e ConpEWORKS

Issue 18

Jul/Aug 1988
CONTENTS - = "
EIOr'S NOES | o — — = e e e i el 2
1 TR U IR IR T S P =l 3
Beginning BASIC© — - sl —— 7
Meadiator.Bay 'R 00 EN D EE,) 9
DING. BaS . o e e e i ey et 15
RONAOM FIIES . S i o s BN e s e 23
Computing Notes ——————————— 29
Conversions - Lind o o G Soushe SRS _is 30
Hord Disks?' o 250 o e 37
ONIRT FOIM. . rr st s v o o iyt e g e o 39
Index Update . il in =l aniisn o e 40

CopEWORKS

Editor's Notes

Issue 18 Jul/Aug 1988

Editor/Publisher
Irv Schmidt
Associate Editor
Terry R. Dettmann
Circulation/Promotion
Robert P. Perez
Editorial Advisor
Cameron C. Brown
Technical Advisor
Al Mashbum

herein. While every precaution has been
taken in the preparation of this publication,
the publisher assumes no responsibility for
errors or omissions. Unless otherwise

CodeWorks, 3838 South Warner St.
Tacoma, Washington 98409

Telephones
(206) 475-2219 voice
(206) 475-2356 modem
The CodeWorks download operates
around the clock (usually) and has the fol-
lowing protocol: 300/1200 baud, 8 bits, no
parity and one stop bit.

Authors: We constantly seek material from
contributors. Send your material and allow
4 10 6 weeks for editorial review. You may
send IBM compatible diskettes (please save
your programs in ASCII format). Also send
a hard copy listing of the program and ar-
ticle. Media will be retumed if retum post-
age is provided. Compensation will be made
for works which are accepted for publica-
tion. CodeWorks pays upon acceptance
rather than on publication.

Subscription price $24.95 per year (six is-
sues.) A subscription year runs from Nov/
Dec through Sep/Oct. Anyone subscribing
during the current subscription year re-

ceives all issucs for that year. VISA and
Master Card orders are accepted by mail or

phone. Charge card orders may also be left via
our on-line download system.

SAMPLE COPIES: If you have 2 friend
who would like to see a copy of Code-
Works, just send the name and address
and we will send a free sample copy.

We finally did it. This entire issue
was produced using PageMaker
and a laser printer. It was scary at
times. You push a little here and
things pop out there. And it took a
whole lot longer to do than it did
manually.

Of course, that's because we
were not as familiar with desktop
publishing as we were the manual
method. Supposedly, by the third
issue, we should be doing it faster
(and, I hope, better).

When it was all done, I had the
feeling that it just wasn’t as “tight”
as we are accustomed to. There
seem to be little splotches of white
space peeking out here and there
that we couldn’t seem to control as
well as we did manually. And mak-
ing things fit and come out right is
what it's all about in design and
paste-up.

But why, you may ask, are we
even bothering with desktop pub-
lishing? There are several good rea-
sons. First of all, it is the state of the
art thing to do. If you don’t keep up
you get lost in the dust. For another
thing, our conventional typesetting
gear was getting on in years, and the
longer we wait, the less it is worth to
anyone wanting to buy it. But that’s
not all. Something unexpected
popped up while all this was going
on. We suddenly realized that with
desktop publishing we were no
longer tied to a building with a com-
position room and a darkroom with
plumbing and all that. With desktop
publishing, you could work off of
your kitchen table if you had to.

Well, that gave us ideas. Why not
forsake the high rent district and
move into something a little more
economical. Desktop publishing
will let us do that, and we are look-
ing around now for that new place.

We hate to think of changing ad-
dresses, but heck, no matter how
good or bad a business is going it's
always smart to economize. Not
only that, but the sale of our old
typesetting equipment and dark-
room will more than pay for the
laser printer we need.

It’s that time of year again when
we have to sit down and decide if
CodeWorks is going to shoot for
another year. Do we just finish the
current year and drop it or do we
solicit your renewals and go for it
again?

By now you must all be aware
that we aren’t the big publisher from
the West. Actually, we are pretty
small potatoes, but are having a
good time trying to keep an interest
in BASIC programming alive and
well. We don’t have to fight off
subscribers with sticks. On the con-
trary, it's getting tougher and
tougher to find new lists to promote.

We have the material and the
dedicated people to help put it all
together. The big question is
whether subscription renewals and
diskette sales will support the op-
eration for another year. Yes, we
look ahead for a whole year be-
cause we don’t exactly cherish the
thought of leaving you all high and
dry in the middle of a subscription
year. It’s just not the proper thing to
do.

What this says is that it all de-
pends on you, the readers. We are
ready, willing and able. If you will
rencw promptly (and maybe buy a
disk or two of programs) we'll
sneak through yet another year of
CodeWorks programs and com-
puter enjoyment for you.

We really want to. We hope you
do too.

Irv

CopeWonks

[F 0 R

e

Forum

An Open Forum for Questions and Comments

I have subscribed to CodeWorks since it started and
I am well pleased with its contents. In your Issue 17 you
described a program, “Genealogy on Display” and I
thought that it was just what I wanted, since I have
recently become very interested in detailing my ances-
tors.
I wrote to the author of the program at the address
given and he wrole back saying that his release is
version 5.0 and it will only run on (MS DOS) com-
patibles. Quoting from his letter, “although they are
BASIC programs, they make extensive use of the file
structure of the IBM PC DOS, together with extensive
use of the screen-positioning capabilities of PC BASIC.
Because of the above, it would be a major undertaking
to modify them to run on your Model IV (Tandy).”
Do you know of another similar program?
Walter Evans, Jr
Waco, TX
Read on.

I have just received Issue 17 of CodeWorks and as
always, I think it is great. Several times I have been
going to drop you a line but never found the time. What
you said in the first two letters (about genealogy) did
turn me on.

...I'm doing the Long family gencalogy. My daugh-
ter got me started and I have four cousins who are
involved with the research. First I got all the shareware
gencalogy programs and evaluated them. Genealogy
on Display is a good program, but as you say, it will hold
only 500 records.

The best program that I found was Family History
System, by Phillip Brown (834 Bahama Drive, Tallahas-
see, Florida 32301). As you say, it is a large system of
programs. In fact the programs are so large that they use
two disks and you do have to switch the disks when you
need some of the reports. The limit on the number of
records is 9,999 names in 99 generations. That will take
care of most families. With two floppy drives you are
limited to storing about 1,000 names, depending on the
information you have to save. You can keep a record of
everyone's address. There are files to store marriage,
education, occupation, military and health records. I
now have 817 name records in the file. Mr. Brown has
been very helpful when I have needed any help and
always answers my letters promptly...

Seymour E. Long

Margate, FL

The system of programs you refer to are, again, for MS

DOS and compatible computers. But there is still hope
for early Tandy users, read on.

In Issue 17 of your magazine there was some discus-
sion of genealogy programs. A great one can be had for
$10.00 on shareware basis from Arthur C. Hurlburt.
This program is everything you claimed for Genealogy
on Display and more. It is random access and has no
limit on the number of names except for disk space. It
runs only on the (Tandy) Model IIT with TRSDOS 1.3,
but it will keep your Model III from becoming obsolete
if you are into family histories.

I would suggest you invest the ten dollars by sending
to the following address with a request for Version 1.1
of CLAN: Arthur C. Hurlburt, 1919 N. Clark, Daven-
port, lowa 52804. I have 465 family names in my file
with plenty of room to spare and the author claims to
have over 700 with space to spare.

Lawrence J. Carley

Mt. Morris, MI

Since Tandy Model IV's will also work in Model Il

mode, this ought to be an answer for many of you. We

are quite surprised at the interest shown in genealogy,

and welcome any other information we can pass along
for the general interest of all.

I was about to put the listing for Bio.Bas into an
envelope and send it to you when I decided to have one
more look, and sure enough, I found the error of my
ways. I had a double bracket (parentheses?) in line 160
and that was the culprit. What gets me is that I read the
line to you over the phone and I still didn’t see it! My
wife keeps telling me to have my eyes checked and I
guess she’s right. Both Bio.Bas and Etax88.Bas arc

running fine now.
Ray Bowers

Las Vegas, NV
Murphy’s Law runs rampant! Didn’ t you know that after
looking for an error for days some un-initiated person
will walk up, point right to the problem, and ask,
“What s that for?”

...] have no idea how to get my old CP/M programs

CooeWorks

to my MS DOS 3.5 inch disks and no one I have asked
has been able to tell me, including the Tandy customer
service in Fort Worth.
Alton Munro
Lufkin, TX
If both machines have RS-232 ports, you can direct
connect them. Then on the CPIM machine, you can use
PIP to redirect the file to the RS-232 port and on the MS
DOS machine you can use any terminal program to
accept them and store them on the 3.5 inch disks. You
will need to make minor changes to the BASIC programs
You port over this way, but it sure beats typing them all
in by hand. Also, you will probably need to save the
programs on the CPIM machine in ASCII first before
you try to move them over to MS DOS.

I congratulate you on your magazine. It is expensive,
but it is a great learning tool. I have done a fair amount
of BASIC programming, but it has been to meet a
personal need; I can see that I use only the simpler
routines and forms of code. There is a lot of meat in your
publication; doubtless, I will ultimately feel compelled
to get the back issues - when I understand all that’s in the
issues I have.

You seem sincere in encouraging questions. I need
some help in developing a program to evaluate the
performance of a stock portfolio over a given period of
time. It is, of course, very valuable to know how you are
doing in comparison to various market indices, mutual
funds, etc. If one has a sufficient number of different
stocks to be adequately diversified, a computer program
is almost essential to handle the math...

William V. Victor

Northridge, CA

We 100, are interested in such a program and have been
gathering information on it for some time. When we get
it all together we'll publish it, of course. We do have a
mutual fund tracking program almost ready to go, but
are having fits trying to make it work on all models.
Aside from that, it's over 600 lines long and would take
the best part of an issue to list. We’ ll keep working on it.

-..Like many other of your subscribers, I enjoy
leamning to program in BASIC. Recently T undertook to
wrile a billing and accounts receivable program for our
local rural water district. Being slightly more advance
than a novice I found many routines in CodeWorks that
helped in making my efforts a success. Thanks for a
well-written, helpful publication.

-.Recently I purchased a Tandy 1400LT to use in

connection with genealogical research in the archives of
the several states in which I am doing research. To make
the 1400LT compatible with my (Tandy) 1000SX, I
attempted to use a 5 1/4 inch drive which had been
removed from a Tandy 1000SX as an external drive for
the 1400LT. I connected the 5 1/4 inch drive to the
1400LT with a standard IBM cable only to find that the
wiring configuration is different on the 1400LT. The
local Radio Shack dealer checked with Tandy who
informed him that Tandy had not released the wiring
configuration for an external drive and has not placed an
external drive for the 1400LT on the market.

Can you provide me with the needed connection in-
formation or a source from which I can obtain the
needed information? Any help would be appreciated.

J. Theron Woodward, Jr.

409 Tombfield Road

Camden, SC 29020

No, we can’t. But anyone having this information can

contact you directly since we have included your com-
plete address.

I am encountering a problem in running Bio.Bas on
my Model IIL I get the statement “Undefined user
function in 1110.”

W. P. Frakes

Cuyahoga Falls, OH

The problem is the CLEAR statement in line 190. For the

Model 11l (and any other machine that needs to clear

space) remove line 190 and put in a new line 140 CLEAR

2000. Yes, 1 did it again! CLEAR seems to be my nemesis.

That's probably the umpteenth time I ve done that and

still can’t learn the simple lesson that CLEAR clears all
variables and defined functions.

Issue 17, page 37. *scuse please... at bottom of page
is statement... “Joe Magarac (our old buddy) born on 1
January 1900 was 58 years 2 months and 7 days old on
the 10th of March 1958.”

Is this new computer math? For one like myself, who
counts on fingers, there does seem 1o be a slight proof-
reading irregularity - the same thing I encounter when I
let a computer do my thinking for me..

I like the idea of a MS DOS booklet... keep up the

excellent work.

Joseph A. Dickerson

Baltimore, MD

You are right. We were wrong. Our figures lied about

Joe's age. And we should be able to announce the DOS
booklet in this issue.

CopeWorks

RS s R

) ©

...I wrote you some time ago about the availability
of a (Tandy) Model I upper/lower case kit. There is a guy
in your own backyard that has them:

Electronic Closet
Tim Worcester
8187 Blakely Court West
Bainbridge Island, WA 98110
One of your other subscribers found him for me.
Hope this helps and thanks for the great programs!
Bob Salisbury
El Cerrito, CA

I have just bought a TRS-80 Model III. I was buying
the 80-Micro magazines, and they quit on me! So, I have
signed up as a subscriber to your magazine, and have
also picked up the last year's issues. I didn’t know what
to expect, as far as the magazine content might have
been, because I've seen quite a few where you pay
much for so little information, and mostly advertising.

And as it turned out, I like it! And I'm going to see
about getting the rest of the back issues that I missed,
since I'm so close to the beginning anyway. There is
only one question. Is there a way to program around
commands like:

CMD “J",X$ which changes a given date to a Julian
date.

CMD “B",”OFF" which turns off the break key.
POKE 16916,X which protects a given number of lines
on the video screen from scrolling.

As far as the break key goes, I guess that's just
optional, but my program needs the scroll protect and
the CMD “J"” command...

Pat Chong
Las Cruces, NM
We have no idea of how to change the CMD “J" and
Julian date thing. If we ever find a routine to do it we will
publish it.
As you said, the break key is just a convenience and
need not be bothered with too much.
The scroll protect can easily be accomplished if you use
our general purpose locate/print@ subroutine. Also see
Beginning BASIC in Issue 17. It talks a lot about cursor

positioning.

And, in a follow up letter from Mr. Chong, he gave us the
following bit of code to change a date like 03/01/88 to
a Julian date:

10 A$="03/01/88" * Sample date
100B=0:M=VAL(LEFT$(AS$,2)):DATA

31,28,31,30,31,30,31,31,30,31,30,31

110 IF M>1 THEN FOR X=1 TO (M-1):READ
A:B=B+A:NEXT X

120 B=B+VAL(MID$(A$.4,2))

130 Y=VAL(RIGHT$(A$,2)):IF B>59 AND INT(Y/
4)=Y/4 THEN B=B+1

Poker still cheats! I speak of Poker7, which I ordered
from you on disk when I got my new Packard Bell
computer. I have not tinkered with the program, but run
it as is on my MS DOS, GW BASIC machine.

I have caught it cheating twice. The first time every-
one passed so the evidence was lost. But last night it
ventured forth again, and this time the foul deed was
manifest... The program refused to recognize my pair of
Kings as openers... I would appreciate your thoughts on
this latest skullduggery.

Also, I would like to do some experimenting with the
bluff factor in Poker7, but am unable to trace where in
the code the bluff is set. I am under the impression the
BL is the variable. It seems, 0o, that the game might be
made stronger by adding a subroutine that utilizes types
of bluffs other than the “one pair, pat hand” bluff it uses
now. For instance, after missing a possible straight or
flush, it might, on an average of one time in thirty odd
tries (approx.), bet as if it caught the desired card even
though it had a busted hand.

Thanks for your attention. My best to you and Code-

Works.

Arthur Melanson
Audubon, NJ
In a program the size and complexity of Poker, it is
sometimes quite difficult to trace isolated incidents like
not being able to open when you have legal openers.
What I'm saying is that | can’t find a logical reason for
what happened, even though it has happened to me too,
on occasion.
Reference the bluffing: BL is the bluff variable. It first
appears in line 2010 and comes up at random when two
high cards are held. Then, to make the bluffer bet like a
mad man, in line 4130 and 4230, BL figures into the
raises. Notice also that HC (High Cards) figure in too,
in lines 4110 and 4220. So you see that the bluff has to
start with the hand determination and carry over to the
betting rounds, and that the two are tied together.
Knowing this, you should be able to work your own bluff
into a busted flush or straight, but remember that in that
case, you would also have to keep the hand from
showing a fold and keep that hand in the game.

I would like to cast a vote in favor of games. While

CopeWorks

not much of a player of arcade type games, I do enjoy
the multi-player games such as Network (Issue 6). My
favorite for years has been Santa Paravia, typed in from
the December 1978 Softside magazine...
Clifton N. Duval
Star Lake, NY
Santa Paravia was a good game, written by our old
friend, George Blank, who was once on the staff at
Softside and was later on the editorial staff of Creative
Computing magazine. We would really like to see a
good game along those lines; one that had a realistic
approach to both economics and ecology, and one you
could learn something from. But that's a pretty tall
order, since even our best economists don't seem to
have economics under control yet. But the idea is
simmering, ever so slightly and quietly, on our back
burner.

When I first looked at the mail for this issue I thought
there wasn't too much there. You proved me wrong
again! Thank you all for the thought-provoking ques-
tions and answers. Enjoy the good ole’ summertime,
and we'll see you again around the start of football
season. -Irv

| learned one thing, there's no such thing as a little

error in a billion dollar corporation.

We have committed to another
year of CodeWorks!

Please help out by renewing early so that we can
set some sort of operating budget.

Order our program diskettes. The first two year's
disks are still available; this year's disk will be
ready about the 1st of September.

Check out our new MS DOS book on page 39.
Tell your computing friends about CodeWorks.

We have a great year planned. Stay tuned.

CopeWorKs

1 9

Beginning BASIC

A Look at Defined Functions

BASIC has many built-in functions. There is the
MOD function, the INT function, the MID$ function
and many others. These are all called intrinsic functions.
They are like little subroutines, and when called will
return a value which depends upon what the function
was designed to do.

BASIC also provides for user defined func-
tions. With these, you can define any kind of function
you wish and it then becomes like the intrinsic functions
in that you can supply it with a variable value and it will
return whatever your function was designed to deliver.
Sounds almost like a subroutine, doesn't it? In a way, it
is like a subroutine, and in fact, you could make a
subroutine out of any user defined function. However,
with the user defined function you don’t need to use the
GOSUB command or the RETURN ceither, for that
matter. You can simply treat the defined function as a
variable. Let’s take a little example.

Suppose you wanted to design a function that
would take a first name and last name and print them
together with an appropriate space between them. Here
is one way to do it:

10 DEF FNC$(A$,B$)=A$+" “+B$

70 INPUT"What is your first name”;F$

80 INPUT""What is your last name “;L$

90 PRINT”Your full name is “;FNCS$(F$,L$)

With this little routine, we can talk a lot about defined
functions in general, and this one in particular. To begin
with, line 10 defines the function (in this case, function
C$(AS$,B$)). A defined function starts with the function
name and an argument set equal to an expression of the
definition. In our case, we said that the function name is
C$, the argument is (A$,B$) and the definition of the
expression is A$+” “+BS. Now when you call this
function and give two string variables (any two string
variables!) to it, it will return the first string and the last
string separated by a space. Notice that even though our
defined function calls out A$ and BS, we can feed it F$
and L$ and it works. Also, just because we have used A$
and B$ in the defined function does not mean that these
variables are “used up.” In no way do these variables
conflict with variables of the same name elsewhere in

the program. Further down in your program, for ex-
ample, you could have A$="CAT"” if you liked and it
wouldn’t affect the defined function in any way.

Defined functions will work not only with string
variables, but with any legal variable in BASIC. They
must be contained in one program line (not one screen
line!) of less than 255 characters, and there can be no
colons used to separate statements in that line. However,
this restriction can be overcome easily because defined
functions can be nested, or once defined, one defined
function can become a part of another defined function
as we will see shortly.

We have already seen that variables used in
defined functions are “local” to the defined function and
do not affect the rest of program variables. We have also
seen that the specific variable we used in defining the
function need not be used when calling the function. For
this reason, these variables (A$ and B$ in our case) are
called dummy variables. They just indicate a place in the
function where a variable (any variable) can go. It
stands to reason, of course, that if your function uses
string variables you must call it using string variables.

In our example above, we could have changed
line 90 to read: NAMES$=FNC$(F$,L$) and then
NAMES$ would have contained the full name. No
GOSUB and no RETURN, which brings up the question
of when to use a defined function. The example we have
just shown is a good one. There are many others. In our
Poker program a couple of years back we made exten-
sive use of both the INT and the MOD functions to strip
off the suit and value of the cards from a three-digit
number. These were used very many times in the
program in lines that were already crowded with infor-
mation. So we defined FNM(X)=X MOD 100 and
FNI(X)=INT(X/100) and then called FNM(M(1,))) or
FNI(M(1,))) whenever we needed either suit or value,
The M(1,J) array contained the three-digit card value in
question. It saved a lot of coding, it made it easier to see
and follow and most of all, it shortened some of those
long lines.

You cannot use a verb command in a defined
function, i.e.,, no PRINT, GOTO or anything like that.
Nor can you use IF...THEN either. But, you can do some
powerful logic operations in a defined function. Here is

CopeWonrks

an interesting one: Lumber 2 by 4's are sold in even two
foot lengths. That is, you cannot buy a 7 foot 2 by 4, you
must by an 8 footer and cut off one foot. In a program
recently, we had need to find the next greater two-foot
length, where the length was given originally in inches.
So we used this defined function:

10 DEF FN(M)=M MOD 24<>0

and then later in the program, where H1 was the length
in inches, we used this line to get the inches up to the
next two-foot length:

90 FOR I=1 TO 25:IF FNM(H1) THEN
HI=HI1+1:NEXT I

Now when H1 (in inches) was not evenly divisible by 24
we kept adding one to H1 until it was evenly divisible.
You can read the second statement in line 90 like this: if
itis true that H1 is NOT evenly divisible by 24 then add
one to it and try again until it is. There may be a more
clever way to have done this, but this one works. This is
another case where the length of the lumber had to be
determined many times in the program and the defined
function was an efficient way to do it. After having gone
through the function, H1 was always 2, 4, 6, 8, 10, 12,
etc. feet long when divided by 12. It couldn’t be
anything but.

What about errors? Do you remember the DATA
statements and the code that reads them? If there is an
error in the DATA statement itself, BASIC will tell you
that the error occurred in the line that read the line that
was actually in error. It’s that way with defined func-
tions too. If you have a syntax error in the line that
defines the function, then the error line will show as the
line that called the function, not the line containing the
defined function. And while we are at it, we may as well
add that the line defining the function must have been
read at least once by BASIC before it can be called. For
this reason, you generally put your defined function
near the start of the program; somewhere in the initiali-
zation phase of the program. And again, while we are
there, we can add further that a defined function can be
re-defined later in the same program. The last function
that BASIC encountered will be the operative one,
assuming that there are two or more of them with the
same name.

In the last issue (Issue 17, Bio.Bas, page 34) we
used a very intricate trio of defined functions to deter-
mine how many days there were in any given month.
The functions were:

DEF FNE(M)=(M-2*INT(M/2)=0)

DEF FNO(M)=NOT FNE(M)

DEF FNDA(M)=30+(M<8)*FNO(M)+
(M>7)*FNE(M)+2%(M=2)

The first function is to determine if a number is
even. The second says that the number is odd if it is NOT
even (since odd and even are mutually exclusive, we
can say that.) The third function determines the number
of days in any month (given the number of the month
and excluding leap years.) The even numbered months
from January through July are 30 days long, except for
February, and the odd numbered months from August
to December are 30 days long. Keep in mind that logic
functions always return a -1 when true and a zero when
false. With that in mind, you can go through the third
defined function, above, and tell that a month has either
30, 31 or 28 days.

That’s quite a bit of logic to go through, but
once defined all you need do is give M a value from 1
to 12 and say PRINT FNDA(M) and you have the
number of days in that month.

The other nice thing about defined functions is
that once you have worked up some neat ones you will
find yourself stripping them out of older programs and
using them again in your current programs. In fact, it’s
a good idea to start keeping a library of such functions.
That way, you won’t have to keep re-inventing the same
wheel. «

If you are moving
from CP/M
or
TRSDOS to MS DOS
you can find everything about
starting out in MS DOS in
our new booklet,
"Starting with MS DOS"

and it's only $7 postpaid
see page 39 for
ordering information.

CopeWorks

) ©

Mediator.Bas

Let Your Computer Help Settle Disputes

David Leithauser, New Smyrna Beach, Florida. Although disputes are not the most
pleasant of subjects, they do exist and must be dealt with. Most disputes are also rather emotional
affairs. A computer program, like Mediator.Bas, can assist in bringing both sides in a dispute

to some reasonable settlement.

Mediator.Bas is a simple computer program for me-
diating disputes between two parties or groups. It is
written in BASIC and conversion to various machines
are given at the end of the program listing.

Using Mediator

When the program is run, it will first ask you for the
name of party #1 and party #2, the two parties in the
dispute. The names of the parties could be anything,
such as TOM and SUE, Management and Labor, or USA
and USSR. Once you have input the names of the
parties, the program will refer to the parties by name for
the remainder of the program.

The program next asks how many issues are to be re-
solved. Input any number. Mediator then asks how
many of these are of the type that a numerical compro-
mise can be achieved. These are issues such as how
much of a pay raise employees should get, or how much
money the defendant should pay the plaintiff in a civil
suit. In some cases, Mediator may split the difference
(not necessarily evenly) in numerical issues to achieve
a fair settlement.

Next, Mediator will ask for a description of each non-
numerical issue. Input a brief description of each issue
in the form of a question. Typical examples might be
“Who gets custody of the child” in a divorce case, or
“Do employees get a paid vacation on their birthday” in
a labor negotiation. Mediator will then ask for a similar
description of each numerical issue. In numerical ques-
tions, it is important that the description be phrased so
that the question can be answered by a single number.
For example, if you were dividing up some moncy

between Tom and Fred, you should not phrase the
question as “How much money should Tom and Fred
each get,” because this may involve a different number
for each one, Instead, the question should be phrased as
“How much money should Tom get.” The amount of
money that Fred gets would then be the remainder of the
money.

Next, Mediator will ask for the position of the first
party on each issue. For example, in a management-
labor dispute, it might ask “For management, describe
your position on issuc of ‘Do employees get a paid
vacation on their birthdays.”” Management would
probably input “NO.” Mediator might then ask, “on the
issue of how big a pay raise do the employees get, what
is your desired value?” Management would probably
answer zero, or even a negative number to indicate a pay
cut. Mediator would then ask the same questions for the
second party.

Once both sides have input their positions on cach
issue, Mediator will say: “Itis now time for (name of first
party) to rate the importance of issues.” It will then
provide a list of the issues and the positions of the two
sides on each issue. It will also ask if you want a hard
copy of this list. This will allow you to look over the
issues at your leisure. If you respond by pressing the
“Y” key and the return key, a list will be output by your
printer.

Mediator will then ask which of the issues is most
important to the first party. The representative of the first
party should input the number of the most important
issue from the list. The issues selected is given a value
of 10 on a scale of 1 to 10. Mediator then asks party

CopeWorks

number 1 to rate each of the remaining issues in impor-
tance from 1 to 10, as compared to the importance of the
issue chosen as most important. For example, if a certain
issue is half as important to party 1 as the most important
issue, that issue should be given a rating of 5. An issue
that is just as important as the main issue can be given a
rating of 10, and an issue of little importance can be
given a rating of 1. The user should understand that
Mediator evaluates how important each issue is to a
party in relation to the importance of the other issues for
that party. Therefore, it does not improve the bargaining
position of someone to say that all issues rate a 10.
Giving a particular issue a high rating automatically
reduces the importance rating of the other issues for that
party. Anyone who lies and says that all issues rate a 10
is decreasing their chances of getting what is really
important to them.

After the first party has input the importance rating of
ecach issue, the process will be repeated for the second
party. I suggest that each party input their importance
ratings in secret, to prevent the second party from trying
to hedge their answers based on the answers of the first
party.

Once the second party has input their importance
ratings, Mediator will output its decision on each issue.
It will also output a satisfaction index for each party.
This index indicates how much of what it wanted each
party got, weighted by how important each issue is rated
by that party. In most cases, the satisfaction index of
both parties will be over 50 percent.

The sample run shows a hypothetical divorce case
between Tom and Sue. The four issues involved are who
gets possession of the house, who gets custody of each
of the two children (Fred and Mary), and how much
alimony Tom pays Sue each month. The answers that
are input by the user are in boldface type.

Basic Principles of Mediator

Mediator evaluates how important each issue is to
cach party, and gives each party what is most important
to that party. This tends to result in a satisfaction index
of over 50 percent for both parties, a desirable win-win
situation.

If a particular non-numerical issue is of equal impor-
tance to both sides, a decision is made which will tend
to balance the satisfaction indexes of the two parties. For
example, if the indexes stand at 45 percent for party A
and 60 percent for party B, and the remaining non-
numerical issue is of equal importance to both parties,
the decision is made in favor of party A. If a numerical

issue is of equal value to both sides, the number is
distributed to balance the satisfaction indexes.

Advantages of Mediator

The first advantage of Mediator is that it forces the
two sides to sit down and evaluate how important each
issue really is to them. It actually forces them to assign
a numerical value to each issue relative to each other
issue, so they can improve their chances of getting what
they really want. This tends to cut through all the bluster
and posturing involved when people claim that issues
arec non-negotiable.

The second advantage of Mediator is that it provides
a completely objective mediator. No one can accuse a
computer of having any biases in the disagreement. The
program makes its decision based entirely on what each
side wants and how badly they want it, not on some
external preconception of what is the “right” decision.

Disadvantages of Mediator

Mediator is not capable of generating any creative
new solutions to the problem, the way a human mediator
might. It merely takes the positions of the two sides and
tries to find the most equitable way to divide its deci-
sions between the two parties.

Another problem is that Mediator does not really
understand the issues, and therefore its decisions may
not always be reasonable or practical. One side (or both)
could input a totally unreasonable position on some
issues to force the other side to devote all its efforts to
preventing that side from getting its way on that issue.
For example, in a management-labor dispute, labor
could input that it wants a raise of $1,000,000 per week,
to force management to give all its importance points to
that issue to insure that labor does not win that point. It
is therefore necessary that a human mediator be present
to oversee the process, to make certain that both sides
are inputing “good faith” positions on each issue.

In view of these problems, and the extreme simplic-
ity of this program, Mediator should be viewed as a
potential tool in the mediation process and an interesting
demonstration of computer aided negotiation, not as
something that is about to replace human mediators. It
could also be an interesting starting point for a more
advanced system, perhaps something that could be
combined with an expert system program. *

Listing for MS DOS and Tandy IV

100 REM * Mediator.Bas * for CodeWorks by D. Leithauser *

110 ‘CLEAR 2000 * only if your BASIC is prior to ver 5.0

120 CLS

130 PRINT “COMPUTER MEDIATOR” :PRINT: VERSION 1.1”:
PRINT

140 DIMN$(2) ,SR(2) ,RT(2)

150 FOR X=1 TO 2

160 PRINT “NAME OF PARTY # “;X;

170 INPUT N$ (X)

180 NEXT X

190 INPUT “NUMBER OF ISSUES TO BE RESOLVED “;N

200 INPUT “NUMBER OF THESE ON WHICH A NUMERICAL COMPROMISE CAN BE
ACHIEVED “;NU

210 NN=N-NU:DIM NP$ (N),S$(NN,2),S(NU,2),R(N,2) ,RV(N,2)

220 FOR X=1 TO NN

230 PRINT “DESCRIBE NON-NUMERICAL ISSUE # “;X

240 LINE INPUT NPS$ (X)

250 NEXT X

260 FOR X=1 TO NU

270 PRINT “DESCRIBE NUMERICAL ISSUE # “;X
280 LINE INPUT NP$ (X+NN)

290 NEXT X

300 FOR Y=1 TO 2

310 CLS

NOTE:

0=zero
O=oh

320 PRINT “FOR “;N$(Y)

330 FOR X=1 TO NN

340 PRINT “DESCRIBE POSITION ON ISSUE OF”:PRINT CHRS$ (34);
NP$ (X) ; CHRS (34)

350 LINE INPUT S$(X,Y)

360 IF Y=2 AND S$(X,1)=S$(X,2) THEN PRINT “ERROR! BOTH PARTIES
APPEAR TO AGREE ON THIS ISSUE.”:PRINT “SOMEONE MUST HAVE
MISUNDERSTOOD THE INSTRUCTIONS.” :PRINT “REREAD MANUAL AND
START OVER." :END

370 NEXT X

380 FOR X=1 TO NU

390 PRINT “ON THE ISSUE OF “;CHRS$ (34) ;NP$ (X+NN) ; CHRS (34)

400 INPUT “WHAT IS YOUR DESIRED VALUE “;S(X,Y)

410 IF Y=2 AND S(X,1)=S(X,2) THEN PRINT “ERROR! BOTH PARTIES
APPEAR TO AGREE ON THIS ISSUE.”:PRINT “SOMEONE MUST HAVE
MISUNDERSTOOD THE INSTRUCTIONS.”:PRINT “REREAD MANUAL AND
START OVER."”:END

420 NEXT X

430 NEXT Y

440 FOR Y=1 TO 2

450 CLS

460 PRINT “IT IS NOW TIME FOR “;N$(Y);” TO RATE THE IMPORTANCE

OF ISSUES.”
470 PRINT “THIS IS A LIST OF THE ISSUES AND THE POSITIONS OF

EACH GROUP:”

CopeWorks

11

480 FOR X=1 TO NN

490 PRINT X;"”) “;NP$(X)

500 FOR Z=1 TO 2:PRINT N$(Z);”:";S$(X,2) :NEXT 2

510 NEXT X

520 FOR X=1 TO NU

530 PRINT X+NN;”) “;NP$ (X+NN)

540 FOR Z=1 TO 2:PRINT N$(Z);”:”;S(X,2), :NEXT Z:PRINT

550 NEXT X

560 INPUT “DO YOU WANT HARD COPY OF THIS (Y/N) “;H$

570 HS$=LEFTS$ (H$, 1) : IF H$<>”N” AND H$<>"n” AND H$<>”Y” AND
H$<>"y” THEN 560

580 IF H$="N” OR H$="n” THEN 680

590 LPRINT “THIS IS A LIST OF THE ISSUES AND THE POSITIONS OF
EACH GROUP:”

600 FOR X=1 TO NN

610 LPRINT X;”) “;NP$(X)

620 FOR Z=1 TO 2:LPRINT N$(2);"”:";S$(X,2) :NEXT 2

630 NEXT X

640 FOR X=1 TO NU

650 LPRINT X+NN;”) “;NPS$ (X+NN)

660 FOR Z=1 TO 2:LPRINT N$(Z);”:”S(X,2) :NEXT 2

670 NEXT X

680 PRINT “WHICH OF THESE ISSUES IS MOST IMPORTANT TO “;N$(Y);

690 INPUT M:IF M<1 OR M>N THEN PRINT “INVALID ANSWER!”:GOTO 690

700 R(M,Y)=10:RT(Y)=10

710 PRINT “THE ISSUE OF “;CHRS$ (34) ;NP$ (M) ; CHRS (34)

720 PRINT “NOW HAS A VALUE OF 10 ON A SCALE OF 1 TO 10.”

730 PRINT “PLEASE RATE THE REST OF THE ISSUES ON A SCALE OF 1 TO
10 COMPARED TO”

740 PRINT CHRS$ (34) ;NPS$ (M) ; CHRS (34)

750 FOR X=1 TO N

760 IF X=M THEN 810

770 PRINT CHRS$ (34) ;NP$ (X) ;CHRS (34)

780 INPUT “RATING “;R(X,Y)

790 IF R(X,Y)<1 OR R(X,Y)>10 THEN PRINT “INVALID ANSWER!”:GOTO

780

800 RT (Y)=RT (Y) 4R (X, Y)

810 NEXT X

820 NEXT Y

830 FOR X=1 TO 2

840 FOR Y=1 TON

850 RV(Y,X)=INT((R(Y,X)/RT(X)+.005)*100)

860 NEXT Y

870 NEXT X

880 CLS

890 PRINT “THE FOLLOWING IS THE DECISION ON EACH ISSUE:”
900 FOR X=1 TO NN

910
920
930
940

IF RV(X,1)=RV(X,2) THEN 950

PRINT NP$ (X);":";

IF RV(X,1)>RV(X,2) THEN PRINT S$(X,1) :SR(1)=SR(1)+RV(X, 1)
IF RV(X,1)<RV(X,2) THEN PRINT S$(X,2) :SR(2)=SR(2) +RV (X, 2)

950 NEXT X
960 FOR X=1 TO NU

12

CopeWorks

970 IF RV(X+NN,1)=RV(X+NN,2) THEN 1010
980 PRINT NPS$ (X+NN);”:"”;
990 IF RV(X+NN,1)>RV(X+NN,2) THEN PRINT S(X,l):SR(1)=SR(1)+RV(X+
NN, 1)
1000 IF RV(X+NN,2)>RV(X+NN,1) THEN PRINT S(X,2) :SR(2)=SR(2) +RV (X+
NN, 2)
1010 NEXT X
1020 FOR X=1 TO NN
1030 IF RV(X,1)<>RV(X,2) THEN 1090
1040 PRINT NPS$(X);”:";
1050 IF SR(1)>SR(2) THEN PRINT S$(X,2) :SR(2)=SR(2) +RV (X, 2) :GOTO
1090
1060 IF SR(2)>SR(1) THEN PRINT S$(X,1) :SR(1)=SR(1)+RV(X,1) :GOTO
1090
1070 IF RND<.5 THEN PRINT S$(X,2):SR(2)=SR(2)+RV(X,2):GOTO 1090
1080 PRINT S$(X,1):SR(1)=SR(1)+RV(X,1)
1090 NEXT X
1100 FOR X=1 TO NU
1110 IF RV (X+NN,1)<>RV(X+NN,2) THEN 1200
1120 PRINT NP$ (X+NN) ;“:"“;
1130 T=SR(1)+RV (X+NN, 1) :IF T<=SR(2) THEN PRINT S(X,1) :SR(1)=T:
GOTO 1200
1140 T=SR(2)+RV(X+NN,2) :IF T<=SR(1) THEN PRINT S(X,2) :SR(2)=T:
GOTO 1200
1150 VD=RV(X+NN,1)/ABS(S(X,1)-S(X,2)):SP=SGN(SR(1)+ABS(S(X,Z)-
S(X,1))*VD-SR(2))
1160 FOR V=S(X,1) TO S(X,2) STEP (S(X,2)-S(X,1))/128
1170 Sl=SR(1)+ABS(S(X,2)-V)*VD:SZ=SR(2)+ABS(S(X,1)—V)*VD
1180 IF SP<>SGN(S1-S2) THEN PRINT V:SR(1)=S1:SR(2)=S52:GOTO
1200
1190 NEXT V
1200 NEXT X
1210 FOR X=1 TO 2
1220 PRINT “SATISFACTION INDEX FOR “:N$(X) ;”=";SR(X)"%"

1230 NEXT X

Change lines for Tandy I/III

Changed->100 REM * Mediator/Bas * for CodeWorks by D. Leithauser
Changed->110 CLEAR 2000 \ only if your BASIC is prior to wver 5.0

*

CopeWonks

13

Sample Run for Mediator.Bas

COMPUTER MEDIATOR
VERSION 1.1

Name of party #1? TOM
Name of party #2? SUE
Number of issues to be resolved? 4

Number of these on which a numerical compromise can be
achieved ? 1

Describe non-numerical issue #1

WHO GETS THE HOUSE

Describe non-numerical issue #2

WHO GET CUSTODY OF FRED

Describe non-numerical issue #3

WHO GET CUSTODY OF MARY

Describe numerical issue #1

HOW MUCH ALIMONY DOES TOM PAY SUE PER
MONTH

For Tom

Describe position on issue of

“Who gets the house”

TOM

Describe position on issue of

“Who get custody of Fred”

TOM

Describe position on issue of

“Who gets custody of Mary”

TOM

On the issue of “How much alimony does Tom pay Sue per
month”

What is your desired value ? 0

For Sue

Describe position on issue of

“Who gets the house”

SUE

Describe position on issue of

“Who gets custody of Fred”

SUE

Describe position on issue of

“Who gets custody of Mary”

SUE

On the issue of “How much alimony does Tom pay Sue per
month”

What is your desired value? 1000

It is now time for Tom to rate the importance of issues.
This is a list of the issues and the positions of each group:
1) Who gets the house
Tom:Tom

Sue:Sue

2) Who gets custody of Fred
Tom:Tom

Sue:Sue

3) Who gets custody of Mary

Tom:Tom

Sue:Sue

4) How much alimony does Tom pay Sue per month
Tom: 0 Sue: 1000

Do you want hardcopy of this (Y/N) ? N

Which of these issues is most important to Tom? 4
The issue of “How much alimony does Tom pay Sue per
month”

now has a value of 10 on a scale of 1 to 10.

Please rate the rest of the issues on a scale of 1 1o 10
compared to

“How much alimony does Tom pay Sue per month”
“Who gets the house”

Rating ? 2

“Who gets custody of Fred”

Rating ? 6

“Who gets custody of Mary"

Rating ? 4

It is now time for Sue to rate the importance of issues.
This is a list of the issues and the positions of each group:
1) Who gets the house

Tom:Tom

Sue:Sue

2) Who gets custody of Fred

Tom:Tom

Sue:Sue

3) Who gets custody of Mary

Tom:Tom

Sue:Sue

4) How much alimony does Tom pay Sue per month
Tom: 0 Sue: 1000

Do you want hardcopy of this (Y/N)? N

Which of these issues is most important to Sue ? 3
The issue of “Who gets custody of Mary"

now has a value of 10 on a scale of 1 to 10.

Please rate the rest of the issues on a scale of 1 to 10
compared to

“Who gets custody of Mary”

“Who gets the house”

Rating ? 6

“Who gets custody of Fred”

Rating ? 7

“How much alimony does Tom pay Sue per month”
Rating ? 3

The following is the decision on each issue:

Who gets the house: Sue

Who gets custody of Mary: Sue

How much alimony does Tom pay Sue per month: 0
Who gets custody of Fred: Tom

Satisfaction index for Tom = 72%

Satisfaction index for Sue = 61%

CopeWorks

Outline.Bas

Part One of a Three-Part Outlining Program

Terry R. Dettmann, Associate Editor. Outliners and outlining programs are useful in
organizing your thoughts before you begin to write. Commercial programs of this type are
available in the $100 price range. In this series, Terry will build an outlining program that
will run in BASIC or can be compiled. Along the way, we will learn something about linked

list techniques and what makes them work.

One of the most useful tools to writing and thinking
in general is the outline processor. On the IBM PC and
Macintosh, this type of program has become quite
sophisticated. But outline processors can be expensive
and they aren’t compatible with all machines. Over the
next several issues, we'rec going to put together an
outline processor with all of the basic features (and
you'll have the source code!).

The current plan for these articles is to cover the
subject in three scgments. The first segment, we're
going to lay some theoretical foundations for the outline
program by explaining a technique known as ‘List
Linking” which we’ll need to build the outline proces-
sor. A demonstration program in this article will show
the basic linking procedure.

The second article in the series will show the screen
display handling and build the screen control portion of
the outline program. The last article will add the two
together to give us a final program which is more than
either demonstration program.

When 1 first started on the program, I assumed one
article would be enough. But the program needed more
complexity than I could explain in one article. After that|
I thought two were enough. In trying to write two that
made the subject understandable, I've now added a
third article to lead into the other two. Whew! I just hope
I can keep it to three. If we get more questions between
issues than can be answered in a single article, I'll add
more material as necessary to make sure everyone
understands it.

When we're done, you'll have an outline processor
which will allow you to build outlines, print them, and
change them as needed. The program uses some pretty
sophisticated techniques, but we’ll take them slowly
enough to make them simple to understand. Let’s start
by building a very simple outline program which illus-
trates list linking as we’re going to need it for the full
scale outline processor,

List Linking

By now, you should be familiar with arrays in pro-
gramming. Arrays are used for multiple pieces of infor-
mation which can be organized by number, but what if
what we want to deal with isn’t arranged by number?

Keeping track of generalized data, large lists of infor-
mation, can often be done when each piece of informa-
tion is related in some simple way to the other pieces of
information in the system. For example, if we have a list
of names, we could arrange them in ascending or
descending sorted order. There’s no natural numeric
associated with this process, it’s purely alphabetic. The
fact that the letter ‘A’ comes before ‘Z’ isn’t a matter of
numbers.

To create a list of information, we use what’s known
as a ‘Linked List’. Each item in the list (called a NODE)
is ‘linked’ to the next node by a POINTER which tells
the program where to find the next one. Graphically, we
could show this like this:

CopeWorks

FIGURE 1

Information

Pointer

where the top part of the box is the information part
of the node and the bottom part is the pointer. Let’s say
we're going to link together the pieces of information
‘one’, 'two’, and ’three’ in alphabetic order. Graphi-
cally, we might indicate this like this:

FIGURE 2
One

Three

Two

In this case, the ‘one’ node is linked to the ’three’
node (the next one alphabetically) and the 'three’ node
is linked to the "two’ node. At the end of the list, we use
a special marker to indicate the end of the list.

Conceptually, the picture is nice, but how does this
help. We don’t have linked lists in BASIC. Some lan-
guages like Pascal and C make implementing this type
of structure pretty easy because they include special
structures which can be used to create linked lists.
BASIC doesn’t though. BUT, we can make BASIC
work as if it had them.

What if we entered the three pieces of information

‘one’, 'two’, and 'three’ in their numeric order. If the
linked list is arranged in this order, then it would look
like this:

One

Two

Three

FIGURE 3

If we're entering them into a program, we could store
them in an array (which I'll call LN$ for lines). As we
enter each line, we could store them in LN$ at increasing
array locations like this;

FIGURE 4
Array Information
1 one
2 two
3 three

If we wanted, we could run a sorting program on this
and put them in alphabetic order. But we could also put
them in order if we had a set of links which point from
each item to the next in order. Let’s define an array we'll
call LK (for links). If LK(0) points to the smallest item
alphabcli'cally and then the corresponding LK array
value points 1o the next, then our table would be:

FIGURE 5
Array Information Links

0 1

1 one 3
2 two 0
3 three 2

In this case, LK(0) points to item 1 (the information
‘one’ which is the smallest in a sort). LK(1) points to
array location 3 (item "three’ which is next in alphabetic
order) and LK(3) points to array location 2 (item "two’,
the last in alphabetic order). Notice that LK(2) is zero.
This is used as the END OF LIST marker. When we
reach it, we know there are no more items in the list.
From a simple structure like this, we can build some
very sophisticated software.

To illustrate the linked list in a more practical sense,
I've included the sample program LINK.BAS in listing

In our simple program, like the example we talked
through above, we have arrays LN$ to hold the lines
(maximum of 20) and LK 1o hold the links. NX (which
starts at 1) is the array location to put the next line when
we read it from the keyboard.

In the main loop of the program (lines 200-290), we
clear the screen, print the current list (subroutine 1000),
and then prompt for an input line. An input line consist-
ing of nothing but DONE (in caps) will end the program
and cause it to print the list one more time (lines 400-
420). If the input line is not DONE, then we'll call
subroutine 1000 and add the line to the linked list.

To see how the linked list is built, we look at subrou-
tine 1000. First, we start out by saving the next array
location in variable J, then we put the new line in the next
location of the array (LN$(NX)) and set its link value to
zero. We advance NX by one to get it ready for the next
line.

If the value of LK(0) is zero, (remember, it points to
the first actual information node), then we can assume
nothing has been added yet and we can simply set LK(0)
to point to the line we just added. If LK(0) is not zero,
then things get more complicated. With something
already in the list, we have to start with the first item in
the list and compare it to the new item we want t0 add.
To keep them in alphabetical order, we check them one
at a time until we find one which belongs after the one
we're looking for. We add the new one at that point.

Qne l — Reset this link
1\\
S Three
Two / &
7 4
e L
| reset this link

FIGURE 6

We start out by setting I to the array location of the 1st
item in the list and K to array location of the pointer to
that item (initially zero). Now we check, if the new item

is less than the one we're checking, then we put it ahead -

in the list. If it’s not smaller, then we move on to the next
item and check for the end of the list (link value zero).
If we're at the end, we simply add the new item to the
end. If we’re not already at the end, then we start again
from our comparison.

This method (or algorithm) is a pretty standard way to
deal with inserting items in a linked list. There are
several variations possible, but they are all basically the
same.

The subroutine at line 2000 steps through the linked
list one item at a time, in order, by following the links.
This is called "Traversing the List’.

We start the subroutine by checking to see if anything
has been added to the list yet (line 2010). If not, there’s
nothing to print and we leave. If there IS something, we
set I to point to the 1st item in the list and then print it.
Next we let I point to the next item (I = LK(I)). If Iisn’t
zero yet, we go back and print it.

This technique is powerful and can be quite fast for
simple lists. Try running the program for the following
series of entries:

one

17

two
three
four
five
six
seven
eight
nine
ten

When done, your printed output should look like this:

8 5 eight
5 4 five

4 9 four
9 1 nine
1 7 one
7 6 seven
6 10 six
10 3 ten
3 2 three
2 0two

Since we entered each line in the list in alphabetical
order, we can print them out in the same order by
following the links. Try it on some other lists to see how
it works. When you're satisfied that you understand this
list linking concept, then read on to see how we can add
additional links and create a more sophisticated data
structure.

An Outline List

To create an outline, we have several levels of linked
lists. At a given level in an outline, the items could be
considered linked from one to the next in the order of the
outline. We could also consider the first item under a
given item to be linked to its parent. This sounds pretty
complicated, but look at the following outline:

I Introduction
A. Point 1
B. Point 2
II Detail
A. Point 3
B. Point 4

If we used our graphic representation of the nodes,
we could represent this outline like this:

FIGURE 7
I Introduction
| Point 1
|
-
I Detail
Point 2
e
'E_ + —t
Point 3
il
Point 4
|
_E =

By adding a second pointer to the node, we can now
g0 in two directions in linking, cither to the next item at
the same level in the outline or 1o the first item just below
the current item. Traversing the list is now more com-
plex since we'll have to be able to return to the previous
level whenever we hit the end of any one level. Hitting
the end of the highest level means we’re done.

Starting with the first node of the outline, we could
print all nodes by the following method:

1. print the node

2. print all nodes subordinate to the current
node

3. g0 to the next node at the current level

4. if there is no next node, then return to the
next higher node level

¢

If you consider the whole procedure as ‘print all
nodes subordinate to the current node’ starting with
node zero, then this describes a RECURSIVE procedure
(one which calls itself). Let’s see how we put this
together with lists linking to build a simple outliner in
Listing #2, LIST.BAS.

Like our simple linked list program, this one starts out
by declaring the line array LN$ and then link array LK.
Now however, the link array is declared as LK(100,1) so
that there are two links (LK(1,0) and LK(I,1)). We've
also declared the arrays LL (for the line level in the
outline) and LV for the last line at a given level in the
outline. We'll see what these. contribute as we start
working with the list.

Our main loop (lines 200-320) is basically the same
as before:

1. print the list

2. wait for a command

3. if the line is a command, process it
4. otherwise add the line to the list

5. restart at step 1

To keep from having to work with more complexity
than necessary to show how the list linking works,
we've used command words UP and DOWN for mov-
ing up and down one level at a time within the outline.
Subroutines 1000 and 1100 move the level up or down
by one. Notice that the LV array keeps track of the
current line number in the array when we move down,
and then helps restore it to the current line when we
move back up again.

Adding a line to the outline works pretty simply. We
add it to the next open line in the array (CL=CL +1 ...
add one to the current line). If the level of the last line is
not the same as the current level, we are linking a new
level (line 1240), otherwise, we're linking on the current
level (line 1220). The figure shows how the linking
might look after five entries into LN$ where we went
DOWN after the second entry and UP after the fourth.
As we've limited it (which we won’t be able to do in the
final program), this is simpler than the list linking we've
talked about before. But now, subroutine 2000 to print
the outline gets more complicated.

We start out as before at the beginning of the list. The
variable VI is introduced to incorporate a variable
indent for printing. Line 2025 prints a heading and then
we start by printing the first line in line 2040. Now we

have to decide what to print next.

After we’ve printed a line, we ALWAYS print the
lines under it next. This applies for EACH line we look
at. For example, if we print a level 1 line, then the next
line to print is any level 2 line below it. When we print
the first level 2 line, we check to see if there is a level 3
line below it before going on to the next level 2 line.

one
two
three
four
five
six
seven
eight

When we’ve linked this together, we'll get a picture
like this:

FIGURE 8
One
= 2
Two
I Three
Four

s
Seven
Eight e
i
=+ ==

CopeWorks

- —

To print this in the correct order, we'll follow the links
as follows:

one -> two

two -> three

three -> four

four -> five

BACKUP ONE LEVEL to THREE
three -> six

six -> seven

BACKUP ONE LEVEL to TWO

two -> eight

To do this, first we check to see if the link to a lower
level (LK(I,1)) is non-zero. If it is, we save the current
location by calling subroutine 2100 and then move to
the next level down and go back and print. We'll keep
moving down to the lowest possible level as long as
LK(,1) is not zero. When it DOES reach zero, we'll
move down on the same level in line 2050.

As long as we can move down the list along the same
level, we go back and print (line 2060), but if we reach

the end on this level, we check to see if we're at the
highest level (VI = 0), if we are at that level, then we're

done. If we're not at the top level, then we move UP one
level by calling subroutine 2200 and go on to the next
item at that level (line 2070) and then check for the end
at that level by returning to line 2060. If you follow
through carefully with the example above, you'll see
that it will work.

If you haven’t already noticed, you could look back
and find that I've loaded the deck. In this program there
is NO WAY that the lines will ever be out of order. I
would get the same result by simply using a FOR loop
to print the array! BUT, using the list linking, I could
reorder one level (say sort it) and everything under it
would automatically be moved as well! I'm not going to
go into it now, we’ll do that though before we’re done
with outlining.

There is a little sleight of hand though here. I men-
tioned that the subroutines at 2100 and 2200 will store
and retrieve the line number of the item from the last
level that we were at when we went DOWN in printing.
HOW? we’ll, it’s time to introduce another data struc-
ture called the stack. A stack let’s you keep track of

things where you want to get them back in the oppesite
to the ordér you put them in. In the example above,
when I move down from array location 2 to 3, I put the
location 2 on the stack (SP becomes 1, STK(1) = 2).
Similarly, when I go from 3 to 4, I put location 3 on the
stack (SP becomes 2, STK(2) = 3).

When I'm done with the lowest level after printing
array location 5, I need to get the top of the stack
(STK(SP) is now 3), this takes me back up one.level to
where I need to go. After I'm done printing at this level,
Ido it again (STK(SP) is 2) and get back to array location
2.

Visually, most people imagine a stack like a stack of
dishes in a cafeteria. The last disk added to the stack is
the first one taken off. This allows us to backtrack one
level at a time as we need to. Let's illustrate with an
example.

Again, we'll start the program and do the following
steps:

type ‘one’
type "two’
type ‘DOWN’
type 'three’
type ‘four’
type ‘DOWN’
type ‘five’
type ‘six’
type ‘UP’

. lype ‘seven’

. type ‘DOWN’

. type ‘eight’

> lype:SUP*

. type ‘UP’

. lype ‘nine’

. type 'ten’

. type ‘DOWN’

. type ‘eleven’

. lype 'twelve’

. type ‘UP’

. type 'thirteen’

. type ‘fourteen’

2500 2OV AR W 1D 1=

msww.—-—a-——-—-.—-—au—-—-—
O VoSN OWMEeEWLWN-O

If you've typed these lines correctly, then the pro-
gram should display the following on the screen:

Line Number and Line
LINKS

20

1 one 20 13 thirteen 14 0
2 two 93 14 fourteen 00
3 three 40
4 four 8 The first ¢olumn is printing the array location for the
5 five 60 current line, then (with an appropriate indent) the con-
6 six 00 tents of LN$ at the current array location. The last two
7 seven 08 columns give the links. The first number is the link to the
8 eight 00 current level and the second number is the link to the
9 nine 10 0 next lower level. See if you can diagram it. You should
10 ten 13 11 see almost immediately how each line is linked to the
11 eleven 12 0 next in order.
12 twelve 00

What have we learned?

In this article, we've learned some basic data struc-
tures which allow us to extend our program control. List
y linking will be the primary structure for controlling our
Link.Bas - Demo Program outline program. The stack structure is needed to allow
us to "Traverse’ the list structure for a complicated list.

In our next article, we're going to learn how to set up

10 REM — Simple List Linking the screen display for our outline program so that we can
20 DIM LN$ (20), LK(20) combine what we've leamed here with what we leam in
30NX =1 screen control to build an outline program we can usc as
200 REM — Main Loop a thought processor. *

210 CLS:PRINT”Simple List Linking”:PRINT
220 GOSUB 2000

230 PRINT

240 PRINT “DONE - End of input, print the list”
250 PRINT

260 LINE INPUT “>>”;IN$

270 IF IN$="DONE” THEN 400

280 GOSUB 1000

290 GOTO 200

400 REM — End of program

410 GOSUB 2000

420 END

1000 REM — Add line to linked list

1010 J=NX:LN$ (NX)=INS:LK (NX)=0:NX=NX+1
1020 IF LK(0)=0 THEN LK (0)=J:RETURN

1030 I = LK(0):K =0

1040 IF LNS (J)<LN$(I) THEN LK(J)=I:LK(K)=J:RETURN
1050 K=I:I=LK(I)

1060 IF I=0 THEN LK (K)=J:RETURN

1070 GOTO 1040

2000 REM — Print linked list

2010 IF LK(0)<1 THEN RETURN

2020 I = LK(0)

2030 PRINT I;LK(I);LNS(I)

2040 I = LK(I):IF I=0 THEN RETURN

2050 GOTO 2030

21

List.Bas - Demo Program

10 REM — list Linking Demonstration

20 REM — Terry R. Dettmann for Codeworks Magazine

30 DIM LN$(100), LK(100,1), LL(100), LV(10)

40CL=0:Lv=1:LL=0

200 REM — Main loop

210 CLS:PRINT “LIST LINKING DEMONSTRATION” : PRINT

215 GOSUB 2000:PRINT

220 PRINT “ENTER LINE OR”

230 PRINT * UP - move up one level”

240 PRINT * DOWN - move down one level”

250 PRINT * DONE - done with entry, print list”

260 PRINT

270 LINE INPUT “>>”;IN$

280 IF INS$="UP” THEN GOSUB 1000:GOTO 200

290 IF IN$="DOWN” THEN GOSUB 1100:GOTO 200

300 IF IN$="DONE” THEN 400

310 GOSUB 1200

320 GOTO 200

400 REM — end of program, print the list

410 GOSUB 2000

420 END

1000 REM — Move up one level in the list

1010 IF LV=1 THEN RETURN

1020 LV=1LV -1

1030 LL = LV(LV)

1040 RETURN

1100 REM — Move down one level in the list

1110 IF LV=10 THEN RETURN

1120 LV(LV) =CL:LV=1LV + 1

1130 RETURN

1200 REM — Enter a line in the list

1210 CL = CL + 1:LN$(CL) = IN$:LL(CL) = LV

1215 IF LL(LL)<>LV THEN 1240

1220 LK(LL,0) = CL:LL = CL

1230 RETURN

1240 LK(LL,0) = 0:LK(LL,1) = CL:LL = CL

1250 RETURN

2000 REM — Print the list

2010 IF CL<1 THEN RETURN

2020 I = 1:VI=0:LI =0

2025 PRINT”Line Number and Line”; TAB(60) ; “LINKS”

2040 PRINT I;STRINGS(VI*S5,” “);LN$(I);TAB(60);LK(I,0);LK(I,1)

2045 ?(‘) Lé((I, 1) <>0 THEN LI=I:GOSUB 2100:VI=VI+1:I=L§((I, 1) °GO'I"O
4 :

2050 I = LK(I,0)

2060 IF I<>0 THEN 2040

2065 IF VI=0 THEN RETURN

2070 GOSUB 2200:I = LK(LI,0):VI=VI ~ 1

2080 GOTO 2060

2100 REM — Add 1i to the stack

2110 IF SP>=10 THEN RETURN

Random Files

Finally, a Ranidx that works!

Terry R. Dettmann, Associate Editor. After two unsuccessful attempts we have finally
got Ranidx.Bas completely checked out. The "Shell" calls in this program are for MS DOS
users; Tandy IV people will need to change this to "System" calls in three places. Tandy I/III
users should continue using Ranindex.Bas since we haven't found system calls for those

machines.

After the last issue appeared, we found (and some of
you pointed out) some errors in the random indexing
program. All we can do is ask you to accept our
apologies for letting the errors through. In this issue,
we're going to learn from them by correcting the errors
and by using them to show how you can avoid similar
eITors.

The basic problems with the indexing programs
stemmed from special cases which were unfortunately
masked in testing because of the data base used to test
the system. What I'm going to do is show the changes in
the program, line for line and explain them, and then
give a full listing of the corrected version of the program
for your use.

First, let’s start at line 250. How many of you caught
this one? If you look at your original listing, the line
reads:

250 IF FP$(1)="DELETED"” THEN 270

However, it should read:
250 IF INSTR(FP$(1),"DELETED"”)>0 THEN 270

The reason (which hasn’t really been pointed out
here before) is that the first field (FP$(1)) might be
greater than 7 characters long (the length of the word
DELETED). If it is, then the string FP$(1) will be the
seven characters of the word DELETED for a deleted
record plus blank spaces to fill out the field.

When we're working with random files, fields are
always blank padded to fill them out completely. This

means we have to take into account the possibility that
this field is more than seven characters long by using the
INSTR function to locate the string if it"s there. This also
raises another point, the first field cannot be less than 7
characters long! If it is, our unique marker (the word
DELETED) can’'t be fit into the field and it will be
truncated. We could use a shorter marker or another
method, but so far this is good enough.

Our next change is not a correction, it’s a debugging
change only. We've changed line 510 from:

510 CLS:PRINT"All Done”:CLOSE:END
o
510 PRINT"All Done”:CLOSE:END

By eliminating the CLS, what is left on the screen
when we close will still be visible. You can add it back
in when you’re confident everything is working alright.

With these changes done, everything else deals with
our final step in the sorting process, the multi-file
merging process which starts at line 4000. Our first
change is to getrid of the single output file opened in line
4020. We can’t output to this file until the whole merge
is completed, so we change lines 4020-4030 from:

4020 OPEN “R”,1,FI§,2
4030 FIELD 1, 2 AS XX$:NR = 1

1o

CopeWorks

4020 N=0

4030 NR=1 4540 GOSUB 4570

4550 NEXT J

The variable N is introduced to handle a series of 4560 RETURN
output files which will be in the same format as the 4570 REM — delete the named file
temporary files. New line 4045 calls subroutine 440 4580 SHELL “ERASE “+FT$

where we’ll create this: 4590 RETURN

4045 N =N + 1:GOSUB 4400 and subroutine 4600 renames the output file to make
it ready for the next merge cycle:

Subroutine 4400 will concentrate on getting the right

file prepared for use by the program: 4600 REM — rename output file
4610 TF = N:GOSUB 3200
4400 REM — open intermediate file n 4620 SHELL “REN “+FX$+" “+FT$
4410 FX$ = “TMP”+MIDS$(STR$(N),2)+" . XXX" 4630 RETURN
4420 OPEN “0O",1 FX$
4440 RETURN New line, 4085 recognize that more than one output

: merge file has been created and restarts from the begin-
Each intermediate output file will now be a simple ning of the merge cycle (line 4000):
output file (like the temporary files) instead of a random

file (like the final index). We have to do this since if the 4085 IF N>1 THEN TN=N:GOTO 4000 .
file size is too large (we can’t sort it all in a single pass) ¢
we may have to merge and remerge several times. Once only one merged file is left, line 4086 calls

. subroutine 4700 where we read the merge file and write
Next, we have to provide for temporary file handling, out the index file in onc pass and then delete the merge
so we change our closing step of the merge (if no open file:
file has another index record to read) by changing line
4060 and adding line 4075. The original line 4060: 4086 GOSUB 4700

4060 GOSUB 4200:IF NOT FOUND THEN 4080 The actual work is done by subroutine 4700 as
follows:
is changed to refer to line 4075 instead of line 4080 e
so we can close out files and link in subroutines 4500 4700 REM — bui
g e T s el sty S LBy LA
setup the output file for the next merge step. Lines 4060 4720 FIELD 1 2 AS XXS 3

and 4075 now read: 4730 TF = 1:GOSUB 3200
4740 OPEN 1"
4060 GOSUB 4200:IF NOT FOUND THEN 4075 4750 IF EOF(;)'?I:}F;?N 4800
4075 CLOSE:GOSUB 4500:GOSUB 4600 4760 INPUT #2,1X.IX$

Subroutine 4500 deletes the temporary files which :;;g ﬁ:lxﬁm lfl;(lNX: 1

have been merged into the cusrent output file: 4790 GOTO 4750
:508 I‘::EM — delete temporary files :88(1)8 &P&SE “ERASE “+FT$
510 IF I+TX > TN THEN JX=TN ELSE JX=I4T i
4515 K=0 *1X 4820 RETURN i

4520 FOR J=I TO JX:K=K+1

4530 TF=J:GOSUB 3200 One of the most subtle errors though was an a2y

naming error which only affected one record in the file.

/
CopeWOoRKS

4___‘

You can see the change in looking at the old copy of
lines 4140-4141:

4140 OPEN “I" K+1,FT$:
INPUT#K+1,IX(K),DA$(K)
4141 PRINT"FILE: “;K;” ENTRY=";IX(K);DA$(K)

vs. the new lines:

4140 OPEN
“I",K+1,FT$:INPUT#K+1,IDX(K),DA$(K)

4141 PRINT"FILE: “;K;” ENTRY=
"IDX(K);DA$(K)

The error, not obvious at the start, is that the array IX
is used instead of the array IDX. Since only one entry is
affected, the result was always to lose a record in each
pass through the merge cycle. OOPS!

The rest of the changes are part of the debugging
code which was used to find the error. I'm leaving them
in the program

for your interest:

old lines:

4265 PRINT"FILE: “;LW;
ENTRY=";IX(LW);DA$(LW)

4310 PRINT “ITEM (";NR;”) = “;IX$

4320 LSET XX$ = MKI$(IX):PUT
#1,NR:NR=NR+1

new lines:

Main Listing Ranidx.Bas

4251 PRINT”IX = “IX;” IX$ = “;IX$
4265 PRINT”FILE: “;LW;”
ENTRY=";IDX(LW); DAS(LW)
4266 PRINT"IX = “;IX;” IX$ = “;IX$
4310 PRINT “ITEM ("IX:”) = ““IX$
4320 PRINT #1,IX;”,:IX$;

There is never an excuse for an incorrect program so
no apology is sufficient for presenting one. If a design
is executed correctly, the program will also come out
correct. However, even the best designs are subject to
human failures, and ultimately, we're all human. I can
only apologize for being more human than I thought I
was.

Despite the problems with Ranidx.bas, you should
know that a preliminary version of the random files
system has been in use for over a year handling a 25000
name mailing list. This series of articles is built on a
rewrite of the preliminary version which cleans up the
code and develops it in a simpler fashion and corrects
mistakes from the original. Sometimes though, the
rewrites (as in this case) are not all that they're intended
to be. Even now, with extended indexing, CodeWorks
is preparing to move the mailing list system to the
Random Files program both to have a better working
environment AND to provide for a more complete
testing platform for future additions to the program. If
we find other errors in using this code, you can be sure
you’ll be the first to know.

Next time, we’ll pick up again and add some more to
our random system. With indexing in hand, we have a
powerful system which allows considerable flexibility
in data base layout and design. It doesn’t match any of
the standards and will never come to be the next Dbase
or Rbase, but you do have the source code and can make
it into anything you wish.

