
FORTRAN II Y IV
DEL PROGRAMADOR:
Una Referencia Completa

Por
CHARLES PHILIP LECHT

Director, Advanced Computer Techniques Corporation

Con un prologo por
R O B E R T B E M E R

de General Electric Company

COMPANIA EDITORIAL CONTINENTAL, S. A.
MEXICO - ESP AN A - ARGENTINA

SUCURSALES, DEPOSITOS Y REPRESENTACIONES EN:
Bolivia - Brasil - Colombia - Costa Rica - CHILE - Dominicana - Ecuador - El Salvador
Estados Unidos - Guatemala - Honduras - Nicaragua - Panama - Paraguay - Peru

Puerto Rico - Uruguay - Venezuela

Titulo original en ingles:
THE PROGRAMMER'S FORTRAN II AND IV - A Complete Reference

Traductor: ROSENDO JOSE SANCHEZ PALMA
Ingeniero Quimico
Coordinador de Sistemas de Control de la IBM de Mexico

Edicion autorizada por:
McGRAW-HILL BOOK COMPANY

© 1966 by McGraw-Hill, Inc.

Primera edicion en espanol: mayo de 1968

Derechos Reservados © en Lengua Espanola—1968, Primera Publicaci&n

COMPANIA EDITORIAL CONTINENTAL, S. A.
CALZADA DE TLALPAN NUM. 4620, MEXICO 22, D. F.

MIEMBRO DE LA CAMARA NACIONAL DE LA INDUSTRIA EDITORIAL
Registro Num. 43

Av. REPUBLICA ARGENTINA NUM. 168, BARCELONA 6, ESPANA
ENTRE Rfos NLTM. 1256, BUENOS AIRES, ARGENTINA

P R O L O G O

Mi esperanza es que la mayoria de los lectores de este libro ya esten
familiarizados con FORTRAN, es decir, mas familiarizados que con el
simple conocimiento de que es un acronimo de la frase inglesa "FORmula
TRANslation". Esto es por una razon opuesta a la que uno podria pensar
inicialmente. No es que el libro sea tan dificil que solo alguno entrenado
en su uso pueda comprenderlo con facilidad. No, mi razon es que FOR
TRAN es usado extensamente pero escasamente entendido.

Recuerdo esa preocupacion molesta con la que inspeccionaba a ciertos
estudiantes companeros en mis cursos de matematicas en la universidad.
Parecian asimilar cada concepto nuevo sin esfuerzo, mientras yo bata-
llaba para relacionarlos a ejemplos numericos y espaciales. Sin embargo,
como matematico profesional descubri que subconscientemente habia es-
tado sintetizando e integrando, mientras ellos meramente anadian capa
sobre capa.

Vemos esta superficialidad cuando el usuario de computadoras prin-
cipiante es expuesto por primera vez al poder tanto del FORTRAN como
de la maquina. El lenguaje es relativamente facil de aprender, puesto que
mucho de el es una simple transformation de la terminologia y el uso
matematico comun. El principiante se intoxica con el poder que tiene en
la punta de sus dedos, pero que no olvide que es un poder costoso, facil-
mente dilapidado sin saberlo. Si Parkinson necesitara pruebas adicionales
de sus teorias, existe la comunidad FORTRAN.

Una de las mejores cosas de este libro es que fue escrito por un ex-
perto en documentation de computadoras. Esta es una declaration signi-
ficativa, puesto que menos del 1% de los programadores del mundo docu-
mentan cuidadosa y correctamente. Aquellos que lo hacemos podemos
estar motivados por los alcances a obtenerse de lo que concebimos; el pro-
gramador que documenta pobremente pronto es descartado con aversion,
lo mismo que sus logros. Un principio cardinal de la documentation
en programacion es lo que llamamos "la negation positiva". La compu-
tadora nos fuerza a esto. No es suficiente decir lo que cierta action
hara; uno debe declarar exacta y categoricamente lo que no hara (i.e.,
indicar posibles abusos relacionados al contenido de la information, cuyo
acaecimiento puede ser causado por inferencia, consideraciones de admi-
sibilidad o aun deduction logica). Esto bien podria ser la esencia de este
libro. No es un texto para ensenarle a programar en FORTRAN—quiza
lo aprenda como un subproducto. El proposito es mostrar el alcance com-
pleto, el significado y las limitaciones de cada tipo de instruction en el

7

lenguaje FORTRAN, para que pueda sintetizar en vez de anadir capa
sobre capa.

Hay muchos procesadores programados para las diferentes compu-
tadoras, cada uno de los cuales traduce una cierta variante de FORTRAN
al lenguaje de la maquina con eficiencia variable en el programa objeto
creado. Pero en cada variante hay muchas maneras de expresar la solu
tion al problem a, de la eficiente a la ineficiente, del mismo modo que
uno puede llegar a un punto que este a dos cuadras de distancia cami-
nando doce, o balbucir y ser prolijo en vez de conciso. Es la responsabili-
dad de los fabricantes de estos procesadores, explicar tales idiosincrasias
al usuario en textos que acompanen a este volumen. Aqui el proposito es
mas bien preparar al usuario en la forma mas general para que entienda
el efecto de esas variaciones, segun se aplique a computadoras especi-
ficas.

No existe mas que una breve historia de FORTRAN, dada por W. P.
Heisling en el numero de marzo de 1963 de "The Communications of
ACM", Pags. 85 y 86. Siendo yo una persona conocedora de la historia
intima, me gustaria ponerla aqui por escrito en una forma menos formal.

La computadora impresiono gradualmente sobre sus primeros usua-
rios algo que debieron comprender desde un principio—que es un invento
de aplicabilidad ilimitada, y que una aplicacion muy importante podria
ser operar sobre la expresion de un algoritmo (o solution de un problema)
en un lenguaje conveniente a los humanos y transformarlo en un len
guaje conveniente a la maquina. Recuerdese que el lenguaje natural de
los humanos es impreciso; gana comprensibilidad de muchos otros expe-
dientes: inflexiones, movimiento de manos, redundancia, relation a con-
diciones previas, expresiones alternas u otras semejantes. Un lenguaje
intermedio entre los humanos y la maquina, de los que FORTRAN es
uno, debe tener ciertas caracteristicas artificiales que lo haga preciso sin
recurrir a tales expedientes.

Es tipico de la epoca de las computadoras que pocas innovaciones son
el producto de un solo individuo. Mas bien es como si la misma natura-
leza de las computadoras nos condujera a todos por un sendero inevitable
de entendimiento. Hay pocos desarrollos en lenguajes o procesadores de
computadoras que no se encuentren en forma embrionica en los progra-
mas anteriores de una docena de personas. Algunos vislumbres iniciales
vinieron cuando el Dr. Grace Murray Hopper y sus asociados produjeron
el compilador AO (mayo de 1952) para el UNIVAC ' I, mas tarde am-
pliandolo al A2 (agosto de 1953) y despues al AT3 (o Math-Matic, junio
de 1956), el cual tenia una forma limitada de instruction algebraica.
Quiza un trabajador anterior lo fue el Dr. Heinz Rutishauser, de Suiza,
quien, ignoto a los trabajadores de los E. U., desarrollo un compilador
semejante al FORTRAN para la computadora Zuse 4 en 1951, aunque no
recibio un uso extenso apreciable. El Autocode de R. A. Brooker para el
Manchester (Ferranti) Mercury, manejaba instrucciones de un tipo arit-
metico limitado. Laning y Zierler desarrollaron un sistema algebraico para
el Whirlwind del M.I.T. alrededor de 1953 o 1954, aunque no he podido
fijarle una fecha de operation. Tambien preparando el camino habia

8

muchos sistemas matematicos interpretativos para la IBM 650, la IBM
701 y la Datatron 205.

El Dr. Charles DeCarlo, en aquel tiempo Director de Ciencia Aplicada
de IBM, estuvo lo suficientemente impresionado para establecer un gru-
po de desarrollo bajo John Backus, quien habia escrito el sistema Speed-
coding para la 701. Este grupo se organizo en el verano de 1954 y llevo
su trabajo a una condition utilizable en enero de 1957. El Dr. David
Sayre, Robert Beeber, Sheldon Best, Dr. Richard Goldberg, Lois Haibt,
Harlan Herrick, R. A. Nelson, Peter Sheridan, Harold Stern e Irving
Ziller eran otros miembros, junto con Roy Nutt, de United Aircraft y
Robert Hughes, del Livermore Radiation Laboratories.

Este grupo estaba encargado no tan solo de construir un compilador
algebraico, sino tambien de probar que un compilador podia producir
codification objeto optimizada (programas de trabajo) comparable en
eficiencia a aquella de los mejores codificadores manuales. Como resul-
tado, el esfuerzo original tomo 25 anos-hombre de esfuerzo sobre un pe-
riodo de dos anos y medio, con un costo inicial de mas de medio millon
de dolares. Hoy podemos hacerlo mejor a un octavo del costo, pero el 707
tambien vuela mas rapido que el aeroplano de los Wright. No puede uno
decir bastante de la vision del Dr. DeCarlo, puesto que aislo y protegio
al grupo FORTRAN por este largo periodo cuando el uso de las computa-
doras se estaba extendiendo tan rapidamente que cualquier programador
bueno era desesperadamente necesitado. Tambien fue una buena deci
sion, pues hoy IBM tiene un ingreso anual derivado tan solo del FORTRAN
en exceso de 300 millones de dolares, que fue la casi totalidad de sus
ingresos en 1957 cuando se introdujo FORTRAN sin ruido o demasiada
confianza.

Yo no tuve la oportunidad de participar en el desarrollo del FORTRAN
de la 704, ya que el proyecto estaba a medio camino cuando me uni a
IBM en diciembre de 1955. Sin embargo, presencie el desarrollo, ya que
estaba en otro proyecto en el mismo cuarto. En ese tiempo John Backus
fue nombrado Gerente de Investigation de Programacion de IBM, bajo el
gran repositorio de sabiduria en computadoras—John McPherson.

Unicamente un mes despues, mas o menos, de la introduction de
FORTRAN, el Dr. Alan Perlis termino un compilador algebraico para la
650, llamado IT (Internal Translator). IT fue originalmente concebido
para el Datatron 205, pero ese procesador sufrio un retraso cuando el Dr.
Perlis dejo Purdue para ir a Carnegie Tech., entrando en operation hasta
el verano de 1957. Aunque los nombres de las variables eran de una forma
muy limitada, el metodo de traduction para tales maquinas inferiores era
mucho mas ingenioso, y en ese tiempo yo estaba lo suficientemente en-
tusiasmado acerca de la posibilidad de un lenguaje independiente de la
maquina para pedirle permiso al Dr. Perlis para usar su sistema encajado
en un sistema FORTRAN. El acepto y se construyo un preprocesador para
traducir de instrucciones FORTRAN ligeramente limitadas a instruccio-
nes IT (las cuales producian instrucciones SOAP, las que entonces eran
compiladas). Este proyecto estuvo dirigido por Dave Hemmes, quien cali-
fica como un verdadero documentador, con Florence Pessin, Otto Alexan-

9

der y Leroy May. La Sra. Pessin, una aficionada del acrostico doble, bau-
tizo el sistema como FORTRANSIT, teniendo un triple sigmficado: 1)
FOR TRANSITion (para transition), 2) FORTRAN, Soap, e IT y 3) it
FORTRANS IT (lo "fortranea"). Aunque mas tarde lo reemplazo un ver-
dadero procesador FORTRAN, este artificio temporal anadio visiblemente
a la prueba de independencia de maquina, particularmente en que una
maquina era binaria y la otra decimal.

IBM formo el Departamento de Programacion Aplicada bajo Jack
Ahlin, cuando el FORTRAN de la 704 iba a ponerse en servicio. Como ge-
rente de los Sistemas de Programacion, la operation real en clientes del
FORTRAN se convirtio en mi problema, mientras que el grupo de Backus
continuaba en investigation para desarrollar lo que se convirtio en el
FORTRAN II, que es una buena parte de lo que este libro describe. Y vaya
que tuve problemas, porque con 25 000 instrucciones este era un progra-
ma muy complejo para aquel entonces. La mejor indication de la comple-
jidad es que cuando Sheldon Best dejo el proyecto para ocupar un puesto
en el M.I.T. antes de que el procesador estuviera totalmente terminado,
les tomo tres meses a los Dres. Sayre y Goldberg, trabajando dia y noche,
para entender nada mas lo que habia hecho en su section 5.

Las unidades de cinta de la 704 presentaron dificultades mayores. Pa-
recia imposible correr FORTRAN en algo diferente a la maquina de prue-
bas. Finalmente se envio un grupo a la Costa Oeste para que trabajara
con los ingenieros de servicio. Cuando finalmente FORTRAN corrio en
una maquina diferente, los ingenieros de servicio anotaron cuidadosamen-
te todo lo que habian hecho y prepararon un reporte de como ajustar la
computadora para que corriera el FORTRAN. Esto marco el fin de una
era para los programas de diagnostico, puesto que estos indicaban que la
maquina estaba correcta, mientras que el FORTRAN decia que no lo es-
taba. Ademas, << a quien le interesaba si un componente estaba defectuoso,
si el sistema de programacion no lo usaba? Armados con estos argumen-
tos, Hemmes y yo fuimos al departamento de Prueba de Productos de
Poughkeepsie, donde el Sr. G. A. Hemmer estuvo bastante dispuesto a
usar FORTRAN como un componente principal en el programa de prueba
y aceptacion de la fabrica.

Entonces llego el tiempo de producir un nuevo FORTRAN para la nue-
va 709. Entre tanto habiamos aprendido muchas cosas acerca de las ne-
cesidades funcionales para un procesador tal. Por ejemplo, en una insta-
lacion calcularon que ellos traducian y probaban un programa FORTRAN
un promedio de 50 veces antes de que estuviera correcto, funcionando y
completo. El tiempo de compilation estaba dejando atras al tiempo de
production, y un 80% de aquel era para optimizar la utilization de regis-
tros indice para programas incorrectos. Obviamente era necesario poder
eliminar la optimization.

Puesto que la nueva version del FORTRAN (FORTRAN II) para la
704 estuvo disponible en junio de 1958, esta fue la version que se cons-
truyo para la 709, quedando funcionando en junio de 1959. La diferencia
principal con el lenguaje original estaba en la habilidad de compilar inde-
pendientemente subrutinas escritas en FORTRAN o en lenguaje ensambla-
dor, y tenerlas disponibles para los programas FORTRAN principales

10

compilados en otro momento. Esto no solo ahorraria tiempo de maquina,
sino que logicamente era mas solido. Siempre lo he creido un desarrollo
de importancia equivalente al FORTRAN original.

La continuation del FORTRAN II iba a ser el XTRAN, principalmente
para quitar ciertas restricciones del lenguaje mas que para introducir con-
ceptos radicales. Sin embargo, XTRAN fue mas o menos absorbido por el
ALGOL 58 en el primer esfuerzo internacional cooperativo sobre lenguajes
de programacion. Mis frustraciones al perder la iniciativa sobre XTRAN
fueron compensadas al serme posible editar el ALGOL 58 hasta tenerlo
en una forma relativamente limpia.

El primer procesador FORTRAN no-IBM fue hecho para la Philco
2000, quedando funcionando en abril de I960; sin embargo, lo llamaron
ALTAC. Los primeros procesadores que realmente usaron el nombre FOR
TRAN fueron los de la UNIVAC Solid-State 80 y de la CDC 1604 en 1961.
Para 1965, entre 60 y 100 procesadores FORTRAN habian sido implanta-
dos para varias maquinas. El Comite de FORTRAN de SHARE ha sido
una influencia estabilizadora, al menos en toda la linea IBM. El lenguaje
ensamblador ahora comunmente asociado con FORTRAN (llamado FAP)
se introdujo a traves de este comite en septiembre de 1960 y fue el pro-
ducto del Centro Occidental de Procesamiento de Datos en UCLA.

La mas reciente etapa de production en FORTRAN es el lenguaje FOR
TRAN IV. Este es un relajamiento adicional de las restricciones y una
adicion de nuevas caracteristicas siguiendo las lineas de XTRAN y ALGOL.
El comite de FORTRAN de SHARE lo acepto para la 7094, dandose cuen-
ta de que en varias partes era incompatible con FORTRAN II. Sin embar
go, las diferencias eran convertibles mecanicamente. Esta vez no hubo
arrastramiento de pies, UNIVAC empezo a construir el FORTRAN IV
para la 1107 y en realidad consiguio tenerlo en operation antes que el de
la 7094. Actualmente hay unos 10 o 12 cambios propuestos por el comite
de SHARE para un FORTRAN IV mejorado. Sin embargo, en vista del
NPL (new programming language) para la IBM 360, puede ser que estos
no sean implantados.

Los efectos y la influencia mundial de FORTRAN son asombrosos.
Heising dice en su breve historia que se han distribuido mas de 228 000
manuales. Espero que el libro del senor Lecht sea reconocido como una de
las contribuciones mas importantes. Ciertamente llena un vacio del que
yo he estado altamente consciente.

ROBERT BEMER

ll

STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305-2085

DONALD E. KNUTH
Fletcher Jones Professor
Department of Computer Science
Telephone [415] 497-4367

March 20, 1984

Dr. Robert Bemer
2 Moon Mountain Trail
Phoenix, Arizona 85203

Dear Bob,

I enjoyed reading your piece about FORTRAN in the recent Anmds, and I noted especially
your story about Stan Poley and the SOAP embroidery.

You're the only person I've ever met who has claimed to have known Stan Poley. Since Poley
taught me most of what I know about programming, by publishing the code for SOAP II, I've
always considered him a legendary character. Now I can almost believe that he existed. He
might even be alive today! It boggles my mind.

I sure hope you will be able to contribute to the forthcoming special issue about the 650. As a
person right in the center of the action, your reminiscences are especially crucial.

One way to jog your memory might be for you to reread the paper you gave at Armour Institute
(now IIT) in 1957, entitled "The status of automatic programming for scientific problems." It's
the only paper written at the time that tried to present a thorough summary of what was
happening, as far as I know.

Cordially,

Doutuu 111. 1VI1UU1

Professor
DEK/pw
cc: Cuthbert Hurd

m

The first meeting of SHARE - August 22-24, 1955 - Los Angeles.

August 22. 1955

The meeting was opened by a welcome by Paul Armer, our host at Rand Corporation
and was gotten under way by the adoption of an agenda and the election of officers.
The officers are: Chairman, Jack Strong; Vice-Chairman, Don Shell; Secretary,
Fletcher Jones.

It appeared from the beginning that the bulk of the people present were going
into this business of sharing 704 preparation in earnest. There was a first go
round at the items on the agenda covering everything briefly. This was all taken
care of by three-thirty or so in the afternoon. Some things were completely
settled on the first go round but most of the items had to be left for more
detailed discussion on the second time through. It was felt that the establish
ment of the detailed decisions in connection with all items on the agenda would
be left for the most part in the hands of the working committee.

It was intended that the working committee be set up using at least one and not
more than two, or at most three representatives from any one 704 installation.
These people would be left with the responsibility of carrying out the overall
decisions of the policy committee which was essentially the committee of the whole.
This working committee would decide on specific detailed outlines of things
which would be done by each of the installations involved.

I am not going to outline a complete discussion of what went on today because
the secretary will provide us with copies of the minutes of the proceedings.
However, it seems wise to get down on our own record the things that have al
ready been definitely committed. These are as follows:

1. The "battle of the print wheels" is not yet over as John Backus will
undoubtedly learn very soon. It was decided by practically a unamimous
vote of the group that the plus sign and the equal sign should be inter
changed. It was felt by the group present that it would be possible to
accommodate those people who desire echo checking with this system. This
could be done by echo checking the sign positions. If a minus sign was
received in the echo it would be interpreted as negative, otherwise as
positive. This, it seems to me, is not a complete check but ought to be
sufficiently good to satisfy every one who wants to echo check. On the
other hand we do have the advantage with this arrangement of keeping our
plus sign in the twelve row, hence, not completely upsetting the key
punching department.

2. The standard binary card format has been changed again. We are now back
to the point where column 9, row 9 has no significance on the IBM binary
card form. Hence, we will be able to use that column in the manner in which
we have used it heretofore. In order to be able to accommodate this change
the IBM and United Aircraft people have agreed to move the contents of
columns 9 and 10 over to 10 and 11. This permits the same card form to be
used by all of the presently existing assembly programs.

-2-

3. It was agreed by myself along with all others present that the very least
we would do in the way of adopting a standard mnemonic code would be to
communicate all items back and forth in the standard code. It appears at
this juncture that the IBM code, or something very close to it as it now
exists, will ultimately become the standard code. It may be possible to
get our friends at IBM to abandon a lot of their other ideas if they are
permitted to keep this particular one. The whole thing was left up in the
air to a certain extent in today's meeting until the IBM people can find
out what they are permitted to give in the way of modifications of their
code. If it turns out that they can modify nothing at all it may be that
some other code will be adopted. But at any rate when we communicate items
to other members of the SHARE group we will do so through the standard
code whatever it might be.

These are all of the items on which decisions were made today. It remains to be
seen what the decision will be with regard to assembly programs, subroutines and
so on. That will be discussed in another report.

August 23, 1955

Two or three definite conclusions were reached by the meeting of the policy
committee of SHARE today. First of all it was definitely decided to adopt the
IBM mnemonic code as the standard code to be used by the participants in SHARE.
As mentioned in yesterday's report I agreed that we would communicate any of our
own work in this particular code. However, I do not see where it is feasible for
us to abandon our own mnemonic code for our own internal work. An exception which
I made to this had to do with the distribution of material which is immediately
concerned with CAGE. I proposed that any modifications in CAGE itself which are
distributed to other people will be done in our own code. I am certain that this
will not inconvenience anyone for reasons which will be apparent in the discus
sion below.

After a very lengthly discussion, which lasted practically the entire day, it
was finally decided by the group to adopt the IBM assembly system as the interim
standard system. It is proposed that the group should set up criteria for modi
fying this program and that it will be modified to incorporate some of the features
turned up by the other systems which are not now present in the IBM program.

The following is a summary of the discussion which led up to this final decision.
All of the assembly programs which have been written up until now were discussed
in fairly complete detail by their originators. These systems included the
system, CAGE, a Los Alamos system, and the United Aircraft, svst.pm. The program
written at Los Alamos was the only one which differed in a really fundamental
respect from the other three. I am now going to outline the various features of
the other programs which do not now appear in CAGE.

1. All three of the other systems included a fairly simple method of providing
complements in an operation. It was felt by all of these people that in
many cases one really desires to have the complement of locations rather
than the location itself. Machine coding requires three or four steps to
obtain a complement, therefore, it was felt by these people that the
production of complements by the assembly program was a necessary item.

fA* ̂

-3-

2. The only major difference between CAGE and the United Aircraft system is
the ability of the United Aircraft program to handle compound addresses and

j decrements. That is, an address may be made up of the algebraic combination
of several symbolic locations. This result may be obtained by adding two or
more symbols, subtracting, multiplying, dividing or performing any group of
these operations so long as no parentheses are needed to specify the opera
tions.

3. The major difference between the New York IBM assembly program and CAGE is
that their program makes up the symbol tables from those symbols occurring
in address or decrement fields. Any symbols appearing in the location field
which do not also occur in either an address or decrement field do not
appear in the table. This makes it possible to put symbols into a location
field for mnemonic reference only.

4. A further difference which the New York program permitted is the use of
pure numerical symbols. This permits them to accommodate a larger class of
symbols and of course requires a fixed field or something fairly near to
that in order to use it. This also permits the sequencing of locations for
those people who feel that that is a necessary item. A number of people
expressed the feeling that a sequence check of some sort was necessary on
the cards, at least external to the assembly program,

5. The Los Alamos system used a fixed format. It permitted numerical symbols
only. Their system required that the symbols themselves be in sequence
within "blocks".

6. Los Alamos also built into its system the ability to very simply do partial
reassemblies. In fact this particular feature dictated a great deal of the
method used throughout their system. They managed the partial reassembly
feature by causing the program to automatically punch out in binary the
information which is stored in the table of symbols or what they use as
the equivalent of this. This then would make it possible at a later date
to read in this information along with a small piece of the program which
then would be completely re-assembled according to the original assignment
of locations on the original assembly. This they felt was a necessary item
for their applications. It seems that they have many production problems
which are changing as time goes along. They feel that they must accommodate
these changes in the simplest possible way.

After these four systems had been completely batted about for most of the
day and it was finally realized that there was not a great deal to choose among
them, the group began to talk in terms of accepting one of the systems as a
temporary measure and setting up specifications for modifying the system to
include what was felt to be essential items in the other systems. It was decided
that whatever system should be adopted that the composite assembly program which
would result after the modifications that I have mentioned should do everything
that was done by the program that was adopted as a temporary measure. At this
point a vote was taken for preference among the various systems. On this vote
CAGE and the New York system came out exactly even. The Los Alamos system was
completely squashed. The United Aircraft system ran a fairly close third.

-4-

It became apparent to me at this point that what with all of the changing that
was going to be dictated it was fairly obvious that there was practically nothing
to be gained by us having CAGE adopted. It would only mean that we must immedi
ately translate the entire coding of CAGE into the IBM mnemonic code. This would
be a real job in itself. In addition it would be necessary that we supervise the
modification of CAGE in order to accommodate the suggestions that were going to
be forthcoming. It appeared to me that adoption of CAGE by the group would cost
us more in time and trouble than it was going to be worth. Especially in view of
the fact that the IBM mnemonic code had been practically forced upon the group.
So I suggested that it would probably be best for the organization to adopt the
New York system in view of the fact that it already contains a greater number of
bells and whistles than CAGE does. In addition the fact that they set up their
table of symbols in a manner different from the way that we do would make it
easier for them to accommodate the Los Alamos sequencing idea,

I did not wish to introduce a negative note into the proceedings. Therefore, I
did not say that we would be most unhappy if our system were adopted under these
circumstances. But it all turns out well apparently because the New York system
was adopted by the group. This will now leave us free to modify CAGE in any way
that we see fit.

August 24, 1955

Today's meeting was attended by the members of the "working committee" only.
A few things were definitely decided.

The first of these was the final conclusions concerning the mnemonic code to be
adopted. The IBM three-letter code is going to be the standard code for communi
cation, except that the read, write and sense instructions are expanded as
follows:

Read Instructions
RCD

RDR

RPR

RTB

RTD

Read Card Reader

Read Drum

Read Printer

Read Tape in Binary

Read Tape in Decimal

Write Instructions
WDR

WPR

WPU

WTB

WTD

WTS

WTV

Write Drum

Write Printer

Write Punch

Write Tape in Binary

Write Tape in Decimal

Write Tape Simultaneously

Write Cathode Ray Tube

-5-

Sense Instructions
SLN

SLS

SLT

SPR

SPT

SPU

SWT

IOD

CFF

Sense Light On

Sense Lights Off

Sense Light Test and Off

Sense Printer

Sense Printer Test

Sense Punch

Sense Switch Test

Input Output Delay

Change Film Frame

It was also definitely decided that the group should collectively and the various
installations separately express their desire for IBM to place additional opera
tions in the 704. The operations which were to be requested are the following1

1. Copy and add logical word

2. Exclusive or

3. Store index in address

4. Place index in address

5. Logical right shift

6. Store tag

In addition the following was going to be requested:

Backspace file, or if this was not available

Sense beginning of file condition on the backspace instruction.

It was felt in connection with this last request that a read backward instruction
would be the most desirable one. However, it was realized by practically everyone
present that IBM had tried to put a read backward instruction on the 727 tape
unit and that this was extremely difficult to do. Hence, it was felt that we would
ask for a backspace file instruction which should be a reasonable thing to put on
the machine. Along with this it would probably be very desirable to incorporate
an automatic skip on a beginning of tape condition for the backspace file instruc
tion. This would correspond to a beginning of file condition on the backspace
record instruction which would be the same as the backspace tape is now.

It was also decided that certain conventions would be adopted in connection with
subroutines. First of all Index C was always to be used as the linkage index.
The subroutine is responsible for retaining the condition of index registers A
and B and restoring their contents after the subroutine calculation is finished.
The condition of the various triggers in the machine were not to be the concern
of the subroutine. It was felt by the majority that the overflow triggers might
be used to convey a yes or no result back to the main program but in such
instances the subroutines would first reset the triggers themselves. In other

-6-

words the condition of the various triggers in the machine are in a random state
when the subroutine is entered, unless of course the trigger condition is one of
the input parameters to a subroutine.

In general it was felt that for one word input to a subroutine the accumulator
should be used. If a second word of input is needed the MQ should be used. ,.I.f.
more information is needed this should be a part of the calling sequence.
Conversely, when only one result comes from the subroutine it should appear in the
accumulator; two results the accumulator and MQ. If there is more the calling
sequence should specify the locations of the results.

It was decided that when large blocks of data are to be carried along as a group,
such as a matrix, that this block should have data determining its demensions as
part of the block. For example, a method of doing this in a matrix would be to
let the address and decrement of the first word contain the number of rows and
columns respectively of the matrix. A suggestion along these lines was to put
the number of elements in each row into an identification word for that row. The
identification would also include the number of the row for that particular
matrix. It was thought that this was more general and could be used to identify
large matrices which might be in high speed memory only one row at a time.
Another example of this sort of thing would be the identification of the degree
of a polynomial. This identification could be contained in the first word of the
portion of memory containing the coefficients of the polynomial.

In addition to all of this there was time enough for the various people who had
done anything in the way of decimal input and output routines to describe briefly
the specifications of the routines that they had written. Nothing was decided
concerning these. It seems probable that the west coasters in particular will
have to set up specifications for their own routines and perhaps prepare a set
for themselves. The general tenor of the discussion indicated that most people
were going to want to have something in an input output program that was not
contained in any of those discussed.

There was a fair amount of discussion concerning the modification that should be
applied to the New York assembly program in order to have it incorporate the
various advantages of the other assembly systems. There were three things that
it was felt should be added if possible. These are (1) variable field, (2)
compound addressing, and (3) easy partial reassembly features.

Methods were discussed concerning the means of accomplishing item three
especially. Several suggestions were made which seemed to be feasible and which
would make it quite possible to perform partial reassemblies in a simple fashion.
I feel quite certain that the suggestions were made in such a way that it will
be easy to incorporate the change in the New York system. It looks to me as
though this added feature will come without any undue effort.

Items one and two on the other hand are considerably more difficult to accom
modate in the New York system. This is especially true of item two, compound
addressing. In the first place the concept of variable field and pure numerical
symbol are for all practical purposes mutually exclusive. The reason is that in
a variable field it is necessary to have some sort of a character in a symbol

which can be used to distinguish the symbol from a pure numerical constant.
It was, therefore, decided that in order to obtain the feature of compound
addressing especially and variable field if possible it should be agreed to.,
put at least one alphabetic character in all symbols.

At this point the discussion pretty well went to seed. There didn't seem to be
any very bright ideas for getting the feature of compound addressing into the
system as it now stands without in some measure at least destroying the ability
to retain the present format. It was hoped all along that any modifications
which might be made would leave the resulting program in such a condition that
it would be able to assemble cards which are prepared now for assembly on the
present system. It seems to me that if the feature of compound addressing and
variable fields are added to the system it will almost certainly destroy the
program's ability to handle programs written in the present format. The entire
matter was left more or less at this point. It is possible that the people at
IBM and perhaps others can conceive of methods for circumventing this difficulty.
If not this feature will probably not get into the system.

2,r

i j i i l l , i n i < 1 1 1 i n 1 1 i i i l c a L c u L a t i o n » b o t b u s i n e s s .
i n t h e s e r v i c e o f t h e a i r c r a f t i n d u s t r y . I t h e r e f o r e s a w e a r l y
p r o g r a m m i n g f r o m t h a t v i e w » a n d i n d e e d t h a t i s t h e p r i m a r y F o r t r a n
s i d e . L a t e r , u p o n m o v i n g t o I B M , I i n t e r e s t e d m y s e l f i n a l l f o r m s
f o r p r o g r a m m i n g - - s t a r t i n g C o m m e r c i a l T r a n s l a t o r (o r i g i n a l l y C O M T R A N) ,
w h i c h w a s o n e o f t h e t h r e e i n p u t s t o C O B O L .

M y a s s i g n m e n t h a s b e e n t o g i v e a n i m p r e s s i o n o f t h e p r o g r a m m i n g s c e n e
p r i o r t o t h e a d v e n t a n d s p r e a d o f F o r t r a n . I s h a l l s t a r t w i t h m a c h i n e s
t h a t w e r e n o t i n t h e m s e l v e s p r o g r a m m a b l e - - t h e d e s k c a l c u l a t o r s .
D u r i n g W o r l d W a r I I , t h e m a s s o f c a l c u l a t i o n s r e q u i r e d w e r e d o n e i n
p a r t b y a n a l o g d e v i c e s . T h e d i g i t a l p a r t w a s a c c o m p l i s h e d v i a d e s k
c a l c u l a t o r — F r i d e n , M a r c h a n t , M o n r o e . (F i g u r e ?)

T h e p r o g r a m m i n g i n v o l v e d w a s o f o u r o w n m i n d s . T h e a l g o r i t h m f o r
s q u a r e r o o t w a s f i r m l y b u r n e d i n t o m y h e a d a s w e l l a s a n y s e t o f
c o r e s t o r a g e . S o w a s t h e p r o c e s s f o r r o t a t i o n o f c o o r d i n a t e s i n t h r e e
dimensions. /^\VQSV)^)

A f t e r t h e w a r I l e f t t h a t f i e l d f o r a w h i l e , t o b e a n a r c h i t a c t u r a I d r a f t s
m a n a n d s e t d e s i g n e r f o r t h e m o v i e s . W h e n I c a m b a c k i n e a r l y 1 9 4 9 , I
w a s i n t r o d u c e d t o I B m 6 0 1 s a t t h e R A N D C o r p o r a t i o n . (F i g u r e ?) . T h e s e
w r o u g h t - i r o n - b a s e d m o n s t e r s c o u l d d o 5 a d d i t i o n s p e r s e c o n d . R A N D
h a d s i x — t w o o f t h e m c o u l d a l s o m u l t i p l y . T h e y w e r e p r o g r a m m e d b y
p h e n o l i c s t r i p s , i n t o w h i c h t h e p r o g r a m m e r c u t n o t c h e s a n d s l o p e s t o
i n d i c a t e w h e r e t h e c o n c e r n e d f i e l d s o f d a t a s t a r t e d a n d e n d e d i n t h e
c a r d . (M a n u a l o r p i c t u r e ?) . T h e l a s t n o t c h i n t h e s t r i p i s w h e r e t h e
c a r d w a s f i I p p e d o v e r a n d s t a c k e d , t o k e e p t h e s a m e s e q u e n c e . I r e c a l l
t h a t t h e m a n u a l w a s e v e n m o r e o o n f u s i n g a i t h a n t h o s e o f t h o d a y .

S E A C w a s g o i n g t h e n . T h e J O H N N I A C w a s b u i l t a t R A N D , i h e s e w e r e t h e n
p r o g r a m m e d v e r y c l o s e l y t o m a b h i n e i n s t r u c t i o n s . T h e v o l u m e s i d e o f t h e
w o r l d w a s s t i l l I B M , a n d t h a t c a m e i n 1 9 ? ? w h e n R a N D g o t t h e f i r s t 6 0 4 ,
w i t h 2 0 p r o g r a m s t e p s a v a i l a b l e . L l e a r n e d t h e b i n a r y s y s t e m o n t h e
g r a v e y a r d s h i f t b y p u n c h i n g s i n g l e d i g i t s i n a c a r d , f e e d i n g i t , a n
n o t i c i n g w h a t l i g h t s c a m e o n . I t w a s s o c l e v e r I w i s h e d I h a d t h o u g h t o f i t

T h e 4 0 5 ̂ t a b u l a t o r (p r i n t e r) h a d t a u g h t u s y h d w t o (p r o g r a m w i t h p l u g b o a r d s
b e f o r e t h a t . I t d i d i n f a c t d o a r i t h m e t i c f o r t o t a l s , e t c . (I B M T e c h ,
N ew's letters 1-10). The indispenible item was a timing charts to synchr
o n i z e t h e p r o g r a m s t e p s , a c c o r d i n g t o w h e n g r e a r s a n d c a m s g a v e t h e
i m p e t u s . (4 0 7 ~ t i m i n g c h a r t ?) B u t t h e 6 0 4 h a d t u b e s , e l e c t r o n i c o n e s
w i t h n o a i r i n s i d e (a s s e m b l y ?) . H e r e t h e s u c c e s s i v e p r o g r a m s t e p s w e r e
t h e o n l y t i m i n g y o u n e e d e d t o u s e . 2 0 s t e p s w e r e s o o n f o u n d w a n t i n g ,
a n d 6 0 b e c a m e t h e n o r m .

E a c h s t a g e i n q u i t e c o m p l i c a t e d c o m p u t a t i o n s b e c a m e r e p r e s e n t e d b y a
w i r e d 6 0 - s t e p p l u g b o a r d . T h e y w e r e s e l d o m g e n e r a l i z e d a n d t h u s r e u s a b l e .
I r e c k o n t h a t I w i r e d s o m e w h e r e b e t w e e n 7 0 0 a n d 8 0 0 s u c h b o a r d s . T h e
t r i c k w a s t o d o a s m u c h c o m p u t a t i o n a s p o s s i b l e p e r b o a d d . T h e i n t e r
m e d i a t e s t o r a g e w a s a l l p u n c h e d c a r d s . (I l l o s t m y o n l y s e t o f g l a s s e s
o n e d a y i n a n o v e r t u r n i n t h e o c e a n . I r a n t h r u a s e t o f c a r d s a l r e a d y
p u n c h e d b e c u a s e t h e p o r r v i s i o n s a i d t h e y w e r e n e w s t o c k . I h a d t h e
d e v i l o f a t i m e r e c o v e r i n g t h e p r o c e s s) .

O n e o f t h e t h i n g s I n o t i c e d i n p r e p a r i n g t h i s p a p e r w a s t h e
s c a r c i t y o f p u b l i s h e d p a p e r s o n p r o g r a m m i n g m e t h o d s p r i o r t o 1 9 5 6 .
T h e r e w e r e a f e w s p e c i a l i z e d c o n f e r e n c e s o n p r o g r a m m i n g # w i t h p r o c e d d i n g s
b u t p e o p l e s e e m e d t o b e e i t h e r r e l u c t a n t t o t e l l a b o u t t h e i r w o r k a t
t h e n a t i o n a l e v e n t s L i k e t h e J o i n t C o m p u t e r C o n f e r e n c e s # o r e l s e
t h e h a r d w a r e a n d a p p l i c a t i o n p e o p l e d i d n ' t t h i n k i t w o r t h a h e a r i n g ,

u s e d
i i i HrnrfP Yr"i'ur n ; T'TTttrhiinnt"^r n4 y™r" +n n o n Q « r / ? i f r p - n
t o ' e x t r a c t i h a x p r o c e e d i n g s t h r o u g h 1 9 5 5 j f (a n y l a t e r w o u l d b e m e a n i n g l e s s
i n a K X X X X 8 X r r m + a v + n f " R o - f n r o F o r t r a n ") , a n d c l a s g i f i j d t h e i r
contentL

Y e a r

E J C C

I n 1 9 ? ? I f e l t l i k e b e i n g a c o l l e c t o r o f p r o g r a m m i n g s y s t e m s . I w r o t e
t o e v e r y o m e I c o u l d f i n d t o a s k f o r f i v e c o p i e s o f m a n u a l s a n d a s s o c i a t e d
m a t e r i a l s (p r o m o t i o n # e t c .) . I k e p t o n e f o r m y s e l f # T w o w e n t t o
R i c h a r d G o o d m a n a t A P I C , B r i g h t o n (l a t e r t o t h e B C S l i b r a r y) # a n d t w o
w e r e f o r A C M # t h u s s t a r t i n g t h a t R e p o s i t o r y .

I a l s o u n c o v e r e d s o m e m i n o r s t a t i s t i c s i n t h i s w a y # a n d p u b l i s h e d t h e m
i n C A C M (R e f) s) . L a t e r # w h e n w e s t a r t e d s t a n d a r d i z a t i o n o f p r o g r a m m i n g
l a n g u a g e s a t t h e i n t e r n a t i o a l l e v e l # I r a n a s u r v e y o n b e h a l f o f I S O /
T C 9 7 / S C 5 . T h e r e s u l t s w e r e p u b l i s h e d i n C A C M ? (r e f)

H e a d i n g s
A n i n t e r e t s i n g s i d e e f f e c t o c c u r r e d . I w r o t e d i r e c t l y t o t h e a u t h o r s
o f t h e s e s y s t e m s w h e r e v e r e p o s s i b l e . O n e o f t h e q u e s t i o n s w a s w h e n
t h e s y s t e m w a s r e a l l y o p e r a t i o n a l i n a g e n e r a l s e n s e # n o t j u s t d e m o n s t r a b l e
I n e f f e c t # " l a y o f f t h e s a l e s p i t c h e s a n d p u b l i c i t y " . A s a n e x a m p l e #
t h e r e c n e t b o o k b y L a v i n g t o n (r e f) a b o u t t h e M a n h c e s t e r c o m p u t e r s
c o n t a i n e d t h i s s t a t e m e n t :

H o w e v e r # y o u w i l l n o t i c e t h a t B r o o k e r h i m s e l f s a i d ? ? ? ? ? w a s t h e r e a l
d a t e .

s l i d e / f i g u r e

Cys: J. A. N. Lee
IBM Corporation
Dept. M43/D27

, : 555 Bailey Avenue
\/ San Jose, CA 95150

CRMO w/o enc. (2), MS 150
OS-4 File

Distribution:

John Backus
t^IBM Corporation

91 St. Germain Avenue
San Francisco, CA 94114

(/

Jeanne Adams
NCAR
P. 0. Box 3000
Boulder, CO 80303

Bruce Rosenblatt
Standard Oil of California
P. 0. Box 3069
San Francisco, CA 94119

i/

Hal Stern
7 West End Ave.

Apt. 10F
New York, NY 10025

Richard Goldberg
IBM Research Division
P. 0. Box 218
Yorktown Heights, NY 10598

Robert A. Hughes
Lawrence Livermore National Laboratory
P. 0. Box 808
Livermore, CA 94450

Herbert S„ Bright
7840 Aberdeen Road
Bethesda, MD 20014

William Heising
IBM Corporation
Dept. E57, Bldgo 702-1
Poughkeepsie, NY 12602

Daniel McCracken
7 Sherwood Avenue
Ossining, NY 10562

Martin Greenfield
Honeywell Information Systems
300 Concord Road
Billerica, MA 01821

Robert Bemer
3 Moon Mountain Trail
Phoenix, AZ 85023

Roy Nutt
Computer Sciences Corporation
650 N. Sepulveda Blvd.
El Segundo, 90245

John McPherson
P. 0. Box 333
Short Hills, NJ 07078

i/

James Sakoda
Director, Social Science Data Center
Brown University
Providence, RI 02912

Fran Allen
IBM Research Center
Yorktown Heights, NY 10598

Charles Davidson
Dept. of Electrical Engineering
B-544 Engineering Bldg„
University of Wisconsin
Madison, WI 53706

C ONFFRLNCL C H AIRMAN
Russell k. Brown. CDF
3420 Yoakum Boulevard
Houston, Texas 77CXVi
713-524-3420

^^K.RAM CHAIRMAN
^^^Pard L. Morgan
^^partmcm of Decision Sciences
The Wharton School CC
Philadelphia, PA 19104
215-243-7731

PROGRAM VICE-CHAIRMAN
Eric K. Clemons
Associate Professor of Decision Sciences
The Wharton School/CC
University of Pennsylvania
Philadelphia, PA 19104
215-243-7747

PROFESSIONAL DF\ ELOPMENT SEMINARS
Joseph Campisi
Aetna &. Casualty
151 Farmington Avenue
Hartford, CT 06156
203-273-3611

NCCC LIAISON
Harvey Garner
University of Pennsylvania
Moore School D-2
Philadelphia, PA 19104
215-243-4787

PIONEER DAT
J.A.N. Lee
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
703-% 1-6931

PLENART SESSIONS
Susan Rosenbaum

^*5. Box 3509
New Brunswick, NJ 08903
201-457-2664

VICE-CHAIRMAN (PROGRAM ACTIVITIES)
Robert Stirling
IBM Corporation
1133 Westchester Ave.
White Plains, NY 10604
914-696-4251

PROGRAM COMMIT! LK
Gene P. Altshuler
O. Peter Buncmar
James F. Emery
Dennis Frailev
Robert Frankston
Randall Jensen
Beverly K. kahn
Alan N. Smith
Amy D. Wohl

AFIPS PROJECT MANAGER
Sam I ippman
AFIPS
1815 N. Lynn Street
Suite 800
Arlington, VA 22209
703-558-3614

American Federation of Information Processing Societi<
Association for Computing Machinery
Data Processing Management Association
IEEE Computer Society
Society for Computer Simulation

Reply to: John A. N. Lee
Pioneer Day Chairman

1982 April 26

1982
National
Computer
Conference
Astrohall
Houston, Texas
June 7-10, 1982

Charles Davidson
University of Wisconsin

B-554 Engineering Bldg

MADISON WI 53706

Dear Charlie,

As part of the preparation for PIONEER DAY and as part

of the general collection of material for the archives
which we are creating for FORTRAN, I have been interviewing
some of the people involved in the early years. Mainly
this is predicated on my being in their home—town on some

other mission and having the time, rather than any
planned series of visits. During February I visited
Phoenix AZ and took the opportunity to conduct an hour's

taped interview with Bob Bemer on the topics of
FOR TRANSIT and ALGOL. During that interview Bemer

pointed out that he was the author of the PRINT I system

which he claimed to be the first load-and-go processor.

Knowing that you are preparing a short talk for NCC on
the topic of load—and—go systems for FORTRAN, I thought
that you might be interested in this comment/claim and
would be willing to follow it up with Bob. You both are

on the program and thus could complement each other

quite nicely on this matter.

^Looking forward to seeing you in Houston,

(Best wishes,

Mc
/john A. N. Lee

Professor

Bob Bemer
2 Moon Mtn. Trail
Phoenix AZ 85023

2 Moon Mountain Trail, Phoenix, AZ 85023

1982 April 28

Prof. Charles Davidson

Dept. of Computer Sciences
University of Wisconsin

Madison, WI 53706

Dear Charlie:

Here is some background information for your NCC talk on the
origins of load-and-go systems, as promised via telephone.

Attached are four items, marked up for comment:

1. Sample output of the PRINT 1 system for the IBM 705.

2. Pages from the first PRINT 1 manual.

3. Pages from the first production issue of the PRINT 1

manuaI.

4. Appropriate pages from the Franklin Institute Mono

graph .

The Output

PRINT stood for "PRe-edited INTerpretive". I have marked

the source and object code, the latter being the pre-edited
output (the "source" and "object" terms came later with

FORTRAN). The fact that the object code is not machine in

structions is of no matter — observe the P-code of Western
Digital's PASCAL machine. If I had had today's chips avail

able then, I could have put the 6000 some characters of the

executive interpreter into one.

The First PRINT Manual

I went to IBM in 1955 December, specifically to do some sort

of scientific coding system for the IBM 705. Even though it
was primarily a commercial machine, IBM understood that its
customers had both types of needs.

I designed PRINT 1, and presented it on 1956 February 8 at

the Western Joint Computer Conference. The single paragraph

on system entry did not elaborate on the features. This pre
liminary manual, quoting the summer of 1956 as the future,

was probably put out in May. The system was operational for

some customers by 1956 August, for all by September.

This is probably the first mention of the Load-and-go fea

ture in PRINT 1. Item 3 shows that execution could be de
ferred. A backward way of stating it, but my thought was
that execution should usually take place right after the ob

ject code was obtained, and this is reflected in Item 4 by
the word "immediately".

The Intermediate Manual

Note how the cover of the first manual (core planes) corre
sponds to the early FORTRAN manual, and how this cover cor
responds to the production FORTRAN manual. I 'm not sure
which was issued first. The ISO TC97/5 survey gives a date
of 1956 October for the PRINT 1 manual.

A l ittle more detail is given here about the human process.
On page 7 it was asserted that this is really a compilation
process. On page 45, note the concept of "alter" cards
against the master source program on tape. On page 46, exe
cuting object code created sometime previously is shown as
the exception.

The Franklin Institute Presentation

A memorable, and perhaps historic, occasion. I believe I met
Grace Hopper there for the first time. One can note that I
reported formally to John Backus. At that time I was con
centrating on FORTRANSIT.

The essence of compilation is shown on page 35. I emphasize
this because of its relation to most load-and-go systems.
Other underlined words will assist an understanding of the
load-and-go characteristics. I guess I must have been one
of the earliest users of the term "timesharing".

I don't recall any more when I first knew Jack Laffan. Some
one might ask him if he was familiar with the PRINT 1 sys
tem. I did circulate around Endicott and Poughkeepsie, and
many seminars on automatic coding were held within IBM.

Cordially,

A cA
R. W. Bemer

cc: J. A. N. Lee

Computing prior to FORTRAN

by R. W. BEMER
Honeywell Information Systems
Phoenix, Arizona

ABSTRACT

The life of the programmer in pre-FORTRAN days is characterized in modern
terminology, indicating how strongly FORTRAN has changed the programmer's
condition and working habits.

811

Computing Prior to FORTRAN 813

The 25 years since the introduction of FORTRAN covers
most of programming as we know it, certainly in volume of
usage. To minimize any possible communications gap, I have
chosen to describe how it was before that watershed event by
means of some of the terminology and buzzwords of today:

1. Conferences and published papers
2. Computer science education
3. Stored programming
4. Structured programming
5. Program portability
6. Performance measurement
7. Communications and timesharing
8. Compilers
9. Data independence

10. Software piece parts
11. Software packages

The technical history of early programming languages has
been covered by many authors (it became a popular subject),
so I'll confine my contribution to more general areas.

CONFERENCES AND PUBLISHED PAPERS

Publication of software papers in pre-FORTRAN days was far
less prolific than now. And it wasn't yet "software." Papers on
software techniques prior to FORTRAN are given,2~42 as
found (mostly) in Youden's "Computer Literature Bibliog
raphy 1946 to 1963.They're given in best chronological
order. To avoid duplication, sources with multiple papers are
referenced separately, and the individual papers are given
decimal notation.

Doing an analysis of the paper content of the early Joint

TABLE I—Paper distribution of early JCCs

Hard Appli Soft
Year JCC ware cations ware

1951 Eastern 16 2 0
1952 Eastern 26 0 0
1953 Western 8 11 0
1953 Eastern 18 4 1
1954 Western 8 14 0
1954 Eastern 9 7 2
1955 Western 6 16 1
1955 Eastern 6 9 1
1956 Western 18 10 6
1956 Eastern 29 0 0
1957 Western 28 4 3

Computer Conferences (the only continuing national meet
ings of that era) yields the counts shown in Table I. The last
entry is the meeting at which FORTRAN was presented.

The summary pre-FORTRAN count is that of Table II.

TABLE II—Paper distribution by conference location

Hard Appli Soft
JCC ware cations ware H/A H/S

Eastern 104 22 4 4.7 26.0
Western 68 55 10 1.2 5.5

Total 172 77 14 2.2 12.3
% 65 29 5

COMPUTER SCIENCE EDUCATION

This was just starting, and in just a few schools. When you
hired a programmer then, you didn't ask about a degree in
computer science; there weren't any. IBM used its Program
mer's Aptitude Test as one screening method, and it worked
somewhat, but people had a tendency to read more into it
than was warranted.

A lot of us had our own pet questions, for we were taking
them off the street. Magazine writers were curious about how
one became a programmer. Dave Sayre had been a crys-
tallographer, and Sid Noble and Art Bisguier were hired when
I, an ex-movie set designer, advertised for chess players.

Although there may not have been enough collected the
ories to support specific degrees, the university people were
all busy creating courses. The summer sessions at MIT and
Michigan brought many practioners together. Language pro
cessors were being built there and at Purdue, Pennsylvania,
Carnegie Tech, Case, UCLA, and many others.

STORED PROGRAMMING

Programs have always been "stored programs." The only dif
ference is in where they were stored. In desk calculator days—
in our heads. To program the IBM 601, one had to file notches
in a phenolic strip, and they were stored in a box or hung on
the machine. The IBM 604 was programmed by wires placed
in plugboards, and often we stored them for reuse, if they
were general enough. More often they were unwired for a new
program (I wired about 700-800 60-step boards for the 604).

For the CPC the program was obviously in the cards. Bob
Bosak and I devised a card system with 4 different tracks of
3-operand instructions, and so could feed a deck of cards
continuously in a loop.

814 National Computer Conference, 1982

STRUCTURED PROGRAMMING

Structure in programs is generally ascribed to Wilkes,
Wheeler, and Gill,5 in their book on programming for the
EDSAC. The subroutine was the first element of structure,
and was generally accepted by programmers, particularly
those writing interpretive systems.

We had no DO UNTILs or semaphores at our disposal, but
many programs had a structure that's all but forgotten now. It
was called "optimum programming," a method of placing
sequential instructions just right on a magnetic drum, so they
would be ready to read just after the previous instruction was
completed.

PROGRAM PORTABILITY

The first way used to reconcile the differences between two
types of computer was to recode the problem. The second way
was to write a programmed interpretive emulator for one
machine in the code of the other. When this resulted in per
formance degradation of 100:1 up to 1000:1 it lost a certain
amount of favor.43'44

The third way was to use the source language of the inter
preter and write another interpreter for the second machine.
This had some success, because the degradation was often not
very high (except for extremely dissimilar machines), and it
could even run faster! Several of these were made.44 If ma
chines of today's speeds had suddenly been introduced then,
this may have become commonplace; compilers might have a
different role. Even now, after thousands of compilers, inter
preters still enjoy a considerable vogue. The fourth way, with
different compilers, did not to my knowledge receive substan
tial usage until FORTRANSIT, and even there the portabil
ity path from a 704 to a 650 was difficult because the 650
supported fewer index registers.

PERFORMANCE MEASUREMENT

Although no hardware instrumentation was available for
probes, much performance measurement did occur. It was
vital because the computers were too slow for the amount of
calculation waiting to be performed. While working at Mar-
quardt, I was chastised one day by my boss, for not shaving.
It was caused by being up since the previous morning running
a trajectory simulation on the CPC. Under such circum
stances, everyone wanted programs to run as fast as they
could. That was why the program optimizers for drum ma
chines (like SOAP) were so heavily used.

When the 701 superseded the CPC, the balance between
user and machine changed. One man at the RAND Cor
poration took two years to program a problem that ran in two
minutes. He experienced considerable culture shock.

There was competition everywhere to have the fastest pro
gram for a given task, quite often a mathematical subroutine.
When published, those subroutines always had timing associ
ated so the user could plan wisely. The situation was much the
same as in the early days of microcomputers. Jewel work was
needed, and the domain was small enough to see and measure
something. There was even competition between software and

hardware people. The 705 engineers were shocked when a
programmed divide ran faster than the hardware instruction
—without firmware, they could not program a Newtonian
iteration.

I suspect that FORTRAN itself had much to do with the
temporary hibernation of performance evaluation. After pro
gramming in the other languages, it gave so much power be
cause of the ease of use (and the efficiencies were incorpo
rated for you in the compiler), that the number of user of
computers could expand much more rapidly. It wasn't until
operating systems came into heavy use that we rediscovered
the need to prevent waste.

COMMUNICATIONS AND TIMESHARING

It wasn't Ethernet, but George Stibitz had tied into a relay
computer by way of a Teletype—in 1940. SAGE was one of
the first major projects to use direct inputs from communica
tions lines. FORTRAN wasn't available when it began, and
couldn't have been used for much of the job if it had, for it
wasn't just a scientific problem.

Timesharing was just talk. The first time I find the word
appearing is in a J. W. Forgie paper on the input-output
system for the Lincoln TX-2 computer, concurrent with the
1957 FORTRAN paper. I proposed such usage in an article
the next month; it was suggested that IBM should fire me,
because that wasn't in line with their policy.

COMPILERS

Compilers existed before FORTRAN, but they were all rudi
mentary in comparison. Grace Hopper, chief pioneer of the
concept, might have gone faster further if she had had the type
of support given to Backus and his group. IT, A2 and A3
were true compilers, but they avoided interactions and
optimization.

DATA INDEPENDENCE

This concept arose with the commercial compiler languages.
Grace Hopper and company wrought the Data Division con
cept. Scientific languages all stuck to floating point, with in
tegers for loop control.

Data structure was usually built into the program, and it
didn't seem important, because hardly any interchange of
programs took place between different computers. Even if
that were possible one could not necessarily get the same
answers due to different hardware characteristics.

SOFTWARE PIECE PARTS

Piece parts for software first came to attention at the first
Software Engineering conference in 1968, proposed by Doug
Mcllroy. However, Bob Glass makes a convincing case45 that
they were in existence before FORTRAN, certainly via the
SHARE organization. Indeed they were necessary to counter
act the inefficiencies of working without such compilers.

Computing Prior to FORTRAN 815

SOFTWARE PACKAGES

In the modern sense the software package did not exist, for
today they cost money. Before FORTRAN it was unthinkable
to sell software, although the packages did exist. They were
traded or given away. Examples are several general CPC
boards, plus the many 650 packages published in the IBM
Technical Newsletter No. 10.27

There is no doubt that packages existed. They were source
programs for interpretation, not compiled source as today. A
buzzword of the times was "abstraction." Douglas Aircraft
had a "matrix abstraction," for example.23 It manipulated
matrices and performed combinatory functions. Ergo, if your
problem could be expressed in matrix form, it could be solved.
So it was urged that all problems be expressed this way, a not
altogether natural way of use. But many of today's software
packages have similar contortional requirements upon the
user.

Codes for nuclear computation also fell in the category of
software packages, even if they were exchanged in machine
language form. Hundreds of these codes were disseminated.

SUMMARY

I'm enjoying the developments of today, but my pleasure is a
bit spoiled by the terrible waste in software development, and
so much poor software. It's tempting to recall Miniver
Cheevy, who loved "the medieval grace of iron clothing."
Software before FORTRAN could be considered quite me
dieval, even primitive, but there were certain graces.

From my starting in the computer field in early 1949, until
FORTRAN arrived, I was either working too hard to see the
Peter Principle in effect, or else it didn't exist in such a virulent
form. It was exciting to build software then. We had manage
ment support and trust for whatever we thought was possible.
The number of levels of management was low, and the control
tenuous. I reported to John Backus in FORTRAN days, but
never felt the slightest pressure. I looked upon him as a friend,
not a menace. So today we have better tools and knowledge,
and theories of program correctness and such. I don't think
that they have added to the fun and excitement of Computing
Prior To FORTRAN!

REFERENCES

1. Youden, W. W. "Computer Literature Bibliography 1946 to 1963." US
Natl. Bur. Standards Misc. Publ. 266, 1965 Mar 31.

2. Wilkinson, J. H. "Coding on automatic digital computing machines."
Report Conf. on High Speed Automatic Calculating-Machines, Univ.
Math. Lab., Cambridge, England, 1949 Jun 22-25, 28-35.

3. Huskey, H. D. "Semiautomatic instruction on the Zephyr." Proc. 2nd
Symp. on Large-scale Digital Calculating Machinery, Cambridge, MA,
1949 Sep 13-16, 83-90, Harvard U. Press, 1951, Annals Vol. 26.

4. Stowe, L. "Programming." Office of Naval Research Seminar on Data
Handling and Automatic Computing, Washington, DC, 1951 Feb
26-Mar 6, 79-84.

5. Wilkes, M. V., D. J. Wheeler, S. Gill. "The Preparation of Programs
for a Digital Computer." Addison-Wesley Press, Cambridge, MA,
1951.

6. Proc. ACM Conf., 1952 May, Pittsburgh, PA.
6.1 Adams, C. W. "Small problems on large computers." 99-102.
6.2 Lipkis, R. "The use of subroutines on SWAC." 231-234.

6.3 Wheeler, D. J. "The use of subroutines in programmes," 235-236.
6.4 Carr, J. W. III. "Progress of the Whirlwind computer towards an auto

matic programming procedure." 237-242.
6.5 Hopper, G. M. "The education of a computer." 243-250.
7. Proc. ACM Conf., 1952, Toronto.
7.1 Ridgway, R. K. "Compiling routines." 1-5.
7.2 Isaac, E. J. "Machine aids to coding." 17-28.
7.3 Strachey, C. S. "Logical or non-mathematical programmes." 46-49.
7.4 Bennett, J. M., D. G. Prinz, M. L. Woods. "Interpretative sub

routines." 81-87.
8. Rutishauser, H. "Automatische Rechenplanfertigung bei programmge-

steuterten Rechenmaschinen." Mitteilung aus dem Institut fur an-
gewandte Mathematik, Basel, 1952, 1-45.

9. Rochester, N. "Symbolic programming." PGEC (IRE Transactions on
Electronic Computers), Vol. EC-2, No. 1, New York, 1953 Mar, 10—15.
LC Card 57-39723.

10. Hopper, G. M. "Compiling routines." Computers and Automation 2,
No. 4, 1953 May, 1-5.

11. Hopper, G. M., J. W. Mauchly. "Influence of programming techniques
on the design of computers." Proc. IRE 41, No. 10, 1953 Oct, 1250-54.

12. Bouricius, W. G. "Operating experience with the Los Alamos 701."
Proc. Eastern Joint Comput. Conf., 1953 Dec 8-10, 45-47.

13. Bennett, J. M., A. E. Glennie. "Programming for high-speed digital
calculating machines." In "Faster than Thought." B. V. Bowden, Lon
don, Pitman, 1953, 101-116. LC Card 54-15305.

14. Wilkes, M. V. "The use of a 'Floating Address' system for orders in an
automatic digital computer." Proc. Camb. Phil. Soc., 49, Part I, 1953,
84.

15. Laning, J. H., N. Zierler. "A program for translation of mathematical
equations for Whirlwind I." Engg. Memo. E-364, M.I.T. Instr. Lab.,
1954 Jan.

16. Backus, J. W. "The IBM 701 speed-coding system." J. ACM 1, No. 1,
1954 Jan, 4-6.

17. Symposium on Automatic Programming for Digital Computers, Office
of Naval Research, Washington, DC, 1954 May 13-14. LC Card
56-60789 rev.

17.1 G. Hopper. "G. M. Automatic programming definitions." 1-5.
17.2 Moser, N. B. "Compiler method of automatic programming." 15-21.
17.3 Waite, J. "Editing generators." 22-29.
17.4 Goldfinger, R. "New York University compiler system." 30-33.
17.5 Holberton, F. E. "Application of automatic coding to logical pro

cesses." 34-39.
17.6 Adams, C. W., J. H. Laning, Jr. "The M.I.T. systems of automatic

coding: Comprehensive, Summer Session and Algebraic." 40-68.
17.7 Muller, D. E. "Interpretive routines in the Illiac library." 69-73.
17.8 Gorn, S. "Planning universal semiautomatic coding." 74-83.
17.9 Brown, J. H., J. W. Carr III. "Automatic programming and its devel

opment on the MIDAC." 84-98.
17.10 Livingston, H. M. "Automatic programming on the Burroughs Labora

tory computer." 99-105.
17.11 Backus, J. W., H. Herrick. "IBM 701 speedcoding and other automatic-

programming systems." 106-113.
17.12 Elmore, M. "The LMO edit compiler," 114-116.
17.13 Keller, A., R. A. Butterworth. "Programming for the IBM 701 elec

tronic data processing machine with repetitively used functions."
117-149.

18. Jones, J. L. "A survey of automatic coding techniques for digital com
puters." M.S. Thesis, M.I.T., 1954 May.

19. Proc. Eastern Joint Comput. Conf. 1954 Dec 8-10.
19.1 Rice, R. Jr. "Why not try a plugboard?" 4-10.
19.2 Krider, L. D. "Applications of automatic coding to small calculators."

64-67.
20. Rutishauser, H. "Some programming techniques for the ERMETH." J.

ACM 2, No. 1, 1955 Jan, 1-4.
21. Herbst, E., N. Metropolis, M. B. Wells. "Analysis of problem codes on

the MANIAC." M.T.A.C. 9, No. 49, 1955 Jan, 14-20.
22. Hopper, G. M. "Automatic programming of digital computers." Proc.

High Speed Comput. Conf., Baton Rouge, LA, 1955 Feb 16, 113-118.
LC Card 57-63206.

23. Denke, P. H., I. V. Boldt. "A general digital computer program for
static stress analysis." Proc. Western Joint Comput. Conf., 1955 Mar
1-3, 72-78.

24. Bradshaw, T. F. "Automatic data processing methods." Proc. Auto.

816 National Computer Conference, 1982

Data Proc. Conf., Cambridge, MA, 1955 Sep 8-9, 3-27, Harvard U.
Press, 1956.

25. "Automatic programming the A-2 compiler system." Parts 1 and 2,
Computers and Automation, 4, Nos. 9 and 10, 1955 Sep and Oct.

26. Electronic Digital Computers and Information Processing, Darmstadt,
Germany, 1955 Oct 25-27, F Vieweg, Braunschweig, 1956. LC Card
59-18764.

26.1 Rutishauser, H. "Methods to simplify programming, 5 years work with
the Z4 computer" (German), 26-30.

26.2 Samelson, K. "Problems of programming techniques" (German),
141-142.

26.3 Lehmann, M. J. "Automatic computer programming" (German), 143.
26.4 Loopstra, B. J. "Processing of formulas by machines." 146-147.
26.5 Thuring, B. "The automatic programming of Univac by the A-2 com

piler system." (German), 154-156.
27. Technical Newsletter No. 10, IBM Applied Science Division, New York

1955 Oct.
27.1 Ruthrauff, R. E. "Symbolic coding and assembly for the IBM Type

650." 5-14.
27.2 Horner, J. T. "Relative programming for the IBM Type 650." 15-27.
27.3 Bosak, R. "Development of a floating decimal abstract coding system

(FACS)." 28-30.
27.4 Bemer, R. W. et al. (Lockheed MSD). "A general utility system for the

IBM Type 650." 31-48.
27.5 Mandelin. A. R.. K. D. Weaver. "A selective automonitoring tracing

routine called SAM." 49-62.
27.6 Battin, R. H., R. J. O'Keefe, M. E. Petrick. "The MIT Instrumentation

Laboratory automatic coding 650 program." 63-79.
27.7 Titus, C. K. "An integrated computation system for the IBM 650."

80-89.
28. Hume, J. N. P., B. H. Worsley. "TRANSCODE, a system of automatic

coding for FERUT." J. ACM 2, No. 4. 1955 Oct, 243-252.
29. T. Gorman, T. P., G. Kelly, R. B. Reddy. "Automatic coding for the

IBM 701." J. ACM 2, No. 4, 1955 Oct, 253-261.
30. C. Adams, C. W. "Developments in programming research." Proc.

Eastern Joint Computer Conf., 1955 Nov 7-9, 75-79.
31. Gordon, B. "An optimizing program for the IBM 650." J. ACM 3, No.

1, 1956 Jan, 3-5.
32. Proc. High Speed Computer Conference, Baton Rouge, LA, 1956 Feb.

LC Card 57-63206.
32.1 Hopper. G. M. "Automatic coding techniques 1955." 6-12.
32.2 Heller, J. "Mathematical service routines." 151-153.
32.3 Perry. D. P. "Specifications for an automatic matrix program."

210-215.
33. Proc. Western Joint Computer Conf. 1956 Feb 7-9.
33.1 Ross, D. T. "Gestalt programming, a new concept in automatic pro

gramming." 5-9.
33.2 Grems, M.. R. E. Porter. "A truly automatic programming system."

10-20.
33.3 Moncrieff, B. "An automatic supervisor for the IBM 702." 21-25.
33.4 Bemer, R. W. "PRINT I, a proposed coding system for the IBM Type

705." 45-48.
33.5 Goldfinger, R. "The IBM Type 705 Autocoder." 49-51.
33.6 Meek. H. V. "An experimental monitoring routine for the IBM 705."

68-69.
34. Brooker, R. A. "The programming strategy used with the Manchester

University Mark I computer." IEEE Conf. on Digital Computer Tech
niques, Suppl. Part B. Vol. 103, London, 1956 Apr 9-13.

35. Perkins, R. "EASIAC. a pseudo-computer." J. ACM 3, No. 2, 1956
Apr, 65-72.

36. Bauer, W. F. "An integrated computation system for the ERA-1103."
J. ACM 3, No. 3, 1956 Jul, 181-185.

37. Blum, E. K. "Automatic digital encoding system II (ADES II)." Proc.
ACM Conf. 1956, 29.

38. Chipps, J., M. Koschmann, S. Orgel, A. J. Perlis, J. Smith. "A mathe
matical language compiler." Proc. ACM Conf. 1956, 31.

39. Symp. Advanced Programming Methods for Digital Computers. 1956
June 28-29, ONR Report ACR-15, 1956 Oct.

39.1 Hopper, G. M. "The interlude 1954 to 1956." 1-2.
39.2 Wegstein, J. H. "Automatic coding principles." 3-6.
39.3 Thompson, C. E. "Development of common language automatic pro

gramming systems." 7-14.
39.4 Benington, H. D. "Production of large computer programs." 15-28.
39.5 Jones, F. "SHARE, a study in the reduction of redundant programming

efforts through the promotion of inter-installation communication."
29-34.

39.6 Carr, J. W. Ill, B. Arden, "Advanced programming techniques with
smaller computers." 35-38.

39.7 Goldstein, M. "Computing at Los Alamos, Group T-l." 39-44.
39.8 Wells, M. "Coding for the MANIAC." 45-48.
39.9 Holberton, F. E. "Proposed advanced coding system for the UNIVAC-

LARC." 49-56.
39.10 Waite, J. H. Jr. "RCA approach to automatic coding for commercial

problems." 57-66.
39.11 Selfridge. R. G. "The PACT compiler for the 701." 67-70.
39.12 Blum, E. K. "Automatic digital encoding system II." 71-76.
40. J. ACM 4, No. 4, 1956 Oct.
40.1 Melahn, W. S. "A description of a cooperative venture in the produc

tion of an automatic coding system." 266-271.
40.2 Baker, C. L. "The PACT I coding system for the IBM Type 701."

272-278.
40.3 Mock, O. R. "The logical organization of the PACT I compiler."

279-287.
40.4 Miller, R. C. Jr., B. G. Oldfield. "Producing computer instructions for

the PACT I compiler." 288-291.
40.5 Hempstead, G., J. I. Schwartz. "PACT loop expansion." 292-298.
40.6 Derr, J. I.. R. C. Luke. "Semiautomatic allocation of data storage for

PACT I." 299-308.
40.7 Greenwald, I. D., H. G. Martin. "Conclusions after using the PACT I

advanced coding technique." 309-313.
41. Symp. on Automatic Coding, Franklin Institute, Philadelphia, PA, 1957

Jan 24-25, Monograph No. 3.
41.1 Petersen, R. M. "Automatic coding at G.E." 3-16.
41.2 Katz, C. "Systems of debugging automatic coding." 17-28.
41.3 Bemer, R. W. "PRINTI,anautomaticcodingsystemfortheIBM705."

29-38.
41.4 Kinzler, H. M., P. M. Moskowitz. "The procedure translator, a system

of automatic coding." 39-56.
41.5 McGee, R. C. "Omnicode, a common language programming system."

57-70.
41.6 McGinn. L. C. "A matrix compiler for Univac." 71-86.
41.7 Perlis. A. J., J. W. Smith. "A mathematical language compiler."

87-102.
41.8 Yowell, E. C. "A mechanized approach to automatic coding." 103 ff.
42. Proc. Western Joint Computer Conf. 1957 Feb 26-28.
42.1 Grems, M. D., R. K. Smith, W. Stadler. "Diagnostic techniques im

prove reliability." 172-178.
42.2 Baskus, J. W.. R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.

Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R.
A. Hughes, R. Nutt. "The Fortran automatic coding system." 188-197.

42.3 Newell, A., J. C. Shaw. "Programming the Logic theory machine."
230-240.

43. Table. Comm. ACM 1. No. 2, 4.
44. Tables, Comm. ACM 1, No. 11, 5-6.
45. Glass, R. L. "Software parts nostalgia." in Reader's Forum, Datama

tion 27, No. 12, 1981 Nov, 245-247.

PLUS: THE INltbKAicu rnujtCT SUPPORT ENVIRONMENT
FORTRAN AT 30 MODELING WITH MICROS

lOUTPUT
zCHNOLOGY

\CORPORATION

Standard features are better than ever!

• 5 to 18.2 Pitch Printing
• Front Panel Menu

Programming
(No DIP Switches)

• Quietized Enclosure
• EPSON & DEC Emulations

• 8K Data Buffers
• Serial & Parallel Ports
• Convenient Front &

Bottom Paper Feed
• Full International

Character Set

OTC. . . A n A m e r i c a n W i n n e r !
Call today for more details.

1-800-422-4850(8 am - 5 pm PST)

E. 9922 Montgomery, Suite #6. Spokane. WA 99206
(509)926-3855. 1-800-422-4850
Telex 415-2269 OUTPUTSPOK FAX 4922-4742

• Lightning fast at 850 cps (240 Ipm throughput)
• Continuous printing capabilities with no overheating

or unnecessary downtime!
• Over 120 local service centers nationwide to keep

your jobs running day and night!'

The waiting game is over, as the 850XL takes on
mountains of data, round the clock, with no duty cycle
restrictions! Any printing application you need is
handled with rapid-fire reliability:

Data Processing • Bar Codes • Labels
Financials • Spreadsheets • Graphics

• Near-letter Quality

Fast—850
And It
And Runs . . . And Runs . .
The fastest serial dot matrix
printer on the market today!
The all new 850XL offers a world of benefits!

CIRCLE 1 ON READER CARD

LANGUAGES

FORTRAN at 30:
Formula for Success
Although it is beginning to give way to other
languages in some areas, FORTRAN is still healthy,
30 years after its birth.
BY STEPHEN G. DAVIS
In 1961, Robert W. Bemer, who was then
a manager in programming research at
IBM, saw just what the computing world
needed in the high-level language de
fined by the international ALGOL 60 com
mittee. "I have enough faith in the even
tual future of ALGOL," Bemer wrote in
the British Computer Society's Comput
er Bulletin, "to have caused a program to

constructed which converts from FOR
TRAN source language into a rather stu-
5 pid ALGOL." As for FORTRAN, an IBM inno-
f vation that had begun spreading to other
| manufacturers' machines, Bemer in-
| sisted, "Its purpose has been served."

Thirty years ago this month, IBM de
livered its first FORTRAN (formula transla
tion) card deck for the model 704 com
puter, a binary scientific machine that
featured miniaturized vacuum tubes.
While slightly past its peak, FORTRAN en
ters its fourth decade a healthy, vital lan
guage, hardly lacking for purposes to
serve. Today, FORTRAN is the dominant
high-level language in supercomputing
and remains the practical standard
throughout the scientific and engineer
ing realm. Vendors with significant new
FORTRAN releases in the past year range
from Cray Research, with its CFT 77, to
Microsoft, with MS FORTRAN 4.0.

Meanwhile, the first widely used

machine-independent language contin
ues to be modernized. The next, so-
called FORTRAN 8X language definition
that's due from the American National
Standards Institute and the International
Standards Organization may enter its
public review phase this year. Already,
some nonstandard FORTRAN compilers
include statements for programming bit
mapped displays and parallel proces
sors—hardware that was barely fath
omed in the vacuum tube era.

The reasons FORTRAN first became
a de facto standard, according to dp in
dustry veterans and FORTRAN pioneers,
were simple and compelling: the lan
guage was relatively easy to learn and
was available on a variety of machines al
most from the start. Above all, FORTRAN
compilers typically produced fast code.
To this formula for success, today's us
ers add such factors as the wealth of ex
isting programs, the broad base of users
who know the language, and—less favor
ably—inertia.

FORTRAN'S broad user base does not
come from the business dp side. Only 4%
of the IBM mainframe sites polled by

FORTRAN GRAFFITI: Among the 1953-1957 IBM FORTRAN developers were Roy Nutt, Sheldon Best, Lois Haibt, and David Sayre.

Behind the News

DATAMATION • APRIL 1, 1987 47

Computer Intelligence, a La Jolla, Calif.,
research firm, use FORTRAN as a primary
language. FORTRAN placed a respectable
fourth among all languages in the survey,
but far behind COBOL, the choice of 80%
of Computer Intelligence's roughly
11,000 IBM mainframe respondents.

Among scientific and engineering
users, on the other hand, FORTRAN
reigns. Computer Intelligence's latest
survey of 9,000 DEC VAX sites, for ex
ample, divides fairly evenly between
science/engineering and business dp ap
plications; 44% cited FORTRAN as their
primary language (COBOL, together with
variants like DIBOL, came in second with
16%). Today's public and private sector
research centers, which are typically
mixed equipment and mixed vendor
shops, use FORTRAN in everything from
small, ad hoc calculating programs to
100,000-line application systems.
Knowledgeable observers have estimat
ed that as much as 25% of the world's
available machine cycles run with code
generated by some form of FORTRAN.

Alive and Well at Chevron

"FORTRAN is alive and well in the
technical area at Chevron," reports
Bruce Rosenblatt, manager of informa
tion and systems planning at the San
Francisco-based oil company. Use of
FORTRAN is certainly below 1960s and
1970s levels at Chevron, but still ac
counts for "probably two thirds" of the
firm's engineering-oriented program
ming, Rosenblatt estimates.

Rosenblatt, a 36-year-veteran in en
gineering at Chevron who vividly re
members the impact of the first FORTRAN
compilers, suggests that FORTRAN re
mains perfectly suitable for research ap
plications like seismic processing and
testing refinery units. The oil firm runs
such applications on a variety of IBM
mainframes, Crays, and DEC VAXs. "Most
of our use of FORTRAN is on one-shot
projects of a research nature, not amena
ble to higher-level languages," he says.
The language is ideal for "compute-in
tensive" projects, Rosenblatt asserts,
because it "let's you get down to ma
chine speed if you need to."

The high quality of the machine
code generated is precisely what estab
lished FORTRAN compilers in the first
place. Indeed, the early FORTRANs didn't
compete against other languages, but
against other programmers. Their suc
cess on this score proved that compilers
were feasible—a point that makes iBMer

Behind the News

Still Crazy After All These Years
FORTRAN, which introduced the GO TO statement into the computer lexicon, has
been called an "infantile disorder" by structured programming advocate Edsger
Dijkstra. Despite continuing attempts to overlay FORTRAN with constructs bor
rowed from ALGOL and its more stylistically elegant descendants, the GO TO state
ment endures. As disorders go, FORTRAN is at least a mature one, as the following
chronology shows.

1953: John Backus, project manager in programming research at IBM, proposes
the FORTRAN idea for the 704 computer in a memo to Cuthbert Hurd, director of
applied research.
1954: IBM 704 with built-in floating point and indexing capabilities is introduced.

Internal version of FORTRAN compiler is produced.
1956: First FORTRAN programmers' reference manual is published by IBM.
1957: FORTRAN I is released to 704 customers.

First customer-written FORTRAN program is run at Westinghouse-Bettis
Atomic Power Laboratory in Pittsburgh.

FORTRAN package for IBM 650 (FORTRANSIT) is released.
1958: FORTRAN II and FORTRAN III are released for 704. FORTRAN II, which enables
independent compilations of program modules, subroutines, and COMMON blocks
for shared variables, soon becomes the industry's de facto standard.
1960: Various non-IBM FORTRANs become available, including Seymour Cray's im
plementation for the CDC 1604, ALTAC for the Philco 2000, Honeywell's Algebraic
Compiler, and Automath for the H-800. |
1961: A Guide to FORTRAN Programming by Daniel D. McCracken is published
(remains in print until 1986).

IBM releases FORTRAN IV for 7090/4 series.
Other manufacturers begin working on their own FORTRAN IV

implementations.
1962: The American Standards Association—forerunner of the American Nation
al Standards Institute—forms a committee to develop a standard for FORTRAN.

U.S. space probe Mariner I, targeted for Venus, explodes after launch at
Cape Canaveral; the mishap is later blamed on a misplaced comma in a FORTRAN DO
statement.
1963: The second commercially published book on FORTRAN appears: A FORTRAN
Primer, by Elliott I. Organick.
1964: IBM announces System/360.

DATAMATION article notes the existence of 43 different FORTRAN compilers
for various systems.
1966: Standards for FORTRAN and Basic FORTRAN are released.

IBM FORTRAN H compiler, an optimizing FORTRAN IV for System/360, is re
leased (70% of the compiler itself is written in FORTRAN).
1967: WATFOR, a load-and-go FORTRAN IV implementation, is announced by the
University of Waterloo in Ontario.
1978: ANSI publishes revised FORTRAN standard, widely known as FORTRAN 77. It
includes free format option that obviates the need for FORMAT statement.

First release of VAX FORTRAN by Digital Equipment Corp.
1982: Twenty-fifth anniversary of FORTRAN celebrated at National Computer Con
ference Pioneer Day in Houston with Backus and others in attendance.

Other galas and exhibits held at IBM Programming Center at Santa Teresa,
Calif., and at SHARE meeting in New Orleans.
1986: IBM announces that support for FORTRAN H compiler will eventually be
dropped, prompting many users to begin massive conversion to VS FORTRAN.

Cray releases CFT 77, first full FORTRAN 77 implementation for its super-|
computers. "
1987: Microsoft releases MS FORTRAN 4.0, its first full FORTRAN 77 for IBM PC-com
patible micros.

On-line Books in Print database lists over 340 works on FORTRAN—and over
400 on Pascal.

48 DATAMATION • APRIL 1, 1987

Behind the News

Bemer's 1961 assessment of FORTRAN
absolutely right.

"FORTRAN'S primary purpose and
achievement was not in being a computer
language," Bemer says today from his
home in Phoenix, where he runs his own
software firm. "The aim was to make an

efficient compiler." Compilers existed
before an IBM programming researcher
named John Backus proposed building
one for the IBM 704 in a 1953 memo, but
none could compare with what experi
enced programmers could produce by
hand coding.

• 9 Track tape support for
personal computers

• XENIX and MS-DOS support
• A standard data interchange

medium for government and
industry

Virtually all business mainframe
and mini systems already have
1600 BPI Vs" 9 track tape. The
Tape Linx subsystem provides the
necessary connection for PG
users.

Tape Linx moves most data base
information from mainframes and
translates it automatically into a
format readable by the PC.

Software reads mainframe data
in a variety of formats. Tape Linx
can also transfer data to data
base programs like dBASE III.

The Tape Linx package includes
FLASHBAK™, a high-speed, file-
oriented tape back-up utility. It
offers a window-oriented user
interface featuring pull-down
menus and single keystroke
commands.

Overland Data's professional
technical staff provides telephone
support for all ODI products, and
will be happy to discuss your
specific application requirements.
Call today.

Overland Data, Inc.
Answers on Tape
5644 Kearny Mesa Road
San Diego, CA 92111
[619] 571-5555
754923 OVERLAND

XENIX and MS-DOS are Registered Trademarks of Microsoft Carp.

CIRCLE 24 ON READER CARD

Dp consultant and DATAMATION ad
visor Robert Patrick recalls his reaction
as a research engineer at General Mo
tors in the late '50s, when IBM sent over
an employee to describe a new software
package being developed for the 704. "It
was John Backus himself, and the pack
age turned out to be FORTRAN," says Pat
rick. "I was lukewarm. At that time, I
wasn't having any trouble getting work
done in assembly language."

One reason Patrick and many other
users were quickly won over by FORTRAN
was because of the kind of code the com
piler could produce. In fact, for some
source program segments, the original
FORTRAN compiler is said to have pro
duced perfect code. Not for all segments,
however—like its successors, the origi
nal FORTRAN compiler required several
hundred fixes after its first release.

Yet, almost a decade later, IBM re
searchers proved that one of the internal
compile algorithms developed by Back-
us's team was an optimal solution. De
signers of IBM's H-level FORTRAN for the
System/360, which was first released in
1966, used techniques developed in the
original FORTRAN I. The H compiler is
only now being displaced by VS FORTRAN
as the state-of-the-art compiler of large-
system IBM FORTRAN shops.

But the most obvious plus of early
FORTRAN was that it saved programming
time. In a paper delivered at FORTRAN'S

25th anniversary celebration at the Na
tional Computer Conference in 1982, the
late Herbert S. Bright described the first
known commercial release of IBM's 704
FORTRAN compiler. On the very first day
that it arrived at Bright's workplace, the
Westinghouse-Bettis Atomic Power
Laboratory in Pittsburgh, he and his col
leagues were able to run a test program
that had been written in a single after
noon. This was at a time when compa
rable programs took weeks to code in as
sembly language.

"FORTRAN shortened the time it
took people to solve problems on a com
puter dramatically—in some instances,
by a factor of 10," says City College of
New York professor Daniel D. McCrack-
en. McCracken's 1961 book, A Guide to
FORTRAN Programming, probably intro
duced more people to the language than
any other single book. The 88-page clas
sic sold more than 300,000 copies before
finally going out of print in its 25th year,
1986. McCracken sums up his book and
FORTRAN'S success this way: "Beginners
could read my book over a weekend,

50 DATAMATION • APRIL 1, 1987

What can you expect from
the new LaserJet Series II Printer?

Everything.
Because the LaserJet Series II

Printer from Hewlett-Packard is
the product of experience.

It's a second generation
printer from the com
pany with the world's
largest installed base of
laser printers.

Whatever your company's needs,
the LaserJet Series II will deliver the
performance you expect, at up to 8
pages/minute.

Thke a simple memo like the Soup
letter we created with Microsoft Word.
As you can see, you can print in a
variety of formats and type styles with
our wide selection of LaserJet fonts.

Or you can create a sophisticated
combination of text and graphics.
With additional plug-in memory, you
can also produce full-page 300 dpi
graphics, like our Nuts form shown

below, lb do this, we used HP's new
ScanJet desktop scanner, Microsoft
Windows and Pagemaker® from Aldus.

