ADDING COLORS TO APPLE-II HI-RES
(nullifies warrantee)

Remove the APPLE-I1 PC board from its enclosure

(a) Remove the ten (10) screws securing the plastic top piece
to the metal bottom plate. Six (6) of these are flat-head
screws around the perimeter of the bottom plate and four (4)
are round-head screws located at the front 1ip of the computer.
All are removed with a phillips head screwdriver. Do not

remove the screws securing the power supply or nylon posts.

(b) Lift the plastic top piece from the bottom plate while
taking care not to damage the ribbon cable connecting the
keyboard to the PC board. This cable will have to be

disconnected from one or the other.
(c) Disconnect the power supply from the PC board.

(d) Remove the =8 nut and lockwasher securing the center of the

PC board. These will not be found on the earlier APPLE-II

computers.

(e) Carefully disengauge each of 6 nylon posts from the PC board.

(7 on earlier versions).

(f) Lift the PC board from the bottom plate.

w e

2. Above the board wiring method

(a) Lift the following IC pins from their sockets.
A8-1
AS-6
A8-13
A9-1
A9-2
A9-9

(b) Mount a 74LS74 (dual C-D flip-flop) and a 74LS02 (quad NOR

gate) in the APPLE-II breadboard area (All to Al4 region).

(¢) Wire the following circuit (* indicates that wiring is to

a pin which is out of its socket).

o

3 i
. f
Jiv.al
! .
€
Circwn
&l

bresd board area

9L L2 2

Al =R

11-18-77
WOz

APPLE-IT 2716 EROM ADAPTATION
('DO' and 'D8' sockets)

1. Remove the 'EO0' ROM from its socket, On the top side of the board,
under the 'EO' socket, cut the ROM pin 18 jumper trace. Then
reinsert the ROM. This cut will isolate pins 18 of ROMS 'DO'

) and 'D8' from pins 18 of the other ROMS. Reinsert the 'EQ' ROM

when done.

'E0 SOCKET'

(Pin 1)

P/
\
Cut this trace

2. On the underside of the APPLE-II board, cut the traces connecting

pin 20 to 21 of ROMs 'DO' and 'D8' only.

3. Oa the underside, cut the trace going to pin 18 of ROM 'D8'
near the chip. Scrape solder resist off of approximately % inch
of the remaining trace not still connected to pin 18. You may

wish to tin it with solder since it will later be soldered to,

4. (Underside) Connect pin 18 of ROM 'D8' to pin 12 of ROM 'EO'

(ground)

5. (underside) Connect pin 18 of ROM 'E0' to the trace which
previously went to pin 18 of ROM 'D8' (and which should be

pretinned if step 3 was followed).

6.

page 2

(underside) Connect pin 21 of ROM 'D8' to pin 21 of ROM 'DO'.

Then connect both of these to pin 24 of either ROM (Vee).

Note that the INH control function (pin 32 on the APPLE-II
1/0 BUS connectors) will not disable the 2716 EROMs in the

'DO' and 'D8' ROM slots since pin 21 is a power supply pin

and not a chip select input on the EROMs.

(¥)

071 4 Y 00 2 &: o =
wn
L

PO CHLNCn o

JER
LY
JER

0
ECR
STR
JER
LY
BC

Trale
ik

3 Le TILCY
CO I CDTh s

-

(s < (R '."2 rna ra

((3c38) = 2v CeormHe) =
-..7:-(.“_:

o

i O DU Tt O I SO

Higo- e # bp%
$LE (Aley s

SQE (Ue..k.:u")

£ .
S Al <~
L 'F?:{';Z l'%' cziy!
cae leu Thow KEAD

T2 L T P

G Seund PELL
L hen loaE
s e Chrrom e

% Jelay 1o (o
14200 Cr-slige
Tining U112 usee)

(R P

ES (B2 .m\.’/‘/rJ)

9/20/77
Woz

AUTO REPEAT FOR APPLE -1I1 MONITOR CON‘ANDS

It is occasionally desirable to automatically repeat a MONITOR command
or cormand sequence on the ATPLE I1 computer. For example, flaky (inter-
mittently bad) RAM bits in the $800 - $FFF address range ($ stands for hex)
may be detected by verifying those locations with themselves using the MON-
170R verify cownand:

*800<E00.FFFV) (no blanks) (3 is car ret)

Because this problem is intermittent, multiple verifications may be
necessary before the problem is detected. Typing the verify command over and
over is a tedious chore which may not even catch the bug, particularly since the
RAMS are not fully exercised while the user is typing.

The APPLE - II MONITOR commnand input buffer begins at location $200 and
is scenned from beginning to end after the user finishes the line by typing
a carriage return. An index to the next executable character of the buffer
resides in location $34 while any function is being executed, By adding
the comnand '34:0' to the end of a MONITOR command sequence the user causes
scanning to resume at the beginning. Because the '34:0' command Teaves
the MONITOR in 'store' more, an 'N' command should begin the line. The
following is an example of a comiand sequence which verifies Tocations
$800 - SFFF with themselves, automatically repeating.

*N800<800. FFFV 34:0 §3 (¥ is blank)
(Note that the trailing blank is necessary for this feature to
work properly)

Multiple comnand sequences accepted by the Apple 11 MONITOR may also
be automatically repeated. For example, the following command sequence clears
all bits in the address range $400 - $5FF, verifies these locations with
ttarselyes, sets them all to ones, verifies them again, and repeats:

AN400:0 B N401<400.5FEM 400<400.5FFV 400:FF B N401<400.5FEM
400<400.5FFV 34:0 ¥

B is necessary blank

% is car return

pacause this example uses screen memory locations, it is observable on
the display. The repeating command may be halted by hitting RESET. Since the
cur<or is only generated for keyboard entry, it will disappear while the ex-
ainple repeats.

The folloewing section covers use of the Apple II mini-

assembler only. It is not a course in assembly language
programming. For a reference on programming the 6582 micro-
processor, refer to the MOS Technology Programming manual.
The following section assumes the user has a working know-
ledge of 65P2 programming and mpnemonics.

The Apple Il mini-assembler is a programming aid aimed
at reducing the amount of time required to convert a hand-
written program to object code. The mini-assembler is
basically a look-up table for opcodes., Wit it, you can type
mnemonics with their absolute addresses, and the assembler
will convert it to the correct object code and store it in
memory.

Typing "F666G" will put the user in mini-assembler mode.
While in this mode, any line typed in will be interpreted as
an assembly language instruction, assembled, and stored in
binary form unless the first character on the command 1ine
sp atgn,

If it is, the remainder of the 1ine will be interpreted
as a normal monitor command, executed, ,and control returned
to azssembler mode. To aet out of the assembler mode, reset must be
pushed.

« IT the first character on the line is blank, the assem-
bled instruction will be stored starting at the address im-
mediately following the previously assembled instruction.

If the first character is nonblank (and not "$"), the line

is assumed to contain an assembly language instruection pre-
ceded by the instruction addréss (a hex number followed by
a ":"). In either case, the instruction will be retyped
over the line just entered in disassembler format to provide '
a visual check of what has been assembled. The counter that

keeps track of where the next instruction will be stored is

the pseudo PC (Program Counter) and it can be changed by many
monitor commands (eq.'L, T ...). Therefore, it is advisable

to use the explicit instruction address mode after every monitor

command and, of course, when the Tiny assembler is first

entered.

Errors (unrecognized mnemonic, illegal format, etc.,) are
signalled by a "beep" and a carrot ("~") will be printed be-
neath the last character read from the input line by the mini-

assembler.,

The mnemonics and formats accepted by the mini assembler
are the same as those listed by the 6502 Programmers Manual,
with the following exceptions and differences:

11

A1l imbedded blanks are ignored, except inside
addresses,

A1l addresses typed in are assumed to be in hex
(rather than decimal or symbolic). A preceding 4
(indicating hex rather than decimal or symbolic) is
therefore optional, except that it should not pre-
cede the instruction address).

Instructions that operate on the accumulator have
a blank operand field instead of "A".

When entering a branch instruction, following the

branch mnemonic should be the target of the branch.
If the destination address is not known at the time
the instruction is entered, simply enter an address
that is in the neighborhood, and later re-enter the
branch instruction with the correct target address.
NOTE: If a branch target is specified that is out of
range, the mini-assembler will flag the address as
being in error.

PRI DAl e gt R R T A
\

5. The operand field of an instruction can only be
followed by a comment field, which starts with a semi-
colon (";"). Obviously, the Tiny assembler ignores
the field and in fact will type over it when the line
is typed over in disassembler format., This "feature"

. is included only to be compatible with future up-
grades including input sources other than the key-
» board.

6. Any page zero references will generate page zero
instruction formats if such a mode exists. There
is no way to force a page zero address to be two
bytes, even if the address has leading zeroes.

In general, to specify an addressing type, simply
enter it as it would be listed in the disassembly. For in-
formation on the disassembler, see the monitor section.

DISASSEMBLER ART I CLE

(pertains to APPLE-II MONITOR ROM)

2. features .

Seven cere

page iocalions

four fields

ot msituclion, 1n

'\uf,u\: nre

Q(‘n\?l'ﬂ‘ll’ (‘ .rv‘. carhn
.mr.n(ie(ol

are wsed.

arsasscmp, e in
(hex) . (2) iiex

r:.’;f‘ IR AN <) NSV Ci oy '
“)’“"l;‘S‘ 3 chaiaclier minemenic , ot A A imvaha eps 'which atruame o
P byle) ; and (4) Address firidy tn cne of the (eilewing ferpais
Formul Ndadre
(("‘np?)"} _I-\vr-nu, _4'."'\.7“6’(', /\(L-.‘-“-‘v" Cr
12 Page zevo
$1234 Abscivie, Branch (faigel pion e d)
#% .2 Immediaie
12, X LCro puqge, indexea Ly A
12 = X Zero pa G, .‘.,:(p._ el Py v
234, X Absolnie, indexca vy X
ti23U, X Avsciuwnie imdexed vy Y
(11234) Indireci
(2i2 ,X) Thaexed JTodirec
(F1:2)5 Jndirecld Indexed.
Mole thal (.\n\‘lﬁf’ MOS TECHNOLOGY AS S C D |e wove ¢
use A (o accumulaicy addressing., e NAVPTLE cusassembié)
nk‘ln\T'\ an (-’-%1"\:/ field te avoird confusion and Faecrivtaic
ODyic

couniing

Z i : 3 2t |- ¢ , \n/ »
APPLE DISASSEMBLER Allen Gawm R We .
')l";fl'!l";ICl‘. This subircaiine .‘;u(‘nur-,v 15 wsea o asplay 3.,‘,),g e secdenvial CL # 2
AIIS?Y-\('IICHS N mnemoenilc 1_L‘(h'- The S I es e IS A Kk 2 \ N cli s
wnd debugging aias bul labies wiin mere generail viae (Grsesibiers) art
The swin lgulllrlt". occ Upy ©nc page (,",e. Ly les) anc uui€s nasi Ci) N

a
)

Usage, The lallowing suvbrewitne enlries are asetul,

\ 2 { y \ . . g

@ DSMBL: Disasscimbles and dispiays 2@ sequeniial instruclions beginning
. - ’ Ry A0 = P N

the aadress specified by he page zsero Veriable:r PCL and PCi .

For example, Wf called wiih 1TD2Z2 v 2Cl and 38 in PCH, 2@

' . . o > - > .] -
msiinciions begmning af l‘lll”c?s(Y802 will be cisassembled. PCL

and PCH are up(lcdecl to contain Yhe aadrest ol the lasl disascembien
mstraclion, Must be callea wilh €582 . hesadeconal mede 'D' sinie:

bil civar) Al processos rm)-sf"n are aiiered {exceplT S —stack panicr),

Uses INSTDSP and PCADGJ.

H) INSTDSP? Disassembles ana rl«},?la-/s a single ivasteuciten whese adefress (s
'a|'l'(-l'|('t‘ by ’CL and PCH. Musi we calied W hexacdecmal mode
ALl processer re’_r)is’i'cn's (excepl S) are ailereda. Uses PCADTS.
PRPC, PRPBLNW, PRBLZ, PRNTAX, PRBY TEZ, and CHAROUT.

) PRPC ouwipuls a carriage return, 4 hex digits corresperaiug lc PCH and oy
a dash, and 3 blanks. Alters A, cleais X. Uses OPRNTAX ana CHARCUY

H\) PRANTX: (‘ln:‘nJS Ihe ((‘.\'lq"u.’ls G(x asx iW(' hex f‘;"yl o Altecs AL Uses € HARCUT .

@) PRNTAX . Ou;:‘w'l’, fwe hex dlgn"‘& ler lhe fn:.nf‘l‘d's (‘f‘ Y lien lwo nex “l_:lul" fov Wi
centents o X. A s altered. Usecs CHAROUT.

() PRNTYX: Same ac PRNTAX excepl Thai ¥ and X are ouwipal. fiulers /i Cses CuARg
(@ PRBELNK : Ou\puls 3 Llanks. Alters A, clears X. Uses CHAROGUT.

) PRRL2: Ouwipnds the number of Llanks 5():»«(1'.'»-4! oy The- cohfencs: a). X' CF (el
blanks). Allery A, clears X. Uses CHAROUT.

(¢() PRBL3 - Oulpu)s a characler frem the A regosicr fellow e a by X=1 sianns, |

¥ e - s 1 -+ - ’, ’ s p
eliey wr:(‘s, X <‘)P(|\|(’$ he .c'lcn NI ey ecf chndyacievy (u.pu- ¥ (P e

blanks), Ailvis A, cicars X. uUses CHARCU T.

\

-

&

() PCcADTY: (PcL,PCH) ~ | + (contents of page ¢ero vartable LENGTH) — Y § A

(low eovder L)«Te in Y). For t‘xdmpje, v f PcL=%D2, PCH=%$3%,

and LENGTH = | (correspending Te « 2 byte instruction), PCADT w.li

leave Y=3%D4 and A=t2F., X 1s always loaded (with PCH.

(k) PCADI2: Same as PCADY excepl that A /s wed in lace | of LENGTH.
P !

PCADT2 except that the incremenl (+11) is (rrnf.(—d’

) PCADT3: Same as
, clear = ~ &)

by the carey (sel =

o

4, Running as a prograwm.

S, Nen = APPLE ‘-y_sf"t')j' ST

The fc'\ow(ng program will ran a disassembly.

IFP 24 2 ¢ JSR DSMBL
'qFj_f’C,__'f.FfiJ IJMP MONITOR
s“rrht(' on APPLE -

cassefte tape:.

Fiest, Puﬁ’ the starting address of code youw want disassembled

im PcL (low order bLylte) and PcH Chigh crder byle) Then
iyrc: 4F @ R@ (Ou APPLE -) s,;’rm). 27 instructions woll Le
disassembled. H-“’:'r\g RED again will give The wexl 2¢, etc.

(APPLE Casselte Fiderface
¢t 9F F.

Cassette tapes supplied for the Acr-|
are intended to be leaded (rom tspg 1o

Source and ol;_jg-ff code .surp'l.ecl ocCupies pages § and 9.

All code s on page S, tables en page ‘1. (hese lables may
be retocated o«f iV I MobE MEDE 2, CHARL, CHARZ,
MNEML, and MNEMR . The cude mdy alse be celocaled . Be

wie pages o e . svabrewtine
stack and page g

DSMRBL) be relocatled on

careli). of you (’n_iuv t s the

variabley (le wie

ydye zg Lal rCct

§ ! v
refurn mus] (u:\'ﬂln 7

These may R

LH'LLJ)\' l',nmw.!,.u'."r;y Mecede POl for (e puge), Y ('.‘II(l’I.".'fJ.,.I‘v.
\ t4 FORMAT
: vy G '
J LENGTHL »
toeilons | ¢) \4'\. ST H b vsek y aNsTRIP, pssimn
wie,l b LCMNE M
Ly -‘4/) KMN'_M
3 - i : '
Seprived Yy ¢
sale. S Used b, FCAVY, ANSTDSP, Datisl
1y 5 P
-;A./(A (-OU'\ Yz Uaeal by RADIR) canly
- '

5

Modifications .

(a) To

(b) To
f:;-llam(n_g

/.‘-} o have "l:(I'A S

(’) ,"'fus‘ _sk;’,)
’.'U,\ aleve |
(2/\ (-‘Il'."l ! "n("

/i:/‘ Te Atal s "‘(’.
QA= SE
: el
» .

change
(en code enciosed) from

Sklp 'H\e'
change s .

'j.'

T S

LT

for

a

;m me (f fcd'e

$A3 To a

moc!Cf
8D

change location $95 65

(meaning hex) precedt'ng disarsembled values make the

A

46 : &I (was &1

R 17 LR (was £2)

94(‘ & | | (wlli ql)

9D 5 42 (was 92)

FHs > G (was Se)

QSH s S (was §5)

GRS B Cwas 9D

5B V¢ (was AY)

q5¢ & ¢ (was A4)

freld of accumwlator- addresseid indhruciions P""'! 8 A
Py e L‘t{"-'\g d";a.i.renu:)’@ﬂx_ vitlwe o h)/ rnr.d'\l‘nn ,uL't\‘\(!fu‘-',...
follewine ¢ cedtons .

THR ¢ o2 (wos (Aﬂ‘i)

9593 CA (was A4)

and (v.f’(w're-j:.ioug mede s chanqge

(wes @) 78 1)
; \ 9 -
CLedis, 2er J o7 Il |7 L
i
Aib:
Qe

'

e (etlowing localicne.

(way L’j?' D)
f»'vd < i 4 /)
(was 2¢f)
Ctanns 42
(« S ‘('{'/)
- ~

1

DSMBL

Count for 2@ instruction dfsassambly.

D-sassemb)e B dtspl&y one mS‘h’uC‘hon
Updd‘c PcL H To next ms‘h-uc‘hon
Done first 19 instructions?

Yes, loop. Else disassemble 2g T,

Print PCL,PCH.
Get op code,

Even /odd test.

b, test.)
XXX XXX instruction iavalid:

18831 B instruction invalid.,

Mask 3 bits Hfor address mode and
add indexing offset.

LS8 into carry for feH/n'_gk“’ test below

intfo address mode table.

If carry rel use LSD fer priat
formal index.

If carry clear -;.re MSD.

Mask for 4-bit index.

$2 for invalid opcodes.

SubsTitute 3828 for all fayals J vrcades

Sel print format index to 2.

Index into prin‘f format table.
Save for address field fermatting .
Mask fuve 2-bit L:n_g.!_h_&“.l_l,r_!,_l_u;j

Sea A S ¥¢\ DA #3$]3
S¢ 2 $5 4¢ STA COUNT
Vs 209512 & DSMBL2" JSR INSTDSP
£¢7 24 €F. 8 JSR PCADY
fAA £5 44 STA" PTiL
Fdc §4 45 STY PcH
£y E Ce 46, DEC , COUNT
g1g D@ F2: sig BNE DSMBL2
12 24 D3 % . INSTDOSP. JSR .PRPC'
v15 Al 44 ' OEDRA. cper, %)
y17 N8 TAY
(03 HA LSR
219 JA R BT BCc 1EVEN
18, 4A LSR
sIC Bz 17 BCS ERR
¥IE CHNr22 . CMP #s$22
Yop F2 .13 $24BEQ ERR
722 29 7 " AND #s37
¥ 24 7 o ORA =48¢
r26 4A IEVEN LSR
27 AA TAX
28 BD & 9 LDA MODE,X Index
w283 B2 4 BCS RTMODE
"2D 4A LSR
V2E 4N LSR
w2 YA LSR
200 4A 3L SR
¥zl 29" E RTMODE AND #sF
ya2 DZ 4 BNE GETFMT
5§25 AL 82 ERR LDY #$8¢
27 A9 2 LDA =#:g
Y 2g AA GETFMT TAX
224 BD 44 9 LDA MODE2,X
£3 S5 4a STA FORMAT
§73 5= 29 3 AND__#33

» .

- ———— -

2= 3 b’7e)

i
|
|
I
|
!

!

s41 STA

STA__RMNEM

LENGTH

#3 8F

#43
£L8A

MNNDX3

MNNDX3

#3290

MNNDX2

MNNDX]I

(PcL),Y
PRBYTE
*3 |
PRBL2
LENGTH

PROP
*$ 3
=34
PROPBL

MNEML,Y
LMNEM
MNEMR,Y

Op code.

Mask it for
Save it.

IxXX12 12 +est.

r -

Op cwde to A again.

’

Form index into mnemonic table.

hawn-

CDIXXXV\PNE - Z2BIBIRAR
CXXXYYYZ) == Z gL XXK
CXXXYYYIB= g2 LIF XXX
CXXXYY\GB— BB NPBRXX
. XXXXXPRDB> @HP XXAXRKX

-

Save mnemonic table index.

Print instruction

in a l2z-character: field.

Character count for mnemonic prink

Recover

Fetch 3 character (packed in 2 byfes)

mnemuﬂ'.c.

mnemonic index.

(\ o 3 lyy"'cs)

S41 85 4|

$43 98 TYA
544 29 . §F AND
84 ¢ AA TAX
847 o) I TYA
548 Ag 3 LDY
Y4A EZ FfA. . CPX
&4cC FZ B S BEQ
g4E 4A MNNDX1 LSR
§4F 9z 8 BCC
€51 . 4A sILSR
§52 4A MNNDX2 LSR
g53 N 2 ORA
g55=~ L EF DEY
856 DZ FA BNE
§58 (< INY
£59 25 MNNDX3 ‘DEY:
g/ D@ F2 BNE
§5C 4% PHA
£$D Bl 44 PROP LDA
¥SF 24 DC FF ISR
§c2 A2z o : P2 LDX
§C4 2B G EGHIS PROPBL JSR
J€7 cq4 41 CPY
s cg INY
SCA- Qg FI BCC
ecC A2 3 LDX
S¢e ce 4 CPY
£74 9@ F2 r7¢ BCC
£72. s PLA
Sic) A% TAY
574 B9 5E 9 LDA
e77 8S 42 STA
579 BY 9 9 LDA
A ¥5 43

. 4

7% “i s e
Mariiiman | m———

=7

S7E
5§52
£52
g8
F8€
g7
s8E
's‘l“,/]
SIC
§Er
892
5§12
95
£97
§99
598
¥1F
§AI
£13
A5
YA7
§//
AR
AP
EAF
rel
YRy

SR A
Vi o o

B

NO@
§¥C2

A
Ag

26
2A
gg
Dg
cT
2
CA
D
24

A2

Ea
0@
AH
Fo
A5
cq
Bl
2y
2

g

D&

9
BD
20
BP
Fa&
27
CA
D&
(Y7

43
42

Fg
BF
EF

EcC

=4

12
41

‘20
ES
44
IC
DC

F2

wmé:

Gmy
N~

W

m
mn

o
n

FF

FF

PRMNI

PRMN2 .

PRADRI

PRADR2

PRADR3

PRADRH

LDA
rfg LDY
ASL
ROL
ROL
DEY

- BNE
ADC
JSR
DEX
99 BNE
JSR
DX
CPX
BNE
LDY
BEQ
LDA
"EAICMP
LDA
BCS
JSR
DEY
BNE
ASL
BCC
s LDA
JSR
LDA
BEQ
JSR
DEX
2P BNE
RTS

#%0
#3$5 ...
RMNEM
LMNEM

PRMN 2.