10 REM — RANIDX.BAS - Random File Indexing — VERSION 2.0 gUN 88
20 REM — Terry R. Dettmann for Codeworks Magazine

25 MX=500
30 DIM FP$(20), SC$(24), XY (20,3)
31 DIM DAS (MX), IX(MX), IR(MX)

40 DEF FNCTRS (X$)=STRINGS ((WD-LEN(X$))/2,” ™)+X$

41 DEF FNLF (X) = LOF (X) /128
50 WD=80:LN=24

51 NX=0:TN=1:TX=10

60 FALSE=0:TRUE = NOT FALSE

CopeWorks

25

100 REM — file setup
110 CLS:PRINT FNCTRS (”RANDOM FILE INDEXING”) :PRINT:PRINT
120 LINE INPUT”FILENAME: “;FF$

125 FDS$=FF$+” .dat” :FS$=FF$+".stk"

130 OPEN “R”,1,FD$:0PEN"R”,2,FS$,4:FIELD 2, 4 AS SK$

135 IF LOF (2)=0 THEN LSET SK$=MKI$ (1) :PUT P45

140 FM$=FF$+” .MAP” :FX$=FF$+".SCN"

150 GOSUB 5000: REM Read Map

170 GOSUB 5300: REM Setup Fielding

200 REM — main menu

210 CLS:PRINT FNCTRS ("RANDOM FILE INDEXING”) :PRINT:PRINT
215 LINE INPUT”Name of the index: “;FIS$:FI$=FI$+".idx"

220 INPUT”Sort on what field number”;FX

230 IF FX<1 OR FX>CX THEN PRINT”OOPS - no such field”:GOTO 220
231 INPUT”Select field number (enter 0 for none)”;SX

232 IF SX=0 THEN 240

233 IF SX<1 OR SX>CX THEN PRINT”No such field number”:GOTO 231
234 LINE INPUT”Select Criteria: “;SX$

240 FOR RN=1 TO FNLF (1) :GOSUB 1400

250 IF INSTR(FP$(1),“DELETED”)>0 THEN 270

255 IF SX>0 THEN IF INSTR(FP$ (SX),SX$)=0 THEN 270

260 GOSUB 1000

265 IF NX>=MX THEN GOSUB 2000:TF=TN:GOSUB 3200:GOSUB 3300:NX=0:

TN=TN+1
270 NEXT RN
280 IF NX>0 THEN GOSUB 2000:TF=TN:GOSUB 3200:GOSUB 3300
290 GOSUB 4000
500 REM — End of Program
510 PRINT”All Done” :CLOSE:END
550 REM — Save the program
560 ‘SAVE “ranidx.bas”
570 RETURN
600 REM — input a character
610 CS=INKEYS:IF C$="" THEN 610
615 IF LEN(C$)>1 THEN GOSUB 700
620 RETURN
700 REM — look for arrows
710 C = ASC(MID$(C$,2,1))
720 IF C=72 THEN C$=UP$ ELSE IF C=77 THEN C$=RT$
730 IF C=80 THEN C$=DN$ ELSE IF C=75 THEN C$=LF$
740 RETURN
800 REM — GOTO XY ROUTINE
810 LOCATE X, Y:RETURN
800 REM — break line
910 FOR K=1 TO 10:BLS (K)="":NEXT K
920 JN$=IN$:NB=1
930 K = INSTR(JN$,”:”) : IF K=0 THEN BL$ (NB) =JN$:
940 BLS(NB) = MID$ (INS,1,K-1) e 2

Uy

950 NB = NB + 1

960 JN$ = MIDS (JNS$,K+1)

970 GOTO 930

1000 REM — Add-the record to the index
1010 NX = NX + 1

1020 DAS (NX) = FP$ (FX)

1030 IX(NX) = NX:IR(NX)=RN

1040 RETURN

1400 REM — get record from data base

1410 IF RN<1 OR RN>FNLF (1) THEN RETURN
1420 GET 1,RN.

1430 RETURN

2000 REM — Sort the index

2010 DF = NX:PRINT “SORTING ...”

2020 IF DF = 1 THEN RETURN

2030 DF = INT(DF/2)

2040 SWP = FALSE

2050 FOR I=1 TO NX-DF

2060 IF DAS$ (IX(I))>DAS(IX(I+DF)) THEN GOSUB 2100:SWP = TRUE
2070 NEXT I

2080 IF SWP THEN 2040 ELSE 2020

2100 REM — swap the data fields

2110 T = IX(I):IX(I) = IX(I4+DF):IX(I4DF) =T
2120 RETURN

3200 REM — Select Temporary File Name
3210 FTS$="SRT”+MIDS (STRS (TF),2)+"” .TMP”
3220 RETURN

3300 REM — Save the Sorted data to a Temporary File
3310 PRINT “Saving Temporary File “;FT$
3320 OPEN “0”,3,FT$

3330 FOR I=1 TO NX

3340 PRINT #3,IR(IX(I));”,”;DAS(IX(I))
3350 NEXT I

3360 CLOSE #3

3370 RETURN

4000 REM — Merge Data from Temporary Files to Index
4010 CLOSE

4020 N=0

4030 NR=1

4040 FOR I=1 TO TN STEP TX

4045 N =N + 1:GOSUB 4400

4050 GOSUB 4100

4060 GOSUB 4200:IF NOT FOUND THEN 4075
4070 GOSUB 4300:GOTO 4060

4075 CLOSE :GOSUB 4500:GOSUB 4600

4080 NEXT I

4085 IF N>1 THEN TN=N:GOTO 4000

4086 GOSUB 4700

4090 CLOSE:RETURN

4100 REM — open temporary files

4110 IF I+TX > TN THEN JX=TN ELSE JX=I+TX
4115 K=0

4120 FOR J=I TO JX:K=K+1

4130 TF=J:GOSUB 3200

CopeWorks

27

4140 OPEN “I”,K+1,FT$:INPUT#K+1, IDX (K) ,DAS (K)
4141 PRINT”FILE: “;K;” ENTRY="; IDX (K) ; DAS (K)
4150 NEXT J

4160 RETURN

4200 REM — get lowest entry

4210 LW=1:FOUND = TRUE

4220 FOR J=2 TO K

4230 IF DAS (J) <DAS (LW) THEN LW=J

4240 NEXT J

4245 IF DAS (LW)="~~~" THEN FOUND=FALSE : RETURN
4250 IX = IDX(LW) : IX$ = DAS (LW)

4251 PRINT”IX = “;IX;” IX$ = “;IX$

4255 IF EOF (LW+1) THEN DAS (LW)="~~~":RETURN
4260 INPUT#LW+1,IDX(LW),DAS (LW)

4265 PRINT“FILE: “;LW;” ENTRY=";IDX(LW) ;DAS (LW)
4266 PRINT”IX = “;IX;” IX$ = “;IX$

4270 RETURN

4300 REM — save to index

4310 PRINT “ITEM (”;IX;"”) = “;IX$

4320 PRINT #1,IX;”,”;IX$

4330 RETURN

4400 REM — open intermediate file n
4410 FX$ = “TMP”+MIDS (STRS (N) , 2) +"” . XXX"
4420 OPEN “0”,1,FX$

4440 RETURN

4500 REM — delete temporary files

4510 IF I+TX > TN THEN JX=TN ELSE JX=I+TX
4515 K=0

4520 FOR J=I TO JX:K=K+1

4530 TF=J:GOSUB 3200

4540 GOSUB 4570

4550 NEXT J

4560 RETURN

4570 REM — delete the named file

4580 SHELL “erase “+FT$

4590 RETURN

4600 REM — rename output file

4610 TF = N:GOSUB 3200

4620 SHELL “ren “+FX$+” “+FT$

4630 RETURN

4700 REM — build the final output file
4710 OPEN “R”,1,FI$,2:RN =1

4720 FIELD 1, 2 AS XX$

4730 TF = 1:GOSUB 3200

4740 OPEN “1”,2,FT$

4750 IF EOF (2) THEN 4800

4760 INPUT #2,IX,IX$

4770 LSET XX$ = MKIS$(IX)

4780 PUT#1, RN:RN =RN + 1

4790 GOTO 4750

More on Laser Printing

Heard any good computing hor-
ror stories latcly? Wanna hear one?

We first ordered a NEC LC890
from one of those mail-order hard-
ware outfits. They claimed they
ship orders within 24 hours. A
month later, with an anxious buyer
of our regular typesetling gear get-
ting impatient, the printer still had
not arrived.

We finally told them to stuff it,
and bought an Apple LaserWriter
IINT locally. Problem was that it
doesn't have a parallel port onit. We
had to ecither stick an AppleTalk
board in our PC and try to run it that
way (for an extra $350 or so) or run
it off of our serial port.

It turns out that Apple calls a null
modem adapter a "modem climina-
tor" and that's what we needed.
Only problem was that no onc
seemed to know how it had to be
wired up between a PC AT and the
Apple LaserWriter,

After three days of utter frustra-
tion, trying the many combinations
that exist (and not knowing all the
while that we might have a defec-
tive printer) we finally found the
right combination.

All we can say at this point is that
we are glad that's over - and it sure
works fine now.

Anyone having a similar prob-
lem can write or call and we'll fill
you in on the details of the hookup.

Now all we have to do is leam
how to use it to make a better look-
ing issuc. We're working on it.

Actually, our computer is lying
to the printer and telling it that it's 2
Linotronic 100/300 typesetter. And
the printer obviously belicves it!

But tha's what you gotta do
sometimes.

4800 CLOSE
4810 SHELL “ERASE “4FT$
4820 RETURN
5000 REM — read data map
28 g
CopeWORKS

5001 CX =0
5005 OPEN”I",3,FM$
5010 IF EOF(3) THEN 5035

5015 LINE INPUT#3, INS
5020 GOSUB 900
5025 GOSUB 5100

5030 GOTO 5010

5035 CLOSE#3

5040 RETURN

5100 REM — decode map line

5110 IF BL$(1)="FIELD” THEN GOSUB 5200 :RETURN

5120 RETURN
5200 REM — define a field

5210 NF = VAL (BL$(2)) :FL = VAL(BL$ (4)) :FP = VAL (BL$ (5))

5220 XY(NF,0)=FL:XY (NF, 3)=FP
5225 CX =CX + 1

5230 RETURN

5300 REM — Map Fields

5310 FOR I=1 TO CX

5320 NL = XY(I,3)

5330
5340 NEXT I
5350 RETURN

FIELD #1, NL-1 AS X$,XY(I,0) AS FP$(I)

Computing Notes

Here are some important Tandy Model I/III addresses. If
you find some of these in programs you are trying to
convert you will know what they do and you should be
able to program around them. The starting location is
given in all cases. Some of these addresses would span
maybe two or three more locations after the one given.
Not all of them have exact counterparts in MS DOS,
while others are unnecessary in MS DOS. As we find
corresponding locations for MS DOS we will publish
them in these notes. If you have any more to add to this
list, please let us know about them.

14308 - address of cassette port relay
14316 - 1/O addresses

14336-15359 - keyboard memory
15360-16383 - video display memory
16384-16895 - BASIC vectors

16396 - BREAK key jump vector
16409 - Caps lock switch

16412 - cursor blink switch
16416 - cursor address

16419 - cursor character

16424 - max lines per page plus 1

16425 - number of lines printed plus 1

16427 - line printer max line length less 2

16429 - DOS entry point

16455 - address of lowest usable memory location

16546-16547 - contains line number currently being
executed

16548 - points to beginning of BASIC program
16561-16562 - holds end address of free string space
16598-16599 - holds end of memory address

16633 - end of BASIC program pointer
16633 - points to end of BASIC program
16635 - end of simple variables

16635-16636 - used for memory calculations
16637 - end of array variables pointer
16637-16638 - calculates FRE(XS$)

16872 - RS-232 input buffer one byte
16880 - RS-232 output buffer one byte
16888 - baud rate code

16889 - parity/word length/stop bit
16890 - RS-232 wait switch

16896-20991 - TRSDOS
16913 - cassette baud rate switch
16916 - video display scroll protect

Continues on page 38

CopeWorks

29

Conversions

Observations while moving from Tandy III to MS DOS

Robert A. Hood, Bremerton, Washington. In last issue's Forum we mentioned that this
article was in that issue. Space got us and it was left out. Here Mr. Hood tells about his
conversion from a Tandy Model III to one of the Tandy MS DOS machines. We think you will
find that there is more the same between them than there is different.

Irecently purchased an MS-DOS computer with
two drives and MS-DOS 3.20 and GW-BASIC3.20. My
previous system was a Tandy Model 111, and I also had
access toa Tandy Model IV. I founditdesirable to convert
many programs to MS-DOS.

1 have found several areas of difference between
the two computer systems. They are:

1. USR(?) calls

2. Syntax

3. Screen size

4, ASCII codes
(a) CHRS$(?)
(b) POKE
(c) PEEK

5. Control keys

6. CMD”?”

7. Error codes

8. Timer loops

A detailed explanation for each of the above
areas is presented in this article. All the differences may
not have been found, and therefore, I would like to en-
courage you to send any more you find to the CodeWorks
Forum.

Getting Started

Thefirst taskis to get the BASIC program which
you wish to convert transferred toan MS-DOS formatted
disk. There are two ways to do this. One is to type the
program listing in from the MS-DOS keyboard, remem-
beringto insertaspacebefore and aftereach keyword and
variable. Except for short programs, this can be a time-
consuming taskandin addition to making corrections for
conversion it will be necessary to make corrections for
typing errors.

The other method is to use a commercial pro-
gram to transfer from one system to the other. I am
presently using PC Cross Zap, by Hypersoft. (Trscross
by Powersoft, is another excellent program for this pur-’

pose. - ED) PC Cross Zap transfers TRS-DOS 1.3 and
LDOS 5.1 programs for the Model ITI and transfers TRS-
DOS 6.2 programs for the Model IV. For the Model III
it also inserts a space before and after each keyword and
makes some other syntax corrections. After the program
has been transferred, make a backup copy on the same
disk using extension .M3 for the Model I1I and .M4 for
the Model IV. The original copy then becomes the work-
ing copy to be converted. This is done so that if somehow
the working copy of the program becomes badly botched
you can go back to the original and start again.

Next, if you have a printer, make a printed listing
of the program (preferably double spaced.) This listing
may be marked up to show program flow and changes
made. You should now review the program listing, look-
ingfor ON ERROR GOTO statements. The firstchange
to be made is to REMARK all the ON ERROR GOTO
statements in the program and to mark the statements in
thelisting for later replacement. This is necessary tomake
the normal program errors appear on the video when
they occur instead of going to the error trap routine.

USR(?) Calls

. This is the most difficult problem in the conver
sion of programs. This function is used to call machine
language subroutines from the BASIC program. e
convert, it is necessary to know exactly what the subrou-
tine being called does. Then you must write a BASIC
routine or an MS-DOS machine language routine 10
replace it. If you are unable to do either of these tasks and
the routine cannot be omitted, then there is no purpose in
attempting to continue conversion of the program.

Syntax

__ This problem will occur often. Fortunately, it 1S
easily found. Just run the program and a syntax error
message will be displayed for each line in which it 0ccurs-
I'have found the following errors: (see table 1)

The Model IV also uses PRINT@(row,col) and
/

30

CopeWORKS

. MS-DOS uses LOCATE (row,col). If the PRINT@ lineand MS-DOSis generally 25 lines at 80 characters per
¢ statements are calculated values, the following subrou- line. For program conversion it is best to use 24 lines at 80
tine may be used to convert the PRINT@ values for characters per line. This causes very few problems with
Model IV. the display from a Model IV. For the Model I11 it is often
necessary to re-format the video display as lines which
1000 ROW=INT(C/80):IF ROW<1THEN ROW=1 previously wrapped around to the next screen line will
1010 COL=C MOD 80:IF COL<1 THEN COL=1 now be extended over the wider MS-DOS screen. Also,
1020 RETURN the output on the MS-DOS screen without modification
will not be properly centered. The extra eight lines avail-
Screen Size able allow more data to be displayed and may be used to
improve the original Model I1I display.
The Model I1I screen is 16 lines at 64 characters
per line, the Model IV screen is 24 lines at 80 characters
P _ Table1
Model II1 Model IV MS-DOS
No keyword spaces Needs spaces Needs spaces
Print@ used Print@ used Locate used
Print Using % % Print Using \ \ Print Using \ \
Print Using [[Print Using " * Print Using " *
Kill"file/ext:0" Kill"file/ext:0" Kill” A:file.ext”
Load”file/ext:1" Load”file/ext:1" Load”B:file.ext”
Save”file/ext:1" Save”file/ext:1" Save”B:file.ext”
Filename in caps Filename u/l case Filename u/l case
| . THEN optional THEN for each IF THEN for each IF
Table 2
List of Equivalent Statements
Model 111 Model IV MS-DOS
CHRS$(8) Backspace & erase Backspace & erase CHR$(29)+" ¢
CHR$(14) Cursor ON Cursor ON Locate ,,1
CHR$(15) Cursor OFF Cursor OFF Locate ,,0
CHR$(21) Special Char. toggle Special Char.toggle Not required
CHR$(22) Alt. Char. toggle Alt. Char. toggle Not required
CHRS$(23) Half-wide screen Half-wide screen WIDTH 40
CHR$(24) Cursor left Cursor left CHR$(29)
CHR$(25) Cursor right Cursor right CHR$(28)
CHR$(26) Cursor down Cursor down CHRS$(31)
CHR$(27) Cursor up Cursor up CHR$(30)
CHR$(28) Cursor home Cursor home CHR$(11)
CHR$(29) Erase line restart Erase line restart See note 1
CHRS$(30) Erase to end of line Erase to end line See note 2
CHR$(31) Erase to end display Erase to end disp. See note 3
CHR$(127) Plus or minus Plus or minus CHR$(241)
CHR$(192) Spade Spade CHRS$(6)
CHR$(193) Heart Heart CHR$(3)
CHR$(194) Diamond Diamond CHR$(5)
' CHR$(195) Club Club CHRS$(4)
CHR$(196) Happy face Happy face CHRS$(1)
CHR$(197) Frown face Frown face CHR$(2)

CobeWorks

31

CHR$(198) < with underline < with underline CHRS$(242)
CHR$(199) > with underline > with underline CHR$(243)
CHR$(200) Alpha Alpha CHRS$(224)
CHR$(201) Beta Beta CHR$(225)
R$(235)
CHR$(203) Delta Delta CH
CHR$(204) Epsilon Epsilon CHRS$(238)
CHR$(207) Theta Theta CHR$(233)
CHR$(208) Iota Iota CHRS$(168)
CHR$(215) Pi Pi CHR$(227)
CHR$(217) Sigma Sigma CHR$(229)
CHR$(218) Tau Tau CHR$(231)
CHR$(220) Phi Phi CHRS$(232)
CHR$(224) Omega Omega CHR$(234)
CHR$(225) Square root Square root CHRS$(251)
CHR$(226) Divide Divide CHR$(246)
CHR$(227) Sigma Sigma CHRS$(228)
CHR$(228) Approx. equal Approx. equal CHR$(247)
CHR$(229) Delta Delta CHR$(127)
CHR$(233) Percent Percent CHRS$(37)
CHR$(235) Infinity Infinity CHR$(236)
CHR$(237) 6over9 6over9 CHR$(21)
CHR$(241) Paragraph symbol Paragraph symbol CHR$(20)
CHR$(242) Cents Cents CHR$(155)
The following Model IV Print CHR$() are preceded by Print CHR$(0);
POKE 1 English pound CHRS$(6) CHR$(156)
POKE 2 Vertical line CHRS$(26) CHR$(179)
POKE 3 ‘overe C}{RS(” CHRS(130)
POKE 4 U umlaut CHRS$(10) CHR$(154)
POKE 5 circle over A CHR$(143)
POKE 6 top right corner CHR$(191)
POKE 7 O umlaut CHR$(9) CHRS$(153)
SR e CHRS$(13) CHRS$(151)
POKE 10 “overn CHRS$(164)
POKE 11 “overu CHRS(%)
POKE 14 A umlaut CHRS$(142)
POKE 16 “over N CHRS$(165)
POKE 17 o umlaut CHRS$(1) CHRS$(148)
POKE 18 Slash O CHRS$(237)
POKE 20 B
CHRS$(66)
R pasn CHR$(10) CHR$(129)
PRELE CHR$(8) CHRS$(132)
POKE 25 overa CHR$(133)
e g e CHR$(11) CHR$(134)
over 9 CHRS$(21)
POKE 30 ,under C CHRS$(128)
POKE 31
CHRS$(126)
1. L=CSRLIN:LOCATE L,1:PRINT STRING$(79.32)::
2. C=POS(0):LOCATE ,C:PRINT S’FRINGS(?Q(-C,'ng;:ESCC:—I'I% IEI
3 L=CSRLIN:C=POS(0).LOCATE ,C:PRINT STRINGS$(79-C.32}--FOR
J=L+1 TO 23-L: PRINT STRINGS(79, 32);: NEXT J: LOCATE L.C
/
CopeWORKS

POKES to non-screen addresses

Function Model I11 Poke Model IV Poke MS-DOS
U/L case POKE 16409,0 POKE 116,0 See note 1
Sp. Char Switch POKE 16420,1 POKE 2964,8 Not used
Set Mem. size POKE 16561,0-255 Clear memsize Clear memsize
Set Mem. size POKE 16562,0-255 Clear memsize Clear memsize
Scroll protect POKE 16916,1-7 POKE 2964,1-7 See note 2
1. Any number other than 0 sets Caps only for Models III/IV. For

MS-DOS DEF SEG=0:POKE 1047,32 sets num-lock, POKE 1047,64 sets

caps lock, POKE 1047,96 sets both and POKE 1047,0 resets all.
2. The number poked (1-7) determines the number of video display

lines to protect from scroll on Models ITI/TV. For MS-DOS you

may use VIEW PRINT n1 to n2, where n1-n2 are the range of

lines to be unprotected.

PEEKSs to ROM Addresses

The following PEEKSs may be used in Models ITI/IV
Function Model III Peek Model IV PEEK MS-DOS
Printer status PEEK(14312) INP(248) INP(889)
Check for key PEEK(14400) PEEK(2300) See note 1
Program start PEEK(16548) PEEK(28318) See note 2
Program start PEEK(16549) PEEK(28319) See note 2
Program end PEEK(16633) PEEK(29087) See note 3
Program end PEEK(16633) PEEK(29088) See note 3

1, This PEEK checks to see if a specific key has been pressed and

if so takes appropriate action. The following example for Model

111 demonstrates the checking of the left and right arrow keys

where K=32 is the left arrow and K=64 is the right arrow. Note

that the values returned from PEEK(14400) are not the ASCII

values, These are values for specific keys: 1<ENTER>,2<CLEAR>,

8<up-arrow>, 16<down arrow>, 32<left arrow>, 64<right arrow>,

128<space bar>.

500 K=PEEK(14400):IF K=32 OR K=64 THEN 1000 ELSE RETURN

The routine is the same for the Model IV, except that the PEEK

address is (2300) and the values are K=8 and K=9 for the keys.

For MS-DOS the 8 and 9 are the <BACK SPACE> and <TAB> keys and

the routine below may be substituted for the Model ITI/IV

routine.

500 IK$=INKEY$:FOR J=1 TO 100:IF IK$<>"" THEN 510 ELSE NEXTJ
510 IF IK$< >"" THEN IF ASC(IK$)=8 OR ASC(IK$)=9 THEN 1000
520 RETURN

2. This PEEK returns the least significant byte and the most
significant byte of the BASIC program start address.

3. This PEEK returns the least significant byte and the most
significant byte of the BASIC program end address.

CopeWorks

Assignment of Control Keys

The use of the arrow keys, Shift-arrow keys and CLEAR key
with the INKEYS function for control keys on the Models III/IV
need to be changed for use on MS-DOS because GW-BASIC returns
a two-character string for the arrow keys and does not have a
CLEAR key. The routine below demonstrates use of down-arrow
on the Models ITI/TV.

600 IK$=INKEY$:IF IK$=""THEN 600
610 IF ASC(IK$)=10 THEN 300

and for the down-arrow key in GW-BASIC, use this routine.

600 IK$=INKEYS$:IF IK$="" THEN 600
610 IF LEN(IKS$)=2 AND ASC(RIGHTS$(IKS$,1))=80 THEN 300

The following list provides the ASCII values for various keys:

Key used Model ITI Model IV MS-DOS
Left arrow 8 8 75

Right arrow 9 9 77

Down arrow 10 10 80

Up arrow 91 91 72

Shift I-arrow 24 24 135

Shift r-arrow 25 25 136

Shift d-arrow none 26 134

Shift u-arrow 27 27 133
CLEAR 31 31 none

The following routine returns the ASCII value of any key or
key combination:

800 CLS:PRINT” IK$ LEN(IKS) ASC(IKS$)
810 IK$=INKEYS$:IF IK$=""THEN 810

820 PRINT TAB(3) IK$,LEN(IK$),ASC(RIGHTS$(IKS, 1))

830 GOTO 810

Missing Model III Commands
The Model 11T has 15 CMD functions which are not directly

supported by MS-DOS. Some of these commands need to be converted
for use on MS-DOS. CMD functions accessed from BASIC programs are:

Function Model II1 Model 1V MS-DOS
Return to DOS CMD”A” System System
Enable/disable break CMD”B” See note 1 See note 1
Display directory CMD”D:0" CATO Files A:
Display directory CMD”D:1" CAT1 Files B:
Execute DOS command CMD"I",”ecmd” System “cmd” Shell “cmd”
Chg. date display form CMD”J)” Not used
Load machine program CMD”L” System “file” Not used

34

CopeWorks

¢

Sort a string array CMD”0O” None

Check printer status CMD"P” INP(248)
Move to DOS and return CMD”S” System “cmd”
Video & printer output CMD”"Z” See note 3

1. Enter BREAK ON or BREAK OFF from the DOS prompt.
2. SHELL “SORT [/R] [/+n] [<input pathname] [>output pathname]”
reads input from keyboard or file specified by input pathname,
sorts the data, and writes it to screen or file specified by
output pathname. [] brackets indicate optional sort parameters,
/R reverses the sort (z to A). /+n begins the sort at column n
(default is 1).
3. Use SYSTEM “LINK *DO *PR”
4. This feature is not supported by MS-DOS but may be simulated.

Methods to provide dual output to both video and printer.

1. To simulate CMD”Z" and to alternately display and print
text lines, the simplest method is to add LPRINT statements for
all PRINT statements where dual output is desired. Since MS-DOS
has a full screen editor and can edit line numbers, this is
easy to do. Simply duplicate the PRINT line number and add an
L to the PRINT in the duplicated line.

2. To alternately display and print video pages the following
BASIC subroutine may be used in MS-DOS. It replaces LCOPY and has
the advantage of allowing the user to specify the number of lines
to be printed.

100 NL=N:GOSUB 5000 ‘ N=number of lines to print
5000 IF NL<1 OR NL>25 THEN NL=25

5010 DEF SEG=&HB800

5020 FOR ZX=0 TO NL*160 STEP 160:ZP§=""
5030 FOR ZY=0TO 158 STEP 2

5040 ZP$=ZP$+CHRS$(PEEK(ZX+ZY)

5050 NEXT ZY

5060 LPRINT ZP$

5070 NEXT ZX

5080 RETURN

The above subroutine may be modified to print a variable number
of video screen lines by omitting printing pf blank lines. To

omit printing blank lines make the following change to the
routine:

100 GOSUB 5000
5010 FOR ZX=0TO 3998 STEP 160:ZP$=’

5035 IF PEEK(ZX+ZY)=32 THEN ZW=ZW+1
5055 IF ZW=80 THEN 5065

5065 ZW=0

To force a blank line to be printed with the ?bove changes, use
“PRINT CHR$(255)” in place of “PRINT’

See note 2
INP(889)
Shell

See note 4

ConeWonxs

35

3. GW-BASIC in MS-DOS allows the assignment of devices. Another
method that can be used to output to both screen and printer

is to open the screen for output as #1 and open LPT1 (the

printer output) for output as #1, then PRINT #1 to both of

them. Don't forget to CLOSE #1 when you are done.

Timer Loops

Many BASIC programs use FOR..NEXT loops to time program
delays. Because the Model 11T and I'V have a slower clock speed
than most MS-DOS machines, the loop length must be increased
when using GW-BASIC. Some typical clock speeds are:

Model 111 2.02752 Mhz
Model IV 4.055 Mhz
8086 PC 4.77-7.16 Mhz
80286 PC 8-10 Mhz
80386 PC 16 - 20 Mhz

This means that when converting from the Model I1I, multiply
the value of the loop counter range by 2.35 or 3.53 and from
the Model 1V multiply the value of the loop counter range

by 1.18 or 1.77.

Miscellaneous Differences

1. Model ITI/TV special characters CHR$(244)+ CHR$(245)+ CHR$(246)
produce a hand pointing right. No such feature is provided for

in MS-DOS.

2. On Models ITVIV the statement 200 F=180:INPUT”Value (default=
180)”;F produces F=180 if ENTER is pressed. For GW-BASIC use the
statement 200 INPUT “Value (default=180)";F:IF F<1 THEN F=180.
3. Models ITI/IV search all drives for a requested filename.

MS-DOS searches only the current drive. However, by using the

PATH internal command, any drive or sub-directory may be

searched. The PATH can also be included in the MS-DOS
Autoexec.Bat file so that it is automatically invoked on

power up.

4. LOF() contains the number of the last record for Models

ITI and IV. LOF () contains the length of the file in bytes

for MS-DOS machines.

5. For the Models ITI/IV the function RND(X) produces random
integers 1 to X. In GW-BASIC use INT(RND*X+1).

6. Model I11 uses [for exponentiation. Model IV and GW-BASIC

use the caret ().

7. The following statements are equivalent:
GW-BASIC 100 LOCATE X,Y:RETURN

Model I 100 PRINT@((X-1)*64)+(Y-1),:RETURN
Model IV 100 PRINT@((X-1),(Y-1)),;;RETURN

' ¢

Hard

Disks

Questions and Answers

Al Mashburn, Technical Advisor. In response to many requests, Al has put together a
few questions and answers about hard disks. If enough interest is shown in this subject Al is
prepared to dig deeper and get into the more technical aspects of hard drives.

Rather than do another dry two-page article on
hard drives, I thought I'd go for the question-answer
format. Truth in print requires me to tell you that some
of the questions are ones I thought you should have
asked.

q. Why do I need a hard drive?

a. Because it is the quickest way to have something
better than your friends. Seriously there are people that
just plain do not need a hard drive. If you only use one
application and it doesn’t need a lot of storage, you may
live happily ever after using only floppies. Those of you
with TRS-80s most likely do not and will not have one.
Most of the programs you use are designed to fit and run
on one floppy, putting data on the second floppy. But
when you get into the MS-DOS world, things change.
For instance QuickBASIC 4 comes on three diskeltes.
Our business mailing list is over one megabyte long and
would be a real pain to try to span over three or four
floppies.

q. What are the differences between floppy drives and
hard drives?

a. Well, let's start with the physical differences. A floppy
disk is made of a flexible piece of plastic with a coating
of oxide on it to store information much like a cassette
tape. The head of the drive rubs right on the surface just
like the heads on a tape recorder. The disk is held in a
cover that has a soft lining on the inside to pick up oxide
that has been rubbed off or any dirt that may get in. The
3 1/2 inch disk has a metal cover that slides over the head
opening in the cover to keep dirt out, the 5 1/4 inch disk
is just open to the world. The head moves up and down
the opening to access the different tracks or cylinders of

information. On a single sided drive a pad is on the other
side of the disk to make sure that the head is actually
contacting the surface of the disk. On a double sided
drive the heads do this job for each other. The floppy
disk turns at 360 RPM.

The hard drive is a much different animal. The
first difference is the reason they call it a hard drive. The
hard drive is made up of one or more “platters” of
aluminum with an oxide or sometimes a metal coating
on them. The heads never come into contact with the
platter (well almost never, when they do it is called a
crash.) The oxide coating is very thin and can store bits
on it at a much greater density than a floppy. The disk
spins at 3600 rpm, and the heads “fly” over it at a
distance of about 1/4 the diameter of a human hair (red).
Obviously this makes the hard drive susceptible to
shock and you should take care when transporting a
computer with a hard drive installed.

With the greater speed and the higher bit den-
sity, much higher data transfer rates are found with a
hard drive. Rates of 850,000 bytes per second are quite
within reach of a desktop computer with a hard disk,
compared with the floppy’s 100,000 bytes. So speed is
another difference between the floppy and hard disk.

q. What all do I need?

a. Generally speaking, no matter what type of computer
you have you will only need two things. One is a
controller. This is the interface between the computer
and the drive. It has to know how to talk to both of them,
so the data can be transferred back and forth. Until the
IBM/AT class of computers, the controller had to be
configured for what type of drive it was going to run
with and if you added a second drive, it had to be the

CooeWonrks

same type. The newer controllers are capable of having
two completely different styles of hard drives hooked
up to them. For instance, I run one 30 meg and one 40
meg drive on my system at home. The second thing you
need, of course, is the hard drive.

q. How big of a hard drive do I need?
a. As big as you can afford, with exceptions. If you own
an MS-DOS machine, you can’t have too big of a drive.
DOS can only “see” 32 megs at this time, (although 1
have heard DOS 3.4 will break the barrier) but with
special drivers you can either break up big drives into 32
meg chunks, or fool DOS into seeing bigger drives.
You TRS-80 people are the exceptions. The
biggest drive that is really usable by you is 5 megs. The
reason for this is kind of a two-part whammy. One is that
the TRS-80 can only access 4 floppy and 4 hard drives
(on the TRS-80 you break one hard drive into 4 “logi-
cal” hard drives). The other is that it can only keep track
of so many “chunks” on a drive. Let me define a chunk.
Lets say that on a TRS-80 floppy drive, the
sectors are 256k long. The system will usually group
them into one 512k “chunk.” What this means to you
and me is that the smallest file I can write is going to be
512k long. Even if it is only a 100 byte BASIC file, it is
still going to take up 512k. Now if your system can only
keep track of so many chunks, and somebody hooks up
a hard drive, what’s a system to do ? You, the guy in the
back, right! You make the chunks bigger! Hey, no
problem right? Wrong. Let’s say we have a 5 meg drive,
broken into four 1.25 meg drives. The chunk size on

these drives could be as much as 8k long. Obviously if
you were trying 1o usc a 10 meg drive, they would be
16k long. That means that the 100 byte BASIC program
takes up 16k on the drive. You can sce that there is areal
limit for the TRS-80.

q. Can I use my hard drive for my TRS-80 and my MS-
DOS machine?

a. Yes, although it isn't cost effective for just two
computers,

Tandy has a network system called Network4
that can let you hook up to 63 MS-DOS or TRS-80
Models 3 or 4 up to a single hard drive. One machine has
to be a “slave” and do nothing but be the traffic cop for
the system but the others have access to the drive just
like it was installed in their computers. Like I said, it it
not cost effective for just two computers, but for a school
or business that has a lot of either or both computers it
makes a lot of sense. The adapters to put the computers
on the net are only a couple of hundred dollars which is
a lot cheaper that the $500 that many vendors want for
just a 5 meg drive for the Model 3 or 4.

If there is enough interest in it, a later article can
cover the first steps on putting in a new hard drive.
Starting with formatting and going through the setting
up of sub-directories and paths. For once the TRS-80
guys have this one easy, since the hard drive is treated
like a big floppy there is little or no difference in
operation. The MS-DOS people have a real bag of
worms on their hands if the drive isn't set up right in the
first place.

Computing Notes, from page 29

16919 - time-date

16928 - route destination device designator
16930 - route source device designator

17129 - Level I BASIC pointer to 2nd program line

20992-28671 - Disk BASIC & DOS utilities
26810 - Disk BASIC pointer to 2nd program line
28672-65535 - user memory not used by DOS

Those of you who do not have WHILE and WEND
as statements in your BASIC can easily program
around them. WHILE basically says to do something
while a certain condition exists, then quit. Check out
the following code, which reads from a sequential
file:

100 WHILE NOT EOF
110 INPUT #1, LN$
120 WEND

130 CLOSE

which says that as long as we are not at EOF in the
file, to read in LNS. If we do reach EOF, then goto
130 and CLOSE the file.

Without WHILE and WEND, your code could look
like this:

100 IF EOF THEN 130
110 INPUT #1, LN$
120 GOTO 100

130 CLOSE

38

.»‘

Han

dy Order Form

Item descri

Price

Total

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95
All third year issues, Nov 87 through Sep 88 $24.95
All second year issues, Nov 86 through Sep 87 $24.95
All first year issues, Sep 85 through Sep 86 $24.95
Ist Year Program Disk (issues 1 through 7)
(Specify computer type below) $20.00
2nd Year Program Disk (issues 8 through 13)
(Specify computer type below) $20.00
3rd Year Program Disk (issues 14 through 19)
(Specify computer type below) Available after 1 Sep 88 $20.00
NEW! "Starting with MS DOS" 40-page book explains all $7.00
Total

COMPUTER TYPE

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3),
TRSDOS 6.x (Tandy Model IV) and most CP/M MBASIC formats, on
5 1/4 inch diskettes. When ordering diskettes, specify your computer type.

O Check/MO enclosed

O Charge to my VISA/MC exp
Ship to: Name

Address

City State Zip

Clip or photocopy and mail to:

CodeWorks, 3838 S. Warner St. Tacoma WA 98409

] q -Charge card orders may be called in (206) 475-2219

between 9

am and 4 pm weekdays, Pacific time.

VISA/Master Card only, we don't take American Express

788

Index Update

Additions to CWINDEX.DAT

~ Ledger.bas, reference, issue 17, page 4

* Misc, reference to Locate x,y, issue 17, page 4

* Misc, reference to ArcSIN in issue 16, issue 17,
page 5

Misc, reference to TRSDOS 6.2 and date, issue
17, page 5

Beginning BASIC, direct cursor positioning,
issue 17, page 6

Misc, program, Cursor].bas, issue 17, page 8
Misc, program Cursor2.bas, issue 17, page 9
Mise, program, Cusror3.bas, issue 17, page 10

" Random files, issue 17, page 11, sorting big files
in Randemo

Ranidx2.bas, main program, issue 17, page 12,
- big sorts

Misc, program, easydate.bas, issue 17, page 17,

standardizes date

Dmaker.bas, main program, issue 17, page 18,
aid to decision making

Etax88.bas, main program, issue 17, page 25, es-
timating quarterly taxes

Bio.bas, main program, issue 17, page 30, plot
your biorhythms

If you are using Qkey.Bas to keep a run-
ning index of CodeWorks articles and notes,
these are the changes to bring that index up to
date through the last issue.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
POSTAGE
PAID
Permit 774
Tacoma, WA

e ————

Issue 19

* CopbEWORKS

Sep/Oct 1988

CONTENTS
B O NO O e e rece s snsness sesncncscosessssranasse 2
FOTUM ..ccvercerecsescscosssesccsscscsoscecsscsssscccsse 3
Beginning BASICcccccccevverceecsecsececcse 7
HATD DISKS occeooserescorsasnsacsasesesncsossosessonsse 9
NFLS88.BAS .cccoovevsesvssssssrssscsssssssssesssence 12
StALS88.BAS c.covvevveercsersecrssscssssscssscsssonce 18
COTTel.BAS ..cooveversvevsescesesessssossscosessseces 22
OULIINE.BAS ..ccovcevcecresvsescsccssrcsosscncocces 30
RANAOM FileS ...cvvevverrcrrsrosssssoscsscsvesenes 37
Renewal FOTT ..c.ccceveeveevsscssscscsccsssccces 39
Index/Downloadccceocessessesesecoeseosens 40

/

CopEWORKS

Editor's Notes

Issue 19 Sep/Oct 1988

Editor/Publisher
Irv Schmidt
Associate Editor
Terry R. Dettmann
Circulation/Promotion
Robert P. Perez
Editorial Advisor
Cameron C. Brown
Technical Advisor
Al Mashburn

(c)1888 80-Northwest Publishing Inc. No
patent Hability is assumed with respect to the
use of the information contained herein. While
every precaution has been taken in the prepa-
ration of this publication, the publisher as-
sume’s no responsibility for errors or omissions.
Unless otherwise noted, all programs pre-
sented in this publication are placed in
public domain. Please address all correspon-
dence to CodeWorks, 3838 South Warmer
Street, Tacoma, WA 98409

Telephones

(206) 475-2219 (voice)
(208) 475-2358 (modem download)
300/1200 baud, 8 bits, no parity and 1
stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro-
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned ifreturn postage is provided. Compen-
sation will be made for works which are ac-
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (206) 475-2218.
Charge card orders may also be left via our
on-line download system (208) 475-2358.

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
a sample copy at no cost.

Well, after all the hoopla of
moving and switching to desktop
publishing, we finally settled for a
different office in the same build-
ing. So, no address or phone
number changes and that's nice.
And with a little more experience
under our belts, this issue ought
to look a little better than the last.

the move I ran across
and old book, entitled “Computers
and How They Work." It was pub-
lished by Ziff-Davis Publishing
Co., in 1959. I remember it as
being one of the first books about
computers, and in those days
there weren't very many. I took a
fewminutes to browse through the
book before I realized what ex-
traordinary changes have taken
place in computing in the past 30
years.

The book gave a lot of coverage
to magnetic core memories and
shift registers. A core memory of
16K was considered state of the
art. There were no video display
terminals; everything printed out
on a typewriter-like printer.
Punched paper tape looked like
the input medium of choice in
those days.

Nowherein thebook could I find
evidence of the concept of having
the program and free memory
occupy the same space. The pro-
gramlooked like it was wired up on
some kind of plug-in panel. There
was a whole chapter on “how com-
puters remember.” High speed
tape and card punching were cov-
ered as though they were new
concepts, and they probably were.
Although they talked about serial
and parallel adders, serial or par-
allel input or output was never
mentioned.

The coup de grace of the whole

affair was near the end of the book,
where they talked about then
current systems. Here I'll quote
directly from the book: “The IBM
704 requires 24 microseconds Lo
perform addition and 240 micro-
seconds to perform multiplication
or division. Provisions are made
for storing up to eighty-six in-
structions. Input-output rates via
magnetic tape may be as high as
2500 words per second. This
popular system carries a selling
price of $1,000,000 to
$2,500,000."

In case you missed it, those
es are in the millions! For
contrast, the book itself, which
was a very well done hard-cover
book, had a price printed on its
jacket - $4.95.

Isn't it amazing that the price of
computers has come down so
much, while the price of books has
gone up? Not only that, but com-
puters offer much more than ever
before for less money, while books
seem to offer less for more money.
Oh, well.

This issue marks the end of our
third year at CodeWorks. It has
been interesting and fun, and we
hope you have found it worth your
while too. It also means that we
must, once again, solicit your
renewals for another year. We
appreciate the many of you who
have already renewed and ordered
our third year diskette. We would
like to encourage the rest of you to
renew as soon as possible, so that
you don't miss out on the neat
things we have planned for you
during the coming year.

Aside from all that, it's football
season again, and Autumn, and
what could be nicer than that?

Irv

CopeWonrks

€

Forum

An Open Forum for Questions and Comments

...CodeWorks has been very helpful to me in
understanding how a computer and BASIC
programming work. Also, thanks for the tips on
Genealogy. I have ordered “Clan” from Mr.
Hurlburt (Forum, Issue 18) and am looking
forward to using it.

Walter Evans, Jr.
Waco, TX

...Add one more to the list of people interested
in Genealogy. I have seen a number of ads for
programs to do genealogy, but none of them to
be used with a Model III. Your note about the
program from Arthur C. Hurlburt, to runon a
Model III with TRSDOS 1.3 was of great interest.
I am ordering a copy from him immediately. I
have been told that the Mormon church has
published a program which is supposed to be
very good, but one needs an IBM PC or equiva-
lent to run it, so I have never looked into it.

D. B. McRae
Grantsville, UT

I am glad to see that the genealogy business

is creeping to the front. William A. Korroch (3806

Churchill, Lansing, MI 48911) has generated a

genealogy program “Pedigree” that enjoys pub-

lic domain. If you are interested in learning more

about (the program) I am sure Bill will be pleased

to “go the second mile or more.” Thanks to you

and your crew for CodeWorks!

S. A. Langell

North Canton, OH

Thanks for the information, but you didn’t say

what computer it runs on. Fromthe other informa-

tion you have sent we assume it runs on a Tandy
Model 111, although it does not say so explicitly.

This letter is in reference to one of your pro-
grams, Card.Bas, which appears inIssue 2. It is
a very useful program. However, the program
would be much more useful if, using option 4,
you could sort on a secondary key as well as a
primary key. In one of your future issues, could

you please publish a program that uses a secon-
dary sort?

Anthony Ivy

Tuscaloosa, AL

We are working on version 2 of Card.Bas now,

which basically does nothing more than give you

the secondary sort you have asked for. In addi-

tion, we have worked up a little demo program to

show how two-level sorting works. It will proba-

bly appear in a future installment of Beginning
BASIC.

I have found a tremendous resource of inter-
esting programs in your CodeWorks. Not only
good programs but also their depth have given
me a wonderful review of the whole BASIC
language. One seems to need only a few com-
mands when coding his routine chores and
forgets the others and the power they provide...

J. M. Davis
Sun City, AZ

Isn't it the truth? We have_found that the more
tools you have in your toolbox, the simpler and
less complex your code becomes.

You mentioned that you knew of no way to
recover files saved with the “P" option (in MS
DOS). B & J Enterprise, PO Box 485, Daleville,
AL 36322 lists disk #1049 to unprotect them at
$3.50 (public domain catalog). I've not used it
but thought you'd like to know.

Mrs. Ira Hynes
San Francisco, CA

Thanks. We solved the problem by never using

the “P” option.

...May I make a few comments that might be
worth considering? Many owners of the TRS-80
(I, 11, I1I and IV) are either engineers or, at least
technically competent. I think that most are not
afraid to go into their machines and make
repairs and alterations. I myself have modified a
Model III and a IV to include an internal fan,
built-in power supplies to accommodate four
floppy disk drives, installed four half-inch high

CooeWorks

’

drives (Teac seems to be the best) and, on the
Model 111, addition of Shuffleboard III CP/M.

The above thoughts lead me to believe that a
really good attempt to change the I, Il and IV
into 16, or even 32, bit machines would be
received with enthusiasm. Our babies should be
able to do all that they ever did, plus anything
new.

This is not really as crazy as it sounds. There
are many of us out here. In fact, some of the best
of us can be found in Australia, Canada, The
Netherlands and many foreign countries. I am
sure a fair percentage of us would be willing to
commit ourselves to a comprehensive program
of updating and modernizing. There is one thing
most of the powers that be seem to forget: there
are an awful lot of TRS-80’s around.

One thing that might be a problem is the DOS.
But, even for this, I think that MISOSYS and
Logical Systems have shown a reasonable (more
than could reasonably be expected) support and
interest in the TRS-80. True, Logical Systems is
bowing out, but even now, not completely. You
can still get answers and friendly help simply by
writing or calling them.

It seems to me that a program of the type
suggested could extend the life of the old girls for
many years, in fact, even into the 21st century...

Maxwell L. Hall
Chicopee, MA

I used to feel the same way about the Model A

Ford, but I don’t any more. Comments, anyone?

How does one print quotation marks? You
have to use them in your programming but I
don't know how to print a quotation mark. It
cuts the balance of my sentence off if I try to use
one and I find nothing in the manuals on it.

Mrs. Ira Hynes
San Francisco, CA

CHR$(34) is the quote mark. You can insert it
into your print statement wherever you want a
quote mark to appear. As in: PRINT “Here is how
to put a”;chr$(34);"mark in your print statement.”

Do you know of any people who have typed at
least some portion of the Bible (NIV or RSV) onto
5 1/4" disks using a TRS-80 Model III/IV and
Superscripsit?] am interested in swappingwhat
I am doing for what they are doing. So far, | have
most of the book of Genesis on disk. It is in files

of three chapters per flle which can be merged
into longer files using the Copy and/or Move
commands. So I can keep track of where I am,
the book name and chapter appear at least once
on each “video™ page. My goal is to type the first
five books (Genesis through Deuteronomy). lam
especially interested in corresponding with
those who are working on the New Testament.

Thanks for your help.
Samuel Laswell
74214 Lambert Drive
South Haven, MI 49090

No, but someone else might.

Please do not frighten me by considering the
discontinuing of CodeWorks. Your publication
is the only good resource for CP/M programs. |
am just old fashioned enough to stick to my
(Heath) H89A and CP/M, even though most
computer publications have completely forgot-
ten 8-bit and CP/M. I am still the slowest
element in the system, so the hardware and
software speed does not bother me.

Still having problems with conversion of the
LOCATE command to CP/M. Just got to keep
working at it to get it straight. Beginning BASIC
in Issue 17 helped some, but I cannot get the
demo program to run correctly. Keep up the
good work. Cheers.

B. T. Jeavons
Ocean Springs, MS

We won’t give up if you don’t. Will someone
with an H89A send us the exact syntax to make
our LOCATE/ Print@ routine work so that we can
pass it along?

I have the following disk cleaning program
which I use to clean disks in my TRS-80 Model
IV. It works very well with the IV and I tried to
convert it to my XT Clone using TRSCROSS but
it stayed the same as before and would not
convert.

10 CLS:INPUT"TREMOVE ALL DISKS IN ALL
DRIVES AND PRESS ENTER™A$

20 INPUTTHOW MANY DRIVES DO YOU
HAVE";D

30 IF D<0 OR D>4 THEN 20

40 FOR C=0 TO D-1

50 PRINT'INSERT CLEANER
DRIVE";C;

INTO

CopeWorks

60 INPUT"AND PRESS ENTER";A$
70 FOR R=1 TO 9700:0UT 244,15:NEXT R,C

I would like to know if anyone at your facility
or any of your readers might have a similar pro-
gram for the IBM PC or clones? I could use such
a program whether it is written in GW-BASIC,
QuickBASIC or MS-DOS.

Clyde W. Preble
Mill Valley, CA

Why go through all that? At the DOS ready
prompt, just put the cleaner disk into the drive you
want to clean and issue a DIR - or are we missing
something? To make the program work with MS-
DOS you will need to identify your drives by letter
(string), not by number. That's why it wouldn't
convert with TRSCROSS.

Having been a CodeWorks subscriber from Is-
sue 1 and having enjoyed and learned much
from each issue, I am reluctant to terminate my
subscription, However, it seems necessary at
this time. I just don't have time toread, copy and
use your articles which are not applicable to my
present experience.

A total surprise brought it about.

My three sons thought old dad ought to have
and gave me a new computer for my birthday. It
has 256K of memory, external drive, hard drive,
printer and programs for multi-tasking, word
processing, publishing, spreadsheet, drafting
and drawing. The only thing I had to get was an
interpreter so I could transport the useful and
fun things from the two previous systems.

At first the whole thing was so formidable that
I almost wished they hadn't done it, but now,
after a few months of getting acquainted with
everything, it is special and may become profit-
able as well as fun.

I guess 1 have become a user. There just
doesn't seem to be time to read and learn about
programming. With that said, it is time for #194
to say thanks for the CodeWorks experience.

Louis B. Kelley #194
Crescent City, FL

I can understand the lure of commercial pro-
grams, having switched to desktop publishing,
with a hand scanner for graphics and a CAD
program to do drawings. ButI'm trying to let it not
overwhelm me. Thanks for your three years of
support and good luck.

Something moved me to re-read Editor's
Notes of the May/June issue and from there the
Forum...

...About sixty years ago I had my first and only
encounter with a hydraulicramasaladof11 at
my grandfather's. It was fascinating as it
rammed the water up a high hill and onto the
back porch of his home. You will do what you
will, but April Fool's jokes have no place in a
good publication like CodeWorks.

I remember quite vividly an article in the late
30's about a Lilliputian radio, if the publication
still exists, they've eaten their words many times
over. ‘Course I fell for the article hook, line and
sinker.

September, a year ago, I sold my weekly news-
paper, The Carlisle Mercury, in its 120th year of
continuous publication. In August 1962 we
changed our way of printing from letterpress to
offset...

In March 1987 I purchased Apple's Laser
Plus, two Mac's, one with 20 meg hard disk and
by April we had shoved the (typesetters) to the
sidelines. Type faces are not as esthetic, but
time and technology will cure that I'm sure!
Costwise it's a time saver and frees one from a
silver coated paper and its chemicals. Consider-
ing the size type faces used in CodeWorks there
are not too many who can tell the difference. It
might be the way to go...

~ Warren R. Fisher
Carlisle, KY

And we did. Since you got your laser printer
they have added Postscript, 13 type families in 35
Jonts (all in the printer ROM) and the ability to set
type sizes in 5 to 127 point in half-point incre-
ments. The Apple LaserWriter II also does
smoothing on those little “stair-step” lines you get
on your screen (but only with Draw-type graph-
ics, not with bit-mapped). The first commercial job
(a technical manual) I did with this system I had
to do over three times to get it right, but the
experience was worth it all and should show in
this issue. Sometimes you simply have to jump in
with both feet - and kick a little bit. And no more
stinking chemicals to go sour and wasted, expen-
sive silver coated paper to wrap around the
processor rollers. Isn't technology wonderful?

CopeWonrks

’

Although we don't normally do product re-
views, we do from time to time get products that
may be ofinterest to you. It is especially interest-
ing to note that two of the three following items
are for Tandy Models II/IV, after we had
thought that support for these machines had
faded.

John M. Gregg, of TRY-O-BYTE, 1008 Alton
Circle, Florence, SC 29501 (803) 662-9500
sent us his 1988 version of TAX ESTIMATOR for
the TRS-80 Models 111, IV, MS DOS, and Tandy
Color Computer. The program is available to
users for the cost of shipping and handling,
$5.00. John also included a copy of his “Report
to Users,” Summer 1988, and since it carried the
heading “Volume 1 Number 1," we assume this
report will be an on-going thing.

Subscriber Tim Sewell has sent us informa-
tion on The File Cabinet - Public Domain
Software for your TRS-80," PO Box 4295, San
Fernando, CA 91342, He says it’s a “Download
through the mail." Over the years, The File
Cabinet has collected TRS-80 software from all
over the country. The programs have been
checked, sorted, and cataloged into the largest
collection of TRS-80 public domain software you

will find. There are programs separated into
categories such as, Utilities, Games, Education,
Business and Communication. He even has a
high resolution catalog available with a READ-
MAC picture file catalog in the works. A two-disk
catalog of TRS-80 Model IV software is available
for only $5.00 which is refundable with your first
order. Tim also has information (which you can
ask for) on a TRS-80 Model I/I1I catalog.-

Prime Solutions Inc., 1940 Garnet Ave.,
San Diego, CA 92109 makes some rather fan-
tastic claims for their program, “Disk Techni-
clan+.” It is an artificial intelligence program
that, according to Prime Solutions, will predict,
detect and repair hard disk problems on the
most fundamental level possible: that of the
single bit soft error. In other words, it is software
that repairs hardware! The program requires PC
or MS-DOS versions 2.1 or higher and at least
384K of RAM. But how can it do all that? Disk
Technician+ writes and reads to every single
byte and bit on the hard disk, occupied or not,
using special proprietary testing and repair
algorithms. This process makes certain that
every byte and bit is tested for soft error rate,

continues on page 38

It's RENEWAL time.

If you have not already
renewed your
subscription

then this is your
LAST
ISSUE!

Use the order form on
page 39 to keep it coming!

ANEW YoRIK

| STocK EXCHANGE

/Vesw\

CopeWorks

Beginning BASIC

Exploring the PRINT USING command

It is very likely that Print USING is one of the
most powerful statements in the BASIC lan-
guage. It is equally likely that most program-
mers do not use but a portion of the capability
of that statement. In this installment we will
take an in-depth look at Print USING. Before we
goon, however, let's say that everything you can
say about Print USING can be said for LPRINT
USING as well. In our discussion we will simply
refer to Print USING, keeping in mind that you
can also LPRINT USING.

Print USING is a formatting statement. You
first define a format and then assign a variable
to use that format. The syntax of the Print
USING command 1is: PRINT USING
format;variable. The trick part of this command
is in the format part. You can do very many
interesting things with it, as we will see shortly.
Print USING is used to format output, either to
the screen or to the printer. It automatically
right-sets numbers, so that dollars and cents
come out in nice columns, with the decimal
points all lined up. Let's take an example:

100 A=12.34
110 PRINT USING “##.##";a

will print: 12.34

That's simple enough, but watch what hap-
pens in the next example:

100 A=12.34:B=1.35:C=123.45
110 PRINT USING “###.##%A
120 PRINT USING “###.##",B
130 PRINT USING “###.##",C

This will print:
12.34

1.35
123.45

Now let’s look at the above example in a little
more detail. The number signs are used to
represent numeric positions. The decimal point
will operate at the position where you put it in the
format string. If you only had one number sign
after the decimal point and variables A, B and C
were two decimal places, then the Print USING
statement would use automatic four-fifths
rounding. That's kind of nice. If you have more
positions to the right of the decimal than you
have in your variable, those positions will be
filled with zeros. If your format had three num-
ber signs and variable A was four places before
the decimal, the Print USING command will
print the value of variable A but will put a
percent (%) sign in front of it to indicate to you
that there was an overflow. As we saw earlier, if
there are less positions in the variable than
there are positions in the format, the number
will always be right-justified.

If you are printing large numbers (especially
in dollar amounts) you can put just one comma
anywhere between two of the number signs
before the decimal point and the output will be
grouped in three's with a comma separating the
groups:

100 A=123456789.23
110 PRINT USING “##### #### #4" A

will print: 123,456,789.23

You can even put other characters in the
format if you like. Here's an example:

100 A=123.45
110 PRINT USING “@####.#4™A

and it will print: @ 123.45
But what if you want to actually print a

number sign in the output? Well, you can do
that too, by putting an underscore before the

CopeWonks

/

position you want to print out, as in:

100 A=123.45
110 PRINT USING “_####.##"

which will print: # 123.45

You can place a plus sign at the beginning or
the end of the format. This will cause the sign of
the number, either a plus or a minus, to be
printed depending on where in the format you
placed the plus sign. Here's an example:

100 A=90.02:B=-80.99

110 PRINT USING “+##.##"A
120 PRINT USING “+##.##".B
130 PRINT USING “##.##+"A

will print:

+90.02
-80.99
90.02+

If you place a minus sign at the end of the
format it will cause a minus sign to be printed
after negative numbers only. Positive numbers
will not be affected.

Asterisks (*) placed at the beginning of the
format will cause leading spaces to be filled with
asterisks. The number of asterisks also indicate
that many more print positions in the format.
This one is especially useful in writing checks,
where you want asterisks leading right up to the
dollar amount.

Two dollar signs ($$) placed at the beginning
of the format will cause one dollar sign to be
printed to the immediate left of the first numeric
digit, as in: $12.34. One dollar sign at the
beginning of the format will print in the first
numeric position of the format. For example, if
the format is “$###.##" and the amount is
12.34, the output will be $ 12.34 (with a space
between the dollar sign and the first digit.) Note
that the dollar sign itself, in this case, acts like
an additional numeric position in the format.

At this point you are probably asking if you
can combine what we have covered so far. The

answer is yes! You can have dollar signs, deci-
mal points, asterisks, commas and plus or
minus following the amount, all in one format.

Here's one that isn't used very much in every-
day operations. If you put four carets (AAAA)
after the last number sign, the output will be
printed in exponential notation. If the variable
value is .00023 and the format is “## ##/AAA7,
then the output will look like this: 2.30E-04

You can use the same format to print several
variables:

100 A=12.34:B=123.45:C=1002.34
110 PRINT USING “#####.##"A;B,C

will print: 12.34 123.45 1002.34

Did you notice that the format is always inside
quotes? That makes it a format string. This
means thatyou can define the string somewhere
early in your program, like in line 130
XX$="### ##4#", then later you can simply say:
PRINT USING XX$:A

You can also use more than one format. Look
at this:

100 A=123.45:B=23.12
110 PRINT USING “$$###.## ##.#47AB

which will print $123.45 23.12

and hints that you can build a complete
format line for a report, which you can.

Up to now we have only used numbers in our
format. How about string variables? Well, you
can use Print USING with strings too, but the
format changes slightly. Here's an example:

100 A$="CodeWorks"
110 PRINT USING “\ \";A$
will print: CodeWorks

Not too impressive, is it? But you will learn to
appreciate it when you use it in a program. The
backslashes and the space between them define
the length of the string that will be printed. If we

CopeWoRKs

¢

take two spaces from between the backslashes
in the above example, the output will look like
this: CodeWor

If you insist on printing the entire string, you
can say: PRINT USING “&";A$ and the whole
string, regardless of length, will be printed. The
ampersand (&) tells it to do that.

Some BASICs (usually before version 5.0) use
the percent sign (%) instead of the backslash to
define the string Print USING.

If, in the above example we had said: PRINT

USING “I";A$ then only the C (first letter) of
CodeWorks would have been printed. We have
never figured out a practical use for this little
twist.

So there it is. All the things you wanted to
know about Print USING. You'll have to admit,
it's one powerful command. You will appreciate
it most when you have to format a printed
report, and that is, after all, what it is for. In
some languages they go through agony to do
that, but BASIC hands it to us on a platter. All
we have to do is use it.

Hard Disks

More about hard disks from Al

Al Mashburn, Technical Advisor.

So you just got that new 20 Meg hard drive,
and you are going to put all your stuff on it and
life will be great from now on, right?

Of course not, you know by now that life isn’t
that simple, and if it was, you would have to pay
taxes on it. You have to do some planning before
you put any files on it, or you will pay for your
sins later. What we are going to do today, is start
fresh and set up a new hard drive from scratch.
If you already have a hard drive and you have
found it to be a mess because you didn't do it
right the first time, back up all your files and
follow along.

I am going to start off by making a couple of
assumptions. One, that the drive you are using
is less than or equal to 30 megs, and the second
is that the low level format has been done. If the
drive is bigger that 30 megs, you will need
special software that lets you use all of it. I
suggest SpeedStore. You can find it or other,
Just as good, programs in the back of most PC
magazines. If the drive is not low-level format-

ted, you now know why that guy was cheaper
than the rest. You are on your own until you get
the low-level done, because there are too many
variations to cover here.

Before we lay a byte on the disk, lets do some
deciding. What DOS version are you going to
use? If you said anything below 3.1, go to the
back of the room. There are just too many
improvements in the new versions of DOS to
waste the time formatting your disk with an old
one. Bite the bullet and buy (yes, I said buy) a
copy of DOS and get the manuals so you have
them when you need them. At this time most of
us have the choice of DOS 3.1 or 3.2. The main
difference between them is the supportof 3 1/2
inch disks in DOS 3.2. This support also costs
25k more of memory so it's up to you to decide
if you are going to go to the smaller disks any
time soon. Ifyou buy PC-DOS from IBM and you
don't have a true blue IBM computer, remember
to bring your version of BASIC from your old
system. The BASIC for IBM makes calls to
ROM's that aren't in anything but an IBM. Also

CooeWonrks

9

’

If you don't have an IBM , don’tuse PC-DOS3.3.
Some cases of constant hard drive crashing on
compatibles has been reported. In any case,
never SYS a newer version of DOS to your hard
drive, always re-format. I know some guys walk
on water and never have a problem, but it's just
a good idea. If the company that makes your
computer has an MS-DOS version of 3.3 then
you are OK to use it.

The first thing we have to do is the “high” level
format. This is basically the same as formatting
a floppy, except that it takes alot longer. Assum-
ing that we are doing the first drive, it will be
drive ‘C’. The command is FORMAT C: /S . The
/S puts the system files on the drive so it will
“boot” without a floppy. Depending on your DOS
version you will get a stern warning that you are
about to possibly end the world or at least lose
all your data, and should we proceed? Some of
the old Tandy systems would not even let FOR-
MAT do a hard drive. They included a program
called HFORMAT to do it. Same thing.

You can also add a /V to the format com-
mand, this will let you put a label on the drive.
Personally if I see one more directory that starts
with “Volume on drive C is Als_Disk" , [am going
to spit. Also if there is a label on the drive (if you
are re-formatting an old drive), the FORMAT
program might ask you what the name s, justas
extra insurance that you do want to do this. If
you forgot what the volume name is, just do a
directory and read the top line.

If all is right with the world, the computer will
start formatting the hard drive. Go get a cup of
something, this will take a while. By the way, for
those of you new to computers who may be
having a hard time figuring out just what for-
matting does, think of it this way. The hard drive
is like a giant warehouse. No matter how high it
goes, you can't really store anything in it until
you put some shelves up to store things on.
Formatting builds the “shelves” on the hard
drive so that data can be stored on them. The ID
information in each of the empty sectors is like
bin labels on shelves, identifying the position in
the warehouse. The FAT (file allocation table) is
like the master inventory showing what is on
each of the shelves.

When the drive is formatted, it is time to copy
files onto it. Do a DIR and make sure that
COMMAND.COM is there. If not, copy it from the
DOS disk. Now reboot, and make sure that the
drive will indeed boot up. If it doesn't, and you
get a NON-SYSTEM disk error, then you proba-
bly didn't put the /s in the format command.
Back to square 1. If it does boot, great! Ya did
good. Now type PROMPT PG. This will make
the prompt show us what sub-directory we are
in, so we can tell where we are. Now type MD
DOS. This will make a sub-directory called DOS.
Now type CD\DOS. This will change the active
directory from the ROOT (no name) to the DOS
directory. Your prompt should look like
C:\DOS>. If not, make sure you did the PROMPT
thing and watch that the back-slash is indeed a
back-slash, and not the slash!

Put the DOS disk back into the floppy drive
and type COPY A:*.* to copy all the files from the
floppy to the current directory. I won't walk you
through anymore of these so if something goes
wrong later, go back to these examples. Do a
DIR, and you should see all your DOS files. If
not, go back and try again, ya screwed up.

If all is OK, type CD\ to go back to the root
directory. The Prompt should look like C:\>.
Now make another directory called BIN. Go into
that directory (the prompt should be C:\BIN>)
and copy all of your favorite utilities. This would
include mini text editors, listing utilities, color
changers, etc.

Go back to the root directory. Make one more
directory called MENU. You don't need to go
there right now, stay in the root. It is time to
make an AUTOEXEC.BAT file. AUTOEXEC.BAT
will automatically be run right after the com-
puter boots up if it exists, and there are some
t}lxsicpgs we want to be done before we do anything
else.

Type COPY CON:AUTOEXEC.BAT and press
ENTER. You should see the cursor sittingon the
left side of the screen blinking at you. Type these
lines exactly, except for the <ENTER> at the end
of each line. That just means to press ENTER.

10

—

CopeWORKS

PROMPT PG <ENTER>

PATH C:\DOS;C:\BIN;C:\MENU <ENTER>
CD\MENU <ENTER>

MENU <ENTER>

Now press the F6 key and press ENTER. You
should get the "1 file(s) copied” message. What
you have done is make a file that makes sure
every time your computer is booted up, it has a
prompt that tells you where you are, and a path
set up so the computer can find the files it uses
all the time. If you don't have a clock on board,
you will want to put the DATE and TIME com-
mands in, ifyou do and the clock needs software
to set it, put the software in the BIN sub-
directory and make sure you put the command
to make it work after the PATH command, or it
won't find it. Do not put the clock software in the
root directory, we are trying to keep it clean.

Making sure that we are still in the root direc-
lory, type

COPY CON:CONFIG.SYS and press enter.
Now type

FILES=20 <ENTER>
BUFFERS=20 <ENTER>
DEVICE=\DOS\ANSI.SYS <ENTER>
F6 (the F6 key) <ENTER>

DOS always looks for a CONFIG.SYS file when
it boots up. What this one says is that we want
to have as many as 20 files open at one time, and
we want reads to grab 20 buffers worth of data
at a time. We also loaded ANSI.SYS. This file
allows extended video commands, including
changing colors, moving graphics, and re-defin-
ing keyboard keys. You may not need it right
now, but it is a good idea to have it loaded, and
it takes almost no memory. As an aside, if you
have ever contacted a BBS and gotten all sorts
of strange characters coming all over the screen,
the BBS was probably putting out ANSI graph-
ics which need ANSI.SYS to translate them into
screen graphics.

Now we are on the last leg of setup, the menu.
There are all sorts of “shell” programs out there
that are supposed to make your computing
easier, butl find that after you know DOS a little,

they just get in the way. The menu system we are
going to do here is simple, and doesn't get in the
way at all. Best of all you decide what you want
it to do for you.

The menu we are going to do will only do two
things, format a floppy disk and “park” the hard
drive. Parking the drive just means pulling the
read-write heads into a position where there is
no data. Then if the computer is dropped or hit
very hard and the heads “crash” into the media,
there won't be any damage to the data. If the
heads happened to be over your root directory
when that happened, well you get the picture.
Most all hard drives will come with a program to
park the head, the one I use is called ZPARK, so
substitute your software’s name where you see
ZPARK.

First we do the batch file that displays the
menu. Type

COPY CON:MENU.BAT <ENTER> then

ECHO OFF <ENTER>

CLS <ENTER>

TYPE MENU.TXT <ENTER>
F6 (the F6 key) <ENTER>

You should see the “1 file(s) copied™ message.
If so, type

COPY CON:MENU.TXT <ENTER> then
My Menu System <ENTER>

1) Format a floppy disk <ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>

10) Park Hard drive <ENTER>

F6 (the F6 key) <ENTER>
After the “1 file(s) copied” message, type

CooeWonrks

1

,

COPY CON:1.BAT <ENTER> then

FORMAT A:<ENTER>
MENU <ENTER>
F6 (the F6 key) <ENTER>

Let's look at what this simple batch file does.
First it runs the format program, just like you
had typed in the FORMAT command yourself.
When it is done, it runs the MENU batch file
again. If you have already typed these things in,
you will notice that when the menu is displayed,
the DOS prompt shows afterward. That's the
nice thing about this type of menu, you can use
it if you want, or go ahead and type the com-
mands yourself. The menu never gets in the
way. Let's do the last batch file, then you can fill
in those spaces in MENU.TXT with your own,
often used, commands. Type

COPY CON:10.BAT <ENTER> then

ZPARK (replace with your parking software
name) <ENTER>
F6 (the F6 function key) <ENTER>

Notice that in this batch file, we didn't run
MENU again. That's because parking is the last
thing you do before shutting off the machine.

OK, now it's up to you, this magazine is for
learning and doing so now that you have
learned, do! One suggestion would be to make a
BASICP subdirectory, then add BASIC to the
menu, changing directories to BASICP, and
then running BASIC, returning to the MENU
subdirectory when you exit BASIC and re-run-
ning MENU.

That is just one suggestion, it's your system
and you know what you need. If you have set up
your drive as outlined here, you have a good or-
ganized system to build on. Go for it !

NFL88.Bas

Our Oracle Tries Again

It's hard to believe, but it is that time again. As
I write this two pre-season games have already
been played.

We are printing both NFL88.Bas and
STAT.Bas for those of you who may not have
been with us during previous years. You old-
timers, however, need only pay attention to the
new schedule, contained in the DATA state-
ments at the end of NFL88.Bas.