With support by more than 500 of
the most popular software packages,
the LaserJet Series II Printer can
produce whatever type of business
document you need. And LaserJet
Series II works with all popular PCs so
it can easily be integrated into your
existing system.

In fact, only the price is unex
pected—starting as low as $2495*

For the authorized dealer nearest
you, call us at 1800 367-4772,
Ext. 275P m HEWLETT

PACKARD
Business Computing Systems
Microsoft is a registered trademark of Microsoft Corp Pagemaker is a
U S registered trademark of Aldus Corporation
'Suggested U S list price (c) 1987 Hewlett-Packard Co PE12702DM4

CIRCLE 23 ON READER CARD

r £>®'Uxe Assortment

T- r->
1 J i P e a n u t

' A tasty
r- sZ> •****•«, ;

Brazil Nut

Hazelnut
cookies, fc

Almond
they reversal

SJ. chopPed. ,hey re equally /
,, * home in J'
Mom's favorite l1

recpes.®

Chestnut

t\ hrar>ce. AHihe

consul

Behind the News

come in and try to program, and find, usu
ally, that the computer hadn't blown up."

Ease of use remains an important
FORTRAN feature today. While computer
science majors and engineers usually
have been exposed to some FORTRAN as
students, the majority of programming

courses today use Pascal, C, BASIC, and
other languages (McCracken's latest
book is on Modula-2). Originally de
signed with engineering problems in
mind, FORTRAN remains easy for techni
cal programmers to learn. "Recent grad
uates tend to be multilingual," notes

KEY TO SUBARU*5
NEW COMPUTER Ai

Subaru is a great car, as continually increas
ing Subaru sales will attest! And when
Carl L. Daddona, Subaru's Director of
Operations, needed a great computer
facility to support this growth, he knew
a specialist was required. So Subaru
called Datasphere, America's pre
mier designers and builders of
Data Processing facilities.

And don't confuse Data-
sphere with contractors, ven
dors, architects or engineers
who claim to have experi
ence "designing" comput
er rooms.Because Data
Processing facilities
are special and require
the myriad skills and
proven experience that
only Datasphere routinely
offers.

Datasphere is your
best choice to design and

build a
new

computer
facility because:

we're specialists.
Our only business is

designing and building
computer rooms.

The most experienced.
We've designed and built hun

dreds of thousands of square
feet of data centers around
the world.

Shouldn't you coll
Datasphere?

Yes! Whether you need a controlled
environment for a mini or a huge main
frame facility-including a site and build
ing-call Datasphere. And please call us
early. An initial consultation won't cost you
a penny, but could save you thou
sands of dollars. 1-800-221-0575

IN NEW JERSEY CALL: 201-382-2300

CIRCLE 27 ON READER CARD

54 DATAMATION • APRIL 1, 1987

Chevron's Rosenblatt, "and with our ex
isting user base, bringing people up to
speed in FORTRAN just isn't an issue."

A good thing, too, because today's
graduates are bound to find FORTRAN on
any machine they use in the technical
world. The transportability of FORTRAN
began early. Two months after Backus
and his team of programmers delivered
the first FORTRAN compiler to 704 users,
another IBM programming group (led, in
cidentally, by Bemer) released a version
for the IBM 650, an inexpensive commer
cial machine with a decimal-based archi
tecture. By 1964, a DATAMATION article
on "The Various FORTRANs" (August
1964, p. 25) noted the existence of 43 dif
ferent FORTRAN compilers.

"We use FORTRAN because it's avail
able on most all machines," says A1 Wil
liams, manager of computer resources
and analysis at the Aerospace Division of

"FORTRAN'S
STRENGTH
REFLECTS A
COMPUTER

COMMUNITY
WEAKNESS."

GE/RCA, Princeton, N.J. GE/RCA Aero
space, which builds unmanned satellites,
boasts a wide range of hardware from
IBM, DEC, Prime, Data General, and Hew
lett-Packard. "Ninety percent of our
ground systems programming [e.g., de
sign and testing of components] is in FOR
TRAN," Williams explains.

One person who doesn't use FOR
TRAN is John Backus. "I last used FOR
TRAN 20 years ago on something that it
turned out to be unsuitable for," recalls
Backus, now an IBM fellow working in the
San Francisco Bay area. "I didn't like it
then, and I don't like it now."

Backus's objections are not limited
to FORTRAN. "Give or take 20%, it's like
most other languages," he says, "and
they're all lousy. ALGOL, PL/1, C—these
are all a terrible way to think about pro
grams." Commenting on FORTRAN'S as
tonishing endurance, Backus says,
"While this may be a strength of FOR-

mainframe graphics workstations. All our graphics products For more information on
And now with IRMAIAN are compatible with the latest DCA's graphics solutions, call us

APA Graphics,™ PCs on your IBM" GDDM host software product on today at 1-800-241-IRMA, ext.507
Token-Ring or other NETBIOS- the mainframe side and IBM PCs,
compatible IAN can all be doing XTs, ATs and AT&T 6300s on the
great work in pictures too. personal computer side.

f Digital Communications Associates. Inc. IBM is a registered trademark of International Business Machines Corporation. £1986, Digital Communications Associates, Inc.

IRMAcom APA Graphics

iiiiiHiniiiii

IRMALAN APA Graphics

Behind the News

TRAN, it really reflects one of the weak
nesses of the computer community that
we haven't come up with a better way."

The motivation behind Backus's
current work, in an area he refers to as
"functional programming," is that soft
ware should let programmers concen
trate solely on the logical purpose of a
program—and not worry about comput
ing addresses, storage schemes, and the
like. "Current languages force you to
think at much too low a level," he con
tends. "What we need is a new prop
osition."

Insofar as they apply to FORTRAN,
Backus's complaints are hardly unique or
new. ALGOL adherents noted deficiencies
in FORTRAN as early as the '60s. More re
cent critics, like Cornell University's
Kenneth Wilson and Dutch computer sci
entist Edsger Dijkstra, have likened the
constraints of FORTRAN programming to
doing higher math with Roman numerals
and controlling jumbo jets by whip and
spur. Backus himself mounted an influ
ential attack on conventional program
ming in a 1978 paper entitled, "Can Pro
gramming Be Liberated from the von
Neumann Style?" published in Commu
nications of the ACM (August 1978, vol.
21, no. 8).

Such criticism underlines an irony:
the language that has long overshad
owed so many others has really had little
impact on language design and devel
opment. In this sense, ALGOL, which in
fluenced the design of C, Pascal, Modula-
2, and Ada, appears to be having the last

laugh. While Ada's spread has been slow
so far, the government's four-year-old
mandate that Ada be used on so-called
"mission critical" systems developed af
ter 1984 is beginning to have some ef
fect. For example, while most of the soft
ware used on NASA's shuttle project was
written in FORTRAN and a customized
FORTRAN-like language called GOAL, the
space station project is using Ada. As for
recent compiler development, Cray's
CFT 77 was written in Pascal, while MS
FORTRAN 4.0 was written in C.

FORTRAN'S true legacy, beyond the
latest versions of the language itself, is
found in the off-the-shelf FORTRAN appli
cation systems that are widely used in
engineering and scientific computing.
Programs like NASTRAN from MacNeal-
Schwendler Corp. (MSC), Los Angeles,
and ANSYS from Swanson Analysis Sys
tems, Houston, Pa.—the two leading
structural analysis systems for mechani
cal engineering—are in a sense the logi
cal successors to a language that was
originally designed to help scientists and
engineers solve problems on a comput
er. Structural engineering software
packages are used to help build math
ematical prototypes of large, complex
devices. These packages are used by en
gineers wherever a model can be used to
save time or money in testing or design.
NASTRAN's heaviest users, according to
Don McLean, MSC's vp of advanced proj
ects, are in the automotive and aero
space fields—including the very same in
dustrial companies that in the 1950s

'But when you said, 'The t imes they are a-changin ' , '
could you perhaps be a l i t t le more specif ic?"

owned IBM 704s.
MSC's NASTRAN is over 500,000 lines

of code, and—like many such engineer
ing packages—over 95% in FORTRAN.
"We use a subset of FORTRAN because of
the variety of machines targeted," he
says. The program has been customized
for 21 different machines, including
supers, mainframes, minis, and micros
from all major manufacturers.

Should Incorporate Modern Features

MSC is not about to start converting
NASTRAN to another source language, but
like many users McLean recognizes the
appeal of other languages like C and Pas
cal and is anxious that FORTRAN incorpo
rate modern features. "What FORTRAN
needs," he says, "are pointer variables,
new data structures, and better graphics;
it'd be useful to replace a coded subrou
tine with a statement like BASIC'S DRAW."

Keeping FORTRAN current is the
work of the International Standards Or
ganization's FORTRAN working group 5
and, in the U.S., ANSI's X3j3 subcommit
tee on FORTRAN. The two groups, which
represent users, vendors, and computer
scientists, try to coordinate their work
on FORTRAN 8X in an effort to maintain a
single worldwide standard. "We think
FORTRAN'S a good language, and we want
to keep it modern," says Jeanne Adams,
who chairs ANSI's FORTRAN committee.

The 8X draft adds to the standard
FORTRAN language specification state
ments for array operations, permits pro
grammer-defined data types (like those
allowed in Pascal), and enhances proce
dure calls. Unlike the FORTRAN 77 stan
dard, which removed Hollerith data
types from the language spec, the cur
rent 8X draft proposes no outright dele
tions. Last December, a letter ballot vote
recommended passing the draft on to the
next higher parent committee at ANSI,
but also elicited some negative com
ments that must be sorted out. Ultimate
acceptance would be "no sooner than
1988 and possibly later," says Adams,
who is well aware of how hard it is to
satisfy FORTRAN'S diverse and ancient
constituency. "It's like changing the lan
guage you speak," she says.

Until a brave new way of speaking
to computers arrives, Adams's subcom
mittee and their successors will have im
portant work to do. As British computer
scientist Tony Hoare remarked several
years ago, "I don't know what the lan
guage of the year 2000 will look like, but I
know it will be called FORTRAN.'' •

56 DATAMATION • APRIL 1, 1987

Survey of Programming Languages and Processors

-j o Statidartls Kditor
(Vl.MMI NK ATlONs OF THE ACM

L in lor t lie Inleriiational .Standards Organization's Technical
C ommittee 97, Subcommittee 5 lias prepared a survey of common
programming languages.

At the 9 October 19(12 meeting, ISO TC97/SC5 Tormerly
jSO TC97 W'G E) passed the following resolutions:

1 To publish the survey in its present format (Survey 1 .78.
with additions and corrections received prior to Id Novem
ber 19(12 to be incorporated;

J > To continuously maintain and update the survey, with
periodic publication. Format changes would require ap
proval of WG E;

(3i WG E selects three languages for additional more de
tailed survey (ALGOL, COBOL and FORTRAN) without prej
udice with regard to subsequent ISO standardization.

(4) The purposes of a more detailed survey of ALGOL, COBOL
and FORTRAN lead to establishing as far as possible, com
mon practices for each language, their extent and fre
quency of use. The specific format will be prepared by
the survey committee and submitted for approval to
the members of working group E.

(5) WG E establishes a permanent working group on survey,
with the scope and program of work specified in docu
ment (USA-17170 (page 4) (as modified in paragraph (d)).

On 18 October 19(12, these resolutions were adopted at the
Plenary Session of ISO/TC97.

In accordance with resolution (1) above, I am forwarding the
survey to you for publication.

(signed) HOWARD BROMBERG
U.S. REPRESENTATIVES ISO/TC97/SC5

The Survey (ISO/TC97 SC5/(WGA)],* 20 December 19(12]

Foreword
With a view toward international standards in the field of pro

graming languages, a survey of common programming languages
in current and imminent use was undertaken by the Internat
ional Standards Organization, Technical Committee 97, Working
Group E (now Subcommittee 5).

The survey project began May 1901 • It is believed that the col
lected data, although highly perishable, are of value to the data
processing community. Therefore, the survey is being distributed
to member countries in form suitable for publication. ISO/TC97
has authorized publication of this work as well as continuous
maintenance of the data and periodic publication. Members
participating in this standardization effort are, currently, France,
Germany, Italy, Netherlands, Sweden, Lnited Kingdom and
United States.

The survey data have already provided basis for the selection
of three languages, ALGOL, COBOL and FORTRAN, for further work.
These three languages will be considered for international stand
ardization and a depth survey is being undertaken to establish
common practice.

Please forward additions and corrections to: W . F. McClelland,
Chairman, WGA, IBM Corporation, 150 Grand Street, White
Plains, New York, U.S.A.

(.Please turn the page)

'International Organization for Standardization: Technical
Committee 97, Computers and Information Processing; Subcom
mittee 5, Programing Languages; Working Group A, Survey.

SOURCES OF INFORMATION ON CAREER OPPORTUNITIES IN MATHEMATICS,
PROGRAMMING AND ELECTRONIC DATA PROCESSING OCCUPATIONS

Compilied by the Education Committee of the ACM

Careers in Science, Mathematics, and Engineering. A selected bibliography. Superintendent of Documents, I S
Government Printing Office, Washington 25. D. C. 1901 DE-2-0007. 25 cents.

Encouraging Future Scientists. Keys to Careers. A selected bibliography. 1958-59. National Science Teachers
Association. 1201 lOth Street, N.W.. Washington 6, D. C.

Mathematics and Your Career. 1900. U. S. Department of Labor, Bureau of Labor Statistics, Washington 25, D. C.
0-542720.

Careers in Mathematics. 1901. National Council of Teachers of Mathematics. 1201 10th Street, N.W .. Washington,
D. C. 25 cents.

Professional Opportunities in Mathe matics. A Report for Undergraduate Student of Mathematics. 1901, The Mathe
matical Association of America, University of Buffalo, Buffalo 14, N. Y. 25 cents.

Employment Outlook For Mathematicians, Statisticians, and Actuaries. Superintendent of Documents, L . S. Govern
ment Printing Office, Washington 25, 1). C. Bulletin 1300-58. 10 cents.

Employment Outlook For Electronic Computer Operating Personnel, Programmers. Superintendent of Documents,
U. S. Government Printing Office, Washington 25, D. C, Bulletin No. 1300-34. 10 cents.

Occupations in Electronic Data-Processing Systems. 1959. Job Descriptions. Superintendent of Documents, U. S.
Government Printing Office, Washington 25, D. C. 25 cents.

Computer Occupations. Occupational Guide M 20.1900. Michigan Employment Security Commission, 7310 Woodward
Avenue, Detroit 2, Michigan. 25 cents.

Summer Employment in Federal Agencies. 1902. U. S. Civil Service Commission Pamphlet 45. Superintendent of
Documents, U. S. Government Printing Office, Washington 25, D. C. 15 cents.

Employment Opportunities For Women Mathematicians and Statisticians. 1950. Women's Bureau Bulletin No. 202,
Superintendent of Documents, 1 . S. Government Printing Office, Washington 25, 1). C. '25 cents.

Communications of the ACM 93

SURVEY OF PROGRAM! (GUAGES AND PROCESSORS

1. ABBREVIATIONS

ALPHABETIC (DEVICE)
CHANNEL!SI
CATHODE RAT TUBE OUTPUT
FLOATINGPOINT (DEVICE)
FLEXOWRIT

POIN
GENERAL IUNSPEC1T
(MAGNETIC) TAPE U
OPTIONAL
PUNCH

INPUT/OUTPUT DEVICE

ABC. I
ACUTE
ALMOST
ARGUS
AS-1
AUTOCODE
ASAP
AUTOCODE
AUTOCODER

AO*. • A2*

HONEYWELL 1000
UNI VAC III
UNI VAC UI
HONEYWELL 800
UNI VAC 1206
UNI VAC 1103
RECOMP 11
NAT10NAL•ELL10TT 802
IBM 702* 70S• 7070*

1401* 1410* ETC*
I UNI VAC 1*11

BURROUGHS 220
IFAM 704

ASSEMBLY (MACHINE-DEPENDENT) LANGUAGES
EXCLUDED FROM THE SURVEY

(S)PAR BENDIX G'20
POGO BENDIX G•15
RAWOOP'SNAP UNIVAC 1103* 1103A
RELCODE UNIVAC I* II
ROAR RPC'4000
KILL UNIVAC M-460
SAC BURROUGHS 201* 20S
SAIL UNIVAC LARC

UNIVAC LARC
UNIVAC 111

LANGUAGES EXCLUDED FROM SURVEY
DUE TO OBSOLESCENCE

ACOM
ACT
ANCP
BACA 1 C
BAL1TAC
BELL L2*L3
BI OR
BLLS

SALT
SAP 704

INDEX REGISTIR (B-REGUSTER(MODIFIER REGISTER)

2. NUMBERED COLUMN HEADINGS

CASE SOAP
CODAP
CS-1
CUT-AS

TRANSLATOR PROGRAM SIZE (UNITS OF 1000 INSTRUCTIONS)
TRANSLATION IS FROM SOURCE LANGUAGE TO

A A SEPARATE AND NAMED ASSEMbLY LANGUAGE
B AN INTERMEDIATE MACHINE-INDEPENDENT LANGUAGE
G MACHINE LANGUAGE
I AN INTERMEDIATE LANGUAGE FOR

ONLINE INTERPRETATION
TRANSLATION AND RUN

A MUST BE SEPARATE
B MUST BE IN SEQUENCE (MANDATORY LOAD-AND-GO)
C MAY OCCUR ANY TIME (OPTIONAL LOAU-AND-GO)
I ARE IDENTICAL I I NT ERPRL TIVtI

FIELDS OF APPLICATION ARE
A ALGEBRAIC. SCIENTIFIC
B BUSINESS DATA PROCESSING
C CONTROL (PROCESS. REALTIME* TOOL* ETC.!
I INFORMATION RETRIEVAL
L LIST HANDLING
M SYMBOL MANIPULATION
N NATURAL LANGUAGE TRANSLATION AND PROCESSING
S SIMULATION

DAS
DATACODE I
EASY
ESCAPE
FAP.BEFAP
FAST
FLIP
FLOP
FORMOST
GEPURS

UNIVAC 1103A
IBM 630
CDC 1604
UNIVAC M-460
UNIVAC 1218
BURROUGHS 204
BURROUGHS 205
HONEYWELL 400
IBM 650
IBM 704* 709* 4090
IBM 650
UNIVAC 1
IBM 701
UNIVAC 1107

SCAT
SCOPAC
SCRAP
SLAP
SLEUTH
SPURT
SNAP
SNAP
SOAP 1*

7090
RECOMP II
RECOMP II
UNIVAC 1103
UNIVAC 1107
UNIVAC 490
BENDIX G'20
RECOMP II

1103A
UNIVAC

COMPILER I UNIVAC
COMM. TRANS. IBM 7070/80/80
COMPRLHENSIVE 4H1RLW1ND
DOW BURROUGHS 201*

650
S02

1103A

SPACE
SPAR
I S I PAR
STAR
STRAP 1*
STRIP
TAC

701
GP
GPX

UNIVAC I* I
UNIVAC 11
IBM 701
UNIVAC LARC
UNIVAC LARC
MERCURY
UNIVAC 1103
NCR 304
IBM 704

TASS
TRANSUSE
TRIM
UNISAP

IBM 701
IBM 650
BURROUGHS 205
BENDIX G•20
BURROUGHS 205* 220
IBM 7030'709
ALWAC II•E

• PHILCO 2000
IBM 650
UNIVAC 1103A
UNIVAC 1218

DRUCO I
DUAL
EASE 11
EAS1AC
EASY FOX

IBM 650
IBM 701
lbM 650
MlDAC
JOHNNIAC

EL I IBM 650* 705
ERFP1
FACS
FAIR
FLAIR
FLINT
FLIP 1 SPUR
FLIPPER
FLOP

LGP'30
IBM 650
IBM 705
IBM 704

650*
UNIVAC 1103
UNIVAC 111
UNIVAC I
U N I V A C 1 * 1 1
UNIVAC SSttO/90
UNIVAC SS80

IAS MACHINE
UNIVAC 1103
BENDIX G•13A
IBM 701
IBM 650

INTERCOM 101BENDIX G'15
•COMPILER 2 IBM 701

3. PUBLISHER

PUBLISHER IS THE SAME AS THE CONSTRUCTOR

LT • 2
MAGIC
MATH-MAT IC
MLTILAC
MJS
MORTRAN
OMNICODE
OMNIFAX
PACT I
PENNCODE
QUEASY
QUICK
SCRIPT
SEESAW
SHACO
SHORTCODE
SNAP
SOHIO
SPEEDCODE
SPEEDCOD1NG
SPEEDtX
SPUR
SWAP
TRANSCODE

IBM 701
MLDAC
UNIVAC 1*11
IBM 650
UNIVAC I • I I
JOHNNIAC
IBM 650* 702
U N I V A C 1 * 1 1
IBM 701
PENNSTAC
IBM 701
IBM 701
IBM 702

IBM 450* 704

LANGUAGE
TR* NSLATO SOURCE OF

INFORMATION AND
VERIFICATION

NOTES

COBOL
NARRATOR

COBOL
NARRA TOR

1 DENT IF1CAT1 ON

95-03-000

93-05-002

DATE

DEC 60

FEB 62

161

208

RCA

RCA

RCA 501

RCA 301

65

45

SEP 60

OCT 62

G

G

B

B

16K CHAR* 6 TAPES* RDR.
OFFLINE PRNTR

20K CHAR* 6 TAPES* RDR*
ONLINE PRNTR

BROMBERG* H

BROMBERG* H

BASED ON COBOL 40. PRELIM. MANUAL MAY 60. SEE
ALSO 95-05-002(96PPI * 95-05-003(32PP)

ALL OF REQ. COBOL 41 • SOME ELECTIVE.

BASED ON COBOL 40
COBOL

NARRATOR
COBOL
COBOL 60
COBOL

COBOL
COBOL
COBOL
COBOL 61
COBOL 61
COBOL 61
COBOL 61

3166/1

5000-21002-P

F-7411

U3389

APR 62

OCT 60

SEP 61

JUN 61

APR 62

143

45

122

266

ELECT

PHILCO

NCR

SPERRY-R

SPERRY-RAND
SPERRY-RAND
L.C.T.
I.C.T.
COMP. SCIENCES
BURROUGHS
ARMOUR RESEARCH
NCR/GE
NCR
SPERRY-RANO+CSC
SPERRY-RAND

KDP10
UNIVAC 11
uss to
ICT 1301
1CT 1301
PHILCO 2000
b-sooo
UNIVAC 1103A
NCR(304)GE
NCR 315
UNIVAC 111
UNIVAC 490

480
15

3.5
50

150

OCT 60
APR 61

DEC 61
AUG 62

SEP 62

G
G

A
A

B
B
B
B
B
B
B

AB
AB

B

2K. 12 TAPES
2 TAPES* DRUM. RDR. PCH, PRNTR
MARK I. 2K» 12K DRUM
MARK 11* 2K» 4 TAPES
SK * 6 TAPES

8K* 16K DRUM* • TAPES
4*1 K* 4 TAPES* RDR* PRNTR
10K* 5 TAPES* RDR* PRNTR
16K* • TAPES
16K* 800K DRUM* 4 TAPES* PRNTR

ELLIS, PV

GUERNACCINI* J
SPEIERMAN. KH
MITMAN* 6
KEATING* WP
KEATING* WP
HOPPER* GM
DESS1LETS* PH

BASED ON COBOL 40 (RAPIDWRITE
VERSION IN MANUAL P155* MAY 411

BASED ON COBOL 41
BASED ON COBOL 41* DUE DEC 42
BASED ON COBOL 41* PLUS ELECT IVES. DUE DEC 42

DUE DEC 42

COBOL 61

COBOL 61

COBOL 61
COBOL 61
COBOL 61

\COBOL 61

AFLCM-500-IL

I F 28-8053-1
\ 220-8045-1

NOV 61

JUN 61
61 r

MINN-HONEY
MINN—HONEY

\CODASYL

HQ. AIR FORCE
LOGIS. COMMAND

HONEYWELL+CSC
HONE YWELL*CSC

[ibH

UNIVAC 1105

MH 400
MH BOO
IBM 705 11
IBM 705 111

80

50
50

SEP 61

FEB 62
FEB 62

B B

B
B
B

PCH. RDR. P-TAPE/PCH/RDR
12K* 32K DRUM* 20 TAPES

2K» 4 TAPES* RDR* PRNTR
4K» 4 TAPES. RDR. PRNTR
40K CHAR. 8 TAPES
40K CHAR* • TAPES

JONES. J

COLEN, P
COLEN. P

COMPILES COBOL VERBS AT 4 SECONDS RATE.
CORRECTOR-CLEANUP PHASE PRIOR TO RUN

DUE SEP 42
COBOL 61 OR 624S0RT4REP0RT GENERATOR. DUE FEB 43

I'"* " I: B 40X CHAR* • TAPES
B |PRN1 R» CARD RDR* 3 TAPES PLUS

5 UNITS- TAPES OR PI ST
COMPILER AS COMPONENT OF IBJOB PROCESSOR

\ COBOL 61
\COBOL 61 \F20-0O93-1
\COBOL 61 \ 220-6066-1

' las a. Ufc±hl:h
1

< Of C* *1
COBOL

COBOL 61
COBOL

J20-6I77,91
J20-626O • 6263.
4194,3.6. 6024-1

J2B-6213. 6203.

TOM""
BM

BM
BM

BM T6«O 5C
BM 7090/7094 95

BM 7070.74 31
BM 7040/7044

FEB 62 A A
DEC 62 A C

FEB 62 A A
A

e
3

B
B

OK CHAR. 6 TAPES
RNTR. CARD RDR. 3 TAPES PLUS

5 UNITS- TAPES OR DISK
OK, 7 TAPES
6K. CARD RDR-PCH, PRNTR.

5 TAPES

COMPILER AS COMPONENT OF IBJOB PROCESSOR \

COMPILER AS COMPONENT OF IBJOB PROCESSOR

COBOL 61
COBOL 61
COBOL 61

6243. 6236. 6210
129-6182-0 T PROG)
J20-6109(OPER)
• J2 0-0232

AR 62
AR 62
OV 61

BM
BM
BM

BM 1401
BM 1401
BM 1410 1 JAN 62 A

B
B
B
B

2-16K. 4 TAPES
-BK. 6 TAPES
OK, 4 TAPES. RDR/PCH, PRNTR
K, 3 TAPES. 1 I/O

MORAN, M
SAMMET. J

MANY ELECTIVES. OBJECT PROGRAM USES 1XS
DUE JUL 42. ALL OF REQ. COBOL• SOME ELECTIVE

COBOL 61
COBOL 61
COBOL 61

AN 62 00

•

SYLVAN1A ELECT.
SYLVANIA ELECT.
9END1X

OB1DIC
YLVAN1A 9400 5

>-20
X 1404

B
B
B

6K» 3 TAPES. 1 I/O
K. 4 TAPES. RDR. PCH, PRNTR

SAMMET. J
BAUER, F DUE 62? ALL OF REO. COBOL • SOME ELECTIVE

DUE 62.
COBOL 61
COBOL 61
COBOL 61

DCF-2-9 62 23 ULL
FERRANTI
RCA

X 924
TLAS
AMMA 30 9 JUL 62 G

B
B 20K CHAR.6 TAPES. RDR. PRNTR BULL FRENCH VERSION OF COBOL 301 COMPRISING ALL REOULRED

COBOL 61 LANGUAGE
GAMMA 3C • ICT LTD CT 1300 62 G B TAPE ELLIS. PV* VERSION OF COBOL 61

COBOL ICT • ICT LTD.
11. 11A
CT 1301

ENGLISH ELECT.
62 G

G
B
B ILL TAPES, PRINTER

ELLIS. PV
DUNCAN. FG COBOL 61 AS FAR AS POSSIBLE. DUE DEC 63

XDF9 COBOL

COBOL 61
COBOL 61

OLIVETTI
AEI
INST. MATM.APP.

KDF9
OLIVETTI 9003
AEI 1010
BULL GAMMA 40 G 8

PICC1AFUCCO. U
EVANS* KC
INST. DE MATH.

GRENOBLE COBOL

AIMACO
COOEL

AMCM 171-2 J UN 39
AUG 39

8 T
34 I

AIR MATERIEL CO
:DL

UN1VAC 1105
CT 1301

0 JAN 60 A

0 SEP 61

B
B

AB

0K. 5 TAPES • 10—TAPE UNIVAC I

6K, 6 TAPES. RDR*

JONES. J
WENSLEY. J
KATZ. C

UNIVAC I TRANSLATES TO USEI5K 1NSTR») . MOD1F1E0 B-0
WITHDRAWN IN FAVOR OF COBOL
ACCEPTS TABSOL. COBOL 61. SOME ALGOL FEATURES AND

FRINGE(9PAC—LIKE REPORT/FILE MAINT/SORT GENERATOR-
GECOM

TABSOL
FACT

CPB-123

CPB-147
160-2M DSI-27E

XT 60

MAR 61
JAN 61

30

30
175 CSC/MINN—H

GE
COMP. SCIENCES/

MINN'HONEYWELL

GE 223
MH BOO 21 0)EC 61 A

B
A B

TAPE/PRNTR

0K« 6 TAPES. RDR. TAPE/PRNTR
4K* 4 TAPES. RDR. PRNTR

IK. 10 TAPES

KATZ. C
CLIPPINGER. RF

HOPPER. GM

DUE LATE 61). 12 RUNS OR LESS. 1600 ML INSTR/MLNUTE
LOGIC TABLE LANGUAGE. DUE NOV 61
8-PASS. TRANSLATE 40 STATEMENTS/MLN.

ALSO SORT/REPORT/FILE MAINT GENERATORS
(B-O)

FLOWMA TIC
FLOMMAT1C
ADAPT
FARGO

U1318 REV.1

C24-1464

30

MAY 61
DEC 61

103

34
40 •

SPERRY-RAND
SPERRY-RAND
COMP. SCIENCES
IBM

UNIVAC I
UNI VAC 11
IBM 1401
IBM 1401
IBM 704

36
2 XT 61 A

G

B
C B
B AB

B

2K, 16 TAPES
4K. 2 TAPES. HL-LO.
4K

HOPPER* GM
BYHAM, C

FARNWORTH* G

9-PASS FOR 4K• LESS FOR 12K. COBOL-LIKE • SEQ. VERB
REPORT GENERATOR. ALSO J24-1467-0 FOR RAMAC SYSTEMS

REPORT. SORT • FILE MAINTENANCE GENERATOR
SURGE
9PAC INTRO. TO 9 PAC

J20-6166,7 .0
J UN 61
MAY 60

70
200

SHELL OIL
IBM

SHARE/IBM IBM 709/7090

VIPP

APT 111 SPERRY-RAND UNI VAC 1107
IBM 704/709/9C C J2K, B TAPES

CH1NGARI* G
ROSS. DT WILL RUM IN PARALLEL WITH AUTOPROMT. AI A (SAN

APT

61 10 FERGAMON JOHN HOPKINS 1103 A 4 MAR 50 G B A 6K CORE. 16K DRUM, 1 TAPE. RICH, R.P.
DIEGO) WRITING APT 11 1M FORTRAN, PRODUCES ML.

OHE PASS COMPILER, USES POLISH PREFIX NOTATION

AUTO? ROM M4 A 12 J UN 61 226
PRESS APL

IBM IBM 704/709/9C 2 DEC 60 c 0K, 10 YAPES. MO DRUM MATSA, SM CONSTRUCTS MACHINE TOOL CONTROL PROGRAMS.
SHARE PROGRAM IB-4PRM.

E20-4104
UT 2499 SEP 61

34
153 SPERRY- ROMR • SPERRY- USSI 90 6 SEP 61 c 5K, DRUM. SIR. RDR. PCH, PRNTR HERTEL. P.M. CONSTRUCTS MACHINE TOOL PROGRAMS

^NUMERICAL RAND RAND
TOOL
CONTROL

NUCOM NOV 61 20 • AUTONETICS RECOMP HI c FXP

32K, 3 TAPES

HAL PR IN. L

PUGH, AL III

DUE NOV *1

MOOELS BUSINESS AND ECONOMIC SITUATIONS
DYNAMO

1PL-V

1PL-V

IPL-V
IPL-V
IPL-V
IPL-V
IPL-V
IPL-V
1 PL—V

P-191#

P-109T

P-1929

NOV 61

MAR 60

MAY 60

64

94

130

23

RAND CORP.

RAND CORP.

RAND CORP.

M.I.T.

RAND CORP./
CARNEGIE TECH

RANO CORP./
CARNEGIE TECH

LINCOLN LABS
RANO CORP.
SDC
U. LONDON
U. TEXAS
U. NO. CAROLINA
CARNEGIE TECH

IBM 704/709/90

IBM 630 RAMAC

IBM 704/7090

IBM 709
IBM 7090
PH1LCO 2000
MERCURY
CX 1604
UNI VAC 1103
BENDIX G-20

JUN 60

0 AUG 60

0 MAR 62

1 LM

1 LM

I LM
LM
LM

1 LM
I LP
I LP
1 LP
1 LMS

2K DRUM. DISK FILE

32K. I TAPES

•KI 32K DRUM. 2 TAPES

4K» DRUM. 1 TAPE

NEWELL. A

NtWKLLf A

GREEN
TONGE
FELDMAN
BUCKINGHAM
LINDSAY
CAVlNESS
NEWELL. A
KISS. GR

COMBINED MANUAL PUBLISHED
BY PRENTICE-HALL. NOV 61

PILOT VERSION RUNNING, COMPLETE JAN 63

FULL FLEXIBILITY IS NOT AVAILABLE. INPUT. OUTPUT AND

1 PL V

LISP BROWN. N
PEARSON, DW

PEGASUS 1
EMI DEC 2400 1 XT 61 C LP 16K. 3 TAPES. P-TAPE RDR.

FLX. PRNTR
BROWN. N

DEBUGGING FACILITIES MUCH SIMPLIFIED
LISP TO COMMAND SEQUENCE FOR INTERPRETATION OR

COMPILATION.

LISP 1
LISP 1*3

MAR 60
MAY 61

196
STRACHEY. C
M.I.T.
M.I.T.

IBM 704/709/90
IBM 704/709/90

11 JAN 60
13 MAY 61

3 JUL 39

LP
LP

32K. 4 TAPES. CARD RDR
32K. 4 TAPES. CARD RDR
32K

MCCARTHY. J
HCCARTHY. J
BARNETT. MP

LIST PROCESSING. HEURISTIC PROGRAMMING

OUTPUT TO FORTRAN II. SCANNING SYSTEM. INPUT

SMADOV

COMIT INTRO TO PROG.
REFERENCE MANUAL

NOV 61 6C
6

•

M.I.T.

M.I.T.

U. MANCHESTER

IBM 709/7090 16 JUL 61 C IL
N

LMI

32K, 9 TAPES. 1/0 YNGVE. V

BROOKER. RA

PROGRAM AVAILABLE FROM SHARE. PRINTED MANUAL
AND COURSE ALSO AVAILABLE. 2 PASS.

PHRASE STRUCTURE COMPILER.
FOR LINGUISTIC AND GRAMMAR STRUCTURE WORK

MIMIC
GPS

* RANO CORP.
RAND CORP.
RICE UNIV.

IBM 704

RICE COMPUTER
0
7 AUG 61 A IK

MEALY. G
JOOEIT. JG

GENERAL PROBLEM SOLVER. WRITTEN IN (AND OUTPUTS) IPL-V

GENIE

DYANA JUN 31 : GENERAL MOTORS
M.I.T. IBM 450 1 JUN 30 C

•K. 4 TAPES. OPT CRT
DISK. FLP. ALPHA. XREG

OLSZTVN. JT
WERNER, CP

FOR DYNAMICS PROBLEMS. OUTPUT IS A FORTRAN PROGRAM
FOR VECTORS.MATRICES.ORDINARY DIFFERENTIAL EQUATIONS.

COMPILE AND RUN ON 650*

J UN 3 « M.I.T. IBM 704/709/90 A 32K. 4 TAPES WERNER. CP FOR VECTORS.MATRICES,ORDINARY DIFFERENTIAL EQUATIONS.
RUN ONLY. 650 COMPILES. _

M.I.T. MM 000 12 C 16K. 6 TAPES WERNER. CP FOR VECTORS.MATRICES.ORDINARY DIFFERENTIAL EQUATIONS.
DUE MAR 62.

CL-i T0*B 41*1 JAN 6 32 • TECH.OPERATION IBM 704/709/90 M. B TAPES. 2 1/0 CHAM CHEATHAM. T ENVIRONMENT AND OPERATING SYSTEM.

IDENTIFICATION

FORTRAN I
FORTRAN I
FORTRAN I
FORTRAN I

FORTRAN I
FORTRAN I
FORTRAN
FORTRAN I
FORTRAN I
FORTRAN I
FORTRAN 1

C28-6106(PROG)
C28-6097(QPER)
J28-6122
C28-6170
J28-6171(OPER)
C29-6067
J2B-1655

AUG 60
JUL 61
FEB 62

J26-5598-0

FOR TRANS 1 I
FORTRANSIT
FORTRANSIT
GOTRAN
GOT R

RTRAN I
FORTOCOM
FORTRAN 11
FORTRAN II
FORTRAN
FORTRAN U
FORTRAN II

FORTRAN U
FORTRAN I
FORTRAN 1

205-21001-P
C2B-6000
C28-60971OPER»
C28'6056,21PROG I
C28'6066'3(0PERJ
J28•6116•1(D—CI
C28-6100-1(IOCS)
C28-6170
J26-1668
J26 * 660210

MAR 61
OCT 59
AUG 60
JAN
JUN 61
APR 61
FEB 61
FEB 62
FEB 62
MAR 62

FORTRAN II

FORTRAN II
FORTRAN II
FORTRAN 11
FORTRAN II
FORTRA
FORTRAN II
FORTRAN II
FORTRAN II
FORTRAN II
FORTRAN 11
FORTRAN II
FORTRAN II
FORTRAN II
FORTRAN II
FORTRAN 11

FORTRAN IV
FORTRAN 1
FORTRAN IV J28-62 12 t 6203*

6263* 6236 * 6209
J28-6196* 5 *61
6283

ATLAS
FORTRAN

ALGEBRAIC
COMPILER

ALT AC

COMPACT

AUTOCODE
AUTOCODE
UNICODE
ALTRAN
MADCAP I

MADCAP II

MADCAP 111

JUN -

JUN 59

CONSTRUCTOR

IBM 706
IBM 706
IBM 705 1*11
IBM 7070

IDfNTIFICAT10 TTT3

OBSERVATORY

IBM 650
IBM 1601
IBM 1601
IBM 1620
IBM 1620
IBM 7080
IBM 650

IBM STRETCH

COMP. SCIENCES

COMP. SCIENCES
BENDIX COMPUTER
CONTROL DATA
COMPUTER USAGE
MlNN—HONEYWELL
SPERRY-RANO
SPERRY-RAND
SPERRY-RAND
SPERRY-RAND
GENERAL

KINETICS* INC
NCR

BM STRETCH
IBM STRETCH
IBM 7090
LARC
ATLAS
RCA 601
BENDIX G-20
CDC 1606
AS1 620

600
USS1 80
USSI 90
USS11 80
USSI1 90
UNI VAC 1107

RCA

ENGLISH ELECT.

AERE

JUN 57
OCT 57
FEB 60
JUN 60

JUN 59
DEC 61
DEC 61
JAN 61
APR 61

YES

IBM 650
IBM 650
IBM 650
IBM 1620
IBM 1620
USS 80
BURROUGHS 205
IBM 706
IBM 706
IBM 709/7090
IBM 709/7090
IBM 709/7090

APR 61
SEP 60
JAN 61<
SEP 60
MAY 58
MAY 58
JAN 59
SEP 59
MAY 60

IBM 7070/7076
IBM 1610
IBM 1620

IBM 7030
UNI VAC 1107
UNI VAC 111
IBM 7060/7066

IBM 7090/7096

ENGLISH ELECT*
KDF9

FERRANT1 ORION

DEC 62

DEC 62

NOV 62

FERRANT1 * AERE

MINN*HONEYWELL/
COMPUTER USAGE

PHILCO PH1LCO 2000

RPC 6000

DEC 62

JUL 61

APR 60

OCT 61

MANCHESTER UNlV
SPERRY-RAND
EL—TRONICS
LOS ALAMOS

SC1ENT« LABS
LOS ALAMOS

SC1ENT. LABS
LOS ALAMOS
SC1ENT• LABS

LOS ALAMOS
R AMO-WQOL DR1DGE

CAE

PEGASUS
MERCURY
UNI VAC 1103A
ALWAC III-E
MANIAC II

MANIAC 11

APR 58

MAY 59

JUL 61

TRANSLATOR

MINIMUM CONFIGURATION

8K DRUM* 6-7 TAPES*
32K* 6-7 TAPES* I/O
60X CHAR* 8 TAPES* I/O

I/O* NO TAPES

2K DRUM* XREG* ALPHA*
8K, CARD SYSTEM

1 TAPE
TAPE SYSTEM
CARD I/O

STANDARD

FLP
2K DRUM* RDR* PCH-
2K DRUM* RDR* PCH* XREG
TAPE SYSTEM
CARD I/O SYSTEM
P-TAPE I/O SYSTEM

CARD SYSTEM
CARDATRON* FLP

8K DRUM* 6-7 TAPES* I/O
8It DRUM. 6-7 TAPES* I/O

8X*5—8 TAPES. I/O
Bit*5—8 TAPES. I/O
32K* 5-8 TAPES* 1/0

6-9 TAPES* I/O
20K, 6 TAPES* RDR/PCH* PRNTR
60K CHAR* AUTOD1V* 1 NO 1R

ADDRESS* RDR* PCH
2It* DISK* 3TAPES

LARC DRUMS*

6K» 6 TAPES

5K* DRUM* CARD
5Kt DRUM* CARD
5K* DRUM* CARD
5K* DRUM. CARD
32K* DRUM* 5 TAPES

16K* DRUM* 3 TAPES
6 TAPES

16K* CARD RDR* PRNTR*

PRNTR* CARD RDR* 3 TAPES PLUS
5 UNITS- TAPES OR DISK

K* 2-6 TAPES

8K * 7 TAPES

3 TAPES* DRUM

6 TAPES* RDR* PRNTR

6 TAPES* RDR* PRNTR

SOURCE OF
INFORMATION AND

VERIFICATION

RIDGWAY*
RIDGWAY*
RIDGWAY.
RIDGWAY*

6K *

16K* FLP* 3 XREG*
3 TAPES. I/O

6K* FLP* 3 XREG*
3 TAPES. I/O

6K* FLP* 3 XREG*
3 TAPES. I/O

ITT

MACKLIN
MACKLIN
JEANS*
JEANS*

JEANS* H
JEANS* H
DOBBS* CW
SPE1ERMAN. KH

RIDGWAY.
MORAN* M
JEANS. H

CAMPBELL. SG

OPLER* A
COLEN. P
PASTER.
PASTER*
PASTER.
PASTER*
MCCARTY.

KEATING. WP

GLENN I E • AE
MCCARTY* C.L
MCCARTY* C.L

DUNCAN* FG

TAYLOR* R

PYLE. 1C

COLEN* P

GUERNACCINI•

NATHER* RE

WELLS* MB

WELLS* MB

BALKE. K
CAE

SIC FORTRAN

2 PASS IFI TO SOAP TO ML)
AUGMENTED FI. TRANSLATOR ON TAPE* SOURCE PROGRAM

IN CORE. UP TO 20 DIGITS OF FUNCTION ACCURACY
1-PASS. ALSO J26-55971 16 PP) FOR PRE-COMPILE

CHECKING PROGRAM

FORTRAN I LESS COMPUTED GO TO AND
ROUTINES INCLUDED IN 800 INSTR.

IT AND SOAP 1 I
AS INTERMEDIATE
LANGUAGES.

COMPLEX. ALSO J28-6133«6135.

IN COMBINATION WITH AUTOCODER. REPORT GENERATOR
5TH TAPE REO. FOR UNINTERRUPTED TRANSLATION
2-PASS. DUE JUL 62

AUGMENTED FII* NO. OF INSTR. INCLUDE 16K
STRAP 11* 20K SMAC. TABLES. DUE JUN 62

WRITTEN IN FORTRAN • SYMBOL MANIPULATION FACILITIES.
AUGMENTED FORTRAN II. FAST 1-PASS FOR LIVERMORE AEC
AUGMENTED FORTRAN II
AUGMENTED FOR 1 RAN II. CALLEO LARC SCIENTIFIC COMPILER

IAN-MONTHS BY PhRASE-STRUCT. COMPILER. NO I/O.

DUE SPRING 62
SEPARATE COMPILERS TO MACHINE OR ASSEMBLY LANGUAGES
DUE LATE 62. VIRTUALLY IDENTICAL TO 709/90 FORTRAN.
DUE END OF 62
ONE PASS TO RELOCATABLE MACHINE CODE
ONE PASS TO RELOCATABLE MACHINE CODE
ONE PASS TO RELOCATABLE MACHINE CODE
ONE PASS TO RELOCATABLE MACHINE CODE
DUE DECEMBER* 1962 4

AUGMENTED FORTRAN II. COMPILES ON 306 OR 305*
OR 355. OBJECT PROGRAM RUNS ON 356 OK 355

VERSION OF A FORTRAN 11. OUTPUT IS STRAP.
DUE JANUARY* 1963
DUE JANUARY* 1963
COMPILER AS COMPONENT OF IBJOB PROCESSOR

COMPILER AS COMPONENT OF IBJOB PROCESSOR

ENABLES FORTRAN PROGRAMS TO BE PREPARED FOR
TRANSLATION BY THE ALGOL COMPILER.

OFFSHOOT OF THE HARWELL/FORTRAN PROJECT. SOME PARTS
OF WHICH ARE INDEPENDENT OF COMPILING MACHINES
AND EXECUTION M/C* WRITTEN IN FORTRAN

TARGET LANGUAGE IS ASP OR BAS. INITIALLY FOR 7090
ALSO WRITTEN IN FORTRAN

ACCEPTS FORTRAN 11* 6 RUNS

AUGMENTED FORTRAN II* SELF-ADAPTING
TO CONFIGURATION. 2-PASS INTO TAC.

•2K TABLES. ACCEPTS AUGMENTED FORTRAN 11.
1-PASS TO ROAR, 1-PASS TO ML AT 500 INSTR./HK

AUTOMATIC SEGMENTATION
ALGEBRAIC TRANSLATOR.
FORMULA TRANSLATION AND SIMPLE CONTROL STATEMENTS

EXPANDED MADCAP 1 6 LOOP STATEMENTS

IMPROVED MADCAP II + SCRIPTING AND DISPLAYED DIVISION

FORTRAN NOTATION, DUE 1963

1

TRANSLATOR

IDENTIFICATION

ALGOL AO
DEUCE

ALGOL
ALGOL KDF9

SEP 62

DEC 62

KDF9 ALGOL

ALGOL 60
ALGOL 60
ALGOL 60
ALGOL 60

ALGOL 60
ALGOL 60
ALGOL 60

ALGOL 60 REPORT
ALGOL 60 REPORT
MR 3 3

ALGOL 60

INPUT
LANGUAGE

INPUT
LANGUAGE

DASK ALGOL

ALGOL 60

(PRELIMINARY)

(REVISED)

PRELIM)

FACIT-ALGOL 1

MAY 61

MAR 62

NOV 60

DEC 61

5000-21001-P

OLDEN-
BOURG

MUNCHEN
ALGOL 60
ALGOL 60
ALGOL 60

ALGOL 60

ALGOL 60

ALGOL 60

ALGOL 60
ALGOL
ALGOL
ALGEBRAIC

COMPILER
ALGEBRAIC

COMPILER
ALCOM
ALGOL

220-21011-P

205—21003-P

JAN 61

FEB 61

PROG. ALGOL

ALGO

JOVIAL
JOVIAL
JOVIAL
JOVIAL

AUG 60

J UN 61

MAD

OCT 60

FEB 61

MAD
NELIAC
NEL I AC
NEL I AC
NELIAC
NELIAC
NEL I AC
NELIAC
NELIAC
NELIAC
DIALGOL
SLANG

(PRELIMINARY)

VIZOR

CONSTRUCTOR MACHINE

ENGLISH ELECT.
A.P. DIVISION

ENGLISH ELECT.

GAMMA 60
NAT.ELL10TT

803/503
EMI DEC 2600
DEUCE 11A

ENGLISH ELECT.

ENGLISH ELECT.
KDF9

ENGLISH ELECT.
KDF9

SEP 62

DEC 62

UNI VAC 1105
UN I VAC 111
UNI VAC 110?
RREAC

IBM
PRINCETON U.
MATHEMAT1SCH

CENTRUM
DR. NEHER

LABORAT OR IUM
INST. OF MATH.

NOVOSIBERSK
INST. OF MATH.

NOVOS1BERSK-
DANSK

REGNECENTRALEN
FACIT ELECT. AB

DEC 60
JUN 61
AUG 60

STANTEC ZEBRA

1-20

1-20

DASK

FACIT EDB

AUG 61

OCT 61

CARL ZEISS JENA ZRA 1

OAK RIDGE NATL
LABORATORIES

U. MAINZ
U. MAINZ

NOV 60

MAY 61

. MUNCHEN
E.T.H. ZURICH
STANDARD ELECT
RIC LORENZ

T.H. VIEN

PERM
ERMETH
ER 56

DEC 61
AUG
JUL 60
JAN 62

DUKE UNIVERSITY

MAILUFTERL

IBM 70T0

VUMS PRAGUE

VUMS PRAGUE
SYLVAN1A ELECT.
GENL. KINETICS
BURROUGHS

MSP
SYLVANIA 9600
UNI VAC 1107
BURROUGHS 220

BURROUGHS 205

MAY 60

NOV 60

G-20
IBM 7090
SEPSEA CAB 500
G-15

DEC 62

JUL 60

7090
. COMPUTER

PHILCO 2000
CDC 1606
0-7
IBM 7090

IBM 706

MICHIGAN
NAVAL ELECT LAB
NAVAL ELECT LAB

U.CAL.-BERKELEY
RAMO-WOOLDR1DGE
LOCKHEED MSC

IBM 709/7090
1-660 COUNTESS

CDC 1606
M-690

BM 706
IBM 709
IBM 7090
BURROUGHS 220
PB-250
PHILCO CAPO
IBM 7090

709

GENL. ELECTRIC

GENL. ELECTRIC GE 225

8K. CARD OR P-TAPE I/O OR TAPE
ANY

8K» CARD RDR. P-TAPE I/O

8K» 2 TAPES. P-TAPE I/O

TAPES# P-TAPE I/O

MINIMUM CONFIGURATION

16K

8K• 32K DRUM. 6 TAPES

16K. DRUM. 3 TAPES
2 P-TAPE RDRS. 3 P-TAPE PCHS.
TAPE
32K.6-10 TAPES.RDR.PRNTR

6 TAPES
BK» RDR. PRNTR

8K

t16K DRUM. 6 TAPES.
PCM. PRNTR
. 16K DRUM. 6 TAPES.
PCH. PRNTR

2K.16K DRUM. 3 TAPES. FLX

8K. FLP. P-TAPE. 5 TAPES

2K. 6 TAPES. P-TAPE RDR

8K DRUM

2K. 1 OK DRUM
2K. 8K DRUM. P-TAPE RDR. PCH
10K DRUM
3.2K. 12K DRUM

10K DRUM

10K. RDR. PCH. 0 TAPES

K. 5K DRUM.
3 TAPES. I/O

P-TAPE I/O
5 TAPES. 1 I/O

5K. CARDATRON.
2 TAPES. I/O
P. FLX. P-TAPE

8K• 2 TAPES. RDR. PCM. PRNTR

P-TAPE. ALPHA TYPER.
OPT 0-2 TAPES
!K. 6 TAPES. RDR. PRNTR

16K. 32K DRUM. 6 TAPES. PRNTR
32K. 8 TAPES. PRNTR
65K. 6 TAPES. DRUMS
32K. 10 TAPES. I/O. SOS SYSTEM

K. 6 LOGICAL DRUMS.
6 TAPES. PRNTR

2K. 6 TAPES. I/O

TAPES
TAPES
TAPES

(SAME AS VIZOR)

SOURCE OF
INFORMATION AND

VERIFICATION

RANDELL. B

DUNCAN. FG

HANSON. J.W
PASTER. A.
PASTER. A.
FOSTER. JM

FRANC IOTTI. RG
IRONS. ET
VAN VIJNGAARDEN .

VAN DER POEL. VL

ERSHOV. AP

ERSHOV. AP

NAUR. P

DAHLSTRAND. I

KERNER.

M1TMAN. B

GRAU. AA

BAUER. FL

SAMELSONt K
SEEGMULLER.
SCHWARZ. HR

GAL LIE. T JR.

SPEIERMAN. KH

SPEIERMAN. KH

BAUER. F
INST. DE MATH.

GRENOBLE
BAUER. F

SCHWARTZ.
SCHWARTZ.
CLARK. E
BRATMAN.
JACKSON.
BRATMAN*

ARDENt B

ARDEN. B
HALSTEAD.
HALSTEAD.

HUSKEY. HD
HUSKEY. HD
HUSKEY. HD

A FEW RESTRICTIONS ON ALGOL 60* TRANSLATED
PROGRAM ONLY RUNS ON B03 VITH FLP OR 503

TRANSLATION RESTRICTED AT PRESENT
SUBSET OF ALGOL 60 WITH SINGLE LETTER IDENTIFIERS.

LESS SWITCHES. BOOLEANS. RECURSIVE PROCEDURES.
FULL ALGOL LESS DYNAMIC OWN ARRAYS. INTEGER LABELSi

OPTIONAL SPECIFICATIONS.
FULL ALGOL LESS DYNAMIC OWN ARRAYS. INTEGER LABELSi

OPTIONAL SPECIFICATIONS. CONTAIN OPTIMISING
AND OPERATING SYSTEM

COMPLETE ALGOL 60. JAN. 63
DUE DEC. 1963
DUE DEC. 1962
DUE APR 63.

H
ALGOL 60 LESS RECURSIVE PROCEDURES. OWN ARRAYS
ALGOL 60 • I/O. NO OPER. SYSTEM. *7K WORDS OF TABLES
ALGOL 60 LESS DYNAMIC OWN ARRAYS. 2 ALTERNATE

OPERATING SYSTEMS AT 2K WORDS EACH.
ALGOL 60 LESS DYNAMIC OWN ARRAYS.

ALGOL 60 • VECTOR. MATRIX. ETC. AS SIMPLE VARIABLES.
COMPLEX. CHAINS OF INEQUALITIES. INITIAL VALUES.
FUNCTIONS YIELDED BY EXPRESSIONS. DUE LATE 62.

ALGOL 60 LESS OWN ARRAYS. RECURSIVE PROCEDURES

ALGOL 60 LESS OWN ARRAYS.RECURSIVE PROCEDURES.
RESTRICTIONS ON VARIABLE INDEX BOUNDS. EXPRESS
IONS CALLED BY NAME. IDENTIFIER LENGTH.

FULL ALGOL 60. HAND TRANSLATION TO AUTOCODE.
AUTOMATIC TRANSLATION TO ML. DUE JUL 62

DUE SEP 62
ALGOL 60 • I/O. NO PROCEEDURES EXCEPT ELEMENT

ARY FUNCTIONS. RESTRICTED ARRAYS. SWITCHES.
ALGOL 60 LESS PROCEDURES. BLOCKS. SWITCHES.

ADDED FEATURES FOR I/O. TAPE FILES. SEGMENTATION
ALCOR - ALGOL 60 LESS OWN. RECURSIVE PROCEDURES. RE

PLACED PILOT TRANSLATOR USED FEB 59 TO APR 61
ALCOR. WILL REPLACE SIEMENS PILOT TRANSLATOR.
ALCOR
ALCOR WITH LIMITED PROC. HEADING. STATEMENTS. 1 BLOCK
SOURCE • STD. ELFCTRIC LORENZ 1NFORMATIKWERK »

STUTTGART ABT. ISP PRO
ALCOR LESS PROCEDURES. SEE KUDIELKA ET AL, LOGALGOL.

IR. RES. OFFICE REPORT DA-91-591-EUC-1630
ALGOL 60 LESS OWN. RECURSIVE PROCEDURES.

GRAU-TYPE. REST DOCUMENTED IN ALGOL.
TRANSLATES 200-300 LINES/MINUTE. DUE JUN 62

LIMITED ALGOL 60. PROCESSOR WORKS IN CORE.
EPOS PERMITS 5 PROGRAMS TO TIME-SHARE.

LIMITED ARRAYS AND DESIGNATIONAL EXPRESSIONS
NOT COMPLETELY SPECIFIED. DUE SEP 62
ILL ACCEPT MIXED ALGOL(58/60) AND FORTRAN II

MO0IFIE0 MIX ALGOL 58/60. 2000 WORDS OF
TABLES. COMPILES 500 ML INSTR./MINUTE.

ALGOL 58

DUE

(58/60) • FORTRAN 11. DUE FEB 62

IMITED SUBSET OF ALGOL. 3 PASSES TO COMPILE.

DUE JEC 61
DUE DEC 61
DUE DEC 61
DUE JUN 61

MODIFIED AND EXTENDEO ALGOL
58 (JULES OWN VERSION OF
IAL). ONE BASIC GENER
ATOR. SEPARATE TRANS
LATORS FOR EACH MACHINE.

ALGOL-LIKE. CHARACTER MANIPULATION.
USED TO WRITE OTHER TRANSLATORS.

VARIATION OF ALGOL 60. NO. OF INSTRUCT
IONS DOES NOT INCLUDE TABLES.
HIGH SPEED COMPILATION.

DIALECT OF ALGOL 58. ALSO
NAVAL POSTGRADUATE SCHOOL.
MONTEREY. ALL PROCESSORS
ARE WRITTEN IN NELIAC
LANGUAGE FOR BOOTSTRAPPING.

COMPILES 5300 INSTR/MlN. INCLUDES FORTRAN I/O
VIA M-460
VIA M-A60

-A60
SUBSET OF ALGOL. EMPHASIS ON EFFICIENCY. DUE JUL 62
DUE AUG 62. PATTERNED ON ALGOL 58 • METALINGUISTICS.

TO PRODUCE MULTIPLE MACHINE LANGUAGES.
1-PASS• IK TABLES. TRANSLATE IK INSTR/MINUTE.

SELF-COMPILING. FIXED PT. ARITH. ONLY.
FORMAT SIMILAR TO ALGOL-»T ABSOL. BOOLEAN
AND LITfRAL CHAR. VALUE ARITH. MANUAL DUE DEC 61

DUE JAN 62. WIZOR WITH MIXED FIXED AND FLT. PT. ARIT

: 1 :

IDENTIFICATION

ILL I AO
SALT
AUTOCOM
SCOP AC

CONSTRUCTOR

>0. ILLINOIS U.
AUTONETICS
AUTONETICS
AUTONETICS

IBM 650
KECOMP II
RECOMP III
KECOMP II

TRANSLATOR

JAN 60

OCT 61

HINIHUH CONFIGURATION
2K DRUM. RDR-PCH

SOURCE OF
INFORHATION AND
VERIFICATION

BLOSE. W
JELINSKI. Z
JELINSKI. Z
JELINSKI* Z

SIMILAR TO MAD
FORTRAN-LIKE ALGEBRAIC COMPILER TO SCRAP
FORTRAN-LIKE. 1-PASS* OPTIMIZING. DUE DEC
OPTIMIZING FORTRAN-LIKE COMPILER

GAT
GAT
GATE
CORREGATE
GAT E-20
MYSTIC
MYSTIC
MYSTIC
MYSTIC 2
FORAST
FORAST
SALE II
ALPHACODE

AUTOCODE

ACE
AUTOCODE

EXTENDED
AUTOCODE

MANCHESTER
AUTOCODE-

MAC
MERCURY

AUTOCODE-
CHLF

EXTENDED
MERCURY
AUTOCODE

AUTOCODE

BELL
BELL
BELL ISIS)
BELL ISIS)
BELL
BELL
BELL
BAMABELL
APT
APT

COMPILER
BOEING

COMPILER
FAP
RAFT IV
RIP-3000
ACT 1.1 II
JAZ
SPEED
FLIP
INTERCOM

AST IA-136276

AUG 60

NOV 61

SIMPLE
SIMPLE

CODE
SIMPLE

CODE
,SIMPLE

CRT-916.AECL-9V6

(PRIMER)
(COMMAND LIST)
TECH. REPORT 112
IN ENGLISH IN

HETPTT BEOR 1

PURDUE UNIV.
CARNEGIE TECH
CASE INSTITUTE

CASE INSTITUTE
RAMO-WOOLDR 1DGE

10. CAROLINA
ARMOUR RESEARCH

CASE INSTITUTE
RIDGE NATL

LABORATORIES
MICHIGAN

__ NO. CAROLIM
CARNEGIE TECH
CARNEGIE TECH
CARNEGIE TECH
JOHNS HOPKINS U
JOHNS HOPKINS U
JOHNS HOPKINS U
JOHNS HOPKINS U
BRL . ABERDEEN

PROVING GROUND
A.O.SMITH

ENGLISH ELECT.

ENGLISH ELECT.

NATIONAL PHYS.
LABORATORY
LEEDS U.

COMP. LAB.
ICT LTD.

BURROUGHS

OCT 67

MAR 60
EB 58

APR 69
APR 57
JAN 59

60

BURROUGHS 205
IBM 650
IBM 650

IBM 650
.NIVAC 1105
BM 650 RAMAC

.BM 650 RAMAC
BENDIX G-20

BM 650
INI VAC 1103A

ORDVAC
BRLESC
IBM 705 11
ENGLISH ELECT,

DEUCE
ENGLISH ELECT,

KDF9
A.C.E.

FERRANTI
PEGASUS

ICT 1301

G.E.C. COMPUTER

CAMBRIDGE UN IV

BELL TEL. LABS
SHELL OIL CO
CASE INSTITUTE
CASE INSTITUTE
IBM I END I COT TI
SHELL DEV. CO.
COOKE ELECTRIC

OF ALABAMA

NAVAL ORDNANCE
LABORATORY

CHRYSLER
COMPUTER USAGE

L1 SON G.M.
ALLISON G.M.
IBM

BOEING AIRPLANE

LOCKHEED
AUTONETICS
AUT ONE TICS

XL MCBEE
PHILCO WDL
ROYAL MCBEE
HUMBLE OIL
BENDIX
BENDIX RADIO
ROYAL MCBEE
AEC OF CANADA
WESTINGHOUSE
BABCOCK AND

MILCOX
CAL TECH
DUTCH PTT

ELECTROLOGICA

G-15

MAR 58
SEP 59
AUG 61

JUN 61
58

JAN 59
JUN 61
SEP 57
SEP 57
SEP 57
FEB 60
JUN 60

JUN 61

EDSAC 2

IBM 650
BURROUGHS 205
BURROUGHS 220
IBM 630
IBM 706

,1 80
USSI 90
USS1 80
IBM 630
UNI VAC 1103A
ORDVAC
IBM 650
IBM 706
IBM 630
IBM 706
IBM 706
IBM 705 1*11
IBM 650
UNI VAC 1103A

11 VAC 1103A

UN 1 VAC 1103A
RECOMP II
RECOMP 111

P-30
LGP-30
LGP-30
BENDIX
BENDIX
BENDIX
RPC-6000
BURROUGHS 205
BURROUGHS 206
BURROUGHS 205

ELECT. XI

LIOT 803

APR 58 '

APR 62 I

2 TAPES. FLP* CARD UNIT

2K* ALPHA

» 5K. 2 TAPES. CARDATRON
K 6K. 2 TAPES. FLP. RDR. PRNTR

16K DRUM. FLP. 3 TAPES
CORE. 10K DRUM. 6TAPES.

P-TAPE

2K. 6 TAPES. P-TAPE

2K. XREG. FLP
8K» 16K DRUM. FLP. 3 TAPES
.... XREG. FLP
2K. XREG. FLP

. 8KT RDR. PRNTR
2K DRUM. RDR-PCH. OPT PRNTR
16K. 2 TAPES. RDR. PCH, PRNTK
8KT NO TAPES. RDR. PRNTR
32K, I TAPE

I0K DRUM. CARD RDR-PCH
6 TAPES. CARO RDR-PCH

60K CHAR. 2 TAPES. RDR. PRNTR
DEUCE MFC I

8K. TAPES. P-TAPE 1/0

2 8K DRUMS

7K.TAPE

DRUM. CARD
DRUM. CARD

2.6K DRUM. CARD

SPEIERMAN. KH
PERL IS. AJ
CONWAY. M

HAYNAM. GE
ZOEREN. H

HANSON. JW
WRENN. M.

ARDENT B
HANSON. JW
PERLIS. AJ
PERL IS. AJ
PERLIS. AJ
GORMAN. TP
GORMAN. TP
GORMAN. TP
GORMAN. TP
CAMPBELL. L
CAMPBELL. L
BRITTENHAM. R
DUNCAN. FG

RANDELL. B

WOOOGER. M

MITCHELL. AJ

ELLIS. PV

FOSTER. DM

HARTLEY. OF

SPEIERMAN.
HAYNAM. GE
HAYNAM. GE

HERTEL. P.
HERTEL. P.
HERTEL. P.

FLP. 1 TAPE. FLX. PCH CARD I/O
FLP. 1 TAPE. P-TAPE

. 1 TAPE. PCH CARD I/O

SPEIERMAN.
SPEIERMAN.
SPEIERMAN.

VAN DER POEL.

VAN DER POEL.

DER POEL.

PURDUE COMPILER II. IT WAS PC 1
650 LIBRARY NO. 2.1.001
CALLED RUNCIBLEIIMPROVED IT).

FORTRUNCIBLE HAS NAMED VARIABLES.
CALLED RUNCIBLE 220

IT COMPILER WITH MODIFIED I/O

IMPROVED IT „
EXTENDED 650 GAT. WRITTEN IN IT. THEN IN GATE.
GAT EXTENDED. FNN..,
GATE+SOURCE LANG. CORRECTING. U. OKLA. REPRINT
EXTENDED CORREGATE. 1-PASS
SIMPLE ALGEBRAIC COMPILER

FORMULA TRANSLATOR • ASSEMBLY
DUE OCT 61 ,
10-D1G1T FLT. PT.. PROCESS 250 STATEMENTS/MINUTE
SEE ANNUAL REVIEW IN AUTOMATIC PROGRAMMING VUL.L

TRANSLATOR IS OPTIMISING.
CONVERTS AUTOCODE INTO ALGOL 60

IDENTICAL WITH THE MERCURY AUTOCODE. LESS LIBRARY
FACILITIES OR MATRIX OPERATIONS.

LANGUAGE RESTRICTIONS FOR LESS THAN 1.2K MEM.

BASED ON MANCHESTER MERCURY AUTOCODE - SEE FERRANTI
PUBLICATION MERCURY AUTOCODE MANUAL LIST CS262A-
MODIFIED TO MEET SPECIAL REOULREMENTI

TARGET LANGUAGE IS ORION BASIC INPUT. DUE JAN 63
ALSO BEING WRITTEN FOR ATLAS.

SOME OPTIMIZATION ON COMMON SUB-EXPRESSIONS AND ON
B-REG1STER LOADING.

WOLONT1S VERSION
WOLONTIS VERSION
WOLONTIS VERSION • STATISTICAL FUNCTIONS
WOLONTIS VERSION • STATISTICAL FUNCTIONS

WOLONTIS VERSION
WOLONTIS VERSION. INCLUES TRACE
ABBREVIATED WOLONTIS VERSION

SINGLE-CHARACTER VARIABLES

ACT 111 BY NATIONAL CARBON

POLISH NOTATION. ORIGINAL APS HAD IK INSTRUCT
OPERATES INTERPRETIVELY FOR DIAGNOSIS.

COMPILES FOR PRODUCTION

PARTLY TRANSLATION. PARTLY INTERPRETATION

TRANSLATOR

J

TRANSLATOR

MAGNET
CALINT
MAGE
JOB
PAE-

CAB 500
AUTOPROG-

CAB 50C

ROYAL AIR
CRAFT EST,
BEVERLEY

I0ENTIFICATION

(PRELIMINARY)

32-7334-1

SEPSEA 661-500

SEP5EA 261-500

CMP 0012
CMBE 0012
CNCE D.4Q/62

MS 39

W/AT 7§6

W/AT 585

ELLIOTT
803 A2
803 A102

GENERAL
SIMULAT.
PROGRAM

GIPSY

LANGUAGE *•

OPM. 2499

AT 786

SEPSEA

SEPSEA

STRUCTOR

UNITED GAS CORP
AWRE.ENGLAND.
GE HUNTSVILLE
L1VERMORE AEC
TECH.OPERATIONS
(PACT GROUP)

IBM

CONTROL DATA
SET I
SET I
SEA

60
J UN 61

SEP 57

OCT 61
REV
OCT 60

JUL 60 56

79

SEP 61

APR 61

NOV 57

OCT 61

JAN 62

APR 62

MEUDON
OBSERVATORY

SNECMA
SNECMA

ROYAL AIRCRAFT
ESTABLISHMENT
ENGLISH ELECT.

ENGLISH ELECT.

ELLIOTT BROS.

MACHINE

BURROUGHS 205
BM 704
BM 704

IBM 704
IBM 704
IBM 704

IBM 705 lfli
IBM 705 till
IBM 709/7090
IBM 709/7090
CDC 160
PB 250
PB 250
CAB 500

CAB 500
GAMMA ET/AET

IBM 650

GAMMA AE
IBM 650

DEUCE

DEUCE MA
II. 1 1A

DEUCE MA
IIA

MINIMUM CONFIGURATION

4K.(FLP. 1 TAPE. FLX. P-

4X» 1 DRUM. 4 TAPES. RDR.
PCM. PRNTR
IK. 4 TAPES. NO DRUM

20X.

YES

YES

SEP 57

APR 59

STANDARD

FLP. XREG

8X» CARD I/O

CARD I/O

UNITED STEEL
COMPANIES O.R.
DEPARTMENTS

NATIONAL CASH
REGISTER. UX
ROE. AV

FERRANTI
ROYAL AIRCRAFT
ESTABLISHMENT

SPERRY'RAND
SPERRY-RAND
FRANXLIN INST.

ENGLISH ELECT.

ROE
COMPUTER
GROUP

EMIDEC 2400

FERRANTI MM

USS 80
USS 90
UN I VAC 1

FERRANTI MX 1.

DPVF

LANGUAGE 2 SIVF

LANGUAGE 2 SIVF MAR 62

MAR 62

CEA
FACULTE SC
TOULOUSE

) FACULTE SC
TOULOUSE
FONDERIE

DE RUELLE
FONDER IE

DE RUELLE
IBM FRANCE

FONDER IE
DE RUELLE

FACULTY SC

OULES. H

OULES. H

OULES. H

OULES. H

TABORY. R

1CGM BOUCHER.

FACULTY SC

BACCHUS

JUN 59

JUL 61

OCT 61
OCT 61
JUL 57

DEC 58

JUL 58

AUG 61

YES

TAPES. DISC.
PDR.PCH. TELEPRNTR
BASIC MACHINE

5X. DRUM. CARD
5X. DRUM. CARD

8 TAPES

8X DRUM. CARD RDR. PCH

IBM 650

BULL GAMMA ET

SOURCE OF
NFORMATION AND
VERIFICATION

STANDARD

STANDARD

BUFFERS. A.L.S MEMORY

FLP. XREG

STD SCIENTIFIC. 64 TRACXS

8X

SEPSEA

BULL

BULL

DODD. XN

BROYDEN. CG

RANDELL. B

HOARE. CAR

TOCHER. XD

32X, TAPES

PARXYN. DM
LANNI. N.
DANDO. W.
DANDO. W.
MCGINN. L.C.

BROYDEN. CG

MORTON. JP

M1NISTERE DE LA
MARINE

MINISTERE DE LA
MARINE

MINISTERE DE L
MARINE

MINISTERE DE LA
MARINE

IBM FRANCE

MINISTERE DE LA
MARINE

FACULTE DES SC
ORSAY

FACULTE DES SC
STRASBOURG

ONERA
CNRS

ALSO PRIMER. 32-7855(74PP).SEP 57

TRANSLATED MACHINE LANGUAGE IMPLEMENTS CODES AND
MICRO-PROGRAMS ON MAGNETIC DRUM.

SYMBOLIC THRtE ADDRESS LANuUAut- C.7 FUR GAMMA 60
ACCEPTS AP2 , „

SYMBOLIC LANGUAGE. 3 0« MORE INDEXED ADDRESSES. FOR
SINGLE OR DOUBLE PRECISION. 9 OR IB uIGlT, COMPLEX
NUMBERS. MATRICES. GAMMA 6C C7 ACCEPTS C2

MATRIX CALCULATION ASSEMBLY PROGRAM
SYMBOLIC ASSEMBLY CODE FOR MACHINE CODE. SUb-PRUoRA•

STANDARD FUNCTIONS. PROGRAMS IN VARIOUS SYMBOLIC
LANGUAGES AP2• C2. ALGOL IN DEVELOPMENT

FIXED AND FLOATING POINT ARITHMETIC

i SIMPLE FUNCTION-ANU-ADDRESS

VE SCHEMiE FOR BES

CONVERTS INSTRUCTIONS OF
TYPE INTO MACHINE CODE.
SPECIAL-PURPOSE INTERPRET
FUNCTION CALCULATIONS.

THREE ADDRESS INSTRUCTIONS. -ITH EXTENSIVE ORDER
MODIFICATION FACILITIES. FXP.

803 A2 IS FOR 803 WITHOUT FUP. 803 A102 REQUIRES
FLP UNIT. BOTH LANGUAGES ARE IDENTICAL.
SEE ANNUAL REVIEW OF AUTOMATIC" PROGRAMMING. VOL

USED MAINLY IN PROGRAM STORAGE. AMENDMENT AND
RETRIEVAL FROM TAPE AND IN PRODUCING COMPILERS.

VERSION TO PRODUCE CODE FOR b03 SCHEDULED Ftr 62.

NEEDS FLP. MATRIX OPERATIONS - INTERPRETIVE.
ETC DISGUISED

FOR EIM!^NUMERICALLY CONTROLLED 2-D GRINUINu M/C.
OUTPUT TAPE IS TOOL INPUT T APE.FOR 2-D PLOTTER-
BOARD. DIAGNOSTIC CHtCMS.

FORMULA INPUT FXP , , , A1 ,, LGP.90 PSfcUDO CODE INPUT TO MACHINE COoE WHILE LOADIN,
EDIT GENERATOR
REPORT GENERATOR
WILL INVERT UP TO 300 X 300

SPECIAL-PURPOSE INTERPRETIVE SCHEME FOR THERMODYNAMIC
CALCULATIONS.

SIMPLE INSTRUCTIONS OPERATE ON SINGLE NUMBERS OR
COLUMNS OF NUMBERS.

ASSEMBLES AND EXECUTES IMMEDIATELY OR NOT. OPTIONALLY
OR PUNCH AND RUN.

DIRECTLY INTERPRETED. SAME LANGUAGE AS DPVF COMPILER.
WITH ADDITIONAL FUNCTIONS

COMPILER FOR DPVF LANGUAGE

OBTAINED BY TRANSLATION OF SIVF WITH TIVF

TRANSFORMS SIVF TO INTERMEDIATE LANG. IVF WHICH
IS THEN INTERPRETED. ORIENTED TO IBM 650

RELATED BY EXTENSION FORTRAN LIST PROCESSING

FIXED PT. TECHNICAL COMPUTATION

RELATED TO CAM BY EXTENSION.

RELATED TO AP2 * EOUIVALENT TO SYMBOLIC LANGUAGE
OF SEPSEA CAB 500 AND IbM 1620

SIMULATION OF 610 ON AET BULL. AlPH, TITLES
CREATED ESPECIALLY FOR DOCUMENTATION

•Ill

TWENTY FIVE YEARS OF FORTRAN
A National ACM Lectureship

Series Presentation
by

J.A.N. Lee
Pioneer Day Chairman

National Computer Conference 1982

Department of Computer Sceince
Virginia Tech

Blacksburg VA 24061

8 2 / 1 1 / 1 2

CS82010

Abstract

In 1982 FORTRAN will have existed in the environment of
computers, computing and computation for 25 years, making it
one of the most successful of programming languages even if
it is not the actual oldest still surviving ^"g^ge. The
honor of being the oldest still belongs to APT (Automatic
Programmed Tool.) This report is the script of talk given
at several institutions during the Spring of 1982 and serves
as a skeleton on which a broader history is to be developed.

PAGE 2

HOW IT GOT STARTED

IBM was a comparative latecomer in the electronic computer

market, T.J. Watson Sr. having little confidence in the

reliability of machines which one could not actually see working,

and perhaps influenced in some degree by the prognosis that a

small number of such machines would satisfy the world's demands

for computation. While it is true that IBM had supported Howard

Aiken in the development of the (Harvard) MARK I, that too was a

relay machine because IBM was marketing mechanical devices; if

Munroe [1] had been the sponsor then perhaps the MARK I would

have been electronic. Of course under those circumstances IBM

would not have been injected into the electronic computing field

any earlier. At the same time, when IBM did eventually enter

this field with the SSEC, the emphasis was on providing hardware

and supplying the customer with programming support, at a fee,

through the service bureaus. Thus to provide "software" (as we

know it today) would have counter to the profit motives of those

bureaus and the day had not yet dawned when programs were for

sale! User cooperatives were just beginning to emerge as a means

by which customers could freely exchange their in-house programs.

Speedcoding - the floating point simulator

After the advent of the IBM 701, some of the drudgery of keeping

track of the radix point in fixed numeric fields was relieved by

the introduction by John Backus of the Speedcoding system. This

[1] See foreword by Bernard Cohen to: "History of Mechanical
Computing Machinery", by George C. Chase, Ann. Hist. Comp.,
Vol.2, No.3, July 1980, p.198.

PAGE 3

system made the 704 appear to be a three-address floating point

calculator with the added advantages of input-output

conveniences. While it was an interpretive system, the reduction

in costs of coding, testing and operation proved it to be a more

economical means of problem solving than direct machine language

programming [2].

The IBM 704 -- built-in floating point and indexing

The design of the next machine for the IBM family of electronic

calculators originally did not include any provision for hardware

floating point arithmetic or indexing operations. Backus

championed this cause against strong opposition which was based

on the profit motives of not giving away too much of the

computational pie; after all, such niceties would only decrease

the time needed to complete a computation in the service bureau

thus decreasing the profit to be gained. The battle was won on

the side of improvements in hardware services and as a result

such systems as Speedcoding were no longer viable. Backus [3]

stated that "... early systems . . . had hidden a lot of gross

inefficiencies . . . in floating point routines . . . (and) clumsy

treatment of looping and indexing . . .", so that when the 704 came

along with its hardware floating point and indexing "... there

was just nowhere to hide inefficiencies."

WHY FORTRAN?

[2] Backus, J.W., The IBM Speedcoding System, Jour. ACM, Vol.1,
No.l, January 1954, pp.4-5.
[3] Backus, J.W., FORTRAN Session, History of Programming
Languages, Academic Press, New York, 1981, p.50.

PAGE 4

Thus IBM needed to look towards means of producing programs

automatically which were at least as efficient as those that

would be written by hand and preferably using a language similar

to that that had been proposed by Rutishauser [4] and hinted at

by such authors as Glennie [5].

Automatic Programming

At this time (1953) automatic programming was regarded as the

wave of the future though in general the attempts at design and

implementation were somewhat narrow in their scope or foresight.

The concept of machine independence was lacking and the point of

using a language which was non-machine-like seemed to have been

missed. There were many sceptics who believed either that the

task was impossible (see [5]) or that it was beyond the current

state of the art.

THE PAPER LANGUAGE

December 1953 Memorandum Backus to Hurd

To propose the development of an automatic programming system

which was not only more advanced in its language concepts as well

as its ability to produce efficient code was the daring step

which Backus proposed to his manager, Cuthbert Hurd, in December

1953. Without either a pre-authorized budget and a supporting

staff or a detailed proposal, Backus was given the go-ahead for

[4] and [5] see Knuth, D.E. and Pardo, L.T., Early developments
in programming languages, in Encyclopedia of Computer Science and
Technology, Dekker, New York, Vol.7, pp.419-493.
[6] Hopper, G.M., The Early Days, in The History of Programming
Languages, Academic Press, New York, 1981, p.13.

PAGE 5

this research project. Perhaps Hurd didn't really expect the

project to last too long, since in those days it was unheard of

to spend "man-years" on writing programs. Actually he expected

the task to be completed within six months.

The Initial Proposal 1954

A mid-1954 initial proposal suggested that the programmer "...

would like to write (the mathematical formula) instead of the ...

instructions (for) this expression ...".

Backus, Ziller and Herrick

Who were these visionaries who were to succeed where no-one else

had ventured? The 1957 biographies state: "John (Backus) ...

joined IBM in 1950 as a programmer in the Pure Science Department

working with the Selective Sequence Electronic Calculator (SSEC).

He transferred to the Scientific Computing Service in 1952 (and)

... in 1954 he was appointed Manager of the Programming Research

Group in Applied Science and is presently the Department Manager

of the Programming Research Department. John was awarded BS and

MS degrees in mathematics by Columbia University ... (his)

hobbies are hi-fidelity and chess."

"Harlan (Herrick) ... was raised in Iowa ... (and) came to IBM

eight years ago (1949) from Yale where he taught mathematics. He

received his masters at the State University of Iowa ... is a

member of Phi Beta Kappa, Sigma Xi and the Masthematics

Association of America ... (his) pet peeves are materialism,

dishonesty and hypocracy ..."

Regrettably no such biography exists for Irving Ziller though he

joined IBM in February 1952 and was the first to join Backus on

PAGE 6

the FORTRAN project.

PRELIMINARY FORTRAN (Nov. 1954)

The preliminary proposal prepared in May 1954 does not actually

mention the name FORTRAN, that being left for a Preliminary

Report in November 1954. The significant elements of that report

include such items as:

2 character variable names

function names 3 or more characters

multiply -- x , involution -- xx

relative constants

where relative constants where attributes which could be ascribed

to identifiers whose associated values were to be "relatively

constant".

Statements

Two statements in this preliminary report are significant for

both their ingenuity and foresightedness, even though neither

appeared in the resulting compiler to be delivered in 1957:

DO 10,14,50 I = 4,20,2

The significance of this statement is the three statement

identifiers in the prefix to the loop control information; the

meaning is that the block bounded by the statements labelled 10

and 14 should be repeated until the loop control conditions are

exceeded, following which the next statement to be executed is

that labelled 50! Since there was no requirement that the DO

statement be contiguous to the block of statements to be

PAGE 7

repeated, then this might be termed a remote loop specification.

Obviously this complexity was muted by the time the first

implementation was completed but it is interesting that similar

statements did exist later in JOSS and COBOL (PERFORM...VARYING),

and is similar in its use of a remote block of code to the BASIC

GOSUB statement. It is important to remember that subprograms

were not "invented" [7] in this form until two years after this

preliminary design, though Mauchly had mentioned the subroutine

concept in 1948 [8].

IF (X>Y) 12,55

Most people relate the three-way arithmetic IF statement with the

original FORTRAN, but surprisingly enough that statement was a

replacement for the much more modern statement shown above which

did not re-appear in the language until FORTRAN IV in 1961.

Similarly, the use of mathematical symbols such as > and thus the

implication of logical expressions was left to a later version of

the language. Quite distinctly, these symbols did not exist on

the standard IBM key punches of the 1950's era.

Relabel

The Relabel statement was the beginning of a concept which has

not yet been reintroduced into FORTRAN, that is array processing.

[7] Wheeler, D.J, Wilkes, M.V., and Gill, S., The Preparation of
Programs for an Electronic Digital Computer, Addison-Wesley,
Reading MA, 1957.
[8] Mauchly, John W., Preparation of problems for EDVAC-type
machines, Proc. Symp. on Large Scale Digital Calculating
Machinery, 1947 January 7-10, reprinted in Randell, B., (Ed.),
The Origins of Digital Computers, Springer-Verlag, New York NY,
1982 (Third Edition), pp.393-397.

PAGE 8

The intention of this statement was to permit the programmer to

relabel the rows of a matrix so as to rearrange the row ordering

and thus apply a single algorithm to a particular slice of that

array. The complexity of this operation was not realized at the

time of the preliminary report and it is clear that indexing

through arrays explicitly is a much better programming technique

than an implicit set of possibly unreadable instructions.

Frequency

When considering that one of the major objectives of the research

project was to prove that machine could generate code on a par

with a human programmer, the inclusion of information on the

expected frequency of execution of statements is a logical

necessity. However, it was to be found that such statements were

unnecessary since logical flow analysis could provide the same

(if not better) information.

FUTURE FORTRAN (from a 1954 perspective)

The preliminary report was not bashful in suggesting that the

language might one day be extended to include new facilities.

begin-end

While the bracketing of a block of code by the reserved words

begin and end is usually associated historically with ALGOL, this

preliminary report included these terms as scoping delimiters for

different types of arithmetic to be performed.

complex, double and matrix

It was proposed that in subsequent versions of FORTRAN it would

PAGE 9

be possible to prescribe the type of arithmetic to be performed

in certain segments of the program. It is not stated whether

these operations would be associated with new data types or

whether the first character in a name would signify different

types than previously used.

CHANGING ENVIRONMENTS

From the beginning of the development period, the Programming

Research group were shuffled through various locations in the

area of 590 Madison Avenue, there perhaps being a correlation

between the quality of the facilities and the recognition given

to this project by the IBM administration.

Administrative attitudes

Chess in the afternoon or punch the time-clock?

Hal Stern [9] remembers clearly a steadily changing atmosphere

through the period, beginning with a very "researchy" environment

when people worked as hard as any other time but where the actual

time of day was irrelevent. To him it was not unusual to work

hard for a period, to play a game of chess and then to return,

refreshed, to the task at hand. Thus when, apparently under

pressure from upper level management, Backus broke up a chess

game between Stern and Peter Sheridan, the former was somewhat

incensed; as he remembers it was the first time he was winning!