8 BF

CHAROUT

PRMN |
PREBLNK
3 G

#3$3
PRADR3
LENGTH
PRADR3
FORMAT
#3E8
(PcL),Y
RELADR
PRBYTE

PRADR 2
FORMAT
PRADRY
CHARI=1,X
CHAROUT
CHAR2-I1, X
PRADRY
CHAROUT

PRADRI

- '3
Shift & bits of character.ints A.

(clears carry)

Add "“7" offset.

Output a character of mnemonie. i
outpul 3 Llanks, I
Count for ¢ prin’f formatl bits,

If X=3 *then Prip\f address val.

No print if LENGTH =g (1| byte l'n.rhr.)i

Handle relative addressing mode

|
special (print target, not du'_g-pla(emeu*?.

Oud’p..d' 1= or 2-byte address (more t

Slynu’Fu‘cauf Lyf& Ff!’!f). :
|

Test next fr(n’*' format bit.

|

" If &, den't yrinT corrcSPandfng <kar.r,é

|

|

o;d(nd | er 2 chars (if char frem i
CHAR2 s <¢€ro, dont ou+pud’ it).

Refurn when done & formal bits.

aviiman | —a

2¢
AA
ES
D@
c8
98

A
4c
A9
2g
AS

- A€,

2¢
A9
2@
Az
AT
27
CA
D@
6

“AS

38
A4
AA
4
£
65
75
cs

Qﬂ

F2

Dc

DcC
gD
EF
45
44

CC

AD
EF

AZ

s

F8

4]

S

FF

FF
FF

FF

FF

RELADR sc2 TSR

PRNTYX
PRNTAX
PRNTX

TAX
INX
BNE
INY
TYA

~. JSR
) TRALS

#og TMP

PRPC

PRBLNK
PRBL2
PRBL3I

PCADJ
PCADJI2 #ri
PCADJI3

PCADI 4

RTSI

LDA
JSR
LDA
LDX

-JSR
- LDA
Fel

TEDX

JSR

LDA
JSR
DEX
BNE
RTS
LDA
SEC
LDY
TAX
BPL
DEY
ADC
BCC

PN

RTS

PCADJI3

PRNTYX

PRBYTE

PRBYTE"

#38D
CHAROUT

PCH :

PcL
PRNTAX
#$AD
CHAROUT
#33

#LtAD
CHAROUT

PRBL2
LENGTH
PCH
PCADJIH

PCL
RTS)

~ Blank

PCL,PCH =+ Disp\c\cemg.n'f +.1 te AN
*‘I :*0 X,Y- . ::,-'

output target address of branch

and return.
Output .carriage return.

output PCH t PCL.

O\L“’Puf u_n' :

Co““+- :
Outpul a blank.
Loop until count = ¢,

Z=1 byte, | =2 byte, 2=3byte.

Test displ. sign. (for vel. branch).” .
Extend neg. by decrementing PCH.

PCL + LENGETH C(or displ.) *1 o A.

Carry inte Y (PCH),

2

' 4
mer |11

A flOl&"l
50 geait
e S IR

L] At
'3

UARE
S Souart

47
qa4
178
Y {7 <
g1
91
g5

qC
qze
924
q25

V=174
934
Y28
SE
119G

n', t/ &/
Ay 5
94 E
47
748
59T
77A
4L
T4 C
T4 P
7YE
T4F
754

95/

t'I/ C‘.

2z
z8
22
78
72
zs8
z¢
zé
22
§FC
22
¥c
22
az&
22
75
13

S
1/;/
#7157
4@
45
qﬁ
96
4§72
44
94
94
44
#4
A’/¢
94
9z

-

(=

=2 2

79

AT

MODE

MODE2

DFB
DFB
DFB
DFB
PFB
DFB
DFB

- DFB

DFB
DFB
DFB
DFB
DFB
DFB
DFB

‘DFB
‘DFB

DFB

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

DFB

DFB

DFB
DFB
DFB

40 ,
$D2,
~$30,
$Dd,
$40,
$Dg,
t42,
~ec 08D,
- g7,
£Dg,
$ll,
+Dg,

$ ¢,
sDa,’
$12,
$D@,
"62,

sgg
$21
$8)
$82
spp
sgg
¢59
$4D
$91
492
£86
$4A
$85
$9D

$02, %45, $ @3

$ZB,
$22,
sge,
$g2,
$28,
$gaz,
o,
$22,
sg8C,
$22,
$8cC,
$225
I8,
#2225
t2g,
213,

s4g,

$45,

$40,

$45,.

sHD,
$40,
$l{¢'
$44,
$44,
£44,
s44,
44,
*40,
$ 44,
$4p,
$78,

ERR
IMM
2-PG
ABS
IMPL
ACC
(2-PG, X)
(2-PG), Y

2-PG, X

ABS, X
ABS,Y
(ABS)

2-PG,Y
RE L

$gq
$33
129

‘$33

sg9
sBg
s$o@
23S
‘oo
$33

$9A

£33
29
£33
29
$A9

B

@ = left haly-)
¥ | = n‘.l\" ht{-]

i

YT XXXODZ 1 inste

AC A1 AC A3 A& A4

DY @ D& A4 A4 £

CHARI DFBE
CHAR2 DFB
mMNnemML - (DFB

DFB

2 @) XXXXX2&Z@ .)DFB

B -LDoFB -
G xxxxy 124 DEB =

©.lxxx1g1 g DFB
@ xxXxXXYY!d . DFB

@ Xxxyvvygl DFB

MNEMR

DFB

(@ DFB

‘IDFB
FB

b) DFB
& oFs
(d) DFB
(e) DFB

$£CC,
$A2,
$82,
¥2¢,
¥2¢,

s5D, $88B,

$£9D,

$69,.

£24,
£AS,
$219,
$A5,
$AS,

$26,
$68,
$74,
$72,
74,
$82,
$72,
s44,

$28B,
$A8,
¢53,
$¢9,
top,
t6a,
s€9,

$¢62,
$44,
$B4,
$Fz,
$74,
tp0,
$72,
s44,

sgg

si8,
$1D,
£1a,
$24,
$7C,
$23,

$94,
$ESR,
£28,

A4,
$74,

£22,
$88,
SAZ,

$Al
$A1
$23
$Al
t24
12
$53
SAZ

$88
$94
$6E
$8A
£972
sgz
¥C¥
$C8

C Al S SENT T ‘B ARTICLE

{ ' ';
vid o o
I' fc)
Herens

C3vtie)

- TN E v Jmis Be dha S e e Sildeel e ' o.',.'((!_y

p: podar mess slerage (>tr.'iul\e.'c.-.(in

rod helby :/;'IJ.-‘,/--S_ Mcn/ vendors J’bf,‘)/ Their
!Lr_-.\.es !‘n t'::f_'sf“/c_- {J.r.-‘n 07):(c{CIT ('af+,

[s ’.,c;';u'/l-.‘«:/ a bardv-ar e /So['f»«cu'e pac kage

d fer AIPLE-? 3‘/4'7‘_:"/'71 T '“(z///// uina/ffclhc‘z(

on clher €~ 02 .?no(6 £ co .\’/f/‘*z’:r'./. T e

v('l-’b_\-/'/kfl ‘ﬁ(/f’ ‘hJ "'icf?(':l'lr/.vé

€ ced ,*("fJ

i/

Fach

.:;.0(."\ O{

’
agaarecss

}
scsocioled

15 at’,u r‘v'ﬂ”)’ o (:.‘n-.rl(“—Te Frograwm 78 :-"‘\

'.‘Jr\-fa . /i/"’r‘ouﬁjﬂ any nL\.r\be_f rrua.)/ Le

on a
Te {;'t;“-‘a_/e:’
Legn at he
/AT l 15
ol / 1S conp

- (f,ccr-\lner\A'fd
Slr«g'é‘_ “I’ape, cne (Y S g .'":‘)t‘ ~

’araf-';.g Gl Chyvicusly 1 chewle

VeI y ng:'.-...x'.-g of he casrelte .
L

oA TRE T R ——————

RC(oORD

:t(old' LS g KR -{‘,/e ca,jmn_c oné (or./judui_l

A

. /
ala .

Thug l{ a /'/r'c‘jl ar [6‘5,n! at

gz C(hex) and 7 da= focaTed

’ff J’fj‘.""’;'_j a7l

<

'('(0:(1

file

cddrers Zlez Ck ex) “lien a
e Slork it
peay re use A2 Either record. snay

fape.

™

{ '3{ a {7'/’5 i's inc C,—"f’ud?'if: 0{ 0/’

ch iy Le i(ao/ G a eald sTarT' of

be "
A 1/ € VI Cce dei iy .rﬁ,/}{c/ Chin bediee:

c"r 1 ¢ Col (/I. Vs Ac'ydlc’/ / /EC ra*/EJ O‘ar’{'f T 7‘ ¢

e T ALE e recedlr iaclés _r)rf(-‘a/", A Ly

’

- “/_;7/(1 2, J /; .ﬂ"l..’ a /{‘ e //(" 1 ,4/6:/ / /d

te o L/"“/" a7’y o // .l'.;‘h':;' zlf)‘ 7" r ﬁf

HEADE R
A T i ol W ailed Secagitets of w 0B et A o EO secod
Sy i€ Ve T xllow Tle jeecorder s rcach I,?ffd
and lie \Iru({’ Culr(ni"'./’ e foec K oen. The READ”ZE“""D
alasy sHiibve s sk - Mhal “thesu)eade, Léj.,,.-..‘.,.ﬁ ay conl® [:,‘u..k_'
= Fored Pecard Headee & Approx 10 secends
Y) l)/ajf Tape /eader,
olher PRece [Heoaders s 75 o 20 ie cond's
depevding on Udser needs
ruch as wheller The
rée cerider Il be _f‘/c”-.e/
f'-icr' Ts ﬂe re(m';{.
Hesde, BT Clelarhies CE Yoty i CiliEe w 1D)
A
b
- _INC
iy B St o st TNl edata: B« I—.af*r‘(/e_/e
-

(

A

[

v {‘-l’_

I

AT T '.S

(.‘111 ky IL‘ re rolcl.L' 4’ 1'—:—-4'}7—0‘.‘.7‘."54- 'ﬂ“-n ‘{1\(’

[ow ¢ s addrers . The |os Bl Gne P G 2 T e

/ j' hes?

I-E!1 {;:jy.g.f,‘cq:l-l'Llf)Cl""l’ Ifalj‘l{jnfﬁ-(q.q'f’s..j /q]’.
The “Av Eri g & 1:(-,.1'(‘(;;' |~'l7(’. 1< 186 ",v\/\"J rer IC(&'»\J.

A% e) (Y
oF

= [3
Fr'h

sddress. Each Ly e o re capdlicd

3
| 5T 2k =
T TE By 7e gYTE

Wwar

CHLrsS v

The

crec Kfwpn Ly ‘ALC “n'- e f»l l.ﬂ—r(? I)' '(‘} //n wof _fz c "J-i-
e ande s rc'(m‘-l'(’A" bl TRe. . Froiale 7

L . e .
Toas Ic 7/-6, INVEIIE o7 7%& "/’}”‘“/
- ar ek N el dala /,/ T r 074 74 € VE cey r/

ML A LATA ey 7 & ' = CHEE ~ 80 L (¥ P < 1)

br A EYTE i oy Rl i N Rl S S

\id € < Sl
S o —ANNA— g — =] T O
LERESS)e LSS
o ,_L incn
bE e PES | ¢ T
[c 1oc.n
)”;)
74434
/1'47 be t..-ln.fl'&j
L{Or-n ArPLE=I] I)JJT"J)
janF
- — -] %
D7 e B M- J-_—o— JACY
% #7117
= joe K
Lev
\ ssterys 5 A
=
Nofes . (1) A ex':‘f.,.g .'n':.,."f pert may Yo uaed
In l/n(«‘ of 1t e ET V2
L : . «
(Z) AHny a’cm(d’ cAdArecss :'f/alae (3’-+CL' 8978 €/
MGy be wJg ed' 'Ir\ "Ia < o'{ The 7q}f
(’;_) 1L an invevler TS desired fer address
’ Jeccdirng, The ‘wnased half of The 474
may e wied g
-
o= s 3
. Q> TaveiTed outyut
o c.ted Topet LF

L.’gT.’ugS ave s elwded e s-uL.‘mf...eJ v-hick |€.:\c{

a and voa ‘e récan ds ardf b tiss Secause P (| ‘Hm\.ng s
fre .'Jn"l ot J n C.-'f‘? ware UT’CHX:P"S S‘\ou'c(be d.',ml.leo(
Eihiie w.iling rese reuvlines.

V.:\T.va a byl (.S -=(t"."-.f>,'."))c’d(' ar '(0”0\'..{

.2y lnd:o_ln.tc‘f \H‘c T’ REG Te @ VCkl»\ﬁ

.'.-n‘-raf-.ﬁ Vb e of eoiinln S8 'f'a,‘cou'f
To:;ﬂjg', This value «ll vary accoyding
1o the pcth lenj*}h cince the prior Tapeeut
'fc-ggle. Carly s cleared Te G ote Sy
and set N | e A i bl
(2) Swbrovtine WREBIT is called, It will
Time oul lbased ‘en YSREG cowrnt) and
leggle The Tape ot |inie 5 (Thea relTwra

Ry ket G AR o«:d' A-rEc t.y.tkc\ngfc/,
e x-REG deciremenTed, and The T-REG
cleared. Zevo and Neg fn‘/ajf will ire‘f“-’c‘;?
the e by T .;C:rc,,'.:‘u‘}‘:..j The X-REG.

il 8 (R 2 UJE‘{&‘ el @ i cow »-.Af.

- -
Riaa ng & kil g a((-'-n,]-:kcd sist Hollownisl

() The Y-REG s initialiced to a valwe
"Ivk‘z‘l'({{?:jiﬁ b ey o el finep las]
Yupein Teggle' where Teggle' means edge

a sersed. This value il vary d(c‘tv((:h_g

1e The path taken _f,'n('(" Prier ‘fa‘;e{n
Tegg le -

(z) RDBIT svbreutine ir called. It will -loop
vhile waiting fr a Teggle of “the Tapin
frjna’,. while Aec'funf,d-:'v The Y-RES-
crce every |2 suec. After senring The
feggle, « comparison en he Y-Re&
sels The carry

Z mecans Toggle came ‘carly '

| means 7:33/e cama: ate
RpZzBEIT s an edlty which ealls RDBIT
Tu c€s Thn Thit Joudage, ' Fhe Y REG vV
decremenled once every 12 =<isec o ,-
a full cycle Cgiowt'ﬁ,_,lef).

»

The » Tranl L cary clatens thdicates
velieThiey el 2 kol (/-/c) ar I (log

‘-"/C ,) S 4 rfdp{, 7/:(" A'A’C‘ I.f b!ed”

7

~ pE G AT 7"‘_,.,,/ A S A t.n(/.d,j(d:.
« ~ - ' '

hove &) fuge & focatlion Toi LASTI N

2 |

v, Te

—‘...:’/'.:a!.gr_- S-REG o= (- a'ﬁu((anﬁ < bu-'i‘

('f“l K'.'.',ﬁ e?x?l'ﬁ (’7({i1 If::9 17-\! l‘r\ v u. " (j)

2): Seatliaan DB YL TRe: A LkyTe s read and

\,'."v. f '3

&)

(z)

leFF 'in e ArREE. X a6 releareds
&, Receia
ey | tadiafieer) ke page Z peinters
CALL, AlH) and CAz2L, A2zH) to TThe
starting and rno((.f.j addresres of a
Llock vef data e be wirittew. 'There
addyvesresr wusl be in sTandard binary
Lo
Ewll W WRET &
(o) |0 -second header ir wrtfea.
TP o s
(c) DAla block wrlten. ¢ALL,AIH)
pornter s "l‘n(‘l’Cl'-\Cn-”eG{ wwtrl AT
is greater Than Az AZH)
All vegisters p?if:%%’mtt
P T e R e R e d .

td) Che ckfom (3 u.r.'"fTen.

G Sonne 4 BELL

- , o D L .
Headipng @ KLecacel o

(D T ton s AT AR S nd | (CA e LB
fo the starting and eading addvesses
¢ for Hhe ‘bloek of dela o be. réed:
(z) Call REAP
) ket R SToos e san (Hapaite liAes
(b)) wafs 3 secends Yor tape fo reach
cpecd -
(c) Leok Tor Tapen Teggle.
() Sewor header | hatf-bit| ot ha (E-bva
waiting for sync bitl.
() Read data Llock, advancing peinter
CAIL AtH) wnli| gredafer Thaa
CAze, AzHD
| (f) Peed ps clecksum bl IF mizmatel
Then grint ‘e RR"
l () ssupd BELL,

NoTe 71:;'f all reg .'.r-fer_f and pag e 74

location:s LASTIN and. CHESVM @ are wied

CeTe fhe- I&I h v r,.‘h‘;\,..— ot "~C)’Q+"‘dﬁ Vﬁ(qe

CEC = Atx). B T Py havrd ware [£

ey Ky “g -
§-"§/’ec-l»" cerd
- o, e (Tape
. () T rititreliz e a L"’Ck ’EF meovery To te
[ﬁTC e

€2) Exter The catcelle SmEre rovhhes
Ly EE £ Yoo may wich Ts Tore these

fROM ey EROM.
AL and ALH)
(; g) j n,‘f‘)nn (4 ccc /o ('(“{/'o " § =2 c a.-\(/ =20 +g,

/’l('j,'q.nr I)f,';nant‘n)/)/ on

the EI N R i i g 1'7?-9 addreir Yor The daf
block + be written The lo~ - order
ha [f o the s iadidrerr «most™ §&0in, AR s, The
high-arder half "~ A(H.
@) TaitaliEe A ZE (and) AT H iy M) o)
S+ Thke &=L Een f/"hj addicsr Yoo TJAe
dode bk,

(&) Stizve ”»r {;-' {0 -.}-3 (10..‘9 Feten oy MEmary

P BIRU SR T T & TSR WRETE 22z
IMP Fio N T e Y ST S
. (\C:‘) 6 LW s T & . T sv1me dldfe/)« a 7/7‘64’ 7‘}// /lqj

‘j)-,:.- Vs by (.-‘..,‘.aua/_. S_faff— The e (aro/ek,

VI e AR A= ST 7 e RE ccp D smcele wiTh

Jaclk) : Lot ;
Tl E s i€ Cavpecied P fhe luYeslface
4 Py 2ipe PENRONE - be FEerl A I".". ol iy 7;)),
o F3. € 74 U) P % ,',// ["¢‘7‘_.,,'., ////dl«-. /78

> L P Tar 7/ € l\f.'./’f’: .;,-(/ s v /o fe(""(// ﬁ"

Co TG che: Ioj he. T (A

el l\e/.'o,"";./e va(.4e

GEEC T EE “t"‘)' ~1-'-F fo , er]ﬂar.:(wan’e’ s

(A(“kl‘\ .
) l’QL""{‘”"/

o Winfike e iTape |
v G Ll ot ope | bildels T memory to be
widten
(2) €nter The ca_rfe‘ch 4RI FE- rowhi)h es
Ly Baimd b« Yo ipaane - ook bt ks et ol ke
pregrams permaneatly on FROM or ErOM,
(2 T rihalves, fdacatlong '3 & and 3»“”%4““
they. (-t F r"/’dr"h\ng addresr Yor The daly
block 12 be wilten. The low = ovd er
Yo of Tie “addreit wiits bev e AlL, The
high-arde) = half & A(H.
#) Fritialize Azl and Az H [?Z—“*.T,J) D)
Szl N6 =LA c,;dﬁj addicsr Yoo The
dafz Lok
(£) sitne The Aallowing prigram in memory
5 TwRriTE TSR LR T 2Z
Jrid rHoN L E R

&) G Ao & = T sstme d"d‘/f_/)« d{ﬁr 7}’/, ”"‘_]
j;if Ve Lomena, 57/_0. 57Lal+ 1/13 rf.((h'cle/’,

< ! . —p—

o Y o ULy & /I n I/ e K ccpPd ;:»66/6’ “"ﬂ

g Jalk LA .

(VL - ol LS Y _'t? ((‘t {// 7", //. l.. ‘/f, ,{(;
SHa e S g r o ,:‘ K &he [)
IR rlan€ g ThE cnire // re 7 el /fe/dw /c

r> (g Fa” BPS {.’I)" € ,f.'.'/f’r g 4‘/ Ly 45 (O Je(l'l('// ﬁl‘

L)
-

{(=z)
.

(z/

(4)

| =
-~
-

Rt dd kel : A £ '._.-'b“{ / T‘/j“j
£ nlen The casrelte jowlinexr deto pacm £
CiF ol C.V{Y(uld/ Tll(?le)-

TITnihalize Vel A B /”I‘I, A2t Qho/ /4?/‘{

C RS T

"f?(,)(’j.

{': {/av- .l/c

ok 9

~’/~G ,dej)f‘(,n |“,\
READ

Mo N

Y€ ory,

Ire
T4

L/ me G(t.v\ 7L£//,

TE&€L /AP 2@

4C W NS

affer typing
rtart The recevder
chowld fbe
selPhg chonld

Cenn & (+(/

R e RE 7 DL

the

Cornman n(/,

7 ;nf‘

retn

'n med e 'f’adae h-,._a,“‘_/
J)/"-z‘/
be

72 The

jlas

Te rea (['I'j A The volu "eE

Tl e EAR Jack

l~“""r.¢k/

(‘, ft_l ﬁ'((’ .

vebhew done cach rezo».,f_, e FEZH curror

el fe 7‘»“ e

The

kg ["’ &EXR - ‘,f-/-t'iar—

c'kecfxu.-«“/"ea('afzn"f malzt, e data iead
.e‘uc/ ‘G et Than The ‘967/3/
1),.4:; a5 . e ek Nl
IF-

i
IE yan pusnber

,4/.{/4 o~

’
el
Cle Lt

- \A}' 7> fe‘.ac/ Gicre J] 7155
The

7

7/

Than Qe e 7}:6 (€ (a.r/, J' rc“j yqin ,‘Ha)/

haog receThly a r/ﬁ%m RESE T

Nevable Aleceation

I'.-/o & V4 v.t‘,“;',"a(!: shot ‘d Le t«f!:‘.cj '1(‘24 'F‘l'
,}-P' ‘{c /'0\‘-;.19 ‘b(’l—l.:\L’C: s

- All
AlH
A2l
AZ H
LASTIN
cHKkSUM

i .
The on(/ restr 67'l.or- i's Thal AL ruu.f-’_ l'rn;nfaf-.’n'." £ _’/
r'c(i'olf A IH a..((AzL 5nuJ7L tem)‘v'vca(l.a.fel/v /’I’f(da‘(c’ /712
Clicr v 85€ Jex uvay asccgn These variablesr A feren 7’4«

f/.dn Tie r-:r-v-.o{ed /'}f""j .

