
5

Network Working Group
Request for Comments: 30

4732

S. Crocker
UCLA
4 February 70

DOCUMENTATION CONVENTIONS

This note is a revision of NWG/RFC 10, 16, 24, and 27.

The Network Working Group consists of interested people from existing or
potential ARPA network sites. Membership is not closed.

The Network Working Group (NWG) is concerned with the HOST software,
the strategies for using the rtetwork, and initial experience with the
network.

Documentation of the NWG's effort is through notes such as this. Notes
may be produced at any site by anybody and included in this series.

Content

The content of a NWG note may be any thought, suggestion, etc.
related to the HOST software or other aspect of the network. Notes
are encouraged to be timely rather than polished. Philosophical
positions without examples or other specifics, specific suggestions
or Implementation techniques without introductory or background
explication, and explicit questions without any attempted answers
are all acceptable. The minimum length for a NWG note is one
sentence.

These standards (or lack of them) are stated explicitly for two
reasons. First, there is a tendency to view a written statement as
inso facto authoritative, and we hope to promote the exchange and dis
cussion of considerably less than authoritative ideas. Second, there is
a natural hesitancy to publish something unpolished, and we hope to ease
this inhibition.

Form

Every NWG note should bear the following information:

1. "Network Working Group"
"Request for Comments: X"

where X is a serial number. Serial numbers are assigned
by Steve Crocker at UCLA.

1

v#K,. Network Working Group
''Request for Comments: 30

S. Crocker
4 February 70

2. Author and affiliation

3. Date

4. Title
Tne title need not be unique.

Distribution

One copy only will be sent from the author's site to:

1. Abhai Bhushan, MIT
2. Steve Carr, Utah
3. Gerry Cole, SDC
A. Steve Crocker, UCLA
5. Bill English, SRI
6. Jim Fry, MITRE
7. Nico Haberman, Carnegie-Mellon
8. John Heafner, RAND
9. Bob Kahn, BB&N
10. Thomas 0'Sullivan, Raytheon
11. Larry Roberts, ARPA
12. Paul Rovner, LL
13- Robert Sproull, Stanford
14. Ron Stoughton, UC&B

Reproduction, if desired, may be handled locally.

Addresses

Below are the most current addresses I have. Please correct as necessary:

Abhai Bhushan
Room 807 - Project MAC
949 Technology Square
Cambridge, Mass. 02139

MIT
(617) 864-6900

X9897-

Steve Carr
Coriputer Science Dept.
University of Utah
Salt Lake City, Utah 84112

Utah
(801) 322-8224

Gerry Cole
7842 Croyden
Los Angeles, Calif. 90045

SDC
2500 Colorado
Santa Monica, Calif. 90406
(213) 393-9411, x6l35

x7057 (Sec'y)

Steve Crocker
3732 Boelter Hall
UCLA
Los Angeles, Calif. 90024

UCLA
(213) 825-4864

825-2543 (Sec'y)

Bill English
Stanford Research Institute
333 Ravenswood
Menlo Park, Calif. 94025

SRI
(415) 326-6200

2

-V Network Working Group
Request for Corranents: 30

S. Crocker
4 February 70

Jirn Fry
The MITRE Corooration
Westgate Research Park
McLean, Va. 22101

Nico Haberman
Computer Science Dept.
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pa. 15213

John Heafner
The Rand Corporation
1700 Main Street
Santa Monica, Calif. 90406

Robert Kahn
Bolt, Beranek and Newman
50 Moulton Street
Cambridge, Mass. 02138

Thomas 0'Sullivan k

Equipment Division Headquarters
Raytheon Comoany
40 Second Avenue
Waltham, Mass. 02154

Larry Roberts
ODS/ARPA
3D167 Pentagon
Washington, D.C. 20301

Paul D. Rovner
Mass. Institute of Technology
Lincoln Laboratory D-115
P.O. Box 73
Lexington, Mass. 02173

Robert Sproull
Artificial Intelligence Project
Stanford University
Stanford, Calif. 94305

Ron Stoughton
Comouter Research Lab.
UCSB
Santa Barbara, Calif. 94025

MITRE
(703) 893-3500, x355

X318

Carnegie-Mellon
(412) 683-7000, x226

RAND
(213) 393-0411

BB&N
(617) 491-1850

Raytheon
(617) 899-8400

ARPA
(202) 0X7-8663

0X7-8654

LL
(617) 562-5500

X7211

Stanford
(415) 321-2300

x4971

UCSB
(805) 961-3221

3

4733
etwork Workinsr Group
equest for Consents : 31

BINARY MESSAGE FORMS IX COMPUTER NETWORKS

D.unlcl Bobrow
Bolt, Bcrunok, one! Newman

arnbriag0., M 0 ss ach usetts

William R. Sutherland
MIT Lincoln Laboratory*

Le xi ngtc n, Masse eh use tts

February 19 68

}

MESSAGE FORMS IN COMPUTER NETWORKS

INTRODUCTION

Network communication between computers is becoming increasingly

important. However, the variety of installations working in the area probably

p.ecranes standardization of the content and form of inter-computer messages,

lhere is some hope, however, that a standard way of defining and describing

message forms can be developed and used to facilitate communication between

computers. Just as ALGOL serves as a standard vehicle for describing numerous

algorithms, and BNF serves as a standard for describing language syntax, a

message description language would be useful as a standard vehicle for defining
message formats.

Considerable progress has been mace at the low level of message handling

protocol and one can expect the ASCII protocols to be used. The discussion which

follows assumes that the.mechanics of exchanging messages, check sums, repeat

ieguesi.es, etc. , have been worked out. The topic of concern is how to describe

the content and intent of a binary message body when the network header and trailer
details have been stripped off.

Most attempts at describing the content of binary messages jump immediatelv

into a consideration of the bit codings to be used. Long, thin rectangles are drawn

to lepresenL L.ne bmaiy bit stream; this stream is sliced up into boxes, and tables

generally describe the bit options for each box. A better approach would be to

provide a symbolic method for describing messages. The symbolism, by avoiding

immediate references to specific bit details, should help one's understanding of

the message content and the alternatives available in the message body. When the

basic form of the binary message body is clear,' the coding details of the actual
bit fields can be shown.

Describing a binary message body is not much different from describing

a text body 01 language. Text assumes fixed bit fields each containing one

character. Standard language description methods (BNF) then show how the

characters can be concatenated and what interpretation should be placed on

character groups. Binary message descriptions require the additional capacity

of defining various size fields in the message and the interpretation to be placed
on the bits contained in the field.

A message description is initially intended as a reference standard to

Oo written down on paper ana made available to now users of a computer

networx. From this standard, the new user can discover the kind and form of

the binary data being exchanged over the network. Once this is known, the

programs necessary for using the network facilities can be created. Later on, in an

established network, one can envision the promulgation of standards for newly

developed binary formats via the exchange of ASCII text messages over the network

itself instead of on paper through the mail. Still farther into the future, the text of

a binary format standard could be used as input to compiler-like programs which

automatically create data translation programs for converting one binary format to

another. Right now, though, some kind of binary data description method, however
trivial, is desperately needed.

A SUGGESTED BINARY FORMAT DESCRIPTION METHOD

The basic component of a binary message is a simple field consisting

of a consecutive number of bits in the message. Binary messages consist

of concatenated fields. A format ci est .A pfci on for a binary mess-age will consist

of a title and four declarative sections.

1) Symbolic names are declared for all the different kinds of fields

found in the binary format being defined.

2) Symbolic names are declared for commonly used values of parti ci

fields.

3) The legal ways of concatenating fields are indicated.

4) The number of bits in each field- and any special considerations

of bit codings are declared.

The following is a complete example of a binary message description for a triv

kind of pictorial data .

TITLE; ILLUSTRATIVE GRAPHIC DATA FORMAT

FOR A HIERARCHALLY STRUCTURED PICTURE

OF LINES AND POINTS.

SIMPLE FIELDS:

OPT - Option Control Field

COORD - Numerical Coordinate Value

ID - Ident number for group of picture parts

COUNT - Number of units in message

FIELD EQUIVALENTS:

PHDR _ '2' OPT

LHDR - '4' OPT

GRPHDR - '1' OPT

GRPEND *3' OPT

CHARACTE RIZATI ON S:

CPAIR COORD = 2

POINT " PHDR + C PAIR

LINE LIIDR + CPAIR = 2

PARTS " POINT/LINE/PARTS + PARTS

PKUNIT GRPHDR + ID -r PARTS + GuPhND

PIXMSG - '5'OPT + N: COUNT + PIXUNIT - N + '0' OPT

SIMPLE FIELD SIZES:

OPT 3

COORD 34

ID 9

COUNT 6

Declaration of Simple Fields,

The declaration of a simple field includes a symbolic

name, and for lack of a better way, an English description ox what tha co-

tents of the field represent. For example:

SIMPLE FIELDS:
PI — Geometric Options

EXp — STD Number - Exponent

COORD — STD Number - Geometric Coordinate

Representing Field Value s_
A field with a specific value can be represented by a number In single

emotes followed by the field name. A number consists of standard digits

construed as binary if seros and ones. Other numbers must be followed by

a base indicator unless no confusion is possible; Q is octal, D is decimal.

Example:-

'1001' Fl

'300D1 COORD

'27Q' EXP
Field values arc integer numbers assigned such that the least significant

bit is sent first. Only that part, of the number which fits toe fielc

Appropriate sign extension is needed fo mga tve numbers and for numbers

.. y

whose bit representation is smaller than the field.

Simple Field Equivalents

The declaration of a Simple Field Equivalent provides a symbolic name

which represents a particular field with a specific value. Example:

FIELD EQUIVALENTS:

CI " '1001' F1

C2 ^ '1010' F1

C h ara c; i.e r i z atio n St ate m e nt

A characterization statement defines a complex field (message or message

part) by indicating how other fields can be combined and is similar to a defin

ition statement in BNF. The left side is a complex field name separated (by ")

from the concatenation indications on the right: Field names or equivalent

names are concatenated by plus (+), alternatives indicated by slash (/). Slash

has precedence over plus so that A + B/G means A followed by either B or C.

Alternatives must be distinguishable in their own right.

Characterization statement parts can be grouped in the normal manner by

parentheses. (A + B) /C means either A followed by B or C .

Repetition Indicators

Repeated occurrences of a field may be indicated by following the field

name with an equal sign (=) and a number. For example;

CPAIR '"(COORD = 2) i.e. excatly two COORD fields

PPAIRS "(CI + CPAIR = 10D) / (C2 + CPAIR = 40D)

Assignments Within a Characterizatlon Statement

Simple fields interpretable as integers can be assigned to a variable

within the right side of a characterization statement. This variable can

then be used as a repetition indicator. Example:

MS ~N1 : EXP + CPAIR - N1

indicates that MS consists of field EXP interpreted as an integer and then

exactly that number of CPAIRS. All variables are global in scope.

Conditional Fields

Within a characterization statement a field may or may not occur depending

on the contents of some other previous field. This situation is indicated by

assigning a label to the determining field. The conditional occurrence is then

by enclosing a condition expression and the optional field description

in brackets (C and 3). For example:

SS -V:F1 + CPAIR + C V = CI 3 PPAIRS 3

•which defines a format of 2 and perhaps 3 fields.

a) Field F1 labeled V followed by

b) Field CPAIR followed by

c) Field PPAIRS if the first field (V) was CI; otherwise, this third

field is not present in the message.

C onditional Altemative s

Alternatives selected by the contents of some previous field rather

than by the contents of the alternative field itself are indicated by an

extension of the conditional field notation. For example:

SM : = W : F1 + CPAIR + [W = C 1 3 CPAIR / C2 -*PPAIRS /

'1110' 3PPAIRS - *14' DJ

The determining field occurs at tine beginning of the conditional alternative

and each alternative then includes its value for the determining field and the

alternative field then present.

Size of Simple Fields

A separate field size declaration is provided.

SIMPLE FIELD SIZES:

Fl 4

EXP • 7

COORD 12

This size declaration should appear at the end of the message description;

thus, forcing the reader to postpone an early consideration of bit details.

