:PRINT TAB(35);"Y = Terminate Program"
2960 PRINT TAB(35); " N = Go To Disk Access"
2970 PRINT : PRINT TAB(45);" "
2980 G$=INKEY$:IF G$=" " THEN 2980
2990 IF G$="N" OR G$="n" THEN CT=20:GOTO 2050
3000 PRINT: PRINT" Thanks fer ur time!"
3010 END
3020 ' Counting (delay) Loop
3030 X=2 3:Y=72 : GOSUB 170 : PRINT" Counting"
3040 X=23:FOR Y=1 TO 71:GOSUB 170
3050 FOR Z=1 TO 30:NEXT Z
3060 PRINT' ' +"

CODEWORKS Issue 22 17

3070 NEXT Y
3080 RETURN
3090 * Total all Categories before Printing Summary -

3100 FOR X=1 TO 19:TT(X)=0:NEXT X

3110 FOR CT=1 TO 19

3120 FOR X=1 TO ST(CT)
3130 TT (CT) =TT (CT) +AM (CT, X)

3140 NEXT X,CT
3150 RETURN
3160 ' Subroutine ** 'Category full'
3170 CLS : X=10 : Y=30 : GOSUB 170 : PRINT" Category Full:"

3180 GOSUB 3020:GOSUB 370
3190 RETURN
3200 ' Subroutine ** 'Category Empty'

3210 '
3220 PRINT:PRINT CT$ (CT) ; " EmptyGOSUB 3020:GOSUB 370

3230 RETURN
3240 ' Print page heading
3250 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT W$(ZQ)
3260 X=6:Y=1:GOSUB 170:PRINT HD$
3270 X=7:Y=1:GOSUB 170:PRINT STRING$(80,196)
3280 RETURN
3290 ' Line by Line or Loop Print
3300 PRINT I;TAB(13);DT$(CT,I);TAB(26);DS$(CT,I) ; TAB(58);
3310 PRINT USING ZW$;AM(CT,I);:PRINT TAB(74);CK$(CT,I)
3320 RETURN

Notes

There have been several requests on how to
scroll backward and forward in GW BASIC and
MS DOS. Apparently, the books on the subject
are not too clear. However, Mr. Robert Hood, of
Bremerton, Washington, has found the way to
do it and kindly let us know about it. Our thanks
to Mr. Hood for this information. Here is how it
works:

1. List the desired line number (list 130)
2. Use arrow keys to move the cursor to the

beginning of the listed line.
3. Press CTRL and X together to scroll in

decreasing line numbers.
4. Press CTRL and Y together to scroll in

increasing line numbers.

On another note, be careful about using re
marks in DATA lines. The READ statement will
probably read it like data. Here's an example:

10 DATA 1,2,3,4,5,' daily receipts
20 DATA 6,7,8,9,10
30 FOR 1=1 to 10
40 READ A$(I)
50 NEXT I
60 FOR 1=1 to 10
70 PRINT A$(I);"
80 NEXT I
90 END
run
1 2 3 4 5' daily receipts 6 7 8 9 10
Oops!

18 Issue 22 CODEWORKS

Sort on Input
Sort as You Enter Information

David Leithauser, New Smyrna Beach, Florida. This is David's second
appearance in CodeWorks. Here, he tells us about a method to keep sorted
lists by sorting at the time of input. Two sample programs follow his discus
sion.

One of the features that most data base pro
grams have is a sort function. This useful feature
allows the program to arrange the data in alpha
betical or numerical order. Having the data in
alphabetical order makes it easy to find specific
items on the printout. Having the data in nu
merical order allows you to see relationships at a
glance. For example, you could have a program
that records people's addresses sort the ad
dresses by zip code. This would allow you to
easily find all the people who live in one area.
You can even have the program sort data by
dates, so the data (such as your checkbook) will
be in chronological order.

Unfortunately, sorting data takes a fairly long
time. The amount of time required for a sort goes
up rapidly as the amount of data increases.
Sorting 10 items on a Tandy 1000 SX using a
common bubble sort takes about .4 seconds.
Sorting 100 items takes about 31 seconds. Sort
ing 200 items takes about 2 minutes. Sorting
500 items takes about 13.5 minutes. Depending
somewhat on what type of sort technique you
use, the time required for the sort is not affected
much by whether the items are already close to
being in order.

This can be particularly annoying when the
nature of the data is such that you often add or
delete one or two items. Imagine, for example,
that you are keeping a phone directory of your
friends or clients. About once a week you must
add one or two names to the list. If you want to
keep it sorted so that you can display an alpha

betical listing any time, you must stop and wait
for the sort each time you add those few names.

There is a way to avoid these long sorts.
Instead of having the program add new data
onto the end of the list and then sort the entire
list, you can have it insert the new data into the
list in the proper place as soon as you input it.
This takes only a fraction of a second, and the
data is always in the correct order.

The Usual Method

Before explaining how to insert the data into
the proper place on input, let's take a look at the
way data base programs usually handle data.
Listing 1 is a very simple data base program
with a bubble sort. Since this is for demonstra
tion purposes only, I have not included most of
the usual features, like a save on disk routine.
This program inputs names and phone numbers,
sorts them, and displays them.

Lines 200-230 input the data. Line 200 inputs
the name. If the user just presses ENTER when
the computer asks for the name, line 210 sends
the computer back to the main menu. This is how
you would finish putting in names.

Line 220 inputs the phone number. Line 230
then stores the data in the A and B arrays. N is
the number of names in the file. Line 230 first
increases N by 1. It then stores the name in the
A array and the phone number in the B array.

CODEWORKS Issue 22 19

Because of the DEFSTR statement in line 10, C
and D and the A and B arrays are all string
variables.

You can see that the data is not in alphabetical
order as it is input. Instead, it is in the order the
user inputs the data. Even once the program has
sorted the data, any new data that you input will
not be in the proper position.

Lines 300-340 delete data from the file. This is
necessary to make corrections. Line 300 asks
what to delete. The user would input the name of
the person to delete from the phone directory.
Lines 310-330 search for that name in the data
file. When line 320 finds the name, it moves the
last name and phone number in the file into that
position. It then deletes the last name and
number from the end of the file by setting them
to an empty string. Finally, it decreases N by 1 to
indicate that there is one less item in the file.

Notice that this disturbs the order of the items
in the file. Deleting an item is as bad as adding
one. Unfortunately, you could not simply set
A(X) and B(X) to an empty string. That would
leave the number of items in the file unchanged
and cause the computer to print a blank line
whenever it listed the data.

Lines 400-450 sort all the items. This is a
simple bubble sort. Lines 500-530 list the data.
Lines 100-140 are the main menu.

Sorting on Input

Now that we have seen one way to do it, let's
look at the sort on input method. Listing 2 is the
simple data base program modified to sort the
data as it is input.

Lines 200-270 are the modified input routine.
Lines 200-220 are the same as in Listing 1. They
simply input the data to save in the arrays.

Line 230 handles the special case where the
new data should go at the end of the data list
instead of being inserted somewhere in the list.
Remember that the data input by this routine is
always sorted. Therefore, if C is greater than or

equal to (or comes after alphabetically in the
case of strings) the last item in the file, then it is
greater than all the items in the file. The THEN
clause of line 230 puts the new data at the end of
the list and increases the number of items (N) by
1.

If the program does need to insert the new
data item into the data list, lines 240-260 find
out where. They go through each item in the data
file, looking for the first one that is more than C.
When they find this item, the computer goes to
line 270, with X retaining the number of that
data item. line 270 shifts each item in the data
file up one. Line 280 then stores the new values
in the newly vacated position in the file. It also
increases N by one to record that one item has
been added to the file. The computer then goes
back to line 200 to get another data item.

Since the data is always in order as soon as
you input it, there is no need for a sort function.
You may notice that Listing 2 does not have one.
The only thing that can disorganize your data
now is if you delete something. Remember that
the delete function in Listing 1 did reorganize
the data. Therefore, Listing 2 needs a special
delete function that preserves the order of the
data.

Lines 300-340 are this delete function. Lines
300-310 and 330-340 are the same as in Listing
1.1 have modified line 320, however, so that it
preserves the order of the data. The Y FOR-
NEXT loop shifts A(X) and B(X) to position N at
the end of the data list and shifts everything
above A(X) down one. Then A(N) and B(N) are
set equal to empty strings, deleting them. N is
decreased by 1 to indicate that there is one less
data item, and the computer goes back to the
main menu.

Drawbacks

There are two drawbacks to this sort-on-input
method. The first is that there is a short pause as
you enter each data item while the program puts
the data item into the correct position. This
pause is only about half a second for every 100
items already in the data file when you input the

20 Issue 22 CODE WORKS

r

new data. If you are inputting only a few items,
this delay is trivial. Waiting a few seconds after
each item as you input two or three items is
certainly better than waiting hundreds of times
this long for the computer to sort the data after
you finish inputting those items.

Of course, if you are inputting many items at
a time, you could become frustrated with the
delay after each entry. In this case, you might be
better off inputting the data with the procedure
in Listing 1 and then letting the computer sort
the data while you go to lunch. The sort-on-entry
technique is most useful in special purpose data
bases where you normally input only a few new
items each day and you like to keep this data
sorted at all times.

There is no reason you could not have both
techniques available in one program. When the
user selects "Input data" from the main menu,
the program can ask "Sort on entry (Y/N)?" If the
user presses Y, the program could branch to an
input routine like the one in Listing 2. Other
wise, it goes to an input routine like the one in
Listing 1. Such a program would have to include
a sort routine for the people to use if they chose
to input the data out of order.

The second disadvantage to the sort-on-input
technique is that it only sorts by one property.
This is fine for some special purpose data bases,
where you always want the data sorted by the
same property. Sometimes, however, you need a
choice of which property to sort by. For example,
you might want to be able to sort your checks by
either date or amount.

The solution to this is to leave the user the
option. You could have the program sort the data
on input based on the property that you would
normally want sorted. You could also include in
the program a sort routine that would allow the
users to sort by any property, for those rare
occasions when they want it sorted some other
way.

If you do allow the users to sort by various
properties, you must warn them to resort the

data by the usual property when they are fin
ished. The sort-on-input routine does not work
properly if the data is not already sorted by the
usual property. The fastest way to restore the
data to the usual order is to save it on disk before
sorting it by any other property. Then you can
sort the data by some other property, output a
paper listing of it, and then reload the data from
the disk before you input any more data.

Different Computer Versions

Although I wrote these programs on an IBM
clone, I used a very limited subset of BASIC.
They will therefore work on most computers.
You may need to modify the SWAP statement
that I used in a few lines. This statement swaps
the values of two variables. If your computer
does not have the SWAP statement, you can
replace SWAP VI,V2 with T=V1:V1=V2:V2=T
where VI, V2, and T are any variables as long as
they are the same variable type. For example,
you would replace SWAP A(Y),A(Y-1) with
A=A(Y):A(Y)=A(Y-1):A(Y-1)=A.

You may also need to remove the DEFSTR A-
D and DEFINT N-Z statements from the pro
gram for some computers. DEFSTR A-D causes
all variables starting with A through D to be
strings. You can achieve the same effect by
placing a $ after any variable name that begins
with A through D. DEFINT N-Z causes all vari
ables starting with N through Z to be integers.
You may produce the same results by putting %
after each variable name that begins with N
through Z. You may also simply omit this en
tirely from your program. The program will
simply run a bit slower.

CODEWORKS Issue 22 21

Listing 1 for Sort on Input

5 REM * inpsortl.bas * D Leithauser *
10 DEFINT N-Z:DEFSTR A-D:DIM A(1000),B(1000):CLS
99 x Menu
100 CLS
110 PRINT " Menu: " :PRINT:PRINT "1) Input" :PRINT "2) Delete" :PRINT

"3) Sort' ' :PRINT "4) Display":PRINT A *5) End' ' :PRINT
120 INPUT "Number of your choice" ;T
130 ON T GOTO 200,300,400,500,600
140 GOTO 110
199 x Input data
200 INPUT "Name";C
210 IF C='''' THEN 100
220 INPUT "Phone" ;D
230 N=N+1:A(N)=C:B(N)=D:GOTO 200
299 x Delete data
300 INPUT "Delete what";C
310 FOR X=1 TO N
320 IF A (X) =C THEN A (X) =A (N) : B (X) =B (N) : A (N) =" " : B (N) = " " : N=N-1 : GOTO

100
330 NEXT X
340 PRINT C;" not found.":GOTO 300
399 x Sort data
400 FOR X=1 TO N-l
410 FOR Y=N TO X+l STEP -1
420 IF A (Y) <A (X) THEN SWAP A (Y) , A (X) : SWAP B(Y),B(X)
430 NEXT Y
440 NEXT X
450 GOTO 100
499 * Display data
500 CLS:FOR X=1 TO N:PRINT X;TAB(9);A(X);TAB(30);B(X):NEXT X
510 PRINT "Press Space Bar for Menu.";
520 IF INKEY$<>" " THEN 520
530 GOTO 100
599 * End program
600 END

22 Issue 22 CODEWORKS

Listing 2 for Sort on Input

5 REM * inpsort2.bas * D Leithauser *
10 DEFINT N-Z:DEFSTR A-D:DIM A(1000),B(1000):CLS
99 * Menu
100 CLS
110 PRINT xx Menu: " :PRINT:PRINT xxl) Input" :PRINT * x2) Delete" :PRINT

x x3) Display" :PRINT x x4) End' ' :PRINT
120 INPUT xxNumber of your choice'';T
130 ON T GOTO 200,300,400,500
140 GOTO 110
199 x Input data
200 INPUT xxName";C
210 IF C='''' THEN 100
220 INPUT xxPhone";D
230 IF C=>A(N) THEN N=N+1:A(N)=C:B(N)=D:GOTO 200
240 FOR X=1 TO N
250 IF C<A(X) THEN 270
260 NEXT X
270 FOR Y=N+1 TO X+l STEP -1:SWAP A(Y),A(Y-l):SWAP B(Y),B(Y-l):NEXT

Y
280 A(X)=C:B(X)=D:N=N+1:GOTO 200
299 x Delete data
300 INPUT xxDelete what";C
310 FOR X=1 TO N
320 IF A(X)=C THEN FOR Y=X TO N-1:SWAP A(Y),A(Y+l):SWAP B(Y),B(Y+1):

NEXT Y:A(N)='''':B(N)='''':N=N-1:GOTO 100
330 NEXT X
340 PRINT C;" not found.": GOTO 300
399 x Display data
400 CLS:FOR X=1 TO N:PRINT X;TAB(9);A(X);TAB(30);B(X):NEXT X
410 PRINT xxPress Space Bar for Menu.";
420 IF INKEY$<>" xx THEN 420
430 GOTO 100
499 x End program
500 END

CODBWORKS Issue 22 23

Flow.Bas
A Line Number Reference Utility

Staff Project. This program will chart the flow of your program, giving line
number references and whether or not the GOTOs and GOSUBs are condi
tional or directed. For best results, it should be compiled.

Flow.Bas is a utility program that works on
your programs saved in ASCII and prints out a
list of line numbers and associated GOTOs and
GOSUBs. In addition, it will tell you whether or
not those program branches were conditional or
"hard." By "hard" we mean an unconditional or
directed program branch.

The program comes in handy when you have
an especially convoluted program flow and are
trying to figure out where it's going next. This
can happen on programs you have written a long
time ago, or when trying to figure out someone
else's program. Provision has been made to print
the output directly to the screen, or, to the screen
and printer as well.

One of the things we had to consider when
designing this program was that not all GOTOs
say GOTO. A GOTO can be implied with the
THEN and ELSE statements. Also, a line num
ber implying a GOTO can follow the RESUME
and RETURN statements as well. On the other
hand, an IF anywhere in a line automatically
makes a conditional out of any branch which
follows on that same line.

Basically, the idea of the program is to open
the target file (which must have been saved in
ASCII) and read in one line at a time. Then
examine that line looking for specific keywords
which would imply that a line number follows.
When that happens, we determine what the

branch statement was (a GOTO or GOSUB) and
stuff three arrays with the line number calling
the branch, the line number to branch to and the
type of branch it was. After the completion of the
examination of the target program, we can then
take the three arrays and consolidate the infor
mation in them and print out a summary.

As you have already guessed, the program is
slow because it must examine every character in
every fine that is not a remarked line. This
program is therefore an excellent candidate for
the compilation process. We did, and it increased
its speed by a factor of about 20.

Program Details

Initialization starts at line 170, where if your
BASIC is prior to version 5.0, you should clear
some string space. In line 180 we dimension the
A, B and C arrays at 650. This allows examining
a program that is up to 650 lines long. You can
change these if you find it necessary. Array T is
also dimensioned here, but if you use the SWAP
command (lines 640-660 and lines 780-790) you
don't even need the T array. If your computer
does not have the SWAP command, you will need
to dimension array T.

Lines 190 and 200 format some print strings
to be used later with PRINT USING statements.
Line 210 defines three string variables to hold
words we will need several times later.

24 Issue 22 CODEWORKS

After the usual CodeWorks opening we are
asked the name of the file to examine, and this is
held in variable FF$. We are then asked if we
want printed output also and variable PR holds
the indicator: PR=0 says no printer while PR=1
says we want printer output.

Most of what happens in this program occurs
in the following lines, from 360 to 570. But first,
in line 340, we open the target file for input.
There are two loops in this block of code, one of
them is inside the other. Let's cruise through the
loops just like the program would and see what
happens.

As is usual in computing, the first thing you do
is look for a way out, and line 370 does that by
testing for end-of-file on the input (target) file. If
we are not at EOF of the input file, line 380 reads
in one line of code and calls it A$. In line 390 we
find the length of the A$ just read in. We won't
use that length immediately, but we will a bit
later. In line 400 we find the space after the line
number of the linejustreadin, and in line 410 we
let variable LN contain the line number itself.
Note that we have to take the VAL of it because
it was read in as a string.

In lines 420 and 430 we check the first item in
the line after the space following the line number
to see if it is a remark line. If the line is a remark,
we don't even want to mess with it so we jump
right down to line 560 and get the next line from
the file to look at.

The inner loop starts at line 440 and goes to
540. In this loop we are taking the line of code
from the space after the line number to the end,
and we will let C$ be a little "window" that looks
at four characters at a time. Meantime, we will
have another "window" that is two characters
long to find the keyword "IF." S$ is going to be
our four-character window (in line 460), and in
line 470 we look at two characters of the four in
the C$ window to see if they are "IF." If they are,
then flag F1 gets set to one. This will later tell us
that the GOTO or GOSUB was "conditional."

As we step down the line, C$ will examine four
characters at a time. If those four characters
happen to be "THEN", "ELSE", "GOTO",
"OSUB", "SUME" or "TURN" then we jump out
and go to a subroutine to do some further proc
essing. Before we go there though, let's look at
those terms a bit. THEN and ELSE are implied
GOTOs. Because they are unique, we can deter
mine GOSUB, RESUME and RETURN by just
looking at the last four characters. But why
RESUME and RETURN? Well, it's because they
can both be followed by line numbers, and there
fore, another implied GOTO. Let's assume we
have found one of our keywords. In every case,
flag F1 will be set to either a one or a two, and we
GOSUB to 1010. Remember that the Q loop is
still sitting at the point where we found the
keyword.

At subroutine 1010 the first thing we do is find
the value (VAL) of the nine characters following
our keyword (in line 1020.) We know that line
numbers can only be a maximum of five charac
ters long, but some people like to put a couple of
extra spaces in their lines - so nine characters
ought to catch them. In any case, VAL will not
return anything for alpha characters, so we will
get the line number reference we want. In line
1030, if A is equal to zero, it means that what
followed the keyword was no number. That can
happen in lines like: IF X=1 THEN IF Q=2.„, in
which case the THEN is not followed by a line
number reference. In this case we simply return
to where we came from.

If we do have a line number reference, how
ever, then we will increment our J count by one.
J is going to be the count for the three arrays we
mentioned earlier, in which we will keep all the
information we glean from the lines. The next
thing we do in line 1050, is jump the Q counter
(way back in line 440) past the length of the line
number reference. In other words, we are going
to advance the Q count to the end of the line
number reference we just found. Next, in lines
1080 through 1150, we look at the flags that
have been set, and depending on what they are
we can print a line on the screen (or printer, if

CODEWORKS Issue 22 25

selected) that says: 370 GOTO 570 CONDI
TIONAL. In this case, we got the 370 line num
ber from LN back in line 410, the GOTO because
we got here from line 500, the 570 came from
variable A which we just found, and the CONDI
TIONAL came from the fact that flag F had been
a one. Now that we know all that, we stuff the
proper values into the A, B and C arrays, using
J as the array counter. Then we return.

Since there may be further references to line
numbers in A$, we continue looking down the
line to find them. When we have finished one line
of A$, we clear C$, A, F and F1 to zero and get
ready for the next line from the target file.

When all the lines in the target file have been
examined we close the file at line 570 and then
sort the A, B and C arrays into ascending order
on array C. If your computer supports the SWAP
command, you can use the optional lines in lines

640 to 660. It will speed things up a bit if you do.

Next, we do a second level sort on the B array.
This is a "sort within a sort" and arranges all
items in similar C array entries into ascending
order. See Beginning BASIC in this issue for a
complete look at two-level sorting.

The consolidate routine at line 850 comes
next. Array C tells us if an entry in the corre
sponding A or B array is a conditional GOTO,
hard GOTO, conditional GOSUB or a hard
GOSUB. Since the numbers go from one to four,
we can use them in an ON GOTO statement, as
in fine 880. The code from lines 930 to 950
arranges the output into something that is easy
to read.

Although not the most used program in the
world, it really does comes in handy when you
need to follow the flow of an unknown or forgot
ten program. You might also use it to help you re
structure a badly written program and perhaps
get rid of some unnecessary GOTOs.

Flow.Bas for GW BASIC
changes for other machines
follows the listing.

100 REM * Flow.Bas * Examines flow of a program *
110 REM * Written for CodeWorks Magazine, 3838 South Warner St.
120 REM * Tacoma, WA 98409 (206)475-2219 voice 475-2356 download
130 REM * (C)1988 80-NW Publishing inc. Placed in public domain.
140 REM * Suggestion: For max speed, compile this program.
150 '
160 'Do some initialization

170 'CLEAR 1000 ' only if your BASIC is prior to ver. 5.0
180 DIM A(650) ,B(650) ,C(650) ,1(650)
190 Fl$ = ' ' ##### \ \ ##### \ v,
200 F2$ = "##### \ \ #####"
210 T1 $ = ' ' GOTO' ' :T2$ = " GOSUB' ' : T3$=" CONDITIONAL' '
220 CLS

26 Issue 22 CODEWORKS

MSAMA

230 PRINT STRING$(22, 45) ; " The CodeWorks x x; STRING$(23, 45)
2 4 0 P R I N T ' ' P R O G R A M F L O W A N A L Y Z E R
250 PRINT'' shows all program branches
260 PRINT STRING$(60,45)
270 PRINT
280 INPUT''What ASCII file do you wish to examine'';FF$
290 INPUT''Do you wish printer output also (y/n)'';PR$
300 IF PR$="Y" OR PR$="y" THEN PR=1 ELSE PR=0
310 IF PR=1 THEN LPRINT" Examining program x x; FF$: LPRINT" xx

320 x

330 x Open the file and read one line at a time
340 OPEN' ' I" , 1, FF$
350 CLS
360 FOR 1=1 TO 650
370 IF EOF(1) THEN 570
380 LINE INPUT #1,A$
390 L=LEN(A$)+1
400 S=INSTR(A$,'' xx)
410 LN=VAL(LEFT$(A$,S))
420 IF MID$ (A$, S + l, 3) =' ' REM" THEN 560
430 IF MID$ (A$, S + l, 1) =" " ' THEN 560
440 FOR Q=S TO L
450 C$=C$+MID$(A$,Q,1)
460 S$=RIGHT$(C$,4)
470 IF RIGHT$ (S$,2)=''IF'' THEN F=1
480 IF S$=''THEN'' THEN Fl=l:GOSUB 1010
490 IF S$ = "ELSE" THEN Fl = l:GOSUB 1010
500 IF S$ = "GOTO" THEN Fl = l:GOSUB 1010
510 IF S$ = "OSUB" THEN Fl=2:GOSUB 1010
520 IF S$ = "SUME" THEN Fl = l:GOSUB 1010
530 IF S$=''TURN'' THEN Fl=l:GOSUB 1010
540 NEXT Q
550 C$ = " " :A=0:F=0:F1 = 0
560 NEXT I
570 CLOSE 1
580 x

590 REM * sort the arrays
600 FL=0
610 FOR 1=1 TO J-l
620 L=I+1
630 IF C(I)=<C(L) THEN 680
640 T (I) =C (I) :C (I) =C (L) :C (L) =T (I) 'or SWAP C(I),C(L)
650 T (I) =A (I) : A (I) =A (L) : A(L) =T (I) 'or SWAP A(I),A(L)

CODEWORKS Issue 22 27

660 T (I) =B (I) :B (I) =B (L) :B (L) =T (I) 'or SWAP B(I),B(L)

670 FL=1

680 NEXT I
690 IF FL=1 THEN 600

700 PRINT

710 '
720 ' * now do a second level sort *

730 FL=0

740 FOR 1=1 TO J-l

750 L=I+1

760 IF C (I)<>C(L) THEN 810
770 IF B(I)=<B(L) THEN 810
780 T (I) =A (I) : A (I) =A (L) : A (L) =T (I) ' or SWAP A(I)/A(L)

790 T (I) =B (I) :B (I) =B (L) :B (L) =T (I) ' or SWAP B(I),B(L)

800 FL=1

810 NEXT I
820 IF FL=1 THEN 730

830 PRINT

840 '

850 REM * consolidate routine

860 FOR 1=1 TO J

870 L=I-1

880 ON C(I) GOTO 890,900,910,920

890 D$=" COND GOTO' ' :GOTO 930

900 D$=" hard GOTO":GOTO 930

910 D$="COND GOSUB' ' :GOTO 930

920 D$=''hard GOSUB''

930 IF B (I) =B (L) THEN PRINT A(I);" ' ';ELSE PRINTrPRINT "Line" ;

B(I);"is a '';D$;'' called from:'' ;A(I); "
940 IF PR=0 THEN 960

950 IF B (I) =B (L) THEN LPRINT A(I);" ' '; ELSE LPRINT"

LPRINT" Line" ;B (I) ; " is a ";D$;" called from: A (I) ; "
960 NEXT I

970 IF PR=1 THEN LPRINT CHR$ (13) : LPRINT" Done . "
980 PRINT

990 PRINT ' 'Done'':END
1000 '
1010 REM * subroutine to find trailing numbers
1020 A=VAL(MID$(A$,Q+l,9))

1030 IF A=0 THEN RETURN

1040 J=J+1

1050 Q=INSTR(Q,A$,STR$(A))+LEN(STR$ (A))-l

1060 '

28 Issue 22 CODEWOPKS

1070 *and then print the results
1080 IF Fl=l AND F=1 THEN PRINT USING Fl$;LN;T1$;A;T3$:A(J)=LN:

B(J)=A:C(J)=1
1090 IF PR=1 AND Fl=l AND F=1 THEN LPRINT USING F1$;LN;T1$;A;T3$
1100 IF Fl=l AND F=0 THEN PRINT USING F2$;LN;Tl$;A:A(J)=LN:B(J)=A

C (J) =2
1110 IF PR=1 AND Fl=l AND F=0 THEN LPRINT USING F2$;LN;T1$;A
1120 IF Fl=2 AND F=1 THEN PRINT USING F1$;LN;T2$;A;T3$:A(J)=LN:

B(J)=A:C(J)=3
1130 IF PR=1 AND Fl=2 AND F=1 THEN LPRINT USING Fl$;LN;T2$;A;T3$
1140 IF Fl=2 AND F=0 THEN PRINT USING F2$;LN;T2$;A:A(J)=LN:B(J)=A

C(J>=4
1150 IF PR=1 AND Fl=2 AND F=0 THEN LPRINT USING F2$;LN;T2$;A

1160 RETURN

Flow.Bas change lines for Tandy I and III

Changed->100 REM * Flow/Bas * Examines flow of a program *
Changed->17 0 CLEAR 1000 x only if your BASIC is P r^-°y t o v e r- 5 - 0

Changed->190 Fl$ = "##### % % ##### % %"
Changed->200 F2$="##### % % #####"
Changed->440 FOR Q=S + 1 TO L

Flow.Bas change lines for Tandy II and IV

Changed->100 REM * Flow/Bas * Examines flow of a program

Changed->440 FOR Q=S+1 TO L

CODEWORKS Issue 22

An Updated Pay.Bas with New Changes

Staff Project. Thanks to the many of you who suggested changes to
Pay.Bas. These changes, and others, are now incorporated into the new
Pay2.Bas program.

Way back in Issue 4 (March 1986) we pub
lished the program Pay.Bas. In Issue 14 (No
vember 1987) it went through its first revision.
That revision was so that more employees could
be added and to fix the case where you couldn't
get rid of an employee.

Hanging in our craw was the hokey way you
had to initialize the program the first time you
used it. Typing stuff in command mode and
ignoring an error message is just not cool. Aside
from that, some readers gave us the works for
the way the pay stub and reports printed cents.
They said it just wasn't the way to do things like
that, and they were right.

The changes included with this article are in
tended to fix all of that. In addition, these
changes can be made whether or not you have
made the changes listed in Issue 14. Further,
you can make these changes to your program
without the need to start all over and enter all of
your employees again. For those of you who do
not have the original program, a complete listing
of the new version is included. Also included, are
the change lines for those who already have the
program and just want to update it. Even if you
are typing the program in for the first time, you
might want to refer to the change lines, since
they are printed sideways so you can see the
layout of the print format lines.

The first thing is to change the name of the
program to PAY2.Bas, to show that it is the
updated version. Next, we added an error trap,

and in the added lines from 3240 on, we create
the "Paynames" file if it doesn't already exist. It
all happens without you even seeing it. No more
command mode inputs and ignored error mes
sages.

The changes you will notice in the everyday
operation of the program are in added and
changed lines from 171 to 1700. Lines 172, 173
and 174 set up three print formatting lines using
the PRINT USING format. Line 171 is a guide
line so that you can get the spacing right on the
following three lines. We are pasting the listing
in sideways so that you will see the continuous
lines without wrapping. Spacing is rather impor
tant in these lines so that amounts line up with
headings. Actually, it somewhat simplifies lines
910-1700. Now, all your dollar amounts will line
up nicely and the cents will always print out in
two places like they should. Line 2660 was
changed to keep the words from running to
gether when you clear the quarter or year. It's
what they call a "cosmetic" change only.

If you intend to make these changes to an
active payroll program, it may be best if you
backed up your original copy with all your em
ployees on it and get this working on the backup
first. Then make the changes to your "live" copy.
There is nothing in the world like a messed up
payroll. You catch it from all angles when that
happens, and we are way past the point where
people will believe that it was the computer that
messed up.

30 Issue 22 CODEV/OPKS

03
(0

(0
a

73 a)
P
(0
a

o
03
(0

CN >i tj Qu

03
<13
<73 c
(0
x:
U

=#=

*

=#=
=#=

CO
00

CP D <

a>
4J (0 TJ
04
a

w
2 hH NJ
< e> <
2
CO

DC O £ w a o
o

=#=
=#=
=#=

=#=
=#=

IS) <T»
00 r-vo in
ro
CM rH <S) <T>
00

in =**= =*=
ro • (N =*=
rH =*= <S> =»= • <T> =#= =#=
00(0-** </>=#= =#=
10 • =*= =**= =*:

=*= =«=
I =#= •

=*= =#=
=#=

<T> =#= =#= CO =*: =*= r- =*= =#=
io =#= • =#= in =**==#= =#=
Tjl </> =«= • ro </>=#= =#=
CM =#: rH =#= <s> =*•= * <T» =*= 00 • =#= **= =#=
ko =#= • =*= in </>-=#= =*= =**= •
co
CM

in
w - vo

m
ro CM r-H <3

HP
HP

00 —
— w w • >» • V , ,

J — oo
O H • K ' "
s w w
o •- •-
co <ti in U ~ rH w —
H •- w O ~ -. . » —
fr, — TP U w -H tk • «i —-
co- co- ta CQ CQ •-
X X — ro U U Z z — w H w •••
tn w •• 0 < O D - H

U (N •"• E-" E"1 rH CO — Z 2 — H S H H H "• c£ o£ •-in
EC DJ DJ — EH •- J J rH •-E-l •• •• rH "3" X — — — EH — s = U

I

X

EH
3 Oj
z

A z
00 EH

OS
H
EH Z H
03
03 a)
p
a.

73 a)
P
TJ
<13

C
03
0)

XI
03
>
(0

I
CA HP TT I I <73
00

os r-O *D fa m •«*
* <s> m -K hji (N

CM rH Co ro s
RTL <N HP n o ® *
• EH I— HP HH

(N O ® * C O >H u m • HP o c HP =<p
DJ DSC O H P H P H P EH EH

HP T

HP H 73
HP HP HP •- O

* HP O -H
• • I P * * •» Q)

=»»==»(= CO- CH
* * *

* Ht=

I I rH
03

<
X

o Z

*
*

s w
OS

O CN
OS
OS w
z o -

* * * Z Z

II II II co- co- co-C <0 u
X X

M
<0 CO 0) a X

= EH
EH Z
Z HH M OS

OS OS C3S OJ QJ Oi DJ J J J "J

•« ro
EH

r~- •- -P cn c
EH 3

03 60 O •P H g
(0 CO- EH (0 Q U •-

X <0- =
o u •-
4J C5 X CO-

Z X

z
HH
CO D
EH z I H z
OS
DJ J

<

OS

-l-l
03 •rH X
03

-P

C
03 0) o 73

MH IS!

03 O
03 EH s o (0 u
C
>I OS (0 O
C3J OS

OS 0) H 4->
73
03 M O
O -P

IS
m
U 0) >
o -P
p
o

•rH P
OJ

03
CO

X3

o EH
O
O
OS o
OS
OS w
z o
z w a s
EH
Hi"
m
A
V

am -"
73 in CN
p
4-1 A

V

03
03 e
73 C >i
73 =
DJ W s Z

O
<73

a OS rH «•
OS ^ rH W S HP rH

IS in

P M EH Z 0) H cq
FCJ DJ

CO
W
CO O
O ** 03 J O

EH
z

IS 00
IS CD

CN CO r- r-

X
H*
r~-

A A I I T3 I
03 I <7173
C 03

A A I I I I I I
T3 73
03 03

IS is is is in rH in ID CD (73 (Ti <73 rH
A A A A I I I I

- - M - O C P U U W
S S S S I S S S S S S S S I O C N C O H i i n ® ! ^ ® ® ® I — v D (N C N C N C N (N < N (N C N C O
r H c N m m m " " - " r n ' " r n r n
A A A A A I I I I I

RN T N CN C N C-M 3 N V N - ' ' '
m m m m m m m m m

A A A A A A I I I I I I
T7 T3 T7 77 T3 73 T3 I I • I 1 ' '

0 3 0) 0 3 0) 0) 0) 0 3 1 I I I J . ' ' '
<73 C7I <71 <71 <73 <73 <73 73 73 73 73 73 73 73 73

C V W U L W I B C C c C c C C ® , S | ®
73 73 73 73 73 73 73 73 73 73 03 73

r C T 3 7 3 T 3 7 3 T 3 X : p : X : p : X 4 3 X 7 3 , 2 7 3 ' 2 2 r f 3 ! r f U < < < < 1 C U U U O U O U C C C < < " ' i : r t : < :

For those of you who already
have the program, these are
the change lines to bring it up to
date.

Even if you are typing the
program in for the first time, it
might be advisable to use these
lines because they show the
spacing of the print format
lines. The line of numbers
above the print format lines is
there so that you can get the
spacing right.

There are few changes to be
made for other machines. For
Tandy I/III you will need to
clear string space in line 160.
Also, for these machines, you
should remark line 3240 and
un-remark line 3250.

All users should pay atten
tion to the values in lines 370 to
400. These change from year to
year and from state to state and
should be adjusted accordingly.

You can put your own com
pany name in lines 420 to 440.

You can adjust for the maxi
mum number of employees in
line 165.

CODEWORKS Issue 22 31

100 REM ** PAY2.BAS ** FOR CODEWORKS MAGAZINE updated Aug 88
110 REM ** 3838 S. WARNER ST. TACOMA, WA 98409 (206)475-2219
120 REM ** PLEASE DO NOT REMOVE THESE CREDIT LINES
130 REM ** 1st time initialization not required. See CodeWorks Issue 4
140 REM ** for complete details and operating instructions, including
150 REM ** how to reinstate a deleted employee.
160 CLEAR 1000: * Use only if your machine needs to clear space.
165 NE=15 ^ets max number of employees you can have.
166 N1=NE
168 ON ERROR GOTO 3240
170 DIM E (18) ,E$ (NE+1) : ' E$() sets the max number of employees plus

1
171 ' 1234567890123456789012345678901234567890123456789012345678901

2345678901
172 XA$=" ## ###.# ## $##.## $$#####.## $$####.##
173 XB$=" ###.## ###.## ###.## ###.## ###.##
174 XC$=" #### #####.## ####.## ####.## ###.## ###.## ###.##

####.##

180 INPUT''Enter the date (any way you like)'';D$
190 REM ** If you have DATE$ change above line to: D$=DATE$
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350 GOSUB 3010
360 GOSUB 2920
370 VC=.03846
380 FR=.0705
390 WC=.0276
400 FM=37800!

Define some important variables
E$ current employee's file name. Also used in array E$ ()
El$ is any employee's full name.
S$ is any employee's social security number.
E()is any employee's data array - see edit/review code.
HO = hours worked this pay period.
VA = VC*HO, how much vacation was earned this pay period.
HT = Vacation Hours Taken this pay period.
GP = Gross Pay for this pay period.
CF = Current pay period FICA deduction.
CT = Current pay period FedTax deduction.
CS = Current pay period State Tax deduction.
CM = Current pay period Medical deduction.
CL - Current pay period Workman's Compensation deduction
NP = Net Pay for the current period.

Read in the employee file names file.
Write the file names file back out.
Vac earned per hour — given 2 weeks per year.
FICA rate withheld from each employee.
State Workman's Compensation deduction rate.
Maxiinum gross from which FICA can be deducted.

«n ̂ ™™~-5>/100 : • Define rounding as a function.
J™ rlT • ,^T,ZTS, : your company name here.
430 C2$- 1234 Tool Steel Road'' : » And your address
440 C3S=" Skunk Hollow, WA 98000" : > and city state "nd zip too.

460 PRINT STRINGS (22,);" The CodeWorks STRINGS (23
470 PRINT" SMALL BUSINESS PAYR'OLL
480 PRINT" for companies where you know them by their first name
490 PRINT STRINGS (60, "-")
500 PRINT

32 Issue 22 CODEWORKS

510 PRINT TAB (10) ;'' 1 - Do the Payroll"
520 PRINT TAB(10);"2 - Edit or Review a Pay Record"
530 PRINT TAB(10);"3 - Print Payroll Reports"
540 PRINT TAB(10);"4 - Add or Delete Employees"
550 PRINT TAB (10); "5 - End of Quarter/Year Clearing"
560 PRINT TAB(10);" 6 - End Session"
570 PRINT
580 PRINT" Your choice";
590 X$=INKEY$:IF X$=" " THEN GOTO 590
600 X=VAL(X$):IF X<1 OR X>6 THEN GOTO 590
610 ON X GOTO 630,1060,1370,1920,2410,2690
620 ENDrREM > Do the Payroll module **
630 CLS:PRINT TAB (10);" **** DO THE PAYROLL ****"
640 PRINT
650 IF Nl=<5 THEN PRINT''One 8 x 11 sheet of paper will do.":GOTO 670
660 PRINT"You will need two 8 x 11 sheets for the pay stubs."
670 PRINT' 'Adjust your paper, your printer should be set for 66 line"
680 PRINT"pages and 60 lines per page, width 80 columns."
690 PRINT
700 PRINT"To skip an employee, enter 0 for hours worked."
710 PRINT
720 FOR 1=1 TO N1
730 E$=E$(I):HT=0:GOSUB 2830
740 PRINT" Hours * %;E$;" worked this period" ;: INPUT HO: IF HO=0 THEN

GOTO 1020
750 PRINT''Did , *;E$;'' use any vacation this period (Y/N) ";:INPUT X$
760 IF X$<>"Y" AND X$<>"y" THEN GOTO 790
770 INPUT" How many hours were taken" ;HT
780 E(4)=E(4)-HT
790 VA=VC*HO:E (4) =E (4) +VA: GP=E (0) *HO:CF=GP*FR:CT=GP*E (1) :

CS=GP*E(2) :CM=E(3) :CL=HO*WC
800 IF E(10)=>FM THEN CF=0
810 NP=GP-(CF+CT+CM+CL+CS)
820 E (7) =E (7) +CF:E(9)=E(9)+CT:E(6)=E (6)+CS:E(5)=E(5)+CL:E(8)-E(8) +

CM
830 E(17)=E(17)+HO:E (11)=E (11)+GP:E (12)=E(12)+CF:E(13)-E(13) +CT:

E(14) =E(14)+CL:E (15)=E (15)+CS:E (16)=E(16)+NP:E(10)=E(10)+GP:

E(18)=E(18)+CM
840 CF=FNI(CF):CL=FNI(CL):CT=FNI(CT):CS=FNI(CS):CM=FNI(CM):

NP=FNI(NP) :GP=FNI(GP) :E(10)=FNI(E(10))
850 FOR K=5 TO 18:E(K)=FNI(E(K)):NEXT K
860 LPRINT Cl$+" "+02$+" ' *+C3$
870 LPRINT E1$;TAB (26) ;S$;TAB (40) ; "Pay period ending: ";D$
880 LPRINT'' ''
890 E (4) =INT (E (4) *10+.5) /10 ,/riJ. ,,
900 LPRINT" HOURS"; TAB (7) ; " VacAvail" ;TAB (17) ;" Taken"; TAB (25) ; Rate ;

TAB (35) ;'' GrossPay''; TAB (50) ;"NetPay"
910 LPRINT USING XA$;HO;E(4);HT;E(0);GP;NP
920 LPRINT'' ' '
930 LPRINT TAB (32)" — Deductions —"
940 LPRINT TAB(20) ; "FICA" ;TAB (30) ; "FedTax" ;TAB(40) ; " StateTax ;

CODEWORKS Issue 22 33

950
960

TAB(50);''Medical'';TAB(60); " WorkmnComp''
LPRINT''Current Period —'';:LPRINT USING XB$;CF;CT;CS; CM; CL
LPRINT''Year to Date '';:LPRINT USING XB$;E(7) ; E(9);E(6);E (8)

E (5)
LPRINT"YTD Gross $";E(10)
LPRINT STRINGS(64, 45)

Review a Pay
PAY RECORD''

';E$

Record module **

GOSUB 2750
IF 1=6 THEN LPRINT CHR$(12)

NEXT I
LPRINT CHR$(12)
GOTO 450
END:REM > Edit or
CLS:PRINT TAB (10) ; "EDIT/REVIEW A
PRINT
INPUT''Enter Employee's First name
GOSUB 3090
GOSUB 2830
CLS:PRINT TAB(20); " EDIT/REVIEW"
PRINT"Filename is: ";E$
PRINT''1-Name: " ;E1$;TAB(32); " 11-YTD Med ded ";E(8)

S$;TAB (32) ;'' 12-YTD FedTax ded ~ n;E(9)

970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140 PRINT'' 2-SS# ' x

1150 PRINT" 3-Rate/Hr — •'
1160 PRINT" 4-FedTax % - "
1170 PRINT" 5-StTax % — "
1180 PRINT" 6-Med ded — , %

1190 PRINT" 7-Vac avail- "
1200 PRINT" 8-YTD WkComp "
1210 PRINT" 9-YTD StTax- "
1220 PRINT" 10-YTD FICA- **
1230 PRINT TAB(32); " 21-Med
1240 PRINT
1250 INPUT" Correct which item number, enter 0 for none ' \-XX
1260 IF XX=0 AND X2$<>" " THEN PRINT"You chose to change something,

which number" ;: INPUT XX: IF XX=0 THEN GOTO 1250 ELSE GOTO 1280
1270 IF XX=0 THEN FOR 1=0 TO 18:E (I)=0:NEXT I:GOTO 450
1280 IF XX<1 OR XX>21 THEN GOTO 1250
1290 LINE INPUT''Enter the correct information
1300 IF XX=1 THEN E1$=X$
1310 IF XX=2 THEN S$=X$
1320 IF XX>2 THEN E(XX-3)=VAL(X$)
1330 INPUT"Any more changes (Y/N)";X2$
1340 IF X2$="Y" OR X2$="y" THEN GOTO 1250
1350 GOSUB 2750:X2$=" " :GOTO 1110

™^-REM > Print Payroll Report module **
1370 CLS:PRINT TAB (10);" PAYROLL REPORTS"
1380 PRINT
1390 PRINT''Get your printer ready"
1400 PRINT

1410 PRINT" 1 - Report of Amounts Paid/Withheld (IRS 941 info)''
1420 PRINT" 2 - Employee Information Report."

E(0) ;TAB (32)
E(1) ;TAB(32)
E (2) ;TAB (32)
E (3) ; TAB (32)
E(4) ;TAB(32)
E (5) ; TAB(32)
E(6) ;TAB(32)
E (7) ; TAB (32)
ded this qtr

' 13-YTD Gross pay — M;E(10)
'14-Gross this qtr — **;E(11)
'15-FICA this qtr — ,,;E(12)
'16-FedTax this qtr - * *;E(13)
'17-WkComp this qtr - ,,;E(14)
'18-StTax this qtr — ' VEflS)
'19-Net pay this qtr- *';E(16)
'20-Hours this qtr — **;E(17)
' *; E (18)

';X$

34 Issue 22 CODE WORKS

mm

1430 PRINT''3 - To return to main menu.''
1440 PRINT
1450 PRINT"Your Choice";
1460 X$=INKEY$:IF X$=" " THEN GOTO 1460
1470 X=VAL(X$):IF X<1 OR X>3 THEN GOTO 1460
1480 LPRINT TAB(20);Cl$
1490 LPRINT TAB(20);C2$
1500 LPRINT TAB(20);C3$
1510 LPRINT'' ''
1520 ON X GOTO 1530,1750,450
1530 CLS:PRINT" This report will show accumulated amounts during the"
1540 PRINT''quarter. It is used primarily to have a record and to''
1550 PRINT" calculate IRS 941 liability. It will fit on one page."
1560 PRINT
1570 PRINT''Press ENTER when ready" INPUT X
1580 LPRINT"Accumulated Pay Amounts Report for period ending ''; D$
1590 LPRINT'' ''
1600 LPRINT" Hours' '; TAB (10) Gross'' ; TAB (20) ;"FICA'' ; TAB (30) ; "FedTax'' ;

TAB (40) ;' ' WkComp" ; TAB (47) ; " StTax" ; TAB (56) ; "Med" ;TAB (65) ;"NetPay"
1610 LPRINT" ' '
1620 FOR 1= 1 TO N1
1630 E$=E$(I):GOSUB 2830
1640 LPRINT E1$,S$
1650 LPRINT USING XC$;E (17);E (11);E (12);E(13);E(14);E(15);E(18);

E (16)
1660 T1=T1+E(17):T2=T2+E(11):T3=T3+E(12):T4=T4+E(13):T5=T5+E(14):

T6=T6+E(15):T7=T7+E(18):T8=T8+E(16)
1670 NEXT I
1680 LPRINT" 1 *
1690 LPRINT"*** TOTALS ***"
1700 LPRINT USING XC$;Tl;T2;T3;T4;T5;T6;T7; T8
1710 LPRINT" ' '
1720 LPRINT" Total 941 liability so far is $";(2*T3)+T4
1730 LPRINT CHR$(12)
1740 GOTO 450
1750 CLS: PRINT "Employee List Report"
1760 PRINT
1770 PRINT" This report provides a list of your employees and their"
1780 PRINT" fixed deductions. It will fit on one 8 x 11 page."
1790 PRINT
1800 PRINT''Press ENTER when ready" INPUT XX
1810 LPRINT" Employee List as of ' *D$
1820 LPRINT" ' *
1830 LPRINT' 'Name'' ; TAB (26) ;'' SS#" ; TAB (38) ;' 'Rate''; TAB (50) ;' 'FedTax%' ' ;

TAB(60);''StTax%'';TAB(70);''Med Ded''
1840 LPRINT" ' '
1850 FOR 1=1 TO N1
1860 E$=E$(I) rGOSUB 2830
1870 LPRINT El$;TAB(26);S$;TAB(38);E(0);TAB(50);E(1);TAB(60);E(2);

TAB(70);E(3)
1880 NEXT I

CODEWORKS Issue 22 35

1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140

2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380

LPRINT CHR$(12)
GOTO 450
END:REM > Add or Delete Employee module **
CLS:PRINT TAB(IO);'' ADD OR DELETE AN EMPLOYEE PAY RECORD
PRINT
PRINT TAB(10);" 1 - To ADD a New Employee Record.''
PRINT TAB (10);" 2 - To DELETE an Employee Record.''
PRINT TAB(10); " 3 - To return to main menu."
PRINT''Your Choice'';
X1$=INKEY$:IF Xl$=" " THEN GOTO 1980
X1=VAL(XI$):IF X1<1 OR Xl>3 THEN GOTO 1980
ON XI GOTO 2010,2230,450
CLS: PRINT TAB (10); "ADD a new Employee Record"
PRINT
PRINT''Follow the prompts to create a new employee record.
PRINT"Enter zero amounts where applicable."
LINE INPUT "Employee Full Name ' \-El$
LINE INPUT" Social Security Number ' \-S$
INPUT'' Hourly Rate of pay ' "ElO)
INPUT''Federal Tax Deduction % (i.e., .12)- * *;E (1)
INPUT"State Tax Deduction % (i.e., .08)— ,,;E(2)
INPUT''Medical Insurance per period ";E(3)
PRINT
INPUT"Enter Employee File name '';E$
FOR 1=1 TO NE

IF E$(I)=E$ THEN PRINT"That name already exists, use another'':
GOTO 2120

NEXT I
INPUT''Press ENTER to create this record'';XX
GOSUB 2750
FOR 1=1 TO 10
IF E$ (I) =" " OR E$ (I) = '' ONE'' THEN E$ (I) =E$:GOTO 2210

NEXT I
GOSUB 2920
GOTO 450
CLS: PRINT TAB (10);" BEFORE YOU DELETE AN EMPLOYEE!"
PRINT
PRINT''You must carry an employee through the current quarter''
PRINT" so that your reports used for IRS forms 941 will be"
PRINT "correct. To carry a terminated employee through"
PRINT the end of the quarter, when you do the payroll, simply''
PRINT" enter 0 for hours worked. It will then skip over that"
PRINT" employee. NOW — if you still want to delete, go ahead:"
PRINT"Answer the next question with 0 if you opt not to delete."
PRINT
INPUT''Enter File name of employee to delete ";E$
IF E$="0" THEN GOTO 1920
GOSUB 3090
FOR 1=1 TO NE
IF E$ (I) =E$ THEN E$(I)=""

NEXT I
0)

36 Issue 22 CODEWORKS

I.

M

2382 FOR 1=1 TO NE
2384 L=I+1
2386 IF E$(I)="" THEN E$ (I)=E$ (L) :E$ (L)=" "
2388 NEXT I
2390 GOSUB 2920:GOTO 350
2400 END:REM > End of Quarter/Year Clearing module **
2410 CLS:PRINT TAB(20);" QUARTER / YEAR END CLEAR "
2420 PRINT
2430 PRINT''Be sure you have printed your payroll reports for the''
2440 PRINT''quarter before clearing. Clearing the quarter will remove''
2450 PRINT''all quarterly data for ALL employees. Clearing the year''
2460 PRINT''will clear everything except basic employee data for''
2470 PRINT''ALL employees. Use Edit/Review option to verify clear.''
2480 PRINT
2490 PRINT''At the end of the year, clearing the year will clear the''
2500 PRINT''last quarter as well. » Print your reports first! «,%

2510 PRINT''To prevent inadvertent clearing, you must type in the''
2520 PRINT" word QUARTER or YEAR, otherwise, you will be sent"
2530 PRINT''back to the main menu.
2540 PRINT
2550 PRINT" CLEAR what: ' * : INPUT X$
2560 IF X$<>' 'QUARTER' ' AND X$<>"YEAR" THEN GOTO 450
2570 IF X$=" QUARTER" THEN Ql=ll ELSE Ql=5
2580 FOR 1=1 TO N1
2590 E$=E$(I):GOSUB 2830
2600 PRINT"Clearing the ,,;X$;" for: ' *E$
2610 FOR J=Q1 TO 18
2620 E(J)=0
2630 NEXT J
2640 GOSUB 2750
2650 NEXT I
2660 PRINT'' All ,,;X$;" amounts have been cleared. Press ENTER" ;: INPUT

X
2670 GOTO 450
2680 END:REM End Session module **
2690 CLS:PRINT TAB (10); "END SESSION"
2700 PRINT
2710 PRINT"Be sure to backup your diskettes after each update."
2720 PRINT''It is advisable to keep a Father, Son and Grandfather"
2730 PRINT" set and rotate the backups."
2740 END:REM > Open employee file and write subroutine **
2750 OPEN ' ,0" , 1,E$
2760 PRINT # 1,ElS$+" ," ,
2770 FOR J=0 TO 18
2780 PRINT #1,E(J);
2790 NEXT J
2800 CLOSE 1
2810 RETURN
2820 END:REM > Open employee file and read subroutine **
2830 OPEN 1 'I" , 1,E$
2840 INPUT #1,E1$,S$

CODEWORKS Issue 22 37

2850 FOR J=0 TO 18
2860 IF EOF(1) THEN 2890
2870 INPUT #1,E(J)
2880 NEXT J
2890 CLOSE 1
2900 RETURN
2910 END:REM > Write the PAYNAMES file to disk **
2920 OPEN "O" , 1/"PAYNAMES"
2930 N1=0
2940 FOR 1=1 TO NE
2950 IF E$(I)="" THEN GOTO 2980
2960 PRINT #1, E$ (I)
2970 N1=N1+1
2980 NEXT I
2990 CLOSE 1
3000 REM > Read the PAYNAMES file from disk **
3010 OPEN ''I" , 1, "PAYNAMES"
3020 FOR 1=1 TO N1
3030 IF EOF(1) THEN GOTO 3060
3040 INPUT#1,E$(I)
3050 NEXT I
3060 CLOSE 1
3070 RETURN
3080 REM > Who is Real? Subroutine **
3090 FOR 1=1 TO NE
3100 IF E$ (I) =E$ AND NOT (E$=" ") THEN RETURN
3110 NEXT I
3120 PRINT
3130 PRINT E$;" is NOT a valid pay name.''
3140 PRINT" These are:"
3150 PRINT
3160 FOR 1=1 TO N1
3170 PRINT E$ (I) ; " 1 *
3180 NEXT I
3190 PRINT:PRINT
3200 INPUT''Which one do you want" ;E$
3210 GOTO 3090
3220 ,

3230 ' error trap to create paynames file if it doesn't exist.
3240 IF ERR <>53 THEN ON ERROR GOTO 0
3250 * IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0 ^ basic prior to ver

5.0
3260 OPEN"0" , 1, "Paynames"
3270 PRINT #1,''ONE''
3280 CLOSE 1
3290 GOTO 350
3300 END ' of program

Handy Order Form
1

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95

All third year issues, Nov 87 through Sep 88 $24.95

All second year issues, Nov 86 through Sep 87 $24.95

All first year issues, Sep 85 through Sep 86 $24.95

1st Year Program Disk (issues 1 through 7)
(Specify computer type below) $20.00

2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00

3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available now $20.00

1 NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x
(Tandy Model IV) and most CP/M MB ASIC formats, on

51 /4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
O Charge to myVIS A/MC exP

Ship to: Name

Address ——

Citv S tate Zip

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only

CODEWORKS Issue 22 39

Index & Download
What's happening with both

Here are the updates to bring CWindex.Dat
up to date through the last issue. The entire
index for the first three years of CodeWorks is on
the download and on our yearly diskette.

