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A contrast of the existing solution techniques to obtain the stress 

field generated during the winding of magnetic tape is presented. 

An experimental technique to measure the wound tape's radial 

Young's modulus is discussed, and, using the analytical tools de

veloped, a prediction of the stress field in a typically wound reel of 

magnetic tape is made. The predicted radial pressure is verified 

experimentally using a pull-tab test. Using this analysis, guidelines 

are given on the selection of tape geometry, as well as hub geometry 

and material, to minimize tape defects caused by adverse winding 

stresses. An analysis of the environmental stresses created in the 

wound tape by changes in humidity and temperature is described, 

as well as its application to hub-material selection to reduce slippage 

in the layers of tape. 

INTRODUCTION 

Over the past quarter century, several articles have ap
peared in the literature (l)—(9) analyzing the stresses gen
erated during the winding of thin flexible webs, such as 
magnetic tape, film, and paper. A knowledge of these initial 
stresses, how they can be altered, and how they produce 
defects in the wound material provide design and winding 
guidelines that help minimize the adverse effects of such 
stresses. 

During the tape's winding process, when tape is wound 
on a hub of some compliance and with a certain winding 
tension, a stress field develops. The most important com
ponents of this field are the hoop (also called circumfer
ential) stress, which is caused by the winding tension applied 
over the cross-sectional area of the tape, and the radial 
interlayer pressure, which is caused by the radial component 
of the winding stress. As more and more wraps are added, 
the radial stress in the inner wraps accumulates continu
ously. The hub compliance relieves the hoop stress, since 
the radial displacement of the tape is smaller and so is the 
hoop strain. At the same time, it reduces the buildup of the 
radial pressure. However, if the hub is too rigid, the tensile 
hoop stress generated during winding remains in the wound 
material near the hub. Lor materials that have across-the-
width variations in mechanical properties, such as magnetic 
tape, film, or paper, tension bands or lanes result (9)—(11). 
With time, these deformations become anelastic and never 
fully recover (10). This process is accelerated at higher tem
peratures and humidities. The effects of the Poisson's ratio, 
on the other hand, tend to reduce the tensile hoop stress 
with increasing radial pressure. Increasing hub compliance 
reduces the hoop strain in the inner wraps, thereby reduc
ing the hoop stress. If the hub is too compliant, its function 
is transferred to the wound tape, which produces com-

NOMENCLATURE 

Er = Young's modulus in the radial direction of the wound tape 
in compression, which is assumed to be constant throughout 
the tape (GPa). 

£e = Young's modulus in the circumferential direction of the wound 
tape, in tension, which is assumed to be constant throughout 
the tape and identical to the Young's modulus of the tape 
in tension (GPa). 

= Poisson's ratio in the radial direction of the wound tape, that 
is, the ratio of the circumferential strain to the radial strain 
for an element under pure radial stress. It is assumed con
stant throughout the tape. 

re, = Poisson's ratio of the tape in the circumferential direction, 
that is, the ratio of the radial strain to the circumferential 
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strain for an element under pure circumferential stress. It 
is assumed constant throughout the tape. 

Eh = Young's modulus of the hub, taken as an isotropic body (GPa) 
Vh = Poisson's ratio of the hub, taken as an isotropic body 
th = hub thickness (mm) 
a = inner hub radius (mm) 
b = outer hub radius (mm) 
c = outer wrap radius (mm) 
R = normalized outer-wrap radius for a fully wound tape; it is c 

divided by b 
N = total number of wraps in a fully wound tape 
t = wrap thickness (mm) 
w = tape width (mm) 
Tw = winding stress, which is the winding tension divided by the 

tape's cross-sectional area, wt (GPa) 
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pressive circumferential stresses in the tape. Sufficient, neg
ative, hoop stresses can cause the wound tape to buckle. 
Furthermore, the radial pressure during winding must be 
sufficient to prevent interlayer tape slippage on accelera
tion. To ensure that the wound tape remains unclistorted 
during storage, the hub must be of uniform compliance, 
which requires as close a uniform hub thickness as possible. 
A mismatch in the coefficient of thermal or hygroscopic 
expansion between the hub and the tape will lead to further 
stresses induced in the wound tape when there is a tem
perature or humidity change. These stresses must be con
sidered when selecting hub material and geometry. 

The first section of this paper discusses the assumptions 
made in the formulation of the winding problem. In the 
literature, two solution techniques exist, one proposed ini
tially by Gutterman in (2), which was subsequently used by 
many others (5)—(8), and another proposed by Trantposch 
(1). These are contrasted, evaluated, and their respective 
advantages briefly discussed. A hub compliance is proposed 
and then the agreement of both approaches is verified. An 
experimental technique to determine Young's modulus of 
a wound tape in the radial direction is suggested in the 
second section, and, using this measured value, a compar
ison of the predicted and measured radial stresses in a reel 
of tape is presented. The next section contains an appli
cation of our analysis to the selection of hub material and 
geometry, as well as to the winding tension profile. This 
analysis is further used to calculate the maximum amount 
of tape that can be stored on a given hub without adversely 
affecting the wound tape. 