")bU>/RF(L 32-

4 7 3 4
R ? Q -

ELECTRONIC SYSTEMS LABORATORY
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Memorandum MAC-M-39^-

CONNECTING M.I.T. COMPUTERS TO THE ARPA

COMPUTER-TO-COMPUTER COMMUNICATION NETWORK

Dietrich Vedder
January 31/ 19&9

ABSTRACT

The Advanced Research Projects Agency of the Department of Defense is
planning to connect computing facilities of different academic and
industrial institutions by a nationwide network. MIT may connect eioher
the GE 645/Multics System or the IBM 709VCTSS System-to this network.
This report explores some of the network and routing problems Oi a
computer-to-computer communication network, and outlines the necessary
hardware connection for the GE 64-5 and for the IBM 709^* For the Ge 645,
it seems best to connect the IMP (interface Message Processor) of ohe
ARPA Network to the Direct Common Peripheral Adapter (High-Performance
Channel) of the GIOC. For the IBM 109k, it is necessary to connect to
Channel D, presently occupied by the PBP-7/Kludge. A small message-
distributing computer is proposed to provide pores for an IMP, the PDP-7/
Kludge, the PDP-9/Kludge, an^ up to 15 ARDS terminals.

Submitted as Project Report for 6.842

Supervisor: John E. WTard

WTork reported herein was supported (in part) by
Project MAC, an M.I.T. research program sponsored by the
Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Number N0nr-4l02(01).
Reproduction in whole or in part is permitted for any
purpose of the United States Government.

I. INTRODUCTION

The Advanced Research Projects Agency (ARPA) of the Department

of Defense is planning to connect computing facilities of dixferent academic

and industrial institutions by a nationwide network. This network is to he

used as a research tool to study computer communication problems. The

network should also make unique computing facilities present in only one

center available to many computation centers.

The network is of the store-and-forward type, in that a message

is sent from one nodal point of the network to the next and is stored there

before it is sent on towards its destination. Each nodal point consists of

a so-called Interface Message Processor (IMP). The IMP'S in the network

are connected by 50-kilobit data links that make up the branches of the

network. In addition to the nodal IMP's, each computing facility (carted

a host) connected to the network win have an IMP associated with it, and

this IMP will perform most of the reformatting and message handling for the

host. Each host win connect to the 50-kilobit network only through its

,own IMP.

M.J.T. is to be part of the network just described. It is not

clear at this time, however, whether the computer to be connected to the

network win be the GE 6k5 (Multics), or the IBM 709^ (CTSS), or possibly

both. Also, little is known about the ultimate configuration of the IMP

and of the network outside of the general specifications given in the

initial proposals. Despite these questions, it was felt desirable to

investigate the hardware implications of connecting M.I.T. computers to

the ARPA network.

Section II discusses some general network considerations,

...1,^.; the problem of system start-up, and also presents some ideas on

network structuring to avoid the classic "shuttle" problem in message

routing. Section III discusses possible IMPM5 interfaces, ana concludes

that the Direct Common Peripheral Adapter (High-Performance Channel) of

the 61(5 GIOC should be used. Although no specific information is available

on the JKP I/O system, a cost of $2,100 in parts is estimated for construe-

tion of an IMP/HPC interface.

Considerations in connecting an IMP to the 709'+ are presented in

Section IV. It is concluded that a small message distributing computer added

to Channel D could handle an IMP, the two buffered displays (PDP-7/Kludge,

and PDP-9/Kludge), and a number of additional ARCS display terminal parts.

II. THE NETWORK

A. General Network Considerations

Messages from one host to another are to be handled in the

following manner. A host will send a message to its own^fl? via a host-IMP

interface. This message should not be longer than 8192 bits. The

message is then reformatted in the host's IMP to be compatible with the

communication network, and it is split into small packets of uniform size.

Each packet is a small message that has a header including such informa

tion as the address of the destination host, the address of the sending

host, and an identification tag designating it as, say, the fifth packet

belonging to a certain message of a total of nine packets. All packets

belonging to the message are then sent forward according to some priority

scheme and will arrive at the IMP of the destination host, (not necessarily

in order, since different packets may have traveled different routes).

The IMP at the destination host will re-assemble the different packets

belonging together 'into a message, reformat the message if necessary to

be compatible with the destination host, and send the message to the

destination host.

It is clear that an IMP in the network has only one major

• function, since it is only connected to other IMP's, while an IMP connected

to a host has two major functions:

1. It must handle the processing associated with sending messages

between it and other IMP's. This function involves:

a. Address of decoding and routing

b. Storage of message packets in transit

*This is one constraint put on the system to prevent overloading.

-3-

c. Handling of'priorities among the different messages

in transit

d. Generation and processing of messages controlling

message traffic "between IMF's.

2. It must handle the processing associated with sending

messages "between it and its host. This function involves:

a. Reformatting (if necessary) of all messages leaving and

entering the host

"b. Assembling messages to the host from packets received

from the network, and splitting messages from the host

into packets to "be sent out on the network

c. Control of communications "between IMP and host.

How the individual functions are handled in each IMP is determined a lot

by general network philosophy. The part of the report directly following

therefore deals with some of the issues such as starting-up IMP's. in the

network, structuring the network, and routing algorithms applicable to

the network.

B. The Start-Up Problem

Starting up a computer involves a definite number of steps.

First, execution must be stopped at the beginning of the start-up sequence,

and the computer must be initialized. Then a program is forced from some

external source into a known part of memory; and the computer is then

started at a specific point of that program. From then on the computer is

under program control and in the run state. -It can now bring other portions

of a control program into memory, or it can execute programs; in other words,

it can do what it was programmed to do.

The important point in this process is that the computer must be

forced into a known state by external means. The simplest way to accomplish-

this if, of course, by having an operator do it manually. Alternatively, a

second computer can perform the start up if it is directly connected to the

-4-

first computer. For example, it is relatively easy to let a host start its

own IMP, since we can have a special interface with special signals to

implement start up.

It is a little harder to load a network IMP (not connected

•directly to any host) from another IMP, since we now require that:

1. all IMP's have their power turned on (this certainly must "be

done manually),

2. the communications adapter of the distant IMP to "be started

j must he functioning, i.e., it must he ahle to synchronize

itself to a received string of data,

3. the communications adapter must have hardware to recognize

a special character, which would cause the IMP to he

initialized and stopped and which would set up the hardware

in the communication adapter such that the subsequent

characters in the start-up transmission are deposited in

some known area of memory,

4. at the end of the transmission the IMP must he started at

some know location in memory.

The special character for start up could he some control.character

preceded hy DLE, similar to an STX (start of text) or an ETX (end of text)

preceded hy a DLE.

It should he apparent than at IMP not associated with a host can

only he started directly hy an adjacent IMP (unless it is done manually),

since the start-up sequence cannot travel through another IMP without

starting that IMP. If we want to make one host responsible for starting

the entire network of IMP's, then that host can only do the job indirectly

(unless each IMP has an individual hardware-recognizable start-up character)

hy telling some other IMP to start IMP's adjacent to it.

The program for an IMP not associated with a host should come from

an adjacent IMP. Since the programs of adjacent IMP's are identical (or at

least can he made identical except for some routing tables), there is no

problem in starting one IMP hy an adjacent IMP. For host-associated LMP's,

-5-

however, it does not make sense to get the program from an adjacent IMP.
This is "because at least the host-associated part of the program is
probably unique and should be stored in the storage system of the host to
vhich it belongs. For maintenance reasons alone, this program should

reside in the host's storage system.

Nov, should each host start its own IMP, or should one designated
host start all IMF's, and then have each IMP associated with a host call on
its host for the rest of its program. This author feels strongly that each
host should start its own IMP. Some of the reasons why it should be this

way are given below.

C. Some Thoughts on a Growing Computer Communications System

The research objectives for the ARPA network are stated in quite
general terms. It is therefore not clear to the author whether these
objectives are at all directed toward finding some generally applicable
solutions for a large nationwide computer-to-computer communication network.

A large network in this case means a network of such a size that

each IMP cannot easily keep in its memory.all the information about how

an other IMP's are interconnected.

Certainly the problems in creating such a network are numerous.
* Standards for message format and communications protocol must be strictly

adhered to. ..

The network configuration and the routing algorithms must be
structured in such a manner that the system can grow easily; and it is this

area of problems, which is expanded a little bit oelow.

Furthermore, it is not clear whether the store and forward system

chosen is ultimately the best for the job. A switched channel system, which
would provide a direct route for the duration of a transmission, using either

analog carrier facilities or pulse code modulation carrier facilities are
certainly feasible, but not as readily available at this time, as is a store

and forward system.

*A.K. Bhushan, R.H. Stotz," "Message Format and Protocol for Inter-
Computer Communication."

-6-

In the initial proposals for the network not much is said about

network structure and routing algorithms outside of the statement that an
interconnection table of all IMP's exists in each IMP, and that each IMP
is to generate its own routing table. Some of the questions that come to
mind are: as the system grows, does each IMP still store a complete inter

connection table? How do we prevent a system failure due to two IMP's
trying to deliver messages to each other, even though both IMP's decided
they are too full to receive any more messages? How do we prevent two or
more IMP's sending the same message back and forth, because other channels

leading towards the addressed destination are busy?

The last question leads to the famous shuttle problem that
arose in the toll network of the telephone system. This problem can be
described by a simple example. Let us assume a party in Boston starts a
telephone call to a party in Cleveland. The call is routed to New York,
since Boston does not have any direct circuits to Cleveland. New York does
have circuits to Cleveland, but they are all ousy, so ohe decision is made
to go to Philadelphia, since circuits exist from Philadelphia to Cleveland.
It could turn out that Philadelphia in testing its circuits finds them all
busy and returns the call to Newr York, since it knows also that circuits
exist from New York to Cleveland. If this is allowed to happen, all the
circuits between Philadelphia and New York could be made busy by one call
that does not have a chance to be completed, and the traffic oetween
Philadelphia and New York greatly disturbed. As will be seen, the tele

phone system has been structured so this does not happen.

The analogous situation may occur between two IMP's that are
trying to send a message to a third IMP yet find the channels to the third

IMP temporarily busy (the IMP's could be told of a permanent outage) and
as a result shuttle the message back and forth, thereby possibly denying
the channel between them to other messages that have a chance of getting

through.

One way to solve this problem is to order all the nodal points in

the network (i.e., central offices'in the telephone network, IMP's in the

-7-

computer communication network) in a tree structure having several levels

of hierarchy. Figure 1 shows such a tree structure which is completely

analogous to the tree structure now existing in the telephone system in

the USA and also in European countries. The endpoints in the tree structure

are denoted "by capital letters A through H. Each endpoint homes on so-

called primary centers, which in turn home on sectional centers, which in

turn home on regional centers. Every one of the regional centers (there

may he more than two) is as a rule directly connected to all other

regional centers. Also, it is possible to skip levels in the hierarchy,

such as endpoint E and primary center e directly homing on regional center f.

' The tree structure is used in routing algorithms by first defining

a backbone route, which has the property that it goes up and down in the

hierarchy only once. Short cuts are not allowed in defining a backoone

route. For example, the backbone route from A to D is A-a-d-b-D; the

backbone route from C to F is C-b-d-f-g-h-c-F and not C-b-h-c-F or C-F.

In selecting an actual route, it is allowed (and in fact

preferred) to skip as many nodes or centers in the backbone route as

possible; however, it is not allowed to add any new nodes not in the back

bone route to the route selected, nor select any nodes in the backbone

route out of sequence. Thus, the only allowed route from 3 to G is
B-a-cl-f-g-h-c-G. The route B-a-d-b-h-c-G is not allowed, even though it

has one fewer node than the backbone route, since b is a newly adaed node.

The shuttle problem discussed above is the reason why that rule is imposed

on the network. Since center b is allowed to go to d on its way to G,

center d must not be allowed to go to b on its way to G.

If C wants to send a message to F, it can do so via three routes.

C-F is the first choice, C-b-h-c-F is the second choice, and C-b-d-f-g-h-c-F

is the third choice and identical to the backbone route.

Note that as traffic warrants, nodes in the lower levels of the

tree structure may be connected directly and thereby alleviate traffic

bottlenecks in the upper levels of the structure. In fact any node in the

y

H i e r a r c h y :

| | r e g i o n a l c e n t e r

/ \ s e c t i o n a l c e n t e r

i^) primary center

O e n d p o i n t
(I M P a s s o c i a t e d
w i t h h o s t)

b a c k b o n e r o u t e

C D — - - n o t a b a c k b o n e
r o u t e

Figure 1 Hiearchical Tree Structure for Message Switching

r* P

-9-

netvork may still be connected to any other node in the network; the tree
structure is a"ble to accommodate all these links.

.The tree structure can solve very nicely the problem of the nodal
IMP"s filling up with undelivered (or undeliverable) messages by use of the
following rule. Given two IMF's that are connected to each other, -the one
having a higher status in the hierarchy can prevent the lower one from
sending any messages to it, but the lower one cannot prevent the higher
one from sending any messages to it. If two IMF's have equal status, such
as centers f and g in Fig. 1, then one is picked arbitrarily as having a
slightly higher status. This rule ensures that the higher levels of the
hierarchy, where traffic tends to build up first, can get rid of their
messages and thus stay operational.