Notes, shell, erase and rename, issue 21, page
3

Notes, using more than 64K of memory, issue
21,page 4

Notes, direct cursor positioning with CP/M,
issue 21, page 4

Notes, error message patch for Tandy III,
issue 21, page 5

Beginning BASIC, a look at variable types,
issue 21, page 6

Fileutil.bas, main program, issue 21, page 7,
a collection of file utilities

Frame.bas, main program, issue 21, page 14,
building costs and materials

Trust.bas, main program, issue 21, page 32,
computerized loan payment book

Notes, direct execution from screen in MS
DOS, issue 21, page 38

Download, notes on the download, issue 21,
page 40

CWindex.dat, updates to this index, issue
21, page 40

There hasn't been too much excitement on the
download lately. It's running smoothly, except
for one power failure during early February,
which didn't last more than an hour or so.

We have noticed that several of you are still
having problems when signing on. Use your last
name and your subscriber number, and you will
get right in. Your subscriber number is the
number at the upper right of your mailing label.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

2910
ERICKSON; MIKE-: / KRJF:
BOX 250
MONTE RID DA 95-062

Bulk Rate
U.S. Postage

PAID
Permit 774

Tacoma, WA

. CODEWORKS
Issue 23 May/Jun 1989

CONTENTS

Editor's Notes 2

Forum 3

Beginning BASIC 5

Matrix.Bas S

Invoice.Bas 17

Notes 26

Outline.Bas 27

Order form 39

CWindex and Download 40

CODEWORKS Editor's Notes
Issue 23 May/Jim 1989

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashbum

(c)1989 80-Northwe*t PublishingInc. Nopat-
ent liability is assumed with respect to the use
of the information contained herein. While
every precaution has been taken in the prepa
ration of this publication, the publisher as
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre
sented in this publication are placed in
public domain. Please address all correspon
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 98409

Telephones
(206) 473-2219 (voice)

(208) 475-2356 (modem download)
300/1200 baud, 8 bits, no parity and 1

stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned if return postage is provided. Compen
sation will be made for works which are ac
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for that year. VISA slid Master Card orders are
accepted by mall or phone (206) 475-2219.
Charge card orders may also be left via our
on-line download system (206) 475-2356.

CodeWorks is published bimonthly in Jan,
Mar, May. Jul, Step and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
a sample copy at no cost.

How many computers can you
afford to buy in one lifetime? If you
read the mainstream computer
magazines, it almost seems that
they expect you to trade up just as
fast as new CPU chips are re
leased. It started with the 8086,
then the 80186, the 80286, 80386
and now they're talking about an
80486 chip. Each new chip offers a
new higher operating speed.
They're talking now about clock
rates as high as 25 Mhz; so fast, in
fact, that you will probably have
your answer on the screen before
your finger leaves the run button.

But what about us "normal"
folks who can't afford to follow
along with the latest fad in com
puter hardware? Admittedly,
there are those among us who are
hardware junkies and have not
one, but several, relics. The rest of
us are still justifying the purchase
of our first computer and wonder
ing how and when to upgrade.

Electronics is such a fast mov
ing industry it seems that today's
marvel is marked down tomorrow
and obsolete the day after. That's
both good and bad. It really messes
up your resale value if you want to
sell. But on the other hand, you
probably bought it at a bargain
price, especially if you didn't run
right out and buy it when it was
first announced.

One good thing has emerged in
the past few years, that being the
compatibility and universal stan
dard of MS DOS. Whatever bad
things you can say about it, it does
have a few good things going for it.
As a case in point, I just finished
writing an income tracking and
payroll program for beauty salons.

This was not for publication; it was
for a local computer store. The nice
thing about the programs was that
after I compiled them using Quick
BASIC, you could just pop them
into any IBM PC, XT, AT or com
patible and they run. That covers a
whole lot of machines. Not only
that, but they were written on an
8086 machine and compiled there,
and they still run on 80X86 ma
chines. That's nice.

But back at the question of if
and when to upgrade: Personally,
if I still had a 64-column screen
machine, or a machine that re
quired a kludge to put lower-case
characters on the screen, I'd up
grade in a minute. You can buy
some pretty high-powered ma
chines these days for under $ 1000,
and in some cases that even in
cludes a hard drive. Not only that,
but it's a fairly safe bet that MS
DOS and all the compatibles will
be around for a good long time.
There are just too many of them in
use everyday, which makes a
market for writers of software. In
fact, there is so much software
available for these machines that
several of our readers have simply
given up on programming and
have written to tell us so. In a way,
it's easy to see why, although we
still believe that the only way to
get what you really want is to
program it yourself.

And it all depends on what you
are doing with your computer. If
you like to program your own and
are doing it for your own enjoy
ment - then that old computer
might still have a few good years
left in it.

Irv

2 Issue 23 CODEWORKS

m

Forum
An Open Forum for Questions and Comments

Your magazine has been coming to me since
the first edition. It has been quite enlightening.
In the Forum for Issue 211 read with consider
able interest the item of John M. Gregg about the
Mormon genealogical program. I subsequently
wrote to Salt Lake City, inquiring as to whether
the program was available on 8 inch SSSD disks
in the IBM format for the CP/M operating sys
tem. Their very prompt reply stated that the
PAF was not published on the 8 inch format.

I operate a Heath H-11A (DEC LSI-11) com
puter equipped with a coprocessor so that I can
also rim in the CP/M operating system. It re
quires 8 inch disks SSSD and in the IBM format.

Do you have information that will tell me
whom to go to who may have already converted
this program (PAF) to run under the system I
have available?

Clay E. Lewis
1652 Garfield Avenue

Wyomissing, PA 19610
We can't, but perhaps some of our readers may

be able to help.

How can I get or write a little BASIC program
that can read my data files (which I can't read
otherwise) from Genesis, a financial data service
down in Texas? I have an IBM computer and am
familiar a little with programming.

Walter Jung
6225 Brightlea Drive

Lanham, MD 20706
It depends entirely on the format those files are

written in. Also, what form do you want the
output to be in? Some commercial programs use
very odd file structures. You might try our
FileUtil.Basprogram from Issue 21 to at least see
what some of your file looks like. That may give
you a clue as to how to proceed.

In Issue 21 Charles B. Steele was looking for
a cross reference utility for use with BASIC on an
MS DOS machine. I was in the same boat as Mr.

Steele when I switched from a CP/M machine to
MS DOS. I have found use of a cross referencing
utility most helpful in keeping track of variable
names used in a BASIC program as well as in
debugging the programs. For example it's easy
to pick out a misspelled variable from the alpha
betical listing because it will usually have only
one line number associated with it.

Although I don't want to discourage you from
publishing a cross reference program in Code-
Works (it would be interesting to follow the
logic), Mr. Steele and other BASIC programmers
might be interested in trying PC-XREF, version
6.1, by James T. Demberger. I have found it to be
fast, comprehensive and easy to use. I also like
the fact that it reads BASIC programs saved in
tokenized format rather than ASCII because I
usually save my programs that way. PC-XREF
is a shareware program which may be down
loaded from Compuserve and Genie on-line data
services. A disk containing documentation and
program files may be ordered directly from Mr.
Demberger for $5.00 plus $1.00 shipping and
handling. The registration fee is $15.00 if one
likes and wants to use the program. The address
is PC-*.* Shareware, 9862 Lake Seminole Drive,
West, Seminole, Florida 34643, phone (810) 397-
2930.

I'm looking forward to another year of helpful
and interesting articles in CodeWorks. I was
sorry to read about Mr. Dettmann's disk prob
lems. Please tell him we hope his reconstruction
period is short.

Robert L. Anderson
St. Albans, WV

Re: Notes, Issue 22, How to scroll in GW
BASIC. As stated in the magazine did not work.
How come? Did it work for you? Sure would love
a program that does scroll forward and back
ward.

I'm curious as to why you don't use the back
space to slash your zeros. Mistaking Oh's for

CODEWORKS Issue 23 3

zeros was the worst experience when I first was
learning BASIC when typing other programs
and avoiding it is so easy with the slash. Are you
not using BASIC to put your magazine together?

Fran Hynes
San Francisco, CA

Scrolling as per the note in Issue 22 worked on
all the machines with GW BASIC we tried it on.

We are using BASIC as much as possible to put
the magazine together. The programs are saved
in ASCII and loaded into the desktop publishing
program and set in Courier. Note the Oh's are fat
and round, while the zeros are egg-shaped. We
haven't yet found a way to slash the zeros using
this method of printing the listings.

David Charlton's letter in Issue 22 got my at
tention as it relates to a problem I am trying to
solve (actually I want someone else to solve it for
me). The two major high resolution BASIC pro
grams for TRS-80 computers (Models 1,111,4)
differ greatly in the speed of the circle or arc
drawing routines. BASICG from Radio Shack is
nearly 10 times faster than GBASIC from Micro
Labs. Otherwise, the Micro Labs program is
much better for my purposes. I dearly wish
someone would "fix" GBASIC so it doesn't take
forever to draw a curve.

With my talent for machine language pro
gramming, I could never get the job done in this
century. I believe that I do know the reason the
BASICG draws circles so much faster than
GBASIC, however.

This brings me back to David Charlton's letter
and his circle program, which uses the trig func
tions SIN and COS. The routines "borrowed"
from BASIC ROM for trig functions are quite
slow compared to the arithmetic functions.

The square root SQR function is somewhat
better and can also be calculated rapidly in
machine language using arithmetic functions if
an estimate is available. But that's another
story.. .

.. .The question is, who would like to make us
a patch to speed up the GBASIC circle routine? I
would help as long as I don't have to do the
machine language hacking.

Not to overlook Charlton's problem with

round circles, it is due to pixels seldom being
square with the result that Y or X has to be
multiplied by the pixel aspect ratio. In TRS-80
Hi-Res the ratio is 2:1. There is a way to adjust
picture tube horizontal height to get it just right.
Other systems may have different ratios, and if
you're really lucky, maybe 1:1.

Bob Keegan
112 W. Center St. # 615
Fayetteville, AR 72701

Perhaps someone with the computers you men
tion and the inclination to program in machine
code will be able to give you a hand.

That's Forum for this issue. See you aii again
in July. - Irv

I discovered that between the time my
computer records a stock sale and the
main computer dispenses the info, I

could make four million dollars.

Issue 23 CooeWoRKS

m

Beginning BASIC
All About Strings - Part 1

What makes your computer different than a
calculator? They both add, subtract, multiply,
divide and do various other operations with
numbers, don't they? True, but your computer
has one other ability that most programmable
calculators do not have - the ability to handle
strings of text.

But your computer is full of nothing but binary
numbers, so how can it tell the difference be
tween a number and a letter? Well, we let certain
of those numbers represent letters and punctua
tion and other symbols. If you look at the ASCII
character set, you will find that the numbers
from 1 through 31 are used for control symbols;
from 31 to 122 they are used for numbers, both
upper and lower case letters and punctuation;
and from 123 through 255 they are used for
special characters and graphics symbols. One
eight-bit byte then, can represent any character,
since there are 256 possible combinations of one
byte.

If we tell the computer that A=5, then some
memory location called A will contain the ASCII
value for 5. When you then PRINT A, it will go to
location A and fetch the value (5) stored there
and print it on the screen. The actual translation
from the binary 5 to the decimal 5 is made in the
character generator of your computer, between
memory and your video screen. Actually, the
value stored in A will not be 5, but will be the
ASCII value for 5, which is 53 or binary
00110101. The digits 0 through 9 are ASCII 48
through 57. Most operator manuals on BASIC
which came with your computer have, as an
appendix, a list of the ASCII codes.

Now you can have input a value of 5 and
another of 8 and another of 10, and they could be
in almost any location in memory. Assuming
they were called A, B and C, you could always
retrieve them by PRINTing A,B,C. But when we

input a string, we want the entire string to be in
one contiguous chunk, so that when we print it,
it will look right. Obviously then, strings need
something special to tell the computer that they
are, indeed, strings and not simple integer
numbers. The device used to denote a string is
the dollar sign ($), after the variable designa
tion, as in A$. In addition to that, when you
define a string inside a BASIC program, you
must enclose it in quotes, as in: A$="This is a
string."

Now, instead of going into simple variable
space, A$ will go into what is called "string
space" and will be treated somewhat differently
than other variables. Can you now see where the
designation "string" came from? It is probably
due to the fact that the string occupies a "string"
of spaces in memory, dependent upon the length
of the string. Each character of the string, of
course, would occupy one byte.

Let's go back for a moment and look at the
exceptions to inputting a string. If your program
has the statement: INPUT "What is your name
";A$ you can answer without using quotes. If the
statement were, however, INPUT "What is your
last name, first name ";A$, you would need to put
quotes around your answer because it contains a
comma. The same would hold true if the answer
contained a semi-colon. DATA statements can
be read in as strings and need not be enclosed in
quotes. In other words, this would be possible:

DATA one,two,three

But - and there always seems to be a but - if
any of your data elements contained a comma or
semi-colon, or if there were any leading or lag
ging spaces, you would have to enclose the entire
element in quotes. An example:

DATA "Jones, John","items; 12 ",three,four

CODEWORKS Issue 23 5

Again, back to our input example above, a
variation of INPUT, called LINE INPUT, will
allow input of any punctuation. As in: LINE
INPUT "Last, first name ";A$. These little differ
ences can be rather confusing to those just start
ing out in BASIC. Also notice that the portion of
the INPUT statement enclosed in quotes is itself
a string. These "literal" strings are built right
into the program and do not reside in the "string
space" set aside for definable string variables.
But they are strings, nonetheless.

The letter A, stored in some memory location
and then called back, is easily recognizable as a
string simply because it is a letter. But what
about the number 3? Digits can be stored as
either string or integer, and sometimes it's hard
to tell the difference. And it does make a differ
ence: You simply cannot add a string 3 with an
integer 5 and get 8. We'll find out much more
about this a little later on.

When a string variable is stored in memory
other pertinent information is appended inter
nally to it. Well, like most things in computing,
that's not quite true, but almost. Actually, a
variable pointer block is set up to point to the
string's location and it contains the length of the
string as well as the memory location of the
actual string. Since strings do not have a fixed
length, it is important to know just how long a
string is. The length of a string includes all
spaces and punctuation, in fact, everything be
tween the quotes is included in the length of the
string. A zero-length string is called a "null
string" as in A$="".

BASIC includes the function LEN(string),
which will return the length of the string speci
fied. You could say: L=LEN(A$), and variable L
would contain the length of A$. We don't always
care how long a string is, but we certainly can
use something that defines that length. Confus
ing? Well, if we want to look at each character in
a string with a loop, we can use this:

A$="This is a string"
FOR I = 1 TO LEN(A$)

do something, then NEXT

in which case we really didn't care about the
length of the string as long as the program knew
it and looked at every character in the string.
LEN(string) is a function and returns an inte
ger value representing the length of the string.

A small aside here, while we look at the differ
ence between functions and statements. A state
ment is an instruction to the computer telling it
to do something, like GOTO or PRINT. Func
tions are like little subroutines that calculate
something, like SQR(N), or LEN(string), or
VAL(string). There are functions that operate on
integers and those that operate on strings. A
function has two parts, a title and an argument.
The title describes what the function does, like
VAL(A$) (value of A$) or LEN(A$) (length of A$).
The argument is the input to the function (A$ in
both of the above cases). The function takes the
input (A$) and returns a result.

If A$="this is a string" and we PRINT
LEN(A$) the answer we will get is 16. Now that
we know how to get the length of a string, let's go
on to another interesting statement used with
strings: INSTR (read: INSTRing). The whole
form of this statement is:

INSTR(position,string,sub-string)

INSTR searches string, beginning at position,
looking for sub-string. It returns the position
number in the string where sub-string was
found. It returns zero if the sub-string was not
found. If position is omitted, the search begins at
the first character of string, position 1. INSTR is
case-sensitive, which means that you can't find
"A" by looking for "a". Here is an example:

A$="this is a string"
P=INSTR(l,A$,"a")
PRINT P

If you run this bit of code, variable P will
contain a 9 because the lower-case "a" occupies
the ninth position in A$. Later, we will see how
valuable INSTR is when trying to find an exact

Issue 23 CODBWORK

match within a string. Before we leave this part
of the discussion, let's add that the maximum
length a string in BASIC can have is 255 charac
ters.

Earlier we mentioned that each string has a
variable control block to tell it how long the
string is and where it is located in memory.
BASIC has an interesting function called
VARPTR (stands for "Variable Pointer"). As
suming that we still have the same A$ from the
previous paragraphs, if you PRINT
VARPTR(A$), you will get a memory address. If
you then PEEK that address, you will get the
length of the string. In our case (and it will vary,
depending on your computer and BASIC) when
we took the VARPTR(A$), we got 4452, the
decimal address of the variable control block.
Actually, the control block is three bytes long,
and 4452 is the address of the first of those three
bytes. When we did a PEEK (4452) it returned a
16. How about that? It turns out that our A$ is
exactly 16 characters long. So the first byte of the
three tells how long the string is.

The next two bytes of the variable pointer (ad
dresses 4453 and 4454) contain the memory
address of the start of the actual string. In our
case, again, the actual A$ started at memory
location 4061. PEEKing into that address and
the 15 following addresses we got a series of
ASCII numbers. When we took the CHR$ of each
of the numbers, guess what we got? They trans
lated into "this is a string"! But why two bytes for
the address of the start of the string? Well, the
first byte is the low-order byte and the second
byte is the high-order byte of the address. That
way, two bytes can address up to 65536 memory
locations. Each byte has 256 discreet states and
256 times 256 just happens to be 65536. And, by
the way, the so-called 64K memory is really
65.536K. See Figure 1 for a little program that
you can type in and try with various different
strings and lengths. Keep in mind that you won't
necessarily get the same numbers for memory
locations that we did. VARPTR is not the most
used function in BASIC. It's handy when you
need it, though.

Now comes a real interesting question. If the
string, itself, is out there all by itself, and the
variable pointer has only three bytes telling
length and where the string actually is, what
happens when you have an A$ and a B$? How
does the computer know which variable pointer
block to go to? We scoured all the available books
we have on the subject, and the best we can come
up with at this point is that BASIC also keeps a
variable table. That table, then, must point to
the variable pointer, which points to the string.
It seems that we run and hide from ourselves
just to get excited when we find ourselves again!

In the next issue we will continue with more
practical string-handling commands and func
tions. We will also try some bits of code that
demonstrate how the various commands work.
String handling is, after all, almost half of com
puting!

Figure 1

10 A$="this is a string"
20 P=VARPTR(A$)
30 PRINT'The variable control block is at ad

dress ";P
40 PRINT'That address contains the length

";PEEK(P)
45 PRINT'The next two bytes contain the ad

dress of the string."
50 X=PEEK(P+l)+256*PEEK(P+2)
60 PRINT'The starting address of the actual

string ";X
70 PRINT
80 PRINT'The contents of address ";X;" to

";X+PEEK(P);" are:"
90 FOR I=X TO X+PEEK(P)
100 PRINT PEEK(I)"="CHR$(PEEK(I));
110 NEXT I

CODEWORKS Issue 23 7

Matrix. Bas
A Complete Set of Matrix Functions

Staff Project. Solving for 20 unknowns with 20 equations is what's possible
with this program. In addition, it provides all the other important matrix
manipulations you may have need of from time to time.

In science, mathematics, business and many
other fields that use number systems it becomes
necessary to be able to solve systems of Hnear
equations. One system might take on the form:

3x + 4y = 10
7x - 5y = 22
In this example, there are two equations and

two unknowns. (Unknowns refer to the variables
x and y.) These kinds of equations are relatively
simple to solve and there are many methods with
which to solve them.

But what if there is a need to solve 18 equa
tions and 18 unknowns? Do you really want to
try that with pencil and paper?

In trying to maximize profits, or determine
the total pressure needed to inflate 14 different
balloons of 14 different sizes, or how much volt
age is needed in order for 20 circuits to carry 20
different currents - the list goes on forever -
systems of hnear equations must be solved.
Matrix.Bas is a program that will do the work for
you.

In order to solve these systems of equations it
becomes necessary to work with matrices. And it
becomes necessary to multiply matrices, mainly
to find the inverse of an m x n matrix, (m rows
and n columns are usually designated by m x n.)
Some of the earlier BASICs of about 10 years ago
included the MAT functions which would allow
you to perform these functions easily. Somehow,

with the evolution of BASIC and newer comput
ers these MAT functions dropped by the way
side. Matrix.Bas is a program that gives you
back these functions.

The program will do the following:

1. Add two matrices.
2. Subtract two matrices.
3. Transpose a matrix.
4. Multiply a matrix by a constant.
5. Multiply two matrices.
6. Find the inverse of a matrix and/or solve for

a solution to n unknowns with n equations.

The first four items are straightforward and
probably will seldom be used except for large
matrices. The key to solving equations is in the
last two items. If you have never before worked
with matrices, take a look at any math book and
follow the steps required to multiply two matri
ces. It will help you appreciate this program that
much more.

The program will first display the menu, giv
ing the above commands. Enter the number of
your choice and the computer will come back
asking you the order (number of rows and col
umns) of your matrix. Some matrix algebra
requires square matrices (as many rows as col
umns) but others can have a different number of
rows and columns.

Issue 23 CODE WORKS

Then it will allow you to see the matrix that is
just completed, giving you a chance to make sure
that is was entered correctly. If you have a
printer you can send output to it as well as the
screen.

If you are solving for inverses the input works
the same way, but on output you will notice that
all of the matrices are double precision. This is to
allow for round-off errors inside the computer on
the calculations needed for finding inverses and
using double precision variables will take care of
most of this. They are, by the way, returned to
normal precision as soon as the inverse has been
computed and printed.

Once the computer has solved for the inverse,
it will prompt you with a question asking if you
want to use that answer positively and enter the
solution matrix when requested to. (Solution
matrices are on the order of 1 x n). It will then
calculate all of the variables in the solution
system and come back with the answer. Again,

you can send this output to the printer, too.

Here is an example of solving three unknowns
in three equations using option 6 of the menu.
You need to tell the program that the matrix is 3
x 3. Make sure that all your unknowns are lined
up properly. Then enter 2, -9, -5,7, -6,5,9,-6 and
5. When asked for the solution matrix enter: 2,
-35 and -39. The program will then tell you that
x = -2, y = 1 and z = -3, which is the answer you
wanted.

2x - 9y - 5z = 2
7x - 6y + 5z = -35
9x - 6y + 5z = -39

The program is currently set for matrices that
are 20 x 20, which will allow you to solve for 20
unknowns in 20 equations. If you have the
memory space, you can adjust the DIM state
ment to use larger matrices. Wouldn't this have
been a nice program to have back when we were
taking Algebra 1?

Matrix.Bas for MS DOS and
Tandy Models II and IV

100 REM * Matrix.Bas * Manipulation of Matrices
110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem
130 REM * (c)1988 80-NW Publishing Inc. & placed in public domain.

140 >

150 x Initialization
160 DIM A(20,20) , B (20, 20) ,T(20,20) , I (20)
170 ON ERROR GOTO 3030
180 CLS
190 PRINT STRINGS (22, 45)' The CodeWorks xx;STRINGS(23, 45)
200 PRINT'' MATRIX PROGRAM
210 PRINT'' provides a full set of matrix functions

220 PRINT STRINGS(60,45)
230 PRINT
240 PRINT TAB (5);" 1 - Add Matrices A and B

CODEWORKS Issue 23 9

2 - Subtract Matrices A and B
3 - Transpose Matrix A
4 - Multiply Matrix A by a constant
5 - Multiply Matrices A and B
6 - Compute the inverse of Matrix A and/or

determine the solution to system equations
7 - Quit

250 PRINT TAB(5)
260 PRINT TAB(5)
270 PRINT TAB(5)
280 PRINT TAB(5)
290 PRINT TAB(5)
300 PRINT TAB(5)
310 PRINT TAB(5)
320 PRINT
330 PRINT" Your choice";
340 INPUT CH
350 ON CH GOSUB 1030,1350,1810,2050,2540,390,3080
360 GOTO 180
370 x

380 REM * Inverse of a Matrix
390 CLS
400 PRINT TAB (10) ;" Inverse of a Matrix"
410 PRINT
420 INPUT"Enter the number of rows and columns in Matrix A" ;N
430 DEFDBL A,Q,T,X
440 C=N:R=N
450 A$ — ''A''
460 GOSUB 2230
470 FOR 1=1 TO N
480 FOR J=1 TO N
490 A (I, J) =T (I, J)
500 NEXT J
510 NEXT I
520 FOR C=1 TO N
530 FOR 1=1 TO N-l
540 Q (I) =A (1,1 + 1)/A(l,l)
550 NEXT I
560 Q(N)=1.00000001#/A(1,1)
570 FOR 1=1 TO N-l
580 FOR J=1 TO N-l
590 A (I, J) =A (1+1,0+1)-A (1 + 1,1) *Q(j)
600 NEXT J
610 A(I,N)=- (A(I + 1, 1)) *Q(N)
620 NEXT I
630 FOR J=1 TO N
640 A (I, J) =Q (J)
650 NEXT J
660 NEXT C

670 PRINT" The inverse has been computed."

10
Issue 23 CODEWORKS

680 FOR 1=1 TO N
690 FOR J=1 TO N
700 T (I, J)=A(I, J)
710 NEXT J
720 NEXT I
730 PRINT''The results are ready to be printed.''
740 C=N:R=N
750 GOSUB 2350
760 PRINT:PRINT''The above is the inverted Matrix A. Would you like

to:
770 PRINT TAB (10);" 1 - Return to the menu
780 PRINT TAB (10);''2 - Enter a solution Matrix to solve the

system.
790 PRINT
800 INPUT''Your choice X,;AN$
810 IF LEFT$ (AN$, 1) =" 1" THEN RETURN ELSE IF LEFT$ (AN$, 1) <>" 2" THEN

760
820 PRINT''Input the solution matrix
830 X=lE-08
840 FOR 1=1 TO N
850 PRINT" Solution INPUT Q(I)
860 NEXT I
870 FOR 1=1 TO N
880 FOR J=1 TO N
890 X=X+A (I, J) *Q (J)
900 NEXT J
910 Q1(I)=X
920 X=lE-08
930 NEXT I
940 PRINT: PRINT'' This is the solution set:"
950 FOR 1=1 TO N
960 PRINT Q1(I)
970 NEXT I
980 DEFSNG A,T,Q,X
990 INPUT''Press enter to continue'' ;A$
1000 RETURN
1010 *
1020 REM * Add Matrix A and B
1030 CLS
1040 PRINT TAB (10) ;''Add two matrices."
1050 PRINT
1060 PRINT" Enter them as follows:"
1070 PRINT''How many rows in your matrices"

CODEWORKS Issue 23

1080 INPUT" (A and B must be the same order)'';R
1090 INPUT" How many columns in A and B";C
1100 A$=''A''
1110 GOSUB 2230
1120 FOR 1=1 TO R
1130 FOR J=1 TO C
1140 A(I, J)=T(I, J)
1150 NEXT J
1160 NEXT I
1170 A$ = "B' '
1180 GOSUB 2230
1190 FOR 1=1 TO R
1200 FOR J=1 TO C
1210 B(I, J)=T (I, J)
1220 NEXT J
1230 NEXT I
1240 FOR 1=1 TO R
1250 FOR J=1 TO C
1260 T (I, J) =A (I, J) +B (I, J)
1270 NEXT J
1280 NEXT I
1290 PRINT''A + B has been computed and is ready to be printed"
1300 GOSUB 2350
1310 INPUT" Press Enter to continue" ;A$
1320 RETURN
1330 *
1340 REM * Subtract Matrix A and B
1350 CLS
1360 PRINT TAB (10) ;" Subtract Matrix A and B
1370 PRINT
1380 PRINT" Enter them as follows:"
1390 PRINT" How many rows in your Matrices"
14 00 INPUT (A and B must be of the same order) M - R
1410 PRINT
1420 INPUT''How many columns in A and B";C
1430 A$=''A''
1440 GOSUB 2230
1450 FOR 1=1 TO R
1460 FOR J=1 TO C
1470 A (I, J) =T (I, J)
1480 NEXT J
1490 NEXT I

1500 A$=''B''
1510 GOSUB 2230
1520 FOR 1=1 TO R
1530 FOR J=1 TO C
1540 B (I, J) =T (I/ J)
1550 NEXT J
1560 NEXT I
1570 PRINT''Would you like to:
1580 PRINT TAB(10);''l - Subtract A from B, or
1590 PRINT TAB (10); "2 - Subtract B from A"
1600 PRINT
1610 INPUT''Enter your choice X>;AN$
1620 IF AN $ =''2" THEN 1700
1630 IF AN$<>"1" THEN PRINT:GOTO 1600
1640 FOR 1=1 TO R
1650 FOR J=1 TO C
1660 T (I, J) =A (I, J) -B (I, J)
1670 NEXT J
1680 NEXT I
1690 GOTO 1750
1700 FOR 1=1 TO R
1710 FOR J=1 TO C
1720 T(I, J)=B(I, J)-A(I, J)
1730 NEXT J
1740 NEXT I
1750 PRINT''The results are ready to be printed."
1760 GOSUB 2350
1770 INPUT''Press Enter to continue ";A$
1780 RETURN
1790 x

1800 REM * Transpose
1810 CLS
1820 PRINT TAB (10) The Transpose of Matrix A"
1830 A$="A' '
1840 PRINT
1850 INPUT''Enter the number of rows in Matrix A";R
1860 INPUT''Now enter the number of columns XX;C
1870 GOSUB 2230
1880 FOR 1=1 TO R
1890 FOR J=1 TO C
1900 A (I, J) =T (I, J)
1910 NEXT J
1920 NEXT I

CODEWORKS Issue 23 13

1930 FOR 1=1 TO C

1940 FOR J=1 TO R

1950 T(I,J)=A(J,I)

1960 NEXT J

1970 NEXT I
1980 PRINT" Transpose is done. Results are ready to be printed."

1990 TE=C:C=R:R=TE

2000 GOSUB 2350

2010 INPUT"Press Enter to continue ,,;A$

2020 RETURN
2030 *

2040 REM * Multiply by a constant

2050 CLS
2060 PRINT TAB (10) ; "Multiply by a constant."

2070 PRINT
2080 A$=''A''

2090 INPUT"Enter the number of rows in Matrix A X*;R

2100 INPUT''Now enter the number of columns X,;C

2110 GOSUB 2230

2120 INPUT"What is the multiplicative constant X,/CN
2130 FOR 1=1 TO R

2140 FOR J=1 TO C
2150 T(I, J)=CN*T(I, J)

2160 NEXT J

2170 NEXT I

2180 PRINT"Multiplication is done. The results are ready to be
printed.''

2190 GOSUB 2350

2200 INPUT"Press Enter to continue <X;A$
2210 RETURN

2220 *

2230 REM * Input subroutine *

2240 PRINT: PRINT" Start entering the Matrix XX;A$;":"
2250 FOR 1=1 TO R

2260 FOR J=1 TO C

227 0 PRINT I; " , " ;J;
2280 INPUT T(I,J)

2290 NEXT J

2300 NEXT I

2310 INPUT' 'Would you like to see the matrix you just entered ";AN$

2320 IF LEFT$ (AN$, 1) <>" Y" AND LEFT$(AN$,1)<>''y'' THEN RETURN
2330 *

2340 REM * Output routine

14 Issue 23 CODEWOHKS

2350 INPUT''Would you like the output to go to the printer ,,;AN$
2360 IF LEFT$ (AN$, 1) ='' Y'' OR LEFT$ (AN$, 1) = " y' ' THEN P = 1 ELSE P = 0
2370 IF P=1 THEN 2450
2380 FOR 1=1 TO R
2390 FOR J=1 TO C
2400 PRINT T (I, J) ; " * x;
2410 NEXT J
2420 PRINT
2430 NEXT I
2440 GOTO 2510
2450 FOR 1=1 TO R
2460 FOR J=1 TO C
2470 LPRINT T(I,J);"
2480 NEXT J
2490 LPRINT" x *
2500 NEXT I
2510 RETURN
2520 x

2530 REM * Multiplication of two Matrices
2540 CLS
2550 PRINT TAB(10);''Multiplication of two Matrices A and B
2560 PRINT
2570 INPUT''Enter the number of rows in Matrix A";R
2580 INPUT''Now enter the number of columns in Matrix A v ';C
2590 A$=''A''
2600 GOSUB 2230
2610 FOR 1=1 TO R
2620 FOR J=1 TO C
2630 A (I, J) =T (I, J)
2640 NEXT J
2650 NEXT I
2660 INPUT" Enter the number of rows in Matrix B";RB
2670 INPUT''Now enter the number of columns in Matrix B";CB
2680 IF C=RB THEN 2790
2690 PRINT' ' ** ERROR ** the number of columns in Matrix A must

equal
2700 PRINT''the number of rows in Matrix B before they can be

multiplied.
2710 PRINT''Would you like to:
2720 PRINT TAB(10);"1 - End the function and return to the menu,

or
2730 PRINT TAB (10); "2 - Enter row and column lengths for Matrix B
2740 PRINT

CODEWORKS Issue 23 15

2750 PRINT''Enter your choice of 1 or 2";
2760 INPUT AN$
2770 IF AN$ = "1" THEN RETURN ELSE 2660
2780 GOTO 2660
2790 TR=R:TC=C:C=CB:R=RB
2800 A$="B' '
2810 GOSUB 2230
2820 FOR 1=1 TO R
2830 FOR J=1 TO C
2840 B (I, J) =T (I, J)
2850 NEXT J
2860 NEXT I
2870 R=TR:C=TC
2880 FOR 1=1 TO R
2890 FOR J=1 TO CB
2900 T (I, J) =0
2910 FOR K=1 TO C
2920 T (I, J) =T (I / J) +A (I / K) *B (K, J)
2930 NEXT K
2940 NEXT J
2950 NEXT I
2960 C=CB
2970 PRINT''A times B has been computed and is ready to be printed.''

2980 GOSUB 2350
2990 INPUT''Press Enter to continue XX;A$
3000 RETURN
3010 x

3020 REM * error trap for division by zero
3030 IF ERROll THEN ON ERROR GOTO 0
3040 XIF (ERR/2)+1<>12 THEN ON ERROR GOTO 0 xBasic prior to ver

5.0
3050 PRINT''Division by zero. No solution possible.''
3060 INPUT''Press Enter to restart'';A$
3070 RUN 160
3080 END xof program

Changes for Tandy Models I and III

Changed->100 REM * Matrix/Bas * Manipulation of Matrices
Changed->140 CLEAR 2000
Changed->3030 XIF ERROll THEN ON ERROR GOTO 0
Changed->3040 IF (ERR/2) +1<>12 THEN ON ERROR GOTO 0 xBasic prior to ver
5.0

Issue 23 CODEWORKS

Invoice.Bas
An Invoice Writer Program

Staff Project. This program was designed to fill out a pre-printed invoice form.
Although yours may not be exactly like it, the ideas behind it are universal and
you should be able to adjust the print statements to fit your exact needs.

We wrote Invoice.Bas in response to a request
from a local print shop. It was written on an MS
DOS machine and then transferred via RS-232
to a Tandy Model II at the print shop.

Some of the design requirements for the pro
gram were that it should be able to accommodate
up to 250 customers; that the customers should
always be sorted in alphabetical order by name;
and that provisions should be incorporated to
keep the customer phone number and tax iden
tification (resale tax ID) number. The program
was to be designed to print invoices on a pre
printed, multi-part form. The program was to
charge sales tax only when a tax identification
number was not present. A resettable invoice
numbering system was to be included. The in
voicing portion also needed the capability to
have more than one item invoiced, discount al
lowed and a flat rate cost and cost per thousand
figured in to the total.

One-half day was spent organizing the re
quirements and planning the attack. One full
day was spent in coding and another day was
entirely spent in fine tuning and debugging.
Because the program had a real-world applica
tion, it was fun to write and debug. Especially
challenging was the need to get the entire "wish
list" into the program and make it all work
together properly.

How the program works

We start with our customary opening lines
and the print@/locate subroutine. The initializa
tion section, starting at line 240, opens with an
error trap statement for "file not found" errors.
This would happen the very first time the pro
gram is run and no customer file exists. The ON
ERROR GOTO 1900 in line 240 will take us to
line 1900, where we check for error 53 (file not
found) and if that is indeed the error, we gosub to
1280. At line 1280 we open the file for output and
write blanks to the file and then return to 1930,
where we resume program flow at line 330. At
line 330 we would then read in the just created
file and continue on our way.

The next statement in the initialization sec
tion is used to set the printer width to 132
characters (for the tab listing of the customer
file). This is a GW-BASIC and CP/M MBASIC
specific command and can be remarked for other
computers. Line 260 dimensions our data file at
250 records, each seven fields deep. The next
three lines are print USING format lines for
dollar amounts. Line 300 is where you would
insert your particular sales tax rate.

The customer file is read in the next section of
code, starting at line 340. The first item in the
file is always the last invoice number, and it gets

CODEWORKS Issue 23 17

updated with each invoice written and is saved
along with the file when you are done with the
session. Since we are starting our file with I
equal to one, we used the zero element of the
array to hold the invoice number. In line 440, we
find out how many items are in the file and store
it in variable Nl. We'll need to know that several
times later in the program.

Customers are retrieved from this file by cus
tomer number. Each customer was assigned a
number when he was initially entered into the
file. So that the user will always know what the
next customer number is, we print it right on the
menu (see line 580), and in the section of code
starting at line 470, we find out what the highest
number is. We set variable AC equal to zero first,
then make one quick pass through the file and if
any customer number is larger than AC we set
AC to that new higher number. When we have
gone through the file one time, AC will contain
the highest customer number.

The next section of code, from line 520 to 700,
is the main menu and menu selection area. Note
that the menu tells the user to always exit the
program through menu option 7. This insures
that the updated file will always be saved. You
can see how that happens in the next section of
code, from line 730 to 750. That's the "end ses
sion routine" and it does a GOSUB to save the
file first. It then prints the amount of the total
billing (if there was any) before it closes the file
and ends. Note that if no billing took place
during the session (maybe you just entered a
new customer or something like that), then TA
will equal zero and the second part of line 740
will be skipped. Variable TA, of course, gets
updated in the section of code where we actually
do the invoicing, which comes later.

The next section of code, from line 780 to 800,
is where we can reset the invoice number. This
allows the user to start invoice numbers with the
current month, as in 880901, 880902, and so on
for September 1988, and then 881001, 881002
and so on for October of 1988. Or, you can just
start with number 1 at the beginning of the year

and let them accumulate. The invoice number
gets updated in the invoice writing section later.
Note that the number is in string form, so we will
have to convert it to an integer using the VAL
function and then add one to it and change it
back to a string with the STR function.

The "Add new customer names" section comes
next. In this section we put the prompts for the
entire record on the screen first and then "fill in
the blanks" using direct cursor positioning and
our print@/locate subroutine. In line 850 we set
the cursor to row 4 and start at the left hand side
of the screen. Then we print the prompts for the
field headings on the screen, all seven of them.
Then in line 940 we set the column position to 22,
which will position our cursor just the right of the
field prompts, and in lines 950 through 970 we
input the information for each field (and yes, you
can just enter if there is nothing to put in a
particular field.) Notice that we are both print
ing the input information on the screen and
putting it into the A$ array at the same time. For
that reason, we put it into A$(Nl,X-3) in line 960
because X started counting on 4. That will put
our firstfieldinA$(Nl,l), our second in A$(Nl ,2)
and so on. Note that X is being used for two
purposes here, one to position the cursor and the
other to increment our array count. Nl, of
course, will get incremented to the next record in
line 860, when we come to the next record.

Now, since we are in complete control of our
cursor, after entering one record we get the
"More Y/N" question and if there are more to
enter we must clear out the information just
entered. Lines 1010 through 1040 clear away
the information just entered on the screen (don't
worry, it's already safely tucked away in the A$
array.) Then, just to be neat about things, in line
1050 we go up to the screen and clear away that
More? prompt. If we are going to enter more
names, then line 1060 will send us back to do
that, otherwise, line 1070 will immediately send
us to the sort and save routine with a GOSUB.
When we return from the GOSUB, we go to line
330 to read the file in again. Why? Well, for one
thing we will then have a new highest customer

18 Issue 23 CODEWORKS

number and the most current number of records
in the file.

The easiest way to keep a file sorted is to keep
it sorted. How about that? Sounds ridiculous but
it's true. It is very easy and fast to sort one or two
new names into an already sorted file. In fact,
you can then use the cheapest sort routine avail
able - the bubble sort. Of course, if you sit down
and enter 100 customers the first time you use
this program, it will take a little while to sort.
But after that it will be a snap to keep up.

The sort routine is at line 1120 and ends at
1240. As just mentioned, it's a bubble sort. Just
so that you have something to watch while the
sort is in progress, line 1160 prints a string of
periods on the screen, one for each record that is
out of place. Line 1240 is a "hook" from the edit
section of the program. If we edited the name,
and only when we edit the name, we come here
to do a resort and then return.

Unless we were in the edit mode and edited a
name, each time we sort the file we immediately
save it. There are two reasons for that: one is so
that the most current version of the file is always
safely on the disk, the other is to eliminate
deleted records. The code from line 1270 to 1370
does it all. Note in line 1320 that when we have
deleted a customer their name is removed from
the name field in the record. When we save the
file, if that field is blank, we don't even bother to
save the remainder of the record, but just skip on
to the next record. Note also that we always print
the most current invoice number to the file first
(in line 1290).

A reference (or tab) list of all your customers
can be printed on 14 inch wide paper with the
code starting at line 1400. This section of code
prints a heading on the paper and then puts 50
customers per page. There's room for more per
page, and you can change that in line 1490 if you
like. It also prints the page number on each page.
The page variable is PG and appears in lines
1420, 1430 and in 1490. The last page of the
report is page ejected by the LPRINT CHR$(12)

in line 1500. If your computer has default printer
settings you may have to change them to accom
modate this report generator. Since we are han
dling all the paging information in this section of
code, you would have to set your defaults so that
the number of lines to print is equal to the
number of lines on the page (usually 66).

The "Edit and Delete" section comes next.
This section of code finds a customer by customer
number and prints the entire record on the
screen, along with a line number for each field of
the record. You can then enter a new line to
replace the old one or delete the customer by
answering the prompts. Note that when you
delete a customer we just set the name field to a
null string and go on. The actual delete will be
taken care of in the save routine, discussed
earlier. The prompts in this section have pur
posely been set so that you must answer "Y" or
"y" if you want something to happen. Any other
key (including ENTER) will take you on to the
next question or prompt. In line 1640 we ask
what line to edit. If we select line 2 (the name
field) then line 1730 will send us to the sort
subroutine to immediately resort the name into
the correct order.

The invoices this program writes are designed
to fit into a window envelope, so labels for se
lected customers are not necessary. The user
wanted to be able to print labels for the entire
list, however, so that notices of specials and
things like that could be sent. The section of code
from line 1770 to 1880 prints standard one-up
labels for that purpose.

The actual invoice writing portion of this pro
gram was put at the end so that you could easily
modify it for your own purposes. It is highly
unlikely that you would use the exact format for
yours. Basically, it must ask for the customer
number and then print the applicable informa
tion on the invoice. It must then ask questions
about the services performed and keep totals of
dollar amounts. Note that the total billing for the
session is kept track of in line 2310, by variable
TA (which we discussed earlier.) Also, the in-

CODEWORKS Issue 23 19

voice number is updated in line 2320, also dis
cussed earlier. If you don't have pre-printed
forms to fill you can even vise this section to print
your company name and headings, especially if
you have one of those printers that prints big
type and condensed and bold. You can essen
tially design your own form for this section.

This program reminded us to a large extent of
Card.Bas. It has a lot of the same characteristics,
and hinted that Card.Bas could be updated to
include some of the features of this program,
especially using double subscripted arrays for
the records and fields. But that's a whole 'nuther
project.

Invoice.Bas for MS DOS
changes for Tandy machines

follow this listing

100 REM * Invoice.Bas * Invoice program 30 Aug 88 IMS
110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem
130 REM * (c)1988 80-NW Publishing Inc. & placed in public domain.
140 '
150 'Generalized Locate/Print0 subroutine. Unremark as needed.
160 GOTO 230
170 LOCATE X,Y:RETURN * MS-DOS, GW-BASIC
180 'PRINT0((X-l)*64)+(Y-l),;:RETURN ' Tandy Models I/III
190 'PRINT0((X-l),(Y-l)),;:RETURN ' Tandy Models II/IV
200 'PRINT0(X,Y),;:RETURN 1 Some MBASIC machines.
210 'PRINT CHR$ (27) +' ' Y"+CHR$ (31+X) +CHR$ (31+Y) ; iRETURN ' CP/M
220 '
230 ' Initialization
240 ON ERROR GOTO 1900
250 WIDTH LPRINT 132
260 DIM A$(250,7)
270 Fl$=''$$##.##''
280 F2$ = "$$#,##.##"
290 F3$=/' $$#,##.##-''
300 F3=.078 ' sales tax rate goes here
310 '
320 ' read in the data file
330 CLS
340 PRINT''Loading the customer file...''
350 OPEN ''I1invoice.dat''

20 Issue 23 CODEWORKS

360 INPUT #1,A$(0 ,0)
370 FOR 1=1 TO 251
380 IF EOF (1) THEN 430
390 FOR J=1 TO 7
400 LINE INPUT #1, A$(I,J)
410 NEXT J
420 NEXT I
430 CLOSE 1
440 N1=I-1
450
460 xfind highest customer number
470 AC=0
480 FOR 1=1 TO N1
490 IF VAL(A$(I 1))>AC THEN AC=VAL(A$(1,1))
500 NEXT I
510 \

520 1 main menu and heading
530 CLS
540 PRINT STRINGS(22, 45);'' The CodeWorks A x;STRINGS(23, 45)
550 PRINT'' I N V O I C E W R I T I N G P R O G R A M
560 PRINT'' Always exit this program through option 7
570 PRINT STRINGS(60,45)
580 PRINT'' The highest customer number used is x X;AC
590 PRINT
600 PRINT TAB(20) "1 - Process Invoices
610 PRINT TAB(20) "2 - Print Customer List
620 PRINT TAB(20) "3 - Add new customer names
630 PRINT TAB (20) "4 - Edit customer data
640 PRINT TAB(20) "5 - Initialize invoice number
650 PRINT TAB(20) ''6 - Print Mailing Labels
660 PRINT TAB(20) "7 - END session
670 PRINT
680 PRINT TAB (10) INPUT" Number of your choice ' \-XX
690 ON XX GOTO 1960,1400,830,1540,780,1770,730
700 GOTO 680
710 \

720 x end session routine
730 GOSUB 1270 * to save the file
740 CLS:IF TA<>0 THEN PRINT''Total billing for this session * *;USING

F2$;TA
750 CLOSE:END
760 \

770 * initialize invoice number routine

CODEWORKS Issue 23 21

. / I

780 CLS
790 INPUT''Start invoice numbers at ";A$(0,0)

800 GOTO 530
810 x

820 *add new customer names
830 CLS
840 PRINT TAB(20);'' Add new customer names'
850 X=4:Y=1:GOSUB 170
860 N1=N1+1
870 PRINT'' Customer number:
880 PRINT'' Customer name:
890 PRINT'' Address:
900 PRINT" City, State:
910 PRINT" Zip code:
920 PRINT" Phone number:
930 PRINT" Tax number:
940 Y=22
950 FOR X=4 TO 10
960 GOSUB 170:LINE INPUT A$(Nl,X-3)
970 NEXT X
980 PRINT
990 INPUT' 'More (y/n)";XX$
1000 IF XX$ = "n" OR XX$ = "N" THEN 1070
1010 Y=22
1020 FOR X=4 TO 10
1030 GOSUB 170:PRINT STRINGS(30, 32)
1040 NEXT X
1050 X=12:Y=1:GOSUB 170:PRINT STRINGS(20,32)
1060 GOTO 850
1070 GOSUB 1120 x to sort and save
1080 GOTO 330
1090 x

1100 *the sort and save subroutine
1110 x first we sort ...
1120 PRINT" Sorting" ;
1130 FOR 1=1 TO Nl-1
1140 L=I+1
1150 IF A$(I,2)=<A$(L,2) THEN 1210
1160 PRINT s ;
1170 FOR J=1 TO 7
1180 SWAP AS(I,J),AS(L,J)

1190 NEXT J
1200 F=1

22 Issue 23 CODEWORKS

1210 NEXT I
1220 IF F=1 THEN F=0:GOTO 1130
1230 PRINT
1240 IF CC=2 THEN RETURN
1250 x

1260 * then we save the file
1270 PRINT" Saving the file
1280 OPEN * *0" , 1, " invoice.dat"
1290 PRINT #1, A$(0,0)
1300 FOR 1=1 TO N1
1310 FOR J=1 TO 7
1320 IF A$ (1,2)="" THEN 1350
1330 PRINT #1, A$(I, J)
1340 NEXT J
1350 NEXT I
1360 CLOSE 1
1370 RETURN
1380 x

1390 A print the customer list
1400 CLS: PRINT TAB (15);" Printing Customer List
1410 INPUT" Line up your paper and press enter ,x;XX
1420 PG=1:CL=0:1=1
1430 LPRINT' ' The CodeWorks Customer List";TAB (60) ;" Page XA;PG;

TAB(100);DATE$
1440 LPRINT STRINGS(128, 45)
1450 LPRINT''Cust#'';TAB(8);''Customer Name'';TAB(38);''Address'';

TAB (68) City/State' ' ; TAB (88) ; " Zip Code' ' ; TAB (100) Phone #" ;
TAB(115);''Resale #''

1460 LPRINT STRINGS(128, 45)
1470 LPRINT A$(I,1);TAB (8);A$ (1,2)/TAB(38);A$(1,3) ,-TAB(68);A$(1,4);

TAB (88);A$(I,5);TAB(100);A$(I,6);TAB(115);A$(I,7)
1480 1=1+1:IF I>N1 THEN 1500
1490 CL=CL+1:IF CL>50 THEN PG=PG+1:CL=0:LPRINT CHR$(12):GOTO 1430

ELSE 1470
1500 LPRINT CHR$(12)
1510 GOTO 530
1520 *
1530 * edit/delete customer names
1540 CLS:CC=0
1550 PRINT TAB (20);" Edit or Delete Customer names
1560 PRINT
1570 INPUT''Customer number XX;CN$
1580 FOR 1=1 TO Nl

CODEWORKS Issue 23 23

1590 IF A$(1/1)<>CN$ THEN 1720

1600 FOR J=1 TO 7
1610 PRINT J;" ";A$(I,J)

1620 NEXT J

1630 PRINT , (0 to delete or to terminate
1640 INPUT''Change which line (0 to

search) '';CC

1650 IF CC<>0 THEN 1690 , ,,, .VYt
1660 INPUT''Do you wish to delete this customer^ y

1670 IF XX$ = "y" OR XX$="Y" THEN A$(I,2)-

1680 GOTO 1720 ,
1690 LINE INPUT''Enter the correct information

1700 INPUT''More changes (y/n) ,x;XX$
1710 IF XX$="Y" OR XX$="y" THEN 1640

1720 NEXT I
1730 IF CC=2 THEN GOSUB 1120

1740 GOTO 530

1750 1

1760 ' print mailing label routine
1770 CLS: PRINT TAB (15);" Print Mailing Labels''
1780 INPUT''Align your labels and press enter ";XX

1790 FOR 1=1 TO N1
1800 LPRINT TAB(24);A$(1,1)
1810 LPRINT A$(1,2)
1820 LPRINT A$(1,3)
1830 LPRINT A$(I,4); " ";A$(I,5)

1840 FOR J=1 TO 2

1850 LPRINT" "

1860 NEXT J

1870 NEXT I
1880 GOTO 530

1890 '
1900 'error trap for file not found

1910 IF ERR <>53 THEN ON ERROR GOTO 0

1920 GOSUB 1280

1930 RESUME 330

1940 '
1950 'process invoices routine

1960 CLS

1970 INPUT''Enter the date for the invoices ,X;DA$
1980 TL=0:TA=0

1990 INPUT" Invoice for Customer # (or 0 to quit) '';CN$

2000 IF CN$="0" THEN 530

24 Issue 23 CooeWoRKS

2010 FOR 1=1 TO N1
2020 IF A$ (1,1)0 CN$ THEN 2330
2030 LPRINT TAB (16);A$(0,0);TAB(64);DA$
2040 PRINT A$ (I, 1) "/A$(I,2)/" "/A$(I,3)
2050 LPRINT"
2060 LPRINT" x x

2070 LPRINT TAB(6);A$(1,2);TAB(52); " Resale # ,,;A$(I,7)
2080 LPRINT TAB (6) ; A$ (I, 3) ; TAB (52) /'' Telephone: X\-A$(I,6)
2090 LPRINT TAB (6) ;A$ (I, 4) / " A$ (I, 5) ; TAB (52) ; " Oust # XX/A$(I,

1)

2100 FOR K=1 TO 7
2110 LPRINT
2120 NEXT K
2130 P1=0:P2=0:P3=0:Q=0:Q$='''':P4=0:T1=0
2140 INPUT''What is the quantity for this order ";Q
2150 IF Q=0 THEN Q=1
2160 LINE INPUT" Description of services XX/Q$
2170 INPUT''What is the per/m price ";P1
2180 INPUT''What is the flat rate price XX/P2
2190 Tl=((Q/1000)*P1)+P2
2200 INPUT''Is there a discount (y/n) xx/XX$
2210 IF XX$="n" OR XX$ = "N" THEN 2230
2220 INPUT' 'What is the discount rate (like .15) XX/P3
2230 P4=T1*P3:P4=P4*-1:TL=TL+T1-ABS(P4) :P5=F3*TL
2240 LPRINT Q; " ";Q$/:LPRINT TAB(46)/USING F1$;P1;:LPRINT

TAB(56)/USING F1$/P2/:LPRINT TAB(65)/USING F2$/T1
2250 IF XX$ = "Y" ORXX$="y" THEN LPRINT TAB (44)/" Less xx/P3*100/"%

discount x "TAB (65)/USING F3$/P4
2260 INPUT''Are there more charges for this customer (y/n)"/XX$
2270 IF XX$="Y" OR XX$ = "y" THEN LPRINT" X"LPRINT" * *: GOTO 2130
2280 IF A$ (1,7)='''' THEN LPRINT" x x : LPRINT TAB (52)/" Sales tax" /

TAB(65)/USING F2$/P5:TL=TL+P5
2290 LPRINT" >X:LPRINT" x ".LPRINT TAB (35) /" Total due per this

invoice * '/TAB (65)/USING F2$/TL
2300 LPRINT CHR$(12)
2310 TA=TA+TL
2320 AA=VAL (A$ (0,0)) :AA=AA+1:A$(0,0)=STR$(AA)
2330 NEXT I
2340 TL=0:CLS
2350 GOTO 1990
2360 END *of program

CODEWORKS Issue 23 25

Change lines for Invoice.Bas
for Tandy Models I and III

Changed->100 REM * Invoice/Bas * Invoice program 30 Aug 8 8 IMS
Changed->140 CLEAR 2000
Changed->170 xLOCATE X , Y : RETURN * MS-DOS, G W -BASIC
Changed->180 PRINT®((X-l)*64) + (Y — 1) , ;:RETURN * Tandy Models 1/III

Changed->250 XWIDTH LPRINT 132
Changed->350 OPEN *'i" , l, " invoice/dat"
Changed->1180 TT$=A$(I,J):A$(I,J)=A$(L,J) :A$(L,J)=TT$

Changed->1280 OPEN x xO" , 1invoice/dat"
Changed->1910 IF (ERR/2)+1<>54 THEN ON ERROR GOTO 0

Change lines for Invoice.Bas
for Tandy Models II and IV

Changed->100 REM * Invoice/Bas * Invoice program 30 Aug 88 IMS
Changed->170 xLOCATE X,Y:RETURN x MS-DOS, GW-BASIC
Changed->190 PRINT®((X-l), (Y-l)),;:RETURN x Tandy Models II/IV
Changed->250 XWIDTH LPRINT 132
Changed->350 OPEN x XI" , 1, " invoice/dat"
Changed->1280 OPEN x x0" , 1, " invoice/dat"

Notes

Have you ever looked for a neat way to auto
matically center headings? Especially when the
heading was a stringvariable and could be of any
indetermined length?

