
Codeldorks 1st Year Programs for TRS-80 Models I/I 11

The diskettes provided contain the Folloujing programs. The number after
the file name indicates the size of the program in bytBS.

UJe have made every effort to make these programs run on the Models I/I 11 "as
is". MUMP BAS will not work on- the Models I/111. Refer to the appropriate issue
for programs that require initialization.

PlBase do not remove our identification lines in the programs,
they serva to show where these programs comB from and will insure that we stay
in business and continue to produce more good and economical software.

ADD BAS 1573 Issue 7 Addition program works with Drill.Bas.
ADUMP BAS 1011 Issue 6 An ASCII memory dump program.
BUSMDD BAS 33EB Issue 5 A business "what if" model.
CAL BAS 6338 Issue E Perpetual Calmost) calendar maker program.
CARD BAS 13EB0 Issue E In memory, mini-database, requires initialization.
CHECK BAS 6601 Issue 4 Card.Bas adapted to keeping check records.
CDNU BAS E88B Issue 5 Convert DATA statements to seq. file and back.
DIU BAS 1543 Issue 7 Division program works with Drill.Bas.
DRILL BAS 1EE0 Issue 7 Collection of Instructor's drill programs.
DSTAT BAS 4768 Issue 6 A descriptive statistics program.
EXTR BAS EB57 Issue 1 Extracts program lines for later USB.
FMAKER BAS 155B Issue 7 A general purpose sequential FIIB maker pgm.
HALLEY BAS 410B Issue E Plotted thB position of HallBy's Comet.
MADA BAS 306 Issue 7 Mental addition pgm works with Drill.Bas.
MADAS BAS 1174 Issue B Mental Add/Sub pgm works with Drill.Bas.
MAKER BAS E43E Issue 1 Makes DATA statements the easy way.
MATH EAS 433E Issue 4 Math formulae on screen that change.
MGSORT BAS 5007 Issue 5 Merge/sort files too big for ram memory.
MULT BAS 1727 Issue 7 Multiplication program works with Drill.Bas.
MUMP BAS 755 Issue 7 An HEX dump.pgm for MS-DOS. Dumps up to 640K.
MURRAY BAS 575E Issue 3 Program to improve calculating accuracy.
NETWORK BAS 10353 Issue 6 A game for up tD 4 playBrs. Buy/Sell stock.
NFLBB BAS 6B53 Issue 7 An NFL football projection program.
NFLSTAT BAS 3300 Issue 7 Maintains NFL statistics for NFLB6.
NORRIS BAS 40BB Issues ES4 A collection of file conversion routines.
PAY BAS 13568 Issue 4 Payroll program, requires initialization.
PLIST BAS 263B Issue 6 A neat page-listing utility program.
PLOT BAS 5883 Issue 1 Prints histograms with 3 period projection.
PRECOMP BAS 33E0 Issue 4 A BASIC precompiler w/o line ft, with labels.
PR0G1 BAS 1E38 Issue 4 Sequential file tutorial demo program.
PROGE BAS 833 Issue 4 Sequential file tutorial demo program.
RANDEMO BAS 3037 Issue 6 A random file tutorial demo program.
RANDEMOE BAS EOEO Issue 7 A random file tutorial demo program C#£).
SEARCH BAS E644 Issue 1 Finds selected variables in target program.
SPELL BAS E564 Issue 7 Spelling program works with Drill.Bas.
SUB BAS 156E Issue 7 Subtraction program works with Drill.Bas.
UPDATE EAS 1574 Issue 7 Updates spelling for Drill.Bas.
UXREF BAS 14464 Issue 5 A BASIC cross reference program.
WOOD BAS 11135 Issue 3 Best fit program for cutting plywood, etc.
WRITER BAS 106E3 Issue 1 Analyze your writing Cfor 80 col screens.)

CodeWorks 1st Year Programs for TRS-80 Models I/I 11

thBhFi?BSnam«B?nSioV!:dBdt.H0nt!in thB fallowirHJ programs. The number after ,, Z 5 indicates the size of the program in bytes.

is"B MUMP BAS^ill^n?^0^ tD TKkB thBSB Programs run on the Models I/I 11 "as
'rcr pr^ra^t^Ve^irTjnSiSTzSSr I/,n- tD th° •PP™""*""

d° n°t rem°ve our identification lines in the programs.

in business and contin1"8 ^BSB PrO0rams CDmB fram and "ill insure that we stay
and continue to produce more good and economical software.

D — Wl^l, Ulll I

A business "what if" model.
Perpetual (almost) calendar maker program.
In memory, mini-database, requires initialization

-ADD BAS 1573 Issue 7
ADUMP BAS 1011 Issue 6
BUSMOD BAS 3328 Issue 5
CAL BAS GSS8 Issue 2
CARD BAS 13280 Issue 2
CHECK BAS 6601 Issue 4
CDNU BAS 2BBB Issue 5 big BAS 1543 Issue 7
DRILL BAS 1220 Issue 7
DSTAT BAS 47EB Issue 6
EXTR BAS 2857 Issue 1
FMAKER BAS 155B Issue 7
HALLEY BAS 410B Issue 2
MADA BAS S06 Issue 7
MADAS BAS 1174 ISSUB 8
MAKER BAS 2432 Issue 1
MATH BAS 4S32 Issue 4
MGSQRT BAS 5007 Issue 5
MULT BAS 1727 Issue 7
MUMP RAS 755 Issue 7
MURRAY BAS 5752 Issue 3
^JETUJORK BAS 10353 Issue 6
• FLB6 BAS 6853 Issue 7
NFLSTAT BAS 3300 Issue 7
NORRIS BAS 4088 Issues i 2
PAY BAS 13568 Issue 4
PL I ST BAS 2638 Issue 6
PLOT BAS 5883 Issue 1
PRECOMP BAS 3320 ISSUB 4
PR0G1 BAS 1238 Issue 4
PROGS BAS 833 Issue 4
RANDEMO BAS 3037 Issue 6
RANDEM02 BAS 2020 Issue 7 I
SEARCH BAS 2644 Issue 1
SPELL BAS 2564 Issue 7 !
SUB BAS 1562 Issue 7 :
UPDATE BAS 1574 Issue 7 1
UXREF BAS 14464 Issue 5 l
WOOD BAS 11135 Issue 3 1
WRITER BAS 10623 Issue 1 l

• O •* ~ ' •» » » A JL » U O 9 •
Makes DATA statements the easy way.
Math formulae on screen that change.
Marge/sort files too big for ram memory.
Multiplication program works with Drill.Bas.
An HEX dump.pom for MS-DOS. Dumps up to 640K.
Program to improve calculating accuracy.
A gamB for up to 4 players. Buy/Sell stock.
An NFL football projection program.
Maintains NFL statistics for NFLBB.
&4 A collection of file conversion routines.
Payroll program, requires initialization.
A neat page-listing utility program.
Prints histograms with 3 period projection.
A BASIC precompiler w/o line If, with labels.
Sequential file tutorial demo program.
Sequential file tutorial dBmo program.
A random file tutorial demo program.
A random file tutorial demo program C#2).
Finds selected variables in target program.
Spelling program works with Drill.Bas.
Subtraction program works with Drill.Bas.
Updates spelling for Drill.Bas.
A BASIC cross reference program.
Best fit program for cutting plywood, etc.
Analyze your writing Cfor BO col screens.J

CodeWorks 1st YBar Programs for PC/MS-DOS GUI-BASIC

The diskette provided contains the following programs. The number after
the file name indicates the size of the program in bytes.

Refer to the appropriate i33ue for programs that require initialization.
Please do not remove our identification lines in the programs,

they serve to show where these programs come from and will insure that we stay
in business and continue to produce more good and economical software.

ADD BAS 1573 Issue 7 Addition program works with Drill.Bas.
ADUMP BAS 1011 Issue 6 An ASCII memory dump program.
BUSflOD BAS 3328 Issue 5 A business "what if" model.
CAL BAS GSSQ Issue 2 Perpetual (almost! calendar maker program.
CARD BAS 13280 Issue 2 In memory, mini-database, requires initialization.
CHECK BAS 6601 " Issue 4 Card.Bas adapted to keeping chBck records.
CONU BAS 2888 Issue 5 Convert DATA statements to sBq. file and back.
DIU BAS 1543 Issue 7 Division program works with Drill.Bas.
DRILL BAS 1220 ISSUB 7 Collection of Instructor's drill programs.
DSTAT BAS 4768 Issue 6 A descriptive statistics program.
EXTR BAS 2857 Issue 1 Extracts program lines for later use.
FMAKER BAS 1558 ISSUB 7 A general purpose sequential file maker pgm.
HALLEY BAS 4108 Issue 2 Plotted the position of Halley's Comet.
MADA BAS 806 Issue 7 Mental addition pgm works with Drill.Bas.
MADAS BAS 1174 Issue B Mental Add/Sub pgm works with Drill.Bas.
MAKER BAS 2432 Issue 1 Makes DATA statements the Basy way.
MATH BAS 4382 Issue 4 Math formulae on screen that changB.
MGSDRT BAS 5007 Issue 5 Merge/sort files too big for ram memory.
MULT BAS 1727 Issue 7 Multiplication program works with Drill.Bas.
MUMP BAS 755 Issue 7 An HEX dump pgm for MS-DOS. Dumps up to 640K.
MURRAY BAS 5752 Issue 3 Program to improve calculating accuracy.
NETWORK BAS 10353 I ssue 6 A game for up to 4 players. Buy/Sell stock.
NFLBB BAS 6853 Issue 7 An NFL football projection program.
NFLSTAT BAS 3300 I ssue 7 Maintains NFL statistics for NFLB6.
NORRIS BAS 4088 Issues 2&4 A collection of filB conversion routines.
PAY BAS 13568 ISSUB 4 Payroll program, requires initialization.
PL I ST BAS 2638 Issue 6 A neat page-listing utility program.
PLOT BAS 5BB3 Issue 1 Prints histograms with 3 period projection.
PRECOMP BAS 3320 Issue 4 A BASIC precompiler w/o line #, with labels.
PR0G1 BAS 1238 Issue 4 Sequential file tutorial demo program.
PR0G2 BAS 833 Issue 4 Sequential file tutorial demo program.
RANDEMO BAS 3037 Issue 6 A random file tutorial demo program.
RANDEM02 BAS 2020 Issue 7 A random file tutorial demo program C#2).
SEARCH BAS 2644 Issue 1 Finds selected variables in target program.
SPELL BAS 2564 Issue 7 Spelling program works with Drill.Bas.
SUB BAS 1562 Issue 7 Subtraction program works with Drill.Bas.
UPDATE BAS 1574 Issue 7 Updates spelling for Drill.Bas.
UXREF BAS 14464 Issue 5 A BASIC cross reference program.
WOOD BAS 11135 Issue 3 Best fit program for cutting plywood, Btc.
WRITER BAS 10623 Issue 1 Analyze your writing (for 80 col screens.)

CODEWORKS

CONTENTS

Point of View 2
Forum 3
Trend Analysis Plotter 4
Programming made Easy 8
Search 10
Extract 12
Strings & ASCII 14
Writer 17
Maker 25
Sources 29
ASCII Codes 30
Order Form 31
Coming Attractions 32

&

CODEWORKS Point of View
Premier Issue Sep/Oct 1985

Editor/Publisher
Irv Schmidt

Associate Editors
Terry R Dettmann

Greg Sheppard
Jay Marshall

Circulation/Promotion
Robert P Perez

Editorial Advisor
Cameron C Brown
Technical Advisor

Al Mashburn

Produced by 80-Northwest
Publishing Inc. No patent liability is
assumed with respect to the use of
the information contained herein.
While every precaution has been
taken in the preparation of this
publication, the publisher assumes
no responsibility for errors or
omissions. Neither is any liability
assumed for damages resulting from
the use of any information contained
herein. Please address correspond
ence to: CodeWorks, 3838 South
Warner Street, Tacoma, Washing
ton 98409

Telephone (206) 475-2219

Authors: We constantly seek
material from contributors. Send
your material (double spaced,
upper/lower case please) and allow
4 to 6 weeks for editorial review. Do
not send diskettes, rather send a
hard copy listing of programs. Media
will be returned if return postage is
provided. Cartoons and photographs
are welcome. Compensation will be
made for works which are accepted
for publication. CodeWorks pays
upon acceptance rather than on
publication.

Subscription Price: $24.95 per year
(six issues), one year only. Not
available outside United States Zip
codes. VISA and Master Card
orders are accepted by mail or
telephone.

CodeWorks is published bimonthly
in Jan, Mar, May, Jul. Sep and
Nov. It is printed in the United
States of America. Bulk rate
p o s t a g e p a i d a t T a c o m a ,
Washington.

Sample copies: If you have a friend
who would like to see a copy of
CodeWorks, just send the name and
address and we will send a sample
(at no cost).

The joy of success - the agony of
defeat! Both are wrapped up in
programming a computer. To some,
it is a disgusting task. Others find in
it a sense of accomplishment that is
difficult to describe.

To program you must have
imagination, be logical, be able to
accurately describe a problem, be
knowledgeable and most of all, be
disciplined. Few things like
programming demand the most
minute care and attention to what
you are doing. Computers are very
fussy about how you talk to them.
The ubiquitous "syntax error"
constantly stares out of the video
screen at you. It has other brothers,
sisters and cousins that do the same
and are less descriptive of who they
really are. You get to know them by
their effects.

As the age of personal computers
progresses, more of us find uses for
computing. Although most of the
major programs today are available
as "load and run": spreadsheets
word processors and the like, there
exists a whole world of applications
waiting to be written by someone.
Using canned programs on your
computer is fine • they do a great job,
but in some ways it is like buying
that new car and finding that it can
only travel down freeways.

Programming your own has many
advantages. First, you learn
something and there is always
satisfaction in that. Didn't someone
once say that knowledge is power?
Next is the ability to create a
program that fits your problem
exactly, not just about or maybe. It
also gives you the confidence and
freedom to go into your program
later and make improvements,
adjustments and updates. If it's your
program, you know best how it
works and how to fix it if it doesn't
Programming your own also lets
you dream up interesting and
unique applications previously
unheard of.

We believe that there is so much

tun and excitement in taking an idea
and making it a programming
reality that once you get into it, you
will too. That iB why we are
publishing this magazine. We fully
intend for it to be an interchange
between computerists. To that end,
we will bring you an interesting and
challenging mix of articles and
programs in each issue. Some will be
reader-written, so you have a chance
to show off your latest brilliance.
Each issue will contain an in-depth
programming project, complete with
explanations of why the program
was designed the way it was and
how it was developed. The idea of the
project is not only to give you a
working program that does
something useful, but to delve into
the whole philosophy of how to get
from the idea to the working
program.

We should also mention that all
programs presented in this
magazine are yours to do with what
you like. You may use them for fun,
profit or whatever.

Right now, we are putting
together a multi-user UNIX-like
system that we intend to use for
downloading programs to you. This
service is intended to be a part of the
subscription price, however, you will
need to pay for the phone call.
Actually, you learn more by typing
the programs into your computer,
but if you have a modem and wantto
download them directly, that's up to
you.

This magazine is not intended to
be a vehicle for commercial
advertising. Nor will it be available
on newsstands. It is dedicated
exclusively to you. Consequently, we
need as many subscribers as we can
get to launch this project. We are
very excited about it, and hope you
enjoy this first issue. Please take a
few minutes and fill ou* ^he
questionaire with the order form. We
will be able to serve you much better
when we know your equipment and
your programming needs. •

2 CodeWorks

Forum
An Open Forum for Questions & Comments

Obviously, since this is the first issue of this
magazine, you are probably asking: "How can you
have comments and questions from readers before
you even have any?"

It's a neat trick and it's done with mirrors —
almost. You see, we needed to have input for this
column and so we asked everyone in the office, the
proofreaders and even the kid who comes in to play
with the spare computer, to ask all the right
questions. Anything they wanted to know about
the birth of this new baby was fair game. It's not at
all surprising that there were no negative
comments from that group (actually, there were
some, but we sneaked in at night and fixed them.)

Overall though, the questions they asked are
very likely some of the same you would ask, so here
they are:

Why another computer magazine?
There are magazines and then there are
magazines. Most of them cater more to advertisers
and their products than they do to the reader.
Readers for them are just numbers to hold up their
ad rates. We think there is a great deal of plain fun
in computing, and so we are directing this
publication to the reader.

What is the main focus of the magazine?
Our primary focus is problem solving through
programming. To that end, if you have a special
(and interesting) programming problem, we will
be happy to work on a solution for you and publish
it for all to see. We intend to demonstrate the use of
programming tools and how to mix and match
them to get any job done efficiently and quickly.

Will there always be program listings in
the magazine?
Always.

Will the magazine always be 32 pages?
No, we intend to grow slowly (or quickly). Our first
goal is to go up to 64 pages in easy steps. When we
approach that goal, we'll go after a new one.

Why isn't it slick and four-color?
Slick and four-color is used when you want to
impress advertisers and newsstand dealers. We
don't care about them. What we do care about is the
information we impart. After all, that's the meat of
the whole thing, isn't it?

My computer cost me $49.95 and runs on
tape, you don't even mention tape.
Get yourself a computer.

Who can use your programs?
Disk based machines. Primarily those running
MS-DOS, CP/M or TRSDOS. The BASIC
language which usually is a part of those
machines is very compatible (we'll point out
differences as we come to them), and is very likely
a product of Microsoft Inc. This doesn't mean we
will be exclusively on those machines, but they
cover a very large portion of the computing realm
these days. There are dozens of CP/M machines
using MBASIC, probably more yet are IBM PC
work-alikes and then there is the whole Tandy
crowd. Apples running the Z80 SoftCard use
CP/M also, so they are included too.

What about your download system?
We have a XENIX system, Microsoft's version of
UNIX, that we have been testing for some time
now. It's a multi-user dial-up system, and aside
from the operator at the console (which we will
have to keep free), we can put two auto-answer
modems on it and they can both be in use at the
same time doing different things. It isn't ready yet.
But it is coming along nicely and we hope to have it
fully operational by late fall. Being realists, we are
working on an alternate backup that would be
even better should ours not come up on schedule.
Your subscription price includes the free use of
that download system.

Why are you putting your programs into
public domain?
To keep people from going to hell for stealing.

Computing is such a dry subject. Why talk
about it?
It's not dry if you like it, and if we present it
properly it will be loads of fun. •

Your comments and questions are welcome. We
can't guarantee an answer to each and every one,
but will surely do our best in giving everyone a fair
shake. Don't be afraid to criticize — we have been
publishing long enough to be used to it.
(Constructive only please!). Address yours to us at
CodeWorks, 3838 South Warner St., Tacoma,
Washington 98409

Code Works 3

Trend Analysis Plotter
For 80 or 132 Column Line Printers

Staff Project. Using a line printer to print graphic data has been with us
since the days of Teletype (TTY) input and output. Creating this program was
not as difficult as it first appeared. The trick was to take it one step at a time
and work down.

The purpose of this project is to create a short
utility program that can handle various sets of
data and print that data out on a line printer in
graph form. To make it more useful, a computation
of the trend line should be added along with a three
period projection of the data. It would also be nice
if it could print on an 80 column or 132 column line
printer. In addition, it should show the actual data
value somewhere on the graph, along with
appropriate labels. To make it handle varying
magnitudes of data, it should also have some sort
of self-scaling feature.

This sounds like a rather tall order. But,
surprisingly, it worked out to be only about 60 lines
of code.

The data for this program is handled in DATA
statements at the end of the code. This makes it
easy to use this program on various sets of
different data.

Elsewhere in this issue, we presented a program
called "Maker.Bas". That program is an excellent
way to create the various data sets that this
program can use.

Lines 100 to 270 are preliminary code used to
print a neat heading on the screen, clear some
string space and give a few instructions.

Lines 280 through 310 ask for information about
the number of columns on your particular line
printer. They also ask for a name for your graph,
which will be printed along with the other
information that is output. You get a nicer
presentation if you have a 132 column line printer
(or if your 80 column line printer can select 132
columns). The 80 column version is still rather
presentable however. You can also change all the
LPRINT statements to PRINT if you have an 80
column video screen and see your graph on the
video instead of the line printer.

Line 320 prints the graph headings. Since the
scale must be selected by the program, the
headings are simply set to go from 0 through 9 and
back to 1. The tabs are computed, based upon the
information you gave for 80 or 132 columns.

4

Variable TS is either 5 or 10 depending on your
answer to the question in line 280.

Lines 330 through 360 make the printer come
along under the heading numbers and add tick
marks (using the exclamation mark). If you
selected 132 columns, then the tick marks are put
every five spaces, otherwise, they are set every 10
spaces. This is because in 80 column mode the
marks are closer together, and putting one more
mark in between clutters it up. Aside from that, it is
difficult to get them exactly half way between.
This is handled by TI, which is the step in the
FOR..NEXT loop. Note that it is legal to compute
the start and end of a loop as in line 340.

Lines 380 through 430 are going to define the
scale factor for our graph. In them, we set variable
D2 to zero before we enter the loop. D2 will hold the
highest data number after we have read the data.
We set the J loop to read to 1000. This is just some
big arbitrary number, since we will jump out of the
loop when we reach the sentinel. Obviously, if you
have more than 1000 data elements to read, this
number would need to be increased.

In line 400 we read the data label as A$, and then
the actual data value, which is variable D. At this
point, we immediately check to see if the sentinel
has been reached, and if so, jump out of the loop.

In line 410 we check to see if the actual data
value is larger than D2, which was previously set
to zero, and if so, make D2 equal to D. This way, as
we go through the entire list of data, anytime that
D is larger than D2, D2 will be set to that value and
we will have the largest number in the data set.

Line 420 is where we get the scale factor based on
the value of D2. The variable used to hold the scale
factor is Dl. This line says that if the highest
number in the data set was 100 or less, then the
scale factor will be 1; less than 1000, scale factor of
10; and so on.

Since we have now once read the data, we need to
restore the data pointer. The RESTORE command
in line 440 does that for us.

Now that we have the scale factor and restored

Code Works

the data pointer, it's time to read the data again
and print out the graph, one line at a time. Lines
450 through 520 do this. Again, we read the data
and in line 490 we make variable L the length of
the bar we will print on the graph. Well, not quite.
It depends on whether we are in 80 or 132 column
mode, doesn't it? The plus 1 in both lines 490 and
500 was necessary to tweek the line to fit exactly
under the scale headings on the graph. Line 500
says that if we selected 80 column mode, then we
should cut the length of the graph bar in half.

Line 510 prints an entire line on the graph. First,
it prints the label, then tabs to TS times 2 to start
the row of capital X's for the bar. The for..next loop
in line 510 prints a row of those X's starting at the
tab position and extending to L, which is the
actual data value, scaled to fit the graph with the
tweek added to make it come out right. Still in line
510, we then tab way over to the right at TS times
12 plus 2 and print the actual data value. It does
this for each data item we have in our list.

Now that this is done, we restore the data again.
Yes, we need to read it again to establish the trend
line. Up in line 480, we finally got tired of reading
to 1000 and actually counted the number of data
items and put them into variable C. This could
have easily been done earlier, say up after line 400,
but we just didn't think of it. Now, in lines 540
through 580 we read the data again and get the
sum of the squares and all that for the trend line.
Notice that we don't need the label A$ for this, but
we ha ve to read it in any case, otherwise we may be
reading string data as numeric and that will not
work. So we simply read it and ignore it. In line 590
we calculate the values for the regression line.

All this time our printer was sitting on the next
line after printing the graph of the data. Now we
want to do the same with the three period
progression to finish off the graph. This happens
in lines 600 through 650. It's very much the same

as it was for the data, except now in line 610 we
check for negative numbers (you can't print in the
negative direction on a line printer). Also, our label
for these projected values will simply be PRO J,
and instead of using the X as we did earlier, we will
use the small letter "o" or anything like that to set
it off from the other data. When the graph is done,
we will probably want to manually draw a straight
line through the last three projection lines to see
the actual trend line. The lowercase "o" is ideal for
this since it is easy to find the center of this
character.

Now that the graph is completed, why not print
out the actual values for the regression line? Okay,
we already have the values, so in line 680 we print
them out, and that's that.

By the way, the only limit to the number of data
lines you have is the limit of your computer
memory. Using continuous roll paper, you can
create a strip chart many feet long if you like. If
you do that though, don't forget to set your printer
so that the number of lines on the page and the
number of lines to print are equal. If you don't, you
will have gaps in your charts.

You will find that because of the self-scaling
feature of the program, a single large value with
many smaller values will not show very good
resolution. For example, several values in between
1 and 10 with one that is over 100 will leave those
below 100 looking rather compressed.
If you have various sets of data to chart you can

save just the data (in ASCII) and merge them into
the program starting at line 700. Don't forget to put
the proper sentinel at the end of each data set.

There it is, and it does just what we wanted it to.
Now you can impress anyone with flashy charts
with trend lines and projections. Now let's see...
using only a standard line printer, how can we get
the computer to print the trend line too? Shall we
leave that as an exercise for the reader? We think
so. •

S « » * L € « U M 0
J A*
f t 6
• A N
ANN «*r
JU*
J U L
A 06
» »
O C T
W 0 V
D E C
P N O J PN0 J
P N O J

T H t VALUES fO P THE REGRESSION L INE ARE:
t - H i * .0B • 388 .668 X

1 2 5
I I 1 ! •

. o x
J I I X
. N X x
* x x x x x x x * x x * x >
. x
X
X i x > * g c x x
X i x
I X I X
I X

X A X *
MX K X
ncoeoooff
ooOOOQOOOOOOOOOOQOOOOOOOOOOOOOOOOS
OOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*

A2UU
3b3U
432V
566U
64>U
ov i o 0>UU 0046
620b rs i *
bUOS
• oao b4b1.<6
6B?U.43
925V.uv

Figure 1 - Sample Run

Code Works 5

100 REM ** PLOT.BAS * CREATED FOR CODEWORKS MAGAZINE **
110 PRINT CHR?(12):REM ** CLEAR THE SCREEN **
120 CLEAR 1000
130 PRINT STRING?(22,);" The CodeWorks "; STRING?(23,)
140 PRINT" TREND ANALYSIS PLOTTER"
150 PRINT" With a three-period projection"
160 PRINT STRING?(60,"-")
170 PRINT
180 PRINT"A utility plotter with 3 period projection for use with"
190 PRINT"an 80 or 132 character line printer."
200 PRINT
210 PRINT"The data for this program must be entered as DATA lines at"
220 PRINT"the end of the program. The form of these DATA statements"
230 PRINT"is: DATA LABEL,#### where LABEL is a name and #### is a"
240 PRINT"numeric value."
250 PRINT"The very last DATA statement should contain a dummy label"
260 PRINT"and a numeric value of -1, like this: DATA ,-1"
270 PRINT
280 INPUT"IS YOUR PRINTER 80 OR 132 COLUMNS - ENTER 80 OR 132";CP
290 IF CP<>80 AND CP<>132 THEN GOTO 280
300 IF CP=80 THEN TS=5 ELSE TS=10
310 INPUT"What will you name this graph";Z$
320 LPRINT Z?:LPRINT TAB(TS*2);"0";TAB(TS*3);"1" ; TAB(TS*4);"2";

TAB(TS*5);"3";TAB(TS*6);"4";TAB(TS*7);"5"; TAB (TS*8);"6";TAB(TS*9);
"7";TAB(TS*10);"8";TAB(TS*11);"9";TAB(TS*12);"1"

330 IF TS=5 THEN TI=TS ELSE TI=TS/2
340 FOR I=TS*2 TO TS*12 STEP TI
350 LPRINT TAB(I);"I";
360 NEXT I
370 LPRINT" "
380 D2=0
390 FOR J=1 TO 1000
400 READ A$,D:IF D=-l THEN GOTO 440
410 IF D>D2 THEN D2=D
420 IF D2<101 THEN Dl=l ELSE IF D2<1001 THEN Dl=10 ELSE IF D2<10001

THEN Dl=100 ELSE IF D2<100001 THEN Dl=1000 ELSE IF D2<lE+06
THEN Dl=10000

430 NEXT J
440 RESTORE
450 FOR J=1 TO 1000
460 READ A?,D
470 IF D=—1 THEN GOTO 530
480 C=C+1
490 L=(D/Dl)+1
500 IF TS=5 THEN L=(L/2)+l
510 LPRINT A?;TAB(TS*2);:FOR 1=1 TO L:LPRINT"X";:NEXT I:LPRINT

TAB(TS*12+2);INT(D)
520 NEXT J
530 RESTORE
540 FOR J=1 TO C
550 Q=J
560 READ A?,D
570 R=R+D:S=S+Q:U=U+(Q*D):T=T+(Q*Q)
580 NEXT J

6 CodeWorks

590 Y = (T * R - S * U) / (C * T - S * S) : X = (C * U - S * R) / (C * T - S * S)
600 FOR F=C+1 TO C+3
610 F1=Y+X*F:IF F1<=0 THEN PRINT"CAN'T PRINT NEG. #'S":GOTO 690
620 L=(F1/D1)+1
630 IF TS=5 THEN L=(L/2)+l
640 LPRINT"PROJ";TAB(TS*2);:FOR 1=1 TO L:LPRINT"o"?:NEXT IsLPRINT

TAB(TS*12+2);INT(F1)
650 NEXT F
660 LPRINT" "
670 LPRINT"THE VALUES FOR THE REGRESSION LINE ARE:"
680 LPRINT "Y=";Y;"+"?X?"X"
690 END
700 DATA JAN,3200
710 DATA FEB,3850
720 DATA MAR,4329
730 DATA APR,5560
740 DATA MAY,6430
750 DATA JUN,6028
760 DATA JUL,6500
770 DATA AUG,6345
780 DATA SEP,6208
790 DATA OCT,7325
800 DATA NOV,8005
810 DATA DEC,7685
820 DATA , -1 "It's for you.'

Programming Notes

Our first programming note must of necessity
concern itself with our listings and some of the
c o m m o n d i f f e r e n c e s i n t h e v a r i o u s
implementations of Microsoft BASIC.

The first we usually run into is the CLEAR
SCREEN command. Most MS-DOS BASIC'S and
just about all the Tandy BASIC s will use CLS to
clear the screen and home the cursor. We've heard
they are trying to make this the ANSI standard.

Most CP/M machines running MBASIC or its
variations will use PRINT CHR$(12) to do the
same. However, there are at least two we know of
that use PRINT CHR$(26).

Some other variations are CALL CLEAR and
HOME.

Another difference in BASIC'S is the way
filespecs are named. Most MS-DOS machines
(IBM-PC and work-alikes) as well as most CP/M
B A S I C ' S , o p e n a f i l e t h i s w a y : O P E N
'T",l,"FILENAME.BAS" while most of the non
M S - D O S T a n d y m a c h i n e s u s e : O P E N
"I",1,"FILENAME/BAS". the difference being
the period (dot) and the slash (/) for the extension.
Those Tandy machines using the slash would

recognize the dot after the name as a three letter
password for the file and not as an extension. The
example above, by the way, was a command to
open a sequential file for input and assigns buffer
number 1 to it.

Spacing around keywords in a BASIC program
doesn't make any difference on some machines. In
general, those same machines will also only allow
two-letter variable designators. Most MS-DOS
BASIC' S and MBASIC (and a few others) require a
space around their keywords. This is because they
allow considerably more than two-letter variable
names. We have adopted the standard of using
spaces around all keywords in our printed listings.

Because of the space on our printed pages, we

have had to set our line printer to a width of 70
columns. This, of course, makes some lines wrap
around. You do not need to (and it may not work
too well if you do) follow our wrap around.

Code Works 7

Programming made Easy
A Program to balance your Checkbook

c Start zr
Get

Beginning
Balance

Enter type of
Transaction
and Amount

Deposit

Add
Amount
To Balance

Display
new

Balance

8

Terry Dettmann, Associate Editor.
This program is intended to show that
it only takes four BASIC commands to
write a program. They also happen to
be the four most used commands.
We've all seen enough checkbook
balancing programs, so that's no big
deal, but that is not the point of the
program.

10 PRINT "ENTER THE BEGINNING
BALANCE"

20 INPUT BA
30 PRINT'ENTER (CK) CHECK, (DP)

DEPOSIT OR (CH) CHARGE"
40 INPUT C$
50 PRINT'ENTER AMOUNT"
60 INPUT AM
70 IF C$="CK" THEN GOTO 120
80 IF C$="DP" THEN GOTO 130
90 IF C$="CH" THEN GOTO 120
100 PRINT'ERROR IN DATA ENTRY -

TRY AGAIN"
110 GOTO 30
120 AM =—AM
130 BA = BA+AM
140 PRINT AMOUNT", AM,

"NEW BALANCE", BA
150 GOTO 30

In programming, we often lose sight of the forest
for the trees. We have a tendency to confuse good
programming with very specialized techniques.
We forget that it is more than an ability to program
random files, faster sorts, or tricky input routines.
Good programming is the development of simple
solutions to a given problem.

In reading magazines, many beginners will try a
new technique before they have mastered the
simpler tasks. Even the seasoned professional
will find he can accomplish a great deal with the
simplest BASIC commands and statements.

The four BASIC statements we will use in this
article are: PRINT, INPUT, IF- THEN and GOTO.
By learning how to use these statements
effectively we can expand our programming skills

Code Works

a great deal. By adding one or two statements at a
time, we. can come up with some amazing
capabilities.

INPUT: We will use the INPUT statement in its
very elementary form. At this point we will not
allow it to do anything but enter information
(data). The form of the statement is:

INPUT variable-name

where the variable name can be either an
alphanumeric string or a number. Strings are
defined by using the dollar sign ($) after the
variable name. Those variables without the string
declarator are numeric variables.

PRINT: The PRINT statement is used to get
information from the computer. It prints data to
the video screen. The form we will use is:

PRINT variable-name list

where the variable name list can be one or more
variable names consisting of numeric or string
variables or constants. The only variable name list
separator we will use in this article is the comma.

IF-THEN: The IF-THEN statement is used to
make decisions. The form we will use is:

\F (condition to be tested is true) THEN (do this)

GOTO: The GOTO statement is used to jump or
branch to a new place in the program. We will use it
with the IF-THEN statmentin complex situations.
Its form is:

GOTO line number

where the line number is the number of the
program line to be jumped or branched to.

Program Design: The first step in any
program is the design state. Unfortunately, many
BASIC programmers just sit down at the keyboard
and make up little programs as they desire. For
serious programming, nothing beats prior
planning. .

The standard method for design is the flow
chart. It is a series of symbols, connected by lines
to show the flow of the program. In its greatest
detail, every minute step of the program is
illustrated. In its simplest form, it isn't much more

than a block diagram of the program concepts.
There are arguments for both ends of the spectrum
of the flow chart. We will show you a variation
which is gaining wide-spread acceptance among
computerists.

This variation uses English intermixed with
BASIC statements and commands. As the
program is prepared and refined, more and more of
the English text is converted into BASIC. For
foreign programmers, a foreign language text
could just as well be used, even though the BASIC
portion is still in English.

Before we get into our sample program, there is
one more thing to understand about BASIC. We
talk about statements and commands. These are
very much like English sentences. In BASIC each
sentence must be assigned a line number. The
computer will numerically follow these line
numbers unless instructed to do otherwise by the
program itself.

Now let's design our program.
The first step in any program design is to state or

define the problem we wish to solve, which is
widely referred to as the program objective. Many
programs have been lost by ignoring this step. If
the problem or objective is inadequately defined,
the program will almost always require redesign.

For our problem, we state:

PRINT prompt for the beginning balance.
INPUT the beginning balance.

A PRINT prompt for check, deposit or charge.
INPUT transaction type.
PRINT prompt for amount.
INPUT amount.
IF check then goto B.
IF deposit then goto C.
IF charge then goto B.
PRINT error message.
GOTO A.

B Make amount negative.
C Balance = balance + amount.

PRINT amount, new balance.
GOTO A

Next we assign variable names which are
similar to our English names in the program flow:
BA for balance and AM for amount. See how
closely our finished program matches the flow. •

Code Works
9

Randolph Townsend, Riverside, California. Save your eyes and your
temper when your program goes awry. This is a short but very useful
program that not only will find specific variables, but will find any search
string. This means that you can search through text files as well as program
listings. This, and other programs in this issue, rely on some knowledge of
what ASCII is all about. We have put together a short discussion of ASCII on
page 30, and suggest you look at it if you must ASCII.

Although the messages are often cryptic, the
error routines on many computers help
enormously in BASIC programming. All too often
however, the reason for the error is not apparent,
or even worse, the computer finds no error but the
output is wrong. Problems of this sort may have
many different sources. But they often have their
roots in fuzzy thinking, inattention or even
stupidity on the part of the programmer. Most of us
have had the experience, when confronted with
one of these knotty dilemmas, of spending hours
reading each line of a long program in an attempt
to track the problem to its lair. Catastrophic
consequences have resulted only because we have
used the same variable for different things.

It is much easier to let the computer do the
reading. This can be arranged in a variety of ways.
Many software firms will be delighted to sell you
programs that will search out every occurrence of a
given string in your program. Rapid and effective
assembly language programs to accomplish this
have been published. However, it is quite easy to
devise a BASIC program which searches through
your program for any string you specify and have
it tell you where it was found. The only
shortcomings to working in BASIC, rather than in
assembly language, are slightly longer times in
accomplishing the search and the need to store
your target program in ASCII format first.

One simple program which does this chore quite

well is shown in the listing accompanying this
article. Operation of the program is very easy. The
problem (target) program is stored on disk in
ASCII format (SAVE"filename",A). The search
program shown in the listing is then run. The
name of the program being searched and the
string to be searched for, are entered in response to
the queries. The program being searched is read in
with the LINE INPUT# command, examined
using the INSTR command, and the string is
printed when it is found. You have options in line
300 of continuing the search, printing out the line
on paper, or stopping. These options are denoted
with the commands C, P, and S, respectively. The
printout also gives you the name of the program
and the string for which you have searched.

When all the lines have been read, you can re
examine for another string, look at another
program or quit. As a check, run this program on
itself and you should find PN$ to be present in
lines 210, 220, 240 and 370.

Don't forget to save your target program in
ASCII and enter BASIC with at least one file
allocated. Also, various computers use different
syntax in the OPEN statement in line 240. Adjust
accordingly for this command and for the INS
and LINE INPUT# commands.

This program^ although designed primarily or
BASIC program, listings, will"work well on any
ASCII text file.1 •

10 Code Works

100 REM ** SEARCH.BAS *
110 CLEAR 1000
120 PRINT CHR$(12) :REM ** CLEAR SCREEN COMMAND **
130 PRINT STRING?(22,"-");" The CodeWorks STRING?(23)
140 PRINT" STRING SEARCH"
150 PRINT" Search for Strings in other Programs"
160 PRINT STRING?(60,"-")
170 PRINT
180 PRINT" Program to search for strings in other programs."
190 PRINT" The Target program must be stored in ASCII format."
200 PRINT
210 INPUT "ENTER TARGET PROGRAM NAME ";PN?
220 IF PN? = "END" THEN END
230 INPUT "ENTER STRING TO BE SEARCHED FOR ";SS?
240 OPEN "I",1,PN?
250 IF EOF(l) THEN GOTO 330
260 LINE INPUT #1,TX?
270 IF INSTR(TX?,SS?)=0 THEN GOTO 250
280 PRINT TAB(10) SS?;" FOUND IN "
290 PRINT TX?
300 PRINT "Continue/Stop/Print, C/S/P "?:GOSUB 430: PRINT Y?
310 PRINT " "
320 IF Y? = "C" THEN GOTO 250 ELSE IF Y? = "P" THEN GOSUB 360:GOTO 250
330 CLOSE 1
340 PRINT "FINISHED WITH PROGRAM":PRINT" ANOTHER PROGRAM Y/N ";

:GOSUB 430
350 IF Y? = "Y" THEN GOTO 110 ELSE IF Y? = "N" THEN END
360 IF FL=0 THEN GOTO 370 ELSE GOTO 380
370 LPRINT "SEARCH OF PROGRAM ";PN?;" FOR ";SS?
380 LPRINT
390 LPRINT TX?
400 LPRINT
410 FL = 1
420 RETURN
430 Y? = INKEY?:IF Y? = "" THEN GOTO 430 ELSE RETURN

Programming Notes
The relational operators AND and OR

sometimes seem to play tricks on us. Let s say we
want the user to enter either the number 10 or 20. If
a number other than 10 or 20 is entered, we want to
go back and ask the question again, otherwise, we
should go on to the next normal line of code. For
example:

10 INPUT'ENTER THE NUMBER 10 OR
20"*A

20 IF AO10 OR AO20 THEN GOTO 10
30 REM Program lines follow here.

It seems logical to say that if A does not equal 10 or
20 to go back and ask the question again. However,
this section of code will go back to line 10 in every

case. You could write line 20 to say: 20 IF A — 10
OR A = 20 THEN GOTO 30 ELSE GOTO 20. That
works. But there is something strange about
asking the program to go to a line it would go to
anyway. Another way to do it is to change the OR
in line 20 to an AND. This seems to defy logic but it
works. Those of you familiar with Boolean logic
will recognize it. When changing equalities to
inequalities, we need to change the relational
operator. In this case from OR to AND. Now if we
say:

20 IF A O 10 AND A O 20 THEN GOTO 10
it works just fine.

CodeWorks 1 1

Extract
A program to Extract lines of code

Dexter Walker, Birmingham, Alabama. Unlike the previous program,
"Search", this program extracts sets of lines out of existing code and allows
you to accumulate them for automatic insertion into another program. Very
handy if you are a subroutine builder. You may never have to write code
again if you extract, then mix and match sections from other programs.
Again, this one relies on some knowledge of ASCII, see page 30. Also along
these lines you should find use for R C Bahn's "Strings and ASCII" following
this article. Both this, and the previous programs, should be valuable
additions to your utility library.

I

Everyone who has done any programming has
a treasury of good routines buried in his programs
— good logic that can be used later in another
program. After all, there really is no use in re
inventing the wheel. We all know that we can load
up that old program, delete everything before and
everything after the nugget of code that we want
and merge it into our new masterpiece. But, if you
are like me, you probably don't do it.

I recently did this on a rather long, previously
written program and even though it worked, I
didn't enjoy it very much. I finally figured out that
there was something destructive about killing a
part of the good code which I had written, even
though the end result was going to be good. It then
occured to me that it would be better to extract the
lines I wanted from the old program rather than
deleting the code I didn't want.

The Extract program shown here will run on
most disk-based machines with only slight, or no
modification. Be sure to enter BASIC with 2 files
open.

The source (target) file must be saved in ASCII
format (SAVE"filename",A) and the file created
by this program will also automatically be in
ASCII format, ready to be merged with whatever
else you are writing.

The extracted file will allow you to pick up to ten
different sections from your source file f°r

extraction. If you need to extract more than ten
sections, you will need to dimension the array
SUJ) to the number you want. That dimension
command does not exist in the program now, but
can be added as line 115, e.g., 115 DIM SL(20). The
reason it is not now dimensioned is that most
BASIC interpreters allow up to ten items in any
array without dimensioning.

This is a useful routine that will take just a few
minutes to key in and will save you hours of
recoding. You might start a file of useful utility
programs like this one and add this one to it.

Now, especially if you are not a touch typist, you
can extract and merge rather than delete and type
in sections of code from other programs. •

12 Code Works

100 REM ** EXTR.BAS * BY DEXTER WALKER **
110 CLEAR 5000
120 PRINT CHR$(12): REM ** CLEAR THE SCREEN **
130 PRINT STRINGS(22,"-")?" The CodeWorXs ";STRING?(23,)
140 PRINT" EXTRACT"
150 PRINT" Extract and file portions of a program"
160 PRINT STRING$(60,"-")
170 PRINT"This program extracts portions of an existing file"
180 PRINT"and creates a new file containing the selected lines."
190 PRINT"The source file must be saved in ASCII format."
200 PRINT
210 LINE INPUT "Enter the name of the SOURCE file :";FS$
220 LINE INPUT "Enter the name of the EXTRACT file :";FD$
230 PRINT CHR$(12): REM ** CLEAR THE SCREEN **
240 PRINT "Enter line numbers to extract (enter E to end)"
250 PRINT
260 J - 1
270 INPUT "Starting line: ";SL$
280 IF SL$ = "E" THEN GOTO 330 ELSE SL(J) = VAL(SL$)
290 INPUT "Last line (may be same as start line) "?EL(J)
300 J - J+l
310 PRINT
320 GOTO 270
330 JT =» J-l
340 PRINT CHR$(12): REM ** CLEAR THE SCREEN **
350 PRINT "DISPLAY OF EXTRACTED LINES"
360 PRINT
370 OPEN "I",1,FS$
380 OPEN "0",2,FD$
390 IF E0F(1) THEN GOTO 450 ELSE LINE INPUT # 1, A$
400 V = VAL(A$)
410 FOR J = 1 TO JT
420 IP V > =SL(J) AND V <=EL(J) THEN PRINT A$:PRINT #2,A$
430 NEXT J
440 GOTO 390
450 CLOSE
460 PRINT
470 PRINT "FILE EXTRACT COMPLETE"

Programming Notes
Many BASIC'S will have a command called

MOD. It is used like this: PRINT 7 MOD 3 (or A
MOD B) and the machine will return the
remainder left when dividing 7 by 3 (or B into A).
This is called the Modulus Operator, and the
remainder is called the Modulo value. For those of
you who do not have this operator, you can
simulate it with this: X = INT(A—B*INT(A/B)).

Interpreter BASIC is interactive BASIC. Unlike

compiled BASIC, where you cannot try any
section of code until it is all compiled, interactive

BASIC lets you do calculations at the READY or
OK prompt or run small sections of code and print
the results to see how it worked. This has to be one
of the greatest advantages of interactive BASIC,
since it lets you test and debug a program in no
time at all compared to compiled BASIC. Of
course, compiled BASIC runs at a much higher
speed and once compiled cannot easily be changed
or decoded without having the source code. (Source
code is the code from which the compiled version
comes.)

Code Works 13

Strings and ASCII
An Exercise in Strings and ASCII Codes

String constants or variables are single or
groups of alphabetic, numeric or graphics
characters. String variables are designated in
BASIC by the appearance of the dollar sign as the
last character of the name, such as A$.

The object of the following exercises is to learn to
manipulate "strings" and the ASCII code for
simple computer graphics. The major BASIC
statements which are concerned with strings
include ASC(string), CHR$(code exp.),
LEN(string), LEFT$(string, n), MID$(string, p,n),
RIGHT$(string, n), STR$(numeric exp.),
VAL(string) and STRING$(n, char.). A single
operation, concatenation, can be performed on
strings. In this operation, a string may be
appended to another string by use of the plus (+)
sign. Complete descriptions of the foregoing
statements can be found in the reference manual
for your computer.

The first part of this article concerns methods
for building strings and examining their
appearance prior to utilization. The last part of the
article describes a demonstration program for the
tabular and graphic display of the sine function.

Counting in a loop from 32 to 191: Type and
run the following program:

1 0 F O R I = 1 T O 5
2 0 F O R J = 1 T O 3 2
3 0 P R I N T 3 1 + (3 2 * (I - 1)) + j ;

4 0 N E X T J
5 0 P R I N T : P R I N T
6 0 N E X T I
7 0 E N D

Later we will want to automatically build some
strings and have the computer do the counting
This nested loop performs the task. The outer I loop
(lines 10 and 60) directs program flow through the
inner J loop five times. The inner J loop (lines 20
and 40) counts each of the five times from one to 32
The sequential numbers (32 to 191) are computed
and printed in line 30. To assure yourself that the
statement operates correctly, compute by hand the
value for I = 1, J = 1; I = 5, J = 32 and several
intermediate numbers. The range of numbers from
32 to 191 corresponds to the ASCII codes for
characters and graphics symbols. Line 50
separates the video screen output into five blocks
of 32 numbers. The first PRINT completes the line
The second PRINT skips a line. Note that if the
terminal number in a block occupies the last

position of the video line, an automatic line feed
occurs. Thus, the number of blank lines separating
blocks may not be constant for all blocks.
Building strings and testing the video screen
and printer: Type and run the following
program:

1 0 0 C L E A R 1 0 0
1 1 0 B S r " A S C I I C O O E S "
1 2 0 F O R I * 1 T O 5
1 3 0 A S » " "
1 4 0 F O R J » 1 T O 3 2
1 5 0 N = 3 1 • 3 2 * (1 - 1) • J
1 6 0 A S = A S * C H R S (N)
1 7 0 N E X T J
1 8 0 P R I N T B S ; N - 3 1 ; " T 0 " ; N
1 9 0 P R I N T A S
2 0 0 L P R I N T B S ; N - 3 1 ; " T 0 " ; N
2 1 0 L P R I N T A S
2 2 0 N E X T I
2 3 0 E N D
This program displays all the ASCII characters

on the video screen and printer. If you have no
printer delete lines 200 and 210. You can identify
the counting loop consisting of lines 120, 140, 170
and 220. The calculation of the sequence number
(N) occurs in line 150. A string of32charactere(A$)
is built by concatenation in line 160. A$ is used in
the output in lines 190 and 210. Another string (B$)
is defined in line 110 and used as a lahel in lines 180
and 200.

This program shows you all the characters
available for building strings. The options,
particularly for ASCII codes greater than 95, will
vary depending upon your type of computer, the
presence of lower case capability and your printer.
Many printers will not be able to interpret the
graphics codes (128 through 191). Subsequent
programs in this article should be modified to
conform to your own system's capabilities.

Remember that the graphics codes for some
computers only extend from 127 to 159. Change
line 310 accordingly.
O r g a n i z e d i n s p e c t i o n o f g r o u p s o f
characters:

3 0 0 C L E A R 1 0 0 0
3 1 0 F O R K = 3 2 T O 1 9 1
3 2 0 F O R N s 1 T O 2 3 S T E P 2
3 3 0 I F N = 1 T H E N

P R I N T " A S C I I C O D E * " i *
U A S = S T R I N G S (N , C H R S (K) >

Code Works

3 5 0 P R I N T A S
3 6 0 N E X T N
3 7 0 F O R T = 1 T O 2 0 0 : N E X T T
3 8 0 N E X T K
3 9 0 E N D
This program demonstrates the STRING$

statement and, in an organized fashion, allows
you to inspect the appearance of the characters in
lines and in sheets. While there will be few
surprises with the alphabetical, numeric and
special characters, the graphics characters will
provide interesting patterns. The exact pattern
will depend upon the model of your computer.

Lines 310 and 380 define a loop running from 32
to 191. You might want to confine this study to the
graphics range of 128 to 191. Lines 320 and 360
define a loop which will count twelve odd numbers
between and including one and 23. This number is
used in line 340 to produce twelve lengthening
representations of A$, each of which is printed on
the video by the statements of line 350.

Line 330 prints a label for the video screen page.
Line 340 forms A$. The STRINGS statement
automatically concatenates a string of characters
of length N composed of characters defined by
CHR$(K).

Line 370 is a timing loop which will enable you to
quickly inspect the page. Depending upon the
speed of the clock in your computer, you may want
to change the duration of the loop by replacing the
200 to 2000 or more. If the pattern interests you,
press BREAK and look at it. Record the ASCII
code for future reference. Type CONT to continue.
Note that when you stop the program sixteen lines
of the screen are occupied by the. display and
systems messages. The label does not scroll off the
screen.
Tabulating and plotting a function: Listed
with this article is a program which uses the prior
concepts to tabulate and plot the sine function
(SIN(T)). To accomplish these objectives four
primary tasks must be performed: (1) initialization
of the program, (2) computation of data, (3)
tabulation of the data, and (4) graphing the data.

In most numerical graphing problems the range
of the numbers to be plotted will not conform to the
dimensions of your video screen or printer. Thus,
the computed values must be scaled in the
direction of both X and Y axes.

For programming ease, we have chosen to
display the X axis in the vertical direction and the
Y axis in the horizontal direction. The STRINGS
statement will be used to build a string of an
appropriate length in the horizontal direction of
the Y axis (line 380). The number of intervals in the
designated range of X will determine the angular

X
- 3
- 2 . 5
- 2
- 1 . 5
- 1
- . 5

0
. 5
1
1 . 5
2
2 . 5
3

*

*

*

*

*

*

*
*

•
*

*

*

*

R A N G E O F X = - 3 T O 3
R A N G E O F Y = - . 9 9 7 4 9 5 T O . 9 9 7 4 9 5

Figure 1 Sample output of listing 1

scaling (lines 60, 130 and 140). Each interval will
occupy one line of output.

Note that scaling in both X and Y directions
demands knowledge of the maximum and
minimum values of X and Y. The range of X is
defined in line 90. The range of Y is found in the
course of computing values in lines 120, 190 and
200.

Remember that the sine function utilizes angles
in radians instead of degrees. The input in line 90
for the sine function should therefore be in
radians. Try the folowing limits in line 90:
0,3.14159; -3.14159, 3.14159; 0, 6.28318. The
formula for conversion of degrees to radians is:

Radians = (3.14159) * (degrees/180)
The above limits in degrees are 0, 180; -180, 180;
and 0, 360.
Discussion.The function plotting program
illustrates the fundamental problems of scaling
and use of ASCII characters. It is relatively short
and serviceable. The next logical improvement
would be the introduction of labeled axes.

The width of the video screen graph was limited
to 32 spaces to accommodate computers with that

Y
- . 1 4 1 1 2
- . 5 9 8 4 7 2
- . 9 0 9 2 9 8
- . 9 9 7 4 9 5
- . 8 4 1 4 7 1
- . 4 7 9 4 2 5

0
. 4 7 9 4 2 6
. 8 4 1 4 7 1
. 9 9 7 4 9 5
. 9 0 9 2 9 8
. 5 9 8 4 7 2
. 1 4 1 1 2

CodeWorks 15

size screen. The variable WS can be redefined in Finally, returning to string, you should
line 350 for wider screens. Similarily the variable experiment 11 h the graphics "fill"
WP can be redefined in line 350 for wider printers. STRING$(D1,CHR$(132)) and the graphics
The precision of printer plots can be further symbol (CHR$(157)) of line 380. The numbers 132
increased by increasing the number of lines (NL) an^ l,r>i w®re chosen arbitrarily. The previous
in line 60. exercises probably have generated different

Note that the program flow in line 460 returns to choices for you bor bar graphs you may want
line 50 and avoids the CLEAR statement in line 30. these two symbols to be identical. Note that in line
Thus, after the first pass, the program will repeat 390 an alternate, safe and quick way of plotting
by merely pressing RETURN. without "fill is the use of the TAB statement. •

1 0 R E M * * D E M O P L O T T I N G R O U T I N E * *
2 0 R E M * * I N I T I A L I Z E * *
3 0 C L E A R 1 0 0 0 L i s t i n g 1
4 0 D I M Y (1 5) , X C 1 5)
5 0 P R I N T C H R S (1 2 > : R E M * * C L E A R T H E S C R E E N
6 0 N L = 1 2
7 0 I N P U T " P R I N T E R O U T P U T ? (Y / N) " ; P S
8 0 R E M * * C O M P U T E R E S U L T S W I T H I N D E S I G N A T E D R A N G E • •
9 0 I N P U T " E N T E R M I N , M A X V A L U E S O F X " ; D N , U P
1 0 0 R N = U P - D N
1 1 0 N = 0
1 2 0 B G = - 9 9 9 9 9 : S M = 9 9 9 9 9
1 3 0 S T = R N / N L
1 4 0 F O R T = D N T O U P S T E P S T
1 5 0 N = N + 1
1 6 0 X (N) = T
1 7 0 R E M * * F U N C T I O N I S D E F I N E D I N N E X T S T A T E M E N T
1 8 0 Y (N) = S I N (T)
1 9 0 I F Y (N) > B G T H E N B G = Y (N)
2 0 0 I F Y (N) < S M T H E N S M = Y (N)
2 1 0 N E X T T
2 2 0 Y R = B G - S M
2 3 0 R E M * * D I S P L A Y N U M E R I C A L R E S U L T S * *
2 4 0 P R I N T C H R S C 1 2) : R E M * * C L E A R T H E S C R E E N • •
2 5 0 P R I N T " X " , " Y "
2 6 0 I F P $ = " Y " T H E N L P R I N T " X " , " Y "
2 7 0 F O R K = 1 T O N
2 8 0 P R I N T X (K) , Y (K)
2 9 0 I F P S = " Y " T H E N L P R I N T X (K) , Y (K)
3 0 0 N E X T K
3 1 0 I N P U T " P R E S S R E T U R N T O C 0 N T I N U E " - A S
3 2 0 R E M * * G R A P H R E S U L T S * * '
3 3 0 P R I N T C H R S (1 2) : R E M * * C L E A R T H E S C R E E N A G A I N
3 4 0 F O R N N = 1 T O N A G A I N
3 5 0 W S = 3 1 : W P = 3 1
3 6 0 D I = (W S - 1) * (Y (N N) - S M) / Y R
3 7 0 P D = (W P - 1) * (Y (N N) - S M) / Y R
3 8 0 P R I N T S T R I N G S (D I , C H R S (1 3 2) > - C H R S (1 5 7 }
3 9 0 I F P S = " Y " T H E N L P R I N T T A B (P D) " * "
4 0 0 N E X T N N
4 1 0 P R I N T " R A N G E O F X = " ; D N ; " T O " - U P
4 2 0 I F P S = " Y " T H E N L P R I N T " R A N G E O F X = " - D N -
4 3 0 P R I N T " R A N G E O F Y = " ; S M ; " T O " - B G ' U P

4 4 0 I F P S = " Y " T H E N L P R I N T " R A N G E O F Y = " -
4 5 0 I N P U T " (N) E W P L O T O R (E) N D " • A S ' ' 0 ; 0 G

4 6 0 I F A S = " N " T H E N G O T O 5 0

I Writer
Evaluates your Writing Mechanics

Staff Project. This is the "biggie" for this issue. It may seem rather complex,
but remember that it is just a bunch of short routines all hooked together to
do the job. Naturally, it will be available on the download when it becomes
operative. If you type it in, pay special attention to lines 1850 and 1860. Don't
make the lines wrap where we did. We had to because we are limited to 70
characters on the printed page. Those lines will fit nicely on an 80 column
screen.

Writer is a program that takes a critical look at
the mechanics of your writing. It knows nothing
about the context of your writing, but can look at
sentence length, word length, use of punctuation,
unique word usage and other quantifyable
attributes. With it, you can check your own or
anyone else's writing mechanics.

Although appearing to be slightly verbose
the program flows in a somewhat top-down
structure. Text to be analyzed may be entered
directly from the keyboard or from a previously
saved disk file.

To simplify the code, there are several "do not's"
which are listed on the screen when entering text.
Perhaps the most important of these is not to use
periods in abbreviations, since the period followed
by a space is what the program looks for to
determine the end of a sentence.

Since most authorities agree that samples of less
than 100 words are insufficient to make any
intelligent test, the program asks for more than
100 and less than 300 words to be examined. It
turns out that most screens will hold somewhere
between 100 and 300 words, so it works out nicely
and one can see the entire sample text on one
screen.

After entering text or loading a file from disk, the
program counts sentences and words. This
actually occurs as the file is being loaded and
happens in lines 710 through 780. It then tells you
how many words and sentences, and that it will
take approximately two minutes to analyze the
text. This time is rather approximate and depends
upon the speed of your particular computer.
During this time, it also counts the occurance of

the various punctuation marks, which will later be
removed because of the need to get accurate word
length counts.

After counting punctuation marks we want to
remove them and at the same time change upper
case to lower case. This happens in lines 850
through 980. We removed the punctuation because
later we will want to compare words, and
obviously, the word "end!" will not compare with
the word "end". We remove the capitalization for
the same reason. The little routine from line 930
through 970 does the trick of removing capital
letters. It simply checks each letter to see if it is a
capital, and then if it is, it adds 32 to its ASCII
value and puts it back. Years ago when the ASCII
standard was originated, someone was apparently
thinking, and made lower case letters exactly 32
higher than their upper case counterparts.

Now that the words are all stripped of their
punctuation and capitalization we want to sort
them into alphabetical order. One reason for doing
this is that it will make it much easier to find the
frequency of repetitious words later. The sort is a
modified Shell-Metzner sort, and in line 1030, we
print a plus sign on the screen after each pass
through the list. This is mostly to let you know that
something is happening and that your machine
has not hung up on itself.

For those of you who have the SWAP command
in your BASIC, you can change line 1100 to read:
SWAP P(I),P(L). It may speed up the sort
somewhat.

Most text evaluation schemes depend on the use
of small, medium and large words. They determine
that by the number of syllables in the word. But, a

Code Works 17

computer doesn't know doodly-squat about
syllables, so we had to come up with a close
approximation in lines 1170 through 1270.

The problem came down to words with three or
more syllables. Less than three syllable words are
considered "easy" words, and getting them was
easy as well. Most nine character words have three
syllables, but some do not. At the same time many
eight character words have only two syllables, but
some do not. By checking a few thousand words
from a standard dictionary, we found that about
80% of nine character words have three syllables
and that about 45% of eight character words have
three syllables. This is accounted for in line 1240,
after we have found the number of eight, nine and
greater character words.

In lines 1250 through 1280 we run through our
sorted list of words to find how many unique words
were used. Since the list is sorted, all the words
"the", for example, will appear together. Our loop
then simply runs down the list and compares each
word to the next one in the list. If it is the same,
nothing happens, but if it is different, then
variable VC is incremented by one. We already
know (from much earlier in the program) how
many words there were. Now we know how many
were unique and what the percentage of unique
words is.

The next thing we want to do is to find out how
many times each word was used. To do this, we
build an array, using W$(U,#) where# can be 1,2 or
3. W$(U,1) will hold the word, W$(U,2) will tell how
many times it was used and W$(U,3) will
temporarily be stuffed with the number 50. Let's
digress a bit and then find out more about that
number 50.

One of the objectives of this program is to
compare our writing mechanics against an
average of some 50 well-known authors. Note we
didn't say "good" authors, as we are not in a
position to pass judgement on what is good or bad.
So we stick to well-known. Aside from that, we can
only look at how they say it, rather than what they
say. There is a difference. We looked at Defoe.
Cooper, Harte, Twain, O Henry, Hemmingway
and lots of others to get average figures for this
comparison. It turned out that there were some
common words used by all of them whose
frequency was surprising. You can see them listed
in line 2020. The words "the", "of' and "and" lead
the list in order of frequency in most writing. This
does not mean that your writing must conform to
this curve, it's an average after all. It just makes
for an interesting comparison.

The program will display a graph showing these

18

common words from our famous authors. Then we
want to see how we stack up against it. So the
problem is how to get our words out of the sorted
list in the same order the author graph shows. We
are going to do it from line* 1420 through 1490.
Here, we read our data statement in line 2020, then
with an inner loop we go through our sorted list
and find where our corresponding word is. Back in
line 1370 we stuffed the number 50 into W$(U,3).
Now as we go through our sorted list, we can put
the loop counter number into W$<U,3) in place of
the number 50 whenever we find correspondence.
The very next section of code will sort again, this
time on WKU.3) and we will have our words which
correspond to the author's in the proper order and
all the reel will have remained as the number 50
and will be sorted at the end of the list. Line 1590
just says to go back through the sort until there are
no more switches (which means that the entire list
is sorted.)

Lines 1600 through 1630 take all of our values
and adjust them to the proper percentages and t e
like so we can print them out in the next section o
code. The Fog Index is figured here also, and is
variable Fl.

Some people do not put too much Htock into e
Fog Index. Frankly we don't either. We f°u" a

much more telling indicator of interesting writing
in the unique word percentage. Most of the we
known authors works had unique wor
percentages of at least 60% and above. It is aa

excellent indicator of writing voca*,u'a^a, nci
experienced authors generally come in at. aa ^
below on unique words, which means t ey u
fewer words and use them repeatedly. Clear y, ^
greater diversity of words tends to make or m
interesting reading. , „vnrt

Just for illustration: In one of O Henry s
works he takes a generous swipe at the Associ
Press. He does it in 234 words and jus
sentences, one of which is almost 150 wor 8

He used 65% unique words and his b og In e*-^ng
grade level 26! This program critiqued that wn ^
a n d o f f e r e d t h e s u g g e s t i o n t o s h o r t e n ® e n , . , > t i t
get the Fog Index down. We are glad he 1 .^ng
would have ruined a priceless piece o
Don't give up on the program however, i
a lot when writing directives, manuals
other educational material. oaring to

Meanwhile, back in the code, we are prep
display a graph of the well-known are re-
common word usage. Lines 1850 and rather
usable headers. Notice that Fl$ CTea^8 afactor
non-linear scale, the first two points bein _ t a
of 10, while the rest of the marks r e p^ .

code Works

change of only one-half.
We read the data statement in line 2020 again,

and after doing a little scale fitting in lines 1940
and 1950, we print the graph on the screen. After
that, we clear the screen and see how our words
compared.

Next, we use the same graph headings again
and look at all the words we used three or more
times. If there are more than a screenfull, the
program tells you there are more. If there are none
at all it tells you that apparently you used no other
words three or more times. This is a great place to
see those little unconscious quirks we all have
when we repeat the same word endlessly without
even knowing we do it.

The option to repeat the result sequences is given
in 2370, and you can step through them again

without having to wait for all that earlier sorting
and computation. When you are satisfied with
your results, we borrow a line from Joan Rivers
and ask if we can talk. If you answer no, then it's
all over. Otherwise, the program asks some
questions and based on the data it has, makes
some suggestions about your writing. You can
tighten the controls (so to speak) by adjusting the
values in lines 2570 to 2600.

Admittedly, this last section could stand some
refinement and additions. Feel free to play with it.
We felt that further and more meaningful
conclusions could be drawn from all that data.
However, what is there is all we could come up
with. The matter of context constantly comes into
any meaningful evaluation, and as we said earlier,
we can't do context - yet. •

100 REM ** WRITER.BAS * CREATED FOR CODEWORKS MAGAZINE **
1 1 0 DIM A ?(50) , S ?(500) , W ? (2 0 0,3),P(500),R? (2 0) :CLEAR 1 0 0 0
1 2 0 GOSUB 1 4 0
1 3 0 GOTO 1 5 0
140 PRINT CHR?(12):RETURN
150 PRINT STRING$(22" The CodeWorks STRING?(23)
160 PRINT" WRITING ANALYZER"
170 PRINT" examines the mechanics of your writing"
180 PRINT STRING?(60,"-")
190 PRINT
200 PRINT
210 PRINT
220 PRINT" 1) Enter new text to analyze.
230 PRINT" 2) Load and analyze existing text from disk.
240 PRINT
250 lNPUT"Your choice";Z
260 IF Z<1 OR Z>2 THEN GOTO 250
270 ON Z GOTO 280,610
280 GOSUB 140 „
290 PRINT"Do NOT use hyphenated words at the end of the line.
300 PRINT"Do NOT use periods for abbreviations in any line.
310 PRINT"Do NOT indent paragraphs." ... „
320 PRINT"Do NOT allow the line to exceed screen width.
310 PRINT"Hyphenated words in a line are counted as one word."
340 P R I N T"Enter more than 100 but less than 300 words (about one scree

n full)."
350 PRINT , ̂ 4-^ ii
360 PRINT"Use ZZZ or zzz on a new line to terminate.
370 FOR 1=1 TO 50

390 IFNLEF?SUSaK2) = "ZZ" OR LEFT$ (A$(I),2) = "zz" THEN GOTO 410

400 NEXT I

420 REM"** CLOSE UP EXTRA SPACES BEFORE SAVING ON DISK **
430 FOR 1=1 TO N
440 X=1
450 FOR L=1 TO LEN(A?(l))

CodeWorks

460 A=INSTR(X,A?(L)," ")
470 IF A=0 THEN GOTO 510 ,-»#»«/TM
480 A? (I)=LEFT?(A?(I),A-l)+RIGHT?(A?(I),LEN(A?(I)) (A 1) 1)

490 X=A+1
NEXT L
NEXT I „ ,
INPUT"WHAT WILL YOU NAME THIS FILE ; F?
OPEN "0",1,F?
PRINT #1,N
FOR 1=1 TO N
PRINT #1,A?(I)
NEXT I
CLOSE 1 _ .
INPUT "ENTER 1 TO ANALYZE THIS TEXT, 2 TO RETURN TO MENU ;Z1

ON Z1 GOTO 620,120
IF Z=2 THEN GOSUB 140 s PRINT"NAME OF FILE TO LOAD jiINPUT F?
B$=" X"
J=1
OPEN "I",1,F$
INPUT#1,N:PRINT N
FOR 1=1 TO N
LINE INPUT #1,A$(I)
PRINT A$(I)
A$(I)=A$(I)+B?
X=1
A=INSTR(X,A$(I)," M)
IF A=0 THEN GOTO 800
S$(J)=MID?(A?(L),X,A-X):P(J)=J
IF RIGHT? (S?(J),1)=". "OR RIGHT? (S$ (J), 2) -CHR$ (46) +CHR? (41) OR RIGH

T?(S?(J),2)=CHR?(46)+CHR?(34) OR RIGHT?(S?(J),1OR RIGHT?(S?(J)»2
) =CHR? (63) +CHR? (34) OR RIGHT? (S? (J), 1)«" 1 " OR RIGHT? (S$ (J), 2)-CHR$ (33)
+CHR?(34) THEN B=B+1

THEN OT-QT+1
D=D+1
E=E+1

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740

750
760
770
780
790
800
810
820

THEN
RIGHT?(S?(J),1)=CHR?(34)

THEN
THEN

IF
IF RIGHT?(S?(J),1)=I

IF RIGHT?(S?(J),1)=I

X=A+1
J=J+1:GOTO 710
NEXT I
CLOSE 1
IF J=<99 THEN GOSUB 140: PR I NT "TEXT UNDER 100 WORDS TOO SMALL TO EV

A L U A T E P R O P E R L Y . E N D
830 PRINT:PRINT"There are r J-L • - words and ";B;" sentences,"
840 PRINT" it will take approximately two minutes to examine this text

UC TO LC AND REMOVE ENDING PUNCTUATION * * * 850 REM ** CHANGE
860 FOR Q=1 TO J
870 IF LEN(S?(Q))< 2 THEN GOTO 980
880 FOR Ql=l TO 2
890 IF RIGHT?(S?(Q),1) = " . " OR
,1) = "," OR RIGHT?(S?(Q),1) = ";•
l)«"l" OR RIGHT?(S?(Q),l)="s"
S?(Q),LEN(S?(Q))—1)
900 NEXT Q1
910 IF LEFT?(S?(Q),!) = "(" THEN S? (Q)=RIGHT?(S?(Q), LEN(S?(Q)>-1)*PN'PN+

RIGHT?(S?(Q) , 1)=CHR?(34) OR RIGHT?(S$(Q)
' OR RIGHT?(S?(Q),1)»"7* OR RIGHT?(S$^U^
OR RIGHT?(S?(Q), !)«-)" THEN S$(Q)' ,LEFT?(

20 Code Works

920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1 0 6 0
1070
1080
1090
1100
1110
1 1 2 0
1130
1140
1150
1 1 6 0
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

JORL^^$^(^rR$(34) THEN S$(Q)=RIGHT$(SS(Q) »LEN(S$(Q))-l)
C$=MID$(S$(Q),I,1)

JP
cci::rTz dh-DH+I then mid$(s?(q)'i'i>=chr$(asc(c$>+32>

NEXT I
NEXT Q
PRINT"Sorting words into alphabetical order."
REM ** SORT THE WORDS ***
N-J-l
M-N
M»INT(M/2)»PRINT"+"y
IF M=»0 THEN GOTO 1180
J-0
K-N-M
I-J
L-I+M
IF S$(P(I))-<S$(P(L)) THEN GOTO 1140
T-P(I)«P(I)-P(L)«P(L)-T
I-I-M

1140

**

«>5 AND LEN(S$(P(L))) =
•>10 THEN SF=SF+1
•8 THEN MW=MW+1
•9 THEN LW=LW+1

THEN VC=VC+1

•<9 THEN MD=MD+1

IF I<1 THEN GOTO
GOTO 1080
J-J+L
IF J>K THEN GOTO 1030
GOTO 1070
REM ** FIND % OF SMALL MEDIUM AND LARGE WORDS
FOR 1-1 TO J
IF LEN(S$(P(L)))'
IF LEN (S$ (P (I)))'
IF LEN(S$(P(I)))'
IF LEN(S$(P(I))) =
NEXT I
SF-SF+(.8*LW)+(.45*MW)
FOR 1-1 TO J-L
IF S$(P(I))<>S$(P(I+D)
NEXT I
VC-VC+1
REM ** FIND FREQ OF WORDS
X$»"#.###"
U-L
1-1
FC-0
L-I + L
IF S$(P(I))<>S$(P(L)) THEN GOTO 1400

IFRQ=>J+L THEN W$(U,1)=S$(P(I)):W$(U,2)=STR$(FC):W$(U,3)=STR$(50)
:U*U+1:GOTO 1420
1380 IF S$(P(I))=S$(P(Q)) THEN FC=FC+1:Q=Q+1SGOTO 1370
1390 IF FC=>3 THEN W$(U,L)=S$(P(L)):W$(U,2)=STR$(FC)S W$(U,3)=STR$(50) :
U=U+1:I=Q-1
1400 1=1+1:GOTO 1330
1410 REM ** ORGANIZE MOST USED WORDS
1420 U1=U
1430 FOR 1=1 TO 15
1440 READ R$(I)/R

•

Code Works 21

\\\l I?RW^.I)=RS<I> THEN W $ (Q.3)-STR?(I).G0T0 1490

MM IfllX . I) =R$ (I). «S (0«. 2) =STR$ Mw«.s)-m»«).U-U+l
1490 NEXT I
1500 F=0
1510 FOR 1=1 TO U-l
1520 L=I+1
1530 IF VAL(W$(I» 3))=<VAL(W$(L,3)) THEN GOTO 15Ri
1540 T$=W$(I,1):W$(If1)=W$(L,1)iW$(L, 1)=T$
1550 T$=W$(1, 2): W$ (1, 2)=W$(L,2):W$(L,2)=T$
1560 T$=W$(1,3):W$(1,3)=W$(L« 3) t W$ (L« 3)"T$
1570 F=1
1580 NEXT I
1590 IF F=1 THEN GOTO 1500
1600 AS=J/B: SW=((J-(SF+MD)) *100)/J : MW= (MD* 100) / J : LW- (SF# 100) / J : SC=(D*1
00)/J
1610 PN= (PN* 100) / J : HN= (DH* 100) / J: QT= (QT* 100) / J : UW-1 NT ((VC/J) # 100)
1620 CM=(E*100)/J:ML=INT(((MD+SF)/J)*100)
1630 FI = (((J/B) + ((SF*100)/J))*.4)iFI»INT(FI + .5)
1640 GOSUB 140
1650 PRINT "RESULTS for ";F$
1660 PRINT
1670 PRINT"TOTAL WORDS "; J
1680 PRINT"TOTAL SENTENCES "; B
1690 PRINT"AVG WORDS/SENTENCE ";AS
1700 PRINT"% SHORT WORDS ";SW
1710 PRINT"% MEDIUM WORDS -;MW
1720 PRINT"% LONG WORDS -; LW
1730 PRINT"% SEMI-COLON -';SC
1740 PRINT"% COMMAS •
1750 PRINT"% PAREN PAIRS
1760 PRINT"% HYPHENS
1770 PRINT" % QUOTE PAIRS -QT
1780 PRINT"% UNIQUE WORDS -Juw
1790 PRINT"% MEDIUM & LONG WORDS USED "'-ML
1800 PRINT"FOG INDEX
1810 PRINT
1820 LINE INPUT"Press RETURN for further analysis ZZ$
1830 GOSUB 140
1840 RESTORE
1850 Fl$=" 0.1% 1% 2% 3% 4% 5%

6 %
1860 F2$=" 1 1 1 1 l i i 1 I 1
| II • * I I •

1870 PRINT" Smoothed average of 50 well-known writers use of
most common words.
1880 PRINT TAB(17); "Common word usage as a % of total words in their t
6XtS •
1890 PRINT Fl$
1900 PRINT F2$
1910 PRINT TAB(15);STRING$(56,)
1920 FOR 1=1 TO 15
1930 READ R$,R
1940 R=(R/10)+1

22

1950 IF R<0 THEN R=10

1970 JJEXTTIR$?TAB(15)?STRING$(R'"X,,)7TAB(72)',R$
1980 RESTORE
1990 PRINT

2010 GOSUBI140T"Pre8S RETURN t0 see how y°u used the same words."?ZZ$

2020 DATA the,550,of,380,and,289, to,218,a,174, in,127,that,95, was,78, it
, 55,had,48,for#36,be,26,is,15,as,6,or,1,0,-1
2030 PRINT TAB(20)?"Your common word usage as a % of total words."
2040 PRINT Fl$
2050 PRINT F2$
2060 PRINT TAB(15)? STRING?(56, "-")
2070 FOR 1-1 TO 15
2080 L-I+l
2090 READ R$, R
2100 R1*VAL(W$(L,2)):R2=R1:R1=(R1*100)/J: R1=INT(Rl*100)sIF Rl>611 THEN
Rl=610:R3=INT((R2/J)*100):PT$=W$(L,2) + " ("+STR$(R3)+"%)" ELSE PT$=STR$

(R2)
2110 Rl»(Rl/10)-5
2120 IF R1 <0 THEN Rl=»l
2130 PRINT R$?TAB(15)?STRING$(R1,"x")?TAB(72)?PT$
2140 NEXT I
2150 PRINT
2160 LINE INPUT"Press RETURN for next graph"?ZZ$
2170 GOSUB 140
2180 PRINT TAB(20)?"Other words you used more than 3 times."
2190 PRINT Fl$
2200 PRINT F2$
2210 PRINT TAB(15)?STRING$(56, "-")
2220 LS-17
2230 FOR L»17 TO U
2240 LS-LS+1
2250 R1=VAL(W$(L,2)):R2=R1:R1=(R1*100)/J:R1=INT(R1*100):IF Rl>611 THEN
R1«610:R3 = INT((R2/J)*100):PT$=W$(L, 2) + "("+STR$(R3) + "%)" ELSE PT$=STR$

(R2)
2260 Rl»(Rl/10)-5
2270 IF R1<0 THEN Rl=l
2280 PRINT W$(L,1)?TAB(15)?STRING$(R1,"x")?TAB(72)?PT$
2290 IF LS<33 THEN GOTO 2340 ELSE LS=17:PRINT:PRINT"Press RETURN for m
ore.."?jLINE INPUT ZZ$
2300 GOSUB 140
2310 PRINT F1$
2320 PRINT F2$
2330 PRINT TAB(15)?STRING?(56, "-")
2340 NEXT L
2350 IF u=<17 THEN PRINT"Apparently you used no others."
2360 PRINT
2370 INPUT"Repeat the result sequences (y/n)"?ZZ$
2380 IF LEFT$(ZZ$,1)<>"N" AND LEFT$(ZZ$,1)<>"n" THEN GOTO 1640
2390 GOSUB 140
2400 LINE INPUT" Psssst... can we talk? (y/n)"?ZZ$
2410 IF LEFT$(ZZ$,1)<>"N" AND LEFT$(ZZ$,1)<>"n" THEN GOTO 2450
2420 GOSUB 140
2430 PRINT"If we can't communicate, then it's all over."

Code Works 23

2«0 ™?NT»There is no way for a computer to evaluate the subject matt

2460fpRINT"your writing. Those writing techniques which may be quantlf

2470 PRINT "however, will indicate your success in reaching your indend

2480 PRINT"audience. Please answer the following question or questions
II

2490 P RINT
2500 PRINT"What educational grade level (1 thru 24) are you aiming at
y:INPUT GL
2510 IF FI=<GL THEN GOSUB 140:GOTO 2620
2520 PRINT"You missed the intended grade level by "yFI-GL
2530 PRINT
2540 PRINT"Based upon your sample text, here are some suggestions whic
h may" . „
2550 PRINT"bring your readability index down to the level you desire.
2560 PRINT
2570 IF AS> 20 THEN GOSUB 2670
2580 IF ML >50 THEN GOSUB 2740
2590 IF SC>1 THEN GOSUB 2810
2600 IF UW<50 THEN GOSUB 2860
2610 GOTO 2640 „
2620 PRINT"Your writing should easily be understood by people with an
2630 PRINT"education through grade";FI
2640 PRINT
2650 PRINT"End of program."
2660 END
2670 REM * long sentence response *
2680 PRINT"Your sentences have an average length of "yINT(AS)y"words."
2690 PRINT"You may look for complex sentences and break them up into"
2700 PRINT"smaller ones. Change dependent clauses to independent claus
es." H
2710 PRINT"If long sentences are necessary, counter-balance them with"
2720 PRINT"several shorter ones."
2730 PRINT:RETURN
2740 REM * too many medium long word response *
2750 PRINT"Shorten the average length of your words. Of all the words"
2760 PRINT"you used,",-ML;" percent were medium and long. You may want"
2770 PRINT"to rewrite your sentence after changing words to maintain"
2780 PRINT"the rhythm. It helps to exchange long, complex words with"
2790 PRINT"two or three short ones."
2800 PRINT:RETURN
2810 REM * semi-colon response *
2820 PRINT"You used"yINT(SC*100);"semi-colons. These may be necessary,
II

2830 PRINT "but if used to separate two or more complete thoughts, it w
ill"
2840 PRINT"help readability to restructure the sentence."
2850 PRINT:RETURN
2860 REM * unique word count response *
2870 PRINT "You have used more than half the words in your text two or"
2880 PRINT"more times. Both reader interest and readability increase"
2890 PRINT"when a greater variety of words are used "
2900 RETURN

24 Code Works

Maker
Automatically Generate DATA StatPmPr.t«

Staf f Pro ject . Maker is one of those serendipitous programs that come up
from time to time. We needed something to generate data lines for another
program. The other program was a flop and is long forgotten. This, the tool
we created, hung on and was used more and more. This one too, uses ASCII
in saving the file, and like two other programs in this issue, should be a useful
addition to your utility library.

When large amounts of data are to be entered we
generally tend to ignore the use of DATA
statements. They are somewhat inflexible, and
when different data sets are desired they are time
consuming and difficult to exchange. The commas
separating data elements become a problem when
entering numbers, since the numerical keypads on
most computers do not contain the comma.

The short program presented here is designed to
change that With it, you can generate data
statements of all kinds: numerical, string or
mixed. It eliminates the need for entering line
numbers, the word DATA and the commas
between elements. You simply enter the starting
information and then type in your data elements,
pressing RETURN after each one. The program
does all the rest of it for you.

After you have created your statements, the
computer will automatically save them in ASCII
format. Now, when you load your applications
program that uses the data, you simply merge the
data file.

This opens a large number of possibilities. It
should be obvious that you can now create various
sets of data and merge them as needed. If you used
the same line numbers for all the data sets, you
don't even have to delete the old set before merging
the new one since it will write directly over the old.

In other cases, you may want to alternate line
numbers so that the sets of data merge with each
other The data sets can easily be manipulated.
They remain as distinct sets on your diskette and
can be merged into your program as needed. If
there are conflicts with line numbers between sets,
you can load them from the diskette just like an
ordinary BASIC program and renumber them. In

this case, when you save them back be sure to use
the ASCII identifier (SAVE"filename",A), so that
they can later be merged into another BASIC
program. You can now manipulate, renumber and
merge as many data sets as you like. The merge
command is simple: MERGE "filename.DAT".

The program allows you to specify how many
elements will be in each data line. At first, this
didn't seem so necessary, but after some use in
entering monthly totals for several years, it
became apparent that if there were twelve items
per line, an entire year could be eliminated by
deleting a single line number.

The program is relatively short, considering
what it does, and as usual there is more
housekeeping code than actual "guts". The only
comment needed for the first third of the program
is about line 120. This is a CLEAR SCREEN line.
It happens again in line 520. The CHR$(12) in the
program is clear screen for CP/M machines. Some
CP/M based machines may need to change this to
a CHR$(26). IBM-PC, most TRS-80's and others
simply change the line to a CLS command.

While on the subject of compatibility, the file
extension (.DAT) in lines 640 and 710 is rather
standard for MS-DOS and MBASIC machines.
Some, however, may need to change this to /DAT.
The remainder of the program is standard BASIC
throughout. Let's look at the code and see what it
does.

In line 280 we define variables I, L, N and Y as
integers. This just speeds up the processing a bit.
You don't even notice it unless you have entered
several hundred data elements. Next, we clear
5000 bytes for string space. You may want to up
this if you have the space and need to enter large
amounts of data.

Code Works 25

a

In line 290 we set up two single dimension
arrays. The first A$() will hold the data elements
we type in. It is set for a limit of 1000 elements. The
second Z$() will hold the completed data lines once
they are put together by the computer. Obviously,
if you were to tell the program you only wanted two
elements per line and you have 1000 elements, Z$()
will need to be changed to at least 500.

This is basically a program which writes a
portion of BASIC code. So it needs to know what
the starting line number is, the increment between
lines and how many data elements there will be on
a line. These questions are asked in lines 300
through 320. There must also be some method of
ending input of data elements, so line 330 asks
what that unique sentinel character will be. Since
most data arrays need some sort of sentinel in any
case, the same sentinel you use here will be
appended to the actual data statements as the data
sentinel.

In general, it is wise to pick a sentinel that
cannot be confused with live data. When all values
are positive, for example, a -1 may be a good
sentinel. If data is mixed, both positive and
negative, -1 won't work too well, so pick something
very large, like 2E9 or -2E9. If your data elements
are alpha, use the word END and if END is a valid
data element, then use period end (.END), which
would probably not be a valid data element.

The next thing we do in line 370 is to define A$ as
the word DATA with a space before and after it.
Some computers do not care about spaces around
key words, but most do, so it is best to use them.

Lines 380 through 410 comprise a loop used to
input the data elements. Line 400 checks each
entry to see if it is the sentinel character. As long as
we have not input the sentinel character, single
dimension array A$(I) accumulates the data
elements. Keep in mind that A$(I) and A$ are
totally different variables. The "I" in A$(I) keeps
track of how many elements there are in array
A$(I). When we input the sentinel character, line
400 forces us out of the loop, right around the
NEXT I, to line 420.

In line 420, N is set equal to I less one. The reason
for this is that the loop counter I is already
advanced one position for the next entry and there
is none. So we subtract one from the I number to
get the actual number of elements. Also at this
point, we initialize Y to be equal to 1.

Lines 440 through 510 are the actual "guts" of
this program where everything happens. In these
lines we have two loops, an outer "X" loop and an
inner "Q" loop. The outer loop will count the
number of data statements we will end up with.

The inner loop will count the number of elements
within each data statement.

Taking a stroll through these lines lets us see
what actually happens. First, let's set up some
initial values. Say that L, our starting line number
was set at 1000, the line increment IC, was set at 2
and our number of elements per line, LL, was set at
4. Let's also assume that our sentinel character
was defined as END. Let's now say that we have
entered data elements called 1, 2, 3, 4, 5, 6 and
END, just to keep it simple.

Variable N now contains the number 7. In line
430 we start the X loop and set its termination
point at the integer of N divided by the number of
elements per line plus I. Since N is seven and LLis
four, the integer will be 1. It's obvious that we will
need two lines of data statements to hold these
elements, so that is why we have to add one in line
430.

We now know that there will be two BASIC lines
of DATA, starting at line 1000. In line 440 we start
to build our DATA line. Here, we introduce a new
variable Z$. It is set equal to the string value of L
(our starting line number) plus A$ (which is the
word DATA with spaces around it, remember?) At
this point, our data statement looks like this:

1000 DATA

Now we run smack-dab into our inner Q loop. It
has to take the data elements from the A$0 array
and put the right number of them into the data
statement. It also has to be careful to put the
comma in the right places and be sure not to put
one at the end of the line. Aside from that, it has to
watch for the sentinel character and put it into the
right place too, even if it is the only element on a
line, and not put a comma after it either. Earlier,
we initialized Y to be 1. It comes into play here.

The Q loop will start counting at 1 and go to 1
plus 4 less 1, which happens to be 4, the number o
elements we want in each line of data. Line 46
says that if Q is equal to 4 then B$ is equal to
nothing, else if Q does not equal 4 then B$ is ®dua

to CHR$(44). CHR$<44) just happens to be the
ASCII value for the comma. Since Q is at 1, B$ is
equal to the comma. We can skip line 470 for now
because we haven't reached the sentinel character
yet. Note that we are reading the A$() array wi
the Q loop this time. Remember that it was cr®a^
with an I counter? This is legal, you can crea
array wiih one variable and read it back out wi
different one anytime you want to. .

If you will recall, our DATA statement alrea y
looks like this: 1000 DATA. Now, inside the

at line 480 we take that much of the data statement

an?make :t equai to itseif plus A$(Q) (the first data element, 1) and B$ (which
» the comma.) The data statement now looks like

1000 DATA 1,

After three more passes through the inner Q
loop, the data statement looks like this:

1000 DATA 1,2,3,4

Line 460 found Q equal to Y plus LL minus 1
after the fourth data element and so B$ was a null.
Also, after the fourth data element was read in, the
Q loop was exhausted and so we leave it and go
back to the outer X loop in line 500.

Here, we add the increment 2 to the starting line
number, sturt a new array called Z$(X) to hold the
data statements and increment Y by the number of
elements per line. Y now will equal 5, which
happens to be the next data element we want to
deal with on the second DATA line.

We now encounter the NEXT X in 510, and go
back to start the whole process over. This time Z$
will equal: 1002 DATA, and the inner Q loop will
supply the 5 and 6, and in line 470 it will encounter
the sentinel END. When that happens in line 470,
we make the last DATA line and get out of there.
Note that when A$(Q) equals END, Z$(X) equals
Z$ plus A$(Q) (without B$ this time.) So, now our
entire data lines consist of:

1000 DATA 1,2,3,4
1002 DATA 5,6,END

That's just what we wanted. The data lines are
held in memory in the Z$(X) array. Z$(l) is line
1000 and Z$(2) is line 1002. At this point, we are

done formulating the data lines and so line 470
sends us to line 520, which simply clears the
screen.

Line 530 prints the lines of data statements on
the cleared screen for us to admire.

Lines 550 through 600 give the option of saving
the file on disk or aborting. Be careful! If you decide
to abort by typing R or r, all your data elements
will be lost. The option is included in case you have
made gross mistakes and want to start over.

If y ou opt for neither rerun or save, line 610 keeps
nagging you to rerun or save. Any key, except
upper or lower case R or S will send the nag back.

When you opt to save the file, line 620 asks for a
filename, which becomes F$. The program
automatically appends the file descriptor .DAT to
the filename, so that you will know it is a data file
when you see it in the disk directory.

Lines 640 through 680 open the sequential file
for output and loops through the Z$() array and
prints it to the diskette. It then closes the file. The
file is automatically saved in ASCII format on the
diskette. It can be loaded like any BASIC program
and can be merged with any BASIC program.
Keep in mind that once loaded like a BASIC
program it will no longer be in ASCII format, and
if you want it to be, you must save it back with the
file specifier ,A after the filename.

We have found this program to be extremely
useful in correlation programs where various sets
of data were to be compared to each other. It was
also used heavily in a horse-racing program where
post positions were tabulated and compared.
Someone in the office even used it to track and
compare winning state lottery numbers.

The bootstrapping ability of this program is
interesting. It is standard code that writes
standard code. How far can this idea be stretched?
Do you suppose we may yet get to plain English
input? Have fun! •

100 REM ** MAKER.BAS * CREATED FOR CODEWORKS MAGAZINE **
110 CLEAR 5000
120 PRINT CHR?(12):REM-CLEAR SCREEN-CHANGE TO SUIT YOUR MACHINE.**
1 3 0 P R I N T S T R I N G ? (2 2 " T h e C o d e W o r k s S T R I N G ? (2 3)
140 PRINT" DATA MAKER"
150 PRINT" Automatically generates data statements."
160 PRINT STRING?(60,"-")
170 PRINT" This program will generate DATA statements without the nee

f t d "
• 180 PRINT"of entering line numbers, the word DATA, or the commas"

190 P R I N T"between elements.This is handy since numerical keypads usual
1 . . I I ly " i
200 PRINT"do not contain the comma."

CodeWorks 27

220 PRINT" The program generates an ASCII fti. of the.e data statemen

230 PPINT-which can he merged with any other BASIC program. Limit, are
• I

240 PRINT"set in lines 290 and 380." h to insure they will no
250 PRINT" Start your line numbers high enougn to insu y

260 PRINT»crash into existing number, when you merge program, later."

270 PRINT
280 DEFINT I, L,N,Y
290 DIM A$(1000),Z$(100) „
300 INPUT"WHAT STARTING LINE NUMBER DO YOU WANT ;
310 INPUT"WITH A LINE INCREMENT OF";IC
320 INPUT"HOW MANY ELEMENTS PER LINE";LL
330 LINE INPUT"WHAT IS YOUR SENTINEL CHARACTER?^ ;S$
340 PRINT"Use < ";S$;" > to end input - it will"
350 PRINT"also be recorded as the last data element.
360 PRINT
370 A$=" DATA "
380 FOR 1=1 TO 1000
390 PRINT"Enter data item #"?I;"> ";»LINE INPUT A$(I)
400 IF A$(I)=S$ THEN GOTO 420
410 NEXT I
420 N=I-1:Y=1
430 FOR X=1 TO INT(N/LL)+1
440 Z$=STR$(L)+A$
450 FOR Q=Y TO Y+LL-1
460 IF Q=Y+LL-1 THEN B$="" ELSE B$-CHR$(44)
470 IF A$(Q)=S$ THEN Z$(X)=Z$+A$(Q)tGOTO 520
480 Z$=Z$+A$(Q)+B$
490 NEXT Q
500 L=L+IC:Z$(X)=Z$:Y=Y+LL
510 NEXT X
520 PRINT CHR$(12)
530 FOR 1=1 TO X:PRINT Z$(l):NEXT I
540 PRINT
550 PRINT"You may (S)ave the file on disk or,"
560 PRINT"abort and (R)erun the program."
570 PRINT" (Enter S or R)"
580 INPUT"Your choice ";X$
590 IF X$="R" OR X$="r" THEN GOTO 100
600 IF X$="S" OR X$="s" THEN GOTO 620
610 GOTO 570
620 PRINT "What name will you use for this file?"
630 LINE INPUT"1111 append DAT for the file type. ";F$
640 0PEN"0",1,F$+".DAT"
650 FOR 1=1 TO X
660 PRINT#1, Z$(I)
670 NEXT I
680 CLOSE 1
690 PRINT
700 PRINT "DONE, NOW LOAD YOUR BASIC PROGRAM AND"
710 PRINT"ISSUE THE COMMAND TO MERGE ";F$+".DAT"

28 Code Works

i Sources
Where to Find Programming Tools

7 he listing of products in this column is to tell our
readers what is available in the marketplace. We
take news release items at their face value. No
endorsement by this publication is implied by the
appearance of products in this section.

Logical Systems Inc. has made available Little
Brother, a database manager with sophistication,
simplicity and value, for the TRS-80 Models 4/4P
and IBM-PC. The program is menu driven and
comes with complete on-line help information
always at your fingertips. It was designed for ease
of use in both normal operation and in setting up
the database. Hardware specifications for the
Model 4/4P are a minimum two floppy disks and
128K of RAM (hard disk owners need only have
64K and one floppy). For the IBM-PC, two floppy
disk drives (or one hard disk and one floppy) and
128K of RAM are required. The price for either
version is $99. Logical Systems Inc., 8970 North
55th St., Milwaukee, WI 53223 (414) 355-5454

Software Studios, Inc. has introduced PC-
DESK III, a new desk top management program
for the IBM-PC and compatibles that includes a
full-function word processor. The $49 program has
a Calendar/Reminder, Calculator, Automatic
Phone Dialer, Repetitive Letter Writer (Mail
Merge), and a name and address database. In
addition, PC-DESK III features memory
partitioning which divides memory into discrete
segments allowing two programs to be resident at
the same time. Information can be transferred
betweeen partitions, or "DESKS", through simple
commands. It is available for $49. plus $2 shipping
from Software Studios, Inc., 8516 Sugarbush,
Annandale, VA 22003 (703) 978-2339

TaxCalc Software Inc. now offers a spreadsheet
template with a tool kit full of financial decision
making software. This template uses "what if?"
analysis to help users calculate loan balances and
payments, adjustable mortgage rate payments,
amortization schedules, investment income and
more. It includes three sections - investments,
loans and amortization. The investment section
calculates future value, minimum investment for
withdrawals, regular withdrawal amounts,
nominal interest rate, annual effective interest

rate, regular deposit, continuous interest
compounding and more. Loans calculates
principal, loan payment amount, remaining loan
balance, term of loan, adjusted rate mortgage
payments and more. The amortization section is
an unlimited amortization schedule. Financial
Decisions Planner works with Lotus 1-2-3,
VisiCalc, SuperCalc and Multiplan on IBM-PC
and compatible systems. Minimum requirements
are one disk drive and 128K of RAM. TaxCalc
Software Inc., 4210 West Vickery Blvd., Fort
Worth, TX 76107 (817) 738-3122

Software Studios, Inc. has introduced a new
programmer's tool, UNNUMBER, which will
automatically strip a BASIC or BASICA program
of all unreferenced line numbers prior to
compiling. UNNUMBER permits compiler
optimization between statements and line
numbers and reduces the size of EXE files. An
unnumbered file will execute up to 30% faster and
consume less disk storage space. The program will
run on floppy disk or hard disk and operates
quickly and reliably. UNNUMBER is available
for $25 plus $2 shipping from Software Studios,
Inc., 8516 Sugarbush, Annandale, VA 22003 (703)
978-2339

Enter Computer, Inc., manufacturer of single
and six-pen "Sweet-P" plotters has introduced
"TYP-SET", an easy to operate lettering software
package for use on the IBM-PC and compatible
microcomputers. The software enables the PC user
to quickly place individual lines of text (letters,
numbers and punctuation marks) at specific
positions on an output page of paper, acetate for
overhead projections or self-adhesive labels,
through use of a plotter. To operate the TYP-SET
fully menu driven software, a user needs an IBM-
PC or compatible micro with 192K RAM and two
disk drives. For plotters other than Enter
Computer's Sweet-P 600, an RS-232 interface
operating at 9600 baud is required. The TYP-SET
software package, with six fonts, costs $299.
Additional sets of four fonts cost $199 per set.
Enter Computer, Inc., 6867 Nancy Ridge Drive,
San Diego, CA 92121 (619) 450-0601

CodeWorks 29

ASCII Codes
What's this ASCII all about?