It can happen, however, that specific bottlenecks develop because
certain hosts or IMF's are out of service and are.unable to receive messages.
In this case, the hosts or IMF's that are unable to receive must be recog
nized, and any messages going to these computers must be turned back or
rerouted. All the operational IMF's on the route of the unsuccessful
message should then be informed that all messages with the same address
as the unsuccessful message should either be rerouted or not accepted at
all. In other words, some simple processing should be done on why a message
cannot be delivered, and appropriate action should be taken all along the
route of the trouble-encountering message. There are now two rules that
govern message transmission:

1. Any IMF in the hierarchy must under noimal condition accept
messages from an IMP of higher status directly connected to
it, but not vice versa.

2. Any message that encounters blocking due to an out-of-service
condition of some IMP or host must cause all IMF's on its
route (up to the node where the blocking occurred) to be
set so that they will either reroute future messages that
have the same address or not accept them.

-10-

It is of course the second rule that makes the first rule workable. The

first rule implies that a lover 3MP must he able to accept messages at a

certain maximum rate given by the number and capacity of the connecting

channels to higher IMF's. It is the second rule that guarantees that the

lower IMF's will be able to get rid of messages at the same or a higher

rate than they are asked to receive at.

Once the IMP network has the described tree structure super

imposed on it, it is not necessary for each individual IMP to know how all

other IMF's are interconnected. Each IMF would have a translation table,

which maps all addresses into specific actions, these actions seing the

transmission of a message via a certain route or the rejection of the

message due to a wrong address. The translation tables can still get

large if the addresses are not properly chosen, but splitting the addresses

into groups helps to alleviate the problem. We only have to look at a

telephone number being split into area code + office code + number to see

how the problem could be solved.

D. Autonomy of jig's

If a communication system such as the IMP network grows to a

relatively large size, it is difficult to control the network from one

point. Furthermore, it is not wise for reliability reasons to have just

one point control the network. One should instead make an individual IMF

virtually autonomous. Unless one wants to shut down the system at night

and start it in the morning, an IMF will only be started up after some

failure. But a failure will usually require some maintenance work, per

formed by a knowledgeable person.' It makes much more sense to let him

start up the IMP after correcting the problem than to have a distant host

direct the start up of the machine. Furthermore, it should not be too hard

to construct the programs in such a way that the basic program is identical

(except for some data areas) for each IMF that is not connected to a host.

It should therefore be easy to get the program for each individual IMP from

an adjacent IMP.

-11-

Since each IMP directly connected to n host has some special

programs to interface it to the host, it should "be the host that should

store the "backup copy of the IMP's program. Also, since the host's IMP

appears as an i/o device to the host and is physically near the host, it
does make sense to start the IMP from the host, although it is not abso

lutely necessary to do it that way.

III. THE CONNECTION BETWEEN THE GE-6h5 AND TEE IMP

A. Comparison of the Word Synchronous Adapter and the High-

Performance Channel

The IMP vill appear to the GE-6U5 as just another i/o device,
and must therefore "be connected to the General Input Output Controller

(GIOC) of the GE-6h5. Two different adapters were considered for connect

ing the IMP to the GIOC: the Word Synchronous Adapter, and the Direct

Common Peripheral Adapter (also called High Performance Channel = HPC).

The Word Synchronous Adapter (WSA-600) is an indirect adapter,

which means that it does not store its own Data Control Word (DCW). The

GIOC therefore has to access memory three times for each 36-"bit word it

transfers for the WSA-600. The first memory access is used to obtain the

DCW from the proper mailbox, the second memory access is used for data

transfer, and the third memory access is used to store the updated DCW in

its mailbox.

The WSA-600 is full duplex, therefore, data transfer can occur

simultaneously in both directions. Seventy-two bits of storage is provided

for each direction of transfer, which splits into one word of buffering and

one word of shift register. Character assembly and disassembly is done on a

plug-selectable basis for six + parity, seven + parity, and four-out-of-

eight code. The WSA-oOO is capable of transmitting and receiving at a

maximum rate of 2b0 kilobits/second. If seven + parity code is used

^Actually a third adapter, the Custom Direct Adapter (CDA), was also
considered. This adapter performs even better than the HPC (it transfers
12-bit, 18-bit, or 36-bit words at a time) but it would probably be more
expensive to rent, since it has more equipment than the HPC (7 rows of
modules for the CIA versus 5 rows for the HPC). The real problem with
this adapter is the fact that no hardware exists yet; and it is less
likely to be put into production than-the WSA-600.

-12-

between "the GIOC and "the IMP, "then a rate of 30>000 characters per second

can he sustained. The major disadvantage of the WSA-600 is that it

presently exists only in specification form; the adapter itself has not

"been completely designed.

therefore stores the 72-bit BCW and needs only one memory cycle to do a

data transfer. A 3°-bit single vord or a 72-hit double word may he

transferred at a time. The HPC has a buffer register of 72 hits plus

another 72-hit character assembly area. Six hits plus parity are trans

ferred at a time to and from the connected i/o device. Data is trans

ferred in only one direction at a time. The maximum data transfer rate

is 400,000 characters per second, which is equal to 2.4 million hits per

B. Some of the,Reasons Why the HPC Should he Selected

The HPC is, of course, an existing and working circuit. On the

other hand, the decision to complete development of the WSA-600 rests with

the General Electric Company and will depend probably on their market

predictions for the WSA-oOO. While a 50-kilobit data-set interface is

the only i/o device that promises to he a standard feature of the IMP,
favoring connection to a WSA-600 that has the same interface, it can he

argued that a nonstandard HPC interface for a small computer such as the

IMP can he designed and built relatively easily here at MIT.

Beside the problems of procuring the actual interfaces, questions

of speed and efficiency greatly favor the HPC, We surely do not want to

run the interface between the IMP and the GIOC at less than 50-kilobits

per second. Tnis is because the entire IMP communication system runs at

that hit rate, and providing less than that between host and IMP would

surely create a bottleneck. At the rate of 50 kilobits per second,

efficient data transfer through the GIOC,is important in order that the

other I/O operations are not slowed down. The HPC is six times more

-efficient than the WSA-600 (this efficiency of the HPC is due to the

The High Performance Channel (HPC) is a direct adapter. It

second.

-13-

storage of the DCW in the adapter and the "buffering and transfer to uhe
GIOC of a double word instead of a single word). The actual maximum data

transfer rate of the KPC is 2.b million hits per second and is ten times
as large as the maximum transfer rate of the WSA-600. This relatively
high transfer rate is nice to have, especially -if the IMP connected to the
GIOC terminates several 50-kilobit lines to nearby universities such as
Harvard and Dartmouth that ultimately may end up having a high traffic

rate with MIT.

In short, the IMP should be connected to the GIOC via the KPC

for three main reasons:

1. An interface circuit between HPC and IMP can oe procured

relatively easily.
2. The GIOC operates much more efficiently if the IMP is

connected via an HPC.
3. The maximum data transfer rate is high enough to avoid • .

bottlenecks, even if traffic into and out of the GE-6I5

computer system is heavy.

It should also be said that estimates of monthly rental charges for the
KPC and the WSA-600 are about equal; so there is no cost disadvantage in

picking the HPC. 1

C. Interface Requirements for the HPC

The interface requirements are specified in detail in the

General Electric Product Performance Specification for the Common
' Peripheral Interface" (13A13052J+). Answers to any detailed questions

should be found in this document. Only a general outline of the interface

and of the hardware required to connect a small computer and the HPC will

be given here.

The following leads interconnect to the HPC:

Lines from the KPC:

1. There ore seven information lines from the HPC (6 data lines

+ parity).

-11*-

2. Three lines from the HPC are used to control data transfer

operations: the Read Clock Line, the Write Clock Line, and

the End Data Transfer Line.
3. The l/o Line from the HPC is used to send commands from the

GE-6^5 to the peripheral (in this case the IMP).

b. A Program Load Line from the HPC is used to request the

I peripheral to send one record for bootstrap loading and

similar purposes. This line is probably not necessary in

the IMP interface.
5'. A peripheral Reset Line from the HPC tells the IMP that the

GE-6^5 is operating or not operating.

Lines to the HPC:

1. There are seven information lines to the HPC (o data lines

+ parity). •
2. Four Major Status Lines transmit status information to the HPC.

3. Three lines to the HPC are used to control data transfer

operations: the Read Clock Line, the Write Clock Line, and

the Terminate Line.
b. A Special Interrupt Line to the HPC allows the IMP to demand

action from the GE-6^5*
5. An External Reset Line to the HPC tells the HPC whether ohe

IMP is operational or not.

All lines between the HPC and the IMP (except the Major Status Lines to

the HPC and the External Reset Lines in both directions) carry pulses and

must conform to the specifications set by General Electric. On the IMP

side, all of these lines must therefore have the proper pulse drivers or

pnl sp receivers as appropriate. The Major Status Lines carry levels

instead of pulses and must be equipped accordingly.

The External Reset Leads in both directions have a relay signaling

system. An Enabled condition is signaled if the center conductor of the

External Reset Lead is connected to the shield, and a Disabled condition

-15-

is signaled if the center conductor is not connected to the shield. The

connecting function is done "by mercury wetted contacts ensuring clean

switching.

The External Reset Lead keeps its respective side in the reset

state as long as the other side has not signaled the Enable condition. The

External Reset Lead thus accomplishes the suppression of line transients

while the HPC and the IMP are disconnected or while one side has its power

off or is disabled for some other reason. Note that the signaling conven

tion very nicely takes care of the disconnect or power off condition, since

the External Reset Lead will be open and thus will keep its respective side

reset.

The Communications between IMP and HPC can be implemented by

using commands from HPC to the IMP and status infonnation and interrupts

from IMP to HPC.

The HPC (and the GE-6h5 behind it) is, of course, in control of

the communications between HPC and IMP; it can send commands to ohe IMP

interface initiating appropriate operations. The IMP interface can send

status information back to the HPC, thereby causing action indirectly.

Similar to teletype consoles, the IMP would also be able to send an

interrupt to the HPC and thus initiate new action.

Commands are sent from the HPC to the IMP on the seven informa

tion, leads. Status is sent back to the HPC via the four Major Status Lines

and also via the seven information leads. The detailed proceduie foi

passing commands and status information is given in the previously men

tioned General Electric document. Also, some restrictions and conventions

in assigning meaning to the command and status words are given in that

document.

p. An Estimate of the Cost of an HPC/lMP Interface

One cannot design a specific interface without knowing the

detailed specifications of the IMP; but an estimate of the cost of an IMP

interface is possible, since most small computers have similar i/O features.

It is assumed in this estimate that the IMP has a feature similar to the

-16-

Direct Memory Access feature of the PDP-9- (The 8-million hit maximum
transfer rate specified for the IMP-host interface virtually dictates such

a feature.)

The following is a list of essential hardware for the interface:

7-bit register (Receive and transmit buffer, pulse
receivers included)

I 12-hit register (Two-character buffer)

4-bit register (Major Status)
7 pulse drivers (7 information lines to HPC)
4 cable drivers (to transmit Major Status)
2 mercury relays (for External Reset Lines)
b pulse receivers (for pulse receiving on control leads)
Ij. pulse drivers (for pulse sending on control leads)
3 flip-flops, and 18 gates (to distribute character over entire wo
13-bit register (address register for PDP-9 DMA-)

control logic

From the above list we can estimate the cost assuming Di^C modules.

Items Cost for Each Total Cost

39 flip-flbps $15 $ 5^5
H pulse drivers H 1^1
2 mercury contact relays 10 20

18 gates 5 90
4 cable drivers 12 J^8
4 pulse receivers 15 ^0
control logic -- 500
2 mounting trays 1^2 284
I/O bus — 380—

$2,088

Thus the cost of an IMP interface is about $2,100 not counting any

wiring, installation, and engineering cost.