Changing locations and the outlook

Backus believed that the changing locations distinctly affected

[9] Personal Correspondence

PAGE 10

the productivity of the group, and there seemed to be a

correlation with the view from the windows [10]:

"... We shifted around from one small building (to another)

at fairly regular intervals and this seemed to affect our

work habits in a strange way. ... The first one we moved to

overlooked the dressing rooms of the J. Thorpe department

store and then we moved to another overlooking the dressing

rooms of Bonwit Teller. ... (This was) a period in which

our productivity seemed to decline considerably. From

there we moved to a building on 56th street ... I noticed

that when I came in everybody was there and apparently had

been there for some time. (Eventually) someone confided to

me that across the street . . . was a young lady . . . who

slept without any clothes on ... and (who) danced very

exuberantly ... before going to work. This was a period of

great productivity because everybody came in early and

after the show was over settled down to work long before

(the official) starting time."

THE VON NEUMANN CONSTANT

Cuthbert Hurd had originally expected that the FORTRAN project

would have been completed within six months of its starting date.

But he did not realize that the von Neumann constant applied to

the project. This constant is defined as being the time to

completion of a project from the instant the enquiry is made

[10] From the Transcript of the Anecdotes told by numerous
programming language pioneers at the History of Programming
Languages Conference, Los Angeles CA, 1978, unpublished.

PAGE 11

regarding the completion of the project and is a constant

(usually about six months).

Missed delivery dates and changing machine requirements

An examination of successive SHARE meeting minutes starting in

1955 reveals that FORTRAN was to be delivered by the time of the

next SHARE meeting (six months away) and that to meet this

objective a little more machine was needed each time. When

finally delivered the minimal machine configuration was 4k (IBM

704) words of core memory, 1 drum unit and 4 magnetic tape

drives.

VON NEUMANN and FORTRAN

During the early years of the 1950's, von Neumann was hired by

Cuthbert Hurd as a 30-days per year consultant mainly to assist

with the design of the 704 and later to consult on mathematical

problems. Apparently the technique was to establish von Neumann

in an office in the World Headquarters and then to have those

with problems bring them to him for consideration. Typical of

the quickness of mind of von Neumann is the report of one of

these consultations which involved John Greenstadt [11].

"I did some hand calculations ... and it converged in the

few cases I tried ... (so) I tried to prove convergence ...

but with no hint of success . . . Finally in the latter part

of 1953, we decided to ask von Neumann (for help) ... I

explained it to him in two minutes ... He spent the next

[11] Goldstine, H.H., Footnote to a recent paper, Jour. ACM,
Vol.7, No.l, January 1950.

PAGE 12

fifteen minutes thinking up all the approaches we had

thought of in three or four months, plus a few new ones ...

at this point he decided it was a non-trivial problem and

perhaps not worth it anyway . . . and immediately suggested

... the truly natural generalization of (the) method."

1954 Meeting -- Von Neumann, Backus, Hurd and Beckman

Thus it was natural for Hurd to suggest that von Neumann's

opinion of FORTRAN might be worthwhile -- after all it would cost

no more than a day's presentation! Besides Backus and Hurd, they

were joined by Frank Beckman, then manager of "Pure Programming".

Beckman reports the conversation in his book [12] and in personal

correspondence:

"I do not know if von Neumann expressed any opinion about

FORTRAN outside of this meeting, but I would certainly not

describe his reaction at the time as being unduly negative

-- somewhat apathetic perhaps, but not strongly negative. I

remember very vividly his allusion to Turing's "short code"

... In general von Neumann was not an enthusiastic of

automated programming aids ... I have always felt that since

he, himself, did not require such aids in writing programs,

he could not empathize with the typical production

programmer."

In effect, von Neumann's response to the presentation on FORTRAN

was "Why would you want another language?"

[12] Beckman, F.S., Mathematical Foundations of Programming,
Addison-Wesley, Reading MA, 1980, pp.177-178.

PAGE 13

Perhaps it is ironic that some twenty years later Backus chose

for the title of his Turing Lecture "Can Programming be Liberated

from the von Neumann Style?" [13].

1957

Eventually, the year arrived when FORTRAN was once more due to be

delivered, but now the working system refused to be duplicated.

The problem was that it was the practice to distribute programs

through SHARE as card decks but this was probably the largest

program ever intended to be distributed up to that time, and the

card punches refused to remain stable enough to complete the

punching of a single deck. Thus it was decided to distribute the

compiler on magnetic tape instead.

Actual delivery

No record exists as to when the first compiler was actually

shipped intentionally; perhaps part of the problem was that the

US Post Office closed down a part of its operations about the

time that it should have been shipped and was waiting for more

money from Congress before they adjourned for Easter!

The way it was that week

As we can show later, it would appear that the first deck was

shipped during the week of April 15-20, 1957. That was a week

during which many things were reported in the New York Times:

-- Britain and Egypt were at war over the Suez Canal

[13] Backus, J., Can Programming Be Liberated from the von
Neumann Style?, CACM, Vol.21, No.8, August 1978, pp.613-641.

PAGE 14

-- Nasser of Egypt instigated a coup against King Houssein

of Jordan but failed

-- Ike was President and Dick was his VP

-- the Yankees beat the Dodgers 5-1 in the Sunday game --

the Brooklyn Dodgers that is

-- Studebaker-Packard announced that they intended to offer

a new small car to sell at less than $2000 and for the

first time it would offer as standard features items

which had only been optional before -- a heater, a

defroster and directional signals!

--The Chrysler Corporation announced first quarter earnings

of $1,100,000,000

-- the Canadiens beat the Bruins for the Stanley Cup again

-- the Dodgers announced plans for a new stadium in Flushing

Meadows

-- Dean Martin's guest on his first TV show was Bing Crosby

-- Desilu Productions were confident that "I Love Lucy"

would be back next year

-- Poland was warned against Western aid by Krushchev

-- NBC was planning to put TV shows on tape instead of

running them "live"

but the delivery of the first FORTRAN compiler and the running of

the first program escaped unnoticed. Perhaps the week itself is

not crowned with glory -- it was the same time in 1912 (45 years

previously on April 15th) that the Titanic sank!

INNOVATIONS

PAGE 15

It is difficult to pick out any single item which makes FORTRAN

unique by itself; almost everything that was delivered in that

first package was innovative either because it was the first time

that the feature had been placed at the disposal of a user of a

high level language, or because in conjunction with other

features of the language or the compiler it was an outstanding

contribution to the science of computation.

FORMAT

The concept of being able to specify the format of an input or

output item was not new; in fact the FORTRAN implementer of

FORMAT, Roy Nutt, had previously included a similar system in an

internal system for United Aircraft of Hartford CT.

Optimization techniques

In some respects, the development of language was incidental to

the research to prove that a machine could produce good every bit

as good as that produced by a human programmer. Backus [2]

states that "... the degree of optimization they achieved was not

really equalled again in subsequent compilers until the

mid-1960's when the work of Fran Allen and John Cocke began to be

used ..." This optimization was so good in fact that the

"proprietors" of the optimization section (Irv Ziller and Bob

Nelson) often thought that the results were wrong the generated

code being unrecognizable as having originated in the code they

input! Regrettably, it was not the practice to document as one

went along in this age of compiler development and thus it was

not until some years later that any of their techniques were

PAGE 16

published [14].

User's manuals

While not significiant to either the design of the language or

the implementation of the system, the introduction of a readable

user's manual and a programmer's primer was clearly significant

to the ultimate success of the language. The fact that the

original user's manual described the whole of FORTRAN, with

examples in less than 50 pages while at the same time providing

wide margins for the keeping of notes by the reader, is both

remarkable and a feat which has not been repeated again.

Interestingly enough, the von Neumann constant apparently also

relates the publication of the Programmer's Reference Manual and

the actual delivery of the compiler -- the manual is dated

October 15, 1956 and the compiler was released on April 15, 1957.

THE FIRST PROGRAM

The first error message

The running of the first program, though well documented by Herb

Bright [15], was not a planned activity. There is one error in

Bright's report which needs correction -- 1957 April 20 was a

Saturday not a Friday as reported. It was on the afternoon of

that Friday when an unmarked deck of cards was delivered to

Westinghouse-Bettis and which was assumed by Lew Ondis to be the

[14] Lowry, E., and Medlock, C.W., Object Code Optimization,
CACM, Vol.12, No.1, January 1969, pp.13-22.
[15] Bright, H. , FORTRAN comes to Westinghouse-Bettis, 1957,
Computers and Automation, November 1971, pp.17-18.

PAGE 17

right size to be a FORTRAN compiler. Jim Callaghan quickly wrote

a small program based on a recent technical report by Ollie

Swift, and using the "common" technique for running programs on

the IBM 704, the unmarked deck was loaded into the syetm followed

by the program. Surprisingly it worked and in a short time the

first FORTRAN error message was output:

FORTRAN DIAGNOSTIC PROGRAM RESULTS

05065 SOURCE PROGRAM ERROR. THIS IS A TYPE-GO TO (),I

BUT THE RIGHT PARENTHESIS IS NOT FOLLOWED BY A COMMA

END OF DIAGNOSTIC PROGRAM RESULTS

The error was quickly fixed and the program (apparently)

recompiled and executed to produce "... a whiff of computing

followed by 28 pages of output ..."

IMPROVING THE CODE

One of the flavors of computing in those days was the belief that

almost anyone could produce code better than IBM could. Backus

[2] quotes Perlis as wondering "... why those clods working on

FORTRAN had taken 25 man years to produce a compiler, since one

of his graduate students had written an IT compiler in a single

summer ...!" Perhaps Perlis did not understand the complexities

of code optimization.

Frank Engel -- Westinghouse-Pittsburgh

Thus when Engel noticed that during the compilation process there

PAGE 18

was never any instant when two tapes were in use on the 704, he

asked his account representative (Ken Powell) for a copy of the

source code. Powell relayed the request to his manager, Frank

Beckman, who responded "IBM does not supply source code." Not to

be outdone, Engel dumped the compiler code (in octal), spotted

the section which was responsible for this tape management,

rewrote it (in octal) and produced a system which had an improved

throughput of about 2 to 3 times the speed. When Powell saw this

he asked Engel for a copy which he could send back to the FORTRAN

group in New York -- Engel responded "Westinghouse does not

supply object code".

THE PEOPLE OF FORTRAN

A complete dossier on all the members of the FORTRAN team (John

Backus, Harlan Herrick, Irving Ziller, Robert Nelson, Roy Nutt,

Peter Sheridan, Lois B. Mitchell Haibt, Sheldon Best, Richard

Goldberg, David Sayre and Grace (Libby) Mitchell) is not possible

here. Their individual contributions to the implementation have

been documented by Backus [2]. But what of the individuals?

Backus, Nutt, Haibt

Backus has maintained his leadership in the field of computing

through the years and is somewhat frustrated that the success of

FORTRAN both overshadows and perhaps even thwarts his efforts to

improve programming languages [13]. He has been recognized by

the IEEE in 1967 (on the tenth anniversary of FORTRAN) with the

W. Wallace McDowell Award, by the United States of America in

1976 (the bi-centennial year) with the National Medal of Science,

PAGE 19

and finally by ACM in 1977 (on the twentieth anniversary of

FORTRAN) with the Turing Award. Having completed the FORTRAN

implementation, Backus was appointed by John Carr, ACM President,

to be a member of the joint ACM-GAMM group which developed ALGOL.

A close examination of the ALGOL proposal and the FORTRAN

preliminary report reveals that perhaps it was Backus who

introduced certain salient language features, such as begin-end,

which were not included in FORTRAN. Backus, with the editorship

of Peter Naur, also invented the syntactic definition schema now

universally known as BNF, and variously as Backus-Normal-Form or

Backus-Naur-Form.

Roy Nutt was not a member of the IBM staff which was assembled to

develop FORTRAN, but instead was a highly knowledgable user whose

concepts on input-output, and especially FORMAT, could not be

duplicated elsewhere. Thus with the support of Walter Ramshaw,

his manager at United Aircraft in Connecticut, Nutt spent a few

days each week in New York assisting the IBM team. Like Backus,

Nutt has remained agile in the field of programming languages and

was recently embroiled deeply in the Ada Programming Language

controversy [16].

Lois Haibt, while a contributing member of the team, is probably

notable for being one of the few computer scientists ever to be

featured in the Madamoiselle Magazine [17]:

"This twenty-two-year-old girl started at IBM with a salary

[16] See ACM Forum, CACM, Vol.24, No.11, November 1981, p.784 and
succeeding issues.
[17] Kirkbride, K., and Garland, K., Machine, What do you think?,
Madamoiselle, October 1958, pp.92-157.

PAGE 20

of five-thousand dollars a year and increased her income to

six thousand in eight months ... Lois spends a good part of

her day at a large bare desk writing up instructions for the

computer to follow . . . (she) waits her turn at the machine

in a glass enclosed, red-walled balcony above it ... The

girl who keeps the computer's social calendar tells Lois to

stand by, ready, so that when the person before her is

finished Lois can step up for her "date" immediately."

THE LANGUAGE MANUAL AND THE PRIMER

As stated previously one of the primary innovations which

accompanied the FORTRAN implementation was the user's manuals

which the group provided. These manuals are significant both

from their conciseness and clarity, but also from their form.

Apart from the PRINT 1 manuals which were published the same

year, and the FOR TRANSIT manual of 1957, they are unique in the

cover design (the team voted democratically on it) and for the

fact that all these manuals contain the names of the authors.

Like FORTRAN itself, these manuals were so good that they

inhibited other publications on the topic and it was not until

four years later that any form of competitive publication was

available.

FOR TRANSIT

If we can do it once, we can do it again

In 1982 it is common sense that once one has produced the first

version of a product the second version has got to be better. In

PAGE 21

fact, one of the proverbs of programming [18] states:

Don't Be Afraid to Start Over

So when IBM introduced the 650 computer in the midst of the fever

of user's anticipations regarding FORTRAN, it was obvious that

another implementation was needed.

Novice crew

The 704 team led by Backus was still very busy in early 1957

completing the final stages of debugging and trying to get the

system punched ready for distribution. Thus no-one could be

spared from that group to start a new project, but there were

people who had been close enough to the activity who could

parallel their work. One of those was Bob Bemer. He assembled a

650 team consisting of Otto Alexander and David Hemmes at the

Langdon Hotel on 56th Street, neither of whom had any previous

experience with the kind of work to be undertaken; later they

were joined by Flo Pessin who was equally unprepared for the

task.

Cascading Implementation

Bemer noted that there was another significant activity in

progress which was to implemented on the 650, though it was not

originally intended for that machine; it was the IT (Interpretive

Translator) system being developed by Alan Perlis at Carnegie

Institute. IT compiled a much simpler language into the assembly

language of the IBM 650 (SOAP - Symbolic Optimized Assembly

[18] Ledgard, H.F., Programming Proverbs for FORTRAN Programmers,
Hayden Book Company, Rochelle Park NJ, 1975

PAGE 22

Program) which in turn was assembled into the object code for the

machine. Thus the concept was developed to "cascade" the

implementation from FORTRAN to IT to SOAP and hence to object

code in four passes.

FORTRAN > IT > SOAP > OBJECT

Quick implementation

In spite of the inexperience of the crew, a version of FORTRAN

was available for the 650 only a few months after the delivery of

the 704 version and the expenditure of only 4-5 man-years of

work. To accomplish this the language was a subset of that

implemented for the 704, but this was consistent with the fact

that the 650 was an even smaller machine than the 704. Part of

the motivation for this effort was the fact that IBM expected

many more 650's were expected to be installed in Universities

than was the case for 704's and especially since IBM was now

willing to offer a 60% educational discount to those institutions

which used the systems for administration, scientific computation

and business data processing classes. FORTRAN was to be the

"hooker" of this new generation of students.

To accelerate the implementation, and partially in recognition of

the success of the language for its own right rather than simply

as a test bed for optimization research, optimization was omitted

from this new implementation. A form of optimization existed in

the SOAP system, but this was not language dependent and was

merely concerned with the location of instructions on the drum

PAGE 23

(the main store of the 650) in relation to the pertinent data

and/or the next instruction.

Bemer and Pessin

Bemer joined IBM Programming Research in 1955 after a career in

the aircraft industry and was appointed manager of Programming

Systems in 1960. In the "FORTRAN years" Bemer was active in many

other ways which furthered the development of programming

languages. He created the first load-and-go compiler for PRINT 1,

developed the language known as COMTRAN (Commercial Translator*)

and actively supported the development of ALGOL. In fact, in

1960 he was quoted as stating to the British Computer Society

that "... we wish to obsolete FORTRAN and scrap it, not

perpetuate it. Its purpose has been served."

Flo Pessin was given the task, by Bemer, of writing the

arithmetic scanning routines for this new version of FORTRAN, but

first she invented the name of the system -- FOR TRANSIT. Based

on the cascading approach that Bemer had suggested, recognizing

the contribution of IT and being a double-crostic addict, she

coined the name as a three-way pun. One of the difficulties

facing Pessin at this time was both her lack of experience in

preparation for this task, the fact that the 704 team had created

no documentation (though they were no different than most other

implementers) and there was no help offered by the 704 group.

Thus she was forced to invent new techniques of compilation, and

* It is interesting that the name is reminiscent of the source of
FORTRAN -- Formula Translator.

PAGE 24

like the others omitted to document them because she really did

not know that what she was doing was so innovative.

INNOVATIONS

The problem of how to analyze and then generate code from an

arithmetic expression was solved in a highly ingeneous manner.

Pessin recognized (probably from high school) that the order in

which operations were to be executed in an arithmetic expression

was determined by the hierarchial order of the operators. Further

the order of execution of fully parenthesized expressions is

determined by the depth of parenthesizing. Thus the technique

developed was to introduce into the expressions additional

parentheses surrounding the operators, but facing outwards away

from the operators, such that the number of parentheses added was

in inverse proportion to the hierarchy of the operator.

Sufficient additional parentheses were made available at the ends

of the expression to satisfy the parenthesis balancing

requirements. Thus given the expression:

a + b * c

the first stage of parenthesizing would produce:

(...(a)))+(((b))*((c)...)

which after cancellation of parentheses surrounding the operands

develops the expression:

(a + (b * c))

which is correct. Obviously this technique does not take into

PAGE 25

account left (or right) associativity, but that is unimportant

once this stage has been reached. The next innovation which was

introduced was the use of a tabular method of expression analysis

which was later rediscovered by others [19].

FIRST FILM

The first film, known to us, was produced by the New York

Education Center (of IBM?) and is interesting for several

reasons.

Not only is it interesting from a content point of view but also

visually and editorially. The commentator is architypical of the

"IBM salesman" of the era -- grey suit, white shirt, dark tie and

the neatest of haircuts. The presentation is similarly in a

style which we associate with both the corporation and the era;

looking straight out, unsmiling and sincere. The first sentence

is perhaps a commentary on where it was thought the concept of

programming languages was heading:

"... FORTRAN represents the most advanced coding system

available today and is a forerunner of a universal coding

language toward which we are working ..."

John Backus would be very interested in that statement since he

is still working towards that goal. A later statement regarding

the effort and cost of the development process is the first which

we have recorded:

[19] See for example: Samelson, K., and Bauer, F.L., Sequential
Formula Translation, in Programming Systems and Languages, Rosen,
S. (Ed), McGraw-Hill, New York, 1967, pp.206-220, originally
published in German in 1959.

PAGE 26

"... was developed ... at a cost of $475,000 and ... 29 man

years ..."

Since the film refers both to FORTRAN for the 704 and FOR TRANSIT

for the 650, perhaps this breaks down to 25 man-years for the

Backus project and 4 man-years for Bemer's activity.

Another interesting aspect of this film is that it was obviously

"shot" at one sitting (or standing), and no attempts were made to

edit any abberations from the presentation. Thus a false start

at presenting a problem for solution is somewhat amusing:

"... The Indians bought Manhattan island at a cost of $24.

[Pregant Pause] Pardon me, the Indians sold Manhattan Island

at a cost of $24 ..."

The development of a program, its punching onto cards and the

compilation process are much as one would expect today in a batch

environment. The film shows some shots of the IBM 704 flashing

its lights during compilation and the output coming out of the.

printer at 100 lines per minute!

FIRST TEXTBOOKS

While there were a few textbooks that contained a chapter on

programming languages [20] the production of a single topic

textbook on FORTRAN was perhaps inhibited by the excellence of

the user's manuals produced by the Backus group. In early 1961,

Elliott Organick, then at the University of Houston produced an

"internal" booklet on FORTRAN which was marketed through the

[20] See for example: Andree, R.V., Programming the IBM 650 ...,
Henry Holt and Co., New York, 1958, Ch.8, "Compilers".

PAGE 27

university bookstore for local use. This was accompanied later

in the same year by another volume of drill exercises. However by

this time Daniel McCracken had overcome the opposition from a

commercial publisher and produced the first textbook solely

devoted to FORTRAN [21]. Surprisingly enough this volume was not

much larger than the original user's manual and maintained the

wide margins and clear text of that earlier IBM manual. The

review in Computing Reviews was not encouraging:

(Computing Reviews, Vol.3, No.1, Rev. 1421, 1962 January, p.

22) states: "There are versions of FORTRAN for the IBM 650,

1620, 704, 709, 7090, and for the Honeywell 800, the Philco

ALTAC, and the Control Data 1604. Since each version has

its own description this latest work might seem redundant

but it does have some definite advantages."

It is interesting to note that five years later Computing Reviews

refrained from soliciting formal reviews of FORTRAN texts due to

their "proliferation" and resorted instead to merely publishing

an extract from the author's introduction!

LOAD AND GO SYSTEMS

Although Bemer had invented load-and-go systems for the PRINT 1

language, their emergence as a "standard" implementation of a

programming language did not occur until the early 1960's.

IBM 1620

The IBM 1620 was the first (IBM) machine which provided the user

[21] McCracken, D.D., A Guide to FORTRAN Programming, John Wiley
and Sons, New York NY, 1961, 88pp.

PAGE 28

with a truly interactive capability and a machine language which

was much better human engineered than its competitors such as the

(Royal McBee) LGP-30 or the (Bendix) G-15. Thus users could

benefit from the concepts of compiling programs and immediately

executing those programs from memory without resorting to the

production of an object deck or the bother of reloading the

compiled program.

FORGO -- University of Wisconsin

Part of the impetus for this movement was again the idea that

"anything IBM can do, a user can do better." Thus to save time

in an open shop environment with a multitude of engineering

students desiring to compile and run programs, Charles Davidson

at the University of Wisconsin implemented a FORTRAN II in this

load-and-go environment named FORGO. It was the first of many

other similar systems for the 1620 which included systems from

the Air Force Institute of Technology (AFIT FORTRAN by Richard

Pratt), UT FORTRAN (from the University of Toronto) and KINGSTRAN

(developed by a joint team from the University of Toronto, Dupont

of Canada, Ltd., and Queen's University at Kingston). This

lineage eventually led to the development of WATFOR for the IBM

360 and the plethora of similar systems developed by universities

for FORTRAN and other languages.

WHAT IS WRONG WITH FORTRAN?

FORTRAN is regularly criticized, along with COBOL and other

languages of the same era, as being a dinosaur that will not die.

While it is true that much of the world's scientific programming

PAGE 29

is still being accomplished in FORTRAN, that may be due to the

use of the language by other than computer scientists and the

lack of high level programming language education in engineering

and science schools.

LACK OF STRONG TYPING

One of the criticisms of FORTRAN is the lack of strong typing,

which is interpreted as the lack of a requirement that every

variable be included in a type-declaration statement.

FORTRAN introduced the concept of name-type relationships

In fact, FORTRAN in its original form was the first to introduce

typing based on the syntactic characteristics of the name of an

identifier; the problem was (is) that the programmer may not

always be as aware of this associativity as is required by the

language. If there be an error, the blame should not be heaped

on the shoulders of the language originators; it was only in

later versions under pressure from users that TYPE statements

were added and thus the name-type relationship became a "default"

association which is now so much decried.

LACK OF STRUCTURED PROGRAMMING SUPPORT

To attempt to introduce into a language, which reflected the

programming habits and practices of the 1950's, the desires and

demands of the 1970's is a project which is almost doomed to

failure before it is started. The design of the 1977 FORTRAN

merely took the style of the language and used that as clothing

for another concept while at the same time including all the old

features so as to maintain upward compatability.

PAGE 30

COMMON/EQUIVALENCE

If there be any "Sins of Programming" the foremost two must be:

Thou shalt not use global variables, and

Thou shalt not use false names.

FORTRAN (IV admittedly) introduced both of these concepts in

response to the demands of the time. Programmers wanted to use

COMMON and EQUIVALENCE and implementers who wanted their systems

to be used introduced them into their language. Following the

first stage of FORTRAN development (say up to 1960) it was

natural for a language implementer to provide any additional

language features he could provided that the cost was minimal.

Thus very early in this process of evolution, the subscript

restrictions introduced by Backus et al in order to minimize the

problems associated with optimization and to force the

development of FORTRAN programs which would be optimizable to a

degree which was not expected of a programmer, were relaxed and

any meaningful expression became acceptable. Even to the point

where expressions were meaningless (such as where the result

would be a real number) a default conversion procedure was

introduced. Thus FORTRAN became:

"... a collection of warts held together by bits of Syntax."

Extensibility -- has reached its limit

FORTRAN has now been extended to a point where it is doubtful

whether the originators can recognize it. Of course one can say

the same thing about children and their growth process, it is the

environment which influences both mental and physical growth;

PAGE 31

FORTRAN has now been extended to the point where it is now more

like some other language than its original self.

Modifiability -- must still be FORTRAN

To modify FORTRAN any more will mean that the result is no longer

FORTRAN; perhaps that is what the 3x3 committee of IBM and SHARE

recognized in 1964 when they decided to design a new language

rather than introduce FORTRAN VI. And they called it NPL, MPL,

MPPL, . . . , PL/I.

EASY TO HAVE MEANINGFUL ERRORS

Perhaps one of the difficulties with FORTRAN, and one which could

not have been anticipated by its designers, and which is not well

understood today even though we try to do something about it, is

the problem of being able to develop programs which look correct

but which due to some very small abberation are semantically

wrong while being syntactically correct.

Venus Probe Problem

Perhaps the most famous example of this in FORTRAN is that

pertaining to the first American probe sent to Venus. The probe

was lost due to a program fault caused [22] by the inadvertent

substitution of a statement of the form

DO 3 I = 1.3

for one of the form

DO 3 I = 1,3

[22] Horning, J., A Note on Program Reliability, ACM SIGSOFT,
Software Engineering Notes, Vol.4, No.4, 1979 Oct., p.6.

PAGE 32

which went undetected throughout the "career" of the probe.

POPULARITY

One of the major factors in keeping FORTRAN alive must be its

immense popularity outside the computer community; that is,

amongst users whose primary vocation is not computing.

1976-77 Hamblin Survey

A survey of institutions of Higher Education showed that 71% were

using FORTRAN (i.e. had it on the system) as contrasted with 59%

with COBOL, 55% with BASIC and a lowly 9% with Pascal. Since the

survey was taken in 1977 then this latter figure may have changed

significantly.

1980 GUIDE Questionnaire

A slightly more recent survey, though amongst a group who one

would expect to have less interest in a scientific language,

provides the following data points:

Amongst programmers (in GUIDE User's Group installations)

who are full time involved in programming, 81% were using

COBOL primarily with only 6% being devoted to FORTRAN.

Conversely, amongst casual programmers, COBOL only commanded

23% of their usage while FORTRAN had climbed to 18%.

HOW LONG WILL IT LAST?

Attempting to judge the longevity of any programming language is

likely to be a slightly fruitless occupation, except in the case

of a well established language such as FORTRAN. The ANSI

committee responsible for FORTRAN has decided that the next

PAGE 33

version of the standard (the last was published in 1978 and

refers to the language which is generally known as FORTRAN 77)

will contain list of items to be deleted. The purpose of this

list will be to warn programmers against using certain language

features which are now considered to be obsolete or unappropriate

in today's programming environment. If the standard is published

in the same period as the previous two, then this list should be

available in 1988 and the succeeding standard (which will not

contain those items) will be ready in 1999. Thus FORTRAN will

exist in basically its current form until the end of the

twentieth century. Perhaps Tony Hoare [23] expressed this

longevity best:

"I don't know what the language of the year 2000

will look like, but I know it will be called

FORTRAN."

[23] Personal Conversation following the Turing Lecture at the
Annual ACM Conference in Nshville TN, 1980 Nov.

FORTRAN 25 Florence Pessin 1

Interview of Florence Pessin IBM Santa Teresa, June 24, 1981
by J.A.N. Lee

with annotations by Otto Alexander, April 16, 1982

Lee: Let me start off by asking what was your earliest
involvement in FORTRAN.

Pessin: I joined IBM in February 1957.

Lee: Just before FORTRAN was released?

Pessin: Yes. I reported to Bob Bemer who reported to Backus.
Backus had two things going: Fortran was in the last stages
of development and then he had Bemer's activity, which he
didn't take much interest in.

Lee: Was that the Applied Programming Group?

Pessin: At that time it was a group that reported into a
corporate organization. Backus reported to [John] McPherson.
Applied Programming was organized later that year.

Lee: The reason I asked is that some of the files I have seen
talked about Bob Bemer as not being responsible for language
design but only for language control.

Pessin: He did not have anything to do with FORTRAN design.
However, when I came on board there were two people, Otto
Alexander and Dave Hemmes. They were working on the thing
that became FORTRANSIT, which was Bemer's idea.

Lee: That was pre-FORTRANSIT?

Pessin: Right, it didn't have the FORTRANSIT name but that was
the activity.

Lee: Was it aimed at the 650?

Pessin: Yes, that was Bemer's thought. Since Perlis and company
were working on IT, and Backus and company had developed the
FORTRAN language and there seemed to be some similarities
between the two.

Lee: The aim was to provide similar facilities on the 650?

Pessin: Right; the idea was that one could save a certain amount
of processor building time if one simply translated from
language to language. I will tell you in a few minutes that

Third Draft

FORTRAN 25 Florence Pessin 2

we demonstrated that that was false theory; However, that
was the thought at the time; that was the start of the
concept of cascading which turns out to be quite wasteful.

Alexander and Hemmes started working on the translator from
FORTRAN to IT in late 1956. [*] When I came on board, the
whole arithmetic area had not been touched. So I got the
section, and, in my ignorance, I didn't know enough to know
that it was nigh impossible to do. One of the big problems
we had was that both the FORTRAN language and the IT language
were in a state of flux. FORTRAN was really not fully
defined and was still being tinkered with. And IT was
changing on what seemed like a daily basis as they found
things hard to implement. It was the very pragmatic approach
they took.

Pessin: Well, it was indeed completed by summer 1957 but from
week to week, as we were trying to implement we found that
although in its broad outline it had been fine, but where the
commas go, and where the parentheses go, those kind of things
were changing. From a conceptual point of view, the
important thing about FORTRANSIT is that it was the first
implementation that moved in the direction of making FORTRAN
machine independent.

Lee: When you worked from John's original FORTRAN, what we now
call FORTRAN 0, what were the restrictions put on you for the
650?

Pessin: The original FORTRAN had 6 character names, that is up
to 6 characters in a name that was a reflection of the 704
because the 704 had 36 bit words. The 650 had 10-digit or
5-character words, so we were restricted to up to 5 character
names. Because of the size of the machine (2000 words), we
were forced to restrict subscripting to two subscripts and
then, because IT accepted only one subscript which could be
any expression, what we had to do was to take the two
subscripts and linearize them. The result was to come up
with a kind of arithmetic expression that FORTRAN itself
would not have accepted.

The hierarchy of operations was kept intact but the problem
was that IT scanned a line from right to left and did
operations in the order it found them. So the arithmetic
section in FORTRANSIT had to go through and analyze the

[* Alexander]: The savings planned inlcuded I/O routines,
function subroutines and miscellaneous FORTRAN language
subroutines which were available from IT. Their value had to
be considered since they were available.
[1] Backus, J., "FORTRAN I, II and III", in Wexelblat, R. ,
History of Programming Languages, Academic Press, 1981.

Third Draft

FORTRAN 25 Florence Pessin 3

hierarchy of operations and insert parentheses to force IT to
give the same result that FORTRAN would have given.[*]

Lee: Wasn't it FORTRANSIT that had that very neat little
algorithm for putting in parentheses in [inverse] proportion
to the hierarchy of the operator?[*]

Pessin: Yes.

Lee: John mentioned that technique to me many years ago but I
never knew where it came from.

Pessin: Yes, I did that. If I had understood the problem, it
would have scared me off; but since I didn't understand the
problem, I went ahead and did it.

Lee: Had Samelson and Bauer [2] published their paper on tabular
scanning techniques by then?

Pessin: I have no idea. I never read that paper. You have to
understand that when I came to IBM I had only programmed the
650 in machine language. I didn't know anything about SOAP,
I didn't know anything about compilers. I didn't know
anything! I just tackled this as a logical task rather than
learning anything about the state of the art.

Lee: When you talk to John about FORTRAN, he emphasizes over and
over again that he didn't set out to invent a language, he
set out to prove optimization techniques could produce
programs just as good as by hand. Because you were going
from FORTRAN to IT, to SOAP, did you take care of
optimization or did you leave that to SOAP?

Pessin: Hie only optimization we did was simply the machine
optimization in SOAP; we did not attempt to optimize the
progran in terms of common subexpressions or constant
expressions. That was a level of sophistication we couldn't
begim to achieve.

Lee: SCSP, on the other hand, optimized the placement of
instructions and data on the drum, which optimized the access

[* £~2xander]: Input/Output was in/a fixed format in IT.
[* Katander]: Flo first implemented the arithmetic section
with the responsibility (q'ff. ̂ parenthesizing) on the FORTRAN
Prosamer. Bemer raised (a*X), and she proceeded to make the
protasor insert the /parentheses; it was quite an«?
achCTement. /
[2] Samelson, K. , and Bauer, f^^'sequential Formula
Tra-refation, CACM, Vol.3, No. 2, 1960 Feb., pp. 76-83.
Obvwsly I was wrong but there surely were other techniques
know in 1957.

Third Draft

FORTRAN 25 Florence Pessin 4

time. So FORTRANSIT used none of the techniques which were
used in the original FORTRAN for the 704?

Pessin: No, there was no way to do that using the [cascading]
system we used.

Lee: You didn't even have a magnetic tape on that machine, did
you?

Pessin: No, no magnetic tape; it was a card machine at that
time. When tapes were hung on the 650 a couple of years
later, FORTRANSIT was adapted to tape [*] to avoid all the
card handling. The output was stashed on tape and retrieved
on the next pass, so you weren't aware of the three passes
that you went through on a card machine.

Lee: Now one of the things that seems to be missing with regard
to FORTRANSIT, and I asked Bob [Bemer] about this the other
day, there were no published documents on FORTRANSIT, no
technical reports, [no] papers published in CACM.

Pessin: No, the only thing we put out was the user's manual.

Lee: Wasn't that just a "dittoed" or purple?

Pessin: No, it was printed.

Lee: But there were no technical documents?

Pessin: No. I don't think we understood - the three of us -
until very, very much later that we were ploughing new
ground. We were set a logical task and we did it. And we
really didn't understand about compilers. I had no idea that
compilers were so new, that what we were doing was something
quite new and radical, that we had discovered stuff so
literally nothing got written down.

There were other things we were responsible for. The 650 was
a numeric machine with a device you purchased to make it
alphanumeric. We wired up a board so that you didn't have to
have that device in order to use FORTRANSIT.[*] It was a
very complicated piece of wiring. We were later taken to
task by the sales team who reminded us that IBM was selling
those devices. But here again, it was a logical problem
which we were solving. How could FORTRANSIT possibly succeed
if it required a special feature to be purchased? We got
into a little bit of trouble when the MOD 2 machine was put

[* Alexander]: Mike Starr did this work using the 650 tape
system at Glendale Lab, Endicott.
[* Alexander]: The wiring diagrams are in the ("dittoed")
manual. Dave Hemmes did this work.

Third Draft

FORTRAN 25 Florence Pessin 5

out because the timing was different and we had to issue a
new wiring diagram. But eventually we did it--we were young
and eager!

Lee: And you didn't know any better!

Pessin: That's right. We just did it.

Lee: Were there any proposals later to transfer it [FORTRANSIT]
to any other machine?

Pessin: Well, two things happened. One was that FORTRAN became
very popular.

Lee: The 550 became popular.

Pessin: Yes, after we released it [FORTRANSIT] a programmer in
what was at that time called Math and Applications named Lin
Wu, (I have no idea what has become of him) [*] and I became
somewhat disturbed by all the card handling. We looked at
the problem and decided that a translator was a translator
and it didn't really matter what your source language was or
what your target language was: the principle was the same.
Therefore, we thought we could cut out the FORTRANSIT to IT
pass and go directly from FORTRAN to SOAP. We didn't want to
get involved in rewriting the assembler, so we decided to go
from FORTRAN to SOAP. At that time, I was already in Applied
Programming still working for Bemer, and had the opportunity
to pursue that sort of thing. Meanwhile FORTRANSIT itself
had transferred to the 7070 development group [*]; they were
the ones who put it on the tape machine.

Lee: Have you any idea of the date of release of the original
FORTRANSIT?

Pessin: It was probably sometime in '57.

Lee: So not long after the original FORTRAN?

Lee: The original FORTRAN was delivered in _ .; this
was just a few months later.

Pessin: Sure, we didn't have to invent anything.

[* Alexander]: I believe it is Lynn Woo
and he is at Yorktown.

[* Alexander]: at 425 Park Avenue. Flo and Dave went with
Bemer. I went with Liggett (7070 Programming Manager) as
Project Leader for 7070 FORTRAN and maintenance of the 650
FOR TRANSIT.

Pessin: Probably late summer or early fall.

Third Draft

FORTRAN 25 Florence Pessin 6

Lee: The point is, you weren't far behind writing something
similar for the 550. So the timing for the compiler going in
one pass from FORTRAN to SOAP was maybe a year later?

Pessin: It was probably sometime in '58 and was called 650
FORTRAN. I don't think it ever became as popular as
FORTRANSIT simply because FORTRANSIT was there, it was
[already] on the scene.[*]

Lee: It was established. Even though there was no change in the
language. [For 550 FORTRAN].

Pessin: Yes. But at least we proved our case and from there on
I think we were able to demonstrate that cascading from one
processor to another was false economy.

Lee: Of course, by that time you had some experience in writing
compilers, so the [second] experiment was slanted somewhat.

Pessin: Well not really, we still only had 2000 words of memory
in the 650, and, yes, we knew the source language better,
that's true, but we had a different process in a very, very
constrained environment. So I don't think it was a slanted
experiment.

Lee: Do you have any idea how long it took you to turn out the
second version?

Pessin: Well I think it took less time because there were only
two of us and we both knew the SOAP language quite well by
that time. But we were still inventing compilation for the
650.

Lee: By '58, Irv [Ziller] had his plans for FORTRAN II well in
hand, whereas when you did the original FORTRANSIT, that
[FORTRAN II] was still in the future. When you did the 650
FORTRAN did you go back to the original FORTRAN?

Pessin: No, as I said, we used the same language level. [*] We
were being pushed to get it done because the 7070 was then on
its way and because of my experience I went over to the 7070
group. Not in FORTRAN as it turns out, but I was able to
offer some help. Otto Alexander went over to 7070 FORTRAN.

Lee: Is Otto Alexander still with IBM?[*]

[* Alexander]: Our efforts were primarily oriented to the
7070 at this time. Irv Liggett as 7070 Programming Manager
was not interested in another 650 compiler.
[* Alexander]: ... as FORTRANSIT. 7070 FORTRAN was FORTRAN
II. 7070 Basic FORTRAN was 650 FORTRAN.

Third Draft

FORTRAN 25 Florence Pessin 7

Pessin: I have a vague idea that the answer is yes and maybe you
can track him down. There is another name. Later in the
project, we were joined by Leroy May. At that time he was
the go-fer for the project, but later he contributed to
FORTRAN.[*]

Lee: He also moved over to the FORTRAN II project I believe.

Pessin: Yes, that's true.

Lee: After you go moved over from the 650, did you move away
from FORTRAN?[*]

Pessin: Yes, I moved away from FORTRAN but I kept my eye on what
was going on with 7070 FORTRAN. Somewhere along the line
came the 705 implementation and in the interim I was working
on some languages which have not survived. After the 7070 I
went over to Commercial Translator and COBOL.

Lee: You didn't participate in Commercial Translator did you?

Pessin: Yes, I was one of the designers of the language.

Lee: But that was still the late 50's or early 60's wasn't it?

Pessin: Yes, that was in '61 or thereabouts and I was also the
project coordinator for the 7070 implementation. There were
three parallel implementations, a 7090 one in Los Angeles, a
705/7080 in New York and the 7070.

Lee: Were you at 57th Streeet and at 590 Madison Avenue?

Pessin: Yes, originally. The original FORTRANSIT work was done
at 56th Street in New York, the Langdon Hotel. [*]

Lee: That has since been torn down.

Pessin: Yes, we were all on one floor. Backus and his people
were at one end of the corridor and Bemer and his people at

[* Alexander]: Retired in 1979.
[* Alexander]: Leroy's prime objective in life at that time
wa to remove enough symbols from the code to permit the
assembly of the processor in one pass through SOAP.
[* Alexander]: I think that Sam Kaufman (WHQ) and Ward Klein
(Ed. Center NY) are the only ones still with IBM.
[* Alexander]: The programmers were in NYC while the 7070
was at the Glendale Lab. in Endicott with only trains (for
transportation) from NYC to Endicott.
[* Alexander]: (The machines) 704 and 650 were on the ground
floor of 590 Madison Avenue.

Third Draft

FORTRAN 25 Florence Pessin 8

the other end. They just moved out the beds and things and
moved in IBM grey desks. That was a very pleasant work place
and very unusual. Very non-IBM.

Lee: What was the administrative discipline [in those
surroundings]? I get the impression that it was a very free
and open atmosphere in the Landgon Hotel.

Pessin: Yes, it was very "researchy" in nature and we were all
very highly motivated and we cared a lot about what we were
doing. It seemed that no matter what time of the day or
night it was, there was somebody there working.

Lee: Did you move into 590 Madison Avenue after that?

Pessin: No. The Applied Programming group was organized. We
had space at 425 Park Avenue. Some of the original FORTRAN
group also went to 425, some went to research [Yorktown].

Lee: This was after '57?

Pessin: Late '57.

Lee: I think some of the main group went to 590 Madison by the
time of the delivery of the original system.

Pessin: The Langdon was overflow for 590, since it was around
the corner from 590.

Lee: Is that what they called "The Annex"?

Pessin: No, the Annex was around the corner on 56th Street but
was contiguous with 590. It was one of those brownstones and
they broke a wall through. We were across the street in
rented non-IBM space.

Lee: The reason I asked about this, is that Hal Stern in one of
his letters to me, commented on how the attitudes towards
work changed over the period '57, '58 where it used to be
very much "research" early on, people did some work, would
relax [*] for a while, and there was nobody saying "punch a
clock".

Pessin: Yes, during the time we were there never punched a
clock. But, except for times when I was involved in a
project trying to meet a deadline, I worked harder at that
time than at any other because we were doing it for the love
of it.

[* Alexander]: Chess and Go (were the relaxations) to pass
the time waiting for machine time at 590 on the 704 or 650.

Third Draft

FORTRAN 25 Florence Pessin 9

Lee: After the Commercial Translator did you go back to FORTRAN?

Pessin: Yes, after Commercial Translator I was involved in a
language design group and that's when we designed some
FORTRAN extensions known internally as FORTRAN V. Then we
got involved with a thing called Apollo, which was supposed
to be a combination of FORTRAN and COBOL to replace
Commercial Translator. It was our attempt to say that we
were viewing the dichotomy of commerical and scientific
languages with a little bit of a jaundiced eye. We wanted to
bring then back together in one language.

Lee: George Radin [3] talks about the period prior to PL/I when
there was a tremendous concern about the dichotomy between
the two types of systems. He was trying to run two types of
operations on different machines, and I think George's words
were "somebody realized the worlds had to come together". So
Apollo would fit into that era.

Pessin: Apollo was in that era, it was in the 1962-63 time
frame. I managed a little design group.

Lee: By the 1962-63 period! - this then ties into the 360
architecture.

Pessin: Originally no, but later yes. We knew about the 360,
but it was very early. Apollo never got off the ground, and
I left the company. In a brief attempt not to leave the
company, I went to work for David Sayre in Yorktown Hts.
That lasted 4 months and then I left the company.

Lee: David had not returned to crystallography by that time?

Pessin: No he was working for Herman Goldstine in Research. He
had an advanced programming group and I got involved. I read
Iverson's book and reoriented my thoughts about language
design.

Lee: Did you know about APL?

Pessin: No I didn't know about APL until I went to the research
division.

Lee: In 62-63 Iverson published his book and had begun his work
in the implementation. So you were outside the company at
that time?

Pessin: Yes. I went to work for a software house and came back

[3] Radin, G. , "The Early History and Characteristics of
PL/I" in History of Programming Languages, Wexelblat, R. ,
(Ed), Academic Press, 1981. Poorly paraphrased!

Third Draft

FORTRAN 25 Florence Pessin 10

in September '56. At that time, Time/Life had been given the
FORTRAN mission and tragically, there was pitiful little
FORTRAN expertise left. There was a small group of five
people who knew nothing about FORTRAN but whose job it was to
maintain the FORTRAN G compiler after it was built by
DIGITEK. They would get new DIGITEK listings weekly and try
to read the FORTRAN routines. One of those people was Phil
Shaw [IBM, Santa Teresa in 1981].

It turns out that depending on how you count, there were
something like thirteen to fourteen FORTRAN processors of one
kind or another for the 360. On DOS and OS, a BPS card, a
BPS tape, and all sorts of variants of this kind. So one
task in rebuilding FORTRAN expertise at that location
involved gathering together all those miscellaneous FORTRAN'S
and trying to bring about some order. Compatability was the
last thing anyone had thought about when they did another one
of those fourteen implementations.

Lee: By '66 the FORTRAN standard was available.

Pessin: Yes, there was a FORTRAN standard but it didn't have any
retroactive effect. As it turned out, some of those
processors had only two or three dozen users; they were all
internal users rather than external customers and it was
absurd to be spending a lot of money maintaining these things
for no reason at all.

Lee: Is the reason for the diversity that they all came out of
different sections or divisions of IBM?

Pessin: They came from different locations, with different
purposes. Many of them were supposed to be stopgap measures
but you know what happens - nothing dies unless you kill it.
BPS [4] was one of those things used internally, a lot by SRI
and various product test groups to train junior programmers
in various maintenance activities but there were no
customers. We tried to make some sense out of that chaos,
bring them together, establish certain compatabilities, even
change them. What emerged, of course, eventually was that
[FORTRAN] G and H were the two main contenders. And those
were incompatible in a number of different ways. We
established an interlocation council, brought together the
FORTRAN experts from various locations from time to time, on
a regular basis, to hash out how we wanted to go, which one
of two or three alternatives we would use.

Lee: Were you fighting PL/I for support at that time?

Pessin: Not in '66. By '68, I guess it was, the language

[4] BPS - Basis Programming Support

Third Draft

FORTRAN 25 Florence Pessin 11

strategy was promulgated and that was when PL/I was
annointed.

Lee: That was the single language strategy was it not? Who was
really behind that? Fred Brooks?

Pessin: Not to my knowledge. , It is possible, but I think it was
a very high level decision that, I guess, appeared on the
surface to be a very palatable, a very rational approach to
take.[*] I think what was wrong with it was the same thing
that hit us with unveiling the 360 on an unsuspecting world.
That is to say, we were naive about the cost of the
investment in program libraries, in programmer training, etc.
I think we understand that now. But then we didn't provide
facilities for them to convert.

Lee: But IBM had just gone through, a few years before, a very
successful hardware strategy, saying "lets have a single
family of computers." Do you think that decision influenced
the idea of a single language strategy?

Pessin: I don't know for sure; it certainly was possible.
Conceptually it is a very nice idea. In terms of cost to
support, from an IBM point of view, it would have been much
more attractive to have one language instead of many.

Lee: But the rest of the world wasn't willing to go along with
that concept.

Pessin: I think that's the point. I think that given well-
entrenched users of COBOL and of FORTRAN, it was an uphill
battle. We were trying to introduce a third language and say
"this is it - the wave of the future, you've got to move."
It may also, and this is hindsight of course, have been
untimely in the sense that we had caused our customers a very
traumatic conversion when they went from the 7000 series to
the 360 and they made that investment but were unwilling to
do it again.

Lee: There were a lot of promises that came with the 360.

Pessin: I think the memory was still very very strong in their
minds of what it took to convert and I don't think there was
a lot of willingness to do it again - from their entrenched
language to this great new pie in the sky. I think thats
what it boils down to.

Lee: Let me go back to the time you were working on FORTRAN.
What do you think was your greatest contribution to FORTRAN?
And what is your favorite anecdote about that era?

[* Alexander]: I thing it was Ted Climis and Carl Reynolds.

Third Draft

FORTRAN 25 Florence Pessin 12

Pessin: I think we've touched on some of the technical
contributions. I think the problem then was that we didn't
realize we were ploughing new ground and therefore didn't
document out inventions. I think now that is a loss, but we
didn t even realize it then.

Lee: You talk about your tables of encountered operators yet I
can remember Danny Leeson [4] had a chapter on those tables
I wonder if those came from FORTRANSIT. They didn't come
from the original FORTRAN. They were included in the 1520
version and that seemed, to me, to follow on from the 650.[*]

Pessin: I don't know, I really don't know because I don't know
what approach those [1520] people took. In FORTRANSIT the
big things were the linearization of the subscripts of

thS Preservation of the hierarchy of operations from
FORTRAN to IT, and in the 650 FORTRAN the notion of Polish
notation in the way the tables were organized.

Lee: Did A1 Perlis have any other contact with FORTRAN other
than providing IT?

Pessin: We used to see him fairly regularly to get his latest
version of IT. But did he influence the processor as such7
No. His involvement was limited to his language.!*]

Lee: IBM didn't buy that language [IT], did they?

Pessin: No.

Lee: I guess he was at Case then, or was it Carnegie?

Pessin: He was at Carnegie Tech, and he had a couple of graduate
students who published papers with him. (I don't recall
their names.) We never published papers, which is
regrettable now.

In later years, my contribution was more of an administrative
one, from a managerial point of view, bringing the FORTRANs
together, establishing the principle of consistency and
compatability.

^eS<^' D"' and Dimitry/ D.L., Basic Programming Concepts
and the IBM 1620 Computer, Holt, Reinhart and Winston Inc
New York, 1962, 368pp.
[* Alexander]: FORTRAN for the 1410 operating system is based
on this. A1 Duke and Larry Brown were technical giants on th
1410 — check with Scott Locken.
[* Alexander]: He was a great disbeliever in languaqe to
language translations.

Third Draft

FORTRAN 25 Florence Pessin 13

Lee: One final question. You had a first hand view of what was
happening in John Backus' group. How do you view their
contributions to the industry?

Pessin: They did more than invent a language, they invented a
process that moved computing forward lightyears - the concept
of compilation of programming languages.!*]

Lee: Do you think John's latest proposals for programming
languages [Functional notations] will take off?

Pessin: Well I have enormous respect for John. I've heard his
presentation and I must say a great deal of it confused me,
and it seemed to be completely upside down, which is one of
the things he predicted at the start of the talk. I'm not
knowledgeable enough in depth to know what will come of it,
but based on John's form, it's got to win.

END OF TAPE

[* Alexander]: At a time when there was much discussion over
whether writing in symbolic language could possibly provide
code comparable to that written in machine language! (The
question was) "Will the cost of assembly kill us?"

Third Draft

FORTRAN 25 pg0 pessin 22

seemed to be completely upside down, which is one of the things he

predicted at the start of the talk. I'm not knowledgeable enough in

depth to know what will come of it, but based on John's form, its got

to win.* Given 20 years [since FORTRAN] we've become- very emotional-

current languages.

I think the process will require a great deal of re-education amongst

people currently in computing and maybe we have start earlier in the

schools.

I have one anecdote about John himself. When I was being interviewed

by Bob Bemer, before coming to work for IBM, he and I were in an office

at the Langdon Hotel and this eighteen-year-old college kid walked in

and sat down at another desk in the room. I thought to myself "how

odd, here I am being interviewed and this kid is sitting there." He

got up and walked out and came back again. I though "what a strange

place". Two weeks after I came to work for IBM, I realized that it was

John Backus, who was the boss and he wasn't an eighteen-year-old

college student any more than he was a football playerl John and Bob

shared an office together.

END OF TAPE * Backus, J., "FORTRAN I, Hand III", in Wexelblat, R.,

History of Programming Languages, Academic Press, 1981.

* Samelson and Bauer

* Radin, G., '"Ihe Early History and Characteristics of PL/I" in History of

PRELIMINARY

d

pi

fe
id

READERS' FORUM
At this meeting, the LITS were so impressed that they decid

ed a large SACK was needed to produce more and better GOODSTUFF
and thus enhance and further their various activities and those of the
new King. They appointed a committee to draw up some general
requirements.

—George L. Whalley
Alexandria, Virginia

SOFTWARE
PARTS
NOSTALGIA
The idea that software should be built up from off-the-shelf parts is
receiving a great deal of attention in software's contemporary litera
ture.

It is an extremely attractive idea for two reasons. First, the
software builder can reduce both cost and schedule considerations
because prewritten software is immediately available. Second, he
can increase software quality, since pretested software is generally
of higher reliability than freshly written software. Since cost/sched-
ule and quality are often competitors in a difficult trade-off game, it
is especially nice to find a methodology that enhances both. The
notion of software parts, then, has a near-magic allure, especially in
an era where "productivity" is the number one buzzword.

There are two ironies here. One is that the software parts
approach is a bottom-up one and thus conflicts with the top-down
approaches of the '70s. An even greater irony is that our field has
not improved, but instead has suffered a major regression in the
software parts area during the past 25 years.

Probably 95% of today's software developers were not in
the field in the 1950s, and precisely for that reason, it is worth
spending some time discussing that era.

When we open the door of the 1950s' "Computing Labora
tory," several things leap to our attention: crew cuts on the pro
gramming men, bouffants on the programming women; the clatter
of keypunch machines; the immensity of the computer room—all
that square footage for a computer that, by today's standards, is
truly tiny. Let's look a little closer. There, on the desk of every
programmer . . . what's that manual? Noting that it says SHARE on
the binding, we open it, study it, and a light slowly dawns. This is a
software parts catalog, and every single programmer either has a
copy or has access to one.

"Where did this come from?" we ask a nearby young
programmer. (Interesting—every one of them is young, as you
might have noticed.)

"Oh, that's the SHARE manual," he answers, offhandedly.
"SHARE is our user group. We all contribute software routines to
SHARE, and we all use what has been contributed."

"What about this page? It describes a uniform distribution
random number generator. Where'd that come from?"

"Oh, that's from United Technologies. Fred Masner wrote
it. In fact, he's written a lot of SHARE stuff."

"And what about this cT!af5c!ef string read routine?"
' 'Northwest Industries. Bill Clinger did it. His stuff is excel

lent, and it always works right."
Let's pause for a minute. It's important to realize a couple of

things. First, in the '50s there was no academic computer science
world worth speaking about. That development was still nearly a
decade away. Programmers emerged from training in mathematics,
business administration, or even English. And that, in turn, meant
there was almost no computer science literature: a little bit of
Communications of the ACM. but not much; a more universally
available DATAMATION; a doomed fledgling called Software Aye

AT
MCDONNELL DOUGLAS...

DATA SWITCH pilots
the computer complex!

Channel switching and control systems are critical to the
computer complex. McDonnell Douglas chose Data
Switch because critical situations demand state-of-the-
art response.

The Data Switch System 1000 has gained national
recognition in the IBM user community as the state-of-
the-art in unrestricted channel speed switching.

Only Data Switch System 1000 offers you these
standard features:

• 54 Matrix sizes—with
lowest cost per crosspoint

• Solid State semi-conductor
switching at nano-second speeds

• Continuous configuration display

• 3 Redundant power systems

• Multiple inter-active control consoles

• Self-diagnostics

• Field installable upgrades

If a channel switching and control system is critical to the
efficient performance of your computer complex, you
should know more about the company that is the state-
of-the-art . . . Data Switch.

For more information call (203) 847-9800
or write to

Data Switch Corporation,
444 Westport Avenue, Norwalk, Conn 06851

TWX 710-468-3210

CIRCLE 200 ON READER CARD
NOVEMBER 1981 245

to your
System/3
by CGP?

Convert
to CICS...
Automatically.
Break the chains with
DASD's new automatic
translator. Automatically
converts your System/3
CCP RPG programs to
standardized, modularized
CICS/VS Command Level
COBOL.

There's more. It also con
verts all screen references
to CICS RECEIVE MAP/
SEND/READ-NEXT/
WRITE/REWRITE instruc
tions. Generates complete
routines for MAPFAIL,
IOERR. END FILE.
DLIPKEY and others. And
converts screen definition
from DFF to BMS...
automatically adjusting for
attribute bvte differences
between CCP and CICS.
and producing either CICS/
VS Version 1.4 or 1.5, plus
printed diagnostics.

This is one of many DASD
translators now available —
all proven and thoroughly
documented. From the
list shown here, select
those you're interested in.
Then send or call for more
information.

DASD can provide any level
of conversion service, from
simple per-line/per-program
conversions through com
plete turnkey projects. We're
the conversion specialists.

Conversion
Programs
Available
RPG/RPG II to COBOL
CIRCLE 201 ON READER CARD

NEAT/3 to COBOL
CIRCLE 202 ON READER CARD

DIBOL to COBOL
CIRCLE 203 ON READER CARD

COBOL to COBOL
CIRCLE 204 ON READER CARO

FORTRAN to
FORTRAN
CIRCLE 205 ON READER CARD

DOS ALC to OS ALC
CIRCLE 200 ON READER CARD

MAP to COBOL
CIRCLE 207 ON READER CARD

COBOL ISAM to
COBOL VSAM
CIRCLE 208 ON READER CARD

Job Control Language
T ranslators
CIRCLE 209 ON READER CARD

MAPGEN on-line CICS
Productivity Ads
CIRCLE 210 ON READER CARD

CCP to CICS
CIRCLE 211 ON READER CARO

-ODfiSD1
'ember of the Cap Gemini Sogeti Group < DASD Corporation

PEOPLE, PRODUCTS/RESULTS ^P°!fte
9045 North Deerwood Drive
Dept. 236
Milwaukee, Wl 53223
(414) 355-3405

READERS' FORUM
As a route to software prestige, publishing was a limited outlet.

Second. Vendor software hadn't been unbundled yet. In
fact, it hadn't even been bundled. Computer hardware often came
with no software at all. And that's where the user groups, like
SHARE, came in. It was a group for the sharing of software which
was not available anywhere else.

Back to the '50s. The SHARE manual, a collection of soft
ware parts descriptions, begins to make a little more sense. Up
front, here is a table of contents. Scanning down quickly, we can see
a functional breakdown of software parts. Here's a section on
"Input/Output," another on "Character String Manipulation,"
another on "Mathematical Services," and many more. Let's flip
back to the math section to see how an individual section is orga
nized.

Again, we see a functional breakdown. There's a section on
trigonometric routines, another on matrix manipulation, another on
integration routines, still another on random number generation.

Well, let's look even more closely. What's at the bottom of
this whole pans taxonomy?

This page looks typical. Here's a first paragraph describing
the functions performed by the pan. Then we have the author's
name and corporate affiliation. Now there's a description of the
input requirements and the output produced, and finally, a d.acus-
sion of restrictions and some miscellaneous notes. Usually there's
one page per pan. Sometimes, for the complex ones like I/O, there
are two or three. Occasionally, when it matters, the underlying
algorithm is discussed.

But always, near the top of the page, is the author's name
and affiliation. And always, near the bottom of the page, is a
disclaimer—"This software has been tested, but it is not guaranteed
to be free from error"—or words to that effect.

"Is this stuff any good?" we ask the nearby programmer,
wondering about that disclaimer.

"Yes, nearly always," he says. "In fact, if you read the
code, you'll find it's usually—and I really hate to admit this—better
than the best I can do. Most people don't contribute crumby stuff to
SHARE—there's too much at stake. And we quickly spot the ones
who do."

"Too much at stake." "Spot the ones who do." Another
light is dawning TlaJzuiIdtng.Jaf.,software parts, in an era where
there is little drive to "publish or perish," is the route to software
renown and prestige in the '50s. It's a highly individualized effort,
the success route of the single contributor. And there's an automatic
screening out of the inept.

Let's browse through the SHARE manual a little more. Sure
enough, some names and affiliations recur about every fifth or tenth
page. That's why our programmer friend immediately remembered
the names of Fred Masner and Bill dinger, and United Technol
ogies and Northwest Industries.

Here's what we were doing right in the '50s:
First, there was a thriving software parts technology. Every

body expected to have prebuilt parts available to them.
Second, there was an effective parts taxonomy and an effec

tive delivery document. If you wanted to find out what parts were
available, you could easily do so.

Third, there was pride in software authorship. Parts ap
peared in the shared domain because there was strong motivation to
do it.

Fourth, there was no stifling counterinfluence. Software
was not available "free" or at low cost from the vendor; it was
either shared or developed by individual users.

Looked at in this light, the '50s are a wonderful mode! for
the present. What an irony that where we are going is where we've
already been.

What went wrong? I saw it happen, and it's a sad and
frustrating story. As the '50s blurred into the '60s, it was apparent
that software was increasingly more difficult to produce. I/O pack
ages might be SHAREd, but could an operating system? More and
more, SHARE members (and other user groups) pressed the vendors

246 DATAMATION

READERS' FORUM

AT
CITIES

SERVICE...

to deliver the software, and eventually they did. The SHARing of
software atrophied After all, couldn't Big Brother do it better and
more reliably? SHARE meetings changed from a community of
software users presenting and sharing solutions to a clamoring
hoard of users shouting "Gimme" at the vendors.

The SHARE manual fell into disuse, and finally vanished. In
its place came a mile-long shelf of vendor literature. It emphasized
the system, and often the use of tools within the system, but the
notion of software parts—except for a few things like math librar
ies—simply disappeared. After all, a plethora of pans leaves a
vendor open to a lot more user interaction and complaint. And can a
vendor stamp that all-important disclaimer at the bottom of the

| writeup and legally get away with it?
A couple of other things happened, too, although their

combined effect on the software parts community was less signifi
cant. Computer science departments sprang up in universities
across the land, and a theory of computer science gradually
emerged. The energies that had gone into producing better software
parts now-wcmTnto producing better software theories. Belady and

"fceavenworth said it best: "... software engineering is polarized
around two subcultures—the speculators and the doers. The former
invent but do not go beyond publishing novelty, hence never learn
ing about the idea's usefulness—or the lack of it. The latter, not
funded for experimentation but for efficient product development,
must use proven, however antiquated, methods. Communication
between them is sparse."

We all appreciate the rise of software theory, but what we
have forgotten is acknowledgment of the software doer. All too
often the doer is the butt of negative published comments written by
a speculator.

The final strike against software parts was the emergence of
the "egoless programmer" concept. Because ever-more-complex
software required ever-more bodies to produce it, the notion of a
team approach to software construction surfaced. And in those
teams, human ego seemed to get in the way of team progress. That
was true, of course. What was missed in this concept, however, is
that human ego is an essential drive which cannot be suppressed
without bad side effects. Can you imagine, for example, an egoless
manager? Or can you imagine an egoless theoretician, publishing
articles in professional journals with no name and affiliation at
tached and with no feedback to academic heads of department? We
are all powerfully motivated by our egos, and when they are denied
the result is lethargic irresponsibility.

This is precisely what went wrong with the old, true-sharing
SHARE. A strong authority (the vendor) emerged and said, "We'll
take over all this software tools and parts stuff; don't you worry your
pretty little user programmer heads about it." With no ego pull to
contribute parts to a SHAREd library, the parts stopped coming.

So what can be done to hasten the software parts era of the
'80s? Learn from the '50s, of course. At your computing shop;
• Create a parts taxonomy and the shell of a parts document.
• Invite programmers to contribute generalized parts to the shell.
• Establish some sort of reward system for parts contributors.
• Distribute parts catalogs to all programmers.
• Decide either to allow disclaimers on parts, with a low-cost' 'user
beware" mode of operation, or to establish a centralized parts
certifying organization, with a high cost but high reliability mode of
operation.

Gradually, within your computing shop—if not between
computing shops—a thriving parts subculture will develop. Out of
that subculture will come a collection of parts provided by the
people most likely to understand what parts are needed—the appli
cations programmers. And out of the reward system will come a
collection of top programmers, their egos intact, who will have a
new reason to feel proud of what they are doing, and visible rewards
to show for it.

We know it can happen, because it all happened before.
—Robert L. Glass

Seattle, Washington

DATA SWITCH
provides more systems mileage,
Channel switching and control systems are critical
to the computer complex. Cities Service chose
Data Switch because critical situations demand
state-of-the-art in unrestricted channel speed
switching.
The Data Switch System 1000 has gained national
recognition in the IBM user community as the state
of the art in unrestricted channel speed switching.

On/y Data Switch 1000
offers you these standard features:
• 54 Matrix sizes with

lowest cost per crosspoint
• Solid State semi-conductor

switching at nano-second speeds
• Continuous configuration display
• 3 Redundant power systems
• Multiple inter-active control consoles
• Self - Diagnostics
• Field installable upgrades
If a channel switching and control system is critical
to the efficient performance of your computer
complex, you should know more about the company
that is state-of-the-art ... Data Switch.

For more information call (203) 847-9800
or write to:

Data Switch Corporation
444 Westport Avenue, Norwalk, Conn. 06851

TWX 710-468-3210

19)6 ELECTRONIC BUSINESS SYSTEMS CONFERENCE

SHARE

PAUL ARMER

Air. Armer is the Head, Numerical Analysis Department, mathe
matics division, The RAND Corporation, Santa Monica. He re
ceived his Bachelor's Degree from the University of California at
Los Angeles in 1946 and served with the United Stales Air Force dur
ing World War II. As head of RAND'S Numerical Analysis De
partment, Mr. Armer directs the activities of a group with programs,
codes and operates an IBM type 704 computer, a digital computer
of the Princeton type built at RAND called the JOHNNIAC, an
analog installation, and a battery of punched-card equipment. The
primary concern of the department is scientific computing, but some
studies of data processing for the United States Air Force is carried
on. Mr. Armer is a charter member of the Digital Computers Asso
ciation and the first treasurer of the Los Angeles Chapter of the
Association for Computing Machinery. He is a Charter member of
SHARE and was recently elected to the Executive Board.

Whenever someone asks about SHARE, the first question
is usually "What do the initials mean?" The answer is that
SHARE is a name and not a set of initials. The second
question is usually "Just what is SHARE?" SHARE has
been frequently described as a "users cooperative". It is
made up of most of the organizations who have, or plan on
getting, an IBM Type 704 EDPM. Like any cooperative,
SHARE was formed to be of service to its members. Its
aim is to eliminate, as much as possible, redundant effort
expended in using the 704. It seeks to accomplish this aim
by promoting inter-installation cooperation and communi

cation.
HISTORICAL SKETCH OF SHARE

As I attempt to paint a historical background for SHARE,
it is important for you to remember two things about me,
for what anyone has to say about the past is always greatly

influenced by his vantage position. The two points are that
my primary field is scientific computing and that all my ex
perience has been with the equipment of one manufacturer,
IBM. Although the latter point may affect what I have to
say about the past, it has no bearing on my discussions of
the future.

Before taking up SHARE itself, let's turn our attention
to the history of cooperative effort in the field of machine
accounting and computing. Since almost all early comput
ing efforts got under way in an accounting machine instal
lation, any discussion of early cooperative effort in com
puting is necessarily concerned with the machine account
ing field. To begin with, we "shared" machine wiring dia
grams, usually by submitting such diagrams to the machine
manufacturer, who reproduced them and distributed copies
to the field. As an example of this, many of you are fa
miliar with IBM's "Pointers". Another important vehicle
for the interchange of information of this sort is Fred
Gruenberger's "Computing News", published in Richland,
Washington. This newsletter frequently publishes wiring
diagrams and other "ideas" submitted by its readers This
kind of cooperative activity continues today, although nor
at the level some would like.

And while discussing cooperation and the interchange of
information and ideas, the various professional organiza
tions, in particular the NMAA, should be given much
credit for their efforts.

But the important point about these early efforts at co
operation is that seldom, if ever, did individuals from more
than one organization sit down together to develop some
thing through cooperative endeavor which each could take
back to his own installation and use. Actually, this wouldn t
have made much sense in the early days when machine work
was divided into many separate and distinct steps. In fact,
I doubt if cooperation of this sort made any sense at all
prior to 1950 when the Model I Card Programmed Calcu
lator (CPC) was introduced by IBM. Here, for the first
time in punched card work, the concept of processing data
in a serial fashion ("in-line"), rather than in parallel, was
introduced. Now the CPC was really a computer kit rather
than a finished calculator, for after it rolled in the door, one
had to do a great deal of work designing, wiring and de
bugging a set of plug boards which connected the various
pieces of the kit and made it into a calculator. Here then,
was an opportunity for a cooperative effort in putting that
kit together. This opportunity was completely overlooked,
despite the fact that IBM brought together representatives
from each of the organizations getting early model CPC's.
Further, this meeting was held in advance of the delivery of
the machines. The idea of a cooperative effort just didn't

occur to anyone, for we were all too naive about the ma-

, "6 ELECTRONIC BUSINESS SYSTEMS CONFERENCE 13

chine and about handling our work in this "in-line" fash
ion. But, most important to a moral I'd like to draw in this
paper, we were all so naive that each of us believed that we
could put the kit together better than anyone else. Conse
quently, we all went our separate ways and each of us ended
up with a unique calculator.

I've somewhat overstated the "lost opportunity" aspects
of this situation for it is probably true that, considering
how little each of us knew about the machine and about "in
line" processing, it was necessary that we go back to our
own installations and learn from our own mistakes. Never
theless, some sort of sharing of information during the next
few years might have reduced the duplication of mistakes
that resulted from the spirit of splendid isolationism which
prevailed.

Lest anyone get the impression that I entirely disapprove
of the versatility inherent in the CPC, let me hasten to add
that I don't believe IBM should have delivered the CPC
with a set of plug boards, designed by IBM, soldered into
the machine, for they didn't know very much about the
potentialities of the CPC at this time either. But versatility
can be carried to an extreme—what could be more versatile
than a kit made up of tubes, relays, resistors, condensers,
etc., with each customer left to his own desires ?

We also missed our second chance at a cooperative effort
when the Model II CPC was introduced, although some of
the later organizations to accept machines did copy and use
set-ups designed by others. The fact that this opportunity
was overlooked can not be laid on the doorstep of inexperi
ence with this type of equipment. The blame must be
placed on the "I can do it better" attitude.

When the 701 came along, we still weren't very wise
and once again almost everyone went his own way. But
this time the amount of redundant effort was horrendous-—
the cost of developing a system for using the machine, and
a set of routines to go with that system, was usually in ex
cess of a year's rental for the equipment. But strangely
enough, it wasn't these factors which resulted in what I con
sider to be the first successful cooperative effort in the field.
I am referring to PACT, which is a set of initials and stands
for the Project for the Advancement of Coding Techniques.
But before discussing PACT further, let me return to the
pressures which resulted in its birth.

In the fall of 1954, the several organizations who had
been operating 701's in the Los Angeles area were going
through a period of self-examination. The one thing
plaguing all the organizations was the mismatch between
the machine and its language and the human and his lan
guage. The elapsed time from problem origination to solu
tion was frequently intolerable, problem check-out was dif
ficult and expensive. People who had estimated that it
would take a one-shift operation to handle their production
load found themselves operating two shifts, not because
they had missed their production estimate, but because they
had overlooked a shift devoted to code-checking. Estimates

of the cost of writing and checking a program ran as high
as $10.00 per instruction. Training was difficult, took a
long time and was expensive.

In response to these pressures, a number of interpretive
systems were devised. These made problems easier to code
and therefore reduce elapsed time and debugging difficulties.
They reduced the training problem. But they introduced a
new problem, one which frequently outweighed the ad
vantages gained. The new problem was due to the fact that
these interpretive routines slowed down the effective speed
of the machine by a factor between 10 and 100. There were
no longer enough hours in the day to get the machine's
work done.

At this point, Jack Strong and Frank Wagner of North
American Aviation, suggested that a cooperative effort,
aimed at developing an automatic coding system, be under
taken by the computer users in the Los Angeles area. The
enthusiasm of Strong and Wagner prevailed and PACT was
born. The idea was to find a way to remove some of the
coding burden from the human and place it on the machine
without materially reducing machinery efficiency. I do not
intend to go into PACT here; it did produce a successful
compiler for the 701 which is referred to as PACT-1. A
series of papers describing PACT-1 appears in the October
1956 issue of the Journal of the Association for Computing
Machinery. The PACT group is presently working on
PACT-1 A, a compiler for the 704.

The important thing about PACT to my discussions to
day is that it is representative of the kind of cooperation
where individuals from different organizations did sit down
together to develop a system that each could take back to
his own installation and use. In doing this, PACT redis
covered an age old truth that man has been forgetting and
rediscovering over and over again since the Stone Age; i.e.,
cooperation is the greatest invention since the wheel. Actu
ally, this was not an immediate discovery. The members of
the working committee of PACT spent several weeks in
mutual education, for at first they had to overcome the "our
way is best" attitude and also a serious language problem.
That this mutual education led to mutual admiration and
respect for the other fellows' abilities is testified to by the
final report of the PACT-I working committee to the PACT
policy committee. I quote from their Primary recommen
dation.

"The Spirit of cooperation between member or
ganizations and their representatives during the
formulating of PACT-I has been one of the most
valuable resources to come from the project. It is
essential that this spirit of cooperation continue
with future project plans."

One might believe that in such a climate, an organization
like SHARE would have developed almost spontaneously
when the task of preparing for the advent of the 704 ap
peared. Strangely enough, it was not spontaneous, but
rather somewhat of an accident, for even this opportunity

14

for a major cooperative effort almost escaped us.
Three 701 installations in the Los Angeles area began

to dig into the problem of preparing for the 704 in the
summer of 1955. Because of the climate resulting from
PACT-I, these three organizations started to discuss their
individual plans with each other and to explore the possi
bilities of a joint effort in connection with program devel
opment for the 704. Accordingly The RAND Corporation,
Lockheed Aircraft Corporation and North American Avia
tion, Inc. seriously began to consider standardization. This
much of SHARE genesis was no accident—it flowed natur-
aly from the PACT experiences of the three groups. The
fortunate accident was a seminar held by IBM in Los An
geles early in August for all Western installations consider
ing the 704. The cooperative venture being launched by
the three local groups was discussed with others at the
seminar and although SHARE may not have started spon
taneously, the fire soon burned furiously and spread rapidly
across the country. Two weeks after the IBM seminar, the
first meeting of SHARE was held at RAND during the
week of August 22, 1955. Despite short notice, almost all
(18 in number) the installations then contemplating the
704 were represented at the meeting.

I mentioned a minute ago that this opportunity almost
escaped us. The problem was a matter of timing, for sev
eral organizations were expecting their equipment within
three months after the initial meeting and had their systems
for using the machine nearly complete. Of the four organ
izations well along in their plans, one was able to go along
with SHARE when their system was adopted, with modifi
cations, by the SHARE body. A second elected to junk
what work had been done to date in order to go along.
Two others were much too far along with their own systems
to turn back; for them, SHARE did come too late.

I think it is important here to understand that SHARE
was not organized just to facilitate the interchange of pro
grams for the 704. This was a higher order of cooperation.
The organizations who had interchanged 701 programs had
found the routines of others almost useless, for each instal
lation had its own system and a routine designed for one
system just wouldn't fit into another system without modifi
cations. Hence, it was usually easier to write a routine for
your own system, starting from scratch, than to modify
someone else's routine. And so, almost everyone wrote his
own.

Actually, I personally believe that some of this reluctance
to modify and use somebody else's routines can be traced to
that naivety mentioned earlier in discussing the CPC; i.e.,
the belief that the other guy didn't really know what he was
doing and that "I can do it better". In any event, the inter
change of programs for the 701 had not, in general, been
very successful.

At the first meeting of SHARE, disdain for the other
fellow's abilities was gone—there was general "agreement
to agree"—and almost all professed themselves as quite

1956 ELECTRONIC BUSINESS SYSTEMS CONFERENCE

willing to accept the ideas of others, even to the extent of
obsoleting things already done within their own installa
tions. This spirit, however, was not carried to an extreme,
for one of SHARE'S principles is "unity in essentials and
freedom in accidentals". Standardization is undertaken only
where necessary. Let me quote from a statement of the
"Obligations of a SHARE Member":

"The principle obligation of a member is to
have a cooperative spirit. It is expected that each
member approach each discussion with an open
mind, and, having respect for the competence of
other members, be willing to accept the opinions
of others more frequently than he insists on his
own. On the other hand, majorities of members
are not expected to be overbearing in their deal
ings with minorities. To win over dissenters to
unanimity and not to vote them down is the fore
most objective in every discusion. When it comes
to standards, SHARE insists on adherence to them
for communication purposes through SHARE
channels to the extent that it refuses to distribute
material not in SHARE language. Of course, de
cisions of SHARE can in no way be binding on
any member installation so far as its internal oper
ation is concerned. However, the great majority
of SHARE members deviate internally only very
slightly or not at all from the standards adopted
by SHARE. New members are urged to scru
tinize carefully any such deviation before deciding
that it is imperative that they do so. Please note
that the foregoing discussion refers to basic con
tradictions or radically different ways of doing
things, and does not refer to minor improvements
and additions which will not in the least interfere
with normal communications."

As evidence that the SHARE membership paid more than
lip service to these principles, let me point to the solid ac
complishments of the first meeting of SHARE. After de
ciding on a loosely knit organizational structure and elect
ing officers, attention was turned to those areas where stand
ardization was essential to inter-installation communication.
SHARE standards were adopted for a mnemonic operation
code, assembly program, card format and print wheel con
figuration. A distribution system, the lifeline of the organi
zation, was established. Without this distribution system,
SHARE could not exist in the fashion that it does. Among
the other decisions made were a definition of what consti
tuted a minimum 704, the location of the binary point and
the conventions to be used in writing subroutines. Along
the latter lines, the work required to prepare various utility
and mathematical routines for the machine was divided
among the member installations on a purely voluntary basis.
Another item of business of that first meeting was the ap
pointment of a committee to prepare a glossary of terms to
supplement the existing computing dictionaries. This came

1956 ELECTRONIC BUSINESS SYSTEMS CONFERENCE 15

about when we soon realized that we were faced with the
language problem which had plagued PACT in its early

days.
I don't want to leave you with the impression that all

SHARE decisions came easily. There was frequently much
wrangling and discussion. But in each case, a spirit of co
operation prevailed and a compromise was reached.

The second meeting of SHARE was held some three
weeks later in Philadelphia. This meeting was primarily de
voted to a re-evaluation of the assembly program and to re
porting on the programming commitments made at the first
meeting. Of the thirty-seven programming assignments
made at the first meeting, all but two were completed on
schedule and more than twenty additional programs were

submitted.
Subsequent meetings of SHARE were held in Boston,

San Francisco, Chicago, and Denver. A meeting is to be
held next month in New York and, in the coming year,
meetings have been scheduled for Dallas and San Diego.

Some other topics which have been covered at these meet
ings include: the use of peripheral equipment, suggested
changes to the 704 and to the peripheral equipment, the use
of the cathode ray tube display device (the type 740),
changes to the assembly program, discussion of forms,
standard printer boards, computer layouts, development of
a SHARE reference manual, the cataloging of SHARE pro
grams, machine reliability (in particular, and a favorite
topic of mine, tape reliability), diagnostic routines, educa
tion (both internal and external), machine statistics, pro
gramming in general, gadgets built to facilitate use of the
computer, debugging techniques, data reduction, data trans
mission systems and, of course, as the membership grew, we
found it necessary to devote some time to our organizational

structure.

As of this writing, the SHARE membership has grown
from 18 to 62. Included are installations in Canada, France
and England. These 62 organizations have some 76 ma
chines on order. Including associated peripheral and
punched card equipment, the combined annual machine
rentals for the present SHARE membership will one day
easily exceed $50,000,000.00.

In addition to the 62 member installations, there are 88
additional organizations on the non-member distribution
list for program write-ups.

ADVANTAGES OF SHARE

Some three hundred programs have been distributed to
the membership. There is surprisingly little duplication in
this library. In the early days of SHARE, it was a standard
joke that everyone was submitting square root routines,
since they made convenient assignments for trainees. Never
theless, there are only five square root routines in the litera
ture. But more important, there is only one for such things
as matrix abstraction. There are only three general print
ing routines. Needless to say, without a cooperative effort
like SHARE, there would soon be at least fifty versions of

most of the more important routines in the SHARE library.
Using the rough rule of thumb that the cost of setting up

a system and its associated routines for a computer is ap
proximately equal to the first year's rental for the equip
ment, we arrive at the conclusion that the savings to the
membership, as a result of the reduction of redundant pro
gramming effort, is in the neighborhood of $50,000,000.00.

This seems quite reasonable—consider only the assembly
program, which was originally developed by United Air
craft Corporation and subsequently modified by them to
conform with suggestions from the SHARE body. By any
standards, it's an elegant and complicated assembler. Con
sequently, it seems appropriate to assume that the cost per
instruction in it is at the high end of the $2.00 to $10.00
scale usually quoted as the cost per instruction. Applying
the $10.00 rate, we conclude that to develop a similar as
sembler would cost an "isolationist" some $25,000.00. Al
though not all the members of SHARE are using this as
sembly program, most are and therefore we may conclude
that the resulting savings are of the order of $1,500,000.00.

Even so, there is a more important point here. Many of
the later 704 customers are taking the giant step from slide
rules, desk calculators, and/or CPC's to the 704 without
the benefit of very much intervening experience with stored
program equipment. On the other hand, the SHARE as
sembler and most of the other routines were developed and
written by personnel with considerable 701 experience.
Many of the newer 704 users have expressed the opinion
that without SHARE they would have been unable to go so
far up the computing capability ladder in a single step. In
effect, SHARE has multiplied the efforts of the limited
number of experienced computer personnel. Not only has
it made available programs the newcomers might not have
been able to produce for themselves, but in those organiza
tions having a number of experienced personnel, the reduc
tion of redundant effort has released many such people for
work on more sophisticated utility and mathematical rou

tines and on applied problems.
Another important advantage of SHARE flows from the

personal acquaintanceships developed at its meetings. Sub
sets of the membership discover common problems—there
is much cooperation at the two and three installation level.
Information and ideas are continually being interchanged
between members, both inside and outside the meetings.
Because of the meetings and the distribution system, the
transmission of information and ideas is made much easier.

Yet another advantage lies in an area which I haven't
mentioned so far. In these days of automation, one of the
much used "okeh" words is "feedback". SHARE provides
collective "feedback" from the customers to the manufac
turer. To me, this is extremely important. Both the cus
tomer and the manufacturer are vitally interested in im
proving the present equipment, in filling needs presently
unfulfilled, and in seeing that the next generation of ma
chines properly reflect the customers' needs. As an example

16 19>6 ELECTRONIC BUSINESS SYSTEMS CONFERENCE

of this, consider peripheral equipment. Designed for use
with the 702 and 705, the peripheral equipment originally
dealt only with cards using the Hollerith code. But SHARE
felt a need for reading and punching binary cards. At
SHARE'S request and with suggestions from SHARE, a
method was worked out to do so. SHARE has also pro
vided IBM with collectively considered requests for changes
to the 704 itself. And although SHARE has explicitly de
cided to limit its area of activity to the 704, the discussions
between customers and manufacturer at SHARE meetings
cannot help but have considerable effect on the computers
of the future.

DISADVANTAGES OF SHARE

I came here to praise SHARE and not to bury it, despite
the connotation of "eulogy" in my sub-title. Actually, there
is little to say on the disadvantages of SHARE. I think
they're all rather obvious. Most important, but still of
trivial import on an absolute scale, is that standardization
obviously implies some loss of flexibility. And of course,
SHARE provides 3 or 4 more meetings per year to be
attended. These days, it is almost literally true that one can
find enough meetings, in the EDP field, to enable one to
avoid ever having to go to the office.
OTHER COOPERATIVE EFFORTS IN THE COMPUTING WORLD

Anyone who will look at IBM Technical Newsletter No.
10 can conclude, by observing the number of "Systems" for
the IBM Type 650 reported on therein, that a great deal
of redundant effort went into these systems. And it still is.
However, this situation was probably, to some extent, un
avoidable. It's like things were with respect to the CPC;
each user had to learn about the stored program concept,
by his own missteps, before he could be ready for a coop
erative effort. Nevertheless, I'm convinced that the 650
area could benefit greatly from some sort of cooperative
effort.

From the Remington-Rand Univac Scientific Model
1103A, there is positive information to report. The users
and prospective users of this equipment have banded to
gether in a group called USE (Univac Scientific Exchange)
with much the same aims as SHARE. This talk could just
as well have been given by a member of USE.

Also, the organization of a cooperative group for the
IBM Type 705 is underway with the first meeting scheduled
for New York during the first week in December.