An easy way to incorporate these DATA state-
ments into your existing program is to use
Maker.Bas (from our very first issue - and also
in the "March Sampler Issue" we put out at one
time) to enter them. Then, if you numbered your
lines properly when you used Maker, you can
simply use the MERGE command to incorporate

the DATA lines into your version of NFL88.Bas.

We are not listing changes for Tandy III or IV,
simply because we believe most of you have
those changes from last year's issues. In the
event you don't have them and would like them,
drop us a line and we will send them to you.
There have been no changes (other than the
schedule information contained in the DATA
lines) that need to be made. Well, you might
want to change the name of the program from
NFL87 to NFL88, but that's no big deal.

We will again, as in past years, put the
statistics (starting with week 4) on the download
so that you can get them from there if you like.

Let's see if Oracle can do better than 60%!

= CopeWonrks

The NFL

National

League
(NFL)

the teams.

Football ,

Team numbers are very important, since
they are used in the programs to identify

NFC
East
National
Football
r—Conference— —CE: tsal_
(NFC)
NFC T
West
AFC
East™ |
American
Football AFC]
Conference Central
(AFC)
AFC___
West

1. Redskins (Washington)
. Cowboys (Dallas)

- Eagles (Philadelphia)

. Glants (New York)

o e W

. Cardinals (Phoenix)

6. Bears (Chicago)
7. Vikings (Minnesota)
8. Packers (Green Bay)
9. Lions (Detroit)

10. Buccaneers (Tampa Bay)

11. 49'ers (San Francisco)
12. Rams (Los Angeles)
13. Saints (New Orleans)

14. Falcons (Atlanta)

15. Dolphins (Miami)

16. Patriots (New England)
17. Jets (New York)

18. Bills (Buffalo)

19. Colts (Indianapolis)

20. Steelers (Pittsburgh)
21. Browns (Cleveland)
22. Bengals (Cincinnati)

23. Ollers (Houston)

24. Seahawks (Seattle)
25. Raiders (Los Angeles)
26. Broncos (Denver)

27. Chargers (San Diego)
28. Chiefs (Kansas City)

CobeWonrks

13

J

100

110
120

130
140
150

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

350
360
370
380
390
400
410
420

430

440
450
460
470
480
490

REM ** NFL88.BAS * NFL PROJECTION PROGRAM * CODEWORKS MAGAZINE
*

REM ** 3838 S. Warner St. Tacoma,WA 98409 (206)475-2219 VOICE
REM ** (206)475-2356 300/1200 MODEM * Requires a data file
made

REM ** with the accompanying program STAT88.BAS

\

‘CLEAR 10000:’Use only if your Basic requires cleared string
space.
\

DIM A(420,5),B(28,6),T$(28),F(28,5),P(364)

DATA REDSKINS,COWBOYS,EAGLES, GIANTS, CARDS, BEARS, VIKINGS

DATA PACKERS,LIONS,BUCS,NINERS, RAMS, SAINTS, FALCONS

DATA DOLPHINS,PATRIOTS, JETS,BILLS, COLTS, STEELERS, BROWNS

DATA BENGALS,OILERS,SEAHAWKS,RAIDERS, BRONCOS, CHARGERS, CHIEFS
\

REM * READ IN THE TEAM NAMES *
FOR I=1 TO 28
READ T$(I)
NEXT I
\

REM * NOW READ IN THE SEASON SCHEDULE **
FOR I=1 TO 364
READ S:P(I)=S
NEXT I
\

CLS:'This is a clear screen command, change to suit your
Basic.

PRINT STRINGS(22,”-");” The CodeWorks “;STRINGS(23,"-")
PRINT” NFL FOOTBALL ORACLE
PRINT” Projects Winner and point-spread”
PRINT STRINGS (60,"-")

PRINT

PT=0

INPUT”Projection for which week number”;W

IF W>16 THEN PRINT”Oracle can only project weeks 4 through 16.”
:GOTO 410

IF W<4 THEN PRINT”Insufficient Data, wait until week 4 to
start”:GOTO 410

INPUT”Enter 1 for printer output, else just Enter”;PT
W1l=W-1:W2=W-2:W3=W-3:W4=W-4

PRINT TAB(10)”The Oracle is busy ...”

WN=W1*28

\

REM ** READ STATISTICS FROM STAT.DAT FILE **

PRINT”Reading the statistics file ...”

R

CopeWORKS

510 PRINT”Throwing chicken bones over his shoulder...
520 OPEN “I”,1,”STAT.DAT”

530 FOR I=1 TO WN

540 IF EOF(1) THEN 590

550 FOR J=1 TO 5

560 INPUT #1,A(I,J)
570 NEXT J
580 NEXT I

590 IF I<WN THEN PRINT”Statistics for weeks 1 through”;W1l;”not
complete.” :END

600 CLOSE 1

610 °

620 REM * FIND AVERAGE FOR SEASON **

630 PRINT”Finding the season average for each team...”

640 FOR X=1 TO 28

650 FOR I=1 TO WN

660 IF A(I,1)<>X THEN 710
670 IF A(I,2)>=W THEN 710
680 FOR J=3 TO 5

690 N(J)=N(J)+A(I,J)
700 NEXT J

710 NEXT I

720 F(X,1)=X
730 FOR J=3 TO 5

740 F(X,J)=N(J) /Wl

750 NEXT J

760 FOR J=1 TO 5:N(J)=0:NEXT J
770 NEXT X

780 °

790 REM ** FIND EACH TEAM AVERAGE FOR LAST THREE WEEKS

800 PRINT”Finding the last three week average for each team...
810 FOR X=1 TO 28

820 FOR I=1 TO WN

830 IF A(I,1)<>X THEN 890

840 IF A(I,2)<W AND A(I,4)>A(I,5) THEN B(X,6)=B(X,6)+1
850 IF A(I,2)<>W1 AND A(I,2)<>W2 AND A(I,2)<>W3 THEN 890
860 FOR J=3 TO 5

870 C(J)=C(J)+A(I,J)

880 NEXT J

890 NEXT I

900 B(X,1)=X

910 FOR J=3 TO §

920 B(X,J)=C(J)/3

930 NEXT J

940 FOR J=1 TO 5:C(J)=0:NEXT J
950 NEXT X

960 €LS

"

CopeWonrks

15

’

970

980 PRINT”PROJECTION FOR WEEK “;W

990 PRINT”Week”;W;TAB(16)”Oracle’s”;TAB(30)"—— 3 week

Averages —"

1000 PRINT TAB(16)”Rating”;TAB(25)”Won";TAB(30)"“1st
downs” ; TAB (43) ”"Score”; TAB(54) “Pts Allowed”

1010 IF PT<>1 THEN 1190

1020 LPRINT”The CodeWorks NFL ORACLE PROJECTION FOR WEEK “;W

1030 LPRINT” “

1040 LPRINT”Key to column headings”

1050 LPRINT TAB(10)” 1- Teams plus Oracle’s Winner projection”

1060 LPRINT TAB(10)” 2- Oracle’s overall rating number (not a
score)”

1070 LPRINT TAB(10)” 3- Number of games won this far in the season”

1080 LPRINT TAB(10)” 4- Last 3 weeks average lst downs”

1090 LPRINT TAB(10)” 5- Last 3 weeks average points scored”

1100 LPRINT TAB(10)” 6- Last 3 weeks average points allowed”

1110 LPRINT TAB(10)” 7- Season average lst downs”

; 1120 LPRINT TAB(10)” 8- Season average points scored”

1130 LPRINT TAB(10)” 9- Season average points allowed”

1140 LPRINT TAB(10)”10- Actual score (you fill in after the games)

1150 LPRINT TAB(10)”11- Actual point spread (fill in this too.)

1160 LPRINT” ™

1170 LPRINT”1";TAB(16)”2";TAB(21)”3";TAB(26)”4";TAB(30)”5";TAB(34)"

6";TAB(41)”7"; TAB(45)”8"; TAB(49)”9"; TAB(56)"10"; TAB(66) “11"

1180 LPRINT” ™

1190 SI=(((W-1)*28)+2)-84

1200 FOR S=SI TO SI+26 STEP 2

1210 X=P(S-1) :X1=P(S)

1220 X$=T$(X) :X1$=T$ (X1)

i 1230 SO0=F (X, 3)+B(X,3)+(2*F(X,4))+(4*B(X,4))+(40-F(X,5))+3* (40~

B(X,5))

| 1240 T0=F(X1,3)+B(X1,3)+(2*F(X1,4))+(4*B(X1,4))+(40-F(X1,5))+
3% (40-B(X1,5))+20

1250 S5=INT(S0+.5) :T5=INT(T0+.5)

1260 IF S5=T5 THEN X1$=X1$+” by 1"

1270 IF S5>T5 THEN X$=X$+” by”+STR$ (INT(((S5-T5)+.5)/10)+1)

1280 IF S5<T5 THEN X1$=X1$+” by”+STR$ (INT(((T5-S5)+.5)/10)+1)

1290 PRINT X$;TAB(16);S5;TAB(25);B(X,6);TAB(31);INT(B(X,3));
TAB(43) ; INT(B(X,4));TAB(55) ; INT(B(X,5))

1300 PRINT X1$;TAB(16);T5;TAB(25);B(X1,6);TAB(31);INT(B(X1,3));
TAB(43) ; INT(B(X1,4));TAB(55);INT(B(X1,5))

1310 PRINT

1320 IF PT<>1 THEN 1360

1330 LPRINT X$;TAB(15);S5;TAB(20);B(X,6);TAB(25);INT(B(X,3)):

TAB(29) ; INT(B(X,4));TAB(33) ; INT(B(X,5));TAB(40); INT(F(X,3)):

CopeWOoRKsS

TAB(44) ;INT(F(X,4));TAB(48) ; INT(F(X,5));TAB(55)" 4
1340 LPRINT X1$;TAB(15);T5;TAB(20);B(X1,6);TAB(25);INT(B(X1,3));
TAB(29) ; INT(B(X1,4));TAB(33); INT (B(X1,5)) ; TAB(40) ; INT (F (X1,

3));TAB(44) ; INT(F(X1,4));TAB(48);INT(F(X1,5));TAB(55)"

“,'TAB(GS)" "
1350 LPRINT” “:GOTO 1400
1360 TC=TC+1
1370 IF TC=>4 THEN PRINT”Press Enter for more”; :INPUT XX:CLS:
TC=0 ELSE 1400
1380 PRINT”Week”;W;TAB(16)”Oracle’s”;TAB(30)"—— 3 week
Averages "
1390 PRINT TAB(16)“Rating”;TAB(25)“Won”;TAB(30)”1st
downs”; TAB(43) “Score”; TAB(54) “Pts Allowed”
1400 NEXT S
1410 IF PT=1 THEN LPRINT CHR$(12):' Printer top of form command
1420 END
1430 REM * The 88-89 NFL schedule for weeks 4 thru 16
1440 DATA 1,5,14,2,3,7,12,4,6,8,17,9,10,13

1450 DATA 11,24,15,19,20,18,21,22,16,23,25,26,27,28
1460 DATA 4,1,2,13,23,3,5,12,18,6,7,15,8,10

1470 DATA 9,11,24,14,19,16,21,20,22,25,26,217,28,117

1480 DATA 1,2,4,3,20,5,6,9,10,7,16,8,26,11

1490 DATA 12,14,13,27,15,25,17,22,19,18,24,21, 28,23
1500 DATA 5,1,2,6,3,21,9,4,8,7,10,19,11,12

1510 DATA 13,24,14,26,27,15,22,16,18,17,23,20,25,28
1520 DATA 1,8,2,3,4,14,21,5,11,6,7,10,9, 28

1530 DATA 24,12,25,13,17,15,16,18,19,27,26,20,23,22
1540 DATA 1,23,5,2,14,3,4,9,6,16,7,11,8,18

1550 DATA 15,10,12,13,26,19,20,17,22,21,27,24,28,25
1560 DATA 13,%1,2,4,12,3,11,5,10,6;921,8,14

1570 DATA 15,16,17,19,20,22,21,23,18,24,25,27,28,26
1580 DATA 6,1,7,2,3,20,4,5,19,8,10,9,25,11

1590 DATA 13,12,27,14,18,15,16,17,21,26,22,28,23,24
1600 paTA 1,11,22,2,3,4,5,23,6,10,19,7,9,8

1610 DATA 27,12,26,13,14,25,16,15,17,18,20,21, 24,28
1620 DATA 21,1,23,2,9,3,4,;13,8,6;1,9;10,14

1630 DATA 11,27,12,26,15,17,18,22,16,19,28,20,25,24
1640 DATA 1,3,2,21,5,4,6,12,13,7,8,9,18,10

1650 DATA 11,14,19,15,24,16,20,23,27,22,26,25,17,28
1660 DATA 2,1,3,5,28,4,9,6,7,8,10,16,13,11

1670 DATA 14,12,21,15,25,18,19,17,22,23,26,24,20,27
1680 DATA 1,22,3,2,4,17,8,5,6,7,9,10,12,11

1690 DATA 14,13,15,20,18,19,23,21,24,25,16,26,28,21
1700 * END of 1988-89 schedule data

CopeWonrks

f

100 REM * STAT88.BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

110 REM * 98409 (206) 475-2219 VOICE (206) 475-2356 300/1200 MODEM

120 REM * Maintains the stats for NFL88.

130 REM * If no file exists then in command mode,type OPEN”0”,1,“ST
AT .DAT”

140 REM * and press ENTER, then type CLOSE and press ENTER. This
creates an

150 REM * empty file called STAT.DAT. You can then run this
program.

160 °

170 PRINT”Loading STAT.DAT data file ..”

180 ' CLEAR 10000: “ Use only if your machine needs to clear
string space.

190 DIM A(420,5),T$(28),TS(28),TM(28),TMS (28)

200 °

210 REM * General purpose locate/print@ subroutine

220 GOTO 290

230 LOCATE X, Y:RETURN ‘GW-BASIC

240 ‘PRINTQ((X-1)*64)+(Y-1),;:RETURN ‘Tandy I/III

250 ‘PRINT@((X-1), (Y-1)),;:RETURN ‘Tandy IV

260 ‘PRINT CHR$(27)+"”Y”+CHRS (31+X)+CHRS (31+Y) ; :RETURN ‘' CP/M

270

280 REM * Set up the team names in data lines

290 DATA Redskins,Cowboys,Eagles,Giants,Cards,Bears,Vikings

300 DATA Packers,Lions,Bucs,Niners,Rams,Saints,Falcons

310 DATA Dolphins,Patriots,Jets,Bills,Colts,Steelers,Browns

320 DATA Bengals,Oilers,Seahawks,Raiders,Broncos,Chargers,Chiefs

330 *

340 REM ** READ IN THE EXISTING STAT FILE **

350 WN=420

360 OPEN “I”,1,”STAT.DAT”

370 FOR I=1 TO WN

380 IF EOF (1) THEN 430

390 FOR J=1 TO 5

400 INPUT #1,A(I,J)

410 NEXT J

420 NEXT I

430 CLOSE 1

440 L1=I-1

450 °

460 REM * READ IN THE TEAM NAMES AND CLEAR TEMP (TS) ARRAY.

470 FOR I=1 TO 28

480 READ T$(I):TS(I)=0

490 NEXT I

500 °

18 CopeWonrks

;

e e e e s e S s S R A S TS

510
520
530
540
550
560
570

580
590
600
610
620
630
640
650
660
670
680
690
700
710
120
730

740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890

900
910
920
930
940

CLS: ' Clear the screen and home the cursor.

PRINT STRINGS (22,”-");" The CodeWorks “;STRINGS (23,"-")
PRINT” NFL WEEKLY SETAR. T TASFT LTS Gl 88
PRINT” Maintains statistics for 1988-89 NFL Football”
PRINT STRINGS (60,"”=")

PRINT

IF L1 MOD 28 <>0 THEN PRINT”There is extra (or missing) data

in the file” ELSE PRINT”The file is currently updated through
week”;L1/28

PRINT

PRINT TAB(10)”1 - Update the file”

PRINT TAB(10)”2 - Edit an item in the file”
PRINT TAB(10)”3 - View the entire file”

PRINT TAB(10)”4 - Show Divisional standings”
PRINT TAB(10)”5 - Save the updated file and END”
PRINT

INPUT” Your choice”;X

IF X<1 OR X>5 THEN 650

ON X GOTO 710,880,1080,1370,1250

END

\

REM * UPDATE THE FILE ROUTINE **
CLS
INPUT”UPDATE STATISTICS FOR WHICH WEEK NUMBER”;W

IF W=<L1/28 THEN PRINT”The file appears to be updated through
that week.”:GOTO 720
J=L1+1
FOR X=1 TO 28
PRINT”For the “;T$(X);” for week “;W
INPUT”How many first downs ":A(J,3)
INPUT”How many points did they score —";A(J,4)
INPUT”and they allowed how many points-";A(J,5)
A(J,1)=X:A(J,2)=W
PRINT
J=J+1:L1=L1+1
NEXT X
PRINT”Press Enter for menu”;:INPUT X:GOTO 510
END
\
REM ** EDIT AN ITEM IN THE FILE ROUTINE **

CLS

PRINT “EDIT DATA - You supply the team number and week number.”
PRINT

INPUT”What team number are you looking for “;X

INPUT”What week number are you looking for “;W
FOR I=1 TO L1
IF A(I,1)=X AND A(I,2)=W THEN 970

CopeWorks

19

g e s e Y S DR T S T

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

1100
1110
1120
1130
1140
1150

1160
1170
1180
1190

1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380

950 NEXT I

960 PRINT”That item is not in the file”:GOTO 1040

970 PRINT TS(A(I,1));A(I,1):PRINT”Week->";A(I,2):PRINT”1st Dns->";
A(I,3):PRINT”Score->";A(I,4) :PRINT”Pts Allowed->";A(I,5)

980 PRINT

990 INPUT”Enter correct team number —";A(I,1)

INPUT”Enter
INPUT”Enter
INPUT”Enter
INPUT”Enter
INPUT”Press
END
1
REM * VIEW T
CLS
PRINT”TEAM #
ALLOWED”
FOR I=1 TO L
FOR J=1 TO
PRINT US
NEXT J
PRINT
IF I MOD 14<

correct week number -";A(I,2)
correct 1lst downs —”;A(I,3)
correct score ”":A(I,4)
correct points allowed “;A(I,5)
Enter for menu”;X:GOTO 510

HE FILE ROUTINE **
“; "WEEK “;”1ST DOWNS “;"”SCORE AP TS
1
5
ING “###”;A(I,J); :PRINT” “; 'six spaces here

>0 THEN 1200 ELSE PRINT”Press Enter for more, or

Q to quit.”;

XX$=INKEYS:I
IF XX$="Q" 0
CLS
PRINT”TEAM #
ALLOWED”
NEXT I

GOTO 510

END

\

REM * SAVE T

OPEN “O”,l,”

FOR I=1 TO L
FOR J=1 TO

PRINT #1

NEXT J

NEXT I

CLOSE 1

PRINT”THE FI

PRINT”END OF

END

\

REM * find d
PRINT “Calcu
\

F XX$="" THEN 1160
R XX$="q” THEN 510

“;"WEEK “;”1ST DOWNS “;”SCORE “;”PTS

HE FILE AND END ROUTINE **
STAT .DAT”

1

5

A(I,J)

LE STAT.DAT IS NOW SAVED”
PROGRAM. "

ivisional standings *
lating ...%;

s

20

===

CopeWORKS

1390 REM * find games won and fill the TS() array

1400 FOR I=1 TO L1

1410 IF A(I,4)>A(I,5) THEN TS(A(I,1))=TS(A(I,1))+1 ELSE IF A(I,

4)=A(I,5) THEN TS(A(I,1))=TS(A(I,1))+.5

1420 NEXT I

1430

1440 REM * clear screen and print the headings *

1450 CLS

1460 X=1:Y=1:GOSUB 230:PRINT”-NFC East-";TAB(25);”-NFC Central-";
TAB(50) ; "-NFC West-"

1470 X=8:Y=1:GOSUB 230:PRINT “-AFC East-”;TAB(25);”-AFC Central-";
TAB(50) ; "-AFC West-"

1480 P=1:0=5:Y=1:GOSUB 1590

1490 P=6:0=10:Y=25:GOSUB 1590

1500 P=11:0=14:Y=50:GOSUB 1590

1510 P=15:Q=19:Y=1:GOSUB 1590

1520 P=20:0=23:Y=25:G0SUB 1590

1530 P=24:0=28:Y=50:GOSUB 1590

1540 PRINT:INPUT”Press enter for menu”;XX

1550 RESTORE:GOTO 470

1560 END

T

1580 REM * sort standings into descending order

1590 F=0

1600 FOR I=P TO Q-1

1610 L=I+1

1620 IF TS(I)=>TS(L) THEN 1660

1630 SWAP TS(I),TS(L) " or TM(I)=TS(I):TS(I)=TS(L):TS(L)=TM(I)

1640 SWAP T$(I),TS$(L) “ or TMS(I)=TS(I):TS(I)=T$(L):T$(L)=TMS$(I)

1650 F=1

1660 NEXT I

1670 IF F=1 THEN 1590

1680 *

1690 REM * print each team’s standing

1700 IF P<15 THEN X=1 ELSE X=8

1710 FOR I=P TO Q

1720 X=X+1

1730 GOSUB 230:PRINT USING “##.#”;TS(I);:PRINT” “+T$(I)

1740 NEXT I

1750 RETURN

Yes! We are working on a program to predict the outcome of the post-season games and the

superbowl. It will be a standalone program, but will work with the Stat.Dat file that this program
makes and maintains. Look for it in the November/December issue, which should give you just

about enough time to get it in before the post-season playoffs start.

CopeWorks

21

Correl.Bas

A Correlation Program with Lead/Lag Indication

Staff Project. Correlation is an interesting study. In this program we not only find
the coefficients of correlation, but also provide for a novel way to check to see if one

set of data "leads" or "lags" the other set.

The study of correlation theory is fascinating.
It is complex, and often misused, and some-
times smacks of slight of hand or numerology.
When two measures of the same thing go to-
gether so that it is possible to predict one
measure from the other, they are said to be
correlated.

The idea of correlation came first to Sir
Francis Galton (1822-1911), who, in his own
words was waiting at a roadside station for a
train, “poring over a small diagram in my note-
book.” What he envisioned was a method of
expressing multiple causality in a single for-
mula. Galton had been working with the phe-
nomena of characteristics in families being
carried through to later generations. He later
wrote, “It had appeared from observation, and it
was fully confirmed by this theory, that such a
thing existed as an ‘Index of Correlation’; that is
to say, a fraction, now commonly written asr, that
connects with closer approximation every value
of deviation (from the median) on the part of the
subject, with the average of all the associated
deviations of the Relative as already described.
Therefore the closeness of any specified kinship
admits of being found and expressed by a single
term. If a particular individual deviates so much,
the average of the deviations of all his brothers
will be a definite fraction of that amount; similarly
as to sons, parents, first cousins, etc. Where there
is no relationship at all, r becomes equal to 0;
when it is so close that Subject and Relative are
identical in value, then r=1. Therefore the value of
r lies in every case somewhere between the
extreme limits of 0 and 1. Much more could be

added, but not without using technical language,
which would be inappropriate here.”

Galton was an amateur in many fields, and
was a first cousin to Charles Darwin. Perhaps it
is because there was yet so much to be discov-
ered in those days that amateurs could make
such meaningful contributions. His correlation
theory certainly made an impact on our present-
day study of statistics.

There are several types of correlation: auto-
correlation and multiple correlation among
them. By far the most commonly used is the
Pearson product-moment correlation coeffi-
cient, called r, and is the one we will consider
here. This coefficient (r) can have values ranging
from -1 through zero to +1. The sign of the
coefficient indicates the direction of the rela-
tionship, with both -1 and +1 indicating perfect
correlation and zero indicating no correlation
whatever. A measure that decreases when its
opposite measure increases will produce a
negative correlation, and when an increase in
one produces an increase in the other, it pro-
duces a positive correlation.

An example of perfect negative correlation
would be the height above ground of two chil-
dren on a seesaw, where there is no way the two
can be moving up or down together; one must
always be going up while the other is going down
and vice versa. On the other hand, the relation-
ship between the radius and the circumference
of circles is an example of perfect positive corre-
lation since a change in one will always produce

22

CopeWonRks

@ a change in the same direction in the other. Not

all things vary in such perfection; there are
degrees of correlation.

If you consider an X,Y plot with values plotted
in, then the correlation coefficient, r, is the
square root of the explained variation from the
mean of Y divided by the total variation from Y.
Or, ris the square root of the explained variation
divided by the total variation. It may seem, at
first, that a correlation coefficient of 0.6 would
indicate a good correlation between two vari-
ables. To find out what percentage of the vari-
ation is explained, simply square the value. This
will indicate that only 36 percent of the variation
is explained leaving 64 percent unexplained,
which is not as good as it first looked.

One of the more common mistakes made is
that if two values are closely correlated, then
there must be a cause and effect relationship.
That is simply not true. Author Kimble (see
references) cites a good example, he says: “There
is a positive correlation between the number of
storks’ nests in Holland, year by year, and the
birth rate in that country, but this does not prove
the theory that storks bring babies. What it
means is actually sort of the reverse. As the
number of babies increases, for whatever rea-
son, they need more houses to live in. Houses
have chimneys and that is where storks build
their nests.”

In yet another example it was found that the
tree rings in the Southwest showed a variation
that correlated well with the sunspot cycle. One
would naturally assume that the sunspots,
somehow, had an effect on the growth of tree
rings. For all we know, there may even be such
a correspondence. But as far as correlation
theory goes, it would be just as valid to assume
that the tree rings caused the sunspots! This, of
course, sounds ludicrous but further empha-
sizes the fact that correlation is not causation.

For those interested, the references given at
the end of this article treat the subject in great
mathematical detail, going into accounting for
variance, coefficients of determination, tests of

significance, standard error of estimates, and
more.

It is interesting to note that r is a dimension-
less term; one not expressed in terms of any-
thing. Another interesting fact is that the rela-
tive magnitude of the data sets being compared
makes no difference to correlation. For example,
the series

1,2,3,4,5,6

will correlate perfectly with

10.1, 10,2, 10.3, 10.4, 10.5, 10.6
or even with

41, 46, 51, 56, 61, 66.

The Program

Our program, Correl.Bas, not only calculates
the correlation coefficient of two sets of data, it
allows you to create as many sets as you wish
and test for correlation between any of them. In
addition, we have included a feature that allows
you to shift either data set in relation to the
other and test for leading or lagging correlation.
The amount of this shift is controllable and
variable within limits. Just because correlation
does not indicate causation doesn’t mean that if
you find a leading stock market indicator that
seems to be consistent you can't use it to your
advantage. That's the whole idea of playing
around with this program in the first place. You
never know what to expect or what you will find.
Making sense out of what you find is another
matter, however.

Program Notes

Line 140 should remain remarked for BASIC
versions past 5.0, otherwise, remove the re-
mark. Line 150 sets the dimensions of four
single dimension arrays. Arrays A and B are
dimensioned at 50, and S and T for one-half that
number. This means you can have up to 50 data
points in each of the files you will be creating. If
you find the need for more data per file, increase

CopeWorks

23

the number in the A and B arrays to whatever
you need and make the S and T arrays half that
amount. Line 160 sets an error trap for “file not
found.” This error would occur when you ask for
a file that does not exist. Further down in the
program you will note that it does not create the
file then, it simply re-runs the program so that
you can start over and ask for a file that does
exist (or make one first.)

The main menu of the program allows you to
create and save data sets or read data sets and
find correlations. The third alternative is simply
a quit function. When you create data files you
can create as many as you wish (being sure to
give them each a unique name). The second
option in the main menu lets you read in any two
of the data sets you have created and check
them for correlation.

The block of code from lines 340 to 480 is
where files of data are created and saved. In line
340 you need to tell the program what the name
of the file will be, and in line 350, how many data
points you will be entering. Keep in mind that all
your data sets need not be the same length, but
the program will trim the longest file you call in
to correlate to the length of the shortest, since
correlation demands the same number of points
in each data set. The file is saved immediately
after you have entered the last of your data
points. This happensin lines 410 to 450. The file
is sequential, not random. You can remove a file
by going to DOS level and killing it, or you can
simply write a new file over the old one by using
the same name. Lines 470 and 480 give you the
option of continuing to add more data sets (files)
or quitting.

If you pick option 2 from the main menu, you
will come to the next section of code, starting at
line 510. The lines from 520 to 600 ask for a file
name, input the file and put the data into array
A. It also prints the data from that file on the
screen so you can see it. The lines from 630 to
710 do exactly the same thing, but with the data
going into array B this time. One other thing is
different between these two sections of code,
that being the variables N1 and N2. These tell
how many data items were in each file.

Lines 750 and 760 use N1 and N2 to deter-
mine which is the shorter of the two files, and let
both N3 and N5 represent this number. The data
in the longer file is not lost, it's just that data in
the longer file past the length of the shorter file
will not be used in this case. (You may want to
use the longer file with an even longer one in a
later comparison for correlation.) The shift
range variable, K, is initialized to 3 in line 760.
This will allow a shift of data up to one-third of
the file's length. The reason for the “Press enter
to continue” in line 770 is so that you can
examine the data on the screen before going on.

After you have read in both files and pressed
enter to continue, you come to line 790, which
clears the screen. Line 800 then clears out the
temporary arrays T and S, and line 810 sets N3
equal to N5. Back in line 760 we had set N5
equal to N3, so why do this? Well, when we start
shifting the data in either of the files, N3 will get
changed and we want to always know what the
length of the shorter file is and N5 will always
hold that number.

Line 820 tells you which two data files you are
working with. Lines 850 through 890 are a sub-
menu that tells you what you can do with the
data you have just read in. You can find the
correlation between the two, shift the first set of
data and find correlation, shift the second set of
data and find correlation, adjust the shift range
or return to the main menu.

Note that in three places in this menu we are
using variable data in the menu prompts them-
selves. This makes the menu prompt a little
more informative than just a simple print state-
ment would. In both lines 860 and 870 the name
of the file is inserted into the menu prompt, and
in line 880 the fraction representing the shift
range is included inside the prompt itself. In
addition, line 880 tells not only the fraction, but
the total number of data points in the file. These
“dynamic” menu prompts are interesting and
easy to do, yet make the operation of the pro-
gram easier to follow.

Note first that each of the following sections of
code, corresponding to the different sub-menu
items, each send program flow back to line 790

24

CopeWonrks

until you choose to return to the main menu.
This means that once you have selected a pair of
data files to work with, you can “play” with them
with any of the sub-menu choices until you are
satisfied.

Lines 940 through 970 are where the shift
range can be adjusted (Option 4 of the sub-
menu). Here, you can enter 2 for 1/2, three for
1/3, etc., to adjust how many of the total
number of data points you can shift. You can
change the default amount of shift by changing
the value of K in line 760, so that it will always
come up with 1/10th, for example. Keep in mind
that data in your two files should correspond,
that is, if one of them represents a value per
month the other should also, otherwise, your
results may not have any meaning (nonsense
correlation). Also, when you shift, say three
periods, then the other file will have three peri-
ods cut off its opposite end since we always need
to be comparing an equal number of items.

The section of code from line 1000 to 1110
finds the unshifted correlation of the two data
sets. The loop at line 1000 counts as many times
as there are items in the shorter of the two data
sets. When the loop is done, B contains the sum
of all the values in the first data set, C contains
the sum of the values in the second data set, D
contains the sum of the squares of all values in
the first data set and E contains the sum of the
squares of all values in the second data set. F
contains the sum of the products of each data
pair (one from each data set.) Line 1070 sends
us to the subroutine to calculate the coefficient
of correlation.

In the section of code from 1140 to 1330 we
find the coefficient of correlation again, but this
time we shift data set one by the amount S by
looking at A(I+S) in each iteration of the loop.
Since we want to print out a range of coeffi-

Correl.Bas for MS-DOS & Tandy IV

cients, the array S() will hold the results until we
have them all calculated, then the loop at 1280
will print them all out for us. The same thing
happens in the next section of code, from lines
1360 to 1550, except that we shift the second
data set by the value of T and store the results
in the T() array until we print them out. Because
we are calculating the coefficient of correlation
several times inside these loops, line 1620 in the
subroutine must clear out the intermediate
values held in variables B, C, D, E and F after
each calculation.

There is no guarantee that you will find the
correlation you are looking for when you shift
the data; if there is no correlation it just won't
show up. But if one set of data indeed leads or
lags the other it willshow. It will also tellyou how
many periods of lead or lag to consider. For this
reason, the periods corresponding to both sets
of data should be the same.

The last little section of code is the error trap.
If your BASIC is prior to version 5.0 remark line
1650 and un-remark line 1660. The trap checks
for “file not found" errors and simply runs the
program again to allow to you ask for the correct
file or make one first.

Be careful when making assumptions about
correlation. It gets rather involved and can be
tricky, but in any case, have fun with it.

References:

How to Use (and misuse) Statistics, Gre-
gory R. Kimble, Prentice-Hall, Inc., Englewood
Cliffs, NJ 07632, 1978

Forecasting Methods for Management,
Steven C. Wheelwright & Spyros Makridakis,
Fourth Edition, John Wiley & Sons, New York,
1985

Theory and Problems of Statistics, Murray
R. Spiegel, McGraw-Hill Book Co., New York,
1961

CopeWonrks

25

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

REM * Correl.Bas * CodeWorks Magazine 3838 S. Warner St.
REM * Tacoma, WA 98409 (c)1988 & placed in public domain
REM * (206)475-2219 voice and (206)475-2356 300/1200 modem
\

‘CLEAR 1000 * use if your BASIC is prior to ver. 5.0
DIM A(50),B(50),S(25),T(25)
ON ERROR GOTO 1650

CLS

PRINT STRINGS (22,45);” The CodeWorks “;STRINGS (23, 45)
PRINT” CORRELATION PROGRAM
PRINT” finds coefficient of correlation in data sets
PRINT STRINGS (60,45)

PRINT

PRINT TAB(10);”1 - Create and save data sets

PRINT TAB(10);”2 - Read data and find correlation
PRINT TAB(10);”3 - Quit

PRINT

INPUT”The number of your choice”;Q

ON Q GOTO 330,510,300

GOTO 270

CLS:PRINT”Done” ; END

\

' input data
CLS
INPUT”What will you name this file “;F1$
INPUT”How many data points will you enter “;N1
FOR I=1 TO N1
PRINT”Enter point “;I;:INPUT A(I)
NEXT I
\

‘save the data in a file
OPEN “0”,1,F1$
FOR I=1 TO N1
PRINT #1, A(I);
NEXT I
CLOSE
\

INPUT”Enter more data files (y/n)”;Y$
IF LEFTS$(Y$,1)="Y" OR LEFT$ (Y$,1)="y” THEN 330 ELSE 170
A}

‘' read in two files

CLS

INPUT"What is the filename of the 1st data set “;F1$
OPEN “I”,1,F1$

26

CopeWonrks

s e e e R S S S R R

540 FOR I=1 TO 50

550 IF EOF (1) THEN 590

560 INPUT #1,A(I)

570 PRINT A(I);

580 NEXT I

590 N1=I-1

600 CLOSE

610 PRINT

620 °

630 INPUT”What is the filename of the 2nd data set “;F2$

640 OPEN “I”,1,F2$

650 FOR I=1 TO 50

660 IF EOF (1) THEN 700

670 INPUT #1,B(I)

680 PRINT B(I);

690 NEXT I

700 N2=I-1

710 CLOSE

720 PRINT

1300 s

740 ‘trim the longest file to the length of the shortest file

750 IF N2=<N1 THEN N3=N2 ELSE N3=N1

760 N5=N3:K=3

770 INPUT”Press Enter to continue “;Q1

780

790 CLS

800 FOR I=0 TO 25:T(I)=0:S(I)=0:NEXT

810 N3=N5

820 PRINT”You are working with data files “;F1$;” and “;F2$

830 PRINT

840 PRINT”You can:”

850 PRINT TAB(10);”1 - find their un-shifted correlation

860 PRINT TAB(10);”2 - Shift “;F1$;” and find correlation

870 PRINT TAB(10);”3 - Shift “;F2$;” and find correlation

880 PRINT TAB(10);”4 - Adjust shift range. It’s now 1 /";K;” of “;
N3

890 PRINT TAB(10);”5 - Return to main menu

900 INPUT”Your choice”;Q1

910 PRINT

920 ON Q1 GOTO 1000,1140,1360,940,170

930 GOTO 900

940 PRINT”Shift range is how far shifting will occur.

950 PRINT”Enter 2 for 1/2, 3 for 1/3, etc.”;:INPUT K

960 IF K<2 THEN 950

970 GOTO 790

980 *

990 ‘find unshifted correlation

CopeWonrks

T T SR S R R T S TR e e =

1000 FOR I=1 TO N3

1010 B=B+A(I)

1020 C=C+B(I)

1030 D=D+(A(I)"2)

1040 E=E+(B(I)*2)

1050 F=F+(A(I)*B(I))

1060 NEXT I

1070 GOSUB 1580 ' to calculate the coefficient

1080 PRINT

1090 PRINT”The coefficient of correlation is “;USING “##.##";CC

1100 INPUT”Press Enter to continue”;Q

1110 GOTO 790

1120+°

1130 ‘shift F1$ data and find correlation

1140 N4=INT (N3/K)

1150 FOR S=0 TO N4

1160 N3=N5-S

1170 FOR I=1 TO N3

1180 B=B+A (I+S)

1190 C=C+B(I)

1200 D=D+(A(I+S)*2)

1210 E=E+(B(I)*2)

1220 F=F+(A(I+S)*B(I))

1230 NEXT I

1240 GOSUB 1580

1250 S(S)=CC

1260 NEXT S

1270 PRINT”The un-shifted coefficient of correlation is
“;USING “##.##",;S(0)

1280 FOR I=1 TO N4

1290 IF I=1 THEN P$="period” ELSE P$="periods”

1300 PRINT USING “##.##”;S(I);:PRINT TAB(8);”when “;F1$;

“ leads “;F2$;” by”;I;P$

1310 NEXT I

1320 INPUT”Press Enter to continue”;Q1l

1330 GOTO 790

1340 °

1350 ‘shift F2$ data and find correlation

1360 N4=INT (N3/K)

1370 FOR T=0 TO N4

1380 N3=N5-T

1390 FOR I=1 TO N3

1400 B=B+A(I)

1410 C=C+B(I+T)

1420 D=D+(A(I)"*2)

1430 E=E+ (B(I+T)"2)

1440 F=F+(A(I)*B(I+T))

28 CopeWorks

. 1450 NEXT I

! 1460 GOSUB 1580

1470 T(T)=CC

1480 NEXT T

1490 PRINT”The un-shifted coefficient of correlation is |
“;USING “##.##";T(0)

1500 FOR I=1 TO N4

1510 IF I=1 THEN P$="period” ELSE P$="periods”

1520 PRINT USING “##.##”;T(I);:PRINT TAB(8);”when “;F2$;

“ leads “;F1$;” by”;I;P$

1530 NEXT I

1540 INPUT”Press Enter to continue”;Q1l

1550 GOTO 790

1560

1570 ‘calculate cc subroutine

1580 AA=((N3*D)=(B”2))*((N3*E)-(C*2))

1590 BB=SQR (AA)

1600 CC=((N3*F)-(B*C))/BB

1610 CC=INT(CC*100)/100

1620 B=0:C=0:D=0:E=0:F=0

1630 RETURN

1640
1650 IF ERR <>53 THEN ON ERROR GOTO 0

' 1660 ‘IF (ERR/2)+1 <>54 THEN ON ERROR GOTO 0

1670 PRINT”There is no file with that name.”

1680 INPUT”Press Enter to start over”;Ql

1690 RUN 100

1700 END ' of program

Correl.Bas change lines for Tandy I/III

Changed->100 REM *Correl/Bas *CodeWorks Magazine 3838 S.Warner St.
Changed->140 CLEAR 1000 ' use if your BASIC is prior to ver. 5.0
Changed->1030 D=D+(A(I) [2)

Changed->1040 E=E+(B(I)[2)

Changed->1200 D=D+ (A (I+S) [2)

Changed->1210 E=E+(B(I) [2)

Changed->1420 D=D+(A(I) [2)

Changed->1430 E=E+(B(I+T) [2)

Changed->1580 AA=((N3*D)-(B[2))*((N3*E)-(C[2))

Changed->1650 ‘IF ERR <>53 THEN ON ERROR GOTO 0

D | changed->1660 IF (ERR/2)+1 <>54 THEN ON ERROR GOTO 0

CobeWorks 29

#

Outline.BAS

Screen control for the outline program

Terry R. Dettmann, Associate Editor. The second of a series of three articles on

an outlining program.

Last issue, we introduced some basic con-
cepts which are fundamental to writing a useful
outline program. We covered list linking and
related issues, now we'll move on and cover the
screen display structure. The sample program,
outline.bas, illustrates what we're going to do
and forms a shell for our final outline program.
We'll modify this shelland add the actual outline
code in the next issue.

Let's start right at the beginning where we've
set up the program. Line 30 defines all variables
to be integers unless specifically typed other-
wise. Doing this makes the program faster (par-
ticularly in loops). While I could just use the
percent sign (%) to mark only those variables as
integer that I want to be integer, I find that it
makes sense to force it this way because I'm
basically lazy. If I don't do this I often forget to
put the % on the variable name.

Line 40 introduces some constants that we'll
need for the program. Some in particular will
need to be changed to work on other computers
(screen width, screen length, and so forth). The
definitions are self explanatory. Line 50 intro-
duces some arrays that we'll need in the final
program to keep track of our outline lines. Line
60 defines some important characters which
we'll need later in input routines and line 70
introduces the TRUE/FALSE variables which
we use for decision making.

Next we go off to the subroutine at line 3550
to tell the program that no outline has been de-
fined yet and then to line 3450 to set the
program's COMMAND MODE. How the program
will treat what you type in will depend on what

mode the program is in. We'll define several
entry modes for the computer and whether we're
entering a command or a line for an outline will
depend on this mode. We could design a mode-
less program (one where no matter what you
enter, the program interpretsit), but that's quite
a bit more complicated and we'll leave that for
another series of articles.

The lines from 200 through 240 now are the
main part of the program. It's pretty simple
really when you get right down to what's going
to happen:

1) Print the screen title and information area
at the top of the screen (subroutine 1100)

2) Display whatever part of the outline should
presently be visible (subroutine 1000)

3) Enter a command (subroutine 2000) and
figure out what it is (subroutine 2500)

4) Execute whatever command was entered

The possible commands are:

Subroutine Command
3400 Go into the ADD mode
3500 Go into the EDIT mode
3600 Go into the DELETE mode
4000 Load a new file
4100 Save the current outline
500 End the program
3450 Go into the COMMAND mode

Each possible operation with the program is
controlled by setting an appropriate mode.

e—

30

]

CopeWORKS

’

Subroutines to execute the operations are pro-
vided in the 5000 series of line numbers (most
are just stubs right now with no function, just
there to hold down the space and allow the
program to run at this level).

Let's start looking at the implementation rou-
tines now. At line 400 we have our screen
position subroutine GOTOXY. We pass it the
variables X (row) and Y (column) and it places us
at the right place on the screen. If you're working
with a non-MS DOS system, you'll replace this
with the standard PRINT @ routine as always.
Line 500 is our standard end routine, just tolet
you know it happened by the correct path.

The subroutine at 1000 is interesting because
it shows us a little of the way the outline itself
will go. 1 is our line counter (we're going to print
no more than 20 lines to the screen). NM is set
to the top line to show on the screen. From this,
we simply print one line at a time onto the screen
(subroutine 1200) and then move to the next
line as determined by our linking scheme. If you
don't remember what LIST LINKING is all about,
then you better go back and review last issue's
article in this series. Play with the programs
until you understand them. While moving
through the list, if we get to the end of a list of
lines and there are no lines to go back to (the
stack pointer SP is minus one), then there's
nothing more to print. If we're at a line which
we've printed and there are subordinate lines to
this one (LK(2,NM)>=0) then we move down a
level. If there's another line after the current
one, we move to that, otherwise we move up a
level.

Subroutine 1100 prints our top title line and
the command menu line with the allowed com-
mands. Subroutine 1200 prints a single outline
line to the screen. I is the screen line number
and NM is the outline line number. It's printed
in the form:

<SPACES>NN. <LINE>

where <SPACES> is a number of spaces de-
termined by the indent level of the particular line

(2 spaces per level) and <LINE> is the line itself.
NN represents the line’s position in the outline.

Subroutines 1300 and 1350 are used for
backtracking by implementing a STACK data
structure. Whenever we move down a level, we
add the last line number to the stack with sub-
routine 1300. When we're done at this new level
and want to go back, the top number on the
stack is the line number we have to go back to.

When we reach line 2000, we're starting to
really interact with the user. Subroutine 2000
implements a simple command interaction:

Prompt for a command
Wait for an answer

Line 2010 goes to the command entry point,
line 2015 clears that line and positions to the
entry point, and line 2020 prompts for the
command. We set the number of characters to
accept equal to the width of the line minus 10
and then branch to the input subroutine (2100).
Finally subroutine 2500 figures out what was
entered.

If you've been reading my programs in Code-
works, you've seen subroutine 2100 before in
many guises. Being dissatisfied with normal
entry procedures and wanting more control, I
created this entry routine to do the basic opera-
tions in a way that I could see and control them
the way I wanted.

Line 2110 blanks the entry string (IN$). Line
2120 gets a single character and if it's a RE-
TURN or ENTER key, the subroutine ends. In
line 2130 we check for a backspace to see if we
need to make a correction (subroutine 2300
handles that). Line 2135 allows only PRINT-
ABLE characters into our entry string and line
2140 allows the line to grow to no more than NC
characters. If all the tests are passed, then line
2150 adds the character to the string and prints
it on the screen.

Subroutine 2200 is our single character entry
routine. It's been built to support arrow key

CopeWorks

31

’

recognition (subroutine 2250 which at present
does nothing). If an arrow key is found, it's
handled immediately and another character is
looked for. Subroutine 2300 handles BACK-
SPACES when they occur (blank the character
on the screen and eliminate it from the end of the
string). Subroutine 2400 is our CLEARTO END
OF LINE routine. It just prints BLANK charac-
ters to the screen.

Subroutine 2500 checks for a command (first
letter matches a command letter) if we're in the
command mode. If we're in another mode we
process it (line 2540). Subroutines 3000, 3100,
3200, and 3300 for moving on the screen with
arrows are stubbed for the moment (we'll worry
about them next time). Subroutines 3400,
3450, 3500, and 3600 are our mode switching
routines. Each sets the correct mode AND a
string which will appear on the screen to tell us
which mode we're in. Subroutine 3550 is initiali-
zation for an empty outline.

The only other routines which are of any im-
portance are the load and save routines. Sub-
routine 4000 loads an outline file. We enter the
filename, add a ‘.OUT extension to it and then
let subroutine 5400 load it and create the out-
line from it. Subroutine 4100 does the same
except it calls subroutine 5500 to save the file.

Subroutines 5100, 5200, and 5300 are the
stubs for the most important functions in the
program, the actual adding, editing, and delet-
ing of lines. This will be the primary subject of
the next article of the series.

The load routine (subroutine 5400) has a
pretty simple structure (just wait ‘til we get deep
enough into it though!). It reads one line at a
time from the input file. It determines the line's

Listing for Outline.Bas

level in the outline and then puts it into the list
of lines (LN$(). Once the line has been added, it
lines it into the list (subroutine 5700). By repeat-
ing this process line for line, we eventually get
the whole outline in. Subroutine 5600 is key
here. It determines the line's level by counting
the blank spaces at the front of the line and
eliminating them as it counts. Subroutine 5700
is the most complicated process. Each line has
to be added into the list at the appropriate level,
linked to the lines before it and after it. Let's
follow the subroutine's decisions and see what
it does:

5705 if there is no line presently linked, then
make this the first one.

5710 if the new line is at the current level (LL for
LAST LEVEL) then link it in at this level
(line 5800).

5720 if the new line is at a lower level, then start
a new level for it at line 5850

5730 the new line should be linked to the line
one level up

Each linking procedure goes to line 5900 at its
end to do common linking tasks for the current
line.

If we're going to save the current outline, we
loop through the lines one at a time printing
each one with one blank per outline level as we
go. Everything about the routine is organized to
follow the outline through level by level just as
we did when printing a portion of it to the screen.

This installment we've laid out the screen
control for our outline program. We'll tie it to the
actual outline generation and control in the next
issue. See you there.

32

CopeWoRKs

’

. 10 REM — Outline.bas, a Program for Codeworks Magazine
20 REM — by Terry R. Dettmann
30 DEFINT A-2
35 ‘n=max number of lines, nl=number of existing lines
36 ‘tl=top line on screen, cl=current line
37 ‘wd=screen width, ln=screen length
40 N = 200:NL = 1:TL = 0:WD = 80:LN = 24:CL = 0:S5P = -1
45 ‘1n$()=text for each node, lk()=dynamic linking array
46 ‘lv()=indent level of current text line
47 ‘nm()=sequence number of current text line
50 DIM LN$(N), LK(2,N), LV(N), NM(N), LL(10), STK(10)
55 ‘cr$=carraige return, bs$=backspace
60 CR$=CHRS$ (13) :BS$=CHRS$ (8) :ESC$=CHR$ (27)
70 FALSE = 0:TRUE = NOT FALSE
80 GOSUB 3550
190 CLS:GOSUB 3450
200 REM — Main Program Loop
205 GOSUB 1100
210 GOSUB 1000
220 GOSUB 2000
230 ON CMD GOSUB 3400,3500,3600,4000,4100,500,3450
240 GOTO 200
400 REM — gotoxy
€)| 210 LOCATE X, Y:RETURN
500 REM — End of program
510 CLS:PRINT “Thank you for coming”:END
1000 REM — Display the current outline segment on the screen
1010 I=0:NM=TL
1020 IF I>= 20 THEN RETURN
1030 GOSUB 1200
1035 IF SP=-1 AND LK(0,NM)=-1 AND I>0 THEN RETURN
1036 Tt T4 1
1040 IF LK(2,NM)>=0 THEN GOSUB 1300:NM=LK(2,NM) :GOTO 1020
1050 IF LK(0,NM)>=0 THEN NM=LK(0,NM):GOTO 1020
1060 GOSUB 1350:IF NM<O THEN RETURN
1070 IF LK(0,NM)>=0 THEN NM=LK(0,NM):GOTO 1020
1080 GOTO 1060
1100 REM — Print Title Line
1110 X=1:Y=1:GOSUB 400:PRINT “Codeworks Outline Processor”;
1120 X=1:Y=WD-15:GOSUB 400:PRINT MD$;
1130 X=LN-2:Y=1:GOSUB 400:PRINT STRINGS (WD,"-");
1140 X=LN-1:Y=1:GOSUB 400:PRINT “(A)dd (C)ommand (D)elete (E)dit
(L)oad (Q)uit (S)ave”;
1150 RETURN
1200 REM — print a single line
. 1210 X = I + 2:Y=3:GOSUB 400
1220 PRINT STRINGS (LV(NM)*2,” “);

CopeWorks 33

1240
1300
1310
1320
1330
1350
1360
1370
1380
2000
2010
2015
2020
2030
2040
2050
2100
2110
2120
2130
2135
2140
2150
2200
2205
2210
2220
2230
2250
2260
2300
2310

PRINT USING “##. “;NM(NM);:PRINT LN$ (NM);
RETURN
REM — push level onto stack
IF SP>=10 THEN RETURN
SP = SP + 1:STK(SP) = NM
RETURN
REM — pop top level off stack
IF SP<0 THEN NM=-1:RETURN
NM .= STK(SP):SP = SP - 1
RETURN
REM — command entry
X=LN:Y=1:GOSUB 400
NC=WD:GOSUB 2400:GOSUB 400
PRINT “Command=>";
NC=WD-10:GOSUB 2100
GOSUB 2500
RETURN
REM — input a line
IN$=tIII
GOSUB 2200:IF C$=CR$ THEN RETURN
IF C$=BS$ THEN GOSUB 2300
IF C$<™ ™ OR C$>"~" THEN 2120
IF LEN(INS)>=NC THEN 2120
INS=INS+CS$:PRINT C$;:GOTO 2120
REM — read one character
ARROW = FALSE
C$=INKEYS:IF C$="" THEN 2210
GOSUB 2250:IF ARROW THEN 2200
RETURN
REM - check for arrow keys
RETURN
REM — backspace
IF LEN(IN$)=0 THEN RETURN

Missing Code

When I talked about things
popping out here and there in
the last issue I had no idea that
it was taking me literally.

It turns out that four lines of
one of Terry's programs got
pushed right off the page and
into limbo. And no one caught
it, until some of you called to
ask what was going on.

The code was from the pro-
gram List.Bas in Issue 18.
There were four lines missing
from the end of that program.
The four lines are:

2120 SP=SP+1:STK(SP)=LI:
RETURN

2200 Rem-Remove LI from

stack

2210 IF SP=0 THEN LI=0:
RETURN

2220 LI=STK(SP):SP=SP-1
RETURN

We're just now catching on
to the way this new fangled way
of publishing works. This time,

2320 INS=LEFTS (INS,LEN(INS)-1) we checked last line numbers
2330 X=CSRLIN:Y=POS(0)-1:GOSUB 400 for each program to make sure
2340 PRINT” “;:GOSUB 400 they were all there.
2350 RETURN
2400 REM — Clear to end of line
2410 PRINT STRINGS (NC,” “);:RETURN
2500 REM — Parse the command line
2510 CS$="RaEeDdL1SsQqCc”
2515 IF MD<>0 THEN 2540
2520 CMD = INT((INSTR(CSS$,LEFTS(INS,1))+1)/2)
2530 IF CMD<>0 THEN 2590
2540 ON MD GOSUB 5100,5200,5300
2590 RETURN
REM — move up one line
CopeWOoRKs

e e e s S S SRR |

©| 3010 rETURN

3100 REM — move down one line

3110 RETURN

3200 REM — move up one level

3210 RETURN

3300 REM — move down one level

3310 RETURN

3400 REM — set add mode

3410 MD=1:MD$="ADD MODE “:RETURN

3450 REM — set command mode

3460 MD=0:MD$="COMMAND MODE” :RETURN

3500 REM — set edit mode

3510 MD=2:MD$="EDIT MODE “:RETURN

3550 REM — initialize new outline

3560 LN$(0) = “Outline Title”:LK(0,0)=-1:LK(1,0)=-1:LK(2,0)=-1:
LV(0)=0:NM(0)=1

3570 RETURN

3600 REM — delete lines

3610 MD=3:MDS$="DELETE MODE "“:RETURN

4000 REM — Load file

4010 X=LN:Y=1:GOSUB 400

4020 NC=WD:GOSUB 2400:GOSUB 400

. 4030 PRINT “Filename=> “;
4040 NC = WD-10:GOSUB 2100

4050 IF INS$="”" THEN RETURN

4060 FF$S = INS + “.0UT”

4070 GOSUB 5400:RETURN

4100 REM — Save file

4110 X=LN:Y=1:GOSUB 400

4120 NC=WD:GOSUB 2400:GOSUB 400

4130 PRINT “Filename=> “;

4140 NC = WD-10:GOSUB 2100

4150 IF INS$="" THEN RETURN

4160 FF$ = INS + “.0UT”

4170 GOSUB 5500:RETURN

5100 REM — Add

5110 RETURN

5200 REM — Edit

5210 RETURN

5300 REM — Delete

5310 RETURN

5400 REM — Load

5410 OPEN “I”,1,FF$

5420 IN=0:LL(0)=0:LL=0

5430 IF EOF(1) THEN 5495

| 540 LINE INPUTHI, INS

5450 GOSUB 5600

CopeWorks 35

’

5460 LN$(IN) = IN$.}

5470 GOSUB 5700

5480 IN=IN+1

5490 GOTO 5430

5495 CLOSE:RETURN

5500 REM — Save

5505 OPEN “0”,1,FF$

5510 I=0:NM=0:SP=-1

5520 REM — start of loop

5530 GOSUB 6000

5535 IF SP=-1 AND LK(0,NM)=-1 AND I>0 THEN CLOSE :RETURN

5536 I=I+1

5540 IF LK(2,NM)>=0 THEN GOSUB 1300 :NM=LK (2, NM) :GOTO 5520

5550 IF LK(0,NM)>=0 THEN NM=LK (0, NM) : GOTO 5520

5560 GOSUB 1350:IF NM<0 THEN RETURN

5570 IF LK(0,NM)>=0 THEN NM=LK (0, NM) :GOTO 5520

5580 GOTO 5560

5600 REM — determine the line’s level

5610 LV(IN) = 0

5620 IF MIDS(INS,1,1)<>" ™ THEN RETURN

5630 LV(IN) = LV(IN) + 1

5640 INS = MIDS (INS,2)

5650 GOTO 5620 \

5700 REM — link line into structure C

5705 IF IN=0 THEN LK(0,0)=-1:LK(1,0)=-1:LK(2,0)=-1:NM(0)=1:GOTO
5900

5710 IF LV(IN) = LL THEN 5800

5720 IF LV(IN) > LL THEN 5850

5730 LK(0,IN) = -1:LK(1,IN) = LL(LV(IN)):LK(2,IN) = -1

5740 LK(0,LL(LV(IN))) = IN:NM(IN) = NM(LL(LV(IN)))+1

5750 GOTO 5900

5800 LK(0,IN) = -1:LK(1,IN)

5810 LK(0,IN-1) = IN:NM(IN)

5820 GOTO 5900

5850 LK(0,IN) = -1:LK(1,IN)

IN-1:LK(2,IN) = -1
NM(IN-1)+1

-1:1K(2,IN) = -1

5860 LK(2,IN-1) = IN:NM(IN) =1
5870 GOTO 5900
5900 LL(LV(IN)) = IN:LL = LV(IN)

5910 RETURN

6000 REM — save one line to file

6010 PRINT#1, STRINGS (LV(NM)*1,” “);LNS$ (NM)
6020 RETURN

36 CopeWORKS

Random Files

Adding Column Totals to Ranprint.Bas

Last issue we corrected some mistakes in the
random indexing program, starting with this
issue, we're going to start adding more sophis-
ticated features to the print program
(RANPRINT.BAS). Some of the features we're
going to be working on over the next few issues
include:

1) Report totals

2) Subtotals on break fields (doing subtotals
whenever a field value changes)

3) Field math to create fields that aren’tin the
data base

4) Output formatting

and much, much more. I've told Irv that we
could carry this series for a long time yet just in
terms of important features to have.

I'd like to thank all of you that have been
writing to say you're making use of the random
files programs. I've been hearing about applica-
tions people are building for themselves with the
program and it's really special. There’s no
greater kick than knowing that people are using
something you designed.

Thisissue, we're going to make a pretty simple
change to the RANPRINT.BAS program which
will allow us to get totals at the bottom of
columns where we want them. We'll take a
simple approach where we'll create a line, just
like the report line with the field numbers we
want to total. This will format the line just like it
does for the values themselves. It's bare bones
at the moment, but it will be enough to start
with. Later, we'll introduce formatting and other
useful features.

To start the change, we have to make an array
to hold the values (TOT#() which is defined in
the new line 30:

OLD: 30 DIM FP$(20), SC$(24), XY(20,3)
NEW: 30 DIM FP$(20), SC$(24), XY(20,3),

TOT#(20)

We also add a new line 70 which defines a
string (TS$) which will hold the string total
pattern string IF it's defined. If TS$ is *, then we
won't bother to print any totals.

A minor correction (the same as we put into
the RANIDX.BAS program in the last issue)
changes line 250 like this:

OLD: 250 IF FP$(1)="DELETED" THEN 270
NEW: 250 IF INSTR(FP$(1),"DELETED")<>0
THEN 270

This makes sure that we take out the deleted
records correctly no matter how long the field
length of the first field (REMEMBER - the first
field MUST be at least 7 characters in length in
order to hold the DELETED word. Another,
shorter word could be used, just so long as it's
unique and you change all programs identi-
cally.).

Line 275 is added to do a GOSUB to line 4100
where the data will be printed in a total line.
Then line 2140 is changed to allow totaling for
each selected record:

OLD: 2140 GOSUB 2450
NEW: 2140 GOSUB 2450:GOSUB 4000

New line 2965 adds a check for a TOTAL line
(starts with a capital “T’) which-will show the
pattern for the total printout and lines 3300
through 3330 set the TS$ and zero the totals.

The actual work is done in subroutines 4000
(total the fields at each selected record) and
4100 (print the totals at the end of the printout).
Subroutine 4000 takes the simple approach to
totals by simply totaling ALL fields without
regard to type. At worst, this should create a lot
of zeros and waste some time. We'll get better
about this as we start to do more sophisticated

CopeWonrks

/

things. That's a subject for later articles.

If you look closely at the routine for laying out
a printed line, you'll find that the subroutine at
4100 is an EXACT model of that one with only
minor differences. We insert totals where we find
field numbers just like inserting record values.
The special feature is that if there is NO value of
TS$, we simply ignore this and return. Other-
wise our sample line (LN$) is set to TS$. When
the line is filled, we print it in line 4195.

The listing gives the merge file needed to
create this version of RANPRINT.BAS from the
original available in Issue 14 (Nov/Dec 87) and
on the download.

30 DIM FP$(20),
TOT# (20)

70 TS$=""

250 IF INSTR(FP$ (1), ”DELETED")<>0 THEN
270

275 GOSUB 4100

SC$(24), X¥(20,3),

2140 GOSUB 2450:GOSUB 4000

2965 IF LEFTS(LNS,1)="T” THEN GOSUB
3300:RETURN

3300 REM — Total Fields

3310 TS$ = LN$

3320 FOR 2I=0 TO 20:TOT# (ZI)=0:NEXT ZI
3330 RETURN

4000 REM — Add to field totals

4010 FOR 2I=0 TO 20:TOT#(2I) = TOT#(ZI)

+ VAL (FP$ (ZI)) :NEXT ZI

4020 RETURN

4100 REM — Print field totals

4105 IF TS$="" THEN RETURN ELSE LN$=TS$
4110 FSS$=LN$

4120 IF INSTR(LNS,”#")<>0 AND
LEN (LN$) <WD THEN LN$=LN$+STRINGS (WD-
LEN (LNS)," %)

4130 IF INSTR(LNS$,”#"”)=0 THEN 4195

4140 X = INSTR(LNS,"#")

4150 Y = VAL(MIDS (LN$,X+1))

4160 MIDS$ (LN$,X) =

MID$ (STRS (TOT#(Y)),2) A
4170 IF X>1 THEN MID$ (LN§,X-1)=" "
4180 MIDS (FS$,X)=" "

4190 GOTO 4130
4195 PRINT LN$:LC = LC + 1:RETURN

No part of this change is very difficult, butit's
important to be careful. Next issue, we're going
to start going more and more into reporting and
working out ways to develop more sophisticated
reports for the system. Good luck ‘til then.

Forum, from page 6

magnetic retentivity, and the ability to write and
read perfectly. Data in the areas being tested is
removed and temporarily stored in your
computer’s RAM. Iftestingreveals an error, Disk
Technician+ repairs it by writing a single new
track using a factory low-level, real format. This
new track is then thoroughly retested, and only
ifit has been perfectly repaired, will the program
allow your programs and data to use it again. If
the testing shows that any area is not repair-
able, your data will be relocated to a good area
and the bad area will be safely blocked from
future DOS use - all automatically without
operator intervention. After Disk Technician+
repairs an area, it specially monitors that spot
on all subsequent tests to make certain it stays
repaired.

The program is copy protected, and is always
booted and run from its original diskette and
does not get installed on the hard disk. The

program can be reset to operate on a new
machine or hard disk by calling the factory. The
first time you run the program it may take up to
four hours to check out a 20 meg hard drive.
After that it only takes a few minutes per day to
run the program. It keeps a history database on
the hard drive and makes comparisons every
time you run the program.

It's a lot of program for $99.00, and it provides
you with good insurance.

Thanks again for the great letters. Many of
you have remarked that I always note the pass-
ing of the seasons. Yes, I do. I think the seasons
are great. Where we live there really are only two,
wet and dry. I very much enjoy the seasons in
the midwest, all four of them. You certainly
know which one you are in at any time there.

Actually, if it weren't for the seasons on Earth,
I think I'd find another planet on which to live.

Irv

38

CooeWorks

o Handy Order Form

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95
All third year issues, Nov 87 through Sep 88 $24.95
All second year issues, Nov 86 through Sep 87 $24.95
All first year issues, Sep 85 through Sep 86 $24.95
1st Year Program Disk (issues 1 through 7)

(Specify computer type below) $20.00
2nd Year Program Disk (issues 8 through 13)

(Specify computer type below) $20.00
3rd Year Program Disk (issues 14 through 19)

(Specify computer type below) Available after 1 Sep 88 $20.00
NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x

(Tandy Model IV) and most CP/M MBASIC formats, on
5 1/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
O Charge tomy VISA/MC exp——m——

Ship to: Name

Address

City State Zip

Clip or photocopy and mail to:

CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

‘ VISA/Master Card only, we don't take American Express
988

CopeWonrks

F

Index & Download

What's happening with both

Hcrearetheupdatestobrmngmdu.Datup
to date thmughthclastlssuc.'mcmm'emdac
for the first three years of CodeWorks, including
thlslssue.wﬂlbeonthcdo\mloadandonour
yearly diskette.

Bio.bas, correction, issue 18, page 4

Poker.bas, reference, issue 18, page 5
BASIC, user defined functions, is-

sue 18, page 7

Mediator.bas, main program, issue 18, page 9,

mediates disputes

Outline.bas, part 1 of 3, issue 18, page 15

Link.bas, main program, issue 18, page 21, part

of Outline.bas

List.bas, main program, issue 18, page 22, part

of Outline.bas

Random files, article, fixing Ranidx.bas, issue

18, page 23

Ranidx.bas, main program, issue 18, page 25,

randemo indexing

Notes, Model 17111 memory addreses, issue 18,

page 29

Conversions, article, issue 18, page 30, con-

verting to MS DOS

Hard disks, article, issue 18, page 37, ques-
tions and answers
Notes, converting WHILE and WEND, issue

18, page 38
Cwindex.dat, updates to this index, Issuc 18,

page 40

The download, which characteristically has
gone down in January and July, waited until
August thisyear. It'sdown as [write this, having
suffered from a mild case of high-voltage arcing.
Alotof power switching has been goingon inour
building, which may or may not account for the
problems. In any case, it is at the repair center
now, and we expect it to be up and running
normally by the time you receive this issuc.

Once we get it back up, you can rencw your
subscription via the download. Just leave your
name and charge card number in the comments
section and we will take it from there.

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

|
Bulk Rate
Postage
PAID
Permit # 774
Tacoma, WA

‘' ConpEWORKS

Issue 20 Nov/Dec 1988
CONTENTS
Editor's NOtES ...c.ccccecceoeeserccscssoscssoscessscses 2
. FOTUM cecceecccsccccccsccssesssssssssssossesssscssssvssee 3
Beginning BASICcccceeeeeseecescsscsosscsses 7
PlAUYOLSf.BAS ..cccoeeooevecescossosossssessossssseesens 14
NOLES ccccovvocosooceoccrscssesscesserecresessessssarssns 20
CWOTH.BUS .ccoovovesivssessssssssssssssvsssssssossoses 21
Randemo RECAP «..coeoeecsesoosscoscocssossessscoee 28
SDUEBAS .covvoeecsresisensstoitostesivesbisesonobunnsos 37
Renewal/Order FOTM ...cccceceveevrovencencsnes 39
Index & Downloadcccceeeveereerenssesconsens 40

CopeWOoRks

Editor's Notes

Issue 20 Nov/Dec 1988

Editor/Publisher
Irv Schmidt
Associate Editor
Terry R. Dettmann
Circulation/Promotion
Robert P. Perez
Editorial Advisor
Cameron C. Brown
Technical Advisor
Al Mashburn

(c)1888 80-Northwest Publishing Inc. No
patent Hability is assumed with respect to the
use of the information contained herein. While

every precaution has been taken in the prepa-
ration of this publication, the publisher as-
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre-
sented in this publication are placed in
public domain. Please address all correspon-
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 98409

Telephones

(206) 475-2219 (voice)
(208) 475-2356 (modem download)
$300/1200 baud, 8 bits, no parity and 1
stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro-
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned ifreturn postage is provided. Compen-
sation will be made for works which are ac-

cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for thatyear. VISA and Master Card orders are
accepted by malil or phone (208) 475-2219.
Charge card orders may also be left via our
on-line download system (208) 475-2358,

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, Just
send the name and address and we will send
a sample copy at no cost.

It's almost Thanksgiving time
again. It seems like just yesterday
that I was writing Poker.Bas dur-
ing a rare snowstorm around this
time of the year, but it was three
years ago!

Have you seen the announce-
ment that Steven Jobs has un-
veiled his new NeXT computer?
From what they showed on the Tee
Vee, it looked like it had some
pretty impressive graphics. I
wonder how long it will take for the
industry “power users” to start
calling it a “NeXt Box" like they
now call “386 Boxes™" and the like.
Or maybe they'll call it the “Jobs
Box."

Microsoft is moving their CD
Rom affair from Seattle to Califor-
nia thisyear. It's been here since it
first started. Perhaps Seattle is
getting too provincial for the

mighty MS.