-17-

IV. THE CONNECTION BETWEEN THE IBM-709^ AND THE IMP

A. General Discussion

The IBM-7097 vith its time-sharing system CTSS is an established,

system with a number of capabilities that may prove useful to the community

of users to be connected by the IMP network. It is therefore possible that

the IMP!network may at first be connected to the IBM 709^•

A hardware connection to the IBM-709^- is as straightforward

as to the GE-0^5. The only available high-data-rate connection to the

IBM-709H is channel D, and that channel is already used to handle the two

existing ESL refreshed display consoles (Kludges). Figure 2 shows the

present configuration, which at this time is completed except for the

installation of the data link. In this configuration the PDP-7 is used to

handle the Kludge 1 and is also used to transfer messages and display lists

from the 709H to the PDP-9 and vice versa. If we want to connect the IMP,

we have to use channel D, not only for the IMP, but also for Kludge 1 and

Kludge 2. Furthermore, we possibly would like to connect a number of ARuS

ports to channel D, since the number of ARDS ports provided by.the IBM-7750

is limited to at most eight ports (four at the moment).

There are at least two possible ways to handle this channel

multiplexing problem. One can use the PDP-7 as multiplexing computer

in addition to its task of refreshing the Kludge 1, or one can use a

separate message distributing computer. Technical considerations favor

the separate message distributing computer slightly, since it represents

a "cleaner" solution in that the different functions, such as driving a

Kludge and distributing messages, are separated and since it is easier

to troubleshoot and maintain the system.

, It turns out that the economics also favor the separate message

distributing computer. A look at the memory requirements makes this clear.

If one wants to run up to 15 ARDS ports, about 3-3K words of storage are^

needed for the ARDS ports alone (See Appendix A). An additional 2K words

of storage are needed for temporarily storing display lists or messages

-18-

D

KLUDGE P

CHANNEL D

CHANNEL CHANNEL

DATA L/NK

7094 Channel D

CHANNEL 2>
KLUDGE B

K L U D G E i

CHA NNEL
CHANNEL

ME SEA GE
D/STH IQUTINQ.
COMPU TEA,

CHA NNEL
TON BIT
DATA A/-VK

FOX BIR
LATA LINK

TM P
ADAPTEC

ART>S A MS

Figure 3 Proposed Message Distributing Computer for 7094

-19-

to and from the IMP. If the PDP-7 is to he the multiplexing computer,

another 2K vords is needed for the display list of Kludge 1. Since the

present storage sine of the ESL PDP-7 is. 8K words, this would leave onlj

700 words for all programs in the PDP-7• An increase of the PDP-7

memory is therefore needed for this solution. Furthermore, it is not

advisable to run the multiplexing program in the PDP-7 without a memory

protect feature, since we want to allow Kludge users to modify programs

in the PDP-7- As a result, if the PDP-7 is used as a multiplexing com

puter, we need at least another kK of memory, a memory extension control,

and a memory protect option. The cost of these features are as follows:

i|K memory hank' (installed) $21,020

Memory extension control (installed) 8,3^-0

Memory protect option (installed) • 900

$30,280

But for thirty thousand dollars we should he ahle to get a message

distributing computer with the necessary l/O equipment to do the joo.

Figure 3 gives the configuration for a separate message distributing

computer.

3. 1/0 Configuration of the Message Distributing Computer

Since both the PDP-7 and the PDP-9 already have 50-kilobit

data link adapters, it is easy to connect them to the message distriouting

computer via 50-kilobit data links and data link adapters. Thus both

Kludges can be moved around on the campus and do not have to be adjacent

to the 709^•

Since the 50K bit data link arrangements are character oriented

(7 bits + parity), there is a 160 microsecond time interval for responding

to a data transfer request from the data link adapters, provided double

buffering is used for the characters in the data link adapters.

The connection to the 709^ should probably be done via a channel

very similar in structure to the channel built for the PDP-7- A direct

-20-

memory access feature in the small computer is very desirable for this

purpose.

The ARBS ports should consist of half-duplex circuitry capable

of receiving at 150 bits/second and transmitting at 1200 bits/second.

Double buffering of characters in each ARDS port is not necessary if it can

normally be guaranteed that the message distributing computer, can respond

to a data transfer request by an ARDS port within 800 microseconds. If

this is not possible, then double buffering of characters will lengthen

the required response time to about 7 milliseconds.

It is hard to say what the adapter to the IMP should look like,

since a number of policy decisions are involved. If it is not considered

essential that the IMP can be started remotely from the 709^, then a 50K

bit adapter, even if used without a data link, is probably best,' since both

the IMP and the message distributing computer can easily be provided with

an additional data link adapter. If remote starting capability is required,

then the IMP interface must either be a channel interface that is capable

of sending a special start command or a 50K bit data link adapter capable

of responding to a special start character. It should be clear that the

message distributing computer must also have the capability of being started

remotely, if the IMP is to have that capability.

C. Features of the Message Distributing Computer

The message distributing computer should have a memory size of

8k to accommodate up to about 15 ARDS ports and one display list 01 IMP

message simultaneously. The protocol for message distribution and memory

allocation should be arranged to give messages from the IMP to the 709^ top

priority, since we must ensure that the IMP network can get rid of its

message (see discussion on IMP network and congestion).

An index register would be helpful to do the large amount of list

processing. Efficient shifting operations are also necessary to do the

conversion from characters to words and vice versa.

-21-

APPENDIX A

Required Memory for Operating a Number of ARDS Ports

If we want to connect a number of ARDS ports to the IBM 709VCTSS

through a message distributing computer, then the required memory in the

message distributing computer depends a lot on how often we are willing to

allow user programs in the 709^ "k° be swapped in and out of core. Trans-

. mission to ARDS is at a rate of 1200 bits per second. Since each character

is 10 bits, this is 120 characters per second. If we can guarantee that

normally 600 characters can be stored in the message distributing computer

for any particular ARDS port (but not all ARDS ports simultaneously), then

the time interval between output imposed swaps is normally longer than five

seconds; if we allow ten seconds worth or storage, then this interval is

longer than ten seconds, and so on.

The following assumptions were made in order to calculate the

memory requirements for ARDS output:

1. The output bit rate is 1200 bits/second.

2. It is assumed that on the average only 20 percent of the

ARDS terminals are outputting at one time.

3. It is assumed that the number of ARDS ports is 10 > or 15•

1;. It is assumed for the purpose of calculation that the

maximum number of characters stored per ARDS port is

either o00 or 1200 (5 or 10 seconds worth respectively).

5. The behavior at an individual ARDS port is statistically

independent from all other ARDS ports.

If we are willing to store a maximum number of 600 characters

(6000 bits) for an individual port, then the average number of bits per •

port is: 6000 x 0.2 = 1200 bits/port.

The standard deviation can be computed as follows:

cr2 = E(x2) - [E(x22 = 60002 x 0.2 - 12002

cr-2 = 5.76 x 10^

cr = 2^00 bits (for one port)

o-:= 2^00 bits (for n ports)

-22-

If ve are willing to store a maximum number of 1200 characters

for an individual port, then the average number of bits is 2400 bits/port

and 0~ = /n* x 4800 bits for n ports.

Below are two tables for a maximum storage of 600 and 1200

characters per ARBS port respectively, giving the required storage for

5, 10, and 15 ports.

5 ports 10 ports . 15 ports

max. number of bits 30,000 60,000 90,000

3 cr- limit (bits) 22,000 34,800 45,900

3 cr limit (words)
(l4 bits/word)

1,570 2,490 3,290

Tame 1. Maximum Allowed Storage per
ARDS Port is 600 Characters

5 ports 10 ports 15 ports

max. number of bits 60,000 120,000 • 180,000

3 cr limit (bits) U4,000 73,600 91,800

3 cr limit (words)
(14 bits/word)

3,140 4,980 6,580 r

Table 2. Maximum Allowed Storage per
ARDS Port is 1200 Characters

The tables show the absolute maximum amount of storage ever

needed, and also the amount of required storage that we get if we add 3

standard deviations to the average amount of storage needed. The actual

amount of storage needed at any moment is very unlikely to be above the

-23-

amount given by the 3 cr*limit, provided the initial assumptions, hold.

Note that the assumption on maximum number of characters per

ARDS terminal was made only for purpose of calculating some figures on

required memory. Now having the figures, we can turn around and say,

given the amount of storage and number of ports in the table, it is very

unlikely that we will be running into output storage limitations if a user

program happens to generate up to but not more than 600 or 1200 characters

of output at one time.

In the main report, 3-3K words was' taken as a bogey figure for

the amount of required memory for ARDS ports. This figure is based on
15 ARDS ports and maximum allowed storage of 600 cliaracters per port (see

Table l). Note however that another 2K was reserved for display list

storage. It so happens that display lists of this size are sent very

infrequently; furthermore, we do not expect a large amount of IMP traffic

initially. Therefore, an extra 2K of memory should usually be available

for ARDS traffic, raising the maximum storage allowance per port to about

1000 characters per port. The initial 8K memory size requirement for the
message distributing computer should therefore yield good response. In

the future, when the system is running and IMP traffic increases to

significant levels, actual traffic measurements can supersede the estimates

above, and possible memory extensions can be planned more accurately.

A word about buffering inputs into ARDS ports is in order.

Presently the IBM 7750 sends every full character received from a port on

to the 709h as soon as it is assembled. The storage requirements for ARDS

input are therefore very small, unless we significantly change the present

way or operating.

Tx

4735

Network Working Group
Request for Coirments: 33

S. Crocker
12 February 70

New HOST-HOST Protocol

Attached is a copy of a paper to be presented at the SJCC on the HOST-HOST
Protocol. It indicates many changes form the old orotocol in NWG/RFC 11;
these changes resulted from the network meeting on December 8, 1969• The
attached document does not contain enough information to write a NCP, and
I will send out another memo or so shortly. Responses to this memo are
solicited, either as NWG/RFC's or nersonal notes to me.

y

HOST-HOST Communication Protocol

in the ARPA Network *

by C. Stephen Carr

University of Utah

Salt Lake City, Utah

and
i.

by Stephen D. Crocker

University of California

Los Angeles, California

and

by Vinton G. Cerf

University of California

Los Angeles, California

* This research was sponsored by the Advanced Research Projects Agency,

Department of Defense, under contracts AF30(602)-4277 and

DAHC15-69-C-0285..

1

HOST-HOST Corrmunication S. Carr

INTRODUCTION

The Advanced Research Projects Agency (ARPA) Computer Network (hereafter

referred to as the "ARPA network") is one of the most ambitious computer

networks attempted to date."1" The types of machines and operating systems

involved in the network vary widely. For example, the computers at the first

four sites are an XDS 9̂ 0 (Stanford Research Institute), an IBM 360/79

(University of California, Santa Barbara), an XDS SIGMA-7 (University of

California, Los Angeles), and a DEC PDP-10 (University of Utah). The only
k

commonality among the network membership is the use of highly interactive

time-sharing systems; but, of course, these are all different in external

appearance and implementation. Furthermore, no one node is in control of

the network. This has insured generality and reliability but complicates

the software.

Of the networks which have reached the operational phase and been re

ported In the literature, none have involved the variety of computers and

operating systems found in the ARPA network. For example, the Carnegie-

Mellon, Princeton, IBM network consists of 360/67's with identical soft-

2 ware. Load sharing among identical batch machines was commonplace at North

American Rockwell Corporation in the early 1960's. Therefore, the imple-

menters of the present network have been only slightly influenced by earlier

network attempts.

2

ilOoT-ilOST Communication S. Carr

However, early time-sharing studies at the University of California at

Berkeley, MIT, Lincoln Laboratory, and System Develooment Corporation (all

ARPA sponsored) have had considerable influence on the design of the networ:

In some sense, the ARPA network of time-shared computers is a natural exten

sion of earlier time-sharing concepts.

The network is seen as a set of data entry and exit points into which

individual computers insert messages destined for another (or the same) com

puter, and from which such messages emerge. The format of such messages and

the operation of the network was specified by the network contractor (BB&N)

and it became the responsibility of representatives of the various computer

sites to impose such additional constraints and provide such protocol as

necessary for users at one site to use resources at foreign sites. This

paper details the decisions that have been made and the considerations

behind these decisions.

Several people deserve acknowledgment in this effort. J. Rulifson and

W. Duvall of SRI participated in the early design effort of the protocol and

in the discussions of NIL. G. Deloche of Thomson-CSF participated in the

design effort while he was at UCLA and provided considerable documentation.

J. Curry of Utah and P. Rovner of Lincoln Laboratory reviewed the early de

sign and NIL, W. Crowther of Bolt, Beranek and Newman contributed the idea

of a virtual net. The BB&N staff provided substantial assistance and guid

ance while delivering the network.

We have found that, in the process of connecting machines and operating

systems together, a gyeat deal of rapport has been established between per

sonnel at the various network node sites. The resulting mixture of ideas,

discussions, disagreements, and resolutions has been highly refreshing and

3

* HOST-HOST Communication S. Carr

beneficial to all involved, and we regard the human interaction as a valuable

by-product of the main effort.