We also include an analysis of the thermal stresses caused 
by the mismatch in the coefficients of thermal expansion 
between the hub and the tape, and between the radial and 
circumferential directions in the tape (4), (12), (13). Cen-
trifugally induced stresses are not discussed here, but are 
discussed in Refs. (6) and (14). 

ASSUMPTIONS, PROBLEM FORMULATIONS, AND 
SOLUTION TECHNIQUES 

This section contrasts the existing solution techniques, 
verifies their agreement, and briefly mentions their respec
tive merits. 

As mentioned in the introduction, the solution approach 
proposed by Gutterman has been used by other researchers. 
We will take the one presented by Altmann (7) as typical of 
this approach and contrast it with that of Tramposch (1). 

Assumptions 

The assumptions made by several researchers differ only 
in generality, so we list the most general here: 

1. The hub is a right-circular cylinder and remains so 
during and after winding. The relationship between 
the hub deflection and the radial pressure exerted on 
it by the tape is linear. 

2. The tape is of uniform thickness, which is small in 
comparison with its width, and offers no resistance to 
bending. 

3. During and following winding, the tape reel is consid

ered to be a homogeneous and orthotropic elastic cyl
inder. Young's modulus in the radial direction, Er, is 
smaller than that in the circumferential direction, £e. 
This is due to the softening effect of the tape's coating 
and the entrapped air during winding. 

4. Although the winding process is continuous, it can be 
modeled as the successive addition of closed rings with 
a known internal tension. 

5. Shear stresses and relative motion between the layers 
can be neglected. 

6. The stress components at a point in the tape are in
dependent of its width and those in the width direction 
are negligible, therefore, plane-stress conditions exist. 

The assumptions have thus reduced the formulation to 
a one-dimensional, plane-stress axisymmetric problem, with 
variations occurring only in the radial direction. We now 
need to determine the radial- and hoop-stress components 
at any radial location in the wound tape. 

In the remainder of this section, we will use the following 
notation to refer to the equations shown in Tables 1-3: 
1A-3 refers to Table 1, Altmann column, Eq. [3]; 1T-2 
refers to Table 1, Tramposch column, Eq. [2]; and so on. 
The tables show the equations in tabular form for easy 
comparison and quick reference. 

Problem Formulation—Altmann 

Consider a hub, whose outer radius is b (see Fig. 1), onto 
which tape is wound. With the addition of each wrap, wound 
under tension, there is a change induced in the stress state 
existing in the already wound wraps. Altmann evaluates the 
incremental change in the stress state induced at an inner 
radial location r (normalized with respect to b, r = rib, where 
r is the actual radial location), when the current outer wrap 
is added [see Fig. 1(a)]. At equilibrium, the stress compo
nent increments ay and a9, namely, the radial and hoop 
stress, are related through the stress equation of equilibrium 
1A-1. Then, using the stress-displacement relationship for 
an orthotropic, linearly elastic solid under plane-stress con
ditions 1A-2, he obtains the displacement equation of equi
librium 1A-3. This gives the change in radial displacement 
u (again normalized with respect to b) at a radial location r 
caused by the addition of the current outer wrap at a (nor
malized) radial location s; u is fully determined when two 
boundary conditions are specified, one at the hub and the 
other at the current outer wrap. The boundary condition 
at the hub, 2A-1, relates the radial deflection of the outer 
hub radius (r = 1) to the pressure exerted on it by the 
wound tape. We have defined Ec, in 2A-1, as the hub elas
ticity (8), for a hub whose geometry is thick, hollow, right-
circular cylindrical and whose composition is homogeneous, 
isotropic, and linearly elastic (6), (15). Ec is a function of 
the hub stiffness and geometry. For orthotropic hubs, used 
by some manufacturers, Lekhnitskii (16) has a correspond
ing formula. The current outer-wrap boundary condition, 
2A-2, is a statement of equilibrium for the applied radial 
pressure, which is caused by the addition of that wrap, of 
incremental thickness, ds, with internal hoop stress, Tw ,  
caused by the winding tension at a (normalized) radial lo
cation s. Note that a variable, winding-tension profile can 
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TABLE 1—PROBLEM FORMULATION 

ALTMANN TRAMPOSCH 

Stress equation of equilibrium 

d(Jr ,, r, 1 r — + ay - a9 = 0 [1] 
dr 

P'+i.j ~ Pi,j 
Tij + Pij + (r, + t) '( - 0 [1] 

Stress-displacen ent relationship 

£, 
(1-v, 

£9 

lr I du u\ 
Ve v6r) \dr V0' r) 

(u du\ 
\-r + V-Jr) 

[2] 

(1 -VRE VGR) 