ASCII (Ask-key) American National Standard
of Information Interchange. The "ASCIIbet
predates computer technology to the extent that
only a very few of the old technoids remember its
inception. That fact alone would not be notworthy,
except the old technoids don't have grey hair yet.

ASCII derives its most fundamental
characteristic from the eight bit byte. Two to the
eighth power is the source of the 256 character
combination range. By definition, one of the bits is
used as a parity bit, cutting the total number of
possible combinations in half, or down to 128
characters.

The largest chunk of the code set goes to the
alphabet with 26 upper and 26 lower case letters,
claiming 52 total combinations. The numeric
digits zero through nine get an additional 10
characters bringing the count up to 62. Of the
remaining 66 code bytes possible, the first 32 were
claimed back in the old days as function codes for
serial data transmission, bell ringing on KSR's
(teletypes), tab's, carrage returns and most of the
control codes you now use on your computer.

That leaves only about 34 possible characters,
most of which have been used by scientific types
for algebraic and relational operators. Which is
just about great. Of the 128 possible combinations,
there's almost enough space for everything.

On the ground floor lobby of the building where I
work there is a thirty-five year old "burned-out"
systems analyst named Ralph. He sells
newspapers and cigars. I figured Ralph knew what
ASCII was all about.

"Say, Ralph, what is ASCII anyway?"
"You mean the 'ASCIIbet'? It has real staying

power. Can't compute without it."
"What do you mean - staying power?" I asked.
"If you remember way back to the olden days of

computers there were things around like card
readers, core memory and Hollerith code which
you never hear about anymore. Want a paper?"

"You got today's? You mean ASCII goes way
• back to the old days of computing?"

"Yeh, Hollerith code used by the tab-card people
was the predecessor, but I haven't seen a tab-card
for years now. I still get an urge to fold, spindle or

mutilate. I got a yesterday's paper."
"I'd rather have today's. I saw a vacuum tube

once in a museum. Well doesn't the ASCII
character set just basically have an upper and
lower case alphabet and the numbers zero to
nine?" I asked.

"Yeh, but that's only 62 of the 128 possible
combinations. There are 32 characters for
controlling data transmission and peripheral
equipment functions, plus all the algebraic
operators, and don't forget punctuation. Look at
any keyboard and you'll see most of the ASCII
character set. Today's hasn't happened yet, so
there's no such thing as today's news." he
reminded me.

"Well, the II in ASCII stands for information
interchange." I ventured, "So aren't you really
saying ASCII is an agreed upon standard
character set for all computers everywhere?"

"But the A stands for American, so by
everywhere you must mean every-American-
where. There was a lot of news made the day
before yesterday." says Ralph, "I'll get you a
paper."

"Okay, if the numeric digits are really hex FO to
hex F9 then you wouldn't want to do arithmetic
operations in ASCII, but I guess text editing,
formats and compares work okay, don't they?"

"You're right, but some even know ways to do
ASCII arithmetic. That will be 50 cents.", he said,
handing me a day old paper and smiling.

"Maybe this is ASCII arithmetic." I said,
handing over the 50 cents. "I was just wondering,
Ralph, if you know this much about computers
why are you selling papers?"

"You must not know what the profit margin is
for selling day old newspapers, Hey, you want to
buy some cigars?" he asked.

"No thanks, by the way, do you have a favorite
ASCII character?"

"Yeh, it's Hex 04."
"What's that?"
"End of transmission."

Jay

30 Code Works

«Th?foCrq?es«ionrrlV' WOU'd V°U kind'V ,akS 8 m°ment t0 answer

Make and Model of your computer

Which DOS do you use? Do you have disk drives? • Yes, • No
Do you have a line printer? • Yes, • No
Do you use a Modem? • Yes, • No What baud rate 300 • 1200 •

A Advanced?Pr09rammer' d° V°U ^ yourself as D Novice, • Intermediate or

Which other programming languages do you prefer?
Comments:

Fold

Subscription ORDER FORM •
Please enter my one year subscription to CodeWorks at $24.95. I understand that this price includes
access to download programs at NO EXTRA charge.

• Check or MO enclosed.
• Charge to my VISA/MasterCard # — £xp date __
Please Print clearly:

Name

Address

Clip or photocopy and mail
to: CodeWorks
3838 South Warner St.
Tacoma, WA 98409

City State Zip

Charge card orders may be called in (206) 475-2219 between 9 AM and 4 PM weekdays. Pacific time. Sorry, no "bill me"

orders.

CodeWorks 31

Coming Attractions
What to expect in future issues

Most programs operate around a core formula or algorithm. How do you
write a program when there is no such thing? We took that idea and made it
work in a program called "Wood", which lets the computer try to cut up
sheets of plywood efficiently. It even takes into account the saw kerf and the
grain of the wood. Even though it's approach is cut and try, the odds are in
favor of the program. It does multi-sheet cuts in a few minutes, and prints out
a pictorial cutting schedule for your shop wall. Look for it in a future issue.
Card File is a program built for the novice computer user. You have often
heard the question: "But what can it do? Will it keep my Christmas card list?"
Yes, it will, and a lot of other smaller tasks as well. It was designed with the
non-computer person in mind, and even loads and saves the files
automatically. Aside from that you can sort or search on any field and you can
have as many fields as you want. It should be the project in the next issue if
all works well.
New Year we will just have to have a calendar program, no? Golly, like there
aren't enough already. Maybe we'll fix this one up to do something
personalized and special for you.
Of course, there will be shorties and tips and tricks. We will continue with the
beginner programming articles too, in case you are new to programming.
See you then..

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rat*
US Postage

PAID
Permit No. 774
Tacoma, WA

• OODEWORKS
Issue 2 Nov/Dec 1985

CONTENTS

Point of View 2

Forum 3

Halley's Comet 5

Beginning BASIC 10

Calendar 12

Piles to Files 16

Card File 18

Puzzler 25

Sorting 26

Sources 30

Order Form 31

Download 32

CODEWORKS
Issue 2 Nov/Dec 1985

Editor/Publisher
Irv Schmidt

Associate Editors
Terry R Dettmann

Greg Sheppard
Jay Marshall

Circulation/Promotion
Robert P Perez

Editorial Advisor
Cameron C Brown
Technical Advisor

Al Mashburn

Produced by 80-Northwest
Publishing Inc. No patent liability is
assumed with respect to the use of
the information contained herein.
While every precaution has been
taken in the preparation of this
publication, the publisher assumes
no responsibility for errors or
omissions. Neither is any liability
assumed for damages resulting from
the use of any information contained
herein. Please address correspond
ence to: CodeWorks, 3838 South
Warner Street. Tacoma, Washing
ton 98409

Telephone (206) 475-2219

Authors: We constantly seek
material from contributors. Send
your material (double spaced,
upper/lower case please) and allow
4 to 6 weeks for editorial review. Do
not send diskettes, rather send a
hard copy listing of programs. Media
will be returned if return postage is
provided. Cartoons and photographs
are welcome. Compensation will be
made for works which are accepted
for publication. CodeWorks pays
upon acceptance rather than on
publication.

Subscription Price: S24.95 peryear
(six issues), one year only. Not
available outside United States Zip
codes VISA and Master Card
orders are accepted by mail or
telephone.

CodeWorks is published bimonthly
in Jan. Mar, May, Jul. Sep and
Nov. It is printed in the United
States of America. Bulk rate
p o s t a g e p a i d a t T a c o m a ,
Washington.

Sample copies: If you have a friend
who would like to see a copy of
CodeWorks, just send the name and
address and we will send a sample
(at no cost).

Point of View

Starting a new magazine is exciting. You plan and plot and hope
to find acceptance. Watching the mail come back and reading the
comments is the only way to see how well things are going. It has
been a fun time, during the past two months, doing that here. We
apparently judged correctly, that there is interest in programming in
BASIC. Your response is appreciated and encouraging.

It was surprising though, to find that many people who did not
order, took the time to write back anyway. Some said that they were

way beyond" what we were doing. Others said that their favorite
language was anything but BASIC, and that BASIC was a "yuk"
language. We certainly expected some of that, but to take the time to
write and tell us seems a bit unusual. It's not that often that you get
such good feedback from people who have decided, for one reason or
the other, not to buy.

There are three major aspects to this publication. First, and most
important, is the content of the magazine. It must be something you
want or it won't sell. Simple as that. Second is the form the magazine
takes - typesetting, layout, paper, on-time delivery and all that.
Third is the magazine as a business. This is the one that you, as
readers, do not worry about until the business is no longer viable and
falls apart.

I am happy to report that your response has been such that we are
off to a very good start. We are still tabulating the different
computers that our readers have. Right now, it seems to be a good
mix of all of them. One person still has the old IMSAI8080, vintage
1976 or 77. Once we ha ve a good look at the distribution of machines,
we can better target the material we present.

We are continuing our efforts to reach more people. Because of the
economy of scale, there is some magic number we would like to reach.
We are currently about one-fourth of the way there.

A few years ago, you could take a shot at the computer community
an hit most of them with a well-choked shotgun effect. Nowadays,
you ave to spread that shot very thin and wide, and the return is
lotTe88U 8mal'er- In plain English, it's costing a lot more to get a

We appreciate all the names and addresses many of you sent along
wi your order. Our free sample copy policy is still in effect. If you
Know someone who would be interested, just let us know. We are

rowing an need all the push we can get. In the end, it will make a
better magazine for all of us.

happ^h^Hdays* ̂ touc*1 a^ain till J anuary, we wish each of you

Irv

2

Forum
An Open Forum for Questions & Comments

I am having a few problems with
the program "Writer" in your
premier issue which I have punched
in from the keyboard and saved on
disk. I am using a TRS-80 Model IV
and TRSDOS 6.2 and have
debugged all my own errors in
transcribing the program, but run
into "subscript out of range" on line
670.1 hope you can give me a hint or
two so I can make this program run
properly. It is an interesting
program and I would certainly like
to use it if it would work. - C W
Preble. Mill Valley, CA

We put a CLEAR statement at the
end of line 110. This was clearly a
mistake. The reason for that
mistake is that the program was
originally written on a later version
of BASIC which dynamically clears
string space. We caught the error
before publication when we tried to
run the program on a different
machine. Problem was, we stuck the
CLEAR statement at the end of line
110 instead of before it. If your
computer needs to clear space, add
line 105 CLEAR 10000 and remove
the CLEAR at the end of line 110
(leave the DIM statement as it is
though).

I can't get your program "Writer
to work on my Model 100 TRS-80. I
keep getting bad subscript errors. Do
you have any suggestions? -
Kenneth G Oxley, Dayton, OH

See answer to the above letter.
Also, unless you change the PRINT
commands to LPRINT (and have an
80-column printer) you will have
problems seeing what is going on
with the limited screen of the Model
100.

I like the idea of your new
magazine! However, I noticed an
error in the program listing of Writer
in your first issue. I believe that the
CLEAR statement in line 110 should
have preceeded the DIM statement
instead of vice versa. When running
the program as listed, the CLEAR

Code Works

statement clears the recently
dimensioned variables. This results
in a subscript out of range error. I
look forward to your publication... -
Alex Roosakos, Millbrae, CA

Thank you, and here is yet
another letter reference the Writer
program...

...let me say again how much I am
enjoying the use of the Writer
program. Now for a request or a
suggestion: There does not seem to
be any method to correct typing
errors on the writing sample
submitted to the program. If the
error is not caught before the line is
entered, the error either remains or
the program has to be restarted. Can
you come up with a way to permit
corrections to be made? - Jack Hill,
Omaha, NE

That brings up an interesting
Question which we pondered over
when we wrote the program. We
chose not to include editing because
it would necessarily complicate the
program and probably end up being
a mini-text editor in itself. If you own
a word processor, you can call up the
sample text and edit it. We did it
regularly with WordStar. If you do
this and add lines though, be sure to
update the number in the first line of
the file. This is the number of lines of
text that is saved with the file when
you created it with Writer. Minor
editing can be done this way, but we
found that files created with
WordStar or Scripsit would not play
right with Writer, mostly because of
the way these programs treat the
carriage return at the end of the line
(and other assorted imbedded
codes).

Congratulations! Assuming that
your first issue is but the forerunner
of many, you have hit my interest
and needs so squarely dead center
that I almost cry "Synchronicity!"
There has been a cadre of readers of
all the "other" computer magazines
who have bugged editors for just the

type of material you are presenting,
but who have been given short,
though courteous, "Tough luck,
bro!" It is my hope that you will find
those disappointed seekers ...The
once swollen computer magazine
racks are decimated - a fitting
memorial to publications fat with
advertisements and larded with
excessive hard- and software
reviews, and editorial selections
designed to capture everyone as a
reader who ever heard of a computer.
As a result of such generalizing it
hardly mattered which ones you
scanned, they all read the same.
Withal, the user who learned BASIC
and stuck with it could find few
magazines worth the heavy tab, and
even these went belly up with but a
notable exception or two... I would
not object to a few very special
"messages" from hardware and
software merchants, but they should
be of the type that rewards the
reading, not just hops up and down
on one leg like the king's jester,
screaming nonsense for the sole
purpose of attracting attention. Let
your policy ring loudly with
SERVICE to the reader, and you
won't go wrong... - Waldo T Boyd,
Geyserville, CA

Many magazines get many letters
from readers because their listed
programs contain typo mistakes.
Many listed programs are written in
such small type that it is most
difficult to copy them into the
computer without lots of mistakes
and missing lines. Why can't photo
copies of a computer listing be put
into magazines without setting the
type and eliminate one source of
error? - John Grass, Redwood City,
CA

We do, John. Our listings are run
off on a daisy-wheel printer and
pasted up directly in full size. In
spite of that, there can still be some
problems to overcome. For example,
we used the variable AS in the
Writer program and found that on

3

Sanyo 550 BASIC, AS is a reserved
word (change it to AV if this is a
problem). The CLEAR statement in
the same program was another
problem. In this issue, there is one
place in the Calendar program that
requires the use of the linefeed
(CRTL-J) that will probably cause a
few problems. We use 80-column
screens here, and sometimes (as in
the first issue) forget that some
people have only 64 columns.
Writing for a variety of machines is
a challenge, but we are catching up
on the differences and overcoming
them when possible and avoiding
them when necessary.

Looks like a winner. The "Maker"
program alone is worth the yearly
subscription cost to me. (It also
works fine on my TRS-80 Model 100).
Any endeavor with which Terry
Dettmann associates himself
interests me. - Victor F Wright,
Indianapolis, IN

We enjoy hearing that, Victor -
thank you.

I just received your premier issue
a n d w a s q u i t e i m p r e s s e d ,
particularly with the "Forum" and
imaginative listings enclosed in it. I
possess (not own) an IBM-PC, with
two 360K drives and a 132-column
printer, but no modem. To get to the
point. I can't justify the cost of your
magazine for the following reasons:
1. Twenty-five dollars for a 6-issue
magazine is extraordinarily high,
where I am unable to download
programs. 2. You present yourself as
a user-oriented magazine and then
subtly discourage input from those
same users. Should you decide to
expand to 12 issues per year and
open up a little more, contact me
again. I would love to be a subscriber
to a "true" user-oriented magazine.
PS: This is constructive criticism. -
Joseph Whalen, Westbrook, ME

You may be right on all counts
except one: We are all puzzled about
your statement concerning "subtle
discouragement" of input from our
readers. We fail to see how that could
possibly have been read into our
first issue.

...I like and agree with your "Point
of View". After putting in forty

years at (The Boeing Co.) and
retiring from that good place, I'm
now established as a management
consultant ... and writing business
programs in MBASIC. Many people
pooh-pooh and bad-mouth BASIC,
but I find I can do just about
anything I need in this very tolerant
and forgiving language. As you
stated, if one uses discipline in his
p r o g r a m m i n g w i t h p l e n t y o f
meaningful remarks, MBASIC is
remarkable. True, it may run slower,
because of the extra interpreter
function, but it certainly gets the job
done. I'm also very excited about
computer programming -1 think the
challenge and satisfaction is beyond
c o m p a r e . G o o d l u c k w i t h
CodeWorks - you've made a nice
start! - Bill Strang, Seattle, WA

I received the premier issue of
CodeWorks the other day and was
favorably impressed with the Point
of View and the Forum. I think that
over $2.00 an issue for 30 to 60 pages
is a little steep but I realize that
without advertisers the money to
support a magazine must come from
subscribers. I would even be in favor
of supporting such a magazine if I
thought that it was edited by
technically knowledgeable people.
However, the article on page 30,
ASCII Codes, apparently written by
Jay Marshall, an associate editor,
does not contribute to reassuring me
that such is the case. I think that a
person technically knowledgable in
the field of programming would
know the difference between ASCII
code and EBCDIC code. Disappoint
edly, Don Williamson, Agoura Hills,
CA

N°W you know why Ralph is
s e l l i n g c i g a r s a n d d a y - o l d
newspapers. You are right though,
the reference to hex F0 to hex F9
should have been ASCII48 to ASCII

M y f i r s t c o m m e n t a b o u t
CodeWorks is, "It sure does!" I like
your style... A compliment that I
hope your layout staff never forgets
when the going gets "tight": It's
great to be able to read a program
listing when it's lying on the desk or
in a copy holder two feet away
Please, don't reduce them. We don't

have enough hands to hold a
magnifying glass, a magazine and
still type... It's gratifying to know
there is someone else out there who
still thinks BASIC has value. I don't
give a fig for FORTH, can't see C,
pass up Pascal, and fell asleep in
Assembly, even in school. - Ed
Chapman, Alexandria, VA

Have tried Pascal and found it
more trouble after programming in
BASIC. I appreciate your programs,
Search, Maker and Extract. They
assist in my endeavors as an
amateur hobbyist programmer. -
Raymond Eck, MD, Tigard, OR

(This is just a sample of the
numerous letters we have received.
Your comments and suggestions are
well taken and appreciated. Thank
you. • The editors.)

(!Mp(m

CodeWorks

Halley's Comet
Track the position of the comet

©1985 Terry R Dettmann

An interesting problem with Halley's Comet
approaching is just where is Halley compared to
where the Earth is? The program included with
this article answers that question to a fair level of
accuracy.

The determination of the position of a body
orbiting the sun is a problem whose solution goes
back to the time of Kepler and Newton. Kepler
worked out the method and Newton explained it in
terms of his theory of gravitation. We still go back
to Kepler and Newton to solve the problem of
where such bodies are. While our methods have
become more sophisticated, the procedures are still
the same.

The location of a planet or comet is based on the
solution of Kepler's Equation. Unfortunately, we
can't simply solve it the way we do other types of
equations. The only way to solve the equation
known is by trial and error (a method known as
"iteration".) The program is built around the need
to solve Kepler's Equation.

The book Practical Astronomy with your
Calculator was used to obtain the necessary
orbital parameters and the basic equations. Given
the basic information, the program to solve the
equations was structured like this:

1. Initialize the program and set up parameters.
2. Input the starting date.
3. Repeat 10 times -

a. Compute the current day number.
b. Compute the locations of the comet, Earth and

Venus.
4. Print the positions of the comet, Earth and
Venus for the 10 calculated dates.

That seems pretty easy, but there are some
problems to consider. Since we have a computer,
we expect its answers are always correct. If we just
give it all the decimal places we have available
we'll get good answers. Well, that just isn t so!

Calculations of this sort are affected very much
by errors in the accuracy of computations within
the computer. In a small computer in BASIC, we

are generally dealing with single precision
numbers good for an accuracy of about 5 to 6 digits.
We could introduce double precision and increase
the accuracy, but this sort of calculation relies
heavily on built-in functions such as trigonometric
functions, powers, and so forth. These functions
are generally single precision functions only.

So what, you say, single precision is good
enough, isn't it? It's not. There are ways to
increase the accuracy of the computations. We can
compute our own functions, we can use double
precision, we can be very careful about error
propagation through our computations. Although
it can be done, this program is not an attempt to
provide that high an accuracy, but rather to show
some general principles. The program includes the
orbital parameters for the comet, Earth and Venus
to an accuracy greater than can be used by the
program. The orbital parameters are provided in
their full accuracy for those who wish to revise the
program. (In printing the hardcopy graphic some
accuracy is lost in any case.) The program was
designed to be applicable only to the 1985-86
apparition of Halley's Comet. It is best between
about October 1985 and May 1986. Outside that
range, factors such as leap years and other
influencing factors have not been taken into
account.

The program reproduces the orbit of Halley's
Comet fairly well. The dates for various points
along the path are reasonably accurate since they
are based on orbital parameters for the approach
to the sun in February 1986. The Earth and Venus
are based on orbital parameters from the
beginning of 1980 and show some effect of that.
Both Earth and Venus appear to be too advanced
along their orbits compared to more accurate
charts computed with larger computers.

The program is divided into logical sections by
subroutine calls. It was built from start to finish by
deciding the steps necessary to solve the problem
and then providing the code for them. Let's first
look at initialization.

We first set aside memory for the orbital

CodeWorks 5

parameters (8 parameters, 3 objects). Note that we
are actually wasting some space, since 0 is a legal
index in many forms of BASIC, but it is more
understandable to number things from one. We
also provide for the number of days in a year to the
first of each month (array MD),and x and y
positions for the Comet (HC), Earth (EA) and
Venus (VN). The date of each position (array DT)
is also provided for.

The rest of the initialization sets up the
parameters such as orbital parameters (lines 140-
180), days to the first of the month (190- 210),
scaling factors for plotting (line 220), the number
of days (ND) to compute, the Julian Date (last five
digits) for 1900, degrees to radians conversion and
character strings for use in displaying the orbits.

Once we've got these things set up, we can
proceed to the main part of the program. We need
to input the starting date for our computations and
convert it to a Julian Date (subroutine 660). For
each day, we get the Julian Date for the day
(subroutine 390) and then compute the orbital
positions for that day (subroutine 430). After we
have all of the positions, we then plot the results on
the printer (subroutine 580) and print out the dates
corresponding to each position (subroutine 860).

In subroutine 430, we have to compute the
positions of three objects, so we take them one at a
time, refer to the correct orbital elements
(parameter OP=l for the Comet, 2 for the Earth
and 3 for Venus). Once we have set up the
parameter, we refer to a more general subroutine
(990) which computes the position of a single body
for a given set of orbital elements. At this level
(subroutine 430) we use the returned values from
subroutine 990 to record the x and y positions of the
objects already scaled for the paper we will print it
on.

Once we reach subroutine 990, we have a simple
situation. Extract the orbital parameters, use them
in the equations, and return the x and y
coordinates of the object. In order to keep fairly
close to the form the equations are written in, the
parameters are put into variables that are close to
the actual parameters used in the equations. For
clarity, these parameters are:

EP - The epoch at which the object's parameters
are recorded (the year in decimal years).
TP - The period of the object (time to go around the

orbit once).
EX - The mean longitude of the object at the
recorded epoch (relative to the Sun).
WM - The longitude of the object at perihelion
(point of closest approach to the Sun).
EC - The eccentricity of the orbit (measures
departure from circularity).
AX - The length of the semi-major axis in
astronomical units (the distance from the Sun to
the Earth).
IN - The inclination of the object to the orbit of the
Earth (the plane of the ecliptic).
OM - The longitude of the object when it passes
from below to above the place of the ecliptic
(ascending node).

We make adjustments in these parameters to
make them all consistent, and then proceed in
three standard steps: solve Kepler's Equation for
the number E, known as the Eccentric Anomaly.
This then factors into the solution for V, the True
Anomaly which is used to get the actual longitude
of the object relative to the Sun. The true anomaly
is the difference between the longitude at
perihelion and the present position of the object.
Subroutine 1050 solves Kepler's Equation using a
standard procedure, subroutine 1110 solves for the
true anomaly and the distance of the object from
the Sun. Finally subroutine 1160 turns these
numbers into the actual x and y locations of the
object relative to the Sun.

With all the computations done, we finally go to
subroutine 580 to plot out the numbers and
subroutine 860 to print out the key for
interpretation of the plot. Since we have 10 dates
computed, we simply work through the 60 possible
lines and see if we have anything to plot on each
line (subroutine 760). If there is anything to plot,
we use subroutine 830 to insert it into the line.
Finally, we send the line to the printer.

The final step, printing the table of dates and
locations (subroutine 860) involves converting the
date for each point to a month, day and year
(subroutine 920) and then printing the tabled data
as a reference for interpreting the plot.

Someone who wants to take more time can
improve the accuracy of the results by recoding
with double precision numbers and writing special
function subroutines. The program will be slower,
but more accurate. •

* *
100 REM ** HALLEY'S COMET ** DO NOT DFT FTP npunn,, „
110 CLEAR 1000: REM ** DELETE miSLIN^PyS^S^1™
120 PRINT CHR${12)I REM « CHANGE TO CLS IF NECESSARY^**" "
1 3 0 D I M O B (3 , 8) , M D (1 2) , E A (2 , 1 0) . H C (2 , 1 0) , v n ? 2 i f f '
140 FOR 1=1 TO 3= FOR J-l TO 8:READ OB(I# J) JNEXT J^NEXT I

• •

Code Works

150 REM ** ORBITAL PARAMETERS FOR THE COMET, EARTH AND VENUS
160 DATA 1986.112,76.0081,170.0110,170.0L10,0.9673,17.9435,162.2384
8.1540
170 DATA 1980.0,1.00004,98.833540,102.596403,0.016718,1.000000,0,0
180 DATA 1980.0,0.61521,355.73352, 131.2895792,0.0067826, 0.7233316, 3
94435,76.4997524
190 REM ** DAYS TO FIRST OF THE MONTH **
200 FOR 1=1 TO 12:READ MD(l):NEXT I
210 DATA 0,31,59,90,120,151,181,212,243,273,304,334
220 SX=(80/8)*2:SY=(66/ll)*2
230 ND=10:JD=15020:DR=3.14159/180
240 ES$="earthorbit":HS$="HALLEYSCOM":VS$="venuspathx"
250 PRINT STRING$(22" The CodeWorks ";STRING?(23)
260 PRINT" HALLE Y' S COMET TRACKER
270 PRINT" by Terry R Dettmann
280 PRINT STRING?(60,"-")
290 REM ** MAIN COMPUTATION LOOP **
300 INPUT"STARTING DATE (mm,dd,yy)"?MM,DD,YY
310 GOSUB 660:TB=T
320 DY=10
330 FOR 1=1 TO ND
340 GOSUB 390:GOSUB 430
350 NEXT I
360 GOSUB 580
370 GOSUB 860

390 REM ** GET THE CURRENT DAY FOR THE COMPUTATION **
400 T=TB+(I-1)*DY
410 DT(I)=T
420 RETURN
430 REM ** COMPUTE EARTH AND COMET LOCATIONS
440 PRINT "TIME: ",T
450 REM ** THE COMET FIRST **
460 OP=l:GOSUB 990 ,
470 HC{1# X) — INT(40+X*SX+.5):HC(2,1)aINT{30-Y SY+.5)
480 PRINT "COMET: ",HC(1,I),HC(2,I)
490 REM ** EARTH NOW **

510 EAU! I^INT (940+X*SX+. 5): EA(2,1)-1ST(30-Y*SY+. 5)
520 PRINT "EARTH: ",EA(1,1),EA(2,I)
530 REM ** VENUS **

5 50 ™ U ; «35r(S+XW. 5) = V»{ 2 ,1) - I»T (30-Y.SY+. 5)
560 PRINT "VENUS: ",VN(1,I)»VN(2,I)

580 REM"** PLOT THE POSTIONS AS GIVEN "

600 I?RY»30T?HEN Y?=" " ELSE W="-"
610 LN?=STRING?(78,Y?):MID?(LN?,40,1)
620 GOSUB 760
630 LPRINT LN?
640 NEXT Y
650 RETURN

Code Works

660 REM ** DETERMINE THE FIRST JULIAN DAY NUMBER **
670 GOSUB 730
680 T=JD+INT(365.25*YY)+DN
690 RETURN
700 REM ** DETERMINE JULIAN DAY FOR EPOCH **
710 T0=JD+INT(365.25*(EP-1900))
720 RETURN
730 REM ** DETERMINE THE DAY NUMBER (DN) **
740 DN=MD(MM)+DD-1
750 RETURN
760 REM ** FIND ANY LOCATIONS TO PUT IN THIS PLACE **
770 FOR 1=1 TO ND
780 IF HC(2,1)=Y THEN X$=MID$(HS$,I,1):X=HC(1,1):GOSUB 830
790 IF EA(2,1)=Y THEN X$=MID$(ES$,I,1):X=EA(1,1):GOSUB 830
800 IF VN(2,1)=Y THEN X$=MID$(VS$,1,1):X=VN(1,1):GOSUB 830
810 NEXT I
820 RETURN
830 REM ** PLACE THE CURRENT LOCATION INTO THE LINE **
840 IF X>LEN(LN$) THEN RETURN
850 MID$(LN$,X,1)=X$:RETURN
860 REM ** WRITE OUT THE FINAL DATE TABLE **
870 LPRINT"DATE","COMET","EARTH","VENUS"
880 FOR 1=1 TO ND:JX=DT(I):GOSUB 920
890 LPRINT USING"##/##/##";MX,DX,YX;:LPRINT,MID$(HS$, 1,1),MID$(ES$,I,
1),MID$(VS$,I,1)
900 NEXT I
910 RETURN
920 REM ** GET THE CURRENT DATE FROM JULIAN DATE **
930 CD=JX-JD-INT(365.25*YY):YX=YY
940 IF CD>365 THEN YX=YX+1:CD=CD-365
950 FOR J=1 TO 11:IF CD>=MD(J) AND CD<MD(j+l) THEN MX=J:GOTO 970
960 NEXT J:MX=12
970 DX=CD-MD(MX)+1
980 RETURN
990 REM ** COMPUTE THE X,Y COORDINATES FOR A BODY IN ORBIT **
1000 EP=OB(OP,1):TP=OB(OP,2):EX=OB(OP,3)*DR:WM=OB(OP, 4)*DR
1010 EC=OB(OP,5):AX=OB(OP,6):IN=OB(OP,7)*DR:OM=OB(OP 8)*DR
1020 GOSUB 700
1030 GOSUB 1050:GOSUB 1110:GOSUB 1160
1040 RETURN
1050 REM ** SOLVE KEPLER'S EQUATION **
1060 M=DR*(360/365.242)*(T-T0)/TP+(EX-WM)
1070 AC=.001:E=M
1080 E1=M+EC*SIN(E)
1090 IF ABS(El-E)<AC THEN RETURN
1100 E=E1:GOTO 1080
1110 REM ** RADIUS AND ANOMALY **
1120 A=SQR((1+EC)/(1—EC))*TAN(El/2)
1130 V=2*ATN(A)
1140 R=AX*(1-EC"2)/(l+EC*COS(V))
1150 RETURN
1160 REM ** XY COORDINATES **
1170 X=R*(COS(OM)*COS(V+WM)-SIN(OM)*SIN(V+WM)*COS(IN))
1180 Y=R*(SIN(OM)*COS(V+WM)+COS(OM)*SIN(V+WM)*COS(IN)!
1190 RETURN ''

8
Code Works

DATE COMET EARTH VENUS
11/ 1/85 H e v
11/11/85 A a e
11/21/85 L r n
12/ 1/85 L t u
12/11/85 E h 8

12/21/85 Y o P
12/31/85 S r a
1/10/86 C b t
1/20/86 O * h
1/30/86 M t *

Sample output of Halley.BAS using 11,01,85 as input

The Sun is located at the crossed lines. Viewed from above the
Sun the Earth and Venus are in counter clockwise orbit. Halley
is coming in and will go around the Sun in a clockwise fashion.
TheTetters in the table tell you where each of the bodies is on
that date The "s" in the path of Venus is where Venus will be on
the 11th of December. On that date, Earth will be at letter
position "h" and Halley will be at letter "E'.
In line 320 of the program, the increment for days between

calculations is set at 10. You can change this to any increment
you wish. Using a smaller number here will crowd the letters,
while a larger number may clutter the diagram and make it
harder to read.

Code Works

Beginning BASIC
The PRINT statement

Back in the early days of computing, they did not
have video screens as they do today.
Consequently, when anything was to be output
from the computer, the command "PRINT" was
issued, and the printer (usually a Teletype device)
printed the required data on paper.

Because the output device was an actual printer,
one could taj to various positions along the line,
but since the carriage only rolled the paper in one
direction in those days, you could not move back
up the paper and print over what was already
there.

With the coming of the video screen there had to
be a few changes. There was now ambiguity in the
print command. Print where? To the screen or the
printer? Most BASIC implementations use PRINT
to mean to the screen. (Maybe the command
DISPLAY would have been a better choice, but
that's hindsight.) LPRINT was chosen as the
command to print to the printer.

The video screen also made it possible to print at
any location on the screen, even if that position
was above already printed information. New
commands in BASIC had to be implemented to
provide for this positioning. One popular method
was to use PRINT@XXXX, where XXXX was the
number of spaces starting from the upper left
corner and counting across the screen and
continuing to the next row. Eventually, the
LOCATE command was implemented, which
gives row and column information at which the
printing will take place. Both these commands
release the cursor from its regular scanning
position and move it directly to the specified spot
on the screen. Printing then commences from that
position.

With an 80-column by 24 line screen the cursor
may be positioned in any one of 1920 different
locations. It is possible to position the cursor back
up the screen, where information has already been
printed. The new information will simply
overwrite the old.

BASIC has many forms of the PRINT
command. Sometimes, you will see PRINT on a
line all by itself. This provides for a linefeed, and
moves the cursor to the beginning of the next line
on the screen. This one acts very much like the
return key on the keyboard, only the program now
pushes the key instead of you doing it.

PRINT may be used to print messages on the

10

screen. At whatever point the cursor currently
resides, the command to PRINT "Hello there,
Genius" will print everything between the two sets
of quote marks, including the comma. Everything
between the quote marks is called a literal string,
which means that it is exactly what it says it is.

Next, we come to the command to PRINT A. This
will display the value of the variable stored in
location A (or any other variable you wish to
display.) When you assign a value to a variable, as
in B=25, the machine will find its own place called
"B" and in that location in memory it will store the
value 25. Now, when you tell it to PRINT B, it will
go to that location and get the 25 and display it on
the screen. Where on the screen? If you don't tell it
otherwise, it will print wherever you last left the
cursor.

If you want to print a line with more than one
variable on it you can use PRINT A;B. This will
put one character space between the values for A
and B. This can be extended to PRINT A;B;C;D;
etc., and if the line then becomes too long for the
screen, it will wrap around.

The comma is another printing device. The
expression PRINT A,B,C will print the values of A,
B and C in neat columns spaced (on most
machines) eight characters apart. Yes, you can
mix semicolons and commas within a print line -
like this: PRINT A;B;C,D.

Tabbing can be done on a computer much like
that on a typewriter. The TAB key on your
machine will (on most machines) tab the cursor
eig t spaces to the right. In a print statement

owever, you can tell the cursor exactly which
to tab t0- For example: PRINT

- (3),A,TAB(31);B will print the value of A at
column 23 and the value of B at column 31. Tabs
must always be in increasing order, i.e., you
• T T* 10 c<dumn 40 and then on the same line
tab back to column 12. Tabs may be "hard"
numbers or they may be variables. You may tab to

defining A as 38 and then saying
l wi" printthe valueofX at

PRINT T A IT TBy aIso comPute a tab by saying
. R , A®(A+B);X, which adds the values of A
of X 8 that P08*1*0" and Prints the value

PRAm T̂ °f the print statement is the form:
• , TRING$(60,65). This will print a string of

y capital letters A on one line. The first number

Code Works

in the parens will tell how many to print, while the
second number is the ASCII value of the character
to print. (ASCII 65 is capital A.) You can also
designate the second number like this: PRINT
STRING$(60,"T"), in which case it will print the
letter T. You may ask what for? Well, for one thing
it is handy in making heading lines on either the
screen or on hardcopy. In most of the programs we
publish you will find a line like this: PRINT
STRING$(22,"-");" The CodeWorks
STRING$(23,"-"). This centers the words "The
CodeWorks" within a line of hyphens.

There is a variation on this command on some
machines called SPACE$(). It is used like this:
PRINT SPACER 15);X. This will print 15 spaces
and then the value stored in memory location X.
There is yet another command like this that does
not use the string identifier. It is used like this:
PRINT A;SPC(10);B and it will print the value of
A, space 15 spaces and then print the value of B.

You use the print command to display the value
of any variable. If your machine has TIME$ or
DATES, you can PRINT TIMES or PRINT DATES
to see the time or the date. In some machines
PRINT MEM will show how many free bytes are
available in memory. In others, PRINT FRE(O)
will do the same. Try it on yours.

By the way, the print command is used so much
that the people who wrote BASIC included a nice
shorthand way to enter it without writing out the
word PRINT. It's the question mark. If you tell the
computer to ?"HELLO" or to ?A it will print
HELLO or the value of A. When you use the
question mark in a program line, the BASIC
interpreter will change it to the actual word

PRINT as soon as you list the line.
There are yet two other forms of the print

statement. One is PRINT #1, which is used to print
the contents of buffer #1 to the diskette. The other
is PRINT USING, which is one of the most
powerful commands in BASIC, and needs an
entire article all by itself to be explained. We will
cover both of these statements in future articles on
Beginning BASIC.

Here are a few lines of code for you to try and see
how your machine reacts:

10 A=5
20 B=10
30 PRINT A;B
40 PRINT A,B
50 PRINT TAB(5);B
60 PRINT TAB(A);B
70 PRINT STRING$(B,"*")
80 PRINT TAB(B-A);"HI";TAB(B);" BYE"

Try mixing the print statement variations to see
what works. All of the above statements will work
either in immediate (or command) mode or in a
program line. If your machine supports the
command LOCATE, you must locate the cursor
first, and then issue the print command: LOCATE
12,35:PRINT"line 12 character position 35". If you
have an 80-column screen and use PRINT@, you
might say: PRINT@120,"line 2 character position
40".

PRINT and LPRINT are the most common ways
the computer lets you know what it is doing. Try
some of the examples. •

Programming Notes

Since we have received many requests for
"jargon explained", here are a few. CP/M stands
for "Control Processor/Micro". This is one of the
earlier versions of DOS (Disk Operating System).
A DOS is like the prime contractor on a
construction project. Everything that goes on
must be coordinated with the prime contractor. In
your computer, the DOS takes care of all the little
chores that need to be taken care of. This way, you
can concentrate on what you are doing and not
worry about the details. Just for one small
example: Because of DOS, you need never concern
yourself with where on the disk some program will
be, nor updating the directory entry for that
program. DOS does it. TRSDOS is the Tandy Corp.
name for their DOS. The TRS probably stands for

CodeWorks

"Tandy Radio Shack". It is not terribly unlike
other DOS. MS-DOS is the Microsoft Corp. version
of DOS. It is undoubtedly the most commonly used
DOS. PC-DOS is MS-DOS for all practical
purposes. PC is the IBM version of MS-DOS.

DOS and BASIC come in versions numbered like
"Version 2.0" or "Version 3.1.2". The first number
is the main version number. The second number is
usually used to indicate some upgrade or fix that
has been applied. We have never fully understood
the third digit. The first number is all important.
When it changes, it usually indicates an entire re
write of the version.

One of the many readers who asked for jargon
explained was John Ross of Rome, GA. How do
you pronounce DOS? It rhymes with Ross.

1 1

Calendar I

Staff Project

For the years 1753 through 3999

Back in the good old days you used to get a
calendar from every merchant in town. Seems they
tried to outdo themselves by getting the biggest,
fanciest and most colorful one to distribute free
around Christmas. Of course, those were also the
days when you used to get free state road maps at
any gas station. How times have changed.

These days, you go to a specialty shop and pay
up to ten bucks a pop for a decent calendar. Now,
you can let your computer print one for you, not
only for 1986, but for any year from 1753 through
3999. Sort of overkill, but it's there if you want it.
You may well ask why the limits?

It turns out that September, 1752, may have been
the worst month in the history of the world. At
least, if it happened today, it certainly would be.
Look at figure 1 to see what that abbreviated
month looks like.

The quick jump from the 3rd to the 14th was to
get the calendar back to "real" time. It was off by
eleven days due to an error in the way it was set up
originally. (It is said that in England at that time,
people rioted and demanded the King give them
back their eleven days!) Some of the middle-east
countries didn't change their calendars until the
1800*8.

So in our program, we simply assume that we
don't need to see anything before 1753. On the
other end, we stop at 3999 since an adjustment will
need to be made in the year 4000 (and again in the
year 8000). These adjustments could just as well
have been programmed into this calendar
program, but it adds unnecessary code and
accomplishes little. For a complete description of
the calendar correction problem, see references in
your trusty encyclopedia under the heading of
"Calendar". It provides a fascinating story of how
and why the calendar of today is what it is.

Our program description starts with line 110.
This is a clear statement that you may or may not
need depending on your BASIC. Microsoft BASIC
versions up to about 5.1.x needed string space to be
cleared. After that version the clear will result in a
syntax error because the string space is allocated

dynamically. If you don't need the clear, then
simply leave it as a remarked line or don't use that
line.

Lines 120 and 130 are two different "clear
screen" lines. Again, choose the one appropriate to
your machine and remark (or leave out) the other.
Lines 140 through 190 dimension A$ and then
print the standard CodeWorks heading on the
screen. Some initialization goes on from line 200
through 270. Line 210 is rather important. It is a
remark line containing the numbers 0 through 9
repetitively. This line immediately preceeds a line
of the day numbers which must be typed in exactly
as shown. Remark line 210 gives you a reference as
to the placement of the numbers in the line
following it. This idea is followed again later in the
program where spacing within a literal string is
oon><ijtan'' ^ ^appens a8flin. for instance, in line

6 ^ ̂ e'ps you *° 8et the correct spacing for
*M$, the line following it, and for H$, the line

September 1752
S M Tu W Th F S

1 2 14 15 16
17 18 19 20 21 22 23
•24 25 26 27 28 29 30

Figure 1
How would you liked to have paid
bills in a month like this? Today,
something like this would probably
wreck the economy in short order.
A sample output of this program is

shown on the opposite page. The
fancy heading we promised is not so
fancy, but it all fits on a standard 8 x
l,1 Page. The programming to get
the big numerals is interesting. See
how it is done from line 720 on, then

apt it to make your own.
CodeWorks

following that one.
A word or two about lines 240 and 250 is in order.

These two lines will be used later with a PRINT
USING statement. They are format strings. The
backslashes you see in both lines may need to be
changed to the percent sign (%) depending on the
version of BASIC you use. Note that the slash is
not a normal slash but a backslash. Some
machines have this as a defined key, in others you
may need to use the CTRL key (control key) with
another key. Check both the PRINT USING
command and your keyboard description in your
BASIC manual if in doubt.

Line 270 asks which year you want a calendar
for. This should be a year between 1753 and 3999.
Anything else will either not be accurate, or will
cause the computer to error. The input statement is
not "bullet proofed", i.e., you can put in anything
you want, even if it is out of the specified range.
Simply be aware that any year out of range will not
be accurate.

At line 290 we go to the subroutine at line 730 to
print the year heading. Let's go there now. In line
730, we take the integer value of the year and
change it to a string. Then, using the MID$
function we strip off the digits one by one and stuff
them into array DG(I). Two little interesting
things happen here. First, when we change the
integer for the year into a string, we get a leading
space before the year number. Second, in line 750
when we stuff the array DG(I), we stuff it with the
ASCII value of the number. If our year, for
example, is 1986, YD$ will look like
"space,one,nine,eight,six". Now, in line 750 we
find the first digit of the year and get its ASCII
value, which happens to be ASCII 49. (We also
read 1+1 to get past that leading space.) To get the
ASCII value of 49 back to the digit 1 we simply
subtract 48 from it, and DG(1) will hold the integer
1. DG(2) will hold the 9, and so forth. Now that we
know what each digit is, we will need to pick the
proper numbers from the data statements in lines
880 through 940 and print them, centered, on top of
our calendar page. This all happens from lines 770
through 850.

Since there are seven lines of data, we set up a
loop in line 770 to read them, one at a time. We will
then also pick the appropriate part of the right
numbers and print them on the printer
immediately before going to get the rest of what
makes up the entire number. In line 780 we read the
first data statement. We then initialize 16 to be 2.
This eliminates the period at the beginning of each
data line. The period was necessary to tell where
the line actually started, but we don't want to print
it. We next jump into an inner loop at line 800 and

put the top portion of each number in the data
statements into array Z$(I). We then jump into yet
another inner (inner,inner?) loop at line 840 and
print the top portion of the year numbers on the
printer. The program then goes back to line 770
and gets the next line to print. In line 840, the
TAB(D*10+15) centers the big type year on the
printer page, and spaces properly between the
digits of the year. Line 860 simply puts two vertical
spaces between the big type of the year and the
beginning of the calendar portion.

We now return to line 300 and begin to print the
calendar itself. Variable MB is the mainline loop
counter. It will cause twelve months to be printed,
two across, six times. Within the mainline MB loop
we have another I loop which steps from 1 to 6,
there being two months in each step. Within the I
loop there are two other loops, both called J loops
(no inteference here, they work sequentially and
do not conflict with each other).

Back in lines 320 to 350 we did some subroutine
calls to find out what months will be printed and
how many days there were in those months. In line
360 we then use the format line H$ to print the
month name and year, then space and print the
next month and year. This is followed immediately
by line 370, which prints the format line from line
240 (the second part of the line, containing HW$,

26 27 20 29 23 24 25 26

16 17 10 19

1906
Ml SAT

4 5

JUKI 1906
MOM TUB WED THU Ml BAT

2 3 4 5 6 7

SUM HON TUE WED THU Ml BAT

OCTOBER 1906
HON TUE WED THU Ml SAT

14 IS 16 17
0

15
23
30

SUN HON TUE WED THU Ml BAT

IS
22

CodeWorks
13

which is the week headings). It prints this twice on
the same horizontal line, with the space at the
beginning of the format line being the space
between the two months.

In line 380 we go to the subroutine at line 610 to
find the number of days in the month. While there,
we also find out if we are dealing with a leap year,
and make the proper exceptions for years divisible
by 100 and 400. Upon returning from the
subroutine, we go to the two inner J loops and print
the numbers for the days of the week using the
formatted D$ from line 220 and FM$ from line 240.
This continues until the MB loop is exhausted, at
which time the calendar is printed and done.

Note line 680, which is another "calibration"
line to help you type in the next lines correctly. If
you don't get line 690 right, you will find pieces of
month names scattered around on the page. Also,
in line 690, you need to use the linefeed (CRTL-J)

after the quote after May and October. Use the
RETURN/ENTER key only after the quotes after
December.

You can make the big type numerals in the data
statements anything you like. We just chose a fat
looking character like the W or the M to make them
stand out. You could though, make the zero out of
zeros, the one out of l's, and so forth. You can also
change the shape of the characters if you like. But
you need to keep the same spacing (unless you
want to modify program lines 770 through 850 too).
We stuck this at the end of the program so you
could expand on the heading art in any way you
wish. From line 720 on, it's all yours. Ifyou want to
create pin-up art and make it a whole page long by
itself, you can. If you do though, please send us a
copy so we can print it and show everyone. You
might even make extra copies and sell them
through your local gas station. •

100 REM ** CAL.BAS * WRITTEN FOR CODEWORKS MAGAZINE **
110 'CLEAR 10000:REM INCLUDE THIS ONLY IF YOU NEED IT.
120 PRINT CHR$(12):REM UN-REMARK APPROPRIATE LINE FOR CLEAR SCREEN
130 'CLS:REM UN-REMARK APPROPRIATE LINE FOR CLEAR SCREEN
140 DIM A? (15)
150 PRINT STRING$(22,"-");" The CodeWorks ";STRING?(23,"-")
160 PRINT" CALENDAR PROGRAM"
170 PRINT" prints a calendar for any year from 1753 to 3999"
180 PRINT STRING?(60,"-")
190 PRINT
200 REM ** INITIALIZATION **
210 REM 012345678901234567890123456789012345678901234567890
220 D?=" 12345678 91011121314151617181920212223242
5262728293031'
230 REM 012345678901234567890123456789012345678901234567890
240 FM?=" \\":HW?=" SUN MON TUE WED THU FRI SAT"
250 H?=" \ \ ####"
260 PRINT"Break to end program."
270 INPUT"FOR WHAT YEAR DO YOU WANT THE CALENDAR";Y
280 REM ** GO PRINT THE YEAR HEADING **
290 GOSUB 730
300 REM ** PRINT THE CALENDAR **
310 FOR MB=1 TO 12 STEP 2
320 MC=MB:YC=Y:GOSUB 550:W1=W
330 MC=MB+1:YC=Y:GOSUB 550:W2=W
340 MC=MB:GOSUB 690:M1?=MY?
350 MC=MB+1:GOSUB 690:M2?=MY?
360 LPRINT" ":LPRINT USING H?;Ml?;Y;M2?;Y
370 LPRINT HW?;HW?
380 MC=MB:GOSUB 610:D1=DM:MC=MB+1:GOSUB 610:D2=DM
390 FOR 1=1 TO 6
400 LPRINT"
410 FOR J=1 TO 7:E1=((i-l)*7+J+6-Wl)*2-1
420 IF((I—1)*7+J)>D1+W1 THEN DY$=" "ELSE DY?=MID?(D?,El,2)
430 LPRINT USING FM?;DY?;
440 NEXT J

14 CodeWorks

450 LPRINT"
460 FOR J=1 TO 7:E2=((1-1)*7+J+6-W2)*2-1
470 IF((I-l)*7+J)>D2+W2 THEN DY$=" "ELSE DY$=MID$(D$,E2,2)
480 LPRINT USING FM$;DY$;
490 NEXT. J
500 LPRINT" "
510 NEXT I
520 NEXT MB
530 RUN 120
540 REM ** DAY OF THE WEEK ROUTINE **
550 IF MC>2 THEN 560 ELSE MC=MC+12sYC=YC-1
560 W=1+2*MC+INT(.6*(MC+1))+YC+INT(YC/4)-INT(YC/100)+INT(YC/400) +2
570 W=W-INT(W/7)*7
580 W=W+6:W=W-INT(W/7)*7
590 RETURN
600 REM ** NUMBER OF DAYS IN THE MONTH **
610 IF MC<>2 THEN 630 ELSE LP=0
620 IF(Y-INT(Y/4)*4)=0 THEN IF((Y-INT(Y/100)*100)=0)AND((Y-INT(Y/400)
)<>0) THEN LP=0 ELSE LP=1
630 M$="312831303130313130313031"

DM=VAL(MID$(M$,2*MC-1,2))
IF MO2 THEN DM=DM+LP
RETURN
REM ** MONTH OF THE YEAR **
REM 012345678901234567890123456789012345678901234567890
MN$""JANUARY FEBRUARY MARCH APRIL " -

640
650
660
670
680
690 MAY

+ " JUNE JULY AUGUST SEPTEMBER OCTOBER

NOTE: Use a CRTL-J here and here.

**

+"NOVEMBER DECEMBER "
700 MY$=MID$(MN$,(MC-1)*9+1,9)sRETURN

710 END
720 REM ** PRINT YEAR HEADING ROUTINE
730 YD$=STR$(Y)

FOR 1=1 TO 4
DG(I)=ASC(MID$(YD$,1+1,1))-48
NEXT I
FOR L=1 TO 7
READ ST$
16=2

FOR 1=1 TO 10
Z$(I)=MID$(ST$,16,5)
16=16+6
NFXT I

FOR D=1 TO 4:LPRINT TAB(D*10+15);Z$(DG(D)+1);:NEXT D

740
750
760
770
780
790
800
810
820
830
840
850 NEXT L
860 LPRINT" '
870 REM* 123'
880 DATA . WY
890 DATA .W
900 DATA .W
910 DATA .W
920 DATA .W
930 DATA .W
940 DATA . WW
950 RETURN

Code Works

:LPRINT'

W
W
w
w
w

WW www wwww w wwww wwww wwww wwww wwww

w w w w w w w w w w w

w w WW w w w w w w w w w

w w www wwww wwww wwww w wwww wwww

w w WW w w w w w w w w

w w w w w w w w w w w

www wwww wwww w wwww wwww w wwww www

15

Piles to Files
William L Norris, Edmonds, WA

Several months ago I became very unhappy
about the piles of papers and disks which
represented my file system. So I set out to design a
new one. The project required extensive study of
files and programming.

One of the toughest nuts to crack was the Direct
Access File. I have since accumulated information
on many subjects, but have found it was more fun
playing with the system than to use it. Since the
whole project was for my own amusement, I was
not under pressure to follow • conventional
programming procedures. By avoiding excessive
GOTO s and GOSUB's, and by repeating a few
line here and there, I was able to make a program
which worked, and at the same time is easily
modified.

I find sometimes that, following conventions, it
is easy to take a simple program and make it
completely useless in less than a hundred lines. By
following my own free-form BASIC, I avoided a

100 PRINT CHR$(12)
110 CLEAR 25000
120 DIM A$(300)
130 PRINT"COMBINE TWO SEQ FILES INTO A THIRD"
140 INPUT"NAME OF 1ST SEQ FILE";F1$
150 INPUT"NAME OF 2ND SEQ FILE";F2$
160 INPUT"NAME OF COMBINATION FILE";F3$
170 OPEN "I",1,Fl$
180 OPEN "I",2,F2 $
190 OPEN "0",3,F3$
200 IF EOF(1) THEN GOTO 240
210 X1=X1+1
220 LINE INPUT #1,A$(X1)
230 GOTO 200
240 CLOSE 1
250 IF EOF(2) THEN GOTO 290
260 X1=X1+1
270 LINE INPUT #2,A?(XI)
280 GOTO 250
290 CLOSE 2
300 L=X1
310 FOR X=1 TO L
320 PRINT #3,A$(X)
330 PRINT X;A$(X)
340 NEXT X
350 CLOSE 3
360 PRINT"FILE F3$" HAS "L" LINES"
370 END

great deal of stress.
Direct Access Files are great - they can be as long

as the disk will hold, but for Word Processors, or
Modems, not good. Sequential files are also great,
but they can only be as long as RAM holds out.
Why not, then, convert them form one form to the
other when needed? I am hoping to stir up enough
interest or controversy with this brief article to
hear from some other amateur programmers on
this subject. If not, I will let it die a quiet death.
Since I am over seventy, and no longer work for
hire, I can take the advice of Lao-tse, and stop
walking around "beating a drum."

(Two of Mr. Norris* programs, combining
sequential files and converting sequential to direct
access, are included in this issue. Direct access to
sequential, combining two direct files and
converting sequential to direct access and
appending to a direct access file will be presented
in the next issue - Ed.) •

16 CodeWorks

100 PRINT CHR$(12)
110 CLEAR 25000
120 DIM A$(350)
130 PRINT"TO TRANSFER SEQUENTIAL FILE TO DIRECT ACCESS FILE
140 INPUT"NAME OF SEQUENTIAL FILE "; SF$
150 OPEN " I " , 1,SF$
160 IF EOF(l) THEN GOTO 200
170 X=X+1
180 INPUT #1, A$(X)
190 GOTO 160
200 CLOSE
210 N=XsPRINT"L=";N
220 INPUT"NAME OF DIRECT ACCESS FILE ";DF$
230 INPUT"LENGTH OF LINES (LRL)";L
240 OPEN "R",2,DF$
250 FOR X«1 TO N
260 FIELD 2, L AS WD$
270 LSET WD$=A$(X)
280 PRINT X;
290 PRINT WD$
300 PUT 2,X
310 NEXT X
320 CLOSE
330 END

Programming Notes

Projects which require the development of
numerous versions of many modules have a
tendency to tax even the most creative
programmers for meaningful names. Have you
ever spent hours updating an old version of a
program? The method suggested here works good
enough to have achieved the distinctive status of
"no big deal". It involves suffixing part of the date
to the file name. You should occasionally purge old
versions. In BASIC, for a program named SORT, it
looks like this:

100 (1st line of pgm, goto somewhere)
110 PG$="SORTdt.BAS"
120 MII)$(PG$,5,2)=MID$(DATE$,7,2)
130 CLS:PRINT"Backup ;PC$>
140 SAVE PG$
150 GOTO 100
160 ..(the rest of the pgm)

This will plug the day of the month over the "dt" in
"SORTdt BAS" Simply GOTO 110 when you
want to save the program. You may not remember
what changes were made to any particular
program, but you can usually remember what

changes you made last Friday.

When typing in PRINT lines with spaces
between the quotes it is easy to see how many
spaces are required by looking either up to the
previous line or down to the next, where there are
character spaces you can count.

Both UNIX and MS-DOS have a sort utility.
Both let you start sorting on a particular column. If
your text contains tab columns though, neither
will sort properly (on other than the first column)
because the tab is seen by the system as one
character, not the actual number of spaces to the
next column. Seems the only way around this is to
use the space bar to the next column, which is a bit
awkward.

A quick and easy way to maintain lists that can
be edited is to use BASIC itself. Simply type in a
line number followed by the apostrophe
(shorthand for REMARK) and then enter lines of
text. You can then save the text like a BASIC
program, call it back and edit it using the normal
BASIC editor or print it out to the printer.
Naturally, you cannot run it, but it's a quick way to
keep notes that can easily be updated and edited.

17
Code Works

CARD.BAS
A mini-database using sequential files

Staff Project

The problem which prompted the creation of this
program came from a small school administration
office. It seems the secretary had a metal box full of
3X5 cards with information on students. She also
had access to a personal computer, but didn't want
to install a commercial data base program. Using
a ready made program was too much like learning
another language, she said. All she wanted was to
get her cards in the computer, primarily so that
they could be searched or sorted faster and she
could be relieved of typing names and addresses
every time notices needed to be sent. The program
needed to be versatile, but easy to operate, and
with as little jargon as possible. No file names or
any of that, she said. Volunteer helpers should be
able to use it with little or no tutoring.

Well, that sure sounded like an interesting
challenge, and so CARD.BAS came into being.
The program was written using sequential files.
All fields are defined within the program, and all
fields are alphanumeric. Any or all fields may be
as long as the allowable record length (usually 256)
of your computer. The operator need not know
anything about the file names. To keep from
clobbering a file, the program automatically loads
the file into memory as soon as you run it. If you
exit properly through the menu selection, the file is
automatically saved. Sorting and searching may
be done on any of the fields. Chain editing and
searching may be done without going back to the
main menu after each search or edit.

Anyone with minimum skills in BASIC should
be able to add or remove fields and format the
report generator at the end of the program. The
field designators 1$ through P$ were purposely not
used so that you can use them to extend the
number of fields if you want to. The number of
records the program can handle varies, of course,
with both the amount of free memory you have in
your computer and the number and length of your
fields. With 31,000 free bytes in memory, we found
we could enter about 200 records with each record
containing an average of 100 bytes. You can't use

it all because space is needed when searching and
sorting. The maximum number of records is set by
you in line 110. Leave a little breathing space for
the file.

With a few minor changes, this program worked
on just about all the machines we tried. Here are
some changes that may be required. Change line
150 to: 150 CLS.RETURN if your computer uses it
instead of the CHR$(12) there now. In lines 160
and 330, change the CARD.DAT to CARD/DAT if
your machine requires the slashes. In line 850,
change the "FRE(0)" to "MEM" if your machine
uses MEM to show memory available.
Additionally, if your BASIC does not clear string
space dynamically, you will need to add line 115:
CLEAR ##### (here you clear as much memory for
strings as your machine will let you clear.) Note
that if you must add line 115 you should also
remove line 850 since it will be meaningless.

The first thing that happens when you run the
program is that the maximum number of records is
set. Next, the field variables are set to that number.
Notice that P in line 120 is not a string like the
others. Variable P stands for "pointer", and will
contain the integer of the loop counter as we read
through the records. Later, when we sort the
records, we will look at the string data to see which
is larger, but we will switch only the pointer P.
That way, we don't move strings around (which
gets messy) and the sort is considerably faster. To
say it more concisely: We leave the strings where
they are in memory but we rearrange the pointers
to those strings and then read the data out by
using the pointers as guides to the strings. To
continue, we have issued the command to run and
the dimensions are set. The next thing which
occurs is a GOSUB to line 330. Lines 330 through
500 are the subroutine which reads data from the
disk.

T h e d i s k r e a d s u b r o u t i n e i s r a t h e r
straightforward. It is a loop which is set to read
more than we could possibly need which jumps out

18 Code Works

> >

w

I

when the data sentinel is reached. If, for some
reason, we miss the data sentinel (ZZZ), then we
exit by testing for end of file (EOF). In line 340 we
have set Ll equal to 0. After the data is all read in,
we will set Ll equal to the number of items read in
plus one. It doesn't say plus one there, but the I
counter will be at the number of records plus one at
that point. We will need Ll when we add records to
the file. Then we can start at Ll and go on. The loop
counter I can and will be used for other things as
we go along, but Ll will be unique and will always
indicate where to start adding to the file. Note that
A$(I) through H$(I) will all have the same I
number within one record. For that record, we also
make P(I) that same number for that record (in line
460). Or, all fields within a record and the pointer
too, have the same I number.

No mystery yet, and no magic either. But where
did that sentinel (ZZZ) come from? Let's digress a
bit. When you run the program for the very first
time, it will error with "file not found because no
data file exists on disk. So, the very first time you
run the program you do not simply run it, you tell it
to RUN 570. This will give you the main menu.
From that menu, you select option 1 to add to the
fjjg As soon as you get to the add portion, simply
press RETURN (or ENTER on some machines)
and you will be back at the main menu. Now select
option 6, to save the file and end. At this point, the
program will open the file on disk, and write out
one record, the sentinel ZZZ. From here on in then,
you can simply load the program and run it. Now
let's get back to the normal program flow.

After returning from the read file subroutine, the
program sends us to line 570. At that line, the field
names are initialized. This is the only place in the
program where they are defined and here is where
you can change the names to suit your own needs.
You can, for example, put city and state in separate

fields if you like. Or, you can rename them all to
Part #, Quantity, Stock Level, Reorder, etc. After
field initialization, the standard CodeWorks head
is displayed with the six-item main menu. Note
that an ON GOTO statement is used to select the
menu choice. If the number you choose is out of the
range allowable, line 800 simply takes you back
and redisplays the main menu. Throughout the
program you will see lines that say GOSUB 150.
This is the one-line clear screen subroutine.

Now let's take a look at the "add a record"
option. It starts at 810 and ends at 990. First, we
clear the screen, then drop down a line and start an
input loop that starts at Ll (the end of our current
file) and goes to V+l (the maximum number of
records we can hold plus 1). On the screen, in line
840, we print information on how to get out of the
input loop (simply press RETURN on the first
field), how many free characters you have
remaining in memory (line 850), how many records
are currently in the file (line 860), and, if the file
contains more than two records, the name of the
last record entered. The last name entered is handy
when you are entering names and the phone rings.
It lets you know where you are. The reason it does
not show if the file only contains one record is that
A$(I-1) will give an error if I is equal to 1 or less (see
line 870). In line 890 we check to see if A$ (the first
field) is a null string, and if it is we make that
record the new sentinel (ZZZ), update Ll to equal
the current I, and go back to the main menu. If it is
not a null string we check to see if the number of
records has become equal to our maximum
allowable (V). If it is, we print a sorry message, set
the sentinel on that record, update Ll and go back
to the menu. If it isn't, we continue adding data to
the fields in our record. After each record is
entered, the screen clears, updated information
appears at the top of the screen and we can add
more.

Let's leave option 2 for now and look at it with
option 4 later since option 2 uses some of option 4's
code. Let's take option 3 next. The code for option 3
sits at lines 1000 through 1040. First, we clear the
screen. Then we simply read through the entire file
of records and print them on the screen according
to the format statement in line 1020. You can't do
anything with the data you see on the screen; it's
more of a reassurance feature than anything else.
It lets you know that you do, indeed, have data in
the file and that it hasn't slid down your power
cord and is piling up under your house somewhere.
Besides that, it's cheap - only took five lines of
code.

Now let's look at Search/Edit/Delete. Before
you can edit or delete, you really need to find the
record, so at line 1070 we clear the screen, print a

CodeWorks
19

heading and then set a search flag called F3, to 1.
We are going to use some of the code the sort
feature uses, and the flag is necessary to let that
code know if we are searching or sorting. We set the
flag in line 1100 and then go to a subroutine at
1600. In 1600, we print the field headings on the
screen and ask which item to search or sort on. In
lines 1650 through 1750 we make our choice of field
equal to Q$. Let's say we decided to search on F$(I),
now Q$(I) equals F$(I). This way, when we search
or sort we will always be operating on Q$(I), which
simplifies things somewhat. After this little
operation, we check the flag in line 1760. Since we
set it before coming here, it is set to 1, and so we
reset it to zero and return to line 1110. At line 1110,
we enter the search string (or a part of it) and call it
Z$. Let's digress again for a bit. The more specific
you make your search string, the faster you will
find the record you are looking for because it will
go directly to it. "son", for example will get you
Olson, Johnson and Peterson, but "Olson, Eric Q"
will get you directly to that record (unless there is
more than one Eric Q Olson in the file). If you are
consistent in the way you enter data in the first
place, you can do some very interesting searches.
Back to the code...

We are now at line 1140, and have set A to 0.
Why? Because we are going to read our file from
beginning to end, searching using our search
string. Let's say you are looking for Olson and
there are two or three of them in the file. If we don't
use A in our loop, you could never get to the second
or third Olson. This way, when we find the first
Olson and he is not the one we want, we can tell the
program to keep looking and A will mark that
point so we keep looking from that point on instead
of starting all over. In short - using A in the loop
lets us look through the file, find some record,
make adjustments to it and keep on looking further
through the file. Line 1160 needs some
explanation. The INSTR function as used here is
one of those true/false deals. What we are doing
here is comparing our search string (Z$) with each
Q$(I) to find a match. The way it works is like this:
The INSTR function returns a logical zero as long
as no match is found. In our case, if no match is
found, the program simply falls through to the
NEXT I in line 1170 and we look at the next Q$(I).
If no match was found in the entire file, we fall
through again to line 1180 and print that fact on
the screen and then go back to the main menu.

If a match is found, however, then line 1160
sends us to line 1220, where we print the record out
on the screen along with some options as to what to
do with that record now that we have found it.

The sub-menu contains options to continue
looking (it's not the right Olson), to do a totally

~20

different search (we picked the wrong field to
search), to edit or delete the record, and to return to
the main menu. In line 1310 we had adjusted
variable A to be 1+1. This will cause the search to
continue after the record we have just found.
Selecting a different search will send us back all
the way to line 1090, where we set a different field
equal to Q$(I) and use the flag again. The record
and the sub-menu are both on the screen together.
If we choose to edit the record, the program takes
us to line 1410, where we are asked what item to
edit. The correct information is put into temporary
U$ in line 1430 and exchanged with the incorrect
information in lines 1450 through 1520. In line
1530 we make A equal to I minus 1 and then go to
1230 where the updated record is displayed
showing the effect of our edit. The minus 1 was
necessary because we had already advanced the I
counter in line 1310 in case we wanted to continue
looking. In this case, we didn't want to continue
looking, so moving the counter back one will show
us the record we have just edited. Multiple edits
can be made this way without going back to the
main menu each time.

The delete option is very simple. Lines 1550
through 1570 do it. In 1550 we simply set the first
field of the record to be a null string. That's it. The
rest of the record remains intact and remains in
memory. When we save the file and end the
session, the code way back in line 180 will check to

) f d

-4

1 SpWDl£D. AND MUTILATED TVUST
COMPUTET* CARD-AMP NOTHING HAPPENED/"

Code Work

see that null string and will not print it to the disk.
At that point, it will be gone forever, but until you
save the file and end you have the possibility of
resurrecting a dead record. Simply search for it on
the second or higher field, edit in a name in the first
field and it will be a valid, live record again. We
would like to say that was planned - but it wasn't -
it just worked out that way.

Having taken care of the sub-menu, we can now
return to the remaining options in the main menu,
sort and print. We'll take the sort option first. It
starts at line 1580 and ends at 1990. We clear the
screen first and then print the field headings and
ask which one to sort on. This is the same section of
code we used in the search option, but this time flag
F3 will not be set. Whichever field we choose will be
made equal to Q$, so that Q$ will always be the
string we compare for the sort. Flag F3 is not set
this time, so we go right around line 1760 into the
sort routine. The sort is a modified Shell-Metzner
sort. Lines 1870 and 1880 are where the actual
comparison and switching takes place. In line
1870 we compare each item in the list to be sorted
with the next item in the list. If it is smaller or
equal to the next item, we jump around the
switching code and continue with the
comparisons. If the item we are comparing is
larger than the one following it we switch the
pointers to those items in line 1880. Note that the
strings themselves are not moved, only the
pointers to them are. Moving strings is slower, and
fills memory with the temporary strings which
would need to be created. When memory fills with
these temporary strings, BASIC suspends all
other operations and goes through memory
clearing out these extra strings. This takes time
and is generally referred to as garbage
collection". Integers do not take up this string
space and since the pointers we are switching are
integers, the sort is considerably faster

The print options were intentionally left at the
end of the program so that you can extend or
modify them to suit your individual needs. In lines
2090 through 2120 you can format a report to fit
vour desires. The label routine, as it stands, will
print standard sticky labels. Either of these two
routines can be changed to print on tractor-fed
card stock, or you may want to make labels for

parts bins or whatever. Such formatting is left to
you. Keep in mind that the fields are all string
fields, and if you want to do totals in some field you
can, but you will need to convert the string to an
integer using the VAL function.

Use your imagination on the print section. You
could use this program as a small inventory
program. We used it to summarize a check book for
a year with over 450 entries. We changed the field
headings to date, check number, what for and
amount. We then sorted the file on the "what for"
field and printed out a report that collected all
similar "what fors" and printed a sub-total for that
item, as well as a grand total at the end of the
report. That way, the 450 checks were neatly
summarized on one standard page. The
accountant loved it.

The Save files and end routine is at 510 through
560. Within those lines we go to a subroutine at 160
through 320. The subroutine simply opens the file
for output and prints the records to the disk. Two
checks are made on the data as it goes out. The first
at line 180 checks to see if A$(I) is a null string. If it
is then that record is simply ignored and the code
goes on to the next item in the list. The second
check is made at line 280, where we chec k for the
sentinel ZZZ, which says that is the end of the file.
If it is, we close the file and return to line 520, which
clears the screen and tells us the file is saved and
how many records it contains. At this point, the
program ends, giving us the BASIC ready prompt.

A couple of operational hints may be in order. If
you are approaching the limit of your memory and
have several deleted records, it is wise to save the
file and end. This clears out the deleted records and
gives you more space. Also, it may be prudent to
save the file and end occasionally when doing
repeated sorts and searches. The conversion of the
field strings to Q$ during sorts and searches
apparently clutters memory with extra temporary
strings.

Incidentally, line numbers ending with 5 are
remark lines and need not be typed in. This was a
fun program to write, and it could have been done
in many different ways. The way we did it does not
necessarily represent the most efficient or best
way to do it, just one way. The bottom line is that it
does the job required of it. •

. r F M * * T H I S I S C A R D . B A S * W R I T T E N F O R C O D E W O R K S M A G A Z I N E * *
100 REM LIMIT OF # OF RECORDS HERE
i12|^H$(V).l?(V)™S(V).D?(V),E5(V),F5(V),G$(V),H$(V).Q5(V).P(V)

130 GOSUB 330

]\l potmt̂ CHR?(12):RETURNt REM ** CLEAR SCREES SUBROUTINE **
155 REM *** WRITE TO DISK ROUTINE ***

Code Works

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
325
330
340
3 50
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
505
510
520
530
540
550
560
565
570
580
590
600
610
620
630
640
645
650
660

OPEN "0",1,"CARD.DAT"
1=0:J=0
IF A?(P(l))="" THEN GOTO
PRINT #1,A?(P(I)

#l,B?(P(l)
#1,C$(P(I)
#1,D?(P(I)
#1,E$(P(I)
#1,F$(P(I)
#1,G?(P(I)
#1,H$(P(I)

290

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
J=J+1
IF A?(I)="ZZZ" THEN GOTO 310
1=1+1
GOTO 180
CLOSE 1
RETURN
REM *** READ FROM DISK ROUTINE
OPEN "I",l,"CARD.DAT"
L1=0
FOR 1=0 TO 1000
LINE INPUT#1,A?(I)
IF A?(I)="ZZZ" THEN P(l)=I:GOTO
IF EOF(1) THEN GOTO 480
LINE INPUTtl, B? (I

INPUT#1,C$(I
INPUT#1,D$(I
INPUT#1,E$(I
INPUT#1, F? (I
INPUT#1,G$(I
INPUT#1, H? (I

** *

480

END
160
150
"FILE

LINE
LINE
LINE
LINE
LINE
LINE
P(I)=I
NEXT I
L1=I
CLOSE 1
RETURN
REM ***
GOSUB
GOSUB
PRINT
PRINT
PRINT"THE
END
REM *** INITIALIZATION ROUTINE ***
A?="1-Name
B?="2-Address
C$="3-City St.
D$="4-Zip code
E?="5-Item
F?="6-Item
G?="7-Item
H$="8-Item
REM *** DISPLAY MENU ROUTINE ***
GOSUB 150
PRINT STRING?(22,"-")•

SOFTWARE

"I'd like some
unsophisticated software'

SESSION ROUTINE ***

IS SAVED, SESSION ENDED.

FILE NOW CONTAINS <";J-1;"> RECORDS'

22
The CodeWorks STRING?(23,

Code Works

§
670
690
690
700
710
720
730
740
750
760
770
780
790
800
805
810
820
830
840
850
860
870
880
890
900

PRINT"
PRINT"
PRINT STRING?(60,"-")
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
ON X
GOTO
REM

"1
"2
"3
"4
"5
"6

C A R D F I L E P R O G R A M "
an in-memory replacement for 3x5 cards"

ADD a new record"
SEARCH/EDIT/DELETE a record"
QUICK SCAN all records"
SORT records"
PRINT list or labels"
SAVE files and END"

NUMBER OF YOUR CHOICE";X
GOTO 810,1070,1000,1580,2000,510
650

*** ADD A NEW RECORD ROUTINE ***
150 GOSUB

PRINT
FOR I=L1 TO V+l
PRINT "To QUIT adding records press RETURN only for name entry.
PRINT" You have "FRE(0)" characters available in memory."
PRINT" The file now contains <";I;
IF I = >2 THEN PRINT" The last name
PRINT A?;:LINE INPUT A$(I):P(I)=I
IF A$(P(I))="" THEN A$(P(I))="ZZZ":L1=I:GOTO
IF I=>V THEN PRINT"SORRY - FILE IS FULL

r " > records."
entered was: ";A$(1-1):PRINT

650
- PRESS RETURN FOR MENU"

A$(V)="ZZZ":L1=I:INPUT XsGOTO 650
910
920
930
940
950
960
970
980
990
995
000
010
020
));*
030
040
050
060
065
070
080
090
100
110
120
130
140
150
160
170

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
GOSUB
NEXT
REM
GOSUB

B$
C$
D$
E$
F$
G$
H$
150

I
*** SCAN

150

: LI NE
: LINE
: LINE
: LINE
: LINE
: LINE
: LINE

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

B$ (I
C$(I
D$ (I
E$ (I
F$ (I
G$ (I
H$ (I

THE FILE ROUTINE

FOR 1=0 TO LI
PRINT ' ---> . jp(][)) > / «;G$(p(I)).» / " ;H$(P(l))

FOR MENU";X

ROUTINE

"Y B$(P(I))
/ ";E$(P(I)) *"
PRINT
NEXT I
INPUT"PRESS RETURN
GOTO 650
REM *** SEARCH/EDIT/DELETE

PRIN?"^* SEARCH/EDIT/DELETE A RECORD
PRINT
F3=L:GOSUB 1600
PRINT "Enter the
LINE INPUT Z$
GOSUB 150
A=0
FOR I=A TO LI
IF INSTR(Q$(D,Z$)<>

NEXT I

/ ";C$(P(I));" / ";D$(P(

** «

item (or part of item) you wish to find

0 THEN GOTO 1220

23
Code Works

1180
1190
1200
1210
220

±230
1240
250

1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1545
1550
1560
1570
1575
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700

~~24

PRINT"<<< NO MATCHING RECORD WAS FOUND >>>
PRINT" PRESS RETURN FOR MENU"
INPUT X
GOTO 650
PRINT
PRINT A$;A$(I)
PRINT B$;B$(I)
PRINT C$?C$(I)
PRINT D$;D$(I)
PRINT E$;E$(I)
PRINT F$;F$(I)
PRINT G$;G$(I)
PRINT H$; H$(I)
A=I + 1
PRINT
PRINT" ENTER 1
PRINT" ENTER 2
PRINT" ENTER 3
PRINT" ENTER 4
PRINT" ENTER 5
INPUT X
ON X GOTO 1150,1090,1410,1550,650
GOTO 1320
INPUT" WHICH ITEM # DO YOU WISH TO EDIT";X
IF X=>9 OR X=<0 THEN GOTO 1410
LINE INPUT" ENTER CORRECT INFORMATION ";U$
ON X GOTO 1450,1460,1470,1480,1490,1500,1510,1520

- to continue looking"
- for a different search'
- to EDIT this record"
- to DELETE this record"
- to.RETURN to main menu'

A$(I)=U$:GOTO
B$(I)=U $:GOTO
C$(I)=U$:GOTO
D$(I)=U$:GOTO
E$(I)=U$:GOTO
F$(I)=U$:GOTO
G$(I)=U$:GOTO
H $(I)=U $:GOTO
A=I-1
GOTO 1230
REM *** DELETE
A$(I)=""
PRINT"RECORD IS DELETED"
GOTO 1320
REM *** SORT THE
GOSUB 150
PRINT"** SORT THE
PRINT A$;B$;C$;D$
PRINT E$;F$;G$;H$
PRINT
INPUT"WHICH ITEM # DO YOU
IF X=> 9 OR X=<0 THEN GOTO
FOR 1=0 TO LI
ON X GOTO 1670,1680,1690,1700 i7ie» !•»•*«
Q$(P(I))=A$(P(I)):GOTO 1750 ' ' '1730'1?40
Q$(P(I))=B$(P(I));GOTO 1750
Q$(P(I))=C$(P(I)):GOTO 1750
Q$(P(I))=D$(P(I));GOTO 1750

1530
1530
1530
1530
1530
1530
1530
1530

A RECORD ROUTINE ***

FILE ROUTINE ***

FILE ** «

WISH
1620

TO SEARCH OR SORT ON";X

Code Works

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
1995
2000
2 0 1 0
2 0 2 0
2030
2040
2050
2060
2070
2080
2090
2100
2 1 1 0
2 1 2 0
2130
2140
2150
2160
2165
2170
2180
2190
2 2 0 0
2 2 1 0
2 2 2 0
2230
2240

Q ? P I)) = E $ (P (I)) : G O T O 1 7 5 0
iP!Z!)=F$(p(I)):GOTO 1750

Q?(pI))=G$(p(l))jGOTO 1750
Q$(P(I))=H$(P(I)):GOTO 1750
NEXT I
IF F3=l THEN F3=0:RETURN
PRINT Wait while I sort.
F=0
N=L1-1
M=N
M=INT(M/2)
IF M=0 THEN GOTO 1960
J=0
K=N-M
I=J
L=I+M
IF Q$(P(I))=<Q$(P(L)) THEN GOTO 1930
T=P(I):P(I)=P(L):P(L)=T
F=»l
I = I-M
IF I<1 THEN GOTO 1930
GOTO 1860
J=J+1
IF J>K THEN GOTO 1810
GOTO 1850
IF F=1 THEN GOTO 1780
PRINT "SORTED - PRESS RETURN"
INPUT X
GOTO 650
REM *** PRINT LIST OR LABELS ROUTINE ***
GOSUB 150
PRINT
PRINT "ENTER 1 - TO PRINT
PRINT "ENTER 2 - TO PRINT
PRINT
INPUT
ON X GOTO
GOTO 2010
FOR 1=0 TO LI-1
LPRINT A$;A$(P(I))/B$;B$(P(I))
LPRINT C$;C$(P(I)),D$?D$(P(I))
LPRINT E$;E$(P(I)),F$;F$(P(I))
LPRINT G$;G$(P(I))»H$;H$(P(I))

LPRINT " "
NEXT I
LPRINT "TOTAL NUMBER OF RECORDS PRINTED
GOTO 650
REM *** PRINT LABEL ROUTINE
FOR 1=0 TO Ll-1
LPRINT A$(P(I))
LPRINT B$(P(I))
I PRINT C$(P(I));TAB(20);D$(P(I))
FOR J=1 TO 3:LPRINT" ":NEXT J

NFXT I
LPRINT"T0TAL NUMBER LABELS PRINTED"; I

GOTO 650

THE ENTIRE FILE"
LABELS"

"NUMBER OF YOUR
2080,2170

CHOICE";X

Puzzler #1

How can you make a variable
out of a loop counter? Let's say
that you have several values, A
through E, that you would like to
run through a FOR...NEXT loop.
You want to be able to choose
which item to vary, but only use
one loop to do any of them.

It's easy to see that if the loop
counter is I, then making I equal
to A or B will not work because
you cannot step a loop when the
loop counter is a number. (I
would take on the value of A or
B). If you try it you get a syntax
error.

R a t h e r t h a n w r i t e f i v e
different loops with ON GOTO
or some such, we'd like to see
simple code that will allow
single FOR...NEXT loop to I
used for any of the variables A
through E. This problem doe>
have a solution. Send us your
We can't promise trips to Hawa
for it, but the best solution will 1
printed with full credit to the
author. If two or more of you
have the same solution, the
earliest postmark will determine
the winning entry. The general
form of the problem is like this:
100 A=1:B=2:C=3:D=4:E=5
110 REM
120 FOR 1= 1 TO 10
130 F=A+B+C+D+E
140 PRINT F
150 NEXT I
160 REM

We want to select, under
program control, which value, A
through E, to step through the
loop. How would you do it?

Code Works 25

Sorting
An introduction of sorts

Staff Project. We are biting our tongues to keep from saying 'Try this if
you are feeling out of sorts". So we won't say it.

One of the most boring jobs - and one that
computers can help with - is sorting. There are
probably as many sorting algorithms as there are
computer science majors, but the one we will
describe here is the "Bubble Sort". In futilre issues,
we will delve into some of the more exotic sorts.

The little demo program (listing 1) with this
article illustrates the form of the bubble sort. The
first lines (100 through 210) provide a way to get
some data into an array, A$(I), which we can work
with. Lines 180 through 200 display our list of
unsorted data before we go into the actual sort.

The purists will be quick to point out that we
don't need string arrays to sort integers. True, if we
only want to sort integers, A$() array can be
changed to A() array. Note also that if you are
going to sort strings, you may need to insert a
CLEAR 1000 at line 115, or you will get an "out of
string space" error. Array A$() holds the data,
while array T$() is a temporary holding place,
used when we do the switch later. Both need to be
dimensioned, as in line 120, to some value more
than the maximum number of items we intend to
sort.

The actual sort takes place from lines 220
through 290. Basically, what we intend to do is to
take the unsorted list, compare the first item in the
list with the next, and if the first is larger than the
next, switch them. Then, take the second item in
the list, compare it with the third and if the second
is larger than the third, switch them. If an item is
already smaller than the next item, we do not
switch, but go on and look at the next pair of items.

Let's stop for a minute and find out what this
"smaller" and "larger" business is all about.
Inside your computer there are only ones and
zeros, represented by the presence or absence of a
voltage level. Each bit can be represented by either
a one or a zero, and eight of these bits form a byte.
Any byte, then, can represent a number from zero
through 255. The numbers, letters (both upper and
lower case) and punctuation are each represented
by a unique number. When we sort then, no matter

if we are sorting numbers, letters or punctuation,
the computer sees only numbers and can tell if one
is larger, smaller or equal to another.

In the first line of the actual sort. 220, we set a
flag (F) to zero. We will see later how this flag will
tell us that the sort is complete. I n line 230 we start
a loop that takes us from the first item in the list to
the next to last item. Inside that loop, in the next
line, we make J equal the next item in the list (1+1).
Now, A$(I) will always be the current item of the
list and A$(J) will always be the next item. Now we
can see why the loop only goes to the next to the
last item (the N-l in line 230). When we get to the
next to last item in the list, A$(J) will be looking at
the very last item. If we don't use the minus one in
line 230, A$(J) would be looking one past the end of
the list, find a zero there and sort it to the
beginning of the sorted list. We would also then
lose the last item of our sorted list.

In line 250 the comparison takes place. A$(I)i the
current item of the list, is compared to A$(J), the
next item in the list. If the value stored in A$(D is
equal or less than the value stored in A$(J). we

simply leave it alone and jump to the NEXT I in
line 280 to compare the next two items. If A$(D is
greater than A$(J), we need to switch them. Ifyour
BASIC has the SWAP command, you can simply
replace line 260 with: SWAP A$(I).A$(J).Then you
wouldn't need to worry about T$() at all. For those
who do not have SWAP, we need T$() to

temporarily hold the value of A$(I) while we make
A$(J) equal to A$(I). Then we take the value in
T$(I) and move it to A$(J). You can see that if we
did not use T$<), we would have lost one of the
values because it would have been overwritten.

Now, since we have made a swap, the flag (F)
needs to be set. We do this in line 270, and then go
to the NEXT I, where the next pair of items will e
compared. When we have gone through the entire
list once, the program flow drops through to line
290- At line 290 we test the flag to see if it has been
set. If the flag has not been set (changed from zero
to one), it means that we have gone through t e

26
Code Works

1 5
2 4
3 3
4 2
5 1

SWAPPING 4 WITH 5
SWAPPING 3 WITH 5
SWAPPING 2 WITH 5
SWAPPING 1 WITH 5

1 4
2 3
3 2
4 1
5 5

SWAPPING 3 WITH 4
SWAPPING 2 WITH 4
SWAPPING 1 WITH 4

1 3
2 2
3 1
4 4
5 5

SWAPPING 2 WITH 3
SWAPPING 1 WITH 3

1 2
2 1

"3 3
4 4
5 5

SWAPPING 1 WITH 2
1 1
2 2
3 3
4 4
5 5

SORTED

2 2 Figure 1
3 3
4 4
5 5

PASSES THRU THE OUTER LOOP
I OF SWAPS MADE= 10

entire list of items without the necessity of making
a switch - which means that the list is in sorted
order If the flag has been set it indicates that a
switch had to be made and thatthe listmaynotyet
be in sorted order. The program then sends the
flow back to line 220, where the flag is reset to zero
and the FOR.NEXT loop takes over again looking
for swaps to make. This continues until no swaps
are made and the flag is not set to one, at which
time we leave the sort routine and print the sorted
list in lines 320 through 340

You have probably noted that there are two
loops in operation here. An outer loop starts at line
220 and ends at line 290. Inside that outer loop the
inner loop (the FOR...NEXT) operates from lines
230 through 280. The outer loop simply operates
until the inner loop finds no more swaps to make.
Note that the outer loop must always force the
inner loop to make one more pass after the list is
sorted to determine that it is, indeed, sorted.

If you want to see some of what is happening
inside the program, add these lines to listing 1:

225 PS=PS+1
265 PRINT"SWITCHING ";A$(I);" WITH

";A$(J)
267 SP=SP+1
350 PRINT"# PASSES THROUGH OUTER

LOOP= ";PS
360 PRINT"# SWAPS MADE= ";SP

In figure 1 you can see some of what happens.
The list to be sorted is in reverse order from 5 to 1.
At the top of figure 1 this reverse order is shown.
During the first pass through the outer loop, the
digit 5 is moved successively down the list until it is
the last item in the list. The 4,3,2 and 1 are still out
of order. On the next pass, the digit 4 is moved
down the list, leaving the 3, 2 and 1 still out of
order. Next the digit 3 is moved down the list with
the 2 and 1 still out of order. Finally, the digit 2 is
exchanged with digit 1 and the list is in order.
After one more pass, finding nothing to swap, the
outer loop is exited and the pass and swap
information is printed. (Perhaps the name
"bubble" comes from the fact that the digit 1 in this
example "bubbled" up to the top of the list - who
knows.)

A worst-case for this sort routine is to have the
list in reverse order. In that case, the number of
exchanges (swaps) that need to be made is the
number of items in the list squared, less the
number of items in the list, all divided by two, or to
say it another way:(n squared - n)/2. By the way,
making this routine sort in reverse order is very
simple: change the < in line 250 to a >.

You can see that because of the square term in
the expression, the number of swaps (and the time
to do them) go up dramatically with the number of
items in the list. You would not want to use this
method to sort 500 names and addresses. It would
probably take several hours. But because of its
simplicity (and low overhead) it can't be beat when
a couple of dozen or so items need to be sorted.
Another thing that slows down any sort with
strings is "garbage collection". Every new
assignment of a string, as well as intermediate

27

Listing 1

100 REM ** BUBBLE SORT DEMO PROGRAM 1 **
110 PRINT CHR$(12)
120 DIM A$(50),T$(50)
130 PRINT"BUBBLE SORT DEMO"
140 INPUT "HOW MANY ITEMS WILL YOU ENTER" ;N
150 FOR 1=1 TO N
160 PRINT"ENTER ITEM";I;" - INPUT A$(I)
170 NEXT I
180 FOR 1=1 TO N
190 PRINT I;A$(I)
200 NEXT I
210 INPUT"PRESS RETURN FOR THE SORT";Z
220 F=0
230 FOR 1=1 TO N-l
240 J=I+1
250 IF A$(I)=<A$(J) THEN 280
260 T$ (I)=A$(I):A$(I)=A$(J):A$(J)=T$(I)
270 F=1
280 NEXT I
290 IF F=1 THEN GOTO 220
300 PRINT"SORTED"
310 PRINT
320 FOR 1=1 TO N
330 PRINT I;A$(I)
340 NEXT I
350 END

Listing 2

100 REM ** BUBBLE SORT DEMO PROGRAM 2 * *

(repeat lines 110-210 from above)
220 M=1:N1=N
250 IF M=>N1 THEN GOTO 510
255 P=P+1
270 FOR I=M TO Nl-1
290 L=I+1
310 IF A$(I) = < A?(L) THEN GOTO 350
330 SWAP A$(I),A$(L):SP=SP+1
340 PRINT "SWAPPING ";A$(l)j" WITH ";A$(L)
350 NEXT I
360 PRINT " "
370 FOR J=N1—1 TO M+ STEP -1
390 K=J—1
410 IF A$(J)=>A$(K) .N GOTO 450
430 SWAP A$(J),A$(K,:SP=SP+1
440 PRINT "SWAPPING ";A$(J);" WITH ";A$(K)
450 NEXT J
470 M=M+1:N1=N1-1
490 GOTO 250
510 FOR X=1 TO N: PRINT X,A$(X):NEXT X
520 PRINT"# PASSES = ";P
530 PRINT"# SWAPS MADE = ";SP

Programming Note

When you want a program to
pause, we normally use an
INPUT statement like this:

10 INPUT"PRESS ENTER";X

This will display the message
and then continue when ENTER
(RETURN on some machines) is
pressed. This leaves you with a
simple statement with a
question mark following it. To
get rid of the question mark, do
this:

10 PRINT-Press any key";
20 IF INKEY$="" then 20

This will cause program control
to loop at line 20 until any key is
pressed, then the program will
continue on its way, and the
question mark is gone.

Elsewhere in this issue we
talked about the PRINT
statement. Try this: Find out
which character gives you one
linefeed on your printer. It will
probably be CHR$(10) or
CHR$(13). Then LPRINT
STRING$(4,13) should make
your printer space 4 lines. Note
that the CHR$() functions do not
always perform the same
function on the screen and
printer. On some some machines
PRINT CHR$(12) clears the
screen but LPRINT CHR$(12)
will give a form feed.

If computers could really
reason, would they first insure
their own survival or would they
go on strike and quit? Maybe we
should think about it before we
endow them with more power
than we would like them to have.
Or is the Genie already outof the
bottle?

28
Code Works

string ca culations, are put in memoryj ieaving

behind all the old versions of the string. This fills
up memory, and BASIC needs to go through and
clean house". In sorting strings, this can take up

several minutes each time it occurs. Naturally, the
more strings you are sorting, the less free space
t here is, and the garbage collection will occur more
often and for longer periods of time. This is not
only a problem with this sort, but with all string
sorts unless some method is devised to prevent it.
1 his problem does not occur when sorting integers.
One way to overcome this is to assign pointers to
the strings. Then, when comparing strings in the
sort instead of swapping the strings themselves,
swap the pointer (which is an integer). If your
B ASIC has the SWAP command it also eliminates
the problem of garbage collection.

In general, sorting is based on the ASCII value
of a number, letter or punctuation. This causes
upper case letters to be sorted before lower case,
since upper case letters have a lower ASCII value
than upper case. Most punctuation is sorted before
numbers or letters. A blank (ASCII 32) will always
sort to the top in an ascending list. Try putting
these numbers into the program with this article:
9, 8, 10,5,1, and 2. These numbers will sort into: 1,
10, 2,5,8, and 9. The "10" has a lower ASCII value
than "2 nothing", and so it sorts ahead of the 2.
Because our little program is sorting strings, try
putting a zero in front of the single digit numbers

we just tried and do it again. Now it will work right.
The bubble sort, because of its ease of coding and

debugging, is very useful when limited numbers of
items are to be sorted. In our next issue, one of the
programs will use it in some really crazy ways. In
this issue, see CARD.BAS for a different sort that
uses pointers.

Program listing 2 with this article shows a
variation on the bubble sort. It goes through the
list moving the largest item to the end of the list.
Then it sweeps backward, finding the smallest and
leaving it at the beginning of the list. Now that we
know that the smallest and largest are in their
proper places, we need not look at them again. So
the counter which defines the length of the list is
incremented by one at the beginning and
decremented by one at the end. The next time
through the list we do the same as we did the first
time, only now we are looking at two less items.
Each sweep through the list reduces the number of
items to look at by two. When the incrementing
number and decrementing number meet, the list is
sorted. There is no need then, to go through the
sorted list again to see if it is sorted as in the
normal bubble sort.

With this sort, the worst case is still a reverse
ordered list. It's a slight improvement over the
bubble, but not that much. It is fun though, to play
with these sort routines and try different
approaches. Try them. •

Programming Notes
How do you assign variables? It's easy to just sit

down and start using the ones that first come to
mind. But after a while, on a long program, you
forget what stands for what and it gets rather
confusing. It's a good idea to assign blocks of
variables to be used and write them down on paper
before you start a program. That way, you can tell
by the variable itself what function is should be
performing. Don't feel bad though, most of us don't
do it, even when we know we should.

If you are an "occasional" programmer, it's easy
to forget that a FOR...NEXT loop that is supposed
to decrement must be followed by STEP -X. BASIC
automatically assumes a step of 1 in an
incrementing loop, unless you specify otherwise,
but in a decrementing loop the step, even if it is 1,
must be specified as STEP -1.

The BASIC function, FIX, removes all digits to
the right of a decimal point. It does the same thing

as the INT function, except that FIX does not
round down negative numbers, while INT does. If
your BASIC does not have FIX, you can simulate it
like this:

X=SGN(N)*INT(ABS(N)).

TRACE on/off is a handy debugging tool most
of us forget is there. If you use the command TRON
from command mode and run a program, it will
show you the line numbers as they execute.
TROFF will turn TRON off. Both statements may
be used as commands within a BASIC program to
inspect program flow through a particular section
of code. Simply insert a line with TRON before the
section you are interested in, and another line
containing TROFF after that section. Now, when
the program gets there, it will print the line
numbers as they execute, in the order that they are
executed, and you can see what's happening.