Here is one way to do it. Let's assume that A$
is equal to "CodeWorks Magazine" and is defined
as such someplace in your program. If you then
PRINT TAB((80-LEN(A$))/2)^$ it will auto
matically center whatever A$ is on your screen.

Naturally, if your screen is only 64 characters
wide, you would use 64 instead of the 80 just
shown. And of course, you can LPRINT instead
of just PRINT and get the heading centered on
your printer as well.

The little formula calculates the tab position
by taking the length of the string from 80 and
dividing by two. Terry made a defined function
out of this in his Randemo series.

Outline. Bas
The Long-awaited Part 3 of 3

Terry R. Dettmann, Associate Editor. Here at long last is the final installment of the out
line program which we started last year. It's not as "full blown" as the commercial jobs, but will
give you an idea of what they are and how they work. We just got it last night, when Terry came
to visit and haven't had that much time to play with it ourselves yet.

Outline - The End of an Odyssey

After all of this time away from Code Works,
it's good to be back. All of you deserve an ending
to my Outline series... even if none of you are still
reading it. I apologize to all of you for the delay
in getting the final installment to you.

Since it's been a long time since we started, it's
probably a good idea to start off with a little
review of just what we're trying to accomplish.
After that, we'll go into the program from begin
ning to end, and then print the completed outline
program.

What's an Outline?

Is that a question I need to answer? REALLY?
I'm sure Miss Fensterwink in the 7th grade
taught you THAT. An outline is a structuring
device for organizing information. It's useful in
design, research, and just plain learning. But
you already knew that didn't you (Miss Fenster
wink is grading you on your reply).

Maybe a better question, is 'What's an outline
PROGRAM?". Have you ever seen one? Pro
grams like ThinkTank, Ready, and MaxThink
on the PC and MORE and ACTA on the Macin
tosh (there are a lot more of them out there) are
not only popular, but major tools for the thinking
trade. I have several that I use on different
computers and have always liked them. It
wasn't until the PC though that I found an
outline processor that was usable.

So what does an outlining program do? As a
bare minimum, it allows you to create an outline
and manipulate it as you go along. You can build
individual entries in the outline (often called
headlines) for categories and sub-categories.
You can restructure the outline by moving head
lines (with all subheadlines) from one place to
another within the outline.

The outline program we've been building here
is for the same purpose (but on a much simpler
scale). What we're trying to do here is create a
simple outline with the basic structure so we can
see how such a thing is created and what kinds
of work has to be done INSIDE the program to
accomplish it. This isn't the ONLY way to do it,
but it follows naturally from earlier discussions
of linking items together.

The Program and How it Works

The basic idea behind the Outline.Bas pro
gram is an attempt to create lines in the outline
which fall into an internal structure which mir
rors the way an outline works.

If we think about any given headline, there
are probably headlines which fit logically below
it. For example:

I. Outlining
A. Apologies for delay

II. What's an Outline
A. Outlines are already known

B. What's an outline program?

CODEWORKS Issue 23 27

III.The Program and How it Works
A. List Linking

This outline has a structure of lines subordi
nate to other lines. As you listed a topic, like
"What's an Outline", you would want to list
subtopics under it which amplify the topic itself.
These subtopics don't belong under another
headline, they belong as subheads on one and
only one headline.

In programming, there is a way to show such
structure, the 'Linked List'

When we add another level below the first,
that layer splits into a layer for each of the
headings on the layer above. This makes it clear
that we need a way to get to the first line of the
next level easily. A downward linking accom
plishes that:

Item 1

Item 2 1 0

Item 3 0

sub item a 0

sub item b
1 0
i

sub item c 0

\

\ S

Points to the first
headline at the
next level

Points to the
next headline at the
same level

[FIGURE 1 - Basic linking structure]

If you go back through your Codeworks maga
zines, you'll find we've talked about linked lists
before. They are simply a way to connecting
together related information, in this case the
outline pieces.

The structure is two dimensional within an
outline. First, there is a given level (headings I.
II. III.). These follow a definite order or se
quence. To show this sequence, we link each
headline to the next:

Item 1 1 0

Item 2 , 0

Item 3 0

[FIGURE 3 - Linking to the next level]

The whole objective of the program then is to
create this structure to the data and manipulate
it. Let's look at the basic operations we need to
carry out and see how they're done.

To add a new headline to the document, we
need to link our new lines into the existing
outline as shown in figure 4.

Item 1 0

Item 2

Item 3 r
0

[FIGURE 2 - One level linking structure]

[FIGURE 4 - Adding new lines to the
outline]

All we need to do is to change the links from
the old lines to point to the new ones and change
the pointer from the new one to point to where
the next one is as shown (WHEW! that's a real
mouthful!).

To delete a headline, we do the opposite. We
disconnect one line from the list and make the
pointers around it point around it as if it weren t
there. Figure 5 shows this:

28 Issue 23 CODEWORKS

Item 1 v]^

Item 2 0

Item 3 0
>

[FIGURE 5 - Deleting a line from the
outline]

If we want to move a headline from one place
to another, we can delete it (keeping it still in
tact) and then re-add it back in the new place.
Most outline processors refer to this as a MOVE
operation.

Implementing these simple operations is a
little tougher than the explanation. Let's see
how we've done it in Outline.Bas. You've seen
some of it before, but we'll do it all again.

Outline.bas

The outline.bas program implements these
basic operations to demonstrate how an outline
program works. Before we go on to the program
itself though, let's make a few things clear. First,
outline.bas is a VERY simple example of how
outlining can be done on the PC, it is NOT a
complete outlining package. Such a thing would
run into thousands of lines of code and require a
reasonable size book (several hundred pages) of
operating manual to explain just how to run it.
Second, this program will appear to be rather
slow on older machines (early PC's and TRS-
80's) because the processors are slow. You can
improve the operation by compiling the program
(I have tested compiling with Microsoft Quick
BASIC satisfactorily).

If you find this program interesting, I'd highly
recommend that you look into a serious outliner
from an established source. For the PC, both
MaxThink and ThinkTank are good outline
processors, each with their own particular view
of the world. The program GrandView also in
cludes outlines (as do more modern Word Proces
sors) and much more sophistication about out

lines. Sidekick Plus for the PC includes a popup
outliner feature as does Ready!. The outliner of
choice on the PC for serious work is Grandview.

On the Macintosh, Acta is an outliner Desk
Accessory and Sidekick for the Mac includes one.
MORE is the outliner of choice for serious work
on the Mac.

If you have any questions on outliners or out
lining, please feel free to write me here do Code-
works or contact me directly on Compuserve
(72076,2611) or via MCI Mail. I'd be happy to
give you more information on outliners and out
lining than we can put here. I've had experience
with all of them I've mentioned and would be
glad to give you some advice. If you're on Com
puserve, I'd suggest you check into the SYMAN
TEC forum (GO SYMANTEC) where there are
active discussions about outliners and outlining
and you'll also find me frequently.

Let's take a torn- through the program to see
how it works.

Lines 10-190 - Program Initialization

To initialize the program, we have to setup
data structures and constants for use during the
program's execution. Some languages like C and
Pascal include special data types for handling
jobs like this (the 'Record' in Pascal and the
'Structure' in C). In the flavor of BASIC we talk
about here, we don't have anything like that.
Newer versions of BASIC for the IBM-PC and
Macintosh now include special data forms.

To simplify our lives, we first define a set of
constants which can be changed for different
purposes. For example, LN the number of lines
on the screen (24) and WD the width of the
screen (80). To build the headline list, we can
create arrays to hold the headlines (LN$()), the
links (LK()), and other information we'll go into
as we need it.

Other constants are created for convenience
like TRUE and FALSE (so we can have IF state
ments which have TRUE or FALSE conditions),

CODEWORKS Issue 23 29

characters for carriage returns and line feeds
and so forth. We initialize the outline to an
empty state, and then go on.

Lines 200-240 - Main Program Loop

The main program loop is the circulatory sys
tem of the program. It controls the basic logic of
the program's operation which is:

1. Display the current screen of data
2. Wait for an input
3. Respond to that input
4. Go back to the display step 1.

Everything that makes the program work
works from this loop.

Lines 400-999 - General Subroutines

A few general level subroutines are put here to
centralize handling for specific tasks which are
often computer dependent. The most specific
example of this is repositioning the cursor on the
screen. Subroutine 400 is implemented to do this
on an IBM PC or compatible under Microsoft
BASIC. It's also been tested with Microsoft
BASIC on a Macintosh successfully. However,
on a TRS-80 with an older Microsoft BASIC, we
have to use a PRINT @ statement to position the
cursor.

Lines 1000-1999 - Display Subroutines

The display subroutines have specific tasks
related to getting information to the screen. For
example, the simplest is subroutine 1100 which
prints the title line. Subroutine 1000 gets more
complex as it controls printing the currently
visible outline segment to the screen. You'll
notice that this subroutine doesn't have ANY
print statements in it. The actual printing is
done by subroutine 1200 which assembles a line
and then prints it. The other routines here sup
port the display processing.

Lines 2000-3999 - Command Subroutines

These subroutines are responsible for interac

tion with whomever is using the program. Spe
cial (computer dependent) processing is included
for processing ARROW keys and BACKSPAC
ING during entry.

The basic logic of the command section can be
expressed like this:

1. Prompt the user for a command
with the COMMAND=> prompt
2. Accept the user's input line

a. If the user presses an ARROW
key during input
b. Respond immediately

3. Check the input line for a command
4. Return to the Main Loop

The critical routines here are 2100 which
enters a line from the user and it s supporting
routines 2200 - enter a character, 3450 - enter
COMMAND MODE, and 2300 - backspace 1
character.

Specific subroutines are assigned single tasks
to accomplish (for example, 3000 which moves
UP one line). Each of these supports one and only
one logical operation. This made it easier to put
the program together and makes it easier to
create new features by adding specific handlers
for each new feature desired.

Lines 4000-4999 - File Operations and outline
operations

The simplest operations conceptually are the
file operations. Loading a file is simply put.

1. If End of File, we're done
2. Otherwise read a line
3. Determine the line's level
in the outline
4. Add it to the growing outline
5. Go back to step 1

Subroutine 4000 front ends this operation and
subroutine 5400 actually carries it out.

To write the outline to a file, conceptually
again, we do something very simple:

30 Issue 23 CooeWoivs

1. If End of Outline, we're done
2. Select next line
3. Print the line to the file
4. Go back to step 1

Here though, we get a bit more complicated by
the fact that we have to follow the thread of the
finking within the outline structure. Subroutine
4100 front ends the operation, subroutine 5500
carries it out.

The hardest subroutine conceptually is the ac
tual creation of a fine within the structure.
Subroutines 5700 and 6100 do this for adding
fines during reading and during ADD MODE,
respectively. This is where most of the program
debugging has taken place because subtle logi
cal errors here can show up everywhere else in
the program. If you fink things to make a circular
linkage, then the program will go into an infinite
loop just trying to print the outline to the screen.

If you look back to the figures earlier, you'll see
how this can be. When we're adding fines to the
structure, we can easily run into problems when
we lose track of the finking numbers which tell
us which is the correct next line. The same thing
happens if we delete a headline and then re-add
it using the UNDO. The difficulty arises because
of the possibilities. They're simple, but require
some tricky coding to check for. If you go through
each step, one at a time, you'll see that we've had
to cover a variety of cases. It's useful to go
through them and write them out. You'll get a lot
out of the exercise and it will serve you well in
writing your own programs which involve fink
ing data.

Lines 7000-7999 - Printing Routines

The very simple printing utility (based on the
screen print portion of the program at line 1000)
is included here to print the outline to the screen
and then wait. Changing the print statements to
direct their output to your hard copy printer will
allow you to print the outline directly.

Lines 8000-8999 - Move Lines Routines

CODEWORKS Issue 23

The move fines routines allow you to restruc
ture the outline by selecting a fine and moving it
to another fine on the same level. When you
select a fine and press 'M', the fine will be deleted
using the delete routine, and then you will be
prompted for where to put it. Use the up and
down arrows to position the cursor to the new
location and press RETURN and the fine will be
pasted in after the current fine.

Lines 9000-9999 - Debugging Routines

Useful debugging routines are put in this area
and called as needed. Most have been purged
from the fisting for space, but I'm leaving one
which is used after a program crash to get a look
at the outline data formats. If a crash takes you
back to the BASIC interpreter, then all you need
to do is type 'GOSUB 9000<RETURN>' to have
the program print the status of the outline struc
ture. You can see what's finked to what by
following the numbers.

So how does it all work?

You can start the outline.bas program and it
will start up with an empty first headline (the
master one which anchors the whole outline).
You can't do more than title this one because it is
the foundation for the whole document.

When you select 'ADD MODE' by typing
'A<RETURN>', from that point, anything you
type until you hit an escape key will be added to
the outline. If you press the RIGHT ARROW
key, the outline will move down one level. Press
ing the LEFT ARROW key will move it back up
one level. Remember, this is a demonstration,
not a full featured outline processor. You're pro
tected against going too far either up or down,
but you can still mess it up. Try it though, you
can structure your thoughts as you enter them.

When you press the ESCAPE key, ADD
MODE ends. You can move around using the up
and down arrow keys. EDIT MODE allows you
to change the contents of a single headline and
DELETE MODE lets you delete a single head-

line (and those headlines below it). Selecting
MOVE moves a line to a new position. Selecting
PRINT prints the outline to the screen.

The sample outliner is too simple for really
serious work. You're limited to one screen of
display (though there is provision to set and
change the top line of the screen display). You
also aren't protected against many of the errors
that you could commit. The program is an
EXAMPLE of a practical program design. Com
mercial products use some similar type of data
structure to accomplish what they do, but a full
listing would take up more pages than we pub
lish in a whole year.

At its best, this is a simplistic example of
outline processing. Full featured outline proces
sors include many features which we aren't even
attempting here. The listing by itself for a full
featured outliner is larger than a whole issue of
CodeWorks. But this is still a practical program
for creating small outlines to help refine your
thoughts about something. Whether you just
want to arrange the information you have or you
want to create something new, an outliner like
this could be your key.

10 REM — Outline.bas, a Program for Codeworks Magazine
20 REM — by Terry R. Dettmann
30 DEFINT A-Z
35 *n=max number of lines, nl=number of existing lines
36 *tl=top line on screen, cl=current line
37 ,wd=screen width, ln=screen length
40 N = 200: NL = 1: TL = 0: WD = 80: LN = 24: CL = 0: SP = -1
45 ,ln$()=text for each node, lk()=dynamic linking array
46 ,lv()=indent level of current text line
47 ,nm()=sequence number of current text line
50 DIM LN$(N), LK(2, N), LV(N) , NM(N), LL(10), STK(10)
55 xcr$=carraige return, bs$=backspace
60 CR$ = CHR$(13): BS$ = CHR$(8): ESC$ = CHR$(27)
70 FALSE = 0: TRUE = NOT FALSE
80 GOSUB 3550
90 DWN = FALSE: UP = FALSE
190 CLS : GOSUB 3450
200 REM — Main Program Loop
201 CLS
205 GOSUB 1100
210 GOSUB 1000
220 GOSUB 2000

230 ON CMD GOSUB 3400, 3500, 3600, 4000, 4100, 500, 3450, 7000,
8 0 0 0

240 GOTO 200
400 REM — gotoxy

32 Issue 23 CODEWORKS

410 LOCATE X, Y: RETURN
500 REM — End of program
510 CLS : PRINT * 'Thank you for coming' ' : END
1000 REM Display the current outline segment on the screen
1010 1=0: NM = TL
1020 IF I >= 20 THEN RETURN
1030 GOSUB 1200
1035 IF SP = -1 AND LK(0, NM) = -1 AND I > 0 THEN RETURN
1036 1=1+1
1040 IF LK(2, NM) >= 0 THEN GOSUB 1300: NM = LK(2, NM): GOTO

1020
1050 IF LK(0, NM) >= 0 THEN NM = LK(0, NM) : GOTO 1020
1060 GOSUB 1350: IF NM < 0 THEN RETURN
1070 IF LK(0, NM) >= 0 THEN NM = LK(0, NM): GOTO 1020
1080 GOTO 1060
1100 REM — Print Title Line
1110 X = 1: Y = 1: GOSUB 400: PRINT ''Codeworks Outline Processor'';
1120 X = 1: Y = WD - 15: GOSUB 400: PRINT MD$;
1130 X = LN - 2: Y = 1: GOSUB 400: PRINT STRING$ (WD,) ;
1140 X = LN — 1: Y = 1: GOSUB 400
1141 PRINT "(A)dd (C)ommand (D)elete (E)dit (L)oad (M)ove (P)rint

(Q)uit (S)ave'';
1150 RETURN
1200 REM — print a single line
1210 X=I+2:Y=3: GOSUB 400
1211 IF CL = NM THEN LF$ = RT$ = ">" ELSE LF$ = " RT$ = ""

1220 PRINT STRINGS (LV(NM) * 2, " ");
1230 PRINT USING ''!##! ' '; LF$; NM (NM) ; RT$; : PRINT LN$ (NM) ;
1240 RETURN
1300 REM — push level onto stack
1310 IF SP >= 10 THEN RETURN
1320 SP = SP + 1: STK(SP) = NM
1330 RETURN
1350 REM — pop top level off stack
1360 IF SP < 0 THEN NM = -1: RETURN
1370 NM = STK(SP): SP = SP - 1
1380 RETURN
2000 REM — command entry
2010 X = LN: Y = 1: GOSUB 400
2015 NC = WD: GOSUB 2400: GOSUB 400
2020 PRINT "Command=>";
2030 NC = WD - 10: GOSUB 2100
2040 GOSUB 2500
2050 RETURN
2100 REM — input a line

CODEWORKS Issue 23 33

2110 IN$ =
2120 GOSUB 2200: IF C$ = CR$ THEN RETURN
2125 IF C$ = ESC$ THEN GOSUB 3450: IN$ = 'w': RETURN
2130 IF C$ = BS$ THEN GOSUB 2300: GOTO 2120
2135 IF C$ < ^ ' ' OR C$ > THEN 2120
2140 IF LEN(IN$) >= NC THEN 2120
2150 IN$ = IN$ + C$: PRINT C$; : GOTO 2120
2200 REM — read one character
2205 ARROW = FALSE
2210 C$ = INKEY$: IF C$ = 'w' THEN 2210
2220 GOSUB 2250: IF ARROW THEN 2200
2230 RETURN
2250 REM — check for arrow keys
2260 IF LEN(C$) = 1 THEN RETURN
2270 AW = ASC(MID$(C$, 2, 1))
2280 IF AW = &H48 THEN GOSUB 3000
2281 IF AW = &H50 THEN GOSUB 3100
2282 IF AW = &H4B THEN GOSUB 3200
2283 IF AW = &H4D THEN GOSUB 3300
2290 ARROW = TRUE: RETURN
2300 REM — backspace
2310 IF LEN(IN$) = 0 THEN RETURN
2320 IN$ = LEFT$(IN$, LEN(IN$) - 1)
2330 X = CSRLIN: Y = POS(0) - 1: GOSUB 400
2340 PRINT x : GOSUB 400
2350 RETURN
2400 REM — Clear to end of line
2410 PRINT STRINGS(NC - 5, " ,A); : RETURN
2500 REM — Parse the command line
2505 IF MD <> 0 THEN CMD = 0: GOTO 2540
2506 IF IN$ = "w' THEN 2540
2510 CS$ = , ̂AaEeDdLlSsQqCcPpMm' '
2520 CMD = INT((INSTR(CS$, LEFT$(IN$, 1)) +1) / 2)
2530 IF CMD <> 0 THEN 2590
2540 ON MD GOSUB 5100, 5200, 5300, 5400, 5500
2590 RETURN
3000 REM — move up one line
3010 IF LK(1, CL) > 0 THEN CL = LK(1, CL)
3015 GOSUB 3450: GOSUB 1100: GOSUB 1000
3020 RETURN
3100 REM — move down one line
3110 IF LK(0, CL) > 0 THEN CL = LK(0, CL)
3115 GOSUB 3450: GOSUB 1100: GOSUB 1000
3120 RETURN
3200 REM — move up one level
3205 IF LL = 1 THEN RETURN

GOTO
GOTO
GOTO
GOTO

2290
2290
2290
2290

34 Issue 23 CODE WORKS

3208 IF MD = 0 THEN 3220
3210 UP = TRUE: RETURN
3220 IF LK (1, CL) >= 0 THEN CL = LK(1, CL) : LL = LL - 1
3221 DBG$ = ''Line 3221 + " + STR$(LK(1, CL)): GOSUB 9100
3225 GOSUB 3450: GOSUB 1100: GOSUB 1000
3230 RETURN
3300 REM — move down one level
3305 IF LL = 5 THEN RETURN
3308 IF MD = 0 THEN 3320
3310 DWN = TRUE: RETURN
3320 IF LK (2, CL) > 0 THEN LL = LL + 1: CL = LK(2, CL)
3325 GOSUB 3450: GOSUB 1100: GOSUB 1000
3330 RETURN
3400 REM — set add mode
3410 MD = 1: MD$ = 1 'ADD MODE ": RETURN
3450 REM — set command mode
3460 MD = 0: MD$ = * 'COMMAND MODE": RETURN
3500 REM — set edit mode
3510 MD = 2: MD$ = ' 'EDIT MODE ": RETURN
3550 REM — initialize new outline
3560 LN$ (0) = *'Outline Title": LK(0, 0) = -1: LK(1, 0) = -1: LK(2,

0) = -1: LV(0) = 0: NM(0) = 1
3570 RETURN
3600 REM — delete lines
3610 MD = 3: MD$ = "DELETE MODE ": RETURN
4000 REM — Load file
4010 X = LN: Y = 1: GOSUB 400
4020 NC = WD: GOSUB 2400: GOSUB 400
4030 PRINT "Filename=> ";
4040 NC = WD - 10: GOSUB 2100
4050 IF IN$ = "" THEN RETURN
4060 FF$ = IN$ + ".OUT"
4070 GOSUB 5400: RETURN
4100 REM — Save file
4110 X = LN: Y = 1: GOSUB 400
4120 NC = WD: GOSUB 2400: GOSUB 400
4130 PRINT "Filename=> ";
4140 NC = WD - 10: GOSUB 2100
4150 IF IN$ = "" THEN RETURN
4160 FF$ = IN$ + ".OUT"
4170 GOSUB 5500: RETURN
5100 REM — Add
5110 LN$(NL) = IN$
5120 IF CL = 0 THEN LV (NL) = 1 ELSE LV (NL) = LV(CL)
5125 IF DWN THEN LV(NL) = LV(NL) + 1
5126 IF UP THEN LV(NL) = LV(NL) - 1

CODE WORKS Issue 23 35

5130 IN = NL: GOSUB 6100: CL = NL
5140 NL = NL + 1
5145 UP = FALSE: DWN = FALSE
5150 RETURN
5200 REM — Edit
5210 LN$(CL) = IN$
5220 GOSUB 3450: CLS : GOSUB 1100: GOSUB 1000
5230 RETURN
5300 REM — Delete
5310 DL = CL
5320 IF LK(1, CL) >= 0 THEN LK(0, LK(1, CL)) = LK(0, CL)
5321 IF LK(0, CL) >= 0 THEN LK(1, LK(0, CL)) = LK(1, CL)
5330 XL = LK (0, CL)
5340 IF XL < 0 THEN GOSUB 3450: CLS : GOSUB 1100: GOSUB 1000:

RETURN
5350 NM(XL) = NM(XL) - 1
5360 XL = LK(0, XL)
5370 GOTO 5340
5400 REM — Load
5410 OPEN * XI" , 1, FF$
5420 IN = 0: LL(0) = 0: LL = 0
5430 IF EOF(1) THEN 5495
5440 LINE INPUT #1, IN$
5450 GOSUB 5600
5460 LN$(IN) = IN$
5470 GOSUB 5700
5480 IN = IN + 1
5490 GOTO 5430
5495 CLOSE : RETURN
5500 REM — Save
5505 OPEN 1 *0" , 1, FF$
5510 1=0: NM = 0: SP = -1
5520 REM — start of loop
5530 GOSUB 6000
5535 IF SP = -1 AND LK(0, NM) = -1 AND I > 0 THEN CLOSE :

RETURN
5536 1=1+1

5540 IF LK(2, NM) >= 0 THEN GOSUB 1300: NM = LK(2, NM): GOTO
5520

5550 IF LK(0, NM) >= 0 THEN NM = LK(0, NM): GOTO 5520
5560 GOSUB 1350: IF NM < 0 THEN RETURN
5570 IF LK(0, NM) >= 0 THEN NM = LK(0, NM): GOTO 5520
5580 GOTO 5560
5600 REM — determine the line's level
5610 LV(IN) = 0

5620 IF MID$(IN$, 1, 1) <> ** THEN LN$ (IN) = IN$: RETURN

36 Issue 23 CODEWOPKS

5630 LV(IN) = LV(IN) + 1
5640 IN$ = MID$ (IN$, 2)
5650 GOTO 5620
5700 REM — link line into structure
5705 IF IN = 0 THEN LK(0, 0) = -1: LK(1, 0) = -1: LK(2, 0) = -1

NM(0) = 1: GOTO 5900
5710 IF LV(IN) = LL THEN 5800
5720 IF LV(IN) > LL THEN 5850
5730 LK(0, IN) = -1: LK(1, IN) = LL(LV(IN)): LK(2, IN) = -1
5740 LK(0, LL(LV (IN))) = IN: NM(IN) = NM(LL(LV(IN))) + 1
5750 GOTO 5900
5800 LK (0, IN) = -1: LK(1, IN) = IN - 1: LK(2, IN) = -1
5810 LK(0, IN - 1) = IN: NM(IN) = NM(IN - 1) + 1
5820 GOTO 5900
5850 LK(0, IN) = -1: LK(1, IN) = -1: LK(2, IN) = -1
5860 LK(2, IN - 1) = IN: NM(IN) = 1
5870 GOTO 5900
5900 LL(LV(IN)) = IN: LL = LV(IN)
5910 RETURN
6000 REM — save one line to file
6010 PRINT #1, STRING$(LV(NM) * 1, 11 "); LN$(NM)
6020 RETURN
6100 REM — link line into structure
6110 IF LV (IN) = LL THEN 6200
6120 IF LV(IN) > LL THEN 6250
6130 LK (0, IN) = -1: LK(1, IN) = LL(LV(IN)): LK(2, IN) = -1
6140 LK (0, LL (LV (IN))) = IN: NM (IN) = NM (LL (LV (IN))) + 1
6150 GOTO 6300
6200 LK(0, IN) = LK (0, CL) : LK(1, IN) = CL: LK(2, IN) = -1
6210 LK(0, CL) = IN: NM(IN) = NM(CL) + 1
6220 GOTO 6300
6250 LK(0, IN) = -1: LK(1, IN) = CL: LK(2, IN) = -1
6260 LK(2, CL) = IN: NM(IN) = 1
6270 GOTO 6300
6300 LL(LV(IN)) = IN: LL = LV(IN)
6310 RETURN
7000 REM — Display the current outline segment on the screen
7010 I = 0: NM = 0: CLS
7020 REM beginning of print loop
7030 GOSUB 7200
7035 IF SP = -1 AND LK(0, NM) = -1 AND I > 0 THEN 7090
7036 1=1+1
7040 IF LK(2, NM) >= 0 THEN GOSUB 1300: NM = LK(2, NM): GOTO

7020
7050 if LK(0, NM) >= 0 THEN NM = LK(0, NM) : GOTO 7020
7060 GOSUB 1350: IF NM < 0 THEN 7090

7070 IF LK(0, NM) >= 0 THEN NM = LK(0, NM): GOTO 7020

7080 GOTO 7060
7090 GOSUB 7100: CLS : GOSUB 3450: GOSUB 1100: GOSUB 1000. RETURN
7100 REM — time delay (not needed if printing to paper)
7110 FOR IX = 1 TO 10000: NEXT IX: RETURN
7200 REM — print a single line
7220 PRINT STRING$(LV(NM) * 2, " ");
7230 PRINT USING " ## 1 y; NM(NM); : PRINT LN$(NM)

7240 RETURN
8000 REM — move a headline
8010 GOSUB 5300: XL = CL
8020 GOSUB 8100
8030 CL = XL: GOSUB 3450: CLS : GOSUB 1100: GOSUB 1000: RETURN
8100 REM — insert the deleted line at the current position

8110 GOSUB 8200
8120 LK(0, DL) = LK(0, NL) : LK(0, NL) = DL: DL = -1
8130 RETURN
8200 REM — select line
8201 X = 24: Y = 1: GOSUB 400: PRINT "SELECT INSERT LOCATION";
8210 NL = CL
8220 CL = NL: GOSUB 1000: GOSUB 8300: IF C$ = CR$ THEN RETURN
8230 IF MID$(C$, 1, 1) <> CHR$(0) THEN 8220
8240 IF ASC(MID$(C$, 2, 1)) = &H48 THEN GOSUB 8400: GOTO 8220
8250 IF ASC(MID$(C$, 2, 1)) = &H50 THEN GOSUB 8500: GOTO 8220
8260 GOTO 8220
8300 REM — Get a character
8310 C$ = INKEY$: IF C$ = "" THEN 8310
8320 RETURN
8400 REM — Move up one line
8410 IF LK(1, NL) > 0 THEN NL = LK(1, NL)
8420 RETURN
8500 REM — Mode down one line
8510 IF LK(0, NL) > 0 THEN NL = LK(0, NL)
8520 RETURN
9000 REM - print variable status
9010 FOR I = 0 TO NL
9020 PRINT I; LV(I); NM(I); LN$(I); LK(0, I); LK(1, I); LK(2,

I)
9030 NEXT I
9040 STOP
9100 REM — display debugging information
9110 X = CSRLIN: Y = POS(O)
9120 LOCATE 24, 1
9130 PRINT DBG$;
9140 LOCATE X, Y
9150 RETURN

38 Issue 23 CODEWOPKS

Handy Order Form
1

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95

All third year issues, Nov 87 through Sep 88 $24.95

All second year issues, Nov 86 through Sep 87 $24.95

All first year issues, Sep 85 through Sep 86 $24.95

1st Year Program Disk (issues 1 through 7)
(Specify computer type below) $20.00

2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00

3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available now $20.00

NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x
(Tandy Model IV) and most CP/M MB ASIC formats, on

51 /4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE.

O Check/MO enclosed
O Charge to my VIS A/MC.

Ship to: Name.

Address _

City

_exp

State. .Zip.

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only
589

CODEWORKS Issue 23 39

Index & Download \
What's happening with both

Here are the updates to bring CWindex.Dat
up to date through the last issue. The entire
index for the first three years of CodeWorks is on
our yearly diskette.

Notes, string packing, issue 22, page 3
Notes, rename for Tandy Models II/TV, issue

22,page 3
Notes, draw a circle in BASIC, issue 22, page

5
Notes, NFL88-89 recap, issue 22, page 5
Beginning BASIC, two-level sorting with

demo program, issue 22, page 6
Budget.bas, main program, issue 22, page 9,

a home budget program
Notes, how to scroll in MS DOS GW BASIC,

issue 22, page 18
Notes, not using remarks in data fines, issue

22, page 18
Insort.bas, main program, issue 22, page 19,

sort on input programs

Flow.bas, main program, issue 22, page 24,
a line number reference utility

Pay2.bas, main program, issue 22, page 30,
an updated Pay.bas program

Download, notes on download, issue 22,
page 40

CWindex.dat, updates to this index, issue
22,page 40

We have had another power hit on the down
load and this time it took out the modem. As luck
would have it, Bob happened to have one and we
put that into service. This got us to thinking
about the download and what it was actually
accomplishing. There are days on end without
anyone using it. At new issue time, a very few
regulars take down a few things. It's costing us
the extra phone fine and expensive repair costs
when it goes down at least twice per year.

We are considering eliminating the download
and publishing our disks twice per year instead.
Your thoughts on this would be appreciated.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
U.S. Postage

PAID
Permit 774

Tacoma, WA

ERICKSON, HIKE / KRJb"
BOX 250
MuNTE RIO OA 95462

f

CODEWORKS
Issue 24 Jul/Aug 1989

.v.-
» v/i f 4^*h * j*$

v*. <f{ « ?»i: A .ft & W&I -hi
»\« \L n '•. /••' <#. x"::-

J? V;

CONTENTS

i«j»
ur

in Editor's Notes

Beginning BASIC

Notes

t;

.•A -"'v- .;»
:: & • ' $c£f**1

.3

.2

v f*:<!
W* «K *§

Sx- •:•:•

I >

J&S
•x f:\ \

.3
<*x > : <C-̂ *

.5

25

32

35

36

37

39

40
yJ>ii
3k
••••• 4 m : |V» % » £• f/Jt,

\ \S .> ^ S «? i: -a>J? M Ar# 1 •
I Tk'sH Ll'Ln #

, _ 's > m xvt I #*j Vr
5». '.V ,*i .<• it &W

c*«. - - i i Wi5«' \ •>?:•=•
> <»

jra»ix»4

CODEWORKS Editor's Notes
Issue 24 Jul/Aug 1989

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashburn

(c) 1989 80-Northwest Publishing
Inc. No patent liability is assumed with
respect to the use of the information con
tained herein. While every precaution has
been taken in the preparation of this publi
cation, the publisher assumes no responsi
bility for errors or omissions. Unless oth
erwise noted, all programs presented
in this publication are placed in public
domain. Please address all correspon
dence to CodeWorks, 3838 South
Warner Street, Tacoma, Washington
98409

Telephone
(206) 476-2219

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/lower case) and allow
4 to 6 weeks for editorial review. You may
send IBM-PC compatible diskettes (please
save your programs in ASCII format.) Also
send a hard copy listing of the program and
article. Media will be returned if return
postage is provided. Compensation will be
made for works which are accepted for
publication. CodeWorks pays upon accep
tance rather than on publication.

Subscription price is $24.95 per year (six
issues). A subscription year runs from Nov/
Dec through Sep/Oct. Anyone subscribing
during the current subscription year re
ceives all issues for that year. VISA and
MasterCard orders are accepted by
mail or by phone (206) 475-2219.

CodeWorks is published bimonthly in
Jan, Mar, May, Jul, Sep and Nov. It is
printed in the USA. Bulk rate postage is
paid at Tacoma, Washington.

SAMPLE COPIES: Ifyou have a friend
who would like to see a copy of CodeWorks
just send the name and address and we will
send a sample copy at no cost.

Did you miss the little curliques
on the cover in the last issue? We
did a little redesign and forgot to
scan them into the computer until
it was too late and we had to go to
press. They are back now, but
screened back so that they don't
jump off the page. With that, the
entire issue is now produced on
desktop publishing equipment.
The old overlays we had for the
cover, after being punished for
some 22 issues, got dirty and worn
out. Everyone who printed the
magazine cut off just a little more
so that they could find the regis
tration marks, until finally there
wasn't that much of it left.

As I mention in Forum, we are
getting this issue out ahead of
schedule, so we haven't heard
from you about the download.
Well, just after the last issue went
out in the mail, the download went
up in smoke - literally. It sort of
took the decision right out of our
hands. After chugging away 24
hours per day for almost four years
it finally gave up in a big way. We
don't want to offend anyone, but
we are not going to replace it. It
simply costs too much and we can't
afford it, considering the use it was
getting.

To compensate for the missing
download, we will be producing
disks with all the programs on
them for each three issues next
year. Naturally, they will be made
available at a much reduced price.
What that means is that in March
you will be able to get the Novem
ber, January and March programs
on a disk, and again in September
you will get the May, July and
September programs. The disk

will be priced at about $7, which is
probably much less than most of
you spent on long distance tele
phone calls to the download. Not
only that, but the disks don't have
the transmission problems you
often encounter with a modem.

And speaking of disks and
prices, take a look at page 39 of this
issue. We have reduced the price of
our back issues to $18 per set - and
the price of our yearly disks to $15.
So if you haven't yet filled out with
all the issues and disks, you can
now do it at a considerable sav
ings. Besides that, since we are in
a cost cutting mood, if we move
those back issues it will liberate
some much needed space for better
purposes. If you order 2nd year
issues, you will get Issue 8 on a
diskette, because we are plumb
out of that one for some reason. So
don't forget to tell us what ma
chine the disk should be for. We'll
photocopy Issue 8 for you if you
insist. Do you suppose the Poker
program in Issue 8 had anything
to do with it being in short supply?
Well, it was a big program, and
with the disk you don't have to
type it in - so there's some good in
everything. The disk for Issue 8,
by the way, includes all the text for
that issue as well as the programs,
so you won't miss anything with
the disk.

We're getting ready to enjoy a
super Northwest summer around
here. Hope it's just as nice where
you are and we don't have a repeat
of last year's hot spell. Enjoy your
vacations, and we'll see you all in
September.

Irv

2 Issue 24 CODEWORKS

Forum
Ail Open Forum for Questions and Comments

I have started to convert to an IBM PC/XT
compatible with which I am using Smart to write
this letter. It's been exciting and a true learning
situation going from a Heath H-89A with CP/M
to MS DOS. I have a conversion program for CP/
M so all my BASIC programs and test files are
not lost. There are lots of similarities between
the two operating systems, which makes you re
alize that here are only so many ways to rim a
computer. The game now is to give more colorful
displays, easier to use programs and do it faster
than the old systems.

I have been following your section on BASIC
commands in detail. I am presently converting a
checkbook program from CP/M to GW BASIC. I
have a question on the INPUT$(1) statement
used to get input from the keyboard. On my
Heath the cursor remains visible and the delete
key works ok if you make a mistake. Under GW
BASIC the cursor is not visible and if you use the
delete key you get some funny characters on the
screen, but in reality they were deleted. The
author of the program is merely using this ar
rangement to check each input to make sure it is
valid as this is data for the disk files. If the char
acter is good or in range it is printed to the screen
and a string is built which is finished by an enter
key or return. My question is how I can get
around this as the author uses it extensively
throughout the program. In the GW BASIC
manual it is doing as expected, but would like to
see where I am typing and be able to see the
characters as they are deleted...

Ronald B. Williamson
Lynchburg, VA

GW BASIC handles both INPUT$(1) and
backspace somewhat differently than MBASIC
did. I would change all occurrences ofINPUT$(l)
to a standard INPUT statement and let it go at
that. Also, see Beginning BASIC in this issue for
more on input statements.

In Issue 22,1 note Donald E. Williams found

line 1000 in NFL88 was giving "Subscript out of
range" sometimes. Perhaps I can shed a bit of
dim light on this problem. If I use a TAB instruc
tion such as PRINT TAB(13), and I inadver
tently type TAB (space) (13), I am sure to be
informed that some subscript is out of range. I
wasted an afternoon recently trying to find an
offending subscript before I accidentally found
the misleading remark was associated with the
error of typing the space after the TAB. Why this
happens is beyond me, but it seems to be so.

Next item. When doing a BACKUP, why
would one want to write to the source disk? Yet,
the Tandy Model III manual states: NOTE: Both
source and destination disks must be write-
enabled. (See page 67). On the other hand, the
Model I Tandy manual suggests it would be a
good idea to put a write protect on the source
disk. Frankly, I have made backups without
ever bothering to read the complete instruction
manual for the Model III. I thought I knew how.
Now I am worried. Can you explain?

D. B. McRae
Grantsville, UT

The surest way to write blank spaces over your
good data is to un-protect your source disk. If you
forget which drive is going to which drive, you
can wipe out a whole disk that way. I suspect the
manual is in error, and I always write protect the
source disk to keep from writing on it by mistake.

As you know, there is increasing interest in
communication between computers by radio.
The use of a radio modem permits extensive
networking without tying up telephone circuits.

Radio amateurs have developed X.25 packet
networks that reach virtually every city in the
nation. The equipment to communicate on these
networks is very low in cost.

At the present time, it is necessary to learn the
Morse code to become a radio amateur. This is
clearly an archaic requirement to those who
move data at kilobit and megabit rates, but it is

CODEWORKS Issue 24 3

the law.
To encourage computerists to participate in

this exciting hobby, our organization is offering
a free copy of an extraordinary shareware pro
gram called "Super Morse" written by Lee Mur-
rah. Lee's program has helped thousands to
learn the code and become radio amateurs. We
would certainly appreciate any publicity you
could provide for our organization and this pro
gram.

If any of your many readers would like a copy
of Super Morse, it can be obtained by sending
$3.00, postage and handling, to: The National
Amateur Radio Association, 16541 Redmond
Way, Suite 232, Redmond, WA 98052, phone
(206) 232-2579.

Donald L. Stoner, W6TNS
President, NARA

Being an ex-HAM, I certainly appreciate the
problems with the code. Sounds like you have a
really exciting thing going here - almost makes
me want to jump back into the game.

.. .Flow.Bas in the Mar/Apr 89 issue seemed a
good utility for helping debug a program, so I
played with it using one of my larger programs
as input. In the "ON X GOTO" statement it
picked up only the first line number and said it
was a HARD GOTO. I considered it a conditional
GOTO and wanted to see all the line numbers
identified so I took the liberty of adding a few
lines to your program:

475 IF RIGHT$(S$,4) = ' ' ON " THEN F
= 3
535 IF F = 3 AND RIGHT$(S$,1) = '
THEN GOSUB 1010
1071 IF PR = 1 AND F1 = 1 AND F = 3 THEN
LPRINT USING Fl$;LN;Tl$;A;T3$
1072 IF F1 = 1 AND F = 3 THEN PRINT USING
F1$;LN;T1$;A;T3$:A(J) = LN:B(J) =
A:C(J) = 1

I had to remark line 1050 to make it work
properly. Lines 855 HT = 1 and line 945 IF C(I)
> HT THEN HT = C(I):LPRINT were added for
aesthetic purposes to produce a blank line be
tween the different conditions. Perhaps others

might be interested in these changes.
Jean M. Hall

San Diego, CA
Yes, I think they would be interested, and I'm

wondering how we ever missed that in the origi
nal program.

It's a big GO for year 5 of Code-
Works! You can help out by renew
ing early and taking advantage of
our great diskette offer. The fourth
year diskette will be ready about
the 1st of September. Order it now
with your renewal and we will send
it as soon as the next issue's pro
grams are firmed up. See page 39 for
details, and thank you all for
another fine year of support!

/las<ty

I'm getting out of touch with reality;
think I'll play Dragons and Demons for awhile.

Issue 24 CODEWORKS

m

All About Strings - Part 2

Last issue we looked at some of the more fun
damental ideas in strings and string manipula
tion. Mostly, how strings are stored in memory
and recalled is of little practical value - but nice
to know. This time we will look at more of the
commands and functions used in handling
strings.

There are two sets of functions which convert
back and forth between string and integer val
ues. The first set of these consist of the functions
ASC("n") and CHR$(n). The first of these two,
ASCC'n"), will return the ASCII value of the
string letter or number enclosed in both quotes
and parenthesis. If you ask your computer to
PRINT ASC("a"), it will return the integer
number 97, because 97 is the ASCII value of
lower-case a. If A$="this is a string" and you ask
for the ASC(A$) you will get 116, the ASCII
value of the lower-case letter t. ASC() will only
return a value for the first letter of a multi
character string.

The opposite member of this team is CHR$(n).
If you ask your computer to PRINT CHR$(97), it
will return a lower-case a. It converts an integer
number (97) into its ASCII representation, (a).
Where are these useful? In many places. Do you
remember that we cannot add or subtract string
values? Just as one example of where we can use
ASC and CHR$, how about an upper case con
verter. If you look at the ASCII table, you will
find that the lower-case values for the entire
alphabet are exactly 32 higher than the upper
case values. Uppercase A is 65, and 65 plus 32
equal 97, which is the value for lower-case a.
Let's demonstrate with a little code:

10 A$="this is a string"
20 FOR I = 1 TO LEN(A$)
30 C$ = MID$(A$,I,1)
40 C$ = CHR$(ASC(C$)-32)

50 MID$(A$,I,1) = C$
60 NEXT I
70 PRINT A$
RUN
THIS IS A STRING

We'll get into the MID$ thing in a little while.
For now, let's look at the rest of the code. We
already know about LEN(A$) from last issue. It
tells us how long A$ is without really telling us
how long it is. We don't care, as long as we look
at each character in A$. In line 30 we are looking
at one character at a time and calling it C$. Line
40 is where our ASC and CHR$ come into play.
Let's look at the part within the parentheses
first. It says that we are taking the ASC of C$
and subtracting 32 from that number. Taking
the ASC of C$ makes an integer out of the value,
so that we can subtract another number (32)
from it to get the uppercase letter instead of the
lower-case letter. But now that we have the
number subtracted, we need to change it back
into a string so that C$ can insert it back into A$.
Look at line 40 again. It says that C$ now equals
the CHR$ of the integer value of C$ less 32. The
CHR$ converted the integer back into a string
and assigned it to C$. Remember that we are
dealing with only one character at a time here.
Line 50 then inserts the converted C$ back into
A$. When we are all done, we print the converted
A$ and find it has changed from all lower-case to
all uppercase. If you have typed in the above
sample program, save it, because we will add a
few lines and use it again later.

The other "dynamic duo" is the pair, VAL($)
and STR$(n). Let's take VAL($) first. This func
tion will return the integer value of a string - but
- only if the string is a numerical string - and only
if the numerical string is not preceded by letters.
Picky, what? If A$="this is a string" and we ask
for the VAL(A$), we will get zero. If A$="0123",

CODEWORKS Issue 24

VAL(A$) will return 123 in integer form. VAL($)
will return decimal amounts, as when
A$="12.34" but will not return anything after a
comma or semicolon. As we have seen above, it
will not return leading zeros either. This one is
real handy in making numbers out of dollar
amounts, but not when the amount is preceded
with a dollar sign!

The other half of this pair, STR$(n), will
change an integer value into a string value.
Actually, it will work with decimal amounts too,
not just whole integers. If you PRINT
STR$(12.34) you will get 12.34 with a space
preceding the 12.34. The space is added by STR$
for the sign of the number, and since our number
was positive, the plus sign is, by convention, left
out.

Now let's take a look at two useful functions,
LEFT$ and RIGHT$. These two commands let
you pick off n characters from the left or right end
of a string, respectively. Here's our little pro
gram that we used earlier, with a few added lines
to demonstrate how LEFT$ and RIGHT$ work:

10 A$="this is a string"
20 FOR I = 1 TO LEN(A$)
30 C$ = MID$(A$,I,1)
40 C$ = CHR$(ASC(C$)-32)
50 MID$(A$,I,1)=C$
60 NEXT I
70 PRINT A$
8 0 '
90'
100 B$ = MID$(A$,6,3)
110 C$ = LEFT$(A$,5)
120 D$ = RIGHT$(A$,8)
130 E$ = B$+C$+D$+"?"
140 PRINT E$
RUN
THIS IS A STRING
IS THIS A STRING?

Lines 100 through 130 demonstrate how we
can take parts of a string and change their
positions in the original string. The general form
of LEFT$ is: LEFT$($,n) where $ is the string we

are dealing with and n is the number of charac
ters we want to pick off. If n is greater than the
length of the string, LEFT$ will return the entire
string. The same general form holds true for
RIGHT$, only this time we are taking n charac
ters off the right end of the string.

The sample program above uses MID$ in two
different ways. It is used on both sides of the
equal sign. When it is used on the left side of the
equal sign, MID$ is a statement or command.
MID$, as you have probably already guessed,
picks parts out of the middle of a string. The form
for MID$ used as a statement is MID$($,n,m)
where $ is the string we are working with, n is
the character position we want to start with and
m is how many characters we want to pick out of
the string. Can you now begin to see how impor
tant ENSTR (from last issue) is? INSTR will tell
us where a certain character falls within a string
so that we can plug that number into the MID$
statement. Line 100 of our sample program
takes the MID$ of A$, starting at position 6 and
taking 3 characters. In our case, it will take the
word "is" and the space following it. In line 110,
we take the LEFT$ of A$ for 5 characters, which
would be the word "this" and the space following
it. Then, line 120 takes the RIGHT$ of A$ for 8
characters, which would include "a string". Now,
when we print these in the order shown in line
130, we get "is this a string" but we added a
question mark in line 130, so E$ in line 140 will
really print "is this a string?" If m is omitted (how
many characters to take), MID$ will return all
the characters to the right of the starting posi
tion. In fact, MID$ can be used in place of both
RIGHT$ and LEFT$ in many cases. For ex
ample, we could ask for MID$(A$,1,4) and get
"this" off of the left end of our A$, just like
LEFT$(A$,4) would have.

MID$ on the left of the equal sign can be used
to replace a portion of a string with another
string. We use it that way in line 50 of our sample
program, where we are plugging in a new C$ into
A$ at position I for one character. Remember
that in line 40 we changed C$ from a lower-case
character to an uppercase character, and that

6 Issue 24 CODEWORKS

now we are going to insert that new uppercase
character back into the original A$. It is impor
tant to note that the number of replacement
characters cannot exceed the original length of
A$, which means that MID$ cannot change the
length of a string.

The only way to change the length of a string
is by concatenation using the plus sign (+). This
device "boxcars" pieces of strings together to
make a new, longer string. In our sample pro
gram, we use concatenation in line 130, where
E$ is a new string made up of pieces of other
strings and a literal question mark.

Some earlier versions of BASIC only allow
MID$ on the right of the equal sign. This makes
a function out of MID$ (it's a statement or com
mand when on the left of the equal sign). Look at
line 30 of our sample program, where we use
MID$ on the right. It says that we are assigning
to C$ the MID$ of A$, starting at position I, for
one character. As you can see, the MID$ function
returns characters from the middle of a string.
Again, you can pull them off of the right or left
end as well.

An interesting string function is STRING$.
The form of this function is: STRING$(n,c),
where n is the number of times to repeat the
character c. The character c can be input as a
literal, but it must then be in quotes. Otherwise,
it can be simply the ASCII number of the charac
ter. Here's a sample:

10 PRINT STRING$(15,"-")
RUN

Ok

We could just as well have said: PRINT
STRING$(15,45) and got the same result be
cause 45 is the ASCII value of the dash. This one
comes in handy for making borders and long
lines of dashes or underscores.

In some newer versions of BASIC you also
have the command SPACE$, which prints a

number of spaces. But STRING$(n,32) will do
the same thing, where n is the number of spaces
you want and 32 is ASCII for the space. The form
of SPACE$ is: SPACE$(n), where n is the num
ber of spaces you wish to have.

Also in some newer BASICs you will find the
command SPC(n) which does the same as the
previous two commands - it prints n number of
spaces. There is, however, one thing about
SPC(n) that is different: it uses no string space.

INPUT$(n) is another function not found in
older versions of BASIC. This function is used to
get a string of n characters from the keyboard.
Unlike the regular INPUT statement, this one
does not echo (print) the characters you enter on
the screen. This, of course, makes it a natural for
entering passwords. Here is another way it can
be used:

10 PRINT"Press any key";
20 XX$ = INPUT$(1)

XX$ is a "throw-away" variable which we
don't care about. Line 20 will stop execution of
the program, waiting for any character to be
input from the keyboard after which execution
will continue.

INKEY$ is a function rather similar to IN-
PUT$, but it will return the last character you
type at the keyboard or a null string if no charac
ter has been typed. INKEY$ does not wait for
you to enter anything. It is usually used like this:

10 A$=INKEY$:IF A$="" then 10

This forces INKEY$ to wait for an input other
than a null string. Further, the key you press is
contained in A$. This is usually found when yes/
no questions need to be answered in a program.
The next line of the program would probably be:
20 IF A$="Y" or A$="y" THEN ... ELSE.

This pretty well covers strings. In the next in
stallment, we will look at a host of ways these
string statements and functions can be used in
everyday programs.

CODEWORKS Issue 24 7

Tracker. Bas
A Mutual Fund Tracking Program

Jean M. Hall, San Diego, California. Jean sent us this program a couple of
years ago and we have been waiting for the right time to fit it in. It's long, and we
figured that July would be the best time for it. We wrote the article to accompany
the program.

The Mutual Fund Tracker program,
Tracker.Bas, concept is to enable you to follow
the progress of any Mutual Fund and calculate
the moving average for that fund with the objec
tive of letting you know when you might want to
move in or out of a Money Market Fund.

Files can be set up for weekly, daily or monthly
tracking. Weekly (or daily or monthly) closing
prices are entered from the keyboard. There are
39 entries for each fund which can be entered as
the weeks go by, or previous closing prices can be
obtained at your local public library. Once the 39
entries have been made, the program updates by
dropping off the oldest entry and adding the new
one and recalculating the moving average.
When the fund has been tracked for a year or
more you will have reached the optimum moving
average.

The program prints four reports: An update
report showing closing rate, moving average and
percent change from previous; a listing showing
the date, closing rate, total and average; a chart
showing the comparison between the rate and
the moving average; and a listing of all funds on
a specific file.

Those menu items which say "print" will re
quire a printer on and on-line. Those items which
say display will print to the screen. Be aware of
the distinction between a "file" and a "fund." A
file may contain several funds. The author made
no provision for lower-case entries, so run with

your caps key locked on. Following is a brief
description of each menu item, in order:

Option A: Asks for the drive and file name and
allows you to set up a new file. However, if you
give a name of a file which already exists, it will
open that one.

Option B: Allows you to add a new fund to the
file or to reuse an existing fund which you are no
longer interested in. When setting up a new
fund, the program asks how many entries you
wish to make and will return to the main menu
when that number has been reached. You may
have the data for only one or 10, or all 39 records.

Option C: This option is how you will update
your files with weekly (daily or monthly, if you
choose) rates. You are asked for the fund name
then the date to be entered in YYMMDD format.
Here is the secret - if your system has a date and
it is the date you wish to use for the entry, type
S and the date is automatically entered. Enter
the closing rate. If you have not updated your file
for a few weeks you may want to make more
entries. Then you are asked if you want to
update another fund. A NO answer to this brings
you back to the main menu. The program sub
tracts the oldest closing rate from the total and
adds the current closing rate, then recalculates
the moving average. A report is printed as you
enter the closing rates for each fund. The report
includes date, fund name, close rate, percent
change from previous close, moving average,

8 Issue 24 CODEWORKS

TMMM

percent change from previous moving average
and percent difference current close from cur
rent average.

Option D: Allows you to print a listing for all
funds on the file or a specific fund. The listing
includes record number, date, closing rate, total
and average.

Option E: Will let you print a chart for all
fiinds on the file or a specific fund. The chart is a
graphic which includes date, closing rate, lower,
middle and upper limits and a graphic represen
tation of rate, moving average and where they
cross.

Option F: Will display the fund listing on the
screen in two sections. The display will show
record number, date, closing rate, total and
average. The reason for two sections is that only
one section will fit the screen at one time.

Option G: Will display the fund chart on the
screen using every third entry (because of space
limits).

Option H: Will print a listing of all fund names
in the file, including start record number, end

Tracker.Bas for MS DOS machines

record number and number of records.

Option I: Allows you to correct an erroneous
entry. The program asks for the record number
to be fixed and displays the date and amount,
then asks for the new date and amount.

Option J: Will recalculate a fund which will
make the closing rate and moving average to be
the same for the first record of that fund on file.

Option K: Ends the run.

Because of the complexity and length of the
program we have made no attempt to convert to
various machines. It is suggested that the pro
gram be run at least on a machine with 24 line
video displays. In spite of all that, those with less
than 24 line screens can use the program and
ignore the screen display sections and send their
output directly to the printer, since the screen
only repeats what will appear on the printer in
all cases.

Some of the areas that will need attention in
modification are the multi-lettered variables,
the random file opening statements and the
screen formatting for screens less than 24 lines.