~Er /«,+ !,, - Uij Ui,j\ 
Pi.J = + v0r — 

l -vr e v e r \  t n / 

£e fuij u,+1 j - Uij 
H vre ; 

1 - VrB "er \ r> 

[2] 

Displacement equation of equilibrium 

d2u (, £e\ 1 du Ea u 
+  ^ l + P e r - v r e - j ; - - - 7 - 0  [3] 

«i+2./ - 2ui+lj + Uij 

/ £e\ 1 «i+ij - a/j £e 
^1+V9R - V,9—J - - £R7/=0 

«' = 1 .7 - 1 

[3] 

TABLE 2—BOUNDARY CONDITIONS 

ALTMANN TRAMPOSCH 

At the hub 

m 
EC 

Where 

"1 I-FPIJ ['1 

Where 

r - Z  
/. . . Hub compliance Ec q2 

(1 + V*) J2 + ( ' ~ "*) 

Ec. . . Hub elasticity 

"1 I-FPIJ ['1 

Where 

r - Z  
/. . . Hub compliance 

At the "current" outer wrap 

o-^R) = — ds [2] 
s 

Note: 

OY (s + ds) = 0 

See Fig. 1(a) 

Tj,jt 
Pj.j = — [2] 

ri 

Note: 

pj+ = 0 

See Fig. 1(b) 

be incorporated into the analysis by considering Tu, as a 
function of s in this boundary condition. 

Solution Technique 

An exact solution of the displacement equation of equi
librium 1A-3, which is a second-order, ordinary, differential 
equation, is given in 3A-1, with two unknown constants 
of integration. From the hub compliance's boundary condi
tion 2A-2, we obtain, using 3A-1 and 1A-2, one equation, 
3A-2, that relates the unknown constants A and B; from the 

current outer-wrap boundary condition 2A-2, we get a sec
ond equation, 3A-3, again using 3A-1 and 1A-2, that relates 
A and B. From these two equations, 3A-1 and 3A-2, we can 
fully determine u and, using 1A-2, also o> and a(). The final 
stress distribution in the fully wound tape, at a radial lo
cation r, is calculated by an integration over all the incre
ments added on that radial location to give the total radial 
and circumferential stress P(r) and T(r), respectively, in 
3A-4. There, R is the (normalized) outer-wrap radius of the 
fully wound tape reel (see Fig. 2). 
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Problem Formulation—Tramposch 

Unlike Altman, Tramposch in his analysis assumes that 

v, e = v0r (ErIE<)) . [1] 

In the plane-stress, axisymmetric, wound tape, we have two 
Young's moduli, £e and Er. Ee is the Young's modulus of 
the magnetic tape in the circumferential direction, in ten
sion, and Er is the Young's modulus in the radial direction, 
in compression. And two Poisson's ratios, vr9 and v0r. 
McCullough (77) comments that these four material con
stants cannot all be independent and they require that Eq. 
[1] hold. This assumption is used in Refs. (7) and (5), but 
not generally. A measurement of v9r = 0.23 is presented 
by Bogy et al (18). A measured value of vr9 = 0.05 is pre
sented by Umanskii et al (3), who then use Eq. [1] to get 
v9r. Those who do not accept Eq. [1], use 

vr9 = v9r , [2] 

for which there appears to be no theoretical or experimental 
justification. 

While we presented Altmann's analysis in the more gen
eral case, we present Tramposch's analysis, as he did, with 
Eq. [1] holding. Moreover, we do not use the normalized 
radial distance and radial displacement, as in the previous 
analysis. Tramposch, with a view to incorporating linear vari
ations in the width direction of tape thickness, hub diameter, 
and hub flexibility, obtains a discretized (on the wrap thick
ness) stress equation of equilibrium, 1T-1, relating the in
duced increment in radial pressure, TKJ, and hoop stress, 
Pij, in the ith wrap caused by the addition of the/h or the 
current outer wrap. Using the discretized stress-displace

ment relationship 1T-2, he obtains a three-point, finite-dif
ference, displacement equation of equilibrium, 1T-3, relat
ing the displacements produced in three adjacent inner wraps, 
caused by the addition of the/h wrap, which is the current 
outer wrap. The boundary conditions are again the effect 
of hub compliance, 2T-1, where we define /, the hub com
pliance, for the same cylindrical hub described in Altmann's 
analysis, and the current outer-wrap pressure, 2T-2. Again 
note that a variable, winding-tension profile can be incor
porated into this analysis by considering T,p the winding 
stress in the current outer wrap, as a function of j in this 
boundary condition. 