CodeWorks
29

Sources
Where to Find Programming Tools

Software Studios, Inc has introduced a new
data and text encryption program called
Scrambler. It will convert any ASCII text or data
file into undecipherable representations based
upon a code key input by the user. The same key
will restore the text to its original form. Code keys
may be any character, word or phrase up to 255
characters in length. It is case sensitive and
respects the difference in upper, lower or mixed
case code keys. The original file is overwritten, so
there is no trace of the original on disk. Files may
be encrypted any number of times for multi-
layered security and may also be telecommuni
cated without interference or alteration.
Scrambler requires 64K, a disk drive, and will run
on IBM-PC, XT, AT and MS-DOS compatibles. It is
available for $49 plus $2 shipping from Software
Studios Inc., 8516 Sugarbush, Annandale, VA
22003 (703) 978- 2339.

Source Telecomputing Corp. has announced
2400 baud service for The Source. Prime-time 2400
baud usage, weekdays 7 am to 6 pm will be 46 cents
per minute, only 3 cents per mintue more than 1200
baud. Non-prime time usage, including evenings,
weekends and holidays, will be 20 cents per
minute, only 2 cents per minute higher than 1200
baud. This new baud rate will first be made
available by Uninet in ten major cities, including
Los Angeles, San Francisco, Washington DC,
Atlanta, Chicago, Boston, Kansas City, New York
City, Dallas and Houston. Several hundred
additional cities will be rapidly added to the roster
by Uninet. Concurrently, STC has replaced all
hourly pricing with per-minute pricing to reflect
more nearly the way members use The Source and
make it easier for members to reconcile their
monthly invoice.

The Dental Computer Group is composed of
dentists, physicians, and other health care
professionals interested in office computing. We
support all brands of software, micro and mini
computers, and feature tapes, lecture meetings, a
hot line, software reviews, and a free contributed
software library. The monthly Dental Computer
Newsletter contains a wealth of information about
the latest computer hardware and software, good
buys, book reviews, helpful hints and practice
management advice. To get a free copy of the

newsletter and group information, send a large,
stamped, self-addressed envelope to Dental
Computer Group, 1000 North Ave., Waukegan, IL
60085 or call Skip Nye at (312) 223-5077

Polygon Industries announced the release of
TRANSLATOR, the artificial intelligence
software program which translates languages; not
computer languages, but French, German,
Spanish, English and Italian, and soon several
others. The software has been over one year in
development, passed beta test und is now in stock
for delivery. Anyone may order directly from
Polygon Industries at the price of $49 for each
language; to and from English. An input text file,
which can be a letter, book passage, news story,
etc., is specified to the program and an output file,
t h a t w i l l c o n t a i n t h e t r a n s l a t e d t e x t .
Alternatively, a line of text can be input for
immediate translation. The software is offered for
a l l c o m p u t e r s w h i c h u s e a t l e a s t o n e d i s k d r i v e a n d
48K. Each module will translate to and from
English with about 90% accuracy. The user can
add to the vocabulary. A hard disk size vocabulary
is optionally available. Polygon Industries, PO
Box 24615 New Orleans, LA 70184

Polygon Industries announced the release of
FLIGHT CHECK, the airplane operation software
program that computes best altitude and power
settings for a given flight, weight and balance, and
reserve fuel at destination. These computations
should be done before each flight, but few take the
two hours to do them, so this program can save up
to 10% of the cost. Best of all is the assurance that
the takeoff will succeed and there is enough fuel for
the trip. Polygon Industries, PO Box 24615, New
Orleans, LA 70184 (504) 282-5372

The listing of products in this column is to tell our
readers what is available in the marketplace. We
take news release items at their face value. No
endorsement by this publication is implied by the
appearance of products in this section.

30 Code Works

Hype
Where we ask you to Subscribe!

To help us serve you properly, would you kindly take a moment to
the following questions - answer

Make and Model of your computer.

Do you have disk drives? • Yes. • No Which DOS do you use?
Do you have a line printer? • Yes. • No
Do you use a Modem? • Yes, • No What baud rate 300 • 1200 •

As a Basic programmer, do you rate yourself as • Novice, • Intermediate or
• Advanced?
Which other programming languages do you prefer?
Comments:

Fold

Subscription ORDER FORM 1185

Please enter my one year subscription to CodeWorks at $24.95. I understand that this price includes
access to download programs at NO EXTRA charge.

• Check or MO enclosed.
• Charge to my VISA/MasterCard #.
Please Print clearly:

-Exp date-

Name

Address

Clip or photocopy and mail
to: CodeWorks
3838 South Warner St.
Tacoma, WA 98409

City State. Zip

Charge card ordera may be called in (206) 475-2219 between 9 AM and 4 PM weekdays. Pacific time. Sorry, no "bill me"

orders.

Code Works
.11

Download
Current status of the CodeWorks download

The CodeWorks download system is almost ready to be tested online.
We expect to be online by December 1st. The dedicated telephone number
for the download is (206) 475-2356. You may call that number prior to
December if you wish. If we are not up when you call, the number will not
answer and you will not be billed for the call. If we are up and running,
you will get a login prompt, and we will ask you to enter your name.

The download will initially be set up for 300 baud, 8 bits, no parity and
one stop bit. At first we will handle ASCII transfer only. (X-modem and
1200 baud come later.)

Please bear with us during this testing period. When the system is fully
operational, we will have special subscriber logon procedures, a place for
non-subscribers to get a sample program and leave their names and
addresses, and a method for subscribers to assign their own passwords.

All major programs listed in CodeWorks will be available for
download once the system is up. We expect it to be online 24 hours per
day, seven days per week (except for power failures and maintenance
breaks.)

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Address correction requested

Bulk Rate
US Postage

PAID
Permit No. 774
Tacoma, WA

1

• CODEWORKS
Issue 3 Jan/Feb 1986

CONTENTS

Editorial 2

Forum 3

Outline. Bas 6

Random 8

Beginning BASIC 12

Puzzler 13

Calculating Accuracy 14

Download 19

Wood.Bas 22

Shell Sort 38

Programming Notes 7, 18, 37

CODEWORKS

Issue 3 Jan/Feb 1986

Editor/Publisher
Irv Schmidt

Associate Editors
Terry R. Dettmann

Greg Sheppard
Jay Marshall

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Adviser

Al Mashburn

1986 Produced by 80-Northwest
Publishing Inc. No patent liability is
assumed with respect to the use of the
information contained herein While
every precaution has been taken in the
preparation of this publication, the
publisher assumes no responsibility for
errors or omissions. Neither is any liability
assumed for damages resulting from the
use of any information contained herein.
All programs, unless otherwise specified,
presented in this publication are hereby
placed in public domain. The publisher
reserves the right to insist that
CodeWorks credit lines be left in any
program which is moved to other media
for any use. Please address correspond
ence to CodeWorks, 3838 South
Warner Street, Tacoma. Washington
98409

Telephone (206) 475-2219

Authors: We constantly seek material
from contributors Send your material
(double spaced, upper/lower case please)
and allow 4 to 6 weeks for editorial
review. You may send IBM-PC compatible
diskettes (please save your programs in
ASCII). Also send a hard copy listing of the
program and article Media will be
returned if return postage is provided
Cartoons and photographs are welcome
Compensation will be made for works
which are accepted for publication.
CodeWorks pays upon acceptance rather
than on publication.

Subscription price: $24.95 per year (six
issues). A subscription year runs from
Nov/Dec through Sep/Oct. Anyone
subscribing will receive all issues for the
subscription year. Not available outside
United States Zip codes VISA and
Master Card orders are accepted by mail
or telephone (206) 475-2219.

CodeWorks is published bimonthly in
Jan. Mar, May. Jul, Sep and Nov. It is
printed in The United States of America.
Bulk rate postage paid at Tacoma.
Washington.

Sample copies: If you have a friend who
would like to see a copy of CodeWorks.
just send the name and address and we
will send a sample copy (at no cost.)

Editorial

By the time you read this our
download ought to be up and
running. We have tried to
anticipate all the problems and
bugs, but past experience says
there will be some anyway, so
bear with us during the shake
down period.

You will find this issue
slightly larger than the previous
ones. This is mostly due to the
length of our Wood program. I
didn't feel right about taking
that much space from other
things, so the added pages sort of
make up for it.

Does anyone miss the
"Sources" page? I went through
a big box of press releases and
would you believe, there wasn't
much there. Some of them are so
hyped up about their thing they
forget to tell you what it actually
is or what it's for. I like to plug
the small guys when they have
something good. After all, we are
small guys ourselves and know
what it's like.

Does anyone know anything
about the origins of a game
called "Startraders" (or some
times just "Trader") which has
been around since the 1970's? It
looks like it might be public
domain, but we're not sure. We
have been working with it to put
it into a new setting with added
features, but would like to give
the proper credit to the original
authors.

Speaking of giving credit, all
our programs (unless specifi
cally noted) are public domain.
We do insist, though, that our
credit lines be left intact when
they are passed around. It's not
ego on our part, but a way to

wave our hands and say "here
we are." Call it advertising if you
will, but unseen and unheard of
is unsold, no matter how you cut
it.

Several of you have called
asking for back issues. We have
none. Here is how it works. All
subscribers during the first year
get all issues for that year. First
of all because we do a lot of back
ward referencing to previous
articles. Secondly, because
everyone will come up for
renewal at the same time, saving
us a bundle because we can
announce renewal in one issue
that way. Also, all first year
subscribers get seven for the
price of six, since the first one is
free to everyone. What a deal.

And speaking of issues, our
last one (Issue 2) was not entirely
clean. It seems about 300 or so
copies had solid black ink on at
least two pages. They got out
undetected, and ended up mostly
in the 89XXX and 90XXX zip
codes. Many of you wrote or
called and asked for a better
copy, which we immediately
sent. If you have one of these and
want a replacement, please don't
be bashful. Drop us a postcard
and we will get you a clean copy
right away. Our printer has
made apologies to us and we
pass them right along to those of
you who got "blacked out."

Since we are on a yearly basis,
any of you who are missing any
copy can let us know and we will
supply it.

Happy New Year. Happy
computing, and see you next
time. lrv

Code Works

Forum
An Open Forum for Questions & Comments

Glad we subscribed to your new
magazine. (We are) learning a lot
and enjoying the articles. We have a
Tandy 1000. We have found little
support for the 1000 BASIC
programs so we have been keying in
the IBM-PC programs. Although the
1000 is supposed to be compatible
with the IBM-PC we are having
trouble running the programs.
Maybe there are some helpful hints
that you could explain in your
magazine that would make these
programs more compatible.

D. Degenhardt
Aurora, IL

Our experience shows that the
Model 1000 is very compatible with
the IBM-PC. The ASCII character
sets are identical and the BASIC
commands and functions are almost
identical. Some "store-bought"
software may not work with the
same function keys, but the
programs we (and others) publish
should run without problems. You
obviously already, have the BASIC
manual for the 1000. May we
suggest that you purchase the book
"Learning IBM BASIC", by David
A. Lien, published by Compusoft
Publishing, ISBN 0-932760-13-9, for
$19.95?

Good for you! A computer
magazine that dares to give us
software, ignores the color and
omits the ads. For those who like to
hack away and use logic to create
something of our own. Stick to your
guns. How about games? I think
they are the best source of learning
graphics. Count me in.

Calvin E. Host
Harrisburg, PA

Thank you. How about games? Well,
I used to think that most computer
games were trivial. Then not long
ago, Cam Brown asked if I knew a
way to deal a deck of cards into four
Bridge hands. I finally got the deck

made up, shuffled and dealt in about
2 seconds. I gave it to Cam, but was
so intrigued with the idea of a card
game that I started working on a
Poker program. Now I am up to my
neck in it and haven't been so
involved in tricky code since I wrote
the Wood program (in this issue). It,
and another game we have in mind,
will appear in some future issue. I
am now of the opinion that writing
an involved game from scratch, and
stubbornly attacking every problem
t h a t c o m e s u p , i n s t e a d o f
circumventing it, is probably some
of the best programming experience
one can get. - Irv

Re: Writer in issue 2, line 650. I
assume it means any text file I have
out there - if so is N a counter and of
what? How does my text file get an N
in its beginning? I always get N=0
and the note that the file is not long
enough! P.S. Would you check and
see if I've subscribed yet - I like it!

Sally Dion
Goleta, CA

Because of the way most word
processors handle line feed and
carriage return characters the
Writer program can't use them. It
assumes you have entered text
through the program itself, in which
case it assigns the N value as the
first line of the file and N tells how
many lines there are. Yes, you have
subscribed and thank you.

Enjoy your magazine very much.
Just finished typing CARD/BAS
from Issue 2. Tried to RUN and got
"Sorry, File is full" error. In the text
it is mentioned to CLEAR XXXX in
line 115, which should be before line
110. (Our text said line 115 when it
should have said 105.) I made this
change and it worked fine. Probably
many others will write about this
but thought I would get my two cents
worth in. Keep up the good work
with CodeWorks.

George Phillips
Sun City, AZ

You are right. We keep telling
ourselves to "clear up" that CLEAR
X X X X p r o b l e m . I n M i c r o s o f t
BASIC, release 4.51 and earlier, the
CLEAR statement was necessary to
clear string space in memory. The
next release of BASIC was 5.0. In it,
the format for CLEAR is: CLEAR
(argl),(arg2). Its purpose is to set all
numeric variables to zero, all string
variables to null, to close all open
files and, optionally, to set the

end of memory and the amount of
stack space. Argumentl is a memory
location which, if specified, sets the
highest location available for use by
BASIC. Argument2 sets aside stack
space for BASIC. The default is 256
bytes or one-eighth of the available
memory, whichever is smaller. In
p r e v i o u s v e r s i o n s o f B A S I C ,
argument 1 sets the amount of
string space and arguement 2 sets
the end of memory. Release 5.0 and
l a t e r a l l o c a t e s s t r i n g s p a c e
dynamically. An "out of string
space" error occurs only if there is
no free memory left for BASIC to
use.

When I first received the sample
issue of CodeWorks I thought it was
of no use for TI-99 users. I almost
threw it in the trash but saw the
upcoming attractions on the back
cover. Being a woodworker who has
spent many hours figuring out how
best to cut out the pieces for a project,
your program "Wood" got me real
excited. I decided to try translating
some of the programs. I now have
two of your programs running fine
on my TI- 99/4A. One of the
programs I chose was Maker. I
figured that if I could get this one to
work the others would be easy. I like
the no advertising policy and the
program explanations. If you use
any PEEKS or POKES please
explain what they do. I like the idea
of putting the programs into public

Code Works 3

domain. I like programs that get the
job done without a lot of razzle-
dazzle that only gets in the way,
slows the program down and gets to
be a real pain after a while. I think
you are going to have a great
magazine. Good luck.

Robert L. Keeney, Jr
Wilmington, NC

Because T1 BASIC is so utterly
different, we didn't really expect T1
owners to accept our publication. We
admire your fortitude, and welcome
to CodeWorks!

I am having problems. My basic
problem is that I am dumb when it
comes to programming. From this
all the rest of my problems stem. I
have a Kaypro-4, using CP/M, with
the Perfectwriter word processing
software program. I also have a
MBASIC handbook and an SBASIC
handbook, both as part of the sales
package. For the past two years I
have had need only to use the word
processor software. Now I want to
use your magazine material which I
think is excellent. I apparently
cannot use your material without
some modifications while using the
SBASIC compiler. Is there a way to
enter your programs using only the
MBASIC interpreter instead of the
compiler? Please bear with us
novices; we yet may be able to see
the light at the end of the tunnel.

Harlan Trent
Ashland, OR

No point in messing around with a
compiler if you don't know
interpreter BASIC. Yes, our
programs are designed for your
MBASIC interpreter. Some of them
were written on a CP/M machine
using MBASIC. Your "clear screen"
command on the Kaypro is probably
PRINT CHR$(26) instead of the
CHR$(12) we sometimes use. This
may be oversimplification, but call
up your MBASIC, type our listings
in and R UN them. If you have made
no typographical mistakes they
should run.

I was very much impressed with
your first issue of CodeWorks.
However, your second issue was not
up to snuff. It seems to me that

CodeWorks should be aimed
towards the intermediate to
advanced BASIC programmer and
that Beginning BASIC has no place
in the magazine except as a space
filler. I think that too many
magazines give too much space to
beginning BASIC when there are
many, many books on the subject
Please, NO more Beginning BASIC!

H. Lawrence Abbott
Wyomissing, PA

I am enjoying getting CodeWorks.
My interest is in programs (in
BASIC) of various procedures: one
liners, programming short cuts,
scientific procedures, mathematics,
programming notes, utility
programs, etc.. I do not care what
president of what company has
changed jobs or who got fired, etc.,
etc.. New products are interesting. I
disagree with the one who said that
BASIC was "yuk". Please continue
with the "Beginning BASIC." As a
self-taught programmer of 5 years, I
find Beginning BASIC valuable.

William McCord
Lodge, SC

It would be nice if we could write a
magazine that exactly matched the
current level of expertise of every
reader. But we could no more do that
than you could describe your exact
level of expertise. Aside from that,
each of you would have your own
edition of the magazine, which
would be horrendously expensive!
We are aiming at the "adult user"
who uses Microsoft BASIC. That
user has an IBM PC, a clone, one of
the Tandy computers or uses
MBASIC and CP/M. We think that
two pages of Beginning BASIC is
not too much. I find in writing it that
I usually rediscover some fine point I
have ignored or missed along the
way. You may find the same in
reading it.

I enjoyed Issue 2 as much as Issue
1. Keep em coming. They are great. I
loved the calendar program and
intend to send it out to my public
accounting practice clientele as a
yearly "Happy New Year" sort of
thing from now on. I had one
problem, which may just be peculiar
to my Tandy Model II, but finally

located and corrected it It's line840,
where you go through the D loop four
times to print the four numbers for
the year. The semi colon, which
correctly holds the line the first three
times through, also holds it the
fourth time • which created disaster
on my machine. My solution was to
run the D loop through just three
times, then - on line 845 • do the
LPRINT bit again, without the semi
colon. It worked just fine then. I wish
you and your staff the best of luck.
Thanks again for a great
publication.

Harry Birchard, CPA
West Chester, PA

The Calendar program is an
excellent piece of work •
congratulations. My calendar
problems are solved until 3999 • I
believe my computer may be
obsolete by that time. I would like to
point out two modifications that
would make the program more
efficient I) Line 690 • remove the
space between the R in September
and the O in October. This will make
the start letter of each month begin
over the N in MON. Note in your
reprint on page 13 - October,
November and December are
displaced one space to the right of N
in MON. 2) There is a line feed - in
the form of LPRINT " "• missing
after the FOR...NEXT loop in line
840. The enlarged year title wants to
print in the same line without the
line feed. Keep up the good work.

LeRoy Carson
Goodland, IN

I want to thank you for a
magazine that has really caught my
attention. I am doing more with my
computer since CodeWorks came. I
am writing about the program
Calendar (Issue 2). In line 620, in the
third formula (the one just after the
word "and", the *400 is not there. It
is necessary, or the 29th day of
February will not be printed in
century years that can be divided by
400. I am not that good at
programming, but I like reading and
understanding programs when I
can. Fixing this omission has been
challenging and rewarding to me.

C. N. Harrid
Baltimore, MD

You are right. The *400 is missing
from that line, and the year 2000
should be a leap year. After the
AND, it should read: ((Y—
INT(Y/400)*400)00).

As to the previous two letters, we
have had several readers who had
problems with the LPRINT in the
year heading. We have three
different printers here and it worked
on all three. In looking at the code
now, we wondered how it ever
worked at all. It turns out that all
three printers provide a line feed and
a carriage return at the end of each
line, unlike some, where the
computer sends the line feed.

Thanks for the prompt response to
my inquiry about the difficulty with
Writer.BAS from your first issue.
Your suggestion solved my bug
problem and I have it up and
running in fine style. In the
meanwhile, I have received Issue 2
and find it as interesting and useful
as your first issue. So, I feel that my
investment in a subscription is
going to be well rewarded. Your
"biggie" for Issue 2, Card.Bas, was
something else that I thought I could
use, so I punched it in and played
with it a little. Then I made some
changes which improved it for my
need, and I think might be useful to
others. First, I changed the data
format fields to:

570 A$="l- FNAME"
580 B$="2- LNAME"
590 C$="3- COMPANY"
600 D$="4- ADDRESS"
610 E$="5- CITY ST"
620 F$="6- ZIPCODE"
630 G$="7- PHONE"
640 H$="8- ITEM"

This format for the data entries now
allows the list to be sorted and
searched by Last Name (as well as
for Company, City, Zip, etc.) For
print-out purposes, it is well to
remember to add one space at the
end of each FNAME field entry so
that there will be a space between
the first and last names in the labels.
This could undoubtedly be written
into line 2180, but I haven't tried it
yet. Of course, the label print format
has to be changed in line 2180 to
2200 as follows (for my needs):
2180 LPRINT A$(P(I));B$(P(I))

2190 LPRINT C$(P(I))
2195 LPRINT D$(P(I))
2200 LPRINT E$(P(I));F$(P(I))
Additionally, if PHONE and ITEM
are also wanted in the printout (for
file cards for example) add line(s) to
accommodate them and change J
accordingly.

Since I have several address files
that I want to use, I've renamed (and
copied) the program asCARDl.BAS
for the first one and then changed
line 160 and 330 to name the data file
CARD1.DAT. Then the next
different program is named
CARD2.BAS and 160 and 330 are
changed to CARD2.DAT, etc.

I wanted to print out one of my
files onto form-fed 3x5 cards, so I
changed line 2210 to accommodate
the 3 inch separations by changing
the J values to J=1 to 14 (for 6 lines
per inch printing) using my 4 line
format.

It is an elegant and very useful
program. The only thing that it
lacks perhaps, is the ability to select
out individual groups of records to
be printed without printing the
whole file. (All the records for one
city, for example.) Probably they
could be selected and collected into a
temporary CARD.TEM file which
could be printed then cleared?

Keep up the good work. You are
certainly filling a void for those of us
who have an interest in BASIC
programming.

Allie C. Peed, Jr
Rochester, NY

When we started this magazine we
hoped to be a springboard for ideas
and for readers to take our programs
and expand, enlarge and modify
them. You, and many others who
have written, are reassuring us that
this is exactly what is happening.
We like it.

Thanks for an unusual and useful
magazine. On page 7 of your
S e p / O c t 1 9 8 5 i s s u e u n d e r
Programming Notes, you point out
some differences between MSDOS
and TRSDOS BASIC clear screen
commands. There must be other
differences. Have you discussed
these differences comprehensively
in a past issue? Or, do you know
where I can get a comprehensive
listing of such differences?

Carlyle Maw
Washington, DC

There were no past issues. Sep/Oct
1985 was our premier issue. Yes,
there are some differences which we
are covering as they come up. With
any luck, and a little space, there
should be a discussion of the
difference between PRINT@ and
LOCATE in this issue's Program
ming Notes, for example.

I subscribe to three computer
magazines, but expect to drop them
a n d g e t w h a t I w a n t f r o m
CodeWorks. I believe you'll "do it."

Wayne Shaneyfelt
Aurora, NE

If we don't, it will not be because we
didn't try.

CodeWorks 5

Outline.Bas
Putting Form into your Programs

Text by the Staff
Program idea by JoAnn Blume, Seattle , WA

Most of us at one time or another have gotten
bogged down in a program trying to keep track of
where the subroutines are. This is especially true
when the program grows larger and when we
have renumbered several times.

BASIC, being unstructured and forgiving,
allows us to paint ourselves into almost any kind
of corner. Most of us usually do.

Other languages force a structure, don't use line
numbers, and allow the use of labels for GOTO and
GOSUB. That way, no matter how you add or
subtract from the program, the labels remain
intact. In BASIC, we can get the same effect as a
label would give, and some added convenience as
well.

The program OUTLINE.BAS (see listing) is an
example of how to do it. It looks more complicated
than it is, and if we may say so, is rather clever. It
works on two interesting ideas: One, that the
command to LIST can be used within a program
line, and two, that a program line containing the
command to list ###-### will be automatically
renumbered when we renumber our lines.

In the program shown, the menu has five items.
The ON GOTO in line 210 takes you to the
appropriate lines of code. What is added is
some padding in line 210 so that when you pick the

menu item plus ten, the program will list the
appropriate section of code corresponding to the
menu item. What this means is that during
program development you may choose menu item
4 to run, but if there is a problem in that section of
code you can break, run again, and pick menu item
14, which will list that section of code no matter
where it is in the program. Ifyou have renumbered,
then the lines in 220 through 260 will also have
been properly renumbered, and you can always get
to the section of code you are interested in.

So now you have the effect of labels, with the
added convenience of being able to list that section
selectively no matter where it is. Of course, when
the program is finished, you remove the extra line
numbers in the ON GOTO line and the LIST lines.
In their place you may want to add some error
trapping for numbers less than the lowest menil
item or greater than the highest.

This idea has additional merit because it almost
begs you to decide on some sort of structure before
you start to code. Not a bad idea in itself.

What do you do if your program does not have a
menu? Make one anyway, use it during
development, and then dump it when you are done.
We have been using this for some time now and
find it works nice and keeps things in order. •

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

* * OUTLINE.BAS * FOR CODEWORKS MAGAZINE **

TO CREATE A FILE"
TO ADD TO THE FILE"
TO EDIT THE FILE"
TO LOAD THE FILE"
TO SAVE THE FILE"

REM
CLS
A=10
PRINT TAB(A);"1
PRINT TAB(A);"2
PRINT TAB(A)y"3
PRINT TAB(A);"4
PRINT TAB(A);"5
PRINT
INPUT"ENTER YOUR CHOICE" ;X
IF X=<0 OR X>15 THEN GOTO 190
ON X GOTO 270,350,430,510,590,0,0 0 0 a o o a
LIST 270-340 ' ' '220,230,240,250,260
LIST 350-420
LIST 430-500
LIST 510-580
LIST 590-660
REM *** START OF CREATE A FILE ROUTINE **

L

6
CodeWorks

280 PRINT" START OF CREATE A FILE IS HERE"
290 '
300 '
310 'CODE GOES IN HERE
320 •
330 '
340 END
350 REM *** START OF ADD TO FILE ROUTINE **
360 PRINT "START OF ADD TO FILE IS HERE"
370 '
380 1 t
390 'CODE GOES IN HERE (See Notes, below, covering
400 i REMarked lines.)
410 '
420 END
430 REM *** START OF EDIT A FILE ROUTINE **
440 PRINT"START OF EDIT A FILE IS HERE"
450 '
460 '
470 'CODE GOES IN HERE
480 '
490 '
500 END
510 REM *** START OF LOAD A FILE ROUTINE **
520 PRINT"START OF LOAD A FILE IS HERE"
530 '
540 '
550 'CODE GOES IN HERE
560 '
570 '
580 END
590 REM *** START OF SAVE A FILE ROUTINE **
600 PRINT"START OF SAVE A FILE IS HERE"
6 1 0 '
6 2 0 '
630 'CODE GOES IN HERE
640 '
650 '
660 END

Programming Notes
Many of the computers we address can only see

two letters as variable designators. You can use
more with these machines, but only the first two
are recognized. Because of this, we tend to stay
away from more than two letter variables. If they
should creep in, we try to make sure that there is no
conflict with other variable names. Don't be
alarmed if you see a program here (or any other
magazine for that matter) that uses long variable
names. You can still use them. Just be sure that no
two first characters are alike.

Most BASIC'S running under MS-DOS allow
the use of the RND function without an argument.
You can say, for example, PRINT RND, and you
will get a decimal fraction between zero and one.
Most other BASIC'S require an argument with
RND, like, PRINT RND(O). You may want to keep
this in mind as you read pages 8 through 11 and
page 39 of this issue.

The shorthand way to REMark a line in BASIC
is to use the apostrophe (') instead of REM. But did
you know that "REM" requires 2 less bytes of
memory than does the apostrophe? This doesn't
sound right, but it is true.

CodeWorks 7

Random
How it works and what is it for?

Staff Project

There are many forms of Random (RND) on the
various machines existing today. Sometimes,
trying to get what you want from RND can be
tricky. This article addresses some of the
difference in the random function. It should cover
the majority of BASIC'S. Try yours and see how it
compares.

Random is only useful in games to decide moves
and to simulate the throw of dice or pick cards from
a deck, right? Not really. There are many other
uses for the random (RND) function.

One especially valuable use of random is in
testing a program. Elsewhere in this issue we
present a program which attempts to determine
the best way to cut a sheet of wood. Although the
program does not now contain one occurrence
of the RND function, it was used extensively
during development of the program. To test the
program, a random piece generator was
programmed which created 1000 random groups of
pieces of wood. These groups were then fed to the
program, and results (good or bad) were printed on
the printer for later evaluation. The particular
computer we used required a "seed" number for the
random generator. Because a seed was needed, the
same random sequence could be easily repeated by
using the same seed number. This was especially
helpful in comparing results after slight
modifications were made to the program. It
allowed us to repeat the same random sequence
and compare results with previous runs.

Another application of the random function
could be in creating a large set of random
characters to act as a test for a sort routine. An
entire diskette full of random characters in a
random file can be created this way. This
technique has a way of showing the programmer
how to "bullet proof' a program by taking almost
any situation into account.

One of the most interesting applications for the
random function is in using the "Monte Carlo"
method of calculating probability. Essentially
what this method entails is that if enough random
points are chosen within a defined area, the
distribution of those random points will be

8

uniform. Now, given an aerial photograph (or a
surveyor's map) of a piece of land containing a
lake with an irregular shape, you can get a very
good approximation of the area of the lake.

Before we can play with these interesting ideas
though, we need to find out more about the RND
function.

RNI)(X)
Many computers use the simple expression

A=RND(X) to get a random integer between 1 and
h X=0 however, the number returned will be a

number between 0 and 1 (.12345 for example.)
A=RND(10) will return a random integer between
1 and 10. Note that you cannot get this expression
to return a zero. I f you need zero. use A=RN I)(10)-1.
Now you get numbers between 0 and 9, and if you
want to include the possibility of getting the
number 10, do this: A=RNI)(11>-1. Tandy Models
I,II,I1I and several others use this method to
generate random numbers. But where do they get
the seed ? For the most part, it's done internally
using the system clock and the memory refresh
circuits. This makes it very easy for the
programmer to create random numbers, but does
not allow for a repeatable sequence of random
numbers.

Most MS-DOS machines and several others,
including MBASIC running under CP M. use an
in rna clock to give a seed to get a decimal

ac ion for RND(0). Almost all these machines
wi return the same sequence because the seed
oes not change. This is not all bad however, since

most ol these machines will also allow the operator
RAMnAw,l0Wn 8eed n«mber. If the statement

, 18 given' BASIC w*11 ask for a seed
mber (usually between -32767 and 32767.) Now

diffprtfT J ck°'ce a very large number of
seeds and also the capability to repeat

Code Works

any random sequence.
One of the disadvantages of RANDOMIZE is

that it stops the program and asks for a seed
number. You can program it like this:
RANDOMIZE 76. Now the program will not stop,
but the seed is 76 and every time the program is run
the random sequence will be the same.

If your machine has TIME$ (and most these
days do) you can strip off the last two or four digits,
change them to integers using the VAL function
and use them to seed your random generator. The
minutes and seconds from TIME$ will give you a
respectable array of different seeds. Here is an
example of one way to do it:

10 A$=MID$(TIME$,4,2)+MID$(TIME$,7,2)
20 A=VAL(A$)
30 RANDOMIZE A

If TIME$ happens to be 11:23:02 when this code is
called, A will be equal to the integer 2302. This will
give 3600 different possible numbers for your seed,
and will not stop execution of the program to wait
for operator intervention. At this point the random
number will still be a decimal fraction. How do we
get random integers, or better yet, a range of
random integers?

By using the INTeger and some razzle-dazzle we
can get just about anything we want from the
random function. R=INT(RND*10+1) will return
random integers between 1 and 10.
R=INT(RND* 100+1) will return random integers
between 1 and 100, etc. As in the discussion at the
beginning of this article, zero is not included in
these examples. If you need to include zero use:
R=INT(RND*10+1)-1. Now you will get numbers
between 0 and 9, and if you need to have the 10
included also, then change the 10 to 11.

How to get a range of numbers starting and
ending at your choice? This should do it:
R=INT(RND*A)+B. Substituting numbers we get:

R=INT(RND*100)+50

A is now 100 and B is 50. The range of numbers this
will produce is between 50 and 149 inclusive. In
other words, B is the smallest number you can get
and the largest will be (A+B)-l. Again, you can
"doctor" the formula to suit your needs.

Defining random as a function

In BASIC we have a (too little used) statement
called DEF FN, which stands for "Define
Function". We can put our formula from above into
a defined function and then when we need it, we

can feed it the range we want and it will return our
random number within that range. It can be done
like this:

10 DEF FNRAN(A,B)=INT(RND*A)+B
20'
30 PRINT FNRAN(100,50)
or, later in the program,
90 RN=FNRAN(51,10)

Keep in mind that a DEF FN cannot be executed
in immediate, or command, mode. It will only
function during program execution.

Monte Carlo and the Seattle Busses

It turns out that the Seattle bus system found
that the number of riders on their busses decreased
as the fare was increased (not an unusual finding.)
The rate of decrease was expressed as the number
e to the minus X cubed. It makes a graph like
figure 1. The area under the curve indicates the
total revenue collected.

There are several methods to calculate the area
under the curve. The one we will consider here is
the Monte Carlo method. Program Monte Carlo
(see listing) will determine with fair accuracy the
percentage of the total area of the graph which is
under the curve. It does it by confining 1000
random numbers to the limits of the rectangular
area and letting the numbers fall within that area
where they may. It then assumes that the
distribution of the random points was uniform and
counts those that fell above the curve. Subtracting
this number from the original 1000 gives the
number of points below the curve.

The program first defines the curve in lines 150
through 180. The formula EXP to the -X cubed
appears in line 170. (We used variable L instead of
X, but it makes no difference.) In line 160 it was
necessary to divide L by 1000 to keep the number
within the range of the EXP function. EXP(N) will
overflow if N is greater than about 87. All the
values for the curve are stuffed into array A(I).

The loop from lines 190 through 230 then
generates random numbers and compares them
(line 210) to the value for the curve in A(I). If the
value of the random number is larger than the
value of the curve at that point, counter Q is
incremented by one. In the end, Q will tell us how
many random numbers landed above the curve.
The rest of the program simply prints out Q and
the percentage of points below the curve.

The problem with Monte Carlo is in defining the
boundary of the area to be measured. In our bus
case it was easy enough - we had a formula to

CodeWorks 9

100

90 -

80 -

70 "

60 H

50 -

40 -

30 -

20 -

10 -

1

100
Program "Monte Carlo'

100
110

120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
IS '

REM ** MONTE CARLO METHOD *
REM ** SEATTLE TRANSIT FARE
AND RIDER PROBLEM **
RANDOMIZE
N=1000
DIM A(N)

FOR 1=1 TO N
L=I/N
A(I)=INT(EXP(-L*3)*10000)

NEXT I
FOR 1=1 TO N

RN=INT((RND*10001)+l)-1
IF RN>A(I) THEN Q=Q+1
PRINT RN,A(I)

NEXT I
PRINT
PRINT"THERE WERE "yQj" OUT OF
;N?" ABOVE THE CURVE"
PRINT" AREA UNDER THE CURVE
7((N—Q)/N)*100;" % OF TOTAL"

e area under the curve indicates total revenue
co lected by the bus company. As the fare
increases, the number of riders goes down. It was
ound that the curve fit the formula e to the minus

cu e . If your random function works like most
°u uer°n Pers°nal computers we have tried, you
should find that about 81% of the area of the
rectangle is under the curve.

nnc LSe ^*D(0) 'n place of RND on non-MS
/T ,,, mac lnes- Also, you may need to use EXP(—

on some machines that don't evaluate powers
prior to subtraction.

10
CodeWorks

define the curve. In a sprawling lake with
switchback inlets on a piece of property it would be
another matter entirely. Obviously, the better the
definition of the boundaries and the more random
points you use, the better the accuracy. Even
though the program we used is short, it still takes a
while to calculate and compare all those points.

One would rather expect that the curve the bus
company came up with would fit any situation
with price/buyers. This is not necessarily the case.
There are many other influencing factors. On
some items it has been shown that there is a
secondary bump in the curve as price goes up. This
has been attributed to "status" buyers. That curve
looks like the one we have shown, but has a nice

bump on the downside, after which it continues
down. Someone in our office labeled it the "snob
knob", although we are unaware it really has a
name at all. The reason we mention it is that it
would be difficult to come up with an expression to
define that kind of curve.

In Seattle they had a policy for a while called
"free Wednesdays," during which one could ride
the bus for free. Although we do not know exactly
what they were trying to do, it seems likely they
were trying to determine the universe of riders
available and set the high end of the curve.

Random numbers can also be used in testing
multiple probabilities. It is a fascinating subject,
and one we will delve into in some upcoming issue.

HOW RANDOM IS RANDOM?
Computers don't produce random numbers.

Once a program is written, the numbers that the
computer produces can be deduced. The best we
can do is produce number sequences that have
properties which are very similar to those of
random numbers.

Don't confuse random with arbitrary. Random
requires that every number should be equally
likely, arbitrary means we don't care what the
number is. In almost every case we desire more
than just one number. It is a sequence of random
numbers that is needed for an accurate simulation
or calculation.

Computer generated random numbers are called
pseudo-random: they may walk like ducks, quack
like ducks and look like ducks, but they aren't
ducks. How can a program be checked to see that it
does create uniform random numbers (each value
equally likely)?

The statistics required to evaluate a sequence
are well developed but quite complicated. One of
the easiest tests is to do a Chi-Square analysis. In a
set of N random numbers, all less than or equal to
100, we can expect N/100 numbers of each value.
At the same time, the frequencies of occurrence of
all the values should not be exactly the same; that
would not be random.

Let's make 1000 randomly-generated integers,
all of which are less than or equal to 100 and keep
track of their frequency in an array. Program Chi-
Square will compute the value of your array.

If your value of CHI is close to 100, the numbers
are random. If it is far from 100 they are not
random. Tables exist to determine what is meant
by close or far (within 20 is close.) Good generators
should pass this test 90 percent of the time; bad

ones will not. How well does your computer do?

Reference: Algorithms by Robert Sedgewick,
1983, Addison- Wesley Publishing Co., Inc.

Program notes: See related article on Random
Numbers. Depending on your computer, you may
run the program as is or delete or modify lines 130
through 160 and 190. As shown, the program was
developed on a computer which required a seed.
The seed is derived from the system clock in lines
130 and 140 and uses the minutes and seconds
from TIME$. Just as a matter of interest, we ran
this program on five different machines and found
that in the ten tests all those machines fell outside
of the plus/minus 20 percent limit at least once. •

100 REM CHI SQ TEST FOR RANDOM
110 DIM F(1000)
120 RN=INT(MID$(TIMES,4,2)+MID$(

TIME?,7,2)):RANDOMIZE RN
130 FOR 1=1 TO 100
132 F(I)=0
133 NEXT I
140 FOR 1=1 TO 1000
150 N=INT(RND*100)+1
160 F(N)=F(N)+1
170 NEXT I
180 REM FREQ OF N IS NOW IN F(N)
190 REM NOW TO COMPUTE CHI SQ
200 TL=0
210 FOR 1=1 TO 1000
220 TL=TL+F(I)"2
230 NEXT I
240 CHI=(TL/10)-1000
250 PRINT"CHI SQ VALUE IS ";CHI

CodeWorks 1

Beginning BASIC
The way we enter values for variables in BASIC

is to use the INPUT statement. There are several
forms of this statement. Let's look at some of them

| and see what they do and how they differ.
The INPUT statement we use most is simply:

INPUT N. When BASIC sees this statement, it
stops and prints a question mark on the video
screen, then waits for you to input some integer
value. The number you give it at this point is
assigned to variable N, which means that it will be
stored in a location in memory which the program
will call N. Nothing happens though, until you
press the Enter or Return key. BASIC then stores
the value in N and goes on to the next line of the
program.

If you input two values when only one is called
for, as in answering an input request with: 25,30
BASIC will print "Extra Ignored" and take only
the first value. If you want to enter two or more
values, the form the INPUT statement must take
is: INPUT A,B (or INPUT A,B,C,D for four
values). BASIC then expects as many values as
you have separated by commas and waits for you
to enter all of them. When the program expects two
values, for example, you enter them like this-10 20
and ENTER. '

INPUT N simply puts a question mark on the
screen. You may not know what is expected or
what the value is for (it could be one of several
values.) The INPUT statement may be combined
with a form of the PRINT statement so that you
have an intelligible prompt to follow. Its form is:
INPUT "Enter something for value A here";A
Now, instead of simply stopping and printing a
question mark, the program will print everything
between the quote marks on the screen along with
the question mark. In our case, it will print: Enter
something for value A here? The question mark is
decidedly not needed here, since we are not asking
a question, and there is a way to get rid of it With
this form of the INPUT statement however we
must live with it.

What happens if you input the letter A when the
program asks for INPUT A? Since variable A has
not been defined as anything else, it is assumed to
be an integer value. If you answer this input
prompt with the letter A, BASIC will return a
message telling you to "Redo from Start." As you
can see, INPUT can be very selective and fussy If
you want to input the letter A, you would have to
say INPUT A$. Then the string variable A would
be stored in memory location A$. As a matter of
fact, you can input your entire name, including

12

spaces, to the INPUT A$ statement. A$ will then
contain whatever you typed in, even if you had
entered integers (they will now be assigned as
strings though.)

LINE INPUT is another form of the input
statement. This one does not print the bothersome
question mark, and allows you to enter any
character or punctuation mark (except the Enter
key.) With LINE INPUT A$. you can enter
anything you want up to 255 characters long, and
it will be assigned to A$. When using LINE INPUT
with a prompt, as in LINE INPUT'Enter your
name";A$, it is wise to leave a space before the last
quote mark to give at least one space separation
between the prompt and your reply. Otherwise, it
might look like: Enter your numeHenry. Because
you can enter anything for a LINE INPUT
statement, you can include commas without
getting the Extra Ignored message from BASIC.
TWPn-iifxn f°,rm of input is the function
INPUT$(N), where N is an integer from 1 to 255.
ihis function allows you to type in N characters
without showing them on the screen. It might be
use or passwords, or in entering telephone
, m, .re where it could provide some error

cnecking immediately upon input (based on the
th;6 f enfl numbers.) The other feature of

j U"c Ion (not* that this is a built-in function
kpv H° f 8tatfment command) is that the Enter
of r-K 66 »n0t ^ pre88ed after the required number
of characters is input. This function does it for vou.
u,pH t!n J °.rm of input ia with INKEYS. It is
time th/f8 ®charact*r '™>m the keyboard every
function Un<\tlon '8 e*ccuted. Yes, this is another
normallv H" " ̂ & comman^ or statement. It
usuallv ^eS n°} 8top Pfogram flow and is
some chaS t'n8lde a '°°P which calls itself until
be used for * key) !8 pre88ed INKEYS can
Because it many '"tcresting and useful routines.
code to e*cWechalIy *lo0p'yoUcan WritC
thereby y°U d° n°l Want inpUt'
which are permissible^ * ̂ tH°8e character8

INKEYS works'^ Pr0,fram you can trV 10 8ee how

20 B=ASOAS?:IF A$="" ™EN GOT° 10

30 PRINT "YOU PRvoopn » a*
40 PRINT '< rre A\,KLSSED ;A$;
50 GOTO 10 " VALUE IS":B

It will print tKo
ASCII valup B aract«r you pressed and its

Code Works

Puzzler
Our Puzzler in Issue 2 attracted some attention.

Thank you all for sending in your solutions. Many
of you suggested that the problem was not too well
stated. In looking back, we find that it may not
have been, but then it was a difficult question to
ask without giving away the answer.

Only two of you found a way to solve the
problem; both of you did it essentially the same
way and yet different from the solution we had for
it. Coincidentally, both of the correct solutions
were postmarked on the same day!

Edward Green of Naperville, Illinois, did it as in
listing 1 (we took out his error trapping to lay the
problem bare.) His solution asks for the variable
letter, changes it to X$ and then inside the loop
equates that letter to I with a series of IF
statements. It does exactly what we had intended.

100 REM ED GREEN NAPERVILLE, IL
110 A=l:B=2:C=3sD=4:E=5
120 INPUT"WHICH VARIABLE DO YOU

WANT TO CHANGE";X$
130 FOR 1=1 TO 10
140 IF X$="A" THEN A=I
150 IF X$="B" THEN B=I
160 IF X$="C" THEN C=I
170 IF X$="D" THEN D=I
180 IF X$="E" THEN E=I
190 F=A+B+C+D+E
200 PRINT A;B;C;D;E;F
210 NEXT I

Program listing 1

William J Pottberg of Burlingame, California,
also did it this way except he put the IF statements
outside the loop as a subroutine and put a GOSUB
inside the loop. Both work and both accomplish
the same thing.
100 REM THE CODEWORKS VERSION
110 A(1)=1:A(2)=2:A(3)=3:A(4)=4:

A(5)=5
120 INPUT"VARY WHICH ITEM";X
130 FOR 1=1 TO 10
140 A(X)=I
150 F=A(1)+A(2)+A(3)+A(4)+A(5)
160 PRINT A(1);A(2);A(3)?A{4);

A(5); F
170 NEXT I

Program listing 2

Our solution is shown as listing 2. We never even
thought of trying strings, but used subscripted
variables. Both methods can get lumpy if many
items are to be selected to vary. The string method
seems to be cleaner for few items, but ours has the
ability to read from an array. We are happy to see
another way to do it and will incorporate the idea
into something for future issues.

Those who wrote in with the incorrect solution
were generally trying to change the STEP or the
FROM TO values, not the loop counter itself.
Thank you all again for your participation. If
puzzlers turn you on, we can come up with one in
every issue, some which don't require a written
reply to us. Now, on to Puzzler 2.

Puzzler 2

What will the following code do? Will it even
work, and if yes or no, why?

10 A=1:B=1:C=2
20 X=A=B:Y=B=C
30 PRINT X,Y

Try to figure it out before you type it in and try it.
For the answer, turn the page upside-down.

• o PUB P J° pea^sui x- puu o uaaq aABq ppioM
J3MSUB aqx 'qSnoqx to xBMX 0<>9=A9<>V=X
:pB3J psq OS 9UH J1 xuaasddB aaoui aq
XjqBqoad pjnoM xi uadoad puB {B3aj si ;i xnq 'qanui
XBq; pasn siqx aas x.uop no^ famx x°u sx qaxqM)
3 ox jBnba si g xuqx s^bs XI OS auH J° lJBd puoaas aqx
ux puB '(axux si qaxqM) psnba aas g puB y XBqx S^BS
qaxqM ioxBiado IBOISOI B saxuoaaq uaqx u3xs jBixba
puoaas aqx '^XQBNHA J° Xuatuu^TSSB UB SI OS 3U!I
UI u3xs {Bnba XSJIJ aqx 0 PUB I" uaaq aABq pfnoqs
aaMsuB Jnox asiBj JOJ oaaz B pus xuauiaxBxs anax
B IOJ x-B urnxaa s(3jgyg xjosojoij^ xsoj^ :aaAvsuy

CodeWorks 13

Calculating Accuracy
Obtaining the precision they left out

Raymond L. Murray, Ph.d. and Nancy K. Reid,
North Carolina State University

Most BASIC'S, even though they boast of double
precision, don't have it when working with
exponentials, powers and logs. This article tells
how to get it.

Beginning computer users are often nonplused
by the inaccurate values of built-in functions such
as the exponential, logarithmic and trigonometric
functions, as well as the important process of
exponentiation. The manuals do not reveal that
the answers are in single precision (6 significant
figures) even if the variables are declared double
precision (16 significant figures). Having need of
accurate values of several of the mathematical
functions, and finding that double precision sub
routines did not allow powers of numbers other
than 1/2, we developed a double precision program
(see listing) to calculate and independently check
EXP(N), LOG(N), and NtX. The latter is obtained
by the algorithm

NtX = EXP(X*LOG(N))

The exponential is calculated by summing the
terms in the standard formula

oo
e x = I z"/n

n=0
but employing ratios of successive terms to avoid
having to raise the argument to a power, a single
precision operation. Advantage was taken in
programming of the fact that e~*=l/e*. In order to
avoid slow convergence of the exponential series
for large arguments, the product theorem was used
in the form eI=(eI"5)(e5). Thus e165=(e15Xe5)3.

The natural logarithm was calculated by the
best of several series appearing in Handbook of
Mathematical Functions, Edited by Milton
Abramowitz and Irene A. Stegun. Dover
Publications (Equation 4.1.17, page 68).

OO

In z = 2 X [(z-l)/(z+l)f"7(2n+l)
n=0

This formula is useful for either small or large z,

but it is convenient to apply the same expression
for values less than and greater than 1, noting that
ln(l/z) = -In z. To avoid very slow convergence of
the logarithm series for large arguments, the
addition theorem was used in the form In z =
ln(z/5) + In 5. Thus In 1000 would be calculated as
In 1.6 + 4ln 5.

The logarithm and exponential subroutines are
then used to calculate powers of numbers, noting
that if y = n" then In y = x In n. A distinction is
made between numbers that are decimals or
quotients such as 22/7.

In calculating series, a term size limit of 10 17

was used. Since the upper and lower limits on
num re that most Basic's can handle are
ExT,mate'y 1-70 X 10 - stops were placed on
INPUT numbers, viz.,

N < 6D + 37
N<86

for LOG(N)

ABS(X)< 86/ABS(LOG(N)) for NlX *

attemPt8 10 find the logarithm of a
negative number is told "redo".
mna^ program generally slower than that of
that ^omputers in the calculation of functions
can n h f pro^ ram8 bave in common. However, we
versus u" T^!«***<*" figures - 15 or 16
inverse relaV ^ optional check is based on the
Y = FXPrMi •w.n8 vP8 three functions, i.e., if
if Y - Mr Y lu en* = and vice versa, and x then N = Yt(l/X)
function?*"!?" °f these methods to other
calculation" • m mathematical analysis and
exwneS w8trai?htforward- For exa™Ple. **
exponential ' and™ he "l ̂ ̂
recursion i logarithm and applies
order functions" t * g° ***I<>Wer °rder * high6r

14
CodeWorks

100 CLS:REM CLEAR THE SCREEN
110 PRINT" LEAP IS A PROGRAM TO CALCULATE, TO DOUBLE
120 PRINT" PRECISION, NATURAL LOGARITHMS, EXPONENTIALS,"
130 PRINT" AND POWERS OF NUMBERS (LOG, EXP, AND POWER)."
140 PRINT" BY RAYMOND L. MURRAY AND NANCY K. REID"
150 DEFDBL B-H,L-Z
160 DIM T(51)
170 E = ID-17
180 CK = 0
190 PRINT
200 PRINT" 1) N~X"
210 PRINT" 2) LOG(N)"
220 PRINT" 3) EXP(N)
230 INPUT "SELECT PROGRAM j CHOOSE 1,2 OR 3"; Q
240 PRINT
250 IF Q = 1 GOTO 300
260 IF Q = 2 GOTO 760
270 IF Q = 3 GOTO 1300
280 GOTO 200
290 REM ***
300 REM PROGRAM FOR POWERS OF N
310 PRINT "BASE MAY BE ANY POSITIVE DECIMAL NUMBER OR QUOTIENT,EXCEPT 1
320 PRINT "N AS A DECIMAL (1)"
330 PRINT "N AS A QUOTIENT (2)"
340 INPUT "SELECT TYPE OF N : CHOOSE 1 OR 2"? C
350 PRINT
360 IF C = 1 GOTO 390
370 IF C = 2 GOTO 400
380 GOTO 310
390 INPUT "ENTER N AS A DECIMAL"; N : GOTO 430
400 INPUT "NUMERATOR OF N ="; NUM
410 INPUT "DENOMINATOR OF N ="; DEN
420 N = NUM/DEN
430 N0 = N
440 IF N0<=0 THEN PRINT"ONLY POSITIVE BASES : REDO";GOTO 310
450 IF N0=1 THEN PRINT"BASE CANNOT BE 1 : REDO":GOTO 310
460 PRINT
470 PRINT "EXPONENT MAY BE ANY DECIMAL NUMBER OR QUOTIENT
480 PRINT "X AS A DECIMAL (1)"
490 PRINT "X AS A QUOTIENT (2)"
500 INPUT "SELECT TYPE OF X ; CHOOSE 1 OR 2"; R
510 PRINT
520 IF R = 1 GOTO 550
530 IF R = 2 GOTO 560
540 GOTO 470
550 INPUT "ENTER X AS A DECIMAL"; X ; GOTO 590
560 INPUT "NUMERATOR OF X ="; NU
570 INPUT "DENOMINATOR OF X ="; DE
580 X = NU/DE
590 X0 = X 'CHECK INPUT POINT
600 XL = 87/(ABS(LOG(N)))
610 IF ABS(X0) > XL GOTO 630
620 PRINTjGOTO 820;'TO LOG PROGRAM AS SUBROUTINE
630 PRINT "EXPONENT OUT OF RANGE : REDO" s GOTO 470
640 LN = X * LG
650 N = LN

Code Works 15

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190

PRINT:GOTO 1370:'TO EXP PROGRAM AS SUBROUTINE
EX = S
PRINT N0;"TO THE POWER"YX0;" = EX
IF CK=1 THEN PRINT "SHOULD AGREE WITH YOUR ORIGINAL BASE'
IF CK = 1 GOTO 730
PRINT : INPUT "DO YOU WANT TO CHECK (Y/N)";A$
IF A$ = "Y" GOTO 1770
PRINT:PRINT
RUN 150
REM ***#****#*##**
REM PROGRAM FOR NATURAL LOGARTIHMS
PRINT "INPUT MAY BE ANY POSITIVE NUMBER < 6E+37"
INPUT "N ="; N
REM CHECK INPUT POINT
IF N<=0 THEN PRINT"ONLY POSITIVES: REDO":GOTO 770
IF N>6E+37 THEN PRINT"TOO LARGE: REDO":GOTO 770
Z = N
IF Q=1 THEN PRINT"NOW IN LOGARITHM SUBROUTINE"
Z0 = Z
IF Z = 1 THEN LG = 0 : GOTO 1090
IF Z <=.2 GOTO 880
GOTO 900
Z = 1/Z
H = 1
IF Z >= 5 GOTO 1000
GOSUB 1160
IF Q = 1 GOTO 640 : IF Q
PRINT "LOG("Z0") ="• LG
IF CK = 1 THEN PRINT

1 GOTO 980
INPUT "DO YOU WANT TO CHECK (Y/N)"?RS
"Y" GOTO 1770 7 *
PRINT

= 3 GOTO 1700

IF CK = I SH0ULD AGREE WITH YOUR ORIGINAL ARGUMENT'

PRINT :
IF B$ =
PRINT :
RUN 150
U = 1.6094379124341#
Z = Z/5
M = M + 1
IF Z > 2 GOTO 1010
GOSUB 1160
LG = M * U + LG
M = 0 :REM RE-INITIALIZE
IF H = 1 THEN LG
IF Q = 1 GOTO 640
PRINT "LOG("Z0") =
IF CK =

-LG
! IF Q

LG
= 3 GOTO 1700

= 1 THEN PRINT "SHOULD AGRFF WRM,,
IF CK = 1 GOTO 1140 H Y°UR ORIGINAL ARGUMENT*
PRINT : INPUT "DO YOU WANT TO CHECK FV/UI.
IF B$ * "Y" GOTO 1770
PRINT : PRINT
RUN 150

nn™ S U B R 0 U T I N E T0 CALCULATE LOGARITHM
PRINT : PRINT "LOGARITHM CALCULATION TM »
Y = (Z - 1)/(Z + 1) NATION IN PROGRESS"
T (1) = Y : V = Y

16
Code Works

1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730

KM = 50
FOR K = 1 TO KM
PRINT "LOG LOOP #" ; K
T(K+1) = T(K) * Y * Y * (2*K -1)/(2*K +1)
IF ABS(T(K+l)) <
V = V + T(K+l)
NEXT K
LG = 2 * V
RETURN

E GOTO 1270

REM

GOTO 1310

REM PROGRAM FOR EXPONENTIAL
PRINT "INPUT.MAY BE BETWEEN -86 AND 86, INCLUSIVE."
INPUT "N = ";N
REM CHECK INPUT POINT
IF N > 87 OR N < -87 THEN PRINT "N OUT OF RANGE : REDO
IF N > 87 OR N < -87 GOTO 1310
IF Q = 3 THEN PRINT "CALCULATION IN PROGRESS"
D = N
IF Q=1 THEN PRINT"NOW IN EXPONENTIAL SUBROUTINE
D0 = D
KM = 5 0 : L = 0 : W = 0 i 1 = 0
IF D < 0 THEN D = -D
IF D > 2 GOTO 1440
IF D <= 2 GOTO 1490
1 = 1
W = 148.4131591025766#
D = D - 5
L = L + 1
IF D > 1 GOTO 1440
T (1) = 1 : S = 1
REM START OF LOOP
PRINT s PRINT "EXPONENTIAL CALCULATION IN PROGRESS
FOR K = 1 TO KM
PRINT "EXP LOOP #" ? K
T(K+l) = T(K) * D/K
S = S + T(K+l)
F = T(K+1)
IF S = 0 GOTO 1610
IF D <> 0 GOTO 1600
IF D = 0 GOTO 1630
IF ABS(F) <= E GOTO 1630
NEXT K
REM END OF LOOP
IF I = 1 GOTO 1650
IF I <> 1 GOTO 1680
FOR A = 1 TO L
S = S * W
NEXT A
IF D0 < 0 THEN S = 1/S
IF Q = 1 GOTO 670
PR TNT "EXP("D0") ="? S
IF CK = 1 THEN PRINT "SHOULD AGREE WITH YOUR ORIGINAL ARGUMENT
IF CK = 1 GOTO 1750
PRINT : INPUT "DO YOU WANT TO CHECK (Y/N) ;C$

Code Works
17

"Y" GOTO 1770
PRINT

1740 IF C$ =
1750 PRINT :
1760 RUN 150
1770 REM ***********************
1780 REM CHECKING SUBROUTINE
1790 CK = 1 :REM INDEX OF CHECK
1800 PRINT"CHECK:
1810 IF Q = 1 GOTO 1840
1820 IF Q = 2 GOTO 1880
1830 IF Q = 3 GOTO 1900
1840 X = 1/X0
1850 N = EX
1860 N0 = N
1870 GOTO 590
1880 N = LG
1890 GOTO 1330
1900 N = S
1910 GOTO 790
1920 END

Programming Notes

Screen addressing is an important part of
computing. There is no standard, although there
are two popular methods which have gained
acceptance. BASIC running under MS-DOS
generally uses the LOCATE R,C command, where
R is the row and C is the column. This command
will position the cursor at the screen location
called for by the LOCATE. The next PRINT
statement (even if it is several lines of code away),
will then print at that location. The LOCATE
positions start at 1,1 which is the upper left corner
of the screen. An attempt to LOCATE at 0,1 or 1,0
will give a "Position not on Screen" error.

The other popular positioning format is the
PRINT@. This positioning device is used like this:
PRINT@721,"whatever". This one is used on all
the earlier Tandy models, as well as MBASIC
which runs under XENIX. The counting scheme
here runs from 0 through 79 (assuming an 80-
column screen), and position 80 then becomes the
first print position on the second line.

You will undoubtedly run into programs printed
in some magazine or other (even this one) using
one or the other of these print locating
conventions. If you are not used to seeing one of
them it will look foreign and forbidding, but don't
let that stop you. There is a way to convert from
one form to the other.

To change LOCATE Row,Col to PRINT@:
PRINT@ will equal (Row—l)*(Col—1).

To change PRINT@ to LOCATE Row,Col:

Divide the PRINT@ number by 80 and add 1 for
the Row. Add one to the remainder for the Col.

That s all there is to that. You might even writes
little program to do the math for you, and even
have it print out a list of the line numbers and what
needs to be changed to what. If you are writing a
program that needs to run with both conventions
you can write a subroutine that does it and simply
change one variable at the start of the program to

W^'c^ machine it should convert for.
he above all assumes that we are converting

rom one 80-column screen to another. What if you
are trying to convert from a 64-column machine to
an 80-column one? It will still work, but you will
not e utilizing all of the 80-column screen space.

oing from an 80-column screen to a 64-column
one is another matter entirely. Mostly because it
simp y won t fit. In this case you would need to
r!!gg e* ngs ar°und to try and make everything

°n e smaller screen. The 64-column machines
usually only have 16 lines, and that makes matters
even worse.

dnnv"16 l16 that run under CP/M
even have a PRINT@ or a LOCATE. They

FSpTpp ^>nvention for terminals that uses an
snKi.n, * 8e9uence to unleash their cursor. It is
Hpfin At ° U8C '8 normally set up as a user
pronfm (DEF FN) at thtl beginning of the
coordinates " Wkh the print

18

Download
The CodeWorks Download System

Before we get into using the system, we ought to
explain what the system is not. It is not a bulletin
board system (BBS). It does not have the ability for
people to carry on bulletin board type
conversations. It is not an electronic mail system.
You cannot send messages to other subscribers
and your ability to tell the editor anything is
limited. It is not an electronic information service.
You won't find news, sports or weather here.

The CodeWorks download system is a system
with limited capability to feed back information to
the system operator. As it starts operation (full
service operation will occur on or about the 1st of
January 1986), we may have some problems, so
bear with us. Any new software invariably has its
faults.

The System
The system was designed and developed in the C

programming language. It runs under the XENIX
operating system and uses its services, but it does
not use the normal XENIX access control or
utilities.

In designing the system, a lot of hooks have been
left in for special features and enhancements
which can be added in the future.

If there is enough interest in telecommuni
cations, followup articles on the system and
telecommunications in general will include such
things as basic system design, terminal programs
to call the system with, automating your
interaction with the system, etc. Let us know what
you would like to see.

Using the System,
The download system has two sections. For

those who are not subscribers there is a limited
demonstration section available which allows a
preview of the magazine and the download
features. If you are not a subscriber but want to
become one, you can sign up while here or ask for a
sample issue of the magazine.

The major section of the system is for
subscribers and provides for issue by issue
downloading of programs and updates or
corrections.

The system is menu driven. This means that
everything you can do will be controlled from a
menu of one sort or another. This greatly
simplifies use of the system for beginners. An

advanced user mode is available to subscribers
which allows use of the system without the menu
displays. Subscribers who are interested can learn
about this mode on line.

In order to get on the system, you first have to get
yourself set up on your computer and call us. You
should set your computer to 8 bits, No parity, 1
stop bit, full duplex and 300 baud. Download at
1200 baud is not available now, but it will be later if
there is enough interest in it.

Once you have set up your computer, call
(206) 475-2356. If the computer line is up, it will
answer the phone. It will be unavailable
sometimes (backups in progress, new software
setups, etc.) but it will be up normally within a few
hours. Since it runs unattended, the system could
crash during an evening or weekend without
anyone being able to restore it. In that case you
may have to wait for the next business day before
it will be up. If you find the number continually
busy, let us know because that will tell us it's time
to add another dial-up line.

C o d e w o r k s M a g a z i n e D o w n l o a d S y s t e m
P l e a s e L o g i n

U s e r N a m e

Figure 1

C o d e w o r k s M a g a z i n e D o w n l o a d S y s t e m
P l e a s e L o g i n

U s e r N a m e " "

C o d e w o r k s D e m o n s t r a t i o n S y s t e m
M e s s a g e o f t h e D a y

S e e t h e H a l l e y ' s C o m e t P r o g r a m
n o w a v a i l a b l e u n d e r d o w n l o a d

P R E S S R E T U R N / E N T E R W H E N R E A D V

Figure 2

Code Works 19

Once you have an answer from the system, your
screen should look like that shown in figure 1. If
you are logging in to use the demonstration
system, type DEMO (upper or lower case, it doesn't
matter) and press RETURN or ENTER. You will
notice that your letters echo back only as pound
signs,(#) so no one can look over your shoulder and
see what you have typed. You will be welcomed to
the system and then see a "Message of the Day"
(MOTD) with information of interest (figure 2).
Finally, you will be placed in the demonstration
menu system which we will go into in a moment.

If you are a subscriber and want to use
subscriber function, then you should enter your
subscriber name and number (the way it appears
on your mailing label) as one word and press
RETURN. For example, if your name is
"Sampson" and your subscriber number is 1325,
then you type: sampsonl325. Use upper or lower
case or mixed, it makes no difference. Your
subscriber number, by the way, is near the upper
right of your mailing label.

Next you will be prompted for your password. If
this is your first time on the system, the password
you type in will be registered in the system as your
normal password. You will be asked to type it in a
second time for verification. Remember your
password! If you forget it we cannot give it to you
because it is encrypted by the system and even we

can't get to it.
Once you have entered your password, you will

be welcomed to the system and see the message of
the day. Finally, you will be placed in the
subscriber menu.

The Demonstration menu
The demo menu looks like figure 4. Each option

available to you has a number before it. To choose
that option, type the number and press RETURN
or ENTER. Let's go over the options quickly to see
how they work.
0. END(logout) The logout option will sign you
off the system and hang up the phone. You should
then hang up your phone.
1. Help The help option will display one or more
screens of information about the operation of the
system. You can leave the screens by typing the
ESCape character. Pressing RETURN or ENTER
will continue cycling the screens until you have
seen them all.
2.Download The download option allows you to
access the demo download menu. You will be given
a choice of files available for download (figure 5).
You select one by typing its number and pressing
RETURN or ENTER. The system will retrieve the
file and ask you to press RETURN or ENTER
when you are ready to receive it While the system
is waiting, you should prepare your terminal

Codeworks Magazine Download System
Please Login

User Name »»«»
Password *******

Codeworks Subscription Service
Message of the Day

See the new download program from issue 3

PRESS RETURN/ENTER WHEN READY

Figure 3

Codeworks Demonstration Menu

0 End
1 Help
2 Download
3 Send me more
A Signup
5 Comments
6 Terminal Setup

Command r>2

Figure 4

20

Demo Downloads Available

0 End
1 Mai ley bas
2 test bas

Command s>

Hailey Comet Program
Test Download Program

0 End

' !'!l!9hyt,9S Hal,«y Com.t Program
test bas Test Download Program

C o m m a n d = > 2

IOEprSME1'TER/RrrURN WHEN REa0v
° REn lest Program one

pressent«/p2TCOOEwor,CSSubscr,ber*
entER/RETURN WHEN READY

Figure 6

program to receive the download and then press
RETURN or ENTER. After the download is
complete, the system will again stop and wait for
you to press RETURN or ENTER. At this time you
should terminate the download function on your
computer.
3 Send me more (ask for info) This option will
ask you for your name and address so we can send
you a sample issue. Simply type in the
information when prompted.
4 Signup The signup option will take your name,
address and credit card information if you would
like to become a subscriber. Only VISA and Master
Card are accepted. There are no "bill me s . If you
wish to subscribe and not use your credit card you
will need to write directly to us.
5 Comments Demonstrations users are allowed
to enter up to two lines of comments about the

6 Terminal setup The Default terminal
characteristics for all users of the systein is 80
character lines and 24 line screens. If you have a
different size screen, you can use this option to set
its size. This will only apply to this session
however.

C o d e w o r d s S u b s c r i p t i o n M e n u

E n d
Help
D o w n l o a d b y I s s u e
L e t t e r s t o t b e E d i t o r
C h a n g e P a s s w o r d
T e r m i n a l S e t u p
E x p e r t i s e L e v e l

C o m m a n d ->2

Figure 7

The Subscriber Menu
Subscribers have similar but more versatile

options available to them once identified and
logged in The subscriber menu looks like that
shown in figure 7 with the following options:
0 End (logout) The logout option is just like that
for demo users, it signs you off and hangs up on

l°Help As with the demo menu, help lets you look
at information about how to use the system.
2 Download The download section for
subscribers is far more versatile than that for
demo users. Instead of being put into a demo area,
you will be given a list of issues to choose from.
Choosing an issue by number will display the
items available for download from that issue. As

with the demo system, you can download a file by
choosing it and loading it into your computer.
3 Letters In the letters section you can enter up to
20 lines of feedback to the editor about anything ot
interest. Items which are deemed appropriate will
appear in the "Forum section. _
4 Password The change password section will
prompt you first for your current password (to
safeguard you, should you leave your system
unattended while connected) and then your new
password (with one repeat to be sure it is correct).
This will be stored as your new password for access
to the system.
5 Set Terminal As a subscriber, you can set your
terminal parameters permanently or for only the
current session. All users are created with default
parameters (24 line screen, 80 column width), so be
sure to set yours if that doesn't match. You can
also set your terminal type from among those
available. Typing HELP will display the list of
terminal types. . . ,.
6 Set Expertise There are three levels of expertise
for subscribers: novice, normal and expert. In the
novice mode, all menu displays are shown in full
detail In the normal mode you will see only the
commands available, while in the expert mode you
will be prompted for the command only. You can
change your mode at any time by typing "novice
or "normal" or "expert". Using the expertise
command will allow you to make your level
permanent.

What if you have problems?
Should you have problems using the system or if

vou have tried to logon and the system will not
accept your password, please call (206) 475-2219
and ask for Irv or Bob.

Where are we going from here?
The CodeWorks download system has many

things it can do. We can expand capabilities in a
number of directions. Planned improvements
include XMODEM and other protocols available
for downloads, auto-login sequences for special
programs, special programs for your computer to
make accessing the system easier and much more
However, changes to the system will only be added
if the system is in fact meeting a need. If you are
interested and would like more, we will be gh I to
evolve in whatever direction is getting the nost
interest. . ,

This system is a free service for subscribers to
CodeWorks magazine. All information availab e
has been scrutinized and every effort has been
made to assure accuracy in what is available, but
CodeWorks accepts no responsibility for problems
using the system.

CodeWorks

Wood.Bas
An example of "best fit" programming

Staff Project
This is a rather long and involved article, best
started on a long winter night. It traces the
development of the program from start to end.
Even if you are not a woodworker, watching the
program go through the attempts to find a best fit
is fascinating.

At the core of most programs you will find a
rather small bit of code that is a formula or an
algorithm surrounded by bunches of housekeeping
code. That formula or algorithm, of course, is the
heart of the program. But what do you do when
there is no formula or algorithm? This is an
example of just such a problem.

There exists a class of problems which have no
defined solution other than a brute force one of
trying all possible combinations until a best fit is
achieved. If the number of possibilities you are
considering is small, say four to five or less, then
trying all the combinations is workable. But what
happens when the number of items is ten or more?
The number of possibilities of rearranging n items
is n factorial. With just ten items the number of
ways to rearrange them is over three million, six
hundred thousand!

Assuming that you could eliminate at least half
of these possibilities out of hand, you still wouldn't
have enough space in memory to keep even a
single digit to signify which of the attempts was
better than another. Aside from that the time
required to make all those attempts would be
prohibitive.

The type of problems we are concerned with here
are generally called "best fit" problems. An
example of it would be the "knapsack" problem. In
this hypothetical problem a hiker is preparing to
climb a mountain. He has a knapsack with a
defined capacity and various items he can take
with him. The items vary in size, weight, and
importance to his survival. He is limited by both
size (the capacity of the knapsack) and weight
(how much can he carry safely.) What is the best

uuiiiuiuauuu ui livlli ri w MAC;

Our problem has to do with the cutting of wood
from plywood sheets. (It could just as well be used
to cut cloth material or parent sheets of paper
stock, but we will concern ourselves with the
plywood situation.) The sheets are normally 48
inches wide and 96 inches long. The grain of the
veneer runs parallel to the length of the sheet.
Many different hardwood veneers may be
obtained, and the veneer may be on one side only
(called type Al), or on both sides (called type A2.)
Most lumber dealers will not cut a full sheet if you
only need part of one so you must purchase a full
sheet when only a fraction of one is needed. Mostof
the better grade hardwood sheets cost from about
$50 to $65 per sheet. Making mistakes at these
prices can be costly. Our problem, and
programming project, is to design a program that
will take any given woodworking project and
produce a detailed cutting diagram using a best fit
met od that does not use brute force and which
af?. . track of the grain of the wood. In
a ltion it should also take saw kerf into account
and automatically reduce the size of cutoff pieces

y e erf, but only on the edges being cut.
may surprise you to know that after all the

years people have applied saws to wood there is no
ru e or ormula to determine if n pieces of wood
wi varying dimensions ofx and yean be cut from
a given larger piece.

w- .u . Preliminary Planning
t ! ou aru'eto follow it seemed the only way to

5 * , h°w one would do manually. You
a 1 urt hatching the finished projecton

an t en deciding on overall height, width
22

and depth. This is usually followed by determining
the size of each individual piece, taking into
account any dados, miter corners and irregular
shaped pieces. Then follows the drawing of a
rectangle twice as long as wide and trying to fit
your required pieces into it (or them), all the while
keeping track of the desired grain of the wood. You
can wear out an eraser very quickly doing this and
finally decide that this is as good as it is going to
get. So you head for the shop and start cutting. If
you have made even a small mistake it can cost
you another sheet or two of expensive wood and
another trip to the lumber yard. The less fastidious
of us, at this point, would probably change the
original design to fit the mistakes and the
available stock wood.

The way we handle this problem manually is an
interesting process. Most of us probably don't even
think about it that much - we just do it - and usually
back ourselves into a corner. We learned a lot
about our own thinking processes as we went
ahead with this project. It was both exciting and
frustrating.

To start we decided to apply the most simple
logic we could think of. We knew we would need at
least three arrays: one to hold the dimensions of
the required pieces, one to hold the stock pieces,
and a third to act as an output buffer to hold both
the required piece and the stock piece it came from
along with a cut code of some sort. That third array
would be necessary to hold the information until
the time came to actually print the cutting
diagrams on paper.

The logic was suggested by Terry Dettmann and
went like this: Take the largest piece you need first
and cut it from the smallest available piece and put
the leftover pieces back into stock. Then do it again
with the next largest piece. With that sage advice,
Terry left it up to the rest of us. It made sense, and
we tried it and it worked, but it needed a lot more.

At this point we had not considered grain at all.
It also became apparent that once a cut is made in
any direction on a sheet of wood with a circular
saw, that it must continue all the way across the
length (or width) of the piece. To illustrate: starting
with a new sheet and a requirement for a 70 inch
long and 22 inch wide piece leaves you with a
choice of which way to cut first. If you cut across
the width first you have two pieces left over, one 26
by 48 and the other 70 by 26. If you make the
horizontal cut first you leave two pieces again, this
time a 96 by 26 and a 26 by 22. Obviously, if there is
only one cut to make you simply must live with
whatever is left over. But the two-cut problem
loomed as a major obstacle, since it became a
critical factor in determining whether or not the
remaining required pieces could be cut from the

sheet.
Since the type of cut needed to be identified, we

coded all the possibilities, including a no-cut
situation as follows:

Cut 1 - exact fit
Cut 2 - one cut, horizontally
Cut 3 - one cut, vertically
Cut 4 - two cuts, 1st vertical, 2nd horizontal
Cut 5 - two cuts, 1st horizontal, 2nd vertical.

The next question we ran into sounded
ridiculous. How do you define "big?" You can use
length, width, square area, semi-perimeter,
hypotenuse or the ratio of one side to the other. In
our first attempt, we tried all of these, with
interesting results. Ratio tells more than you want
to know about the shape of the piece but loses
length and width information. Hypotenuse didn't
help at all. It turned out that on some groups of
pieces to cut the "big" question didn't make much
difference. On others it made subtle differences
and on yet others the difference was significant.

It became increasingly apparent that not only
was the type of cut chosen important, but so was
the order of the pieces. Determining "big" with
square area seemed the most logical choice, but it
turned out to be a dud. In the end, the choices of
ordering that had the highest success rate were
simply length and length plus width (semi-
perimeter.) In the final version of the program we
use both, and additionally, sort width within
length. It increased our success rate by five to six
percent.

To measure effectiveness of different methods
we created a random piece generator and tacked it
onto the front of the program. This allowed us to
leave the computer unattended for hours, or even
overnight, and the line printer would spew out all
sorts of pertinent data for each attempt. The data
was then scrutinized, especially the failures, for
some common factor we could then trap. We found
only that there were not too many common factors.

How close is close enough?
It's a lead pipe cinch that if the sum of the square

area of all the required pieces is larger than the
square area of the piece from which they are to
come, it will not work. That's simple enough, but
what if the total square area of required pieces is
less? Will it work every time then? The answer, of
course, is that it may or may not work. Some
combinations of pieces, even with two pieces and
less than a third of the square area of the stock
piece, are clearly impossible. Others, with a total
square area exactly equal to the stock piece and as
many as eleven required pieces, fall apart on the
first attempt.

Code Works 23

We decided to define success like this: when the
total square area of the required pieces is less than
the stock piece and the program finds the way to
cut those pieces without resorting to an additional
sheet. Additionally, we defined it a success when
the cut or fit is clearly impossible and an
additional sheet is required. This left many
attempts undetermined as to success or failure,
with no definite way to tell if the problem was
solvable and the program just couldn't do it, or the
problem had no solution. In the final program
when this occurs it lets the operator know that the
solution is undetermined. But is it a success or a
failure? We have yet to come up with a way to tell.

Program notes
The program starts out by setting the loop

counters as integers which significantly increases
the speed of execution. The three arrays,
mentioned earlier, are established next. They are
the required piece array R(x,x), the stock piece
array S(x,x) and the output array 0(x,x,x,x,x). The
R array is counted with integer I and its terminal
value is NR. The S array is counted with J and its
terminal value is NS. The O array is counted with
K and its terminal value is NO. The R(50,3) simply
states that the array can have up to fifty elements,
each containing three positions. Length, width
and grain direction will occupy the three positions.
In the S array we only need two positions since the
stock is always carried with the same grain
orientation. The O array needs five positions, two
for the stock piece length and width, two for the
required piece length and width and one for the cut
code. Notice that the grain orientation is ignored
after the first few lines of the program, but more on
that later.

The next several lines print the heading of the
program and instructions on the screen. Kerf, or no
kerf, may be selected at this point. In line 320 the
length and width of the stock sheet is initialized
From here on we will call the length of a ply sheet
LA and the width LB. This way you can change
these values to fit paper or cloth, or even some of
the plywood that is 4 by 12 feet instead of 4 bv 8
feet.

During input of the required pieces extensive
error trapping occurs. This is necessary because if
you could ask for a piece longer than LA the
program would continue to pull in new sheets
indefinitely, looking for one that fits.

In line 420 we solve the whole problem with
grain. At this point, if grain 2 (parallel to width)
was specified, we simply switch the dimensions of
the piece and act as though it were a grain of 1
Now, since all grain is 1, we can forever forget
about which way the grain runs. That reallv
sounds illegal, but it isn't. It just results in some

lengths being less than width. If that really
bothers you a lot you can simply call the
dimensions X and Y instead of length and width It
all comes out right in the end.

Later on in the program we will establish a rule
that says we will make attempts at the problem
that equal two times the number of pieces plus one
The attempt counter is called FL. SQ will be the
variable that denotes the total square area of the
required pieces and LF is derived from SQ and tells
us how many sheets should be required. LF is the
"expected sheet counter." These three variables
are all initialized to zero in line 440.

The very next thing that happens is that theR
array is scanned from beginning to end and the
total square area of the required pieces is
determined and set in variable SQ. This happens
in lines 460 to 480. In line 490 we find out what the
minimum number of sheets will be. The expected
sheet counter, LF, will hold this number. As
mentioned earlier, you can't buy less than a full
sheet, so the equation in line 490 produces the next
highest integer if the square area is even a small
fraction over that of a standard sheet.

Sort into descending order
I n lines ;>00 through 620 we do the first sort of the

required pieces. The same sort routine is used to
sort two different ways, depending upon the state
of the attempt flag. FL. The very first time, the
attempt number is zero, so we fall through line 540
and sort on length plus width. On the second
at.^Pt- we W>1' jump around the length plus
W1 "ne ar,d sort on length only. What happens
on subsequent attempts? We don't care since the
program never comes back to this point after the
second attempt.

(bor more detail on how these sorts work see
ssue 2, page 26. They are simple bubble sorts and

are escribed fully in that article. Also note that if
your version of BASIC supports the SWAP
command you can make good use of it in this
Program in every case where variables are
exc a"£cd. As listed, the code will work even if you

ave e SWAP command and choose not to use it.)
N ^°rt w>thin length

i °W., a* *^e list is in order by length (or length
swi t) we want to sort widths within lengths.

K'^n^k8 notLreally difficult to do. It happens in lines
y , . roaBh 720. If length X is not equal to length

,' we '^nore the switching in lines 680 and 690
onlvlf ^ X+1 and X+2 What thia 8ay8 i8 th8t

w° lengths are equal do we look for width.
thrn»e«»k<n?ntWO °f code from lines 730
attpm • L 001716 into p'ay oniy on subsequent
attPmPf n 1" 78 2 or more- We are still on
rnmo k 1 80 8 j"mP around these routines and

ac t° them when they will be used.

Code Works

Compare required to stock pieces
Starting at line 920 we initialize the output array

counter (K) to 1. We then start a very big loop that
finally ends way down in line 1560. All sorts of
things happen inside this "Big I" loop and it may
be well to remember that during each pass through
this loop we are taking a required piece and trying
to find a piece of stock from which to cut it. We will
also get a new sheet if there is no stock piece that
fits, and determine the way to cut it and tuck the
cutoff pieces neatly back into the stock array
(minus the kerf when and where necessary.) Before
we leave the loop we will also sweep the sawdust
off the floor. (Oops, that means eliminate zero
length or width pieces from the stock array.) At the
same time, we will sort the stock array into
ascending order. The output buffer (O) will be
stuffed with all the appropriate dimensions and
cut codes and finally we will go back to get the next
required piece. That's just an overview of what
happens inside the "Big I" loop, now back to line
940.

The "Big I" loop starts at line 940. It takes one
piece at a time and runs it through the mill. The
next thing we do is set the stock array counter (J) to
1. Remember that NS is the terminal counter for
the stock array? Well, it's at zero now because there
is no stock in the array. We do lots of things in line
870. Let's look at them.

First, J is greater than NS because NS is zero
and we just set J to 1. This makes the remainder of
the line valid. The first element of the stock array
now receives a brand-new sheet of wood, full size
and ready to go because S(J,1) is equal to LA
(which is 96) and S(J,2) is equal to LB (which is 48).
NP is a new variable whose only purpose in life is
to keep track of the number of new pieces we haul
in. Since we just got one we increase NP by 1 (it was
zero to start.) Now, since the stock array has one
piece in it, we must increase the count in NS, since
NS is supposed to tell us how many pieces are in
stock. Variable V is set equal to 1 at this time
because we just got a new sheet.

You may well ask why we need V when NS
apparently does the same thing. The reason is that
NS is an accumulating counter, while V just goes
"BANG" when a new sheet arrives and then dies
later. Variable V will haunt us a little further down
the road. Now the program tells us to go back to
line 950.

But we just came from here, no? Yes, and we just
set J equal to 1 again too, but this time when the
program comes to line 970, J is not greater than NS
(equal, but not greater) so it ignores the remainder
of line 970 and goes on to line 980.

Line 980 is a decision line. It says that if the
actual number of sheets used is greater than what

CodeWorks

we expected (LF) and the number of attempts at
this point is not equal to two times the number of
required pieces plus one, to go somewhere else.
Right now neither of these are true statements, so
we drop right through them to the next line which
just happens to be another decision line.

Line 990 says that if we have not just pulled in a
new sheet (which is not true now) or if the attempt
counter is 4 or more (which also is not true now) we
should go to line 1080. We will get back to 1000-
1060 later when they come into play, but for now
let's see what's happening at 1080.

Check for fits
Starting at line 1080 and continuing through

line 1180 we compare the length and width of the
piece we want to cut to the length and width of the
available stock.

You may wonder why, all of a sudden, we are
counting the stock array (S) with a U counter
instead of J. Remember that we are still inside the
"Big I" loop, and within that loop we are within the
J loop. Yes, the J loop is real even though there is
no FOR...Next statement for it. It is a homemade
loop so that we can increment and decrement the
counter at will and jump in and out of it whenever
we want to. In this case, we use U to count the S
array so that if we get all the way through the
comparisons without finding what we want, the J
value will still be intact for the next pass.
Otherwise, if we find the piece we want in stock wo
will use it by setting J equal to U and then jumping
out of the loop.

Let's put an actual example into the R array.
Let's say the first required piece is 72 inches long
and 22 inches wide. As shown earlier, we just
pulled a new 96 by 48 inch piece into stock. Now
let's go through the comparison routines.

If we can find a piece in stock that exactly fits
what we are looking for it should get highest
priority, right? So, in lines 1080 and 1090 we look
for exact fit. If we find it, U will tell us which piece
in the array it was, so we set J equal to U and go on
to the following routines at 1200.

This was not the case in our example piece
though. An exact fit was not found, so the next few
lines look for equal length and enough width in the
stock piece to allow us to get our required piece.
Again we don't find it because 72 doesn't equal 96.
The next few lines look for widths that are equal
and a length that will be greater than what we
need. Again, 22 does not equal 48, so we get to the
last comparison.

The last comparison simply says to take any
thing that will fit. But don't let this fool you, we
are going to give it every chance to make a better
choice than just taking any old piece. Remember
earlier when we said that we sort the stock array

into ascending order? Well, that comes into play
right here. If none of the other comparisons work
out, the next piece it will look for will be the
smallest piece from which the required piece can be
cut.

In our example case the comparison will work
out in lines 1170 and 1180 because 72 is less than 96
and 22 is less than 48. But let's leave that for a
minute and look at what would have happened
had it not found a stock piece large enough.

Having gone through all the comparisons and
not finding a piece large enough, line 1190 will
increment J by 1 and go. back to line 970 where J
will once again be larger than NS and will cause a
new sheet to be put into stock. (And if you can't get
your piece out of a full sheet there has to be
something wrong!)

Back to our example. In line 1170 we found that
we could get a 72 X 22 piece out of a 96 X 48 inch
piece. So we identify J with the place in the S array
where we found the piece (at this point there was
only one, but there will be more presently), and go
to line 1210. Note that all of the comparison loops,
if successful, go to line 1210. Note also that each of
the comparison loops go through the entire stock
array when looking for a fit.

At line 1210 we stuff the output buffer (O) with
the length and width of the required piece and the
length and width of the stock piece. That's four out
of five. The remaining output buffer slot yet to fill
is the cut code, which we will get to presently. Note
that the K loop is another homemade loop (it
counts the output (O) buffer array. Note also that
when the comparison was found, line 1190 was not
energized and so J still tells us where in the stock
array our piece was found.

Let's examine lines 1220 through 1390. At this
point we know the piece we want and the piece
from the stock array it will come from. What we
want to do now is to find out how to cut the stock
piece and put any leftover piece or pieces back into
the stock array. To keep from handling too many
confusing array designations, line 1220 defines L
as the length of the stock piece, W as the width of
the stock piece, LC as the required piece length
(length to cut) and WC as the required piece width
(width to cut).

Suppose you are in a lumber yard and there is a
series of bins, each with the space to hold one piece
of plywood. The entire series of bins is labeled S
and each individual bin is marked Jl, J2, etc., to
the last bin. Let's say that bin Jl has a piece of
wood in it and the rest of the bins are empty. Since
Jl is the last bin to be occupied, a sign reading
"NS" is hung onto it. This, of course, is exactly
what our stock array looks like at this point. (In our
array, however, each bin would be subdivided into

26

two sections, one to hold the width and theotherto
hold the length, which in the real world is rather
impossible.) Now back to line 1230, where we will
try to see if our piece of wood can be cut with only
one cut.

Line 1240 says that if the required piece is
exactly equal to the stock piece then we will simply
remove the piece of wood from the stock array bin
and leave it empty. We will then also designate the
cut code (C) as 1.

Line 1250 says that if the length of the required
piece is equal to the length of the stock piece only
one cut is required and it will be parallel to the
length. This leaves one piece of wood with the
same length it had before, but with a width that is
equal to its original width less the width of the
required piece and less the saw kerf. In this case we
will still have a piece of wood in stock bin 1, but it
will have new dimensions. The cut code is set to 2
for this situation. Line 1260 performs the very
same operation, only this time the cut is vertical,
the width remains the sume, the length changes
and the cut code is set to 3.

None of the above fit our present example
situation, so we get to line 1280, which says that if
the attempt number is odd and we just pulled in a
new sheet and the big 1 loop is at 1, then go to 1350
to make a 5 cut. We meet all those conditions except
the attempt number (which is now at 0), so we
ignore this line for now. We will also ignore lines
1290 through 1330 for now. They are special 5 cut
situations, none of which apply to our example.

The 4 cut line
This brings us to line 1340, which is the line that

etermines the size of the two leftover pieces with a
4 cut. W e are going to saw across the 48 inch width
of our sheet at the 72 inch mark first. The piece left
over from this cut will be put back into the bin
w ere the 96 X 48 inch sheet came from (Jl)- If®
ength will be the original length (96 inches) less
the length of the required piece (72 inches), less the
saw erf (SK). Its width will remain unchanged at

inc es. This happens in the first twostatements
in line 1340. The next part of line 1340 says that J is
now equal to NS plus 1. The NS sign was hung on
in one previously, and there is a piece of wood

, "e'7 "ow J equal to 2, which is the second
T6F> NC° • ,no matter how many bins are filled,

always be on the last one that has
alu/f T^ n anc* k'n following that one will
rntn^fS • 6 empty (making a good place to stuff our cutoff pieces of wood.)
4 8 i n r - h c u t w i l l b e m a d e o n t h e 7 2 i n c h l o n g ,
cut W^TL P,ece ,eft OVer the first cut. This
Piece 79 u 5 3t the 22 inch mark' leaving 3

kerf)Th mC eS '°ng an<* ^ 'nches wide (less the
____enext part of line 1340 says that bin 2 will

hold this leftover piece, and the next thing we need
to do is to move the NS marker to the second bin
and set the cut code to 4. There are now two pieces
of wood in stock; we have the required piece taken
care of (it's in the first two positions of the output
buffer. We put it there before the cut was ever
made.) The last thing line 1340 says to do is to go to
line 1360. Here, we finally stuff the cut code into
the output buffer and move NO (the output buffer
terminal marker) up one.

Show the man you are working!
The computer can do all of what has happened

up to now in about a second or less. It's time to
prove to the operator that we are earning our
money, so let's show something on the screen. Line
1370 says that if V equals 1 (it does, remember that
in line 970 we pulled in a new sheet and set V to 1)
then print "New Sheet" on the screen. Then show
what is being cut from what and with which cut
code. That ought to keep him happy for a while.
Now, since we have one complete cut in the output
buffer, let's increment the output buffer counter (K)
by one for the next piece and set that pesky V back
to zero so it won't show a new sheet again until
there actually is one. Line 1390 does all of that.

Clear out the deadwood
If the stock array had more pieces and we had

found an exact fit somewhere, that array location
would have been zeroed by line 1240. In
computing, of course, there is a vast difference
between zero and nothing. Zero is a discrete value,
lying between 1 and -1, while nothing is the
absence of anything. In lines 1410 through 1450 we
loop through the stock array and if any location
has a zero in it we take the very last item in the
array (at NS) and stuff it into where the zero was.
Then we move the NS marker up one position. Is
this really necessary? Not really, you will never
find a fit for a required piece with a zero length
stock piece, but later when we print out the cutting
diagrams and the leftover piece list it would be
embarrassing to show zero dimension pieces.

Sort the stock array
As mentioned earlier, if the comparison loops do

not find an exact fit or an exact length or width fit,
the next piece that comes up that fits will be used.
Well, we don't want to use a larger piece when a
smaller one would do. It cuts down on the success
ratio. So we sort the stockpile after each piece is cut
and the leftovers are put back into stock. This sort
is almost identical to the ones described earlier,
except that this time we sort in ascending order
(smallest to largest, "big" this time being
determined by length plus width.)

We have been inside the "Big I" loop for a long
time, but now everything is taken care of for the
first required piece, so at line 1560 we finally do a

NEXT I and go back to do the second required
piece.

Results
Everything that has happened since we got into

the I loop happens for every required piece.
Assume, for the moment, that all required pieces
have been cut. The I loop is finally done and
instead of doing a NEXT I we arrive at line 1570.
There is only one subroutine in this program. It
resides at line 160 and its purpose is to clear the
screen and home the cursor.

Lines 1580 through 1850 print the results of the
program on the screen. The results are evaluated
in these lines and appropriate messages are
generated to give the user information about the
run just completed. If the run was unsuccessful,
the attempt FL is incremented in line 1730 and
another attempt is made. The option to print the
cutting diagrams or do another run is given in line
1830. Let's go through the cutting diagrams first
and then go back and pick up those loose ends we
left dangling earlier.

Print cutting diagrams
The routines from line 1860 through the end of

the program at line 2810 print the cutting
diagrams for each piece of the project. It begins by
asking for a name for the project, which it then
prints at the heading. A line concerning the
direction of the grain is printed next, kerf (if it was
specified) is printed next and another line
indicating first and second cut is then printed.

From this point on, starting at line 1940, we loop
through the output buffer, one item at a time, and
print a scaled down picture of the stock piece along
with the cutting information. As we did earlier, to
get rid of confusing array dimension names, we
change them to L, LC, W, and WC. This happens in
line 1970. The information about the stock piece
and the required piece is printed immediately prior
to each drawing.

Lines 2010 through 2040 adjust the size of the
drawing so they will fit on an 80-column printer.
The values in lines 2010 and 2020 were chosen to
make a roughly proportional drawing that is
approximately 4X8 inches, giving a scale of
approximately 1 inch to each foot. Lines 2030 and
2040 were necessary to keep the printer from
adding a line feed when the length of the piece to
cut (required piece) was too close to either extreme
of the stock piece. On very small pieces there will
be extreme distortion but it can't be helped and is
due to the resolution of most printers.

Earlier in the program we used variable C to
hold the cut code. It was changed to the fifth output
array element later (because we had to use C again
for the next piece.) In line 1970 we pull it out of the
array and make C out of it again. Since C tells us

CodeWorks 27

what cut is required, we use it in an ON..GOTO
statement in line 2050 to tell which section of code
to go to to get the proper drawing. Since we are still
inside the K loop that started in line 1940, each
section of code that does the drawing returns to
line 2160, which is the NEXT K line.

After the last K item is printed line 2170 sends us
to line 2550 where we print the number of full
sheets used, the total square inches of the required
pieces, a list of the required pieces, the list of pieces
left over and finally, the output array is printed
along with the cut codes.

No attempt has been made to produce these
drawings on standard 8 X 11 paper. They were
designed primarily for continuous feed roll paper
with no page breaks (set your printer to have the
number of lines to print and the number of lines per
page to be equal.) The idea is to get something to
hang on your shop wall and use as a cutting guide.
Now let's get back to some of those leftover items.

The overall view
Having gone through the program once to see

how one piece is cut should have given a rough idea
of how it works. But there are various paths the
program takes to cover all sorts of exceptions. Here
is a brief overview, followed by details of code we
didn't cover the first time through.

The program organizes the required pieces first
into descending order by length plus width and
then by width within length. This all happened
during attempt number 0. In attempt 0, it goes
directly to the comparison routines, gets new
sheets as required, cuts them and puts leftover
pieces back into stock and goes through the I loop
as many times as there are pieces to cut. If the
number of new sheets used (NP) is equal or less
than the number of pieces it expected to use(LF), it
prints the results on the screen and asks if you
want a paper printout. End of program. But what
happens when it can't make it on the first attempt
(sheets used exceeds sheets expected)?

Every time a new sheet is put into stock in line
970 a check is made to see if the new NP is greater
than the number of sheets we expected. It does this
on every attempt except the very last one, when we
will print out what we have in spite of the fact it
didn't work. By putting this test at this point we
can immediately abort the current attempt if it
isn't going to work and go on to the next attempt. It
saves a lot of time. If the test at 980 is true, we go to
1710 where we reinitialize the three arrays, print
the new attempt number on the screen, increment
the attempt counter and in line 1740, if the attempt
number is 0 or 1, go back to the sort routine in line
510. If the attempt number is 2 or more, we go back
to line 730 instead and bypass the sorts.

Assume we are now on attempt number 1

(actually the second attempt, since we start
counting at 0.) The program will take us back to
line 510 where we will sort again, but this time the
sort will be by length only. We will again sort
width within length and go directly to the
comparison routines. Nothing much different here
yet, except that the sort was a little different. But if
we get through lines 1240 through 1260 (which, by
the way, always have first priority), line 1280 will
force a 5 cut on the first piece of a new sheet.

Now let's say that it still didn't work out and
aborted again in line 980. This time when we
increment the attempt counter it will be at 2 and
line 1740 will send us back to line 730 instead of to
the sort routines. Our attempt counter number is
even this time and so the statement in line 740 will
allow us to proceed to the lines immediately
following it

The recirculate routine
On every even attempt number after the first two

attempts the code at lines 760 through 810 will
move the last item of the required piece array into
the first position and move all the remaining
pieces down one. We do this by using the zero
element of the array (previously unused.) Before
entering the loop, we simply make position zero
equal to whatever is in the last position (NR).
Then, going backwards through the loop, we make
the second-to-last item the last, the third-to-last
item the second-to-last, etc., until we reach the top
of the loop, where the data in the zero position
becomes the data in position one. This effectively
circulates the data in the array by one position.
Now we go through the I loop and the comparison
routines again for all the pieces in the required list.
If we are still not successful, the 5 cut logic will
operate on the next try and after that the
recirculate logic will operate again and two more
attempts will be made with the reordered list.

