
Seminar in computer History CS236801Seminar in computer History CS236801
��

YanivYaniv FrishmanFrishman

Seminar in computer History CS236801Seminar in computer History CS236801 ��
�� � � � �� � � � �� � � � � 	� � � � 	�� � � � �� � � � ��
 � � 	 �
 � � 	 ��� � � � � 	 � � �
 � � �
 � � 	
 � � � � � � 	 � � �
 � � �
 � � 	
 � �

Seminar in computer History CS236801Seminar in computer History CS236801 ��
� � � � � � � � � � �� � � � � � � � � � � ! � � � � " # � � � $ � " %! � � � � " # � � � $ � " % & ' � (" � � �) � $ � (� � � ($ � * * (+ � "& ' � (" � � �) � $ � (� � � ($ � * * (+ � " & ' , - ' � (* " $ (. � $ / � �& ' , - ' � (* " $ (. � $ / � �� � � �) (� 0 1 $ � � � �� � � �) (� 0 1 $ � � � � - (* " 2 � ($ � � � $ � "- (* " 2 � ($ � � � $ � " � 1) /) / � � 0 � �� 1) /) / � � 0 � � 3 0 � � � 0 �) 2 � (" � � �) � $ � (� �3 0 � � � 0 �) 2 � (" � � �) � $ � (� �� �) (1 � � . � "� �) (1 � � . � " 3 4 � � (" � *3 4 � � (" � *

Seminar in computer History CS236801Seminar in computer History CS236801 55
6 76 7 8 	 9 : � � � 9 � � 	 �8 	 9 : � � � 9 � � 	 �; 7; 7 < � 9 � � = � � =< � 9 � � = � � => 7> 7 ? � � � � @ � : � 	 A? � � � � @ � : � 	 A �� � � 	 � B � � � � �
 A � C � � � � � � � �� � 	 � B � � � � �
 A � C � � � � � � � �D 7D 7 < 	 � 9 �< 	 � 9 �E 7E 7 F � � � � 9 � � =F � � � � 9 � � =

Seminar in computer History CS236801Seminar in computer History CS236801 GG
�� H B � � 9 � � 6 I J K
 L M � � � � � @ 	 � � �
 �
 � A > JH B � � 9 � � 6 I J K
 L M � � � � � @ 	 � � �
 �
 � A > J ��N � �
N � �
OO P Q " �) � � � * " � . � $ �P Q " �) � � � * " � . � $ ��� � � � � @ � 9 � � 	 � 	
 �

 � � � A � �

 R � � � A � � � N �� � � � @ � 9 � � 	 � 	
 �

 � � � A � �

 R � � � A � � � N �� � � � = :� � � � = :�� S : � 	 � � 	 � �
 � 	 � 9 � � � �
 	 � A � 9 � � A A 	 �

 � � =S : � 	 � � 	 � �
 � 	 � 9 � � � �
 	 � A � 9 � � A A 	 �

 � � =� N � � � � � �
� N � � � � � �

Seminar in computer History CS236801Seminar in computer History CS236801 TT
�� � � 	 � 9 � � � � � U � �
 � 	 � 9 � � � �
� � 	 � 9 � � � � � U � �
 � 	 � 9 � � � �
OO V " " � � � � � $ (� � " � � � " � � � � � � � $ � � . � � $ � �V " " � � � � � $ (� � " � � � " � � � � � � � $ � � . � � $ � ��� W
 � � = A � � N � � � 	 � 9 �
 � � � � � � : X � A A R � � :W
 � � = A � � N � � � 	 � 9 �
 � � � � � � : X � A A R � � :9 � 	 	 B Y9 � 	 	 B Y

Seminar in computer History CS236801Seminar in computer History CS236801 ZZ
�� L � 9 � � A � A � � � B � @ � : � H [L � 9 � � A � A � � � B � @ � : � H [�� K @ � � � � 	 �
K @ � � � � 	 �
�� �
 � = � � A @ 	 � � � : � = 	 � � � A �
 � � = �
 � = � � A @ 	 � � � : � = 	 � � � A �
 � � =� 	 � �
 �
 � � 	
� 	 � �
 �
 � � 	
�� � � � � N � � � @ 6 K K \ K K K � A A � � � � �
 � � 	
 � 9 � � A� � � � N � � � @ 6 K K \ K K K � A A � � � � �
 � � 	
 � 9 � � A�� � � 	 � � � � � 	 B � @ D] R � 	 A
� � 	 � � � � � 	 B � @ D] R � 	 A
�� 8 N � � � E K � � 9 : � � �

 � � A8 N � � � E K � � 9 : � � �

 � � A

Seminar in computer History CS236801Seminar in computer History CS236801 ^^
�� L _ ` @ � � R
 A � 	 � 9 � � B @ 	 � � � : � A � C � 9 � � � � � � � 	 BL _ ` @ � � R
 A � 	 � 9 � � B @ 	 � � � : � A � C � 9 � � � � � � � 	 B�� � � � � � � � � � � � � 	 	 � � �
� � � � � � � � � � � � 	 	 � � �
�� a b
 � � � � 	 � @ � 	 9 � 	 	 � 9 � : � � A � � � = X � 	 � � 	 � � B Ya b
 � � � � 	 � @ � 	 9 � 	 	 � 9 � : � � A � � � = X � 	 � � 	 � � B Y�� � : � � � c �
 � � = � � L M � L _ ` 9 : � � � � � 9 �
 � � � 	 �� : � � � c �
 � � = � � L M � L _ ` 9 : � � � � � 9 �
 � � � 	 �� : � � � 9 � � � � � � � < <� : � � � 9 � � � � � � � < < �� 6 X d 6 ; K] Y6 X d 6 ; K] Y

Seminar in computer History CS236801Seminar in computer History CS236801 ee
�� � C � � � � � A N B � L H
 � � A � � �
 � C � � � � � A N B � L H
 � � A � � �
�� W
 � � = 6 K ; D U 6 ; K D � ? HW
 � � = 6 K ; D U 6 ; K D � ? H�� < � � � � � � � �< � � � � � � � ��� S � � � � � � � A f 	 � C � � BS � � � � � � � A f 	 � C � � B

Seminar in computer History CS236801Seminar in computer History CS236801
� g� g

8 � � � � � A � � �8 � � � � � A � � � hh
 � �
 � �: � � � c _ _: � � � c _ _
 � � 9 � R � 	 7 � C � 	
 � = � � 7 9 � �
 � � 9 � R � 	 7 � C � 	
 � = � � 7 9 � � __

Seminar in computer History CS236801Seminar in computer History CS236801
� �� �

�� L M � 	 � � � � A � �
 9 � � � � � � 	
L M � 	 � � � � A � �
 9 � � � � � � 	
OO � (" � � �) � $ � (� � � � � " i j � � 0 0 � (k � *� (" � � �) � $ � (� � � � � " i j � � 0 0 � (k � *�� � � � � A � � c � � � � A � � cOO l m ll m l nn P + � � � (* " 2 � ($ * � � � � "P + � � � (* " 2 � ($ * � � � � "
Seminar in computer History CS236801Seminar in computer History CS236801

� �� �
�� � � 9 � � 	 � = � A � � A � @ � 9 � � � � � N B � : � 9 �
 � � � � 	
� � 9 � � 	 � = � A � � A � @ � 9 � � � � � N B � : � 9 �
 � � � � 	
�� < � N � �
 : � A A � � � � � � A
 � � 9
 � � 9 : � � � � � � � 	< � N � �
 : � A A � � � � � � A
 � � 9
 � � 9 : � � � � � � � 	�� � A � � A � oo � A � C � � � �
 � � 9 � � � � p � A a b � � A S b� A � C � � � �
 � � 9 � � � � p � A a b � � A S b

Seminar in computer History CS236801Seminar in computer History CS236801
� �� � P q r � $ + (� " * � � . $ /P q r � $ + (� " * � � . $ / s Q 2 Q Q Q) (� 0 1 $ � � � � � � $ � * * � "s Q 2 Q Q Q) (� 0 1 $ � � � � � � $ � * * � " - 1)) � � � � 1 *- 1)) � � � � 1 * nn 0 � � � (� � � �) � 2 � $ (� � . � 2 0 �) t � . � � . 20 � � � (� � � �) � 2 � $ (� � . � 2 0 �) t � . � � . 20 � �) �0 � �) � i � 0 � (k � � � � $ � � � * (. �) � � ") (� � � � � (� u � � " 1) � "i � 0 � (k � � � � $ � � � * (. �) � � ") (� � � � � (� u � � " 1) � "$ / �) u) * � $ � � � $ (P v w$ / �) u) * � $ � � � $ (P v w � �) � (� �)� �) � (� �) vv

Seminar in computer History CS236801Seminar in computer History CS236801
� 5� 5

xx y z { | } ~ � � � � } � � � � � | � � � � � � � } } � { � � �y z { | } ~ � � � � } � � � � � | � � � � � � � } } � { � � �� } � � � � �� } � � � � �xx � � � � � � � � � z � � � � } � � � � � ~ � � � }� � � � � � � � � z � � � � } � � � � � ~ � � � }� � � � �� � � � �xx � � � � } } � � � � } } � z � � � � � � � { � � � � z �� � � � } } � � � � } } � z � � � � � � � { � � � � z �} � | | { � � z { | } { � | � �} � | | { � � z { | } { � | � � � � � � � �� � � � � �

Seminar in computer History CS236801Seminar in computer History CS236801
� G� G

�� � � �
 � 	 � 9 � � A @ 	 � � �
 � 	 � �
 � @� � �
 � 	 � 9 � � A @ 	 � � �
 � 	 � �
 � @9 � � � � 9 � � � A � � �
9 � � � � 9 � � � A � � �
OO 4 �) / 0 � � � (� � � " � � 0 �) � � �) � 1 �) $ � (�4 �) / 0 � � � (� � � " � � 0 �) � � �) � 1 �) $ � (��� � � A � � �
 � � � = = � A � � � � � 9 : �

 �
� � A � � �
 � � � = = � A � � � � � 9 : �

 �
�� b � 	 � R 	 � � 9 � � � � 9 � � � �b � 	 � R 	 � � 9 � � � � 9 � � � ��� S � � � � c � � N � A A � A � � � � : � 	S � � � � c � � N � A A � A � � � � : � 	� � � � � � � � �� � � � � � � � ��� � 9 � N � 9 @ � � � X C � � � � � Y \ ; E K� 9 � N � 9 @ � � � X C � � � � � Y \ ; E K� � � � A
� � � � A

Seminar in computer History CS236801Seminar in computer History CS236801

� T� T
�� � � 	 B 9 : � � � c d 6 �]� � 	 B 9 : � � � c d 6 �]�� < 	 � 9 � A 	 � � � � A � � d 6 K] � @ � � 	 � @ � R B � � 	
< 	 � 9 � A 	 � � � � A � � d 6 K] � @ � � 	 � @ � R B � � 	
�� < 	 � 9 �
 : � 9 � � A � : � � � A �
 � 	 B \ � � � B � 	 A � 	
< 	 � 9 �
 : � 9 � � A � : � � � A �
 � 	 B \ � � � B � 	 A � 	
�� ` � 9 � � = � � � �
 � � � � � �
 � @ � : � 9 � � � � � � 	` � 9 � � = � � � �
 � � � � � �
 � @ � : � 9 � � � � � � 	� � 	 � � �
 � p � R � 	 � � 	 � C � A � � 9 � 	 	 � 9 �� � 	 � � �
 � p � R � 	 � � 	 � C � A � � 9 � 	 	 � 9 �

Seminar in computer History CS236801Seminar in computer History CS236801
� Z� Z

�� � � � � � � A � � � � 	 B � 	 � C � � � � A : � = :� � � � � � A � � � � 	 B � 	 � C � � � � A : � = : �� � � C � �� � C � �� 	 � = 	 � � � � � =� 	 � = 	 � � � � � =�� S � � � � � \ � �
 B � � � � A � 	
 � � � A 9 � � � � � � 	S � � � � � \ � �
 B � � � � A � 	
 � � � A 9 � � � � � � 	�� f � C � 	 �
 � � � ` � �
f � C � 	 �
 � � � ` � �

Seminar in computer History CS236801Seminar in computer History CS236801

� ^� ^
�� ` � � c �
 � � � 	 � � � 9 � � � � � B � : � � N � � = : �` � � c �
 � � � 	 � � � 9 � � � � � B � : � � N � � = : �� � � � 9 � � � � � � � 	
� � � � 9 � � � � � � � 	
 \ � A A � A
 � � 9 � � � � p � A a b \ � A A � A
 � � 9 � � � � p � A a b S b � � A
 � � A � : � � � � A � 	 � : � � 	 � R � � � N � �S b � � A
 � � A � : � � � � A � 	 � : � � 	 � R � � � N � ��� ? � � � � C � A � � � @ A � C � � � � � � =
 � � 9 � � � � p � A S b? � � � � C � A � � � @ A � C � � � � � � =
 � � 9 � � � � p � A S b�� ? � � = � A � 9 	 �

 � � �
 � = � � � � � @
 � 9 � � � B c? � � = � A � 9 	 �

 � � �
 � = � � � � � @
 � 9 � � � B cOO � � " �) � * � � � $ � 1 � � � $ � $ � (�� � " �) � * � � � $ � 1 � � � $ � $ � (�OO - � � * * r 1 � � � � � � � �) (� " �- � � * * r 1 � � � � � � � �) (� " �OO i � " 1 � $ � � � *) (� $ � (* * � � �i � " 1 � $ � � � *) (� $ � (* * � � �

Seminar in computer History CS236801Seminar in computer History CS236801
� e� e

�� � S� S �� � �
 � A � � � � � 	 � � � � : � � � 	 � 9 � �
 � � = � � � = : � � � =� �
 � A � � � � � 	 � � � � : � � � 	 � 9 � �
 � � = � � � = : � � � =�� � � � � A �
 � � � B � � � � � � � � � � : �
 � 9 9 �

 � @ � : �� � � � A �
 � � � B � � � � � � � � � � : �
 � 9 9 �

 � @ � : �M 	 � � A R � B : � �M 	 � � A R � B : � � ¡¡ 8 � : � 	 �
 � � � �8 � : � 	 �
 � � � � ¢¢�� � � � � � � � � A � < <� � � � � � � � A � < < �� � 8 \ � � � 	 � A � 9 � A 6 I £ E� 8 \ � � � 	 � A � 9 � A 6 I £ E�� 8 � � � � 9 � � � � �
 � � 9 � @ � 9 9 � � � 	 � � � � � � �8 � � � � 9 � � � � �
 � � 9 � @ � 9 9 � � � 	 � � � � � � �
Seminar in computer History CS236801Seminar in computer History CS236801 � g� g

�� ` � � � @ � : � � �
 � � � @ � � � � � � � � 9 � � � � � � 	
` � � � @ � : � � �
 � � � @ � � � � � � � � 9 � � � � � � 	
�� H : � � � 9 : � � � � : � � � � A � � � � �H : � � � 9 : � � � � : � � � � A � � � � � ��
 : � 	 � � = 9 � � � � �
 : � 	 � � = 9 � � � � �OO ¤ / � r � � � � (� $ / � V ¥ l V ¦ 4 ¤¤ / � r � � � � (� $ / � V ¥ l V ¦ 4 ¤OO ¤ / � 0 * � $ � (� � 1 0 (� + / �) / � � � u � 0 0 * �) � $ � (� � + � � �¤ / � 0 * � $ � (� � 1 0 (� + / �) / � � � u � 0 0 * �) � $ � (� � + � � �� � � � $ " � k � * (0 � " �� � � � $ " � k � * (0 � " �§§ ¨ © ª « ¬¨ © ª « ¬§§ ® ¯ ® ¯§§ ° ¬ ± ¨ ² ²° ¬ ± ¨ ² ²§§ ³ ® ´ µ ¶ ·³ ® ´ µ ¶ ·

Seminar in computer History CS236801Seminar in computer History CS236801 � �� �
�� 8 � � � � 	 � C � A a b � � � � � � � � � � � � � � � @ � : �8 � � � � 	 � C � A a b � � � � � � � � � � � � � � � @ � : �< << < �� JJ�� S : � 	 � A � : �
 � � � > JS : � 	 � A � : �
 � � � > J �� N � � R � 	 A � � � = � :N � � R � 	 A � � � = � :�� S � � = : � � B � U � � � A � A � : � � �
 � 	 � 9 � � � �
 � �S � � = : � � B � U � � � A � A � : � � �
 � 	 � 9 � � � �
 � �

Seminar in computer History CS236801Seminar in computer History CS236801 � �� �
�� H : � � 	 � = � � � � < <H : � � 	 � = � � � � < < �� 6 K � 	 � 9 �

 � 	 R �
 � : �6 K � 	 � 9 �

 � 	 R �
 � : �] 8 6 K] 8 6 K

Seminar in computer History CS236801Seminar in computer History CS236801 � �� �
�� M � 9 � � � � � �
 R � 	 � R 	 � � � � A \
 � � �M � 9 � � � � � �
 R � 	 � R 	 � � � � A \
 � � � ��� � � � � � � � A � � � � @ � 9 � � 	 � � = � 	 � 9 �

� � � � � � � � A � � � � @ � 9 � � 	 � � = � 	 � 9 �

Seminar in computer History CS236801Seminar in computer History CS236801 � 5� 5
��] 8 6 K c � � U � � � � � � � � � � � � 	 B � @ ; E J] 8 6 K c � � U � � � � � � � � � � � � 	 B � @ ; E J] R � 	 A
] R � 	 A
�� � � � � = � � � � � 9 � �
 �
 � � A � @ ;
 � �
 � @� � � � = � � � � � 9 � �
 �
 � � A � @ ;
 � �
 � @� 	 � � � 9 � � � � 	 � � � 9 � � � � � 	 � = �
 � � 	
� 	 � � � 9 � � � � 	 � � � 9 � � � � � 	 � = �
 � � 	
 �� ¸ N �
 �¸ N �
 �� � A N � � � A
 ¸ 	 � = �
 � � 	
� � A N � � � A
 ¸ 	 � = �
 � � 	
�� H : �
 � � � � R � A
 � � � 	 � � � 	 � � AH : �
 � � � � R � A
 � � � 	 � � � 	 � � A �� � � � B
 : � 	 � � N � �� � � B
 : � 	 � � N � �9 � A �
 � = � � � � � � A 	 � � A9 � A �
 � = � � � � � � A 	 � � A �� R 	 � � � A � � � _
 � � 9 �R 	 � � � A � � � _
 � � 9 �
 � = � � � �
 � = � � � �

Seminar in computer History CS236801Seminar in computer History CS236801 � G� G
�� 8
 � 9 9 �

 � 	 � � � : � < <8
 � 9 9 �

 � 	 � � � : � < < �� ���� b �
 � �
 � � 	 � � � 	 � = 	 � � � : � � � �
b �
 � �
 � � 	 � � � 	 � = 	 � � � : � � � �
� 	 � A � 9 �

 � 	
� 	 � A � 9 �

 � 	
�� � : � R � 	 � A ¹
 � �
 �
 � 9 9 �

 @ � � @ � � � � B � @� : � R � 	 � A ¹
 � �
 �
 � 9 9 �

 @ � � @ � � � � B � @� � � � 9 � � � � � � 	
� � � � 9 � � � � � � 	
�� b �
 	 � � � � 9 � A N B � 8 [b �
 	 � � � � 9 � A N B � 8 [�� 6 66 6

Seminar in computer History CS236801Seminar in computer History CS236801 � T� T
�� 8 : � = : � B8 : � = : � B �� � 	 � : � = � � � � � �
 � 	 � 9 � � � �
 � � c� 	 � : � = � � � � � �
 � 	 � 9 � � � �
 � � c` � � 	 � � � � � º � � � 	 � � A � 9 9 �

 � � A �` � � 	 � � � � � º � � � 	 � � A � 9 9 �

 � � A ��� 8 � B8 � B � A A 	 �

 � � = � � A �� A A 	 �

 � � = � � A � R � � � A R � 	 � R � � : � � BR � � � A R � 	 � R � � : � � B� � � 	 � � � � �� � � 	 � � � � �

Seminar in computer History CS236801Seminar in computer History CS236801 � Z� Z
�� » � R � 	 9 : � � � 9 � � 	 � c � � A � A � 9 � � � A L _ ` N �
» � R � 	 9 : � � � 9 � � 	 � c � � A � A � 9 � � � A L _ ` N �
�� L � : � A � � � B � � � � � 	 B N �
 \ � : �L � : � A � � � B � � � � � 	 B N �
 \ � : � W � � N �
W � � N �
�� L _ ` A � C � 9 �
 � 	 � � � � � 	 B � � � � � AL _ ` A � C � 9 �
 � 	 � � � � � 	 B � � � � � AOO ¦ (� � � " � (� � 0 �) � � * i ¼ 3 � � � $ � 1) $ � (� �¦ (� � � " � (� � 0 �) � � * i ¼ 3 � � � $ � 1) $ � (� ��� F � � 	 � � C � �
 � @ � � � � 	 	 � � �
F � � 	 � � C � �
 � @ � � � � 	 	 � � �
�� L � � � 	 	 � � � � � = A � C � 9 � � � �
L � � � 	 	 � � � � � = A � C � 9 � � � �
� �
 � A A 	 �

 � � � : � N �
� �
 � A A 	 �

 � � � : � N �

Seminar in computer History CS236801Seminar in computer History CS236801 � e� e
 V � � ½ $ � � � � (� (� $ / � l m lV � � ½ $ � � � � (� (� $ / � l m l nn P P 2 + � $ / � � � � � � � � �P P 2 + � $ / � � � � � � � � �0 � � � (� � � �) �0 � � � (� � � �) � m � � � . � r � . � � P ¾ ¿ Àm � � � . � r � . � � P ¾ ¿ À Á V Â ÃÁ V Â Ã ÄÄ � � $ 1 � *� � $ 1 � * ÅÅ " " � � � �" " � � � � �� ÆÆ $ � � � � (�$ � � � � (� # (� l m l# (� l m l nn P P %P P % Á V Â + � � � r * � $ (� ½ �) 1 $ � l m lÁ V Â + � � � r * � $ (� ½ �) 1 $ � l m l nn P P � � � $ � 1) $ � (� � � �P P � � � $ � 1) $ � (� � � �� Ç q � � � $ � � " (� P w� Ç q � � � $ � � " (� P w nn r � $ � " " � � � � � 0 �) �r � $ � " " � � � � � 0 �) � l m ll m l nn P P) (� 0 � $ � r � * � $ u r � $ $ / � $ + � � * � $ � � " � (0 0 � "P P) (� 0 � $ � r � * � $ u r � $ $ / � $ + � � * � $ � � " � (0 0 � "

Seminar in computer History CS236801Seminar in computer History CS236801 � g� g
�� � � � � � =
 � � � � N � � @ �
 � � � � � � � � � 	 B
 � � �� � � � � =
 � � � � N � � @ �
 � � � � � � � � � 	 B
 � � �� � N � N � = = � 	 N B
 R � � � � � = A � � � @ 	 � � �� � N � N � = = � 	 N B
 R � � � � � = A � � � @ 	 � � �
 � � R � 	 A �
 �
 � � R � 	 A �
 ��� ` C � 	 � � � � � 	 @ � 	 � � � 9 � � � �
 � 	 � � �
 � B` C � 	 � � � � � 	 @ � 	 � � � 9 � � � �
 � 	 � � �
 � BA � = 	 � A � AA � = 	 � A � A�� W
 � 	 �
 � � � � R � 	 � � : � �
 R � � � � � = �
 A � � �W
 � 	 �
 � � � � R � 	 � � : � �
 R � � � � � = �
 A � � ��� H : � � 8 [� 	 � C � A � A � > ;H : � � 8 [� 	 � C � A � A � > ; �� N � � C � 	 � � � � � A A 	 �

N � � C � 	 � � � � � A A 	 �

�� � � � � 	 B A � C � A � A � � � � � � = �
� � � � 	 B A � C � A � A � � � � � � = �

Seminar in computer History CS236801Seminar in computer History CS236801 � �� �
�� S � U � � � � = � � � 	 � � � � 	 � �
 � > ;S � U � � � � = � � � 	 � � � � 	 � �
 � > ; �� N � � 	 � = �
 � � 	
N � � 	 � = �
 � � 	
�� ? � 9 :
 � � � @ ; E K � �
 � 	 � 9 � � � �
? � 9 :
 � � � @ ; E K � �
 � 	 � 9 � � � �
�� H R � � � A � : 	 � � � � � 	 � � A @ � 	 � � �
H R � � � A � : 	 � � � � � 	 � � A @ � 	 � � �
�� ? � = �
 � � 	 � 	 � � � � 	 B � � � 	 � � A � � � �
 �? � = �
 � � 	 � 	 � � � � 	 B � � � 	 � � A � � � �
 �� �
 � 	 � 9 � � � �
� �
 � 	 � 9 � � � �
�� H : � � � � � � �

 � � � � � � � L S � � 	 � 9 �

 � � =H : � � � � � � �

 � � � � � � � L S � � 	 � 9 �

 � � =� 	 9 : � � � 9 � � 	 �� 	 9 : � � � 9 � � 	 �

Seminar in computer History CS236801Seminar in computer History CS236801 � �� �
�� S � 9 9 �

 @ � � c 6 K K \ K K K � � � �
 � � 6 K B � � 	
S � 9 9 �

 @ � � c 6 K K \ K K K � � � �
 � � 6 K B � � 	
�� f � � � 	 � � � � 	 � �
 � 9 � � � � � � 	 � : � � 9 � � � R � � :f � � � 	 � � � � 	 � �
 � 9 � � � � � � 	 � : � � 9 � � � R � � :
 � � � A � 	 A � � � = � � = �
 � � A S b
 � � � A � 	 A � � � = � � = �
 � � A S b�� M � = = �
 � � � � � 9 � � � � � = � � � � 	 � � = � � A
 9 � � � 9 �M � = = �
 � � � � � 9 � � � � � = � � � � 	 � � = � � A
 9 � � � 9 ��� < 	 � 9 �

 � � 	 � � A � � d 6 ; K]< 	 � 9 �

 � � 	 � � A � � d 6 ; K]�� � : � � � � � � � = : � �
 � 	 C � � A � C �
 � � � � � � : �� : � � � � � � � = : � �
 � 	 C � � A � C �
 � � � � � � : �� � 	 �
 � � 9 � \ � � � � � � � � C � \ 9 : � � � 9 � � @ � 	 �
� � 	 �
 � � 9 � \ � � � � � � � � C � \ 9 : � � � 9 � � @ � 	 �

Seminar in computer History CS236801Seminar in computer History CS236801 � �� �
�� H : � � � 	 @ � 	 � � � 9 � � @ � 8 [6 6 _ £ � K N � 9 � � �H : � � � 	 @ � 	 � � � 9 � � @ � 8 [6 6 _ £ � K N � 9 � � �� � � R � �
 � L < S X � � � � � � � � �
 � 	 � 9 � � � �
 � � 	� � � R � �
 � L < S X � � � � � � � � �
 � 	 � 9 � � � �
 � � 	
 � 9 � � A Y
 � 9 � � A Y�� � � � � 	 �
 � A �
 � N � � 9 : � � 	 � � @� � � � 	 �
 � A �
 � N � � 9 : � � 	 � � @� � 	 @ � 	 � � � 9 �� � 	 @ � 	 � � � 9 �

Seminar in computer History CS236801Seminar in computer History CS236801 � G� G
�� H : � � 8 [8 	 9 : � � � 9 � � 	 � � � � � � � � � � N � = � �H : � � 8 [8 	 9 : � � � 9 � � 	 � � � � � � � � � � N � = � �R � 	 � � � � 9 � � � � � � 	 R � � : > ;R � 	 � � � � 9 � � � � � � 	 R � � : > ; �� N � �N � �� 	 9 : � � � 9 � � 	 �� 	 9 : � � � 9 � � 	 ��� L � � = � c � �
 � A � � @ � 8 [L � � = � c � �
 � A � � @ � 8 [�� 6 6 _ £ � K6 6 _ £ � K

Seminar in computer History CS236801Seminar in computer History CS236801 � T� T
�� � 8 [� 8 [�� 6 6 _ £ � K � � � 	 � A � 9 � A6 6 _ £ � K � � � 	 � A � 9 � A

Seminar in computer History CS236801Seminar in computer History CS236801 � Z� Z
�� � 6 7 K � @ � : �� 6 7 K � @ � : � � � S� � S � � � 	 � � � � =
 B
 � � �
 : � �
� � � 	 � � � � =
 B
 � � �
 : � �
�� F ` ? H ? 8 » L � � � AF ` ? H ? 8 » L � � � A � � � � � � � � � � \ � J D � � = � N B � �\ � J D � � = � N B � �� � � � 	 B � � � � � \ � � � C � � � A 	 � C � � � 	 � � 	 � � B� � � � 	 B � � � � � \ � � � C � � � A 	 � C � � � 	 � � 	 � � B
 9 : � A � � � 	 \ � 	 � 9 �

 R � � � � 	 \ � 	 � 9 �

 9 : � A � � � 	 \ � 	 � 9 �

 R � � � � 	 \ � 	 � 9 �

A � � � � � � � _ 9 	 � � � � � � _ 9 � � � 	 � �A � � � � � � � _ 9 	 � � � � � � _ 9 � � � 	 � �

Seminar in computer History CS236801Seminar in computer History CS236801 � ^� ^
�� L � � 	 � A � 9 � � � � � @ � : �L � � 	 � A � 9 � � � � � @ � : � � 8 [� 8 [�� 6 6 _ £ E K6 6 _ £ E K�� H : � � � A �
 � 	 B ¹
 @ � 	
 � � � 	 = � S 9 � � � L � � � = 	 � � � � �H : � � � A �
 � 	 B ¹
 @ � 	
 � � � 	 = � S 9 � � � L � � � = 	 � � � � �X � S L Y > ;X � S L Y > ; �� N � � � � � � 9 � � � � � � 	N � � � � � � 9 � � � � � � 	

Seminar in computer History CS236801Seminar in computer History CS236801 � e� e
�� � 8 [� J K K c � : � @ � 	
 � � 8 [� � � � � � � � � � � � � � � �� 8 [� J K K c � : � @ � 	
 � � 8 [� � � � � � � � � � � � � � � �� � � � � 9 : � � � � = B� � � � � 9 : � � � � = B

Seminar in computer History CS236801Seminar in computer History CS236801 5 g5 g
�� � 8 [
 � � � � � � L 7� 8 [
 � � � � � � L 7�� 8 � � R � 	 @ � � \
 � � = � �8 � � R � 	 @ � � \
 � � = � � �� �
 � 	 9 � � � � � � � =
 B
 � � ��
 � 	 9 � � � � � � � =
 B
 � � �
 � � � � 	 � � � = � : � � 	 � @ �

 � � � � � �
 � 	
 � � � � 	 � � � = � : � � 	 � @ �

 � � � � � �
 � 	

Seminar in computer History CS236801Seminar in computer History CS236801 5 �5 �
�� � � 9 	 � � 8 [c � 8 [� � � � � S L 9 : � �� � 9 	 � � 8 [c � 8 [� � � � � S L 9 : � �

Seminar in computer History CS236801Seminar in computer History CS236801 5 �5 �
�� H : �H : � � 8 [S � � � � � �� 8 [S � � � � � � ; K K K �
 � � � 	 � A � 9 � A 7; K K K �
 � � � 	 � A � 9 � A 7�� L f L H 8 � ¹
 L f L H 8 � ¹
 @ � 	
 � R � 	 �
 � � � � � � R � � : � 9 �
 � � @@ � 	
 � R � 	 �
 � � � � � � R � � : � 9 �
 � � @� �

 � : � � d E \ K K K� �

 � : � � d E \ K K K�� M � 9 � � � � : � : � = : �
 � C � � � � � R � 	 �
 � � � � � � � �M � 9 � � � � : � : � = : �
 � C � � � � � R � 	 �
 � � � � � � � �� : � � � A �
 � 	 B� : � � � A �
 � 	 B

Seminar in computer History CS236801Seminar in computer History CS236801 5 �5 �
�� � 8 [£ K K K
 � 	 � �
 \� 8 [£ K K K
 � 	 � �
 \ L f L H 8 � ¹
 L f L H 8 � ¹
 � �
 �� �
 �� � R � 	 @ � � � 8 [
 B
 � � � \ @ � � � A� � R � 	 @ � � � 8 [
 B
 � � � \ @ � � � A �� � � = 	 � A � � N � � � �� � = 	 � A � � N � � � �� : � 8 � � : � J D� : � 8 � � : � J D �� N � � � 	 � 9 �

 � 	N � � � 	 � 9 �

 � 	

Seminar in computer History CS236801Seminar in computer History CS236801 5 55 5
�� � � � � � � � 	 9 � �

 N � � R � � � N � =� � � � � � � 	 9 � �

 N � � R � � � N � = �� � 	 � �� 	 � �� � � � @ 	 � � �
 � � A � � 	
 � � � � 9 � � � � � � 	
� � � � @ 	 � � �
 � � A � � 	
 � � � � 9 � � � � � � 	
�� H : � N �
 �
 @ � 	 � � R � A � B

 � 	 C � 	
 X � 8 [YH : � N �
 �
 @ � 	 � � R � A � B

 � 	 C � 	
 X � 8 [Y�� � � � � � � � � � = � 	 � � A � @ N 	 � � = � � = � : � 9 � � � � � � 	� � � � � � � � � = � 	 � � A � @ N 	 � � = � � = � : � 9 � � � � � � 	� � � � 	 � � � � � � �� � � � 	 � � � � � � ��� L � � 	 � A � 9 � A � � � � 	 � � � � � 	 9 : � � � 9 � � 	 � � �
 � � 9 �
L � � 	 � A � 9 � A � � � � 	 � � � � � 	 9 : � � � 9 � � 	 � � �
 � � 9 �

Seminar in computer History CS236801Seminar in computer History CS236801 5 G5 G
§§ È ¶ É ¶ ± ® Ê ¶ ËÈ ¶ É ¶ ± ® Ê ¶ Ë§§ ª Ì ¶ Í · Î ´ Ï Î Ð © ¬ª Ì ¶ Í · Î ´ Ï Î Ð © ¬ ÑÑÒ · · Ó Ô Õ Õ Ö Ö Ö × Ø Ù Î Ø É × Î ´ Ú Õ Û Ü Í Í Õ Ö Î ´ É Õ µ · Í Õ Ý Þ Ï ® Ë ´ Í × Ò · µ ÙÒ · · Ó Ô Õ Õ Ö Ö Ö × Ø Ù Î Ø É × Î ´ Ú Õ Û Ü Í Í Õ Ö Î ´ É Õ µ · Í Õ Ý Þ Ï ® Ë ´ Í × Ò · µ Ù§§ ß Ë · Ø Ò à ¬ ¬ß Ë · Ø Ò à ¬ ¬ áá ß ´ â Ø ®ß ´ â Ø ® ² Ë É ¶ ã² Ë É ¶ ã ä å æ ¨ ç è « Î µ Ó â · ® ´ä å æ ¨ ç è « Î µ Ó â · ® ´å ® · Ö Î ´ É é ê ë Þ ×å ® · Ö Î ´ É é ê ë Þ ×§§ ì í î ï ð ñ ò ó ñ ô õ ñ ö ÷ ò ø ù ñ ú û ü ð î ø ý þ ó ÿ � ü � �ì í î ï ð ñ ò ó ñ ô õ ñ ö ÷ ò ø ù ñ ú û ü ð î ø ý þ ó ÿ � ü � � ù ÷ ò ü � � îù ÷ ò ü � � î ��§§ Ò ® © Ø � ´ Ë Ö Ò ® © Ø � ´ Ë Ö ÑÑ Ì ¶ Ù Ù « Î µ Ó â · ® ´ Ì Ë ã Ê � Î Î ÉÌ ¶ Ù Ù « Î µ Ó â · ® ´ Ì Ë ã Ê � Î Î É§§ ° ¨ ¨ ¨ ª ã ã Ë Ù Í Î Ð · Ò ® Ì ¶ Í · Î ´ Ï Î Ð « Î µ Ó â · ¶ ã Ú° ¨ ¨ ¨ ª ã ã Ë Ù Í Î Ð · Ò ® Ì ¶ Í · Î ´ Ï Î Ð « Î µ Ó â · ¶ ã Ú§§ � Ý � é � Þ� Ý � é � Þ ÑÑ 	 Ó ® ´ Ë · ¶ ã Ú ¬ Ï Í · ® µ Í	 Ó ® ´ Ë · ¶ ã Ú ¬ Ï Í · ® µ Í áá « ¬ ® Ø Ò ã ¶ Î ã« ¬ ® Ø Ò ã ¶ Î ã

Seminar in computer History CS236801Seminar in computer History CS236801 5 T5 T
 & (1 � � (� Á V Â �& (1 � � (� Á V Â �/ $ $ 0 � ¼ ¼/ $ $ 0 � ¼ ¼ + + + v �) � � � � � v) (� ¼) / 1) t ¼) (� 0 1 $ � � � ¼ k � ½ �+ + + v �) � � � � � v) (� ¼) / 1) t ¼) (� 0 1 $ � � � ¼ k � ½ ��� ¼¼ Á V Â $ � � � * � � � �Á V Â $ � � � * � � � �/ $ $ 0 � ¼ ¼ � � � � � �) / v � �) � (� (� $ v) (� ¼
 . r � * * ¼ " � . � $ � * ¼ $ � � � * �/ $ $ 0 � ¼ ¼ � � � � � �) / v � �) � (� (� $ v) (� ¼
 . r � * * ¼ " � . � $ � * ¼ $ � � � * �� � ¼ Ç q� � ¼ Ç q nn r � $ v / $ �r � $ v / $ � l m ll m l nn P QP Q ��/ $ $ 0/ $ $ 0 � ¼ ¼� ¼ ¼ + + ++ + + vv) (* 1 � r � �) (* 1 � r � � vv � " 1� " 1 ¼¼ �) � ��) � � ¼¼ / � � $ (� u/ � � $ (� u ¼¼ 0 " 0 P Q0 " 0 P Q vv / $ � */ $ � * / $ $ 0/ $ $ 0 � ¼ ¼� ¼ ¼ + � r) (1 � � �+ � r) (1 � � � vv) �) � vv $ �) / � � (�$ �) / � � (� vv �)�) vv � *� * ¼¼ q Ç À P P �q Ç À P P � ¼¼ + + ++ + + vv) (� 0 1 $ � � / � � $ (� u) (� 0 1 $ � � / � � $ (� u vv (� .(� .

Seminar in computer History CS236801Seminar in computer History CS236801 5 Z5 Z
�� : � � � c _ _ : �
 � � 	 B: � � � c _ _ : �
 � � 	 B 77
 � � A � � = �
 � � A � � = � 77 � A �� A � __ f � »f � » __ 	 � 9 � 	 A � � =	 � 9 � 	 A � � = __9 � � � � � � 	 69 � � � � � � 	 6 77 : � � �: � � ��� : � � �: � � � c _ _c _ _ R R RR R R 77 � � A� � A ��9 � � � � � � 	
9 � � � � � � 	
 77 9 � �9 � � __ : �
 � � 	 B: �
 � � 	 B __ A � � � � �A � � � � � 77 �
 � � ��
 � � � E � �E � � DD�� : � � � c _ _: � � � c _ _ R R R 7 � � � � � 	 � A � 9 � � � �
 7 9 � �R R R 7 � � � � � 	 � A � 9 � � � �
 7 9 � ��� : � � � c _ _ R R R 7 � N � N � � � 7 � 	 = _ � � N _ � 9 � A � � � 9 _ 9 � � �: � � � c _ _ R R R 7 � N � N � � � 7 � 	 = _ � � N _ � 9 � A � � � 9 _ 9 � � �� � � 	� � � 	 ��
 9 � � � 9 � _ : �
 � � 	 B _ � � 9 � � 	 �
 _ � A � 6 � 6 7 � � =
 9 � � � 9 � _ : �
 � � 	 B _ � � 9 � � 	 �
 _ � A � 6 � 6 7 � � =�� : � � � c _ _: � � � c _ _
 � � 9 � R � 	 7 � C � 	
 � = � � 7 9 � �
 � � 9 � R � 	 7 � C � 	
 � = � � 7 9 � � __

Architectural Evolution in DEC’s 18b Computers
Bob Supnik, 26-Jul-2003

Abstract

DEC built five 18b computer systems: the PDP-1, PDP-4, PDP-7, PDP-9, and PDP-15. This paper
documents the architectural changes that occurred over the lifetime of the 18b systems and
analyses the benefits and tradeoffs of the changes made.

Introduction

From 1961 to 1975, Digital Equipment Corporation (DEC) built five 18b computer systems: the PDP-
1, PDP-4, PDP-7, PDP-9, and PDP-15 (see table below). Each system differed from its
predecessors, sometimes in major ways representing significant architectural breaks, and
sometimes in minor ways representing new features or incompatibilities. The architectural evolution
of these systems demonstrates how DEC’s ideas about architectural versus implementation
complexity, I/O structures, and system features evolved over the period of a decade.

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15
First ship Nov 1960 Jul 1962 Dec 1964 Aug 1966 May 1970
Number built 50 45 120 445 790
Memory cycle 5usec 8usec 1.75usec 1usec 0.8usec
Base price $120K $65.5K $45K $25K $19.8K

Reproduced from Computer Engineering: A DEC View Of Hardware Systems Design

The PDP-1

The PDP-1 was DEC’s first computer system. Introduced in 1960, the PDP-1 reflected ideas from
Lincoln Labs’ TX-2 project as well as the existing capabilities of DEC’s module logic family. It was
implemented in 5Mhz logic.

Arithmetic System

The PDP-1 was a 1’s complement arithmetic machine. In 1’s complement arithmetic, negative
numbers are represented by the bit-for-bit inversion of their positive counterparts:

+1 = 000001
-1 = 777776

+4 = 000004
-4 = 777773

One’s complement arithmetic has two problems. First, zero has two representations, +0 and -0:

+0 = 000000
-0 = 777777

Second, addition of negative numbers requires an “end around carry” from the high order position to
the low order position:

 -1 = 777776
 -1 = 777776
 -- ---------
 sum 1 777774
 |----->1
 -2 = 777775

The PDP-1 tried to solve the zero-representation problem by guaranteeing that arithmetic operations
never produced –0. To do this, it performed an extra logic step during addition, checking the result
for –0 and converting it to 0. However, the PDP-1 performed subtraction by complementing the AC,
adding the memory operand, and recomplementing the result. The recomplementation step
occurred in the same time slot as the –0 detect during add. As a result, subtract had one special
case: -0 – (+0) yielded –0.

Character Sets

The PDP-1’s first console typewriter was a Friden Flexowriter. (Production units used an IBM
Soroban B typewriter.) The console’s six bit character set was called FIODEC, which stood for
Friden Input Output for Digital Equipment Corporation. This code included both upper and lower
case letters, using shift characters to move between sets. The PDP-1’s line printer used Hollerith
(BCD) coding. FIODEC and Hollerith had common encodings for letters but not for symbols,
requiring character conversions throughout the software.

Instruction Set Architecture

The PDP-1’s visible state included the following registers and capabilities:

 AC<0:17> accumulator
 IO<0:17> I/O register
 OV overflow flag
 PC<0:11> program counter
 EPC<0:3> extended program counter (if memory > 4K)
 EXTM extend mode
 PF<1:6> program flags
 SS<1:6> sense switches
 TW<0:17> test word (front panel switches)
 IOSTA<0:17> I/O status

In addition, the PDP-1 had non-observable state in the I/O system for I/O timing (see below).

The PDP-1 had 32 opcodes and implemented six instruction formats: memory reference, skip, shift,
operate, I/O, and load immediate. The memory reference format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| address | mem reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

<0:4> <5> mnemonic action

 00
 02 AND AC = AC & M[MA]
 04 IOR AC = AC | M[MA]
 06 XOR AC = AC ^ M[MA]
 10 XCT M[MA] is executed as an instruction
 12 JFD change fields, PC = MA
 14
 16 0 CAL M[100] = AC, AC = PC, PC = 101
 16 1 JDA M[MA] = AC, AC = PC, PC = MA + 1
 20 LAC AC = M[MA]
 22 LIO IO = M[MA]
 24 DAC M[MA] = AC
 26 DAP M[MA]<6:17> = AC<6:17>
 30 DIP M[MA]<0:5> = AC<0:5>
 32 DIO M[MA] = IO
 34 DZM M[MA] = 0
 36
 40 ADD AC = AC + M[MA]
 42 SUB AC = AC - M[MA]
 44 IDX AC = M[MA] = M[MA] + 1
 46 ISP AC = M[MA] = M[MA] + 1, skip if AC >= 0
 50 SAD skip if AC != M[MA]
 52 SAS skip if AC == M[MA]
 54 MUL AC'IO = AC * M[MA]
 56 DIV AC, IO = AC'IO / M[MA]
 60 JMP PC = MA
 62 JSP AC = PC, PC = MA

The skip format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1 0| | | | | | | | | | | | | | skip
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | | | | | | ______/ ______/
 | | | | | | | |
 | | | | | | | +---- program flags
 | | | | | | +------------- sense switches
 | | | | | +------------------- AC == 0
 | | | | +---------------------- AC >= 0
 | | | +------------------------- AC < 0
 | | +---------------------------- OV == 0
 | +------------------------------- IO >= 0
 +------------------------------------- invert skip

The shift format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1 1| subopcode | encoded count | shift
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | ___/
 | | |

 | | +------------------------------ 1=AC,2=IO,
 | | 3=both
 | +---------------------------------- rotate/shift
 +------------------------------------- right/left

The shift count was the number of 1’s in bits <9:17>.

The load immediate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0| S| immediate | LAW
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |
 +----- if S = 0, AC = IR<6:17>
 else AC = ~IR<6:17>

The I/O transfer format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 1| W| C| subopcode | device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The operate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 1| | | | | | | | | | | | | | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | | | | | | ______/
 | | | | | | | |
 | | | | | | | +---- PF select
 | | | | | | +---------- clear/set PF
 | | | | | | _________/
 | | | | | | |
 | | | | | | +------------ change field
 | | | | | +------------------- or PC
 | | | | +---------------------- clear AC
 | | | +------------------------- halt
 | | +---------------------------- CMA
 | +------------------------------- or TW
 +---------------------------------- clear IO

There are significant discrepancies in the extent PDP-1 documentation about memory expansion
options. The original 1960 User Handbook (F15) didn’t mention any. The 1961 Handbook (F15B)
described two, the Type 13 and Type 14. The 1962 and 1963 Handbooks (F15C and F15D,
respectively), and the Maintenance Manual, described only one, the Type 15. This option expanded
memory to 64K words. The address space was divided into sixteen 4K word fields. An instruction
could directly address, via its 12b address, the entire current field. If extend mode was off, indirect
addresses accessed the current field, and multi-level indirect addressing was enabled; if on, indirect
addresses could access all 64K, and indirect addressing was single level. The state of extend
mode was captured by subroutine calls and sequence breaks, and extend mode was cleared at the
start of a sequence break.

BBN built a custom memory manager for its PDP-1 timesharing system.

I/O System

The PDP-1’s I/O system offered multiple modes for I/O instructions, including synchronous waiting,
timed waiting, asynchronous, and sequence break (interrupt) driven. This multiplicity made the I/O
system complex and redundant.

I/O operations were initiated by a single instruction, Input/Output Transfer (IOT). Bits<12:17>
addressed a particular device; bits <7:11> provided additional control or opcode bits. Bits<5:6>
specified the mode for the I/O transfer:

<5:6> mode

 00 asynchronous - no wait, no device completion pulse
 01 timed wait - no wait, device completion pulse
 10 synchronous - wait for completion
 11 not used - wait, no completion pulse (hung the system if <12:17> != 0)

In synchronous wait, the CPU effectively stalled until the I/O operation completed. If synchronous
wait was not specified, three different mechanisms were available for I/O completion:

• Timed wait. Execution proceeded. Eventually, the CPU issued a wait instruction. The CPU

then stalled until the I/O operation completed and the device issued a completion pulse.
• Polled wait. Execution proceeded. The CPU monitored the device’s flag in the I/O status word

until the I/O operation completed.
• Sequence break driven. Execution proceeded. When the I/O operation completed, a sequence

break (interrupt) occurred, signaling I/O done.

The IOT wait mechanism was implemented by clearing the I/O command flag (which allowed I/O
instructions to execute), decrementing the PC, and re-executing the IOT that specified the wait. To
allow IOT’s in interrupt routines, the CPU had to remember that a wait was in progress, clear the
wait for the interrupt level IOT, and restore the wait afterwards. IOT’s in interrupt routines could not
specify waiting.

The sequence break mechanism recorded break requests in a single pulse sensitive flip flop. Thus,
like the PDP-11 but unlike the other 18b systems, break requests were independent of the device
completion flags. If the sequence break system was enabled, and a break request occurred, the
CPU automatically stored the state of the machine and initiated a new program by:

• storing AC in location 0
• storing EPC and PC, plus overflow and extend mode, in location 1
• storing IO in location 2
• clearing overflow and extend mode
• setting the PC to 3
• setting the sequence break in progress flag

The sequence break in progress flag blocked further breaks.

The end of the break was recognized when the CPU decoded a JMP I 1 (from field 0 in a multi-field
system) while the sequence break system was enabled. At that point, the CPU automatically
restored the state of the system by:

• temporarily turning on extend mode
• obtaining the new PC from location 1
• restoring the original values of overflow and extend mode
• clearing sequence-break-in-progress

A CPU option expanded the standard sequence break system from one channel to sixteen. Each
channel was a unique priority level and had a dedicated four location memory block (0 – 3 for the
highest priority channel, 4 – 7 for the next, etc.). The first three locations of the block were used to
store AC, PC, and IO when a break occurred; the PC was then set to point to the fourth location.

Software

The PDP-1 featured some notable software offerings, including an interactive editor (called
Expensive Typewriter), a macro assembler, a Lisp interpreter, and the world’s first computer video
game, Spacewar. (Sources to Lisp and Spacewar are still available on the Internet.)

The PDP-4

The PDP-4 was intended to be substantially lower cost than the PDP-1. Part of the cost reduction
was achieved by using slower and less expensive logic (500Khz instead of 5Mhz), but part was
achieved by simplifying the system and reducing the number of gates. Thus, the PDP-4 (and its
closely related successors, the PDP-7 and PDP-9) simplified the architecture of the PDP-1 along
multiple dimensions.

Arithmetic Systems

The PDP-4 introduced two’s complement arithmetic in parallel with the PDP-1’s one’s complement
arithmetic. Two’s complement arithmetic eliminated the need for -0 detection and made
implementation of multi-precision arithmetic much easier. However, 1’s complement capability was
not dropped; indeed, it remained the predominant arithmetic system, as reflected in future
architectural extensions such as the EAE. Thus, the PDP-4 still needed end around carry
propagation, as well as 1’s complement overflow detection. The result was greater, rather than
lesser complexity, in the hardware, and loss of valuable opcode space in the architecture. Gordon
Bell commented that the retention of 1’s complement arithmetic was, simply, “a mistake”. By the
PDP-5, it had vanished from DEC’s architectures.

Character Sets

The PDP-4’s console typewriter was an ASR-28 Teletype. Its five bit character code was called
Baudot. It supported only upper case letters and required shift characters to get from letters to
figures and back again. The line printer was unchanged and continued to use Hollerith coding.

Instruction Set Architecture

The PDP-4 and its follows-ons reduced the amount of visible state in the CPU. Specifically,

 register PDP-1 PDP-4,-7,-9

 AC arithmetic register same, plus I/O register

 IO I/O register removed (MQ with EAE option)
 OV overflow indicator replaced by Link register
 PF program flags removed
 SS sense switches removed
 TW test word front panel switches
 EXTM extend mode same
 IOSTA IO flags same

The register changes simplified the logic implementation. The L was essentially the 19th bit of the
AC, rather than a special flag. The AC no longer implemented -0 detection. I/O now used the
existing access paths to the AC rather than separate paths to an IO register. The elimination of the
program flags, and the sense switches, was pure gain.