THE FUTURE

I'm sure that the cooperative effort for the next model
computer will come early and not be almost too late like
SHARE. There are undoubtedly other things which will be
different this time. Remember that SHARE came into being
long after several prospective 704 users had their own sys
tems under development. Because of this, when SHARE
considered the question of a standard assembly program,
several were essentially finished. SHARE picked one of
these (that of the United Aircraft Corporation), with modi
fications, as its standard. This meant that almost all the bur

den for the assembler fell on UAC. This time we hope to
apportion the load, while combining the ideas of many, by
making the assembler the joint effort of a number of in
stallations. This may not be easy because of geography.
Few SHARE activities in the past have required that the
personnel concerned work together in the same physical lo
cation for an extended period of time. However, if we arc-
to have a joint assembly program, a way must be found to

lick this problem.
COOPERATIVE EFFORTS IN THE DATA PROCESSING AREA

As a preface to this topic, it is important to consider the
ways in which scientific computing differs from business
data processing. In the former field, we are faced with a
large number of problems for the computer, most of them
fairly small and non-repetitive in the sense that they may
be in the production phase for less than a month. In such
circumstances, any "good" way to solve the problem is pre
ferred to spending time in search of the "best" way. One
tries to develop a "general purpose" system through which
almost all the problems can be pushed with a minimum of
over-all effort. Tools in the form of utility and mathe
matical routines are developed to aid in attacking problems
with some common attribute. Since these systems are "gen
eral purpose" in nature, they are as useful in one computing
installation as another.

I needn't tell you that things are much different in the
area of business data processing. Here there are a few very
large applications which will be used over and over again.
In these circumstances, it pays to search for the "best" way
of doing a problem and to polish the final program in the
interest of machine efficiency. Consequently, the "special
purpose" approach is normally preferred to the "general
purpose" method.

Another way in which problems of the two fields differ
is important when considered in the light of cooperative
effort. This difference is that computing deals with an exact
science in Mathematics while business data processing deals
with the vagaries of the world. The logarithm of a given
number is identically the same in every installation and
consequently a routine for calculating a logarithm can be
gainfully passed among computing installations and used
"as is". But could any of you make use, "as is", of the pay
roll routine of another company?

However, I don't mean to belittle the advantages of a
cooperative effort in the business data processing field. On
the contrary, I feel such an effort would pay tremendous
dividends, even if limited just to getting the people with
common problems together. And this reminds me of an
other important point about SHARE, where the idea is to
get top-quality working-level personnel not just the chiefs
—together to discuss common problems. The resulting
"mutual education" has been invaluable. 1 believe that this
is an important concept and one which accounts for much
of SHARli's success. 1 feel quite strongly about this point
—much is to be gained from the cross-fertilization of top-

1956 ELECTRONIC BUSINESS SYSTEMS CONFERENCE 17

quality working-level personnel. The section of the SHARE
Reference Manual pertaining to "Obligations of SHARE
Membership" contains this statement, . . it is desirable
that each SHARE member be represented at every meeting
by at least two men, one empowered to make basic policy
decisions and another thoroughly familiar with techniques,
programming and detailed operating matters."

But a cooperative effort in the business data processing
field need not be limited to a series of seminars. Much
could be done to facilitate inter-installation communication
and joint endeavor could be brought to bear on common
problems. Even the fact that a number of installations have
been in actual operation for some time should not hinder
the success of a cooperative effort organized for a specific
machine. It is not necessarily too late. Much standardiza
tion may already exist due to the common practice of adopt
ing the mnemonic code and assembly program supplied by
the manufacturer. Inter-installation communication may
come fairly easily—further standardization may not be dif

ficult. Rather than being too late, this may be the first time
that a cooperative effort is possible for a group having a
common machine. For example, it is not reasonable to
expect that users of the Univac (or the 705) could have
gotten together in the past to adopt standards and to share
the burden of preparing for the machine. For almost all the
organizations concerned, this was their first encounter with
a stored program machine. As with the CPC, a great deal
had to be learned by each company about the equipment
and about this new way of doing things before a cooper
ative effort could be undertaken.

As it was with SHARE, I feel that the success of any such
venture will depend on the degree to which an attitude of
"agreement to agree" pervades the membership. This atti
tude must go hand in hand with mutual respect for the
ideas and opinions of others.

It's redundant for me to say, in summary, that I am en
thusiastic about SHARE and about cooperative effort in
general—I hope it's contagious.

List of FORTRAN Implementations
(Second Version 82-02-12)

Date Name Machine Author(s) Location

1954-57 FORTRAN (0) IBM 704 Backus, et al# IBM
1957 F0RTRANSIT IBM 650 Bemer,Alexander,

Pessin,Hemmes IBM
1958 650 FORTRAN IBM 650 Pessin,Wu IBM
1958 FORTRAN IBM 709 * IBM
1958 FORTRAN II IBM 704 Backus et al, IBM

Mitchell, Sheridan,
Brady & May

1958 FORTRAN III IBM 704 Ziller, Nelson IBM
1960 GOTRAN IBM 1620 Laffan IBM
1960 ALTAC Philco 2000 Rosen,Goldberg Philco
1960 FORTRAN IBM 1620 Laffan, Resta IBM
1960 FORTRAN IBM 7070 Alexander IBM
1960 FORTRAN IBM 705 Seldon IBM/GUIDE
1960 FORTRAN CDC 1604 ? 7

1961 FORGO IBM 1620 Davidson Wisconsin
1961 AUTOMATH-800 H-800 Opler, King, 0'Conner, , cue

Beeber, Hopkins,
Brestwick

1961 FORTRAN H-290 ? Hankins
I nc

1961 FORTRAN I UNIVAC ? Rem-Rand
1961 FORTRAN II LARC Computer Sc. Corp. Rem-Rand
1961 UT FORTRAN IBM 1620 Lee, Field Toronto
1961 AFIT FORTRAN IBM 1620 Pratt Wright

Patt. AFB
1961 1401 FORTRAN IBM 1401 Haines, et al IBM
1961 FORTRAN B5000 7 Burroughs
1961 FORTRAN IV IBM 7090/4 Larner IBM
1961 FORTRAN II RCA 301 Hux, et al RCA
1962 FORTRAN IV IBM 7040/4 Medlock IBM
1962 AUTOMATH-400 H-400 Greenfield, et al HIS
1962 SI IBM Stretch Glennie UKAEA
1962 FORTRAN II RCA 301 Hux, et al RCA
1962 FORTRAN IV Univac 1107 Gatt CSC
1963 AUTOMATH-1800 H-800/1800 Greenfield et al HIS
1963 AUTOMATH-1400 H-1400 Greenfield et al HIS
1963 FORTRAN IV IBM 7030 7 IBM
1963 KINGSTRAN IBM 1620 Field, Jardine, Lee, Kingston,

Lee & Robinson Ont
1964 FORTRAN 7090/ATLAS Pyle UKAEA
1964 FORTRAN SDS910 Dunlap,Ryan Digitek
1964 FORTRAN ORION Taylor, Harrigan Rutherford
1964 FORTRAN CDC 3600 7 CDC
1964 Fast FORTRAN CDC 3600 7 Mich. St.
1964 FORTRAN II RCA 3301 Hux, et al RCA
1964 FORTRAN IV RCA 601 Best Decision

Systems
1965 PUFFT IBM 7094 Rosen, et al Purdue
1965 FORTRAN D H-200 Greenfield at al HIS
1965 GE FORTRAN GE 235 7 GE
1966 FORTRAN IV SDS9300 Owens,Hartman SDS
1966 FORTRAN H H-1200/2200 Greenfield et al HIS

PAGE 2

1966 FORTRAN J H-4200 Greenfield et al HIS
1966 FORTRAN 66 CDC 6600 ? CDC
1966 FORTRAN IV RCA Spectra Moshos RCA
1967 DITRAN IBM 1620 Moulton, Muller Wisconsin
1967 MOD 8 FORTRAN H-8200 Jackson et al HIS
1967 WATFOR S/360 Shantz, et al Waterloo
1968 FORTRAN V UNIVAC 1108 ? CSC
1968 FORTRAN IV SIGMA 7 Owens,Hartman SDS

(Cut off 10 years after the release of the first compiler)

(Where do the System 360 F,G,H fit?)

Sources: Sammet, J.E., Programming Languages, P-H, 1969, memory,
private correspondence, extensive research by Daniel Leeson
(IBM), Martin Greenfield (HIS), and Richard Ragan (CDC).

et al meaning that group who are identified in the 1957 WJCC
paper's author list.

* Officially (from IBM files) this work was a straight conversion
from the 704 implementation done by the Backus group. Medlock
(private correspondence) attributes the management of this work
to Harry Beckish.

? indicates What either the information is unknown or not yet
researched fully. Please amplify as necessary.

PROGRAM LISTING OF FORTRAN PIONEERS
(PRELIMINARY)

82/04/02

Members of the original Backus group within IBM
which developed FORTRAN

John Backus Lois B. Mitchell Haibt
Project Manager Section 4, FORTRAN 0

Harlan Herrick
Section 1, FORTRAN 0

Irving Ziller
Section 2, FORTRAN 0

FORTRAN II

Robert Nelson
Optimization Section 2
FORTRAN 0

Roy Nutt
I/O FORMAT FORTRAN 0

United Aircraft Corp.

Peter B. Sheridan
Arithmetic FORTRAN 0
Functions FORTRAN II

Sheldon F. Best
Section 5, FORTRAN 0
Index Reg. assignments
UNIVAC 1100 FTN

MIT

Richard Goldberg
Section 3> FORTRAN 0
Section 5, debugging

David Sayre
Editor of Ref. Manual
Asst. Project Manager
FORTRAN 0

Grace (Libby) E. Mitchell
Primer, FORTRAN 0

FORTRAN II

*Where not indicated otherwise, the original affiliation of the person

is IBM Corp.

PAGE 2

Managers and Assistants to the Original FORTRAN Development Group

Cuthbert Hurd
Level 2 Manager
FORTRAN 0

Charles DeCarlo
Level 2 Manager
FORTRAN 0

John McPherson
Level 2 Manager
FORTRAN 0

Sidney Fernbach
Supervisor, Robert Hughes
Livermore Nat'l Laboratory

Walter Ramshaw
Manager of Roy Nutt

United Aircraft Corp.

Charles Adams
Manager of Sheldon Best
M.I.T.

R.J. Beeber
Assistant, Section 1, FORTRAN 0

Hal Stern
Documenter, Customer Liaison
FORTRAN 0

Robert Hughes
Documentation, FORTRAN 0
Lawrence Livermore Laboratory

PAGE 3

Members of development teams for commercially sponsored
processors for FORTRAN during the period 1957-60 and their
immediate managers.

Robert Bemer
Manager, FORTRANSIT devel.

Harry Belkish
IBM 709 FTN II

Florence Pessin
Member, FORTRANSIT group

Bernyce Brady Larner
FORTRAN II

I.C. Pyle
ATLAS S1
UK AEA

Saul Rosen
Philco ALTAC
Philco

Leroy M. May
FORTRANSIT and FORTRAN II

B. C. Chapman
ATLAS S1
UK AEA

Ray Larner
IBM 7090/94 FTN IV

Larry Michaels
IBM 7090/94 FTN IV

Seymour Cray
CDC FORTRAN
Control Data Corp.

Lin Wu
IBM 650 FORTRAN

Otto Alexander
Member, FORTRANSIT group

David A Hemmes
Member, FORTRANSIT group

David Mordy
IBM 7070 FTN

A.L. Harmon
IBM Staff

Wm. Andrus
(deceased)
IBM staff

Herbert Meltzer
FTN system maintenance

C.W. Medlock
IBM 7040/44 FTN IV

t
<K*

Jack L^ffan
IBM 1620
GOTRAN developer

Frank Beckman
Manager, Appl. Prog., IBM

Ken F. Powell
IBM Appl. Sc. Rep., Pittsburgh

PAGE 4

Members of development teams for experimental and non-vendor
processors for FORTRAN which were available through user
group libraries prior to Dec. 31, 1962.

P.G. Moulton
DITRAN developer
Univ. Wisconsin

M.E. Muller
DITRAN developer
Univ. Wisconsin

Charles Davidson
FORGO developer
Univ. Wisconsin

Users of processors identified in 1, 2, and 3 above
with significant applications.

Frank Engel
Modifier of first compiler
Chairman, X3 FTN Committee
Westinghouse-Pittsburgh

George Ryckman
User - GM

Harry Cantrell
User - GE

User - Westinghouse - Piitsburgh

Doris Clark
User of first FTN
GE Schenectady, 1957 Wok

Herbert S. Bright
Author first program
Westinghouse-Bettis

Thomas W. Martin

Ruth Callaghan Sheehy
Manager, FTN Test Site
GE Schenectady, 1957

Members of FORTRAN committees of users groups, standards
committees and supporting vendor staff before Dec. 31, 1962.

John Greenstadt
SHARE Dist. Seer.

Jim Porter
SHARE FORTRAN Committee

Martin Greenfield
Member, ANSI Committee

Honeywell

Don Furth
SHARE liaison

Donn Parker
SHARE FORTRAN Committee

Stanford

William P. Heising
ANSI Committee Chairman

Stan Closman
SHARE liaison

Norman Sanders
Early ASA FTN Comm. Mbr.
Boeing Aircraft Corn.

PAGE 5

Authors of text-books, articles in technical journals and
printed manuals before Dec. 31, 1962.

Daniel McCracken
Author, first textbook
Cgnsultant

Elliott Oganick
Author, early textbook
Univ. Houston

Teachers and faculty that taught FORTRAN as at least part
of a formal course in an accredited institution prior
to Dec. 31, 1960.

Jean Sammet
1957 Course at Adelphi
Silvania

Herbert Leeds
IBM Course D.C. 1957

Albert Newhouse
Teacher at U. Houston

CONFERENCE' C HAIRMAN
Russell k Brown, C DP
3420 Yoakum Boulevard
Houston. Texas 77(X)6
713-524 3420

fc'KOGRAM CHAIRMAN
p Howard L. Morgan

Department ot Decision Sciences
The Wharton School/CC
Philadelphia, PA 19104
215-243-7731

PROGRAM VICE-CHAIRMAN
Erie k. Clemons
Associate Professor of Decision Sciences
The Wharton School/CC
University of Pennsylvania
Philadelphia, PA 19104
215-243-7747

PROFESSIONAL DEVELOPMENT SEMINARS
Joseph Campisi
Aetna & Casualty
151 Farmington Avenue
Hartford, CT 06156
203-273-3611

NCCC LIAISON
Harvey Garner
University of Pennsylvania
Moore School D-2
Philadelphia, PA 19104
215-243-4787

PIONEER DAY
J.A.N. Lee
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
703 % 1-6931

PLENARY SESSIONS
Susan Rosenbaum

feM * T
•o 52 C278

P.O. Box 3509
New Brunswick, NJ 08903
201-457-2664

VICE-CHAIRMAN (PROGRAM ACTIVITIES)
Robert Stirling
IBM Corporation
1133 Westchester Ave.
White Plains, NY 10604
914-696-4251

PROGRAM COMMITTEE
Gene P. Altshuler
O. Peter Buncman
James E. Emery
Dennis Frailcv
Robert Frankston
Randall Jensen
Beverly k. kahn
Alan N. Smith
Am> D. Wohl

AFIPS PROJECT MANAGER
Sam Lippman
AFIPS
1815 N. Lynn Street
Suite 800
Arlington, VA 22209
703-558-3614

1982
National
Computer
Conference
Astrohall
Houston, Texas
June 7-10, 1982

Otto Alexander
615 Green Drive
Kissimmee FL 32741

American Federation of Information Processing Societies
Association for Computing Machinery
Data Processing Management Association
IEEE Computer Society
Society for Computer Simulation

Reply to: John A. N. Lee
Pioneer Day Chairman

1982 April 19

Dear Otto,

Many thanks for your annotation of Flo's interview;
I have decided to keep it in exactly that form provided
that Flo does not object. Of course I will go through
some editing with you and her to get a final form which
will go into our archives and which will be the basis of
the material that we publish on FOR TRANSIT in the proposed
book on FORTRAN which we are working on.

One of the plans at Houston is for Bob Bemer to
introduce the members of his "team" to the audience.
As I have pointed out to him, to have persons stand up
in a room of several hundred people is not very satisfying
— all one sees is the back of their head or a dark shape.
Thus we are planning on simultaneously showing their
picture as they are introduced. We now have slides for
all of Backus' group and I have pictures from Bemer,
Hemmes and Pessin. Could you send me a photograph
(preferably in color) which we could make into a slide
for this purpose? Obviously this would also become
part of the archive.

Regarding your being in Houston; I have contacted
several persons in Boca Raton and Tampa to attempt to
get someone to take responsibility for this expenditure.
I am also asking Flo (as the only member of your group
still in IBM) for her suggestions and support. I will
let you know of my success.

Hoping to see you re-united with your colleagues in
Houston,

rs sincerely,

'John A. N. Lee
Professor

xc: Pessin, Hemmes, Bemer

q f f\ c
BO 5

Yulomatic Programming Systems*

I n ACM L ib r a r y In ACM L ib ra ry

/
A I ' A C

CA< ; [• :

c o rb i e

FORTRAN

KoMIMLER 3
^TYSTTCN
NVAP

FA CT IA

REG - S Y M BO LIC

SAR

/
A PES.
FORC'

/V RY V

/

BACAIC
DUAL-HOT
FLOP
JC'S-13
IvOMPILER 2
PACT 1
QUICK
SEESAW
SHACO
SPEED CODING 3

1103-
1103 A

^ 705 AC(>M

AUTOCODER / ACTOCO

/R4? / PRINT I
W SOHR

SYMBOLIC ASSEMBLY

VI
10

•

TU-

BAP *
DOUGLAS
GEPURS
LT-2
QUEASY
SO 2
SPEEDEX

AUTOCODER
ASSEMBLY
SCRIPT

TRANS USE

UN I VAC I, II

DATATRON
201
204
205 /

AO, A1 A2
ARITHMATIC (A-3)
BIOR
FLOWMATIC (B-0)
GP
GPX (II ONLY)
MATHMATIC (AT-3)
MATRIX MATH
NYU, OMNIFAX
SHORTCODE
UNISAP
X-L

MJS
RELCODE

APX III
DUMBO
PURDUE COMPILER
SAC
SIMPLE
UGLIAC

AN C'P
BELL
DATACODi : 1

DOW COMPILER
SHELL
SPAR
STAR 0

ADES II
APT
BACAIC
BELL
BELL L2, L3
CASE SOAP III
DRUCO 1
EASE II

BALITAC
ESCAPE
FLAIR
KISS
MITILAC
OMNICODE
SPEEDCODING
SPUR

DAISY 201
FLIP
INTERCOM 101
INTERCOM 1000

POGO

WHIRLWIND
•

FAST
j FOR TRANSIT

FORTRUNC'IBLE
IT
IT 3 V

| RELATIVE
I RUNCIBLE
I SIR

SOAP I
SOAP II

FERUT

JOHNNIAC ^

650 | GAT-2
RAMAC

NORC

7070

7 no rc c ompi l e r

BASIC AUTOCODER

ee ACM Conn

ILLIAC

LGP-30

MIDAC

COMPREHENSIVE
SUMMER SESSION

ALGEBRAK

TRANSCODE

EASY FOX

ILLIAC

ERFPI
JAZ
SPEED

EASIAC
MAGIC

LARC /
FERRANTI
MERCURY y

K5
SAIL

AUTOCODIXG
MAC (NORWAY)

FERRANTI
PEGASUS vf AUTOCODE

I

16 (Communications of the ACYL

(% NOV

VTF

TT

which is to replace the jth column of .4, where x is the
trial solution dropped in this iteration. The new inverse is
calculated from the old by pivoting:

Calculate q = A*~ lp. Then

for all k. (A' = U"),l: q

and

(A* 1)it = (-4 ')n — (.4) jk- iqi/qk) \
for ¥±j,

[all k.

4. Computational Evperience

A FOETRAN II program has been written for trying out
this procedure. Its input consists of n, a set of trial solu
tions or a signal that such a set should be generated, and
programs which calculate the /,. A variety of problems
with n = 2 have been solved. The process has converged
for these in a manner like that which Jeeves [1] has shown
for the case n = 1, namely that the error at a given step is

proportional to the product of the errors at the two previ
ous steps—convergence of order ^(s/5 +1).

SAMPLE: n = 2, fi(x, y) = x~ + x — y~ + 1,
f2(x, y) = y(1 — 2.r) (the real and imaginary parts of

Z + 2 + 1) .

Points Norm

Initial

X V
fl — 0.600000 1.100000 0.370000
|2 -0.300000 1.100000 1.518400

b -0.600000 1.400000 0.250900
4 -0.516058 0.923358 0.011351
5 -0.503347 0.870741 0.000101
6 -0.500884 0.866819 0.423 X 10"s

7 -0.499988 0.865996 0.306 X 10"s

8 -0.500000 0.866025 0.106 X 10-'

REFERENCE

11] T. A. JEEVES, Secant modification of Newton's method, Comm.
Assoc. Comp. Mack. 1. No. 8 (1958). 9-10.

Automatic Programming Systems
The following are additions to the ACM Library. For

the previous status, please refer to the May 1959 issue of
Communications, page 16.

Computer In ACM Library Do Not Have

709 Commercial Translator 1 S.O.S.
FORC 2 9 PAC
FORTRAN

705 III Commercial Translator
705 Autocoder III

FORTRAN

"""""" •MiniMiii 11 PiTTrrir 1

1103 SLAP
1105 AIMACO
DATATRON FORTRAN
205, 220
G-15 POGO
TRANSAC TAC

ALTAC
(FORTRAN)

H-800 ARGUS FORTRAN
HBC

NCR 304 NEAT
STEP

RCA 501 Automatic Assembly
ICT 1400 CODEL

Communication* of the A(.\l 13

•• •>; ' - JS2? -i- ?i-,, -a-
;- • f g y : :..- • -to

S2: ----- -t.^- JSIL; sr-ar - •

J s

/%&, /Lccû cy , / 0 '

/ 0

iff-

349

"FOR TRANSIT

A UNIVERSAL AUTOMATIC CODING SYSTEM

IBM 650 "

B . C . B o r d e n

International Business Machines

fiAoip

\P̂ L

JjL ̂
cr ̂

^-^0 ^ c < ^ ' *
7

INTRODUCTION^ OPUC 11U1N
— , -c-rvR TRANSIT Automatic Coding
syA^Z~n^ --es -e -n made * uaing -Pu er

intelligently. „iversal computer language. A sMdari °

on:' needed m

«"~dH-h" sed Two. we have an automatic y themselves. We have dispensed
been taken in having machines Vro&ri sly required for detail block
with a large portion of the <""* d<=b"S8to6-
Ciagramming.^odmg.^ey^ ^ ̂ au(omatic programm.n

I

\t2ZZM4

F , - r ' % / =

v 'v#

! |

•17

aSK«*E^3« W*Ei 3&

AUTOMATIC PROGRAMMING

350
in general, and define some terms which frequently appear. Following
this a review of the FORTRAN story will introduce FORTRANSIT, the
Automatic Coding System for the IBM 650. This will be covered under
headings of (a) the Language, (b) the Processor. Finally, a brief
look at experiences gained from using the system, where it can be
best applied, and what potential savings can be realized.

Computers are wonderful devices. An infinite variety of sequence
can be undertaken by a general purpose computer. However, unless we
tell it precisely what we want it to do, all this activity is to no avail.
Once we have conceived a task worthy of data handling equipment, we mci:
be able to communicate our desires to it. As in every phase of com
munication, a language problem arises. Efficient delegation of work
to machines necessarily requires a thorough knowledge of their
n a t i v e l a n g u a g e a n d o f t e n a l o n g s e r i e s o f d e t a i l e d i n s t r u c t i o n s . W e
naturally seek to relieve ourselves of tedious repetitive work where
possible, and the first step is to teach the computer our language..
The more thoroughly it understands us, the freer we can be in expres-
sing our wishes and in describing our tasks to it. If, then, we can teach
it to undertake several operations in a correct sequence merely with
a word or two from us, a second much larger step has been taken.

Basically, these are the objectives of automatic programming
to ease our burden. Let us see how this affects a typical computer
project.

Putting a computer to work for us usually follows these steps.
Once the decision is reached that a certain goal can probably be at
tained with the help of computing equipment, a thorough analysis
is made to determine scope, logical and mathematical methods,
significance of figures, accuracies of computations and results.

Then follows programming - block diagramming the flow of
the problem solution. Next the coding, a large time consuming part
of programming, prepares the program in a form ready for the
machine. _ ,

To be of any use, the program must be tested and proven acc
it must be debugged. Errors stem from many sources, the most
consistent being clerical. The more letters or numbers that are writ
ten, the more errors committed by both coder and key puncher. is
error source is further compounded where the language one is using
is remote from a familiar one - say English or mathematical notation.

All of these phases - analysis, programming, coding and debug
ging must be passed before the job can be started. A large part of
this time was consumed between analysis and final testing.

Any means to shorten or eliminate this delay will pay off
handsomely in both cost of programmers and in receiving results more
quickly. Often, knowing an answer today instead of next Tuesday can
make it. possible to just meet a deadline, to quote sooner on a contrac ,
or to prevent an ill-advised project from being started.

351

Automatic programs have beendeveloped to mite

coder's load, produce final prog™ hine. FORTRANSIT is the
in a form or language suit3^ e o automatically prepare large

a computer from a very few hand written laues

of coding.

nKFINITlON QF__TERMS_ _ romDonents of the FORTRAN
In order to best apprecia e mpnts considering some fairly

and FORTRANSIT programs, a few termS x refer to are words
no,, but they tahe on special

meaning to those in data pro^inggp^^wordf or phrases have not
Unfortunately, many of the P ^ this field. Such

been thoroughly ^^^^^^ogrim, assembler, converter,
words include source and object prog , it is not my
generator, compiler, interpretlV^°^ meaning for such terms but merely
purpose or intention to give a St description of FORTRANSIT.
to identify some of them in the ^S"J.coder. « "hateVer

After the analysis stage, the p L instructions for the machine
we choose to call him, prepar*S 1Sis%eferred to as the source program,
in some sort of code. This coding i ^ considering using a computer
In the days of automatic program g ructions> This final list of
as an aid to preparing the fmal set^ ^ ̂ in , trader

re^resentation medium that can be accepted by the system - this is

""^^SSce, the -^red by6^—:
idea is to allow for simple source cc,d g^ the program that performs
process of preparing the <*J®cl- sors can be divided into two
this function as the processor. Proce
families; executive and translatJ utthe source coding.

Executive processors recei arithmetic or the logic
interpret its meaning and directly per ^ processor, often refer-
required in arriving at t e resu^ . ^ object program stage -
red to as an interpretive syste™' g ^ ection or repetitive use.
the actual object is never avail PRINT on the 705 are
The BELL floating point system on the 650 or FK1JN
excellent examples. very large family of

Opposite the function more or less
translators. Many groups ca ^ ^ the process0r and

„ as follows: source programs are crepared in punched card
object programs in a.dlfIe""1 c^feLedimmediately to run the final

• « So three sub-sets, converters.

*SSeTcS ̂ greSprocessor which accepts^ lavageand ̂

b°ol "I More simply. 650 program steps

\

in one-per-card form are changed to seven-per-card form by a
converter.

Most of you are acquainted with assemblers - particularly
symbolic ones. A symbolic assembly program is one that receives
source codes in as brief a form as possible written in non-machine
language (usually alphabetic). The assembler makes absolute memory
and code assignments for each step or unit of reference data. General
ly, an assembler produces one output line for each input line and in
this sense is not generative. Popular examples are SCAT for 709,
SAP for 704, Autocoder on 705 and of course SOAP for the 650.

The most powerful translator is the compiler. Source programs
are written in a very abbreviated form and it is this processors job
to prepare complete sets of instructions from each single input line.
A compiler's input is always symbolic but the output may be symbolic
or absolute. If symbolic, the compiler is not a complete processor
as it has not translated all the way to object form.

One should realize that these are broad classifications and
that many processors invade territories of several of these definitions.
For instance, the 705 Autocoder is fundamentally an assembler, but
has many elements of compiler in it.

THE FORTRAN STORY

Late in 1954 work started on FORTRAN. A working committee
of fourteen was set up mostly from the Applied Programming group of
IBM, but with representatives from the University of California Radi
ation Laboratory and the United Air Craft Corporation. The Name
FORTRAN is an acronym formed from the words FORmula and TRANslato;

The project was to develop an automatic coding system which would
enable the programmer to specify a numerical procedure, that is to
write the-source program in a concise language like that of mathematics.-
Two and one half years of development, exhaustive testing, revisions
and more testing led to the completion of the system for the IBM 704.
Since the beginning of 1957, it has been in increasing use and has more
than met the hoped for goal of reducing coding and debugging times to
one fifth that required by earlier methods.

FORTRAN consists of two components. First, the language -
that is the proper symbols and rules for using them. Second, the
processor - the translation from FORTRAN source program steps or
statements, as they are called, to machine language.

FORTRAN, then, is a general coding system originally intended
to prepare efficient 704 programs. The experience gained of this
machine system led workers in other programming areas to consider
its usefulness. It was immediately apparent that the language as it
stood was in no way tied to the 704. All that was necessary was to write
new processors for other machines and we would have a compatible
language. Work started directly on both 650 and 705 processors.
FORTRANSIT is the name given to the system on the IBM 650. We
will first examine the type of coding techniques employed and then

consider the processor system of programs.

FORTRAN LANGUAGE

m mnTRAMT one must know and be able to use the
To use FORTRANSI1, 0+0TT, conventionally define

FORTRAN language. For any coding sy ' Hgre we describe
limits of addresses and sc.pe ° original FORTRAN statement
different t y p e s °f4^f^NSIT due to smaller machine configurations

C0DS1 Torft'basie 650 there are tea types of statements:
1 Arithmetic 2 Input/Output

. , 1 Specification

An arithmetic statement looks like an equation ^""'^pecpares

"metT̂ ̂
FORTRAN statement. As an exact but simple example

ment, we could write • ^ + (0 4A X (B - 0. 5 C))/37

Already existing special characters in the IBM card code are need for

=5S=3:="-*'

^ ̂heTir" C^he%UrP of^contro^statements^is known as CO TO.

a particular statement numbe . several numbers
uowerful by making them conditional. GO TO one 01 sevei
d'ependig the condition of some index at conclusion of previous

on zero" Each IF statement has an argument which is usually

• id corresponding control transfers are then made. We could write

for example: ^ X A X B - _0.001)1 10. 20, 30
? The argument is computed and on minus, aero, or plus status trans er

i wouid be made to statements 10. 20 or 30 respective y.
The iost powerful feature is the DO statement. Such a state

ment details a group of arithmetic and logical statements that are

fi
be executed and specifies how often the group is to be performed. ' jr

For instance as a very simple example we could say; ^ j,
DO 10 I - 1, 22, 3 ' t]

This would mean perform statements up to 10 for values of I varying - f:

from 1 to 22 stepping I by 3 each time. All looping or iterative <
programming blocks are set up and controlled by DO's. j

Other control statements are PAUSE, STOP and CONTINUE j
which are fairly self-explanatory.

Input/output instructions or statements labelled simply READ :

and PUNCH handle data being entered or punched. A single punch i
statement will punch a complete array with elements suitably identi
fied. j

I referred to a fourth type of statement - a specification state
ment. This most useful device is called the DIMENSION statement
where an announcement is made of the size of all subscripted variables.

Gentlemen, the whole of FORTRANSIT is there in this cursory
survey. Arithmetic statements, controls such as GO TO, IF, DO,
the usual Input - Output commands and the DIMENSION comprise the ^
basis for coding with the FORTRAN language.

Excellent provision has been allowed for inclusion of sub
routines. A standard deck is used for all the floating and fixing routines
as well as to perform regular arithmetic in both modes of representation.
If needed, extra packages are incorporated to take care of all other
desired functions such as logs, transcendental functions, etc. Rules
are laid down for supplying one's own routines to the processor. Just
as in the past the library of programs for the 650 has been built up
to a very large size, we expect that all commonly encountered functions
will be available shortly for FORTRANSIT.

FORTRANSIT PROCESSOR

This language just described is used to write and prepare the
source program. IBM's applied programming people worked closely
with the "Computation Center" at Carnegie Institute of Technology
with a view to developing a "processor" for these source statements.
Priority was placed on time. We urgently wanted to have the 650 in
a position to be able to accept FORTRAN statements and write object
programs. As there already existed a compiler and an associated
assembler for the 650, the decision was made to adapt and extend this
system of existing programs and get into production.

This, then, was the result. Processing was divided into three
phases - conversion, compilation and assembly (Figure 2). The first
phase uses the FORTRANSIT deck proper. FORTRAN statements
are merely converted to statements acceptable to the existing compiler.
Incidentally, this is the IT compiler, prepared by Perlis, Smith and
VanZoren at Carnegie Tech, with some modification.

In phase two, the compiler takes over and explodes these state
ments into groups or blocks of program steps. IT is responsible for
setting up sub-routine linkage for entry and exit to the various float,

routines
;sentatio;
her
tules^^

Just
up
motions

hree
; first
:ts
ompiler.
1 and

the order of savings that one can realize by employing powerful
automatic techniques. Note that a large part of programming and
coding costs disappears. The ratio of object steps to source steps
averages fifteen to one; this virtually eliminates key punching and
verifying as a significant cost. Not only is the number of program
steps manually prepared greatly reduced, but the number of characters
per line is often less.

Debugging or straightening out "kinks" is generally a puzzling
problem to those not familiar with such an automatic procedure. One
hears the question, "How do I make sense of the final program in
light of what I originally wrote? Surprising as it may seem, very
few errors are made once the rules of FORTRAN are absorbed. To
help, the FORTRANSIT Processor checks for violations of these laws,
and will detect the majority that are not of general logical nature. Errc-:
that persist can be further tracked down by incorporating selective
tracing in the final execution of the object program. Incidentally,
such tracing can be introduced at the FORTRAN coding stage or at
final testing sessions. Experience to date has shown that "bugs" are
almost always easily located, and then simply corrected in the original
statements.

CONCLUSION

2. Application
All automatic programs seem to have a preferred area for best

use. About the only comment that can be made about FORTRAN 'S

place in the sun is that engineering, mathematical and scientific prob
lems are best suited. FORTRANSIT is quite efficient in its object
program and it need not be reserved for "one-shot" programs.
Organizations with 650's and also one or more of the 700 series can
try jobs with FORTRANSIT and then run them at higher speed with
expanded scope on their larger system. Coding, once completed for
one system is done for all. Table 3 shows the relation between
the cost of solving a problem by conventional coding methods versus
using FORTRANSIT.

I do not have any statistics on the types of projects that have
been undertaken in the United States to date on FORTRANSIT, but in
Canada, at the IBM 650 Data Centre, we have worked in the fields
of statistics, civil engineering, probability in scattering, air force
research, etc.

Let us review the various points which strongly recommend
using FORTRANSIT where possible. Investigations into the suitability
of complex mathematical models for physical situations are much more
feasible, the language of FORTRAN being very close to that of mathem
atical notation. Problems that would have involved complicated linkage
and logical connection can be tackled with little regard to these more
technical aspects - FORTRANSIT will compile the longest or the
shortest according to its rules.

PROGRAMMING

CODING

KP & KV

DEBUGGING

COMPILING

ACTIVITY
CONVENTIONAL

CODING
METHODS

USING
FORTRANSIT

The more obvious cost savings are again; much less clerical
ikey punch work, fewer errors, greatly reduced programmer's
jing and debugging duties. Computers as tools are now available
a whole new cross-section of workers in engineering and research.
?have a universal code and when a FORTRANSIT type system is

Ts 3pleted for the 705, virtually Ahe same program cards can be processed
• approximately 75% of all comp iters installed or on order. Teaching
)RTRANSIT is very straight forward. We were surprised to find,

! a recent course here, the man who knew least about the 650
.cceeded first in completing his FORTRANSIT problem and getting
e correct result. Another example, two day's private instruction
•ve given to a customer who proceeded to write a program that
,-aipiled into over 1900 steps with only one or two small errors.

"rcr» There is nothing inherent in the FORTRAN language which limits
is use on computers of the future of far greater capacity and speeds.
:t before that time and until those machines arrive, 650 users
an learn and profit with FORTRANSIT.

COMPILING

DEBUGGING

COST BREAKDOWN

Table 1

AN ANNOTATED BIBLIOGRAPHY OF FORTRAN

Compiled by
J.A.N. Lee

Second Version
82/02/17

INTRODUCTION

The papers which are listed in this bibliography have been
selected on the basis of their applicability to the language
FORTRAN, its implementations and its definition. Only in
exceptional cases have references been included to the use of
FORTRAN in specialized applications. However where the
application is in the development of a secondary language, or the
modification of FORTRAN to be capable of supporting some
application other than "scientific programming", these papers
have been included. For historical completeness, a few
references have been included to pre-FORTRAN systems which have
been referenced in some of the significant other papers on
FORTRAN.

Some consideration was given to the problem of an "official"
type-face for the name of the language, and in particular whether
it should be completely in uppercase. This problem was resolved
by using the form which was used by the individual authors. It
is interesting to note however that the Preliminary Report by the
Programming Research Group of the Applied Science Division of IBM
used "FORTRAN".

PAGE 2

BIBLIOGRAPHY

(1954) Laning, J.H., and Zierler, N. , A Program for Translation
of Mathematical Equations for Whirlwind I, Eng. Memo. E-354, MIT
Instrumentation Lab., Cambridge MA, January 1954.

(1954)* Backus, J.W., The IBM 701 Speedcoding System, JACM,
Vol.1, No.l, 1954 January, pp.4-5.

(1954) Backus, J.W., and Herrick H. , IBM 701 Speedcoding and
other automatic programming systems, In Proc. Symp. on Automatic
Programming for Digital Computer, Washington DC, The Office of
Naval Research, May 1954, pp.105-113.

(1954)* [Backus, J.W., Herrick, H., and Ziller, I.]#, Preliminary
Report: Specifications for the IBM Mathematical FORmula
TRANslating Systems, FORTRAN, IBM Corp. Programming Research
Group, Applied Science Division, 1954 November 10, 29 pp.,
(mimeograph).

(1955) Backus, J.W., Beeber, R.J., Best, S., Goldberg, R., Haibt,
L.M., Herrick, H.L., Nelson, R.A., Sayre, D. , Sheridan, P.B.,
Stern, H. , Ziller, I., Hughes, R.A., and Nutt, R. , Programmer's
Reference Manual, The FORTRAN Automatic Coding system for the IBM
704 EDPM, IBM Corp., New York, 1955 October 15.

(1957) [Mitchell, Grace E.]#, Programmer's Primer for FORTRAN
Automatic Coding System for the IBM 704, IBM Corp., New York,
1957, Form No.32-0305.

(1957)* anon., Preliminary Operator's Manual for the FORTRAN
Automatic Coding System for the IBM 704 EDPM, IBM Corp.
Programming Research Dept., New York, 1957 April 8, pp.37.

[from title page]: This manual describes the use of FORTRAN
4-1-4-1.

(1957)* Backus, J.W., Beeber, R.J., Best, S., Goldberg, R. ,
Haibt, L.M., Herrick, J.L., Nelson, R.A., Sayre, D., Sheridan,
P.B., Stern, H. , Ziller, I., Hughes, R.A., and Nutt, R. , The
FORTRAN automatic coding system, In Proc. Western JCC, Los
Angeles CA, AFIPS(?), 1957.

(1957) anon., Proposed Specifications for FORTRAN II for the 704,
Unpublished memorandum, IBM Corp. Programming Research Dept.,
1957 September 25.

(1958)* Borden, B.C., FORTRANSIT A Universal Automatic Coding

* An asterisk after the date indicates that a copy of this paper
is on file.
The authors are not listed on the document itself, but are
remembered to be as listed here.

PAGE 3

System for the IBM 650, Canadian Conference for Computing and
Data Processing, 1958 June 9-10, Univ. of Toronto, pp.349-359.

Apparently this is the only formal paper on the FORTRANSIT
language which was published. Regrettably it is not by one
of the developers of the language and thus is a view of the
cascading processor from a user's point of view rather than
being a technical exposition of the "internals" of the
FORTRANSIT system. Reported in this paper are three
versions of the processor, two of which were for the basic
machine and a system with index registers and floating point
respectively, while a third version for a system supporting
magnetic tapes was expected in 1958 July.

(1958) Bemer, R.W., and Hemmes, D.A., Computer Language
Compatability thru (sic) Multi-Level Processors, 13th Nat'l Mtg.
ACM, Univ. of Illinois, 1958 June 11-13, paper no. 31.

The Preprints for this conference did not include an
extended abstract for this talk and thus the information
below is taken from the meeting announcement.
This paper discusses the philosophy of maintaining language
compatability through the use of cascading from one language
to another using source language to source language
translators. As examples, the authors presented FORTRANSIT
and XTRAN as typifying this procedure. One of the advantages
of this technique is the "... movement of error detection
toward the earliest level for each type, thus allowing
earlier decisions to stop processing."

(1958)* Backus, J.W., Automatic programming: properties and
performance of FORTRAN systems I and II, Proc. Symp. on the
Mechanisation of Thought Processes, Teddington, Middx, England,
The National Physical Laboratory, Nov. 1958.

Written at a distance of one year after the delivery of the
first FORTRAN processor for the 704, this paper is
significant in its presentation of FORTRAN as an "automatic
programming system" in the environment of a symposium of the
mechanisation of thought processes. Other attendees at the
meeting included Jan Garwick (Norway), John McCarthy (USA),
Grace Murray Hopper (USA) and Christopher Strachey (GB),
each of whom commented on the presentation by Backus.
Obviously Garwick was much more interested in telling the
audience of developments by Ole-Johan Dahl while McCarthy
(the author of LISP) praised FORTRAN for its ability to
express "... quite lengthy algebraic expressions ..." and
the implementation of separate compilation of subroutines
(presumably in FORTRAN II). Hopper states that "... there
is a lack of understanding of the systemisation (sic) of
Fortran " and asks Backus to emphasize that Fortran does
more than just the "housekeeping" for the programmer.

(1958?)* Ziller, I., Description of Source Language Additions to
the FORTRAN II System, Unpublished memorandum, Programming
Research, IBM Corp., undated, 12pp.

This is the document which proposes the extensions to

PAGE 4

FORTRAN II to create FORTRAN III which was a very short
lived system. The fundamental addition was the allowance of
symbolic statements intermixed with FORTRAN statements.

(1959)* Sheridan, P.B., The arithmetic translator-compiler of the
IBM FORTRAN automatic coding system, CACM, Vol.2, No.2, 1959
February, pp.9-21.

[From the introduction]: The present paper describes, in
formal terms, the steps in translation employed by the
FORTRAN arithmetic translator in converting FORTRAN formulas
into 704 assembly code. The steps are described in about
the order in which they are actually taken during
translation.

(1959)* Mitchell, Grace E., The 704 FORTRAN II Automatic Coding
System, Research Report RC-136, IBM Research Center, Yorktown
Heights NY, 1959 Sept. 4, pp.13.

[Abstract]: This paper discusses the addition made in the
FORTRAN I translator to produce the FORTRAN II translator.
The new source language statements, debugging facilities and
loader are described.

(1959)* Rosen,S., Goldberg,I.B. , ALTAC, the TRANSAC Algebraic
Translator, Preprints, ACM 14th. Natl. Mtg., MIT Cambridge MA,
1959 Sept. 1-3, 3pp.

ALTAC was possibly the first implementation of a FORTRAN-
like language on a non-IBM machine. Like FORTRANSIT, ALTAC
was targetted to an already existing language named TAC and
like FORTRAN III (see Ziller 1958?) was capable of
including TAC language embedded in the source program.
ALTAC extended FORTRAN in several ways including compound
statements (what in 1982 would be termed multi-statement
lines) and IF statements that mirrored the ALGOL-like
conditional statement.

(1960)* Ferguson, D.E., Input-Output Buffering and Fortran, JACM,
Vol.7, No.1, 1960 January, pp.1-9.

This paper deals with a method which wa used successfully at
the University of California, Los Angeles for the reduction
of up to 40 percent in the running time for FORTRAN
routines, and is an example of the typical "improvement"
made by several installations on the original FORTRAN
implementation.

(I960)* Gelernter, H. , Hansen, J.R., and Gerberick, C.L., A
Fortran-Compiled List Processing Language, JACM, Vol.7, No. 2,
1960 April, pp.87-101.

This paper, apart from its own intrinsic merit, also has the
distinction of being the first FORTRAN related article which
was reviewed in Computing Reviews (No. 0142 in Vol.1, No.4,
1960).
[From the Abstract]: A compiled computer language for the
manipulation of symbolic expressions organized in storage as
Newell-Shaw-Simon lists has been developed as a tool to make

PAGE 5

more convenient the task of programming the simulation of a
geometry theorem-proving machine on the IBM 704 high-speed
electronic digital computer. Statements in the language are
written in the usual Fortran notation but with a large set
of special list-processing functions appended to the
standard Fortran library.

(1960)* Blatt, J.M. Comments from a FORTRAN user, CACM, Vol.3,
No.9, 1960 September, pp.501-505.

The thesis that compilers should be tailored to two classes
of users, the occasional user with short problems, and the
experienced user with large problems, is developed at some
length with particular reference to FORTRAN. The author
feels that compilers suitable for the experienced user are
not generally available and points out some of the
requirements of such a compiler. Specifically, he outlines
the requirements of the manual associated with such a
compiling routine [sic], the need for substantially
instantaneous compilation, and the desirability of including
more "machine-like" commands. There are discussions of ways
to allow the advanced programmer latitude in the allocation
of storage space as well as the conflicting requirements of
instantaneous compilation and sensible code checking
features. An appendix containing minor complaints against
FORTRAN is added. The article is followed by some editorial
comments in amplification of the paper.

John R. Pasta, Kensington MD
Reprinted by permission, Computing Reviews No.632

(1961)* McCracken, D.D., A guide to FORTRAN programming, John
Wiley and Sons, New York NY, 1961, 88 pp.

This is the first non-IBM book on FORTRAN which was
published by a commercial publishing house (c.f. Organick
(1963) below). Gotlieb in his review in Computing Reviews
(Vol.3, No.l, Rev. 1421, 1962 January, p. 22) states: "The
are versions of FORTRAN for the IBM 650, 1620, 704, 709,
7090, and for the Honeywell 800, the Philco ALTAC, and the
Control Data 1604. Since each version has its own
description this latest work might seem redundant but it
does have some definite advantages."

It is interesting to note that five years later Computing
Reviews refrained from soliciting formal reviews of FORTRAN
texts due to their "proliferation" and resorted instead to
merely publishing an extract from the author's introduction!

(1961) Melkanoff, M.A., Nodvik, J.S., Saxon, D.S., and Cantor,
D.G., A FORTRAN program for elastic scattering analyses with the
nuclear optical model, Univ. Calif. Press, Berkeley and Los
Angeles, CA, 1961, 116 pp.

This is the first FORTRAN program which appears in Computing
Reviews (No. 1188 in Vol.2, No.6, 1961) other than the
FORTRAN List Processing Language paper by Gelernter, et al
(1960). The program was available on the IBM 704 and 709

PAGE 6

and was the "culmination of many years of research."

(1961)* Rosen, S., ALTAC, FORTRAN and Compatability, Preprints,
ACM 16th Nat'1. Conf., 1961, pp.2B.2(1)-(4).

This is not truly a full paper but instead is a summary of
the paper presented at the 1961 ACM National Conference. It
discusses the concepts of developing universal or common
languages "... to permit the user to make the transition
from one computer to another without the necessity of a
complete reprogramming job."

(1961)* Bemer, R.W., Survey of Modern Programming Techniques, The
Computer Bulletin, Vol.4, No.4, British Comp. Soc., 1961 March.

Like so many other papers with a title which includes the
term "survey" this one covers a wide diversity of topics,
many of which are surprisingly modern even 2^ years later.
The significant element of this paper is the statement by
the author (then a Manager of a group with language
responsibilities) which reads (page 130):

"I have enough faith in the eventual future of ALGOL to
have caused a program to be constructed which converts
FORTRAN ... into .. . ALGOL. I have been asked . . . why
[?] ... The answer [is] ... that we wish to obsolete
FORTRAN and scrap it, not perpetuate it. Its purpose
has been served."

(1961)* Knuth, D.E., A History of Writing Compilers, Computers
and Automation, Vol.11, 1962 December, pp.8-18.

While this transcript of a presentation given at the 1962
Annual ACM National Meeting deals with the general problem
of compiler writing, it includes two references to FORTRAN
which are interesting. Firstly, the author introduces the
method of parenthesizing expressions by surrounding
operators with back-to-back parentheses in quantities
inversely proportional to the hierarchical power of the
operator and ascribes this technique to "the first FORTRAN
compiler". Presumably, since the auhtor (at that time) was
more familiar with the IBM 650 than other machines, he
intended to imply the "first IBM 650 FORTRAN compiler" as is
shown below in Lee (1981).
Referring to optimization of the object code produced from
an arithmetic analyzer, the author states parenthetically:

"The first FORTRAN compiler . . . took fairly great care
to produce efficient code, although the methods were
quite painful."

Again the reference to the "first FORTRAN compiler" is
confusing since the IBM 650 compiler (FORTRANSIT) did not
include any optimization!

(1962)* Leeson, D.N., and Dimitry, D.L., Basic Programming
Concepts and the IBM 1620 Computer, Holt, Reinhart and Winston,
Inc., New York, 1962, 368pp.

Although there is only a superficial treatment of FORTRAN
for the IBM 1620 with the main body of this text, Appendix

PAGE 7

VIII is an in-depth explanation of the "internals" of the
IBM 1620 FORTRAN compiler. The major section of the
appendix deals with the tabular method of analyzing
arithmetic expressions which is an implementation of the
Samelson and Bauer algorithm. As an early description of a
compiler in practical terms, this appendix is significant
and surprisingly lucid.

(1962) anon., General Panel Discussion: Is the Unification
ALGOL-COBOL, ALGOL-FORTRAN Possible? In Symbolic Languages in
Data Processing, Gordon and Beach, Pub., New York, 1962,
pp.833-49.

(1962) McMahon, J.T., ALGOL vs FORTRAN: a defense of the former,
Datamation, Vol.8, No.4, 1962 April, pp.88-89.

The author contends that "... there is not one FORTRAN . . .
[which] is not machine independent . . . There is no FORTRAN
that is not defined for use on a particular digital computer
..." while "... one may write ... ALGOL without regard to
the machine ..." He blaims this variance in FORTRAN on the
lack of a rigid syntactic definition "... from the beginning
..." and further claims that "The crux of the matter lies in
ALGOL being a problem statement language. Every FORTRAN is a
machine oriented macro-language." He quotes Bemer (1961) as
stating "... we wish to obsolete FORTRAN, not perpetuate it.
Its purpose has been served."

(1962)* Rabinowitz, I.N., Report on the Algorithmic Language
FORTRAN II, CACM, Vol.5, No.6, 1962 June, pp.327-37.

This paper is a "take-off" on the ALGOL 60 report by Backus
et al. giving a syntactic description for FORTRAN II in
terms of an extended BNF. [From the introduction]: The
immediate impetus for the work was the existance of PSYCO, a
compiler for ALGOL 60 on the CDC 1604 which requires a
complete "syntax table" of the source language in order to
do the translation. If such a table could be constructed
for FORTRAN, then the same compiler could be used for both
languages.

(1963)* [Pessin, F., et al]#, Proposed FORTRAN Extensions,
Internal Report, Language Development Group, DS Programming
Systems Planning, IBM Corp., 1963 January 15, 35pp., mimeograph.

This document is a proposal to add statements to FORTRAN IV
in order to develop FORTRAN V. The additions include STRING
statements, STRUCTURES, PICTURES, literals, set operations,
NAME LIST and multiple entry subroutines. Revisions were
proposed for EQUIVALENCE and DATA statements. This proposal
was superceded by the development of The New Programming
Language (NPL) which eventually became PL/I.

(1963)* Allen, J.J., Moore, D.P., and Rogoway, H.P., SHARE
Internal FORTRAN Translator, [SIFT], Datamation, Vol.9, No. 3,
1963 March, pp.43-46.

The SHARE Internal FORTRAN Translator (SIFT) is a FORTRAN

PAGE 8

program to translate FORTRAN II source programs into the
FORTRAN IV language.

(1963) Entwisle, Doris R. , Auto-primer in computer programming
for the IBM 1620 in FORTRAN, Blaisdell Pub. Co., New York, 1963,
335 pp.

The book is a general text on FORTRAN, although it is
oriented to the 1620 computer, referring to the
characteristics of the 1620 version of the language. The
format is that of a workbook, designed to be scribbled in
and worked in; no loose sheets of scrap paper are needed.
Problem answers are to be written in the margins and when
the flaps are raised, correct answers appear next to the
student's answers.

P. M. Sherman, Murray Hill, NJ
Reprinted by permission, Computing Reviews No.5669.

(1963)* Heising, W.P., FORTRAN, part of Yngve, V.H., and Sammet,
J.E., Toward Better Documentation of Programming Languages, CACM,
Vol.6, No.3, 1963 March, pp.85-86.

This short paper contains a brief history of the FORTRAN
development effort within IBM and the steps that were taken
to provide adequate documentation for the users.
Recognizing that FORTRAN is available in several foreign
languages, including at least one (French) in which the
keywords have been changed into the native language, the
author points out that the problems of updating manuals due
to the location of an error are enormous but that the
emergence of user groups such as SHARE are enabling such
changes to be brought to the user's attention much more
rapidly. "... users want a programming system, not merely a
compiler. Although a compiler may be the largest single
component of a programming system, it has probably received
more than its proper share of attention in the literature
relative to system components which perform more mundane but
equally vital functions."

(1963)* McClelland, W.F., Survey of Programming Languages and
Processors, CACM, Vol.6, No.3, 1963 March, pp.93-99.

This is the report of the ISO Technical Committee 97,
Subcommittee 5 (Programming Languages) survey of programming
languages conducted in May 1961. With respect to FORTRAN,
it lists 55 languages which are related to FORTRAN together
with the date of publication, the machine used, the size of
the translator, minimum configuration as well as the date of
the first run.

(1963) Organick, E.I., A FORTRAN Primer, Addison-Wesley Pub. Co.,
Reading MA, 1963.

The main feature of this FORTRAN teaching manual is that it
does not require any mathematical background whatsoever. It
can be sucessfully used by freshmen in business
administration or even by high school students. All recent
advances in FORTRAN, up to FORTRAN IV, are covered.

PAGE 9

FORTRAN is not a perfect mechanical language, but it is
adequate for most mathematical and data reduction processes.
It is quite entrenched, to the point of being considered
"the dominant language of our civilization". Other
languages have been proposed, all more polished, but none
having any margin of superiority which would justify
abandoning FORTRAN; so it is predictable that FORTRAN will
continue being "the" mechanical language for a good many
years.
This excellent manual, that both instructors and students

like, helps make this indispensible tool easily available to
large masses of occasional computer users other than
professional programmers.

L. A. Lombardi, Cambridge, MA
Reprinted by permission, Computing Reviews No.5042

In correspondence with Organick, he has pointed out that
this book was originally published by the University of
Houston in 1961, thus making that edition the first non-
supplier manual. The University of Houston edition was also
accompanied by a booklet of drill exercises and examples
also dated 1961 (November).

(1963) Pyle, I.e., Dialects of FORTRAN, CACM, Vol.6, No.8, 1963
August, pp.462-467.

Three dialects of FORTRAN II are compared with that
language. The dialects are FORTRAN IV, the language of the
SI compiler for STRETCH, and the Atlas FORTRAN. the
comparison is made with respect to 9 features of FORTRAN II
that are dropped, and 21 different features that are added.
In each case the feature is detailed.

T. E. Kurtz, Hanover, NH
Reprinted with permission, Computing Reviews No.5044.

(1963) Ayers, J.A., Recursive Programming in FORTRAN II, CACM,
Vol.6, No.11, 1963 November, pp.667-68.

(1963)* Larner, R. , Design of an Integrated Programming and
Operating System, Part IV: The System's FORTRAN Compiler, IBM
Syst. J., Vol.2, 1963, pp.311-321.

[from the introductory paragraph]: This paper is devoted to
the [IBM] 7090/94 version of the system's FORTRAN compiler
... [in which the] design of the compiler was substantially
simplified. This ... permitted more attention to other
design problems, in particular:

-- generation of optimal object program code...
-- preservation of modularity in the compiler so that

subsequent . . . improvements could be readily
accomodated.

-- attainment of higher translation speeds

(1964)* Rosen, S., Programming Systems and Languages, Proc. SJCC,
AFIPS, 1964, pp.1-15.

The author reviews the history of programming languages and

PAGE 10

their associated processors up to 1964, and ascribes a
number of firsts to the pioneers of the 1950's. With respect
to FORTRAN, Rosen says:

"Fortran is in many ways the most important and most
impressive development in the early history of
automatic programming."

The caveat on this statement is the phrase "early history";
the author later in this paper gives opinions of why Fortran
should not be considered a universal language (in comparison
to ALGOL) and why the academic community (ACM) ignored its
existence.

(1964) Pyle, I.C., Implementation of FORTRAN on ATLAS, In Wegner,
P., Introduction to System Programming, Proc. Symp., London
School of Economics, Academic Press, New York, 1964, pp.86-100.

This is a general description of the ATLAS FORTRAN compiler
[which was then] in the process of construction. The
compiler itself is written in FORTRAN to make it, as much as
possible, machine-independent. There is a detailed
discussion of the "bootstrapping" involved in writing a
compiler in the source language itself. The prototype copy
is to be made available to the ATLAS via the IBM 7090.
Certain extensions are made to FORTRAN which make it close

to FORTRAN IV. Some details are given with regards to the
optimization in the translating of expressions. A special
feature is the distinction (to be implemented at a later
time) between "fast" and "slow" subscripts.
After an outline of the procedure for translating a source

routine and its breakdown into sections, there follows a
sample of the text of the compiler, which is a routine for
collecting an unsigned integer.

M. Shirmat, Calgary, Alberta, Canada
Reprinted by permission, Computing Reviews No.6301.

(1964) Wegner, P., FORTRAN, ALGOL and COBOL, In Wegner, P.,
Introduction to System Programming, Proc. Symp., London School of
Economics, Academic Press, New York, 1964, pp.20-37.

This article attempts to give something of the flavor of the
three languages, chiefly by discussing examples from each.
Some readers may find an occasional remark slightly
irritating. For example, the use of := instead of = is
cited as an example that "COBOL is a more precise and
consistent language than FORTRAN."

H. G. Rice, Santa Monica CA
Reprinted by permission, Computing Reviews No.6674.

(1964) Pyle, I.C., An Outline of FORTRAN, In Wegner, P.,
Introduction to System Programming, Proc. Symp., London School of
Economics, Academic Press, New York, 1964, pp.20-37.

Most of the components of FORTRAN are described in this
article, with an emphasis on use and intuitive understanding
rather than syntactic correctness and precision. The main
subject is FORTRAN II, although features of the "new
dialects" received some attention.

PAGE 11

H. G. Rice, Santa Monica, CA
Reprinted by permission, Computing Reviews No.6675.

(1964) McCracken, D.D. and Dorn, W.S., Numerical Methods and
FORTRAN Programming, John Wiley and Sons, New York, 1964, 457pp.

[from the flysheet] : ... this book offers an integrated
treatment of both numerical techniques and computer
programming. While the fundamentals of FORTRAN are
introduced in separate chapters, the two topics are
developed together throughout the book.

It is thought that this was the first book which combined
the teaching of these two topics, though several others
followed closely behind it. Even so, the technique of
intertwining the two topics was unique. Later texts were
criticized for containing the topics in two separate parts
essentially duplicating the FORTRAN Manufacturer's manuals
in one part. At a time when such manuals were provide
freely to users, this was thought of as a disadvantage.

(1964) Fowler, M.E., and MacMasters, J.A., A FORTRAN Program for
Polynomial Manipulation, IBM Corp., Data Processing Division,
Tech. Rep. TR-24.012, Kingston NY, 1964 March.

(1964) Taylor, R. , and Harragan, D.A., The FORTRAN system for
ORION, Comput. J., Vol.7, No.2, 1964 July, pp.114-116.

(1964)* Backus, J.W., and Heising, W.P., FORTRAN, IEEE Trans, on
Electronic Computers, EC-13, No.4, August 1964, pp.382-385.

[from the summary]: The fundamental concepts of FORTRAN,
the most widely used high-level, scientific programming
language, are set forth and the significant characteristics
are described in historical order from inception ... in 1954
to [1964] ... The basic problem of how to get high quality
programming from an-easy-to-write high-level language is
emphasized.

Looking back after 10 years, Backus recalls the objectives
of the FORTRAN effort and many of the frustrations which
accompanied the development of the first processor. Of
particular note is the commentary on the time taken during
compilation to ensure the production of optimum code, time
which is often fruitlessly wasted on simple programs.
Mention is made of the technique of flow analysis used in
the first compiler which was based on a Monte Carlo analysis
of the frequency of execution of sections of the program.
Regrettably (then and ever since) no documentation of this
technique is provided.

(1964)* Heising, W.P., FORTRAN, Compatability and
Standardization, Datamation, Vol.10, No.8, 1964 August, pp.24-25.

[from the preface]: "... the article is intended not as a
progress report on the work of [the ASA] committee, but
rather as some conclusions -- based on two years work

PAGE 12

involving most of the principal
manufacturers and users groups
compatability . . . and what standards
accomplished in the FORTRAN area."

(1964)* Oswald, H. , The Various FORTRANs,
No.8, 1964 August, pp.25-29.

The actual purpose of this article is to introduce a device
known as the Fortran infograph which provided the programmer
with a means of looking up the variations in the language
with respect to various machines. The infograph was similar
to a telephone directory desk device in which the cover was
imprinted with the statement types and a sliding pointer
enabled the user to select the information he desired. On
depressing a latch, the infograph then opened to reveal the
required information.

(1964)* Fimple, M.D., FORTRAN vs COBOL, Datamation, Vol.10, No.8,
1964 August, pp.34, 39-40.

Whereas the majority of comparisons between FORTRAN and
other languages (see McMahon (1962) above) tend to be
castigations of FORTRAN, this article shows how the language
is superior for "business DP" to other languages such as
Commercial Translator or COBOL. Documented here is a
subjective experiment using a typical program (constructed
for the purpose of the experiment) as a result of which it
is concluded that FORTRAN is superior. This is based on
comparisons of ease of learning, size of program,
documentation, diagnostics, size of object code and running
times.

(1964)* Heising, W.P., History and Summary of FORTRAN
Standardization Development for the ASA, CACM, Vol.7, No.10, 1964
October, p. 590.

This report is an introduction to the draft proposed
American National Standard for FORTRAN (see next listing).

(1964) anon., FORTRAN vs Basic FORTRAN - A Programming Language
for Information Processing on Automatic Data Processing Systems,
CACM, Vol.7, No.10, 1964 October, pp.591-625.

This paper is actually the draft of the proposed FORTRAN
standards which was eventually produced as the 1966 American
National Standards X3.9-1966 and X3.10-1966.

(1965)* Haines, L.H., Serial Compilation and the 1401 FORTRAN
Compiler, IBM Systems Journal, Vol.4, No.l, 1965, pp.73-80.

To our knowledge, the 1401 compiler for FORTRAN was the only
one which passed the compiler through the program in memory.
In essence the compiler consisted of 63 phases each of which
modified the source program in situ to generate the object
text.

American computer
concerning FORTRAN
can and cannot be

Datamation, Vol.10,

(1965) McCracken, D.D., A Guide to FORTRAN IV Programming, John
Wiley and Sons, New York, 1965, 151 pp.

PAGE 13

(1965) Pollack, S.V., A Guide to FORTRAN IV, Columbia Univ.
Press, New York, 1965, 260 pp.

(1965) Junker, J.P., and Boward, G.R., COBOL vs FORTRAN: A
Sequel, Datamation, Vol.11, No.4, 1965 April, pp.65-67.

(1965) McCracken, D.D., How to Tell If It's FORTRAN IV,
Datamation, Vol.11, No.10, 1965 October, pp.38-41.

(1965) Rosen, S., Spurgeon, R.A., and Donnelly, J.K., PUFFT - The
Purdue University Fast FORTRAN Translator, CACM, Vol.8, No.11,
1965 November, pp.661-66.

This is one of the most elegant and successful of the
current generation of compile-and-go systems to batch-
process large numbers of small-to-medium FORTRAN IV jobs.
Written for the IBM 7094, it achieves, for such jobs, a 7-
to 10-fold gain in speed over IBJOB with version 13 IBFTC
processor. Programs compiled by PUFFT result in less
carefully optimized code, however, so that the longer-
running jobs are still run in the IBM system. Nevertheless,
source programs for the two systems are highly compatible.
Thus, PUFFT serves also as a training system and for
debugging of larger programs. A special feature of PUFFT is
the diagnostic error message routine. By means of an
elaborate encoding scheme, several hundred different error
messages at both compile and execute times, are available
through slightly more than 500 words of core store. All
such features recommend PUFFT in student as well as in a
research environment. This is an important and well-written
paper. All aspects of the self-contained system are clearly
outlined, and many ideas of value to authors of compile-and-
go systems are presented.

(1965) Sakoda, J.M., DYSTAL Manual - Dynamic Storage Allocation
Language in FORTRAN, Dept. of Sociology and Anthropology, Brown
U. , 1965. Also in "Symbol Manipulation Languages and
Techniques", Proc. IFIP Working Conf., Pisa Italy, North Holland
Pub. Co., Amsterdam, 1968.

(1966) Wright, D.L., A Comparison of the FORTRAN Language
Implementation for Several Computers, CACM, Vol.9, No.2, 1966
February, pp.77-79.

(1966)* Editor's Note to Review No. 10,461, Computing Reviews,
Vol.7, No.5, Sept.-Oct. 1966, p.413.

"in view of the extensive proliferation of textbooks on
FORTRAN programming it has been decided that in lieu of full
reviews, such books will be cited with a brief indication of
intended audience and special features as seen by the
author."

Reprinted by permission, Computing Reviews.

(1966)* anon., The man behind FORTRAN, Computing Report, IBM

PAGE 14

Corp., Vol.11, No.4, 1966 November, pp.7-10, 19.
This is not a technical paper, but rather is a question-
answer report of an interview with John Backus containing
some personal reminiscences about the period of the
development of FORTRAN, 1954-57.

(1967)* Shantz, P.W., et al., WATFOR - The University of Waterloo
FORTRAN IV Compiler, CACM, Vol.10, No.l, 1967 January, pp.41-44.

(1967)* Moulton, P.G., and Muller, M.E., DITRAN - A Compiler
Emphasizing Diagnostics, CACM, Vol.10., No.l, 1967 January,
pp.45-52.

(1967) Lee, John A.N., "The Anatomy of a Compiler", Reinhold
Pub. Co., New York, 1967, 275 pp.

This text covers the development of a compiler for a variant
of FORTRAN and contains a description of the techniques of
parenthesizing technique used in the FORTRANSIT processor.

(1969)* anon., Clarification of Fortran Standards - Initial
Progress, Comm. ACM, Vol.12, No.5, 1969 May, pp.289-194.

This is an initial report on the interpretation of 49
sections of the 1966 American National Standard Programming
language FORTRAN (and Basic FORTRAN) and the correction of
seven errors. In fact, this report only contains seven
interpretations but sets the stage for a continuing process
of publications of such interpretations.

(1969) Lowry, E.S., and Medlock, C.W., Object Code Optimization,
CACM, Vol.12, No.l, 1969 January, pp.13-22.

(1969)* Sammet, J.E., Programming Languages: History and
Fundamentals, Prentice-Hall Pub. Co., Englewood Cliffs NJ, 1969,
pp.143-172, 302-304.

The section of this text which deals with FORTRAN is
probably the first complete review of the language, its
history and its contents which was published in a
comprehensive volume dealing with the whole set of viable
languages in the industry in 1969. The bibliography was
used as the starting point of this bibliography although
some of the references which dealt with applications rather
than language were omitted.

(1970)* Cocke, J., and Schwartz, J.T., Programming Languages and
their Compilers, Preliminary Notes, 2nd revised edition, Courant
Inst., New York, April 1970, pp.510-515.

These five pages in the otherwise unpublished manuscript
contain a review of the techniques of optimization that were
used in the original FORTRAN compiler, and based on
assistance from Sheldon Best, are a more detailed account of
the processes used than were published previously.

(1970) Cress, P., Dirksen, P., and Graham, J.W., FORTRAN IV with
WATFOR and WATFIV, Prentice Hall Pub. Co., Englewood Cliffs, NJ,

PAGE 15

1970.

(1971)* Bright, H.S., FORTRAN comes to Westinghouse-Bettis,
Computers and Automation, Vol.20, No.11, 1971, pp.17-18.

This is an anecdote regarding a strange and wonderful
package that arrived unannounced at Westinghouse-Bettis and
which turned out to be a binary deck of the original FORTRAN
processor for the IBM 704. Included is a copy of the first
program run and the output (including the first error
message.)

(1971) Engel, F. , et al, Clarification of FORTRAN Standards -
Second Report, CACM, Vol.14, No.10, 1971 October, pp.628-42.

c.f. Initial Progress report of 1969.

(1971) Knuth, D.E., An Empiricial Study of FORTRAN Programs,
Software -- Practice and Experience, Vol.1, No.2, 1971,
pp.105-133.

[from the summary]: A sample of programs written in FORTRAN
by a wide variety of people for a wide variety of
applications, was chosen 'at random' in an attempt to
discover quantitatively 'what programmers really do'.
Statistical results of this survey are presented ...

The major finding of this work is that between program
written in an industrial environment and those in an
academic setting are little different in their statistical
use of particular statement types. Assignment statements,
IF statements and Go-to statements led each list (in that
order) with 68% of the assignment statements being strict
replacement and 17% involving only one operator!

(1972) Engel, F. , Future FORTRAN Development, SIGPLAN Notices,
Vol.8, No.3, 1972 March.
Also in Honeywell Comput. J., Vol.6, No.4, 1972, pp.298-99.

(1972)* Tropp, H. , (Ed), Transcript of a discussion held at the
Hilton Hotel, San Francisco, during the March 1972 SHARE meeting.

The complete transcript of this discussion covers much more
than FORTRAN, but there are several pages of very frank and
open comments about the development of FORTRAN and some of
the vexations of getting the system into the hands of users.
Participants in the discussion include John Backus, Tom
Steel, Jr., Frank Engel, Jr., Betty and George Ryckman,
FranKi^liLglTe*^. ?? Gautney, John Greenstadt, Harry Cantrell,
Ted Dollata,^rnold Smith and Mort Bernstein.

(1974) Engel";—"1?T, Revise FORTRAN Standard?, Datamation, Vol.20,
No.5, 1974 April, pp.164-69.

(1974)* Greenfield, M.N., FORTRAN - A History of a Pragmatic
Language, unpublished report of talk given to ISO/TC97/SC5
FORTRAN/BASIC subcommittee, 1974 June 11, 16pp.

PAGE 16

(1974)* Ryder, B.G., The PFORT Verifier, Software -- Pract. &
Exp., Vol.4, 1974, pp.359-377.

[from the summary]: The PFORT Verifier is a program which
checks a FORTRAN program . . . for adherence to a large,
carefully defined, portable subset of ANS FORTRAN . . . The
Verifier is itself written in PFORT ...

(1975)* Kernighan, B.W., RATFOR - A Preprocessor for a Rational
FORTRAN, Software -- Pract. & Exp., Vol.5, 1975, pp.395-406.

[from the summary]: Although Fortran is not a pleasant
language to use, it does have the advantages of universality
and (usually) relative efficiency. The RATFOR language
attempts to conceal the main deficiencies of Fortran while
retaining its desirable qualities ... RATFOR is implemented
as a preprocessor which translates this language into
Fortran.

RATFOR is a prime example of the piggy-backing of other
languages onto FORTRAN even though the authors seem to
despise the original language! In many respects the
objectives oyyf RATFOR were achieved in FORTRAN 77, though
the preprocessor is still in active use in 1982.

(1975?) Engel, F. , Jr., FORTRAN, in Encyclopedia of Computer
Science, Belzer, Holzman & Kent (Eds), Vol.8, 1975?, pp.252-285.

(1976)* Greenfield, M.N., Background and Interpretation of the
FORTRAN Draft Proposed Standard, unpublished report to ANSI
Committee X3J3, 1976 February 9, 4pp.

(1976) anon., draft proposed ANS FORTRAN, BSR X3.9, X3J3/76,
SIGPLAN Notices, ACM New York, Vol.11, No.3, 1976 March.

The complete issue of SIGPLAN Notices was taken up by this
proposal which was eventually modified and became the 1978
ANSI Standard which is commonly known as FORTRAN 77.

(1977) Knuth, D.E., and Pardo, L.T., Early developments of
programming languages, in Encyclopedia of Computer Science and
Technology, Vol.7, Dekker, New York, 1977, pp.419-493. Also
published in: "A History of Computing in the Twentieth Century",
Metropolis, N. , Howlett, J., and Rota, G-C., (Eds), Academic
Press, New York, 1980, pp.197-273.

This history of programming languages differs from the other
papers on the history of computing published in the same
volume (Metropolis et al) in several ways. Whereas most of
the other papers are personal recollections of events which
led up to some specific development, or are reports of the
"human side" of that history, the paper by Knuth and Pardo
is a technological view of the development of programming
languages from a distance. As a model of the type of
technological reviews that should be conducted at this point
in time over the recent history this must be regarded as a
classic. That is not to say that one cannot find flaws with
the presentation, but rather that other such reviews of the

PAGE 17

technology would be very acceptable. If there be a fault at
all, it is the lack of continuity between languages in this
presentation. The 20 languages presented are linked mainly
by chronology and the authors' ability to show examples of
the syntactic form through the use of a single algorithm.
It would have made a vast improvement to have suggested or
speculated on the parenthood of each language and to have
attempted to construct a set of family trees for these
languages. Perhaps this is a good topic for a follow-up
paper.

The method presentation of the twenty languages is to
describe the syntactic forms of the language, the machine
for which it was constructed (since most pre-1950's
languages were very machine dependent) and they show the
possible program for a nonsense algorithm. The readers will
find that the examples are the whole heart of the
presentation and provide a vehicle for understanding of each
language which endorses the views of several educators that
languages can be taught by example (c.f. Wegner+). Starting
with a discussion of pre-computer languages for the
description of algorithms, the authors present brief
descriptions of Plankalkul (Zuse, 1945), Flow diagrams
(Goldstine and von Neumann, 1946), Composition (Curry,
1948), Short code (Mauchly et al, 1949), Intermediate
Programming Language (Burks, 1950), Klammeransdrucke
(Rutishauser, 1951), Formules (Bohme, 1951), Autocode
(Glennie, 1952), A-2 (Hopper at al, 1953), Algebraaic
Interpreter (Laning and Zierler, 1953), FORTRAN (Backus et
al, 1954-57), Mark I Autocode (Brooker, 1954), PP-2 (Kamynin
and Liubimskii, 1954), PP (Ershov, 1955), BACAIC (Grems and
Proter, 1955), Kompiler 2 (Elsworth et al, 1955), ADES
(Blum, 1956), IT (Perlis et al, 1956), Math-matic (Katz et
al, 1956-58), and the language identified only by its US
patent number 3,047,288 (Bauer and Samelson, 1956-58).

The summary to this paper is an excellent table of
comparisons covering such topics as whether the language was
actually implemented, its readability, the availability of
control structures, the types of data structures included,
the machine independence of the language and its impact on
the field. There is no doubt in my mind that this paper
should be required reading for all computer science students
in addition to the modern text-books on comparative
languages which start the comparison only as early as
FORTRAN.

J.A.N. Lee, Blacksburg VA
Reprinted with permission, Computing Review No. XXXX.

+ Wegner, P., Programming with Ada: An Introduction by Mean
of Graduated Examples, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1980.

PAGE 18

(1978) Backus, J.W., Can programming be liberated from the von
Neuman style? A functional style and its algebra of programs.
CACM, Vol.21, No.8, August 1978, pp.613-641.

(1978) Brainerd, W., (Ed.), FORTRAN 77, CACM, Vol.21, No.10, 1978
October, pp.806-20.

This paper describes the second FORTRAN standard with the
official title "American National Standard Programming
Language FORTRAN, X3.9-1978" but more commonly known as
FORTRAN 77. Included in the presentation is the many
additional features of FORTRAN 77 with information as to why
and how the standard was developed.

(1979) Backus, J.W., The history of FORTRAN I, II and III, Ann.
Hist. Comput., Vol.1, No.l, 1979 July, pp.21-37.

This article summarizes the history of the development of
FORTRAN I, II and III. The author, who was the leader of
the groups which developed the first two compilers, explains
the economic factors leading to the establishment of the
FORTRAN project, its goals, and the mode of working of its
implementations. The article makes it clear that the early
FORTRAN efforts were efforts of compiler development rather
than language design. The language was designed as the
compiler was written and the compiler design was considered
[to be] the hard job.

This lucidly written article is interesting not only for the
facts presented about the history of FORTRAN (e.g., that
efficiency of object code was more important in getting
FORTRAN accepted than the design of the language) and the
insight given into design of the language (e.g., that
subscripts in a subscript variable were limited to three to
increase compiler efficiency rather than because the IBM 704
has only three index registers), but also for its revelation
of the mixture of clairvoyance, inventiveness, and naivete
possessed by the implementation team (e.g., common
expression elimination, the actual degree of optimization
exhibited in the object code, and the feeling that debugging
would all but [be] eliminated by the use of FORTRAN). The
article is must reading for anyone considering language
design today; it raises serious questions as to whether
there is anything new under the sun. The kinds of things
being said today are hauntingly reminiscent of the kinds of
things quoted in the article as being said in "those" days.

D. Berry, Los Angeles CA,
Reprinted with permission, Computing Review 35,907.

(1979) Stegmann, C., Pathfinder, THINK, IBM Corp., 1979
July/August, pp.18-27.

An interview with John Backus on the 25th anniversary of the
beginning of the FORTRAN project.

(1980) Backus, J.W., Programming in the 1950's - some personal

PAGE 19

impressions. In "A History of Computing in the Twentieth
Century," Metropolis, N., et al, Eds., Academic Press, New York,
1980, pp.125-135.

(1981) Hoare, C.A.R., The Emperor's Old Clothes, 1980 ACM Turing
Award Lecture, CACM, Vol.24, No.2, 1981 February, p.77.

This reference is included as the latest reference to an
anecdote which points a design flaw in the FORTRAN language
which is much more apparent in 1981 than would have been
considered in 1954. Hoare criticizes the lack of strong
typing in FORTRAN and cites "... The story of the Mariner
space rocket to Venus, lost because of the lack of
compulsory declarations . . . " . Further research reveals two
other references to this story which is explicitly stated by
Horning [Horning, J., A Note on Program Reliability, ACM
SIGSOFT, Software Engineering Notes, Vol.4, No.4, 1979 Oct.,
p. 6] :

"The first American Venus probe was lost due to a
program fault caused [3] by the inadvertent
substitution of a statement of the form

DO 3 I = 1.3
for one of the form

DO 3 I = 1,3 "
where reference [3] is:
Meyers, G.J., Software Reliability: Principles and
Practices, John Wiley and Sons, 1975, p.275.

(1981) Backus, J.W., The FORTRAN Session, In "The History of
Programming Languages", Wexelblat, R.L., (Ed), Academic Press,
New York, 1981, pp.25-74.

(1981)* Lee, J.A.N., (Ed)., Oral Interview with Florence Pessin

Manufacturer's Language Reference Manuals

(1956) Backus, J.W., Beeber, R.J., Best, S., Goldberg, R., Haibt,
L.M., Herrick, H.L., Nelson, R.A., Sayre, D., Sheridan, P.B.,
Stern, H., Ziller, I., Hughes, R.A., and Nutt, R. , Programmer's
Reference Manual, The FORTRAN Automatic Coding System for the IBM
704 EDPM, IBM Corp., New York, 1955 October 15.

(1957) [Mitchell, Grace E.]#, Programmer's Primer for FORTRAN
Automatic Coding System for the IBM 704, IBM Corp., New York,
1957, Form No.32-0306.

(1958) anon., FORTRAN II for the IBM 704 Data Processing System,
IBM Corp. Reference Manual, C28-6000, 1958.

(1961) anon, FORTRAN General Information Manual, IBM Corp., Data
Processing Division, White Plains NY, F28-8074, 1961.

PAGE 20

(1960) anon., IBM 709-7090 FORTRAN Monitor, IBM Corp. Manual,
C28-6065, 1960.

(1962) anon., IBM 1620 FORTRAN Reference Manual, IBM Corp., Data
Processing Division, White Plains NY, C26-5619-09, 1962.

(1964) anon., IBM Operating System/360: FORTRAN IV, IBM Corp.,
Data Processing Division, White Plains NY, C28-6515-2, 1964.

(1965) anon., Series 200 FORTRAN D Compiler, Honeywell
Information Systems, File No.123.1305.001D.027, 1965 November.

(1966) anon., IBM 7090/7094 IBSYS Operating System - Version 13:
FORTRAN IV Language, IBM Corp., Data Processing Division, White
Plains NY, C28-6390-3, 1966 April.

(1966) anon., 3100/3200 Computer Systems Basic FORTRAN Reference
Manual, Control Data Corp., Publ. No.60172000, 1966 July.

(1966)* anon., Time-Sharing FORTRAN Reference Manual, General
Electric Information Systems Division IPC-206046A, 1966 August,
Rev. 1966 October, pp.125.

(1968) anon., 3100/3200/3300/3500 Computer Systems FORTRAN
Reference Manual, Control Data Corp., Publ. No.60057600C, 1968
November.

(1969) anon., UNIVAC 1108 FORTRAN V, Sperry Rand Corp., Publ.
UP-4060, 1969.

American and ISO Standards Documents

(1966) American Standard FORTRAN, American Standards Association
X3.9-1966, Approved March 7, 1966.

(1966) American Standard Basic FORTRAN, American Standards
Association X3.10-1966, Approved March 7, 1966.

(1978) American National Standard programming language FORTRAN,
ANSI X3.9-1978, approved April 3, 1978.

Revision of ANSI X3.9-1966; X3.10-1966 on Basic FORTRAN was
withdrawn.

Also worthy of note is the newsletter of FORTRAN enthusiasts,
published on an irregular basis as: FOR-WORD, Meissner, L.P.,
(Ed), Lawrence Berkeley Lab., Berkeley CA.

CONFFRLNCfc (HAIRMAN
Rus>cll K Bro*n, CDP
."420 Yoakum Boulevard
Houston, Texas 7">006
713-524-3420

fl^X>RAM (HAIRMAN
L. Morgan

Departmeni of Decision Sciences
The Wharton School/CC
Philadelphia, PA 19104
215-243-7731

PROGRAM VICE-CHAIRMAN
Eric K. Gemons
.Associate Professor of Decision Sciences
The Wharton SchooI/CC
University of Pennsylvania
Philadelphia. PA 19104
215-243-7747

PROFESSIONAL DEVELOPMENT SEMINARS
Joseph Campisi
Aetna & Casualty
151 Farmington Avenue
Hartford, CT 06156
203-273-3611

NCCC LIAISON
Harvey Gamer
University of Pennsylvania
Moore School D-2
Philadelphia, PA 19104
215-243-4787

PIONEER DAY
J.A.N. Lee
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
703-961-6931 s^tso
PLENARY SESSIONS
Susan Rosenbaum

C278
To. Box 3509
New Brunswick, NJ 08903
201-457-2664

VICE-CHAIRMAN (PROGRAM ACTIVITIES)
Robert Stirling
IBM Corporation
1133 Westchester Ave.
White Plains. NY 10604
914-696-4251

PROGRAM COMMITTEE
Gene P. Altshuler
O. Peter Buneman
James E. Emery
Dennis Frailev
Robert Frankston
Randall Jensen
Beverly K. Kahn
Alan N. Smith
Amy D. Wohl

AFIPS PROJECT MANAGER
Sam Lippman
AFIPS
1815 N. Lynn Street
Suite 800
Arlington, VA 22209
703-558-3614

1982
National
Computer
Conference
Astrohall
Houston, Texas
June 7-10, 1982

American Federation of Information Processing Societies
Association for Computing Machinery
Data Processing Management Association
IEEE Computer Society
Society for Computer Simulation

Reply to: John A. N. Lee
Pioneer Day Chairman

1981 December 16

Calvin C. Gotlieb
Dept. of Computer Science
University of Toronto
Toronto Ont M5S 1A7
CANADA

Dear Kelly,

In researching - the history of FORTRAN for the 1982
Pioneer Day, I have come across a reference from Don Knuth
to a paper which was published in 1958 on the topic of
F0RTRANSIT. This was published in the Proceedings of the
Canadian Conf. Computing Data Process, (excuse the abbrevs
but I'm not totally sure how to unravel them!) which our
library has been unable to locate through inter-library loan.
The exact reference is:

B.C. Borden, F0RTRANSIT, a universal automatic coding system,
Proc. Can. Conf. Comput. Data Process., Univ. of
Toronto, 1958, pp.349-359.

Would it be possible for you to locate someone at Toronto
who could obtain a copy of this article for me? We would be
very willing to pay copying and mailing costs. It would appear
from discussions with Bob Bemer and others of his crew, that
this is the only paper which was ever published in a formal
manner on this particular processor.