THE NETWORK AS SEEN BY THE HOSTS

Before going on to discuss operating system communication protocol,

some definitions are needed.

A HOST is a computer system which is part of the network.

An HIP (Interface Message Processor) is a Honeywell DDP-516 computer

which interfaces with up to four HOSTs at a particular site, and allows HOST'S

access into the network. The configuration of the initial four-HOST network

is given in Figure 1. The IMPs form a store-and-forward communications net

work. A companion paper in these proceedings covers the IMPs in some de

tail.3

A message is a bit stream less than 8096 bits long which is given to an

IMP by a HOST for transmission to another HOST. The first 32 bits of the

message arc the leader. The leader contains the following information:

(a) HOST

(b) Message type

(c) Flags

(d) Link number

When a message is transmitted from a HOST to its HIP, the HOST field of

the leader names the receiving HOST. When the message arrives at the re

ceiving HOST, the HOST field names the sending HOST.

Only two message types are of concern in this paper. Regular messages

are generated by a HOST and sent to its IMP for transmission to a foreign

4

HOST-HOST Communication S. Carr

HOST. The other message type of interest is a RFNM (Request-for-Next-

Message). RFNM's are explained in conjunction with links.

The flag field of the leader controls special cases not of concern here.

The link number identifies over which of 25b logical oaths (links) be

tween the sending HOST and the receiving HOST the message will be sent.

Each link ,lS-,̂ um̂ rectionad̂ and is controlled by the network so that no more

than one message at a time may be sent over it. This control is implemented

using RFNM messages. After a sending HOST has sent a message to a receiving

HOST over a particular link, the sending HOST is prohibited from sending

another message over that same link until the sending HOST receives a RFNM.

The RFNM is generated by the IMP connected to the receiving HOST, and the

RFNM is sent back to the sending HOST after the message has entered the re-

ceivir̂ HOST; It is important to remember that there are 256 links in each

î̂ ĉ ior̂ and̂ that nô relationship ̂aiTOngJd̂ ̂

The purpose of the link and RFNM mechanism is to prohibit individual

users from overloading an IMP or a HOST. Implicit in this purpose is the

assumption that a user does not use multiple links to achieve a wide band,
~ ' inm

and to a large extent the HOST-HOST protocol cooperates with this assumption.

An even more basic assumption, of course, is that the network's load comes

from some users transmitting sequences of messages rather than many users

transmitting single messages coincidently.

In order to delimit the length of the message, and to make it easier

for HOSTs of differing word lengths to communicate, the following formatting

procedure is used. When a HOST prepares a message for output, it creates a

32-bit leader. Following the leader is a binary string, called marking,

consisting of an arbitrary number of zeroes, followed by. a one. Marking

makes it possible for the sending HOST to synchronize the beginning of the

text of a message with its word boundaries. When the last bit of a message

has entered an IMP, the hardware interface between the IMP and HOST appends

a one followed by enough zeroes to make the message length a multiple of 16

bits. These appended bits are called padding. Except for the marking and

padding, no limitations are placed on the text of a message. Figure 2 show:

a typical message sent by a 24-bit machine

DESIGN CONCEPTS

The computers participating in the network are alike in two important

respects: each supports research independent of the network, and each is

under the discipline of a time-sharing system. These facts contributed to

the following design philosophy.

First, because the computers in the network have independent purpose:

it is necessary to preserve decentralized administrative control of the

various computers. Since all of the time-sharing supervisors possess

elaborate and definite accounting and resource allocation mechanisms, we

arranged matters so that these mechanisms would control the load due to th<

network in the same way they control locally generated load.

Second, because the computers are all operated under time-sharing

disciplines, it seemed desirable to facilitate basic interactive mechanisms.

Third, because this network is used by experienced programmers it was

imperative to provide the widest latitude in using the network. Restriction

concerning character sets, programming languages, etc. would not be tolerat

HOST-HOST Communication S. Carr

and we avoided such restrictions.

Fourth, again because the network is used by experienced programmers,

it was felt necessary to leave the design open-ended. We expect that

conventions will arise from time to time as experience is gained, but we

felt constrained not to impose them arbitrarily.

Fifth, in order to make network participation comfortable, or in

some cases, feasible, the software interface to the network should require

minimal surgery on the HOST operating system.

Finally, we accepted the assumption stated above that network use

consists of prolonged convers?"1"1ons instead of one-shot requests.

These considerations lea the notions of connections, a Network

Control Program, a control link, control commands, sockets, and virtual

nets.

A connection is an extension of a link. A connection connects two

nrocesses so that output from one process is input to the other. Con

nections are simplex, so two connections are needed if two processes are

to converse in both directions.

Processes within a HOST communicate with the network through a

Network Control Program (NCP). In most HOSTs, the NCP will be part of

the executive, so that processes will use system calls to communicate

with it. Hie primary function of the NCP is to establish connections,

break connections, switch connections, and control flow.

In order to accomplish its tasks, a NCP in one HOST must communicate

with a NCP In another HOST. To this end, a particular link between each

pair of HOSTs has been designated as the control link. Messages received

7

HOST-HOST Communication S. Carr

over the control link are always interpreted by the NCP as a sequence of

one or more control commands. As an exarrroie, one of the kinds of control

commands is used to assign a link and initiate a connection, while another

kind carries notification that a connection has been terminated. A par

tial sketch of the syntax and semantics of control commands is given in

the next section.

A major issue is how to refer to processes in a foreign HOST. Each

HOST has some internal naming scheme, but these various schemes often are

incompatible. Since it is not practical to impose a common internal

process naming scheme, an intermediate name space was created with a

separate portion of the name space given to each HOST. It is left to

each HOST to map internal process identifiers into its name space.

Hie elements of the name space are called sockets. A socket forms

one end of a connection, and a connection is fully specified by a pair of

sockets. A socket is snecified by the concatenation of three numbers:

(a) a user number (24 bits)

(b) a HOST number (8 bits)

(c) AEN (8 bits)
I

A typical socket is illustrated in Figure 3.

Each HOST is assigned all sockets in the name space which have

field (b) equal to the HOST's own identification.

A socket is either a receive socket or a send socket, and is so

marked by the low-order bit of the AEN (0 = receive, 1 = send). Tne^

othar^sev^bits of the AEN simply provide a sizable population of

sockets for each user number at each HOST. (AEN stands for "another

eight-bit number".)

HOST-HOST Coirmunication S. Carr

Each user is assigned a 24-bit user number which uniquely identifies

him throughout the network. Generally this will be the 8-bit HOST number

of his home HOST, followed by 16 bits which uniquely identify him at that

HOST. Provision can also be made for a user to have a user number not

keyed to a particular HOST, an arrangement desirable for mobile users who

might have no home HOST or more than one home HOST. This 24-bit user

number is then used in the following manner. When a user signs onto a

HOST, his user number is looked up. Thereafter, each process the user

creates is tagged with his user number. When the user signs onto a

foreign HOST via the network, his same user number is usgd to tagproc- nMftr

noticing the identification of the caller. The effect of propagating the

user's number is that each user creates his own virtual net consisting of

processes he has created. This virtual net may span an arbitrary number

of IIOSTs. It will thus be easy for a user to connect his processes in

arbitrary ways, while still permitting him to connect his processes with

those in other virtual nets.

The relationship between sockets and processes is now aescribable

(see Figure 4). For each user number at each HOST, there are 128 send

sockets and 128 receive sockets. A process,.may_reauest from the local

NOP the use of any one of the sockets with _thejsame user number; the re-

esses he creates in that HOST.* The foreign HOST obtains the user number

either by consulting a table at login time, as the home HOST does, or by

>iocmcs

IV

quest is granted if the socket is not otherwise in use. The key observa

tion here is that a socket requested by a process cannot already be in

use unless it is by some other process within the same virtual net, and

9

HOST-HOST Communication S. Cam

such a process is controlled by the same user.

An unusual aspect of the HOST-HOST protocol is that a process may

switch its end of a connection from one socket to another. The new socket

may be in any virtual net and at any HOST, and the process may initiate a

switch either at the time the connection is being established, or later.

The most general forms of switching entail quite comnlex implementation,

and are not germane to the rest of this paper, so only a limited form

will be exolained. This limited form of switching provides only that a

process may substitute one socket for another while establishing a con

nection. The new socket must have the same user number and HOST number,
it

and the connection is still established to the same process. This form

of switching is thus only a way of relabelling a socket, for no change

in the routing of messages takes place. In the next section we document

the system calls and control corrmands; in the section after next, we con

sider how login might be implemented.

SYSTEM CALLS AND CONTROL COMMANDS

Here we sketch the mechanics of establishing, switching and breaking

a connection. As noted above, the NCP interacts with user nrocesses via

system calls and with other NCPs via control commands. We therefore be

gin with a partial description of system calls and control commands.

System calls will vary from one operating system to another, so the

following description is only suggestive. We assume here that a process

has several input-output paths which we will call ports. Each port may be

10

MOST-HOST Communication S. Carr

connected to a sequential I/O device, and while connected, transmits

information in only one direction. We further assume that the process is

blocked (dismissed, slept) while transmission proceeds. The following is

the list of system calls:

Init <port>, <AEN 1>, <AEN 2>, <foreign socket>

where <port> is part of the process issuing the Init

<AEN 1>]
and > are 8-bit AEN's (see Figure 3)

<AEN 2> J
The first AEN is used to initiate the connection; the second is

used while the connection exists.

<foreign socket> is the 40-bit socket name of the distant end

of the connection.

The low-order bits of <AEN 1 >and <AEN 2> must agree, and these

must be the complement of the low-order bit of <foreign socket>

The NCP concatenates <AEN 1> and <AEN 2> each with the user

number of the process and the HOST number to form 40-bit sockets

It then sends a Request for Connection (RFC) control command to

the distant NCP. When the distant NCP responds positively, the

connection is established and the process is unblocked. If the

distant NCP responds negatively, the local NCP unblocks the

requesting process, but informs it that the system call has

failed.

11

HOST-HOST Communication S. Cam

Listen <port>, <AEN 1>

where <DOrt> and <AEN 1> are as above. The NCP retains the ports

and <AEN 1> and blocks the process. When an RFC control command

arrives naming the local socket, the process is unblocked and

notified that a foreign process is calling.

Accept <AEN 2>

After a Listen has been satisfied, the process may either

refuse the call or accept it and switch it to another socket.

To accept the call, the process issues the Accept system call.

Close <port>

After establishing a connection, a process issues a Close

to break the connection. The Close is also issued after a

Listen to refuse a call.

Transmit <nort>, <addr>

If <oort> is attached to a send socket, <addr> points to

a message to be sent. This message is preceded by its length

in bits.

If <port> is attached to a receive socket, a message is

stored at <addr>. The length of the message is stored first.

The NCP then

12

IIOST-110ST Communication S. Carr

Control commands

A vocabulary of control,commands has been defined for communication

between Network Control Programs. Each control command consists of an

8-bit operation code to indicate its function, followed by some parame

ters. The number and format of parameters is fixed for each operation

code. A sequence of control commands destined for a particular HOST can

be packed into a single control message.

RFC <my socket 1>, <my socket 2>,

<your socket>, (<link>)

This command is sent because a process has executed either an Init
*

system call or an Accept system call. A link is assigned by the prospec

tive receiver, so it is omitted if <my socket 1> is a send socket.

There is distinct advantage in using the same commands both to

initiate a connection (Init) and to accept a call (Accept). If the re

sponding command were different from the initiating command, then two

processes could call each other and become blocked waiting for each other

to respond. With this scheme no deadlock occurs and it provides a more

comnact way to connect a set of processes.

CLS <my socket>, <your socket>

The specified connection is terminated

CEASE <link>

When the receiving process does not consume its input as fast as it

arrives, the buffer space in the receiving HOST is used to queue the

waiting messages. Since only limited space is generally available, the

receiving HOST may need to inhibit the sending HOST from sending any more

13

HOST-HOST Communication S. Carr

messages over the offending connection. When the sending HOST receives

this command, it may block the process generating the messages.

RESUME <iink>

This command is also sent from the receiving HOST to the sending

HOST and negates a previous CEASE.

W
CAs£

LOGGING IN

We assume that within each HOST there is always a process in execu

tion which listens to login requests. We call this process the logger,

and it is part of a special virtual net whose user number is | zero_. The
k

logger is programmed to listen to calls on socket number 0. Uoon receiv

ing a call, the logger switches it to a higher (even) numbered sockets,

and returns a call to the socket numbered one less than the send socket

originally calling. In this fashion, the logger can initiate 127 conver

sations .