Lser suplied rubrenhie,

For €R& pratend and BELL jromplr, The
ndey T ‘;‘-rnu',’;/e_ L charnzler A fwg’ﬂh/nlvxf,
CovT .« The arrerlly /'}ﬂl/q /‘/or.l‘/r/ arens b
AfPLE -1 r,.ﬁy /ml\’/' FFrEL Yor 7hie ru/ra»ﬂ‘;,e,
Yaw iray rub s Fute /yﬂ'wf ownn. Jhe A3 X anod Y-#E€
: nsT st de diitarted b Hir sudrevBhe. The bie

/ -

T8 e o‘?’j}"’" 2 /-*,n//:'./‘ R RAE A-FE &

cod Readtng (Mully' - Pecood Toper

Te ST e e pewad mwltheae cobd. “f’q‘/«'cl \)‘l\c “WICr
I'“‘J_/ JJ-/'J‘/// @ /"'_‘j"“ b ki ok !P}{R “p ﬁc’ 'ffdlf
and ;,/' fa.“d(-,; (/E/L,A///) dw/ /AZ(_/ /72//),

T - X

calle " €12 or GRITE Sk ye .17/) he , ﬂ&a léffd-tf

. S ;
Tie «ddierr Je wles : e./:/ f«/rr.«/‘al{ call Br o/’
i S | :

f“//ﬁ “wr i c /r”/f. f'/'- 77@ %yc r ;,‘,7L W /J’;&/"
1= 0 peanirrable % f/’t',;/ a gl amoin il
r?ﬂ Fine i /e /n "_/7 /‘-372{/«(5 » /e (.W/(' rihce ﬁe
{:33—)— J”dif o'/ e [cqﬂ/e-/’ ' r ;c.«a,—r/.

3] B 0 I s R R 13

2 pave Tesled The inTeirface &7 Appc€E over
P Lh‘!; wtllont i failogas =B, have) Qrees The
cleafeﬂ" Taft’f W Il ik and e cheapes T recopderr
The Test ,w,(?"ﬁ'nv; were re;;‘-/eya?ufd'ﬁ'rd B\ Pyl

Wat e e fom € oF e Vot Ae e A R

r.,:-’, le7s look a7 = 7;?(’1}4\ / ‘."/’“7‘ /cu'f?"""r

LhAl Y ‘){H L o

oy —

Tt Nade de rmemi hal Zéie cridsing € of The
et are f‘if}r'/f/ﬁ%’%’;‘zﬁxii%/jgzg‘&k very ajprex ‘mate
dec te dugl-Fepuency édaff, Stight differenhation
A his sigral, copled itk bysFesicis LelonT] Trgger
,-ﬂ‘fa») el eladed el he it Ter s 2eiz ~Cresring
Jete otir. Dae o The wnetuve of The rec;,-‘/,‘,j forin et
Coe ll gpele per dafe bit) There can be no

But s € b offreT A e f}‘ann/ ACJ‘rj' read. Tl e

¢ -7 a bDc ¢~.r’,;‘;67" tr 7o vacy The weiz —cresriny

c‘F J.l .‘jvc r““:o.n ('.r\f‘\ﬂ ((l‘.-j
o data 4t

Te covrfepact eerTein ‘f'y/‘e:

& Dc \.ff;cf) ,nur.fl‘ (n Lo recerders,

nevey oevey O~

’.(J}"‘/"‘OJ cvEr o ‘(“:,\/l C‘/y('/e,
‘él‘fﬂ?fkér A g Ce T GLO.¢

-
)\»('F-(/v(/C, (Fron Al She B8 onr

y |
> P’{) -,Qz,a.i'le e (a:‘(L’_p’ ;u‘f v\"l a f74 areé “w—aqave adt

AT (7(“‘})Q wave (61/0»«) /c"/" e k82 peliab I/ u.,"f’l\
el .,
oLT "l{!; F;!E? /{

veteded '-r Lm

xQ* 2% “’)

“!'}. s in Yea 'A’ ce

a ﬂ“n)y af cereecs or a ./"7'?/):9 ar’

Rf f«(“t\nj
A .va'cr Prob(ei\-\

Orv g dtv’t‘J(" n+f ne kr\dJ'OT d?)’t’.‘/e,n d
mixes u/xl'c‘\

of whken The Ja+a con‘/’a/‘n/
Thi'r

o: €S (‘l’:l”

shes ap iw
LSRRy | (/464/’

[as 715 Ao Py A Tre /{44//} 1’64/ aﬂ/ wn e ﬂm/['ﬁefr
have

e cei '((e (£ Jlo(?‘ ndT -’ 4 4’ enés .

willn e iecader, V(r’fuq/// all recorderr

a satistachs, band pass, .
& e ; + =& 7 3 KHF 17/'6‘/
h//’# %

enley Ta e s

i e eHe. \The
‘ of e recovder ve sabeTfaclory in s range
YT nel IRE icafaTove yhlase AAS JeFicen e two Toner

M7t B Zd T The read Gnd wiite) amplBers

1€ ce €r .5/8/4/“ ~f76 .L-""c .(:t«u\(“ Qv € ,,'f‘a ' Toner

USING APPLE-II COLOR GRAPHICS

The APPLE-II color graphics hardware will display a 40H
by 48V grid, each position of which may be any one of 16 colors,

The actual screen data is stored in 1K bytes of system memory,

norma]lr locations $400 to $7FF. (A dual page mode allows the

user to' alternatively display locations $800 to $BFF). Color
displays are generated by executing programs which modify the
'screen memory'. For example, storing zeroes throughout loca~
tions $400 to $7FF will yield an all-black display while storing
$33 bytes throughout will yield an all-violet display. A number

of subroutines are provided in ROM to facilitate useful operations.

The x-coordinates range from 0 (leftmost) to 39 (rightmost)
and the y-coordinates from 0 (topmost) to 47 (bottommost), If
the user is in the mixed graphics/text mode with 4 lines of text
at the bottom of the screen, then the greatest allowable y-

coordinate is 39.

The screen memory is arranged such that each displayed
horizontal line occupies 40 consecutive locations. 'Additionally,
even/odh line pairs share the same byte groups. For example,
both lines O and 1 will have their leftmost point stored in
the same byte, at location $400; and their rightmost point
stored in the byte at location $427. The least significant
4 bits correspond to the even line and the most significant

4 bits to the odd line. The relationship between y-coordinates

and memory addresses is illustirated on the following page.

Y-coordinate

(;VO abececd ejg]

$7D0

___BASE (leftmost) address Data byte
> [; 00080 ANe d1 eababO000 XX X X ¥ Y ¥Y
“GBASH GBASL —odd ___even
line line
: data data
Secondary
LINE BASE address(hex) BASE address
$0,1 $400 $800
$2,3 $480 3880
$4,5 $500 $900
$6,7 $580 $980
$8,9 $600 $A00
$A,B $680 $A80
$C,D $700 $B0OO
SE,F $780 $B80
$10,11 $428 $828
$12,13 $4A8 $8A8
$14,15 $528 $928
$16,17 $5A8 $9A8
$18,19 $628 $A28
$1A,1B $S6A8 $AA8
$1C,1D $728 $B28 |
$1E, 1F $7A8 SBAS |
$20,21 $450 $850 |
\ $22,23 $4D0 $8D0 |
$24,25 $550 $950 |
- $26,27 $5D0 $9D0
$28,29 $650 $A50
$2A,2B $6D0 $SADO
$2C, 2D $750 $B50

$BDO

The APPLE-II color graphics subroutines provided in ROM

use a few page zero locations for variables and workspace. You

should avoid using these locations for your own program variables.

It is a good rule not to use page zero locations $20 to $4F

for any programs since they are used by the monitor and you may

wish to use the monitor (for example, to debug a program) without

clobberring your own variables.

I1f you write a program in assembly

language that you wish to call from BASIC with a CALL command,

then avoid using page zero locations $20 to $FF for your variables.

Color Graphics
Page Zero Variable Allocation

GBASL
GBASH
H2

V2
MASK

COLOR

$26
$27
$2C
$2D
$2E
$30

GBASL and GBASH are used by the

as a pointer to the first (leftmost)

line. The (GBASL),Y addressing mode

access any byte of that line.

COLOR

color graphies subroutines
byte of the current plot
of the 6502 is used to

is a mask byte specifying

the color for even lines in the 4 least significant bits (0 to 15)

and for odd lines in the 4 most significant bits. These will

generally be the same, and always so if the user sets the COLOR

byte via the SETCOLOR subroutine provided, Of the above variables

only H2, V2, and MASK can be clobbered by the monitor,

Writing a color graphics program in 6502 assembly language

generally involves the following procedures. You should be

familiar with subroutine usage on the 6502,

1. Set the video mode and scrolling window (refer to
the section on APPLE-II text features)

2. Clear the screen with a call to the CLRSCR (48-line
clear) or CLRTOP (40-line clear) subroutines. If you
are using the mixed text/graphics feature then call
CLRTOP.

3, Set the color using the SETCOLOR subroutine.

4, Call the PLOT, HLINE, and VLINE subroutines to plot
points and draw lines. The color setting is not
affected by these subroutines,

5. Advanced programmers may wish to study the provided
subroutines and addressing schemes. When you supply
x- and y-coordinate data to these subroutines they
generate BASE address, horizontal index, and even/odd
mask information. You can write more efficient programs

if you supply this information directly.

Purpose: To specify one of 16 colors for standard resolution
plotting.

Entry: The least significant 4 A-Reg bits contain a color code
(0 to $F). The 4 most significant bits are ignored,.

Exit: The variable COLOR (location $30) and the A-Reg will both
contain the selected color in both half bytes, for
example color 3 will result in $33. The carry is cleared.

Example: (select color 6)

LDA #$6
JSR SETCOL ($F864)

note: When sitting the color to a constant the following sequence
is preferable.

LDA #$66
STA COLOR ($30)

PLOT subroutine (address $F800)

Purpose: To plot a square in standard resolution mode using the
most recently specified color (see SETCOL). Plotting
always occurs in the primary standard resolution page
(memory locations $400 to $7FF).

Entry: The x-coordinate (0 to 39) is in the Y-Reg and the y-
coordinate (0 to 47) is in the A-Reg.

Exit: The A-Reg is clobbered but the Y-Reg is not. The carry is
cleared. A halfbyte mask ($F or SF0) is generated and
saved in the variable location MASK (location $2E).

Calls: GBASCALC

Example: (Plot a square at coordinate ($A,%$2C))

LDA =82C Y-coordinate
LDY #$A X-coordinate

JSR PLOT (F800)

PLOT1 subroutine (address SFSOE)

Purpose: To plot squares in standard resolution mode with no
Y-coordinate change from last call to PLOT. Faster
than PLOT. Uses most recently specified COLOR (see
SETCOL)

Entry: X-coordinate in Y-Reg (0 to 39)

Exit: A-Reg clobbered. Y-Reg and carry unchanged.

Example: (Plotting two squares - one at (3,7) and one at (9,7))

LDY #$3 X-coordinate

LDA #$§7 Y-coordinate

JSR PLOT Plot (3,7)

LDY #$9 New X-coordinate

JSR PLOT1 Call PLOT1 for fast plot.

HLINE subroutine (address $F819)

Purpose: To draw horizontal lines in standard resolution
mode. Most recently specified COLOR (see SETCOL)
is used.

Entry: The Y-coordinate (0O to 47) is in the A-Reg. The left-
most X-coordinate (0 to 39) is in the Y-Reg and the
rightmost X-coordinate (0 to 39) is in the variable
H2 (location $2C). The rightmost x-coordinate may never
be smaller than the leftmost.

Calls: PLOT, PLOT1

Exit: The Y-Reg will contain the rightmost X-coordinate (same
as H2 which is unchanged). The A-Reg is clobbered.
The carry is set.

Example: Drawing a horizontal line from 3(left X-coord) to
$1A (right X-coord) at 9 (Y-coord)

LDY #83 Left

LDA #S1A Right

STA H2 Save it

LDA #$9 Y-coordinate

JSR HLINE Plot line

SCRN subroutine (address $F871)

Purpose: To sense the color (0 to $F) at a specified screen
position.

. Entry: The Y-coordinate is in the A-Reg and the X-coordinate
is in the Y-Reg.

Exit: The A-Reg contains contents of screen memory at specified
~ position. This will be a value from O to 15). The Y-Reg
is unchanged and the 'N' flag is cleared (for unconditional
branches upon return).

Calls: GBASCALC

Example: To sense the color at position (5,7)

LDY #$5 X-coordinate
LDA #$7 Y-coordinate
JSR SCRN Color to A-Reg.

GBASCALC subroutine (address $F847)

Purpose: To calculate a base address within the primary
standard resolution screen memory page corresponding
to a specified Y-coordinate. Once this base address
is formed in GBASL and GBASH (locations $26 and 3$27)
the PLOT routines can access the memory location
corresponding to any screen position by means of
(GBASL),Y addressing.

Entry: (Y-coordinate)/2 (0 to $17) is in the A-Reg. Note that
even/odd Y-coordinate pairs share the same base address)

Exit: The A-Reg is clobbered and the carry is cleared. GBASL
and GBASH contain the address of the byte corresponding
to the leftmost screen position of the specified Y-coord.

Example: To access the byte whose Y-coordinate is $1A and whose
X-coordinate is 7.

LDA #$1A Y-coordinate
LSR Divide by 2
JSR GBASCALC Form base address.
LDY 787 X-coordinate
LDA (GBASL),Y Access byte
Note: For an even/odd Y-coord pair, the even-coord data is

contained in the least significant 4 bits of the accessed
byte and the odd-coord data in the most significant 4.

FLOATING POINT PACKAGE

The mantissa-exponent, or 'floating point', numerical
representation is widely used by computers to express values
with a wide dynamic range. With floating point representation,
the number 7.5 x 1022 requires no more memory to store than
the number 75 does. We have allowed {or binary floating point
arithmetic on the APPLE-II computer by providing a useful
subroutine package in ROM, which performs the common arithmetic
functions. Maximum precision is retained by these routines and
overflow conditions such as 'divide by zero' are trapped for
the user. The 4-byte floating point number representation is
compatible with future APPLE products such as floating point
BASIC.

A small amount of memory in page zero is dedicated to the
floating point workspace, including the two floating-point
accumulators, FP1 and FP2. After placing operands in these
acecumulators, the user calls subroutines in the ROM which
perform the desired arithmetic operations, leaving results in
FP1. Should an overflow condition occur, a jump to location

$3F5 in RAM is executed, allowing a user routine to take appro-

priate action.

FLOATING POINT REPRESENTATION

B L e

e |

1 s L

Exponent Signed Mantissa

1. Mantissa

The floating point mantissa is stored in two's complement
representation with the sign at the most significant bit (MSB)
position of the high-order mantissa byte. The mantissa provides
24 bits of precision, including sign, and can represent 24-bit
integers precisely. Extneding precision is simply a matter of
adding bytes at the low-order end of the mantissa.

Except for magnitudes less than 2'128 (which lose precision)
mantissas are normalized by the floating point routines to retain
maximum precision. That is, the numbers are adjusted so that the

upper two high-order mantissa bits are unequal.

High-order Mantissa Byte

| 01.XXXXXX |Positive mantissa.
: 10.X$XXXX£JNegative mantissa.
" 00. XXXXXX |

~ Unnormalized mantissa,
. 11 ,XXXXXX ; exponent = -128.

2. Exponent.

The exponent is a binary scaling factor (power of two)
which is applied to the mantissa. Ranging from -128 to +127,
the exponent is stored in standard two's complement representation
except for the sign bit which is complemented, This representa-
tion allows direct comparison of exponents since they are stored
in increasing numberical sequence. The most negative exponent,
corresponding to the smallest magnitude, -128, is stored as $00
($ means hexidecimal) and the most positive, +127, is stored as

$FF (all ones).

Exponent Stored As

+1 10000001 ($81)
+2 10000010 ($82)
+3 10000011 ($83)

=1 WR0TIFIIaY" ($7F)
-2 01111110 ($7E)
» -3 01111101 ($7D)

The smallest magnitude which can be represented is +2-150.

T A

high low
EXP MANTISSA

The largest positive magnitude which can be represented

is +2128-1.

- R i W

$7F | S7F ‘; $FF | SFF

|

EXP MANTISSA

FLOATING POINT REPRESENTATION EXAMPLES

Decimal
Number

+ + + o+
N ooe W

+12
+15
+17
+20
+60

Hex Hex
Exponent Mantissa

81 60 00 00
82 40 00 00
82 50 00 00
82 70 00 OO0
83 60 00 00
83 78 00 00
84 44 00 00
84 50 00 00
85 78 00 00
81 A0 00 00
81 80 00 00
82 BO 00 00
82 90 00 00
83 A0 00 00
83 88 00 00
84 BC 00 00
84 BO 00 00
85 88 00 00

(1.
€1,
(L.
(1.
(1.
(2%
'
(n
3,

Purpose:

Entry:

Caution:

Example:

FLOATING POINT SUBROUTINE DESCRIPTIONS

FCOMPL subroutine (address $F4A4)

FCOMPL is used to negate floating point numbers,

A normalized or unnormalized value is in FP1 (floating point
accumulator 1).

Uses: NORM, RTLOG.

Exit: The value in FP1 is negated and then normalized to retain
precision. The 3-byte FP1 extension, E, may also be altered
but FP2 and SIGN are not disturbed. The 6502 A-REG is

altered and the X-REG is cleared. The Y-REG is not disturbed.

8

Attempting to negate —212 will result in an overflow

since +2128 is not representable, and a jump to location

$3F5 will be executed, with the following contents in

FP1.
:] Tss0][0][0
FP1: 9 J 1_$_8_0_' 0] L .0__:)
0.5 M1
Prior to calling FCOMPL, FP1 contains +15.
] — 1 : '|‘ = "
EP1: (983) A¥8 110 i 0N HTO(HES)
X1 M1

After calling FCOMPL as a subroutine, FP1 contains -15.

FADD subroutine (address $F46E)
Purpose: To add two numbers in floating point form.
Entry: The two addends are in FP1 and FP2 respectively. For
maximum precision, both should be normalized.
Uses: SWPALGN, ADD, NORM, RTLOG.
Exit: The normalized sum is left in FP1, FP2 contains the addend
of greatest magnitude. E is altered but SIGN is not.
The A-REG is altered and the X-REG is cleared. The
Y-REG is not disturbed. The sum mantissa is truncated to 24 bits

Caution: Overflow may result if the sum is less than —2128

or greater than +2128

-1. If so, a jump to location
$3F5 is executed leaving O in X1, and twice the proper
sum in the mantissa M1, The sign bit is left in the

carry, 0 for positive, 1 for negative.

FP1: 0 ? {%.YYY...’
X1 M1
(For carry=0, true sum = +X.YYY... x 2128.)

Example: Prior to calling FADD, FP1 contains +12 and FP2 contains

-5,
FP1: | 483 " 1860 | 0 ! i 0 .i(+19)
X1 M1 g
N YL FUTEL.
b FP2: $82 ‘ $BO0 ' 0 0) (- 5)
* - A - ‘ SOR—
X2 M2

After calling FADD, FP1 contains +7 (FP2 contains +12).

k)

MD2 subroutine (continued)

calling subroutine (FDIV or FMUL) with a floating point
zero in FP1. Because MD2 pops a return address off

the stack, it may only be called by another subroutine,

FSUB subroutine (address §$F168)

Purpose: To subtract two floating point numbers.

Entry: The minuend is in FP1 and the subtrahend is in ¥P2, Both

should be normalized to retain maximum precision prior
to calling FSUB,

Uses: FCOMPL, ALGNSWP, FADD, ADD, NORM, RTLOG.

Exit: The normalized difference is in FP1 with the mantissa trun-
cated to 24 bits. TP2 holds either the minuend or the negated
subtrahend, whichever is of greater magnitude. E is altered
but SIGN and SCR are not. The A-REG is altered and the
X-REG is cleared. The Y-REG is not disturbed.

Cautions: An exit to location $3F5 is taken if the result is

less than -2128 or greater than +2128

subtrahend is -2128.

-1, or if the

Example: Prior to calling FSUB, FP1 contains +7 (minuend) and

FP2 contains -5 (subtrahend).

FP1: | $82 1 [70 | lr or b o] +7)
SO g i -

FP2: | $82 | $BO { oS el .0 —1 (-5)
X2 M2 Rl e

After calling FSUB, FP1 contains +12 and FP2 contains +T

- — ——

e

Lok 0 S
FP1: $83 | se0 | | o 1

. X1 M1

(+12)

|
—

FMUL_subroutine (address $F48C)

Purpose: To multiply floating point numbers.

Eniry: The multiplicand and multiplier must reside in FPl1l and
FP2 respectively. Bothe should be normalized prior to
calling FMUL to retain maximum precision.

Uses: MD1, MD2, RTLOG1, ADD, MDEND.

Exit: The signed normalized floatihg point product is left in
FP1. M1 is truncated to contain the 24 most significant
mantissa bits (including sign). The absolute value of the
multiplier mantissa (M2) is left in FP2, E, SIGN and SCR
are altered. The A- and X-REGs are altered and the Y-REG
contains SFF upon exit.

Cautions: An exit to location $3F5 is taken if the product is less

8 or greater than +2128-1.

than —212
Notes: FMUL will run faster if the absolute value of the multi-
plier mantissa contains fewer 'l's than the absolute value
of the multiplicand mantissa.

Example: Prior to calling FMUL, FP1 contains +12 and FP2 contains

8
FP1: [s83 | [s60 . i 0 || 0 | (+12)
: bt il [l HI 22 0 s W T
X1 M1
; Tuns Y e (T i 1
ppgi | g% fupaR0. [0 ULl e
X2 M2 e S T

After calling FMUL, FP1l contains -60 and FP2 contains +5.

FPLi $85 5957 I—_;—] rg—_] (-60)

X1 SR

FP2: $82 . $50 1 I'-0 [0 (+ 5)

FDIV subroutine (address SF4B2)

Purpose: To perform division of floating point numbers,

Entry:

Exit:

Uses:

The normalized dividend is in FP2 and the normalized
divisor is in FP1.

The signed normalized floating point quotient is left in
FP1. The mantissa (M1) is truncated to 24 bits. The 3-bit
M1 extension (E) contains the absolute value of the divisor
mantissa. MD2, SIGN, and SCR are altered. The A- and
X-REGs are altered and the Y-REG is cleared.

MD1, MD2, MDEND.

Cautions: An exit to location $3F5 is taken if the quotient is

Notes

o
less than -2128 or greater than 32348 4

MD2 contains the remainder mantissa (equivalent to the
MOD function). The remainder exponent is the same as
the quotient exponent, or 1 less if the dividend mantissa

magnitude is less than the divisor mantissa magnitude.

Example: Prior to calling FDIV, FP1l contains -60 (dividend)

and FP2 contains +12 (divisor).

FP1: [555;3 [$88v7 [ﬂ d 'j [6v—] (-60)
X1 Ml e
(s3] [m] [0] [o] om

X1 .

After calling FMUL, FP1 contains -5 and M2 contains C.

=gl | o] [T 1 [ogfiats

Purpose:

Entry:

Uses:

Exit:

Notes:

FLOAT subroutine (address $F451)

E, ¥P2, SIGN,

To convert integers to floating point representation.

A signed (two's complement) 2-byte integer is stored in

M1 (high-order byte) and M1+1 (low-order byte).

M1+2

must be cleared by the user prior to entry.

NORM1,

‘a copy of the high-order mantissa

X- and Y-REGs are not disturbed.