The impossible fit routine
On the next to last attempt, the code from 840

through 900 comes into play. What it says in effect
is. We have given this dude every opportunity to
all apart and it still won't yield, so let's see if we

are ealing with impossible cuts or fits, and if so,
relax our success requirements by adding one to
our ex^cted sheet counter (LF)." Here we use a
, - NEXT loop which compares the first item in

the list to every other item, then the second to all
the remaining items, then the third to the rest, etc.
fj" of the two logic statements in lines 870

and 880 is true, variable FT is set to 1 and the
expected sheet counter (LF) is incremented by 1.
this is only true when the expected sheets is I to
egin ^tth. Two pieces which are impossible to fit

°K CUt u°m °ne sheet can usually be cut from two
sheets by taking one piece from each of the two

Code Works

parent sheets. Surprisingly enough, this section of
code comes into play more often than we had
imagined.

The move 48 inch routine
The section of code from 990 to 1060 did a lot to

help the success rate of the program on multiple
sheet problems. What is does is force full width (48
inch pieces) to be cut immediately when a new
sheet is put into stock. If there is more than one
such piece it saves the next one until the next full
sheet is put into stock. This way, it doesn't take
both out of one sheet and possibly ruin that sheet
for anything else we may need. Line 990 sets it up.
V has to be 1, meaning that we just pulled a new
full sheet into stock and the attempt counter must
be at 0, 1, 2 or 3. The logic being that if it can't get it
in four passes it probably was not meaningful and
we will let the chips fall where they may. Notice the
loop from 1010 to 1060. We are using Q to count the
loop and it starts counting at the current I and goes
to the end of the list. Notice also that as soon as it
finds a 48 inch piece, it exits the loop, so it only
moves the first 48 inch piece into the next cutting
position.

The 5 cut logic
The cut that receives the highest priority is the

perfect fit where no cut is required at all. Next come
the single cut requirements where you have no
choice in how to cut in any case. The tough choice
is when two cuts are required. Which way do you
cut first? These are the 4 and 5 cut problems.

Left to its own devices, the program will opt for
the 4 cut (see line 1340.) The 5 cut is not necessary
that often but when needed there is no other
solution without it. Lines 1290 through 1330
examine five conditions that can force a 5 cut.
They represent almost 10% improvement in the
success rate. We will go through the first one only
to give an idea of how they work. Line 1290 says
that if the length of the required piece we are
currently looking at plus the length of the next
required piece is equal to the length of the current
stock piece, and the widths of the two required
pieces is the same, then force a 5 cut. The rest of the
5 cut logic statements look at the next two required
pieces to determine the cut on the current piece.
Obviously, if this logic could be extended, we
wouldn't need the remainder of the program.

Hints on using the program
The program may be used not only to determine

the cuts on an existing design, but to optimize a
new design. It allows you to play the "what if'
game, which gave rise to the nickname,

y "BalsaCalc."
The program cannot handle pieces shaped other

than square or rectangular. Consequently, such
pieces should be reduced to their smallest

rectangle or square prior to using the program.
In some cases, where the grain of the wood is

especially well matched and you want to get a set
of drawer fronts or doors with a matching grain
pattern, treat the two pieces as one in the program.
It will prevent the program from taking the two
pieces from different areas of the stock. Don't
forget to allow for the saw kerf if you do this.

Saw kerf may be changed to suit your needs in
lines 290 and 300. These are the only two places in
the program where it is defined. Likewise the
length and width of stock sheets is defined in line
320. Should you, for some reason, get a bunch of
sheets at a discount because the edges are rolled
over, you can temporarily change line 320 to take
the smaller dimensions into account.

Printers usually buy paper in large parent
sheets. (Paper, by the way, also has grain.) We
used the program to cut parent paper sheets into
smaller qnes. It worked, but if you intend to do that
on a regular basis, consider changing the printout
scaling since most paper sheets are considerably
smaller than a sheet of plywood.

Enter your dimensions carefully. There is no
provision to edit them. However, if you should put
in a wrong length just give it a ridiculous width
(like 0) and the program will ask you to start that
item all over again.

How well does it work?
After much testing, we can say with reasonable

assurance that it will cut better than 90% of all one-
sheet problems. Multi-sheet problems seem to
average around 85%. The average number of
attempts for one-sheet problems we tried is 3. The
time for one-sheet problems was about 3 minutes or
less. We tried real-world problems that fell apart on
the 2nd or 3rd attempt, but on the other side of that
coin we also had a four-sheet problem that took
over two hours and came up with a five-sheet
answer. If all this sounds too slow, consider what
would happen if we tried 10 factorial pieces and it
couldn't find a solution. It would take something
like sixty days! We think the improvement, in spite
of the less than 100% accuracy, is significant.

This is the type of program you can spend years
tinkering with. There is room for improvement. If
you should happen to get turned on and make any
significant improvements please let us know.

A question still unanswered
In spite of the work done on this program, the big

question is still begging for an answer. Given any
number of pieces with dimensions of x and y, and
assuming that cuts must be made all the way
across the stock piece, how can you determine
whether or not they can be cut from a larger sheet
with dimensions of xx and yy? Martin Gardner,
where are you when we need you? •

CodeWorks 29

This is a photographically reduced version of the
actual output for the sample run.

PROJECT ID ISi SAMPLE RUN

GRAIN ALWAYS RUNS PARALLEL TO THIS DIRECTION

KERF OF .125 INCHES IS REMOVED FROM CUTOFF PIECES.
1 1 1 INDICATES 1ST CUT. 222 INDICATES 2ND CUT

PIECE I 1
STOCK PIECE IS 96 INCHES LONG AND 48 INCHES WIDE
PIECE TO CUT IS 21 INCHES LONG AND 11 INCHES WIDE / CUT CODE '

> > > > > > > > > > 2

l i i i i i i i i i i i i i i i i i i i n i i i i i i i i i i i i i i n i i i m i i m n n m u n m m u n n u u n

PIECE • 2
STOCK PIECE IS 74.875 INCHES LONG AND 11 INCHES WIDE
PIECE TO CUT IS 14.625 INCHES LONG AND IS.25 INCHES WIDE / CUT CODE - 4

STOCK PIECE IS 96 INCHES LONG AND 36.875 INCHES WIDE
PIECE TO CUT IS 78 INCHES LONG AND 19.875 INCHES WIDE / CUT CODE «

22

PIECE • 4
STOCK PIECE IS 70 INCHES LONG AND 16.875 INCHES WIDE
PIECE TO CUT IS 31.5 INCHES LONG AND 12 INCHES WIDE / CUT CODE '

Sample Run

Use Kerf option 2 and the required pieces
shown in the figure on this page (directly to
the right of here), and you should get the
same solution shown on this page. The hand
drawn numbers on the sample output were
put there to show which pieces correspond
to the drawing on the facing page.

PIECE • 5
STOCK PIECE IS 88.115 !•
PIECE TO CUT IS >• 19CHE

HE* WIDE
I HIM / CUT 4

PIECE • •
STOCK PIECE IS M INCUTS
PIECE TO CUT IS N INCHES

II 1NCNM NIM
8.75 INCHES HIM / CUT 4

lllllllllllltlllllltlltU

PIECE • 7
STOCK PIECE IS 3S.I75 INC*
PIECE TO CUT IS *• INCHES I

NIM
/ CUT 4

PIECE • S
STOCK PIECE IS M INO
PIECE TO CUT IS ># IN

I.M I
i t.t INCHES NIM / CUT COM «

|»»»>»»»»»»»»»»»»»»»»»»»|
iiiiiiiiimiiitimiiiii I
PIECE I 9
STOCK PIECE IS 15.875 INCHES LONO AND H.8M
PIECE TO CUT IS 21 INCHES LONO AND 19.179 I NO

| »»>»>»»»»»»»» | |

I >>»>>>»»»»»»»»• | |
I»»»»»»»»»»»»»»»! |

I

i
I»»»»»»»»»»»»»»») |
l >>>»»»>»•>»»»»»I |
I»»»»»»»»»»»»»»»| |

I»»»»»»»>>»»»»»»! |
22222222222222222 4

IM / CUT COM • «

•WJSES OP PULL SHEETS OtC
TOTAL 00 INCHES OP REOOIN

"W OP REQUIRED PIECES
NIOTH

CUTTINQ ORDER AND CUT COOES

21
14.625
78
11.5
IS

11
IS.25
19.875
12
II
8.75
7.5
7.5
29.175

OUT OP 99
OUT OP 74.8?»
OUT OP 94
OUT OP 78
OUT OP i
OUT or M *8.115

tl
M.875
18.875
11

* 18.175
1 38

11

OUT OP 25.875

19.875
9.15
18.875

I

30 Code Works

The two doors, 8 and 8a, for the lower front are not
shown here. They come out of one piece of wood so
that the grain matches. This cabinet actually was
built by us out of one sheet of birch plywood (the
back and the trim on top come from a different
sheet of quarter inch ply.) If you typed the program
in correctly and use the required pieces on the
opposite page, the solution to this problem should
come on the sixth attempt out of 19 possible.

CodeWorks 3 1

This, as well as other CodeWorks programs, are
available on the download system.

100 REM ** WOOD. BAS * WRITTEN BY THE CODEWORKS STAFF **
101 REM ** CODEWORKS, 3838 SOUTH WARNER ST. TACOMA WA, 98409
102 REM ** (206) 475-2219 VOICE (206) 475-2356 MODEM
103 REM ** DO NOT REMOVE THE ABOVE CREDIT LINES PLEASE.
105 CLEAR 1000: REM USE ONLY IF YOU NEED TO CLEAR SPACE
110 DEFINT I,J,K,N,U
120 DIM R(50,3),S(80,2),O(50,5)
130 GOSUB 160
140 REM ** INPUT AND INSTRUCTION MODULE **
150 GOTO 170
160 PRINT CHR$(12):RETURN:REM CHANGE TO CLS IF NECESSARY **
170 PRINT STRING?(22,"-");" The CodeWorks STRING?(23,)
180 PRINT" WOOD CUTTING GUIDE"
190 PRINT" also known as BalsaCalc to the Editors"
200 PRINT STRING?(60,"-")
210 PRINT "(Enter dimensions in INCHES and decimal fractions.)"
-220 PRINT
230 PRINT"You need to enter Length, (0 will terminate entries),"
240 PRINT" then Width,"
250 PRINT" then Grain direction of each required piece."
260 PRINT" Grain = 1 for parallel to length,"
270 PRINT" = 2 for parallel to width."
280 PRINT
290 INPUT"Enter 0 for no Kerf, 1 for l/16th, 2 for l/8th inch";SK
300 IF SK=1 THEN SK=.0625 ELSE IF SK=2 THEN SK=.125 ELSE SK=0 '
310 PRINT
320 LA=96:LB=48
330 FOR I = 1 TO 49
340 PRINT"PIECE #";I;"LENGTH";:INPUT R(l,l)
350 IF R(I,1)=0 THEN GOTO 440
360 PRINT" WIDTH"y:INPUT R(l,2)
370 IF R(1, 2) =0 THEN PRINT"CAN1T HAVE ZERO WIDTH-TRY AGAIN" : GOTO 340
380 PRINT" GRAIN";:INPUT R(I,3) :G0T°
390 IF R(1,3)>2 OR R(I,3)<1 THEN PRINT"PLEASE ENTER ONLY 1 OR 2":GOTO 3

400 PRINT STRING?(33,"-")
410 IF R(I,1)>LA OR R(l,2)>LB OR (R(l,l)>LB AND R f T i ̂ •> ^ rpucvr ODTMT "Cfl
N'T BE DONE - TRY AGAIN": GOTO 340 R(I»3)=*2) THEN PRINT
420 IF R(I,3)=2 THEN T=R(I,1):R(I,1)=R(I2):R(I 2)-T
430 NEXT I ' ' U'^"T
440 NR=I-1:FL=0:SQ=0:LF=0
450 REM ** FIND THE TOTAL SQ AREA OF REQ. Pirrpc **
460 FOR 1=1 TO NR rittbS
470 SQ=SQ+R(1,1)*R(1,2)
480 NEXT I
490 LF=INT((SQ-1) / (LA*LB))+l: REM ** ESTABLISH FYDT?r"Pc.rv **
500 REM ** SORT REQ PIECES INTO DESCENDING ORDFR *** SHEETS **
510 F=0 r,K

520 FOR 1=1 TO NR-1
530 L=I+1
540 IF FL=1 THEN GOTO 570
550 IF R (1,1) +R (1, 2) = > R (L, 1)+R(L, 2)THEN GOTO 610
560 GOTO 580
570 IF R(I,1)=>R(L,1) THEN GOTO 610
580 T=R(I,1):R(I,1)=R(L,1):R(L,1)=T
590 T=R(l,2):R(I,2)=R(L,2):R(L,2)=T
600 F=1
610 NEXT I
620 IF F=1 THEN GOTO 510
630 REM *** NOW SORT WIDTH WITHIN LENGTH ***
640 F=0
650 FOR 1=1 TO NR-1
660 L=I+1
670 IF R(I,1)<>R(L,1) THEN GOTO 710
680 IF R(I,2)=>R(L,2) THEN GOTO 710
690 T=R(1, 2): R(1, 2)=R(L,2):R(L,2)=T
700 F=1
710 NEXT I
720 IF F=1 THEN GOTO 640
730 IF FL=<1 THEN GOTO 930
740 IF INT(FL/2)-FL/2<>0 THEN GOTO 830
750 REM *** RECIRCULATE THE REQUIRED LIST ROUTINE ***
760 R(0,1)=R(NR,1):R(0,2)=R(NR,2)
770 FOR Q=NR TO 0 STEP -1
780 L=Q-1:IF L<0 THEN GOTO 810
790 R(Q,1)=R(L,1):R(Q,2)=R(L,2)
800 R(L,1)=0:R(L,2)=0
810 NEXT Q
820 REM *** THE OBVIOUS IMPOSSIBLE FIT ROUTINE ****
830 IF FL< >2*NR THEN GOTO 930
840 FT=0
850 FOR 1=1 TO NR-1
860 FOR Q=I+1 TO NR
870 IF R(I,1)+R(Q,1)>LA AND R(Q» 2)>LB-R(1,2) THEN FT=l:GOTO 910
880 IF R(1, 2)+R(Q» 2)>LB AND R(1,1)+R (Q,1)+R(Q+l,1)>LA AND R(Q+l,2)>LB-R(
1,2) OR R(Q+1,2)>LB-R(Q,2) THEN FT=l:GOTO 910
890 NEXT Q
900 NEXT I
910 IF LF<2 THEN LF=LF+FT
920 REM ** COMPARE REQUIRED PIECES TO STOCK PIECES ***
930 K=1
940 FOR 1=1 TO NR
950 J=1
960 REM ** IF THERE IS NO STOCK - PULL IN A NEW SHEET ***
970 IF J>NS THEN S(J,1)=LA:S(J,2)=LB:NP=NP+1:NS=NS+1:V=1:GOTO 950
980 IF NP>LF AND FL<>2*NR THEN GOTO 1710
990 IF V<>1 OR FL=>4 THEN GOTO 1080
1000 REM *** MOVE NEXT 48" PIECE SO IT CUTS FROM A FULL SHEET ***
1010 FOR Q=* TO NR
1020 IF R(Q,2)<>LB THEN GOTO 1060
1030 T=R(1,1)s R(I»1)=R(Q»1):R(Q»1)=T
1040 T=R(1,2)s R(1,2)=R(Q,2):R(Q,2)=T

CodeWorks 33

1050 GOTO 1080
1060 NEXT Q
1070 REM ** LOOK FOR EXACT FIT IN THE STOCKPILE ***
1080 FOR U=1 TO NS : IF R(I,1)=S(U,1) AND R(I, 2)=»S(U, 2) THEN J=U:GOTO 1210
1090 NEXT U
1100 REM *** LOOK FOR EQUAL LENGTHS ****
1110 FOR U=1 TO NS : IF R (1,1) =S (U, 1) AND R(I,2)=< S(U,2)THEN J-UtGOTO 121
0
1120 NEXT U
1130 REM *** LOOK FOR EQUAL WIDTHS ****
1140 FOR U=1 TO NSs IF R(1,2)=S(U,2) AND R(I,1)»< S(U,1) THEN J«U:GOTO 12
10
1150 NEXT U
1160 REM *** TAKE ANYTHING THAT FITSl ***
1170 FOR U=1 TO NS:IF R(I,1)=<S(U,1) AND R(I,2)=< S(U,2) THEN J=U:GOTO 1
210
1180 NEXT U
1190 J=J+1:GOTO 970
1200 REM ** STUFF THE CUT BUFFER WITH ALL THE DIMENSIONS •••
1210 O (K, 1) =R(I,1):0(K,2) =R(I,2):0(K,3)=S(J, 1):0(K,4)=S(J, 2)
1220 L=S(J, 1):W=S(J,2):LC=R(I,1):WC=R(I,2)
1230 REM *** CHECK FOR SINGLE CUT SITUATIONS *****
1240 IF L=LC AND W=WC THEN S(J, 1) =0: S(J, 2) =0 :C-l iGOTO 1360
1250 IF L=LC THEN S (J, 2) =W-WC-SK: C=2 :GOTO 1360
1260 IF W=WC THEN S(J, 1) =L-LC-SK:C=3:GOTO 1360
1270 REM ** DETERMINE WHETHER 4 OR 5 CUT AND SIZE OF LEFTOVERS ***
1280 IF INT(FL/2)-FL/2<>0 AND V=1 AND 1=1 THEN GOTO 1350
1290 IF R(I,1)+R(I+1,1)=S(J,1) AND R(1, 2) =R(1+1, 2) THEN GOTO 1350
1300 IF R(1+1,1)+R(1+2,1)=S(J, 1) AND R(1+1,2)=R(1+2,2) THEN GOTO 1350
1310 IF R(I+1,1)=R(l+2,1) AND R(I,1)=R(I+1,1) AND R(1 + 1,2)»R(1 + 2,2) THEN
GOTO 1350

1320 IF R(1+1,1)+R(1+2,1)=S(J,1) AND R(1+1,2)+R(1+2, 2)"<S(J,2) THEN GOTO
1350
1330 IF R(1+1,1)+R(1 + 2,1)>R(1,1) AND R(1+1,2)=R(1+2, 2) THEN GOTO 1350
^GOTO^!360 } =L-LC_SK: S (J' 2 5 =W: J=NS+1.: S (J,1)=LC j S (J, 2) "W-WC-SK: NS=NS+1: Cs4

1350 S (J, 1) =L: S (J, 2) =W-WC-SK: J=NS+1: S(J, 1)=L-LC-SK: S(7 7) =WC t NS=NS+110=5
1360 0 (K, 5) =C: NO=NO+l, REM «• ADD CUT CODE TO CUT BUFFpi '"
1370 IF V=1 THEN PRINT TAB(10);M New Sheet

J33890 K=K+1:V=0TING "0(K'1)*0(K'2)" Mfrom"*0(K, 3);0(K,4);"cut c o d e " ; 0(K,5)

1400 REM ** ELIMINATE DEADWOOD FROM STOCKPIIP **
1410 F=0
1420 FOR J=1 TO NS-1
1430 IF S(J, 1)=0 THEN S(J, 1)=S(NS, 1): S (J, 2)=SInq o \ Mc , t, i
1440 NEXT J '•oiu,/;:=s(NS,2)» NS=NS-1 t F™1

1450 IF F=1 THEN GOTO 1410
1460 REM **
1470 F=0
1480 FOR J=1 TO NS-1
1490 L=J+1
1500 IF S(J,1)+S(J,2)=<S(L,1)+S(L,2) THEN GOTO u,fl
1510 T=S(J,l):S(J,l)=S(L,l)sS(L,l)=r 540

1520 T=S(J,2):S(J,2)=S(L,2);S(L,2)=T
1530 F=1
1540 NEXT J

SORT THE STOCKPILE INTO ASCENDING ORDER **

I

34 CodeW°rks

1550 IF F=1 THEN GOTO 1470
1560 NEXT I
1570 GOSUB 160
1580 PRINT TAB(15);" RESULTS "
1590 PRINT"AREA REQUIRED =";SQ?":AREA LEFT OVER = ";NP*(LA*LB)-SQ;"SQ.IN

tl
1600 PRINT"MINIMUM SHEETS FOR THIS PROJECT BY SQ. AREA = ";INT((SQ-1)/(L
A*LB))+l
1610 PRINT"YOU NEED ";NP;" FULL SHEET(S) WITH A TOTAL AREA ="?(LA*LB)*NP
1620 PRINT"Kerf =";SKInches"
1630 PRINT"THE CUTTING ORDER FOLLOWS (Grain runs parallel to length)"
1640 PRINT
1650 PRINT"Length";TAB(10);"Width OUT OF";TAB(29)?"Length";TAB(40);"W
idth";TAB(50);"CUT CODE"
1660 PRINT
1670 FOR K=1 TO NO
1680 IF 0(K, 3)=LA AND 0(K,4)=LB THEN D$="New sheet->" ELSE D$=""
1690 PRINT 0(K,1)?TAB(10);0(K,2)?TAB(19);D$;TAB(30);0(K,3)?TAB(40);0(K,4
);TAB(50);0(K,5)
1700 NEXT K
1710 IF NP>LF AND FL<>2*NR THEN NP=0:NS=0:NO=0:GOTO 1720 ELSE GOTO 1750
1720 PRINT:PRINT"Attempt—> "?FL+2?" of ";2*NR+1
1730 FL=FL+1
1740 IF FL=> 2 THEN GOTO 730 ELSE GOTO 510
1750 PRINT
1760 IF SQ=NP*(LA*LB) THEN PRINT "ATTEMPTS =";FL+1;":This is an EXCELLEN
T solution 1GOTO 1820
1770 IF NPOLF THEN PRINT"ATTEMPTS ="?FL+1?":A POOR solution or IMPOSSIB
LE fit or cut"
1780 IF NPOLF THEN PRINT"I can't tell which, it's up to you."
1790 IF NR>4 AND LF<>NP THEN PRINT"You might try to combine similar piec
es and do betterGOTO 1820
1800 IF LF=NP THEN PRINT"ATTEMPTS =";FL+1This is a SATISFACTORY solut
ion."
1810 IF SQ=<(LA*LB)*NP AND FT=1 THEN PRINT Extra sheet is due to an impo
ssible fit or cut."
1820 PRINT _
1830 INPUT"Do you wish to print the cutting diagrams (Y/N) ?A$
1840 IF A$="Y" OR A$="y" THEN GOTO 1860 ELSE RUN 100
1850 END
1860 REM *** PRINT CUT LIST ROUTINE ***
1870 INPUT"ENTER THE NAME OF THIS PROJECT";B$
1880 LPRINT "PROJECT ID IS: ";B$
1890 LPRINT" "
1900 LPRINT"GRAIN ALWAYS RUNS PARALLEL TO THIS DIRECTION >>>
1910 LPRINT" "
1920 IF SK<>0 THEN LPRINT"KERF OF "?SK?"INCHES IS REMOVED FROM CUTOFF PI
ECES 11

1930 LPRINT" 111 INDICATES 1ST CUT, 222 INDICATES 2ND CUT"
1940 FOR K = 1 TO NO
1950 LPRINT" ":LPRINT" "
1960 LPRINT "PIECE # ";K
1970 L=0(K,3):W=0(K,4):LC=0(K,1):WC—0(K,2):C-0(K,5)
1980 LPRINT"STOCK PIECE IS ";L?"INCHES LONG AND ";W;"INCHES WIDE"
1990 LPRINT"PIECE TO CUT IS ";LC?"INCHES LONG AND ";WC;"INCHES WIDE"?" /
CUT CODE ="?C

Code Works 35

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540

LPRINT" "
L=L*.82:LC=LC*.82
W=W*.44:WC=WC*.44
IF LC=<6 THEN LC=6
IF LC > (.94*L) THEN LC=(.94*L)
ON C GOTO 2300,2370,2480,2190,2070
REM *** CODE 5 CUT -2 CUTS REQUIRED 1ST HORIZ 2ND VERT ***
LPRINT STRING$(L,"-")
FOR M=1 TO WC
LPRINT"1STRING?(LC-2,">")y TAB(LC);"2";TAB(L)J"J"
NEXT M
LPRINT STRING$(L,"1")
FOR U=WC TO W
LPRINT"1";TAB(L) ; " 1"
NEXT U
LPRINT STRING$(L,"-")
NEXT K
GOTO 2550
REM *** CODE 4 CUT -2 CUTS REQUIRED 1ST VERT 2ND HORIZ ***
LPRINT STRINGS(L,"-")
FOR M=1 TO WC
LPRINT "1";STRINGS(LC-2,">");TAB(LC);"1";TAB(L);"i"
NEXT M
LPRINT STRINGS(LC,"2");TAB(L)y " I "
FOR U = WC TO W
LPRINT "1";TAB(LC)y"1";TAB(L);"1"
NEXT U
LPRINT STRINGS(L,)
GOTO 2160
REM *** CODE 1 CUT - NO CUTS REQUIRED ***
LPRINT" "
LPRINT"*********************************
LPRINT"*
LPRINT"* EXACT FIT - NO CUTS REQUIRED
LPRINT"*
LPRINT"*********************************
GOTO 2160
REM *** CODE 2 CUT - ONE HORIZ CUT REQUIRED ***
LPRINT STRINGS(L,"-")
FOR M=1 TO WC
LPRINT "1";STRINGS(L-2,">");TAB(L)•"!" '
NEXT M
LPRINT STRINGS(L,"1")
FOR U=WC TO W
LPRINT "i";TAB(L) y " 1 "
NEXT U
LPRINT STRINGS(L,"-")
GOTO 2160
REM *** CODE 3 CUT - ONE VERT CUT REQUIRED ***
LPRINT STRINGS(L,"-") D

FOR M = 1 TO W

I

LPRINT" I " ; STRING? (LC-2, " > ") y TAB(LC) y "1" • TARf r 1
NEXT M ;1ABIL)y" 1
LPRINT STRINGS(L,"-")
GOTO 2160

36
Code Works

I 2550 REM **** PRINT REQUIRED PIECE LIST AND LEFTOVER STOCK ****
2560 LPRINT" "
2570 LPRINT"NUMBER OF FULL SHEETS USED = ";NP
2580 LPRINT"TOTAL SQ INCHES OF REQUIRED PIECES =";SQ
2590 LPRINT" "
2600 LPRINT"LIST OF REQUIRED PIECES"
2610 LPRINT "LENGTH"yTAB(15)y"WIDTH"
2620 LPRINT STRING?(20,)
2630 FOR 1=1 TO NR
2640 LPRINT R(I,1);TAB(10);"X"yTAB(15);R(I,2)
2650 NEXT I
2660 LPRINT" "
2670 LPRINT"LIST OF LEFTOVER PIECES"
2680 LPRINT"LENGTH"yTAB(15)y"WIDTH"
2690 LPRINT STRING$(20,)
2700 FOR J= 1 TO NS
2710 LPRINT S(J,1)yTAB(10)y"X"yTAB(15)yS(J,2)
2720 NEXT J
2730 REM PRINT THE CUT BUFFER ******
2740 LPRINT" "
2750 LPRINT" THE CUTTING ORDER AND CUT CODES ARE:"
2760 LPRINT" "
2770 FOR K=1 TO NO
2780 LPRINT 0(K,1)yTAB(10)y"X"yTAB(12)y0(K,2)yTAB(24)"OUT OF"yTAB(30)y0(
K,3)yTAB(40)y"X"yTAB(42)yO(K,4)yTAB(55)y"CUT CODE"yO(K,5)
2790 NEXT K

I 2800 PRINT"DONE"
2810 END

Programming Notes

This note may be something we said before, but
bears repeating. A St. Louis reader called to say
he had problems with the files in our Card.Bas
program from Issue 2. It turned out that he was
using a Tandy Model III and used the file as we
presented it in the program listing. When he went
to look at the file from the DOS Ready prompt, it
came back and said "File Access Denied". Most
Tandy machines (except the newer MS-DOS types)
use a slash for the file extension. A little-used
feature of the Tandy DOS is that you may specify a
file password like this: filename.pwd/BAS. The
"pwd" then becomes the password, and the
extension is still BAS. If you don't specify the
password, you cannot read your file back. Since
MS-DOS, CP/M and others use the ".BAS"
convention it looks like a password to the earlier
Tandy machines.

We would like to ignore extensions in the
magazine but they are too handy to ignore.

Code Works 37

The Shell Sort
2nd in a series on Sorts

Staff article

In the last issue we discussed the Bubble Sort. One
of the problems with that sort is that the time it
takes goes up almost exponentially with the
number of items it has to sort. We can make a
significant improvement in sort time with the
Shell sort. The Shell sort we are presenting here is
not really a true Shell sort. It is a modified version
of the real thing. The real thing uses a stack and
other devices which make it work better but
complicates the code considerably.

The basic idea behind this sort is to divide and
conquer. Instead of "bubbling" an item all the way
down the line, this one simply picks the item up
and moves it directly to where it will be in a better
position. It picks an approximate mid-point in the
file (see line 220 of the listing) and then if the
number in the first position of the second half is
smaller than the number in the first position of the
first half, it swaps them. (See figure 1, the first
swap switched the 1 in position 6 with the 92 in the
first position.) A little study of figure 1 will show
graphically what happens during this sort. Notice
the 98 in the third position. It stays there for two
passes then jumps over to position eight and stays
there for four passes. In the next pass, it is moved
directly to position 10, where it actually belongs.

In the program, the actual sort takes place
between lines 210 and 360. It can be done in fewer
lines by making multiple line statements, but we

left it open so it would be easier to follow. Line 300
is not essential to the sort; it is included for
demonstration purposes only.

At the beginning of the program we generate a
batch of random numbers to sort. You may need to
un-remark the Randomize in line 110 if your
machine needs it. Just before we go into the sort we
get the system time in TIMK$. After the sort is
done we get it again so that the time to sort can be
observed. If you don't have TIMK$ it will be
treated just like any other string variable and will
return a zero. If your BASIC supports the SWAP
command you can use it in line 290.

The speed of this sort, when compared to the
Bubble sort, is interesting. On fifty or less items
you can hardly see the difference, but when the
number of items gets into the 200 and over range
this sort really shows its stuff. In Issue 2 we
presented CARD.BAS. When we originally wrote
it we used a Bubble sort. It took well over two hours
to sort 200 records. We reduced that time to about
twenty minutes with the Shell sort (and further
reduced it to about four minutes by sorting
pointers instead of strings.) You may want to
revisit the sort article in Issue 2 and compare some
times between the Bubble sort and this one. If you
do, don t forget to try various numbers of items
using both sorts. The difference should amaze you.

92 10 98 75 60 1
10 98 75 60 92
10 8
10
10
10
10
10
10
8
8
8
8

SWAPS =

8
8
8
8

75
36
36
36
36

8 36
8 36

10
10
10
10

36
36
36
36

11

60
60
60
55
55
55
55
55
55
55
55

92
92
92
92
92
75
75
75
60
60
60

ENDING TIME = 00.45.03
START TIME = 00.45.00

55
55

55
55
55
60
60
60
60
60
75
75
75

10
8 36 75
8 36 75

98 36 75
98 75 75
98 75 75
98 75 75
75 75 98
92 75 98
92 75 98
92 75 98
92 75 98
75 92 98
75 92 98

SWAP 1-92
S W A P 8 - 9 8
S W A P 3 6 - 7 5
S W A P 1 0 - 1 0
S W A P 5 5 - 6 0
S W A P 7 5 - 9 8
S W A P 7 5 - 9 2
S W A P 1 - 1
S W A P 8 - 1 0
S W A P 6 0 - 7 5
SWAP 75 - 92

SORT IS COMPLETE

Figure 1
38

I 100 REM ** MODIFIED SHELL SORT DEMO **
) 110 'RANDOMIZE :'IF YOU NEED TO

120 INPUT"HOW MANY NUMBERS TO SORT";N
130 DIM A(1000)
140 FOR 1=1 TO N
150 A(I)=RND(100):'USE YOUR BRAND OF RND HERE
160 PRINT A(I);
170 NEXT I
180 PRINT
190 S$=TIME$:'IF YOU HAVE NO TIME$ DON'T WORRY
200 PRINT :'IT WILL JUST PRINT 0 FOR TIME
210 M=N
220 M=INT(M/2)
230 IF M=<0 THEN GOTO 370
240 J=0
250 K=N-M
260 I=J
270 L=I+M
280 IF A(I)=<A(L) THEN GOTO 340
290 A(T)=A(I):A(I)=A(L):A(L)=A(T):SW=SW+1
300 FOR Q=1 TO N:PRINT A(Q);:NEXT QsPRINT" SWAP";A (IA (L)
310 1=1-M
320 IF I<1 THEN GOTO 340
330 GOTO. 270
340 J=J+1
350 IF J>K THEN GOTO 220
360 GOTO 260
| 370 SS$=TIME$
' 380 FOR X=1 TO N

390 PRINT A(X);
400 NEXT X
410 PRINT"SORT IS COMPLETE"
420 PRINT .-PRINT
430 PRINT"SWAPS = "; SW
440 PRINT
450 PRINT"ENDING TIME = ";SS$
460 PRINT"START TIME = ";S$

Subscription ORDER FORM 186
Please enter my one year subscription to CodeWorks at $24.95. I understand that this price includes
access to download programs at NO EXTRA charge.

• Check or MO enclosed.
• Charge to my VISA/MasterCard # Exp date
Please Print clearly:

Clip or photocopy and mail
to: CodeWorks
3838 South Warner St.
Tacoma, WA 98409

State Zip

Charge card orders may be called in (206) 475-2219 between 9 AM and 4 PM weekdays. Pacific time. Sorry, no "bill me"
orders.

Name _

Address

) City

Code Works 39

Parting Shots k

The Staff
at CodeWorks

wishes
each of you

a
happy

and
prosperous
NEW YEAR ,VI HEAR HE'S ONE OF THE FASTEST COMPUTES

PROGRAMMERS AROUND' "

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Address correction requested

Bulk Rate
US Postage

PAID
Permit No. 774
Tacoma, W A

• CODEWORKS
Issue 4 Mar/Apr 1986

CONTENTS

Editor's Notes 2
Forum 3
Check.Bas 5
Precomp.Bas 7
Programming Notes 11
Piles to Files 12
Beginning BASIC 14
Sequential Files 15
Math.Bas 20
Payroll.Bas 26
Puzzler 39
Download 40

CODEWORKS Editor's Notes
Issue 4 Mar/Apr 1986

Editor/Publisher
Irv Schmidt

Associate Editors
Terry R. Dettmann

Jay Marshall
Circulation/Promotion

Robert P. Perez
Editorial Advisor

Cameron C. Brown
Technical Adviser

Al Mashburn

« 1986 80-Northwest Publishing Inc.
No patent liability is assumed with respect
to the use of the information contained
herein. While every precaution has been
taken in the preparation of this
publication, the publisher assumes no
responsibility for errors or omissions.
Neither is any liability assumed for
damages resulting from the use of any
information contained herein. All
programs, unless otherwise specified,
presented in this publication are hereby
placed into public domain. The publisher
reserves the right to insist that
CodeWorks credit lines be left in any
program which is moved to other media
f o r a n y u s e . P l e a s e a d d r e s s
correspondence to CodeWorks. 3838
South Warner Street. Tacoma.
Washington. 98409

Telephone (206) 475-2219

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/ldwer case,
please) and allow 4 to 6 weeks for editorial
review. You may send IBM-PC compatible
diskettes (please save your programs in
ASCII format) Also send a hard copy
listing of the program and article Media
will be returned if return postage is
provided Cartoons and photographs are
welcome Compensation will be made for
works which are accepted for publication.
CodeWorks pays upon acceptance rather
than on publication

Subscription price: $24.95 per year (six
issues). A subscription year runs from
Nov/Dec through Sep/Oct. Anyone
subscribing will receive all issues for the
subscription year. Not available outside
United States zip codes. VISA and
Master Card orders are accepted by mail
or telephone (206) 475 2219

CodeWorks is published bimonthly in
Jan, Mar. May, Jul, Sep and Nov. It is
printed in The United States of America.
Bulk rate postage paid at Tacoma,
Washington.

Sample copies: If you have a friend who
would like to see a copy of CodeWorks
just send the name and address and we
will send a sample copy at no cost

After months of diligent work we
finally got our download system up
and running. We were putting the
finishing touches on it at Christmas,
and thought that we were over the
first hurdle. Of all things, the week
after New Year's we had a lightning
storm. This in a part of the country
where we rarely even get them in the
summer. The storm left our
computer intact, but our hard disk
didn't come through it well. The
morning after the storm the hard
drive sounded like a cement mixer.

The entire bubble on the drive had
to be replaced. That, of course,
meant that the entire system needed
to be re-initialized as well.
Somewhere around the third week of
January, we finally got back to
where we were before the storm.
There were a few more quirks for a
week or so, and by the second week
of February we had most of them
taken care of. Thanks to all of you
for reporting problems and
suggestions to us.

We had a good time putting
together the Math.Bas program in
this issue. The idea sort of evolved
from something else we were doing.
One thing led to another and the
program was born. Even though the
math may be old hat, watching the
action is interesting.

One of our main programs in this
issue is the payroll program. All the
while I was working on it I kept
thinking that the same structure
could be used for other, similar,
things. Basically it is just another
form of a database. Well, one thing
led to another and soon we were all
thinking of devising an NFL
football forecasting program. Bob,
our resident circulation guru, knows
all the players and all the scores. He
brought in a stack of sporting
magazines with all the stats and we
have been fumbling through them

looking for something significant.
It's too early to make any definite
promises, but with any luck we
should have a program ready to
publish in our Sep/Oct 86 issue, just
in time for the new season. There is a
problem with all those statistics, but
maybe we could put them on the
download each week — hmm. Well,
just a thought.

You have probably noted that
CodeWorks does not continue an
article or program from the front of
the magazine to the back. That is
mostly due to the fact that I don't
like articles that do that. Besides, we
have no need to draw your attention
to the back pages since we do not
have adver t isers . Our on ly
restriction on where things go is d •A
where the color pages fall. We only \ \
use one additional color and it falls
on specific pages, so we need to lay
the magazine out to take advantage
of them. This issue fell together
rather tightly, and when all was
said and done there were a couple of
pages left over. Terry suggested
using them for an overlay for the
Card program from our Nov/Dec 85
issue to make the Check program in
this issue. It worked out well, except
that we needed another half page or
80 for the text, which happened to be
a few pages further on and was
scheduled for programming notes. I
finally broke down and continued
the article there, much as I didn't
like to, and hope you don't mind
either. The missing notes will get
first priority in the next issue.

What with the lightning storms,
holidays and all, we have let our
author file slide a bit. I noted that
and took care of it. From here on, we
will mark the calendar and take care
of it on time. / 4

We hope you like the issue, and | ™
will see you next time.

— Irv

2 CodeWorks

Forum
An Open Forum for Questions & Comments

I noticed a reader asked for an
article on PEEK and POKE and I
would like to second his request. I
understand what the two commands
are, but how and why do you use
them? Why should I want to POKE a
number into memory?

I approve of your idea to mix
beginning and advanced programs.
Your first issue with the Trend
Plotter was useful. I am a diabetic
and thus must get blood out of my
fingers and measure it to control my
insulin shots. By using your
program and modifying it to fit my
needs, my doctor claims he has a
better idea of what is going on in my
body. I was using a stat program
which gave the same information
but (he likes this better). Frankly, it
has been a real medical help for me...

James C. McCord
Fairbanks, AK

That's a rather unexpected use of the
Trend Plotter program. We are very
happy it is of help to you. In regards
to the PEEK and POKE: Both these
BASIC commands provide for direct
access to memory. They are very
machine specific because the
memory usage and layout varies
considerably from computer model
to computer model. PRINT
PEEKfmemory location) will return
a num her between Oand 255. Or you
c a n s a y : A = P E E K (m e m o r y
location): PRINT A. Memory
location is a decimal number. PEEK
will tell you what value is currently
being held in any memory location.
POKE will allow you to change a
memory location to a value between
0 and 255. POKE will get you into all
sorts of trouble if you don't know
what you are doing. The syntax for
POKE is: POKE memory location,
v a l u e . F o r e x a m p l e . P O K E
18037,65 will put the number 65 in
memory location 18037. If that
location happens to be where BASIC
resides, you might get some rather

unexpected reactions. The CHR$
value of 65 is the capital letter A. If
you try to POKE into Read Only
Memory (ROM) the POKE will be
ineffective - it simply will not accept
it. POKE comes in very handy when
you want to stuff a machine
language routine into high memory.
The data to be entered is put into
BASIC data statements. Then, with
a FOR...NEXT loop, you can read
the data and using POKE put it into
the appropriate memory locations.
It's an interesting subject. The use of
t h e s e c o m m a n d s v a r i e s f r o m
machine to machine, but an article
on their use in general may not be a
bad idea. Give us a while to get it
together.

...Your WOOD program with
article is beautiful! Well worth the
space it took to print, and then some.
It deserved top billing instead of
relegation to the back pages... One
troublesome item noted: why not use
other than variable "0" because of
its sighting conflict with zero?... The
OUTLINE program is utilitarian
and truly clever. I am predicting
many readers will have lots of
trouble "deciphering" it, mainly
because your explanatory material
is not in the nature of operating
instructions. As of this writing, I'm
still in the dark about how to use the
EDIT and LOADING functions...

Waldo T. Boyd
Geyserville, CA

In our listings, since day one, the
zero is always slashed, the "0" is
not. If in doubt, you can check a line
number, where you know the
number cannot contain an "0" and
see what the zero looks like. Some
people have the same problem with
the 1 and the I. In the WOOD
program, the "0" stands for Output
Array. But you are probably right,
we should stay away from variables
that could easily be misread. Your

remarks in reference to OUTLINE
at first left me with a very large
question mark over my head. Then it
finally dawned • you expected it to be
a working program. It is not. It is an
example used to illustrate the idea
p r e s e n t e d . I t c o u l d h a v e b e e n a n y
program at all, we just needed a
structure to show how to implement
the idea. - Irv.

I'm a subscriber to CodeWorks,
and I'm puzzled. Today in the mail, I
received my second copy of the
Premier Issue! An error, obviously.
Currently I'm expecting my copy of
the Jan/Feb 86 issue. Perhaps it will
be along shortly - I hope. Just
thought I'd bring this to your
attention. Good magazine -1 like it.

Ed M. McDonough
Sturbridge, MA

Since early last fall, we have been
promoting various lists of computer
owners. They come from different
list brokers and the possibility of
your name being on more than one
list is likely. I know it sounds crazy,
but the time it takes to go through a
big list to find names we already
have as subscribers is prohibitive.
We spot check for it, but don't
actually look for each and every one.
If you get an extra issue, please give
it to someone you know who may be
interested. And while on that
subject, in the first two issues we
asked you all to tell your friends, and
that we needed as many subscribers
as we could get. It turns out you did it
very well. We have received many
new subscribers who told us they
were referred to us by a current
subscriber. You have all done well,
keep it up, and thanks! - Irv.

Issue 2, page 16, says that Mr.
Norris' program to convert direct
access to sequential files would
appear in Issue 3. It didn't. Do you
have a copy of it to spare? Many

CodeWorks 3

thanks.
Edward Engberg

Santa Barbara, CA

The programs were apparently lost
on the production room floor (they
got overlooked by yours truly.) But
never fear, I found the omission and
in this issue you will find the other
three programs. Also, we have put
them (all five) together in one
program with the first numbered in
the 100's, the second in the200's, etc.
They will be on the download system
as one program from this issue
called NORRIS.BAS. After you
have downloaded the program, you
can take it apart and save each
section as a separately named
module.

...Your realistic approach to
p r o g r a m m i n g f o r p e r s o n a l
enjoyment is as welcome as a fresh
spring breeze. I wonder if you intend
to cover a subject known as a B-Tree,
Binary Tree, Balanced Tree. Take
your pick. It is an alternative to
sorting and I understand is
conducive to handling extremely
large files. I've been looking for
some good sound source coding on it,
but so far all the writers I've read
have presented the algorithm, but
not much else... Also, in studying the
Staff Projects you have published, I
noticed that often you drop out of a
FOR...NEXT loop without closing
the NEXT. I was always under the
impression that you should never
leave a NEXT hanging. It will
(p o s s i b l y) f o u l u p t h i n g s
unexpectedly later on. I am looking
forward to the next edition with a
high degree of anticipation.

Art Phillips
Arvada, CO

I've had a chat with Terry
Dettmann, who says he is working
on a merge sort that uses the binary
tree. Just as soon as he finishes it
and we get it all checked out you will
see it in these pages. And yes, we
jump out of loops. It becomes a form
of a "Do Until" loop. I have always
heard you shouldn't do it, but can't
figure out why. It would make sense
if the loop counter would be returned
to a zero value on closure but it
doesn't. If you jump out ahead of

time the loop counter is at some
value between the "from" and "to
values. If you close the loop it is at
the terminal value plus I. In any
case, thank you. You have given us
an interesting lead into an article on
loops: FOR...NEXT, WHILE...
WEND, and the rest of them. We'll
work on it.

...I am pleased to see that you are
publishing a sensible magazine that
is designed to help developing
programmers...I feel very isolated in
that when I have a question about a
programming problem, I can very
seldom find anyone that under
stands what I am talking about. I
will probably be asking you some of
these questions from time to time.

What I would like to see you do is
publish a number of modules that
could be merged, as desired, into a
program for a specific purpose. It
would be interesting to have readers
submit their ideas for modules for a
menu, sorts, searches, editing, right
and left justification of lines of text,
etc. This would probably turn up a
number of pew ideas in program
ming, like the one in (Issue 2) that
suggested using STRING$(X,13)
instead of a FOR..NEXT loop for
multiple line feeds. (It was new to
me.) I look forward to many months
of enjoyment through CodeWorks
and hope to communicate with your
on-line computer shortly.

E. L. Stanley
Clarkston, WA

Most printers have a switch setting
that will allow you to add a line feed
in addition to the one sent from the
computer at the end of a program
line. If you have MS DOS. it
probably will do the line feed even
when you have the printer set not to.
(In that case there is usually a file
called LF which you can use to
include or exclude the line feed • LF
OFF turns it off, LF ON turns it on.)
If you can do neither of these to get
your line feed, try saving your
program in ASCII SAVE
"filename".A and then toad it with
your text editor and let it print it out.
Most text editors word processors
will allow you to set the line spacing.
These are not the only or best ways
to do it: there must he sei>eralothers.

A reader from Norwalk, CT has
written to tell us he has converted
our program ('ARI).BAS into a key
inventory program. The prohlem he
had was that there were 80 keys
issued to different people and there
were 12 levels of security. Not all
keys fit all locks. He has reworked
the program to account for the keys
and who has them, as well as to tell
when any given security level key
needs to Is- reordered. If you have a
similar prohlem and would like to
contact him directly his name and
address is: Arthur J. Avery, I
Kedhird lame. Norwalk. CT 06854

You are probably right, but BASIC'S
lack of local and global variables,
among other th ings , make i t
somewhat difficult to implement.
Still, not a bad idea. Perhaps we
could designate all the variables
starting with "Z" as reserved for
common subroutines? It is worth
some serious thought.

I am just now reading the Sep/Oct
85 issue and am delighted with it
Can you develop a routine so a
printer will add a line feed in
between each line listed when listing
out a program? It would sure make i t
easier to write editing notes in the
blank spaces..

William H. Fox
Oroville, CA

n (J
^ -

Check.Bas
Organize your Checks for Tax Time

Staff Project. Sorting out the checks you wrote last year is a snap with this
simple overlay to a program we published previously. It summarizes your
expenses by category and gives you a sorted list of all checks.

Need a starting point for income tax time? Got
that shoebox full of receipts in the bottom drawer?
How about finding all those checks you wrote and
forgot about? Getting your figures organized and
ready for that form 1040 can be pure drudgery.
Maybe this will help you.

Check.bas is a program that will let you enter all
of your checks (either from the stubs or from the
cancelled checks themselves.) It doesn't matter if
they are not in order, the program will put them
into any order you want. All you need do is enter
who the check was for, what the check was for, the
check number and the amount. You can then sort
on any of these items and print out a neat list. More
important is the fact that you can also
summarize the checks by category and print
subtotals by category and a grand total.

You may well ask where these few lines of code
get all of that ability. Well, they don't have it all by
themselves. These lines are merge lines that fit

right over the top of a program we published in
Issue 2, called Card.bas, in Nov/Dec 1985. It is a
mini-database program, and these lines, we'll call
them CHECK.MRG (for Check Merge), will make
it all possible.

There are a couple of ways to do this. Let's start
by saying that you must have Card.bas stored on
your diskette with the exact line numbers shown in
Issue 2 and nothing added or deleted. Then you
type in the lines in this program (CHECK.MRG) as
though it was a program all by itself. When done,
save this program as an ASCII file —
S A V E " C H E C K . M R G " , A . T h e n l o a d y o u r
Card.bas program and at the ready prompt type
MERGE"CHECK.MRG" and enter. Follow the
directions in Issue 2 for initializing Card.bas, and
when you have done so, you will find that it is no
longer Card.bas but is now called Check.bas. Keep

Continued on page 25

Program CHECK.MRG
100
102
110
120
160
230
240
250
260
330
420
430
440
450
570
580
590
600
610
620
630

REM ** THIS IS CHECK.BAS * WRITTEN FOR CODEWORKS MAGAZINE **
REM * THIS IS A MERGED VERSION OF CARD.BAS FROM ISSUE 2
V=500: REM SET LIMIT OF # OF CHECKS HERE
DIM A$(V)rB$(V),C$(V),D$(V)»Q$(V)»P (V)
OPEN "O",1,"CHECK.DAT"

OPEN "I",1»"CHECK.DAT*
I

A$="l-Who to
B$="2-Categorys"
C$="3-Ch Num :"
D$="4-Ch Amt

This program is available on the
download as CHECK.MRG. An
already merged version of Card.Bas
(now called CHECK.BAS) is also
available on the download.

Code Works

640
670
680
750
940
950
960
970
1020
1030
1270
1280
1290
1300
1440
1490
1500
1510
1520
1610
1640
1660
1710
1720
1730
1740
1995
2020
2030
2040
2060
2080
2090
2100
2110
2120

PRINT"
PRINT"
PRINT

C H E C K F I L
organize your checkbook by

"5 - PRINT Checks or Summary"

E P R O G R A M "
category for income tax time"

PRINT
I

A$ (P (I)) ; TAB(20) ;B$(P(l)) ;TAB(40);C$(P(I)) ? TAB (50) ;D$(P(I))

ON
I

X GOTO 1450,1460,1470,1480

IF
ON

X=>^ OR X=<0 THEN GOTO 1620
X GOTO 1670,1680,1690,1700

*** REM *** PRINT LIST OR SUMMARY ROUTINE
PRINT "ENTER 1 - TO PRINT THE CHECK SUMMARY BY CATEGORY'
PRINT "ENTER 2 - TO PRINT THE ENTIRE CHECK REGISTER"
PRINT:X$="$$## #,###.##"
ON X GOTO 2080, 2230
I

c

FOR 1=0 TO LI—1
XX=LEN(B$(P(I)))
L=I + 1

2130 IF B$(P(I))=B$(P(L)) THEN CS=CS+VAL(D$(P(I))): GOTO 2170
2140 CS=CS+VAL (D$(P(l))): LPRINT B$ (P (I)) • STRINGS (29 XX H " (.
2150 LPRINT TAB(30) rTJRTNf; YS.rs AA' ~ '•
2160

LPRINT TAB(30);USING X$;CS
CT=CT+CS:CS=0

2165
2170
2180
2190
2200
2210
2220
2230
2240
2250

NEXT I
LPRINT" "
LPRINT"GRAND TOTAL
LPRINT" "
LPRINT"TOTAL
GOTO 650
REM ** PRINT

•> $ " ? CT

NUMBER OF RECORDS EXAMINED

FOR 1=0 TO Ll-1
ENTIRE CHECK REGISTER MODULE **

LPRINT A$ (P (I)) ; TAB(20); B$ (P (I)) - TAB(4pn.r>c/o/*-\ \ m*.W<;0)
;USING X$;VAL(D$(P(I))) ,TAB(40)7C$(P (I)).:LPRINT TAB(50)
2260 NEXT I
2270 LPRINT" "
2280 LPRINT"TOTAL NUMBER OF RECORDS
2290 GOTO 650

PRINTED "•i

Code Works

Precomp.Bas
A BASIC Precompiler using Labels

J. Melvin Jones, Warwick, NY. If the lack of labels and the use of line
numbers in BASIC bother you, here is a precompiler that allows the use of
labels and does not need line numbers. Now you can write code with your
word processor.

BASIC, as it is currently implemented, is an
almost ideal language for hacking out programs
interactively with a minimum of actual planning
and previous specification. The problem, however,
is the assumption that the programmer can assign
and remember a specific line number for each and
every statement in the program. While this is not
difficult for programs up to about 100 lines,
modern BASIC implementations often allow
programs of considerably longer length and,
correspondingly, complexity.

Thus, most programmers, myself included, must
surrender the "off-the-cuff" nature of BASIC and
diagram more complex programs in advance,
thereby predicting the line numbers of various
sections of code. Furthermore, for really large
programs, the programmer usually must keep a
scratch pad handy to document the hundreds of
line numbers that he will need to remember at
some future time.

Finally, when it comes time to revise or update
the program the programmer must find a set of line
numbers that is unused and patch his changes in
wherever they will fit, resulting eventually in the
"spaghetti code" so commonly found in BASIC
programs.

The solution is, at least conceptually, obvious.
Rather than assigning each statement a specific
number, and therefore an irrevocable identity, it is
preferable to assign mnemonic labels only to those
lines which are referenced and, by doing so,
delimit meaningful sections of code and allow the
easy insertion and deletion of code without
disturbing the integrity of the program.

Unfortunately, BASIC as specified does not
allow this and, understandably, most compilers
and interpreters don't either. This is the
justification for the BASIC Source Code
Precompiler.

This is how it works. First, using your favorite
text editor or word processor, write your program

using labels instead of line numbers. To do this,
reserve the first eight columns of each statement
as the Label Field. If the statement is to be labelled,
left justify a sequence of up to eight characters in
this field. A label may consist of any combination
of ASCII characters except the space. If the
statement is not labelled, fill the first eight
characters with spaces (i.e., leave the first eight
spaces in the line blank, by using the space bar or
the TAB key.)

Whenever and wherever you would normally use
a line number in the program, use the label of the
statement referenced instead. Examples would be
G O T O , G O S U B , I F . . . T H E N . . . E L S E , a n d
ON...GOTO statements. Whenever you use a label
in a program line, make sure that it is surrounded
by spaces, unless, of course, it is the last item in the
line, in which case it can be followed immediately
by the carriage return that terminates that
statement.

Once the program is ready to be tested, save it in
a sequential ASCII file and run the BASIC
program PRECOMP.BAS. When asked for the
source file, specify the file which contains your
program (the version using labels.) When asked for
the object file, name the file which is to contain the
version of your program with line numbers (and
therefore executable by your BASIC interpreter or
compiler.) The BASIC Source Code Precompiler
will make two passes through the source file,
assign line numbers wherever needed, and write
the resulting BASIC program into your sequential
ASCII object file.

Finally, load and run the object file under your
regular compiler or interpreter. If you need to make
repairs or revisions, you can either make them to
your original source file (recommended) or simply
patch the resultant program (simplified by the
Symbol Reference Listing made available by the
Precompiler.)

Limitations? Only that you not assign a label

identical to a BASIC keyword or a variable name
defined in your program. The Precompiler will not
change occurrences of your labels within
quotation marks (lexical constants) or in REM
statements. No checking is performed to determine
if a label is identical to a BASIC keyword or
variable name, so any occurrence of an identical
match will be converted to the corresponding line
number. To avoid this problem, if it becomes a
problem, I would suggest that you precede the
troublesome labels with a dollar sign ($). Since no
BASIC keyword or variable name usually begins
with $ the label will be unique and never be
confused with any other token.

This program was written for the Tandy Model 4
operating under TRSDOS Version 6.01.01 and
BASIC version 1.00.00, but should easily be
convertible to almost any other BASIC dialect or

machine. The only requirement is that the target
BASIC interpreter or compiler must be able to load
and execute programs stored in ASCII files. I have
never run across a system that could not, although
some require that you set a special flag in the file
header. Careful examination of the manual for the
target system should provide all the necessary
information.
(Ed. note: To make this program more
transportable, we removed two or three
WHILE...WEND loops and converted them back to
straight coding. In addition, since many of our
readers have computers that do not use SPACES,
we converted that to STRINGS. The program, as
presented here, has been successfully run on IBM-
PC, Sanyo 555, Tandy Models 1000, I, II, III, 12
and 16. It was also checked and runs under CP/M
MBASIC.) •

100 REM ** PRECOMP.BAS * Written for CodeWorks Magazine, 3838 South
110 REM ** Warner St. Tacoma, WA 98409 (206)475-2219
120 REM * For program details and instructions see CodeWorks Issue 4
130 REM ** Please do not remove the above credit lines
140 • ,
150
160
170
180
190

BASIC Source Code Precompiler by Jeffrey M. Jones

This program reads a prepared ASCII BASIC source file from
diskette, evaluates labels, and then numbers the program as

™ , re<?uired by the BASIC interpreter. The executable code is then
200 written to a specified disk file.
210 ' _ ,
220 DIM L$(1024), L(1024)
230 CLS
240 PRINT"BASIC Source Code Precompiler. (Version 1 00 001"
250 PRINT"Written by Jeffrey M. Jones, 4 October 1 9 8 5 «
260 PRINT
270 LINE INPUT"Source File: ";S$
280 LINE INPUT"0bject File: ";0$
290 PRINT
300 PRINT"Pass 1..."
310 OPEN "I",1,S$
320 L=100
330 P=1
340 IF L>655001 OR P>1024 OR EOF(l) THEN GOTO 450

LINE INPUT # 1, A$
GOSUB 1020
IF(LEN(A$) <8) OR (A$=STRING$ (LEN(AS) " »\\ mUOk7

IF LEFT$ (A$, 8) =STRING$ (8, " ") THEN GOTO °
IF INSTR(A$," ")>8 THEN L$(P)=LEFT$(AS 81
IF INSTR(A$, " ") <9 THEN L$ (P) =LEFT$ (A$f' INSTR(A$, - ")-!)

350
360
370
380
390
400
410
420
430

L(P)=L
P=P+1
L=L+10

440 GOTO 340

450 CLOSE 1 , „ _M_
460 IF (P>1024) THEN PRINT"** too many labels :END
470 IF (L>655001) THEN PRINT"** too many lines":END
480 PRINT"Pass 2..."
490 OPEN "I",1,S$
500 OPEN "0",2,0$
510 L=100
520 IF EOF(l) THEN GOTO 870
530 LINE INPUT #1,A$

GOSUB 1020
IF LEN(A$)<9 OR (A$=STRING$(LEN(A$)," ")) THEN GOTO 860
L1$=RIGHT$(STR$(L),LEN(STR$(L))-l)+"
A$=RIGHT$(A$,LEN(A$)-8)+" "
FOR 1=1 TO P-l nnr%

IF INSTR(A$,L$(I))<1 THEN B$=A$:GOTO 800
Pl=l
Q=0
E=0
B$ = " "

IF P1>LEN(A$) OR E=1 THEN GOTO 800
IF 0=1 THEN GOTO 700 ___
IF MID$(A$,Pi» LEN(L$(i))+2)<>" "+L$(I) + " " THEN GOTO 700

B$=B$+STR$(L(I))
P1=P1+LEN(L$(I))+l
GOTO 790

IF MID$(A$,PI»1)<>CHR$(34) THEN GOTO 730
IF Q=1 THEN Q=0 ELSE Q=1

XF^MID?{A$,P1,1)<>M'" OR MID$(A$,Pl» 3)<>"rem" THEN GOTO 770
b$=b$+mid$(a$,pi)

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

E=1
GOTO 790
B$=B$+MID$(A$,P1,1)
P1=P1+1

GOTO 640
A$=B$

NEXT I
A$=L1$+A$, v 4
A$=LEFT$(A$,LEN(A$)-l)
PRINT #2,A$
L=L+10

860 GOTO 520
870 PRINT „
880 pRiNT"Transformation completea.
890 CLOSE 1
900 CLOSE 2

920 lNPUT"Would you like a symbol reference list (Y/N) ?A$
930 IF A$<>"Y" AND A$<>"y" THEN GOTO 1010
940 LPRINT"Symbol Reference Listing. Source: ^8$
950 LPRINT" Object. .o:?

960 LPRINT
970 FOR 1=1 TO P-l
980 LPRINT L$(I)» L(I)

CodeWorks
9

990 NEXT I
1000 LPRINT CHR?(12);
1010 END
1020 '
1030 ' Expand tabs. Note: Change CHR$(09) in the following lines to t
he
1040 ' tab character used in your system.
1050 '
1060 TC=INSTR(A$,CHR$(9))
1070 IF TC<1 THEN RETURN
1080 A$=LEFT$ (A$, TC—1) +STRING$ (8- ((TC-1)-INT((TC-1)/8) *8), " ")+MID$(A
$ r TC+1)
1090 GOTO 1060

Some text editors do not expand tabs into spaces when saving ASCII files. Also, some computers use space
compression characters in ASCII files. If this is your case, omit lines 1020 through 1090 in the main program and
use the following lines instead.

1020 '
1030 ' Expand space compression codes.
1040 '
1050 FOR TC=1 TO LEN(A$)
1060 IF ASC(MID$(A$,TC,1)>191 THEN A$«LEFT$(AS TC-1) +

1070 ne|TRTCG?<ASC(MID?<A5'TC'1>"192+MIDS(A$'TC','1)
1080 RETURN

PRINT"ENTER THE BEG BALANCE"
INPUT BA

START PRINT"ENTER CK DP OR CH"
INPUT C$
PRINT"ENTER AMOUNT"
INPUT AM
IF C$="CK" THEN GOTO POINT1
IF C$="DP" THEN GOTO POINT2
IF C$="CH" THEN GOTO POINT1
PRINT"ERROR IN DATA ENTRY TRY AGATV-
GOTO START

POINT1 AM=-AM
POINT2 BA=BA+AM

PRINT"AMOUNT",AM,"NEW BAL" , BA
GOTO START

Symbol Reference

Left. Our test sample program
as written with WordStar. We
used the tab and set it for 8
characters.

Below. The symbol reference
listing produced for the
program at the left.

Listing. Source: PRECOMP.TXT
Object: PRECOMP.OBJ

START
POINT1
POINT2

120
210
220

10
CodeWor!<s

100 PRINT"ENTER THE BEG BALANCE"
110 INPUT BA
120 PRINT"ENTER CK DP OR CH"
130 INPUT C$
140 PRINT"ENTER AMOUNT"
150 INPUT AM
160 IF C$="CK" THEN GOTO 210
170 IF C$="DP" THEN GOTO 220
180 IF C$="CH" THEN GOTO 210
190 PRINT"ERROR IN DATA ENTRY TRY AGAIN"
200 GOTO 120
210 AM--AM
220 BA=BA+AM
230 PRINT"AMOUNT",AM,"NEW BAL",BA
240 GOTO 120

Left. This is the executable code
produced by Precomp.Bas using
the sample program on the
facing page.

Programming Notes

In our last issue we printed a programming note
in reference to changing LOCATE to PRINT@.
Hogwash! The idea was great, the math was
terrible. I'd like to blame it all on the typesetter, but
that was me - darn. Well, in the meantime, we have
very carefully sat down and calculated (and
checked) what the math should have been. Here it
is:

To convert from an 80-column LOCATE Row,Col
position to an 80-column PRINT@ location:
PRINT@ = ((Row-l)*80)+(Col- 1).

To change from PRINT@,P to LOCATE Row,Col:
Row = INT(P/80)+l and the Col = P-((Row-
1)*80)+1

Our thanks to JoAnn Blume of Seattle for not
only pointing this out but providing the correct
math.

Have you ever typed a number (outside the range
-32767 to 32767) and found upon listing your
program that BASIC has appended the
exclamation mark after it? It just happens to have
occurred in at least two programs listed in this
issue. Why? Because they are usually numeric
constants. Numeric constants are values input to a
program that are not subject to change. Numeric
constants cannot contain punctuation. The
number 980,000 will not work but 980000 will. They
are evaluated when they are entered, and if they

are out of range, an error message is usually
generated. The "!" declares a single precision
number. In the Payroll program in this issue, for
example, we have a line that says: FM—37800.
Since it is larger than 32767, BASIC simply prints
an exclamation point after it to indicate it is single
precision. Some computers will do this
automatically, others will not. When you type
these programs into your computer, do not type in
the exclamation point. Let the computer put it
there if it really wants it. If you download our
programs via the CodeWorks download, the
program will come to you with the exclamation
mark in it. It may or may not cause an error. If it
does, simply remove it.

The "FIND" utility in MS-DOS is very handy. It
will search an ASCII file and find every occurrence
of a specified character string. If, for example, you
wanted to see all of your remark lines in a program,
save the program in ASCII and then from the I)OS
ready prompt, type: FIND "REM" filename. That
will print all the lines with the REM on your
screen. If you want a printed listing of those lines,
do this: FIND "REM" filename > prn. It will then
list the lines on your printer.

Code Works 11

Piles to Files (
Programs to Switch File Types

William L. Norris, Edmonds, WA. These are the other three programs
which go with the first two published in our Nov/Dec 85 issue. All five are
on the download for this month. The first one is numbered in 100's, the
second in 200's, etc.

Program 3 — Transfer Direct Access to Sequential

300 CLS
302 PRINT"TO TRANSFER A DIRECT ACCESS FILE TO SEQUENTIAL"
304 CLEAR 25000: * USE ONLY IF YOU NEED TO CLEAR STRING SPACE
306 PRINT"A$=";FRE(A$);" ";"A=";FRE(A)
308 DIM A$(350)
310 INPUT"NAME OF DIRECT ACCESS FILE ";DA$
312 LINE INPUT"NAME OF SEQUENTIAL FILE "?SQ$
314 INPUT"LENGTH OF LINES (LRL)";L%
316 INPUT"IS LRL FIXED OR PREALLOCATED (Y/N) ";YN$
318 IF YN$="Y" THEN GOTO 320 ELSE GOTO 322
320 OPEN "R",l ,DA$,L%:GOTO 320
322 OPEN "R", 1,DA$
324 OPEN "O",2,SQ$
326 RD=LOF(l) :PRINT"RD=";RD
328 INPUT"BEGINNING AND ENDING NUMBERS (B,E)"iB,E
330 IF E-B+l>350 THEN PRINT"LIMIT IS 350":GOTO 328
332 FIELD 1,L% AS WD$
334 FOR Y=B TO E
336 GET 1, Y
338 X=X+1
340 A$(X)=WD $
342 PRINT#2,A$(X)
344 PRINT X;
346 PRINT WD$
348 NEXT Y
350 CLOSE
352 PRINT"LINES ";B;" TO ";E;" HAVE BEEN MOVED FROM " • DAS
354 PRINT"TO SEQUENTIAL FILE ";SQ$;" LINES (1 TO".X.« »
356 PRINT"LRL=";L% ; X* '
3 58 INPUT"PRESS ENTER TO CONTINUE, 99 TO END".sv<
360 IF SY$="99" THEN GOTO 364 *
362 GOTO 300
364 END

400 CLS P r°gram 4 ~ Combine tw° Direct Access files
402 CLEAR 25000: ' USE ONLY IF YOU NEED TO T T P A D
404 PRINT"TO COMBINE TWO DIRECT ACCESS FILES" S TRING SPACE
406 INPUT"NAME OF FIRST DIRECT ACCESS FILE"'Das
408 INPUT"NAME OF SECOND DIRECT ACCESS FIIF" noo
410 INPUT"LENGTH OF LINES (LRL)";L% ?

412 OPEN "R",1,DA$
414 OPEN "R",2,DB$
416 FIELD 1,L% AS WD$
418 FIELD 2,L% AS WC$
420 R=0:R1=LOF(2)
422 R=R+1sR1=R1+1
424 IF R>LOF(1) THEN GOTO 434
426 GET 1,R
428 LSET WC$=WD$
430 PUT 2,R1
432 GOTO 422
434 CLOSE
436 INPUT"PRESS ENTER TO CONTINUE, 99 TO STOP ;SY$
438 IF SY$="99" THEN END
440 GOTO 400

Program 5 — Convert Sequential to Direct Access and Append

502 CLEAR 25000! USE ONLY IF YOU NEED TO CLEAR STRING SPACE
504 PRINT"TO TRANSFER SEQUENTIAL FILE TO DIRECT ACCESS FILE
506 LINE INPUT"NAME OF SEQUENTIAL FILE. ";SF$^
508 INPUT"HOW MANY CHARACTERS PER LINE (LRL) ;L%
510 DIM A$(350)
512 OPEN "I",1,SF$
514 IF EOF(l) THEN GOTO 524
516 X=X+1
518 LINE INPUT #1,A$(X)
520 PRINT X;A$(X)
522 GOTO 514

526 L=X:PRINT"THERE ARE ";L?" LINES IN THE SEQUENTIAL FILE
528 LINE INPUT"NAME OF DIRECT ACCESS FILE. ?DF$ _
530 INPUT"HAS FILE SPACE BEEN FIXED OR PREALLOCATED (Y/N) ;DS$
532 IF DS$ <>"Y" THEN GOTO 536
534 OPEN "R",2,DF$,L%:GOTO 538
536 OPEN "R",2,DF$

540 PRINT"THERE=ARE ";RD!" LINES IN THE DIRECT ACCESS FILE ";DF$
542 FOR X=1 TO L
544 R=R+l
546 FIELD 2, L% AS WD$
548 LSET WD$=A$(X)
550 PRINT USING"####b;R?
552 PRINT" ";WD$
554 PUT 2,R
556 NEXT X
558 CLOSE
560 PRINT"SEQUENTIAL FILE ;SF?;
S "jDF$
562'PRINT"WHICH HAS "jR;" LINES AFTER ADDITION
564 PRINT"PRESS ENTER TO CONTINUE, 99 TO STOP ,.INPU $
566 IF SY$="99" THEN END
568 GOTO 500

HAS ";L;" LINES NOW IN DIRECT ACCES

CodeWorks 13

Beginning Basic
A loop is one of BASIC'S most powerful tools. It

automatically gives you the ability to perform a
given operation a specified number of times. The
most common form of a loop in BASIC is the
FOR...NEXT loop. Take a look at the following
program lines:

10 FOR 1 = 1 TO 10
20 PRINT I;
30 NEXT I
40 END

When you run this code, it will print:
1 2 3 4 5 6 7 8 9 1 0

The semi-colon in line 20, after the I, causes the
print on the same line. Without it each number
would be on a new line. In this program, I is called
the loop counter. The counter of the FOR statement
is incremented from its initial value until it
reaches the final value. In between these two
values, line 20 prints the current value of I on the
screen. FOR I = 1 to 10 means that the value of I
will repeat the loop until I is greater than 10. When
I is incremented to 11, the NEXT I will be ignored
by BASIC and the program flow will continue at
line 40. In general, in a FOR...NEXT loop, if
allowed to complete the loop the number of times
specified by the "from", "to", the loop counter will
always be one more than the terminal (or "to")
value. What this says is that in this type of loop, we
do the operation at least once, and then check to
see if we have arrived at the limit.

To get the picture of how the loop works, here is
the way the previous program would be done
without using FOR or NEXT:

10 I = 1
20 IF I >10 THEN GOTO 50
30 PRINT I;
40 I = I+l:GOTO 20
50 END

This code will do the same thing as our previous
example, and shows what really happens inside
the FOR...NEXT loop.

What happens inside the loop does not
necessarily have to be something connected to the
loop counter. Most of the time it is because it is the
most convenient way of handling things. Further,
more than one statement can be included inside
the loop - you can operate on several things at the
same time.

In an incrementing loop, as in our first example,

14

a step of plus 1 is automatically assumed. You
have no need to tell BASIC this, it just does it. Hut
if you only wanted every other item between 1 and
10 the FOR statement would have said: FOR I = l
TO 10 STEP 2. You can also decrement a loop. In
this case the FOR statement looks like this: FOR I
= 10 to 1. But now, the -1 is not assumed, and you
must always indicate the step. So now the
statement should read: FOR 1 10 TO 1 STEP-1.
Naturally, you can use a step of-2 if you want every
other value instead of all of them. You can also
start at a negative value, go through zero and end
up at a positive value: FOR I = -5TO 5 will give you
the whole numbers between minus five and plus
five.

All the values in the loop, the counter, upper and
lower limits and the step size, must Ik* single
precision or integers.

Loops may be "nested" almost without limit.
This means that inside one loop you can have
another loop operating. The innermost loop will
always repeat its given number of iterations before
the outer loop changes once. This is true no matter
how "deep" the loops are nested. There are many ^
times, especially in handling arrays with two or
more dimensions, where nesting is very desirable
and easy to implement. Hen* is a simple example of
nesting:

10 FOR I = 1 TO 3
20 FOR J = 1 TO 5
30 PRINT J;
40 NEXT J
50 PRINT
60 NEXT I

This will print 1 2 3 4 5 three times. The print
statement in line 50 is necessary to keep the three
groups of 1 to 5 from printing on the same line. By
the way, indenting the lines inside a loop is very
good practice, since it shows the content of the loop
clearly when reading the code.

In spite of what we said earlier about these loops
executing at least once (because it checks for the
terminal count after it has gone through the loop
once), Microsoft's BASIC, release 5.0 and later,

this note about loops: "The body of a
R...NEXT 'O0P '8 skipped if the initial value of

the loop times the sign of the step exceeds the final ,
value times the sign of the step." This represents a
c ange from earlier releases of this BASIC an
may be something to be aware of. •

ĉ d̂ i<s

Sequential Files
How Buffers Connect Memory to Disk

Terry R. Dettmann, Associate Editor. When a computer is turned off the
data in memory is lost. Storage on diskette makes it possible to regain
access to important information. This article describes one of two methods
of storing information on diskette. It has roots that go back to punched
cards and magnetic tapes, but is still a very useful filing method. See
Pay roll. Bas in this issue for some practical application of Sequential files.

Most programs of any real significance are
concerned with storing information for later use.
Business programs store accounting information.
Engineering programs often store data. Even
Adventure programs sometimes store information
needed about the scenario.

The way we store information is in data files.
These are collections of information on some
storage medium such as disk or tape. We are going
to take a look at simple disk files and find out how
to set them up as well as some hints on how to use
them.

This article is not all-inclusive. You should be
familiar with the material in your DOS manual, or
at least have it handy to check on things we say
and do. Make sure you read about how each BASIC
statement is written for file handling. If you take
the time, files can be a useful addition to your
programming skills.

There are other types of files, one of them being
the random access file. However, this article will
only cover sequential files.

What is a File?

We all have some idea about what a file is, but
let's be a little more precise so that we are all
talking about the same things.

In the early days of computing, everything was
done on punched cards which were stored in large
filing cabinets designed specifically for them.
Gradually, the usage of the word "file" transferred
from the cabinet to the decks of cards themselves.

With the introduction of tapes, it became natural
to refer to information on tape as a file. Most often,

the information was stored as a sequence of card
images meaning that the tape record was built
exactly like a card deck.

Both of these methods of storage had one major
quality in common, they were both sequential
storage methods. That is, both cards and tapes
were read one card (or data record) at a time. In
order to look at the 124th record, it was necessary
to first read the 123 records before it. Woe to the
programmer who dropped a card box and lost the
order!

With the introduction of disk storage, access to
files could be done much faster than before. At
first, files were still stored sequentially. But, the
unique feature of the disk which makes it a really
powerful tool is that another, better type of file can
be designed.

On the first computers (and again on the first
microcomputers) it was the responsibility of the
programmer to keep track of the locations of his
files. This required a great deal of programming to
make sure that files were kept separate and that
the location of each bit of information was known.

It wasn't long before someone recognized that
the computer could just as well (probably better) do
the work. This gave rise to the concept of the
Operating System, or Disk Operating System
(DOS). The operating system takes care of the
where and the record keeping; we only need to
worry about what is in the files.

Many people use sequential access data files
because they are simple to use and do not require
you to learn many new techniques; you just have to
read and write from a new place.

Before we start talking about sequential files

CodeWorks 15

though, we have to talk first about file buffers.

File Buffers

What is a file buffer? Why do we need them? How
are they made and what do they look like?

A file buffer is a region of memory that is set
aside to receive information from your program
until an efficient sized packet is made for writing
to an output file on the diskette. Or, the other way,
a buffer is used to hold information from a diskette
input file for your program to access.

Why have a buffer? The problem of buffers came
up years ago to speed up access to information and
make it more efficient from both the program side
and the external storage side. The buffer exists to
match the radically different access speeds of an
input/output device to the computer itself.

It would be very slow indeed if every time we
printed a string, each letter had to be transferred to
diskette one at a time! To make the most efficient
use of the disk, we should have large amounts of
information ready to go to the diskette all at once.
To make programming clear however, we want to
get only small bits of information at a time.

The buffer matches these two radically different
requirements as efficiently as possible. To do this,
an area of memory is set aside to be an image of a
section of the diskette. For disk read and writes
with most Microsoft (and other) operating
systems, this is 256 bytes (plus some system space
for file information.)

Every time you write information to diskette by
using a PRINT statement, you are actually putting
the information in the buffer assigned to that file.
Only when the buffer is full will the information be
written to its appropriate place on the diskette.

To see this in action, try the experiment in
program 1. It inputs lines you type in at the
keyboard and writes them to diskette. By waiting
for the disk to stop between each line, you will find
that if you keep your lines short, the disk will not
start on every line, even though each line is
PRINTed to the diskette when it is read in.

Further, after 10 lines are in, the system will read
in each of the lines one at a time. If you wait for the
disk to stop between each read and each line
doesn't fill a buffer, then the disk will not start for
every line you ask to be displayed.

But where do buffers come from? Would you
believe that something you do creates them, even
though you may not know it? In some disk
operating systems, you need to answer the "HOW
MANY FILES?" question with a number or simply

Every time you write informa
tion to diskette by using a
PRINT statement, you are
actually putting the informa
tion in the buffer assigned to
that file.

ENTER. Others come up automatically allocating
three (or just one) files unless you specify
otherwise. These all create the space necessary in
memory for the correct number of file buffers, even
if you don't use them. Check your DOS or BASIC
manual for the exact way to specify the number of
file buffers for your particular computer.

In order to use any file the file must first be
opened. The OPEN statement is provided to do this
in BASIC. By opening a file, we take one of the
available file buffers and use it as a connector
between the file and your program. The OPEN
statement looks like this:

OPEN "mode",filenumber,,'filename"

Where mode is I if the file is sequential and being
used for input, or it is O if the file is sequential and
being used for output. (That's "eye" and "oh", not
one and zero.) Filenumber is the number of the
buffer to assign to the file, and "filename" is the
name of the file that is (or will be) stored on the
diskette.

When a file is opened, the file named in the open
statement is connected to the buffer and file
information is funneled through there. When the
buffer is used, either to put information into the file
or to get it out, that information is first put into the
ttstd 8n<* ^en P'^ed UP by the program in
INPUT statements or written to the diskette when
the buffer is full.

y°U are t*one *be file, you use the
a. n LStatement to flu8h a11 information out of
the file buffer and onto the disk. If you do not close
f ^ pr°Perly.8°me information may still be in the

u er, including updating information for the
T if the file was increased in length.

sequential access files work just like files on
ape, except that a few extra commands are needed

WPrrr W<? first 0PEN the file for use' ̂
desired °r ^ '"formation from or to the file as

16 Code Works

Problems which show up in
reading a sequential file are
invariably caused by incorrect
writing of that file in the first
place. The error is not where it
seems to be.

To create a sequential file, we first OPEN the file
for output, l^et's say we want to create a file called
"MAIL/SEQ". If we assign it to buffer 1, then we
use this statement:

OPEN "0",1,"MAIL/SEQ"

This makes the file available to our program. To
write to the file, we simply use the standard PRINT
statement, modified to indicate which file we want:

PRINT# 1,NM$,AI)R$,CTY$,ST$,ZP$

Easy, right? Well, we goofed (did you notice?) A
PRINT statement like this one writes each item in
the print list to the file the same as if it were going
to the printer or the screen.

No problem you say? It does not produce an
error. Rut there is a problem when we try to input
the items later. Ix>ok at Figure 1. Here is how the
record looks for the strings given. Each of the
strings we printed to the file will be separated from
the others by spaces. But when we input the
strings later, BASIC will think this is only one
string!

In an INPUT statement, BASIC will add to a
string until it finds a comma or the end of the
record. But there are no commas here. To get
around this, when using strings, we have to put the
commas in the file explicitly, like this:

PRINT# 1,NM$+",",ADR$+"r',CTY$+",",
ST$+",",ZP$

Notice that there are two ways to put the commas
in, either add it to the string or put itin separately.

With n umbers, we don't need the commas since a
number is automatically stopped when a blank
space is reached. But a number after a string still
must be separated by a comma, like this:

PRINT#!,NM$+",'\A

Without the comma, the number that should be A
would be read into an INPUT statement with
string NM$. That would cause an error when the
system tried to read A since there is nothing left in
the record.

One of the most confusing things about
sequential files is that you can output almost in
any form without error. Then when you try to read
the information back in, you get "Input past end
or "Illegal function call" errors .Usually, the
problem is not in the INPUT lines where the error
occurs, but is in the PRINT lines where you put it
out to the diskette.One way to see what you have
output is to go to DOS level and use TYPE (or on
some machines, LIST) the file name. Since the file
is in ASCII, you can see the layout of the file on
your screen.

After a file is created, it must be closed to get all
the information out of the memory buffer and to
the diskette. Then we can OPEN it for input.

To open a file for INPUT with sequential access,
we use the statement:

OPEN "I",1,"MAIL/SEQ"

To bring in a record of information, we use the
statement:

INPUT# 1,NM$,ADR$,CTY $,ST$,ZP$

This will bring in one record from the file and put
the information in the strings in the input list
(remember this will only happen correctly if the
commas are in the record on the diskette.)

It often happens that we wish to bring in things
from diskette with commas. For example, in
writing a text editor, we could make each line a
string variable. But then there might be commas
in the lines. To get everything in a record as one
string variable, we use the command:

LINE INPUT#1,LN$

Everything in the record will be put in the string
LN$. You can try this easier than you think by
saving a BASIC program on disk in ASCII format
(put a comma and an A after the last quotation
mark of the filename.) Program 2 illustrates how to
do this with BASIC program files. This works
because BASIC programs can be stored on diskette
as ASCII files.

On input from a file, we have a special problem.
Where is the end of the file? If we read in more
records than are in the file, our program dies with

CodeWorks 17

an error from BASIC (usually INPUT PAST
END). To prevent that, we could put the number of
records to be found in the first record of the file, but
that gets to be a bit cumbersome.

BASIC provides us with a simpler way to find
the end of a file. We simply check for the end of file
with the EOF function. You can imagine this as a
true/false function. It is false until we reach the
end of the file, then it is true. To use it, we check it
just before we are about to input a record. If the file
is at the end of file, EOF is true. In that case we skip
to some other processing, otherwise we can read
the record. Program 2 illustrates this use of the
EOF function. Once we are done with a file for
input, we close it, as we did the output file.

Whenever you open a file, a pointer is created
which points to the first record in the file. If we
opened the file for INPUT, this is fine, since we will
read the records in order until we get to the one we

want.
If the file is opened for OUTPUT, the only way to

move the pointer is by printing new records to the
file. By doing this, we are writing over the old
records. In order to add to the end of a file, we either
have to bring the whole file into memory and then
write it back with our additions, or we have to copy
it, record for record, to a new file which we keep
open for output. Either way, it is workable but
somewhat inconvenient.

The payroll program, in this issue, makes use of
sequential files in a practical application. Notice
in that program that we do not need to create as
many file buffers as there are employees. Only one
buffer is used for all files. This is because we never
have more than one file open at once. The rule to
remember is that you must have as many file
buffers as you expect to hnvoopen files at the same
time. •

Sequential file Demo Program 1

DEMO PROGRAM 1
SEQUENTIAL FILES

FILENAME: PROG1.BAS

CLEAR ONLY IF YOUR MACHINE NEEDS TO.

100 REM
110 REM
120 REM
130 REM
140 REM
150 REM
160 CLS:CLEAR 5000 : 1

170 SC=63:GR=45:MD=20

180 PRINT STRINGS(SC,GR):PRINT TAB(MD);"FILE BUFFER DFMO"
190 PRINT STRING?(SC,GR) outfLR DEMO
200 PRINT:PRINT
210 PRINT TAB(10);"OPENING FILE TEMP.DAT"
220 OPEN "O",1,"TEMP.DAT"
230 PRINT TAB(10);"NOW INPUT 10 LONG LINES"

250 PRINT TAB(10,'"WAIT F0R MSK TO RTOP BEFORE ENTERING A NEW LINE'

260 FOR 1=1 TO 10
270 PRINT I;": ";:LINE INPUT LN?
280 PRINT #1, LN?
290 NEXT I
300 PRINT TAB(10);"CLOSING FILE"
310 CLOSE
320 REM
330 PRINT TAB(10);"OPENING FILE FOR INPUT"
340 OPEN "I",1,"TEMP.DAT"
350 CLS:PRINT STRING?(SC,GR)
360 PRINT TAB(MD);"BUFFER DEMONSTRATION" • prtv™ o
370 PRINT:PRINT ^KAtlON -PRINT STRING?(SC,GR)

380 PRINT TAB(10) ; "PRESS ENTER TO READ TN a r T. ..
390 PRINT TAB(i0) ; "WAIT FOR THE DISK T0 STOP RFTuc*
400 PRINT ST0P BETWEEN LINES"
410 FOR 1= 1 TO 10
420 CS=INKEYS = IF c$ = "" THEN 420 ELSE IF ASCtCSJo!

3 THEN 420

18
CodeWorks

430 LINE INPUT #1,LN$
440 PRINT I;": "?LN$
450 NEXT I
460 PRINT TAB(10)?"CLOSING FILE"
470 CLOSE
480 END

Sequential file Demo Program 2

100 REM
110 REM PROGRAM 2
120 REM SEQUENTIAL FILES DEMONSTRATION
130 REM
140 REM FILENAME: PROG2.BAS

160 CLS:CLEAR 5000: ' USE CLEAR ONLY IF YOUR MACHINE NEEDS TO
170 SC=63:GR=45:MD=35

190 PRINT STRING$(SC,GR):PRINT TAB(20);"READ AND DISPLAY FILES
200 PRINT STRING$(SC,GR)
210 PRINT: PRINT ,„TmrTr,„
220 PRINT TAB(5);"ENTER THE NAME OF AN ASCII FILE (EITHER A
230 PRINT TAB(5);"PROGRAM FILE SAVED WITH THE 'A' OPTION OR A"
240 PRINT TAB(5);"FILE WRITTEN TO DISK BY ANOTHER PROGRAM)."
250 PRINT
260 PRINT TAB(10);:LINE INPUT"FILENAME: ; FF$
270 OPEN "I",1,FF$
280 1=0
290 IF EOF(l) THEN GOTO 340
300 1=1+1
310 LINE INPUT #1,LN$
320 PRINT I?": ";LN$
330 GOTO 290
340 CLOSE
350 END

With these strings:

NM$ = "CODEWORKS MAGAZINE"
ADR$="3838 S. WARNER"
CTY$="TACOMA"
ST$="WASH"
ZP$="98409"

the file will look like this:

CODEWORKS MAGAZINE 3838 S. WARNER TACOMA WASH 98409

Figure 1

Code Works 19

Math.Bas
Making Mathematics come Alive

Staff Project. In the days of teletype output this program would have been
impractical if not impossible. Because the video screen allows selective
placement of the cursor we can now present a math formula as it would
appear in a book or on a blackboard. From there it is just one step more to
making it readjust to new values input from the keyboard.

Mathematical relationships chalked on a
blackboard in school or in a textbook have a way of
being inert. They tell the story, but as they get
more complex it is difficult to see the effect of any
given element of the formula. It seemed like a
natural thing to put "live" formulae on a computer,
and most of us do, but we no longer look at the
formula, only the answers.

Most of us can be divided into two groups: those
who intuitively "know" or "feel", and those who
are analytical and get to step three by following
rules through steps one and two. Consequently,
seeing a mathematical formula in action may be a
ho-hum experience to some and a revelation to
others.

The subject of this article is live Algebra. This
means that the formula is presented on the
computer video screen almost exactly as it would
be written on the old chalk board in the little red
school house. On our screen though, you can push
keys representing the elements of the formula and
watch them change, along with whatever else in
the formula is then effected by that element,
including the answer.

The ability of the computer to do this has been
there since the advent of the video screen. There is
no tricky programming involved, just the careful
placement of the formula on the screen and the use
of the BASIC INKEY$ function. The formula is
actually on the screen twice, first to show the
variable names and their places in the formula
and second to give those variables some actual
values which can be changed from the keyboard.
The first tells which keys to push to increment or
decrement the values in the second. Upper case
characters will always (by our convention)
increase or increment the value, while lower case
will decrease or decrement it. Fixed values such as
Pi are not included in those values which can
change, of course.

The program we present to demonstrate live
Algebra is not long (ubout 120 program lines), and
i n c l u d e s t h r e e d i v e r s e m a t h e m a t i c a l
relationships. The first is the compound interest
formula, next is a permutation formula and last is
the formula for resonant frequency. They
representan exampleeach from finunce, math and
electronics. They were chosen for that and also
because each has a different form • and we wanted
to show that most formulae can be represented like
this.

Naturally, some stops and limits had to be
incorporated into the program. Without them there
are various errors, especially divide by zero and
overflow errors. This was most apparent in the
permutation formula, where N factorial had to be
limited to N = 32. The number gets very big, very
fast.

The objective of the program is to get the formula
on the screen in its natural, static state showing
which keys represent what values in the formula.
Then, immediately below it, show it again with
some initial conditions given to the variables. The
keyboard keys corresponding to the variables
should then increase or decrease the values and
the second formula should change immediately,
showing the new values as well as the new
solution. In actual practice, we found that we
needed a "speed" key as well, to act as a multiplier,
to get values up or down faster. In the two cases
where we used this, it is the F key, and provides a
times 10 change every time it is pushed. It also
8 ows on the screen, and does not have an effect on
every variable but only on those which need it.

How it Works

TTie idea 18 basically simple. First we print tl
stattc formula on the screen. Then we assign son

' co"ditions to the variables so that it wi

CodeWorks

LINE LOCATE PRINT® PRINT®
NUM NUM 80-COL SCREEN 64-COL SCREEN

540 3,43 202 170
580 12,18 897 721
590 13,1 960 768
600 14,1 1040 832
610 15,1 1120 896
850 6,43 442 362
880 13,1 960 768
890 14,1 1040 832
1240 11,1 800 640
1250 12,1 880 704
1260 13,1 960 768

You may also need to un-reraark the CLEAR statement
and possibly change the * symbol to whatever your
machine uses for exponentiation.

This table gives the line numbers of the program which need to be changed,
and the values to change, for 80-column screens that use PRINT@ and for
64-column screens using PRINT@. Since most 64-column screens also use
only 16 lines instead of 24 lines, the program was written so that no more
than 16 vertical lines were used.

come up running with some real values. Next, we
go into a loop that prints the formula again, using
the initial conditions, and the answer is computed
and printed on the screen. Still inside the loop, we
use the INKEY$ function to trap the keys
representing the values in the formula. If the key is
upper case, we increase it a given amount and loop
back to recalculate the formula and display it. If
the key is lower case, we decrease the value,
recalculate it and display it. The ENTER key is
trapped as a way to get out of this loop and return
to the main menu, where another formula may be
chosen for display.

Program Details

Since all three parts of the program are
essentially programmed the same way, we will
concentrate on just one, the resonant frequency

formula. Without getting terribly engulfed in
electronics let us just say that a wire coil and an
electrical capacitor connected properly will exhibit
extremely low resistance (actually in this case,
impedance) to some particular alternating current
(frequency). Given values for the inductance of the
coil and the capacitance of the capacitor, there will
be one frequency which will pass with virtually no
resistance while all other frequencies will be
blocked.

The frequency which passes without resistance
is called the resonant frequency. The inductance of
the coil is measured in Henrys and the capacitance
of the capacitor is measured in Farads. Both of
these units were named after famous early
pioneers in electricity, and are both so large thatin
actual practice neither a Farad nor a Henry is
seen. The units that normally apply to radio
frequencies are microhenrys (or millihenrys) and

CodeWorks 2 1

microfarads or picofarads.
As a matter of interest, the all-American clock

radio by your bedside probably has a fixed coil and
a capacitor made up of little plates, half of which
are stationary and the other half which mesh with
the stationary ones without touching. The knob on
your radio which changes the stations is
connected to the movable plates of the capacitor.
Changing the capacitance changes the resonant
frequency of the coil—capacitor combination and
lets your favorite AM wakeup station come
through. Even though most radios have funny
numbers (this is AM 71! Wake up!), the frequency
for the standard AM radio is from about 0.5
megahertz to 1.6 megahertz, that's 500,000 Hertz
to 1,600,000 Hertz. Hertz used to be called "cycles
per second", which is what Hertz now stands for.
Standard FM radio and television are much higher
in frequency — radar and microwave are even
higher. But let's cycle back to the program...

The resonant frequency portion of the program
takes place from lines 350 through 670. The first
thing we do is clear the screen. Then some values
in line 360 are defined as double precision so that
they won't jump into exponential notation and
look funny in our formula. In lines 370 through 460
we print the formula and some information on the
screen.

Line 470 defines Pi and gives our "speed" key an
initial starting point at 10. The initial values for L
(inductance) and C (capacitance) in our formula
are set in lines 480 and 490. In lines 500 through
530 we set some limits. First, we don't let C get too
small. Then we don't let L get too small and lines
520 and 530 set the lower and upper limits on our
speed key, F. (The F key changes variable SP — for
"speed"). In line 540 we run into the first
information which is updated on the screen, the
speed factor. For those of you who do not have MS-
DOS machines, the locate 3,43,0 simply says to
print at row 3, column position 43 and turn off the
blinky cursor. The sidebar to this article will show
the corresponding PRINT@ positions for both 64-
column machines using PRINT@ and 80-column
machines using PRINT@, as well as a couple of
other notes for those machines. Incidentally, this
program was originally written on a Sanyo 555
MS-DOS type machine, then transferred via RS-
232 to a Tandy Model IV, where it was checked in
both Model III and IV modes and the PRINT@

locations were calculated for both. While on the
Model III and IV Tandy machines we noted that
the values on the screen blinked on and off while
they were being updated, while on the MS-DOS
type machines they do not, they just change rather
smoothly. Although we are not sure, we think this
might be due to the fact that the Model III/IV have
memory mapped video screens, while on the others
the screen is treated like an output device.

Lines 560 and 570 do all of the actual
computation of the resonant frequency formula.
The following lines, down to 620, print the results
on the screen. From lines 620 to 660, we use the
INKEY$ to see what key was pressed, and then
increment or decrement and use the speed
multiplier if applicable. Line 670 closes the loop
and sends us back to line 500 where, if there was a
change, the whole mess is recalculated and the
display is updated. Line 660 checks to see if the
ENTER key (CHR$(13)) was pressed. If it was, we
go back to line 100 and display the main menu
again for another selection.

We should mention something about the
exclamation points in lines 530 and 830. Don't type
them in. Just type in the number and if your
computer wants to put the exclamation point in, let
it. Somewhere else in this issue there is a
programming note about them. Also, if you should
happen to download this program on the
CodeWorks Download, the exclamation points
may give you syntax errors. Simply remove them if
they do.

The other two formulae work in the same
manner. The compound interest formula is
probably the most interesting one to play with.
Now you can easily find the difference between
compounding monthly or quarterly. It also gives
credence to the old saying that "Them that got,
get. Try some big principal numbers and see. (I
think it was Einstein who once said that the
miracle of modern man was compound interest.)

Finding a general way to put any formula on the
screen would be nice, but it is rather time
consuming and difficult. You can do the same
thing with a loop or with oneof the 'Calc programs
but this one, we think, has a certain amount of
educational value, especially for those of us who
can t look at a formula and immediately "see" the
relationships. •

Math.Bas is available on the download system.

100 REM ** MATH.BAS ** CODEWORKS MAGAZINE, 3838 S. WARNER ST
110 REM ** TACOMA, WA 98409 ** (206) 475-2219 VOICE
120 REM ** (206) 475-2356 MODEM ** PLEASE DO NOT REMOVE THESE LINES.
130 REM * For conversion to 64 and 80 char screen PRINT® and
140 REM * program notes see CodeWorks Issue 4
150 'CLEAR 1000: REM USE ONLY IF YOU NEED TO CLEAR STRING SPACE.
160 CLS
170 PRINT STRING?(22,"-")•" The CodeWorks "?STRING?(23,"-")
180 PRINT" MOVING MATH PROGRAM
190 PRINT" Algebra in action, or AlgeCalc?
200 PRINT STRING?(60,"-")
210 PRINT" This program contains three different mathematical equ v.1
on s11
220 PRINT"in which you can change various values interactively and
230 PRINT"see the results while the computer solves the equation.