To illustrate, assume a user whose identification is X'01000b' (user

number 3 at UCLA) signs into UCLA, starts up one of his programs, and

this orogram wants to start a process at SRI. No process at SRI except

the logger is currently willing to listen to our user, so he executes

Init, <port> = 1, <AEN 1> = 7> <AEN 2> = 7,

<foreign socket> = 0.

His process is blocked, and the NCP at UCLA sends

RFC <my socket 1> = X'0100030107', **—

<my socket 2> = X'0100030107',

<your socket> = X'0000000200'

14

HOST-HOST Communication S. Carr

The logger at SRI is notified when this message is received, because it

has previously executed

Listen <pcrt> = S5 <AEN 1> = 0.

The logger then executes

Accept <AEN 2> = 88.

In response to the Accept, the SRI NCP sends

RFC <my socket 1> = X'0000000200'

<my socket 2> = X'0000000258'

<your socket> = X'0100050107'

<link> = 37

where the link has been chosen*from the set of available links. The SRI

logger then executes

Init <port> =10

<AEN 1> = 89, <AEN 2> = 89,

<foreign socket> = X'0100050106'

which causes the NCP to send

RFC <my socket 1> = X'00000002591

<my socket 2> = x'0000000259'

<your socket> = X'0100050106'

Tne process at UCLA is unblocked and notified of the successful Init.

Because the SRI logger always Initiates a connection to the AEN one less

than it has just bee.n connected to, the UCLA process tnen executes

Listen <port> = 11

<AEN 1> = 6

15

HOST-HOST Communication S. Carr

and when unblocked,

Accept <AEN 2> = 6.

When these transactions are complete, the UCLA process is douoly connected

to the logger at SRI. The logger will then interrogate the UCLA process,

and if satisfied, create a new process at SRI. This new process will be

tagged with the user number X'010005'> and both connections will be

switched to the new orocess. In this case, switching the connections oO

the new process corresponds to "passing the console down" in many time

sharing systems.

USER LEVEL SOFTWARE

At the user level, subroutines which manage data buffers and format

input destined for other HOSTs are provided. It is not mandatory that

the user use such subroutines, since the user has access to the network

system calls in his monitor.

In addition to user programming access, it is desirable to have a

subsvstem program at each HOST which makes the network immediately acces

sible from a teletype-like device without special programming. Subsystems

are conmonly used system components such as text editors, compilers and

interpreters. An example of a network-related subsystem is TELNET, which

will allow users at the University of Utah to connect to Stanford Research

Institute and anpear as regular terminal users. It is expected that more

sophisticated subsystems will be developed in time, but this basic one

will render the early network immediately useful.

A user at the University of Utah (UTAH) is sitting at a teletype

16

HOST-HOST Corrmunication S. Carr

dialed into the University's PDP-10/50 time-sharing system. He wishes to

operate the Conversational Algebraic Language (CAL) subsystem on the

XDS-940 at Stanford Research Institute (SRI) in Menlo Park, California.

A typical TELNET dialog,is illustrated in Figure 5- The meaning of each

line of dialog is discussed here.

(i) The user signs in at UTAH'

(ii) The PDP-10 run command starts up the TELNET subsystem

at the user's HOST.

(iii) The user identifies a break character which causes any

message following the break to be interpreted locally

rather than being sent on to the foreign HOST.

(iv) The TELNET subsystem will make the appropriate system

calls to establish a pair of connections to the SRI

logger. The connections will be established only if

SRI accepts another foreign user.

The UTAH user is now in the pre-logged-in state at SKI. This is analogou

to the standard teletype user's state after dialing into a comnuter and

making a connection but before typing anything.

(v) The user signs in to SRI with a standard login command.

Characters typed on the user's teletype are transmitted unaltered through

the PDP-10 (user HOST) and on to the 9̂ 0 (serving HOST). The PDP-10

TELNET subsystem will have automatically switched to full-duplex,

character-by-character transmission, since this is required by SRI's 9̂ 0.

Full duplex operation is allowed for by the PDP-10, though not used by

most Digital Equipment Corporation subsystems.

17

HOST-HOST Communication S. Carr

(vi) and (vii) The 9̂ 0 subsystem, CAL, is started.

At this point, the user wishes to load a CAL file into the 9̂ 0 CAL sub

system from the file system on his local PDP-10.

(viii) CAL is instructed to establish a connection to UTAH in

order to receive the file. "NETWRK" is a predefined

9̂ 0 name similar in nature to "PAPER TAPE" or "TELETYPE".

(ix) Finally, the user types the break character (#) followed

by a command to his PDP-10 TELNET program, which sends

the desired file to SRI from Utah on the connection

just established for this purpose. The user's next

statement is * in CAL again.

The TELNET subsystem coding should be minimal for it is essentially

a shell program built over the network system calls. It effectively

established a shunt in the user HOST between the remote user and a dis

tant serving HOST.

Given the basic system primitives, the TELNET subsystem at the user

HOST and a manual for the serving HOST, the network can be profitably

employed by remote users today.

HIGHER LEVEL PROTOCOL

The network poses special problems where a high degree of inter

action is required between the user and a particular subsystem on a

foreign HOST. These problems arise due to heterogeneous consoles, local

operating system overhead, and network transmission delays. Unless we

use special strategies it may be difficult or even impossible for a distant

18

HOST-HOST Communication S. Carr

user to make use of the more sophisticated subsystems offered. While

these difficulties are especially severe in the area of graphics, problems

may arise even for teletype interaction. For example, suppose that a

foreign subsystem is designed for teletype consoles connected by tele

phone, and then this subsystem becomes available to network users. This

subsystem might have the following characteristics.

1. Except for echoing and correction of mistyping, no action

is taken until a carriage return in typed.

2. All characters except 'V, and carriage return are

echoed as the character typed.

3. «- causes deletion of the immediately preceding accepted

character, and is echosed as that character.

4. t causes all previously typed characters to be ignored. A

carriage return and line feed are echoed.

5. A carriage return is echoed as a carriage return followed

by a line feed.

If each character typed is sent in its own message, then the character

H E L L O + ̂ P c . r .

cause nine messages in each direction. Furthermore, each character is

handled by a user level program in the local HOST before being sent to

the foreign HOST.

Now it is clear that if this particular example were important, we

would quickly implement rules 1 to 5 in a local HOST program and send

only complete lines to the foreign HOST. If the foreign HOST program

could not be modified so as to not generate echoes, then the local program

19

HOST-HOST Communication S. Carr

could not only echo properly, it could also throw away the later echoes

from the foreign HOST. However, the problem is net any particular inter

action scheme; the problem is that we expect many of these kinds of

schemes to occur. We nave not found any general solutions to these prob

lems, but some observations and conjectures may_lead the way.

With respect to heterogeneous consoles, we note that although con

soles are rarely compatible, many are equivalent. It is probably reason

able to treat a model 37 teletype as the equivalent of an IBM 27^1.

Similarly, most storage scopes will form an equivalence class, and most

refresh display scopes will form another. Furthermore, a hierarcny might

emerge with members of one class usable in place of those in another, but

not vice versa. We can imagine that any scope might be an adequate sub

stitute for a teletype, but hardly the reverse. This observation leads

us to wonder if a network-wide language for consoles might be possible.

Such a language would provide for distinct treatment of different classes

of consoles, with semantics appropriate to each class. Each site could

then write interface programs for its consoles to make them look like

network standard devices.

Another observation is that a user evaluates an interactive system

by comparing the speed of the system's responses with his own expecta

tions. Sometimes a user feels that he has made only a minor request, so

the response should be inmediate; at other times he feels he has made a

substantial request, and is therefore willing to wait for the response.

Some interactive subsystems are especially pleasant to use because a

great deal of work has gone into tailoring the responses to the user's

20

HOST-HOST Communication S. Carr

expectations. In the network, however, a local user level process inter

venes between a local console and a foreign subsystem, and we may expect

the response time for minor requests to degrade. Now it may happen that

all of this tailoring of the interaction is fairly independent of the

portion of the subsystem which does the heavy computing or I/O. In such

a case, it may be possible to separate a subsystem into two sections.

One section would be the "substantive" portion; the other would be a

"front end" which formats output to the user, accepts his inputs, and

controls computationally simple responses such as echoes. In the example

above, the program to accumulate a line and generate echoes would be the

front end of some subsystem. We now take notice of the fact that the

local HQSTs have substantial computational power, but our current designs

make use of the local HOST only as a data concentrator. This is somewhat

ironic, for the local HOST is not only poorly utilized as a data concen

trator, it also degrades performance because of the delays it introduces.

These arguments have led us to consider the possibility of a Network

Interface Language (NIL) which would be a network-wide language for

writing the front end of interactive subsystems. This language would

have the feature that subprograms communicate through network-like con

nections. The strategy is then to transport the source code for the

front end of a subsystem to the local HOST, where it would be compiled

and executed.

During preliminary discussions we have agreed that NIL should have

at least the following semantic properties not generally found in

languages.

21

HOST-HOST Communication S. Cam

1. Concurrency. Because messages arrive asynchronously on

different connections, and because user input is not

synchronized with subsystem output, NIL must include

semantics to accurately model the possible concurrencies.

2. Program Concatenation. It Is very useful to be able to

insert a program in between two other programs. To achieve

this, the interconnection of programs would be specified

at run time and would not be implicit in the source code.

3. Device substitutability. It is usual to define languages

so that one device may be substituted for another. The

requirement here is that any device can be modelled by a

NIL program. For example, if a network standard display

controller manipulates tree-structures according to mes

sages sent to it then these structures must be easily

imnlementable in NIL.

NIL has not been fully specified, and reservations have been expressed

about Its usefulness. These reservations hinge upon our conjecture that

it is possible to divide an Interactive subsystem into a transportable

front end which satisfies a user's expectations at low cost and a more

substantial stay-at-home section. If our conjecture is false, then NIL

will not be useful; otherwise it seems worth pursuing. Testing of this

conjecture and further development of NIL will take priority after low

level HOST-HOST protocol has stabilized.

22

I IOST-i iOST Corrmuni cat 1 on S. Carr

HOST/IMP INTERFACING

The hardware and software interfaces between HOST and IMP is an

area of particular concern t ĥe HOST organizations. Considering the

diversity of HOST coraouters to which a standard IMP must connect, the

hardware interface was made bit serial and full-duplex. Each HOST or

ganization implements its half of this very simple interface.

The software interface is equally simple and consists of messages

passed back and forth between the IMP and HOST programs. Special error

and signal messages are defined as well as messages containing normal

data. Messages waiting in queues in either machine are sent at the

pleasure of the machine in which they reside with no concern for the needs

of the other computer.

The effect of the present software interface is the needless re-

buffering of all messages in the HOST in addition to the buffering in

the IMP. The messages have no particular order other than arrival times

at the IMP. The Network Control Program at one HOST (e.g., Utah) needs

waiting RFNM's before all other messages. At another site (e.g., SRI),

the NCP could benefit by receiving messages for the user who is next to

be run.

What is needed is coding representing the specific needs of the HOST

on both sides of the interface to make intelligent decisions about what

to transmit next over the channel. With the present software interface,

the channel in one direction once committed to a particular message is

then locked up for up to 80 milliseconds! This approaches one teletype

character time and needlessly limits full-duplex, character by character,

23

HOST-IIOST Communication S. Carr

interaction over the net. At the very least, the IMP/HOST protocol

should be expended to permit each side to assist the other in scheduling

messages over the channels.

CONCLUSIONS

At this time (February 1970) the initial network of four sites is

just beginning*̂ jj$Ŝ ||jjJĵ t̂o be utilized. The communications system

of four IMPs and wide band telephone lines have been operational for two

months. Programmers at UCLA have signed in as users of the SRI 940. More

significantly, one of the authors (S. Carr) living in Palo Alto uses the

Salt Lake PDP-10 on a dally basis by first connecting to SRI. We thus

have first hand experience that remote interaction is possible and is

highly effective.

Work on the ARPA network has generated new areas of interest. NIL

Is one example, and interprocess communication is another. Interprocess

communication over the network is a subcase of general interprocess com

munication in a multiprograinmed environment. The mechanism of connec

tions seems to be new, and we wonder whether this mechanism is useful

even when the processes are within the same computer.

24

HOST-HOST Communication s. Carr

REFERENCES

1 L ROBERTS

The ARPA network.