Many thanks,
urs sincerely,

John A. N. Lee
Pioneer Day Chairman

xc: Bemer

Description of Data 115

l able 4.9. Reference List of Computer Models Surveyed

No.
Computer

name
Date

introduced CM No.
Computer

name
Date

introduced CM

1 Harvard Mark I 1944 1 37 Jaincomp C Aug. 1953
2 Bell Lab Com 38 Flac Sept. 1953 6

puter Model IV Mar. 1945 "" 39 Oracle Sept. 1953
3 Eniac 1946 40 Univac 1103 Sept. 1953 2
4 Bell Lab Com 41 Univac 1102 Dec. 1953 2

puter Model V Late 1947 42 Udec I Dec. 1953 3
5 Harvard Mark II Sept. 1948 43 NCR 107 1953 4
6 Binac Aug. 1949 2 44 Miniac Dec. 1953
7 IBM CPC 1949 1 45 IBM 701-"" 1953 1
8 Bell Lab Com 46 IBM 604 1953 1

puter Model III 1949 47 AN/UJQ-2(YA-1) 1953
9 SEAC May 1950 48 Johnniac Mar. 1954

10 Whirlwind I Dec. 1950 49 Dyseac Apr. 1954
11 Univac 1101 50 Elcom 120 May 1954 13

Era 1101 Dec. 1950 2 51 Circle June 1954
12 IBM 607 1950 1 52 Burroughs
13 Avdiac 1950 204 & 205 July 1954 3
14 Adec Jan.1951 53 Modac 5014 July 1954
15 Burroughs 54 Ordfiac July 1954 13

Calculator Jan. 1951 3 55 Datatron Aug. 1954 3
16 SWAC Mar. 1951 56 Modac 404 Sept. 1954
17 Univac I Mar. 1951 2 57 Lincoln
18 ONR Relay Memory Test Dec. 1954 m Computer May 1951 58 TIM 11 Dec. 1954 m Fairchild 59 Caldic 1954 m Computer June 1951 60 Univac 60 & 120 Nov. 1954 2
20 National 102 Jan. 1952 4 61 IBM 650 Nov. 1954 1
21 IAS Mar. 1952 62 wise 1954
22 Maniac 1 Mar. 1952 63 NCR 303 1954 4
23 Ordvac Mar. 1952 64 Mellon Inst
24 Edvac Apr. 1952 Digital Computer 1954
25 Teleregister 65 IBM 610 1954 1

Special Purpose 66 Alwac III 1954 14
Digital Data 67 IBM 702 Feb. 1955 1
Handling June 1952 68 Monrobot III Feb.1955 15

26 Illiac Sept. 1952 69 Norc Feb. 1955
27 Elcom 100 Dec. 1952 13 70 Miniac IT Mar. 1955
28 Harvard Mark IV 1952 71 Monrobot V Mar. 1955 15
29 Alwac II Feb. 1953 14 72 Udec 11 Oct. 1955 3
30 Logistics Era Mar. 1953 73 RCA BIZMAC
31 Oarac Apr. 1953 10 I & II Nov. 1955 6
32 ABC May 1953 74 Pennstac Nov. 1955
33 Raydac July 1953 75 Technitral 180 1955
34 Whirlwind TI July 1953 76 National 102D 1955 4
35 National I02A Summer 1953 4 77 Monrobot VI 1955 15
36 , Consolidated 78 Modac 410 1955

'Eng. Corp. 79 M i dac 1955
Model 36-101 Summer 1953 80 Elcom 125 1955 13

Ref. Bosk: The International Computer Industry
I, , Harman,A.J. Harv. U. 1971

—-

116 Appendix to Chapter 4

Table 4.9 (continued)

Computer Date Computer Date
No. name introduced CM No. name introduced CM

81 Burroughs E101 1955 3 130 RPC 9000 1959 16
82 Bendix G15 Aug. 1955 12 131 Librascope
S3 Alwac 1IIE . Nov. 1955 14 Air Traffic 1959 16
84 Readix Feb. 1956 132 Jukebox 1959
85 IBM 705,1,11 Mar. 1956 1 133 Datamatic 1000 1959 8
86 Univac 1103A Mar. 1956 2 134 CCC Real Time 1959
87 AF CRC Apr. 1956 4 135 Burroughs E102 1959 3
88 Guidance 136 Burroughs D204 1959 3

Function Apr. 1956 137 AN/TYK 6V
89 IBM 704 Apr. 1956 1 BASICPAC 1959
90 IBM 701 (CORE) 1956 1 138 CDC 1604 Jan. 1960 7
91 Narac July 1956 139 Librascope 3000 Jan. 1960 16
92 LGP 30 Sept. 1956 16 140 Univac Solid
93 Modac 414 Oct. 1956 State 80/91 1 Jan. 1960 2
94 Elecom 50 1956 13 141 Philco 2000-211 Mar. 1960 5
95 Udec III Mar. 1957 142 Univac Larc May 1960 2
96 George I Sept. 1957 143 Libratrol 500 May 1960 16
97 Univac File 0 Sept. 1957 2 144 Monrobot XI May 1960 15
98 Lincoln TXO Fall 1957 145 IBM 7070 June 1960 1
99 Univac II Nov. 1957 2 146 CDC 160 July 1960 7

100 IBM 705 III Late 1957 1 147 IBM 1401
101 Teleregister (Mag. Tape) Sept. 1960 1

Telcfile Late 1957 148 AN/FSQ 31 & 32 Sept. 1960 1
102 Recomp 1 Late 1957 149 Merlin Sept. 1960
103 IBM 608 1957 1 150 IBM 1401 (Card) Sept. 1960 1
104 Mistic 1957 151 Mobidic B Fall 1960
105 Maniac 1957 152 RPC-4000 Nov. 1960 16
106 IBM 609 1957 1 153 PDP-1 (MT) Nov. 1960 9
107 IBM 305 Dec. 1957 1 154 PDP-1 (PT) Nov. 1960 9
108 Corbin 1957 155 Packard Bell
109 Burroughs E103 1957 3 250 (PT) Dec. 1960
110 AN/FSQ 7 & 8 1957 156 Honeywell 800 Dec. 1960 8
111 Alwac 880 1957 14 157 General Mills
112 Univac File I Jan.1958 2 AD/ECW-57 Dec. 1960
113 Lincoln CG24 May 1958 158 Philco 3000 Late 1960 5
114 IBM 709 Aug. 1958 1 159 Maniac III Late 1960
115 Univac 1105 Sept. 1958 2 160 Sylvania S9400 Late 1960
116 Lincoln TX2 Fall 1958 161 Target Intercept Late 1960 2
117 Philco 2000-210 Nov. 1958 5 162 Westinghouse
118 Rccomp II Dec. 1958 Airborne 1960
119 Burroughs 220 Dec. 1958 3 163 RCA 300 1960 6
120 Mobidic 1958-1960 164 Mobidic CD &
121 Philco CXPO 1958 5 7A AN/MYK 1960
122 Monrobot IX 1958 15 165 Litton C7000 1960
123 GE 210 June 1959 10 166 Libratrol 1000 1960 16
124 Cyclone July 1959 167 GE 312 1960 10
125 IBM 1620 Oct. 1959 1 168 Diana 1960
126 NCR 304 Nov. 1959 4 169 DE 60 Feb. 1960
127 IBM 7090 Nov. 1959 1 170 Burroughs D107 1960 3
128 RCA 501 Nov. 1959 6 171 AN/USQ 20 1960 2
129 RW 300 Nov. 1959 172 AN/TYK 4V Compac 1960 1

Description of Data 117

4.9 (continued)

Computer Date Computer Date
No. name introduced CM No. name introduced CM

173 General Mills
Apsac Jan. 1961

215
216

ASI 420
Burroughs B200

Dec. 1962

174 Univac Solid Series-Card
State 80/90 II Jan. 1961 2 System Dec. 1962 3

175 Bendix G20 & 21 Feb. 1961 12 217 RW 400
176 RCA 301 Feb. 1961 6 (AN/FSQ 27) 1962
177 BRLESC Mar. 1961 218 CDC 3600 June 1963
178 GE 225 Mar. 1961 10 219 IBM 7040 Apr. 1963 1
179 CCC-DDP-19 220 IBM 7044 July 1963 1

(Card) May 1961 221 RCA 601 Jan. 1963 6
180 CCC-DDP-19

(MT) May 1961
222
223

Honeywell 1800
Philco 1000

Nov. 1963 8

181 IBM Stretch Transac SI000 June 1963 5
(7030) May 1961 1 224 Philco 2000-212 Feb.1963 5

182 NCR 390 May 1961 4 225 Librascopc L3055 Dec. 1963 16
183 Honeywell 290 June 1961 8 226 HW Electronics
184 Recomp III June 1961 15K Feb. 1963
185 CDC 160 A July 1961 7 227 GE 215 June 1963 10
186 IBM 7080 Aug. 1961 1 228 DDP-24 June 1963 8
187 RW 530 Aug. 1961 229 CDC 3600 June 1963 7
188 IBM 7074 Nov. 1961 1 230 UNIVAC 1050 Sept. 1963 2
189 IBM 1410 Nov. 1961 1 231 UNIVAC 1004 Sept. 1963 2
190 Honeywell 400 Dec. 1961 8 232 PDP-5 Oct. 1963 9
191 Rice Univ. Dec. 1961 233 IBM 1460 Oct. 1963 1
192 Univac 490 Dec. 1961 2 234 IBM 1440 Nov. 1963 1
\tm ̂N/TYK. 7V 1961 1 235 Honewell 1400 Dec. 1963 8 m Pin i vac 1206 1961 2 236 ASI 2100 Dec. 1963
195 Univac 1000 & 237 SDS 9300 Dec. 1963 11

1020 1961 2 238 Burroughs 273 Jan. 1964 3
196 ITT Bank 239 GE-235 Jan. 1964 10

Loan Process 1961 240 IBM 7010 Jan. 1964 1
197 George II 1961 241 Burroughs
198 Oklahoma Univ. Early 1962 B160-180 Apr. 1964 3
199 NCR 315 Jan. 1962 4 242 CDC 160G Apr. 1964 7
200 NCR 315 CRAM Jan. 1962 4 243 IBM 7094 II Apr. 1964 1
201 Univac File II Jan. 1962 2 244 CDC 3200 May 1964 7
202 HRB-Singer Sema Jan. 1962 245 GE 415 May 1964 10
203 Univac 1004 Feb. 1962 2 246 UNIVAC
204 ASI 210 Apr. 1962 1004II, III June 1964 2
205 Univac III June 1962 2 247 SDS-930 June 1964 11
206 Burroughs B200 248 GE 425 June 1964 10

Series B270 & 280 July 1962 3 249 GE 205 July 1964 10
207 SDS 910 Aug. 1962 11 250 Honeywell 200 July 1964 8
208 SDS 920 Sept. 1962 11 251 RCA 3301 July 1964 6
209 PDP-4 Sept. 1962 9 252 PDP-6 July 1964 9
210 Univac 1107 Oct. 1962 2 253 CDC 6600 Sept. 1964 7
211 TBM 7094 Nov. 1962 1 254 UNIVAC 418 Sept. 1964 2
212 IBM 7072 Nov. 1963 1 255 NCR 315-100 Nov. 1964 4
213 IBM 1620 256 GE 635 Nov. 1964 10

MOD in Dec. 1962 1 257 CDC 3400 Nov. 1964 7
214 Burroughs B5000 Dec. 1962 3 258 Burroughs B5500 Nov. 1964 3

118 Appendix to Chapter 4

Table 4.9 (continued)

Computer Date Computer Date
No. name introduced CM No. name introduced CM

259 SDS 925 Feb. 1965 11 286 DDP-124 Jan.1966 8
260 SDS 92 Feb. 1965 11 287 Honeywell 1200 Jan. 1966 8
261 CDC 3100 Feb. 1965 7 288 IBM 360/20 Jan.1966 1
262 ASI 6020 Mar. 1965 289 UNIVAC 1005
263 DDP-224 Mar. 1965 8 ir, in Feb. 1966 2
264 DDP-116 Apr. 1965 8 290 UNIVAC 1005 I Feb. 1966 2
265 GE 625 Apr. 1965 10 291 Honeywell 120 Feb. 1966 8
266 PDP-8 Apr. 1965 9 292 IBM 360/65 Mar. 1966 1
267 PDP-7 Apr. 1965 9 293 UNIVAC 494 Mar. 1966 2
268 IBM 360/40 May 1965 1 294 SDS 940 Apr. 1966 11
269 IBM 360/30 May 1965 1 295 RCA Spectra
270 NCR 315 RMC July 1965 4 70/55 July 1966 6
271 UN1VAC 1108 11 Aug. 1965 2 296 RCA Spectra
272 GE 435 Aug. 1965 10 70/45 July 1966 6
273 IBM 360/50 Sept. 1965 1 297 RCA Spectra
274 IBM 1130 Sept. 1965 1 70/35 July 1966 6
275 NCR 590 Sept. 1965 4 298 Philco 200-213 Oct. 1966 5
276 ASI 6240 Oct. 1965 299 IBM 360/44 Oct. 1966 1
277 UNIVAC 491 300 Honeywell 4200 May 1967 8

& 492 Oct. 1965 2 301 SDS Sigma 7 Dec. 1966 11
278 RCA Spectra 302 PDP-8/S Sept. 1966 9

70/15 Oct. 1965 6 303 PDP-9 Dec. 1966 9
279 Raytheon 520 Oct. 1965 304 SDS Sigma 2 Jan.1967 11
280 IBM 360/75 Nov. 1965 1 305 Burroughs B2500 Feb. 1967 3
28! Honeywell 2200 Dec. 1965 8 306 Burroughs B3500 May 1967 3
282 CDC 3800 Dec. 1965 7 307 UNIVAC 9300 June 1967 2
283 RCA Spectra 308 UNIVAC 9200 June 1967 2

70/25 Dec. 1965 6 309 Burroughs B6500 Feb. 1967 3
284 Eriden 6010 Jan. 1966 310 CDC 3500 Sept. 1967 7
285 CDC 6400 Jan. 1966 7

Sources: Reprinted with permission from articles by K. E. Knight in Datamation, Sept. 1966
and Jan. 1968, published and copyrighted by L. D. Thompson Publications, Inc., 35 Mason St.,
Greenwich, Conn. 06830 (except for the CM column, which was compiled mainly from appendixes
in Knight, A Study of Technological Innovation—The Evolution of Digital Computers', and N. Hanover,
Economic Aspects of Computer Use.

Note: Column CM lists the corporate manufacturer by number as follows:
Corporation

Number Name
1. International Business Machine Corp.
2. Sperry Rand Corp.
3. Burroughs Corp.
4. National Cash Register Co.
5. Philco Corp.
6. Radio Corporation of America
7. Control Data Corp.
8. Honeywell
9. Digital Equipment Corp.

10. General Electric Co.
11. Scientific Data Systems
12. Bendix Corp.
13. Underwood Corp.
14. El-Tronics
15. Monroe-Calculating Machine Co.
16. General Precision Equipment Corp.

Computer No. 218 is also listed as No. 229; it was not counted as two separate machines.

American Federation of Information Processing Societies, Inc. 210 Summit Avenue, Montvale, New Jersey 07645 201-391-9810

Editor-in-Chief, Bernard A. Galler
Assistant Editor-in-Chief, Nancy Stern

ANNALS OF THE HISTORY OF COMPUTING Reply to: Henry S. Tropp
Mathematics Department
Humboldt State University u
Areata, CA 95521

January 15, 1982

Robert W. Bemer, Z*t
Honeywell Information Systems
P.O. Box 6000
Phoenix, Arizona 85005

Dear Bob,

S0BEL is in the mail, Thank you.

Thanks for the copy of JAN's letter to Uta, As to your pioneering
status, you are now a COT, whether you want to be or not. (COT • Certified
Old Timer; no cracks about certified or certifiable).

Regards,

Henry S. Tropp

HST:Jmb

CONFERENCE CHAIRMAN
Russell K. Brown, CDP
3420 Yoakum Boulevard
Houston, Texas 77006
713-524-3420

BOGRAM CHAIRMAN
^Kjward L. Morgan

Department of Decision Sciences
The Wharton School/CC
Philadelphia, PA 19104
215-243-7731

PROGRAM VICE-CHAIRMAN
Eric K. Clemons
Associate Professor of Decision Sciences
The Wharton School/CC
University of Pennsylvania
Philadelphia, PA 19104
215-243-7747

PROFESSIONAL DEVELOPMENT SEMINARS
Joseph Campisi
Aetna & Casualty
151 Farmington Avenue
Hartford, CT 06156
203-273-3611

NCCC LIAISON
Harvey Garner
University of Pennsylvania
Moore School D-2
Philadelphia, PA 19104
215-243-4787

PIONEER DAY
J.A.N. Lee
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
703-961-6931

PLENARY SESSIONS
^usan Rosenbaum m&T
0832 C278

P.O. Box 3509
New Brunswick, NJ 08903
201-457-2664

VICE-CHAIRMAN (PROGRAM ACTIVITIES)
Robert Stirling
IBM Corporation
1133 Westchester Ave.
White Plains, NY 10604
914-696-4251

PROGRAM COMMITTEE
Gene P. Altshuler
O. Peter Buneman
James E. Emery
Dennis Frailey
Robert Frankston
Randall Jensen
Beverly K. Kahn
Alan N. Smith
Amy D. Wohl

AFIPS PROJECT MANAGER
Sam Lippman
AFIPS
1815 N. Lynn Street
Suite 800
Arlington, VA 22209
703-558-3614

1982
National
Computer
Conference
Astrohall
Houston, Texas
June 7-10, 1982

American Federation of Information Processing Societies
Association for Computing Machinery
Data Processing Management Association
IEEE Computer Society
Society for Computer Simulation

Reply to:

John A. N. Lee
Pioneer Day Chairman

1981 November 06

Dr. Uta C. Merzbach
Curator
Division of Mathematics
The National Museum of American History
Smithsonian Institution

Washington DC 20560

Dear Dr. Merzbach,

Many thanks for your response to me enquiry about
the documents which were Copied from the "SHARE-Verzuh"
file; I am enclosing apersonal cheque for $4.80 to cover
the costs of reproduction. I would be grateful if you could
forward these materials to me at the addresses listed at the
left.

The question of Bemer materials will have to await my
receipt of further funding to finance a visit to Washington
unless I can piggy-back a visit to the museum onto some
other trip. One possibility is a one-day visit on December
9th next; if that date would be feasible then I will attempt
to finance it in some way. In particular I am interested in
the Bemer archives which relate to his work on the translator
for FORTRANSIT. This subject has never been written up in
any technical journal and thus needs to be reviewed for
completeness in preparation for Pioneer Day and the
succeeding publications.

I look forward to receiving the Verzuh materials and
to visiting the museum again soon.

airs sincerely,

. ̂ 0̂ -
'John A. N. Lee

c: D. McCracken, R. Bemer

cA ̂

132 FORTRAN IV PROGRAMMING
ACTUAL FORTRAN IV IMPLEMENTATIONS 133

ASA
Basic

ASA
ASI
6000
Series

Burroughs
B5500

Computer
Control
DDP-24,
116,124,224

CDC

1604
3600
3800

CDC

6000
Series

PDP-6
EAI
8400

QE
200
Series

GE
400
Series

!
QE
600
Series

Maximum statement number 9999 99999 99999 99999 99999 99999 99999 99999 99999 32767 32767 99999

Maximum continuation cards 5 19
No

limit
9

No
limit

No
limit

No
limit

19 19
No

limit
No

limit
19

Specification statements must precede
first executable statement

* • * * * * *

INTEGER constant, maximum digits 7 11 7 14 18 11 5 6 7 11

INTEGER maximum magnitude 2"- 1 2s* - 1 2»- 1 247 - 1 2*9- 1 2" - 1 2"- 1 2"- 1 2U- 1 2»-l

REAL constant, maximum digits 11 11 7 11 15 8 7 9 8 9

DOUBLE PRECISION constant, digits 14 25 29 16 14 18 19

REAL, DOUBLE PRECISION magnitude 10" 10" 10" 1Q3M 10308 10» 10" 10" 10177 10"

Variable name maximum characters 5 6 6 6 6 8 8
No

limit
6 12 6 6

Mixed mode arithmetic permitted * * * • * *

Assigned GO TO * • • • * * * * * • •

Logical IF, relations * • 0 * * * « *
* •

DOUBLE PRECISION operations • 0 0 * * *
* •

COMPLEX operations * 0 0 * • * • 0

LOGICAL operations * • 0 0 0 * * * * 0

Dimension data in type statements • 0 0 • • * • 0

Labeled COMMON * 0 0 0 * • • *

Maximum array dimensions 2 3 3 3 3 3 3 3 7 63 3 7

Adjustable dimensions • * * * * # * *
* •

Zero and negative subscripts * *

Subscripts may be any expression, with
subscripted variables permitted

• * * *

Subroutine multiple entries and/or
nonstandard returns

•
•

DATA statement • • • 0 0 • * • • • •

Object time FORMAT • *
0 0 • * • • • *

iwell
1200

Honey
well
800
1800

32767

IBM
1401
1440
1460

10»-1

10"

.IBM
1410
7010

99099

UP—1

10"

IBM
7040
7044
(8K)

99999

2s* — 1

10»

IBM
7040
7044
(16-32K)

10"

IBM
7090
7094

32767

2»-l

10"

IBM
360
D level
E lovel

99999

2 « _ 1

10"

IBM
360
II level

NCR
315

10"-1

10»o

No
limit

Philco
2000
Scries

32767

10"«

RCA
3301

99999

No
limit

107-1

10"

RCA
Spectra
70
Size A

99999

10"

RCA
Spectra
70
Size B

99999

10"

No
limit

SDS
9300

No
limit

10"

No
limit

Univac
III

10"

Univac
1107

32767

10"

No
limit

NAME & ADDRESS CO. ORIGINALLY WITH AT SHARE I & II

kLee Amaya
'S I AC
55 Water St.
New York, NY 10041
212-623-7751

Lockheed Aircraft Corp,
Calif. Division

Paul Armer
Charles Babbage Institute
701 Welch Road, Suite 224
Palo Alto, CA 94304
415-328-0984

Rand

Leo A. Aroian Hughes Aircraft Co.
Research & Development Lab

J. E. Barry Lockheed Aircraft Corp.
Missile Systems Division

R. W. Bemer Lockheed Aircraft Corp.
.Honeywell Information Systems, Missile Systems Division
F Inc.
P. 0. Box 6000
Phoenix, AZ 85005

Ray Berman North American Aviation, Inc
Dept. 56-72

Boden North American Aviation, Inc,
Field Laboratory
Santa Susana, CA

Elaine Boehm
deceased

IBM
Poughkeep sie

N A M E & A D D R E S S
\
R o b e r t B o s a k
A b a c u s
1 2 3 0 1 W i l s h i r e B o u e l v a r d , S u i t e 2 0 1
L o s A n g e l e s , C A 9 0 0 2 5
2 1 3 - 8 2 0 - 6 9 5 5

C O . O R I G I N A L L Y W I T H A T S H A R E I S I I

L o c k h e e d A i r c r a f t C o r p .
G e o r g i a D i v i s i o n

H a r v e y B r a t m a n
S D C
2 5 0 0 C o l o r a d o A v e n u e
S a n t a M o n i c a , C A 9 0 4 0 6
2 1 3 - 8 2 9 - 7 5 1 1 , E x t . 2 1 3 3

E d B r a u n

L o c k h e e d A i r c r a f t C o r p .
C a l i f o r n i a D i v i s i o n

L o c k h e e d A i r c r a f t C o r p .
M i s s i l e S y s t e m s D i v i s i o n

l a r d B o u r i c i o u s I B M
P r o g r a m m i n g R e s e a r c h D e p t .
P o u g h k e e p s i e

A . J o h n C a r l s o n , J r , T h e R a m o - W o o l d r i d g e C o r p .

J o h n C a y w o o d L o c k h e e d A i r c r a f t C o r p .
A c c o u n t i n g

J o h n A . j D e V r i e s C u r t i s v y N u c l e a
x—/ R e s e a r

R o b e r t D o u t h i t t L o c k h e e d A i r c r a f t C o r p .
M i s s i l e S y s t e m s D i v i s i o n

- 3 -

N A M E & A D D R E S S

' r a n k f E n g e l , J r .

C O . O R I G I N A L L Y A T S H A R E I & I I

W e s t i n g h o u s e E l e c t r i c C o r p .
P i t t s b u r g h

G e r a l d F i n e L o c k h e e d A i r c r a f t C o r p ,
G e o r g i a

J i m F i s h m a n G e n e r a l M o t o r s C o r p .
G e n e r a l M o t o r s T e c h n i c a l C e n t e r S p e c i a l P r o b l e m s D e p t .
C o m p u t e r S c i e n c e D e p a r t m e n t
W a r r e n , M I 4 8 0 9 0
3 1 3 - 5 7 5 - 3 2 3 7 .

I

L o u G a t t S p i t e r i
A v e n u e C h a u h t e m o c 6 9 6
C u i d a d D e l S o l
G u a d a l a j a r a , J a l i s c o

e x i c o

J u l i a n J

G e n e G o r d o n

J o h n G r e e n s t a d t

L o s A l a m o s S c i e n t i f i c L a b
U n i v . o f C a l i f o r n i a

L o c k h e e d A i r c r a f t C o r p ,
C a l i f o r n i a D i v i s i o n

R a n d

I B M
A p p l i e d S c i e n c e D i v i s i o n
5 9 0 M a d i s o n
N e w Y o r k , N Y

I r w i n G r e e n w a l d
2 2 8 3 6 M a r g a r i t a D r i v e

^ J o o d l a n d H i l l s , C A
2 1 3 - 8 8 3 - 1 4 9 4

R a n d

- 4 -

N A M E & A D D R E S S

(D a n) P . H a g g e r t y / c , > J \

C O . O R I G I N A L L Y W I T H A T S H A R E I & I I

L o c k h e e d A i r c r a f t C o r p .
G e o r g i a D i v i s i o n

B e n F . H a n d y L o c k h e e d A i r c r a f t C o r p .
M i s s i l e S y s t e m s D i v i s i o n

W e s l e y H a r k e C a l i f o r n i a R e s e a r c h C o r p .

D o n a l d E . H a r t
G e n e r a l M o t o r s R e s e a r c h
C o m p u t e r S c i e n c e D e p a r t m e n t

^ J a r r e n , M I 4 8 0 9 0
P 1 3 - 5 7 5 - 2 6 4 3

u
H . H a w k q f t t e

H e l m u t H o e l z e r

R o b e r t H u g h e s

G e n e r a l M o t o r s C o r p .

L o c k h e e d A i r c r a f t C o r p .
M i s s i l e S y s t e m s D i v i s i o n

R e d s t o n e A r s e n a l

U n i v e r s i t y o f C a l i f o r n i a
R a d i a t i o n L a b
L i v e r m o r e , C A

E d w i n L . J a c k s G e n e r a l M o t o r s C o r p .

•
. M . T e c h n i c a l C e n t e r
0 0 B u i l d i n g , R o o m 3 0 7

W a r r e n , M I 4 8 0 9 0
3 1 3 - 5 7 5 - 8 7 0 0

- 5 -

NAME & ADDRESS

Nowell Johnson

Fletcher Jones
dece a se d

John Jordon

Allen Keller

M. Larkin

E. G. Law

CO. ORIGINALLY WITH AT .HHARE T S T T

IBM
Santa Monica

Lockheed Aircraft Corp.
Accounting

North American Aviation, Inc.
Dept. 56-22

Boeing Airplane Company

General Electric Corp.
Lynn, MA

Lockheed Aircraft Corp.
Missile Systems Division

North American Aviation, Inc.

Richard C. Luke
NASA Ames

Lockheed Aircraft Corp.
Burbank

- 6 -

N A M E & A D D R E S S C O . O R I G I N A L L Y W I T H A T S H A R E I & I I

E s s o r M a s o
f c u g h e s A i r c r a f t C o m p a n y
^ e n t i n e l l a & T e a l e S t r e e t s
C u l v e r C i t y , C A 9 0 2 3 0
B l d g 6 , M . S . D 1 0 4
2 1 3 - 3 9 1 - 0 7 1 1 , E x t . 6 9 3 8

H u g h e s A i r c r a f t C o r p .
R e s e a r c h & D e v e l o p m e n t L a b

J o h n M a t o u s e k
J o h n s M a n n v i l l e 2 - 2 1
P . 0 . B o x 5 1 0 8
D e n v e r , C O 8 0 2 1 7
3 0 3 - 9 7 9 - 1 0 0 0 , E x t . 2 1 9 2

R a n d

T o m E . M c C o o l N a t i o n a l S e c u r i t y A g e n c y

O w e n M o c k
C S C
6 5 0 N . S e p u l v e d a B l v d
E l S e g u n d o , C A 9 0 2 4 5
2 1 3 - 6 7 8 - 0 3 1 1 , E x t . 1 3 6 7

. N o r m a n M o s s

T h o m a s D . M u e l l e r

R a y N u t t
C S C
6 5 0 N . S e p u l v e d a B l v d
E l S e g u n d o , C A 9 0 2 4 5
2 1 3 - 6 7 8 - 0 3 1 1

N o r t h A m e r i c a n A v i a t i o n , I n c .
D e p t . 6 0

I B M
P i t t s b u r g h O f f i c e

C a l i f o r n i a R e s e a r c h C o r p .

U n i t e d A i r c r a f t C o r p .

R o b e r t L . P a t r i c k G e n e r a l M o t o r s C o r p .
9 9 3 5 D o n n a
N o r t h r i d g e , C A 9 1 3 2 4
2 1 3 - 3 4 9 - 2 2 2 5

- 7 -

NAME & ADDRESS

.Randall Porter

CO. ORIGINALLY WITH AT SHARE I S II

Boeing Airplane Company

Walter Ramshaw United Aircraft Corp,

J. R. Reynolds Lockheed Aircraft Corp,
Georgia Division

Ward 'Sangren Curtiss-Wright Corp,

Helmut Sassenfel Redstone Arsenal

Walter C. Schlieser Douglas Aircraft Co
El Segundo, CA

Inc.

J. C. (Cliff) Shaw
10912 Whitburn
Culver City, CA
213-839-8192

Don ^

Rand

General Electric Company
Aircraft Gas Turbine Division

- 8 -

NAME & ADDRESS CO. ORIGINALLY WITH AT SHARE I & II

Tom Steel
kAT&T
*295 N. Maple Avenue
Basking Ridge, NJ 07920
201-221-5619

Rand

Jack A. Strong
13940 Tahiti Way
Marina del Rey, CA
213-823-4705 or 213-823-5024

North American Aviation, Inc.
Dept. 60

Carol Tross v Lockheed Aircraft Corp,
California Division

Richard E. VonHoldt Univ. of California
Livermore

Los Alamos Scientific Lab
Univ. of California

Frank V. Wagner North American Aviation, Inc.
Informatics, Inc. Dept. 56-72
21031 Ventura Blvd
Woodland Hills, CA 91364
213-887-9040

William J. West California Research Corp.

C. M. (Chuc

.Peter A. Zaphyr

Lockheed Aircraft Corp.
Missile Systems Division

Westinghouse Electric Corp,
Pittsburgh

CONFERENCE CHAIRMAN
Russell K. Brown, CDP
3420 Yoakum Boulevard
Houston, Texas 77006
713-524-3420

^OGRAM CHAIRMAN
^roward L. Morgan

Department of Decision Sciences
The Wharton School/CC
Philadelphia, PA 19104
215-243-7731

PROGRAM VICE-CHAIRMAN
Eric K. demons
Associate Professor of Decision Sciences
The Wharton School/CC
University of Pennsylvania
Philadelphia, PA 19104
215-243-7747

PROFESSIONAL DEVELOPMENT SEMINARS
Joseph Campisi
Aetna & Casualty
151 Farmington Avenue
Hartford, CT 06156
203-273-3611

NCCC LIAISON
Harvey Garner
University of Pennsylvania
Moore School D-2
Philadelphia, PA 19104
215-243-4787

PIONEER DAY
J.A.N. Lee
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
703-% 1-6931

PLENARY SESSIONS
Susan Rosenbaum

tttT & T
•-52 C278
^.O. Box 3509

New Brunswick, NJ 08903
201-457-2664

VICE-CHAIRMAN (PROGRAM ACTIVITIES)
Robert Stirling
IBM Corporation
1133 Westchester Ave.
White Plains, NY 10604
914-696-4251

PROGRAM COMMITTEE
Gene P. Altshuler
O. Peter Buneman
James E. Emery
Dennis Frailey
Robert Frankston
Randall Jensen
Beverly K. Kahn
Alan N. Smith
Amy D. Wohl

AFIPS PROJECT MANAGER
Sam Lippman
AFIPS
1815 N. Lynn Street
Suite 800
Arlington, VA 22209
703-558-3614

American Federation of Information Processing Societies
Association for Computing Machinery
Data Processing Management Association
IEEE Computer Society
Society for Computer Simulation

Reply to: J. A. N. Lee
Pioneer Day Chairman

1982
National
Computer
Conference
Astrohall
Houston, Texas
June 7-10, 1982

Robert W. Bemer
2 Moon Mountain Trail
Phoenix, AZ 85023

Dear Bob,

As you may remember, I contacted you seme months
ago regarding your giving me permission to freely examine
and reproduce copies from the files which you deposited
with the Smithsonian Institute and which referred to your
work on the programming language FORTRAN (or FORTRANSIT).
I would be grateful if you could provide me with that
permission in writing since I am planning on requesting
access to those materials in the near future. In reviewing
my materials on FORTRAN it is clear that FORTRANSIT is
not well represented in the documentation and I believe
it is imperative to close the gap before next year's
Pioneer Day.

Best wishes,

cc: D. D. McCracken

COM ERLNCL CHAIRMAN
Russell K Brown, CDP
3420 Yoakum Boulevard
Housion, Texas 77006
713-324-3420

kRAM CHAIRMAN
ad L. Morgan

Deparlmeni of Decision Sciences
The Whanon School /CC
Philadelphia, PA 19104
215-243-7731

PROGRAM VICE-CHAIRMAN
Eric K. Clemons
Associale Professor of Decision Sciences
The Wharton School/CC
University of Pennsylvania
Philadelphia, PA 19104
215-243-7747

PROFESSIONAL DEVELOPMENT SEMINARS
Joseph Campisi
Aetna & Casualty
151 Farmington Avenue
Hartford, CT 06156
203-273-3611 .

NCCC LIAISON
Harvey Garner
University of Pennsylvania
Moore School D-2
Philadelphia, PA 19104
215-243-4787

PIONEER DAY
J.A.N. Lee
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
703-961-6931 SfZo
PLENARY SESSIONS
Susan Rosenbaum

.#>,
P^T Box 3509
New Brunswick, NJ 08903
201-457-2664

VICE-CHAIRMAN (PROGRAM ACTIVITIES)
Robert Stirling
IBM Corporation
1133 Westchester Ave.
White Plains, NY 10604
914-696-4251

PROGRAM COMMITTEE
Gene P. Altshuler
O. Peter Buneman
James E. Emery
Dennis Frailey
Robert Frankston * -
Randall Jensen
Beverly K. Kahn
Alan N. Smith
Amy D. Wohl

AFIPS PROJECT MANAGER
Sam Lippman
AFIPS
1815 N. Lynn Street
Suite 800
Arlington, VA 22209
703-558-3614

American Federation of Information Processing Societies
Association for Computing Machinery
Data Processing Management Association
IEEE Computer Society
Society for Computer Simulation

Reply to:

1982
National
Computer
Conference
Astrohall
Houston, Texas
June 7-10, 1982

Dr. Uta Merzbach
Div. of Mathematics
Nat. Museum of America History
Smithsonian Institute
Washington, DC 20560

Dear Dr. Merzbach:

Many thanks for your assistance and that of Mrs. Jordan
during my visit to the Smithsonian last week. I was
disappointed that the ALGOL and COBOL files provided by
Bob Bemer did not contain any reference to F0RTRANSIT
as I had hoped. On the other hand, there was a fair
amount of information on SHARE/IBM relationships vis-a-
vis FORTRAN which will help to supplement our other
information and will perhaps lead to new areas of
investigation when we receive the copies of the
appropriate pages.

As we go into the new year, I am planning to document
much of the material found in the files I have examined
at the Smithsonian. I will send you copies so that you
can use than to supplement the materials you possess.

Many thanks.

Yours Sincerely,

J.A.N. Lee
Professor

dgb

Robert Bemer

\

Computers and Automation
E. L. HARDER

FELLOW AIEE

IN THE BRIEF SPAN of years since the closing days
of World War II, we have witnessed a technological
development in computers of such broad propor

tions that it is still impossible to appraise its far reach
ing effects adequately. Perhaps, the best way to express
the enormous influence of this revolution is simply to
point out that practically all of man's actions in pro
ducing the necessities and luxuries of life fall into two
categories, namely his mental and his physical work.
All of his mental work has to do with the processing of
information in some form or other, and the close rela
tionship of the computer to the human brain and its
functioning needs no elaboration here. It should have
been expected that nearly all of the operations of the
civilized world, in which the human brain is involved
to a greater or lesser extent in carrying out the task,
could be aided by a technological development which
performs accurately and at high speed, some of the
functions of the brain. This is variously called com
puting, or information- or data-processing. Its field of

ELECTRONIC
CALCULATING
PUNCH

MEDIUM POWER
DIGITAL
COMPUTER

.1 1.0 10 100 1000 10000 100000
CALCULATIONS PER HOUR

Fig. 1. Computation cost vs computer speed.

application is as broad as human knowledge and is far
beyond the comprehension of any one individual.
However, large teams of scientists and engineers are
currently at work in many of these compartmented
fields of knowledge, learning how to adapt and develop
the automatic processing methods of the computer to
the needs of their particular fields.

The revolution in computing has progressed to a
point where two clearly distinct areas of computer auto
mation are evident, the one associated with the auto
mation of physical processes, controlling and measur
ing power machinery and vehicles, and the other hav
ing to do with the automation of man's clerical and
mental work.

In the former, one can trace the stages of develops
ment starting with the primitive tool. Next came the
power tool in which the forces of nature were har
nessed to augment man's physical povyer but with the
entire intelligence for its use remaining with the man.
We have witnessed the gradual additions of intelli
gence to make this tool perform more and more auto
matically. The earlier elements of intelligence were
simple computing devices, usually in the form of ana
log elements built directly into the mechanism of the
tool. The potentialities of punched paper for sequenc
ing processes was early recognized in the Jacquard
Loom and the player piano. Most servomechanisms
have some form of analog computing function built in.
However, as the ratio of intelligence to power has in
creased, the computer is beginning to emerge as a dis
tinct organ, separate from the power handling facilities
and providing for the sequencing, the optimizing, the
computing, and the data processing for the controlled
process.

Dr. E. L. Harder is director, Analytical Department, Westinghouse
Electric Corporation, East Pittsburgh, Pa.

p

Fig. 2. PRODAC, programmed digital automatic control (similar to unit,

right) at work controlling a reversing roughing mill (left, seen from

control pulpit) of the Jones & Laughlih Steel Company at Aliquippa,

Pa., near Pittsburgh.

In the field of computers for processing man's mental
and clerical work, the early aids to calculation—the
desk calculator, the slide rules, and the cash register-
have grown through the stage of business machines
capable of performing simple calculations on large
numbers of similar documents. They have grown to
the medium- and large-scale internally programmed,
automatic computer, capable of carrying out long se
quences of business, engineering, or military calcula
tions. The high-speed internally programmed calcu
lator brought, for the first time, a tremendously low
ered unit cost per calculation (Fig. 1) with its ex
plosive economic effect of broadening the base of ap
plications to which computers might profitably be
applied. For example, computation requiring 2 weeks
on a desk calculator and costing $300 in 1947 will cost
I(on a high-powered computer of 1960, a reduction
of 30,000 to 1. This single economic factor has been a
major influence in extending the computer into the
processing of complete sequences of business calcula
tions such as the payroll, the inventory and stores pro
gram, and the accounting of a factory.

In engineering, the increased computing power and
lower unit cost has been put to work in solving many
previously intractable technical problems as well as
carrying out the complete logic of design for more
standardized products.

In addition to advances in the computer itself, still
proceeding at a revolutionary rate, the science of pro
gramming is undergoing intensive development to re
duce this tremendous bottleneck between the job to be
done and the machine. It requires a little imagination
to realize the vast potentialities that remain practically
unexplored as the power of the mechanized logic of
these computer and programming developments are
brought to bear on the sequencing and optimizing of
controlled processes.

In many industries, automation has reached a high
state, with feedback control, or simply with sequenced
controls, eliminating most of the manual operations
previously required in mass production processes. The
transfer machine for complete machining of an engine
block, the integrated four or five stand tandem cold-
rolling mill for steel strip, and the paper making ma
chine are but a few examples. For large production of
an invariable product, this form of automation has
reached high development.

However, where the product or ingredients are vari
able, and where greater and more flexible intelligence
can profitably be applied, computer techniques are
being rapidly incorporated into the automated system.
This is exemplified by the programmed digital auto
matic control for a blooming or slab mill (Fig. 2), the
digitally controlled skin or profile mill for aluminum
wing structures, or the automatic economic dispatching
control of an electric power system.

It is these latter phases of automation of physical
systems, together with the automation of mental and
clerical work, that are to be treated. Both are closely
associated with computer development. The relation of
computers to automation will be treated by outlining
the important developments that have been taking
place in several areas. Taken together, these illustrate
the revolutionary character of the development and
indicate the progress that can be expected in the next
several years. In addition to the computer itself, we
shall discuss developments in programming; in engi
neering applications; in business, military, and Govern
ment applications, as well as in the translation of lan
guage, the retrieval of information, and other diverse
fields of information. We shall consider the computer
in data logging and control. We shall consider all of
the accessories developed for data processing as well as
the computer techniques themselves as a "bag of tricks"

out of which much practical automation is being ac
complished short of the full computer.

DEVELOPMENTS IN THE COMPUTER

THE FIRST LARGE-SCALE, internally programmed, elec
tronic digital computer was the ENIAC, completed about
the end of World War II (Fig. 3). This machine had
18,000 vacuum tubes, and used vacuum tube high
speed storage. It used a 600-entry wired storage for a
function, namely the drag function, since the com
puter was intended primarily for ballistic problems.
Magnetic tapes were notably lacking at that time, but
were soon developed. Computers installed since that
time are shown in Table I. The four panels shown in
the background in Fig. 3 are the initiating panels,
cycling panels, and the two master programmers. On
the right is shown a function table. The two master
programmer panels determine the sequence of opera
tion in the solving of a problem in which panel num
bers are added, subtracted, multiplied, and divided.
Also in these panels are stored numbers for use in a
later stage of the solution.

The most notable developments s^nce that time have
been the mercury delay line storage, then the Williams
tube high-speed, random-access storage, and the mag
netic-core storage which soon succeeded it and which
now forms the. high-speed memory of most modern
large-scale computers. For computers of medium to low
speed and cost, the magnetic drum has been highly de
veloped. More recently, the demand for larger random
access, of lower cost per bit, principally for the storage
of active inventories of business items, led to the devel
opment about 1956 of magnetic disc and multiple mag
netic tape memories. The Ramac unit of The Interna
tional Business Machines Corporation (IBM) is a disc
memory operating in the fashion of a juke box and
storing some 5 million 6-bit characters, arranged as
50,000 separately addressed, 100-character records. The
average access time of 1/2 to 1/6 seconds, depending on
the number of reading arms, is adequate for the trans-

Fig. 3. ENIAC, operating at the University of Pennsylvania in 1947,
was the first large-scale electronic digital computer.

Table I. General Purpose Digital Computer Systems Installed
January 1959

Computer System Number*

Large Scale (Magnetic tapes and microsecond arithmetic) 316
Medium Scale (Magnetic tapes and millisecond arithmetic) 348
Small Scale (No magnetic tapes, but internally programmed) 1,370
Miscellaneous (Card calculators and others) 5,166

TOTAL 7,200

•Figures were taken from John Diebold Associates publication Automatic
Data Processing Service Newsletter, vol. Ill, no. 17, Jan. 12, 1959.

action rate of many businesses having inventories
within the 50,000 record size.

Since 1956, solid-state techniques have been used to
an increasing extent, so that as of 1959, several all-
transistorized or magnetic computers are on the market
with substantial increases in both speed and reliability.

Magnetic tapes are used on all large and many me
dium size computers today. The 15,000-cycle frequency
(200 characters per inch times 75 inches per second)
characteristic of 1956-57 has been stepped up by 4-to-l
to a 62,500-cycle frequency (555 characters per inch
times 112.5 inches per second) or higher. Wide tapes
are used on some computers further multiplying the in
formation transfer rate from a single tape transport
unit.

The first high-speed printer (600 lines per minute)
was developed about 1954 for the UNIVAC computer.
Facsimile printing at 1,000 lines per minute and still
higher speed photographic printing from the Charac-
tron have since been developed. Off-line printing has
become the rule for most large installations, and for
many medium installations with magnetic tape, to con
serve the valuable computing time. Buffering to permit
simultaneous read, write, and compute, first used for
the serial business computers, is now available for high
speed, parallel scientific and engineering computers
also, to increase the speed for problems with large in-
put-output requirements.

Of note during the last 5 years has been the greatly
increased use of small drum computers, priced under
$100,000. Over 600 computers in this bracket have
found their way into as many diverse applications,
ranging all the way from research on "home perma-
nents" to on-line reduction of data on a critical atomic
facility. There is profound significance in this broad
ening of the base of computer usage—in having this
many diverse groups extending computer technology
into so many avenues of human effort.

SAGE COMPUTER

LANDMARKS of present advance for large-scale systems
in service are the computers of the SAGE system for con
tinental air defense (Fig. 4). Working with unprece
dented reliability on an around-the-clock schedule, such
computers process constant streams of radar data, per
form complex computations, and present visual displays
of the air situation to U. S. Air Force personnel. Their
duplex facilities assure their 24-hours a day primary air
defense mission while scheduled maintenance is being
performed and training programs carried out.

3

Most important for automation, and far more diffi
cult to express, is the progress during this same period
in computer techniques and accessories. The general-
purpose computer represents an important use but far
from the only use of these techniques. It is the avail
ability of this tremendous array of adaptive and periph
eral devices that takes the computer out of the labora
tory and into practical automation.

DATA LOGGING

THE ABILITY to process data rapidly implies the ne
cessity to gather data rapidly and efficiently, hence the
development of data logging equipment. Data logging
requires, first of all, transducers from all types of meas
urements into analog or digital form. These include
currents, voltages, power measurements, rates of flow,
pressures, temperatures, weights, times, counts, thick
nesses, compositions, speeds, hardness, viscosity, mois
ture content, density, concentration, and all manner of
other physical, chemical, metallurgical, atomic or other
conceivable properties. An ever-increasing range of such
transducers is becoming available of improved quality
and reliability. Logged data becomes much more valu
able with the ability to process it rapidly, with increas

ing knowledge ot what action to take as a result of the
processing, and with automatic facilities to take the
indicated action.

Generally, to gather such data, it is necessary first to
schedule its taking. This requires programming or tim
ing equipment. Often analog-to-digital conversion
equipment is required where the basic transducers de
velop analog outputs. This equipment may be time
shared among a large number of measurements, requir
ing accurate and high-speed conversion equipment.

Data logging usually requires the typing or printing
of some or all of the data for monitoring purposes and
the recording of some or all of it for later processing.
Frequently, the availability of the data leads to a re
quirement for alarms at limiting values, and perhaps
the more extensive action of automatically changing a
set point or otherwise altering the process being moni
tored. The final records may be on paper tape, mag
netic tape, punched cards, or other suitable medium.
In some cases, the data logging feeds directly into a
computer which processes the data on the spot and gives
out only the desired processed results instead of the
multitudinous items of input data.

Equipment in considerable variety is now available
for all of the functions previously described. However,

. Magnetic Drum Memory Unit

Fig. 4. SAGE computer (semi-automatic-ground environment),

heart of the Nation's vast electronic warning system. Closeup il
lustrations show principal components of the SAGE computer pro
duced for the U. S. Air Force by the International Business Ma
chines Corporation's Military Products Division.

Operating Console
View of Computer Frames

4

as the applications grow, the conditions to be met con
tinue to expand and we should expect to see over the
next several years tremendous advances in both ideas
and equipment for filling the needs in this area of
automation.

DATA COMMUNICATION

THE LOGGING AND PROCESSING of data also implies a
need for communicating it from one point to another,
or from one computer to another at the same point.
We may cite the continental defense requirements for
transmission of data from many points to the central
computers of the SAGE system (Fig. 4). In an industrial
operation, we may have the transmissions from many
district offices over a network of teletype circuits to a
central order-processing computer. It may be necessary
to extend the services of a central high-powered scientific
computer to the engineering departments at other divi
sions of the company at remote locations up to several
hundred miles away. It may be necessary to transmit
data from field tests of a missile or a turbine installation
to a remote computer, either on a permanent or tem
porary basis.

It may be necessary for a large number of telephone
installation and service men to communicate with a
central computer for their daily orders for supplies, or
for the workers of a factory to communicate through
time clocks with a central computer to avoid inter
mediate operations in processing their hours of work.
It may be necessary for a branch of the military to keep
a central computing facility continually appraised of
the status of supplies throughout the world and, vice
versa, to keep certain information current at numerous
locations. It may be necessary for a transportation com
pany to transmit reservation information to and from
central points as well as operational information, flight
plans, status of facilities and products.

All of these and innumerable other data-communi
cation requirements associated with computers have
received a great deal of attention and development
during the last several years in order to provide eco
nomical and suitable services for all of the different
classes of requirements. These range from the simple
teletype circuits now with new checking features for
data transmission, the 80-column card transceivers for
using up to four 11-card-per-minute transmissions over
four separate carriers on a telephone voice channel,
and the magnetic-tape to magnetic-tape transmission at
higher speeds utilizing the full capabilities of voice
channels. Other variations include the cardaphone,
moderate speed transmission of data over ordinary
telephone circuits with a minimum of terminal equip
ment, and the rapid transmission of teletype over
phone circuits by first "playing" it onto audio magnetic
tape, then transmitting at a high rate over the phone
circuit, and finally stepping back to the teletype rate
from the received audio tape.

Automation of far-flung enterprises is obviously inti
mately interlinked with these developments in the
communication of data, and as new requirements are

continually arising, together with a pressing need for
better solutions to the old problems, the developments
in this area in 1959 are surging forward at an un
precedented rate. It can be expected that this com
munication adjunct to automation will see great ad
vances in the next several years. In turn, the automa
tion of communication circuit switching and account
ing is benefiting by the advances in computing tech
niques.

GENERAL AND SPECIAL PURPOSE COMPUTERS

ALTHOUGH LARGE-SCALE COMPUTERS originally were
developed along separate lines for business and scien
tific purposes, two seemingly contradictory trends are
now evident. One is the definite trend toward the com
mon computer or computing center which has the
proper complement of equipment to meet all of the
large information processing requirements of the plant
or group of plants. Originally, it was felt that the large
input-output requirements and special storage re
quirements of the business problem required a sepa
rate type of machine from the engineering or scientific
problems with their comparatively smaller input and
output and very much greater computation require
ments. It has since been found that even though the
input-output of the engineering problem is small rela
tive to the business problem, it may still require half
of the total computing time and, thus, economically
justifies high-speed input-output equipment, the same
as the business problem. Thus, this distinction between
the two is being rapidly obliterated.

Programmers of both business and engineering prob
lems are finding that a large high-speed memory is ex
tremely advantageous and time saving in the program
ming of problems of either kind and, thus, this require
ment for an expensive element of the machine suggests
the pooling of most problems on a single facility with
very ample high-speed memory. The business opera
tional problems of production control, and engineering
which may combine in one close-knit operation the
large computational problems of engineering design
together with the references to large quantities of in
formation on stocks, processes, time values, costs, and
parts, naturally militates in this direction.

The supposition of low computing requirements of
the business problem are based on compatibility with
input-output speed. However, buffered computers with
multiple tapes and higher speed tape transmission, may
well raise the input-output speed to where business
problems as well as engineering can profit from a lower
unit cost per calculation with a high-speed computer.
Thus, new computers on the market have remarkably
improved abilities for handling combined loads of
engineering and business problems.

Quite distinct from this trend is the appearance of
on-line data-processing equipment such as the IBM
RAMAC in which a comparatively inexpensive computer
with large random access memory of i/2 second access
or less, is applied for continuous use on a high activity

5

business operation, and tends away from joint use
consideration. This trend to special-purpose com
puters, is continuing over a broad area of operational
and industrial problems. The specialized banking com
puters, the reservation computers for airlines and rail
roads, the large storage computers for air traffic con
trol or for the continual processing of substantial in
ventories of many types, all trend toward the on-line
computer, specialized or not. In industry, one finds the
digitally controlled machine-tool director, intermedi
ary between the large general-purpose computer for
developing the tool path and the phase-modulated
tape for the individual tool.

The PRODA'C, programmed digital automatic control
for mills and processes (Fig. 2), provides the necessary
components of memory for storing the mill program,
the necessary reading devices for quickly changing it
to another program for a different mill operation, the
necessary comparison or computing elements for mak
ing digital comparisons between the mill settings and
the programmed values for actuation of the driving
servos. Such a device has little use for the large reper
toire of commands of a general purpose computer, but
special attention must be given to reliability since the
unscheduled maintenance of most general-purpose com
puters of the past could not be tolerated in such an
application.

Thus, industrial control may utilize many of the
computer techniques, incorporating them in particu
larly reliable forms especially for the important higher
speed operations. The memories, the logic circuits, the
programming and scheduling facilities, the reading
devices, the data logging mentioned previously, includ
ing the analog-to-digital conversion equipment, all find
their place in the automated mill, but frequently in
specialized form. Somewhat further from the inner
workings of the physical mill itself, the general-purpose
computer finds its place in the planning, scheduling,
and processing of the data on a "one step removed"
basis. It is supplied with data and programs to be
processed in accordance with the need of that particu
lar industry. This mill or operational use of the gen
eral-purpose computer compares with the general-pur
pose computer in the manufacturing plant for the con
trol of materials and stores, for the accounting opera
tions, for production scheduling and optimizing, for
payroll and records, and for the analysis of operating
data.

ANALOG COMPUTERS

THE GROWTH of analog computers, while less spectacu
lar, has been steady. Most widely used are the electronic
differential analyzers for the solution of regulation, dy
namics and other problems of physical systems which
can be expressed in differential equations. Network cal
culators and field models and the large passive element
computers for transient and vibration analysis of sys
tems and structures constitute another large class. The
vast majority of all special-purpose computing devices

associated with machinery, control, regulation, and in
strumentation are analog in nature, at the present time.
The use of analog computers for navigation and fire
control directors, and for industrial control and simula
tion greatly exceeds the use of digital techniques in
this area.

Principal developments responsible for the increased
use of analog machines are: a full order of magnitude
of accuracy improvement, the introduction of central
ized control, and the substitution generally of static
electronic devices for servo multipliers and function
generators, together with revolutionary detail improve
ments.

The digital read-in and read-out and other automatic
features have further enhanced its use while the devel
opment of analog-digital conversion equipment has led
to the combined use of analog and digital facilities for
large simulation problems requiring the capabilities of
both computers.

Although primarily restricted to the engineering and
scientific field, the number of analog computers in
many large industrial establishments is quite compar
able to the number of digital computers. A large analog
installation is generally made up of a number of smaller
analog computers, which can be used independently
or connected through central control.

DIGITAL COMPUTERS OF TFIE FUTURE

FROM WHAT HAS GONE BEFORE, it can be clearly seen
that the future of computers does not hinge entirely
on increases in speed, memory size, or logic, but also
on the expansion and utilization of the tremendous
range of facilities already developed, which are taking
computer techniques and mechanized logic into all
phases of industrial operation.

Nevertheless, speed and memory size and extent of
logic, which can be economically justified, still have a
strong bearing in some of the more -interesting and
sociologically important developments of the computer
of the future. If the large-scale computer of 1958 is de
scribed as a commercial unit with a one megacycle rate,
using vacuum tubes capable of adding 40,000 ten-digit
numbers or multiplying 4,000 in a second, then its
counterpart in the development laboratories is a solid-
state computer with a pulse rate of 40 mc. Combined
with new technological ideas, it has superior comput
ing facilities as well as memories, buffering, and flexi
bilities, giving it an effective computing power of the
order of 400 times the commercial unit of the last few
years.

This laboratory unit with its 40-mc rate corresponds
to a decision element speed of 25 millimicroseconds op
erating time. At this speed, the length and stray capac
ity of wires is certainly becoming important. However,
with decision elements operating in 2y2 millimicrosec
onds, which have been proved feasible using solid-state
techniques, the computing circuitry of 1960 being de
veloped in the laboratory will be up against serious
time delays in the wire. Although the theoretical time

for electromagnetic waves to travel one foot is one
millimicrosecond, end effects increase this to 1.7 milli
microseconds for a one-foot connection. This is %0 as
long as the operating time of a decision element of 2I/2

millimicroseconds. Developments on the horizon make
it quite evident that this decision element time will
decrease below 0.25 millimicroseconds. (A semiconduc
tor switching in 0.05 millimicrosecond has been an
nounced by Electrical Design News, January 1959, page
3.) The one foot of wire at this stage would represent a
delay seven times as long as the element and would
render the development of the element worthless.

This spells but one thing—microminiaturization. Al
though miniaturization studies are proceeding on all
solid-state devices, a great deal of interest has been
focused on the thin film and cryogenics.

The cryogenic element is based on the phenomena
that wires held at about 420 F below zero can be
switched into and out of superconductivity by a small
magnetic field which can be produced simply by a cur
rent in one wire passing over another. The simplest
cryotron is, therefore, a crossing of two wires. Different
materials have different transition temperatures so that
the controlling wires can always be kept superconduct
ing and require no energy. Any number of elements
can be switched from a single element. An external d-c
current source provides the basic power through each
wire.

Work at Massachusetts Institute of Technology re
ported by Dudley Buck at the Eastern Joint Computer
Conference, Philadelphia, Pa., Dec. 1958, indicates
there is reasonable possibility from experimental work
that such cryotrons can be made in batch processes by
selective etching of thin films of conducting material
coated on insulators utilizing electron beam techniques
to select the parts to be etched, and leaving a network
of lines and elements so fine as to be invisible to the hu
man eye with the most powerful optical microscope.
The lines in this array would be]/10 micron in width
or 1,000 angstrom units compared with 4,000 to 8,000
angstroms, the wave length of visible light. Cryotron
elements would have a minimum spacing of one micron
apart in each direction giving a theoretical maximum
of 10® cryotrons per square centimeter on a thin film.
Successive thin films can be shielded by superconduct
ing layers. Allowing several cryotrons to a logic element
and a tremendous space (relatively) for interconnec
tions, a packing of 104 logic elements per square centi
meter should be attainable. The complete arithmetic
unit logic of a present large-scale computer reduces to
not over a cubic inch on this basis. Needless to say, the
lead lengths in such an array would be amply short
and the time constants should be short enough to per
mit another decade of advance below the 2i/<> millimi
crosecond decision element time cited for 1960.

Philosophers, while admitting a faint similarity be
tween some functions of the brain and a computer
memory, have always pointed out the disturbing fact
that a sufficient number of elements to compare with
the brain would require a unit the size of a large office

building. However, a spacing of cryotrons one micron
apart on thin film compares directly with the density
of neurons in animal nerve tissue.

The recent studies in which computers have been
used to simulate self-organizing mechanisms in which
information is stored through the connection of ele
ments rather than their state provides a more interest
ingly close resemblance to the brain. Such mechanisms
can be arranged to learn a desired response. T hey re
semble the brain in that the removal of part deterio
rates rather than completely destroys the functioning.
The remainder contains the learning power to improve
itself again. This presents the interesting possibility of
logical structures of unprecedented reliability and of
entirely new computer philosophy. Thin film cryo
genics holds promise of sufficiently large arrays at rea
sonable cost to study self-organizing mechanisms ade
quately. This may enable us to learn more of the func
tioning of the human nervous system and also to derive
ideas from nature for the further development of com
puter logic.

Development of the ideas, the logic, and the pro
gramming philosophies for utilizing these inherent
capabilities will keep scientists busy for a long time.
It is amply evident that space-age automation will not
be hampered by any ceiling in the advance of com
puter technology.

PROGRAMMING

THE ASSEMBLY PROGRAM, which is a necessary adjunct
to any large computer installation today, brings to
the programmer in the form of a package program most
of the automatic programming developments to date.
He writes his program in the simplest form and then
"assembles it" on the computer. The assembly program
converts his abbreviated program into a complete ma
chine language program by performing the following
typical operations, all formerly done by the program
mer himself:

1. It converts the simple symbolic names for the com
mands into decimal or binary machine codes as re
quired.
2. It brings into the program any needed routines from
the library tape.
3. It allocates memory space and inserts correct ad
dresses in all instructions.
4. It detects common errors.
5. It converts from our decimal number system to the
binary number system if used.
6. It condenses the program to a tape or compact card
form.

The compiler program, such as Fortran for the IBM
704, goes a lot farther. In using an assembly program,
the programmer must write each step (except for sub
routines) albeit in abbreviated form. With the com
piler, this is no longer necessary. He simply writes the
mathematical statement for the program to be prepared

7

and the compiler (Fortran means "formula transla
tion") translates this into a machine program with an
efficiency of 5- or 10-to-l compared with writing out
each step. Fortran is primarily for scientific or engi
neering problems.

In many fields, specialized languages are prepared en
abling the programmer to express the problem as simply
as possible in terms native to that field. Thus, a lan
guage has been written in which a steam system can be
conveniently described to effect the heat balance solu
tion with any arrangement of turbines, heaters, pumps,
and boilers.

Another language has been written for dealing with
words in a language for language translation. In this
case, facility in dealing with "strings" of words is an
objective.

A language for describing the desired tool path, rate
of feed, and tolerance for digitally directed machine
tools, permits the description of straight lines by two
co-ordinate points, or one point and tangency to a
circle of given center and radius. Similarly, other regu
lar geometric shapes are used in a manner native to
drafting.

A language was described recently for point me
chanics, enabling any problem in masses, springs, levers,
torques, and frictions to be simply described.

In each case, a program is then written to bridge from
the problem statement in the use-oriented language to
a machine program for solving the specific problem. In
the mechanics language cited, the associated program
prepares a Fortran program, which can then be com
piled by Fortran into a machine language program.
However, a compiler from the Fortran language could
be written to other computers than the IBM 704 for
which it was intended. This has, in fact, been done,
"Fortransit" making the conversion of a Fortran writ
ten program to the "IT" compiler for the IBM 650.

The universal language is the rallying point for work
on machine compatibility; running programs on one
machine that have been written for another. If written
at a high enough and generalized enough level, hope
fully in a "universal language," this may be done. The
limitations today are so great that practically all pro
grams are written in a language of the machine on
which they are run. However an increasing number are
written in a high-level language such as Fortran, and
are far more susceptible to translation than direct ma
chine language programs.

It is fervently hoped by everyone with a substantial
stake in programs that good workable solutions to the
compatibility problem will evolve in the next several
years.

Considerable work has been done on compilers for
business problems. Here the general concepts involve
first a complete and orderly arrangement of all data
into addressable records and files. Second, it must be
possible to state explicitly what operations are to be
performed on this data and the form and arrangement
of outputs. Finally, from the characteristics of the spe
cific machine, the compiler must prepare a working

machine-language program that will accomplish the de
sired operation.

The concept of report generator implies the ability to
specify conveniently and quickly a new derivation from
the data needed for certain management decisions, a
facility utterly hopeless without a high-speed computer.
The possibilities of this are being actively explored by
many management groups as a means of lessening rou
tine data.

DIGITAL CONTROL OF MACHINE TOOLS

THE IDEA of using numbers expressed as holes
punched in cards or tapes to control the multiple mo
tions of a machine tool, was first presented to the
U. S. Air Force early in 1949. In the 10 years following,
both the philosophy and equipment have been devel
oped and over 100 contour milling machines are now
either in use or under construction using the resulting
principles. These are principally the skin mills and pro
file mills in the aircraft industry used for the machining
of complex wing sections. Hundreds of other digital
machine-tool applications are in use or under develop
ment for a wide variety of machine tools. Typical po
sitioning applications are the placement of components
on printed wiring boards, or the positioning of the work
and tool turret in a large sheet-metal punch press.

For the contour milling operation, the calculation of
the tool path presents an awesome problem, work on
which started at MIT under Air Force contracts and
has now been taken up by a joint industry effort. This
is resulting in computer programs for converting the de
sired cuts into tool center paths.

To date, the starting point has been the engineering
drawing. However, ideas for getting directly from a
simpler specification of the desired shape to a tool path
program for machining, bypassing the drawing, is de
veloping. It appears that the rules for filets and curva
tures, through which the draftsman develops from the
basic requirements and dimensions into a finished ob
ject, may very well be programmed for a computer.
However, this is for the space age ahead.

ENGINEERING APPLICATIONS

IN MECHANICAL and electrical engineering, computers
have been particularly important in the design and ap
plication of machinery and systems. Civil engineers
have found it invaluable for the extensive earthwork
calculations involved in highway and seaway construc
tion and the calculation of structures.

In engineering design, the earliest problems at
tempted were the scientific problems which could be
quite well-stated mathematically but many of which it
was impossible to solve practically without the aid of the
computer. These included the diffusion calculations for
the nuclear reactor, the higher natural frequencies of
turbines and compressor blades, and the modes, vibra
tions and frequencies of other more complex mechani
cal shapes. In design, the computer was widely used for
the performance calculations in which the designer
completely specifies a conformation of the device and

8

IMPULSE BLADE DESIGN

UNIT HEAT RATE
UNDER VARIOUS
LOADS AND

CONDITIONS

ROW BY ROW CALCULATION —

STATIC DEFLECTION CURVES

TORSIONAL VIBRATIONS

MANUFACTURING
PAYROLL
INVENTORY AND
STORES CONTROL
MANUFACTURING

INFORMATION
PRODUCTION

SCHEDULING

SYSTEM ANALYSIS OF
TURBINE GENERATOR,
COMPLETE WITH
GOVERNOR AND VOLTAGE
REGULATOR CONNECTED

SHAFT SECTION
PROPERTIES

BLADE SECTION PROPERTIES

BLADE TORSIONAL RIGIDITY

BEARING DESIGN
CALCULATIONS

MISALIGNMENT CALC.

LATERAL VIBRATION
MODES AND

CRITICAL SPEEDS OF
ENTIRE ROTATING MASS

STEAM BLADE DESIGN
BLADE VIBRATION STUDIES

STRESSES DUE TO TRANSIENT
TORQUES IN SHAFTS a
COUPLINGS

GENERATOR VENTILATION
(BERNOULLI'S EQUATIONS)

AIR GAP TORQUE

GENERATOR DESIGN

STEADY STATE AND
TRANSIENT
HEAT FLOW

COST ANALYSIS
SATURATION CURVE

VOLTAGE REGULATOR
PERFORMANCE

MAGAMP DESIGN

EXCITER RESPONSE

APPLICATION DATA FOR
•STANDARDIZED SIZES
O^ TURBINE-GENERATORS

GOVERNOR
PERFORMANCE

STEAM
HEAT
BALANCE
CALCULATION

MATERIALS DEVELOPMENT
STATISTICAL ANALYSIS
ANALYSIS OF VARIANCES

DISC VIBRATION ANALYSIS

SPINDLE SECTION DATA

STARTING FROM _
TURNING GEAR

RETAINING RING STRESSES

LOAD FORECASTING -
ECONOMIC DISPATCH^
SHORT CIRCUITS -

LOAD FLOW
(SYSTEM PLANNING)
STABILITY
REGULATION-

TEST DATA
REDUCTION

EFFECT OF DESIGN "
PARAMETERS ON
SYSTEM OPERATION

WAVE FORM ANALYSIS "

LIGHTNING PROTECTION'

TRANSIENT OVER VOLTAGES'

HEAT EXCHANGER
DESIGN

PROPERTIES OF
STEAM

EFFICIENCY OF
GENERATOR OR
TURBINE SECTIONS

Fig. 5. Typical calculations currently made by computer in the design, 135,000-kw machine built by Westinghouse Electric Corp., for the TVA
manufacture, and application of turbine generators. Exploded view of Shawnee Station.

9

calculates how this will perform as a step in revising
and developing his design.

The next stage of computer application was the com
plete design to specifications of a product. Usually
this product was a member of a line in which the in
dividual member had not been designed, but the plan
as to how it would be designed had been developed in
advance. The procedure consisted of entering into the
computer the specifications of the desired unit and
sufficient information for the computer to select a trial
design. It then made the performance calculations on
this design and compared the performance with the in
put specifications. If these did not agree, being either
too low or too high, the computer made certain changes
in the design, recalculated the performance, and con
tinued around this loop until a design was produced
which met the specifications. This was then printed out.
This type of program required skilled design engineers
in its preparation since only they knew what to change
and in what order to make the changes in order that
the design surely converged to the desired specifications.

Next came the optimizing design in which all of the
work of the preceding paragraph was done, but then
the computer was not satisfied with simply a good de
sign but was programmed to range over permissible
variations in materials and arrangement, calculating
various designs within the permissible bounds and avail
able materials, all of which met the specifications. The
optimum design was then selected and printed out by
the computer usually with several alternates for the de
signer to compare as well.

Typical calculations currently made by computer in
the design, manufacture, and application of turbine-
generators are shown in Fig. 5.

In all the design work up to this point, the engineer
ing has been treated as separate from the rest of the
complete order-handling and manufacturing operation
of the plant. True, certain cost data and information
regarding stocks of materials had to be fed into the com
puter in order for it to optimize the design and keep
within the available parts; however, this constituted a
fairly trivial liaison with the rest of the operation.

COMPLETE ORDER-HANDLING PROCEDURE

WITH THE DESIGN PROCEDURE by computer becoming
quite well understood, the possibility presents itself of
incorporating this step with the entire series of steps in
the interpretation, commercial handling, engineering,
design, the preparation of manufacturing information,
the shop scheduling and control, the accounting and
shipping of the order.

The computer program or series of programs in a plant
that deal with the processing of one individual order as it
goes through all of the various operations required of
it, may be viewed as both drawing information from,
and feeding information to, the other mass business
programs of the plant as shown in Fig. 6. This has been
simplified to show only a few of the many operations
performed on an individual order and also only repre-

- ASSOCIATED PROSRAMS'

ORDER HANDLING PROGRAM

Fig. 6. A straight-through order handling program must be kept up
dated by the mass data programs of the plant and, in turn, feed them
information developed on a particular order.

sentative of the major "mass" programs for handling
the materials, payrolls, and accounting of the factory.

A number of ambitious programs are now under way
for carrying out much of the interpretation and design
and preparation of manufacturing information by com
puter. The work done to date has amply demonstrated
the need to consider this as a single over-all system prob
lem. The extension of computer technology in the
manufacturing operation will continue both in the mass
business problems of the plant, and also for the straight-
through order handling procedure including design
and manufacturing.

DEFENSE APPLICATIONS

DEFENSE REQUIREMENTS have directed and financed a
large part of all computer development and automa
tion. To begin to picture the range of use in various de
fense operations is quite hopeless. Computers are asso
ciated in some way with every operation. Some of the
larger uses publicly announced are the following:

1- The SAGE system for continental defense processing
data on all targets, weapons, and other factors of inter1

est (Fig. 4).
2. Missile and gun-director computers and navigation
computers.
3. System design, evaluation, and simulation computers.
4. Supply and inventory computers for all military
parts.
5. Air traffic control.
6. Logistic and operation research facilities.

10

7. Test data processing computers.
8. Computers for design of atomic reactors, missiles,
aircraft, ships, and vehicles.

From depending on computers primarily for ballistic
and range data in 1945, the defense organizations have
come to look upon the computer as one of the most
vital survival links in an atomic space age—depending
on it for nearly all vital information and for all de
cisions that have to be preplanned.

BUSINESS APPLICATIONS

A FEW of the more important business applications
which have developed are the following. The computer
control of inventory and stores has been profitable in
many businesses. The payroll and all associated em
ployee records are on computers, particularly where
peripheral benefits can be obtained. Capital stock rec
ords, tool and facility records, and sales records analyzed
for business control, are frequently computerized. Pol
icy records and accounting of insurance companies and
billing accounting of public utilities are both extensive
uses.

Mail order houses and the repair parts and shipping
stocks of many businesses are being placed on on-line
computers.

All forms of accounting, traditionally using business
machines, are being considered for larger scale com
puters and many profitable conversions have been
made. Thus, computers are appearing in banks and
commercial houses, hospitalization, and finance com
panies.

The use for operations research, for production plan
ning and scheduling, for business decisions, for simula
tion of business operations to study alternatives, and
for linear programming and optimizing, should be par
ticularly mentioned. Here are the difficult problems,
often of much greater payoff, in which much of the ef
fort will be applied over the next several years.

GOVERNMENT APPLICATIONS

THE BUREAU OF CENSUS was one of the first to encour
age large-scale computer development for its use.
UNIVACS were used for part of the 1950 census analysis.
Other typical applications have been Government bond
records, social security, veterans' records, income tax,
air traffic control, map making, letter sorting, patent
search, statistics of all kinds, as well as corporation,
sales, and other tax accounting. These are, of course,
additional to the business and defense applications
cited previously.

MISCELLANEOUS APPLICATIONS

Translation of languages. One of the truly monu
mental tasks, this is now in its infancy though one of
vast social significance. Large random access, perma
nent memories are needed, permitting photographic
and optical techniques. At present, teams of pro
grammers and linguists are studying the linguistic rules

and testing proposed translation algorithms by means
of trial translator programs on general-purpose com
puters.

Retrieval of Information. Retrieval runs the gamut
from searching classified information on chemical-for
mulas or United States patents to automatically abstract
ing books and articles. The latter involves character
recognition and linguistic rules closely related to
language translation for discovery of information con
tent. Ingenious apparatus has already been developed
for high-speed search and printing of abstracts, and engi
neering reference systems superior to pulling and print
ing a large drawing are being investigated.

Research with Computers. This is extending into many
new areas: the study of dairy herd performance, medical,
biological, geophysical, nuclear research, using planned
experiments, analysis of variances, probability, and
Monte Carlo techniques taking advantage of the high
speed and low-unit computing cost of the computers.

CONCLUSIONS-COMPUTERS AND AUTOMATION

COMPUTERS, meaning all that broad field of devices
whose prime function is to process information as
opposed to material, constitutes a large part of automa
tion as it is known today. It constitutes practically all
of office automation, all of the automation of man's
mental and clerical work. It is the intelligence which,
associated with the machines for his physical work and
his defense, removes the human limitations of time and
space, the limitations of human sensing and reaction,
in man's reach into outer space and into the future.
The computer and all of the associated equipment for
the processing of information elevates man to a new
level of accomplishment through automation.

For those things which he can conceive and knows
how to do, he need no longer be limited by the compu
tational obstacles or the detailed decision making. He
can now program these things to be done by the com
puter under his general control. Instead of making each
design himself, he can develop the techniques for mak
ing an excellent design, and from there on relegate the
routine design job to the computer.

This field holds tremendous challenge and oppor
tunity. The computer is to the machine, what educa
tion is to man. We now have the tools to educate our
machines. Engineers have accepted this challenge and
in the last 10 years have made tremendous progress. In
this time, the vista of possibilities has been continually
expanding. The next 25 years should see the fulfillment
of the dream of automation that is in but its earliest
stage today. Computer intelligence should by then be
applied wisely throughout industry to handle all of
those types of tasks better handled by machine. Far
from displacing man from employment, this will elevate
him to a world of greater effectiveness and greater op
portunity, as has the harnessing of the forces of nature
in providing his physical power and transportation.

1 1

A Reprint From

EtECTRICAL ENGINEERING
Printed in the United States of America

American Institute of Electrical Engineers
The Institute assumes no responsibility for statements

made by contributors.

MAY 1959

1 2

NOTES

of the

MEETING

on

705 SCIENTIFIC PROGRAMMING

FOURTH SESSION GUIDE

FRIDAY
SEPTEMBER 13, 1957

SHERATON-PALACE HOTEL
SAN FRANCISCO, CALIFORNIA

J, V

2

FRIDAY AFTERNOON SESSION

September 13, 1957

The Friday morning GUIDE meeting of 705 Scientific Program

ming convened in the GUIDE Suite, Room 2044, of the Sheraton-

Palace Hotel and was called to order at 9:15 o'clock, a.m., with

Mr. H. A. Thompson of The Texas Company presiding.

CHAIRMAN THOMPSON (The Texas Company): I would like to call

this meeting to order, Gentlemen, and get started. We have a

lot to discuss, a lot to do.

I would like to state at the outset that I am considerably

gratified to see so many attending this meeting. I think that we

have had a very good offering of personnel to serve on our

FORTRAN working committee.

Thus far I have commitments for approximately five people,

five whole people, not necessarily five individuals, and I think

that as soon as we firm up our plans on what we are going to do

in the next month, that even more people will join in because I

know that there are some people that want to participate in this

program that aren't at the meeting.

Yesterday at the Programming Committee meeting, I stated

that there were seven aims — or six aims, and I would like to at

least partially tackle, or at least bring before you for your

consideration, some of them.

Some of them, I think, we can actually put behind us, and

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

SUTTER 1 • 2 2 • I

3

those are:

(1) To establish the extent of industrial participation.

We can't do this completely because of what I said Just a

few minutes ago that there are people that want to get in on this

that aren't represented at this time, but will come in later.

But the extent of industrial participation at this date is

five men. We also want to establish the extent of IBM participa

tion.

I don't know if Bob has been empowered to say anything?

MR. BEMER (IBM): Yes.

CHAIRMAN THOMPSON: I will list the other aims and we can

back up and take that one up.

Number three, we would like to establish what this relation

ship between the people that are working for IBM and the people

that are working for industry would 4'ee-i;

and, four, to establish their responsibilities.

Five, we will see if we can at least kick around the idea of

which language level we should be shooting for.

Number six, what machine are we going to talk about, what

configuration will we consider as a minimum in 705, so that we

can design a system to fit that minimum machine.

Can anybody think of any additional items that would be

proper to at least introduce at this time? This is probably more

than we can get around to anyway.

MR. BEMER: I have a small one, the question of publication

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1-2201

for the various people.

CHAIRMAN THOMPSON: We will have that as number seven.

Anybody else?

(No response.)

CHAIRMAN THOMPSON: Well, with no further ado, let's back

up, since we have established number one as best as we can thus

far — let's back up and pick up number two.

I would like to turn the forum over to Bob Bemer and see as

to what he has to say on this line.

MR. BEMER: I have a chart here. It is by no reason com

plete, but what I am trying to do, I am trying to take the

entire spectrum of equipment and computers from 650 up through

STRETCH and make a chart for assemblies, business compilers and

mathematical, scientific compilers.

I am running the machines this way (indicating) and across

thls way (indica ting).

I have the language, the machine configuration requirements,

time estimates, on when the Specs will be due, the rough language

Specs due and the final language -- the final manuals, the pre

liminary manual and the primer reference.

If you are not familiar with what our basic principles are,

how we put it together, the time for the work delivery, time for

a workable system, delivery time for a good system.

The value of this chart is that there are a lot of blank

spaces in incompatibility. The biggest planning space in the

FORTRAN is, you see, there is absolutely nothing along that one,

i

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

1, 2 and 3.

Now, are there any GUIDE members here?

(No response.)

In this case, the IBM have a pretty nice position In this

committee.

The 705 Model 3 is not so doggoned difficult or different

from the Model 2, and since in order to do the Model 3 FORTRAN,

we would have to put quite a number of people on the thing, and

if we can do both projects at the same time by playing cagily,

which I am sure we can do with the similarity of the machines,

we should be able to invest three people into the project.

I think we can say at least four people from IBM, at least

four people from IBM.

CHAIRMAN THOMPSON: Bob, I would like to ask a question.

How many people do you think IBM would throw into this project

if there were no industrial volunteers?

MR, BEMER: That's the four people I am talking about. In

order to get any more than that we would have to hire people

and I hope we can. If we are able to hire more people for this

project, we will put them on.

MR. GEORGE W. KUSS (A. 0. Smith Corporation): There are

different deadlines though. The deadline for your model there

would be about two years or a year and a half?

MR, BEMER: No, has anybody quoted a delivery?

MR. KUSS: Two and a half years. I understand the Govern-

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T K K 1 * 2 2 0 1

6

ment last summer made one earlier than that.

MR. BEMER: We will have to produce a system for the first

machine delivered, whether it is the Government or not. So if,

say, the Government got a machine in a year and a half or two

years, we still have to have all the systems working by that time.

I have been thinking, estimating that if delivery on the

Model 3 were somewhat a year and a half upward for the first

machine and we could probably hope to complete this before nine

months or a year. It is very close to simultaneous, and since we

would take it for concurrent projects, the IBM commitment of four

people should be just the same, no matter what.

MR. KUSS: If they are run concurrently, you could even do

that.

MR. BEMER: A great many gadgets are similar in both of them

and if you haven't violated any miles, then all we have to do is

take the processor and to do two things to it.

One thing is to change the processor so it uses the Model 3

facilities, except the simultaneous output, and change the outward

program that produces so that that takes advantage of it.

At least, then we would be safe.

MR. KUSS: Including the Autocoder subroutine. Then it would

be a matter of changing the macros.

MR. BEMER: I am sure we will or should be able to have at

least four people. I am not saying that we have four people put

on immediately, but I will certainly work very much on it and Bill

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRAN CISCO

S UT T E R 1 *2 2 • 1

will give part of his time and Prank Williams will certainly

give all of his time.

We can certainly pass that one.

CHAIRMAN THOMPSON: Don't you think it would add weight if

we were able to set a date at this meeting for the first get-

together of all of the people that are going to participate in

this, plus all that are going to be working on it from IBM?

MR. BEMER: It certainly would. Not only a date, but a

place.

CHAIRMAN THOMPSON: A date and a place?

MR. BEMER: Yes.

CHAIRMAN THOMPSON: And do you have any feeling for how

many weeks hence this should be?

MR. BEMER: I think the timing depends on you people, when

you can get commitments in your place and when you will be able

to figure on whom you want to put on it and get rolling.

As far as I am concerned, we can do all we can do before we

meet in a matter of two weeks.

CHAIRMAN THOMPSON: Two weeks?

MR. BEMER: Yes.

CHAIRMAN THOMPSON: Well —

MR. BEMER (interposing): I think the best place to do it,

if it were possible, would be New York City, because we have all

the people with FORTRAN experience there that could advise us

during the initial phases of it in setting it up.

S T E N Q T Y P E R E P O R T I N G C O M P A N Y

S AN F RANCIS CO

MR. KUSS: How long do you think we need for the group to

get together?

MR. BEMER: I think it would be a week. I think it would

be a week of damned hard work.

CHAIRMAN THOMPSON: Well, what is the feeling from the group

those that have made commitments or those that are just thinking

they, perhaps, will come into it?

Is two weeks satisfactory as a target date for our first

working committee to get together?

MR. BEMER: Here is a man that can authorize the people

right now.

(Whereupon, at this time Mr. Dick Cline stepped into the

room.)

MR. EDWARD B. BERNINGER (Procter & Gamble): Could you ask

the people individually, you know, that are committed or almost

committed?

CHAIRMAN THOMPSON: Yes.

MR. BERNINGER: If their companies are represented here?

CHAIRMAN THOMPSON: Yes. The Texas Company has committed a

man.

The Eastman Kodak Company has committed one man.

General Electric has contributed one-half — a woman.

(Laughter.)

Westinghouse Corporation has committed a man.

Standard Oil of New Jersey and A. 0. Smith Corporation have

S T E : . u l . V P E R E P O R T I N G C O M P A N Y

J A N r ' . i a M C I J C D

committed two-fifths of a man.

MR. BEMER: Two-fifths of a man?

CHAIRMAN THOMPSON; Standard Oil of Ohio has committed an

entire woman.

MR. KUSS: That's 20 percent of each time for two men?

CHAIRMAN THOMPSON: That's my list to date unless anybody

is prepared at the moment to make commitments that they haven't

announced to date.

(No response.)

MR. BERNINGER: I would say for Procter & Gamble, we can

contribute computer time.

CHAIRMAN THOMPSON: That is good.

MR. KUSS: Who does the final assembly?

MR. BERNINGER: I am sure we can do assembly.

MR. BEMER: Where are you located?

MR. BERNINGER: We are in Cincinnati.

CHAIRMAN THOMPSON: I know that there are people that

aren't at this meeting that will come forth very shortly and I

estimate — well, I won't make any estimation.

MR. WILLIAM M. SELDEN (IBM): I have a point of information

Two weeks from now would be the 30th of September to the 4th of

October. What about the 7th of October to the 11th?

MR. BEMER: That would be very good.

CHAIRMAN THOMPSON: All right. It Is the 7th to the 11th

In New York City.

S T E N Q T Y P E R E P O R T I N G C O M P A N Y

CAN F RANCIS CO

MR. BEMER: If possible, we will do it at some other place,

if it is important, but I think for the initial stocking it

would be advisable.

MR. SELDEN: We can travel, but all the people that wrote

the original FORTRAN could not travel for a week just for specu

lation.

This would definitely be a disadvantage.

CHAIRMAN THOMPSON: This would be if it were — I don't

see why we can't decide on New York City between us right now.

V/e have the various facilities there.

MR. BERNINGER: I am looking at the names of the companies

who submitted their men. Kodak Company and the others are quite

close, except The Texas Company.

MR. BEMER: You can't tell about the Texans in New York any

way.

(Laughter.)

CHAIRMAN THOMPSON: All right. Shall we take a quite vote

on New York?

All in favor will say "Aye"?

(Whereupon, the majority of the conference participants

indicated themselves to be in favor.)

And all opposed?

(No response.)

CHAIRMAN THOMPSON: The ayes have it.

MR. BEMER: Yes.

STENQTYPE R E P O R T I N G C O M P A N Y

SAN FRA NCISCO

11

CHAIRMAN THOMPSON: All right. Then It will be in New York

on October 7th to 11th and I will issue a general GUIDE letter

as soon as I get back to Houston, inviting anybody to attend it

that so desires to contribute materially to this project.

Now, let's back up to number two.

Dick, we have been talking about industrial commitments on

this project. Would you like to say some words on IBM's partici

pation?

MR. RICHARD L. CLINE (IBM): I have one person currently

working in the scientific area.

A PARTICIPANT: Could you speak a little louder?

MR. CLINE: Louder?

A PARTICIPANT: Yes.

MR. CLINE: We have one person in this scientific area, and

this individual is going to be planning the FORTRAN system for

the Model 3.

Now, what I would like him to do is to work with you people

during the planning stages for the FORTRAN system for the current

machine.