100 'a***
110 ' TRACKER.BAS
120 ' PROGRAM TO CALCULATE MOVING AVERAGES FOR MUTUAL FUNDS
130 * WRITTEN BY JEAN M. HALL - MARCH 1986
140 **
150 *
160 ***
17 0 ' ARRAYS
1 8 0 * * * * * * *

190 ,

200 DIM C$(38)
210 FOR A = 1 TO 38
220 C$(A)=STRING$(36, 32)
230 NEXT A Listing continues on page 11

CODEWORKS Issue 24 9

MAGELLAN RATE = *

MOVING AVERAGE
WHERE THEY CROSS

LOWER LIMIT
48.76

V
04-26-86
05-10-86
05-20-86
05-24-86
05-31-86
06-20-86
06-24-86
06-28-86
06-30-86
07-09-86
07-12-86
07-19-86
07-26-86
07-26-86
08-02-86
08-08-86
08-16-86
08-23-86
08-30-86
09-06-86
09-13-86
09-20-86
09-27-86
10-04-86
10-11-86
10-18-86
10-25-86
11-01-86
11-08-86
11-15-86
11-22-86
11-29-86
12-06-86
12-13-86
12-20-86
12-27-86
01-03-87
01-10-87
01-17-87

MIDDLE
52.845

V

UPPER LIMIT
56. 93

V
o

I

I
I
I *

I

56.93
56.17
50.71
51.97
52.86
52.54
52.54
53.87
54.19
52.06
52.74
51.4
51.66
51.66
50.34
51.26
52.98
53.57
53.76
52.98
48.76
48.94
49.27
49.72
50.12
50.65
50.66
51.76
52.16
51.73
51.53
52.28
50.24
49.12
49.23
49.09
49.45
52 .29
53.61

This is an example of the chart output using Option E
for a hypothetical fund, showing the moving average.

10 Issue 24 CODEWORKS

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710

DIM A$(39), V(39), Y(39), Z$(39)
**

'DEFINITIONS

'RN#
'RN2#
'CRN#
'LST#
'LST2#

= RECORD NUMBER IN FILE #1
= RECORD NUMBER IN FILE #2
= RECORD NUMBER IN FUND
= LAST RECORDS NO ON FILE #1
= LAST RECORDS ON FILE #2

**
FRST#=0 'FIRST TIME FILE IS OPENED
**

'CONSTANTS

HLST#=0
HCD#=0
HTT#=0
NF#=0
HCRN#=0
CRN#=0
SRN#=0
ERN#=0
EN1#=0
EN2#=0
UTL#=0
CFL#=0
HDG#=0

'HOLD LAST RECORD NUMBER
'HOLD NAME SUBSCRIPT
'HOLD TOTAL
'NEW FILE FLAG
'HOLD NO OF INPUT ENTRIES FOR FUND
'NO ENTRIES FOR FUND
'BEGINNING RECORD NO FOR FUND
'END RECORD NO FOR FUND
'END OF FILE #1 FLAG
'END OF FILE #2 FLAG
'UNABLE TO LOCATE FLAG
'CHART FLAG
'HEADING FLAG
'CLEAR FUND FLAG
SPACE FOR CLEARING
CURRENT SYSTEM DATE - YYMMDD

CF#=0
S$=STRING$(1,32)
CD$=STRING$(6,32)
MID$(CD$,1,2)=RIGHT$(DATE$, 2)
MID$(CD$,3,2)=LEFT$(DATE$, 2)
MID$(CD$,5,2)=MID$(DATE$, 4,2)

'SELECT OPTION

CLS
PRINT ' ***
PRINT "* OPTIONS
PRINT "*
PRINT ''*
PRINT "*
PRINT "*
PRINT "*
PRINT "*
PRINT "*
PRINT "*
PRINT "*

A = SET UP NEW FILE
B = SET UP NEW FUND
C = UPDATE FUND WITH CLOSING RATE
D = PRINT FUND
E = PRINT CHART
F = DISPLAY FUND
G = DISPLAY CHART
H = PRINT LISTING OF ALL FUND NAMES*
I = FIX ERROR IN INPUT *
J = RECALCULATE AN EXISTING FUND *

CODE WORKS Issue 24 11

M

•' '
X > *

* y-k-k

K = END RUN
**"

-OTER OPTION",- OS THE[jpRiNT; pRINT .,INVM,ID OPTION'

720 PRINT
730 PRINT
740 PRINT
750 INPUT
760 IF 0$ < ' 'A

INPUT "PRESS ANY KEY TO RETURN TO THE MENU
770 IF FRST#=0 THEN FRST#=1: GOSUB 5860
780 IF 0$=''A'' THEN HLST#=1: NF#=1: GOTO 600

THEN GOTO 930
THEN GOTO 1860

PRINT:
/ 9 K$: GOTO 380

790 IF 0$=''B' '
800 IF 0$=''C''

END

810 IF 0$="D" THEN GOTO 3100
820 IF 0$="E" THEN GOTO 3620
830 IF 0$="F" THEN 4150
840 IF 0$="G" THEN 4540
850 IF 0$="H" THEN GOTO 5100
860 IF 0$="I" THEN GOTO 5250
870 IF 0$="J" THEN GOTO 5650
880 IF 0$="K" THEN FRST#=0: PRINT "END OF RUN'
890 END
900 ^**
910 'OPTION B - SET UP NEW FUND
920 ***************************
930 PRINT

>***''

'AT THIS POINT YOU MAY SELECT ONE OF TWO OPTIONS' '
'CLEAR AND REUSE AN EXISTING FUND - Y"
'ADD A NEW FUND TO THE FILE - N''
'ENTER Y OR N"

940 PRINT
950 PRINT
960 PRINT
970 PRINT
980 PRINT
990 PRINT
1000 PRINT
1010 INPUT K$
1020 IF K$="Y" THEN CF#=1: GOTO 1700
1030 IF K$="N" THEN GOTO 1050
1040 GOTO 930
1050 GOSUB 6470
1060 GOSUB 6570
1070 GOSUB 1100
1080 GOTO 1560
1090 '********************************
1100 PRINT
1110 PRINT "**********************************,,
1120 PRINT ' 'NAME OF NEW FUND''
1130 PRINT "UP TO 10 CHARACTERS WITH NO SPACES"
1140 PRINT "**********************************,,
1150 PRINT
1160 INPUT NAM$
1170 PRINT
1180 INPUT "NO OF ENTRIES"; HORN#

I

1 2 Issue 24 CoDeWofiKS

HMHHH

1190 SRN#=RN#
1200 CRN#=CRN#+1
1210 IF CRN#=4 0 THEN ERN#=RN#-1: GOTO 14 60
1220 IF CRN#>HCRN# THEN GOTO 1390
1230 INPUT ' 'DATE - YYMMDD" ; HDT$
1240 IF HDT$ < "!" THEN GOTO 1230
1250 IF HDT$="S" THEN HDT$=CD$: PRINT HDT$
1260 IF MID$(HDT$,3,2) > "12" THEN PRINT ''RE-ENTER DATE '': GOTO 1230
1270 IF RIGHT$(HDT$,2) > ''31" THEN PRINT ''RE-ENTER DATE ": GOTO 1230
1280 INPUT "CLOSE AMOUNT"; HCL#
1290 LSET DT$=HDT$
1300 LSET CL$=STR$(HCL#)
1310 HTT#=HTT#+HCL#
1320 LSET TT$=STR$(HTT#)
1330 HAV#=HTT#/CRN#
1340 LSET AV$=STR$(HAV#)
1350 LSET DC$=STR$(CRN#)
1360 PUT #1, RN#
1370 RN#=RN#+1
1380 GOTO 1200
1390 IF CRN#=40 THEN ERN#=RN#-1: GOTO 1460
1400 LSET AL$=SPACE$(32)
1410 LSET DC$=STR$(CRN#)
1420 PUT #1, RN#
1430 CRN#=CRN#+1
1440 RN#=RN#+1
1450 GOTO 1390
1460 IF CF#=1 THEN CF#=0: GOTO 1520
1470 HRN#=RN#-1
1480 RN#=1
1490 LSET LST$=STR$(HRN#)
1500 LSET RR$=SPACE$(30)
1510 PUT #1, RN#
1520 CLOSE #1
1530 GOSUB 6270
1540 RETURN
1550 *********************************
1560 GOSUB 6660
1570 PRINT
1580 PRINT ' ,***' '
1590 PRINT "DO YOU WISH A LISTING OF ALL FUND NAMES ON THIS FILE?"
1600 PRINT ' •»***' '
1610 PRINT
1620 INPUT "ENTER Y OR N" ; K$
1630 IF K$="Y" GOTO 5100
1640 IF K$="N" THEN GOTO 1660
1650 GOTO 1580
1660 GOTO 380

CODEWORKS Issue 24 13

1670 *********************************

1680 'CLEAR AND REUSE AN EXISTING FUND

1690 ********************************* „
1700 INPUT ''ENTER NAME OF EXISTING FUND , NAM

1710 GOSUB 6060
1720 IF UTL#=1 THEN GOTO 380
1730 GOSUB 6470
1740 RN#=SRN#
1750 GOSUB 1100
1760 RN2#=HRN2#
1770 GET #2, RN2#
1780 LSET NM$=NAM$
1790 LSET NR$=STR$(HCRN#)
1800 PUT #2, RN2#
1810 CLOSE #2
1820 GOTO 380
1830 ***
1840 'OPTION C — UPDATE FUND WITH CLOSING RATE

1850 ***
1860 GOSUB 5990
1870 IF UTL#=1 THEN UTL#=0: GOTO 2360
1880 GOSUB 6470
1890 IF HNR#<39 THEN GOTO 2450
1900 RN#=SRN#
1910 GET #1, RN#
1920 IF EOF (1) THEN ER#=1: GOTO 3000
1930 HCLS#=VAL(CL$)
1940 FOR A = 1 TO 37
1950 RN#=RN#+1
1960 IF RN#>ENR# THEN ER#=2: GOTO 3000
1970 GET #1, RN#
1980 IF EOF(1) THEN ER#=3: GOTO 3000
1990 C$(A)=AL1$
2000 NEXT A
2010 RN#=RN#+1
2020 GET #1, RN#
2030 IF EOF (1) THEN ER#=4: GOTO 3000
2040 HTT#=VAL(TT$)
2050 HLCL#=VAL(CL$)
2060 HLAV#=VAL(AV$)
2070 C$(38)=AL1$
2080 RN#=SRN#
2090 FOR A = 1 TO 38
2100 LSET AL1$=C$(A)
2110 PUT #1, RN#
2120 RN#=RN#+1
2130 NEXT A
2140 INPUT "DATE - YYMMDD HDT$

2150 IF HDT$ < ""!" THEN GOTO 2290
2160 IF HDT$=''S" THEN HDT$=CD$: PRINT HDT$
2170 IF MID$(HDT$,3,2) > ""12" THEN PRINT ""RE-ENTER DATE GOTO 2140
2180 IF RIGHT$ (HDT$,2) > ""31" THEN PRINT ""RE-ENTER DATE "": GOTO 2140
2190 INPUT ""CLOSE AMOUNT"; HCL#
2200 IF HCL# = 0 THEN GOTO 2190
2210 LSET DT$=HDT$
2220 LSET CL$=STR$(HCL#)
2230 HTT#=HTT#-HCLS#+HCL#
2240 LSET TT$=STR$(HTT#)
2250 HAV#=HTT#/39
2260 LSET AV$=STR$(HAV#)
2270 PUT #1, RN#
2280 GOSUB 2900
2290 PRINT
2300 INPUT ""MORE ENTRIES? - Y OR N" ; K$
2310 PRINT
2320 IF K$="Y" THEN GOTO 1900
2330 IF K$="N" THEN GOTO 2350
2340 GOTO 2300
2350 CLOSE #1
2360 PRINT
2370 INPUT " "DO YOU WISH TO UPDATE ANOTHER FUND? - ENTER Y OR N" ; K$
2380 IF K$="N" THEN PRINT CHR$(12): GOTO 2410
2390 IF K$="Y" THEN GOTO 1860
2400 GOTO 2370
2410 GOTO 380
2420 ,**********************
2430 "UPDATE INCOMPLETE FUND
2440 ***********************
2450 CRN#=HNR#
2460 RN#=SRN#+HNR#—1
2470 GET #1, RN#
2480 HTT#=VAL(TT$)
2490 HLCL#=VAL(CL$)
2500 HLAV#=VAL(AV$)
2510 RN#=RN#+1
2520 CRN#=CRN#+1
2530 IF CRN#=40 THEN PRINT " "THIS FUND HAS NOW BEEN COMPLETED WITH 39

RECORDS" :GOTO 2740
2540 PRINT ""WHEN NO MORE ENTRIES TYPE - N' '
2550 INPUT ""DATE - YYMMDD" ; HDT$
2560 IF HDT$="N" THEN GOTO 2740
2570 IF HDT$ < ""!" THEN GOTO 2740
2580 IF HDT$="S" THEN HDT$=CD$: PRINT HDT$
2590 IF MID$(HDT$,3,2) > ""12" THEN PRINT ""RE-ENTER DATE "": GOTO 2550
2600 IF RIGHT$(HDT$,2) > ""31" THEN PRINT ""RE-ENTER DATE "": GOTO 2550
2610 INPUT ""CLOSE AMOUNT"; HCL#

CODEWORKS Issue 24

2620 IF HCL#=0 THEN GOTO 2610
2630 LSET DT$=HDT$
2640 LSET CL$=STR$(HCL#)
2650 HTT#=HTT#+HCL#
2660 LSET TT$=STR$(HTT#)
2670 HAV#=HTT#/CRN#
2680 LSET AV$=STR$(HAV#)
2690 LSET DC$=STR$(CRN#)
2700 PUT #1, RN#
2710 HNR#=HNR#+1
2720 GOSUB 2900
2730 GOTO 2510
2740 CLOSE #1
2750 GOSUB 6270
2760 RN2#=HRN2#
2770 GET #2, RN2#
2780 LSET NR$=STR$(HNR#)
2790 PUT #2, RN2#
2800 CLOSE #2
2810 PRINT
2820 INPUT "DO YOU WISH TO UPDATE ANOTHER FUND? - ENTER Y OR N" ; K$
2830 IF K$="N" THEN PRINT CHR$(12): GOTO 2860
2840 IF K$="Y" THEN GOTO 1860
2850 GOTO 2810
2860 GOTO 380
2870 *************
2880 'PRINT UPDATE
2890 x************
2900 IF HDG#=0 THEN HDG#=1: LPRINT TAB(35) "UPDATES" : LPRINT : LPRINT "DA

TE FUND NAME CLOSE RATE %CHG FROM MOVING AVG %CHG FROM
%DIFF CR CLS": LPRINT " PREV CLS

PREV MOV FROM CR AVG''
2910 PRINT
2920 CLCG#=((HCL#-HLCL#)*100)/HLCL#
2930 AVCG#=((HAV#-HLAV#)*100)/HLAV#
2940 CHG#=((HCL#-HAV#)*100)/HAV#
2950 LPRINT USING "\ \\ \####.## ###.##

####.## ###.## ###.##" ;DT$,NAM$, HCL#, CLCG#, HAV#, AVCG#,
CHG#

2960 RETURN
2970 *•
2980 'ERROR MESSAGE
2990 x*•••••••••
3000 PRINT
3010 PRINT "ERROR " ER#

3020 PRINT ''THERE IS AN ERROR IN THE STARTING OR ENDING RECORD
NUMBERS''

3030 PRINT ''FOR FUND " HNM$ " IN THE NAME FILE (.002)''

304C PRINT ''THIS RUN IS ABORTED''
3050 CLOSE #1
3060 END
3070 '********************************
3080 'OPTION D - PRINT A SPECIFIC FUND
3090 '********************************
3100 PRINT
3110 PRINT ''*******************************
3120 PRINT ''DO YOU WISH TO PRINT ALL FUNDS?''
3130 PRINT ''*******************************
3140 PRINT
3150 INPUT ' 'ENTER Y OR N" ; K$
3160 IF K$=''Y'' THEN GOTO 3300
3170 IF K$=''N'' THEN GOTO 3190
3180 GOTO 3110
3190 GOSUB 5990
3200 IF UTL#=1 THEN GOTO 380
3210 GOSUB 6470
3220 RN#=SRN#
3230 HLR#=HNR#+SRN#-1
3240 GOSUB 3450
3250 CLOSE #1
3260 GOTO 380
3270 '***************
3280 'PRINT ALL FUNDS
3290 '***************
3300 GOSUB 6270
3310 GOSUB 6470
3320 RN2#=1
3330 GET #2, RN2#
3340 HLST2#=VAL(LST2$)
3350 GOSUB 6360
3360 IF EN2#=1 THEN GOTO 3410
3370 IF RN2#>HLST2# THEN GOTO 3410
3380 IF CFL#=0 THEN GOSUB 3450
3390 IF CFL#=1 THEN GOSUB 3750
3400 GOTO 3350
3410 CLOSE #1: CLOSE #2: GOTO 380
3420 '************

3430 'PRINT RECORD
3440 '************

3450 GET #1, RN#
3460 LPRINT HNM$
3470 LPRINT
3480 LPRINT ' 'RECORD NO DATE CLOSE RATE TOTAL

AVERAGE''
3490 CNT#=1
3500 RDT$=MID$ (AL1$, 3, 2) + ' ' +MID$ (AL1$, 5,2)+' ' +LEFT$ (AL1$, 2)

3510
3520
3530
3540

3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970

LPRINT CNT#,RDT$,CL$,TT$,AV$
CNT#=CNT#+1
RN#=RN#+1
IF RN#>HLR# THEN LPRINT CHR$(27); ' ' G" : LPRINT S$,S$,CL$,S$,AV$:
LPRINT CHR$(27); " H'' : GOTO 3570
GET #1, RN#
GOTO 3500
LPRINT CHR$(12)
RETURN

^OPTION E - PRINT CHART

PRINT
PRINT * **************************************
PRINT *'DO YOU WISH TO PRINT ALL FUND CHARTS?''
PRINT '**************************************
PRINT
INPUT ' x ENTER Y OR N"; K$
IF K$=''N'' THEN GOSUB 3710: CLOSE #1: GOTO 380
IF K$=' ' Y" THEN CFL#=1: GOTO 3300
GOTO 3630
GOSUB 5990
IF UTL#=1 THEN GOTO 380
GOSUB 6470
RN#=SRN#
LV=9999.99
HV=0
FOR X = 1 TO HNR#

W = X
GET #1, RN#
A$(W)=DT$
V(W)=VAL(CL$)
Y(W)=VAL(AV$)
Z$(W)=CL$
IF V(W)<LV THEN LV=V(W)
IF V(W)>HV THEN HV=V(W)
IF Y(W)<LV THEN LV=Y(W)
IF Y(W)>HV THEN HV=Y(W)
RN#=RN#+1

NEXT X
LPRINT HNM$, , , " RATE = *"
LPRINT ,,, * * MOVING AVERAGE = | "
LPRINT ,,, " WHERE THEY CROSS = o"
LPRINT
LPRINT
LPRINT TAB(10)''LOWER LIMIT'';TAB(37)'' MIDDLE' ';TAB(60)'' UPPER LIMIT'
LPRINT TAB(10) LV;TAB(37) (LV+HV)/2;TAB(60) HV
LPRINT TAB(15)''V'';TAB(40)''V' ' ;TAB(65)''V''

18 Issue 24 CODE WORKS

3980 FOR X = 1 TO HNR#
3990 LPRINT MID$ (A$ (X) , 3, 2) ; ;RIGHT$ (A$ (X) , 2) ; "; LEFT$ (A$ (X) , 2)
4000 P#=INT(((V(X)-LV)/(HV-LV))*50)+15
4010 Q#=INT(((Y(X)-LV)/(HV-LV))*50)+15
4020 IF P#=Q# THEN GOTO 4080
4030 IF Y(X) < V(X) THEN GOTO 4060
404 0 LPRINT TAB(INT(((V(X)-LV)/(HV-LV))*50)+15) " *" ;TAB(INT(((Y(X)-

LV) / (HV-LV)) *50) +15) " |" ;TAB(70) Z$ (X)
4050 GOTO 4090
4 060 LPRINT TAB(INT(((Y(X)-LV)/(HV-LV))*50)+15) " I " ;TAB(INT(((V(X)~

LV) / (HV-LV)) *50) +15) " *" ;TAB(70) Z$ (X)
4070 GOTO 4090
4080 LPRINT TAB(INT(((Y(X)-LV)/(HV-LV))*50)+15)''o" ; TAB(70) Z$(X)
4090 NEXT X
4100 LPRINT CHR$(12)
4110 RETURN
4120 *•••••••••••••••••••••••••
4130 'OPTION F - DISPLAY A FUND
4140 *•••••••••••••••••••••••••
4150 GOSUB 5990
4160 IF UTL#=1 THEN GOTO 380
4170 GOSUB 6470
4180 RN#=SRN#
4190 HLR#=HNR#+SRN#-1
4200 GOSUB 4260
4210 CLOSE #1
4220 GOTO 380
4230 *************
4240 'PRINT RECORD
4250 *••••••••••••
4260 GET #1, RN#
4270 CLS
4280 PRINT HNM$
4290 PRINT "RECORD NO DATE CLOSE RATE TOTAL

AVERAGE' '
4300 PRINT
4310 CNT#=1
4320 RDT$=MID$ (AL1$, 3, 2) +' +MID$ (AL1$, 5,2)+"-" +LEFT$ (AL1$, 2)
4330 PRINT CNT#,RDT$,CL$,TT$,AV$
4340 CNT#=CNT#+1
4350 IF CNT#=21 THEN GOSUB 4450
4360 RN#=RN#+1
4370 IF RN#>HLR# THEN PRINT S$,S$,CL$,S$,AV$: GOTO 4400
4380 GET #1, RN#
4390 GOTO 4320
4400 INPUT "PRESS ANY CHARACTER TO RETURN TO THE MENU"; K$
4410 RETURN
4420 x*

CODEWORKS Issue 24

4430 'GET SECOND HALF
4440 * ***************
4450 INPUT "PRESS ANY CHARACTER TO DISPLAY SECOND HALF OF FUND''; K$
4460 CLS
4470 PRINT HNM$
4480 PRINT ''RECORD NO DATE CLOSE RATE TOTAL

AVERAGE''
4490 PRINT
4500 RETURN
4510 * ••••••••••••••••••*•••••• •
4520 'OPTION G - DISPLAY A CHART
4530 *••••••••••••••••*•••••••••
4540 GOSUB 4570
4550 CLOSE #1
4560 GOTO 380
4570 GOSUB 5990
4580 IF UTL#=1 THEN GOTO 380
4590 GOSUB 6470
4600 RN#=SRN#
4610 LV=9999.99
4620 HV=0
4630 CNT#=1
4640 FOR X = 1 TO HNR#/3+l
4650 W = X
4660 GET #1, RN#
4670 A$(W)=DT$
4680 V(W)=VAL(CL$)
4690 Y(W)=VAL(AV$)
4700 Z$(W)=CL$
4710 IF V(W)<LV THEN LV=V(W)
4720 IF V(W)>HV THEN HV=V(W)
4730 IF Y(W)<LV THEN LV=Y(W)
4740 IF Y(W)>HV THEN HV=Y(W)
4750 RN#=RN#+3
4760 CNT#=CNT#+3
4770 IF CNT#>HNR# THEN RN#=RN#+(HNR#-CNT#)
4780 NEXT X
4790 CLS
4800 GOSUB 5000
4810 FOR X = 1 TO HNR#/3+l
4820 PRINT MID$ (A$ (X) , 3, 2) ; ";RIGHT$ (A$ (X) , 2) ; " - " ; LEFT$ (A$ (X) , 2) ;
4 830 IF HV=LV THEN PRINT: PRINT "UNABLE TO PRINT CHART - HIGH

VALUES AND LOW VALUES ARE THE SAME" : GOTO 4940
4840 P#=INT(((V(X)-LV)/(HV-LV))*50)+15
4850 Q#=INT(((Y(X)-LV)/(HV-LV))*50)+15
4860 IF P#=Q# THEN GOTO 4920
4870 IF Y(X) < V(X) THEN GOTO 4900
4 880 PRINT TAB (INT (((V (X) -LV) / (HV-LV))*50)+15)"*"; TAB (INT (((Y (X) -

20 Issue 24 CODEWORKS

LV)/(HV-LV))*50)+15) " | " ;TAB(70) Z$(X)
4890 GOTO 4930
4900 PRINT TAB(INT(((Y(X)-LV)/(HV-LV))*50)+15) ' ' I

LV) / (HV-LV)) *50)+15) " *" ;TAB(70) Z$ (X)

/ r •
/ TAB(INT(((V(X)-

4910 GOTO 4930
4920 PRINT TAB(INT(((Y(X)-LV)/(HV-LV))*50)+15)''O r r .

/ TAB(70) Z$(X)
4930 NEXT X
4940 PRINT
4950 INPUT ''PRESS ANY KEY TO RETURN TO THE MENU''; K$
4960 RETURN
4970
4980 'CREATE HEADING
4990
5000 PRINT HNM$, , , " RATE = *"
5010 PRINT ,,, " MOVING AVERAGE = | "
5020 PRINT ,,, " WHERE THEY CROSS = o"
5030 PRINT TAB (10) " LOWER LIMIT' '; TAB (37)" MIDDLE' ' ;TAB(60) ' 'UPPER LIMIT''
5040 PRINT TAB(10) LV;TAB(37) (LV+HV)/2;TAB(60) HV
5050 PRINT TAB (15) ' 'V' ' ;TAB(40) ' ' V" ;TAB(65) ' ' V' '
5060 RETURN
5070 •<***

5080 'OPTION H - LIST FUND NAMES AND RECORD NOS
5090 **

5100 GOSUB 6270
5110 RN2#=1
5120 LPRINT ''FUND NAME START REC END REC NO RECORDS''
5130 LPRINT
5140 RN2#=RN2#+1
5150 GET #2, RN2#
5160 IF EOF(2) THEN GOTO 5190
5170 LPRINT NM$,FR$,LR$,NR$
5180 GOTO 5140
5190 CLOSE #2
5200 LPRINT CHR$(12)
5210 GOTO 380
5220 ******************************

5230 'OPTION I - FIX ERROR IN INPUT
5240 ******************************

5250 GOSUB 5990
5260 IF UTL#=1 THEN GOTO 380
5270 PRINT
5280 INPUT ''RECORD NUMBER TO BE FIXED''; FX#
5290 GOSUB 6470
5300 RN#=SRN#+FX#-1
5310 GET #1, RN#
5320 IF RN#>ENR# THEN PRINT: PRINT "NO SUCH RECORD

NUMBER'':INPUT "PRESS ANY KEY TO CONTINUE''; K$ CLOSE #1: GOTO
380

CODEWORKS Issue 24 21

5330 PRINT DT$,CL$
5340 HOCL#=VAL(CL$)
5350 INPUT "NEW DATE''; HDT$
5360 INPUT "NEW CLOSING AMOUNT"; HCL#
5370 LSET DT$=HDT$
5380 LSET CL$=STR$(HCL#)
5390 HTT#=VAL(TT$)
5400 HHTT#=VAL(TT$)
5410 HTT#=HTT#-HOCL#+HCL#
5420 TTDIF#=HTT#-HHTT#
5430 LSET TT$=STR$(HTT#)
5440 HDC#=VAL(DC$)
5450 HAV#=HTT#/HDC#
5460 LSET AV$=STR$(HAV#)
5470 PUT #1, RN#
5480 RN#=RN#+1
5490 GET #1, RN#
5500 IF EOF(1) THEN GOTO 5600
5510 IF RN#>HNR#+SRN#-1 THEN GOTO 5600
5520 HCL#=VAL(CL$)
5530 HDC#=VAL(DC$)
5540 HTT#=VAL(TT$)+TTDIF#
5550 HAV#=HTT#/HDC#
5560 LSET TT$=STR$(HTT#)
5570 LSET AV$=STR$(HAV#)
5580 PUT #1, RN#
5590 GOTO 5480
5600 CLOSE #1
5610 GOTO 380
5620
5630 'OPTION J - RECALCULATE A COMPLETE FUND
5640
5650 GOSUB 5990
5660 IF UTL#=1 THEN GOTO 380
5670 GOSUB 6470
5680 RN#=SRN#
5690 CRN#=CRN#+1
5700 IF CRN#=40 THEN GOTO 5810
5710 GET #1, RN#
5720 HCL#=VAL(CL$)
5730 HTT#=HTT#+HCL#
5740 LSET TT$=STR$(HTT#)
5750 HAV#=HTT#/CRN#
5760 LSET AV$=STR$(HAV#)
5770 LSET DC$=STR$(CRN#)
5780 PUT #1, RN#
5790 RN#=RN#+1
5800 GOTO 5690

22 Issue 24 CODEWORKS

5810 CLOSE #1
5820 GOTO 380
5830
5840 'GET FILE NAME
5850 **************
5860 PRINT
5870 PRINT * * •••••••*••••••••••••••••••••••••••••••••••• ~k -k-k-k-k-k-k •
5880 PRINT "ENTER INPUT DRIVE AND FILE NAME - EXAMPLE B:WKLYAVG''
5890 PRINT "EXTENSION WILL BE SUPPLIED BY PROGRAM''
5900 PRINT ' **
5910 PRINT
5920 INPUT F$
5930 FL1$=F$+''.001"
5940 FL2$=F$+''.002"
5950 RETURN
5960 **
5970 'GET FUND NAME
5980 ***************
5990 PRINT
6000 PRINT ' '**********************************''
6010 PRINT ''NAME OF FUND
6020 PRINT "UP TO 10 CHARACTERS WITH NO SPACES''
6030 PRINT ' ***********************************''
6040 PRINT
6050 INPUT NAM$
6060 GOSUB 6270
6070 RN2#=RN2#+1
6080 GET #2, RN2#
6090 HLST2#=VAL(LST2$)
6100 RN2#=RN2#+1
6110 IF RN2#>HLST2# THEN PRINT: PRINT "UNABLE TO LOCATE THIS FUND'':

INPUT "PRESS ANY KEY TO CONTINUE''; K$: CLOSE #2: UTL#=1: GOTO
6230

6120 GET #2, RN2#
6130 LNM#=INSTR(1,AL2$, S$)
6140 RNM$=LEFT$(AL2$,(LNM#-1))
6150 IF NAM$=RNM$ THEN GOTO 6170
6160 GOTO 6100
6170 SRN#=VAL(FR$)
6180 ENR#=VAL(LR$)
6190 HNR#=VAL(NR$)
6200 HRN2#=RN2#
6210 HNM$=NM$
6220 CLOSE #2
6230 RETURN
6240 ****************
6250 'OPEN NAMES FILE
6260 x•••••••••••••••

CODEWORKS Issue 24 23

6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700
6710
6720
6730
6740

RN2#=0
OPEN *'R'', #2, FL2$, 28
FIELD #2, 10 AS NM$, 6 AS FR$, 6 AS LR$, 6 AS NR$
FIELD #2, 6 AS LST2$, 22 AS RR2$
FIELD #2, 28 AS AL2$
RETURN

'GET NAME RECORD

RN2#=RN2#+1
GET #2, RN2#
IF EOF (2) THEN EN2#=1
RN#=VAL(FR$)
HLR#=VAL(NR$)+VAL(FR$)-1
HNR#=VAL(NR$)
HNM$=NM$
RETURN

'OPEN FUND FILE

RN#=0
OPEN "R" , #1, FL1$, 36
FIELD #1, 6 AS DT$, 8 AS CL$, 10 AS
FIELD #1, 6 AS LST$, 30 AS RR$
FIELD #1, 32 AS AL$, 4 AS DC$
FIELD #1, 36 AS AL1$
RETURN

'GET FUND LAST RECORD NUMBER

IF NF#=1 THEN RN#=HLST#: GOTO 6610
RN#=1
GET #1, RN#
HLST#=VAL(LST$)
RN#=HLST#+1
RETURN

'WRITE NAMES RECORD

TT$, 8 AS AV$, 4 AS DC$

6750 PUT #2, RN2#
6760 ERN2#=RN2#
6770 RN2#=1
6780 GET #2, RN2#
6790 LSET LST2$=STR$(ERN2#)
6800 LSET RR2$-SPACE$(22)
6810 PUT #2, RN2#
6820 CLOSE #2
6830 RETURN
6840 END 'of program

IF NF#=1 THEN RN2#=2:
RN2#=1
GET #2, RN2#
RN2#=VAL(LST2$)
RN2#=RN2#+1
LSET NM$=NAM$
LSET FR$=STR$(SRN#)
LSET LR$=STR$(ERN#)
LSET NR$=STR$(HORN#)

GET #2, RN2#: GOTO 6710

$

24 Issue 24 CODE WORKS

Rcardl.Bas
Updates for speed, columns and printer control

Gary T. Prescott, Universal City, Texas. It's been some time since we first
published Rcard, and even then we said it was slow and could use some
refinements. The author not only did the speed up, but added printing in columns
and printer control as well.

I have finally found the way to speed up
Rcard.Bas from Issue 8, Nov/Dec 1986. The
solution was in line 930 all the time and involves
the MID$= function. When this function is used,
string space is not continually consumed and
"garbage collection" is not required! I have also
included two other modifications. One, which
Joe Lybrand asked for in Issue 15, allows for two
column formatting, and the other incorporates
printer font control. I have enclosed a copy of my
modified program with the various changes
highlighted (see accompanying listing and
change lines).

To make effective use of the MID$= function,
the variables must be initially set to the maxi
mum length that they might attain. Since LN$
and FS$ are the principal string variables in
volved in the print process, we initialize them as
a blank string the length of WD. WD is the
longest either string can be for proper program
operation. This is done in lines 1365 and 1370,
when we declare the data area, and locates both
variables in memory with a length of WD bytes.
This is the only time these variables are set
equal to any value. After this, all changes to LN$
and FS$ are made using the MID$= function. In
this manner, the two variables remain stored in
the same location and string space is not con
sumed.

To accomplish this, we must change lines 540,
780, 880 and 1010. Lines 630 and 890 can be
deleted since LEN(LN$) will always equal WD.

Lines 900-920 require that the variable LN$ be
changed to FS$. Actually, based on lines 880 and
950, I suspect that this was the original plan
when the program was written. The only re
maining requirement is done in the added line
485, and is called by the changes to lines 570,810
and 1040. The subroutine at 700, to delete trail
ing blanks is no longer necessary. The added
benefit is that, unlike before, even if you make a
field too short when formatting the PRT file, part
of the data element will still print.

The changes to allow two-column printing are
a little more complicated. To begin I set Z equal
to half of WD plus one. This becomes the tab
value for the second column. A new variable, CL,
is a flag for the number of columns to print. CL
is initialized at 1 in line 160 and can be changed
in the PRT file using DCOL=2 (see new line
1535). The major changes are in the subroutines
at 760 and 870. Line 942 checks the status of the
COL flag and the new ZZ (out of data) flag. Line
943 checks to see if the end of the file will occur
in the left column and sets the ZZ flag. Line 944
does the same thing for the right column. If data
is available for the right column, then line 946
locates the data in LN$ by adding Z to X. The
subscript for DF$ determines which data item to
take. Basically, it subtracts the "overhead" lines
from the page length. The remainder is the
number of data lines per page which is then
added to IC to get the data element for the right
column. Line 948 adds a leading blank in the
same manner as line 940.

CODEWORKS Issue 24 25

When the program returns to line 800, it
checks the flags and adds 1 to new variable RC,
a counter for data in the right column. The addi
tion to line 820 checks to see if the file is com
pleted when RC is added in. Line 840 now adds
RC to IC. The final change requires that RC be
set to zero in line 1070.

The final change incorporates printer control
into the program. The flag PR is initialized at
zero in line 160. This can be changed using
DPRINT=n in the PRT file (see new line 1537).
Printer control routines are added at line 1800 to
suit each individual user. These routines are
reached from the main loop at added line 415
with an error trap added at line 412. Printer
modes are cleared at line 475 after the report is
finished.

As an example, I have enclosed a printout
using the two-column format with a width of 132
characters and compressed type. This is from an
Epson MX/80 printer. I have also enclosed a copy
of the PRT file which produced this report (see

Rft6S Surnaie List
Alpha Listing

No Nate

Prepared: 12 February 1989

County ST Country

29 ftkins
09 Angelloz
10 Aue
03 Averill
33 Aycox
33 Aycox
08 Bachiler, Stephen
27 Barnard
03 Barnes
36 BartholteM
25 Bauagardner, John A,
03 Beach
42 Bean
08 Bean, John
38 Behne
38 Behne
38 Behne
04 Bentley
18 Bible
18 Bible
18 Bible
18 Bible
IB Bible/Beibel
08 Blake, Jasper
29 Blevins
25 Blonska(Belanski),
1 7 P I n n r f

Or lean

Clark
Fulton
Rockin

Nhythe
Knox
Jackso
Rockin

Lincol
Sauk
Greene
Rock
Bucks

Rockin
Indepe

Cather ine K i n —

TN
LA Franc

HE
GA
GA
NH
HI
NY
NY
VA
OH
TX
NH
HI 6er»a
IA Geria
CA Geria
GA
WI
TN
VA
PA

Geria
NH
AR

following figures). These changes should also
apply to Ranprint.Bas, although I haven't modi
fied that program yet. I hope these changes
prove useful to others; they certainly have for
me.

(These changes to Rcard.Bas really make the
program much more versatile and useful. The
two-column printing is especially neat. - Ed.)

Figure 1

Here are the format headings in the PRT file
referred to in the article:

DLINES=5
DPAGE=88
DWIDTH=132
DTOP=3
DBOTTOM=3
DCOL=2
DPRINT=3

Notice that the last two are new, and control
the number of columns and the printer mode.

No Naie County ST Country

08 Crai, Benjaiin
26 Crawford
33 Crook
03 Cross
29 Cutburth
41 Davis
26 Davis
08 Dearborn, Godfrey
35 Dettemayer
36 Dickeraan
36 Dickeraan
02 Dickey
43 Dixon
25 Dockery, Harton (S.C.)
25 Dockery, Rowena
25 Dockery, Rowena
34 Draper
34 Draper, John
25 Drewek, Hartha (Harcianna)
14 Dubbs
05 Durant
35 Durkin
18 Eads
18 Eads

Rockin NH
GA

Etowah AL
VT
TN

Vicksb TN
TN

Rockin NH
Lackaw PA Geria

CT
6ena

NC

Randol NV
Lee VA
Hancoc TN
Canton HA
Bangor HE
Dabrow
CI into NY Canad
Lackaw PA

Polan

Whites
KS
IL

Fig 2. An example of two-column printing
26 Issue 24 CODBVJOPKS

Listing for Rcardl.Bas. Difference lines between the original Rcard and Rcardl are
given at the end of this listing.

100 REM * RCARD1.BAS * Written for CodeWorks magazine by T R Dettmann
110 REM * 3838 South Warner St. Tacoma, WA 98409 (206) 475-2219 voice
120 REM * (206) 475-2356 300/1200 baud download. See Issue 8 for

details.
130 'CLEAR 10000 ' Use only if your machine needs to clear string

space.
140 FALSE=0:TRUE=NOT FALSE
150 HDR=TRUE:FTR=FALSE
160 V=750:NF=8:ML=10:CL=1:PR=0
170 PG=66:WD=80:TP=3:BT=3
180 NT=0:NB=0:NC=0
190 PN=0:SF=-1:SC$=" "
200 DIM HD$(ML),RC$(ML),FT$(ML)
210 CLS ' This is a clear screen command, change to suit your

machine.
220 PRINT STRING$(22,45); " The CodeWorks STRINGS(23,45)
230 PRINT" REPORT CARD"
240 PRINT" for use with the Mini-Card Database System"
250 PRINT STRINGS(60,45)
260 PRINT
270 ' If your computer has DATES it will use that date
280 ' otherwise line 340 will ask for the date and make DATES of it.
290 ' For those with only two letter variables, don't worry,
300 ' DAS is not used elsewhere in the program.
340 IF DATE$=" " THEN INPUT"Enter the date of the report" ;DATES
350 PRINT
360 LINE INPUT ''NAME OF DATA FILE (default = CARD.DAT): ";FF$
365 IF INSTR (FF$, ' ' . dat'') =0 THEN FF$=FF$+" .dat"
370 LINE INPUT "NAME OF REPORT FORMAT FILE (default = CARD.PRT) :

RF$
380 GOSUB 1260
390 GOSUB 1090
400 '
410 REM — main loop
412 IF PR<0 OR PR>4 THEN PRINT "Printer code in error" :F0R 1=1 TO 500:

NEXT I:GOTO 1750
415 ON PR GOSUB 1830, 1860, 1890, 1920
420 FOR IC=1 TO NR
430 IF HDR THEN GOSUB 500
440 GOSUB 760
450 IF FTR THEN GOSUB 980
460 NEXT IC
470 IF LOO THEN GOSUB 980
475 LPRINT CHR$(27)"0"
480 GOTO 1750
485 MID$(LN$,1,WD)=STRING$(WD, " ") :RETURN

CODEWORKS Issue 24 27

490 %

500 REM — print header
510 FOR 1=1 TO TP:LPRINT'' * *:NEXT I
520 PN=PN+1
530 FOR 1=0 TO NT-1
540 MID$(LN$,1)=HD$(I)
550 GOSUB 620
560
570 LPRINT LN$:GOSUB 485
580 NEXT I
590 HDR=FALSE:LC=NT+TP
600 RETURN
610 *
620 REM — insert into header/footer lines
630 '
640 IF INSTR(LN$,=0 THEN RETURN
650 X = INSTR(LN$, "#")
660 IF MID$ (LN$,X+1,1)="D'' THEN MID$ (LN$,X) =DATE$
670 IF MID$(LN$,X+1,1)="P" THEN MID$ (LN$, X) =STR$ (PN)
680 IF MID$ (LN$,X+1,1) ="F" THEN MID$ (LN$,X) =FF$
690 GOTO 640
700 *
710 REM — strip off trailing blanks
720 '
730 ,

740 *
750 *
760 REM — print data record
770 FOR 1=0 TO NC-1
780 MID$(LN$,1)=RC$(I)
790 GOSUB 870
800 IF CL=2 AND ZZOl THEN RC=RC+1
810 LPRINT LN$:GOSUB 485
820 LC=LC+1:IF IC+RC-NT-TP-1>NR THEN IC=NR:RETURN
830 NEXT I
840 IF LC+BT+NB>PG-1 THEN FTR=TRUE:IC=IC+RC
850 RETURN
860 1

870 REM — put together a data line
880 MID$(FS$,1)=LN$
890 ,

900 IF INSTR(FS$,=0 THEN RETURN
910 X = INSTR(FS$,
920 Y = VAL(MID$(FS$,X+1))
930 MID$ (LN$,X) = DF$ (IC, Y-l)+" "
940 IF X>1 THEN MID$ (LN$, X-l) =" "
942 IF CL<>2 OR ZZ=1 THEN 950
943 IF IC+PG-TP-BT-NT-NB-1>NR THEN ZZ=l:GOTO 950
944 IF DF$ (IC+(PG-TP-BT-NT-NB-1) ,0)="ZZZ" THEN ZZ=l:GOTO 950
946 MID$(LN$,X+Z)=DF$(IC+(PG=TP-BT-NT-NB-1),Y-l)+'' "

948 IF X>1 THEN MID$ (LN$,X-l+Z) ="
950 MID$(FS$,X)='' '*
960 GOTO 900
970 '
980 REM — print footer
990 FOR I=LC+1 TO PG-BT-NB:LPRINT" ' 1:NEXT I
000 FOR 1=1 TO NB
010 MID$(LN$,1)=FT$(I)
020 GOSUB 620
030
040 LPRINT LN$:GOSUB 485
050 NEXT I
060 FOR 1=1 TO BT:LPRINT" %,:NEXT I
070 HDR=TRUE:FTR=FALSE:LC=0:RC=0:RETURN
080 '
090 REM — load data file
100 IF FF$="" THEN FF$=" CARD . DAT"
110 PRINT ''Loading data file 1';FF$
120 OPEN ' 'I'',1,FF$
130 NR=0
140 FOR 1=1 TO V
150 IF EOF(1) THEN 1230
160 LINE INPUT#1,DF$(1,0)
170 IF DF$ (I,0)="ZZZ" THEN 1230
180 FOR J=1 TO NF-1:LINE INPUT#1,DF$(I, J) :NEXT J
190 REM DEBUG: FOR J=0 TO NF-1: PRINT J;": 1 \-DF$ (I, J) :NEXT J
200 IF SF>=0 THEN IF INSTR(DF$(I,SF-1),SC$)=0 THEN 1150
210 NR=NR+1
220 NEXT I
230 PRINT NR;'' records found''
240 CLOSE:RETURN
250 »
.260 REM — load print file
270 IF RF$=" " THEN RF$=" CARD . PRT"
280 PRINT 1'Loading Report Format File ,,;RF$
290 OPEN ''I'',1,RF$
300 IF EOF(1) THEN 1350
310 LINE INPUT#1,LN$
320 GOSUB 1390
330 GOTO 1300
340 *
350 REM — declare data area
360 DIM DF$(V,NF)
365 FS$=STRING$(WD, " '') :Z=INT(WD/2+.5)+1
370 LN$=STRING$(WD, " y y) :RETURN
380 '
390 REM — decode the line
400 REM DEBUG: PRINT LN$
410 IF LEFT$ (LN$, 1) ="D" THEN GOSUB 1480:RETURN
420 IF LEFT$ (LN$, 1) ="H" THEN GOSUB 1570:RETURN

CODEWORKS Issue 24 29

U30 IF LEFTS (LNS, 1)="*" G0*® "°0
1440 IF LEFTS <LMS,1)-"F" THEM GOSUB 1650 EETTON
1450 IF LEFTS (LNS,1)-"S" ™EN GOSUB 1690:BETUBN

1460 RETURN

1470 '
1480 REM - <declare "^"^^r^ HF-VAL (MIDS (LNS, 8)) :GOTO 1540
1490 IF MIDS LNS,2,5 ; (MID$ (LNS, II) : GOTO 1540

15?2 11 MTnS ILNS' 2' 5) ' VnDTH' ' THEN WD-VAL(MIDS(LNS,8)>:GOTO 1540
1510 IF MIDS L»«'2,5 TP=VAL(MIDS (LNS, 6)) :GOTO 1540
1520 IF MIDS 2,3 BT-VAL (MIDS (LNS, 9)) : GOTO 1540
1530 IF MIDS LNS, 2, 6) - ,®°™H ™L.VAL (M!DS (LNS, 6) I :GOTO 1540

"537 2 MSSS^SI-'PRINT" THEN PR=VAL(MIDS<LNS,8,, :GOTO 1540

1540 REM DEBUG: PRINT NF,PG,WD,TP,BT

1550 RETURN
1560 »
1570 REM — header line
1580 HD$(NT)=MID$(LN$,2):NT=NT+1

1590 RETURN

1600 '
1610 REM — record line
1620 RC$(NC)=MID$(LN$,2):NC=NC+1

1630 RETURN
1640 1

1650 REM — footer line
1660 FT$(NB)=MID$(LN$,2):NB=NB+1

1670 RETURN

1680 '
1690 REM — selection criteria
1700 SF=VAL(MID$(LN$,2))
1710 X = INSTR(LN$
1720 IF X=0 THEN SF=-1:RETURN
1730 SC$=MID$(LN$,X+1)

RETURN
RUN''MCARD.BAS''
, — printer control

' — emphasized type
LPRINT CHR$ (27) "E" ;

(epson mx/80)

66 lpp

:RETURN

1740
1750
1800
1810
1820
1830

1840

1850

1860

1870 *
1880 ' — compressed type 88 lpp
1890 LPRINT CHR$(27)"0";CHR$(27)
1900 »

1910

' — compressed type 66 lpp
LPRINT CHR$(15);:RETURN

'0'';CHR$(15);:RETURN

— compressed type, double strike, 88 lpp
1920 LPRINT CHR$ (27) "0" ;CHR$ (27) "0" ;CHR$ (15) ;CHR$ (27) "G" ; :RETURN

30

ON PR GOSUB 1830,
LPRINT CHR$ (27) " @"
MID$(LN$,1,WD)=STRING$(WD,

MID$(LN$,1)=HD$(I)

LPRINT LN$:GOSUB 485

1860, 1890, 1920

') : RETURN

Changed->100 REM * RCARD1.BAS * Written for CodeWorks magazine by T R Dettmann
Changed->160 V=750:NF=8:ML=10:CL=1:PR=0
Added—>365 IF INSTR (FF$, " .dat") =0 THEN FF$=FF$+" .dat"
Added—>412 IF PR<0 OR PR>4 THEN PRINT 1 'Printer code in error" :FOR 1=1 TO 500:NEXT
I:GOTO 1750
Added—>415
Added—>475
Added—>485
Changed->540
Changed->560
Changed->570
Changed->630
Changed->720
Changed->730
Changed->740
Changed->780
Changed->800
Changed->810
Changed->820
Changed->840
Changed->880
Changed->890
Changed->900
Changed->910
Changed->920
Added—>942
Added—>943
Added—>944 IF DF$ (IC+ (PG-TP-BT-NT-NB-1) , 0) =" ZZZ" THEN ZZ=l:GOTO 950
Added—>946
Added—>948
Changed->1010
Changed->1030
Changed->1040
Changed->1070

MID$(LN$,1)=RC$(I)
IF CL=2 AND ZZOl THEN RC=RC+1
LPRINT LN$:GOSUB 485
LC=LC+1:IF IC+RC-NT-TP-1>NR THEN IC=NR:RETURN

IF LC+BT+NB>PG-1 THEN FTR=TRUE:IC=IC+RC
MID$(FS$,1)=LN$

IF INSTR (FS$, "#")=0 THEN RETURN
X = INSTR (FS$, " #")

= VAL(MID$(FS$,X+1))
CL<>2 OR ZZ=1 THEN 950
IC+PG-TP-BT-NT-NB-1>NR THEN ZZ=l:GOTO 950
DF$ (IC+(PG-TP-BT-NT-NB-1) , 0) =" ZZZ" THEN ZZ=l:GOTO

MID$(LN$,X+Z)=DF$(IC+(PG=TP-BT-NT-NB-1),Y-1)+" 1 *
IF X>1 THEN MID$(LN$,X-l+Z)=' ' * *
MID$(LN$,1)=FT$(I)

Y
IF
IF
IF

LPRINT LN$:GOSUB 485
HDR=TRUE:FTR=FALSE:LC=0:RC=0:RETURN

Added—>1365 FS$=STRING$ (WD, " ") : Z=INT (WD/2+. 5) +1
Changed->1370 LN$=STRING$(WD, " %') :RETURN
Added—>1535 IF MID$ (LN$, 2, 3) =" COL" THEN CL=VAL (MID$ (LN$, 6)) : GOTO 1540

IF MID$(LN$,2,5)=''PRINT'' THEN PR=VAL(MID$(LN$,8)):GOTO 1540
* — printer control (epson mx/80)

Added—>1537
Added—>1800
Added—>1810
Added—>1820
Added—>1830
Added—>1840
Added—>1850
Added—>1860
Added—>1870
Added—>1880
Added—>1890
Added—>1900
Added—>1910
Added—>1920

* — emphasized type 66 lpp
LPRINT CHR$ (27) "E" RETURN
\
, — compressed type 66 lpp
LPRINT CHR$(15);:RETURN

' — compressed type 88 lpp
LPRINT CHR$ (27) "0" ;CHR$ (27) •0'';CHR$(15);:RETURN

1 — compressed type, double strike, 88 lpp
LPRINT CHR$ (27) "0" ; CHR$ (27) "0" ; CHR$ (15) ; CHR$ (27) "G" :RETURN

CODEWORKS Issue 24 31

Basic Techniques
Printing Numbers in Text Lines

Robert L. Anderson, St. Albans, West Virginia. In this article, the author
shows how to make the most of PRINT USING to insert numbers correctly m
various print statements, something we have all had problems with at one time
or another.

GW BASICs PRINT USING statement is a
powerful, convenient way of printing string and
numeric values in almost any form one could
desire. Most user manuals on BASIC contain
several pages describing the various parameters
which may be utilized to format data. A common
use of the PRINT USING statement is to print
data in tabular form. The IRA.Bas program in
CodeWorks (Issue 11) uses the technique to
print a table of IRA projected figures with the
values aligned in each of the five columns.

Of course, the PRINT USING statement also
may be used to print the value of a numeric
variable in a line of text. This use appears in
lines 470 to 490 of the IRA.Bas program. A
shorter example is the following:

100 A= 1234.563
110 A$="$$####,.##"
120 PRINT "The estimate of';USING
A$ A;:PRINT" is high."

These fines produce a properly spaced fine:

The estimate of $1,234.56 is high.

However, if the value of A is only 1.23, we get a
fine with four unwanted spaces between "of' and
"$" which doesn't look very good:

The estimate of $1.23 is high.

If the value of the variable contains fewer digits

32

i

than the field specified in the PRINT USING
statement, spaces are printed in front ot'i he first
digit to fill out the field. Conversely, if the value
contains more digits than specified for the field,
all the digits are printed, but are preceded by a %
sign to indicate the error. In this case, there
would be no spaces between the preceding word
and the number. If the value has a nega t ve sign,
an extra space is required to print it. Again, this
may result in no space between the preceding
word and the number.

The appearance of extra spaces or of no spaces
separating the text and the number is unsight y
and unnecessary. The addition of a few lines o
code can be used to make the program calculate
the proper format field specification so • bat v
ues of a variable between -999,999,999 an
+999,999,999 will be printed in a line of text with
the proper spacing.

There are several ways of doing this. The one
given in Listing 1 is the shortest I have been a e
to devise. It is designed to print a number wit in
the above range of values without punctuation
(commas inserted every third place before ®
decimal). Listing 2 prints dollar amounts (w1

the dollar sign immediately preceding the num
ber) without punctuation. Similarly, Listings
and 4 will print numbers and dollar amoun
with punctuation.

All four listings were written to permit
of the output by entering various values an o

lii^e24

C

M

serving how each value appears in a test line of
text. Sample runs are provided for each listing.

Listing 1

Line 10 defines the variable V as double preci
sion. This permits testing of variables contain
ing up to 16 digits. Line 20 prompts for the value
to be printed.

Lines 30-50 are the heart of the routine. Line
30 calculates DP, the number of digits in front of
the decimal point in value V. The FIX function
returns the truncated integer of V without
rounding which might occur if INT or CINT were
used. The resulting whole number is converted
to a string number by the STR$ function, and the
length of the string number is measured by the
LEN function. Because the string value contains
a leading space, value of DP is greater than the
actual number of digits by one. This provides the
single space we want to separate the number
from the preceding word. If the value of V is
negative, we add one to DP in line 40 to make
room for the minus sign.

The value of DP is used in line 50 to add the
proper number of #'s in front of the basic field
specifier .## which positions the decimal point
and provides for two decimal places. Obviously,
the number of decimal places to be printed can be
altered by changing the number of #'s after the
decimal point. The decimal point and its follow
ing #'s can be omitted if the values are to be
printed as whole numbers.

Line 60 prints the first part of the sample text,
the value of V using the format defined in line 50,
and the rest of the sentence. Line 70 prints a
blank line and cycles back to line 20 for another
number to print. The program is exited by press
ing the BREAK or CTRL-C keys.

In a "real" program the definition of V as a
double precision variable would occur (if needed)
near the start of the program. Lines 30-50 could
occur anywhere after the value of V had been de
termined and before the value was to be printed.

They could even be a subroutine, as illustrated
in Listing 5.

Listing 2

This program differs from Listing 1 only in
that the value of DP (in line 30) is decreased by
one to compensate for the extra character added
to the format field by the presence of $$ in line
50.

Listing 3

Three additional lines (32, 34 and 36) are
needed to compensate for the extra print spaces
caused by inserting a comma every third posi
tion in front of the decimal point. No comma is
needed if V has a value less than 1,000 (DP<5);
therefore, line 32 subtracts one from DP. One
comma is printed for values between 1,000 and
999,999 (DP<8). Since the comma in front of the
decimal point in line 50 adds one position, no
correction to DP is needed and line 34 does not
change DP. Two commas are printed for values
between 1,000,000 and 999,999,999. This re
quires DP be increased by one which line 36 does.

Actually, the need for line 36 can be obviated
by changing lines 30, 32 and 34 as shown in
Listing 3A. However, the logic of these changed
lines is more difficult to follow.

Listing 4

Line 50 contains both $$ and a comma in the
field specification. As before, the $$ symbols add
one position to the field, and the comma punc
tuation adds one or two print positions depend
ing upon the value of V. Lines 32 and 34 make
the needed adjustments to DP.