The PDP-4 halved the number of instructions, from 32 to 16, and reduced the number of instruction
formats from 6 to 4. The memory reference format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| address | mem reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The I/O transfer format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0 0| device | sdv |cl| pulse | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The operate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 0| | | | | | | | | | | | | | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | | | | | | | | | | | |
 | | | | | | | | | | | | +- CMA (3)
 | | | | | | | | | | | +---- CML (3)
 | | | | | | | | | | +------- OAS (3)
 | | | | | | | | | +---------- RAL (3)
 | | | | | | | | +------------- RAR (3)
 | | | | | | | +---------------- HLT (4)
 | | | | | | +------------------- SMA (1)
 | | | | | +---------------------- SZA (1)
 | | | | +------------------------- SNL (1)
 | | | +---------------------------- inv skip (1)
 | | +------------------------------- rotate two (2)
 | +---------------------------------- CLL (2)
 +------------------------------------- CLA (2)

The immediate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 1| immediate | LAW

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The following table shows the reduction in instruction count between the PDP-1 and the PDP-4:

 PDP-1 instruction PDP-4 instruction

 AND AND
 IOR removed
 XOR XOR
 LAC LAC
 DAC DAC
 DZM DZM
 DIP removed
 DAP removed
 LIO removed
 DIO removed
 ADD ADD; L used in place of overflow
 SUB removed
 MUL (EAE option)
 DIV (EAE option)
 not present TAD (2’s complement add)
 IDX removed
 ISP ISZ
 XCT XCT
 SAD SAD
 SAS removed
 CAL CAL
 JDA JMS
 JSP removed
 JMP JMP
 skips OPR skips
 operate OPR operates
 shifts (EAE option)
 LAW LAW
 IOT IOT

Beyond the reduction in instruction count, the PDP-4’s instruction set required less logic to
implement.

• Instructions were encoded to minimize logic. For example, all instructions with IR<0:1> = 00

(CAL, DAC, JMS, DZM) did not read a memory operand. All instructions with IR<0:1> = 11
(JMP, EAE, IOT, OPR/LAW) were single cycle.

• ISZ (replacing IDX and ISP) did not modify the AC. By using 2’s complement arithmetic, it did
not need to detect -0.

• JMS (replacing JDA and JSP) did not modify the AC. This eliminated the transfer path from the
PC to the AC. JMS (and interrupts) saved PC and L, and in later systems, the memory extend
and memory protection flags.

• LAW did not mask or modify the address but instead copied the entire instruction to AC.
• OPR no longer guaranteed conflict-free execution of any combination of bits.

Finally, indirect addressing was simplified by the elimination of multi-level indirection.

The PDP-4 replaced the PDP-1’s multiply, divide, and multi-bit shifts with an option, the Extended
Arithmetic Element (EAE). The EAE added a second 18b arithmetic register, the MQ, and a

shift/multiply/divide instruction. The EAE instruction was microprogrammed and could implement a
wide variety of unsigned and signed (one’s complement) operations:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1| | | | | | | | | | | | | | | EAE
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | | | | | | | | | | | | |
 | | | | | | | | | | | | | +- or SC (3)
 | | | | | | | | | | | | +---- or MQ (3)
 | | | | | | | | | | | +------- compl MQ (3)
 | | | | | | | | ______________/
 | | | | | | | | |
 | | | | | _____/ +--------- shift count
 | | | | | |
 | | | | | +---------------------- EAE cmd (3)
 | | | | +---------------------------- clear AC (2)
 | | | +------------------------------- or AC (2)
 | | +---------------------------------- load sign (1)
 | +------------------------------------- clear MQ (1)
 +-- load link (1)

The EAE architecture remained unchanged in the PDP-7, PDP-9 and PDP-15.

The PDP-4 included an extended addressing option (Type 16); two of the surviving PDP-4’s in the
1972 census have more than 8KW of memory. No documentation has yet been found on this
option, but it’s reasonable to assume that it was the same as the PDP-7’s. If that is true, the PDP-
4’s extended memory model was essentially the same as the PDP-1’s, with 13 direct address bits
instead of 12. Addressable memory was divided into four 32K word banks. Direct addresses
always referenced the current memory bank; indirect addresses accessed either the current
memory bank or all of memory, depending on the extend mode flag. .) As on the PDP-1,
subroutine calls and interrupts saved the state of extend mode automatically.

In all, the architectural tradeoffs in the PDP-4 substantially reduced control logic at the cost of
complete software incompatibility with the PDP-1. There were also a few oversights; in particular,
the lack of a “complement and increment” operate (present in the PDP-5) made two’s complement
subtract an instruction longer. The PDP-15 finally corrected this oversight.

The PDP-4 (and the PDP-5) introduced a new feature, the concept of “auto-index” memory
locations, that is, locations which, when used as indirect addresses, incremented before use. This
feature allowed efficient traversal of linear data structures and made the IDX and DAP instructions
unnecessary.

I/O System

The I/O system was pruned even more dramatically than the CPU. Synchronous waits and timed
waits were dropped. Instead, only two mechanisms were supported: polled waits and interrupts.
Further, the two mechanisms were integrated by having the device flag for polling be the triggering
mechanism for device interrupts. Finally, polled waiting was implemented more efficiently by
allowing devices increment the PC (skip) in response to an IO instruction. The PDP-5 also used
this I/O paradigm, and it was retained throughout the life of the 12b and 18b families.

In the PDP-4, an ideal I/O device had one flag representing the state of an I/O operation. This flag
was cleared when the device initiated I/O; it was set when the device completed I/O. For example,
in the paper tape reader, the reader flag was cleared by a request to read a character or by explicit
command, and set when the character was in the I/O buffer.

Interrupts (as sequence breaks were now called) were simplified, and control was made explicit
rather than implicit.

 Function PDP-1 PDP-4

 interrupt request request flip-flop logical or of device flags
 interrupt block request in progress flop interrupts turned off
 interrupt action save AC --
 save PC + flags save PC + flags
 save IO --
 clear OV --
 clear extend mode {clear extend mode}
 set break in progress turn off interrupts
 set PC = 3 set PC = 1
 interrupt complete monitor for JMP I 1 turn on interrupts,
 one cycle delay to allow
 for JMP I 0

The PDP-4 offered a multi-level interrupt option. As in the PDP-1, each interrupt vectored to a
unique memory block. Unlike the PDP-1, the memory block was a single location, which was
executed. If the location contained a JMS, control transferred to an interrupt service routine. If the
location contained any other instruction, the instruction was executed, but control returned to the
main line program. The multi-level interrupt option replaced the real-time clock, an undesirable
tradeoff in a real-time system.

Software

Because the PDP-4 was not compatible with the PDP-1, it required new software. DEC provided an
editor, an assembler, and, most notably, a Fortran II compiler, all paper-tape based. While the
Fortran compiler was a significant advance, the assembler was actually a step backward: the PDP-
1’s assembler had supported macros, the PDP-4’s did not. But it offered some consolation by
being a one pass assembler, obviating the need to read the source paper tape twice. The
assembler assumed that unresolved references would in fact be resolved and punched unresolved
binary code as it processed the source, with a resolution dictionary at the end of the output tape.
The resulting tape was then read, upside down and backward, by the loader, which used the
resolution dictionary to “fix up” the broken references in the binary.

The PDP-4’s programs later became the basis for the PDP-7’s software offerings, which accounts
for lingering use of Baudot code on the PDP-7. However, the presence of FIODEC on the PDP-4
(and thus on the PDP-7) is a mystery, since the PDP-1 software base was not carried forward.

Early Mass Storage

The PDP-1 and PDP-4 started out as paper tape based systems. The development software was
paper tape based; magnetic tape, if used at all, was used strictly for data. This situation was
clearly unsatisfactory, and by 1963 DEC was experimenting with mass storage.

The first mass storage products were based on Vermont Research Drums. The Type 23 parallel
and Type 24 serial drums offered 131,072 words of storage with rapid access. But the drums were
big (two six-foot cabinets for the Type 23, one for the Type 24), expensive, and inflexible: storage
was tied to the computer. This didn’t fit with the typical use of the 18b computers as “personal” or
serially shared systems.

To find a solution, DEC again turned to Lincoln Labs. In 1962, Wes Clark had demonstrated the
prototype of the LINC computer. It featured LINCtape, a block-replaceable tape system with a
simple, rugged transport and small, inexpensive tape reels. The LINCtape concept offered exactly
the kind of “personal” storage needed to complement DEC’s computers. With some changes in
tape format, DEC offered “MicroTape” (later renamed DECtape) on the PDP-1 and PDP-4 in 1963.
The product also included a stand-alone program librarian, Microtrieve. DECtape was to remain the
dominant form of mass storage on DEC’s 12b and 18b systems into the early 1970’s, when it was
supplanted by the RK05 (2315-style) cartridge disk drive.

The PDP-7

According to the history of the 18b series in Computer Architecture, the PDP-4 was not a success.
The use of slower logic yielded a system that was 5/8 the performance of the PDP-1 at ½ the price.
What the market required was a system that was both higher performance and lower cost. That
system was the PDP-7. Implemented (primarily) in 10Mhz logic, its basic 1.75 usec cycle time
was almost three times the speed of the PDP-1, at 1/3 the cost.

The PDP-7’s basic architecture consisted of minor refinements of the PDP-4’s instruction set,
accompanied by one interesting architectural extensions: multi-user protection, the first in the 18b
family. The PDP-7 also was the first 18b PDP to use ASCII coding.

Arithmetic Systems and Character Sets

The PDP-7’s arithmetic systems were identical to the PDP-4. The console typewriter was an ASR-
33 Teletype. Its eight-bit character set was an early version of ASCII, with the high order bit always
forced on. The character set supported both upper and lower case letters, although the console
only supported upper case. The line printer’s SIXBIT character set was derived from ASCII by
truncating codes 040 - 0137 to six bits. The rapid evolution of character sets in the 18b family was
embodied in the PDP-7’s DECtape-based operating system DECsys. DECsys stored information in
FIODEC, Baudot, and SIXBIT, depending on whether the underlying software was derived from the
PDP-4 or newly written.

Instruction Set and I/O Architecture

The PDP-7 used the same instruction set architecture as the PDP-4, including the EAE. The
extended memory model was the same as the PDP-4’s. A new feature was a primitive form of
multi-user protection called trap mode. If trapping was enabled, IOT’s and HLT became privileged
instructions. If extend mode was simultaneously disabled, indirect addresses were confined to the
current bank. This allowed for simple time-sharing, with each user in a separate memory bank. (An
option, the KA70A, added a small bounds control register to protect memory within a bank.)

The PDP-7’s I/O architecture was identical to the PDP-4’s, and it used the same controllers for
major I/O devices such as DECtape, magnetic tape, and the serial drum. A few new IOT’s were
added, for management of the trap system. The PDP-7 featured an interprocessor link; this device
set the model for the general purpose parallel I/O options in subsequent DEC computers. Like the

PDP-1 (but unlike the PDP-4), the PDP-7 console featured a “read-in” switch, to automate system
bootstrapping from paper tape. The “read-in” function did not use the PDP-4’s RIM format but
instead loaded memory sequentially from the tape. Therefore, loading software required three
steps: use the “read-in” switch to load the RIM loader; use the RIM loader to load the binary loader;
and finally use the binary loader to load the software.

Software

The PDP-7 offered DEC’s first mass-storage operating system, the DECtape-based DECsys.
(DECsys also ran on the PDP-4.) DECsys was a modest first step in operating system
development. It consisted of a simple memory-resident DECtape I/O library, a keyboard monitor, a
Fortran II compiler, an assembler, a linking loader, and a symbolic debugger. All of the components
were based on PDP-4 and PDP-7 paper-tape counterparts, with calls to the DECtape I/O library
replacing paper-tape I/O. The internals of DECsys reflect its heterogeneous origins, with directory
information stored in Baudot and source files in FIODEC.

A DECsys system tape contained the bootstrap monitor in blocks 0 and 1, and the directory in
block 2. The first word of the directory contained the directory length; the last word contained the
address of the first free block on the tape. Directory entries consisted of 5 or 6 words:

 Word 1: Type (1 for System, 2 for Working)
 Words 2-3: File name, in Baudot
 S, word 4: starting block on tape
 S, word 5: starting address in memory
 W, word 4: starting block on tape for F (Fortran) version
 W, word 5: starting block on tape for A (assembler) version
 W, word 6: starting block on tape for R (relocatable binary) version

Files were simply linked DECtape blocks, with the first word of a block pointing to the next; a
pointer of 0 signified end of file.

As far as the author can tell, all copies of DECsys have vanished. This is equally true of an even
more historic system for the PDP-7, UNIX. The PDP-7’s multi-user protection, crude as it was,
sufficed for implementation of the first version of UNIX, making the PDP-7 a significant system in the
history of computing. Unfortunately, all copies of UNIX for the PDP-7 have been lost. Some details
of the PDP-7 version can be found on Dennis Ritchie’s personal web site.

The PDP-9

The PDP-7 was considerably more successful than its predecessors, selling more than 100
systems thanks to its significant price/performance improvements. The PDP-9 was intended to
carry the line forward. The arithmetic system and character sets were unchanged, and the
instruction set and I/O architecture changed only minimally. The I/O subsystem changed from a
radial to a bus design, necessitating redesign of all peripherals. Interfaces to programmed I/O
peripherals (paper tape, console, line printer) remained basically the same as the PDP-4 and PDP-
7; however, interfaces to mass storage peripherals (magnetic tape, DECtape) changed significantly.
An entirely new multi-level interrupt option, called the Automatic Priority Interrupt (API), was
designed. The PDP-9 carried over little of the PDP-7’s admittedly small software base.

Instruction Set and I/O Architecture

The PDP-9 introduced a more flexible form of memory management, with a bounds register
separating user (lower) memory from system (upper) memory. The PDP-7’s trap flag now became
the PDP-9’s user mode flag.

Although intended to be upward compatible with the PDP-7, the PDP-9 introduced a number of
differences:

• Auto-indexing. In the PDP-7, each bank of memory had auto-index registers. In the PDP-9,

only bank 0 had auto-index registers, and indirect references through addresses 00010-00017
were forced to reference bank 0.

• Extend mode restore. The PDP-7 used EMIR to prepare the system to restore extend mode at
the end of an interrupt. The PDP-9 introduced the more ambitious RES, which prepared the
system to restore the link, extend mode, and memory protect mode. This removed two
instructions from the end of all interrupt routines.

• Extend mode in traps. The PDP-7 set extend mode on a protection trap but cleared it on an
interrupt; the PDP-9 cleared it on both.

The PDP-9’s I/O architecture contained some modest improvements in flexibility and error
detection. Status flags were added for reader and punch errors. The line printer controller
implemented a device-specific interrupt enable/disable. The new DECtape, magnetic tape, and
fixed head disk controllers implemented better programming models than their PDP-7 counterparts,
and used up fewer device numbers in the process.

The PDP-9 also implemented an entirely new design for multi-level interrupts. Called the Automatic
Priority Interrupt (API) option, the API separated the concept of interrupt channel from priority. The
API option supported 32 channels (interrupting devices), but the channels were grouped into eight
priority levels. Four channels, on the four lowest priorities, were reserved for software interrupts.
When an API break occurred, the memory location corresponding to the channel was executed.
The location had to contain a JMS to an interrupt service routine; use of other instructions was not
supported. The API was carried over unchanged to the PDP-15.

Software

The PDP-9’s close compatibility with the PDP-7 allowed the latter’s software to be brought forward.
However, that code base, dating from the PDP-4, was considered inadequate and relegated to use
in the smallest systems. For mainstream use, a new software suite was written from scratch. The
three-step software loading process was simplified by eliminating the intermediate RIM loader. The
hodge-podge of I/O routines and libraries was replaced by a standard I/O executive that maintained
compatible interfaces from the paper-tape environment through the mass-storage based operating
systems (Advanced Monitor System, its foreground/background extension, and DOS). The PDP-
4/7 assembler syntax and binary formats were scrapped and replaced with a new macro assembler,
Macro 9. Fortran II was replaced by Fortran IV. The console was changed from software echoing of
input characters to hardware echoing. The intent versus the practice for PDP-9 software is
illustrated by the changes in the manual set. The examples in the Systems Reference Manual all
follow PDP-7 assembler syntax, but most surviving software is written in Macro 9.

The PDP-15

The PDP-15 introduced the most significant set of architectural changes in the 18b product line
since the transition from the PDP-1 to the PDP-4. It represented a major technology shift, from

discrete transistors to TTL integrated circuits. The PDP-15 was the fastest and most popular 18b
computer in Digital’s history. It was also the last.

Instruction Set and I/O Architecture

The PDP-15 introduced four architectural extensions:

• two new registers, an 18b index register and a 9b limit register
• extended addressing to 128K words
• memory relocation and protection
• hardware floating point option

The introduction of the index register made the PDP-15 more competitive with contemporary
machines such as the SDS 940 and DDP 516, both of which had indexing. To get an index register
select into the memory reference instructions, the directly addressable memory range was reduced
from 8K to 4K:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| x| address | mem reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Direct addressing beyond 4K words could be done by indirect addressing (maximum 32K words), or
by indexing (maximum 128K words). However, return addresses remained limited to 15b; thus the
maximum practical code segment size remained 32K words. Extended memory worked best with
the new memory relocation and protection option; in that environment, multiple 32K word programs
could reside in memory simultaneously.

The addition of indexing created a serious compatibility problem with the PDP-9. To ameliorate
migration issues, the PDP-15 redefined the PDP-7’s and PDP-9’s extend mode flag as PDP-9
compatibility mode, or bank mode. If bank mode was enabled, memory reference decoding was
identical to the PDP-9, without index capability. The PDP-15 did not implement the PDP-9’s extend
mode capability within bank mode, because extend mode, which was a compatibility aid for PDP-4
and PDP-7 programs, was no longer needed.

The hardware floating point unit was another new addition to the architecture. It dramatically
improved the performance of the system in scientific applications. To support indexing and floating
point, the PDP-15 introduced two new instructions, both carved out of the IOT instruction. Bits
<4:5> of the IOT instruction had been defined as sub-device selects but in practice were unused.
The PDP-15 used them to differentiate between IOT instructions (<4:5> = 00), floating point
instructions (<4:5> = 01),

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0 1| subopcode | floating point
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

and index operate instructions (<4:5> = 1x):

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| 1 1 1 0 1| subopcode | immediate | index operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

In addition to the major changes outlined above, the PDP-15 had its own set of tweaks and
incompatibilities compared to its predecessor. Two meaningless operates were redefined as IAC
(increment AC) and BSW (byte swap). The former facilitated a one-instruction 2’s complement,
thereby correcting a hole in the arithmetic system. On the PDP-9, DBR and RES were triggered by
a JMP indirect, on the PDP-15 by any indirect. The PDP-15 implemented new IOT skips for bank
mode. A mid-life ECO (called the “re-entrancy ECO”) added two additional IOT’s to inhibit and
enable interrupts, respectively.

From a programming viewpoint, the PDP-15’s I/O architecture was the same as the PDP-9’s, but
the implementations were quite different. The PDP-15 implemented a separate I/O processor,
providing greater expandability and flexibility, and a different I/O bus. It had more powerful
peripherals, including the RP15/RP02 disk pack and the LP15 DMA line printer. Some PDP-9
controllers, such as the TC09 DECtape controller and the RF09 fixed head disk controller, were
redesigned to connect directly to the PDP-15’s I/O bus; others were interfaced by a backwards-
compatible bus converter.

Although the PDP-15 was more successful than any prior 18b system, compared to the PDP-11 its
volume was low. This made continuing investment in new technology and options difficult. The
CPU was never re-implemented to take advantage of advances in component integration.
Investments in new peripheral types and controllers had to be limited. The PDP-15 group responded
with great ingenuity to these constraints. Notable developments included:

• Multiprocessing. Two CPU’s could share memory and I/O subsystems, for increased

throughput in a multiprogramming environment.
• PDP-11 add-on processor. The Unichannel-15 was a PDP-11/05 CPU that functioned as an I/O

controller. The Unibus tied in directly to the PDP-15’s memory system, using the two data
parity lines as extra data lines. This gave the PDP-15 access to inexpensive PDP-11
peripherals, such as the RK05 and LP11.

• XVM memory manager. The XVM project was the final spin on the PDP-15. It replaced the
initial memory relocation option with a more sophisticated unit. The new relocation unit allowed
individual programs to extend beyond 32K words.

These structural innovations stretched the lifetime of the product line but could not reverse its status
as a niche rather than a volume product. By the mid 1970’s, the PDP-15’s position in DEC’s
product line was eclipsed by the success of the more flexible PDP-11 (as the position of the PDP-
10 would be by the VAX). In 1977, the PDP-15 was retired, ending the history of the 18b product
family.

Software

The PDP-15 built on the PDP-9’s software base. The Advanced Monitor System was retained and
extended to create DOS-15 and its batch extension, BOS-15. A new real-time operating system,
RSX15, evolved from an execution-only environment into a full-featured multiprogramming system,
RSX15-Plus III, that exploitied the memory relocation hardware and multiprocessing capabilities to
provide simultaneous timesharing, batch, and real-time capabilities. Another notable system was
MUMPS (MGH Utility Multi Programming System), a timesharing system developed at
Massachusetts General hospital for processing medical records. Descendents of MUMPS (now
known as the M language) continue to be used today in medical systems. DOS, RSX-Plus III, and
MUMPS were all substantially rewritten in the mid-70’s to take advantage of XVM memory
management.

18b Systems Today

Because of the low numbers produced (< 1500), and the early retirement of the product line,
relatively few examples of the DEC 18b computers are still extent (a fate shared by the early 36b
products as well). Surviving systems are scattered and often in private collections, making an
accurate census difficult.

• PDP-1: The Computer History Museum (Mountain View, Ca) has three PDP-1’s. One of these

was running as recently as 1995 and will (hopefully) be restored to operation. The other two are
from DEC’s history collection.

• PDP-4: The Computer History Museum has three PDP-4’s, all from DEC’s history collection.
None are considered restorable.

• PDP-7: The Computer History Museum has a PDP-7, from DEC’s history collection. Max
Burnet (Sydney, Australia) has a PDP-7 in his collection. Neither is considered restorable.
There is a partially running PDP-7 in Norway and, incredibly, one still in operation in Oregon.

• PDP-9, 9/L: The Computer History Museum has both a PDP-9 and a –9/L. Max Burnet also
has one of each, and the PDP-9/L works. The Rhode Island Computer Museum has a PDP-9,
which is being restored. There are two PDP-9’s at ACONIT (Grenoble, France); Hans Pufal and
his team have restored one to working order.

• PDP-15: Multiple examples in private hands.

Sources

The primary source for this article was DEC’s documentation archive. The author was fortunate to
have access to the archive while it was still being staffed and maintained (Compaq dismissed the
archive staff and dispersed the documents; HP is in process of donating the archive to the
Computer History Museum). Max Burnet has graciously shared his unique collection of DEC
documents and hardware. In addition, Al Kossow and Dave Gesswein have done the field of
“computer archaeology” a tremendous service by scanning, and publishing online, surviving
documents, DECtapes, and paper-tapes from the 18b family. Last, but hardly least, the staff of the
Computer History Museum has made available its significant archive of DEC material. Among the
items consulted:

Family
 1973 Field Service Census of Systems under contract – Computer History Museum

PDP-1
 PDP-1 Handbook (F-15, 1960 edition) – online
 PDP-1 Handbook (F-15B, 1961 edition) – online
 PDP-1 Handbook (F-15C, 1962 edition) – Max Burnet’s collection, now online
 PDP-1 Handbook (F-15D, 1963 edition) – Computer History Museum, now online
 PDP-1 Maintenance Manual (F-17) – Max Burnet’s collection, now online
 PDP-1 Input-Output Systems Manual (F-25) – DEC archive, now online

PDP-4
 PDP-4 Handbook (F-45, 1962 edition) – DEC archive, now online
 PDP-4 Maintenance Manual (F-47) – Max Burnet’s collection, now online
 PDP-4 Technical Specification (DEC memo M-1142) – online
 PDP-4 Fortran Users’ Manual (J-4FT) – DEC library, now online

 PDP-4 EAE Option Bulletin (F-43(18)P) – Computer History Museum
 PDP-4 Paper, Gordon Bell, August 1977 – Computer History Museum

PDP-7
 PDP-7 Reference Manual (F-75, 1964 edition) – DEC archive, now online
 PDP-7 Maintenance Manual and logic prints (F-77) – Max Burnet’s collection
 DECSYS-7 Operating Manual (7-5-S) – DEC library, now online

PDP-9
 PDP-9 User’s Handbook (F-95, 1968 edition) – online
 PDP-9 Maintenance Manual (F-97) – online
 PDP-9 logic prints – online
 KE09A Extended Arithmetic Element Instruction Manual – online
 PDP-9 – Design History, Don Vonada, undated – Computer History Museum

PDP-15
 PDP-15 Reference Manual (first and sixth editions) – online
 XVM System Reference Manual – online
 PDP-15 processor diagnostics – online

PDP-15 Development Project History, Jerry Butler, September 1977 – Computer History
Museum

Another critical source was Computer Engineering: A DEC View Of Hardware Systems Design.
The article “The PDP-1 and Other 18-Bit Computers”, by Gordon Bell, Gerald Butler, Robert Gray,
John McNamara, Donald Vonada, and Ronald Wilson, contains unique hardware, marketing, and
technology information about the 18b family. The book, out of print for years, is now online, thanks
to the efforts of Gordon Bell.

Lastly, the author had the benefit of the recollections of people who worked on the 18b family,
including Gordon Bell, Dennis Ritchie, and Barry Rubinson, as well as access to the surviving
archive of PDP-7 software from Applied Data Research.

18b PDP Web Sites

Gordon Greene’s PDP-1 web site, http://www.dbit.com/~greeng3/pdp1/

Barry and Brian Silverman’s Java-based emulator for PDP-1 Spacewar,
http://mevard.www.media.mit.edu/groups/el/projects/spacewar/

Al Kossow’s “Minicomputer Orphanage”, including the 18b PDP’s,
http://www.spies.com/~aek/orphanage.html

Dennis Ritchie and Ken Thompson memoir of early UNIX, http://www.bell-
labs.com/history/unix/pdp7.html

Hans Pufal’s site about the restored PDP-9 at ACONIT, http://www.aconit.org/hbp/PDP9/

•

•
•

•
•

•
•

•
•

PROGRAMMED

DATA PROCESSOR-1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•
•
••
,,

,;, •
.•
•• • •

•

C. R, kit~,,
Pf:-i / f3S

PROGRAMMED

DATA PROCESSOR-1

digital equipment corporation
MAYNARD, MASSACHUSETTS

Copyright 1960 by Digital Equipment Corporation

TABLE OF CONTENTS

I. INTRODUCTION • • • • • • • • . • • • • • • . • • . • . • . • . • • • . • • • 5

Central Processor

Memory System

Input-Output

II. PROGRAMMING PDP-1

Number System

Instruction Format

Indirect Addressing

Operating Speeds

Manual Controls

Instruction List

9

III. INPUT-OUTPUT EQUIPMENT • 21

Standard Equipment

Optional Equipment

IV. UTILITY PROGRAMS •••.••••••••.••••••••••••••• 26

V. APPENDIX. • • . • • • . • . • . • . • . • • • • • . • • • • • • • • • • • • • • • 27

Abbreviated Instruction List

Numerical Instruction List

Alphanumeric Codes

....

PROGRAMMED DATA PROCESSOR-I

I. INTRODUCTION

The Programmed Data Processor (PDP-1) is a high speed, solid
state digital computer designed to operate with several types of
input-output devices, with no internal machine changes. It is a
single address, single instruction, stored program computer with
powerful program features. Five-megacycle circuits, a magnetic
core memory, and fully parallel processing make possible a compu
tation rate of 100,000 additions per second (about 2.5 times the
speed of most large computers in use today, and more than 100 times
the speed of magnetic drum computers). The PDP-1 is unusually
versatile. It is easy to install, operate and maintain. Conventional
110-volt power is used, neither air conditioning nor floor reinforce
ment is necessary, and preventive maintenance is provided for by
built-in marginal checking circuits.

PDP-1 circuits are based on the designs of DEC's highly success
ful and reliable System Building Blocks. Flip-flops and most
switches use saturating transistors. Primary active elements are
Micro-Alloy and Micro-Alloy-Diffused transistors.

The entire computer occupies only 32 square feet of floor space.
It consists of a seven-foot console-desk and three equipment frames.

CENTRAL PROCESSOR

The Central Processor contains the control, arithmetic and mem
ory addressing elements and the memory buffer register. The word
length is 18 binary digits. Instructions are carried out in multiples
of the memory cycle time of five microseconds. Add, subtract,
deposit, and load, for example, are two-cycle instructions requiring
10 microseconds. Multiplication, by subroutine, requires 350 micro
seconds on the average. Program features include: single address
instructions, multiple step indirect addressing and logical arith
metic commands. Console features include: flip-flop indicators
grouped for convenient octal reading, six program flags for auto
matic setting and computer sensing and six sense switches for man
ual setting and computer sensing.

MEMORY SYSTEM

The coincident-current, magnetic core memory holds 4096 words
of 18 bits each. Additional memory units of the same capacity may
be readily added to the machine; a memory field switch instruction
built into PDP-1 will then select the correct memory module. The

5

O')

A STANDARD DEC SYSTEM BUILDING BLOCK USED IN PDP-1

read-rewrite time of the memory is five microseconds, the basic
computer rate. Driving currents are automatically adjusted to
compensate for temperature variations between 55 and 100 degrees
fahrenheit. The core memory storage may be supplemented by up
to 64 magnetic tape transports and a tape control unit that serves
them all.

INPUT-OUTPUT

PDP-1 is designed to operate a variety of input-output devices.
Standard equipment consists of a paper tape reader with a read
speed of 300 lines (100 18-bit words) per second, a typewriter for
on-line operation in both input and output and a paper-tape punch
(alphanumeric or binary) with a nominal speed of 20 characters
per second. Optional external equipment includes: compatible mag
netic tape (75 inches per second, alphanumeric or binary); 16-inch
cathode ray tube for graphic or tabular displays; light pen input;
line printer (600 lines per minute); analog to digital and digital to
analog converters; and a real time clock. All in-out operations are
performed through the In-Out Register.

Of particular interest is the ease with which new, and perhaps
unusual, external equipment can be added to PDP-1. Space is pro
vided for additional gates to, and buffers from, the In-Out Register.
The in-out system is sufficiently simple so that little control cir
cuitry is needed for additional devices.

The PDP-1 is also available with the optional Sequence Break
System. This is a 16-channel (or more, when needed) automatic
interrupt feature which permits concurrent operation of several in
out devices.

7

PROGRAM
FLAGS 6

SENSE
SWITCHES 6

ACCUMULATOR

(AC) 18

TEST WORD

SWITCHES 18

MEMORY

MEMORY ADDRESS
REGISTER (MAI 12

MEl',<ORY BUFFER
(MB) 18

IN -OUT

CONTROL

PROGRAM COUNTER
(PC) 12

TEST ADDRESS
SWl1CHE5 12

IN-OUT REGISTER
(IOI 18

EXTERNAL

EOUIPMENT

PDP-1 SYSTEM BLOCK DIAGRAM

8

II. PROGRAMMING PDP-1

The Central Processor of PDP-1 contains the Control Element,
the Memory Buffer Register, the Arithmetic Element, and the
Memory Addressing Element. The Control Element governs the
complete operation of the computer including memory timing, in
struction performance and the initiation of input-output commands.
The Arithmetic Element, which includes the Accumulator and the
In-Out Register, performs the arithmetic operations. The Memory
Addressing Element, which includes the Program Counter and the
Memory Address Register, performs address bookkeeping and
modification.

The powerful program features of PDP-1 include multiple step
indirect addressing, Boolean operations, twelve variations of arith
metic and logical shifting, and ten conditional instructions. Six in
dependent flip-flops, called "program flags," are available for use as
program switches or special in-out synchronizers. Two special in
structions, Multiply Step and Divide Step, are included in the
Instruction List. Multiply and divide subroutines using these in
structions operate in about 350 and 600 microseconds respectively.

NUMBER SYSTEM

The PDP-1 is a "fixed point" machine using binary arithmetic.
Negative numbers are represented as the l's complement of the
positive numbers. Bit O is the sign bit which is ZERO for positive
numbers. Bits 1 to 17 are magnitude bits, with Bit 1 being the most
significant and Bit 1 7 being the least significant.

The actual position of the binary point may be arbitrarily as
signed to best suit the problem in hand. Two common conventions
in the placement of the binary point are:

The binary point is to the right of the least significant
digit; thus, numbers represent integers.

The binary point is to the right of the sign digit; thus, the
numbers represent a fraction which lies between ±1.

The conversion of decimal numbers into the binary system for use
by the machine may be performed automatically by subroutines.
Similarly the output conversion of binary numbers into decimals is
done by subroutine. Operations for floating point numbers are
handled by interpretive programming. The utility program system
provides for automatic insertion of the routines required to perform
floating point operations and number base conversion.

9

INSTRUCTION FORMAT

I--
INSTRUCTION ~

Q:
0
~

MEMORY ADDRESS, Y

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PDP-1 INSTRUCTION FORMAT

The Bits O through 4 define the instruction code; thus there are
32 possible instruction codes, not all of which are used. The instruc
tions may be divided into two classes:

Memory reference instructions

Augmented instructions

In the memory reference instructions, Bit 5 is the indirect address
bit. The instruction memory address, Y, is in Bits 6 through 17.
These digits are sufficient to address 4096 words of memory.

The augmented instructions use Bits 5 through 17, to specify
variations of the basic instruction. For example, in the shift instruc
tion, Bit 5 specifies direction of shift, Bit 6 specifies the character
of the shift (arithmetic or logical), Bits 7 and 8 enable the registers
(01 = AC, 10 = IO, and 11 = both) and Bits 9 through 17 specify
the number of steps.

INDIRECT ADDRESSING

A memory reference instruction which is to use an indirect ad
dress will have a ONE in Bit 5 of the instruction word. The original
address, Y, of the instruction will not be used to locate the operand,
jump location, etc., of the instruction, as is the normal case. Instead,
it is used to locate a memory register whose contents in Bits 6
through 17 will be used as the address of the original instruction.
Thus, Y is not the location of the operand but the location of the
location of the operand. If the memory register containing the in
direct address also has a ONE in Bit 5, the indirect addressing pro
cedure is repeated and a third address is located. There is no limit
to the number of times this process can be repeated.

OPERATING SPEEDS

Operating times of PDP-1 instructions are multiples of the mem
ory cycle of 5 microseconds. Two-cycle instructions refer twice to

10

memory and thus require 10 microseconds for completion. Examples
of this are add, subtract, deposit, load, etc. The jump instruction
and the augmented instructions need only one call on memory and
are performed in 5 microseconds.

In-Out Transfer instructions that do not include the optional
wait function require 5 microseconds. If the in-out device requires
a wait time for completion, the operating time depends upon the
device being used.

Each step of indirect addressing requires an additional 5 micro
seconds.

MANUAL CONTROLS

The Console of PDP-1 has controls and indicators for the use of
the operator. All computer flip-flops have indicator lights on the
Console. These indicators are primarily for use when the machine
has stopped or when the machine is being operated one step at a
time. While the machine is running, the brightness of an indicator
bears some relationship to the relative duty factor of that par
ticular flip-flop.

Three registers of toggle switches are available on the Console.
These are the Test Address (12 bits), the Test Word (18 bits), and
the Sense Switches (6 bits). The fir.st two are used in conjunction
with the operating push buttons. The Sense Switches are present
for manual intervention. The use of these switches is determined
by the program.

START

STOP

CONTINUE

EXAMINE

DEPOSIT

READ-IN

Operating Push Buttons
The computer will start. The first instruction
comes from the memory location indicated in
the Test Address Switches.

The computer will come to a halt at the com
pletion of the current memory cycle.

The computer will resume operation starting
at the state indicated by the lights.

The contents of the memory register indicated
in the Test Address will be displayed in the
Accumulator and the Memory Buffer lights.

The word selected by the Test Word Switches
will be put in the memory location indicated
by the Test Address Switches.

The photoelectric paper tape reader will start
operating in the Read-In mode.

11

12

SINGLE CYCLE
SWITCH

TEST SWITCH

Toggle Switches

When the Single Cycle Switch is on, the com
puter will halt at the completion of each
memory cycle. This switch is particularly use
ful in debugging programs. Repeated opera
tion of the Continue Switch Button will step
the program one cycle at a time. The pro
grammer is thus able to examine the state of
the machine at each step.

When the Test Switch is on, the computer
will perform the instruction indicated in the
Test Address location, repeating this instruc
tion at either the normal or single cycle rate,
if the Single Cycle Switch is up. This switch
is primarily useful in maintenance.

INSTRUCTION LIST

This list includes the title of the instruction, the normal execution
time of the instruction, i.e., the time with no indirect address, the
mnemonic code of the instruction, and the operation code number.
In the following list, the contents of a register are indicated by C () .
Thus C(Y) means the contents of memory at Address Y; C(AC)
means the contents of the accumulator; C(lO) means the contents
of the in-out register. An alphabetical and numerical listing of the
instructions is contained on Pages 27 to 29.

Memory Reference Instructions

ARITHMETIC INSTRUCTIONS

Add (JO µsec)
add Y Operation Code 40
The new C(AC) are the sum of C(Y) and the original C(AC). The C(Y)
are unchanged. The addition is performed with l's complement arith
metic. If the sum exceeds the capacity of the Accumulator Register, the
overflow flip-flop will be set (see Skip Group instructions).

Subtract (JO µsec)
sub Y Operation Code 42
The new C(AC) are the original C(AC) minus the C(Y). The C(Y) are
unchanged. The subtraction is performed using l's complement arith
metic. If the difference exceeds the capacity of the Accumulator, the over
flow flip-flop will be set (see Skip Group instructions).

13

Multiply Step (10 µsec)
mus Y Operation Code 54

If Bit 17 of the In-Out Register is a ONE, the C(Y) are added to C(AC).
If IO Bit 17 is a ZERO, the addition does not take place. In either case, the
C(AC) and C(IO) are shifted right one place. AC Bit O is made ZERO by
this shift. This instruction is used in the multiply subroutine.

Divide Step (10 µsec)
dis Y Operation Code 56
The Accumulator and the In-Out Register are rotated left one place.
IO Bit 17 receives the complement of AC Bit 0. If IO Bit 17 is ONE, the
C(Y) are subtracted from C(AC). If IO Bit 17 is ZERO, C(Y) + 1 are
added to C(AC). This instruction is used in the divide subroutine.

Index (10 µsec)
idx Y Operation Code 44
The C (Y) are replaced by C (Y) + 1. The C (Y) + 1 are left in the Ac
cumulator. The previous C(AC) are lost. Overflow is not indicated.

Index and Skip if Positive (10 µsec)
isp Y Operation Code 46
The C (Y) are replaced by C (Y) + 1. The C (Y) + 1 are left in the Ac
cumulator. The previous C(AC) are lost. If, after the addition, C(Y)
+ 1 are positive, the Program Counter is advanced one extra position
and the next instruction in the sequence is skipped. Overflow is not
indicated.

LOGICAL INSTRUCTIONS

Logical AND (10 µsec)
and Y Operation Code 02
The bits of C(Y) operate on the corresponding bits of the Accumulator
to form the logical AND. The result is left in the Accumulator. The C(Y)
are unaffected by this instruction.

LOGICAL AND
AC Bit Y Bit

0 0
0 1
1 0
1 1

Exclusive OR (10 µsec)
xor Y Operation Code 06

TABLE

Result
0
0
0
1

The bits of C (Y) operate on the corresponding bits of the Accumulator
to form the exclusive OR. The result is left in the Accumulator. The C(Y)
are unaffected by this order.

EXCLUSIVE OR TABLE

AC Bit Y Bit Result
0 0 0
0 1 1
1 0 1
1 1 0

14

Inclusive OR (10 µsec)
ior Y Operation Code 04
The bits of C (Y) operate on the corresponding bits of the Accumulator
to form the inclusive OR. The result is left in the Accumulator. The C(Y)
are unaffected by this order.

INCLUSIVE OR TABLE

AC Bit Y Bit Result
0 0 0
0 1 1
1 0 1
1 1 1

GENERAL INSTRUCTIONS

Load Accumulator (10 µsec)
lac Y Operation Code 20
The C(Y) are placed in the Accumulator. The C(Y) are unchanged. The
original C(AC) are lost.

Deposit Accumulator (10 µsec)
dac Y Operation Code 24
The C(AC) replace the C(Y) in the memory. The C(AC) are left un
changed by this instruction. The original C (Y) are lost.

Deposit Address Part (10 µsec)
dap Y Operation Code 26
Bits 6 through 17 of the Accumulator replace the corresponding digits
of memory register Y. C(AC) are unchanged as are the contents of Bits 0
through 5 of Y. The original contents of Bits 6 through 17 of Y are lost.

Deposit Instruction Part (10 µsec)
dip Y Operation Code 30
Bits O through 5 of the Accumulator replace the corresponding digits of
memory register Y. The Accumulator is unchanged as are Bits 6 through
1 7 of Y. The original contents of Bits O through 5 of Y are lost.

Load In-Out Register (10 µsec)
lio Y Operation Code 22
The C(Y) are placed in the In-Out Register. C(Y) are unchanged. The
original C (10) are lost.

Deposit In-Out Register (10 µsec)
dio Y Operation Code 32
The C(l0) replace the C(Y) in memory. The C(l0) are unaffected by this
instruction. The original C(Y) are lost.

Jump (5 µsec)
jmp Y Operation Code 60
The Program Counter is reset to Address Y. The next instruction that
will be executed will be taken from Memory Register Y. The original
contents of the Program Counter are lost.

15

Jump and Save Program Counter (5 µsec)
jsp Y Operation Code 62
The contents of the Program Counter are transferred to the Accumulator.
When the transfer takes place, the Program Counter holds the address of
the instruction following the jsp. The Program Counter is then reset to
Address Y. The next instruction that will be executed will be taken from
Memory Register Y. The original C(AC) are lost.

Skip if Accumulator and Y differ (10 µsec)
sad Y Operation Code 50
The C(Y) are compared with the C(AC). If the two numbers are differ
ent, the Program Counter is indexed one extra position and the next in
struction in the sequence is skipped. The C(AC) and the C(Y) are un
affected by this operation.

Skip if Accumulator and Y are the same (10 µsec)
sas Y Operation Code 52
The C(Y) are compared with the C(AC). If the two numbers are identi
cal, the Program Counter is indexed one extra position and the next in
struction in the sequence is skipped. The C(AC) and C(Y) are unaffected
by this operation.

Augmented Instructions
Load Accumulator with N (5 µsec)
law N Operation Code 70
The number in the memory address bits of the instruction word is placed
in the Accumulator. If the indirect address bit is ONE, the complement of
N (-N) is put in the Accumulator.

Shift Group (5 µsec)
sft Operation Code 66
This group of instructions will rotate or shift the Accumulator and/ or
the In-Out Register. When the two registers operate combined, the In
Out Register is considered to be an 18-bit magnitude extension of the
right end of the Accumulator. · ·

Rotate is a non-arithmetic cyclic shift. That is, the two ends of the
register are logically tied together and information is rotated as though
the register were a ring.

Shift is an arithmetic operation and is, in effect, multiplication of the
number in the register by 2 ±N, where N is the number of shifts; plus is
left and minus is right.

The number of shift or rotate steps to be performed (N) is indicated
by the number of ONES in Bits 9 thru 17 of the instruction word. Thus,
Rotate Accumulator Right nine times is 671777. A shift or rotate of one
place can be indicated nine different ways. The usual convention is to
use the right end of the instruction word (rar 1 = 671001).

Rotate Accumulator Right (5 µsec)
rar N Operation Code 671
Rotates the bits of the Accumulator right N positions, where N is the
number of ONES in Bits 9-17 of the instruction word.

16

Rotate Accumulator Left (5 µsec)
ral N Operation Code 661
Rotates the bits of the Accumulator left N positions, where N is the
number of ONES in Bits 9-17 of the instruction word.

Shift Accumulator Right (5 µsec)
sar N Operation Code 675
Shifts the contents of the Accumulator right N positions, where N is
the number of ONES in Bits 9-17 of the instruction word.

Shift Accumulator Left (5 µsec)
sal N Operation Code 665
Shifts the contents of the Accumulator left N positions, where N is the
number of ONES in Bits 9-17 of the instruction word.

Rotate In-Out Register Right (5 µsec)
rir N Operation Code 672
Rotates the bits of the In-Out Register right N positions, where N is
the number of ONES in Bits 9-17 of the instruction word.

Rotate In-Out Register Left (5 µsec)
ril N Operation Code 662
Rotates the bits of the In-Out Register left N positions, where N is
the number of ONES in Bits 9-17 of the instruction word.

Shift In-Out Register Right (5 µsec)
sir N Operation Code 676
Shifts the contents of the In-Out Register right N positions, where N
is the number of ONES in Bits 9-17 of the instruction word.

Shift In-Out Register Left (5 µsec)
sil N Operation Code 666
Shifts the contents of the In-Out Register left N positions, where N is
the number of ONES in Bits 9-17 of the instruction word.

Rotate AC and IO Right (5 µsec)
rcr N Operation Code 673
Rotates the bits of the combined registers right in a single ring N posi
tions, where N is the number of ONES in bits 9-17 of the instruction
word.

Rotate AC and IO Left (5 µsec)
rel N Operation Code 663
Rotates the bits of the combined registers left in a single ring N posi
tions, where N is the number of ONES in Bits 9-17 of the instruction
word.

Shift AC and IO Right (5 µsec)
scr N Operation Code 677
Shifts the contents of the combined registers right N positions, where
N is the number of ONES in Bits 9-17 of the instruction word.

17

Shift AC and IO Left (5 µsec)
scl N Operation Code 667
Shifts the contents of the combined registers left N positions, where
N is the number of ONES in Bits 9-17 of the instruction word.

Skip Group (5 µsec)
skp Operation Code 64

This group of instructions senses the state of various flip-flops and
switches in the machine. The address portion of the instruction selects
the particular function to be sensed. All members of this group have the
same operation code.

The instructions in the Skip Group may be combined to form the in
clusive OR of the separate skips. Thus, if Address 3000 is selected, the
skip would occur if the overflow flip-flop equals ZERO or if the In-Out
Register is positive. The combined instruction would still take 5 micro
seconds.

Skip on ZERO Accumulator (5 µsec)
sza Address 100
If the Accumulator is equal to plus ZERO (all bits are ZERO), the Pro
gram Counter is advanced one extra position and the next instruction
in the sequence is skipped.

Skip on Plus Accumulator (5 µsec)
spa Address 200
If the sign bit of the Accumulator is ZERO, the Program Counter is ad
vanced one extra position and the next instruction in the sequence is
skipped.

Skip on Minus Accumulator (5 µsec)
sma Address 400
If the sign bit of the Accumulator is ONE, the Program Counter is ad
vanced one extra position and the next instruction in the sequence is
skipped.

Skip on ZERO Overflow (5 µsec)
szo Address 1000
If the overflow flip-flop is a ZERO, the Program Counter is advanced one
extra position and the next instruction in the sequence will be skipped.
The overflow flip-flop is cleared by the instruction. This flip-flop is set
by an addition or subtration that exceeds the capacity of the Accumu
lator. The overflow flip-flop is not cleared by arithmetic operations
which do not cause an overflow. Thus, a whole series of arithmetic
operations can be checked for correctness by a single szo. The overflow
flip-flop is cleared by the "Start" Switch.

Skip on Plus In-Out Register (5 µsec)
spi Address 2000
If the sign digit of the In-Out Register is ZERO, the Program Counter
is indexed one extra position and the next instruction in sequence is
skipped.

18

Skip on ZERO Switch (5 µsec)
szs Addresses 10, 20 70
If the selected Sense Switch is ZERO, the Program Counter is advanced
one extra position and the next instruction in the sequence will be
skipped. Address 10 senses the position of Sense Switch 1, Address 20
Switch 2, etc. Address 70 senses all the switches. If 70 is selected all 6
switches must be ZERoto cause the skip.

Skip on ZERO Program Flag (5 µsec)
szf Addresses O to 7 inclusive
If the selected program flag is a ZERO, the Prog-ram Counter is ad
vanced one extra position and the next instruction in the sequence will
be skipped. Address O is no selection. Address 1 selects Program Flag 1,
etc. Address 7 selects all program flags. All flags must be ZERO to cause
the skip.

Operate Group (5 µsec)
opr Operation Code 76

This instruction group performs miscellaneous operations on various
Central Processor Registers. The address portion of the instruction speci
fies the action to be performed.

The instructions in the Operate Group can be combined to give the
union of the functions. The instruction opr 3200 will clear the AC, put
TW to AC, and complement AC. If the number minus zero is interpreted
as an instruction, the IO is cleared, AC gets the complement of the TW
switches, all program flags are set and the computer halts.

Clear In-Out Register (5 µsec)
cli Address 4000
Clears (sets equal to plus zero) the In-Out Register.

Load Accumulator from Test Word (5 usec)
lat Address 2000
Forms the inclusive OR of the C(AC) and the contents of the Test
Word. This instruction is usually combined with address 200 (clear
Accumulator), so that C(AC) will equal the contents of the Test Word
Switches.

Complement Accumulator (5 µsec)
cma Address 1000
Complements (makes negative) the contents of the Accumulator.

Halt
hlt Address 400
Stops the computer.

Clear Accumulator (5 µsec)
cla Address 200
Clears (sets equal to plus zero) the contents of the Accumulator.

19

Clear Selected Program Flag (5 µsec)
elf Address 01 to 07 inclusive
Clears the selected program flag. Address 01 clears Program Flag 1,
02 clears Program Flag 2, etc. Address 07 clears all program flags.

Set Selected Program Flag (5 µsec)
st/ Addresses 11 to 17 inclusive
Sets the selected program flag. Address 11 sets Program Flag 1; 12 sets
Program Flag 2, etc. Address 17 sets all program flags.

In-Out Transfer Group (5 µsec without in-out wait)
iot Operation Code 72

The variations within this group of instructions perform all the in-out
control and information transfer functions. Jf Bit 5 (normally the In
d_irect Address bit) is a ONE, the computer will halt ano. wait for the com
pletion pulse from the device activated. When this device delivers its
completion, the computer will resume operation of the instruction se
quence.

An incidental fact which may be of importance in certain scientific or
real time control applications is that the time origin of operations follow
ing an in-out completion pulse is identical with the time of that pulse.

Most in-out operations require a known minimum time before com
pletion. This time may be utilized for programming. The appropriate
In-Out Transfer is given with no in-out wait (Bit 5 a ZERO). The instruc
tion sequence then continues. This sequence must include an iot instruc
tion which performs nothing but the in-out wait, and the instruction must
occur before the safe minimum time. A table of minimum times for all
in-out devices is delivered with the computer: it lists minimum time be
fore completion pulse and minimum In-Out Register free time.

20

Ill. INPUT-OUT EQUIPMENT

STANDARD EQUIPMENT

PAPER TAPE READER

The paper tape reader of the PDP-1 is a photoelectric device capable of
reading 300 lines per second. Three lines form the standard 18-bit word
when reading binary punched eight-hole tape. Five, six, and seven-hole
tape may also be read.

Read Paper Tape, Alphanumeric
rpa iot 1
In this mode, one line of tape is read for each In-Out Transfer. All
eight holes of the line are read. The information is left in the right
eight bits of the In-Out Register, the remainder of the register being
left clear.
The code of the off-line tape preparation typewriter (Friden FPC-8
"Flexowriter") contains an odd parity bit. This bit may be checked by
the read-in program. The Friden Code is then converted to a concise
six-bit code. This conversion squeezes out the fifth bit (parity) and
drops the eighth bit. The carriage return character (Friden 200) is con
verted to 77.
The more concise code is used by the on-line typewriter, printer, and
magnetic tape. A list of characters and their codes is found on Pages
30 and 31.

Read Paper Tape Binary
rpb iot 2
For each In-Out Transfer instruction, three lines of paper tape are
read and assembled in the In-Out Register to form a full computer
word. For a line to be recognized in this mode, the eighth hole must be
punched; i.e., lines with no eighth hole will be skipped over. The
seventh hole is ignored. The pattern of holes in the binary tape is ar
ranged so as to be easily interpreted visually in terms of machine
instruction.

Read-In Mode
This is a special mode activated by the" Read-In" switch on the con
sole. It provides a means of entering programs which neither rely on
programs in memory nor require a plug board. Pushing the "Read
In" switch starts the reader in the binary mode. The first group of
three lines, and alternate succeeding groups of three lines, are inter
preted as "Read-In" mode instructions. Even-numbered groups of
three lines are data. The" Read-In" mode instructions must be either
"deposit in-out" (dio Y) or "jump" (jmp Y). If the instruction is dio
Y, the next group of three binary lines will be stored in memory loca
tion Y and the reader continues moving. If the instruction is jmp Y,
the "Read-In" mode is terminated and the computer will commence
operation at the address of the jump instruction.

21

PAPER TAPE PUNCH

The standard PDP-1 paper tape punch has a nominal speed of 20 lines
per second. It can operate in either the alphanumeric mode or the binary
mode.