Solution Techniques 

Rewriting the displacement equation of equilibrium, 
1T-3, in the form given in 3T-1, the hub's boundary con
dition 2T-1, as given in 3T-2 using 1T-2, and the current 
outer-wrap boundary condition 2T-2, as given in 3T-3, again 
using 1T-2, produces a matrix equation, 3T-4, for the radial 
displacements m1>;, 1 =S i ; -I- 1, in the wound wraps, which 
can be solved algebraically. Recall at this stage that uJ+ \,} is 
defined as the displacement of the outer surface of the 
current outer wrap, as illustrated in Fig. 1(b). This approach 
differs slightly from that of Tramposch's. The solution for 
Uj.j is given in 3T-5. A summation over all the wraps wound 
on top of a specific wrap gives the total displacement for 
that wrap. Using the stress-displacement relationship 1T-2, 
Tramposch obtains the change in stress in the ilh wrap caused 
by the addition of the/h wrap. A summation over all the 
wraps wound on a specific wrap gives the final stress dis
tribution in that wrap, for each wrap in the fully wound 
reel of tape,. 3T-6. 

TABLE 3—PROBLEM SOLUTION 

ALTMANN T RAMPOSCH 

Displacement equation of equilibrium gives 

u(r) = AU"S + Br'^ + i) 

Where 

P2 = ^ 
Er 

8 = \ ̂0' _ Vr« ' T = V'8'? + P" 

+ DiUi.j - Ui+i.j = 0 ; i = 2,. . .,j . [1] 

Where 

/ £e 7 \ 7 _ t 
~~ ' V + Er 1 + (i-2) 7/ 1 + (i-2)7 *' b 

D' = 2 - 1 + (1-2)7 ' 

Hub boundary condition gives 

A + B = -jr [ar A + br B] [2] 
Ec 

Where 

Er Er 
Ar - (v0r + T)) , br - (V9r p) „ „ . 

(1 - vre V9r) (1 - "re V0r) 

q  =  - y  —  8  , p = - y  +  8  

D\ uyj - U'2,j = 0 [2] 

Where 

D| = 1 " (V* " ?) ' 

fEr 1 F = —— 
1 - Vre V9r b 
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TABLE 3—PROBLEM SOLUTION (CONTINUED) 

ALTMANN T RAMPOSCH 

"Current" outer wrap b oundary condition gives 

1 -Tw ar .45" + br Bs p] - = ds [3] 

Where 

Qj+1 Uj.j 4" Dj+i Uj+\j — bj+1 

%+i = 1 ~ VhTnpT)i •D 

( 1 ~ VR0 VER\ t 1 
=  ~ V  ^  ;  !  +  O - D T ^  

[3] 

CR,(R) 

<RE(R) = 

Solving for A and B gives 

_ 1 + mr~2y s'~" 7, 
r1-" ' (1 + ms~2y) ' s 

~(T | - p mr~2y) s1"* T, 
r1-" ' (1 + ms^) ' s 

[4] 

This Gives a Matrix Equation for wj, Ki<j+ 1 

TQ -1 0 0 0 0" 
— 02 ^2 — 1 0 

) ~fl3 D3 "1 

£e 
7 + f. — — Ec 

Eo y + 11 + — 
Ec 

•,i = i(ver+vr9S) 

0 0 0 0 

"1J 

Hi 
"/ +ij , 

PI "I 
-a,+ i Dy+I 

0 
fy+1 

Solve simply 

"t+i.j 
fy+i 

o T/h 
Dj+1 - a, + i 5; 

For i = j,j — 1, .... 1 

1 Ui.j = Si u,+1 ; s* = 
D* - <2* s*-

* = 2, . . 

[4] 

[5] 

The total radial and hoop stress distribution at a radial location r 
in the fully wound reel is, 

The total radial and hoop stress distribution in the ith wrap for a 
total of N wraps wound is, 

-27 r R  i - „  1 + mr~^ f 
p" = ^r~l 7 

T(r) = Tw — -

Tw 

+ ms~ 

(•q — p mr~2y) fR *'-1 
[5] 

Tw 

+ ms 7 s 

Put-Pu- | fc^ + V9r^l 
J=I+I L T N J 

T„.T„- £ L--£iSi^Sl 
j=i+1 L ' Er R, J 

[6] 

Agreement 

Thus, under the stipulated conditions, we can evaluate 
the initial stress conditions in tape wound on a reel. The 
above analyses have been programmed and both are found 
to agree. An immediate implication is that, since Altmann's 
model does not involve tape thickness but only the amount 
of tape stored, which is tape thickness multiplied by the 
number of wraps, tape thickness does not affect the initial 

stress field. This fact is borne out using Tramposch's model. 
From a programming point of view, Altmann's analysis is 
represented by a few lines of code involving numerical in
tegration, while that of Tramposch, even though it is only 
algebraic, is more complicated. Tramposch does, however, 
present an analysis to account for the across-the-width var
iations mentioned earlier, which offers reasonable exten-
dibility to his approach. 