Listing 1 print a number without commas in a
text line.

10 DEFDBL V
20 INPUT "Enter a number: ";V
30 DP=LEN(STR$(FIX(V)))
40 IF V<0 THEN DP=DP+1

CODEWORKS Issue 24 33

50 VF$=STRING$(DP ,35)+".##" t)
60 PRINT "The number ;US1NG
VF$;V;:PRINT" was entered."
70 PRINTtGOTO 20

Sample run:
Enter a number: 1234.56
The number 1234.56 was entered.

Enter a number: -.12
The number -0.12 was entered.

Enter a number: 1234567.89
The number 1234567.89 was entered.

Enter a number: 1.236
The number 1.24 was entered.

Listing 2 print a dollar amount without com
mas in a text line.

10 DEFDBLV
20 INPUT "Enter a number: ";V
30 DP=LEN(STR$(FIX(V)))-1
40 IF V<0 THEN DP=DP+1
50 VF$="$$"+STRING$(DP,35)+".##"
60 PRINT "The number";USINGVF$;V;:PRINT
" was entered."
70 PRINT:GOTO 20

Sample run:
Enter a number: 12.34
The number $12.34 was entered.

Enter a number: -1234.562
The number -$1234.56 was entered.

Listing 3 print a number with commas in a text
bne.

10 DEFDBL V
20 INPUT "Enter a number: ";V
30 DP=LEN(STR$(FIX(V)))
32 IF DP<5 THEN DP=DP-l:GOTO 40
34 IF DP<8 THEN 40
36 DP=DP+1
40 IF V<0 THEN DP=DP+1
50 VF$=STRING$(DP,35)+",.##"

60 PRINT "The number";USING VF$;V;:print"
was entered."
70 PRINT:GOTO 20

Sample run:
Enter a number: 1.23
The number 1.23 was entered.

Enter a number: 1234.56
The number 1,234.56 was entered.

Enter a number: 1234567.89
The number 1,234,567.89 was entered.

Listing 3A print a number with commas in a
text line.

10 DEFDBL V
20 INPUT "Enter a number: ";V
30 DP=LEN(STR$(FIX(V)))+1
32 IF DP<5 THEN DP=DP-2:GOTO 40
34 IF DP<8 THEN DP=DP-1
40 IF V<0 THEN DP=DP+1
50 VF$=STRING$(DP,35)+B,.##"
60 PRINT 'The number";U SING VF$; V; :PRINT
" was entered."
70 PRINT:GOTO 20

Sample run:
Enter a number: 0
The number 0.00 was entered.

Enter a number: -1234.56
The number -1,234.56 was entered.

Listing 4 print a dollar amount with commas in
a text line.

10 DEFDBL V
20 INPUT "Enter a number: W;V
30 DP=LEN(STR$(FIX(V)))
32 IF DP<5 THEN DP=DP-2:GOTO 40
34 IF DP<8 THEN DP=DP-1:GOTO 40
40 IF V<0 THEN DP=DP+1
50 VF$="$$"+STRING$(DP,35)+",.##"
60 PRINT "The number";USING VF$;V';:FR1«
" was entered."
70 PRINT:GOTO 20

i

Sample run:
Enter a number: .23
The number $0.23 was entered.

Enter a number: 123.451
The number $123.45 was entered.

Enter a number: -1234.56
The number -$1,234.56 was entered.

Listing 5 print a dollar amount with commas in
a test line, using a subroutine.

10 DEFDBL V,A
120 Al=1532.96 ' Actual current value
130 A2=999.756 ' Estimated current value, de
termined earlier in the program.
140 PRINT "The estimated current value of';

150 V=A2:GOSUB 1000:PRINT USING VF$;V;
160 PRINT " differs from":PRINT "the actual";
170 V=Al:GOSUB 1000:PRINT USING VF$;V;
180 PRINT " by";: V=A2-A1 :GOSUB

1000:PRINT USING VF$;V;:PRINT
190 END
1000 ' Subroutine to calculate format specifica
tion in punctuated $ and cents.
1010 DP=LEN(STR$(FIX(V)))
1020 IF DP<5 THEN DP=DP-2:GOTO 1040
1030 IF DP<8 THEN DP+DP-1
1040 IF V<0 THEN DP+DP+1
1050 VF$="$$"+STRING$(DP,35)+",.##"
1060 RETURN

Sample rim:
The estimated current value of $999.76 differs
from the actual $1,532,96 by -$533.20.

Notes

James C. McCord of Fairbanks, Alaska
writes: "I need some help. How do you write a
program so that no two numbers are the same.
In other words, if we want to generate from 1
to 6, the program might come up with this
series, 6,2,4,3,1,5.1 figured it out once but now
have forgotten how to do it.

I am writing a program for a friend who
teaches sign language to deaf people and to
hearing people who work with the deaf. He
wants to throw the words on the screen in
various orders. I could follow the example of
your Drill.Bas program but that always shows
the words in the same order.

100 REM * Randupe.Bas * random w/o dupes
110 DATA b o y ,girl,man, woman, cat, dog,house
120 DATA chair,table,spoon,seat,radio,car,bus
130 DIM A$(14)
140 FOR 1=1 TO 14
150 READ A$(I)
160 NEXT I
170 ,
180 FOR 1=1 TO 10
190 RANDOMIZE TIMER
200 A=INT(RND(1)*14)+1
210 IF A$ (A) =" " THEN 200
220 PRINT A$(A);" ,,;:A$(A)=""
230 NEXT I

show the words in different orders. I could also use
timing loops and all the other goodies.

In other words, if the words were boy, girl,
tell, give, you; one time they would come up on
the video as girl, give, et., and the next time as
boy, give, etc. He claims that if the flash cards
are always in the same order, the words are
learned in that order, not as individual words
to be used in any order.

I thought if I had a random generator that
would not duplicate the numbers, then I could
use that as a marker to go to various lines to

If you could help me on the random generator it
would be appreciated."

See the accompanying listing. Each time you
run this code the names will come up in a different
order. The TIMER in line 190 is a feature of GW
BASIC which seeds the random number generator
from the internal clock. By nulling out the data
after we have used it, in line 220, we insure that it
will not be picked again in line 210.

Thanks for the neat problem.

CODEWORKS Issue 24 35

Etax89.Bas
Update to last year's Estimated Tax Program

Col (Ret) John J. Betz, Jr., Gig Harbor,
Washington

ETAX88.Bas was published in the May/June
1988 issue of CodeWorks. The program was
designed to enable users to easily estimate their
Federal Income Tax withholding obligations for
1988 taxes. The provisions of the tax law change
annually and affect both standard and personal
deductions, the allowance for personal interest
and the income thresholds for the tax rates. The
following changes to ETAX88.Bas incorporate
the changes in the law and convert the program
to ETAX89.Bas.

Most of the changes involve only one number
in each line. To expedite the editing of the pro
gram the number that has been changed is
underlined.

Change in the title:
100 REM ETAX8£.Bas Compute estimated in
come tax for 1982.

Changes in the standard deduction:
560 IF FS=1 THEN SD=3100+(TA*750)
570 IF FS=2 OR FS=5 THEN
SD=5200+(TA*600)
580 IF FS=3 THEN SD=2600+(TA*600)
590 IF FS=4 THEN SD=4550+(TA*600)

Change in personal credit allowance:
1090 PRINT"Only 20% of personal interest
(credit cards, etc...

Change in personal deduction:
1170 AD=ND*2000:TI=TH-AD

Changes in computation-low bracket:
1730 IF FS=1 AND TI>44900 THEN 1870

1740 IF FS=2 AND TI>74850 THEN 1870
1750 IF FS=3 AND TI>37425 THEN 1870
1760 IF FS=4 AND TI>64200 THEN 1870
1780 DATA 1.0.18550..15,0,15
1790 DATA 1.18550,250000,.28,2783,28
1800 DATA 2.30950..15.0.15
1810 DATA 2.30950.250000,.28,4643,28
1820 DATA 3.0.15475..15.0.15
1830 DATA 3.15475,250000, .28,2322,28
1840 DATA 4.0.24850..15.0.15
1850 DATA 4.24850,250000,.28,3728,28

Changes in tax rates-high bracket:
1880 IF FS=1 THEN A=44900:IF FS=2 THEN
A=74850:IF FS=3 THEN A=37425:IF FS=4
THEN A=64200
1890 IF FS=1 AND TI>93130 THEN 1970
1900 IF FS=2 AND TI> 155320 THEN 1970
1910 IF FS=3 AND TI>117895 THEN 1970
1920 IF FS=4 AND TI>128810 THEN 1970

Changes in tax rates-super bracket:
1980 IF FS=1 THEN A=93130:IF FS=2 THEN
A=155320:IF FS=3 THEN A=117895:IF FS=4
THEN A= 128810
2000 TC=TX+(ND*560)

The IRS has changed the formula for comput
ing the tax in the super bracket and the following
are new lines that must be inserted into the pro
gram:
1992 IF FS<>3 THEN 2000
1994 CLS:INPUT"Did you include your spouse
in your total number of dependents? Enter Y for
yes or N for no ";QD$
1996 IF QD$="Y" or QD$="y" THEN 2000 ELSE
TC=TX+((ND+1)*560)
1998 GOTO 2010

t

f

36 Issue 24 CodbWopks

Artificial Intelligence
Part I - some background

Irvin Schmidt, Editor. What's intelligence, anyway? And what's the differ
ence between "real" intelligence and "artificial" intelligence. It's always been an
intriguing subject, so we did a little research and came up with the following.
Future installments will include some sample programs, but keep in mind that
AI is difficult to do in BASIC, especially in short programs.

Is artificial intelligence fact, fancy or fraud?
After all, does anyone really know what intelli
gence is in the first place? No one has come up
with an exact definition of intelligence, but
Douglas Hofstadter (author of the book, Goedel,
Escher, Bach: An Eternal Golden Braid) sug
gested the following characteristics: "To respond
to situations flexibly", "to make sense out of
ambiguous or contradictory messages", "to rec
ognize the relative importance of different ele
ments of a situation", "to find similarities be
tween situations despite differences which may
separate them", and, "to draw distinctions be
tween situations despite similarities which may
link them."

We all do the above as a matter of course, and,
in fact, would lump those characteristics to
gether into what we call "common sense." Ma
chines can't handle these characteristics easily,
except of course, in fiction. Fiction, in its own
way, often leads the way towards reality, and in
artificial intelligence we find that this is more
often true than not. In Isaac Asimov's last three
books (added to his Foundation Trilogy) he has a
shipboard computer upon which you simply
place your hands and think destination. The
computer reads your thoughts and sets in a
course automatically. (One wonders what would
happen if the operator were disgusted and was
thinking "go to hell" while his hands were on this
computer!)

Then, of course, there was HAL in 2001, by
Arthur Clarke. HAL showed off characteristics
which are currently the subject of much AI (arti
ficial intelligence) research. It even had a sur
vival instinct, and killed one of the crew in order
to keep itself "alive." And you all remember C3-
PO and R2D2 from Star Wars. And how about
that intelligent robot in the television series
"Lost in Space," with his swivel head, constantly
warning: "Danger! Will Robinson!"

But can machines think? Does it make any
difference whether they can or not, so long as
something useful is accomplished? Alan Turing
helped design one of the first computers ever
built. He devised a test, now commonly called
the "Turing Test," which essentially says that if
you can't tell the responses you get from a com
puter from those you would get from a human,
then you may as well say that the machine is
thinking. Well there was, and continues to be,
argument on that one.

According to the Encyclopedia Britannica,
"Artificial intelligence is the branch of computer
science that deals with ways of representing
knowledge using symbols rather than numbers
and with rules-of-thumb, or heuristic, methods
for processing information."

There are several areas of research going on in
AI:

CODEWORKS Issue 24 37

Expert systems are designed to act in the
place of an expert in any given field. They are
also known as "knowledge based systems and
include a knowledge base and rules for applying
that knowledge.

Natural language processing is an attempt to
make communication with machines easier.
There are two areas of consideration here, one is
natural language understanding and the other
is natural language generation.

Speech recognition research is an attempt to
allow computers to understand humans directly
and includes aspects of natural language proc
essing.

Computer vision is an area wherein comput
ers are equipped to receive visual images and
process information contained in those images.
This one is important in the field of robotics.

Robotics includes research in the manufac
ture of machines that can sense conditions and
do mechanical work. Much has been done al
ready in this field, especially in production line
work, where robots weld automobile frames, for
example.

It is interesting to note that the word "robot"
was made universal by the Czech playwright,
Karel Capek, who in 1920 wrote a play called
"Rossem's Universal Robots." "Robot" is the
Czech word for "slaves." The play is long since
forgotten, but the word fingers on in our vocabu
lary. For 20 years thereafter, robots were usu
ally depicted as an evil menace. Then, in about
1940, Isaac Asimov and John Campbell devised
the "three laws of robotics" which Asimov in
cluded in his many "robot" stories. His treatment
of robots turned them from evil and menacing
into useful, if not endearing, characters.

AI was born, and named, at Dartmouth Col
lege in the summer of 1956. The name "artificial
intelligence" was suggested by John McCarthy,
one of the organizers of a conference held at

Japanese have started one of the largest
projects. It is a ten-year program and is called
"The Fifth Generation Project."

Meanwhile, back in this country, let's look at
some of the accomplishments in AI that have
taken place since the middle 1960s. One of the
earliest expert systems was called DENDRAL,
and was created by Ed Feigenbaum. With this
program he pioneered the rule-based approac
in expert systems. DENDRAL was created to
help chemists analyze mass spectrograph data.
It allows them to identify the chemical structure
of an unknown compound. There are millions o
such chemical structures. DENDRAL reduces
the millions of possibilities to a few, and then
works in more detail on those few. It uses two
different types of expertise, one for each part o
its work. Its work falls into the "best fi t category
of AI.

(We will continue this article in future ^
and give examples of some elementary B
artificial intelligence programs.)

Dartmouth that summer. The three other organ
izers of the conference were Marvin Minsky,
Nathaniel Rochester and Claude Shannon. John
McCarthy invented the programming language
LISP, the most commonly used AI programming
language. He also contributed to the develop
ment of time-sharing.

Marvin Minsky is best known for his work in
the organization and representation of knowl
edge structures. He founded the Artificial Intel
ligence Laboratory at MIT. Nathaniel Rochester
was Manager of Information Research tor iRM.

Claude Shannon, of Bell Labs, used Boolean
algebra to describe the operation of electrical
switching circuits in 1937. His ideas contributed
greatly in the field of information science and to
the binary system of information that we cur
rently use in our computers today.

Other countries are engaged in AI research,
oanorinllv in Great Britain and France. The

Handy Order Form
r~J RENEW simscmpANf: : • :

I Nov/Dec 89 through Sep/dct 90— — $24.95

|~l All 4th year issues:
Nov 88 through Sep 89 $18.00

rj All 3rd year issues:
Nov 87 through Sep 88 $18.00

ri All 2nd year issues:*
Nov 86 through Sep 87 $18.00

[~l All 1st year issues:
Sep 85 through Sep 86 $18.00

ri DISKS (specify year and computer type) $15.00
4th year disk will be ready Sep 1,1989 Year(s)

• "Starting with MS DOS" booklet $7.00

Postage and handling charges already included.

Diskettes are available for MS DOS, Tandy IV, Tandy III and
most CP/M formats Please specify your computer type!

*In year 2 issues, Issue 8 is out of print and will be supplied
on diskette. Please specify your computer type if ordering

2nd year issues.

Computer type:

• Check/MO enclosed
• Charge to VISA/MC. _Exp

Name

Address

City/State/Zip

Clip or photocopy and mail to: CodeWorks, 3838 South Warner Street,
Tacoma, Washington 98409

We accept VISA & MasterCard. You may call in your order:
(206)475-2219 Thank you.

Note
new

lower
prices

on back
issues

and all
disks!

789

CODEWORKS Issue 24 39

Index & Download
What's happening with both

Notes, more on scrolling in MS DOS, issue
23, page 4

Beginning BASIC, all about strings, Part
1, issue 23, page 5

Misc, program, vising VARPTR for finding
strings, issue 23, page 7

Matrix.bas, main program, issue 23, page
8, matrix manipulations

Invoice.bas, main program, issue 23, page
17, an invoice writing program

Notes, keeping files sorted, issue 23, page
19

Notes, automatically centering headings,
issue 23, page 26

Outline.bas, main program, issue 23, page
27, an outliner program

Download, notes on the download, issue
23, page 40

As noted earlier in this issue, the download
went up in smoke right after the May/June issue
went into the mail. We certainly weren't happy
about it, since it would entail considerable ex
pense to replace.

To those of you who used it on a somewhat
regular basis, we apologize. To compensate, we
will be offering disks every three issues starting
next year. The price of those diskettes should be
less than one or two long-distance calls to the
download.

We are aware that many of you used it to get
your statistics for the NFL programs. We will be
running the NFL series again this coming sea
son, and the only alternative you now have is to
get the stats from the newspaper or one of the
sporting news magazines. It may be more
trouble, but is cheaper in the long run.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
U.S. Postage

PAID
Permit 774

Tacoma. WA

MXKE ' KRJB
MONTE Rio

29 J. 0

(-'A 95 462

CODEWORKS
Issue 25 Sep/Oct 1989

CONTENTS
W. v J

Sw* Index 82, things 40

i :v •< «• »: y> .% ..

*i * i E% ? x X>v x *. •* J*- •«•»•*>

» ' 9ff

> •». . J, ;.. VVk>'%.
— * M*«T;$r!r«i

** %wx
J* &£*&* ** C W w Editor's Notes 2 $$ km

%\\
| :

Forum 3

Beginning BASIC 5
Artificial Intelligence, Part 2, 8
Notes 16

Drill.Bas 17

Addbook.Bas 24
Cardconv.Bas 27

NFL89.Bas 31
Stat89.Bas 35

>v*<{ •

- RENEWAL FORM 39 m
; ̂

•&. -v- &4- ••

?5 AV % f *!} V# i#<

»_J O. J.-
;•? ""VlfcW S>f%Ji ? i<m&%,•'•

'Jg*# *£ W• ? .. '*"•

< *.y

« V..- •.& Wi $£:... ^ .« >W" _o h £:x'- .::''v :%> t> •• •, :« : 'Sv. v •« <• y «* .:: >.$:•:• , U N>'& v ^ y ?»-

CODE WORKS Editor's Notes
Issue 25 Sep/Oct 1989

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mashburn

(c) 1989 80-Northwest Publishing
Inc. No patent liability is assumed with
respect to the use of the information con
tained herein. While every precaution has
been taken in the preparation of this publi
cation, the publisher assumes no responsi
bility for errors or omissions. Unless oth
erwise noted, all programs presented
in this publication are placed in public
domain. Please address all correspon
dence to CodeWorks, 3838 South
Warner Street, Tacoma, Washington
98409

Telephone
(206) 475-2219

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/lower case) and allow
4 to 6 weeks for editorial review. You may
send IBM-PC compatible diskettes (please
save your programs in ASCII format.) Also
send a hard copy listing of the program and
article. Media will be returned if return
postage is provided. Compensation will be
made for works which are accepted for
publication. CodeWorks pays upon accep
tance rather them on publication.

Subscription price is $24.95 per year (six
issues). A subscription year runs from Nov/
Dec through Sep/Oct. Anyone subscribing
during the current subscription year re
ceives all issues for that year. VISA and
MasterCard orders are accepted by
mail or by phone (206) 475-2219.

CodeWorks is published bimonthly in
Jan, Mar, May, Jul, Sep and Nov. It is
printed in the USA. Bulk rate postage is
paid at Tacoma, Washington.

SAMPLE COPIES: If you have a friend
who would like to see a copy of CodeWorks
just send the name and address and we will
send a sample copy at no cost.

Back in the days when computing
was a hobby and before IBM got into
the game and made it "respectable" it
was just fine to have the most convo
luted means of getting anything done.
After all, you really felt like you were
"computing" if you had plenty of but
tons to push and were intimately in
volved with whatever you were run
ning on your machine.

When IBM entered the game in
1981 every large corporation and
company put at least an AT model on
the desk of middle management and
expected great things to happen.
Sometimes it did; sometimes it didn't.

The hardware has become more so
phisticated and faster than the soft
ware has. A recent article in the
newspapers lamented this fact in
their business sections. They sus
pected that there were a lot of com
puter software boxes with manuals
and disks inside, gathering dust on
the shelves of many businesses. Their
complaints are not unfounded.

One such complaint is that there is
no consistency from one program to
another. It seems that every company
which creates a new software product
seems to think that they are going to
set a new "standard" and that every
one else will follow suit. That's just
not the way it works. Microsoft has
gone a long way towards some sort of
consistency with their Windows.
When programs run under Windows
the user is always presented with a fa
miliar screen display. Not only that,
but the printer connections and other
housekeeping is already done in Win
dows, and need not be altered when
installing a new program that runs
under Windows. But not everyone is
following that idea, either. There are
at least three other presentation
managers vying for first place in that
arena, and they do things differently.
Add to that the fact that even Micro
soft is readying a new presentation
manager for OS/2 that is different
than Windows.

Another complaint is that the soft
ware is too complex. Even the instal
lation procedure throws most people.

Says the article, "if the manuals are
written by a programmer, they're
unreadable, and if written by a docu
mentation person, they don't under
stand the software or the applica
tion."

Back in the hobby days, adventure
programs were the rage. In those
programs, you had to figure your way
out of some hidden cave or castle and
it was up to you to come up with the
way to do it. If you didn't have the
"smarts" to figure it out by yourself
that was just tough luck. That men
tality seems to have carried over to
the present day programmers, who
seem to say: "I've done something very
clever here and I'll bet you can't figure
it out."

Either that or they take an awful
lot for granted. People who use com
puters to help make a living just
aren't interested in clever program
ming or pressing CRTL and SHIFT
and F5 at the same time to make
something happen, especially if you
have to press ALT at the same time
too. And those advertisements tnat
claim "intuitive" operation are a joke.
I recently had to use one and found
that to move the cursor you had to
push the TAB key, of all things.
What's wrong with the arrow keys to
move the cursor? That would seem
more intuitive to me. My intuition
runs on its own and I don't care to
have it channeled by someone else.

There are 101 various and sundry
keys on the keyboards these days,
including at least 10 (and sometimes
12) function keys. These, along with
CTRL, ALT and SHIFT ought to be
enough for anyone, if they would just
get together and decide on some kind
of standard. After all, we did just fine
when keyboards only had 73 keys.
(Yes, I just counted the keys, and
there are indeed, 101 of them, and the
label on the keyboard says that its
"enhanced" - whatever that is.)

Aside from that, I've done some of
my best work on an "un-enhanced
keyboard - which is commentary for
this issue.

Irv

2 Issue 25 COXWORKS

Forum
An Open Forum for Questions and Comments

Issue 24 Notes demonstrated a method to null
out words from a random list. Jim McCord of
Fairbanks might also find useful a slightly
longer method I have used for random selection
of string items. Rand.Bas determines how many
items you want listed, then if there are at least
that many items available, it produces non-
duplicated numbers which are then used to pro
duce the sequence of string items from an array.
As the requested number gets closer to the total
items available, the program slows down some
what in selecting, or more accurately, checking.

10 REM * pick randomize seed from clock
20 RANDOMIZE TIMER
30 DIM R(70),A$(70)
40 INPUT"Number to select ";CT:N=0
50 WHILE N<CT
60 N=N+1
70 R=INT(RND*100)
80 IF R > 26 THEN 70
90 FOR CK=1 TO N
100 IF R=R(CK-1) THEN 70
110 NEXT CK
120 R(N)=R
130 WEND
140 DATA a,b,c,d,e,f,g,h,i j,k,l
150 DATA m,n,o,p,q,r,s,t,u,v,w,x,y,z
160 FOR N=1 TO 26
170 READ A$(N)
180 NEXT N
190 FOR N=1 TO CT
200 PRINT A$(R(N));
210 NEXT N

Paul Gillespie
Mesa, AZ

Thanks, it does exactly what you said it would,
and should be easy to incorporate into a larger
program where it may be needed.

The letter from Fran Hynes of San Francisco in
Issue 23 referring to scrolling in GW BASIC
prompted me to write. I have the same result, In

BASIC when I press CTRL and Y I get a down
arrow. If the cursor is on the "1" in line 100,1 get
a down arrow replacing the " 1." If the cursor is on
the line below the "Ok" prompt, I get a down
arrow on that line and the "Ok" prompt on the
line below. CTRL and X give me an up arrow. I
use Microsoft's GW BASIC 3.20 which came with
MS DOS 3.21, generic version, used on an XT
clone. Any suggestions?

Mary Ann Dobson
Placerville, CA

We finally got the opportunity to try this on
various other computers, like a Compaq and an
IBM. You are right. It didn't work there. Further
checking reveals that Microsoft licenses versions
of MS DOS and GW BASIC to vendors and in
most cases, does a little customizing for the ven
dor. The scroll works on all Tandy MS DOS
machines, and as yet, we have not found another
supplier on whose machines it works, although
we obviously can't check them all. Thanks for
prodding us into checking this out.

...I would like to cast my vote for part of Code-
Works to be devoted to Microsoft's QuickBASIC.
I am curious how others feel. I strongly suspect
that graphics work notwithstanding, it would be
easy to move from GW BASIC to QuickBASIC
and back. Wonder how many readers are aware
that GW BASIC actually stands for "GEE
WHIZ" BASIC, that even though written by
Microsoft, it is not commercially available from
them. Rather, it is a product licensed to various
manufacturers of computers for packaging with
their products-

John R. Miller
Anderson, SC

We were under the impression the the GW stood
for "Graphics / Windows" but we could be wrong.
As for QuickBASIC, we have been dabbling in it
for a little while and like it a lot. In fact, in this
issue, we do a program in both just for compari
son. The differences aren't that great because we

CODEWOHKS Issue 25 3

•VI • I f| This is the
LAST
issue

of
YEAR 4

It's time for
everyone

to

RENEW

We have made special arrangements
with the U.S. Government to have
a uniformed government official
actually deliver each and every

issue to you/

*Lest we mislead you, die arrangement Is
caled TMrd Class Bulk Mali and the

Official Is your trusted postman!

haven't yet got into the finer points of QuickBA
SIC. If there is enough interest, maybe a "getting
started" series in QuickBASIC would be in order.
There are people who will jump on anything new
just because it's new, but this does have advan
tages, and I think it will be around and be
supported for quite some time, making it worth
the effort to change.

Well folks, we are heading into our fifth year of
Code Works. There were those, back in Issue 2,
who said we had better all get another job.
Actually, they were not far from being correct.
We do other jobs, in printing and publishing, and
CodeWorks has become a part of what we do
overall. We hope you didn't even notice when we
started doing that. We found that the more you
do, the more you can do. Not only that, but the
other work has a way of feeding us ideas for the
magazine. It's real people who want real solu
tions to real problems, and that's what makes it
fun to borrow from for CodeWorks - it makes it
real, too (well, most of the time).

Football, autumn and renewal time are all at
our doorstep. We hope you enjoy the autumn and
the football, and that you will renew your sub
scriptions - and we thank you for your support.

Irv

*J€USt\
Ye» dear, I'm sure If you had your computer

you could figure out what you did wrong

Issue 25 CODEWORKS

Beginning BASIC
All About Strings - Part 3 of 3

In the last issue we looked at the various
string commands and functions. This time, we'll
show just a few practical uses for those com
mands and functions. Keep in mind that there
are many, many more than we could show here,
but these will give you an idea of how they work
in regular programs.

Our first example (see Listing for Beg251.Bas)
shows a way to use letters as menu items instead
of numbers. It also shows how to use INKEY$ as
a "hot" key, which means that you need not press
Enter after your choice. Further, it shows how to
trap for both upper and lower case letters, and to
discriminate sufficiently so that an illegal entry
is ignored.

INKEY$ is used in line 70. Note that as long as
C$ is equal to a null string, the program will
cycle on line 70. As soon as C$ is no longer a null
string (meaning you have pressed a key) control
falls through to line 80. Line 80 looks for the
occurrence of A, a, B, b, C, c, in C$. It does it by
using INSTR. As you will remember from the
previous issues, INSTR will tell the position in
C$ where one of those letters occurs. If the letter
you pressed is not in C$ then AN will equal zero
and line 90 will send control of the program flow
back to line 60, where the question is asked
again. This is how we can detect both upper and
lower case letters. Lines 100 through 120 are
simple logic statements that act on whatever
value AN is. It could just as well have been an
ON GOTO or ON GOSUB statement. Keep in
mind that AN will hold the integer value of the
character position number within C$. This is one
of the things that makes INSTR so powerful and
useful.

5 REM * Beg251.Bas
10 PRINT "Menu"
20 PRINT "A - option one "

30 PRINT "B - option two"
40 PRINT "C - option three"
50 PRINT
60 PRINT "Enter your choice (upper or lower

case)"
70 C$=INKEY$: IF C$="" THEN 70
80 AN = INSTR("AaBbCc",C$)
90 IF AN = 0 THEN 60
100 IF AN < 3 THEN PRINT "option one was

chosen" : END
110 IF AN = 3 OR AN = 4 THEN PRINT

"option two" : END
120 IF AN > 4 THEN PRINT "option three" :

END

AN (in lines 100 to 120) can have a value any
where between one and six. This is because the
literal string (see line 80) has six positions
(AaBbCc). A quoted string is always a literal
string.

Our next example (see Listing for
Beg252.Bas) is similar to the first but with some
differences to show different string functions at
work. Again, we enter a letter choice and it can
be either upper or lower case. Our choice be
comes A$ in line 60. Now instead of using INSTR
as we did in the first example, we are going to use
the ASC of A$ to get the ASCII value of whatever
letter we chose. But we want to get our integer
number from ASC to be in the range of one to
three, and the ASCII values for the letters in
question are up around 65 or 97. Line 70 takes
care of all that by first checking to see if the ASC
of A$ is greater than 96. If it is, it would indicate
that we have entered a lower case letter because
the ASCII for lower case letters is from 97 on up.
In fact, lower case 'a' is ASCII 97. So if the ASC
of A$ is greater than 96 then we let X equal the
number and subtract 96 from it. If the letter we
pressed was lower case 'a' then ASCII 97 less 96
will equal one, which is what we want. If the ASC

CODEWORKS Issue 25 5

of A$ is not greater than 96 it must be less than
96, so the second part of line 70, the ELSE
portion, subtracts 64 from the ASC of A$ (be
cause upper case 'A' is ASCII 65. This is how we
get the upper/lower case discrimination.

Line 80 checks to see that our number (now in
X) is within the range we want, and if not, sends
us back to line 60 to try again. This keeps the
input within our legal range. Line 90 is a simple
ON X GOTO statement, where X can only now be
one, two or three. So, you can see that this
program does the very same thing that our first
example program did, only it uses a different
method to do it.

5 REM * Beg252.Bas
10 PRINT "Menu"
20 PRINT "A - option one"
30 PRINT "B - option two"
40 PRINT "C - option three"
50 PRINT
60 INPUT "Enter your choice";A$
70 IF ASC(A$) > 96 THEN X=ASC(A$)-96

ELSE X = ASC(A$)-64
80 IF X <1 OR X >3 THEN 60
90 ON X GOTO 100,110,120
100 PRINT "You selected option one" : END
110 PRINT "You selected option two" : END
120 PRINT "You selected option three": END

Our next example (see Listing for
Beg253.Bas) is a simple one that demonstrates
the use of both VAL and MID$. Most computers
today have a way of keeping the current date. In
MS DOS machines it is called DATE$, and is set
either manually or automatically upon power
up. DATE$ is made up of 10 characters, in the
form: 05-26-1989, for May 26, 1989. These
numbers are all in string form. Line 20 of our
sample program pulls the day out of DATE$,
converts it to an integer and puts it into variable
X. We use MID$ to pull the day out of DATE$ by
looking at position 4 for two characters. Then we
take the VAL of what we just pulled out. VAL,
you will remember, changes a string number
into an integer. VAL would also have gotten rid
of a leading zero if the day was less than 10.

5 REM * Beg253.Bas
10 REM * if date$ = 05-26-1989
20 X = VAL(MID$(DATE$,4,2))
30 PRINT X
40 REM * X pulls integer day out of date$

The next program (see Listing for
Beg254.Bas) asks you to input a string of as
sorted characters. It will then determine if there
is a lower case 'x' in the string. Here again, we
are using that valuable workhorse, INSTR, but
we are using it slightly differently than before.
Note line 20. It says IF INSTR(A$,"x"). There is
no equal sign involved. This is a simple logic
statement that says that if there is a lower case
'x' in the line you have input, the statement will
be true, otherwise it will be false. So if the
statement is true we go to line 40, else we go to
line 50, and print the appropriate remark. Line
30 shows an alternate way to do the same thing
without using the logic statement. Here, we let
variable P equal the position in the string where
the 'x' occurs. If P is zero it means there was no
'x' and we print the appropriate remark. If P is
other than zero it means there was an 'x' in the
input line (A$) and we go to the other remark and
print it.

5 REM * Beg254.Bas
10 INPUT "Enter a string of characters" ;A$
20 IF INSTR(A$,"x") THEN 40 ELSE 50
30 REM * alternate line 20:

P=EMSTR(A$,"x"):IF P=0 THEN 50 ELSE 40
40 PRINT "There was an x in the string" :

END
50 PRINT "There was no x in the string": END

Our last example (see Listing for Beg255.Bas)
shows how to take apart a BASIC line that was
saved in ASCII format and put the separate
parts of it into different variables. We will strip
off the line number and make an integer out of it,
then put the rest of the line into string variable
R$.

Line 10 asks you to enter a BASIC statement
with a line number, and puts that into variable
A$. Line 20 is interesting because in it we will

6 Issue 25 CODEWORKS

look for the first space in the line we have input.
BASIC always puts a space right after the line
number, and that's what we are looking for. In
line 20, we let variable S equal the position in A$
where the first space (CHR$(32)) occurs. Now we
can go to line 30, where we let LN (Line Number)
equal the VAL of the LEFT$ of A$ for S minus 1
characters. The minus one gets rid of the space
itself, and leaves us with the integer value of the
line number in LN. In line 50, we let R$ equal the
RIGHT$ of A$ for a number of characters equal
to the length of A$ less whatever position S was.
In other words, we are looking at the right side of
the string (A$) but just up to the space after the
line number. This puts the string, less the line
number, into R$.

5 REM * Beg255.Bas
10 INPUT "Enter a BASIC statement with a

line number" ;A$
20 S = INSTR(A$,CHR$(32))4 or INSTR(A$,"

")
30 LN = VAL(LEFT$(A$,S-1))
40 PRINT "The line number you entered

was";LN

50 R$ = RIGHT$(A$,LEN(A$)-S)
60 PRINT "The rest of what you entered was:

";R$

Naturally, these examples are just a few of the
ways you can use string manipulation. You can
mix and match these statements and functions
to do just about anything you want to do with
strings. One of the things to always remember is
just what form of string you are going to operate
on. You always need to know this before you can
write code to operate on strings. In the DATE$
example we talked about earlier, we know that
the date is always in that form, even when the
day or month is less than 10, so we can write a
general routine that will always operate on
DATE$ the same way and give the same results.
Again, we know that BASIC always puts a space
(the very first space in the line) right after the
line number. Using that, we can strip off the line
number with confidence that it will work every
time. Any time you want to do something you
generally have some kind of input, some kind of
processing and some kind of output. Keep that in
mind when working with strings, and they will
do whatever you want from them.

Notes

Here's a little program that fits right into
some of the ideas we encountered in Beginning
BASIC for this and the past two issues. It's called
WLC.Bas (for Word, Line, Character count).

It will read an ASCII text file and report to you
how many characters, words and lines it con
tains.

You might notice that there are no arrays de
clared in this program. You don't need one. It is
possible to open a sequential file and read in one
line at a time until you get to the end of the file.
We do just that between lines 150 and 270 of our
little program. (The program is listed on page 16)

To give you something to watch while the pro
gram is working, we print a period on the screen
for each line that it inputs.

Basically, we read in a line from the file, then
go through that line looking for spaces. First we
add the total number of characters in the line to
character count. Then when we find a space, we
count up one for words and subtract one from
characters. Lines are the easiest to count. We
just increment variable LN each time the loop
goes back to read in another line.

Compile this one for much better speed.

See page 16 for the program listing.
CODEWORKS Issue 25 7

Artificial Intelligence
Part 2 of 2 - more background and some programs

Irvin Schmidt, Editor. Last time we got a small start on some of the
background concerning Artificial Intelligence, including the origin of the word
"Robot" and how science fiction in some ways led the thinking about AI. We left
off, last time, with a program called DENDRAL, which is used to analyze mass
spectrograph data to identify chemical structure of unknown compounds.

Digital Equipment Corporation developed an
expert system called R1 to design the layout and
cabling of large computer systems. R1 was ini
tially developed at Carnegie-Mellon University
in 1979. Basically, you feed R1 all the informa
tion about a customer site, and it then generates
a layout of the floor plan that is needed, the
various interconnect components needed and
the cables needed to hook everything up. R1 has
constantly been revised over the years, and now
is able to outperform people more than 90 per
cent of the time. It has the ability to make sure
that all items are present and can spot incompat
ible items.

Another expert system from about 1971 is
called MYCIN. It was designed to help medical
people diagnose infectious blood diseases. It
even prescribes the proper antibiotics for them!
Unlike DENDRAL and Rl, MYCIN asks ques
tions and evaluates answers. You can even ask
why it wants to know something and it will tell
you. It gives answers in probabilities, for ex
ample, it may tell you that, "there is evidence
(.8)" that a given therapy is (or is not) suggested.

It was found that by removing the knowledge
base for infectious disease from MYCIN, the
"inference engine" and the natural language
interface left could be used for other types of
knowledge. The natural language interface and
the inference engine were called EMYCIN (for

essential MYCIN), and new knowledge rules
were added to make two new systems, PUFF and
ONCOCIN. PUFF (stands for Pulmonary Func
tion disorder diagnosis) is used to diagnose
breathing disorders. ONCOCIN is used to diag
nose cancers.

Then there is PROSPECTOR, which helps ge
ologists find likely sites of rare minerals. It can
identify commercially valuable ore deposits. It
was developed at the Stanford Research Insti
tute in the late 70s. One of its "finds" was in
1981, a molybdenum deposit in eastern Wash
ington state worth $100 million! Like MYCIN, it
too, asks questions and gives answers with a
probability of certainty.

AI has come a long way since the Dartmouth
conference, although most of the research has
been slow in being translated into practical prod
ucts. Many corporations have their own AI re
search organizations, but most of the research
being conducted today is at universities. The
three universities which stand out in this field
are Carnegie-Mellon University, Massachusetts
Institute of Technology (MIT), and Stanford
University.

Other schools where AI is being developed are:
the University of Pittsburgh, where medical
expert systems are being developed; Yale Uni-

8 Issue 25 CODEWORKS

versity, where natural language research is
being conducted; Purdue University, involved
with research in Robotics.

The U.S. Department of Defense, through its
Defense Advanced Research Projects Agency
(DARPA), is involved in funding many of the
university research programs. Although not
interested primarily in basic research, they have
allowed considerable freedom to researchers in
the field with the obvious aim of developing
products useful in weapons and defense.

There are seemingly insurmountable prob
lems with most aspects of AI. Consider natural
language processing: You can say, "I waited for
the bus for a long time," or, "Cave-men lived on
earth a long time ago." Note the difference in the
image of "long time." The two are not even
remotely equitable, yet a computer wouldn't be
able to make that distinction as easily as a
human would. Our language, itself, is full of
ambiguities and must, for the most part, be
considered in context. When you say, "I hit the
man with the bat," do you mean you picked up a
bat and hit the man or that you hit the man who
was holding a bat? In fact, natural language
seldom adheres to rules when you really think
about it. Here is a conversation I overheard in a
McDonnald's recently:

"Do you accept Traveler's Checks?"
"Master Card or Visa?"
"American Express."
"Yes."

Does it make sense to you? I didn't to me, but
somehow both parties got what they wanted; one
the hamburger and the other the money. I
couldn't help thinking about that old non-sequi-
tur, "Do you walk to school or carry your lunch?"

When we use the language we also, without
thinking about it, put things into their proper
context, identify the situation to one we already
know, and use a certain amount of expectation.
In other words, we draw conclusions as the
conversation progresses. In fact, a good joke

plays on that fact in that it will lead you to
believe something will happen, and then the
punch line is usually a switch of events or a play
on words; something you didn't expect. Exactly
why we laugh at such jokes is still a mystery.
Why laugh instead of cry? Could a computer
handle a joke properly?

When it comes to natural language under
standing, you already know a whole lot about it.
Consider your computer: If you want to see your
files from the DOS prompt, you must type DIR
and enter. If you want to see your BASIC files,
you must type DIR *.BAS and enter. Hardly
anything else will do. You can't just type in
"Show me some files," or "What BASIC files do I
have?" When you try that, you will get the
ubiquitous "File not found."

As you can see from just a few examples, AI is
a tough nut to crack. It is all the more difficult to
do in a language like BASIC, which simply was
not designed for that purpose. You can make a
program look like it is reasonably smart, but
that still falls far short of what is expected of a
program which can be said to be artificially
intelligent. Here, for example, are the features
expected of an expert system:

The program should be useful and developed
to meet a specific need where assistance is
needed.

The program should be usable. It should be
designed so that even a novice finds it easy to
use.

The program should be educational. It should
increase the expertise of its users.

The program should explain its own advice. It
should be able to show its reasoning processes.

The program should be able to respond to
simple questions.

The program should be able to learn new
knowledge. It should be able to ask questions

CODEWORKS Issue 25 9

and learn from them.

The program should be easy to modify, to
correct errors and to enter new information.

(These points were taken from Bruce G.
Buchanan and Edward H. Shortliffe, eds., Rule-
Based Expert Systems, Reading, MA. Addison-
Wesley, 1984)

With all that, we get to our two examples of
what will probably be a poor pay-off for all that
build-up. The first is an adaptation of the old
program called "Animal." It starts out knowing
one animal, a bird, and one question, whether or
not it flies. If you tell it you are thinking of an
animal, it will ask youifit flies. If you say it does,
it will tell you that you were thinking of a bird,
otherwise, it will ask you what animal you were
thinking of and to enter a question that will
differentiate that animal from a bird. It then
builds a repertoire of animals and corresponding
questions. From there, it's a simple matter of
matching "yes" answers to the corresponding
animal.

It's not very bright in that it must ask each
question every time until you get to the right
question and answer yes. In spite of that, it
packs quite a bit of cleverness into just a few
fines of code. Mostly, it is how the questions and
responses are phrased. Someone who knows
absolutely nothing about computers may think
it was smarter than it is.

Our next example, Expert4.Bas, has a bit
more utility. It can tell you why it asks a particu
lar question, for example, and will only ask ques
tions that are relevant to the line of reasoning. It
can't learn and it cannot draw conclusions that
are not already programmed into it.

Some background information is necessary
before you can appreciate the problems this pro
gram is supposed to solve. The program is sup
posed to be a trouble shooting aid for a typeset
ting and film processing unit. The typesetters
(there are two identical machines) are photo-

typesetters. That is, they expose silver paper
film with fight extruded through a spinning disk
with the alphabet etched in it, through a lens
system to the photo paper. There is a lens f-stop
involved, similar to the f-stop on your ordinary,
everyday camera. The fight source is an elec
tronic strobe flash which fires when the correct
symbol is in fine with the light source and the
lens system. A mirror system then directs each
letter or symbol across the photo-sensitive paper
to create fines of type.

The film processor uses two chemicals, a de
veloper and a fixer. In addition, it has heaters to
keep the chemicals at a certain temperature and
there is a water bath following these chemicals
and then a dry box to dry the film after it is
processed. The speed of the film through this
processor is controlled by a continuously vari
able speed control.

The program is designed to help operation- ,
ally, not to correct malfunctions, which means it
will deal with controls and operator adjustable ^
items, but not with most electrical or mechanical
breakdowns. It will, however, detect an inopera
tive fight source in the typesetters or a blown
fuse in the dry box of the film processor.

The fact that there are two typesetting ma
chines makes trouble shooting a snap in that it
almost immediately isolates the problems to
either the typesetters or the film processor.
Eliminating just one of the typesetting machines
would probably increase the size of this program
ten-fold.

The program fists eight symptoms from which
you can choose. This immediately limits the
scope of the program; if your symptom is not
there you are out of luck. The "brains" of the
program are contained in lines 340 through 410,
and the "brain control" is contained in fines 420
through 460.

Depending on which symptom you pick, A$
will be equated to a series of numbers. These
numbers contain all the possible paths that can

10 Issue 25 CODEWORKS

be taken for that symptom, including the NO an
swers. These numbers will be changed to their
integer values by the VAL function in line 430,
and then will be used in the ON C GOSUB
statement in line 440. Note that it's ON C
GOSUB and not GOTO. When we return from
any subroutine (all the questions and solutions
are contained in subroutines) we come back to
the line following the line that called the subrou
tine, line 450 in our case. Here, we immediately
increment the I count by two to get to the next
pair of digits in A$. In the question subroutines
themselves, we already incremented I by two if
the answer was YES. That was to take us over
the NO response in A$. That NO response would
in most cases ask another question.

You can answer any question with a question
mark to ask why the program wants to know the
answer to a particular question. It was expedi
ent to include this question mark response right
along with the question that was being asked in
the first place. If you do not answer with Y or N,
the program will automatically fall through to
print the response to the question mark and then
repeat the question (via the following GOTO).

There is only one stated solution for each of the
eight symptoms, and the program comes to an
end after each of these.

The series of numbers contained in A$ present
a guided tour through the subroutines of the pro
gram. We always jump ahead two places in A$,
and if your response to a question was YES, we
jump ahead an additional two places. Let's take
symptom number 3 for an example and follow it
part of the way through. When A=3 then A$
starts with the number 1, which in our ON
GOSUB will take us to line 470. Line 470 asks
the question about the other typesetting ma
chine output being similar. If we answer with a
question mark it will tell us that it is trying to
determine if the problem is in the typesetting
machine or the film processor. The original ques
tion is then repeated.

If we answer YES, we increment I by two and

CODEWORKS Issue 25

return, where I is again incremented by two.
This would take us to the number 02 in A$,
which would take us to line 550 in the ON
GOSUB line. Line 550 asks another question
about the processor speed. If we answer YES to
this one we increment I by two right there and
again when we return. This would take us to the
03 in A$ which takes us to line 640 in the ON
GOSUB line. Line 640 asks yet another question
about the temperature of the developer. Let's
assume we answer NO to this question. Now we
return and increment I by only two, which takes
us to 07 in A$ and line 890 in the ON GOSUB
line. Line 890 finally gives us a solution to the
problem and ends the program.

Whose expertise is in this program? Mine, of
course. I wrote it based on about 10 years expe
rience with typesetters and darkrooms. Now
that I am trying to analyze just how the program
works I'm finding more in it than I had originally
thought was there. In spite of that, it's a simple
ton program and not really worthy of the AI
label. It is rigid, narrow and one-track minded. It
can't learn. It can't draw conclusions other than
those which are programmed into it. It could,
however, get an apprentice going in the right
direction if confronted with a problem, so it is not
entirely worthless.

You can see what the problems would be if you
wanted to add a new symptom to the program,
can't you? Sure, it could be done, following the
format already laid down in the program, but it
wouldn't be easy. Now how about having the
program modify itself? Forget it. Wrong struc
ture, wrong language.

Those series of numbers in A$ remind me of a
description of how the brain works (synapses,
and all that). Only in a real brain, those numbers
would be in a three-dimensional version, with
threads following through in all possible direc
tions, using parts of this string and parts of that
one. It boggles the mind at the complexity one
could come up with. Add a lifetime of emotions
and memories - wow!

When all is said and done, the question is still
whether or not we can make machines artifi
cially intelligent. I say we can and will make
them appear to be intelligent in a lot of ways and
that they will serve some very useful purposes.
But I seriously doubt that we will ever have a

machine that is even half as versatile and flex
ible as an average four year old human. The
human mind is more exquisitely complicated
than any of us ever imagined, and AI will tell us
more about ourselves than it will about AI.

100 REM * Animal.Bas * pseudo AI exercise
190 A

200 DIM A$ (50) ,B(50) , C$ (50)
210 A$(l)=''does it fly''
220 B(1)=1
230 C$ (1)=' 'Bird' '
240 N=1
250 x

260 CLS
270 INPUT''Are you thinking of an animal (y/n)'';Y$
280 IF Y$ = "N" OR Y$ = "n" THEN END
290 CT=1
300 FOR 1=1 TO N
310 PRINT A$ (I) INPUT (y/n)";Y$
320 IF Y$="N" OR Y$ = "n" THEN 360
330 FOR J=1 TO N
340 IF B(J)=1 THEN PRINT''You were thinking of a
";C$(J) :PRINT:GOTO 270
350 NEXT J
360 NEXT I
390 *
400 N1=N+1
405 PRINT
410 PRINT''I don't know that animal yet.''
420 INPUT''What animal were you thinking of ,,;C$(N1)
430 B(N1)=N+1
440 PRINT''Please enter a question that will distinguish a >X;C$(N1)
450 PRINT" from a ";C$(N)
460 INPUT A$(Nl)
470 N=N1
480 GOTO 270

1 2 Issue 25 CODE WORKS

100 REM * Expert4.Bas * elementary exercise in AI
110 x

120 GOTO 180
130 v upper case converter subroutine
140 C$=LEFT$(Y$,1)
150 IF C$=>''a" AND C$=<>,z" THEN C$=CHR$ (ASC (C$)-32)
160 Y$=C$
170 RETURN
180 x

190 CLS
200 PRINT''Typesetter paper from processor:
210 PRINT
220 PRINT'' 1 - paper comes out white, no type shows
230 PRINT'' 2 - paper comes out all black
240 PRINT'' 3 - blurred type (not sharp)
250 PRINT'' 4 - paper comes out all wet or damp
260 PRINT'' 5 - type is too light
270 PRINT'' 6 - type is too dark
280 PRINT'' 7 - background is grey
290 PRINT'' 8 - dark spots appear at regular intervals
300 PRINT
310 INPUT''The number that describes your symptom is * *A
320 IF A<1 OR A>8 THEN 310
330 *
340 IF A=1 THEN A$ = " 011112"
350 IF A=2 THEN A$ = " 13"
360 IF A=3 THEN A$ = " 01050206030708"
370 IF A=4 THEN A$ = " 020609"
380 IF A=5 THEN A$ = " 01100307020608"
390 IF A=6 THEN A$=" 01050307020608"
400 IF A=7 THEN A$=''0114041615"
410 IF A=8 THEN A$ = "18"
420 1=1
430 C=VAL(MID$(A$,I,2))
440 ON C GOSUB 470,550,640,720,810,850,890,940,1000,1050,1100,1140,

1190,1240,1290,1350,1390,1440
450 1=1+2
460 GOTO 430
470 INPUT''Is the other typesetter output similar (y/n/?)'';Y$

CODEWORKS Issue 25 1 3

••••

480 GOSUB 140
490 IF Y$=''Y'' THEN 1=1+2:RETURN
500 IF Y$="N" THEN RETURN
510 PRINT
520 PRINT''I am trying to determine if the problem is in the
530 PRINT''processor or in the typesetter.
540 GOTO 470
550 INPUT''Is the processor speed adjusted correctly (y/n/?)'';Y$

560 GOSUB 140
570 IF Y$="Y" THEN 1 = 1+2: RETURN
580 IF Y$="N" THEN RETURN
590 PRINT
600 PRINT''Because too slow a speed will overdevelop, while
610 PRINT''too fast a speed will underdevelop the paper
620 PRINT''and leave it with insufficient drying time.
630 GOTO 550
640 INPUT''Is the developer temperature correct (y/n/?)'';Y$
650 GOSUB 140
660 IF y$="Y" THEN 1 = 1+2 :RETURN
670 IF Y$="N" THEN RETURN
680 PRINT
690 PRINT''Because higher developer temperatures will over-
700 PRINT''develop, while lower ones will underdevelop the paper.

710 GOTO 640
720 INPUT''Is the fixer temperature correct (y/n/?)'';Y$
730 GOSUB 140
740 IF Y$="Y" THEN 1 = 1+2: RETURN
750 IF Y$=''N'' THEN RETURN
760 PRINT
770 PRINT''The fixer temperature is not that critical, but if
780 PRINT''it is too high or low it will cause greyness in
790 PRINT''the background of the paper.
800 GOTO 720
810 PRINT''SOLUTION: The typesetter f-stop is open too far.
820 PRINT''Close down and try again. The film is seeing too much

light.
830 END
840 x

850 PRINT''SOLUTION: Adjust the processor ft/min speed to the
correct

860 PRINT''setting and try again.
870 END
880 x

Issue 25 CODEWORKS

K,

masam

890 PRINT' ' SOLUTION: Adjust the temperature of the chemicals and
900 PRINT''wait for them to stabilize at the new temperature before
910 PRINT''trying again.
920 END
930 *
940 PRINT''SOLUTION: The developer solution was mixed improperly.
950 PRINT''Dump the developer and mix new solution using proper
960 PRINT''proportions of concentrate and water. Bring up to proper
970 PRINT''temperature before trying again.
980 END
990 x

1000 PRINT''SOLUTION: The drying box is inoperative. Is is probably
1010 PRINT''a blown fuse, but could be a burned out heating

element.
1020 PRINT''Replace the fuse and if that fails, call service.
1030 END
1040 *
1050 PRINT''SOLUTION: The typesetter f-stop is closed down too far.
1060 PRINT''Open it up somewhat and try again. The film is not

seeing
1070 PRINT''enough light.
1080 END
1090 *
1100 PRINT''SOLUTION: The light source in the typesetter is
1110 PRINT''inoperative. Call for service.
1120 END
1130 x

1140 PRINT''SOLUTION: The problem is in the processor. The
developer

1150 PRINT''section probably contains only water from the last
cleaning

1160 PRINT''or flushing, or, the developer solution is exhausted.
1170 END
1180 x

1190 PRINT''SOLUTION: There is a serious light leak in the system.
1200 PRINT''Did you close the processor cover? Check for obvious
1210 PRINT''sources of light.
1220 END
1230 A

1240 PRINT''SOLUTION: The fogging of the paper occurred in the
1250 PRINT''typesetter or on the way to the darkroom. Look for
1260 PRINT''obvious sources of light.
1270 END

CODEWORKS Issue 25 15

1280 x . .
1290 PRINT''SOLUTION: The fogging of the photo-sensitlve paper
1300 PRINT''occurred in the darkroom. Check the safelights. Has
1310 PRINT''one been replaced with the wrong wattage? Is the light

1320 PRINT''seal around doors intact?
1330 END
1340 *
1350 PRINT''SOLUTION: Bring the fixer temperature up to normal

1360 PRINT''and try again.
1370 END
1380 x

1390 PRINT''SOLUTION: Dump the fixer solution and mix a new batch
1400 PRINT''according to the instructions on the boxes. Bring up
1410 PRINT''to proper temperature before trying again.

1420 END
1430 x

1440 PRINT''SOLUTION: Paper in the supply portion of the typesetter
1450 PRINT''was fogged while being loaded. If spots are getting
1460 PRINT''smaller they will go away, otherwise load fresh roll
1470 PRINT''of photo paper in supply of typesetter.

1480 END

Notes, continued from page 7
100 REM * WLC.Bas * counts words/lines/chars in ASCII files.*

110 CLS
120 'clear if necessary
130 LINE INPUT''File name ";FF$
140 OPEN "I" , 1,FF$
150 IF EOF(1) THEN 280
160 LINE INPUT #1,IN$
170 PRINT '
180 LN=LN+1
190 CC=CC+LEN(IN$)
200 A=0
210 A=A+1:IF A=LEN(IN$) OR A=>256 THEN 260
220 IF MID$(IN$, A, 1)<>CHR$(32) THEN 210
230 IF MID$(IN$,A,1)=CHR$ (32) THEN A=A+1:CC=CC-1:GOTO 230
240 WC=WC+1
250 GOTO 210
260 WC=WC+1
270 GOTO 150
280 CLOSE
290 PRINT
300 PRINT''Number of chars '';CC
310 PRINT''Number of words '';WC
320 PRINT''Number of lines '';LN

16 Issue 25 CODEWORKS

Drill. Bas (& ̂ ̂)
A Vintage Program from Dettmann

Terry R. Dettmann, Associate Editor. Here's an interesting program Terry
wrote almost 10 years ago for the Model I Tandy computer. It was originally
designed for tape, but we have updated it a bit for disk files. We found it to be ideal
for use in trivia type questions and answers.