They have also released MS
DOS version 4.0 but don't run out
and buy it. Wait for the bugs to get
fixed first. I've always been a be-
liever in buying 400 horsepower
and only using 200 of it. That way,
you get long life, good service and
dependability. You can call me a
“Half Horse Power User."”

There have been many requests
to us from readers to recommend
an MS DOS machine. We like MS
DOS and think it will be around
for a while. Even 0S-2 didn't make
the dent they thought it would. It's
hard, though, to recommend spe-
cific machines. There are a lot of
them out there at fantastic prices.
Some 286 machines (read PC AT)
with hard disks are going for
around $1500.00 and that has to
be a buy. We would recommend
staying away from off-shore odd-
balls however. Who's going to fix it

when it breaks? Is it really com-
patible? You never know until it's
too late. Names? Well, there's
Compagq, AT&T, AST, and if you're
not a red-neck about the name,
Tandy has some very good ma-
chines at fair prices. ‘Course, you
can always be true blue and go for
IBM. Check prices, service and
compatibility and you won't go
wrong.

Speaking of MS DOS, it's inter-
esting to see how many of you who
don't have it are buying our book-
let on getting started in it. But |
guess that makes sense, since you
want to see what you may be in for.
It's getting good comments from
most of you. One person though,
called in and said it had a “gross”
mistake in it. Seems he took issue
with the statement that you can
have 115 files in a directory on a
hard disk. He says you can have
as many as you want in the sub-
directory but only 115 in the root
directory. Picky, what?

And speaking of books, guess
who is the author of a new one put
out by Que, called “DOS Program-
mer's Reference?” Well, no one
other than our own Terry
Dettmann. It's a monster book,
over 800 pages, and technical
reading cover to cover. Now, don't
get the wrong idea. That's not why
he missed the deadline for this
issue! The book has been out for
some time now, and should be on
your local bookstore shelf. Take a
look.

Thank you all for your early re-
newals. It sure helps when we
don't have to keep harping on it.
We appreciate it.

Irv

Issue 20 CopeWorks

R EEEEEEEE——S—S——

Forum

An Open Forum for Questions and Comments

I have enjoyed trying (the program Correl.Bas
in Issue 19). The leading/lagging correlation
feature is very nice.

You may wish to point out to your readers that
the program'’s accuracy is somewhat limited in
calculating the correlation coefficient. I'm using
GW BASIC under MS-DOS 3.2. I get accurate
results when the values in the input files have
no more than two significant figures. There can
be a slight error when these values have three
significant figures. On a test set of files whose
values contain four significant figures, the pro-
gram gives a correlation coefficient of 0.62 ver-
sus the correct value of 0.7853 (determined by
using a 10-digit hand calculator)...

...The sources of error appear to be (1) the use
of single precision variables in the calculations,
and (2) the use of the exponentiation operator (%)
to square values instead of multiplication of the
value by itself.

In GW BASIC exponentiation appears to re-
turn a single precision value even if the variable
is double precision. For example:

10 DEFDBL A

20 A=98.18

30 PRINT “A=";A

40 PRINT “A*A=";AA

50 PRINT “AA2=";AA2

Run

A = 98.18000030517578

A*A = 9639.312459924317

A2 = 9639.312

The correct value is 9639.3124. The error in
the fourth decimal place may seem trivial, but
when differences between squared terms used
(such as in program line 1580), one can wind up
with only three or four significant figures for
subsequent calculations. Thus, the round-off
error can be appreciable as in the first example
above.

When | added line 142 DEFDBL
A,B,C,D,E,F,N and changed the following lines
to use multiplication instead of exponentiation,

the revised program gives the correct value for
the coefficient of 0.78527 which is rounded to
0.79 by line 1610 and/or line 1090.

1030 D=D+(A(I)*A(1))

1040 E=E+(B()*B(D)

1200 D=D+(A(I+S)*A(I+S))

1210 E=E+(B()*B(1)

1420 D=D+(A[D*A(D))

1430 E=E+(B(I+T)*B(I+T))

1580 AA=((N3*D)-(B*B))*((N3*E)-(C*C))

A better alternative for GW BASIC is to call
BASIC with the /D option. This loads BASIC
with the double precision transcendental math
package and provides double precision values
for exponentiation and square root functions. I
don’t know if other versions of BASIC operate in
the same manner.

One further program note: Line 1610 rounds
CC to two decimal places. This line seems re-
dundant in view of the Print Using format ##.##
which is found in lines 1090, 1270, 1300, 1490
and 1520. The program seems to work fine with
line 1610 deleted...

Robert L. Anderson
St. Albans, WV

You are right. Although we knew about the
accuracy problem, we simply overlooked it when
we wrote the program.

As an experienced BASIC programmer I re-
cently purchased Microsoft's QuickBASIC and
fell in love with it the first time I used it. While
many typical, small BASIC programs do not
really need the speed up from compiling, there
are several other major benefits, such as the fine
BASIC editor, the pull-down menus, the dialog
boxes, and most important, its powerful debug-
ging features. BASICAs and GW BASICs editors
are primitive by comparison.

How about some articles and examples of the
QuickBASIC programs. I am sure many others
would appreciate it. Keep up the good work.

Paul G. Delman

CopeWorks Issue 20

’

Ft. Lauderdale, FL

Although half our readers don't have the ma-

chine to run QuickBASIC, we have been thinking

about running a regular column on it for those

who do. Since we are not experts at it either, it

would be a case of learning from scratch, to-
gether.

Issue 19 has just arrived, and I agree that
switching to desktop publishing has improved
the appearance of your magazine; but, unless
my copy was an exception, the collating attach-
ment on your photocopier needs adjustment...
(It was missing pages, ED.)

Although I still am devoting all of my free time
to compiling a family history and genealogy, and
my interest in learning to program in BASIC
remains “on hold"” for the immediate future, I do
want my CodeWorks collection to be complete
when I get around to it...

Russell Bond
Buffalo, NY

Yours seems to be a common complaint for that
issue. Several others have made remarks about
desktop publishing and the missing pages prob-
lem. The two have absolutely nothing to do with
each other. Desktop publishing only produces the
camera-ready page masters for the magazine.
Those master pages are then photographed,
printing plates are made and the plates go onto
the printing presses to produce the magazine.
The pages must then be collated and sent to the
bindery for stitching and trimming. We don't own
the presses or the bindery, we send that work out
to commercial printers. The problem with Issue
19 was in the bindery, where it seems, things got
a little bit out of sync. We will certainly pay more
attention to it this issue. And damn, isn't it always
like that? Seems to be one thing or another that
keeps you from putting out a “perfect” issue - but
it's fun trying.

Will Randemo be down-loadable at some fu-
ture time as a complete file rather than “pieces?”
F. V. Bruch

Troy, NY

It will probably always be in three major
pieces. You can tie them all together, however,

with a small menu program, as we did with
Card.Bas.

Do you have a program in BASIC that I could

run on my Model IV to keep track of payments on
a Trust Deed? The payments are interest first,
but any amount after that will be applied to the
principal. The amount of the payments may
vary, but the due date is firm, with a balloon
payment at that time. Thanks for your time in
this matter.
Richard L. Wright
Buena Park, CA
We do now. It's called Trust.Bas and should
appear in these pages within the next few issues.
(Actually, we have already sent Mr. Wright an
advance copy of the program for check out and
suggestions for improvements. - ED)

Is there anything in the future to upgrade
“NFL Oracle” where you can enter the play-off
games and Superbowl? It is a great predictor
and I am very pleased with your magazine. Keep
it up. I am over 65 and have learned most of my
hobby computing through CodeWorks. It sure
helps a novice like me. You should get a super
gold star for such detailed explanations.

Ivor J. Fosmo
Sparks, NV

Thanks for the nice comments, and you will
Jfind the play-off program in this very issue. It's
called Playoff.Bas.

...CodeWorks is almost a “cult” piece, notable
for its erudition and clarity. Thus, it is not at all
difficult for me to see the jumble in which I
sometimes write...

R. J. Richardson
Valencia, CA

And write he did. His program, Budget.Bas,

will be appearing in a future issue.

...] have recently moved up from a Model I1I to
a Model 1000 TX and when (Issue 18) arrived I
immediately saw listed on the cover a thing
called “Conversions, page 30." I raced into the
house and in my excitement, nearly tore the
cover off. There on pages 34 and 351 found some
“missing Model IIl commands." Although they
are very welcome, I was nearly heartsick to find
my beloved CMD"X" is still missing. There are
lots of things missing from my dear old “pro-
grammer's dream” but that CMD"X" is the one |
miss the very most. Can you please help? I know
that the Model 1000 does have the “FIND” but
that seems to work only for text files, and what

Issue 20 CopeWonks

I am primarily looking for is the line numbers of
those lines in data statements and in files other
than text files which contain my search string.
In desperation I once renamed a sequential file,
giving ita . TXT extension, but alas, it did not fool
my TX at alll
I also noticed in Issue 18 aletter from a reader
heartily endorsing the genealogy program,
CLAN, written by Arthur C. Hurlburt of Daven-
port, lowa. I have had his program for almost
four years now and have had one book pub-
lished, using that program. I have over 850
family names in that one with room for more. I
am currently working on another book and have
over 600 names in it! It is indeed, a wonderful
program, I have seen others but I like this one
the best...
Betty Berg
Milan, IL
The MS DOS FIND command works just fine if
you save your programs in ASCII format, iLe.,
SAVE “filename” A.

...As usual, the articles in Issue 18 are both
informative and thought-provoking. I would like
to add a few comments to the article by Al
Mashburn regarding hard disks. I currently
have two hard disks in operation, one on an XT
clone (30 meg) and one on a Tandy Model IV (5
meg). In answering the question of recom-
mended disk size, he implies that only the
TRSDOS operating system has a “problem” with
chunk size. In fact, MS DOS has an identical
problem. Using MS DOS 3.1 to format a 20 meg
hard disk will give a cluster (chunk) size of 8, 192
bytes minimum. This was improved in MS DOS
3.2 to a size of 2,048 bytes. Thus, a 100 byte file
under MS DOS will occupy either 8,192 or 2,048
bytes of disk space. Confusion comes from the
use of the DIR command, which lists file length
for MS DOS and disk usage in TRSDOS. When
you issue the DIR command in TRSDOS, the
100 byte file will show up as a 4K file (5 meg disk
partitioned into four equal logical drives). Issu-
ing the DIR command from MS DOS will show
the file length as 100 bytes, but if you compare
the free space on the disk before and after
writing the file, you will find that 8,192 or 2,048
(depending on DOS version) have been used.
The information about division of the drive into
logical drives also needs to be expanded. While

you can break one physical drive into four
logical drives, it is not required. You may divide
it into two or three or use it as a single logical
drive. One arrangement is to create on or two
drives of 1.25 meg, with the remainder (3.75 meg
or 2.5 meg) used as a single drive for large data
files (at one time I had a 1.6 meg inventory file
and a 1.2 meg sales files sharing the 3.7 meg
second logical drive). He is correct in stating that
the drivers supplied by Radio Shack do not
support sub-directories and paths, however,
the DiskDisk utility available from Misosys will
allow a similar type of file organization. In either
case, the proper use of file library and archive
utilities will greatly enhance the utility of your
hard disk. I plan to expand the Model IV hard
disk to 20 meg as soon as possible, and feel
confident that I won't waste any of it. With used
5 meg drives currently in the $300 range, no
Model IV user should be without one if he can
afford it. Note: TRSDOS in the above applies to
TRSDOS 6.2 and LS-DOS 6.3.
I hope the above information is useful. Keep
up the good work.
Tom Biggar
Fairview, TN

...I have a Model Ill, two Model IV'sand now an
AT&T 6300 Plus with Unix. There is so much to
learn about I may never get the roof on the house
reshingled...

R. C. Chittenden
Amarillo, TX

Ifyou get into that Unix, you will be setting out

drip-buckets for sure.

Qkey.Bas, Issue 10, is a great program! I have

a problem making corrections to the data. How
do I change typing errors after ENTER?

R. H. Saunders

Epping, NH

To correct or delete a line with Qkey, you use

the .EDIT command. Let's say you wanted to find

something and forgot to put the period before

FIND and then pressed ENTER. If you then .EDIT

FIND it will find the word *find"” and then you can

delete it or replace it with something else. Unfor-

tunately, the program is not sophisticated

enough to edit within a line, you must retype the

entire line to change it.

CopeWorks Issue 20

f

InIssue 18you published aletter from me and
a letter from Mr. Lawrence J. Carley of Mt.
Morris, Michigan.

Mr. Carley'’s letter advised that a good geneal-
ogy program could be purchased from Arthur C.
Hurlburt and I immediately purchased this
program and find it to be all that he said that it
was and I am very well pleased with it. It is easy
to run and gives out wonderful reports. Mr.
Hurlburt says that he has over 700 names in his
program on one disk. I have entered over 400
names on my disk and have room for many
more. Mr. Hurlburt is a real nice person to deal
with and this is the best $10 that I have ever
spent on a program. The program is for a Tandy
Model III.

I want to thank you for taking an interest in
my letter and publishing the letter that allowed
me to get the genealogy program from Mr.
Hurlburt. I also extend my appreciation to Mr.
Carley for writing to you about this program...

Walter Evans, Jr.
Waco, TX

And the interest in genealogy goes on and on.
We were happy to be of assistance and act as a
clearinghouse.

...The MS DOS book is neat. Al MS DOS users
should buy one and keep it handy for reference
before attacking the intimidating, thick, some-
times too technical and unreadable, sometimes
incomplete, DOS manual.

I hope Al Mashburn will do more writing for
CodeWorks. His work on “Shareware” (Issue 5)
and hard disk are welcome. I would like to see
more on the subject for hard disks, perhaps the
various formats (MFM and RLL and others),
causes of a crash, need for a disciplined backup
program, good habit of running SHIP with each
time you turn off power, etc.

I have noticed that CodeWorks has grown, top
to bottom, and left to right. All issues up to 15
were the same size, and all after have been
different. The cause?

John R. Miller
Anderson, SC

Three different printers, so far, have printed
and bound the magazine. They all insist on doing
it their way. We too, would like to see it be a little
more consistent.

Thanks once again for the interesting letters
and comments. Enjoy the football and the
Thanksgiving turkey, and the new administra-
tion (whoever it turns out to be), and we'll see
you again around the first of the year.

Irv

NOTICE
Due to unavoidable
circumstances
Terry's Outline program
and his
Randemo article will
NOT APPEAR
in this issue.

We will, however, pick them
up again in the next issue.

A SEMYSTHER
ATTO RyE

AT LAw Y%

| \\f R0,

"Don't worry. In fraudulent tax cases
your computer can't testify against you."

Issue 20 CopeWonrks

3

)

)

Beginning BASIC

Error Messages for Beginners

If you are new to BASIC, you probably see a lot
of error codes and cryptic messages when you
program. Wouldn't it be nice if the error message
told you a little more about what the error was
than “TM error in 300" or some such? And
wouldn't it help if you had some idea of where
the error line was?

Errmsg.Bas is a program designed to serve as
a crutch until you become more familiar with
the error codes of your computer’s BASIC. It's
not a program that will run by itself, but is a
program you can merge into your programming
during checkout and debugging time. It will
then give you a full description of the errors
encountered, and will display the line of code
where the error has probably occurred.

The full treatment of error trapping is a sub-
ject by itself, and is beyond the scope of Begin-
ning BASIC. It will be treated separately in a
later article either in this issue or in an upcom-
ing one.

How to use Errmsg.Bas

Type in the program (Errmsg.Bas) or get it
from our download. Be sure you have saved it in
ASCII (SAVE “ERRMSG.BAS,A"). When you
type in a program from a magazine, or write your
own from scratch, just go ahead and write as
you normally would. You can use line numbers
inyour program from 11 through 29998. Line 10
and the numbers from 29999 on will be used
when you merge Errmsg.Bas. When you get
ready to check out your program, load your
program and then at the ready prompt type:
MERGE"ERRMSG.BAS™

Now, when you run your program, arny errors
will be displayed with a full description of the
error, as well as the line (not just the line
number) where the error probably occurred. If
the error was a syntax error the line containing

the error will be displayed and you will auto-
matically be in the EDIT mode. All other errors
will show the line and give you the BASIC ready
prompt. The error messages you now receive will
give you enough information so that you can
probably fix the error and continue checking out

your program.

If the program you are copying from an article
contains a line that starts out with “ON ERROR
GOTO...", then temporarily remark that line
while you use Errmsg.Bas. Don't forget to acti-
vate that line again later.

When you are satisfied that your program is
checked out, you can delete line 10 and from
29999 to 31130. At the ready prompt, simply
type the number 10 and press enter, then type:
Delete 29999-31130 and press enter. That will
get rid of Errmsg.Bas and leave your program
ready to go.

How Errmsg.Bas works

When BASIC encounters an error, it auto-
matically sets two internal variables, ERR and
ERL. ERR is the error number and ERL is the
line number where the error was detected. In
fact, when you get an error, you can tell BASIC
to print ERR and ERL and see what they are.

Line 10 of Errmsg.Bas sets the “error trap” so
that on any error program flow will jump to line
30000. The END statement in line 29999 is just
there to keep your program from crashing into
this part of the program. In line 30000 we let X
equal the error number that BASIC found.

In lines 30010 through 30055 we use the
value of the error number to go to the appropri-
ate lines to display the correct information
about the error in question. If the error number
encountered was 3 then line 30010 will send us
to line 30035, and the third number in the ON X

CopeWonrks Issue 20

4-%—<_

IlIlllIIlIlllllllIII-IIlllIllIIlllIIllllIlllIlIlIllIl-llll-l-l-llllllllllllllllll

GOTO line 30035 is 30130. If we go to line in full, and the line that probably caused the
30130, we find that it is the “Return without error displayed right there on the screen. All the
GOSUB error.” The program will print this error other error numbers work the same way. The
and the following lines on the screen for you. only exception to this is the syntax error, which
Notice line 30145. It ends with a GOTO 31125. automatically puts you into the EDIT mode
Line 31125 lists the line in question on the anyway, so way up in line 30120 we go to line
screen, right under the error message that is 31130 instead of 31125.

already there. Now you have the error message

Errmsg.Bas written for GW BASIC

see note for other machines.

10 ON ERROR GOTO 30000

29999 END

30000 X=ERR

30005 CLS

30010 IF X=<10 THEN 30035

30015 IF X=<20 THEN X=X-10:GOTO 30040

30020 IF X=<30 THEN X=X-20:GOTO 30045

30025 IF X=<60 THEN X=X-49:GOTO 30050

30030 IF X=<71 THEN X=X-60:GOTO 30055

30035 ON X GOTO 30065,30100,30130,30155,30185,30240,30260,30285,
30300,30330

30040 ON X GOTO 30355,30370,30390,30425,30445,30465,30485,30510,
30530, 30550

30045 ON X GOTO 30570,30590,30610,30625,30645,30660,30685,30570,
30700,30720

30050 ON X GOTO 30740,30760,30785,30810,30830,30860,30570,30885,
30905,30570,30570

30055 ON X GOTO 30925,30940,30970,30990,30570,31015,31035,31055,
31075,31090, 31110

30060 " error 1

30065 PRINT'‘NEXT without FOR ERROR’’

30070 PRINT’’BASIC executed a NEXT statement without previously

30075 PRINT’’executing a FOR statement, or a variable in a NEXT

30080 PRINT’’statement does not correspond to a previously

30085 PRINT’’executed FOR statement. The error may or may not be in

30090 PRINT’’the line being displayed.’’:GOTO 31125

30095 " error 2

30100 PRINT’’Syntax ERROR

30105 PRINT’’BASIC encountered a line that contains an incorrect

30110 PRINT’’sequence of characters (such as unmatched parentheses,

30115 Pi}N%"misspelled statement, incorrect punctuation, spacing,
etc.

30120 PRINT’’The error is in the line being displayed.’’ :GOTO 31130

c——

Issue 20 CooeWonrks

N B e T N S Bt S e

. 30125 " error 3

30130 PRINT’’Return without GOSUB ERROR

30135 PRINT’'BASIC executed a RETURN statement without previously

30140 PRINT’’executing a GOSUB statement. The error is NOT
necessarily in

30145 PRINT’‘the line being displayed.’’:GOTO 31125

30150 * error 4

30155 PRINT’’Out of data ERROR

30160 PRINT’‘’While executing a READ statement, BASIC could not find

30165 PRINT’’any DATA statements or un-read data items. Ths error

30170 PRINT’’shows the line that READS as the error line, but the
error

30175 PRINT’’is probably in the DATA line or lines.’’:GOTO 31125

30180 * error 5

30185 PRINT’’Illegal function call ERROR

30190 PRINT’’A parameter that is out of range was passed to a math
or

30195 PRINT’‘string function. This error may also be caused by a

30200 PRINT’ negative array subscript or an unreasonably large

30205 PRINT’‘subscript, a negative or zero argument with LOG, a

30210 PRINT’‘negative argument with SQR, a negative mantissa with a

30215 PRINT’ ‘noninteger exponent, an invalid exponential number, an

30220 PRINT’’improper argument to MID$, LEFTS, RIGHTS, etc., or a

o 30225 PRINT’ ‘negative record number with GET or PUT.’’ :GOTO 31125

30230 " errxor 6

30235 PRINT’’Overflow ERROR

30240 PRINT’’The result of a calculation was too large to be

30245 PRINT’’represented in BASIC numeric format.’’ :GOTO 31125

30250 error 7

30255 PRINT’‘Out of Memory ERROR

30260 PRINT’’A program is too large, has too many FOR loops or

30265 PRINT’’GOSUBs, has too many variables, or has expressions

30270 PRINT’’that are too complicated to untangle.’’ :GOTO 31125

30275 * error 8

30280 PRINT’‘’Undefined line number ERROR

30285 PRINT’’A nonexistent line was referenced in a GOTO, GOSUB,

30290 PRINT’’IF..THEN..ELSE, or DELETE statement.’’ :GOTO 31125

30295 " error 9

30300 PRINT’’Subscript out of range ERROR '
30305 PRINT’’An array element is referenced with a subscript out-

30310 PRINT’’side the dimensions of the array or with the wrong

30315 PRINT’‘number of subscripts. Try printing the value of the

30320 PRINT’’variable contained in the subscript for clues.’’ :GOTO
31125

30325 * error 10

30330 PRINT’’Redimensioned array ERROR

Q 30335 PRINT’’BASIC encounterd two DIM statements for the same array,

30340 PRINT’‘or a DIM statement after the default dimension of 10
30345 PRINT’‘had already been established for that array.’’ :GOTO

CooeWonrks Issue 20 9

ey B e

31125

30350 * error 11

30355 PRINT’’Division by zero ERROR

30360 PRINT’’You simply cannot divide by zero. No one can.’’ :GOTO
31125

30365 * error 12

30370 PRINT’’Illegal direct ERROR

30375 PRINT’’A statement that is illegal as a command was
encountered

30380 PRINT’’at BASICs prompt.’’:GOTO 31125

30385 * error 13

30390 PRINT’’Type mismatch ERROR

30395 PRINT’’A string variable name was assigned a numeric value or

30400 PRINT’’the other way around. A string function was given a

30405 PRINT’‘numeric argument or the other way around. You cannot

30410 PRINT' 'mix strings and integers without converting them

30415 PRINT’'first.’’:GOTO 31125

30420 * error 14

30425 PRINT’’Out of string space ERROR

30430 PRINT’’The amount of memory used by string variables exceeded

30435 PRINT’’the amount of free memory.”’ :GOTO 31125

30440 * error 15

30445 PRINT’’String too long ERROR

30450 PRINT’’An attempt was made to create a string more than 255

30455 PRINT’’characters long.’’ :GOTO 31125

30460 * error 16

30465 PRINT'’String formula too complex ERROR

30470 PRINT’’The string expression is too long or too complex. The

30475 PRINT’’expression should be broken into smaller expressions.’’:
GOTO 31125

30480 * error 17

30485 PRINT’‘Can’t Continue ERROR

30490 PRINT’’An attempt was made to continue a pProgram that halted

30495 PRINT’ ‘because of an error, was modified during a break in

30500 PRINT’'’execution or does not exist.’’:GOTO 31125

30505 * error 18

30510 PRINT’’Undefined user function ERROR

30515 PRINT’’A USR function was called before providing a function

30520 PRINT’‘definition (DEF USR statement).’’ :GOTO 31125

30525 error 19

30530 PRINT’‘’No RESUME ERROR

30535 PRINT’"BASIC executed an error-handling routine that did not

30540 PRINT’‘’have a RESUME statement.’’ :GOTO 31125

30545 " error 20

30550 PRINT’’RESUME without ERROR

30555 PRINT’’BASIC executed a RESUME statement when no error

30560 PRINT’’had occurred.’’ :GOTO 31125

30565 * error 21

30570 PRINT’’Unprintable ERROR

29 Issue 20 CopeWorks

¢

I

30575 PRINT’“An error message is not available for the error

30580 PRINT’‘that occurred.’’:GOTO 31125

30585 " error 22

30590 PRINT’“Missing operand ERROR

30595 PRINT’ Basic encountered an expression that contained an

30600 PRINT’’operator but no operand.’’:GOTO 31125

30605 * error 23

30610 PRINT’’Line buffer overflow ERROR

30615 PRINT’’The line being input is too long.’’:GOTO 31125

30620 * error 24

30625 PRINT’ 'Device timeout ERROR

30630 PRINT’‘Basic did not receive information from an I/O device

30635 PRINT’‘within a predetermined amount of time.’’:GOTO 31125

30640 * error 25

30645 PRINT’’Device fault ERROR

30650 PRINT’’An incorrect device designation has been entered.’’:
GOTO 31125

30655 * error 26

30660 PRINT’’FOR without NEXT ERROR

30665 PRINT’‘BASIC executed a FOR statement that did not have a

30670 PRINT'’matching NEXT. Also check for FOR J= with NEXT I,

30675 PRINT’’ for example.’’:GOTO 31125

30680 * error 27

30685 PRINT’‘Out of paper ERROR

30690 PRINT’’Basic received an out of paper status from the
printer.’’ :GOTO 31125

30695 * error 29

30700 PRINT’’WHILE without WEND ERROR

30705 PRINT’‘Basic encountered a WHILE statement that did not have
a

30710 PRINT’‘matching WEND.’’:GOTO 31125

30715 * error 30

30720 PRINT’’WEND without WHILE ERROR |

30725 PRINT’’Basic executed a WEND statement before executing a

30730 PRINT’‘WHILE statement.’’:GOTO 31125

30735 * error 50

30740 PRINT’’Field overflow ERROR

30745 PRINT’’A FIELD statement is allocating more bytes than the

30750 PRINT’ ‘specified record length of the direct access £ide, "’
GOTO 31125

30755 * error 51

30760 PRINT’‘Internal ERROR

30765 PRINT’’An internal malfunction has occurred in BASIC. There

isn’'t

30770 PRINT’’one heck of a lot you can do about it. BASICs internal
stack s

30775 PRINT’‘is probably garbled. You lose. Re-load BASIC.’’ :GOTO
31125

30780 * error 52
30785 PRINT’‘Bad file number ERROR

CooeWonrks Issue 20

1

IIlllllIllIIlllIllllIllIlIIllllllllIlIIlIIlIlIIIIIIIllI--IIIIIIIIIIIIIIIIIIII

30790

30795

30800
30805
30810
30815
30820
30825
30830
30835
30840
30845
30850
30855
30860
30865
30870
30875
30880
30885
30890
30895

30900
30905
30910

30915

30920
30925
30930

30935
30940
30945

30950
30955
30960

30965
30970
30975
30980

30985
30990

PRINT’ ' BASIC has encountered a reference to a buffer number

that
PRINT’’is not open or is out of the range of the number of

files

PRINT’’ specified when BASIC was first loaded.’’:GOTO 31125

‘* error 53

PRINT’’File not found ERROR

PRINT’ A LOAD, KILL, or OPEN statement referenced a file that
PRINT’ ’does not exist on the current disk.’’:GOTO 31125

‘ error 54

PRINT’ "Bad file mode ERROR

PRINT’ ‘An attempt has been made to use PUT, GET or LOF with a
PRINT’’ sequential file, to LOAD a direct file, or to execute
PRINT’’an OPEN statement with a file mode other than I,O,R,
PRINT’’E or D.’’:GOTO 31125

‘' error 55

PRINT’ ‘File already open ERROR

PRINT’ ' BASIC encountered an OPEN statement for sequential
PRINT' ‘output, or a KILL statement, for a file that is
PRINT’‘already open.’’:GOTO 31125

‘ error 57

PRINT’ ‘Device I/O ERROR

PRINT’’An input/output error occurred. This is a fatal error
PRINT’’and the operating system cannot recover from it.’’:GOTO
31125

‘' error 58

PRINT’’File already exists ERROR

PRINT’ ‘' The filename specified in a NAME statement is
identical

PRINT’’to a file specification in use on the disk.’’:GOTO
31125

' error 61

PRINT’ ‘Disk full ERROR

PRINT’’All of the diskette space is already in use.’’ :GOTO
31125

' error 62

PRINT’ ' Input past end ERROR

PRINT’ BASIC executed an input statement after all the data
in

PRINT’"the file has already been read, or BASIC executed an
PRINT’‘input statement to a null (empty) file. To avoid this
PRINT’’error, use the EOF function to detect end of file.’’:
GOTO 31125

‘ error 63

PRINT’’Bad record number ERROR

PRINT’’In a GET or PUT statement, the record number is either
PRINT’’greater than the max allowed, or is equal to zero.’’:
GOTO 31125

‘ error 64

PRINT’‘Bad file name ERROR

12

R

Issue 20 CooeWorks

(M

Ul

eSS s asTaasaes R T L S T
PRINT’“An illegal name was used with a LOAD, SAVE, KILL or

O 30995
OPEN

31000 PRINT’‘statement, for example, a file name with illegal

31005 PRINT’‘characters in it.’’:GOTO 31125

31010 ® error 66

31015 PRINT’“Direct statement in file ERROR

31020 PRINT’"Information in a non-ASCII format was encountered
while

31025 PRINT’'loading an ASCII format file. The load is terminated.’’:
GOTO 31125

31030 error 67

31035 PRINT’'Too many files ERROR

31040 PRINT’’The disk already contains the max number of files
allowed.

31045 PRINT’’It can also occur with a double extension
(NAME .DAT.BAS) *’ :GOTO 31125

31050 * error 68

31055 PRINT’’Device unavailable ERROR

31060 PRINT’’An attempt was made to open a file to a non-existent

31065 PRINT’ “device, or when a device has been disabled.’’ :GOTO
31125

31070 " error 69

e 31075 PRINT’’Communication buffer overflow ERROR
31080 PRINT’’Not enough space has been reserved for the comm
buffer.’’:GOTO 31125

31085 * error 70

31090 PRINT’’Disk write protected ERROR

31095 PRINT’‘Occurs when an attempt is made to write to a diskette
that

31100 PRINT'’is write protected with a write-protect tab.’’:GOTO
31125

31105 * error 71

31110 PRINT’’Disk not ready ERROR

31115 PRINT’‘Occurs when the drive door is open or there is no
diskette

31120 PRINT’‘in the drive.’’:GOTO 31125

31125 LIST

31130 END

Note: Some machines will not call all the errors listed

in the program because they don't apply. This is

especially true for BASICs prior to version 5.0.

Also, those with BASIC prior to 5.0 should change

line 30000 to X=(ERR/2)+1 (Tandy Models I & III
particularly will need to do this.

Q Don't forget the space and period in line 31125, it's

what lists the offending line for you.

CooeWonrks Issue 20 13

;—4_

Playoff.Bas

Oracle takes on the post-season play

checkout.

Well, here it is, football fans: A playoff/Super-
Bowl prediction program. You have been asking
for this since we first published NFL86.Bas back
in 1986. Our thinking on the subject must have
been a bit prejudiced because we kept thinking
in terms of the original NFL program and wor-
ried a lot about how to get the playoff schedule
into the program. But after the umpteenth such
request, we finally sat back and asked ourselves
why not?

The program, of course, had to be based on
the season standings. Therefore it would have to
use Stat88.Dat as a source of input. One prob-
lem came up here. Stat88.Bas only allowed for
15 weeks of data because we projected the 16th
week only and didn't need the week 16 stats.
This program should use the stats from week 16
as well. So there are two changes to make in
Stat88.Bas: Change the DIM in line 190 from
420 to 448 and in line 350, change WN=420 to
WN=448. This will allow you to enter the week 16
statistics with Stat88.Bas. Our new program,
Playoff.Bas, will use the last four weeks of the
regular season as a base upon which to project
the playoff winners.

The other mental block we had to overcome
was the scheduling of the playoff games. There
is no way to know that in advance. So we simply
let you enter which teams are playing and let it
go at that. This has another advantage in that
you can play “what if?" and see what would have

happened if Team X were playing Team Y in the
playoffs.

Staff Project. Here is an additional program that will work with the Stat.Dat data
file from NFL88.Bas to help predict the outcome of the post-season games and the
Super Bowl. Let's hope it does as well this year as it did on last year's games during

Our playoff program works slightly differently
than NFL88.Bas does. It uses a different algo-
rithm to calculate the winner, for one thing. For
another, it gives you probable scores for the
games. It still gives the home team a two point
advantage, except when you predict the Super-
Bowl, then it removes the home team advan-
tage. You should use a separate “run” of the
program when trying to project the Superbowl
winner.

The way we figure the winner is not as compli-
cated as in NFL88.Bas, but by trial and error, we
found that the defense of the opposing team had
to be figured in more prominently (by using
points allowed.) This makes the predicted scores
rather interesting in that the same team pitted
against several other teams will result in differ-
ent scores for each, depending on the points
allowed by the opposing team. In other words,
Team X will show different scores when matched
against Team Y and Team Z because the defense
of Teams Y and Z figures into the score for Team
X.

We tried many variations on the calculation
routine using last year's data and playofls. The
one that finally worked the best was (o look at
the last four games of the season. The net resu}t
was that it picked seven of nine of last years
playoffs. The two games it missed were the
maverick Vikings, who didn't have the stats
going in, but upset both the Saints and the
49%rs. And if you could predict an upset it
wouldn't be an upset, would it? See figure 1 for
how the predictions actually went.

14

lssue 20 CooeWoRKS

¢

U

—f——[—

[P s e e i o]

Since the playoff teams are usually matched
rather well, we had a problem coming up with tie
scores. We use two tie-breakers. The first is the
number of first downs, then if there is still a tie
score, we use the won/lost record of the teams.
This may or may not be valid, but is the best we
could come up with, given the stats that we
have. It is conceivable that we could still come
up with a tie, which we may as well use to signify
a game too close to call.

Just because it worked rather well on last
year’s games is no guarantee that it will perform
this year. Given the statistics, however, it
should do just about as well - we hope. It will be
interesting to see how it stands up.

The Program

The program starts off with code that looks
suspiciously like that in Stat88.Bas. This is
because we borrowed most of that starting code
from that program. In line 160 we dimension the
double A array to hold the stats we will be
reading in (including week 16 stats). Then we
dimension the T$ array to hold the team names.

The code from 180 to 230 is our familiar
locate/print@ subroutine, which you all know
about by now. Un-remark the appropriate line
for your computer and remark the rest. The
team names are held in data statements in lines
260 through 290.

In lines 320 through 410 we read in the
existing statistics file and put them into the
A(1,J) array, and in lines 440 to 460 we read the
data statements into the T$ array to get the
team names.

Lines 480 through 630 print the CodeWorks
heading on the screen and prompt for user input
as regards printer output, Super Bowl predic-
tion (yes or no) and checks to make sure that the
stat file was updated properly.

Something a little different from Stat88.Bas
happens from here on. In lines 690 through 750
we print the teams and their team numbers on
the screen. They will stay there, at the top of the

screen for the rest of the program. This is
necessary so that you can pick the teams by
number for the playoff projections. We don't
have a schedule for the playoff games, remem-
ber? So you need something easy to pick from.
Notice the little mechanism we use to get the
team number attached to the proper teamin line
710. The loop counters alone wouldn't have
done this for us. Also note the comma at the end
of line 720, used to space the four columns of
teams on the screen.

Next we use our locate/print@ scheme to pro-
vide for a “dialogue” area just below the teams
on the screen. Here (lines 780 through 820) we
prompt for the number of the visiting and home
teams or zero to terminate the program. The
visiting team becomes X1 and the home team
X2.

The loop from 850 to 910 reads the statistics
file and collects the information we will need.
B(1) through B(4) holds information on the
visiting team, while C(1) through C(4) holds the
same information for the home team. Lines 860
and 870 collect information on won/loss record
for the entire season. In line 880, if the week
number is less than 13, we simply go on through
the file. This results in the following data being
collected only for weeks 13 through 16, which is
what we want. In lines 890 and 900 we accumu-
late the data for both teams for weeks 13

through 16.

The calculation of who has the power is made
in lines 940 through 1000. Here, we find the av-
erage for the values we just accumulated (in
lines 940 and 950.) In lines 960 and 970 we take
the points scored for the team times two and add
the points allowed by the other team. Inline 970,
if we are not predicting the Super Bowl game, we
add two to the home team. In line 980 we add
first downs if the two teams are already equal. If
they are not equal, we ignore the first downs. In
line 990 we take the two values for the two teams
and divide them by three and take the integer.
This is to get the scores down to something that
is more in line with actual scores. After this (in
line 1000) if the two scores are still equal, we add
the won/loss record to each team.

CooeWonrks Issue 20
L

’

Lines 1030 to 1090 print the results on the
screen and if the printer was selected earlier, on
the printer as well. Next, we clear the accumu-
lating arrays in preparation to finding the scores
for another set of teams (lines 1120 to 1150.)
Then, we clear the input area on the screen
(lines 1180 to 1210) and loop back (line 1240) for
another pair of teams.

Asyou can see, you can play any team against

any other team with this setup. Of course, it's
water under the bridge, but if your favorite team
didn't make it into the playoff schedule, you can
at least see how they might have done. Don't
forget that to predict the Super Bowl, you should
do a separate run for it, otherwise there will be
no home team advantage for your other games.

There it is. If it does as well this year as it did
in the season just passed, it will please us noend
- and we're sure, you 100.

Predicted Actual
Seahawks 21 20
Oilers 23 23
Vikings 20 44
Saints 31 10 missed
Broncos 22 34
Oilers 20 10
Colts 14 21
Browns 19 38
Redskins 26 21
Bears 17 17
Vikings 14 36
Niners 32 24 missed
Broncos 21 38
Browns 20 33
Redskins 24 17
Vikings 20 10
Redskins 34 42
Broncos 33 10
Here is how Playoff.Bas predicted last
year's post-season games and the Super-
mll:slnsgc:ntl: :):fasesth wh;rte it xrussedd » it was the Vikings upsetting the Saints and the
5 € point spreads are amiss,
Sl ss, but others are close. Anyway, seven out of

Figure 1

16

Issue 20 CooeWoRKS

‘\'e?

oy

4
:

Ul

Playoff.Bas for MS DOS machines. Changes
for other machines follow this listing.

100

110
120
130
140
150

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

REM * PLAYOFF.BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

REM * 98409 (206) 475-2219 VOICE (206) 475-2356 300/1200 MODEM
REM * Projects winners and scores in NFL playoff games
PRINT’ ' Loading STAT.DAT data file ..’’

‘ CLEAR 10000: Use only if your machine needs to clear
string space.

DIM A(448,5),TS(28)

REM * General purpose locate/print@ subroutine

GOTO 260

LOCATE X, Y:RETURN ‘GW-BASIC
‘PRINT@ ((X-1)*64)+(Y-1),;:RETURN ‘Tandy I/III
‘PRINT@ ((X-1), (Y-1)),; :RETURN ‘Tandy IV

‘PRINT CHR$(27)+"Y"+CHR$(31+X)+CHR$(31+Y);:RETURN ‘' CP/M
REM * Set up the team names in data lines
DATA Redskins,Cowboys,Eagles,Giants,Cards,Bears,Vikings
DATA Packers,Lions,Bucs,Niners,Rams,Saints,Falcons
DATA Dolphins,Patriots,Jets,Bills,Colts,Steelers,Browns
DATA Bengals,Oilers,Seahawks,Raiders,Broncos,Chargers,Chiefs
REM ** READ IN THE EXISTING STAT FILE **
WN=448
OPEN S3Y«r 1 2 V" STAT.DAT"
FOR I=1 TO WN

IF EOF (1) THEN 400

FOR J=1 TO 5

INPUT #1,A(I,J)

NEXT J
NEXT I
CLOSE 1
Ll1=I-1
\
REM * READ IN THE TEAM NAMES
FOR I=1 TO 28

READ T$ (I)
NEXT I

CobeWonks Issue 20

"

llIllllIllI-IIIIlIIIIlllllllIllIlllllllllIIlIlllllllllIIIIIIIIIIIIIIIIIIIIIIII

470
480
490
500
510
520
530
540

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780

790
800
810
820
830
840
850
860
870
880
890

A

CLS: ° Clear the screen and home the cursor.

PRINT STRINGS (22,'’='");'’' The CodeWorks ‘‘;STRINGS (23,"'-"")
PRINT'’ NFL P LAY OFF PR OTECT I OUNIS
PRINT’’ Projects results of playoff games and superbowl

PRINT STRINGS$(60,”’"-"")

PRINT ! .
IF L1 MOD 28 <>0 THEN PRINT’’There is extra (or missing) data

in the file’’ ELSE PRINT’’The stat file is currently updated
through week’’;L1/28
PRINT
INPUT’ ‘Are you projecting the Super Bowl game (y/n) '’ ;:XX$
IF XX$=''y’’ OR XX$=''Y’’ THEN SB=1 ELSE SB=0
INPUT’ ‘Do you want hardcopy output too (y/n)’’;PRS
IF PR$=''y’’ OR PR$=''Y’’ THEN PR=1 ELSE PR=0
IF PR=0 THEN 650
LPRINT’ 'NFL Playoff games, real or what if?"’
LPRINT STRINGS (60,45)
LPRINT’’ *°
A}
INPUT’ 'Press ENTER to continue’’ ;XX
CLS
A}
‘ print the teams and their numbers on the screen
FOR I=1 TO 7

FOR J=1 TO 4

TM=TM+1
PRINT TM;T$ (TM),

NEXT J

PRINT
NEXT I
\
‘input playoff teams routine
X=9:Y=1:GOSUB 200:PRINT’’Enter playoff teams by number, 0 to
quitl (d
INPUT' 'Visiting team number’’ ;X1
IF X1=0 THEN IF PR=1 THEN LPRINT CHRS (12)
IF X1=0 THEN END
INPUT’ ' Home team number N

2

‘read the stat file and collect information
FOR I=1 TO WN

IF A(I,1)=X1 THEN IF A(I,4)>A(I,5) THEN B(4)=B(4)+1

IF A(I,1)=X2 THEN IF A(I,4)>A(I,5) THEN C(4)=C(4)+1
IF A(I,2)<13 THEN 910

IF A(I,1)=X1 THEN B(1)=B(1)+A(I,3):B(2)=B(2)+A(I,4):

18

|ssue 20 CopeWoRKS

%

)

e T R T N e e e

B(3)=B(3)+A(I,5)
900 IF A(I,1)=X2 THEN C(1)=C(1)+A(I,3):C(2)=C(2)+A(I,4):
C(3)=C(3)+A(I,5)
910 NEXT I
920 *°
930 ' calculate who is gonna win
940 B(1)=B(1l)/4:B(2)=B(2)/4:B(3)=B(3)/4
950 C(1)=C(1)/4:C(2)=C(2)/4:C(3)=C(3)/4
960 T1=(2*B(2))+C(3)
970 T2=(2*C(2))+B(3):IF SB=0 THEN T2=T2+2
980 IF T1=T2 THEN T1=INT(T1+B(1l)) :T2=INT(T2+C(1))
990 T1=INT(T1/3) :T2=INT(T2/3)
1000 IF T1=T2 THEN T1=T1+B(4) :T2=T2+C(4)
10105
1020 " print the results
1030 PRINT TS (X1),T1
1040 PRINT T$ (X2),T2
1050 IF PR=0 THEN 1090
1060 LPRINT TS (X1),T1
1070 LPRINT TS$ (X2),T2
1080 LPRINT ‘* “©
‘a 1090 INPUT’’press ENTER for next pair or to quit’’;XX
1100 °©
1110 ‘clear the accumulating arrays
1120 FOR I=1 TO 4
1130 B(I)=0
1140 C(I)=0
1150 NEXT I
1160 °
1170 ‘clear the input area
1180 Y=1
1190 FOR X=9 TO 14
1200 GOSUB 200:PRINT STRINGS (60,32)
1210 NEXT X
1220 °
1230 ‘loop back for another pair of teams or quit
1240 GOTO 780
1250 »

1260 END ‘of program

CooeWonks Issue 20 19

=

——

Changes in Playoff.Bas for Tandy
Models I and III

Changed->100 REM * PLAYOFF/BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

Changed->140 PRINT’’Loading STAT/DAT data file .."’

Changed->150 CLEAR 10000: ® Use only if your machine needs to clear string
space.

Changed->200 ‘LOCATE X, Y:RETURN ‘GW-BASIC

Changed—->210 PRINT@ ((X-1)*64)+(Y-1),; :RETURN ‘Tandy I/III

Changed->330 OPEN ‘‘I’’,1,’’STAT/DAT’’

Changed->720 PRINT TM; TS (TM),;

Changed->740 * PRINT

Changes in Playoff.Bas for Tandy
Models II and IV

Changed->100 REM * PLAYOFF/BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

Changed->140 PRINT’’Loading STAT/DAT data file ..’’

Changed->200 ‘LOCATE X, Y:RETURN ‘GW—-BASIC

Changed->220 PRINT@ ((X-1), (Y-1)),; :RETURN ‘Tandy IV

Changed->330 OPEN ‘‘I’"’,1,’’STAT/DAT’’

Notes When we run that code on other machines,

it gives an error, and we had to change where
Where do you check for EOF? We have been ked for EOF t. t th .
o end it works-on ail MS we checked for o correct the problem:

DOS machines using GW BASIC: FORI=1TO5
FORJ=1TO6
FORI=1TO 5 IF EOF(1) then ...
IF EOF(1) THEN... ete.
et:OR J=1TO 6 It seems that MBASIC and BASIC prior to

version 5.0 want it this way.

20

Issue 20 CopeWorks

o ¢

o

Cword.Bas

A Chain-Word Game using States & Capitols

Staff Project. Once a year or so we feature a game program. This one
is supposed to be educational. With it, you can test your knowledge of

states and state capitols.

Previously we had published one or two
games of chance. This time, we thought an
educational game would be in order. The game
is called Cword.Bas (for Chain Word) and
roughly follows the game children like to play
while on extended automobile trips. In that
game, one person picks a name seen on a road
sign, another car or truck, or anything along the
highway. The next person must then find an-
other such sign whose first letter is the same as
the last letter of the first item picked. The game
then progresses until one person finds names
ending in hard to match letters, and stumps the
other person.

Cword.Bas is similar to that just described
except that it allows a match of letters at both
ends of the word. The words, however, are not
just anything, but are the states of the United
States and their capitol cities. This, of course,
gives a total of 100 names from which to pick. It
turns out that there are seven capitol cities
which have no possibility of being chained to
other names. The computer will not pick from
these seven. If you try to pick one of them it will
be rejected as an “easy win” and you will be
asked to pick another.

If we were only dealing with state names, then
the state of Maine would be impossible to match.
But since we are including the capitol cities as
well, Maine can be matched with Salem, the
capital city of Oregon. Some names have only
one possibility of being matched. For example,

Juneau will only match with Utah, since no
other name starts with the letter U or ends with
the letter J. There is only one way to “win” in this
game: you must take the first move and connect
every name the computer picks. Even then, you
only win by one point.

After the chaining of the states and capitols is
over, you get the opportunity to test your knowl-
edge of state capitols. In this portion of the
program you simply try to correctly pick as
many state capitol cities as possible. Be careful
with St. Paul. It must be entered exactly as
shown in the data statements or you will lose the
point. You can, however, enter your names in
upper case, lower case or mixed case; the com-
puter will automatically change all entries into
upper case so as to find the match with the
names in the data statements.

When you tire of states and state capitols, you
might want to try to modify the program to use
Presidents and Vice-Presidents. We haven't
tried it, but it might be an interesting challenge.
If you do that, be sure to look for “impossible to
connect” names and exclude them by putting
them first in the data statements.

The Program

The program starts with the usual Code-
Works heading, followed by the universal
print@/locate subroutine. This is followed by
the upper case converter subroutine. Anything

CooeWorks Issue 20

21

e e

we enter into this program will first be filtered
through the upper case converter so that the
program will see only upper case letters. This is
so that you can enter your responses any way
you like and the program will still find a match
in the data statements.

The initialization section (between lines 320
and 350) follows next. Here, we clear some string
space in line 320 if your BASIC is prior to version
5.0 and randomize the random generator using
parts of DATE$ (in line 330). A double sub-
scripted array is dimensioned next in line 340.
This array, S$, will hold all the names and in the
second subscript of the array, a flag to indicate
whether or not aname has already been chosen.
Line 350 contains a time delay variable, TD. If
your computer runs faster than 4.7 Mhz you
may want to change the value for TD to 3000 or
more. On the other hand, if your speed is slower
you can change TD to 500 or even 300.

The data statements follow, with the state
capitols first and then the state names. The
seven state capitol cities that won't chain are
listed first, so that later we can easily exclude
them. We could have just as well not put them
there at all, but then in the second part of the
program we would have missed them when we
try to match states to their capitol cities.

Lines 570 through 600 read the data state-
ments into the S$(x,x) array. Note that we are
putting a string “1" into the second element of
the array with each name we enter. Later, when
we use a name, we will null that second position
of the array to indicate that that name has
already been picked.

Lines 620 to 780 print the heading on the
screen and give a little identification and in-
struction to the user. Lines 810 to 860 set up the
playing screen with a scoreboard and ask if you
want to go first (if you want to win you should
always go first.)

The computer’s first move is unique in that it
doesn't have to match anything. So, if the
computer gets the first move, lines 890 to 920
make that first pick. In line 890 we pick a name
at random. Note that in line 900 if the random
number picked is seven or less we pick a differ-

ent number. This is where we discriminate
between those first seven capitol cities that
won't chain. If we make it through line 900 we
can assume we have a valid name, and so we
null the second element in the array for the
name picked. This happens in line 910. The
computer is “ME" and “YO" are you. In line 920
the score for ME gets incremented by one, we go
to the subroutine at 1760 to update the scoreon
the screen, then to subroutine 1630 to place the
name picked properly on the screen.

The computer’s moves are relatively simple
compared to the user’'s moves. With the user, we
need to check for all sorts of simple things that
can go wrong. Is the name a valid name? Has the
name been used already? Is the user trying to
cause a cheap win by using one of the un-
chainable names? Is the name valid but won't fit
either end of the name the computer picked? Is
the user crying for help? Checks for all of these
conditions are made between lines 950 and
1190.

The first thing we do between lines 950 and
1190 is position the prompt on the screen to tell
the user it's his turn. The response is held in A$.
Next, in line 960, we clear the area where the
user entered his response (to show that it was at
least conditionally accepted). Then we go to the
subroutine at 240 to change A$ into all upper
case letters. Next, in line 980 we check to see if
the user asked for help. If he did, we go to line
1260 and let the computer pick for him and then
let the computer take the next turn.

Next, we check to see (in lines 990 to 1010) if
the name entered is actually a valid name in the
B$(x,x) array. If not, we ask the user to try again.
After that, at line 1050 we check for the “cheap
win” shot and ask the user to try again if it is.
Then we go through the array checking to see
that the name picked has not yet been used
(lines 1060-1090). If it has been used we ask the
user to try another name.

If you got the first move then the score was
zero to zero, and your entry doesn't have to
match anything (but it still has to be a valid
name), so line 1120 takes care of that case and
simply prints your choice on the screen and

22

Issue 20 CopeWonxs

(A

—

updates the scoreboard and gives the next move
to the computer. Ifit is not the first move and the
user has picked a valid name we check right
strings against left strings on the name picked
and the name on the screen (lines 1130-1160)
and if there is a match we give the next move to
the computer (lines 1150-1160) and update the
user score. If there is no match (line 1170) we tell
the user to try again. The score (when there isa
match) is actually updated in lines 1210, just
before we give the next pick to the computer. At
the same time, in line 1210, we null the second
element in the B$ array to show that the name
has been used.

The computer's moves are similar but sim-
pler. They happen in lines 1260 through 1350.
The computer simply goes through the B$ array,
looking for a name that has not yet been used
and that matches either end of the user’s pick.
If it finds one, it puts it up on the screen and if
there are no names left that will match it ends
the game.

The second part of the program is where you
match state capitols to states. If you don’t want
to play this part and answer no to the play
question, the program ends in line 1400. Other-
wise, if you do want to try your luck, line 1410
clears the screen and line 1420 puts up a screen
heading. Since all the states and their capitol
cities are still in the B$(x,x) array, all we have to
do is go through the array and show that none
of them have been used yet. We do this in lines

Cword.Bas listing for MS DOS

100 REM
110 REM
120 REM
130 REM
140 °

* % ¥ ¥

1450 to 1470, where we set the second element
of the array to a string “1".

Next, the computer picks states at random,
from array position 51 through 100. If the name
has already been picked, it makes another se-
lection. When it finds an unused state name, it
puts it on the screen and nulls the array position
so that that name will not be used again. Then
checks to see if your answer was correct. Ifitwas
your score is incremented by one and it goes on
to the next state. Ifit wasn't, it tells you what the
correct answer is and goes on to the next state.
When all the states have been used up, line 1590
prints out how many of the 50 you got right.
Notice that the order of the data statements is
such that the first capitol city will match with
the first state, and so on. This way, when we pick
K between 51 and 100, then array location
B$(K-50,1) will be the corresponding capitol

city.

Lines 1620 through 1780 are prompt posi-
tioning subroutines for the various prompts
used in both parts of the program. Note that
some of them first clear the position and then
print there, while others simply print over what
was already at that location on the screen.

It's not enough to know the capitol city of a
given state. You must also know how to spell it
correctly. That holds for the states as well. Have
fun with it.

Cword.Bas * a state and state capitol game *

CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
(206) 475-2219 voice (206) 475-2356 300/1200 modem
(c)1988 80-NW Publishing Inc. & placed in public domain.

150 ‘Generalized Locate/Print@ subroutine. Unremark as needed.

160 GOTO 310

170 LOCATE X,Y:RETURN ‘' MS-DOS,

GW-BASIC

CobeWonks Issue 20

Lo R R S A R s T o

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

‘PRINT@((X—I)*64)+(Y-1),;:RETURN ' Tandy Models TALDX
‘PRINT@ ((X-1), (Y-1)),; :RETURN * Tandy Models II/IV

‘PRINT@ (X, Y),; :RETURN * Some MBASIC machines.

‘PRINT CHR$(27)+"Y"+CHR$(31+X)+CHR$(31+Y);:RETURN ‘' CP/M

Al

‘upper case converter subroutine
FOR I=1 TO LEN(AS)
C$=MIDS$ (AS,I,1)
IF C$=>’'a’’ AND C$=<‘‘z'’ THEN C$=CHR$(ASC(C$)—32)
MIDS$ (A$,I,1)=C$
NEXT I
RETURN
A
‘\ Initialization
‘CLEAR 2000 ‘only if you need to clear string space
RN=VAL(MID$(TIME$,4,2)+MID$(TIME$,7,2)):RANDOMIZE RN
DIM S$(100,2)
TD=1000 * time delay variable

Al

DATA PHOENIX,BATON ROUGE,JEFFERSON CITY,CARSON CITY,PROVIDENCE
DATA PIERRE,CHEYENNE,MONTGOMERY,JUNEAU,LITTLE ROCK, SACRAMENTO
DATA DENVER,HARTFORD,DOVER,TALLAHASSEE,ATLANTA,HONOLULU,BOISE
DATA SPRINGFIELD, INDIANAPOLIS,DES MOINES, TOPEKA, FRANKFORT
DATA AUGUSTA,ANNAPOLIS,BOSTON,LANSING,ST. PAUL, JACKSON, HELENA
DATA LINCOLN,CONCORD, TRENTON, SANTA FE,ALBANY, RALEIGH, BISMARCK
DATA COLUMBUS, OKLAHOMA CITY, SALEM, HARRISBURG, COLUMBIA

DATA NASHVILLE,AUSTIN,SALT LAKE CITY,MONTPELIER, RICHMOND

DATA OLYMPIA,CHARLESTON,MADISON

DATA ARIZONA,LOUISIANA,MISSOURI,NEVADA,RHODE ISLAND, SOUTH

DAKOTA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A

WYOMING,ALABAMA,ALASKA,ARKANSAS,CALIFORNIA,COLORADO
CONNECTICUT,DELAWARE,FLORIDA,GEORGIA,HAWAII,IDAHO
ILLINOIS,INDIANA,IOWA,KANSAS,KENTUCKY,MAINE,MARYLAND
MASSACHUSETTS,MICHIGAN,MINNESOTA,MISSISSIPPI,MONTANA
NEBRASKA,NEW HAMPSHIRE,NEW JERSEY,NEW MEXICO,NEW YORK
NORTH CAROLINA,NORTH DAKOTA,OHIO,OKLAHOMA, OREGON
PENNSYLVANIA, SOUTH CAROLINA, TENNESSEE, TEXAS, UTAH, VERMONT
VIRGINIA, WASHINGTON, WEST VIRGINIA,WISCONSIN

‘read in all the data
FOR I=1 TO 10C
READ S$(I,1)
S$(1,2)=""1"
NEXT I

Al

CLS

X

llIIIlllIll-llllllIIlIIIIIIllIIIIIlIIlIIIIIIIIIIIllIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIII

630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020

1030
1040
1050

1060

PRINT STRINGS (23,45);’’ The CodeWorks ‘‘;STRINGS (22,45)

PRINT' '’ CHAIN WORD PROGRAM
PRINT’’ a word game with states and state capitols
PRINT STRINGS (60,45)

PRINT

PRINT’’ In this game you must enter a state or capitol city
PRINT’ that starts with the last letter of the one already
PRINT’ ‘picked or ends with the first letter of the word already
PRINT’ ‘picked. Seven capitol cities cannot be matched and will
PRINT’ ‘be rejected as easy wins. You can only win if you start
PRINT’ ‘and pick every name correctly. If you ask for help the
PRINT’ ' computer gets the point.
PRINT’’ As an example, if the computer picks OLYMPIA, you
PRINT’’can answer with either IDAHO or ALBANY.
PRINT

INPUT’ 'Press enter to start’’;X

‘set up the screen
CLS
X=2:Y=26:GOSUB 170:PRINT'C HA I N- WO R D'’
X=3:Y=31:GOSUB 170:PRINT’’Scoreboard’’
X=4:Y=28:GOSUB 170:PRINT ‘‘Me You’’
GOSUB 1670:INPUT’ ‘Do you want to go first (y/mn) ‘‘;ANS

IF ANS='’y’’ OR ANS=''Y’’" THEN 950

‘if the computer gets the first move
R=INT (RND (1) *100) +1
B$=SS$ (R,1) : IF R=<7 THEN 890
SS(R’2)=IIII
ME=ME+1:GOSUB 1760:Q$=B$:GOSUB 1630:PRINT Q$

\

‘vour moves, including your first move
GOSUB 1670:INPUT’’Pick a state or capitol city (or help) '’ ;A$
X=8:Y=1:GOSUB 170:PRINT STRINGS (15,32)
GOSUB 240 ‘' to make all caps

IF A$=’'HELP’’ THEN GOTO 1260
FOR I=1 TO 100
IF A$=S$(I,1) THEN 1050

NEXT I

GOSUB 1720:PRINT’’That is not a valid state or capitol name.
Try again.’’

FOR T=1 TO TD:NEXT T

GOTO 950

IF I=<7 THEN GOSUB 1720:PRINT’’That’s a cheap win...try
another please.’’:GOTO 1030

FOR I=1 TO 100

CopeWorks Issue 20 25

.-I-I-IIIII-III-l-IIllIIIIlllIlIllIIIlIlllIlIIIIII-IIIIIIIIIIIIIII-....

1070 IF A$=S$(I,1) AND S$(I,2)='’1" THEN 1120

1080 NEXT 1

1090 GOSUB 1720:PRINT’’That name has already been used. Try
another.’’

1100 FOR T=1 TO TD:NEXT T

1110 GOTO 950

1120 IF ME=0 AND YO=0 THEN S$(I,2)="""':GOSUB 1630:Q5=AS:PRINT QS:
YO=YO+1:GOSUB 1760:GOTO 1260

1130 R$=RIGHTS (Q$,1)

1140 LS=LEFT$(Q$,1)

1150 IF RIGHTS (A$,1)=L$ THEN 1210

1160 IF LEFTS (A$,1)=R$ THEN 1210

1170 GOSUB 1720:PRINT’’That name does not fit either end. Try
again.’’

1180 FOR T=1 TO TD:NEXT T

1190 GOTO 950

1200 *©

1210 S$(I,2)="""":YO=YO+1

1220 GOSUB 1630

1230 Q$=AS$:PRINT QS

1240 *©

1250 ‘the computer picks here

1260 FOR T=1 TO TD:NEXT T ° delay loop

1270 X=8:Y=5:GOSUB 170:PRINT ‘‘I picks s

1280 R$=RIGHTS (Q$, 1)

1290 L$=LEFTS$ (Q$,1)

1300 FOR I=1 TO 100

1310 IF S$(I,2)="""" THEN 1330

1320 IF LEFT$(S$(I,1),1)=R$ OR RIGHTS (S$(I,1),1)=L$ THEN ME=ME+1 ;:

GOSUB 1760:Q$=S$(I,1):S$(I,2)="”:GOSUB 1630:PRINT Q$:GOTO
950

1330 NEXT I

1340 GOSUB 1670:PRINT’’You got me. There is nothing left that will
match.’’

1350 PRINT

1360 *

1370 * part 2, test your knowledge of capitols

1380 PRINT’’Would you like to check your knowledge of

1390 INPUT’’state capitols (y/n)’’;A$

1400 IF A$="'n’’ OR A$=''N’’ THEN END

1410 CLsS

1420 X=8:Y=1:GOSUB 170:PRINT’ "What is the state capitol of:

1430

1440 ‘reset the array flag in S$(x,2)

1450 FOR I=1 TO 100

1460 S$(I1,2)=""1"

26 Issue 20 CopeWonxs

‘1.1',7'

1470 NEXT I
1480 ¢
1490 ‘pick states at random
1500 K=INT(RND(1)*50)+51
1510 IF S$(K,2)=""’" THEN 1500
1520 CT=CT+1:S$ (K, 2)=""""
1530 GOSUB 1670:PRINT S$(K,1),:INPUT AS$
1540 GOSUB 230:IF A$=S$(K-50,1) THEN SC=SC+1:GOTO 1560
1550 PRINT TAB(30);’’No, it’s ‘‘;S$(K-50,1)
1560 FOR T=1 TO TD:NEXT T
1570 IF CT<50 THEN 1500
1580 PRINT
1590 PRINT’’Your score is ‘‘;SC;’’ out of 50.’7
1600 END
1610 *
1620 ‘prompt locating subroutines
1630 X=8:Y=32:GOSUB 170:PRINT STRINGS (15,32)
1640 X=8:Y=32:GOSUB 170
1650 RETURN
1660 °
1670 X=10:Y=1:GOSUB 170:PRINT STRINGS (63,32)
' 1680 X=11:Y=1:GOSUB 170:PRINT STRINGS (63,32)
1690 X=10:Y=1:GOSUB 170
1700 RETURN
70
1720 X=11:Y=1:GOSUB 170:PRINT STRINGS (63,32)
1730 X=11:Y=1:GOSUB 170
1740 RETURN
1780
1760 X=5:Y=27:GOSUB 170:PRINT ME
1770 X=5:Y=39:GOSUB 170:PRINT YO
1780 RETURN

Cword.Bas changes for Tandy I/III

Changed->100 REM * Cword/Bas * a state and state capitol game *
Changed->140 CLEAR 2000

Changed->170 ‘LOCATE X,Y:RETURN ‘ MS-DOS, GW-BASIC

Changed->180 PRINT@ ((X-1)*64)+(Y-1),;:RETURN ‘' Tandy Models I/III
Changed->330 ‘RN=VAL (MID$ (TIMES, 4, 2)+MID$ (TIMES,7,2)) :RANDOMIZE RN
Changed->350 TD=400 ‘ time delay variable

Changed->890 R=RND (50)+50

Changed->1500 K=RND (50)+50

CobeWonrks Issue 20

27

IlIIlIlIlIlII-IIIIIIIIlIlIlIlIllIlIlIlIIIIllll-llIII-I-IIIIIII-IIIII....

Cword.Bas changes for Tandy II/IV

Changed->100 REM * Cword/Bas * a state and state capitol game *
Changed->170 ‘LOCATE X,Y:RETURN °‘ MS-DOS, GW-BASIC

Changed->190 PRINT@((X-I),(Y—l)),;:RETURN ' Tandy Models II/IV
Changed->330 ‘RN=VAL(MID$(TIME$,4,2)+MID$(TIME$,7,2)):RANDOMIZE RN
Changed->350 TD=400 * time delay variable

Changed->890 R=RND (50)+50

Changed->1500 K=RND (50)+50

Randemo Recap

It's that time of year again to review the Randemo series and bring up
to date all the changes for the various machines. We'll start by giving the q
entire listing for Ranprnt2.Bas (last issue we only gave the merge, due to d
lack of space).

10 REM - RANPRINT.BAS - GW BASIC Random File Printing
20 REM -- Terry R. Dettmann for Codeworks Magazine

30 DIM FP$(20), SC$ (24), XY (20,3), TOT#(20)

40 DEF FNCTRS(X$)=STRING$((CL—LEN(X$))/2," YY) +XS$

41 DEF FNLF (X) = LOF(X)/128

42 DEF FNLX(X) = LOF (X) /2

50 CL=80:RW=24

51 NX=0

60 FALSE=0:TRUE = NOT FALSE

70 TS$=""""’

100 REM -- file setup

110 CLS:PRINT FNCTRS (‘ *‘RANDOM FILE REPORTS’’) :PRINT:PRINT
120 LINE INPUT’’FILENAME: VY2 FF$

125 FD$=FF$+'’ .dat’’ :FS$=FF$+’’ .stk’’

130 OPEN "R”,l,FDS:OPEN"R",Z,FS$,4:FIELD 2, 4 AS SK$
135 IF LOF(2)=0 THEN LSET SK$=MKI$ (1) : PUT 2,1

140 FM$=FF$+".MAP":FX$=FF$+”.SCN”

150 GOSUB 5000: REM Read Map

170 GOSUB 5300: REM Setup Fielding

180 GOSUB 2000

185 IDX = FALSE

28 Issue 20 CopeWonrks

T e L S

190 LINE INPUT’’INDEX NAME (or NONE): ‘‘;FF$:IF FF$='"’’ OR FF$=''NONE’ "’
THEN 200

191 FIS=FF$+’’ .IDX’’

192 OPEN’’R’’,3,FI$,2:FIELD 3,2 AS IX$

193 IDX = TRUE

200 REM -- main menu

210 CLS:PRINT FNCTRS (‘‘RANDOM FILE REPORTS’’) :PRINT:PRINT

220 IF IDX THEN MR=FNLX(3) ELSE MR=FNLF (1)

230 FOR RX=1 TO MR:IF IDX THEN GET#3,RX:RN=CVI(IX$) ELSE RN=RX

240 GOSUB 1400

250 IF INSTR(FPS$(1),’’DELETED’’)<>0 THEN 270

260 GOSUB 2120

270 NEXT RX

275 GOSUB 4100

280 IF LC>0 THEN GOSUB 2670

500 REM -- End of Program
510 CLS:PRINT’‘All Done’’ :CLOSE:END
600 REM -- input a character

610 CS=INKEYS$:IF C$=’'’’’ THEN 610
615 IF LEN(C$)>1 THEN GOSUB 700
620 RETURN
. 700 REM -- look for arrows
710 C = ASC(MIDS$(CS$,2,1))
720 IF C=72 THEN C$=UP$ ELSE IF C=77 THEN C$=RT$
730 IF C=80 THEN C$=DN$ ELSE IF C=75 THEN C$=LF$
740 RETURN
800 REM -- GOTO XY ROUTINE
810 LOCATE X, Y:RETURN
900 REM -- break line
910 FOR K=1 TO 10:BL$ (K)="''':NEXT K
920 JN$=INS$:2B=1
930 K = INSTR(JNS,’’:’’):IF K=0 THEN BL$ (ZB)=JNS$:RETURN
940 BL$ (ZB) = MIDS$ (JN$,1,K-1)
950 ZB = ZB + 1
960 JN$ = MIDS$ (JN$,K+1)
970 GOTO 930
1400 REM -- get record from data base
1410 IF RN<1 OR RN>FNLF (1) THEN RETURN
1420 GET 1,RN
1430 RETURN
2000 REM -- Initialize Report
2010 HDR=TRUE:FTR=FALSE
' 2020 V=200:NF=8:ML=10
2030 PG=66:WD=80:TP=3:BT=3
2040 NT=0:NB=0:NC=0
2050 PN=0:SF=-1:SC$=""""

CopeWorks Issue 20 29

B

I--IlIIIIIIlIIllllllIIIIIIlI-IlI..-IIIIIIIIII-Il---I-I-II-IIIII...