To float a 1-byte integer, place

as well as M1+2 prior to calling

FLOAT takes approximately 3 msec.

zero to floating point form than

user may check for zero prior to

and SCR are not disturbed.

The normalized floating point equivalent is left in FP1,

The A-REG contains
byte upon exit but the
The carry is cleared.

it in M1+1 and clear M1

FLOAT,

longer to convert
other arguments. The

calling FLOAT and increase

throughput.
*
! * LOW-ORDER INTEGER BYTE IN A-REG
* HIGH-ORDER BYTE IN Y-REG
*
85 FA XFLOAT STA M1+1
84 F9 STY M1 INIT MANTI1,
A0 00 LDY #$S0
84 FB STY M1+2
05 D9 ORA M1 CHK BOTH BYTES
DO 03 BNE TOFLOAT FOR ZERO,
85 F8 STA X1 IF SO, CLR X1
60 RTS AND RETURN.

TOFLOAT JMP

FLOAT ELSE FLOAT INTEGER.

(FLOAT continued)
Example: Float +274 ($0112 hex)

Calling sequence

A0 01 LDY #$801 HIGH-ORDER INTEGER BYTE
A9 12 LDA #8$12 LOW-ORDER INTEGER BYTE
84 T9 STY M1

85 FA STA M1+1

A9 00 LDA #$00

85 F8 STA M1+2

20 51 F4 JSR FLOAT

|
Upon returning from FLOAT, FP1 contains the floating

point representation of +274.

Pe1; (388 | [s4a] [ss0 || o] csare)

X1 M1

FIX subroutine (address SF640)

Purpose: To extract the integer portion of a floating pOint
number with truncation (ENTIER function).
h Entry: A floating point value is in FP1. It need not be normalized.

Uses: RTAR.

Exit: The two-byte signed two's complement representation of the
integer portion is left in M1 (high-order byte) and M1+l
(low-order byte). The floating point values +24,63 and
-61.2 are converted to the integers +24 and -61 respectively.
FP1 and E are altered but FP2, E, SIGN and SCR are not.

The A- and X-REGs are altered but the Y-REG is not.
Example: The floating point value +274 is in FP1 prior to calling

FIX.
p [ame] [s] 3] [0] e
X1 M1

After calling FIX, M1 (high-order byte) and M1+l
(low-order byte) contain the integer representation
of +274 ($0112).

e [ser] (5] (w2 (o]
M1

X1

« Note: FP1 contains an unnormalized representation of

+274 upon exit.

AUXILLIARY SUBROUTINES.

NORM subroutine (address $F463)

Purpose: To normalize the value in FP1, thus insuring maximum
precision.

Entry: A normalized or unnormalized value is in FP1.

Exit: The value in FP1 is normalized. A zero mantissa will

exit withisasp) (2 128

_exponent). 1f the exponent on exit
is -128 (X1=0) then the mantissa (M1) is not necessarily
normalized (with the two high-order mantissa bits unequal).
E, FP2, SIGN, and SCR are not disturbed. The A-REG is
disturbed but the X- and Y-REGs are not. The carry is set.

Example: FP1 contains +12 in unnormalized form (as .00112 X 26).

(P s R
FP1 | $86 soc | [o | 0 l (+12)
o D T T W A

Upon exit from NORM, FP1 contains +12 in normalized

form (as 1.12 X 23).

et RS || S Lo) [5

NORM1 subroutine (address $F455)
Purpose: To normalize a floating point value in FP1 when it
is known the exponent is not -128 (X1=0) upon entry.
Entry: An unnormalized number ijs in FP1l. The exponent byte
should not be 0 for normal use.
Exit: The normalized value is in FP1. E, FP2, SIGN, and SCR
are not disturbed. The A-REG is altered but the X- and

Y-REGs are not.

ADD subroutine (addruss $F425)

Purpose: To add the two mantissas (M1 and M2) as 3-byte integers),
Entry: Two mantissas are in M1 (through M1+2) and M2 (through
M2+2). They should be aligned, that is with identical
exponents, for use in the FADD and FSUB subroutines.
Exit: The 24-bit integer sum is in M1 (high-order byte in M1,
low-order byte in M1+2). FP2, X1, E, SIGN, and SCR are
not disturbed. The A-REG contains the high-order byte of
the sum, the X-REG contains $FF, and the Y-REG is not
altered. The carry is the '25th' sum bit,
Fxample: FP1 contains +5 and FP2 contains +7 prior to calling
ADD.

w (e DRl Rl LE) e
B U e

X1

oGm0 (] (2] oo

Upon exit, M1 contains the overflow value for +12.
Note that the sign bit is incorrect, This is taken

care of with a call to the right shift routine,

— L
FP1 s82 | | sco [_o ! | o (+12)

|
s e

ABSWAP subroutine (address $F437)
Purpose: To take the absolute value of FP1 and then swap FP1
with FP2. Note that two sequential calls to ABSWAP
¢ will take the absolute values of both FP1 and FP2
in preparation for a multiply or divide.

Entry: FP1 and FP2 contain floating point values.

Exit: The absolute value of the original FP1 contents are in
FP2 and the original FP2 contents are in FP1l. The least
significant bit of SIGN is complemented if a negation
takes place (if the original ¥P1l contents are negative),
by means of an increment. SCR and E are used. The A-REG
contains a copy of X2, the X-REG is cleared, and the Y-REG

is not altered.

RTAR subroutine (address $F47D)

Purpose: To shift M1 right one bit position while incrementing
X1 to compensate for scale. This is roughly the opposite
of the NORM subroutine.

Entry: A normalized or unnormalized floating point value is in

FP1.

Exit: The 6-byte field MANT1 and E is shifted right one bit
arithmetically and X1 is incremented by 1 to retain proper
scale. The sign bit of MANT1 (MSB of M1) is unchanged.

»P2, SIGN, and SCR are not disturbed. The A-REG contains
the least significant byte of E (E+2), the X-REG is cleared,

and the Y-REG is not disturbed.

RTAR subroutine (continued)

Caution: If X1 increments to 0 (overflows) then an exit to
location $3F5 is taken, the A-REG contains the high-order
MANT1 byte, M1, and X1 is cleared. FP2, SIGN, SCR,
and the X- and Y-REG's are not disturbed.

Uses: RTLOG

Example: Prior to calling RTAR, FP1 contains the normalized

value -7.

FP1 l—s_aT_] |$_"i°.| f—o_] I 0 | : (-7)
X1 M1

After calling RTAR, FP1 contains the unnormalized

value -7 (note that precision is lost off the low-order

end of M1).
w1 [ssa] [so] [0][o] m
X1 M1

Note: M1 sign bit is unchanged.

RTLOG subroutine (address S$F480)

Purpose: To shift the 6-byte field MANT1 and E one bit to the
right (toward the least significant bit). The 6502
carry bit is shigted into the high-order M1 bit.

- This is useful in correcting binary sum overflows.

Entry: A normalized or unnormalized floating point value is in

FP1. The carry must be cleared or set by the user
since it is shifted into the sign bit of M1,

Exit: Same as RTAR except that the sign bit of M1 is not pre-

served (it is set to the vlaue of the carry bit on entry).

Caution: Same as RTAR.

Example: Prior to calling RTLOG, FP1 conatins the normalized
value -12 and the carry is clear.

FP1: $83 I $59_J | 0 | [::::] (-12)

X1 M1

After calling RTLOG, M1 is shifted one bit to the right

and the sign bit is clear. X1 is incremented by 1.

FP1: $84 sso | [o] [o] «(+20
X1 M1

Note: The bit shifted off the end of MANT1 is rotated
into the high order bit of the 3-byte extension
E. The 3-byte E field is also shifted one bit

to the right.

RTLOG1 subroutine (address $F484)

Prupose: To shift MANT1 and E right one bit without adjusting
X1. This is used by teh multiply loop. The carry
is shifted into the sign bit of MANT1,
Entry: M1 and E contain a 6-byte unsigned field. E is the
3-byte low-order extension of MANTI1.
Exit: Same as RTLOG except that X1 is not altered and an overflow

exit cannot occur.

MD2 subroutine (address $F4E2)

Purpose: To clear the 3-byte MANT1 field for FMUL and FDIV,
check for initial result exponent overflow (and
underflow), and initialize the X-REG to $17 for loop
counting.

Entry: The X-REG is cleared by teh user since it is placed in

the 3 bytes of MANT1. The A-REG contains the result

of an exponent addition (FMUL) or subtraction (FDIV),
The carry and sign status bits should be set according
to this addition or subtraction for overflow and under-
flow determination.

Exit: The 3 bytes of M1 are cleared (or all set to the contents

of the X-REG on entry) and the Y-REG is loaded with $17,
The sign bit of the A-REG is complemented and a copy of
the A-aEG is stored in X1. FP2, SIGN, SCR, and the X-REG
are not disturbed.

Uses: NORM.

Caution: Exponent overflow results in an exit to location $3F5,

Exponent underflow results in an early return from the

FLIATING FOINT RGUTINLS

" 1:49 P. M., 10/3/1577

1 R R R R R R
2 # *
3 # AFFLE-II FLOATING #
4 X FOINI ROUCINES *
S * i »
6 % COPYRIGH! 1977 BY #
7 # APPLE COMFUIER INC. #*
3 #* *
9 # ALL RIGH1S RESERVED *
* #*
+ 3. WOZNIAK *
@ *
13 L2222 22202222322 8 3
N 14 TITLE “FLOATING FOINT ROUCINES®
R 1S SIGN EFZ SF3 {
: 16, bi%z EFZ SF4
17 M2 EPZ SFS
J 13 X1 EFZ sFS3 ;
19 M1 EFZ SF9
20 E EFZ SFC
21 ovLoc EOU $3FS (
22 ORG S$F425
F42s: 13 2z ADD cLe CLEAR CARRY. ¢

Cra26: Az 02 24 LDX #s2 INUCX FOR 3-BYTE ADD
t423: BS F? ZS ADD1 LDA M1, X
F4zA: 75 FS 26 : ADC M2, X ADD A BYFE OF MANIZ2 TO MANT1..

L F42C: 95 F9 27 STA ML, X {
F4zC: CA 23 DEX INUEX TO NeXT MORE SIGNIF. BYIE.
F42F: 10 7 29 BFL ADD1 LODP UNTFIL DONE.

CFaz1: &0 30 RTS RETLIRN ¢
F432: 04 F3 31 MUt ASL SIGN CLEAR LSB OF SIGN. y
F434: 20 37 F4 32 JSR ABSWAP AES VAL OF M1, THEN SWAP WITH M

C Faz7: 24 F9 33 ABSWAP BIT M1 MANI1 NEGATIVE? L
1439: 10 0S 24 EFL AESWAF1 NO, SWAP WITH MANT2 AND RETURN.
F43B: 20 A4 F4 35 JSR FCOMPL YES, COMPLEMENT IT.

Cia3e: Eb& F3 36 INC SIGN INCR SIGN, COMPLEMEN!ING LSB.
F440: 39 37 AESWAP1 SEC SEl CARRY FOR RETURN TO MUL/DIV
F441: AZ 04 33 SWAP LDX #34 INDEX FOR 4-BYTE SWAP
K443 94 FE 29 SWAP1 STY E-1,X ({
| 445; BS F7 40 LDA X1-1:X SWAP A BYIE OF EXP/MANII WITH
F447: [4 F3 41 LDY XZ-1,X EXP/MANT2 AND LEAVE A COPY OF
F44%: 94 F7 4z 3TY X1-1,X MANI1 IN E (3 BYIES). E+2 UZ.D
F44B: %5 3 a3 STA X2-1,X
F44D: CA 44 DEX ADVANCE INUEX TO NEXT BYfe. .
F44E: DO F3 a5 ENE SWAP1 LOOP UNTIL DONE. C
£4s0: 40 a4 RTS RETURN
F451: A? SE 47 FLOAT LDA #S2E INIT EXF1 TO 184,

F453: S5 +8 as STA X1 THEN NORMALIZE TO FLOAT. C
4SS: A5 F? 4% NORM1 LDA M1 HIGH-ORDER MANT1 BYTE.

F457: C% 0 50 CMF #3C0 UFFER TWO BITS UNEGUAL? -
F45%: 30 OC s1 BMI RTS1 YES, RETURN WITH MANI1 NoRMAL. D
F4sB: Cé F8 52 DEC" X1 DECREMENT EXF1

F4s0: 06 FB s3 ASL M1+2 .
F4s5i7: 26 FA s4 ROL M1+1 SHIFM MANT1 (3 BYres) LEF1. (

F47D:
F&S7F:
F420:
F432:
Fas4:
FASL:
F4aC3:
429
F42B:
| 42C:
FA4SF:
F4av1:
F4a74:
F495:
F474:
F4%A:
F4%D:
F49E:
I"4A0:
F4A2:
F4A4:
b 4AS:
F4A7:
T4AT:
| 4AB:
F4AD:
F4AE:
F4EO:
F4BEZ:
+4BS:
£4E7:
F4EA:
| 4BBG:
#4BD:
F4BF:
F4C1:
FAaCZ:
Far3:
Facs:
Fac7:

1:4% F. M.,
Fah1"
Fa&3:
F465:
Fas7:
Fa4s3:
FA&LB:
FH4LE:
F470:
} 472:
Fa474:
F377:
F&7%:
F47B:

628

10/3/1%77
F? =0
Fi2 Sk
EE S7
o2
A4 F4 59
7B F4 40
F4 61
F3 62
F7 63
25 F4 &4
EA 65
05 Lb
C4 &7
63
F? 69
70
F3 71
75 72
FA 73
FF 74
75
I'B 76
77
32 F4 72
F3 79
E2 F4 30
21
24 F4 32
03 23
2S5 F4 24
35
IS 26
F3 a7
EF a2
39
03 90
00 71
rs 92
F2 23
4
F7 95
cS 26
32 F4 97
F3 3
€2 F4 79
100
02 101
FS 102
FC 103
104
105
8 106
FD 107
108

FLCATING POIN

NORM
RTS1
FsUB
SWHALCN
FADD

ADDEND
ALGHNSWK
#*

RTAR
RTLOG

RTLOG1
ROR1

FMUL

MUL1 .

MULZ
MDEND
NORMX
FCOMPL

COMPLL

FDIV

DIvVi

DIivz

DIV3

ROL ™M1

LDA X1

BNC NORM1

RTS

JSR FCOMPL

JSR O ALGNSWP

LDA X2

cMP X1

ENE SWHFALGN

JSR ADD

EVC NCRM

BVS RTLOG

BCC SWAP
ELSE SHIFT RIGHT

LDA ™M1

ASL A

INC X1

BER 0OVFL

LDX #SFA

ROR E+3, X

INX

ENL ROR1

RTS

JSR MD1

ADC X1

JSR MDZ

cLC '

J3R RTLOG1

BCC MULZ

JESR ADD

DEY

BPFL MuUL1

LSR SIGN

BCC NORM _

SEC

LDX #33

LDA #s0

SBEC X1, X

STA X1, X

DEX

ENE COMPL1

EER ADDEND

JSR MD1

SBC X1

CR MD2

SEC

LDX #s2

LDA MZ: X

SBC E X

FPHA

DEX

EFL DIVZ

LDX #SFD

FLA

ROUTINES

FAGE: 2

EXP1 ZERO?
MO, CONPINUE NORMALIZING,
RTS RETURN
CMPL MANI1, CLEARS CARRT UNLE=S
RIGHT SHIFT MANT1 OR SWAD WIG.i |

COMPARE EXP1 WITH EXP2. L
IF #, SWAP ADDENDS OR ALIGN MAT!
ADD ALIGNED MANI[ISSAS

NO OVERFLOW, NORMALIZE RESULT
oV: SHIFT M1 RIGII, CARRY INiu @
SWAP IF CARRY CLEAR, h L

ARITH

SIGN OF MANTL INI1O CARRY FOR
RIGHI ARITH SHIF1.

INCR X1 TO ADJUST FOR RICHT SHIH
EXP1 OUT OF RANGE

INUEX FOR &:BYTE RIGHM SHIFT.

NEXT BYTE OF SHIFT

LOOP UNTIL DONE

RETURN.

ABS VAL OF MANT1, MANIZ.

ADD EXP1 TO EXP2 FOR PRODUCT EXI
CHECK PROD. EXP AND PREP. FOR M
CLEAR CARRY FOR FIRST BIT.

M1 ANU E RIGHI (FROD AND MPLIEK
IF CARRY CLEAR, SKIF PARTIAL PR
ADD MULTIPLICAND TO PRODUCT.
NEXT MUL ITERATION.

LOOP UNIIL DONE

TEST SIGN LSB. ,
IF EVEN, NORMALIZE PROD, ELSE COI
SE[CARRY FOR SUBTRALT.

INUCX FOR 3-BYTE SUBTRACT.
CLEAR A.

SUBTRACT BYTE OF EXP1

RESTORE IT.

NEXT MORE SIGNIFICAN| EYTE

LOOP UNTIL DONE.

NORMALIZE (OR SHIFT RT IF OVE.)
TAKE ABS VAL OF MANT1., MANMZ.
SUBTRACT EXP1 FROM EXP2.

SAVE AS QUOTIENT EXP

SET CARRY FOR SUBTRACT

INDEX FOR 3-BYIE SUBTRACTION.

SUBTRACT A BYFE OF E FROM MANT 2
SAVE ON STACK.

NEXT MORE SIGNIFICANT BYIE

LOOP UNIIL DONE, 3
INUEX FOR 3-BY(E CONUITIONAL Mo
PULL BYFE OF DIFFERENCE OFF & A

1:4% P. M.
Faca: S0
FACA: 55
FACC: E3
F4cD: DO
F4CF: 26
FaD1: 26
FaD3: 26
$40S: 06
FaD7: 26
fF4D%: 26
FADB: EO
®z0D: =8
F4DE: DO
F4EO: FO
F4C2: 26
FaE4: 26
_F4E6: 26
F4ES: BO
F4EA: 30
Falr: 63
Facp: 63
b QCC: 20
I'4F0; 4%
I'4F2: &S
Fara: A0
F&F6: &0
Fal'7: 10
F4F?: 4C
F&3D: 20
F&40: AS
F642: 10
F&44: C9
F&a6: OO
| 643: 24
FA44A: 10
Feal: AS
F&4C: FO
F&S0: Eb
I"652: DO
F&sS4: Eb6
F&S6: 60
F&S7: AP
FaS59: 55
FASB: 895
Se5D: 60

-

107371577
oz 109
F& 110

111
ie 112
FB 113
FA 114
e 115
F7 116
F6 117
FS 112
iC 119

120
DA 121
EE 122
FB 123
FA 124
F? 125
oD 126
o4 127

128

129
B2 130
30 131
Fg 132
17 133

134
F7 135
FS 03 136

137
70 F4 132
F3 139
13 140
2 141
FS 142
F9 143
0A 144
FE 145
06 1446
I'A 147

2 142

F? 149
150
00 151
F9 152
FA 153
154

Moz

MU3

DVCHK
DVFL

FIX1
FIX

FIXRTS
UnorFL

%2 #xx#SUCCESSHFUL ASSEMELY:

ECC [DIV4
STA M2Z+3. X
INX
ErlE DIV3
ROL M1+2
ROL Mi+1
ROL M1
ASL MI+2
ROL M2+1
ROL M2
BCS OVFL
DEY
ENL DIV1
BER MUEND
STX M1+2
STX Mi1+1
5TX M1
BECS DOVCHK
EMI MO3
FLA
PLA
BCC NIORMX
EDR #3330
STA X1
LDY #%17
RTS
EFPL MD3
JMP OVLOC
ORG $F63D
JSR RTAR
LA X1
EPL UNDFL
CMP #32E
BENE FIX1
BIT M1
BPL FIXRTS
LDA M1+2
EE@ FIXRTS
INC Mi+1
ENE FIXRTS
INC M1
RTS
LDA #30
STA M1
STA Mi1+1
RTS

N0 ERRORS

RO TIRGES

FAGE: 3
IF M2<E THEN DON‘T RESTORE M2

NEXT LESS SIGNIFICANI BYTE
LOOP UN/IIL DONE.

ROLL QUOTICNT LEFT, CARRY INIC L

SHIFI DIVIDGEND LEFT.

OVFL I3 DUE TO UNNORMED DIVISOR
NEXT DIVIDE ITERATION

LOOP UNIIL DONE 23 ITERATIONS
NORM. QUOTIENI AND CORRECT SIGN

CLEAR MANT1 (3 BYFES) FOR MUL/D

IF CALC, SET CARRY, CHECK FOR uV
IF NEG THEN NO UNUERFLOW
FOFP ONE RETURN LEVEL

CLEAR X1 ANU RE(URN

COMPLEMLEN) SIGN BIT OF EXPONENT
STORE IT

COUNT 24 MUL/23 DIV ITERATIONS
RETURN.

IF POSITIVE EXP THEN NO OVFL.

RTS

CROUUS-REFCRNCE: FLCATING POINI KROUIINES

ABCWAP
ARCKAPL
ADD
ADD1
ADDLRD
ALGNSWP
coMPLl
Uivi
DIvz
uiv3
Diva

b

FADD
"COMPL
FDIV
FIX
FIX1
FIXRTS
FLOAT
Frul
FSuUB
M1

MZ
MD1
MDZ
MD3
MULENRD
MUL1L
MUl 2
NORM
JORM1
RORMX
DVCHK
oVFL
ovLouc
RO
RTAR
KTLOG
RILOGT
K151
SICGN
SWAP
SWAPRL
SWPALGN
UNUFL
X1

X

F437
I 640
425
1423
477
I"478B
I-4A7
F4EA
F4BD
I"ac7
FAaCe
0OF(2)
| 46E
F4A4
"4B2
640
I-63D
F&6Sh
rasi
F43c
F4s3
00FF(Z)

QOFS(Z)
F432
F4E2
I"4F0
F4A0
F455
F47D
Fas3
F4SS
F4a2
I"4F7
F4F9
03FS
F436
47D
F430
1"424
Fa67
00F3(2)
1441
1443
F46B
F657
00F2(2)

OCF 4

0032
o0z4
0064
0029
0076
0040
0035
0121
0106
0112
0109
0039

0035

0142
0144

002S
0123
0026
0073
0020
0127
0122
0026
0023
0065
0057
0130
0126
0072
0136
0076
0138
0066
0032
0051
00321
0067
0045
0063
0140
0040
0132
0041

oCs4

0074

0146

0027
0124
0102
0077
00%%
0135

0083

0119

0036

0042
0139
0C43

0103

0143

0033 0049 D053 0054 0055 0049 0113 0114 0115
0125 0143 0145 0147 0149 0152 0153
0110 0116 0117 0118

0087

0043 0052 0054 0062 0071 0079 0092 0093 0073
0061

SWEET16 - THE 6502 DREAM MACHINE

While writing APPLE BASIC for a 6502 microprocessor I
repeatedly encountered a variant of MURPHY'S LAW. Briefly
stated, any routine operating on 16-bit data will require at
least twice the code that it should., Programs making extensive
use of 16-bit pointers (such as compilers, editors, and assemblers)
are included in this category. In my case, even the addition
of a few double-byte instructions to the 6502 would have only
slightly alleviated the problem. What I really needed was a
6502/RCA 1800 hybrid - a powerful 8-bit data handler complemented
by an easy to use processor with an abundance of 16-bit registers
and excellent pointer capability. My solution was t9 implement
a non-existent (meta) 16-bit processor in software, interpreter

style, which I call SWEET16.