Punch Paper Tape, Alphanumeric
ppa iot 5
For each In-Out Transfer instruction one line of tape is punched. In
Out Register Bit 17 conditions Hole 1. Bit 16 conditions Hole 2, etc.
Bit 10 conditions Hole 8.

Punch Paper Tape, Binary
ppb iot 6
For each In-Out Transfer instruction one line of tape is punched. In
Out Register Bit 5 conditions Hole 1. Bit 4 conditions Hole 2, etc. Bit
0 conditions Hole 6. Hole 7 is left blank. Hole 8 is always punched in
this mode.

TYPEWRITER

The typewriter will operate in the input mode or the output mode.

Type Out
tyo iot 3
For each In-Out Transfer instruction one character is typed. The
character is specified by the right six bits of the In-Out Register.

Type In
tyi iot 4
This operation is completely asynchronous and is therefore handled
differently than any of the preceding in-out operations.
When a typewriter key is struck, Program Flag 1 is set. At the same
time the code for the struck key is presented to gates connected to the
right six bits of the In-Out Register. This information will remain at
the gate for a relatively long time by virtue of the slow mechanical
action. A program designed to accept typed-in data would periodically
check the status of Program Flag 1. If at any time Program Flag 1 is
found to be set, an In-Out Transfer instruction with Address 4 must
be executed for information to be transferred. This In-Out Transfer
should not use the optional in-out halt. The information contained in
the typewriter's coder is then read into the right six bits of the In-Out
Register. tyi does not clear the IO. The tyi is usually preceded by cli
and clf-1.

OPTIONAL EQUIPMENT
MAGNETIC TAPE

The magnetic tape system consists of the magnetic tape control
unit and one or more tape transport units which contain the read
and write circuits. The tape control unit contains the equipment to
select the active transport and the logic necessary to control the
system.

22

The method of recording is non-return-to-zero. Each flux change
represents a binary ONE. The reading is done at two levels of sen
sitivity. A check is performed at each level. Thus the high level of
sensitivity detects the presence of excessive noise and the low sen
sitivity detects weak ONES.

The transports operate at 75 inches per second with a recording
density of 200 bits to the inch. The format is the same as for the
IBM 729 I. Seven tracks are written: six are binary or alphanu
meric bits, and a seventh is used as a lateral parity. At the com
pletion of a record, which may be of arbitrary length, a longitudinal
parity is written.

REAL TIME CLOCK
A special input register may be connected to operate as a real

time clock. This is a counting register operated by a crystal con
trolled oscillator.

The state of this counter may be read at any time by the appro
priate In-Out Transfer instruction. The computer stops only long
enough to provide synchronization with the clock oscillator, then
resumes operation in phase with it.

CATHODE RAY TuBE DISPLAY

The PDP-1 cathode ray tube display is useful for presentation of
graphical or tabular data to the operator. For each In-Out Transfer
instruction, one point is displayed. The first 10 bits of the In-Out
Register, Bits 0-9, are the X'coordinate of the point. Bits 0-9 of the
Accumulator are the Y coordinate of the point.

23

N)
H'-

CATHODE RAY X-Y POINT PLOTTER

An additional display option is a light pen. By use of this device
the computer is signaled that the operator is interested in the last
point displayed. Thus the program can take appropriate action such
as changing the display or shifting operation to another program.

LINE PRINTER

A 72-column line printer is available as an on-line printing station.
The operating speed is 450 lines per minute. A simple one-line buffer
is part of this equipment. The appropriate In-Out Transfer in
struction is repeated to fill the buffer. The order to print is then
given. Following the completion of the line print, the printer returns
a completion pulse and spaces the paper.

ANALOG EQUIPMENT

Equipment providing analog input to and output from the com
puter can be provided. This equipment can take the form either of
high speed electronic equipment or shaft position conversion equip
ment. In either case, multiplexing can be provided.

OTHER OPTIONAL EQUIPMENT

Additional in-out devices may be added to PDP-1 with, at most,
a few hour's work on the machine. Sockets for several In-Out Trans
fer variation pulse commands are prewired. Space is provided for
additional gates to and buffers from the In-Out Register. The in
out system is sufficiently simple so that the control circuitry needed
for any additional device is minimal.

Sequence Break System
An optional in-out control is available for PDP-1. This control,

termed the Sequence Break System, allows concurrent operation of
several in-out devices and the main sequence. The system has, nomi
nally, 16 automatic interrupt channels arranged in a priority chain.

A break to a particular sequence may be initiated by the com
pletion of an in-out device, the program, or any external signal. If
this sequence has priority, the C(AC), C(lO), C(PC), and the con
tents of the memory field flip-flops (if present) are stored in adjacent
fixed locations unique to that sequence. The Program Counter is
reset to the address contained in a fourth fixed location. The pro
gram is now operating in the new sequence. This new sequence may
be broken by a higher priority sequence. A typical program loop
for handling an in-out sequence would contain 3 to 5 instructions,
including the appropriate iot. These are followed by load AC and
load IO from the fixed locations and an indirect jump to location of
the previous C (PC). This last instruction terminates the sequence.

The Sequence Break System provides PDP-1 with much of the
power of a multiple sequence machine or of a computer having in
out synchronizers or automatic trunks.

25

IV. UTILITY PROGRAMS
The Utility Programs for PDP-1 are designed to provide the

nucleus of a growing system of programs. Programs available upon
delivery of the machine are:

SYMBOLIC ADDRESS AssEMBL Y PROGRAM is the basic element in
the utility system. It is designed for maximum flexibility con
sistent with adequate indication of program errors. Numerous
macro instructions are included such as floating point add, sub
tract, multiply, divide, decimal-to-binary conversion, and binary
to-decimal conversion.

MEMORY PRINT-OUT can appear either on the typewriter or on
the line printer, if connected.

BINARY PUNCH will punch out a specified region of memory.
Check characters are included on the tape. The program is avail
able in both the binary read-in format and the read-in mode
format.

BINARY READ-IN reads the tapes prepared by the Binary Punch
Program. Several versions of this program are available. They
differ in the region of memory in which the read-in program is
written. Thus, various read-in programs are available in both the
binary read-in format and the read-in mode format.

MAINTENANCE PROGRAMS include programs for checking mem-
. ories, input-output equipment, and operation of the Central

Processor.

26

V. APPENDIX

ABBREVIATED INSTRUCTION LIST

BASIC INSTRUCTIONS

Instruction Code# Explanation Oper. Time Page Ref.
(µsec)

add Y 40 Add C(Y) to C(AC) 10 13
and Y 02 Logical AND C (Y) with

C(AC) 10 14
dac Y 24 Put C(AC) in Y 10 15
dap Y 26 Put contents of address

part of AC in Y 10 15
dio y 32 Put C(lO) in Y 10 15
dip y 30 Put contents of instruc-

tion part of AC in Y 10 15
dis y 56 Divide step 10 14
idx y 44 Index (add one) C(Y),

leave in Y & AC 10 14
ior y 04 Inclusive OR C(Y) with

C(AC) 10 15
iot y 72 In-out transfer, see below 20
isp y 46 Index and skip if result

is positive 10 14
jmp y 60 Take next instruction

from Y 5 15
jsp y 62 Jump to Y and save

program counter in AC 5 16
lac y 20 Load the AC with C (Y) 10 14
law N 70 Load the AC with the

number N 5 16
law-N 71 Load the AC with the

number-N 5 16
lio y 22 Load IO with C(Y) 10 15
mus Y 54 Multiply step 10 14
opr 76 Operate, see below 5 19
sad y 50 Skip next instruction

if C(AC) ,c. C(Y) 10 16
sas y 52 Skip next instruction

if C(AC) = C(Y) 10 16
shift 66 See below 5 16
skp 64 Skip, see below 5 18
sub Y 42 Subtract C(Y) from

C(AC) 10 13
xor Y 06 Exclusive OR C (Y)

with C(AC) 10 14

27

OPERATE GROUP

Instruction Code# Explanation Oper. Time Page Ref.
(µsec)

cla 760200 Clear AC 5 19
elf 760001-7 Clear selected Program

Flag 5 20
cli 764000 Clear IO 5 19
cma 761000 Complement AC 5 19
hlt 760400 Halt 5 19
lat 762200 Load AC from Test

Word switches 5 19
stf 760011-7 Set selected Program Flag 5 20

IN-OUT TRANSFER GROUP

ppa 730005 Punch paper tape
alphanumeric 22

ppb 730006 Punch paper tape binary 22
rpa 730001 Read paper tape

alphanumeric 21
rpb 730002 Read paper tape binary 21
tyi 720004 Read typewriter input

switches 5 22
tyo 730003 Type out 22

SKIP GROUP

sma 640400 Skip on minus AC 5 18
spa 640200 Skip on plus AC 5 18
spi 642000 Skip on plus. IO 5 18
sza 640100 Skip on ZERO (+o) AC 5 18
szf 64000f Skip on ZERO flag

(f = flag #) 5 19
szo 641000 Skip on ZERO overflow

(and clear overflow) 5 18
szs 6400S0 Skip on ZERO sense

switch (S = switch #) 5 19

SHIFT/ROTATE GROUP

ral 661 Rotate AC left 5 17
rar 671 Rotate AC right 5 16
rel 663 Rotate combined AC &

IO left 5 17
rcr 673 Rotate combined AC &

IO right 5 17
ril 662 Rotate IO left 5 17
rir 672 Rotate IO right 5 17
sal 665 Shift AC left 5 17

28

SHIFT/ROTATE GROUP (Continued)
Instruction Code# Explanation Oper. Time Page Ref.

(µsec)

sar 675 Shift AC right 5 17
scl 667 Shift combined AC & IO

left 5 18
scr 677 Shift combined AC & IO

right 5 17
sil 666 Shift IO left 5 17
sir 676 Shift IO right 5 17

NUMERICAL INSTRUCTION LIST

Code Instruction Code Instruction

00 * 40 add
02 and 42 sub
04 ior 44 idx
06 xor 46 isp
10 * 50 sad
12 * 52 sas
14 * 54 mus
16 * 56 dis
20 1ac 60 jmp
22 lio 62 jsp
24 dac 64 skp
26 dap 66 Shift
30 dip 70 law
32 dio 72 iot
34 * 74 *
36 * 76 opr

* spare code, computer will halt

29

ALPHANUMERIC CODES

TABLE I

Character Friden Concise Character Friden Concise
Code Code Code Code

a A 141 61 yY 070 30
b B 142 62 z z 051 31
C C 163 63 0) 040 20
d D 144 64 1 ' 001 01
e E 165 65 2 @ 002 02
f F 166 66 3 # 023 03
g G 147 67 4 004 04
hH 150 70 5 % 025 05
i I 171 71 6 ¢ 026 06
j J 121 41 7 ? 007 07
k K 122 42 8 * 010 10
1 L 103 43 9 (031 11
mM 124 44 Space 020 00
n N 105 45 073 33
0 0 106 46 153 73
p p 127 47 / : 061 21
q Q 130 50 &; 160 60
r R 111 51 $ - 133 53
s s 062 22 " 100 40
t T 043 23 Upper Case 174 74
u u 064 24 Lower Case 172 72
V V 045 25 Tab. 076 36
wW 046 26 Carr. Ret. 200 77
XX 067 27 Tape Feed 177

TABLE II

Friden Character Friden Character

001 1 ' 043 t T
002 2@ 045 vV
004 4 = 046 wW
007 7 ? 051 z z
010 8 * 061 / :
020 Space 062 s s
023 3 # 064 uU
025 5 % 067 xx
026 6 ¢ 070 yY
031 9 (073
040 0) 076 Tab.

30

TABLE II (Continued)

Friden Character Friden Character

100 II 144 d D
103 1 L 147 g G
105 n N 150 hH
106 0 0 153
111 r R 160 &·

' 121 j J 163 C C
122 k K 165 e E
124 mM 166 f F
127 p p 171 i I
130 q Q 172 Lower Case
133 $ 174 Upper Case
141 a A 177 Tape Feed
142 b B 200 Carr. Ret.

TABLE III

Concise Code Character Concise Code Character
00 Space 42 kK
01 1 ' 43 1 L
02 2@ 44 mM
03 3 # 45 n N
04 4 = 46 0 0
05 5 % 47 p p
06 6 ¢ 50 q Q
07 7 ? 51 r R
10 8 * 53 $
11 9 (60 &·

' 20 0) 61 a A
21 I 62 b B
22 s s 63 C C
23 t T 64 d D
24 uU 65 e E
25 vV 66 f F
26 wW 67 g G
27 xX 70 hH
30 yY 71 i I
31 z z 72 Lower Case
33 73
36 Tab. 74 Upper Case
40 II 77 Carr. Ret.
41 j J

31

PROGRAMMED
DATA PROCESSOR-1

MANUAL

DIGITAL EQUIPMENT
CORPORATION

Maynard· Massachusetts

Programmed Data Processor-1

Copyright 1961 by Digital Equipment Corporation

TABLE OF CONTENTS

I. INTRODUCTION . 4

Central Processor

Memory System

Input-Output

II. PROGRAMMING PDP-1

Number System

Instruction Format

Indirect Addressing

Operating Speeds

Manual Controls

Instruction List

111. STANDARD AND OPTIONAL

6

EQUIPMENT 22

Standard Equipment

Optional Equipment

IV. PROGRAM LIBRARY 30

V. APPENDIX •................................ 32

Abbreviated Instruction List

Numerical Instruction List

Alphanumeric Codes

I. INTRODUCTION

The Programmed Data Processor (PDP-1) is a high speed, solid
state digital computer designed to operate with several types of
input-output devices, with no internal machine changes. It is a
single address, single instruction, stored program computer with
powerful program features. Five-megacycle circuits, a magnetic
core memory, and fully parallel processing make possible a compu
tation rate of 100,000 additions per second (about 2.5 times the
speed of most large computers in use today, and more than 100 times
the speed of magnetic drum computers). The PDP-1 is unusually
versatile. It is easy to install, operate and maintain. Conventional
110-volt power is used, neither air conditioning nor floor reinforce
ment is necessary, and preventive maintenance is provided for by
built-in marginal checking circuits.

PDP-1 circuits are based on the designs of DEC's highly success
ful and reliable System Modules. Flip-flops and most switches
use saturating transistors. Primary active elements are Micro
Alloy and Micro-Alloy-Diffused transistors.

The entire computer occupies only 17 square feet of floor space.
It consists of four equipment frames, one of which is used as the
operating station.

CENTRAL PROCESSOR

The Central Processor contains the control, arithmetic and mem
ory addressing elements and the memory buffer register. The word
length is 18 binary digits. Instructions are carried out in multiples
of the memory cycle time of five microseconds. Add, subtract,
deposit, and load, for example, are two-cycle instructions requiring
10 microseconds. Multiplication, by subroutine, requires 325 micro
seconds on the average. Program features include: single address
instructions, multiple step indirect addressing and logical arith
metic commands. Console features include: flip-flop indicators
grouped for convenient octal reading, six program flags for auto
matic setting and computer sensing and six sense switches for man
ual setting and computer sensing.

MEMORY SYSTEM

The coincident-current, magnetic core memory holds 4096 words
of 18 bits each. Up to eight additional memory units of the same
capacity may be readily added to the machine; a memory field
switch instruction built into PDP-1 will then select the correct
memory module. The read-rewrite time of the memory is five
microseconds, the basic computer rate. Driving currents are auto
matically adjusted to compensate for temperature variations

4

A Standard DEC System Module used in PDP-1

between 50 and 110 degrees Fahrenheit. The core memory storage
may be supplemented by up to 24 magnetic tape transports.

INPUT-OUTPUT
PDP-1 is designed to operate a variety of input-output devices.

Standard equipment consists of a punched tape reader with a read
speed of 400 lines per second, an alphanumeric typewriter for
on-line operation in both input and output and a punched tape
punch (alphanumeric or binary) with a speed of 63 lines per
second. Optional external equipment includes: compatible mag
netic tape (75 inches per second, BCD or binary); 16-inch cathode
ray tube for graphic or tabular displays; light pen input; line
printer (150 or 600 lines per minute); punched cards (input and
output at speeds of 100 cards per minute); and a real time clock.
All in-out operations are performed through the In-Out Register
or through High Speed Input-Output Channels.

Of particular interest is the ease with which new, and perhaps
unusual, external equipment can be added to PDP-1. Space is pro
vided for additional gates to, and buffers from, the In-Out Register.
The in-out system is sufficiently simple so that little control cir
cuitry is needed for additional devices. New input-output instruc
tions can be implemented easily at the Input-Output Instruction
Control Panel.

The PDP-1 is also available with the optional Sequence Break
System. This is a 16-channel automatic interrupt feature which
permits concurrent operation of several in-out devices. A one
channel Sequence Break System is included in the standard
PDP-1.

5

II. PROGRAMMING PDP-1

The Central Processor of PDP-1 contains the Control Element,
the Memory Buffer Register, the Arithmetic Element, and the
Memory Addressing Element. The Control Element governs the
complete operation of the computer including memory timing, in
struction performance and the initiation of input-output commands.
The Arithmetic Element, which includes the Accumulator and the
In-Out Register, performs the arithmetic operations. The Memory
Addressing Element, which includes the Program Counter and the
Memory Address Register, performs address bookkeeping and
modi:fica tion.

The powerful program features of PDP-1 include:
• Multiple step indirect addressing
• Boolean operations
• Twelve variations of arithmetic and logical shifting, operat

ing on 18 or 36 bits
• Fifteen conditional instructions (expandable by combining

to form the inclusive OR of the separate conditions)
• Three different subroutine calling instructions
• Combinable housekeeping instructions
• Index and Index-Conditional instructions
• Execute instruction
• Load-immediate instructions

Six independent flip-flops, called "program flags," are available
for use as program switches or special in-out synchronizers. Two
special instructions, Multiply Step and Divide Step, are included
in the Instruction List. Multiply and divide subroutines using
these instructions operate in about 325 and 440 microseconds
respectively.

NUMBER SYSTEM

The PDP-1 is a "fixed point" machine using binary arithmetic.
Negative numbers are represented as the l's complement of the
positive numbers. Bit O is the sign bit which is ZERO for positive
numbers. Bits 1 to 17 are magnitude bits, with Bit 1 being the most
significant and Bit 17 being the least significant.

The actual position of the binary point may be arbitrarily as
signed to best suit the problem in hand. Two common conventions
in the placement of the binary point are:

The binary point is to the right of the least significant
digit; thus, numbers represent integers.
The binary point is to the right of the sign digit; thus, the
numbers represent a fraction which lies between ±1.

6

6 SENSE

SWITCHES

CONTROL

12 TEST ADDRESS

SWITCHES

PROGRAM COUNTER

PC (12)

MEMORY ADDRESS
REGISTER

MA (12)

INSTRUCTION
REGISTER

IR 15)

CORE

MEMORY
CM

4096 18-BIT WORDS

J
I
I

_ __J

TYPEWRITER
AND

CONTROL

TAPE READER

AND CONTROL

MEMORY BUFFER

REGISTER
MB 118)

.ACCUMULATOR
AC (18)

IN-OUT REGISTER

10 (18)

~'8-T-ES_T_W-OR-0-:-+ __ J
SWITCHES

TAPE PUNCH

AND CONTROL

J

PDP-1 System Block Diagram

The conversion of decimal numbers into the binary system for use
by the machine may be performed automatically by subroutines.
Similarly the output conversion of binary numbers into decimals is
done by subroutine. Operations for floating point numbers are
handled by interpretive programming. The PDP-1 Compiler
Assembler System provides for automatic insertion of the routines
required to perform floating point operations and number base
conversion.

INSTRUCTION FORMAT
The Bits O through 4 define the instruction code; thus there are

32 possible instruction codes, not all of which are used. The instruc
tions may be divided into two classes:

Memory reference instructions

Augmented instructions

7

In the memory reference instructions, Bit 5 is the indirect address
bit. The instruction memory address, Y, is in Bits 6 through 17.
These digits are sufficient to address 4096 words of memory.

I
(.)

INSTRUCTION w
et::

Cl
z

M~MORY ADDRESS, Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PDP-1 Instruction Format

The augmented instructions use Bits 5 through 17, to specify
variations of the basic instruction. For example, in the shift instruc
tion, Bit 5 specifies direction of shift, Bit 6 specifies the character
of the shift (arithmetic or logical), Bits 7 and 8 enable the registers
(01 = AC, 10 = IO, and 11 = both) and Bits 9 through 17 specify
the number of steps.

INDIRECT ADDRESSING

A memory reference instruction which is to use an indirect ad
dress will have a ONE in Bit 5 of the instruction word. The original
address, Y, of the instruction will not be used to locate the operand,
jump location, etc., of the instruction, as is the normal case. Instead,
it is used to locate a memory register whose contents in Bits 6
through 17 will be used as the address of the original instruction.
Thus, Y is not the location of the operand but the location of the
location of the operand. If the memory register containing the in
direct address also has a ONE in Bit 5, the indirect addressing pro
cedure is repeated and a third address is located. There is no limit
to the number of times this process can be repeated.

OPERATING SPEEDS

Operating times of PDP-1 instructions are multiples of the mem
ory cycle of 5 microseconds. Two-cycle instructions refer twice to
memory and thus require 10 microseconds for completion. Examples
of this are add, subtract, deposit, load, etc. The jump, augmented
and combined augmented instructions need only one call on memory
and are performed in 5 microseconds.

In-Out Transfer instructions that do not include the optional
wait function require 5 microseconds. If the in-out device requires
a wait time for completion, the operating time depends upon the
device being used.

8

Each step of indirect addressing requires an additional 5 micro
seconds.

MANUAL CONTROLS

The Console of PDP-1 has controls and indicators for the use of
the operator. All computer flip-flops have indicator lights on the
Console. These indicators are primarily for use when the machine
has stopped or when the machine is being operated one step at a
time. While the machine is running, the brightness of an indicator
bears some relationship to the relative duty factor of that par
ticular flip-flop.

Three registers of toggle switches are available on the Console.
These are the Data Field-Instruction Field-Address (18 bits), the
Test Word (18 bits), and the Sense Switches (6 bits). The first two
are primarily used in conjunction with the operating push buttons.
The Sense Switches are present for manual intervention. The use of
these switches is determined by the program.

Start

Stop

Continue

Examine

Deposit

Read In

Power
Single Step

Operating Push Buttons

The computer will start. The first instruction
comes from the memory location indicated in
the Field and Address Switches.

The computer will come to a halt at the com
pletion of the current memory cycle.

The computer will resume operation starting
at the state indicated by the lights.
The contents of the memory register indicated
by the Field and Address Switches will be
displayed in the Accumulator and the Memory
Buffer lights.
The word selected by the Test Word Switches
will be put in the memory location indicated
by the Field and Address Switches.

The photoelectric punched tape reader will
start operating in the Read-In mode.

Operating Toggle Switches

Turns all power to the computer on and off.

When the Single Step Switch is on, the com
puter will halt at the completion of each
memory cycle. This switch is particularly use
ful in debugging programs. Repeated opera-

9

tion of the Continue Push Button will step
the program one cycle at a time. The pro
grammer is thus able to examine the state of
the machine at each step.

Single Instruction Same as Single Step except that entire instruc
tions are stepped one at a time, regardless of
the number of cycles required for their com
pletion. (If Single Step and Single Instruction
toggles are both on, the mode of operation will
be single step.)

Operating Indicator Lights

Run On while the computer is executing instruc
tions.

Cycle On after the completion of one or more instruc
tion cycles with one or more to follow.

Defer On immediately prior to the execution of any
deferred cycle.

High Speed Cycle On while the computer is executing a high
speed channel, Input-Output Transfer instruc
tion.

Break Counter 1 On while the computer is executing Cycle 1
(deposit Accumulator) and Cycle 3 (deposit
Input-Output Register) of a sequence break.

Break Counter 2 On while the computer is executing Cycle 2
(deposit Program Counter) and Cycle 3 of a
sequence break.

_,
---,-.,.·,..,~·
'.-,.~'~:.'

;-\~:-·;
,··qot#'

-:\~~

PDP-1 Control Panel

10

~
", •-~···""

.-.:
'1 '1·) ~. '~ "

ff~ttt
/i~~,

T f' ,-, 4 ~ ~

Overflow

Read In

Sequence Break

On if overflow has occurred. (Can only be
turned off or cleared by executing the Skip
on Zero Overflow instruction or pressing
Start.)

On while the computer is reading or trying to
read punched tape in the Read-In mode.

On while the computer is using the Sequence
Break System.

In-Out Halt On while the computer is executing a deferred
Input-Output Transfer instruction.

In-Out Commands On while the computer is executing any Input
Output Transfer instruction.

In-Out Sync

Program Flags

Memory Field

Used for maintenance purposes only.

On after the computer has executed the Set
Selected Program Flag instruction or an in-out
device has been activated, indicating its readi
ness to be serviced. (Can only be turned off or
cleared by executing the Clear Selected Pro
gram Flag instruction.)

These indicate which memory field is currently
in use.

Register Indicator Lights

Program Counter Displays 12 bits which represent the address of
the next instruction to be executed.

Instruction Displays 5 bits which represent the basic
operation code of the instruction being exe
cuted.

Memory Address Displays 12 bits which represent the address of
the instruction being executed (after Cycle 1)
or the address of the operand (after succeed
ing cycles).

Memory Buffer Displays 18 bits which represent the instruc
tion being executed (operation code and
address part after Cycle 1) or the 18-bit oper
and (after succeeding cycles).

Accumulator Displays 18 bits which represent the results of
arithmetic and logical operations.

In-Out Displays 18 bits which represent information
just transferred in or out of the computer or
the results of certain arithmetic and logical
operations.

11

INSTRUCTION LIST

This list includes the title of the instruction, the normal execution
time of the instruction, i.e., the time with no indirect address, the
mnemonic code of the instruction, and the operation code number.
In the following list, the contents of a register are indicated by C () .
Thus C(Y) means the contents of memory at Address Y; C(AC)
means the contents of the accumulator; C (IO) means the contents
of the in-out register. An alphabetical and numerical listing of the
instructions is contained on Pages 32 to 39.

Memory Reference Instructions

ARITHMETIC INSTRUCTIONS

Add (10 µsec)
add Y Operation Code 40
The new C(AC) are the sum ofC(Y) and the original C(AC). The C(Y)
are unchanged. The addition is performed with l's complement arith
metic. If the sum exceeds the capacity of the Accumulator Register, the
overflow flip-flop will be set (see Skip Group instructions).

Subtract (10 µsec)
sub Y Operation Code 42
The new C(AC) are the original C(AC) minus the C(Y). The C(Y) are
unchanged. The subtraction is performed using l's complement arith
metic. If the difference exceeds the capacity of the Accumulator, the over
flow flip-flop will be set (see Skip Group instructions).

Multiply Step (10 µsec)
mus Y Operation Code 54
If Bit 17 of the In-Out Register is a ONE, the C(Y) are added to C(AC).
If IO Bit 17 is a ZERO, the addition does not take place. In either case, the
C(AC) and C(IO) are shifted right one place. AC Bit O is made ZERO by
this shift. This instruction is used in the multiply subroutine.

Divide Step (10 µsec)
dis Y Operation Code 56
The Accumulator and the In-Out Register are rotated left one place.
IO Bit 17 receives the complement of AC Bit 0. If IO Bit 17 is ONE, the
C(Y) are subtracted from C(AC). If IO Bit 17 is ZERO, C(Y) + 1 are
added to C(AC). This instruction is used in the divide subroutine.

Index (10 µsec)
idx Y Operation Code 44
The C(Y) are replaced by C(Y) + 1. The C(Y) + 1 are left in the Ac
cumulator. The previous C(AC) are lost. Overflow is not indicated.

Index and Skip if Positive (10 µsec)
isp Y Operation Code 46
The C(Y) are replaced by C(Y) + 1. The C(Y) + 1 are left in the Ac
cumulator. The previous C(AC) are lost. If, after the addition, C(Y)

12

+ 1 are positive, the Program Counter is advanced one extra position
and the next instruction in the sequence is skipped. Overflow is not
indicated.

LOGICAL INSTRUCTIONS

Logical AND (10 µsec)
and Y Operation Code 02
The bits of C (Y) operate on the corresponding bits of the Accumulator
to form the logical AND. The result is left in the Accumulator. The C(Y)
are unaffected by this instruction.

LOGICAL AND TABLE

AC Bit Y Bit Result
0 0 0
0 1 0
1 0 0
1 1 1

Exclusive OR (10 µsec)
xor Y Operation Code 06
The bits of C(Y) operate on the corresponding bits of the Accumulator
to form the exclusive OR. The result is left in the Accumulator. The C(Y)
are unaffected by this order.

EXCLUSIVE OR TABLE

AC Bit Y Bit Result
0 0 0
0 1 1
1 0 1
1 1 0

Inclusive OR (10 µsec)
ior Y Operation Code 04
The bits of C (Y) operate on the corresponding bits of the Accumulator
to form the inclusive OR. The result is left in the Accumulator. The C (Y)
are unaffected by this order.

INCLUSIVE OR TABLE

AC Bit Y Bit Result
0 0 0
0 1 1
1 0 1
1 1 1

GENERAL INSTRUCTIONS

Load Accumulator (10 µsec)
lac Y Operation Code 20
The C(Y) are placed in the Accumulator. The C(Y) are unchanged. The
original C(AC) are lost.

Deposit Accumulator (10 µsec)
dac Y Operation Code 24
The C(AC) replace the C(Y) in the memory. The C(AC) are left un
changed by this instruction. The original C (Y) are lost.

13

Deposit Address·Part (10 µsec)
dap Y Operation Code 26
Bits 6 through 17 of the Accumulator replace the corresponding digits
of memory register Y. C(AC) are unchanged as are the contents of Bits 0
through 5 of Y. The original contents of Bits 6 through 17 of Y are lost.

Deposit Instruction Part (10 µsec)
dip Y Operation Code 30
Bits O through 5 of the Accumulator replace the corresponding digits of
memory register Y. The Accumulator is unchanged as are Bits 6 through
17 of Y. The original contents of Bits O through 5 of Y are lost.

Load In-Out Register (10 µsec)
lio Y Operation Code 22
The C(Y) are placed in the In-Out Register. C(Y) are unchanged. The
original C(IO) are lost.

Deposit In-Out Register (10 µsec)
dio Y Operation Code 32
The C(l0) replace the C(Y) in memory. The C(IO) are unaffected by this
instruction. The original C (Y) are lost.

Deposit Zero in Memory (10 µsec)
dzm Y Operation Code 34
Clears (sets equal to plus zero) the contents of register Y.

Execute (5 µsec plus time of instruction executed)
xct Y Operation Code 10
The instruction located in register Y is executed. The Program Counter
remains unchanged (unless a jump or skip were executed). Execute may
be indirectly addressed, and the instruction being executed may use in
direct addressing. An xct instruction may execute other xct commands.

Jump (5 µsec)
jmp Y Operation Code 60
The Program Counter is reset to Address Y. The next instruction that
will be executed will be taken from Memory Register Y. The original
contents of the Program Counter are lost.

Jump and Save Program Counter (5 µsec)
jsp Y Operation Code 62

The contents of the Program Counter are transferred to the Accumulator.
When the transfer takes place, the Program Counter holds the address of
the instruction following the jsp. The Program Counter is then reset to
Address Y. The next instruction that will be executed will be taken from
Memory Register Y. The original C(AC) are lost.

Call Subroutine (10 µsec)
cal Y Operation Code 16
The address part of the instruction, Y, is ignored. The contents of the
Accumulator are deposited in Memory Register 100. The contents of the

14

Program Counter (holding the address of the instruction following the cal)
are transferred to the Accumulator. The next instruction that will be
executed is taken from Memory Register 101. This instruction requires
that the indirect bit be ZERO. The instruction may be used as part of a
master routine to call subroutines.

Jump and Deposit Accumulator (JO µsec)
jda Y Operation Code 17
The contents of the Accumulator are deposited in Memory Register Y.
The contents of the Program Counter (holding the address of the instruc
tion following thejda) are transferred to the Accumulator. The next in
struction that will be executed is taken from Memory Register Y + 1.
This instruction requires that the indirect bit be a ONE. The instruc
tion is equivalent to the instructions dac Y, followed by jsp Y + 1.

Skip if Accumulator and Y differ (JO µsec)
sad Y Operation Code 50
The C(Y) are compared with the C(AC). If the two numbers are differ
ent, the Program Counter is indexed one extra position and the next in
struction in the sequence is skipped. The C(AC) and the C(Y) are un
affected by this operation.

Skip if Accumulator and Y are the same (JO µsec)
sas Y Operation Code 52
The C(Y) are compared with the C(AC). If the two numbers are identi
cal, the Program Counter is indexed one extra position and the next in
struction in the sequence is skipped. The C(AC) and C(Y) are unaffected
by this operation.

Augmented Instructions
Load Accumulator with N (5 µsec)
law N Operation Code 70
The number in the memory address bits of the instruction word is placed
in the Accumulator. If the indirect address bit is ONE, the complement of
N (- N) is put in the Accumulator.

Shift Group (5 µsec)
sft Operation Code 66
This group of instructions will rotate or shift the Accumulator and/or
the In-Out Register. When the two registers operate combined, the In
Out Register is considered to be an 18-bit magnitude extension of the
right end of the Accumulator.

Rotate is a non-arithmetic cyclic shift. That is, the two ends of the
register are logically tied together and information is rotated as though
the register were a ring.

Shift is an arithmetic operation and is, in effect, multiplication of the
number in the register by 2 ±N, where N is the number of shifts; plus is
left and minus is right.

The number of shift or rotate steps to be performed (N) is indicated
by the number of ONE's in Bits 9 thru 17 of the instruction word. Thus,
Rotate Accumulator Right nine times is 671777. A shift or rotate of one
place can be indicated nine different ways. The usual convention is to
use the right end of the instruction word (rar 1 = 671001).

15

Rotate Accumulator Right (5 µsec)
rar N Operation Code 671
Rotates the bits of the Accumulator right N positions, where N is the
number of ONE's in Bits 9-17 of the instruction word.

Rotate Accumulator Left (5 µsec)
ral N Operation Code 661
Rotates the bits of the Accumulator left N positions, where N is the
number of ONE's in Bits 9-17 of the instruction word.

Shift Accumulator Right (5 µsec)
sar N Operation Code 675
Shifts the contents of the Accumulator right N positions, where N is
the number of ONE's in Bits 9-17 of the instruction word.

Shift Accumulator Left (5 µsec)
sal N Operation Code 665
Shifts the contents of the Accumulator left N positions, where N is the
number of ONE's in Bits 9-17 of the instruction word.

Rotate In-Out Register Right (5 µsec)
rir N Operation Code 672
Rotates the bits of the In-Out Register right N positions, where N is
the number of ONE'S in Bits 9-17 of the instruction word.

Rotate In-Out Register Left (5 µsec)
ril N Operation Code 662
Rotates the bits of the In-Out Register left N positions, where N is
the number of ONE's in Bits 9-17 of the instruction word.

Shift In-Out Register Right (5 µsec)
sir N Operation Code 676
Shifts the contents of the In-Out Register right N positions, where N
is the number of ONE's in Bits 9-17 of the instruction word.

Shift In-Out Register Left (5 µsec)
sil N Operation Code 666
Shifts the contents of the In-Out Register left N positions, where N is
the number of ONE's in Bits 9-17 of the instruction word.

Rotate AC and IO Right (5 µsec)
rcr N Operation Code 673
Rotates the bits of the combined registers right in a single ring N posi
tions, where N is the number of ONE'S in Bits 9-17 of the instruction
word.

Rotate AC and IO Left (5 µsec)
rel N Operation Code 663
Rotates the bits of the combined registers left in a single ring N posi
tions, where N is the number of ONE's in Bits 9-17 of the instruction
word.

16

Shift AC and IO Right (5 µsec)
scr N Operation Code 677
Shifts the contents of the combined registers right N positions, where
N is the number of ONE's in Bits 9-17 of the instruction word.

Shift AC and IO Left (5 µ3ec)
scl N Operation Code 667
Shifts the contents of the combined registers left N positions, where
N is the number of ONE's in Bits 9-17 of the instruction word.

Skip Group (5 µsec)
skp Operation Code 64

This group of instructions senses the state of various flip-flops and
switches in the machine. The address portion of the instruction selects
the particular function to be sensed. All members of this group have the
same operation code.

The instructions in the Skip Group may be combined to form the in
clusive OR of the separate skips. Thus, if Address 3000 is selected, the
skip would occur if the overflow flip-flop equals ZERO or if the In-Out
Register is positive. The combined instruction would still take 5 micro
seconds.

The intent of any skip instruction can be reversed by making Bit 5
(normally the Deferred Address Bit) equal to ONE. For example, the
Skip on Zero Accumulator instruction, if deferred, becomes Do Not Skip
on Zero Accumulator.

Skip on ZERO Accumulator (5 µsec)
sza Address 100
If the Accumulator is equal to plus ZERO (all bits are ZERO), the Pro
gram Counter is advanced one extra position and the next instruction
in the sequence is skipped.

Skip on Plus Accumulator (5 µsec)
spa Address 200
If the sign bit of the Accumulator is ZERO, the Program Counter is ad
vanced one extra position and the next instruction in the sequence is
skipped.

Skip on Minus Accumulator (5 µsec)
sma Address 400
If the sign bit of the Accumulator is ONE, the Program Counter is ad
vanced one extra position and the next instruction in the sequence is
skipped.

Skip on ZERO Overflow (5 µsec)
szo Address 1000
If the overflow flip-flop is a ZERO, the Program Counter is advanced one
extra position and the next instruction in the sequence will be skipped.
The overflow flip-flop is cleared by the instruction. This flip-flop is set
by an addition or subtraction that exceeds the capacity of the Accumu
lator. The overflow flip-flop is not cleared by arithmetic operations
which do not cause an overflow. Thus, a whole series of arithmetic
operations can be checked for correctness by a single szo. The overflow
flip-flop is cleared by the "Start" Switch.

17

Skip on Plus In-Out Register (5 µsec)
spi Address 2000
If the sign digit of the In-Out Register is ZERO, the Program Counter
is indexed one extra position and the next instruction in sequence is
skipped.

Skip on ZERO Switch (5 µsec)
szs Addresses 10, 20 70
If the selected Sense Switch is ZERO, the Program Counter is advanced
one extra position and the next instruction in the sequence will be
skipped. Address 10 senses the position of Sense Switch 1, Address 20
Switch 2, etc. Address 70 senses all the switches. If 70 is selected all 6
switches must be ZERO to cause the skip.

Skip on ZERO Program Flag (5 µsec)
szf Addresses O to 7 inclusive
If the selected program flag is a ZERO, the Program Counter is ad
vanced one extra position and the next instruction in the sequence will
be skipped. Address O is no selection. Address 1 selects Program Flag 1,
etc. Address 7 selects all program flags. All flags must be ZERO to cause
the skip.

Operate Group (5 µsec)
opr Operation Code 76

This instruction group performs miscellaneous operations on various
Central Processor Registers. The address portion of the instruction speci
fies the action to be performed.

The instructions in the Operate Group can be combined to give the
union of the functions. The instruction opr 3200 will clear the AC, put
TW to AC, and complement AC. If the number minus zero is interpreted
as an instruction, the IO is cleared, AC gets the complement of the TW
switches, all program flags are set and the computer halts.

Clear In-Out Register (5 µsec)
cli Address 4000
Clears (sets equal to plus zero) the In-Out Register.

Load Accumulator from Test Word (5 µsec)
lat Address 2000
Forms the inclusive OR of the C(AC) and the contents of the Test
Word. This instruction is usually combined with Address 200 (Clear
Accumulator), so that C(AC) will equal the contents of the Test Word
Switches.

Complement Accumulator (5 µsec)
cma Address 1000
Complements (makes negative) the contents of the Accumulator.

Halt
hlt Address 400
Stops the computer.

18

Clear Accumulator (5 µsec)
cla Address 200
Clears (sets equal to plus zero) the contents of the Accumulator.

Clear Selected Program Flag (5 µsec)
elf Address 01 to 07 inclusive
Clears the selected program flag. Address 01 clears Program Flag 1,
02 clears Program Flag 2, etc. Address 07 clears all program flags.

Set Selected Program Flag (5 µsec)
st/ Addresses 11 to 17 inclusive
Sets the selected program flag. Address 11 sets Program Flag 1; 12 sets
Program Flag 2, etc. Address 17 sets all program flags.

No Operation (5 µsec)
nop Address 0000
The state of the computer is unaffected by this operation, and the
Program Counter continues in sequence.

In-Out Transfer Group (5 µsec without in-out wait)
iot Operation Code 72

The variations within this group of instructions perform all the in-out
control and information transfer functions. If Bit 5 (normally the In
direct Address bit) is a ONE, the computer will halt and wait for the com
pletion pulse from the device activated. When this device delivers its
completion, the computer will resume operation of the instruction se
quence.

An incidental fact which may be of importance in certain scientific or
real time control applications is that the time origin of operations follow
ing an in-out completion pulse is identical with the time of that pulse.

Most in-out operations require a known minimum time before com
pletion. This time may be utilized for programming. The appropriate
In-Out Transfer is given with no in-out wait (Bit 5 a ZERO and Bit 6
a ONE). The instruction sequence then continues. This sequence must
include an iot instruction 730000 which performs nothing but the in-out
wait, and the instruction must occur before the safe minimum time.
A table of minimum times for all in-out devices is delivered with the
computer: it lists minimum time before completion pulse and minimum
In-Out Register free time.

Bit 6 determines whether a completion pulse will or will not be re
ceived from the in-out device. When it is different than Bit 5, a comple
tion pulse will be received. When it is the same as Bit 5, a completion
pulse will not be received.

In addition to the control functions of Bits 5 and 6, Bits 7 through 11
are also used as control bits serving to extend greatly the power of the iot
instructions. For example, Bits 12 through 17, which are used to desig
nate a class of input or output devices such as typewriters, may be
further defined by Bits 7 through 11 as referring to Typewriter 1, 2, 3,
etc., and whether or not the Sequence Break System is to be used.

19

STANDARD
PDP-1

CENTRAL PROCESSOR OPTIONS

4906 WORD

MEMORY

MODULE-0 12

MEMORY

MODULE-3

MEMORY FIELD CONTROL

,:,
MEMORY

MODULE-0
12

MEMO RY

MODULE-7

MEMORY FIELD CONTROL

CONSOLE
CENTRAL MACHINE

LIGHT PEN

16" VIS UAL

SCOPE SCOPE

CONTROL

5"
PRECISION

SCOPE
SC OPE TAPE TAPE

CONTROL
31

UNIT-0
50

UNIT-2

NOTE

OUTER NUMBERS DENOTE OPTION TYPES

* ONLY ONE OPTION MAY BE CONNECTED FOR A MACHINE

20

TAPE

UNIT-0 50

WITH
COMMUNICATION FOR
PERIPHERAL DEVICES

AND OPTIONS

CARO

READER

CONTROL

40- 523

TAPE 523

UNIT-7 READER

CARD

PUNCH

CONTROL

41-523

523

PUNCH

INPUT-OUTPUT OPTIONS

PDP-1 System Configuration Diagram

12

HIGH SPEED

(3 CHANNELS)

CONTROL

SEQUENCE

BREAK

SYSTEM

LINE LINE

PRINTER PRINTER

CONTROL
61

CONTROL

PRINTER PRINTER

21

SEQUENCE

BREAK

SYSTEM
20

SPECIAL

EQUIPMENT

62

Ill. STANDARD AND OPTIONAL
EQUIPMENT

STANDARD EQUIPMENT

Punched Tape Reader
The punched tape reader of the PDP-1 is a photoelectric device capable
of reading 400 lines per second. Three lines form the standard 18-bit
word when reading binary punched eight-hole tape. Five, six, and seven
hole tape may also be read.

Read Punched Tape, Alphanumeric
rpa Address 0001

In this mode, one line of tape is read for each In-Out Transfer. All
eight holes of the line are read. The information is left in the right
eight bits of the In-Out Register, the remainder of the register being
left clear.
The code of the off-line tape preparation typewriter (Friden FIO-DEC
Recorder-Reproducer) contains an odd parity bit. This bit may be
checked by the read-in program. The FIO-DEC Code can then be
converted to the concise six-bit code used by PDP-1 merely by drop
ping the eighth bit (parity).

A list of characters and their FIO-DEC and Concise Codes is found
on Pages 37 through 39.

High Speed Punched Tape Reader

22

Read Punched Tape, Binary
rpb Address 0002
For each In-Out Transfer instruction, three lines of punched tape are
read and assembled in the In-Out Register to form a full computer
word. For a line to be recognized in this mode, the eighth hole must be
punched; i.e., lines with no eighth hole will be skipped over. The
seventh hole is ignored. The pattern of holes in the binary tape is ar
ranged so as to be easily interpreted visually in terms of machine
instruction.

Read Reader Buffer
rrb Address 0030
When operating in the Sequence Break Mode, the rpa and rpb in
structions operate as usual but do not transfer information from the
reader buffer to the IO Register. To accomplish the transfer, these
instructions must be followed by an rrb instruction.

Read-In Mode
This is a special mode activated by the" Read-In" switch on the con
sole. It provides a means of entering programs which neither rely on
programs in memory nor require a plug board. Pushing the "Read
In" switch starts the reader in the binary mode. The first group of
three lines, and alternate succeeding groups of three lines, are inter
preted as "Read-In" mode instructions. Even-numbered groups of
three lines are data. The "Read-In" mode instructions must be either
"deposit in-out" (dio Y) or "jump" (jmp Y). If the instruction is dio
Y, the next group of three binary lines will be stored in memory loca
tion Y and the reader continues moving. If the instruction is jmp Y,
the "Read-In" mode is terminated, and the computer will commence
operation at the address of the jump instruction.

Punched Tape Punch
The standard PDP-1 punched tape punch operates at a speed of 63 lines
per second. It can operate in either the alphanumeric mode or the binary
mode.

Punch Punched Tape, Alphanumeric
ppa Address 0005
For each In-Out Transfer instruction one line of tape is punched. In
Out Register Bit 17 conditions Hole 1. Bit 16 conditions Hole 2, etc.
Bit 10 conditions Hole 8.

Punch Punched Tape, Binary
ppb Address 0006
For each In-Out Transfer instruction one line of tape is punched. In
Out Register Bit 5 conditions Hole 1. Bit 4 conditions Hole 2, etc. Bit
0 conditions Hole 6. Hole 7 is left blank. Hole 8 is always punched in
this mode.

23

Alphanumeric Typewriter
The typewriter will operate in the input mode or the output mode.

Type Out
tyo Address 0003
For each In-Out Transfer instruction one character is typed. The
character is specified by the right six bits of the In-Out Register.

Type In
tyi Address 0004
This operation is completely asynchronous and is therefore handled
differently than any of the preceding in-out operations.
When a typewriter key is struck, Program Flag 1 is set. At the same
time the code for the struck key is presented to gates connected to the
right six bits of the In-Out Register. This information will remain at
the gate for a relatively long time by virtue of the slow mechanical
action. A program designed to accept typed-in data would periodically
check the status of Program Flag 1. If at any time Program Flag 1 is
found to be set, an In-Out Transfer instruction with Address 4 must
be executed for information to be transferred. This In-Out Transfer
should not use the optional in-out halt. The information contained in
the typewriter's coder is then read into the right six bits of the In-Out
Register. The tyi instruction automatically clears the IO before trans
ferring the information. The tyi instruction is usually preceded by a
Clear Selected Program Flag 1 instruction.

Sequence Break Mode
'l\vo instructions are associated directly with the One-Channel

Sequence Break System on the standard PDP-1.

Enter Sequence Break Mode
esm Address 0055
This instruction turns on the Sequence Break System, allowing
automatic interrupts to the main sequence to occur. The contents of
the Sequence Break flip-flops are unaffected by this instruction.

Leave Sequence Break Mode
lsm Address 0054
This instruction turns off the Sequence Break System, thus prevent
ing interrupts to the main sequence. Should interrupts occur while the
System is off, the Sequence Break flip-flops will, nevertheless, continue
to be set.

Miscellaneous
Check Status
cks Address 0033
This instruction checks the status of various in-out devices and sets
IO Bits O through 4 for subsequent program interrogation as follows:

24

IO Bit
Positions If ONE

0 Displayed point sensed by light pen
1 Punched tape reader busy
2 Typewriter busy _,-
3 Typewriter key stuck
4 Punched tape punch busy

OPTIONAL EQUIPMENT

Automatic Multiply and Divide (Type 10)

This option replaces the Multiply Step and Divide Step instructions
with the following instructions:

Multiply (14 to 25 µsec)
mul Y Operation Code 54

The product of C(AC) and C(Y) is formed in the AC and IO registers.
The sign of the product is in the AC sign bit. IO Bit 17 also contains
the sign of the product. The magnitude of the product is the 34-bit
string from AC Bit 1 through IO Bit 16. The C (Y) are not affected
by this instruction.

Divide (30 to 40 µsec, except on overflow, 12 µsec)
div Y Operation Code 56

The dividend must be in the AC and IO registers in the form indicated
in the instruction, Multiply. IO Bit 17 is ignored. The divisor is the
C(Y). At the completion of the instruction, the C(AC) are the quotient
and the C (IO) are the remainder. The sign of the remainder is the sign
of the dividend. If an overflow were to occur, the division does not
take place, the C(AC) and C(IO) are unchanged, and the overflow
indicator is set. The C (Y) are not affected by this instruction.

Memory Module (Type 12)
Each Memory Module consists of 4096 18-bit words. A maximum of
eight modules may be connected to the PDP-1.

Memory Field Control (Type 13)
This control allows for memory expansion up to 16,384 18-bit words
(i.e., four 4096-word memory modules). Each memory module is
defined as consisting of two 2048-word fields. A select memory instruc
tion, jump field according to the C (Y), jfd Y, selects any two fields to
be connected to the PDP-1 and jumps to a specified location in one of
the two fields.

A second instruction, change fields according to Y, cfd Y, replaces the
contents of the two 3-bit field registers with Bits 6 through 11 of the
cf d instruction. The Program Counter is unaffected and computation
continues in sequence using the newly selected fields.

When High Speed Channel transfers are involved, the high speed
channel specifies a 14-bit address for one of 16,384 wonls.

25

Memory Field Control (Type 14)
This control allows for memory expansion up to 32,768 18-bit words
(i.e., eight 4096-word memory modules). Each memory module repre
sents either a 4096 word Instruction Field or a 4096 word Data Field.
A select memory instruction, jump field according to the C(Y),
jfd Y, selects any two fields (one Instruction Field and one Data
Field) to be connected to the PDP-1 and jumps to a specified location
in the newly selected Instruction Field.
A second instruction, change data field according to Y, cdf Y, replaces
the contents of the 3-bit Data Field Register with Bits 9 through 11
of the cdf instruction. The Program Counter and the Instruction Field
Register are unaffected, and computation continues in sequence using
the same Instruction Field.
When High Speed Channel transfers are involved, the high speed
channel specifies a 15-bit address for one of 32,768 words.

High Speed Channel (Type 19)
The High Speed Channel is used to transfer blocks of words between
memory and an in-out device, usually a high speed device such as
magnetic tape. Such a channel is installed with the Tape Control
Unit Type 52 or may be installed separately for special applications.
As many as three High Speed Channels may be added to the PDP-1.
Each of these is automatically interrogated at the completion of each
memory cycle on a priority basis. The priority is wired and fixed.
The Sequence Break System has an over-all priority just below that of
the lowest priority High Speed Channel.
When wired to this channel, a device communicates directly with
memory through the Memory Buffer Register, bypassing the IO
Register. After proper initiation, data transfers proceed without
disturbing the main program. If the channel has a word for or needs a
word from the memory, the current program sequence pauses for one
memory cycle in order to serve that channel, then continues.

Sequence Break System (Type 20)
An optional in-out control is available for PDP-1. This control, termed
the Sequence Break System, allows concurrent operation of several
in-out devices and the main sequence. The system has, nominally,
16 automatic interrupt channels arranged in a priority chain.
A break to a particular sequence may be initiated by the completion
of an in-out device, the program or any external signal. If this se
quence has priority, the C(AC), C(IO), C(PC), and the contents of
the memory field flip-flops (if present) are stored in adjacent fixed
locations unique to that sequence. The Program Counter is reset to
the address contained in a fourth fixed location. The program is now
operating in the new sequence. This new sequence may be broken by
a higher priority sequence. A typical program loop for handling an
in-out sequence would contain three to five instructions, including the
appropriate iot. These are followed by load AC and load IO from the
fixed locations and an indirect jump to location of the previous C(PC).
This last instruction terminates the sequence.
The Sequence Break System provides PDP-1 with much of the power
of a multiple sequence machine or of a computer having in-out
synchronizers or automatic trunks.