This individual is Frank Williams.

MR. BEMER: You haven't been thinking of running them con

currently?

MR. CLINE: Pardon me?

MR. BEMER: You haven't been thinking of doing the whole

thing as a single project?

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1 -22D1

12

MR. CLINE: Model 2 as well as Model 3?

MR. BEMER: Yes. That's the way I envisioned the project.

There is nothing wrong with that. We just talk together.

MR. CLINE: I feel, at the same time, you plan the Model 2

FORTRAN, the Model 3 FORTRAN could be planned.

MR. BEMER: I think you could do more than that. You could

make a common flow.

MR. CLINE: I see.

MR. BEMER: As far as the processing is concerned and

making the plug-in, so that we Just pull one out and plug another

one in like a black box type of thing.

The black box for each thing is different for the two

models, but there aren't really an awful lot of differences.

Further, the Model 2 FORTRAN will run on M0del 3 if we

take the minor precautions which we will take.

MR. CLINE: The input and output operations will be consider

ably different, but the planning through the flow chart stage

will probably be the same.

MR. BEMER: Right. I don't see any reason why this thing

can't be a whole blended project. Another reason it is good as

a blended project is that it allows us to make better use of

part-time men, where supposing somebody had a man they could put

on full time for the 705 model 2, and he had this particular

project, maybe somebody had a 30 or 40 percent man that they

could put on the thing and he could be put on to convert that

S T C N G 7 Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

13

same piece to Model 3.

I think it would give us better use of partial assistants
for that reason.

For that reason, I would be favoring that we would con-

tribute our people towards both and that we are assured that we
do it that way.

MR. CLINE: I will have the one individual to work with you

in the planning area and this will carry through the flow charting
stage,

MR. BEMER: Well, we will probably

MR. CLINE (interposing): I hope to add one or two people

to this area; as of now, there is nothing definite on that.

MR. BERNINGER: One point in talking about Model 2. Is this
useful to Model 1?

MR. BEMER: We haven't settled that. We should go back to
it when we talk about configuration,

MR. BERNINGER: I see.

MR. BEMER: I think, just to make sure that IBM does not

fall short on this thing, Bill, Bill and I will probably spend a

very great deal of time — and we will spend a great deal of time

until we can get some other people to help out on this thing.

If we do the actual coding ourselves, maybe one and, or one
and a half programming.

CHAIRMAN THOMPSON: Well, it sounds like IBM participation

is a little light, Dick, of course, I know you have personnel

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U r T E H 1 - 2 2 0 1

problems, too.

It seems like IBM has already announced that they are plan

ning on a Model 3 FORTRAN and that you could throw in.

Certainly you were planning for more than one man later on

in that development, I am sure?

MR. CLINE: Well, as I mentioned, we plan on adding people,

but since the people don't exist as of this moment, I can't make

any more definite commitment right now.

I do want to add, maybe, one or two people to this area.

MR. BEMER: If you are going to make a 705 FORTRAN sheet,

we will have to add a lot more than this because it is now some

thing like 25 to 30 man-years spent in 704 FORTRAN, and I

estimated the 705 FORTRAN as 6 to 8 man-years.

You certainly couldn't do this 705, Model 3 FORTRAN in 6 to

8 man-years as an individual project.

And if you have two years' delivery date, that would be

three to four people.

MR. CLINE: We are going to draw here on your people who

are working on the FORTRAN system on the 709 and the experience

that you people have, and also on the experience of this committe

which is being set up right now.

MR. BEMER: Right, but —

MR. CLINE: (Interposing) So it isn't starting an entirely

new project.

MR. BEMER: That's why we are not quoting 25 to 30 man-years

S T E N Q T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1 -22D1

15

Or, say, 15 to 20 for the 705, being a similar machine, that Is.

CHAIRMAN THOMPSON: 1 don't believe that Industry should

be expected to carry the major load on this particular thing,

Dick.

1 would be disappointed if IBM didn't permit even 10, 15
people.

MR. CLINE: I think the first thing that should be done Is

to sit down and review what has to be done.

CHAIRMAN THOMPSON: Right.

MR. CLINE: Yes. We have to get a good estimate of how

long this is going to take and then go on from there, and I as

sume this Is going to be done this week of October 7th?

MR. BEMER: Right.

MR. SELDEN: I assume we will be m better shape at that

week to have comments on this because I believe that Bob and

myself will be doing quite a little in looking into this matter

before that meeting.

MR. BEMER: I get some other news for you, too.

(Laughter.)

CHAIRMAN THOMPSON: I think it is important for IBM to,

maybe, even over-extend themselves at this point because it cer

tainly is going to have an influence on the way the GUIDE letter,

the GUIDE Is going to be sent out, the letter that is going to

be received.

If the tone of this letter is, "Well, industry Is going to

SAN F RANCIS CO

SI JTTCK

16

carry this ball and IBM is just going to sit back on their --

and U3e industry to do their work that they have already com

mitted themselves to" —

They have already committed themselves to this at this

meeting, and it is going to have an unfavorable reaction, I am

afraid.

I think that, on the other hand, if IBM shows a hearty

enthusiasm, that industry is going to react in kind.

MR. CLINE: Well, I agree with you on that point. Now, I

don't know just exactly what in the line of commitments have

been made so far by IBM. This was done where?

CHAIRMAN THOMPSON: This is being done right now by you.

MR. BEMER: We haven't done anything yet.

MR. KUSS: Originally, you 3aid you would coordinate the

project?

MR. CLINE: Yes. IBM would coordinate.

MR. BEMER: Well, I am very much desirous of seeing this

thing going right. I think it is damn important, and we have to

consider the way our programming is set up in IBM, specifically

in this case between Dick and myself.

Dick is in charge of 705 program, per se, that is the period

we sit on the other end, running the system.

Now, I do have people reporting to me and in emergency or if

it were the proper way of doing it, of doing the things, we could

put these people on so the project wouldn't suffer.

S T E N G T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

SUTTER I-22CI

17

MR. SELDEN: I think that we are In IBM all agreed that this

is a good project and we have possibly some slightly different

views about the dangers of committing IBM positively to do some

thing that we think it can do and feel that it should do, and

then we can't.

CHAIRMAN THOMPSON: I don't see why you would have any

qualms about this.

MR. BEMER: I don't have any qualms, mostly because I am

brasher than Dick is.

MR. SELDEN: Dick doesn't have four people that can meet

with you.

MR. CLINE: I think if it is a matter of 15 people, this is

going quite high.

MR. BEMER: It is not a matter of 15 people. I think we

should contribute four people on a full-time basis, at least,

and possibly some part-time help from Bill and myself.

CHAIRMAN THOMPSON: Don't you think, Dick, as a result of

this meeting, if it were determined that you ought to have 10,

15 people on this project, it would just be a matter of going to

management and saying, "Gentlemen, this is what we need for this

job, let's go out and get thera.v

I am sure the people upstairs would say, "Well, go and get

them."

MR. CLINE: I think this is a case of determining Just what

percentage of the 705 users would use the system and how much

S 'TENQTYPE REPORTING COMPANY

SAN FR A N CISCO

S UT T E R 1 -22Q1

18

they would use it. The commercial users — the commercial users

of the machine are the greatest percentage and, I think, this

should help determine the percentage of effort that 705 applied

programming is going to devote to this project.

MR. BEMER: Let me put in a couple of words here:

For one thing, this is a chicken-egg proposition. I don't

think we can adequately determine the amount of effbrt of

scientific work to be done on the 705's until we get a system

they can use it with and sell it.

In other words, I don't think as much usage is being made of

it unless we go out and talk it up a little bit. I really think

you have to do that and present them something that they can

use, and I think they will be damn glad to use it. j

In the second place, we are not so much creating a FORTRAN

as we are a mixed system, where not only the scientific use of it

but the commercial use, the commercial user can come in and use

FORTRAN, as well as, I think, there are many cases where you

will find you have mixed application.

Certainly, the first to do something on this 650 was sort

of on the borderline anyway.

The third thing is that Jack is not down at this meeting

here, but on my way in, I stopped and took a shower at his room —

(Laughter.)

— and I think he agrees with us on the importance of committing

some people to such a project and that the projects will be done

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1 -22CI1

19

essentially concurrently.

So, we could split our effort this way

J CHAIRMAN THOMPSON: Les, do you have something?

MR. LESTER W. CALKINS (U.S. Steel Corp.): In answer to

Dick, I would Just like to make a passing comment. I think that

many managements around the country are bearing in mind that it

is a company management as such, such as the 705's. They started

out with high hopes of reaping a lot of dollar benefit from the

705.

Then, after they got into it for about eight or nine months,

the hopes were still high, but they were somewhat lower after

they started to face reality.

Then, after the machine came in and they found out actually

what they could do, I think that the hopes were still high, but

the picture didn't look quite so good.

So, I think, from the financial point of view, many manage

ments around the country are starting to say:

"irfell, why can't our engineering people now use these 705's

with the full realization that some of the work that they do in

terms of benefit would be tremendous by comparison to the number

of heads ordered to roll."

So, there is a definite, a very definite feeling around the

country now of the runners of this equipment to turn to engineer

ing.

I think It is essentially that some thing be provided along

this line to give them that vehicle, and I think It even goes

STE N G TV P£ REPORTING COM PAN Y

BAN FRANCISCO

20

further than that. I know that in United States Steel, in the

case of United States Steel, we have some 650's and we have a

705, and we are starting our engineering effort now.

We want to select a language which they can get to use on

our 650's to go with our 705's at the same time.

We want to be able to go to the machine that we think we

would be able to use in the engineering, namely the 704, but if

we don't have that vehicle and, with the accounting management

turning to engineering, if we can't provide the system that we

are talking about here, then we are in trouble.

Then, I think it is definitely IBM's responsibility here. I

think they really owe it to the 705 people because the 705 has

been more or less the pet project along the engineering line.

MR. JOHN B. SHEPPARD (We3tinghouse Electric Corp.): Dick,

I don't think it is so much the function of the amount of time

used on the 705 as the value of the usage to the customer.

Now, I would say from some of ray own studies so far that

engineering time on the 705 pays off at least 5 to 1 as it begins

data processing operations in our particular location, and these

are the kinds of pay-offs we are looking for because it is very

difficult to justify equipment if you are forced to do such

justification strictly on data processes, data processing opera

tions.

This backs up what Les is saying, but I have had very close

and intimate relationship with this type of study for months now

5 T E N D T Y P E R E P O R T I N G C O M P A N Y
S A N F R A N C I S C O

SUTTER 1-2201

21

and I know exactly what this Is meaning to us.

The engineering part of it, the scientific part of it, is a

terrific lift to any justification and any "look-see" into

future equipment that might cost more money to do a better Job

and so on.

We are all looking for it and we are all looking forward to

it.

MR. CALKINS: To add one more thing, we have gone through a

cost study now. The basis of this cost study goes something

like this.

In other words, when you ask a lot of people how you are

making out on your computer, they will say:

"Well, we are breaking even or are in the black."

What does that mean?

I think a lot of people are talking about the current

savings versus current costs, but when you take the approach that

you want to know what your accumulative savings are relative to

your accumulative costs, I think you can count on your two hands

the number of people that are really making out as a result of

the study.

The only happy note was that we were not quite as shocked as

we thought we were going to be, but when we start bringing the

engineering people into the thing and some of the problems that

they can perform, again backing up what John said, we are

starting to show a far better picture.

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FrtANCISCQ

SUTTER 1*2201

22

MR. BEMER: Well, I can give you another thing on that:

Dr. DeCarl made a tour of various 705 installations. He

was pretty frankly shocked at the same things you are talking

about.

They weren't making any more profit then out of a machine

that should be capable of a lot of profit. If you were thinking

about just letting the scientific people go off on their own

and just throw in applied science men to help the commercial

people get straight on the profit, I have no doubt whatsoever

that if we came up with a proposition, the doctor would say

it on FORTRAN off 705 and no trouble of getting them.

MR. CLINE: I don't think there is any question here

about the desirability of having such a program. This is why we

decided to develop such program for the Model 3.

I think the whole point is — the whole point is how long

is this going to take?

How many people are the customers going to provide?

How many people is IBM going to provide to bring this to a

successful conclusion?

MR. JAMES D. TUPAC (Rand Corporation): I think there is

one point. As long as people are going to provide people, you

should have gone on the presumption that the industry is going

to provide nobody.

Make the assumption that industry wasn't going to provide

any help at all and the fact that you have committed yourselves

S T E N D T Y P E R E P O R T I N G C O M P A N Y

S AN FRANCISCO

SUTTER I -22DI

23

to putting out a system for the 705, Model 3, seems to me that

in order to have something in any length of time, you must have

thought that this is going to require eventually 6 or 8 or 10

people to get it finished.

Otherwise, the same thing would happen that is happening on

the 704. It was two years after the delivery of the machine

before something was out.

MR. CLINE: That's right, but this is a system for the

Model 3 and we have not in the past gone back and done something

for past machines that we are doing on the current machines.

If we did this, of course, it would require a tremendous

effort.

MR. BEMER: That's exactly why we will be so grateful for

GUIDE to provide this thing, but now I know we put in at least

five man-years of effort on prints before we turned it over to

Prank Williams for just the general ratings and prints and are

nowheres near the magnitude of FORTRAN.

The way it has to be done, I think we have to double the

thing, even starting from scratch, we have to throw in eight to

ten man-years.

MR. TUPAC: That's right. I don't think you realize the

magnitude of the job.

MR. BEMER: 705 people have never done a FORTRAN before.

MR. CHAMBERS: It seems to me not too long ago when we met

at Poughkeepsie, some time was quoted there to us, something

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER I -22D1

like 6 men, three man-years.

CHAIRMAN THOMPSON: Six to nine.

MR. CHAMBERS: Something previous, some previous

minutes that my management has, and this sounded very encouraging

to us.

MR. BEMER: I thought I said about six man-years.

MR. CHAMBERS: Well, you are wrong with that.

MR. BEMER: I hope I was not.

MR. CHAMBERS: But, evidently, something has come up

since that meeting, primarily the Model 705, Model 3, which has

amplified the system and that you want to make a little more

powerful — you want, perhaps, to make it a little more powerful

than you had in mind at that time?

MR. BEMER: I think personally that the existence,

the future existence of the Model 3, 705, demands that we have

Model 1 and 2 for the carry-over into it.

MR. CHAMBERS: Absolutely.

MR. BEMER: We need that to get started.

MR. CHAMBERS: What I am trying to clarify is this:

This is being increased. The previous estimate on the time

necessary for the development.

MR. SELDEN: I think not. Pardon me, it is not for

an estimate.

MR. BEMER: I don't think so, not for the original

system. We are still talking six, possibly eight for the origina;.

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

system. We are talking about that and there would be a FORTRAN

system for the Model 3 which if there were no co-operative

effort, IBM would probably have to throw in another six or eight

man-years of effort, possibly a little more, because it might

turn out a more complicated process.

So that if you added them together for the two projects,

this would turn out to 12 to 16 man-years of effort.

Now, knowing how the things go, I propose to almost put the

two projects together and reap benefits of both and, perhaps,

actually come within our estimate of the man-years.

MR. SHEPPARD: This was the question that was coming in my

mind.

It certainly seems to me that FORTRAN was developed, Model

1 and 2, that it would be a much easier job, too.

MR. BEMER: Oh, yes.

MR. SHEPPARD: It v/ould be a much easier Job to convert It

into Model 3. Maybe some could be direct conversion, maybe some

could be some off-shoots from the Models to make it more powerful

for the capabilities of the Model 3.

It would almost seem to me for the amount of time that you

would put in the Model 3, F-5 language, that you could do it on

the Model 2, and then carry it over.

CHAIRMAN THOMPSON: I think that for reasons of capability

-- for reasons of compatibility on the current generation of IBM

computers, that this should be considered as a crash project and

STENOTYPE RE PORT ING COMPANY

SAN FRANCISCO

SUTTEW 1 -2 2 m

that there are some very good reasons for getting out this Model

or Model 2 FORTRAN just as soon as we can.

I am thinking from Bob's proposition that 6 to 12 months

would be what we are talking about, and during that time — since

the FORTRAN language is already in existence — there is no

reason why training couldn't begin immediately and people could

even start writing programs in anticipation of using their 705.

It could even be checked out by the 650 or 704 and be all

set for the Model 3* 705.

MR. SHEPPARD: That's a very good point.

CHAIRMAN THOMPSON: I very strongly urge IBM to consider

this as a crash project and as such throw in even over-commitments

rather than play it coy and cautious.

MR. BEMER: Well, let's put it this way:

By the time everybody shows up with their personnel from

October the 7th to 11th, I think, in fact I would about personally

guarantee that the doctor will see that we have enough to make

the GUIDE people entirely happy with the sharing of effort.

CHAIRMAN THOMPSON: All right. But for the purposes of this

letter, soliciting further industrial help, what number can IBM

authorize me to state as a reason?

MR. BEMER: When do you write the letter?

CHAIRMAN THOMPSON: As soon as I get home.

MR. BEMER: I can make a telephone call today, if you like.

CHAIRMAN THOMPSON: All right. Let's get it. I think we

5 T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRAN CI S CO

27

should get it settled today and make it on the high side, if you

can.

MR. SHEPPARD: I know that from our standpoint, the only

reason that Wally Chambers is here, is to make sure that we can

come to a definite decision today as to how we are going to

proceed on this.

If we are going to let it hang over to another GUIDE meeting

or a special meeting somewhere else, we are way off beam.

I think we have to come to a decision today as to what to

do, committing ourselves on this and get going.

CHAIRMAN THOMPSON: I don't know if you came late, John?

MR. SHEPPARD: I realize, I realize that I did.

CHAIRMAN THOMPSON: We have already decided that the first

working committee will assemble in New York, October 7th to 11th,

for the purposes of drawing up their sleeves and getting down to

work, probably spend a week -- perhaps even more.

MR. BEMER: Yes. I got an Idea. If you would like to have

Bill Selden outline some of the various processes of FORTRAN

so that people here that aren't too familiar vd.th the operation

might see the overall standing, the breakdown, the organiatlon,

the number of passes through the machine, the arithmetic standing

and statements, how they would be accomplished In macros, the

final merging —

I could excuse myself a bit here and come back with some

reasonable work and word.

5 T E N Q T Y P E R E P O R T I N G C O M P A N Y

SAN F RANCI SCO

SUTTER 1*2201

28

CHAIRMAN THOMPSON: All right. Why don't you do it? Bill,

v/ould you like to take over?

MR. SELDEN: I would. I would be very pleased to. I would

like to start — Incidentally, do you wish the stenotype

transcript of my remarks?

CHAIRMAN THOMPSON: Why not? He is here.

MR. SELDEN: I am not afraid of being quoted, by the way.

(Laughter.)

I would like to get some indication of what you want to do.

Do you want me to describe the 704 FORTRAN or 705, or would you

like me to try both?

How long do you want me to take?

CHAIRMAN THOMPSON: You might want to consider that this

is coffee break time and, maybe, this might be better starting

at 10:30.

MR. SELDEN: All right.

CHAIRMAN THOMPSON: Let's break for coffee.

MR. SELDEN: Just a moment — Oh, I'm sorry, please finish

your remarks.

CHAIRMAN THOMPSON: During coffee break, decide in your own

mind how best to present it and we will leave it to your Judg

ment, as something between half an hour and an hour.

MR. SELDEN: Is half an hour or an hour going to be too

long?

CHAIRMAN THOMPSON: It sounds like being very reasonable to

me.

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

29

MR. SELDEN: All right, thank you.

(Morning coffee break.)

CHAIRMAN THOMPSON: Let's get started, Gentlemen. We can't

run over 12:00 o'clock.

I think the most interesting item of business at the moment

would be the results of Bob's call to New York.

MR. BEMER: I didn't call New York, didn't have to.

CHAIRMAN THOMPSON: Before Bill Selden takes over, we would

like to know what you found out.

MR. BEMER: Listen to me, so I don't say anything wrong.

(Laughter.)

I will say it one way and you can correct me if there are

any small knots in meanings. We don't know yet how many people

it would take us to produce a 705, Model 3 FORTRAN system. We

will start to determine that when we get back to New York because,

after all, the machine has been only announced a very short time

and we didn't have a chance to get together on it.

If one would consider the total expenditure of effort all

the way along, IBM will commit at least the people it would have

to do or would have to commit for the 705, Model 3 FORTRAN

project, plus probably some extra help, if necessary, on this

thing.

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S AN FR A N CI S CO

SUTTER 1 • 2 2 D 1

30

Now, when you merge these things together, we still have no

clear definition of what will be valuable one way and what you

people would feel is valuable the other way.

But as far as the commitment of personnel, we would the

least we would have to do, if this whole project would have

never come up, we would have as many people as if this whole

project would have never come up and probably more so.

We will be in no way unfair to GUIDE, we hope.

CHAIRMAN THOMPSON: Well, speaking for The Texas Company,

that sounds fair to me. If you pretend we are not even going to

be around and you would throw in a number of people that it would

take without us, I feel that we couldn't ask for anything more.

MR. BEMER: This is the overall project.

CHAIRMAN THOMPSON: Yes.

MR. BEMER: Right.

CHAIRMAN THOMPSON: George, did you want to say something?

MR. KUSS: That will take two or three years to get it.

MR. BEMER: It is probable that most of the people that we

throw in will be considered on the Model 3 project. That's where

they would go anyway as soon as we start working on it. We go

back and forth between the two and this we would be able to work

out in more detail in New Y0rk, and then we would know where we

stand.

I am certain that we would not, in any way, be falling short

in our commitment — our responsibilities, I should say, to be

S T E N D T Y P E R E P O R T I N G C O M P A N Y

S AN FRANCISCO

SUTTER I -22DI

31

fair to GUIDE and the whole business.

I think that's what we are really trying to say beforehand.

CHAIRMAN THOMPSON: Well, when you mention one man — when

you mentioned one man, it shocked me a little bit.

MR. BEMER: No.

MR. CLINE: That's one man we have now.

MR. BEMER: That's the original planning. That's in addi

tion to that. Bill and myself will also help in the original

planning.

When we meet in New York, we will be at least three people

from IBM sitting in this thing.

CHAIRMAN THOMPSON: AH right. Has anybody any further

comment?

(No response.)

CHAIRMAN THOMPSON: Well, If nobody has any further comment

on this item, I suggest that we move on and turn the floor over

to Bill so that he can fill us in and give us some rough Ideas

of what is involved In this job.

ADDRESS BY WILLIAM SELDEN

MR. SELDEN: Thank you. I don't know whether it Is best up

here or on the other end (indicating).

CHAIRMAN THOMPSON: Wherever you wish.

MR. SELDEN: I hope this will do.

5 T E N Q T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SLI TTER 1 * 2 2 • 1

32

CHAIRMAN THOMPSON: Pine.

MR. SELDSN: I would like to start with some definitions

which will probably make this a little bit easier.

I would like to say that we ask questions if I am not mak

ing myself clear.

We talked about FORTRAN as a language. This is the

expression of key-punching or arithmetic symbols and various

additional symbols that you think as a FORTRAN language program.

The general language is the same for all computers. We

have at the moment some detailed differences between the

language of the 704 FORTRAN and the language of the 709 FORTRAN.

While we can say that F-4 language will be slightly dif

ferent from F-9 language, but that the language for FORTRAN is

common to both of them and, incidentally, we expect ascending

compatibility through machine processes.

F-9 language Is richer, has more expressions in the language

than the F-4 language.

We speak about the object program. This is a program in

the native machine language. 704 binary, 705, the "H" and all

the five characters, 650 words or whatever this is.

This Is the object program and we would like to speak of

the FORTRAN system as the FORTRAN executive or the processing

system of processing.

The 704 FORTRAN has several parts. I will describe this

program:

S T E T N O T Y P E R E P O R T I N G C O M P A N Y

S AN FRAN CI S CO

I Will describe this program not in terms of the language,

but in the terns of the processor. By the way, there is a

description of the paper that was presented in California, of

the paper presented in California having some description of

FORTRAN.

I didn't bring any copies of that with me. I regret that.

If you are not familiar with it, we might pass a paper around

and if you put your name and address on that, I would try to see

that this got mailed to anybody that wanted it.

Would somebody start a paper? I can only say that this

could be mailed out if it is still in stock.

MR. BEMER: Yes. We have quite a few of them.

MR. SELDEN: The FORTRAN is divided. F-4 is divided into

six sections.

The first section is in two parts. There are various other

peculiarities. The first thing that FORTRAN does is to read

instructions, cards, translate the cards into symbolic instruc

tions .

Then it examines the program that it has written. It is in

symbolic language, to increase its efficiency, and then it

transfers to the left the section which is essentially a SAP

assembly program.

In our case it would transfer it to the Autocoder program.

The first section of FORTRAN has two states.

The first state is the arithmetic scan. This occupies approxi-

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

S UT T E R 1 -23L J1

34

mately a full man.

The second phase is the second state of the first section,

and that is the portion that deals with non-arithmetic state

ments. It goes to format statements and so forth.

The second section of FORTRAN deals with the problem of

Do' s.

Do's is a section of coding modified by indexing.

The third section of FORTRAN merges the output of the

arithmetic and non-arithmetic statements.

The fourth section of FORTRAN operates the resulting pro

gram in a "Monte Carlo" technique to determine the most fre

quently used branches.

The fifth section of FORTRAN, having discovered the most

frequently traversed branches, alters the coding to be more effi

cient.

And the last section is the symbolic assembly, equivalent to

the 705 symbolic.

A problem is taken in the optimization features and seems

to us that the characteristics of the 705 are such that optimiza

tion will pay off much less in a 705 than in a 704 and 9.

So we are proposing for this project, for this project at

least, a processor which does not have any very complicated —

even if any at all — optimizer section.

MR. BERNINGER: That would be the sections 4 and 5?

MR. SELDEN: 4 and 5 would have no equivalent and in the F-5

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRAN CISCO

SUTTER 1 *2 2 • 1

35

language, In the F-5 processor.

MR. BERNINGER: Is this due to the fixed FORTRAN?

MR. SELDEN: The optimization in Sections 4 and 5 optimizes

the assignment of three index registers.

Our thinking is that where indexing is used in the 705, we

will use memory positions and have a fairly large number, perhaps

10 or 20 index registers.

MR. BEMER: Yes.

MR. SELDEN: And with this number, the increase of effi

ciency to optimization will be negligible.

MR. BEMER: This is sort of occurring,if you only had one

index register you have a very definite time working everything

through. You get more and more and more things that come in in

an infinite number of index registers. You don't have any

problem at all because you have something for everything.

However, a number of 10 or 15# like that, that does not

expand too much memory for registers.

At the same time, it should provide, let's say, 99 percent

of that infinite efficiency.

MR. SELDEN: I would also say that future FORTRAN processes

are planned with the ability not to optimize a program and to

first process and in many instances will not have optimizers,

but in every case we think it is worthwhile to be able to avoid

the optimization.

So, we don't think we are losing anything here.

S T E N O T Y P E R E P O R T I N G C O M P A N Y

G A N F R A N C I S C O

SUTTC* 1 -2 2D1

36

The language of FORTRAN, next perhaps we have, and we have

mostly completed and are finishing working on the proper size

specifications for the F-9 language.

What improvements in the basic FORTRAN language will be

present and at nine this is a matter of offending compatibility.

F-9 is a richer language than F-4. I hope that our project

will encompass writing a program. If F-5 language is identically

equal to F-9 language it can be done.

The one characteristic of F-4 processor is that it deals

with the floating point, binary words of six characters in

length, primarily dealing with binary of half-word lengths for

indexing.

We do not regard this as a property of the language, but a

property of the processor. It will be up to this committee in

part to decide how many word lengths and what fixed point and

floating point facilities you wish to put into FORTRAN F-5

processor.

I add here parenthetically that the way I envisage — we

envision — I am not the only one that is doing it -- the way we

envision the F-5 processor, it will be quite easy to add different

word lengths and make the floating point or fixed point or

whatever.

The Autocoder assembly system, I assume, would be used at

the tall end of FORTRAN F-5- This would have to be a somewhat

modified Autocoder in that, at least, system control would have to

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCIS CO

S U TTER » -2 30 l

be changed.

There are possibilities of doing more of the work which is

done in F-4 processor in FORTRAN via macro Instructions in the

Autocoder.

There is the possibility of improving the Autocoder in some

areas where a small change to the Autocoder could represent a

considerable saving in the work in the FORTRAN processor.

This is the sort of detail that I think we get into three

weeks from now when our sleeves are rolled up.

The arithmetic scan of FORTRAN is the beginning point of

the FORTRAN project to translate formulas. This is the best

documented section of the FORTRAN.

It is the one we know the most about in terras of ideal

float listings, float charts, and so on. Some of the other bits

are a little bit full of --

I don't think in any case we wish to transcribe the coding.

The method used in 704, FORTRAN, is readily available.

I have one copy of the paper describing it with me. The

people that are writing F-9 processor have looked at this paper

and preferred to write the F-9 processing section from this paper

rather than from the machine.

So, I think we can assume that this is well defined.

There are other techniques of scanning formulas which will

produce the same result that the arithmetic scan of F-4 does and

might well be better adapted to the 705, which with Its single

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANC 2ISCD

S UT T E R 1 -2201

38

character arrestability.

The man that wrote F-4, Pete Sheridan, is aware of these

other schemes and before I came out here I discussed it with him

and he is planning to talk with whoever writes the section,

discussing his method and alternatives.

I think that whoever is assigned this one or one of these,

one of these two persons' Jobs I was talking about — this pair

of people, I think, should be given format of their import and

told what theywant out in terms of macro instructions and be

told, "Go to it."

The rest of us would not be involved in this, in which rules

of the formula translation they use.

The process of the DO loops, the repeating back and forth

in the indexing, is not quite so well documented, and there is no

neat rule for this.

It is a collection of about a dozen rules with a few excep

tions.

This will probably be well to follow here exactly in the

approach of 704 FORTRAN, and that we have already had several

people spending several months trying to find some other approach

that would work — they don't.

Maybe, if we were engaged in a theoretical study, we might

all try to do it differently, but if we are working in a minimum

time to get something out, I propose what we just follow what was

done in this area.

STENOTYPE REPORTING COMPANY

S AN FRANCISCO

SUTTKR 1 -2 2 O 1

39

The merge, and we will have to have an equivalent, I am

sure, the optimizer will probably not have an equivalent in our

initial thinking, but we should leave a gap where we can put

one in in our ideas of how it should be set up, and we will

have an Autocoder at the end.

Now, there are some further characteristics that I think

we ought to discuss. I hate to say, MI," all the time. It is

mostly the departmental agreements.

I think that we should not have two states in section 1.

They should sort the source language into different tape files

of the type of statement that is Involved.

One type would be arithmetic formulas, one type would be

DO and repeat, one type would be Autocoder language instructions.

We should then process each type of instruction, each

class of instruction with a specific processor, one after the

other, and, of course, the Autocoder language instructions

simply get left on the side until the Autocoder comes in.

MR. BERNINGER: I have a question here.

Does this mean then that in the midst of algebraic forma

tion, you can start writing in regular Autocoder?

MR. SELDEN: Not in the middle of a single formula, however.

CHAIRMAN THOMPSON: Wouldn't this detract somewhat from

the featured compatibility?

MR. SELDEN: It absolutely kills it.

MR. BEMER: Wait a minute. This is the thing you write in

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S AN FRANCISCO

S U T T E R 1 -22D1

the Autocoder yourself. Part of your program is a feature of F-9

language. It is not a feature of the F-4 as it exists.

The F-4 model 2 which is just starting to be written —

F-9 allows it to make a subroutine in either machine language

or FORTRAN language and named; and later on that certain thing.

It all depends on what language we use here and where this comes

in.

In any event, since a subroutine written in Autocoder

language must be called for by name, it doesn't detract from your

compatibility because if you ran on another machine, you would

have to code that subroutine in that machine language to correspond

to it with getting the same name for that purpose for that

machine.

MR. SELDEN: Yes. That is very true. Many ventures into

Autocoder language will be ventures into macro instructions, and

subroutines which can have equivalent functions in the Autocoder

system for the other processes and add to memory instructions;

for example, it would probably be very difficult to equate to

any single 709 Instruction.

CHAIRMAN THOMPSON: So, it doesn't kill compatibility if you

are careful in the way you mix it up?

MR. SELDEN: In the general case It kills it; In the spe

cific case, you can do it.

We wish to narrow down the area of Autocoder language

statements. We wish to urge against their use; we wish to enrich

F-5 and F-9 so that people will not be tempted to use them.

D T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

41

MR. BEMER: This is the same problem you are running into,

what you are going to pay for optimization all the way through.

If you have, for instance, a primary dictionary and a

primary way of doing something, say that you do it this way, the

machine runs very quickly and will process yours rapidly, but

if you do it the other way, it is going to take the secondary

thing which is going to cut on your time and not be an efficient

program.

The man has an option. Anything he does will work, but if

he plays ball with the primary rules, he will make profit out of

it.

The same thing occurs here. If you are very careful to

make sure that everything you do is done in FORTRAN, no matter

how crudely, you never have to worry about writing a subroutine

to match the name in any other machine.

It is just a question of the price you wish to pay. If I

write a subroutine in FORTRAN language and then use it, I have

no problems at all.

If I write it in machine language and name it as a FORTRAN

function, then when I run up against doing this on any other job,

it will run into a stone wall and I will say that I haven't got

this.

In that case, you will immediately have to go out and code

that for that other machine, and it may be difficult remembering

what you meant last year.

STENDTYPE REPORTING COMPANY

SAN FRANCISCO

SU IT C K 1 -Z2Q1

42

I don't know but one must code In machine language — If

one must code in machine language, you've got to pay a penalty

on the compatibility.

MR. KUSS: Can I ask one question?

MR. SELDEN: Certainly.

MR. KUSS: In 705 typewriter and 650 and 704, a type

writer is a very valuable thing and we use it, we like to use

it.

How do you take this into compatibility?

MR. SELDEN: The 709 standard machine has a printer on

line for communication for the programming.

MR. KUSS: Which will be converted to the printer. Now,

what do you do for compatibility in FORTRAN? Do you just

delete that?

MR. BEMER: FORTRAN will just cause a sub-set of FORTRAN

language; in other words, you cannot write an F-4 program

into F-5 and expect to write on a 650, Tom^ You have to expect

that or don't write in the first place.

MR. SELDEN: 650 with tapes and typewriters attached,

which is a complete 650, could handle this problem.

I believe you could buy a 705 without tape drive and you

would have a bad time.

MR. BEMER: I have a solution here. You know, I marked

down "flag removal" for fast reassembly.

This is in connection with your patching and snapshot

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1 -2201

43

diagnosis, where you are writing a FORTRAN program and you sus

pect it may not run the first time because of some error in your

coding or perhaps overly pessimistic on your part.

I do this so you put in snapshot statements. People use

this aid say, **I would like to see this answer here and this

answer here, and this will give me some sort of a clue how far

I ran along correctly."

If you identify this thing as a special type of statement

in the processor in the first place, it can put it in as patches.

Then, when you later on delete it, it doesn't go on reassembling

the whole thing up to that point, it just pulls the patch out.

This is possible.

Another place that we should take advantage of flagging

and this could be done automatically as the preliminary program

goes into the first time — it is classified as to arithmetic

statements, the various types of processes simultaneously, and

we could look immediately to the operators and classify these

as certain types of statements.

Then we would have with each processor a dictionary of the

statement numbers or of types which are acceptable to that

machine.

Further, we could join with this the dictionary of 704's or

650's of various types. This would be a very simple matter.

And, if you so desire, at the end of any processing, it

could be pointed out to you that this program will not work on a

S T E N Q T Y P E R E P O R T I N G C O M P A N Y

SAN F RANCIS CO

S U T T C R 1 - 2 2 0 1

kH

704 because of this and this statement.

I think that's a very simple matter to put in, don't you,

Bill?

MR. SELDEN: Well, I wouldn't say that it is very simple.

It can be done simply.

MR. BEMER: I think it is.

MR. SELDEN: We do feel that processing systems that IBM

produces can no longer be expected to be finished and this is the

end of it.

You tighten in the edges, and that is wrong. There has to

be room for change and modification.

A great deal of the thinking on F-9 has gone into the

problem of keeping the F-9 processor open-ended, so that more

can be added to it, and writing, coding in a manner that it will

be undastandable to somebody else taking it up later on.

This, we feel, is intensely important. I am sure all of

you will agree with this who tried to change the program some

body else wrote eight months ago.

I would think that the output of the earlier sections of

FORTRAN would primarily be a system of macro instructions and

these macro instructions would go to the Autocoder and be pro

cessed.

I do not think that these macro instructions would bf the

same macro instructions we now have in the library.

I believe they should be a package, a system of macro

STENDTYPE REPORTING UClMPANi '

SAN FRANCIS CO

45

instructions that is meant to work together, but is not meant to

be particularly useful or helpful to anybody just wanting to

use one for some reason.

I believe that the final object program coming from the F-5

processor will be a large volume of subroutine and in the area

of data, but the effect of this will probably be very much the

same as the effect of the print.

There is a very tightly coded package of subroutines and

things in the interpreter and I believe that FORTRAN should pro

duce some set of macro instructions which produces a similarly —

a similar package.

Now, this goes along with the idea of separate projects very

definitely. We have complete precedents for separation of the

object program and the macro Instruction library, whatever you

call it, from the prior processing that was our print that

worked, that was our print that worked and there was no problem

there.

The problem of this processor, I hope, will look — I'm

talking now about Model 3 processing in particular, and it would

somewhat be In the program as if you were writing for a combina

tion of FORTRAN and the Autocoder.

That will be a method of writing a program completely in

Autocoder language but also be a method of requiring or writing

a program completely, avoiding the Autocoder so that you will

have essentially one assembly system.

S T E N C J T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

BUTTER 1 -2 2 O l

Now, this is something that is probably not part of the

immediate thinking of this group, to go into at this time, and

it may be somewhat beyond the scope of this group to work on, to

work on a major modification of the Autocoder for the Model 2.

Are there any questions? I talked about three-quarters of

an hour.

MR. ELDON C. DODGE (Stanford Research Institute): What do

you expect to do in regard to the format statements that are in

F-4 input and output? Will that be similar, will that be

similarly as flexible as F-4, for example?

MR. SELDEN: That is the most knotty problem we are looking

at now.

MR. DODGE: I thought so.

I©. SELDEN: I need a format statement which is more under

standable to get ascending compatibility.

We have a problem unless we keep the old format statement

available. The seven F-4 format statement is so powerful in

part because it depends in its operation on the characteristics

of the copy loop and does not produce an efficient method of

reading in on, out of the 709 or 705.

MR.BEMER: I have an idea here:

This problem is akin to the one we having moving between the

F-4 and F-9 language where we require pre-processors.

Now, any deviation we would make from the F-4 language would

require that we would pre-process on the 705* a source program

S T E H Q T Y P E R E P O R T I N G C O M P A N Y

47

meant for the 650 or 704.

This is probably a very fast-eyed process. Assume we wrote

the F-4 language for the Model 2, 705, and assume further we

wrote the F-9 language -- F-9 language for the Model 3, 703.

Then, compatibility between the two would have to be

achieved by a pre-processor. It takes the source program you

wrote this year for the Model 2 and converted to a source program

for the Model 3 next year.

Now, this is a relatively simple problem actually because

there is just a pretty much one to one correspondence.

We don't envisage any trouble at all between the 704 and

709.

Now, you can consider that even with identical languaging —

not identical, but almost identical languages, you might have the

same problem.

Supposing we kept to the F-4 language for the Model 2 and

we want to run something that was written for the 704 which had

this particular type of format statement.

We might consider processing the 704 source program so that

it produced a variable format statement which we would use for

the 705 only. Then, all 704 users would have to have a pre

processor which converted format statements of our type back to

the 704.

Now, this is a possibility, but it is not one that I like.

I am just tossing it out to show you where we have the

S T E N Q T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTE* 1 -22D1

'48

difficulties of compatibility.

I am also showing you that if you had any compatibility at

all it might be well to make the big jump on the Model 2 and

make the F-9 language for the Model 2 in which case your language

would be identical between the Model 2 and the Model 3, except

that you would have to use this pre-processor for the 704.

Now, if it should turn out —

CHAIRMAN THOMPSON: (Interposing) Excuse me, Bob; hasn't

that already been written?

MR. BEMER: What?

CHAIRMAN THOMPSON: The pre-processor to go from F-4 to F-9?

MR. BEMER: It is being written for the 704 - 9 series.

It will have to be written for the 705 series. If you write

two languages, F-4, that bear the same relationship as the 709.

Now, if the format statement gives us considerable difficulty

as it exists in the F-4 language, it will cause us then to come

to a pre-processor for the F-4 and 650 program as it is.

Now, if you are going to have any pre-processor at all, you

might as well have one, I think, that will do the work and not

only change your format statement, but change the F-9 language so

that you immediately, exactly are compatible with the 709 and

with both models of the 705.

MR. SELDEN: I think there Is no problem in F-4 to F-9

conversion, except the format statement.

I may be wrong in that.

i
f

STENUTYPE REPORTING COMPANY
SAN FRANCISCC

49

MR. KUSS: F-9 requires copy loop, too?

MR. BEMER: No.

CHAIRMAN THOMPSON: No.

MR. BEMER: There is no such thing as a copy loop problem,

fortunately.

MR. KUSS: When you go, I mean you require a complicated

statement for the F-9 as you do for the F-4?

MR. BEMER: We are going to considerably ease up the F-4

format statement on the F-9. This is one of the statements that

has not been completely specified in our F-9 language.

In fact, It Is about the only remaining one we don't have

because — well, I don't like the F-4 format statement.

(Laughter.)

MR. SELDEN: I would like to suggest that we leave the

precise details of the format statement for our meetings In two

weeks from now at New York. It is a lower level.

MR. CHAMBERS: (Westinghouse Corporation) How about pre

processors for 705's, to 704, 705, to 650?

MR. BEMER: You need them in the averse direction if you

had difficult format statements or anything difficult.

MR. CHAMBERS: Definitely.

MR. BEMER: For 704 you probably wouldn't have any difficulty

because It is about the same power as the 705.

If you want to try to do this on the 650 equipment for

transit without tapes, you couldn't do it no matter what you do

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN F RANCISCO

BUTTER 1-22D1

50

with the pre-processor.

MR. CHAMBERS: What I mean is -- would it not work with F-5?

MR. SELDEN: For transit language it would work on 5. You

could write a program using those portions of F-5 which were

available and for transit and have no problem.

You would get as efficient an object program which you would

find in most time writing.

A major specific difference here is the limitation on the

number of columns of alphabetic information on the 650.

MR. CHAMBERS: In other words, it is primarily due to the

fact that you enhance the source language?

MR. BEMER: Yes. The whole premise here is that we do not

confine ourselves to what we did the last time.

If we know how to make something better and really cut down

the coding effort we will do it, but we will make the old one

compatible with the new through the pre-processor.

MR. CALKINS (United States Steel Corporation): Would you

take any power away from the F-4 transit? (

MR. BEMER: Yes, we do,^by Gody' we are cutting away from the

704 FORTRAN to statements which can be done by two other statements!

which presently do not exist.

We are not taking any power away. We are not taking any

power away — we can't.

MR. CALKINS: We can't?

MR. BEMER: That's the unwritten law.

S T E N O T Y P E R E P O R T I N G C O M P A N Y

C A N r R A N C I S C D

(Laughter.)

CHAIRMAN THOMPSON: Looking to the future, Bob, wouldn't you

recommend the F-9 to be identical with the F-5 for the pre

processors?

MR. BEMER: I would. Between any of the machines — not

machines, between the languages, one will have to have a pre

processor, but if the F-9 language is written and used that way

for the 705, Model 2 and 3 both, you will have three-way

compatibility between both models of the 705 and the 709 without

any pre-processing.

This seems to me the most desirable way to do it.

I think we avoid a lot of bogging down type of detail by do

ing this.

It does mean this, though: This is the place we have to

caution, that if during the period of running 705 problems in the

F-9 language, you wish to put this back on the 704 and run it

not on the 709# then your 704, now, that becomes a machine with

theoretically less capability than either your 705's a3 far as

FORTRAN is concerned, and you would have to have some means of
going back to the F-4 language.

In other words, you would have to have a pre-processor in

the downward direction which would not only convert the F-9

language, which then seems identical to F-5, down to the F-4, but

you will also have to flag some statements in the F-9 that are

not possible to the F-4 FORTRAN.

S T E N D T Y P E R E P O R T I N G C O M P A N Y

S AN F RANCIS CO

S U TTER 1 -22D1

That's the cautionary problem.

MR. BERNINGER: In other words, this would give you some

descending compatibility?

MR. BEMER: You could get a descending compatibility to the

704 by virtue of the pre-processor.

MR. KUSS: Rewriting some statements?

MR. BEMER; And a few statements that would be flagged be

fore you can pcssLbly run it.

I don't consider this a tremendous objection because here

is the way I would do the things if I had a 704 program.

Now, let's say that I want to go up to 709, I dropped the

cards in the hopper, my old source program runs through the pre

processor, and I now have a program that works on the 709, but

really doesn't take any advantage of the 709 because it does the

same doggoned thing the p-4 language did.

It is only converted in the superficial details of the sub

set on the F-9 language.

I would then look at this list and see — "Well, there is a

place where I can insert a better type of format statement, here

is where I can knock off the whole section of coding because it

is really a section I can save, that I can name once and no use

repeating in the source language generally, and I say that I

trim it down and add a few statements till I fix it up properly.''

I have the option. I can run it as it is in no more

efficiency as I got in 704 — I can fiddle around with it in a

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

53

I ~ ~ " ~
I |

j language familiar with and add new statements and deUfce certain

| sections until I can really help it a lot.

But I haven't re^si^^^^eompatiblllty.

Now, I think that these pre-processors are not very diffi-

] cult things to run or wouldn't be.

They will be quick for one thing and, once you have pro-

| cessed thls Program for another machine, you have now a source

| program language, a source language program for that machine, and

you never have to do it again.

I would say that if I have a library of FORTRAN source

programming in my 704 installation, I am going to get a 709 and

shoot the 704 out, even if I am not, I will take that entire

library and process it once and for all and produce a correspond

ing library of F-9 source programs, and then I won't ever have

to use the pre-processor again.

As you can see, ostensibly, it is a one-type thing.

MR. SELDEN: I don't see why you do it at all, but then —

MR. BEMER: (interposing) I don't see how you can get away

| without doing it.

MR. SELDEN: We obviously are not in complete agreement here.

(Laughter.)

j MB. BEMER: You think that's any surprise?

(Laughter.)

MR. SELDEN: You have to translate the format statement or

(statements in the ascending, but if you have a more advanced

STENGTYPE REPORTING COMPANY

SAN FRANCISCO

SUTTER 1-22Q1

54

matter available in the F-9, the improvement in the F-9 language

will result in the same machine code at the end.

MR. BEMER: We are talking about superficial details such

as card format, the way the instructions are actually written

as an intelligible alternate.

MR. SELDEN: I agree — Sorry, oh, yes.

MR. BEMER: An amplification on this alternate to process,

it was incumbent, it is the thing to recognize, the old language

as well as the new language. You turn a switch and say, "Okay,"

old language and new language. I propose to have a little

separate processor here, a one-shot deal that converts, and we

never have to worry about cluttering up the processor from the

old into new.

I©. KUSS: Do you think it is possible to write a pre

processor to convert a qui ?k- program to F-5 language?

In other words, we have a large body of subroutines at the

moment and —

MR. SELDEN (Interposing): I would think so. It is mostly

three-address instructions that could be a three-element format.

MR. BEMER: I hate to be quoted on this right now, but it

sounds intriguing. Yes, it might be capable. It would produce

a presumably stupid format, but at least you can run them until

you can recode them in FORTRAN or polish them up in short

program.

This is a definite possibility because when we are loo king (2.

5 T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

S U TTCP 1 -2 2 • 1

55

through something and index register tags, it has a great simi

larity to the DOS and it would probably come out of there, yes.

That's for repeating some operations and we probably get

that and, well, it seems very reasonable because, really, print

is like a sub-set of FORTRAN. It lacks the full arithmetic

scanning capacity of creating a program for a format that you

yourselves have not broken down.

A PARTICIPANT: Do you have a print program which includes

a great deal of symbolic?

MR. BEMER: All you can do in that case —

MR. KUSS (Interposing) — is rewrite it.

MR. SELDEN: In the Spec instance of 705, I believe that

the prints symbolic can easily be equated in Autocoder.

MR. BEMER: That's true, but he means the broken-up section.

MR. SELDEN: But it wouldn't go to 704.

MR. BEMER: The pre-processor should be able to recognize

the print instructions and differentiate from the 705 symbolic

instruction and, therefore, could group the sections and only

process the print sections itself.

In this case you have to do something else about the machine

language.

MR. KUSS: The Autocoder Is just a column?

MR. SELDEN: Not a column, but very closely.

MR. BEMER: It still requires a subroutine.

MR. SELDEN: I am not tired of getting up and watching the

conversation — if there are no other questions, I am about

S T C N D T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

56

through.

(No response.)

CHAIRMAN THOMPSON: Thanks very much, Bill. I would like

to recognize John Sheppard.

John Sheppard has a couple of things he would like to say

now.

MR. SHEPPARD: Well, the thing I would like to bring out

is that I think as much as we are talking about this here in the

last few minutes has been more probably subject for this New

York meeting.

I think the thing that we are all here for is to come to

some definite understanding as to the commitments, both as to

the GUIDE and IBM in this whole determination.

I think we would like to go away from here with a very clear

idea of where we stand on getting the thing started and how

GUIDE and IBM are going to work together on it.

And the other thing that I would like to suggest, which

probably would have to be taken up, that the minutes of this

meeting would be made as immediately available to the members of

this group, of the companies represented in this group, as pos

sible, and not waiting for the general distribution of the pro

ceedings because I think this is a much more needed subject than

the general proceedings of the GUIDE conference here.

CHAIRMAN THOMPSON: I don't personally see any advantage in

trying to edit an edition of this meeting since we can just send

out the unexpurgated version.

S T E N D T Y P E R E P O R T I N G C O M P A N Y

E A N F R A N C I S C O

SUTTER 1*2 2 01

57

We should be able to get this out pretty fast.

I will check with -- I guess I have to check with Tom

Ford on that.

Now, as far as the other point that you bring up, John, on

leaving here with a very clear idea of what is our plan or what

our plans are, what the commitments are — I think we are all

pretty firm on the fact that we do have this first working com

mittee meeting set for October 7th through 11th.

A letter is going to be issued by myself as soon as possible

making this known to not only you — you already know it — but

also to other people that were not at this GUIDE meeting, so

that they, too, can join into this project.

The people that have been committed already by industry

have already been enumerated.

IBM has stated that they plan to throw in the same number

of people on this project that they plan to throw into the

FORTRAN for the Model 3 just as if industry would not be pro

viding any people at all, is that right, Jack?

MR. JACK T. AHLIN (IBM): Will you restate our commitment

again and make sure that I can understand it?

CHAIRMAN THOMPSON: You have already committed yourselves

to create FORTRAN for the 705, Model 3?

MR, AHLIN: That's right.

CHAIRMAN THOMPSON: And you would want to get this FORTRAN

system ready in time, at the same time that the machine is ready,

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

S UT T E R 1 -22D1

58

which is, whatever it is, two and a half years, I believe it is,

that is the figure that has been used?

MR. AHLIN: Yes.

CHAIRMAN THOMPSON: I don't know where it came from, but in

order to turn out a FORTRAN system for the 705, Model 3, and

have it ready in, say, two and a half years, you would need 10

to 15 people, or whatever you decided?

MR. EEMER: Some undetermined number.

CHAIRMAN THOMPSON: Some undetermined number?

MR. AHLIN: Yes.

CHAIRMAN THOMPSON: You turn this force loose as soon as

you can get together, and for this project?

MR. AHLIN: That's what we are doing. Ordinarily, if we

have a project which requires, say, I am Just talking about 15

people at the peak of activity, we do not assign 15 people on

date to this project.

I am sure you don't do this in your own operation. We

phase in the people as they are needed as much as the initial

work is of planning nature, and, frankly, we don't have 15 people

that could be of great assistance to us in this area.

Generally, however, your understanding of our commitments

are 100 percent correct.

CHAIRMAN THOMPSON: Does that satisfy you, John?

MR. SHEPPARD: Yes. There Is only this one question as to

possibly what plans there might be between GUIDE participation

E T E N C T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

GUTTER 1 -2 2 0 1

59

and IBM participation in this endeavor, and I don't know whether

you are in a position to know this at the present time?

CHAIRMAN THOMPSON: Well, it sounds like this will vary at

the beginning. It sounds like it is going to be 80 or 90 per

cent industrial and then the shift will swing to IBM more than

ours, and it might continue that way.

MR. BERNINGER: The same point I think Would be good for us

to get at least a good target date as to when the Model 3 FORTRAN

is scheduled to be ready.

This, of course, ties into the date of Model 3, when it is

going to be shipped.

MR, BEMER: That's right. We could possibly give you a guess

on that as to the delivery of the first Model 3 system.

MR. AHLIN: I don't think that is what we are interested In.

MR. BEMER: Pardon me?

MR. AHLIN: I don't think that is what we are Interested in.

I think the basic point here is one of the fact that we, I think,

at this meeting, have fairly clearly stated what our objectives

are in and they are in applied programming and what our means of

achieving these objectives are.

One of our objectives is as we have indicated, to supply for

the Model 3 a FORTRAN system within our basic framework and an

attempt to make these things available in time.

In addition, we are anxious to be of literal assistance in

what we can do In supplying the 705 FORTRAN for 705, Model 3, and

E N Q T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T E R 1 - 2 2 0 1

I am afraid that if we would make any specific commitment here,

it would be doing a disservice to you because it would be a com

mitment or a statement, indeed, without proper information.

I don't think you want that type of thing.

The fact that we say that we are going to do this doesn't

mean we are going to do it,because there are many slips that

occur, as you probably realize in your own activity, and the

fact that vie are anxious to do it, is, I think, what we want to

have, and we hope will be of consideration and interest to you.

I think vie have the know-how and have the desire to do the

projects, and viith your assistance, I think, we are getting this

thing off properly.

CHAIRMAN THOMPSON: I have an announcement to make.

If anyone has any change in the registration, a mistake in

the company, name, or anything, Bill Smith requested that if you

are aware of it, let him know. They are going to get it out for

publication right away.

Les, do you have something to add?

MR. CALKINS: I would like to make a statement here in try

ing to sum up actually vihat was said here as far as IBM commit

ments were concerned.

I will make a statement as it is and let it be open for

correction.

It is ray understanding that IBM — that IBM has committed

themselves to arrive or to achieve a FORTRAN for the 705, Model

5 T E N Q T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C D

SUTTER 1-2 2Q1

6l

3.

The statement has been made and I understand this to be IBM'e

commitment, that they will have a FORTRAN for the 705, Model 1

and 2, and that they would put the number of people necessary as

a minimum to produce this FORTRAN.

Those numbers of people would actually be Independent to get

this job done from the number of people supplied by industry.

In other words, IBM would supply the necessary personnel to

do this job, whether or not industry had brought the question to

them or not, is that correct?

MR. BEMER: No, this is not correct.

MR. CALKINS: That is not?

MR. BEMER: No.

MR. CALKINS: That is what I understood.

MR. SELDEN: I think you started off with Model 2 and you

meant Model 3?

MR. CALKINS: I understand that IBM is doing it for Model 3?

MR. BEMER: IBM would not have been able to do it for Model

2.

MR. CALKINS: But that IBM will supply the men to do the

necessary job for Model 2 and 1?

MR. KUSS: You will supply the same number for Model 3, and

if industry helps, we will get it for Models 1 and 2 also?

Our participation in the 1 and 2 process has no reflection —

you're not going to have people on Model 3 because of 1 and 2?

STENOTYPE REPORTING COMPANY
SAN FRANCISCO

SUrrKR 1-230I

62

You will apply the same number for Model 3?

MR. BEMER: That is right. Let me have a whack at it in

stating this thing.

(Laughter.)

MR. CALKINS: It is kind of tough, Bob.

(Laughter.)

MR. BEMER: FORTRAN'S Model 1 and 2, and Model 3:

IBM has to build Model 3 anyway, requiring independent

people which we have not determined yet.

We have a great interest in seeing Model 1 and 2 FORTRAN

produced for industry, and we will undoubtedly aid that project

as well as the Model 3 that we do ourselves.

If doing it ourselves, that doesn't mean separate people.

It may mean people phased, but in any event, if you take the

FORTRAN projects, the two of these, one for the Model 1 and 2 and

one for the Model 3> and lrmp them together, as an overall

project, IBM will not put any less people on them for the simple

reason that industry is aiding us.

MR. CALKINS: In effect, you are stating that you will have

the necessary personnel to accomplish this as a lump project were

industry not to supply anything to you?

MR. SELDEN: No, no, no. We accomplish only the Model 3 by

industry participation. There will be two programs, and IBM's

commitment will be to work for the joint effort as much as it

would be working for the single effort by itself.

L

5 T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1 -22C1

63

MR. BEMER: At least.

MR. SELDEN: At least.

MR. CALKINS: At least? That satisfies us.

MR. SHEPPARD: Pardon me. Except from one standpoint, and

that is one of timing.

If these two projects are run concurrently, does that mean

that the FORTRAN for Model 1 and 2 would not be available prior to

Model 3?

MR. BEMER: No. We desire to have this FORTRAN of Model 1

and 2 done in a nine to twelve-month period from today.

MR. SHEPPARD: This is what I was hoping to get at, a target

date.

MR. BEMER: This, I think, I have said before, and inasmuch

as much of the work done on the Model 1 and 2 FORTRAN is

applicable to the Model 3, it is only fair -- over the total

disposition of personnel and effort, as we have stated — that

some of the people that would have otherwise to do the Model 3

are available to help on Model 2, so that the total effort by

IBM is not diminished.

A PARTICIPANT: They have to step up the time schedule, is

that right?

MR. BEMER: Probably a bit, not a great deal.

MR. AHLIN: Gentlemen, I think I would like to make a general

comment here.

If a completely accurate recording of our conversations were

5 T E N Q T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T E R I - 2 2 D 1

64

taken here such as the people are doing in the other room, and if

I read it at a later date, I would feel that IBM's commitment

was one devised to leave many loopholes, and I am sure you have

the same feeling.

(Laughter.)

MR. CALKINS: That is what we are trying to plug.

(Laughter.)

MR. AHLIN: However, I am sure that if I attended some of

your companies' planning meetings, when you discussed programming,

and I'd probably hear from you similar statements.

In all honesty, what we are trying to do here is not trying

to be clever or evasive or leave loopholes. We are trying to

be reasonable and, as I say, it would not be in any of our best

interests if we made statements that we cannot live up to.

We have problems in an enormous programming effort, just as

you have problems in a programming effort.

We are trying to be reasonable, we are trying to get these

two Jobs accomplished.

We stated clearly from time to time that we would not have

done the job had it not been for your offer of assistance and your

very determined interest in it.

We are certainly very influenced by the fact that you people

are as interested in this thing as you are.

We have not, for example, gotten the same degree of, or

expression of interest in our past for Autocoder. We don't expect

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

SUTTER 1 -2 2 Q 1

65

It, we don-t expect to get that interest. I frankly wish we

would.

I would like to have the same type of assistance and in

terest in the Autocoder which, I think, is more fundamental to

the 705 system than anything else.

That is something that has universal application in your

work and any other work that is done.

As I say, this expression of interest and desire on your

part certainly moves us as it should, certainly, and all 1 am

really saying is that we are not trying to leave our statements

for commitments full of loopholes, which we can later squeeze

out of.

We are trying to be reasonable here.

Our basic objective is to make the thing available on time.

We don't know what time is involved, how many people are needed,

and this is something that we will have to determine.

If we are not successful, in the last analysis, we will

show and recognize that our whole programming program is ba3ed on

that it is going to be a family service, and if not, it is not

going to be an acceptable one.

Many of your own service objects in your company have the

same problem and your objectives must be the same as ours, and

that is to be honest, to be reasonable, and I think that we get

together, work together, and we can achieve our objectives.

I guess I will leave it there. Does that sound fair enough?

5 T E N • T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T E R 1 - 2 2 C 1

66

CHAIRMAN THOMPSON: Very good. Thanks. As far as I am con

cerned, I am willing to trust IBM to come through and I believe

that the subject of commitments is fairly well defined.

It is fairly well defined except for people from industry

that haven't had an opportunity to voice their interest and

intent to participate.

MR. KUSS: Could we have something from Bob Bemer as to

what he thinks the minimum machinery is going to be to assemble

the FORTRAN? Somebody mentioned a drum before.

MR. SELDEN: That's why I want to do the two sections in

series. No drum. I expect, if we use the Autocoder, it will be

reasonable to assume to use the same machine the Autocoder re

quires which is 6-7 if you have a high-speed printer.

CHAIRMAN THOMPSON: 20K?

MR. SELDEN: 20K.

MR. AHLIN: Muddle 1 and 2.

CHAIRMAN THOMPSON: Muddle 1 and 2? No TRC?

MR. SELDEN: No TRC.

MR. BEMER: Well, TRC, If we want to get the thing done, it

will run or bypass TRC's and we can do this, I think, within the

time schedule.

It will be reasonable not to commit ourselves to TRC usage,

otherwise you are unnecessarily complicating the problem.

CHAIRMAN THOMPSON: So we are switching them for a 705-1?

MR. BEMER: 705-1. What about the Model 2? Because,

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T E R 1 - 2 2 0 1

67

really, the memory, except for sizes. Is not too different - Is

not too difficult to take care of In many Instances, except In

the flow of the problems through the machine.

Do you think so, Bill?

MR, SELDEN; You are referrlno- -t-n (.ua _ reierring to the process or the object
program?

MR. BEMER: Well, I am referring to both.

MR. SELDEN: Well, they are two separate questions.

FORTRAN for 704 will run on a certain machine, but will allow

you to make a program that will run on a machine larger than that,

MR. BEMER: Yes.

MR. SELDEN: The Autocoder does that. When I say "Autocoder *

we Will assume that this will happen. We will presumably first

utilize the TRC as opposed to by-passing It in the case of the

object program, and last do it in the processor.

We might do it in utilizing the TRC as opposed to merely

by-passing it, and part of the processors before we do it in all

processors.

MR. BEMER: Here, the possibility is of using in descending

order, the possibility of tOK in the object program, the possi

bility of the TRC in the object program,- the possibility of 40K

in the processor, the posibllity of the TRC in the processor.

I am thoroughly against the latter, but the other three are

under consideration; but at least we could say this:

Until the committee gets going that we will work on the mini-

S T E N D T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

mum machine which is the Model 1, 20K, without the TRC, and we

will in all probability be able to produce programs for 40K,

although we can settle it later.

At least, we will establish the lower bounds.

CHAIRMAN THOMPSON: I sure buy that.

MR. KUSS: One more question: Have you got any idea of how

many hours for instruction the assembly pass will take?

MR. BEMER: You mean the output?

MR. KUSS: The whole FORTRAN.

MR. SELDEN: Produced instruction?

MR. KUSS: Produced instruction. It is more like what we

have now.

MR. SELDEN: I will take a flying, and completely flying

guess. It Is something around a range of 100 to 250 instructions

per minute.

CHAIRMAN THOMPSON: FORTRAN statements?

MR. SELDEN: Object program statements. This may, if we

assume the 50 to 60 to 1 expansion that you get in FORTRAN, this

is about 10 or 20 instructions a minute input.

Format FORTRAN statements, that is.

MR. BEMER: If that seems sort of low at this time, and

will probably be low, however I think the coding facility will be

so much greater, it wouldn't bother you any in de-bugging it.

MR. SELDEN: We hope that it will be possible to do a cer

tain amount of partial rather than complete assemblage. We hope

S T E N G T Y P E R E P O R T I N G C O M P A N Y

69

j that, when I mention the improved Autocoder, one facility that

could be improved is to put much of the routine, of the routines

that are used — the floating routine would be a constant re

located or constantly relocated by the Autocoder.

Or, in this case, not even relocated, be copied out so

your first 500 or a thousand instructions produced would cost

you 10 seconds, and then you start counting at the rate that I

have mentioned after this.

CHAIRMAN THOMPSON: Are there any other major points, Bob,

that you have?

MR, BEMER: Just one minor one that I brought up for con

sideration first.

That is the question of publication, manuals and credits

and stuff like that.

I don't think that we need to say anything here on that. We

can settle all that in the committee meeting, except that I

think we ought to keep this in mind, that when we get this thing

going that there will be something people will be watching in

business because this will be the first co-operative effort that

I know of in this magnitude by the commercial people on the 705.

I think we want to document this thing pretty well for

articles. You may have noticed the articles on the PACT effort

in the SEACM Journal.

I don't think we want to be blind to the possibility of

showing the good of the good work when it gets done, but when we

STCNDTYPE REPORTING COMPANY

SAN FRANCISCO

SUTTER 1 -2201

70

are pretty close, because we want to be ready to do something

about it.

CHAIRMAN THOMPSON: Along this line, we have under con

sideration publishing all GUIDE correspondence and distributing

to each installation on a monthly basis in initial stages.

This could possibly be covered by that Secretary to

Membership letter, and then when things start coming to a head,

certain of these could be gathered together and published in a

partially complete report or something in that line.

MR. BEMER: Good.

CHAIRMAN THOMPSON: Are there any other questions?

MR. SHEPPARD: I would like to make a statement.

Maybe this should be in the form of a motion to this com

mittee, that we accept the proposals that have been made here

as a working basis, providing that this committee gives a

mandate to the committee which will meet in New York to provide

certain minimum results.

One, is a complete statement of the problem and the speci

fications for an F-5 FORTRAN.

Secondly, that manpower requirements are pretty closely

determined at that time; and

Thirdly, that a definite time schedule is set up to ac

complish this.

CHAIRMAN THOMPSON: I think these three points could be

taken care of at the October meeting, Bob?

S T E N O T Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T E R I - 2 2 D 1

71

MR. BEMER: I do, under one circumstance.

We have something here that demands, like Jack says, the

utmost co-operation.

We must have very good programmers. These people up here,

except for one, are numbers to me, and if one installation

does not provide a good programmer — one that can really carry

the ball, and so -- and he will drag the rest of us down.

IBM is in no position to crack a whip and say, "We will

fire you," because you work for somebody else.

So, that's the only thing that doe3 worry me about talking

of time schedules and manpower determinations.

Although we can help all we want, we can't force you to do

anything on this thing, and I don't want to.

MR. SELDEN: I think the schedule definitely has to be

adopted by the committee rather than IBM. We cannot adopt a

schedule.

CHAIRMAN THOMPSON: Well, I for one, having quoted some

problems like most of you, abhor trying to state when I'm going

to finish the program.

MR. SHEPPARD: We have found in our operation that programs

get completed pretty much on schedule. We can set a two-year

date and it will be finished in two years.

If you say one year or six months, it is not going to be

finished.

We've got to have a target. If we don't, we will miss the

boat completely.

S T E N O T " Y P E R E P O R T I N G C O M P A N Y

S A N F R A N C I S C O

S U T T E R I - 2 2 D I

CHAIRMAN THOMPSON: That target has been set by Bob.

MR. BEMER: All he wants is a target. I agree with you,

John.

MR. SHEPPARD: Somehow it works.

CHAIRMAN THOMPSON: You can put a time schedule on it. If

this serves to speed things up, I am for it.

MR. SHEPPARD: I realize that the engineering or scientific

type of mind doesn't like schedules in any way, shape or form.

If you were an old production man like myself, you would

recognize the need for schedules considerably more.

MR. CHAMBERS: I see Jack sitting here with his hands hold

ing his face, and my main object here is to determine the pre

requisite for the person that we are willing to contribute

towards this effort.

We certainly do not want to put somebody on this effort who

is going to hold it back. We don't want him to feel that, well,

he is here and he can't do a proportion of work, at least a

share along these lines.

I hope to leave here with a good idea or knowledge so that

I can commit this person and feel sure that he is going to do a

good Job.

I wonder if Bill, Bob or Jack can steer us along these

lines; perhaps send us literature?

CHAIRMAN THOMPSON: Why not make the statement right now?

MR. SELDEN: I think I will make statements, we all make

S T E N Q T Y P E R E P O R T I N G C O M P A N Y
SAN FRANCISCO

73

them. What do you think, Bob?

MR. BEMER: I can illustrate this with a PACT project.

The people that actually did the work, Charlie Baker, etcetera,

were actually top-notch programmers in their companies that

they could get out.

They were the best they could find and they worked.

I think if you settle for anything less than the very best,

you can afford, it will not work.

MR. CHAMBERS: Well,"the very best"— sometimes, this is

a little general. Perhaps there is a previous type of program

ming that has a lot to do to determine what you mean by ''the

very best."

MR. BEMER: I don't think that has to do too much in this

case.

MR. BERNINGER: In other words, a form of background?

MR. BEMER: Let's put it this way:

They don't have to have a college degree. This, I think,

is not at all necessary. I think that you demand quite ingenious

people who still will be able to restrict themselves in their

ingenuity so that they won't make coding that nobody else can

understand.

(Laughter.)

MR. CHAMBERS: Sometimes you get a person who may come up

with a method in doing things and I am sure we have an individual

who can do this, but it is a question of whether we want to take

5 T E N D T Y P E R E P O R T I N G C O M P A N Y

S AN FRANCISCO

S U TTER 1 - 22D1

74

them away from the application of machine to engineering as far

as our company is concerned.

MR. BEMER: Oh, well, now, let's make this very clear right

now.

We are working on the FORTRAN language and processor to

convert it to machine instructions.

This is not engineering. This is programming that is

applicable to any type of work.

This is programming as such. Because we are producing a

system that will be used by engineering people for the most part,

does not mean that our programming itself will be engineering

or related to engineering problems.

MR. SELDEN: I see no reason to favor a mathematician or

engineer in the choice.

I think one or two people in the group would have to have

some background. Among the people that IBM has already submitted

or committed will be enough on the mathematical background

needed.

Everyone else doesn't need it.

MR. CHAMBERS: Well, this is —

MR. SELDEN (interposing): Well, somebody who can transfer

any routine, something like this.

MR. CHAMBERS: I am reading the FORTRAN Manual as to what

goes into the input, output machine and engineering application.

We are not too concerned with this problem.

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

S U T TER 1 -220 1

75

Probably our commercial people are more versed along these

lines, at this time, the fact that they have these problems.

MR, AHLIN: What are your commercial people there?

MR. SHEPPARD: Well, you might say this:

I think that right now I don't think we are in a position

where we have to determine the exact person in an organization

that we are going to commit to this as long as we make a commit

ment.

I think that the requirements for the type of person that

we want will come out of the October meeting in New York; and,

at that time, we can determine who the specific person is within

the organization.

MR. SELDEN: I think we should have the people there to

start working, whoever walks into the door.

MR. BEMER: I was asked about some people who had been

successful in this thing. They were sought off statistics and

shop scheduling people, working on that.

However, in the FORTRAN business, we have several chess

players, guitarists, and ex-advertising agency general factotum

about anything you can imagine.

All they need is a little spark of Ingenuity that can

visualize many things walking around at the same time.

In other words, a sensible fellow with horse sense, a guy

who doesn't mind doing some hard work, and has a reasonable

amount of ingenuity and adaptability.

S T E N O Y Y P E R E P O R T I N G C O M P A N Y
S AN FRANCISCO

SUTTER 1 -2 2 • J

76

CHAIRMAN THOMPSON: A man who doesn't require much sleep?

MR. BEMER: That is a good point.

(Laughter.)

CHAIRMAN THOMPSON: Jack, could you add anything to these

people?

MR. AHLIN: Let me just summarize just what has been said.

Correction: First of all, the person does not have to have

a particular type of academic background.

I think this is completely aside from the choice of a man.

He should undoubtedly have had some length of service in

programming.

He should, in addition, have accomplished something -- and

I would say he should have completed some successful program

ming.

At least, two things kind of go together, length of

service and having done something.

(Laughter.)

Preferrably, we would like to have someone who has a very

decided interest In programming, who'd rather do coding than

anything else.

MR. BEMER: Anything else except one thing, please, Jack.

(Laughter.)

MR. AHLIN: Somebody who has written maintenance routine,

transit routine, has written mathematical subroutine, or some

body like George here (indicating), somebody with that type of

S T E N C J T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

77

background, I think, is an outstanding candidate.

He should have ingenuity and foresight. I think we can

impress on any person the need for adhering to certain program

ming conventions and standards which we ourselves have adopted.

is no longer the programmer — at least, the

type he was before — and found out through his own realization

that it doesn't pay to be cute in this business.

(Laughter.)

There are a lot of people who read what you do and this

would be particularly true in something like this, and we just

can't afford the luxury in having people determine as to what

they did in being cute.

I think these points are very important.

CHAIRMAN THOMPSON: Does anybody else have anything?

MR. SELDEN: Qualifications or anything else?

MR. CARL L. BYHAM (Southern Railway System): In connection

with this first meeting, is this to be such a meeting that it

would concern only working people?

MR. BEMER: No.

CHAIRMAN THOMPSON: When John was talking about thin —

MR. BYHAM: (Interposing) Or perhaps one of us would be-

there, too?

MR. BEMER: Yes. I think it would be very well if both

sides,at least one or two.

CHAIRMAN THOMPSON: It occurred to me when John was calking

5 T E N Q 7 Y P E R E P O R T I N G C O M P A N Y

S AN F RANCIS CO

that if you have three or four people, send all of them — If

you can afford it.

MR. SHEPPARD: I was thinking of the possibility of a team,

possibly, an engineer and a data processing man maybe working

as a team in our organization.

CHAIRMAN THOMPSON: I don't mean to commit all of them to

the Job, but then between themselves they can probably decide

who's got the greatest appetite for it.

MR. SHEPPARD: We have an austerity program, too, you

know?

(Laughter.)

CHAIRMAN THOMPSON: Well, it is adjournment time unless

there's something else.

MR. MAURICE T. DEVLEN (Canadian Pacific Railway); I was

wondering now, in this letter you are going to send out to the

installations, whether you could have some statement of qualifi

cations.

I think it would be very helpful.

CHAIRMAN THOMPSON: All right.

MR. SELDEN: Should be included that it is necessary for

the working party to be there. That would be nice to have.

MR. SHEPPARD: There is a motion before the floor. There

has been no action on my motion.

I didn't know whether it was passed approval or whether it

was Just plain ignoring it.

S T E N O T Y P E R E P O R T I N G C O M P A N Y

SAN FRANCISCO

79

(Laughter.)

CHAIRMAN THOMPSON: I believe we touched on the points, but

we didn't formalize the thing.

The three points were to review that this working group

come up with a complete statement as to the minimum machine, the

language and for —

MR. SHEPPARD: (interposing) The minimum specifications.

CHAIRMAN THOMPSON: The minimum specifications; the man

power question clearly stated, and, if it is possible at that

time, a time schedule.

Those in favor of setting forth these targets for this

working committee, if this is the proper way to present this —

Any objections?

(No response.)

CHAIRMAN THOMPSON: Motion carried.

(Whereupon, at this time, the motion indicated above was

adopted by the subcommittee.)

CHAIRMAN THOMPSON: Well, if there is no more comment, this

will then conclude the meeting.

Thank you, Gentlemen.

(WHEREUPON, at 12:20 o'clock, p.m., the meeting adjourned

sine die.)

STENQTYPE REPORTING COMPANY

SAN FRANC 13 C O
SUTTER 1-Z2CJI

SHARE ̂ S ^M|

(7) FORTRAN - John Backus of IBM World Headquarters reported on FORTRAN,

-*—> characterizing the status of the FORTRAN system by noting the following:

a. FORTRAN will be ready for customer use by early August. 1956, at
which time the complete system will be distributed, on magnetic
tape, to all customers.

b. The system will have taken fourteen man-years to write and check
out.

c. The program will be comprised of approximately 19/800 instructions.
(These will all be "active" instructions, none going into the pro
gram produced by FORTRAN.) There are, as of May, 1956, lo,*+00
instructions written, of which 8, *+00 have been tested. There are
currently twelve people working on the project.

d. A programmer's manual of FORTRAN will be completed approximately
June lf 1956.

e. "A complete description of "internal" FORTRAN will be available in
early September, 1956.

f. The "minimum machine" required by the FORTRAN system will be:

1. 1+096 CORE (There are no modifications presently under way to
enable FORTRAN to take advantage of larger amounts of core
storage.)

2. Four (a) tapes
3. Four (*+) logical drums

g. It is anticipated that, for every FORTRAN instruction written, from
five to twenty instructions will be generated by the system
(l/5 - l/20 compiling ratio). This is expected to result in a
reduction of coding time by a factor of from three to thirty.

h. FORTRAN will have substantially the same specifications as those
originally published.

Reports frcci_Members_

(l) PACT 1A - Owen Mock (NA) described the progress to date on PACT 1A, a

generative compiler for the 70*+ being written through the cooperative

effort of several member installations of SHARE. Mock noted the

following:

a. PACT 1A programming will be completed sometime in June, 1956, at
which time the system will be distributed to a limited number of
installations for trial. When indications are given from these
field trials that the bugs are out of PACT 1A, the system will be
available to «n 70*+ installations on request.

b. The PACT 1A manual will be completed Bometime in June, 1956.
c. PACT 1A will have required six man-years to write and check out.
d. The system will be comprised of approximately 10,000 active

instructions.
e. The "minimum machine" required for use of PACT 1A will be a 70*+

having:

1. Three (3) tapes
2. 8,192 words of other storage. (Either all core or a combina

tion of core and drum.)

SHARE 3i- Cr aIti\i UrH
PAGE I-A-10

3

Agenda Item 12 - NUMBER OF CHARACTERS USED IN A SYMBOL

There vas a brief introductory discussion in vhich it was mode clear that the
following is a continuation of informal discussions at the Second SHARE Meeting,
and, in effect, a follow-up to SHARE mail proposal Ho. 1 (by General Electric -
ballot mailed ̂ October 1955)•

It was moved and seconded that:

"Programs distributed through SHARE shall use five or fewer characters
as symbols, except when the programmer wishes to prevent heading (e.g.,
the symbol "COMMON")."

A spirited discussion followed. The stated objectives of the motion were to
enable any distributed routine to be re-assembled with other routines into a final
program. Shell (GE) explained various reasons why he doesn't like it, claiming
that it doesn't meet the objectives which it pretends to.""Heising (NY) asked what
vould happen when you tried to distribute this final, re-assembled program (with
six character symbols), and somebody wanted to re-assemble it again with other
routines. Ramshaw (UA) pointed out that it should not be done that way, serially,
but rather in parallel; that is to say, by getting together all the individual
routines in their original form and then re-assembling all at once.

Shell (GE) noted that he is preparing a program to translate CAGE symbolic
cards into SHARE format. When this is completed, any subroutine he distributes
will have only one symbol.

It was universally agreed that this was the most useful form which distributed
subroutines could take.

The motion was passed.

Agenda Item 13 - COMPILERS

FORTRAN

Backus (NY) made a progress report on FORTRAN. Six thousand instructions have
been coded in what they hope is final form. He expects that in its first edition
FORTRAN will include eight to ten thousand instructions, which will be coded by
January 1st. Some debugging will have been accomplished by then, and he estimates
that it will be completely checked out some time in February. The minimum com
ponents necessary will be one 4096-vord core, four tapes, one drum box, and either
on-line or off-line output. It will produce symbolic instructions for subsequent
assembly in the SHARE format. It is estimated that it will take six minutes to
produce one thousand symbolic instructions. The symbols used will be the same ones
that were used for variables. Planned for the second edition is the inclusion of
formula numbers in the comments. He gave a brief rundown of changes from the
latest printed specifications. These are summarized below in Part III.C. He also
covered very hurriedly the techniques they are using, the most dramatic of vhich
was the enormous number of tables set up. He ended by paying tribute to United
Aircraft, and especially Roy Nutt, for their cooperation and assistance.

FORTRAN

W. I'. HEISIXG, IBM Corporation, New York, X. Y.

-The FORTRAN language is intended to be capable of expressing
'-Mem of numerical computation. In particular, it deals
with problems containing large sets of formulae and many

and it permits any variable to have up to three in-
,j, indent subscripts. However, for problems in which machine
«.,nb have a logical rather than a numerical meaning it is less
satisfactory, and it may fail entirely to express some such prob-
i. rns Nevertheless, many logical operations not directly ex-
pressable in the FORTRAN language can be obtained by making
us. of provisions for incorporating library routines." This
quotation is taken from "The FORTRAN Automatic Coding
s -mm for the IBM 704 EDPM," dated October 15, 1956.
T: - t;rst manual was a programmer's reference manual issued by

Programming Research Department of IBM. The original
systeni and the original manual were the work of J. W. Backus,
F J. Beeber, S. Best, R. Goldberg, H. L. Herrick. R. A. Hughes
F.C.R.L., Livermore), L. B. Mitchell, R. A. Nelson, R. Nutt
baited Aircraft), D. Sayre, P. B. Sheridan, H. Stern, and I.

Ziller; all were associated with IBM except as noted.
Mnoe that time, FORTRAN systems have been prepared for the

IBM 650, 1401, 1410, 1620, 705/7080, 7030, 7070/7072/7074,
sad <(i'i 7090, <094 systems as well as for equipment of many
other manufacturers.

Although there have been many changes and additions over
TIL'- tears in the FORTRAN language and associated manuals, the
basic structure and intent have been extended rather than
altered in any fundamental way. Accordingly, the quotation
taken from the original manual on the scope and intent of
I ORTRAN is as accurate today as when it was first written.

Ha completion of the original 704 FORTRAN system con
stitutes a significant achievement in the history of programming
ami ha- undoubtedly influenced later developments. Such now
' terms as "source program," "object program," and

. : machine have passed into the general programming
vocabulary from the original FORTRAN manual.

Ihe 704 FORTRAN system was issued early in 1957 bv the
• r .gramming Research Department of IBM and included as a
tori of it, a system editing program to introduce modifications.

master tape as issued was not directly used for compilation,
< 'J rather served as the principal input to the system edit
i •'stain The system edit program accepted as a secondary

•' modification cards" which constituted a cumulative list
- mt'T:,!i,.ns to be made from the master tape. The output was

•••-g sc stem tape which would be used for actual system
ibis method was chosen so that small changes could

" mainly introduced to a large number of using installations by
a ff w pimched cards rather than requiring the slow

' of mailing back and forth magnetic tape reels. A system
r ln'ierm£ modifications is now in use so that each modification

• ' "-.td consecutively and the "modification level" of a
. '.s indicated by, sav, "level 76" indicating that
" > - • m o d i f i c a t i o n s t h r o u g h m o d i f i c a t i o n n u m b e r 7 6 h a v e

-rated. Modifications are used to remove system
.... !"r ad(Jmg improvements to performance in the way of

COMPlllng, or execution, or new system or language

•' ^ M stem editing program also permits a using installation
" -an'-lard modifications to the working system to meet

local needs without modifying the master tape itself. The local
systems programmer must be careful that numbered modifications
do not conflict with any nonstandard modifications added
locally.

The master tape is in absolute code, and in time either the
accumulation of modifications becomes too bulky or the nature
of a modification is such as to make desirable a new master tape.
In such cases, the entire system is reassembled to make a new
master tape, which is called a version with its own number, and
a new set of numbered modifications starting from one is in
stituted. The older version is commonly superseded and is no
longer maintained. Separate versions may also be issued for
different system configurations of the same machine type, quite
commonly for differing amounts of core storage. Accordingly,
more than one version can be in current maintenance status at
any given time.

The original concept of FORTRAN was developed by John
Backus in 1954 and the original FORTRAN language was basically
completed by mid-1955. At that time the instruction repertoire
of the 704 was frozen and the main coding effort on the compiler
began. The size of the effort and the time required exceeded
initial estimates—a not uncommon situation when one is working
in an entirely new area. The initial system released in 1957 was
probably the most complex programming system ever produced
up to that time, and the fact that the system comprised some
25,000 lines of code is not an accurate measure of the complexity,
as the analysis particularly of index register assignment was
especially intricate. During its initial period of use in 1957,
many small errors came to light, and it was a difficult period for
u'er~ and ike authors alike until the most frequently encountered
errors were diagnosed and corrected. The improvement effort
responsibility was transferred from Programming Research to
the Programming Systems Department (then called Applied
Programming) early in 1958.

FORTRAN II, a new version with significant source language
additions was officially released by Programming Systems in
June, 195S, although the basic planning and much of the work
had been done by the original authors.

FORTRAN systems for the 709 and the 650 were officially
released later in 1958. During this same period, GUIDE was
writing a FORTRAN section of the 705 Autocoder III system, and
705 FORTRAN was eventually tested and released with subsequent
maintenance by IBM. 1620 FORTRAN was released in the fall of
1960, 7070 FORTRAN in 1960, and 7030 (Stretch) FORTRAN IV
was shipped to customers in the summer of 1962.

A FORTRAN primer was published in 1957, primarily to
introduce FORTRAN to scientists and engineers who were not
computer specialists. It was specifically written to introduce the
reader step-by-step to each part of FORTRAN and was extremely
popular. It was succeeded by a FORTRAN General Information
Manual which serves the same functions for a variety of machine
types, and has separate chapters at the back giving additional
information specific to each machine type.

My date are incomplete, especially for the earlier years.
However, the figures in Table I for some of the "best-sellers"
give some idea of the scope of the publishing activity.

These are only a few of the scores of manuals produced and
excludes publications in German, French and other foreign

Communications of the ACM 83

TABLE I

Manual

704 FORTRAN Reference Manual
704 FORTRAN 11 Reference Manual
709 FORTRAN Reference Manual
FORTRAN General Information

Manual

5 umber
Distrib-uled Period Covered

l/58(?) to 3/61 61,932
6/58 to 11/62 37,058
9/59 to 11/62 69,386
10/61 to 8/62 61,081

languages. FORTRAN manuals in foreign languages are produced
abroad. The most extensive FORTRAN foreign language docu
mentation is probably the French material on the 7090 FORTRAN
Monitor System. The IBM Computing Center in Pans not only
produced manuals in French, but has modified the system so
that all of the hundreds of compiler and execution diagnostics
are produced in French as well as symbolic listings using French
operation code mnemonics.