SWEET16 is based around sixteen 16-bit registers (RO-R15),
actually 32 memory locations. RO doubles as the SWEET16 accu-
mulator (ACC), R15 as the program counter (PC), and R14 as the
status register. R13 holds compare instruction results and R12
is the subroutine return stack pointer if SWEET16 subroutines
are used. All other SWEET16 registers are at the user's unre-

stricted disposal.

SWEET16 instructions fall into register and non-register
categories, The register ops specify one of the sixteen reg-

isters to be used as either a data element or a pointer to

data in memory depending on the specific instruction. For example,
INR R5 uses R5 as data and ST @R7 uses R7 as a pointer to data

in memory. Except for the SET instruction, registe} ops take

1 byte of code each, The non-register ops are primarily 6502
style branches with the second byte specifying a +127 byte dis-
placement relative to the address of the following instruction,
Providing that the prior register op result meets a specified
branch condition, the displacement is added to SWEET16's PC,

effecting a branch.

SWEET16 is intended as a 6502 enhancement package, not a
stand-alone processor. A 6502 program switches to SWEET16 mode
with a subroutine call and subsequent code is interpreted as
SWEET16 instructions. The non-register op RTN returns the user
program to 6502 mode after restoring the internal register
contents (A, X, Y, P, and S). The following example illustrates

how to use SWEET16.

300 B9 00 02 LDA 1IN,Y Get a char,

303 C9 CD CMP "M" "M" for move?

305 DO 09 BNE NOMOVE No, skip move,

307 20 B89 F6 JSR SW16 Yes, call SWEET18,
304 41 MLOOP LD @R1 R1 holds source address,
30B 52 ST @R2 R2 holds dest. address.
30C F3 DCR R3 Decrement length,

30D 07 FB BNZ MLOOP Loop until done,

30F 00 RTN Return to 6502 mode.
310 C9 C5 NOMOVE CMP "E" "E" char?

312 DO 13 BEQ EXIT Yes, exit.

314 C8 INY No, continue

NOTE: Registers A, X, Y, P, and S are
not disturbed by SWEET16,

INSTRUCTION DESCRIPTIONS

The SWEET16 opcode list is short and uncomplicated.
Excepting relative branch displacements, hand assembly is
trivial. All register opcodes are formed by combining two
hex digits, one for the opcode and one to specify a register.
For example, opcodes 15 and 45 both specify register RS while
codes 23, 27 and 29 are all ST ops. Most register ops are

assigned in complementary pairs to facilitate remembering

them. Thus LD and ST are opcodes 2n and 3n respectively, while

LD @ and ST @ are codes 4n and 5n.

Opcodes 0 to C (hex) are assigned to the thirteen

non-register ops. Except for RTN (opcode 0), BK (0A), and

RS (B), the non-register ops are 6502 style relative branches.
The second byte of a branch instruction contains a +127 byte
displacement value (in two's complement form) relative to the
address of the instruction immediately following the branch,
If a specified branch condition is met by the prior register
op result, the displacement is added to the PC effecting a
branch. Except for BR (Branch always) and BS (Branch to Sub-
routine), the branch opcodes are assigned in complementary
pairs, rendering them easily remembered for hand coding. For

example, Branch if Plus and Branch if Minus are opcodes 4 and

5 while Branch if Zero and Branch if NonZero are opcodes 6 and 7.

in
2n
3n
4n
Sn
6n
7n
8n
9n
An
Bo
Cn
Dn
En

Fn

SWEET16 OPCODE SUMMARY

Register Ops

SET
LD
ST
LD
ST
LDD
STD
POP
STP

SUB
POPD
CPR
INR
DCR

Rn,

Rn
Rn
@Rn
@Rn
@Rn
@Rn
@Rn
@Rn
Rn
Rn
@Rn

Rn

Constant (Set)

(Load)

(Store)

(Load indirect)

(Store indirect)

(Load double indirect)
(Store double indirect)
(Pop indirect)

(Store pop indirect)
(Add)

(Sub)

(Pop double indirect)
(Compare)

(Increment)

(Decrement)

00
01
02
03
04
05
06
07
08
09
0A
0B
oc
0D
OE
OF

Ops

Non-register
RTN (Return to
BR ea (Branch
BNC ea (Branch
BC ea (Branch
BP ea (Branch
BM ea (Branch
BZ ea (Branch
BNZ ea (Branch
BM1 ea (Branch
BNM1 ea (Branch
BK (Break)
RS (Return
BS ea

6502 mode)

always)

if
if
if
if
if
if
if

if

No Carry)
Carry)
Plus)
Minus)
Zero)
NonZero)
Minus 1)

Not Minus 1)

from Subroutine)

(Branch to Subroutine)

(Unassigned)

(Unassigned)

(Unassigned)

REGISTER OPS

in j'1owJ high (Set)
Sl | | -

SET Rn,Constant l
constant

The 2-byte constant is loaded into Rn (n = 0 to F, hex)
and branch conditions set accordingly, The carry is
cleared.

Example

15 34 AO SET R5,A034 R5 now contains A034

LD Rn 2n: (Load)

The ACC (RO) is loaded from Rn and branch conditions
set according to the data transferred. The carry is

cleared and the contents of Rn are not disturbed,

Example

15 34 A0 SET RS, A034

24 LD RS ACC now contains A034
ST Rn [3n (Store)

The ACC is stored into Rn and branch conditions set
according to the data transferred. The carry is cleared

and the ACC contents are not disturbed.

Example

25 LD RS Copy the contents
36 ST R6 of R5 to R6.

LD @Rn

ST @Rn

4n ' (Load indirect)

The low-order ACC byte is loaded from the momory location

whose address resides in Rn and the high-order ACC byte is
cleared. Branch conditions reflect the final ACC con-
tents which will always be positive and never minus 1,

The carry is cleared. After the transfer, Rn is incre-

mented by 1.

Example

15 34 A0 SET R5,A034

45 LD @R5 ACC is loaded from

memory location A034
and R5 is incremented
to A035.

i 5n | (Store indirect)
The low-order ACC byte is stored into the memory location
whose address resides in Rn. Branch conditions reflect
the 2-byte ACC contents. The carry is cleared, After

the transfer, Rn is incremented by 1.

Example

15 34 A0 SET R5, A034 Load pointers R5 and R6

16 22 90 SET R6, 9022 with A034 and 9022,

45 LD @RS Move a byte from location
A034 to location 9022.

56 ST @R6 Both pointers are

incremented.

LDD @Rn 6n (Load double-byte indirect)

The low order ACC byte is loaded from the memory location
whose address resides in Rn and Rn is then incremented
o’ by 1. The high order ACC byte is loaded from the memory

location whose address resides in the (incremented) Rn

! and Rn is again incremented by 1. Branch conditions
reflect the final ACC contents. The carry is cleared.
Example
15 34 A0 SET R5, A034
65 LDD @RS The low-order ACC byte
is loaded from location
A034, the high-order byte
from location A035. RS is
incremented to A036,
STD @Rn L 7n | (Store double-byte indirect)
The low-order ACC byte is stored into the memory location
whose address resides in Rn and Rn is then incremented
by 1. The high-order ACC byte is stored into the memory
location whose address resides in (the incremented) Rn
and Rn is again incremented by 1. Branch conditions
reflect the ACC contents which are not disturbed. The
carry is cleared.
Example
« 15 34 A0 SET R5, A034 Load pointers RS and R6
16 22 90 SET R6, 9022 with A034 and 9022, Move
p 65 LDD @R5 double byte from locations
76 STD @R6 A034 and A035 to locations

9022 and 9023, Both point-
ers are incremented by 2.

POP GRn

; 8n

(Pop indirect)

The low order ACC byte is loaded from the memory location

whose address resides in Rn after Rn is decremented by 1

and the high order ACC byte is cleared. Branch conditions

reflect the final 2-byte ACC contents which will always be

positive and never minus 1.

The carry is cleared. Because

Rn is decremented prior to loading the ACC, single byte

stacks may be implemented with the ST @Rn and POP @Rn

ops (Rn is the stack pointer).

Example
15 34 A0
10 04 00
35
10 05 00
35
10 06 00
35
85
85
85

SET RS,
SET RO,
ST @R5

SET RO,
ST @RS

SET RO,
ST @RS

POP @R5
POP @R5
POP @RS

AD34

Init stack pointer.
~ Load 4 into ACC.
Push 4 onto stack.
Load 5 into ACC,
Push 5 onto stack,
Load 6 into.ACC.
Push 6 onto stack.
Pop 6 off stack into ACC.
Pop 5 off stack.
Pop 4 off stack.

STP @Rn

oz o)

|
|

9n ! (STORE POP indirect)

The low order ACC byte is stored into the memory location

i

whose address resides in Rn after Rn is decremented by 1.
Then the high-order ACC byte is stored into the memory
location whose address resides in Rn after Rn is again
decremented by 1. Branch conditions will reflect the
2-byte ACC contents which are not modified. STP @Rn

and FOP @Rn are used together to move data blocks
beginning at the greatest address and working down.
Additionally, single-byte stacks may be implemented

with the STP @Rn and LDA @Rn ops.

Example

14 34 AO SET R4, A034 Init pointers.

15 22 90 SET R5, 9022

84 POP @R4 Move byte from A033
95 STP @RS to 9021.

84 POP @R4 Move byte from A032

95 STP @RS to 9020.

ADD Rn

(RO) and the low-order
ACC. The 17th sum bit

conditions reflect the

Example

10 34 76
11 27 42
Al

AO

f An

The contents of Rn are

SET
SET
ADD

ADD

1 (Add)

;dded to the contents of the ACC
16 bits of the sum restored in
becomes the carry and other branch

final ACC contents.

RO, 7634 1Init RO (ACC)

R1, 4227 and R1.

R1 Add R1 (sum = BB8S5B,
carry clear)

RO Double ACC (RO) to 70B6

with carry set,

SUB Rn

Bn (Subtract)

The contents of Rn are subtracted from the ACC contents

by performing a two's complement addition:

ACC ACC + Rn + 1

The low order 16 bits of the subtraction are restored

in the ACC. The 17th sum bit becomes the carry and other
branch conditions reflect the final ACC contents, If

the 16-bit unsigned ACC contents are greater than or
equal to the 16-bit unsigned Rn contents then the

carry is set, otherwise it is cleared. Rn is not disturbed.

Example

10 34 76 SET RO, 7634 1Init RO (ACC)

11 27 42 SET R1l, 4227 and R1,

Al SUB R1 Subtract Rl (diff =

340D with carry set)
A0 SUB RO Clears ACC (RO)

POPD @Rn

| "
l Cn
Rn is decremented by 1 and the high-order ACC byte is

(POP Double-byte indirect)

loaded from the memory location whose address now resides
in Rn. Then Rn is again decremented by 1 and the low-order
ACC byte is loaded from the corresponding memory location,
Branch conditions reflect the final ACC contents. The
carry is cleared. Because Rn is decremented prior to
loading each of the ACC halves, double-byte stacks

may be implemented with the STD @Rn and POPD @Rn ops

(Rn is the stack pointer).

Example

15 34 A0 SET R5, A034 Init stack pointer.

10 12 AA SET RO, AA12 Load AA12 into ACC,
75 STD @RS Push AA12 onto stack.

10 34 BB SET RO, BB34 Load BB34 into ACC.
75 STD @RS Push BB34 onto stack,

10 56 CC SET RO, CC56 Load CC56 into ACC.
C5 POPD @R5 Pop CC56 off stack.

C5 POPD @RS . Pop BB34 off stack.

C5 POPD @RS Pop AA12 off stack.

CPR Rn

Dn | (Compare)

The ACC (RO) contents are compared to Rn by performing

the 16-bit binary subtraction ACC-Rn and storing the low

order 16 difference bits in R13 for subsequent branch

tests.

1f the 16-bit unsigned ACC contents are greater

than or equal to the 16-bit unsigned Rn contents then

the carry is set,

registers,

Example

15
16
10
75
25
D6
02

34 AO
BF AO
00 00

F8

LOOP

otherwise it is cleared. No other

including ACC and Rn, are disturbed.

SET R5, A034 Pointer to memory.
SET R6, AOBF Limit address.

SET RO, O Zero data.

STD @R5 Clear 2 locs, incr R5 by 2.
LD RS Compare pointer RS

CPR R6 to 1imit R6.

BNC LOOP Loop if carry clear,

S e AL T PR TN RS | D) B i SRS e e A T L R

=i |
INR Rn En | (Increment)

The contents of Rn are incremented by 1. The carry is

cleared and other branch conditions reflect the incre-

¥ mented value.
Example
-~
15 34 A0 SET RS, A034 Init R5 (pointer)
10 00 00 SET RO, O Zero to RO.
55 ST @RS Clears loc A034 and incrs
R5 to A035,
ES INR RS Incr R5 to A036
55 ST @RS Clears loc A036 (not A035)
DCR Rn | Fn (Decrement)

The contents of Rn are decremented by 1. The carry is
cleared and other branch conditions reflect the decre-
mented value.

Example (Clear 9 bytes beginning at loc A034)

15 34 A0 SET R5, A034 1Init pointer,

14 09 00 SET R4, 9 Init count.

10 00 00 SET RO, O Zero ACC,

55 LOOP ST @RS Clear a mem byte,
F4 DCR R4 Decr. count,

07 FC BNZ LOOP Loop until zero.

RTN

BR ea

NON-REGISTER INSTRUCTIONS

[————

i 00 i (Return to 6502 mode)

L

Control is returned to the 6502 and program execution
continues at the location immediately following the RTN
instruction. The 6502 registers and status conditions
are restored to their original contents (prior entering

SWEET16 mode)

L 01| E:] (Branch Always)

An effective address (ea) is calculated by adding the
signed displacement byte (d) to the PC. The PC contains
the address of the instruction immediately following
the BR, or the address of the BR op plus 2. The
displacement is a signed twos complement value from
-128 to +127. Branch condifions are not changed. Note
that effective address calculation is identical to that
for 6502 relative branches. The hex add and subtract
features of the APPLE-II monitor may be used to calculate
displacements.
d = $80 ea = PC + 2 - 128
d = $81 ea = PC + 2 - 127

d = $FF ea. = PC + 2 =1
d = $00 ea =PC+2+0
d = $S01 ea =PC+2 +1

d = $7E ea = PC + 3 + 126
d = $§7F ea = PC + 2 + 127

Example
$300: 01 50 BR $352

BNC ea

BC ea

BP ea

BM ea

!

l 02 ld - (Branch if No Carry)
A branch to the effective address is taken only if the
carry is clear, otherwise execution resumes as normal

with the next instruction. Branch conditions are not

changed.

[651 fd : (Branch if Carry set)
A branch is effected only if the carry is sef. Branch

conditions are not changed.

(~‘64“ F; ".j (Branch if Plus)
A branch is effected only if the prior 'result' (or most
recently transferred data) was positive. Branch con-
ditions are not changed.

Example (Clear mem from loc. A034 to AO3F)

15 34 A0 SET R5, A034 1Init pointer.

14 3F A0 SET R4, AO3F Init limit.

10 00 00 LOOP SET RO, O

55 ST @RS Clear mem byte, incr RS.
24 LD R4 Compare limit to

D5 CPR RS pointer,

04 F8 BP LOOP Loop until done.

LM ’
05 ld i (Branch if Minus)

A branch is effected only if the prior 'result' was

minus (negative, MSB = 1). Branch conditions are not

changed.

— =
BZ ea { 06;; d : (Branch if Zero)

A branch is effected only if the prior 'result' was zero.

Branch conditions are not changed.

BNZ ea [oi] 'd CTJ (Branch if NonZero)
A branch is effected only if the prior 'result' was

non-zero. Branch conditions are not changed.

- =38
BM1 ea {_- 08, | d (Branch if Minus 1)

A branch is effected only if the prior 'result' was

minus 1 ($FFFF hex). Branch conditions are not changed.

BNM1 ea 09 'ad i (Branch if Not Minus 1)

A branch is effected only if the prior 'result' was not

minus 1 ($FFFF hex). Branch conditions are not changed.

BRK Ii 6;—1 (Break)

A 6502 BRK (break) instruction is executed. SWEET16
may be reentered nondestructively at SW16D after correcting

the stack pointer to its value prior executing the BRK,

BS

ea

(—Oémf (Return from SWEET16 Subroutine)
RS terminates execution of a SWEET16 subroutine and
returns to the SWEET16 calling program which resumes
execution (in SWEET16 mode). R12, which is the SWEET16
subroutine return stack pointer, is decremented twice,

Branch conditions are not changed.

A T,
r—koéw!ﬁé_J(Branch to SWEET16 Subroutine)
Ao aald Y
A branch to the effective address (PC + 2 + d) is taken
and execution is resumed in SWEET16 mode. The current
PC is pushed onto a 'SWEET16 subroutine return address'
stack whose pointer is R12, and R12 is incremented by

2. The carry is cleared and branch conditions set to

indicate the current ACC contents.

Example (Calling a 'memory move' subroutine to move
A034-A03B to 3000-3007)

300: 15 34 A0 SET R5, A034 Init pointer 1.

303: 14 3B AO SET R4, AO3B Init 1limit 1,

306: 16 00 30 SET R6, 3000 Init pointer 2,

309: 0OC 15 BS MOVE Call move subroutine.
320: 45 MOVE LD @RS Move one

321: 56 ST @R6 byte.

322: 24 LD R4

323: D4 CPR RS Test if done,

324: 04 FA BP MOVE Return.

RS

THEORY OF OPERATION

SWEET16 execution mode begins with a subroutine call to
SW16. The user must insure that the 6502 is in hex mode upon
entry. All 6502 registers are saved at this time, to be re-
stored when a SWEET16 RTN instruction returns control to the
6502. If you can tolerate indefinite 6502 register contents
upon exit, approximately 30 usec may be saved by entering at
SW16 + 3. Because this might cause an inadvertant switch from
hex to decimal mode, it is advisable to enter at Swié the first
time through.

After saving the 6502 registers, SWEET16 initializes
its PC (R15) with the subroutine return address off the 6502
stack. SWEET16's PC points to the location preceding the next
instruction to be executed. Following the subroutine call
are 1-, 2-, and 3-byte SWEET16 instructions, stored in ascending
memory locations like 6502 instructions. The main loop at SW16B
repeatedly calls the 'execute instruction' routine at SW16C
which examines one opcode for type and branches to the appro-
priate subroutine to execute it.

Subroutine SW16C increments the PC (R15) and fetches the
next opcode which is either a register op of the form OP REG
with OP between 1 and 15 or a non-register op of the form O OP
with OP between 0 and 13. Assuming a register op, the register
specification is doubled to account for the 2-byte SWEET16
registers and placed iq the X-Reg for indexing. Then the
instruction type is determined. Register ops place the doubled

register specification in the high order byte of R14 indicating

the 'prior result register' to subsequent branch instructions.
Non-register ops treat the register specification (right-hand
half-byte) as their opcode, increment the SWEET16 PC to point
at the displacement byte of branch instructions, load the A-Reg
with the 'prior result register' index for branch condition

testing, and clear the Y-Reg.

WHEN IS AN RTS REALLY A JSR?
Each instruction type has a corresponding subroutine.
The subroutine entry points are stored in a table which is
directly indexed into by the opcode. By assigning all the
entries to a common page only a single byte of address need
be stored per routine. The 6502 indirect jump might have been

used as follows to transfer control to the appropriate subroutine.

LDA #ADRH High-order address byte,
STA IND+1

LDA OPTBL,X Low-order byte.

STA IND

JMP (IND)

To save code the subroutine entry address (minus:1)
is pushed onto the stack, high-order byte first. A 6502 RTS
(ReTurn from Subroutine) is used to pop the address off the
stack and into the 6502 PC (after incrementing by 1). The
net result is that the desired subroutine is reached by executing

a subroutine return instruction!

OPCODE SUBROUTINES

The register op routines make use of the 6502 'zero
page indexed by X' and 'indexed by X indirect' addressing
modes to access the specified registers and indirect data,

The 'result' of most register ops is left in the specified
register and can be sensed by subsequent branch instructions
since the register specification is saved in the high-order

byte of R14. This specification is changed to indicate RO

(AcC) for ADD and SUB instructions and R13 for the CPR (compare)
instruction.

Normally the high-order R14 byte holds the 'prior
result register' index times 2 to account for the 2-byte
SWEET16 registers and thus the LSB is zero. If ADD, SUB, or
CPR instructions generate carries, then this index is incre-
mented, setting the LSB.

The SET instruction increments the PC twice, picking up
" data bytes in the specified register. In accordance with 6502
convention, the low-order data byte precedes the high-order
byte.

Most SWEET16 nonregister ops are relative branches.

The corresponding subroutines determine whether or not the
‘prior result' meets the specified branch condition and if so
update the SWEET16 PC by adding the displacement value (-128

to +127 bytes).

The RTN op restores the 6502 register contents, pops the
subroutine return stack and jumps indirect through the SWEET16
PC. This transfers control to the 6502 at the instruction im-
- mediately following the RTN instruction,
The BK op actually executes a 6502 break instruction (BRK),
) 4 transferring control to the interrupt handler.
Any number of subroutine levels may be implemented within
SWEET16 code via the BS (Branch to Subroutine) and RS (Return
from Subroutine) instructions. The user must initialize and
otherwise not disturb R12 if the SWEET16 subroutine capability
is used since it is utilized as the automatic subroutine return

stack pointer.

MEMORY ALLOCATION

The only storage that must be allocated for SWEET16 variables
are 32 consecutive locations in page zero for the BWEET16 regis-
ters, four locations to save the 6502 register contents, and
a few levels of the 6502 subroutine return address stack, If
you don't need to preserve the 6502 register contents, delete
the SAVE and RESTORE subroutines and the corresponding subroutine
calls. This will free the four page zero locations ASAV, XSAV,

YSAV, and PSAV.

USER MODIFICATIONS
You may wish to add some of your own instructions to this
implementation of SWEET16. If you use the unassigned opcodes
SOE and $0F, remember that SWEET16 treats these as 2-byte instruc-

tions. You may wish to handle the break instruction as a SWEET16

call, saving two bytes of code each time you transfer into SWEET16

mode. Or you may wish to use the SWEET16 BK (Break) op as a
'CHAROUT' call in the interrupt handler. You can perform absolute
jumps within SWEET16 by loading teh ACC (RO) with the address

you wish to jump to (minus 1) and executing a ST R15 instruction.