26

Cathode Ray X-Y Point Plotter

Visual CRT Display (Type 30)
The PDP-1 cathode ray tube display is useful for presentation of
graphical or tabular data to the operator. For each Display instruction
(730007), one point is displayed. The first 10 bits of the IO Register,
Bits O through 9, are the Y coordinate of the point. Bits O through 9
of the Accumulator are the X coordinate of the point.

27

Information is displayed at a rate of 20,000 points per second, and the
resolution is 1 part in 1024.

Cathode Ray Tube Display

Precision CRT Display (Type 31)
The operation of this 5-inch cathode ray tube display is similar to that
of the Type 30. The resolution is 1 part in 4096. It comes equipped
with mounting bezel to accept a camera or a photomultiplier device.

Light Pen (Type 32)
This accessory allows information to be "written" on the cathode ray
tube. The pen detects displayed information, and the pen output sets
a program flip-flop in the machine each time a pulse of light strikes
the pen.

Card Punch Control (Type 40-523)
This control allows for on-line operation of standard card punching
equipment. It contains an 80-bit buffer which is loaded from the
IO Register, using an iot instruction for each card row punched. The
control is for use with a 523 Summary Punch at speeds of 100 cards
per minute.

Card Reader Control (Type 41-523)
This control provides for on-line operation of standard card reading
equipment. It allows the read brush outputs to be directed to the
IO Register. The control is for use with a 523 Summary Punch at
speeds of 100 cards per minute.

28

Tape Transport (Type 50)
This transport is compatible with IBM tape formats with a recording
density of 200 7-bit characters per inch and an inter-record gap of
¾ inch. The transfer rate is 15,000 characters per second at a tape
speed of 75 inches per second. The method of recording is non-return
to-zero. A maximum of 24 tape transports may be connected to
the PDP-1.

Programmed Tape Control Unit (Type 51)
This control transfers information between the computer and the tape
one character at a time. All transfer operations, including timing,
error checking and assembly of characters into computer words are
performed by routines. The Type 51 allows a choice of tape format,
including the standard IBM tape format described under Tape
Transport (Type 50).

Automatic Tape Control Unit (Type 52)
This control automatically transfers information between the com
puter memory and the tape in variable-length blocks of characters.
It allows computation to continue while the transfer is in process by
using the High Speed Channel, which is part of the control unit.
Special features include scatter-read and gather-write; automatic,
bit-by-bit read-compare with core memory; automatic parity error
detection while reading and writing; and rapid tape searching through
its ability to skip a pre-selected number of blocks. Tape format is
standard IBM as described under Tape Transport (Type 50).

Programmed Line Printer and Control (Type 61)
This is an on-line printing station capable of operating at 150 lines per
minute (120 columns per line with 64 characters per column). All
transfer operations, formatting and control functions are under
program control.

Automatic Line Printer and Control (Type 62)
This is an on-line printing station capable of operating at 600 lines per
minute (120 columns per line with 64 characters per column). A simple
one-line buffer is used. The appropriate iot instruction is repeated to
fill the buffer. The order to print is then given. Following the comple
tion of the line print, the printer returns a completion pulse and
spaces the paper.

Real Time Clock
A special input register may be connected to operate as a real time
clock. This is a counting register operated by a crystal controlled
oscillator.

The state of this counter may be read at any time by the appropriate
In-Out Transfer instruction. The computer stops only long enough to
provide synchronization with the clock oscillator, then resumes opera
tion in phase with it.

29

IV. PROGRAM LIBRARY

The Basic Program Library for PDP-1 is designed to provide the
nucleus of a growing system of programs and subroutines. Among
the programs in use are:

DECAL

Digital Equipment Compiler, Assembler and Linking Loader is
an integrated program for PDP-1 incorporating in one system all
of the essential features of advanced compilers, assemblers and
loaders. The outstanding features of DECAL are:

• Open-Ended Programming System. DECAL can be modified
without a detailed understanding of its internal operation by
means of a recursive definition facility based on a skeleton com
piler with a basic set of logical capabilities. The skeleton compiler
can act as a bootstrap for implementing additional features
or deleting or changing existing facilities.

• Efficient Use of Storage Capacity. All available memory space
will be used before DECAL runs out of space. This is accom
plished by means of a single table that meets all of the storage
needs of DECAL. When any feature of DECAL is removed, all
of the associated space is again made available.

• Efficient Use of Time. DECAL processing takes full advantage
of the speeds of the standard PDP-1 input-output equipment
(400 lines per second reader and 63 lines per second punch).

• One Pass Compiler-Assembler. The symbolic tape (usually pre
pared off-line) is only read one time. It is not stored in memory.
A relocatable tape ready for the linking loader is punched as the
symbolic tape is read.

• Efficient Object Program. Since DECAL allows compiler and
assembler statements to be freely intermixed at the discretion of
the programmer, the object program can be as efficient as desired.

• Variable Length Symbols. Symbol lengths are not restrictive and
can be hundreds of characters long if necessary.

• Program Integration and Relocation. At load time, individual
routines and subroutines can be loaded in any order. All cross
referencing is done automatically, and the resulting program is
arranged compactly starting at any specified origin. The names
of subroutines required at run time and not yet loaded are
listed on the typewriter so that they may be subsequently
loaded.

• Use of ALGOL. DECAL includes that part of ALGOL which
is compatible with the PDP-1 Computer. Compiler (algebraic)

30

and assembler statements can be written taking full advantage
of the ALGOL reference language due to the unique character
set used by the PDP-1.

• Recursively Defined Macro Instructions. Full use of such complex
items as recursively defined macro instructions can be made
when writing DECAL assembler statements.

• Use of Arbitrary Languages. Arbitrary reference languages can
be defined and incorporated into DECAL to handle special
problems.

• Use of Floating Point Systems. DECAL-compatible, single
and double precision floating point systems can be incorporated.

• Generalized subscripting, indexing and address arithmetic facilities
can be incorporated.

OTHER PROGRAMS

FRAP Assembly Program is a basic assembler designed to oper
ate with a very minimum amount of internal storage.

Standard Function Generator Subroutines for single precision
fixed point arithmetic. These include: sine, cosine, arctangent,
square root, exponential and logarithmic subroutines.

Single Precision Floating Point Package for arithmetic using an
18-bit fraction and an 18-bit exponent. The package includes
standard function generator subroutines.

Double Precision Floating Point Package for arithmetic using a
36-bit fraction and an 18-bit exponent. The package includes
standard function generator subroutines.

Basic Double Precision Fixed Point Subroutines including addi
tion, subtraction, multiplication and division.

Utility Routine Package including a wide range of input-output
subroutines and debugging aids.

31

V. APPENDIX

ABBREVIATED INSTRUCTION LIST

Basic Instructions

Instruction Code# Explanation Oper. Time Page Ref.
(µsec)

add Y 40 Add C(Y) to C(AC) 10 12

and Y 02 Logical AND C (Y) with
C(AC) 10 13

cal y 16 Equals jda 100 10 14

dac y 24 Put C(AC) in Y 10 13

dap Y 26 Put contents of address
part of AC in Y 10 14

dio y 32 Put C(IO) in Y 10 14

dip y 30 Put contents of instruc-
tion part of AC in Y 10 14

dis y 56 Divide step 10 12

dzm Y 34 Make C (Y) zero 10 14

idx y 44 Index (add one) C(Y),
leave in Y & AC 10 12

ior y 04 Inclusive OR C(Y) with
C(AC) 10 13

iot y 72 In-out transfer, see below 19

isp y 46 Index and skip if result
is positive 10 13

jda y 17 Equals dac Y and jsp Y + 1 10 19

jfd y 12 Jump memory field according
to C(Y) 10 26

jmp y 60 Take next instruction
from Y 5 14

jsp y 62 Jump to Y and save
program counter in AC 5 14

lac y 20 Load the AC with C(Y) 10 13

law N 70 Load the AC with the
number N 5 15

32

Basic Instructions (Continued)

Instruction Code# Explanation Oper. Time Page Ref.
(µsec)

law-N 71 Load the AC with the
number-N 5 15

lio y 22 Load IO with C (Y) 10 14

musY 54 Multiply step 10 12

opr 76 Operate, see below 5 18

sad y 50 Skip next instruction
if C(AC) ~ C(Y) 10 15

sas y 52 Skip next instruction
if C(AC) = C(Y) 10 15

sft 66 Shift, see below 5 15

skp 64 Skip, see below 5 17

sub y 42 Subtract C (Y) from
C(AC) 10 12

xct y 10 Perform instruction in Y 5+extra 14

xor y 06 Exclusive OR C (Y)
with C(AC) 10 13

Operate Group

cla 760200 Clear AC 5 19

elf 760001-7 Clear selected Program
Flag 5 19

cli 764000 Clear IO 5 18

cma 761000 Complement AC 5 18

hlt 760400 Halt 5 18

lat 762200 Load AC from Test
Word switches 5 18

nop 760000 No operation 5 19

stf 760011-7 Set selected Program Flag 5 19

33

In-Out Transfer Group

Instruction Code# Explanation Oper. Time Page Ref.
(µsec)

cdf 720X74 Change data field 5 26

cfd 72XX74 Change fields 5 25

cks 730033 Check status 5 24

dpy 730007 Display one point on CRT 50 27

esm 720055 Enter Sequence Break Mode 5 24

Ism 720054 Leave Sequence Break Mode 5 24

ppa 730005 Punch punched tape
alphanumeric 23

ppb 730006 Punch punched tape binary 23

rpa 730001 Read punched tape
alphanumeric 22

rpb 730002 Read punched tape binary 23

rrb 720030 Read Reader Buffer 5 23

tyi 720004 Read typewriter input
switches 5 24

tyo 730003 Type out 24

Skip Group

sma 640400 Skip on minus AC 5 17

spa 640200 Skip on plus AC 5 17

spi 642000 Skip on plus IO 5 18

sza 640100 Skip on ZERO (+o) AC 5 17

szf 64000F Skip on ZERO flag
(F =flag#) 5 18

szo 641000 Skip on ZERO overflow
(and clear overflow) 5 17

szs 6400S0 Skip on ZERO sense
switch (S =switch#) 5 18

34

Shift/Rotate Group

Instruction Code# Explanation Oper. Time Page Ref.
(µsec)

ral 661 Rotate AC left 5 16

rar 671 Rotate AC right 5 16

rel 663 Rotate combined AC &
IO left 5 16

rcr 673 Rotate combined AC &
IO right 5 16

ril 662 Rotate IO left 5 16

rrr 672 Rotate IO right 5 16

sal 665 Shift AC left 5 16

sar 675 Shift AC right 5 16

scl 667 Shift combined AC & IO
left 5 17

scr 677 Shift combined AC & IO
right 5 17

sil 666 Shift IO left 5 16

SIT 676 Shift IO right 5 16

35

NUMERICAL INSTRUCTION LIST

Code Instruction Code Instruction

00 * 40 add

02 and 42 sub

04 ior 44 idx

06 xor 46 isp

10 xct 50 sad

12 jfd 52 sas

14 * 54 mus

16 cal 56 dis

17 jda 60 Jmp

20 lac 62 jsp

22 lio 64 skp

24 dac 66 Shift

26 dap 70 law

30 dip 71 law

32 dio 72 iot

34 dzm 74 *
36 * 76 opr

* Spare code, computer will halt.

36

ALPHANUMERIC CODES

FIO-DEC Concise
Character Code Code

a A 61 61

b B 62 62

C C 263 63

d D 64 64

e E 265 65

f F 266 66

g G 67 67

h H 70 70

I 271 71

j J 241 41

k K 242 42

1 L 43 43

m M 244 44

n N 45 45

0 0 46 46

p p 247 47

q Q 250 50

r R 51 51

8 s 222 22

t T 23 23

u u 224 24

V V 25 25

w w 26 26

X X 227 27

y y 230 30

z z 31 31

37

Alphanumeric Codes (Continued)

Character FIO-DEC Concise
Code Code

0 - (right arrow) 20 20

1 (double quotes) 01 01

2 (single quote) 02 02

3 (not) 203 03

4 J (implies) 04 04

5 V (or) 205 05

6 I\ (and) 206 06

7 < (less than) 07 07

8 > (greater than) 10 10

9 i (up arrow) 211 11

(57 57

) 255 55

(non-spacing
overstrike and
vertical) 256 56

+ (minus and plus) 54 54

(non-spacing
middle dot
and underline) 40 40

233 33

X (period and
multiply) 73 73

I ? 221 21

Lower Case 272 72

Upper Case 274 74

Space 200 00

Backspace 75 75

Tab 236 36

38

Alphanumeric Codes (Continued)

Character FIO-DEC Concise
Code Code

Carriage Return 277 77

Tape Feed 00 00

Red* 35

Black * 34

Stop Code 13

Delete 100

*Used on type-out only, not on keyboard.

39

DEC TECHNICAL BULLETINS

NoTE: DEC digital circuit packages are being renamed "Modules." As new
bulletins are published, the two basic product lines will be referred to as
"Laboratory Modules" instead of "Digital Test Equipment" and as "System
Modules" rather than "System Building Blocks."

DIGITAL MODULES (A-702) - short form catalog listing DEC's
complete product line.

DEC 10 Megacycle Building Blocks (A-710) -describes new 5000
Series Digital Test Equipment and 6000 Series System Building
Blocks.

Expanded 100 Series DEC Digital Test Equipment (B-100) - de
scribes DEC's 5 megacycle patchcord units.

New 3000 Series DEC Digital Test Equipment (B-3000) - describes
DEC's 500 kilocycle patchcord units.

Expanded 1000 Series DEC System Building Blocks (C-lOO0A) -
describes DEC's 5 megacycle plug-in units.

New 4000 Series DEC System Building Blocks (C-4000A)-describes
DEC's 500 kilocycle plug-in units.

DEC Basic Logic Kit (E-150)-describes a basic selection of DEC
Digital Test Equipment and Accessories which can be used to
perform a variety of logical operations.

DEC Programmed Data Processor (F-llA)-describes DEC's PDP-1
high-speed, solid state, general purpose computer.

DEC Memory Tester Type 1512 (F-1512A)-describes DEC's 1500
Series testers for coincident current core memories.

DEC Memory Tester Type 1514 (F-1514) -describes DEC's 1500
Series testers for word address and coincident current core mem
ories.

DEC Automatic Memory Core Tester Type2101 (F-2101)-describes
DEC's automatic tester for ferrite magnetic memory cores.

DEC Memory Exerciser Type 2201 (F-2201) -describes DEC's
exercisers for coincident current core memory systems.

Copies of the above bulletins are available on request from the
DEC Sales Department, 146 Main Street, Maynard, Massachu
setts, or 8820 Sepulveda Boulevard, Los Angeles 45, California.

40

INPUT-OUTPUT

SYSTEMS MANUAL.

(PRELIMINARY MANUAL)

F-25

INDEX

INTRODUCTION

Information and Control
Fundamental Transfer of Information
The Use of In-Out Transfer Commands for Control Pulses

TRANSMITTING INFORMATION TO A DEVICE WITH THE PROGRAM

RECEIVING INFORMATION FROM A DEVICE WITH THE PROGRAM

The Connection of An Analog To Digital Converter
With PDP-1

OPERATION OF THE STANDARD IN-OUT EQUIPMENT

Synchronization and Programming
Point Plotting Oscilloscope
Paper Tape Punch For PDP-1
Typewriter for ou.tput of Information
Typewriter for Input of Information
The Photoelectric Tape Reader

THE GENERAL CONNECTION OF PROGRAMMED IN-OUT TRANSFERS

Outgoing Information
Incoming Information
Formation of Program Control Pulses
synchronization of Device Completion with Computer

Restart
Special Levels and Pulses

SEQUENCE BREAK SYSTEM

Programmed In-Out System
Automatic Program Interrupter

16 CHANNEL SEQUENCE BREAK

HIGH SPEED CHANNELS

APPENDIX I - LIST OF IN OUT COMMANDS

APPENDIX II - SCHEDULE OF AVAILABLE INTERCONNECTIONS

Page
1

1
2
3

4

5

5

7

7
8

10
10
11
12

13

13
13
13

14
15

15

15
16

17

19

21 ,

25

l

INDEX

INTRODUCTION

Information and Control
Fundamental Transfer of Information
The Use of In-Out Transfer Commands for Control Pulses

TRANSMITTING INFORMATION TO A DEVICE WITH THE PROGRAM

RECEIVING INFORMATION FROM A DEVICE WITH THE PROGRAM

The Connection of An Analog To Digital Converter
With PDP-1

OPERATION OF THE STANDARD IN-OUT EQUIPMENT

Synchronization and Programming
Point Plotting Oscilloscope
Paper Tape Punch For PDP-1
Typewriter for Ou_tput of Information
Typewriter for Input of Information
The Photoelectric Tape Reader

THE GENERAL CONNECTION OF PROGRAMMED IN-OUT TRANSFERS

Outgoing Information
Incoming Information
Formation of Program Control Pulses
Synchronization of Device Completion with Computer

Restart
Special Levels and Pulses

SEQUENCE BREAK SYSTEM

Programmed In-Out System
Automatic Program Interrupter

16 CHANNEL SEQUENCE BREAK

HIGH SPEED CHANNELS

APPENDIX I - LIST OF IN OUT COMMANDS

APPENDIX II - SCHEDULE OF AVAILABLE INTERCONNECTIONS

. '

Page
1

l
2
3

4

5

5

7

7
8

10
10
11
12

13

13
13
13

14
15

15

15
16

17

19

21

25

THE ELECTRICAL INTER-CONNECTION AND PROGRAMMING FOR DEVICES
CONNECTED WITH PDP-1

Introduction

This is a discussion of the electrical, physical, and programming
aspects of devices connected to PDP-1.

The PDP-1 is composed of standard DEC building blocks whose
logical characteristics and capabilities are discussed in DEC literature.*
The following comments on the inter-connection of equipment will
assume the reader has a fairly basic knowledge of Boolean Algebra
and has vaguely perused the DEC Logic Handbook, A-4OO-B. The reader
should also be familiar with the register layout of the PDP-1 and its
programming as described in the Programmed Data Processor manual,
F-lSA.

Information and Control

Two general types of signal flow are in PDP-1. These are for
information transfers and for control pulses. An example of an
information transfer in PDP-1 is when the contents of the Memory
Buffer register ,(MB) are read into the Accumulator (AC) • In this
case, when the transfer is made, a whole register, or 18 bits of
information, is transfered simultaneously. The command that the
Memory Buffer register is to be placed in the Accumulator is done
by a single line which is called a control line. That is, the 18
bits of the Memory Buffer register go to the Accumulator, and the
control line "samples" these lines at an appropriate time.

Basically, external information controls are handled in the
same manner. Information is presented to external devices, and
the device is given a control signal under program control which
says to take the inforrr.ation and proceed. A symbolic language
program may be written for the paper tape punch to perforate one
line of paper tape:

character 77

punch lio character

ppa

,code to be punched on tape

,contents of "character" replace
In Out register

,command to punch one line of tape

In the above program, if the program is started in register,
"punch", the instruction, lio character, would place the octal

-2-

77, in the In Out register (IO). The ppa or punch paper alphanumeric
instruction would transfer the last 8 bits of a character, 00 111 111
(77), to the punch logic. The punch would then perforate a line of
the tape. Inforrration is transfered to paper tape just as information
is transfered from a memory location to the arit~etic element. The
character 00 111 111 would correspond to the information and any
control signals generated by the command punch paper alpha (ppa),
being given would constitute the control to the punch logic.

The in-out transfer command has the operation code 72XXXX. The
address portion of the command has ~pecial meaning. The six bits,
12-17, address one of 64 devices. Bits 5 and 6 control synchronization
and bits 7-11 may be used _for special purposes.

The in-out transfer command is the basic method of transfering
information between PDP-1 and other devices.

There are several methods (some of which are special options)
of transfering information that relieve the program of the details
associated with the transfer. Logic within a device may request
that information be transfered directly from core memory while the
program is running. That is, the program is momentarily interrupted
while data are transfered. This is called a high speed data channel • .

The Sequence Break System permits a program sequence to be
interrupted at a time a condition has been satisfied. The Sequence
Break relieves the program of the details associated with the status
of input-output devices.

Fundamental Transfer of Information

Fundamentally, information can be transfered between one register
and another register, as shown in figure 1. This method, which
involves only one step is known as a jam transfer. Figure 1 shows
the jth flip-flops for registers Y and X. At a given time,
information is to be transfered from register X to register Y. The
control event is entitled 11 C(X) = C(Y) 11 , or, the contents of register
X replace the contents of register Y. A pulse on the control line
will transfer the information from register X to register Y by
"sampling" the output voltages of register x. This process may

"also be referred to as "strobing" , "sampling", "transfering" or
"reading in".

If register X contains a one, then the transistor "and" gate
labeled 2 will conduct when the control pulse is given causing the

I

COIV11M/,S ~ A' lr'i~F
CON~T'S~Y

• •

C(X) ~ C(Y) ---~ -•QJ.JI R.OL Pf)I-SF
(~1-,:uer.r..s o~

70/IOO ~reeon~
. d~"°4)

,4 SO.ll~ L)/)IM{;W/) 5IGNIFIFS

t-he. O~S/t;N~TFt> (~. rl-lc
FP/!/Ft,,<JP oAl~S 51/)c ourA.IT..

t. F'Yt~ IS -~ VOL7S.

Nt94,lOW D1,4~p $1fit)JIFI~

o ··POt.iS.
ti -

'-.-ll&s -- l:NV~S'"~ ,, A-~t>" GP. TS" 5

t>r c TYPi s ·• A-1 or., 1105' ,;e+c,
ItfFMNN-rlt:W' P"11e

ro 4e rR1'AJS1=t~eG:t>

• • • • o· ·x:..:~-1 • • • , DFC ~IP ,&UJP ~I
J · ~ 120~1209 ,,,2atfl-} F/F r.YAD"

: '9 2011 +'ZoZ /~.20!J
I

.JI\M . I TRANSFER.. QF:
'

l~FORMAT\O~ BETWE ~~ T~o
REG1$Tf.R$

FIG.UR~ ,1

-3-

set one input to be pulsed. Transistors 1 and 2 act as "and" gates.
The new contents of Y do not depend on the previous contents. The
contents of X are unaffected by the information transfer. The
logical conventions of figure 1 will be used throughout DEC PDP-1
diagrams.

Figure 2 shows the two step method of transmitting information
between two flip-flop registers. By allowing the transfer to be
effected in two steps, the number of "and" gates has been halved.

First, each bit of the register is set to zero. A short time
later (0.2 microseconds for 5 MC logic and 2 microseconds for 500 KC
logic), a second pulse transfers (strobes, or reads in) the information
into the one side of the flip-flops. Using this system, information
need only be specified by the polarity on a single line rather than two
lines.

The Use of In-Out Transfer Commands For Control Purposes

The PDP-1 uses the address of in out transfer (iot) instructions
to select various devices. Actually, the decoding for the instruction,
72XXXX, is as follows:

Bits

0-4
5-6
7-11
12-17

11101 Instruction bit code for in out transfer
Used for device synchronization
Unused - May be anything
Addresses 1 of 64 devices

The address decoding scheme will be described in greater detail
in the following sections. One of 64 pulses will be emitted on a
particular wire corresponding to the address or last 6 bits of the
in out transfer instruction.

Really, 64 pulse pairs may be formed. The pulse pair, which
corresponds to an address is sent on two separate wires and provides
the following:

1. 2.5 microseconds after the command is given, a pulse is
available for clearing a register.

2. 2.5 microseconds later, or 5 microseconds after the beginning
of the corr.mand, a pulse is available to transfer the information.
Thus, the two step transfer method may be used.

- r

__________________________________ ,..,_. , .. ,~

-->--

' . l ' ' ,;.. .. ! 1-l
. ! . I I
···! ; "- . - ..

1. ~ + :- - t

·;

'
1- -

.r-
~

r, · t -~
I i : ·t '

I ! • ~ 1 ~ \ ~
I .
I I

I !
. ~-··

'. --
' i

: r j

-- -- -- ·--- ... ~-

i - - -, . -,-- . -- ..
I :

- -- - -·-· . - -
l

t· -
• I ,._J

I I I I

; r, t
' t· ~

• l.

I • ' I
l ..

I

.......

+

... _J_

-4-

For example, an in-out transfer command, turn on (ton), may be defined
in the program assembly language and connected within PDP-1 with the
operation code 72 0010. Now, each time a program gives a ton command,
a pulse of 0.4 microseconds duration and 3 volt amplitude will be
emitted on a line labeled "ton". Similarly, a turn off pulse may be
emitted for a tof command (code 72 0011). The following program with
figure 3 forms a 50 KC square wave generator:

on

off

72 0010
jmp off

tof
jmp on

,sets the flip-flop to a one state
,dummy instruction - goes to next
,instruction
,sets the flip-flop to the zero state
,returns to the register labeled begin
,for repeating the sequence

A pulse appears on the ton line at some time. Five microseconds
elapse as the "jmp off" command is effected. Five microseconds later,
tof occurs and a pulse clears the flip-flop. The jmp instruction
requires 5 microseconds and the process repeats. Every 10 microseconds,
the flip-flop either gets set or cleared. Thus, output of the flip
flop is a square wave with a period of 20 microseconds. The times
for an on or an off level can be varied in 5 microseconds intervals.

TRANSMITTING INFORMATION TO A DEVICE WITH THE PROGRAM

One of the most common devices that can be connected to the PDP-1
is a flip-flop register of up to 18 bits. The register, for example,
might drive a digital to analog decoding network to supply an analog
voltage, or a series of relays, or a visual display buffer from which
decimal numbers are decoded and viewed, etc.

Given, there is 18 bits of information in the in-out register,
we wish to transfer these bits (information) to an external register.

Figure 4 shows information of the In-Out register Bit-j being
transmitted to the 18-bit external buffer register (EB). To transmit
information to External Buffer Register, an in out coromand address
is assigned which we will call teb, with operation code 72 0010. The
ene's side outputs of the In-Out register (IO), are sent to EB. When
a bit of the IO is a one then the respective line is O volts, and .when
the IO register bit is a zero~ .. the ... line is at -3 volts. When the
program gives the teb, two things happen:

1. 2.5 microseconds afte~ the command begins, a positive pulse
clears EB.

PDP-1

s~/6~-
, Tli"tJSJ;Ee
I "COIJT£0L
t 1)£C0011J'9
I
I

' I

o F/F I

r11ourr~
7ZOO.l2..) _

7u.JI S ~t)

P~IJ!- FO£

f'tJLSF '5

PDP-1 W\TH TWO CONTROL
?()LSE~

FIGURE 3

-5-

2. 2.5 microseconds later, or 5 microseconds after the beginning
of teb, the information from the one's side outputs of the in-
out register is read into (or transfered to) EB. Thus, 5 micro
seconds after the beginning of teb, EB contains the same information
as IO.

A block diagram of the connection is shown in figure 4B. There
are 18 lines of In-Out register information, and 2 control pulses.
Each of the control pulses requires either a coaxial cable or a pair
of wires which are twisted, thus, a total of 22 wires form the inter
connection.

RECEIVING INFORMATION FROM A DEVICE WITH THE PROGRAM

When information is received from a remote device,
transmitter and receiver mentioned above are reversed.
of information must be transmitted to PDP-1, as in the
analog to digital converter attached to the PDP-1.

the roles of
A register

case of an

Figure 5 shows how one bit of information would be read into
the in-out register under program command. In this case, a switch
position is to be sampled, and 18 switches form a register. In
this case, a program executes a command which emits pulses that:

1. Clear the in-out register.

2. Sample the information and place it into the in-out register.

The mechanism for the information gating is shown in figure 5.
That is, a level enables a capacitor diode gate, then a control pulse
"ands" with the level to conditionally form a pulse for each
information bit, thus, the IO register flip-flop is set to a one
if the gate is enabled.

The Connection of An Analog To Digital Converter With PDP-1

The connection of a 12 bit analog to digital converter to operate
with PDP-1 is shown in figure 6. The line labeled 11 start convert"
is a control pulse to the converter that commands a conversion. From
the time the "convert" command is given, the converter requires 40
microseconds to determine a 12-bit digital number proportional to
the analog input voltage. The convert command, cnv, has the
ope r ation code 72 0041.

LgrB
+ ~ uof-fs (occuR.s
2, 5 5 Q.F'Tt IZ. TE t\

--.. ------··---·--
TO AtJALD6 DE"C0DoJ6 tJ€fWO~

fl£LAY l)~\\JE"e.S, ETC .

1)£C TYP£:
__.... _ _.__/J/-2/31 ~21'/~t,IZ/~

G:,t \)~ . ;,J
CIHIICI n>c.; blO~T , ¥ l>ut.~1!' rl.)UQ: __ s,_o•....---+---

r o --,s
- -

{occues ~v. a.Fm?.

TE~ S11itt7FD) .roj CIIJO()T eE&IS~ 41r-..1)

FIGVR-.E" 4a,

EB .,..__.......___..,__._ __ ---"11,...,illll

PDP-1 (18 81T

f>uFFet.)
..

2 COAi TA:Ok ~SNALS (/yl "''~eS)
F \ G UR.I:? 4b (.-9Cr1w,rEb WIIEAI 7200l/ 91vr1

T~ANSMlTTl~G I\JFORMfiT-lON 10
E~TER~8L BOFFE"R. . .(EB)

USllJ G COMMPrUt> ! 'TRf\~rcl2 TO l:B (TE.8)
. r

I
1'0 OM£S Sfk ,Nl)UT Of'

r - -·
I
1 PA
I
I

IM-oUT 1lif.~fER

--.
I

;.,,- ~-,60•
I . futsE N1P1,11-1~R

I
L-- ---.J __ __,.__ '-' s,t'rt(A I H POTS

' '
IW.._,..ATl>t.i-J I ' l

OVTM•I ~·
(~ONTflOL~

I
~TPIJAL /NPOTf
-sv • I -~9(1T
ot •01N•ur

(2. IN?OTr ftfAILA8tl' WM'ff
WI tC'C "o~ IC I ONf fOtl
~ ~DOif lOM.\L-)

., ,.~ _ / I~~ ~l.ll ~~H n--,tr,.
· ~ ~ · lNPOT" (SPOT)

I

1·N-OYT· RE&IST:ER INPUT MIXER
fOR ONt1 I!> IT

f=\{rUR~ ·5
'

. '

-6-

The digital number is transfered from the converter to the In
Out register under program control. The command, read converter
buff€r, (rcb = 72 0031) reads the converted bits into the 12 most
significant bits of the In-Out register.

Figure 6 shows the decoding within PDP-1 necessary for control.
The information is read into the input mixer (which sets the In
out) and three pulse lines are decoded which:

1. Clear the in-out register (clear portion of rcb).

2. Sample the converter buffer outputs to set the various
in-out bits (sample portion of rcb).

3. Start the conversion (CNV).

Pulse (2) occurs 2.5 microseconds after pulse (1) above.

The following subroutine uses the analog to digital converter,
and is called by the command "jsp fill". The subroutine in symbolic
assembly language samples an analog input 512 times at a 20 KC rate,
and stores the results in registers: "function", 11 function & 1",
. • • • • , 11 function & 511" •

,Subroutine to sample a continuous voltage 512 times, each 50
,microseconds and store in 11 function 11 table. The subroutine starts
,at register "fill".

fill dap exit
law function - 1
dap storsam ,initialize

loop cnv ,starts converter = 72 0041
nop
idx storsam
sad £test

exit jmp ,exit location
rcb ,rcb = 72 0031 place voltage sample

,in IO
storsam dio ,store sample

jmp loop
ftest dio function + 1000
function 0 ,first sample

• •
• •
• •

function +777 0 ,10009 sample

-PDP-1

~FO~ :CO~

(J) c. L~IZ. ro

t --,--
l I~ OUT Tf-A~Sfl:£
t ?UL.~'° bEC.001~

'----~--

R~t> C O~UtrtTtt.

B\)rn-c c Re.&
= T2.,0031

I
~rAer COJ.lUt,YT

c,o,..,MA~O
(c. ON Te OL)

12 B ,T .

At-JALOe:, To

DIC':> \j~L

(.,~VE~TTR

1

CJ.It/= r2 oo 'I-I = • t r IJIOJ2Mlf n oAJ Is co~ r H VbLrl9Gr
Rli79 I> y -~ N~cR.aSIOMMf'
/IJl=aE CAJV /f
(:;/t,10./

PDP-1 ./ A-D co~0tRT[R
C.O\JtJE CT\0 ~

FlG VRf 6

-7-

OPERATION OF THE STANDARD IN OUT EQUIPMENT

Synchronization and Proqramminq

The straight forward use of the in-out transfer commands, e.g.,
the connection of analog to digital or digital to analog converters
has been described above. In these cases, the transfer of information
took on a very simple form since the program controlled the information
transfers relative to the action of the device.

Quite often, input-output operations must be synchronized. That
is, information is transfered certainly and efficiently, which may
cause the computer (or a device) to "wait", and then proceed in
synchronism. In other cases, when several in-out devices operate
simultaneously, the synchronization is essential. The synchronization
of the standard in-out equipment (oscilliscope, paper tape punch,
photoelectric tape reader, and typewriter) is done simply and the
control for this synchronization is coded in each in-out transfer
command. Appendix II contains a current list of the assigned in-out
transfer commands for the PDP-1 equipment.

Bacally, the program must always operate faster than a device.
Thus, a program can halt, then continue in synchronism with a device.
For example, the command to punch a line of paper tape is given', the
paper tape punch effects the punching when able, then signals the
waiting computer to proceed. Sometimes it would be desirable for
the computer to give the command to punch a line of paper tape and
not stop but continue calculations. This method is certain unless
a second command is given before the punch has finished the previous
task.

A safe method would issue a command, proceed with a safe number
of calculations, then issue a waiting command which re-synchronizes
the completion of the in-out transfer and the program. The re
synchronization takes place in 5 microseconds intervals.

The decoding for the in-out transfer command which allows various
possibilities is shown in Table I:

TABLE I

In-Out Transfer
Command Bits
5 6

0
0
1
1

0
1
0
1

-8-

Wait for Completion Pulse
for Restart/Continue
without wait

Continue, no wait
Continue, no wait
Wait, then continue
Wait, then continue

Enable/Disable
Completion (Done
Pulse Signal

Disable
Enable
Enable
Disable

Bit 5 of the in-out transfer command disignates whether the program
is to wait for a completion pulse before continuing. The exclusive
or of bits 5, 6 of the command specify whether the completion pulse
return signal is to be enabled or disabled.

Point Plottinq Oscilliscope

Figure 7 shows the diagram of the scope inter-connections to
PDP-1. The oscilliscope operates on a point by point basis and is
activated by the computer giving the command, "display", iot 7, or
72 0007 (or 73 0007, etc.). The display command first clears a 10
bit X coordinate buffer, a 10 bit Y coordinate buffer and 2.5 micro
seconds later reads the contents of the 10 most significant bits of
the Accumulator and In-Out registers into the X and Y buffers and
then intensifies the point. The plotting of a single point requires
50 microseconds. The cathode ray tube has a P7 phosphor, thus the
point persists for a relatively long time. At the completion of the
plotting, a pulse will be emitted on the restart line to PDP-1 which
is used for the computer restart. The restart pulse occurs 50 micro
seconds after the display command is given.

The following program shows how the various in-out transfer
commands are used to effect savings in timing, and handle synchronization.
The first program displays a horizontal line at some Y coordinate.
1/2 the width of the scope. The line consists of 512 points, and
is plotted starting at the point X = O going right to the point
X = 377a. The program requires (50 + 20) x 512 microseconds. This
p~ogram uses the most straight forward in-out transfers. The "display"

, command, 73 0007, is given and the computer waits until the point is
displayed before the machine restarts and continues calculations~

COM&.(A-tJl) - 11 0\ ~PL, ltY 11

J:Oi 7 = rzoooT PO\NT PL01T(ij6
CL/:~£ X~ y ___ __..:--... O~C\LL-OSC0PE

CO·Ol!J01AJA ,r
8UF~€",es AN\)

/2£,41) TH£

COAlrEAI TS OF

AC~IO AS ~y
PO/A) 0 sr~ /l.OT

RES1'9e r PdJ.. t ----------·-w#i'N /'01AI T
Pt.oTrt:J)

(s-~s. 11~7~-~Jlt~

C0tJ1ROL

' Aev , • """) X
'G-·---a-

"'

----o
~NALOG

S IGNl'IL

"""Y-

~o~-·---a-=) Y ~ . .,_ ________ -'
OSC(Ll.0SC0PE FOR

PDP-I
FIGURE 7

,Display a horizontal line of
,line plotted center to right
start lio y

cla
loop 730007

increment
y

add increment
sma
jmp loop

•
•
400

-9-

512 points
edge - height of Y

,y holds height at line

,display a point and wait till done

,return until ac = 400000
,done

,increment of line
,y coordinate

The following program computes while the point is plotted:

start

loop

lio Y
cla
jmp loop & 1
730000
724007
add increment
sma
jmp loop
•
•
•

,dummy - halts till previous completion
,displays a point/computer proceeds
,display completion enabled

The above program plots the 512 point line in (SO+ 5) x 512
microseconds. The program commands a point to be displayed, (without
disabling the completion pulse), proceeds with the calculations,
then finally gives a synchronizing "wait" instruction which synchronizes
the display.

The only case not included above, but mentioned in Table I, is
the case of bits 5 and 6 both zero. Here, the program does not halt
and the completion pulse of the device is disabled. Thus, the program
must only refrain from giving the display commands too frequently.

The technique of inhibiting completion is used when several
devices are operating concurrently. The inhibit command completion
is used with the sequence break system.

-10-

Paper Tape Punch For PDP-1

A block diagram of the paper tape punch logic is shown in figure 8.
The punch action is similar to display. Two separate commands are
given which transfer information to a buffer register for the paper
tape and they are:

1. Punch paper alphanumeric format, (ppa) 72 0005, (or 73 0005).

2. Punch paper binary format, (ppb) 72 0006, (or 73 0006).

When either the ppa o~ ppb command is given, a pulse first clears
the punch flip-flop buffer register then 2.5 microseconds later a pulse

_will occur on either the punch paper alpha line or the punch paper
binary control line and the punching action is initiated. Alphanumeric
information consists of in-out register bits 10 to 17 for the 8 holes
on paper tape. The ppb command always punched hole 8, ignore information
fdr hole 7, and punched IO bits O - 5. A pulse occurs when the punch
has finished an assigned task. This ~ay occur within 4.0 milliseconds
after the command is given.

The paper tape punch is synchronous, and only during certain intervals
can a character be punched. This condition is sensed by the control
logic when the punch earns reach a "start" position. If a character
is to be punched. information must be static for 4.0 milliseconds
after the "s.tart" punch position and solenoid driving current are
enabled. The completion pulse is returned when the punch buffer is
free to receive the next character. Thus, if a punch paper command
is given and it appears at the correct time, the punching appears
to require only 4.0 milliseconds. If a punch command is given and the
punch .. has just passed "start", (the synchronizing position) the
completion pulse may require 4.0 + 15.8 milliseconds.

Typewriter for Output of Information

The input-output typewriter for PDP-1 is shown in figure 9.
The typewriter is best explained by separating the logic into output
and input. For typing out, the typewriter acts like the display or
the punch. The type out command, tyo or 720003, (or 730003) first
clears the typewriter buffer then 2.5 microseconds later, the information
of IO bits 12-17 is read into the typewriter buffer, and the typing
action initiated.

((1'1.t;, 111,uc.sco,u~.s t:IFMt!i"FAI C~DU
CLF:~A=! 'PU,<JC h' 8llF,_e-....:e7f!:....;;;;:;._ ___ _

r p<1. =
72000$

__________ ... ~
I r~ '(I ~l'#Ai/uMd/C.

r ,,,", B HOt t: s)

:rq.!---.--------4-0

60
CHfrRltC.TE£

1
: 8 Lll,J(;S AG~ LNFO Pt:R- SECON()

JP, 7--------..r-i~ /J~/JC.C mFE \

'PP~ & ~ P<JI.GH .1. J., /IJr;- OF 7?11'£ PUA.I C H I
7'2 000'- - LJ

I~ !.J1AJA1cy FOIZ/41,"/ r nAJ/)

~1'1 11,L r.r 1 7 r1, .i, ltlJK~ · C OAJ T2 O L
'INFO~N"1T1b1V

~o!----------a- A.06 /(
• • • Ids·---------'"""'-~..,

PAPER TAPE Pl)tJCH FOR
l'DP- \

F\ 6URE 8

_____________ J

- c "'-it*L 'T'(PG our:-
-t.y O ~ 1JfltaEIL
commaa,d
"IOT • 3 2 ~ DlJ:"Of~~ ·

- TO 9\l~li'IZ.., TYP£"
~ CAAt.A'-,-_

COIA PtE11 OtJ .,...... T'{ P ~ OUT

TYPE our

l--06lC

I\ t)o~.;-" ·- - - --- -- -

.
,YPC I IJ - 'S ewc;E

m., • ___ ...-----~
xa..n=o, 0,1.,•.._....--. ___ ,....

•
o,, ·=-~------t

"TO ?to•. Jt . a(~y ~"5 .

S:L,AGa 1. Bea., S~u:"- .

-~

TYP~ I:~

LOGIC,

•

Ar.~ ~o'4JL.Et><oot~T .,__ ______ _

TYPEWRITER FOR PPP-1
FIGURf 9

. r

-11-

The procedure for typing a character would be:

l. Load the in-out register bits 12-17 with the code for the
character to be typed.

2. Issue the command tyo.

The typeout portion of the logic has a completion pulse which is
emitted when a character has been typed. The typewriter output rate
is 9.5 characters per second, thus, the typeout completion pulse occurs
approximately 105 milliseconds after the tyo is given.

The typeout completed signal ccn be used to restart the program
if the typewriter is used synchronously within a program. The
completion pulse, of course, can be used in the same manner discussed
with the display system. The time saving is emphasized more in the
case of the typewriter because the 105 ms interval between characters
will allow up to 20,000 operations.

Typewriter Input

The typewriter input logic is also shown in figure 9. This logic
is similar to the sampling of an analog to digital converter. When
a key is struck, a pulse is emitted on the line labelled "A key has
been struck". This pulse is wired to set program flag 1. A 6 bit
buffer (the same used for type out) holds the code for the character
struck. When flag 1 is set, the program may give the command, type
in, tyi = iot 4 (72 0004) never 73 0004. The command, tyi, first
clears the IO then reads the 6 information bits, which code the character
typed, and the type in sense level into IO bits 11-17. Tyi first
clears the in-out register, then 2.5 microseconds later the 7 levels
of the typewriter are read into the IO.

The tyi command notifies the typewriter logic that the character
has been accepted by the program. The type in acknowledgement resets
the type in sense line, thus, if another character is not typed and
the program gives the type in instruction, bit 11 will be a 1 instead
of o. In this way, a program can tell if the same character has been
read more than once.

The following program excerpt uses tyi. The program begins in
register "look".

look szf * 1
jmp look
tyi

-12-

,650001 skip on flag set
,repeat look, look+ 1 till key struck
,720004 IO contains code for key strucl

Instructions "look" and "look+ l" are repeated over and over
again until the program flag 1 is set by a key being struck. When
the key is struck, the program flag 1 is sensed and the instruction
in look+ 2 is obeyed, tyi, and the 6 bit code for the character
typed is placed in the in-out register. If the key typed was a
carriage return, then an octal 77 would appear in the IO. If a
second tyi command is given before a new character is struck, the
in-out register would contain the code 177.

The Photoelectric Tape Reader

The logic for the photoelectric tape reader is shown in figure 9.
Five, 6, 7, or 8 hole tapes are read at a 400 line per second rate.
The paper tape reader has an 18 bit buffer which holds the information
that is gathered from tape. There are two modes of operation, read
paper alphanumeric (rpa} and read paper binary (rpb}. When the
command rap 720001 or 730001 is given, one line of tape is read.
All eight holes of the line go into the right 8 bits of a buffer.
When the 8 bits are assembled in the buffer, a pulse appears on
the line clear the In-Out register, then 2.5 microseconds later
the completion pulse reads the reader buffer information into the IO.

The command read paper binary, or rpb = 720002 or 730002, etc,
reads three lines of paper tape into the reader buffer and then returns
a completion pulse. For a line of tape to be recognized in this
mode, the eighth hole must be punched while the seventh is ignored.
The information is packed in the buffer as three 6-bit characters.

If the sequence break system is "on" the completion pulse still
occurs, but the In-Out register is not cleared prior to the completion
pulse. In this case, the reader buffer contents may be transfered
to the IO by the corr.mand read reader buffe~, rrb = iot 31. The
sequence break system will be discussed below.

Computation can proceed during the 2.5 or 7.5 milliseconds an
rpa or rpb is being carried out. Synchronization must be handled
as previously described.

, '

,-- - .

~fO,
TO

.o

rpo.

C~l'eu,_
FO(.

SaQ k.

f2C'ct) P1'P~
A~P~u,~,c.
c.,ot.1)

fl..,_.b ,~p-~
~ ttJAey
(i ot z)

T .,.li ~ SC.I G:.tJ EC
-m*- 14A s Be93
C~P&..&T£1>

TAP€
R.~~E·rL
~~t:>
OQ:-i c.

400 LltJE P£~ SE C.000 TI\PC
REA\)E e.

Tl G lJl'2 e- 10

····------------------

-13-

THE GENERAL CONNECTION OF PROGRAMMED IN-OUT TRANSFERS

Outgoing Information

Lines are available from the In-Out register output for transfer
of information to a device. The individual lines of each bit of a
register form a bus to which connections may be made. Appendix I
describes the loading restrictions of these lines.

The In-out register may connect with output devices. The
scheme for affecting this connection to the output bus is shown in
figure 11. Here, each bit of the In-out register, i.e., the one's
side output is available at a taper pin connector block, being
suitably buffered with a bus driver. This taper pin block allows
connections to be made in parallel to devices which desire information.

Incoming Information

A similar taper pin block arrangement is available for connecting
the outputs of a device to the inputs of the In-Out register mixer.
The In-out Mixer reads in the various information bits to the In-Out

II

register. The input levels and" with program in out transfer pulses
to form a pulse which is mixed with similar pulses through an "OR"
circuit. One bit of the In-Out register Input Mixer is shown in
figures. Eight taper pin inputs exist for several devices. The
specifications for the input ~ixer are summarized in Appendix I.

Formation of Programmed In-out Transfer Pulses

A pcrtion of the In-Out Transfer Control block schematic is
shown in figure 12. This diagram shows the formation of the standard
In-Out transfer pulses, (or in some cases pairs of pulses). These
include rpa, rpb, tyo, tyi, etc., i.e., all those pulses discussed
above which communicate with the conventional equipment.

Atpendix I describes the Memory Buffer Lines which constitute
the basic decoding for the in-out transfer pulses. In general, the
levels are not needed externally. The lines, MBD with subscripts,

, A, B, C, and D, and superscripts O - 7, refer to the decoding of the
· Memory Buffer octal digits, MBD, or Memory Buffer Decoders. Dec9der

A is connected to bits 15 - 17, decoder B to 12 - 14, etc. The
superscript number refers to the decoder output lines.

T/JPEe PIA/ Bus ~ae E~H
BIT Or IO

I

& O~rPuTs --
Al!r ~~J

/Al P(),A/

.

'

rNFOI! Mii 77tJAI
L UJ E'S TC V Ft e I OU:.

>- IN Our
EQJtl'Nl:N r

~ 6 US (L /Air-= Ovot.T ..J roe "I''_) - 3 VOi.TS __.....___

'3vs DR\\JE"

<)

t Io.
J

!lJ OOT REGISTER
o UTPUT BUS
F\GURt 11

;WO~ •o:}

• ,

lo..
l--- ,... tQ

~ ~ ()

~ ' ~ q . .
-~ ~ l t ~ ~ ~ I - . ; e

"' I -
~ ~ ~

~ ~ ' ~
~

~~ ~ ' ~ ~' ~
(tj

~ N~ ~ \J '
C)~

~ ~ " ~ ~~ ~

~) ~ ~ ' ~- t G: ~
I '

• V)

~ ~
~

~ -

' ~ . ~ tL ~)(~ ' ~

~ G~

• d

~ ~
~

~ •
~ ~ ~

0 ~

)(
)(

~
~

,.

"' l • ~

~ ~
~

~
g

~ I ~

~
~
. ~ .. o ...

" ()
~ 'O ""~
lif

~ ~
~

l i ~
l'

"4l ~ \J t

~ l
~

~
~- ' ~ ~ b '-<> "

~
~ ~

-~ ~
""" ~~ ~ 8~ <t

'
'

~
~K --,()

() 0 ~~
)I(.....

~ (\J

~'
~~ ~ ~

u 1 " . ~~ ~ .,, ~ !'
~' ~ ~
~ \J

l: ~ ~ ~
:::s .
\D

"') ~
0

,.., ~ Ll::
)(

~()
~ ll)

.... ~ -~

~ ~
()

N

)(--0 ~~ ~ ')(

~~
~
~ lZ

' 0 '>
~~

'~

"' i
"

...
I

~ ~~ ~
)(~

~, ~
0 ~

-14-

Two pulse lines are used to form basic in-out transfer pulses.
They are called tp7-4 and tpl0-4. These line pulses are fixed
relative to the computer's memory cycle time, with tp7-4 and tpl0-4
occuring 2.5 and 5.0 microseconds after the beginning of a memory
cycle. The -4 indicates that the pulse is a DEC 0.4 microsecond
pulse. The iot instruction level is shown and is a one when an
In-Out transfer command is given.

The pulse formed by "anding" tp7-4 (or tpl0-4) with the In-Out
tr.ansfer command is again "anded" with MBDB of figure 12a ·to form
8 basic pairs of pulses.

The 8 by 8 decoding scheme allows up to 64 addressable pulses
(or pairs) to be easily formed. Any or all of these pulses may
be further subdivided by using MBDc or MBDD• Thus, a particular
iot may be connected to an additional 8 by 8 array to give size to
64 sub-orders. If the physical space limitations are somehow
circumvented, 4096 distinct in-out instructions can be implemented.
A list of the in-out transfer commands is given in Appendix II.

The iot control pulse amplifier labeled "read paper alpha" emits
a pulse when Memory Buffer Decoder A is a 1, (MBDlA, the 3 least
significant bits in the In-out transfer instruction are 001), and
when MBDQ (or the 3 next least significant bits are 000) and when
an iot command is given.

Synchronization of Device Completion and Computer Restarting

The computer must synchronize with some in-out devices. This
synchronization is determined by the use of bits 5 and 6, in bhe
iot command (see page 8). The implementation of this function is
shown in figures 13a and b. A flip-flop is used as a switch for
each device which is to operate in this mode. Thus, the various
return pulses (completion pulses) may or may not affect the restart
action.

Restart synchronization need not use the flip-flop switch
arrangement. In this case, a restart pulse can go directly to the

'· in-out transfer done, pulse amplifier to restart the machine.

The action of bit 5 to indicate a wait words on any iot
instruction. The enable/disable feature of the completion pulse

-15-

is only applicable to devices having the extra logic of figure 13a.
The standard devices {reader, punch, and typewriter output) have
this feature. The oscilliscope display has this feature.

If the Sequence BreaK System is included, the device completion
pulse may also go to an appropriate SBS channel.

Certain iot commands will never use the wait feature and thus
the completion enable/disable need not be included. In such a case,
bit 6 of the command may be used in the same manner as bits 7-11.

Special Levels and Pulses

Appendix I describes several connections which are useful for
input-output equipment.

Accumulator Outputs: The Accumulator bits 0-11 outputs are
available. The driving power of the AC is limited and loadings
should be carefully observed.

Memory Buffer and Octal Memory Buffer Decoders: The various
Memory Buffer Octal digit levels and Memory Buffer levels are
available. When iot commands are given, these may be used either
for information or additional decoding.

Program Flags: An external device can set a program flag.
Either of two inputs may be used. The output of the program flag
is available for control purposes.

Proqram Counter: A pulse can add one to the program counter.
In this way, an instruction could be skipped if an in-out condition
is not met.

Synchronization Pulses: Timing pulses are available which may
be used to synchronize extra equipment. The time pulses occur at
1,2.S and 5.0 microseconds after the start of a memory cycle. The
start and stop pulses are available and occur when the console start
or stop keys are pressed.

BASIC SEQUENCE BREAK SYSTEM
'
Programmed In-Out Synchronization

When a device communicates in a random fashion with PDP-1, a

V) '~-~ ~
~e
~3

"'
~
C)

~
~

~

~
(i ~ t
~ t

Li: . V)
. 4-J

~
~ V) ~

~
.... ~~fr)

~ (\ .
~~"

~ - - ·
r

~
.. ~

~ ~ ~'
V)

~
....