Contributions from FORTRAN users have unquestionably been
the primary factor in pointing the way from FORTRAN in 1957
to the systems of today. The systems of today reflect the accumu
lated experience and suggestions of literally thousands of users,
and compiler authors must make real efforts not to lapse into
ivory towers, if their product is to make the transition irom a
toy to a workhorse.

The nature of user-author communication is enormously
varied. At one end of the spectrum are the maintenance proce
dures. In these a user who believes he has detected a system
error forwards a completed standard form together with a
source program card deck and any other appropriate material.
Upon receipt, the inquiry is logged, receipt is acknowledged, and
the source deck is run to verify the reported behavior (this is to
eliminate machine malfunction or nonstandard system modifica
tion as a possible cause). The results of the test are then analyzed
and will normally be classified as (1) source program error, v.-)
known system error, or (3) previously unreported system error.
In the case of source program error, the error will be pointed out
to the sender. However, in some cases, additional action may
follow. The reference manual may be, incorrect, incomplete or
possibly misleading, in which case later editions of the manual
will be modified. Furthermore, a source program error which
occurs frequently may indicate the desirability of an additional

diagnostic for the compiler. A known error may have already
been corrected by a later modification than the user has receiver!
(he reported his modification level). If the correction of an error
requires extensive system changes that will result in considerabjg|
delay, it may be necessary to notify all users of a tempora^P
restriction until the appropriate modifications can be programm-i
and tested. , .

The remoteness geographically between the support, authority
and the hundreds or even thousands of users makes the thorough
ness of testing of modifications crucial, as the inadvertent
introduction of other errors may inconvenience many people.
It is definitely not sufficient to merely check that the program
which brought the error to light is correctly handled—rather a
whole battery of "tvpicai" problems are recompiled and retested.
In fact, an excellent source of "typical" programs are those u-r
programs originally submitted through this procedure, since 1»
programs tend to V sufficiently complex to exercise little n-d
parts of the programming system.

Another aspect of the author-user communication is corre
spondence and personal contact. Especially influential has been
SHARE, the 704/9/90,94 users group which has had a FORTRAN
Committee since June 1958, and hence has influenced FORTRAN
over the longest period. Many significant additions were the work
of the SHARE FORTRAN Committee members and many other
additions were in response to needs which become apparent in
SHARE FORTRAN Committee discussions. The FORTRAN Assembly
Program (FAP) was written by U.C.L.A., Macro-FAP by I ,ell
Laboratories, the symbolic debugging system by a committee of
four using installations, and the double precision/complex
package by Hughes .Aircraft.

The most significant single addition, however, was the HE
corporation of the automatic monitor system of the Rocketd^
Division of North American Aviation. Indeed, every siiW
aspect of the SHARE-IBM relationship had the same motif-users
want a programming system, not merely a compiler. Although a
compiler may be the largest single component of a programming
system, it has probably received more than its proper share of
attention in the literature relative to system components which
perform more mundane but equally vital functions.

DOCUMENTATION OF IPL-V

ALLEN NEWELL, Carnegie Institute of Technology, Pittsburgh, Penn.

IPL-V (Information Processing Language-V) is a programming
language for list processing and symbol manipulation. It is the
fifth of a series of programming languages that has developed as
part of a research effort in artificial intelligence and simulation
of cognitive processes. This research started in late 1954 at The
RAND Corporation and Carnegie Institute of Technology and
has remained centered there, so that these two organizations,
or more properly the scientists thereof, can be considered the
source of the language. The earlier IPL's were coded for the RAND
JOHNNIAC, a unique machine of the Princeton class; IPLA is the
only one which has become a "public" language and where the
necessary effort has been made to document and standardize the
language. „

IPL-V started out in late 1957 to lie a modified copv ot
IPL-IV (then being implemented on JOHNNIAC) for the IBM

650 the computer available at Carnegie Tech. A running system
was produced in early 1958.1 It was then felt that a system
should exist that would be usable both on the IBM 650 and "n
the IBM 704. which was also in use at RAND. This precipita
another iteration culminating in a preliminary version of the
manual, which doubled as the specifications, in June 19oS.
svstem became operational first on the i 04 at the end of sunm
1959. ,,

As shown below. IPL-V now exists for several ditto rem
machines. In each case the impetus has come from some p ^
who has wanted to use the language. As a result the mamtenan' ^
of each machine version rests with the originating group loroj-

i HENSLEY, C. B„ NEWELL, A., AND TONGE, F. M. <>5<MJ
Information Processing Language. CIP Working Paper *9 fdiu"
Jan. 1958. (No longer available.)

Communications oi tbe ACM

SHARE
REFERENCE MANUAL

SECTION 01

INTRODUCTION

01.01 The Origin of the SHARE Organization

Upon getting thoroughly into the problem of preparations for the
IBM 704, three installations in the Los Angeles area began to
have informal discussions concerning their individual plans.
Having been pleasantly surprised by the successful cooperative
effort for the design and coding of Pact I, a favorable climate
existed for a similar joint activity in connection with program
development for the 704. Accordingly, Rand, Lockheed, and
North American seriously began to consider standardization.
A fortunate circumstance was the seminar held by IBM in Los
Angeles during the week of August 8, 1955. This brought repre
sentatives of several other western installations together, and the
idea was discussed among them.

The mutual respect that the participants in these discussions had
for the programming competence of the others soon brought the
realization that an "isolationist" attitude no longer existed, and
almost all professed themselves as quite willing to accept the
ideas of others, even to the extent of obsoleting things already
done within their own installations. It was unanimously agreed
that a full-scale attempt should be made to bring SHARE into being,
Since it seemed almost too late to do it on a nationwide basis,
extreme haste was necessary and the initial meeting of SHARE
was called for the week of August 22, 1955.

In spite of such short notice, almost all potential 704 installations
throughout the country responded with alacrity. All expressed
a desire to participate, and attendance at the first meeting was
gratifyingly large. Seventeen installations - the charter members
of the organization - were represented:

BA Boeing Airplane Company
CL Lockheed Aircraft Corporation, Burbank
CR California Research Corporation
CW Curtiss-Wright Corporation
GE General Electric Company, Cincinnati
GL Lockheed Aircraft Corporation, Marietta
GM General Motors Research
HA Hughes Aircraft Company

SHARE
REFERENCE MANUAL

PK International Business Machines Corporation,
Poughkeepsie

NY International Business Machines Corporation,
New York

ML Lockheed Aircraft Corporation, Van Nuys
NA Norvh American Aviation, Inc. , Los Angeles
NS National Security Agency
RS The Rand Corporation, Santa Monica
UA United Aircraft Corporation
LA University of California Los Alamos

Scientific Laboratory
LC University of California Radiation

Laboratory, Livermore

One other installation, Douglas Aircraft Company - El Segundo
Division, was also present at the first meeting. At that time, its
704 procurement picture was rather vague, but it subsequently
beeame a member.

The name of the organization was selected with the naive hope that
suitable words could be found which would match the initials, des
cribe the aims of the organization, and, at the same time, be
clever enough so that somebody would admit to originating them.
Although many suggestions approximating this were propounded,
nobody was really that smart, and so each member is free to
interpret the initials in his own way. (It has been suggested that
this is symbolic of one of SHARE'S principles of "unity in essen
tials and freedom in accidentals!")

SHARE
REFERENCE MANUAL

01.02 Advantages of SHARE Membership

A member of SHARE is closely united with one of the main streams of
development of computer usage in the world. A substantial percentage
of the major users of high-speed digital computing equipment is repre
sented in the SHARE membership. The knowledge of what is going on
in these installations is considered by many of those members to be an
indispensable requirement for efficiently exploiting the 704 and the 709.
In addition to the documentary information which is received through
the mail, the informal conversations at the meetings are very productive.
These discussions, involving some of the most brilliant 704 and 709
programmers in the world, are frequently extremely fruitful. It has been
found that critical evaluation of one another's ideas by these men usually
produces a distillation of their thoughts which is superior to any individual
opinions.

Member installations should be able to do considerably less program -
ming and checkout of utility routines, mathematical routines and complete
systems. Almost all the utility type routines produced by its members
are expected to be distributed through SHARE. Members have had the
opportunity to have a voice in the specifications of these routines and,
because of the close contacts with other members, can keep as up-to-
date as necessary on their progress. Even those members who have
done a significant amount of utility programming have available to them
a considerably more diversified library than they would otherwise. More
over, the continual interchange of ideas among the members (represent
ing most of the 704-709 programming talent in the world) has demonstrated
that a much higher degree of computing sophistication is rapidly built up
in an installation than would result if it maintained a splendid isolation.

SHARE has been able to provide IBM with well-thought-out and authorita
tive requests for changes to the 704, 709 and other associated equipment
and believes that IBM will pay much more attention to such a united voice
than to individual requests. However, SHARE members also distribute
copies of their individual RPQ's through the organization. Officially,
SHARE has decided not to extrapolate this activity to include the next gen
eration of machines. However, the presence in one hotel of so much
authoritative customer opinion (at SHARE meetings) is expected to be used
by machine manufacturers. This is obviously an excellent spot to conduct
sales research surveys with the expectation of obtaining highly meaningful
information. 6

•

01. 02 - 01 11/15/58

SHARE
REFERENCE MANUAL

SECTION 10.01

APPENDIX

10. 01 SYNOPSES OF PROCEEDINGS

1. FIRST MEETING August 22-26, 1955 Los Angeles,
California

a. Attendance - Eighteen installations that later become
members and IBM Applied Science Division
represented.

b. SHARE Organization - The following officers were
elected:

Chairman: Jack Strong, North American, Los Angeles
Vice-Chairman: Donald Shell, General Electric,

Cincinnati
Secretary: Fletcher Jones, North American,

Los Angeles

c. SHARE Standards Adopted

1.) The SHARE operation code will be the IBM mnemonic
code plus an extended operation list.

2.) The IBM Assembly Program NY API will be modified
to form the SHARE Assembler.

3.) Binary card format.

4 .) P r i n t w h e e l c o n f i g u r a t i o n a s d e c i d e d u p o n a t t h e
March 1955 701-704 symposium at the Rand Corpora
tion.

5 .) M i n i m u m 7 0 4 d e s c r i b e d . S H A R E p r o g r a m s u s i n g c o m
ponent other than those of minimum 704 must so
note in write-up.

6.) Binary point location will be described by counting
from left to right of a word.

7.) Conventions in writing subroutines.

1 0 . 0 1 - 0 1 . . . 1 1 / 1 5 / 5 8

SHARE
REFERENCE MANUAL

8.) Format of program writeup for SHARE distribution.

9.) Identification of program decks for SHARE distribu
tion.

Installation code Columns 1-2
Reserved for internal use Columns 3-8
Sequence number Location speci

fied in writeup

10.) SHARE elementary function set will be comprised of
the following routines:

Square root
Sine-cosine
Exponential
Logarithm (base e)
Arc tangent
Sinh-cosh
Xa

d. New Operations - It was agreed that SHARE members re
quest of IBM these additional opera
tions:

1) Copy and Add Logical word

^ 2) Exclusive Or

3) Store Index in Address

4) Place Index in Address

5) Logical Right Shift

6) Store Tag

7) Backspace File

8) Read Tape Backward

e. Committees and Assignments

1) A sub-committee was designated to compile a gloss
ary of terms to augment existing computing dic
tionaries.

2) Program assignments were made to members.

1 0 . 0 1 - 0 2 1 1 / 1 5 / 5 8

SHARE
REFERENCE MANUAL

f. Papers Presented

Cross Bar Switching
Manual of operation for
704 using CAGE
704 Regional Symbolic
Assembly Program
704 Matrix Routine
704 Simulator on the 701

United Aircraft
General Electric, Evendale

Los Alamos

Lockheed, Burbank
Rand, Santa Monica

2. SECOND MEETING September 12-13, 1955 Philadelphia,
Pa.

a. Attendance - Sixteen member organizations and IBM
Applied Science Division were repre
sented. The number of members of
SHARE was increased to twenty-one.

b. SHARE Standards Adopted

1) On the basis of new information, it was agreed to
use the United Aircraft Assembly Program as the
framework of the SHARE Assembler, instead of the
IBM NY API as previously adopted.

2) The calling sequence form adopted at the first
meeting should be a suggested form only and should
not restrict the programmer.

3) Erasable storage symbol chosen -- COMMON

4) A SHARE program deck will not require that cer
tain subroutines be available within the tape library
for assembly.

5) Integer scaling will be specified as B - 35, or a
special data card form may be used.

6) Additions were made to the binary card form.

c. New Operations - A report from IBM was made concern
ing the additional operations requested
at the first meeting.

I) Shortly to be added to list of standard operations

2-6) - Presently being engineered

SHARE
REFERENCE MANUAL

7) Requires an RPQ from each installation

8) Impossible

IBM reported that half-word logic will be
available at $500. 00 per month.

d. Committees

A report was submitted by the Glossary Sub-committee.

e. Papers including subroutines for elementary functions,
data handling and diagnostics were presented by Lock
heed, United Aircraft, North American, Los Alamos,
Rand, California Research, IBM and General Electric.

3. THIRD MEETING November 10-11, 1955 Boston, Mass.

a. Attendance -Twenty-two members of SHARE and IBM
' Applied Science Division were represented.

b. SHARE Organization

1) Member is defined as an installation which has on
hand or on order at least one 704. *

2) Quorum shall consist of at least two-thirds of
members. Majority of quorum is necessary to
pass any motion. ̂

3) Established percent of quorum is necessary to
reconsider a previous decision and to overrule it.

c. SHARE Standards Adopted

1) Octal card form presented in the second proceedings
will be the SHARE standard.

2) Material which is not in SHARE language will not be
distributed by SHARE.

3) The standard library tape shall be Tape No. 1.

4) Procedures were established to transact SHARE
business by mail.

* SHARE has since been expanded to include users of the 709
computer. See section entitled "The By-Laws of SHARE".

^ Has since been changed; see "The By-Laws of SHARE".

1 0 . 0 1 - 0 4 " 1 1 / 1 5 / 5 8

SHARE
REFERENCE MANUAL

5) All distributed decks which carry sequence
numbers must use the following convention:
Sequence numbers in self-loading decks shall
start with zero; all others shall start with one.

6) Programs distributed through SHARE will use
five or fewer characters as symbols, except when
programmer wishes to prevent heading, as in
erasable storage.

d. Request to IBM - SHARE requested IBM to use
unused bits in the decrement field
in a definite order.

e. Committees and Assignments

1) Committees were appointed to study the following:

a) Bibliography and index of SHARE
distributed material.

b) Future 704 changes

c) Machine time charges

d) Periquip changes

e) Periquip reader wiring

f) Printer board standard

g) RPQ procedures

2) Various installations were charged with submitting
mail proposals concerning:

a) Standing committee on mathematical
analysis

b) New operations Sense Copy Check
Index Register ADD
instead of OR
Load Index with own
address

• Load Index with com
plement of own address.

c) Trapping mode console switch

f. Papers presented included descriptions of new routines,
usage of peripheral equipment and compilers.

1 0 . 0 1 - 0 5 1 1 / 1 5 / 5 8

SHARE
REFERENCE MANUAL

4. FOURTH MEETING February 6 and 10, 1956 San Francisco
California

a. Attendance - Twenty-seven member installations and
IBM Applied Science Division were re
presented.

b. SHARE Organization

1) Don Shell resigned as vice-chairman.

2) Walter Ramshaw was elected new vice-chairman.

3) Standards were adopted for election of officers.

4) Non-members shall attend SHARE meetings by
invitation only.

5) Statements were adopted describing the following:

a. Obligations and advantages of SHARE membership

b. Scope of SHARE activities for balance of 1956.

c. SHARE Standards Adopted

1) Card Form - binary, decimal, octal, Chinese binary

Identification Col 73-80

Information Col 1-72

2) On-line Board Wiring

On-line Reader 72-72 to accept
adopted card form

On-line Punch Col 2-9 offset
gang punched identi
fication columns

3) Printer Board Wiring Diagrams

4) Tape record representing 80 column card should
be 84 characters in length, the last 4 being blank.

1 0 . 0 1 - 0 6 1 1 / 1 5 / 5 8

SHARE
REF ERENCE MANUAL

5) Sense switch conventions

a. When a sense switch is used for control, the
"down" position shall be the "unusual" case.

b. Sense switch No. 6 shall be used for trapping
mode control.

6) A method for the exchange of statistical infor
mation concerning machine time charges was adopted.

d. Reports from IBM

D It was restated that bits in decrement field of
Type B instructions should not be used. These will
be used by IBM in future machine changes and there
is no order of probability of use.

2) Key punch code plates will be available which will
print SHARE characters.

3) Notification of 704 changes will be distributed to
SHARE in addition to appearing in 704 Information
Bulletin.

e. RPQ Procedures

Certain legal ramifications render undesirable

any joint action by SHARE in requesting machine

changes. Future RPQ's originating in SHARE shall

be submitted by each member, noting that the request

is sponsored by SHARE.

It was urged that a member submit for SHARE

distribution information on any RPQ submitted to IBM,

if this is not in violation of proprietary or security

standards.

Members were requested to submit an RPQ con

cerning a change to the automatic carriage control

on the 717 printer.

10.01 - 07 11/15/58

SHARE
REFERENCE MANUAL
— — —j

An RPQ agreed upon by mail ballot concerning

changes to the peripheral equipment was described.

f. Committees - The following committees were formed:

1) Education of Computer Personnel

2) Mathematical Methods

g. Papers presented

1) Programs written by Lockheed

2) SHARE Assembler Listing

10. 01 - 08 11/15/58

SHA^E
REFERENCE MANUAL

5. FIFTH MEETING May 9-11, 1956 Chicago, Illinois

a. Attendance - Thirty-seven member installations were
represented.

b. Format of Meeting

1) First Day - Panels on 704 experience, de
bugging, machine layout and CRT
usage.

2) Second Day - 3 schedules of sub-committee
meetings

3) Third Day - Reports from IBM concerning time
clock, sequencing device on on-line
punch, Chinese Binary, black box,
32 K word core, Fortran

Report on PACT 1A compiler

Reports from sub-committees

c. SHARE Standards Adopted

1) Change on SHARE standard 716 panel such that
sense exit No. 1 be wired directly to skip to channel
No. 1

2) Programs submitted after May 14, 1956 will include
catalog entry cards. Format of cards and outline
of classification approved.
(IBM Poughkeepsie will prepare catalog cards for
prior programs.)

3) Chinese Binary Card Format - (Binary Cards to be
distributed will remain in row-wise format.)

4) Absolute binary card decks will be distributed only
for programs to be used from operator's console.

5) "CAC" or "CAD" is mnemonic code for Copy, Add
and Carry Logical word instruction.

d. Recommendations to IBM

1) Overflow -- Underflow

a) No automatic stop on floating overflow and/or
floating underflow feature is to be provided.

10. 01 - 09 11/15/58 i.

SHARE
REFERENCE MANUAL

b) Execution of floating operations which do
not overflow or underflow is not to take
more time than at present.

c) Whenever a floating OF or UF occurs in
AC and/or MQ the location of the instruction
following the offending instruction is to be
stored at location 0000 and control is to be
transferred to some cell (not 0000 or 0001)
in low end of memory.

2) IBM urged to study extensively magnetic tape
life and reliability.

e. Committees and Assignments

1) Permanent Committee to prepare and maintain
SHARE Reference Manual

2) Logical Data Processing Committee

3) Education Committee to prepare outline of course
for training computer personnel

4) New Programs Committee

5) Instruction Mnemonics Committee

6} Permanent Catalog Committee to review methods
to maintain SHARE catalog

7) Committee to originate and distribute Monthly
Check List to strengthen communication

8) Committee to Collect Programming Statistics

f. Appendix

1) Machine Configuration Chart

2) Typical 704 layouts

3) Diagram of 32K work core frame

4) Report of Education Committee to ACM Council

REFERENCE MANUAL

6. SIXTH MEETING August 22-24, 1956 Denver,
Colorado

a ' Attendance - 1 ifty-two member installations were repre
sented.

b. SHARE Organization

1) Question of legal status of SHARE referred to committee
for investigation.

2) The Executive Board shall be composed of seven members,
which number shall include the officers of SHARE, any
officers of the year immediately passed who are not re
elected to office, and a number of members chosen by
nomination and election, sufficient to complete the seven-
member body. It shall act as an advisory body to the
executive officer of SHARE

3) Executive Board elected for 1956-1957:

Chairman: Frank Engel (WH)
Vice-Chairman: Randall Porter (BA)
Secretary: Joanne Edson (CS)
Other Members of

Executive Board: Paul Armer (RS)
Fletcher Jones (NA)
Walter Ramshaw (UA)
Jack Strong (NA)

c« SHARE Standards Adopted

1) Identification of program decks for SHARE distribution:

First card will be a REM card containing program
title and installation code.

Symbolic decimal program deck;
Columns 73-76 Program identification
Columns 77-80 Sequence number

Binary card identification not changed. (See First
i Meeting, 0. c. 9). Recommended that new identi

fication be used for second 100 cards.
•' • *v. • . * V--V - •••

a. Reports from IBM

1) Chinese binary is ready for field testing.

2) Internal clock now available by RPQ.

10. 01 - 11 11/15/58

SHARE
REFERENCE MANUAL

3)

4)

5)

6)

ltZT^O:ViCef0r the °n"Une punch »iU

iresently used wiu #

?) The 32000-word core will be changed in size.

8) Report dti status of FORTRAN.

Recommendations to IBM

21 motfhfyrr8°S IBM '° di8tribute th» 704 Information Bulletin

3)

Committees and Assignments

11 lts —

2) f o r " « * > * « £
••• '". X'My '4$rf .' •

3) Legality and Individual Membership Committee

4) Committee to prepare Schedule of Meetings.

Other topics discussed > • , &

1) Idle time at^ its relationship to efficient operatic^
2) Tape reliability

3) Aptitude testing

4) Debugging

10.01 - 12 11/15/58

SHARE
REFERENCE MANUAL

5) 704 layout

6) Critique of SHARE'S first year

h. Appendices

1) Attendance

2) Index of UA Library Programs

3) Mathematical Routine Questionnaire ' ...

4) Programmer Training Committee Questionnaire Results.
Syllabus of Proposed Training Program

5) Diagram of 32000 Word Core Frame

6) An example of FORTRAN coding

7) Graphical representation of relationship between 704
waiting time and work load.

8) Preliminary report on General Electric tape reliability
test.

9) Description of Midwestern Universities Research Associa
tion (MU)

10) Index

7. SEVENTH MEETING December 13-14, 1956 New York,
New York

a. Attendance - Sixty-eight member installations were re
presented.

b. SHARE organization

1) Recommendation by Executive Board concerning govern
ment of SHARE was adopted. ^

2) A formal committee-subcommittee structure was approved.

c. SHARE Standards Adopted
» , , i • •* * • * . ' • t , « • '

1) Standard format for abstract cards for prbgjf&rhfr^h pre
paration or revised.

10.01 - 13 11/15/58

SHARE
REFERENCE MANUAL

d. Reports from IBM

1) Storage life and reliability of magnetic tape.

2) Description of 774 Tape Data Selector.

3) Overflow-underflow change requested by SHARE being
worked on. 6

4) Chinese binary being field tested at North American.

5) Add and Carry Logical Instruction now available.

6) Store Zero instruction will now be maintained.

7) End of Tape Test instruction being put on all machines.

8) Reports on FORTRAN: Subroutine structure, distribution
system, experience to date, future aspects, debugging,
and input-output.

e» Recommendations to IBM

1) The use of mnemonic code SLT on the improved 704 is
deplored, as it conflicts with a SHARE extended operation

Committees and Assignments

1) Education Committee reorganized as "Public Relations
in the Computing Field" Committee.

2) 704 Model 3 System Committee founded to study the
establishment of a uniform system as well as a uniform
language in the next machines.

S' Other Topics Discussed

1) Indoctrination session for new members held prior to
general meeting.

2) Proposal concerning legal counsel for SHARE.

- 3> ' jEWl dircussion of operator programs employing tape-to-
dumphig °n' n6W 88in8 techniques, and snapshot

10. 01 * 14 11/15/58

SHARE
REFERENCE MANUAL

h. Appendices

1) Attendance

2) Report of the Education Committee

3) Chart of SHARE Committee Structure.

4) Committee Chairmen and Members

5) Report on status of SHARE Assembly Program

6) Panel discussion.

7) SHARE Monthly Checklist Questionnaire.

8) Chart of SHARE Machine Configurations.

9) Chart of Operating Characteristics.

8. EIGHTH MEETING April 24-26, 1957 Dallas,

Texas

a. Attendance - Sixty-seven member installations were
represented

b. SHARE Organization

1) New By-Laws adopted.

2) Slate of officers nominated for 1957 - 1958.

c- SHARE Standards Adopted

1) Method of distributing program decks on request.

2) System of program revision,

d. Reports from IBM

1) 72 7/792 tape unit compatibility on 704 and 709.

2) 150/500/1000 line printers and tape unit compatibility

3) 704/709 RAMAC

4) COMTRAN

5) Programmable trap interval timer.

SHARE
REFERENCE MANUAL

Preparation for 709

1) Minimum 709 defined.

2) Objectives of system listed.

Other Topics discussed

1) Floating Point Trap (Floating underflow-overflow) -
informal survey of installations ordering.

2) Decided not to add mean error-free time to machine
performance statistics.

3) Report on SHARE Assembly Program.

4) Panel on direct input devices.

5) Panel on improvement of program material for SHARE
distribution.

6) Panel on program checkout techniques.

7) Panel on programming tricks and conventions.

8) Panel on administration of computer facilities.

9) Operational reports on FORTRAN and PACT 1A

10) Panel on unexpected arithmetic difficulties due to
machine characteristics.

11) Panel on flow charting techniques.

12) Panel on techniques for handling completed program
library.

Appendices

1) Attendance

2) By-Laws

3) Standing and Ad Hoc Committees

4) Transfer of Responsibility for SHARE Distribution

5) Machine configuration and Operating Characteristic Charts.

SMARE
REFERENCE MANUAL

7

8

9

10

1 1

1 2

13

14

15

1 6

17

Supplementary Input-Output Functions for 704

FORTRAN Status Report

Report on SHARE Assembler

Results of Program Usage Questionnaire

Report of Committee on SHARE Distribution

Report of Committee on Public Relations in the Computer
Field

Report of SHARE Reference Manual Committee

Report of Programmer Training Committee

Report of Mathematics Subcommittee

Guide for the preparation of program critiques

Report of Utility Programs Subcommittee

Report of 709 System Committee

9. NINTH MEETING October 1-3, 1957 San Diego,
California

Attendance - Seventy-six member installations were
represented..

SHARE Organization

1) Executive Board elected for 1957 - 1958 :

Chairman:
Vice-Chairman:
Secretary:
Executive Board:

F. V. Wagner (NA)
B. Ferber (CS)
H. S. Bright (WB)
L. H. Amaya (CL.)
P. Armer (RS)
W. A. Ramshaw (UA)

(Ex-officio seventh member of Executive Board is the
outgoing Chairman, F. Engel)

2) Quorum reduced to one-half of membership.

10. 01 - 17 11/15/58

snmE
REFERENCE MANUAL

3) Amendment simplifying election procedure adopted.
(New elections for all offices simultaneous; one
election for board members regardless of number
of nominees).

4) By-Laws rearranged to put all paragraphs on
attendance together.

5) Future meetings will be scheduled in such a way as not
to be contiguous with related major technical meetings.
Each meeting will be three days in length, Monday -
Wednesday or Wednesday - Friday. Two meetings
will be held a year.

c. SHARE Standard Adopted

1) Standards for column binary agreed on:

Combination 9-7 punch in column 1 shall
designate column binary card.

Card images on tape shall agree exactly with
standard row binary except for bits 9
and 11 in the first word corresponding
to the 9-7 control punch in the card.

The SHARE standard 714 board shall be wired
to permit the program to look ahead
to see if the next record is column
binary or BCD.

d. Reports from IBM

1) Organization of Applied Programming Department
of IBM.

2) 704 and 709 Publications

3) New library programs.

4) FORTRAN II plans.

5) COMTRAN, proposed IBM common language translator.

6) Special engineering applications and special hardware
requests.

10.01 - 18 11/15/58

SHARE
REFERENCE MANUAL

e . Committee and Assignments

1) Ad Hoc committee formed to consider distribution of
informal material within SHARE.

2) Ad Hoc committee on type wheel standards recommended
8 - 4 c h a r a c t e r c h a n g e . M a i l b a l l o t w i l l b e t a k e n .

f. Preparation for 709

1) Discussion of reasons for various choices of machine
configurations.

2) Discussion of interchangeable sets of type wheels.

>; 3) Panel discussion of 709 system.

4) Ad Hoc committee formed to study elimination of Q bit
from 709.

g- Other Topics Discussed

1) Proposed FORTRAN Source Language Translator.

2) Survey of non-engineering applications of the 704.

3) Panel discussion on output generators.

4) Panel discussion on curve plotting techniques.

5) CORBIE automatic operator system.

6) Panel on experience with 32000-word core storage.

" • ' . 7) Panel on FORTRAN experience

8) Panel on Universal Computer Language.

h. Appendices

1) Summary of decisions

2) Attendance

3) SHARE committees

4) IBM reports

5) Non-Engineering 704 usage

1 0 . 0 1 - 1 9 1 1 / 1 5 / 5 8

SHARE
REFERENCE MANUAL

6) Progress report on. 709 Supervisory Control

7) SHARE members 704 and 709 Configurations.

8) Report of Mathematics Committee, including report
of Scope Subcommittee.

9) Report of Utility Programs Subcommittee.

10) Report of the SHARE Reference Manual Committee.

11) Report of the Committee on Column Binary

12) Report of Committee on 709 Type Wheel Standards.

13) Report of Committee for Scheduling of Future SHARE
Meeting.

14) Notes on Panel Discussion on Administration.

15) Notes from Meeting on Universal Computer Language.

16) Proposed FORTRAN Source Language Translator.

17) Summary of Answers to 704 Clock Questionnaire.

1 0 . 0 1 - 2 0 1 1 / 1 5 / 5 8

SHARE

F O R E W O R D

Upon getting thoroughly into the problem of preparations for
the IBM fob, three installations in the Los Angeles area began
to have informal discussions concerning their individual plans.
Having been pleasantly surprised by the successful cooperative
effort for the design and coding of Pact I, a favorable climate
existed for a similar joint activity in connection with program
development for the 70̂ -. Accordingly, Rand, Lockheed, and
North American seriously began to consider standardization. A
fortunate circumstance was the seminar held by IBM in Los
Angeles during the week of August 8, 1955. This brought repre
sentatives of several other western installations together, and
the idea was discussed among them.

The mutual respect that the participants in these discussions
had for the programming competence of the others soon brought
the realization that an "isolationist" attitude no longer
existed, and almost all professed themselves as quite willing
to accept the ideas of others, even to the extent of obsolet-
ing things already done within their installations. It was
unanimously agreed that a full-scale attempt should be made
to bring SHARE into being. Since it seemed almost too late
to do it on a nationwide basis, extreme haste was necessary,
and the initial meeting of SHARE was called for the week of
August 22, 1955.

In spite of such short notice, almost all potential 70̂
installations throughout the country responded with alacrity.
All expressed a desire to participate, and attendance at the
first meeting was gratifyingly large. The following Proceedings
indicate the high degree of success achieved thus far.

SHARE
PAGE

PROCEEDINGS OF THE FIRST MEETING OF SHARE

Addenda et Errata

Page Line Correction

3 18 Substitute "Computing Bureau" for "Programming Research."

3 23 Add "Data Processing Center" after "World Headquarters."

U U Delete "Robert Douthitt."

9 26-27 Strike out the remainder of the sentence beginning
with "assembly program ..." and substitute "decimal
symbolic deck."

10 29-33 Delete this calling sequence and substitute:

LOC OP ADDR TAG DEC

A TSX C

A + 1 HTR q.^ q2

A + 2 HTR Y

A + 3 TRA B

A + Forwarding Location

App. 2-1 Add (bottom of page):

"Components selected may be indicated by small decimal
integers. Thus, Tape (22l)g may be addressed as Tape 1,

Drum (302)Q as Drum 2, etc. No addresses need be

written for RCD, RPR, WPR, WPU, WTV, SLF, SPR, SPT, SPU,
CFF, IOD."

App. 5-1 Program 5 Write in "LA" under each heading across page. Add
"Floating Point" under "Remarks."

App. 8-1 27 Substitute "General Motors Research" for "General
Motors Corporation."

App. 9-1 15 Substitute "PK" for "PR" and substitute "Computing
Bureau" for "Programming Research."

*cu

SHARE
PAGE 1

TABLE OF CONTENTS

Representation at the First Meeting of SHARE

Policy Committee Proceedings

Working Committee Proceedings

1. Mnemonic Operation Code

2. Assembly Program

3. Binary Card Format

Utility Routines

5. Subroutines

6. Conventions of Use of Index Registers and Indicators and
Mode of Input-Output of Subroutines

7. Print Wheel Format

8. Code Diagnostics

9« Additional Operations

10. Binary Point Location Description

11. Language Conformity

12. Systems of Use of Utility Programs

13- Program Identification

1̂ . Abstractions

15. Continuance of SHARE Activities

Papers Presented During the Meeting

Appendices

1. SHARE Binary Card Form

2. SHARE Extended Operation List

3. Types of 70̂ Now on Order by SHARE Members

The "Minimum 70V

SHARE
PAGE 2

TABLE OF CONTENTS (Continued)

SHAKE Programming Assignment Chart

6. SHARE Program Write-Up Form

7. Existing Elementary Functions Routines

8. Mailing Addresses of SHARE Participants

9. SHARE Member Identification Characters

SHARE
PAGE 3

I.

REPRESENTATION AT THE FIRST MEETING OF SHARE

BOEING AIRPLANE COMPANY
John Jordan
Randall Porter

CALIFORNIA RESEARCH CORPORATION - LA HABRA
Wesley Harker ̂
William J. West

CURTISS-WRIGHT CORPORATION
John A. DeVries
W X & A s (.FM-WC*. O-Att |fê)

DOUGLAS AIRCRAFT COMPANY, INC. - EL SEGUNDO DIVISION*
Walter C. Schlieser

GENERAL ELECTRIC COMPANY - AIRCRAFT GAS TURBINE DIVISION
Don Shell foci*

GENERAL MOTORS CORPORATION 0 o » !+*<=(e t < r ,
Jim Fishman boa tirr**<,<.

HUGHES AIRCRAFT COMPANY
Leo A. Aroian
Essor Maso

INTERNATIONAL BUSINESS MACHINES CORPORATION - PROGRAMMING RESEARCH
POUGHKEEPSIE '
Willard Bouricius

INTERNATIONAL BUSINESS MACHINES CORPORATION - SANTA MONICA OFFICE*
Steve Jamison

INTERNATIONAL BUSINESS MACHINES CORPORATION - WORLD HEADQUARTERS
John Greenstadt ̂ a-iw &am̂ s~n̂ £«o

LOCKHEED AIRCRAFT CORPORATION - ACCOUNTING, BURBANK*
John Caywood
Norvell Johnson

LOCKHEED AIRCRAFT CORPORATION - BURBANK
Lee Amaya
Harvey Bratman
Carl Tross

LOCKHEED AIRCRAFT CORPORATION - GEORGIA
Robert Bosak
D. P. Haggerty
J. R. Raynolds ̂

SHARE
PAGE k

!• REPRESENTATION (Continued)

LOCKHEED AIRCRAFT CORPORATION - MISSILE SYSTEMS, RESEARCH LABORATORIES
J. E. Barry
Ed Braun

M. Lakin

LOCKHEED AIRCRAFT CORPORATION - MISSILE SYSTEMS, ENGINEERING DEPARTMENT
R. V. Bemer ̂
B. F. Handy ̂
E. H. Havekotte
C. M. Wimberley

NATIONAL SECURITY AGENCY
Thomas E. McCool

NORTE AMERICAN AVIATION, INC.
Ray Berman ̂
Robert Boden
Fletcher Jones
Oven R. Mock ̂
Jack A. Strong •
Frank V. Wagner

THE RAMO-WOQLDRIDGE CORPORATION*
A. John Carlson, Jr.

THE RAND CORPORATION
Paul Armer
Eugene Gordon
Irwin Greenwald
John Matousek ̂
Cliff Shav
Tom Steel

UNITED AIRCRAFT CORPORATION
Roy Nutt ̂

UNIVERSITY OF CALIFORNIA - LIVERMORE
Robert Hughes p|Od-

UNIVERSITY OF CALIFORNIA - LOS ALAMOS
Louis Gatt ̂
Edward Voorhees ̂

fi£05$5M£*
5A Si tvptruP
tto

*Nonparticipating

SHARE
II PAGE 5

POLICY COMMITTEE PROCEEDINGS

For purposes of definition, the "SHARE" Policy Committee is considered to
be that part of the "SHARE" organization which has as its members at least that per
son from each 704 installation who is empowered to commit his organization on all
matters involved in a cooperative activity. The chief duty of the Policy Committee
is to direct the activities of the Working Committee, which is composed of individ
uals familiar with the details of machine methods and programming.

At the opening of the "SHARE" conference, Paul Armer of the Rand Corpora-,
tion welcomed the attendees and gave a brief summary of the genesis and expected
scope of the organization. There followed a discussion on the aims of "SHARE",
during which the final agenda for the week to follow was evolved. The agenda was
based on a fifteen-point program, involving the following topics:

1. Mnemonic operation code.
2. Assembly program.
3. Binary card format.
4. Utility programs.
5. Subroutines.
6. Conventions of use of index registers, indicators, and switches.
7. Print wheel format.
8. Code diagnostics.
9. Additional operations.
10. Binary point location description.
11. Language conformity.
12. Systems of use of utility programs.
13. Program identification.
14. Abstractions.
15. Continuance of SHARE activities.

An election of officers was called for, and nominations and voting followed,
The following are the officers of the "SHARE" Policy Committee as elected August 22:

Chairman: Jack Strong
Vice-Chairman: Donald Shell
Secretary: Fletcher Jones

Many representatives were not familiar with the methods in use at several
of the installations. In order to acquaint everyone with methods currently in use
and being planned, a cursory examination of each of the points on the agenda was
undertaken. As each item on the program was surveyed, those who had pertinent pro
grams, definite plans, or ideas gave a brief description of these. At the conclusion
of this discussion, it was decided that the first three items on the agenda, mnemonic
operation code, assembly program and binary card format, were prime instruments in
any transfer of information, and, as such, should be given precedence over the other
points to the extent of having discussion and basic decision on these items in the
Policy Committee before discussion of any other points.

It was noted that four organizations had progressed in the design of
machine methods to the point of having written assembly programs and adopted binary
card forms and mnemonic operation codes. These organizations are United Aircraft
Corporation, Los Alamos, General Electric-Evendale, and IBM. These items were taken }
up in order of appearance in the agenda, with representatives of the organizations {
mentioned giving a detailed picture of their particular method. The results of! the
presentations and subsequent discussions follow.

SHARE
PAGE 6

1. Mnemonic Operation Code

It was agreed that all the existing operation codes were good and easy
to use, and that the choice between these was largely one of personal
taste. Many representatives, however, were in favor of an extended order
list, the use of which would enable a programmer to write a particular
operation code which would designate the desired input-output or sensing
device.

Only one installation of the four had a strong reason for not adopting a
different code from that they were using. IBM has spent a great deal of
money and time in the preparation of literature, training of customer
engineers and other personnel, and the printing of circuit diagrams and
reference material —— all using the New York IBM code. Through a tele
phone call to the New York IBM offices, it became evident that the
mnemonic operation code was the one item, on the agenda which was consid
ered unchangeable by IBM. IBM, however, did not object to an extended
order list or to the naming of operations to be requested in addition to
those already used.

It was decided by a vote that IBM's operation code is that which will be
used by "SHARE". It was agreed that the Working Committee would compile
a mutually acceptable extended order list if such was desired by a major
ity of Working Committee members.

2. Assembly Program

It became apparent during the discussion and description of the available
assembly programs that each of the ..installations had written their
assembler with an eye to some particular feature or features. (While the
main consideration of the Los Alamos assembly is the quick reassembly,
G. E. desired a variable field card input and UAC a compounded address.)
It was agreed that one assembly program could economically include most
of the features desired. Towards the goal of constructing such an assem
bly program, it was decided that some existing assembler should be adopts
ed as a framework on which to add the features considered to be most
important. A vote was taken and the IBM assembly program was designated
as that which will be the framework of the final "SHARE" assembly. The
Working Committee was instructed to specify the necessary changes which
would make the "SHARE" assembler acceptable to all.

3. Binary Card Format

The various binary card forms in use were discussed. John Greenstadt
proposed a compromise of all those forms mentioned to that described in
appendix (l). This was unanimously accepted as the "SHARE" binary card
form.

Time permitted the discussion by the Policy Committee of several other
points on the agenda. The results of these discussions follow.

1. Print Wheel Format

It was noted that, during the March, 1955, 701-704 Symposium held at The
Rand Corporation, a final 704 print wheel configuration had been decided

SHARE
PAGE 7

upon by all the then prospective 704 installations. This format was
accepted by IBM representatives as that which they would implement in
the design of the 704 print wheels. Through a phone conversation with
the New York offices of IBM, it was found that the print wheel design
now considered to be standard by IBM differs from that suggested in March,
It was agreed without, objection that a letter protesting the decision of
IBM in this matter be sent from SHARE. It was also agreed that the
letter from SHARE should include a request for the change of the print
wheels to conform to the configuration accepted in March. It was further
resolved that a copy of this letter would be sent to the IBM branch office
servicing each of the SHARE members.

2. Standardization of Machine Configuration

It was thought to be appropriate to investigate the feasibility of having
a "standard 704". This would provide every 704 machine with the same
number of core frames, drums, etc. It was immediately apparent from the
discussion of this subject that such standardization would not be prac
tical with the 704. This is because use of computing equipment varies
among the 704 installations, requiring a "variable machine." The thought
was projected that this topic would be one of significance when new
computing machinery is announced.

The discussion was very productive in that it supplied to all present the
machine configurations on order by the installations represented. A
chart showing the types of 704's on order by SHARE members may be found
in Appendix (3).

For purposes of reference, a "minimum 704" was described. This config
uration will be of aid to members in the writing of programs for distri
bution in SHARE. All the components of the 704 used in programs for
distribution in SHARE, other than those components in the "minimum 704,"
must be noted in the program writeup. The composition of the "minimum
704" may be found in Appendix (4).

3. Binary Point Description

In the discussion of this subject, it was found that only two installa
tions preferred to describe the location of the binary point by counting
bit locations from the right of the binary word, the remaining installa
tions having adopted the convention of counting from the left. It was
decided by vote that the binary point will be described by counting from
the left to the right of the word. Thus the binary word having the form
xxx.xxxx shall be said to have a scale factor, or "q", of 3, and the
binary word having the point 37 bits to the left of the rightmost bit
shall be said to have a scale factor of -2.

4. Language Conformity

The discussion of this subject led to the conclusion that a glossary of
terms used in connection with 701-704 computing is needed to augment
existing dictionaries of computing terms. The Working Committee was
charged with the compilation of such a glossary.

SHARE
PAGE

5. Continuance of "SHARE" and Method of Distribution of Information

It was observed during the discussion of this topic that subsequent
meetings of SHARE should coincide with meetings of other organizations
involved in computing and thereby lessen the burden of travel justifi
cation placed on SHARE representatives.^ It was noted that four or five
meetings of great interest to computing personnel occur each year, and
these would provide ample opportunity for SHARE conferences once the
initial backlog of SHARE work has been accomplished. The second meeting
of SHARE was scheduled for September 12th through 13th in Philadelphia.
This meeting will immediately precede the Philadelphia meeting of the
Association for Computing Machinery, September 13th through 15th.

It was decided that some member of SHARE be designated the distributing
agent for inquiries, memoranda, information, and finished programs. To
this end, the following was agreed upon:

a. For distribution of programs which have been checked out,
w^ItTiShrup and made ready for general dissemination within
SHARE, Mr. George Petrie of IBM. Poughkeepsie, New York, will
act as agent. All writeups,"diagrams, etc, should be in a
reproducible form.

b. For all other purposes, the secretary of the SHARE Policy
Committee will act as the distribution and information agent.
Items sent to the secretary for distribution should be in a
reproducible form or should be reproduced before being sent to
the secretary, whichever is most convenient.

c. On receipt of an item for distribution the agent involved will,
within a reasonable time, process the item and send copies
directly to the members of SHARE.

Having discussed the subjects listed above, the Policy Committee instructed
the Working Committee to investigate and make decisions on the other points of the
agenda, adding, where necessary, to the decisions of the Policy Committee on items
previously covered. The Policy Committee adjourned.

SHARE
III PAGE 9

WORKING COI-iMITTSE PROCEEDINGS

The first item of business called for in the Working Committee was the
election of officers. Nominations were made and voting followed. The officers of
the SHARE Working Committee as elected August 2kth are:

Chairman: Irwin Greenwald
Secretary: Fletcher Jones

The Working Committee had been instructed by the Policy Committee to dis
pose of the items on the agenda. For purposes of collecting all activities on each
item examined by the Working Committee, the Proceedings will follow the outline
furnished by the agenda. In this categorization, no attempt'has been made to order
the happenings chronologically.

1. Mnemonic Operation Code

A vote was taken to determine the desirability of an extended order
list. The decision was made to design an extended order list to be
added to the IBM operation codes. A subcommittee, composed of R. Bosak,
D. Shell and J. Greenstadt, was organized for this purpose, and devised
that which is to be found in Appendix 2. This was adopted, without
objection, as the SHARE extended order list.

2. Assembly Program

The Policy Committee had charged the Working Committee with the modifi
cation of the NYAPI (iBl) assembler so as tp satisfy the needs of all
installations. After long discussion, it was decided that the IBM
assembly should be modified to include the following features:

a.

b.

c.

d.

e.

f.

The ability to accept and print out a variable field.

The ability to facilitate a short reassembly-one which would
not require the entering into the machine of the complete

pas se s__necessaryL-for the-nncnt nb JEM
det'iwa 1 symbolic. dtecÂ •
The ability to accept and interpret compounded addresses and
compounded decrements. This allows the algebraic combination
of symbols in the address and decrement parts.

The feature which would allow the assembly program to punch out
origin cards for library programs.

The ability to punch out origin tables which may be changed
with a minimum of hand keypunching, or, that which is preferred,
no keypunching whatsoever.

The ability to assign erasable storage in a quasi-automatic
fashion. This would allow the programmer, when storing an
answer, to call the address "the result of step n". Later
references to this address would have the same form, i.e.,
"CLA R(n)". The assembly, in this case, would automatically
assign absolute addresses to these references, making unnecessary
the naming of erasable storage during coding.

SHARE
PAGE 10

John Greenstadt expressed confidence that all these features could be
incorporated into NYAP1. John will delve deeper into the addition of
these features upon his return to New York, and will give a report as to
his findings at the second meeting of SHARE. Proponents of the sug
gested changes were asked to submit proposals at the next meeting as to
the embodiment of their ideas into NYAP1.

3. Binary Card Format

There were no suggestions for addition to the decisions made on this
subject in the Policy Committee.

Utility Programs,

5. Subroutines and

6. Conventions of Use of Index Registers and
Indicators and Mode of Input-Output of
Subroutines

It was decided that these three subjects should be taken up as one,
since many problems involved in programming are common in these items.

There was much utility program and subroutine coding experience
represented in the Working Committee, since many programmers do their
first experimenting with a new machine by writing input-output programs
and elementary function subroutines. Everyone with feelings for and
experience in these items gave a summation of their ideas. It was
decided that certain rules governing subroutines should be specified at
this point in the discussion. These follow:

a. Fixed and floating point subroutines shall be separate entities.

b. Subroutine shall always be entered by a calling sequence.

c. The transfer point shall always be the first instruction in the
subroutine.

d. Every effort will be made to use the following form of calling
sequence: / ^ o£ A peg. t#6 mc

tsx c.

%' f-L.

Y
8

FORWARDING LOCATION

As in the above sequence, index register C will always be that
which is used in subroutines.

The argument(s) will be placed in the following units of the
machine, in the order indicated: (l) accumulator, (2) MQ,
(3) core storage location specified in linkage. Thus, if there
is only one argument, it will be found in the accumulator; if
there are two, they will be found in the accumulator and MQ; etc,
Output of the subroutine shall be stored in the same fashion.

SHARE
PAGE II

In step A+l, the c^'s represent scale factors; the scale
factor of the input and that of the output.

A+2 is an example of a step indicating an input parameter is to
be found in core storage. If there are several input parameters
in core, the steps designating the addresses of these will be
consecutive in the calling sequence. The operation associated
with an input parameter shall always be a "HTR".

It was decided that there should be two returns to the master
program; one if the execution of the subroutine was unsuccessful,
and a successful completion return. This, it was pointed out,
would eliminate stops in subroutines due to faulty scaling, etc.
The first return location in our example sequence is at step
A+3. Step A+4 is the site of the successful return in this
instance.

e. If any index registers, other than "C", are used by the sub
routine, these will be restored to their original condition
within the subroutine before exiting.

f. If an unsuccessful return is made to the master program from a
subroutine, bits defining the nature of the error will be placed
in the accumulator. These bits patterns and their meanings will
appear in the program write-up.

g. If any information is conveyed to the master program from
the subroutine via the overflow triggers, these will be
preset as needed within the subroutine. Notice will be
given in the write-up if the overflow triggers convey infor
mation. If no information is conveyed via overflow triggers,
the condition of overflow triggers on exiting from the
subroutine is not guaranteed. These indicators may be
used within the subroutine without restoration or setting.

h. Any sense lights used within the subroutine will be restored
before exit to the master program.

i. A calling sequence for a floating point subroutine will appear
as that in (d) above, with the exception that there will be no
reference to scale factors.

j. Negative numbers appearing in the calling sequence for use in
negative scale factor writing will be in the form of 2's comple
ment.

k. If a double precision routine is being entered, the first argu
ment will be found in the accumulator and MQ, any second argu
ment in some core address specified in the calling sequence and
the next consecutive address, etc. Output from the subroutine
shall be stored in the same fashion.

1. In the one case not governed by input-output rules listed above,
if a subroutine having n input values yields n + y output values,
where n > 2 or the routine is double precision, the calling
sequence must have y core addresses specified as storage sites.

SHARE
PAGE 12

m. A 12 in 80 punch will indicate end-of-file on card reader.

It was next decided that a basic set of elementary functions should be
decided upon. To this end a subcommittee, composed of W. Harker, R.
Nutt, L. Gatt and J. Greenstadt, studied the suggestions for those ele
mentary functions thought to be necessary and arrived at the following
list of necessary subroutines:

Square Root
Sine-cosine (one routine)
Exponential (e)
Logarithm (base e)
Arc tangent
Sinh-Cosh
Xa

These routines comprise the SHARE elementary function set.

Discussion next moved to the choice of abstractions, utility routines
and mathematical subroutines. Many programs were suggested, but it was
realized that initial efforts in the programming direction should not
attempt to be all-inclusive, so decisions were made as to which programs
were very useful or necessary. A chart, listing these programs, may be
found in Appendix (5). Included in this list are those programs to which
there already has been considerable effort devoted. These would have
been finished by the installation concerned regardless, so their addition
to the assignment sheet merely insures their dissemination in SHARE.
Also, on this chart is the assignment of each program to an installation
for programming. Assignment was on a volunteer basis. Those installa
tions indicating that program specifications will be prepared by
September 12 will also be responsible for the programming of the routine
involved. Appendix (9) will be useful in "decoding" the assignment chart.

7. Print Wheel Format

This subject was discussed to a final conclusion in the Policy Committee
meeting.

8. Code Diagnostics

After lengthy discussion and much divergence of opinion on this topic,
it was decided that code diagnostics is a category which is highly
specialized from one installation to another. Many different modes of
diagnoses will be used in many different ways. It was decided, therefore,
that there_will be no SHARE diagnostic routine as such, but anyone
writing such a routine is encouraged to submit this to SHARE for distri
bution. Several general diagnotic routines, as will be noted on the
assignment chart, are to be written. These will be invaluable aids in
initial machine use.

9. Additional Operations

There were many suggestions for operations to be added to the order list.
It was pointed out that SHARE should weigh the usefulness of any suggested

SHARE
PAGE 13

operation against the possibility that all operation bit arrangements
might be depleted before experience on the 704 could guide a choosing of
additional operations. Toward the goal of selecting the most useful
operations to be added, a subcommittee composed of I. Greenwald, D. Shell
and J. Greenstadt was instructed to investigate the suggestions and com
pile a list of operations which SHARE would request of IBM. The acti
vities of this subcommittee resulted in the compilation of the following

Copy and add logical word
Exclusive or I
Store index in address i

Place index in address sf-
Logical right shift
Store tag
Backspace file (On a backspace file instruction during a begin-
ning-of-tape condition, a skip is desired. A skip is also de
sired on the backspace record instruction when a beginning-of-
file condition is met.)
Read tape backward (If this instruction is adopted by IBM, it
is expected that there also would be available a skip on begin-

, _ ning-of-file condition when backspace tape is given.)
f tfaW-WOfio flflTA VlTS 14 \~) S

y>'' ' It was pointed out that perhaps, due to some unknown characteristics of
the tape units, IBM would be unable to supply both (7) and (8). It was
decided, in this event, that (7) is the operation of choice. It was

-V s indicated that the innovation of either (7) or (8) might make necessary
the sacrifice of the high-speed rewind. The decision was made that
SHARE will have traded well if either instruction should replace the
high-speed rewind.

It was unanimously agreed that a form letter, asking that the instruc
tions above be added to the operation list, would be sent from each
installation to Dr. De Carlo of IBM.

10. Binary Point Location Description

Conclusive decisions on this topic were made in the Policy Committee.

11. Language Conformity

The Policy Committee had directed the Working Committee to compiles
glossary of terms to augment existing computing dictionaries. It was
decided that this should be done in a subcommittee. The Los Angeles
vicinity installations will organize a subcommittee for purposes of com
piling a glossary. This subcommittee will submit proposals at the
second meeting of SHARE.

1^* Systems of Use of Utility Programs

It was found that systems of utility program usage was largely an inter
nal function with each installation and that SHARE'S activities depended
in no degree upon agreement on this subject. It was interesting to note,
however, that, of those installations represented, only two did not ad
here to the practice of entering utility programs into the master

list:

gy W(3> iX Sefi

"r'HLJZ-Q

SHARE
~ " " PAGE 14

program at the time of assembly. References marginally associated with
this subject may be found in III, 4.

13. Program Identification

It was agreed that some method of readily identifying the source of pro
grams written for SHARE should be adopted. The write-up form to be used
with SHARE programs partially accomplishes this purpose, but does not
allow for the identification of decks of cards. It was decided that all
decks of cards to be distributed in SHARE will have, in the first two
columns, characters defining the originating installation. Characters
were assigned to each SHARE installation. A list of these may be found
in Appendix (9). It was decided that the six columns immediately follow
ing the installation characters would be reserved for internal use in
each installation. These columns, however, will not contain the same
data for two different SHARE programs written by the same installation.

In connection with card identification, it was decided that all decks
sent to SHARE for distribution will have a sequence number in some loca
tion specified by the program write-up.

. Abstractions

It was decided that, for the immediate purposes of SHARE, abstractions
were not necessary and the programming of these should be put aside until
more urgent work is accomplished. There will be, however, a proposal for
a matrix abstraction rendered at the second meeting of SHARE.

15. Continuance of SHARE

This subject was discussed to a conclusion in the Policy Committee
meeting.

Roy Nutt of UAC gave an interesting talk on the "Cross-Bar Switching"
arrangement to be used at East Hartford. This is the method by which UAC plans to
manipulate 727 tapes without having to shut off power. UAC will build the necessary
apparatus at an approximate cost of $30,(XX). Their switching unit will control as
many as 10 tapes at once.

The first meeting of the Working Committee of SHARE adjourned on Friday
afternoon, August 26, 1955.

MANUAL OF OPERATION'

for

IBM 7M

using

CAGE

Compiler and Assembler by Genera! Electric

Prepared and published by

Computer Techniques Development Subsection
Investigations Section

Aircraft Gas Turbine Development Department
General Electric Company

Evendale, Ohio

p
TABLE OF CONTENTS

Part I 1

Description of Machine Characteristics « . « . 1

Internal Logic 1

Registers 1

Special Indicators 4.

Instruction Format ... 5

Floating-Point Word Format 6

Manual Operation . 7

Panel Lights 7

Panel Switches and Buttons 9

Introduction to 704 Instructions 12

704 Instructions \ . 14

Special Instructions 35

Timing 37

Instruction Summary and Timing Table 37

Instruction Summary (Alphabetical Order) 40

Instruction Summary (Numerical Order) 41

Part II 2-1

Introduction to Cage 2-1

The Language 2-1

Input Format 2-2

Cage Operation and Controls 2-3

Output Format 2-5

General Use

Error Detec

GE AOT Evendalet Ohio

INTRODUCTION

This volume is a manual of operation for the IBM Type 704 Electronic Data
Processing Machine. It is written from the point of view of a programmer
using CAGE—Compiler and Assembler by General Electric.

The manual is divided into two parts. The first part describes the essential
characteristics of the 704 from the programmer's point of view. It dupli
cates in large measure the contents of IBM's own manual of operation for
the 704. However, the nomenclature and especially the mnemonic code has
been altered throughout to conform to that which must be used with CAGE,

The second part of the manual is a description of CAGE itself. It is
written from the users viewpoint and is intended to describe in considerable
detail the features of this essential tool.

The entire manual has been published in this loose leaf form in order that
it may be a simple matter to make future additions and corrections. It is
anticipated that the user of this manual will want to put program write-
ups, listings and so forth, in the binder for ready reference. One might
also want to do such things as removing pages 40 and 4l of part one and
mounting them on heavy paper or cardboard for easy access. In general the
attempt has been made to make the manual as easy to use as possible.

It is anticipated that additions and revisions to this manual will be
necessary in the future. When such is the case, appendices will be issued
to cover all required changes.

A great deal of the information in part one is covered by IBM copyrights
and is used with their permission.

iii G£ AOT Evendale, Ohio

70̂ Regional-Symbolic

August 3, 1955

PRELIMINARY REPORT ON REGIONAL-SYMBOLIC (R-S) "7 &

by Louis Gatt

R-S is a system of coding which incorporates the important features

of symbolic coding and regional coding.*

The main advantage of symbolic coding is the ease with which inser

tions and deletions are made. However, a partial assembly is not easily

made with a symbolic-type program. The important asset of regional

coding is the ability to do an assembly on a set of instructions A,

that refer to instructions B when the instructions B are not present.

In regional coding, one can make corrections on a small portion of this

program without loading the entire decimal deck. On the other hand, it

is not convenient to add or delete instructions in a program using

regional-type coding.

In using R-S, the programmer codes in symbolic, with the restriction

that sequencing numbers be in ascending but not necessarily consecutive

order, and the assembly program does a regional type assembly. Hence,

we have all the conveniences of symbolic coding in making insertions and

deletions and also the convenience of regional coding since partial

assemblies and reassemblies are possible.

R-S will be equipped to produce relocatable type binary cards; these

will be described in a later report.