1:45 P. M., 10/3/197/

FRAERRR RS A RSB LR ERAERR

AFFLE-II FSEUUD
MAZHINE INTERFREMER

COFPYRIGHI 1977
AFPLE COMPUIER INC

ALL RIGHTS RESERVED

S, WIZNIAK

% o ok ok % %k Xk ¥ ¥ %
¥ Ok %k %k ok ok ok ok ok ok

13 FAFF B A SRR AR AL SR SR LS EFH®
14 TITLE "3SWLET14& INIERFRETFER"
15 ROL ErFZ 0
16 ROH EFZ s1
17 R14H EPZ 1D
18 R1SL EPZ « $1E
19 R1SH EFZ SI1F
= 20 S1&4FAG EQJ SF7
21 SAVE EQU 3FF4A
22 RESTORE EQU SFF3F
_ 23 ORG $F&29
F&237: 20 4A FF 24 SW16 JER SAVE FRESERVE £502 REG CONTENTS
FA3C: 53 25 PLA .
F&UD: 85 1E 26 STA R1SL INIT SWEET16 PC
FA8F: LG 27 FPLA FROM RETURN
I7670: 25 1F 23 STA RI1ISH ADDRESS
I"692: 20 98 F&6 29 SWI4E JSR SW14C INTERFRET ANU EXECUTE
F&2S: 4C 92 F& 30 JMP SW14B CNE SWEET16 INSTR.
F6983: E& 1E 21 SW14C INC RI1SL
. F&vA: Do 02 32 ENE SW14D INCR SWEET16 PC FOR FEICH
F6IC: E& 1F 33 INC RI1SH
F6%E: AZ? F7 34 SW16D LDA #3S146PAS
} 6A0: 43 35 FHA PLSH ON STACK FOR RTS
F&A1: AD OO 36 LDY #%0
FLAS: Bl 1E 37 LDA (RISL), Y FEICH INSTR
FAAS: 29 OF 38 ANL #3F MASK REG SPECIFICATION
FAAT: OA 39 ASL A ODOUBLE FOR 2-BYIE REG’S
F&6A3: AA 40 TAX 1 TO X-REG FOR INUDEXING
_ F&A?: 4A 41 LR A
FAAA: S1 1E 42 ECGR (R1SL).,Y NOW HAVE OPCODE
F&AC: FO OB 43 EE®@ TOER IF ZERDO THEN NON-REG OF
F&AC: 26 1D 44 STX R14H INUICATE"FRIOR RESULT REG”
a F&BO: S 45 LS -
rFb6B1: 4A 46 LSR A OFCODE#2Z TO LSB’S
FLB2: B 47 LSR A
" F6B3: A3 43 TAY TO Y-REG FOR INDEXING
‘. FAE4S: B? E1 F& 49 LDA OPTEL-2,Y LOW-0ORDER ADR BYTE
F6B7: o S0 PHA ONI0O STACK
F&BS: 60 S1 RTS GOUTO REG-0OP ROUTINE
P 6EZ: Eé6 1E S2 TOER INC RI1S5L
_ F&EB: Do 02 53 ENE TOBR2 INCR PC

R1SH

1:45 F. M.,
F&BF: ED
FAL2: 43
F&C3: AS
FALS: 4A
F&Ch: 60
FAC7:. &3
FHLE: &8
F&C9: 20
FecC: &C
F&CF: Bl
F6D1: 95
F&AD3: 38
I 404: Bl
F&Db: 95
F6D3: 93
F&D?: 38
F&UA: 45
F&DC: S5
FADE: 20
F6LEO: E&
Fol2: 60
F&6L3: 02
F&ok4: F%
F&ES: 04
F&EL: 9D
FGE7: oOD
F&ES: JE
FELES: 23
FLEA: AF
F6EB: 16
F&EC: B2
F&LD: 47
F&CE: B?
F&EF: Si
F&lFO: 2O
F&F1: 2F
F&F2: C2
F&F3: SB
Féel-4: D2
F&FS: 25
F&i"6: oD
F6ic7: &E
F6l3: 0S5
F&F9: 33
P &FA: ES
F&re: 70
FalIFC: 93
F&FD: 1E
I"6rE: E7
FbIFI": 65
F700: E7
Fs01: E7
F702: E7

+703:

10/371%97/

E4 Fé6

1D

IF FF
1E 00
1E
01

1E
00

1E
1E

-~
<~

1F

=S
Sé
57
S8
S9?
&0
&1
&2
&3
L4
&S

RTNZ

SEfZ

SET2
OPTEL
ERTEL

SET

ZWEET16 INIERFRETER

LDA
FHA
LDA
LER
RTS
FLA
PLA
JER
MR
LDA
STA
DEY
LDA
STA
TYA
SEC
ADC
STA
BCC
INC
RTS
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFE
DF 13
DFE
DFB
DFE
DFB
DFB
LFE
DFB
OFB
DFE
DFE
LFB
DFB
DFE
DFB
DFE
DFE
CFB
DFE
DFB
CFEe
OFB
DFB
DFB
EFL

ERTEL. X

R14H
A

RESTORE
(R1SL)
(R15L). Y
RCH, X

(R1SL), Y
ROL, X

R15L
R1SL
SEf2
R15H

SET-1
RTN-1
LD-1
BER-1
ST-1
ENC-1
LDAT-1
BEC-1
STAT-1
BF-1
LDDAT-1
EM-1
STODAT-1
BZ-1
FPOP-1
ENZ-1
STPAT-1
EM1-1
ADD-1
ENM1-1
SUB-1
EK-1
FOFD-1
RS-1
CRR=1
BES—-1
INR-1
NJL-1
DCR-1
NUL-1
NUL-1
NUL-1
SE1Z

PAGE: 2
LOW-ORDER ADR EBYTE
ONID STACK FOR NON-REG OF
“PRIOR RESULT REGY INLEX
FREFPARE CARRY FOR BC, ENC.
GOTO KRON-REG OF ROUIINL
FOF RETURN ADDRESS

RESTORE 4502 REG CONTEN1S
RETURN TO 6502 CODE VIA FC
HIGH-ORDER EYTE OF CONST

LOW-ORDER BY Mt OF CONSTANT |
Y-REG CONTAINS 1

ADD 2 TO PC

(1X)
(0)
(2X)
(1)
(3X)
(2)
(4X%)
(3)
(SX)
(4)
(&%)
(S)
(7X)
(6)
(3X) »
(7)
(9X)
(3)
(AX)
(%)
(EX)
(A)
(CX)
(B)
(DX)
()
(EX)
(D)
(FX)
(E)
(LUNUSED)
(F)
ALWAYS TAKEN

TwEET1E INIEAFRETER

1:45 P. M. . 107371977

F/05: ES 00 109 LD LOA ROL. X
110 EK EO #-1
F707 35 00 111 3TA ROL
F207: ES 01 112 LDA RCH, X
I"/0B: 25 01 113 ATA RCH
F/0D0: &0 114 RTS
F/OE: AS 00 11S ST LDA ROL
« F210: 5500 116 STA ROL, X
F712: AS 01 117 LDA ROH
F714: 35 01 112 STA ROH, X
F/1&: &0 119 RTS
» F717: AS 00 120 STAT LA ROL
F219: 21 00 121 STAT2 STA (ROL, X)
F/1B: AD 00 122 LDY #30
t 7/1D: =24 1D 123 STAT3 3TY R14H
F71F: F& 00 124 INR INC ROL, X
_F7221: DO 02 125 EMNE INKRZ
F723: F& 01 126 ING ROH, X
F72%: 40 127 INR2 RTS
k726 A1 00 28 LDAT LDA (ROL, X)
Fs28: 85 00 129 STA ROL
F/ZzA: AD 00 130 LOY #30
F/s2C: 34 01 131 3TY ROH
F72-: FO ED 132 EEQ STAT3
F/30: A0 00 133 FPOF LDY #S0
F732: FO 06 134 BEQ FOPZ
F/34: 20 66 F7 135 FOFD JSR DCR
Fs37: Al 00 136 LDA (ROL, X)
F73%. A2 137 TAY
F/3Q: 20 &6 F7 133 POFPZ JSR DCR
F73D: A1l 00 139 LDA (ROL, X)
F73F: &% 00 140 STA KOL
F741: =4 01 141 STY ROH
F/43: AD 00 142 FPOP3 LDY #30
F745: 24 1D 143 3TY RI14H
F747: &0 144 RTS
F248: 20 26 F7 145 LDDAT J3R LDAT
Fs/4B: Al 00 1586 LDA (ROL, X)
F/740: " 85 ‘01 147 STA ROH
F74F: 4C 1F F7 143 JMF INR
FsS2: 20 17 F/ 149 STUAT J3R STAT
F755: AS 01 150 LDA ROH
F/57: 31 00 151 STA (ROL. X)
F759: 4C 1F F7 152 JMP INR
F7SC: 20 66 F7 153 STFAT JSR DCR
® F7S5F: AS 00 154 LDA ROL
F761: 31 00 155 STA (ROL, X)
T F/63: A4C 43 F7 156 JMP POP2
« | 766: BS 00 57 DCR LDA ROL, X
F7623: DO 02 155 ENE DCR2
F76A: D& 01 159 DEC ROH, X
F/6C: D& 00 160 DCR2 DEC ROL, X
F74E: &0 161 RTS

F76F: A0 0O 162 suUB LDY #s0

FAGE: 3

MOVE RX TO RO

MOVE RO TO RX

STORE BYTE INUIRECT
INDICATE RO IS RESULT REG

INCR RX

LOAD INDIRECT (RX)
TO RO

ZERO HIGH-ORDER RO BYIE
ALWAYS TAKEN

HIGH DORDER BYTE = 0
ALWAYS TAKEN

DECR RX

FOFP HIGH-ORDER BYfE €RX
SAVE IN Y-REG

DECR RX

LOW-ORDER BY(E

TO RO

INUICATE RO AS LAST
RESULT REG

LOW BYFE TO RO, INCR RX :
HIGH-ORDER BYTE TO RO

INCR RX

STORE INUIRECT LOW-ORDCR
BYIE ANU INCR RX. THEN
STORE HIGH-ORDER BYTE
INCR RX ANL RETURN

DECR RX

STORE RO LOW BYFE @RX
INUDICATE RO AS LAST RSLT RE

DECR RX

RESULT TO RO

SWEET1& INISRFAREIER

1:45 P. M., 10/37197/ FAGE: 4
773 =8 163 CFR SEC NOTE Y-REG = 13#2 FOR LCFR
F772: AS 00 1£4 LA ROL
F/74: FS 00 165 SBC ROL. X
F/76: 7% €O 0O 146 STA FROL, Y RO-RX TO RY
1 779: A5 01 167 LODA RCH
F/7B: FS 01 1£3 SBC ROH, X
F/7D: %9 01 00 167 SUB2 STA RCH. Y
. F/80: 28 170 TYA LAST RESULT REG*2
F731: &% ©0 171 ADC #$0 CARRY TO LSB
F783: 85 1D 172 STA R14H
5 F785: 60 173 RTS
F736. RS 00 174 ADD LDA ROL
F23C: 795 00 175 ADC ROL, X
F72A: =S5 00 176 STA ROL ROFRX TO RO
F73C: AS 01 177 LDA FROH
F7SE: 75 01 172 ADC RCH: X
F?290: A0 00 179 LDY #s0 RO FOR RESULT
F792: FO L? 130 EEQ 3B2 FINISH ADD
F794: AS 1E 121 BS LDA RI15L NOTE X-REG IS 12x2!
I'796: 20 19 F7 132 JSR STAT2 FUSH LOW FPC BYIE VIA R12
F799: AS 1F 183 LDA RI1SH
F/9B: 20 19 F7 184 J5S STATZ2 PUSH HIGH-ORDER FC BYTE
F79E: 19 125 BR cLc
F7%F: BO OE 126 EBNC BCS BNC2 NO CARRY TEST
F7A1: Bl 1E 137 ER1 LDA (R15L).Y DISFLACEMENT BYIE
F/A3: 10 O1 138 EPL ERZ2
F7AS: =8 139 DEY
F/A6: 65 1E 190 EBRZ ADC R15L ADD TO FC
FIA3: 2% 1E 171 STA Ri1SL
F7RA 73 192 TYA
F/AB: &5 1F 193 ADC RI1SH
F7a0: 35 1F 174 STA RISH
F7AF: 60 195 BNCZ RTS
F7B0: BO EC 196 BC BCS ER
F/B2: 60 197 RTS
F7B3: OA 193 BP ASL A DOUELE RESULT-REG INDEX
F7E4: AA 199 TAX TO X-REG FOR INUEXING
F7ES5: BS 01 200 LDA ROH, X TEST FOR PLUS
F/B7: 10 EB 201 EPL ER1 ERANCH IF SO
F/B9: 4O 202 RTS
F7BA: OA 203 EM AL A DOUBLE RESULT-REG INLEX
F7EB: AA 204 TAX
F/BC: S 01 205 LDA RCH., X TEST FOR MINUJS
F7BE: 20 E1l 206 EMI ER1
> F/C0: 60 207 RTS
F72¢1: OA 202 BIZ ASL A DOUBLE RESULT-REG INUEX
I"/C2: AA 209 TAX
F/C3° BS 00 210 LDA ROL, X TEST FOR ZERO
. F7CS 15 01 211 ORA ROH, X (BOTH BY(ES)
F7C7: FO D3 212 EE@ ER1 ERANCH IF S0
F/C9: bO 213 RTS
F/CA: OA 214 ENZ ASL A DOUBLE RESULT-REG INDEX
F7CB: AA 215 TAX

F/CC: EBS 00 216 LDA ROL, X TEST FOR NONZERO

IWEST16 INI(EAFRETER

1:45 FP. M., 10/3/1%77 FAGE: $
F/CE 15 01 217 ORA RCOH, X (BOTH BY(ES)
F/00: DO LF 213 EHE ER1 ERANCH IF S0
F/D2: 60 219 RTS
F/03: CA 22 EM1 ASL A DOLBLE RESULT-REG INULEX
F/04: AA 221 TAX
F7uS: 55 00 222 LA ROL, X CHECK BOTH EYIES
I"707: 3% 01 223 ND ROH, X FOR $FF (MINUS 1)
F707%: 49 FF 2Z4 EOR #SFF
F/CB: FO C4 225 BEERQ ER1 ERANCH IF SO
F70D: &0 226 RTS
F/uc: 0A 227 BHM1 ASL A DOUELE RESULT-REG INUEX
FJ0F: A 228 TAX
t 7e0: ES 00 229 LCA ROL, X
F/E2: 35 01 230 ANL ROH, X CHK BOTH EY(ES FOR NO SFF
F74: &89 FF 231 ECR #3FF
FIeb: DO E% 232 ENE ER1 ERANCH IF NOT MINUS 1
. F72e8: &0 233 NUL RTS
F/E?: AZ 13 234 RS LDX #$13 12#2 FOR R12 AS STK PNIR
F7eE 20 &6 F7 235 JEZR DCR DECR STACK FOINTER
F7eE: Al 00 236 LDA (ROL, X) FOP HIGH REIURN ADR TO PC
Fr0: 85 IF 237 STA RI1SH
F7F2: 20 &6 F/ 238 <J5R DCR SAME FOR LOW-ORDER BYTE
F7FS: A1 00 239 LDA (ROL. X)
F72¢7: =S 1E 240 STA R1SL
F7F?: 60 241 RTS
FIFA: 4C C7 F& 242 RTN JMP RTNZ
+ ¥R HER#SUICESSFUL ASSEMELY: NO ERRORS

LRUSS-R=r ChIVCE:

ADD

OFTBL
FOr
PO2
Por3
POFD
RO!

ROL

H14H
R15H
R15L

RESTORE
RS
RIN
RTNZ
S16FAG
SAVE
SCT
SLT2
SEV1Z
ST
STAT
STATZ
STATS
ST1UAT
STPAT
suUB
B2
SWlé
CH16B
SH14C
16D

SWEE 1
F /26 0074
F7E0 00E3
F706 00?7
F7CA 00o7
F/03 0073
F79F 0021
F7aF 0126
F70E 007S
F/CA o071
F7G3 00SS
F7%E 0079
I-7A1 0201
F7A6 0133
F4LE4 0055
F774 0101
/€1 00S?
F771 0100
F766 0104
F76&C 0152
F71F 0102
rF72Z5 0125
F705 0073
F726 (s Tatiid
F743 oCcz6
F7E3 0103
FLES 0042
F730 0020
IF73A 01324
F743 0156
F/34 0073
0001(Z2) 00&S
0167
0000(Z) 0043
0132
0174
001D0(Z) CO44
O01F(Z) 0Q0Z3
001E 0026
0137
FF3F 00462
I 7E? 002%
F7FA 0077
F&L7 0242
Q0F7 00z4
I'F4A 00Z4
F703 0074
FAEZ 0073
I"6CF Q108
F70E 0030
F717 Q0z4
F71% 01352
71D 0132
F752 003
F75C 0092
F76F 0076
F77D 0130
F&2?
F&72 0C30
Fers 022
F&SE 0032

INTSRFREIER

C196
0206

0135

014z

(%)
"
»
L]

0105

0112
01463
0109
0140
0175
0GS7
0033
0031
01%0

0147
c124

0138

0152

0106

0113
0169
0111
0144
0176
0123
00sS4
0037
0191

0Z13

0107

0117
0177
0115
0151
0z10
01343
0074
0042
0240

0z25

0Z3S

0113
0178
0116
01354
0216
0172
0133
00S2

0232

0Z3Z3

0126
0200
0120
0153

0222

c193
0043

0131
0205
0121
0157
02272

0174
00&4

0141
0z11
0124
0140
0236

0237
0067

0147 0150 0159
0217 0223 0230
0123 0129 0136
0164 01465 01466
0Z3%

0071 0072 0181

=NieS

F&Be

FLEF

CODE R E'L.OMEEA P T OSN

PROGRAM

for the

APPLE-TI COMPUTER

S. Wozniak (WOZ)

November 14, 1977

APPLE-11 MACHINE CODE RELOCATION PROGRAM

Quite frequently I have encountered situations calling for
relocation of machine language (not BASIC) programs on my 6502~
based APPLE-II computer. Relocation means that the new version must
run properly from different memory locations than the original.
Because of the relative branch instruction, certain small 6502
programs need simply be moved and not altered. Others require only
minor hand modification, which is simplified on the APPLE-II by the
built-in disassembler which pinpoints absolute memory reference

instructions such as JMPs and JSRs. However, most of the situations

which I have encountered involved rather lengthy programs containing

For example, I' once

multiple data segments interspersed with code.

spent over an hour to hand-relocate the 8K byte APPLE8II monitor and

BASIC to run from RAM addresses and at least one error probably

went by undetected. That relocation can now be accomplished in a

couple minutes using the relocation program described herein.

The following situations call for program relocation:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Two programs which were written to run in identical

locations must now reside and run in memory concurrently.

A program currently runs from ROM. 1In order to modify
its operation experimentally, a version must be genera-

ted which runs from RAM (different addresses).

A program currently running in RAM must be converted to

run from EPROM or ROM addresses.

A program currently running on a 16K machine must be
relocated in order to run on a 4K machine. Furthermore,
the relocation may have to be performed on the smaller

machine.

Due to memory mapping differences, a program running on
an APPLE-1 (or other 6502 based) computer falls into

unusable address space on an APPLE-II (or other) computer.

Due to operating system variable assignment differences
either the page-zero or non-page-zero variable allocation
for a specific program may have to be modified when moving

the program from one make of computer to another.

A program exists as several chunks strewn about memory

which must be combined in a single, contiguous block.

page 3

(8) A program has outgrown the available memory space and

must be relocated to a larger 'free' space.

(9) A program insertion or deletion requires a chunk of the

» program to move a few bytes up or down.

(10) On a whim, the user wishes to move a program,

PROGRAM MODEL

It is easy to visualize relocation as taking a program which
resides and runs in a 'source block' of memory and creating a
modified version in a 'destination block' which runs properly.

This model dictates that the relocation must be performed in an
environment in which the program may in fact reside in both blocks.
In many cases, the relocation is being performed because this is
impossible. For example, a program written to begin at location
$400 on an APPLE-I ($ stands for hex) falls in the APPLE-II screen

memory range. It must be loaded elsewhere on the APPLE-II prior

to relocation.

A more versatile program model is as follows. A program or
section of a program runs in a memory range termed the 'source block'
and resides in a range termed the 'source segments'. Thus a program
written to run at location $400 may reside at location $800. The
program is to be relocated so that it will run in a range termed
the 'destination block' although it will reside in a range termed
'destination segments' (not necessarily the same). Thus a program
may be relocated such that it will run from location $D000 (a ROM
address) yet reside beginning at location $CO00 prior to being saved
on tape or used to burn EPROMs (obviously, the relocated program
cannot immediately reside at locations reserved for ROM). In some

cases the source and destination segments may overlap,

page 5
BLOCKS AND SEGMENTS EXAMPLE
LS
Location during
s __Relocation
$800 ————>—
Program runs from
location $400 _
on APPLE-1
$B87 —m >
Relocation
$CO0 —————— =
Relocated version
runs from
location $DO0O
on APPLE-II
SF87——————>—
?
SOURCE BLOCK: $400-$787 DEST BLOCK: $D000-$D387

SOURCE SEGMENTS: $800-SB87 DEST SEGMENTS: $C00-$F87

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

THE RELOCATION ALGORITHM

Set SOURCE PTR to beginning of source segment and DEST PTR

to begiﬁning of destination segment.

Copy 3 bytes from source segment (using SOURCE PTR) to temp

INST area.
Determine instruciton length from opcode (1, 2, or 3 byte),

If two byte instruction with non-zero-page addressing mode

(immediate or relative) then go to (7).

1f two byte instruction then clear 3rd byte so address field

is 0-255 (zero page).

1f address field (2nd and 3rd bytes of INST area) falls within

source block, then substitute

ADR - SOURCE BLOCK BEGIN + DEST BLOCK BEGIN

Move 'length' bytes from INST area to dest segment (using

DEST PTR). Update SOURCE and DEST PTRs by length.

If SOURCE PTR is less than or equal to SOURCE SEGMENT END

then goto (2), else done.

DATA SEGMENTS

The problem with relocating a large program all at once is that
data (tables, text, etc.) may be interspersed throughout the code.,

Thus data may be 'relocated' as though it were code or might cause

3
some code not to be relocated due to boundary uncertainty introduced
when the data takes on the multi-byte attribute of code. This problem
is circumvented by considering the 'source segments' and 'destination
segments' sections to contain both code and data segments.

CODE AND DATA SEGMENTS EXAMPLE
$800 —| Code Segment
$800-$892
Data Segment
$893-$992
Code Segment
$993-$ABF
Data Segment
$ACO-SACF
Code Segment
SBER7———0= $ACF-$B87

L)

The source code segments are relocated to the 'destination segments'

* area and the source data segments are moved. Note that several commands

will be necessary to accomplish the complete relocation.

USAGE

Load RELOC by hand or off tape into memory locations $3A6-$3FA,
Note that locations $3FB-$3FF are not disturbed by tape load
versions to insure that the APPLE-II interrupt vectors are not
clobbered. The monitor user function yC (Control-Y) will now

call RELOC as a subroutine at location $3F8.

Load the source program into the 'source segments' area of memory
if it is not already there. Note that this'peed not be where

the program normally runs.

Specify the source and déstination block parameters, remembering
that the blocks are the locations that the program normally

runs from, not the locations occupied by the source and destination
segments during the relocation. 1f only a portion of a program

is to be relocated then that portion alone is specified as the

block.
* DEST BLOCK BEG < SOURCE BLOCK BEG . END YC *

Note that the syntax of this command closely resembles that of
the MONITOR 'MOVE' command. The initial '*' is generated by

the MONITOR, not typed by the user.

T T - W T F L WRYE e O T T A O e T s e e s o

page 9

4. Move all data segments and relocate all code segments in sequential

(increasing address) order.