~ ' ~ ~ ~ r-
~ r- · ~~ -..

~~ ~ I
~ ~~ ._ ~ u e~ ~ t I!
~ "

,@ ;
~ C\.

PA - --- ---

CL.EAKIN our
~T /'LC>CefM Fi~ li'£6ISTcR

'-

~L)Cit"

ttJPu-Y
<;,c.lJA~

~5rAHr POP-~~-
/OT /)ON£ ·

I I I ,

IN OUT CONTROL TO 5ET PROGRAM FLAGSJ
rep pep tr:.f d,.p ·

CLEAR iN OIJT-R£6!5TER.(R£START COMPUTER .
RGURE 13b

-16-

means is required to sample the device's readiness, then to synchronize
information transfers. The program flags may be set by external
devices and sensed by program. If the machine must always "wait"
for device completion (or action), before continuing a sequence,
periodic sampling of the program flags, or any other external states
(e.g., flip-flops) must be affected.

On page 12, a program loop was given which continually checked
the typewriter input flag (program flag 1). When a character has been
typed, a program sequence can continue, handling the character. The
limitations of this technique are:

1. Operating time is consumed sensing and waiting for flag.

2. Priorities among devices must be established by the program.
This often requires careful considerations.

3. A program loop (loop contains one sense flag instruction)
can be no longer than the repetition period of a device.

Automatic Program Interruption

The Sequence Break System (SBS) enables a program sequence to
be interrupted, i.e., the sequence of instructions broken, each time
a device needs attention. Thus, a program loop need not be used to
sense a condition, but rather calculations may proceed, and are only
interrupted when communications need exist (e.g., data transfers)
between the machine and a device.

The basic Sequence Break System has provisions for 12-level
inputs. Thus, when any of the 12 levels are present, (a one) an
interruption occurs. This program interruption takes the following
form:

1. The contents of the AC are stored in register O.

2. The contents of the program counter (and memory field
information) are stored in register 1.

3. The contents of IO are stored in ~egister 2.

4. The program resumes in register 3.

-17-

The above steps require 3 x 5 microseconds. Since one of 12
devices may cause the interruption, a program must find the device.
The command, check status bits, cks, 72 0032, causes a set of status
bits to be read into the IO. By examining the various IO bits, the
appropriate device may be found. While status bits 0-4 are taken with
conventional in out equipment, the remaining bits may be free for use.

When an interruption occurs, the action of other devices connected
to other SBS inputs are ignored, until the break is terminated properly.
This is accomplished by restoring the C(AC), C(IO) and returning to
the previous sequence. This termination may be affected by the following
program:

lac 0
lio 2
jmp * 1

The last instruction, 61 0001, is the one which actually affects
the termination, and must be given exactly as shown above. Two
additional instructions turn on or turn off the sequence break mode.

1. Enter sequence break .mode, esm, iot 55.

2. Leave sequence break mode, lsm, iot 54.

When the sequence break mode is off, no interruptions may occur.

The sequence break mode can be turned on or off by the console
"start" switch, either by being pushed up for on or down for off. A
block diagram of the sequence break inputs is shown in figure 14.

The program flags may be wired to act as inputs to the SBS
System.

TYPE 20 - 16 CHANNEL SEQUENCE BREAK SYSTEM

This system allows 16 devices to operate simultaneously, and
in a preassigned priority. The 16 separate channels allow a device
to interrupt to 1 of 16 unique locations (instead of one for the
basic break system). Thus, 16 x 4 memory locations are assigned to
this se~uence break. The channels are arranged in a priority chain.

The block diagram for the system is given in figure 15. In

-- - . ~ .. ·-
-

I '

'

0

• ' • I •

' • l . ,
•

-·· • i1

--PPP-
· !»G'QO£fJCE

a~
~y,~ WHlrlJ A ~y LE'VEl-

~ I\ A- 0 tJI: l-~ \SOL.TS)
,-t,1-·r W ,· :t~TS"et~PT

. ..-J-,.
I

'4AY Cc.GU~ • : .
(iH~-. .IOT C.«>MM~ .

. I'": ---- - : ~-SEN~E" ~E'Q\l~I?' . . -

l:NP.u ~ , s sr
ErA't) ~ ~ OKe- . UVllJ

I --------11 ·- - . ·-~ ~ -1:0_ -~~~-0~_11)
. . '

;

I
.l

..

. : ~ .. ; . .

i --~- C.OOVE'tJTJONAL ;·_: .. S£Qf>J~£ BR[AK

I

t ...

' '
~ .

. :SYSTEitv\
F\6~(:f 4_ ~ .

. .

t
t .

I

l ,..1 . -

'
• I

.M D.P.tr L..
'

] 20•
I I
I - • _.,.

~EGtJe-~c~
a~,

. .

..

- · - ! .

OQ
IJJT~ttu p T To c.u~~AJl'L.
o ¢ .. uG ... e-s.T Pe.,oe.,i:v)

I L

·· ·--+

- . lie :----
______ __, A 1-P~LS~ -·LIJPUT. CF\usks

:x: t-.l'T l;'e e.0P T

~01)E L 2 0 ~ l 6 _ (.Jtflk)OEL
SEQOE~E" BRt At" sYSTe-M

FIG URE I 5

-18-

this case, a pulse or a negative transition can cause a break to a
sequence. Program commands may cause these pulses to be ignored,
i.e., a channel may be "on" or "off". Since the 16 channels are in
a priority chain, a higher priority break may interrupt the sequence
of a lower one. The following action occurs if a pulse enters
the ith channel input:

1. C(AC) = C(4i)
2. C(PC) = C(4i + 1)
3. C(IO) = C(4i + 2)
4. Program resumes in 4i +3 by a jmp command.

where i = 0, 1, . •
The break is terminated by the following:

lac 4i
lio 4i + 2
jmp * 4i + 1

• 118

The termination is affected by the last instruction.

Flip-Flops of Type 20 Sequence Break

There are 16 x 4 flip-flops which have significance and are
visible to the user. The flip-flops are:

1. Channel ON
2. Break Synchronize
3. Waiting Break
4. Break started

Channel On is used as a switch and must be in the "one" state
to allow device completion pulses to set Break Synchronize.

Waiting Break and Break Synchronize act together. Waiting
Break is set to a one when Break Synchronize is a one. Two
microseconds after this event, Break Synchronize is cleared.

Waiting Break provides a signal that a particular channel would
like an interruption. This interruption may occur provided that a
break has not started (Break Started= 1) for the same or a higher
channel and no higher channel is currently Waiting Break.

-19-

When a break occurs to a channel, Break Started is set to a one.
At this time, Waiting Break is cleared. Higher priority channels may
interrupt lower channels. Break Started remains a one until the break
is dismissed by giving a jmp * instruction as previously discussed.

The instructions for Model 20 Sequence Break Systems are:

1. esm, Enter Sequence Break System mode, iot 55, (see basic
sequence break) •

2. lsm, Leave Sequence Break mode, iot 54. (See basic sequence
break).

3. isb, Initiate Sequence Break: Channel i is selected by
bits 8-11 of the command, iot 52. This command allows the
program to initiate a break, or simulate an external pulse action.
This break is not conditioned by "channel on".

4. asc, Activate Sequence Break: Channel i is selected by
bits 8-11 of the corr.mand iot 51. Allows channel i to be
active, i.e., pulses to effect breaks).

5. dsc, Deactivate Sequence Break, iot SO. Channel i is
selected by bits 8-11 of the command, iot SO. A channel is
turned off thus any incoming break pulses will be ignored.

HIGH SPEED CHANNELS FOR DIRECT MEMORY DATA TRANSFERS CONCURRENT
WITH COMPtJrATIONS

A high speed channels feature is an option which may be used
to transfer blocks of words between memory and an in-out device,
e.g., a device such as magnetic tape, which is time consuming to
program on a character by character (or word by word) basis.

This optional feature is installed with tape control, Type 52
or may be installed separately for special applications. When the
feature is added, the internal machine facilities for three channels
are available. The three channels are serviced on a demand basis.

A common information transfer requirement is that successive
words go to or from the computer at high speed. The use of program
flags, the sequence break, or a program loop of in-out transfers,
all effect the speed and efficiency of the transfers. In most cases,

-20-

the number of program steps required to transfer each word is small
with respect to the number of program steps over the whole period
between transfers. For high speed devices, such as magnetic tape,
the reduction in available time between transfers makes it desirable
to reduce the transfer sequence time and improve the ratio of
available computation time to total running time.

Each of the three channels are interrogated regularly at the
completion of each memory cycle, on a priority basis. The priority
is wired and fixed. The sequence break system has a priority just
below the last high speed channel. If a channel has a word for
memory, or requires a word from memory, a memory cycle interruption
occurs. The diagram of one high speed channel (of 3) is shown in
figure 16.

The lines operate as follows:

1. The memory address and field lines select the memory
register for the device.

2. Information

a. Memory buffer outputs contain the information which is
to be transmitted to a device.

b. The high speed channel input mixer is similar to the
in-out register input mixer and is used for incoming
information.

3. Control

a. Request - When the line is a one, a memory interruption
may take place.

b. Transfer Direction Lines - This line specifies whether
information is to go to or from PDP-1.

c. Transfer Done - A pulse occurs on this line to
acknowledge the request completion. The request line must
be removed to prevent another interruption.

The timing diagram for a high speed channel is shown in figure 17.

-1 :

. I
I I

' I

I ..

I
I

• I •

I
• , I

I .

' I
I .•

- --- r- ·
i

. __ _I - - --·. -- -
' ~ciActV

~0De5s
SSLECT r ot.l

' I •

, '
• I ! I

• i '

i .
. H1<1>H 5P~ .,... __ ..,.i_- _ _,_;1-4B 0

n>¢ofM'\TIDN . I·• :

M Ii I ~ c., - . -. .. -- •
! -------~~7

I

' • ·-r· -- -· - I •

- ~-- --

I I

? :
'

. DLJCO~ILJ1o ·
rutoe M ~-TJotJ -

APPENDIX I

LIST OF IN OUT TRANSFER COMMANDS

Instruction Code --
Photoelectric Punched Tape Reader

rpa

rpr

rpb

rrb

cks

Tape, -Punch

ppa

ppb

Typewriter

tyo

tyi

iot** XOOl

iot XlOl

iot XX02

iot XX30

iot XX33

iot XXOS

iot XX06

iot XX03

iot XX04

*Symbolic assembly mnemonic code.

Definition

Read punched tape, alphanumeric
forward direction

Read punched tape, reverse
direction

Read punched tape, bi-octal

Read reader buffer (for sequence
break operations)

Check status bits. Miscellaneous
control bits are read into IO.
Bit O - Displayed point seen by

light pen
1 - Paper tape reader busy
2 - Typewriter busy
3 - Typewriter key struck
4 - Punch busy

Punch punched tape, alphanumeric

Punch punched tape, bi-octal

Type out

Type in

**iot has the value 720000 in symbolic assembly language.
X denotes octal digit may be anything.

-21-

Instruction Code

Display - Type 30

dpy iot XX07

APPENDIX I
Page 2

Definition

Display one point on CRT

(The above commands, excepting rpr, are standard for all PDP-l's)

Card Reader - Type 41-523

rac

rsc

raf

iot XX41

iot XX42

iot XX32

Card Punch - Type 40-523

pac

psc

pag

Basic

mcb

mwc

mrc

mes

msm

iot XX43

iot XX44

iot XX22

Magnetic Tape - Type

iot XX70

iot XX71

iot XX72

iot XX34

iot XX73

51

Read a card

Row synchronize and clear
field counter

Read a field of 18 columns
and index field counter

Punch a card

Row synchronize and prepare to
punch first field

Punch a field of 18 columns and
index field counter

Magnetic tape clear buffer

Magnetic tape write character

Magnetic tape read character

Magnetic tape check status

Magnetic tape select mode

High Speed Magnetic Tape - Type 52

muf iot kk75 Magnetic tape unit and final
address, kk specifies control
information

-22-

Instruction

mic

mel

mes

mri

mrf

Clock

rsk

rdk

Timer

stm

Relay Buffer

srb

Code

iot kk76

iot kk35

iot kk36

iot kk66

iot kk67

iot XX47

iot XX37

iot XX24

iot XX21

Analog to Digital Converter

cnv iot XX41

rcb iot XX31

APPENDIX I
Page 3

Magnetic
command

Magnetic

Magnetic

Magnetic
address

Definition

tape initial address and

tape examine location

tape examine status

tape reset initial

Magnetic tape reset final address

Reset the clock

Read clock time into IO

Set timer with IO

Set relay buffer

Convert a voltage

Read converter buffer

Sequence Break System - Type 20

esm

lsm

asc

iot XXSS

iot XX54

iot NNSl

-23-

Enter sequence break mode

Leave sequence break mode

Activate sequence break channel NN

Instruction

dsc iot NNSO

isb iot NN52

core Memory Expansion

cfd iot kk74

cdf iot Xk74

Line Printer - Type 62

lgo

lfb

lsp

iot Xl45

iot X245

iot X345

APPENDIX I
Pege 4

-24-

. '

Definition

Deactivate sequence break channel
NN

Initiate sequence break to
channel NN

Change fields, Type 11 expansion
kk specifies new field

Change data field, Type 14
expansion k specifies new data
field

Line printer go (print)

Fill line printer buffer

Space (vertically) line printer

I
N
U1
I

LINE

I00-17

ACo
ACl-11
MBo-17

MBDc,D
program
flag

IOo-17

MB 0-17

Memory
fields

MA6-17

/...s:, IO
Restart
Computer

program
flags

IN-OUT

out

out
out
out

out

out

out
out

In

In

In

In

In

In

APPENDIX II - LIST OF INTERCONNECTIONS WITH PDP-1

NUMBER

7

1
1
3

8

8

8
1 X 6

1

3

3

6

POLARITY

-+= 1

-+= 1
-+= 1
... =l

....
_. = 1

-+= 1

-. = 1

..... =l

6 -+

2 X 6 ~

DEC CIRCUIT
AT PDP-1

1685

4113
4113
l.685

4603

4113

4113
1209

4129

4129

4129

4110

4110

4112

SUGGESTED
LOAD

100 Type 4128
etc. cap. diode
gates - Less
than 1000 ft.
cable
cap. diode gates
cap. diode gates
cap. diode gates

REMARKS

General programmed output transfers

For oscilloscope, but available
For oscilloscope, but available
For In Out and High Speed Channel
Transfers
Used only for forming in out trans
fers (2 sets available, 2.5 and
5.0 microseconds after start of
cycle).
Used only for fanning in out trans
fers

cap. diode gates For iot commands, sequence break
For external level output

For incoming information, levels
must be present 2.0 microseconds
(4 wired and available with
additional 9 - 4129)
For incoming information of High
Speed Channels

To select register for High Speed
channels
Clear IO

Restarts computer when in out
halting

Any device may set flag

I
I\)

O'I
I

LINE

4- 1 PC
Basic
Sequence
Break
Time Pul.
2.4

7.4

10.4

Power on
stop

start

Sequence
Break
Type 20

High Sp.
Channel
requests
High Sp.
Channels
In/Out
High Sp.
Channels
Complete

IN-OUT

In

In

Out

Out

Out

Out
Out

Out

In

In

In

Out

APPENDIX II - LIST OF INTERCONNECTIONS WITH PDP-1
Page 2

DEC CIRCUIT
SUGGESTED AT PDP-1 NUMBER POLARITY LOAD REMARKS

6 ~ 4110 Advance program counter

12 __.,..= 1 4110 Any level causes Sequence Break

1 --. 4603 Pulses must be buffered by 4603
before driving separate lines
occurs 1 microsecond after start

1 -. 4603
of Memory Cycle
occurs 2.5 microseconds after start
of Memory Cycle

1 -. 4603 occurs 5.0 microseconds after start
of Memory Cycle

1 -. 4603 occurs when power comes on
1 _. 4603 occurs when console stop button i s

pushed
1 ~ 4603 occurs when console start button i s

pushed

16 -. 4128 Pulse causes Sequence Break, Type 20
only

1 X 3 -. = 1 4106 Requests a channel transfer

1 X 3 --+ = 1 4106 Direction of a channel transfer

1 X 3 -. 4603 Specifies completion of transfer

-19-

When a break occurs to a channel, Break Started is set to a one.
At this time, Waiting Break is cleared. Higher priority channels may
interrupt lower channels. Break Started remains a one until the break
is dismissed by giving a jmp * instruction as previously discussed.

The instructions for Model 20 Sequence Break Systems are:

1. esm, Enter Sequence Break System mode, iot 55, (see basic
sequence break) •

2. lsm, Leave Sequence Break mode, iot 54. (See basic sequence
break).

3. isb, Initiate Sequence Break: Channel i is selected by
bits 8-11 of the command, iot 52. This command allows the
program to initiate a break, or simulate an external pulse action.
This break is not conditioned by "channel on".

4. asc, Activate Sequence Break: Channel i is selected by
bits 8-11 of the corr.mand iot 51. Allows channel i to be
active, i.e., pulses to effect breaks).

5. dsc, Deactivate Sequence Break, iot SO. Channel i is
selected by bits 8-11 of the command, iot SO. A channel is
turned off thus any incoming break pulses will be ignored.

HIGH SPEED CHANNELS FOR DIRECT MEMORY DATA TRANSFERS CONCURRENT
WITH COMPtJrATIONS

A high speed channels feature is an option which may be used
to transfer blocks of words between memory and an in-out device,
e.g., a device such as magnetic tape, which is time consuming to
program on a character by character (or word by word) basis.

This optional feature is installed with tape control, Type 52
or may be installed separately for special applications. When the
feature is added, the internal machine facilities for three channels
are available. The three channels are serviced on a demand basis.

A common information transfer requirement is that successive
words go to or from the computer at high speed. The use of program
flags, the sequence break, or a program loop of in-out transfers,
all effect the speed and efficiency of the transfers. In most cases,

!
r-- ·s·,n·

)

0'·0-@0@ o .. o ©©@
I l / ~ t"".\

C·00>C@©@@@@@@@©@@ ; ,.)

MANUAL

PROGRAMMED DATA
PROCESSOR-4

MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Foreword
This manual is for programmers and users of the Programmed Data
Processor-4, a high speed, stored program, digital computer manufac
tured by the Digital Equipment Corporation. Chapters 2 and 3 contain the
detailed information necessary to make use of the machine. Chapter 1
summarizes the machine's electrical and logical design. Chapter 4 pre
sents information helpful in making the electrical connections to input
output devices. Appendices provide detailed data which may be helpful
in specific programming assignments. Although program examples are
given in this document, no attempt has been made to teach programming
techniques. However, Appendix 4 explains the meaning and use of special
characters used in the programming examples.

Copyright 1962 Digital Equipment Corporation

2

Table Of Contents

CHAPTER 1: SYSTEM DESCRIPTION

Page

5

CHAPTER 2: ARITHMETIC AND CONTROL ELEMENT .. 11
Functions .. 11
Control States .. 15
Instructions .. 16

CHAPTER 3: INPUT-OUTPUT EQUIPMENT FUNCTIONS AND PROGRAMMING .. 25
Input-Output Commands .. 25

Device Selector .. 25
Information Collector .. 26
Information Distributor ... 28
Input-Output Skip Facility ... 28
Program Interrupt Control ... 28
Input-Output Status Instruction .. 29
Clock/Timer 29

Input-Output Devices .. 30
Precision CRT Display, Type 30A .. 30
Light Pen, Type 32 .. 32
Precision CRT Display, Type 30D and Light Pen, Type 32 33
High Speed Analog-to-Digital Converter (Typical Input Device) 34
Low Speed Analog-to-Digital Converter (Typical Input Device) 35
Perforated-Tape Reader .. 36
Printer-Keyboard and Control, Type 65 .. 38
Perforated-Tape Punch and Control, Type 7542
Card Reader and Control, Type 41-444
Card Punch Control, Type 40-446
Automatic Line Printer and Control, Type 62 .. 49

CHAPTER 4: THE INTERFACE ELECTRICAL CHARACTERISTICS 52

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7

Instruction Lists .. 57
Codes .. 61
Read-In Mode Sequence 65
Assembly Program ... 67
Multiply and Divide Subroutines .. 70
Programming Aids ... l3
Powers of 2 ... 715

3

Typical PDP-4 System

4

CHAPTER 1

SYSTEM DESCRIPTION

Summary
The Digital Equipment Corporation Programmed Data Processor-4 (PDP-4)
is designed to be the control element in an information processing system.
PDP-4 is a single address, parallel, binary machine with an 18-bit word
length using l's or 2's complement arithmetic. Standard features of the
machine are stored program operation, a random access magnetic-core
memory, a complete order code, and indirect addressing.

Flexible, high-capacity input-output capabilities of the PDP-4 enable it to
operate in conjunction with a variety of peripheral devices, such as per
forated-tape readers and punches, punched-card readers and punches,
Teletype printer-keyboard, line printers, magnetic tape transports, and
analog-to-digital converters.

The machine is completely self-contained, requiring no special power
sources, air conditioning, or floor bracing. From a single source of 115-
volt, 60-cycle, single-phase power, PDP-4 produces circuit operating de
voltages of -15 volts (±1) and +10 volts (±1) which are varied for mar
ginal checking. Total power consumption is 900 watts. It is constructed
with standard DEC 4000 series system modules and power supplies.
Solid-state components and built-in marginal checking facilities insure
reliable machine operation.

System Description
The basic PDP-4 system is shown diagramatically in Figure 1. Three poi
tions of the system are delineated according to function: the Arithmet c
and Control Element, the Interface, and the Input-Output Equipmen .
Information originates not only from peripheral devices but can be entered
manually and modified at the Operator Console.

5

ARITHMETIC
ANO CONTROL

ELEMENT

OPERATOR
CONSOLE*

INTERNAL
PROCESSOR*

----------- ___ -.-r- ______ ,_ __

INTERFACE

INPUT-OUTiSD'r -
E IP ENT

PERFORATED
T APE READER*

*Included in a
Standard PDP-4

REAL TIME
CONNECTION*

PRINTER-KEYBOARD
AND CONTROL, TYPE 65

___ ______, __
PERFORATED

TAPE PUNCH AND
CONTROL, TYPE 75

Figure 1 - PDP-4 System with Real-Time Connection

ARITHMETIC AND CONTROL ELEMENT

The Operator Console, Internal Processor, and Core Memory constitute
the Arithmetic and Control Element. The Internal Processor carries out
the arithmetic and logical operations and controls the Real-Time Connec
tion and the Core Memory. Binary arithmetic with a fixed point is employed.
The optional Extended Arithmetic Control Unit, Type 22, gives PDP-4 a
multiply, divide, and arithmetic shifting capability without the use of sub
routines.

The Console is used to observe and control the action of the program and
the Internal Processor, and to alter the contents of Internal Processor
registers. The contents of Core Memory can be examined or new infor
mation deposited. All Internal Processor registers are displayed
continuously.

Memory capacities of from 1,024 to 32,768 words are available for PDP-4.
The cycle time (the time required to read information from memory and
rewrite information back into memory) is 8 microseconds. The access
time (the time required to read information from memory) is 2 micro
seconds. In the event of power failure, the contents of the Core Memory
remain unaltered. See Chapter 2 for detailed functions of the Arithmetic
and Control Element.

INTERFACE

The Real-Time Connection, furnished as standard equipment, provides
communication between the Internal Processor and the Perforated-Tape
Reader, the Perforated-Tape Punch and Control, Type 75, and the Printer-

6

Keyboard and Control, Type 65. The Real-Time Option, Type 25 gives the
system the additional capability to operate efficiently over a wide range
of information handling rates (from seconds per event to 125,000 words
per second) and with a large variety of input-output devices (see Figure 2).
The Real-Time Option consists of a Device Selector, an Information Col
lector, an Information Distributor, an Input-Output Skip connection, a
Program Interrupt facility, a Data Interrupt facility, and a Clock/Timer.
See Chapter 3 for details of functions.

ARITHMETIC
AND CONTROL

ELEMENT

OPERATOR
CONSOLE*

INTERNAL
PROCESSOR*

CORE
MEMORY*

MEMORY
MODULE,
TYPE 17 ------------- ~---....._ ___________ _

INTERFACE

INPUT-OUTPUT
EQUIPMENT

PERFORATED -
TAPE READER*

CARD READER
AND CONTROL.

TYPE 41-4

From Other Input ___ __,

Equipment

*Included in a
Standard PDP-4

LIGHT PEN.
TYPE 32

PROGRAMMED MAGNETIC
TAPE CONTROL.

MAGNETIC TAPE
TRANSPORT,

TYPE 50

PRECISION CRT
DISPLAY, TYPE 30

PERFORATED
TAPE PUNCH AND

CONTROL, TYPE 75

CARD PUNCH
CONTROL,
TYPE 40-4

UTOMATIC LINE PRINTE
AND CONTROL,

TYPE 62

RELAY BUFFER,
TYPE 67-4

To Other
Output

Equipme~I

Figure 2 - PDP-4 System with Real-Time Option

THE DEVICE SELECTOR consists of decoding elements to select and
establish the state of an external device when the program issues an
input-output transfer instruction. The direction of information transfer
(in or out of the Internal Processor) is controlled by signals produced
by the Device Selector. Up to 64 input-output devices can be selected
and these, in turn, may cause the selection of many more. The stand
ard Device Selector has provisions for twenty selector elements.

THE INFORMATION COLLECTOR receives information from input
devices (selected by the Device Selector) and transfers the informa
tion to the Internal Processor. Up to 18 bits of information can be
collected simultaneously; 8 x 18 bits of information may be collected,
broken into variable-sized words.

7

The Perforated-Tape Reader (top) and Printer-Keyboard (bottom).

8

THE INFORMATION DISTRIBUTOR distributes information from the
Internal Processor to all output devices. Only the output device se
lected (or addressed) by the Device Selector samples and reads in
the information contained in the Information Distributor. Up to 8 x 18
bits may be distributed.

THE INPUT-OUTPUT SKIP CONNECTION provides a program skip
instruction conditioned by the state of a given input-output device
logic line. The instruction following the skip instruction will not be
executed if the line is a 1. Eight skip conditions may be sampled.

THE PROGRAM INTERRUPT permits one of 11 lines (conditions) or
input-output devices to interrupt the program and initiate a sub
routine which may return to the original program when the cause for
interruption has been processed. The machine state is preserved
during a Program Interrupt. This type of interrupt is suited for in
formation or event rates in the range of Oto 2,000 cycles per second.

THE DATA INTERRUPT allows a device to automatically interrupt the
program and deposit or extract data from the Core Memory at an
address specified by the device. The Data Interrupt is suited for high
speed information transfers; up to 125,000 18-bit words may be
transferred per second.

THE CLOCK/TIMER produces a signal which increments a Core Mem
ory register at a rate of 60 cycles per second. When the register over
flows, a Program Interrupt occurs.

INPUT-OUTPUT DEVICES

All of the input-output devices are optional except the Perforated-Tape
Reader.

THE PERFORATED-TAPE READER senses 5-, 7-, or 8-hole perforated
tape at the rate of 300 lines per second. Either one line of tape (alpha
numeric) or 3 lines of tape (binary word) may be read.

THE PERFORATED-TAPE PUNCH AND CONTROL, TYPE 75, per
forates 5-, 7-, or 8-hole paper tape at a rate of 63.3 lines per second.

THE PRINTER-KEYBOARD AND CONTROL, TYPE 65, includes a
Teletype Model KSR-28 Printer and Keyboard with an allowable input
or printing rate of ten characters per second. Typed information may
be monitored by a program. A program may print information.

THE PRECISION CRT DISPLAY, TYPE 30, displays data on a 9¼''~' by
9¼" area. Information is plotted point by point to form either graph cal
or tabular data. Operation of this device requires the Real-Time Opti n.

THE LIGHT PEN, TYPE 32, is a photoelectric device which detJcts
information displayed on the Type 30 Visual CRT Display. Upon simnal

9

from the Light Pen, the computer carries out previously programmed
instructions. Requires Real-Time Option.

THE 18-BIT RELAY BUFFER, TYPE 67-4, provides contacts which
operate devices of higher power rating. The relays have form "D"
contacts, which open and close in approximately 3 milliseconds.
Requires Real-Time Option.

THE PROGRAMMED MAGNETIC TAPE CONTROL, TYPE 54, controls
up to four Magnetic Tape Transports, Type 50. Information is read
from or written on the tape. The format on the tape may be pro
grammed to be compatible with I BM tapes having a density of 200,
6 + 1 bit characters per inch. Requires Real-Time Option.

THE MAGNETIC TAPE TRANSPORTS, TYPE 50, are used with the
Programmed Magnetic Tape Control, Type 54.

THE AUTOMATIC LINE PRINTER AND CONTROL, TYPE 62, operates
at up to 600 lines per minute, 120 columns per line. Each column
may print one of 64 characters. Spacing format is controlled by a
punched format tape in the Printer. Once a command to print or space
is given, the Internal Processor is not required. Approximately one
per cent of program running time is required to operate the Line
Printer at a 600-line-per-minute rate. Requires Real-Time Option.

THE CARD READER AND CONTROL, TYPE 41-4, operates at a rate of
up to 200 cards per minute. Cards are read column by column. Column
information may be read in alpha-numeric or binary mode. The alpha
numeric mode converts the 12-bit Hollerith Code of one column into
the six-bit binary-coded decimal code with code validity checking.
The binary mode reads a 12-bit column directly into the PDP-4. Ap
proximately one per cent of a Card Reader program running time is
required to read the 80 columns of information at the 200 cards per
minute rate. Requires Real-Time Option.

THE CARD PUNCH CONTROL, TYPE 40-4, enables the operation of a
standard IBM Type 523 Summary Punch with PDP-4. Cards are
punched row by row at a rate of 100 cards per minute. Approximately
0.3 per cent of program running time is required to operate the Card
Punch at the 100-card-per-minute rate. Requires Real-Time Option.

PROGRAMMING AIDS

Several programs are supplied with each PDP-4 to assist the programmer
in routine tasks. They include: The PDP-4 Assembly Program, the DDT·4
debugging tape, double-precision floating point routines, maintenan]e
routines, a tape reproducer, punch routines, an octal debugging routin ,
an algebraic compiler, and a floating point functions program which w II
enable various functions, such as double precision floating-point sine, o
be computed. See Appendix 6. ·

10

CHAPTER 2

ARITHMETIC AND CONTROL ELEMENT
In this chapter the functions of the Arithmetic and Control Element are
described in detail. The operations of the machine instructions are ex
plained and listed.

Functions
INTERNAL PROCESSOR

The Internal Processor performs arithmetic operations, controls memory
access, and handles information entering and leaving the machine. It
consists of the Information Processor Control, which oversees all activities,
and six registers: Accumulator, Link, Memory Buffer, Memory Address,
Instruction, and Program Counter. The elements of the Internal Processor
are shown within the broken line in Figure 3.

Data Interrupt
address and
data lines to
and from external-----------w
devices, under
control of Real
Time Option

Normal data
transfer lines
to and from
external devices,
via the Real Time
Option or under
control of Real
Time Connection

KEYS
(of Operator

Console)

ACCUMULATOR
SWITCHES 18

(of Operator
Console)

LINK 1

MEMORY
BUFFER

REGISTER 18

ADDRESS
SWITCHES 13

(of Operator
Console)

INSTRUCTION
REGISTER 4

Figure 3 - Arithmetic and Control Element

11

CORE
MEMORY

AND
MEMORY
MODULE.
TYPE 17

ACCUMULATOR (AC): Arithmetic operations are performed in this
18-bit register. The AC may be cleared and complemented. Its con
tents may be rotated right or left with the Link. The contents of the
Memory Buffer may be added to the contents of the AC with the result
left in the AC. The contents of both these registers may be combined
by the logical operations AND and Exclusive OR, the result remaining
in the AC. The Inclusive OR may be formed between the AC and the
Accumulator Switches on the Operator Console (see below), and the
result left in the AC.

The Accumulator also acts as an input-output register. Under normal
operation all information transfers between core memory and an
external device must pass through the Accumulator.

LINK (L): This is a one-bit register used to extend the arithmetic
facility of the Accumulator. In l's complement arithmetic, the Link
is an overflow indicator; in 2's complement it functions as a carry
register. The Link may be cleared and complemented and its state
sensed independent of the AC. It is included with the AC in rotate
operations.

MEMORY BUFFER (MB): All information transferred between Core
Memory and the AC, Instruction Register, or Program Counter passes
through the MB. Information is read from a memory cell into the MB
and rewritten into the cell in one cycle time (8 microseconds). In
structions are brought from memory into the MB to be decoded. The
MB serves also as a buffer for information transferred between Core
Memory and an external device in a Data Interrupt. The contents of
the MB may be incremented by one.

MEMORY ADDRESS REGISTER (MA): The address of the Core Memory
cell currently being accessed is contained in the 13-bit MA. Informa
tion may enter the MA from the MB, Program Counter, or from an
external device operating in a Data Interrupt.

INSTRUCTION REGISTER (IR): This is a 4-bit register which contains
the operation code of the instruction currently being performed by
the computer. Information enters the IR from the MB.

PROGRAM COUNTER (PC): The program sequence, that is, the order
in which instructions are performed, is determined by the PC. This
13-bit register contains the address of the memory cell from which
the next instruction will be taken. Information may enter the PC from
the MB, MA, or the Address Switches of the Operator Console.

12

MEMORY
The memory contains stored information for processing, and the instruc
tions of the program being run. Memory capacities of from 1,024 to 32,768
words are available in PDP-4. Standard models PDP-4A and PDP-4B come
with 1024-word and 4096-word memories, respectively. The two models
are identical in all other respects. The smaller memory has a 32 by 32 by
18 core array, the larger a 64 by 64 by 18 core array. A Memory Module
Type 17, containing a 64 by 64 by 18 core array may be added to PDP-4B
to give it an 8192-word capacity. With the addition of the Magnetic Core
Memory Extension Control Type 16, memory modules may be added to
build a memory of 32,768 words. Further increase in storage capacity can
be gained by adding the Magnetic Drum System Type 24, available in
three capacities: 16,384, 32,768, and 65,536 words.

OPERATOR CONSOLE

The Operator Console contains all the switches and controls necessary to
run the machine, and lights which indicate the current status of the In
ternal Processor. The functions of the lights and controls are described
in the following tables.

Figure 4 - 0perator Console

13

Console Switches

ADDRESS

ACCUMULATOR

POWER

SINGLE STEP

SINGLE INSTRUCTION

REPEAT

SPEED

Console Light

ACCUMULATOR

MEMORY BUFFER

LINK

MEMORY ADDRESS

INSTRUCTION

PROGRAM COUNTER

RUN

FETCH, DEFER, EXECUTE, BREAK

Function

A group of 13 switches which establishes
the memory address for the START, EX
AMI NE, and DEPOSIT operations.

A group of 18 switches, the setting of which
determines the word to be placed in memory
by the DEPOSIT and DEPOSIT NEXT opera
tions, or to be placed in the AC under
program control.

Controls the primary power to the computer
and all external devices attached to it.

Causes the computer to stop at the comple
tion of each memory cycle. Repeated opera
tion of CONTINUE while this switch is on
will step the program one cycle at a time.

Causes the computer to stop at the comple
tion of each instruction. Repeated operation
of CONTINUE while this switch is on will
step the program one instruction at a time.
When both switches are on, SINGLE STEP
takes precedence over SINGLE INSTRUC
TION.

Causes the operations initiated by pressing
CONTINUE, EXAMINE NEXT, or DEPOSIT
NEXT, to be repeated as long as the key is
held on. The rate of repetition is controlled
by the setting of the SPEED knobs.

Two controls that vary the REPEAT interval
from approximately 40 microseconds to 8
seconds. The left knob is a five-position
coarse control, the right knob a continuously
variable fine control. For both knobs, slowest
speed is obtained in extreme left position.

Indication

The contents of the AC.

The contents of the MB.

The contents of the Link.

The contents of the MA register.

The contents of the IR.

The contents of the PC.

The computer is executing instructions.

The primary control state of the next metn
ory cycle.

14

Console Key

START

STOP

CONTINUE

EXAMINE

EXAMINE NEXT

DEPOSIT

DEPOSIT NEXT

Function

Starts the processor. The first instruction is
taken from memory cell specified by the
setting of the ADDRESS· switches. The
START operation clears the AC and Link,
and turns off the Program Interrupt.

Stops the processor at the completion of the
memory cycle in progress at the time of key
operation.

Causes the computer to resume operation
from the point at which it was stopped by
the last previous operation of STOP or one
of the EXAMINE or DEPOSIT keys. Besides
the normal off and momentary on positions,
CONTINUE has a latched on position ob
tained by raising the key instead of de
pressing it.

Places the contents of the memory cell
specified by the ADDRESS switches in the
AC and MB. The contents of the ADDRESS
switches appear in the MA. The PC contains
the address of the next cell.

Places the contents of the cell specified by
the PC in the MB and AC. The C(PC) are
incremented by one. The MA contains the
address of the register examined.

Deposits the contents of the AC switches in
the memory cell specified by the ADDRESS
switches. The C(AC switches) remain in the
AC and MB. The contents of the ADDRESS
switches appear in the MA. The PC contains
the address of the next cell.

Deposits the contents of the AC switches in
the memory cell specified by the PC. The
C(PC) are then incremented by one. The
C(AC), C(MB), and C(MA) are the same as
for DEPOSIT.

Control States
The PDP-4 operates in one of four primary control states during a memory
cycle: Fe.tch, Defer, Execute, or Break. The next control state is established
at the completion of the current one. All states except Break are deter
mined by the instructions themselves.

FETCH: A new instruction is obtained when this state occurs. The
contents of the memory cell specified by the PC are placed in the MB,

15

and the instruction part (bits 0-4) of this word are placed in the IR.
The C(PC) are then incremented by one.

If a two-cycle instruction is fetched, the following control state will be
either Defer or Execute. If a one-cycle instruction is fetched, the
operations specified will be performed during the last part of the
Fetch cycle. The next state will be Fetch.

DEFER: When bit 4 of a memory reference instruction is a 1, the Defer
state is entered to perform the indirect addressing. The process of
indirect addressing is often referred to as deferring, in the sense that
access to the operand is deferred once to another memory cell. This
is why the primary control state in which this operation is performed
is called Defer. Bit 4 of a memory reference instruction is referred to
interchangeably as the Indirect or the Defer Bit.

EXECUTE: This state is established only when a memory reference
instruction is being performed. The contents of the memory cell
addressed are brought into the MB, and the operation specified by
the C(IR) is performed.

BREAK: When this state is established, the sequence of instructions
is broken for a Data Interrupt or a Program Interrupt. In both cases,
the break occurs only at the completion of the current instruction.

The Data Interrupt allows information to be transferred between
memory and an external device; when this transfer has been com
pleted, the program sequence is resumed from the point of the break.
The Program Interrupt causes the sequence to be altered. The C(PC)
and the C(L) are stored in location 0000 and the program continues
from location 0001.

Instructions
The instruction code is specified by bits 0-3 of a word. There are two types
of instructions: Memory Reference and Augmented.

MEMORY REFERENCE INSTRUCTIONS

The bit assignment of the memory reference instruction is shown in Figure
5. Bits 0-3 determine the operation to be performed. Bits 5-17 specify the
address of the memory cell containing the operand. If bit 4 is a 1, then
indirect addressing occurs. In the following discussion, i is the mnemonic
symbol used to indicate indirect addressing.

16

1 o 11 I 2 I 3 1 41 516 1 7 1 s 1 9 110111 1121131141151161171

~r
Operation Indirect

Code Address
(Defer)

l
Operand Address

Figure 5 - Memory reference instruction format

INDIRECT ADDRESSING

,

When indirect addressing is specified, the address part (bits 5-17) of a
memory reference instruction is interpreted as the address of a cell con
taining not the operand, but the address of the operand. Consider the
instruction add A. Normally, A is interpreted as the address of the cell
containing the quantity be be added to the AC. Thus, if cell 100 contains
the number 576, the instruction

add 100

will cause the quantity 576 to be added to the AC. Now suppose that cell
576 contains the number 1135. The instruction

add i 100

(where i signifies indirect addressing) will cause the computer to take the
number 576, which is in cell 100, as the effective address of the instruction,
and the number in cell 576 as the operand. Hence this instruction will
result in the quantity 1135 being added to the AC.

If, when indirect addressing is indicated, the memory cell addressed by
the instruction is one of those in locations 10-17, the contents of that cell
are incremented by one and the result taken as the effective address.
This feature is called auto-indexing. If memory cell 12 contains the number
200, the instruction

add i 12

will cause the number in cell 200 + 1 to be added to the AC.

l 'S COMPLEMENT ARITHMETIC

When two numbers are added together in l's complement arithmetic
(see add instruction in following table), a 1 carried out of the high-order
position will be added to the low-order digit, as follows:

110101001100011
011001010111101

ci 001110100100000
.. 1

001110100100001

17

Since bit O of a word is used for the sign of a number, the largest positive
number that can be represented is 211 -1. If, in l's complement addition,
the addends are of like sign and the sign of the sum is different, overflow
is said to have occurred and the Link is set to 1.

2'S COMPLEMENT ARITHMETIC

In 2's complement addition (see tad instruction), a carry out of the high
order bit is not added into the low order position. Instead, if a carry occurs,
the Link is complemented. The signs of the addends and sum are not
examined. Two's complement addition is used primarily in multiple
precision arithmetic.

All memory reference instructions require an Execute cycle (see Control
States above) to transfer data between Core Memory and the MB and
execute the instruction. When indirect addressing is specified, an extra
cycle is required to determine the effective address. The jmp instruction,
while it requires an address, does not require an operand; an Execute
cycle is thus not needed, and the instruction is performed in only one cycle.

C(A)
A B
Y1.4
yj

MNEMONIC
SYMBOL

lac Y

dac Y

dzm Y

add Y

MEMORY REFERENCE INSTRUCTIONS
Explanation of Special Terms

contents of A
A replaces B
bits 1 - 4 of Y
a given bit in Y

OCTAL
CODE TIME

(BITS 0-3) (µsec)

20 16

04 16

14 16

30 16

-V-- exclusive OR
V inclusive OR
/\ AND
A l's complement of A

OPERATION

Load AC. The C(Y) are loaded into the AC.
The previous C(AC) are lost.
C(Y) => C(AC).

Deposit AC. The C(AC) are deposited in
the memory cell at location Y. The previous
C(Y) are lost; the C(AC) are unchanged.
C(AC) => C(Y).

Deposit Zero in Memory. Zero is deposited
in memory cell Y. The original C(Y) are
lost. The AC is unaffected by this operation.
0 => C(Y).

Add (l's complement). The C(Y) are adder
to the C(AC) in l's complement arithmeti .
The result is left in the AC and the origin I
C(AC) are lost. The C(Y) are unchange .
The Link is set to 1 on overflow. (See text .
C(Y) + C(AC) => C(AC).

18

OCTAL
MNEMONIC CODE

SYMBOL (BITS 0-3)

tad Y 34

xor Y 24

and Y 50

sad Y 54

TIME
(µsec) OPERATION

16 Two's complement Add_ The C(Y) are
added to the C(AC) in 2's complement
arithmetic. The result is left in the AC and
the original C(AC) are lost. The C(Y) are
unchanged. A carry out of the Obit com'.
plements the Link.
C(Y) + C(AC) => C(AC).

16 Exclusive OR. The logical operation Ex
clusive OR is performed between the C(Y)
and the C(AC). The result is left in the AC
and the original C(AC) are lost. The C(Y)
are unchanged. Corresponding bits are
compared independently.

16

16

C(Y;) V C(AC;) => C(AC;).

Example

C(AC); original C(Y);
0 0
0 1
1 0
1 1

C(AC); final
0
1
1
0

AND. The logical operation AND is per
formed between the C(Y) and the C(AC).
The result is left in the AC, and the orig
inal C(AC) are lost. The C(Y) are un
changed. Corresponding bits are com
pared independently.
C(Y;)/\ C(AC;) => C(AC;)

Example

C(AC); original C(Y);
0 0
0 1
1 0
1 1

C(AC); final
0
0
0
1

Skip if AC is Different from Y. The C(Y)
are compared with the C(AC). If the num
bers are the same, the computer proceeds
to the next instruction. If the numbers
are different, the next instruction is skip
ped. The C(AC) and the C(Y) are 11.rn
changed.
If C(AC) r"- C(Y) then C(PC) + 1 => C(PCp.

19

MNEMONIC
SYMBOL

isz Y

jmp Y

jms Y

cal

xct Y

OCTAL
CODE

(BITS 0-3)

44

60

10

00

40

TIME
(µsec)

16

8

16

16

8 + time
of in
struction
being
executed

OPERATION

Index and Skip if Zero. The C(Y) are in
cremented by one in 2's complement
arithmetic. If the result is 0, the next
instruction is skipped. If not, the com
puter proceeds to the next instruction.
The C(AC) are unaffected.
C(Y) + 1 => C(Y).
If result = 0, C(PC) + 1 => C(PC).

Jump to Y. The next instruction to be
executed is taken from memory cell Y.
Y => C(PC).

Jump to Subroutine. The C(PC) and the
C(L) are deposited in memory cell Y. The
next instruction is taken from cell Y + 1.
C(L) => C(Yo). 0 => C(Y1.4).
C(PC) => C(Y5.11). Y + 1 => C(PC).

Call Subroutine. The address portion of
this instruction is ignored. The action is
identical to jms 20. The instruction cal i is
equivalent to jms i 20.

Execute. The instruction in memory cell Y
will be executed. The computer will act as
if the instruction located in Y were in the
place of the xct.

AUGMENTED INSTRUCTIONS

None of the augmented instructions require a memory reference. Bits
4-17 of an augmented instruction are used to specify operations, many
of which may be combined in a single instruction. There are three classes
ot augmented instructions:

a. Operate class: includes operations on the AC and Link, the skip
group, and the halt instruction.

b. The special instruction, law.

c. Input-output transfer class: includes all the instructions which
initiate transfers of information between the Internal Processor and
an external device and those that sense the status of the devices.

20

OPERATE CLASS

The instructions of the Operate class require one cycle for their execution.
The octal code (bits 0-3) for this class is 74. The operations specified by
bits 4-17 are called micro-instructions. The functions of each micro
instruction are described in the following table. The Event Time indicates
when the operation is performed in the course of the cycle. Times 0, 1,
and 2 occur in that order in the latter part of the cycle.

Except for the restrictions indicated at the end of the table, micro
instructions may be combined in a single instruction. The bit assignment
of the Operate class micro-instructions is shown in Figure 6.

MNEMONIC
SYMBOL

---~--------
-

opr

cla

cma

ell

cml

Opr-740000

Invert
Sense

Of Skip

szl sna spa rtr rtl !
If bit 8 = 1 If bit 7 = 1

iii ii
Bit = 1 j 5 ! 6 l 7 l s l 9 l 1 o j 11 j 12 j 13 ! 14 j 15 ! 16 j 11 f

! !l !,!.t!.!!,!!,l
Additional

Rotate

Figure 6 - Operate class instruction - bit assignment

OCTAL EVENT
CODE TIME

740000

750000 2

740001 3

744000 2

740002 3

OPERATION

Operate. Indicates the Operate class. When
used alone, performs no operation; the
computer proceeds to the next instruction.

Clear AC. The AC is cleared to 0.
0 => C(AC).

Complement AC. Each bit of the AC is com
plemented.

C(AC) => C(AC).

Clear Link. Link is set to 0.

0 => C(L).

Complement Link. C(L) => C(L).

21

MNEMONIC OCTAL EVENT
SYMBOL CODE TIME OPERATION

ral 740010 3 Rotate AC Left. The C(AC) and the C(L) are
rotated left one place.
C(AC;) => C(AC;-1)
C(ACa) => C(L). C(L) => C(AC17)

rtl 742010 2, 3 Rotate Two places Left. Equivalent to two
successive ral's.

rar 740020 3 Rotate AC Right. The C(AC) and the C(L) are
rotated one place right.
C(AC;) => C(AC;-1)
C(L) => C(ACo)
C(AC17) =>C(L)

rtr 742020 2, 3 Rotate Two Places Right. Action taken is
equivalent to two successive rar's.

oas 740004 3 OR AC Switches. The Inclusive OR of the
C(AC) and the C(AC switches) is placed in the
AC. A switch up is interpreted as a 1.

sma 740100 1

spa 741100 1

sza 740200 1

sna 741200 1

C(AC Switches) V C(AC) => C(AC).

Example

C(AC); original C(Y);
0 0
0 1
1 0
1 1

C(AC); final
0
1
1
1

Skip if Minus AC. If the AC is negative, the
next instruction is skipped.
If ACo = 1, then C(PC) + 1 => C(PC).

Skip if Plus AC. If the AC is positive, the next
instruction is skipped.
If ACo = 0, then C(PC) + 1 => C(PC).

Skip if Zero AC. If C(AC) are 0, the next in
struction is skipped.
If C(AC) = 0, then C(PC) + 1 => C(PC).

Skip if Non-zero AC.
If C(AC) ~ 0, then C(PC) + 1 => C(PC).

22

MNEMONIC OCTAL EVENT
SYMBOL CODE TIME OPERATION

snl 740400 1 Skip if Non-zero Link. If C(L) is 1, the next
instruction is skipped.
If C(L) ~ 0, then C(PC) + 1 => C(PC).

szl 741400 1 Skip if Zero Link.

If C(L) = 0, then C(PC) + 1 => C(PC).

hit 740040 immedi- Halt. Stops the computer.
ately after
the comple-
tion of the
cycle.

If skips are combined in a single instruction, the Inclusive OR of the con
ditions to be met will determine the skip. For instance, if both sza and snl
are indicated (octal code 740600), the next instruction will be skipped if
either the AC is zero or the Link is non-zero, or both.

If ral or rar is specified, cma, cml, oas may not be specified, and conversely.
If rtl or rtr is specified, cma, cml, cla, ell, oas may not be specified, and
conversely.

THE INSTRUCTION, law

The octal code for this instruction is 760000. Bits 5-17 are used to specify
a quantity to be placed in the AC. The effect of the law instruction is to place
itself in the AC.

lawY 76 8µsec Load AC With law Y.

INPUT-OUTPUT TRANSFER CLASS

The instructions in this class are used to effect information transfers
between the Internal Processor and external devices, via the Interface.

iot 760000 8 µsec Input-Output Transfer. Bits 4-13 of an iot
instruction determine the device and sub
device to be selected. The presence of a 1 in
bit 14 will cause the AC to be cleare~ at
Event time 1. Bits 15-17 determine 'Ajhen
pulses are to be sent to the selected device.

The bit assignment of the iot instruction is shown in Figure 7. The instruc
tions of the iot class are described in Chapter 3.

23

Operation Sub-Device
Code Selection

Device
Selection

Sub-Device
Selection

I o I 1 I 2 I 3 I 4 I 5 I e I 7 I s I 9 I 10 I 11 , , 2I131,4115 I 16 I 17 I
Cl,,. AC ,t _,, •~ t J t J l

If Bit Is a l: Transfer an IOT pulse at event time 3 =-..J
Transfer an IOT pulse at event time 2

Transfer an IOT pulse at event time 1

Figure 7 - Bit assignment for input-output transfer instruction (iot)

24

CHAPTER 3

INPUT-OUTPUT EQUIPMENT
FUNCTIONS AND PROGRAMMING

PDP-4 is capable of operating with the ten input-output devices described
in Chapter 1 and with a variety of others. The computer can operate with
most of the devices simultaneously. The Interface, consisting of the Real
Time Connection or the Real-Time Option, issues commands to the devices,
monitors their state of availability, transfers information to them, and
receives information from them. Since the Internal Processor can store
or read out data much faster than the devices can operate, the Interface
and the individual devices provide buffering to minimize the amount of
program time consumed in transfers.

The Real-Time Connection, furnished as standard equipment, provides
communication between the Internal Processor and the Perforated-Tape
Reader, the Perforated-Tape Punch, and the Keyboard-Printer. The Real
Time Option, Type 25, gives the system the additional capability to operate
efficiently over a wide range of information handling rates, from seconds
per event to 125,000 words per second, and with a large variety of input
output devices. The Real-Time Option consists of the Device Selector, the
Information Collector, the Information Distributor, the Input-Output Skip
Facility, the Program Interrupt Control, the Data Interrupt Control, and
the Clock/Timer (see Figure 8).

The coupling of input-output equipment to PDP-4 is similar for all devices.
The electrical characteristics of the coupling are discussed in Chapter 4.
The logical functions and programming instructions are given below.