The program, Drill.Bas, is designed to be a
memory improvement device which works by
forcing you to drill on short words or phrases.
The program remembers your mistakes and
after a particular word has come up at least five
times, it will come up more or less often, depend
ing on your answers.

Questions you fail to answer correctly will
come up more often than those you get right
every time so that you will be forced to drill more
on those questions you don't know well. After a
target percentage of correct answers is reached
in each question, you will automatically be
shown your score.

You may stop the drill at any time and see
your score by typing .STOP (the period is impor
tant). You can also have the correct answer
displayed by typing .HELP but asking for .HELP
counts as a wrong answer.

You can choose to display questions and give
only answers, or you may choose to mix the
questions and answers so that when given the
answer you must supply the question (ala Jeop
ardy). This makes a great trivia exercise of the
program.

There is also an edit feature in the program
wherein you can fix any set of questions/answers
you have on file. Each quiz is a separate file on

disk and the file extension .DRL will automati
cally be added to your filename (so don't add an
extension of your own!).

To use the program, first select option 1 to
create a drill. The program will ask for a drill
(filename). This will be used to identify the drill
on disk later. Then it will ask for the questions
and the correct responses. When you are done,
type END and you will be returned to the menu.
A maximum of 40 questions and answers maybe
input for each drill (file).

Before using a drill, it is best to save it on disk.
The program uses a standard sequential file
format which stores the drill name and number
of questions at the beginning of the file.

When you are ready with a new drill, or one
you have loaded, select option 4 of the menu to
commence the drill session. After some basic
instructions, the program will ask if you want
the questions and answers mixed. Answer Y or
N. If you answer Y, you will be given the ques
tions sometimes and the answers other times.
You must give the correct answer (or question).

Program Notes

Rather than give a complete line by line de
scription, we will note some of the more unusual
and interesting lines. In the initialization sec-

CODEWORKS Issue 25 17

tion, lines 170 to 250, we find some print format
ting lines which remind us of Mr. Andersons
article on PRINT USING in the last issue. Lines
200, 210 and 230, in particular, show how to
embed string constants in a PRINT USING
format statement.

Those of you who have machines that cannot
use more than two letter variable names need
not worry about the multi-lettered variables.
The first two of each are not duplicated.

Line 250 is used to seed the random number
generator. The statement there now is specific to
MS DOS machines. Others should change this
line to your particular randomize statement.
The purpose of this line is to prevent the same
sequence of random numbers (and conse
quently, questions) to come up repeatedly.

Note that the program is menu driven and
uses a series of subroutines. The main line of the
program actually ends at line 390, and every
thing following is in the form of subroutines.
After returning from any subroutine, program
flow will come back to line 380, which sends
control back to line 240, where the title of the
program and the menu are again printed.

In the scoring section, lines 430 to 490, provi
sion is made not only to count right and wrong
answers, but to tell which question was scored
right or wrong. This section, in line 480, also cal
culates the percentage of correct answers. Note
that after the drill, you will be given the opportu
nity to look at each question and get an individ
ual score for that question only. The array,
ANS(I,n) will hold those individual score num
bers.

Something we haven't done that much in our
normal programming in the magazine is the
extensive use of "hot" keys. Hot keys respond as
soon as they are pressed (without the need to
press return or enter). The INKEY$ routine at
line 510 and on handles the hot keys. It is
interesting to note the checks you must do when
using this method of input. In line 550, for

example, a check is made to see if the enter key
was pressed (ASCII 13) or if the backspace key
was pressed (ASCII 8). Line 560 checks to see
that the key input was within the range of
acceptable characters or digits, both upper and
lower case. These statements loop to each other,
and the only way out is to finally press enter to
return from the subroutine (in line 550).

Single key number input is handled by a one
line subroutine at line 620. We talked about this
type of input in Beginning BASIC in this and the
past two issues. The single key yes/no is similar
in construction, at line 740.

The random selection routine in lines 780-800
is where changes will need to be made if your
random number generator does not select a
number between 0 and 1. The way the program
is shown, the random selection is for MS DOS
machines (and some CP/M BASIC). For Tandy
Model I and III, for example, you will need to
change the RND in line 780 to: I = RND(N): etc.,
and line 790 to: IF (RND(150/100)) etc., and line
800 to:.. .THEN J1 = RND(2): etc.

You can both enter a drill or edit an existing
drill. The section of code from line 990 to 1170 is
where this happens. Note that you are asked for
the file name for the exercise, which will become
the name of the file on disk. Later, when you
want to save the drill, you will be shown this
name (in line 1210) and asked if that is the one
you want to use. At that point, you can use the
existing name or choose a new name. On disk (so
that you will be able to identify these files) the
file name will have a .DRL appended to it. When
loading or saving a drill, however, do not use the
extension, since the program will add it when
necessary.

Now that all these things are taken care of, we
can finally run a drill, starting at line 1500.
First, we get instructions, then we get to choose
whether or not to mix the questions and an
swers. The code from line 1720 on puts the
questions (or answers, if you chose to mix) on the
screen and prompts you for the response. We

then need to check for cries for help or to stop,
which happen in line 1740 and 1750.

The scoring section, starting at line 1820,
gives an overall score first, then asks if you want
a question by question breakdown. If you do, it
will show you each question and tell you how you
did on it.

The error trap at the end of the program is for
file not found. Those with BASIC prior to version
5.0 should remark line 2060 and un-remark line
2070. The trap does not fix anything, it simply

tells you that the file does not exist yet and sends
you back to the main menu to make another
selection or ask for a file that does exist.

This turned out to be a fun program. It's great
for trivia buffs, because you can create all kinds
of files to use. Be careful when answering ques
tions; punctuation and capitalization must be
exactly the way you entered the quiz or the
question will be counted wrong. One way to beat
that, though, is to enter everything in all upper
or all lower case.

Drill.Bas (see text for conversions)

100 REM ***********************************
110 REM * Drill.Bas * T.R. Dettmann
120 REM *********************************
130 *
140 ' Initialize
150 '
160 ON ERROR GOTO 2060
170 'CLEAR 5000 ' only if your computer needs it
180 DEFINT A— Z:MX= 50:DIM A$(MX,2),ANS(MX,3)
190 STAR$=STRING$(63,42) :S1$=STRING$(28, 32)
200 Fl$=" ### WRONG OUT OF ###''
210 F2$=" SCORE: ###%
220 F3$=' ' %' ' +STRING$ (28, 32) + " \ \" +STRING$ (28, 32) +" %"
230 F4$=" QUESTION ### OF ###"
240 TITLE$=''DRILL PERIODGOSUB 640
250 RANDOMIZE TIMER
2 6 0 '
270 ' print menu
2 8 0 '
290 PRINT
300 PRINT TAB(10);''1 - Enter or edit a drill
310 PRINT TAB (10);''2 - Save a drill to disk
320 PRINT TAB(10);''3 - Load a drill from disk
330 PRINT TAB(10); " 4 - Run a drill
340 PRINT TAB (10); "5 - Quit this program
350 PRINT: PRINT" Your choice ": GOSUB 600
360 IF C<1 OR C>5 THEN 350
370 ON C GOSUB 990,1190,1350,1500,2000

CODEWORKS Issue 25 19

380 GOTO 240
390 END
400 '
410 REM scoring
420 *
430 W=0:R=0
440 FOR 1=1 TO N
450 W=W+ANS(I,1)
460 R=R+ANS(1,2)
470 NEXT I
480 SC=(R/(R+W))*100+.5:SC=SC-1
490 RETURN
500 »
510 REM inkey$ routine
520 1

530 IN$=""
540 C$=INKEY$:IF C$='" ' THEN 540
550 IF ASC(C$)=13 THEN RETURN ELSE IF ASC(C$)=8 THEN 580
560 IF ASC(C$)<32 OR ASC(C$)>127 THEN 540
570 IN$=IN$+C$:PRINT C$;:GOTO 540
580 IF LEN(IN$)<1 THEN 540 ELSE IN$=LEFT$(IN$,LEN(IN$)-1):PRINT C$;

:GOTO 540
590 1

600 REM single key number input
610 x

620 C$=INKEY$:IF C$=" " THEN 620 ELSE C=VAL(C$):RETURN
630 1

640 REM Heading type I
650 x

660 CLS:PRINT STAR$;CHR$(13);TAB(25);TITLE$;CHR$(13) ;STAR$;
STRING$ (2,13) -.RETURN

670 '
680 REM Heading type II
690 1

700 CLS:PRINT S1$;CHR$(13);TAB(10);TITLE$;CHR$(13) ; Sl$;STRING$ (2,
13):RETURN

710 "
720 REM single key y/n
730 '
740 C$=INKEY$:IF C$=''N'' OR C$=''Y'' OR C$=''y'' OR C$=''n'' THEN PRINT

C$:RETURN ELSE 740
750 '
760 REM select question
770 '
780 I=INT(RND(1)*N)+1:IF (ANS (1,1)+ANS(1,2)) <=5 THEN 800
790 IF (INT(RND(1)*150)+1)/100 > (ANS(I,1)/ANS(I,2)) THEN 780
800 IF(MIX=1) THEN Jl= INT (RND (1) *2)+1: J2-INT ((1/Jl)+1) ELSE Jl-1 •

J2=2

We published a program called DrilLBas
during year one. If you are collecting this

type of program on one disk, consider
renaming this one Drill2.Bas so that you
won't write over the previous DrilLBas.

MB

810 RETURN
820 '
830 REM delay loop
840 '
850 FOR TM=1 TO 800:NEXT TM:RETURN
860 '
870 REM initialize the answer
880 '
890 CR=0: FOR 1=1 TO N:ANS(I,1)=1:ANS(I,2)=1:NEXT I:RETURN
900 '
910 REM prepare for scores
920 '
930 FOR 1=1 TO N
940 ANS(I,1)=ANS(I,1)-1
950 ANS(1,2)=ANS(I,2)-1
960 NEXT I
970 RETURN
980 '
990 REM enter or edit a drill
1000 '
1010 TITLE$=''ENTER OR EDIT'':GOSUB 640:IF H$<>'" ' THEN PRINT''The

current title is '';H$
1020 PRINT TAB(5);''Filename for the Exercise '';:GOSUB 510:A$=IN$
1030 IF A$ <>'"' THEN H$=A$
1040 FOR 1=1 TO MX
1050 GOSUB 640
1060 PRINT TAB(5);''Press ENTER to keep the same keyword''
1070 PRINT TAB(5);''or response'':PRINT:PRINT
1080 A$='''' : IF A$(I,1) <> ' "' THEN PRINT ''present keyword is: ' ' ;

A$(1,1)
1090 PRINT ''Enter keyword for drill or END: '';:GOSUB 510:A$=IN$:

PRINT
1100 IF A$ <> "" THEN A$(I,1)=A$
1110 IF A$(I,1)=''END'' OR A$ (1, 1) =" end" THEN 1160
1120 A$='''':IF A$ (1,2) <> '"' THEN PRINT ''Present response is: '';

A$(I,2)
1130 PRINT ''Enter correct response: '';:GOSUB 510:A$=IN$:PRINT
1140 IF A$ <> "" THEN A$(I,2)=A$
1150 NEXT I
1160 IF A$ (1,1)=''END" OR A$ (1, 1) =" end" THEN 1=1 + 1
1170 N=I-2:RETURN
1180 '
1190 REM save a drill to disk here
1200 '
1210 PRINT" Filename is ";H$;", use it (y/n) INPUT XX$
1220 IF XX$="y" OR XX$="Y" THEN FL$=H$:GOTO 1240
1230 INPUT''What filename do you want to use '';FL$
1240 FL$=FL$ + " .drl"

CODE WORKS Issue 25 21

1250 OPEN ' 'O'', 1,FL$
1260 PRINT #1,H$
1270 PRINT #1,N
1280 FOR 1=1 TO N
1290 PRINT #1,A$(1,1)
1300 PRINT #1,A$(I,2)
1310 NEXT I
1320 CLOSE 1
1330 GOSUB 830:RETURN
1340 '
1350 REM load a drill from disk
1360 '
1370 INPUT''What filename do you wish to load '';FL$
1380 FL$=FL$+''.drl''
1390 OPEN ' 'I'',1,FL$
1400 LINE INPUT #1, H$
1410 INPUT #1,N
1420 FOR 1=1 TO N
1430 IF EOF(1) THEN 1470
1440 LINE INPUT #1,A$(I,1)
1450 LINE INPUT #1,A$(I,2)
1460 NEXT I
1470 CLOSE 1
1480 RETURN
1490 '
1500 REM run a drill
1510 '
1520 TITLE$= ''DRILL PERIOD'':GOSUB 640:GOSUB 870
1530 PRINT TAB(5);''During the drill period, you will be shown
1540 PRINT TAB(5);''a word or phrase from the drill file at
1550 PRINT TAB(5);''random. You should give the correct answer,
1560 PRINT TAB(5);''but if you can't, you can ask for help by
1570 PRINT TAB(5);''answering '.HELP'. The period is important!
1580 PRINT TAB(5);''(Beware - asking for help counts as a wrong

answer)
1590 PRINT TAB(5);''If you want to end the drill, answer '.STOP'
1600 PRINT TAB(5);''and your score will be shown.
1610 PRINT:PRINT ''Press any key'';
1620 IF INKEY$='"' THEN 1620
1630 GOSUB 640
1640 PRINT TAB(5);''You can have the program ask only the
1650 PRINT TAB(5);''questions, or you can have it mix questions
1660 PRINT TAB(5);' 'and answersPRINT:PRINT
1670 PRINT TAB(5);''Do you want the drill to mix questions and
1680 PRINT TAB(5);''answers (Y/N)? '';:GOSUB 720
1690 IF C$=''Y'' OR C$=''y'' THEN MIX=1 ELSE MIX=0
1700 TITLE$=H$
1710 GOSUB 760:GOSUB 680

1720 PRINT *'What is: "/A$(I,J1)/" ?"
1730 PRINT:GOSUB 510:A$=IN$:PRINT
1740 IF A$=' ' . HELP' ' OR A$ = ".help" THEN PRINT "The answer is: "/A$(I,

J2):ANS(I,1)=ANS(I,1)+1:GOSUB 830:GOTO 1710
1750 IF A$=' ' . STOP' ' OR A$=".stop" THEN 1800
1760 IF A$=A$ (I, J2) THEN PRINT :PRINT "That is correct" : ANS (I,

2)=ANS(I,2)+1:GOSUB 830:GOTO 1770 ELSE PRINT:PRINT "Not
correct" :ANS (1,1) =ANS(1,1)+1:GOSUB 830:GOTO 1710

1770 IF ((ANS (I, 1) / (ANS (I, 1) +ANS (I, 2))) < .3) AND ((ANS (I, 1) +ANS (I,
2)) > 5) AND (ANS(I,3) <> 1) THEN CR=CR+1:ANS(I,3)=1

1780 IF CR >= N THEN 1800 ELSE 1710
1790 '
1800 REM display results
1810 '
1820 TITLE$=" SCORE BOARD'':GOSUB 640:GOSUB 910:GOSUB 410
1830 PRINT TAB(5)/USING F1$;W;R+W
1840 PRINT:PRINT TAB(5)/USING F2$/SC
1850 PRINT:PRINT "Do you want to see a complete breakdown (Y/N)? "/

:GOSUB 720
1 860 IF C$="N" OR C$=' ' n" THEN RETURN
1870 FOR 1=1 TO N
1880 GOSUB 640
18 90 PRINT TAB (5)/"Prompt: "/A$(I,1)
1900 PRINT TAB (5) / "Reply: "/A$(I,2)
1910 PRINT:PRINT:PRINT TAB(5)/USING Fl$/ANS(I,1)/ANS(I,1)+ANS(I,

2)
1920 IF ANS(1,1)+ANS(I,2)=0 THEN 1950
1930 SC=(ANS(1,2)/(ANS(I,1)+ANS(I,2)))*100+.5:SC=SC-1
1940 PRINT TAB(5)/USING F2$/SC
1950 PRINT "Press any key "/
1960 IF INKEY$=" " THEN 1960
1970 NEXT I
1980 RETURN
1990 '
2000 REM quit the program
2010 '

2020 CLS:END
2030 '
2040 ' error trap for file not found
2050 '
2060 IF ERR <> 53 THEN ON ERROR GOTO 0
2070 ' IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0
2080 PRINT" That file does not exist yet."
2090 PRINT
2100 INPUT" Press ENTER "/XX
2110 GOTO 240
2120 END 'of program

CODEWORKS Issue 25 23

-

Addbook.Bas
Make address booklets from Card.Bas files

Robert H. Fuller, East Canton, Ohio. Here is a clever little program to make
address booklets from Card.Bas files. It prints both the front and back of the
pages in the proper order so that you can bind it with a stapler. The author fii
wrote this for a Tandy Color Computer and then converted it for more general use.
Conversions for other machines are either obvious or not necessary.

Here is a program that prints an address
booklet from a Card.Bas file. I use a version
limited to five fields per record. This program
uses parts of Card.Bas and part of Pages.Bas
(from Issue 12, page 15).

In line 310, LI gives the total records. This is
used in line 370 to get a rough page count. Line
400 adds needed blank pages to fill out the
booklet. The separation of "front" and "back" is
done in lines 430 and 440. The printout in lines
480 to 500 does not show actual pages, rather the
page index number used to fetch addresses.

The routine at 610 has the variables II, I and
DD, D switched to switch columns on fronts to
match columns on backs. Both the 610 routine
and the 740 routines print six blank lines for
cutting space and form feed.

10 REM * Addbook.Bas * address book using Card.Bas
20 REM * written for CodeWorks by Robert H Fuller
30 '
40 'reads Card.Dat files (using 5 fields per record)
50 '
60 'uses fanfold paper and prints half the addresses on one side
70 '
80 'paper must be removed and turned over and printed on the back.
90 '

Because the blanks and the blank pages need
to be printed, a problem arises in that the pro
gram will print past the end of the file. Rather
than pad out the data file, causing possible
future problems, the program examines each
index, and if greater than the last record, prints
a blank for that half line.

When phone numbers are not listed, two
blank lines separate addresses, with phone
numbers only one blank line can be used. Line
960 gives instructions for adding phone num
bers.

This program was originally written on a
Tandy Color Computer, and converted to a more
general form of BASIC. It should run on most
machines without modification.

'

24 Issue 25 CODEWORKS

100 'sheets can be cut in half, stacked, folded and stapled.
110 *

120 \

130 CLS
140 ' clear 10000 ' only if you need to
150 V=400 ' set limit of records here
160 DIM A$(V),B$(V),C$(V),D$(V),E$(V),Q$(V) , P(V)
170 DIM B(V/5),F (V/5) ' index page variables
180 INPUT''What is the file name you will use '' ;Y$
190 OPEN ''I' ' ,1,Y$
200 L1=0
210 FOR 1=0 TO 1000
220 LINE INPUT #1,A$(I)
230 IF A$(I)="ZZZ" THEN P(I)=I:GOTO 310
240 IF EOF(1) THEN 310
250 LINE INPUT #1,B$(I)
260 LINE INPUT #1,C$(I)
270 LINE INPUT #1,D$(I)
280 LINE INPUT #1,E$(I)
290 P(I)=I
300 NEXT I
310 L1=I—1
320 CLOSE 1
330 CLS
340 INPUT''Press enter to print '';X
350
360 'puts 5 addresses per page
370 A=INT(Ll/5) : IF 5*AOLl THEN A=A+1
380 *

390 'determine number of book pages
400 AA=INT(A—4*INT (A/4)) :IF AA<>0 THEN A=A+l:GOTO 4 00
410
420 'store book page indices
430 FOR J=1 TO A/2 STEP 2
440 F(J)=5*(J—1):F(J+l)=5*(A-J)
450 B(J+2)=5*J:B(J+3)=5*(A-J-l)
460 *

470 'book page indices
480 PRINT'' Front Back"
490 PRINT J; ' '
500 PRINT F (J) ;F (J+l) ; " ";B (J+2) ;B (J+3)
510 NEXT J
520
530 PRINT'' Position printer paper now' '
540 INPUT'' Select F(ronts) or B(acks)";Z$
550 IF LEFT$ (Z$, 1)="F" THEN 610
560 IF LEFT$ (Z$, 1)="B" THEN 740
570 GOTO 540

CODEWORKS Issue 25 25

580
590
600
610
620
630
640
650
655
660
670
680
690
700
710
720
730
740
750
760
770
780
785
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

960

•

D and DD are page numbers
'prints fronts of sheets
'I and II are file numbers.
FOR J=1 TO A/2 STEP 2
FOR WW=0 TO 4

II=F(J)+WW:DD=F(J)/5+1
I=F(J+l)+WW:D=F(J+l)/5+1
GOSUB 830

NEXT WW
'print page numbers
LPRINT TAB(12);D;TAB(60);DD
'print six blank lines for cutting space
FOR Q=1 TO 6:LPRINT" " :NEXT Q

NEXT J
GOTO 540

'prints back of sheets
FOR J=1 TO A/2 STEP 2
FOR WW=0 TO 4

I=B(J+2)+WW:D=B(J+2)/5+1
II=B(J+3)+WW:DD=B(J+3)/5+1
GOSUB 830

NEXT WW
LPRINT TAB(12);D;TAB(60);DD
FOR Q=1 TO 6:LPRINT" " :NEXT Q

NEXT J
GOTO 540

'print two columns
' name s
IF I<=L1 THEN LPRINT A$ (P (I)) ;ELSE LPRINT" '';
IF II<=L1 THEN LPRINT TAB(45);A$(P(II)) ELSE LPRINT

'address
IF I<=L1 THEN LPRINT B$(P(I));ELSE LPRINT '' '';
IF II<=Ll THEN LPRINT TAB(45);B$(P(II)) ELSE LPRINT

'city state and zip
IF I<=L1 THEN LPRINT C$(P(I));" " ; D$ (P (I)) ; ELSE LPRINT
IF II<=L1 THEN LPRINT TAB(45);C$(P(II)); " ";D$(P(II)) ELSE

LPRINT "
>to add phone numbers unremark lines 970 and 980 and remark

line 990
970 'IF I<=L1 THEN LPRINT E$(P(I));ELSE LPRINT "
980 'IF II<=L1 THEN LPRINT TAB(45);E$(P(II)) ELSE LPRINT "

990 LPRINT "
1000 LPRINT " "
1010 RETURN

26
Issue 25 CODEWORKS

Cardconv.Bas
A file conversion program for Card.Dat files

Staff Project. This program is the vanguard for a new and better Card.Bas
program to be presented in the next issue. You probably won't appreciate it until
then, but keep in mind that it's here.

The most popular program we ever published,
by far, has to be Card.Bas. It's five years old now
and it may be time to take the "training wheels"
off of it. This may be a little like putting the cart
before the horse but that's the way the space
worked out for this issue.

Without going into the whys and wherefores
(well save them for next issue), let's just say that
Card.Bas had the fields hard coded into it. This,
of course, meant that you had to reprogram to
change the fields and then use a different version
of the program depending on the data file fields.

Card2.Bas will change all that and a few other
things, too. With it, you will be able to run any of
your files (your old ones, too) with just one
program. To do that, we will be putting the field
information into record zero of the .Dat file. But
there is already something in record zero, so we
need to move it to the end of the file so that we
won't lose anything. While we are at it, we can
get rid of that pesky ZZZ that we used for an end
of file marker. BASIC supplies its own end of file
when you save, and the ZZZ was there mostly as
an educational device. Now that we all know how
it works, let's get it out of there.

Cardconv.Bas is a short program that will do
what needs to be done to the file to make it
compatible with Card2.Bas. You won't want to
use it, though, until you get Card2.Bas in the
next issue. (Just to show that we aren't teasing
you into renewing your subscription, we will
include Card2.Bas on the year 4 diskette. It's
done and ready to go, there just isn't space in this
issue for it.)

If you have a Card.Dat file with more than 600
records, you will need to change the 600 in the

DIM statement in line 140. Don't worry about
the 10 that is there now, it gets set to some other
number in line 350 anyway.

We ask for the file name and how many fields
each record has in lines 340 and 350. Then we
open the file and read it into memory in lines 390
to 480. Next, we check to see if it was, indeed, a
Card.Dat file by checking for the ZZZ or zzz in
the file. Then, in lines 610 to 660, we move record
zero to the end of the file. That overwrites the
ZZZ sentinel and doesn't replace it with any
thing because we no longer want that there. You
don't lose a record by doing this, because NR, the
number of records, included ZZZ as the last
record, into which we will now put the informa
tion from record zero. After you get the file into
Card2.Bas, you will want to sort it again to get
that record into the proper sequence.

Having moved record zero to the end, we now
want to write a new record zero with the field
names associated with the file. This happens in
lines 700 to 770. Then we save the file back out
to disk in lines 780 to the end of the program.
Just to be on the safe side, don't name your
output file the same as your input file, at least
not until you are sure that the converted file will
work with Card2.Bas. If you try to convert a
converted file, you will get program errors.

Just for the heck of it, we did this program in
QuickBASIC too, and the listing is provided for
your information. There really isn't that much
difference, except for the absence of line num
bers. We will present Card2.Bas in the next issue
as a feature, to make sure that it gets all the
space it deserves.

CODEWORKS Issue 25 27

100 REM * Cardconv.Bas * A file conversion program * 24 Jun 89
110 REM * (206) 475-2219 * Please do not remove these credit

lines.
120 REM * (c)1989 80-NW Publishing Inc. & placed in public domain.
130 REM * 3838 South Warner St. Tacoma, WA 98409
140 DIM R$(600,10)
150 ,

160 CLS
170 PRINT STRINGS(22, 45); " The CodeWorks '';STRINGS(23, 45)
1 8 0 P R I N T ' ' C A R D F I L E C O N V E R S I O N
190 PRINT'' converts old Card files to new format
200 PRINT STRINGS(60, 45)
210 PRINT
220 PRINT'' This program will take files created with
230 PRINT''Card.Bas and will convert them to a new format for
240 PRINT''use with Card2.Bas. It will move record zero to a
250 PRINT''position after the last record in the file, over-
260 PRINT" writing the ZZZ there now. It will then prompt you
270 PRINT''to enter field names and put them into record zero.
280 PRINT''You can name the new file differently if you wish.
290 PRINT''Don't run this program on a file already converted
300 PRINT''by this program.
310 PRINT TAB(15)/"Press any key"
320 K$=INKEY$:IF K$=" " THEN 320
330 '
340 INPUT" What is the name of the Card file to convert "/FlS
350 INPUT''How many fields does each record have'';NF
360 '
370 , open the file and read it in
380 '
390 OPEN 1 'I" , 1, Fl$
400 FOR 1=0 TO 600
410 IF EOF(1) THEN 460
420 FOR J=1 TO NF
430 LINE INPUT #1, R$(I,J)
440 NEXT J
450 NEXT I
460 NR=I-1
470 CLOSE 1
480 PRINT" The file currently has '';NR;'' records.
490 '
500 ' check to see if the file is already converted
510 '
520 FOR 1=1 TO NR
530 IF R$ (1,1)='' ZZZ' ' OR R$ (I, 1)=" zzz" THEN 610
540 NEXT I
550 PRINT" The file is either not a Card file or
560 PRINT''has already been converted.
570 END
580 ,

590 ' move record zero to the end of the file
600 '
610 PRINT"Moving record 0 to the end of the file."

28 Issue 25 CODEWORKS

620 PRINT''Removing the ZZZ sentinel by writing over it.''
630 FOR J=1 TO NF
640 R$(NR,J)=R$(0,J)
650 NEXT J
660 PRINT
670 '
680 ' prompt for entry of field names
690 '
700 PRINT''Get ready to enter field names for the file''
710 PRINT''Press ENTER to quit adding field names.
720 PRINT''Field names can be no longer than 10 characters.''
730 FOR 1=1 TO 10
740 PRINT"Name of field "/I;:INPUT R$(0,I)
750 IF R$(0,1)='''' THEN 770
760 NEXT I
770 PRINT
780 PRINT''If you name the output file the same as the input
790 PRINT''file you won't get another chance to do it right."
800 INPUT"What will you name the output file";F2$
810 '
820 ' write the converted file back to disk
830 '
840 OPEN ' '0" , 1, F2$
850 PRINT #1, NF
860 FOR 1=0 TO NR
870 FOR J=1 TO NF
880 PRINT #1,R$(I/J)
890 NEXT J
900 NEXT I
910 CLOSE 1
920 PRINT"Conversion complete."
930 END 'of program

REM * Cardconv.Bas * written for QuickBASIC 4.5
DIM r$(600, 10)
CLS
PRINT STRINGS(22, 45); " The CodeWorks "; STRINGS(23, 45)
P R I N T " C A R D F I L E C O N V E R S I O N "
PRINT " converts old Card files to new format"
PRINT STRINGS(60, 45)
PRINT
PRINT '' This program will take files created with''
PRINT "Card.Bas and will convert them to a new format for"
PRINT "use with Card2.Bas. It will move record zero to a"
PRINT "position after the last record in the file, over-"
PRINT "writing the ZZZ there now. It will then prompt you"
PRINT "to enter field names and put them into record zero."
PRINT "You can name the new file differently if you wish."
PRINT "Don't run this program on a file already converted "
PRINT "by this program."
PRINT TAB (15); "Press any key"
DO UNTIL INKEYS <> LOOP

CODEWORKS Issue 25 29

INPUT ''What is the name of the Card file to convert ''; fl$
INPUT * 'How many fields does each record have nf

REM * open the file and read it in
OPEN "I", 1, fl$
FOR i = 0 TO 600

IF EOF(1) THEN GOTO fclose
FOR j = 1 TO nf
LINE INPUT #1, r$(i, j)

NEXT j
NEXT i

fclose:
nr = i - 1
CLOSE 1
PRINT "The file currently has nr; '' records.''

REM * check to see if the file is already converted
FOR i = 1 TO nr
IF r$(i, 1) = "ZZZ" OR r$(i, 1) = "zzz" THEN GOTO ok

NEXT i
PRINT ' 'The file is either not a Card file or''
PRINT ''has already been converted.''
END
ok:
PRINT ''Moving record 0 to the end of the file.''
PRINT ''Removing the ZZZ sentinel by writing over it.
FOR j = 1 TO nf

r$(nr, j) = r$(0, j)
NEXT j
PRINT

REM * prompt for entry of field names
PRINT ' 'Get ready to enter field names for the file''
PRINT "Press ENTER to quit adding field names."
PRINT ''Field names can be no longer than 10 characters.
FOR i = 1 TO 10
PRINT "Name of field "; i; : INPUT r$(0, i)
IF r$ (0, i) = "" THEN GOTO okl

NEXT i
okl:
PRINT
PRINT ''If you name the output file the same as the input"
PRINT ''file you won't get another chance to do it right."
INPUT ''What will you name the output file f2$

REM * write the converted file back to disk
OPEN "0", 1, f2$
PRINT #1, nf
FOR i = 0 TO nr
FOR j = 1 TO nf
PRINT #1, r$(i, j)

NEXT j
NEXT i

CLOSE 1
PRINT ''Conversion complete.''

END 'of program

30 Issue 25 CODEWORKS

NFL89
NFL89.Bas and Stat89.Bas for the current season

After a moderately successful year last year, our Oracle is ready to try again.
Don't forget that you can't make any projections until after the week 3 stats are
in. From the look of things, this year's NFL schedule should be an exciting one.
If you have last year's NFL88.Bas all you need to change is the data statements
at the end of the program and the name, from NFL88 to NFL89.

100 REM ** NFL89.BAS * NFL PROJECTION PROGRAM * CODEWORKS MAGAZINE
•

110 REM ** 3838 S. Warner St. Tacoma,WA 98409 (206)475-2219 VOICE
120 REM ** Requires a data file made
130 REM ** with the accompanying program STAT89.BAS
140 '
150 'CLEAR 10000:'Use only if your Basic requires cleared string

space.
160 '
170 DIM A(420,5) ,B(28, 6) ,T$ (28) ,F(28,5) ,P (364)
180 '
190 DATA REDSKINS,COWBOYS,EAGLES,GIANTS,CARDS,BEARS,VIKINGS
200 DATA PACKERS,LIONS,BUCS,NINERS,RAMS,SAINTS,FALCONS
210 DATA DOLPHINS,PATRIOTS,JETS,BILLS,COLTS, STEELERS,BROWNS
220 DATA BENGALS,OILERS,SEAHAWKS,RAIDERS,BRONCOS,CHARGERS,CHIEFS
230 '
240 REM * READ IN THE TEAM NAMES *
250 FOR 1=1 TO 28
260 READ T$(I)
270 NEXT I
280 '
290 REM * NOW READ IN THE SEASON SCHEDULE **
300 FOR 1=1 TO 364
310 READ S:P(I)=S
320 NEXT I
330 '
340 CLS:'This is a clear screen command, change to suit your

Basic.
350 PRINT STRING$ (22, "-") The CodeWorks ' '; STRINGS (23,
360 PRINT'' NFL FOOTBALL ORACLE''
370 PRINT'' Projects Winner and point-spread''
380 PRINT STRING$ (60, "-")
390 PRINT
400 PT=0
410 INPUT''Projection for which week number'';W
420 IF W>16 THEN PRINT"Oracle can only project weeks 4 through 16."

CODEWORKS Issue 25 31

-.GOTO 410
430 IF W<4 THEN PRINT''Insufficient Data, wait until week

start'':GOTO 410 M
440 INPUT''Enter 1 for printer output, else just Enter
450 W1=W-1:W2=W-2:W3=W-3:W4=W-4
460 PRINT TAB(10)''The Oracle is busy
470 WN=W1*28
480 ' „ ..
490 REM ** READ STATISTICS FROM STAT.DAT FILE
500 PRINT''Reading the statistics file ...''
510 PRINT''Throwing chicken bones over his shoulder...
520 OPEN "I", 1," STAT.DAT"
530 FOR 1=1 TO WN
540 IF EOF(1) THEN 590
550 FOR J=1 TO 5
560 INPUT #1,A(I,J)
570 NEXT J
580 NEXT I , x. ,,. Ml r%+*
590 IF I<WN THEN PRINT" Statistics for weeks 1 through ,

complete.'':END
600 CLOSE 1
610 ,
620 REM * FIND AVERAGE FOR SEASON **
630 PRINT"Finding the season average for each team...
640 FOR X=1 TO 28
650 FOR 1=1 TO WN
660 IF A(I,1)<>X THEN 710
670 IF A(I,2)>=W THEN 710
680 FOR J=3 TO 5
690 N (J) =N (J) +A (I, J)
700 NEXT J
710 NEXT I
720 F (X, 1) =X
730 FOR J=3 TO 5
740 F(X,J)=N(J)/W1
750 NEXT J
760 FOR J=1 TO 5:N(J)=0:NEXT J
770 NEXT X
780 »
790 REM ** FIND EACH TEAM AVERAGE FOR LAST THREE WEEKS
800 PRINT''Finding the last three week average for each team...
810 FOR X=1 TO 28
820 FOR 1=1 TO WN
830 IF A(I,1)<>X THEN 890
840 IF A(I,2)<W AND A(I,4)>A(I,5) THEN B(X,6)=B(X,6)+1
850 IF A (I, 2) OW1 AND A(I,2)OW2 AND A(I,2)OW3 THEN 890
860 FOR J=3 TO 5
870 C (J) =C (J) +A (I, J)
880 NEXT J
890 NEXT I

HSHHBi

900 B(X,1)=X
910 FOR J=3 TO 5
920 B (X, J) =C (J) /3
930 NEXT J
940 FOR J=1 TO 5:C(J)=0:NEXT J
950 NEXT X
960 CLS
970 '
980 PRINT"PROJECTION FOR WEEK ' \-W
990 PRINT"Week" ;W;TAB(16) "Oracle's" ;TAB(30) " 3 week

Averages "
1000 PRINT TAB (16) "Rating" ;TAB(25) "Won" ;TAB (30) " 1st

downs'';TAB(43)''Score'';TAB(54)''Pts Allowed''
1010 IF PTOl THEN 1190
1020 LPRINT''The CodeWorks NFL ORACLE PROJECTION FOR WEEK ' \-W
1030 LPRINT" "
1040 LPRINT''Key to column headings"
1050 LPRINT TAB (10)" 1- Teams plus Oracle's Winner projection"
1060 LPRINT TAB(10)'' 2- Oracle's overall rating number (not a

score)''
1070 LPRINT TAB (10)" 3- Number of games won this far in the season"

1080 LPRINT TAB (10)" 4- Last 3 weeks average 1st downs"
1090 LPRINT TAB(10)'' 5- Last 3 weeks average points scored"
1100 LPRINT TAB(10)" 6- Last 3 weeks average points allowed''
1110 LPRINT TAB (10)'' 7- Season average 1st downs"
1120 LPRINT TAB(10)'' 8- Season average points scored''
1130 LPRINT TAB (10)'' 9- Season average points allowed''
1140 LPRINT TAB (10) "10- Actual score (you fill in after the games)
1150 LPRINT TAB (10) "11- Actual point spread (fill in this too.)
1160 LPRINT'' ''
1170 LPRINT''1";TAB (16)''2";TAB(21) " 3";TAB (26)''4";TAB(30) ' ' 5"; TAB (34) "

6";TAB(41)''7";TAB(45)''8";TAB(49)''9";TAB(56)''10";TAB(66)''11"
1180 LPRINT" "
1190 SI=(((W-l)*28)+2)-84
1200 FOR S=SI TO SI+26 STEP 2
1210 X=P(S-l):X1=P(S)
1220 X$=T$(X):X1$=T$(XI)
1230 S0=F(X,3)+B(X,3) + (2*F(X,4)) + (4*B(X, 4)) + (40-F(X, 5))+3*(40-

B (X, 5))
124 0 T0=F(XI,3)+B(XI,3) + (2*F(XI,4)) + (4*B(XI,4)) + (4 0-F(XI,5)) +

3*(40-B(XI,5))+20
1250 S5=INT(S0+.5):T5=INT(T0+.5)
1260 IF S5=T5 THEN X1$=X1$+" by 1"
1270 IF S5>T5 THEN X$=X$+" by"+STR$ (INT (((S5-T5) + . 5)/10)+1)
1280 IF S5<T5 THEN X1$=X1$+" by" +STR$ (INT (((T5-S5) + . 5)/10) +1)
1290 PRINT X$;TAB (16);S5;TAB(25);B(X,6);TAB(31);INT(B(X,3));

TAB(43);INT(B(X,4));TAB(55);INT(B(X,5))
1300 PRINT X1$;TAB (16) ;T5;TAB(25) ;B(X1, 6) ;TAB(31) ; INT (B (XI, 3)) ;

TAB(43);INT (B (XI,4));TAB(55);INT(B(XI, 5))

CODEWORKS Issue 25 33

1310 PRINT
1320 IF PTOl THEN 1360 m (T, ,v ov » .
1330 LPRINT X$;TAB(15);S5;TAB(20);B(X,6);TAB(25);INT(B(X,)),

TAB(29);INT(B(X,4));TAB(33);INT(B(X,5));TAB(40);INT(F(X,3))
TAB (44) ; INT (F (X, 4)) ;TAB (48) ; INT (F (X, 5)) ;TAB (55) ' '

1340 LPRINT X1$;TAB(15);T5;TAB(20);B(X1,6);TAB(25);INT(B(X. ,));
TAB(29);INT(B(XI,4));TAB(33);INT(B(XI,5)) ; TAB (40);INT(F(X1,
3));TAB(44);INT(F(XI,4));TAB(48);INT(F(XI, 5)) ;TAB (55) ' '

";TAB(65) ' ' ' '
1350 LPRINT" 'x:GOTO 1400
1360 TC=TC+1
1370 IF TC=>4 THEN PRINT" Press Enter for more";: INPUT XX:CLS.

TC=0 ELSE 1400
1380 PRINT" Week" ;W;TAB (16) "Oracle's" ;TAB (30) " 3 wee

Averages ''
1390 PRINT TAB (16) "Rating" ; TAB (25) "Won" ; TAB (30) " 1st

downs''; TAB (43) '' Score'' ; TAB (54) "Pts Allowed''

1400 NEXT S ,
1410 IF PT=1 THEN LPRINT CHR$(12):' Printer top of form command

1420 END
1430 REM * The 89-90 NFL schedule for weeks 4 thru 16
1440 DATA 1 6 , 1 8,22,28,26,21,15,23,19,17,24,25,20,9

1450 DATA 27,5,14,8,3,6,4,2,12,11,10,7,1,13
1460 DATA 1 8 , 1 9,22,20,21,15,27,26,23,16,28,24,25,17

1470 DATA 14,12,6,10,2,8,9,7,13,11,4,3,5,1
1480 DATA 1 2,18, 1 5,22,20,21,19,26,23,6,28,25,16,14

1490 DATA 17,13,24,27,11,2,9,10,8,7,1,4,3,5
1500 DATA 1 7 , 1 8 , 1 9,22,6,21,26,24,20,23,2,28,25,3
1510 DATA 8 , 1 5 , 1 6,11,4,27,14,5,7,9,13,12,10,1
1520 DATA 15, 1 8,10,22,23,21,3,26,16,19,28,20,11,17

1530 DATA 27,24,14,13,12,6,5,2,9,8,7,4,1,25
1540 DATA 1 8,14,22,25,21,10,20,26,9,23,19,15,24,28

1550 DATA 1 7 , 1 6,3,27,6,8,2,1,12,7,11,13,4,5
1560 DATA 1 9 , 1 8,22,23,21,24,26,28,25,27,15,17,13,16

1570 DATA 6,20,14,11,2,5,8,9,4,12,7,10,1,3
1580 DATA 18, 1 6,9,22,28,21,26,1,25,23,17,19,15,2
1590 DATA 2 7,20,24,4,13,14,10,6,8,11,5,12,7,4
1600 DATA 2 2 , 1 8,21,9,24,26,23,28,27,19,16,25,14,17

1610 DATA 6,1,3,2,7,8,12,13,4,11,10,5,20,15
1620 DATA 1 8 , 2 4,22,21,26,25,23,20,19,16,15,28,17,27
1630 DATA 11,14,6,7,12,2,13,9,8,10,3,4,1,5
1640 DATA 13,18,24,22,21,19,4,26,10,23,28,8,5,25
1650 DATA 16,15,20,17,27,1,14,7,9,6,2,3,11,12
1660 DATA 18,11,23,22,7,21,26,5,15,19,27,28,16,20
1670 DATA 17,12,25,24,1,14,8,6,2,4,10,9,3,13
1680 DATA 18,17,22,7,21,23,26,27,19,13,28,15,25,4
1690 DATA 12,16,20,10,1,24,9,14,6,11,8,2,5,3
1700 END ' of 1989-90 schedule data

100 REM * STAT89.BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

110 REM * 98409 (206) 475-2219 VOICE
120 REM * Maintains the stats for NFL89.
130 REM * If no file exists then in command mode,type OPEN''O'',1,''ST

AT.DAT''
140 REM * and press ENTER, then type CLOSE and press ENTER. This

creates an
150 REM * empty file called STAT.DAT. You can then run this

program.
160 '
170 PRINT''Loading STAT.DAT data file
180 ' CLEAR 10000: 1 Use only if your machine needs to clear

string space.
190 DIM A(448, 5),T$ (28),TS(28),TM(28) , TM$(28)
200 '
210 REM * General purpose locate/print0 subroutine
220 GOTO 290
230 LOCATE X,Y:RETURN 'GW-BASIC
240 'PRINT0((X-l)*64)+(Y-l),;:RETURN 'Tandy I/III
250 'PRINT0 ((X-l), (Y-l)) , ;:RETURN 'Tandy IV
260 'PRINT CHR$ (27) +" Y" +CHR$ (31+X) +CHR$ (31+Y) ; :RETURN ' CP/M
270 '
280 REM * Set up the team names in data lines
290 DATA Redskins,Cowboys,Eagles,Giants, Cards,Bears,Vikings
300 DATA Packers,Lions,Bucs,Niners,Rams, Saints, Falcons
310 DATA Dolphins,Patriots,Jets,Bills,Colts,Steelers,Browns
320 DATA Bengals,Oilers,Seahawks,Raiders, Broncos, Chargers, Chiefs
330 '
340 REM ** READ IN THE EXISTING STAT FILE **
350 WN=448
360 OPEN ''I'' , 1, ' ' STAT .DAT"
370 FOR 1=1 TO WN
380 IF EOF (1) THEN 430
390 FOR J=1 TO 5
400 INPUT #1,A(I, J)
410 NEXT J
420 NEXT I
430 CLOSE 1
440 L1=I—1

CODE WORKS Issue 25 35

450 '
460 REM * READ IN THE TEAM NAMES AND CLEAR TEMP (TS) ARRAY.
470 FOR 1=1 TO 28
480 READ T$(I):TS(I)=0
490 NEXT I
500 '
510 CLS: ' Clear the screen and home the cursor.
520 PRINT STRINGS(2 2 , ' The CodeWorks * ';STRINGS(23,''-'')
5 3 0 P R I N T ' ' N F L W E E K L Y S T A T I S T I C S
540 PRINT'' Maintains statistics for 1989-90 NFL Football
550 PRINT STRINGS (60,)
560 PRINT
570 IF LI MOD 28 <>0 THEN PRINT''There is extra (or missing) data

in the file'' ELSE PRINT''The file is currently updated through
week'';Ll/28

580 PRINT
590 PRINT TAB (10) "1 - Update the file''
600 PRINT TAB(10)''2 - Edit an item in the file''
610 PRINT TAB(10)''3 - View the entire file''
620 PRINT TAB(10)''4 - Show Divisional standings''
630 PRINT TAB(10)''5 - Save the updated file and END''
640 PRINT
650 INPUT'' Your choice'';X
660 IF X<1 OR X>5 THEN 650
670 ON X GOTO 710,880,1080,1370,1250
680 END
690 '
700 REM * UPDATE THE FILE ROUTINE **
710 CLS
720 INPUT''UPDATE STATISTICS FOR WHICH WEEK NUMBER'';W
730 IF W=<Ll/28 THEN PRINT''The file appears to be updated through

that week.'':GOTO 720
740 J-Ll+1
750 FOR X=1 TO 28
760 PRINT''For the ,,;T$(X);'' for week '';W
770 INPUT''How many first downs '';A(J,3)
780 INPUT''How many points did they score —";A(J, 4)
790 INPUT''and they allowed how many points-'';A(J,5)
800 A(J,1)=X:A(J, 2)=W
810 PRINT
820 J=J+1:L1=L1+1
830 NEXT X
840 PRINT''Press Enter for menu'INPUT X:GOTO 510
850 END
860 '
870 REM ** EDIT AN ITEM IN THE FILE ROUTINE **
880 CLS
890 PRINT ''EDIT DATA - You supply the team number and week number.''

36 Issue 25 CODEWORKS

1

900 PRINT
910 INPUT''What team number are you looking for '';X
920 INPUT''What week number are you looking for '';W
930 FOR 1=1 TO LI
940 IF A (I,1)=X AND A(I,2)=W THEN 970
950 NEXT I
960 PRINT''That item is not in the file'':GOTO 1040
970 PRINT T$(A(I,1));A(I,1) :PRINT''Week—>'';A(1,2) :PRINT''1st Dns->" ;

A(I,3):PRINT''Score->'';A(I,4):PRINT''Pts Allowed->'';A(I,5)
980 PRINT
990 INPUT''Enter correct team number —'';A(I,1)
1000 INPUT''Enter correct week number —'';A(I,2)
1010 INPUT''Enter correct 1st downs '';A(I,3)
1020 INPUT''Enter correct score '';A(I,4)
1030 INPUT''Enter correct points allowed '';A(I,5)
1040 INPUT''Press Enter for menu'';X:GOTO 510
1050 END
1060 '
1070 REM * VIEW THE FILE ROUTINE **
1080 CLS
1090 PRINT''TEAM # ' '; ' ' WEEK ' \-"lST DOWNS ''/"SCORE ' * ; ' ' PTS

ALLOWED''
1100 FOR 1=1 TO LI
1110 FOR J=1 TO 5
1120 PRINT USING ''###" ;A(I,J);: PRINT' ' ''; 'six spaces here
1130 NEXT J
1140 PRINT
1150 IF I MOD 14O0 THEN 1200 ELSE PRINT''Press Enter for more, or

Q to quit.'';
1160 XX$=INKEY$:IF XX$=" " THEN 1160
1170 IF XX$="Q" OR XX$="q" THEN 510
1180 CLS
1190 PRINT''TEAM # "/"WEEK ' ';"1ST DOWNS "/"SCORE "/"PTS

ALLOWED''
1200 NEXT I
1210 GOTO 510
1220 END
1230 '
1240 REM * SAVE THE FILE AND END ROUTINE **
1250 OPEN "O" , 1, "STAT.DAT"
1260 FOR 1=1 TO LI
1270 FOR J=1 TO 5
1280 PRINT #1,A(I,J)
1290 NEXT J
1300 NEXT I
1310 CLOSE 1
1320 PRINT" THE FILE STAT. DAT IS NOW SAVED"

CODEWORKS Issue 25 37

J

1330
1340
1350
1360
1370
1380
1390
1400
1410

1420
1430
1440
1450
1460

1470

1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750

PRINT''END OF PROGRAM.''
END
\
REM * find divisional standings *
PRINT ''Calculating

REM * find games won and fill the TS() array
TOP T=1 TO Ll

IF A(I,4)>A(I» 5) THEN TS(A(1,1))=TS(A(I,1))+1 ELSE IF A(I,
4)=A(I,5) THEN TS(A(I,1))=TS(A(I,1))+.5

NEXT I
*
REM * clear screen and print the headings

X-l:Y-l:GOSUB 230-.PRINT"-NFC East-" ; TAB (25) -NFC Central-"

TAB (50) ;' '-NFC West-'' ,
X=8 : Y=1:GOSUB 230:PRINT 1 '—AFC East-" ; TAB (25) ;" -AFC Central-

TAB (50) -AFC West-"
P=1:Q=5:Y=1:GOSUB 1590
p=6:Q=10:Y=25:GOSUB 1590
P=ll:Q=14:Y=50:GOSUB 1590
P=15:Q=19:Y=1:GOSUB 1590
P=20:Q=23:Y=25:GOSUB 1590
P=24:Q=28:Y=50:GOSUB 1590
PRINT:INPUT' ' Press enter for menu'';XX
RESTORE:GOTO 470
END

REM * sort standings into descending order
F=0
FOR I=P TO Q-l

L=I+1
IF TS (I)=>TS(L) THEN 1660
SWAP TS(I),TS(L) ' or TM(I)=TS(I) :TS (I)=TS(L) :TS(L)=TM(I)
SWAP T$(I),T$(L) ' or TM$(I)=T$(I):T$(I)=T$(L):T$(L)=TM$(I)
F=1

NEXT I
IF F=1 THEN 1590
*
REM * print each team's standing
IF P<15 THEN X=1 ELSE X=8
FOR I=P TO Q

X=X+1
GOSUB 230 :PRINT USING ;TS (I) ; :PRINT' ' "+T$(I)

NEXT I
RETURN

Handy Order Form
RENEW SUBSCRIPTION:
Nov/Dec 89 through Sep/Oct 90 $24.95

|~| All 4th year issues:
Nov 88 through Sep 89

|~> All 3rd year issues:
Nov 87 through Sep 88

I | All 2nd year issues:*
Nov 86 through Sep 87

|~j All 1st year issues:
Sep 85 through Sep 86

DISKS (specify year and computer type)
4th year disk will be ready Sep 1,1989 Year(s)

• 'Starting with MS DOS" booklet

$18.00

$18.00

$18.00

$18.00

$15.00

$7.00

Postage and handling charges already included.

Diskettes are available for MS DOS, Tandy IV, Tandy III and
most CP/M formats Please specify your computer type!

*In year 2 issues, Issue 8 is out of print and will be supplied
on diskette. Please specify your computer type if ordering

2nd year issues.

Note
new

lower
prices

on back
issues

and all
disks!

Computer type:

• Check/MO enclosed
• Charge to VISA/MC Exp

Name

Address

City/State/Zip

Clip or photocopy and mail to: CodeWorks, 3838 South Warner Street,
Tacoma, Washington 98409

We accept VISA & MasterCard. You may call in your order:
(206)475-2219 Thank you.

CODEWORKS Issue 25 39

Index
and things that won't fit elsewhere

i

Flow.bas, correction, issue 24, page 4
Beginning BASIC, part 2 of all about strings,
issue 24, page 5
Tracker.bas, main program, issue 24, page 8,
mutual fund tracker
Rcardl.bas, main program, issue 24, page 25,
updates Rcard.bas
Basic Techniques, article, print numbers in
text lines, issue 24, page 32
Notes, preventing dupes with random, issue 24,
page 35
Etax89.bas, updates to Etax88.bas, issue 24,
page 36
AI, article, part 1, issue 24, page 37
Download, final notes on download, issue 24,
page 40

Although this may be al< the lines of our old
Puzzlers, we won't count i> as one. This really
happened and was interesting enough to pass
along.

A customer wanted labels for his parts bins to
be printed on our computer. The numbers of the

parts started at one million and went from there
to 1,050,000. In addition, he wanted an eighth
digit appended to the end of the number. This
digit was what you get when you divide the base
number by seven, throw away the quotient and
keep the remainder.

In other words, the number 1000000 would
have the digit 1 appended (10000001) because
that's the remainder when you divide 1,000,000
by seven. 1000000 MOD 7, in computer talk.

The whole idea for this appended digit was as
a check digit, so that when people were keying in
the part number, the input program would strip
the last digit, divide what was left by seven and
see if the check digits matched.

Well, we said, "sure, no problem, that's what
computers are for." And knowing all too well that
exponential numbers don't look good on parts
bins, we set about to make his labels.

Did we bite off more than we could chew? Try
it for yourself and see. More on this next time.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
U.S. Postage

PAID
Permit 774

Tacoma, WA

fcRXCKSON, HIKE / HR Jr,
t;iOx 250 JL'
MONTE Rio

2910
RJB

95462

CODEWORKS
Issue 26 Nov/Dec 1989

CONTENTS

rm
v4.

.. A -o s.f,

•K •

ill#
V jVW * , k>. v? (i. AFTAlw#

<5 ^

jf*
/..- *

Editor's Notes

Forum 3

Beginning BASIC 8

Things 10

Card2.Bas II

Ckrite.Bas 28

Progest.Bas 32

Renewal/Order Form 39

Index 40

i IA vs

- It« i
i y.m. m :s?». y ••Xv :> •:« ,.v \

is *ji ^Jl5-
« * \
:<% | :

y^jt';

S -v SM f .

< . \

Vxvj? w;

J£

x. #3« i gsi*
V> >1 J; --

CODE WORKS Editor's Notes
Issue 26 Nov/Dec 1989

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

A1 Mash burn

(c) 1989 80-Northwest Publishing
Inc. No patent liability is assumed with
respect to the use of the information con
tained herein. While every precaution has
been taken in the preparation of this publi
cation, the publisher assumes no responsi
bility for errors or omissions. Unless oth
erwise noted, all programs presented
in this publication are placed in public
domain. Please address all correspon
dence to CodeWorks, 3838 South
Warner Street, Tacoma, Washington
98409

Telephone
(206) 475-2219

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/lower case) and allow
4 to 6 weeks for editorial review. You may
send IBM-PC compatible diskettes (please
save your programs in ASCII format.) Also
send a hard copy listing of the program and
article. Media will be returned if return
postage is provided. Compensation will be
made for works which are accepted for
publication. CodeWorks pays upon accep
tance rather than on publication.

Subscription price is $24.95 per year (six
issues). A subscription year runs from Nov/
Dec through Sep/Oct. Anyone subscribing
during the current subscription year re
ceives all issues for that year. VISA and
MasterCard orders are accepted by
mail or by phone (206) 475-2219.