Invitational Workshop on Networks of Computers Proceedings

National Security Agency 1968 p 115 ff

2 EM RUTLEDGE et al

An interactive network of time-sharing computers

Proceedings of the 24th National Conference
*

Association for Computing Machinery 1969 p 431 ff

3 F E HEART R E KAHN S M ORNSTEIN W R CROWTHER D C WALDEN

The Interface message processors for the ARPA network

These Proceedings

25

HOST-HOST Communication S. Carr

LIST OF FIGURES

Figure 1 Initial network configuration

Figure 2 A typical message from a 24-bit machine

Figure 3 A typical socket

Figure 4 The relationship between sockets and orocesses

Figure 5 A typical TELNET dialog.

Underlined characters are those typed by.the user.

26

S R I

Figure 1 Initial network configuration

2 4 b i t s - E»-

L e a d e r (3 2 b i t s)
§

0

1 i —-$r

T e x t o f m e s s a g e (9 6 b i t s)
4

IOO----S- - — o

16 b i t s o f mark ing

ADt$) feH M

1 6 b i t s o f p a d d i n g
a d d e d b y t h e i n t e r f a c e

Figure 2 A typical message from a 24-bit machine

00

00

sr
CVJ

a;
_q
E

a)
(S)

ZD

LlI
<

J
o
_Q
E
c

h-
00
O
n=

o

o
o
CO

CD
>
CD
O
CD

TD
C
CD
CD

CD

O
o
en

3

(i) . LOGIN©

(i i) .R TELNET©

(i i i) ESCAPE CHARACTER IS »©

(iv) CONNECT TO SRI©

(v) © E N T E R CARR.©

(vi) ©CAL.©

(vi i) CAL AT YOUR SERVICE©

(V i i i) >READ FILE FROM NETWRK.©

(ix) *NETWRK:<-DSK?MYFILE.CAL©

Figure 5 A typical TELNET dialog

Underlined characters are those typed by the user

473 6
Network working Group
Request for Comments No. 34

SOME BRIEF PRELIMINARY NOTES ON THE ARC CLOCK
f • y_

The ARC clock system provides a time reference that is written into the
core memory of the XDS 940 Computer. There are two types of time
information available-absolute and relative.

The absolute time is written into two adjacent words of core with the
following format:

First wora --

Bits 0 thru 7 contain the month code in straight binary with a
range of 1 to 12

Bits 8 thru IS contain the day code in straight binary with a
range of 1 to 31

Bits 16 thru 23 contain the year code in straight binary with a
range of 0 to 99

Second word --

Bits 00 thru 7 contain the hour code written in straight binary
with a range of 0 to 23

Bits 8 thru IS contain the minute code written in straight binary
with a range of o to 60

Bits 16 thru 23 contain the second coae written in straight binary
with a range of 0 to 60

These 2 words are written once each second. It is antcipated that the
accuracy of the initial setting will be on tne order of 1 second, as
referred to WW, and that the oscillator drift rate will not account for
an accumulated error of more than 1 second every 250 days. The
oscillator and clock are provided witn standby bower in order to
maintain the accuracy of the system. Because of variable delays in the
time required to obtain access to the 940 core memory, it is anticipated
that the short-term accuracy will be on the order of 10 to 20
microseconds.

The relative time, which is written into one word of core memory, is
simply the contents of a 24 bit binary accumulator. The rate at which
the accumulator is updated can be chosen to be either once very 100
micro seconds or once every millisecond, in either case the core
location is written each time the accumulator is updated, AS above the
short-term accuracy will be about 10 to 20 microseconds and the
long-term accuracy will be the equivalent of one second every 250 nays.

Bill English SRI/ARC
26 February 1970

4737

Network Working Group S. Crocker
Request for .Comments: 35 UCLA

3 March 1970

NETWORK MEETING

I expect to have the details of the new network protocol as outlined in
NWG/RFC #33 ready in two weeks. Some interest has been expressed in a live
presentation, so we vri.ll host a network meeting on Tuesday, March 17, at UCLA
at 9:00 a.m. To facilitate interaction, please limit attendance to one pro
grammer from each si.te. It is also wise to leave the 18th open in case discus
sion continues.

The subject of the meeting will be a detailed presentation of the network
protocol, suitable for implementing unless major flaws are discovered. Document
ation will be available at the meeting and if not obsolete! by the meeting, will
be sent out as a NWG/RFC on March 20.

Please call Mrs. Charlotte LaRoche at (213) 825-25̂ 3 if you need help in
making arrangements.

NWG>RFC #36 S. Crocker
16 March 70

Protocol Notes

I > Overview .

The network protocol provides three facilities:

1. Connection establishment

2. Flow control

3. Reeonnection

Reconnection is considered separately from connection establishment partly
because of the complexity of reconnection and partly because I don't have
enough experience with the protocol to present these concepts in an >
integrated fashion.

Connection Establishment

Connection establishment works essentially the same as in NWG/RFC #33- The
major change .is that a more general form of switching is provided indepently
of establishment, so establishment is simplified by not including switching
procedures.

A rough scenario for connection establishment follows:

1. Process PA in host A grabs socket SA and requests connection with
socket SB. Process PA accomplishes this through a system call.

2. Concurrently with the above, process PB in host B grabs socket SB and
requests connection with socket SA.

3. In response to process PA's request, the network control program in
host A (referred to as NCPA) sends a Request-for-Connection (RFC)
command to host B. NCPB in host B sends a similar command to host A.
No ordering is implied; NCPB niay send the command to NCPA before or
after receiving the command from NCPA.

4. NCPA and NCPB are both aware the connection is established when each
has received a RFC command and each has received the RFNM for the one
it has sent. They then notify processes PA and PB, respectively, that
the connection is established.

One of the ru2.es adhered to is that either SA is a send socket and SB is
a receive socket, or vice versa. This condition is sometimes stated as
"SA and SB mus+ be a send/receive pair."

5. The sending process may now send.

-1-

Plow Control

In order to prevent a sending process from flooding a receiving process, 1
is necessary for the receiving process to be able to stop the flow. ̂ Flo.*?
control is integrated into the network RFNM handling. Mien a receiving host
wishes to inhibit flow on a particular link, the. host sends a special
message to its IMP which causes the next RFNM on that link to be modified.
The sending host receives a message of type 10 instead of type 5. The
sending host interprets this message as a RFNM and as a request to stop
sending. A confirming control command is returned.

When the receiving host is ready to receive again, it sends a command (RSM)
telling the sending host to resume sending.

Reconnection

For a great many reasons it is desirable to be able to switcn one (or both)
ends of a connection from one socket to another._ Depending upon the
restrictions placed upon the switching process, it may be easy or hard to
implement. To achieve maximum generality, I present here a scheme for
dynamic reconnection, which means that reconnection can take place even
after'"flow has started. It may turn out that for the majority of cases,
this scheme is much more expensive than it needs to be; however, the follow
ing virtues are claimed:

1. ' All various forms of switching connections are provided.

2. Reconnection introduces no overhead in the processing of messages
sent over a connection i.e., the whole cost is borne in processing
the protocol.

II Data Structures

1. Connection Table
2. Process Table
3. Input Link Table
4. Output Link Table
5. Link Assignment Table

*BB&N argues that unlimited buffering should be provided. It is possible
that this would be a proper strategy; but it is foreign to my way of think
ing, and I have based the protocol design on the assumption̂ that only a
small buffer is provided on the receive end of each connection.

-2-

Connection Table

This table holds all information pertaining to local sockets, particularly
whether a socket is engaged in a connection, and if so, what state the
connection is in. Entries are keyed by local socket, but other tables have
pointers into this table also. (See the Process Table, Input Link Table,
and Output Link Table.)

Each entry contains the following information:

a) local socket (key)
b) foreign socket
c) link
d) connection state
e) flow state and buffer control
f) pointer to user's process
g) reconnection control state
h) queue of waiting callers

The local socket is a 32 bit number. If no entry exists for a particular
socket, it may be created with null values.

The foreign socket is a ̂ 0 bit number. This field will be unassigned if
no connection is established.

The link"is an 8 bit number and is the link over which data is sent from the
sender to the receiver. A socket is a receive socket off its low-order
bit is zero.

Connection state refers to whether a connection is open or not,'etc. The
following possibilities may occur.

a) local process has requested a connection
b) foreign process(es) has/have requested a connection
c) connection established
d) reconnection in progress
e) close waiting
f) reconnection waiting

Flow state and buffer control refer to checking for RFNM's, sending and
accepting cease, supended and resume commands, and keeping track of incoming
or outgoing data.

A pointer to the user's process is necessary if the process has requested a
connection.

If reconnection is in progress, it is necessary to keep track of the sequence
of events. A socket engaged in reconnection is either an end or a middle.
If it's a middle, it is necessary to store the eight bit name of the other
middle attached to the same process, and to record receipt of END and RDY
commands.

-3-

Finally, if RFC's are received either when the socket is busy or when no
process has engaged it, the RFC's are stacked first-in-first-out on a
queue for the named local socket.

Process Table

This table associates a process with a socket. It is used to process system
calls.

Input Link Table

This table associates receive links with local sockets. It is used to
decide for whom incoming messages are destined.

Output Link Table

This table associates send links with local sockets. It is used to inter
pret RFNM's and RSM commands.

Link Assignment Table

Links are assigned by receivers. This table shows which links are free.

Ill Control Commands

Command Summary

0 <NOP>
1 <RFC> <me> <you> or <RFC> <me> <you> <link>
2 <CLS> <rne> <you>
3 <RSM> <link>
4 <SPD> <link>
5 <PND> .<me> <you> <asker>
6 <END> <link> <end>
7 <RDY> <link>
8 <ASG> <me> <you> <link>

-5-

Commands

No Operation

Form: NOP

NOP is X»00'

Purpose: This command is included for completeness and convenience.

Request for connection

Form: <RFC> <my socket> <your socket>
or <RFC> <my socket> <your socket> <link>

<RFC> is X'01'

<my socket> is a 32 bit socket number local to the sender

<your socket> is a 32 bit socket number local to the receiver

<link> is an eight bit link number.

<my socket> and your socket must be a send/receive pair.

<link> is included if and only if <my socket> is a receive
socket

Purpose: This command is used to initiate a connection. When two
hosts have exchanged RFC commands with the same arguments
(reversed)j the connection is established. Links are assigned
by the receiver.

Close

Form: <CLS> <my socket> <your socket>

<CLS> is X'02*

<my socket> and <your socket> are the same as for <RFC>

Purpose: This command is used to block a connection. It may also
be used to abort the establishment of a connection or to
rofu.se a request. It may happen that no connection between
the named sockets was established, or was in the process
of being established. In this event, the <CLS> should be
discarded.

-6-

Resume

Form: <RSM> <link>

<RSM> is X'03*

Purpose: This command is sent by a receiving host to cause the
sending host to resume transmission on the named link.
A sending host suspends sending if it receives a special
RFNM for some message. (Special RENM's are generated by
the receiving IT-IP upon request by its host.)

Suspended

Form: <SPD> <link>

<SPD> is x'01'

Purpose: This command is sent by a sending host to acknowledge that
• it has stopped sending over the named link. Transmission
will resume if a <RSM> command is received.

Final End

Form: <FND> <my socket> <your socket> <asker>

<SND> is X'05'

<rny soeket> is a 32 bit socket number of a socket local to
the sender

<your socket> is a 32 bit socket number of a socket local to
the receiver

<my socket> and <your socket> form a send/receive pair. A
connection should be established between them.

<asker> is a 40 bit socket number of the same type as
<my socket>

Purpose: If a process decides to short-circuit itself by connecting
one of its receive sockets to one of its send sockets, the
NCP sends out two <FND> commands — one in each direction.
Each one has <asker> initialized to <my socket> .

Upon receiving an <FND> command, the NCP checks its
<your socket>. If <your socket> is already engaged in a
reconnection, the command is passed on v.ith a new <my socket
and <your socket>. However, before it is passed on, the
<asker> is compared v/ith the new <my socket>. If they are
equal, a loop has been detected and both sockets are closed.

If <your socket> is not engaged in a reconnection, it is
marked as the end. of a chain of reconnections end an

. ; <END> is sent back.

If the connection named is not in progress, a <CLS> is
sent back and the <FND> is discarded.

End Found

Form: <END> <link> <end socket>

<END> is X'06'
<link> is an 8 bit link

<end socket> is a 40 bit socket

Purpose: This command indicates which socket is at the end of a
chain of reconnections. It is generated at <end socket>
and passed back to the other terminal socket via all the
intermediate sockets. If <end socket> is a send socket,
<link> refers to a connection with the send socket in the
sending host and receive socket in the receiving host. If
<end socket> is a receive socket, <link> refers to a
connection with the send socket in the receiving host and
the receive socket in the sending host, ("sending" end
"receiving" refer to the transmission of this control
command.)