! 240 PRINT" Pressing the upper case key for the letter variable in th
e
250 PRINT"formula will increase that value, lower case will decrease
260 PRINT"it. Pressing ENTER will return you to this menu.
270 PRINT „
280 PRINT TAB(10);"1 - Compound Interest Formula
290 PRINT TAB(10);"2 - Permutation Formula"
300 PRINT TAB(10);"3 - Resonant Frequency Formula"
310 PRINT"Your choice?";
320 X?=INKEY?:IF X?="" THEN GOTO 320
330 X=VAL(X?):IF X<>1 AND X<>2 AND X<>3 THEN GOTO 320
340 ON X GOTO 680,980,350
350 CLS
360 DEFDBL L,C,S,F
370 PRINT" Resonant Frequency Formula
380 PRINT _ „
390 PRINT"Use F key to adjust rate of change, now
400 PRINT
410 PRINT"Where L is in Henrys, C is in Farads, 2xPI is constant and
420 PRINT"f is the resonant frequency in cycles per second (Hertz).
430 PRINT" 1" # ,
440 PRINT" — — f (resonant)
450 PRINT" /
460 PRINT" 2xPI x \/' L x C
470 PI=3.14159:SP=10
480 L=.0001
490 C=.0000001
500 IF C=<lE-09 THEN C=lE-09
510 IF L=<.000001 THEN L=.000001
520 IF SP<1 THEN SP=1
530 IF SP>1000001 THEN SP=1000001
540 LOCATE 3,43,0:PRINT SP
550 S=L*C
560 S1=SQR(S)
570 F=1/(S1*(2*PI))
580 LOCATE 12,18:PRINT"1" _ „
590 LOCATE 13,1 SPRINT" " ,.PKINI
USING"###,#####. ###";F;:PRINT" Hertz

CodeWorks

—
—

600 LOCATE 14,1sPRINT" / " H
610 LOCATE 15,1: PRINT"2xPI X \/ sPRINT USING" #.######"; L; : PRINT" x ([

sPRINT USING"#.#########";C
620 K$=INKEY$:IF K$="" THEN GOTO 620
630 IF K$="L" THEN L=L+.000001*SP ELSE IF K$="l" THEN L=L-.000001*SP
640 IF K$="C" THEN C=C+1E-09*SP ELSE IF K$="c" THEN C=C-1E-09*SP
650 IF K$="F" THEN SP=SP*10 ELSE IF K$="f" THEN SP=SP/10
660 IF K$=CHR$(13) THEN RUN 100
670 GOTO 500
680 CLS
690 PRINT" Compound Interest Formula"
700 PRINT
710 PRINT"Where P = Principal amount, I = Annual Interest Rate, Y is"
720 PRINT"number of years and C = number compounding periods per year

II
•

730 PRINT
740 PRINT"Use F key to adjust rate of change, now = "
750 PRINT
760 PRINT" (Y x C)"
770 PRINT" Px (1+1) = Future Value"
780 P=1000
790 1=.05
800 C=4
810 Y=10
820 I1=I/C
830 IF SP>1000001 THEN SP=100000l
840 IF SP<1 THEN SP=1
850 LOCATE 6,43sPRINT SP
860 N=Y*C
870 FV=P*((1+11)~N)
880 LOCATE 13,1,0:PRINT" ";Y;" x ";C
890 LOCATE 14,1:PRINT USING" $$##,#####"; P; s PRINT" ' x (1 + ";I;"P

= "?sPRINT USING "$$###,#####.##";FV
900 K$=INKEY$:IF K$="" THEN GOTO 900
910 IF K$="P" THEN P=P+1*SP ELSE IF K$="p" THEN P=P-1*SP:IF P<1 THEN
P=0
920 IF K$="I" THEN I=I+.01 ELSE IF K$="i" THEN I = i-.0isIF k.0! THEN
I = .01
930 IF K$="C" THEN C=C+1*SP ELSE IF K$="c" THEN C=C-1*SP*IF C<1 THEN
C=1
940 IF K$="Y" THEN Y=Y+1 ELSE IF K$="y" THEN Y=Y-1-IF Y< 1 THEN Y=1
950 IF K$= "F" THEN SP=SP*10 ELSE IF K$="f" THEN SP=SP/10
960 IF K$=CHR$(13) THEN RUN 100
970 GOTO 820
980 CLS
990 PRINT" Permutation Formula"
1000 PRINT
1010 PRINT "How many ways can (R) items within a"
1020 PRINT"larger group (N) be arranged?"
1030 PRINT"P is the answer."
1040 PRINT
1050 PRINT" N1
1060 PRINT" = p

1070 PRINT" (N - R)1

24

MUST HAVE 2 TO ARRANGE ANYTHING
CAUSES OVERFLOW IF MORE
MUST HAVE AT LEAST ONE ITEM
CAN'T ARRANGE MORE THAN YOU HAVE

FACTORIAL TAKES PLACE HERE

1080 PRINT
1090 N=7
1100 R=5
1110 IF N< 2 THEN N=2 :
1120 IF N>32 THEN N=32 s
1130 IF R<1 THEN R=1 :
1140 IF R=>N-1 THEN R=N-1:
1150 T=N-R:N1=N
1160 FOR 1=1 TO Nl-1 s
1170 N1=N1*1
1180 NEXT I
1190 IF T<1 THEN T=l:GOTO 1230
1200 FOR 1=1 TO T-l : ' FACTORIAL TAKES PLACE HERE TOO
1210 T=T*I
1220 NEXT I
1230 P=N1/T
1240 LOCATE 11,1,0:PRINT" "yNy"I M;N1
1250 LOCATE 12, Is PRINT" =";P
1260 LOCATE 13,1:PRINT" (";N?;R;")1 ";T
1270 K$=INKEY$:IF K$="" THEN GOTO 1270
1280 IF K$="N" THEN N=N+1 ELSE IF K$="n" THEN N=N-1
1290 IF K$="R" THEN R=R+1 ELSE IF K$="r" THEN R=R-1
1300 IF K$=CHR$(13) THEN RUN 100
1310 GOTO 1110

Check.Bas from page 5

the original Card.bas for other things and save the
new Check.bas to organize your checks.

There is yet another way to do it. We have put
CHECK.MRG on the CodeWorks download and
you can get it that way if you wish. Then go
through the above procedure. If you don't want to
mess around with any of the above, we also have a
merged Check.bas on the download, ready to go
without merging anything. Take your pick. You
will also still find Card.bas (under the Issue 2
menu) there too.

Check.bas works just like Card.bas does, and all
the discussion in Issue 2 applies here too. The
number of fields has been reduced to four, however,
and option 5 of the menu now says to print check
lists or a summary of checks instead of simply
printing reports. Most of the changes needed to be
added to option 5.

It is quite important to think about the
categories you will assign to your checks. For
example, make one "Doctors" and another "House

payment", and so forth. Be sure you use the same
spelling every time you enter the same category.
Try to get general categories that will conform to
what you or your accountant will need in
preparing your income tax forms.

After all your checks have been entered, sort the
file on the category field and save it. Then run the
program again and print your reports. Because
you have sorted by category, all similar items will
be adjacent. The program will check to see if the
currefit item is the same as the previous one and if
so, will add to a subtotal and keep a running
to.tal of all the subtotals. It will then print that
category only once with the total of all items in it
on your printer. After printing all the different
categories, it will print a grand total.

The other report is a simple list of all the records
you have entered. You can sort this one any way
you like and print it out. Now if you or your
accountant has any question on any check, this
list will identify (by the check number) where it
came from in your original checkbook.

That's all there is to it. You even get a grand total
of all the checks you wrote last year — ouch! •

CodeWorks 25

Payroll.Bas
A Small Business Payroll Program

Staff Project. The diversity of rules, regulations and tax laws in the
various states make a generalized payroll program a challenge. This
program is a simple starting point from which you can customize one as you
wish. It uses sequential files throughout (see related article in this issueon
those files) and the structure of the program may lend itself to uses other
than payrolls.

In the 1800's the stagecoach would race through
the foothills with a strongbox strapped to its top.
At least two tough looking hombres with rifles
would ride "shotgun", keeping a sharp eye out for
desperados, injuns and slickers. After arriving at
the mining camp, the strongbox would be opened
and all the workers would be paid in gold coin.
They would then head for the nearest town,
presumably to squander their gold on whiskey,
women and poker - not necessarily in that order.
Payrolls had their own problems then.

In 1913, immediately after the 16th amendment
became effective, congress enacted a personal
income tax, with a normal rate of l%on incomes in
excess of $3,000 for a single person and $4,000 for a
married person, and surtax rates on taxable
incomes in excess of $20,000 ranged from l%to 6%
The corporate rate then was 1%.

With minor exceptions, all employers were
required to withhold tax on a current basis from
employees' pay checks and transmit the sums to
the government. By 1960, this country obtained
82% of its total revenue through income taxes.

The national system of social security
established by the Social Security Act of 1935 was
part of President Franklin D. Roosevelt's "New
Deal." This resulted in another contribution from
the employee, this time matched by the employer.
Since the Internal Revenue Service had already
been set up to administer the income tax program,
the social security (FICA) deduction was
conveniently included with the IRS required
deposit and included on IRS form 941.

If it had all stopped there, writing a payroll
program for a computer today would be a snap. But
it didn't stop there. State agencies, labor unions
and others all get their "cut" of a paycheck.
Unfortunately (or fortunately, however you want
to look at it) the state and local deductions are not
as uniform as the federal deductions. Some states

26

Washington state is one, do not have a personal
income tax. Even in states that do, the amount
differs and the income uguinst which the tax is
levied differs. In addition, most income taxes, both
state and federal, are levied on a graduated basis.

Many people who are not employers or directly
connected with the collection of these taxes
assume that the government gets paid on April
15th of each year. Nothing could be farther from
the truth. An employer withholds income taxes
and FICA amounts, and if the amount is less than
minimal, deposits them in a designated bank
quarterly. If the amount is more than minimal the
deposit must be made monthly and if the amount
amounts to anything, the deposits must be made
on what the IRS calls an "eighth monthly basis.'
What that means in practical terms is that the
deposit must be made eight times per month or
twice per week.

What follows is a description of a payroll
program that will handle up to ten employees. It is
designed for small businesses, and has been used
in various previous incarnations over a period of
about eight years. Because of that, it gets right
down to what you really need to fill out the required
forms and keep acceptable records of employees. It
provides each employee with a pay stub for each
pay period, a list of employees and most important,
a report of accumulated quarterly earnings and
deductions needed to make proper deposits and
comp ete the required quarterly forms. It also
provides information for W-2 Forms at the end of
de7ear anc* allows both quarterly and year-end

The Overall View

r '^le ProKrarn establishes a sequential disk file
ror each employee. Every time you do anything

an employee, that file is loaded from disk,

~C&teW°rkS

operated on and then written back out to the disk.
One other sequential file is established, containing
only the file names of all the active employee files.
When you do the payroll, or clearing, it is this file
which automatically points to and gets the proper
employee files. It is also this file which will tell you
who your employees are when you type in a wrong
name.

The program is menu oriented, with options to
do the payroll, edit a pay record, print reports, add
or delete employees, clear records and end the
session. Let's start at the beginning of the program
and explain what's happening top to bottom.

Program details

In line 170 we dimension two arrays; E() is the
number of elements in each employee record and
E$() is an array of the file names of up to 10
employees.

Line 180 asks for a date which will be posted on
the pay stubs and your reports. You can enter it
any way you like. If your computer keeps the date
internally (it's usually called DATE$), simply
change line 180 to: 180 D$=DATE$. That way, you
won't even be asked for the date, it will pick it up
from the system. Lines 200 through 340 are remark
lines that identify some important variables. In
line 350 we read in the employee file name file, and
then immediately write it out again. This happens
many times in this program. Whenever we add or
delete an employee we update this file right away
so that during one session where you might add
one employee and delete another the file is always
exactly current.

Lines 370 through 400 establish some of the
variables that are apt to change with the dictates
of the IRS or the state you live in. Putting them up
front makes them easy to find and change, and
making variables of them makes the change
global. Some of these have a nasty habit of
changing every year. In line 400 you will find an
exclamation point after the number 37800. It is not
a sign of disgust, only the computer telling us that
the number is greater than 32767. Don't type the
exclamation point in; let the computer put it there
by itself it it really wants it. Also, if you download
this program on the Code Works download, you
may or may not get a syntax error on that line. If
you do, simply remove the exclamation point. (Our
MS-DOS computers didn't care about it, but our
Tandy Model III choked on it.)

In line 410 we define FNI(X) as a defined
function. This is a rounding function, so we don't
end up with paychecks with $125.100234 or
something equally ridiculous.

Your company name and address is hard coded
into lines 420 through 440. It will appear at the top
center of your reports, and as a one line entry
across the top of each pay stub.

The menu comes next and is straightforward.
INKEY$ is used to limit the choices to only those
available.

Do the Payroll Module

The first module we encounter is the payroll
module. It goes from line 620 through line 1040,
and takes one employee at a time (per the pay
names file), calculates the current pay period,
updates the quarterly and year-to-date totals,
prints the pay stub and writes the updated record
back to the disk. If you have five or less employees,
the pay stubs will fit on one standard 8x11 sheet of
paper; if you have more than five then two sheets
will be required. Don't worry about it if you have a
single sheet printer. The program will stop at each
employee in any case to ask for hours worked and
vacation, which will give you the opportunity to
change the paper if necessary.

Entering zero for hours worked will skip over an
employee. This was added so that if an employee
took a week off without pay, for example, you can
exclude him or her from the current payroll.

Let's go to line 720 and see what happens. Nl is
always the number of names in the pay names file
and because of what we said earlier, should always
be the current number of active employees. Let's
say that the first name in the pay names file is
John. There will then be a file on disk with the
filename John, and in that file his full name might
be JOHN Q. PUBLIC. In line 730 we then equate
E$to E$(l). E$(l) equals JOHN and now E$ equals
JOHN. We then go to the "open employee file and
read subroutine", at line 2830. While we are there,
we will open the sequential file for input and get
John's full name, El$ and his social security
number, S$. We then go into a little loop and read
in 19 items (from 0 through 18) of information
concerning John. After that, we close the file and
return. We now have John's record in memory.

We then ask how many hours John worked and
if vacation was taken and then calculate his
current pay. This all happens from 740 through
840. While in those lines, we also update his
quarterly and year-to-date totals. In line 850 we go
through a one line loop and round all the
calculated values, using the defined function we
set earlier in the program.

Line 860 prints your company name, address,
city, state and zip in one line across the top of the
pay stub. The following lines through 980 print

Code Works 27

the remainder of the pay stub. We are done with
John now, so in line 1000 we go to the subroutine
that writes John's updated record back to the disk.
Upon returning, we check to see if this was the fifth
pay stub we have printed. If it was, we tell the
printer to form feed to the next page. We then go on
to get the next employee record from the pay
names array E$(2).

After we have cycled through all the valid pay
names, we end up at line 1030, which forces a form
feed to the printer, and then we return to the main
menu - the payroll is done.

You can now slice up the page of pay stubs and
insert them into the pay envelope with the
paycheck, or if you like, make a photo copy of it
first for your records.

Edit or Review a Pay Record

This module allows you to examine a pay record
and if necessary, make changes to it. In line 1080
we enter the file name of the person whose record
we wish to see. The very next thing that happens is
that we go to a subroutine at 3090 to see if this is a
valid name. That subroutine compares the name
we just typed in with those in the pay names file
(remember that they were read into memory and
into array E$() early on in the program?) and if an
exact comparison is not found, it tells you so and
gives you a list of the valid pay names and a
chance to try again. This prevents mix ups and
also a lot of "file not found" errors and "bad file
name" errors.

Here would also be a good place to mention that
you cannot have the same file name for more than
one employee. If you have two people named Bob,
for example, call one BOB and the other BOBl, or
BOB plus the first letter of his last name.

Having found a valid employee, we then go (in
line 1100) to the read employee record subroutine.
The information is then displayed on the screen in
line 1120 through 1240.

Lines 1250 through 1350 need some explanation.
First off, if we choose to correct nothing, we enter
zero in line 1250. The next line, 1260, will not
operate because X2$ is now a null string. So in line
1270 we go through a loop to clear all the variables
of the record we just looked at from memory. Yes,
they are still there, and they are on the disk too, but
since we have made no changes, there is no point
in writing them back. The reason we have to clear
this record from memory is that if you first look at
one employee record and then go on to create a new
pay record for someone else, the new record would
pick up all the data from the record just viewed.

Now, after clearing the data from memory, we go
back to the main menu.

Now let's assume we want to make a change to
the record. In line 1250 we enter the item number.
Since XX is now equal to something other than
zero, line 1260 will be skipped again, and so will
line 1270. In line 1280 we check to see if the number
is in the allowable range of numbers and if not, go
back and ask for it again. Now in line 1290 we enter
the correct information as X$. We use a string here
because two of the items in each pay record are
strings, the name and social security number.
They are items 1 and 2. In lines 1300 and 1310, if
XX was 1 or 2, we exchange X$ with the name or
social security number. But the remainder of the
items in the pay record are all integers, and they
start with zero after the name and social security
number. So in line 1320, if XX was greater than 2,
we simply subtract 3 from XX and make that array
element in the pay record equal to the value of X$.

Lines 1330, 1340 and 1260 allow us to make
multiple changes to the record before writing it
back to disk or going back to the main menu. If the
answer in line 1330 is anything but Y or y, we write
the record to disk in line 1350, then clear X2$ and
go to line 1110 where the updated record is re
displayed. From there you can choose zero to get
back to the main menu. If we do want to make more
changes, line 1340 sends us to line 1250, where we
select the number and make the change. If we had
said we want to make a change and then at line
1250 select zero, line 1260 finally comes into play
and forces us to change something.

Print Payroll Reports

The reports module is between lines 1360 and
1900. Two different reports are provided. The
second is simply a list of your employees with their
full names, social security numbers and those
items which are fixed, like withholding percentage
and medical deductions. The first report is the one
that will be used more often, as it keeps a running
total of amounts paid and withheld. It also
calculates your accumulated income tax and FICA
liability for the current quarter.

As we did earlier, the pay names array is read to
find who the current employees are. Then each pay
record is read in and the appropriate values are
summed in variables Tl through T8. Tax liability
is igured in line 1720, and consists of two times the
wit e d FICA plus the income tax withheld.

Depending on which state you live in, it also
provides most of the information needed in filling
out quarterly reports for state employment

28 Code Works

security and for whatever form of state workman's
compensation you have. There is certainly
nothing exotic about the code in this section. It
simply totals data and prints it out in report form.

Add or Delete Employees

The add employee module runs from line 1900
through 2220. The sub-menu in this section allows
you to add, delete or return to the main menu. The
usual error trapping at the menu is provided for.
Making a new employee record consists of nothing
more than entering six pieces of information. See
lines 2010 through 2100. The rest of that new
employee record will contain zeros until the first
time he or she is included in a payroll, when the
zeros will change to some other value.

After the basic information for the new
employee is entered, we ask for a first (or file) name
for that employee. In lines 2130 through 2150, we
check the name just entered against those already
in the pay names array. If the name is already
being used, we get the chance to give another,
different, name. If it is unique, we go on to line
2170, which sends us to the "open file and write"
subroutine at 2750. That will place the new
employee record on disk. But now we need to tell
our little index file, the pay names file, that we
have a file name to add to it. The three lines of code
that do this are at 2180 through 2200. What they do
is read the pay names file and look for the first
blank space, then put our new name into that
blank.

The other part of line 2190, where E$(I)="ONE"
is for first time initialization of the program, when
there are no names at all in the pay names file. If
we try to run this program with no files initialized,
we will get a "file not found" error. So the first time
we run it, (and this is the only time we need to do
this), we load the program, then type, in command
mode, this statement: E$(l)="ONE":GOTO 2920
and ENTER. The program will then create the pay
names file on disk. It will contain the word "ONE",
and there will be a "return without gosub" error on
your screen. Ignore the error and simply run the
program. From here on in, you will never need to
worry about it again.

Oh yes, at this point you should immediately go
to the add employee menu and put at least one
employee into the system. Because of line 2190, the
"ONE" in the pay names file will then be replaced
by that first employee file name. Keep this little
procedure in mind. We will use it again in a slightly
different way to re-activate a previously deleted
employee later.

The delete section is covered from lines 2230
through 2390. It is very easy to do. We simply give
the file name of the employee to delete, find it in the
pay name file and change it to a null string. In line
2390, we then go to the subroutine which writes the
pay names file to disk and when it finds the null
string it skips over it so that the names will be
contiguous in the file. It then reads the pay names
file back into memory. Now that employee will no
longer be included in payrolls or reports, but his
employee file is still on the disk with all its data.

Let's suppose that Tom, Dick and Harry all work
for you and that they have all been employed since
January. In June, Harry decides to take off three
months to go fishing in Alaska. When he goes, you
carry him till the end of the quarter (end of June)
by entering 0 for hours worked when you do the
payroll. After you have cleared the quarter at the
end of June, you can delete Harry, and don't worry
about him until he comes back from Alaska in
September. Then before you do the first payroll on
which he will be paid, you load the program and in
command mode (assuming you still have Tom and
Dick), you type: E$(3)="HARRY":goto 2920 and
Enter. Ignore the "return without gosub" error and
run the program. Harry will be reinstated as an
employee with all of his year to date information
intact. Note that this is very similar to starting the
program for the very first time. Only this time the
E$() subscript is three, because Tom is 1 and Dick
is 2. Always reinstate an employee at the end of the
list of pay names, regardless of where he or she
was in the line up before being deleted.

End of Quarter/Year Clearing

This module resides between lines 2400 through
2670. Once again, we read the pay names file and
cycle through the pay names array to fetch the
individual pay records. If the quarter is being
cleared, only items 11 through 18 in each pay
record are set to zero, since these are all quarterly
items. If year-end clearing is selected, then items 5
through 18 are cleared, which clears the year-to-
date totals as well as the current quarter. This
selection is made in line 2570 and executed in line
2610.

Other than that, the clearing module is easy code
to follow. To prevent clearing anything by
mistake, the words (in capital letters) QUARTER
or YEAR must be typed in to affect the clearing;
otherwise line 2560 will send you back to the main
menu. After all records for all active employees
have been cleared line 2670 will return you to the
main menu.

Code Works 29

Magarac's Widget Company 1234 Tool Steel Road Skunk Hollow, WA 98000
THOMAS A. ARMSTRONG 123-45-6789 Pay period ending: 7 FEB 86

HOURS VacAvail Taken Rate GrossPay
40 3 0 10.25 410

NetPay
317.19

Current Period —
Year to Date
YTD Gross $ 820

— Deductions —
FICA FedTax StateTax Medical
28.91 41 16.4 5.4
57.82 82 32.8 10.8

WorkmnComp
1 . 1
2.2

Magarac's Widget Company 1234 Tool Steel Road Skunk Hollow, WA 98000
RICHARD C. ANDERSON 234-56-7890 Pay period ending: 7 FEB 86

HOURS VacAvail Taken Rate GrossPay
36 1.9 1 12.65 455.4

NetPay
330.08

FICA
Current Period — 32.11
Year to Date 67.78
YTD Gross $ 961.4

— Deductions —
FedTax StateTax Medical
54.65 27.32 10.25
115.37 57.68 20.5

WorkmnComp
.99
2.09

Magarac*s Widget Company 1234 Tool Steel Road Skunk Hollow, WA 98000
MARY BETH HUTCHINSON 345-67-8901 Pay period ending: 7 FEB 86

HOURS VacAvail Taken Rate GrossPay
48 3.3 0 13.75 660

NetPay
470.4

Current Period —
Year to Date
YTD Gross $ 1210

— Deductions —
FICA FedTax StateTax Medical
46.53 79.2 52.8 9.75
85.31 145.2 96.8 19.5

WorkmnComp
1.32
2.42

This is a page of pay stubs for Magarac's Widget Company after the second
pay period. If you use the figures for these employees on the facing page,
you can use this figure to check that you have entered the program
correctly. During the first pay period each employee worked 40 hours and
took no vacation.

30 Code Works

Magarac's Widget Company
1234 Tool Steel Road
Skunk Hollow, WA 98000

Accumulated Pay Amounts Report for period ending 7 FEB 86

Hours Gross FICA FedTax WkComp StTax Med NetPay

THOMAS A. ARMSTRONG 123-45-6789
80 820 57.82 82 2.2 32.8 10.8 634.38
RICHARD C . ANDERSON 234-56-7890
76 961.4 67.78 115.37 2.09 57.68 20.5 697.97
MARY BETH HUTCHINSON 345-67-8901
88 1210 85.31 145.2 2.42 96.8 19.5 860.77

*** TOTALS ***
244 2991.4 210.91 342.57 6.71 187.28 50.8 2193.12

Total 941 liability so far is $ 764.39

Above is a sample of the Amounts Paid/Withheld after the second pay
period.

Magarac's Widget Company
1234 Tool Steel Road
Skunk Hollow, WA 98000

Employee List as of 7 FEB 86

Name

THOMAS A. ARMSTRONG
RICHARD C. ANDERSON
MARY BETH HUTCHINSON

SS#

123-45-6789
234-56-7890
345-67-8901

Rate

10.25
12.65
13.75

FedTax% StTax% Med Ded

.1 .04 5.4

.12 .06 10.25

.12 .08 9.75

This is what the Employee Information Report looks like.

CodeWorks 3 1

End Session Module

The end session module is the shortest and
easiest. It resides between lines 2680 and 2730 and
consists of nothing more than a reminder to back
up your files. It then simply runs into an END
statement in line 2740 and gives the BASIC ready
prompt.

Subroutines

There are four subroutines which are called
repeatedly from the main program. The first is the
"Write employee pay record" subroutine from lines
2740 through 2810. See the article on sequential
files in this issue for more detail on how they work.

The next subroutine, from lines 2820 through
2900, is the "Read employee pay record"
subroutine.

The next subroutine both writes and then reads
back the pay names sequential file. Notice that
there is no return or end at the end of the write
portion; it goes directly to the file and then is read
back immediately. This keeps the valid pay names
as up to date as possible during operation of the
program. Also note in line 2950 that when writing
the pay names to disk, if a null string is found
(presumably because of a deletion), the null is not
written to the disk but goes to the NEXT I instead.
This insures that the valid pay names are at the
beginning of the pay names file with no gaps.

The Who is Real? Subroutine

The last subroutine of the program, starting at
line 3080 and continuing through 3220, is used any
time you ask for any employee pay name. It checks

through the pay name file and looks for a match,
and if it finds one, it returns to wherever you came
from. In line 3100 it also checks to see if you simply
pressed the ENTER key instead of entering a
name. If you did press ENTER or an invalid pay
name, line 3130 tells you so and then gets the valid
names from the pay names array and prints them
for you to see. It then asks which one you want, and
will continue to do so until you get it right. This
sounds dictatorial, but remember that we are
messing with someone's pay here, and it should be
done right.

Suggested additions

As mentioned at the very beginning of this
article, making a program that applies to all states
and situations would be formidable. Once you
study this program you should be able to modify it
sufficiently to take care of your special cases. One
of the things that could be added would be a check
writer. Here again, there are so many conventions
and spacingB on available check stock that you
almost need to do your own. In the "do the payroll
module", you could easily print the pay stub above
a tractor fed check, then jump to a subroutine at
the end of this program that would write the check
itself.

Another feature that could be added is the
computation of overtime. You could simply
convert overtime hours to strnight hours, but be
careful. If your state computes anything on hours
(ours does) then you would be off there.

W-2 form information is all contained on the last
pay stub of the year. If you do not routinely make
copies of your pay stubs, this is one you will want
to have a copy of. •

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM **
REM **
REM **
REM **
REM **
REM **
CLEAR
DIM E (
INPUT"
REM **
a

' E$
' El $
' s$
' E ()
' HO =

PAY.BAS ** FOR CODEWORKS MAGAZINE
3838 S. WARNER ST. TACOMA, WA 98409 (206)475-2219
PLEASE DO NOT REMOVE THESE CREDIT LINES
1st time initialization required. See CodeWorks Issue 4
for complete details and operating instructions, including
how to reinstate a deleted employee.
1000: ' Use only if your machine needs to clear space.
18), E$ (11) : E$ () sets the max number of employees plus 1
Enter the date (any way you like)";D$
If you have DATE$ change above line to: D$-DATE$

Define some important variables
current employee's file name. Also used in array E$()
is any employee's full name.
is any employee's social security number
is any employee's data array - see edit/review code,
hours worked this pay period. ""/review code.

32 Code #0^

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
OTO
750
760
770
780

VA - VC*HO, how much vacation was earned this pay period
HT = Vacation Hours Taken this pay period.
GP = Gross Pay for this pay period.
CF = Current pay period FICA deduction.
CT = Current pay period FedTax deduction.
CS = Current pay period State Tax deduction.
CM = Current pay period Medical deduction.
CL = Current pay period Workman's Compensation deduction
NP = Net Pay for the current period.

GOSUB 3010
GOSUB 2920
VC=.03846
FR=.0705
WC=.0276
FM=378001

Read in the employee file names file.
Write the file names file back out.
Vac earned per hour — given 2 weeks per year.
FICA rate withheld from each employee.
State Workman's Compensation deduction rate.
Maximum gross from which FICA can be deducted.

r X 1 \ . _ .
Define rounding as a function.
Put your company name here.
And your address,
and city state and zip too.

DEF FNl(X)=INT(X*100+.5)/l00
CI?="Magarac's Widget Company"
C2?="1234 Tool Steel Road"
C3?="Skunk Hollow, WA 98000"
CLS
PRINT STRING?(22" The CodeWorks STRING?(23)
PRINT'! SMALL BUSINESS PAYROLL
PRINT" for companies where you know them by their first name
PRINT STRING?(60,
PRINT
PRINT TAB(10);"1 -
PRINT TAB(10);"2 -
PRINT TAB(10);"3 -
PRINT TAB(10);"4 -
PRINT TAB(10)y"5 -
PRINT TAB(10);"6 -
PRINT
PRINT"Your choice";
X?=INKEY?:IF X?=""

Do the Payroll"
Edit or Review a Pay Record"
Print Payroll Reports"
Add or Delete Employees"
End of Quarter/Year Clearing"
End Session"

Do the Payroll module **

THEN GOTO 590
X=VAL(X?):IF X<1 OR X>6 THEN GOTO 590
ON X GOTO 630,1060,1370,1920,2410,2690
END:REM
CLS:PRINT TAB(10);" **** DO THE PAYROLL ****"
PRINT
IF Nl=<5 THEN PRINT"One 8 x 11 sheet of paper will do.":GOTO 670
PRINT"You will need two 8 x 11 sheets for the pay stubs."
PRINT"Adjust your paper, your printer should be set for 66 line"
PRINT"pages and 60 lines per page, width 80 columns."
PRINT
PRINT"To skip an employee, enter 0 for hours worked."
PRINT
FOR 1=1 TO Nl
E?=E?(I):HT=0:GOSUB 2830
PRINT"Hours ";E?;" worked this period";:INPUT HO:IF HO=0 THEN G

1020
PRINT"Did ";E?;" use any vacation this period (Y/N)";:INPUT X$
IF X? <>"Y" AND X? < >"y" THEN GOTO 790
INPUT"How many hours were taken";HT
E(4)=E(4)-HT

CodeWorks
33

-JCj V * / TVrf f • EJ \ -/ / \ -7 / "Vx 1 • Ij \ w / XJ\v/

) =E(17) +H0 jE(11)=E(11)+GPt E(12)=E(12) +CFi E(1 3)aE (13) +CT: E(1
1.: E (15) =E(15)+CS :E(16)=E(16)+NP:E(10)=E(10)+GP:E(18)=E(18)+

790 VA=VC*HO:E(4)=E(4) +VA t GP=E (0) *H0:CF-GP* F R: CT GP*E(1):CS GP*E(

2):CM=E(3):CL=HO*WC
800 IF E(10)= >FM THEN CF=0
810 NP=GP— (CF+CT+CM+CLi+CS) , v *
820 E (7) = E (7) + C F : E(9)=E(9)+CT:E(6)=E(6)+CS:E(5)-E(5)+CLsE(8)=E(8)+C

M
830 E(17):

4)=E(14)+CL:
CM .
840 CF=FNI(CF) : CL=FNI (CL) s CT=FNI(CT) :CS=FNI(CS) :CM=FNI(CM) : NP-FNI(N
P):GP=FNI(GP):E(10)=FNI(E(10))

FOR K=5 TO 18 s E(K)=FNI(E(K)): NEXT K
LPRINT Cl$+M "+C2$+" "+C3$
LPRINT El$;TAB(26);S$;TAB(40)7"Pay period ending: ";D$
LPRINT" "
E(4)=INT(E(4)*10+.5)/10
LPRINT "HOURS" ; TAB(7); "VacAvail" 7 TAB(17); "Taken"; TAB (25) 7 "Rate";

TAB(35);"GrossPay";TAB(50);"NetPay"
910 LPRINT TAB(2); HO;TAB(8); E(4);TAB(17);HT;TAB(25); E(0); TAB(35) 7GP
7TAB(50);NP
920 LPRINT" "
930 LPRINT TAB(32)" — Deductions —"
940 LPRINT TAB(20) 7 "FICA" 7TAB(30) 7 "FedTax" ;TAB(40) 7 "StateTax " ;TAB(5
0)7"Medical";TAB(60)7"WorkranComp"
950 LPRINT "Cur rent Period —" ;TAB(20) 7CF;TAB(30) 7CT;TAB(40) 7CS;TAB(
50)7CM7TAB(60)7CL
960 LPRINT"Year to Date " ?TAB(20) 7 E (7) ;TAB(30)?E(9) ;TAB(40) 7 E (6
);TAB(50);E(8) 7 TAB(60);E(5)
970 LPRINT"YTD Gross $"?E(10)
980 LPRINT STRING$(64,45)

850
860
870
880
890
900

990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

GOSUB 2750
IF 1=6 THEN LPRINT CHR$(12)

NEXT I
LPRINT CHR$(12)
GOTO 450
END: REM > Edit or Review a Pay
CLSSPRINT TAB(10)7"EDIT/REVIEW A PAY RECORD"
PRINT
INPUT"Enter Employee's First name ";E$
GOSUB 3090
GOSUB 2830
CLS:PRINT TAB(20);" EDIT/REVIEW"
PRINT"Filename is: "?E$

Record module **

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

PRINT"1-Name: " 7 El$;TAB(32) 7 "11-YTD Med ded ».vtn)
• DTKTT1" O CC4 .1 , „ » l-> I ° / PRINT"2-SS#
PRINT"3-Rate/Hr —
PRINT"4-FedTax % -
PRINT"5-StTax % —

6-Med ded —
7-Vac avail-
8-YTD WkComp

PRINT
PRINT
PRINT
PRINT
PRINT

9-YTD StTax- ";E(6) ;TAB(32) '7

;S$7TAB(32)7"12-YTD FedTax ded "«E(9)
,E 0 ,TAB 32),-13-YTD Gr"ss pty —E 10)
;E 1 ;TAB<32);"14-Gross this qtr — • E 11)
,E 2 ,TAB(32),"15-FICA this q?r — "|S(12J
, E(3);TAB(32)7"16-FedTax this atr - "«E(13)
,E 4 ,TAE 32),"17-WkComp this qtr - ' E 4 5 I !*» ?J»':"-®"axPthisV"- • «<»>

' 10-YTD FICA- (?' .'sss n; ^ Vr: •: si u
'TAB(32)7 20-Hours this qtr — ";E(17)

34 Code Works

) 1230 PRINT TAB(32);"21-Med ded this qtr- ";E(18)
1240 PRINT
1250 INPUT"Correct which item number, enter 0 for none ";XX
1260 IF XX=0 AND X2$<>"" THEN PRINT"You chose to change something, wh
ich number"?:INPUT XX:IF XX=0 THEN GOTO 1250 ELSE GOTO 1280
1270 IF XX=0 THEN FOR 1=0 TO 18:E(I)=0:NEXT I:GOTO 450
1280 IF XX<1 OR XX>21 THEN GOTO 1250
1290 LINE INPUT"Enter the correct information ";X$
1300 IF XX=1 THEN E1$=X$
1310 IF XX=2 THEN S$=X$
1320 IF XX>2 THEN E(XX-3)=VAL(X$)
1330 INPUT"Any more changes (Y/N)";X2$
1340 IF X2$="Y" OR X2$="y" THEN GOTO 1250
1350 GOSUB 2750:X2$="":GOTO 1110
1360 END:REM > Print Payroll Report module **
1370 CLS:PRINT TAB(10)?" PAYROLL REPORTS"
1380 PRINT
1390 PRINT"Get your printer ready"
1400 PRINT
1410 PRINT"1 - Report of Amounts Paid/Withheld (IRS 940 info)"
1420 PRINT"2 - Employee Information Report."
1430 PRINT"3 - To return to main menu."
1440 PRINT
1450 PRINT"Your Choice"?
1460 X$=INKEY$:IF X$="" THEN GOTO 1460
1470 X=VAL(X$):IF X<1 OR X>3 THEN GOTO 1460
1480 LPRINT TAB(20)? CI$
1490 LPRINT TAB(20)? C2$
1500 LPRINT TAB(20)? C3$
1510 LPRINT" "
1520 ON X GOTO 1530,1750,450
1530 CLS:PRINT"This report will show accumulated amounts during the"
1540 PRINT"quarter. It is used primarily to have a record and to"
1550 PRINT"calculate IRS 941 liability. It will fit on one page."
1560 PRINT
1570 PRINT"Press ENTER when ready"?:INPUT X
1580 LPRINT"Accumulated Pay Amounts Report for period ending "?D$
1590 LPRINT" "
1600 LPRINT"Hours"? TAB(10)?"Gross"? TAB(20)?"FICA"? TAB(30)?"FedTax"? TA
B(40)?"WkComp"? TAB(47)?"StTax"? TAB(56)?"Med"? TAB(65)?"NetPay"
1610 LPRINT" "
1620 FOR 1= 1 TO N1
1630 E$=E$(I):GOSUB 2830
1640 LPRINT El $,S$
1650 LPRINT E(17)?TAB(10)?E(11)?TAB(20)?E(12)?TAB(30)?E(13)?TAB(40)
? E(14)?TAB(47)? E(15)?TAB(56)?E(18)?TAB(65)? E(16)
1660 T1=T1+E(17):T2=T2+E(11):T3=T3+E(12):T4=T4+E(13):T5=T5+E(14):T6
=T6+E(15):T7=T7+E(18):T8=T8+E(16)
1670 NEXT I
1680 LPRINT" "
1690 LPRINT"*** TOTALS ***"
1700 LPRINT T1?TAB(10)?T2?TAB(20)?T3?TAB(30)?T4?TAB(40)?T5?TAB(47)?T6
?TAB(56)?T7 ? TAB(65)? T8
1710 LPRINT" "

Code Works 35

1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

1850
1860
1870

**

LPRINT"Total 941 liability so far is $";(2 T3)+T4
LPRINT CHR$(12)
GOTO 450
CLS:PRINT"Employee List Report"
PRINT
PRINT"This report provides a list of your employees and their
PRINT"fixed deductions. It will fit on one 8 x 11 page."
PRINT
PRINT"Press ENTER when ready";sINPUT XX
LPRINT"Employee List as of ";D$
LPRINT" "
LPRINT "Name" ;TAB(26); "SS#";TAB(38); "Rate";TAB(50); " FedTax% "; TAB(

60);"StTax%";TAB(70);"Med Ded"
1840 LPRINT" "

FOR 1=1 TO N1
E$=E$(I):GOSUB 2830
LPRINT E1$;TAB(26) yS$;TAB(38);E(0);TAB(50); E(1) ;TAB(60); E(2) ;T

AB(70);E(3)
1880 NEXT I

LPRINT CHR$(12)
GOTO 450
END:REM > Add or Delete Employee module
CLS:PRINT TAB(10);" ADD OR DELETE AN EMPLOYEE PAY RECORD "
PRINT
PRINT TAB (10); " 1 - To ADD a New Employee Record."
PRINT TAB(10)y"2 - To DELETE an Employee Record."
PRINT TAB(10); "3 - To return to main menu."
PRINT"Your Choice";
X1$=INKEY$:IF Xl$="" THEN GOTO 1980
X1=VAL(X1$) : IF X1<1 OR Xl>3 THEN GOTO 1980
ON XI GOTO 2010,2230,450
CLS:PRINT TAB(10);"ADD a new Employee Record"
PRINT
PRINT"Follow the prompts to create a new employee
PRINT"Enter zero amounts where applicable."
LINE INPUT"Employee Full Name
LINE INPUT"Social Security Number
INPUT"Hourly Rate of pay
INPUT"Federal Tax Deduction % (i.e., .12)-
INPUT"State Tax Deduction % (i.e., .08)
INPUT"Medical
PRINT
INPUT"Enter Employee
FOR 1=1 TO 10

IF E$(I)=E$ THEN
2120
NEXT I
INPUT"Press ENTER to create this
GOSUB 2750
FOR 1=1 TO 10

IF E$(I)="" OR E$(I)="ONE" THEN E$(l),

I

1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
GOTO
2150
2160
2170
2180
2190
2200
2210
2220

record

";E1$
";S$
";E(0)
";E(l)
';E(2)

Insurance per period ";E(3)

File name ";E$

PRINT That name already exists, use another"*

record";XX

NEXT I
GOSUB 2920
GOTO 450

SE$:GOTO 2210

36
rndeW°rks

2230 CLS:PRINT TAB(10);" BEFORE YOU DELETE AN EMPLOYEE1"
2240 PRINT
2250 PRINT"You must carry an employee through the current quarter"
2260 PRINT"so that your reports used for IRS forms 941 will be"
2270 PRINT"correct. To carry a terminated employee through"
2280 PRINT"the end of the quarter, when you do the payroll, simply"
2290 PRINT"enter 0 for hours worked. It will then skip over that"
2300 PRINT"employee. NOW — if you still want to delete, go ahead:"
2310 PRINT"Answer the next question with 0 if you opt not to delete."
2320 PRINT
2330 INPUT"Enter File name of employee to delete ";E$
2340 IF E$="0" THEN GOTO 1920
2350 GOSUB 3090
2360 FOR 1=1 TO 10
2370 IF E$(I)=E$ THEN E$(l)=""
2380 NEXT I
2390 GOSUB 2920:GOTO 350
2400 END:REM > End of Quarter/Year Clearing module **
2410 CLS:PRINT TAB(20)y" QUARTER / YEAR END CLEAR "
2420 PRINT
2430 PRINT"Be sure you have printed your payroll reports for the"
2440 PRINT"quarter before clearing. Clearing the quarter will remove"
2450 PRINT"all quarterly data for ALL employees. Clearing the year"
2460 PRINT"will clear everything except basic employee data for"
2470 PRINT"ALL employees. Use Edit/Review option to verify clear."
2480 PRINT
2490 PRINT"At the end of the year, clearing the year will clear the"
2500 PRINT"last quarter as well. >> Print your reports firstl <<"
2510 PRINT"To prevent inadvertent clearing, you must type in the"
2520 PRINT"word QUARTER or YEAR, otherwise, you will be sent"
2530 PRINT"back to the main menu.
2540 PRINT
2550 PRINT"CLEAR what: ";:INPUT X$
2560 IF X$<>"QUARTER" AND X$<>"YEAR" THEN GOTO 450
2570 IF X$="QUARTER" THEN Ql=ll ELSE Ql=5
2580 FOR 1=1 TO N1
2590 E$=E$(I):GOSUB 2830
2600 PRINT"Clearing the ";X$y" for: "yE$
2610 FOR J=Q1 TO 18
2620 E(J)=0
2630 NEXT J
2640 GOSUB 2750
2650 NEXT I
2660 PRINT"A11"yX$y"amounts have been cleared. Press ENTER"y:INPUT X
2670 GOTO 450
2680 END:REM > End Session module **
2690 CLS:PRINT TAB(10)y"END SESSION"
2700 PRINT
2710 PRINT"Be sure to backup your diskettes after each update."
2720 PRINT"It is advisable to keep a Father, Son and Grandfather"
2730 PRINT"set and rotate the backups."
2740 END:REM > Open employee file and write subroutine **
2750 OPEN "O",1,E$
2760 PRINT #1,E1$+",",S$+",",

CodeWorks 37

2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220

-> Open employee file and read subroutine **

FOR J=0 TO 18
PRINT #1,E(J);

NEXT J
CLOSE 1
RETURN
END:REM
OPEN "I",1,E$
INPUT #1,E1$,S$
FOR J=0 TO 18

IF EOF(l) THEN 2890
INPUT #1,E(J)

NEXT J
CLOSE 1
RETURN
END: REM Write the PAYNAMES file to disk **

OPEN "O",1,"PAYNAMES"
N1=0
FOR 1=1 TO 10

IF E$(I) = "" THEN GOTO 2980
PRINT #1, E$(I)
N1=N1+1

NEXT I
CLOSE 1
rem Read the PAYNAMES file from disk **
OPEN "I'M, "PAYNAMES"
FOR 1=1 TO 10
IF EOF(l) THEN GOTO 3060
INPUT#1,E$(I)

NEXT I
CLOSE 1
RETURN
REM > Who is Real? Subroutine **
FOR 1=1 TO 10

IF E$(I)=E$ AND E$<> "" THEN RETURN
NEXT I
PRINT
PRINT E$?" is NOT a valid pay name."
PRINT"These are:"
PRINT
FOR 1=1 TO N1

PRINT E$(I);" ";
NEXT I
PRINT:PRINT
INPUT"Which one do you want" ;E$
GOTO 3090
END:'of program.

%

This program, as well as the others in this issue, are available on the
download system under menu item "Issue 4."

38 Code Works

Puzzler #3
Making a Card Deck

It's almost been like "Name that tune" around
here. We have been working on a poker playing
program, and every time someone gets a bright
idea about how to make up a deck of cards on the
computer, someone else seems to come along and
say they can do it in two less lines of code.

It started with about a dozen lines of code. Then
it was reduced a few lines, and still later a few more
lines. Somewhere along the way, someone mused
about the fact that this would make a neat puzzler,
so here it is.

Here is what we want to end up with: An array,
let's call it B() that starts with B(l) equal to 102
and ends up at B(52) equal to 414. That is, the array
will start at element one containing the number
102 and go through 114, then 202 through 214, 302
through 314 and 402 through 414. This way, the
first digit of the number will designate the suit of

the card and the second two digits will always be
the value of the card from the deuce through the
ace.

As an aside, let's say that there is no sense in
carrying a card value throughout the program in
string form; it gets messy very quickly. So the
logical way to do it is to assign numbers to the
cards and operate on all of them as integers. You
only need to change the card suit and value to a
string when it is printed out on the screen.

Since we obviously need to dimension B() at 52,
we won't count that as a line of code. Given this
problem, what is the least number of program
statements it will take to create that B() array?

Send your solution to us and we will print and
give credit to those who do it in the least number of
program statements. •

Subscription ORDER FORM 386

Computer type:

Do you have a modem?
If so, what baud rate?

Comments:

Please enter my one year subscription to CodeWorks at $24.95.1 understand that this price includes
access to download programs at NO EXTRA charge.

• Check or MO enclosed.
• Charge to my VISA/MasterCard # __Exp date
Please Print clearly:

Name

Address

Clip or photocopy and mail
to: CodeWorks
3838 South Warner St.
Tacoma, WA 98409

City State Zip

Charge card orders may be called in (206) 475-2219 between 9 AM and 4 PM weekdays, Pacific time. Sorry, no "bill me'
orders.

CodeWorks 39

Download k
The CodeWorks download system is

always improving, sometimes from plans
we have for the system and sometimes
from improvements suggested by
subscribers and others. Here are some
changes that became active since the last
issue.

A1 Mashburn suggested that some users
may have trouble logging into the system
because they often hit RETURN a few
times from habit. (Some systems use this
as a way to tell what baud rate you are
using.) This would throw you into the
Demo menu system. We ignore these
returns now and simply tell you to type in
a name.

One subscriber (Richard Burwell) found
that he couldn't use a six character
password as we had said you could. We
fixed that, so now you can. We have also
made it possible to set your password from
the main subscriber menu.

Tony Pepin, a local subscriber, found
that some lines had been truncated in a
download. We traced that to a problem in
setting maximum line lengths and
corrected it.

Greg Sheppard suggested that we have

CodeWorks
3838 South Warner Street
Tacoma. Washington 98409

Address correction requested

a terminal configuration option to set
whether you want a Return, Line Feed, or
both. It's on line now. He also suggested a
flag to mark if you've already seen the
Message of the Day during login. It's there
now so after you have read the Message of
the Day once, it will not bother you again
until it changes.

Since some users have had trouble
understanding what they could enter for
terminal types, we have tried to make that
clearer by printing a short description of
t h e t e r m i n a l o n t h e t e r m i n a l
configuration screen and checking to
make sure we understand the terminal
type when you try to change it. If you enter
a question mark when you have been
prompted for your terminal type, you will
get a readout of a terminal help file which
will list all the terminal types the system
can understand. (Watch out, there are
hundreds of terminals listed.) We will
spend more time in the issue on the details
of terminal types.

There have also been some internal
changes to tune up the system and make it
faster. Thanks for your interest and
support. •

Bulk FUte
US Po«t»©e

PAID
Permit No. 774
Teooma, WA

• CODEWORKS
Issue 5 May/June 1986

CONTENTS

Editor's Notes

Forum

Busmod.Bas

Shareware

Beginning BASIC

Puzzler

Merge/Sort

VXRef.Bas

Convert.Bas

Download

Programming Notes.

2

3

6

15

17

18

20

25

34

38

14, 16,33

CODEWORKS Editor s Notes ^
Issue 5 May/Jun 1986

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

Al Mashburn

©1986 80-Northwest Publishing
Inc.No patent liability is assumed with
respect to the use of the information
contained herein. While every precaution
has been taken in the preparation of this
publication, the publisher assumes no
responsibility for errors or omissions.AII
programs, unless otherwise specified,
presented in this publication, are hereby
placed into public domain. Please
address correspondence to: CodeWorks,
3838 South Warner St.. Tecoma, WA
98409

Telephones
(206) 475-2219 (voice)

(206) 475-2356 (modem download)

300 Baud. 8 bits, no parity. 1 stop bit

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/lower case) and
allow 4 to 6 weeks for editorial review.
You may send IBM-PC compatible
diskettes (please save your programs in
ASCII format.) Also send a hard copy
listing of the program and article. Media
will be returned if return postage is
provided Compensation will be made for
works which are accepted for publication.
CodeWorks pays upon acceptance rather
than on publication.

Subscription price: $24.95 per year (six
issues.) A subscription year runs from
Nov/Dec through Sep/Oct. Anyone
subscribing during the current
subscription year receives all issues for
that year. Not available outside the United
States Zip codes. VISA and Master Card
orders are accepted by mail or phone
(206) 475-2219. Charge card orders
may also be left via our on-line
download system (206) 475-2356.

CodeWorks is published bimonthly in
Jan, Mar, May, Jul, Sep and Nov. It is
printed in the United States of America.
Bulk rate postage is paid at Tacoma,
Washington.

Sample Copies: If you have a friend
who would like to see a copy of
CodeWorks, just send the name
and address and we will send a
sample copy at no cost.

Do you realize how much
computing power you have?

It wasn't that many years ago
when I remember walking into the
computing room of a large
corporation. It was truly "twenty
degrees cooler inside" and the floor
was raised. The large room was
teeming with cookie-cutter men, all
wearing slate-gray suits, white
shirts and black ties. Even their
haircuts were identical.

There was row after row of
identical tape drives. There were
more rows of mechanical sorting
machines and key punch machines.
There were several line printers
spewing paper. The centerpiece of
this whole affair was a large circle of
blue-gray cabinets. At the center of
this circle there was a four cubic foot
"brain" behind Plexiglas. Behind
the glass you could see little lights
winking on and off in mesmerizing
patterns. The brain was surrounded
with red velvet ropes connected to
four highly polished brass posts at
each corner. There was a very neatly
lettered sign on it that proclaimed it
to be a 128K Core Memory. Tours of
the installation were commonplace.
It was a focal point of corporate
pride.

Outside the "machine room" was
a vast area filled with partitioned
cubicles. Each cubicle contained one
person and stacks of computer
printout. Occasionally you could see
an empty cubicle, and further along
one with two people, usually
involved in some apparently
meaningful discussion concerning
programming the computer.

These were the programmers who
fed the beast. The language then
was FORTRAN. At Dartmouth,
about this time, a couple of men were
playing around with what was later
to become BASIC. I can't recall for
certain, but I think that the
computer was an IBM 7090.

Several years later I again had the
opportunity to see the same

computer room. It now contained
two IBM 360/65's driven by an IBM
360/50. The inner sanctum no
longer had the holy of holies look.
The computer operators now wore
blue jeans and plaid wool shirts.

They queued-up tapes and hung
paper or changed disk pacs. The sea
of programmers in the outer room
had shrunk. They had even moved
one wall to take away some of the
vacated space. They were now
talking about memory with one-half
megabyte. Bill Gates was still
attending elementary school.

These days most of us have more
computing power sitting right in
front of us than the 128K monster
mentioned earlier. We also have it at
less than one-hundredth the cost.
The sea of programmers has shrunk
even further - to one person - you. But
let's not forget that those early
programmers laid the groundwork
for most of what we do today, and
they had to do it with memory and
availability constraints.

It hasn't been that many years
since the sum total of anything
electronic was all radio. A couple of
weeks ago, I had the opportunity to
look at my own heart in action on a
video screen. The valves were
opening and closing, the walls were
expanding and contracting and
there was no blood obscuring the
picture nor ribs getting in the
way. An elaborate sonic transducer
was placed on my chest to get the
picture. It also picked up the heart
beat sound and amplified it. A
medical technician did it, and it was
recorded on a video tape recorder. A
doctor who knew what to look for
saw it all later, at his convenience,
on a television set. The computer
that did it was not much more than
we already have sitting on our
desks. The recorder was an off-the-
shelf VCR.

Yes, computing power has come a
long way in a very short time. - Irv

2 CodeWorks

Forum
An Open Forum for Questions & Comments

In the Mar/Apr 86 issue you had a
question from Art Phillips about
closing a For...Next loop. I found
(the following) in a newsletter called
Northern Bytes in the form of an
article entitled For/Next Termina
tion by Ray Greet taken from the
Adelaide (South Australia) Micro-
User News. The following is the
content of the article:
"About twelve months ago I
mentioned to some members that
exiting from For/Next loops
prematurely, without terminating
the loop, was poor programming
practice. My justification for
making the statement was based on
information obtained from the book
Microsoft BASIC Decoded. This
stated that when a loop construct is
generated, a 16-byte "frame" is
deposited on the system stack. From
this I concluded that if a loop is not
properly terminated then the
construct frame would remain on
the stack and so consume memory
unnecessarily. The frame is a
structure containing details of loop
parameters necessary for control of
the loop process (this frame,
incidentally, expands to 20 bytes if a
single precision index variable is
used.)

A recent listing passed to me
which contains examples of
unterminated loops prompted me to
research the matter further and
report so as to clarify the situation
as it would seem the processes are
not fully understood.

Some tests have shown that my
original assumption was mostly
correct: the frame remains on the
stack except if a RETURN
statement, when used as part of the
subroutine, is the abortion device.

Any frame that is left on the stack
will remain there until such time as
a subsequent invocation occurs
using the same reference variable.
The significance of this is: If a
subsequent allocation makes

reference to a variable which was
used by an earlier unterminated
stack frame, that stack frame will be
re-initialized. Any such re
initialization recovers all stack
space that may be pending but used
after any such abandoned frame.
This means, of course, that any
other pending For/Next frames will
be lost, thus creating a source for
NEXT without FOR errors.
However, if a GOSUB is in control,
the frame search function will only
search the stack as far back as the
GOSUB control frame, so pending
loops invoked prior to a GOSUB are
protected.

It seems obvious that to avoid any
possible confusion, good program
ming style should be adopted.
Terminate all loop constructs. Some
minor examples:

The wrong way:
10 FOR 1=1 TO 100
20 READ C
30 IF C=0 THEN 60
40
50 NEXT

The right way (1)
10 FOR 1=1 TO 100
20 READ C
30 IF C=0 THEN I=100:GOTO 50
40
50 NEXT

The right way (2)
10 FOR 1=1 TO 100
20 READ C
30 IF C=0 THEN 1=100:

NEXT: GOTO 100
40
50 NEXT
100

The right way (3)
10 GOSUB 30
20 STOP
30 FOR 1=1 TO 100
40 READ C
50 IF C=0 THEN RETURN

60 ...
70 NEXT
80 RETURN

The first right way example would
be used when code continuation is
required, the second if further
branching is necessary. The
abortive method used in example
three is quite acceptable as the
RETURN statement will automat
i c a l l y p u r g e t h e a b a n d o n e d
For/Next frame from the stack. The
method by which the interpreter can
clobber loop conditions as described
earlier is a design flaw. It would be
more logical to flag as an error any
attempt to open a loop with a
variable already assigned to a loop.
Whether this has been changed in
later versions is unknown to me."

I hope this is of some benefit to you
in trying to explain For...Next loops.
Perhaps you should write an article
about them. Your magazine has had
some really useful articles in it to
date. Keep up the good work.

John Bielot
Moodus, CT

Thank you. This is the first really
good reason we have heard of for
properly closing loops.

We received your sample edition a
few days ago and have keyed in
several (programs). I find those we
have entered to be error free -
something that can't be said for
many printed BASIC programs I
have labored through in the past.
This letter was prepared using
MAKER.BAS. We are very pleased
also with CARD.BAS, but have
added one line to prevent what could
cause an inadvertent deletion. The
situation arises after displaying a
searched-for record on Item 4, and it
is not the desired record. If the
operator does not re-enter the 1-
Continue looking option, variable X

CodeWorks 3

still contains a 4 and simply
pressing ENTER will delete the
current record. To prevent this, add
line 1325 X=l, thus defaulting to the
continue routine. I have also added a
small optional routine to slow down
the Quick Scan routine. We are
looking forward to receiving this
year's editions.

W. G. King
Orland Park, IL

Nice fix for CARD.BAS. It would
delete the record as you said. But
how did you write the letter using
MAKER.BAS? Does it have some
capability we didn't know about?

...Since you are probably going to
get a few letters, let me be the first to
point out that, in the Expand Space
Compression Codes section of
PRECOMP.BAS (Issue 4, page 10),
line 1060 should have read:1060 IF
ASC(MID$(A$,TC,1))>191 THEN
A$=LEFT$(A$,TC-1) + STRINGS
(ASC(MID$(A$,TC,1))-192," ")+
MID$(A$,TC+1)
One other slight note, which your
industrious readers will no doubt
catch onto: the subroutine doesn't
always expand every expansion
character to a space. The For...Next
construct (in most computers) only
evaluates the expression LEN(A$)
at entry into the loop and, therefore,
scanning will stop just as soon as
the original length of A$ is reached.
For the application (i.e.,
PRECOMP.BAS), this is quite
acceptable, and the computers that
use space expansion usually have no
problem having them in BASIC
programs.

J. Melvin Jones
Warwick, NY

Note that this change only applies to
the code inside the box on page 10 of
Issue 4.

The other night I downloaded
WOOD.BAS and made some
changes to suit myself and the TRS-
80 Model in... I have run into a
problem with it. When you input
exact sizes with no kerf, as when
cutting paper stock, or when a
plywood cut matches a leftover
exactly, the program comes up with

an Illegal function in line 1430 and
crashes. It will also accept minus
dimensions for leftover pieces. I
would expect that others would run
into the same problem and that a fix
would be published in the next issue.
Thanks again for a real magazine.

Frank M. Smiley
Newark, DE

We ported the program over to a
Model III and found the exact
problem you describe. Here is the fix.
Add line 1425 IF NS=<1 THEN
1470.Somehow, on the Model III, NS
gets to -1 when there are exact fits.
Although we don't know for sure,
this may be another of those little
c h a n g e s b e t w e e n M i c r o s o f t
Versions 5.1 (prior and after). The
other computers we have all end up
with NS equal to 1 in that case. The
minus dimension problem goes
away with this fix also. The
program currently on the download
has been fixed to reflect this change.
Thanks for bringing it to our
attention.

Last week I wrote to you praising
the program WOOD.BAS. I have not
changed my mind about the
program having now entered the
code and run it. It is great! But I
found one possible correction and
then I have added some code to make
it possible to save the leftovers and
re-use them in another problem. The
code is enclosed. (See Figure 1). The
possible correction is in line 370. I
suggest the GOTO be to line 360
instead of 340. If the length is ok,
why re-do it just to get the width
correct? The code to add saving and
getting is as follows: Line 345 asks if
you wish to load leftover inventory.
If yes, GOTO 2900. Lines 1845-50
ask if you wish to save leftovers. If
yes, GOTO 2830. Lines 2810-90 save
leftovers larger than 2 inches on a
side. Lines 2900-90 load the
leftovers. The file name for the
leftovers can be named using the
type of wood, etc. Line 3000 is for
convenience in saving the program
after modification and test, always
to the same file, just by typing in

GOTO 3000. I trust you approve of
the suggested modifications.

Larry Abbott
Wyomissing, PA

Yes, we do. We thought about it
w h e n w e w r o t e t h e p r o g r a m , b u t l e f t
that out because the length of the
program was already getting out of
hand (not to mention the article
describing it.)

I am a charter subscriber to
CodeWorks and find the magazine
refreshing and informative. I have
over 20 years of business
applications data processing
experience as a programmer and
system analyst but still find helpful
hints in your articles. I did feel,
however, that I should write to
mention a disappointment I felt
when reading your Mar/Apr 86
issue. I refer to the article regarding
PAYROLL.BAS on page 26 and the
accompanying samples of the
reports produced for the Magarac
Widget Company. If you notice,
dollar amounts that have a zero ones
column in the cents do not print the
zero. Also, some of the decimal
points in the columns do not line up.
This can be corrected simply by
using editing when printing. This is
basic printing methods and I feel it
should be practiced especially when
you are printing a business
application program. No company
would put up with report formats
like you've shown. I would guess
that many junior data processing
people read your magazine. Should
you not teach them correct methods
in producing output? Shame on you!
I will continue to subscribe to your
magazine and read it thoroughly.
Keep up the good work.

Peter E. Huckel
Riverside, CT

Y o u a r e r i g h t . A p p a r e n t l y
something else had our attention
while we were preparing that
program for publication.

Have enjoyed the magazine since
the premier issue, and read it cover
to cover. I am a poor typist and short
on patience so I hooked my MOD IV

4 CodeWorks

to a modem and called the download
the other night to get Card/Bas from
issue 2 and avoid the hassle of being
a typist. It downloaded fine and
when I went to list the program so
that it could be edited for TRSDOS
6.2 BASIC, I found it was password
protected and I could find no way to
get it out.

I am using a 2 disk Model IV with
the terminal function of DeskMate,
and can't imagine how a password
got involved. I tried the download
password, but with no avail.
Normally, I'm not into passwords
anyway so I'm not all that familiar
with their use. Any suggestions that
you may have will be greatly
appreciated.

James R. MacMurray
Wellsville, NY

In Tandy language a file may be
password protected by giving the
file name an additional password
extension like this: card/doc.psw
The .p8w then becomes a password.
Most other computers use the .bas
the same way that Tandy uses/bas.

From the directory dump you sent
along, lean see that Card/Doc is file
protected. (It has a P under the
Attribute column.) Here is what you
may try to do: Get into BASIC, then
load the file like this:

LOAD "CARD/DOC.BAS"
When you can list the program, be
sure to change the file extension in
two places near the beginning of the
program to Card/Dat from
Card.Dat, see issue 2 listing. Also
see Programming Notes on page 37
of issue 3, where we discussed this
same problem.

I have received your special
sampler issue. I admit that I am not
much of a programmer and in all
probability the programs in your
issues will not run on my Apple He
unless modifications are made. For
example, I have entered the
Calendar.Bas program and find
commands that are not in Applesoft
BASIC.
1. Sometimes you LPRINT and later
PRINT.
2. Command: PRINT USING ...

3. Command: ELSE
4. Command: LINE INPUT

I don't understand how I can use
your magazine unless I can find
information on how to modify or
convert the commands that my
Apple He does not use.

John P. Overton
Bartlesville, OK

We are aware of the difference
between Applesoft and most of the
other BASIC'S. In fact, we purposely
try not to solicit subscriptions from
Apple owners because of it (unless
they are using the Z-80 SoftCard.)
There are several good books on the
necessary conversions, notably
those by Dr. David Lien, of
Compusoft Publishing. If enough
interest is shown, we have no
problem in exploring these
differences.

Thank you again for your input
and interest.

Irv

Figure 1
435
OR

1845
1846
1850
2810
2820
2830
2840
2850
2855
2860
2870
2880
2890
2899
2900
2905
2910
2920
2930
2940
2950
2980
2990
3000

INPUT"DO YOU WISH
A$="y" THEN GOSUB

TO LOAD LEFTOVER
2900:PRINT

INVENTORY? (Y/N)";A$:IF A$="Y"

INPUT"DO YOU
IF A$="Y" OR
END
INPUT"DO YOU
IF A$="Y" OR

WISH TO SAVE THE
A$="y" THEN GOTO

LEFTOVER INVENTORY? (Y/N)";A$
2830 ELSE RUN 100

LEFTOVER INVENTORY? (Y/N)";A$
2830 ELSE RUN 100
FILE NAME (8 CHARS)";A$

WISH TO SAVE THE
A$="y" THEN GOTO

LINE INPUT"ENTER WOOD TYPE AS
FS$=A$+"/INV:1":OPEN "O",1,FS$
FOR J=1 TO NS
IF S(J,1)<2 OR S(J,2)<2 THEN GOTO 2870
PRINT #1,S(J,1);S(J,2)
NEXT J
PRINT"ALL DONE...."
CLOSE:END
REM *** SUBROUTINE TO LOAD LEFTOVER
LINE INPUT"ENTER WOOD TYPE FOR FILE
U=0
FS$=A$+"/INV:1":OPEN "I",1,FS$
IF EOF(1) GOTO 2980
U=U+1
INPUT #1,S(U,1),S(U,2)
GOTO 2920
NS=U:CLOSE:RETURN
END
SAVE"WOOD/BAS:l":PRINT"WOOD.BAS SAVED ON l":STOP

INVENTORY ***
NAME (8 CHARS)";A$

CodeWorks

Busmod.Bas
The construction of a modeling program

Staff Project. This modeling program uses a puzzler from an earlier issue. It seemed
like a perfect place to use it. Although our story has a "they all lived happily everafter"
ring to it, you can make it as realistic as you want. See Programming Notes on page 16 for
further ideas about this program.

Many people are surprised to learn that most of
the decisions they make involve forecasting. Most
forecasting required for decision making is
handled judgmentally in an intuitive fashion.
Subjective judgments are clearly not as accurate
and effective as systematic approaches. When
several interacting factors need to be considered
the problem of seeing clearly is further
compounded.

Models of real world situations can be
constructed which describe reality to various
degrees. Some problems can be put into a box and
tied with a neat ribbon. Others defy being so
contained and explained. If you own N shares of a
given stock and it goes up you have certainly
gained, if it goes down you lose. That is easy
enough, but predicting the price of gold in the year
2010 is another matter entirely.

The "adjustable wrench" (if you will pardon the
analogy) in mathematical models in the recent
past is the 'Calc program: VisiCalc, Multiplan,
Lotus, Symphony and Framework, just to name a
few. These are all spreadsheet programs which
permit you to look through a little window to view a
portion of a larger area. The "one size fits all"
approach of these programs makes them very
adaptable.

Our approach in this article is to show that you
can build a very specific program to solve a defined
modeling problem. The rationale being that if you
are modeling something close to your financial
well-being, you will want to know the process
intimately, understand it completely, and be able
to make whatever adjustments to it with
confidence. Continuing with the earlier analogy,
we will attempt to apply a box-end wrench to the
problem.

The program with this article allows you to start
with any values whatever, even if they are wrong.
Then, through experience and evaluation of single
parameters, the process is refined until a workable
model is obtained. The program works towards the
optimization of bottom line profit.

A second feature of the program is an evaluation

of the sensitivity of the data. In this mode, each of
the elements of the formula is varied 10 percent
while holding the remaining elements fixed. The
percentage change to the bottom line is then
calculated to find the effect of that 10 percent
change. This tells the user of the program which
items will need the most attention as well as how
critical (relatively) each is to the whole scheme of
things.

The applicable method to follow is to start with
the obvious. In our case, it is that profit equals
income less expenses. Then we break income down
into all the factors that have an effect on it. We do
the same for expenses. The amount of detail you go
into is entirely up to you. If you want to account for
pencils and paper clips you can, though in
practical terms you wouldn't (unless you happen to
be a retailer or wholesaler of those items.) After all
the detailed items have been broken out of the
formula and identified, we put them all back
together again to arrive at the original P=I-E.
However, now that we have identified each item
within income and expenses, we can vary any
single item to see the effect on profit.

In our sample program, the relationship
between most of the items is linear. In reality,
however, one cannot expect sales to continue at a
constant level as unit price rises. Sales/Price
curves are a subject in themselves. See the sidebar
to this article for other ways to generate this curve.
In the program we use a simple inverse square
function to define it, and it is biased slightly so
that it shows no reduction of sales at about the
$100.00 level.

Program design

Our hypothetical friend, Joe Magarac, has
developed an interesting and unique electronic
circuit. He has plans to produce this board in his
garage workshop and sell it, via direct mail, to
computerists all over the country. Before he
embarks on this little adventure, he wants to know
not only if the venture will be profitable, but also

6 CodeWorks

how profitable. He needs to have some idea ahead
of time since there will be considerable up-front
cost should he commit to going ahead with the
idea. Before investing any cash, he designs a
program that will help him see as many aspects of
his proposed idea as possible.

After some thought, Joe finds that some
expenses will be fixed and monthly. Others will
depend on how many units he produces, which in
turn depends on how much direct mail promotion
he does. He also finds that there will be two
postage costs, one for sending the direct mail and
another in sending out filled orders. Further, there
are two different printing costs, one for the direct
mail brochure and another for the documentation
which accompanies the product. After checking
with the local printer, the post office, and having
read a book or two on direct mail methods and
procedures, Joe finally comes up with the main
items he needs to be concerned with. In a few cases,
he already has some actual, hard figures on cost.

Here is the way Joe broke down the items he
would need to consider:

Material cost per unit: The most pessimistic
figure was used here, i.e., no quantity price breaks
were considered. Should the orders later be
sufficient to warrant buying in larger quantities at
lower prices, it would simply add to the
profitability. The material cost per unit includes
having a circuit board etched and drilled and the
cost of all the individual components which will
populate the board. This cost was easy to calculate,
and rounded out to $58.00 per unit.

Labor cost per unit: Joe's friend and neighbor,
Marvin Munche, agreed to work for Joe nights and
weekends, and he would assemble and test the
boards for $10.00 per unit, another easy cost to
calculate.

Miscellaneous costs per unit: Rather than detail
all the little costs and clutter the program, Joe
created this catch-all category. It includes the
documentation (printing) cost, the taxes, the
packaging and postage cost per unit. Joe was
proud of his unit, and felt his documentation
should speak well for his product. This pushed the
miscellaneous costs per unit to $5.87.

Fixed monthly overhead costs: This cost was
primarily for equipment leases. Joe needed
electronic test equipment, two computers (his
board had to do with communications), a circuit
board testing unit and various items of furniture

for his Widget factory. The cost of these items
surprised even him at $2275.00 per month.

Direct mail postage: This was the easiest cost to
fix; the U.S. Postal Service did it for him. It is
twelve and one-half cents per piece, bulk rate.

Direct mail printing per piece: Joe correctly
followed the advice of the direct mail manuals he
had read. They said that the direct mail piece was
his only and best salesman; it had to do the job or
all was lost. After contacting the local printer, Joe
found he could get what he wanted at 42 cents per
piece. Again, this cost would go down slightly with
quantity, but Joe took the worst case figure for his
model.

Direct mail cost of names: After ordering
catalogs from mailing list brokers, Joe found that
most selected mailing lists rented from $60. to $100
per thousand names. Samples of larger lists for
testing purposes were available at the same price,
but the minimum sample number was 5000 names.
Joe averaged the prices he found in the catalogs
and arrived at a seven and one-half cent per name
figure.

Number of direct mail pieces sent per month:
Other costs will be a function of this number. So
will the number of orders and the income. This
number is also a function of how much you can
afford to invest. The book said that advertising
was an investment, not an expense. Joe decided
that the maximum number of direct mail pieces he
could afford to send per month was 10,000.

Percent return on direct mail: This is one figure
that Joe found very difficult to estimate. The books
said that the national average return for direct
mail was approximately three percent. What they
didn't point out is the variation in return
percentage compared to the price of what was
being offered. Granted, Joe could live with a lower
percentage of return since his price per unit would
be rather high, but the only way to find out was to
do it. He decided, conservatively, to set this figure
at one percent and hoped he was not being too
optimistic.

Sale price per unit: Before Joe started this
exercise, he had envisioned a unit price of around
$100. Having gone this far, he already realized
that he could go broke fast at that price. He would
have to consider what the competition was selling
a similar board for. Could he beat their price and

still make it? What would happen if dealers
handled his product? Could he afford the discount
they would ask for? The answers to these questions
were precisely why he needed the model. He took a
wild guess and set his unit sale price at $200. The
model would find the optimum price after it was
programmed and running.

Joe decided that since there were only ten items
it would be easy to write the program using data
statements. The ten items appear at the end of the
program, with both the name of the item and the
current value. The last data item is a dummy
string and a sentinel (-1).

Program description

The opening lines from 100 through 280 set
dimensions for the variables, print the heading
and the menu on the screen and provide for
selection of menu options. Since the data
statements will be read several times during the
use of the program, a single RESTORE statement
at line 290 serves to restore the data pointer. The
data, string and integer in A$() and E(),
respectively, are read in lines 300 through 330. The
data sentinel is checked for in line 320, which when
reached, sends the program flow to line 340. In line
340, variable LN is set equal to the number of data
items. Ignore line 350 for now, we are going
through option 1 of the menu first, therefore Z is
equal to 1.

Lines 360 through 390 print the data names and
values on the screen in two columns. Since we are
going to display two items at a time, a step of 2 is
necessary in line 360. Making L equal to I plus 1 in
line 370 allows the printing of two items on one
line, one with subscript I and the other with
subscript L. The print line is formatted in line 380,
with appropriate dashes and spaces.

Our friend, Joe, must be a reader of CodeWorks
magazine. Just look at what he is intending to do.
Do you remember Puzzler 1 from issue 2 and can
you see it coming? He is planning to pick any of the
data items to vary through a single For...Next
loop. The tipoff is in line 500, where he makes E(X)
equal to I. Now, back in line 410 he is asking which
of the items we want to vary and makes that item
number equal to X. Line 420 checks to see that X is
in the proper range. Lines 430 and 440 set the start
and end values for the item we wish to vary. Line
460 then prints the name of the item we are
varying on the screen.

Line 470 is a print line that puts the headings of
all our output variables on the screen. The actual

For...Next loop which calculates the values starts
at line 490. It starts at the start value we entered
and ends at the end value, but the step for the loop
is calculated to be the difference between the end
and the start divided by 10. This will result in ten
solutions to the formula being printed on the
screen, no matter how large or small the starting
and ending values we pick.The value we selected to
vary will be set equal to I in line 500, and will
change with the range we selected for start and
end. All other subscripted E variables within the
loop will remain at the value they had when they
were read from the data statements. Let's look at
how the profit formula in line 580 was broken into
its component parts.

In order to figure costs (and income) we need to
know how many units were sold. In line 510 we
find US, the units sold, by taking E(3) the direct
mail pieces sent and multiplying it by E(7), the
percentage return. Now, in line 520, we need to
modify the number of units sold by some kind of
function that reduces the number of units sold as
price rises. The unit price is E(10), and in line 520
we square the unit price, divide it by 3000 and add
two. We then take the integer of it to get rid of the
trailing decimal places and if the number is less
than 1 we make it 1, the assumption being that at
least one person will buy no matter how high the
price. Division by 3000 in this line is a shaping
constant. Making this value 1000, for example,
will make the price curve drop more steeply,
making it 4000 will keep it up before it begins to
drop off. (See sidebar to this article.)

In line 530, we can now calculate the gross
income by multiplying the now modified units sold
with the unit price. Line 540 creates a new
variable, El (not to be confused with E(l), which
calculates all the costs that vary with the number
of units sold. Line 550 creates variable E2, which
accounts for all the direct mail costs. Line 560
calculates the total expenses. We can add E(9)
directly here because it represents fixed overhead
and does not need to be calculated. We do, however,
want a column in our output that shows all the
variable expenses. Line 570 does that for us. In line
580 we are back to our original formula which
states that profit (P) is equal to gross income (R)
less all expenses (E3). Line 600 then prints the
appropriate values under the headings that were
already printed in line 470. This repeats ten times,
each time incrementing the value we have chosen
to vary, and then waits for you to press return to go
back to the main menu.

Sensitivity routine

When we choose option 2 from the main menu we
go directly to line 650. After clearing the screen
and printing some heading information on it, we
arrive at line 720, which sends us in a GOSUB to
line 290. At line 290 we restore the data and then
read it into the A$() and E() arrays. In line 350, Z is
now really equal to 2, so we return to line 730.

Before going further, let's explain what is
supposed to be happening here. Joe doesn't want to
stumble over dollars looking for pennies. He wants
to know which parts of his operation have the most
effect on the bottom line. That way, when he gets
up in the morning, he knows what the most
important thing to do today is. He is going to do it
by using the lines of code from 510 through 580 to
calculate the bottom line, then change each item,
one at a time, by 10 percent and recalculate for the
bottom line again. That way, he can find the
percentage change to the bottom line for a ten
percent change in each item, and determine which
item needs his most immediate attention. All these
calculations will be done at one time and the
results stuffed into two arrays, P(X) and P1(X). It
all happens in just a few lines between 730 and 790.

Line 730 sets up the loop to read from 1 to the
total number of data items. This is followed by a
GOSUB to line 510, where the formula is
calculated and the profit (P) is set into P(X) upon
return. Then, without incrementing the loop
counter I, that same value is increased by 10
percent in line 760. Now we GOSUB to 510 again
and recalculate. This time, upon the return, we put
this value in P1(X). This continues for each data
item until the loop is exhausted. At this point, the
profit value for each item is in P(X) and the profit
value based on the 10 percent increase is in P1(X).

Now all we need do is read these two arrays and
determine the percentage difference between them
for each item. This happens between lines 800 and
870. Line 810 figures the percentage and then takes
the absolute value of it (eliminates the sign). Lines
820 and 830 determine what the sign of the
percentage should be and assigns the string value
of the sign to P$(X). Then in line 840, if the
percentage is equal to or less than one, we don't
want to print it, so we jump to the next I. Line 850
prints the percentage value on the screen, along
with the string name of the item and the
appropriate sign.

But why does Joe strip off the sign and then put
it back on again? This question is left as an
exercise for the reader. Hint: Remove the second
part of line 810, remark 820, 830, 840 and change
the PR in line 850 to PP.

Note that the sensitivity routine works with the

Generating Curves

If the sales/price curve in the accompanying
article is not to your liking you can find a better one
with this little program. The sales/price curve is,
of course, not something that has been cast in
concrete for all situations. It varies as a function of
many factors. In the real world the curve can only
be set by price-testing. There are some buyers who
would not buy the product at any price. On the
other end of the scale, there are some who would
buy no matter how high the price (assuming it is
something they really thought they needed.)

Price testing consists of offering the same
product, at the same time, at different prices, to
equal groups of potential buyers and tracking the
results. The curve will be defined better when there
are large enough numbers in each group, and with
as many price breaks as possible or practicable.

The process is expensive and time-consuming.
In our business model program choosing inverse
square as the fall in buyers as price rises is not as
close to reality as it could be, but is far more
realistic than assuming no drop in buyers at all.

Program to generate empirical
curves for Busmod.Bas

10 REM ** EMPIRICAL CURVE GENERATOR **
20 REM ** FOR 80-COL, 24 LINE SCREENS **
30 F?="#M.«"
40 INPUT"ENTER SCALE OF CURVE (10 TO 110)";C
50 INPUT-ENTER SHAPING COEFFICIENT (50 TO 2000)";B
60 FOR 1=100 TO 1150 STEP 50
70 A=(EXP(-I"2/B*2)*C)
80 PRINT STRING?(A/1.5,iPRINT USING F$;A
90 NEXT I

Sample output of above program,
using C at 100 and B at 600.

97.3
9 3 . 9

89.5
84.1

77.9
71.2

64.1
57.0

49.9
43.2

36.8
30.9

25.6
2 1 . 0

16.9
13.4

10.5
8 . 2

6 . 2
4.7

— 3.5
— 2.5
Ok

Run with C at 100 and B at 600

CodeWorks 9

1 - Material Cost/Unit 58
3 - # Dir Mail sent 10000
5 - Dir Mail Printing .42
7 - % Return Dir Mail .01
9 - Fixed O'Head/Mo 2275

2 - Labor Cost/Unit 10
4 - Dir Mail Postage .125
6 - Dir Mail $/Label .075
8 - MISC Costs/Unit 5.87
10 - Unit Sales price 200

WHICH ITEM # DO YOU WANT TO VARY? 10
FROM WHAT VALUE — ? 50
TO WHAT VALUE ? 850

VARYING —> Unit Sales price
STEP PRICE • SOLD •DIRMAIL FIXCOSTS VARCOSTS GROSS EXPENSES
50 50 101 10000 2275 13660 5050 15935
130 130 96 10000 2275 13291 12480 15566
210 210 87 10000 2275 12626 18270 14901
290 290 73 10000 2275 11592 21170 13867
370 370 56 10000 2275 10336 20720 12611
450 450 34 10000 2275 8711 15300 10986
530 530 8 10000 2275 6790 4240 9065
610 610 1 10000 2275 6273 610 8548
690 690 1 10000 2275 6273 690 8548
770 770 1 10000 2275 6273 770 8548
850 850 1 10000 2275 6273 850 8548
PRESS RETURN FOR MENU?

$ NET
-10886
-3087
3368
7302
8108
4313
-4826
-7939
-7859
-7779
-7699

Figure 1. This shows the effect on the bottom line by stepping unit sales price through a
range. It appears that the optimum price is around $370. To get it more closely, you can
run again and set the range from 360 to 380.

SENSIVITITY OF DATA. Only those terms causing
more than 1% change in bottom line are shown.

$ NET WITH A 10%
CHANGES INCREASE IN

— 19 % Material Cost/Unit
- 4 % Labor Cost/Unit
+ 29 % • Dir Mail sent
- 5 % Dir Mail Postage
- 18 % Dir Mail Printing
- 4 % Dir Mail $/Label
+ 69 % % Return Dir Mail
- 7 % Fixed O'Head/Mo
+ 61 % Unit Sales price

Figure 2. This sensitivity run shows that unit sales price and percent return on direct
mail will change the bottom line the most. This printout will not change unless new
values are put into the data statements at the end of the program

10 Code Works

1 - Material Cost/Unit 58
3 - # Dir Mail sent 10000
5 - Dir Mail Printing .42
7 - % Return Dir Mail .01
9 - Fixed 0'Head/Mo 2275

WHICH ITEM # DO YOU WANT TO
FROM WHAT VALUE — ? .01
TO WHAT VALUE ? .015

2 - Labor Cost/Unit 10
4 - Dir Mail Postage .125
6 - Dir Mail $/Label .075
8 - MISC Costs/Unit 5.87
10 - Unit Sales price 350

VARY? 7

VARYING —> % Return Dir Mail
STEP PRICE #SOLD #DIRMAIL FIXCOSTS VARCOSTS GROSS EXPENSES $ NET
.01 350 61 10000 2275 10706 21350 12981 8368
.0105 350 66 10000 2275 11075 23100 13350 9749
.011 350 71 10000 2275 11444 24850 13719 11130
.0115 350 76 10000 2275 11814 26600 14089 12510
.012 350 81 10000 2275 12183 28350 14458 13891
.0125 350 86 10000 2275 12552 30100 14827 15272
.013 350 91 10000 2275 12922 31850 15197 16652
.0135 350 96 10000 2275 13291 33600 15566 18033
.014 350 101 10000 2275 13660 35350 15935 19414
.0145 350 106 10000 2275 14030 37100 16305 20794
PRESS RETURN FOR MENU?

Figure 3. The unit sales price has now been fixed at $350. This run shows the effect of
varying percent response to direct mail from 1 percent to 1.45 percent.

SENSIVITITY OF DATA. Only those terms causing
more than 1% change in bottom line are shown.

$ NET WITH A 10%
CHANGES INCREASE IN

- 4 % Material Cost/Unit
+ 27 % # Dir Mail sent
- 4 % Dir Mail Printing
+ 32 % % Return Dir Mail
+ 2 % Unit Sales price

Figure 4. Changing the unit sales price (as in Figure 3) makes considerable difference in
the sensivity of the other data. Compare this one with Figure 2 on the opposite page to see
how things have changed.

Code Works 1 1

values coded into the data statements, not with
some value you may have entered in the first
option of the program. As you optimize values in
the data statements (by editing the line), run the
sensitivity again. It is very interesting to see
which items take on more or less importance with
slight changes in other values. Another question
for the reader: If the percentage change for all
items could be brought to, or near, zero would that
represent the optimum values for the model? If so,
would they be realistic values?

Notes for other machines

The print lines in this program will not fit on 64
column screens. One way to fix this, crude but
workable, is to change those print statements to
LPRINT. That way, your output will be as shown
in the examples, except it will be on your line
printer. In any case, if you use the values now in
the data statements, your output should be as
shown in figure 1 with this article. You could also
eliminate two columns from the printout, but that
takes something away from the program. It would
have been nice to have a 132 column screen for this
program.

Modifications

The data statements are read from first to last
and put into the E() array. It will be easy for you to
add to or subtract from them. Keep the string
portion of the data statement at 18 characters or

less so they will fit on the screen.
If you want to put your own formula in you will

need to change the data statements, the print
statements in lines 470 and 500 and the calculation
lines between 510 and 580. Don't forget that the
last data statement must be DATA ,-1. Take
whatever formula you want to use apart and then
build it back up again. Keep in mind that you must
define a variable before you can use it. If any part
of the formula gets too messy to handle, use a new
variable to represent it as we did in lines 540
through 560.

You can add your own step value for the main
For...Next loop by adding a line at 445 to input the
step. Then change line 490 to STEP (whatever
variable you used at input.)

To avoid the necessity of editing lines to make
permanent changes, you could input the data from
a disk file instead of data statements. That way,
any changes you make could be saved on diskette.

As with most of our programs, they could have
been done in many ways and this is just one.

What about Joe?

Based on what Joe found out by playing with his
program, he quit his job at Flash Electronics and is
busy in his garage filling orders and making
circuit boards. He has his eye on a nice piece of
property just outside of town and is already
planning another model program that will handle
up to 100 employees and several product lines.
There is just no stopping free enterprise! •

100 REM ** BUSMOD.BAS* FOR CODEWORKS MAGAZINE **
110 REM ** 3838 S. WARNER ST. TACOMA, WA 98409 (206) 475-2219
120 CLEAR 1000 : 'USE ONLY IF YOUR MACHINE NEEDS TO CLEAR SPACE
130 DIM E(50),A$(50),P(50),P1(50),P$(50)
140 CLS : 'CLEAR SCREEN COMMAND, CHANGE TO SUIT YOUR MACHINE
150 PRINT STRING$(22" The CodeWorks "?STRING$(23,)

B U S I N E S S M O D E L "
Magarac's Widget Factory "

160 PRINT
170 PRINT "
180 PRINT STRING$(60,"-")
190 PRINT

1) Run the model
2) Run sensitivity test
3) To quit

200 PRINT '
210 PRINT '
220 PRINT '
230 PRINT
240 INPUT"Your choice";Z
250 ON Z GOTO 280,650,270
260 GOTO 140

12 Code Works

) 270 CLS:END
280 CLS
290 RESTORE
300 FOR 1=1 TO 50
310 READ A$ (I), E (I)
320 IF E(I)=—1 THEN GOTO 340
330 NEXT I
340 LN=I-1
350 IF Z=2 THEN RETURN
360 FOR 1=1 TO LN STEP 2
370 L=I+1
380 PRINT I;"- ";A$(I)+" ";E(I);TAB(33) ;L;"- ";A$(L) + " ";E(L)
390 NEXT I
400 PRINT
410 INPUT"WHICH ITEM # DO YOU WANT TO VARY";X
420 IF X<1 OR X>LN THEN GOTO 410
430 INPUT"FROM WHAT VALUE — ";S
440 INPUT"TO WHAT VALUE ";ED
450 PRINT
460 PRINT"VARYING —> ";A$(X)
4 70 PRINT"STEP"? TAB(8);"PRICE";TAB(14);"#SOLD";TAB(20);"#DIRMAIL";TAB(
30);"FIXCOSTS";TAB(40);"VARCOSTS";TAB(50);" GROSS";TAB(60);"EXPENSES";
TAB(70);"$ NET"
480 REM * LINES 510 THROUGH 580 CONTAIN THE EXPANDED FORMULA *
490 FOR I=S TO ED STEP (ED-S)/10
500 E(X)=1
510 US=E(3)*E(7) : ' NUMBER OF UNITS SOLD
520 US=US-(E(10)~2/3000)+2:US=INT(US):IF US<1 THEN US=1 : ' CURVE
530 R=US*E(10) : ' TOTAL INCOME FROM UNITS SOLD

MATERIAL,LABOR,MISC COSTS/UNIT
DIRECT MAIL COSTS
TOTAL EXPENSES
VARIABLE EXPENSES
PROFIT = INCOME LESS EXPENSES

540 E1=US*(E(1)+E(2)+E(8))
550 E2=E(3)*(E(4)+E(5)+E(6))
560 E3=E1+E2+E(9)
570 VC=(US*(E(1)+E(2)+E(8)))+E2
580 P=R—E3
590 IF Z=2 THEN RETURN
600 PRINT IyTAB(9);E(10);TAB(15);US;TAB(21);E(3);TAB(30);INT(E(9));T
AB(40);INT(VC)?TAB(50);INT(R);TAB(60);INT(E3);TAB(70);INT(P)
610 NEXT I
620 PRINT"PRESS RETURN FOR MENU";:INPUT Xl:GOTO 140
630 END
640 REM ** SENSIVITY OF DATA ROUTINE **
650 CLS
660 PRINT"SENSIVITITY OF DATA. Only those terms causing"
670 PRINT"more than 1% change in bottom line are shown."
680 PRINT
690 PRINT" $ NET WITH A 10%"
700 PRINT" CHANGES INCREASE IN"
710 PRINT
720 GOSUB 290
730 FOR X=1 TO LN
740 GOSUB 510
750 P(X)=P

CodeWorks 13

770 GOSUB 510
780 P1(X)=P
790 NEXT X
800 FOR X=1 TO LN
810 PP= I N T ((P(X)-Pl(X))/P(X)*100):PR=ABS(PP)
8 2 0 I F P (X) < P 1 (X) T H E N P $ (X) = " + "
830 IF P (X) > P 1 (X) THEN P $(X)="-"
840 IF PR=<1 THEN GOTO 870
850 PRINT TAB(10) ; P $(X);PR;TAB(16);"%";TAB(22);A$(X)
860 PR=0
870 NEXT X
880 PRINT
890 PRINT"PRESS RETURN FOR MENU";:INPUT XlrGOTO 140
900 END
910 REM ** DATA STATEMENTS FOLLOW **
920 DATA Material Cost/Unit,58
930 DATA Labor Cost/Unit,10
940 DATA # Dir Mail sent,10000
950 DATA Dir Mail Postage,.125
960 DATA Dir Mail Printing,.42
970 DATA Dir Mail $/Label,.075
980 DATA % Return Dir Mail,.01
990 DATA MISC Costs/Unit,5.87
1000 DATA Fixed O'Head/Mo,2275
1010 DATA Unit Sales price,200
1020 DATA ,-1

Programming Notes

Recently, while re-working a TRS-80 Model I
program, we found an interesting idea. The
program printed the value of a variable, then
asked for input of that same variable, like this:

PRINT A;:INPUT"What is A";A
PRINT B;:INPUT"What is B";B

The value in A or B would then show, along with
the input prompt, and you could step through the
lines with the Return/Enter key without
disturbing the variables already there. If you
wanted to change one, you simply entered the
correct value and kept on stepping. Microsoft
BASIC after version 5.1, however, will not let you
do that. It changes the variables to null when you
step through without changing them.

Here is a password scheme that should appeal to
touch-typists. Most passwords can be deciphered
easily by anyone knowing anything about you.
Too many of us use our name spelled backward, or
something equally easy to figure out. This scheme
lets you use some password you cannot forget, like
your name, or a pet phrase. Simply move your
home key position on the keyboard up one line of
keys.^ Now type your favorite password and see
how it looks. For example, Code Works would look
like this: d9e3294iw. You don't need to remember
that jumble of characters and numbers, just that
the password is CodeWorks and you moved your
home keys up one line. You can take it from there
and figure out the other variations.

14 CodeWorks

ShareWare
An alternative software source

A1 Mashburn, Technical Adviser. If you can think of it, it has probably already been
done somewhere by someone. The trick is finding out who and where. A1 uses his modem
often and offers us an interesting alternative way to acquire software.

I'm like you. I want good software for a
reasonable price. If it doesn't work, I want to be
able to bring it back. Ok, when you get done
laughing, let me tell you a little secret. You can get
all those things and more with a new concept that
is really catching on. But allow me to digress a
little first.

I like to program. In fact, there are times when I
go out of my way to find a problem just so I can
write a program to solve it. I avoid buying software
mostly because I can do it myself. But let's be
r e a l i s t i c . I f I n e e d e d a f u l l - f e a t u r e d
communications program I would need to spend
months to write it (assuming I could write it in the
first place.) I use this example because thatis what
got me started on this whole thing.

I wanted to use my modem with my new PC, so I
wrote a terminal program. It worked, but I couldn't
download or upload programs. Rather than try to
write in all those features, I went to buy a program
instead. Well, I am not that old, but I nearly had
heart failure when I saw the price of PC programs.
Programs for my old computer were in the $19 to
$59 range, but these guys must be real proud of
their stuff - $159 for a terminal program that did
what I wanted! I only paid $89 for my disk drive -
there must be a better way.

About this time a friend came over and after
hearing my problem handed me a diskette and told
me it contained the program I wanted. I told him I
don't pirate programs anymore, and he told me it
was no problem because the author wanted people
to copy his program and hand it out as much as
possible. Sure, I thought, and maybe the author
wants us to take his new car out for a spin too. He
said to simply boot the program and look. I did,
and there on the opening screen was this message:
"If you find this program to be of value, please

send $25 to so and so...", etc. At the bottom of the
screen it said, "Please copy this program and give
it to your friends."

You could have knocked me over with a feather. I
used the program and liked it very much. I sent the
$25 to the author and got a nice note back advising
me to call a bulletin board in my area and
download the latest revision. While I was doing
that, I found literally hundreds more programs
distributed the same way, all the authors
depending on the integrity of the people using their
programs.

The concept has many names: Shareware,
Freeware, Tryware, to name just three. One thing
that should be noted is that this is not public
domain software. It is copyrighted software thatis
for sale. What is different is that instead of
spending a bundle on advertising, the programs
are distributed, for the most part, on public bulletin
board systems or passed out at user group
meetings.

So how do you find these programs, and when
you do, how do you know which ones are worth
downloading? The answer to the first part of this
question is: On bulletin boards. Of course one of
the largest is Compuserve. In the Special Interest
Groups (SIGs) there are hundreds of programs to
download. The same is true for many private
bulletin board systems around the country. There
is one in the Seattle area which has over 100
megabytes of programs to download - and more are
being added every day.

The second part of the question is much more
difficult to answer. If you are calling long distance,
you certainly don't want to spend 10 minutes
downloading a program only to find out that you
not only don't want to pay for it, but you don't even
want it to darken your diskette. As of this time, I

CodeWorks 15

have yet to find a way of knowing in advance what
I am getting. What is needed is a sort of clearing
house for these programs that will at least catalog
what they do and, hopefully, rate them in some
way. The answer may be a user supported media
where people can get their needs together.

Finally, if you have wondered why I haven't told
you what kind of programs are available, it is
because if you can name any advertised program
there is probably a Try ware program just like it. I
have mentioned a communications program. I
have also downloaded a Side-Kick-like windows
program with note pad and ASCII table on line at

all times. The largest category of programs
available seems to be utility programs. There, you
can find everything from re-naming sub
directories to un-erasing files. At least 50 different
programs were on one system I recently used.

So there you have it. There is a gold mine of
programs out there if you take the time to find
them. Just remember that the people writing these
programs are counting on your honesty to make
their living, so if you really use a Tryware
program, please take the time to send the author
the small donation he requests. It will keep a good
flow of high quality, low price software coming. •

Programming Notes

Many times in this magazine, we refer to the
MERGE command. It is a very powerful device
that allows considerable freedom in building data
sets or program lines. Here is how to use it.