CodeWorks is published bimonthly in
Jan, Mar, May, Jul, Sep and Nov. It is
printed in the USA. Bulk rate postage is
paid at Tacoma, Washington.

SAMPLE COPIES: If you have a friend
who would like to see a copy of CodeWorks
just send the name and address and we will
send a sample copy at no cost.

So whatever happened to
APL, Algol, Snobol, PL/1 and
the other "high performance"
languages of the past? And how
come hi' ol' BASIC is still in
there, slugging?

Well, it helps a language a
whole lot if for the first 10 or 15
years of its life it comes free
with the computer you buy.
That's probably one of the most
compelling reasons that BASIC
is alive and well today. Not only
is it alive and well, it's growing.
It has been estimated that
more people program in BASIC
than in any other language.

BASIC is 25 years old this
year. It was developed in 1964
at Dartmouth College by John
Kemeny and Thomas Kurtz. In
those days, it ran on college
mainframes. Personal comput
ers in those days were still a
science fiction dream. A little
over 10 years later, the MITS
corporation in Albuquerque,
New Mexico developed the first
personal computer, the Altair.
Popular Electronics Magazine
featured it on their cover. It
was just a case, because there
weren't enough "guts" to go
around at that time, although
no one could tell the difference
because no one had ever seen
one before.

Bill Gates and Paul Allen
were Harvard students in those
days, and decided that the Al
tair needed a programming
language. Bill Gates wrote the
Altair 4K BASIC. He and Allen

left school and became the soft
ware department of MITS. Bill
later said that "the 4K BASIC
was the best program I ever
wrote."

They left MITS sometime
after that and started Microsoft
in Albuquerque. In early 1979
they moved Microsoft to
Bellevue, Washington. I knew
Terry Dettmann in those days,
and he told me he was going to
visit them shortly after they
moved, to get a story about
them. He told me he found
them in a two-room office, with
no furniture except for a tele
phone and a secretary in blue-
jeans, sitting on the floor an
swering calls. They grew and
prospered. The times were ex
citing.

Just last month, Bill Gates
finally came out and said the
GW BASIC stood for "Gee
Whiz" BASIC. It's a far cry from
his early 4K BASIC. His Quick
BASIC is a much larger step
into the sophisticated world of
programming languages. It
will probably still be around in
another 25 years.

In the meantime, it has given
us a lot of pleasure, solved a lot
of problems, and let us write
magazines about it. It's been
good to us, and we thank the
professors at Dartmouth and
the people at Microsoft for a
great language. Long live BA
SIC, in whatever form it de
cides to take!

Irv
2 Issue 26 CODEWORKS

Forum
An Open Forum for Questions and Comments

...I have been looking for ref
erences to routines in either
FORTRAN or BASIC which
evaluate calculated statistics
or which return the critical
value of a statistic when given
the appropriate parameters. I
want to incorporate such algo
rithms into existing programs
and also, when they are suffi
ciently short, into spread
sheets. In the days of second
and third generation main
frames, there were books of
approximations and exact cal
culations; but, no one knows
anything about those works
now. Can you advise me of any
locations or sources where I
might find what I am looking
for?

William L. Lieberman
Abbott Park, IL

Try your local library under
Computing Science, Statistics,
or Economics. Without knowing
exactly what you are looking for,
it's hard to tell just which one of
these departments will yield the
answers. The idea does sound
rather interesting, however.

This is a copy of the last para
graph of a letter I mailed to you
in August, 1986: "I just finished
keying the Plist.Bas program
from your Issue 6. As the au
thor suggested, I also added the
time and date to the headers
using the DATE$ and TIME$
functions. The header of each
page now shows the date and

CODEWORKS Issue 26

time the printout started. I
would prefer to use the creation
date and time that is stored in
the directory, but I don't know
how to extract it from the disk
ette. Would you please show me
how to do this?"
The letter I received from you
said you didn't know how to do
this and you would also like to
know if it could be done.
Attached is a printout of how I
capture time and date in BA
SIC.

G.W.T., FL

We puzzled over this for some
time, and then finally realized
that the program in question
must somehow get into the file
"scratchl.lst."It should be obvi
ous that this will work only for
MS-DOS. At the DOS prompt,
you can enter the following: DIR

filename > scratchl.lst <EN-
TER>. This will write the file
name and its associated length,
time and date stamp into the
scratch file. Now when you run
this program it will read the
time and date of the file's crea
tion and then kill the
scratchl.lst file. You don't have
to be in DOS, either. From
BASIC in command mode, you
can type: SHELL DIR filename
> scratchl.lst <ENTER>, and
then type EXIT to get back to
BASIC. Very interesting appli

cation. Thank you.

I wasted a whole afternoon
trying to figure this out. I know
it's got to be incredibly easy but
it escapes me. How do I write
my program to print five labels
for one person, then go on to

100 REM * gwt.bas *
110 REM * program from dir must be in scratchl.lst
120'
130 OPEN"scratchl. lst"FOR INPUT AS #3
140 FOR 1=1 TO 5
150 INPUT #3,DR$
160 IF I<>5 THEN 210
170 ' added for dos 4.0 header line: Volume Serial Number is
XXXX-XXXX
180 IF MID$(DR$,2,9)=" "THEN LINE INPUT #3, DR$
190 DA$=MID$(DR$,24,10)
200 TI$=DA$:MID$(TI$,1,6)=MID$(DR$,34,6)
210 NEXT I
220 CLOSE #3:KILL"scratchl.lst"
230 MID$(DA$,3,1)="/":MID$(DA$,6,1)="/"
240 IF MID$(TI$,6,1)= "a" THEN MID$(TI$,6,3)=" am" ELSE
MID$(TI$,6,3)= " pm"
250 PRINT DA$,
260 PRINT TI$

write five labels for the next,
etc.? I can get it to write five
labels, but not five for each. I
don't know the loop to put in
side of the first loop. Enclosed is
my program. Thanks for your
help.

Mrs. Ira Hynes
San Francisco, CA

100 DATA Betty Smith,111
Street,City St Zip
110 DATA Joe Brown, 222
Street,City St Zip
120 DATA Joe Magarac,333
Street,City St Zip
130'
140 FOR 1=1 TO 3' 3 is number
of names in data statements
150 READ A$,B$,C$
160 FOR J=1 TO 5 ' 5 is
number of times to print each
label
170 LPRINT A$
180 LPRINT B$
190 LPRINT C$
200 FOR K=1 TO 3 'to skip
lines to next label
210 LPRINT""
220 NEXT K
230 NEXT J
240 NEXT I

Assuming that you had your
names and addresses in data
statements, as you indicated
you did, the above program will
do it. Note yet another inner
loop that spaces to the next la
bel. If you want to print an
"attention" line on the label as
well as the names and ad
dresses, then reduce the inner K
loop by one since you will be
printing four lines of address.
Standard labels are one inch, or

six lines, from beginning of one
label to the beginning of the
next.

It is often desirable to check
whether your printer is ready
to accept output before sending
data to it. Various combina
tions of printers and MS DOS
computers result in different
values being sent to different
ports when the printer is ready
to accept data. The short pro
gram listing below determines
which port is being used and
what value is being sent to it.
The Epson FX80 sends 217 to
PORT 889 when the printer is
ready. Your printer/computer
combination may produce dif
ferent results.

Robert Hood
Bremerton, WA

Thank you, Robert. As you can
see, our Star SG-10 sent back
something else, but it still works

fine.

In the Sep/Oct 1989 issue of
CodeWorks in the NFL89.Bas
program on page 34 there is an
error in the schedule. On line
1590 you have entered the
number 4 twice. The last four
should be a three.
I think a subroutine should be
developed for checking the ac
curacy of the data statements.
This can be done by summing
up the totals of data for each
week of schedule, when correct
the sum should be 406. I have
one incorporated in my pro
gram but I program in TURBO

Pascal and I don't think it
would be of much use to you.
I also think you should revise
your program for the changes

10 CLS:LOCATE 6,15:INPUT"Prepare printer for output and
press ENTER";T$
20 DEF SEG=&H40:PORT=PEEK(8)+PEEK(9)*256+1
30 PRINT:PRINT
40 PRINTTf your printer is ready, it is sending";INP(PORT);"to
port";PORT;"."
50 PRINT
60 PRINT'You may use the statement below to check printer
status from a BASIC program."
70 PRINT:PRINT
80 PT=PORT:VL=INP(PORT):PT$=STR$(PT):VL$=STR$(VL)
90 PRINT" 110 if inp(";MID$(PT$,2);")=";MID$(VL$,2);" then
pnnt:print"CHR$(34) Tour printer is ready."CHR$(34)
100 PRINT
110 IF INP(889)=223 THEN PRINT:PRINT Tour printer is
ready.":GOTO 140
120 IF INP(889)<>223 THEN PRINT:PRINT"Change line 110
in this program to agree with above "
130 PRINT:PRINT:EDIT 110
140 PRINT:PRINT:END

4 Issue 26 CODEWORKS

in 1989, with the four presea
son games and the 16 regular
season games. You should in
clude in some future issue the
diagram of the NFL structure
describing the NFC, AFC, divi
sions, team names and num
bers as you did in Issue 19, page
13. New subscribers as well as
old subscribers would find it
quite useful. I know that I refer
to it quite often for both pro
gramming and in data entry.

Stephen Chubrilo
Pueblo, CO

You are right about the last four
in line 1590. It should be a
three. Unfortunately, all our
yearly disks for all models now
contain this error and should be
corrected. We checked, but not
quite close enough. We would
have liked to include the dia
gram of the NFL again this
year, but there just wasn't
enough space in that issue. In
any case, there were no changes
since last year, and last year's
diagram will work this year.
When we designed NFL.Bas
back in 1986 we found that
preseason games simply had no
bearing on what the teams
would actually do in the regular
season. We would have liked to
be able to start right off at the
beginning of the season and
make meaningful predictions,
but it didn't work out that way.

I enjoy your publication, other
wise I would not renew my
subscription. I've been with you
from day one. However, I would
offer a word of advice about
future issues. You should ex
pand the scope of your material
to include information (hints

and examples) on the popular
commercial packages such as
LOTUS, dBASE IV, etc. I am
not a "hacker" but I do program
in BASIC if required. My main
effort is using packaged soft
ware, which can be quite chal
lenging as well. Input and guid
ance on their use would be most
appreciated and practical. Your
booklet on MS DOS is a step in
the right direction...

L.V. Beckman
Mission Viejo, CA

Thank you for your comments.
Do you want to know the truth ?
We aren't experts in any of the
type of packages you mention.
Nor could we afford to buy them
all and become experts. Our
goal with CodeWorks was, and
still is, to enlighten, entertain
and educate in BASIC. We
picked that goal because no one
else apparently had. We'll ex
pand into QuickBASIC shortly,
and Terry is currently writing
another booklet on disk drives. I
could write a book on using
PageMaker and perhaps Word
star, but those have already
been done many times by others,
and well too. Our philosophy is
that if anything has a 51 percent
chance (or better) of success it's
worth trying. We don't see that
percentage in reviewing pack-
age programs.

...As a matter ofinterest, I put
your solution to my problem on
simulating flash cards to good
use. (See Issue 24, page 35).
This summer I attended an
Elderhostel at Vernon, Canada
and one course was Sign Lan
guage. The instructor made a

statement that computers were
useless in teaching sign lan
guage. I then typed out your
program for her with a few
changes and she was really
enthusiastic and said it would
be a wonderful teaching tool. I
made simple changes and actu
ally gave her two programs.
One that threw the words or
letters on the video every three
seconds and then for sentences
I made a new sentence come up
after they hit any key. She in
tends to use it in all her classes.

James C. McCord
Fairbanks, AK

Nice to see it work, and thanks
for letting us know.

I have disks 1 to 3 for TRS-80
Model III. Can those programs
be converted to MS DOS with
one of the conversion pro
grams?

Hans E. Froelke
Sandy, UT

Not with any of our published
conversion programs. However,
you can use a program called
TRSCROSS, available from
Powersoft, 17060 Dallas
Parkway, Suite 114, Dallas, TX
75248, to make the conversions.
Or, if you still have your Model
III, you can connect it with your
MS DOS machine via RS-232
and send the Model III pro
grams back to the MS DOS
machine. Then, you will only
need to change the change lines
listed in each issue back to GW
BASIC.

...I need help in finding a par
ticular disk: The ARRANGER

CODEWORKS Issue 26 5

II, by Dan Foy, either con
verted or re-written for MS
DOS machines. This disk was
originally written for the TRS-
80 (et al) machines. I don't
know if this disk does exist, but
if it's out there, I would like to
purchase a copy. Any help will
certainly be appreciated. Rem *
I don't know if your Forum col
umn was designed to help find
lost articles. If not, please over
look this, and again thanks for
your valued publication.

R. H. Saunders
Epping, NH

If anyone knows the answer to
this one, please let us know and
we'll pass it along.

As I compose this letter, I am
mindful of patience as a virtue.
I have lost my Model III for
ever, it seems. It is replaced by
an XT Clone. This means no old
files to call up to start a new
letter, and no idea of what is in
the old files. It also means, alas,
a new word processor program
to get used to. You might be
able to help, though. I feel that
it should be possible to write a
BASIC program to read direc
tories made by DOSPLUS* 3.4
and save the file on an MS DOS
disk. I have no MS DOS man
ual, since the computer sup
plier merely handed me a
backup disk with it.
As this beast (we have not
made friends yet) has 640K of
RAM, it should be able to slurp
up an old format disk totally,
tell me to install a new format
ted disk in drive B and strike
any key. I have noticed ads for
such a program in the PC

magazines, but feel reluctant to
part with $80 or more...

Thomas B. Habecker
Ridgefield, WA

It would be nice if we could do
that, but the drives in your XT
Clone will not read the
DOSPLUS format on the disks.
Computing is like that, some
times. What it takes, probably
in machine code, is a program
that reads a disk in "primitive"
mode and copies it a bit at a time
onto another diskette. In spite of
the cost, a commercial program
to do it, if available, would cer
tainly be the alternative to
trying to write such a program
in BASIC.

I have been using your
Payroll.Bas (Pay2.Bas) pro
gram for a couple of years in my
two small businesses, and it
has been working superbly.
However, I have one question:
At the present time the pro
gram will take care of up to ten
employees, which up to this
time has been quite adequate. I
am contemplating merging my
two businesses into one, which
will bring the total employment
to at least 14, possibly more as
time goes on. Can you suggest
any change that can be made in
this program that will allow
more than ten employees? I
tried adding more and they
were ignored.
I realize that I could get one of
the store-bought programs that
would do somewhat more, but
because I have created several
other programs for use in the
businesses in good old GW
BASIC, I try to stay in that

language for convenience. Al
though BASIC is slow (com
paratively), I find it fast enough
for what I want, and the pro
gram can be altered to fit the
situation easily and quickly...

Francis C. Williams
Honolulu, HI

It's our problem. We forgot to
change one variable when we
improved the PAY2.BAS pro
gram. In line 2180 it says FOR
1=1 to 10, it should be FOR 1=1
to NE. That will do it - now you
can get more than 10 employees
in. Again, this error is probably
on all our yearly disks, and
should be changed if you intend
to use the program for more
than 10 people. Thanks for
bringing this to our attention.

I have converted to QuickBA
SIC 4.5 and it is great. Please
do more with it.

David R. McCord
Redmond, WA

We intend to.

...I seem to have a problem
with Cwindex.Dat and
Qkey.Bas. I load Qkey and try
to access Cwindex.Dat and
nothing happens. I just can't
seem to bring up any of the .Dat
files. I suppose I need a little
"one, two & three" hand holding
instructions. I'd appreciate any
suggestions.

David H. Smith
Edinburg, TX

We'd be glad to help, but need
more information to go on. Do
the .Dat files actually exist in
the first place ? Are you trying to

6 Issue 26 CODEWORKS

load the default file when it
doesn't yet exist? Did you type
Qkey in or are you using it from
our yearly diskette ? Tell us more
- we'll try and help.

Here are some other patches
I've found for TRSDOS 1.3
(Model III):

PATCH *0
(ADD=43C3rFEND=2F,CHG=30)
PATCH *0
(ADD=4FB8,FIND=28,CHG=38)
This PATCH lets you use the
decimal point instead of the
slash when entering the date at
boo tup. That way, you can use
the numeric keypad for date
entry.

PATCH *o
(ADD=4EFE,FIND=215451,CHG=C32E4F)
This PATCH will disable the
time prompt at bootup.

PATCH *2
(ADD=4ED4,FIND=20,CHG=18)
PATCH *5
(ADD=52EBpTND=CB,CHG=36)
PATCH *5
(ADD=52ED^TND=BE,CHG=00)
This PATCH will disable pass
word checking in case you want
to remove CONVERT/CMD or
XFERSYS/CMD for more room
on your disk or something like
that. To reverse this, you only
have to exchange the
FIND=XX and CHG=XX num
bers in the three patches.
Out of curiosity, do you have
any idea how many of your
readers have and use TRS-80
Model 3 or 4?

Pat Chong
Las Cruces, NM

A lot less than a couple of years

ago. We are now around 75
percent MS DOS, with the re
mainder being mostly Model III
and TV and a few CP IM ma
chines. Although our coverage
will shift to reflect these
changes, we still won't give up
entirely on these machines, but
you can expect more MS DOS
specific material in the future.

...Does there exist a subrou
tine in BASIC that will convert
numerals to alpha? For ex
ample, in printing out a check,
in addition to putting the dollar
amount in numerals, is there
any way to also convert those
numerals into words? It seems
that somewhere, in my dim
past, I saw such a program, or

was I just dreaming?
Francis C. Williams

Honolulu, HI

We thought there was one, too.
But we couldn't find it, and so
we wrote one from scratch. At
this time I don't know yet if it
will fit into this issue, but expect
it soon in any case. And thanks,
it was a fun project.

Renewal time always brings a
wealth of good letters and
ideas. Thank you. To all of you
whose letters were not an
swered, hang in there. We'll get
around to them soon. Enjoy the
fall weather, football and the
turkey, and we'll see you again
around the end of the year.

Irv

We're going to use our new computer
to try and understand our old one.

CODEWORKS Issue 26 7

Beginning BASIC
On Programming

For the past four years we have talked about
the tools available in BASIC used to write pro
grams. Those tools were the commands and
functions, and how to use them. The only way to
get to know them is to use them on a regular
basis. What we haven't talked about, up until
now, is the concept of programming. What goes
into a program? How do you start? Why use one
method instead of another? In short, how do you
get the job done with the least code and hassle?

With this issue, we'll start a short series de
signed to answer those questions, and perhaps
give you some insight into what it takes to put
together just about any program. Most of us just
start playing around and eventually end up with
something reasonable, but not usually well
thought out or optimized. It's fun, sometimes, to
do that just to see what it leads to. But most of us
do not have the time for such a haphazard
approach. Like most things in life, we need it
now - and it's got to work right the first time.

There are always three parts to any program.
Repeat: three parts, always. Those three parts
are: Input, Processing, and Output. You take
something as input; you do something to it, and
then you present it in some fashion as output.
Try and think of a situation where this is not
true. Granted, the input may come from a disk
file, or from data statements in the program; but
it's still input. The processing portion is usually
straightforward, you do something to the input
data, even if it's just moving it from one place to
another. Naturally, you want to see some results
when you are done, either on the screen or on
your printer. Sometimes, however, the output
may simply be sent to another disk file. It doesn't
matter, even if it goes to a disk file, it's still a form
of output. Even in simple game programs, you
input your decisions, the program processes in
formation based on your input (usually with the

random function) and the output is presented to
you via the screen as a new game situation. It is
always true that any program must possess
these three parts. If any of the three is missing,
you don't really need a program.

Input

Let's take input first, since that is the logical
way things happen. Input can come from your
keyboard. Your program can present you with
input prompts which ask for the required infor
mation, or at least part of the required informa
tion.

Input can also come from a disk file, where you
would take the data there and process it into
another form. You could also have a combination
of inputs where most of it came from a disk file
and you supply more via the keyboard in the way
of making decisions based on the data from the
file.

As we have already found out, data can also be
hard-coded into the program itself, in the form of
DATA statements. This, too, is a form of data
input to a program, although such data is rather
fixed in nature and not easy to change. DATA
statements are usually reserved for such uses as
months of the year, column headings for printed
reports, and other data which is reasonably
constant.

There is yet another form of input that most of
us wouldn't even guess is input. That is the RAN
DOM generator which BASIC provides. Yes, this
is a form of input too. Instead of you picking a
number between 1 and N and entering it via the
keyboard, it does the job for you. It's still input,
though, because it is not hard-coded into the
program and provides an input that is variable,
and not fixed or pre-determined.

8 Issue 26 CODEWORKS

All input to a program should be verified,
which is to say that it must fall within the
bounds of what the program expects to see. With
a disk file or with the random generator or DATA
statements, this is not difficult to do. Problems
with verification come mostly with keyboard
input. You never know what operator will enter
what into a program. Is the input numeric when
it should have been a string or the other way
around? Is the value entered within the range
the program will, or can, accept? On string
inputs, will the program accept either upper or
lower case input, or will it hang up because you
entered a lower case n when it was expecting
upper case Y or N? The most insidious cases are
where the program accepts wrong input and
goes merrily on its way - and then gives you
corrupted output - and you wonder why.

Input validation is almost a necessity in any
good program. Check it as soon as it is input and
ask for correct input if the data is outside the
accepted bounds. In the way of user-friendliness
(a terrible term to use, but there is no other), you
should consider allowing the user to input data
in as many forms as possible, and then convert
ing that input to the acceptable form in the
program itself. One example comes to mind:
When asking for input of decimal amounts, as in
interest rates, you can let the user input the
number either as an integer or as a decimal
amount. Then if the number is less than one,
leave it alone, otherwise divide the number by
100.

Don't fall into the trap of saying that you are
programming only for yourself and you will
remember how to enter the data. Murphy's law
says that you will forget, or that a friend will see
the program and want a copy, and then think a
lot less of you when he can't get it to rim like you
said it would! Act as though every program you
write will be a best seller and take all the precau
tions necessary to keep the complaints and
gripes to a minimum. George Henry's Old
Grandmother should be able to run the program
without help.

CODEWORKS Issue 26

Processing

This is the part the computer does. Keep in
mind that it will do pretty much what you tell it
to, and if you tell it wrong, the output will be
wrong. Depending on the size and scope of your
program, check it with sample data that is both
very small and very large. There's nothing so
frustrating as having a program work well on 10
items and bomb on 100, especially when your
whole design has to be changed to make it work
right, a total re-write in other words. Make sure
that your processing is valid for the range of
input you have allowed for. As in our earlier
example with interest rates: leaving out the
decimal point would result in some impossible
payments!

Another killer in this area are parentheses. In
a math function a missing pair or misplaced pair
of parentheses can cause you no end of trouble. It
can turn into another case of no errors reported,
but output that is totally incorrect. Does 2*5-3
equal seven or does it equal four? It's easy to see
when there are actual numbers there, but not
when it is in the form of: A*B-C, because you
don't equate the variable name letters to values,
normally. (If you want this expression to equal
four then it should be written: A*(B-C), other
wise, if you want it to equal seven then it should
be: (A*B)-C.)

Output

Here, at least, you get something to see, either
on the screen or on your printer. This is usually
the first indication that something in the pro
gram is not working right. Aside from the actual
values that are output, you also have the task of
formatting that data on the printed page or on
the screen. In addition, you may well have com
puted A*(B-C) properly in the processing part of
the program, and then told your output to print
a variable that does not even represent that
value. In other words, validation is again neces
sary. Use simple data for a test, then use a hand
calculator or pencil and paper to work the simple

data out manually and see if your output agrees.
If your program has several IF...THEN branches
in its computational section, make sure you test
each case separately. Provide the input that will
force the program into each of the conditional
cases, and don't rely on just one pass through all
cases. Try several different values with each
case, making the values hit both high and low
extremes.

In addition to output to the screen or printer,
you may in some cases wish to send output to a
disk file. This happens more often than you
might expect, as when converting one type of file
to another, or in modifying the data in a file and

writing out a new, updated file. In such cases, it
is wise to also print the output to the printer or
screen as the new file is being written. This
allows you to see what is happening, and avoids
the necessity of exiting BASIC and using DOS to
view the file after it has been written. (It has
been our experience that every time we do this,
we forget to save the BASIC program first and
consequently lose the latest edits to it.)

In the next issue, we will look in detail at how
to plan a program, how to decide what data
structure to use, and how to structure the flow in
a top-down manner.

Things which may he of interest and help fill little spaces like this one.

100 CLS
200 REM - PROBABILTY PROGRAM
300 PRINT''WHEN CHOOSING R ITEMS FROM A SET OF N ITEMS THE''
400 PRINT''NUMBER OF POSSIBLE UNIQUE COMBINATIONS IS GIVEN BY''
500 PRINT''THE EQUATION: N!
600 PRINT'' R!(N-R)!''
700 INPUT''PLEASE ENTER N, THE TOTAL NUMBER OF ITEMS'';N
800 INPUT'' PLEASE ENTER R, THE NUMBER OF ITEMS YOU ARE CHOOSING'';R
900 M=1:S=1
1000 FOR 1=0 TO R—1
1100 M=M*(N-I)
1200 S=S*(I+1)
1300 PRINT M,S
1400 NEXT I
1500 PRINT" NUMBER OF POSSIBILITIES: X,;M/S

With all the interest these days in the various
lottery games around the country we thought it
would be interesting to show another way to look
at your chances. This program allows you to see
how many ways a number of items can be picked
from a larger set of items.

Not very encouraging, is it? Of course, if you win
you don't really care what the odds were. Our
thanks to Kristi Perez for the program

Our little thing on the back page of the last issue
brought bunches of mail. Before we get into it

let us say that we solved the problem very
quickly by simply using QuickBASIC. It was the
most expedient thing to do at the time and it got
the job done. Here is how Bob Keegan did it:
10 FOR 1=0 TO 49999!

20 N1$=STR$(I):LN=LEN(N1$)

30 CH=(I+1)-INT((I+l)/7)*7

40 N2$=N1$+CHR$(48+CH)

50 N3$=RIGHT$(N2$,LN)

60 N4$=''10000000"

70 MID$(N4$, 9-LN, LN)=N3$
80 PRINT N4$

90 NEXT I (more Things on page 38)

10 Issue 26 CODE WORKS

Card2.Bas
An Updated Version of Card.Bas

Staff Project. Now that it's five years old, Card.Bas can use some refinements
and updating. Now you can use just one version of Card2.Bas and load a variety
of files with a different number of fields in each. Print formatting has been
improved as well.

Card.Bas is five years old this month. It's been
a workhorse of a program and we use it for lots of
chores around the office and at home. Judging
from your letters, it's been that way for you, too.

But Card.Bas has some shortcomings.
Searching and editing are just not that smooth.
It uses a discrete end of file marker that keeps
getting in the way and has to be taken into
account whenever you want to modify the code.
Originally, it had a preposterous way of initializ
ing the file, although that was fixed with a "field
change" in later issues.

But the single most annoying thing about it
was that the fields were all fixed in the program,
and there was a string variable attached to each
field of the record. Changing the number of fields
meant reprogramming and going through and
changing all those string variable field names.
Even then, you had to use a specific version of
Card.Bas with (and only with) its associated
data file. How many versions of the program did
you end up with? We certainly had a few, to say
the least.

Digging into that code brought back some
waves of nostalgia, but we did it anyway.
Card2.Bas is the result, and we ran into some
surprises and a couple of interesting challenges
along the way. Basically, the objective was to get
rid of the ZZZ sentinel; carry the field names in
record zero of the data file; use double sub
scripted arrays to prevent the old A$ through 1$
field names; provide a much better printer out
put module; and improve the user interface as
much as possible.

But what will happen, we asked, if we sort the
file when it has all the field names in record zero?
Nothing, we found out. The field names always
stay in record zero because when we sort or
search the file we can start at record one and go
to the end of the file, instead of starting at record
zero. That one was easy enough.

And what about compatibility with files cre
ated under the old Card.Bas? Well, we had to fix
that, too. Cardconv.Bas (in the last issue) is a
program you can use to convert your files over to
Card2.Bas. Naturally, any new file created with
Card2.Bas will create the file in the proper form.
You can also use a word processor to massage the
old files into the new form, but that is more
involved, and we wanted something that would
work for everyone including those who (are there
any?) don't have a word processor. We used a
word processor for one file, though, just to see if
it could be done, and it worked fine.

In Card2.Bas, variable NR stands for Number
of Records; NF stands for Number of Fields; and
R$(x,x) is a double sub-scripted array variable,
and is usually counted by loop integers I and J,
as in R$(I,J), where I is usually the record
number and J is the field number within the
record. We will use the integer array, P(I), to
keep a pointer to each record so that when we
sort we can sort P(I) and not the strings them
selves (just like in Card.Bas). Something new to
Card2.Bas is direct cursor positioning, so we can
put the whole record on the screen and let you fill
the blanks, which was another thing lacking in
Card.Bas.

CODEWORKS Issue 26 11

It might be interesting to see just how the data
file is laid out, so here is an example of how it
would look for a file with five fields:

5
Name
Address
City
St
Zip
John Jones
123 Oak Street
Anytown
NY
11234
Mary Cary
213 Elm Road
Sometown
CA
92123

Zelda Zealot
23 Purdue St
Zanesville
OH
43444

(The last record just ends. There is no ZZZ, the
DOS supplies the End of File marker as needed.)

Did you notice that the first record, record
zero, actually has six fields in it while the rest
only have five? That's because the very first
thing in the file is a number indicating the
number of fields. We need that so we can set up
the loop properly to read in the rest of the file as
you will see in a bit.

We have just about covered the first 300 pro
gram lines in the discussion above, except for
date input which is used in report headings. Note
line 280, where V is still the maximum number
of records the file can hold. You can increase this
if your data records are short. Also note that we
have not yet dimensioned any arrays because we

still don't know what size to dimension to, i.e., we
could be reading in a file with seven fields or one
with just three. Now let's get to line 350 and read
in a file.

We named the file in line 310. If we had asked
for a file that didn't exist yet the error trap would
have sprung and we would be down around line
1220 where we could abort or start a new file. For
the moment, let's assume the file shown earlier
is on disk and we are going to read it in. In line
350 we open the file for input. The very next
thing we do is to read in just that one digit from
the file that tells us how many fields each record
in the file has. It happens in line 360, where we
input #1, NF (number of fields). The very next
thing we have to do at this point is to dimension
the R$ array to accept the data we are about to
read in. We set V earlier, in line 280, and now we
know how many fields are in each record (it's in
variable NF). So now, still in line 360, we can
DIM R$(V,NF), which in our case turns out to be
R$(400,5). At the same time and in the same
line, we can dimension our pointer, P, to be the
same as V, or P(400).

The next thing that happens is that we set the
I loop to count from zero to V. Why V? We don't
yet know how many records there are in this file,
so we set the loop to the maximum number and
we will jump out when we reach end of file. The
next line, 380, provides our escape hatch from
this loop. Inside the I loop, we set the J loop to
read in the fields, from one to NF. Then we
simply line input through buffer #1, R$(I,J)-
Note that between the execution of the two loops,
which is after the J loop is finished and before the
I loop goes for the next record, we set P(I) equal
to the I count (in line 420). This "attaches" the
same I number from the record to the pointer,
P(I). If you never understood how that pointer
works, follow closely, we think we Eire about
ready to actually explain it.

At first, as loop I increments, P(I) will have the
same number as the corresponding loop count.
In other words, P(23) will contain the number 23
and will point to the 23rd record that was read in.

1 2 Issue 26 CODEWORKS

At this point you could say, so what? But when
we get to sorting you will see the magic of that P
number. We'll pick up on it again when we get
there.

When we reach the end of the file, control
jumps from line 380 to 440, where we close the
file. Then we set NR (number of records) for the
first time to be equal to the I count less one. It's
less one because we already advanced the I count
but didn't read in a record for that I count (we
aborted instead because of EOF). (Programming
is such fun!)

So now what do we have? Record zero, now
array element zero, R$(0,x), looks like this:

R$(0,1) = Name
R$(0,2) = Address
R$(0,3) = City
R$(0,4) = St
R$(0,5) = Zip (and there's a 0 in P(0)

Record 1, now array element 1, looks like this:

R$(l,l) = John Jones
R$(l,2) = 123 Oak Street
R$(l,3) = Any town
R$(l,4) = NY
R$(l,5) = 01234 (and there's a 1 in P(l)

and so on ... to EOF.

And variable NF contains the number 5, the
number of fields in each record. With that, we
can take each menu item and examine it. We 11
take them as they appear sequentially in the
code, not as they occur in the menu.

ADD Records

This takes place between lines 670 and 890.
We start by clearing the screen, and that's im
portant because we want a clean screen to start
with for our cursor positioning that follows. Next
we print a heading, then below that, information
about what the last name in the file is, what
record number it is and the total records this file

can have. It happens in line 680. When we print
R$(NR,1) we will get the Name contained in the
last record number in the file. (If we had printed
R$(NR,2) we would have the Address of the last
person in the file). Then we print a notice on how
to quit adding records to the file by making field
1 a null string.

Next we position the cursor at X=5 and Y=l,
which is 5 lines down and starting at the left
margin. X and Y are always our cursor position
ing variables (in all of our programs, refer back
to lines 220 to 260). This does not mean that
when we want to step the cursor, we cannot use
X or Y in a loop to do it, as we will see shortly.
Then we print, for J = 1 to the number of fields
(NF); first the loop number to serve as a field
number; then the field name, as in R$(0,J); then
a string of dashes that is the difference between
10 and the length of the field name. The fields in
our example file above would look like this:

1 Name
2 Address—
3 City
4 St
5 Zip

Now we want to position the cursor right after
some space after 1 Name so that we can
start entering information into the record. Line
740 positions us there with an X=5 and Y=18.
Now we have the screen set up for data entry.

We have a big input loop between line 750 and
890. Inside this loop there are two smaller loops;
one to input the data and the other to clear space
before we input the next record. Also in the loop
is a clear and print routine for the top of the
screen, where we keep track of which record was
just entered. Last but not least, we must attach
a new P(I) number to the new record just cre
ated. That occurs in line 880.

Our big loop between line 750 and 890 starts
counting one past the end of our array limit (NR),
and presumably can go as high as V, or the
maximum number of records we set for ourselves

CODEWORKS Issue 26 13

early in the program. Inside the big loop, the first
smaller loop we come to is the input loop. Its
index is X because after each entry we want to
move down on the screen one line to the next
entry. Since our entries start on line 5 of the
screen, X has to start there, too. The limit we will
step X is the number of fields plus 4. Sound
wrong? Yes, it does at first, but in our example
case we have five fields, and 5 plus 4 is 9 and if
we start at line 5 we will have 5 fields entered
when we reach the count of 9. But we have a little
problem. We would like to input R$(I,J) so that
the record and fields will be accounted for. But
we are stepping the loop with X, and X isn't even
close to 1 to 5 like our fields should be numbered.
So, in line 780, we simply line input R$(I,X-4) to
get the field number back into the range we want
it in.

Then we have to check to see if the user wants
to quit adding names, so we check R$(I,1) to see
if it is null, and if it is, we set the new number of
records (NR) and then go to the menu. If R$(I,1)
is not null we keep entering information into the
array. After we have completed one record, we
need to wipe the information (only what we
input) off the screen so we can enter another
record. Line 810 positions the cursor at the right
place to do this. Then the loop from 820 to 850,
similar to the one we just left, prints 40 blanks in
each position. Next we clear the heading at the
top of the screen (line 860), and then print the
information from the record we just entered
there. We then tag P(I) to this record in line 880
and then go on to start entering the next record.
Note that we don't have to update NR during this
I loop. The initial NR+1 is a number, just like 56
or something like that if we already have 55
records in the file when we start adding, and it
will get incremented by the loop counter itself.
We only had to take one away from NR in line
790 because the loop was already incremented
one past the actual number of records when we
decided to quit adding records.

Quick Scan the Records

This section is almost as simple as it was in the

original Card.Bas, except that there the records
flew by fast and there were no field names
attached. Here, we put one record on the screen
at a time, with field names attached and a
prompt to quit or continue by pressing any key.
The code is from lines 930 to 1050. After each
record is displayed and we go on, there is no need
for fancy cursor positioning, so we just clear the
screen and put up the next record. When we
reach the end of the file (when I=NR) we skip
around the "Press Q to abort, any key to con
tinue" message and go right to the INKEY$
routine in line 1010 which takes us back to the
main menu. Note that the records are printed in
P(I) order and not the straight I order of the
array. (There's more on that in the next section,
too.)

Save the file and END

This routine sits between lines 1090 and 1180
and is a straightforward output routine with a
couple of exceptions. First off, we print the
number of fields to the file all by itself. Then we
loop through the remaining records and print
them to the file. As in the original Card.Bas, our
delete routine simply nulls the first field of the
record, so we check for that here and if that field
is a null string, we skip over it and don't print it
to the file, which gets rid of it by discarding it into
the bit bucket. One other thing should be noted
here, and that is that we are printing the records
out in the order that P(I) has them, not the way
they are sequenced in the array. Up until now we
haven't had them any other way, but the sort
will most assuredly have re-ordered the num
bers in P(I), and we want the file to be in the
order we sorted in. Remember that P(I) is just a
number, like 10 or 35 or any other number. The
I numbers for the array will always start at 0 and
go sequentially to the end of the file; the P(I)
numbers will not necessarily be in that order, as
we will see when we get to the sort routine.

Error Trap and Initialization

When you start the program you will be asked
for a file name. If you give one that doesn't exist,

14 Issue 26 CODEWORKS

you will be given the opportunity to abort or to
start a new file. This code is between lines 1220
and 1380. Line 1230 is for those of you who have
BASIC prior to version 5.0. If you do, then move
the remark from line 1230 to 1220.

If you have followed Beginning BASIC in the
past few issues, you know all about INSTR. It's
used in line 1270 to give the position of CC$ in
the string, "yYnN." If the position is zero, it
means that you didn't press either upper or
lower case Y or N, and we go back and wait for
the proper input. If the position is 3 or 4, it means
"no," so we end the program right there. Other
wise, we fall right through the code and create a
new file.

Since at this point we don't know yet how
many fields there will be, we set the loop count in
line 1330 to 10. We are sort of limited to about 10
by both screen size and in the report generating
section to come later. In lines 1330 to 1360 we
input the name for each of the fields we want to
have. Pressing enter all by itself will terminate
entries. When we enter the null field by pressing
enter, we set the number of fields (NF) to J less
1 and go to the main menu, where most likely,
you will want to start adding records.

Search (Edit & Delete)

This is one of the longer sections in the pro
gram. It starts at line 1420 and ends at 1860.
First we clear the screen, then we get record zero
with a J loop and print the field names on the
screen. Then, in lines 1470 to 1500, we establish
which field number to search on and what the
search string will be. The search string is con
tained in S$, and the field number to search in is
in variable SF (for Search Field). Having gotten
this out of the way, we clear the screen again and
get ready to do some more direct cursor manipu
lation.

First though, we set A equal to 1, and then
search the R$(x,x) array for our search string.
We search the array from A to the number of
records, and since A at this point is 1 we search

the whole array (except for record zero, which we
don't want to include). The reason for variable A
will become apparent shortly. In line 1540 we do
an INSTR search to find what we are looking for.
If we don't find it in the whole file, INSTR will be
equal to zero and we drop through the next line
and print that no match was found, and to press
any key, which takes us back to the main menu.

If we do find a match, control jumps to line
1590 where we first clear the spaces we are going
to use on the screen (in lines 1600 to 1630). Then
we reposition the cursor in line 1640 and print
the record in which we found the match. We print
the whole record, including the field headings,
and again, we are using P(I) as a pointer to the
record. Then we drop down a couple of lines and
print the prompt for "Next match, Previous,
Delete, Edit or Quit."

The response to this prompt is an INKEY$ re
sponse so that you get action as soon as you press
the key and you don't need to press enter. There
are only five responses allowed here, and line
1710 uses INSTR again to make sure that you
pressed a valid upper or lower case response. If
you didn't, control goes right back to the
INKEY$ line at 1700 and waits for the proper
key to be pressed.

Let's take the responses in the order in which
they appear in the program. If you press N, for
Next match, we jump to line 1820. Here we
position the cursor and wipe off the record cur
rently on the screen. Then we readjust A to be
equal to I plus 1. Do you see the reason for
variable A now? If we didn't advance A by one,
we would be stuck on the same record and
couldn't get off of it. The A=I+1 advanced us to
the next record after the one where we found the
match, so we can keep on looking through the
array for more matches. And that's what hap
pens in line 1860, we go back to 1530 with our
new A and keep right on looking.

When you press P for previous, we subtract
one from A and send control back to line 1530.
First we have to make sure that A is not going to

CODEWORKS Issue 26 15

be less than one because we can't look at records
prior to record 1. You get an error if you try to do
that. It turns out that if you are searching on the
sorted field in a file you can step back with the
previous option all the way to the first match. If
you are searching on an unsorted field, however,
you can only back up one previous match. If you
try to go farther, it just recycles on that record. It
will also recycle on record 1 if you get back that
far.

If we pressed D for Delete, line 1730 will
change the first field of the record to a null string.
Then control goes to 1820, just like it did for Next
match. This is so you can do a whole string of
deletes in a row, without having to start at the
beginning. (You're not locked into this, we'll get
to the Quit option shortly.)

If you press E for Edit, we have a bunch of
fancy stuff to do. First, in line 1750, we ask for
the number of the line to edit. This is another
"hot" key which uses INKEY$. But since
INKEY$ demands a string, we need to take the
VAL (value) of the number so it will work in line
1780, where we input the correct line and put it
into R$(I,WF). I, of course, is the record we are
currently looking at and editing. WF (which
field) is the field number we are editing. The
dialog which just took place on the screen hap
pened on screen lines that correspond to NF plus
6 and NF plus 7. We want to get rid of that dialog
without disturbing the remainder of the screen,
and we do it just like that in lines 1790 and 1800.
Then we go back to line 1600 (from line 1810)
where we clear out the record and re-write it,
showing the editing change we just made. After
this, we are presented again with the same
"Next match, Previous, Delete, Edit or Quit"
prompt, so we can make more edits if we like or
do whatever we want.

If you press Q for Quit, control simply sends us
back to the main menu.

Did you notice throughout the entire program
that we never refer to the number of fields
directly, but only by referring to NF? That's

because we are never sure when we start the
program which data file we are going to be using,
and the number of fields can vary from data file
to data file.

The Shell Sort Routine

Frankly, I am not very happy about my ability
to describe the Shell sort to you. Perhaps I don't
know it well enough myself. I do know that if you
see the way it works you will understand it, so I'll
take some time out here and see if I can write a
little demo sidebar to this article that will do
that.

(Two days later ...) Well, I'm back. It was an
interesting side trip and I still haven't written
the side bar. But I know what has to go into it
and how we'll do it, and that's half the problem
solved. During the process of getting to know the
Shell sort, I found that the original Card.Bas had
a flaw in the sort routine. Don't ask how it got
there, or why -1 don't know. At any rate, it's fixed
now, we removed about three lines of code in the
sort and increased its speed a whopping 40
percent! It's not that the original Card didn't sort
right - it did, it just wasn't as fast as it could have
been.

The sort routine (see the sidebar, also) is what
is called a "modified Shell sort." On a 10 Mhz
CPU it sorted 217 names and addresses in 15
seconds flat, and that was even with time out to
print a period on the screen for each swap that it
did. For comparison, on the same machine, with
a bubble sort, it took roughly 35 minutes. In both
cases the list of names was sorted in reverse
order first, and then timed to see how long it
would take to put back into ascending order by
name.

We can't possibly leave this section without
getting into our old friend, P(I) - we promised,
remember? Let's start by saying that the file you
read into the memory array from disk is in
memory in the same order that it was on disk
and as long as it is in memory it never changes. It
stays that way, even when you sort. Record three

1 6 Issue 26 CODEWORKS

from disk is still the third record in the array and
it stays that way the whole time it is in memory.
When we read in the array from disk, we as
signed P(I) to be equal to I (the loop counter). So,
P(I) and I will be identical for any record. If the
loop count (I) is 15, so will P(I) be 15.

When we sort, however, we just look at the
information we want to sort on, and if the item (I)
we are looking at is greater than item the next
item (1+1), then we switch the P(I) numbers only.
Look at lines 2050 and 2060, and you can see
where this happens. We don't have to switch
each field either, because when we are looking at
a record, the I count tells us which record it is and
that same I count applies to each of the fields in
that record. When we swap P(I) numbers, we are
effectively swapping for each of the fields as well.

P(I) is an array that was "synchronized" to the
I count of the array. Each number in P(I) pointed
to a number identical with the I count. After we
sort, the P(I) array numbers will no longer be
synchronized to the I count numbers, instead
they will point to the sorted order of the R array.
Nothing in the array changed places - each
record is still where it always was. But now,
when we search, or scan or print, we do so in the
order of P(I), and we see the list in the sorted
order that we wanted. Sneaky, huh? That's why
the sort is so fast. It's because P(I) is an integer
number, and that's all we really changed when
we sorted. Strings just never get moved with this
method.

When we are finally done, and end the session
and save the file, then the records are sent to the
disk in the order of P(I), and they actually change
places then, compared to what they were when
we read them from disk.

If you still don't get it, look at it this way, with
just five records. Loop counter I reads them from
disk and attaches P(I) to each. I reads from 1 to
5 and P(I) also reads from 1 to 5. The names, let's
say, are:

Before the sort:
(I) P(I)
1 Foxtrot
2 Delta
3 Charlie
4 Baker
5 Able

After the sort:
(I) P(I)
1 Foxtrot 5
2 Delta 4
3 Charlie 3
4 Baker 2
5 Able 1

Now instead of reading R$(I), we read
R$(P(I», and we see the list in sorted order
instead of the other way around. And the names
never changed their places in the array at all.
Pointers, you'll have to admit, are clever devices.

The Print Routines - Report Format

We had a problem with this. How do you set up
a generalized report or label format when you
don't even know how many fields there will be or
what's in which field? Well, for years I have been
waiting for a good reason to explore the idea of
tabs that are programmed, in other words, tabs
that change depending on the data. Here, at last,
was an opportunity to do it. Not only do the tabs
set themselves, but they adjust to the length of
the largest field for each tab. In addition, they
take into account situations where the field
name is longer than the data in that field, as
when the field name might be "Overdue" and the
file contains a "yes" or "no" for that field. What's
more, the program totals the tabs and adds the
last field length and if it's more than 80 charac
ters it automatically shifts your printer into 132
character mode (and back to 80 characters when
it's done). If the tabs total more than 132 we just
have to live with wrap-around. Let's take the
output selection section first.

At line 2210 we clear the screen and print the
printed output selection heading. We're using
hot keys here again, and line 2320 checks for
legal input with our old friend, INSTR. You can
select L for standard sticky labels, R for report
format or Q if you change your mind about being
at this section in the first place.

The report section starts at line 2340 and ends
at line 2800. The first thing we do (at line 2370)

CODEWORKS Issue 26 17

is to find the maximum length of each of the
fields we are dealing with. The loop at 2370 goes
through each of the fields in the file and lets A(J)
equal the highest length it finds. At the same
time, we have to cruise through the field names
themselves, in record zero, to see if any of them
are longer than the actual data in the field. It
would seem that all this would take a long time,
but on our 10 Mhz machine, with our 217 name
test file, it only took a few seconds. So when we
are done, A(J) (for however many fields J is)
holds the longest length of each field.

You can't just take the information in A(J) and
set tabs. In fact, the first print position isn't a tab
at all, it starts at the left margin. Then, each
successive tab has to be added to all previous
tabs to get the actual tab position. It wasn't as
easy as it first seemed. In addition, we have to
provide for at least ten columns of print, even
though there may not be that many.

In lines 2460 to 2480 we simply go through the
A(J) array and add one to provide for at least one
space between the tabbed columns. In lines 2510
to 2530 we get the total of all the tabs and put
that value into TB.

Lines 2550 to 2580 is where you will probably
have to make some changes depending on your
printer. The values in the program now are for a
Micronics Star SG-10 in IBM mode. It is in these
fines where we set the printer to 132 column
mode and back. Also, if the printer is set to 132
columns, MS DOS (and some CP/M) people will
have to set the width of lprint. That occurs in line
2580. Remark fine 2580 if you don't have to set
width.

Line 2610 is where we finally calculate the
actual tabs and put them into array T(x). Note
that each one, after the first two, are equal to the
previous T value plus the A(J) value. On my
machine tab(l) and tab(0) are the same, so T(l)
is equal to 1, T(2) is equal to the longest line in
the first field plus one, T(3) equals T(2) plus the
longest length in the second field plus one, and so
on. It turns out that variable NF (number of

fields) will tell us how many tabs to use, and we
don't even have to worry about it.

From line 2640 to 2800 we print the report. In
line 2640, we set PG (page) to one and LC (fine
count) to zero. Then we go through all the rec
ords, from one to NR (number of records), and
from field one to the number of fields (NF), we
LPRINT at TAB(T(J)), the information in that
particular field. Before that happens, however,
at fine 2660, we check to see if this is the first line
of the report or the 61st fine, etc., and if it is, we
go to the subroutine at 2770 to print the page
header first. We then print 60 lines of informa
tion, incrementing LC (line count) each time we
print a line. When LC reaches 60, we set it back
to zero, increment the page count and issue a
page eject to the printer so that it will go to the
top of the next page. This all happens in line
2700. In fine 2720 we are at a point where all of
the report has been printed, but the last page
might not be full, so we issue another page eject
with the CHR$(12). Then in the next fine (2730)
we set the printer back to normal mode, regard
less of what it was at. Who knows? You might
want to print labels next and don't want them to
be all in condensed print. It's just a housekeep
ing thing - that's all. Watch it run first, then
come back and read this again, and yes, this and
the next section of code were a real kick to write.
It's so nice when things work!

The Print Routines - Label Format

We had the same problems with label format
as with report format. How do you know what
goes where and how many fields will the user
want to put on one line (like City, State and Zip)?
What if he has First name in one field and Last
name in another? How are we going to let him
hook them together the right way? We're happy
to say that the solution to all that was even
simpler than the report formatting. It starts at
line 2840 and runs to the end of the program.
Here, we print the field headings on the screen
for you to see which is which (in fines 2870 to
2890). Then we put some instructions on the
screen: Press ENTER for any blank fines, and to

18 Issue 26 CODEWORKS

put more than one field on one line, just put the
field numbers, one right after the other, like 12
for fields 1 and 2 on the same line, or you could
even put 21 if you wanted them in that order.

Starting at line 2950, we go through a loop six
times and ask what goes on each line. Why six?
Well, we normally print six lines per inch, and
the labels are exactly one inch from top of one to
top of next. By forcing you to enter six lines (even
if they are blank) we have automatically set the
correct spacing between labels. Not only that,
but it allows you to have a two, three, four or
even five line label if you like. (You can't print six
lines, it would print in the crack between the
labels!) In the loop at line 2970, we check to see
if the value of the field number you just input is
more than nine. If it is, you obviously want more

than one field on one line, and we go to the
subroutine at line 3110 to "take apart" your
number. Can you see why we used strings here
instead of integers? Strings are so much easier to
take apart, and you can always use VAL to get
them back to an integer later.

When we finally get to line 3020 to print the
labels, we check for a value of zero (which means
you pressed ENTER without giving a field
number) and if so, we print a blank line. Other
wise, if you designated a field or fields, we print
them in the order that you mentioned them - up
to four of them per line. But what happens when
you don't want four fields on one line? Nothing
happens. If 1$, J$, K$ or L$ is a null string,
nothing prints, and we are home free. Try it,
you'll see.

Figure 1 gives a graphic look at how the Shell
sort works. A little study of this figure goes a long
way in understanding what's going on. The
symmetry generated in this figure is due to the
fact that we started with a reverse ordered list.
If the list were not in reverse order such symme
try would not be apparent.

As you can see, the list is first divided into two
(line 220 of the program is what does that). A
comparison is then made of the first item in each
half, and if the first item in the upper half is
smaller than the first item in the bottom half, a
switch is made. Note that this is a wholesale
move that takes the item at least half way to
where it should be. In our case the 7 is only one
away from where it should be, but is moved way
to the left to the lowest position. It is put into its
proper place in one later move, when it is
switched with the 1. Some numbers happen to
end up exactly where they belong after just one
move - the 10, for example.

After the first cut in half is over, the remaining
sections are again cut in half and the process is
repeated on each of the remaining parts. Vari
able M in line 220 gets cut in half each time a cut

is made until it is finally zero, indicating that we
are done (see line 230).

Just for comparison, a Bubble Sort would have
taken 78 moves to do the same thing. For those
interested, the Bubble Sort formula is the num
ber of items squared less the number of items, all
divided by 2. It's difficult to come up with a
formula for the Shell Sort, suffice it to say it's
faster by far, especially when a larger number of
items are to be sorted. It's that square term in
the Bubble Sort formula that gets you.

If you want to play around with other than
reverse ordered numbers, you can remark line
140 and un-remark both line 150 and 160. This
will get you a set of random numbers. When you
do this, give the program the same number of
items to sort several times and watch the num
ber of swaps required. It all depends on how un-
sorted the original list is.

Naturally, lines 180 and 300 are in the program
only to print out the results after each swap. You
wouldn't need them if you incorporate this rou
tine into some other program. Nor would you
need the beginning lines, up to line 200. And,

CODEWORKS Issue 26 1 9

incidentally, we used 13 items because that was
just about the most we could use that would fit
across a page without wrapping.

There is only one sort routine that is faster than

6 !

the Shell Sort, that being the Quick Sort. It's just
a wee bit faster, we're told, but we haven't been
able to find the routine in any of our books. We'll
keep looking though, and when we do we'll ex
plore it, too.