First Segment (if CODE)

* DEST SEGMENT BEG < SOURCE SEGMENT BEG . END yC

First Segment (if DATA)

* DEST SEGMENT BEG < SOURCE SEGMENT BEG . END M

Subsequent segments (if CODE)

+ . SOURCE SEGMENT END YC (Relocation)

Subsequent segments (if DATA)

* . SOURCE SEGMENT END M (Move)

Note that it is wise to prepare a list of segments (code and data)

prior to relocation.

If the relocation is performed 'in place' (SOURCE and DEST
SEGMENTS reside in identical locations) then the SOURCE SEGMENT
BEG parameter may be ommitted from the first segment relocate

(or move).

page 10

EXAMPLES

1. Straightforward Relocation

Program A resides and runs in locations $800-$97F., The relo-

cated version will reside and run in locations $A00-$B7F.

SOURCE SEGMENTS DEST SEGMENTS
EF ——
$800 CODE SAQD—> CODE
$800-$88F $A00-$A8F
DATA DATA
$890-$8AF $AS0-$AAF
CODE CODE
$8B0O-S90F $ABO-S$SBOF
DATA DATA
$910-$93F $B10-$B3F
CODE CODE
$O7F+»| $940-$97F $B7F ——| $B40-$B7F
SOURCE BLOCK $800-$97F DEST BLOCK $A00-$B7F
SOURCE SEGMENTS $800-$97F DEST SEGMENTS $A00-$B7F

(a) Load RELOC
" (b) Define blocks
* A00 < 800 . 97F YC *
. (c) Relocate first segment (code).

* A00 < 800 . 88F YC

L

(d) Move and relocate subsequent segments in order.

* . BAF M (data)
* . 90F YC (code)
* _ 93F M (data)
* . 97F YC (code)

Note that step (d) illustrates abbreviated versions of

the following commands:
* A90 < 890
* ABO < 8BO
* B10 < 910

* B40 < 940

8AF M
90F YC
93F M
97F YC

(data)
(code)
(data)
(code)

2. 1Index into block

Assume that the program of example 1 uses an indexed reference

into the data segment at $890 as follows:
ILDA 7BO,X

The X-REG is presumed to contain SE0O-$FF. Because $7BO is

outside the source block, it will not be relocated, This may

be handled in one of two ways.

(a) The exception is fixed by hand, or

(b) The block specifications begin one page lower than the
addresses at which the original and relocated programs
begin to account for all such 'early regerences'. In
step (b) of example (1) change to:

+ 900 < 700 . 97F YC *

Note that program references to the 'prior page' (in this
case the $7XX page) which are not intended to be relocated

will be.

page 13

3. Immediate Address References

Assume that the program of example (1) has an immediate ref-

erence which is an address. For example,

LDA #$3F
STA LOCO
LDA #308
STA LOC1
JMP (LOCO)

In this example, the LDA #$08 will not be changed during relocation

and the user will have to hand-modify it to $0A.

4. User function‘(YC) programs

Relocating programs such as RELOC introduces another irregularity.
Because RELOC uses the MONITOR user function command (YC)

its entry point must remain fixed at $3F8. The rest of RELOC

may be relocated anywhere in memory (which is trivial since

RELOC contains no absolute memory references other than the

JMP at $3F8). The user must leave the JMP at $3F8 undisturbed

or find some way other than YC to pass parameters.

page 14
5. Unusable block ranges
» A program was written to run from locations $400-$78F on an
APPLE-I. A version which will run in ROM locations $D000-$D38F
Y must be generated. The source (and destination) segments may
reside in locations $800-$B8F on the APPLE-II where relocation
is performed.
SEGMENTS, SOURCE AND DEST
Locations
during
relocation
2 s SRR)
$800 ———» CODE Runs from locations
$800-$97F $400-$78F on APPLE-I
but must be relocated
DATA . to run from locations
$980-$9FF $D000-$D38F on the
APPLE-II.
CODE
$B8F —»= | SA00-$B8F
-
SOURCE BLOCK $400-$78F DEST BLOCK $D000-$D38F
SOURCE SEGMENTS $800-$BS8F DEST SEGMENTS $800-$B8F
(a) Load RELOC
@ (b) Load original program into locations $800-$B8F (despite the
fact that it doesn't run there).
- (¢c) Specify block parameters (i.e. where the original and
relocated versions will run)
* D000 < 400 . 78F YC *

page 15

(d) Move and relocate all segments in order,

* 800 < 800
*

*

9FF M

B8F YC

97F Y€ (first segment, code)
(data)

(code)

Note that because the relocation is done 'in place' the

SOURCE SEGMENT BEG parameter is the same as the DEST SEGMENT

BEG parameter ($800) and need not be specified. The initial

segment relocation command may be abbreviated as follows:

* 800 <. 97F YC

The program of example (1) need not be relocated but the page

zero variable allocation is from $30 to $3F. Because these

locations are reserved for the APPLE-II system monitor, the

allocation must be changed to locations $80-$8F. The source

and destination blocks are thus not the program but rather

the variable area.

SOURCE BLOCK $20-$2F
SOURCE SEGMENTS $800-$97F

(a) Load RELOC

(b) Define blocks

* 80 < 20.2F YC *

DEST BLOCK $80-$8F

DEST SEGMENTS $800-$97F

(c) Relocate code segments and move data segments in place.

+ 800 <.88F YC (code)

.

*

8AF M
gor YC
93F M

97F YC

(data)
(code)
(data)

(code)

page 16

Split blocks with cross-referencing

Program A resides and runs in locations $800-$8A6. Program B
resides and runs in locations $900-$9F1. A single, contiguous
program is to be generated by moving program B so that it
immediately follows program A. Each of the programs contains
memory references within the other. It is assumed that the

programs contain no data segments.

SOURCE SEGMENTS DEST SEGMENTS
$800 ————[Program A $800 —>—|Program A
$800-$8A6 $800-$8A6
$8A6 —— $8A6 ——
$8AT —>
Unused
Program B
$900 ——
Program B
$9F1 ————| $900-$9F1

SOURCE BLOCK $900-$9F1 DEST BLOCK $8A7-$998
SOURCE SEGMENTS $800-$8A6 (A) DEST SEGMENTS $800-$8A6 (A)
$900-$9F1 (B) $8A7-3998 (B)

(a) Load RELOC

(b) Define blocks (program B only)

* 8A7 < 900 . 9F1 YC =

(c) Relocate each of the two programs'individually.

must be relocated even though it does not move.

* 800 <. B8A6 yC (program A, 'in place')

5 « 8A6 < 900 . 9F1 YC (program B, not 'in place')
Note that any data segments within the two programs would
necessitate additional relocation and move commands.

8. Code deletion.
4 bytes of code are to be removed from within a program and the
program is to contract accordingly.
SOURCE SEGMENTS DEST SEGMENTS
$800———[CODE | $800 —— CODE
$800-$88F \ $800-$88F
DATA DATA
$890-$8AF $890-$8AF
Remove 4 CODE CODE
bytes here $8B0-$90F $8B0-$90B
($8C0-$8C3)
DATA DATA
$910-$93F $90C-$93B
1 CODE CODE
S97F —— | $940-$97F $97B ——| $93C-$97B
3 SOURCE BLOCK $8C4-$97F DEST BLOCK $8C0-$97B
SOURCE SEGMENTS $800-$88F (code) DEST SEGMENTS $800-$88F
$890-$8AF (data) $890-$8AF
$8B0-$8BF (code) $8B0-$8BF
$8C4-$90F (code) $8C0-$90B
$910-893F (data) $90C-$93B
$940-$97F (code) $93C-$97B

page 17

Program A

(code)
(data)
(code)
(code)
(data)
(code)

(a) Load RELOC

(b) Define blocks
* 8CO < 8C4 , 97F YC *
(c) Relocate code segments and move data segments in ascending
address sequence.

* 800 <. 88F YC (code, 'in place')

* . BAF M (data)
* . 8BF YC (code)
(o

* 8CO < 8C4 . 90F Y (code, not 'in place')
* . 93F M (data)

97F YC (code)

Relative branches crossing the deletion boundary will be

incorrect since the relocation process does not modify them

(only zero-page and absolute memory references). The user

must patch these by hand.

page 19

9. Relocating the APPLE-II monitor ($F800-$FFFF) to run in RAM

($800-GFFF)

SOURCE BLOCK $F700-$FFFF DEST BLOCK $700-$FFF
(see example (2))

f SOURCE SEGMENTS $F800-$F961 (code) DEST SEGMENTS $800-$961 (code)
$F962-$FA42 (data) $962-$A42 (data)
$FA43-$FB18 (code) $A43-B18 (code)
$FB19-$FB1D (data) $B19-$B1D (data)
$FB1E-$FFCB (code) $B1E-$FCB (code)
$FFCC-$FFFF (data) $FCC-$FFF (data)

IMMEDIATE ADDRESS REFS (see example (3))
$FFBF
$FEAS8
(more if not relocating to page boundary)
(a) Load RELOC
(b) Block parameters
* 700 < F700 . FFFF YC *
(c) Segments
5
* 800 < F800 . F961 YC (first segment, code)
" * . FAA2 M (data)
* . FB18 YC (code)
* . FB1D M (data)
+ . FFCB YC (code)

% .. FFPF M (data)

(¢) Immediate address references

* FBF : E (was $FE)

* EA8 : E (was $FE)

page 21

OTHER 6502 SYSTEMS

The following details illustrate features specific to the APPLE-II
which are used by RELOC. If adapted to other systems, the convenient
and flexible parameter passing capability of the APPLE-II monitor

may be sacrificed.

1. The APPLE-II monitor command
2By < Ay . Ag ¥C (A1, Ap, and A4 are addresses)
vectors to location $3F8 with the value Ay in locations $3C (low:
and $3D (high), A2 in locations $3E (low) and $3F (high),
and A4 in locations $42 (low) and $43 (high). Location
$34 (YSAV) holds an index to the next character of the command
buffer (after the YC). The command buffer (IN) begins

at $200.

2. 1f YC is followed by an '*' then the block parameters are

simply preserved as follows:

Parameter Preserved at SWEET16 Reg Name
DEST BLOCK BEG $8, $9 TOBEG
SOURCE BLOCK BEG $2, $3 . FRMBEG
: SOURCE BLOCK END $4, 85 FRMEND

3. 1If YC is not followed by and '*' then a segment relocation is
initiated at RELOC2 ($3BB). Throughout, Al ($3C, $3D) is the
source segment pointer and A4 ($42, $43) is the destination

segment pointer.

4.

page 22

INSDS2 is an APPLE-II monitor subroutine which determines the
length of a 6502 instruction in the variable LENGTH (location $2F)

given the opcode in the A-REG.

Instruction type LENGTH
Invalid 0
1 byte 0
2 byte 1
3 byte 2

The code from XLATE to SW16RT ($3D9-$3E6) uses the APPLE-II
16-bit interpretive machine, SWEET16. The target address of
the 6502 instruction being relocated (locations $C low and
$D high) occupies the SWEET16 register named ADR. If ADR is
between FRMBEG and FRMEND (inclusive) then it is replaced by

ADR - FRMBEG + TOBEG.

NXTA4 is and APPLE-II monitor subroutine which increments Al
(source segment index) and A4 (destination segment index).
1f Al exceeds A2 (source segment end) then the carry is set,

otherwise it is cleared.

(4]

4:36 P.M., 11/10/1977
1

6502 RELOCATION SUBROUTINE

TITLE

'6502 RELOCATION SUBROUTINE'

RAFRX AR R AR X AR AR A AR A A A Ak R &

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6

p &

502 RELOCATION
SUEROUTINE

DEFINE BLOCKS
*A4<Al.A2 Y
("Y IS CRTL-Y)

FIRST SEG
*A4<A1.A2 Y
(IF CODE)

*A4<A1.A2 M
(IF MOVE)

SUBSEQUENT SEGS

* A2 Y OR *.A2 M

woz 11-10-77

APPLE COMPUTER INC.

Ak kR hkhr Ak Ar R A A ARk kb k&

PAGE

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PAGE:

1

RELOCATION SUBR EQUATES

4:36 P.M., 11/10/1977 PAGE: 2
26 SUBTTL RELOCATICON SUBR EQUATES
27 RIL EPZ §2 SWEET16 REG 1,
28 INST EPZ §$B 3-BYTE INST FIELD.
29 LENGTH EPZ §$2F LENGTH CODE.
30 YSAV EPZ §34 CMND BUF POINTER.
31 AlL EPZ $3C APPLE-II MON PARAM AREA.
32 A4L EPZ $42 APPLE-II MON PARAM REG 4.
” B IN EQU $200 MON CMND BUF.
34 SW16 EQU S$F689 SWEET16 ENTRY.
35 INSDS2 EQU SF8BE DISASSEMBLER ENTRY.
36 NXTA4 EQU S$FCB4 POINTER INCR SUBR.
» 37 FRMBEG EPZ $1 SOURCE BLOCK BEGIN.
38 FRMEND EPZ §2 SOURCE BLOCK END.
39 TOBEG EPZ $4 DEST BLOCK BEGIN.
40 ADR EPZ $6 ADR PART OF INST.
41 PAGE

6502 RELOCATION SUBROUTINE

4:36 P.M., 11/10/1977 PAGE: 3
42 SUBTTL 6502 RELOCATION SUBROUTINE
43 ORG $3A6
03A6: A4 34 44 RELOC LDY YSAV CMND BUF POINTER.
03A8: B9 00 02 45 LDA IN,Y NEXT CMND CHAR.
03aB: C9 AA 46 CMP #SAA Ll
03aD: DO 0C 47 BNE RELOC2 NO, RELOC CODE SEG.
03AF: E6 34 48 INC YSAV ADVANCE POINTER.
03B1l: A2 07 49 LDX §8$7
03B3: B5 3C 50 INIT LDA AlL,X MOVE BLOCK PARAMS
03B5: 95 02 51 STA RI1L,X FROM APPLE-II MON
03B7: CA 52 DEX AREA TO SW16 AREA.
0388: 10 F9 53 BPL INIT R1=SOURCE BEG, R2=
03BA: 60 54 RTS SOURCE END, R4=DEST BEG.
038B: A0 02 55 RELOC2 LDY #52
03BD: Bl 3C 56 GETINS LDA (AlL),Y COPY 3 BYTES TO
03BF: 99 0B 00 57 STA INST,Y SW16 AREA.
03Cc2: 88 58 DEY
03Cc3: 10 F8 59 BPL GETINS
03C5: 20 8E F8 60 JSR INSDS2 CALCULATE LENGTH OF
03C8: A6 2F 61 LDX LENGTH INST FROM OPCODE.
03CA: CA 62 DEX 0=1 BYTE, 1=2 BYTE,
03CcB: DO 0OC 63 BNE XLATE 2=3 BYTE.
03CD: A5 0B 64 LDA INST
03CF: 29 0D 65 AND #SD WEED OUT NON-ZERO-PAGE
03D1: FO 14 66 BEQ STINST 2 BYTE INSTS (IMM).
03D3: 29 08 67 AND S8 IF ZERO PAGE ADR
03D5: DO 10 68 BNE STINST THEN CLEAR HIGH BYTE.
03p7: 85 0D 69 STA INST+2
03D9: 20 89 F6 70 XLATE JSR SW16 IF ADR OF ZERO PAGE l
03pC: 22 71 LD FRMEND OR ABS IS IN SOURCE
03pD: D6 72 CPR ADR (FRM) BLOCK THEN
03DE: 02 06 73 BNC SWI16RT SUBSTITUTE ADR~
03E0: 26 74 LD ADR SOURCE BEG+DEST BEG.
03El: Bl 75 SUB FRMBEG
03E2: 02 02 76 BNC SWI16RT
03E4: A4 (] ADD TOBEG
03E5: 36 78 ST ADR
03E6: 00 79 SW16RT RTN
03E7: A2 00 80 STINST LDX #S50
03E9: B5 0B 81 STINS2 LDA INST,X
03EB: 91 42 82 STA (A4L),Y COPY LENGTH BYTES
03ED: EB 83 INX OF INST FROM
O3EE: 20 B4 FC 84 JSR NXTA4 SW16 AREA TO
03F1: C6 2F 85 DEC LENGTH DEST SEGMENT. UPDATE
03F3: 10 F4 86 BPL STINS2 SOURCE, DEST SEGMENT
03F5: 90 C4 87 BCC RELOC2 POINTERS. LOOP IF NOT
03F7: 60 88 RTS BEYOND SOURCE SEG END.
89 ORG $3F8
03F8: 4C A6 03 90 USRLOC JMP RELOC ENTRY FROM MONITOR.

x***SUCCESSFUL ASSEMBLY: NO ERRORS

CROSS-REFERNCE: 6502 RELOCATION SUBROUTINE
AlL 003C 0050 0056

A4L 0042 0082
ADR 0006 0072 0074 0078
FRMBEG 0001 0075
FRMEND 0002 0071
GETINS 03BD 0059

IN 0200 0045
INIT 03B3 0053
’ INSDS 2 FBBE 0060
INST 000B 0057 0064 0069 0081
LENGTH 002F 0061 0085
NXTA4 FCB4 0084
» RIL 0002 0051
RELOC 03A6 0090

RELOC2 03BB 0047 0087
STINS2 03E9 0086
STINST 03E7 0066 0068

SW16 F689 0070
SWI16RT 03E6 0073 0076
TOBEG 0004 0077
USRLOC 03F8

XLATE 03D9 0063

YSAV 0034 0044 0048

FILE:

RENUMBERING

BASIC

AND APPENDING

PROGRAMS

on the

APPLE-TII

COMPUTER

S. Wozniak (WOZ)

November 15, 1977

page 1

RENUMBERING AND APPENDING APPLE-II BASIC PROGRAMS

The answer to the question "what do 5, 11, 36, 150, 201, and 588
have in common?' is given as "adjacent rooms in the Warsaw Hilton'"y
but might just as well be "adjacent line numbers in my last BASIC
program.'" The laws of entropy insure that the line numbers of a
debugged and operational BASIC program give the appearance of having
been selected by a KENO machine.* Many a time I have spent an extra
hour to retype a finished program while spacing the line numbers

evenly just to make it 'look good'.

Another difficulty which I have experienced is joining two
BASIC programs into a single, larger one. This 'append' operation
is easier to accomplish by hand than renumbering. The sophistocated
user can examine the BASIC memory map and perform some manual mani-
pulations to join the programs providing that the line numbers do
not overlap. Still, the manual append operation is highly prone

to error.

1 The Official Polish/Italian Joke Book, L. Wilde, Pinnacle Books,
New York, N.Y., 1973, p. 17

* In fact, while several texts detail how the boundary conditions
of a KENO game lead to predictable outcomes, finished programs
seldom exhibit this property.

page 2

The APPLE-I1I BASIC user now has a solution to these needs in

the form of a hand- or tape-loadable program, RENUM/APPEND, described
herein. The CALL command is used to activate one of three machine
level programs. The renumber operation (RENUM) requires user speci-
fication of the original line number range over which renumbering
is to occur, the new initial line number to be applied to the range,
and the new line number increment to use. ' The example below specifies
that lines 200 to 340 be renumbered starting with 100 and spaced
by 10's.

RANGE BEGIN 200

RANGE END 340

NEW BEGIN 100

NEW INCREMENT 10

A second RENUM entry renumbers the entire program, relieving
the user of the need to specify the range begin and end parameters.
The append operation (APPEND) reads the second user (BASIC) program

off tape with the first in memory.

Renumber and append error conditions (memory full and line number
overlap) are detected just as in BASIC. In case of error the user

is notified and no program alteration occurs.

4.

Load RENUM/A

Note that th

inadvertant

USING RENUM/APPEND

PPEND (* 300.3D4 R)

e high-order bytes of page 3 are not loaded, preventing

alteration of the interrupt and user function (YC)

vectors. The '*' is generated by the MONITOR, not the user,

Load a BASIC

To renumber
POKE 2,
POKE 3,

POKE 4,
POKE 5,

CALL 768

Note: START

program.

entire program:
START L User must supply low and high bytes
START H of newﬁSTARTing line number.

INCR L User must supply low and high bytes
INCR H of new line number INCRement,

(does not alter locations 2-5)

L is equivalent to START MOD 256

START H is equivalent to START /| 256

To renumber

POKE
POKE

(S)

POKE
POKE

POKE
POKE

POKE
POKE

© 0o R [S00 -

CALL 776

a range of the program
START L
START H

INCR L
INCR H

RANGE START L User must supply low and high bytes
RANGE START H of renumber range starting line number.

RANGE END L User must supply low and high bytes
RANGE END H of renumber range ending line number,

(does not alter locations 2-9)

page 4

5. To append program #2 (larger line numbers) to program #1

. (smaller line numbers):

(a) Load program #2

(b) CALL 956
Be sure you are running the tape of program #1 as this
command will load it.

(c¢c) If you get a memory full error then use the command

CALL 973 to recover the original program.

page 5

ERRORS

1f not enough free memory exists to contain the line number

table during pass 1 of RENUM then the message '(beep) *** MEM FULL ERR'
is displayed and no renumbering occurs. The same message is

displayed if not enough free memory exists to hold the product

of an APPEND. In the case of APPEND, the user will have to type

the BASIC command CALL 973 to recover his original program.

The user can free additional memory by eliminating all active

BASIC variables with the CLR command.

If renumbering results in a line number overlap (detected during
pass 1 of RENUM) then the message '(beep) *** RANGE ERR' is
displayed and no renumbering occurs. This error may mean that

one or more parameters were not specified or were incorrectly

specified.

CAUTIONS

When appending a program, always load the one with greater

line numbers first.

The user must be aware that branch target expressions may not
be renumbered. For example, the statement GO TO ALPHA will
not be modified by RENUM. The statement GO TO 100 + ALPHA

will be modified only to reflect the new line number assigned

to the old line 100.

APPLE-II BASIC STRUCTURE

An understanding of the internal representation of a BASIC
program is necessary in order to develope RENUMBER and APPEND
algorithms. Figure 1 illustrates the significant pointers for a
program in memory. Variable and symbol table assignment begins gt
the location whose address is contained in the pointer LOMEM ($4A
and $4B where '$' stands for hex). This is $800 (2048) on the
APPLE-II unless changed by the user with the LOMEM: command.

A second pointer, PV (Variable Pointer, at $CC and $CD) contains

the address of the location immediately following the last location
allocated to variables. PV is equal to LOMEM if no variables are
actively assigned as is the case after a NEW, CLR, or LOMEM: command.

As variables are assigned, PV increases.

The BASIC program is stored beginning with the lowest numbered
line at the location whose address is contained in the pointer PP
(Program Pointer, at $CA and $CB). The pointer HIMEM ($4C and $4D)
contains the address of the location immediately following the
last byte of the last line of the program. This is normally the top
of memory unless changed by the user with the HIMEM: command,

As the program grows, PP decreases. PP is equal to HIMEM if there
is no program in memory. Adequate checks in the BASIC insure that

PV never exceeds PP, This in essence says that variables and program

are not permitted to overlap.

page 7

Lines of a BASIC program are not stored as they were originally
entered (in ASCII) on the APPLE-I11 due to a pre-translation stage.
Internally each line begins with a length byte which may serve as
a 1link to the next line. The length byte is immediately followed
by a two-byte line number stored in binary, low-order byte first.
Line numbers range from O to 32767. The line number is followed
by 'items' of various types, the final of which is an 'end-of-line'

token ($01). Refer to figure 2.