On completion of the winding of a wrap, the internal 
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All maiiii 

Trjmposch 

''j+l.j 

Fig. 1—Altmann and Tramposch models 

stresses begin to relax, because of the viscoelastic nature of 
the magnetic tape (12), (19), (20). This process is accelerated 
at higher temperatures and humidities. Before presenting 
our predictions of the model, we must obtain the materials' 
properties needed for its use. This question is addressed in 
the next section. 

EXPERIMENTAL RESULTS 

Of the input needed for the analysis presented in the last 
section, the numerical value for the Young's modulus of 
the wound tape in the radial direction is the most uncertain. 
For magnetic tape, two values appear in the literature. In 
Refs. (3) and (13), a value of 1.1 GPa is presented, while in 
Refs. (4) and (6) a value of 0.17 GPa is given. The value of 
the radial modulus is dependent to a large extent on the 
amount of air entrapped during winding. The height of 
the air him h(0) at the nip during winding is given by Block 

Fig. 2—Fully wound tape geometry 

et al ( 2 1 )  as 

h( 0) = 2.233s(\xUw/T)213  ,  [3] 

where U is the winding speed 
p. is the viscosity of air 
T is the winding tension 
s is the current outer-wrap radius 
w is the tape width. 

The air-hlm height entrapped increases with winding 
speed, tape width, and current winding radius, while it de
creases with winding tension. Therefore, we expect for in
creased h(0) a reduced Er. This is verified experimentally 
in Ref. (6), where the effect of the winding speed on radial 
pressure in wound tape is observed. A reduced radial pres
sure was found for an increased winding speed, which fol
lows from a reduced radial modulus. The effect of a re
duced radial modulus on the radial pressure is discussed 
later under "Analysis Application." 

The following technique was used to measure E r .  A reel 
of magnetic tape was placed in a compression apparatus 
and the wound pack was compressed using a rigid, Hat, 
cylindrical indentor of circular cross section of small radius. 
The measured load deflection, recorded on a chart re
corder, was linear. Since the indentor radius was small, we 
approximated the tape's cylindrical surface as flat and es
timated the Young's modulus using the formula for a flat, 
circular indentor on an isotropic elastic half space, as 

d = 4 qa( 1 — vr92)/£rit [4] 

where d is the deflection 
q is the load 
a is the radius of the indentor 
E r  is the radial Young's modulus of the tape 
vr9 is the radial Poisson's ratio. 

Even though vr9 is unknown, the value of E r  is not very 
sensitive to a variation in a physically reasonable value of 
v^. Note that this formula is approximate. A finite element 
analysis of an indentor on a semi-infinite strip of orthotropic 
material showed that this formula underestimated the radial 
modulus by ten percent. Neglecting curvature has a lesser 
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effect. Typical values we measured were in the range 

E r  = 0.17 to 0.28 GPa [5] 

which was compatible with that found in Ref. (6). We con
sistently found that the lower value was obtained immedi
ately after winding, while the higher value was obtained 
from a tape that had been wound for a day or so. This we 
explain as entrapped air between the layers seeping out. 
After a day, Er decreased with time because the relaxation 
process then dominates. Pfeiffer (22) shows that for paper, 
E, is proportional to the pressure in the wound roll. This 
assumption, though more realistic, adds to the complexity 
o f  t h e  m a t h e m a t i c a l  p r o b l e m  ( 8 ) .  

Then, in an effort to measure the radial-stress distribu
tion in wound tape, we performed the following experi
ment. Tabs of magnetic tape were inserted periodically dur
ing tape winding. Once wound, these tabs were pulled out 
of the reel. We determined the interlayer pressure from 
the coefficient of friction and the pull force (3), (6), (10). 
An experiment to measure the hoop stress inside rolls of 
paper by splicing an especially made strain gauge directly 
into the web of paper is described by Hussain et al (23). We 
have not seen or attempted such an experiment on magnetic 
tape. 

To compare the theoretical and experimental results, we 
ran Altmann's model under the conditions of both Eqs. [1] 
and [2], with Er in the range given in Eq. [5], and with 

v8r = 0.3, [6] 

together with the geometry of the experimental tape reel. 
A comparison of the predicted radial stress and that mea
sured experimentally is given in Fig. 3. Much better agree
ment is obtained with Eq. [1] and we have used this. 

ANALYSIS APPLICATION 

Equipped with our analytical technique and the necessary 
materials' properties, we can look at the effect of the various 

Normalised Radius 

uses v„ = 0.3 arid H6 = 3.45 GPa. 

variables, such as pack geometry, hub geometry and stiff
ness, and the winding tension profile, on the stresses gen
erated during winding, and how they can be altered to 
minimize the probability of creating a stress profile that 
leads to magnetic tape defects. In the numerical examples 
we present 

a = 50.8 mm b = 69.85 mm c = 125.73 mm 
£e = 3.45 GPa v0r = 0.3 Er = 0.17 GPa 
Eh = 6.89 GPa vh = 0.33 th = 19.05 mm 

together with Eq. [1] holding, since these properties resem
ble those of common, magnetic tape-reels found today. Then 
we show the influence of tape-reel geometry, as well as hub 
geometry and material property variations on the tape's 
stresses. 