2060 DIM HD$ (ML) ,RCS$ (ML),FT$ (ML) "
2070 IF DATES$='’’’ THEN INPUT’’Enter the date of the report’’;DATES
2080 PRINT

2090 LINE INPUT ‘°‘NAME OF REPORT FORMAT FILE: ‘‘;RFS$
2100 GOSUB 2780

2110 RETURN

2120 REM -- main loop

2130 IF HDR THEN GOSUB 2190

2140 GOSUB 2450:GOSUB 4000

2150 IF FTR THEN GOSUB 2670

2160 RETURN

2170 REM —---

2180 ©

2190 REM -- print header

2200 FOR I=1 TO TP:LPRINT’’ ‘‘:NEXT I

2210 PN=PN+1

2220 FOR I=0 TO NT-1

2230 LN$=HDS$ (I)

2240 GOSUB 2310

2250 GOSUB 2400

2260 LPRINT LN$

2270 NEXT I) "
2280 HDR=FALSE:LC=NT+TP
L 2290 RETURN
2300
2310 REM -- insert into header/footer lines

2320 IF INSTR(LNS,”’4#’’)<>0 AND LEN (LN$) <WD THEN LN$S=LN$+STRINGS (WD-
LEN(LNS),"" V)

2330 IF INSTR(LNS,’’#’’)=0 THEN RETURN

2340 X = INSTR(LNS,"’%#'’)

2350 IF MIDS (LN$,X+1,1)='’D’’ THEN MIDS (LN$, X) =DATES

2360 IF MIDS$ (LN$,X+1,1)=’'’P’*’ THEN MID$(LN$,X)=STR$(PN)

2370 IF MIDS (LN$,X+1,1)='’F’’ THEN MIDS (LN$S, X) =FF$

2380 GOTO 2330

2390 *

| 2400 REM -- strip off trailing blanks

2410 LN=LEN(LNS$):IF LN=0 THEN 2430

2420 1IF MIDS (LN$,LN,1)=’’ ‘' THEN LN$=MID$ (LN$, 1, LN-1) : GOTO 2410

2430 RETURN

2440

2450 REM -- print data record

2460 FOR I=0 TO NC-1

2470 LN$=RCS$ (I)

2480 GOSUB 2560

2490 GOSUB 2400

2500 LPRINT LNS$

30 Issue 20 CooeWonks

-

2510
2520
2530
2540
2550
2560
2570
2580

2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
. 2700

2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
. 2920

2930
2940

2950
L

LC=LC+1
NEXT I
IF LC+NC+BT+NB>=PG THEN FTR=TRUE
RETURN
REM -- put together a data line
FS$=LN$
IF INSTR(LNS,’’#’7)<>0 AND LEN(LN$)<WD THEN LN$=LNS$+STRINGS (WD—
LEN(LNS),"" %)
IF INSTR(LNS,’’#’’)=0 THEN RETURN
X = INSTR(LNS,’"#’'')
Y = VAL (MIDS (LN$,X+1))
MIDS (LN$,X) = FPS(Y)+"’ S
IF X>1 THEN MIDS$ (LN$,X-1)="" !
MIDS (FS$,X)="" “°
GOTO 2590
A}
REM -- print footer
FOR I=LC TO PG-BT-NB:LPRINT’’ ‘‘:NEXT I
FOR I=0 TO NB-1
LN$=FTS$ (I)
GOSUB 2310
GOSUB 2400
LPRINT LN$
NEXT I
FOR I=1 TO BT:LPRINT’’ ‘‘:NEXT I
HDR=TRUE : FTR=FALSE : LC=0: RETURN
REM -- load print file
RF$=RF$+’’ .PRT"’
PRINT ‘‘Loading Report Format File ‘‘;RFS$
OPEN ‘‘I’’,3,RF$
IF EOF (3) THEN 2870
LINE INPUT#3,LNS
GOSUB 2900
GOTO 2820
\
REM -- declare data area
CLOSE#3:RETURN
A
REM -- decode the line
REM DEBUG: PRINT LN$
IF LEFTS$ (LN$,1)="'D’’ THEN GOSUB 2990 : RETURN
IF LEFTS$ (LN$,1)=''H’’ THEN GOSUB 3080 :RETURN
IF LEFTS$ (LN$,1)=''R’’ THEN GOSUB 3120 :RETURN
IF LEFTS$ (LN$,1)=''F’’ THEN GOSUB 3160 : RETURN

CooeWonrks Issue 20

31

e S e o

2960
2965
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3300
3310
3320
3330
4000
4010
4020
4100
4105
4110
4120

4130

IF LEFTS$(LN$,1)='’S’’ THEN GOSUB 3200:RETURN
IF LEFTS$ (LN$,1)="'T’’ THEN GOSUB 3300:RETURN

RETURN

\

REM -- declare report parameters

IF MIDS (LN$,2,5)=""LINES’’ THEN NF=VAL(MIDS (LN$,8)) :GOTO 3050

IF MIDS$ (LNS$,2,4)="'PAGE’’ THEN PG=VAL (MIDS$ (LN$,7)) :GOTO 3050
IF MIDS$ (LN$,2,5)=''WIDTH’’ THEN WD=VAL(MIDS$ (LN$,8)) :GOTO 3050
IF MIDS (LNS,2,3)='"TOP’’ THEN TP=VAL (MIDS$ (LNS,6)) :GOTO 3050
IF MIDS (LN$,2,6)='"BOTTOM’’ THEN BT=VAL (MIDS$ (LN$,9)) :GOTO 3050
REM DEBUG: PRINT NF,PG,WD,TP,BT

RETURN

REM -- header line

HD$ (NT)=MID$ (LN$, 2) : NT=NT+1

RETURN

REM -- record line

RCS$ (NC)=MIDS$ (LN$, 2) : NC=NC+1

RETURN

REM -- footer line

FT$ (NB)=MIDS (LNS, 2) : NB=NB+1

RETURN

REM -- selection criteria

SF=VAL (MIDS (LN$, 2))

X = INSTR(LNS,’’'="")

IF X=0 THEN SF=-1:RETURN

SC$=MIDS (LNS$, X+1)

RETURN

REM -- Total Fields

TS$ = LN$

FOR ZI=0 TO 20:TOT#(2I)=0:NEXT 2I

RETURN

REM -- Add to field totals

FOR ZI=0 TO 20:TOT#(2I) = TOT#(2I) + VAL (FP$ (2I)) :NEXT 2I
RETURN

REM -- Print field totals

IF TS$=''’’ THEN RETURN ELSE LN$=TS$

FS$=LN$

IF INSTR(LNS,’’#’’)<>0 AND LEN(LN$)<WD THEN LN$=LN$+STRINGS (WD-
LEN(LNS$),"’ ‘Y)

IF INSTR(LNS,’’#’’)=0 THEN 4195

v);\;“
v g |

4140 X = INSTR(LNS,’"#’’)
4150 Y = VAL (MIDS (LNS$,X+1))
32 Issue 20 CooeWorks

R

4160 MIDS (LN$,X) = MIDS (STRS (TOT#(Y)),2)+'"
4170 IF X>1 THEN MIDS$ (LN$,X-1)="" !

4180 MID$ (FS$,X)="" !

4190 GOTO 4130

4195 PRINT LN$:LC = LC + 1:RETURN

5000 REM -- read data map

5001 CX = 0

5005 OPEN’'I’’,3,FM$

5010 IF EOF (3) THEN 5035

5015 LINE INPUT#3,INS

5020 GOSUB 900

5025 GOSUB 5100

5030 GOTO 5010

5035 CLOSE#3

5040 RETURN

5100 REM -- decode map line

5110 IF BL$(1)=''FIELD’’ THEN GOSUB 5200:RETURN
5120 RETURN

5200 REM -- define a field

5210 NF = VAL(BLS$(2)):FL = VAL(BLS$(4)) :FP = VAL (BL$(5))
' 5220 XY (NF,0)=FL:XY (NF,3)=FP

5225 CX = CX + 1

5230 RETURN

5300 REM -- Map Fields

5310 FOR I=1 TO CX

5320 NL = XY(I,3)

5330 FIELD #1, NL-1 AS X$,XY(I,0) AS FP$(I)
5340 NEXT I

5350 RETURN

Ranprnt2.Bas changes for Tandy I/II0

Changed->30 DIM FP$(20), SC$(16), XY(20,3), TI#(20)
Changed->41 DEF FNLF (X) = LOF (X)
Changed->50 CL=64:RW=16
Changed->125 FD$=FF$+’’/dat’’ :FS$=FF$+’’/stk’’
Changed->140 FM$=FF$+’’/MAP’’ :FX$=FF$+’’/SCN"’
Changed->191 FI$=FF$+’’/IDX’’
Changed->810 PRINT@ ((X-1)*64)+(Y-1),; :RETURN
' Changed->2790 RF$=RF$+’’/PRT’’

Changed->3320 FOR 2ZI=0 TO 20:TI#(ZI)=0:NEXT ZI

Changed->4160 MIDS (LN$,X) = MID$ (STR$ (TI#(Y)),2)+"’

Changed->4010 FOR ZI=0 TO 20:TI#(2I) = TI#(2I) + VAL(FP$(ZI)):NEXT ZI

AR}

CooeWorks Issue 20

33

Ranprnt2.Bas changes for Tandy II/IV

Changed->10 REM - RANPRINT/BAS - GW BASIC Random File Printing
Changed->41 DEF FNLF (X) = LOF (X)

Changed->125 FD$=FF$+’’ /dat’’ :FS$=FF$+''/stk’’

Changed->140 FM$=FF$+’’ /MAP’’ :FX$=FF$+’’/SCN’"

Changed->191 FI$=FF$+’'’/IDX’’

Changed->2790 RF$=RF$+’’/PRT’’

Next, we'll give the changes for Randemo7.Bas. These changes apply to
the original listing in Issue 14 (Randemo5.Bas) and the merge files in
Issue 15 that made Randemo7.Bas from Randemo5.

Changes to Randemo7.Bas for
Tandy Models I/III

Added-->15 CLEAR 2000

Changed->30 DIM FP$(20), SC$(16), XY(20,3)

Changed->41 DEF FNLF (X) = LOF (X)

Changed->50 WD=64:LN=16

Changed->52 UP$=CHR$(91):DN$=CHR$(10):RT$=CHR$(9):LF$=CHR$(8)
Changed->125 FD$=FF$+’’/dat’’ :FSS$S=FF$+’’ /stk’’

Changed->130 OPEN "R",1,FD$:OPEN"R",2,FS$,4:FIELD 2, 4 AS SK$
Changed->140 FMS$S=FF$+’’ /MAP’’ :FX$=FF$+’’ /SCN’ "’

Changed->810 PRINT@ ((X-1) *64)+(Y-1),; : RETURN

Changed->1070 IF MR THEN 1010

Changed->1730 GOSUB 1800:IF DUN THEN RETURN

Changed->1810 INS=''"’ :DUN=FALSE : MR=FALSE : CF=FALSE

Changed->1831 IF C$=CM$ THEN DUN=TRUE :MR=FALSE:GOTO 1880
Changed->1835 IF C$=NX$ THEN DUN=TRUE : MR=TRUE : GOTO 1880
Changed->2050 IF MR AND MIDS$ (SF$,1,1)<>’’4#’’ THEN FR=RN+1:GOTO 2030
Changed->3050 IF MR AND MID$(SF$,1,1)<>’’#’’ THEN FR=RN+1:GOTO 3030
Changed->3250 X=16:Y=1:GOSUB 800

Note: For Tandy Model III only. When you enter BASIC and are asked the "How many files?"
question, be sure to answer with 3V (for 3 variable length files) or you will get a Bad File Mode
error when you run Randemo7.Bas. Yes, we know that the program creates more than three files,
but there are never more than three open at any one time. Also (this applies to all machines) do
not use the number sign (#) in your data input, as in an apartment number on an address. If
you do it will cause loads of trouble when you try to print the file with either Ranprint.Bas or

Ranpmt2.Bas.

)i

34 Issue 20 CooeWonrks

_)

:

Changes to Randemo7.Bas for
Tandy Models II and IV

Changed->10 REM —-- RANDEMO7/BAS - Random Files with Screen Control
Changed->41 DEF FNLF (X) = LOF (X)

Changed->52 UP$=CHRS$ (11) :DN$=CHR$ (10) :RT$=CHRS$ (9) : LF$=CHRS (8)
Changed->125 FD$=FF$+’’/dat’’ :FS$=FF$+'’/stk’’

Changed->130 OPEN ‘‘R’’,1,FD$:0PEN’’R’’,2,FS$,4:FIELD 2, 4 AS SK$
Changed->140 FM$=FF$+’’/MAP’’ :FX$=FF$+’'’/SCN"’

Changed->810 PRINT@ ((X-1), (Y-1)),:;:RETURN

The next set of changes apply to Tandy Models II and IV, and are to be
applied to Ranidx.Bas from Issue 18. Ranidx.Bas uses the "System" or
"Shell" commands, for which we have found no counterpart for Models 1/
I1I nor for some other machines. They should use Ranindex.Bas, changes
for which will come later in this article.

Changes to Ranidx.Bas for Models II/IV

Changed->41 DEF FNLF (X) = LOF (X)

Changed->125 FD$=FF$+’’/dat’’ :FS$=FF$+'’/stk’’

Changed->140 FM$=FF$+’’/MAP’' :FX$=FF$+’’/SCN"’

Changed->215 LINE INPUT’’Name of the index: ‘‘;FI$:FIS=FI$+’’/idx"’
Changed->560 ‘SAVE ‘‘ranidx/bas’’.

Changed->810 PRINT@ ((X-1), (Y-1)),;:RETURN

Changed->3210 FT$=’’SRT’’+MIDS (STR$ (TF),2)+'"/TMP"’
Changed->4410 FX$ = ‘‘TMP’’+MIDS$ (STR$ (N),2)+’ ' /XXX"’
Changed->4580 KILL FT$

Changed->4620 SYSTEM ‘‘RENAME ‘‘+FX$+’’ ‘'+//TO’’+'’ “'“+FT$
Changed->4810 KILL FT$

The next changes are for Tandy Models I and III and are to be applied to
the original listing for Ranindex.Bas in Issue 13. These users, as well as a
few others, will need to use this program instead of Ranidx.Bas because
of the inability to leave BASIC, perform a system command and return to
BASIC.

CobeWorks Issue 20

I e L R e
)

Changes to Ranindex.Bas for Models I/III

Changed->10 REM -- RANINDEX.BAS - Random File Indexing

Added-->15 CLEAR 1000

Changed->30 DIM FP$(20), SC$(16), XY (20,3)

Changed->41 DEF FNLF (X) = LOF (X)

Changed->50 WD=64:LN=16

Changed->125 FD$=FF$+’’ /DAT’’ :FS$=FF$+'’ /STK’ "’

Changed->140 FM$=FF$+’’ /MAP’’ :FX$=FF$+’’ /SCN"’

Changed->215 LINE INPUT’’Name of the index: ‘‘;FIS$:FIS$=FI$+’’/IDX’’
Changed->231 INPUT'’’Select on what field (0 for none)’’;SX
Changed->233 IF SX<1 OR SX>CX THEN PRINT’’NO SUCH FIELD’’:GOTO 231
Changed->234 LINE INPUT’’SELECT CRITERIA: ‘‘;SX$

Changed—->255 IF SX>0 THEN IF INSTR(FPS$ (SX),SX$)=0 THEN 270
Changed->810 PRINT@ ((X-1)*64)+(Y-1),; :RETURN

All these changes were checked out when we prepared our yearly disk-
ettes for the 3rd year. It saddens us not to be able to give more specific
details for CP/M machines and the PC Jr. We just don't have those ma-
chines to play with.

We have been running various files using the Randemo series programs
on a PC. In general, they have worked well. The speed of the programs is
more than acceptable, but we did compile them and realized a great im-

provement in speed. We noted several points while running the programs:

Never use a number sign (#) in your datal! It will cause grief when you
print because the number sign is used for a delimiter. Also, be very care-
ful when you create your .PRT files. Count spaces! Each field must have
one more space than the field length. We did have problems printing
across 132 spaces with Ranprnt2.Bas until we included a statement in
that program to set the width of Iprint to 132. Making a .PRT file to print
across 132 characters is a bit tricky too, but again, you must count
spaces.

The programs could use a little "user” streamlining, and possibly a bet-
ter name, now that we are past the "demo" stage. Some of the prompts,

especially in indexing and printing should be reworded to avoid confu-
sion. Look for more in upcoming issues.

36

B

Issue 20 CooeWoRKS

4

Split.Bas

Breaking up Cwindex.Dat

Staff mini-project. When we ran into this little problem on the Model
111 and IV disks for this year we had to come up with a way to fix it. Here

it is.

So Cwindex.Dat has been growing slowly over
the months, and all of a sudden you try to load
it with Qkey.Bas to look up something and lo
and behold, you get an “out of memory™ error!
What to do?

The first thing you think of is to eliminate all
those help statements in Qkey.Bas, since you
probably know them all by heart now anyway.
But that's not going to solve the long-range
problem, is it?

How about a program to partition the file into
smaller files? Nothing elaborate, just something
to break that big file up into two, smaller files.
You may just have found this problem if you got
our disk for year 3. It has the whole 21K of
Cwindex.Dat on it. When we tried to load it with
Qkey.Bas (from Issue 10) we ran into the mem-
ory problem with the Models Ill and IV. Well, not
to worry, here’s a fix.

First off, you must enter BASIC with at least
three files specified, so tell it 3 when it asks for
how many files. Some computers default to
three anyway, so it may not matter for them.

The next question is where to break the file?
We arbitrarily decided to put all issues up to and
including Issue 13, into one file and the rest in
another. There were about 388 records in
Cwindex.Dat, and that would give the second
file some space to grow for a while. The question
after that was how would we know if a line
contained an issue number that was higher
than 13? Well, we could just INSTR to the

number, couldn't we? Not really, there might be
other numbers in the record that would throw
us off. No, we would have to look specifically for
“Issue 13" and that would do it. But, what if we
were not consistent and sometimes used a
capital I and sometimes a lower-case i? To get
around that, we look for “ssue” and add four to
it. That puts our INSTR search right after the
word “issue.”

But we're getting ahead of ourselves. Let's
take the little program and break it down to see
what and how it does. First, we open the three
files that we will need. Line 120 opens buffer 2,
through which we will channel data into the file
Index1.dat. Line 130 opens buffer 3 to channel
data into the file Index2.dat. We have to get our
data from the file, so line 140 opens Cwindex.dat
through buffer 1 for input. Note the other two
files are opened for output.

Now all we need to do is loop through
Cwindex.dat and read in one record (line) at a
time and examine it. That's what our loop in line
150 does. We set the loop count to more than the
number of records in Cwindex.Dat so that we
will get them all. In line 160, we check for end of
file (EOF) in buffer 1 so that when we get to the
end of the file we know we are done and can quit.
Now we line input (not just input, or it would
stop at the first comma in the record!) from the
Cwindex.Dat file and put the record into A$. We
then (in line 180) print A$ on the screen for all to
see. A typical A$ might look like this:

Conversions, article, issue 18, page 30,

e

CooeWorks Issue 20

R

converting to MS DOS

In line 190, we use the INSTR function to find
the character combination “ssue” and then we
add four to P at that point. That gives P the value
of the character position in the line of the space
after the word “issue.” In line 200, we are going
to use the MID$ function to find the next three
characters after the position of P. That will give
us the space and the two digits of the issue
number. We let B$ equal that little substring.
Yes, it’s still in string form, we got it out of the file
in string form - it couldn't have been anything
but because of the way we put it there in the first
place. So in line 210 we let B equal the value of
B$. Well, the space is ignored by the VAL func-
tion and so B will end up being just the issue
number and it will be in integer form. Just what
we always wanted!

Now we can play “greater than" on that inte-
ger in B. In line 220 if B is greater than 13 we
print to buffer number 3, which is the file
Index2.Dat, otherwise we print to buffer number
2, the file Index1.Dat.

So we just go along like that, taking one line
(record) out of Cwindex.Dat at at time and
finding out if the issue number is greater than

100 REM * Split.Bas * partitions
sequential files *

151 o ey

120 OPEN’’0’’,2,’’index1.dat’’

130 OPEN’’0’’,3,’’index2.dat’"’

140 OPEN’’I’’,1,’’Cwindex.dat’"’

150 FOR I=1 TO 450

160 IF EOF (1) THEN 240

170 LINE INPUT #1, AS

180 PRINT AS

190 P=INSTR(AS$,’’ssue’’)+4

200 B$=MIDS$ (A$,P, 3)

210 B=VAL (BS)

220 IF B>13 THEN PRINT #3,A$ ELSE
PRINT #2,A$

230 NEXT I

240 CLOSE

250 END

—_— .

V)

13. If it is, we put it in one file, if not we put it in
the other file. When we are done, line 240 will
close all files, and we will have all issues up to
and including 13 in one file and the rest in
another. Cwindex.Dat, itself, will still be intact
because all we did was to read it.

Can you see the value of consistency in com-
puting? If we had been indiscriminate about the
way we entered our data in the first place it
would be quite a chore to pick out those issue
numbers. At least it would have complicated the
process considerably - if not make it impossible.

Now that you know how it's done, you can
make a little program that will break up virtually
any sequential file into smaller files. It will have
the same form as this one, only the specifics of
where you break might be different - but you can
handle that now that you know how.

One more thing. INSTR is case sensitive. It
won't find “ssue” if we had input ISSUE, for |-
example. Makes another point for consistency. !
Maybe we should make a bumper sticker that
says: “Computers like consistency!”

When we got done

pasting this issue
this space just

"happened”

to be left over. |

Is it a coincidence that

it's right next to the orde

form, or what?

If you haven't renewed

yet, would you please?

Thanks

it

‘/
Issue 20 CopeWoRKS

4 Handy Order Form

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95
All third year issues, Nov 87 through Sep 88 $24.95
All second year issues, Nov 86 through Sep 87 $24.95
All first year issues, Sep 85 through Sep 86 $24.95
1st Year Program Disk (issues 1 through7)

(Specify computer type below) $20.00
2nd Year Program Disk (issues 8 through13)

(Specify computer type below) $20.00
3rd Year Program Disk (issues 14 through 19)

(Specify computer type below) Available now $20.00
NEW! "Starting with MS DOS" 40-page book explains all $7.00

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x

(Tandy Model IV) and most CP/M MBASIC formats, on
51/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
O Charge tomy VISA/MC exp

Ship to: Name

Address
State Zip

City

Clip orphotocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

‘| Charge card orders may be called in (206) 47?-2219
between 9 am and 4 pm weekdays, Pacific time.

Master Card onl
VISA/Master y 1188

CooeWonrks Issue 20 39

e

p

Index & Download

What's happening with both

Here are the updates to bring Cwindex.Dat up
to date through the last issue. The entire index
for the first three years of CodeWorks is on the
download and on our yearly diskette.

Notes, using the P option in MS DOS, issue

19, page 3
Card.bas, reference, two level sorting, issue

19, page 3

Notes, using an actual quote mark in print
lines, issue 19, page 4

Notes, using disk drive cleaners, issue 19,
page 4

Beginning BASIC, exploring PRINT USING,
issue 19, page 7

Hard disks, article, setting one up, issue 19,

List.bas, correction, missing lines, issue
19, page 34

Random files, article, adding column
totals, issue 19, page 37

Ranprnt.bas, merge program, issue 19,

page 38
Download, notes on download, issue 19,

page 40

The download has been a little erratic lately,
still due to power changes and switching, but
mostly it has been up and running.

page 9 We have been putting the NFL stats on the
NFL88.bas, main program, issue 19, page download every week, usually by Tuesday noon.
NFL for 1988-89 o R % Don't forget that the program in this issue for
Stat88.bas, main program, issue 19, page predicting the post-season play will necd week
18, stats for NFL88 £ e 16 stats. We'll be sure and put them up as soon
Correl.bas, main program, issue 19, page 22 as we have them so that you can get into the
correlation with lead/lag playoff picture.
Outline2.bas, demo program for outline.bas,
issue 19, page 30
CodeWorks " Sl
3838 South Warner Street Bulk Rate
Tacoma, Washington 98409 .
Permit # 774
Tacoma, WA

Y

o

C
CopEWoORKS

| Issue 21 Jan/Feb 1989
CONTENTS
BAILOrS INOLES v.cxsisinss st issussnssurirssotsersosates 2
. g Ty T EERE S DT PR S O TG e 3
Beginning BASICccccececeosssosescsesosossose 6

Writing Filters in BASIC (Fileutil.Bas)7

FUAMEC.BAS «osss000000enseonssnssnssosnspassisbosssvies 14
BT USLBAS oisicsibhesissecrsmersnanvonsidossstaies oot 32
O Sy e Soabish e iasstunechidocsonsncensns 38
PR B OTI 07 200 essviTsinssesossnssssesossihasas 39
Index & Download il e 40

CopeEWORKS

Editor's Notes

Issue 21 Jan/Feb 1989

Editor/Publisher
Irv Schmidt
Associate Editor
Terry R. Dettmann
Circulation/Promotion
Robert P. Perez
Editorial Advisor
Cameron C. Brown
Technical Advisor
Al Mashburn

(c)1880 80-Northwest Publishing Inc. No pat-
ent Hability is assumed with respect to the use
of the information contained herein. While
every precaution has been taken in the prepa-
ration of this publication, the publisher as-
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre-
sented in this publication are placed in
public domain. Please address all correspon-
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 98400

Telephones

(208) 475-2219 (voice)
(208) 475-2356 (modem download)
300/1200 baud, 8 bits, no parity and 1
stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro-
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned ifreturn postage is provided. Compen-
sation will be made for works which are ac-
cepted for publication. CodeWorks pays upan
acceptance rather than on publication.

Subscription price $24.95 per year (six issucs).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year recetves all issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (206) 475-2219.
Charge card orders may also be left via our
on-line download system (206) 475-23586.

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
a sample copy at no cost.

As many of you have proba-
bly guessed by now, not all the
names shown on our masthead
are here in the office, working
on the magazine. No, some of
those names have full-time jobs
elsewhere and are kind enough
to give a helping hand as
“friends” of the magazine. Al
Mashburn is our technical ad-
visor, and writes occasional
pieces for us. His main occupa-
tion is in sales and service for a
well-known motorcycle com-
pany. Cam Brown is a high
school instructor at a local pri-
vate school. His assistance is in
the form of ideas and sugges-
tions on the editorial content
and layout of the magazine it-
self.

You all know Terry
Dettmann, since he has been a
regular contributor to the
magazine from day one. Terry
has the title of “Chief Scientist”
at a local electronics company.
His company recently ex-
panded sales and now covers
the entire United States.
Lately, Terry has spent more
time flying around the country
than he usually does. In fact, he
told me, in one of his rare week-
ends at home, that he has spent
six of the last seven weeks
away from home. He also re-
cently had a catastrophic hard
disk crash, and a backup sys-
tem that apparently failed.
Consequently, when he is
home, he is busy trying to re-
construct the many programs,
articles and projects he had on
that system.

All this sounds like a sneaky

way of telling you that his ar-
ticles are not going to appearin
this issue of CodeWorks either.
Which is true. We hope to have
the finish to Outline.Bas ready
for the next issue, but from the
way things are looking for
Terry, we can’t make that a
hard promise. Rest assured,
that we will getitin eventually.
Ditto for more of the Randemo
series.

In spite of all that, we appre-
ciate the efforts of all those who
actively assist in the produc-
tion and content of CodeWorks.
For the most part their work is
pro bono, and we appreciate
that even more. At this time of
the year it is more than appro-
priate that we say “thanks” to
all of you.

If you notice a subtle change
in thisissue, itis because [have
decided to go back to good old
New Century Schoolbook as a
typeface for the body text.
When we first got the laser
printer and looked at its avail-
able fonts, Bookman stood out
and called for attention. It’s a
nice face, but after a couple of
issues it just seemed too robust
for the body copy. We are still
using it, and it looks very good,
when used as headings. Actu-
ally, CodeWorks had been in
New Century Schoolbook since
the very first issue, back in
September of 1985. We had
decided then that Times Ro-
man was too anemic and that

continues on page 38

Issue 21 CopeWonrks

-

Forum

An Open Forum for Questions and Comments

NFL88 got 13 of 14 this week (6-7 Nov). Know
any good bookies? Now, if we can only get
Lpick.Bas to work as well.

Jim Brandenburg
Lewiston, ID

I intended to write sometime ago, comment-
ing on the interest in genealogy I have seen in
CodeWorks.

I have by no stretch of the imagination tried
all of the genealogy programs available for the
various systems, but have looked at several
public domain and shareware programs for the
MS DOS machines. The one I finally settled on
was Personal Ancestral File. It is $39.95, includ-
ing shipping, and well worth it. Contact:

The Church of Jesus Christ of Latter-day
Saints

Genealogical Department

Ancestral File Operations Unit

50 East North Temple Street

Salt Lake City, Utah 85150

(801) 531-2584

PAF consists of several programs which rec-
ord family data, information on references, re-
port printing and a data communications capa-
bility. File size is limited by available storage
space. It is well documented and includes tutori-
als in the manual.

I believe PAF is also available for CP/M ma-
chines and Apple.

John M. Gregg
Florence, SC

Several local people we know also have said

that this is a very good program.

...Your Beginning BASIC column is the best
thing since the wheel. Issue 19, Exploring the
Print Using command is terrific. I suppose if all
the command possibilities were in the manual, it
would turn out to be quite a tome. I have learned
quite a bit from that column. Keep up the good

work.

Richard L. Bacon
Tivoli, NY
Yes, itwould be quite a tome. It seems that most
applications programs today need more explana-
tion. Look at the number of books being written
(and bought and read) on WordStar, PageMaker,

Lotus 1-2-3 and the like.

...In reply to the letter by M. L. Hall in Issue
19, I agree! As aliving, I repair stereo equipment
and as a hobby, computers. I have opened my
TRS-80 Model III up more than once to install
more memory, disk drive controllerboard and an
RS-232 board. So yes, I agree with him in adding
to his TRS-80. At this time I do not wish to
convert to a 16 or 32 bit machine, although this
may appeal to me in the future. What I'm trying
to say is that I'd be interested in other technical
projects for my computer and I'm sure others
would be too...

...Because of the availability of “modern” com-
puters, there seems to be a lot of unused, forgot-
ten, broken, and other TRS-80s waiting to be
used. You can get them cheap if you look. And
what an easy way to get into computers...

Pat Chong
Las Cruces, NM

They were great computers in their day. Unfor-
tunately, almost no one is writing anything for
them these days. In spite of all the advertising
hoopla, the new applications are a giant leap
ahead of what passed for applications software in
days past. And you can’t really appreciate it until
you actually make the switch yourself.

I enjoy your magazine even though I have an
Amiga 1000, and know that most programs are
for MS DOS machines. Therefore, I'd like to ask
if there are subroutines I can substitute for Shell
Commands. In Ranidx.Bas there are several
commands: Shell “erase”+FT$ and Shell
“ren”+FX$"”"+FT$. If the first command erases
FT$ then a subroutine would work, however, I

CopeWorxs Issue 21

3

don’t know what “ren” does.
Allan W. Wardell
Providence, RI

Erase and kill are one and the same, and either
can be done from within a BASIC program, asin:
100 KILLfilename”. REN is the rename com-
mand, and cannot always be done from within a
BASIC program as it can be with GW BASIC and
the Shell command. We have been looking in vain
for a way around the Shell problem and can’t
seem to find one. Perhaps we have painted our-
selvesintoa corner. My version of MSDOS is2.11
and it has the SHELL and works fine. We'll keep
looking, but in the meantime, you will probably
need to use Ranindex.Bas instead of Ranidx.Bas.
We know that will restrict you somewhat, but it’s
the best we can offer for now. But also look into
this: some computers use “SYSTEM?” instead of
“SHELL” and that may work for you. Tandy
Models II and IV use System; their Models I and
IIT won’t allow it at all.

I have been a subscriber to CodeWorks since
Issue 1 and have thoroughly enjoyed it. There
must still be a few of us who program in BASIC,
so keep up the good work!

I moved up to MS DOS about a year ago
(before that I had a Model III TRS-80) and still
like to work in BASIC. However, I miss some of
the features of the Model III, especially the
ability to scroll up or down a program at random
(another thing I miss is the machine automati-
cally looking on other drives for a program if it
isn’t in the default drive.)

Anyway, getting back to the scrolling: is there
any program that would allow you to list 330 and
then scroll up or down from there, the same way
it did on the Model III...

...J] own a small business and we took your
payroll program (which is pretty good as it
stands) and reworked it so that it prints out the
weekly, monthly, quarterly, yearly and also fis-
cal-yearly reports, accumulating all the data as
it goes. It also prints out the checks on a Swintec
typewriter. We are in the process of converting it
into MS DOS with TRSCROSS (a great pro-
gram!)...

Francis C. Williams
Honolulu, HI
Scrolling backward and forward in a BASIC

program is one thing that GW BASIC lacks. Look
up the PATH command in MS DOS. It can make
the computer search any of the drives for a given
program. We have incorporated several cosmetic
changes to Pay.Bas and will publish them when
space permits.

...]I currently use a TRS-80 Model IV with
128K of RAM. When running any BASIC pro-
gram only 64K is usable, to the best of my
knowledge. Has anyone come across a way to
make the full 128K accessible to a BASIC pro-
gram?

I am seriously considering switching to an
IBM compatible. I note that they have a much
larger RAM. If I have an IBM compatible with
512K will that full 512K be accessible to a
BASIC program under GW BASIC, or will I still
be limited to 64K? Also, if you have 512K ini-
tially and later add on more RAM, does the
added on RAM automatically get recognized by
the CPU?

Marec Miller
Long Beach, CA

You can stuff machine language that your
BASIC program will call into the upper 64K of
your Model IV. Same for MS DOS. GW BASIC
still only uses 64K for BASIC, although with the
Microsoft QuickBASIC compiler, for example,
you can designate a whole 64K chunk for arrays
and another 64K chunk for your BASIC pro-
gram. All that extra memory is used primarily for
machine language applications programs, which
can span 64K boundaries. Yes, if you have 256K,
for example, and add more RAM, MS DOS will
recognize that it’s there. On most machines you
need to move a jumper on one of the boards to tell
it the extra memory is there.

I once had a Heath H-89 computer which
should be the same as the H-89A. The locate
cursor sequence as given in Dmaker.Bas, Issue
17, page 20, program line 250 worked fine on my
machine. I suspect the problem B.T. Jeavons
(Forum, Issue 19)is having in getting demo pro-
grams Cursor 1, 2 and 3 to run correctly lies in
the sequence given on page 6 of Issue 17: PRINT
CHR$(27)+"Y”+CHR$(31+X)+ CHR$(31+Y).
This sequence needs a semicolon at the end to
avoid a carriage return/line feed. The semicolon

Issue 21 CopeWorks

b‘———‘

was used in line 250 of Dmaker.Bas...
Robert L. Anderson
St. Albans, WV

...In Issue 20, page 7 there is an Error Mes-
sage article that is very nice if you don’t have a
TRS-80 Model III. For this Model there is a
simple PATCH that will give you text instead of
an error number. It patches the system program
on the disk and from then on it will give the text
shown on page 90 of the Model III manual.

PATCH *4 (ADD=4E28,FIND=20,CHG=18)

At the TRSDOS Ready, typing this in exactly
will modify the disk in the drive so that error
message will be in text and not in stupid num-
bers.

Keep up the good work. I have used the
Card.Bas program for a couple of different
things. Each one is a modification of the original,
to suit the situation.

I'm the roster keeper for our organization of
survivors from the USS Abner Read (DD 526).
Each name has nine sub items and using this
main data base we can print out various lists
sorted on Rate/Rank or ZIP or any other way
that is needed. It is a very handy program.

W. J. Pottberg
Burlingame, CA

Thanks for the patch, and glad you are getting

some use out of Card.Bas.

Back in the dark ages, eons ago, when my
TRS-80 Model I was the best and easiest com-
puter around, I obtained from Tandy a program
called “Cross Reference.”

This was a machine language program which,
among other things, would go through a BASIC
program and pick out all the variables. It would
then provide a printed list of these in alphabeti-
cal order and would also make a list of each line
in which each variable appeared.

I found this program very handy in program
writing when I would lose track of what vari-
ables I had already used or for a reference sheet
I kept with long programs for use when later
modifications were in order.

I'm sure you recall this program. My question

is whether there is something like it available
now for use with BASIC in an MS DOS machine
such as my Tandy 1400LT. If you know of such
a utility, where could I obtain it? If not, how
about putting it on your list of programs to work
on for publication in CodeWorks? I am sure
many of your subscribers would find it as useful
as I did.
Charles B. Steele
La Jolla, CA
We published that program (in BASIC, but it
could be compiled) in Issue 5, back in May/Jun
1986. It was called VXREF.Bas. As I recall, that
program wasn’t the last word in such utilities,
and was rather lumpy in spots. If it wasn’t com-
piled, it was also rather slow. Perhaps a re-write
and an update of that program would be in order
- especially one that could be compiled. Thanks

for the nudge.

Thank you again for the interesting and varied
input. You would be surprised at how many of
our programs are in direct response to your let-
ters, and that’s how it should be, after all. So now
it’s time for us to tell all of you: Keep up the good
work!

Would you believe he's writing a book on
how to stop smoking?

CopeWonks Issue 21

#

Beginning BASIC

A Look at Variable Types

When you first turn on your computer it auto-
matically defaults to single precision accuracy
for variables. Single precision gives you six
places of accuracy. The exclamation point is used
to denote single precision, but since this is the
default value anyway, you don’t need to use it.
Naturally, you would ask why have it then?
Well, you can define all variables to some other
accuracy at the beginning of the program, and
then, if you wanted some selected variable to be
single precision, you could use the exclamation
mark for just that variable. In this case, variable
A and variable A! both refer to the same value,
because they are one and the same variable.

The percent sign (%) used after a variable de-
notes that that variable is an integer variable.
The range of integer variables is from -32768 to
+32767. If you input 7.7 for variable A% and
then print A% you will find that it prints 8. That
is because BASIC rounds off integer variables to
the nearest whole number. Notice that Aand A%
are two entirely different variables, not like
single precision variables, above. Integer vari-
ables take up less memory space than other
types and will compute faster. For this reason, it
is usually good practice to declare loop counters
as integers because it tends to speed up execu-
tion of your programs. If you know that you will
be using variables I, J and K for loop counters,
then at the beginning of your program you can
put a statement like this: DEFINT IJ,K (or
DEFINT I-K, which is the same thing).

But why should integer variables go from -
32768 to +32767? Well, it turns out that one byte
of 8 bits can hold up to 256 different values. If we
use two bytes, then, to hold a number we have
256 * 256 different values. That turns out to be
65536 discrete values, which is the number of
values between -32768 and +32767.

There is a so-called double precision variable.
It is so-called because it is actually almost three
times as accurate as single precision. You can
use the number sign (#) after a variable to denote
double precision, as in A#. Double precision can
be accurate up to 16 places. But be careful. If you
define one variable as double precision and
multiply it by another that is not, and then put
the result into another single precision variable,
it may print out 16 places but only the first six
would be significant. To get the full benefit of
double precision, at least one of the variables and
the output variable should be in double preci-
sion. You can give a “global” definition to your
variables to make them double precision:
DEFDBL A-C, for example, would make all
variables from A to C double precision. Again, A
and A# are two entirely different variables, (But
if you DEFDBL A then all variables starting
with A will be double precision.) A “global” vari-
able designation means that it applies to the
entire program.

In addition to the numeric variable types we
havejust discussed; integer, single precision and
double precision, there is also the string variable
designator that you all already know about, the
$ after a variable shows that that variable is a
string variable. You can also define string vari-
ables globally, asin DEFSTR A-F, but we tend to
stay away from these types of designations since
they can become rather confusing, even to expe-
rienced programmers. And again, A and A$ are
two entirely different variables.

So there s a quick look at the various variable
types:you can use. Play with them and see what
they do. Then add them to your arsenal of com-
pt.xting tools. Once you know what they do, you
will certainly find uses for them.

Issue 21 CopeWorKs

Fileutil.Bas

Writing Filters in BASIC

Irene P. Governale, Port Jervis, NY. Here is a collection of useful file
utilities which you can use individually or with the menu driven program

following this article.

When I tried to define filters, kept coming up
with phrases that would be just as applicable to
the word “program.” So, I looked in my MS DOS
Reference Manual (when all else fails, read the
documentation, right?) and this is what I found:

“Afilteris a command that reads input, trans-
forms it in some way, and then outputs it, usu-
ally to the screen or to a file. Thus, data is said to
have been filtered by the command.”

Not very helpful, is it? Filters usually work on
text files. They do things like removing extrane-
ous control characters or changing text from
upper case to lower case. Although some filters
work on files a word or a line at a time, the
program SORT that comes with the MS DOS
operating system for instance, the programs
we're going to write here work on one character
at a time.

When written in either assembly language or
a compiled language, filters get their input from
STDIN (the standard input device, usually the
keyboard) and send the transformed output to
STDOUT (the standard output device, usually
the screen.) That doesn’t seem very useful at
first glance, but both MS DOS and UNIX allow
you to redirect either or both of these devices to
another device (perhaps the printer?) or file.
Redirection won’t work with interpreted BASIC,
but you can still write filters that will do their
jobs.

The pseudocode for a filter written in BASIC
would look something like this:

1. Get input and output file names

2. Open the files in random mode with a record
length of one

3. Read a byte from the input file

4. Do something to it

5. Write the byte to the output file

6. If we haven’t reached the end of file, go back
to step 3 and get the next byte

7. Close the files

Now, if you look closely at this pseudocode,
you'll see that most of the code will remain the
same from program to program. The only place
we need to make changes is where we “do some-
thing.” The following listing provides a skeleton
for a BASIC filter, all we'll have to dois fill in the
subroutine.

10 CLS:CR=13:LF=10:RTN=0: ‘cr=
carriage return, If=line feed

20 INPUT”Enter input file name:“;FI$
30 INPUT”Enter output file name: “;FO$
40 OPEN “R”,1,FI$,1:0PEN “R”,2,FO$,1
50 FIELD #1,1 AS IN$:FIELD #2,
1AS 0%
60 I=1:J=1
70 GET #1,1
80 A=ASC(IN$)
90 GOSUB 500
100 LSET O$=CHR$(A)
110 PUT #2,J
120 I=I+1:d=J+1
130 IF NOT (EOF(1)) AND A<>26
THEN 70

CooeWonrks Issue 21

’

140 CLOSE
150 END

It’s always nice to clear the screen at the
beginning of a program, and that’s the first thing
we do. (You will need to change the CLS to
whatever command your computer uses to clear
the screen.) Then we set up some standard vari-
ables: CR is the ASCII code for carriage return,
LF is the code for a line feed, and RTN will be
used by programs that need to count carriage
returns.

The next two lines get the input and output
file names from the user. These can be standard
file names or, on MS DOS computers you can use
CON for the keyboard or screen, or PRN for the
printer.

In line 40 we open the files in random mode
with a record length of one. I thought about
saving some processing time by reading more
characters at once and then processing them,
but if the last record is shorter than the record
length defined by the program, you end up pad-
ding your output file with unnecessary charac-
ters.

Line 50 sets up the buffer variables for the two
files and line 60 initializes the two variables we'll
be using for file pointers. Now that we've done all
the set-up, we can get down to business. Lines 70
and 80 get a character from the input file and
convert it to an ASCII code in the variable A.

Line 90 then calls the subroutine that will do
the actual processing. The only reason for put-
ting this code in a subroutine is to make it easy
to write new filters simply by replacing the
subroutine code. If you save this skeleton in
ASCII format, you can simply merge it into your
subroutines as you write them.

Once we've returned from the subroutine, we
move the character code into the output buffer
and send it to the file. Then we increment our
two pointers, and if we haven't reached the end
of file, we loop back to line 70 to get the next
character. For a more detailed explanation of

line 130, see the sidebar “Finding EOF.”

Now for the first filter. If you've ever used the
TYPE command to examine a WordStar file on
the screen, you've seen a lot of weird characters.
WordStar turns on bit seven of some characters,
for instance line feeds within paragraphs. Turn-
ing on bit seven adds 128 to the character’s
ASCII code. Since characters with ASCII codes
above 127 are graphics characters, this makes
for the weird display. To convert these charac-
ters back to standard ASCII, all you have todois
turn off bit seven. The lines of code in the next
listing (WSCONVRT) will do that.

490 * WSCONVRT - convert WordStar files to
Standard ASCII

500 A=A AND 127

510 IF A<>LF THEN PRINT CHR$(A);

520 RETURN

Line 500 ANDs the value of A with 127. Since
the binary value of 127is0111111 1, ANDing
127 with a number like 130 (10000 1 0), would
resultin (0000001 0). AND performs a logical
AND on the two numbers on a bit by bit basis.
The only bits in the resulting number that will be
set to 1 are those which were set to one in both
numbers. You can visualize it this way:

1000001 0(decimal 130) and
0111111 1(decimal 127)

0000001 0(decimal 2)

Line 510 is not really necessary, but I can’t
stand to sit there looking at a blank screen. I
know the computer is working, but I'd rather
have the program run a bit slower and show me
what it’s doing. It’s up to you whether you want
that line. If you'd rather speed up the processing
of the file, leave it out.

The reason that line 510 checks the ASCII
code and doesn’t print line feeds is that GW-
BASIC treats carriage returns and line feeds the
same way. It returns the carriage to the left side
of the screen and advances a line. If you printed
a carriage return/line feed pair, the document
would appear to be double spaced.

Issue 21 CopeWORKS

\

Now for two filters that do a similar job. The
first is called UCASE.It converts all lower case
letters in the input file into upper case. Take a
look at the listing which follows.

490 ‘ UCASE - convert file to
all upper case
500 IF A>=97 AND A<=122 THEN A=
A-32
510 IF A<>10 THEN PRINT CHR$(A);
520 RETURN

The ASCII codes for lower case letters fall
between 97 and 123. Since these are the only
characters we want to work on, we test the value
of the variable A for codes in that range. The
difference between the code for ‘A’ and the code
for ‘a’is 32, but if you simply subtracted 32 from
the ASCII value of all the characters in the file,
you'd end up with a pretty strange file! Now for
the other filter, which I'm sure you have already
figured out, which is called LCASE. To convert
upper case letters to lower case, use this code.

490 * LCASE - convert file to
lower case
500 IF A>=65 AND A<=90 THEN A=A
+32
510 IF A<>10 THEN PRINT CHR$(A);
520 RETURN

The only difference between this subroutine
and the last one is that the letters we want to
work with here have ASCII values in the range
65 to 90. Now for a pair of programs that change
the line spacing of a file.

Listing SSPACE, changes a file from double
space tosingle space. The first thing this subrou-
tine does is check to see whether or not we've
found a carriage return. If we haven’t, we simply
print the character and return. When we find the
first carriage return, we set RTN to one and
return. This way, the first carriage return/line
feed pair will be printed to the output file. The
next time we find a carriage return, we incre-
ment I and get the next character from the input
file.

490 ‘ SSPACE convert file to single space

500 IF A<>CR THEN PRINT CHR$(A)
' RETURN

510 IF A=CR AND RTN=0 THEN RTN=
1:RETURN

520 IF A=CR AND RTN>0 THEN I=1+
1:GET #1,1:A=ASC(IN$):IF A=
LF THEN I=I+1:GET #1,1:A=AS
C(IN$):GOTO 520

530 PRINT CHR$(A);:RTN=0:RETURN

If the next character is a line feed, which it
should be on a standard text file, the variable I is
incremented again, then we get the next charac-
ter and execute line 520 again. As long as we
keep finding carriage return/line feed pairs, we’ll
keep executing line 520. As soon as we find
something other than a carriage return, we drop
down to the next line which sets RTN to zero,
prints the character on the screen and returns.

This is probably the most complicated ex-
ample we'll have, so now you can breathe a sigh
of relief and go on to the next filter, DSPACE,
which will double space a single spaced file.

490 ‘ DSPACE - convert single
spaced file to double space

500 IF A<>CR THEN PRINT CHR$(A)
;:RETURN

510 GET #1,(I+1):A=ASC(IN$)

520 IF A=LF THEN LSET 0$=CHR$(C
R):PUT #2,J:J=J+1:LSET 0$=C
HR$(LF):PUT #2,J:J=J+1

530 GET #1,1:A=ASC(IN$):RETURN

Once again we check to see if we've got a
carriage return. If we don’t, we print the charac-
ter and return. When we find a carriage return,
we check tosee ifthe next characteris a line feed.
Ifitis, we print the carriage return/line feed pair
to the output file, incrementing the output file
pointer as we do so, then we get the current
character (the carriage return) again, print it,
and return.

Ifyou’d like to display a file on the screen with-

CooeWorks Issue 21

_“—

”

out having to leave BASIC, the next listingis for
you. Since we know that the output will be on
the screen, we can remove any code that deals
with an output file. This leaves only the request
for the input file name, and the code to open and
read from the file.

10 CLS:CR=13:LF=10:RTN=0

20 INPUT”Enter input file name:“FI$

30 OPEN “R”,1,FI$,1

40 FIELD #1, 1 AS IN$

50 I=1

60 GET #1,1

70 A=ASC(IN$)

80 GOSUB 500

90 I=I+1

100 IF NOT (EOF(1)) AND A<>26
THEN 60

110 CLOSE

120 END

497"

498 ‘BTYPE - displays a file on

the screen

499 ¢

500 IF A<>LF AND A<>26 THEN PRI
NT CHR$(A);

510 IF A=CR THEN RTN=RTN+1 ELSE

RETURN

520 IF RTN=21 THEN PRINT”<more>
“.ELSE RETURN

530 IF INKEY$="" THEN 530

540 PRINT:RTN=0:RETURN

When we get to the subroutine, the first thing
we do is check to see if the character is either a
line feed or the end of the file. If it is neither, we
print it. Then, since we don’t want the text to
scroll off the screen before we can read it, we
check for a carriage return. If we do have a
carriage return, we increment RTN. If the char-
acter is anything other than a carriage return,
we're done processing this character.

The next thing we need to do each time we find
a carriage return is check to see if we've printed
a screenfull of lines. IFRTN=21, then we've filled
the screen and we print “<more>” and wait for a
key press at line 530. The last thing we need to
do is PRINT, so that the next character will be

printed on a blank line, set RTN back to zero so
we can start counting again and return.

I saved the easiest filter of all for last. It
doesn’t do anything to the input file. It just copies
it to the output file. The subroutine in Listing
BCOPY is only there to cover the case where the
input file might be “CON” (the keyboard in MS
DOS). Its sole reason for existence is to let you
see what you're typing.

480 * BCOPY - simply copies input to output
500 IF FI$="CON” OR FI$="con”
THEN PRINT CHR$(A);:IF A=CR
THEN LSET 0$=CHR$(A):PUT
#2,J:J=J+1:A=LF
510 RETURN

What possible use would we have for this
program? Well, depending on the input and
output files we choose, we can use it to create
simple text files, print a file on the printer, or
copy files. How’s that for simplicity? Of course,
you'd better be a pretty good typist to use this
program to create files because a CHR$(8) (back-
space) would be printed to the file just like any
other character.

One final word of warning. If you want to use
BCOPY to copy program files, you'll have to
remove the check for CHR$(26) from line 130.
Remember, the occurrence of CHR$(26) in a
program file might not necessarily signal end of
file. If we stopped processing a program file the
first time we encounter CHR$(26), we mightend
up copying only part of the file.

There’s still room for improvement in our
program skeleton and even in the subroutines.
We could add error checking for the read and
write process, or we could add code to check for
the existence of the input file, or code to prevent
over-writing existing output files. Those ele-
ments were left out so we could concentrate on
the filters themselves. But, as they say, no pro-
gram is ever really completed.

Now, why write filters in BASIC? Well, for one
thing it's easy. Besides, if you don’t have 2
compiler or assembler, what other way is there?

10

————————

Issue 21 CopeWoRKS

S SIS ST R i e e ey

These short examples have gotten you started,
now here are a couple of ideas you can work on
yourself. How about a filter to expand tab char-
acters to the correct number of spaces to carry
you to the next tab stop? You could add a variable
for the size of the tab and request it from the user
at run time. Or how about a word counting
program? Or . . . now it’s your turn. Have fun
with BASIC filters.

(Editor’s Note: We have compiled these frag-
ments of code into one menu-driven program
(FileUtil.Bas) for your convenience. Listing fol-
lows. Thisis the version which will appear on the
CodeWorks download and on the yearly disk-
ette.)

Finding EOF
Line 130 of our program skeleton says:
130 IF NOT (EOF(1)) AND A <> 26 THEN 60
Why the double check? Well, normally finding

Fileutil.Bas for all models

100
110
120
130
140
150
160
170
180
190

REM
REM *
REM *
REM *
REM *

Irene P. Governale,

CLS

PRINT’” FILE

PRINT’’

PRINT STRINGS (22,45);’’ The CodeWorks
URT: T TEY
a group of 7 file utilities

the end of a file is easy. The BASIC function
EOF(filenumber) will tell us when to stop proc-
essing. Actually though, under MS DOS there
are two ways of determining the end of a text file.
You can use the actual length of the file in bytes,
or you can look for a CHR$(26) which is Control-
Z.

Most programs that produce text files end
them with Control-Z, but programs like Word-
Star may pad the file with more than one Con-
trol-Z in order to make the size of the file evenly
divisible by 128. This is one more place where
MS DOS’s CP/M ancestry shows. CP/M creates
files in blocks of 128 bytes which means that the
only way to determine the actual end of the file
is that terminal Control-Z.

Since we're dealing with our files on a byte by
byte basis, those of us using MS DOS have a
choice of processing all the way to the end of the
file or stopping at the first Control-Z. Only one
Control-Z is necessary to terminate a text file, so
there’s no reason to pass along any padding we
might find. We still check for EOF though, justin
case we come across a program that doesn’t use
the Control-Z.

* FileUtil.Bas * A file utility program by
Port Jervis,
CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
(206) 475-2219 voice (206) 475-2356 300/1200 modem
(c)1988 80-NW Publishing Inc. & placed in public domain.
‘CLEAR 2000 ® use only if you need to clear string space

NY for

‘Y;STRINGS (23, 45)
CRO L Ly ENCE T ENOEN

CooeWonks Issue 21

1"

l----l----l------------IIlIlIIIIIIIIIIIIIIIII-IIIIIII

200 PRINT STRINGS (60,45)
210 PRINT
220 PRINT TAB(10);’’1 - convert WordStar files
230 PRINT TAB(10);’’2 - convert file to all UPPER CASE
240 PRINT TAB(10);’’3 - convert file to all lower case
250 PRINT TAB(10);’’4 - convert file to single space
260 PRINT TAB(10);’’S5 - convert file to double space
270 PRINT TAB(10);’’6 - display a file on the screen
280 PRINT TAB(10);’’7 - copy a file
290 PRINT
300 INPUT’’Number of your choice’’ ;XX
310 IF XX=6 THEN 850
320 V) ———m—mmmmm e ———— e m e oo o e o s o s e e e
330 ' Mainline of program
340 V mmmmmmm e
350 CLS:CR=13:LF=10:RTN=0: ‘cr=carriage return, l1f=1line feed
360 INPUT’’Enter input file name: ‘‘;FIS$
370 INPUT’’Enter output file name: ‘‘;FOS$
380 OPEN ‘‘R’’,1,FIS$,1:0PEN VAR?”F ,2,FO0S,1
390 FIELD #1,1 AS INS:FIELD #2,1 AS 0O$
400 I=1:0=1
410 GET #1,I
420 A=ASC(INS)
430 ON XX GOSuUB 530,590,650,710,780,850,1050
440 LSET OS$=CHRS (&)
450 PUT #2,J
460 I=I+1:J=J+1
470 IF NOT (EOF (1)) AND A<>26 THEN 410
480 CLOSE
490 END
Gl e e e T T S AT AT T
510 ‘convert WordStar files to standard ASCII
S e e e e ey e s eSS S S S R S e e
530 A=A AND 127
540 IF A<>LF THEN PRINT CHRS (A);
550 RETURN
L O e e e et e e T ks b S g Bt
570 ‘convert file to all upper case
580 ‘m—mmm e e e e e
590 IF A>=97 AND A<=122 THEN A=A-32
600 IF A<>10 THEN PRINT CHRS (A);
610 RETURN
620 Mmmmmm e e e e
630 ‘convert file to all lower case
(L g e e e Lo~ i T A T T —
650 IF A>=65 AND A<=90 THEN A=A+32

12 Issue 21 CooeWorks

660
670
680
690
700
710
720
730

740
750
760
770
780
790
800

810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

1060

IF A<>10 THEN PRINT CHRS (A);
RETURN

Y o e e e e e e e e e e - - J——

IF A<>CR THEN PRINT CHR$ (A) ; : RETURN

IF A=CR AND RTN=0 THEN RTN=1:RETURN

IF A=CR AND RTN>0 THEN I=I+1:GET #1,I:A=ASC(INS) :IF A=LF THEN
I=I+1:GET #1,I:A=ASC(INS):GOTO 730

‘convert single spaced file to double space

IF A<>CR THEN PRINT CHRS (A) ; : RETURN

GET #1, (I+1) :A=ASC(IN$)

IF A=LF THEN LSET 0$=CHRS$ (CR) : PUT #2,J:J=J+1:LSET 0$=CHRS (LF) :
PUT #2,J:J=J0+1

GET #1,I:A=ASC(INS$):RETURN

CLS:CR=13:LF=10:RTN=0

INPUT' "Enter input file name: ‘‘;FIS$

OPENLC'R’”. 1, FIS.1

FIELD #1, 1 AS INS

I=1

GET #1,1I

A=ASC (INS)

GOSUB 970

I=I+1

IF NOT (EOF(1)) AND A<>26 THEN 900

CLOSE

END

IF A<>LF AND A<>26 THEN PRINT CHR$ (A);
IF A=CR THEN RTN=RTN+1 ELSE RETURN

IF RTN=21 THEN PRINT’’<more>’’; ELSE RETURN
IF INKEYS$='’’’ THEN 1000
PRINT : RTN=0 : RETURN

IF FI$=''CON’’ OR FI$='’con’’ THEN PRINT CHRS (A);:IF A=CR THEN

LSET O$=CHR$ (A) :PUT #2,J:J=J+1:A=LF
RETURN

CooeWonrxs Issue 21

13

/

Frame.Bas

Cost & Materials to Frame and Cover a Building

Staff Project. This is another of those long winter night projects where you
can plan what you will be doing in the spring. With it, you can define a build-
ing (or part of one) and get a materials and cost list. Trim, paint and nails are

extra.

Long winter nights are an excellent time to
plan spring and summer projects. Our major
project for this issue is Frame.Bas. It is a long
and involved program that will determine quan-
tity and prices for a wide variety of building
projects. It takes into account the many choices
available in framing and covering a building.
The program covers the basic requirements
only, and does not include such things as trim,
nails, paint or stain or the cost of windows or
doors.

Frame.Bas does take into account such things
as studs, siding, plywood sheathing, drywall, felt
paper, insulation, preformed rafters and both
wood and composition shingles. It has the ability
to include interior walls, and if you are adding to
an existing structure, the ability to exclude one
or more walls. Further, it can be used to calcu-
late interior walls only, as when you already
have an unfinished structure in which you wish
to add partitions.

Programs of this sort have the tendency to be
input intensive. There are so many different
items that need to be entered, and several
choices for each item. There seems to be no other
way to doit than to swallow hard and digin. But
there is a neat way around doing that for every
project. Once abasic structure has been entered,
you can call it up and edit in changes to it and
save it back as an entirely new project. The

program allows you to have as many different
structures as your disk will hold. You can call
any project in, change it and save it back under
its original name or give it a new name and save
it.

The program uses one other file, that being
the unit price file called “Prices.” A menu option
allows you to create this file and another option
lets you call it up and make changes to it. There
is only one “Prices” file, and it is used for all
projects.

There are two outputs to this program. Oneis
alist of specifications for any project, the otheris
a material and cost list for a project. The mate-
rial and cost output will combine similar items,
so that you get a total, for example, of all 12 foot
2x4’s used in the structure. It also calculates the
total dollar amount of the project. See the accom-
panying figures for examples of the output for a
hypothetical garage.

We won’t go into an excruciating detail on the
program because that would take an entire is-
sue, but we will go through it and note those
things that should be of interest to you. Let’s
start at the top. The defined function in line 180
is going to assist us in getting studs to their next
largest two foot increment. That’s because that
is the way they are sold. Line 190 sets our error
trap. Let’s go to line 5710 and see what happens

14

Issue 21 CopeWoRKs

@

there.

The error trap at the end of the program (line
5710 and on) checks for the error “file not found.”
But there are two files involved with this pro-
gram. In one case we may be asking for a project
file that doesn’t exist. In the other case the
program may have tried to read the “Prices” file
and didn’t find one. If we asked for a project file
from the main menu, then the variable XX would
be 3. In that case the error trap simply tells us
that thereis no file like that and sends us back to
the main menu. If the “Prices” file is missing
then when we get to this error trap line 5730 will
come into play. All we do in that case is set H$
equal to “Do this First” and return to the main
menu. Back at the main menu, you will note that
H$ figures into line 640. It will be printed right
there on the screen along with the other menu
items. When we first run the program, H$ will be
a null string. If the “Prices” file is not there, H$
will be set to our little reminder and when we
come back to the menu, the menu itself will tell
us to input a “Prices” file first. After that, line
680 will reset H$ to a null string and we won’t see
it in the menu again. If there is a “Prices” file
when we run the program, the error trap will not
be sprung and H$ will remain a null string. This
is another example of “dynamic” menu items
(see Issue 19, Correl.Bas, for other examples of
this.)

Having gotten that all out of the way, we can
go back and try to continue our top-down ap-
proach to the description of the program. The
construction trade is rife with its own terminol-
ogy. Wood shingles are sold by the pack, for
example, while composition shingles are sold by
the “Square.” There are actually three “packs” of
composition shingles to one square. Felt paper
comes in 36-inch wide rolls, 160 feet long; insu-
lation comes in rolls too, but is measured by the
square foot. Two by fours come in even two foot
lengths, so if you need 8 feet, 1 inch, you must
buy 10 footers and waste the difference. That’s
Just the way it is.

Because we are going to give options when you
input specifications, we will need to keep all the
possible names and lengths someplace. And

since we are going to be using those names and
lengths many times, we may as well put them
into their own separate arrays, so we can always
come back and find what we need. Lines 210
through 490 are data statements containing all
the names and lengths we will need for the
program, as well as the little loops that will read
the data into arrays for us. The arrays are all
string arrays, and are A$() through E$().

Inline 510 we go to the subroutine at line 2250
to read in the “Prices” file. We have already
talked about what happens if that file does not
exist. Line 520 checks to see if your computer
uses DATES$ and if it does, it sets DT$ equal to
DATES. If you have no date in your computer,
the prompt in line 520 comes into play and asks
you to enter a date - which becomes DT$.

The menu follows, from line 530 to 710. Stan-
dard stuffhere, but note that the “Prices” file will
be automatically loaded (and saved that way
t0o), but your projects must be explicitly saved or
loaded (menu options 2 and 3, respectively.) Ifall
we ever wanted to do was work with just one
project, we could make it automatic. But we
want the option of loading a file, editing it, and
saving it as a different file.

Our input routine goes all the way from line
730 to line 1960. The first section of that input
routine (line 750 to 870) asks for dimensions.
Here, we have a problem with feet and inches. To
make things simple for the program, we input
feet and inches like a decimal number, that is,
10.6 would be ten feet, six inches. It may be a
little unorthodox, but it’s effective and does
simplify things. Obviously, with this method, we
don’t want to try and specify half-inch incre-
ments; they aren’t needed and would only com-
plicate things.

In the next part of the input routine, from 880
to 1960, the names and numbers of the choices
are printed on the screen for you. You select the
one you want and the program goes on to the
next. Most choices also have a “no choice” entry,
so that you can ignore whatever part of the
project (like ignoring the floor joists because the

CooeWonrxs Issue 21

15

’

floor is a concrete slab, for example.) After a te-
dious session of input, line 1960 takes us back to
the main menu in line 530.

The section of code from 2000 to 2080 is where
we save the specifications file to disk. The next
section, from 2120 to 2210 lets us load any
specifications file from disk.

In lines 2250 through 2300 we open and read
the “Prices” file. The program automatically
comes here when we first run the program. Note
that it is a subroutine, with a RETURN at its
end.

The option to enter new unit prices goes from
2340 to 2440. Again, note that when we have
entered new unit prices the program keeps right
on going and writes the “Prices” file back out.

The “Edit Specifications” routine comes next,
from lines 2480 to 2700. If we have not input
specifications or loaded a specifications file, then
R(7,4) will be 0, otherwise, it will always contain
a 4. Line 2490 tests the condition of R(7,4) and if
it is zero the following two lines come into play.
They inform you that you must have input a file
or new data in order to edit, and send you back to
the main menu to make another selection. If
R(7,4) contains other than a zero, the next two
lines are skipped and we get to the editing
portion of this routine. Since the first six items of
the specifications are slightly different than the
rest, we handle them in their own loop. Then we
deal with items seven through 29 in the follow-
ing section of code. It may be of interest here to
note that the R(x,x) array is a 29 item array, five
deep. R(X,1) always contains the number of your
selection, while R(X,2) through R(X,5) contain
the possible choices you could have made. As an
example, let’s take R(25,X). R(25,X) is “Exterior
sheathing” and R(25,2) contains the choice “1/2
inch ply”, R(25,3) has the choice “3/4 inch ply”,
R(25,4) has the choice “1x6 board” and R(25,5)
has the “none” choice. R(25,1) will contain the
number of the choice you made when you first
input (or edited) the specifications. Further, the
numberin R(25,2), for example, will indicate the
array number in the B$() array that says, “1/2
inch ply” if R(25,2) contained a 5. And, inciden-

tally, the “25” in R(25,X) indicates the 25th item
in the A$() array, which is “Exterior sheathing.”

In lines 2740 through 2790 we clear out the
M(x,x) array. This array will be used to carry all
of our information until print-out time. Again,
this array will carry integer numbers that will
refer to the A$() array through the E$() array.
There are six positions in the M(x,x) array. They
are: item name, size, length, quantity, price and
price per. In the final output, the total price will
be calculated from the quantity and price per, or
in some cases, the length times the quantity
times the price per. We clear this array now in
preparation to filling it with the calculations for
our project.

In lines 2810 through 3040 we set up a lot of
calculations that will simplify later calculations.
Notice, in line 2810 for example, that we are
taking our feet and inches figure (remember that
it was input as a decimal?) and taking it apart to
find the total number of inches. Let’s say that we
input the length of the building as 20 feet, six
inches (20.6). In line 2810 we take the integer
part of that number (20) and multiply it by 12 to
get inches. Then we subtract the integer part of
the number from itselfand have .6 left over. Now
we multiply the .6 by 10 and get 6, which we add
to the number of inches we obtained earlier. We
now have the length of the wall ininches. In lines
2980 and following we use some trigonometry to
determine the area of the gable ends of the
building and also the size of the roof. Roof over-
hang, both on the gable ends and on the sides, i8
figured in as a fixed amount in lines 3000 and
3020. You can adjust these amounts to whatever
you think is right.

From 3060 to 3210 we find the number and
length of exterior studs needed. Exterior studs
are those that form the outside walls of the
structure. Here we need to figure in the thick-
ness of the stud plates that will be used on top
and bottom of the studs. There can be one or two
such plates, and if the wall height was specified
at eight feet, 6 inches, for example, you can still
get by with eight foot studs if you have double
plates top and bottom. Line 3080 sets C1 to the
value for studs on 16 or 24 inch centers. In line

0

16

Issue 21 CopeWoRrKs

3090 we subtract one half of the excluded wall
length (we'll be multiplying by two later to get
the right wall length.) The “P” variables set in
lines 3100 to 3130 will be used later, in the plate
section of the code. In line 3150 we figure out how
many studs we need by dividing the length of the
wall by either the 16 or 24 (centers) we found
earlier. We then add three studs to each dimen-
sion. We do that because you need at least two
studs at the ends of the wall (corner, if you will)
to form a nice corner tonail drywall to. That, plus
you may not have a wall evenly divisible by the
16 or 24 inch centers, so you need one extra one
there to fill out. In line 3170 we use our defined
function (way up in line 180) to get our studs to
the next nearest two-foot length. It does it by
adding one inch at a time to the length of the stud
(H1) until the defined function is not true, at
which time H1 divided by 12 will always be a
length in feet evenly divisible by two. Lines 3200
and 3210 then stuff the values we just found into
the M(x,x) array for later use.

The next sections of code, all the way to line
4690, find all the values we will need and fill the
remainder of the M(x,x) array. Ceiling joist
sheathing, in line 4030, is that sheathing that
you may want to put on top of your ceiling joists
to form a storage space, for example.

The program only considers preformed roof
rafters. This seems to be the way everyone is
going these days. Also, if the roof will be covered
with composition shingles then a sheathing is
required, whereas if it will be covered with wood
shingles or shakes, then only 1 x 3 inch nailing
strips will be needed (so the roof can “breathe.”)

When we get to line 4710 we have completed
ourlist of needed items for the structure. Now we
go through the M(x,x) array and combine similar
items (you might be using 10-foot 2x4’s for both
the exterior wall studs and the ceiling joists, for
example.) Then, starting at line 4810, we sort
the list into ascending order by item name.