13
7
7
7
7
7
7

1

1
1

1
1
1

1

1

12 11 10 8
12
£_

11 10

6
6
6
6
6

10

5
5
5
5

10
4

4
4
4

3
3

3
3

2 3
2 3
2 3

Sorted after

4
4
4
4
4
4
4

6
6
6

8
II

III
8 13

I
12

13 12

4
4
4

13 12 11
"ll |~T
Ll jlO

3
3
3
3

13 12 11 10
3
9

13
r

12 11 10

5
5

5 6
5 6
16

7
7
7
7
7
7
7
7 8

swaps

12 11 10 9 8
12 11 10 9 8
12 11 10 9 8

9
11 9

10
10
10
10

Figure 1

12

O

t—1

t—1
T 1 iii 8

9 [H
8

10 12 M
9
[H
8 10 12 fi

12 11
12 11
12 11
11 12

2 1 /Start here
2 1 /switched
2 1 /switched
2 1 /switched
2 1 /switched

2 1 /switched
8 1 /switched

13 /switched
13 /switched
13 /switched
13 /switched
13 /switched
13 /switched
13 /switched
13 /switched
13 /switched
13 /switched

7 - 1 3
6 - 1 2

5 - 1 1
4 - 1 0
3 - 9
2 - 8

1 - 1 3
1 - 7
3 - 6
2 - 5
9 - 1 2
8 - 1 1

2 - 3
5 - 6
8 - 9
11 - 12

100 REM * Shell.bas * a shell sort demo
110 DIM P (101)
120 INPUT''How many items in the array '';NR
130 FOR 1=1 TO NR
140 P(I)=(NR+1)-I
150 'P (I) =INT (RND (0) *98) +1
160 'RANDOMIZE TIMER
170 NEXT I
180 FOR Q=1 TO NR:PRINT P(Q);:NEXT Q:PRINT'' /Start here"
190 'The actual sort begins here
200 N=NR
210 M=N
220 M=INT(M/2)
230 IF M=0 THEN 370
240 J=1
250 K=N-M
260 I=J

20 Issue 26 CODEWORKS

270 L=I+M
280 IF P(I)=<P(L) THEN 340
290 SWAP P(I),P (L) :COUNT=COUNT+l
300 FOR Q=1 TO NR: PRINT P(Q);:NEXT Q : PRINT " /switched '' P (I);"-"; P (L)
310 I=I-M
320 IF I<1 THEN 340
330 GOTO 270
340 J=J+1
350 IF J>K THEN 220
360 GOTO 260
370 PRINT" Sorted after "/COUNT;" swaps."
380 END

Card2.Bas program listing

100 REM * Card2.Bas * an improved Card.Bas program 19 Jun 89 ims
110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 * Please leave these credit lines.
130 REM * (c)1989 80-NW Publishing Inc. & placed in public domain.
140 ON ERROR GOTO 1220
150 'NR = number of records in the file
160 'NF = number of fields in a record
170 'R$(x,x) = data records
180 'P(I) = integer pointer to data records
190 '
200 'Generalized Locate/PrintS subroutine. Unremark as needed.
210 GOTO 270
220 LOCATE X,Y:RETURN ' MS-DOS, GW-BASIC
230 'PRINTS((X-l)*64)+(Y-l),;:RETURN ' Tandy Models I/III
240 'PRINTS((X-l),(Y-l)),;:RETURN ' Tandy Models II/IV
250 'PRINTS(X,Y):RETURN ' Some MBASIC machines.
260 'PRINT CHR$(27)+''Y''+CHR$(31+X)+CHR$(31+Y);:RETURN ' CP/M
270 ' Initialization
280 V=400 ' set max number of records file can hold here
290 CLS
300 IF DATE$<>"" THEN ELSE INPUT"What is today's date";DATE$
310 INPUT''What file name do you wish to use '';F1$
320 '
330 REM * Open the file and read it
340 '
350 OPEN ''I'',1,F1$
360 INPUT #1, NF:DIM R$(V,NF),P(V)
370 FOR 1=0 TO V

380 IF EOF (1) THEN 440
390 FOR J=1 TO NF
400 LINE INPUT #1, R$(I,J)
410 NEXT J
420 P(I)=I
430 NEXT I
440 CLOSE 1
450 NR=I-1
460 '
470 CLS
480 PRINT STRING$(22,45);'' The CodeWorks '';STRING$(23,45)
490 PRINT'' CARD FILE PROGRAM Version 2
500 PRINT'' an in-memory replacement for 3x5 cards
510 PRINT STRING$(60,45)
520 PRINT'' You are currently working with ";F1$
530 PRINT
540 PRINT TAB(15); " 1 - ADD records
550 PRINT TAB (15); "2 - SEARCH (Edit & Delete)
560 PRINT TAB(15);''3 - Quick SCAN all records
570 PRINT TAB(15); " 4 - SORT
580 PRINT TAB(15); " 5 - PRINT
590 PRINT TAB(15); " 6 - SAVE file and END
600 PRINT
610 INPUT''The number of your choice '' ;XX
620 ON XX GOTO 670,1420,930,1900,2210,1090
630 GOTO 610
640 '
650 REM * ADD records routine
660 1

670 CLS
680 PRINT TAB (20) * 'ADD Records" :PRINT" Last record was: ' '; R$ (NR, 1) ; "

Number ";NR;" of ";V
690 PRINT''To QUIT adding records, press enter on 1st field."
700 X=5:Y=1:GOSUB 220
710 FOR J=1 TO NF
720 PRINT J;R$(0,J);STRING$(10-LEN(R$(0, J)) , 45)
730 NEXT J
740 X=5:Y=18:GOSUB 220
750 FOR I=NR+1 TO V
760 FOR X=5 TO 4+NF
770 Y=18:GOSUB 220
780 LINE INPUT R$(I,X-4)
790 IF R$(I,1)="" THEN NR=I-l:GOTO 470
800 NEXT X
810 X=5:Y=18:GOSUB 220
820 FOR X=5 TO 4+NF
830 Y=18:GOSUB 220
840 PRINT STRING$(40,32)

22 Issue 26 CODEWORKS

850 NEXT X
860 X=2:Y=1:GOSUB 220:PRINT STRING$(60, 32)
870 X=2 : Y=1: GOSUB 220 : PRINT" Last record was: ";R$(I,1);" Number

I;" of * *V
880 P(I)=I
890 NEXT I
900 '
910 REM * Quick scan all the records
920 1

930 CLS
940 FOR 1=1 TO NR
950 FOR J=1 TO NF
960 PRINT J;R$(0, J) ;STRING$(10-LEN(R$(0, J)) , 45);' ' 1,;R$(P(I)fJ)
970 NEXT J
980 PRINT
990 IF I=NR THEN PRINT"***** END OF FILE ***** press any key":GOTO

1010
1000 PRINT''Press Q to abort, any other key to continue"
1010 K$=INKEY$:IF K$=" " THEN 1010
1020 IF K$="Q" OR K$="q" THEN 470
1030 CLS
1040 NEXT I
1050 GOTO 470
1060 »
1070 REM * save the file and end routine
1080 1

1090 OPEN''O'',1,Fl$
1100 PRINT #1,NF
1110 FOR 1=0 TO NR
1120 FOR J=1 TO NF
1130 IF R$ (P (I) , 1)=" " THEN 1160
1140 PRINT #1,R$(P(I) , J)
1150 NEXT J
1160 NEXT I
1170 CLOSE 1
1180 END
1190 '
1200 REM * error trap for file not found & file initialization
1210 *
1220 IF ERR <> 53 THEN ON ERROR GOTO 0
1230 *IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0
1240 PRINT''There is no file called ";F1$
1250 PRINT''Do you wish to create one (y/n)
1260 CC$=INKEY$:IF CC$=" " THEN 1260
1270 AN=INSTR(' 'yYnN" ,CC$)
1280 IF AN=0 THEN 1260 ELSE IF AN=3 OR AN=4 THEN END
1290 PRINT" Prepare to create a new data file."
1300 PRINT

CODEWORKS Issue 26 23

1310 PRINT''Simply press ENTER to quit adding fields
1320 PRINT''Field names can be no more than 10 characters long.
1330 FOR J=1 TO 10
1340 PRINT''Name of field ' \'J;:INPUT R$(0,J)
1350 IF R$ (0, J) =" " THEN 1370
1360 NEXT J
1370 NF=J-l
1380 RESUME 470
1390 1

1400 REM * Search (Edit & Delete) routine
1410 1

1420 CLS
1430 FOR J=1 TO NF
1440 PRINT J;R$(0,J)
1450 NEXT J
1460 PRINT
1470 INPUT''What field number do you want to search on ";SF
1480 IF SF<1 OR SF>NF THEN 1470
1490 PRINT''Enter the item (or part of the item) you wish to find.''
1500 INPUT S$
1510 CLS
1520 A=1
1530 FOR I=A TO NR
1540 IF INSTR(R$(P(I) , SF) , S$) <> 0 THEN 1590
1550 NEXT I
1560 CLS:PRINT''No MATCH was found - Press any key''
1570 K$=INKEY$: IF K$=" " THEN 1570
1580 GOTO 470
1590 PRINT
1600 X=4:Y=1:GOSUB 220
1610 FOR J=1 TO NF
1620 PRINT STRING$(60,32)
1630 NEXT J
1640 X=4:Y=1:GOSUB 220
1650 FOR J=1 TO NF
1660 PRINT J;R$ (0, J) ; STRING$ (10-LEN (R$ (0, J)) , 45) ; " 1 R$ (P (I) , J)
1670 NEXT J
1680 PRINT
1690 PRINT ''(N)ext match (P)revious (D)elete (E)dit (Q)uit''
1700 K$=INKEY$:IF K$=" " THEN 1700
1710 IF INSTR('"NnPpDdQqEe'',K$)=0 THEN 1700
1720 IF K$="N" OR K$="n" THEN 1830
1730 IF K$=' ' P" OR K$=' 'p' ' THEN A=A-1: IF A<=1 THEN A=l:GOTO 1530 ELSE

1530
1740 IF K$="D" OR K$="d" THEN R$ (P (I) , 1) =" " :GOTO 1830
1750 IF K$="Q" OR K$="q" THEN 470
1760 IF K$="E" OR K$="e" THEN PRINT" Edit which field number
1770 WF$=INKEY$:IF WF$=" " THEN 1770

24 Issue 26 CODEWORKS

1780 WF=VAL(WF$)
1790 INPUT''Enter correction ' ' ;R$ (P (I),WF)
1800 X=NF+6:Y=1:GOSUB 220:PRINT STRING$(60,32)
1810 X=NF+7:Y=1:GOSUB 220:PRINT STRING$(60,32)
1820 GOTO 1600
1830 FOR X=4 TO NF+4
1840 Y=1:GOSUB 220:PRINT STRING$(60,32)
1850 NEXT X
1860 A=I+1:GOTO 1530
1870 '
1880 REM * sort the data routine (Shell sort)
1890 '
1900 CLS
1910 FOR J=1 TO NF
1920 PRINT J;R$(0,J)
1930 NEXT J
1940 INPUT''What field number to sort on '';Q
1950 IF Q<1 OR Q>NF THEN 1940
1960 PRINT ''Sorting - each dot represents a swap''
1970 N=NR
1980 M=N
1990 M=INT(M/2)
2000 IF M=0 THEN 2150
2010 J=1
2020 K=N-M
2030 I=J
2040 L=I+M
2050 IF R$(P(I),Q)=<R$(P(L),Q) THEN 2120
2060 SWAP P(I),P(L)
2070 'T=P (I) :P(I)=P(L) :P (L)=T 'for you who can't swap
2080 PRINT''.''; 'dots are to watch on the screen
2090 I=I-M
2100 IF I<1 THEN 2120
2110 GOTO 2040
2120 J=J+1
2130 IF J>K THEN 1990
2140 GOTO 2030
2150 PRINT: PRINT" Sorted - press any key"
2160 K$=INKEY$: IF K$=" " THEN 2160
2170 GOTO 470
2180 '
2190 REM * the PRINT routines
2200 '
2210 CLS
2220 PRINT TAB (15) Printed Output Selection"
2230 PRINT
2240 PRINT TAB (10) ;" Press L for Label format
2250 PRINT TAB (10) ; "Press R for Report format

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550

2560
2570
2580
2590
2600
2610

2620
2630
2640
2650
2660
2670
2680
2690
2700

PRINT TAB(10)'Press Q if you got here by miSt^kS

PRINT TAB (5);" (Turn on your printer and align o
K$=INKEY$: IF K$=" " THEN 2280
IF K$="R" OR K$="r" THEN 2350

K$=''L'' OR K$="l" THEN 2840
K$=''Q'' OR K$=''q'' THEN 470
INSTR(*xRrLlQq'',K$)=0 THEN 2280

of form)

IF
IF
IF

REM * the REPORT routine

' first find maximum
FOR 1=1 TO NR
FOR J=1 TO NF

IF LEN(R$(I,J))>A(J)
IF LEN(R$(0,J))>A(J)

NEXT J
NEXT I
A (1) =A (1) +1

field or heading lengths

THEN A (J) =LEN (R$ (I, J))
THEN A(J)=LEN(R$(0, J))

' add one for
FOR J=1 TO NF

A(J)=A(J)+1
NEXT J

space between columns

' find total of
FOR J=1 TO NF

TB=TB+A(J)

NEXT J

all tabs

to condensed mode if more than 80 cols - reset ' set the printer
if not
IF TB>81 THEN LPRINT CHR$(15) ELSE LPRINT CHR$(18)
' set printer width too if you need to
IF TB>81 THEN WIDTH LPRINT 132 ELSE WIDTH LPRINT 80
\

' format the tabs in T()
T(1)=1:T(2)=A(1) :T(3)=T(2)+A(2) :T(4)-T(3)+A(3) :T(5)-T (4)+A (4)
T(6)=T(5)+A(5) :T(7)=T(6)+A(6) :T (8) =T (7)+A (7) :
T(9)=T(8)+A(8):T(10)=T(9)+A(9)

' print out the report
PG=1:LC=0
FOR 1=1 TO NR

IF I MOD 60=1 THEN GOSUB 2770
FOR J=1 TO NF

LPRINT TAB(T(J));R$(P(I) , J) ;
NEXT J
LC=LC+1:IF LC=60 THEN LC=0:PG=PG+1:LPRINT CHR$(12)

26 Issue 26 CODEWOPKS

2710 NEXT I
2720 LPRINT CHR$(12) * to page eject partial or last page
2730 LPRINT CHR$(18) ' set the printer back to normal mode
2740 GOTO 470
2750 '
2760 ' subroutine to print page header
2770 LPRINT Fl$;" ' \-DATE$;" ' " Page ' 1;PG
2780 FOR K=1 TO NF:LPRINT TAB(T(K));R$(0,K)NEXT K
2790 LPRINT STRING$(TB-2,45)
2800 RETURN
2810 '
2820 ' REM * print in label format routine
2830 1

2840 CLS
2850 PRINT TAB (20)'Label format''
2860 PRINT TAB(10);''Align labels to first print position''
2870 FOR J=1 TO NF
2880 PRINT J;" ";R$(0,J)
2890 NEXT J
2900 PRINT
2910 PRINT''Press ENTER for any blank lines on the label.''
2920 PRINT'' (To enter sucessive fields on one line simply enter
2930 PRINT''the field numbers, for example: 34 for fields 3 and 4)
2940 PRINT
2950 FOR 1=1 TO 6
2960 PRINT''What field number(s) on line'';IINPUT L$(I)
2970 IF VAL(L$(I))>9 THEN GOSUB 3110
2980 NEXT I
2990 '
3000 ' print the labels
3010 '
3020 FOR 1=1 TO NR
3030 FOR J=1 TO 6
3040 IF VAL (L$ (J)) =0 THEN LPRINT" ' ' ELSE LPRINT R$(P(I),

VAL (L$ (J))) ;' ' ";R$ (P (I) , VAL (K$ (J))) ; " ' ,;R$(P(I),
VAL (J$ (J)));'' * ';R$ (P (D ' VAL (1$ (J)))

3050 NEXT J
3060 NEXT I
3070 GOTO 470
3080 '
3090 * multiple fields per line "take-apart" subroutine
3100 '
3110 1$(I)=MID$(L$(I),4,1)
3120 J$(I)=MID$(L$(I) ,3,1)
3130 K$(I)=MID$(L$(I) ,2, 1)
3140 L$(I)=MID$(L$(I) ,1,1)
3150 RETURN
3160 END 'of program

CODEWORKS Issue 26 ^

4

Ckrite.Bas
Convert Numerals into Words

Irv Schmidt, Editor. A fun program to design and write. Here is another
example of a reader-requested program. It's presented as a stand-alone, but can
easily be converted to a subroutine - as well it should be.

Ckrite.Bas is presented here as a stand-alone
program that shows how it works, but as we will
explain later, it will have much more utility as a
subroutine, perhaps in a payroll program. Basi
cally, the program takes an integer dollar
amount and changes it into the words you would
use when writing a check. It will handle amounts
from one dollar up to $99,999.99, which should
be enough for most of us. We don't suppose that
people who write checks routinely for over
$100,000 would be reading this article in any
case.

This was another of those reader-suggested
programs that turned out to be both a challenge
and fun. Yes, we have seen such routines before,
but couldn't find one and decided to write it from
scratch. Looking at it now, we wish it had come
up during the time we were talking about strings
in Beginning BASIC. It could have made a per
fect example of string manipulation techniques.

It turns out that just 29 words will suffice to
make up any dollar amount up to, but not includ
ing, a million. These, of course, must be put into
data statements. In our case, we killed two birds
with one stone and put the space following each
word right there in the data statements as well.
That way, we need not worry about that again.
For this reason, all the data elements are en
closed in quotes, with the space following the
word. Actually, we only used 27 words in the
data statements, it being easier to put the

Hundred and Thousand in two or three places
where they were needed.

Because this may be used as a subroutine, and
to prevent any clashes with your variable
names, we chose to use only variables beginning
with Z. The Z loop in lines 200 to 220 read the
data into the Z$(Z) array. Once they are in there
we can effectively forget them. They only need to
be read once.

The integer amount we will work with is input
in line 240 as ZA. Line 250 checks for the limits
that ZA can have and ends if we exceed those
limits. As a subroutine, you would want to
change line 250 to return to the calling routine
and print an error message, or at least an out of
limits" message.

Now we rim into all sorts of fun. Mostly be
cause of the way GW BASIC deals with decimals.
You get some awful screwy numbers when you
take a decimal number and subtract the integer
from it. If you want to see it, print 9.98-int(9.98)
and you will get .9799996. In a normal program
that prints number amounts, you can always use
PRINT USING to make things come out right,
but we couldn't find an easy way to use PRINT
USING here, so we had to program around it. n
line 260 we make a double precision number ou
of ZA to help us out of this mess.

It would seem that all we would have to do to

28 Issue 26 CoDeWopxs

pull the cents off of a number would be to make
a string out of all of it and then look at the right
two places. But it doesn't work that way either -
for $9.98 you again get that .9799996 decimal
amount.

By convention, we always want to print cents
on a check as "02" or "20" or, if there are no
cents, "NO" cents. Problem is though, that the
computer might send ZA in as a number with no
decimal point, with just a decimal point or with
no trailing zero when there is a decimal amount
(like 102.40 would show as 102.4).

To make the rounding work right, in line 270,
we add .005 to the decimal part of the number
only when there is a decimal part. If the integer
of ZA is equal to ZA there is no decimal part,
otherwise there is and we add the .005 to it. In
line 280 we make a string out of ZA. If there was
no decimal part to the number, in line 290, we
add the point and the two zeros. Keep in mind
that the number ZA could have had no decimal
part, could have had one decimal place or two.
Next, in line 300, we find the position of the
decimal point in string ZA$. By now we are sure
it has one, since if it didn't, we added one in line
290.

In line 310 we pull off ZC$. We do it with a
MID$ that only looks at two places after the
decimal, and because we added the .005 earlier,
it always comes out right in spite of GW BASICs
efforts to mess it up. In line 320 we go through
ZC$ (the cents) and change any zero to a capital
letter Oh. We didn't really have to do this, but
they just seem to look better on a check.

We still might have just one digit in the cents,
so line 330 checks for that and if ZC$ is only one
digit long, it adds an Oh to the string. This makes
the cents value of .2 come out as "20" like we
want it to. Having done all this, if the ZC$ is
equal to "OO" we change it to "NO" and then in
line 350 we finally change ZC$ to an a space
and the cents and a "/100".

A lot of trouble to go through for just a few

cents, wouldn't you say? .

Now all we need to worry about is the whole
dollar amount. In line 370 we make a string out
of the integer of ZA#. But STR$ puts that leading
space in front of the number, so in line 380 we get
rid of the space. (In QuickBASIC we could have
used LTRIM$(ZB$) here and done the same
thing. LTRIM$ and RTRIM$ trim left and right
spaces from a string, respectively.)

Next, we find the length of the dollar amount
and put it into variable ZL. Then we use a little
loop to put each digit in the dollar amount into
the array Z(Z). Because the Z loop counter is one
past the end when we are done, we back it up one
in line 430. It gets tricky here, so let's use an
example.

Let's say the number in question is 61203. The
Z(Z) array would look like this:

1. Z(l) = 6
2. Z(2) = 1
3. Z(3) = 2
4. Z(4) = 0
5. Z(5) = 3

The Z loop count, because we backed it up one
in line 430, is now 5, so Z = 5. Let's go back up to
lines 200 to 220 for a minute and look at some
thing first. The Z$(Z) array contains the words
we want. Z$(2) contains TWO, right? And
Z$(2+10) would contain TWELVE, and Z$(2+18)
contains TWENTY. As you can see, we can al
ways add 10 to get the teens, and 18 to get
twenty, thirty, forty, etc. We are going to start
with the least significant digit first and work
back towards the most significant. Let's go now,
to line 440.

When we look at the least significant digit we
see it is a three. But how do we know that it's not
part of 13? It makes a big difference what the
preceding number is. It would also make a differ
ence if the preceding number was larger than
one, because in that case is might be 23 or 33,
and if it was a one, it would have to be 13. It could

CODEWORKS Issue 26 29

also be a zero, as it is in our example, in which
case we can simply go and get the word 'THREE
and use it as is. So, in line 440 we first check the
next-to-most significant digit to see if it is zero,
one or larger than one. We do that by looking at
Z(Z-l). Remember that Z and Z(Z) are two en
tirely different variables. Right now, Z is 5, Z-l is
4, and Z(Z-l) contains the digit zero. That being
the case, we start building our ZZ$ (which will be
our final output string in the end). We say, in line
440 that ZZ$ is equal to Z$(Z(Z)). Z(Z) now
contains a 3, and so Z$(Z(Z)) will get us the word,
"THREE" from the Z$(Z) array.

In line 450, had the next-to-most significant
digit been a one, we would have got Z$(Z(Z)+10)
from the Z$(Z) array, and it would have been a
"THIRTEEN." Next, if the length of ZB$ (our
integer dollar amount) was only one character
long, we would be done and line 460 would send
us to the output, where we would attach the
cents portion and be done. Line 470 takes care of
the case where the next-to-most significant digit
is greater than one. Here, we have to do just a
little more than before. If that digit is greater
than one we want to say "TWENTY" (or THIRTY
or whatever) plus the least significant digit. So in
line 470, we look at Z$(Z(Z-1)+18) to get the
"TWENTY" or "NINETY" or whatever it hap
pens to be, plus Z$(Z(Z)), which would get us the
"THREE" in our case or whatever it happens to
be - within the limits of one to nine.

In line 480 we again check to see if the length
of ZB$ is 2. If it is, we are done and go to the
output section again. If it isn't, we have to check
for hundreds. This one is easy. If the hundreds
digit is zero we can just simply forget it. Other
wise, we look at Z(Z-2), the hundreds digit, and
go to the Z$(Z) array and get the number, add the
word "HUNDRED" and then add what we have
so far in ZZ$. In our case, it would now say: TWO
HUNDRED THREE."

Next, we check the length of ZB$ again to see
if it is three characters long. If it is, we are again
done. If not, we have to check for thousands. We
have the same situation here as we had with the

units and tens, earlier. Only this time we append
the word 'THOUSAND" to the word captured
from the Z$(Z) array, then append it to the front
of whatever we have so far in ZZ$. The result, as
per our example, would be: SIXTY ONE THOU
SAND TWO HUNDRED THREE. Then, in line
540, we add leading asterisks to ZZ$ and add the
cents from ZC$. The final result would be: ****
SIXTY ONE THOUSAND TWO HUNDRED
THREE & NO/100. The check blank itself will
add the word DOLLARS. Line 550 simply prints
the fine on the screen for you to see.

To make a subroutine of this:

First off, you can eliminate the remarks at the
beginning. Then, put the DIM statement and the
data statements, as well as the loop that reads
the data statements, at the beginning of your
main program. All that stuff needs only to be
executed once. In fact, you'll get an error if you
try to read the data statements twice (Out of
DATA error).

You can start your subroutine with line 250.
You don't need 240 any longer either; just make
sure that you send the dollar amount to the sub
routine as integer ZA. In line 250, you can
change the END to a RETURN, or a message
that the ZA dollar amount was out of limits.

The remainder of the code remains intact as a
subroutine, except for line 550, where you don t
want to print the answer, but return to the
calling routine and let it handle it. So change line
550 to RETURN. Just remember that variable
ZZ$ contains the answer. In addition to all this,
you would most certainly want to renumber the
subroutine somewhere in the high numbers, to
fit into your calling program. If you type this
program in, pay special attention to the zeros
and the Oh's. I'll try and remember to list this for
these pages on a printer that slashes the zeros.

I don't ever remember writing so much expla-
nation for such a small amount of code. Perhaps
it's because so much is happening there. In any
case, all these ZZZ's are making me sleepy

II

100 REM * Ckrite.Bas * changes numerals into words
110 REM * can be modified as a subroutine to write checks
120 REM * Input. ZA as an integer and yet ZZ$ out in words.
130 DIM Z$(27)
140 '
150 DATA "ONE ", "TWO "THREE ","FOUR "/'FIVE ","SIX
160 DATA "ETGHT ","NINE ","TEN ","ELEVEN ","TWELVE ","THIRTEEN "
170 DATA "FOURTEEN ","FIFTEEN ","SIXTEEN ","SEVENTEEN "
180 DATA "EIGHTEEN "f"NINETEEN "TWENTY ","THIRTY ","FORTY "
190 DATA "FIFTY "/'SIXTY "/'SEVENTY ", "EIGHTY "NINETY "
200 FOR Z = 1 TO 27
210 READ Z$(Z)
220 NEXT Z
230 '
240 INPUT "What is your amount "; ZA
250 IF ZA>99999.99 OR ZA<1 THEN END
260 ZA#=ZA
270 IF I NT (ZA#) OZA# THEN ZA*=ZA# + .005
280 ZA$=STR$(ZA#)
290 IF INT(ZA#)=ZA# THEN ZA$=ZA$+".00"
300 ZX=INSTR(ZA$,".")
310 ZC$=MID$(ZA$,ZX+1,2)
320 ZF=INSTR(2C$,"0") :IF ZFO0 THEN MI D$ (ZC$, ZF, 1) ="0" : GOTO 320
330 IF LEN(ZC$)=1 THEN ZC$=ZC$+"0"
340 IF ZC$="00" THEN ZC$="N0"
350 ZC$="& "+ZC$+"/100"
360 '
370 ZS$=STR$(I NT(ZA#))
380 ZB$=RIGHT$(ZB$,LEN(ZB$)vl)
390 Z L=LEN(Z B$)
400 FOR Z= 1 TO ZL
410 Z(Z)=VAL(MID$(ZB$»Z#1))
420 NEXT Z
430 Z=Z-1
440 IF Z(Z-1)=0 THEN ZZ$=Z$ (Z (Z))
450 IF Z(Z-1)=1 THEN ZZ$=Z$(Z(Z)+10)
460 IF ZL=1 THEN 540
470 IF Z(Z-rl)>l THEN ZZ$=Z$ (Z (Z-l) +18) +Z$ (Z (Z))
480 IF ZL= 2 THEN 540 r „ .
490 IF Z (Z-2) <>0 THEN ZZ$=Z$ (Z (Z-r2)) +"HUNDRED +ZZ$
500 IF ZL= 3 THEN 540
510 IF Z(Zr4)=0 THEN ZZ$=Z$ (Z(Z-3))+"TH0USAND + ZZ$
520 IF Z(Z-4)=1 THEN ZZ$ = Z$ (Z(Z-3)+10) + "TH0USAND +ZZ$
530 IF Z(Z —4)>1 THEN ZZ$=Z$(Z(Z-4)+18)+Z$(Z(Z-3))+"TH0USAND "+ZZ$
540 ZZ$="**** "+ZZ$+ZC$
550 PRINT ZZ$

CODEWORKS Issue 26

A Program Estimating Program

Terry Dettmann, Associate Editor. This is another vintage program by
Terry^t was originally published in 80-U.S. Journal m January 1981, but what
it does still holds up today. There is nothing unusual about the code anc
no modification is necessary for the various computer models.

Believe it or not, programming is a business
too. You would be surprised at how many people
who are doing it for money aren't treating it like
a business.

Most of the business computer tools are pretty
standard. Receivables, payables, ledger, etc.,
even for a programming business. But how do
you estimate a job?

Have you ever gone to a business, been given
detailed specifications on a job you want to do,
and then been asked for an estimate? You proba
bly have if you are trying to program for pay.
What's more, you probably wound up taking a
figure off the top of your head and saying, "Here's
my estimate."

It almost seems as if it's a national pastime for
businessmen to put programmers on the spot.
Most occupations that require job estimates
have some sort of detailed program estimating
technique. Carpenters, bricklayers, all of them,
have estimating aids. Now it's time for the pro
grammer to have such an aid.

The program with this article grew out of a
reading (and multiple re-readings) of the book
The Program Development Process - Part 1, The
Individual Programmer by Joel D. Aron. You
probably can't find this book outside of a major
computing center library, but it is part of a well-
known series of books, called the System Pro

gramming Series, published by Addison-Wesley.

The series is sponsored by IBM and is aimed
mostly at large system programmers. It includes
volumes on programs, programming, databases,
compilers, interactive graphics, sorting and re
cursive programming. In all, there are 11 books
in the series.

In the program development process, Aron
goes over the entire process of developing pro
grams, emphasizing what the individual pro
grammer should do in order to work most effi
ciently. Chapter 3 deals with problem analysis
and planning.

When I first read the book, I was quite im
pressed by the planning chapter, in particular by
the attempt to provide the programmer wit
some real numbers for estimating the time it
would take to do a job.

As the book points out, there is no real agree
ment about what these numbers really shoul
be, but several tables are provided that are
taken from published studies of the program
development process. These tables form t e
basis for the program listing with this article.

Estimating a Job

C

In order to estimate a job, it is necessary for
e nroPTammer tn first estimate the difficulty 0 the programmer to first estimate the

32 Issue 26 CooeWosKS

various parts of the job. The book (and our
program) first breaks the job down into its at
tributes, starting with input/output.

Four characteristics of the input and output
are measured and assigned appropriate
weights. They are:

1. The number of record types of fixed for
mat. That is, the number of different types of
records of information that do not change in
format.

2. The number of variable format records.
These are records whose character or size
changes during the running of the program.

3. The number of commands, messages or
inquiries that the program will have to handle.
For example, how many commands can be en
tered from the keyboard to control execution?

4. The number of special devices used for the
program. By special devices, we mean things
which are not normal connections to the stan
dard computer system (burglar alarms, etc.)

Next the program gets information about stor
age requirement for the program:

1. The number of arrays that will be used by
the program.

2. The number of files that will be used during
the operation of the program.

3. The number of files that will be used that
have a special structure. For example, how
many files are stored as linked lists?

4. The number of multiple file relationships
that the program will have to handle. For ex
ample, how many files will have information
moved from one to another during program
execution.

Now we have to find out what the processing
objectives are for the program:

1. The program asks for a number from zero to
10 to indicate the real-time performance objec
tives. A program that would be expected to give
immediate displays of any item in an inventory
would rate a higher degree of difficulty than one
that allows a search for the item before display
ing it.

2. The objectives for data communications are
requirements for computer to computer or com
puter to terminal information transfer. Nor
mally, this will be a zero.

3. The importance of graphics displays is next.
Obviously, graphics are very important to a
game, but far less important to most business
programs.

Still under the processing information section,
the book assigns a whole table to determining
the effect of the choice of a language on the
program. Clearly, if you choose to program in
Assembly Language, it will take you longer to
code the program than if you chose to do it in a
high level language (unless you are a super-
programmer!).

The degree of difficulty though, will depend on
the nature of the program and the assembler or
interpreter you use. To account for that, the book
(and the program) assigns weights based on
whether the program is prepared in Assembly
Language, a high-level language or from exist
ing modules. In addition, weights are assigned
based on how difficult that language is to use.

Next the program asks for your own qualifica
tions as a programmer and your knowledge of
the specific job you are going to program. The
length of time needed to complete the job is
obviously much greater for a trainee than for a
senior programmer (6 times greater by the
weights given in the book).

Once all of the questions are asked, the pro
gram will display the total time in man-days to
complete the job and the suggested breakdown

CODEM^OAKS Issue 26 33

of days to complete it. The breakdown is based on
the complexity of the program. For a very com
plex program, more time is assigned to design on
a percentage basis.

Some items in the book's tables were left out of
the program intentionally (such as shared ar
rays) since they aren't used that much in micro
computer programming. This doesn t affect the
final results since the weights for these items
would have been zero for a typical project.

I have compared the output from the program
to the results of actual jobs (I won't say what
kind of programmer I was!). Amazingly, even
without modifying the weights from the book,
the estimates I got came out close to the actual
time required to do a project.

In one case, I completed a project with ap
proximately two man-months of effort that the
program estimated 60 man-days for! I can't
argue with that.

Despite the agreement in my own tests, this
program can hardly be considered a really accu
rate estimate for all cases. It does, however, give
the programmer a definite feel for the length of
time needed to complete a program and forms
the basis for a reasonable estimate for estimat
ing a job. It can also make an impressive display
for a customer when you use his system to
estimate the program development time in front
of his very eyes.

As a check to see if you have entered this pro
gram correctly, here is a check: Answer every
question with a 1 and you should get an estimate
of 14.5 man-days to complete the job. It should be
split up to 5 days for design, 3.6 days for coding
and developing test data, 5 days to debug and
0.75 days to prepare documentation.

(Editors note: Having written numerous pro
grams and written articles describing them over
the past few years, it appears that the time
allowed for documentation for a 5 man-day pro
gram is inadequate. Five days to debug a 5 man-
day program sure is realistic, however.)

100 REM ***
110 REM Program Job Estimating Progest.Bas
120 REM Version 1.0
130 REM Terry R. Dettmann
140 REM ***
150 '
160 REM initialization
170 'CLEAR 1000
180 DEFINT A-Z:DIM PD! (3,4), PEW! (14),LC! (3,4,6),EL! (4),UN! (3,5)
190 REM arrays:

200 REM PD! program development activities
210 REM PEW! program unit estimating weights
220 REM LC! language capability weights
230 REM EL! programmer experience weights
240 REM UN! job uniqueness weights

1

250 REM
260 REM read the weights from data statements
270 FOR 1=1 TO 3
280 FOR J=1 TO 4
290 READ PD!(I,J)
300 NEXT J
310 NEXT I
320 *
330 FOR 1=1 TO 14
340 READ PEW!(I)
350 NEXT I
360 *
370 FOR 1=1 TO 3
380 FOR J=1 TO 4
390 FOR K=1 TO 6
400 READ LC!(I,J,K)
410 NEXT K
420 NEXT J
430 NEXT I
440 '
450 FOR 1=1 TO 4
460 READ EL!(I)
470 NEXT I
480 *
490 FOR 1=1 TO 3
500 FOR J=1 TO 5
510 READ UN!(I,J)
520 NEXT J
530 NEXT I
540 *
550 REM initialize the days to zero and define graphics line
560 '
570 DAYS!=0
580 HDR$=STRING$(60,45)
590 *
600 REM begin estimate
610 REM what are the I/O characteristics of the program.

620 '
630 CLS:PRINT HDR$:PRINT TAB(25)Estimating'':PRINT HDR$
640 PRINT TAB (5); "I/O Characteristics" , , „
650 PRINT TAB(10)INPUT "Number of fixed format records ;
660 DAYS!=PEW!(1)*N + DAYS! ,
670 PRINT TAB(10)INPUT "Number of variable format recor
680 DAYS ! =DAYS ! +PEW! (2) *N ,,.M
690 PRINT TAB (10) INPUT "Number of commands, messaages and mquir es

700 DAYS!=DAYS! + PEW!(3)*N _ , ^
710 PRINT TAB(10)INPUT "Number of special devices
720 DAYS!=DAYS! + N*PEW!(4)

CODE WORKS Issue 26 35

730 *
740 REM what are the storage requirements for the program.

7 50 *
760 CLS :PRINT HDR$:PRINT TAB (25) Estimating" :PRINT HDR$

770 PRINT TAB (5) 'Storage" ^
780 PRINT TAB(10)INPUT "Number of arrays used
790 DAYS!=DAYS! + N*PEW!(5) %

800 PRINT TAB(10)INPUT "Number of files to be used
810 DAYS!=DAYS! + N*PEW!(6)
820 PRINT TAB(10)INPUT "Number of files with list structures or over ows

" ;N
830 DAYS!=DAYS! +N*PEW!(7) , x „
840 PRINT TAB(10)INPUT "Number of multiple file relationships

850 DAYS!=DAYS! + N*PEW(8)
860 * .
870 REM what level of processing difficulty will the program have.

880 '
890 CLS : PRINT HDR$: PRINT TAB (25) Estimating" : PRINT HDR$
900 PRINT TAB (5) ;" Processing"
910 PRINT TAB(10);" Enter a number in the range requested for each
920 PRINT TAB (10) ;" question asked ":PRINT
930 PRINT TAB (10) INPUT "Real-time performance objectives (0-10) ";N
940 DAYS!=DAYS! + N
950 PRINT TAB (10) INPUT "Data communications (0-5) ";N
960 DAYS!=DAYS! + N
970 PRINT TAB (10) INPUT "Graphic displays (0-10) ";N
980 DAYS!=DAYS! + N
990 "
1000 REM what are the capabilities of the programming language being used?
1010 '
1020 CLS :PRINT HDR$:PRINT TAB (25) ;" Estimating" -.PRINT HDR$
1030 PRINT TAB (5) ;" Language Capability"
1040 PRINT TAB(10);:PRINT "(1) Assembly language or (2) high level language'
1050 PRINT TAB (10) INPUT "or Packages ";L
1060 IF L=3 THEN 1190
1070 PRINT: PRINT TAB(10);"For each of the following quest ionsPRINT
TAB (10) ;" answer (1) Easy (2) Medium (3) Hard (4) Very hard"
1080 PRINT TAB (15) INPUT "Restructuring data";N
1090 DAYS!=DAYS! + LC!(L,N,1)
1100 PRINT TAB (15) INPUT "Monitor status ";N
1110 DAYS!=DAYS! + LC!(L,N,2)
1120 PRINT TAB (15) INPUT "Retrieve and present data ";N
1130 DAYS!=DAYS! + LC!(L,N,3)
1140 PRINT TAB (15) INPUT "Calculations ";N
1150 DAYS!=DAYS! + LC!(L,N,4)
1160 PRINT TAB (15) INPUT "Program linkage ";N
1170 DAYS!=DAYS! + LC!(L,N,5)

36 Issue 26 CODEWOPKS

1180 GOTO 1280
1190 PRINT TAB(5)Package Programming''
1200 PRINT TAB (10) ;' ' Will you use a (1) Program package, (2) Utility
1210 PRINT TAB(10);''program or (3) a report program generator ";:INPUT N1
1220 PRINT:PRINT TAB(1);'' Will you (1) Prepare control cards only''
1230 PRINT TAB (10) ; " or (2) add your own code ";:INPUT N2
1240 PRINT TAB (10);''Is this project (1) easy (2) medium (3) hard''
1250 PRINT TAB (10); "or (4) very hard ";: INPUT N3
1260 DAYS!=DAYS! + LC! (L,N3,2*(Nl-1)+N2)
1270 '
1280 REM know how
1290 REM how good is the programmer?
1300 *
1310 CLS:PRINT HDR$:PRINT TAB(25);" Estimating'':PRINT HDR$
1320 PRINT TAB (5) ;''Know how"
1330 PRINT TAB (10) ; "What is your experience level?"
1340 PRINT
1350 PRINT TAB (15);" 1 - Senior programmer
1360 PRINT TAB (15);" 2 - Programmer
1370 PRINT TAB (15);" 3 - Apprentice
1380 PRINT TAB (15);" 4 - Trainee
1390 PRINT :PRINT TAB (10) ;: INPUT "Level ";EX
1400 »
1410 REM how unique is the job
1420 '
1430 CLS :PRINT HDR$:PRINT TAB (25) ;" Estimating" :PRINT HDR$
1440 PRINT TAB (5); "Job Uniqueness"
1450 PRINT TAB (10); "How much job knowledge is required?"
1460 PRINT TAB (10);'' (1) much (2) some (3) none";: INPUT N1
1470 PRINT TAB (10); "How much do you have available?"
1480 PRINT TAB (15);" 1 - Detailed knowledge"
1490 PRINT TAB (15) ;'' 2 - Good general with fragmentary detailed"
1500 PRINT TAB (15);" 3 - Fair general with little or no detailed"
1510 PRINT TAB(15);'' 4 - No detailed but general knowledge"
1520 PRINT TAB(15);'' 5 - No detailed or general knowledge"
1530 PRINT TAB (10) ;: INPUT "Knowledge level ";N2
1540 EW!=EL!(EX) + UN!(N1,N2)
1550 MD!=EW!*DAYS!
1560 PRINT: PRINT TAB (10) ;" What kind of logic is involved in the program
1570 PRINT TAB (10);: INPUT "(1) average (2) complex (3) complex control ; LG
1580 »
1590 REM display estimate
1600 »
1610 CLS : PRINT HDR$: PRINT TAB(25);"Job estimate ";:PRINT HDR$
1620 PRINT TAB (10) ;" The estimate for this job is ";MD!; ' ' man days
1630 PRINT
1640 PRINT TAB (10) ;" These days will be split up as follows:

CODE WORKS Issue 26

1650 PRINT TAB(15);MD!*PD!(LG, 1) ;'' days for design'
1660 PRINT TAB (15) ;MD!*PD! (LG,2) days for coding and developing test data' '
1670 PRINT TAB(15);MD!*PD!(LG,3);' ' days for debugging''
1680 PRINT TAB(15);MD!*PD!(LG, 4); " days preparing documentation"

1690 PRINT
1700 PRINT''Estimate Completed."
1710 '
1720 END
1730 REM estimating weight data
1740 DATA .35, .25, .35, .05, .4, .2, .35, .05, .35, .2, .4, .05
1750 DATA 1,2,1,1,1,3,5,2,0,0,0,0,1,2
1760 DATA 3,3,2,2,2,0,4,5,4,3,3,0,5,7,6,5,4,0,6,9,8,7,5,0
1770 DATA 1,1,1,1,1,0,2,2,2,2,2,0,3,4,4,3,3,0,4,6,6,4,4,0
1780 DATA 2,2,1,2,1,2,3,4,1,4,1,4,3,8,1,4,1,8,3,16,1,4,1,8
1790 DATA .5, 1, 1.5, 3
1800 DATA 0, .25, .5, .75, 1, 0, 0, .25, .5, .75, 0, 0, 0, .25, .25

Things, continued from page 10

In his letter, Bob said that he suspected we
would get a great deal of variety on this one and
he was right, we did.

Robert B Franke sent in an interesting set of
programs using For..Next and While..Wend to
do the job. It seems that some of the other
BASICs are integer limited at 32,767 according
to Mr Franke, and he had to play games with his
For..Next loops by adding to the loop counter.

David Leithauser, whose articles and programs
have appeared in past issues, sent in the follow
ing:
"Enclosed is a program that solves the problem
of making labels for the parts bins. The secret is
to not actually create a number containing the
check digit, but simply print the check digit after
the number. Line 20 computes the check digit. I
used this equation because my computer does
not like to use the MOD function on large num.
bers. Line 30 prints the number followed by the
check digit. The STR$ function is used to remove
spaces before and after the numbers. The extra
LPRINT statements in line 40 are used to ad
vance the printer to the next label."

His program follows:

38

10 FOR X=1000000! TO 1050000!
20 Y=INT((X/7-INT(X/7))*7+.5)
30 LPRINT STR$(X) ;MID$(STR$ (Y) ,2)
40 LPRINT:LPRINT:LPRINT
50 NEXT X

Which is surprisingly close to what we came up
with in QuickBASIC:

CLS
FOR i = 1000000! TO 1050000!

a = i MOD 7
LPRINT STR$(i); LTRIM$(STR$ (a))
FOR j = 1 TO 5: LPRINT 1' '': NEXT j

NEXT i

LTRIM$ is a neat feature in QuickBASIC. It will
strip off spaces to the left of a string. RTRIM$
does the same for the right side of a string. As in
Mr. Leithauser's program, the J loop is to ad
vance to the next label.

Bill Seugling suggested that the problem seems
trivial compared to some of our old puzzlers. We
agree, now that we've had a good look at it.

On to a new subject. Robert Hood sent us a cute
little program that shows you all the possible
color combinations (assuming you have a color
monitor and MS-DOS).

(more Things on page 40)
Issue 26 CodeW°"ks

Handy Order Form
d I
•
•
•
•
•
•

RENEW SUBSCRIPTION:
Nov/Dec 89 through Sep/Oct 90

All 4th year issues:
Nov 88 through Sep 89

All 3rd year issues:
Nov 87 through Sep 88

All 2nd year issues:*
Nov 86 through Sep 87

All 1st year issues:
Sep 85 through Sep 86

$24.95

$18.00

$18.00

$18.00

$18.00

$15.00 DISKS (specify year and computer type)
4th year disk will be ready Sep 1,1989 Year(s)

'Starting with MS DOS" booklet $7.00

Postage and handling charges already included.

Diskettes are available for MS DOS, Tandy IV, Tandy III and
most CP/M formats Please specify your computer type!

*In year 2 issues, Issue 8 is out of print and will be supplied
on diskette. Please specify your computer type if ordering

2nd year issues.

Computer type:

• Check/MO enclosed
• Charge to VISA/MC . _Exp

Name

Address

City/State/Zip

Clip or photocopy and mail to: CodeWorks, 3838 South Warner Street,
Tacoma, Washington 98409

We accept VISA & MasterCard. You may call in your order:
(206)475-2219 Thank you.

Note
new

lower
prices

on back
issues

and all
disks!

1189

CODEWORKS Issue 26 39

Index
And things that won't fit elsewhere

Misc, program, eliminate random doubles,
issue 25, page 3
Beginning BASIC, part 3 of All About
Strings, issue 25, page 5
Misc, program counts words, lines and charac
ters, issue 25, page 7
Animal.bas, main program, issue 25, page 12,
AI demo program
Expert4.bas, main program, issue 25, page
13, AI demo program
Drill.bas, main program, issue 25, page 19,
makes and runs drills
Addbook.bas, main program, issue 25, page
24, prints address booklet
Cardconv.bas, main program, issue 25, page
28, converts Card.Dat files
Cardconv.bas, main program, issue 25, page
29, QuickBASIC version
NFL89.bas, main program, issue 25, page 31,
NFL predictor for 1989-90
StatS9.bas, main program, issue 25, page 35,
keeps stats for NFL89.bas
Things, about how to print large numbers,
issue 25, page 40

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Here is his program. Don't be surprised when
your screen starts flashing. The higher color
numbers cause blinking. When the program is
done, it will continue to blink. To get rid of the
blink, type in: SCREEN 0,0,0 and it will go away.

5 REM * ctest.bas * by Robert Hood
10CLS
20 FOR J=0 TO 255
30 DEF SEG:POKE 78,J
40 PRINT USING"###";J;:PRINT" Poke 78
Color Test"
50 FOR K=0 TO 1000:NEXT K
60 NEXT J
70 POKE 78,7
80 FOR K=0 TO 1000:NEXT K
90 CLS

Meanwhile, we recently watched a NOVA pro
gram on PBS concerning the order in chaos. It
suggested a little program to prove that there is
order in apparently random happenings.
Whether it works or not is one subject for the
next issue's Things.

Bulk Rate
U.S. Postage

PAID
Permit 774

Tacoma. WA

glCKSO*. HIKE /
MONTE Rio r.

LA 95^62

NOTICE
This is the first issue of the new subscription year. If you have

received this notice, it means we have not yet received your renewal
order.

We are sending this issue now because we know that you had not
intended for your subscription to run out — but it has ...

Send your personal check or credit card information TODAY so
you may continue to enjoy and benefit from a subscription to
CodeWorks.

Please use the order form on page 39 of this issue, and include your
comments so that we may plan an exciting year of issues for you.

Thank you,

The CodeWorkers

{ calc/pcl
{ from
by

program

} 1.
for Basic Programmers
and R. Weiss, 1983 }

Pascal
C. Seiter
calc;
{ declare global objects }

const namelen = 4; varlen = 8; errlen = 12;
type alfa = array [1..errlen] of CHAR;

Valfa = array [1..varlen] of CHAR;
funcnam = (ABSnam, SQRTnam, EXPnam,

SINnam, COSnam, TANnam,
ATANnam, ASINnam, ACOSnam, LNnam,
LOGnam, INTnam, FACnam, SINHnam,
COSHnam);

V_ptr = @V_item;
V_item = RECORD

nextvar : V_ptr;
Vname : Valfa;
value : real;

end;
N_Array = ARRAY

CHAR;
{ }

function LEN(S:string): integer; external;
function MID$(S:string; POS,LENGTH:integer)
function DECODER(Ssstring) :real; external;
function CHARACTER(S:string; POS:integer):CHAR;
function CPYSTR(Ssstring)sstring; external;
function C0NC(Sl,S2:string)sstring; external;
function DELETE(S:string; POS,LENGTHsinteger)sstring;
function FIND(SUBS, Ssstring): integer; external;
function INSERT(SUB,Ssstring; POS:integer):string; external;
function REPLACE(OLDS,NEWES,Ssstring)sstring; external;

{ }

[funcnam] OF ARRAY [1..namelen] OF

string; external;

external;

external;

function EVAL(EXPR:string; var BooBoosboolean;
first: V_ptr; var names: N_Array): real;

var ch, token : CHAR;
num : string;
x : real;
ptr : V_ptr;
P, P0, t, offset/length : integer;
uppercase, lowercase, digit : SET OF CHAR;

procedure error(a: alfa); FORWARD;
{ 1

function EOS : boolean;
begin

if P > LENGTH then EOS := TRUE
else EOS := FALSE;

end;
{ }

procedure SKIP;
{ skip blanks }

begin
WHILE CHARACTER(EXPR,P)=1 ' AND NOT(EOS) DO
P := P + 1;

if NOT(EOS) then
token := CHARACTER(EXPR,P);

end; { end skip }
{ }

function expression : real;
var op : CHAR; oldsum, newnum : real;
function term : real;
var op : CHAR; oldsum, newnum : real;
function power : real;

var oXcis'urnT newnurn" : r eaT;
function factor : real;
var sign : real; i : integer;
function func : real;
CONST piby2 = 1.570796;
var x, t : real; funcID : funcnam;

found : boolean;
function name(var found:boolean): funcnam;
var j»pl: integer; I : funcnam;

done : boolean; tok : char;
chars : ARRAY [1..4] OF CHAR;
begin
pi := p; tok := token;
if tok IN uppercase + lowercase then
FOR j := 1 TO namelen DO
if tok IN uppercase + lowercase then
begin
chars[j] := tok;
Pi: =P1+1; tok : CHARACTER(EXPR,pi) ;
if chars[j] in lowercase then
chars[j] := CHR(ORD(chars[j])+offset)
end
else chars[j] : = ' ' ;

{ look up name in array 'names' }
found := FALSE;
done := FALSE;
i := ABSnam;
WHILE NOT found AND NOT done DO
if chars = names[i] then found := TRUE
else if i < COSHnam then i := SUCC(i)

else done := TRUE;
if found then begin
P := pi; { update pointer if found }
token := tok;

end;
name := I;

end; { end name }
{ ** }

function variable : real;
var j ; integer; ptr : V_ptr;

done : boolean;
chars : ARRAY [l..varlen] OF CHAR;
finished ; boolean;
begin
if token IN uppercase + lowercase then
FOR j := 1 TO varlen DO
if token IN uppercase + lowercase + digit then
begin
chars[j] := token;
P:=P+1; token :=CHARACTER(EXPR,p);
if chars[j] in lowercase then
chars[j] := CHR(ORD(chars[j])+offset)
end

else chars[j] := ' ';
{ look up name in variable list }
ptr := first; finished := FALSE;
WHILE ptrONIL AND NOT(finished) DO

if chars = ptr@.Vname then finished := TRUE
else ptr := ptr@.nextvar;

if NOT(finished) then
ERROR('unknown name')

e3"variable ;= ptr@.valuej^— £enci

i. CU1 /

T : re^tl;
i. uiiw UX VII A. ir&V* \ • A. yj. CA J. J

var i,up : integer;
begin
UP := ROUND(X); T ;= 1;
if UP>0 then
FOR I ;= 1 TO UP DO
T := T * I;

FAC ;= T;
end;
begin { begin func }
funcID := name(found);
if found then
begin
if BooBoo then ESCAPE;
skip;
{ the function argument must appear in

parentheses}
if token = 1(1 then

begin
p := p + 1; token := CHARACTER(EXPR,P) ;
skip;
x := expression;
if BooBoo then ESCAPE;
if token = 1)• then

begin
P := P + 1;
token := CHARACTER(EXPR,P);
end
else ERROR('missing RPAR')

end
else

ERROR('missing LPAR');
{ evaluate arithmetic function —

the argument has been calculated and

•fimc-h'on c. fx ; reaiJ ; re a \-

placed in the variable 'x'. For some
functions, check for out-of-range
arguments or special cases. }

CASE funcID OF
ABSnam: func := ABS(x);
SQRTnam: if x >= 0 then func

else ERROR('arg range
func := EXP(x);
func := SIN(x);
func := COS(x);
if cos(x)<>0 then func:=SIN(x)/COS(x)
else ERROR ('tangent arg ');
func := ARCTAN(x);

:= SQRT(x)
') ?

EXPnam:
SINnam:
COSnam:
TANnam:

ATANnam:
ASINnam: if ABS(x)>l then ERROR('asin range ')

else if ABS(x)=l then func:=piby2*x
else
func := ARCTAN(x/SQRT(1-SQR(x)));

ACOSnam; if ABS(x)>l then
ERROR('acos range ')

else if x=0 OR ABS(x)=l
then func := piby2*(l-x)
else begin
T := ARCTAN(SQRT(1-SQR(x))/X);
if x>0 then func := T
else
func := 2 * piby2 * T

end;
LNnam: if x>0 then func := LN(x)

else ERROR('LN arg ');
LOGnam; if x>0 then func := LN(x)/2.302585093

end
end

else
f unc
end;
begin

— — JL V \ AJV/U C-i JL. J

INTnam: func := ROUND(x);
FACnam: func := FAC(x);
SINHnam: func := (EXP(x)-EXP(-x))/2;
COSHnam: func := (EXP(x)+EXP(-x))/2;

CASE }
}

Jsc £R9OKQXOG-

{ end
{ end if found
{ variable? }
:= variable;
{ end function func }
{ begin function factor }

{ check for leading + or - sign }
if token = then begin
sign := -1;
P:=P+1; token := CHARACTER(EXPR,P);

end else begin
if token = '+' then
begin
P;=P+1; token ;= CHARACTER(EXPR,P);
end;

sign := 1;
end;

skip;
{ evaluate parenthesized subexpression }
if token = 1(1 then begin
P := P + 1; token := CHARACTER(EXPR,P);
skip;
x s= expression;
if BooBoo then ESCAPE;
if token = ')1 then
begin
P := P + 1; token ;= CHARACTER(EXPR,P)
end
else ERROR('missing RPAR1) ;

end
else if token in uppercase + lowercase then
begin x := func;
if BooBoo then ESCAPE

end
else if token in digit then
begin { get a number }
P0 := P;
WHILE token in digit AND NOT(P>=LENGTH) DO
begin
P :• P + 1;
token := CHARACTER(EXPR,P);
end;

num := MID?(EXPR,P0,P-P0+1) ;
x ;= DECODER(num);

end
else if NOT (EOS) then ERROR(1 bad factor ');

skip;
{ apply earlier determined sign }

factor := sign * x;
end; { end function factor }
begin { begin function power }
oldsum := factor;
if BooBoo then ESCAPE;
WHILE token = '[1 DO begin
P := P + 1; token := CHARACTER(EXPR,P);
skip;
newnum := factor;
if BooBoo then ESCAPE;
if oldsum > 0 then oldsum := EXP(newnum * LN(oldsum))

else it newnum = 0 then oldsum := 1
' else ERROR('bad exponent');

end ;
power := oldsum;

end; { end power }
begin { begin term }
oldsum := power;
if BooBoo then ESCAPE;
WHILE token IN DO begin
op := token;
P := P + 1; token := CHARACTER(EXPRfP);
skip;
newnum := power;
if BooBoo then ESCAPE;
CASE op OF

oldsum := oldsum * newnum;
if newnum=0 then ERROR('divide by 0 ')
else oldsum := oldsum / newnum;

end;
end;
term := oldsum;
end; { end term }

begin { begin expression }
oldsum := term;
if BooBoo then ESCAPE;
WHILE token IN DO begin
op := token;
P := P + 1; token := CHARACTER(EXPR,P);
skip;
newnum := term;
if BooBoo then ESCAPE;
CASE op OF

oldsum := oldsum + newnum;
oldsum := oldsum - newnum;

end;
end;
expression := oldsum;

end;
procedure ERROR;
begin
BooBoo := TRUE;
WRITELN; WRITELN('ERROR! 1 ,A) ;

end;
{ }

begin { function EVAL }
{ for translation from lower to upper case }
offset := ORD('A')-ord('a');
uppercase := [1A'..'Z',1##1]; lowercase := ['a,..,z'];
d i g i t : = [' 0 9 ;
BooBoo := FALSE;
P := 1;
length := LEN(EXPR);
skip;
eval := expression;

{ }
end;
begin
{$NULLBODY}

end.