The outer hub radius, b, must be increased to permit an 
increase in the amount of tape stored. This is so because 
the inner wraps of tape, acting as a hub, go into compression 
circumferentially as more wraps are added. This effect can 
be seen in Fig. 4, where we look at the effect of storing 
more tape on our selected hub. If we increase R, we increase 
the radial stress as expected, but we also put the inner wraps 
into compression circumferentially. Thus, long lengths of 
tape are stored on larger diameter hubs. 

The hub should be of uniform stiffness across its width 
(24). Otherwise, it will cause nonuniform collapse along the 
width, producing a tension gradient in the tape and a non
uniform permanent distortion across the width of the tape 
with time. Our analysis assumes a hub of uniform stiffness. 

Hub thickness and material contribute to the hub's com
pliance. As mentioned in the introduction, if the hub is too 
compliant, it shifts its function to the inner wraps and puts 
them into compression circumferentially. If this compres
sion becomes so high as to overcome the friction between 
the layers, the tape will fold back on itself and buckle. To 
avoid this, we must increase the hub's stiffness by increasing 
its thickness or changing to a material with a higher Young's 
modulus. When compression occurs farther out in the pack, 
then we must increase the outer hub's radius or decrease 
the amount of tape in the pack, as mentioned earlier. 

Normalised Radius 

Fig. 4—Predicted effect on the tape's circumferential and radial stresses 
of the fully wound tape's outer wrap radius. 
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• Er = 68.9 GPa 

O Er = 6.89 GPa 

A E, = .689 GPa 

' Radial 

Normalised Radius 

Fig. 5—Predicted effect on the tape's circumferential and radial stresses 
of the Young's modulus of the hub. 

Fig. 6—Predicted effect on the tape's circumferential and radial stresses 
of the thickness of the hub. 

If the hub is too stiff, the high, tensile hoop stresses caused 
by winding remain in the tape near the hub. This goes 
unnoticed in narrow tape, but in wide tape, which has sig
nificant variations in mechanical properties across its width, 
these high hoop stresses produce tension bands or lanes in 
the tape. With time, as the stresses relax, these distortions 
become permanent and adversely affect the tape's perfor
m a n c e .  T h i s  e f f e c t  h a s  a l s o  b e e n  f o u n d  i n  p a p e r  ( 1 1 ) ,  ( 1 2 )  
and cellophane (10). Figure 5 shows the effect on the tape's 
hoop and radial stresses of a hub that is: too compliant, 
Er = 0.689 GPa; too stiff, Er = 68.9 GPa; and intermedi
ate, Er = 6.89 GPa. Figure 6 shows the same effect for dif
ferent hub thicknesses, that is, too compliant, 4 = 6.35 mm; 
reasonable, f/, = 19.05 mm; and more rigid, th = 31.75 mm. 
To avoid tension ridges, we advise not to use a too rigid 
hub, thereby keeping the amplitude of the tension ridges 
small and protecting the tape from more severe distortions. 

For a constant winding tension, we see from 3A-5 that 
the resultant stress is linearly proportional to the winding 
stress. For wide rolls, it is common to use decreasing winding 
tension with increasing tape winding radius. The effect on 
the hoop-stress profile of a linearly decreasing (or tapered) 
winding tension, which reduces to 0.6 times its initial value 
during tape winding is shown in Fig. 7. 

As mentioned earlier, changing the winding tension and 

Fig. 7—Predicted effect on the tape's circumferential and radial stresses 
of a tapered winding tension. 

speed has an effect on the amount of air entrapped and 
thereby changes the tape's radial Young's modulus. The 
effect of varying the tape's radial Young's modulus is shown 
in Fig. 8. There, with Eq. [1] holding, we look at the pre
dicted radial and hoop stresses in our basic tape reel as a 
function of Er. Note the significant difference between the 
hoop-stress distribution in the orthotropic tape reel (£, = 
0.17 or 0.345 GPa) as opposed to the isotropic one (E r  = 
£e = 3.45 GPa). Thus, the assumption of orthotropy leads 
to significantly different predicted behaviors than that of 
isotropy. 

The radial pressure of the wound tape must be sufficient 
to avoid slippage in the layers of tape during acceleration. 
Note from Figs. 5 and 6 that there is little increase in the 
radial pressure when the stiffness of the hub is increased. 
Thus, other considerations, such as thermal-stress effects, 
have to be taken into account to limit the reduction in the 
radial stress of the wound tape. This is considered in the 
next section. 

ENVIRONMENTAL STRESSES 

This section presents a model to predict the stress change 
induced in a reel of tape when it is subject to a temperature 
or humidity change from that at which it was wound. The 
stresses result from the mismatch in the thermal or hygro
scopic coefficient of expansion in (a) the hub and the tape, 
and (b) the tape in the radial and the circumferential di
rections. 