In line 4940 we finally get around to getting
some output from this whole affair. All the infor-
mation we need (except for one item) is now in

the M(x,x) array. All we need to do is print it out
and extend the unit price to the quantity for a
total price per item. Note that on the studs, we
need to take the length times the number of
studs times the unit price in line 5110 to get the
total stud price. While printing out individual
items total prices, we accumulate that amount
in variable TL, and this becomes the total price
of the project in line 5150.

If we don’t want printed output line 5170
takes us back to the main menu, otherwise, flow
of the program goes right on to the following code
and repeats what we just did on the screen to the
printer.

The “Edit unit prices” routine follows in line
5430. This little routine lets you display the
whole price list on the screen and then pick
whatever line you want to change and change it.
When you are done editing prices, the program
sends control back to line 2390, which first saves
the updated file and then sends control back to
the main menu.

The last section of code, from line 5570 to
5680, prints the list of specifications for any
project you have currently loaded on the line
printer. See the accompanying figure for an
example of our garage project.

The program will let you do any part of a
larger project. Don’t forget, if you are doing only
interior walls, to specify wall height - it’s still
needed and will give unpredictable results if you
leave it out. You can leave out the floor entirely
in case you are going to have a concrete slab
floor. Actually, the floor was the most difficult
part of this program because there are so many
different ways to cover a floor. So we took it to
sub-floor sheathing and insulation and left it at
that. Keep in mind also the things that the
program does not cover, like paint, nails, trim,
doors and windows. Unless you are considering a
large garage door, the number of studs and cover
material will not be very much affected by the
addition of windows and doors.

So there it is. Now you can play “what if?” and

CooeWorks Issue 21

17

T = e S el

find comparative prices for your next backyard need. The ones we have shown in our garage
(or front yard) project. A trip to your local lumber ~ sample figures are probably not valid in your
yard should get you all the unit prices you will area.

Frame.Bas for MS DOS Machines

and Tandy Models IVIV

100
110
120
130
140
150
160
170

180
190
200
210
220
230
240
250
260
270

280

290
300
310
320
330

340

350
360
370
380
390
400
410
420
430

Frame.Bas * Building estimate program written for
CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
(206) 475-2219 voice (206) 475-2356 300/1200 modem
(c)1988 80-NW Publishing Inc. & placed in public domain.

&
=
M e

‘' Initialization

‘CLEAR 5000 ' use only if you need to clear string space.

DIM R(30,5),A$(30),B$(22),C$(20),D$(20),ES(20) ,L(20),M(20,6),
P(20)

DEF FNM(M)=M MOD 24 <> 0 " nearest two ft. length function
ON ERROR GOTO 5710

DATA length ft.in,width ft.in,wall hgt ft.in

DATA length excluded wall ft.in,total length interior walls
DATA roof pitch degrees,floor joists,floor joist centers
DATA sub-floor sheathing, floor felt paper, floor insulation
DATA exterior studs,ext. studs on center,# top plates

DATA # bottom plates,interior studs,int.studs on center

DATA ceiling joists,ceiling joists on center,ceiling joist
sheathing

DATA roof spans,rafters on center,roof felt paper,roof finish
cover

DATA ext sheathing type,exterior felt paper

DATA siding,insulate outside walls,drywall

FOR I=1 TO 29:READ AS$(I):NEXT I

DATA None, ft.in,2x4,2x6,2x8,1/2 in.ply,3/4 in.ply,16 in., 24
< 8

DATA 1x6 board,yes,no,one,two,degrees,wood shingle,composition
shingle

DATA 1x6 siding,1/2 in.drywall,5/8 in.drywall,width, length
FOR I=0 TO 21:READ B$(I):NEXT I

DATA stud, stud, stud, board,board, siding, plywood, plywood

DATA drywall,drywall, felt paper,insulation,insulation

DATA preformed rafter,wood shingle,composition shingle

FOR I=1 TO 16:READ CS$(I):NEXT I

A)

DATA 2x4,2x6,2x8,1x3,1x6,1x6,3/4"x4"x8"',1/2"x4"x8",1/2"x4"x8"

18

R ———MWWWSTWmmemm s e L SRR

Issue 21 CopeWorks

440
450
460
470
480
490
500
510
520

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740

750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910

DATA 57/8"x4"xB",36%x160%, 15,23 r~s~s~

FOR I=1 TO 16:READ D$(I) :NEXT I

DATA ft.,ft.,ft.,ft.,ft.,ft.,panel,panel,panel,panel,roll
DATA sq.ft.,sq.ft.,each,pack,square

FOR I=1 TO 16:READ E$(I) :NEXT I

GOSUB 2250 * read in the prices file

IF DATES$='’’‘’ THEN INPUT’‘What is today’s date’’ ;DTS ELSE

DT$=DATES

CLS

PRINT STRINGS (22,45);’’ The CodeWorks ‘V; STRINGS (23, 45)
PRINT’ '’ B: U . T 5L DIIENNG ESTIMATE PROGRAM
PRINT' * cost and materials to frame and cover

PRINT STRINGS (60,45)

PRINT

PRINT TAB(10)’’1- Create new specifications

PRINT TAB(10)’’2- SAVE specifications to disk

PRINT TAB(10)’’3- LOAD specifications from disk

PRINT TAB(10)‘‘4- EDIT specifications

PRINT TAB(10)‘’5- Calculate and display material & costs
PRINT TAB(10)’’6- Create new unit prices VvV HS

PRINT TAB(10)‘’7- EDIT unit prices

PRINT TAB(10)’‘8- Print out the specifications

PRINT TAB(10)‘‘9- Quit

Hs-""

INPUT ‘‘The number of your choice '‘;XX

ON XX GOTO 730,2000,2120,2480,2740,2340,5450,5590,720
GOTO 690

CLS:END

CLS:I=1

PRINT’’Please use a period to separate feet and inches (ft.in)’’:

PRINT

PRINT *‘Dimensions’’:PRINT

INPUT’ ’ overall length (enter ft.in)'’;N
R(I,1)=N:R(I,2)=1:I=I+1

INPUT’ ' overall width (enter ft.in)’’;N
R(I,l)-N:R(I,2)=1:I-I+1

INPUT’ ‘wall height (enter £E.in) N
R(I,1)=N:R(I,2)=1:I=I+1

INPUT’ ' Length of excluded wall (ft.in)’’ ;N
R(I,1)=N:R(I,2)=1:I=I+1

INPUT’ * Total length of interior walls (ft.in)’’:N
R(I,1)=N:R(I,2)=1:I=I+1 ;

INPUT °‘How many degrees pitch to roof (20 . to. 45) ;N
R(I,1)=N:R(I,2)=1:I=I+1

CLS .

PRINT’ Floor’’ :PRINT

PRINT AS(7), ‘‘choices are:’’

PRINT ‘0 **;B$(0),’*3 *';B$(3),""4 **;BS(4)

CopeWorks Issue 21

19

N R N S e O R . § T Ty

920

930

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

INPUT’ ‘Number of your choice ‘‘;N
R(I,l)-N:R(I,2)=0:R(I,3)-3:R(I,4)-4:I-I+1
PRINT AS$(8), ‘‘choices are:’’

PRINT “'0 ‘*;B$(0),""7 “%:BS(7),7°8 “:BS(8)

INPUT’ ' Number of your choice ‘‘:N

R(I,1)=N:R(I,2)=0:R(I,3)=7:R(I,4)=8:I=I+1

PRINT A$(9), ‘‘choices are:’’

PRINT **0 **;B$(0),’’6 “‘;B$(6),"’'9 “*:BS$(9)
INPUT’ ' Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=0:R(I,3)=6:R(I,4)=9:I=I+1
PRINT A$(10), ‘‘choices are:’’

PRINT “‘10 ‘*:B$(10),7"11 “‘*;BS(11)
INPUT’ ‘Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=10:R(I,3)=11:I=I+1
PRINT AS$(11),’’choices are:’’

PRINT V10 YA:BS(10)., %11 YA:BSH1T)
INPUT’ ' Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=10:R(I,3)=11:I=I+1

CLS:PRINT’ 'Exterior walls’’ :PRINT
PRINT AS$(12), ‘‘choices are :’’

PRINT **0 **;B$(0),’"2 “‘;B$(2),""3 *“‘:BS(3)

INPUT’ ' Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=0:R(I,3)=2:R(I,4)=3:I=I+1
PRINT A$(13), ‘‘choices are: ‘‘

PRINT **0 **;B$(0),"*7 “*:B$(7),"’8 “*;B$(8)

INPUT’ ' Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=0:R(I,3)=7:R(I,4)=8:I=I+1
PRINT AS$(14), ‘‘choices are: ‘‘
PRINT " SY12 SNV BSIET2), = =13 YA BS(13)
INPUT’ ' Number of your choice ‘‘;N
IF N=0 THEN N=12
R(I,1)=N:R(I,2)=12:R(I,3)=13:I=I+1
PRINT A$(15), ‘‘choices are:’’
PRINT “VYI2T VB S (10 S NRABS (T3
INPUT’ ‘Number of your choice *‘‘:N
IF N=0 THEN N=12
R(I,1)=N:R(I,2)=12:R(I,3)=13:I=I+1
\

CLS:PRINT'‘Interior walls’’ :PRINT
PRINT A$(16),‘’choices are:’’

PRINT **0 **;B$(0),""2 “*;B$(2),’’3 ‘“;B$(3)

INPUT’ ‘Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=0:R(I,3)=2:R(I,4)=3:I=I+1
PRINT AS$(17),'’choices are:’’

PRINT *‘7 ““;B$(7),"’8 ‘‘;BS$(8)
INPUT’ ' Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=7:R(I,3)=8:I=I+1

20

‘::__-

Issue 21 CopeWonks

1410 CLS:PRINT’’Ceiling joists’’:PRINT

1420 PRINT A$(18),’’choices are:’’

1430 PRINT **0 ““;B$(0),’’2 *‘;B$(2),’’3 **;B$(3)
1440 INPUT’’Number of your choice ‘‘;N

1450 R(I,1)=N:R(I,2)=0:R(I,3)=2:R(I,4)=3:I=I+1

ﬂ 1460 PRINT A$(19),’’choices are:’’
1470 PRINT °“‘7 “Y‘:B$(7),7'8 ‘Y:B$(8)
| 1480 INPUT’’Number of your choice ‘‘;N

1490 R(I,1)=N:R(I,2)=7:R(I,3)=8:I=I+1
1500 PRINT AS$(20),’’choices are:’’
1510 PRINT ‘‘0 “‘;BS(0),°’5 VASBOAS) " 26 YVIBS(6), 79 MV:BS(9)
1520 INPUT’‘Number of your choice ‘‘;N
1530 R(I,1)-N:R(I,2)-0:R(I,3)-5:R(I,4)-6:R(I,5)=9:I=I+1
1540 *
1550 CLS:PRINT’’'The Roof’’ :PRINT
1560 PRINT A$(21),’’choices are:’'’
1570 PRINT **20 “‘;B$(20),*’21 YV BS (21)
1580 INPUT’’Number of your choice ‘‘;N
1590 R(I,1)=N:R(I,2)=20:R(I,3)=21:I=I+1
1600 PRINT AS$(22),’’choices are:’’
1610 PRINT *‘7 *‘;B$(7),"’8 ‘‘;BS$(8)
1620 INPUT’‘’Number of your choice ‘‘;N
@ 1630 R(I,1)=N:R(I,2)=7:R(I,3)=8:I=I+1
1640 PRINT AS$(23),’‘choices are:’’
1650 PRINT ‘‘10 ‘‘;B$(10),’’11 Yiv2BS(11)
1660 INPUT’’Number of your choice ‘‘;N
1670 R(I,1)=N:R(I,2)=10:R(I,3)=11:I=I+1
1680 PRINT AS$(24),' choices are:’’
1690 PRINT ‘*15 “‘:;B$(15),’’16 ‘‘;BS$(16)
1700 INPUT’’Number of your choice ‘‘;N
1710 R(I,1)=N:R(I,2)=15:R(I,3)=16:I=I+1
1720
1730 CLS:PRINT ‘‘Exterior sheathing’’ :PRINT
1740 PRINT A$(25),’’choices are:’’
1750 PRINT ‘5 ‘‘;B$(5),’’6 ‘*‘;:B$(6),’’9 *‘;:BS$(9)
1760 INPUT’‘Number of your choice ‘‘:N
1770 R(I,1)=N:R(I,2)=5:R(I,3)=6:R(I,4)=9:I=I+1
ﬁ 1780 PRINT A$(26),’’choices are:’’
3 1790 PRINT **10 “*:;B$(10),°°11 ‘*;B$(11)
l 1800 INPUT’’Number of your choice ‘‘:N
1810 R(I,1)=N:R(I,2)=10:R(I,3)=11:I=I+1
1820 PRINT A$(27),'’choices are:’’
1830 PRINT *%1§: YSeBS(1S5) " 217 M:BS(LT)
1840 INPUT’’Number of your choice ‘‘;N
1850 R(I,1)=N:R(I,2)=15:R(I,3)=17:I=I+1
1860 °
‘ 1870 CLS:PRINT’’Interior covering’?:PRINT
1880 PRINT AS$(28),’"choices are:’’
1890 PRINT ‘*‘*10 ‘‘;B$(10),’’11 **;BS$(11)

CooeWonrks Issue 21 21

1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360

2370
2380

INPUT’ * Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=10:R(I,3)=11:I=I+1
PRINT A$(29),'’choices are:’’

PRINT **18 “‘;B$(18),’’19 ‘‘;B$(19)
INPUT’ ‘ Number of your choice ‘‘;N
R(I,1)=N:R(I,2)=18:R(I,3)=19:I=I+1
GOTO 530

\

‘save specifications to disk routine
INPUT’ ‘Please name the disk file (8 chars or less)’’;FF$
OPEN ‘‘0’’,1,FF$
FOR I=1 TO 29

FOR J=1 TO 5

PRINT #1, R(I,J)

NEXT J
NEXT I
CLOSE 1
GOTO 530

\

‘load specifications from file routine
INPUT' ‘What file name do you want to load ‘‘;FF$
OPEN ‘‘I’’,1,FF$
FOR I=1 TO 29

IF EOF (1) THEN 2200

FOR J=1 TO 5

INPUT #1, R(I,J)

NEXT J
NEXT I
CLOSE 1
GOTO 530

A}

‘read the unit price file
OPEN ‘1%’ ,1,""PRICES"”
FOR I=1 TO 16

INPUT #1,P(I)
NEXT I
CLOSE 1
RETURN

Al

‘Enter new unit prices routine
CLS
FOR I=1 TO 16

PRINT C$(I);** **;D$(I);:PRINT’’ Enter price per ‘‘;ES$(I);:

INPUT P(I)
NEXT I

Al

22

Issue 21 CopeWonrks

| = ~geels

2390 OPEN ‘'0’’,1,’"PRICES"'
2400 FOR I=1 TO 16
2410 PRINT #1,P(I)
2420 NEXT I
2430 CLOSE 1
2440 GOTO 530
2450 ¢
2460 ‘edit the specifications routine
2470 °©
2480 CLS
2490 IF R(7,4)<>0 THEN 2520
2500 PRINT’’You must have input a file or new data to edit.’’
2510 PRINT’’press any key for main menu’’;:INPUT X:GOTO 530
2520 FOR I=1 TO 6
2530 PRINT AS (L) SRrR(I, 1)
2540 INPUT’ ' Change to, or enter to keep ‘‘;N$
2550 IF N$=’’’’' THEN ELSE R(I,1)=VAL(NS$)
2560 NEXT I
2570 FOR I=7 TO 29
2580 CLS
2590 PRINT TAB(10);A$(I)
2600 PRINT ‘‘(‘‘R(I,2)’’) ‘‘;B$(R(I,2))
(@ 2610 PRINT **(*‘R(I,3)’‘) “*:;B$(R(I,3))
| 2620 PRINT ‘“(‘‘R(I,4)’’) ‘‘;BS(R(I,4))
2630 PRINT ‘‘(‘‘R(I,5)’") ‘‘;B$(R(I,5))
2640 PRINT’ ’ You chose ‘‘;’’ (*‘R(I,1)’") ‘‘:;BS$(R(I,1))
2650 PRINT
2660 INPUT’ *Change to #, or enter to keep, or Q to quit”’’ ;XX$
2670 IF XX$=''Q’’ OR XX$='’q’’ THEN 2700
2680 IF XX$<>'’’’ THEN R(I,1)=VAL (XX$)
2690 NEXT I
2700 GOTO 530

2 120N

2720 ‘first, clear the m array then convert ft to inches
2730 *

2740 PRINT’’Calculating....’’

2750 FOR I=1 TO 20

2760 FOR J=1 TO 6

2770 M(I,J)=0

¢ 2780 NEXT J

2790 NEXT I

2800 °

2810 L=(INT(R(1,1))*12)+(R(1,1)-INT(R(1,1)))*10 ‘length in inches p

2820 w=(INT(R(2,1))*12)+(R(2,1)-INT(R(2,1)))*10 ‘width in inches

2830 H=(INT(R(3,1))*12)+(R(3,1)-INT(R(3,1)))*10 ‘wall height in
inches

O 2840 L1=(INT(R(4,1))*12)+(R(4,1)—INT(R(4,1)))*10 ‘excluded wall
length in inches

2850 L2-(INT(R(5,1))*12)+(R(5,1)—INT(R(5,1)))*10 ‘interior wall

CopeWorks Issue 21 23

R R e T e e e ———

length in inches

2860 IF R(1,1)=0 THEN 2910

2870 XA=((L1/12)*(H/12)) ‘area in sq ft of excluded wall

2880 FA=((L/12)*(W/12)) ‘floor (or ceiling) area in sq ft.

2890 LA=((L/12)*(H/12)) ‘area in sq ft of one long wall

2900 WA=((W/12)*(H/12)) ‘area in sq ft of one short wall

2910 IA=((L2/12)*(H/12)) ‘area of interior walls in sq ft.

2920

2930 ‘figure the roof angles and the roof and gable area

2940 ©

2950 IF R(21,1)=0 THEN 3080

2960 IF R(21,1)=20 THEN B=.5*W

2970 IF R(21,1)=21 THEN B=.5*L

2980 Q=TAN(R(6,1)/(180/3.1416))*B ‘height of roof triangle in
inches

2990 HY=SQR(Q"2+B"2) ‘hypotenuse, or 1/2 roof in
inches

3000 RF=HY+18:RF=INT (RF/12)+1 ‘rf is roof in ft. allow for 18 in
overhang

3010 GA=INT((Q/12)*(B/12))*2 ‘total gable area on both ends in
Sq.ft.

3020 RR=RF*((L+24)/12) ‘half the roof area in sq ft allow for
extra ft at ends

3030 RT=RR*2 ‘total roof area in sq ft.

3040 RX=2* (LA+WA)+GA-XA ‘* total outside area in sq ft excluding
roof

3050 °

3060 ‘find number and length of exterior studs

3070 °

3080 IF R(13,1)=7 THEN Cl=16 ELSE IF R(13,1)=8 THEN Cl=24

3090 L=L-(L1*.5)

3100 IF R(14,1)=12 THEN H1=INT(H-1.5) :P=P+1

3110 IF R(14,1)=13 THEN H1=INT (H-3) :P=P+2

3120 IF R(15,1)=12 THEN H1=INT (H-1.5) :P=P+4

3130 IF R(15,1)=13 THEN H1=INT (H-3) :P=P+8

3140 IF R(12,1)=0 THEN 3250

3150 SA=((L/C1)+3)*2:SB=((W/C1l)+3)*2

3160 TS=INT(SA+SB) ‘total studs

3170 FOR I=1 TO 25:IF FNM(H1) THEN H1=H1+1:NEXT I

3180 LS=H1/12 ‘length of studs in even 2 ft.

3190 H1=0

3200 IF R(12,1)=2 THEN M(1,2)=1:M(1,5)=1 ELSE IF R(12,1)=3 THEN
M(1,2)=2:M(1,5)=2

3210 M(1,1)=1:M(1,3)=LS:M(1,4)=TS:M(1,6)=1

3220 ©

3230 ‘find number and length of interior studs

3240 *©

3250 IF R(16,1)=0 THEN 3390

3260 IF R(14,1)=12 THEN H1=INT(H-1.5)

3270 IF R(14,1)=13 THEN H1=INT (H-3)

24 Issue 21 CooeWorks

lIlll-IlIIllllllllIIIlIIIlIIIIllllIIlllllIIIIIIlIIllIlIIIIIIIIIIIIIIIIIIIIIIII

3280
3290
3300
3310
3320
3330
3340

’ 3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460

3470
@ 3480

3490
3500
3510
3520
3530
3540
3550
3560
3570

3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
O 3710

3720
3730

IF R(15,1)=12 THEN H1=INT (H-1.5)

IF R(15,1)=13 THEN H1=INT (H-3)

IF R(17,1)=7 THEN Cl=16 ELSE IF R(17,1)=8 THEN Cl=24
SA=((L2/C1)+3) : TS=INT(SA) ‘ total studs

FOR I=1 TO 25:IF FNM(H1) THEN H1l=H1+1:NEXT I

1LS=H1/12 ‘length of studs in even 2 ft.

IF R(16,1)=2 THEN M(2,2)=1:M(2,5)=1 ELSE IF R(16,1)=3 THEN
M(2,5)=2:M(2,5)=2

M(2,1)=1:M(2,3)=LS:M(2,4)=TS:M(2,6)=1

‘find number and length of floor joists

IF R(7,1)=0 THEN 3510

IF R(8,1)=7 THEN Cl=16 ELSE IF R(8,1)=8 THEN Cl=24
SA=(L/C1)+3:TS=INT(SA) ' total joists

Wl=W

FOR I=1 TO 25:IF FNM(W1l) THEN Wl=W1+1l:NEXT I
LS=W1/12 ‘length of joists in even 2 ft.

W1l=0

IF R(7,1)=3 THEN M(3,2)=2:M(3,5)=2 ELSE IF R(7,1)=4 THEN M(3,
2)=3:M(3,5)=3
M(3,1)=1:M(3,3)=LS:M(3,4)=TS:M(3,6)=1

‘find number and length of ceiling joists

IF R(18,1)=0 THEN 3620

IF R(18,1)=7 THEN Cl=16 ELSE IF R(18,1)=8 THEN Cl=24
SA=(L/C1)+3:TS=INT(SA) ‘ total ceiling joists

Wl=W

FOR I=1 TO 25:IF FNM(W1l) THEN W1=W1l+1l:NEXT I

LS=W1/12 ‘length of ceiling joists in even 2 £t

IF R(18,1)=2 THEN M(4,2)=1:M(4,5)=1 ELSE IF R(18,1)=3 THEN
M(4,2)=2:M(4,5)=2

M(4,1)=1:M(4,3)=LS:M(4,4)=TS:M(4,6)=1

‘find number and length of plate studs for exterior walls
IF R(1,1)=0 OR R(2,1)=0 THEN 3740

Pl=((L+W)*2)-L1 ‘one perimeter less excluded walls

IF P=5 THEN P1=P1%*2

IF P=9 OR P=6 THEN P1=P1*3

IF P=10 THEN P1=P1*4

TS=INT ((P1/144)+1)

LS=12

M(5,1)-1:M(5,2)=M(1,2):M(5,3)-LS:M(5,4)=TS:M(5,6)-1
M(5,5)=M(1,2)

\

‘find number and length of plate studs for interior walls

Al

CopeWorks Issue 21

25

3740 IF R(16,1)=0 THEN 3850

3750 IF P=5 THEN P1=L2%*2

3760 IF P=6 OR P=9 THEN P1=L2*3

3770 IF P=10 THEN P1=L2*4

3780 TS=INT((P1/144)+1)

3790 Ls=12

3800 M(6,1)=1:M(6,2)=M(2,2):M(6,3)=LS:M(6,4)=TS:M(6,6)=1

3810 M(6,5)=M(2,2)

3820 ¢

3830 ‘find sub-floor sheathing

3840

3850 IF R(9,1)=0 THEN 4050

3860 IF R(9,1)=6 THEN TS=INT(FA/32)+1:M(7,1)=7:M(7,2)=7:M(7,4)=TS:
M(7,5)=T7:M(7,6)="7

3870 IF R(9,1)=9 THEN TS=INT(FA*2.3):M(7,1)=5:M(7,2)=5:M(7,4)=TS:
M(7,5)=5:M(7,6)=5

3880 °

3890 ‘find floor felt paper needed

3900 °

3910 IF R(10,1)=0 OR R(10,1)=11 THEN 3970

3920 TS=INT(FA/500)+1

3930 M(8,1)=11:M(8,2)=11:M(8,4)=TS:M(8,5)=11:M(8,6)=11

3940 °

3950 ‘find floor insulation needed

3960 °

3970 IF R(11,1)=0 OR R(11,1)=11 THEN 4050

3980 TS=INT (FA*.9)

3990 IF R(8,1)=7 THEN M(9,2)=12:M(9,5)=12:M(9, 6)=12

4000 IF R(8,1)=8 THEN M(9,2)=13:M(9,5)=13:M(9,6)=13

4010 M(9,1)=12:M(9,4)=TS

4020 °

4030 ‘find ceiling joist sheathing (top of joists)

4040 °

4050 IF R(20,1)=0 THEN 4120

4060 IF R(20,1)=5 OR R(20,1)=6 THEN TS=INT(FA/32)+1:M(10,4)=TS:
M(10,6)=8

4070 IF R(20,1)=9 THEN TS=INT(FA*2.3):M(10,1)=5:M(10,2)=5:M(10,
4)=TS:M(10,5)=5:M(10,6)=5

4080 IF R(20,1)=5 THEN M(10,1)=8:M(10,2)=8:M(10,5)=8:M(10, 6) =8

2?55 IF R(20,1)=6 THEN M(10,1)=7:M(10,2)=7:M(10,5)=7:M(10

’

4090

4100 ‘find number of preformed rafters needed
4110 °

4120 IF R(22,1)=0 THEN 4200

4130 IF R(22,1)=7 THEN Cl1=16 ELSE IF R(22,1)=8 THEN C1=24

4140 IF R(21,1)=20 THEN M(11,4)-INT(((L+24)/C1)+2):M(ll
3)=INT((W/12)+3) '

4150 IF R(21,1)=21 THEN M(11,4)=INT(((W+24)/C1)+2) :M(11,

—

26 Issue 21 CooeWoRrKs

f
¢
S

3)=INT((L/12)+3)

4160 M(11,1)=14:M(11,5)=14:M(11,6)=14

4170

4180 ‘find amount of roof felt paper needed

4190 °

4200 IF R(23,1)=0 OR R(23,1)=11 THEN 4260

4210 TS=INT(RT/500)+1

4220 M(12,1)=11:M(12,2)=11:M(12,4)=TS:M(12,5)=11:M(12,6)=11

4230 °

4240 ‘find the amount of finish roof cover

4250 °

4260 IF R(24,1)=0 THEN 4380

4270 IF R(24,1)=16 THEN 4300

4280 IF R(24,1)=15 THEN M(13,1)=4:M(13,2)=4:M(13,4)=INT(RT*1.2):
M(13,5)=4:M(13,6)=4

4290 M(14,1)=15:M(14,4)=INT(RT/25)+1:M(14,5)=15:M(14,6)=15:GOTO
4380

4300 IF R(24,1)=16 THEN M(14,1)=16:M(14,4)=INT(RT/100) :M(14,5)=16:
M(14,6)=16

4310 IF R(25,1)=5 OR R(25,1)=6 THEN M(13,4)=INT(RT/32)+1:M(13,1)=7:
M(13,6)=7

4320 IF R(25,1)=9 THEN M(13,4)=INT(RT*2.3):M(13,1)=5:M(13,5)=5:

@ M(13,6)=5

: 4330 IF R(25,1)=5 THEN M(13,1)=8:M(13,2)=8:M(13,5)=8

4340 IF R(25,1)=6 THEN M(13,1)=7:M(13,2)=7:M(13,5)=7

4350 °

4360 ‘find exterior sheathing needed

4370 °

4380 IF R(25,1)=0 THEN 4450

4390 IF R(25,1)=5 THEN M(15,1)=8:M(15,2)=8:M(15,4)=INT(RX/32)+1:
M(15,5)=8:M(15,6)=8

4400 IF R(25,1)=6 THEN M(15,1)=7:M(15,2)=7:M(15,4)=INT(RX/32)+1:
M(15,5)=7:M(15,6)=7

4410 IF R(25,1)=9 THEN M(15,1)=5:M(15,2)=5:M(15,4)=INT(RX*2.3):
M(15,5)=5:M(15,6)=5

4420

4430 ‘find exterior felt paper needed

4440

4450 IF R(26,1)=0 OR R(26,1)=11 THEN 4500

4460 M(16,1)=11:M(16,2)=11:M(16,4)=INT(RX/500)+1:M(16,5)=11:M(16,
6)=11

4470 °

4480 ‘find exterior siding needed

4490

4500 IF R(27,1)=0 THEN 4560

4510 IF R(27,1)=15 THEN M(17,1)=15:M(17,4)=INT (RX/25) :M(17,5)=15:

O M(17,6)=15
: 4520 IF R(27,1)=17 THEN M(17,1)=6:M(17,2)=6:M(17,4)=INT(RX*2.3):
M(17,5)=6:M(17,6)=6

CooeWorxs Issue 21 27

IIlllllIIIlI-IIIlIIIllI-IlIII-IllI-llIIIllIII-llllllIIlIIIIIIIIIIIIIIIIIIIIIII-

4530

4540 ‘find insulation for ext walls and ceiling

4550 *°

4560 IF R(28,1)=0 OR R(28,1)=11 THEN 4640

4570 M(18,1)=13:M(18,2)=13:M(18,4)-INT(2*(LA+WA)-XA):M(18,5)-13:
M(18,6)=13

4580 IF R(12,1)=7 THEN M(18,1)-12:M(18,2)-12:M(18,5)-12:M(18,6)-12

4590 M(19,1)=13:M(19,2)=13:M(19,4)=INT(FA*.9):M(19,S)-13:M(19,

6)=13
4600 IF R(19,1)=7 THEN M(19,1)=12:M(19,2)-12:M(19,5)-12:M(19,6)-12
4610 °
4620 ‘find the amount of drywall needed
4630 °

4640 IF R(29,1)=0 THEN 4730

4650 T1=(2* (LA+WA)-XA)

4660 T2=2*IA

4670 TS=T1+T2+FA

4680 IF R(29,1)=18 THEN M(20,1)-9:M(20,2)-9:M(20,4)-INT(TS/32)+1:
M(20,5)=9:M(20,6)=9

4690 IF R(29,1)=19 THEN M(20,1)=10:M(20,2)=10:M(20,4)=INT(TS/32)+1:

M(20,5)=10:M(20,6)=10

4700 °

4710 ‘combine identical items in the list O

4720 *®

4730 FOR I=1 TO 20

4740 FOR J=I+1 TO 19

4750 IF M(I,1)=M(J,1l) AND M(I,2)=M(J,2) AND M(I,3)=M(J,3) THEN

M(J,4)=M(J,4)+M(I,4) :M(I,1)=0

4760 NEXT J

4770 NEXT I

4780 *

4790 ‘sort the list into ascending order by item

4800 °

4810 FOR I=1 TO 19

4820 L=I+1

4830 IF C$(M(I,1))=<C$(M(L,1)) THEN 4910

4840 SWAP M(I,1),M(L,1)

4850 SWAP M(I,2),M(L,2)

4860 SWAP M(I,3),M(L,3)

4870 SWAP M(I,4),M(L,4)

4880 SWAP M(I,5),M(L,5)

4890 SWAP M(I,6),M(L,6)

4900 F=1

4910 NEXT I

4920 IF F=1 THEN F=0:GOTO 4810

4930 *°

4940 * print out the results on the screen '\

4950 °

4960 CLS

= Issue 21 CopeWoRKS

— 4____--lll‘

-ﬂ.------r——————————————————————————————__________________

-IllllllI-ll.l-IIl-Ill-I-IIlII-II-II-lIII-I-Il-I-II--IIIIIIII-I-IIIIII

4970
4980
4990
5000

5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240

5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440

TL=0
PRINT’ ‘Materials and prices for Project: ‘‘;FF$;TAB(60);DT$
PRINT STRINGS (70,45)
PRINT"Item";TAB(22);"Size";TAB(34);"Length";TAB(42);"Qty";
TAB(48);"Price";TAB(SG);”Per”;TAB(64);"Total"
PRINT STRINGS (70,45)
FOR I=1 TO 20
IF C$(M(I,1))="""" THEN 5140
PRINT C$(M(I,1));TAB(22);
PRINT D$(M(I,2));TAB(34);
PRINT M(I,3);TAB(42):;
PRINT M(I,4);TAB(48):
PRINT P(M(I,5)):;TAB(56):
PRINT ES$(M(I,6)):TAB(62);
ST=M(I,4)*P(M(I,5))
IF CS(M(I,1))="’stud’’ THEN ST=M(I,3)*M(I,4)*P(M(I,5))
PRINT USING *“‘##, ###.##"';ST
TL=TL+ST
NEXT I
PRINT:PRINT TAB(51); ‘‘Total is ‘‘;USING CASHEH, #EFLEHT S TL
INPUT’ ‘Do you want hardcopy of this (y/n) "’ ;XX$
IF XX$='’'N’’ OR XX$=''n’’ THEN 530

\

‘printer output goes here
TL=0
LPRINT’ ’Prices and materials for Project: \V;FF$;TAB(60) ;DTS

LPRINT STRINGS (70,45)

LPRINT"Item";TAB(22);"Size";TAB(34);"Length";TAB(42);”Qty";

TAB(48);"Price";TAB(SG);"Per”;TAB(64);"Total"
LPRINT STRINGS(70,45)
FOR I=1 TO 20
IF CS(M(I,1))=''’' THEN 5380
LPRINT C$(M(I,1)):TAB(22);
LPRINT DS (M(I,2)):TAB(34);
LPRINT M(I,3);TAB(42):
LPRINT M(I,4);TAB(48):
LPRINT P (M(I,5)):TAB(56):
LPRINT ES(M(I,G));TAB(62);
ST=M (I, 4)*P(M(I,S))
IF CS(M(I,1))="'stud"’ THEN ST=M(I,3)*M(I,4)*P(M(I,5))
LPRINT USING ‘‘##, ###.##' ;ST
TL=TL+ST
NEXT I
LPRINT’’ *‘:LPRINT TAB(51): ‘\Total is ‘';USING MISEEE, FEFLHE T TL
LPRINT CHRS$(12) ' give a printer page eject
GOTO 530

Al

‘edit the prices routine

A)

CooeWonks Issue 21

29

5450 CLS:PRINT TAB(15):’‘Change Unit Prices

5460 FOR I=1 TO 16

5470 PRINT I;’’ “*;C$(I);TAB(26);D$(I);TAB(38);’' price per '%;
TAB (48) ;ES$(I);TAB(56) ;P (I)

5480 NEXT I

5490 PRINT

5500 INPUT’’Number of item to change is (or 0 for none) *';XX

5510 IF XX=0 THEN 2390

5520 INPUT’‘Change price to '‘;XY

5530 P (XX)=XY

5540 INPUT’’Change more prices (y/n)’’;XX$

5550 IF XXS$='’Y’’ OR XX$=''y’’ THEN 5500 ELSE 2390

5560 °

5570 ‘print out the specifications on the printer routine

5580 **

5590 LPRINT ‘‘Project: ‘‘;FF$ TAB(30);’’Specifications *‘‘;TAB(60) ;DTS

5600 LPRINT STRINGS (70,45)

5610 FOR I=1 TO 6

5620 LPRINT AS$(I):;TAB(30);R(I,1)

5630 NEXT I

5640 FOR I=7 TO 29

5650 LPRINT AS(I);TAB(30);BS(R(I,1))

5660 NEXT I

5670 LPRINT CHRS$(12)

5680 GOTO 530

5690 °

5700 ‘error trap

5710 IF ERR <>53 THEN ON ERROR GOTO 0

5720 ‘IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0 ‘BASIC prior to 5.0

5730 IF XX<>3 THEN HS$="' <-———ceeeee- DO THIS FIRST’’ :GOTO 530

5740 IF XX=3 THEN PRINT’‘’There is no file called ‘‘;FF$

5750 INPUT’’Press ENTER to continue ‘‘;XX:GOTO 530

5760 END ‘of program

Changes for Tandy Model I/III

Changed->160 CLEAR 5000 ' use only if you need to clear string space.
Changed->170 DIM
R(30,5)'A$(30),B$(22),C$(20).D$(20),E$(20),L(20),M(21,6).P(20)

Changed->180 DEF FNM(M)=(INT (M-24) *INT (M/24))<>0
Changed->2990 HY=SQR(Q[2)+(B[2)

Changed->4840 T1=M(I,1) :M(I,1)=M(L,1):M(L,1)=T1
Changed->4850 T1=M(I,2) :M(I,2)=M(L,2):M(L,2)=T1
Changed->4860 T1=M(I,3) :M(I,3)=M(L,3):M(L,3)=T1
Changed->4870 T1=M(I,4) :M(I,4)=M(L,4):M(L,4)=T1
Changed->4880 T1-M(I,5):M(I,5)=M(L,5);M(L,5)_T1
Changed->4890 T1=M(I,6) :M(I,6)=M(L,6) :M(L, 6)=T1
Changed->5710 ‘IF ERR <>53 THEN ON ERROR GOTO 0
Changed->5720 IF (ERR/2)+l <> 54 THEN ON ERROR GOTO 0

‘BASIC prior to 5.0

30 Issue 21 CopeWoRKS

llIIIIIIlIlIIlllllIIlIIIIIIIIIIIIIIIIIIIlIIIIlllIIIIIIlIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIII

drywall

5/8 in.drywall

Materials and prices for Project: garage 01-01-1980

Item Size Length (Qty Price Per Total

board 1x3 0 936 X7 £es 159.12

board 1x6 0 2001 .21 ft. 420.21

drywall 5/8"x4'x8" 0 48 3.05 panel 146.40

felt paper 36"x160" 0 3 8.95 roll 26.85

insulation 15" 0 432 .19 sq.ft. 82.08

insulation 23" 0 3 k< 5 sq.ft. 249.92

plywood 3/4"x4' x8' 0 16 23.5 panel 376.00

plvwood 1/2"x4'x8"' 0 16 2305 panel 344.00

preformed rafter 23 15 32.8 each 492.00

siding 1x6 0 2001 .29 S o 580.29

stud 2x4 8 91 .21 fro 152.88

stud 2x8 20 21 .38 s 2 X 159.60

stud 2x4 20 21 A £Ets 88.20

stud 2x4 12 37 .21 ;135S 93.24

wood shingle 0 32 13.4 pack 428.80

Total is $§ 3,799.59

Project: garage Specifications
Length, £t,48 24 Below is a dump of the file called
:;?Ehhét e P :;0 "Prices." To the left are the specifi-
length excluded wall ft.in 0 cations for an mm garage.
total length interior walls 20 The figure above is the final output
roof pitch degrees 40 for the garage. You can use these
floor joists 2x8 same figures to check that you have
floor joist centers 16 in. entered the program correctly. You
sub-floor sheathing 3/4 in.ply should get the same answers as
floor felt paper yes shown here.
floor insulation yes
exterior studs 2x4
ext. studs on center 16 in. .21
top plates two 32
bottom plates two .38
interior studs 2x4 .17
int.studs on center 24 in. .21
ceiling joists 2x4 .29
ceiling joists on center 24 in. 23.5
ceiling joist sheathing 1/2 in.ply 21.5
roof spans width 2.86
rafters on center 24 in. 3.05
roof felt paper no 8.95
roof finish cover wood shingle -19
ext sheathing type 1x6 board .22
exterior felt paper yes 32.8
siding 1x6 siding 13.4
insulate outside walls yes 24.49

CopeWonrks Issue 21

31

Trust.Bas

computerize your loan payments booklet

Trust.Bas is another reader-requested pro-
gram. It takes the place of that little green (or
blue) booklet that borrowers and lenders send
back and forth to each other with the payments
on a loan. So, if you have the booklet already,
what’s the use of this program?

The program makes the calculations neces-
sary to determine how much of a payment is
going to interest and how much to the principal.
It also lets you pick a portion of the payment
history and gives totals only for that portion.
This is handy at the end of the year if you are the
lender, because you can then give the borrower a
statement of what he paid that year. It's some-
thing he will need for hisincome tax preparation.

The program allows any amount of payment
on a loan and figures it correctly. And, it even
uses negative amortization if the payment is
insufficient to cover the interest. That is, it adds
the difference to the principal! This is the type of
thing that was going on back in the late '70s,
when so many farms were going belly-up. It’s
enough to warm the cold heart of any slum lord.

One of the problems that many computer
programs will be running into shortly is making
the gap between the year 1999 and the year
2000. To get around this problem, the program
uses a date format that is slightly unconven-
tional. The date is entered as YYYYMMDD. It is

Staff Project. This program was written at the request of Mr. Richard L.
Wright, of Buena Park, California. It takes the place of that little book that is sent
back and forth between lender and borrower. In addition, it gives you selective
printouts for any period of time, with totals.

also a double precision number in the program.
This lets you find dates greater than and less
than a given date.

The program will work with as many files
(loans) as you wish. The files are sequential, and
contain the initial principal amount and the
interest rate, along with the record of payments
made. Provision is made to print the payment
history on the screen or on a line printer. When
on the line printer, provision is made for paging
the output into 36 payments per page (three
years worth if payments are made monthly.)

When the program asks for starting and end-
ing dates, those dates are inclusive. If you don’t
remember what dates are in the file and want to
see them all you can enter 00000000 for a start-
ing date and 99999999 for an ending date. The
size of the file is adjusted so that each file can
hold 30 years of monthly payments. This should
cover most loans.

Program Details

The program starts with initialization in line
150. In line 160 we clear some string space for
those machines using BASIC prior to version
5.0. The rest of us can leave this line remarkefi«
In line 170 we dimension the variables that Wﬂl
hold the information on each payment. Here 18
where we adjust the size of the file to 30 years

32

/
lssue 21 CopeWoRKS

3 |

(360 monthly payments). Line 180 is just a
“calibration” line, so that you can get the spacing
of the following lines properly. Since F1$
through F4$ will be used several times in the
program, and at various places in the program,
we set them up as formatted strings here, in
lines 190 to 220. Putting them all in one nice
chunk like this makes it easy to adjust the
spacing should you want to change it. The last
line of the initialization section, line 230, sets our
error trap. The only error we will be trapping for
is the “file not found” error.

The section of code from 250 to 340 loads the
particular file we wish to work with. If the file
does not yet exist, the error trap will be sprung
and we will go toline 1150 to create the file. Let’s
go there now and see how a file is initialized.

If your BASIC is prior to version 5.0 you
should remark line 1150 and un-remark line
1160. These lines “reset” the error trap so that
normal errors will still show properly. Line 1180
tells you that the file you requested does not yet
exist and line 1190 asks if you want to create it.
Ifno, we just end the program so you can start all
over. Otherwise, we open the filein line 1210 and
then, in line 1220, ask what the beginning bal-
ance is. Then we ask for the interest rate in line
1240. Line 1250 prints these values to the file as
BA and IR, respectively. We then close the file in
1260 and go to line 270. Let’s go back there now.

In line 270 we open the file for input and im-
mediately input the twovalues, BA and IR. Then
the loop between 290 and 320 reads in (if there is
any) the data. D#(I) is the date, P(I) is the
payment amount, IA(I) is the interest portion of
the payment, PI(I) is the principal portion of the
payment and B(I) is the new balance amount. In
line 330 we let N1 equal the number of array
items in the file. We will need to know that
number later on when we read the array. Line
340 simply closes the file, because we are now
done with the file and all the data is in the
appropriate arrays.

Lines 360 to 490 are the heading and the
menu options that will print on the screen. We

use a simple ON XX GOTO statement in line 480
to take us to the appropriate sections of the pro-
gram depending on our menu choice. Line 490 is
there so that if the number we choose is less than
one or more than four, the question will auto-
matically be asked again.

The “quit” routine is at line 520. It simply
closes any open files, clears the screen and ends
the program, returning us to the BASIC ready
prompt.

The “enter payments” routine is from 540 to
680. This is also where we figure out how much
of the payment is interest and how much goes off
the principal. First of all, line 550 asks for the
date of the payment, and line 560 asks for the
amount. These become D# and P, respectively.
Now we have to worry about the very first
payment on a loan because all the information
we have at that point is the balance and the
interest rate. We can check array element B(1) to
see if it is zero to tell us if this is the very first
payment. We do just that in line 580. Ifit is then
T1 (the amount of interest in the payment) is
calculated by taking the balance times the inter-
est rate and dividing that by 12 to get the
monthly amount. Ifitis not the first payment we
have to use the last ending balance, so the ELSE
portion of line 580 takes the last balance times
the interest rate and divides by 12.

In line 590 we take care of the case where the
payment is not enough to cover the interest
portion. Here, we apply the whole payment
amount to the interest portion, nothing to the
principal payment portion, and add the differ-
ence between the interest amount and the pay-
ment to the principal balance! Awful, no?

In line 610 we again look to see if this is the
very first payment and again make adjustments
appropriately. Next we print the format strings
we established early in the program, F1$ and
F2$. Then, using the format string F3$, we print
the date, the payment amount, the amount
going to interest, the amount going off the prin-
cipal and the new balance amount. Now we have
to add these values to the array (up till now they

CooeWorks Issue 21

33

were just printed on the screen). So, in line 650
we “bump” the array count by one to make a new
place for the latest information and then in line
660 we put the information into the new array
position (N1 plus one).

Ifthere are more entries to make, line 680 will
take us back to line 550 where we can enter
more. Otherwise, normal program flow will take
us to line 700, where we automatically save the
freshly updated array to the disk file. Having
done this, line 770 takes us back to line 360 to
display the heading and menu options again.
One interesting thing to note in saving the file
(or readingit, for that matter)is that the file does
not have tobeidentical items. Note that the first
two items in the file are BA and IR, and then the
array items follow. If you do this, you must
always be sure to read in those two items first
and when you save, save them first. You can
actually put a variety of different sized items in
a file this way.

The code from line 790 to 960 lets you select a
range of entries to display on the screen and get
totals for that portion. This is where you can get
totals for a given year, for example. Whatever
portion of the file you specify, by dates, will be
totaled by this section of code. You are asked for
the starting and ending dates. Remember that
these dates are inclusive. We again use our
format strings, F1$ and F2$ to print the heading
on the screen, and then loop through the array
pulling out dates that fit our specifications. In
line 860 we set S1, S2 and S3 to zero, since they
will be used as accumulating registers to keep a
running track of the totals. Those totals will be
for payment, interest amount and payment on
principal amount. We print the entries selected
on the screen using another of our format
strings, F3$, in line 890. When all selected en-
tries have been printed, another format string,
F4$, will print our totals. The input statement in
line 950 simply stops the program at this point so
we can inspect our results before we continue.
When we do continue, program flow takes us
back to the main menu.

The last section of code from 980 to 1120 is
almost a repeat of the section we just went

through. This time, however, it sends output to
the printer. In addition, it provides for paging
the output, 36 entries per page with aheadingon
each page. Like the previous section, running
totals are kept, again using S1, S2 and S3, which
are set to zero again in line 1000. Also in line
1000, we set the page counter, PA, to zero and
the line counter, CT, as well. These counters will
be used to tell us when a page is full (CT) and the
page number we are on (PA). Note that we are
not using a For...Next loop here as we did in the
screen print section. Sometimesit is easier touse
a home made loop in situations like this one.
Jumping into and out of it is a little more grace-
ful. The LPRINT CHR$(12)in line 11101s a page
eject command to the printer, so that we can
index to the next page. It appears again in 1120.
The page eject in line 1110 is there so that the
page will eject when we are done printing the
report. The one in line 1120 is there to advance
us to the next page during the printing of the
report. Our loop is incremented in line 1110,
where I=1+1 appears as the first item in that
line. Our loop actually operates between lines
1080 and 1120. Note in line 1120 that if the line
count is equal or less than 36 (the number of
items to print on one page) we go back to line
1080 to get more items. Once we exceed 36 lines
(items) on the page we advance the page counter
by one, set the line counter (CT) back to one,
issue a page eject and goback toline 1030 so that
we can print the heading on the new page. This
is why a For...Next would have been a bit cum-
bersome in this case.

Operating Notes

No provision has been made to prevent scroll-
ing on the screen. The assumption being that
you probably don't want more than one screen-
full at a time there anyway. The printed output
will provide neatly paged entries, however. The
program does not have an edit mode. You only
make two entries, the date and the payment
amount. The rest of the information is calcula
by the program itself. If you make a mistake in
the payment amount, it will reflect errors in
the following entries. For that reason, enter your
amounts carefully. The data file created by this

34

‘/
Issue 21 CooeWoRKS

e

program can be called up and edited with any
text editor, since it is nothing more than a pure
ASCII file. At any time during the life of the loan
that a balloon payment is called for, the “balance
unpaid” amount will be the balloon payment

give the name of the file you wish to use. This is
possible because we have included the interest
rate and beginning balance in the data file itself,
instead of hard coding them into the program
structure.

amount.

You can use this program if you are a borrower
or alender. We use it to check up on the lender of
our own loans to make sure that each paymentis
being credited properly by the lender.

You can have as many data files (loans) as you
wish with this program. To get from one to
another, you must exit and type “RUN” and then

Trust.Bas listing for MS DOS and
Tandy Models II and IV, Tandy

Model I and III changes follow listing.

100 REM * Trust.Bas * payments on a deed of trust
110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 voice (206) 475-2356 300/1200 modem

‘ 130 REM * (c)1989 80-NW Publishing Inc. & placed in public domain.
140 *
150 ‘Initialization
160 ‘CLEAR 2000 * use only with BASIC prior to ver. 5.0
170 DIM D#(360),P(360),IA(360),PI(360),B(360)
180 ‘012345678901234567890123456789012345678901234567890123456789
190 F1$='’'Date of Amount Credited on Balance
200 F2$=''Payment Paid Interest Principal Unpaid
210 F3S=""#4###444 #4444 S S SN 2 #H4# . #H FHEHEHF . HF
220 F4S="" SSH, #EHEH.#E SSH, HEEEHH SS#, Hi#E.#E
230 ON ERROR GOTO 1150
240 °
250 ‘load the data file, if it doesn’t exist, make it
260 INPUT’‘What filename do you wish to work with VV;FF$
270 OPEN ‘‘1’’,1,FF$
280 INPUT #1, BA,IR
290 FOR I=1 TO 361 '
300 IF EOF (1) THEN 330 f
310 INPUT #1, D#(I),P(I),IA(I),PI(I),B(I)
320 NEXT I
330 Nl=I-1
340 CLOSE 1
350 °
360 CLS

. 370 PRINT STRINGS (22,45):’’ The CodeWorks vV : STRINGS (23, 45)
380 PRINT’’ RECORD OF PA YMENTS PROGRA M
390 PRINT’’ Records payment on a Deed of Trust

35

CooeWonks Issue 21

400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

PRINT STRINGS (60,45)
PRINT

PRINT TAB(15):’’1
PRINT TAB(15);""2
PRINT TAB(15):"’3

Enter payments
Print history of payments
Hardcopy history of payments

PRINT TAB(15);’’4 - Quit

PRINT

INPUT'’ Number of your choice '';XX
ON XX GOTO 540,800,990,520

GOTO 470

‘quit routine

CLOSE:CLS:END

CLS

INPUT’ 'Date of payment (YYYYMMDD) *‘‘;D#
INPUT'’ ' Amount of payment SV
PRINT

IF B(1)=0 THEN T1=(BA*IR)/12 ELSE T1=(B(N1) *IR) /12

IF P<T1 THEN T3=B(N1l)+(T1-P):T2=0:T1=P:GOTO 620
T2=P-T1
IF B(1)=0 THEN T3=BA-T2 ELSE T3=B(N1)-T2
PRINT F1$
PRINT F2$
PRINT USING F3$;D#;P;T1;T2;T3
N1=N1+1 i
D# (N1)=D#:P(N1)=P:IA(N1)=T1:PI(N1)=T2:B(N1)=T3
INPUT’’Any more payments .to record (y/n)’’;XX$
IF XX$=’’Y’’ OR XX$='’y’’ THEN 550
‘save the updated file
OPEN’’0O’’,1,FF$

PRINT #1,BA,IR

FOR I=1 TO N1

PRINT #1,D#(I);P(I);IA(I);PI(I):B(I)

NEXT I
CLOSE 1
GOTO 360

‘print payment history on screen
CLS
INPUT’ ' Starting date (YYYYMMDD)’’;D1l#
INPUT’ ‘to ending date (YYYYMMDD)’’;D2#
PRINT F1$
PRINT F2$
PRINT
S1=0:5S2=0:S3=0
FOR I=1 TO N1
IF D#(I)<D1# OR D#(I)>D2# THEN 910

36

_——____—_——‘
Issue 21 CopeWoRKS

¢

890 PRINT USING F3$;D#(I);P(I);IA(I);PI(I);B(I)
900 S1=S1+P (I) :S2=S2+IA(I) :S3=S3+PI(I)

910 NEXT I

920 PRINT

930 PRINT USING F4$;S1;S2;S3

940 PRINT

950 INPUT’’press enter to continue’’ ;XX

960 GOTO 360

970 *

980 ‘make hardcopy of payment history and page it
990 CLS

1000 PA=1:I=1:S1=0:S2=0:53=0:CT=1

1010 INPUT’’Starting date (YYYYMMDD)'’’;D1l#

1020 INPUT’‘to ending date (YYYYMMDD)’’;D2#

1030 LPRINT FF$;TAB(60);’"Page ‘‘;PA

1040 LPRINT’’ ‘!

1050 LPRINT F1$

1060 LPRINT F2$

1070 LPRINT’‘" !

1080 IF D#(I)<D1# OR D#(I)>D2# THEN 1110

1090 LPRINT USING F3$;D#(I);P(I);IA(I);PI(I);B(I)
1100 S1=S1+4P(I) :S2=S2+IA(I):S3=S3+PI(I):CT=CT+1

. 1110 I=I+1:IF I>N1 THEN LPRINT’’ *‘:LPRINT USING F4$;S1;S2;S3:LPRINT

CHR$ (12) :GOTO 360
1120 IF CT<=36 THEN 1080 ELSE PA=PA+1:CT=1:LPRINT CHRS$ (12) :GOTO
1030
1530 2
1140 ‘error trap for file not found
1150 IF ERR <>53 THEN ON ERROR GOTO 0
1160 ‘IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0
1170 CLS
1180 PRINT’’That file does not exist yet.
1190 INPUT’’Do you wish to create it (y/n)’’;XX$
1200 IF XXS$='’N’’ OR XX$='’n’’ THEN 520 ' to close, clear and END
1210 OPEN’’O’’,1,FF$
1220 INPUT’ What is the beginning balance '‘;BA
1230 PRINT’ ‘What is the interest rate.’’
1240 INPUT’ ’enter as a decimal, like .085";IR
1250 PRINT #1, BA,IR
1260 CLOSE 1
1270 GOTO 270
1280 END ‘of program

Change lines for Tandy I and III

Changed->160 CLEAR 2000 * use only with BASIC prior to ver. 5.0

Changed->1150 ‘IF ERR <>53 THEN ON ERROR GOTO 0
Changed->1160 IF (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0

b

CooeWorks Issue 21

37

e

Editor's Notes, from page 2

Souvenir was too clutzy. It turns out that School-
book is just a little heavier than Times Roman,
but not so overpowering as Bookman. I think
we'll keep it for a while. Aside from that, School-
book’s italics stand out a lot better than in any of
the other typefaces we have available. And just
in case you are interested in the difference, our
listings are all done in 11 point Courier. We use
that because Courier is a mono-spaced face,
which means that it prints 10 characters to the
inch like a typewriter. If we didn’t do that, we
would lose the spacing in the listing between
quotes, for example. As you can see, there’s more
going onin publishing a magazine than selecting
the editorial content.

Ever since we started with the NFL Oracle,
back in 1986, we have been keeping track of how
well it does. So far, this year, it is way ahead of
what it did in previous years. Even though there
are still two regular season games to be played
as I write this, NFL88 is picking at 66 percent!
Now I suppose after that boasting, it will die on
us for the last two weeks of the season. What it
really says, though, is that the teams are playing
at just about their calculated strengths, in spite
of an occasional upset. That'’s good, because it
will up our averages for the year and also give us
abetter chance at picking the post season games
and the Super Bowl with Playoff.Bas. This year,
we will be putting the week 16 statistics on the
download so you can use Playoff.Bas. In prior
years, of course, we only needed the stats for the
first 15 weeks. It's interesting to note that with
only two weeks of regular season play left, there
are several divisional championships still up for

grabs (ours included.) Of course, by the time you
read this, we will all know a little more about it
all. But right now, I'd say that the Super Bowl
will be played between the Vikings and the Bills.
Oh well, I've been wrong many times before.

Did you know that anything you can print on
the screen or printer can also be printed to a disk
file? Including tabs, print USING and all the
rest? We found that out when we tried to capture
an output screen so that we could import it into
PageMaker and put it directly into the issue. We
couldn’t think of a better way to do it, so we just
went into the program and wherever it prints
out, we added an identical line that instead of
just saying PRINT, said PRINT #1,. Naturally,
you open a disk file first so that you can input all
that information. After the program has printed
all its stuff on the screen and into the disk file,
you close the file. Then, you can load the file with
a text editor and clean it up if necessary, and
then import it directly into the desktop pub-
lisher. If you choose 10 point Courier for a type
face, it will even space out correctly in the type-
setting program. Well, it isn’t 100 percent yet,
but you can see some of the results we got on
page 31 of this issue. Our efforts are to make this
a totally desktop published issue. We even scan
in the cartoon (you can tell by the little jagged
edges on curved lines) and hope the author of
those cartoons doesn’t mind too much.

Another new year is upon us, and we wish to
take this opportunity to thank each and every
one of you for supporting CodeWorks and our
efforts to bring good BASIC programming to
you. We hope your new year will be peaceful and
prosperous. Happy New Year to you all. Irv

Notes

As you know, MS DOS and GW BASIC have
on-screen editing capability. This makes it easy
to duplicate lines of code because you can edit
line numbers. Something not so obvious was
that you can re-execute a direct statement
(statement without a line number), simply by
moving the cursor under the first letter of the
command and pressing ENTER. We had this

demonstrated quite by accident lately when we
entered the following line to check out a random
number sequence:

FOR I=1 to 100:PRINT INT(RND(1)*15)+1;:
NEXTI

We were checking to see that the numbers were
in the range we asked for. By putting the cursor
under the F in FOR, and pressing ENTER, the
whole sequence executes again. You can do the
same with RUN or LIST.

38

lssue 21 CooeWoRKS

@.

Handy Order Form

et e o e B R e

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95
All third year issues, Nov 87 through Sep 88 $24.95
All second year issues, Nov 86 through Sep 87 $24.95
All first year issues, Sep 85 through Sep 86 $24.95
1st Year Program Disk (issues 1 through?7)

(Specify computer type below) $20.00
2nd Year Program Disk (issues 8 through 13)

(Specify computer type below) $20.00
3rd Year Program Disk (issues 14 through 19)

(Specify computer type below) Available now $20.00
NEW! "Starting with MS DOS" 40-page book explains all $7.00

2

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x

(Tandy Model IV) and most CP/M MBASIC formats, on
51/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
exp

O Charge tomy VISA/MC

Ship to: Name

Address
State Zip

City

Clip or photocopy and mail to:
CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
between 9 am and 4 pm weekdays, Pacific time.

VISA/Master Card only

189

CopeWonrks Issue 21

39

Index & Download

What's happening with both

Here are the updates to bring Cwindex.Dat up
to date through the last issue. The entire index
for the first three years of CodeWorks is on the
download and on our yearly diskette.

Correl.bas, reference, issue 20, page 3

Notes, MS DOS FIND command, issue 20,
page 4

Notes, on hard disks, issue 20, page 5

Qkey.bas, reference, how to edit errors, Issue
20, page 5

Errmsg.bas, main program, issue 20, page 8,
expanded error messages

Beginning BASIC, error messages for begin-
ners, issue 20, page 7

Playoff.bas, main program, issue 20, page
14, post season predictions

Cword.bas, main program, issue 20, page 21,
a chain word program

Random files, yearly recap of changes, issue
20, page 28

Ranprnt2.bas, main program, issue 20, page
29, column totals

Split.bas, main program, issue 20, page 37,
split ASCII files *
Download, notes on the download, issue

20, page 40
Notes, where to check for EOF, issue 20,

page 20

The download has been running rather
smoothly for the past two months. Our power
shifting has finally come to an end and things
have settled down nicely.

Keep in mind (if you are a football fan) that
this year we will be utilizing the statistics for
week 16 of regular play. This will be needed for
the program Playoff.Bas (from the last issue) to
predict playoff games and the Super Bowl. We
will have the week 16 stats on the download by
Tudesday noon of the week following the last
week of regular season play. The file size by then
will be at least 10 to 12K.

CodeWorks

3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
U.S. Postage
PAID

Permit 774
Tacoma, WA

* ConpEWORKS

Issue 22

Mar/Apr 1989
CONTENTS
EQUIOr'S NOLLS ..coocoeeessssssssencoossosssssssososos 2
FOTUMN cccceceseovsososcsococscscscsssscsssesssssssccssese 3
Beginning BASICcccccccvevevscescscessseconcees 6
BUAGEL.BAS .iiicosviveisoovessssosiossissssssssssasss 9
INOLLS .ccvsvvvocesscccocsscssocsssssssssssscssssscasssss 18
SOt ON INPUL00000 00 000000ied0000000000000000 19
FlOW.BAS ...co0000000000000000000ssess000s0000sv0000e 24
PAYZ.BAS .cocveosisasserossasescsssnssssssossnssassee 30
CWindex & Downloadccceeeeeeevennene 40

CopeWORKS

Editor's Notes

Issue 22 Mar/Apr 1989

Editor/Publisher
Irv Schmidt
Associate Editor
Terry R. Dettmann
Circulation/Promotion
Robert P. Perez
Editorial Advisor
Cameron C. Brown
Technical Advisor
Al Mashburn

(c)1988 80-Northwest Publishing Inc. No pat-
ent Hability is assumed with respect to the use
of the information contained herein. While
every precaution has been taken in the prepa-
ration of this publication, the publisher as-
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre-
sented in this publication are placed in
public domain. Please address all correspon-
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 88409

Telephones

(206) 475-2219 (voice)
(208) 475-2356 (modem download)
S00/1200 baud, 8 bits, no parity and 1
stop bit

Authors: We constantly seeck material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro-
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned if return postage is provided. Compen-
sation will be made for works which are ac-
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (208) 475-2219.
Charge card orders may also be left via our
on-line download system (206) 475-23586,

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have & friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
2 sample copy at no cost.

Asmany of you found out, we were-
n’t answering our phone for a couple of
days in early February. This area, in
spite of being more than 47 degrees
North, hardly ever gets to see snow.
Hardly ever happened, in fact, on the
1st of February. Not only did we get
snow, but it stayed cold for over two
weeks, keeping the stuff right there
on the roads. In an area like this,
where it snows so seldom, people just
don’t know how to drive in it and so
there were lots of interesting acci-
dents and fender benders. Anyway,
we all did the prudent thing and
stayed home during the worst couple
of days. Now that it has thawed out,
the auto body people and the plumb-
ers are having a field day.

During the cold snap I took the
opportunity to start researching and
writing a feature article for the maga-
zine on Artificial Intelligence. The
search of available material led me
down some surprising paths. In
trying to answer the questions that
came up I was led into the realm of
quantum physics, of all things. I
found two books on that subject that
were totally absorbing - I couldn’t put
them down, even though they had
strayed from the primary focus of
what I was trying to write about. Still,
there were several questions that are
frequently asked by both the propo-
nentsof Al and quantum physics. One
of them asks “what’s real?” and the
other is “just what is intelligence?”
Both are interesting and intriguing
questions when you stop to think
about them. From what I could
gather, physics is now down to the
level where they don’t know if it’s
really physics or philosophy. The
physicist Heisenberg (uncertainty
principle) says that the mere act of
measuring anything at the quantum
level forever changes it into some-
thing else and excludes all possibility
of performing a different measure-
ment on that same thing.

There are several schools of
thought on these subjects. Niels Bohr

and Albert Einstein had several inter-
esting exchanges in regards to quan-
tum mechanics and reality. One the-
ory has it that if you can’t see some-
thing it really doesn’t exist, or that
reality is in the eyes of the beholder.
Yet another says that when one
course of action is chosen, all the other
possible courses of action take place
too, in another reality. In all there
were about six or seven different theo-
ries like this. Amazing stufl - and
these guys got paid for sitting around
and thinking up these things. It's
interesting to note that Bohr and Co.
occupied facilities in Copenhagen
donated by a beer company. Then
there is the Austrian physicist Erwin
Schroedinger’s cat - but by now I was
so far off the course of Al that I reluc-
tantly put away the quantum books
and got back to the subject.

If what T have just said piques any-
one’s imagination, the two books on
quantum physics (very readable, by
the way) were: Quantum Reality:
Beyond the New Physics, Nick Her-
bert, Anchor Press/Doubleday, Gar-
den City NY 1985 and Beyond the
Quantum, Michael Talbot, Bantam
Books, 1988.

Meanwhile, back in the real world,
I began to wonder if Dettmann had
deserted us. I got a phone call from
him just after midnight one night. He
was calling from the airport and was
on his way again on yet another of his
seemingly endless trips. He told me
that he had the Outline program in
his portable and would send it to me
via modem from wherever he hap-
pened to be. A few days later I found a
few of the opening lines of Outline on
my computer and nothing else. It was
just about one screenful. There’s still
a little time before we close this issue,
and he just might show up yet - but
I'm not holding my breath. Have faith,
good people, we will get that program
published yet!

Irv

Issue 22 CopeWonks

T R R R R R e e I T e

¢

Forum

An Open Forum for Questions and Comments

I am trying to get information on how Dollar
(packed) or “packed decimal” works, the basic
code used and how to read it in a hexadecimal
file. I have a program that uses it and would like
to be able to change error amounts by using a file
editor. I have not found any books or articles on
it under these names. Do you have any recom-
mendations?

E. A. Hamer
Lighthouse Point, FL

Although I'm not quite sure what you are
asking, it sounds a little like “string packing.”
String packing is a technique whereby you assign
a string variable with, say, ten spaces between
quotes. Then you put the data which will be
packed into that string into data statements.
Then, with a loop, you read the data statements
and poke the data into the empty string. Then you
can delete the data statements themselves and the
loop which poked the data intothe string. Youcan
put machine code into such a string, and when it
executes in Basic, it will execute the machine code.
It also takes up less memory space than conven-
tional methods. On some earlier machines, it was
the only way to get fast graphics on the screen.
This scheme was never documented in any manu-
facturer’s literature, but was the subject of vari-
ous articles in some computer magazines (80-
Micro comes to mind as one of them.)

I have a correction you can make in Issue 20,
page 35, under changes to Ranidx.Bas for Mod-
els IVIV.

Line 4620 SYSTEM “RENAME “+FX$+”
“+TO"+” “+FT$

change to

Line 4620 NAME FX$ AS FT$

Loyd G. Orr
Bellevue, NE

Now that you mention it, you certainly are

right.

. .is there any reason that Bio.Bas won’t

“VXREF?” I have not been able to get a printout
of it.
S. A. Langell
North Canton, OH
Can’t think of any reason Bio will not VXREF,
except, if it is not saved in ASCII format first. Try
this: SAVE “BIO.BAS”,A

. ..I have been reading and entering some
programs from the book “Modems and Commu-
nication on IBM PCs” by W. David Schwaderer.
There is some fun stuff here. Much of the simple
material is covered in your Beginning BASIC
series. Some of the more complicated material
on communications software could be useful.
The author writes strictly for BASICA. If this
were converted to generic BASIC, those of us
who use other machines could benefit.

I1like your magazine. There isn’t much left for
the casual programmer, except you. May you
live a thousand years.

Tom Witt
Rochester, NY

This is something we’ll have to put on our to-do
list. Thanks, and may you too, live long and
prosper.

. . .I too, have been with you since issue
number one. Your editorial in number 19 was
very interesting. I do believe that we will see as
many improvements in the next twenty years. .

...Phil Brown wrote me a letter and thanked
me for the plug he got in Issue 17 when I wrote
you about the Family History System genealogi-
cal program. My Long Family History file now
has 967 records and the disk is only 3/4 full. I
may have to get a hard card if I find many more
cousins.

Seymour E. Long
Margate, FL

As a charter subscriber to your magazine you
are to be congratulated on publishing the very

CopeWorks Issue 22

best computer programming publication I have
been able to find in over 10 years of work and
play with computers. Thanks, and keep it up.

For some time I have been searching for a
program which would compare paying for a loan
with any selected interest rate versus paying
with cash from a bank account, and repaying
yourself over the period of the loan with deposits
equal to the monthly loan payments, compound-
ing the interest as the bank account is replen-
ished to the amount of the withdrawal.