Input-Output Commands
DEVICE SELECTOR (OS)

The input-output transfer (iot) augmented instruction causes the Interface
to produce pulses which select 10 devices and transfer information. Upon
receipt of an instruction, the Device Selector in the Interface performs one
of the following functions:

(a) Starts a device (e.g.asks for a line of perforated tape ta be read and
assembled into a word, a card to be moved to a reading or punching
station, etc.)

25

(b) Transfers data from the information buffer of an input device to
the AC, through the Information Collector

(c) Transfers information from the AC, through the Information Dis
tributor to the buffer of an output device

(d) Senses the flag(s) associated with a device to determine its avail
ability

(e) Resets the flags. These commands dismiss a device without asking
for additional action.

The flags referred to above are signals generated by an external device
upon completion of its assigned task. This technique allows the Internal
Processor to resume its arithmetic operations after issuing an instruction
to a relatively slow input-output device (data rate of less than 20,000
words per second). When a flag is set to 1 by the device, it signifies that:

(a) an output action (punch out, etc.) has been completed; the Arith
metic and Control Element may transmit data to the device.

(b) an input action (card or tape input, etc.) has occurred; information
is available for the Arithmetic and Control Element.

(c) an alarm condition exists.

Flags may be sensed, and a program skip take place, using the Output
Skip Facility (see below). Flags may be read into the AC using the iors (in-out
read status) instruction. Most flags are connected to the Program Interrupt
(see below).

The Device Selector selects an input-output device or subdevice according
to the address code of the device in bits 4-13 in the iot instruction. It then
generates 10 pulses at event times 0, 1, and 2 if the appropriate micro
instruction code bits are present in bits 17, 16, and 15. Pulse iot 0 occurs
near the end of an iot instruction, followed by iot 1 in 2 microseconds.
Pulse iot 2 occurs at the beginning of the next instruction, 1.2 microseconds
after iot 1. This timing enables one iot instruction to perform multiple
operations.

INFORMATION COLLECTOR (IC)

The Information Collector enables information to be collected from eight
18-bit word input devices. The AC must contain Oat the time the inputs are
sampled. A word can be broken into smaller wards according to the word
size requirements of the input device. The program steps for reading the
contents of a group of static parallel data bits are:

cla Clear the AC (AC must equal 0)

iot Selected device (sample the selected device outputs)

dac Y Deposit C(AC). The C(AC) are sent to a particular memory cell, Y.
(the first two steps may be microprogrammed together in one in
struction)

26

DEVICE IOT Pul~s 3 X 20) Jumper Connections
SELECTOR (3 X 64 Max) To IO Devices, 10, and IOS

From DS
IOT Pulses

(8 X 18 Max) ~

INFORMATION
From Input Data Lines (8 X 18) - COLLECTOR

Oevloee
From lD 18 10 STATUS

Device Flags

INFORMATION Data Lines (18 To Input

Selected IOT
DISTRIBUTOR oe~ices

FrJ>m OS
Pulses 8

INPUT

From 10 Device
OUTPUT

SKIP
Flags

From 10 Device
PROGRAM

INTERRUPT
Flags CONTROL

REAL
TIME

CLOCK

Re:ues1 :, DATA Data
• l"!equest Acknowleged

Data ~irection INTERRUPT
(in out)

DATA

13 Address
INTERRUPT
ADDRESS

DATA
~ INTERRUPT

18 lncommg INFORMATION
Data (in)

DATA
INTERRUPT

INFORMATION - 18 Outgoing Data
(out)

Figure 8 - Real Time Option, Type 25

27

INFORMATION DISTRIBUTOR (ID)

The Information Distributor presents the static data contained in the AC
to each output device requiring AC information. The devices sample the
Information Distributor using the program-controlled pulses from the
Device Selector. The program steps for transmitting information from a
particular memory cell are:

lac Y Load the AC with C(Y)

iot Clear selected output register to prepare for information

iot transmit The information is sampled and placed in the register of the
input-output device.
(the second two steps may be microprogrammed together
in one instruction)

INPUT-OUTPUT SKIP FACILITY (105)

The Input-Output Skip facility enables the program to skip (or branch)
according to various external device states. There are eight inputs to the
Skip facility. The iot pulses from the Device Selector strobe an input line
and if a logic condition is present, the instruction following the iot is skipped.
The iot skip pulse must occur at event time 1.

PROGRAM INTERRUPT CONTROL (PIC)

The program interrupt allows a logic line state to interrupt the program.
It is used to speed the processing of input-output device information, or
to allow certain alarm conditions to be sensed by the computer. The in
terrupt may be enabled or disabled by the program.

When the interrupt occurs, the contents of the Program Counter and the
Link are stored in memory location O (bits 0, 5 ... 17) and an interrupt
program begins in memory location 1. This action disables the interrupt
mode. The interrupt program is responsible for finding the signal causing
the interruption, for removing the condition, and for returning to the
original program.

When the condition for interruption is removed, an iot signal to re-enable
the Program Interrupt is given, followed by the instruction, jmp indirect 0,
or 620000. The interrupt program will then resume. If a Program Interrupt
request is waiting, it will be serviced after _the 620000 instruction. If a
second interruption condition occurs and the interrupt program is running,
the signal will have no effect; that is, there is only one level of interruption.
The START key disables the Program Interrupt system. The iot instructions
for the program interrupt are:

iof - 700002 - Disable the Program Interrupt

ion - 700042 - Enable the Program Interrupt

28

INPUT- OUTPUT STATUS INSTRUCTION

The iors (in-out read status) instruction, 700314, enables the status of all
10 devices to be read into the AC and sampled. Various 10 device states
are indicated by the presence of a 1 or O in the bit positions allocated for
that device (see Figure 9).

X X XIX X XIX XI X I X IX X

I o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I s I 9I10I11I12113 I 14115 I 161 I

Program Interrupt On

Tape Reader Flag

Tape Punch Flag

Keyboard Input Flag

'.ype-Out Flag

Display Flag

Clock Overflow Flag

Clock Enabled

Magnetic Tape Interrupt

~
I

I '~

x = Program Interrupt Connected

Line

Printer Spacing Flag

Printer Flag ~u ..
Car

Car

d Punch Malfunction

d Punch Row Flag

Car d Reader End of File Switch

d Reader Malfunction Car

Car d Reader Not Busy

Car d Reader Column Flag

Figure 9 - Input-Output Status instruction, bit assignment

CLOCK/TIMER

The Clock produces a pulse every 1/60 second (16.6 milliseconds) which
temporarily interrupts the program (in the same manner as the data
interrupt) and a 1 is added to the contents of memory cell 7 using 2's
complement addition. If the contents of memory cell 7 are O after the
addition, the Clock flag is set to 1, which initiates a Program Interrupt if
the Interrupt is on. Depressing the START key on the Operator Console
clears the Clock flag and disables the Clock. The iot instructions associated
with the Clock are:

csf - 700001 - Skip the next instruction if the Clock flag is a 1

cof - 700004 - Disable the Clock and clear the Clock flag

con - 700044 - Enable the Clock and clear the Clock flag

Register 7 is identical to other core memory registers, that is, its contents
may be examined or modified. By presetting register 7 to a number, a
Program Interrupt will occur when the register overflows after a timed
interval.

29

Input-Output Devices
All of the Input-Output Devices discussed below can be controlled by the
Real-Time Option, Type 25. The Real-Time Connection, furnished as
standard equipment, provides communication petween the Internal Proc
essor and the Perforated-Tape Reader, the Perforated-Tape Punch and
Control, and the Printer-Keyboard and Control. All devices except the
Perforated-Tape Reader are optional. This section is arranged in the order
of increasing complexity of connectjon.

PRECISION CRT DISPLAY, TYPE 30A

Data points are displayed on a 9¼ inch by 9¼ inch area. Information is
plotted point by point to form either graphical or tabular data. Two digital
to-analog converters drive the deflection yokes in the X and Y directions.
Data can be plotted at a 20 kc rate, or every 50 miscroseconds.

The program loads the AC with a point to be plotted. Bits O through 8 specify
the X co-ordinate of the point and Bits 9 through 17 the Y co-ordinate. The
C(AC) are then transferred to the Display Buffer. The specifying of the
point initiates the plotting of the point on the CRT.

(18) Specifies
X, Y Coordinates

RECISIO "X'"
700502 CRT .---.. y-.. --.. 16"

DS 700504 DISPLAY CA THODE
_J------........ -------t~CONTROL,.,.._l_nt_en_s..:ify__,,M RAY TUBE

TYPE 30A

E]
Status Bits:

None

Program Interrupt:
None

Figure 10 - Precision CRT Display, Type 30A programming logic

30

The CRT, Type 30A is selected when the numbers 0 and 5 (octal) are speci
fied in bits 8 and 9 respectively, of the iot instruction. The display com
mands are:

dis - 700506 - Load the Display Buffer and select the display. The program
loads the Display Buffer from the AC. A point is plotted as
specified by the C(Display Buffer). The plotting requires
50 microseconds, after which another dis can be given. The
Light Pen flag or Display flag is cleared with dis.

700502 - Clear the X and Y display buffers. 0 => C(Display Buffer).

700504 - C(AC) V C(Display Buffer)=> C(Display Buffer). Plot the
point specified by the C(Display Buffer).

The points specified in the AC are plotted as unsigned quantities, beginning
in the lower left hand corner of the cathode ray tube. The point locations are:

400377 • • 377377

T
400400.

14

000000
000777
777000
777777

9¼"
2 9 points

• 377400

"I

9¼"
2 9 points

1
A program sequence is given in PDP-4 Assembly language below. The
program begins in register 40, and plots a point, XY, as specified by Core
Memory register 10.

/display a point 30a

10/

40/ lac 10

PROGRAM SEQUENCE

/xy bits 0-8, bits 9-17 y.

/place xy co-ordinate in ac

/display the point, next dls command

/must wait 50 microsec.

31

LIGHT PEN, TYPE 32

The Light Pen is a photosensitive device which detects the presence of
information displayed on a CRT. If the Light Pen is held in front of the CRT
at a point displayed, the Display flag will be set to a 1. The Pen is specified
by O and 5 in bits 8 and 9 of the iot instruction. The commands are:

dsf - 700501 - Skip if Display flag is a 1.

def - 700502 - Reset the Display flag to a 0.

The Display flag is connected to bit 5 of the iors instruction, and to the
Program Interrupt.

Check Status
(Bit 5)

700501 LIGHT
OS 700502 PEN

1---+-t------l~CONTROL
Light
Pen
Flag

LIGHT
PEN

TYPE
32

Status Bits:
05-Light Pen Flag= 1

Program I nterrupl:
Light Pen Flag

Figure 11 - Light Pen programming logic

PRECISION CRT DISPLAY, TYPE 30D
AND LIGHT PEN, TYPE 32

The Type 30D display plots points at a 20kc rate. The X and Y co-ordinate
buffers (XB and YB) are loaded from the 10 bits, ACs.,1.

32

The instructions are:

dsf - 700501 - Skip if the Display flag is a 1. The Display Flag is set to 1
when the Light Pen senses light.

def - 700601 - Clear the Display flag.

dxl - 700506 - Load the C(XB) with C(AC8_ 1;).

dyl - 700606 - Load the C(YB) with C(ACrn).

dxs - 700546 - Load the C(XB) with C(AC8_i;). Plot the point: C(XB), C(YB).

dys - 700646 - Load the C(YB) with C(ACH-n). Plot the point: C(XB), C(YB).

dlb - 700706 - Load the Brightness Register with AC bits 15-17. The bits of
AC specify the brightness of the points displayed. Clear the
Display flag.

700502 - Clear XB.

700504 - C(SB) V C(AC) => C(XB). Display a point.

700602 - Clear YB.

700604 - C(YB) V C(AC) => C(YB). Display a point.

(10) Specifies

X or Y Coordinate
and Intensity

MB,, (1)

700601

700502
PRECISION CRT

DISPLAY CONTROL,
TYPE 30D

lntensi

Li ht Pen
Output

16" CRT
AND

LIGHT PEN

Status Bits: None
Program Interrupt: None

Display
Flag

Figure 12 - Precision CRT Display, Type 30D, and Light Pen, Type 32

33

The Display flag is connected to the Program Interrupt and to bit 5 of the
iors instruction. The co-ordinates of the corners are:

0, 1777 • • 1777, 1777

X=0,Y=0. 0 1777,0
9¼" r 2 10
points--,

/display a point 30d

10/

40/ lac 10

dxl

lac 11

dys

PROGRAM SEQUENCE

/x bits 8-17

/y

/load x

/load y and plot the point

T
9¼"

2 10 points

l

HIGH SPEED ANALOG-TO-DIGITAL CONVERTER
(TYPICAL INPUT DEVICE)

An analog-to-digital converter with a resolution of 8 bits and a conversion
time of 2 microseconds may be connected to the Real-Time Option. The
input-output transfer instructions, series 11, for the converter are:

sci - 701115 - Sample the analog input. Convert the sampled quantity to
digital form and load the AC with the converted number.

701101 - This micro-instruction starts the converter. In a period of 2
microseconds the converter will form an 8-bit number pro
portional to the analog input.

701104 - C(A-0 converter) V C(AC) => A(AC).

34

(8) Information
AC Bits 10-17

Data Read In

11 Series
701104

701101
(Start Conversion)

8 BIT
ANALOG

TO
DIGITAL

CONVERTER

Analog
Input

Figure 13 - High-speed analog-to-digital converter programming logic

A program sequence to sample a function at the input to the converter,
and store the result in memory register 10 would be:

PROGRAM SEQUENCE

/analog-to-digital converter

10/

42/ sci

dac 10

/location of sampled result

/places sample in AC

/deposit result

LOW SPEED ANALOG-TO-DIGITAL CONVERTER
(TYPICAL INPUT DEVICE)

An analog-to-digital converter with a resolution of 12 bits and a conversion
time of 60 microseconds can be connected to PDP-4. The converter is given
an iot command to sample the analog function, and in 60 microseconds the
converter will contain a 12-bit number proportional to the input. At the
completion of the sample, the converter flag is set to a 1, signifying that
the input data is ready.

The contents of the converter buffer are read into the AC with a program
command. The action which transfers the information from the converter
to the AC also resets the converter flag. An iot skip instruction is used which

35

skips if the conversion is complete; i.e., the converter flag is a 1. The
program instructions, iot series 11, are:

asf - 701101 - Skip if the converter flag is a 1.

arb - 701112 - Read converter buffer and clear converter flag.

ase - 701104 - Start the converter and clear the converter flag.

701102 - A micro-instruction which clears the converter flag, and
C(converter buffer) V C(AC) => C(AC).

The converter flag might connect to the Program Interrupt.

701101
Skip If Done

Convert

I
I Er ____ .J

Done Flag

12 BIT
ANALOG

TO
DIGITAL

CONVERTER

Analog
Input

Status Bits: None
Program linterrupt:
Convert Done Flag

Figure 14 Slow-speed analog-to-digital converter programming logic

PERFORATED-TAPE READER
The Tape Reader senses 5-, 7-, or 8-hole perforated-paper (or Mylar) tape
photoelectrically at 300 characters (or lines) per second. The Reader con
trol requests Reader movBment, assembles data from the Reader into a
Reader Buffer (RB), and signals the computer when incoming data is
present. Reader tape movement is started by the Reader control request
to release the Reader brake and simultaneously engage the clutch.

In addition to the Reader movement control logic, the control unit contains
an 18-bit Reader Buffer (RB) which can collect one or three lines from the
tape. The C(RB) can be read into the AC. The Reader flag becomes a 1
when a character or word has been assembled in the RB.

36

MB1, (Alphanumeric)

MB:, (Binary)

(18)RB(lnformation)

700101
Skip)

(Interrupt)

700102
700104

Reader Flag

PERFORATED
TAPE

READER
CONTROL

Feed Hole

8 Holes of
Information
Run Signal

(Clutch Engaged,
Brake

Disen aged)

Status Bit:
1-Reader Flag

Interrupt:
Reader Flag

Figure 15 - Perforated - Tape Reader programming logic

0 2 3
MS

2.9 3.3

Single Character Time

Flag 0
1

* RSA.---------------..-
RRB:----------------

Char. Avail. _________ , ________ _

In RB
Reader

Engaged

0

Flag ?__j

Alphanumerlc bode
2 4 6 8 10

u
* RSB:----.,--------------

RR8----------------
Char.
Avail.------------------In RB W II

Reader
Engaged

PERFORATED
T APE

READER

Binary Mode
*The next select pulse must be given
during this interval to keep the
reader running at maximum rate.

Figure 16 - Perforated-Tape Reader timing

37

An alphanumeric character is one line (5, 7, or 8 holes) on tape. A binary
word consists of three consecutive characters (18 bits) on tape which have
the 8th hole present. Only 8-hole tape is used in the binary mode; the 7th
hole is ignored. The first, second, and third six-bit characters are the left,
middle, and right thirds, respectively, of the 18-bit word. The reader
commands, iot select series 01, are:

rsf - 700101 - Skip if Reader flag is a 1, i.e., character or word present.

rsa - 700104 - Select Reader and fetch one alphanumeric character from
tape. Clear the Reader flag. Reset RB. The character is read
into RB bits 10-17. Turn on the Reader flag when character
is present.

rsb - 700144 - Select Reader and fetch a binary word from tape. Clear the
Reader flag. Reset the RB. Fetch the next three characters
(with 8th holes present) from perforated tape and place in
RB bits 0-5, 6-11, and 12-17. Turn on Reader flag when a
word is assembled.

rrb - 700112 - Read RB. Clear the Reader flag, and transfer the contents of
RB to the AC.

ref - 700102 - Clear the Reader flag. C(RB) V C(AC) => C(AC)

The Reader flag is connected to the Program Interrupt Control and to bit 0
of the iors instruction. Several methods may be used to program the
Reader. The following sequence reads a character from tape and places it
in the AC. Up to 400 microseconds of computation time are available
between the end of the sequence and the next command to read a character
or word from tape. The sequence, starting in register 40 is:

PROGRAM SEQUENCE

/perforated-tape reader

40/ rsa

rsf

jmp 41

rrb

/select reader alphanumeric

/begin loop to look for character arrival

/end loop to look for arrival

/fetch character from reader buffer

By changing instruction 40 to rsb the sequence would fetch a binary word.

PRINTER-KEYBOARD AND CONTROL, TYPE 65

The Printer-Keyboard is a Teletype Model 28 KSR (keyboard send-receive)
which can print or receive ten characters per second. A five-bit code, given
in Appendix 2, represents the characters. The printing (output) and key
board (input) functions have separate commands and control logic.

38

The signals to and from the KSR to the control logic are standard serial,
7.5-unit-code Teletype signals. The signals are: start (1.0 unit), information.
bits 1-5 (1.0 unit each), and stop (1.5 units). Figure 17 illustrates the
current pattern produced by the binary code 10110.

0 (Current)
1 Unit = 33.33MS

Idle Line _,...._.
(Bias Current)

Start Bit 1
Signal

100 MS

Bit 5

1.5

Stop
Signal

(Return to
Idle Line)

Figure 17 - Teletype timing of information code 10110

KEYBOARD

The Keyboard control contains a 5-bit buffer (KB) which holds the code for
the last key struck. The Keyboard flag signifies that a character has been
typed and its code is present in the Keyboard buffer. The Keyboard flag
and Keyboard buffer are cleared each time a character starts to appear
on the Teletype line. The Keyboard flag becomes a 1, signifying the buffer
is full 0.5 ± 0.125 units after the end of information bit 5, or 86.6 milli
seconds after key strike time. The instructions to manipulate the Keyboard
are:

ksf - 700301 - Skip if the Keyboard flag is a 1, i.e., character present.

krb - 700312 - Read Keyboard buffer. Clear the Keyboard flag. C(KB)=>
C(AC)

700302 - Clear the Keyboard flag. C(KB) V C(AC) => C(AC)

0 10 20 30 40 50 60 70 80 90 100
MS

86.6
Key
Strike·--------------------

Flag ?__J
KRB--------------------Char.

Avail. ·----------------,lllil!llll/i!r In KeWWW a
Char.
Assem.
In KB

Computing Time=lOOMS
Between Characters

At Maximum Rate

Figure 18 - Keyboard timing

39

G

700301

(Interrupt)

Keyboard
Flag

Serial
Info.
Input

KEYBOARD

~ Status Bit:
03 Keyboard Flag

Interrupt:
Keyboard Flag

Figure 19 - Keyboard programming logic

To
Printer

The Keyboard flag is connected to the Program Interrupt Control and the
iors instruction, bit 3. A simple sequence which "listens" for keyboard
inputs is:

PROGRAM SEQUENCE

/listen loop for keyboard

400/ ksf /skip when a character arrives from keyboard

jmp 400

krb /read in the character

The sequence following the listen sequence beginning in 403 may operate
for up to 100 + 13.3 milliseconds before returning to listen for the next
character without missing the next character. The average computing time
between any two characters must be less than 100 milliseconds (for an
input rate of 10 characters per second).

TELEPRINTER

The Teleprinter is given 5 bits of information from AC bits 13 to 17, coding
the character to be printed. The teleprinter Buffer (TB) receives this infor
mation, transmits it to the Teleprinter serially, and when finished turns on

40

the Teleprinter flag. The Flag is connected to the Program Interrupt and to
bit 4 of the iors instruction. The printing rate is ten characters per second.
The instructions for the printer are:

tsf - 700401 - Skip if Teleprinter flag is a 1.

tis - 700406 - Load the Teleprinter from AC bits 13-17, clear the Teleprinter
flag. Select the Teleprinter for printing.

tcf - 700402 - Clear the Teleprinter flag.

700404 - C(AC) V C(TB). Print a character.

0 10 20 30 40 50 60 70 80 90 100

MS

Fixed*-----------------------
Ref.

Flag ~=11---.....a
TLS

L ••
Or -----...... -----------------

TCF**
Load __ llllllllll!ll!lllll!!ll!!f-------------,1111 TB 111111

Print WWW
Action

Buffer Must Be Loaded By This Time
To Allow 10 Char/Sec Operation

**If TCF, Flag Will Not Come On Until Next TLS Complete
*Determined By Printer

Figure 20 - Printer trming

PROGRAM SEQUENCES

/print and wait for Teleprinter

tls

tsf

jmp.-1

/print the character from AC bits 13-17

/begin listen loop for printing completion

/return to previous instruction or listen loop

/again

41

/wait for previously printed character completion, then print

tsf

jmp.-1

tls

/wait loop until previous character printed

/return to wait loop beginning

/print the new character

In the first sequence above, 20 milliseconds of program time is available
between that tis and the next one that can be given. In the second se
quence, 100 milliseconds of program time is available between that tis
and the next one that can be given.

From
Keyboard-------------------

10 (5) Information
(For Printer

Buffer)

Bit 4
(Check Status)

IOT 04 Serial
OS 1-1,jt---+-1o,7;,;;0..;;0.,.40;;;;;2.,...~ PRINTER Information

L.._.-H--+--l-7~0~0~r...i~CONTROL

(Interrupt)

Status Bit:
04-Print Flag

Interrupt:
Print Flag

Figure 21 - Printer programming logic

PRINTER

PERFORATED-TAPE PUNCH AND CONTROL, TYPE 75

The Teletype BRPE paper·tape punch perforates 5-, 7-, or 8-hole tape at
63.3 characters (lines) per second. Information to be punched on a line of
tape is loaded on an 8-bit buffer (PB) from the AC bits 10 through 17. The
Punch flag becomes a 1 at the completion of punching action, signaling
that new information may be read into Punch Buffer (PB) (and punching
initiated). The Punch flag is connected to the Program Interrupt and to
the iors instruction bit 2. The Punch instructions, iot series 02, are:

42

psf - 700201 - Skip if the Punch flag is a 1.

pcf - 700202 - Clear the Punch flag.

pis - 700206 - Load a character into PB from AC bits 10-17. Clear the Punch
flag. Punch the specified character.

700204 - C(PB) V C(AC)=> C(PB). Punch the C(PB).

0 2 4 6

MS
8 1011.312 14 16

15.8

Fixed*---,~---------------r---
Ref.

Flag o--, 1---------... L__**

PLS Or--------------------PCF

Load
PB m

Punch~lllllllllr---------7m&ll!llllir-Action&iiii
I Buffer Must Be

Loaded By This
Time to Allow 68.3
Char/Sec Operation

*Determined By Punch
**PCF Flag Will Not Come On Until Next P Is Complete

Figure 22 - Perforated-Tape Punch timing

PROGRAM SEQUENCES

/punch the contents of AC and wait

pls

psf

jmp.-1

/punches AC 10-17

/wait till done loop beginning

/wait till done loop end

/wait for previous punching, then punch next

psf

jmp.-1

pls

/wait loop for previous character punching

/wait loop end

/punch the next character on tape

In the first sequence above, 11.3 milliseconds of program time is available
between the instruction following the wait loop and the next pis that can
be given. In the second sequence, 15.8 milliseconds or more program
time is available between the pis and the next time a pis can be given.

43

(8) Information

(For Punch Buffer)

(Interrupt)

PERFORATED
TAPE

PUNCH
CONTROL

8 Info.

Feed + Advance

Punch
Timing Signal

Statug Bit:
Ol!-Punch Flag

Interrupt:
Punch Flag

TELETYPE
BRPE
TAPE

PUNCH

Figure 23 - Perforated-Tape Punch programming logic

CARD READER AND CONTROL, TYPE 41-4

The control of the Card Reader is different than the control of other input
devices, in that the timing of the read-in sequence is dictated by the device.
Once the command to fetch a card is given, the Reader will read all 80
columns of information in order. To read a column, the program must
respond to a flag set as each new column is started. The instruction to read
the column must come within 300 microseconds after the flag is set. The
interval between flags is 2.3 milliseconds. The commands for the Card
Reader, iot series 67, are:

crsf - 706701 - Skip if Card Reader flag is a 1. If a card column is present
for reading, the instruction will skip.

crrb 706712 Read the card column buffer information into AC and clear
the Card Reader flag. One crrb reads alphanumeric in
formation. Two crrb instructions read the upper and lower
column binary information.

crsa - 706704 - Select a card in alphanumeric mode. Select the card reader
and start a card moving. Information will appear in alpha
numeric form.

crsb 706714 Select a card in binary mode. Select the card reader arid
start a card moving. Information will appear in binary form.

I

Upon instruction to read the Card Reader buffer, 6 information bits ale
placed into AC bits 12-17. Alphanumeric (or Hollerith) information on t e
card is encoded or represented with these six bits. The binary mode enabl s
the 12 bits (or rows) of each column to be obtained. The first read buff r
instruction transfers the upper six rows (Y, X, 0, 1, 2, and 3), the seconkl

44

instruction transfers the lower six rows (4, 5, 6, 7, 8, and 9). The mode is
specified with the Card Read Select instruction. The mode can be changed
while the card is being read.

MS

CRSA
Or

CRSB

0 20

Card 15 µsec

40 60 80 1 0?
08

120 140 160 180 200 220 240 260 2~
9

~00

Reader0......:::.,p----------------------------..,1 __
Done t Nex:t CRSA Or CRSB Can Be Given
Card

Reader
Flag

aoo µsec SO-Column Ready Signals
Every 2.S MS

CRRB--------------------------------

80-CRRB Each Command
Clears Col Flag

Figure 24 - Card Reader timing

MB,~ (Alphanumeric)

MB,! (Binary)

(6) Info.

Alpha/Bin

CARD Start CARD
READER On READER

I-H-+"---1~1~::~~0~2...,..CONTROLl4....,C•ar•d•N~o-t.....i

Card
Col.
Flag

(Interrupt)

Status Bite:
9·Card Reader Flag

10-Card Done
11 •Card Malfunetjo n
12-End of Fii.

Interrupt:
Card Col. Flag

Figure 25 - Card Reader programming logic

45

The Card Read Flag is connected to the Program Interrupt Control and to
bit 9 of the iors instruction. The Card Read Done status level bit is con
nected to bit 10 of the iors instruction. A Card Read Malfunction status is
connected to bit 11 of the iors instruction. Card Read Malfunction status
indicates one or more of the following conditions: Reader not ready (power
off, etc.), hopper empty, stacker full, card jam, validity check error (if
validity is on), or real circuit failure.

Bit 12 of the iors instruction is connected to the END OF FILE switch at the
Card Reader. The switch is activated manually, and when depressed,
holds until the RESET END OF FILE switch is depressed.

PROGRAM SEQUENCE

/sequence to read an 80-column card and place alphanumeric codes

/in register 1000-1117 (octal), Program begins in register cardrd,

cardrd,

cdloop,

cardlo,

cardct,

temp,

crsa

lac cardlo

dac 10

lac cardct

dac temp

crsf

jmp cdloop

crrb

dac i 10

isz temp

jmp cdloop

hlt

1000-1

-120+1

0

/read card in alphanumeric mode

/initialize card location table

/place in indexable register

/initialize card count 80 (decimal)

/wait for column loop

/place column information in AC

/info to 1000, 1001 ,,,1117

/finish of card, and halt

/location of card table

/80 column counter initial value

/reserved for column counter

CARD PUNCH CONTROL, TYPE 40-4

The Card Punch dictates the timing of a read-out sequence, much as the
Card Reader controls the read-in timing. Once a card has started, all 12
rows are punched at intervals of 40 milliseconds. Punching time for each
row is 24 milliseconds, leaving 16 milliseconds to load the buffer for the

46

next row. A flag indicates that the buffer is ready to load. The commands
for the Card Punch Control, iot series 64, are:

cpsf - 706401 - Skip if Card Punch flag is a 1. The Card Punch flag indicates
the Punch buffer is available, and should be loaded.

cpcf - 706402 - Clear Card Punch flag.

cpse - 706442 - Select the Card Punch. Transmit a card to the 80-column
punch die from the hopper.

cplb - 706406 - Load the Card Punch buffer from the C(AC). Five load in
structions must be given to fill the buffer.

0 100
108

200 300 400 500 600

MS
572

•
CPSE* -....----------------------,---

Punch 0 -.-----.
Flag 1---

CPLR --....-----r--.---.---,i----,.---T-,--,.-,--y--:-:--:-.
(5) Used Only

To Clear
Flag Load 16 ~~::r -7,m,::;E::;&:: mmre,11r1mr111r111n111r1m.--1111r1111r1mr1mr111r---

Punch ________ ._ _ _._,...,. ____ _.~!lll"'lllllffl'"fflllllr---

Action d mg mm l!i!iil Iii lillll m d m E & 8
24

*CPSE Must be Given to Maintain
Max Rate. A Delay of 600 or 1200
MS Will Exist on Starting.

Figure 26 - Card Punch timing

Since 18 bits are transmitted with each iot instruction, 5 iot instructions
must be issued to load the 80-bit row buffer. The first four loading in
struction fill the first 72 bits (or columns); the fifth loads the remaining
8 bits of the buffer from AC bits 10-17.

After the last row punching is complete, 28 milliseconds are available to
select the next card for continuous punching. If the next card is not re
quested in this interval, the Card Punch will stop. The maximum rate of
the Punch is 100 cards per minute in continuous operation. A delay of
1308 milliseconds follows the command to select the first card; a delay of
108 milliseconds separates the reading of cards in continuous operation.

The Card Punch flag is connected to the Program Interrupt, and to bit 13
of the iors instruction. Faults occurring in the punch are detected by status
bit 14 of the iors and signify the punch is disabled, the stacker is full, or
the hopper is empty.

47

ID

MB,1
MB,l

(18} Information

(For Row Buffer)

IOT64

706401

(Interrupt)

Card Not
OK

Status

706402
706404

Row
Punch
Flag

(80) Info

Advance
CARD Card

CARD
PUNCH
(Type
523

Summary
Punch)

PUNCH
CONTROL Card

Not OK

Status Bits:
13-Row Flag
14-Card Not OK

Interrupt:
Row Flag

Figure 27 - Card Punch programming logic

PROGRAM SEQUENCE

/sequence to punch 12 rows of data on a card. Each row is stored in

/5 consecutive registers beginning in location 100. The program begins

/in register cardph,

cardph, cpse

lac punloc

dac 10

lac rowct

dac tempi

/loop1, lac grpct

dac temp2

cpsf

jmp,-1

loop2, lac i 10

cplr

/select the card

/initialize the card image

/initialize the row counts, 12.

/initialize the 5 groups per row

/sense punch load availability

/5 groups of 18 bit per row

/load buffer command

48

isz temp2

jmp loop2

isz tempi /test for 12 rows

Jmp loop1

hlt /end punching 1 card

punloc, 100-1 /location of card image

rowct, -14+1 /12 rows per card

grpct, -5+1 /5 groups per row

tempi, 0 /row counter

temp2, 0 /group counter

AUTOMATIC LINE PRINTER AND CONTROL, TYPE 62

The Line Printer can print 600 lines of 120 columns per minute. Each col
umn has 64 characters. Spacing rate is approximately 132 lines (or two
66-line pages) per second.

MB,!

ID
MB,l
(18 Information

OS LINE
t+t-----+++-r.'l'ffli~~ PRINTER

l---1.Y.---+-+-+-....-r.v.¥¥-l...iCONTROL
IOT66 Space

Skip

Skip
Print

Interrupt

Space
Flag

Print
Flag

(120) Info.

(8) Space

Info
Space

LINE
PRINTER

Status Bits:
16-Space Flag
15-Print Flag

Interrupt:
Space Flag
Print Flag

Figure 28 Line Printer programming logic

49

A complete line, or 120 columns of information, is placed in the printing
buffer. Six bits specify each character (the codes are given in Appendix 2).
1J1e information is transferr~d t~ the printin_g buffer through the AC, thre-e
characters at a time from AC bits 0-5, 6-11, and 12-17. Forty load print
buffer instructions fill the 120-column line.

After the printing buffer is loaded, a print instruction is given which prints
the contents of the buffer. The action of printing does not disturb the
printing buffer. When a column of information has been printed, the print
ing flag becomes a 1. Approximately 80 milliseconds are required to print
one line.

An eight-channel format-control tape inside the Printer moves in synchro
nism with the paper and specifies how far the paper is to be spaced. Holes
punched in each channel of the format tape signify the next paper position.
The channel is selected by placing a three-bit code in AC bits 15-17, and
giving an instruction to space paper. The spacing flag becomes a 1 when
the spacing action is complete. A recommended control tape has the
following characteristics, where the middle column indicates the number
of lines between successive holes in the channel:

Channel
0
1
2
3
4
5
6
7

Spacing
1 line
2 lines
3 lines
6 lines
11 lines (1/6 page)
22 lines (l/3 page)
33 lines (1/2 page)
restores page

Time
16 ms
<2 X 16 ms
<3 X 16 ms
<6 X 16 ms
<11Xl6ms
<22 X 16 ms
<33 X 16 ms
520 ms for 66 lines

The Line Printer printing and spacing instructions, iot series 65 and 66, are:

lpsf - 706501 - Skip if the printing flag is a 1.

lpcf 706502 Clear the printing flag.

lpld - 706542 - Load the Printing buffer.

lpse - 706506 - Select the Printer. Print the contents of the Printing buffer.
Clear the printing flag. (The printing flag becomes a 1 at
the completion of the printing.)

lssf 706506 - Skip when the spacing flag becomes a 1.

lscf - 706602 - Clear the spacing flag.

Isis - 706606 - Load the spacing buffer from AC bits 15-17 and select
spacing. Clear the spacing flag. (The spacing flag becomes
a 1 when spacing is complete.)

The printing and spacing flags are connected to the Program Interrupt
and to the iors instruction bits 15 and 16.

50

PROGRAM SEQUENCE

/sequence to print a line of 120 columns. Output stored 3

/characters per word.

/Data begins in register 2000. Sequence assumes printer is

/in process of printing a line previously assigned. 11 print 11 is

/begin of prog,

print,

ldloop,

space,

lpsf

jmp.-1

lsls + 10

lac (2000-1

dac 10

lac(-50+1

dac temp

lac i 10

lpld

isz temp

jmp ldloop

lssf

jmp space

lpse

/wait till previous printing done

/space 1 line (0 in AC)iot 10 clears

/AC

/location of data

/print table initialize

/40x3 characters

/load print buffer loop

/load from AC

/test for spacing done before

/proceeding

/print activate ••• end of printing

/a line

51

CHAPTER 4

THE INTERFACE
ELECTRICAL CHARACTERISTICS

As explained in previous sections, the standard Interface contains the
Real-Time Connection, which can operate only with the Perforated-Tape
Reader, the Perforated-Tape Punch, and the Printer-Keyboard. The Real
Time Option can operate with a variety of external devices over a wide
range of information handling rates. In this section the location of the
Real-Time Option, its electrical characteristics, and its connections to
input-output devices are presented.

Real-Time Option
A coordinate system locates modules and connectors in PDP-4 with a
four-place, alphanumeric code. Bays are numbered 1 and 2, panels are
lettered alphabetically downward, connectors or modules are numbered
left to right in the panels (blank spaces included), and terminals are let
tered alphabetically downward on the connectors or modules. The Real
Time Option is located in panels 2E, 2F, and 2H. Connections to external
control units are made through a cable connector in positions 2Jl-6.

DEVICE SELECTOR (LOCATION 2F6-25)

The standard Device Selector contains provisions for up to 20 selector
modules, each of which is a Pulse Amplifier, Type 4605. The amplifiers
are pulsed with standard DEC 4000 Series negative logic pulses which
can drive 18 units of base load.

Each module is wired to respond to one address code only (see example1
Figure 29). The 6-bit address portion of the iot instruction will therefor~
pass only through the six-level AND gate of those modules wired to th
same combination of ones and zeros. The output of the AND gate enable
three AND gates to pass the common iot 1, 2, and 3 pulses. These pulse
are available at terminals E, H, and K, respectively, of modules 2F6-25;

52

Common IOT 1

Common IOT 2 PA

Common IOT 3

PA

p
PA

MB 7 1
~R

...£.o..s
MB 8 1

Figure 29-Typical Pulse Amplifier, Type 4605, used in
PDP-4 Device Selector. Example shown is wired to pass
the iot address 001101. The six-level AND gate will pass
only that address if it is present in the instruction word
from the Memory Buffer, thus enabling three AND gates
to pass three 10 pulses to the pulse amplifier.

Selected
IOT 1

Selected
IOT 2

Selected
IOT 3

The Device Selector modules are delivered with jumpers across the address
terminals. The user can remove appropriate jumpers to establish the
module select mode according to the table below.

Instruction
Word Bit

6
7
8
9

10
11

ZERO Input
Terminal

M
p
s
u
w
y

53

ONE Input
Terminal

N
R
T
V
X
z

INFORMATION COLLECTOR (LOCATION 2H8-25)

The information collecting sequence begins with an iot pulse from the
Device Selector applied to the strobe input of the Information Collector.
The IC then ANDs with the input device information present level and the
results are transmitted to the AC. The results of the AND functions are
mixed, or ORed together, to enable eight 18-bit-word devices to read data
into the AC. Two or more devices requiring less than 18 bits could share
a word, provided their bit-position requirements did not conflict. In such
cases, more than eight input devices could be handled by the IC. The
incoming information signal polarities are:

0 volts
-3 volts

0 bit transmitted to AC
1 bit transmitted to AC

The IC consists of 18 modules, one for each bit of the word, starting with
bit O in module 2H8. All eight input channels are wired to each module.
The convention for designating bits is I Ci ,k, where j specifies the bit number
and k the channel number. The eight input-level terminals and associated
iot-pulse terminals are:

Channel
(k)

0
1
2
3
4
5
6
7

Data-Bit
Input

E
H
K
M
s
u
w
y

Associated
iot Input

F
J
L
N
T
V
X
z

INFORMATION DISTRIBUTOR (LOCATION 2H1-3)

The Information Distributor presents the static data contained in the AC
to an output device when the Device Selector commands the device to
sample the ID. The signal polarities are:

-3 volts
0 volts

AC bit contains a 0
AC bit contains a 1

Eight groups of 18 outputs are available in the ID. The module driving the
output bus is a Type 1690 or 1685 Bus Driver supplying up to 15 ma at
0 or -3 volts. All eight groups must share the bus.

Connections to the ID are made at three taper-pin terminal blocks, 2Hl,
2H2, 2H3. Each block has 3 columns of 20 terminals each. Each column
represents a group; the first 18 terminals (A-U) in the column represent
AC bits 0-17 and the lasttwo (V, W) the bipolar bit 12 in the Memory Buffer.
V and W may be used to select a subdevice. The terminals are tied together
horizontally to form 20 rows.

54

INPUT-OUTPUT SKIP FACILITY (LOCATION 2H06)

There are 8 inputs to Input-Output Skip. The iot pulses from the Device
Selector strobe an input line and if a logic condition is present, the instruc
tion following the iot will be skipped. The conditions for skipping are:

-3 volts
0 volts

skip
do not skip

The iot skip pulse must occur at event time 1 of the iot instruction.

The IOS consists of a Capacitor-Diode Gate, Type 4129. The input con
nections are:

10 Device
Input Connection

F
J
L
N
T
V
X
z

Device Selector
Pulse Connection

E
H
K
M
s
u
w
y

PROGRAM INTERRUPT CONTROL (LOCATION 2H05)

Eleven Program Interrupt lines are available. Any one of the 11 signals
may cause an interruption of a program. All signals are identical; the
polarities are:

-3 volts
0 volts

interrupt the program
no effect

The connections from 10 devices which request program interrupt are
made to module 2H05 at pins E, F, H, J, S, T, U, W, X, Y, and Z.

DATA INTERRUPT CONTROL (LOCATION 2E13)

The signal levels associated with the DI are shown in Figure 30. In trans
ferring data, the Memory Address is first transmitted to the Memory
Address Register on 13 lines from the external source. Data is next trans
ferred to or from the MB on 18 + 18 lines.

Incoming data is received from 18 li:ies and placed in the Memory Buffer
and on into Memory.

Outgoing data from the Core Memory addressed is transferred to the
Memory Buffer and appears on 18 lines for sampling by the 10 device.

55

l&Dat~··~ ..
(:-3 Volts-t, ·o Volts== O)

~ ~pt 'Request
(-$ o • Request)

Data01tee~·

DATA
INTERRUPT
CONTROL

Signals

18. Data Lines
{-3 Volta=O, 0 Volta=l)

Addreaa Accepted
Pulse

Data Interrupt Requnt --,._ _______________ __.I
a.5 ,..s.c
Minimum

Acknowledgment
Time

a.5 .11Sec
Maximum

Time To Avoid
Another Interrupt

Address Accepted----------

LI
2.0 µSec Transfer Data Pulse _________________ _

(In External Device) LI
Timing

Figure 30 - Data Interrupt Control signals and timing

56

APPENDIX 1

Instruction Lists

MEMORY REFERENCE INSTRUCTIONS

MNEMONIC OCTAL TIME
CODE CODE (µsec) OPERATION

cal Y 00 16 Call Subroutine. Y is ignored
jms 20 if bit 4 = 0, jms i 20 if bit 4 = 1.

dac Y 04 16 Deposit AC. C(AC) => C(Y)

jms Y 10 16 Jump to subroutine. C(PC) => C(Y5_1,),
C(L) => C(Yo), Y + 1 => C(PC)

dzm Y 14 16 Deposit zero in memory. 0 => C(Y)

lac Y 20 16 Load AC. C(Y) => C(AC)

xor Y 24 16 Exclusive OR. C(AC) V C(Y) => C(AC)

add Y 30 16 Add (l's complement). C(AC) + C(Y) => C(AC)

tad Y 34 16 2's complement add. C(AC) + C(Y) => C(AC)

xct Y 40 s+ Execute.

isz Y 44 16 Index and skip if 0. C(Y) + 1 => C(Y), if
C(Y) + 1 = 0, then C(PC) + 1 => C(PC)

and Y 50 16 AND. C(AC) /\ C(Y) => C(AC)

sad Y 54 16 Skip if AC and Y differ. If C(AC) = C(Y), then
C(PC) + 1 => C(PC)

jmp Y 60 8 Jump. Y => C(PC)

law 1\1. 76 8 Load AC with law N. 1 => C(ACo-4),
N => C(AC5_1,)

57

OPERATE INSTRUCTIONS

MNEMONIC OCTAL EVENT
CODE CODE TIME OPERATION

opr 740000 Operate.

nap 740000 No Operation.

cma 740001 3 Complement, C(AC) => C(AC)

cml 740002 3 Complement Link, C(L) => C(L)

oas 740004 3 Inclusive OR AC Switches.
C(ACS) V C(AC) => C(AC)

las 750004 2, 3 Load AC from Switches.
C(ACS) = > C(AC)

ral 740010 3 Rotate AC+ Link left one place.
C(ACi) => C(ACj~1), C(L) =>C(AC17),

C(ACo) => C(L)

rel 744010 2,3 Clear Link, then ral. 0 => C(L), then ral

rtl 742010 2,3 Rotate AC left twice. Same as two ral
instructions

rar 740020 2 Rotate AC+ Link right one place.
C(ACJ => C(ACH,), C(L) => C(AC0),

C(AC17) => C(L)

rcr 744020 2,3 Clear Link, then rar. 0 => C(L), then rar

rtr 742020 2, 3 Rotate AC right twice. Same as two rar
instructions

hit 740040 4 Halt. 0 => RUN

sza 740200 1 Skip on zero AC. Skip if C(AC) = positive zero

sna 741200 1 Skip on non-zero AC. Skip if C(AC) ~
positive zero

spa 741100 1 Skip on positive AC. Skip if C(AC 0) = 0

sma 740100 1 Skip on negative AC. Skip if C(ACo) = 1

szl 741400 1 Skip on zero Link. Skip if C(L) = 0

snl 740400 1 Skip on non-zero Link. Skip if C(L) = 1

skp 741000 1 Skip, unconditional. Always skip

ell 744000 2 Clear Link. 0 => C(L)

stl 744002 2, 3 Set the Link. 1 => L

cla 750000 2 Clear AC. 0 => C(AC)

clc 750001 2,3 Clear and Complement AC. -0 => C(AC)

glk 750020 2,3 Get Link. 0 => C(AC), C(L) => C(AC1,)

58

MNEMONIC
CODE

iof
ion

iors

clsf
clof
clon

rsf
rsa
rsb
rrb

psf
pis
pcf

ksf
krb

tsf
tis
tcf

dsf
dis
def

dsf
def
dxl
dxs
dyl
dys
dlb

OCTAL
CODE

BASIC IOT INSTRUCTIONS

OPERATION

700002
700042

700314

700001
700004
700044

700101
700104
700144
700112

700201
700206
700202

Interrupt
turn off interrupt
turn on interrupt

10 Equipment
read status of io equipment

Clock
skip if clock flag is 1
turn off clock, clear clock flag
turn on clock, clear clock flag

Paper tape reader
skip if reader flag is a 1
select reader for alphanumeric, clear reader flag
select reader for bry, clear reader flag
read the reader buffer into AC, clear reader flag

Paper tape punch
skip if punch flag is a 1
load punch buffer and select punch, clear punch flag
clear punch flag

Keyboard input from teleprinter
700301 skip if keyboard flag is a 1
700312 read the beyboard buffer into the AC,

clear keyboard flag

700401
700406
700402

700501
700506
700502

700501
700601
700506
700546
700606
700646
700706

Teleprinter

skip if teleprinter flag is a 1
load teleprinter buffer and select, clear teleprinter flag
clear the teleprinter flag

Display type 30A
skip if display flag is a 1
load display buffer and select, clear display flag
clear display flag

Display type 300
skip if display flag is a 1 (light pen)
clear display flag
load x co-ordinate
load x co-ordinate and select
load y co-ordinate
load y co-ordinate and select
load brightness register

59

BASIC IOT INSTRUCTIONS

(continued)

MNEMONIC OCTAL OPERATION
CODE CODE

Magnetic tape type 54
mci 707001 clear tape instruction and character buffer
mrs 707012 read tape status into AC
mli 707005 load instruction buffer
msc 707101 skip if character is present for reading
msi 707201 clear interrupt flag and select interrupt
msf 707301 skip if the tape flag is a 1 (end of record)
mrl 707112 clear AC, read character buffer into AC left

clear character buffer
mrm 707202 read character buffer into AC middle

clear character buffer
mrr 707302 read character buffer into AC right

clear character buffer
mwl 707104 write a character from AC left
mwm 707204 write a character from AC middle
mwr 707304 write a character from AC right

Card reader
erst 706701 skip if reader character flag is a 1
crsa 706704 select card reader for alphanumeric
crsb 706744 select card reader for binary
crrb 706712 read card column buffer into AC

Card punch
cpsf 706401 skip if the card punch flag is a 1
cpse 706444 select a card, set card punch flag
cplr 706406 load row buffer, clear punch flag
cpcf 706442 clear punch flag

Line printer
lpsf 706501 skip if printing flag is a 1
lpcf 706502 clear printing flag
lpld 706542 load the printing buffer
lpse 706506 select printing, clear printing flag
lssf 706601 skip if spacing flag is a 1
lscf 706602 clear spacing flag
Isis 706606 load spacing buffer and select spacing,

clear spacing flag

60

APPENDIX 2

Codes

FIO-DEC CODE

High order bits
a A 61 00 01 10 11
b B 62 Low order
C C 63 bits

d D 64 0000 space o-
e E 65 0001 1 " I ? J a A
f F 66 0010 2 I s s k K b B
g G 67 0011 3 - t T J L C C
h H 70 0100 4:::, u u mM d D
i I 71 0101 5 V V V n N e E
k J 41 0110 6 /\ wW 0 0 f F

k K 42 0111 7 < X X p p g G

I L 43 1000 8 > y y q Q h H
1001 9 T z z r R i I

mM 44 1010 lower case
n N 45 1011 stop = X
0 0 46 '

p 47
1100 black -+ upper case

p 1101 red) J backspace q Q 50
r R 51 1110 tab I
s s 22 1111 ([car ret
t T 23
u u 24
v V 25
wW 26
X X 27
y y 30
z z 31
0 - 20 stop code 13
1 II 01 lower case 72
2 r 02 I ? 21 upper case 74
3 ""'"' 03 ' = 33 black 34
4 :::, 04 X 73 red 35
5 V 05 -+ 54 tab 36
6 I\ 06) J 55 backspace 75
7 < 07 ([57 carriage return 77
8 > 10 40 space 00
9 T 11 I 56 code delete punches seventh charttnel

61

TELETYPE CODE

High order bits
00 01 10 11

!-ow order
bits
000 line feed E 3 A
001 T 5 L) z II W2
010 car ret R 4 D $ J I

011 0 9 G & B ? figures
100 space I 8 s bell U 7
101 H # p 0 y 6 Q 1
110 N, C F K (
111 M. V X I letters

letters 37 figures 33

A 30 0 15
B 23 1 35
C 16 2 31
D 22 3 20
E 20 4 12
F 26 5 01
G 13 6 25
H 05 7 34
I 14 8 14
J 32 9 03
K 36 (36
L 11) 11
M 07 07
N 06 06
0 03 30
p 15 ? 23
Q 35 16
R 12 $ 22
s 24 bell 24
T 01 & 13
u 34 # 05
V 17 I 32
w 31

'
17

X 27 I 27
y 25 ! 26
z 21 If 21

space 04 carriage return 02
line feed 10

62

CARD READER CODE

High order bits
A 61 00 01 10 11
B 62 Low order
C 63 bits
D 64
E 65 0000 blank + [&]
F 66
G 67 0001 1 I J A
H 70
I 71 0010 2 s K B
J 41
K 42 0011 3 T L C
L 43
M 44 0100 4 u M D
N 45
0 46 0101 5 V N E
p 47
Q 50 0110 6 w 0 F
R 51
s 22 0111 7 X p G

. T 23
u 24 1000 8 y Q H
V 2·5
w 26 1001 9 z R
X 27
y 30 1010 0
z 31
0 12 1011 [#] $
1 01
2 02 1100

, [@] ([%] *) [DJ
3 03
4 04
5 05 HOLLERITH CARD CODE
6 06
7 07 Zone
8 10 digit
9 11 no zone 12 11 0
+ 60

40 no punch blank + [&] 0
I 21 1 1 A J I
= 13 2 2 B K s
'

33 3 3 C L T
$ 53 4 4 D M u

73 5 5 E N V
14 6 6 F 0 w

(34 7 7 G p X
* 54 8 8 H Q y
) 74 9 9 I R z

8-3 = [#] $
' blank 00 8-4

, [@]) [DJ * ([%]

63

LINE PRINTER CODE

High order bits
A 61 00 01 10 11
B 62 Low order
C 63 bits
D 64
E 65 0000 0

0 space
F 66
G 67 0001 1 I J A
H 70
I 71 0010 2 s K B
J 41
K 42 0011 3 T L C
L 43
M 44 0100 4 u M D
N 45
0 46 0101 5 V N E
p 47
Q 50 0110 6 w 0 F
R 51
s 22 0111 7 X p G
T 23
u 24 1000 8 y Q H
V 25
w 26 1001 9 z R
X 27
y 30 1010 II $ X
z 31
0 20 1011 '-" =
1 01
2 02 1100 ::::> > +
3 03
4 04 1101 V i) J
5 05
6 06 1110 I\ --l> I
7 07
8 10 1111 < ? ([
9 11
0 40 space 00
I 21 60 , 12 ,, 32
"' 13 33
::::> 14 > 34
V 15 i 35
I\ 16 --l> 36
< 17 ? 37
$ 52 X 72
= 53 73

54 + 74
) 55 J 75
(57 [77

56 I 76

64

APPENDIX 3

Read-In Mode Sequence

The initial data input to PDP-4 is made using the keys and switches on the
Operator Console. A small program read in manually can be used to read
in a somewhat larger program from perforated tape. An example of such
a routine is given below. It can also be used to read in other programs from
perforated tape.