The analysis for a change in humidity is analogous to that 
for a change in temperature if we use the appropriate coef
ficients of hygroscopic expansion rather than those of ther
mal expansion. Therefore, we present only the thermal-
stress analysis. 

The following undesirable effects of thermal stresses have 
b e e n  n o t e d  i n  t h e  l i t e r a t u r e  ( 4 ) ,  ( 1 4 ) :  

Caused by a temperature rise: 

1. An increased circumferential compression in the inner 
layers, which may cause wrinkling of the tape near the 
hub 

2. An increased circumferential tension in the outer wraps 
of tape, which causes increased distortion 
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Fig. 8—Predicted effect on the tape's circumferential and radial stresses 
of the tape's radial modulus. 

3. Accelerated stress relaxation; any associated anelastic 
deformation occurs at a faster rate 

Caused by a temperature drop: 

A decrease in the radial stress, which increases the 
chance of interlayer slip on reel acceleration. Also, 
there is a critical stress at which the radial stress at a 
radial location can become zero, which has the danger 

of "layering" (which is a radial separation of the layers) 
the tape. 

Assumptions and Problem Formulation 

In addiuon to the assumptions made in the winding anal
yses, the following assumptions are made here: 

1. The reel of tape behaves as a continuum, which is 
assumed to be an orthotropic, linearly elastic solid. 

2. The materials' properties are independent of temper
ature and humidity in the range considered here. 

3. The temperature (and humidity) change does not vary 
through the wound tape. 

The problem is modeled as two concentric, thin, right-
circular cylinders, as shown in Fig. 2. Since neither the tape 
nor the hub is constrained in the axial direction, there are 
no thermal stresses in that direction. Because the model is 
axisymmetric, the in-plane components of the displacement 
(ur, Me) reduce to 

ur = M(r), Me = 0 [7] 

The plane-stress, stress-displacement relationship for an 
orthotropic, linearly thermoelastic solid (20) is 

diildr — arAT = (oy — Vre afl)/£7 , [8] 

ulr - aeAT = (a0-v0r ar)/£0 , [9] 

where ar and ot0 are the radial and circumferential coeffi

cients of thermal expansion, respectively, and AT is the 
temperature change. 

The stress equation of equilibrium is 

dajdr + (oy—a0)/r = 0 [10] 

Boundary Conditions 

The boundary conditions are that there are no applied 
tractions at the inner hub radius, r = a, or at the outer 
radius of the wound tape, r = c, while at the interface, r = b, 
the displacement u and the normal stress ay are continuous. 

We write these conditions as 

ar*(a) = 0 [11] 

<jrh(b) = (Tr'(b), uh(b) = u'(b) [12] 

crr'(c) = 0 [13] 

where superscripts h and t refer to the hub and tape, re
spectively. These boundary conditions are more general 
than those in Refs. (4), (13), (14). 

Problem Solution 

Substituting for the radial displacement M, using the stress-
displacement in Eqs. [8] and [9], in the stress equation of 
equilibrium of Eq. [10], we get the displacement equation 
of equilibrium 

(d2u/dr2) + (\lr)(duldr) — (EJEr)(vJ^) 

= [(ar + v9rae) - (E»/Er)(ae + vr0ar)] 

which governs the radial displacement M(r). 
For an isotropic hub 

Er = £e = £*,vre = ver = vh,ar = a0 = ah 

[14] 

[15] 

So, a solution to the displacement equation of equilibrium 
in Eq. [14] for the hub is, 

M*(r) = Cfr+Cj/r , (a =£ r =S b) , [16] 

where C\h and C2A are constants to be determined from the 
boundary conditions, Eqs. [11]—[13]. 

For the orthotropic tape, a solution to the displacement 
equation of equilibrium, Eq. [14] is, 

M'(r) = Ci'rp + C2'/rp , (fc=S r =S c) , [17] 

where C\ and C2' are constants to be determined from the 
boundary conditions in Eqs. [11]—[13] and (32 = £0/£r-

The case p = 1 and tx' =/= a0', that is, where magnetic tape 

is anisotropic only with respect to its thermal expansitivity, 
is not considered since, it does not seem physically realizable. 