To clarify, you take a $10,000 loan, with a
12.5% APR, which would carry an interest
amount of $1295, and a monthly payment of
roughly $450. Against this you wish a compari-
son should you have a $10,000 bank account
which you can withdraw and pay cash, but each
month you deposit $450 back into the bank
account, and assuming certain selectable bank
interest rates, with compounding at variable
selectable periods, you get a gain or loss over and
above the interest you would receive if the
money remained in the savings account? . . .

Otto Kinbacher
Babylon, NY

Back when they started the world, there was a
little footnote in the charter that said, “You will
always pay more interest than you receive,” and
apparently, no one has ever changed it. But get-
ting back to reality, we have several different
types of loan programs floating around here.
We'll work on putting something together that
will make the comparison.

.. .I'have alot of fun with your programs and
the feature articles are very helpful. I am taking
a local Basic programming course and doing
some home study, so your magazine helps every-
thing fit together.

My problem with line 1000 in the NFL88
program coming up “Subscript out of range”
finally cleared up. Although I could find no dis-
cernible error, when I retyped the line com-
pletely the problem disappeared. I have had
this happen occasionally before. . .

There are two errors, however, in the NFL88
program that I found and had to clear up to get
the program to run properly. Lines 1240 and
1250 each have terms TO which should read SO.

Donald E. Williams

Tucson, AZ
Retyping entire lines has happened to us tooon
occasion. Sometimes, it’s hard toexplain it. Asto
the errors in lines 1240 and 1250: Those vari-
ables are T-zero and S-zero, not TO and SC. In
fact, there is already an S-zero in the previous
lines. If you changed TO to SO, you probably
have gotten yourself into even more trouble.
Check line numbers to see what a zero looks like
and the word “FOR” to see what an “OH” looks
like. We used to slash our zero, but with our new
way of putting the magazine together it doesn't
work anymore.

...Thank you very much for the many hours of
information and pleasure that have been gained
from your magazine. After reading The Forum, I
want to add my dittos to Mr. Jeavons’ comments
about hanging in there with this great work of
education and enjoyment - don’t give up the ship.
Concerning Mr. Kelley ($194), I also am very
busy (travel for a living), but you can always
make time for some pleasures in this life consid-
ering the time spent is both rewarding, educa-
tional and affords you many time-saving con-
cepts and ideas that are most rewarding.

Bill Dahlstrom
Cliffs Notes, Inc
Lincoln, NE
Thanks for the nice comments. We'll try.

I am virtually a charter subscriber to Code-
Works and after all this time, I still don’t know
why. I have 1-2-3, DBase, and WordPerfect on a
clone and lack for little in the way of software
that I need. Your magazine is well-written, by
computer standards, and informative. What I
would like to see is material directed more to-
wards applications that are not likely to be
provided by the major software houses. There
are already terrific database and modeling tools
available. Why not explore new areas, graphics,
for example.

Attached is an article from Scientific Ameri-
can describing a set of curves that can be devel-
oped, iteratively, with truly impressive results,
at least as reported by the author.

(Following) is a short program which I had
hoped to be the basis of an integrated set of
programs described in the article. I started with

)

Issue 22 CopeWorks

‘;

a simple exercise, draw a circle, the hard way,
point by point. Only with the most egregious of
finagling constants could I get a round circle.

10 SCREEN 2

20 WINDOW (0,0)-(330,100)

30 INPUT “ENTER SCALE <50”;C
40 CLS

50 FOR T=0 TO 360

60 R=T*3.1415/180

70 X=(C*600/240*COS(R)+165)
80 Y=(C*SIN(R)+50)

90 A=PMAP(X,2)

100 B=PMAP(Y,3)

110 PSET (X,Y)

120 PSET (A,B)

130 NEXT T

140 END

Why do I have to finagle the X coordinate to
get a round circle? Shouldn’t the WINDOW cor-
rect for the differences in the physical and logical
coordinates?. . .

David Charlton
Corning, NY

(We) tried (the above) program to plot circles
and found it to be rather impressive. Getting
round circles is always a problem. This is because
even though the digital circuits in your computer
may define a perfect circle, the video amplifiers in
your video display are analog. Both vertical and
horizontal deflection amplifiers have gain and
linearity problems. You don’t see it, usually, with
Jjust text on the screen. But with graphics these

14
13

12
Games

picked ,,
cor- 9
rectly

8
7
6
5

4 56 7 8 9 1011 1213 14 1516
Week Number

This is how NFL88 picked them for the past
season. We were over 50% for every week but
one, for an over-all performance of 66.48%
Playoff.Bas did worse, picking only 55%.

come into apparent display. Even when you
fiddle with the gain to make a circle round, it still
may not be, because the amplification is not
constant over the entire sweep of the amplifier.
Higher quality video display units exhibit less of
these tendencies, but still have them.

Well, if you take a look at the lower left of this
page, you will see the results of NFL88 for this
year. Not too bad - actually, the best we have
ever done with it in the three years it's been
around. Not so with our Playoff.Bas program.
Out of the nine games (including the Super-
Bowl) we only picked five correctly. Not so very
good, and we can't even blame it all on the
Vikings this year! And what happened to my
prediction in the last issue? You win some and
you lose some.

Thanks once again for the good input, and

we'll see you next in the Spring. Irv
©)
ret

s

NP7

An old man, a computer and the sea.

CToeWonxs Issue 22

Beginning BASIC

Two-Level Sorting

Sorting on two levels is not really that big a
deal when you get into it. Let’s take an example
where we have two arrays, with the information
in the first array tied somehow to the informa-
tion in the second. (Like name and age, or item
and price.) The steps necessary to do a two level
sort on these arrays are:

1. Sort the first array in the normal manner,
making sure that when a switch is required that
you also switch the corresponding item in the
second array.

2. Sort again, this time on the second array -
but make switches only when the corresponding
item in the first array is the same as the item
following it.

Let’s say we have two makes of television,
Brand X and Brand Y, and that we have three
different models of each. We want to sort by
make, and within make, we want the model
numbers to be in ascending order. The unsorted
list might look like this:

Brand X4008
Brand Y3003
Brand Y3002
Brand X4000
Brand X4002
Brand Y3001

We first sort on the Brand, carrying the model
number along when we must make a switch. In
pseudo-code, it would look like this:

FORI=1TO5

nextbrand = I+1

if brand is equal or less than nextbrand then
goto NEXT I

else switch brand with nextbrand, and...

also switch the corresponding model numbers

NEXT I

After doing the above, our two arrays would
look like this:

Brand X4008
Brand X4000
Brand X4002
Brand Y3003
Brand Y3002
Brand Y3001

Now we can do the second level sort. Again, in
pseudo-code, it would look like this:

FORI=1TO 5

nextmodel = I+1

if brand is NOT equal to nextbrand then goto
NEXTI

if model# is equal or less than nextmodel#
then goto NEXT I

else switch model# with nextmodel#

NEXT I

Now we are done and the list looks like this:

Brand X4000
Brand X4002
Brand X4008
Brand Y3001
Brand Y3002
Brand Y3003

Which is what we wanted in the first place.

An example of the actual code that will do all
of the aboveis given in the accompanying listing.
Init, we have ten month names and ten numbers
representing some quantity. For our purposes it
doesn’t make any difference what those num-
bers represent. The month names and the
numbers are held in data statements, but could
just as well have been brought in from a disk file.
Since we have them in data statements, we need
to read them into their respective arrays. Note

Issue 22 CopeWonks

3

that one array is a string array and the other is
integer. This doesn’t have to be like that, but is
there to show that you can sort either or both.

Our arrays are set up from the data state-
ments in lines 140-170 and 190-220. For pur-
poses of illustration only, we next go to the
subroutine at line 530 to print the arrays out so
you can see them.

Our first level sort takes place between lines
280 and 340. Notice that our loop count goes to
one less than the number of items to sort. This is
because in line 290 we are looking ahead one,
and so that last item will be taken into account.
In line 300 if the item we are looking at is equal
or less than the next item in the list, we leave it
alone and go on to the next item in the list. If the
item we are looking at is larger (larger ASCII
value) than the next item in the list, we switch
the two in line 310. Then we switch the corre-
sponding items in the second array in line 320.
Also in line 320 we set the flag F, equal to one.
This flagis used to tell us that we have just made
aswap. In line 340 we will check tosee ifthat flag
is set, andifitis we reset it tozero and go through
the list again, looking for more things to swap.
When we can get through the entire list without
making a swap (F does not get set to one) it
means that the list is now sorted and we drop
through line 340 to the next section of code.

In line 370 we again print out the list to see
what it looks like after the first level sort is
completed.

TwolLevel.Bas for all models

The second level sortis similar, but not exactly
the same as the first level sort was. The flag
works the same way. So does the swap, except
this time we switch items in the second array.
The trick here is in line 420. It works this way:
We don’t even look at the second array if the item
and next item in the first array are not equal.
And we never move itemsin the first array, since
they are already sorted into the proper order. It
is only when the item and next item in the first
array are equal that we look at the second array
locations. And then we only make a switch if the
array two item is larger (in ASCII value) than
the next array two item. This is how we can get
a “sort within a sort.”

In line 490 we again print out the two arrays
to see how they look. In the subroutine to print
out the arrays, at line 560 we increment a C
count, and at line 570 we print a prompt on the
screen to press ENTER. The last time we print
the arrays C will equal 3 and we bypass the
prompt and just quit because we are done.

We used bubble sorts in our example. In ac-
tual practice you might want to use a faster sort,
especially for the first sort. In fact, you could use
any sort routine in either place. Since the second
level usually does not take as many items into
account a bubble sort there will usually suffice.

The idea of two level sorting could just as well
be extended to three level or more sorting. It just
takes more time and more code, but the idea is
the same.

The program Flow.Bas, in this issue, shows a
good example of how two-level sorting works.

100 REM * Twolevel.bas * a two level sort demo
110 DATA Mar,Jan,Feb,Jan,Feb,Mar,Jan,Mar,Mar,Feb
120 DATA 2,2,4,1,3,6,4,3,5,1

130

140 ‘Read in the 1st 10 data items

150 FOR I=1 TO 10

160 READ AS (I)

CooeWorks Issue 22

.--.----..-...-.--...-.-...----Il----IIIIIIIIIIII-IIIIIIIIIII.

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

NEXT
* Read in the 2nd set of 10 data items
FOR I=1 TO 10
READ B (I)
NEXT I
‘print out the unsorted arrays
GOSUB 530
‘Do the first level sort - swap both arrays
FOR I=1 TO 9
L=I+1
IF AS$(I)=<A$ (L) THEN 330
TS$ (I)=A$(I):AS$(I)=AS$ (L) :AS$(L)=TS(I)
T(I)=B(I):B(I)=B(L):B(L)=T(I):F=1
NEXT I
IF F=1 THEN F=0:GOTO 280
‘Print out the 1lst level sorted list
GOSUB 530
‘* Do the second level sort
FOR I=1 TO 9
L=I+1
IF AS$ (I)<>AS$ (L) THEN 450
IF B(I)=<B(L) THEN 450
T(I)=B(I):B(I)=B(L):B(L)=T(I):F=1
NEXT I
IF F=1 THEN F=0:GOTO 400
‘print out 2nd level sorted list
GOSUB 530
END

Al

‘subroutine to print out the list
FOR I=1 TO 10
PRINT A$(I),B(I)
NEXT I
C=C+1:PRINT

IF C<3 THEN INPUT’’Press Enter to continue’’ ; XX
RETURN

Issue 22 CopeWORKS

Budget.Bas

A Personal Budget Program

R. J. Richardson, Valencia, California.

If money is the root of all evil, then surely the
lack of it is all the rest of the forest. While a
paucity of penniesis cold and horrid, a glut of gelt
conveys the warmth and goodness of Mom, apple
pie, and the American Way. Love may conquer
all, but the guy who said that never tried it when
he was broke.

Budget.Bas provides a means to be as thor-
ough as you wish in recording how much money
comes in, and why, where and when it goes out.
The program is designed to be run monthly, but
the interval is up to you. It is dimensioned for 20
categories, although only 19 are used, since #20
does a little sweeping and dusting (internal
housework) for the program itself. Each of the 19
categories is dimensioned for 20 entries, and has
its own “page,” selectable from the main menu.
This construct allows the program to operate
exactly like a ledger, providing instant access to
any page. Category 20 contains summary, print,
and disk access functions.

To personalize the program, you should install
your own Data statements (category names) in
lines 40 through 74. However, the second state-
ment in line 74 (Summaries and Disk Access)
must remain as it is. This group of data state-
ments must total 20, lest it cause an “out of data”
error, something which produces brain fatigue
by being mis-diagnosed by the error trapping
subroutine. By the way, deleting line 2900 will
prevent this mis-diagnosis, but at the risk of
having a loaded program dumped before the
data is saved.

Line 140 contains the amount budgeted for
each category, and its data entries should total

18. The “Reconcile:” label which appears in each
page of the budget indicates by how much you
are over, or under, budget. If you went over, the
figure will be negative.

In the interest of clarity, a data read loop is
placed directly above its own data.

Operation of the program requires a few ex-
tras. A small spiral notebook is used to record
daily spendingas it occurs. (It will not work if you
wait until evening, and then try to recall every-
thing you spent during the day.) A calendar of
the month is photo-copied (19 copies), three-hole
punched, and copies placed in a three-ring
binder. Each copy is numbered (one page for
each category) with a marking pen, and you may
“screen print” the program’s main menu to ob-
tain your index.

Expenditures are noted as they are made in
the small notebook, and copied into the three-
ring binder (proper date and category) at your
convenience. Don’t forget to include expenses
paid by check. The program is run from the
three-ring binder at the end of each month, and
the print-out can provide data for income tax
preparation or other financial review.

You should expect to revise your category
names after using the program for a time, since
some categories will prove redundant, and other
(new) ones will be needed. However, remember
tochange the three-ring binder (calendar) pages,
and the index at the same time.

It is important that you remember the follow-

CooeWonrks Issue 22

IIIIllIlIIllIIIllllllIlIlIIIIlIIlIIIIIIlIIllIlIlIIIlIllIlIlIIIIIIIIIIIIIII-IIIIIIII

ing: There are four entries to be made for each
expense on a category “page,” the date (08/88),
the description of the expenditure, the amount
(rounded up to integers, and cash or check
number.) Please remember that you must
PRESS ENTER after each entry. You cannot go
across the page with either the right arrow, or
the space bar. OK?

Variables are identified in lines 600 to 740,
and the entire program (excepting the lines be-
low 100) was renumbered using CodeWorks'
own Renum.Bas (Issue 9, Jan/Feb 1987), a
mega-algorithm for the serious programmer.

And so, what'’s next?

Budget.Bas for GW BASIC, with minor

modifications will run on TRS-80 IV

5 ‘Budget.Bas * R J Richardson *
10: -
20 KEY OFF

30 ON ERROR GOTO 2870

Read Data - Dimension Arrays

Well, can you

1. Write a subroutine which figures what per-
centage of the total expenditure is spent in each
category?

2. Compare your percentages with those rec-
ommended by business advisors?

3. Re-write the program into an appointment
scheduler which prints out an appointment list-
ing either daily, or by the month. (The mecha-
nisms - the big guys always say algorithms - are
all here. You only have to change some of the
fluff.)

Thanks for your time.

40 DIM CT$(20) :FOR N=1 TO 20:READ CTS$ (N) :NEXT N

50 DATA ‘‘Income Tax:’’,’’House & Assn. Payment:’’

52 DATA ‘‘House: Ins-Tax-Maint:’’,’’Gas-Electric-Telephone:’’
54 DATA ‘‘Food and Sustenance:’’,’’Trash-H20-Paper-Cable:’’

60 DATA ‘‘Auto: Gas-Repair-Misc:’’,’’Auto: Insurance-License:’’
62 DATA ‘‘Aircraft Fuel:’’,’’Aircraft Expense: Gen’l:’’

64 DATA ‘‘Toni: Necessaries:’’,’’Bobby: Necessaries:’’

66 DATA ‘‘Medical: Pres-Ins-Mis:’’,’’Toni: Beauty—-Grooming:’’
70 DATA ‘‘Charge Cards:’’,’'’TONI-Personal Acct:’’

72 DATA ‘‘BOBBY-Personal Acct:’’,’’Misc.-(Other Things):"’

74 DATA ‘‘Monthly Income:’’,’’—-
80 FOR I=1 TO 6:READ WS (I):NEXT I

Summaries & Disk Access —-—-"'

82 DATA ‘‘(P)rint existing file to screen:’’
84 DATA ‘‘(L)ine print file to printer:’’

86 DATA ‘‘(A)dd to existing file:’’

88 DATA ‘‘(E)dit existing file:’’

90 DATA ‘‘(Q)uit category:’’

92 DATA ‘‘(Enter .

100 HD$=''File #:
Amount $:

Date:
Check #:’’

for Date to Terminate Entry:)*”

Description:

10

Issue 22 CopeWoRKS

4,444_________--lll.ll

T e e L T e e e s e S S i P

110 ZWS=""##4#4. 44"

‘ab 120 DIM DT$ (20,20),DS$(20,20),AM(20,20),CKS$ (20,20),ST(20),PT$ (20),
TT (20) ,BD (20)

130 FOR I=1 TO 18:READ BD(I) :NEXT I

140 DATA 175,440,145,185,400,75,175,150,300,100,60,100,60, 75,250,
200,400,100

150 GOTO 240

160, *

170 ‘--—- Universal Print@ / Locate Subroutine: UNremark as
needed.

180 LOCATE X,Y:RETURN ‘' MS-DOS GW-BASIC

190 “ PRINT@((X-1*64)+(Y-1),;:RETURN ' TANDY MODELS I / III

200 “ PRINT@ (X-1), (Y-1)),;:RETURN ‘' TANDY MODEL IV

210 Y PRINTR(X,Y),;:RETURN ‘' SOME MBASIC MACHINES

220 * PRINT CHRS$ (27)+'’Y’’+CHRS$ (31+X)+CHRS (31+Y); :RETURN ‘' CP/M
ADJUST TO SUIT

230"

240 CLS:X=5:Y=10:GOSUB 170;

250 INPUT’’Please Enter Month and Year (jan88):’’;MNS$

260 Yemmmmmm e Print main menu -

270 CLS

280 X=2:Y=18:GOSUB 170:PRINT’’Your Ever-lovely Hot-dog Financial

G Report!’’ : PRINT

290 FOR N=1 TO 20:IF ST(N)=0 THEN PT$(N)=’’’’ ELSE PTS$(N)='"’'*’""’

300 NEXT N

310 FOR N=1 TO 19:PRINT N;’’. ‘‘;:PRINT PT$(N);’’ ‘‘;:PRINT CTS(N):
NEXT N

320 N=20:PRINT N;’’. ‘‘;:PRINT PTS$(N);’’ ‘';:PRINT CT$(N) :X=4:Y=63:
GOSUB 170:PRINT’’* = Data’’

330 X=25:Y=62:GOSUB 170:PRINT’’ (999 To Quit)’’

340 X=25:Y=30:GOSUB 170:INPUT’’Select Category:’’;CT:IF CT=20 THEN
2050 ELSE IF CT=0 THEN 340

350 IF CT=999 THEN 2910 ELSE IF CT>20 THEN 340

360 GOSUB 370:GOTO 430

370 " ———m—————————e Print Individual Page Heading —-—-——--—
380 CLS
390 GOSUB 170:PRINT STRINGS (80,205)

=]1:Y=1:

400 X=2:Y=1:GOSUB 170:PRINT’’Page’’;CT;’’: ‘‘;MN$

410 X 2 Y=27:GOSUB 170:PRINT’’Category’’;CT;’’:’’;CIS$S(CT);*’ ('';BD(CT);
) ’

420 PRINT STRINGS (80,205) : RETURN

430 "\ ——m Draw Box for Internal Menu ——————————

440 X=5:Y=15:GOSUB 170:PRINT STRINGS (50,223)

450 X=14:Y=15:GOSUB 170:PRINT STRINGS (50,220)

Q 460 FOR P=5 TO 14:X=P:Y=15:GOSUB 170:PRINT CHRS (222) :NEXT P

470 FOR P=5 TO 14:X=P:Y=65:GOSUB 170:PRINT CHRS (221) :NEXT P

CooeWonks Issue 22 11

Al | oA |

lIl-II-lI-I------I--I-I-Il---IIlIlIlIIIIIIIIII-IIIIIIIII-II-|

480 * Print Menu Inside Box -
490 w=1

500 FOR X=7 TO 11

510 Y=20:GOSUB 170:PRINT WS$ (W)

520 W=W+1:NEXT X

530 X=13:Y=45:GOSUB 170:PRINT’’ Pl

540 GS$=INKEYS$:IF GS$='’’’ THEN 530

550 IF G$='’'P’’ OR G$=''p’’ THEN ZQ=1:GOTO 750
560 IF GS$S=’"L"’’ OR GS$='’1’"" THEN Z20=2:GOTO 880
570 IF G$=''A’’ OR GS$=''a’’ THEN 2Q=3:GOTO 1620
580 IF G$=''E’’ OR G$=’'e’’ THEN 2Q0=4:GOTO 1730
590 IF G$='’Q’’ OR G$=''q’’ THEN 260

600 B==———x—= Identification of ‘variablesi—————————""—
610 * CT$ - Name of Category

620 ‘' CT - Category Number

630 ' MN$ - Report Month

640 ' TT - Total spent in a category

650 ' BD - Amt budgeted for a category

660 * AM — Amt of money

670 * DS$ - Description of expenditure

680 ' CK$ - Check number - or cash

690 ' TB — Total budgets for all categories

700 * GT - Total of all money spent - all categories

710 * TR - Total reconciliation: amt over or under budget

720 * ST - ‘Stop’ number for each file: 1i. e. EOF

730 " Note: ‘Reconcile’ does not have an assigned variable.

740 It is figured (BD-TT) as needed. (Don’t ask.)

P S50EEN=—s List File to Screen —————————

760 GOSUB 3240

770 IF ST(CT)=0 THEN PRINT:PRINT;CTS(CT);"'’ EMPTY:’’ : GOSUB

3020:GOSUB 370:GOTO 430
780 TT(CT)=0
790 FOR I=1 TO ST(CT)
800 GOSUB 3290
810 TT(CT)=TT(CT)+AM(CT,I)
820 NEXT I
830 PRINT:PRINT TAB(25);’’Budget: $ ‘‘;BD(CT);:PRINT TAB(58);
840 PRINT USING ZWS$S;TT(CT)
| 850 PRINT:PRINT TAB(40);’’Reconcile: $ ‘‘;:PRINT TAB(58);
} 860 PRINT USING ZW$;BD (CT)-TT (CT)
870 INPUT’’<Enter> for Menu:’’;ZQ$:CLS:GOSUB 370:GOTO 430
880 ° Line Print ———————mm
890 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT WS (Z2Q)
900 X=5:Y=15:GOSUB 170:PRINT STRINGS (50, 223)
910 X=14:Y=15:GOSUB 170:PRINT STRINGS (50, 220)
920 FOR X=5 TO 14:Y=15:GOSUB 170:PRINT CHRS (222) :NEXT X ‘

12 Issue 22 CopeWoRKS

930 FOR X=5 TO 14:Y=65:GOSUB 170:PRINT CHRS$ (221) :NEXT X
e 940 X=7: Y 20:GOSUB 170:PRINT’’Select letter:’’
950 X= =25:GOSUB 170:PRINT’’ (L)print this category only.’’
960 =10 Y 25:GOSUB 170:PRINT’’ (P)rint entire expense report.’’
970 X=11:Y=25:GOSUB 170:PRINT’’ (R)eturn to main menu.’’
280 X=13:Y=48:GOSUB 170:PRINT’’ 2’ ' :G$=INKEYS$
990 IF G$='’’’ THEN 980 ELSE IF G$=’''P’’ OR G$=''p’’ THEN 1210
1000 IF G$="'R’’ OR GS$=''r’’ THEN 260
1010 Lprint category only -————-—
1020 X=18:Y=20:GOSUB 170:PRINT’’Printer — — OnLine:’’
1030 X=19:Y=20:GOSUB 170:PRINT’’Paper — Top of Form:’’
1040 X=21:Y=20:GOSUB 170:INPUT’’<Enter> - Starts Printer:’’;ZzQ$
1050 X=1:Y=1:GOSUB 170:LPRINT STRINGS (80,205)
1060 X=2:Y=1:GOSUB 170:LPRINT’’Page’’;CT;’’: ‘Y MNS
1070 X=2:Y=30:GOSUB 170:LPRINT’’Category’’;CT;’’:’’;CTS (CT)
1080 LPRINT STRINGS (80,205) : TT(CT)=0
1020 IF ST(CT)=0 THEN PRINT:PRINT CTS$(CT);’’ is empty.’’
1160 IF ST(CT)=0 THEN LPRINT:LPRINT CT$(CT);’’ is empty.’’:GOTO 1170
1110 X=15:Y=15:GOSUB 170:PRINT’’ ——--— Printing ———-’’:LPRINT HDS$
1120 FOR I=1 TO ST(CT)
1130 LPRINT I;TAB(12);DT$(CT,I);TAB(26);DS$(CT,I);TAB(58);
1140 LPRINT USING ZW$;AM(CT,I);:LPRINT TAB(73);CKS$ (CT,I)
1150 TT(CT)=TT (CT)+AM(CT,I)
3 1160 NEXT I
1170 LPRINT:LPRINT TAB(58); :LPRINT USING ZW$;TT (CT)
1180 LPRINT:LPRINT TAB(20);’’Budgeted:’’;BD(CT);TAB(46);’"Reconcile:’’;

1190 LPRINT TAB(58);:LPRINT USING ZW$;BD (CT)-TT (CT)

1200 LPRINT:LPRINT’’End of File:’’ :GOSUB 370:GOTO 430

N e G e 3 s st Lprint Entire Expense Report —--

1220 X=18:Y=20:GOSUB 170:PRINT’‘Adjust paper to top of form:’’

1230 X=20:Y=20:GOSUB 170:INPUT’’<Enter> starts printer:’’;ZQ$

1240 X=16:Y=17:GOSUB 170:PRINT’’Printing Complete Report — -

1250 FOR K=1 TO 19

1260 TT(K)=0:LPRINT STRINGS (80,254) :LPRINT:LPRINT "Page:’’;K;"’ *%;
MNS$

1270 LPRINT’’Category’’;K;’’:’’;CT$ (K) :LPRINT STRING$ (80,250)

1280 IF ST(K)=0 THEN LPRINT CT$(K);’’ —-— Empty.’’:LPRINT:GOTO 1380

1290 LPRINT HD$

1300 FOR I=1 TO ST (K)

1310 LPRINT I;TAB(12);DT$(K,I);TAB(26);DS$(K,I);TAB(58);

1320 LPRINT USING 2ZW$;AM(K,I);:LPRINT TAB(73);CKS (K, I)

1330 TT(K)=TT (K)+AM (K, I)

1340 NEXT I

Q 1350 LPRINT:LPRINT TAB(58);:LPRINT USING ZW$;TT (K)

- rs
.

CopeWorks Issue 22 13

L L S e A

IllIllIlIlIIIIlIIlI-I--I--llIIIlII-IIIll-lllIlIlIIIIIIIIIIIII-III-.-.I-

1360 LPRINT:LPRINT TAB(20);’’Budget:’’;BD(K);TAB(40);" 'Reconcile:"’;

1370 LPRINT TAB(58);:LPRINT USING ZW$;BD (K)-TT (K)

1380 NEXT K

1390 ° — Line Print Budget Summary -———-—

1400 LPRINT:LPRINT’’Category:’’;TAB(30);’’Budgeted:’’;

1410 LPRINT TAB(46);’’Amt. Spent:’’;TAB(65);’’Reconcile’’ :LPRINT

1420 FOR K=1 TO 18

1430 LPRINT K;’’.’’;CT$(K);TAB(30);:LPRINT USING ZW$;BD (K) ; : LPRINT
TAB (46) ;

1440 LPRINT USING ZW$;TT (K); :LPRINT TAB(65);:LPRINT USING ZW$;
BD (K)-TT (K)

1450 NEXT K

1460 * Prepare & Print ‘Bottom Line’ ————-

1470 TB=0:GT=0:TR=0

1480 FOR K=1 TO 18

1490 TB=TB+BD (K) : GT=GT+TT (K) : TR=TR+ (BD (K) =TT (K))

1500 NEXT K

1510 LPRINT:LPRINT TAB(25);’’The Bottom Line:’’ :LPRINT

1520 LPRINT TAB(10);’’Total Budget:’’;TB

1530 LPRINT TAB(30);’’Total Cash Spent:’’;

1540 LPRINT TAB(55);:LPRINT USING ZWS$;GT

1550 LPRINT TAB(30);’’Less Cash Income: -'’;

1560 LPRINT TAB(55); :LPRINT USING ZWS$;TT(19)

1570 LPRINT:LPRINT TAB(30);’’Reconciliation:’’;TAB(55); .!

1580 LPRINT USING ZW$;TT (19)—-GT:LPRINT

1590 IF SGN(TT(19)-GT)=-1 THEN LPRINT’’Congratulations! You have a
Negative Cash Flow!’’

1600 IF SGN(TT(19)-GT)=1 THEN LPRINT’’Congratulations! You took in
More than you Spent!’’

1610 GOSUB 370:GOTO 430

1620 ° - Add to Existing File ——————————=

1630 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT WS (2Q); "’ VY, WS (6)

1640 X=6:Y=1:GOSUB 170:PRINT HD$

1650 X=7:Y=1:GOSUB 170:PRINT STRINGS (80,196) :R=8:M=ST (CT)

1660 M=M+1:X=R:Y=1:GOSUB 170:PRINT M:Y=11:GOSUB 170:LINE INPUT
DTS (CT, M)

1670 IF DTS (CT,M)=’’.’’ THEN M=M-1:ST (CT)=M:GOSUB 370:GOTO 430

1680 Y=26:GOSUB 170:LINE INPUT DS$ (CT,M) : Y=58:GOSUB 170;

1690 INPUT AM(CT,M) :Y=72:GOSUB 170:LINE INPUT CKS$ (CT, M)

1700 R=R+1

1710 IF M=>20 THEN GOSUB 3160:GOTO 430

1720 GOTO 1660
\

1730 — - Edit Existing File ———————
1740 *
1750 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT WS (ZQ) ‘F

14 Issue 22 CopeWORKS

e T S A T R T R T R T A SET U |

1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1820

1930
1940
1950
1960
1970
1880

1990

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180

X=6:Y=1:GOSUB 170:PRINT HD$

X=7:Y=1:GOSUB 170:PRINT STRINGS (80,196)

IF ST(CT)=0 THEN GOSUB 3200:GOTO 430

‘ print file as is

FOR I=1 TO ST (CT)

GOSUB 3290

NEXT I

PRINT:INPUT’ ‘Enter File # of Entry to be Edited:’’;I
CLS:GOSUB 3240:GOSUB 3290

X=11:Y=20:GOSUB 170:PRINT’’Do you wish to:?’’
X=13:¥Y=25:GOSUB 170:PRINT’’ (C) hange the line:?2’’
X=14:Y=25:GOSUB 170:PRINT’’ (R)emove the line:?’’
X=16:Y=40:GOSUB 170:PRINT’’ R SPRTNT:
G$=INKEYS$:IF G$=''’' THEN 1890

IF GS=''C’’ OR G$=''c’’ THEN 1980

' Remove the line

IF ST(CT)=1 THEN ST(CT)=0:CLS:X=12:Y=35:GOSUB 170:
PRINT’’Gone!’’ :GOSUB 3020:GOTO 750

XX=ST (CT) :DT$ (CT, I)=DT$ (CT,XX) :DS$ (CT, I)=DS$ (CT,XX)
AM(CT,I)=AM(CT,XX) :CK$ (CT, I)=CK$ (CT,XX) : ST (CT)=ST(CT)-1
CLS:X=12:Y=35:GOSUB 170:PRINT’'Done!’’

FOR Z=1 TO 3000:NEXT Z:GOTO 750

' Change the line

X=14:Y=1:GOSUB 170:PRINT STRINGS$(80,’’ ‘'):PRINT STRINGS (80,
s)

PRINT’ “Please Enter Correct Line Now: SV PRENT
X=18

PRINT I:Y=10:GOSUB 170:LINE INPUT DTS (CT,I)
¥=24:GOSUB 170:LINE INPUT DS$ (CT,I)

¥Y=59:GOSUB 170:INPUT AM(CT,I)

Y=72:GOSUB 170:LINE INPUT CK$ (CT,I)

———————————————————— Summary and Disk Access -———
CLS:GOSUB 370

X=5:Y=15:GOSUB 170:PRINT STRINGS (50,223)

X=14:GOSUB 170:PRINT STRINGS (50,220)

FOR P=5 TO 14:X=P:GOSUB 170:PRINT CHRS$ (222)

NEXT P

FOR P=5 TO 14:X=P:Y=65:GOSUB 170:PRINT CHRS$ (221)
NEXT P
X=6:Y=20:GOSUB 170:PRINT’’Do you wish to:’’
X=8:Y=25:GOSUB 170:PRINT’’ (P)rint Results on This Screen:?"’
X=9:GOSUB 170:PRINT’’ (L)ine Print Entire Report:?’’
X=10:GOSUB 170:PRINT’’ (S)ave All Files to Disk:?’’
X=11:GOSUB 170:PRINT’’ (R)etrieve Files from Disk:2’’
X=12:GOSUB 170:PRINT’’ (G)o Back to Main Menu:2’’

CobeWonks Issue 22

SRR e T

lllIIlIl-IIIllIIIlllIIIIlIlllIllIllllIllIlllllIllIll-IIIIIIIIIIIIIIIIIIIIII-.

2190
2200
2210
2220
2230
2240
2250
2260

2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630

X=13:Y=52:GOSUB 170:PRINT’’ 2k

G$=INKEYS$:IF G$='’'’ THEN 2200

IF G$='’S’’ OR G$=''s’’ THEN 2520

IF G$=’'L’’ OR G$='’1'' THEN 1210

IF G$=''R’’ OR G$=''r’’ THEN 2680

IF G$=''G’’ OR G$=''g’’ THEN 260

\ Screen print Budget Summary

CLS:PRINT’ ’Category:’’;TAB(30);’’Budgeted:’’;TAB(46);
‘‘Amt. Spent:’’;TAB(65);’’Reconcile:’’

GOSUB 3090

FOR K=1 TO 18

PRINT K;’’.’’;CT$ (K); :PRINT TAB(30);:PRINT USING ZWS$;BD (K) ;
PRINT TAB(46); :PRINT USING ZWS$;TT (K);

PRINT TAB(65); :PRINT USING ZW$;BD (K)-TT (K)

NEXT K

‘' Last minute total of Category 19 (Income)

TT (19)=0

FOR J=1 TO ST (19)

TT (19)=TT(19)+AM(19,J)

NEXT J

‘' Calculate totals - bottom of page

TB=0:GT=0:TR=0

FOR K=1 TO 18

TB=TB+BD (K) : GT=GT+TT (K)

TR=TR+ (BD (K) —-TT (K))

NEXT K

PRINT:PRINT TAB(30); :PRINT USING ZWS$;TB; :PRINT TAB(46);
PRINT USING ZWS$;GT; :PRINT TAB(65);

PRINT USING ZW$;TR:PRINT’’Less Income: (Cat. 19): —————————— e
PRINT TAB(46); :PRINT USING ZWS$;TT(19)

PRINT TAB(31);’'Reconcile: ‘'; :PRINT TAB(46);

PRINT USING ZW$;GT-TT (19)

INPUT’ '<Enter>:’’; ZQ$:GOTO 260

INPUT’ "Enter:’’;ZQ$:GOTO 260

Vo em—— Disk Access —————— Save Data -
CLS:M1$=MN$+’’ .dat’’

X=5:Y¥=5:GOSUB 170:PRINT’’CAUTION

PRINT’'Be sure that program data and file name are correct.’’
PRINT' ‘An incorrect file name can erase an existing file.’’
PRINT’‘If you wish to double check, enter M or m’’
PRINT’’at the prompt to return to the main menu.’’ :PRINT
PRINT’ ‘Else, this data will be saved as: ‘‘;M15
PRINT:INPUT’’<Enter> to proceed or M for Menu:’’;ZQ$

IF 2Q$=''M’" OR ZQ$='"'m’’ THEN 260

OPEN M1$ FOR OUTPUT AS 1

PRINT #1,M1$:FOR K=1 TO 19:PRINT #1,ST (K)

16

/
Issue 22 CopeWORKS

2640 FOR J=1 TO ST (K)

2650 PRINT #1, DTS (K,J);’’,’’;DSS$(K,J);"'’,"" ;AM(K,J):"",’"’ ; CK$ (K, J)

® 2660 NEXT J,K

2670 CLOSE:GOTO 260

2680 *° Data Rerieval

2690 CLS:X=5:Y=1:GOSUB 170:PRINT STRINGS (80,177)

2700 X=7:Y=10:GOSUB 170:PRINT’’Data Retrieval:’’

2710 X=10:Y=15:GOSUB 170

2720 INPUT’’Enter Month and Year (mmmyy) to Retrieve:’’;MN$

2730 M1$=MNS$+’’.dat’’

2740 OPEN M1$ FOR INPUT AS 1

2750 INPUT #1,M1$

2760 X=15:Y=25:GOSUB 170:PRINT’’Retrieving: ‘‘;MN$

2770 FOR K=1 TO 19:INPUT #1,ST(K)

2780 FOR J=1 TO ST (K)

2790 INPUT #1, DTS (K,J),DSS$ (K,J),AM(K,J),CKS (K, J)

2800 NEXT J,K

2810 CLOSE

2820 FOR K=1 TO 19:FOR J=1 TO ST (K)

2830 TT(K)=TT (K)+AM(K,J)

2840 NEXT J,K:TT(K)=-TT (K)

2850 MNS$=LEFTS$ (M1$,5) :GOTO 260

2860 END

a L R e N Error Trap—————- (don’t fall in) —-

2880 CLS

2890 CLS:IF ERR=53 THEN X=10:Y=15:GOSUB 170:PRINT’‘I can’t find
file: ““;MN$:GOSUB 3020:GOTO 260

2900 CLS:IF ERR <> 53 THEN X=10:Y=15:GOSUB 170:PRINT’’An Error has
Occurred:’’ :GOSUB 3020:GOTO 260

2910 —-—=——— THE ‘save your data’ routine at the end

2920 CLS

2930 X=12:Y=20:GOSUB 170

2940 PRINT’’Have you saved the data (Y/N)22'’ |

2950 PRINT:PRINT TAB(35);’’Y = Terminate Program’'’ ,

2960 PRINT TAB(35);’’N = Go To Disk Access’’

2970 PRINT:PRINT TAB(45);’’ !

2980 G$=INKEYS$:IF GS$='’'’'’ THEN 2980

2990 IF G$=’'N’' OR G$='’n’’ THEN CT=20:GOTO 2050

3000 PRINT:PRINT’’Thanks fer ur time!’’

3010 END

Slep ol i s S e Counting (delay) Loop ——————

3030 X=23:Y=72:GOSUB 170:PRINT’’Counting’’

3040 X=23:FOR Y=1 TO 71:GOSUB 170

3050 FOR 2z=1 TO 30:NEXT 2

. 3060 PRINT’’+'"

CopeWorxs Issue 22 L 5

B T o s Lt 4

3070 NEXT Y
3080 RETURN

3090 MR = Total all Categories before Printing Summary -

3100 FOR X=1 TO 19:TT(X)=0:NEXT X
3110 FOR CT=1 TO 19

3120 FOR X=1 TO ST(CT)

3130 TT(CT)=TT(CT)+AM(CT, X)

3140 NEXT X,CT

3150 RETURN

3160 *

Subroutine **

‘Category fTull' e

3170 CLS:X=10:Y=30:GOSUB 170:PRINT’’Category Full:’’

3180 GOSUB 3020:GOSUB 370
3190 RETURN

3200 °©
3210
3220 PRINT:PRINT CTS(CT);’’
3230 RETURN

3240 ' Print page heading

Subroutine **

‘Category Empty’ —-—————

Empty:’’ :GOSUB 3020:GOSUB 370

3250 GOSUB 370:X=4:Y=1:GOSUB 170:PRINT WS$ (ZQ)

3260 X=6:Y=1:GOSUB 170:PRINT HDS$

3270 X=7:Y=1:GOSUB 170:PRINT STRINGS (80,196)

3280 RETURN
3290

Line by Line or Loop Print -——-

3300 PRINT I;TAB(13);DTS$(CT,I);TAB(26);DS$(CT,I);TAB(58);
3310 PRINT USING ZW$;AM(CT,I);:PRINT TAB(74);CK$ (CT,I)

3320 RETURN

Notes

There have been several requests on how to
scroll backward and forward in GW BASIC and
MS DOS. Apparently, the books on the subject
are not too clear. However, Mr. Robert Hood, of
Bremerton, Washington, has found the way to
do it and kindly let us know about it. OQur thanks
to Mr. Hood for this information. Here is how it
works:

1. List the desired line number (list 130)

2. Use arrow keys to move the cursor to the
beginning of the listed line.

3. Press CTRL and X together to scroll in
decreasing line numbers.

4. Press CTRL and Y together to scroll in
increasing line numbers.

On another note, be careful about using re-
marks in DATA lines. The READ statement will
probably read it like data. Here's an example:

10 DATA 1,2,3,4,5, ' daily receipts
20 DATA 6,7,8,9,10

30 FOR I=1to 10

40 READ A3$(I)

50 NEXT I

60 FOR I=1to 10

70 PRINT A$(I);" *;

80 NEXTI

90 END

run

12345 " daily receipts 6 789 10
Oops!

18

Issue 22 CopeWoRKS

L e 4

Sort on Input

Sort as You Enter Information

David Leithauser, New Smyrna Beach, Florida. This is David's second
appearance in CodeWorks. Here, he tells us about a method to keep sorted
lists by sorting at the time of input. Two sample programs follow his discus-

sion.

One of the features that most data base pro-
grams have is a sort function. This useful feature
allows the program to arrange the data in alpha-
betical or numerical order. Having the data in
alphabetical order makes it easy to find specific
items on the printout. Having the data in nu-
merical order allows you to see relationships at a
glance. For example, you could have a program
that records people’s addresses sort the ad-
dresses by zip code. This would allow you to
easily find all the people who live in one area.
You can even have the program sort data by
dates, so the data (such as your checkbook) will
be in chronological order.

Unfortunately, sorting data takes a fairly long
time. The amount of time required for a sort goes
up rapidly as the amount of data increases.
Sorting 10 items on a Tandy 1000 SX using a
common bubble sort takes about .4 seconds.
Sorting 100 items takes about 31 seconds. Sort-
ing 200 items takes about 2 minutes. Sorting
500 items takes about 13.5 minutes. Depending
somewhat on what type of sort technique you
use, the time required for the sort is not affected
much by whether the items are already close to
being in order.

This can be particularly annoying when the
nature of the data is such that you often add or
delete one or two items. Imagine, for example,
that you are keeping a phone directory of your
friends or clients. About once a week you must
add one or two names to the list. If you want to
keep it sorted so that you can display an alpha-

betical listing any time, you must stop and wait
for the sort each time you add those few names.

There is a way to avoid these long sorts.
Instead of having the program add new data
onto the end of the list and then sort the entire
list, you can have it insert the new data into the
list in the proper place as soon as you input it.
This takes only a fraction of a second, and the
data is always in the correct order.

The Usual Method

Before explaining how to insert the data into
the proper place on input, let’s take a look at the
way data base programs usually handle data.
Listing 1 is a very simple data base program
with a bubble sort. Since this is for demonstra-
tion purposes only, I have not included most of
the usual features, like a save on disk routine.
This program inputs names and phone numbers,
sorts them, and displays them.

Lines 200-230 input the data. Line 200 inputs
the name. If the user just presses ENTER when
the computer asks for the name, line 210 sends
the computer back to the main menu. Thisishow
you would finish putting in names.

Line 220 inputs the phone number. Line 230
then stores the data in the A and B arrays. N is
the number of names in the file. Line 230 first
increases N by 1. It then stores the name in the
A array and the phone number in the B array.

CobeWonrks Issue 22

19

f

Because of the DEFSTR statement in line 10, C
and D and the A and B arrays are all string
variables.

You can see that the datais notin alphabetical
order as it is input. Instead, it is in the order the
user inputs the data. Even once the program has
sorted the data, any new data that you input will
not be in the proper position.

Lines 300-340 delete data from the file. This is
necessary to make corrections. Line 300 asks
what to delete. The user would input the name of
the person to delete from the phone directory.
Lines 310-330 search for that name in the data
file. When line 320 finds the name, it moves the
last name and phone number in the file into that
position. It then deletes the last name and
number from the end of the file by setting them
to an empty string. Finally, it decreases Nby1 to
indicate that there is one less item in the file.

Notice that this disturbs the order of the items
in the file. Deleting an item is as bad as adding
one. Unfortunately, you could not simply set
A(X) and B(X) to an empty string. That would
leave the number of items in the file unchanged
and cause the computer to print a blank line
whenever it listed the data.

Lines 400-450 sort all the items. This is a
simple bubble sort. Lines 500-530 list the data.
Lines 100-140 are the main menu.

Sorting on Input

Now that we have seen one way to do it, let’s
look at the sort on input method. Listing 2 is the
simple data base program modified to sort the
data as it is input.

Lines 200-270 are the modified input routine.
Lines 200-220 are the same asin Listing 1. They
simply input the data to save in the arrays.

Line 230 handles the special case where the
new data should go at the end of the data list
instead of being inserted somewhere in the list.
Remember that the data input by this routine is
always sorted. Therefore, if C is greater than or

equal to (or comes after alphabetically in the
case of strings) the last item in the file, then it is
greater than all the items in the file. The THEN
clause of line 230 puts the new data at the end of
the list and increases the number of items (N) by
1

If the program does need to insert the new
data item into the data list, lines 240-260 find
out where. They go through eachitemin the data
file, looking for the first one that is more than C.
When they find this item, the computer goes to
line 270, with X retaining the number of that
data item. Line 270 shifts each item in the data
file up one. Line 280 then stores the new values
in the newly vacated position in the file. It also
increases N by one to record that one item has
been added to the file. The computer then goes
back to line 200 to get another data item.

Since the data is always in order as soon as
you input it, there is no need for a sort function.
You may notice that Listing 2 does not have one.
The only thing that can disorganize your data
now is if you delete something. Remember that
the delete function in Listing 1 did reorganize
the data. Therefore, Listing 2 needs a special
delete function that preserves the order of the
data.

Lines 300-340 are this delete function. Lines
300-310 and 330-340 are the same as in Listing
1. T have modified line 320, however, so that it
preserves the order of the data. The Y FOR-
NEXT loop shifts A(X) and B(X) to position N at
the end of the data list and shifts everything
above A(X) down one. Then A(N) and B(N) are
set equal to empty strings, deleting them. N is
decreased by 1 to indicate that there is one less
data item, and the computer goes back to the
main menu.

Drawbacks

There are two drawbacks to this sort-on-input
method. The firstis that there is ashort pause as
you enter each data item while the program puts
the data item into the correct position. This
pause is only about half a second for every 100
items already in the data file when you input the

20

Issue 22 CopeWorks

new data. If you are inputting only a few items,
this delay is trivial. Waiting a few seconds after
each item as you input two or three items is
certainly better than waiting hundreds of times
this long for the computer to sort the data after
you finish inputting those items.

Of course, if you are inputting many items at
a time, you could become frustrated with the
delay after each entry. In this case, you might be
better off inputting the data with the procedure
in Listing 1 and then letting the computer sort
the data while you go to lunch. The sort-on-entry
technique is most useful in special purpose data
bases where you normally input only a few new
items each day and you like to keep this data
sorted at all times.

There is no reason you could not have both
techniques available in one program. When the
user selects “Input data” from the main menu,
the program can ask “Sort on entry (Y/N)?” If the
user presses Y, the program could branch to an
input routine like the one in Listing 2. Other-
wise, it goes to an input routine like the one in
Listing 1. Such a program would have to include
a sort routine for the people to use if they chose
to input the data out of order.

The second disadvantage to the sort-on-input
technique is that it only sorts by one property.
This is fine for some special purpose data bases,
where you always want the data sorted by the
same property. Sometimes, however, you need a
choice of which property to sort by. For example,
you might want to be able to sort your checks by
either date or amount.

The solution to this is to leave the user the
option. You could have the program sort the data
on input based on the property that you would
normally want sorted. You could also include in
the program a sort routine that would allow the
users to sort by any property, for those rare
occasions when they want it sorted some other
way.

If you do allow the users to sort by various
properties, you must warn them to resort the

data by the usual property when they are fin-
ished. The sort-on-input routine does not work
properly if the data is not already sorted by the
usual property. The fastest way to restore the
data to the usual order is to save it on disk before
sorting it by any other property. Then you can
sort the data by some other property, output a
paper listing of it, and then reload the data from
the disk before you input any more data.

Different Computer Versions

Although I wrote these programs on an IBM
clone, I used a very limited subset of BASIC.
They will therefore work on most computers.
You may need to modify the SWAP statement
that I used in a few lines. This statement swaps
the values of two variables. If your computer
does not have the SWAP statement, you can
replace SWAP V1,V2 with T=V1:V1=V2:V2=T
where V1, V2, and T are any variables as long as
they are the same variable type. For example,
you would replace SWAP A(Y),A(Y-1) with
A=A(Y):A(Y)=A(Y-1):A(Y-1)=A.

You may also need to remove the DEFSTR A-
D and DEFINT N-Z statements from the pro-
gram for some computers. DEFSTR A-D causes
all variables starting with A through D to be
strings. You can achieve the same effect by
placing a $ after any variable name that begins
with A through D. DEFINT N-Z causes all vari-
ables starting with N through Z to be integers.
You may produce the same results by putting %
after each variable name that begins with N
through Z. You may also simply omit this en-
tirely from your program. The program will
simply run a bit slower.

CopeWorks Issue 22

Listing 1 for Sort on Input

99
100

120
130
140
199
200
210
220
230
299
300
310
320

330
340
399
400
410
420
430
440
450
499
500
510
520
530
599
600

5 REM * inpsortl.bas * D Leithauser *
10 DEFINT N-Z:DEFSTR A-D:DIM A(1000),B(1000) :CLS

110 PRINT ‘' Menu:’’ :PRINT:PRINT ‘‘1) Input’’:PRINT ‘‘2) Delete’’ :PRINT

Menu
CLS

‘'3) Sort’’:PRINT ‘‘4) Display’’:PRINT ‘‘5) End’’ :PRINT
INPUT ®‘Number of your choice’’;T

ON T GOTO 200,300,400,500,600

GOTO 110

: Input data

INPUT *‘Name’”’;C

IF C=7"rrt THEN 100

INPUT ‘‘Phone’’;D

N=N+1:A(N)=C:B(N)=D:GOTO 200

: Delete data

INPUT ‘‘Delete what’’;C

FOR X=1 TO N

IF A(X)=C THEN A(X)=A(N):B(X)=B(N):A(N)='’’7:B(N)='’'’:N=N-1:GOTO
100

NEXT X

PRINT C;’’ not found.’’ :GOTO 300

A Sort data

FOR X=1 TO N-1

FOR Y=N TO X+1 STEP -1

IF A(Y)<A(X) THEN SWAP A(Y),A(X):SWAP B(Y),B(X)

NEXT Y

NEXT X

GOTO 100

- Display data

CLS:FOR X=1 TO N:PRINT X;TAB(9);A(X);TAB(30);B(X) :NEXT X
PRINT ‘‘Press Space Bar for Menu.’’;

IF INKEYS$<>'’ ‘' THEN 520

GOTO 100
h End program
END

22

Issue 22 CopeWorks

Listing 2 for Sort on Input

99
100
110

120
| 130
| 140
199
| 200
| 210
220
230
240
250
260
270

280
299
300
310
320

330
340
399
400
410
420
430
499
500

5 REM * inpsort2.bas * D Leithauser *
10 DEFINT N-Z:DEFSTR A-D:DIM A(1000),B(1000) :CLS
. Menu

CLS

PRINT ‘! Menu:’’ :PRINT:PRINT ‘‘1) Input’’:PRINT ‘'‘2) Delete’’ :PRINT
‘'3) Display’’ :PRINT ‘‘4) End’’:PRINT

INPUT ®‘Number of your choice’’;T

ON T GOTO 200,300,400,500

GOTO 110

N Input data

INPUT ‘‘Name’’;C

IF C='’’" THEN 100

INPUT ‘‘Phone’’;D

IF C=>A(N) THEN N=N+1:A(N)=C:B(N)=D:GOTO 200

FOR X=1 TO N

IF C<A(X) THEN 270

NEXT X

FOR Y=N+1 TO X+1 STEP -1:SWAP A(Y),A(Y-1) :SWAP B(Y),B(Y-1) :NEXT
Y

A (X)=C:B(X)=D:N=N+1:GOTO 200

. Delete data

INPUT ‘‘Delete what’’;C

FOR X=1 TO N

IF A(X)=C THEN FOR Y=X TO N-1:SWAP A(Y),A(Y+l) : SWAP BAX) B LY EL):
NEXT Y:A(N)='’7’:B(N)=''’'’:N=N-1:GOTO 100

NEXT X

PRINT C;’’ not found.’’:GOTO 300

’ Display data

CLS:FOR X=1 TO N:PRINT X;TAB(9);A(X);TAB(30);B(X) :NEXT X

PRINT ‘‘Press Space Bar for Menu.’’;

IF INKEYS$<>’’ ‘' THEN 420

GOTO 100
} End program
END

CopoeWonrks Issue 22

23

Flow.Bas

A Line Number Reference Utility

Staff Project. This program will chart the flow of your program, giving line
number references and whether or not the GOTOs and GOSUBs are condi-
tional or directed. For best results, it should be compiled.

Flow.Bas is a utility program that works on
your programs saved in ASCII and prints out a
list of line numbers and associated GOTOs and
GOSUBs. In addition, it will tell you whether or
not those program branches were conditional or
“hard.” By “hard” we mean an unconditional or
directed program branch.

The program comes in handy when you have
an especially convoluted program flow and are
trying to figure out where it's going next. This
can happen on programs you have written a long
time ago, or when trying to figure out someone
else’s program. Provision has been made to print
the output directly to the screen, or, to the screen
and printer as well.

One of the things we had to consider when
designing this program was that not all GOTOs
say GOTO. A GOTO can be implied with the
THEN and ELSE statements. Also, a line num-
ber implying a GOTO can follow the RESUME
and RETURN statements as well. On the other
hand, an IF anywhere in a line automatically
makes a conditional out of any branch which
follows on that same line.

Basically, the idea of the program is to open
the target file (which must have been saved in
ASCII) and read in one line at a time. Then
examine that line looking for specific keywords
which would imply that a line number follows.
When that happens, we determine what the

branch statement was (a GOTO or GOSUB) and
stuff three arrays with the line number calling
the branch, the line number to branch to and the
type of branch it was. After the completion of the
examination of the target program, we can then
take the three arrays and consolidate the infor-
mation in them and print out a summary.

As you have already guessed, the program is
slow because it must examine every characterin
every line that is not a remarked line. This
program is therefore an excellent candidate for
the compilation process. We did, and it increased
its speed by a factor of about 20.

Program Details

Initialization starts at line 170, where if your
BASIC is prior to version 5.0, you should clear
some string space. In line 180 we dimension the
A, B and C arrays at 650. This allows examining
a program that is up to 650 lines long. You can
change these if you find it necessary. Array T is
also dimensioned here, but if you use the SWAP
command (lines 640-660 and lines 780-790) you
don’t even need the T array. If your computer
does not have the SWAP command, you will need
to dimension array T.

Lines 190 and 200 format some print strings
to be used later with PRINT USING statements.
Line 210 defines three string variables to hold
words we will need several times later.

24

Issue 22 CopeWorks

’\

B e e e ot e A

After the usual CodeWorks opening we are
asked the name of the file to examine, and this is
held in variable FF$. We are then asked if we
want printed output also and variable PR holds
the indicator: PR=0 says no printer while PR=1
says we want printer output.

Most of what happens in this program occurs
in the following lines, from 360 to 570. But first,
in line 340, we open the target file for input.
There are two loops in this block of code, one of
them is inside the other. Let’s cruise through the
loops just like the program would and see what
happens.

Asis usual in computing, the first thing you do
is look for a way out, and line 370 does that by
testing for end-of-file on the input (target) file. If
we are not at EOF of the input file, line 380 reads
in one line of code and calls it A$. In line 390 we
find the length of the A$ just read in. We won’t
use that length immediately, but we will a bit
later. In line 400 we find the space after the line
numberofthe line just read in, andin line 410 we
let variable LN contain the line number itself.
Note that we have to take the VAL of it because
it was read in as a string.

In lines 420 and 430 we check the first item in
theline after the space following the line number
toseeifitis aremarkline. If the line is a remark,
we don’t even want to mess with it so we jump
right down to line 560 and get the next line from
the file to look at.

The inner loop starts at line 440 and goes to
540. In this loop we are taking the line of code
from the space after the line number to the end,
and we will let C$ be a little “window” that looks
at four characters at a time. Meantime, we will
have another “window” that is two characters
long to find the keyword “IF.” S$ is going to be
our four-character window (in line 460), and in
line 470 we look at two characters of the four in
the C$ window to see if they are “IF.” If they are,
then flag F1 gets set to one. This will later tell us
that the GOTO or GOSUB was “conditional.”

As we step down the line, C$ will examine four
characters at a time. If those four characters
happen to be “THEN”, “ELSE”, “GOTO”,
“OSUB”, “SUME” or “TURN” then we jump out
and go to a subroutine to do some further proc-
essing. Before we go there though, let’s look at
those terms a bit. THEN and ELSE are implied
GOTOs. Because they are unique, we can deter-
mine GOSUB, RESUME and RETURN by just
looking at the last four characters. But why
RESUME and RETURN? Well, it's because they
can both be followed by line numbers, and there-
fore, another implied GOTO. Let’s assume we
have found one of our keywords. In every case,
flag F1 will be set to either a one or a two, and we
GOSUB to 1010. Remember that the Q loop is
still sitting at the point where we found the
keyword.

At subroutine 1010 the first thing we dois find
the value (VAL) of the nine characters following
our keyword (in line 1020.) We know that line
numbers can only be a maximum of five charac-
ters long, but some people like to put a couple of
extra spaces in their lines - so nine characters
ought to catch them. In any case, VAL will not
return anything for alpha characters, so we will
get the line number reference we want. In line
1030, if A is equal to zero, it means that what
followed the keyword was no number. That can
happen in lines like: IF X=1 THEN IF Q=2...,,in
which case the THEN is not followed by a line
number reference. In this case we simply return
to where we came from.

If we do have a line number reference, how-
ever, then we will increment our J count by one.
J is going to be the count for the three arrays we
mentioned earlier, in which we will keep all the
information we glean from the lines. The next
thing we do in line 1050, is jump the Q counter
(way back in line 440) past the length of the line
number reference. In other words, we are going
to advance the Q count to the end of the line
number reference we just found. Next, in lines
1080 through 1150, we look at the flags that
have been set, and depending on what they are
we can print a line on the screen (or printer, if

CopeWorks Issue 22

25

selected) that says: 370 GOTO 570 CONDI-
TIONAL. In this case, we got the 370 line num-
ber from LN back in line 410, the GOTO because
we got here from line 500, the 570 came from
variable A which we just found, and the CONDI-
TIONAL came from the fact that flag F had been
a one. Now that we know all that, we stuff the
proper values into the A, B and C arrays, using
J as the array counter. Then we return.

Since there may be further references to line
numbers in A$, we continue looking down the
line to find them. When we have finished one line
of A$, we clear C$, A, F and F1 to zero and get
ready for the next line from the target file.

When all the lines in the target file have been
examined we close the file at line 570 and then
sort the A, B and C arrays into ascending order
on array C. If your computer supports the SWAP
command, you can use the optional lines in lines

Flow.Bas for GW BASIC
changes for other machines

follows the listing.

640 to 660. It will speed things up a bit if you do.

Next, we do a second level sort on the B array.
This is a “sort within a sort” and arranges all
items in similar C array entries into ascending
order. See Beginning BASIC in this issue for a
complete look at two-level sorting.

The consolidate routine at line 850 comes
next. Array C tells us if an entry in the corre-
sponding A or B array is a conditional GOTO,
hard GOTO, conditional GOSUB or a hard
GOSUB. Since the numbers go from one to four,
we can use them in an ON GOTO statement, as
in line 880. The code from lines 930 to 950
arranges the output into something that is easy
to read.

Although not the most used program in the
world, it really does comes in handy when you
need to follow the flow of an unknown or forgot-
ten program. You might also use it to help you re-
structure a badly written program and perhaps
get rid of some unnecessary GOTOs.

100 REM * Flow.Bas * Examines flow of a program *
110 REM * Written for CodeWorks Magazine, 3838 South Warner St.
120 REM * Tacoma, WA 98409 (206) 475-2219 voice 475-2356 download

130 REM * (C)1988 80-NW Publishing Inc.

Placed in public domain.

140 REM * Suggestion: For max speed, compile this program.

150 Y
160 ‘Do some initialization

170 ‘CLEAR 1000 ‘ only if your BASIC is prior to ver. 5.0

180 DIM A(650),B(650),C(650),T(650)

190 F1S=""##### \
200 F2$=""####4 \

\ ####E \
\ #4844

\II

210 Tl$=”GOTO":T2$=”GOSUB":T3$="CONDITIONAL”

220 CLS

D——1

26

Issue 22 CopeWorKs

[S 1

()

230 PRINT STRINGS (22,45);’’ The CodeWorks ‘';STRINGS (23,45)

240 PRINT’’ PROGRAM FLOW ANALYZER
250 PRINT’’ shows all program branches

260 PRINT STRINGS (60,45)

270 PRINT

280 INPUT’’What ASCII file do you wish to examine’’;FF$;
290 INPUT’’Do you wish printer output also (y/n)’’;PR$ l
300 IF PRS$=''Y’’ OR PR$=’''y’’ THEN PR=1 ELSE PR=0 |

310 IF PR=1 THEN LPRINT’’Examining program ‘‘;FF$:LPRINT’’ ‘! t
320 °

330 " Open the file and read one line at a time

340 OPEN’’I1’’,1,FFS

350 CLS

360 FOR I=1 TO 650

370 IF EOF (1) THEN 570

380 LINE INPUT #1,AS$

390 L=LEN (A$) +1

400 S=INSTR(AS,’’ ‘')
410 LN=VAL (LEFTS$ (A$,S))

420 IF MIDS (AS$,S+1,3)=''REM’’ THEN 560
@ 430 IF MIDS (AS,S+1,1)='’'’’ THEN 560
440 FOR Q=S TO L

450 C$=C$+MIDS$ (A$,0Q,1)

460 S$=RIGHTS (C$, 4)

470 IF RIGHTS (S$,2)=''IF’’' THEN F=1

480 IF S$='’THEN’’ THEN F1=1:GOSUB 1010
490 IF S$='’ELSE’’ THEN F1=1:GOSUB 1010
500 IF S$=’’GOTO’’ THEN F1=1:GOSUB 1010
510 IF S$='’0OSUB’’ THEN F1=2:GOSUB 1010
520 IF S$$='’SUME’’ THEN F1=1:GOSUB 1010
530 IF S$='’/TURN’’ THEN F1=1:GOSUB 1010

540 NEXT Q
550 C$='""':A=0:F=0:F1=0
560 NEXT I
570 CLOSE 1
580 °
590 REM * sort the arrays
600 FL=0
610 FOR I=1 TO J-1
620 L=I+1
630 IF C(I)=<C(L) THEN 680
’ 640 T(I)=C(I):C(I)=C(L):C(L)=T(I) ‘or SWAP C(I),C(L)
650 T(I)=A(I):A(I)=A(L):A(L)=T(I) ‘or SWAP A(I),A(L)

CooeWonrks Issue 22 27

-::__---------------‘

,

660 T(I)=B(I):B(I)=B(L):B(L)=T(I) ‘or SWAP B(I),B(L)

670 FL=1

680 NEXT I

690 IF FL=1 THEN 600

700 PRINT

730"

720 * * now do a second level sort *

730 FL=0

740 FOR I=1 TO J-1

750 I=I+1

760 IF C(I)<>C(L) THEN 810

770 IF B(I)=<B(L) THEN 810

780 T(I)=A(I):A(I)=A(L):A(L)=T(I) ' or SWAP A(I),A(L)

790 T(I)=B(I):B(I)=B(L):B(L)=T(I) ‘ or SWAP B(I),B(L)

800 FL=1

810 NEXT I

820 IF FL=1 THEN 730

830 PRINT

840

850 REM * consolidate routine

860 FOR I=1 TO J

870 L=I-1

880 ON C(I) GOTO 890,900,910,920

890 DS$=’’ COND GOTO’’ :GOTO 930

900 D$=’’ hard GOTO’’ :GOTO 930

910 D$='"COND GOSUB’’ :GOTO 930

920 DS$=’'"hard GOSUB’’

930 IF B(I)=B(L) THEN PRINT A(I);’’ ‘‘;ELSE PRINT:PRINT ‘‘Line’’;
B(T) ;%18 a “':D$:;'*" called from:2f ;ALT):’? ~%

940 IF PR=0 THEN 960

950 IF B(I)=B(L) THEN LPRINT A(I);’’ ‘‘;ELSE LPRINT’’ ‘‘:
LPRINT’’Line’’;B(I);’’is a ‘‘\;D$;’’ called from:’’;A(I);*’" ‘%;

960 NEXT I

970 IF PR=1 THEN LPRINT CHR$ (13) : LPRINT’ ’Done."’’

980 PRINT

990 PRINT ‘‘Done’’ :END

1000 °©

1010 REM * subroutine to find trailing numbers

1020 A=VAL (MIDS$ (A$,Q+1,9))

1030 IF A=0 THEN RETURN

1040 J=J+1

1050 Q=INSTR(Q,A$,STRS (A))+LEN (STRS (B)) -1

1060

28

Issue 22 CopeWoRKS

()

#

g 1070 ‘and then print the results

1080 IF F1l=1 AND F=1 THEN PRINT USING F1$;LN;T1$;A;T3$:A(J)=LN:
B(J)=A:C(J)=1

1090 IF PR=1 AND Fl=1 AND F=1 THEN LPRINT USING F1$;LN;T1$;A;T3$

1100 IF Fl=1 AND F=0 THEN PRINT USING F2$;LN;T1$;A:A(J)=LN:B(J)=A:
C(J)=2

1110 IF PR=1 AND F1l=1 AND F=0 THEN LPRINT USING F2$;LN;T1$;A

1120 IF F1=2 AND F=1 THEN PRINT USING F1$;LN;T2$;A;T3$:A(J)=LN:
B(J)=A:C(J)=3

1130 IF PR=1 AND F1=2 AND F=1 THEN LPRINT USING F1$;LN;T2$;A;T3$

1140 IF F1=2 AND F=0 THEN PRINT USING F2$;LN;T2$;A:A(J)=LN:B(J)=A:
C(J)=4

1150 IF PR=1 AND F1=2 AND F=0 THEN LPRINT USING F2$;LN;T2$;A

1160 RETURN

Flow.Bas change lines for Tandy I and III

Changed->100 REM * Flow/Bas * Examines flow of a program *
Changed->170 CLEAR 1000 ' only if your BASIC is prior to ver. 50
Changed->190 F1$=""'##### % % #HHHE 3 5
Changed->200 F2$='"##### % % FEEEE7

Changed->440 FOR Q=S+1 TO L

Flow.Bas change lines for Tandy II and IV

Changed->100 REM * Flow/Bas * Examines flow of a program *
Changed->440 FOR Q=S+1 TO L

CooeWonrks Issue 22

29

f

Pay2.Bas

An Updated Pay.Bas with New Changes

Staff Project. Thanks to the many of you who suggested changes to
Pay.Bas. These changes, and others, are now incorporated into the new

Pay2.Bas program.

Way back in Issue 4 (March 1986) we pub-
lished the program Pay.Bas. In Issue 14 (No-
vember 1987) it went through its first revision.
That revision was so that more employees could
be added and to fix the case where you couldn’t
get rid of an employee.

Hanging in our craw was the hokey way you
had to initialize the program the first time you
used it. Typing stuff in command mode and
ignoring an error message is just not cool. Aside
from that, some readers gave us the works for
the way the pay stub and reports printed cents.
They said it just wasn’t the way to do things like
that, and they were right.

The changes included with this article are in-
tended to fix all of that. In addition, these
changes can be made whether or not you have
made the changes listed in Issue 14. Further,
you can make these changes to your program
without the need to start all over and enter all of
your employees again. For those of you who do
not have the original program, a complete listing
of the new version is included. Also included, are
the change lines for those who already have the
program and just want to update it. Even if you
are typing the program in for the first time, you
might want to refer to the change lines, since
they are printed sideways so you can see the
layout of the print format lines.

The first thing is to change the name of the
program to PAY2.Bas, to show that it is the
updated version. Next, we added an error trap,

and in the added lines from 3240 on, we create
the “Paynames” file if it doesn’t already exist. It
all happens without you even seeing it. No more
command mode inputs and ignored error mes-
sages.