READ-IN LOADER

The purpose of the read-in loader is to load programs punched in "read-in
mode," such as the block format loader described below. The read-in
loader must be loaded by means of the console toggle switches. It loads
tapes of the following format:

dac A
c(A)
dac B
c(B)

jmp Y
dummy word

Read-in mode tapes consist of word pairs giving a dac into an address~
followed by the contents of that address. They are terminated by a jmp to
the program followed by a dummy word (e.g., 0).

To load a read-in mode tape, place the tape in the reader, set the ADDRESS
switches to 7770, and press START.

LOCATION

7762/
7763/
7764/
7765/
7766/
7767/
7770/
7771/
7772/
7773/
7774/
7775/
7776/

OCTAL CODE
0 r,
700101
607763
700112
700144
627762
700144 go,
107762 g,
47775
407775
107762
0 out,
607771

MNEMONIC

0
rsf
jmp. - 1
rrb
rsb
jmp i r
rsb
jms r
dac out
xct out
jms r
0
jmp g

65

REMARKS
/read one binary word

/wait for word to come in
/read buffer
/read another word
/exit subroutine
/enter here, start reader going
/get next binary word

/execute control word
/get data word
/store data word
/continue

BLOCK FORMAT LOADER

The block format loader will read a block format binary tape of the following
format:

dac A
-N
N data words
Check sum

A is the address of the first data word
/complement of number of data words in block
/data words
/sum of every word in block, except check sum

The routine occupies register 7737 to 7761, and uses the read-in loader
subroutine to read each binary word. Upon completing a block, the com
puted check sum is compared with the read check sum and the loader
halts if these differ. The block may be re-read by pulling the tape back to
the beginning of the block and pressing the CONTINUE switch on the
console.

LOCATION

7737/
a,

b,

MNEMONIC REMARKS
rsb
jms r /block format loader
dac s
xct s
dac cks
jms r
dac out
add cks /loop
dac cks
jms r
isz out
jmp s
sad cks
jmp a
hit
jmp a - 1

/check count, last word read is check sum

/sum checks, continue
/stop on check sum error
/out

s, xx
isz s
jmp b
cks = 7777

66

APPENDIX 4

PDP-4 Assembly Program

The more important characteristics of the PDP-4 Assembly Program are
mentioned briefly here to provide the background necessary to understand
the programming examples in this manual. The program and its complete
description are furnished to purchasers of PDP-4.

CHARACTER SET: The character set includes digits O through 9, letters
a through z, and the following punctuation characters:

Punctation Characters Meaning

+ plus add values
- minus subtract values
~ space add values
/\ and combine values by logical AND
V or combine values by inclusive OR
(left parenthesis enclose constant word
) right parenthesis enclose constant word

period has value of current address
comma assign address tag
equals sign assign symbol on left of =

/ slash begin comments; set current address
~ carriage return termination character

1 tab termination character
overbar variable indicator

The characters~ , ,.) , and -.i are non printing.

NUMBERS: Any sequence of digits delimited on the left and right by a
punctuation character.

SYMBOLS: Any sequence of alphanumeric characters, the first of which
must be a letter. Symbols are identified by the first six characters only.

'Value symbols' are those symbols which have a numerical value assign~d
to them, either in the permanent symbol table, or during assembly. Val4e
symbols may be assigned by the use of a comma, indicating the symbpl
to the left of the comma is an address tag; or by an equals sign, indicating
the symbol to the left of the equals sign is to be assigned the value of tMe'
word to the right of the equals sign.

Example: a,
b = -1
C=a+b

67

dzm 100

SYLLABLES: A syllable can take several forms. It can be a value symbol,
a period (.), a flexowriter input pseudo-instruction (flex or char), or a
constant (a word enclosed in parentheses).

Examples:
al
100
lz2
flex abc
flex now
(add a+ 1)
lac
abcdef

WORDS: A word is a string of syllables connected by the arithmetic opera
tors plus, minus, space, AND or OR, delimited on the left by tab, carriage
return, left parenthesis, or equals sign, and on the right by a tab or car
riage return. A word may be a single number or symbol so delimited, or a
string of symbols connected by the operators. If the word is delimited on
the left by an equals sign then the symbol to the left of the equals sign is
assigned a value equal to that of the word. Otherwise, the word is a storage
word and will become part of the binary version of the program being
assembled. The arithmetic operators, plus and space both mean add,
while the operator minus means subtract.

Examples:
sad K.)
lac a~
1000 20ll,)
add b + 2ll,)
jmp. - 2.,)
a+ b - C 2.)
lac (add a+ 1).,)

THE CHARACTER SLASH (/):The slash has two meanings. If immediately
preceded by a tab or carriage return then slash initiates a comment, which
is terminated by the next tab or carriage return. If slash is preceded by a
word, then the address part of the word indicates the address into which
the next instruction or data word will go. Normally, the first instruction or
data word goes into register 22 and succeeding instructions or data words
into succeeding registers. If the programmer wishes to break this sequence
or wishes to start translating into some register other than 22, then a
slash may be used to set the new address.

INDIRECT ADDRESSING: Indirect addressing is indicated by the symbol, i
which has the value 20000.

Example: lac i abc

THE CHARACTER PERIOD (.): The period (.) has as its value the current
address.

Example: dac . is equivalent to
a, dac a

68

PSEUDO INSTRUCTIONS

FLEXOWRITER INPUT PSEUDO INSTRUCTIONS: The pseudo-instruction,
flex 6.a/3-y causes the (six-bit) FIO-DEC codes for the three characters follow
ing the space (6.) to be read into one word which is taken as the value of
the syllable. The code for the character a will go into bits 0-5 of the word,
for {3 into bits 6-11, and for,, into bits 12-17. The code is a six-bit character,
the first five of which are the FIO-DEC code, the sixth a 1 for upper case
or a O for lower case.

Example: flex~ boy

The pseudo-instruction, char 6.Z-y causes the (six-bit) FIO-DEC character,
,, to be assembled into the left, middle, or right six bits of the word, de
pending on whether Z is r, m, or I.

Example: char rO
charm(
char la

CONSTANTS: The MACRO assembly system has available a facility by which
the program constants may be automatically stored. A constant must follow
the rules for a word and is delimited on the left by a left parenthesis. The
right delimiter may be a right parenthesis, carriage return, or tab. The
value of the syllable, (a) is the address of the register containing a. The
constant a will be stored in a constants block at the end of the program, and
the address of a will replace (a).

Examples of the use of constants:
add (l)~
lac (add z 1).)
lac (- 760000),J
lac (flexo abc)..,)

START: The pseudo-instruction, start indicates the end of the English tape.
Instruction, start A must be followed by a carriage return. "A" is the ad
dress at which execution of the program is to begin, and causes a jmp A
instruction punched at the end of the binary tape on pass two.

DECIMAL: The pseudo-instruction, decimal indicates all numbers are to be
considered decimal.

OCTAL: The pseudo-instruction, octal indicates all numbers are to be
considered octal.

69

APPENDIX 5
Multiply and Divide Subroutines

MULTIPLY SUBROUTINE
/PDP-4 ones complement single precision multiplication subroutine
/calling sequence: /lac multiplier

/jms mult
/lac multiplicand
/return; low order product in AC, high order product in mp5

/time = 2.6 msec. for non-zero cases, approximately 100 microsec. for zero.

mult, 0
dzm mp5
sna
jmp mpz
spa+ ell opr
cma + cml - opr
dac mpl
xct i mult
sna
jmp mpz
spa
cma + cml opr
dac mp2
lac (360000
ral
dac mpsign
lac (-21
dac mp3

mp4, lac mpl
rar
dac mpl
lac mp5
spl + ell - opr
tad mp2
rar
dac mp5
isz mp3
jmp mp4

mpsign, 0
dac mp5
lac mpl
rar
xct mpsign

mpz, isz mult
jmp i mult

start

70

DIVIDE SUBROUTINE

/PDP-4 ones complement divide subroutine
/calling sequence: /lac high order dividend

/jms divide
/lac low order dividend
/lac divisor
/return; quot. in AC, rem. in dvd. if high dividend is

/greater than divisor, no divide takes place and L=>l. Time= 3.1 ms

divide, 0
spa + ell - opr
cma + cml - opr
dac dvd
xct i divide
spl
cma
dac quo
jms dv5

dv5, 0 /remainder has sign of dividend
isz divide
xct i divide
sma + cml - opr
cma + cml - opr
jms dv4

dv4, 0
ell
tad (1
dac dvs
tad dvd
isz divide
spl
jmp i divide
lac (-22
dac dvl
jmp dv2

dv3, lac dvd
ral
dac dvd
tad dvs
spl
dac dvd

71

dv2, lac quo
ral

start

dac quo
isz dvl
jmp dv3

lac dv5
ral
lac dvd
spl
cma
dac dvd
·1ac dv4
ral
lac quo
spl
cma + ell - opr
jmp i divide

DIVIDE SUBROUTINE
(continued)

72

APPENDIX 6

Programming Aids

The following programming aids are supplied with the PDP-4.

PDP-4 ASSEMBLY PROGRAM -A one-pass assembler which allows
mnemonic symbols to be used for addresses and instructions. Constants
are automatically assigned. Text statements may be written for printing
at run time, and a decimal mode may be specified. Up to six character
symbols may be used, and the symbol table may be punched on paper
tape for use with the debugging tape below.

DDT-4 DEBUGGING TAPE- Provides communication with a program
via the on-line typewriter. Registers may be examined (using mnemonic
codes) and modified. Communication is entirely in symbolic language.
Programs may have break points inserted and then run under DDT-4
control, similar to a tracing routine. A program may be searched for par
ticular words.

DOUBLE-PRECISION FLOATING POINT PACKAGE- Provides floating
point arithmetic with a 36-bit mantissa and 18-bit exponent. The routines
include plus, minus, divide, multiply, fix-to-float, and float-to-fix, with
decimal input and output.

MAINTENANCE ROUTINES- There are five maintenance routines. These
tests are also used as DEC's standard acceptance test routines.

(a) CONTEST (CONtinuous TEST) - Verifies that all machine functions
are performing properly. Each instruction is tested, a core checker
board pattern is run, a tape is punched and read, and a message
is typed. The test then repeats itself.

(b) INSTEP (INStruction TEst Programs)- Test all machine instruc
tions under various modes.

(c) Checkerboard Program - Provides continuous memory testing
with four different patterns.

(d) Reader and Punch Test Checks the start time of the reader a1nd
checks the reader using different patterns and variable times. The
punch is tested by providing tapes for the reader: test.

(e) Teleprinter Test.

TAPE REPRODUCER - Reproduces tape using the Interrupt Mode.

PUNCH ROUTINES-Allow punching in either block format or read-in
mode format.

73

OCTAL DEBUG A simple debugging routine.

MISCELLANEOUS INPUT-OUTPUT ROUTINES-Octal, decimal, double
precision input and output and special Teletype conversion routines.

DEMONSTRATION PROGRAMS Included are: Three Point Display
(Tri-Pas), Pen Follow, Type-in Character Display, and Character Punch.

FLOATING POINT FUNCTIONS-Allows various functions to be computed,
such as double precision sine, cosine, tangent, exponents, log base e,
and square root. Inquire at DEC for the completion date of these sub
routines.

ALGEBRAIC COMPILER - Inquire at DEC for the completion date of this
FORTRAN compiler.

74

APPENDIX 7
Powers Of Two

2" 2-n

1 0 1 .0

2 1 0.5
4 2 0 .25

8 3 0.125

16 4 0.062 5

32 5 0.031 25

64 6 0.015 625

128 7 0.007 812 5

256 8 0 .003 906 25

512 9 0 .001 953 125

1 024 10 0 .000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0 .000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5

131 072 17 0 .000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0 .000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0 .000 000 238 418 579 101 562 5
8 388 608 23 0 .000 000 119 209 289 550 781 25

16 777 216 24 0 .000 000 059 604 644 775 390 625
33 554 432 25 0 .000 000 029 802 322 387 695 312 5
67 108 864 26 0 .000 000 014 901 161 193 847 656 25

134 217 728 27 0 . 000 000 007 450 580 596 923 808 125
268 435 456 28 0 .000 000 003 725 290 298 461 914 062 5
536 870 912 29 0 .000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0 .000 000 000 931 322 574 615 478 515 625
2 147 483 848 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0 .000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0 .000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0 .000 000 000 029 103 830 456 733 703 613 081 25
68 719 476 736 36 0 .000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 0 .000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0 .000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
199 023 255 552 41 0 .000 000 000 000 454 747 350 886 464 118 957 519 531 25

4 398 046 511 104 42 0 .000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0 . 000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0 . 000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0 .000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0 .000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0 . 000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
281 474 976 710 656 48 0 .000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625

562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 B99 906 842 634 50 0 .000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25

2 251 799 813 985 248 51 0 .000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
4 503 599 627 370 496 52 0 . 000 000 000 000 000 222 044 604 925 031 308 084 726 333 668 164 062 5
9 007 199 254 740 992 53 0 . 000 000 000 000 000 111 022 302 462 515 654 042 363 166 834 582 031 25

18 014 398 509 481 984 54 0 . 000 000 000 000 000 055 511 151 231 257 827 021 171 513 417 041 015 625
36 028 797 018 963 968 55 0 .000 000 000 000 000 027 755 575 615 628 913 510 590 791 708 520 507 812 5
72 057 594 037 927 936 56 0 .000 000 000 000 000 013 877 787 807 814 456 755 215 395 854 260 253 906 25

144 115 188 075 855 872 57 0 .000 000 000 000 000 006 938 893 903 907 228 377 647 697 927 130 126 953 125
288 230 376 151 711 744 58 0 .000 000 000 000 000 003 469 446 951 953 614 188 823 848 963 565 063 476 562 5
576 460 752 303 423 488 59 0 .000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 782 531 738 281 25
152 921 504 606 846 976 60 0 ,000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 891 265 869 140 625

75

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

F 45 Printed in U.S.A. 2M-10/63

PROGRAMMED DATA
PROCESSOR-5

HANDBOOK

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

FOREWORD

This handbook concerns programming and operating the Programmed Data
Processor-5, a high-speed, stored program, digital computer manufactured by
the Digital Equipment Corporation. Chapter 1 summarizes the electrical and
logical features of the computing system and analyzes it into three major
functional elements: arithmetic and control, input-output control, and input
output devices. Chapters 2, 3, and 4 present detailed information on the func
tion, instructions, and programming of the three major system elements.
Practical information for making electrical connections between any input
output device and the computing system at the input-output control is presented
in Chapter 5. Appendixes provide detailed information which may be helpful in
specific programming assignments. Although program examples are given in
this document, no attempt has been made to teach programming techniques.
The meaning and use of special characters employed in the programming
examples are explained in the description of the Program Assembly Language,
available from the DEC Program Library.

Copyright 1964 Digital Equipment Corporation

ii

Table of Contents

CHAPTER 1: SYSTEM INTRODUCTION 1

CHAPTER 2: ARITHMETIC AND CONTROL 6
Functions 6

Accumulator . 6
Link 6
Memory Buffer Register . 6
Memory Address Register .. 7
Instruction Register ... 8
Program Counter ... 8
Core Memo~.............. 8
States, Timing, Control, and IOP Generator .. 8
Operator Console . 9

Instructions ... 12
Memory Reference Instructions 12
Augmented Instructions 14

Programming 18
Memory Addressing 18
Storing and Loading 21
Program Control 21
Indexing Operations 21
Logic Operations 22
Arithmetic Operations 23

CHAPTER 3: INPUT-OUTPUT CONTROL .. 26
Functions .. 26

Device Selector .. 26
Accumulator Input .. 28
Accumulator Output 28
Input-Output Skip . 28
Program Interrupt 28
Input-Output Halt 28
Data Break . . 29

Instructions 30
Programming. 31

iii

Table of Contents ccontinued)

CHAPTER 4: INPUT-OUTPUT DEVICES
Teletype Model 33 ASR .

Keyboard/Reader
Teleprinter/ Punch .

High Speed Perforated Tape Reader and Control Type 750 .
High Speed Perforated Tape Punch and Control Type 75 A
Analog-to-Digital Converter Type 137
Card Reader and Control Type 451
Card Punch and Control Type 450 .. .
Automatic Line Printer and Control Type 64 .
Oscilloscope Display Type 34 B
Precision CRT Display Type 30 N
Light Pen Type 370 .
Incremental Plotter and Control Type 350
Automatic Magnetic Tape Control Type 57 A

CHAPTER 5: INTERFACE ELECTRICAL CHARACTERISTICS
Device Selector .
Memory Buffer Register
IOP Generator
Accumulator Outputs .
Accumulator Inputs .
Input-Output Skip
Program Interrupt ..
Input-Output Halt
Cabling

Appendix 1: Instruction Lists
Appendix 2: Codes
Appendix 3: Perforated-Tape Loader Sequences
Appendix 4: Software
Appendix 5: Powers of 2
Appendix 6: Interface Connections .

iv

32
32
32
33
33
34
35
35

. 36
37

. 39
39
40
40

... 41

47
47

. 49
51
52
53
53
54
54
55

56
62
65

. .. 68
········· 69

. 70

List of Tables
Console Switch Functions 10
Console Key Functions .. 10
Console Lamp Indications .. 11
Memory Reference Instructions . 13
Group 1 Operate Microinstructions .. 16
Group 2 Operate Microinstructions ... 18

List of Illustrations
Typical PDP-5 Computing System vi
PDP-5 System Components 2
Arithmetic and Control Element 7
Operator Console .. 10
Memory Reference Instruction Bit Assignments .. 13
JOT Instruction Bit Assignments .. 15
Group 1 Operate Instruction Bit Assignments .. 16
Group 2 Operate Instruction Bit Assignments 17
Input-Output Control Element .. 27
Data Break Timing ... 30
Component Location and Installation Diagram .. 48
Type 4605 Pulse Amplifier Logic Diagram 50

V

Figure 1 Typical PDP-5 Computing System

vi

CHAPTER 1
SYSTEM INTRODUCTION

The Digital Equipment Corporation Programmed Data Processor-5 (PDP-5)
is designed for use as a small-scale general-purpose computer, an inde
pendent information handling facility in a larger computer system, or as the
control element in a complex processing system. The PDP-5 is a one-address,
fixed word length, parallel computer using 12 bit, twos complement arithmetic.
Cycle time of the 1024- or 4096-word random address magnetic-core mem
ory is 6 microseconds. Standard features of the system include indirect
addressing and facilities for instruction skipping, program interruption, or
program halting as functions of input-output device conditions.

The 6-microsecond cycle time of the machine provides a computation rate of
55,555 additions per second. Addition is performed in 18 microseconds (with
one number in the accumulator) and subtraction is performed in 30 micro
seconds (with the subtrahend in the accumulator). Multiplication is performed
in approximately 2.0 milliseconds by a subroutine that operates on two 12-bit
numbers to produce a 24-bit product, leaving the 12 most significant bits in
the accumulator. Division of two 12-bit numbers is performed in approximately
3.5 milliseconds by a subroutine that produces a 12-bit quotient in the accumu
lator and a 12-bit remainder in core memory.

Flexible, high-capacity, input-output capabilities of the computer allow it to
operate a variety of peripheral equipment. In additior:i to standard Teletype
and perforated-tape equipment, the system is capable of operating in conjunc
tion with a number of optional devices such as high-speed perforated-tape
readers and punches, card equipment, a line printer, analog-to-digital con
verters, cathode-ray tube displays, and magnetic-tape equipment. The system
is easily adapted for connection to equipment of special design.

PDP-5 is completely self-contained, requiring no special power sources or
environmental conditions. A single source of 115-volt, 60-cycle, single-phase
power is required to operate the machine. Internal power supplies produce
all of the operating voltages required. Solid-state system modules and built-in
provisions. for marginal checking insure reliable operation in ambient tem
peratures between 50 and 105 degrees Fahrenheit.

The primary functions of the PDP-5 system are performed by an arithmetic
and control element, an input-output control element, and the input-output
devices. Figure 2 shows the relationship of these elements.

1

"T1 OQ.
C:
(1)

N

"tl
0
:J
u,

en
N '<

tJl -(1)

3
(")
0
3
-0
0
~
(1)
~ -tJl

The arithmetic and control element contains all of the registers that perform
arithmetic and logic operations, the core memory for storage and retrieval of
data and instructions, and the operator console, which indicates the contents
of registers and provides a means of modifying data. Chapter 2 of this hand
book describes these functions in detail.

The input-output control element provides communications between the arith
metic and control element and standard, optional, or special input-output
devices. Components of this control may be housed in the main computer
cabinet or with the 1/0 device. 1/0 device selection, input-output skip, program
interrupt, input-output halt, and data break control are features of this element
and are discussed in Chapter 3.

All of the input-output devices are optional except the Teletype Model 33 ASR.
Standard and optional 1/0 equipment programming information is presented
in Chapter 4.

THE TELETYPE MODEL 33 ASR provides a means of supplying data to the
computer from perforated tape or a keyboard, or of receiving output infor
mation from the computer in the form of perforated tape or typed copy.
Maximum speed of these operations is ten characters per second.

THE HIGH SPEED PERFORATED TAPE PUNCH AND CONTROL TYPE 75A
perforates 8-hole paper tape at a rate of 63.3 lines per second.

THE HIGH SPEED PERFORATED TAPE READER AND CONTROL TYPE 750
senses 8-hole perforated paper tape photoelectrically at the rate of 300 lines
per second.

THE ANALOG-TO-DIGITAL CONVERTER TYPE 137 is wired into each system.
Modules to activate this feature are optional. The converter operates in the
normal successive approximation fashion, using existing computer registers as
the shift register and buffer register. The converter provides a 12-bit word;
however, the last bit is insignificant.

THE CARD READER AND CONTROL TYPE 451 operates at a rate of 200 or 800
cards per minute. Cards are read column by column. Column information
may be read in alphanumeric or binary mode. The alphanumeric mode con
verts the 12-bit Hollerith Code of one column into the 6-bit binary-coded
decimal code with code validity checking. The binary mode reads a 12-bit
column directly into the PDP-5. Approximately one percent of a Card Reader
program running time is required to read the 80 columns of information at
the 200 cards per minute rate.

THE CARD PUNCH CONTROL TYPE 450 permits operation of a standard
IBM Type 523 Summary Punch with the PDP-5. Punching can occur at a rate
of 100 cards per minute. Cards are punched one row at a time at 40-
millisecond intervals.

3

THE AUTOMATIC LINE PRINTER AND CONTROL TYPE 64 prints a selection
of 63 characters at up to 300 lines of 120 characters per minute. Printing
of one group of 120 characters can be carried out while the next 120 charac
ters are being loaded into the printer. Loading, printing, and format are under
program control. Format is program selected from a punched format tape in
the printer.

THE INCREMENTAL PLOTTER AND CONTROL TYPE 350 provides high-speed
plotting of points, continuous curves, points connected by curves, curve iden
tification symbols, letters, and numerals under program control.

THE DATA CHANNEL MULTIPLEXER TYPE 129 automatically transfers data
directly between the computer core memory and up to four 1/0 devices. The
computer core memory address of each transfer is specified by the 1/0 device.
Transfers are made through the normal data break facilities and breaks are
performed in accordance with an assigned 1/0 device priority.

THE OSCILLOSCOPE DISPLAY TYPE 348 plots data point by point on a high
resolution oscilloscope, such as the Tektronix Model RM 503. Each axis is
determined by 10 binary bits.

THE PRECISION CRT DISPLAY TYPE 30N displays data on a 9¼ inch by
9¼ inch area. Information is plotted point by point to form either graphical
or tabular data. The X and Y coordinates are each controlled by a separate
10-bit word.

THE LIGHT TYPE PEN 370 is a photoelectric device which signals the computer
when it detects information displayed on the Type 30N Precision CRT Display.
Upon signal from the light pen, the computer carries out previously pro
grammed instructions.

THE DUAL MICRO TAPE SYSTEM TYPE 555-552 provides a fixed-address
magnetic-tape facility for high-speed loading, readout, and program updating.
A system consists of a Type 555 Micro Tape Transport and a Type 552 Micro
Tape Control. Each transport contains two independent tape drivers. Up to
four transports (8 drives) can be used with one control. Each reel, containing
up to four-million bits of data, can be written or read under program control.

THE AUTOMATIC MAGNETIC TAPE CONTROL TYPE 57A reads and writes
high and low density, IBM compatible magnetic tape at a transfer rate of
15,000 characters per second.

4

The following special terms are used throughout this handbook in the explana
tion of equipment functions and instructions:

Term

C(A)

A=>B
y

N,

C(A)0. 5 = > C(Y)b-11

¥

V

"
A

Explanation

Contents of A

A replaces B or B is set to A

Any core memory location

Any given bit in Y

Bits 1 through 4 of Y

The 1 output of bit j of reg
ister Y

Number N to the radix r

The contents of bits 6
through 11 of core memory
location Y are set to corres
pond with the contents of bits
0 through 5 of register A

Exclusive OR

Inclusive OR

AND

Ones complement of A

5

CHAPTER 2

ARITHMETIC AND CONTROL

Functions
To perform the required arithmetic, logic, and data processing operations
and to store, retrieve, control, and modify information the arithmetic and
control element uses the logic components shown in Figure 3 and described
in the following paragraphs.

ACCUMULATOR (AC)
Arithmetic operations are performed in this 12-bit register. The AC can be
cleared or complemented. Its contents can be rotated right or left with the
link. The contents of the memory buffer register can be added to the contents
of the AC and the result left in the AC. The contents of both these registers
may be combined by the logical operation AND, the result remaining in the
AC. The memory buffer register and the AC also have gates which allow them
to be used together as the shift register and buffer register of a successive
approximation analog-to-digital converter. The inclusive OR may be formed
between the AC and the switch register on the operator console and the result
left in the AC.

The accumulator also acts as an input-output register. All programmed infor
mation transfers between core memory and an external device pass through
the accumulator.

LINK (L)
This one-bit register is used to extend the arithmetic facilities of the accu
mulator. It is used as the carry register for twos complement arithmetic. This
feature greatly simplifies multiple precision arithmetic. The link can be cleared
and complemented, and it can be rotated as part of the accumulator.

MEMORY BUFFER REGISTER (MB)
All information transfers between the computer registers and the core mem
ory are temporarily held in the MB. Information can be transferred into MB
from the accumulator or memory address register. The MB can be cleared,
incremented by one or two, or shifted right. Information can be set into the

6

lnput-output.,._......,.,.......,.,......,..,......,...........,..;
controf
element
during data
break

Data to and
from 1/0
d.evicas, via
the input- ·
output
conti:ot.
element

Prograiti control
signals from t/O

MEMORY
BUFFER

REGISTER

12

devices, via the __,._.,........;.;....,._.....,._...,.,...~~ ~II
input-output · .. ,.----~; ;
control element

Figure 3 Arithmetic and Control Element

MB from an external device during a data break or from core memory, via
the sense amplifiers. Information is read from a memory location in 2 micro
seconds and rewritten in the same location in another 2 microseconds of one
6-microsecond memory cycle.

MEMORY ADDRESS REGISTER (MA)
The address in core memory which is currently selected for reading or writing

7

is contained in this 12-bit register. Therefore, all 4096 words of core memory
can be addressed directly by this register. The MA can be cleared or incre
mented by one. Data can be set into it from the memory buffer register, from
the switch register, or from an 1/0 device_ The output can be disabled (i.e.
forced to indicate all binary zeros) without affecting the contents of the register.

INSTRUCTION REGISTER (IR)
This 4-bit register contains the operation code of the instruction currently
being performed by the machine. Information is loaded into the IR from the
memory buffer register during a Fetch cycle. The contents of the three most
significant bits of the IR are decoded to produce the eight instructions, and
affect the cycles and states entered at each step in the program. The least
significant bit (the indirect bit) is used in addressing core memory to specify
a defer cycle in addressable instructions and to differentiate the two groups
operate instructions.

PROGRAM COUNTER (PC)
The program sequence, that is, the order in which instructions are performed,
is determined by the PC. This 12-bit core memory register contains the address
of the core memory location from which the last instruction was taken. Infor
mation enters the PC from the MB, since core memory address O is used as
the PC. Because the PC is in core memory, it can be manipulated by the pro
gram in the same manner as any other core memory location.

CORE MEMORY
The core memory provides storage for instructions to be performed and infor
mation to be processed or distributed. This random addressable magnetic
core memory holds either 1024 or 4096 12-bit words. Memory location O is
used as the program counter, location 1 is used to store the contents of the PC
following a program interrupt, and location 2 is used to store the first instruc
tion to be executed following a program interrupt. (When a program interrupt
occurs, the COl')tents of the PC are stored in location 1; and program control is
transferred to location 2 automatically.) Locations 10 through 17 are used for
auto-indexing. All other locations can be used to store instructions or data.

STATES, TIMING, CONTROL, AND IOP GENERATOR
This logic component of the computer establishes the basic timing of all com
puter operations, controls the operation of all previously mentioned registers,
and generates the three IOP pulses which are supplied to the device selectors
in the input-output control element. It also establishes the cycles or primary
control states entered to accomplish each instruction. The control state entered
next is determined at the completion of the current one. All states except break
are determined by the instruction.

PROGRAM COUNTER (P): This state reads the contents of the progr~m
counter from core memory location O into the MB, increments the contentslof

8

the MB by 1 (or 2 for a skip instruction), and rewrites the contents of the
MB back in location 0. The incremented contents of the PC remain in the MB
as the address of the current instruction. During a jump or jump to subroutine
instruction, the effective address specified by the jmp or jms is written into
location O to transfer program control. Completion of a P cycle initiates a
Fetch cycle.

FETCH (F): During this state an instruction word is read from the core mem
ory location specified by the contents of the program counter.

EXECUTE 1 (E1): This state occurs for all instructions requiring an operand
from core memory. The contents of the core memory location specified by the
least significant bits of the instruction are read into the memory buffer register
and the operation specified by bits O through 2 of the instruction is performed.

EXECUTE 2 (E2): When a jump to subroutine instruction is being executed,
this state is entered to write the contents of th~ program counter into core
memory location Y.

DEFER (D): When a 1 is present in bit 3 of a memory reference instruction,
the defer state is entered to obtain the full 12-bit address of the operand from
the address in the current page or page O specified by bits 4 through 11 of
the instruction. The process of address deferring is called indirect addressing
because access to the operand is addressed indirectly, or deferred, to another
memory location.

BREAK (B): When this state is established, the sequence of instructions is
broken for a data interrupt. The break normally occurs at the completion of the
current instruction. If the interrupt occurs during a jump or jump to sub
routine instruction, the break begins only after two instructions have been
completed (the instruction jumped to is executed). The data interrupt allows
information to be transferred directly between core memory and an external
device. When this transfer has been completed, the program sequence is
resumed from the point of the break.

OPERATOR CONSOLE
Switches and keys on the operator console allow manual program and
information insertion or modification. Indicator lamps display the status of
the machine and the contents of major registers. Register indicators light
to denote the presence of a 1 in a specific bit. While a program is running,
the brightness of an indicator is related to the percentage of time that the
related bit holds a 1.

Figure 4 shows the operator console and the following tables list the function
of switches, keys, and indicators.

9

tlEUORY Al>ORESS WST!HIC:TION

{ ; ((, c. (((l (\
PROGFAM ,,$ (

SINGLE
\ .. COUNTER STEP

MEMORY &UfFE!f FETCH

(((z ' ((((I I (,u. \ 1~:e.vr EXECUTt $ S~~~{E

A(:C:U/1111.JLJ.JOR QtFER

I I (((I fi

lOJ.O
SW1TCH A-tGH.,THf, AOORt5S

••••••••••••••••• .e ~ t:)

Switch

SWITCH REGISTER

SINGLE STEP

SINGLE INST

POWER

Key

LOAD ADDRESS

$l4M:T CON~l>/\/E

Figure 4 Operator Console

CONSOLE SWITCH FUNCTIONS

Function

Provides a means of manually setting a 12-bit word
into the machine. Switches in the up position cor
respond to ones, down, to zeros. Contents of this
register are loaded into the memory address regis
ter by the LOAD ADDRESS key, or into the memory
buffer register and core memory by the DEPOSIT
key. The contents of the switch register (SR) can
be set into the accumulator under program control.

Causes the computer to halt at the completion of
each memory cycle. Repeated operation of the
CONTINUE key steps the program one cycle at a
time so that the state of the machine can be ex
amined at each step.

Causes the computer to stop at the completion of
each instruction.

Controls primary power in the computer.

CONSOLE KEY FUNCTIONS

Functions

Deposits the contents of the switch register into
the memory address register.

10

Key

START

DEPOSIT

EXAMINE

STOP

CONTINUE

LOCK SWITCH

Lamp(s)

MEMORY ADDRESS

MEMORY BUFFER

ACCUMULATOR

INSTRUCTION

RUN

CONSOLE KEY FUNCTIONS (continued)

Functions

Starts the computer after turning off the program
interrupt system and clearing both the AC and L.
The first instruction is taken from the core mem
ory at the address presently in the memory ad
dress register.

Sets the word contained in the switch register into
the core memory at the location specified by the
memory address register. The results remain in
the memory buffer register. The memory address
register is then incremented by one, allowing rapid
data deposits in sequential core memory locations.

Sets the contents of the core memory location se
lected by the memory address register into the
accumulator and the memory buffer register. The
memory address register is then incremented by
one, allowing rapid examination of data in sequen
tial core memory locations.

Causes the computer to stop at the completion of
the memory cycle in progress at the time of key
operation.

Causes the computer to resume execution of the
instruction at the address held in the PC, from the
program state indicated by the panel lamps.

Disables all console keys and switches except the
SR to prevent inadvertent power turn-off or pro
gram interference while a program is in progress.

CONSOLE LAMP INDICATIONS

Indications

Indicate the contents of the memory address register.

Indicate the contents of the memory buffer register.

Indicate the contents of the accumulator.

Indicate the contents of the instruction register.

Indicates that the computer is executing instructions.

11

CONSOLE LAMP INDICATIONS (continued)

Lamp(s)

IN-OUT HALT

LINK

PROGRAM COUNTER, FETCH,
EXECUTE, DEFER, BREAK

SINGLE STEP and SINGLE INST

POWER

Indications

Indicates that the computer is waiting for an input
output device to complete its operation.

Indicates the contents of the carry link.

Indicate the primary control state of the machine
and that the next memory cycle will be a program
counter, fetch, execute, defer, or break cycle
respectively.

Indicate that the SINGLE STEP or SINGLE INST
switch is on the ON position.

Indicates that power is turned on in the computer.

Instructions

Instruction words are of two types: memory reference and augmented. Memory
reference instructions store or retrieve data from core memory, while aug
mented instructions do not. All instructions utilize bits O through 2 to specify
the operation code. Operation codes of 08 through 58 specify memory refer
ence instructions, and codes of 6s and 7a specify augmented instructions.
Instruction execution times are multiples of the 6-microsecond computer
cycle time. Memory reference instructions require 12, 18, or 24 microseconds
for execution. Indirect addressing increases the execution time of a memory
reference instruction by 6 microseconds. The augmented instructions, input
output transfer and operate, are performed in 12 microseconds.

MEMORY REFERENCE INSTRUCTIONS

Word format of memory reference instructions is shown in Figure 5, and the
instructions are explained in the Memory Reference Instructions Table.

Since this system can contain a 4096-word memory, 12 bits are required to
address all locations. To simplify addressing, the memory is divided into blocks,
or pages, of 128 words (200a addresses). Pages are numbered Oa through
37 8, a 1024-word memory having pages 08 through 7a, and a 4096-word
memory using all 32 pages. The seven address bits (bits 5 through 11) of
a memory reference instruction can address any location in the page on
which the current instruction is located by placing a 1 in bit 4 of the instruc
tion. By placing a O in bit 4 of the instruction, any location in page O can be
addressed directly from any page of core memory. All other core memory
locations must be addressed indirectly by placing a 1 in bit 3 and placing a

12

7-bit effective address in bits 5 through 11 of the instruction to specify the
location in the current page or page 0, which contains the full 12-bit absolute
address of the operand.

Mnemonic
Symbol

and Y

tad Y

Figure 5 Memory Reference Instruction Bit Assignments

MEMORY REFERENCE INSTRUCTIONS

Octal
Code

0

1

Time
(µsec)

18

18

Operation

Logical AND. The AND operation is performed
between the C(Y) and the C(AC). The result
is left in the AC, and the original C(AC) are
lost. The C(Y) are unchanged. Corresponding
bits are compared independently. This in
struction, often called extract or mask, can
be considered as a bit-by-bit multiplication.
C(Y)/1 C(AC)i = > C(AC)i

Example

C(AC)i original C(Y)i C(AC)i final

0 0 0
0 1 0
1 0 0
1 1 1

Twos complement add. The C(Y) are added
to the C(AC) in twos complement arithmetic.
The result is left in the AC and the original
C(AC) are lost. The C(Y) are unchanged. If
there is a carry from AC0, the link is comple
mented. This feature is useful in multiple pre
cision arithmetic.
C(Y) + C(AC) = > C(AC).

13

Mnemonic
Symbol

isz Y

dca Y

jms Y

jmp y

MEMORY REFERENCE INSTRUCTIONS (continued)

Operation
Code

2

3

4

5

Time
fosec)

18

18

24

12

Operation

Index and skip if zero. The C(Y) are incre
mented by one in twos complement arith
metic. If the resultant C(Y) 0, the next
instruction is skipped. If the resultant
C(Y) =I= 0, the program proceeds to the next
instruction. The C(AC) are unaffected.
C(Y) + 1 = > C(Y) .
if result 0, C(PC) + 1 > C(PC).

Deposit and clear AC. The C(AC) are deposited
in core memory location Y and the AC is then
cleared. The previous C(Y) are lost.
C(AC) > C(Y), then O > C(AC).

Jump to subroutine. The C(PC) contained in
core memory location O are deposited in core
memory location Y. The next instruction is
taken from location Y + 1.
C(PC) + 1 = > C(Y)
Y + 1 = > C(PC)

Jump to Y. The C(PC) contained in core
memory location 0 are set to address Y. The
next instruction is taken from core memory
location Y. The original C(PC) are lost.
Y > C(PC).

AUGMENTED INSTRUCTIONS
There are two augmented instructions or instructions which do not reference
core memory. They are the input-output transfer, which has an operation
code of 6, and the operate, which has an operation code of 7. Bits 3 through
11 within these instructions function as an extension of the operation code
and can be microprogrammed to perform several operations with one instruc
tion. Augmented instructions are two-cycle (P, F) instructions requiring 12
microseconds for execution. During the second cycle, three clock pulses are
available to initiate operations as a function of bit microprogramming. These
clock pulses are designated event times 1, 2 and 3 and are separated by 1
microsecond.

INPUT-OUTPUT TRANSFER INSTRUCTION: Microinstructions of the input
output transfer (iot) instruction effect information transfers between the arith
metic and control element and an input-output device via the input-output
control element. Specifically, when operation code 6 is detected, the IOP

14

generator is enabled to produce IOP 1, 2, and 4 pulses as a function of the
contents of bits 9 through 11. These pulses are gated in the device selector
of the selected 1/0 device to produce the IOT pulses which enact a transfer.

The format of the iot instruction is shown in Figure 6. Bits 3 through 8 are
used to select the 1/0 device; and bits 9 through 11 enable generation of IOP
pulses during event times 3, 2, and 1, respectively. Operations performed by
iot microinstructions are explained in Chapter 4.

Figure 6 IOT Instruction Bit Assignments

OPERATE INSTRUCTION: The operate instruction consists of two groups of
microinstructions. Group 1 (opr 1) is principally for clear, complement, rotate,
and increment operations and is designated by the presence of a O in bit 3.
Group 2 (opr 2) is used principally in checking the contents of the accumu
lator and link and continuing to or skipping the next instruction based on the
check. A 1 in bit 3 designates an opr 2 microinstruction.

Group 1 operate microinstruction format is shown in Figure 7, and the micro
instructions are listed in the table below. Any logical combination of bits within
this group can be combined into one microinstruction. For example, it is pos
sible to assign ones to bits 5, 6, and 11; but it is not logical to assign ones to
bits 8 and 9 simultaneously since they specify conflicting operations. If ral or
rar is specified, neither cma or cml may be specified, and conversely. If rt! or
rtr is specified, neither cma, cml, or iac may be specified, and conversely.

15

Mnemonic
Symbol

cla

ell

cma

cml

rar

ral

rtr

Figure 7 Group 1 Operate Instruction Bit Assignments

GROUP 1 OPERATE MICROINSTRUCTIONS

Octal
Code

7200

7100

7040

7020

7010

7004

7012

Event
Time

1

1

2

2

2

2

2,3

Operation

Clear AC. To be used alone or in opr 1 com
binations.
0 = > C(AC).

Clear L.
0 = > C(L).

Complement AC. The C(AC) are set to the
ones complement of C(AC).
C(AC) = > C(AC).

Complement L.
C(L) = > C(L).

Rotate AC and L right. The C(AC) and the
C(L) are rotated right one place.
C(AC)i = > C(AC)j+I
C(AC) 11 = > C(L)
C(L) = > C(AC)0

Rotate AC and L left. The C(AC) and the C(L)
are rotated left one place.
C(AC)i = > C(AC)i I
C(AC)0 = > C(L)
C(L) = > C(AC) 11

Rotate two places to the right. Equivalent to
two successive rar operations.

16

GROUP 1 OPERATE MICROINSTRUCTIONS (continued)

Mnemonic Octal Event Operation Symbol Code Time

ral 7004 2 Rotate AC and L left. The C(AC) and the C(L)
are rotated left one place.
C(AC)i = > C(AC)i_ 1

C(AC)0 = > C(L)
C(L) = > C(AC) 11

rtr 7012 2,3 Rotate two places to the right. Equivalent to
two successive rar operations.

rtl 7006 2,3 Rotate two places to the left. Equivalent to
two successive ral operations.

iac 7001 3 Index AC. The C(AC) are incremented by one
in twos complement arithmetic.
C(AC) + 1 = > C(AC).

nop 7000 No operation. Causes a 12.usec program delay.

Group 2 operate microinstruction format is shown in Figure 8 and the micro
instructions are listed in the table below. Any logical combination of bits within
this group can be composed in one microinstruction.

If skips are combined in a single instruction, the inclusive OR of the condi
tions determines the skip. For example, if ones are designated in bits 6 and 7
(sza and snl), the next instruction is skipped if either C(AC) = 0, or C(L) = 1,
or both. The cla microinstruction from group 1 can be combined with group 2
commands. This command occurs at event time 2 with respect to the event
times listed in the following table.

Reverse
Skip

Operation
Sensing
ofbila

Code.7 cla sza 6, $, 7 hft
~ ~ ,-..A-.. ~ ..

0 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I
"--r-' ~ '-r-'. '-y-1

Contains sma oar Not '-'"d
a 1 to

Specify.
Group 2

Figure 8 Group 2 Operate Instruction Bit Assignments

17

Mnemonic
Symbol

cla

spa

sma

sna

sza

szl

snl

skp

osr

hit

GROUP 2 OPERATE MICROINSTRUCTIONS

Octal
Code

7600

7510

7500

7450

7440

7430

7420

7410

7404

7402

Event Operation
Time

2 Clear AC. To be used alone or in opr 2 com-
bi nations.
0 = > C(AC)

1 Skip on positive AC. If the C(AC) is a positive
number, the next instruction is skipped.
If C(AC)0 = 0, then C(PC) + 1 = > C(PC)

1 Skip on minus AC. If the C(AC) is a negative
number, the next instruction is skipped.
If C(AC)0 = 1, then C(PC) + 1 = > C(PC)

1 Skip on non-zero AC.
If C(AC) =/= 0, then C(PC) + 1 = > C(PC)

1 Skip on zero AC.
If C(AC) = 0, the C(PC) + 1 = > C(PC)

1 Skip on zero L. If C(L) = 0, the next instruc-
tion is skipped.
If C(L) = 0, the C(PC) + 1 = > C(PC)

1 Skip on non-zero L.
If C(L) = 1, then C(PC) + 1 = > C(PC)

1 Skip, unconditional. The next instruction is
skipped.
C(PC) + 1 = > C(PC)

3 OR with switch register.
C(SR) V C(AC) = > C(AC)

3 Halt. Stops the program. If this instruction is
combined with others in the opr 2 group, the
computer stops immediately after completion
of the cycle in process.

Programming

MEMORY ADDRESSING

The following terms are used in memory address programming:

Term

Page

Definition

A block of 128 core memory locations (2008

addresses).

18

Term

Current Page

Page Address

Absolute Address

Effective Address

Definition

The page containing the instruction being
executed; as determined by bits O through 5
of the program counter.

An 8-bit number contained in bits 4 through
11 of an instruction which designates one of
256 core memory locations. Bit 4 of a page
address indicates that the location is in(the
current page when a 1, or indicates it is in)
page O when a 0. Bits 5 through 11 designate
one of the 128 locations in the page deter
mined by bit 4.

A 12-bit number used to address any location
in core memory.

The address of the operand. When the address
of the operand is in the current page or in
page 0, the effective address is a page ad
dress. Otherwise, the effective address is an
absolute address stored in the current page
or page O and obtained by indirect addressing.

Organization of the core memory is summarized as follows:

Total locations (decimal)
Total addresses (octal)

Number of pages (decimal)
Page designations (octal)

Number of locations per page (decimal)
Addresses within a page (octal)

1024
0-1777

8
0-7

128
0-177

4096
0-7777

32
0-37

128
0-177

Four methods of obtaining the effective address are used as specified by com
binations of bits 3 and 4.

Bit 3

0

0

1

1

Bit 4

0

1

0

1

Effective Address

The operand is in page O at the address
specified by bits 5 through 11.
The operand is in the current page at the
address specified by bits 5 through 11.

The absolute address of the operand is taken
from the contents of the location in page 0
designated by bits 5 through 11.

The absolute address of the operand is taken
from the contents of the location in the cur
rent page designated by bits 5 through 11.

19

The following example indicates the use of bits 3 and 4 to address any location
in core memory. Suppose it is desired to add the contents of locations A, B,
C, and D to the contents of the accumulator by means of a routine stored in
page 2. The instructions in this example indicate the operation code, the con
tents of bit 4, the contents of bit 3, and a 7-bit address. This routine would
take the following form:

Page O Page 1 Page 2
Location Contents Location Contents Location Contents Remarks

A
M

xxxx
C

C
D

xxxx
xxxx

R tad 00 A Direct to data in
page 0

S tad 01 B Direct to data in
same page

T tad 10 M Indirect to address
specified in page 0

U tad 11 N Indirect to address
specified in same page

B
N

xxxx
D

Routines, using 128 instructions or less, can be written in one page using
direct addresses for looping and using indirect addresses for data stored
in other pages. When planning the location of instructions and data in core
memory, remember that the following locations are reserved for special
purposes:

Address

108 th rough 17 8

Purpose

Is the program counter.

Stores the contents of the program counter
following a program interrupt.

Stores the first instruction to be executed
following a program interrupt.

Auto-indexing.

INDIRECT ADDRESSING: When indirect addressing is specified, the address
part (bits 5-11) of a memory reference instruction is interpreted as the address

20

of a location containing not the operand, but the address of the operand. Con
sider the instruction tad A. Normally, A is interpreted as the address of the
location containing the quantity to be added to the AC. Thus, if location 100
contains the number 5432, the instruction tad 100 causes the quantity 5432
to be added to the AC. Now suppose that location 5432 contains the number
6543. The instruction tad i 100 (where i signifies indirect addressing) causes
the computer to take the number 5432, which is in location 100, as the effec
tive address of the instruction and the number in location 5432 as the operand.
Hence, this instruction results in the quantity 6543 being added to the contents
of the AC.

AUTO-INDEXING: When a location between 10a and 178 in page 0 is specified
as the address in an instruction, and bit 3 is a 1, the contents of that location
are read, incremented by one rewritten in the same location, and then taken as
the effective address of the instruction. This feature is called auto-indexing.
If location 128 contains the number 5432 and the instruction dca i 12 is given,
the contents of the accumulator are deposited in core memory location 5433,
and the number 5433 is stored in location 12.

STORING AND LOADING
Data is stored in any core memory location by use of the dca Y instruction.
This instruction clears the AC to simplify loading of the next datum. If the data
deposited is required in the AC for the next program operation, the dca must
be followed by a tad Y for the same address.

All loading of core memory information into the AC is accomplished by means
of the tad Y instructions, preceded by an instruction that clears the AC such
as cla or dca.

PROGRAM CONTROL
Transfer of program control to any core memory location uses the jmp or jms
instructions. The jmp i (indirect address, 1 in bit 3) is used to address any
location in core memory which is not in the current page or page 0.

The jms Y is used to enter a subroutine which starts at location Y + 1. The
C(PC) + 1 = > C(Y) and Y + 1 = > C(PC). To exit a subroutine the last
instruction is a jmp i Y, which returns a program control to C(Y).

Since the program counter is in core memory location 0, the program flow can
be altered by depositing some number in location 0. If the number X is de
posited in 0, the next instruction is taken from location X + 1.

INDEXING OPERATIONS
The isz instruction is used to count repetitive program operations without
disturbing the contents of the accumulator. Counting is performed by storing
a twos complement negative number equal to the number of program loops to
be counted. Each time the operation is performed, the isz instruction is used to

21

increment the contents of this stored number and check the result. When the
stored number becomes zero, C(Y) = 0, the specified number of operations
have occurred and the program skips out of the loop and back to the
main sequence.

This instruction is also used for other routines in which the contents of a
memory location are incremented without disturbing the contents of the
accumulator, such as storing information from an 1/0 device in sequential
memory locations or using core memory locations to count 1/0 device events.

LOGIC OPERATIONS
The PDP-5 instruction list includes the logic instruction, and Y. From this
instruction short routines can be written to perform the inclusive and exclusive
OR operations.

LOGIC AND: The logic AND operation between the contents of the Accumulator
and the contents of a core memory location Y is performed directly by means
of the and Y instruction.

INCLUSIVE OR: Assuming value A is in the AC and value B is stored in a known
core memory address, the following sequence performs the inclusive OR. The
sequence is stated as a utility subroutine called ior.

/calling sequence
I

jms ior
(address of B)

/ (return)
/enter with argument in AC; exit with logical result in AC

ior, 0
dca tern 1
tad i ior
dca tem2
tad i tem2
cma
and teml
tad i tem2
isz ior
jmp i ior

tern 1, 0
tem2, 0

EXCLUSIVE OR: The exclusive OR operation for two numbers, A and B, can be
performed by a subroutine called by the mnemonic code xor. In the following
general purpose xor subroutine, the value A is assumed to be in the AC, and
the address of the value B is assumed to be stored in a known core memory
location.

22

/calling sequence jms xor
I (address of 8)
I (return)
/enter with argument in AC; exit with logical result in AC

xor, 0
dca teml
tad i xor
dca tem2
tad teml
and i tem2
cma V iac
ell V ral
tad teml
tad i tem2
isz xor
jmp i xor

teml, 0
tem2, 0

An xor subroutine can be written using fewer core memory locations by making
use of the ior subroutine; however, such a subroutine requires longer to execute.
A faster xor subroutine can be written by storing the value B in the second
instruction of the calling sequence instead of the address of B; however, the
resulting subroutine is not as utilitarian as the routine given here.

ARITHMETIC OPERATIONS
One arithmetic instruction is included in the PDP-5 order code, the twos com
plement add: tad Y. Using this instruction, routines can easily be written to
perform addition, subtraction, multiplication, and division in twos comple
ment arithmetic.

TWOS COMPLEMENT ARITHMETIC: In twos complement arithmetic, addition,
subtraction, multiplication, and division of binary numbers is performed in
accordance with the common rules of binary arithmetic. In PDP-5, as in other
machines utilizing complementation techniques, negative numbers are repre
sented as the complement of positive numbers, and subtraction is achieved
by complement addition. Representation of negative values in ones comple
ment arithmetic is slightly different from that in twos complement arithmetic.