Considering the boundary conditions in Eqs. [11]—[13] 
and the stress-displacement relationship in Eqs. [8] and [9], 
we find that the radial and circumferential components of 
the thermal stress in the tape are 



— r 
181 

<x'r = [£r/(l-vr9v9r)J {(P + v0r) CA~l 

-®-v9r)(C2Vrp+1) + [(1 + v9r)fl — K]AT} 

a'e  = [£e/(l -  v r9v9r)] {(1 + p v re) CA~ 1  

+ (l-p vr9)(C2Vrp + 1) + [(l+vr6)n-\K] AT} 

where 

and 

K =oirv9r + AE ; X = (A9 + VR9AR)/K 

n = [K(I-x p2)/(I-p2)] , o I) 

C\ = [ l/(p + v9r)][p — v0)(C27C2p) + V] 

C2' = -[(1 -Vr9V9r)/(p-V9r)] {[?lfe + (£*/£r)fe] 

/ [U4-(Eh/E r)Z2]} b2*+1 

where 

ii = (l-vA)(6/a)2 + (1+v*) 

= (l-vr9ver){[l/(p + v9r)(i/c)2p] + [l/(p-v9r)]} 

li = (a,, -  il)AT - [l/0 + v9 r)](Wc)p- ,y 

£4  = [(blc)^-\]l((blaf-\] 

& = [1/(1-vr9v9r) "/]{[(&/a)p-' — l]/[(6/a)2 - 1]} 

Y = [K -  (1+V9 R)  D] AT 

Numerical Results 

Little information, in general, is known about ar. In Ref. 
(14), we find that ar = 50 |xm/m/°C. 

Looking at the effect of variations in this value, and with 

a = 50.8 mm b = 69.85 mm c - 125.73 mm 

£9 = 3.45 GPa v9r = 0.3 a9 = 18 p.m/m/°C 

Eh = 6.89 GPa v/, = 0.33 a/, = 27 p.m/m/°C 

and Eq. [1] holding, we calculate the thermal-stress field 
induced in wound tape. 

We plot in Fig. 9 the change in the hoop stress, due to 
winding, of a temperature increase of AT = 25°Cforar = 27, 
54, and 180 |xm/m/°C. 

We plot in Fig. 10 the change in the radial stress, due to 
winding, of a temperature decrease of 25°C for these values 
of ar. Also, we show the change in the radial stress, due to 
winding, of a temperature decrease of 55°C for ar = 180 
p.m/m/°C is shown as an extreme case to illustrate the fact 
that the radial stress can indeed be reduced to zero on 
cooling. This phenomenon is, of course, dependent on hub 
material and geometry and, therefore, presents serious con
sideration on their selection. Storage of tape reels at higher 
temperatures and humidities that result in significant stress 
relaxation of the tape would produce the same effect with 
a lesser hub-tape thermal mismatch or temperature change. 

Interlayer slip is the tangential motion of the tape relative 

A a, = 180 jim/m/ ° C 

• a, * 54 pin/m/ ° C 

• ar = 27 /jin/m/ ° C 

O No Temperature Rise 

^ St 
Ar 

Normalised radius 

Fig. 9—Predicted effect on the tape's circumferential stress of a tem
perature rise of 25°C for various tape radial coefficients of ther
mal expansion. 

mvmlml'C 
o, • I HO pill/fit/ * C 
ar * 54 jn«/in/ ° C 

of- 27 firn/m/ ° C 

No Temperature Drop 

55* C Drop 

25* C 
Drop 

Fig. 10—Predicted effect on the tape's radial stress of a temperature 
drop of (a) 25°C for various tape radial coefficients of thermal 
expansion, and (b) 55°C for tape radial coefficient of thermal 
expansion a, = 180 pm/m/°C. 

to the hub. It is caused by rotational acceleration after ex
posure of the tape to environmental stress for a period of 
time. As we have seen, hub stiffness above a certain level 
has little effect on the radial stress, but any mismatch in the 
thermal coefficient of expansion between the hub and the 
tape can have a far greater effect on its value. In extensive 
testing, we found that a hub with adequate compliance and 
the least thermal mismatch allowed us to attain the maxi
mum rotational acceleration before tape-to-tape slippage 
occurred (25), (26). 

SUMMARY 

In this paper, we have contrasted the existing analytical 
techniques to calculate the initial stress field generated dur
ing the winding of tape on a hub. We show that while the 
solution methods differ in ease of use and extendibility, 
their predictions nonetheless agree. We suggest an approx
imate technique to measure the radial Young's modulus of 
a wound tape, which gives the tape's radial modulus as being 
l/20th of the tensile modulus of a strip of tape. Using a 
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pull-tab test, we measured the radial stresses found inside 
wound tape. These measured data agree very well with the 
analytical predictions when we restrict the ratio of the tape 
reel's radial Poisson's ratio to the circumferential Poisson's 
ratio to be that of the tape reel's radial Young's modulus to 
the circumferential Young's modulus. 

On the basis of this analysis, guidelines for hub design 
and winding-tension profiles that can prevent the occur
rence of commonly known winding defects are given. An 
analysis of the thermal stress field created in the wound 
tape by a change in temperature has been described. The 
lack of a reasonable value for the radial coefficient of ther
mal expansion for the wound tape allows only a study of 
the induced thermal-stress field. However, this is sufficient 
to indicate the application of this analysis to hub geometry 
and material selection to minimize the adverse effects of 
thermal stresses on the wound magnetic tape. 
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