Assuming you have a program loaded in
memory, MERGE will allow you to load a second
program from disk and merge its lines with the one
already in memory. The program coming from
disk must be in ASCII, which means that it had to
have been saved with the ASCII identifier, as in
SAVE"filename",A. If you do not use the ASCII
identifier, the program will have been saved in a
compressed format, and cannot be merged.

Two things can happen when you merge two
programs. If a line number in the program coming
from disk is the same as one in the memory-
resident program, the memory-resident program
line will be overwritten. If the line number coming
from disk does not have a corresponding line
number in the memory-resident program, the line
coming from disk will be added to the memory-
resident program.

If line numbering is a problem, you can call up
the lines you wish to merge and renumber them
and save them back. The memory-resident
program need not necessarily have been saved in
ASCII, only the program from disk that will be
merged with it needs to be. You can continue to
merge programs with the memory-resident
program as long as you have programs to merge
and memory holds out.

The procedure used to merge is simple: LOAD
(don't run) the program you will be merging into,
as in:
LOAD"PROGl.BAS"

MERGE"PROG2.BAS"
and that's it. PROG2 will now be merged into
PROGl. PROG2 may have been a set of data
statements, or it may have been a set of odd-
numbered remark lines that you wanted to insert
at the proper places in PROGl. , 'i

Let's take an example from this issue,
BUSMOD.BAS (You will find it on page 6 of this
issue.)
The main structure of the program is there. There
is no need to invent that wheel again. But the data
may not fit you at all, it's for Magarac's Widget
Factory. Here is how to make it do what you want.

Write a new program with only the following
lines. Line 170 to change the name to what you
want. Lines 470 and 600 to make headings
appropriate to your application. Lines 510 through
580 to produce the calculations for your problem,
and the data lines at the end of the program. You
can have more or less data lines; the program will
account for it as long as the last data item is DATA
,-L

Save this program as an ASCII file. Now load
BUSMOD.BAS and then merge the program you
Just created. You now have a completely modified
BUSMOD. You could actually have several
different merge files that could overlay BUSMOD.
If you have more data statements than the original
BUSMOD, don't worry about it; they will all be
overlaid. If you have less, you will need to delete
those left over before you run. ^

Having done this a couple of times, you will (
^?ainly begin to appreciate the power of
MERGE.

16 CodeWorks

Beginning Basic

Money is money, but to some people it means
dollars and cents, to others marks and pfennigs
and yet others see it as rubles and kopecks. It's still
money, and how you view it depends upon who and
where you are. When you get right down to it,
money is either some grade of paper or metal.
Computer bytes have some of the same
characteristics.

If money is basically paper, computer bytes are
basically voltage levels. Eight little switches
inside a computer chip can either be on or off. If a
switch is off, its voltage level is at or near zero. If
the switch is on, the voltage level is at or near 5
volts. There are several terms that describe "on"
and "off'. "On" can be called "high", "one",
"true"; while "off' is usually "low", "zero" or
"false". Even these terms are not always absolute.
In some machines a low is an enabling level and
the high is disabling.

Since there are eight switches in one byte, the
number of unique combinations they can take is
256 (including the cases when all are off and all are
on.) Let's take the following case:

0 1 0 0 0 0 0 1

The "l's" represent switches that are on, the zero's
those that are off. Reading from right to left and
using the binary number system, we come up with
a one and a 64, the total being equal to 65. The
place values from right to left are: 1, 2, 4, 8,16, 32,
64 and 128. All switches off would equal zero, all on
will equal 255, making the 256 possible
combinations we mentioned earlier. Now, if you
have your machine on and are in BASIC, ask it to
print CHR$(65). It should print the capital letter A.
If you now ask it to print ASC("A"), you should see
it print the number 65. The command PRINT
ASC("A") is telling the computer to print the
ASCII (American Standard Code for Information
Interchange) value of the letter A. ASCII is
nothing more than looking at a binary number (or
eight little switches) and reading the decimal
value of them. As you can see, it takes eight bits
(called a byte) to define any character, number or
symbol in your computer. Asking your computer to
PRINT CHR$(65) tells it to print the character that
the ASCII (decimal) number 65 stands for, in this

case, A.
There are other ways to look at the eight

switches than in binary or decimal. One way is
called hexadecimal. Now, we are going to look at
the binary number above as two groups of four
binary digits. Each group of four can only count to
sixteen. But how would we name the numbers
above 9 if there are sixteen? This is where
hexadecimal comes in. It counts 10 as A, 11 as B
and so on through 15, which is the letter F. In our
sample number above, we don't run into anything
above nine, but let's look at it anyway. The right
most group of four is equal to one. The left group is
equal to four. So the hexadecimal value of A is 41,
even though the decimal and ASCII values of it are
65. It's still the same number and represents the
letter A.

Now let's take a different binary number:

0 1 1 1 1 0 1 0

The decimal value of this binary number is 122. So
is the ASCII value of it. In hexadecimal though, it
turns out to be a value of 7A. In your computer, it
prints the lower case letter "z". Why is 122 equal to
z? The ASCII people did that a long time ago, when
teletypes were in vogue, before computers were
even a glint in anyone's eye.

There is still another way to look at binary
numbers. It seems popular to look at them in
different ways because they are so hard for us
humans to read. We can read them in "Octal". To
do this, we group the binary digits into three's.

0 1 1 1 1 0 1 0

Now, reading from right to left, we get a two, a
seven and a one. So 172 is the octal value of the
binary number that represents lower case z. Octal
isn't used that much anymore.

Is this "need to know" information? Yes, it helps
to know if you get into the logic AND, OR, XOR
and others, which can be used in BASIC to do some
interesting things. In the next issue, we will
present a little program that will allow you to look
around inside your computer's memory and see
what things look like - in ASCII. •

Code Works 17

Puzzler # 4

Our puzzler in the last issue was to fill an array
with the numbers of playing cards using the least
number of BASIC statements. The DIM statement
was given.

The problem can be solved with three
statements: a For., statement, a statement to stuff
the array, and the Next statement. All three, of
course, could be put into one multiple statement
line of code.

We were rather surprised at the variation (and
ingenuity) of the answers we received. The
solution we had in mind was like that in Figure 3,
using integer division. The solution we like the
best, and our "hands down" (no pun intended)
winner, is Robert E. Brown of Schenectady, New
York. His solution appears in Figure 1. He also
showed how he arrived at the solution, and it goes
like this:

B(I+1)=(I+1)+1+100+(100*INT(I/13))—13*INT(I/13)
or

B(I+ 1)=I+ 102+(100*INT(I/13))— 13*INT(I/13)
or

B(I+1)=I+102+87*INT(I/13)

Other solutions are shown in Figures 2 through 5.
The solution in Figure 2 uses the Mod function,
that in Figure 3 uses integer division. Larry Abbott
of Wyomissing, Pennsylvania, sent in the solution
in Figure 5. So did Eldon Clark of St. Petersburg,
Florida. They both used Boolean concepts in their
solutions. In spite of the length of the statement, it
still works and qualifies because it is just one
statement. Those who used only three statements
are:

Jim Offenbacher, Huntsville, AL
Mark Gardner, N. Hollywood, CA
R. B. Hodges, Amherst, NH
D. E. Harlow, Altadena, CA
Sara Pinkert, Sturgeon Bay, WI
Edward Engberg, Santa Barbara, CA
Robert E. Brown, Schenectady, NY
E. L. Clark, St. Petersburg, FL
Larry Abbott, Wyomissing, PA

Robert T. McCay, Neshanic Station, NJ

Jerry Bails of St. Clair Shores, MI, says the DIM
statement is unnecessary, and submitted this
defined function:

DEFFNB%(I%)=87*(INT((I%-1)/13))+1%+101

David Lovelace of Springfield, MO (as well as
several others) asked why we start at 102 and go
through 414, rather than call the ace 1 and the king
13. Taken by itself, it seems more logical to do it
that way. However, in both Bridge and most poker
games, the ace is counted high. The exception in
straight draw or stud poker is the 5-high straight,
where the ace counts low. This is the only
exception you need make then in evaluating
hands, since the ace at 14 would always be higher
than any other card. It is easier this way than
counting the ace low and making exceptions for all
the other cases.

Thank you all for such interesting and
innovative answers. Now on to puzzler 4.

Puzzler #4

Given these two input lines:

10 INPUT"VALUE FOR A";A
20 INPUT"VALUE FOR B";B

what is the least possible amount of code following
these lines that will print the larger of the two
values on the screen as well as print 0 if the two
values are equal? Start your answer with line 30.

Does this sound too easy? Hint: It can be done
with just one BASIC statement, and it starts with
the command PRINT. What is it? •

10 DIM B(52)
20 FOR 1=0 TO 51
30 B(1+1)=1+102+87*1NT(1/13)
40 NEXT I

Figure 1. The most concise answer to the puzzler.

10 DIM B(52)
20 FOR 1=0 TO 51
30 B(1+1)=100*INT(I/13+l)+I MOD 13+2
40 NEXT I

Figure 2. Similar to the one above, but longer.

10 DIM B(52)
20 FOR 1=1 TO 52
30 B(I)=(((l-l)\13)+l)*100+1-(((l-l)\13)*13)+l
40 NEXT I

Figure 3. Using integer division.

10 DIM B(52)
20 FOR 1=1 TO 52
30 B(I) = ((INT((I-1)/13)+1)*100) + (I-(INT((1-1)/13)* 13)+1)
40 NEXT I

Figure 4. Similar to Figure 3, but without integer division.

10 DIM B(52)
20 FOR 1=1 TO 52
30 B(I)=((I<14)*-l)*(101+l)+((I>13 AND I<27)*-1)*(188+1)+((L>26
AND I<40)* — 1)*(275 + 1) + ((I> 39 AND I <53) *-1)*(362+1)
40 NEXT I

I
Figure 5. Using Boolean operators.

Code Works 19

Merge/Sort
Sorting files too big to fit in memory

T. R. Dettmann, Associate Editor. There is an interesting concept at work here, more
so than just sorting files too large for memory.

Sorting records into order is a common operation
on most computer systems. It is one of the things
the computer does best since the operation is
repetitive. Most books and magazine articles deal
with the problem of sorting many records in
memory, but very seldom do you find anything on
how to sort files that are so large that the entire list
of items cannot fit into memory. This article deals
with just such problems.

A few years back, a friend was maintaining a
mailing list of over 25,000 names on 5 inch floppy
diskettes. Sorting this file was a real problem for
mailings. However, there are techniques used for
sorting particularly large files. Professional
programmers have been using them for years in
sorting tape files on large computers. The basic
technique is called the "sort merge" operation.

The idea behind the sort merge operation is to
accomplish the whole job by breaking itinto small
steps and doing the job little by little. For large
jobs, you may have to let it run for some time, but
you could safely restructure an entire database
this way. Let's look at how a sort merge is done and
see how it is put together.

We can look at the basic operation as a series of
simple steps:
1. Open the input file.
2. Split the input file into smaller files by reading
as many items as possible, sorting them into order
and then writing the items out to a separate,
smaller, file.
3. Merge the smaller files together by opening
them together and reading the smallest item from
the files (the smallest in each file will be the first
because they are sorted) and writing that item to
the new master file.

The basic operation sounds rather easy. It is,
actually, but there are some interesting
complications that you have to work with if it is to
work right.

Program Notes

Let's go over the sample program and see what

makes it work. The lines through 260 serve as an
initialization for the program. The important code
is between lines 150 and 240. In line 150, we set up
the parameters for the program which make it very
flexible. We have set some arbitrarily low
parameters here to be able to do sample runs with
small files in a short amount of time. These
parameters are:

NL - The number of lines to read into memory for
sorting. This parameter is determined by the
maximum capacity of program memory for string
lines. This will vary from computer to computer,
though even a small system can typically hold 300
to 400 lines. The number is set here to 10 so that we
can see the program work quickly.
NFL - The number of files that will be declared
upon entering BASIC to run the program. This is
set to four so that three files could be merged into
one. Depending on the computer, you can typically
handle up to 16 files maximum. On the Kaypro,
where this program was created, we entered
BASIC by typing "MBASIC /F:4" in order to get
the program to work.
NX - The maximum number of temporary files to
generate. Since a list of these files is kept in
memory (not really necessary, just convenient),
this will serve as the dimension of the array of
names.

Line 190 sets up the line array (LN$), the
temporary file name list (FF$), and the merge file
list (FC$). The root name for all temporary files is
TEMP and the number of the current temporary

files is set to zero. On some systems, it should be
noted that you cannot set the array dimensions
with variables as has been done here. The basis for
doing this here is to make sure that if we change
the parameters, the array dimensions will change
appropriately. One of the many things which can
go wrong with a program is changing a parameter
and not changing it everywhere. This helps to
assure it won't happen with this program.

Next we get the names of the desired input and

20 Code Works

output files. Then lines 330-440 break the input file
into a series of smaller temporary files. Each file
will have no more than NL lines in it, all sorted in
alphabetical order. Subroutine 690 first reads NL
or fewer lines. The subroutine at 800 sorts them
using a standard memory sort called the "Shell
Sort." This subroutine could be replaced with a call
to a fast machine language sort if you have one
available. Finally, subroutine 950 writes the sorted
lines into a temporary file.

When the input file is completely broken up, it is
necessary to recombine the sorted files into a
single file. This is the merge operation and takes
place in lines 450 through 680.

Subroutine 1060 chooses an output filename for
each merge and selects which files to merge. If we
have enough file buffers available to merge all of
the output files, then we will just merge them all
directly into the final output file.

If there are not enough file buffers available we

merge as many as we can into a series of
intermediate files, TEMPX0 and TEMPX1. Why
two files? We do this so that we can merge them
with other files in the next step. If there are still too
many files, then we again merge to intermediate
files in the next step until we can finally get them
all together. The figures show some typical file
combinations for sort merge operations.

Once the files are selected for the merge and the
output filename is assigned, we read the first line
from all of the input files in lines 480 through 540.
With a line entered from each file, we look to see
which line is smallest using subroutine 1340.
When the line is selected, subroutine 1340 also
reads in a new line from the file the line was
selected from. The selected line is written to the
output file in line 610. If there was no line (we are at
the end of file on all input files) we check in
subroutine 1460 to see if we are all done.

You can visualize how the program works by

CodeWorks 21

imagining a deck of playing cards. In order to sort
them, we could break them up into small stacks
and sort each stack into order. With each stack in
order, we then take the smallest card from the top
of the stacks that are visible and place it on a final
stack. If we just keep repeating this step over and
over again, we will eventually have the entire card
deck sorted into order.

The computer makes this technique simple and
automatic. It can operate without anyone
worrying about it and can handle quite large files.
With some modification, the program could be
made to deal with files that go across a series of
disks. It does require considerable disk space for
temporary files, but if you can't solve the problem
any other way, it certainly beats doing nothing.

The technique used here could be used to do some
other interesting things:

1. You could take several files, group them, sort f
them together into a common file during the merge
operation.
2. You could break a file into a set of standard size
files, all of which are sorted in order.
3. You could set up a standardized grouping for
files and put the lines into them using the sort
merge operation.
4. For large files that cover many disks, you could
have the program prompt to load and unload disks
as needed for the operation and thereby deal with
very large numbers of records indeed.

Can you modify the program to do any of these
things? Try and see, it should be an enjoyable
learning experience. •

Merge/Sort

temporary file

100 REM * MGSORT. BAS * MERGE/SORT FOR ISSUE 5 CODEWORKS MAGAZINE
110 REM * 3838 S. WARNER ST. TACOMA, WA 98409 (206) 475-2219
120 REM * WRITTEN BY TERRY R. DETTMANN
130 DEFINT A-Z: 1 Clear 10000 also if your machine needs it.
140 ' These parameters control the size of the
150 NL=10:NFL=4:NX=10
160 ' NL=max number of files in memory
170 * NX=max number of temp files to use
180 ' NFL=max number of file buffers available
190 DIM LN$(NL),FF$(NX),FC$(NFL)
200 ' LN$() is the line buffer array
210 1 FF$() is the temporary filename list
220 ' FC$ () is the set of files to use for merqe
230 ' FT is the number of the current
240 FT$="TEMP"iFT=0
250 DEF FNCTR$(X$)=STRING$((80-LEN(XS))/2 " -|m
260 DEF FNHDR$(X$)=STRING$((78-LEN(X$))/?'" -(I
L E N (X $)) / 2 1 +

2 70 REM sort merge demo, main proqram
280 CLS: PRINT CHR$ (26);: PRINT FNHr> R<?f»c™ ~ ~
290 ' Input and Output f i l e s c™bf[h f ^ m M e E R f ^ ") ' P " ^ . P R I N T

300 LINE INPUT"Input File ====>".FI$ file

LINE INPUT"Output File ===>"1F0$

PRINT:PRINT
1 Get the input file
OPEN "I",1,FI$
' Read in part of the input file
GOSUB 690
' Sort it
GOSUB 800

Write it to a temporary outDut
GOSUB 950 F

Get more input if all At nao
not been read

"+X$+" "+STRING$((77-

310
320
330
340
350
360
370
380
390
400
410

file

of it has

NOTE: Watch for line 280. R e m o v e either the
CLS or the PRINT CHR$(26) depending on
your machine. Also note lines 250 and 260.

ese are set for 80-column screens. Change
e numbers accordingly for less columns.

22

420 IF FLG<>1 THEN 360
430 ' Close all files
440 CLOSE
450 1 Start the merge opration
460 GOSUB 1060
470 ' Open the files
480 OPEN "0",1,FC$(1)
490 PRINT FNCTR$("OUTPUT FILE: "+FC$(1))
500 FOR 1=2 TO NZ
510 OPEN "I",I,FC$(I)
520 PRINT FNCTR$("INPUT FILE: "+FC$(l))
530 IF EOF(I) THEN LN$(I)="":GOTO 540 ELSE LINE INPUT #1, LN$
540 NEXT I
550 ' Choose the smallest line
560 GOSUB 1340
570 * If there is no smallest line then we are done with this
580 ' pass through the files.
590 IF LN$="" THEN 630
600 ' Put the smallest line into the output file
610 PRINT #1,LN$:K=K+1:PRINT USING"####>";K;:PRINT LN$
620 GOTO 560
630 CLOSE
640 1 Check to see if we are all done
650 GOSUB 1460
660 ' If not done, go get the rest
670 IF EF=1 THEN 460
680 END
690 REM read from input file
700 ' FLG is a flag to mark the end of the input file
710 FLG=0
720 PRINT FNCTR$("READING FROM: "+FI$)
730 ' Read in up to NL lines
740 FOR 1=1 TO NL
750 IF E0F(1) THEN FLG=1:G0T0 790
760 LINE INPUT #1,LN$(I):PRINT USING"####>"71;:PRINT LN$(I)
770 NEXT I ...
780 ' NM is the number of lines actually read in
790 NM=I-1:RETURN
800 REM sort data in memory
810 ' Shell sort - set the initial gap
820 GAP=NM
830 ' If gap gets down to 1 then we are done
840 IF GAP<=1 THEN RETURN
850 ' Look at one-half the previous gap
860 GAP=INT(GAP/2)
870 ' Set the swap flag to no swaps
880 FG=0
890 FOR 1=1 TO NM-GAP
900 IF LN$(I)>LN$(I+GAP) THEN GOSUB 930:FG=1
910 NEXT I
920 IF FG=1 THEN 880 ELSE 840
930 REM swap lines
940 T$=LN$(I):LN$(I)=LN$(I+GAP):LN$(I+GAP)=T$:RETURN
950 REM write data to temporary output file

CodeWorks

960 ' FT is the current temporary file number
970 ' Make NF$, the current temporary filename and save it
980 ' If we have used NX files, then cut off the input
990 FT=FT+1:NF$=FT$+MID$(STR$(FT),2):FF$(FT)=NF$:IF FT>=NX THEN FLG=1
1000 ' Write the lines to the temporary file
1010 OPEN "0",2,NF$
1020 PRINT FNCTR$("TEMPORARY FILE: "+NF$)
1030 FOR 1=1 TO NM:PRINT #2,LN$(I):PRINT USING"####>"?I?:PRINT LN$(I)
NEXT I
1040 CLOSE 2
1050 RETURN
1060 REM pick output file and input offset
1070 ' F1 is the first file to read
1080 ' F2 is the last file to read
1090 ' FF is the number of the intermediate merge file
1100 1 If your BASIC doesn't have MOD use: FF=FF-INT(FF/2)*2
1110 F1=F2+1:F2=F2+NFL-1:FF=(FF+1)M0D 2
1120 ' Make the intermediate merge file name
1130 FF$=FT$+"X"+MID$(STR$(FF),2)
1140 1 Two cases: FC$(1)=M" = first time through
1150 ' FC$(2)<>"" = already been through
1160 IF FC$(1)="" THEN 1210
1170 ' We need to merge the last intermediate file and one
1180 ' less temporary file.
1190 FC$(2)=FC$(1):F2=F2-1:J=2
1200 GOTO 1230
1210 J=1
1220 ' Check for last file
1230 IF F2>FT THEN F2=FT
1240 ' If this is the last pass, then write to desired output file,
1250 ' otherwise, we will use an intermediate file.
1260 IF F2=FT THEN FC$(1)=F0$ ELSE FC$(1)=FF$
1270 ' Get the temporary file names
1280 FOR I=F1 TO F2:J=J+1
1290 FC$(J)=FF$(I)
1300 NEXT I
1310 ' NZ is the number of files for this go around
1320 NZ=J:K=0
1330 RETURN
1340 REM select smallest input line
1350 FOR 1=2 TO NZ:IF LN$(l)<>"" THEN 1390
1360 NEXT I
1370 LN$=""
1380 RETURN
1390 FC=I:LN$=LN$(I):J=I+1
1400 IF J>NZ THEN 1440
1410 FOR I=J TO NZ:IF LN$(I)="" THEN 1430
1420 IF LN$ >LN$(I) THEN LN$=LN$(I):FC=I
1430 NEXT I
1440 IF NOT EOF(FC) THEN LINE INPUT #FC, LN$(FC) ELSE T NS (VC)-"'
1450 RETURN ' tLbE LN$(FC)-
1460 REM check for end of processinq
1470 IF FC$(1)< >F0$ THEN EF=1 ELSE EF=0
1480 RETURN

VXREF.BAS
A line number, variable reference program

J. Melvin Jones 71 West St. Warwick, NY 10990 A utility program that gives a
sorted line number and variable cross-reference. It also gives you a paged listing of your
program.

It all started about three months ago. While I
was rummaging around in the attic, I came across
an old paper tape that was the only existing copy
of a game that I wrote back when I was in college.
At the time I wrote it, personal computers (and I
don't think they even called them that quite yet)
had about IK (average) of memory, a hexadecimal
display and keyboard, and if you were really lucky,
could save programs using a cassette recorder. Of
course, my game was written on the school mini
computer (in BASIC, fortunately), so when I left
that school I was suddenly without a system
capable of running it.

Ergo, it was packed up and relegated to the place
in the attic where I keep all the things that are "too
good to throw away but not really good for
anything in particular."

Envision the hands spinning on a clock and
pages flying away from a calendar (oooh! how
Hollywood)! Now I have my own computer room
with a micro-computer that has all the bells and
whistles of that mini- computer I used in college,
and lo and behold, I came across this
program. Fate works in mysterious ways.

After loading the program onto diskette, I settled
back to do the necessary conversion to Microsoft
BASIC (I don't remember the name of the original
dialect, but it sure didn't look anything like the
ones I use now.) After several frustrating hours, I
decided that I had a serious problem.

You see, when I wrote that game, I was but a
novice when it came to programming. I had yet to
learn the value of writing comments to remind me
of how the program worked. What I have now to
work with is about 1000 lines of the notorious
"spaghetti code" that everyone warns you about
when you begin writing programs in BASIC. The
flow of the program, apparently, started
somewhere near the end of the code and, jumping
quite often to the beginning, wound its way toward
the middle where, as far as I could tell, it entered
the Twilight Zone.

I had to find some method of documenting the

flow of the program so that I could unravel the
mysteries that lay therein. The result, after a little
back and forth with the editors of CodeWorks, is
the program that is presented here.

The Concept

VXREF is a program, written entirely in BASIC,
which analyzes a BASIC program that is stored as
an ASCII file, and generates a complete cross
reference listing for that program. The report
includes a complete source code listing of the
program (in neat, paged format), a list of all the
line numbers referenced by GOTO, GOSUB,
IF...THEN, RESUME statements, etc., and an
alphabetical listing of each variable used in the
program, specifying the line numbers in which
they are used. If all that seems a bit confusing, let
me try to explain a little more clearly.

Let's take a typical example. Suppose that you
have written a BASIC program and that program,
for some unknown reason, suddenly executes line
2000 at what appears to be random intervals. No
matter how you try, you can't seem to find any
reason for this erratic behavior, and you are
preparing to commit suicide because the program
simply has to be ready by tomorrow morning. This
is the perfect time to use VXREF.

First, save the errant program in a sequential
ASCII file (SAVE"filename",A). Once this is
accomplished, you run VXREF. When VXREF
asks you for the source file, feed it the name of the
file containing the program; make sure that the
line printer is on line. Then go get a cup of hot
cocoa to soothe your nerves/Ed. note: Try two
cups, especially on long programs. After that, we
compiled the program and the difference in
operation speed was no less than astounding. If
you have access to a good BASIC compiler, by all
means, this is a program that will benefit from it.)

When you return to the computer, and VXREF
has completed its task, you should have a report
that will supply you with a lot of information that

Code Works 25

can help you with your problem. The report (which
you can tear off from the line printer) is in three
parts: the Program Source Code Listing, the Line
Number Reference Listing and the Variable
Reference Listing.

The program source code listing is just that. It
lists your program, broken down into nice neat
pages, so that you can refer to it when trying to
find your problem. A lot of programmers try to
debug their program entirely interactively right on
the video display, and, while this saves paper, a
video display gives too much of a tunnel
vision perspective to let one really see the program
that was written.

The line number reference listing is the next
section of the report, and is particularly relevant to
our hypothetical problem. The line number
reference listing shows you the line numbers
which are used by the various branches within
your program and where those branches occur. In
our example, you would look down the list of line
numbers until you find 2000 and under
"Referenced in," you will find a list of all the line
numbers containing instructions which could
branch to line 2000. To solve your problem, you
need only to examine each of these instructions
and determine why, and when, they branch to
2000. If they are all correct, you have discovered
that the program is simply "falling through" to
line 2000 from above.

The variable reference listing performs a similar
function, except that it tells you the line numbers
of the instructions which use each variable. For
example, if you have determined that the value of
"A" is not what it should be at some point in the
program, you can use the variable reference listing
to examine each line in which the variable "A"
appears and, by checking every statement that
can alter "A", find out where the program is going
wrong. When I was first testing VXREF, I had a
problem with X$. Fortunately, VXREF showed me
that X$ is used in several places and before
entering the routine that was giving me problems
contained some residual information. From that
realization, I fixed the problem immediately bv
setting X$ to null.

One additional feature of the variable reference
list is the discrimination between simple and
subscripted variables. If the variable name i.
suffixed with a "+", the name refers to a
subscripted variable. Also, explicit type
declarators (such as "$" to denote string variables
and "%" to denote integer variables) are preserved'
thereby allowing easy determination of questions
relating to variable types.

VXREF need not be limited to debugging. A copy

26

of the cross reference listing should be a standard
part of your program documentation, along with
your programming notes, so that you will be able
to remember how the program works ten years
from now when you find it in your attic.

The Program

The code for VXREF is fairly self-documenting.
Operation is straightforward and the program
flow should be quite easy to determine from the
listing.

The program reads one line at a time from the
ASCII file and then echoes it to the line printer.
After the line has been printed, it eliminates
lexical constants (string literals like -
Programmers do it with their fingers-) and any
REMark statements. These removals are handled
by the subroutines beginning at lines 11610 and
11500, respectively. Note that the dialect of BASIC
that I've used allows the substitution of an
apostrophe for REM, and that unmatched
quotations are assumed to be closed at the end of
each line.

Once the line has been prepared, and
miscellaneous delimiters have been converted to
spaces (lines 11720-11820), it is scanned from left to
right by the "Token Parser" subroutine (lines
11830-12220). This routine finds the first character
of each token in the line, and then determines if it
is a keyword, constant, line number or variable
name. If it is a variable name or line number, it is
added to the appropriate list. Otherwise, it is
ignored.

When a line number of variable name is added to
a list, the list is kept in alphanumeric order(ASCII
collating sequence.) This allows the list builder
subroutines (lines 12230-12540 for line number
references and lines 12550-12860 for variable
references) to employ a quick Binary Search
algorithm to determine if the variable has been
referenced before. All references are packed into
8^n®8 to reduce memory overhead and allow
efficient dynamic allocation.
. *be has been evaluated, the tables
(which are already in alphanumeric order) are
printed, and the program is finished.

Conversion to other dialects

VXREF does not transcend the capabilities of
most versions of Microsoft BASIC. The maJ°r

SKSnC that wiU to be made are tojgj
tv> keyword database located in lines \
tbp^u l i24°- These keywords are the basis o
the token parsers decision as to what is a variable

~frdeVWl<S

name and what is not.
The BASIC keyword database must be in

alphanumeric order, because a Binary Search
algorithm is used by the token parser. The manual
for your BASIC probably has an appendix which
lists all of the reserved words in alphabetical order.
Furthermore, if delimiters are required (for
example, my version of BASIC requires that each
keyword be followed, or delimited, by a space), the
required delimiter must be included in the
database. This will guarantee that the keyword
will be recognized as such.

Finally, if the keyword can typically be followed
by a line number reference (GOTO, GOSUB,

THEN, ELSE, RESUME, etc.), the data entry
must be suffixed with "#" so that the token parser
will know that if a number is encountered
immediately after the keyword, it is a line number
and not a constant.

Conclusion

The program listing shown is written for the
TRS-80 Model 4/4P running under TRSDOS 6. It
has been tested on several quite complex programs
(including itself) and has never failed to provide
accurate and enlightening results. Good luck and
happy computing. •

10000
10010
10020
10030
10040
10050
10060
10070
10080
0090

h.0100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370

VXREF (Version 1.01.00) Written by J. Melvin Jones.
Written for CodeWorks Magazine, December 20, 1985.

MAIN PROGRAM SECTION:

This program processes a BASIC program, stored in an ASCII
text file, and generates a report in three parts.

Section One: The program listing (in paged format).
Section Two: A Line number cross reference listing.
Section Three: A variable cross reference listing.

First we must initialize some important information...

FALSE=1> 2:TRUE=1< 2
DIM LR$(500),LV$(2,500): 'These arrays hold cross references.
I
1 Now, clear the screen, print the title header, and prompt the
' user for the name of the source file.

CLS:PRINT "VXREF (Version 1.01.00) BASIC Program Cross Reference
PRINT"Utility.":PRINT"For CodeWorks Magazine by J. Melvin ";
PRINT"Jones.":PRINT
PRINT :PRINT "SOURCE FILE: ";:LINE INPUT F$
PRINT
I
' Now, we can begin to process the file, after we have loaded
1 our keyword table and opened the input file.
I
GOSUB 12870
FB=1:GOSUB 11090
PRINT"Processing file called ";F$;"."
I
' Process the file, one line at a time, and list the source
' file to the line printer (in a paged format).
I

Code Works 27

10380 H$="PROGRAM SOURCE CODE LISTING FOR "+F$+".
II

Pa9e ####

10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
0410
10500
10510
10520
10530
10540
10550
10560
10570

II

10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
10860
10870
10880

PG=1
LPRINT STRING$(8,13);:LPRINT USING H$?PG:LPRINT
IF EOF(FB) THEN GOTO 10500

GOSUB 10990: ' Get one line from the source file.
LPRINT LEFT$(A$,LEN(A$)-1)
LL=LL+1
GOSUB 11610: ' Eliminate Lexical Constants.

1 Eliminate REMark statements.
' Eliminate Delimiters.
' Parse string.

GOSUB 11500
GOSUB 11720
GOSUB 11830

IF LL>=48 THEN LPRINT CHR$(12);:PG=PG+1:LL=0:GOTO 10400: ELSE GOTO 1

GOSUB 11160
X$=" "
PRINT"Source file analysis complete."
PRINT"Now printing Cross Reference Lists

1 Now we can output the contents of the lists...
I
H$="CROSS REFERENCE LISTING FOR "+F$+". Page ####

REFERENCED IN'

GOSUB 11380
LPRINT"LINE NUMBER REFERENCES: "
LPRINT"======================= -
LPRINT
LPRINT"LINE NUMB
LPRINT"
LPRINT
LL=LL+6
FOR 1=1 TO NL

T$=STR$(CVI(LEFT$(LR$(I),2))+327681)
FOR 11=3 TO LEN(LR$(I))-1 STEP 2

XI$=STR$(CVI(MID$(LR$(I),11,2))+327681)
XI$=SPACE$(9-LEN(Xl$))+X1$
IF I1=LEN(LR$(I))-l THEN X1$=X1$+" ":ELSE X1S=X1S+" "
X$=X$+X1$ * '
IF LEN(X$)>60 THEN GOSUB 11230

NEXT II
IF X$<>"" THEN GOSUB 11230

NEXT I
IF LL>40 THEN GOSUB 11380
LPRINT
LPRINT"VARIABLE REFERENCES: "
LPRINT"==================== -
LPRINT
LPRINT"VARIABLE
LPRINT" - REFERENCED IN
LL=LL+7
FOR 1=1 TO NV
T$=LV$(1,1)
FOR 11=1 TO LEN(LV$(2,1))-l STEP 2

X1$=STR$(CVI(MID$(LV$(2,I),I1,2)) + 327681)

28

!g|10890 XI$=SPACE$ (9-LEN(Xl$))+Xl$
'p.0900 IF I1=LEN(LV$(2,I))-l THEN X1$=X1$+" ":ELSE X1$=X1$+","
10910 X$=X$+X1$
10920 IF LEN(X§)>60 THEN GOSUB 11230
10930 NEXT II
10940 IF X$<>""THEN GOSUB 11230
10950 NEXT I
10960 LPRINT CHR$(12)y
10970 PRINT"JOB COMPLETE."
10980 END
10990 '
11000 ' SEQUENTIAL ASCII FILE READER SUBROUTINE
11010 ' This subroutine gets lines of text from a sequential ASCII
11020 ' file and returns the string, appended with a space, in A$.The
11030 ' buffer # of the file being accessed must be specified by FB.
11040 '
11050 LINE INPUT #FB,A$
11060 A$=A$+" "
11070 X=FRE(0)
11080 RETURN
11090 '
11100 ' SEQUENTIAL ASCII INPUT FILE INITIALIZER ROUTINE
11110 ' This subroutine opens an ASCII file as type "INPUT". The file
11120 * to be opened must be specified in F$, the buffer number in FB
11130 '
.11140 OPEN "I",FB,F$
fill50 RETURN
11160 '
11170 ' FILE CLOSER SUBROUTINE
11180 ' This subroutine closes the file whose buffer number is
11190 1 specified by the value of FB.
11200 '
11210 CLOSE FB
11220 RETURN
11230 '
11240 ' LINE PRINTER DRIVER/FORMATTER SUBROUTINE
11250 1 This subroutine controls the report generated at the line printer
11260 ' by keeping track of the number of lines output, and paging
11270 accordingly. All output lines must be passed to this subroutine i
n
11280 ' X$ for output, with title item in T$, and page header in H$.
11290
11300 IF T$ < >LT$ THEN LPRINT:LL=LL+1
11310 IF LL=> 50 THEN GOSUB 11380
11320 IF LT$<>T$ THEN LPRINT T$;TAB(11);:LT$=T$:ELSE LPRINT TAB(ll);
11330 LPRINT X$
11340 LL=LL+1
11350 IF LL=> 50 THEN GOSUB 11380
11360 X$=""
11370 RETURN
11380 '
11390 ' PAGE/HEADER PRINTER INITIALIZER
11400 ' This subroutine is executed at the beginning of each new page of
11410 1 output and formats the top margin and header lines.
11420 '
11430 LPRINT CHR$(12)y

Code Works 29

11440 PG=PG+1
11450 LPRINT STRING?(8,13);
11460 LPRINT USING H?;PG
11470 LPRINT:LPRINT
11480 LL=3:LT?=""
11490 RETURN
11500 '
11510 ' REMARK ELIMINATOR
11520 ' This subroutine removes all text from A? which is not part of
11530 1 the executable code of a BASIC program (i.e., Remarks) and
11540 ' replaces it with spaces.
11550 '
11560 A1=INSTR(A?," REM ")
11570 IF A1<1 THEN GOTO 11590
11580 MID?(A?,A1,LEN(A?)-Al+1)=SPACE?(LEN(A?)-Al+1)
11590 A1=INSTR(A?," ' "):IF A1>0 THEN GOTO 11580
11600 RETURN
11610 '
11620 ' LEXICAL CONSTANT ELIMINATER SUBROUTINE
11630 ; This subroutine scans the text in A? for lexical constants
11640 ' (string literals) and replaces them with blanks.
11650 1

11660 A1=INSTR(A?,CHR?(34))
11670 IF A1<1 THEN RETURN
11680 A2=INSTR(A1+1,A?,CHR?(34))
11690 IF A2<=0 THEN A2=LEN(A?): ' NOTE: UNMATCHED OUOTATIONSl1

11770 ZZ?^'*')*: ;—+,/?<>*"
11780 FOR 11=1 TO LEN(ZZ?)
11790 A1=INSTR(A?,MID?(ZZ?,I1,1))
11800 IF A1>0 THEN MID?(A?,A1,1) = " "sGOTO 11790
11810 NEXT II
11820 RETURN
J. 1830 '
11840 ' TOKEN PARSER

11/ O YJ

11970
11980 11980 IF VAL(MID?(A?,I))>0 AND S1=FALSE THEN SKIP=

-TRUE:GOTO 12210

Code Works

%

11990
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
12120
12130
12140
12150
12160
12170
12180
12190
12200
12210
12220
12230
12240
12250
12260
12270
12280
12290
12292
12294
12296
12297

IF VAL(MID$(A$,I))=0 THEN GOTO 12020
GOSUB 12230
SKIP=TRUE:GOTO 12210
IF MID$(A$f1,1)="#" THEN GOTO 12210
IF MID$(A$,I,1)="0" THEN GOTO 12210

'If control passes
'must determine if

here, the token is alphanumeric, so we
it is a BASIC keyword.

H=NK:L=1
P=INT(H+L)/2
BK$=BK$(P):IF RIGHT?(BK$,1)="#"THEN BK$=LEFT$(BK$,LEN(BK$)-1)
IF BK$>MID$(A$,I,LEN(BK$)) THEN H=P:GOTO 12150
IF BK$<MID$(A$,I,LEN(BK$)) THEN L=P:GOTO 12150
SKIP=TRUE:IF RIGHT?(BK?(P),1)="#" THEN S1=TRUE:ELSE S1=FALSE
GOTO 12210

INT(H+L)/2<>P THEN GOTO 12090 IF I

name, so pass it. J If control passes here token is a variable

SKIP=TRUE:S1=FALSE
GOSUB 12550

NEXT I
RETURN
I mm mm mm mm

' LINE NUMBER REFERENCE LIST BUILDER
' This subroutine records the line number references in the
' array LR$. The values are compressed into strings to allow
' more efficient dynamic memory usage.

H=NL:L=1:P=INT((H+L)/2)

' Fix a problem in some BASIC interpreters ...

CW=I+1
IF INSTR("0123456789",MID?(A?,CW,1))>0 THEN CW=CW+1:GOTO 12298 1 2 298

12300 K?=MKI?(VAL(MID$(A$,I,CW—I))—327681j
12310 X?=MKI?(L9-327681)
12320 IF NL=0 THEN NL=1:LR$(1)=K$+X$:GOTO 12530

IF CVI(K$)<CVI(LEFT$(LR$(1),2)) THEN P=l:GOTO 12420
IF CVI(K?)>CVI(LEFT$(LR?(NL),2)) THEN P=NL+l:GOTO 12510
P=INT((H+L)/2)
IF CVI(K$)=CVI(LEFT$(LR?(P),2)) THEN GOTO 12450
IF CVI(LEFT$(LR?(P),2))>CVI(K?) THEN H=P:ELSE L=P
IF P< >INT((H+L)/2) THEN GOTO 12350
IF P-1=0 THEN GOTO 12410
IF CVI(K?)<CVI(LEFT?(LR$(P—1),2)) THEN P=P-l:GOTO 12400
IF CVI(K?)>CVI(LEFT?(LR?(P),2)) THEN P=P+l:GOTO 12410

12330
12340
12350
12360
12370
12380
12390
12400
12410
12420
12430
12440
12450
12460
12470
12480

' Add the reference to the list.

IF CVI(K$)<>CVI(LEFT?(LR?(P),2)) THEN GOTO 12480
IF RIGHTS(LR$(P),2)<>X? THEN LR?(P)=LR$(P)+X?
GOTO 12530

FOR I0=NL TO P STEP -1

Code Works 31

12490
12500
12510
12520
12530
12540
12550
12560
12570
12580
12590
12600
12610
12620
12630
12640
12650
12660
12670
12680
12690
12700
12710
12720
12730
12740
12750
12760
12770
12780
12790
12800
12810
12820
12830
12840
12850
12860
12870
12880
12890
12900
12910
12920
12930
12940
12950
12960
12970
12980
12990
13000
13010
13020
13030

LR$(10+1)=LR$(10)
NEXT 10

9
NL=NL+1
LR$(P)=K$+X$
X=FRE(0)
RETURN

' VARIABLE REFERENCE LIST BUILDER
' This subroutine adds references to the variable reference
' list which is stored in array LV$. Again, string compression
' is used to save space.

) - D) K$=MID$(A$,I,(INSTR(I+1,A$,"
X$=MKI$(L9-327681)
H=NV:L=1 „
IF NV=0 THEN NV=1:LV$(1,1)=K$:LV$(2,1)=X$ JGOTO 12850
IF K$ <LV$(1,1) THEN P=1:G0T0 12730
IF K$>LV$ (1, NV) THEN P=NV+1:G0T0 12830
P=INT((H+L)/2)
IF K$=LV$(1,P) THEN GOTO 12760
IF K$ <LV$(1,P) THEN H=P:ELSE L=P
IF INT((H+L)/2)<>P THEN GOTO 12670
IF K$ <LV$(1,P-l) THEN P=P-1JG0T0 12710
IF K$>LV$(1,P) THEN P=P+l:GOTO 12720

Add the reference to the list.

IF K$s>LV$(l,P) THEN GOTO 12790
IF RIGHT$(LV$(2,P),2)<>X$ THEN LV$(2,P)-LV$(2,P)*X$
GOTO 12850

FOR I0=NV TO P STEP -1
LV$(1,10+1)=LV$(1,10)
LV$(2,10+1)=LV$(2,10)

NEXT 10
NV=NV+1
LV$(1,P)=K$:LV$(2,P)=X$
X=FRE(0)
RETURN

BASIC KEYWORD DATABASE INITIALIZER
• This subroutine loads the list of basic keywords into the
array BK$. The 1st element in data specifies the number of
keywords listed. NOTE: Keywords MUST be in alphabetical
order because a binary search is employed to optimize
program execution speed in the token evaluation routine.

READ NK
DIM BK$(NK)
FOR 11=1 TO NK
READ BK$(II)

NEXT II
RETURN *

BASIC Keyword Database (for TRRnoc c , ^ \
NOTE; Keywords which may be followed"b^ «

32 CodeWorks

13040
13050
13060
13070
13080
13090
13100
13110
13120
13130
13140
13150
13160
13170
13180
13190
13200
13210
13220
13230
13240

Programming Notes

Robert Hood of Bremerton, WA sent in a couple
of interesting notes. One has to do with the INT
function, which he says has an error which he
found a way to correct. Try the following code and
see how your computer handles it:
10 DATA 2.34,13.34,14.34,15.34
20 FOR J=1 TO 4
30 READ K
40 PRINT INT(K*100),
50 NEXT J
He got these answers:
2.33 13.33 14.33 15.33
To correct for this error, he changed the function to
INT(K*100+.001).

Along those same lines, we found that BASIC
running with MS-DOS has a problem with the
value .09. Try this in command mode:
A=.09:PRINT A. We get a number that goes into
exponential notation. But A=.091 or .0899 will
return the .091 or .0899. What's so special with .09?
Also try adding 2.2 plus 2.2 plus 2.2. You may get
something other than the 6.6 you expected.

Here is the other of Mr. Hood's ideas. Have you
ever wanted to use INKEY$ to get more than one
character from the keyboard? Here is a sample
code that will allow you to get two digits. Note that
if you wait too long before entering the second
digit, only the first will be accepted. The wait time
can be adjusted by changing the delay loop. Yes,

INPUT$(X) could be used to input more than one
digit, but in that case X is a fixed value. This
method allows the choice of entering either one or
two digits.

100 PRINT"INPUT A TWO DIGIT
NUMBER"
110 GOSUB 1000
120 PRINT W
130 END
1000 W$=INKEY$:IF W$= THEN 1000
1010 FOR J=1 TO 200
1020 W$=W$+INKEY$
1030 NEXT J
1040 W=VAL(W$):RETURN

We have been asked several times why we use
LPRINT" " instead of simply LPRINT. It is
because several printers require it, in particular
some of the Centronics models. We happen to have
an old work-horse Centronics 703 which does
require the quote marks or it won't print the line
feed. If your printer does not need them, simply
leave them out.

Code Works 33
i

Convert.Bas
Pick, choose and convert data formats

Staff Project. If we were always that smart we would do it right the first time. But we
aren't — so here is a program that lets you change your mind about the format your data
will have.

Convert.Bas is a program which allows you to
change data statements into sequential files or
convert sequential file information into data
statements. A serendipitous by-product of these
exchanges is that you can re-order, as well as
selectively eliminate, data during the transfer. The
program is actually two independent programs
under one heading with menu selection.

But why would you want to do something like
this in the first place? The reason this program
came into being is as good an example as any.
Let's see how it evolved.

We recently started work on a football prediction
program. The obvious place to start was to get all
the statistics for an entire season. We used
Maker.Bas (from our very first issue) to enter the
stats for 28 teams for the first eight weeks of the
1985-86 season. It made 224 data lines, each
containing 24 data items. We had to include as
much data as possible since we were going to check
it to try and find which statistics had significance.

This large block of data was then merged with
several different correlation programs and various
tests were run. Those tests showed us that several
items were insignificant and could be ignored. We
found, for example, that time of possession had no
measurable influence on the outcome of the game,
even though the sportscasters make a big deal of it
during games on television. Several other items
could also be eliminated. We also found that it
would be more convenient to have the remaining
data in a different order. Someone suggested that
it may even be easier to handle the data if it were in
a sequential file. Convert.Bas was then born, and
we could try it both ways without the drudgery of
re-typing and checking all that data.

The program is not a simple type-in-and-run
affair. It is not difficult to use, but there are two
lines that need to be edited prior to running the
program. Another caveat is that the number of
items in each data line (or in each line of your
sequential file) must be the same for all lines. The
program easily handles strings, integers or both
mixed. Even if you do not wish to have your data in

34

statements (or in a sequential file), going through
the process allows you to select data and order it as
you wish.

Program Notes

The program is in two main sections. The first
will convert data statements into a sequential file.
It resides in lines 270 through 510. Let's say you
have a different program which has data
statements you wish to convert. First you load the
other program and delete all the program lines
except the data statements. Then renumber the
data statement lines starting at 1000. Then save
the data statements using the ASCII identifier
(SAVE"filename.DAT",A). Then load this
program and merge the data statements into it
(MERGE"filename.DAT").

Now you need to decide, in line 460, how your
data statements (and which ones) will appear in
the sequential file. We only show line 460 with four
items in ascending order. You can add or delete
items in that line, as well as change the order of the
items if you wish. It stands to reason that you
cannot put more data items into your sequential
file than exist in the data statement.

The prompts for this section of code ask for the
number of data lines to be converted and how
many items there are in each line. Enter the
number of items actually in each line now, not the
number you want to have after conversion. Lines
380 through 430 read the specified number of lines
into array A$(I,J). Lines 440 through 480 open the
file you named in line 360 and print the specified
items to the file. You may want to check the article
in ssue 4 if you are hazy on sequential files.

And back again

The other half of the program, from lines 530
through 840, will take data from a sequential file

f data 8tat*ments from it. This section is a
Mtle trickier than the first. It needs to create actual
me numbers and the word DATA for your data

~Ĉ deVVorks

lines. The prompts ask which file to read from,
what line number your data statements will start
with, how many data lines to make and how many
items in each line. Based on this information, an
array is set in line 600, and lines 610 through 680
read the file into array A$(I, J). Line 690 defines D$
as the word DATA with a space before and after it.
Lines 700 through 730 build each data line. Each
data line is held in array Z$(I), the first in Z$(l), the
second in Z$(2) and so on. Z$(I) is made up first
with the string value of LL (which you had already
input in line 570) and is the beginning line number
for the data statements. Next, we add D$ (the word
DATA with the spaces around it) to Z$(I). Then we
add the data items from the A$(I,X) array, along
with explicit commas to separate the data items.

Line 740 simply prints the data lines on the
screen for you to see before you give them a file
name and save them. Before we leave here, we
should add that line 720 increments your starting
line number by two. After you have saved the data
statements on diskette, you can always load them
like any BASIC program, renumber them and save
them back again. If you intend to merge them with
another BASIC program later, be sure to save
them with the ASCII identifier.

As in the first section of the program, line 710
can be extended or shortened to fit your needs.
And, as before, you can change the order in which
the data items appear in your data line.

General notes

You may well ask why lines 510 and 840 both say

to RUN 100 rather than GOTO 140. It is because
each option of the program stands alone and each
must have dimensions for arrays set differently.
After running each section of the program what
needs to be done is done. If you go directly from
option 1 to 2 you would get a "Duplicate
Definition" error because of the dimension
statements. The "RUN 100" in those two lines
clears all dimensions and starts you from square
one and avoids the error message.

Notice that the choice input in lines 240 through
260 avoids the use of the usual code to trap for
inputs larger than, or smaller than, those allowed.
In this case, it was more simply done by using line
260. Now, if X is not 1, 2 or 3, line 260 simply gets
you back to re-display the heading and another
try.

The data lines starting at line 1000 are for
sample testing only. If you entered this program
correctly, you should get what the sample figures
with this article show.

You will find that making a sequential file from
data statements happens rather quickly. On the
other hand, creating data statements from a
sequential file may take some time, especially
when the file is medium to large. We created 225
data statements from a sequential file and it took
about 20 minutes.

Now you can play "manipulation mania" as you
wish. It may sound trivial, but it sure beats keying
in data that has already been entered and checked.
Add this one to your library of utilities. The odds
are, sooner or later, that you will make good use of
it. •

100 REM * CONV.BAS * CONVERT DATA STATEMENTS TO SEQ FILE AND BACK *
110 REM * CODEWORKS MAGAZINE * 3838 S. WARNER ST. TACOMA,WA 98409
120 REM * SEE ISSUE 5 FOR FURTHER ENLIGHTENMENT
130 'CLEAR 10000: ' USE ONLY IF YOU NEED TO CLEAR STRING SPACE
140 CLS: ' CHANGE THIS CLEAR SCREEN COMMAND TO SUIT YOUR MACHINE
150 PRINT STRING?(22,)y" The CodeWorks "ySTRING?(23,")
160 PRINT " DATA CONVERTER PROGRAM"
170 PRINT " Convert Data statements to Sequential files and back"
180 PRINT STRING?(60,"-")
190 PRINT
200 PRINT TAB(5);"1) Convert Data statements to a Sequential file."
210 PRINT TAB(5);"2) Convert a Sequential file to Data statements."
220 PRINT TAB(5);"3) To quit."
230 PRINT
240 INPUT"Your choice";X
250 ON X GOTO 270,520,850
260 GOTO 140
270 CLS

CodeWorks

280 PRINT"Convert Data statements to a sequential file."
290 PRINT
300 PRINT"Your Data statements must be merged with this program"
310 PRINT"starting at or above line 1000."
320 PRINT
3 30 PRINT"Before you run, adjust line 460 to fit your format."
340 INPUT"How many Data lines are to be converted";DL
3 50 INPUT"How many items does each line contain";DI
360 INPUT"What will you name your sequential file";F§
370 PRINT
380 DIM A$(DL,DI)
390 FOR 1=1 TO DL
400 FOR J=1 TO DI
410 READ A$(I,J)
420 NEXT J
430 NEXT I
440 OPEN "0",1,F$
450 FOR 1=1 TO DL
460 PRINT #1,A$(I,1);",";A$(I,2)?\";A$(I,3);",";A$(I,4)
470 NEXT I
480 CLOSE 1
490 PRINT"Your data statements are now a sequential file called ";F$
500 INPUT"Press RETURN for menu";XX
510 RUN 100
520 CLS
530 PRINT"Convert a Sequential file to data statements."
540 PRINT
550 PRINT"Adjust line 710 to conform to your data line format."
560 INPUT"What is the name of your sequential file ";F$
570 INPUT"What line number should your data lines start with";LL
580 INPUT"How many data lines do you wish to make";DL
590 INPUT "How many data items in each line"-DI
600 DIM A$(DL,DI),Z$(DL)
610 OPEN "I",1,F$
620 FOR 1=1 TO DL
630 IF E0F(1) THEN GOTO 680
640 FOR J=1 TO DI
650 INPUT #1,A$(I,J)
660 NEXT J
670 NEXT I
680 CLOSE 1
690 D$=" DATA "
700 FOR 1=1 TO DL

720 ^:rR$(LL)+D$+A?<I'1)+"'"+M(I'J>+".-«S(I.3)+-..+A$(I.4)
730 NEXT I
740 FOR 1=1 TO DL:PRINT Z$(l):NEXT I
750 INPUT"What file name shall vour .f,.
760 OPEN "OM.Fl? 7 ta statementa have ",F1$
770 FOR 1=1 TO DL
780 PRINT #1,Z$(I)
790 NEXT I
800 CLOSE 1

810 PRINT Your data statements in file ";F1$;" may now be merged"
820 PRINT"into any other BASIC program."
830 INPUT"Press RETURN for menu"?XX
840 RUN 100
850 CLS:PRINT"DONE":END
1000 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
1002 DATA 1,2,3,4,5,6,7,8,9,10,11,12
1004 DATA ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN,ELEVEN,TWEL

1006 DATA JOHN,PAUL,PETER,MARY,ELLEN,JO,OSCAR,BOB,ALBERT,EDWARD,HENRY,
STEVE

Convert Data statements to a sequential file.

Your Data statements must be merged with this program
starting at or above line 1000.

Before you run, adjust line 460 to fit your format.
How many Data lines are to be converted? 4 , , , .
How many items does each line contain? 12 figure 1. 1 his sample shows how a
what will you name your sequential file? SAMPLE.TXT portion of the data statements can

V\n oVion/vn/] in n iJ _1 Xt! 1 _

Your data statements are now a sequential file called SAMPLE.TXT
Press RETURN for menu?
Break in 500
Ok

B>TYPE SAMPLE.TXT
JAN,FEB,MAR,APR
1,2,3,4
ONE,TWO,THREE,FOUR
JOHN,PAUL,PETER,MARY

be changed to a sequential file.

Convert a Sequential file to data statements.

Adjust line 710 to conform to your data line format.
What is the name of your sequential file ? SAMPLE.TXT
What line number should your data lines start with? 1000
How many data lines do you wish to make? 4
How many data items in each line? 4
1000 DATA JAN,FEB,MAR,APR
1002 DATA 1,2,3,4
1004 DATA ONE,TWO,THREE,FOUR
1006 DATA JOHN,PAUL,PETER,MARY

What file name shall your data statements have ?

Figure 2. This segment shows data
statements which were created from
the sequential file shown in Figure 1.

710 Z$ (I)=STR$(LL)+D$+A$(1,4)+","+A$(1,3)+","+A$(1,2)+","+A$(1,1)

Convert a Sequential file to data statements.

Adjust line 710 to conform to your data line format.
What is the name of your sequential file ? SAMPLE.TXT
What line number should your data lines start with? 1000
How many data lines do you wish to make? 4
How many data items in each line? 4
1000 DATA APR,MAR,FEB,JAN
1002 DATA 4,3,2,1
1004 DATA FOUR,THREE,TWO,ONE
1006 DATA MARY,PETER,PAUL,JOHN

What file name shall your data statements have ?

Figure 3. This does the same as in
Figure 2, but before running the
program, line 710 was changed as
shown. The data in the statements is
now in reverse order of those in
Figure 2.

CodeWorks 37

>s

Download
What's Happening on the Download

There are two sections to the Code Works
download. The Demo section and the Subscriber
section.

The Demo Section

This section is intended to show non-subscribers
what the download system is all about. When you
call the system and it answers, it will ask for a User
Name. The Demo section will accept almost
anything as a user name. There is no password
required here.

After entering a name the system will present
you with a Message of the Day. After you have
read the message you will be presented with a
menu of choices. Choosing HELP will give you
more information about how to use the system.

There are currently five programs available on
the Demo section available for download. They are
intended to give an example of the type of
programming that can be found in the magazine.
These programs will be replaced from time to time,
some may be removed, new programs may be
added.

The non-subscriber may request a sample issue
by using the Send Me More option of the menu. In
this case, he leaves his name and address on the
system and a sample copy of the magazine will be
sent to him.

The Signup option gives a place for anyone to
leave his name, address and credit card number
to enter a subscription to CodeWorks.

The Comments section is provided so that notes
about the system, or other comments may be left.
We check the system in the morning of each
working day and fill requests and note the
comments.

The comments are very helpful to us. It gives us a
window through which to view the system from
the other side. For example, one comment saying
that it was difficult to do some particular thing
would simply be noted. Several such comments,
however, could easily point out a problem with the
system. Through the comments we have already
noted some difficulty in getting on the system
when the telephone signal is routed through
several exchanges. Every now and then the
satellites carrying telephone signals do funny
things too. This was noted by subscribers in
Hawaii and Alaska.

The Terminal Setup option is used to tell our
system something about your system so that the
information we send will be formatted properly for
your screen, etc. We cannot permanently record
your terminal setup from the Demo section;
however, subscribers can make their terminal
characteristics permanent on our end.

The Demo section is designed, quite frankly, to
encourage people to subscribe to CodeWorks.
Giving the download telephone number to your
computing friends is encouraged. You might also
tell them what the protocol is (300,n,8,l).

The Subscriber Section

Logging on as a subscriber is not difficult,
although it is a little more involved than that of the
Demo section. When asked for a login name, a
subscriber should enter his last name followed by
the numbers on his address label on the magazine.
The number is found near the upper right of the
label. The name may be entered in lower case,
upper case or mixed. The number should follow the
name immediately, with or without a space
between it and the name. Our system has your
name and number stored in it. When you enter
your name and number, the system quickly checks
the list it has to look for a match. If no match is
found it assumes you are not a subscriber and
shifts you to the Demo section.

If a match is found, the system then welcomes
you by name to the system and asks you to enter
your password. If this is the first time you have
logged on to the system, you will be asked to enter a
password of your choice (6 or more characters.)
This password is then encoded and attached to
your name and number in our system. The next
time you log on then, the system will recognize
your name, number and password, and allow you
access to all the programs from all issues to date.

ou may also set your terminal characteristics
and make them permanent so that the next time
you use the system, it will remember who you are
and set your terminal properly. If you should
lorget your password we cannot tell you what it
was because we don't know. Should this happen,
give us your name and subscriber number and we

Continued on back cover —

'I
38 CodeWorks

Where is Issue 1?
We have been receiving requests for Issue 1 at an

increasing rate. Here is what happened. Last
September we issued a promotional issue with the
September/October 1985 date. It had no number.
We then numbered the following issues 2, 3, etc.

We were still promoting various lists in
February and March 1986 when we ran outof Issue
1. So, we made some minor adjustments to it and
re-printed it as the Special Sampler Issue in March
1986.

Those who received this Special Sampler Issue
apparently think they have missed Issue 1. That is
not the case; the Special Sampler Issue is number
1. It is a free, additional issue, that come in
addition to the regular subscription.

There were two programs in the original Issue 1
that are not in the Special Sampler Issue. One of
them, PLOT, received so little attention that we
didn't feel we should reprint it again. The other
program, WRITER, was unique to 80-column

Subscription ORDER FORM we
Computer type:

Do you have a modem?
If so, what baud rate?

Comments:

Please enter my one year subscription to CodeWorks at $24.95. I understand that this price includes
access to download programs at NO EXTRA charge.

• Check or MO enclosed.
• Charge to my VISA/MasterCard #_ Exp date
Please Print clearly:

Clip or photocopy and mail
to: CodeWorks
3838 South Warner St.
Tacoma, WA 98409

State Zip

Charge card orders may be called in (206) 475-2219 between 9 AM and 4 PM weekdays. Pacific time. Sorry, no "bill me"
orders.

screens with 24 lines and we left it out because of
its non-applicability to many readers. Both these
programs are still available on the download
under the Issue 1 menu.

For those of you who do not use the download we
are considering supplying all CodeWorks
programs on diskette at the end of the subscription
year. There would be a charge for this diskette. If
you are interested in the diskette idea, drop us a
card and let us know what format you need for
your computer. We can make formats for IBM-PC
and compatibles, TRS-80 Models I/III/IV, Kaypro
(CP/M) and if necessary, some 8 inch diskette
formats for CP/M, and Tandy Models 11/12/16.
By the end of the subscription year (in Sep/Oct 86)
we expect there will be between 25 and 30
programs available for the diskette. (The diskette
method may even be cheaper than the long
distance charges for the download.)

Name

II
Address

City

CodeWorks 39

— continued from page 38

can reset you in the system. What that does is clear
your old password and terminal characteristics,
and will treat you as a first-time user next time you
log on.

Don't forget to prepare your system to accept the
information it will download to you. Your terminal
program must be able to save whatever arrives in
your buffer to your diskette. Sometimes, it may be
necessary for you to use a text editor to clean up
some of the extraneous characters at the
beginning or end of a downloaded program before
you can run it. You can compare the downloaded
program to the listing in the magazine if you are
uncertain about what may be extra characters.

Once on the system as a subscriber you can
select any issue from the menu and download any
or all the programs from that issue. Make sure you
have enough disk space to receive them. You may
also need to reset your buffer between successive

(206) 475-2356

300 baud, No parity

8 bits, 1 stop bit

full duplex

downloads to clear out anything left over from the
last transmission. The reason we say that is
because we have seen the same person download
the same program as many as four or five times.
From that, we can only assume that there was
noise in the transmission or that the computer at
the other end was not prepared to receive the
program.

We are working on an automatic 300/1200 baud
operation. When this is fully implemented, we will
leave a message in the Message of the Day. When it
works, the system will automatically answer you
in the baud rate you sign on with. This should help
cut costs for long distance charges, especially from
the East coast and Midwest. In response to many
requests, we are also trying to implement an abort
feature so that if you want to terminate
transmission for any reason in the middle of a
download you can, without the need to disconnect
and re-dial.

The system has been running continuously
since January 1986, when we had a lightning
storm that took out our hard drive. The system
security has yet to be breached, although we have
seen many attempts to do so.

These comments have all been presented
because of many requests on the system itself. One
last item. Please do not turn echo on atyourend.lt
causes an endless loop wherein the system receives
back its own query as a response to your input. We
hope this helps you get more efficient and cheaper
use of the CodeWorks download. •

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Address correction requested

Bulk Rate
US Postage

PAID
Permit No. 774
Tacoma, WA

• CODEWORKS
Issue 6 July/August 1986

CONTENTS

t f **

sags
9] | i KS *C eT«K ̂

Editor's Notes 2
Forum 3
Random Files 7
Puzzler 13
Plist.Bas 15
Dstat.Bas 21
Beginning BASIC 27
Network.Bas 29
CodeWorks Helpline 39
Download 40

I£f)

CODEWORKS

Issue 6 July/August 1B86

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/ Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

Al Mashburn

©1986 80-Northwest Publishing
Inc.No patent liability is assumed with
respect to the use of the information
contained herein. While every precaution
has been taken in the preparation of this
publication, the publisher assumes no
responsibility for errors or omissions.AII
programs, unless otherwise specified,
presented in this publication, are hereby
placed into public domain. Please
address correspondence to: CodeWorks,
3838 South Warner St.. Tacoma. WA
98409

Telephones
(206)475-2219 (voice)

(206) 475-2356 (modem download)

300 Baud. 8 bits, no parity, 1 stop bit

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/lower case) and
allow 4 to 6 weeks for editorial review.
You may send IBM-PC compatible
diskettes (please save your programs in
ASCII format.) Also send a hard copy
listing of the program and article. Media
will be returned if return postage is
provided. Compensation will be made for
works which are accepted for publication.
CodeWorks pays upon acceptance rather
than on publication.

Subscription price: $24.95 per year (six
issues) A subscription year runs from
Nov/Dec through Sep/Oct. Anyone
subscribing during the current
subscription year receives all issues for
that year. Not available outside the United
States Zip codes. VISA and Master Card
orders are accepted by mail or phone
(206) 475:2219. Charge card orders
may also be left via our on-line
download system (206) 475-2356.

CodeWorks is published bimonthly in
Jan, Mar, May, Jul, Sep and Nov. It is
printed in the United States of America.
Bulk rate postage is paid at Tacoma,
Washington.

Sample Copies: If you have a friend
who would like to see a copy of
CodeWorks, just send the name
and address and we will send a
sample copy at no cost.

Editor's Notes
A couple of issues ago a request

was made for a way to list programs
in double space. Terry Dettmann got
to work on it and the results of it are
in this issue. Not only does it allow
single or double spacing, but it
formats the page and prints a
heading with page numbers as well.
One of the other refinements of the
program seemed very worthwhile
for programs listed in CodeWorks
and so we are listing our programs
with it.

That refinement was the ability to
indent wrap-around lines, especially
when the original line was already
indented, as inside a For...Next loop.
This makes for a much more
readable page of code. Of course,
when you type the programs, you
need not allow for the extra spaces in
the wrap-around.

Since it will be mid-summer when
this issue arrives we have left the
heavy explanations off of our major
program. It's called NETWORK,
and is an adaptation of a public
domain program called Startraders.
We have, however, included easy
instructions so that you can make
the program over to your own liking.
Although I have never been too
hung up on games, this one and a
couple of others have been favorites
for a long time. In fact, this is the
first game we have published so far
in the magazine, and we hope you
agree that it is a fun game to play.

Based on many requests, both on
the download and by mail and
telephone, we are starting a series on
random file techniques in this issue.
File handling has always been one
of the more important parts of
computing, but somehow, random
files have been tougher to master
than other types. We intend to make
the series both informative and
useful, and our goal is to work
towards a random file version of
Card.Bas. Judging from your
response, Card.Bas was one of the
more popular programs we have
published to date. There have been
many requests to make it handle
larger files, even though it was

originally designed to replace a
simple 3x5 card index file. By the
time we get through with the
random file series, it should be a
functional database manager in its
own right. Then, if all works well, we
will create a report generator for it.
Terry suggested we call it
"Report.Card," and why not?

Since early on, we have said that
the programs we publish are in
public domain and that you can do
with them what you want. We
recently saw a version of one of our
programs in another magazine. It
had a subtle name change and was
gussied up a bit. We applaud the
enterprising author who sold that
version to the other magazine. But
he (or the other magazine) failed to
acknowledge the origin of the
program. For shame!

Can you believe it? It's almost
football season again. In our next
issue we plan to have an NFL
Football Oracle program. We have
been working with previous year's
data and have it predicting the
entire season at about 68%. As you
might expect, we have found that it
is virtually impossible to predict a
true upset. There is simply nothing
in the statistics that serves as a
leading indicator of one. For the
1985-86 season, we had some weeks
where it picked 12 out of 14 games.
The worst was week seven (in 1985)
which was a week of terrible upsets
and we only picked seven of 14. In
addition to picking the winner and a
probable point spread, it shows
relative indicators on the strength of
both the offense and defense for all
the teams, and other interesting
statistics as well. In case our issue
for Sep/Oct does not arrive until the
first week in September, keep the
stats printed in your local
newspaper for games played before
we arrive. We are anxious to see
what the program will do with this
year's schedule.

All in all, we hope you enjoy our
mid-summer madness. We certainly
had a good time putting it together.

Irv

2 CodeWorks

Forum
An Open Forum for Questions & Comments

First I want to tell you that you are doing one
fine job. There is a real need for a publication
devoted to BASIC. It can't be beat for non
professional programmers. Cross your heart and
hope to die that you won't ever publish a Pascal
program; that can lead to Forth and Fivth and
straight to eternal damnation. Also I think the
Download is great and a breeze to use. Never mind
the fancy error correcting systems; I never get past
the place where you have to select between half a
dozen different protocols named in a secret code.

I did have a problem with the MCI long distance
circuit which had such a weak signal that your
carrier wasn't readable. Has anyone else reported
this? (Yes, in a few isolated cases. Ed.)

I have a conversion of the WOOD program (issue
3) to operate on fabric (anything you buy by the
yard.) I don't really expect that my wife (a mild
compuphobe) will use it for sewing materials but it
is interesting...

...Meanwhile, I was intrigued by the comment in
Code Works that nothing disastrous can really
happen if you jump out of a FOR...NEXT loop with
a GOTO. That had been my impression from
experience also. I did a little experiment which
may interest you. The supposed problem is that
there is a stack where addresses and other goodies
for FOR...NEXT and GOSUB are stored. One
could have a real problem if things were
repetitively pushed on that stack and never
popped off. This should show up as a progressive
disappearance of available memory. Now refer to
the program.

In line 20 after setting the only variables,
PRINT MEM tells the starting memory available
before any FOR...NEXT loop is set up. Then for 100
times, execution jumps out of the loop to line 20.
The first time you see a loss of 17 bytes of memory
to set up the FOR...NEXT, as expected. However,
there is no additional loss of memory as you
repetitively jump out and re-enter the loop.
Apparently, Microsoft has idiot-proofed this
version of BASIC somehow. Perhaps other
BASIC'S are different; the program in lines 10-80
should check it out for users of other systems (mine
is a TRS-80 Model III.)

10 ' TEST JUMP OUT WITH GOTO
15 J=0:A=0
20 PRINT MEM;
30 FOR J=1 TO 2
40 A=A+1
50 IF A>100 THEN 60
55 GOTO 20
60 NEXT J
70 PRINT MEM
80 END

Also of interest is the situation with programs
that set up a GOSUB but jump out of the
subroutine without hitting the RETURN. This is a
different story as can be seen by running program
lines 100-180. Referring to the program and the
screen printout should make the situation obvious.
Note that only five bytes are required to set up the
GOSUB, but WOW, it eats up memory like a
ravenous crocodile. Every repeat eats another five
bytes. Needless to say, you don't get your memory
back if you finally hit the RETURN one time.

I feel that this program enabled me to have
confidence in what BASIC will do. Splurge 17
bytes on a jump out of a FOR...NEXT if you feel
like it. But watch out for those GOSUB's that
really should have been GOTO's.

110 'TEST OF GOSUB WITH RETURN
115 A=0
120 PRINT MEM;
130 GOSUB 150:PRINT MEM;:END
140 'OTHER LINES COULD BE HERE
150 A=A+1
160 IF A>100 THEN 180
170 GOTO 120
180 RETURN

R. R. Keegan
Fayetteville, AR

Thank you for your interesting observations, but
Fivth?

Thanks for sending me the (sample copy.) I
think you have a great idea for those who are
interested in writing their own programs, and
quite a relief from (other magazines) which are
mostly ads, and a lot of the material assumes that

CodeWorks 3

we know everything about everything!
I had a lot of fun putting your Calendar program

into my computer. As you might expect I had to run
down quite a few syntax errors in my typing, plus
making the proper choices to make it run on my
machine and printer.

Originally I typed lines 680-690 exactly as your
sample and got the results that you did. If you will
examine your printout, you will note that each of
the months from January through September
start with their first letter over the "N" in MON.
However, October, November and December start
over the space following "MON"! I tried editing
line 690 and matters got worse when I got down to
the line feed. Finally when I got to the
MAY ", I hacked the rest of the line, then
typed the following months, allowing nine spaces
for each month starting with the first letter of each
month. It all seemed to work ok!

Edson B. Snow, Col AUS-Ret.
Pompano Beach, FL

Your printout looks great. We missed that spacing
the very first time we printed it. Then, wouldn't
you know it, it was copied intact into the sampler
issue.

I am using a C.Itoh 1550 printer with my
Columbia PC and have problems with graphic
screen dumps. I have several programs to print
graphic screens and they all give the same result.
The problem is a series of white lines across the
print of the graphic screen dump. It would appear
to me that one of the wires on the printhead is not
printing. At first I thought there was a printer
problem, but I can dismiss this, since the printer is
printing the true descenders on all letters. Also
with a dot graphics command I can get all of the
wires to print.

I was told by the author of one graphics dump
program that there is a problem with the BIOS of
the Columbia that causes this. I have written to the
Columbia Data Products people - but no answer. I
would like to find someone with a solution.

Donald M. Dealy
South Attleboro, MA

We don't have an answer for you. But here are
some things to consider: Does it happen on every
line or once or twice per page ? How wide is the little
white line? Some of these new graphics printers
have a paper pull-down of as little as 1/144 of an
inch. If the line is really narrow and happens at an
interval that corresponds to the circumference of
your platen, your platen could have a flat spot
along its length. Are there setup switches on your
printer and if so, are they set correctly? It would

have helped to see some sample output. I would
worry more about the pull-down and the system
driving the printer than the printhead. As you
said, all the wires in the printhead are apparently
printing.

...I'm just getting around to keying in CAL.Bas
from your sample issue. The history of calendars is
most interesting, and while your comments on the
limitations of year 3999 are apologetic, I seriously
doubt that problem will be a major issue with most
of us.

I did have a small problem with the heading
display of the year, so I simply re-wrote that
section of the program. My version prints the year
double wide...Anyway, rather than try to trace
down the flow of your program, I just re-wrote it
and, of course, I like my version better. Keep up the
good work!
770 FOR L=1 TO 7
780 READ ST$
790 FOR J=1 TO 4
800 ND§ (J) =MID§ (ST$, DG(J) *6+2, 5)
810 ND$=ND$+ND$(J)+" M

820 NEXT J
830 '
840 LE=LEN(ND$):LPRINT TAB(18);s

FOR J=1 TO LEsIF MID$(ND$,J,
1)>" "THEN LPRINT"##";ELSE
LPRINT" ";

850 NEXT J:LPRINT" "
860 ND?="":NEXT L
870 RETURN

Dexter Walker
Birmingham, AL

We like yours better too.

Since you mentioned that A=B=C is a legal
construct, I have run across it in a program called
"Racetrack" in a book by Stiegler and Hansen,
called Programming Languages: featuring IBM
PC and compatibles. (#5 in the Pournelle Users
Guide series.) I've entered the program but am
stuck by an error message "Illegal function call"
on one of those lines: 28530 IF ONMAP THEN
HITFENSE=(MID$(MAP$(YNOW%),XNOW%,l)
= FENSE$: FINISH ED= (MID$(YNOW%),
XNOW%,l)=FINISHLINE$ Can you give me any
other construction to replace them?

Allan W. Wardell, O.D. , ^
Providence, RI '

IF CODE$ = THAT BAD$ THEN 1$ =
(GIVEUP$)*2 Seriously though, the first thing we

4 CodeWorks

would, jump on is that "IF ONMAP" because it
looks like a reserved word, even though that would
give a syntax error and not an illegal function call
Without seeing the rest of the code (and somehow
we really don't want to) it's very difficult to
determine what is supposed to be going on here.

...I am wondering how the programmer decides
which letters and/or combination of letters to use
when constructing programs. Is there a dictionary
of these key letters such as there is for keywords?...

James L. Lopez
Pasadena, TX

No, there is no dictionary of key letters. You can
assign them starting at A and ending atZor if that
isn't enough, start with A A and end with ZZ. Some
computers allow more than two characters for a
variable name. That helps make the variable
names more descriptive of what they stand for (see
the above letter, for example.) As a holdover from
FORTRAN days, most programmers use the
letters I, J, K and L for loop counters. You can also
use a letter and a number, as in A9, but not a
number then a letter since variable names must
always start with a letter, otherwise the computer
wouldn't know if it were dealing with a variable or
an integer. When you plan a program it is best to
jot down groups of variables you will be using.
Make all those that have a similar function, for
example, start with the same letter. That way you
can easily track through the program flow
knowing what each is supposed to do. If your
computer can use longer variable names you can
be more descriptive, but watch out for embedded
keywords within your variable names.

...You asked about the game Star Traders. I have
one by that name we enjoy playing very much. It
came on Disk 45 of the Public Domain Software. I
am enclosing a printout of the first few lines of the
program which does give the author's name...

R. Oberdorfer
Newport,WA

Thanks Richard, but it says "Modified for
ALT AIR BASIC 4.0 by S.J.Singer", and we still
don't know if he is the author or not. Anyway, the
program is in this issue. We have modified it
further and call it NETWORK. Incidentally, did
you know that MITS ALT AIR BASIC was written
by Bill Gates and Paul Allen (who later formed
Microsoft)'?

I entered your Card.Bas program into my
Kaypro CP/M computer and it works well. I have
made revisions to make it more adaptable to my

needs. I wrote a BASIC word processor program
which I am using to write this, and have the word
processor and card file on the same disk and can
run either program from the other. The card file is
just what I have been looking for.

Bill Heffley
Lantana, FL

We are glad you like it. It seems that more Kaypro
users (both CP/M and MS-DOS) are finding our
material useful.

In the past I have subscribed to several of the
computer (magazines) available. Some I have
found to be informative. When I first received your
free sample issue I placed it in a drawer for 4 to 5
weeks without looking at it, believing it to be just
another computer book. When I finally read some
of the articles and put some of the programs on
disk and ran them, I was quite pleased. Your
article on SEARCH has been used by me on many
occasions to search for strings, etc. I also enjoy
running Wood.Bas, Card File and Payroll.Bas.

In running some of the programs, and certainly
there are many others out there doing the same, I
look for ways to embellish on a program, such as
Allie Peed from New York did on Card.Bas.

In running Payroll.Bas, you note that there are
no trailing zeros. In playing with the program I
used the LPRINT USING statement and was able
to eliminate most of the program lines that would
call for them.

One last comment. Some computer magazines
have several programs each month. However,
many are written for (computers using PEEK and
POKE.) I have a Tandy Model 12. Some of these
programs appear to be interesting until I see a
PEEK or a POKE statement. Do you know of any
possible way to overcome this, by a patch or
whatever?

Howard M. Cruff, Jr
Attleboro, MA

You are doing exactly what we expect most of our
readers do, which is to take our code and make it do
what you want it to do. As for putting our
magazine in the drawer for four to five weeks: We
would probably have a tough time explaining to
the direct mail experts that we are still getting
orders (I am writing this on the 1st of June) with a
direct mail piece sent out last August! And some
wag once said you were supposed to sell the sizzle,
not the steak. Perhaps you are only supposed to do
that when your product isn't as good as you say it
is? Whatever. It's working, thank you. Now about
your Model 12: The Tandy II, 12 and 16BASICs do
not have PEEK or POKE. We once did minor

surgery on a Model II which took out the
commands HEX$ and OCT$ and put in the PEEK
and POKE. But then you have a new problem. The
PEEKs and POKEs printed for other computers
are specific to those machines. The same PEEK
(number) or POKE (number) will not necessarily
work on yours. You need to know what the PEEK
or POKE is supposed to do on the other machine,
and then find out what locations these same
functions take place at on yours. Fortunately,
some of those programs using these commands
only use them to lock out the BREAK key or to test
to see if the printer is ready or some such. If you can
tell from the rest of the code that this is the case you
can simply ignore those commands and get away
clean. If that is not the case you would need to
know both machines intimately at machine level
to find out what to do. Not much help. If you really
want to adapt the program to your machine, write
the author of the program and ask him/her what
they are trying to do. Knowing that, you can
sometimes find a way around the PEEKs and
POKEs. We try to avoid the use of these commands
even though they are on most of the machines we
have. In this issue though, there is a short demo
program in Beginning BASIC that uses PEEK. In
this case, we couldn't think of any possible way to
get around using it.

...thank you for your help in getting the
Card.Bas/Check.Bas programs running for me...I
called you and after some discussion we found the
problem. I now have what I consider a "Great"
program that I use regularly, and the best part is
that it's FREE...

A. Vincent DiVirgilio
North Tonawanda, NY

You are welcome, but the program isn't free. When
you subscribe to the magazine you get somewhere
between 25 and 30 such programs, so the cost for
that one would be just under one dollar. Such a
deal!

I enjoy CodeWorks very much. The programs are
great. I especially like the payroll program in Issue
4... I hope we can get an inventory program for a
small business soon. Keep 'em flying!

R. Barden
Wood River Jet., RI

Hang in there, it's still in the works.

I think CodeWorks is a great magazine. It's too bad
I cannot reap the benefits since I own aTI 99/4A. I
think for all concerned, that it would be
advantageous to compile and print a command or

instruction list of all the different BASICs for
cross reference, in an issue of your magazine.

In Issue 5,1 agree with Mr. Overton (see Forum,
Issue 5). I hope others show interest so you will
change your format to possibly add an addendum
to each listing for the "not-BASIC, BASIC"
machines. Again, I like the magazine but I can't
spend all my time converting a program not
knowing how-

James Bowe
Canton, OH

We do not anticipate a format change in
CodeWorks. Unfortunately, Texas Instruments
decided to march off to a totally different
drummer. Their BASIC, even though written by
Microsoft (to TI specifications), is so different that
we don't even pretend to cover it in this magazine.
As for a cross reference, try Dr. David Lien's book
The BASIC Handbook, 2nd Edition, ISBN 0-
932760-05-8, Compusoft Publishing, San Diego,
CA. It should be available at most bookstores
which deal in computer-related books (B. Dalton,
Waldenbooks, etc.) for about $19.95

We are out of space again, and there is still a stack
of good letters. Well, more next time. Thanks again
for the input. • Irv

ACME
COMPUTER P.?0(X,MU1£29

"Somebody stole our security program."

6 CodeWorks

Random Files
The 1st of a series on how and why

Terry R. Dettmann, Associate Editor. In this series on random files we will explore
the why's and how's from the ground up. The demo program accompanying this article
should be a good first experience for those who have so far avoided random access
because of the complexity. Our goal is to work towards a mini-database program and a
report generator to go along with it.

Many people who play with programming on the
side shy away from random files because of the
difficulty of making them work correctly.
Sequential files are much easier since we can
simply read them into a program and process them
on a line by line basis.

Random files can be used like that too, but
working with them directly gives you the power to
do things with your programs you might consider
fantastic. How about a file that spans more than
one floppy disk? How about nearly instantaneous
data retrieval? These are only samples of what you
can do with random files.

An example of where random files can be used is
the typical business inventory system. Generally,
the businessman will want to look at the status of
any item in the inventory at any time. If he wants
to look at item 4965, he does not want to wait for the
system to read in the first 4964 items from the disk
first.

With random files, you can go directly to item
4965 in the same amount of time it would take to
get to item 1. Even on older computers this seems
instantaneous. Random access files (sometimes
called Direct Access) work differently than
sequential files. We will need to learn some new
programming techniques to handle them.

This article will go into the basic details of
random files and present a sample program to
show their operation. This should give you some
insight into how you can apply them to your own
programming projects.

Working with Random Files

We will be introducing seven commands (five of
them new) when working with random files. They
are:

OPEN - opens a buffer between memory and your
diskette.
CLOSE - closes the buffer between memory and
your diskette.
FIELD - formats the file buffer (tells what goes
where in the record.)
GET - reads information from the diskette into the
buffer.
PUT - writes the information in the buffer to the
diskette.
LSET - left- justifies the information in a field
within the buffer record.
RSET - right-justifies the information in a field
within the buffer record.

We also have to become acquainted with some
special functions in BASIC that are used to
convert numbers so that they can be used with
random files (all information in random files must
be string form.) These are:

To the disk via the buffer - MKI$, MKS$ and
MKD$, and from the disk via the buffer - CVI, CVS
and CVD.

Before we get into these commands, let's look at
how a random file actually works.

Disk space is set up as a series of "cubbyholes",
each representing one physical record on the
diskette. That is, the size that the system will
handle in one "read" from the disk. This size is
fixed at some number of bytes. CP/M single
density systems would handle 128 bytes per read.
Sizes such as 256 bytes, 512 bytes and 1024 bytes
are common as are many other sizes. On MS- DOS
systems, the default disk access size is set at 128
bytes, (but can be specified in the range from 1 byte
to 32768 bytes.)

CodeWorks 7

Once we know the size of the record on diskette,
we can get any record there by its address. Let's
take the example we mentioned earlier, an
inventory system. Assume we want the inventory
stored by part number with part numbers between
1 and 300. By using the inventory part number as
the address of the item, we can get to any item
directly with random access techniques.

Random Access Commands

In order to understand the random access
inventory, we need to understand that each
inventory item as a "record". A record is simply a
group of logically related information. Imagine
the record is a file folder labeled with that item's
inventory number and stored in a file cabinet in
order of inventory number. We can pick out any
item by its number quickly by looking at the folder.
The file cabinet corresponds to the random access
file in which the records are stored.

We will store all the information in the record as
string variables. We will want to know the
inventory number (its address in storage), its
name, price, cost, amount on hand, who the
supplier is and the reorder level. We could store a
lot more but this wil do for the moment. Table 1
shows the expected size of string fields needed to
store this information.

Table 1

Inventory Fields
Item Size Field Name
Name 20 NM§
Price 8 PR$
Cost 8 CS$
On hand 4 OH$
Supplier 20 SP$
Reorder level 4 RL$

Total 64
Comment 190

Record Size 254

Why these fields and these sizes? They are a best
guess for a simple inventory based on experience.
Every project is a little different so the numbers
could vary depending on what you are trying to do.

Notice that we have included a rather large
comment field that can hold any information of
interest. For the moment, this will serve to
illustrate how such a file is set up. We can make
this whole scheme more efficient depending on the
computer and operating system we are using.

Now that we know what we want to store in the
file, how do we deal with it? For this, we will need
to understand how BASIC deals with files.

OPEN/CLOSE

The OPEN statement tells the BASIC
interpreter that it is to get ready to access a
particular file. It specifies the mode of access and
assigns a file buffer for the system to use in
transferring information to and from the diskette.
The form of the command is:

OPEN "file mode","buffer number","file
name","record size"

The arguments to the command start with the
file mode. For random access files, we use the file
mode "R" (on some systems "D") to indicate that
this file is to be used in "Random" or "Direct"
access mode. In this mode, we are allowed to read
from, or write to, the file at any time.

The buffer number is a memory area associated
with the file. BASIC allows the use of buffers
numbered from 1 through 16, however, not all of
them are always available. When we start BASIC
from the operating system level, we usually have
three buffers available unless we specify more or
less.

The filename parameter tells the operating
system what file to use with the file buffer. If the
file does not exist, it will be created on the diskette
as a random access file.

The record size is the number of bytes per record
in the file. In our example, record size is 254. If we
would eliminate the comment field, the record size
would be 64.

FIELD

The FIELD statement lays out the exact
distribution of the items in each record. We need to
specify where each item will go and how many
spaces it will take up. For our file, we can write the
FIELD statement like this:

FIELD #1,20 AS NM$,8 AS PR$,8 AS CS$,4 AS
OH$,20 AS SP$,4 AS RL$,190 AS CM$

This assigns variable names to fields in
Input/Output Buffer #1 for each of the items in our
i n v e n t o r y a c c o r d i n g t o t h e f i e l d n a m e
assignments in Table 1. The statement first
identifies which file buffer it is talking about (#1)

8 CodeWorks

and then assigns fields to each variable: 20 bytes
for NM$ for the item name, eight bytes to PR$ for
the item prices, etc.

After a file is opened for random access, we
FIELD it with the field statement for the file.

Putting Information into the File

Once the file buffer is fielded, we have to put
information into the buffer. This is done with
LSET and RSET instructions. They assign
information to the field variables that we assigned
with the FIELD statement. LSET puts the
information into the buffer left-justified and RSET
puts it in right-justified. It is important to
remember that if the string to be put into the field is
too long, then LSET and RSET will drop extra
characters from the right of the string. Once the
information is all in the buffer, we write it to
diskette. This is done with the PUT instruction.

PUT/GET

PUT is one of two commands we use to actually
move things to and from the diskette file. PUT
takes anything in the file buffer and places it in the
designated record on the diskette. For example,
PUT 1,1 will put the current file buffer into record
number 1. PUT 1 ,IN will put the file buffer into the
record specified by the variable IN. The disk
operating system (DOS) can go directly to the
record on diskette.

To retrieve the record for use, we use the GET
statement the same way we used PUT. We specify
the number of the file and the number of the record
to read from the diskette and put into the buffer.
GET 1,1 will get record number 1 from file number
1. GET 1,N will get the record specified by the
value of the variable N into buffer number 1.

When we get a record, we don't change a thing on
the diskette. We just make a copy of it in the
memory buffer that we can use to fill our program
variables with.

After we GET a record, we can PRINT the values
of the field variables, and even use them to write
assignment statements. We cannot use them on
the left side of an equal sign however. With our
previous FIELD statement, if we wrote: NM$ =
"Terry Dettmann" without LSET or RSET, then
NM$ would become a normal string variable and
no longer a FIELD variable. But we could use it
like this: NAME$(I) = NM$. In this case we are
assigning the value of the variable NAME$(I) to be
whatever is in the field NM$. In this way

can transfer information out of the buffer for use.
The listing with this article is a short random

access file program to work with. It allows you to
enter 10 items in a file, and then read them back
one by one and compare them to what you had
input to start with. Try it.

What about End of File?

In a random access file, the system takes care of
the end of file automatically. If you PUT to a record
number higher than the current end of file, the
system assigns enough space to handle all the
record numbers up through the record number you
asked for. Those "in between" records are created
with nothing in them (except what may have been
on the disk before, which will probably be
meaningless.) Once those records are created the
system will not release them unless you delete the
entire file.

To find the highest record number in a random
access file, the function LOF(N) is provided in
BASIC. It returns the highest record number of the
file associated with buffer number N. It really
doesn't matter whether the file is sequential or
random, LOF works just the same, but the number
is only meaningful with random files.

The function of EOF(N) does not work at all with
random access files. It gives you no indication of
whether the end of file has been reached with
random access files. If you try to GET a record past
the end of the file, all that will happen is that your
program will stop with an error. Try it with the
sample program by trying to GET record 100.

Numbers

What do we do about numbers in a random file?
We have already stored them as strings. However,
this can be wasteful of space. If we want to store a
number like 30000 as a string we need five bytes,
but as an integer it only takes two bytes in
memory. Can we save it in only two bytes in the
file?

The answer, of course, is yes. But we have to be
tricky about it. The reason is that everything in the
file has to be stored as if it were ASCII coded. This
is fine for strings, but not for numbers. Unless we
want to convert our numbers to strings for storage,
we need to do something else.

BASIC gives us three functions to convert
numbers to equivalent length strings and three
more to convert them back again. They are listed
here (see Table 2.) Notice that in going from

CodeWorks 9

number to string, they always start with "M" and
we have a "$" to indicate that they give string
values. To go the other way, they always start with
"C".

Table 2

Format Conversion Functions
Function Var.Type Field Size

Number to String
MKI$ Integer 2
MKS$ Single Precision 4
MKD§ Double Precision 8

String to Number
/

CVI Integer 2
CVS Single Precision 4
CVD Double Precision 8

Now, the result of the number-to-string
functions does not give us a printable number. For
integers, what we have is a two-byte, binary
number that represents our integer. In fact, you
couldn't tell it from the number stored in memory.
What has happened is that the system has been
fooled into thinking this is a string.

Where is it?

Random access files give us a lot of power, but
they require us to do a lot more work than with
sequential files. With a random file we can get to
any piece of information in the file without delay
and without searching. All we need to know is the
record number for the information, that is, what
was the number we used when we put the
information into the disk file?

The unfortunate situation in many applications
is that the ipformation we want to file has no
natural ordering number. For example, let us say
we are storing a list of our musical cassette
collection. We could assign a number to each
cassette and store the information about it by the
cassette number. That's good, but it has some
problems: (1) the numbers have no natural relation
to individual diskette records, the numbering is
imposed,-, (2) the information we want about the
cassettes has no relation to the numbers unless we
also impose a numbering system; and (3) we still
have to add some kind of system to handle things
like alphabetical and category searches.

Imagine the problem of trying to find something

in your cassette collection. You know that you
want something by Mozart, or Duran Duran. How
are you going to find it? By number? It would be
more convenient to simply tell the computer what
we want and let it worry about finding it. Since the
numbering system doesn't relate to the kinds of
questions we want the data base to answer, we are
back to brute-force searching to find things by
name.

We could go on, but the primary problem should
be clear. For many situations, the record numbers
do not bear a direct relation to the problem unless
we impose a relation. This is not necessarily bad,
but is usually over-used.

Problems do exist where such an externally
imposed relation is used. For example, in an
inventory with part numbers from one to 1000, we
might simply assign space on a data diskette so
that each part number corresponds to the record
number exactly. This is a very simple solution to a
very tricky problem.

The advantages to this simple kind of file model
are: (1) it is very simple to program; (2) it does not
involve much special programming to make it
work; (3) there is no translation to make between
part numbers and record numbers and (4) it is very
fast.

The disadvantages are: (1) part numbers not
being used are just empty space on the diskette; (2)
part numbers must be forced into correspondence
with the record numbers; (3) the largest part
number is set by the maximum size of the disk file;
and (4) the information on a single part might not
correspond to the size of one record.

If the problem is best solved without special
tricks or programming techniques, then by all
means, try the simplest way. If some of the
disadvantages are important, it may be necessary
to improve your programming skills to
accommodate the requirements of your
application. •

In the program on the facing page
note that we had to use a record
length when we opened the file. This
niay or may not be the case for you
depending on your computer. Check
your BASIC manual for the syntax
and your DOS manual to find the
aetault record length of your
machine.

10 Code Works

» 100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

REM ***

REM * *
REM * RANDOM ACCESS FILE DEMO ^
REM * FILENAME: RANDEMO•BAS #

REM *
REM ***

Clear some string space if your machine needs it
1 CLEAR 10000
' A$ will hold the inputs in memory, N$ holds the field names.
DIM A$(10,7),N$(7)
' Open the file for random access
OPEN"R",1,"TEST.DAT",256
' This is the FIELD statement from the article. Everything is
' stored in string form. Try re-doing this for the conversion
' functions for numbers.
FIELD #1, 20 AS NM$, 8 AS PR$, 8 AS CS$, 4 AS 0H$, 20 AS SP$,
AS RL$, 190 AS CM$
' Read in the field names from the data statement.
FOR 1=1 TO 7

READ N$(I)
NEXT I
DATA NAME,PRICE,COST,ON HAND,SUPPLIER,REORDER LEVEL,COMMENT
' Loop to enter data into the file in records 1 to 10.
FOR 1=1 TO 10

CLS:PRINT:PRINT:PRINT TAB(10)"RANDOM FILE TEST":PRINT
PRINT TAB(10)"ITEM NUMBER: ";I

1 prompt for item by name, then input it.
FOR J=1 TO 7

PRINT TAB(10) N$(J)y
INPUT A$(I,J)

1 Put the data into the buffer fields with LSET. Also try
' running this program using RSET instead to see what happens.
' Remember to use the "M" conversion functions if you redo
' this with numbers instead of strings.

LSET NM$=A$(1,1):LSET PR$=A$(I,2):LSET CS$-A$(I,3):LSET

LSET SP$=A$(I,5):LSET RL$=A$(I,6):LSET CM$-A$(I,7)^
1 PUT the buffer onto the disk at record location I .
PUT 1,1

NEXT I
' Look at records on request and compare them with what
' we actually input from the keyboard.
CLS-PRINT TAB(10)"RANDOM FILE TEST":PRINT
PRINT TAB(10)"ENTER A RECORD NUMBER (ENTER 0 TO END) ;
' Provide for the end of the routine with the 0 check.
INPUT N:IF N=0 THEN 770
• G E T t h e r e q u e s t e d r e c o r d . N o t e : I f t h e r e c o r d n u m b e r i s
' >10 the program will error.
GPT 1 N
' Display the FIELD names and what was put there next to
1 what is on the disk.

CodeWorks
1 1

600 PRINT,"ENTERED","IN FILE"
610 1 If you are experimenting with the type conversion functions,
620 ' use the "C" conversions on the field variables in order
630 1 to get printable numbers.
640 PRINT N$(1),A$(N,1),NM$
650 PRINT N$(2),A$(N,2),PR$
660 PRINT N$(3),A$(N,3),CS$
670 PRINT N$(4),A$(N,4), 0H$
680 PRINT N$(5),A$(N,5),SP$
690 PRINT N$(6),A$(N,6),RL$
700 PRINT N§(7),A$(N,7),CM§
710 1 Wait now until you have a chance to see that it's right.
720 PRINT"PRESS ANY KEY TO CONTINUE";
730 * If any key is pressed, INKEY$ will have a value.
740 ' In that case, go get another record number.
750 IF INKEY$<>"" THEN 510 ELSE 750
760 ' End of program. Always close the file before leaving.
770 CLOSE
780 END

Programming Notes

Have you ever wondered how a deleted or killed
disk file can be restored? There are commercial
programs available that will un-kill a file. They
don't always work though, and here is why. When
you kill or delete a file from disk the program or file
is not actually touched. The kill or delete command
usually only removes the filename from the active
directory of the disk. In effect, it releases the space
the file is using for some future data. Commercial
programs that un-kill can be used at this point to
restore the directory entry. If the released file space
was used for another file or program in the
meantime, the original is lost and cannot be
recovered.