Single bytes of value less than $80 (128) are 'tokens' generated
by the translator. Each token stands for a fixed unit of text as
required by the syntax of the language BASIC. Some stand for keywords -
such as PRINT or THEN while others stand for punctuation or operators

suchi'as: ! ;lor. ',

Integer constants are stored as three consecutive bytes. The
first contains $BO-$B9 (ASCII '0'-'9') signifying that the next
two contain a binary constant stored low-order byte first. The line
number itself is not preceeded by $BO-$B9. All constants are
in this form including line number references such as 500 in the
statement GO TO 500. Constants are always followed by a token.
Although one or both bytes of a constant may be positive (less

than $80) they are not tokens.

page 8

Variable names are stored as consecutive ASCII characters with
the high order bit set. The first character is between $C1 and $DA
(ASCII 'A'-'Z'), distinguishing names from constants. All names
are terminated by a token which is recognizable by a clear high-order

bit. The 'S' in string names such as A$ is treated as a token,

String constants are stored as a token of value $28 followed
by ASCII text (with high-order bits set) followed by a token of
value $29. REM statements begin with the REM token ($5D) followed
by ASCII text (with high-order bits set) followed by the 'end-of-line'

token.

Figure 1 - MEMORY MAP

. ———— ——— T —— — [LOMEM (start of variables)
($4A,4B)
S BASIC
VARIABLES
foToug L) A ~<—-"" .-py (Variable Pointer, end of variables)
($CC,CD)
il ~— —" [=<————PP (Program Pointer, start of program)
($CA,CB)
— first line
BASIC
PROGRAM
- last line
g TS a e
—~ -—————HIMEM (end of program)
($4C,4D)
Figure 2 - LINE REPRESENTATION
[0 [ow] [meen] [1101 [so2]
length line number items ‘end-of-line'
byte token
L J

Figure 3 - ITEMS

Constant: l Agj | 10w _} | higg:] L l
'a

$B0O-SB9 value positive
token
Name (ABC): ‘ $C1 i | $C2 | | sc3 |]_:I
negative positive
ASCII token

String Constant ("123"): | s28 | [ss1 | ['sB2 | [sm3 | | s20 |

quote negative quote
token ASCII token

REw: O p s R) [T] o]

REM negative ‘end-of-line'
token ASCII token

Tokens: $00-$7F

GO TO - $5F
GOSUB - $5C
THEN 1n - $24
LIST - $74 (tokens used by RENUMBER)
LIST ;. — 975
STR CON - $28
REM - $5D

EOL

RENUMBER - THEORY OF OPERATION

Because of the rigid internal representation of APPLE-II BASIC
programs (insured by the translator syntax check) writing a renumber
program was a somewhat easier task than it would have been on many
small BASIC's. Fortunately all constants in APPLE-II BASIC (in-

cluding line number references) are preconverted to binary.]

The normal renumber subroutine entry point is RENUM ($308). |
The RENX entry ($300) conveniently sets the renumber range for the |
user such that the entire program will be renumbered. RENUM exten-

|
sively uses SWEET16, the code-saving 16-bit interpretive machine |
built into the APPLE-II.j1 Occasional 6502 code is interspersed !

throughout RENUM for even greater code efficiency.

RENUM scans the entire program from beginning to end twice.
During pass 1 a line number table is built containing all line
numbers of the program found to be within the renumber range.
This table begins at the address specified by the BASIC variable
pointer, PV, and is limited in length by the program pointer, PP.
Each entry is two bytes long. A memory full error occurs if not

enough free memory is available for the table.

1 pyte Magazine, Nov. 1977, pp.

page 12

As line numbers are entered in the table corresponding new
line numbers are generated and both new and old are displayed.
Should the new line numbers result in an 'out of ascending sequence'
condition, then a range error occurs and renumbering is terminated.
It is assumed that the line numbers of the original program are in

ascending sequence.

The purpose of pass 2 is to scan the entire BASIC program while
updating all references of line numbers found in the table to new
assignments. Aside from the line numbers themselves, the line number
references sought are identified as constants immediately preceeded

by one of the following tokens:

GOTO
GOSUB
THEN 1no
LIST

LIST ,

No other statement normally permitted within an APPLE-II BASIC

program may contain a line number reference. No errors will occur

during pass 2.

Exceptions such as empty line number table and null program

are properly considered by both passes of RENUM.

APPEND - THEORY OF OPERATION page 13

When APPEND is called, the user program with larger line numbers

will be in memory and the one with smaller line numbers will be read

A off tape. The current program resides between two pointers, PP and
HIMEM. HIMEM is preserved and set to the value contained in PP.
4 This 'hides' the original program and prepares to load a new one

immediately above it in memory.

The BASIC load subroutine is called and a normal memory full
error condition will result if not enough free memory is available
to contain both programs. If this error occurs then the original
program will still be hidden. Fortunately, it can be recovered by
calling the tail end of APPEND at $3CD which simply restores HIMEM.
1{ the load is successful then HIMEM is restored to its original value

and both programs will be joined. No line number overlap check is

performed.

Original Program After Load HIMEM Restored
PP—| PP ——
Prog #1 Prog #1
PP —»— HIMEM —pm
< Prog 72 Prog #2 Prog #2
’ (hidden)
HIMEM—> HIMEM —

Original

T

1 GOTO 100
- 2 G0SYJ3 10

3 IF TRI=

100 REM

103 =EM

107 REM

109 R=M

110 R=ZM
200 FOR I=1
210 PRINT 1
220 NZXT 1
230 GOTO 1

3

THEN

TO

4 LIST 103,110

10

RENUMBER EXAMPLE

Renumber lines 100-110
to start at 150
spaced by 10

>POK=

>POK=

>POKE

>POKE

>POKE

>POKE

>POKE

>POK=

>CALL

3,

45

S5,

6,

7,

8,

9,

776

100->150
103->160
107->170
103->180
110->190

>LIST

210
220

150 MOD 256
150 7 256
10 MOD 256
10 7 256
100 MOD 256
100 /7 256
110 MOD 256

110 7/ 256

GOTO 150

GOSuU3 160

IF TRUE THEN 170
LIST 180,190

REM
REM
=M
REM
REM
FOR

I1=1 TO 10

PRINT 1

NEX

GOTO

T
1

RENUMBER EXAMPLE (cont)

° Renumber lines 100-110 to start at
10 spaced by 5

P >POKE 2, 10 MOD 256
>POKE 3, 10 / 256
>POKE 4, 5 MOD 256
>POKZ 5, 5 / 256

>CALL 768
1->10
2->15
3->20
4->25
150->30
160->35
170->40
180~->45
190->50
200~->55
210->60
220=->65
230->70

10 GOTO 30

15 GOosus 35

20 IF TRUE THEN 40
25 LIST 45,50

30 RENM

35 REM

40 REM

45 RZM

50 =M

FO2 I=1 TO 10
60 PRINT 1

65 NEXT 1

70 GOTO 10

>LIST

200
300

L4 >CALL

>LIST
10

20

30
100
200
300

REM
2EM
REM

WU L0
toommm
IR

APPEND EXAMPLE

THE ORIGINAL PROGRAM

THIS PROGRAM CAME FROM TAPE

THE ORIGINAL PR0GRAM

page 16

APPLE-11 BASIC RENUMBER/APFIND SUBROUTINES
9153 A«Me, 1172171977 PAGE: |
TITLE *APPLE-Il 3ASIC RENUM3ER/APPEND SUBRQUTINES'®
FEAEEREREE R R R bR kg

APPLE~I11 BASIC
RENUMBER AND APPEND
SUBROUTINES

*

*

*

L]
RENUMBER *

NEW INITIAL (2,3) =»
NEW INCR (4.,5) *
RANGE 3£G (6,7) *
RANGE END (8,9) *
*

5

*

*

*®

*

*

*

VRNV DL WD -~

USE RENX ENTRY
FOR RENUMBER ALL

40z 11716777
APPLE COMPUTER INC.

L. R R R R R IR AR R B AN N BE B B 2 2% 2

AEEEREA R AR R R R KRRk kR k
PAGE

9153 A.M.,

1172171917

22

6502 ZAUATES

SU3TTL 6502 ZQUATES

R0L

ROH
RIIL
|I11H
HIMEM
PPL

PVL
MEMFULL
PRDEC
RANGERR
LOAD
S716
CROUT
couTt

EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EQU
EQU
EQU
EQU
EQU
EQU
EQU

PAGE

$0

s
$16
$17
$4C
$CA
sCcC
3E368
SESIB
SEE6S
3FODF
$F639
SFDSE
S$FDED

LOW-0RDER SWI6 R0 BYTR
LOV-ORDER SW16 RI11

HIMEZM POINTER.
PROG POINTER.
VAR POINTER.

MEM FULL ERROR.
DECIMAL PRINT SR
RANGE ERROR.
LOAD SU3R.
SWEET16 ENTRY.

CAR RET SUBR.

CHAR OUT SUBR.

11721719717
38

9153 AMe,

SUBTTL
ACC
NEWLOV
NEWINCR
LNLOW
LNHI
TBLSTRT
T3LNDX1
TSLIM
scas
HMEM
SCR9
PRGNDX
PRGNDXI
NEWLN
NEWLNI
TBLND
PAGNDX2
CHRO
CHRA
MODE
T3LNDX2
OLDLN
STRCON
REM
R13
THEN
LIST
SCRC

SWEETI16

SWZETI16
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EpPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EP2Z
EPZ
EPZ
EPZ
PAGE

EQUATES

EQUATES

PAGEs 3

SWEET|6 ACCUMULATOR.

NEW INITIAL LNO.

NEYW LNO INCR.

LOW LNO OF RENUM RANGE

HIl LNO OF RENUM RANGEZ.

LNO TABLE START.

DASS | LNO TBL INDEX.

LNO TA3LE LIMIT.

SCRATCH RZG.

HIMEM (END OF PRGM).

SCRATCH REG.

PASS | PROG INDEX.
ALSO PROG INDZX.

NEXT °*NEW LNO'.
PRIOR 'NZW LNO' ASSIGE

PASS 2 LNO TABLE END.
PASS 2 PROG INDEX.
ASCII '0°'.

ASCII ‘*A'.

CONST/LNO MODE.

LNO TBL IDX FOR UPDATE
OLD LNO FOR UPDATE.
BASIC STR CON TOKEN.
BASIC REM TOKEN.
SWEET16 REG 13 (CPR RR
BASIC THEN TOKEN.
3ASIC LIST TOKEN.
SCRATCH REG FOR APPEND

APPLE-11 BASIC RENUM3ER SUBROUTINE = PASS |

9153 AsMes 1172171977
68
69
03003 20 89 F6 70
0303: BO 71
030a: 33 72
o 030S: 3a 73
0306: F& 74
0307t 00 75
0308: 20 89 F6 76
03083 18 4C 00 77
® o030E: 68 78
030F: 38 79
03101 19 CE 00 80
03131 C9 81
031as 35 82
0315: 36 83
03161 21 ga
0317s 3B 8s
0318: 3C 86
0319¢ C9 87
031At 37 88
03181 39 89
031C1 29 90
031Dt D8 91
031E: 03 46 92
0320t 3A 03
03213 26 94
03221 EO 95
03231 D? 96
03243 03 38 97
03263 4A 98
03271 A9 99
0328: 39 100
0329: 6A 101
032At D3 102
03231 02 2A 103
032Ds DA 104
032E: 02 02 10S
0330t 07 30 106
03321 16 107
03331 00 108
03341 AS Ol 109
03361 A6 00 110
Y’ 0338t 20 1B ES 111
0338t A9 AD 112
033D: 20 ED FD 113
03401 A9 BE 112
/A 0342: 20 ED FD 118
03451 AS 17 116
0347t A6 16 117
0349: 20 13 ES 118
034C: 20 BE FD 119
03aF: 20 8C F6 120
0352: 2B 121

PAGE: 4

SUBTTL APPLE~-11 BASIC RENUMBER SU3ROUTINE =~ PASS |

RENX

RENUM

PASS1

PlA

ORG
JSR
suB
S

ST

DCR
RTN
JSR
SET

$300
Svi6
ACC
LNLOW
LNHI
LNH1

SVi16
SCRB,HIMEM
#SCRS
HMEM
SCR9,PVL+2
@SCR9
TBLSTRT
TBLNDXI
NEWLOW
NEWLN
NEVLNI
#SCR9
TBLIM
PRGNDX
PRGNDX
HMEM
PASS2 |
PRGNDXI
TBLNDXI1
ACC
TBLIM
MERR
@PRGNDX1
PRGNDX
PRGNDX
@PRGNDXI
LNLOW
PIB

LNHI

PlA

PIC
#TBLNDXI1

ROH
ROL
PRDEC
#SAD
couTr
#$BE
couTt
RIIH
RIIL
PRDEC
CROUT
SW15+3
NEVLN

OPTIONAL RANGE ENTRY.

SET LNLOVW=0,
LNHI=SFFFF

BASIC HIMEM POINTER
TO HMEM.

BASIC VAR PTR TO
TBLSTRT AND TBLNDX!.

COPY NEWLOV C(INITIAL)
TO NEWVLN.

BASIC PROG PTR
TO TBLIM
AND PRGNDX.

IF PRGNDX >= HMEM
THEN DONE PASS 1.

IF <« 2 BYTES AVAIL IN
LNO TABLE THEN RETUR
VITH °MEM FULL®' MSG.

ADD LEN BYTE TO
PROG INDEX.

LINE NUMBER.

IF < LNLOV THEN
GO TO Pl13.

IF > LNH1 THEN
GO TO PICs

ADD TO LNO TABLE.
s¥% 6502 CODE #%#

PRINT OLD LNO *->' NEB
(RO,RI11) IN DECIMAL.

%% END 6502 CODE #*#

APPLE-]I1 BASIC RENUMBER SUEROUTINE - PASS |

9153 A«Me, 1172171977 PAGE! 5
0353 3C 122 ST NEWVLN] COPY NEWLN TO NEVLNI
0354: A2 123 ADD NEWINCR AND INCR NEVLN BY
03553 3B 124 ST NEWVLN NEWINCRe.

0356: 0D 125 NUL (WILL SKIP NEXT INST).
0357: DI i26 PIB CPR NEWLOW 1F LOV LNO < NEWLOW
0358: 02 C2 127 BNC PASSI THEN RANGE ERR.
035A: 00 128 RERR RTN PRINT °*RANGE ERR* MSG
035Bt 4C 68 EE 129 JMP RANGERR AND RETURN.

035Es 00 130 MERR RTN PRINT *'MEM FULL' MSG
035F: 4C 6B E3 131 JMP MENMFULL AND RETURN.

0362: EC 132 PIC INR NEWLNI IF H1 LNO <= MOST RECH
0363: DC 133 CPR NEWLNI1 NEWLN THEN RANGE ERR
0364: 02 FA& 134 BNC RERR

135 PAGE

9153 A.M.,

0366 19

0369: 1A

036C: 27

036D: D8

036Et 03

0370: E7?

~ 0371 67
) 03721 3D
0373: 25

0374: 3B

L 2 0375: 21
0376: 1IC

0377:s 2C

0378: A2

0379: 3C

037A: 2B

0378: Bé6

037Ct 03

037Es 6B

037F: BD

0380: 07

0382: C7

0383: 2C

038a: 77

0385 1B

0388: 1C

0389t 67

038A:1 FC

038B: 08

038Dt 47

03BE: D9

038F: 02

03%1: DA

0392: 02

03%94: F7?

03951 67

0396: 05

0398: F7

039%9: 47

03%9A: DB

039B: 06

~ 039Ds 1IC
03A0: DC

h 03Al:s 06
03A3:t 08

(-] 03AS: FD
03A6t FD

03A7: 06

03A913 1D

03AaC: DD

03AD: 06

P oSN S e T S ST RS R | T LN E 1 T A S

APPLE-11 3ASIC RENUMBER SUBROUTINE - PASS 2

1172171977 PAGE: 6
136 SUBTTL APPLE=-11 BASIC RENUMBER SUBROUTINE - PASS 2
BO 00 137 PASSs2 SET CHRO,3BO ASCI1 *0O°*
Ct 00 138 SET CHRA,sCl ASCII ‘*A°
139 P2A LD PRGNDX2
140 CPR HMEM IF PROG INDEX = HIMEM
63 141 BC DONE THEN DONE PASS 2.
142 INR PRGNDX2 SKIP LEN BYTE.
143 LDD @PRGNDX2 LINE NUMBER.
144 UPDATE ST OLDLN SAVE OLD LNO.
145 LD TBLSTRT
146 ST TBLNDX2 INIT LNO TABLE INDEX.
147 LD NEWLOW INIT NEVLN1 TO NEVLOWV.
00 00 148 SET NEWLN!,O (VILL SKIP NEXT 2 INSR
149 ORG #%-2
150 uD2 LD NEVLNI
151 ADD NEWINCR ADD INCR TO NEWLNI!.
152 ST NEWVLN1
153 LD TBLNDX2 IF LNO TBL IDX = TBLND
154 SUB TBLND THEN DONE SCANNING
07 1SS aC uUD3 LNO TABLE.
156 LDD eTBLNDX2 NEXT LNO FROM LNO TABK
157 SUB OLDLN LOOP TO UD2 IF NOT SAH
FS 158 BNZ UD2 AS OLDLN.
159 POPD @PRGNDX2 REPLACE OLD LNO WITH
160 LD NEWVLN1 CORRESPONDING NEW L®
161 STD @PRGNDX2
28 00 162 UD3 SET STRCON,S$28 STR CON TOKEN.
00 00 163 SET MODE,O (SKIPS NEXT 2 INSTR'S)
164 ORG x-2
165 GOTCON LDD @PRGNDX2
166 DCR MODE IF MODE = 0 THEN UPDAE
ES 167 BM1 UPDATE LNO REF.
168 ITEM LD #PRGNDX2 BASIC ITEM.
169 CPR CHRO
09 170 BNC CHKTOK CHECK TOKEN FOR SPECIA
171 CPR CHRA IF >= 0" AND < A" TH
FS 172 BNC GOTCON SKIP CONST OR UPDATS
173 SKPASC DCR PRGNDX2
174 LDD @PRGNDX2 SKIP ALL NEG BYTES OF
FC 178 BM SKPASC STR CON, REM, OR NAR
176 DCR PRGNDX2
177 LD #PRGNDX2
178 CHKTOK CPR STRCON STR CON TOKEN?
F7 179 BZ SKPASC YES, SKIP SUBSEQUENR
SD 00 180 SET REM,S$5D
181 CPR REM REM TOKEN?
Fli 182 BZ . SKPASC YES, SKIP SUBSEQUENR
13 183 BMI CONTST GOSUB, LOOK FOR LNO.
184 DCR RI3
185 DCR RI13 (TOKEN $5F 1S GOTO)
OF 186 BZ CONTST THEN LNO, LOOK FOR LNO.
24 00 187 SET THEN,S$24
188 CPR THEN
09 189 BZ CONTST TH-N LNO., LOOK FOR LNO.

APPLE=-11 BASIC RENUMBER SUBROUTINE - PASS 2

9153 A«Me, 1172171977 PAGEs 7
03AF: FO 190 DCR ACC :
03301 06 BA 191 BZ P2A EOL (TOXEN $01)?
03823 ID 74 00 192 SET LIST,%74
03853 BD 193 SUB8 LIST SET MODE = 0 IF LIST
0336: 09 01 194 2NM1 CONTS2 OR LIST COMMA (573.8
0338: BO 195 CONTST sus ACC CLEAR MODE FOR LNO
0389: 3C 196 CONTS2 ST MODE UPDATE CHECK.

A 033At 01 DI 197 BR ITEM CHECK NEXT 'BASIC ITEM.

198 PAGE

9153 A.M.,
033C: 20
033Fs IC
03C2: CC
03C3: 38
03C4s 19
03C7: 69
03C8: 17C
03C9s 00
03cas 20
03CDs 20
03D0: CC
03DI: 28
03D2: 17C
03D3s 00
03D4s 60

89
4E

CA

DF
89

APPLE-11 3ASIC APPEND SU3RQUTINE

1172171517 PAGEs 8

199 SU3STTL APPLE-I1 BASIC APPEND SUBROUTINE

F6 200 APPIND JSR SW16

00 201 SET SCRC,HIMEM+2
202 POPD @SCRC SAVE HIMEM.
203 ST HMEM

00 204 SET SCR9,PPL
205 LDD @SCR9 SET HIMEM TO PRESERVE
206 STD @SCRC PROGRAM.
207 |TN

FO 208 JSR LOAD LOAD FROM TAPE.

F6 209 JSR SVI16
210 POPD #5CRC RESTORE HIMEM TO SHOW
2e1 LD HMEM B0TH PROGRAMS
212 STD #SCRC (OLD AND NZIW).
213 DONE RTN RETURN.
214 RTS

NO ERRORS

++%x+x*xSUCCESSFUL ASSEMBLY1

CROSS-REFEARNCES

£CC
APPEND
CiH¥TOK
CHRO
CHRA
coNTS2
CINTST

r CouT

Y C-0UT
oL B
GJ.CON

" HI: ZM
FGEM
1ITEM
LIST
LNNI
LiLOV
LOAD
=EFULL
MNZRR
MIDE
KEWINCR
PEWLN
L=VLNI
NEWLOW
OLDLN
Pl1A
P1B
PI1C
P2A
PasSSl
PasSs2

/\

T2ILAND
TBLN DX
=21 NDX2
TILSTRT
THEN

0000
033C
039A
0009
00CA
0389
0228
FDED
FDBE
03D3
0329
00aC
o008
038D
090D
0004
0003
FODF
E36B
035E
000C
0002
0008
ooocC
0001

000D
0332
0357
0362
036C
031C
0366
ooCA
ES1B
0509
000A
0007

00CC
0001

0000
0017
0016

000D
EE68
000C
0138
0300
03SA
0008
0009
0cocC
03%4
0003
F&89
0007
0006
00056
00038
0005
003D

FeLE-T1

0071

0170
0137
0128
01%4
0183
0113
o119
0141
0172
0077
0079
0197
ot92
0073
0072
0208
0131
0097
0163
0123
008S
0036
ooga
0144
010S
0103
0106
0191
o127
0092
0204
o111
0089
0073
0139
0080
0109
o110
0116
oLz
0184
o129
0180

0134
0077
0CEO0
0201
0175
o162
0070
0088
0154
0083
0146
ocs2
0187

0oo5

0169
0171

0186
o11s

c201
9091

0193
0074
o102

0166
01s1
o121
0122
o126
0157

ot18
0090
0098
0142

0185

o181

oci8
0081
0202
o179
0178
0076
0096

ce94
0153
0145
0138

3AS1C RENUMBER/APFEND SUBROUTINES

0140 0203 0211

0132 0133 0148 0150 0152 0160

0099 0100

0143 0159 0161 0165 0168 0173 0174 0176 0177

0087 0204 0205
0206 0210 0212

0120 0200 0209

CROSS REFERENCE:

up2 0377
UbD3 0385
UPDATE 0372

APPLE-11 2AS1C RENUMSER/APPEND SUBROUTINES
0i1S8

015S

0167