To avoid circumlocution, a square root calculation is attached using

the language of R-S, upon which the following discussion is based.
* ~~~~~~~~————
This program evolved from a method suggested by Mr. Edward Voorhees.

£°r !'?uld like to express his appreciation to Mr. Floyd Johnston
of IBM for his suggestions during the development of the detailed program.

1 2 3 4 5 6 7 8

Q o o T
704 'R.cyiaHal-SqmMic

UNPUNCHED REMARKS
LOCATION OPER ADDRESS } DECREMENT T DATA / REMARKS *

UNPUNCHED REMARKS REGION SEQUENCE F ATION REGION SEQUENCE F } REGION SEQUENCE F I FRACTION u t UNPUNCHED REMARKS
3 10 12 13 IE 17 18 20 21 23 24 27 28 25 30 32 33 36 37 38 39 40 41 42 43 44 45 48 47 48 49 5Q 51 52 53 54 55 56 57 58

E^SVRXCV : 0 COS" 0 6 0 0 NO a a E o \ n c O O O OCtOO .«=!
M fc -* £ K ft N T

CL ~T«?O^ •S O 0. V TF\ F O > r> T R> ~9

VI_V^V\ K^AUWTW8 \VL LUPT \ \ KS5> I 0 p •s T O "F E \ V! E. X

T-*»X MIVT* -5.A "^X. V*A MT 2 •ST V \ T O E P P,
_3 UK 2 3FT

.5 C*> 0 \

K \ I X
n LFC

A

O \ n LFC

A 1 3\ fc 4 1 / 2 A T 1?

VJ VX V\ \VSVX\PKV_ c\ "5 NX 2 3,2 c 5 T 0 \ *x> E X (L

QXVĴ .'Ŝ . XS4E.ES> 11 1 2
O N W V U E V S K - W ® ^ 13 CA 1 I K

li F3> 1 2
15 t 3

\k C,f\ I .3

\ 1 FK I 2
I? S 2 3o S) \ M N "S> E Y H 2
IS V TX 2 12 C 0 1

«5*X
v_/

1 0 A E U C? H * C-

o 2c T 0 T C E X V T

ff 3o C 0 1 n ft ft ft n o n ft ft
. S 31 1 a 0 4 ft ft o ft o n <9 r>

o 31 0 ft

i - —

704 Regional-Symbolic

Page 3

Column 9 will have a control punch to be described later. The location,

address and decrement each have two parts; viz. (l) Region number and

(2) Sequencing number:

1. The region number is any set of 3 digits with the restrictions:

a. Region 000 is reserved for absolute numbers.

b. Region 001 is reserved for temporary storage.

c. Region 002 is used in the address or decrement when

referring to other instructions within the same

region or program. It is possible to code in Region 2,

but if one codes in Region 2, then it will be impossible

to refer to it from a different region.

2. The sequencing number is the sum of the U-digit sequence

number plus the 1-digit fraction (F). The fraction is used to insert

instructions between consecutive sequence numbers, e.g., 1.1 was Inserted

between 1.0 and 2.0. Nine insertions may be made between any two con

secutive sequence numbers in this manner. If more than nine insertions

are necessary, then a completely new region may be inserted. There are

other techniques also such as renumbering some of the sequence numbers.

Note that we may leave gaps in our code, as was done after 0003.

Complements of numbers

The l's complement of a number is the number with ones replaced by

zeros and zeros by ones. The 2's complement is equal to the l's

complement plus 1 in the right-most position.

704 Regional-Symbolic

Page ^

A 12-punch in column F of either address or decrement will cause

the 2*s complement of the address or decrement to be computed regardless

of the region number used with the address or decrement.

An 11-punch in column F of either address or decrement vill cause

the l's complement of the address or decrement to be computed regardless

of the region number used with the address or decrement.

. It is desirable in many cases (especially with temporary or per

manent storage) to have regions whose sequence numbers are necessarily

consecutive. Regions 000 and 001 described above are of such a kind.

Therefore, addresses will have to be computed on the basis of the type

of region referred to. There are two types of regions, called C-regions

and D-regions.

C-regions are those whose addresses are computed by adding the

sequence number to the origin; the fraction is considered to be zero.

C-regions are regions 000, 001, 800, 801, ..., 999 and those regions

whose origins have been assigned but for which no non-origin cards (to

be described later) have been entered in the first pass. For example,

if an origin has been assigned to region 13 and no 0, 3, or 8 cards

(these are non-origin cards) have been entered for region 13 during

pass 1 of the assembly, region 13 will thereafter be considered as a

C-region.

D-regions are those regions whose locations are determined by

their order in the decimal deck along with the assigned origin. Since

insertions and deletions are very easily made with D-regions, D-regions

704 Regional-Symbolic

Page 5

will normally be used for instructions, and C-regions will be used for

data and eraseabje storage. However, the choice of the region numbers

will be up to the programmer completely. If it is desired, one can code

in region 800, ..., 999 with the understanding that no expansions or

contractions are allowed. To emphasize, the C-regions are designed to

make data handling with R-S simpler. Coding in region 000 is equivalent

to absolute decimal coding.

During the assembly process, it is not necessary to have the region

numbers appear in any order. For example, it is possible to assemble

the following regions in the given order: regions 005, 083, 067^ 005,

192, 005. Notice that region 005 appeared core than once. This is

permissable and allows one to insert region 192 within region 005. The

only restriction in repeating region 005 is that the first sequencing

number of the second region 005 block be greater than the last sequencing

number of the first region 005 block. This is in agreement with the

ear"^er statement on Page 1 of this report restricting sequencing

numbers of a region to be in ascending order.

Operations:

The Los Alamos mnemonic operations will be entered in columns

18-20. One letter operations are entered in column 18, two letter

operations in columns 18 and 19. The unused columns of the operation

field are to be left blank.

In any case of overlap between operation and decrement or

operation and address, the operation takes precedence. For example,

SHARE

P R O C E E D I N G S

O F T H E

S E C O N D M E E T I N G

0 F

S H A R E

Philadelphia

September 12-13; 1955

SHARE
PAGE 1

TABLE OF CONTENTS

I. Representation at the Second Meeting of SHARE

II. Proceedings

III. Papers Presented

1. Lockheed Aircraft Corporation - Burbank

a. Floating Decimal. Card Input (Fixed Format)
b. Matrix Abstraction

2. Glossary Subcommittee Report

3. United Aircraft Corporation

a. Program Designation and Card Numbering
b. Arc Tangent Subroutine
c. Binary Integer to BCD Integer Conversion Subroutine
d. Binary Fraction to BCD Fraction Conversion Subroutine
e. BCD to Binary Integer Conversion Subroutine
f. BCD to Card Image Subroutine
g. Binary Fraction to Card Image Subroutine
h. Binary Integer to Card Image Subroutine
i. Card to BCD Record Subroutine
J. Exponential Subroutine
k. Natural Logarithm Subroutine
1. Natural Logarithm Subroutine
m. Symbolic Assembly Program
n. Sine-Cosine Subroutine
o. Square Root Subroutine
p. Square Root Subroutine

k. North American Aviation, Inc.

a. Complex Arithmetic and Double Precision Arithmetic Abstractions
b. Floating Point to Fixed Point Conversion Subroutine
c. Fixed Point to Floating Point Conversion Subroutine
d. Binary Search Routine
e. High Speed Sorting Routine
f. Absolute Binary Card Punching Subroutine
g. Scaling Subroutine
h. Octal Card Form Proposal

SHARE
PAGE 2A

TABLE OF CONTENTS (Continued)

5. Los Alamos Scientific Laboratories

a. Ten Digit Floating Decimal Data Input Subroutine
b. Floating Decimal Print Routine - 7 Words per Line
c. Floating Decimal Print Routine - 10 Words per Line

>*d. Floating Point Exponential Subroutine
e. Floating Binary Linear Interpolation
f. Transfer Search Routine
g. Memory Search for Bit Pattern
h. Logic Trace Routine
i. Logic Trace with Partial Print
J. Dump Memory on Selected Drum
k» Memory Print Out
1. Reproduction of Binary Cards with Correct Check Sum

6. The Rand Corporation

a. Sorting Generator
b. Card to Quasi BCD Subroutine
c. BCD or Quasi BCD to Integer Binary
d. Positive Binary Integer to Unpacked BCD
e. Four Field, Ten Digit, Decimal Input

7. Lockheed Aircraft Corporation - Missile Systems

a. Selective Monitor and Trace System

8. California Research Corporation

a* Rational Approximations to the Elementary Functions

(1) Pade
(2) Modified Hasting's
(3) Least Square

9. TBM Data Processing Center - New York

a. Absolute binary card punching routine
b. Tangent-Cotangent Subroutine (Fixed and Floating Point)
c. Arc Tangent - Arc Cotangent (Fixed and Floating Point)
d. Fixed to Floating Conversion
e. Double-Precision Fixed-Point Arithmetic
f. Utility Program Descriptions
g« Status of NYAP1
h. Conversion, Floating to Fixed, of a Mattix of Double or Single

Precision Elements
i. Solution for Eigenvalues and Eigenvectors of a Real Symmetric

Matrix of Order « Approximately ̂ 5

SHARE
PAGE 2B

TABUS OF CONTENTS (Continued)

9* IBM Data Processing Center (Continued)

J. Inversion of a Positive Definite Symmetric Matrix of Real
Coefficients

k. Matrix Multiplication Routine (Double Precision Floating Point)
1. Integration of a Set of Simultaneous, Ordinary, First Order

Differential Equations
m. Solution of a System of Linear Equations of Order < 300
n. Solution of a System of Linear Equations of Order 1 Ho
o. A Gauss-Seidel Method Programmed for Solution of Sets of

Simultaneous Equations
p. Solution of Differential Equations by Adam's Method
q. Time Schedule for Completion of NY IBM Programs

10. General Electric Company - Lynn

a. A "Quicky" Program for the 70̂
b. A Double Precision Floating Point Interpretive Routine
c. General Input Routine
d. General Output Routine
e. Cathode Ray Tube Routine
f. Payroll on the 70̂

SHARE
PAGE 3

I.

REPRESENTATION AT THE SECOND MEETING OF SHARE

CALIFORNIA RESEARCH CORPORATION - La Habra
Thomas D. Mueller

CURTISS-WRIGHT CORPORATION
John A. DeVries
Ward Sangren

GENERAL ELECTRIC CORPORATION - Lynn
Allen Keller

GENERAL MOTORS CORPORATION
Donald E. Hart
Edwin L. Jacks
Robert L. Patreck

INTERNATIONAL BUSINESS MACHINES CORPORATION - COMPUTING BUREAU -
POUGHKEEPSIE
Elaine Boehm
Willard Bouricius

INTERNATIONAL BUSINESS MACHINES CORPORATION - DATA PROCESSING CENTER -
WORLD HEADQUARTERS
John Greenstadt

LOCKHEED AIRCRAFT CORPORATION - Burbank
Richard C. Luke

LOCKHEED AIRCRAFT CORPORATION - Georgia
Gerald Fine
Jack R. Reynolds

LOCKHEED AIRCRAFT CORPORATION - MISSILE SYSTEMS - ENGINEERING DEPARTMENT
Robert W. Bemer
Benjamin F. Handy, Jr.

NORTH AMERICAN AVIATION, INC.
Ray Berman
Fletcher Jones
E. G. Law
Owen R. Mock
Jack Strong

REDSTONE ARSENAL
Helmut Hoelzer
Helmut Sassenfeld

SHARE
PAGE

REPRESENTATION (Continued)

THE RAND CORPORATION
Irwin Greenwald
John F. Matousek

UNITED AIRCRAFT CORPORATION
Roy Nutt
Walter Ramshaw

UNIVERSITY OF CALIFORNIA - Livermore
Richard E. Von Holdt

UNIVERSITY OF CALIFORNIA - Los Alamos
Louis Gatt
Edward Voorhees

WESTENGHOUSE ELECTRIC CORPORATION - Pittsburgh
Frank Engel, Jr.
Peter A. Zaphyr

INTERNATIONAL BUSINESS MACHINES CORPORATION - Pittsburgh Office*
Norman Moss

* Non-participating

SHARE
PAGE 5

II.

PROCEEDINGS OF THE SECOND MEETING OF SHARE

The second, meeting of SHARE convened on September 12th at the Adelphia Hotel,
Philadelphia. Three installations other than those represented at the first meet
ing of SHARE signified their intention to become SHARE members by attending, thus
increasing the number of participants to 21, and leaving only one known prospective
70k installation which has not as yet made its intentions clear regarding SHARE
participation.

The first item of business was the compiling of an agenda. After discussion,
the following agenda was adopted:

1. Method of use of relocatable binary cards

2. Binary card form

3. Report from Willard Bouricius on decisions by IBM

4. Additional features added to assembly

5. Subroutines and reports on assignments made at the last meeting

6. Dictionary Committee report

7. Errata on SHARE Proceedings of First Meeting

8. Write-up distribution

During preliminary discussion of the agenda, it became evident that new infor
mation in the area of assembly programs required the reopening of the subject in
this session. Information on the assembly program written by Roy Nutt of United
Aircraft Corporation was made available in the form of a program description distri- '
buted at the meeting. Roy gave supplementary facts, augmenting the write-up. On
the basis of this new information concerning United Aircraft Corporation1s assembler,,
several of the representatives made known their preference for a revision of the
former decision to use IBM's NYAP1 in a modified form.

{
One of the foremost considerations in the change of assemblers was the fact

that the United Aircraft assembly already has in its structure many of the ideas
involved in the changes that were to be required of NYAPl. This fact contributed
to a second consideration in that the revision of the United Aircraft assembly does
not require as much time to be made ready for SHARE use as doeB NYAPl. John Green-
atadt made an estimate of from two to five months as being that time required to
change and check out the modified version of NYAPl. Roy Nutt estimated that the
lUnited Aircraft assembly could be modified to SHARE'S satisfaction and checked out
within one month.

SHARE
PAGE 6

II. PROCEEDINGS (Continued)

The discussion of the assembler lasted for a day, during which all ramifica
tions of both assemblies and the advisability of the change were explored. As a
final proposal from United Aircraft Corporation to supply SHARE with an assembly
program, Walter Ramshaw submitted a "packaged" offering. This follows:

1. United Aircraft will use the SHARE mnemonic operation code for both
internal operation and communication purposes.

2. United Aircraft will incorporate all changes suggested by the SHARE
Council which are not of a nature contrary to the philosophy of the
United Aircraft assembler.

3« A converter program which will change symbolic decimal cards from the
type used in NYAP1 to those which may be used by the United Aircraft
assembler will be written by North American Aviation.

4. All of the above items, including the complete checkout of the changed
United Aircraft assembler, will be consummated by October 15th.

At this point it was decided to consider the necessary changes to the UAC
assembly, so that Ramshaw and Nutt could better evaluate the steps necessary to
change this program and give a new estimate of time required if this was indicated.
During the discussion of the changes to be made, the following were evolved as
required modifications to the UAC assembly program.

1. The assembly program should produce relocatable output.

2. An illegitimate operation code should be indicated by an error symbol.

3. The assembly program should punch origins for relocatable library routines.

*+. Hie program should accept scaled decimal input.

5. The printing of library subroutines during assembly should be control
lable.

It was considered that a change making possible the unrestricted use of sequen
tial symbolic notation was extraneous to the philosophy of the present UAC assembler,
and, as such, could not be attained.

By way of a counterproposal, John Greenstadt. said a concerted effort would be
made to change the NYAP1 to conform with those changes thought to be necessary by
the SHARE Council. His estimate of the time involved was revised to indicate that
he would be able to have the program modified and ready for use by November 15th.

Greenstadt enumerated the following items as being those advantages NYAP1
holds over the UAC assembly program.

1. Octal addresses and decrements may be written.

2. A binary library tape is available.

SHARE
PAGE 7

11• PROCEEDINGS (Continued)

3. The IBM assembler requires the use of fewer tapes when library programs
are put in the program to be assembled, since the UAC assembler has an
intermediate step in which the library programs to be used are taken off
a complete library tape and transferred to another, thus providing faster
access if these routines are to be used several times.

4. NYAP1 has in its make-up a more complete error description, in that
particular errors are differentiated from others, whereas the UAC assembly
program gives a single error indication for all recognized mistakes.

5. NYAP1 provides an optional sequence code since the location may be sequen
tially numbered, whereas the UAC program has the restriction that only
approximately 1,000 locations may be numbered when using a 4,096 cell
frame. Any expansion in the amount of core storage results in a similar
expansion in the possible number of instructions having numbered locations
in the UAC program. (An 8,192 cell frame will facilitate the naming of
approximately 3>048 locations in a program using the UAC assembler.)

A vote was taken to decide on the assembler to be used for SHAKE purposes.
This resulted in the selection of the UAC assembly program as that which will be
used by SHAKE participants. There are strong indications from all quarters that
the UAC program will also be used in the internal operation of the companies repre
sented in SHAKE.

The discussion of the assembly consumed much time, and, because of this, con
siderably shortened the time during which the items of the selected agenda were to
be discussed. This resulted in brief discussions of only the following topics:

1. Calling sequence. It was strongly urged that the calling sequence form
suggested at the first SHARE meeting be used only as an indication of a
possible calling sequence, and that this should not restrict SHARE members 1

in the writing of routines for SHAKE.

2. Erasab]e symbol. It was decided that a special symbol denoting erasable
storage should be devised. A subcommittee composed of Irwin Greenwald,
John Greenstadt, and Roy Nutt arrived at a decision on thiB matter. The
symbol chosen, COMMON, was accepted by the SHARE Council.

3. Tape restrictions during assembly. A SHARE program deck will not require
that certain subroutines be available within the tape library for assembly.

4. Integer scaling. It was decided that integer scaling will be specified
as B « 35 rather than a blank scaling field. As an alternative to this,
a special data card form may be used for Integers. Either of these two
methods is acceptable for SHARE purposes.

5. Report from Dr. DeCarlo. Willard Bouricius gave the following report from
Dr. DeCarlo:

SHARE
PAGE 8

II. PROCEEDINGS (Continued)

a. The print wheel configuration will be changed to conform with that
desired by SHARE as expressed in a letter to Dr. DeCarlo on
August 29th. All 70Vs with the exception of the first will have
this change incorporated. The first machine is to be delivered to
IBM, New York.

b. Items 2 through 6 on the list of new instructions requested for use
with the 70̂ are presently being engineered at IBM. The opinion was
given that there is reason to expect the addition of these new
instructions within six months. Number 8 on the same list is con
sidered by IBM to be impossible, while number 7 will require an KPQ
from each installation. It was decided that the Secretary shall
write a form KPQ requesting number 7 for submittal to IBM by all
704 installations. Number 1 of the same list will shortly be added
to the standard list of instructions recognized by the 70̂ .

c. Dr. DeCarlo made it known that half-word logic will be available on
the 70h- at an additional cost of $500.00 per month.

6. Binary card forms. Additions to the binary card convention were made.
One is that column 21, 9 row will be used to indicate a relocatable
table of origins. It was also decided that unused columns on the binary
card should be left blank or made to be blank when sent for distribution
to SHARE members. Slightly changed also was the convention regarding
identification of binary cards. The convention is to be the same as
decided upon at the first SHARE meeting with the exception that columns
7 and 8 will be used for a sequence code. A further addition is that all
SHARE programs will use a standard origin of 0, with erasable storage
having a standard origin of (2000)Q. This change will allow two or moire
SHARE programs to use the same erasable storage.

7. Assignment of work. It was noted that of all the programs assigned dur
ing the first"meeting of SHARE only two were not described in write-ups
submitted during the second meeting, and many for which no commitments
were made were available in write-up form. Since time did not allow com
plete discussion of these write-ups and the described routines, it was
urged that each representative read the descriptions and communicate by
mail to the originator of each regarding any changes or additions thought ,
to be necessary or useful.

8. Location and time of next meeting. There were no strong feelings for when j
and where the next meeting is to be held. It was decided that the Secre
tary would compile suggestions for an agenda as these are submitted, and,
within a month from date, send to participating installations inquiries
as to whether the tentative agenda requires a meeting. It is suggested
that the Boston meeting of the Joint Computer Conference would be an
opportune time for the next SHARE conference. Each representative is
urged to send suggestions for the agenda to the Secretary.

The second meeting of SHARE adjourned on the evening of September .13, 1955-

United Ai.^.ran' _Mommtlon

September 9}, 1SS5

704 ffrmfoolic Assembly Progvaff UA SAP 1

*SlMl

704. instruction® to bo assembled by this program are written with
r e f erences expr«esa<t to arithmetic combinations of symbols an-: If or deoiwftl
intogflrB# A variable .field format is used in which the pavis <»1 the
instruction are given in the order address,, tag and decrement. In addition
to instruction®* data in decimal* octal or Hoileri'th (BCD) form nay bo
assembled* and library routines written in the saw* symbolic form may bo
conveniently incorporated into the program boing assembled,

TbO ^nnulnir t..rt eniRmitca

i» used as m exeasple, (Sec page 9)„

In order to describe the uae of this assembly program* let m consider
first a simplified eespla.np.ticm of symbolic assembly operation.

The* procedure la divided into two parts?»the first tursmines the
program to be assembled in order to define each symbol used In writing the
program* The second part prepares the actual machine language program* punches
It in binary form on cards and produces a printed copy of the program in
acholic form together with the corresponding octal machine language program.

During the first port a counter is wood to specify the absolute location
of each word in the program. Call this location counter I>„ L is sot initially
to m .integer supplied to the assembly program by the program being • assembled,
henceforthL is Increased by one for each word to bo used by the program,

SimuJ.tarwouJSily with this counting procedure a table is constructed.
Each entry in this table defines a symbol ueed in the program as being
equivalent to earn integer, Entries to the table arc made in two ways*

1, A symbol appears as the "symbolic location" of a word in the program
being assembled end is assigned the value of L,

A s § ''W 3f 1

t

Zo A ajfiibol is defined by a pscudo operation.

UA SAP 1

It is j mpoviant to no to that the order of the absolute Instruction®
produced by symbolic assembly 1© determined solely by the order In which
the symbolic .Instruction© are rend by the assembly program0

During the second part of the assembly process L is computed In
oxuctly the same manner m it was during the first part. In addition all
symbols in the rymholic program are replaced by the integer equivalences
given in the table formed during the first pert, thus producing wi absolute
program.

Note that this operation requires that each symbol be uniquely defined.

For use in the assembly program the following definitions are mad©?

Symbol? Any combination of not more than 6
If lleri.th characters,, nom of which is — "•% / % Ji
and atjjaflfit.one of which is npnynuaartc.

fi>ifigg£ (**-bh respect to instructions)*
Ary decimal integer .less than 1000000,

The operation part of each instruction is specified by a standard
abbrievlafcion of not more then 3 Hollerith citar&cfcera.

A symbolic instruction should be ldsntlf led by a symbol ("symbolic
location*) only if it is necessary to refer to this Instruction in the program.

The address, tag and decrement, parts of symbolic inoiructlons are
gl*cn in that order. In cares the dweremento tsg or address parts aro
not neeesaary„ therefore tho following combinations are permissible

OP

CP Addroen

OP Address.? Tag

CP iddre!'•."?fag, Decretierit

"or ?.r.*ry In consider reepactj vely instruction* W ~3» P4 J5l„ ?4 >1 and Pi
51 tho r vt S cn(J

Jfcta thit the tag, if present-, must bo separated from the ad-Irene by
j ecnoa im\ Jita-llnf'ly tha de"tenant, if pxusent. must he separated i':m tho
'"e.g by eonj-iSv For the few last) ••,: Won* whi«h taaniro a tag but n-v rdd'-r
:• IdVf :Mi -no '-la ! V.. r :;p" n; ' ' '

P!>: o,\

IJAJ5APJ.

Similarly where a decrement lo required with no tag a zero t&£..rohould bo
uaod as j n

TXL Aj.OjR

'Piie following card form ia need by the assembly

1-8 not ufiod

9~14 symbol or blank

15 blank

16 *18 ro.bbrievia.ted operation or blank

IS blank

20»00 Variable field

For instruction^ expressions defining the addreas, tag and decrement are
punched without blanks from column 20 on The first blank fcg the right
of column 20 defines the oni of the Instruction. All punching to the right
of such a blank ia considered to be a remark and has no effect on the
assembly process„

Tf an instruction requires a symbolic location^ the symbol used is
punched in columns S~14«

Artthmatic exnragstpna

Arithmetic expressions in terms of symbols and integers may be used
with eowo pseudevinstructions and to define address* tag. or decrement parte
of 704 instructionsr.

The following elomentary operations way bo used:

addition, indicated by «t

subtraction, indicated by —

multiplication, indicated by •»

division, indicated by /

f.'o parenthetical expressions may be written.

-,4,.

UA :'A1' 1

Integral arithmetic module?/,' is uaed, hence

lr, Multiplication is not erweUtive with division?

A* 13/C f ' A/C-BB

except when C is a factor of A,
Nolo that A/OB implies (A/0) »B riot A/(G*B)0

Zo Addition and subtract!™- are commutatives

A'B-0 B-C+A

3, Multiplication arid divjg.lon are distributive with respect to each
other but not with respect to addition or subtractions

A*B*C/D A*G/fWB»C/D

Note that A+B*C/D Implies A> (Brf'/D) end net (A*B)#G/D

If the result of &n expression is to be expressed in n binary places,,
its value in computed modulo 7f the residue ia m/rativo, Its 2«e
leomglgment 3« the result,.

Hence if tr is the value of an expression, r Is the result used and

in •* ! i/\! h»<mJ % tX

i . fell i-/" O
I h *> ri r - •"• ,

L* - Hk Vf" < o

For example the Instruction at location P4 *2 in the illustration
has a decrement part of «1. Bore »»19 v*-l9 n«15 ao that

r-2^1

Consider also the tag part of instruction F4 -1 where

W*K«l*4-*5

m-5^ n«3

so that r-t

' *,n'lfiButrnctio.n.n

vJ riin x-ocelHeat.J.on • Oflt) ' -

Th« location counter 1. is sot to the value of the expression appearing ")
in tho vvu;lob.U> j.i'ii.i'r. , Each n;yi.-.bcl &ppaarlBg~ln the"expression must have been /
pipviomly defitvod appeared in the symbol f lei d,. columns 9-14, of soma /-

If!

UA SAP X

instruction or pseudo-Instruction preceding this origin specification).

If m origin specificotlon is given for a program the initial value
of L shall bo xero„ .

Origin specification instruetlona may be.used at Kill,

^non.y m? 5TM

The symbol appearing in 9-14 ie assigned the integer value givwn by
the expression appearing in the variable field0 Each symbol used in thin
expression must bo previously defined,,

Decimal .data8 _ DEC

Tl>« decimal data beginning In column SO 1» converted to binary and
assigned to consecutive locations L, L+l#00u

DocSml exponents arc indicated by the letter E0 The decimal point
. indicated by „ is placed where desired., If either J5. or ̂ or both imneiir
•in a decimal data vord the conversion is md*> to 704 floating binary* If
no E or „ appear© conversion ic made - to a. binary integer. The binary point
in storage is considered to he on the right hand end of a 704 word. Successive
words of data on a card are aeparated by coiaraas, and the first blank to the
right of column fO indicates that all punching to tho right of this blank is
a remark. Signs are indicated by •*• or « preceding tho number or exponent.
However it is not necessary to uce the •> aign.

For example 12,MS my bo written as *12.84$, 1„234$E1, 12S4„5E_2, etc.

Octal data* _ OCT

The eetnl data beginning in column 20 is taken in binary integer form,
the binary point considered to be- on the right hand end of a 704 void, and
assigned to roiutecntlvc storage locations L,

Successive words era aeparcted by comma and the firnt blank to tho
right of column 20 indloatea that all punching to the right in to bo considered
a remark.

Kolicrith data: BCD

Formally tho 10 nix character uorda of Hollerith information from col.,
fl-00 arc read and assigned to locations Lt I.«l,«,,.„,]>9, If, however, lose
than 10 001) worrfc are desired, a word count v (l;f v 9) m punched in column
20,, in which e .99 v words are read and assigned to locations L, E«l,

inn

,G<

UA SAP 1

Bloj k fltarted fry symbol* DSS

The block of storage extending from L to I/M-l*, whore N la the value
of the oxpressoion beginning in column 30, la reserved by this operation,,
Each nymbol in the expression for N must liavu teen previously defined.

If a symbol Is punched in 9-14, It io asaignod the value L,, corresponding
to the first word of the block reserved.

Finally ? L Is replaced by L+N0

Block ended by symbol' HES

This operation is exactly the eme as BSSs except that the value
assigned to any symbol appearing in 9-14 io L+N, corresponding to the
location of the first word following the block reeorvedU

Rnpaat i REF

Two expressions, the first beginning in column 20 and separated from
the second by a comma, define ti,<o integers M and N„ The block of instruct ions
and/or data following the REP operation in locations L,L+loooL*K»=l is repeated
M t i m e s p t h e r e p e a t e d i n f o r m a t i o n b e i n g a s s i g n e d t o l o c a t i o n s L + M , L + M * l , ,
L+MwlWLo It is necessary that M 1.10 0

Library search* LIS

The library routine identified by the symbol in S«14 is obtained from
a library tape and insertad in the program being assembled,, If the library
routine requires k words of storage it will occupy locations Lj.L+l,O0«.,L+k-lo
The identification symbol is not entered in the table of symbols, but any
symbols appearing in the library routinn ore ordered and properly defined,,

End o C prapxam; END

This operation must be the last read by the assembly program. The
value of the expression beginning in column 20 in punched as the transfer
adthosn in a 70*1 binary control card,

ffoftdiflg* JIE!)

It Is often convenient to combine eevorel programs into one program.
Two difficult.ioa immediately arise* First, the (symbolic references to data
common to the several programs way differ in the individual programs, Thin
can be en ally cor roc ted by the use of synonyms which equate the proper eymbnls,

Sevonde it may ba that two or ware of the individual programs use the
: symbols for references which should bo unique. In order to rectors

fauiuiTvrat, it is necessary to change the symbols In oeeh program in some way,
r.he heading operation a.cccrpl inhee this result in the following manner«

IU ?

7

UA J>_API

The hoa<Hng card suppl ieo to the aosembly program a single character
(punched in column 9 of the JIFJ3 card), Each symbol in the program following
the HKD operation is prefixed by this character except when a special
indication to o;^c«l the prefixing operation is given,, A new heading operation
will replace the prefix character.) Thus three program® having non--imique
symbols my be combined by giving the heading operation with a unique
character before each program0

It i»0 hewmrj, sometimes necessary to make creea-references between
the individual programs,, To accomplish this# such references must bo rewritten
in the following way* lot H bo a heading character and K be the symbol to
which reforms* Is to bo made in the block headed by H„ To refer* to K from
n part of the program not headed by II write

HfK

The special character $ indicates to the assembly program that K in to bo
prefixed by H instead of the ptrwflx given by the last heading control,,

It J,® important to note that If use is to be made of the (lending
feature9 all. symbols used through out the program must be restricted to five
or fewer characters* —

Opcrat.i onal features

As an aid to the programmer this assembly program gives some indications
of erroneously prepared piograaio*

If a symbol used in the program is not defined, an asterisk la printed
to the loft of the symbolic, instruction referring to that symbol,, The value
aero is used in expression® using the symbol*

A list of duplicated symbols is printed prior to the printing of the
program* This list gives the symbol duplicated and the integer values
assigned to it,,

Other convenient features ares

Printing may be suppressed.

Single or double sparing in optional,

AstscuitWy may be mde from either a BCD tape, or from cards,

Machine components required?

In any care tho on line card reader, core storage and the on line
rard punch will bo requirede In addition if

l„ Ho librrry references are made then nms^mbly may bo ian.de with

•a, mw tare (requiring rnrr rending of the symbol 1' card*
either from the on line or off line card reader) or

\At\9\

™8»

£AJ AAPJL

b„ no tapes (requiring two rcarl!np.a of the symbolic cards
on the on line can! rea<?e$,

JJo If library references are \u?*d two additional tapes are required.
One of those is the library tape, the other is used to construct a anb-Ubrnry
written in the order required by the assembly. Hence either three or two ' *
Tapes will be necessary (see cases In and lb.) 1 ,

1 y _features

.. whlch f«»» assembled ore easily accomplished
ir the table of symbols which was punched during the initial assembly process
has been saved. It is then necessary only to reload this table and assemble
v">® new parte of the program0 The original program need not bo reloaded0

Furthermore any change to the original progrem which does not lnvolyo
relocation of any part of the program, or any reasaigmient of symbols,, may

**** hy ®«»e;rsbly of only those parts of the program which are to be changed*

f

Ut\ ? ?.

SHARE

PROCEEDINGS OF THE THIRD MEETING OF SHARE
BOSTON, NOVEMBER 10-11, 1955

SHARE
PAGE I-A-l

TABLE OF CONTENTS

I. Proceedings

A. Minutes of Meeting

B. Summary of Decisions

C. Summary of Assignments

II. Appendices

A. Member Address List

B. Representation at the Third Meeting of SHARE

C. Discussion of Agenda Items 1-5

D. Breakdown of Machine Time by Use

E. Progress on SHARE Programs

F. SHARE Operations

G. Proposal on Format for 704 Assembly

III. Papers Presented

A. New Routine Descriptions

B. Papers on Peripheral Equipment Usage

C. Compilers

D. Miscellaneous Papers

SHARE

SHARE
PAGE I-A-2

MINUTES OF THIRD SHARE MEETING

The third meeting of SHARE was held in Room ko6-8 of the Statler Hotel, Boston,
on Thursday and Friday, November 10th and 11th, 1955. Twenty-two members of SHARE
were represented:

BA Boeing Airplane Company
CF Convair (Ft. Worth)
CS Convair (San Diego)
CW Curtiss-Wright Corporation
GE General Electric AGT Division (Evendale)
GA General Electric AGT Division (Lynn)
GT General Electric MST Division (Lynn)
GS General Electric LSTG Department (Schenectady)
GM General Motors Corporation
PK International Business Machines Corporation Computing Bureau

(Poughkeepsie)
NY International Business Machines Corporation Data Processing Center

(New York)
CL Lockheed Aircraft Corporation (California Division)
GL Lockheed Aircraft Corporation (Georgia Division)
ML Lockheed Aircraft Corporation (Missile Systems Division)
LA Los Alamos Scientific Laboratory
NS National Security Agency
NC North American Aviation (Columbus)
NA North American Aviation (Los Angeles)
RA Redstone Arsenal
RS The Rand Corporation (Santa Monica)
UA United Aircraft Corporation
WH Westinghouse Electric Corporation

There were four absentees:

CR California Research Corporation
HA Hughes Aircraft Corporation
LC Livermore Radiation Laboratory
RL The Rand Corporation (Systems Training Project)

Chairman Strong presided. Due to the unavoidable absence of Secretary Jones,
the Chairman appointed Wagner (NA) Acting Secretary. He immediately requested all
members to:

1. Keep the Secretary continuously informed of an up-to-date, official name,
address, and telephone number for the Secretary's use in distributing
SHARE material. (He will keep the IBM distribution office informed.)

2. All material for distribution in SHARE should be submitted as original
copy on white bond paper.

3. Supply the Secretary with copies on white bond paper of correspondence
between members on subjects that might be of interest to other SHARE
members. If the Chairman and Secretary consider these of sufficient
general interest, they will be distributed.

SHARE
PAGE I-A-3

The representatives of the member installations of SHARE plus interested non-
members added up to -'.9 people, who are listed in Appendix B.

The first item of business was the Agenda. It was agreed to follow the list
of items distributed October 26th with the addition of several new ones. The com
plete Agenda follows:

Agenda, Third Meeting of SHARE

1. Definition of SHARE Membership.

2. Definition of Quorum.

3. Reconsideration of Topics.

h. Processing Proposals by Mail.

5- Material Not in SHARE Language.

6. Definition of Machine Time Charges.

7. Progress on SHARE Assignments.

8. New Assignments.

9. Uniformity of Decimal Symbolic Cards.

10. Forms - Miscellaneous Card, Code Sheet, m ad Other

11. Index Register "ADD" Instead of "OR"1.

12. Number of Characters Used in a Symbol.

13. Compilers.

1̂ . Peripheral Equipment Usage.

15. JOb Experience.

16. Use of SHARE Assembly.

17. Changes to Periquip.

18. Unused Bits.

19. Trapping Mode Console Switch.

20. New 704 Operations and Characteristics.

Following this, Truman Hunter of IBM, who had made the arrangements for the
meeting room, said a few short words of welcome.

SHARE
PAGE I-A-4

The record of the discussions and action on the various items of the Agenda,
which follows, is nc- necessarily in chronological order. Some items were con
sidered out of sequence, and some were considered at various intervals throughout
the two days of the meeting. For purposes of ready reference, however, everything
concerning a particular item is grouped under it in the following record. Simi
larly, various miscellaneous subjects which were considered throughout the two-day
period are grouped together in these Proceedings following Item 20 of the Agenda.

Appendix C, covering the Agenda Items 1 through 5, was then considered.

Agenda Item 1 - DEFINITION OF SHARE MEMBERSHIP

A preliminary discussion brought out certain desirable changes to the solution
proposed in Appendix C. In final form, it was moved and seconded that:

"A member of SHAKE must be an installation which* has on hand or on order
at least one JOk (or is actively campaigning for the placing of an order
in the near future with noticeable positive effect to the extent that
programming effort is being devoted to 704 methods). 'Installation' is
defined as one or more 70Vs under the same administrative head who is
empowered to select the machine methods to be used."

The discussion which followed brought out the following facts:

1. Existing members who meet this definition are those listed above. In the
future, membership may be obtained by direct request to the Secretary of
SHAKE with an unqualified statement that the installation meets the above
requirement. (The list compiled after the meeting is Appendix A of these
Proceedings.)

2. It was announced that IBM is maintaining a list for the distribution of
SHAKE material to nonmembers of SHAKE, consisting of its customers and
others who request to be placed on it. SHAKE encourages this activity,
and, furthermore, will be happy to have such interested nonmembers attend
all SHAKE meetings until the attendance taxes the physical facilities
available.

The above motion was unanimously passed with full knowledge of the implications
concerned in (l) and (2) above.

Agenda Item 2 - DEFINITION OF QUORUM

A preliminary discussion brought out certain desirable changes to the solution
proposed in Appendix C. In final form, it was moved and seconded that:

"At least two-thirds of the members of SHARE are necessary to constitute
a quorum in order to transact business either at a SHARE meeting or by a
mail vote. Unless otherwise specified, a simple majority of the quorum
is necessary to pass any motion."

SHARE
PAGE I-A-5

Agenda Item 2 (Continued)

The discussion which followed considered whether the majority should be of
the quorum or of those voting (on the presumption that some would wish to abstain.)
The argument in favor of permitting abstentions from voting was that, on many pro
posals, a member may be either uninformed or uninterested, and willing to accept
the majority decision of only those who wish to vote, even if only one or two
people. The opposing argument was that no SHARE member need ever be uninformed
about a topic, but rather owes it as his duty to SHARE to be informed sufficiently
to form a judgment as to what is best for the overall organization. It was stated
that decisions thus reached will, in the long run, be better. It was also pointed
out that it was the duty of the members not to inflict their will on minorities by
unusually close votes, and that, when it was evident that this might be the case, a
motion to postpone decision for further study could and should be resorted to.

The motion as stated above was passed.

Agenda Item 3 - RECONSIDERATION OF TOPICS

A preliminary discussion brought out certain desirable changes to the solution
proposed in Appendix C. In final form, it was moved and seconded that:

"Reconsideration of a decision made by SHARE may be introduced under the
following conditions:

A. When the topic is handled by mail or when advance notice by mail is
given that the topic will be treated at a meeting, the approval of
more than 50 percent .of the quorum is required in order to reopen
the subject for reconsideration.

B. When the topic is brought up at a meeting without advance mail
notice, 75 percent of the quorum must approve reopening the subject
for reconsideration.

G. A motion to change any previous decision of SHARE requires the
approval of 75 per cent of the quorum in order to be put into effect."

This motion was passed.

Agenda Item k - PROCESSING PROPOSALS BY MAIL

A preliminary discussion brought out certain desirable changes to the solution
proposed in Appendix C. In final form, it was moved and seconded that:

"The business of SHAKE may be transacted by mail as follows:

A. The proposal is sent to the Secretary, and must include the name of
any other member known to be seriously affected by it.

B. The Secretary immediately sends a copy of this to those other mem
bers (but at least one) who are known to be seriously affected by,
or to have a deep interest in, the subject.

SHARE
PAGE I-A-6

Agenda Item 4 (Continued)

C. The i , Merested members explore the ramifications of the proposal
mail their comments on it to the Secretary immediately. (Opposition
comments may contain a statement that a defined counter-proposal
will be submitted if the proposal is rejected.)

D. These comments are made known to the original proposer, and he is
given a very brief period to submit a rebuttal if he wishes.

E. The Secretary mails copies of the proposal, the comments, and the
rebuttal to all members of SHARE, together with a ballot to be
marked "Yes" or "No". (Counter-proposals do not appear on the
ballot.) The ballots are marked and returned to the Secretary.

F. Two weeks after the date of distribution of the ballots, the vote
closes, and notices of results are sent to"the members by the
Secretary."

In the discussion which followed, two points were brought out:

1. No provision was made for marking the ballot "Abstain." It was noted
that negligence to return the ballot would be potentially a "No" vote if
a quorum were not obtained. Members were urged to return every ballot
promptly in al 1 cases.

2. In certain exceptional cases where the final balloting is done by mail,
after much of the preliminary discussion has taken place at a meeting,
the members at the meeting may authorize the ballot to take the form of
a choice between alternate proposals.

With full realization of the above implications, the motion was passed.

Agenda Item 5 - MATERIAL NOT IN SHARE LANGUAGE

A preliminary discussion lead to the belief that the solution proposed in
Appendix C should be completely reversed. In final form, it was moved and seconded
that;

"No material shall be distributed by SHARE itself (or by IBM under SHARE
auspices) which is not in SHARE language."

The discussion brought out that this applied specifically to the following:

1. Write-ups of job programs must be in the format distributed with the
First SHARE Proceedings. This format is illustrated by most of the write-
ups which were in the Second SHARE Proceedings, and by all of those in
this Proceedings.

2. Listings of routines, and associated decimal and binary cards, shall be
in the format of the official SHARE assembly program (UA SAPl).

SHARE
PAGE I-A-7

Agenda Item 5 (Continued)

3* SET ̂ f0nnS ShaJJ" bS th°Se 0x101)46(1 at thls "eetins ̂ er Agenda

?4xfr C0rd forms shaU- t»e acceptable to a program previously distri
buted through SHARE. ^ ri

5. Descriptions of methods, procedures, or write-ups on any other subject
shall conform as closely as possible to conventions for terminology
officially recommended by SHARE.

The motion was passed.

During the discussion of this motion, Butterworth (GT) suggested that a
centrally prepared bibliography of material distributed through SHARE be compiled

Periodical:Ly- Engel (WH) suggested that each item submitted for
distribution through SHARE be accompanied by an index card carrying its classifi
cation and a very concise description. It was pointed out that both these sugges
tions required the establishing of some classification system, which was a
dif51CSV0Sk- 513:1861 and Butterworth (GT) were appointed as a committee to

suggestions carefully and to submit a recommendation to SHARE at the
next SHARE meeting.

Agenda Item 6 - DEFINITION OF MACHINE TIME CHARGES

It was proposed that a standard set of definitions be adopted for recording
the use of machine time. Appendix D was distributed as illustrative of this. It
was argued that this was desirable for two reasons:

1. The record of machine time is an important factor in determining extra
shift rental paid to IBM. It was contended that a standard method of
doing this would be advantageous to all concerned. Opposing arguments
pointed out that this was an individual matter which may presently be
within the authority of each IBM District and/or Regional Manager. It
was the consensus of the group that it would be unwise to upset this
status quo, and consequently that this type of standardization was not
suitable for consideration by SHARE. No formal motion was voted on, and
this aspect of the matter was dropped.

2. Several members stated that such a standard set of definitions would be
useful for statistical purposes in exchanging information on operating
procedures in their installations. The motion was passed that:

"A committee shall be appointed to study the possibilities of
defining machine time charges for statistical records and present
their recommendation before the next SHARE meeting."

Amaya(CL) and Engel (WH) were appointed to the committee.

SHARE
PAGE I-A-8

Agenda Item 7 - PROGRESS ON SHARE ASSIGNMENTS

Progress on the assembly program is described under Agenda Item 16 below.
Progress on all other utility routines was reported, and is described in Appendix E.
Some revised write-ups and detailed progress reports are in Part III.A. of these
Proceedings.

The SHARE Glossary Subcommittee reported that they had received no comments
on it, and did not plan any revisions or additions until the need became evident.

The problem of getting ̂ 0b time for the checkout of subroutines assigned by
SHARE was discussed. Bouricius (PK) stated that he would try to find some time on
the Poughkeepsie machine for such checkout under the following conditions:

A complete deck of cards shall be mailed to him. This is expected to be
one complete deck and no additional cards of any sort will be added to
it. It will be placed in the card reader exactly as it is received. It
should contain as part of itself any necessary diagnostic routines. It
must be accompanied by very simple, clear, and concise instructions to
the operator.

If these requirements are fulfilled, the job will be run as soon as Bouricius (PK)
can find a few spare 704 minutes, and the results will immediately be mailed back
to the programmer.

Ramshaw (UA) agreed to donate to SHARE some of United Aircraft's free time
after Thanksgiving under the same conditions.

A discussion was held concerning the time at which a routine should be con
sidered checked out, so that a complete distribution could be made. It was agreed
that cards for a routine should not be distributed until it was checked out on an
actual 70k. Exceptions to this may be made at the discretion of the programmer
only if the routine is completely independent of timing considerations, and has
been thoroughly checked out on the 701 by means of a 70k simulator routine. When
it is determined that a program is ready for distribution, it should be sent to IBM
New York, using the most up-to-date address for IBM SHARE Distribution, which
always will appear on the latest list of SHARE members. (Currently this is
Appendix A of these Proceedings.) The following should be sent:

1. Write-up.

2. Listing.

3. Complete deck or decks of binary cards.

4. Complete deck or decks of symbolic decimal cards. (The latter should be
sent unless it is very large, and if it is the opinion of the issuing
member that very few other installations would use the decimal cards.
These can request them directly from the issuing member. For example,
only a few installations have indicated that they wished to have copies
of decimal cards for the SHARE assembly program, UA SAP1.)

SHARE
PAGE I-A-9

Agenda Item 8 - HEW ASSIGNMENTS

No new assignments were made to write subroutines; however,; several new ones
were described verbally and offers made to distribute them through SHARE. These
are included in Appendix E. Write-ups of some of these new routines are contained
in Part III.A. of these Proceedings.

Other new assignments are described under various Agenda Items, and are
summarized in Part I.C. of these Proceedings.

Agenda Item 9 - UNIFORMITY OF DECIMAL SYMBOLIC CARDS

Ramshaw (UA) reported that the standard SHARE card form for decimal symbolic
cards (acceptable to UA SAPl) was in process of being printed. It was now in the
mill in IBM, and as soon as he was informed of the appropriate IBM form number, he
would make the latter available to all SHARE members so that all could order it,
or copy it for use in SHARE distribution.

Agenda Item 10 - FORMS - MISCELLANEOUS CARD, CODE SHEET, AND OTHER

The motion was made and seconded that:

"The octal card form presented in the Second SHARE Proceedings, Part III,
Section 4.h., will be the accepted SHARE standard."

The discussion brought out that this form was predicated on the existing
design of the peri quip, and would undoubtedly have to be revised if any revisions
were made to the latter. This was readily admitted by the proponents of the
motion, but they insisted on the desirability of having a standard in the meantime.
The motion was passed.

Several code sheet forms were presented. It was the consensus of the body
that none of these could be decided upon as standard. Most of those present
seemed to agree with the statement that was made that there will be no opposition
if any installation took a form that they liked and revised it by putting their own
name at the top.

A ready reference card containing condensed information about all the opera
tions and the card, tape, and machine versions of the standard SHARE set of
Hollerith characters was presented. It was the consensus of the body that this
would be highly useful in its present arrangement. IBM volunteered to look into
the possibility of having it reproduced in quantity both in 8-1/2" x 11" size
printed on stiff cardboard for desk or wall use, and in a reduced size for pocket
use. It is expected that they will distribute these to all their customers.

Agenda Item 11 - INDEX REGISTER "ADD" INSTEAD OF "OR"

After a brief discussion, it was decided to postpone consideration of this
and discuss it under the general heading of any new 704 operations or character
istics under Agenda Item 20.

SHARE
PAGE I-A-10

Agenda Item 12 - NUMBER OF CHARACTERS USED IN A SYMBOL

There was a brier introductory discussion in which it was made clear that the
following is a continuation of informal discussions at the Second SHARE Meeting,
and, in effect, a follow-up to SHARE mail proposal Wo. 1 (by General Electric -
ballot mailed k October 1955)-

It was moved and seconded that:

"Programs distributed through SHARE shall use five or fewer characters
as symbols, except when the programmer wishes to prevent heading (e.g.,
the symbol "COMMON")."

A spirited discussion followed. The stated objectives of the motion were to
enable any distributed routine to be re-assembled with other routines into a final
program. Shell (GE) explained various reasons why he doesn't like it, claiming
that it doesn't meet the objectives which it pretends to.""Heising (NY) asked what
would happen when you tried to distribute this final, re-assembled program (with
six character symbols), and somebody wanted to re-assemble it again with other
routines. Ramshaw (UA) pointed out that it should not be done that way, serially,
but rather in parallel; that is to say, by getting together all the individual
routines in their original form and then re-assembling all at once.

Shell (GE) noted that he is preparing a program to translate CAGE symbolic
cards into SHARE format. When this is completed, any subroutine he distributes
will have only one symbol.

It was universally agreed that this was the most useful form which distributed
subroutines could take.

The motion was passed.

Agenda Item 13 - COMPILERS

FORTRAN

Backus (NY) made a progress report on FORTRAN. Six thousand instructions have
been coded in what they hope is final form. He expects that in its first edition
FORTRAN will include eight to ten thousand instructions, which will be coded by
January 1st. Some debugging will have been accomplished by then, and he estimates
that it will be completely checked out some time in February. The minimum com
ponents necessary will be one 4096-word core, four tapes, one drum box, and either
on-line or off-line output. It will produce symbolic instructions for subsequent
assembly in the SHARE format. It is estimated that it will take six minutes to
produce one thousand symbolic instructions. The symbols used will be the same ones
that were used for variables. Planned for the second edition is the inclusion of
formula numbers in the comments. He gave a brief rundown of changes from the
latest printed specifications. These are summarized below in Part III.C. He also
covered very hurriedly the techniques they ere using, the most dramatic of which
was the enormous number of tables set up. He ended by paying tribute to United
Aircraft, and especially Roy Nutt, for their cooperation and assistance.

SHARE
PAGE I-A-Il

Agenda Item 13 (Continued)

PACT

Mock (NA) gave a brief history of PACT I (written for the 701), contrasting it
with FORTRAN. He mentioned how helpful its actual production use at North American
had been in evaluating this philosophy so that PACT IA (for the 70*0 could be more
useful. He then launched into an elaboration of the write-up in Part III.C. below.
He revised the statement therein that the work is now about two weeks behind sched
ule, and optimistically predicted that coding might be finished by December 15th.
Thereafter, 70*+ availability will dictate completion of checkout. The minimum
machine necessary for PACT IA will be a *+096-word core, and *+096 more words of
storage, which may be on drum or in additional core storage. Four tapes are needed
unless it is loaded from the on-line card reader, in which case only three tapes
are used.

He mentioned briefly that the committee for PACT II has begun a few airy
speculations. PACT II is currently thought of as a broad philosophy of compiling
methods rather than as a program for a particular machine. He concluded by inviting
all to participate in any of the PACT projects.

GENERAL COMMENTS

Mock (NA) pointed out that all PACT IA users also plan to use FORTRAN heavily.
For future development work, he felt that the cooperative approach was an absolute
necessity, not only to speed the programming labor and concentrate the talent, but
in order to avoid overlooking any possible classes of problems peculiar to only a
few installations.

Shell (GE) noted that compilers may very well eliminate much of the current
simple clerical-type coding. However, it will create a need for two types of com
puter experts: one the high-level creative thinker needed to develop continuously
improving techniques, and the other the expert at problem analysis who can exploit
these techniques to the fullest for the applications in their company. He also
noted that no compiler to date had made liberal use of logical manipulation. He
stated it was his belief that we had only scratched the surface in making use of
the powerful logical operations now available or on the horizon. He added that,
in his opinion, this development will go hand in hand with micro-programming (using
a very broad structure of a machine within which it is possible to create the
operations needed for each particular application).

Agenda Item 1*+ - PERIPHERAL EQUIPMENT USAGE

Patrick (GM) presented the General Motors position as contained in their write-
up, in Part III.B. below. Butterworth (GT) presented the ideas of General Electric
MST Division, Lynn, in the write-up contained in the same Part III.B.

Ramshaw (UA) revealed that they were making excellent progress with their
cross-bar switching arrangement for use of the peri quip. However, they were only
integrating one set of periquip with one machine instead of the double installation
using 26 tapes that they had originally planned. The stumbling block had been
cable length if the installation was on one floor, coupled with IBM's refusal to
consider a two-floor installation.

SHARE
PAGE I-A-12

Agenda Item 14 (Continued)

Mock (NA) elaborated briefly on North American's thoughts, summarized in
Part III.B. below. (Later NA and GM agreed on one program based on the GM method.)

LIBRARY TAPE

This precipitated a discussion of standardizing on numbers for the input tape,
the output tape, and the library tape. Mock (NA) recommended a standard convention
concerning which tape number would be used at all times for the library tape.
After considerable discussion as to the desirability of this standard, it was moved
and seconded that:

"At all times the standard library tape shall be Tape No. 1."

The motion was passed.

Shell (GE) asked if anyone had realized that if about 5 percent of the com
puting time on one shift is used for writing output tape, it will keep the off-line
printer busy three shifts.

CLOCK

In connection with exploiting peri quip, it was brought out that the need for
some form of clock connected with the 704 was intensified. Shell (GE) noted that
he had information that IBM was working on a clock to be attached to either the
punch or the printer so that a time record could be punched or printed under pro
gram control. Ramshaw (UA) said it was his information that it was easier to do
on the punch, and this was what IBM was working on. Mock (NA) noted that it ought
to be on the printer because then you can have access to it with your program,
and once you get it into memory, you can do anything with it that you want.

Hunter (NY) pointed out that there were two kinds of clocks possible. One was
simply for the purpose of keeping time records of the jobs run. This was rela
tively easy and was the type that Ramshaw and Shell mentioned. Another kind of
clock, however, which had been discussed, was a microsecond clock inside the machine
for the purpose of keeping track of minute fragments of programs being executed.
He asked for a show of hands as to who wanted what kind. Every installation pres
ent said that they wanted to have the timekeeping kind of clock, and, further, that
they wanted to be able to have access to it with their programs. When Hunter (NY)
asked how many people would be interested in a microsecond clock, only five or six
installations expressed interest.

WIRING OF PERIQUXP READER

It was pointed out that the peri quip reader was to be wired from columns 1-80.
The motion was made and seconded that:

"SHARE requests that the standard periquip reader be wired to start in
column 9, go through column 80, and then come back to columns 1 through
8."

SHARE
PAGE I-A-13

Agenda Item lU (Continued)

In the discussion vMch followed, it vas pointed out that no matter which way
it was wired, it could, with appropriate programming, be usable by anybody. Mock
(NA) pointed out that it would make it much easier when using the standard SHAKE
card forms if it were wired in accordance with the motion. McCool (NS) was asked
about his installation (which would be very much affected). He claimed it was no
trouble to live with things as they stood. Ryckman (GM) and Greenstadt (NY) were
against the motion because as things were now it is easier to be compatible with a
705 • Patrick (GM) contended it was much easier to use the standa.rd wiring when
mixing engineering and business problems on one tape. Mock (NA) and Nutt (UA)
insisted that, since SHAKE was primarily interested in engineering comouting, the
burden of extra programming should be thrown on those who wished to mix in business
applications. The motion was tabled.

A subsequent motion was made that:

"SHAKE will use the peri quip reader in the form in which it now exists;
namely, wired from columns 1 through 80."

It was pointed out that, since we had tabled the previous motion, it would be
contradictory to take action on this one. The problem was referred to a committee
composed of Nutt (UA) and Keller (GE). They were instructed to study the problem
and write up a recommendation for a mail vote as soon as possible. If it seems
advisable to this committee, the ballot may be presented in the form of a choice
between the two alternates.

Agenda Item 15 - 704 EXPERIENCE

This was preceded by a short discussion on the use of simulators, in which
Nutt (UA) and Shell (GE) described the use of their two-frame simulator. Steel (RS)
and Mock (NA) described experiences with the one-frame simulator. Strong (NA)
mentioned that the two-frame 701 version of UA SAP1 had been rewritten by North
American for a single frame, and would be distributed shortly. All agreed that
working with a simulator was better than nothing, and, except for the terrible waste
of 701 time, usually vas a useful method of checkout.

All experience on an actual 70̂ to date has been on tbe Poughkeeosie prototype
machine. It was emphasized that, being a prototype, this 704 was not*representative
of production machines. For example, the input-output components in general are
old, modified 701 equipment. The machine is being used to give a final test to the
production tape units as they are manufactured; consequently, a new set of untested
tape units is frequently installed. Moreover, since the first production machine
has not been delivered yet, one should expect to find bugs still existing in the
basic circuitry, since it is the function of the prototype to uncover these.

Nutt (UA) stated that, apart from the above, he found the machine extremely
reliable. It had made no errors while he was using it. Checkout on it was much
like the 701 except that your running time on the machine was extremely short, and
you had a long period of head-scratching before you were ready to go back with the
correction to your program.

SHARE
PAGE I-A-14

Agenda Item 15 (Continued)

Shell (GE) stated unqualifiedly that it was much more subtle to debug and
required far more advance planning. He pointed out that main frame reliability
was a matter of definition, since he and Nutt have each uncovered one logical bug
in it, and he felt that there would be many more of these when different sequences
of instructions were executed for the first time.

A subject previously mentioned in passing was reiterated at this time; namely,
that IBM is making no effort to guarantee what will happen when a programmer asks
the machine to execute an "outlaw" instruction. This is one which does not exist
in the Manual of Operation, but which can be obtained (because of the various
unused bits) by generating it inside the machine. Such instructions can only be
used on a calculated risk basis, because even though they work 100 percent of the
time today, the customer engineer may tune up the machine a little differently
tomorrow, and they will not work.

Tom Jordan's (LA) comment on 704 experience was that his group had coded
extensively from flow diagrams and checked their codes very carefully. This cut
down on the quantity of errors, but the ones that were still in the code were much
harder to find. He felt that he needed an extensive set of selective tracing
routines. Greenstadt (NY) commented that he found core dump3 adequate.

Bouricius (PK) noted that there were two schools of thought, each with highly
competent proponents, one saying some form of selective tracing was most efficient,
and the other saying that the core dump was all that was necessary. Bouricius
stated that an accurate record of difficulties had failed to reveal any failures
in core storage that were not explained by goofs in maintenance. He noted that
there has been a difficulty when changing the tape mode too quickly from binary
to BCD or vice versa. The synchronizer switched immediately, even though a COPY
was still being executed. Use of a delay instruction will avoid this. However,
it is believed that the latter will not be necessary on production 704's.

Strong (NA) asked if a complete set of peri quip would be available in New York
for use during the free time allotted to customers. The answer was yes.

Agenda Item 16 - USE OF SHARE ASSEMBLY

Nutt (UA) gave a progress report on the SHARE assembly program (UA SAPl). He
stated that 704 availability had delayed complete checkout. However, it was almost
entirely checked out. There were two trivial bugs still to be removed, and he was
confident that they would be corrected on the next machine run. However, there
was one major bug still outstanding in connection with relocatable binary cards.
He was going to Poughkeepsie the next week, and was confident that UA SAPl would
be completely checked out by Friday, November 18. He thanked Bouricius (PK) for
his outstanding cooperation in getting machine time. He noted that as soon as the
checkout was complete, a small supplement to the existing write-up would be issued,
but said this would contain no extraordinary new information. Nothing significant
developed in the way of questions and answers.

SHARE
PAGE I-A-15

Agenda Item 17 - CHANGES TO PERIQUIP

Ramshaw (UA) introduced this subject by describing the fact that United
Aircraft had enormous numbers of programs that were used only occasionally. They
felt it was quite impractical to save these on tape. They wished to store them on
cards. Ideally, this would be similar to the 701 operation where the storage was
on binary cards. However, United Aircraft wished to use the peri quip for output
and input of these cards; i.e., output once from core to tape to off-line punch to
card file, and then input whenever necessary from card file to off-line reader to
tape to core storage. With present peri quip design, this can be done using easily
read octal cards, five instructions per card (see Agenda Item 10). It can also be
done, 10 instructions per card (very hard to read), using a much clumsier
"quadroctal" card form. He proposed a change to all the periquip (reader, punch,
and printer), which will permit handling twelve easily read instructions per card,
asfollows:

1. It must work with all current Hollerith characters plus the now forbidden
combinations:

8, 7> zone
8, 6, zone
8, 5, zone

2. It must change the parity check and the method of handling zero to be
consistent with the main frame; thus BCD characters on tape will have a
one-to-one correspondence with core storage.

He emphasized that he was not proposing any alteration in the 70b itself or in the
synchronizer. This change would be exclusively in the periquip. He noted things
which could not be done if this revision were made:

1. A revised set of periquip could not be used for a 702 or 705 installa
tion which might be at the same location as a 701 or 70̂ + installation.
(Here 701 refers to one equipped with 727 tapes.)

2. The tapes which would be prepared for or by the revised periquip would
have to be referred to as BCD' tapes, and, obviously, could not be
obtained from or sent to a 702 or 705. Note, however, that the 701 or
704 can still produce or receive standard BCD tapes, which are com
pletely interchangeable with any others.)

Strong (NA) immediately noted that what Ramshaw (UA) was proposing was only a
compromise, and pointed out that as soon as the periquip was announced, North
American Aviation had urgently requested IBM to revise it so as to work with the
complete card image. Ramshaw admitted that this would be the best solution but
felt~that it would be too much to hope for, whereas he felt that his proposal could
be obtained rather easily. It was announced that IBM was now investigating the
card image deal on a column-by-column basis. Everyone agreed that the probability
was extremely small of getting any type of revision installed with a switch so that
the same piece of periquip could be used in either the original or the revised mode,
because it would be very much harder and more expensive to do. It was agreed that
SHARE should not make a decision as to what they would request IBM to do until more
information was obtained as to the relative difficulty of the various possibilities.

SHARE
PAGE I-A-16

Agenda Item 17 (Continued)

Nutt (UA) was • .̂ pointed a committee of one to be the contact man on IBM
activity, and he was empowered to submit to SHARE a proposal giving the pros and
cons of all reasonable possibilities, and to make a recommendation. This will be
done as soon as sufficient information can be obtained from IBM.

Agenda Item 18 - UNUSED BITS

The unused bits (12-17) in the decrement field of Type B instructions have
precipitated an Oklahoma land rush" among the users who wish to stake out a claim
on them. The subject is bound up with the one covered under Agenda Item 20, "New
Operations." Under that heading, the difficulties may be explained as follows:
If the bits are used merely as labels, with the present decoding circuitry, then
the number of new operations possible is relatively small because of the relatively
small number of combinations possible. If, on the other hand, new decoding cir
cuitry is considered when new operations are to be introduced, the number of bit
combinations available for new operations is very much larger. To date, it seems
that the simpler and more restricted method is being followed by IBM, and this
divided the members into two camps - those who wished to set up a convention for
the present situation, and those who wished to press for a change to the more
unrestricted method. Here, under Agenda Item 18, however, the only situation con
sidered is the present one, where these bits are used merely as labels.

Jordan (LA) stated his belief that efficient debugging would require several
sophisticated selective tracing programs in \rMch these bits could very profitably
be put to use. Handy (ML) noted that his SHARE assignment of a double precision
abstraction has to use these bits. Amaya (CL) pointed out that the recent formal
announcement of half-word arithmetic for the 704 included the use of bits 16 and
17. Judd (NY) warned that any new instructions currently under consideration
(including those previously requested by SHARE) may very well use them. Wagner (NA)
reminded everyone that when this subject was discussed previously at the first
SHARE meeting, IBM warned that those bits were not in the public domain, and could
be used by programmers only at their own peril.

It was the consensus of the group, however, that in spite of this, some use
fulness might be squeezed out of them, and consequently a convention for their use
was desirable. It was moved and seconded that:

"SHARE requests IBM to give the order of least probability of use of
bits 12-17 in the decrement field of Type B instructions. If IBM has
no firm opinions on the subject, SHARE requests that IBM use them from
right to left (beginning with 17 and 16, which they have already used),
and that SHARE programmers will use them (at their peril) from left to
right (beginning with 12)."

The motion was carried.

SHARE
PAGE I-A-17

Agenda Item 19 - TRAPPING MODE CONSOLE .WITCH '

Ramshaw (UA) related that difficulties in checkout "by manipulating the console
have demonstrated the need for a button on it whose function will be to change the
trapping mode trigger. He pointed out that this would enable your program to have
access to the instruction counter, ana thus get a printout of it.

An added suggestion was made that it be a two-position toggle switch, one of
which enters trapping mode end one of which inhibits trapping. Many people com
mented that this seemed to be retrogressing in view of the fact that everyone paid
at least lip service to the philosophy that all operation, including checkout,
should be completely automatic. Ideally the console should be eliminated entirely,
unless the customer engineers needed it. Shell (GE) very firmly stated that he does
not want any button that operators can get their hands on, because they are probably
going to push it the right way at the wrong time. No formal yes or no vote was
taken. The Chairman asked for a show of hands as to who was interested, and nobody
except Ramshaw (UA) indicated interest. The subject was tabled, and Ramshav was
invited, if he wished to push it further, to submit a complete write-up for decision
by mail. (Later on, Cantrell (GS) evidenced interest.)

Agenda Item 20 - NEW 70̂ OPERATIONS AND CHARACTERISTICS

This subject, which started out as a single specific item on the Agenda
(item 11 - Index Register "ADD" Instead of "OR") soon developed into a major dis
cussion of philosophy and policies in the future development of the logical struc
ture of the 70̂ . Discussions under almost every item on the agenda contained
overtones of these future possibilities, and the topics which are recorded below
were interspersed throughout both days.

These discussions concerned three categories of changes:

1. Those already formally requested by SHARE.

2. Proposals for specific new changes presented for consideration to this
meeting.

3. Future 70̂ changes.

These will be considered in that order below.

CHANGES ALREADY REQUESTED BY SHARE

There were a total of eight of these requested, numbered 1 to 8 in the form
letter which -each installation was expected to send to IBM, and a copy of which was
sent to each member by the Secretary 30 October 1955• It was brought out that
events which had taken place since then had divided these into four groups: No. 1,
Nos, 2-6, No. 7, and No. 8. In spite of our correspondence on this subject, ore sent
procedures make it imperative that the local IBM branch office at each installation
will have filled out and forwarded to IEM an RPQ in connection with each of these
groups. Each installation, therefore, must immediately check with their local
branch office of IBM to see that three RPQ's have been filled out and submitted
for their installation:

SHARE
PAGE I-A-18

Agenda Item 20 (Continued)

A. This RPQ should request the proposed new operation No. 1, Copy and Add
Logical Word.

B. This RPQ should request the group of new operations 2 through 6:

2. Exclusive OR.

3. Store Index in Address.

4. Place Index in Address.

5- Logical Right Shift.

6. Store Tag.

(D C. This RPQ should request the proposed new operation No. 7, Backspace File
on Tape (including the ability to skip one instruction when Backspace
File is given during a beginning-of-tape condition). In addition, this
RPQ should request that the 704 skip one instruction when a Backspace
Record (BST) is given and a beginning-of-file condition is encountered.

It has been determined that proposed additional operation No. 8, Read Tape
Backward, is impossible to achieve, and thus each installation should also check
that no RPQ has been submitted for this. If one has been submitted, have it
withdrawn.

In connection with this somewhat clumsy procedure, there was a lively dis
cussion as to the possibility of streamlining it, since official requests by SHARE,
representing its members, might be handled in one block. Shell (GE) suggested that
any such procedure should be carefully scrutinized so that no violation of the anti
trust laws was involved. A committee was appointed consisting of Ramshaw (UA) and
Greenstadt (NY) to investigate the possibility of streamlining this multiple RPQ
procedure, whereby over 20 different branch offices do identically the same thing
for each member installation of SHARE.

NEW OPERATIONS AND CHARACTERISTICS PROPOSED AT THIS MEETING

Index Register ADD Instead of OR (Agenda Item 11)

Steel (RS) had originally proposed under Agenda Item 11 a revision to the
characteristics of the 704 when two index registers are used simultaneously. Rand
wished this -to produce the effect of an addition instead of the current logical OR.
This was the subject of some preliminary correspondence during the last few months.
Backus (NY) pointed out that this might cause extra machine cycles when it is
used, or even possibly at any time when the index registers are used. Bouricius
(PK) passed on the rumor that the engineers claimed that it would take a year to
get it, and there is not space enough in the machine. Keller (GT) and Steel (RS)
agreed that it could be a very valuable characteristic, and thought it should be
investigated.

»»X««

(l) Following the meeting, NA received a copy of IBM letter to Santa Monica Office
from WHQ dated 11-14-55 on this subject, which is being distributed to SHARE.

SHARE
PAGE I-A-19

Agenda Item 20 (Continued)

At this point, there was considerable discussion which is summarized below
under "General Philosophy for Future JOk Changes."

The group decided to consider this proposed characteristic of the machine in
conjunction with many others that would be investigated during the next few months,
and that The Rand Corporation should take the responsibility for circulating by
mail. a complete set of arguments demonstrating its value.

Load Index with Own Address

Load Index with Complement of Om Address

Ramshaw (UA) moved and it was seconded that:

"SHARE requests IBM to add to the machine two new operations:

A. Load Own Address into Index Register.

B. Load Complement of Own Address into Index Register."

Shell (GE) stated that he liked the new instructions very much, but agreed
with Cantrell (GS), Heising (Iff), Porter (BA), and others who felt that a firm
decision should not be made until after further study.

The motion was tabled, and the group decided that this would be considered
in conjunction with proposals for other new operations during the next few months,
and that United Aircraft take the responsibility for circulating by mail complete
arguments demonstrating the value of these two proposed operations.

Sense Copy Check

Shell (GE) suggested that it would be desirable to remove the Copy Check Stop
feature from the machine, and substitute for it a sense type instruction to test
the Copy Check Trigger. It was agreed that this should be considered in conjunc
tion with all new proposed operations during the next few months, and that General
Electric AGT, Evendale, should take the responsibility for circulating complete
arguments demonstrating its value.

FUTURE 704 CHARGES

There was considerable discussion as to the value of the SHARE organization
in giving complete, careful consideration to requests for changes to the 70̂ -. It
was pointed out that this value could quickly disappear if ill-considered requests
were made of IBM which asked for a big engineering effort, and were followed by a
loss of interest by SHARE members. Representatives of most installations present
made speeches agreeing that they would be very careful not to do this. In return,
IBM was urged to supply quick feedback so that those requesting would understand
as early as possible the engineering and production difficulties and costs involved.
It was further noted that IBM ought to remove any fear among the members of SHARE
that a stock reply might be made that a proposal is extremely difficult, even
before it has been closely scrutinized by competent people.

SHARE
PAGE I-A-20

Agenda Item 20 (Continued)

All present agreed that some soul-searching was necessary on "both sides,, and
pledged themselves to the fullest cooperation.

Hunter (iff) announced tha.t IBM's research budget for 1956 included a thorough
investigation of the addition of a new component to the 70b. This would be a box,
supplemental to the main frame, which will give more space for added circuitry.
Some very vague information about it may be available by the end of December, and
firm specifications should be ready in March. Among other things to fill it with,
they plan to investigate approximately 50 new operations. It was agreed, there
fore, that the SHARE organization, individually and collectively, should give
careful thought to such new operations and characteristics of the machine as they
consider most important, and advise IBM accordingly.

One major decision in this regard must be whether this box would result in
every 704 being slightly different from every other one, or whether the SHARE
organization wished to keep the machines as standard as possible. Shell (GE) had
previously indicated that his present inclinations were along the line of rigid
standardization. Amaya (CL) said that Lockheed vas already almost committed to
having a machine with half-word arithmetic. Bouricius (PK) noted the possibility
that, if one does not insist on standardization, the same bits in the instructions
can be used for different things in different machines. This precipitated another
violent discussion of the philosophy of usage of the presently unused bits referred
to under Agenda Item 18 above.

The matter was concluded as follows:

1. Additional changes would be given serious consideration during the next
few months with a view towards referring final decisions to the next
meeting of SHARE.

2. In the interim, all SHARE members were requested to consider very care
fully any new operations or characteristics and distribute them by mail
for comments.

3. Bouricius (PK), Hunter (HY), arid Heising (KY) of IBM were requested to
keep SHARE informed as early as possible of developments along this line.
SHARE wants to know the new operations under consideration, those that
will be more difficult and costly to obtain than others, and, In parti
cular, whether any information can be obtained on the basic question of
decoding the operations (i.e., whether the possible number of new opera
tions on any one machine will be extremely limited or not).

MISCELLANEOUS ITEMS HOT OH THE AGEHDA

Proposed Input-Output Buffer

Hunter (NY) announced that the proposed new box would very likely contain an
input-output buffer which would permit direct communication from the tapes to core
storage with a minimum interruption of computing. It is expected that this would
probably take zero time during the execution of multiply or divide instructions,

SHARE
PAGE I-A-21

Mlscellapeous Items (Continued)

and in other cases .ould periodically interrupt execution of instructions for 12
microseconds as each word is transmitted. He said that this would not render
impossible the old-fashioned way of transmitting information by the COPY operation.

Delivery Schedules

Hunter (NY) denied a rumor about an additional production delay, and stated
that the first four machines would be delivered in December. The first production
machine (destined for IEM New York) is now trader test operation at Poughkeepsie,
and is working extremely well.

Proposal on Format for 70k Assembly

Greenstadt (NY) distributed Appendix G. He moved and it was seconded that:

"The subject of the format of the official SHARE assembly program be
reopened, and that the proposal contained in Appendix G be referred to
a committee for evaluation."

In the discussion which followed, it was brought out that:

1. Backus (NY) stated that there was no question but that the FORTRAN
routine itself will be distributed in SHARE language, and that FORTRAN
would use SHARE language. Consequently, the symbolic instructions pro
duced by FORTRAN will be accepted for assembly by UA SAP1. However, he
fears that the routines produced may have too many symbols, even though
he thinks that he can remove those symbols which are not referred to.
Ramshaw (UA) argued that, at worst, this certainly could be done with
one more tape pass, and Backus (NY) agreed and said it might even be
done more easily. However, he still wanted to have the ability to
assemble FORTRAN output with NY API in those cases where the number of
symbolic instructions was so large that it would be very inefficient to
use UA SAP1.

2. It was the consensus of most of those who commented that the proposed
changes to the SHARE format were not ones which it was necessary for
every installation to make. In fact, it was only necessary at the IBM
New York Computing Center to the extent that they continued to use NY API,
and elsewhere if UA SAP1 becomes too clumsy to be used with FORTRAN.
Consequently, it was felt by the majority of those commenting that these
changes were entirely permissible on an internal basis within IBM New
York Computing Center. They reasoned, therefore, that the motion was
irrelevant to SHARE as a whole. The Chairman ruled that this was in fact
true - the motion was irrelevant - and the matter was dropped. Subse
quently Greenstadt (NY) agreed completely with this disposition of the
matter.

SHARE
PAGE I-A-22

Miscellaneous Items (Continued)

Proposed Standard Printer Board

Mock (NA) moved and it was seconded

"SHAPE shall select a standard
designate it as such."

It was immediately agreed that this
to a committee consisting of Shell (GE),
requested to report as soon as possible,
posed of by mail.

Sequence Numbers in Distributed Decks

Steel (RS) moved and it was seconded that:

"All distributed decks which carry sequence numbers must use the follow
ing convention: Sequence numbers in self-loading decks shall start with
zero, and in all others shall start with one."

The motion carried.

Proposed Committee on Mathematical Analysis

Sangren (CW) proposed that a committee of SHARE be established to investigate
current progress on mathematical analysis methods applicable to computing machines,
and correlate and disseminate this information through SHARE. He was requested by
the Chairman to submit such a proposal by mail, outlining completely the functions
of such a committee.

Characteristics of Future Machines

Some members felt that SHARE should take on as one of its responsibilities the
study of the desired characteristics of new machines, in order to give IBM unified
authoritative guidance from its customers. Some members felt that this was beyond
the scope of the SHARE organization. It was pointed out that this would have to
be a continuous interchange of information, since no one likes to ask for "blue
sky" capabilities which may be impossible to realize except at exorbitant cost in
time and money. Consequently, some indications from IBM as to what they could do
would be valuable.

Further discussion along these lines brought out that this involved a very
delicate situation concerning information which IBM has every right to consider
proprietary until they are ready to make a formal announcement, and that it was
asking entirely too much of IBM to disclose these things prematurely.

Nevertheless, the general consensus was that SHARE should make some attempt
to provide IBM with well-considered information as to the desires of its members.
It was mentioned that the PACT group was also Interested in doing this from the
point of view of the machine characteristics needed for future compiling techniques.
It was agreed that, if time permitted, this general subject would be placed on the
Agenda for the next meeting.

that:

configuration for the printer boards and

seemed to be desirable; it was referred
Nutt (UA), and Greenstadt (NY), who are
in order that the subject may be dis-

SHARE
PAGE I-A-23

CONCLUSION

Chairman Strong vNA), on "behalf of the organization, and Hunter (NY) on
behalf of IBM, thanked all member and nonmember participants for their attendance
and cooperation during the meetings. Hunter (NY) offered on behalf of IBM to
provide facilities for the next meeting.

The group agreed that, barring contingencies, the next meeting would be held
in conjunction with the Western Joint Computer Conference in San Francisco during
the second week of February, 1956. Since the conference is Tuesday, Wednesday,
and Thursday, February 7, 8, and 9, it is probable that the SHARE meetings will be
held Monday, February 6, and Friday, February 10.

The meeting adjourned at 4:15 p.m., Friday, November U.

A summary of all decisions reached follows in Part I.B. A summary of new
assignments is contained in Part I.C.

Subject

Assembly - Format for 70^

Bibliography of SHARE
Materials

Ballots - Form of

Bits - Unused (12-17)

Checkout

Clock

Distribution

Checked-Out Routines

IJonmember

PROCEEDINGS PARI I.B.

SUMMARY OF DECISIONS REACHED

Description

Subject of format of official SHARE assembly shall
be reopened

Committee appointed to study

See Mail - Processing Proposals by

SHARE requests IBM to use unused bits in the
decrement field in a definite order

Definition established of when a routine shall
be considered checked out, and of what should be
distributed

Timekeeping clock is most desired, rather than
the microsecond type

What should be sent to IB!

IBM is maintaining a nonmember distribution list
for SHARE material

Disposition

Formal motion - ruled
irrelevant and with
drawn

No formal motion -
referred to committee

Agenda
Item Page

No formal motion -
agreed on definition

No formal motion -
show of hands indi
cated timekeeping type
accessible to program
is most wanted

No formal motion -
list decided upon

No formal motion -
SHARE encourages such
distribution

Misc. I-A-22

I-A-7

Formal motion - passed 18 I-A-16

111

I-A-*

I-A-12

I-A-8 5

I-A-k h

H

• • •

SUMMARY OF DECISIONS REACHED (Continued)

Subject Description Disposition
Agenda
Item Page

Format

For JOk Assembly See Assembly - Format for 704

For Distribution of
Material

See Language - Material Not in SHARE

Forms

Code Sheet Form to be decided upon by each installation No formal motion -
agreed each installa
tion could select and
modify any they wished

10 I-A-9

Decimal Symbolic Cards The standard form in preparation by UA is
desirable for distribution

No formal motion -
OA's form will be
available to all

9 I-A-9

Octal Cards Octal card form presented in Second SHARE
Proceedings will be the accepted SHARE standard

Formal motion -
passed

10 I-A-9

Index Register ADD
Instead, of OR

Proposed revision to 704 characteristics No formal motion -
request for further
arguments

20 I-A-17

Installation Defined - See Membership

Language - Material not in
SHARE

No material shall be distributed by SHARE (or
by IE4 under SHAHS auspices) which is not in
SHARE language

Formal motion - passed 6 I-A-7

P
A
G
E

I-B-2

• • •

SUMMARY OF DECISIONS REACHED (Continued)

Subject Description Disposition
Agenda
Item Page

Library Tape The standard library tape shall be Tape Ho. 1 Formal motion - passed Ik I-A-12
Mail - Processing

Proposals by
Procedures established to transact SHARE
business by mail

Formal motion - passed k I-A-5

Mathematical Analysis
Committee - Proposal
for

Suggestion that such committee be set up No formal motion -
request for mail
proposal

Misc. I-A-22

Membership - Definition of Member shall be an installation -which has on hand
or on order at least one 704; "installation"
defined

Formal motion - passed 1 I-A-4

Operations - Hew Committee on information from IK4 appointed No formal motion -
committee set up

20 I-A-20

Load Own Address into
Index Register, and
Load Complement of Own
Address into Index
Register

Add the two new operations stated Formal motion - tabled
for future consideration

20 I-A-19

Sense Copy Check Substitute an operation "Sense Copy Check" for
the Copy Check Stop

No formal motion -
request for further
information

20 I-A-19

Periquip
•v

Changes to Revise periquip to handle non-Hollerith code No formal motion -
referred to committee

17
>
a

I-A-15 m
H

Reader Wiring See Reader - Present Periquip V LU

SUMMARY OF DECISIONS REACHED (Continued)

Subject Description Disposition
Agenda
Item Page

Printer Boards - Standard SHARE shall select a standard configuration for
the printer boards and designate it as such

Formal motion -
referred to committee

Misc. I-A-22

Proposals See Mail - Processing Proposals by-

Quorum - Definition of Quorum shall consist of two-thirds of members;
majority of quorum necessary to pass any motion

Formal motion - passed 2 I-A-4

Reader - Present Periquip Two motions were made:
(1) Periquip Reader shall be wired from

columns 9-80, and then 1-8
(2) Periquip Reader wired from columns 1-80 shall

be the SHARE standard

Formal motions -
referred to committee

14 I-A-12

Reconsideration of Topics Established percent of quorum necessary to
reconsider previous decisions and overrule them

Formal motion - passed 3 I-A-5

RPQ's

Streamlining of
Procedures for

SHARE should be able to make requests of IBM in
the name of its members

No formal motion -
referred to committee

20 I-A-18

Existing SHARE Requests Existing SHARE requests for changes to the 704
require three RPQ's from each installation

No formal motion -
Chairman instructed each
installation to check
their local IBM office

20 I-A-17

Sequence numbers Convention for sequence numbers in decks to be
distributed

Formal motion - passed Misc. I-A-22^
0

Switch - Trapping Mode
Console

Need for ETM-LTM switch No formal motion -
request for further
information

19 I-A-17 H 1
V

CO
IT
>

m

SUMMARY OF DECISIONS REACHED (Continued)

Subject

Symbols

Tape, Library-

Time Chages - Definition
of Machine

Vote

By Mail

Majority

Description

Programs distributed through SHARE shall use
five or fever characters as symbols, except vhen
programmer wishes to prevent heading

See Library Tape

(1) Standardization of machine charges for
payment of shift rental

(2) Committee appointed to study standardization
of machine charges for exchange of statis
tical records

See Mail - Processing Proposals by

See Quorum

Disposition

Formal motion-- passed

No formal motion -
agreed to drop

Formal motion - passed

Agenda
Item

12

Page

I-A-10

I-A-7

I-A-7

CO
X
>
33
m

"O
>
©
m
H I
V
VJ1

• • •

PROCEEDIKGS PART I.C.

NEW COMMITTEES APPOINTED

Committee Title lumbers Job Due Date
Agenda
Item Page

Bibliography - Index Engel (WH)
Butterworth (GT)

Establish classification system for SHARE
material and study methods of distributing
bibliography or index

Mail proposal -
just before the
next meeting

5 I-A-7

Future 70^ Changes Bouricius (PK)
Hunter (HY)
Heising (HY)

Keep SHARE informed of development of any
new 70k characteristics

Continuing 20 I-A-20

Machine Time Charges Amaya (CL)
Engel (WH)

Study the possibilities of defining
machine time charges for statistical
records and present recommendation

Mail proposal -
just before the
next meeting

6 I-A-7

Periquip Changes Rutt (UA) Report on all reasonable possibilities
for revisions to periquip and make
recommendation

Mail proposal -
as soon as
possible

17 I-A-15

Periquip Reader
Wiring

Rutt (UA)
Keller (GE)

Recommend standard wiring of existing
periquip reader

Mail proposal -
as soon as
possible

1^ I-A-13

Printer Boards Shell (GE)
Rutt (UA)
Greenstadt (NY)

Recommend a standard configuration for
printer boards

Mail proposal -
as soon as
possible

Misc. I-A-22

*o
>
0

RPQ Procedure Ramshaw (UA)
Greenstadt (HY)

Investigate possibility of streamlining
procedure for multiple RPQ

Mail proposal -
as soon as
possible

20 I-A-lfT

V
0 1
H

• • •

PROCEEDINGS PART I.C. (Continued)

HEW ASSIGNMENTS TO INSTALLATIONS

Installation (Code) Job Due Date
Agenda
Item Page

Curtiss-Wright (CW) Submit proposal for a Standing Committee on Mathematical
Analysis (Sangren)

Mail proposal -
when convenient

Misc. I-A-22

General Electric AGT
Dept., Evendale (GE)

Study further the new operation "Sense Copy Check" and
circulate arguments by mail (Shell)

Mail proposal -
just before the
next meeting

20 I-A-19

IBM New York (NY) Investigate possibility of distributing, in two sizes,
"List of Operations" cards for ready reference
(Greenstadt)

Authorized to
be done as soon
as possible

10 I-A-9

The Rand Corporation (RS) Study further the new characteristic "Index Register
ADD Instead of OR" and circulate arguments by mail
(Steele)

Mail proposal -
just before the
next meeting

20 I-A-18

United Aircraft (UA) (l) Study further the new operations "Load Index with
Own Address" and "Load Index with Complement of
Own Address" and circulate arguments by nail
(Ramshaw)

Mail proposal -
just before the
next meeting

20 I-A-19

(2) Study addition of Trapping Mode Console Switch
and circulate arguments by nail (Ramshaw)

Mail proposal -
when convenient

19 I-A-17

"U
J»
G)
m

H
1 0 1 ro

• • •

PROCEEDINGS PART I.C. (Continued)

SUMMARY OF PEOPLE RESPONSIBLE FOR NEW ASSIGNMENTS

People Assignment
Agenda
Item Page

%
: Amaya (CL) Machine Time Charges Committee 6 I-A-7

Bouricius (PK) Future "JOk Changes Committee 20 I-A-20

Butterworth (GT) Bibliography - Index Committee 5 I-A-7

Engel (WH) (1) Machine Time Charges Committee
(2) Bibliography - Index Committee

6
5

I-A-7
I-A-7

Greenstadt (NY) (1) IBM. (NY) wiU investigate distribution of "List of Operations" cards in
two sizes.

(2) Printer Boards Committee
(3) HPQ Procedure Committee

10

Misc.
20

I-A-9

I-A-22
I-A-18

Seising (NY) Future JOk Changes Committee 20 I-A-20

Hunter (NY) Future 70h Changes Committee 20 I-A-20

Keller (GE) Existing Feriquip Reader Wiring Committee 14 I-A-12

Nutt (UA) (1) Existing Feriquip Reader Wiring Committee
(2) Periquip Changes Committee
(3) Printer Boards Committee

14
17
Misc.

I-A-13
I-A-15
I-A-22 ̂

Ramshaw (UA) (1) United Aircraft will study further the new operations "Load Index with
Own Address" and "Load Index with Complement of Own Address" and
circulate arguments by mail.

(2) United Aircraft will study further the addition of a Trapping Mode
Console Switch and circulate arguments by mail.

(3) RPQ Procedure Committee

20

19

20

0
I-A-19 m

V 0
I-A-17 OJ

I-A-18

SUMMARY OF PEOPLE RESPONSIBLE FOR NEff ASSIGEMEHTS (Continued)

People

Sangren (CW)

Shell (GE)

Steele (RS)

Assignment

Curtiss-Wright will submit by mail a proposal for a Standing Committee on
Mathematical Analysis.

(1) General Electric AGT, Evendale, will study the new operation "Sense
Copy Check" and circulate arguments by mail.

(2) Printer Boards Committee

The Rand Corporation will study further the new characteristic "Index
Register ADD Instead of OR" and circulate arguments by mail.

Agenda
Item Page

Misc. I-A-22

20

Misc.

20

I-A-19

I-A-22

I-A-18

TJ
>
©
m

?
0 1 p-

SHARE

n
APPENDICES

SHARE
PAGE II-A-1

APPENDIX A

SHARE ADDRESS LIST

REVISED 11-20-55

BA Mr. Randall Porter
Physical. Research Staff
Boeing Airplane Company
Box 3107
Seattle lU, Washington

MOhawk 7080
Extension 7901

/

CF Mr. Henry S. Wolanski
Electronic Computations Laboratory
Convair Division of General Dynamics

Corporation
Fort Worth, Texas

SUnset 7311
Extension 713̂

CL Mr. Lee Amaya
Mathematical Analysis Department
Lockheed Aircraft Corporation
Burbank, California

STanley 72711
Extension 1256

CR Mr. William J. West
California Research Corporation
Box bk6
La Habra, California

OXford 717̂ 6
Extension 112

CS Mr. W. G. Gerkin
Digital Computation Laboratory,

Building 35
Convair Division of General Dynamics

Corporation
San Diego, California

CYpress 66611
Extension 1f88
or 795

CW Mr. John A. DeVries
Nuclear Power Department
Research Division
Curtiss - Wright Corporation
Brighton Road.
Clifton, New Jersey

GRegory 13000

DA Mr. Walter C. Schlieser
Engineering Computing Group, B-250
El Segundo Division
Douglas Aircraft Corporation
El Segundo, California

ORegon 76161
Extension 1151

SHARE
PAGE H-A-2

GA Mr. Allan I. Benson
Lynn Digital Computations
Aircraft Gas Turbine Division
General Electric Company
1000 Western Avenue
West Lynn 3; Massachusetts

LYnn 36000
Extension 3^31

GE Mr. Donald L. Shell
Investigations Section

POplar 1^100
Extension 51^

Aircraft Gas Turbine Development
Department

Building 305
General Electric Company
Cincinnati 15, Ohio

GL Mr. Robert Bosak CYpress l4ll
Mathematical Analysis Department, Extension 257^

72-22
Lockheed Aircraft Corporation
Marietta, Georgia

GM Mr. Donald E. Hart JEfferson 95000
Special Problems Department Extension 2626
General Motors Research
Box 188, North End Station
Detroit 2, Michigan

GS Mr. Harry Cantrell FRanklin L2211
Large Steam Turbine-Generator Extension 3025

Department
Building 273-257
General Electric Company
Schenectady, New York

GT Mr. Richard A. Butterworth LYnn 36000
Medium Steam Turbine, Generator Extension 530

and Gear Department
General Electric Company
920 Western Avenue
West Lynn 3j Massachusetts

LA Mr. Edward A. Voorhees Los Alamos 23051
University of California
Los Alamos Scientific Laboratory
P. 0. Box 1663
Los Alamos, New Mexico

SHARE
PAGE II-A-3

LC Dr. Sidney Fernbach
Theoretical Division
Radiation Laboratory
University of California
Livermore, California

ML Dr. Werner W. Leutert
Research Laboratories
Missile Systems Division
Lockheed Aircraft Corporation
7701 Woodley Avenue
Van Nuys, California

ATTENTION: Mr. Benjamin F. Handy

STanley 61+210

KA Mr. Jack Strong
Department 92
North American Aviation, Inc.
International. Airport
Los Angeles l+5> California

ORegon 83011
Extension 2701

NC Miss Elizabeth U. Blackvell
Engineering Computing Group
Department 56
North American Aviation, Inc.
1+300 East Fifth Avenue
Columbus 16, Ohio

ATTENTION: Mr. Philip Arnold

DOuglas 1851
Extension ll+83

NS Mr. William D. Nichols
10605 Lilac Place
Silver Spring, Maryland

JAckson 5-5800
Extension 377
(NSA)

NY Mr. William Heising
Data Processing Center
International Business Machines

Corporation
590 Madison Avenue
New York 22, New York

PLaza 31900

PK Dr. Willard Bouricius
Computing Bureau, Department 537
International Business Machines

Corporation
Poughkeepsie, New York

Poughkeepsie 6920
Extension 790M

SHARE
PAGE II-A-4

RA Dr. Helmuth Hoelzer
Computation Laboratory
Building 1*91
Redstone Arsenal
Huntsville, Alabama

ATTENTION: Dr. Helmut Sassenfeld

RL Mr. John F. Matousek
System Training Project
The Rand Corporation
1905 Armacost Avenue
West Los Angeles, California

RS Mr. Paul Armer
The Rand Corporation
1700 Main Street
Santa Monica, California

ATTENTION: Mr. Irwin Greenwald

UA Mr. Stuart Crossman
Computation Laboratory
Research Department
United Aircraft Corporation
400 Main Street
East Hartford 8, Connecticut

ATTENTION: Mr. Walter Ramshaw

WH Dr. Edward Harder
Analytical Department 4L39
Westinghouse Electric Corporation
East Pittsburgh, Pennslyvania

JEfferson 461*11
Extension 3115

GRanite 88293
Extension 33

EXbrook 40251
Extension 447

JAckson 84811
Extension 7754

EXpress 12800
Extension 2151

ATTENTION: Mr. Frank Engel

SHARE
PAGE II-A-5

Chairman Mr. Jack Strong ORegon 83011
Department 92 Extension 2701
North American Aviation, Inc.
International Airport
Los Angeles 1*5, California

POplar 11*100
Extension 51**

Aircraft Gas Turhine Development
Department

Building 305
General Electric Company-
Cincinnati 15, Ohio

Vice Chairman Mr. Donald L. Shell
Investigations Section

Secretary Mr. Fletcher R. Jones ORegon 83011
Department 56-72 Extension 2651
North American Aviation, Inc.
International Airport
Los Angeles 1*5, California

IBM Distribution

Dr. John Greenstadt PLaza 31900
70l* Library Group Extension 126
Data Processing Center
Applied Science Division
International Business Machines

Corporation
590 Madison Avenue
New York 22, New York

SHARE
PAGE II-B-1

APPENDIX B

REPRESENTATION AT THE THIRD MEETING OF SHARE

BOEING AIRPLANE COMPANY - Seattle
John Jordan
Randall Porter

CHANCE VOUGHT AIRCRAFT CORPORATION *
H. Allen Wood

CONSOLIDATED-VULTEE AIRCRAFT CORPORATION - Fort Worth
Henry S. Wolanski

CONSOLIDATED-VULTEE AIRCRAFT CORPORATION - San Diego *
William Gerkin
H. W. Buckner

CURTISS-WRIGHT CORPORATION
Ward Sangren
John A. DeVries

GENERAL ELECTRIC COMPANY - Evendale
Don L. Shell
James A. Porter

GENERAL ELECTRIC COMPANY - Lynn
Richard A. Butterworth
Everett L. Roger
Allen Keller
Robert L. Cushman
Paul E. Tanner

GENERAL ELECTRIC COMPANY - Schenectady
Jane King
Harry Cantre11

GENERAL MOTORS CORPORATION - RESEARCH
George Ryckman
Robert L. Patrick

GENERAL MOTORS CORPORATION - ALLISON DIVISION *
Ladd Mathiason

INTERNATIONAL BUSINESS MACHINES CORPORATION - Boston *
L. P. Rosenberry

INTERNATIONAL BUSINESS MACHINES CORPORATION - London *
Michael Barnett

SHARE
PAGE II-B-2

APPENDIX B

REPRESENTATION (continued)

INTERNATIONAL BUSINESS MACHINES CORPORATION - New York
John Greenstadt
Harold Judd
John Backus
William P. Heising
Tinman Hunter

INTERNATIONAL BUSINESS MACHINES CORPORATION - Poughkeepsie
Willard Bouricius
Edward Goldstein

LOCKHEED AIRCRAFT CORPORATION - CALIFORNIA DIVISION
Lee Amaya

LOCKHEED AIRCRAFT CORPORATION - GEORGIA DIVISION
Gerald Fine

LOCKHEED AIRCRAFT CORPORATION - MISSILE SYSTEMS DIVISION
Benjamin Handy

MASSACHUSETTES INSTITUTE OF TECHNOLOGY *
Dean Arden
John M. Frankovich

NORTH AMERICAN AVIATION INC. - Columbus
Paul H. Arnold

NORTH AMERICAN AVIATION INC. - Los Angeles
Jack A. Strong
Frank V. Wagner
Owen R. Mock

NATIONAL SECURITY AGENCY
John T. Powers
Thomas E. McCool
William D. Nichols

THE RAND CORPORATION
Tom B. Steel, Jr.

REDSTONE ARSENAL
Helmut Sassenfeld

UNITED AIRCRAFT CORPORATION
Roy Nutt
Walter Ramshaw

UNIVERSITY OF CALIFORNIA - Los Alamos
Thomas L. Jordan

SHARE
PAGE II-B-3

APPENDIX B

REPRESENTATION (continued)

WESTINGHOUSE ELECTRIC CORPORATION
Frank Engel, Jr.
Ben Mount
Edward Harder

* Nonparticipating

The Equitable Life Assurance
Society of the United States

1285 Avenue of the Americas
New York, New York 10019
(212) 55^-3678
August 8, 1975

SHARE Inc.
25 Broadway, Suite 750

New York, New York 10004

(212) 943-2130

THOMAS B. STEEL,JR.
Director

Dear colleague:

In classical SHARE tradition, as refined over the past twenty years, this
letter is being sent very late. Nevertheless it is my hope that you will
be able to participate in the twentieth anniversary of SHARE. The SHARE
XLV Meeting will be held 1975 August 18-22 at the New York Hilton. If you
can participate for the entire week, SHARE would be honored to have you
register. If, however, you could only spend a brief time, Wednesday afternoon,
August 20 is the time we plan to conduct a session, "An Information Processing
Retrospective", at which we plan to review why SHARE started and how it has
evolved, as well as consider what it might become. If it is at all possible
we would like your participation at that session.

This letter is being sent to every participant at SHARE I that can be found,
as well as all of the past Presidents of SHARE and a very few others. Many
of you are already aware of these plans from earlier discussion ana I hope
you have already made your plans to participate.

Any of you who cannot be there but have some observations about SHARE and
its two decades can communicate them to me and I will see that they are
exposed at the meeting.

I am looking forward to seeing many of you at SHARE XLV.

Sincerely yours

T. B. Steel, Ur.
SHARE Historian

»—•

. I

USfl-JHPRn
COmPUTER

COnFERERCE
PROCEEDinGS

OCTOBER 1972

TOKYO

COSPONSORED BY

AFIPS & IPSJ

683

A TRILOGY ON ERRORS IN THE HISTORY OF COMPUTING*

N. Metropolis and J. Worlton

(Los Alamos Scientific Laboratoryi University of California,

Los Alamos, New Mexico)

1. INTRODUCTION

The critic who investigates the inadequacies of
the history of computing is at once faced with an em
barrassment of riches. Computer scientists seem
determined to confirm the judgment of professional
historians that scientists should not be depended
upon to produce the histories of their own fields(1).
Sarton, in an essay on "The Scientific Basis of the
History of Science"(2), pays tribute to the "good
amateurs" who work as hard in the field of history as
they do in their own specialties, but complains that
the amateur historian of science is more often

...a distinguished scientist who has become
sufficiently interested in the genesis of his
knowledge to wish to investigate it, but has
no idea whatsoever of how such investigations
should be conducted and is not even aware of
his shortcomings. His very success in another
domain, the fact that he has long passed the
years of apprenticeship, make it difficult,
if not impossible, for him to master a new
technique. He generally lacks the humility
of a beginner, and publishes his historical
results with blind and fatuous assurance.
This is amateurism at its worst.

Computer science is fortunate to have people
trained in both history and computing to direct the
major project on the history of computing at the
Smithsonian Museum of History and Technology(3), but
there is an essential role for the "good amateur" to
play in preparing this history. The field is so
broad and the professional historians so few that they
cannot do all of the detailed work of collecting, or
ganizing, and documenting that is necessary; further,
much of the information is known only to the computing
pioneers who are, by and large, amateurs in the field
of history.

Although this paper emphasizes the inadequacies
and misunderstandings in published accounts of the
history of computing, it is not its purpose to dis
courage further efforts, but to encourage them and to
emphasize that the history of computing deserves to
be known as well as possible, and any knowledge short
of what is attainable should be treated with the same
contempt as we would treat half-baked knowledge in
confuting itself (2). Since the authors of this paper
are amateurs in the field of history, the proposals
made here for the improvement of work in this field
are modest.

»This work was done under the auspices of the United St

1. Allow no published error to go uncorrected.
Only through a vigorous weeding process can we hope to
stop the propagation of the seeds of error.

2. Do not publish conjectures as though they
were facts. Lack of caution is one of the obvious
marks of the "bad amateur."

3. Do not depend upon secondary sources. The
error function for Nth-level repetition is mono-
tonically increasing.

A. Remember that the basis of scientific history
is bibliography. Start with a good bibliography and
end with a better one.

Specific professional suggestions can be obtained
from George Sarton's dual publication, "The Study of
the History of Mathematics" and "The Study of the
History of Science." The four basic suggestions noted
above, however, will at least lead authors toward pro
fessional standards of history.

In the three studies which follow, we first take
note of published errors or misunderstandings in the
history of computing and then provide results of re
search intended to provide corrections.

2. BABBAGE AND THE ORIGINATORS OF MODERN COMPUTERS

2.1 A Question of Awareness

The creative genius that Charles Babbage exhib
ited in his design of general-purpose mechanical com
puting devices has surprised and delighted readers for
well over a century. As noted by Bowden, it is diffi
cult to determine whether Babbage's oddities were
responsible for his failure to complete his machines
or his failures made him odd(A); in either event, he
is often accorded the honor of being the 'Father of
Computing." In recent articles, however, it has been
claimed that those responsible for the development of
modern computers were not only not influenced by the
ideas of Babbage but that they were not even aware of
his work.

The question of the "influence" of one person's
work on that of another is often subjective and diffi
cult to establish; hcwever, it is possible to estab
lish "awareness" by documenting references in the
writings of the people concerned, and it is this point
which is addressed here, i.e., are there references in
their writings to the work of Charles Babbage? The
claims noted below ioply a uniformly negative answer,
Atomic Energy Commission.

Session 21-1-1

686 First USA-JAPAN Computer Conference, 1972

Turing's paper on "Computing Machinery and In
telligence," first published in 1950, refers to both
Babbage and Lady Lovelace, but this is as early as we
are able to document Turing's awareness of Babbage
from his own writings. However, in an interview
among the authors, J. H. Wilkinson, and Leslie Fox,
Wilkinson stated unequivocally that for all those
working on the "ACE" project at the National Physical
Laboratory, Tedding ton, England (N.P.L.), including
Turing, "Babbage" was a household word and very much
a topic of conversation "...very, very early on." One
of the buildings at N.P.L. was called "Babbage Build
ing," and the ACE project was referred to by Womersley
as "Babbage's Dream." Since Wilkinson was Turing's
closest associate on the logical design of ACE, his
information on Turing's awareness of Babbage should
be considered conclusive.

The published works of von Neumann contain no
references to Babbage, but this is "negative evidence"
in the sense that it does not resolve the question of
an awareness of Babbage on the part of von Neumann.
However, von Neumann's intense interest in and deep
knowledge of history are well known, and the authors
have been advised by Julian Bigelow, one of von
Neumann's close associates on the IAS computer pro
ject at Princeton, that Babbage was the subject of a
discussion among Hartree, von Neumann and himself on
the occasion of Hartree's second visit to Princeton
in 1947. Contacts between Turing and von Neumann
would have provided opportunity for such information
to be discussed, either before the War at Princeton
or during the War, in England(93). The authors have
been advised by the Earl of Halsbury that classified
documentation exists in England on "...Turing's war-
work on code breaking with electronic devices..."
which may bear on this subject, but as yet efforts
to have this material declassified have been un-
successful(92). Thus, while no available documen
tary information supports it, there is some informal
evidence to support the claim of a knowledge of
Babbage on the part of von Neumann.

In summary, Calvert's assertion about a lack of
awareness of Babbage among the inventors of the elec
tronic computer in the United States seems indeed to
be safe, but when the more general question of aware
ness among other early workers in this field is con
sidered, a rather broad awareness of Babbage can be
demonstrated.

3. THE STOKED-PROGRAM CONCEPT AND EARLY
IMPLEMENTATIONS

3.1 Control Modes

There has been some confusion in the literature
concerning the origin of the stored-program concept
and the early implementations thereof. Some of these
errors are easy to correct, as for example, the notion
that the Zuse Z3 was an electronic stored-program
machine(57). In fact, the Z3 was an electromechanical
computer which was indeed programmgesteuerte (program
controlled), but whose program control was implemented
through the use of eight-bit one-address instructions
punched in 32-mm cinefilm, rather than in the 64 words
of relay storage(6).

Some of the confusion concerning program control
in early computers is derived from a lack of

understanding of the stages through which program con
trol in scientific computers evolved during the
1940's. Figure 1 is an idealized classification of
this evolution, with the pioneering machines noted for
each level; each of these levels is discussed briefly
below.

CONCEPT
(EOVAC)

STORAGE IMPLEMENTATION
(BINAC.EOSAC)

REAO-ONLY
(ENIAC-1948)

(ENIAC -1946)

Fig. Evolution of program control modes.

1. Manual control was used on the Bell Labs'
"Complex Calculator" (1940), with instructions being
entered through a teletypewriter keyboard. This de
vice was thus more nearly related to modern desk cal
culators than to modem computers.

2. Automatic control of a calculational sequence
was achieved in the Zuse Z3 (1941) and the Harvard
Mark-I (1944) through the use of external program
readers for film (Z3) and paper tape (Mark-1).

3. Internal control of calculations was first
implemented in the ENIAC (1946) through the use of
jackplugs and switches to route control signals.
"Programming" for this machine consisted of making
jackplug connections and setting switches.

4. Storage control of a computer was later
implemented on the ENIAC (1948) through the use of a
decoding matrix in conjunction with the read-only
function tables.

5. Read-write memories for stored programs were
first implemented in 1949 on the BINAC in the United
States and the EDSAC in Great Britain. These ma
chines were based on the design of the EDVAC (1945).

3.2 Concept vs. Implementation

A natural source of error concerning the history
of the stored program is the failure to distinguish
between the origins of the concept and its first
implementation. The design group working at the
Moore School of Electrical Engineering of the Univer
sity of Pennsylvania produced the functional design
of the EDVAC(58), which included acoustical delay
lines to hold both programs and data, even prior to
the completion of the ENIAC, so it is correct to
credit the EDVAC design as being the first to employ
the stored-program concept. However, construction of
the EDVAC was delayed because of the departure of key
personnel from the project after the war, and the ma
chine was not completed until 1952(59). In 1948 an
instruction decoder was added to the ENIAC at the

Session 21-1-4

687

Ballistic Research Laboratories(60) which allowed the
312 words of read-only storage on the portable func
tion tables to be used to hold instructions, and ENIAC
became the first computer to operate with a read-only
stored program. In 1949 both the BINAC in the United
States(61) and the EDSAC in Great Britain(62) were
successfully tested; these designs were based on that
of EDVAC, with a dynamically modifiable stored program
being executed out of the delay-line storage. Thus,
it is correct to:

(a) credit the EDVAC design as the first to in
clude the stored-program concept;

(b) credit the ENIAC as the first computer to be
run with a read-only stored program; and

(c) credit the BINAC and the EDSAC as being the
first computers to be run with a dynamically
modifiable stored program.

Because item (b) is so little known, we have pro
vided the basic information in the next section.

3,3 The Read-only Stored-Program Control on the ENIAC

Each preparation of the ENIAC for a new problem
was a time-consuming affair; the control consisted of
a very large, distributed plugboard and manually-set
switches. One part of the read-only memory—the so-
called "function tables"—could store 312 numbers of
twelve decimal digits effected by ten-position,
manually-set switches. R. F. Clippinger(63) (not
von Neumann as stated in references 60 and 64) sug
gested that the function tables might be used to store
sequences of decimal digit pairs, each pair corre
sponding to one of a possible hundred instructions,
and that the control might be implemented (once-and-
for-all) to interpret and execute such pairs. To
change problems, a new sequence would be introduced
a much simpler procedure than the jackplug and switch
method.

A provisional plan by A. Goldstine for a control
program exceeded the capacity of the ENIAC. A second
approach by N. Metropolis and K. von Neumann was suc
cessful, but only because of a curious coincidence.
On a preliminary visit to the Aberdeen Proving Ground
in Maryland when the ENIAC had been moved from Phila
delphia^), Metropolis noticed a complete many-to-one
decoder network nearing completion; it was intended
to increase the capability of executing iterative
loops in a program. It was also just what was needed
to simplify considerably the decoding of digit pairs
representing an instruction, and in fact, the new
mode of control could be contained. The local author
ities agreed to the change and the campaign was
launched; after at least the expected nunber of pro
gram errors had been conmitted and eventually removed,
the ENIAC achieved a read-only stored program. The
time scale to change problem setups was reduced from
hours to minutes. Moreover, maintenance procedures
were simplified.

In the original ENIAC form of control a limited
amount of parallel operation was possible; this was

sacrificed in converting to strictly sequential execu
tion. All the remaining flexibilities were available
in the new modus operandi, however.

After some thorough testing, Metropolis and K.
von Neumann put the first problem the original Monte
Carlo—to the ENIAC in its new form in early 1948.

3.4 Originators

Another point concerning the stored-program his
tory which needs clarification is the unwarranted
assumption that J. von Neumann alone deserves the
credit for the stored-program concept. In his Turing
lecture in 1967, Maurice Wilkes (who attended the
Moore School lectures in 1946) gave the following
description of the roles played by Eckert and Mauchly
on the one hand, and von Neumann on the other:

Eckert and Mauchly appreciated that the main
problem was one of storage, and they proposed
for future machines the use of ultrasonic delay
lines. Instructions and numbers would be mixed
in the same memory...von Neumann was, at that
time, associated with the Moore School group in
a consultative capacity... The computing field
owes a very great debt to von Neumann. He
appreciated at once...the potentialities implicit
in the stored program principle. That von
Neumann should bring his great prestige and in
fluence to bear was important, since the new
ideas were too revolutionary for some, and power
ful voices were being raised to say that the
ultrasonic memory would not be reliable enough,
and that to mix instructions and numbers in the
same memory was going against nature...Subsequent
developments have provided a decisive vindication
of the principles taught by Eckert and
Mauchly... (65)

The historical document which is crucial to this
discussion is the progress report on the EDVAC writ
ten in September 1945 by Eckert and Mauchly; the fol
lowing information is taken from section "1.0 Histor
ical Comments" of that report.

. ••in January, 1944, a "magnetic calculating
machine" was disclosed.. .An important feature
of this device was that operating instructions
and function tables would be stored in exactly
the same sort of memory device as that used for
numbers...The invention of the acoustic delay
line memory device by Eckert and Mauchly early
in 1944 provided a way of obtaining large high
speed storage capacity with comparatively little
equipment...Therefore, by July, 1944 it was
agreed that when work on the ENIAC permitted,
the development and construction of such a
machine should be undertaken. This machine has
come to be known as the EDVAC (Electronic Dis
crete Variable Computer)...During the latter
part of 1944, and continuing to the present
time, Dr. John von Neumann, consultant to the
Ballistic Research Laboratory, has fortunately
been available for consultation. He has con
tributed to many discussions on the logical
controls of the EDVAC, has prepared certain

(*) A heroic achievement, watched by many, all named Thomas!

Session 21-1-5