Ready

Form: <RDY> <link>

<RDY> is X«07
<link> is an 8 bit link number

Purpose: This command is sent from a send socket to a receive
socket to indicate that all messages have been forwarded
and that reconnection may occur.

Assign New- Link

Form: <ASG> <my socket> <your socket> <link>

<ASG> is X'08'

Purpose: This command completes a reconnection. It is sent from a
receive socket to a send socket after the receive socket
has received a <RDY>. A new link is assigned and trans
mission commences.

Network Working Group
Request for Comments #37

S. Crocker
20 March 70
UCLA

Network Meeting Epilogue, etc.

The Meeting

On Tuesday- March 17, 1970, I hosted a Network meeting at UCLA. About
25 people attended, including representatives from MIT, LL, BEN, Harvard,
SRI, Utah, UCSB, SDC, RAND and UCLA.- I presented a modification of the
protocol in NWG/RFC #33; the modifications are sketchily documented in
NWG/RFC #36. The main modification is the facility for dynamic reconnection

The protocol based on sockets and undistinguished simplex connections is
quite different from the previous protocol as documented in NWG/RFC #11.
The impetus for making such changes came out of the network meeting on
December 8, 1969, at Utah, at which time the limitations of a log-in
requirement and the inability to connect arbitrary processes was seriously
challenged. Accordingly, the primary reason for the recent meeting was
to sample opinion on the new protocol.

Recollections may vary, but it is my opinion that the protocol was widely
accepted and that criticism and discussion fell into two categories:

1. Questioning the complexity and usefulness of the full protocol,
especially the need for dynamic reconnection.

2. Other topics, particularly character set translation, higher level
languages, incompatible equipment, etc. .

Notably lacking was any criticism of the basic concepts of sockets and
connections. (Some have since surfaced.) The following agreements were
made:

1. By april 30, I would be resnon.sible for publishing an implementable •
specification along the lines presented.

2. Any interested party would communicate with me (at least) immediately
if he wished to modify the protocol.

3. If major modifications come under consideration, interested parties
would meet again. This woud happen in two to three weeks.

4. Jim Forgie of Lincoln Labs tentively agreed to host a meeting on
higher level network languages, probably near Spring Joint time.

Network Working Group
Request for Comments #37

S. Crocker
20 March 70
UCLA

Mailing List Changes

Paul Rovner of LL is replaced by

James Forgie
Mass. Institute of Technology
Lincoln Laboratory C158
P.O. Box 73
Lexington, Mass. 02173

telephone at (617) 862-5500 ext. 7173

Professor George Mealy is 'added

George Mealy
' Rm. 220
Aitken Computation Lab. 1
Harvard University
Cambridge, Massachusetts 02138

telephone at (617) 868-1020 ext. ̂ 355

Processes

In all of our writing we have used the term process, to mean a program
which has an assigned location counter and an address space. A program
is merely a pattern of bits stored in some file. A new process is
created only by an already existing process. The previous process
must execute an atomic operation (fork, attach, etc.) to cause such
a creation. Processes may either cause their own demise or be terminated
by another (usually superior) process.

The above definition corresponds to the definition given by Vyssotsky,
et al on pp. 206, 207 of "Structure of the Multics Supervisor in the
FJCC~~proceedings s 1965-

Eecause a process may create another process, and because in general
the two processes are indistinguishable when viewed externally, I
know, of no reasonable way for two processes to request connection
directly with each other. The function of sockets is to provide a
standard interface between processes.

The Days After

In the time since the meeting I have had conversations with Steve Wolfe
(UCLA-CCN), Bill Crowther (BSN), and John Heafner and Erick Harslem (RANf)-
Wolf's comments will appear as NWG/RFC #38 and fall into a class I will
comment on below.

-2-

Network Working Group
Request for Comments #37

S. Crocker
20 March 70
UCLA

Crcwther submitted the following:

»A brief description of two ideas for simplifying the host protocol
described at the March meeting. These ideas have not been carefully
worked out.

Idea 1. To Reconnect.

"A NCP wanting to Reconnect tells each of this neighbors "I want to reconnect
They wait until there are ho messages in transit and respond "OK . He
then says "Reconnect as follows" and they do it. In the Rare condition,
the NCP gets back an "I want to reconnect instead of an."OK , then one
must °"o and one must stop. So treat a "reconnect from a higher Host
user etc. as ok and from a lower as a "No—wait until I reconnect you
and do the connection.

Idea 2

"Decouple connections and links» Still establish connections, but use any
• handy link for the messages. Don't send another message on a connection
until a RFNM cones back. Include source and destination socket numbers
in the packet.

"To reconnect, say to each of neighbors "please reconnect me as follows
Hold onto the connection for a short time (seconds) and send both packets
and connection messages along toward their desintations. I havn t worked
out how to keep the in-transit messages in order, but probably everything
works if you don't send out a reconnect when RFNM's are pending.

Bill5s first idea does not seem to me to be either decisively better or
(after some thought) very different, and I am considering it. I have no
strong feelings about it yet, but I am trying to develop some.

Bill's second idea seems contrary to my conception of the role of links.
An argument' in. favor of decoupling connections and links that the number
of connections between two hosts might want to exceed 255, and that even
if* not, it is sounder practice to isolate dependencies in design. On the
other hand, the newly provided Cease on Link facility* (page 22 of the soon
to be released BBN report #1822 revised February 1970) becomes useless.
(Bill, who lust put the feature in, doesn't care.)Another objection is
that It seems intuitively bad to waste the possibility of using the link
field to carry information. (Note the conflict of gut level feelings)

-The C°ase on Link facility is a way a receiving host modifies RFNM's so
as to carry a flow-quenching meaning. An. alternative procedure is to use
a host-to-host control command.

-3-

Network Working Group
Request for Comments #37

S. Crocker
20 March 70
UCLA

In a conversation with John Heafner and Eric Harslem of RAND, they pointed
out that the current protocol makes no provision for error detection and
reporting, status testing and reporting, and expansion and experimentation.
Error detection and status testing will require some extended discussion
to see what Is useful, and I expect that such discussion will take place
while implementation proceeds. Leaving room for protocol expansion and
experimentation, however, Is best done now.

I suggest that two areas for expansion be reserved. One is that only
a fraction of the 256 links he used, say the first 32. The other area Is
to use command codes from 255 downward, with permanent codes assigned from
the number of links in use to 32, I feel that it is quite unlikely that we
would need more than 32 for quite some time, and moreover, the network
probably wouldn't handle traffic implied by heavy link assignemnt. (These -
two things aren't necessarily strongly coupled: one can have many links
assigned but only a few carrying traffic at nay given time.)

Some of Heafner's and Harslen's other ideas may appear in NWG/RFC form.

Immediate Interaction

During the next several days, I will still be interested in those editicisms
of the current protocol which might lead to rejection or serious modifica
tion of It. Thereafter, the gocus will be a refinement, implementation,
extension, and utilization. I may be reached at UCLA through my secretary
Mrs. Benita Kirstel at (213) 825-2368. Also, everyone is Invited to
contribute to the NWG/RFC series. Unique numbers are assigned by Benita.

4740

NETWORK WORKING GROUP
REQUEST FOR COMMENTS 38

STEPHEN M. WOLFE
20 MARCH 1970
UCLA CCN

V

Comments on Network Protocol
from NWG/RFC #36

The proposed protocol dees not allow for the possible multiplexing of

connections over links.

Generally, this presents no problem, but it might cause loading restrictions

in the future. Two cases where routing multiple connections over the same

link are apparent:

a) Where a user has several high speed connections, such

as between processes that transmit files over the network.

Assigning these connections to the same link limits the

percentage of network resources that may be used by that

user. This becomes particularly important when several

store-and-forward IMP's are used by the network to effect

the communication.

b) When two hosts each have their own independent network and

desire to allow access to the other host's network over the

AR.PA net, a shortage of links may develop. Again, the assign

ment o.: several connections to the same link could help solve

the problem.

NETWORK WORKING GROUP
Page. 2

The following changes in the protocol would make possible the future use

of multiplexed links. It is not necessary to add the multiplexing, itself,

to the protocol at this time.

a) The END and RDY must specify relevant sockets in

addition to the link number. Only the local socket

name need be supplied.

b) Problems arise with the RSM and SPD commands. Should

they refer to an entire link, or just to a given

connection? Since there is a proposal to modify the

RFNM to accommodate these commands, it might be better

to add another set of commands to block and unblock a

connection, but I am not convinced that that is the

best solution.

c) The destination socket must be added to the header of

each message on the data link. Presumably this would

consist of 32 bits immediately after the header and

before the marking.

SMW/rb

4741

Network Working Group
Request for Comments: 39

E. Harslem
J. Heafner
RAND
25 March 1970

COMMENTS ON PROTOCOL RE: NWG/RFC #36

We offer the following suggestions to be considered as additions
to the April 28th 1970 protocol grammar specifications.

ERROR MESSAGES

<ERR> <Code> <Command in error>

It is desirable to include debugging aids in the initial protocol
for checking out Network Control Programs, etc.

There are three classes of errors—content errors, status errors,
and resource allocation or exhaustion. <Code> specifies the
class and the offending member of the class. The command is
returned to the sending NCP for identification and analysis.

Examples of status errors are: messages sent over blocked links
and attempts to unblock an unblocked link. Examples of content
errors are: an invalid RFC complete; a message sent on a link
not connected; closing of an unconnected link; and an attempt to
unblock an unconnected link. Examples of resource errors are:
a request for a non-existent program and connection table over
flow, etc. Resource errors should be followed by a <CLS> in
response to the <RFC>.

QUERIES

<QRY> <My Socket> < >

or <QRY> <Your Socket> <Text>

Queries provide an extension to the <ERR> facility as well as
limited error recovery, thus avoiding re-initialization of an NCP.

The first command requests the remote NCP to supply the status of
all connections to the user specified by the user number in
<My Socket>. The second is the reply; <Text> contains the connec
tion status information. If an NCP wants the status of all con
nections to a remote HOST, the <My Socket> is zero.

PROGRAM TERMINATION NOTIFICATION

<TER> <My Socket>

This command supplements rather than replaces <CLS>. It severs
all communication between a program and those programs in a given
HOST to which it is connected. This command performs what would
otherwise be handled by multiple <CLS> commands. <My Socket>
contains the sender's user number.

HOST STATUS

<HCU>
<HGD>

These messages (HOST coming up and HOST voluntarily going down)
are compatible with asynchronous, interrupt-driven programs, as
opposed to the more conventional post/poll method.

TRANSMIT AND BROADCAST

<TRN> <Body>
<BDC> <Body>

Unlike the previous commands, these are not sent over the control
link, but rather over links assigned to user programs. The prefix
of <TRN> or <BDC> indicates, to the receiving NCP, the disposition
of the message body. <TRN> indicates a message to be passed to a
single process. <BDC> specifies to the destination NCP that the
message is to be distributed over all receiving connections linked
to the sender. In response to a system call by the user to an
NCP requesting <BDC>, the NCP generates one <BDC> to each HOST to
which the sender is connected.

-3-

RFC AND DYNAMIC RECONNECTION

This protocol is complex; it proliferates control messages; it
causes queues (to become associated with re-entrant procedures)
that are artificially imposed via the protocol (remote AEN assign
ment); and discounts the situation where only controlling process
"A" has knowledge that slave process "B" should be "rung out" in
a dynamic reconnection.

The <ERR>, etc., are suggestions for inclusion as additions in
the April 28th protocol specifications. The above criticism is,
of course, not intended to affect modification of the RFC structure
by April 28th, nor to reflect on those who planned it. We have
not studied the problem. It is meant, however, to voice our
concern about complexity and resulting response times. This is a
difficult problem and it deserves more study after we have exer
cised the current RFC specifications. We hope to offer construc
tive suggestions with respect to the RFC in the future.

JFH:hs

Dist r ibut ion

1 . Abhai Bhushan, MIT
2 . Steve Carr , Utah
3 . Gerry Cole , SDC
4 . Steve Crocker , UCLA
5 . Bi l l Engl ish , SRI
6 . J im Forgie , LL
7 . J im Fry , MITRE
8 . Nico Haberman, Carnegie-Mel lon
9 . John Heafner , RAND

10. Bob Kahn, BB&N
11. George Mealy , Harvard
12. Thomas 0 'Sul l ivan, Raytheon
13. Larry Rober ts , ARPA
14. Rober t Sproul l , S tanford
15. Ron Stoughton, UCSB