In most of our programs until now, we have used
statements like this: IF AOl THEN GOTO 100.
The "GOTO" is, of course, unnecessary. It is
implied and our example may just have well been
written: IF AOl THEN 100. We like to include it
for clarity, but it is not really required, and if you
are short on memory, you can save a few bytes.

Here's a neat little program to play with. It was
sent in by Alva A. Shipman, of Kankakee, Illinois.
You type in your name in all capital letters and the
program will make lower case of all but the first
letter in each word. He said it was "just a little
learning routine" and he is right.

10 ' CHGCASE. BAS ALVA A SHIPMAN
15 DIM AB§(100)
20 CLS
25 LINE INPUT"INPUT YOUR NAME "?

A$
30 PRINT
35 K=LEN(A$)
40 AB?(1)=CHR$ (ASC(MID$(A$,1,1)))
45 FOR 1=2 TO K
50 AB$(I)=CHR$(ASC(MID$(A$,I#

1))+32):IF AB$(I)=CHR$(64)
THEN AB$(I)=CHR$(32) ELSE IF
AB$ (1-1)=cHR$(32) THEN AB$(l)

55 NExTT(ASC(MID?(A?'I'1)))
60 FOR J=I T0 K
65 AD$=AD$+AB$(J)
70 NEXT J
75 PRINT
80 PRINT AD$

Puzzler # 5 and # 6
and the answer to puzzler # 4

Puzzler 4 from the last issue asked for the least
amount of code needed to print the larger of two
values that were input. It was also supposed to
print zero if the two values were equal.

It turns out that the number of characters
required to do the job is 21 (including the command
PRINT, but not the line number.) See figure 1. We
(and apparently, you too) couldn't find a way to do
it in less. Using IF...THEN to find the larger value
would work, but would not use the least code to do
it. Using Boolean values shortens the code and
allows the decision to be made directly. Somehow,
understanding what happens is easier than
explaining it. If we take (A>B) we get -1 if A is
greater than B. We get zero if it is not. If we
multiply the resulting number by A we will get -A,
which is -1 times A or zero when A<B. Otherwise, if
we do (B>A)*B, we get -B when B>A and zero
when B<A. If we subtract the two parts of the
formula (A>B)*A-(B>A)*B and multiply by -1 we
have the formula which works.

Figure 2 shows how this formula can be included
in a defined function. You can use it to test for
equality of A and B, as in: IF FNBIG(A.B)—0
then.... Or, you can test to find out which variable
is the larger of the two: IF A=FNBIG(A,B)
THEN..(A is the larger) ELSE (B is).

It is interesting to note that this formula will
return the more positive of two negative numbers
and not the absolute value of the number. Which is
to say that -3.5 and -3.8 will show -3.5 as the larger
number.

Of the many answers we received to this puzzler,
only four of you did it in 21 bytes. Most of the others
worked correctly, but used more code to get to it.
One of them, A*-(A>B) OR B*-(B>A), worked well
on any numbers except decimal numbers. Given
3.4 and 3.5, for example, it returned 4 as the larger
of the two. Those who did it in 21 were.

E. L. Clark, St. Petersburg, Florida
Jerry Bails, St. Clair Shores, Michigan
Richard Oberdorfer, Newport, Washington
Mark Gardner, N. Hollywood, California

Someone commented that we would have to
come up with tougher puzzlers than this one.

John Anderson, of Arlington, Massachusetts,
made an interesting comment:
..."I really enjoy the Puzzler. However, I feel that
you should point out that the objective of good code
is not to be a "Puzzler" but to be clear and simple,
for then it has the best chance of being correct..."

We agree, but the puzzlers are fun, and
sometimes even useful.

Thank you all again for responding.

Puzzler 5

While working on a text formatting program (for
a future issue) we ran across a particularly
interesting case involving leader lines. On
typesetting machines, leaders are lines that can be
drawn across the available line length space. As
an example, there is one earlier in this column, just
before we started with Puzzler 5. It was a font 3
leader (bold underline), which covers the entire
line length (in this case, 20 picas, or about three
and one-quarter inches.) Leaders automatically
adjust to remaining line length, and can come
before some word or words, or after them. They can
also be used to fill between two groups of words,
assuming there is enough space.

We write text for CodeWorks on a computer, then
send our files (written with a word-processor) via
RS-232 to the typesetter. This means, of course,
that there must be some convention in using
control codes to tell the typesetter what to do and
when. On our particular typesetting machine (an
A-M Varityper 3510) the control convention is to
use a dollar sign followed immediately by two
capital letters. This signals the typesetter that the
two capital letters, and the characters following,
up to the next space, are some kind of control and
to act on it but not to print it. The control code to
use a leader is a $UL.

Although this is not particularly relevant to our

CodeWorks 13

puzzler, it does provide some background clues.
During the development of our text processing
program it became apparent that making leaders
which easily adjust to the line width would be very
nice to have. Using the typesetting code and
modus operandi seemed natural. It also seemed
like a perfect "black box" problem for our puzzler,
which follows:

Given a line length of 40 characters (variable
LL) and A$ as the input string, the black box
produces output as in figure 3. The input lines look
like this:

100 * REM PUZ5.BAS
110 LL=40
120 PRINT"For a leader line, insert $UL at the
place"
130 PRINT"where you want it to appear in the
line."
140 PRINT
150 LINE INPUT'Tnput A$ ";A$

That is what goes into the box. Some examples of
what comes out of the box are shown in figure 3.
The question is: What is the code in the black box?

We have it down to less than a dozen BASIC
statements. It goes without saying that they are

mostly involved with string manipulation. They
are all common BASIC functions found in most
Microsoft BASICs (with the exception of some of
the lap-portables.)

On this one we are not necessarily looking for
the shortest code. Rather, we are looking for an
approach and code that solves the problem in the
most straightforward and efficient manner. That
leads to a subjective evaluation on our part, but we
won't be the only judge. We will print the best of
your answers and let you in on the judging. To keep
things simple, do not use more than one leader
command per input line. Figure 3 provides several
clues.

Puzzler 6

Now, just to get our puzzler numbers and our
issue numbers synchronized, here is "throw in"
puzzler 6:

In the above discussion we noted that the code to
make the typesetter do a leader line was $UL.
There is no key or switch on our typesetter to
prevent those control codes from acting. So how
did we get them typeset on this page?

Have fun with both puzzlers. We are now in sync.

Figure I

10 INPUT"WHAT IS VALUE OF A";A
20 INPUT"WHAT IS VALUE OF B";B
30 PRINT—(A>B)*A—(B>A)*B
40 '2345678901234567890123

Figure 2

10 DEF FNBIG(A,B)=-(A>B)*A-(B>A)*B
20 INPUT"WHAT IS VALUE OF A";A
30 INPUT"WHAT IS VALUE OF B";B
40 PRINT FNBIG(A,B)

Figure 3
Input A$: $UL leader first

leader first

Input A$s leader last $UL
leader last

— iuj.uu.Le
leader ln the middle

Input A$: Coke(per case) $UL $6.95
Coke (per case) ' 9 5

Input A$: This $20 device is UL aporov^m
This $20 device is UL approved oved$UL

14
CodeWorks

Plist.Bas
Give some form to your program listings

Terry R. Dettmann, Associate Editor. This useful utility is our tutorial program
for this issue. It observes line indents on wrap-lines and pages to your choice, along with
headers and page numbers. Terry wrote it in a conversational style with his friend
"Harvey" and tried to answer the most asked questions about such a program. It also
allows single or double spacing, a much asked-for feature by many of you.

We got together that night to do a little training
in BASIC programming. Harvey and I had known
each other for awhile, but Harvey had only
recently become interested in programming and
wanted to soak me for information. I didn't mind,
it's what I do best.

"I'm fresh out of ideas for what to do," Harvey
said. "I want to learn, but if you get too
complicated, I'll be lost before we're started."

"Let's start with a simple project then, one that
we can use when we go on to more difficult projects
later. How about a program that formats a BASIC
program onto a printed page with nice headers and
so forth. Shall we start?"

"All right, but don't go too fast or I'll be lost for
sure."

"OK. To start with, let's figure out what we want
this program to do. It's got to read a program from
the disk and output it to the printer nicely
formatted. Further, we'll want to have the listing
tell us the name of the program file we're
formatting and number the pages. To save
ourselves a lot of trouble, we 11 insist that the
program on disk has to be saved with the A option
on the save command."

"What's that?"
"The 'A' option tells the computer to write the

program to the disk in readable form. Some people
call this the ASCII option since it writes out the
whole program in readable ASCII form, just like
you typed it into the computer. To show you what
to do, I'll type in a little two line program and save
it normally and in ASCII form like this:

10 REM THIS IS A TEST PROGRAM
20 PRINT "TESTING 1 2 3":GOTO 10

SAVE "TEST.BAS"
SAVE "TEST.BAS",A

Figure 1 - Two line program and both save
commands.

"On the disk, the normal save has made a file in
a special compacted form which matches what the
interpreter for BASIC stores in memory. This
saves time when you want to start a BASIC
program from disk. With the 'A' attached, the
program is stored in readable form so we can write
a program to read it like any other text file. Let's
see what we can do with it.

"First, let's write a program to simply read the
file and write it to the screen. Since the file is a
sequential file, we'll have to OPEN it and then
read in the lines one by one and deal with each one
while it's in memory. We can do that like this:"

200 OPEN "TEST.BAS"
210 IF EOF(1) THEN 300
220 LINE INPUT #1, LN$
230 PRINT LN$
240 GOTO 210
300 CLOSE 1
999 END

Figure 2 - short program to read lines from
the file and write to the screen.

"If we run the program as is, it will read the
program TEST.BAS from the disk to the screen.
Simple huh?"

"Oh sure" was Harvey's reply. "I understand
how to open files. The first string in quotes tells the

CodeWorks 15

system we want to input information from the file,
the number after it tells it to use file buffer 1 in
memory, and the last is the filename to use. But
what does the EOF in the next line mean?"

"EOF stands for 'End of File'. It's a test that tells
us whether or not the file buffer given in the
number has reached the end of the file. You can
imagine it returning a TRUE or a FALSE value. If
EOF(l) is TRUE, that means that we have already
reached the end of the file. If we try to read again,
we'll get an error from the BASIC interpreter to tell
us we tried to read beyond the end of the file. That
will cause our program to crash. We'd like to avoid
crashes, they tell us we didn't write the program
right.

"After that it's simple, read a line, print it, and
then go back to the test to see if the last read took us
to the end of the file.

"We simply keep that up until we're done. Now
does it make sense?"

"Sure, but what good does this do us for
formatting the printed text?"

"Well, I'll show you. Will you agree that the real
problem could be solved if we would just have a
formatted way to print the line of text instead of
our simple print statement?"

"Sure, but I don't see how we can do it."
"We can solve the problem easily by replacing

the PRINT statement with a subroutine that
prints the line the way we want it. After all, a
statement in BASIC such as PRINT is really just a
subroutine call anyway, it's just that the
subroutine is in the interpreter and not in our
program."

"That actually makes some sense for once.
Subroutines and GOSUB's didn't really make
much sense but when you think of them as
equivalent to new instructions for the interpreter
to execute, it seems simpler."

"In some programming languages, the
similarity is so great that you actually ARE
creating new statements. We call these 'extensible'
languages since we can 'extend' them as we want.
Back to our subroutine though. We could write the
subroutine like this and make it do the same thing
as the original program:"

200 OPEN "I'M, "TEST.BAS"
210 IF EOF(1) THEN 300
220 LINE INPUT #1, LN?
230 GOSUB 1000
240 GOTO 210
300 CLOSE 1

16

999 END
1000 REM PRINT A LINE
1010 PRINT LN?
1020 RETURN

Figure 3 - same program but with a
s u b r o u t i n e c o n t a i n i n g t h e P R I N T
statement.

"When we run the program, it does the same as
before, no change. Now, let's make the subroutine
more complicated so it breaks the line apart the
way we want. Let's start by looking at the problem
of breaking the line apart as a problem in itself.
You agree that the rest of the program will print
the program line by line don't you?"

"Sure"
"Then if we solve the problem of breaking apart

a line, we've got the whole program ready to go.
Let's start with breaking the line on spaces only.
That would be OK if we were just trying to do word
wrapping for a print formatter, but there is going
to be more before we're done. For the moment
though, let's deal with spaces only.

"Let's say we want the line to be 60 characters
long. If the line is less than 60 characters long to
start with, we'll just print the line as is. Ifthelineis
greater than 60 characters long, then we go at it
like this:
1) Start looking at the line starting at the 60th
character. If it's a blank then we breat the line at
that point and look at the remainder of the line as
a separate problem.
2) If the 60th character is not a blank, then we step
back one character at a time until we find one and
break the line there.
3) If we don t find a blank by some point, we just
say Aw *$!% and break the line on the 60th
character anyway,

"Now the subroutine at line 1000 could be
written like this:

l aia REM PRINT A LINE
1020 GOSUB 1100

t R I N T S T R I N G ? (L I , » ") ; P L ?
1035 IF LN?=M" THEN RETURN

ELSE 1020
1 0 4 0 G O T O 1 0 1 0

tn^!fre+uU^0U^ne implement a routine
J N « l u 6 0 c h a r a c t e r s o r l e s s o f I N S i n t o
This w PUt re8t °f the characters in IN$.
extrart/iv, program sets up a loop which
subrontin e P?rtlon °f the line to print in the
checks tr> 6 8 t *le ^en P^nta it. and finally

see if there's anything left to print. If no*

Code Works

it's done."
"But this still doesn't get the line printed really

does it?"
"No, the real heart of the program is now

concentrated in the subroutine at line 1100. As I
said before, the subroutine will break apart the line
and deal it out for printing as we need it.

"Now let's get the rest of the program written.
We start off at line 1100 like this:

1100 REM — BREAK A LINE
1110 IF LEN(LN?)<60 THEN PL?=LN?:

LN?=""sRETURN
1120 FOR J=60 TO 30 STEP -1
1130 IF MID?(IN?,J,l)=" " THEN

1150
1140 NEXT J
1150 J=60
1160 JN?=MID?(IN?,1,60):IN?=

STRING?(SL," ")+
MID?(IN?,J+l)

1170 RETURN

"This makes it pretty simple. First we see if the
line is already less than 60 characters in length. If
it is, then just return it for printing. If it's not short
enough, we start at the 60th character and scan
backwards through the line until we find a blank
or get down to the 30th character. If we ever get
that far, we simply break the line at the 60th
character and decide that we can't break the line
normally."

"That's all there is to it?"
"That's all. At this point, the program is

complete. Everything that has to be done is done.
It will successfully print the program with lines
formatted to the correct length on the screen."

"I can see how to get the program to the screen
now. I can even see how I can get it to the printer by
changing the PRINT statement to an LPRINT
statement. I get a pretty nice listing that way, but
how do I get it to break the listing into numbered
pages with headings?"

"In order to do page breaks, we have to keep
track of how many lines we're printing. We might
as well also change all PRINT statements to
LPRINT right away so we can print to the printer.

"In paging our listing, we have to create a
routine (another subroutine again) which will
print the headers we want. Here's a simple one
that should work:

1050 REM — PRINT HEADER
1060 FOR 1=1 TO MX:LPRINT" "s

NEXT I:PG=PG+1
1070 LPRINT STRING? (LI, " ") ;

LPRINT"FILENAME: ";FF?;
TAB(LW)"PAGE";PG

1080 LPRINT STRING?(LI,"
LPRINT STRING?(LI,"-")

1090 MX=6:LC=5:RETURN

"What this does is get us from page to page with
some blank lines at the bottom and the top. The
variable MX is set to count down several lines (3 on
the top and 3 on the bottom) so we don't write over
the page break. Then we increase the page number
(PG) for the next page and print a two line header
with the file name and page number.

"As we come out of the header, we set the
number of lines to get across the page break at 6
since we will print 60 lines per 66 line page."

"Wait a minute! What's this about a 66 line page
and printing 60 lines? And where did 'MX' and
'LC' and 'LW' come from?", Harvey asked.

"Sorry. First let's look at the numbers 60 and 66.
If you use standard 8 1/2 X 11 inch paper, your
printer can print 66 lines on a single sheet and 80
characters across the sheet. This is pretty
standard for the kinds of printers we deal with.
Some printers allow changing these sizes, but we
won't worry about those for this.

"Since we don't want to print on top of the page
break, we'll limit ourselves to printing only 60 lines
on each page including the header. That's also
pretty standard. Now, on the very first sheet, we
put the printer aligned at the top of the page, so the
first time we print a page, we'll want to print only
three lines. We can handle that by setting MX to 3
when the program starts. On any page after the
first, we have to also space down three lines at the
bottom of the page so we set MX to 6 at the end of
the subroutine.

"The variable LC is our line counter. We'll bump
it every time we print a line so that we can check to
see when we've printed all the lines we need on a
page. We'll force it to print the first header by
setting the line counter to 99 when the program
starts. 'LW' is simply the line width which we set to
60 characters.

"In order to make this work, we need to add some
other lines to call the header routine and set the
line values we need. You can add these and then
try the program again:

CodeWorks 17

10 LP=60:PL=66:LI=10:LW=60
205 PG=0:MX=3:LC=99
1025 IF LC>LP THEN GOSUB 1050
1035 LC=LC+1

"Pretty impressive, isn't it?"
"Can I find a use for that! I'll make nice listings

of all my programs with this so I can keep them in
a notebook for reference."

"That's a good idea. Use the notebook to
document your programs along with notes on the
design. It will help you make changes later. I
guarantee that six months after you wrote the
program, you'll have to learn it all over again.

"Before you just run off though, I have a listing
here of the same program from the CodeWorks
Download which goes a little further still. I'll
explain how it works and then you can go off and
get a copy yourself from the Download System or
type this one in directly. It's been renumbered to
make it easier to type in using the AUTO
numbering function in BASIC.

"To start with, the program is built in the same
way we've been building our page lister, but it's
more flexible and sophisticated. The main part of
the program runs from lines 100 through 550 and is
broken up into three major pieces.

"Lines 100-170 are an initialization section.
You'll recognize the variable setting in line 150,
but there's something new as well. DS is a double
spacing parameter. We set it to '1' for single
spacing and '2' for double spacing. Line 160
defines variables TRUE and FALSE for use in
logical decisions. I find it easier to understand a
program which has IF statements using variables
that are TRUE or FALSE. It's just a convenience
but I find it nice. It also matches common practice
in programming languages like 'C'.

"Line 170 adds a whole new dimension to the
program. It sets the characters we'll allow lines to
be broken on. In a program we can safely break on
more than just spaces. I'll show you how it works
in a minute.

"Lines 180 through 480 do some setup by
interacting with the operator. Beyond pretty
formatting for the screen, we've set it up to act on a
menu of options. You can leave everything at
default just by pressing the RETURN or ENTER
key. If you type a number though, we'll enter a new
value for that parameter. Notice how lines 320
through 350 make this decision for us on single key
strokes.

"After we've gotten the parameters set the way
you want them, we input the file name to print
rather than requiring you to retype the program
each time you want to change the program name.
Then comes the main loop in lines 490 through 530
just as before."

"Nice," Harvey said, "How did you know to
check for all those things? I would have never
thought of setting up a menu to enter things. In my
programs you have to type all the parameters each
time."

"To be honest with you, I cheated. See I've done
this kind of program before, and each time I've
done one I've learned a little more. Every program
I do makes the next just a little better.

"The rest of the program is pretty much the
same. Our print lines subroutine has some new
variables as you'll see. SL is defined to locate the
first non-blank character in the line after the line
number for indenting.

"First we set it to the first blank in the line which
is always after the line number, then in line590 we
keep advancing it until the next character is not a
blank.

In line 630, we take care of double spacing if it's
needed. The page header routine hasn't changed at
all, but the line selection routine has gotten more
complex.

"We set the string flag to FALSE and then check
to see if the line is short enough to print directly."

Whoa, Whoa! You brushed over that string flag
too quickly. Why bother keeping track if we're in a
string? Who cares?"

Well I do for one, and when you see why, you'll
care too. If you don't check whether you're in a
string and find a breakable character in it, you'll
break the string right in the middle and make it
harder to understand. Since I generally keep my
strings pretty short and don't write big long ones, I

ecided to keep them together as much as possible,
so when I'm inside a string, I don't break the string
i can help it. Line 750 does this by skipping the
break step if I'm inside a string.

Lanes 730 through 770 are our loop to break the
line. Lines 740 and 750 are in there for the string
check I ve already mentioned. Line 760 has
changed some though. Now I look at each
character and check to see if it's in the string I
defined above with the characters to break the line

"M °ne' * break the line as before."
Move over. I want to get this from the download

" o n ? o t o a w a y " W h a t ' 8 t h e n u m b e r a g a i n ? "
• ^em«nber it's 300 baud, 8 bits,

ignore panty, 1 8toP bit"

CodeWorks

FILENAME: PLIST.PUB PAGE

100 REM * PLIST.BAS * PROGRAM LIST UTILITY * CODEWORKS MAGAZINE
110 REM * 3838 S. WARNER ST. TACOMA, WA 98409 (206) 475-2219
120 REM * WRITTEN BY TERRY R. DETTMANN
130 DEFINT A-Z
140 'CLEAR 10000: ' USE ONLY IF YOUR MACHINE NEEDS TO CLEAR SPACE
150 LI=10:LW=60:LP=60:PL=66:DS=1
160 TRUE=-1:FALSE=0
170 WP$="
180 CLS: ' CHANGE THIS CLEAR SCREEN COMMAND TO SUIT YOUR MACHINE
190 PRINT STRING?(22,);" The CodeWorks ";STRING?(23,"-")
200 PRINT " PRINTER PAGE FORMATTER"
210 PRINT " a page formatter by Terry R. Dettmann"
220 PRINT STRING?(60,
230 PRINT
240 PRINT"Current settings: "
250 PRINT TAB(10);"1 - Left Margin is now set at ";LI
260 PRINT TAB(10);"2 - Line length is now set at '/LW
270 PRINT TAB(10);"3 - Page length is now set at "?PL
280 PRINT TAB(10);"4 - Lines to print now set at ";LP
290 PRINT TAB(10);"5 - Line spacing is now set at —";DS
300 PRINT
310 PRINT"Press Return for current settings, 1 to 5 for changes.
320 Q?=INKEY?:IF Q?="" THEN 320
330 IF Q?=CHR?(13) THEN 470
340 IF Q?<"1" OR Q?>"5" THEN 310
350 ON VAL(Q?) GOTO 360,380,400,420,440
360 INPUT"How many spaces for left margin ";LI
370 GOTO 180
380 INPUT "How many characters per line ;LW
390 GOTO 180 „
400 INPUT "How long is your printed page ;PL
410 GOTO 180 „
420 INPUT"Print how many lines on the page ?LP
430 GOTO 180 . „
440 INPUT"Enter 1 for single, 2 for double spacing- ?DS
450 IF DS<1 OR DS>2 THEN GOTO 440
460 GOTO 180
470 PRINT
480 LINE INPUT"Name of file to print (must be an ASCII file) ";FF?
490 OPEN "I",1,FF?:LC=99:PG=0:MX=(PL-LP)/2
500 IF EOF(l) THEN 540
510 LINE INPUT #1,LN?
520 GOSUB 570
530 GOTO 500
540 CLOSE
550 END
560 REM PRINT A LINE
570 SL=INSTR(LN?," ")
580 IF MID?(LN?,SL+1,1)=" " THEN SL=SL+l:GOTO 580
590 IF LC>LP THEN GOSUB 650
600 GOSUB 700
610 LPRINT STRING?(LI," ");PL?:LC=LC+1

Code Works 19

FILENAME: PLIST.PUB PAGE 2

620 IF DS=2 AND LC<=LP THEN LPRINT" ":LC=LC+1
630 IF LN?="" THEN RETURN ELSE 590
640 REM PRINT PA(?E HEADER
650 FOR 1=1 TO MX:LPRINT" ":NEXT I:PG=PG+1
660 LPRINT STRING?(LI," "); :LPRINT "FILENAME: M ?FF?;TAB(LW)"PAGE";PG
6 7 0 L P R I N T S T R I N G ? (L I , " ") ; : L P R I N T S T R I N G ? (L W ,)
680 MX=PL-LP:LC=3:RETURN
690 REM SELECT THE LINE TO PRINT
700 SF=FALSE
710 IF LEN(LN?)<LW THEN PL?=LN?:LN?="": RETURN
720 FOR J=LW TO 30 STEP -1
730 IF MID?(LN?,J,1)=CHR?(34) THEN SF=NOT SF
740 IF SF THEN 760
750 IF INSTR(WP?,MID?(LN?,J,1))>0 THEN 780
760 NEXT J
770 J=LW
780 PL?=MID?(LN?,1,J):LN?=STRING?(SL," ')+MID?(LN?,J+l)
790 RETURN

We have used this program to list
itself. You can do the same to make
sure you have entered it correctly.

"But I can't ignore parity."
"Well start with Odd parity then, if it doesn't

work then try Even. Some computers seem to work
one way, some another. I've been successful using
7 bits, no parity, but some people have trouble."

"When you get the program, there is an
improvement you can think about for it. Imagine
what would happen if the 60th character in the line
were already inside a string when we reach that
point. The program wouldn't deal with the strings
correctly. In order to check this possibility, we
have to scan the line to the 60th character and set
the string flag (SF) when we start the line break
routine. Do you think you can do that?"

"Sure, let me at it."
"There are lots of other things you could do to the

program. For example, you could put the date and
time of the listing there. You could modify the
program to understand compacted BASIC files
and translate them back to the full ASCII form
and then do the listing. You could also adapt the
program to make nicely paragraphed listings of
text files. Try some of these and see if you can do
them." •

'His keywords are shut up and get out o f here."

20

Dstat.Bas
Describing your statistical samples

Philip E. Clark, Martinez, GA. There are statistics and then there are statistics. This
program provides you with descriptive statistics on any set or sets of data. The solution
fits on one screen and may be printed using your screen-print function, if desire .

DSTAT.Bas is a descriptive statistics program
that calculates descriptive measures sufficient to
portray a data set. However, to correctly interpret
the computed values, the user must have an
understanding of each statistic. The purpose of
this article is to present an overview of the
program's descriptive measures as well as describe
the program.

Statistical tests are often divided into two
groups: inferential and descriptive. Inferential
statistics, such as t-test, analysis of variance, and
chi-square, help determine if an hypothesis is true
or false. Descriptive statistics describe or portray a
set of data. Any set of data can be summarized by
measuring three characteristics: central tendency,
variability and the shape or curve of the
distribution. Descriptive statistics involve a set of
mathematical formulae that measure these
qualities.

Measures of central tendency provide an
estimate of where on a continuum most of the data
falls or clusters. The common tests are Mean,
Median and Mode. The Mean is simply the
arithmetic average of the data. The Median is the
midpoint of a set of data. Half the scores will be
above and half below the median. The Mode is the
value of values that occur most often. A set of data
may have more than one mode.

The Mean is the most common estimate of
central tendency. However, extremely high or low
scores pull the mean in their direction. When
extreme scores occur, the median or mode may be
the better measure of central tendency. When
describing group performance, such as class
performance on an exam, the mean is generally
appropriate. However, when attempting to
determine the typical salary in the United States,
the mean will provide an inflated estimate because
of the extremely high salaries of a few citizens.

Variability refers to the dispersion of the data
and is measured by Range, Variance, and
Standard Deviation (SD). Range is the difference
between the highest and lowest scores. Obviously,

"8 S s

Symmetrical or bell-shaped

Skewed to the right
(positive skewness)

Skewed to the left
(negative skewness)

CodeWorks 2 1

the greater the range, the greater the data's
variability. Of Variance and standard deviation,
the latter is the most useful. The unit of
measurement of standard deviation is the same as
the original measure. For example, if the data is in
inches, the standard deviation will be in inches. As
a general rule, approximately 68% of a sample will
fall within one standard deviation above and
below the mean and 95% within two standard
deviations of the mean.

The shape of the distribution of scores is
measured by tests for kurtosis and skewness. To
understand the shape of a distribution, consider
the "bell-shaped curve" or the normal distribution.
The curve is high in the middle and low on both
ends because the bulk of the data is in the middle.
Also, one side of the curve mirrors the other side, or
the curve is symmetrical. The values of kurtosis
and skewness for the normal distribution are both
zero.

Kurtosis measures the height of the curve. The
more centralized the data, the higher the peak and
kurtosis will have a positive value. Greater
variability results in a flatter curve and kurtosis
will be negative. Skewness measures the
symmetry of the curve. If the bulk of the data falls
in the lower range, the distribution is considered
positively skewed and skewness will have a
positive value. If the bulk of the data falls in the
higher range, the distribution is negatively
skewed and skewness will have a negative value.

DSTAT is a BASIC program that uses one disk
file. The program has one menu, and choices are

made by pressing the appropriate key. The
program utilizes a string array and a single
precision array of equal length. Data is entered
and stored as string values. This allows positive,
negative and zero values to be used as data. String
values are converted to single precision prior to
processing by the VAL function.

The following variables are double precision:

SU: the total of all the data, also called the sum of
x's.
SV: the total of each datum squared, also called the
sum of the x-squares.
Q3: the total of each deviation score (difference
between each datum and mean) raised to the third
power.
Q4: same as Q3, but deviation scores are to the
fourth power.

The values of these variables can be quite large
and double precision was necessary despite the
slowing of program execution.

Data may be entered from the keyboard or disk
drive. After entering data from the keyboard, type
END to return to the menu. You may load data
from the diskette and enter more values manually.
When processing the data, you are informed what
statistics are being calculated. You may
recalculate statistics at any time since
intermediate values are zeroed each time through.

The program could be improved in a few ways.
An additional statistic, Confidence Interval, could
be added. •

See page 26 for a sample run of this program.

100 REM ** DSTAT.BAS BY P. CLARK, FOR CODEWORKS MAGAZINF
110 REM * 3838 S. WARNER ST. TACOMA, WA 98409 (206) 475-2219

130 'CLEAR 6500: USE ONLY IF YOUR MACHINE NEEDS TO CLEAR SPACE
140 DEFSTR A,B CLEAR SPACE
150 DEFINT I,J,K,L,N,Z
160 DEFDBL D,S,X,Y
170 DIM A(150),C(150)
180 N=0
190 '
200 ' Define functions for population variant
210 1 riance and sample variance.

220 DEF FNPV(X,Y,Z)=(X-(Y*Y/Z))/Z
230 DEF FNVA(X,Y,Z)=(X-(Y*Y/Z))/(z-l)
240 CLS

260 ^.•sTRi,,G5(2^;-s
,rRTj%crIeBn8 •'««»»<*

270 PRINT" £or one SMPle - by Philip1 ciark" C S

280 PRINT STRING?(60,
290 PRINT
300 PRINT TAB(10)"I)nput or add data"
310 PRINT TAB(10)"R)ead data from disk"
320 PRINT TAB(10)"W)rite data to disk"
330 PRINT TAB(10)"S)how results
340 PRINT TAB(10)"Q)uit the program"
350 PRINT:PRINT"Selection
360 B=INKEY$:IF B="" THEN 360
370 IF ASC(B)>90 THEN B=CHR$(ASC(B)-32)
380 I=INSTR(1,"IRWSQ",B):IF 1=0 THEN 360
390 ON I GOTO 430,1570,1720,530,1820
400 '
410 ' Input data from keyboard
420 '
430 CLS
440 PRINT"Type END to quit":
450 PRINT
460 IF C$="" THEN INPUT"Name of variable ;C$
470 N=N+1
480 PRINT"Datum #";N;INPUT A(N)
490 IF A(N)="END" OR A(N)="end" THEN N=N-l:GOTO 240 ELSE GOTO 470

500 '
510 ' Convert string to numeric value
520 '
530 FOR 1=1 TO N
540 C(I)=VAL(A(I))
550 NEXT I
560 '
570 ' Compute sum of x's and sum of x—squares
580 '
590 SU=0:SV=0
600 CLS
610 PRINT"Computing sum and sum of variable squares
620 FOR 1=1 TO N
630 SU=SU+C(I)
640 SV=SV+C(I)*C(I)
650 NEXT I
660 '
670 ' Compute mean, variance, standard deviation
680 '
690 PRINT:PRINT"Computing mean, variance & standard deviation
700 ME=SU/N
710 VR=FNPV(SV,SU,N)
720 ES=SQR(VR)
730 EV=FNVA(SV,SU,N)
740 ED=SQR(EV)
750 '
760 ' Compute kurtosis and skewness
770 '
780 Q3=0:Q4=0
790 PRINT:PRINT"Computing kurtosis & skewness

CodeWorks

800 FOR 1=1 TO N
810 DE=C(I)-ME
820 Q3=Q3+DE~3
830 Q4=Q4+DE~4
840 NEXT I
850 EK=((Q4/N)/VR*2)-3
860 OS=(Q3/N)/ES~3 „
870 PRINT:PRINT"Arranging data in ascending order
880 FOR 1=1 TO N-l
890 FOR L=I+1 TO N
900 IF C(L)<C(I) THEN T=C(I):C(I)=C(L):C(L) =T
910 NEXT L
920 NEXT I
930 '
940 1 Compute range and median
950 '
960 PRINT:PRINT"Computing range and median"
970 MI=C(1):MA=C(N):RA=MA-MI
980 '
990 ' Median
1000 '
1010 I=N/2
1020 '
1030 1 Integer division results in an integer quotient
1040 1 if I*2=N then sample size is even otherwise it is odd
1050 '
1060 IF I*2=N THEN MD=(C(I)+C(l+l))/2 ELSE I=(N+1)/2:MD=C(I)
1070
1080 ' Determine mode
1090 ' First, zero the mode array
1100 '
1110 FOR 1=1 TO 5:MO(I)=0»NEXT I
1120 PRINTsPRINT"Checking for existence of mode(s)"
1130 Kl=l: ' Counter for mode array
1140 MK=3: ' Currtent number of values in mode
1150 TS=C(I): 1 Variable used to compare data
1160 MR=1
1170 '
1180 1 MR is a variable to count data items & compare with MK. To
1190 ' create a mode, MR must equal or exceed MK. There must be
1200 ' at least 3 occurrences of a datum to create the first mode.
1210 '
1220 FOR 1=2 TO N
1230 IF TS=C(I) THEN MR=MR+1:IF I< >N THEN 1390
1240 '
1250 1 MK & MR are now compared
1260 '
1270 IF MK>MR THEN 1330
1280 K1=1:M0(K1)=TS:MK=MR:K1=K1+1
1290 FOR L=Kl TO 5
1300 MO(L)=0
1310 NEXT L
1320 GOTO 1370

330 IF MK=MR THEN M0(K1)=TS;K1=K1+1
340 '
350 ' MK is greater than MR
360 '
370 TS=C(I)
380 MR=1
390 NEXT I
400 '
410 1 Display results
420 '
430 CLS:

I 1440 PRINT"Variable "yC$yTAB{32)"Sample size ";N
i 1450 PRINT;PRINT"Mean M;ME;TAB(32)"Median ";MD

460 IF M0(1)=0 THEN PRINT;PRINT"There is no mode.";GOTO 1480 ELSE
PRINT;PRINT"Mode ";;FOR 1=1 TO 5;IF MO(I)<>0 THEN PRINT MO(l)y"
"y;NEXT I

470 PRINT" Frequency ";MK
480 PRINT;PRINT"Population variance "yVRyTAB(38)"Std. deviation "y

ES
490 PRINT"Sample variance "yEVyTAB(38)"Std. deviation "yED
500 PRINT;PRINT"Range HyRAyTAB(20)"Max "yMAyTAB(32)"Min "yMI
510 PRINT;PRINT"Kurtosis "yEKyTAB(32)"Skewness "yOS
520 PRINT;PRINT"Press any key to continue"y
530 B=INKEY$;IF B="" THEN 1530 ELSE 240
540 '
550 1 Reads data from sequential disk file
560 '
570 CLS
580 LINE INPUT"Name of disk file to read; "yF$
590 OPEN "I",1,F$
600 INPUT #1,C$
610 PRINT C$
620 IF E0F(1) THEN 1670
630 N=N+1
640 INPUT #1,A(N)
650 PRINT A(N)y" "y
660 GOTO 1620
670 CLOSE 1
680 GOTO 310
690 '
700 ' Sequential output of data to disk file
710 '
720 IF N=0 THEN 290
730 CLS
740 LINE INPUT"Name of file to write to; "yF$
750 OPEN "0",1,F$
760 PRINT #1,C$
770 FOR 1=1 TO N
780 PRINT #1f A(I)
790 NEXT I
800 CLOSE 1
810 GOTO 310
820 END

Code Works 25

Name of disk file to read: DSTAT.DAT
F l Q T A T H A T
2 4 6*8 9 10 11 12 13 13 13 20 13 10 7 5 3

R)ead data from disk
W)rite data to disk
S)how results
Q)uit the program

Selection ...

If you input the data as shown above, you
should get the results shown below.

Variable DSTAT.DAT Sample size 17

Mean 9.352941 Median 10

Mode 13 Frequency 4

Population variance 19.87543 Std. deviation 4.458187
Sample variance 21.11765 Std. deviation 4.595394

Range 18 Max 20 Min 2

Kurtosis -9.518648E-02 Skewness .3196447

Press any key to continue

Programming Notes

Some operating systems will automatically go to
any other active drive to find a program or file if it
is not on the logged-on drive. This is especially true
of TRSDOS systems. MS-DOS does not, but you
can do other interesting things by using the PATH
provided in MS-DOS. For example, you can keep
all your system utilities, including BASIC, on
drive A. Then set the path to A and change your
logged-on drive to B. Now, when you call for
BASIC or any other system utility on A, the PATH
command will route your request to A to find it.
PATH can be included in your AUTOEXEC.BAT
file, so that when you boot it will be set
automatically. Using PATH without arguments
will show you the current path setup. Check your
DOS manual for the many uses of this command.

Word processors are very handy programming
tools. You can actually write a BASIC program

using a word processor. They can create ASCII
files that can be loaded and run under BASIC.
Another use of a word processor is to make global
changes in a BASIC program. First, save the
program as an ASCII file. Then load it with your
word processor. Now you can search for all
occurrences of a specific variable or command and
automatically change it to something else. As a
case in point, you could search for al l PRINT
statements and change them to LPRINT, or the
other way around if you like.

Many times when programs are downloaded via
DA!6"!' they Pick up extra characters. Since
BASIC expects to see line numbers when it loads,
these extra characters will give a "Direct
statement in file" error. Use your word processor to
oad the file firat and eliminate the extra

characters, which sometimes may be nothing
more than a few spaces before the first line of code.

Beginning Basic
Look at memory with this ASCII dump program

As promised in the last issue, this installment
contains a program which allows you to see, in
ASCII, what your computer memory holds up to
address 32767.

The real working part of the program is from
lines 250 through 370. The object of the program
is to read memory from a given address to another,
larger, address. Then to print the address that
starts each eight-byte group at the left, the ASCII
value of each of the eight bytes, then space and
print the value represented by each of the eight
bytes. If the value is 32 (space) or less, then print a
period to show that. Also if the value is greater
than 126, then also print a period. In other words,
we want to print characters, numbers and
symbols, but not control codes.

The starting and ending addresses of memory
are entered in lines 220 and 230. They become
variables A and B, respectively. Line 250 says that
if the starting address (which we will increment as
we go along) is equal to or larger than the ending
address then we are done, so return and ask for a
new start and end address.

Line 260 is going to position our address

properly and right-justify it, followed by the colon.
In it, we are taking the RIGHT$ of four blank
spaces plus the string value of the address and
adding the colon. Since the string value of the
address can be anywhere from one to five
characters long, it will occupy at least one space
(for single digits) and the spaces to the left will
remain as the spaces we allowed for. Note that we
end line 260 with a semi- colon to keep the cursor
positioned there for what is to follow.

Next there follows a little loop that starts at the
current memory address and looks at it plus the
next seven addresses. In line 280 we first print
three spaces to separate the data. Then we use the
same right-justification idea as earlier. This time
(in line 280) we allow for a maximum of three
spaces (for the ASCII number), make a string
value of what we found at PEEK(I), print it and
leave the cursor where it is when we are done. This
loop prints the value for eight bytes across the
page and leaves the cursor at the end of the last one
printed.

Line 300 prints four spaces again to separate the
groups of data, and again leaves the cursor at the

The CodeWorks
A S C I I D U M P P R O G R A M

displays the contents of your computer's memory

Memory range is from 0 to 32767.

Show memory starting at decimal address? 4040
Ending at what decimal address? 4136

4040 0 0 0 0 0 0 0 0
4048 0 0 0 0 0 10 16 100 d
4056 0 143 32 42 32 65 68 85 .. . *.ADU
4064 77 80 46 66 65 83 32 42 MP.BAS.*
4072 32 65 83 67 73 73 32 68 .ASCII.D
4080 85 77 80 32 80 82 79 71 UMP.PROG
4088 82 65 77 32 42 32 67 79 RAM.*.CO
4096 68 69 87 79 82 75 83 32 DEWORKS.
4104 42 0 67 16 110 0 143 32 *.C.n.. .
4112 42 32 51 56 51 56 32 83 *.3838.S
4120 46 32 87 65 82 78 69 82 ..WARNER
4128 32 83 84 46 32 84 65 67 .ST..TAC

Code Works 27

100 REM * ADUMP.BAS * ASCII DUMP PROGRAM C0^EWORKS
110 REM * 3838 S. WARNER ST. TACOMA,WA 98409 (206)475-2219
120 ' CLEAR 1000: ' USE ONLY IF YOUR MACHINE NEEDS TO CLEAR SPACE
130 CLS: ' CHANGE TO YOUR PARTICULAR CLEAR SCREEN COMMAND ̂
140 PRINT STRING?(22," The CodeWorks ";STRING?(23,"-")
150 PRINT " ASCII DUMP PROGRAM
160 PRINT " displays the contents of your computer's memory"
170 PRINT STRING?(60,"-")
180 PRINT
190 PRINT"Memory range is from 0 to 32767."
200 PRINT
210 DEFINT A,B,C,I
220 INPUT"Show memory starting at decimal address";A
230 INPUT" Ending at what decimal address";B
240 PRINT
250 IF A=>B THEN GOTO 380
260 PRINT RIGHT?(" "+STR?(A),5);":";
270 FOR I=A TO A+7
280 PRINT" ";RIGHT?(" "+STR?(PEEK(I)) , 3) ;
290 NEXT I
300 PRINT"
310 FOR I=A TO A+7
320 C=PEEK(I)
3 30 IF C=<32 OR C>126 THEN PRINT".";ELSE PRINT CHR?(C);
340 NEXT I
350 PRINT
360 A=A+8
370 GOTO 250
380 GOTO 220

end of those four spaces. The loop starting in line
310 is going to examine the same eight bytes we
just printed using the PEEK command and if the
ASCII value of any of the bytes is less than or
equal to 32 (ASCII space) or larger than 126 we will
print a period. Otherwise, we will print the
character represented by that ASCII value. Again,
the semi-colon at the end of line 330 will keep the
cursor positioned after whatever it had just
printed. When we have printed all eight values we
have completed one entire line on the screen, so the
print statement in line 350 will throw the carriage
and give the return for the next line. Before we
begin to print the next line we need to increment
the address number at which to start. This is done
in line 360, where we simply add 8 to the current
address number. We then go back to line 250 to
print the next line.

This program was designed to fit both 64-column
and 80-column screens without modification. The
sample dump with this article shows a dump of
memory locations 4040 through 4135. On the
computer that did it, we can see portions of the

program that produced the output. What you see,
and where you see it, will vary from machine to
machine and also on the number of file buffers
which were allocated upon entry into BASIC. It is
interesting to note that on most machines, if you
have previously loaded and run several different
programs and then issued the NEW command and
run this program; you will find parts of all of those
previous programs still floating around in
memory. Mostly, you will see literal string values,
some commands and a few subscripted variable
names. Many of the parts of a program (like the
line numbers) are compressed and are no longer
recognizable in ASCII. One other note: trying to
see memory locations above 32767 will result in an
overflow error.

Since most machines are different we cannot
make a unique sample run for you to follow. Your
output, though, should resemble that in the sample
run to a large degree. In any case, you can now
rummage around in memory and see what's there,
an in the meantime, you have learned quite a bit
about ASCII. •

Network.Bas
Build your own broadcasting empire

Staff adaptation. This is an old favorite, redone in a new setting. It was originally
called "Startraders" and is in public domain. We are not sure who the author is, but think
it may be S. J. Singer. Whoever it was, they did a nice job. The program works on most
machines using Microsoft BASIC.

Network is a game for two to four players in
which the object is to amass the greatest wealth in
48 turns of play. You do it by establishing
broadcasting networks in a rectangular country
which is represented by a 9 x 12 grid.

Upon running the program, the computer picks
several grid points at random to become possible
headquarters cities. These then remain fixed
throughout the current game. Each player receives
five grid point selections in his turn. If any of the
choices are at right angles to a headquarters city, a
new broadcasting network can be formed. If none
of the choices are near a city, an independent
station may be formed and will show as a plus
sign. Getting another space at right angles to an
independent station will form a network, but will
not produce as much revenue as will one connected
to a headquarters city. (See sidebar for the rules of
the game.)

This program is a close adaptation of one called
"Startraders" which is in public domain and has
been around for several years. We first saw it back
in 1978, and it was running on a CP/M system. We
would very much like to give the original author
credit, but so far, have been unable to determine
who that is.

This is a rather lengthy program with
subroutines which are nested. Since this game is
intended purely for your summertime enjoyment
we will dispense with the exacting details. In their
place, however, we will provide an overview of the
program and some tips which should help you
change it to whatever you like. The program as
listed will run on MS-DOS machines without
change. We have not checked it on all versions of
MBASIC running under CP/M, but suspect it
should perform well there too. In addition, we have
checked it on TRS-80 Models III and IV (see box for
changes for those two machines.)

Variable PI is the number of players. Line 710
checks for end of game. The routine at 740 is to
select random numbers and is called from 770,790,
850, 860, 870, 880, 890, 900, 910 and 920.

The routine at line 950 is used to show the
selected choices of moves on the screen. Connected
with this, at line 1150, is the "I don't understand
you" routine.

The routine which comes into play when a new
company is formed is at line 1470. The routine
which checks for a stock split (when the stock of a
company reaches $3000 per share) is at line 1730.

The routine that determines the amount of
dividends paid each player is at 1740, and the code
starting at line 1800 shows you the amount of cash
you have and presents the choices for buying
stock.

Probably the most used subroutine in the
program is at line 2050. This one re- displays the
updated map after each move.

The merger subroutine is located at 2520. The
routine at line 3110 prints the stock split
information on the screen. At the end of the game,
the final standings are handled by the routine at
line 3230, while the routine at 3370 prints the
special announcement heading when needed. The
"Game is over" routine is located at line 3400.

Modifications you can make

In our version, we have picked five fictitious
names with familiar sounding initials. You can
put your own creativity to work here and make
them anything you like. The company names are
in lines 150 through 190. Be sure to leave the space
after each name so that it will not run into other
messages when printed on the screen. If you
should happen to change the names and they start
with different letters than ours, put the first letter

text continues on page 31

CodeWorks 29

Network Takeover
The rules of the game for Network.Bas

RULES FOR NETWORK TAKEOVER

The object of the game is to amass the greatest
amount of money. This is accomplished by
establishing large broadcasting networks, and
purchasing stock in the companies that control
other networks. During the course of the game,
stock appreciates in value as the networks become
larger. Smaller networks can be merged into larger
ones, and the stock in the smaller company is
converted into stock in the larger one.

At each playing turn the computer will present
the player with five prospective spaces to occupy
on a 9 x 12 grid (which represents the entire
country.) The player, after examining the map of
the country to decide which space he wishes to
occupy, responds with the row and column of that
space (i.e., IE, 8A, etc.)

There are four possible moves a player can
make:

1. He can establish an independent station
(shown as a + sign) if he selects a space that is not
adjacent to a Headquarters city (shown as an *) or
another independent station.

2. He can add to an existing network if he
selects a space adjacent to an existing network.
The space he selects will then be added to that
network and will be designated with the first letter
of that network's name. If there are any
Headquarters cities or independent stations also
adjacent to the selected space, they too, will be
incorporated into the existing network. Each new
space adjacent to a Headquarters city adds $500
per share. Each new independent station adds
$100 per share to the market value of that
company.

3. He may establish a new network. If there are
less than five existing networks the player may,
given the proper space to play, establish a new
network. He may do this by occupying a space that
is not adjacent to an existing network, but is
adjacent (but only at right angles) to a
Headquarters city or an independent station. If he

establishes a new network he is automatically
issued five shares in the new company. He may
then proceed to buy stock in any active company
including the one just formed.

4. He may force a merger of two existing
networks. If there is only one space separating two
networks and that space is chosen, a merger
occurs. The larger network will take over the
smaller (if both are exactly the same size, the
survivor is determined by the alphabetical order of
the company names; the earlier one survives.) The
stock of the surviving company is increased in
value according to the number of spaces and
Headquarters cities added to its network. Each
player's stock in the defunct company is
exchanged for shares in the survivor on a ratio of
two for one. Also, each player is paid a cash bonus
proportional to the percentage of outstanding
stock he held in the defunct network. Note that
after a network becomes defunct through the
merger process it can reappear elsewhere on the
board when, and if, a new company is established.

At each turn, the computer adds stock dividends
to each player's cash on hand (5% of the market
value of the stock in his possession) and offers him
the opportunity to purchase stock in any of the
active networks on the board. Stock may not be
sold, but the market value of each player's stock is
taken into account at the end of the game to
determine the winner.

If the market value of a given stock exceeds
$3000 at any time during the game, that stock will
split two for one, the price is cut in half and the
number of shares owned by each player is doubled.

During each player's turn, the number of shares
he own8 in the various networks is shown to the
right of the map. He may, when it is his turn, type
Stock (or S) and see a complete breakdown of the

price and value of his stock. From the stock display
he may type "Map" (or M) to get back to the map.

je game ends and a general accounting i8

ma e on the 48th turn, regardless of how many
players there were.

30 Code^°r^s

of each in line 260, where the ACNPT initials are
now. You may also need to change the
abbreviations for the company names in lines 2190
through 2230. Keep them short so that they will fit
on the screen along with the map. The word
"network" appears only once, in line 1490.
"Broadcasting" appears in lines 1540, 1850, 2640,
3160 and 2060.

When you first run the program, line 430 picks
both the number and location of the headquarters
cities. If you want more (or less) cities on startup
you can change this line. For example, picking one
number from a possible fifty numbers would give
very few cities, while picking two out of 25 (as it
does now) gives an average of about six to eight.
We found the game to be most interesting with
about 4 or 5 cities.

The number of turns to play is set in line 710,
denoted by variable K. The original authors seem
to have picked this number about right. With more,
the map fills up. With less, you don't have the
opportunity to force the most interesting mergers
and splits that naturally occur from about the 35th
to 48th moves. By the way, it is possible to force
two mergers with one space, and it does happen
occasionally. When that happens, it is usually
followed by a stock split in one or more companies.

The value of stock of a company established next
to a headquarters city is $500. This is set in line
1580. The value of stock for companies formed
from independent stations is $100, and appears in
lines 230, 1390, 1590, 1620, 1650, 1680, 3030 and
3280. The amount of dividends paid each player is
currently 5% and is set only once, in line 1750.

After you have made your move, the program
presents you with the opportunity to buy stock in
the various companies. As the program now
stands, it will not show you the companies for
which you do not have enough money to buy a
share. If you are broke, it will show you no
companies at all. If you would like to see them
anyway, put a remark at the beginning of line

1790. Incidentally, you do not have to enter zero to
buy no shares, pressing RETURN will suffice.

If you would like the stock of a company to split 2
for 1 at a different value than $3000, change it in
line 1710 and 2980.

If you do not want to see the Portfolio and the
companies along with the map, remove the word
"Portfolio" from line 2100 and delete lines 2190
through 2240.

This is a fun program to play with and modify.
About the only thing we would like to see added is
the ability to buy a specific space (at a very high
price, of course). It would be interesting because
cash draws no interest, while stock appreciates, so
holding your cash to buy a space could either make
it big or lose it all for you. In any case, enjoy the
game! •

Changes for TRS-80 Models III/IV

Here are changes to make for both Model III and
IV TRS- 80:
Remove the remark in line 120.
Remove (or remark) line 420.
Change the following lines:
430 IF RND(25)O10 AND RND(25)05 THEN
M(I,J)=1 ELSE M(I,J)=3
580 I=RND(P1)
740 R(I)=RND(8)+1
750 C(I)=RND(11)4-1

In addition, for Models III and other computers
that use 64 column, 16 line screens:
Remove (or remark) lines 2070 and 2090.
In line 2100, remove the space between the first
quote and the capital letter A. And that's it.

Note: Because there are so few changes, the
version of this program on the CodeWorks
download system will be as in the listing
accompanying this article.

100 REM ** NETWORK.BAS ** AN ADAPTATION OF A PUBLIC DOMAIN PROGRAM
110 REM ** ORIGINALLY ENTITLED 'STAR-TRADERS'**
120 'CLEAR 1000 : ' USE ONLY IF YOUR MACHINE NEEDS TO CLEAR SPACE
130 DEFINT C,I
140 DIM M(1 0 , 1 3) , S (5 , 4) , N $ (5) , D 1 (5) , S 1 (5) , Q (5) , M $ (1 2) , C $ (2 5) , C 1 $ (2 5) ,

C2$(25)
150 DATA 1,"AMERICUS "
160 DATA 2,"COLUMBUS "
170 DATA 3,"NATIONUS "
180 DATA 4,"PUBLICUS "
190 DATA 5,"TURNICUS "

CodeWorks 31

200
210
220
230
240
250
260
270
280
290
300
310
320
3 30
340
350
360
370
380
390
400
410
420
430

CLS
FOR 1=1 TO 5
FOR J=1 TO 4

S(I, J)=0:D1(T)=0:S1(I)=100:Q(I)=0:B(I)=6000
NEXT J

NEXT I
L$=".+*ACNPT"
M?="ABCDEFGHIJKL"
PRINT STRING?(22," The CodeWorks STRING?(23,)
P R I N T " N E T W O R K T A K E O V E R "

c

PRINT or, how to make it big in broadcasting"

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710

PRINT STRING?(60,
PRINT
PRINT"Build your own broadcasting network. Buy stock in any"
PRINT"other network. Force mergers and stock splits. When it"
PRINT"is your turn you may type S to see your stock. Typing M
PRINT"will return you to the map. During your turn, the number"
PRINT "of shares you own are indicated at the right of the map."
PRINT"There are 48 turns to play. Good luck."
PRINT
FOR 1=1 TO 9

FOR J=1 TO 12
RR?=MID?(TIME?,4, 2)+MID? (TIME?, 7, 2): RR=VAL(RR?): RANDOMIZE RR
IF INT (RND*25+1) < >10 AND INT (RND*25+1) < >5 THEN M(I,J) = 1 ELSE
M(I,J)=3
NEXT J

NEXT I
INPUT"HOW MANY PLAYERS (2-4) ";P1
IF Pl<2 OR Pl>4 THEN 460
PRINT
FOR 1=1 TO PI
PRINT"PLAYER "yI;
INPUT"WHAT IS YOUR NAME ";P?
IF 1=1 THEN P1?=P?

i

IF 1=2 THEN P2?=P?
IF 1=3 THEN P3?=P?
IF 1=4 THEN P4?=P?

NEXT I
PRINT TAB(10);"... NOW
I=INT(RND*P1+1)
GOSUB 610
GOTO 670
PRINT
ON I GOTO 630,640,650,660
PRINT PI?;iP5?=P1?:RETURN
PRINT P2?;:P5?=P2?:RETURN
PRINT P3?;:P5?=P3?:RETURN
PRINT P4?;:P5?=P4?sRETURN
PRINT" GETS THE FIRST MOVE."
FOR W=1 TO 2000:NEXT W
K=1
P=I:GOTO 730
K=K+1:IF K>48 THEN GOTO 3400

I WILL DECIDE WHO GOES FIRST "tPRINT

32
CodeW*5

720 P=P+1:IF P=P1+1 THEN P=1
730 FOR 1=1 TO 5
740 R(I)=INT(RND*9+1)
750 C(I)=INT(RND*12+1)
760 FOR 11=1-1 TO 0 STEP -1
770 IF R(I)=R(II) AND C(I)=C(I1) THEN GOTO 740
780 NEXT II
790 IF M(R(I),C(I))>1 THEN GOTO 740
800 FOR 11=1 TO 5
810 IF Q(II)=0 THEN GOTO 930
820 NEXT II
830 IF M(R(I),C(I)+l)>3 OR M(R(I),C(I)-1)>3 OR M(R(I)+l,C(I))>3 OR

M(R(I)-1,C(I))>3 THEN GOTO 930
840 A1=M(R(I),C(I)+l):A2=M(R(I),C(I)-l):A3=M(R(I)+1,C(I)):A4-M(R(I)

1,C(I))
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
000
010
020
030
040
050
060
070
080
090
00
10
20
30
40
50
60
70
80
90
200
210
220

IF
IF
IF
IF
IF
IF
IF
IF

NEXT
GOSUB
I=P
GOSUB 610

Al=2
A2 = 2
A3=2
A4=2
Al = 3
A2=3
A3=3
A4=3
I
2050

AND
AND
AND
AND
AND
AND
AND
AND

A2 <4
Al <4
Al <4
Al <4
A2<4
Al <4
Al <4
Al <4

AND A3<4 AND A4<4 THEN GOTO 740
AND A3 <4 AND A4<4 THEN GOTO 740
AND A2<4 AND A4<4 THEN GOTO 740
AND A2<4 AND A3 <4 THEN GOTO 740
AND A3 <4 AND A4<4 THEN GOTO 740
AND A3 <4 AND A4<4 THEN GOTO 740
AND A2<4 AND A4<4 THEN GOTO 740
AND A2<4 AND A3 <4 THEN GOTO 740

PRINT", Here are your choices
TO 5
R(I);MID$(M$,C(I),1);

for turn";K
FOR 1=1

PRINT
NEXT I
PRINT
INPUT"WHAT IS YOUR MOVE "?R$
IF LEN(R$)=0 THEN R$="S"
IF LEFT$(R$,1)="M" THEN R$="" ELSE GOTO 1070
GOSUB 2050
GOTO 950
IF LEFT?(R$,1)="S" THEN R$ = "" ELSE GOTO 1100
GOSUB 3230
GOTO 950
IF LEN(R$)<> 2 THEN GOTO 1150
TP ASC(MID$(R$,2,1))-64<l THEN GOTO 1150

ASC(MID$(R$,2,l))-64>12 THEN GOTO 1150 ELSE GOTO 1160
IF VAL(R$)<1 THEN GOTO 1150
~IF VAL(R$)>9 THEN GOTO 1150
PRINT"I don't understand, TRY AGAIN. :GOTO 1020
R=VAL(LEFT$(R$,1))
C=ASC(RIGHT?(R?,1))-64
FOR 1=1 TO 5

IF R=R(I) AND C=C(I) THEN GOTO 1230

PRINT"THAT SPACE WAS NOT INCLUDED IN THE LIST
GOTO 1020

Code Works 33

1230 A1=M(R-1,C) :A2=M(R+1,C) :A3=M(R,C+1): A4=M(R,C-1)
1240 IF A1<=1 AND A2<=1 AND A3<=1 AND A4<=1 THEN M(R,C)=2 ELSE GOTO

1260
1250 GOTO 1740
1260 IF Al>3 AND A2>3 AND A2<>A1 THEN GOSUB 2270
1270 IF Al>3 AND A3>3 AND A3<>A1 THEN GOSUB 2270
1280 IF Al>3 AND A4>3 AND A4<>Al THEN GOSUB 2270
1290 IF A2>3 AND A3>3 AND A3<>A2 THEN GOSUB 2270
1300 IF A2>3 AND A4>3 AND A4<>A2 THEN GOSUB 2270
1310 IF A3>3 AND A4>3 AND A4<>A3 THEN GOSUB 2270
1320 IF A1 <4 AND A2<4 AND A3<4 AND A4<4 THEN GOTO 1420
1330 IF M(R,C)>3 THEN GOTO 1740
1340 IF Al>3 THEN I=Al-3
1350 IF A2>3 THEN I=A2-3
1360 IF A3>3 THEN I=A3-3
1370 IF A4>3 THEN I=A4-3
1380 Q(I)=Q(I)+l
1390 S1(I)=S1(I)+100
1400 M(R,C)=I+3
1410 GOTO 1580
1420 FOR 1=1 TO 5
1430 IF Q(I)=0 THEN GOTO 1470
1440 NEXT I
1450 IF M(R,C)<3 THEN M(R,C)=2
1460 GOTO 1740
1470 CLS
1480 GOSUB 3370
1490 PRINT" A new Network has been formedl"
1500 PRINT" Its name is ";
1510 RESTORE
1520 READ N,C$
1530 IF I<>N THEN GOTO 1520
1540 PRINT C$;"Broadcasting"
1550 S(I,P)=S(I,P)+5
1560 Q(I)=1
1570 PRINT sPRINT
1580 IF Al=3 OR A2=3 OR A3=3 OR A4=3 thpm ci/TX

1610 M(R-1,C)=1+3
1620 IF A2=2 THEN SI (I)=S1 (I) + 100 PT cp o™,
1630 Q(I)=Q(I)+l ; 00 ELSE G°T0 1650
1640 M(R+l,C)=1+3
1650 IF A3=2 THEN SI (I) =S1 (I) + i aa oT o„
1660 Q (I) =Q (I)+l "UJ+100 ELSE GOTO 1680
1670 M(R,C+l)=I+3
1680 IF A4=2 THEN SI (I) =S1 (I) +100 PT „
1690 Q(I)=Q(I)+1 ' 1B0 ELSE GOTO 1710
1700 M(R,C-l)=1+3
1710 IF SI (I) >=3000 THEN T1=I ELSP rrvno
1720 GOSUB 3110 G0T0 1-730
1730 M(R,C)=1+3
1740 FOR 1=1 TO 5

1750 B(P)=B(P)+INT(.05*S(I,P)*S1(I))
1760 NEXT I
1770 FOR 1=1 TO 5
1780 IF Q(I)=0 THEN GOTO 2030
1790 IF B(P)<S1(I) THEN GOTO 2030
1800 PRINT:PRINT "Your current cash = §";B(P);
1810 PRINT:PRINT "Buy how many shares of
1820 RESTORE
1830 READ N,C?
1840 IF ION THEN GOTO 1830
1850 PRINT C?;"Broadcasting";
1860 PRINT" AT $";S1(I)
1870 PRINT" You now own ";S(I,P)y" (and can afford to buy

INT(B(P)/S1(I));")";
1880 INPUT R3$:IF LEN(R3$)=0 THEN R3$="0"
1890 IF R3$(1,1)="M" THEN R3$="" ELSE GOTO 1920
1900 GOSUB 2050
1910 GOTO 1800
1920 IF R3$(1,1)="S" THEN R3$="" ELSE GOTO 1950
1930 GOSUB 3230
1940 GOTO 1800
1950 R3=VAL(R3$)
1960 R3$=""
1970 IF R3*S1(I)<=B(P) THEN GOTO
1980 PRINT"You only have $"?BCP)?
1990 GOTO 1800
2000 IF R3=0 THEN GOTO 2030
2010 S(I,P)=S(I,P)+R3
2020 B(P)=B(P)-(R3*S1(I))
2030 NEXT I
2040 GOTO 710
2050 CLS
2060 PRINT TAB(22);"THE TOTAL BROADCAST AREA*
2070 PRINT
2080 PRINT TAB(10)?"* = Possible Hq.
2090 PRINT
2100 PRINT TAB(13)?" A B C D E
2110 FOR R2=l TO 9
2120 PRINT" "?R2?" "?
2130 FOR C2=l TO 12
2140 PRINT" "?
2150 Z2=M(R2,C2)
2160 IF Z2=0 THEN Z2=Z2+1

2000
TRY AGAIN"

Cities, + = Independent Stations

I J K L Portfolio" G H

2170 PRINT MID$(L$,Z2, 1) II II ,
i

2180 NEXT C2
2190 IF R2=l THEN PRINT II ABC "?S(1,P)
2200 IF R2=3 THEN PRINT II CBS " ? S (2, P)
2210 IF R2=5 THEN PRINT II NBC "?S(3,P)
2220 IF R2=7 THEN PRINT II PBS "?S(4,P)
2230 IF R2=9 THEN PRINT II TBS "?S(5,P)
2240 IF R2=2 OR R2=4 OR R2 =6 OR R2=8 THEN
2250 NEXT R2
2260 RETURN

Code Works 35

2270 Fl=Al-3:IF F1<0 THEN F1=0
2280 F2=A2-3:IF F2<0 THEN F2=0
2290 F3=A3-3:IF F3<0 THEN F3=0
2300 F4=A4-3:IF F4<0 THEN F4=0
2310 T=Q(F1)
2320 T1=F1
2330 IF Q(F2)>Q(F1) THEN T=Q(F2) ELSE GOTO 2350
2340 T1=F2
2350 IF Q(F3)>T THEN T=Q(F3) ELSE GOTO 2370
2360 T1=F3
2370 IF Q(F4)>T THEN T=Q(F4) ELSE GOTO 2390
2380 T1=F4
2390 IF F1=T1 OR Al<4 THEN GOTO 2420
2400 X=F1
2410 GOSUB 2520
2420 IF F2=T1 OR A2<4 THEN GOTO 2450
2430 X=F2
2440 GOSUB 2520
2450 IF F3=T1 OR A3<4 THEN GOTO 2480
2460 X=F3
2470 GOSUB 2520
2480 IF F4=T1 OR A4<4 THEN GOTO 2510
2490 X=F4
2500 GOSUB 2520
2510 RETURN
2520 CLS
2530 GOSUB 3370
2540 RESTORE
2550 READ N,C$
2560 IF X< >N THEN GOTO 2,550
2570 C1$=C$
2580 PRINT Cl$7
2590 PRINT" has just been merged into "y
2600 RESTORE
2610 READ N,C$
2620 IF T1<>N THEN GOTO 2610
2630 C2$=C$
2640 PRINT C2$;"Broadcasting 1"
2650 PRINT"Please note the following transactions"
2660 PRINT
2670 PRINT TAB(3);"OLD STOCK = ";C1$; " NEW STOCK - "
2680 PRINT
2690 PRINT"PLAYER";TAB(10);"OLD STOCK";TAB(22)• "NEW STOCK
2700 PRINT TAB(34);"TOTAL HOLDING";TAB(53);"BONUS PAID"
2710 FOR 1=1 TO PI
2720 GOSUB 610
2730 PRINT TAB(10);S(X,I)yTAB(22);INT((.5*S(X 1)1+ ;).
2740 PRINT TAB(34);S(T1,I)+INT((.5*S(X.I))+ 5!*
2750 X1=0 ''
2760 FOR 11=1 TO PI
2770 X1=X1+S(X,I1)
2780 NEXT II
2790 PRINT TAB(53);» S": INTU0* ((s<x, I)/XX) *S1 (X)))

2800 NEXT I
2810 FOR 1=1 TO PI
2820 S(T1,I)=S(T1,I)+INT((.5*S(X,I))+.5)
2830 B(I)=B(I)+INT(10 *((S(X,I)/XI)*S1(X)))
2840 NEXT I
2850 FOR 1=1 TO 9
2860 FOR J=1 TO 12
2870 IF M(I,J)=X+3 THEN M(l,J)=Tl+3
2880 NEXT J
2890 NEXT I
2900 A1=M(R-1,C):A2=M(R+l,C):A3=M(R,C+l):A4=M(R,C-l)
2910 Fl=A3-3
2920 IF F1<0 THEN F1=0
2930 F2=A2-3
2940 IF F2<0 THEN F2=0
2950 Q(T1)=Q(T1)+Q(X)
2960 S1(T1)=S1(T1)+S1(X)
2970 FOR W=1 TO 5000:NEXT W
2980 IF S1(T1)=>3000 THEN GOSUB 3110
2990 F3=A3-3
3000 IF F2<0 THEN F3=0
3010 F4=A4-3
3020 IF F4<0 THEN F4=0
3030 S1(X)=100
3040 Q(X)=0
3050 FOR 1=1 TO PI
3060 S(X,I)=0
3070 NEXT I
3080 PRINT SPRINT
3090 M(R,C)=Tl+3
3100 RETURN
3110 GOSUB 3370
3120 PRINT"THE STOCK OF "?
3130 RESTORE
3140 READ N,C$
3150 IF T1<>N THEN GOTO 3140
3160 PRINT C$y "Broadcasting has SPLIT 2 for 1 11"
3170 Sl(Tl)=INT(Sl(Tl)/2)
3180 PRINT SPRINT
3190 FOR 11=1 TO PI
3200 S(T1,I1)=2*S(T1,I1)
3210 NEXT II
3220 RETURN
3230 CLS
3240 PRINT
3250 PRINT "STOCK";TAB(30)y"PRICE PER SHARE";
3260 PRINT TAB(50);"YOUR HOLDINGS"
3270 FOR 13=1 TO 5
3280 IF SI(13)=100 THEN GOTO 3340
3290 RESTORE
3300 READ N,C$
3310 IF I3<>N THEN GOTO 3300
3320 PRINT C$;

Code Works 37

3330
3340
3350
3360
3370
3 380
3390
3400
3410
3420
3430

3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560

PRINT TAB(30);SI(13);TAB(50);S(I3,P)
NEXT 13
RESTORE
RETURN
CLS
PRINT TAB(22); "SPECIAL ANNOUNCEMENT!I"sPRINT
RETURN
CLS
PRINT TAB(10); "THE GAME IS OVER - HERE ARE FINAL STANDINGS"
PRINT
PRINT"PLAYER";TAB(10)y"CASH VALUE OF STOCK";TAB(33);"CASH ON
HAND";
PRINT TAB(50);"NET WORTH"
PRINT
FOR 1=1 TO PI

FOR J=1 TO 5
D 1 (I) = D 1 (I) + (S 1 (J) * S (J , I))

NEXT J
NEXT I
FOR 1=1 TO PI

GOSUB 610
PRINT TAB(10);"$";D1(I);TAB(33);;3(I);
PRINT TAB(50D1(I)+B(I)

NEXT I
END

k

Programming Notes

Craig W. Hartsell, of Falls Church, Virginia,
sent along this routine that can be used to address
envelopes. We like it and think it is ripe for
embellishment. He says: "Many times in using a
computer in business or technical calculations the
requirement for making a label or addressing an
envelope forces a resort use of a typewriter or a
word processor. The use of a typewriter is a typical
solution but is notoriously error-prone, especially
for non-secretaries. The other solution of using a
word processor is overwhelming the task with
power resulting in a substantial loss of time in
setting up and shutting down the software for an
essential but still minor task. In the case where the
demand is repetitive, another solution often
adopted is the use of pre-addressed gummed labels.
Unfortunately for most professional business
activities, this is a mite tacky and to be avoided if
at all possible. The Address.Bas program is
designed to cover the above circumstances and to
quickly produce a professional looking label or

addressed envelope. By loading the program on
the DOS or other system disk it is readily
accessible. After loading and listing the user is
presented with four data entry lines (50-80)
providing a four line address possibility. An error
routine is provided to enforce a limited line length.
This basic approach is easily modified for different
needs including storing commonly occurring
addresses, adding more lines, movement of the
typing to different physical locations and the
like."

in •' ^?PRESS,BAS CRAIG W. HARTSELL
20 USE YOUR PRINTER TO ADDRESS ENVELOPES

KEEP EACH LINE BETWEEN THE QUOTES
LS 40 CLS

60 NAME °°ES HERE

70 ADDRESS «>ES HERE
80 x$=" STATE ZIP GO HERE

90 END

uS PRINTlx|,!lF X>" ™EN ^ 138

120 RETURN
130 PRINT"LINE TOO LONG
140 PRINT"":LIST

GOSUB 100
"JGOSUB 100
"IGOSUB 100
"jGOSUB 100

*

38
Code Works

CodeWorks Helpline
As many of you already know, we are always

willing to help if you have problems getting our
programs to run. Sometimes though, the exchange
of correspondence seems to go like this:

"I have a problem. Your program errors in line
XXX."

"Please send us a listing of the program as you
typed it in. What is the error message?"

"I think it is a syntax error. How can I send the
listing if the program will not run?"

"Load the program, then turn on your printer
and type LLIST."

Well, that may be a slight exaggeration, but it
points out the problem in communicating. If you
send us a problem, please send a paper listing of
the program the way you typed it in so we can
check it against the original. It would be very
helpful if you have not renumbered the program or
made extensive additions and deletions to it. We
don't always know what you were trying to do.
Also tell us the type of computer and operating
system you are using, and if the problem is with

printing, also tell us what kind of printer.
We get quite a few that are simply typing errors.

These will usually give you a syntax error (but not
always.) When you get a syntax error, check your
spelling and punctuation. Then if you can't find it,
have someone else check it. We all find it easy to
overlook our own mistakes. Watch for "I" and "1"
interchanges, also for zero and oh.

Another easy to overlook error is the trailing
semicolon. It keeps the cursor (or the printhead on
your printer) at the end of the current line for
something to follow on that same line. If the
semicolon is not there, the cursor (or printer) will
linefeed to the next line. The trailing comma, not
used that much, has the same effect.

Because of the large and varying number of
machines and printers out there today, we
probably will not be able to answer every question
you send us. Our batting average is pretty good up
until now though, and we will be more than happy
to give your problem our undivided attention if you
can't find it yourself. •

Subscription ORDER FORM
Computer type:

786

Do you have a modem?
If so, what baud rate?

Comments:

Please enter my one year subscription to CodeWorks at $24.95. I understand that this price includes
access to download programs at NO EXTRA charge.

• Check or MO enclosed. • Bill me later
• Charge to my VISA/MasterCard #
Please Print clearly:

-Exp date-

Name

Address

City

Clip or photocopy and mail
to: CodeWorks
3838 South Warner St.
Tacoma, WA 98409

. State . Z i p

Charge card orders may be called in (206) 475-2219 between 9 AM and 4 PM weekdays. Pacific time.

Code Works 39

Download
What's Happening on the Download

When are we going to get 1200 baud on the
download? Soon. We have not been dragging our
feet on purpose. In fact, we have tried several
300/1200 modems and found them lacking. Some
would require a change in the way we handle
things. One thing we do not want is to change the
procedure in mid-stream.

One problem with getting 1200 on line is that
when someone hangs up without signing off we
stay on line, giving a busy signal to anyone else
wishing to call. The Hayes Smartmodem 300 we
now use handles that nicely, as does the software
supporting it. Since we have identified the problem
and have a Hayes 300/1200 baud modem on the
way, we expect to have it operating before you
receive the next issue.

Here are some of the messages from the
download: One asked why we don't ask which
charge card you are using. We do not need to. The
number itself identifies the company. All Master
Cards start with 5xxx and all VISA cards start
with 4xxx. (Although we do not accept American
Express, they all start with 3xxx.)

"I am having problems signing on as a
subscriber.

I am still having problems signing on as a
subscriber.

I still can't seem to sign on as a subscriber.
Disregard previous messages, I just fixed the nut

on the keyboard."

Some simply tell us you like the board.
"I tried the download last week and want to tell

you it worked just great. I have had trouble with
other setups and this was a pleasant surprise."

And this happens more often than we thought it
would:

"I have forgotten my password. Please reset
»» me.

Some point out problems or improvements we
can make:

"Good board. The only problem I noted was the
fact that once you have downloaded a given file, if
you should make the mistake of hitting RETURN
rather than a valid entry, you restart the download
of the file just received. I could find no way to
terminate except to hang up."

Then there are these:
"I am having a ball with the downloads."

and, "No real message, just testing my new
modem." and, "I think the idea of having the
programs on diskette is great and I hope you follow
through on the idea."

And so it goes. It's fun reading the mail, and we
thought you might like to see a small sample of it.
And yes, we are working on the diskette idea. •

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
US Postage

PAID
Permit No. 774
Tacoma, WA

*

• CODEWORKS
Issue 7 September/October 1986

CONTENTS

Editor*8 Notes 2
Forum 3
Random Files 6
NFL86.Bas 9
Programming Notes 21
Puzzler 22
Beginning BASIC 24
Drill.Bas 25
SOX 33
FMaker.Bas 37
Renewal Information 39
Download 40

CODEWORKS

Issue 7 Sep/Oct 1986

Editor/Publisher
Irv Schmidt

Associate Editor
Terry R. Dettmann

Circulation/Promotion
Robert P. Perez

Editorial Advisor
Cameron C. Brown
Technical Advisor

Al Mashburn

©1986 80-Northwest Publishing
Inc.No patent liability is assumed with
respect to the use of the information
contained herein. While every precaution
has been taken in the preparation of this
publication, the publisher assumes no
responsibility for errors or omissions.All
programs, unless otherwise specified,
presented in this publication, are hereby
placed into public domain. Please
address correspondence to: CodeWorks,
3838 South Warner St., Tacoma, WA
98409

Telephones
(206) 475-2219 (voice)

(206) 475-2356 (modem download)

300/1200 baud, 8 bits, no
parity and 1 stop bit

Authors: We constantly seek material
from contributors. Send your material
(double spaced, upper/lower case) and
allow 4 to 6 weeks for editorial review.
You may send IBM-PC compatible
diskettes (please save your programs in
ASCII format.) Also send a hard copy
listing of the program and article. Media
will be returned if return postage is
provided. Compensation will be made for
works which are accepted for publication.
CodeWorks pays upon acceptance rather
than on publication.

Subscription price: $24.95 per year (six
issues.) A subscription year runs from
Nov/Dec through Sep/Oct. Anyone
subscribing during the current
subscription year receives all issues for
that year. Not available outside the United
States Zip codes. VISA and Master Card
orders are accepted by mail or phone
(206) 475-2219. Charge card orders
may also be left via our on-line
download system (206) 475-2356.

CodeWorks is published bimonthly in
Jan, Mar, May, Jul, Sep and Nov. It is
printed in the United States of America.
Bulk rate postage is paid at Tacoma,
Washington.

Sample Copies: If you have a friend
who would like to see a copy of
CodeWorks, just send the name
and address and we will send a
sample copy at no cost.

Editor's Notes
CodeWorks has turned out to be a

slightly smaller, but certainly
more dedicated, group than we had
first envisioned.

This issue marks the end of our
first year of publication. It has
been an interesting year, full of
anticipation and surprises.

We thank each of you who joined
the pioneer spirit of a magazine
that dares to live on reader support
alone. We think the experiment
worked, and hope you have
benefited from it.

We set our orginal goals high,
and then reached 70 percent of our
subscription goal. Not bad for a
first year startup. Rest assured,
that with your continued support
and encouragement, CodeWorks
will continue.

See the inside of the back cover
for renewal information. Please
note that we would not be the least
bit offended if you encouraged your
computing friends to join us.

Thank you for making the
experiment work and worthwhile.
As always, we intend to be here to
serve only you, the readers and
u s e r s o f t h e s e n e w f a n g l e d
machines called "Computers."

Irv

2 Code Works

Forum
An Open Forum for Questions & Comments

When I get a new issue of
CodeWorks I punch three holes in it
so I can keep it in a three-ring binder.
It is always easy to find that way. I
notice that the center margins have
been getting a little narrower lately.
So far, I haven't punched out any of
the text, but it has been close at
times. I hope you will continue to
leave me plenty of room.

I have been getting a lot of use
from Card/Bas. The next job I am
going to put it to is to catalog all the
programs in your fine magazine, as
well as a couple others I receive. How
about publishing some of the
modifications you have no doubt
received for that program.

The program "Network/Bas" ran
beautifully. I made over three
million dollars on one of the first
plays! Too bad it wasn't for real.

Your reply to J. L. Lopez on page 5
gave me an inspiration: Why don't
you stop using the letters "I" and
"O" as variables. They make it
easier to make a mistake!

Samuel Laswell
South Haven, MI

In Issue 6 you printed a great game
program I have already enjoyed
several hours playing, however, not
without making some necessary
corrections. The first was in your
changes for the TRS-80 Model III.
When using your changes for lines
740 and 750, I found that you will
never see a choice of either a position
in row 1 or in column A. Instead of.
740 R(I)=RND(8)+1 and 750
C(I)=RND(11)+1 they should read:
7 4 0 R (I) = R N D (9) a n d 7 5 0
C(I)=RND(12). The other errors
were: Line 2910 should read h 1—Al-
3, not Fl=A3-3 and line 3000 should
read IF F3<0 THEN F3=0, not IF
F2<0 THEN F3=0...

...I am writing this letter using
Maker.Bas as mentioned in a letter
to your from Walt King III...

Keep up the super job you re doing.

As always we will be anxiously
awaiting the next issue.

Bob Anderson
Orland Park, IL

We ported Network over from an
MS-DOS machine to the Model III
and played the program all
afternoon, making sure it worked -
and never caught the errors you
found. Talk about not seeing! You
are absolutely right on all counts.

Yours was the first letter I pulled
out of the folder yesterday morning
as I sat down to do these. Your
comments about using Maker.Bas to
write a letter had me puzzled. I never
looked at anything else for the rest of
the day, instead, I got out Maker.Bas
and started re-writing it to make it
into a simple text editor. Judging
from the way you hand-lettered the
quote marks into your letter, you
apparently ran into the same
problem I did. It worked for
everything except the quote marks.
At any rate, I finished the day
having written QTEXT.BAS - a
quick and simple text editor, and an
article to go along with it. It will
appear in some, yet undetermined,
future issue of CodeWorks. Thank
you for the nudge - and why didn't
you send in your version ? You could
have collected our modest author fee
for it.

Thanks for the Network.Bas
program in your (Issue 6). It runs
well, but I have a few questions.

Line 790 should be less than,
otherwise an endless loop.

Line 420 uses RR, why? I can't
find it in the program, and why
randomize time$ in a loop?

Line 1750: B is not dimensioned as
an array, but it still works. B(P)
takes the last value in the loop, so
why use a loop?

...Keep up the good work. Hope the
magazine has enough subscribers to
keep it going. You should let the
readers know about that.

A. W. Wardell
Pawtucket, RI

Line 790 is correct. It looks at the

random selections for map
positions, and if the value at any
position is greater than 1 it means
that position already contains either
an HQ city or an independent
station. In that case, it goes back to
pick a different random number for
the space.

In line 420, RR is a dummy
variable required by the RANDOM
IZE statement in many BASIC'S. If
the RR were not present, the
program would stop and ask for a
"seed" for the random generator.
Some BASIC'S allow the use of the
RANDOMIZE statement all by
itself. Most MS-DOS/GW BASIC
machines require the argument. The
reason for using TIME$ in a loop is
to get a different seed number for the
random generator each time a
random number is picked. Without
it, you would get the same random
sequence repeatedly. Minutes and
seconds are pulled out of TIME$ to
get different seed numbers.

In line 1750, B(P) does not need to
be dimensioned since the subscript
will never be more than five. Most
BASIC'S allow up to 11 (0 through
10) subscripts without the DIM
statement. (See Beginning BASIC,
this issue.) It does not take the last
value in the loop, it accumulates
the values in S(I,P) and SI (I).

Although I have not written it yet,
I am sure that we will talk about
the future of CodeWorks elsewhere
in this issue.

I like your magazine and wish you
luck! The man who was complaining
about cost at $2 per issue apparently
cannot divide. It amounts to $4 per
issue. Why not accept advertising
but put it all in the rear of the
magazine. Do not make us hunt and
peck to find meat and potatoes. If
a n y o n e w a n t s t o r e a d t h e
advertisements, let them. I read
Computer Shopper but get mad
trying to find the wheat with so
much chaff mixed in with it.

A. H. Smith
Gainesville, FL

CodeWorks

An editor I once knew told me that
we Americans tend to buy
magazines by the slick-advertising-
pound. The information they
contain usually takes a back seat to
the main reason they exist - to
provide a vehicle with which to sell
something. We enjoy the fact that
Code Works exists solely for the
readers who support it, with no
outside influences and no ulterior
motives.

As an old boatbuilder/carpenter/
draftsman I've often wrestled with
the "best fit" problems raised by
Wood.Bas which appeared in your
Issue 3. That program is so well
worded and illustrated that I'm
tempted to drop all other projects
and try it out!

Congratulations on producing a
really novel type of magazine that
entertains while it educates. One of
its best features is your total
elimination of advertising clutter
which always distracts from
readability.

Lindsay A. Fowler
Ft. Lauderdale, FL

(Re: Forum, Issue 6) Howard M.
Cruff wrote to say he has a Model 12
and asks about PEEK and POKE. I
use a Model 4 (Tandy), but formerly
did quite a lot of work on a Tandy
Model II. In Rosenfelder's "BASIC
Faster and Better", there are many
routines for Models I, III and IV
with notes in the margins regarding
changes to make the routines run on
the Model II. Also, starting on page
243 (of that book) there is a whole
section on Model II Modifications
with PEEK and POKE for the Model
II as the first subject discussed.
Apparently Howard hasn't seen this
book, and while he might not want
to spring for the $29.95 price at
Radio Shack, he might be able to
borrow one. It is well worth the price,
however.

My compliments to all of you -
every issue has got some real
goodies in it. Keep it up.

Dexter Walker
Birmingham, AL

Received a copy of your

publication. I liked what I saw and
took the time to read it from cover to
cover. Still liked what I saw. Hand
loaded the Extract and Search
programs. Neither ran - program
ming errors in both. Re: Extract, line
320, this jump puts the program in a
loop - must be removed. Re: Search,
line 340, colon after Y/N should be a
quote. Colon produces an error when
run. These problems seem to me to be
editing problems...

...So very tired of trying to use
published (magazine) programs,
they almost never work and have to
be debugged. It is easier to write the
things myself. Thought you'd like to
know.

F. Bullock
Gales Ferry, CT

You are right about the missing
quote in Search.Bas, and it was an
editing mistake. But the quote does
not go in place of the colon, it should
go in place of the semicolon. You are
wrong about the loop in
Extract.Bas. It works as written.

What I would like to see in your
magazine are some examples of how
to use an array, both variable and
string, saved to disk using the
For...Next statement and then how
to load the same from disk using the
sequential file 0PEN"0" and
OPEN'T". This procedure is kept
quiet since I can't find any
information in any manuals. I'm
sure others could benefit from this
information.

Raymond J. Jasek
Spooner, WI

Well, let's see...
Try issue 2, page 22, lines 160 to

310 and lines 330 to 490. Issue 4,
page 15, Article on sequential files,
pages 37 and 38, lines 2740 through
3220. Issue 5, Merge/Sort, page 20
and Convert.Bas, page 34. Then try
this issue, the NFL programs both
use sequential files and arrays.

I have tried to use the Card.Bas
program and after entering 10 files
(records'?) and attempting to enter
the 11th I get "subscript out of range
in 880". I do not see where I keep
getting this error message. I would
like to work out this bug because this
program has great potential for me.

I would also like to see a way of
printing out the labels by reversing
the names and removing the
comma...

Gene M. Lindley
Miami, FL

Since you said you had a Tandy
Model 1000, you do not need line 105.
Remove or remark it. Also make sure
that V=200 in line 110. Also check to
see that the last item in line 120 is
P(V) and not P$(V).

A very simple way out of your
name problem is to put the person's
first name in field 1 and last name in
field 2. Now you can sort on field 2
for an alphabetical last name sort.
Then in the "Print label routine"
from line 2165 on, LPR1NT the first
name field, follow it with a
semicolon (to keep the cursor on that
line), and print the last name field.
Then go on to the next line to print
the address and the rest of the label.
Now, since you will probably not
sort on the first name field, you can
include "Mr." or "Ms." before the
first name, and a middle initial after
it. This way, you can print labels
that would say, for example, Mr.
John M. Doe, where the "Mr. John
M." would be in field 1 and "Doe" in
field 2. Make the appropriate
changes to the field headings in
lines 570 through 640.

In reference to Card.Bas, here is
another way to initialize the file
before the program is run for the
first time: Load the program (don't
run it), then at the Ready or OK
prompt, type A$(0)="ZZZ":GOSUB
160 and press RETURN or ENTER.
The program itself will then
initialize the file and come up
running with the menu on the
screen. If you already have a
Card.Dat file, DO NOT use this
procedure or it will wipe your
existing file off the disk and if you
have no backup of it, it will be gone
for good.

CodeWorks looks like an
exceptional deal and the format is
no (commercial) nonsense. That's
why I like Public TV (and pay for it!)

Hardenbrook Mold Service
Van Nuys, CA

You couldn't have picked a better

4 CodeWorks

time of the year to say that. It's
pledge (renewal) time already, but
unlike the Public TV channels, we
only do it once per year, not four
times.

I wish to compliment you on your
excellent publication. I find it of
value and learn much from it. The
clarity of explanation in your
comments concerning various
aspect of a particular program are
most refreshing.

I note in the Jul/Aug issue that
you have some interesting things
planned for the future. This is fine,
and I wish you well, but please don't
forget some of the older concepts you
used to whet our computer appetites.
I am referring specifically to the
Poker program you have mentioned
several times. I am very interested in
software that is based on gambling
games, and the promise of that
program, to be released in some
future issue, was one of my reasons
for subscribing.

I remember other computer
publications that promised
discussion, or programs, on certain
things, but never delivered. I lost
confidence in them, as I'm sure did
many other readers. Integrity seems
to be the issue.

So, while I am delighted you have
so many new things planned, please
don't forget the older programs
mentioned. Me, I'm itching to get
into that Poker program. Thanks for
a great and unique publication.

Arthur Melanson
Audubon, NJ

POKER.Bas will appear as the
feature program in the very next
issue. It was originally scheduled for
this issue but because of the timing
of the NFL Football season and our
NFL programs in this issue, it had to
be advanced to the Nov/Dec issue.
We feel reasonably confident that
you will like it. Also scheduled for
the next issue is the report generator
for Card.Bas. Following that issue
we will have a random file mini-
database which will allow much
larger files to be handled than
Card.Bas did. The correlation
program we mentioned is in the
checking out stages. We usually
don't even mention a program until

it is at least written and working.
Writing a program is just the first
step in the process. After that it has
to be checked on other machines,
then the program needs to be
cleaned up and listed out for paste
up and the article written. Sample
runs need to be made to include with
the article when necessary. Rest
assured, however, that we will
publish all the programs we have
promised.

I was just going through
Busmod.Bas in Issue 5 and have a
question perhaps you can answer. In
the routine that determines
Sensitivity of Data, as you are
looping through and increasing
each variable by 10%, I don't see the
variable being reset. If it is being
reset, where? If not, why does that
not distort your results?

A s a v e t e r a n m a i n f r a m e
programmer-turned-manager, I
welcome your magazine as a chance
to get back to the bits and bytes that
I enjoy so much. I particularly like
the way you present your programs
in context, as solutions to real
p r o b l e m s , n o t h y p o t h e t i c a l
situations. Keep up the good work.

Gail A. MacLean
Norwalk, CT

The P(X) and P1(X) arrays are filled
once with values calculated from the
values in the DATA statements.
Since there is no accumulation of
data, i.e., no P(X)=P(X)+something,
any repeat running of the
sensitivity would simply recalculate
the same values and write them over
what is already in the array. The
only way to get different values
would require editing the values in
the DA TA statements, after which a
RUN command would be necessary
which will clear all previous
variables in any case.

I have been looking at the
program in Issue 6 ... located at the
bottom right of page 38. Line 130
advises when the address lines are
too long. The "LINE TOO LONG!"
is displayed such a short time thatit
cannot be read. I modified the
program to overcome this difficulty
and also to separate the "LINE TOO
LONG" from the address. The

following are the modifications:
130 PRINT:PRINT"LINE TOO
LONG"
135 FOR T=1 TO 700
136 NEXT T

I enjoyed the Network program. It
took a lot of careful typing to load it
into my Tandy Model III. I located a
few errors in my typing. Once they
were corrected the program worked
nicely. I have already amassed over
a million dollars!

Cdr. Ralph W. Lindahl
Wenatchee, WA

Please note the comments of Bob
Anderson, earlier in this Forum,
concerning errors in Network and
the Tandy Model III.

I forgot to ask his name, but a reader
who called via telephone mentioned
that the ASCII dump program in the
Jul/Aug issue, page 28, could be
made to double the amount of
memory you could see. Change line
210 to DEFDBL A,B and change the
32767 in line 190 to 65534. If you
don't have 65K of memory, you will
probably get an error when you try
to PEEK above your memory limit.

In the strange coincidence
department: I received a letter with a
listing of CAL.BAS and a sample
output that had all the year and
month headings in place as well as
the weekday headings, but no
numbers for the days of the month.
The spaces were there for them, but
no numbers. I finally tracked it
down to line 630, where the reader
had typed in MS$ instead of M$.
Within the same week, another such
letter arrived with the identical
symptoms, from another part of the
country entirely. It was like deja vu
all over again, the second reader had
made the identical typo as the first,
and in the same place too.

Which brings up an important
point. If you have a problem and
write us about it, please send an
LLIST of the program the way you
typed it in, along with something to
show what the program is or is not
doing right. We can usually get to
the problem quickly that way and
get back to you by return mail.

Thanks for all the great input.
Irv

Code Works 5

Random Files
The 2nd of a series - Indexing

Terry R. Dettmann, Associate Editor. In this second installment on random files,
Terry presents the technique of leaving files in place, but building an index with which to
find things.

Last issue we did some basic operations with
random access files. Nothing complicated, just
getting and saving information. This time, we're
going to add a little more sophistication to our
knowledge and deal with a technique known as
Indexing. As we get everything together, little by
little, we're going to be putting together a random
version of the Card.Bas program which will have
an unlimited capability for record storage (well,
limited to the size of your disk system).

On to indexing though. An index to a file of
information is little more than a special way of
remembering the order of information in the file.
For example, let's say we store information in a file
in alphabetic order. We would normally use the
information in that order, but would have a real
problem when we want to add a new item to the
file. If we have 10 records, then add the 11th, we
have to sort them in order to save them again. For
11 records, that isn't really bad even though
sorting is a very time intensive operation.

But what if we have 10,000 records? A full sort on
10,000 records would involve a lot of time. We can
save at least some of the time by using special
indexing techniques. Probably the simplest, is to
build an index of the file by sorting the
information while referring to only part of the
information. If we're sorting an address list by zip
code for example, we only need to look at the zip
code field, not the rest of the record. That alone will
save us some time. However, in very large data
bases, the major part of your time will be used in
moving data to and from the disk. Let's look at a
typical sort operation where we're actually going
to move the records in the file to put them in order.

When we're moving records within the file, we
have to read the record from the disk and write it
back if its position has changed. Since we do this
for two records at a time in swapping their
positions, this eats a lot of system time. If we could

leave the records where they are and not move
them, we would only have to access the disk to
read records, never to write them. This would save
us even more time.

An index keeps track of the record
numbers in the order we want to get them
back, even if that order isn't the one we
stored them in. For example, let's say we have
the file shown below:

Record Name

1 Luke Skywalker
2 Han Solo
3 Leia Organa
4 Chewbacca
5 C3PO
6 R2D2
7 Obi Wan Kenobi

Obviously, the records aren't stored in
alphabetical order. The correct order,
alphabetically, is:

5 4 2 3 1 7 6

This list of numbers is an index for that file. If we
have the names in memory in an array (call it
NM$), then the numbers could be stored in an
index array (call it IDX) like this:

IDX(l) = 5
IDX(2) = 4
IDX(3) = 2
IDX(4) = 3
IDX(5) = 1
IDX(6) = 7
IDX(7) = 6

Now, if we wanted the first record of the file, we

6 CodeWorks

could print NM$(1), but if we wanted the first
r e c o r d a l p h a b e t i c a l l y , w e w o u l d p r i n t
NM$(IDX(1)). It works. If you want to see this
approach in action, look at the Card.Bas program.
The array P(I) is an index to the data that
Card.Bas keeps. If you look carefully at the sorting
procedure, you'll see that only the index numbers
are changed. The actual data stays in the same
place throughout.

In Card.Bas, the indexing technique makes
sorting much faster than it would otherwise be
because string movements cost more time than
moving a number. With random files, we have
exactly the same problem.

We have included a small demonstration
program with this article to show sorting a
random access file and recovering it using an
index. Let's go through it so you can see how it's
done.

There is very little initialization (lines 110-140).
Variables NR (maximum number of records) and
NX (next record into memory) are set up and the
random access data file is created. We create the
array IX (index to the data base) in memory and
we'll use it here for the time being. Later, we'll
come back and find out what we can do by putting
the index on the disk instead of in memory.