The changes you will notice in the everyday
operation of the program are in added and
changed lines from 171 to 1700. Lines 172, 173
and 174 set up three print formatting lines using
the PRINT USING format. Line 171 is a guide
line so that you can get the spacing right on the
following three lines. We are pasting the listing
in sideways so that you will see the continuous
lines without wrapping. Spacing is rather impor-
tant in these lines so that amounts line up with
headings. Actually, it somewhat simplifies lines
910-1700. Now, all your dollar amounts will lix}e
up nicely and the cents will always print outn
two places like they should. Line 2660 was
changed to keep the words from running to-
gether when you clear the quarter or year. It's
what they call a “cosmetic” change only.

If you intend to make these changes to an
active payroll program, it may be best if you
backed up your original copy with all your em-
ployees on it and get this working on the backup
first. Then make the changes to your “live” copy-
There is nothing in the world like a messed up
payroll. You catch it from all angles when that
happens, and we are way past the point where
people will believe that it was the computer that
messed up.

30

’/
Issue 22 CooeWoRKS

+ -) St s 3 U = PR NP - o
82 458850874 2E828BEF IS §¥ i3
Egl wHSpSEHEE L4segg oSo534 g8 98
R mmetnam DEESa8 giedt iy 38
Avd T iBG e - He Hgd a9, Ek3 il -
) mESE© SE" 88w o 8§ Hu &
385 228t 8p TE.gsfH Fie33 RE o
g guELgHET . QEREEHE 5823 B. S
SEE BpEE8-"Ewgg 57,888 T9585F AE T3
o & a8 ssorgm RoH¥PEHL. B> ofw g
AMM@ ﬁiMMoﬂMoﬁ mmMWmmw memm mm mma
rtm. mmt B el eﬁ@sﬁﬁm w%wm £5, wnw
258 aPH3ideEs EEEESET 2asyE SF =83
8o AfES 8Ea8 & feg<s 3 B3 e 2 g4

wexboxd Jo , ANE PPEE<---P2PPY¥
@SE OLOD P6ZEL---PoPPV

T ES01D @8ZE<---P2PPV¥

wIANO, ‘T# INI¥A PLZEL---P2PPY

wSaweuleg, ‘1’,0,N3Zd0 @9ZE<---P2PPV

g°c I2A 03 101ad OTSeq , g OLOD YO¥¥E NO NIHL ¥S <> T+(z/¥9¥3) AI , PSZEL---PapPP¥

@ OLOD ¥O¥YIA NO NHHIL €S <> ¥dF JdI

PYZE<——--P2PPY¥

*3SIX® 3,Us90p 3T JT o113 saweudled 23e210 03 deal 10118 , PEZEL---P2APPVY

1]
X INANI:!, d3INd SS@1g °*poiIea[d uaaq 24aeY sjunowe ,!&x?!, TIV.INIdA
BLYLL!OLIGLIPLIELIZLITLISOX ONISN INI¥AT
(9T)F(BT)I(ST)A(PT)AL(ET)F(ZT)F(TT)FL(LT)TLSDOX ONISN INI¥AT
(g)af(8)A!(9)A!(6)A4(L)FSEX ONISN INI¥4T:¢,---- @23€Q 03 I€DX,ININ¥4T
TOIWDISD41D4aDI8EX ONISN LNI¥dT:{,-- POTI® 3JUL31IND, LNIVA1T
dN!{dD! (@)T4IH! (P)ITIOHISYX ONISN ININ¥AT
EE B X S 2 FRREE RETHEER O HECHER O BECHEEN FE #4432 RECHBERE ###4 w=80X
E 8 31 RS T #4444 #4444 #4444 .=08X
$ERE845S FE REREHSS #E°#4S §# FThEs ## w=9V¥X
TO68LOSHVEZTO68LOGHEZTA6BLOSVEZTO68LOGVEZTN6BLOGHEZTA6BLOGPEZTA68LISHEZT '

PPZE OLOD ¥O¥¥F NO
g8 bny pajepdn ANIZVOVW SHYOMIA0D VOJ xx SYH'ZAYd xx WIN

pzZEL-pabueyn
p99z<~-pabueyp
poLT<-pPabuey)d
pG9T<~-pabueyd

g96<~-pabueyd
ps6<-pabueyd
p16<-pabueyp
PLI<---P2pPPY¥Y
€LTIL---PopPPVY
ZLI<---P2pPpP¥Y
TLI<--=-P2PPV¥
89T<-~-PaPPV¥
pp1<-pabueyd

seq*1Aed o3 paiedwod seq*z4Aed utr sabuey)

31

CobeWorks Issue 22

e

100 REM ** PAY2.BAS ** FOR CODEWORKS MAGAZINE updated Aug 88

110 REM ** 3838 S. WARNER ST. TACOMA, WA 98409 (206)475-2219

120 REM ** PLEASE DO NOT REMOVE THESE CREDIT LINES

130 REM ** 1st time initialization not required. See CodeWor¥s Issge 4
140 REM ** for complete details and operating instructions, including
150 REM ** how to reinstate a deleted employee.

160 CLEAR 1000: * Use only if your machine needs to clear space.

165 NE=15 ‘sets max number of employees you can have.

166 N1=NE

168 ON ERROR GOTO 3240

170 DIM E(18) ,ES(NE+1) : ' ES() sets the max number of employees plus

1

30T i i 1234567890123456789012345678901234567890123456789012345678901
2345678901

172 XAS="" ## ##8.4 ## S#E.#F SSEMEME. B4 SS#ERE. 44

173 XBS="" ###.## ##. 84 #4244 fie. 84 fie. 88

174 XCS="' #### FRERR B FRRRLBF MMER LB MR RBRLME L m

#4444
180 INPUT’’Enter the date (any way you like)’’;D$
190 REM ** If you have DATES change above line to: D$=DATES
200 ¥ —m———- Define some important variables —-=-----

210 ‘' E§ current employee’s file name. Also used in array ES()
220 " E1$ is any employee’s full name.

230 * S$§ is any employee’s social security number.

240 " E()is any employee’s data array - see edit/review code.
250 ' HO = hours worked this pay period.

260 * VA = VC*HO, how much vacation was earned this pay period.

270 * HT = Vacation Hours Taken this pay period.

280 ' GP = Gross Pay for this pay period.

290 ' CF = Current pay period FICA deduction.

300 ' CT = Current pay period FedTax deduction.

310 * CS = Current pay period State Tax deduction.

320 * CM = Current pay period Medical deduction.

330 ' CL = Current pay period Workman’s Compensation deduction
340 ' NP = Net Pay for the current period.

350 GOSUB 3010 : * Read in the employee file names file.

360 GOSUB 2920 : * Write the file names file back out.

370 VC=,03846 : ' Vac earned per hour - given 2 weeks per year.
380 FR=.0705 : ' FICA rate withheld from each employee.

390 WC=.0276 : ' State Workman’s Compensation deduction rate.
400 FM=37800! : ' Maximum gross from which FICA can be deducted.

410 DEF FNI (X)=INT (X*100+.5) /100
420 C1$=’’Magarac’s Widget Company’’
430 C2$="71234 Tool Steel Road’’

' Define rounding as a function.
' Put your company name here.
' And your address,

440 C3$='’Skunk Hollow, WA 98000" : ' and city state and zip too.

450 CLS

460 PRINT STRINGS (22,77=*7);7* The CodeWorks ‘';STRINGS (23,7 7-"")

470 PRINT’’ SMALL BU/'S'I NE S'S PAYROLL

480 PRINT’’ for companies where you know them by their first name

490 PRINT STRINGS(60,’’-’7) 0
500 PRINT 5

32 Issue 22 CopeWORKS

‘Ep 510

520
530
540
550
560
570

580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740

0 ..

760
770
780
750

800
810
820

830

840

850
860
870
880
890
900

910

'.' 920
930

940

PRINT TAB(10);’’1 - Do the Payroll’’

PRINT TAB(10);’’2 - Edit or Review a Pay Record’’
PRINT TAB(10);’’3 - Print Payroll Reports’’

PRINT TAB(10);’’4 - Add or Delete Employees’’
PRINT TAB(10);’’5 - End of Quarter/Year Clearing’’
PRINT TAB(10):;’’6 - End Session’’

PRINT

PRINT’’Your choice’’;

XS$=INKEYS:IF X$='’’’ THEN GOTO 590

X=VAL (X$) : IF X<1 OR X>6 THEN GOTO 590

ON X GOTO 630,1060,1370,1920,2410,2690

END:REM -—-- - > Do the Payroll module **
CLS:PRINT TAB(10);’’ ****x DO THE PAYROLL ****xr7
PRINT

IF N1=<5 THEN PRINT’’One 8 x 11 sheet of paper will do.’’:GOTO 670
PRINT’’You will need two 8 x 11 sheets for the pay stubs.’’
PRINT’ Adjust your paper, your printer should be set for 66 line’’
PRINT’ 'pages and 60 lines per page, width 80 columns.’’
PRINT
PRINT’’To skip an employee, enter 0 for hours worked.’’
PRINT
FOR I=1 TO N1
ES=E$ (I) :HT=0:GOSUB 2830
PRINT’ Hours ‘‘;ES$;’’ worked this period’’;:INPUT HO:IF HO=0 THEN
GOTO 1020
PRINT’ ’Did ‘‘;ES$;’’ use any vacation this period (Y/N)’’;:INPUT X$
IF XS$<>'7Y’’ AND XS$<>’’y’’ THEN GOTO 790
INPUT’ ' How many hours were taken’’;HT
E(4)=E (4) -HT
VA=VC*HO:E(4)=E(4)+VA:GP=E(O)*HO:CF=GP*FR:CT=GP*E(1):
CS=GP*E (2) :CM=E (3) : CL=HO*WC
IF E(10)=>FM THEN CF=0
NP=GP- (CF+CT+CM+CL+CS)
E(7)=E(7)+CF:E(9)=E(9)+CT:E(6)=E(6)+CS:E(5)=E(5)+CL:E(8)=E(8)+
CM
E(17)=E(17)+H0:E(11)=E(11)+GP:E(12)=E(12)+CF:E(13)=E(13)+CT=
E (14)=E (14) +CL:E (15) =E (15) +CS:E (16) =E (16) +NP:E (10) =E (10) +GP:
E(18)=E (18)+CM
CF=FNI(CF):CL=FNI(CL):CT=FNI(CT):CS=FNI(CS):CM=FNI(CM):
NP=FNI (NP) : GP=FNI (GP) :E (10) =FNI (E (10))
FOR K=5 TO 18:E(K)=FNI (E(K)) :NEXT K
LPRINT C1S$+4’7 “‘“4C2$8+’’ ‘‘+C3$%
LPRINT E1$;TAB (26);S$:TAB(40);’’Pay period ending: ‘‘';D$
LPRINT’* ©
E(4)=INT (E(4) *10+.5) /10
LPRINT"HOURS”:TAB(7);"VacAvail":TAB(
TAB (35) ; * * GrossPay’ ’ ; TAB (50) ; /' NetPay'"’
LPRINT USING XAS$;HO:;E(4);HT:E(0);GP;NP
LPRINT’ 7 YA

LPRINT TAB(32)’’ -- Deductions -- o
LPRINT TAB(ZO);"FICA”;TAB(BO);"FedTax";TAB(40);"StateTax 5

17) ;" *Taken’’ ;TAB(25) ;' "Rate’’

rr

.
’

CopeWonks Issue 22

T R R Sk

IIlllIIllIlIllIIIlIIlIIlIllIIllllIIlIlIIllIIIIlIlIlllllIlIIlIlllllllllllllllllllllll..

950
960

970

980

890

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420

\

TAB (50) ;' "Medical’’ ; TAB(60) ; * WorkmnComp” *

LPRINT’’Current Period --'’;:LPRINT USING XBS;CF;CT;CS;CM;CL
LPRINT’’Year to Date —----'’;:LPRINT USING XBS;E(7):E(9);:;E(6);E(8);
E(5)

LPRINT’’YTD Gross $'’;E(10)

LPRINT STRINGS (64,45)

GOSUB 2750

IF I=6 THEN LPRINT CHRS(12)
NEXT I
LPRINT CHRS (12)
GOTO 450
END A REM ~— s et e s > Edit or Review a Pay Record module **
CLS:PRINT TAB(10);’’EDIT/REVIEW A PAY RECORD’’
PRINT
INPUT’ 'Enter Employee’s First name ‘‘;E$
GOSUB 3090
GOSUB 2830
CLS:PRINT TAB(20);'" EDIT/REVIEW’ '
PRINT’’Filename is: ‘‘;E$
PRINT’’1-Name:’’;E1$;TAB(32);’’11-YTD Med ded ---- ‘‘;E(8)
PRINT’’ 2-SS# —=—=—- ‘\1';S$;TAB(32);’712-YTD FedTax ded -- ‘‘;E(9)
PRINT’ ’ 3-Rate/Hr -- ‘‘;E(0);TAB(32);’’13-YTD Gross pay —-- ‘‘;E(10)
PRINT’/’4-FedTax % - ‘‘;E(1);TAB(32):;’’14-Gross this qtr -- ‘‘;E(11)
PRINT’’5-StTax % -- ‘‘;E(2);TAB(32):;’’15-FICA this qtr -- ‘':;E(12)
PRINT’’ 6-Med ded -- ‘‘;E(3);TAB(32);’’16-FedTax this qtr = YYE(13)
PRINT’’7-Vac avail- ‘‘;E(4);:;TAB(32);’’17-WkComp this qtr - ‘‘;E(14)
PRINT’’ 8-YTD WkComp ‘‘;E(5);TAB(32);’’18-StTax this qtr —- ‘‘“;E(15)
PRINT’’9-YTD StTax- ‘‘;E(6);TAB(32);’’19-Net pay this gqtr- ‘‘;E(16)
PRINT’*10-YTD FICA- ‘‘;E(7);TAB(32);’’20-Hours this qtr -- ‘“;E(17)
PRINT TAB(32);’’21-Med ded this gqtr- ‘‘;E(18)
PRINT
INPUT’’Correct which item number, enter 0 for none *‘;XX
IF XX=0 AND X2$<>’’’’ THEN PRINT’’You chose to change something,
which number’’;:INPUT XX:IF XX=0 THEN GOTO 1250 ELSE GOTO 1280
IF XX=0 THEN FOR I=0 TO 18:E(I)=0:NEXT I:GOTO 450
IF XX<1 OR XX>21 THEN GOTO 1250
LINE INPUT’’Enter the correct information ‘‘;X$
IF XX=1 THEN E1S8=X$
IF XX=2 THEN S$=X$
IF XX>2 THEN E (XX-3) =VAL (X$)
INPUT’’Any more changes (Y/N)’’;X2$
IF X2$=''Y’’ OR X28='"y’' THEN GOTO 1250
GOSUB 2750:X2S8="’’’:GOTO 1110
END:REM —————e— e > Print Payroll Report module **
CLS:PRINT TAB(10);’’ PAYROLL REPORTS’*
PRINT
PRINT’’Get your printer ready’’
PRINT
PRINT’’1 - Report of Amounts Paid/Withheld (IRS 941 info)’’
PRINT’’2 - Employee Information Report.’’

Issue 22 CopeWoRKS

& 1430 PRINT’’3 - To return to main menu.’’

1440 PRINT

1450 PRINT’’Your Choice’’;

1460 XS=INKEYS:IF X$=’’’’ THEN GOTO 1460

1470 X=VAL(XS) : IF X<1 OR X>3 THEN GOTO 1460

1480 LPRINT TAB(20):;C1$

1490 LPRINT TAB(20):C2$

1500 LPRINT TAB (20);C3$

1510 LPRINT’’ “°©

1520 ON X GOTO 1530,1750,450

1530 CLS:PRINT’’This report will show accumulated amounts during the’’

1540 PRINT’’quarter. It is used primarily to have a record and to’’

1550 PRINT’’calculate IRS 941 liability. It will fit on one page.’’

1560 PRINT

1570 PRINT’’Press ENTER when ready’’;:INPUT X

1580 LPRINT’’Accumulated Pay Amounts Report for period ending VV;D$

1590 LPRINT’? \©

1600 LPRINT"HOUIS";TAB(lO);"Gross";TAB(ZO);”FICA";TAB(30);"FedTax";
TAB(40):"WkComp";TAB(47);"StTax";TAB(SG);"Med”:TAB(GS);"NetPay”

1610 LPRINT’’ “©

1620 FOR I= 1 TO N1

1630 ES$=ES$ (I) :GOSUB 2830

1640 LPRINT E1§,S$

1650 LPRINT USING XC$;E(17):E(11);E(12);E(13);E(14):;E(15);E(18);

E(16)
e 1660 T1=T1+E (17) : T2=T2+E (11) : T3=T3+E (12) : T4=T4+E (13) :T5=T5+E (14) :
T6=T6+E (15) : T7=T7+E (18) : T8=T8+E (16)
1670 NEXT I
1680 LPRINT’’ *©
1690 LPRINT’’*** TOTALS ***’’
1700 LPRINT USING XC$;T1;T2;T3;T4;T5;T6;T7;T8
1710 “EPRINT* 2
1720 LPRINT’’Total 941 liability so far is $’’; (2*T3)+T4
1730 LPRINT CHRS (12)
1740 GOTO 450
1750 CLS:PRINT’’Employee List Report’’
1760 PRINT
1770 PRINT’’This report provides a list of your employees and their’’
1780 PRINT’’ fixed deductions. It will fit on one 8 x 11 page.’’
1790 PRINT
1800 PRINT’‘Press ENTER when ready’’;:INPUT XX
1810 LPRINT’’Employee List as of ‘';D$
1820 LPRINT’’
1830 LPRINT"Name";TAB(ZG);"SS#”;TAB(38);"Rate";TAB(SO):"FedTax%”:
TAB (60) ; * * StTax%’’ ; TAB(70) ; * “Med Ded’’
1840 LPRINT’’ ©
1850 FOR I=1 TO N1
1860 ES$=ES$(I):GOSUB 2830
1870 LPRINT El$:TAB(26):S$;TAB(38);E(O):TAB(SO):E(l);TAB(60):E(2):
' TAB(70) ;E(3)
1880 NEXT I

CooeWorks Issue 22 35

e S R R - LR e . A NS

IIlII-IIlllIllllllllllIIlIllIlIlIIlIlllIIlIlIlIIllIIllIIIIIIIIIIIIIIIIIIIIIIII

1890 LPRINT CHRS (12)
1900 GOTO 450
1910 END:REM =====—m—————e— e > Add or Delete Employee module **
1920 CLS:PRINT TAB(10);’’ ADD OR DELETE AN EMPLOYEE PAY RECORD ‘!
1930 PRINT
1940 PRINT TAB(10);’’1 - To ADD a New Employee Record.’’
1950 PRINT TAB(10);’’2 - To DELETE an Employee Record.’’
1960 PRINT TAB(10);’’3 - To return to main menu.’’
1970 PRINT’’Your Choice’’;
1980 X1S$S=INKEYS$:IF X1$=’’’’ THEN GOTO 1980
1990 X1=VAL(X1$):IF X1<1 OR X1>3 THEN GOTO 1980
2000 ON X1 GOTO 2010,2230,450
2010 CLS:PRINT TAB(10):’’ADD a new Employee Record’’
2020 PRINT
2030 PRINT’’Follow the prompts to create a new employee record.
2040 PRINT’’Enter zero amounts where applicable.’’
2050 LINE INPUT’’Employee Full Name -——-—-——==—=—= VV;E1S
2060 LINE INPUT’’Social Security Number --—--—---— YVES$
2070 INPUT’’Hourly Rate of pay —————===——=——=—- VV;E(O)
2080 INPUT’’Federal Tax Deduction % (i.e., .12)- ‘“E(1)
2090 INPUT’’State Tax Deduction % (i.e., .08)-- ‘';E(2)
2100 INPUT'’’Medical Insurance per period ———---— VAZE(I)
2110 PRINT
2120 INPUT’’Enter Employee File name ‘‘;E$
2130 FOR I=1 TO NE
2140 IF E$(I)=ES$ THEN PRINT’’That name already exists, use another’’:
GOTO 2120
2150 NEXT I
2160 INPUT’’Press ENTER to create this record’’ ;XX
2170 GOSUB 2750
2180 FOR I=1 TO 10
2190 IF ES$(I)="’’’ OR ES$(I)="'ONE’’ THEN ES$(I)=E$:GOTO 2210
2200 NEXT I
2210 GOSUB 2920
2220 GOTO 450
2230 CLS:PRINT TAB(10);’’ BEFORE YOU DELETE AN EMPLOYEE!’’
2240 PRINT
2250 PRINT’’You must carry an employee through the current quarter’’
2260 PRINT’’so that your reports used for IRS forms 941 will be’’
2270 PRINT'’correct. To carry a terminated employee through’’
rr 3
L R e e e
- will then skip over that’’
2300 PRINT’‘employee. NOW -- if you still want to delete, go ahead:’’
2310 PRINT’’Answer the next question with 0 if you opt not to delete.’’
2320 PRINT
2330 INPUT’’Enter File name of employee to delete ‘‘;ES
2340 IF E$=’’0" THEN GOTO 1920
2350 GOSUB 3080
2360 FOR I=1 TO NE
2370 IF ES$(I)=E$ THEN E$(I)='’""
2380 NEXT I
36

Issue 22 CopeWoRKS

---l'‘--'-''________'__————_———'''—————————————————————-—————————--._____-_._________________________-1

& 2382

2384
2386
2388
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580

@ 2590
2600

2610
2620
2630
2640
2650
2660

2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810

2820
‘ 2830

2840

FOR I=1 TO NE

L=I+1

IF E$(I)='’'' THEN ES$(I)=ES$(L):ES$(L)='"""
NEXT I
GOSUB 2920:GOTO 350
ENDIREM ~—sssomaenea—— > End of Quarter/Year Clearing module **
CLS:PRINT TAB(20);’’ QUARTER / YEAR END CLEAR ‘‘
PRINT
PRINT’’Be sure you have printed your payroll reports for the’’
PRINT’ ' quarter before clearing. Clearing the quarter will remove’’
PRINT’"all quarterly data for ALL employees. Clearing the year’’
PRINT’’will clear everything except basic employee data for’’
PRINT’'ALL employees. Use Edit/Review option to verify clear.’’
PRINT
PRINT’ At the end of the year, clearing the year will clear the’’
PRINT’’last quarter as well. >> Print your reports first! <<*'?
PRINT’’To prevent inadvertent clearing, you must type in the’’
PRINT’’word QUARTER or YEAR, otherwise, you will be sent’’
PRINT’’back to the main menu.
PRINT
PRINT’’CLEAR what: ‘‘;:INPUT X$
IF X$<>'’QUARTER’’ AND X$<>’’YEAR’’ THEN GOTO 450
IF X$=’’QUARTER’’ THEN Ql=11 ELSE Q1=5
FOR I=1 TO N1

E$=ES$ (I) : GOSUB 2830

PRINT’’Clearing the ‘‘;X$;’’ for: ‘“E$

FOR J=Q1 TO 18

E(J)=0
NEXT J
GOSUB 2750

NEXT I

PRINT’’All ‘‘;X$:;’’ amounts have been cleared. Press ENTER’’;:INPUT

X
GOTO 450
END:REM —=——mmmm e e e > End Session module **
CLS:PRINT TAB(10);’’END SESSION’’
PRINT
PRINT’ Be sure to backup your diskettes after each update.’’
PRINT’’It is advisable to keep a Father, Son and Grandfather’’
PRINT’’set and rotate the backups.’’
END:REM —==—==—————-— > Open employee file and write subroutine **
OPEN ‘‘0’’,1,E$
PRINT #1’E1$+Illll's$+ll’ll’
FOR J=0 TO 18
PRINT #1,E(J):
NEXT J
CLOSE 1
RETURN
END:REM —=——————————— > Open employee file and read subroutine **
OPEN ‘‘I’’,1,E$
INPUT #1,E1$,S$

CopeWorks Issue 22

e IR AR TG RS ey

37

IIIlIIIIIIIIIIIIIIlIIIIIIIIIIIlIIIlIIlIIIIIIIIlIIIlIllllIlIlllllllllllllllllllllll.lll

2850 FOR J=0 TO 18

2860 IF EOF (1) THEN 2890

2870 INPUT #1,E(J)

2880 NEXT J

2890 CLOSE 1

2900 RETURN

2910 END:REM —===————m————e—eememe > Write the PAYNAMES file to disk **
2920 OPEN ‘‘0’’,1,’’PAYNAMES’’

2930 N1=0

2940 FOR I=1 TO NE

2950 IF ES$(I)=''’' THEN GOTO 2980

2960 PRINT #1, ES(I)

2970 N1=N1+1

2980 NEXT I

2990 CLOSE 1

3000 REM =————=—- - --> Read the PAYNAMES file from disk **
3010 OPEN ‘‘I’’,1,’’PAYNAMES’’

3020 FOR I=1 TO N1

3030 IF EOF (1) THEN GOTO 3060

3040 INPUT#1,ES (I)

3050 NEXT I

3060 CLOSE 1

3070 RETURN

3080 REM ———=—————e—— e m e e — e m e e > Who is Real? Subroutine **
3090 FOR I=1 TO NE

3100 IF ES(I)=E$ AND NOT (ES$=’’’’) THEN RETURN

3110 NEXT I

3120 PRINT

3130 PRINT ES$;’’ is NOT a valid pay name.’’

3140 PRINT’’These are:’’

3150 PRINT

3160 FOR I=1 TO N1

3170 PRINT ES(I);’’ ARy

3180 NEXT I

3190 PRINT:PRINT

3200 INPUT’’Which one do you want’’ ;ES$

, 3210 GOTO 3090

3220

3230 " error trap to create paynames file if it doesn’t exist.
3240 IF ERR <> 53 THEN ON ERROR GOTO 0

3250 ‘sxg (ERR/2)+1 <> 54 THEN ON ERROR GOTO 0 ‘ basic prior to ver
3260 OPEN‘’0O’’,1, ‘‘Paynames’’

3270 PRINT #1,"’ONE’’

3280 CLOSE 1

3290 GOTO 350

3300 END ' of program

38 Issue 22 CopeWonRKS

Py Handy Order Form
i R A e e e S R e S

RENEW Subscription Nov/Dec 88 through Sep/Oct 89 $24.95
All third year issues, Nov 87 through Sep 88 $24.95
5 All second year issues, Nov 86 through Sep 87 $24.95
T;
| All first year issues, Sep 85 through Sep 86 $24.95 |
~ 1st Year Program Disk (issues 1 through 7)
. (Specify computer type below) $20.00
! 2nd Year Program Disk (issues 8 through 13)
| (Specify computer type below) $20.00
} =
| 3rd Year Program Disk (issues 14 through 19)
i (Specify computer type below) Available now $20.00
|
] NEW! "Starting with MS DOS" 40-page book explains all $7.00
I

Postage and handling charges already included in all prices.

We can supply program diskettes for PC/MS DOS, TRSDOS 1.3 (Tandy Model 3), TRSDOS 6.x
(Tandy Model IV) and most CP/M MBASIC formats, on
51/4 inch diskettes. When ordering diskettes, specify your computer type.

COMPUTER TYPE

O Check/MO enclosed
O Charge tomy VISA/MC exp

Ship to: Name

Address

City State Zip

Clip or photocopy and mail to:

CodeWorks, 3838 S. Warner St. Tacoma WA 98409

Charge card orders may be called in (206) 475-2219
. between 9 am and 4 pm weekdays, Pacific time.
VISA/Master Card only

389

CooeWorks Issue 22 39

e RN N R s

Index & Download
What's happening with both

Here are the updates to bring CWindex.Dat Notes, direct execution from screen in MS |
up to date through the last issue. The entire DOS, issue 21, page 38
index for the first three years of CodeWorks is on Download, notes on the download, issue 21,
the download and on our yearly diskette. page 40

CWindex.dat, updates to this index, issue |
Notes, shell, erase and rename, issue21,page 21, page 40

3
Notes, using more than 64K of memory, issue
21, page 4 e There hasn't been too much excitement on the
_ Notes, direct cursor positioning with CP/M, download lately. It's running smoothly, except
issue 21, page 4 for one power failure during early February,
Notes, error message patch for Tandy III, which didn't last more than an hour or so.
issue 21, page 5 |
_ Beginning BASIC, a look at variable types, We have noticed that several of you are still
issue 21, page 6 ; having problems when signing on. Use your last
Fileutil.bas, main program, issue 21,page7, name and your subscriber number, and you will | |
a collechor:)of file utilities 5 i get right in. Your subscriber number is the |
Frame.bas, main program, issue 21, page 14, number at the upper right of your mailing label.
building costs and materials e & i P

Trust.bas, main program, issue 21, page 32,
computerized loan payment book

CodeWorks =
3838 South Warner Street UB; :::T.:;c |
Tacoma, Washington 98409 PAID ;

Permit 774
Tacoma, WA

. CODEWORKS

Issue 23 May/Jun1989

CONTENTS

oo

00

oo

oo

oo

00

000000000000000000000000

CopEWORKS

Editor's Notes

Issue 23 May/Jun 1989

Editor/Publisher
Irv Schmidt
Associate Editor
Terry R. Dettmann
Circulation/Promotion
Robert P. Perez
Editorial Advisor
Cameron C. Brown
Technical Advisor
Al Mashburn

(c)1989 80-Northwest Publishing Inc. No pat-
ent liability is assumed with respect to the use
of the information contained herein. While
every precaution has been taken in the prepa-
ration of this publication, the publisher as-
sumes no responsibility for errors or omissions.
Unless otherwise noted, all programs pre-
sented in this publication are placed in
public domain. Please address all correspon-
dence to CodeWorks, 3838 South Warner
Street, Tacoma, WA 98409

Telephones

(206) 475-2219 (voice)
(208) 475-2356 (modem download)
300/1200 baud, 8 bits, no parity and 1
stop bit

Authors: We constantly seek material from
contributors. Send your material (double
spaced, upper/lower case) and allow 4 to 6
weeks for editorial review. You may send IBM-
PC compatible diskettes (please save your pro-
grams in ASCII format.) Also send a hard copy
listing of the program and article. Media will be
returned ifreturn postage is provided. Compen-
sation will be made for works which are ac-
cepted for publication. CodeWorks pays upon
acceptance rather than on publication.

Subscription price $24.95 per year (six issues).
A subscription year runs from Nov/Dec
through Sep/Oct. Anyone subscribing during
the current subscription year receives all issues
for thatyear. VISA and Master Card orders are
accepted by mail or phone (208) 475-2219.
Charge card orders may also be left via our
on-line download system (208) 475-2358,

CodeWorks is published bimonthly in Jan,
Mar, May, Jul, Sep and Nov. It is printed in the
United States of America. Bulk rate postage is
paid at Tacoma, WA.

SAMPLE COPIES: If you have a friend who
would like to see a copy of CodeWorks, just
send the name and address and we will send
& sample copy at no cost.

How many computers can you
afford to buy in one lifetime? If you
read the mainstream computer
magazines, it almost seems that
they expect you to trade up just as
fast as new CPU chips are re-
leased. It started with the 8086,
then the 80186, the 80286, 80386
and now they’re talking about an
80486 chip. Each new chip offers a
new higher operating speed.
They’re talking now about clock
rates as high as 25 Mhz; so fast, in
fact, that you will probably have
your answer on the screen before
your finger leaves the run button.

But what about us “normal”
folks who can't afford to follow
along with the latest fad in com-
puter hardware? Admittedly,
there are those among us who are
hardware junkies and have not
one, but several, relics. The rest of
us are still justifying the purchase
of our first computer and wonder-
ing how and when to upgrade.

Electronies is such a fast mov-
ing industry it seems that today’s
marvel is marked down tomorrow
and obsolete the day after. That's
bothgood and bad. It really messes
up your resale value if you want to
sell. But on the other hand, you
probably bought it at a bargain
price, especially if you didn’t run
right out and buy it when it was
first announced.

One good thing has emerged in
the past few years, that being the
compatibility and universal stan-
dard of MS DOS. Whatever bad
things you can say about it, it does
have a few good things going for it.
As a case in point, I just finished
writing an income tracking and
payroll program for beauty salons.

This was not for publication;it was
for a local computer store. The nice
thing about the programs was that
after I compiled them using Quick-
BASIC, you could just pop them
into any IBM PC, XT, AT or com-
patible and they run. That coversa
whole lot of machines. Not only
that, but they were written on an
8086 machine and compiled there,
and they still run on 80X86 ma-
chines. That's nice.

But back at the question of if
and when to upgrade: Personally,
if I still had a 64-column screen
machine, or a machine that re-
quired a kludge to put lower-case
characters on the screen, I'd up-
grade in a minute. You can buy
some pretty high-powered ma-
chines these days for under $1000,
and in some cases that even in-
cludes a hard drive. Not only that,
but it'’s a fairly safe bet that MS
DOS and all the compatibles will
be around for a good long time.
There are just too many of them in
use everyday, which makes a
market for writers of software. In
fact, there is so much software
available for these machines that
several of our readers have simply
given up on programming and
have written to tell us so. In a way,
it's easy to see why, although we
still believe that the only way to
get what you really want is to
program it yourself.

And it all depends on what you
are doing with your computer, If
you like to program your own and
are doing it for your own enjoy-
ment - then that old computer
might still have a few good years
left in it.

Irv

Issue 23 CopeWonrks

Forum

An Open Forum for Questions and Comments

Your magazine has been coming to me since
the first edition. It has been quite enlightening.
In the Forum for Issue 21 I read with consider-
able interest the item of John M. Gregg about the
Mormon genealogical program. I subsequently
wrote to Salt Lake City, inquiring as to whether
the program was available on 8 inch SSSD disks
in the IBM format for the CP/M operating sys-
tem. Their very prompt reply stated that the
PAF was not published on the 8 inch format.

I operate a Heath H-11A (DEC LSI-11) com-
puter equipped with a coprocessor so that I can
also run in the CP/M operating system. It re-
quires 8 inch disks SSSD and in the IBM format.

Do you have information that will tell me
whom to go to who may have already converted
this program (PAF) to run under the system I
have available?

Clay E. Lewis
1652 Garfield Avenue
Wyomissing, PA 19610

We can’t, but perhaps some of our readers may

be able to help.

How can I get or write a little BASIC program
that can read my data files (which I can’t read
otherwise) from Genesis, a financial data service
down in Texas? I have an IBM computer and am
familiar a little with programming.

Walter Jung
6225 Brightlea Drive
Lanham, MD 20706

It depends entirely on the format those files are
written in. Also, what form do you want the
output to be in? Some commercial programs use
very odd file structures. You might try our
FileUtil. Bas program from Issue 21 to at least see
what some of your file looks like. That may give
you a clue as to how to proceed.

In Issue 21 Charles B. Steele was looking for
a cross reference utility for use with BASIC on an
MS DOS machine. I was in the same boat as Mr.

Steele when I switched from a CP/M machine to
MS DOS. I have found use of a cross referencing
utility most helpful in keeping track of variable
names used in a BASIC program as well as in
debugging the programs. For example it’s easy
to pick out a misspelled variable from the alpha-
betical listing because it will usually have only
one line number associated with it.

Although I don’t want to discourage you from
publishing a cross reference program in Code-
Works (it would be interesting to follow the
logic), Mr. Steele and other BASIC programmers
might be interested in trying PC-XREF, version
6.1, by James T. Demberger. I have found it to be
fast, comprehensive and easy to use. I also like
the fact that it reads BASIC programs saved in
tokenized format rather than ASCII because I
usually save my programs that way. PC-XREF
is a shareware program which may be down-
loaded from Compuserve and Genie on-line data
services. A disk containing documentation and
program files may be ordered directly from Mr.
Demberger for $5.00 plus $1.00 shipping and
handling. The registration fee is $15.00 if one
likes and wants to use the program. The address
is PC-* *Shareware, 9862 Lake Seminole Drive,
West, Seminole, Florida 34643, phone (810) 397-
2930.

I’m looking forward to another year of helpful
and interesting articles in CodeWorks. I was
sorry to read about Mr. Dettmann’s disk prob-
lems. Please tell him we hope his reconstruction
period is short.

Robert L. Anderson
St. Albans, WV

Re: Notes, Issue 22, How to scroll in GW
BASIC. As stated in the magazine did not work.
How come? Did it work for you? Sure would love
a program that does scroll forward and back-
ward.

I'm curious as to why you don’t use the back-
space to slash your zeros. Mistaking Oh’s for

CopeWonks lIssue 23

zeros was the worst experience when I first was
learning BASIC when typing other programs
and avoiding it is so easy with the slash. Are you
not using BASIC to put your magazine together?
Fran Hynes
San Francisco, CA
Scrolling as per the note in Issue 22 worked on
all the machines with GW BASIC we tried it on.
We are using BASIC as much as possible to put
the magazine together. The programs are saved
in ASCII and loaded into the desktop publishing
program and set in Courier. Note the Oh’s are fat
and round, while the zeros are egg-shaped. We
haven’t yet found a way to slash the zeros using
this method of printing the listings.

David Charlton’s letter in Issue 22 got my at-
tention as it relates to a problem I am trying to
solve (actually I want someone else to solve it for
me). The two major high resolution BASIC pro-
grams for TRS-80 computers (Models I,II1,4)
differ greatly in the speed of the circle or arc
drawing routines. BASICG from Radio Shack is
nearly 10 times faster than GBASIC from Micro
Labs. Otherwise, the Micro Labs program is
much better for my purposes. I dearly wish
someone would “fix” GBASIC so it doesn’t take
forever to draw a curve.

With my talent for machine language pro-
gramming, I could never get the job done in this
century. I believe that I do know the reason the
BASICG draws circles so much faster than
GBASIC, however.

This brings me back to David Charlton’s letter
and his circle program, which uses the trig func-
tions SIN and COS. The routines “borrowed”
from BASIC ROM for trig functions are quite
slow compared to the arithmetic functions.

The square root SQR function is somewhat
better and can also be calculated rapidly in
machine language using arithmetic functions if
an estimate is available. But that’s another
story. . .

- . .The question is, who would like to make us
a patch to speed up the GBASIC circle routine? I
would help as long as I don’t have to do the
machine language hacking.

Not to overlook Charlton’s problem with

round circles, it is due to pixels seldom being

square with the result that Y or X has to be

multiplied by the pixel aspect ratio. In TRS-80

Hi-Res the ratio is 2:1. There is a way to adjust

picture tube horizontal height to get it just right.

Other systems may have different ratios, and if

you're really lucky, maybe 1:1.

Bob Keegan

112 W. Center St. # 615

Fayetteville, AR 72701

Perhaps someone with the computers you men-

tion and the inclination to program in machine
code will be able to give you a hand.

That’s Forum for this issue. See you ail again
in July. - Irv

I discovered that between the time my

computer records a stock sale and the

main computer dispenses the info, I
could make four million dollars.

—

Issue 23 CooeWonrKS

Beginning BASIC

All About Strings - Part 1

What makes your computer different than a
calculator? They both add, subtract, multiply,
divide and do various other operations with
numbers, don’t they? True, but your computer
has one other ability that most programmable
calculators do not have - the ability to handle
strings of text.

But your computeris full of nothing but binary
numbers, so how can it tell the difference be-
tween anumber and a letter? Well, we let certain
of those numbers represent letters and punctua-
tion and other symbols. If you look at the ASCII
character set, you will find that the numbers
from 1 through 31 are used for control symbols;
from 31 to 122 they are used for numbers, both
upper and lower case letters and punctuation;
and from 123 through 255 they are used for
special characters and graphics symbols. One
eight-bit byte then, can represent any character,
since there are 256 possible combinations of one
byte.

If we tell the computer that A=5, then some
memory location called A will contain the ASCII
value for 5. When you then PRINT A, it will go to
location A and fetch the value (5) stored there
and print it on the screen. The actual translation
from the binary 5 to the decimal 5 is made in the
character generator of your computer, between
memory and your video screen. Actually, the
value stored in A will not be 5, but will be the
ASCII value for 5, which is 53 or binary
00110101. The digits 0 through 9 are ASCII 48
through 57. Most operator manuals on BASIC
which came with your computer have, as an
appendix, a list of the ASCII codes.

Now you can have input a value of 5 and
another of 8 and another of 10, and they could be
in almost any location in memory. Assuming
they were called A, B and C, you could always
retrieve them by PRINTing A,B,C. But when we

input a string, we want the entire string to be in
one contiguous chunk, so that when we print it,
it will look right. Obviously then, strings need
something special to tell the computer that they
are, indeed, strings and not simple integer
numbers. The device used to denote a string is
the dollar sign ($), after the variable designa-
tion, as in A$. In addition to that, when you
define a string inside a BASIC program, you
must enclose it in quotes, as in: A$="This is a
string.”

Now, instead of going into simple variable
space, A$ will go into what is called “string
space” and will be treated somewhat differently
than other variables. Can you now see where the
designation “string” came from? It is probably
due to the fact that the string occupies a “string”
of spaces in memory, dependent upon the length
of the string. Each character of the string, of
course, would occupy one byte.

Let’s go back for a moment and look at the
exceptions to inputting a string. If your program
has the statement: INPUT “What is your name
“.A$ you can answer without using quotes. If the
statement were, however, INPUT “What is your
last name, first name “;A$, you would need to put
quotes around your answer because it contains a
comma. The same would hold true if the answer
contained a semi-colon. DATA statements can
be read in as strings and need not be enclosed in
quotes. In other words, this would be possible:

DATA one,two,three

But - and there always seems to be a but - if
any of your data elements contained a comma or
semi-colon, or if there were any leading or lag-
ging spaces, you would have to enclose the entire
element in quotes. An example:

DATA “Jones, John”,"items; 12 “ three,four

CopeWorks Issue 23

*

Again, back to our input example above, a
variation of INPUT, called LINE INPUT, will
allow input of any punctuation. As in: LINE
INPUT “Last, first name “;A$. These little differ-
ences can be rather confusing to those just start-
ing out in BASIC. Also notice that the portion of
the INPUT statement enclosed in quotes is itself
a string. These “literal” strings are built right
into the program and do not reside in the “string
space” set aside for definable string variables.
But they are strings, nonetheless.

The letter A, stored in some memory location
and then called back, is easily recognizable as a
string simply because it is a letter. But what
about the number 3? Digits can be stored as
either string or integer, and sometimes it’s hard
to tell the difference. And it does make a differ-
ence: You simply cannot add a string 3 with an
integer 5 and get 8. We'll find out much more
about this a little later on.

When a string variable is stored in memory
other pertinent information is appended inter-
nally to it. Well, like most things in computing,
that’s not quite true, but almost. Actually, a
variable pointer block is set up to point to the
string’s location and it contains the length of the
string as well as the memory location of the
actual string. Since strings do not have a fixed
length, it is important to know just how long a
string is. The length of a string includes all
spaces and punctuation, in fact, everything be-
tween the quotes is included in the length of the
string. A zero-length string is called a “null
string” as in A$="".

BASIC includes the function LEN(string),
which will return the length of the string speci-
fied. You could say: L=LEN(A$), and variable L,
would contain the length of A$. We don’t always
care how long a string is, but we certainly can
use something that defines that length. Confus-
ing? Well, if we want to look at each character in
a string with a loop, we can use this:

A$="This is a string”
FORI = 1TO LEN(A$)

do something, then NEXT

in which case we really didn’t care about the
length of the string as long as the program knew
it and looked at every character in the string,
LEN(string) is a function and returns an inte-
ger value representing the length of the string.

A small aside here, while we look at the differ-
ence between functions and statements. A state-
ment is an instruction to the computer telling it
to do something, like GOTO or PRINT. Func-
tions are like little subroutines that calculate
something, like SQR(N), or LEN(string), or
VAlL(string). There are functions that operate on
integers and those that operate on strings. A
function has two parts, a title and an argument.
The title describes what the function does, like
VAL/(A$)(valueof A$) or LEN(A$) (length of A$).
The argument is the input to the function (A$in
both of the above cases). The function takes the
input (A$) and returns a result.

If A$="this is a string” and we PRINT
LEN(A$) the answer we will get is 16. Now that
we know how to get the length of a string, let’s go
on to another interesting statement used with
strings: INSTR (read: INSTRing). The whole
form of this statement is:

INSTR(position,string,sub-string)

INSTR searches string, beginning at position,
looking for sub-string. It returns the position
number in the string where sub-string was
found. It returns zero if the sub-string was not
found. If position is omitted, the search begins at
the first character of string, position 1. INSTRis
case-sensitive, which means that you can't find
“A” by looking for “a”. Here is an example:

A$="this is a string”
P=INSTR(1 JA$."a")
PRINT P

If you run this bit of code, variable P will
contain a 9 because the lower-case “a” occupies
the ninth position in A$. Later, we will see how
valuable INSTR is when trying to find an exact

Issue 23 CooeWoRKS

e R R T T N U

match within a string. Before we leave this part
of the discussion, let’s add that the maximum
length a string in BASIC can have is 255 charac-
ters.

Earlier we mentioned that each string has a
variable control block to tell it how long the
string is and where it is located in memory.
BASIC has an interesting function called
VARPTR (stands for “Variable Pointer”). As-
suming that we still have the same A$ from the
previous paragraphs, if you PRINT
VARPTR(A$), you will get a memory address. If
you then PEEK that address, you will get the
length of the string. In our case (and it will vary,
depending on your computer and BASIC) when
we took the VARPTR(A$), we got 4452, the
decimal address of the variable control block.
Actually, the control block is three bytes long,
and 4452 is the address of the first of those three
bytes. When we did a PEEK (4452) it returned a
16. How about that? It turns out that our A$ is
exactly 16 characters long. So the firstbyte of the
three tells how long the string is.

The next two bytes of the variable pointer (ad-
dresses 4453 and 4454) contain the memory
address of the start of the actual string. In our
case, again, the actual A$ started at memory
location 4061. PEEKing into that address and
the 15 following addresses we got a series of
ASCIInumbers. When we took the CHR$ of each
of the numbers, guess what we got? They trans-
lated into “this is a string”! But why two bytes for
the address of the start of the string? Well, the
first byte is the low-order byte and the second
byte is the high-order byte of the address. That
way, two bytes can address up to 65536 memory
locations. Each byte has 256 discreet states and
256 times 256 just happens to be 65536. And, by
the way, the so-called 64K memory is really
65.536K. See Figure 1 for a little program that
you can type in and try with various different
strings and lengths. Keep in mind that you won’t
necessarily get the same numbers for memory
locations that we did. VARPTR is not the most
used function in BASIC. It’s handy when you
need it, though.

Now comes a real interesting question. If the
string, itself, is out there all by itself, and the
variable pointer has only three bytes telling
length and where the string actually is, what
happens when you have an A$ and a B$? How
does the computer know which variable pointer
block to go to? We scoured all the available books
we have on the subject, and the best we can come
up with at this point is that BASIC also keeps a
variable table. That table, then, must point to
the variable pointer, which points to the string.
It seems that we run and hide from ourselves
just to get excited when we find ourselves again!

In the next issue we will continue with more
practical string-handling commands and func-
tions. We will also try some bits of code that
demonstrate how the various commands work.
String handling is, after all, almost half of com-
puting!

Figure 1

10 A$="this is a string”
20 P=VARPTR(A$)
30 PRINT The variable control block is at ad
dress “;P
40 PRINT”That address contains the length
“PEEK(P)
45 PRINT”The next two bytes contain the ad
dress of the string.”
50 X=PEEK(P+1)+256*PEEK(P+2)
60 PRINT”The starting address of the actual
string “X
70 PRINT
80 PRINT”The contents of address “;X;” to
“X+PEEK(P);” are:”
90 FOR I=X TO X+PEEK(P)
100 PRINT PEEK("="CHR$(PEEK(D);
110 NEXTI

CooeWorks Issue 23

Matrix.Bas

A Complete Set of Matrix Functions

Staff Project. Solving for 20 unknowns with 20 equations.is what's possible
with this program. In addition, it provides all the other important matrix
manipulations you may have need of from time to time.

In science, mathematics, business and many
other fields that use number systems it becomes
necessary to be able to solve systems of linear
equations. One system might take on the form:

3x+4y=10

7x - 5y = 22

In this example, there are two equations and
twounknowns. (Unknowns refer to the variables
x and y.) These kinds of equations are relatively
simple to solve and there are many methods with
which to solve them.

But what if there is a need to solve 18 equa-
tions and 18 unknowns? Do you really want to
try that with pencil and paper?

In trying to maximize profits, or determine
the total pressure needed to inflate 14 different
balloons of 14 different sizes, or how much volt-
age is needed in order for 20 circuits to carry 20
different currents - the list goes on forever -
systems of linear equations must be solved.

Matrix.Basis a program that will do the work for
you.

In order to solve these systems of equations it
becomes necessary to work with matrices. And it
becomes necessary to multiply matrices, mainly
to find the inverse of an m x n matrix. (m rows
and n columns are usually designated bym x n.)
Some of the earlier BASICs of about 10 years ago
included the MAT functions which would allow
you to perform these functions easily. Somehow,

with the evolution of BASIC and newer comput-
ers these MAT functions dropped by the way-
side. Matrix.Bas is a program that gives you
back these functions.

The program will do the following:

1. Add two matrices.

2. Subtract two matrices.

3. Transpose a matrix.

4. Multiply a matrix by a constant.

5. Multiply two matrices.

6. Find the inverse of a matrix and/or solve for
a solution to n unknowns with n equations.

The first four items are straightforward and
probably will seldom be used except for large
matrices. The key to solving equations is in the
last two items. If you have never before worked
with matrices, take a look at any math book and
follow the steps required to multiply two matri-
ces. It will help you appreciate this program that
much more.

The program will first display the menu, giv-
ing the above commands. Enter the number of
your choice and the computer will come back
asking you the order (number of rows and col-
umns) of your matrix. Some matrix algebra
requires square matrices (as many rows as col-
umns) but others can have a different number of
rows and columns.

Issue 23 CooeWoRKS

L

Then it will allow you to see the matrix that is
just completed, giving you a chance to make sure
that is was entered correctly. If you have a
printer you can send output to it as well as the
screen.

If you are solving for inverses the input works
the same way, but on output you will notice that
all of the matrices are double precision. Thisis to
allow for round-off errors inside the computer on
the calculations needed for finding inverses and
using double precision variables will take care of
most of this. They are, by the way, returned to
normal precision as soon as the inverse has been
computed and printed.

Once the computer has solved for the inverse,
it will prompt you with a question asking if you
want to use that answer positively and enter the
solution matrix when requested to. (Solution
matrices are on the order of 1 x n). It will then
calculate all of the variables in the solution
system and come back with the answer. Again,

170
180
190
200
210
220
230
240

ON ERROR GOTO 3030

CLS

PRINT STRINGS (22,45);"’
PRINT’ '
PRINT’ '
PRINT STRINGS (60,45)
PRINT

The CodeWorks
MATRTIZX
provides a full set of matrix functions

you can send this output to the printer, too.

Here is an example of solving three unknowns
in three equations using option 6 of the menu.
You need to tell the program that the matrixis 3
x 3. Make sure that all your unknowns are lined
up properly. Then enter 2,-9,-5,7,-6, 5, 9,-6 and
5. When asked for the solution matrix enter: 2,
-35 and -39. The program will then tell you that
x =-2,y=1and z = -3, which is the answer you
wanted.

2x-9y-5z=2
7x - 6y + 5z = -35
9x - 6y + 5z = -39

The program is currently set for matrices that
are 20 x 20, which will allow you to solve for 20
unknowns in 20 equations. If you have the
memory space, you can adjust the DIM state-
ment to use larger matrices. Wouldn’t this have
been a nice program to have back when we were
taking Algebra 1?7

475-2356 300/1200 modem

| Matrix.Bas for MS DOS and

' Tandy Models IT and IV

|

100 REM * Matrix.Bas * Manipulation of Matrices

110 REM * CodeWorks Magazine 3838 S. Warner St. Tacoma WA 98409
120 REM * (206) 475-2219 voice (206)

130 REM * (c)1988 80-NW Publishing Inc. & placed in public domain.
140 °

150 ' Initialization

160 DIM A(20,20),B(20,20),T(20,20),I(20)

‘1; STRINGS (23, 45)
PROGRAM

PRINT TAB(5);’’ 1 - Add Matrices A and B

C?neWonxs Issue 23

I-Il--I-IIl-III-IIlIllllIlllIllI-lI-ll-II-lIIllIIII-II----III-I-..-

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670

- Subtract Matrices A and B

- Transpose Matrix A

Multiply Matrix A by a constant

PRINT TAB(5);’’ - Multiply Matrices A and B

PRINT TAB(5);’’ - Compute the inverse of Matrix A and/or
PRINT TAB(5);'’ determine the solution to system equations
PRINT. TAB«(S);’’ 7.= Quit

PRINT

PRINT’’Your choice’’;

INPUT CH

ON CH GOSUB 1030,1350,1810,2050,2540,390,3080

GOTO 180

\

PRINT TAB(S5);’’
PRINT TAB(5);’’
PRINT TAB(5);"’

s WwWwN
|

REM * Inverse of a Matrix
CLS
PRINT TAB(10);’’Inverse of a Matrix’'’
PRINT
INPUT’ Enter the number of rows and columns in Matrix A’’;N
DEFDBL A,Q,T,X
C=N:R=N
A$=I IAII
GOSUB 2230
FOR I=1 TO N
FOR J=1 TO N
A(I/J) =T(I/J)
NEXT J
NEXT I
FOR C=1 TO N
FOR I=1 TO N-1
Q(I)=A(1,I+1)/A(1,1)
NEXT I
Q(N)=1.00000001#/A(1,1)
FOR I=1 TO N-1
FOR J=1 TO N-1
A(I,J)=A(I+1,J+l)—A(I+1,1) *Q (J)
NEXT J
A(I,N)=-(A(I+1,1))*Q(N)
NEXT I
FOR J=1 TO N
A(I,J)=0Q(J)
NEXT J
NEXT C

PRINT’’The inverse has been computed.’’

10

j‘___—d
Issue 23 CopeWoRKS

680
690
700
710
720
730
740
750
760

770
780

790
800
810

820
830
840
850
860
870
880
890
9500
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070

FOR I=1 TO N
FOR J=1 TO N
T(I,Jd)=A(I,J)
NEXT J
NEXT I
PRINT’’ The results are ready to be printed.’’
C=N:R=N
GOSUB 2350
PRINT:PRINT’’The above is the inverted Matrix A. Would you like
to:
PRINT TAB(10);’’1 - Return to the menu
PRINT TAB(10);’’2 - Enter a solution Matrix to solve the
system.
PRINT
INPUT’’ Your choice ‘‘;ANS$
IF LEFTS (ANS$,1)='’1" THEN RETURN ELSE IF LEFTS (ANS$, 1) <>"72" THEN
760
PRINT’’ Input the solution matrix
X=1E-08
FOR I=1 TO N
PRINT’’ Solution #’’;I;:INPUT Q(I)
NEXT I
FOR I=1 TO N
FOR J=1 TO N
X=X+A(I,J)*Q(J)
NEXT J
Q1(I)=X
X=1E-08
NEXT I
PRINT:PRINT’‘This is the solution set:’’
FOR I=1 TO N
PRINT Q1 (I)
NEXT I
DEFSNG A, T,Q,X
INPUT’’ Press enter to continue’’;AS$
RETURN
\
REM * Add Matrix A and B
CLS
PRINT TAB(10);’’Add two matrices.’’
PRINT
PRINT’’Enter them as follows:’'’
PRINT’’How many rows in your matrices’’

CooeWorks Issue 23

1

1080 INPUT’’ (A and B must be the same order)’’;R
1090 INPUT’’How many columns in A and B’’;C
1100 AS=""A""
1110 GOSUB 2230
1120 FOR I=1 TO R
1130 FOR J=1 TO C
1140 A(I,J)=T(I,J)
1150 NEXT J
1160 NEXT I
1170 AS="'B"’
1180 GOSUB 2230
1190 FOR I=1 TO R
1200 FOR J=1 TO C
1210 B(I,J)=T(I,J)
1220 NEXT J
1230 NEXT I
1240 FOR I=1 TO R
1250 FOR J=1 TO C
1260 T(I,J)=A(I,J)+B(I,J)
1270 NEXT J
1280 NEXT I
1290 PRINT’’A + B has been computed and is ready to be printed’’
1300 GOSUB 2350
1310 INPUT’’Press Enter to continue’’;A$
1320 RETURN
1330:
1340 REM * Subtract Matrix A and B
1350 CLS
1360 PRINT TAB(10);’’Subtract Matrix A and B
1370 PRINT
1380 PRINT’’Enter them as follows:’’
1390 PRINT’’How many rows in your Matrices’’
1400 INPUT’’ (A and B must be of the same order) ‘‘;R
1410 PRINT
1420 INPUT’’How many columns in A and BUE e
1430 A$=""A""
1440 GOSUB 2230
1450 FOR I=1 TO R
1460 FOR J=1 TO C
1470 A(I,J)=T(1I,J)
1480 NEXT J
1490 NEXT I
12

Issue 23 CopeWorKS

1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920

A$=I IBI 4
GOSUB 2230
FOR I=1 TO R

FOR J=1 TO C

B(I,J)=T(I,J)

NEXT J
NEXT I
PRINT’ ‘Would you like to:
PRINT TAB(10);’’1 - Subtract A from B, or
PRINT TAB(10);’’2 - Subtract B from A’’
PRINT
INPUT’ 'Enter your choice ‘‘;ANS$
IF ANS=’’2" THEN 1700
IF ANS$<>’’1" THEN PRINT:GOTO 1600
FOR I=1 TO R

FOR J=1 TO C
T(I,J)=A(I,J)—B(I,J)
NEXT J
NEXT I
GOTO 1750
FOR I=1 TO R

FOR J=1 TO C
T(I,J)=B(I,J)-A(I,J)
NEXT J
NEXT I
PRINT’ ’ The results are ready to be printed.’’

GOSUB 2350

INPUT’ ' Press Enter to continue ‘‘;AS$
RETURN

Ay

REM * Transpose

CLS

PRINT TAB(10);’’The Transpose of Matrix A"’
A$=IIAII

PRINT

INPUT’ ' Enter the number of rows in Matrix A’’;R

INPUT’ ' Now enter the number of columns VYOE
GOSUB 2230
FOR I=1 TO R
FOR J=1 TO C
A(I,J)=T(1I,J)
NEXT J
NEXT I

CooeWonks Issue 23

13

1930 FOR I=1 TO C Q
1940 FOR J=1 TO R

1950 T(I,Jd)=A(J,I)

1960 NEXT J

1970 NEXT I

1980 PRINT’’Transpose is done. Results are ready to be printed.’’
1990 TE=C:C=R:R=TE

2000 GOSUB 2350

2010 INPUT’’Press Enter to continue ‘‘;A$

2020 RETURN

2030 ¢

2040 REM * Multiply by a constant

2050 CLS

2060 PRINT TAB(10);’’Multiply by a constant.’’

2070 PRINT

2080 AS="'A""’

2090 INPUT’’Enter the number of rows in Matrix A ‘R
2100 INPUT’’Now enter the number of columns ‘‘;C

2110 GOSUB 2230

2120 INPUT’’What is the multiplicative constant ‘‘;CN
2130 FOR I=1 TO R

2140 FOR J=1 TO C @
2150 T (I,J)=CN*T(I,J)

2160 NEXT J

2170 NEXT I

2180 PRINT'’Multiplication is done. The results are ready to be
printed.’’

2190 GOSUB 2350

2200 INPUT’’Press Enter to continue ‘‘;A$

2210 RETURN

2220 2

2230 REM * Input subroutine *

2240 PRINT:PRINT’’Start entering the Matrix “‘;A$;’’:7’

2250 FOR I=1] TO R

2260 FOR J=1 TO C

2270 PRINT T2 8 x4 ¥ie g

2280 INPUT T(I,J)

2290 NEXT J

2300 NEXT I

2310 INPUT’’Would you like to see the matrix you just entered ‘‘;ANS

2320 IF LEFTS(ANS,1)<>’’Y’’ AND LEFTS (AN$,1)<>’’y’’ THEN RETURN
2330 °*

2340 REM * Output routine "’

il
Issue 23 CopeWorRKS

7,4_4__—‘

@ 2350 INPUT’’Would you like the output to go to the printer ‘‘;ANS$
2360 IF LEFTS$(ANS,1)=''Y’’ OR LEFT$ (AN$,1)=''y’’ THEN P=1 ELSE P=0

2370 IF P=1 THEN 2450

2380 FOR I=1] TO R

2390 FOR J=1 TO C

2400 PRINT T(I,J);’" **V\;

2410 NEXT J

2420 PRINT

2430 NEXT I

2440 GOTO 2510

2450 FOR I=1 TO R

2460 FOR J=1 TO C

2470 LPRINT T(I,J);"’ DA

2480 NEXT J

2490 LPRINT ¢ 2

2500 NEXT I

2510 RETURN

2520 °

2530 REM * Multiplication of two Matrices

2540 CLS

2550 PRINT TAB(10);’’Multiplication of two Matrices A and B

@ 2560 PRINT

2570 INPUT’’Enter the number of rows in Matrix A’’;R

2580 INPUT’’Now enter the number of columns in Matrix A ‘';C

2590 AS="'A"’

2600 GOSUB 2230

2610 FOR I=1 TO R

2620 FOR J=1 TO C

2630 A(I,J)=T(I,Jd)
2640 NEXT J
2650 NEXT I

2660 INPUT’’Enter the number of rows in Matrix B’’;RB

2670 INPUT’’Now enter the number of columns in Matrix B’’;CB

2680 IF C=RB THEN 2790 4

2690 PRINT’’** ERROR ** the number of columns in Matrix A must
equal

2700 PRINT’’the number of rows in Matrix B before they can be
multiplied.

2710 PRINT’’Would you like to:

2720 PRINT TAB(10);’’1 - End the function and return to the menu,

or
2730 PRINT TAB(10);’’2 - Enter row and column lengths for Matrix B

@ | 2740 ernT

CopeWorks Issue 23

2750 PRINT’’Enter your choice of 1 or 2"; ‘
2760 INPUT ANS$

2770 IF ANS$=’’1" THEN RETURN ELSE 2660
2780 GOTO 2660

2790 TR=R:TC=C:C=CB:R=RB

2800 AS="'B’’

2810 GOSUB 2230

2820 FOR I=1 TO R

2830 FOR J=1 TO C

2840 B(I,J)=T(I,J)

2850 NEXT J

2860 NEXT I

2870 R=TR:C=TC

2880 FOR I=1 TO R

2890 FOR J=1 TO CB

2900 T(I,J)=0

2910 FOR K=1 TO C

2920 T(I,J)=T(I,J)+A(I,K)*B(K,J)
2930 NEXT K

2940 NEXT J

2950 NEXT I

2960 C=CB

2970 PRINT’’A times B has been computed and is ready to be printed.’’

2980 GOSUB 2350

2990 INPUT'’’Press Enter to continue ‘‘;A$

3000 RETURN

3010 ¢

3020 REM * error trap for division by zero

3030 IF ERR<>11 THEN ON ERROR GOTO 0

3040 ‘IF (ERR/2)+1<>12 THEN ON ERROR GOTO 0 ‘Basic prior to ver
5.0

3050 PRINT’’Division by zero. No solution possible.’’

3060 INPUT’’Press Enter to restart’’;AS$

3070 RUN 160

3080 END ‘of program

Changes for Tandy Models I and III

Changed->100 REM * Matrix/Bas * Manipulation of Matrices
Changed->140 CLEAR 2000
Changed->3030 ‘IF ERR<>11 THEN ON ERROR GOTO 0

Changed->3040 IF (ERR/2)+1<>12 THEN ON ERROR GOTO 0 ‘Basic prior to ver ‘
5.0 ’

16 Issue 23 CopeWoRrKS

G

Invoice.Bas

An Invoice Writer Program

Staff Project. This program was designed to fill out a pre-printed invoice form.
Although yours may not be exactly like it, the ideas behind it are universal and
you should be able to adjust the print statements to fit your exact needs.

We wrote Invoice.Bas in response to a request
from 2 local print shop. It was written on an MS
DOS machine and then transferred via RS-232
to a Tandy Model II at the print shop.

Some of the design requirements for the pro-
gram were that it should be able to accommodate
up to 250 customers; that the customers should
always be sorted in alphabetical order by name;
and that provisions should be incorporated to
keep the customer phone number and tax iden-
tification (resale tax ID) number. The program
was to be designed to print invoices on a pre-
printed, multi-part form. The program was to
charge sales tax only when a tax identification
number was not present. A resettable invoice
numbering system was to be included. The in-
voicing portion also needed the capability to
have more than one item invoiced, discount al-
lowed and a flat rate cost and cost per thousand
figured in to the total.

One-half day was spent organizing the re-
quirements and planning the attack. One full
day was spent in coding and another day was
entirely spent in fine tuning and debugging.
Because the program had a real-world applica-
tion, it was fun to write and debug. Especially
challenging was the need to get the entire “wish
list” into the program and make it all work
together properly.

How the program works

We start with our customary opening lines
and the print@/locate subroutine. The initializa-
tion section, starting at line 240, opens with an
error trap statement for “file not found” errors.
This would happen the very first time the pro-
gram is run and no customer file exists. The ON
ERROR GOTO 1900 in line 240 will take us to
line 1900, where we check for error 53 (file not
found) andif that isindeed the error, we gosub to
1280. At line 1280 we open the file for output and
write blanks to the file and then return to 1930,
where we resume program flow at line 330. At
line 330 we would then read in the just created
file and continue on our way.

The next statement in the initialization sec-
tion is used to set the printer width to 132
characters (for the tab listing of the customer
file). This is a GW-BASIC and CP/M MBASIC
specific command and can be remarked for other
computers. Line 260 dimensions our data file at
250 records, each seven fields deep. The next
three lines are print USING format lines for
dollar amounts. Line 300 is where you would
insert your particular sales tax rate.

The customer file is read in the next section of
code, starting at line 340. The first item in the
file is always the last invoice number, and it gets

CobeWorxs Issue 23

17

updated with each invoice written and is saved
along with the file when you are done with the
session. Since we are starting our file with I
equal to one, we used the zero element of the
array to hold the invoice number. In line 440, we
find out how many items are in the file and store
itin variable N1. We'll need to know that several
times later in the program.

Customers are retrieved from this file by cus-
tomer number. Each customer was assigned a
number when he was initially entered into the
file. So that the user will always know what the
next customer number is, we print it right on the
menu (see line 580), and in the section of code
starting at line 470, we find out what the highest
numberis. We set variable AC equal to zero first,
then make one quick pass through the file and if
any customer number is larger than AC we set
AC to that new higher number. When we have
gone through the file one time, AC will contain
the highest customer number.

The next section of code, from line 520 to 700,
is the main menu and menu selection area. Note
that the menu tells the user to always exit the
program through menu option 7. This insures
that the updated file will always be saved. You
can see how that happens in the next section of
code, from line 730 to 750. That’s the “end ses-
sion routine” and it does a GOSUB to save the
file first. It then prints the amount of the total
billing (if there was any) before it closes the file
and ends. Note that if no billing took place
during the session (maybe you just entered a
new customer or something like that), then TA
will equal zero and the second part of line 740
will be skipped. Variable TA, of course, gets
updated in the section of code where we actually
do the invoicing, which comes later.

The next section of code, from line 780 to 800,
is where we can reset the invoice number. This
allows the user to start invoice numbers with the
current month, as in 880901, 880902, and so on
for September 1988, and then 881001, 881002
and so on for October of 1988. Or, you can just
start with number 1 at the beginning of the year

and let them accumulate. The invoice number
gets updated in the invoice writing section later.
Note that the numberis in string form, so we will
have to convert it to an integer using the VAL
function and then add one to it and change it
back to a string with the STR function.

The “Add new customer names” section comes
next. In this section we put the prompts for the
entire record on the screen first and then “fill in
the blanks” using direct cursor positioning and
our print@/locate subroutine. In line 850 we set
the cursor to row 4 and start at the left hand side
of the screen. Then we print the prompts for the
field headings on the screen, all seven of them.
Thenin line 940 we set the column position to 22,
which will position our cursor just the right of the
field prompts, and in lines 950 through 970 we
input the information for each field (and yes, you
can just enter if there is nothing to put in a
particular field.) Notice that we are both print-
ing the input information on the screen and
puttingitintothe A$ array at the same time. For
that reason, we put it into A$(N1,X-3)in line 960
because X started counting on 4. That will put
our first fieldin A$(N1,1), oursecondin A$(N1,2)
and so on. Note that X is being used for two
purposes here, one to position the cursor and the
other to increment our array count. N1, of
course, will get incremented to the next record in
line 860, when we come to the next record.

Now, since we are in complete control of our
cursor, after entering one record we get the
"More Y/N" question and if there are more to
enter we must clear out the information just
entered. Lines 1010 through 1040 clear away
the information just entered on the screen (don’t
worry, it’s already safely tucked away in the A$
array.) Then, just to be neat about things, in line
1050 we go up to the screen and clear away that
More? prompt. If we are going to enter more
names, then line 1060 will send us back to do
that, otherwise, line 1070 will immediately send
us to the sort and save routine with a GOSUB.
When we return from the GOSUB, we go to line
330 to read the file in again. Why? Well, for one
thing we will then have a new highest customer

18 Issue 23 CopeWorks

number and the most current number of records
in the file.

The easiest way to keep a file sorted is to keep
it sorted. How about that? Sounds ridiculous but
it’s true. It is very easy and fast to sort one or two
new names into an already sorted file. In fact,
you can then use the cheapest sort routine avail-
able - the bubble sort. Of course, if you sit down
and enter 100 customers the first time you use
this program, it