Lines 180-300 are the program menu, asking you
to choose from the 6 possible options for the
program. If you are just starting out, you'll want to
choose option 1 and create data to play with. The
create data routine (lines 320-400) simply enters
two lines of data for the file (up to 64 characters
each) and stores it in the file at the next available
location. Pressing ENTER when prompted for the
first field will return you to the menu.

Option 2, indexing, sorts the data on disk by
rearranging the index in memory. The sort has
been written to be inefficient so you can see what
happens when you try to move a lot of data back
and forth between the disk and memory. We could
restructure the sort, but you'll find it interesting to
hear your disk labor through the sort. Don't do this
too often, but do it to learn what the system will do.

Option 3 allows you to display, on your screen,
the information stored in the file. You should try
this before and after indexing to see how things
change. When you're entering the data, it's nice to
put the record number in each record as you create
it so you can see what it will be. You could make the
program print it, but we think you'll believe it more
readily if you type it into the record itself.

Options 4 and 5 are for loading and saving the
index. Notice that we are saving the index in a
sequential file, not a random one. Just because
we're dealing with random files, we don't need to
limit ourselves to them. We could have stored the
index in a random file. In fact, we will later when
we build a more sophisticated indexing program,
but recognize that even sequential files can be
useful in random file programs.

Remember that indexing is a way of building a
listing of which records to process and in what
order. When indexing, we can use selection criteria
to choose only those records we want, order the
records by some criteria (alphabetical, etc.), or do
anything we want to lay out the order we want to
access the records in. This technique is used
extensively in computer programming and is well
worth the effort to learn and use. When we get to
the random Card File program, indexing will take
on major importance. •

100 REM
101 REM *
102 REM * RANDOM ACCESS FILE DEMO 2
103 REM * FILENAME: RANDEM02.BAS
104 REM *
105 REM ***
110 NR=100:NX = 1
120 OPEN"R", 1,"RANDOM.DAT"
130 FIELD 1,64 AS X$,64 AS Y$
140 DIM IX(NR)
150 '
160 REM main menu M
170 C L S :PRINT"RANDEM02.BAS - Random Files Demonstration
180 PRINT:PRINT
190 PRINT" 0. End"
200 PRINT" 1• Enter Data"
210 PRINT" 2. Index Data"
220 PRINT" 3. Display Data"

I 230 PRINT" 4. Load Index"
240 PRINT" 5. Save index"
250 PRINT:PRINT
260 INPUT"Option";OP
270 IF OP=0 THEN CLOSE:END
280 IF OP<0 OR OP>5 THEN PRINT"OOPS NO SUCH COMMAND":GOTO 260
290 ON OP GOSUB 320,420,540,700,630
300 GOTO 160
310 '
320 REM enter data
330 PRINT"Enter information in field 1 and 2"
340 PRINT"Leaving field 1 blank will terminate entry"
350 LINE INPUT"FIRST FIELD: ",F1$
360 IF Fl$="" OR NX>NR THEN RETURN
370 LINE INPUT"SECOND FIELD: ",F2$
380 LSET X$=F1$:LSET Y$=F2$
390 PUT 1,NX:IX(NX)=NX:NX=NX+1
400 GOTO 320
410 '
420 REM index data
430 DF=NX-1
440 IF DF<1 THEN RETURN
450 DF = DF/2
460 SW=0
470 FOR 1=1 TO NX-l-DF
480 GET 1,IX(I):TX$=X$:TY$=Y$ M

490 GET 1,IX(I+DF) I fl
500 IF TX?>X$ THEN T=IX(I):IX(I)=IX(I+DF):IX(I+DF)=T:SW=1
510 NEXT I
520 IF SW=1 THEN 460 ELSE 440
530 '
540 REM display data
550 FOR 1=1 TO NX-1
560 GET 1,IX(I)
570 PRINT"record #";I;TAB(15);X$
580 PRINT TAB(15);Y$
590 NEXT I
600 LINE INPUT"Press ENTER to continue ";ET$
610 RETURN
620 '
630 REM save index
640 0PEN"0",2,"RANDOM.IDX"
650 FOR 1=1 TO NX-1
660 PRINT#2,IX(I)
670 NEXT I
680 CLOSE 2:RETURN
690 '
700 REM load index
710 OPEN"I",2,"RANDOM.IDX"
720 FOR NX=1 TO NR
730 IF EOF(2) THEN 760
740 INPUT#2,IX(NX) i 4
750 NEXT NX \ "
760 CLOSE 2:RETURN

8 CodeWorks

-F1

NFL86.Bas
The Code Works Oracle projects winners

Staff Project. When you say "American" we all tend to think of apple pie, Motherhood
and Girl Scout cookies. You may as well add NFL Football to the list. In this program, our
NFL "Oracle" tries to look at team strengths and project not only the winner, but the
point spread as well.

When the frost is on the pumpkin and there is a
nip in the air you know it's time for NFL football
again. It's a great time of the year, and the good old
American pastime of following the football season
enhances it considerably.

One of the things that makes football games so
interesting is that they are not always easy to
predict. It has been said that on any given day, any
given team can beat any other team. It's still true.

NLF86.Bas is a program that attempts to project
the winner and point spread for all the games in
weeks four through 16 of the season. The name
"Oracle" smacks of prediction, however, the
program is really one that projects from current
data rather than predict. It works with
quantitative data rather than qualitative values.
Miami playing in sub-zero weather in Buffalo, for
example, is not considered by this program. Such
judgments are left to you. The program simply
presents you with the figures of what a team has
done for the season and in the last three weeks.
These figures are then compared to each other and
also to the figures of the opponent, and provide you
with information you can build your own
interpretation on.

There are two programs involved; the projection
program is called NFL86.Bas, the statistics
management program is called NFLSTAT.Bas.
We used two programs instead of just one because
some computers may not have enough space for a
combined version and the data arrays they create.
Note that you do not necessarily have to use
NFLSTAT.Bas. The statistics file can be created
and maintained with a word processor. If you have

MS-DOS, you could use EDLIN to create and
maintain it. We tried it, and even CARD.Bas from
Issue 2 (or the Sampler issue) can be used to make
and maintain it. The statistics file has a simple
format: Team number, week number, number of
1st downs, score, points allowed, (followed by
Enter or Return.) Keep all the stats for one week in
a contiguous chunk though, because the
NFL86.Bas program expects to see them that way.

If none of the above ways of keeping the
statistics is for you, then you can get them from our
download. We will update the file and have it ready
to download by Tuesday afternoon of each week
after week three. The file name in the program
(and on the download) is STAT.DAT.

Background

Several months ago we first envisioned a
program that would project the outcome of NFL
games. We gathered all the copies of The Sporting
News and started pulling out the statistics for each
game. There are plenty of stats kept on these
games. We ended up with 28 different items for
each team for each game.

We used MAKER.Bas (from Issue 1) to enter all
the data into statements. Next, Cam Brown came
to the rescue with a multiple correlation program.
Using it, we tried to correlate each (and all) of the
statistics to score and win/loss. Hope, which had
previously sprung eternal, dwindled slowly as we
threw out one item after another because it was not

(Article continues on page 12)

CodeWorks 9

National Football League (NFL)

National
Football_
League
(NFL)

National
~ Football
Conference

(NFC)

NFC
East

. NFC
Central

, NFC
West

American
. Football _
Conference

(AFC)

AFC
East

AFC
' Central

AFC
West

NOTE: The numbering we have assigned to these teams
is important to the program.

1 - Redskins (Washington)
2 - Cowboys (Dallas)
3 - Eagles (Philadelphia)
4 - Giants (New York)
5 - Cardinals (St. Louis)

6 - Bears (Chicago)
7 - Vikings (Minnesota)
8 - Packers (Green Bay)
9 - Lions (Detroit)

10 - Buccaneers (Tampa Bay)

11 - 49'ers (San Francisco)
12 - Rams (Los Angeles)
13 - Saints (New Orleans)
14 - Falcons (Atlanta)

15 - Dolphins (Miami)
16 - Patriots (New England)
17 - Jets (New York)
18 - Bills (Buffalo)
19 - Colts (Indianapolis)

20 - Steelers (Pittsburgh)
21 - Browns (Cleveland)
22 - Bengals (Cincinnati)
23 - Oilers (Houston)

24 - Seahawks (Seattle)
25 - Raiders (Los Angeles)
26 - Broncos (Denver)
27 " Chargers (San Diego)
28 - Chiefs (Kansas City)

10 CodeWorks

Figure 1

The CodeWorks NFL ORACLE PROJECTION FOR WEEK B

Key to column headings
1- Teams plus Oracle's Winner projection
2- Oracle's overall rating number Cnot a score)
3- Number of games won this far in the season
4- Last 3 weeks average 1st dawns
5- Last 3 weeks average points scored
6- Last 3 weeks average points allowed
7- Season average 1st downs
B- Season average points scored
3- Season average points allowed
10- '

FALCONS
COWBOYS by 15 2S4

GIANTS by B
SAINTS

BILLS
EAGLES by 22

BUCS

LIONS

STEELERS
BENGALS by 5

OIKINGS
BEARS by 19

BRONCOS by 15 273
CHIEFS

NINERS
RAflS by 5

PACKERS
COLTS by 1

REDSKINS
BROWNS by B

OILERS by 7
CARDS

SEAHAWKS
JETS by 8

CHARGERS
RAIDERS by 7

tual po int spread CFill in this too .)

2 3 4 5 6 7 B 9 10

220 1 21 24 30 19 21 30 to
294 5 22 23 IB 22 24 16 24

2G9 4 24 25 22 21 22 16 Z 1
233 3 15 20 25 16 21 26 / 3

173 1 13 13 24 16 12 24 n
27B 3 21 22 14 16 14 14 Z I

245 4 IB IB 13 17 17 IB 3Z.

243 0 19 28 33 19 21 31 id

253 5 22 24 27 23 26 20 z /
1B1 4 13 12 29 13 IB 22

233 3 14 18 20 18 21 16 2 /

257 2 21 27 34 22 30 34 2fo

243 4 23 16 16 20 22 20 q

335 7 22 25 12 21 30 15 2 7

273 5 21 19 13 21 25 20
202 3 14 10 22 15 20 21 76

258 3 20 23 22 20 25 20 _ 2 S _
282 7 13 20 12 15 21 12 -/Y—

262 3 21 23 16 19 20 23 / o
264 2 IB 22 17 17 16 22 „5_Z_

247 3 18 18 10 19 14 21

282 4 19 21 15 19 19 15 7

221 2 13 23 26 15 17 22 ZD

190 3 17 9 26 19 22 26 / O

251 4 18 22 20 20 24 26

280 5 20 21 15 20 22 14 . '1.

251 3 21 23 22 22 24 26 a'

2B4 5 17 21 14 IB 22 19

11

Id

8

>6

r

is

2-6

27

/ o

This is a sample of week 8 of the 85-86
season.

'3

An "X" in the right-hand column indicates a
game picked incorrectly.

CodeWorks 11

(NFL86 from page 9)

even slightly significant. It was about that time
that Cam offered the suggestion that we simply
count all the blue and all the green cars in the
parking lot at the game to find the winner. We all
agreed that it would be as good as trying to figure
in the third down conversion ratio. Football, we
found out shortly, was a very complex and difficult
to predict game.

After sifting through all the data several times,
what emerged was this: The team with the highest
score wins. The magnitude of the winning number
is not important. You can win with a score of three
and lose with a score of 48. It all depends on what
the other team had. That was so obvious that it
hurt. We did find, though, that the number of first
downs a team made was tied to some degree with
their final score. That, points made and the
number of points the defense allowed the other
team to get were the most significant of all the
factors. In a way it really helps to have so few
items to consider. It makes the statistics easier for
anyone to gather (local newspaper), and cuts down
the size of the program and the data arrays it must
carry.

The next problem was how to project a winner
and a point spread from this data. We looked at
some other programs and found that there were too
many times when they claimed the game too close
to call. We didn't want any of that, the rationale
being that if we were already out on a limb, why
not go all the way and project a winner, if even by
one point.

Empiricism still reigns supreme! We tried
averages, moving averages, means and medians,
to no avail. Basing next week's performance on
last week's outcome is no good. The team may have
been off, or playing a much superior team last
week. What finally sifted down was looking at the
last three week's average, then flavoring that to a
lesser degree with the overall season average. That
way, you can see a team generally moving up,
down or holding steady. When you look at each
team this way, you can compare their numbers
with their opponent for next week and generally
see who has the power. It tells who has a larger
edge and how much of an edge. From this, we can
draw conclusions as to who will win and by how
many points.

Sounds good, but how can you explain how the
Oilers (1985- 86 season, week 7) with an overall
rating for that week of 172, beat the Bengals
(rating 272) by a score of 44 to 27? You can't. Try as
we may, we couldn't find anything in the numbers

that served as a leading indicator of a true upset.
That's why football is still such a great game.
There are obviously many subjective factors that
go into predicting a winner. What they are and
how to evaluate them is what makes Jimmy the
Greek run.

General Notes

Because of the way the program works, you
cannot make any projections until the statistics
for weeks one through three are in. This means
that we can project week four and after. This also
allows us to leave out the schedule for weeks one
through three in the data statements at the end of
NFL86.Bas.

To simplify the program, we have numbered all
the NFL teams (see sidebar). You need to know this
number when updating the statistics file;
everywhere else in the program that number will
identify the actual team by name.

The program will not allow projections if all the
data for all teams is not present for all the previous
weeks. Games played on Thursdays always count
for the following weekend. Games played on
Monday always count for the previous weekend.
The program output will show each game as a pair
of teams. The first one listed is always the visiting
team, the second is the home team.

NFL86.Bas Program Notes

The program starts by setting up several arrays
in line 170. Array A(x,x) contains the statistics
read in from the disk file STAT.DAT. It only needs
420 items because the stats for week 16 are not
needed. The B(x,x) array will hold the last three
week averages for each of the 28 teams. This array
is six deep because we will calculate the won/lost
for each team and store it in the sixth position. The
F(x,x) array will hold the season averages for each
of the 28 teams. The T$(x) array holds the team
names and the P(x) array holds the season
schedule.

The team names are contained in data
statements in lines 190 through 220. It is
important they remain in the order shown since
their position number is the same as the team
number in the statistics file. These names are read
into the T$ array in lines 240 through 270. The
season schedule is then read into the P array in
lines 290 through 320.
AtJ^e ^ode Works heading is printed next. Line
400 sets the printer (yes/no) flag to no printed
ou put. Line 410 asks which week number we want

to project, and the lines immediately following
check to see that that week number is within the
range we want. In line 440, if we want printed
output, the printer flag is set to 1.

In line 450 we make W1 through W4, which are
the projection week less 1 through 4. This makes
these week numbers easier to handle later in the
program. Line 470 initializes WN to equal the
number of items we should read in from the
STAT.DAT file for any given projection week
number. It is used in the following code from lines
490 through 600. In these lines we read from 1 to
WN, and if the loop counter I does not equal WN
then line 590 will tell us we do not have enough
data for the given projection week. The program
then ends so that you can correct the stat file.

The loop between lines 620 and 770 finds the
season average for each team and puts that
average into the F(x,x) array. The variable X is
always the team number. The inner loop from 650
through 710 scans the A(x,x) array looking for the
proper information to extract for the given team.
In line 660, if the team number in the stat array,
A(x,x) does not equal the team number we want, we
go to NEXT I and keep looking. If we do find the
correct team number, line 670 does a check to see if
the week number in the stat array is equal or
greater than the projection week. This allows us to
go back and rerun projections on previous weeks if
we want to. The little J loop between 680 and 700
accumulates the stat information for the given
team. It only needs to be concerned with positions
three to five, since the team number in position one
and the week number in position two are
immaterial at this point. After all the data is
accumulated, line 720 attaches the team number in
position one. Now another little J loop from lines
730 through 750 goes through the N(J) array and
puts the average number for the season into the
F(x,x) array. Since the N(J) array is accumulating
(see line 690) we need to clear it out before we do the
next team or it will contain left over data from the
previous team. This is done in line 760.

Finding each team average for the last three
weeks (see code lines 790 through 950) is almost
identical to the previous section of code. This time
though, we fill the B(x,x) array. Unlike the
previous section, in this one we only look at the last
three weeks (line 850). One other difference can be
noted here: In line 840 we are looking at the teams
for the entire season and checking to see if their
score (in A(I,4)) is larger than the number of points
they allowed (in A(I,5)) and if it is, then we add one
to the B(X,6) position. B(X,6) tells how many
games so far in the entire season team X has won.

Now that we have all the needed information
tucked away in the proper arrays, we can start
playing the teams against one another.

The main loop in this section is from line 1200
through 1400. Just prior to the loop (in line 1190)
we set the point from which to read in the schedule
(P(x)) array. Variable SI becomes that starting
point and is calculated in line 1190. The S loop then
reads the schedule array, two teams at a time and
makes the visiting team variable X and the home
team variable XI in line 1210. The team names
then become X$ and Xl$ in line 1220. This way, we
can evaluate the first pair of teams in the schedule,
print their results and go on to the next pairs.

Lines 1230 and 1240 sum rating points for each
team. These lines were derived empirically and go
like this: (take a deep breath) Add the team's
season average first downs to their last three week
first downs. Then add two times their average
season score plus four times their last three week
score. Then add 40 less their season average points
allowed to 40 less their last three week points
allowed. In addition, the home team (in line 1240)
gets an extra 20 added, which will be
approximately a 2 point home team advantage in
the final outcome. Taking 40 less points allowed
gets all the numbers going in the right direction,
since more points allowed are not as good as less
points allowed. Variables SO and TO then contain
numbers in the 100 to 400 range, which are used to
determine not only the relative strength of the
team, but how many points to assign to the point
spread.

Line 1260 says that if the two rating numbers are
equal, to assign the home team as the winner by
one point. This point is in addition to the two
already assigned to the home team, and represents
what the odds-makers generally give for home
team advantage. This also keeps the program from
making "too close to call" judgments. After
looking at the other numbers for each team, you
can make that call for yourself if you like. Lines
1270 and 1280 add the string value of the point
spread to the appropriate team. In those lines, the
large rating numbers we calculated earlier are now
divided by 5 and one is added. The reason we need
to add one is so that a team will not be declared
winner by zero points.

Based on the 1985-86 season, this program was
rather generous in its point spread projection. It
projected over the actual point spread 42% of the
time. You can make the point spread projection
more pessimistic by dividing by a larger number
than five in lines 1270 and 1280. For example,
dividing by 10 will cut the point spread in half.

CodeWorks 1 3

If you opt for printer output it will look like
Figure 1. If you do not opt for printer, the screen
will show you headings and four pairs of teams,
and a prompt to press Enter for more. If your video
screen is too small for four games, then change the
4 in line 1370 to 3 or 2. As it now stands, the screen
will not display as much information as the printer
output will. The LPRINT CHR$(12) in line 1410 is
a printer "top of form" command. Change it to suit
your printer or leave it out altogether.

The data statements which follow line 1420 are
the 1986-87 NFL schedule for weeks four through
16. Each pair of data lines represent one week, with
the number of the visiting team first and the home
team next. If you are entering this program
through your keyboard make sure these numbers
are all there and are correct. If, for example, you
had a number one followed by number one, you
would have the Redskins playing the Redskins
and the home team Redskins would win!

It takes the program a little while to accumulate
all the averages. We compiled this program with
the Microsoft Quickbasic compiler and found a
vast improvement in processing time.

Results

We feel just a little insecure about presenting
this program since there is no easy way to give you
a sample run. Also, there is no guarantee whatever
that it will perform for next season as it did for the
last two seasons. We may all be very surprised or
very disappointed. Who knows? But that's the fun
of NFL football. Here is what it should do: It
should pick the winner for the 13 weeks about 66%
of the time. It should pick the point spread, plus or
minus three points, about 30% of the times when it
picked the correct winner. Running it against last
season, it picked the Bears to win every game they
played. It missed the Bear's upset by the Dolphins
in week 13. It picked all 14 games correctly in week
six last year. The worst it did was to pick only
seven of 14 in three different weeks. Again, that's
history. What it will do this year is a big question
mark. We hope you have as much fun with it as we
did putting it together - but don't bet the farm on it.

Changes you can make

The basic structure of the program is there. If
you do not agree with our way of determining the
winner and point spread, you can make quite a few
changes easily. For example, you could gather
different statistics than we did. By changing the
dimensions of the arrays, you can use more

statistics than we did. The entire rating scheme in
lines 1230 through 1280 can be manipulated any
way you want.

Although not as easy to do, you can also make
provision for user input of such items for each
game as, for example, weather conditions,
coaching changes, injuries or trades. How you
assign values to such factors would be an
interesting study in itself.

NFLSTAT.Bas Program Notes

NFLSTAT.Bas is a program you can use to
create and maintain the NFL statistics used in the
NFL86.Bas program. It is quite similar (from lines
100 through 400) to the NFL86.Bas program and
the discussion of that program applies here too.
Lines 130 and 140 are remark lines that tell you
how to establish the file initially. Once the file is
established, do not do this again or it will wipe out
what you already have in the file.

The program is a simple database program
without too many bells or whistles. Variable Ll is
established in line 400 as the number of entries
that were read in from the data file. An entry in
this case consists of: Team number, week number,
number of 1st downs, score and points allowed. {
Each entry represents one team's statistics for one
week. Since 28 teams play each week, we can check
to see if the stats are complete. This is done in line
480, where we take the entries MOD 28. If the result
is zero, we have the right number of entries, if it is
not zero then there must be extra or missing data
in the file. For those of you who do not have MOD
in your BASIC, change line 480 as follows:

480 Xl=INT(Ll-28*INT(Ll/28)):IF X1<>0
THEN etc.,etc..

Also change line 1040:

1040 X1=INT(I-14*INT(I/14)):IF X1=0 THEN
etc., etc..

Update the file

It is best to collect all the stats (including the
, u™day and Monday games) prior to updating

e file. It is best done in one session. With this
program, the team number and week number will
be inserted into the file automatically. You need
only enter the 1st downs, points scored and the .
points allowed. This is done in lines 640 through I

1 4 Code Works

Edit an item

Given a team number and week number, the
section of code from lines 780 through 950 will
search for that item and show it to you on the
screen. You then need to re-enter all the
information for that entry, including the team and
week numbers. If the program cannot find what
you asked for, you will be informed and given the
opportunity to go back to the main menu in line
860.

View the file

This option lets you scan the entire file, 14 teams
at a time, from beginning to end. With 14 items and
the heading, the display should just fit a 16-line
video screen. The width is also adjusted so as to fit
a 64 column screen. The 14 lines are dealt out by
the For...Next loop starting at line 1000. When I

reaches 14, line 1040 comes into play and stops the
display, giving you the opportunity to read it and
then press Enter for more. When this happens, the
screen is cleared, a new heading is printed and 14
more lines are dealt out. If the number of lines is
not 14, then the ELSE in line 1040 will cause a
jump around the heading in line 1050 and continue
with NEXT I. Following the "no bells" concept,
once you start to read the file you must read all the
way to the end.

Save file and END

You must use this option to save the file back to
diskette or your updates will be lost. As we noted
earlier in this article, there are several other ways
to make and maintain the stat file. If none of the
others appeal to you, perhaps this one will do the
job. •

100
110
120
130
140
150

160
170
180
190
200
210
2 2 0
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

The Projection Program

REM ** NFL86.BAS * NFL PROJECTION PROGRAM *CODEWORKS MAGAZINE *
REM ** 3838 S. Warner St. Tacoma,WA 98409 (206) 475-2219 VOICE
REM ** (206)475-2356 300/1200 MODEM * Requires a data file made
REM - with NFLSTAT.BAS - See CodeWorks Issue 7 for details

•CLEAR 10000:'Use only if your Basic requires cleared string

space.

DIM A(4 2 0,5) , B (28,6),T?(28),F(28,5),P(364)

DATA REDSKINS,COWBOYS,EAGLES,GIANTS,CARDS,BEARS,VIKINGS
DA?A PACKERSfLIONS. BUCS. NINERS. RAMS.
n,(p, TV-*T dutm<; PATRIOTS. JETS, BILLS, COLTS, STEbLEKb, UKUWJNO
DATA BENGALS,OILERS,SEAHAWKS,RAIDERS,BRONCOS,CHARGERS,CHIEFS
I
REM * READ IN THE TEAM NAMES *
FOR 1=1 TO 28

READ T?(I)
NEXT I

REM * NOW READ IN THE SEASON SCHEDULE
FOR 1=1 TO 364

READ S:P(I)=S
NEXT I

i mi, • -i c a nipar screen command, change to suit your Basic.

pEi.
c0od0eTTl

PRINT" Projects Winner and point-spread"

PRINT STRING?(60,)
PRINT

CodeWorks
15

400 PT=0
410 INPUT"Projection for which week number";W
420 IF W>16 THEN PRINT"Oracle can only project weeks 4 through 16. "s

GOTO 410
430 IF W<4 THEN PRINT"Insufficient Data, wait until week 4 to start":

GOTO 410
440 INPUT"Enter 1 for printer output, else just Enter";PT
450 W1=W-1:W2=W-2:W3=W-3:W4=W-4
460 PRINT TAB(10)"The Oracle is busy ..."
470 WN=W1*28
480 '
490 REM ** READ STATISTICS FROM STAT.DAT FILE **
500 PRINT"Reading the statistics file ..."
510 PRINT"Throwing chicken bones over his shoulder...
520 OPEN "I",1,"STAT.DAT"
530 FOR 1=1 TO WN
540 IF EOF(1) THEN 590
550 FOR J=1 TO 5
560 INPUT #1,A(I,J)
570 NEXT J
580 NEXT I
590 IF I<WN THEN PRINT"Statistics for weeks 1 through";W1not

complete.":END
600 CLOSE 1
610 '
620 REM * FIND AVERAGE FOR SEASON **
630 PRINT"Finding the season average for each team..."
640 FOR X=1 TO 28
650 FOR 1=1 TO WN
660 IF A(I,1)<>X THEN 710
670 IF A(1,2)> =W THEN 710
680 FOR J=3 TO 5
690 N(J)=N(J)+A(I,J)
700 NEXT J
710 NEXT I
720 F(X,1)=X
730 FOR J=3 TO 5
740 F(X,J)=N(J)/W1
750 NEXT J
760 ""FOR J=1 TO 5 : N(J) =0 : NEXT J
770 NEXT X
780 '
790 REM ** FIND EACH TEAM AVERAGE FOR LAST THREE WEEKS
800 PRINT"Finding the last three week average for each team..."
810 FOR X=1 TO 28
820 FOR 1=1 TO WN
830 IF A(1,1)<>X THEN 890
840 IF A(I,2)<W AND A(I,4)>A(I,5) THEN B(X,6)=B(X 6)+l
850 IF A(I,2)<>W1 AND A(I,2)<>W2 AND A(I,2)<>W3 THEN 890
860 FOR J=3 TO 5
870 C(J)=C(J)+A(I,J)
880 NEXT J
890 NEXT I
900 B(X,1)=X

16 CodeWorks

910 FOR J=3 TO 5
920 B(X,J)=C(J)/3
930 NEXT J
940 FOR J=1 TO 5:C(J)=0:NEXT J
950 NEXT X
960 CLS
970 '
980 PRINT"PROJECTION FOR WEEK ";W
990 PRINT Week ;W;TAB(16)"Oracle'sTAB(303 week Averages

1000 PRINT TAB(16)"Rating";TAB(25)"Won";TAB(30)"1st
downs";TAB(43)"Score";TAB(54)"Pts Allowed"

1010 IF PT< >1 THEN 1190
1020 LPRINT"The CodeWorks NFL ORACLE PROJECTION FOR WEEK ";W
1030 LPRINT" "
1040 LPRINT"Key to column headings"
1050 LPRINT TAB(10)" 1- Teams plus Oracle's Winner projection"
1060 LPRINT TAB(10)" 2- Oracle's overall rating number (not a score)"
1070 LPRINT TAB(10)" 3- Number of games won this far in the season"
1080 LPRINT TAB(10)" 4- Last 3 weeks average 1st downs"
1090 LPRINT TAB(10)" 5- Last 3 weeks average points scored"
1100 LPRINT TAB(10)" 6- Last 3 weeks average points allowed"
1110 LPRINT TAB(10)" 7- Season average 1st downs"
1120 LPRINT TAB(10)" 8- Season average points scored"
1130 LPRINT TAB(10)" 9- Season average points allowed"
1140 LPRINT TAB(10)"10— Actual score (you fill in after the games)
1150 LPRINT TAB(10)"11- Actual point spread (fill in this too.)
1160 LPRINT" "
1170 LPRINT"1";TAB(16)"2";TAB(21)"3";TAB(26)"4";TAB(30)"5";TAB(34)"6";

TAB(41)"7";TAB(45)"8";TAB(49)"9";TAB(56)"10";TAB(66)"11"
1180 LPRINT" "
1190 SI=(((W-l)*28)+2)-84
1200 FOR S=SI TO SI+26 STEP 2
1210 X=P(S-1):X1=P(S)
1220 X§=T$ (X) :X1$=.T$ (XI)
1230 S0=F(X,3)+B(X,3)+(2*F(X,4))+(4*B(X,4))+(40-F(X,5))+3*(40-B(X,

5))
1240 T0=F(X1,3)+B(X1,3)+(2*F(X1,4))+(4*B(XI,4))+(40-F(XI,5))+3*(40-

B(X1,5))+20
1250 S5=INT(S0+.5):T5=INT(T0+.5)
1260 IF S5=T5 THEN X1$=X1$+" by 1"
1270 IF S5>T5 THEN X$=X$+" by"+STR$(INT(((S5-T5)+.5)/5)+1)
1280 IF S5 <T5 THEN X1$=X1$ + " by"+STR$(INT(((T5-S5) +.5)/5)+1)
1290 PRINT X?;TAB(16);S5;TAB(25);B(X,6);TAB(31);INT(B(Xf3));TAB(43);

INT(B(X,4));TAB(55);INT(B(X,5))
1300 PRINT XI$;TAB(16);T5;TAB(25);B(XI,6);TAB(31);INT(B(XI,3));

TAB(43);INT(B(XI,4));TAB(55);INT(B(XI,5))
1310 PRINT
1320 IF PT< >1 THEN 1360
1330 LPRINT X$;TAB(15);S5;TAB(20);B(X,6);TAB(25);INT(B(X,3));

TAB(29);INT(B(X,4));TAB(33);INT(B(X,5));TAB(40);INT(F(X,3)) ;
TAB(44);INT(F(X,4));TAB(48);INT(F(X,5));TAB(55)"

1340 LPRINT XI§;TAB(15);T5;TAB(20);B(XIf 6);TAB(25);INT(B(XI,3));
TAB(29);INT(B(XI, 4)) ;TAB(33);INT(B(XI/5));TAB(40);INT(F(XI,3));

Code Works 17

TAB(44);INT(F(X1,4));TAB(48);INT(F(X1,5))? TAB(55) ?
TAB(65)" "

1350 LPRINT" ":GOTO 1400
1360 TC=TC+1
1370 IF TC=>4 THEN PRINT"Press Enter for more"?:INPUT XX:CLS:TC-0

ELSE 1400
1380 PRINT"Week" ;W;TAB(16) "Oracle ' s";TAB(30) " 3 week

Averages "
1390 PRINT TAB(16)"Rating";TAB(25)"Won";TAB(30)"1st

downs";TAB(43)"ScoreTAB(54)"Pts Allowed"
1400 NEXT S
1410 IF PT=1 THEN LPRINT CHR$(12):' Printer top of form command
1420 END
1430 REM * THE 86-87 SCHEDULE FOR WEEKS 4 THROUGH 16 FOLLOWS
1440 DATA 14,10,6,22,9,21,8,7,28,18,12,3,13,4
1450 DATA 16,26,17,19,20,23,27,25,11,15,24,1,2,5
146^ DATA 18,17,22,8,21,20,2,26,23,9,19,11,25,28
1470 DATA 15,16,7,6,4,5,3,14,10,12,1,13,27,24
1480 DATA 18,15,6,23,26,27,9,8,28,21,12,14,7,11
1490 DATA 13,19,17,16,3,4,5,10,24,25,1,2,20,22
1500 DATA (j,7,2,3,9,12,8,21,23,22,19,18,25,15
1510 DATA 16,20,4,24,5,1,27,28,11,14,10,13,26,17
1520 DATA 14,12,22,20,21,7,9,6,25,23,15,19,16,18
1530 DATA 13,17,5,2,27,3,11,8,24,26,10,28,1,4
1540 DATA 14,16,18,10,22,9,21,19,2,4,26,25,8,20
1550 DATA 23,15,28,27,7,1,17,24,3,5,11,13,12,6
1560 DATA 6,10,22,23,25,2,12,13,7,9,16,19,4,3
1570 DATA 17,14,20,18,5,11,27,26,24,28,1,8,15,21
1580 DATA 6,14,21,25,2,27,9,3,23,20,19,17,28,26
1590 DATA 16,12,15,18,4,7,13,5,24,22,10,8,11,1
1600 DATA 25,27,14,11,18,16,2,1,26,4,9,10,8,6
1610 DATA 19,23,28,5,7,22,13,12,3,24,20,21,17,15
1620 DATA 8,9,24,2,14,15,18,28,22,26,23,21,12,17
1630 DATA 16,13,3,25,20,6,27,19,10,7,1,5,4,11
1640 DATA 22,16,21,18,2,12,26,28,9,20,23,27,19,14
1650 DATA 15,13,7,8,4,1,17,11,5,3,10,6,25,24
1660 DATA 20,17,1,26,18,19,21,22,8,10,28,25,15,12
1670 DATA 7,23,13,14,3,2,5,4,11,16,24,27,6,9
1680 DATA 12,11,26,24,8,4,14,9,18,23,6,2,19,25
1690 DATA 28,20,13,7,17,22,27,21,10,5,1,3,16,15

The Statistics Maintenance Program

100 REM * NFLSTAT.BAS * CODEWORKS MAGAZINE * 3838 S. WARNER ST.
TACOMA WA.

110 REM * 98409 (206) 475-2219 VOICE (206) 475-2356 300/1200 MODEM
120 REM * Maintains the stats for NFL.BAS from Issue 7, CodeWorks
130 REM * If no file exists then in command mode,type 0PEN"0",1,"STAT.

DAT"
140 REM * and press ENTER, then type CLOSE and press ENTER. This

creates an
150 REM * empty file called STAT.DAT. You can then run this program.

18 CodeWorks

160 PRINT"Loading STAT.DAT file from diskette.."
170 ' CLEAR 10000: ' Use only if your machine needs to clear string

space.
180 DIM A(420,5),T?(28)
190 '
200 DATA REDSKINS,COWBOYS,EAGLES,GIANTS,CARDS,BEARS,VIKINGS
210 DATA PACKERS,LIONS,BUCS,NINERS,RAMS,SAINTS,FALCONS
220 DATA DOLPHINS,PATRIOTS,JETS,BILLS,COLTS,STEELERS,BROWNS
230 DATA BENGALS,OILERS,SEAHAWKS,RAIDERS,BRONCOS,CHARGERS,CHIEFS
240 '
250 REM * READ IN THE TEAM NAMES *
260 FOR 1=1 TO 28
270 READ T?(l)
280 NEXT I
290 '
300 REM ** READ IN THE EXISTING STAT FILE **
310 WN=420
320 OPEN "I", 1,"STAT.DAT"
330 FOR 1=1 TO WN
340 IF EOF(1) THEN 390
350 FOR J=1 TO 5
360 INPUT #1,A(I,J)
370 NEXT J
380 NEXT I
390 CLOSE 1
400 L1=I-1
410 '
420 CLS: 1 Use your own clear screen command here.
430 PRINT STRING?(22,"-");" The CodeWorks STRING?(23)
440 PRINT" NFL WEEKLY STATISTICS"
450 PRINT" Maintains statistics for 1986-87 NFL Football"
460 PRINT STRING?(60,
470 PRINT
480 IF LI MOD 28 <>0 THEN PRINT"There is extra (or missing) data in

the file" ELSE PRINT"The file is currently updated through week";
LI/ 28

490 PRINT
500 PRINT TAB(10)"1 - Update the file"
510 PRINT TAB(10)"2 - Edit an item in the file"
520 PRINT TAB(10)"3 - View the entire file"
530 PRINT TAB(10)"4 - Save the updated file and END"
540 PRINT
550 INPUT" Your choice";X
560 IF X<1 OR X>4 THEN 550
570 ON X GOTO 610,780,980,1110
580 END
590 '
600 REM * UPDATE THE FILE ROUTINE **
610 CLS
620 INPUT"UPDATE STATISTICS FOR WHICH WEEK NUMBER";W
630 IF W=<Ll/28 THEN PRINT"The file appears to be updated through

that week."
640 J=L1+1

CodeWorks 19

650 FOR X=1 TO 28
660 PRINT"For 'the ";T$(X);M for week ";W ^
670 INPUT "How many first downs
680 fftPUT"How many points did they score —" ;A(J,4;
690 INPUT"and they allowed how many points-";A(J,5)
7£0 A (J /1) =X: A (J, 2) =W
710 PRINT
720 J=J+1:L1=L1+1
730 NEXT X
740 PRINT"Press Enter for menu";:INPUT X:GOTO 420
750 END
760 '
770 REM ** EDIT AN ITEM IN THE FILE ROUTINE **
780 CLS
790 PRINT "EDIT DATA - You supply the team number and week number.
800 PRINT
810 INPUT"What team number are you looking for ";X
820 INPUT"What week number are you looking for ";W
830 FOR 1=1 TO LI
840 IF A(I,1)=X AND A(I,2)=W THEN 870
850 NEXT I
860 PRINT"That item is not in the file":GOTO 940
870 PRINT T$(A(I,1));A(I,1);"Week->";A(I,2);"1st Dns->";A(I,3);"Score-

>";A(1,4);"Pts Allowed->A(1, 5)
880 PRINT
890 INPUT"Enter correct team number ";A(I,1)
900 INPUT"Enter correct week number ";A(I,2)
910 INPUT"Enter correct 1st downs ";A(I,3)
920 INPUT"Enter correct score ";A(I,4)
930 INPUT"Enter correct points allowed ";A(I,5)
940 INPUT"Press Enter for menu";X:GOTO 420
950 END
960 '
970 REM * VIEW THE FILE ROUTINE **
980 CLS
990 PRINT"TEAM #","WEEK","1ST DOWNS","SCORE" ; " ";"PTS ALLOWED"
1000 FOR 1=1 TO LI
1010 FOR J=1 TO 5
1020 PRINT A(I,J),
1030 NEXT J
1040 IF I MOD 14=0 THEN PRINT"Press Enter for moreINPUT X:CLS:

ELSE 1060
1050 PRINT"TEAM #","WEEK","1ST DOWNS","SCORE" ; " ".MPTS ALLOWED"
1060 NEXT I
1070 GOTO 420
1080 END
1090 '
1100 REM * SAVE THE FILE AND END ROUTINE **
1110 OPEN "0",1,"STAT.DAT"
1120 FOR 1=1 TO LI
1130 FOR J=1 TO 5
1140 PRINT #1,A(I,J)
1150 NEXT J
1160 NEXT I

20 CodeWorks

1170 CLOSE 1 ,,
1180 PRINT"THE FILE STAT.DAT IS NOW SAVED
1190 PRINT"END OF PROGRAM."
1200 END

Some of the "cloned" machines do not have
standard BASIC. It looks like regular BASIC and
acts like it most of the time, but there are subtle
differences. One we recently became aware of was
a Japanese BASIC running under MS-DOS. It
required the number sign (#) before the buffer
number in opening sequential files for either input
or output. Standard Microsoft BASIC usually
allows the number without the number sign in this
case, but requires it for PRINT #1 or INPUT #1
statements.

We all know that the statement PRINT FRE(O)
will tell us how many available bytes are left in
memory. But did you know that the same
c o m m a n d w i l l p e r f o r m t h e m e m o r y
management" function? Before it tells you how
much memory you have left, it goes through and
clears and reorganizes the string space and all
superfluous garbage in memory. This clearing
action would take place by itself when memory
gets near to full. You can prevent long delays in
this clearing by using FRE(O) inside your program
to force it. During memory management, you are
effectively locked out. No keys on the keyboard will
respond. By using FRE(O) you can create much
shorter (but more frequent) periods of such lockout.
Memory tends to fill up rapidly when you start
reassigning strings (as in switching them in a
sort).

MS-DOS BASIC'S have a SAVE"filename",P
option which saves the file (or program) in an
encoded binary format. After this save, the only
operations that can be performed on the file are
RUN, LOAD and CHAIN. Be careful with this
option! It can be a real trap. If you have not saved
another version of the same program normally,
you cannot go back to list or edit it.

Another trap to avoid is in making a menu
program that calls other programs (as in
DRILL.Bas in this issue.) Each of the called
programs will return you to the menu program,
you are working on one of the called programs and
have not yet saved it, it is very ? easy to
inadvertently answer "N or o o
"Continue" question, and wipe out all the work you

have done on the program. During development of
such programs, it is best to change the
Menu" line in the called programs to something
that will not load and run the main program, then
change it back when everything is checked out.

We have never seen this documented but ran
across it by accident one day. On MS-DOS
machines, if you hold down the ALT key and type a
number on the numeric key pad, when you
the ALT key the screen will display the ASCII
symbol for the number you typed. It won't work
with the regular number keys, only the keypad
numbers. It's very handy to quickly check out
what some of those high ASCII numbers
represent.

Creating an empty file on diskette from
command mode is very easy. You should be in
BASIC with the ready prompt. Then type
0PEN"0",1,"filename": CLOSE and press
RETURN. This creates an empty file called
"filename" on your diskette. If you want to
initialize a file with a sentinel in it (as in
CARD.BAS), you can do it like this: From the
BASIC ready prompt, type 0PEN"0",1,"CARD.
D A T " t h e n p r e s s R E T U R N . T h e n t y p e
PRINT#1,"ZZZ" and press RETURN. Then type
CLOSE and press RETURN. That will initialize
the file and put the ZZZ sentinel in it. Be careful
though, if a file already exists with that name, it
will be wiped out when you do this!

CodeWorks

Puzzler #7
and answers for #5 and #6

Puzzler 5 in the last issue was a "black box"
problem. The length of the line was given as 40
characters. The problem was to input A$ and
include in it the control character $UL, which was
supposed to create a leader (underline) line across
the width of the line. The control was to be inserted
wherever in the line a leader was desired. It was to
work before words in the line, after words in the
line or between words.

After

between
before
words

After receiving dozens of replies to earlier
Puzzlers, we were rather surprised that there were
only four entries for this one. All four are listed
here for your perusal and comment. We must
admit, with some chagrin, that our own way of
doing it lacked the technique shown by any of
these four.

Are puzzle solvers good puzzle makers? Our mail
on puzzlers runs from those who say they are too
easy to a few who say that the puzzles are not well
formulated. We welcome your ideas on the subject
and if you know any good programming or logic
puzzles, please share them with the rest of us.

Puzzler 6, the "throw in" puzzler to get our puzzle
numbers and issue numbers back into sync, had a
simple answer. It was to put a space between the $
and the UL for transmission to the typesetter, then

after it was transmitted, remove the space. We will
go along with the rest of you who said that it didn't
qualify as a puzzler. It didn't, but it served its
purpose. Now on to puzzler 7.

Puzzler 7

There are many instances in computing when
spaces need to be removed from either the
beginning or end of a string, sometimes from both.
This would be true when converting strings from
fixed length fields to another format, or when
right- and left-justifying text strings for printing.
This is the subject of our next puzzler.

Given a string of any length, including a null
string, what is the most efficient code that will
remove the spaces on either end (or both ends) of
the string?

Read "efficient" code as "elegant" or "clever" or
shortest" code. We haven't done this one yet

either, so we will be working on it right along with
you. We have included the case of the null string
because that may be a possibility in the real world
and would need to be dealt with. Our issues
normally close one month before the cover date,
i.e., Nov/Dec 86 issue closes on 1 October 86, so
entries we receive before 1 October will be
considered in the Nov/Dec 86 issue. •

100
110
1 2 0
130
140
150
160
170
180
190
200
210
2 2 0
230

LL=40 PUZ5-BAS GARDNER N. HOLLYWOOD, CA

PRINT For a leader line, insert Sui at- -t-v.
PRINT"where you want it to appear in • P l a C e"
PRINT appear m the line."

LINE INPUT"Input A$ ";A$
L=INSTR(A$,"$UL")
IF L=0 THEN GOTO 150
B4§=""
IF L>1 THEN B4$=LEFT$(AS L-l)
AF?="" '

IF L< (LEN(A$) -2) THEN AF$=RIQHTS (AS r
A$=B4$+STRING$(LL-LEN(B4$)-LEN(AFS)'" " ?}~L~2}

PRINT A$ ^N(AF?), _")+AF?

22

100 REM * PUZ5.BAS JOHN ANDERSON ARLINGTON MA
110 LL=40 i H
120 PRINT"For a leader line, insert ?UL at the place
130 PRINT"where you want it to appear in the line.
140 PRINT
150 LINE INPUT"Input A? ";A?
160 LSTR=LEN(A?)
170 PMAC=INSTR(A?,"$UL")
180 IF PMAC THEN 0?=LEFT?(A?,PMAC-1)+STRING?(LL+3-LSTR,

LSTR-PMAC—2) ELSE 0?=A?
190 PRINT 0$

100 REM * PUZ5.BAS MERTON L. DAVIS CAMDEN, SC

120 PRINT"For a leader line, insert $UL at the place
130 PRINT"where you want it to appear in the line.
140 PRINT
150 LINE INPUT"Input A? ";A$
160 L=LEN(A?) .
170 I=INSTR(A$,"$UL"):UL$=STRING$(LL-L+23,95)
180 PRINT LEFT?(A?,1-1);UL?;RIGHT?(A?,LL-I-LEN(UL?)

100 REM * PUZ5.BAS KEN BUSCH SAN DIEGO, CA

120 PRINT"For a leader line, insert ?UL at the place"
130 PRINT"where you want it to appear in the line.
140 PRINT
150 LINE INPUT"Input A? ";A? _ _ n m \
160 SL=LEN(A?):AL=SL-3:UL?=STRING?(LL-AL, _)
170 FOR Q=1 TO SL
180 IF MID$(A$,Q,3)="$UL" THEN GOSUB 220
190 NEXT Q
200 PRINT B$+UL$+C$
210 PRINT:GOTO 150
220 B$=LEFT$(A$,Q-1)
230 C$=RIGHT$(A$,AL-Q+1)
240 Q=SL
250 RETURN

100 REM * PUZ5.BAS * Puzzler for Issue 6 *** CodeWorks

120 PRINT"For a leader line, insert $UL at the place
130 PRINT"where you want it to appear in the line.
140 PRINT
150 LINE INPUT"Input A$ ";A$ _
160 P=INSTR(1,A$,"$UL"):IF P<>0 THEN J=LEN(A?)-3
170 IF J>LL THEN J=LL
180 FOR 1=1 TO LEN(A$)

200 IF MID$(A$',l!3) = "$UL" THEN 1=1 + 3 : T$=MID$ (A$, 1,1)
STRING?(LL-J,);

210 PRINT T?;
220 NEjXT I

Code Works

Beginning Basic <<
Arrays? Why get complicated; don't I have a

computer full of variable names to use?
That's what you are likely to hear from people

who have just started learning BASIC. They are
right. You do have a computer full of variables to
use, and if the program lends itself to that level of
usage, so much the better. But with an array of
even one dimension you can start to treat groups of
variables representing similar functions on a
much higher and more efficient level.

For example, you may have five values to store
in memory for some program. You could assign
them names like A, B, C, D, and E. Now you need to
write code to handle each of them individually,
both when you input the data and when you
compute and output it. Granted, with only five
such variables, it would not be a monumental task,
but what happens when you need 100 variables?
Instead of creating five different variables with
five different names, we can just as easily create
one subscripted variable. Let's call it A(x). Now x
can be any number we like (or have space in
memory for). The x in this case is called the
subscript. Now we can assign our five values to
A(l) through A(5). Even though the A remains the
same, the subscript number makes a different
variable of each of the subscripts. The flag-waving
advantage of this method is that now we can use a
simple loop to input, process or output the data in
the array. Furthermore, we can add data to the
array (make it hold more items) simply by
increasing the subscript number. This removes the
necessity of rummaging around in the alphabet,
looking for a new and unused letter.

Note that when A(x) is assigned, it is a totally
different variable than A (without a subscript), or
A$ (string). And yes, before you ask, A$(x) would
create an array for string variables. Now what
about the number of the subscript? Where does it
start? When you assign the A(x) array, BASIC sets
aside spaces in the array starting at subscript
number 0 whether you use it or not. Some
computers have a BASIC statement called
"OPTION BASE". It sets the minimum array
subscript to either a zero or one. The default is zero,
and if your computer does not have OPTION
BASE, your subscripts will start with number zero.
What about the highest number?

BASIC automatically assigns 11 spaces to a
subscripted variable (zero through 10). If you try to
use A(ll) you will be greeted with a "Subscript out

of Range" error. To use an index of 11 or more, you
need to dimension the array with the DIM
statement (preferably early in the program.) A
given array may be dimensioned only once in the
program. There are exceptions, but they are
beyond the scope of this article. Telling BASIC to
DIM A(100), for example, would give you 101
spaces in the A array (zero through 100).

You can look at the subscript as though it were
an index number. It is. When you dimensioned the
A array, BASIC set aside a whole section of spaces
and called them all the A array. You can visualize
them as a series of cubbyholes, each with a number
on them. The index (subscript number) is simply
the number of the cubbyhole. Y ou can now begin to
fill the cubbyholes with useful information.
Assuming that you set the dimension of the A
array to A(100), you could then use the following
code to fill the array:

10 DIM A(100)
20 FOR 1=1 TO 100 |
30 INPUT A(I) '!
40 NEXT I

This is certainly preferable to assigning 100
different variables and asking for each one
separately. You have just reduced 100 input
statements to one, plus a line for the DIM
statement and two for the loop. That's the power of
an array.

Another property of the array scheme is that the
index number can be computed. Yes, you can use
arithmetic, as in A(I-!-2), which would be array
index two down the line from where I currently is.
In sorting we generally want to look at the current
item and compare it to the next item. In that cas'
we could set L equal to 1+1 and then compare /
to A(L). That would compare the informath
A(I) to the information in A(L). Don't '
indicies or subscripts lead you away from
that they are simply cubbyhole identificai
not the information itself.

In computer jargon we talk about "stuffii.
array. This simply means that we are putting so.
numbers (or strings) into assigned array spaces.

So far, we have talked only about single k
dimension arrays. Like a line, they have only one 1
dimension: length. In the next issue we will
introduce arrays that have two and three
dimensions. •

24 Code Works

Drill.Bas
A collection of math and spelling exercises

Bob Henkel, Tacoma, Washington.This type of program has been done before, but we
especially liked the way Bob made the problems get harder and easier as a function of
your correct answers. These programs have been used extensively by Bob in actual
classroom situations.

In January, 1981, when I purchased my first
computer, one of the first programs I wrote was the
one for multiplication practice. It seemed a natural
thing for a math teacher to do. Since then it has
been updated several times. Items such as a timing
loop, in conjunction with INKEY$, scoring of
problems and automatic increase and decrease of
difficulty of the problems depending on the score
were added.

In the fall of 1985, with a move to a junior high
school, addition, subtraction and division were
added to the set.

In an effort to make further use of the computer
and encourage student progress, I wrote the two
programs on mental arithmetic. One is strictly
addition of 20 single digit numbers. The other
gives random addition and subtraction of single
digit numbers with two out of three chances for
addition (so the answer usually gets larger.)

Since I was also teaching a spelling class, I tried
to devise a program for spelling practice. This
turned out to be quite a chore. The first attempt
was to use a phrase as a clue. The job of thinking
up clues and typing them into the computer was
great and the results were very poor. The clue
seldom elicited the correct word. Attempt number
two was to have the entire word flash on the screen

•* once. This was undesirable. If the word
:<eared too long a time, the spelling was too easy,

•lword appeared too short a time, the word was
cognized. The third attempt proved to be

I j toccessful. It was to have the word scroll
1 c- r. across the screen two letters at a time.

.§ menu part of the program was my first
•iitempt to load one BASIC program from another.
I have discovered that trying to write programs is
one of the best ways to learn about programming.
Further additions to the program are only in the
thought process. Fractions are a good possibility
and the graphics necessary to complete the task

would be a valuable learning experience. These
programs were originally developed on a Tandy
Model 4. Any suggestions for additions and
improvements would be appreciated.Send them to:
Bob Henkel, 10613 25th Avenue East, Tacoma,
Washington 98445

Program Overview

The first four menu items are arithmetic drill.
Each program consists of 20 problems. The
student is to select the difficulty of the problems to
start. If no more than one problem is missed the
problems get harder, while missing five or more
causes the problems to get easier. There is a limited
time allowed for each answer.

If a problem is answered wrong or not answered
quickly enough, the correct answer appears on the
screen and a delay loop allows the student to
concentrate on the correct answer for a short time.
At the end of each set of 20 problems a score is
given for the last 20 as well as a score for all
problems already done. Also, at the end of each 20
problems, the student is given the option of
continuing or changing to a different type of
problem.

The menu option 5 is spelling practice. Each
word scrolls across the screen, two letters at a time.
Then the word is to be typed from the keyboard.
Three attempts to spell each word are allowed.
Scoring is five points for correct spelling on the
first try, three points for the second try and one
point for getting it correctly on the third try. If the
word is not spelled correctly on the first two tries,
the word will scroll across the screen again.
Incorrect spelling of the word on the third try will
display the word and then go on to the next word.

There is a menu option for entering or correcting
spelling word files. It is menu item 8, and the
program is called UPDATE.BAS. The files in

CodeWorks 25

which the spelling lists are stored are sequential
and are all named UNITab, where 'a' refers to the
grade level and 'b' refers to the lesson number.

Menu optons 6 and 7 are practice in mental
addition, or mental addition/subtraction. Each
has 20 numbers. Mental addition gives 20
numbers, one at a time, to be added mentally. At
the end, the answer is to be typed on the keyboard,
and is then compared to the correct answer.

Mental addition/subtraction starts with a
random number between 26 and 35. Then 20
numbers appear, one at a time, on the screen. Some
are to be added to the running total, others

subtracted. Again, the answer is to be typed on the
keyboard and compared to the real answer. These
two options only use single digit numbers for the
20 which appear on the screen.

The programs, as presented here, are written for
GW BASIC under MS-DOS. Appropriate changes
for machines that use PRINT@ and have smaller
screens are noted along with each program where
those changes apply. The delay timing loops
should be easy to spot, and may need to be changed
for computers which run at different clock speeds
than the one they were developed on. •

100
110
120
130
140
150
160
170
180
190
200
210
220

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

3838
AND

SOUTH REM * DRILL.BAS * MAIN MENU PGM * CODEWORKS MAGAZINE
REM * WARNER ST. TACOMA, WA 98409 206-475-2219 VOICE
REM * 206-475-2356 300/1200 BAUD MODEM
REM * WRITTEN FOR CODEWORKS BY BOB HENKEL, SPANAWAY, WASHINGTON
CLS: USE YOUR PARTICULAR CLEAR SCREEN COMMAND HERE
'CLEAR 1000:'USE ONLY IF YOU NEED TO CLEAR STRING SPACE
PRINT STRING?(22,45)?" The CodeWorks "?STRING?(23,45)
PRINT"
PRINT
PRINT
PRINT
PRINT
PRINT

I N S T R U C T O R ' S D R I
a collection of exercises

STRING?(60,45)

L L P R O G R A M "
by Bob Henkel"

TAB(10)"1-Addition";TAB(30)"6-Mental Addition
TAB(10)"2-Subtraction";TAB(30)"7-Mental

Addition/Subtraction
PRINT TAB(10)"3-Multiplication";TAB(30)"8-Update Spellinq Files
PRINT TAB (10) "4-Division"; TAB(30) "9-End Session t>Peiilng FllGS

PRINT TAB(10)"5-Spelling
PRINT
LINE INPUT"Enter the number of your choice ";X?
X=VAL(X?)
IF X<1 OR X>9 THEN 270
ON X GOTO 310,320,330,340,350,360,370,380,390
RUN"ADD.BAS
RUN"SUB.BAS
RUN"MULT.BAS
RUN"DIV.BAS
RUN"SPELL.BAS
RUN"MADA.BAS
RUN"MADAS.BAS
RUN"UPDATE.BAS
CLS
PRINT"End of Session."
END

Many machines (notably the Tandy Models I,
III and IV) do not require the RANDOMIZE
statements in lines 120 and 130 of most of
these programs. Those machines also will
need a different RND statement, and in some
cases, PRINT@ instead of LOCATE. These
will be called out where they occur in the
listings.

100 REM * ADD.BAS * ADDITION PROGRAM USED WITH DRILL RAR *
l\l RFM^T Y,OXtl °Wn Cl6ar SCreen command h™e ILL*BAS
20 REM Seed the random number generator from TimoR

130 A=VAL(MID? (TIME?, 4, 2)+MID? (TIME? 7 2))•RANDOMtvp 140 PRINT TAR, "T: : ' ' * > ' :RANDOMIZE A I'KIJMI J.AB(10) Addition Problems "

CodeWorks

150 PRINT
160 PRINT"You will be given 20 addition problems with a limited"
170 PRINT"time to answer each problem. If you miss no more than"
180 PRINT"one problem, the problems will get harder. If you miss"
190 PRINT"more than five, they get easier.
200 PRINT"You cannot correct errors, so be careful."
210 PRINT:INPUT"What is the largest addend to be used";LA
220 IF LAO THEN LA=3
230 CLS:PRINT"Largest addend is";LA
240 FOR X=1 TO 20 Alternate use:
250 A=INT(RND* (LA-1)+l) A=RND(LA-1)+1
260 B=INT(RND* (LA-2)+2) B=RND(LA—2)+2
270 PRINT A;" + ";B;" = ";
280 IF A+B<10 OR A*B<10 THEN 310
290 FOR Y=1 TO 4000:T?=INKEY?:IF T?="" THEN NEXT Y
300 IF T?="" THEN 320 ELSE 310
310 FOR Z=1 TO 3000:U?=INKEY?:IF U?="" THEN NEXT Z ELSE 320
320 PRINT T?+U?;" ";
330 IF VAL(T$)*10 +VAL(U$)=A+B THEN SC=SC+1 ELSE PRINT;" the correct

answer is";A+B;:FOR Y=1 TO 4000:NEXT Y:V?=INKEY?:W?=INKEY?:
Z?=INKEY?

340 PRINT
350 T?="":U? = ""
360 NEXT X
370 PRINT
380 CT=CT+1:TL=TL+SC
390 PRINT"Score on last 20 problems is";SC*5;"%":PRINT"Score on all

problems is";INT((TL*5/CT)+.5);"%"
400 IF SO 18 THEN LA=LA+1
410 IF SC<15 THEN LA=LA-1
420 S<3=0: PRINT "Would you like to do another set (Y/N)?"
430 CU?=INKEY?:IF CU?="" THEN 430
440 IF CU?="Y" OR CU?="y" THEN 230 ELSE IF CU?="N" OR CU?="n" THEN

RUN"DRILL.BAS" ELSE 430

100 REM * SUB.BAS * SUBTRACTION PROGRAM USED WITH DRILL.BAS *
110 CLS:'Use your own clear screen command here.
120 REM * Seed the random number generator from Time?
130 A=VAL(MID?(TIME?,4,2)+MID?(TIME?,7,2)):RANDOMIZE A
140 PRINT TAB(10)" Subtraction Problems "
150 PRINT
160 PRINT"You will be given 20 subtraction problems with a limited"
170 PRINT"time to answer each problem. If you miss no more than"
180 PRINT"one problem, the problems will get harder. If you miss"
190 PRINT"more than five, they get easier.
200 PRINT"You cannot correct errors, so be careful."
210 PRINT:INPUT"What is the largest subtrahend to be used";LA
2 20 IF LAO THEN LA=3
230 CLS:PRINT"Largest subtrahend is";LA
240 FOR X=1 TO 20 Alternate use:
250 A=INT (RND* (LA-1)+l) A=RND(LA—1)+1
260 B=INT(RND* (LA)) B=RND(LA)
270 PRINT A+B;" - ";A;" = ";

Code Works 27

280 IF B<10 THEN 310
2 90 FOR Y=1 TO 4000: T$=INKEY$: IF T$="" THEN NEXT Y
300 IF T$="" THEN 320 ELSE 310
310 FOR Z=1 TO 2000: U$=INKEY$: IF U$="" THEN NEXT Z ELSE 320
320 PRINT T$+U$?"
330 IF VAL(T$)*10+VAL(U$)=B THEN SC=SC+1 ELSE PRINT?" the correct

answer is";B;:FOR Y=1 TO 4000:NEXT Y:V§=INKEY$:W$=INKEY$:
Z$=INKEY$

340 PRINT
350 T$="":U$=""
360 NEXT X
370 PRINT
3 80 CT=CT-fl: TL=TL+SC
390 PRINT"Score on last 20 problems is"? SC*5? "%": PRINT"Score on all

problems is";INT((TL*5/CT)+ .5);
400 IF SC>18 THEN LA=LA+1
410 IF SC<15 THEN LA=LA-1
420 SC=0:PRINT"Would you like 20 more (Y/N)?"
430 CU$=INKEY$:IF CU$="" THEN 430
440 IF CU$="Y" OR CU$ = "y" THEN 230 ELSE IF CU$="N" OR CUS="n" THEN

RUN"DRILL.BAS" ELSE 430

* MULT.BAS « MULTIPLICATION PROGRAM USED WITH DRILL.BAS *
110 CLS: Use your own clear screen command here.
120 REM * Seed the random number generator from TimeS

PMNT<MB(l0)»E$'4'2)MM?f(TIME?'7'2)>!RAHDOMIZE A 150 PRINT Multiplication Problems "

160 PRINT»You will be given 20 multiplication problems with a limited'

170 PRINT"time to answer each problem Tf ««•,
180 PRINT"one problem, the problems will get harder™!f°vn th*n •'
190 PRINT"more than five, they get easier harder* If miss
200 PRINT"You cannot correct errors, so be careful "

220 IF^if^A^18 ̂ larg6St to be used";LA
230 CLS:PRINT"Largest multiplier is"*LA
240 FOR X=1 TO 20 '
250 A=INT(RND* (LA-1)+l) Alternate use:
260 B=INT(RND* (LA-2)+2) A=RND(LA—1)+1
270 PRINT A?" x ";B? " = "? B=RND(LA—2)+2
280 IF A*B<100 AND A*B>9 THEN 320
290 IF A*B<10 THEN 340
300 FOR V=1 TO 4000:H$=INKEY$:IF H$ = "" THEN NEYT
310 IF H$="" THEN 350 EN NEXT V

320 FOR Y=1 TO 3000:T$=INKEY$:IF T§="" THEN NFYT v
330 IF T$="" THEN 350 ELSE 340
340 FOR Z=1 TO 2000:U$=INKEYS: IF U$ = "" thfm mpvt r, „
350 PRINT H$+T§+U$?" THEN NEXT Z ELSE 350
360 IF VAL(H$) *100+VAL(T$) *10+VAL(US)=A*n tut?xt cm

the correct answer is" • A*B- • for v-i L SC-SC+1 ELSE PRINT?"
W$=INKEY$:Z$=INKEY$ ' '' 4000;NEXT Y:V$=INKEY$:

370 PRINT

380 H$=""j T$="": U$=""
390 NEXT X
400 PRINT
410 CT=CT+1:TL=TL+SC
420 PRINT"Score on last 20 problems is";SC*5;":PRINT"Score on all

problems is";INT((TL*5/CT)+.5);"%"
430 IF SC>18 THEN LA=LA+1
440 IF SC<15 THEN LA=LA-1
450 SC=0:PRINT"Would you like another set of 20 (Y/N)?"
460 CU$=INKEY$:IF CU$="" THEN 460
470 IF CU$="Y" OR CU$="y" THEN 230 ELSE IF CU$="N" OR CU$="n" THEN

RUN"DRILL.BAS" ELSE 460

100 REM * DIV.BAS * DIVISION PROGRAM USED WITH DRILL.BAS *
110 CLS:'Use your own clear screen command here.
120 REM * Seed the random number generator from Time$
130 A=VAL(MID$(TIME$,4,2)+MID$(TIME$,7,2)):RANDOMIZE A
140 PRINT TAB(10)" Division Problems "
150 PRINT
160 PRINT"You will be given 20 division problems with a limited"
170 PRINT"time to answer each problem. If you miss no more than"
180 PRINT"one problem, the problems will get harder. If you miss"
190 PRINT"more than five, they get easier.
200 PRINT"You cannot correct errors, so be careful."
210 PRINT:INPUT"What is the largest divisor to be used";LA
2 20 IF LA< 3 THEN LA=3
230 CLS:PRINT"Largest divisor is";LA
240 FOR X=1 TO 20 Alternate use:
250 A=INT(RND* (LA-1) +1) A=RND(LA—1)+1
260 B=INT(RND* (LA-1)+l) B=RND(LA—1)+1
270 PRINT A*B?" / ";A;" = "J
280 IF B<10 THEN 310
290 FOR Y=1 TO 4000:T$=INKEY$:IF T$="" THEN NEXT Y
300 IF T$="" THEN 320
310 FOR Z=1 TO 2000:U$=INKEY$:IF U$="" THEN NEXT'Z ELSE 320
320 PRINT T$+U$?" ";
330 IF VAL(T$)*10+VAL(U$)=B THEN SC=SC+1 ELSE PRINT;" the correct

answer is";B;:FOR Y=1 TO 4000:NEXT Y:V$=INKEY$:W$=INKEY$:
Z$=INKEY$

340 PRINT
350 T$="":U$=""
360 NEXT X
370 PRINT
380 CT=CT+1:TL=TL+SC
390 PRINT"Score on last 20 problems is"ySC*5;"%":PRINT"Score on all

problems is";INT((TL*5/CT)+.5);"%"
400 IF SC>18 THEN LA=LA+1
410 IF SC<15 THEN LA=LA-1
420 SC=0:PRINT"Do you want to do another set (Y/N)?"
430 CU$=INKEY$:IF CU$="" THEN 430
440 IF CU^="Y" OR CU$="y" THEN 230 ELSE IF CU$="N" OR CU$="n" THEN

RUN"DRILL.BAS" ELSE 430

CodeWorks 29

100 REM * SPELL.BAS * FOR USE WITH DRILL.BAS PGM * SPELLING DRILL
110 DIM WO?(20)
120 CLS
130 PRINT
140 PRINT TAB(10) " Spelling Drill "
150 PRINT
160 INPUT"What is the number of the speLling lesson.";A?
170 INPUT"What is the grade level (4,5,6,7,8)";GL?
180 IF VAL(GL?)<4 OR VAL(GL?)>8 THEN 170
190 U?="UNIT"+GL?+A?
200 OPEN"I",1,U?
210 FOR X=1 TO 20
220 INPUT #l,WO?(X)
230 NEXT X
240 CLOSE
250 CLS
260 PRINT"When you see a word spelled letter by letter at the"
270 PRINT"center top of the screen, you enter the correct spelling"
280 PRINT"for that word.
2 90 PRINT"If you get the word on the first try you get 5 points."
300 PRINT"If you get the word on the second try you get 3 points."
310 PRINT"If you get the word on the third try you get only 1 point."
320 PRINT
330 INPUT"Press ENTER when you are ready to start.";A
340 CLS
350 PRINT"These are the words you will by asked to spell."
360 PRINT
370 FOR X=1 TO 20 STEP 2
380 PRINT X;TAB(5);WO?(X);TAB(30);X+1;TAB(35);WO?(X+l)
390 NEXT X
400 PRINT
410 INPUT"Press ENTER when you are ready to continue "iA
420 CLS ' '
430 FOR X=1 TO 20
440 FOR Y=3 TO 1 STEP -1
450 L=LEN(WO?(X))
460 FOR Q=1 TO 400:NEXT Q: ' one of many delay loops
470 FOR Z=1 TO L y AOOP8

480 LOCATE 3,Z+30:PRINT MID?(WO?(X), Z 2)
490 FOR Q=1 TO 200:NEXT Q: ' sets speed of the letter's

appearance
5 00 LOCATE 3, Z+30:PRINT" ": ' one
510 NEXT Z space between quotes here

520 CLS
530 LOCATE 10,5:INPUT"Type the word fhaf

that appeared on the screen. >

540 IF WO?(X)< >AN? THEN 600
550 SC=SC+2*Y-1: PRINT "Score =";SC
560 PRINT "Good work, you spelled <"'wn«!/Y\ Hv

570 PRINT"Watch the top center of ' correctly."
580 FOR Q= 1 TO 1000:NEXT Q screen for the next word.
590 GOTO 680
600 IF Y=3 THEN PRINT"You missed the word ™ -v, ,
610 IF Y=2 THEN PRINT"You missed the word on the 2nd try!"

620 IF Y=1 THEN PRINT"The correct spelling is: ";WO$(X)
630 FOR Q=1 TO 1000:NEXT Q
640 IF Y=3 OR Y=2 THEN PRINT"Watch the top center of the screen."
650 IF Y=1 THEN PRINT"Your three tries are gone. Watch for the

next word."
660 FOR Q=1 TO 2000:NEXT Q
670 NEXT Y
680 NEXT X
690 PRINT"Your score on the last 20 words is ";SC:CT=CT+1
700 TS=TS+SC:SC=0
710 PRINT"Your total score is "y:PRINT USING "###.#";TS/CT
720 PRINT"Do you wish to try another lesson (Y/N)"
730 A$=INKEY$:IF A$ = "" THEN 730
740 IF A$="Y" OR A$="y" THEN GOTO 140
750 IF A?="N" OR A$="n" THEN RUN"DRILL.BAS" ELSE 720

100 REM * MADA.BAS * MENTAL ADDITION PROGRAM USED WITH DRILL.BAS
110 CLS:'Use your own clear screen command here.
120 REM * Seed the random number generator from Time$
130 A=VAL(MID$(TIME?,4,2)+MID$(TIME?,7,2)):RANDOMIZE A
140 PRINT TAB (10)" Mental Addition "
150 PRINT"This is a program to practice mental addition."
160 PRINT"You will be given 20 numbers to add mentally.
170 INPUT"Press ENTER when you are ready to start";A
180 Z—0
190 FOR X=1 TO 20
200 Y=INT(RND*9)+1
210 LOCATE 6,40:PRINT "+";Y
220 Z=Z+Y
230 IF X=20 THEN 270
240 FOR T=1 TO 3000:NEXT T
250 LOCATE 6,40:PRINT"
260 FOR Y=1 TO 300:NEXT Y
270 NEXT X
280 INPUT"What is your answer";AN
290 IF AN=Z THEN PRINT"Great Jobi" ELSE PRINT"The correct answer is:";

Z
300 PRINT"Do you wish to try again (Y/N)"
310 A?=INKEY?:IF A?="" THEN 310
320 IF A?="Y" OR A?="y" THEN 110 ELSE RUN "DRILL.BAS"

Y=RND(9)
64-column PRINT@
414

414

80-column PRINT@
520

520

100 REM * UPDATE.BAS * FOR USE WITH DRILL.BAS PROGRAM TO UPDATE
SPELLING FILES

110 DIM WO$(20)
120 PRINT
130 CLS
140 PRINT TAB(5)" Update Spelling Lesson Files "
150 PRINT
160 PRINT TAB(10)"1- Create a new Spelling file"
170 PRINT TAB(10)"2- Edit an existing Spelling file"
180 PRINT TAB(10)"3- END and Return to Drill Program
190 PRINT TAB(10)"4- END Session and Quit

Code Works 31

200
210
220
230
240

250

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

540
550
560
570

PRINT
PRINT TAB(10)"The number of your choice is ";:INPUT A
IF A<1 OR A>4 THEN 130
ON A GOTO 240,430,560,570
PRINT"What is the number of this new spelling lessonINPUT A?*
A=VAL(A$)
PRINT"What is the grade level of this lesson (4#5,6, 7, 8) : INPUT
GL$
IF VAL(GL$)<4 OR VAL(GL$)>8 THEN 250
CLS:PRINT"Enter your words as each number appears."
FOR X=1 TO 20
PRINT X;TAB(5);:INPUT WO$(X)
NEXT X
CLS
FOR X=1 TO 20 STEP 2
PRINT X;TAB(5) ;WO$ (X) ;TAB(30) ?X+1;TAB(35) ;W0$ (X+l)
NEXT X
U$="UNIT"+GL$+RIGHT$(A$,LEN(A?))
PRINT"Now saving file ";U$
OPEN "0",1,U$
FOR X=1 TO 20
PRINT #l,WO?(X)

NEXT X
CLOSE 1
GOTO 130
INPUT ENTER the number of the lesson to correct"*AS
INPUT"what is the Grade Level (4,5.6,7?8?°"LS
U$="UNIT"+GL$+A$,GL$
OPEN "I",1,U$
FOR X=1 TO 20
INPUT #1,WO$(X)

NEXT X
CLOSE 1

Fofx=l"oS20NTER t0 C°ntinue' or th. word."

^XT)^AB(5)'W0$(X);:W?=W0$(X)!IN-T W0?(X):IF WO$(X) = "" THEN
NEXT X
GOTO 370
RUN"DRILL.BAS"
CLS:PRINT"Update Session is ended.":END

SOX
A new way of making loops

The ability to program loops is one of the more powerful attributes of any langauge. Here
is a new way to do it with the control of the loop all in one line of code. It can also be made
to create non-linear sequences.

Sox what? You have never heard of it before. It
was discovered at CodeWorks, by Jay Marshall,
several months ago.

SOX stands for String Ordinal IndeXing. It
works using strings, and the ordinal positions
within a string. In case you forgot, ordinal
numbers are first, second, third, etc., while the
cardinal numbers are 1, 2, 3, etc.

Using SOX, you can format an entire video
screen in one line of code. You can format both the
horizontal and vertical print positions on your
printer using it. How about non-linear
progressions? Standard loops always count in
even increments, either increasing or decreasing.
With SOX you can program, again in one line, a
totally non-linear series which repeats. It also
works well with program flow control, where what
happens in a subroutine needs to change the flow
of the program. It can be used very effectively to
eliminate long series of IF THEN statements.

Granted, all these things can just as well be done
with standard loops, but there are times when SOX
can eliminate many lines of code. Aside from that,
it puts the entire control sequence in one string,
where it can easily be reached and (admittedly, not
so easily) modified. It also has a few shortcomings.
But enough of this, what is it anyway?

To illustrate the principle, let's take a very
simple example.

Q=ASC(MID$("ABCDA",Q+l,l))-64

You have seen something similar before, but not
quite. There are a couple of differences here. First
of all, assume that variable Q starts at zero (which
it will when you RUN a program.) Every time your
program encounters the above line, Q will be
incremented by one in the line itself. Now, when Q

is zero and we hit this line, it will be incremented
by one (to 1), and the line will find the ASCII value
of capital letter A (65) from the literal string
ABCDA, and subtract 64 from it, leaving Q=l. The
next time we encounter this line, Q is already equal
to one, so it now gets bumped to 2 and we pull out
the value for B less 64, which is 2. This continues
each time we reach this line, until we get to the
literal D (where Q=4). Here, the loop will close
itself because after D we have another A in the
literal string. It does it because Q takes the value
from the ordinal position of the literal string, and
the next letter after D is A (value 65-64=1). The
next time through, Q+l will put us at string
position two, which is B (66-64=2), and so on. This
line will give us a 1,2,3,4,1,2,3,4,1,2,.... sequence.
No big deal, a simple For...Next will do it easier.
But wait, there's more.

The two things that set this line of code off from
a normal line is the "Q+l" and the "-64" at the end
of the line. This line of code, plus a GOTO, is an
incrementing loop. It loops because the literal
string starts with A and ends with A, effectively
resetting it. Notice that the loop will not produce a
zero. The incrementing device is the factor Q+l
inside the line. The -64 brings the ASCII value of
the literal string back into correspondence with
the place positions of the literal string itself. Note
that, if prior to reaching this line, you initialized Q
to be 2, then the loop would start at 3 the first time
only and then fall into the 1, 2, 3, 4 sequence.
Further, the literal string "ABCDA" inside the line
need not be there. It can be defined elsewhere, say
as A$="ABCDA", and then the line could read:
Q=ASC(MID$(A$,Q+l,l))-64. You can even have
several lines defining different strings, and
somewhere during processing elsewhere, equate
them to A$ for a whole new sequence. Now let's try

Code Works 33

some variations on this theme.
Type in the following little program. We are

going to use it for several examples:

10 CLS
20 A$="ABCDEFGHIJA"
30 Q=ASC(MID$(A$,Q+1,1))- 64
40 LOCATE Q,1:PRINT Q;STRING$(50,95)
50 GOTO 30

This example is for GW BASIC. Those with 64-
column, 15 line screens, change line 40 to:
PRINT@ Q*64,;Q; etc., and those with 80-column
screens change it to PRINT@ Q*80,;Q; etc. In
addition, those computers using memory mapped
video may need to add a semicolon at the very end
of line 40 to keep the cursor from being destructive.

This little program will print ten lines of
underline on the screen from line 1 to 10. It will
place the number of the line at the beginning of the
line.

Now let's make it print from the bottom up.
Change line 20 to: 20 A$="JJABCDEFGHI".
Before running, Q=0, so the first time through line
30, Q will take the value 10 from the J in A$. But
that will position the next "read" of the string to
ordinal position 10, where theQ+1 will point to the
"I" in A$, which will make Q=9. This will
continue, stepping backwards along A$ until "J"
is reached, which sends Q back down the line to
repeat the sequence. Now how about some non
linear sequences?

Before we can do that, we need to define
something as a "place holder" in A$. To see what
that means, change line 20 to: 20 A$=" AC.DG. .A"
The periods in A$ are there as place holders. This
new A$ will repeat the sequence 1,3,4,7. Try it and
watch your screen. If you need a sequence that
goes like this: 1, 8, 12, 2, 5, 15 change A$ to
"AHE..O..L...B..A", and it will give them to you in
that order.

Instead of printing on the screen, we could have
an ON Q GOSUB statement, which would take us
to various subroutines in which the value of Q
could be incremented or decremented prior to
returning depending on the outcome of the
processing in the subroutine. Entire control
sequences can be written in one string this way.

One that comes to mind is a sequence that
controls TAB positions for LPRINT, although it
would need to be increasing from smallest to
largest, since you cannot tab backwards on most
printers.

It is possible to have more than one loop
operating in one string. The variable Q never stops

34

at a place holder position. In those positions, you
can set up another sequence, and then, external to
the loop, force Q from one of the repeating
sequences to the other or others. One restriction is
that the two (or more) loops cannot share a
common value.

What about zero? If you need a sequence that
includes zero, set up AS to go from 1 to one more
than you need. Then, let another variable equal Q,
once Q is calculated, and let the other variable
equal Q less one, as in: S=Q-1.

We have set up AS to include the capital letters A
through Z, the following six ASCII symbols, and
then the lower case letters a through z. It gives an
interesting range to work with, and could possibly
be extended to the higher ASCII characters as
well.
Until now, we have looked at the ASC(MII)$ of a
string of letters. We can do similar things with the
VAL(MID$ of a string of numbers. The following
line will produce the numbers 1 through 12 in
ascending sequence and repeat it:

Q=VAL(MID$(".01020304050607080910111201",
Q*2+2,2))

Note that the first position of the literal string is
a place holding period. It is necessary because we
are looking at two positions at a time and since
initially Q is equal to zero, we want to start down
the string at position 2.

To make this scheme count from 12 to 1 and
repeat, the string would look like this:
.12120102030405060708091011"
Like the code shown earlier, the above string will

start at 1 assuming that Q is initialized at zero
when the RUN command is given. Prior to
entering this code, however, Q may be initialized to
any number within the range of the literal string.

he count will then start at the next number, that
is, the space number in the string plus one.

you try to force Q to a number resulting in zero
or ou i e the range of the string ordinal positions,
you will encounter the "Illegal Function Call"
-i • r° ou are assured of seeing plenty errors of
this type as you play with this idea.

rPl*H lg WHat g0C8 Where in8ide the 8tring iS

work*' ieasy after you *et the "feel" for h0W [t

inrrppoi 18 'j e8pec'a"y true for simple linear
vT81ng or decreasing series where all integer
letters a ^ pres^n*" ^ow to decide where and what
80 easv ll'v. i 6 string for non-linear series is not
letters tr> k e.ps f° 8imPly play with three or four

gin with. Somehow, letters seem to be
asier to understand than numbers.

CodeW°rl<s

If the SOX line is Q=ASC(MID$("ABCDEFGH
A",Q+l,l))-64, it counts from 1 to 8 and repeats.
Let's make it count 2, 4, 6, 8 and repeat by
changing the literal string within this statement.
Assuming that Q was initialized at zero when we
RUN, it appears that the first number we want in
our series must be in the first string position. Since
we want a 2, let's put a B in the first position. Now
Q+l will get us to that position, which contains the
B we put there. This results in Q taking the value of
2. The next time we get to this line of code (with
Q=2), we will be positioned at the second position
of the string. However, the Q+l will move us up
one position to the third position. So we put a place
holder (period or any other character) at position
two in the string and put the letter representing a 4
(letter D) in the third position. Now Q takes on the
value of 4. On the next pass through this line of
code, Q will equal 4, which puts us at the fourth
position of the string and the Q+l will push us to
the fifth position. So, the fourth position should be
another place holder character and the fifth place
should hold the letter F if we want a 6 from it. Next
time we hit position six, plus the 1, puts us into
position 7 where we want to see an 8 so we put the
letter H in the seventh position. The last time
around, with Q=8 because H=8, will ;mt us into the
eighth position and the Q+l will advance us to the
ninth position, where we want to put another B to
make the cycle repeat. The complete string for the
2, 4, 6, 8 sequence is "B.D.F.H.B"

It appears that the first number we want must
always go into the first position of the string. The
next letter then must go into the string position
represented by the ASCII value less 64 of the
previous letter plus one. In the above example, the
D went into the position pointed to by B (which
equals 2) plus 1, or position 3. The H went into the
position pointed to by the F (6) plus 1 equals
position seven. The closing B went into the
position pointed to by the H (8) plus 1, or position
nine. The cycle repeats because when Q takes on
position nine, its value is again 2 and the Q+l puts
it at position three, where it takes the value of 4

from the D there.
The B at the first position in the string is used

only once, the first time the line of code is
encountered in the program. After that, it is simply
skipped over like any other place holder character.
In fact, this is true even for reverse counts, as in
"HHABCDEFG", where the first H causes Q to be
8 and moves our "invisible pointer" down to the F,
which is incremented by one by the Q+l to G where
Q takes the value of 7. The H in position one is used
the first time the line of code is encountered while
the second is a place holder. After the first time the
second H becomes operative and the first serves as
a place holder.

At first it seemed to be that the number of spaces
in the string must equal the value of the largest
number you wish to represent plus one. But then
we ran into these that made us reconsider: The
sequence 1, 3, 4, 8 is represented by the string
"AC.DH..A" (eight spaces). The sequence 1,3, 4, 7
is represented by the string "AC.DG..A" (eight
spaces), but the sequence 1,6, 7,8 is represented by
the string "AF....GHA" (nine spaces).

SOX can be used as loops by themselves, with
one GOTO. They can also be used very effectively
inside For...Next or While...Wend loops. It is
possible for one SOX loop to be nested within
another SOX loop. Learn how to do the single loop
first, the nested SOX are difficult to set up.

You can jump into and out of a SOX loop with
ease. There is no stack to worry about and no
string assignment (unless you start to equate the
string inside the statement to other strings outside
of it.)

We have yet to find an application for SOX that
couldn't be done by conventional means. In many
cases, however, SOX made a significant reduction
in program lines. What SOX really needs is an
application that can't be done any other way. It
appears to be a solution looking for a problem. If
you didn't get the jist of this whole affair through
this discussion, type in the sample and play with
it. It's an interesting concept, and if you find a
unique application for it, let us know. •

The two programs which follow are both
memory dump programs using SOX techniques.
The first is for GW-BASIC and MS-DOS, and
allows you to see all of memory, even if you have
630K! It provides a rolling display of hex-dump
after you provide it with the segment numbers (0
through 15) and the starting and ending address
(0000 to 65535) in each segment.

The second program is a repeat of the ASCII
dump program from last issue, this time using the
SOX technique to roll the display below the
heading on the screen. It should work on any
computer that uses the PEEK command. Because
this is a repeat program, it will not be on the
current issue download menu.

Hex dump program for MS-DOS machines

100 DEFINT C-Z : REM * MUMP.BAS * HEX MEMORY DUMP FOR MS-DOS *
110 CLS:L=3
120 INPUT"Enter Segment #(0-15)";BLK
130 INPUT"Enter Start Address ";A1
140 INPUT"Enter Ending Address ";A2
150 DEF SEG=BLK* 2"12
160 Al=((Al/2) AND &HFFF8)*2
170 CLS:PRINT"Block ";BLK;HEX?(BLK),"From ";A1?HEX?(Al), "To " ; A2;HEX?(A2)
180 WHILE Al<=A2
190 LOCATE L, 1 iL=ASC(MID? ("ABDDEFGIIJKLNNOPQSSTUVDFYZ" , L, 1))-63
200 PRINT HEX? (BLK);". " ; RIGHT?("000"+HEX?(Al),4);":
210 FOR A=A1 TO (Al+15)
220 PRINT" ";RIGHT?("0"+HEX?(PEEK(A)), 2) ;
230 NEXT A:PRINT":
240 FOR A=A1 TO (Al+15)
250 CH=PEEK(A)
260 IF CH<32 OR CH>126 THEN PRINT"ELSE PRINT CHR?(CH);
270 NEXT A:A1=A1+16:PRINT
280 WEND:BEEP
290 IF INKEY?="" THEN 290 ELSE 110

ASCII dump program

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

REM ADUMP/BAS * ASCII DUMP PROGRAM * CODEWORKS
REM * 3838 S. WARNER ST. TACOMA, WA 98409. (206)475-2219
CLEAR 1000
CLS:' This is a CLEAR SCREEN command.
PRINT STRING?(22,"-");" The CodeWorks STRING?(23,"-")
PRINT " ASCII DUMP PROGRAM"

III™ LDT^?/!?1ty®,me,nory " Use Space Bar for Pause/Continue' PRINT STRING?(64,"-")
PRINT
PRINT "MEMORY RANGE FROM 0000 TO 32767."
PRINT
DEFINT A,B,C,I:KY=1
INPUT "STARTING MEMORY (DECIMAL) ADDRESS"-A
INPUT " ENDING MEMORY (DECIMAL) ADDRESS"-B
IF B=0 THEN B=A+2000
L=ASC(MID?("E FGHIJKLMNE",L+l,1))-64
PRINT @64*L,RIGHT?(
FOR I=A TO A+7

PRINT" "+RIGHT?(
NEXT I
PRINT "
FOR I=A TO A+7

C=PEEK(I)

"+STR?(A),5);":

"+STR?(PEEK(I)),3);

IF C<32 OR C>126 THEN PRINT ".";ELSE PRINT CHR?(C);
NEXT
A=A+8
KY?=INKEY?:IF KY?< >""THEN KY=3-KY
IF KY=2 THEN 360
IF A<B THEN 250 ELSE 100
STOP

36

» FMAKER.Bas
A general utility for making files

Staff Project. There are so many times when you need a quick way to make a sequential
file that we finally wrote it. Then we added the ability to do limited editing on the data.
There are so many other things we could have added, it was hard to stop. We really didn't
want a full-blown file editor, but it is something to think about.

CP/M and MS-DOS have the ability to create
and enter data into a file from the console
(keyboard). Many other machines do not have this
utility, and so we have designed this short
program to do the job. This utility, FMAKER.Bas
(for filemaker) should work on any machine using
Microsoft BASIC.

The program can be used to create a sequential
file, enter data into it, and recall the data and do a
limited amount of editing before replacing it. The
editing is limited to line editing, which means that
the entire line in error needs to be re-entered. It is
intended to create small sequential control files. In
MS-DOS, for example, it can be used to create
AUTOEXEC.BAT files. When we present our
report generator for CARD.BAS, this program can
be used to generate the report formats needed.

The program starts with the usual opening
menu and three options. The one string array used
is A$, and is dimensioned at 100. The three menu
options are to create a new file, change an existing
file and to quit. Lines 210 through 230 do error
checking for input within the proper range.

The section of code that controls the input of
data into a new file is between lines 240 and 340. F$
takes on the filename you enter. The use of period
and end (.end or .END) terminates the entry of
lines, but does not become a part of the data itself.
The data is input through the loop between lines
290 and 320. In line 310 a check is made to see if the
input is equal to .end or .END, and if it is, control
jumps to line 330 where variable N is set equal to I
less 1 to get rid of the last .end or .END entry now
that it has done its job.

The little loop in line 340 simply prints out the
list of items you have entered. The code following,
from lines 350 through 390, opens the sequential
file on disk and prints the items into it.

Option 2 of the menu allows you to recall a file
and change it. This code resides between lines 420
and 570. The first part of this section, from lines
420 through 480, first asks what the filename is,

then opens the file and reads the data into the A$
array in memory. In line 450, inside the loop, an
end of file (EOF) check is made so that we read to
the end of file and then exit the loop. After the data
is read in, line 490 again sets the variable N equal
to I less one. Earlier, we did this to get rid of the
.end sentinel. This time we do it because the I
counter is already advanced to the next number
and we do not want a blank line added to our data.

Now that the data is in the A$ array in memory,
we present it on the screen using the lines from 500
through 520. In this case, we print the value of I
first and then the data following it. This gives us a
line number reference to use if we should want to
change any of the lines.

Since we did not use array position zero (note
that the loops all start from one) we can use the
zero to tell us that no more lines need be changed.
Otherwise, in lines 530 and 560, when we input the
line number to be changed, it becomes A$(I), and
puts our changes back into the proper place. The
way the lines loop back between 530 and 570
provide for multiple changes without going back to
the menu after each change.

When all the changes are made and you enter a
zero, the program flow goes back to line 350, where
the updated file is written back to the diskette.
After this, the program flow takes you back to the
menu in line 400.

Since we are using the LINE INPUT statement,
virtually any data can be entered using this
program. LINE INPUT accepts an entire line (a
maximum of 254 characters) from the keyboard,
including delimiters (such as commas, quotation
marks, etc.).

In our next issue we plan to present the report
generator (ReportCard) that will work with
CARD.BAS from Issue 2. That program will
depend on a small control file to tell it what to do.
This program, in addition to other uses, can be
used to generate that control file. •

Code Works 37

100 REM * FMAKER. BAS * CodeWorks Magazine Sequential file maker
110 DIM A$(100)
120 CLS: 'This is a clear screen command
130 'CLEAR 5000:'Use only if your machine needs to clear string space
140 PRINT STRINGS(22,45);" The CodeWorks STRINGS(23,45)
150 PRINT" FILE MAKER
160 PRINT" creates and allows limited change to sequential files"
170 PRINT STRINGS(60,45)
180 PRINT TAB(10)" 1 - Create a new file
190 PRINT TAB(10)" 2 - Change an existing file
200 PRINT TAB(10)" 3 - Quit
210 PRINT" Your choiceINPUT X
220 IF X <1 OR X>3 THEN 210
230 ON X GOTO 240,410,580
240 CLS
250 INPUT"What is the name for your new file";FS
260 PRINT"Input your lines of data, terminate each line with ENTER"
270 PRINT"Use period and end (.end or .END) to quit entering data."
280 PRINT
290 FOR 1=1 TO 100
300 LINE INPUT A$(I)
310 IF A?(I)=".end" OR A$(I)=".END" THEN 330
320 NEXT I
330 N=I-1
340 FOR 1=1 TO N:PRINT A$(I):NEXT I
350 OPEN "0",#1,F$
360 FOR 1=1 TO N
370 PRINT #1,A$(I)
380 NEXT I
390 CLOSE 1
400 GOTO 120
410 CLS
420 INPUT"Enter the filename you wish to work with"'F$
430 OPEN "I",#1,F$
440 FOR 1=1 TO 100
450 IF EOF(1) THEN 480
460 LINE INPUT #1,A$(I)
470 NEXT I
480 CLOSE 1
490 N=I—1
500 FOR 1=1 TO N
510 PRINT I;A$(I)
520 NEXT I
530 INPUT"Which line to change (0 for none) "-i
540 IF 1=0 THEN 120 * '
550 LINE INPUT"Enter the entire new line "-AS(n
560 INPUT"Enter 0 if done, next line number f^r- « -r
570 IF 1=0 THEN 350 ELSE 550 m°re chan9es ' 1
580 CLS:END

Renewal time: It's hard to believe, but
a whole year has zipped on by us. It's that
time when we need to ask all of you to
renew your subscription to CodeWorks.

Based on your input, we see the next
year as a continuation of the style of
articles and programs we presented this
year. We have a very nice list of projects to
work on during the comming months.

Those of you who would like to renew
via our download may do so by using the
DEMO "Signup" option. If you do that,
simply put your current subscriber
number after your name so that we can
determine that you are a renewal and not
a new subscriber.

When you renew, you will retain your
current subscriber number. This will be
true on all renewals received here before
the Nov/Dec 86 issue gets sent out (about
the 20th of October.)

Because we didn't quite come up to the
number of subscribers we had planned
for, there are still a few hundred complete
sets of the first year of CodeWorks issues
available. If you are missing any of this
year's issues, be sure and let us know
while they are still available.

Your early renewal will allow us to set
our operating budget for the coming year.
We thank you for your continued support
and encouragement.

Subscription ORDER FORM 986

Computer type:
Do you have a modem?
If so, what baud rate?
Comments:

Please enter my one year subscription to CodeWorks at $24.95. I understand that this price
includes access to download programs at NO EXTRA charge.
• New subscription
• Renewal subscription
• Check or MO enclosed.
• Bill me later.
• Charge to my VISA/MasterCard # Exp. date

Please Print Clearly:

Name Clip or photocopy and mail
to: Codeworks

ress 3838 South Warner St.
City State . Zip Tacoma, WA 98409

Charge card orders may be called in (206) 475-2219 between 9 AM and 4 PM weekdays, Pacific time.

CodeWorks 39

Downloa
What's Happening on the Download

Just after the last issue went into the mail we
finally installed the 1200 baud option to our
download system. The most significant change
you will see now on the download is the initial
prompt (at 300 baud) that asks you to press
RETURN for a speed check. This lets our system
know what baud you are using. If you call us at
1200 baud, the same message appears but will
probably be unreadable. Simply press RETURN
(or ENTER) twice to wake us up at 1200 baud. Be
aware that at the higher baud rate the opportunity
for noise to get into the transmission is somewhat
greater.

There seems to be some confusion with many
new subscribers about just how to get on to the
download system. There have been messages left
on the DEMO side of the board asking what the
"other" telephone number for subscribers is. There
are also several messages that seem to imply that
the subscriber number on your label is the
password. Neither of these assumptions are true.
Here is how it works:

When you dial our number (206) 475-2356 and we
connect, the first message you should receive is
"Press RETURN for speed check". At this point,
press RETURN once (or twice, if nothing happens
the first time), and you should see the message
"Speed checked at XXX baud", where XXX is
either 300 or 1200. The next thing we send is the

"Please login" and "User Name:" prompt. At this
point, you should respond with your last name
followed immediately with your subscriber
number. Your name can be upper case, lower case
or mixed. Follow your name immediately (without
spaces) with your subscriber number. Your
subscriber number is on your mailing label near
the upper right. It may be a number from 1 digit to
5 digits long. If it happens to be followed by a slash
on your label, ignore the slash when you enter your
number on the download.

Our computer has your name and number stored
in it. When you enter your name and number, a
comparison check is made to see that you are,
indeed, a subscriber. If this is the very first time
you have called our system, you will now be asked
to assign yourself a password. The password must
be at least six characters long, and may be
alphanumeric. You will be asked to enter your
password twice for verification. Do not forget what
password you used. We do not know what it is
because the system encrypts it and we cannot
decipher it. Do not use spaces inside your
password.

You will now see the Message of the Day and the
menu of options. If the system cannot determine
that you are a subscriber with a valid number and
password, it will unceremoniously dump you into
the DEMO side of the download system (which is a
small sampler for non-subscribers.) •

CodeWorks
3838 South Warner Street
Tacoma, Washington 98409

Bulk Rate
US Postage

PAID
Permit No. 774
Tacoma, WA

Y E A R . C O H F -U/ORir S
F O R T H E T R S 80

W-SK #~Xo f D I S K S
f.ode klocJc f l i a g a +-B-6

C O D E - W O R K S I S S U E # 8
A R T I C L E S & P R O G R A M S

1 S T Y E A R C O D F - W O R K
F O R T H E T R S - 8 0

D I S K # 1 0 f 2 D I S K S
C o d e W o r k s M a p a 7 i n Q

T R S 8 0 M O D E L I I I
D I S K # 1 o f 1
C o d e w o r k s M a g a z i n e I n

2 n d Y E A R C O D E - W O R K S
F O R T H E I R S - 8 0

D I S K #2 o F 2 D I S K S
f n H p W o r k s M a g a T i n f l -

2 N D Y E A R C O D E - W O R K S
m o T M l - I O S - R D

. D I S K # 1 O F 2 D I S K S
C o d e W o r k s M a g a z i n e