The ones complement of a number is the complement of the absolute positive
value; that is, all ones are replaced by zeros and all zeros are replaced by ones.
The twos complement of a number is equal to the ones complement of the
positive value plus one.

In ones complement arithmetic a carry from the sign bit (most significant bit)
is added to the least significant bit in an end-around carry. In twos complement
arithmetic a carry from the sign bit complements the link (a carry would set

23

the link to one if it were properly cleared before the operation), and there is
no end-around carry.

A ones complement representation of a negative number is always one less
than the twos complement representation of the same number. Differences
between ones and twos complement representations are indicated in the
following list.

Number ls Complement 2s Complement

+5 000000000101 000000000101
+4 000000000100 000000000100
+3 000000000011 000000000011
+2 000000000010 000000000010
+1 000000000001 000000000001
+o 000000000000 000000000000
-o 111111111111 Nonexistent
-1 111111111110 111111111111
-2 111111111101 111111111110
-3 111111111100 111111111101
-4 111111111011 111111111100
-5 111111111010 111111111011

Note that in twos complement there is only one representation for the number
which has the value zero, while in ones complement there are two representa
tions. Note also that complementation does not interfere with sign notation in
either ones complement or twos complement arithmetic; bit O remains a O for
positive numbers and a 1 for negative numbers.

To form the twos complement of any number in the PDP-5, the ones comple
ment is formed, and the result is incremented by one. This is accomplished by
the instruction cma combined with an iac instruction. Since both of these
instructions are functions of the opr 1 instruction and the actions occur at
different event times, they can be combined to form:

cia - 7041 - 2, 3 Complement and index AC

ADDITION: The addition of a number contained in a core memory location and
the number contained in the accumulator is performed directly by using the
tad Y instruction, assuming that the binary point is in the same position and
that both numbers are properly represented in twos complement arithmetic.
Addition can be performed without regard for the sign of either the augend or
the addend. Overflow is possible, in which case the result will have an incorrect
sign, although the 11 least significant bits will be correct.

SUBTRACTION: Subtraction is performed by complementing the subtrahend
and adding the minuend. As in addition, if both numbers are represented by
their twos complement, subtraction can be performed without regard for the
signs of either number. Assuming that both numbers are stored in core
memory, a routine to find the value of A-8 follows:

24

cla
tad B
cia
tad A

25

/Load subtrahend into AC
/Complement and increment B (cma V iac)
/C(AC) = A - B

CHAPTER 3

INPUT-OUTPUT CONTROL

Functions
Selected input-output devices are controlled by iot (in-out transfer) instructions.
The iot instruction is microprogrammed to allow one basic instruction to handle
many devices (by changing the bits of the command). The command pulses
occur at various times to allow flags to be sampled (and an instruction skipped),
buffers to be cleared, and data to be transmitted to or from the accumulator.
Operational circuits of the input-output control element are shown in Figure 9.

DEVICE SELECTOR (DS)

Input-output equipment connected into the system is controlled by various
Device Selector pulses. These pulses:

a. Sample Device flag conditions which are fed into the input-output skip
facility.

b. Reset external register.
c. write information into external registers from the AC output.
d. Read information from external register into the AC.
e. Control the 1/0 device.
f. Halt the computer until the external device has finished its operation.

The iot instruction causes the arithmetic and control element to produce IOP
pulses based on the contents of bits 9 through 11 of the instruction. These
pulses are designated IOP 4, 2, and 1, respectively, and occur at 1-microsecond
intervals, which are identified as event times. Binary ones in the instruction
word cause the IOP pulses to be generated as follows:

Instruction IOP IOT Event Computer
Bit Pulse Pulse Time Cz:cle Time
11 IOP 1 IOT 1 1 T4
10 IOP 2 IOT 2 2 T5

9 IOP 4 IOT 4 3 T6

A device selector module exists for each 1/0 device or external register to be
addressed separately. The DS is a gating element which receives both the 1
and O information from bits 3 through 8 of an instruction (MBi-a) and the IOP

26

A,O Output

IQP Pul&e$ (8)

(l2 linE!S)

AC
OUTPUT

DATA
BREAK

Figure 9 Input-Output Control Element

pulses. Each DS is wired to pass I0P pulses to a specific 1/0 device only when
the 1/0 device selection bits are set to the code which specifies operation of
the associated 1/0 device. The gated I0P pulses at the output of a DS are
called I0T pulses and can be used to set or reset control flip-flops, gate
information into the AC from external registers, gate information into external
registers from the AC, or skip instructions.

27

ACCUMULATOR INPUT

Capacitor-diode gates are provided at the inputs to the accumulator to allow
gated information to be written into the PDP-5 from several sources. Informa
tion levels from 12 separate bits of an external register can be simultaneously
set into the AC by an I0T pulse. The AC must be clear at the time information
is written in. Information pulses supplied to the AC input bus must drive it to
ground potential to write a 1 in an accumulator bit.

ACCUMULATOR OUTPUT

A static level is available at an output bus from each bit of the accumulator.
These static levels are ground potential for a binary 1 and -3 volts for a binary
0. Data supplied to an external register is strobed into it by means of I0T pulses.

INPUT-OUTPUT SKIP (105)

The I0S facility allows the program to skip (or branch) according to the condi
tion of various external devices. An I0T pulse is used to strobe the external
device, such as a flag, and sample its state. If the gating of the Device flag and
I0T pulse drives the I0S bus to ground, the instruction following the iot instruc
tion which issued the strobe is skipped. If the input is a -3 volt potential, the
program sequence is not altered.

PROGRAM INTERRUPT

The program interrupt feature allows certain external conditions to interrupt
the computer program. It is used to speed the information processing of input
output devices or to allow certain alarms to halt the program in progress and
initiate another routine. When a program interrupt request is made, the com
puter completes execution of the instruction in progress before entering the
interrupt mode. A program interrupt is similar to a jms to location 1; that is,
the contents of the program counter are stored in location 1, and the program
resumes operation in location 2. The interrupt program commencing in location
2 is responsible for finding the signal causing the interruption, for removing
the condition, and for returning to the original program. Exit from the interrupt
program, back to the original program, can be accomplished by a jmp i 1
instruction.

INPUT-OUTPUT HALT (IOH)

The input-output halt facility allows the computer to be halted during the time
that external devices are operating and then restarted by a pulse from the
device. The I0H state occurs when Type 137 Analog-to-Digital Converter is
operating and may be wired to occur during the operation time of any other
device.

A specific iot instruction initiates operation of an 1/0 device. The 1/0 device
supplies an I/0-Halt pulse to the I0H that inhibits program advance. When the
1/0 device completes the programmed operation, it produces a Restart pulse

28

which is received by the I0H to clear the I0H mode and to allow program
advance to the next instruction.

DATA BREAK

This facility allows transmission of data directly between an external device
and core memory, via the memory buffer register. During a data break, the
program is halted but the contents of the accumulator, instruction register,
and program counter are not disturbed. Therefore, when a data transfer is
complete, the program resumes from exactly the same condition which existed
before the break.

Data breaks require receipt of three control signals: Break Request, Transfer
Direction, and Increment Request. When a Break Request signal is received
from an 1/0 device, the computer completes execution of the instruction in
progress and then enters the data break mode. lf a jmp or jms instruction is in
progress when the request is received, the current instruction is completed,
and the next instruction is performed before the break is instituted. The direc
tion of transfer and the core memory address of each transferred word are
specified by the 1/0 device when the break request is made. The Transfer
Direction signal controls the read or write cycle of the computer, and the
address is set directly into the memory address register. Data transfer then
takes place between the memory buffer register and the l/0 device. When the
transfer is completed, the 1/0 device signals the computer to leave the break
mode by removing the Break Request. If additional transfers are to occur, a
new address must be specified to the memory address register or an Increment
Request signal must be supplied to transfer data at sequential core memory
location. Figure 10 indicates the timing of these signals. The levels of these
signals are:

Signal -3 Volts 0 Volts
Break Request No request Request Break
Transfer Direction Data into PDP-5 Data out of PDP-5
Increment Request Request increment No request
Address 0 1
Data 0 1

Break Request, Transfer Direction, and Address Information signals should be
supplied simultaneously for the first transfer. When the computer enters the
data break mode, it supplies an Address Accepted pulse to the 1/0 device.
When the direction of transfer is into the PDP-5 from the device, data must
be supplied to the memory buffer register input no later than 1 microsecond
after the Address Accepted pulse occurs and must be present for more than
2 microseconds. To discontinue the data break mode, the Break Request signal
must be removed no later than 4 microseconds after the address accepted
pulse occurs, or the computer will enter another cycle in the data break mode.
The Transfer Direction signal must be present when the break request is made
and cannot be changed until 4 microseconds after the Address Accepted pulse

29

occurs. Address information must also be present when the request is made,
but can be changed any time after the address is accepted. To transfer data
at sequential core memory locations the first transfer address must be sup
plied to the memory address register by the 1/0 device, and successive
addresses can be specified by the Increment Request signal. This signal cannot
occur before 1 microsecond after the address is accepted for the first transfer
and must be present no later than 4 microseconds after the address is accepted.
The maximum and minimum limits of this signal timing are indicated in
Figure 10.

Figure 10 Data Break Timing

Instructions
Two types of instructions are associated directly with the input-output controls:
those concerning the input-output skip and those concerning the program
interrupt. The skip instructions are listed in Chapter 4 of this handbook with
the instructions for the device whose status is checked. There are two instruc
tions for the program interrupt. They are:

30

ion - 6001 - Turn interrupt on and enable the computer to respond to an
interrupt request. When this instruction is given, the computer
executes the next instruction, then enables the interrupt. The
additional instruction allows exit from the interrupt subroutine
before allowing another interrupt to occur.

iof - 6002 - Turn interrupt off i.e. disable the interrupt.

Programming
When an interrupt request is acknowledged, the interrupt is automatically
disabled by the program interrupt circuits (not by instructions). The next
instruction is taken from core memory location 2. Usually the instruction
stored in location 2 is a jmp, which transfers program control to a subroutine,
which services the interrupt. At some time during this subroutine an ion instruc
tion must be given. The ion can be given at the end of the subroutine to allow
other interrupts to be serviced after program control is transferred back to the
original program. In this application, the ion instruction immediately precedes
the last instruction in the routine. A delay of one instruction (regardless of
length) is inherent in the ion instruction to allow transfer of program control
back to the original program before enabling the interrupt. Usually exit from
the subroutine is accomplished by a jmp i 1 instruction.

The ion can be given during the subroutine as soon as it has determined the
1/0 device causing the interrupt. This latter method allows the subroutine,
which is handling a low priority interrupt, to be interrupted, possibly by a high
priority device. Programming of an interrupt subroutine, which checks for
priority and allows itself to be interrupted, must make provisions to relocate
the contents of the program counter stored in location 1; so that if interrupted,
the contents of the PC during the subroutine are stored in location 1, and the
contents of the PC during the original program are not lost.

31

CHAPTER 4

INPUT-OUTPUT DEVICES

Use of the standard and optional equipment in a PDP-5 system is discussed
in this section. The Teletype equipment is the only standard 1/0 device sup
plied with PDP-5. All other equipment is purchased at the option of the cus
tomer to compose a system tailored to his computing needs.

Teletype Model 33 ASR
The standard Teletype Model 33 ASR (automatic send-receive) can be used
to type in or print out information at a rate of up to ten characters per second,
or to read in or punch out perforated paper tape at a ten characters per second
rate. Signals transferred between the 33 ASR and the keyboard printer control
logic are standard serial, 11 unit code Teletype signals. The signals consist of
marks and spaces which correspond to idle and bias current in the Teletype
and zeros and ones in the control and computer. The start mark and sub
sequent eight character bits are one unit of time duration and are followed
by the stop mark which is two units. Appendix 2 lists the character code for
the Teletype. Punched tape format is as follows:

Ta~e Channel
87 654 s 321

Binary Code
10 110 100 (Punch = 1)

Octal Code 2 6 4

Toggle switches on the right side of the Teletype console control primary power
and allow the 33 ASR to communicate with the computer in on line operation
or to prepare tapes, etc., without disturbing the computer program in local
operations. Separate pushbutton switches on the punch are used to control
power, release the mechanism to allow insertion and removal of tape, and allow
backspacing to correct errors. A three position switch on the reader advances
the tape, stops the tape, or allows free wheeling of the mechanism for tape
insertion and removal.

KEYBOARD/READER

The keyboard and tape reader control contains an 8-bit buffer (LUI) which
assembles and holds the code for the last character struck on the keyboard

32

or read from the tape. The Keyboard flag becomes a 1 to signify that a character
has been assembled and is ready for transfer to the accumulator. When the
flag is a 1, a relay contact opens to disable the reader. This flag is connected
to the computer program interrupt and input-output skip facility. It is cleared
by command. Instructions for use in supplying data to the computer from
the Teletype are:

ksr - 6031 - Skip if Keyboard flag is a 1.
kcc - 6032 - Clear AC and clear Keyboard flag.
krs - 6034 - Read keyboard buffer static. (This is a static command in that

neither the AC nor the Keyboard flag is cleared.)
C(LUI) V C(AC)4-I I = > C(AC)4-I I

krb - 6036 - Clear AC, clear Keyboard flag, and read the contents of the
keyboard buffer into C(AC)4_11 •

A program sequence loop to look for a Teletype keyboard or tape reader
character can be written as follows:

200 6031 look,
201 5200
202 6036

ksf
jmp look
krb

TELEPRINTER/PUNCH

/skip when LUI is full

/read LUI into AC

The teleprinter and tape punch control contains an 8-bit buffer (LUO) which
receives a character to be printed and/or punched from AC bits 4 through 11.
The LUO receives the 8-bit code from the AC in parallel and transmits it to
the teleprinter and tape punch serially. When the last bit has been transmitted,
the Teleprinter flag is set to 1. This flag is connected to the computer program
interrupt and input-output skip facility. It is cleared by programmed command.
The instruction list for printing or punching is:

tsf - 6041 - Skip if Teleprinter flag is a 1.
tcf - 6042 - Clear Teleprinter flag.
tpc - 6044 - Load the LUO from the C(AC)4_11 and print and/or punch the

character.
tis - 6046 - Load the LUO from the C(AC)4. 11 , clear the Teleprinter flag,

and print and/or punch the character.

A program sequence loop to print and/or punch a character when the LUO
is free can be written as follows:

free, tsf
jmp free
tis

/skip when free

/load LUO, print or punch

High Speed Perforated
Tape Reader and Control Type 750

This device senses 8-hole perforated paper or Mylar tape photoelectrically
at 300 characters per second. The reader control requests reader movement,
transfers data from the reader into the reader buffer (RB), and signals the

33

computer when incoming data is present. Reader tape movement is started
by a reader control request to simultaneously release the brake and engage
the clutch. The 8-bit reader buffer sets the Reader flag to 1 when it has been
filled from the reader and transfers data into bits 4 through 11 of the accu
mulator under computer command. The Reader flag is connected to the
computer program interrupt and input-output skip facility. It is cleared by IOT
pulses. Computer instructions for the reader are:

rsf - 6011 - Skip if Reader flag is a 1.
rrb - 6012 - Read the contents of the reader buffer and clear the Reader

flag. (This instruction does not clear the AC.)
C(RB) V C(AC)4-I I = > C(AC)4-l 1

rte - 6014 - Clear Reader flag and reader buffer, fetch one character from
tape and load it into the reader buffer, and set the Reader flag
when done.

A program sequence loop to look for a reader character can be written as
follows:

look,
rte
rsf
jmp look
cla
rrb

/fetch character from tape
/skip when RB full

/load AC from RB

High Speed Perforated
Tape Punch and Control Type 75A

The Teletype BRPE paper tape punch perforates 8-hole tape at 63.3 characters
per second. Information to be punched on a line of tape is loaded on an 8-bit
punch buffer (PB) from the AC bits 4 through 11. The Punch flag becomes
a 1 at the completion of punching action, signaling that new information may
be read into punch buffer (PB) (and punching initiated). The Punch flag is
connected to the computer program interrupt and input-output skip facility.
The punch instructions are:

psf - 6021 - Skip if Punch flag is a 1.
pct - 6022 - Clear Punch flag and punch buffer.
ppc - 6024 - Load the punch buffer from bits 4 through 11 of the AC and

punch the character. (This instruction does not clear the Punch
flag or punch buffer.)
C(AC)4-I I V C(PB) = > C(PB)

pis - 6026 - Clear the Punch flag, clear the punch buffer, load the punch
buffer from the contents of bits 4 through 11 of the accumu
lator, punch the character, and set the Punch flag to 1 when
done.

A program sequence loop to punch a character when the punch buffer is "free"
can be written as follows:

free, psf
jmp free
pis

/skip when free

/load PB from AC and punch character

34

Analog-To-Digital Converter Type 137

This converter operates in the conventional successive approximation manner,
using the memory buffer register as a shift register and using the accumulator
as the buffer register. An IOT pulse from the device selector starts the con
version and initiates an input-output halt. At the end of the conversion the
converter produces a Restart pulse which is supplied to the input-output halt
facility. At this time the digital equivalent of the Analog Input signal is con
tained in the accumulator as a 12-bit binary number. Insignificant magnitude
bits can be rotated out of the AC by an instruction such as 7110 (rar and ell).

To save program running time, the converter should be adjusted to provide
only the accuracy required by the program application. Instructions for adjust
ing the accuracy are given in the maintenance manual covering Type 137.
Maximum error of the converter is equal to the switching point error plus the
quantization error. Maximum quantization error is equal to the least significant
bit. Switching point error and total conversion time are functions of the adjusted
accuracy of the converter.

Adjusted Switching
Bit Point

Accuracy
6
7
8
9

10
11

Error
±1.6%
±0.8%
±0.4%
±0.2%
±0.1%
±0.05%

Conversion
Time per Bit

(in µ,sec)
3.5
4.0
4.5
5.0
6.0

11.0

Total Conversion
Time

(in 0 sec)
24.5
32.0
40.5
50.0
66.0

132.0

There is only one instruction associated with the converter:
adc - 6004 - Convert the Analog Input signal to a digital value.

Card Reader and Control Type 451

The control of the card reader differs from the control of other input devices,
in that the timing of the read-in sequence is dictated by the device. Once the
command to fetch a card is given, the card reader reads all 80 columns of
information in sequence. To read a column, the program must respond to a flag
set as each new column is started. The instruction to read the column must
come within 2.3 milliseconds. The commands for the card reader are:

crsf - 6632 - Skip if Card Reader flag is a 1. If a card column is present for
reading, the next instruction is skipped.

cers - 6634 - Card equipment read status. Reads the status of the Card
Reader flag and status levels into bits 6 through 9 of the AC.

crrb - 6671 - Read the card column buffer information into the AC and clear
the Card Reader flag. One crrb reads alphanumeric information.
Two crrb instructions read the upper and lower column binary
information.

35

crsa - 6672 - Select a card in alphanumeric mode. Select the card reader and
start a card moving. Information appears in alphanumeric form.

crsb- 6674 - Select a card in binary mode. Select the card reader and start
a card moving. Information appears in binary form.

Upon instruction to read the card reader buffer, 6 information bits are placed
into AC bits 6 through 11. Alphanumeric (or Hollerith) information on the card
is encoded or represented with these six bits. The binary mode enables the
12 bits (or rows) of each column to be obtained. The first read buffer instruc
tion transfers the upper six rows (Y, X, 0, 1, 2, and 3); the second instruction
transfers the lower six rows (4, 5, 6, 7, 8, and 9). The mode is specified with
the card read select instruction. The mode can be changed while the card is
being read.

Card Punch Control Type 450

The card punch dictates the timing of a read-out sequence, much as the card
reader controls the read-in timing. Once a card leaves the hopper, all 12 rows
are punched at intervals of 40 milliseconds. Punching time for each row is 24
milliseconds, leaving 16 milliseconds to load the buffer for the next row. A
flag indicates that the buffer is ready to be loaded. The commands for the
card punch control are:

cpsf - 6631 - Skip if Card Punch flag is a 1. The Card Punch flag indicates
the punch buffer is available, and should be loaded.

cers - 6634 - Card equipment read status. Reads the status of the Card
Punch flag and the Card Punch error level into the contents
of bits 10 and 11 of the AC, respectively.

cpcf - 6641 - Clear Card Punch flag.
cpse - 6642 - Select the card punch. Transmit a card to the SO-column punch

die from the hopper.
cplb - 6644 - Load the card punch buffer from the C(AC). Seven load instruc-

tions must be given to fill the buffer.

Since 12 bits are transmitted with each iot instruction, 7 iot instructions must
be issued to load the 80-bit row buffer. The first six loading instructions fill
the first 72 bits (or columns); the seventh loads the remaining 8 bits of the
buffer from AC bits 4 through 11.

After the last row of punching is complete, 28 milliseconds are available to
select the next card for continuous punching. If the next card is not requested
in this interval, the card punch will stop. The maximum rate of the punch is 100
cards per minute in continuous operation. A delay of 1308 milliseconds follows
the command to select the first card; a delay of 108 milliseconds separates the
punching of cards in continuous operation.

The Card Punch flag is connected to the program interrupt and to bit 10 of
the cers instruction. Faults occurring in the punch are detected by status bit
11 of the cers and signify the punch is disabled, the stacker is full, or the
hopper is empty.

36

A program sequence to punch 12 rows of data on a card can be written as
follows, assuming the data to be punched in each row is stored in seven con
secutive core memory locations beginning in location 100. The program begins
in register pnch.

pnch,

lpl,

lp2,

loc,
rent,
gpct,
teml,
tem2,

cpse
cla
tad loc
dca 10
tad rent
dca teml
cla
tad gpct
dca tem2
cpsf
jmp :-1
cla
tad i 10
cplr
isz tem2
jmp lp2
isz teml
jmp lpl
hit
77

-14
-7
0
0

/select the card

/initialize the card image

/initialize the row counts, 12

/initialize the 7 groups per row

/sense punch load availability

/7 groups of 12 bits per row
/load buffer command

/test for 12 rows

/end punching 1 card
/location of card image
/12 rows per card
/7 groups per row
/row counter
/group counter

Automatic Line Printer And Control Type 64
The line printer can print 300 lines of 120 characters per minute. Each char
acter is selected, from a set of 63 available, by means of a 6-bit binary code
(Appendix 2 lists the character speoified by each code). Each 6-bit code is
loaded separately into a printing buffer from bits 6 through 11 of the AC. The
printing buffer is divided into two sections; each section can hold 120 codes.
Therefore, 120 load instructions can be given -to fill one section of the printing
buffer. A print command causes the characters specified by the contents of the
print buffer section last loaded to be printed on one line. As printing is in prog
ress, the alternative section of the printing buffer can be reloaded. After the
last character in a line is printed, the section of the printing buffer from which
characters were just printed is cleared automatically. The section of the printing
buffer that is loaded and printed is alternated automatically within the printer
and is not program specified.

A 3-bit format register within the printer is loaded from bits 9 through 11
of the AC during a print command. This register selects one of eight channels
of a perforated tape to control spacing of the paper. The tape moves in syn
chronism with the paper until a hole is sensed in the selected channel to halt
paper advance. A recommended tape has the following characteristics:

37

Channel
0
1
2
3
4
5

6 or 7

Spacing
1 line
2 lines
3 lines
¼ page
½ page
¾ page
top of form

Loading of a 6-bit code into the printing buffer requires approximately 1.6
milliseconds. When the transfer of a code is completed, the Line Printed flag
rises to indicate that the printer is ready to receive another code. The Line
Printer flag is connected to the program interrupt facility.

The iot microinstructions which command the line printer are:
let - 6652 - Clear Line Printer flag.
lpr - 6655 - Clear the format register, load the format register from

the C(AC) 9- 1 1, print the line contained in the section of
the printer buffer loaded last, and advance the paper in
accordance with the selected channel of the format tape
if the C(AC)s = 1. If the C(AC)8 = -o, the line is printed
and paper advance is inhibited.

lsf - 6661 - Skip if Line Printer flag is a 1.
lcb - 6662 - Clear both sections of the printing buffer.
lld - 6664 - Load printing buffer from the C(AC) 6- 1 1•

The following routine demonstrates the use of these commands in a sequence
which prints an unspecified number of 120-character lines. This sequence
assumes that the printer is not in operation, that the paper is manually posi
tioned for the first line of print, and that one-character words are stored in
sequential core memory locations beginning at 2000. The "print" location
starts the routine.

print,

lrpt,

loop,

loc,
cnt,

lcb
cla
tad loc
dca 10
tad cnt
dca temp
lsf
jmp loop
tad i 10
lld
cla
isz temp
jmp loop
tad frm
lpr
cla
jmp lrpt
1777

-170

/initialize printing buffer

/load initial character address
/store in auto-index register
/initialize character counter

/wait until printing buffer ready

/load AC from current character address
/load printing buffer

/test for 120 characters loaded

/load spacing control and
/print a line
/ready for next line
/jump to print another line
/initial character address -1
/character counter

38

temp,
frm,

0
10

/current character address
/spacing control and format

Oscilloscope Display Type 348

Type 348 is a two axis digital-to-analog converter and an intensifying circuit,
which provides the Deflection and Intensify signals needed to plot data on an
oscilloscope. Coordinate data is loaded into an X buffer (XB) or a Y buffer
(YB) from bits 2 through 11 of the accumulator. The binary data in these
buffers is converted to a -10 to O volt Analog Deflection signal. The 30 volt,
10-microsecond Intensify signal is connected to the grid of the oscilloscope
CRT. Points can be plotted at approximately a 25-kilocycle rate. The instruc
tions for this display are:

dcx - 6051 - Clear X coordinate buffer.
dxl - 6053 - Clear and load X coordinate buffer.

C(AC) 1_ 11 = > C(XB)
dcy - 6061 - Clear Y coordinate buffer.
dyl - 6063 - Clear and load Y coordinate buffer.

C(AC)1_ 11 = > C(YB)
dix - 6054 - Intensify the point defined by the contents of the X and Y coordi

nate buffers.
diy - 6064 - Intensify the point defined by the contents of the X and Y coordi

nate buffers.
dxs - 6057 - Executes the combined functions of dxl followed by dix.
dys - 6067 - Executes the combined functions of dyl followed by diy.

The following program sequence to display a point begins at location 200, and
assumes that the X and Y coordinate data is stored in absolute addresses 176
and 177.

176
177
200
201
202
203
204
205

X,
Y,

7200 beg,
1176
6053
7200
1177
6067

cla
tad X
dxl
cla
tad Y
dys

/load AC with X
/clear and load XB

/load AC with Y
/clear and load YB, and display point

Precision CRT Display Type 30N

Type 30N functions are similar to those of the Type 348 Oscilloscope Display in
plotting points on a self-contained 16-inch cathode-ray tube. A 3-bit brightness
register is contained in Type 30N to control the amplitude of the Intensify
signal supplied to the CRT. This register is loaded by jam transfer (transfer
ones and zeros so that clearing is not required) from the AC by the instruction:

dlb - 6074 - Load brightness register (BR) from bits 9
through 11 of the AC.
C(AC)9-I I = > C(BR)

39

All other instructions and the instruction sequence are similar to those used in
the Type 34B.

Light Pen Type 370

The light pen is a photosensitive device which detects the presence of infor
mation displayed on a CRT. If the light pen is held in front of the CRT at a
point displayed, the Display flag will be set to a 1. The commands are:

dsf - 6071 - Skip if Display flag is a 1.
def - 6072 - Clear the Display flag to a 0.

The Display flag is connected to the input-output skip facility, and to the
program interrupt.

Incremental Plotter and Control Type 350

Four models of California Computer Products Digital Incremental Recorder
can be operated from a DEC Type 350 Incremental Plotter Control. Character
istics of the four recorders are:

Model
563
564
565
566

Step
Size

(inches)
0.01
0.005
0.01
0.005

Speed
(steps/minute)

12,000
18,000
18,000
18,000

Paper
Width

(inches)
31
31
12
12

The principles of operation are the same for each of the four models of Digital
Incremental Recorders. Bidirectional rotary step motors are employed for both
the X and Y axes. Recording is produced by movement of a pen relative to the
surface of the graph paper, with each instruction causing an incremental step.
X-axis deflection is produced by motion of the drum; Y-axis deflection, by
motion of the pen carriage. Instructions are used to raise and lower the pen
from the surface of the paper. Each incremental step can be in any one of
eight directions through appropriate combinations of the X and Y axis instruc
tions. All recording (discrete points, continuous curves, or symbols) is accom
plished by the incremental stepping action of the drum and carriage. Front
panel controls permit single-step or continuous-step manual operation of the
drum and carriage, and manual control of the pen solenoid. The recorder and
control are connected to the computer program interrupt and input-output
skip facility.

Instructions for the recorder and control are:
plsf - 6501 - Skip if Plotter flag is a 1.
plcf - 6502 - Clear Plotter flag.
plpu - 6504 - Plotter pen up. Raise pen off of paper.
plpr - 6511 - Plotter pen right.
pldu - 6512 - Plotter drum (paper) upward.

40

pldd - 6514 - Plotter drum (paper) downward.
pip! - 6521 - Plotter pen left.
pldu - 6522 - Plotter drum (paper) upward. (Same as 6512.)
plpd - 6524 - Plotter pen down. Lower pen on to paper.

Program sequence must assume that the pen location is known at the start of
a routine since there is no means of specifying an absolute pen location· in
an incremental plotter. Pen location can be preset by the manual controls on
the recorder. During a subroutine, the PDP-5 can track the location of the pen
on the paper by counting the instructions that increment the pen and the drum.

Automatic Magnetic Tape Control Type 57 A

This control, operating through interface logic, such as Type 520, 521, or 522,
transfers information between PDP-5 and up to eight tape transports. Data
transmission format is compatible with IBM high and low densities (800-556
and 200 characters per inch, respectively) in either BCD or binary parity modes.
Transports can be DEC Type 50 or Type 570, or IBM Types 729 II, IV, V, VI,
or (with certain restrictions) the 7330. The transports are capable of operating
at the following densities: 200 cpi only, Type 50; 200 and 556 cpi only, Type
570 or IBM Types 729 II and 7330; all three densities, IBM Type 729 V.

The following functions are controlled by various combinations of iot
instructions:

Write
Write End of Fi le
Write Blank Tape
Read
Read Compare
Space Forward
Space Backward
Rewind
Rewind/Unload
Write Continuous
Read Continuous

Tape transport motion is governed by one of two control modes: normal, in
which tape motion starts upon command and stops automatically at the end of
the record; and continuous, in which tape motion starts on command and con
tinues until stopped by the program as a function of synchronizing flags if
status conditions appear.

All data transfers are under control of the PDP-5 data break facility; and com
mands issued during a transfer control, operate, and monitor Type 57A func
tions by means of the PDP-5 program interrupt facility. Assembled, 12-bit,
PDP-5, data words pass between the computer MBR and the control final data
buffer register. The core memory address of each word transferred is specified
to the computer MAR by the control current address register. Use of the pro
gram interrupt facility allows the main computer program to continue during
long tape operations without running in a loop which waits for Tape flags. The

41

program interrupt subroutine for Type 57 A loads the AC with numbers, then
issues iot instructions to the control. Specific tape control modes are interpreted
from the contents of the AC during some iot instructions. In addition, the cur
rent address (CA) register and the word count (WC) registers of the control
are loaded from the AC.

Tape functions can be monitored by the program either during or at the end
of an operation. They can be altered during operation to a limited degree. The
control senses for several types of possible error condition throughout an
operation.The results of this sensing can be interrogated by the subroutine at
any time.

Two crystal clocks are used to generate one of three character writing rates,
depending on the density (200, 556, 800) specified by the programmer. In
writing or reading, a composite 12-bit binary word passes between the com
puter and the control; that is, bits O through 5 constitute one tape character,
and bits 6 through 11 constitute a second tape character.

In normal operation, six iot commands initiate reading or writing of one record.
When the word count exceeds the number stored in the WC, the transport is
stopped and the control is free for another command. In continuous operation,
any number of records is written or read without the need for further transport
commands except stop.

The following automatic safeguards are inherent in the design of Type 57A:

END POINT: If the end point is reached during reading or writing, the control
ignores the end point and finishes the operation (ample tape is allowed).
Beyond the end point, tape commands specifying forward direction are illegal,
and the tape will not respond to such commands. If the end point is passed
during spacing, the transport is shut down regardless of word count.

LOAD POINT: If the load point is reached during back spacing, the transport
is stopped regardless of word count. At load point, a space back command is
legal, and the tape may be unloaded. When the write command is given at load
point, the tape is erased 3 inches beyond the load point before writing the first
record. After giving a read command at the load point, the read logic is dis
abled until the load point marker is past the read head before the read logic
is turned on.

WRITE LOCK RING: Without the write lock ring in the tape reel, writing is
illegal and the trnnsport will not respond to a write command.

FORMAT CONTROL: If the PDP-5 halt command is given during normal read
ing or read comparing, the tape proceeds to the end of record, and the control
shuts down the transport. If a halt is given in continuous reading or read com
paring, the transport will proceed to end of tape and shut down. If a halt
command is given in normal spacing, the transport will proceed to EOR and
shut down. If halt is given during continuous spacing, the transport will pro
ceed until WC overflows or until it senses a file marker, load point, or end
point, then shut down.

42

If halt is given during writing in the normal mode, the last word to be trans
ferred is written, the rest of the record is written as zeros, and the transport
is shut down. If halt is given during writing in the continuous mode, the record
is completed; then zeros are written to the end of the tape. If a WC overflow
occurs during a normal read or read compare, the transport proceeds to EOR
before shutting down.

The functions of Type 57 A Automatic Magnetic Tape Control are controlled by
combinations of the following iot instructions:

mscr - 6701 - Skip if the tape control Ready (TCR) level is 1. A 1 is added
to the contents of the program counter if the tape control is
free to accept a command. The TCR flag is connected to the
program interrupt.

med - 6702 - Disable the TCR flag from the program interrupt and clear
command register. Clear Word Count Overflow (WCO) flag.
Clear End of Record (EOR) flag. This instruction should be
immediately preceded by the two instructions cla and tad
(4000) to obtain the operation indicated.

mts - 6706 - Disable the TCR flag from the program interrupt, turn off the
WCO flag and EOR flag and select the unit, the mode of parity,
and the density from the contents of the AC. The AC bit as
signments are:

AC 1

AC,

(Type 521 and 522 interface only)
O=high sense level
1 = low sense level

0=200 or 556 density
1 =800 or 556 density

0=200 density
1 = 556 density

AC 2

0
0
1
1

AC8

0
1
0
1

0 = even parity (BCD)
1 = odd parity (binary)

Density
200
556
800
556

AC9-II
These three bits select one of eight tape units, ad-
dresses 0

msur - 6711 - Skip if the tape transport is ready (TTR). The selected tape
unit is checked, using this command, and must be free before
the following mtc command is given.

mnc - 6712 - Terminate the continuous mode. This instruction clears the
AC at completion. It should be immediately preceded by the

43

two instructions cla and tad (4000) to obtain the operation
indicated.

mtc - 6716 - Place C(AC) 3_6 in the tape control command register and start
tape motion. Bit 6 selects motion mode.
AC6

0 = Normal
1 = Continuous

AC3-5 are decoded as follows:
0 = no operation
1 = rewind
2 = write
3 = write end of file (EOF)
4 = read compare
5 = read
6 = space forward
7 = space backward

mswf - 6721 - Skip if the WCO flag is a 1. The flag is connected to the pro
gram interrupt.

mdwf - 6722 - Disable WCO flag.
mcwf - 6722 - Clear WCO flag. This instruction should be immediately pre

ceded by the two instructions cla and tad (2000) to obtain
the operation indicated.

mewf - 6722 - Enable WCO flag. This instruction should be immediately pre
ceded by the two instructions cla and tad (4000) to obtain
the operation indicated.

miwf - 6722 - Initialize WCO flag. This instruction should be immediately
preceded by the two instructions cla and tad (6000) to obtain
the operation indicated.

msef - 6731 - Skip if the EOR flag is a 1. This flag is connected to the pro
gram interrupt.

mdef - 6732 - Disable ERF.
meed - 6732 - Clear ERF. This instruction should be immediately preceded

by the two instructions cla and tad (2000) to obtain the
operation indicated.

meet - 6732 - Enable ERF. This instruction should be immediately preceded
by the two instructions cla and tad (4000) to obtain the
operation indicated.

mief - 6732 - Initialize ERF, clear and enable. This instruction should be
immediately preceded by the two instructions cla and tad
(6000) to obtain the operation indicated.

mtrs - 6734 - Read tape status bits into the contents of the AC. This
instruction should be immediately preceded by a cla instruc
tion to obtain the operation indicated. The bit assignments
are:

0 = data request late
1 = tape parity error
2 = read compare error
3 = end of File flag set
4 = write lock ring out
5 = tape at load point

44

6 = tape at end point
7 = tape near end point (Type 520)
7 = last operation write (Type 521 and 522 interfaces)
8 = tape near load point (Type 520)
8 = write echo (Type 522 interface)
8 = B control using transporting (Type 521 interface

with multiplex transport)
9 = transport rewinding

10 = tape miss character

mcc - 6741 - Clear CA and WC.
mrwc - 6742 - Transfer C(AC)0_ 11 to C(WC)0_ 11

mrca - 6744 - Transfer C(CA)0_ 11 to C(AC)0_ 11 • This instruction should be
immediately preceded by a cla instruction to obtain the
operation indicated.

mca - 6745- Clear CA and WC, and transfer C(AC) 0_11 to C(CA)0_ 11 •

All operations begin with the program events indicated in the following basic
program sequence. When the main program branches to this sequence (having
received, for example, a high priority data break request f~om the tape control),
the control and transport are interrogated for availability (mscr, msur) and
if ready are instructed to carry out the specified task (mts, mtc). If the task
is one of the eight listed in the instruction list under mtc, the mscr instruction
completes the program sequence; if not, the program branches at "begin"
to another routine (write, read, etc.), returning afterwards to "wait" in the
basic program.

begin,

wait,

mscr
jmp.-1

cla
tad ia-1
mca
cla
tad-n+ 1

mrwc
cla
tad (*)
mts

msur
jmp.-1

mtc

mscr
jmp.-1

/skip if tape control free
/tape control not free, jump back to mscr
/instruction

/load AC with initial address minus one
/transfer AC to CA

/load AC with complement of number of
/words to be transferred plus one
/transfer AC to WC

/load AC with selected information*
/transfer AC to control with parity density
/and unit number
/skip if tape transport ready
/transport not ready, jump back to msur
/instruction
/transfer AC to control with command
/and tape motion mode
/wait for tape function to complete
/tape function not complete, jump back
/to mscr

hit /operation completion

* A set of mnemonics that specifies all tape operations is furnished with the Type 57 A.

45

When programming in the interrupt mode, the TCR flag causes an interrupt
in the operating program and the flag may be tested by using the mscr instruc
tion. The TCR flag must be cleared with the med command before dismissing
the interrupt. WCO and ERF flags must be disabled before dismissing the
interrupt, with the option of clearing or not clearing the flags.

46

CHAPTER 5

INTERFACE ELECTRICAL
CHARACTERISTICS

One of the strong features of the PDP-5 is the relative ease of input-output
device connection. Input-output devices can be connected into the system up
to the limits specified in this section. Refer to the Digital Modules catalog
A-705 for an explanation of standard DEC signals and loading definitions
used in this section.

A coordinate system is used to locate cabinets, racks, modules and cable con
nectors, and terminals in the PDP-5. Cabinets are numbered beginning with
the cabinet containing the operator console. Each position on the front of the
cabinet is assigned a capital letter, beginning with A at the top, as indicated
on Figure 11. Modules are numbered from 1 through 25 from left to right
in a rack, as viewed from the wiring side. Connectors are numbered from 1
through 6, from left to right as viewed from the front of the machine. Blank
module and connector locations are numbered. Terminals on a module con
nector are designated by capital letters from top to bottom, omitting G, I, 0,
and Q. Therefore, 1D05F is in cabinet 1, the fourth location from the top (D),
the fifth module from the left (05), and the six (F) terminal from the top of
the module.

Two 50-terminal cable connectors are available on the connector panel (lJ0l
and 1J02) for connection to 1/0 devices. Additional connector locations (1J03-
1J05) are available for installation of connectors, as needed. Corresponding
terminals of lJ0l and 1J02 are connected together and routed to signal origins
or destinations in the machine logic. In the following discussions, origins of
output signals and destinations of input signals are given with the terminal
connection at 1J02. In this manner, the connections of both lJ0l and 1J02
are explained, and wiring to a new signal connector can be planned for bus
connection to 1J02 or direct connection to the logic. Connections to lJ0l and
1J02 are summarized in Appendix B.

Device Selector

The device selector function is performed by a Type 4605 Pulse Amplifier for
each 1/0 device or external register, which is individually selected. Each 1/0
device added to the system must contain a Type 4605 module, which has been

47

l· . . 22¼"---

LOGIC tC

LOGIC lD

.Li:IGIC lF
6fJ ,,

t1t:::======::1t
~TQR CON$0LE

Figure 11 Component Location and Installation Diagram

48

prepared to select the device for a given combination of bits 3 through 8 of
an iot instruction. When selected in this manner, Type 4605 produces IOT
pulses related to the IOP pulses which are generated in accordance with the
presence of ones in bits 9, 10, and 11 of the iot instruction. These IOT pulses,
in turn, must be wired to initiate operation of the 1/0 device.

Therefore, cable connections must supply inputs to each Type 4605 from both
the 1 and O output of memory buffer register bits 3 through 8 (12 lines) and
from the three IOP generator outputs (6 lines or 3 twisted pairs). Connections
are then made directly from the three output terminals of Type 4605 directly
to the logic circuits of the 1/0 device. The input and output terminals of
Type 4605 module are indicated in the logic diagram shown in Figure 12.

Type 4605 Pulse Amplifier modules are delivered with a jumper wire from
both complementary inputs of each MB bit connected to one of the six inputs
of the -AND diode gate. (Jumpers are indicated as dotted lines in Figure 12).
The user must remove one jumper from each -AND gate input to establish the
appropriate select code. (Both jumpers may be removed if the selection code
requires it.) This system allows select codes to be changed in the module and
not in cable connections. As delivered, these modules are also wired to pro
duce negative IOT pulses. Positive IOT pulses can be obtained by reversing
both jumper wire connections of a pulse transformer secondary winding.

Note that the input connections to Type 4605 must be as specified in Figure
12 and cannot be modified to operate more than one pulse amplifier (per
module) at the same time. Should an 1/0 device require coincident positive
and negative IOT pulses, two separate Type 4605 modules must be used, or
an IOT pulse can be used to trigger external positive and negative pulse ampli
fiers. Note also that positive IOT pulses cannot be inverted to produce negative
IOT pulses but can be used to trigger a pulse amplifier, such as Type 4604
or 4606 modules.

Output pulses from a Type 4605 Pulse Amplifier are standard for the DEC
4000 Series systems modules (2.5 volts, 0.4 microsecond). Each output is
capable of driving 16 units of pulse load.

Memory Buffer Register

Bits 3 through 8 of an iot instruction are used to select the 1/0 device
addressed by the instruction. During the F cycle, the instruction word is read
from memory and placed in the memory buffer register. Complementary out
puts from flip-flop bits MBi-a are wired to input terminals of each device
selector module connector. When the device selector is located within the
1/0 device, these MB lines must be connected to a cable connector.

49

MB; °t;rO-,
MB; o;r-0-""
MB:~ ..

Figure 12 Type 4605 Pulse Amplifier Logic Diagram

50

$YSTEM
o GROUND

The terminal locations for this connection are:
Bus Driver Bus Driver

Signal Origin Output Connection Signal Origin Output Connection

MBO 1B05L 1F09L 1J02-27 ;;r- 1B05K 1F09N 1J02-28
3 3

MBO
4 1B06L 1F09T 1J02-29 MB 1

4 1B06K 1F09R 1J02-30

MBO
5

1B07L lFl0L 1J02-31 MB 1
5

1807K lFl0N 1J02-32

MB O 1B08L lFl0T 1J02-33 MB l 1B08K lFl0R 1J02-34
6 6

MB O
7

1B09L lFllL 1J02-35 MB l
7

1B09K lFllN 1J02-36

MBO
8

lBlOL lFllT 1J02-37 MB l
8 lBl0K lFllR 1J02-33

Memory buffer register outputs are wired from their point of origin in a Type
4206 Triple Flip-Flop module at locations 1805 through 1 Bl O to connectors
at 1 F09 through 1 Fl 1. Normally, locations 1 F09 through 1 Fll contain dummy
plugs which jumper terminals corresponding to the input and output of a
Type 1684 Bus Driver. Therefore, when sufficient device selectors are added to
the system to overload the normal driving capabilities of the Type 4206
modules, these dummy plugs can be removed and replaced by Type 1684
Bus Driver Modules. Each Type 4206 output can drive four Type 4605 Pulse
Amplifier modules in the device selector. When the bus drivers are inserted in
the system, each MB signal can drive at least 12 Type 4605 Pulse Amplifier
modules, since Type 1684 can supply + 15 milliamperes, and each Type 4605
requires 1.25 milliamperes shared among the grounded inputs. Under most
circumstances, a single Type 1684 output can drive more than 12 Type 4605
modules because the load presented by a Type 4605 is shared by Type 1684
modules that drive it. To determine the maximum number of Type 4605 mod
ules which can be driven by Type 1684 modules look for the condition where
the minimum number of bus drivers is holding the maximum number of out
puts at ground level. Under these conditions, the current delivered by each
driver in a Type 1684 is equal to 1.25 milliamperes times the number of
loads, divided by the number of bus drivers. This current must not exceed
15 milliamperes per driver circuit.

IOP Generator

The IOP pulses trigger the selected pulse amplifiers in the device selector
located in the 1/0 device. These pulses are produced in a Type 4606 Pulse
Amplifier module in location 1025 and are routed as twisted-wire pairs to the
appropriate input terminals of all Type 4605 Pulse Amplifier module connect
ors. Each IOP pulse can drive 16 Type 4605 modules.

51

Specific connection points for IOP pulses are:
Signal Origin
ioP1 1D25H
IOP 2 1D25P
IOP 4 1D25W

Connection
1J02-39*, 40
1J02-41 *, 42
1J02-43*, 44

*Ground side of pulse amplifier transformer secondary winding to be connected to
terminal D of the Type 4605 module in the device selector.

Accumulator Outputs
Data contained in the AC is available as static levels to supply information to
1/0 devices. These static levels can be strobed into an t/0 device register by
IOT pulses from the associated DS. Binary designation for the static output
levels of the AC is:

3 volts when AC bit contains a 0
0 volts when AC bit contains a 1

Connection points for these outputs are:
Bus Driver Bus Driver

Signal Origin Output Connection Signal Origin Output Connection

AC l
0 IB02E IF06L 1J02-1 AC l

6 1808E 1F07T 1J02-7

AC l
1 1B03E 1F06N 1J02-2

1
AC 7 1809E 1F07R 1J02-8

AC l
2 1B04E 1F06T 1J02-3 AC l

8 lBlOE 1F08L 1J02-9

AC l
3 1805E 1F06R 1J02-4 AC l

9 1B llE 1F08N 1J02-10

AC l 1F07L 1J02-5
1 1812E 1F08T 1J02-1 l

4 1806E AC 10

AC l 1B07E 1F07N 1J02-6 1 1Bl3E 1F08R 1J02-12 5 AC ll

Accumulator outputs are wired from their point of origin in a Type 4206 Triple
Flip-Flop to module connectors at locations 1F06, 07, and 08. Normally these
locations contain dummy plugs which jumper terminals corresponding to
the input and output of a Type 1685 Bus Driver. When sufficient 1/0 devices
are connected to the AC to overload Type 4206 modules, these dummy plugs
can be removed and replaced by Type 1685 Bus Driver modules.

With the dummy plugs in the system each AC output signal is capable of driving:
six 1500-ohm capacitor-diode gate level inputs or
ten units of 5MC base load or
six units of 500KC base load or
two units of DC emitter load.

With the dummy plugs replaced by bus drivers each AC output signal is capabl~
of driving:

one hundred 1500-ohm capacitor-diode gate level inputs or
fifteen units of base load or
twelve negative OR diode gates.

52

Each output can supply ± 15 milliamperes. The rise and fall times of the out
put signals are approximately 1 microsecond. For more than a 5000-picofarad
output load, the maximum rise or fall time in microseconds is equal to the
capacitance in picofarads divided by 5000. Maximum rise or fall time of a
bus driver output should be limited to 10 microseconds.

Accumulator Inputs
Transfer of data from an 1/0 device to the PDP-5 is normally received at the
AC input. The AC input is accessible only through a pulse input to Type 4130
Capacitor-Diode Gate modules at locations lElO through 1E15. The level
input to these gates is permanently connected to system ground and the pulse
input is clamped at -3 volts by the Type 1000 Clamped Load Resistor module
at location 1E16. Therefore, gated register outputs from many 1/0 devices
can be connected to the AC input, so that IOT pulses set the information into
the PDP-5. The input terminals are:
Signal Connection Load Destination

AC l 1J02-13 1E16E lElOM
0

AC l
1

AC l
2

AC l
3

AC l
4

AC l
5

1J02-14

1J02-15

1J02-16

1J02-17

1J02-18

1El6F lElOY

1E16H lEllM

1E16J 1E12M

1E16K 1E12M

1E16L 1E12Y

Connection Load Destination

1J02-19 1E16M 1El3M

1J02-20 1E16N 1El3Y

AC l
8

1J02-21 1E16P 1E14M

AC l
9

1J02-22 1E16R 1El4Y

1
AC 10 1J02-23 1E16S 1El5M

1
AC 11 1J02-24 1E16T 1E15Y

Driving any AC input connection point to ground potential sets a 1 into the
corresponding AC flip-flop. The input change should be a maximum of 0.5
volts to avoid setting a flip-flop to a 1, and must be at least 2 volts with
a rise time of less than 0.3 microseconds to reliably set a 1 into the AC. Each
input presents a load of one standard clamped load resistor in parallel with
330 picofarads to ground.

Input-Output Skip
A skip bus is available for input connections to the PDP-5 from gated Skip
pulses generated in 1/0 equipment. Input Skip pulses are usually produced
by a flag or device status level which is strobed or sampled by an IOT pulse.
The IOT pulse from the DS strobes the flag; and if it is in the preselected binary
condition, the instruction following the iot is skipped.

Connection points for IOS are:
Signal Connection

IOS 1J02-25

53

Load
1C04R

Destination
1D03E

To cause an instruction to be skipped, the 10S bus must be driven to ground
potential for 0.4 microseconds by a pulse with a rise time of less than 0.2
microseconds. This pulse must originate in a high-impedance source, such as
a transistor in a standard DEC inverter, diode gate, or capacitor-diode gate.
The source of the 10S pulse cannot exhibit more than 1000 picofarads for
the driving transistor.

These input pulses provide the complement input to the Type 4215 Four-Bit
Counter module at location 1 D03. Within the equipment this point is clamped
at 3 volts by the collector load resistor of a Type 4129 Negative Capacitor
Diode Gate at location 1C04.

Program Interrupt
Signals from 1/0 devices, which interrupt the program in progress, are con
nected to a bus on the PDP-5. Connections to this bus must be in the form
of static levels: ground potential to interrupt, -3 volts for no effect. The Pl
connection points are:

Signal
Pl

Connection
1J02-26

Des ti nation
1E04Y

The Pl signal level is clamped at -3 volts by the collector load of the Type
4114 Diode NOR at location 1004, is inverted and isolated by the Type 4102
Inverter at location 1 E04, and is supplied to one input of the Type 4115 Diode
AND at location 1D05 as the primary condition for initiating the internal in
terrupt gate. Connection to the Pl bus represents 1 unit of de emitter load.
The maximum total leakage current from all sources connected to the Pl bus
must not exceed 6 milliamperes.

Input-Output Halt
The IOH facility provides a means of halting the advance of the program for
an undetermined length of time while an 1/0 device executes a programmed
operation. A specific iot instruction is decoded in the 1/0 device OS to pro
duce IOT pulses which initiate device operation and return to the PDP-5 as an
1/0 Halt pulse. The 1/0 Halt pulse sets the 1/0 Halt flip-flop to 1, which
in turn sets the run flip-flop to 0, so that the program stops. When the 1/0
device completes the operation specified by the iot instruction, it supplies a
Restart pulse to the PDP-5 which returns the run flip-flop to the one state
to continue the program and sets the 1/0 Halt flip-flop to 0.

These connections are:
Signal

1/0 Hit
Restart

Connection
1J02-46
1J02-48

54

Destination
1D12Y
1E02Y

1/0 Halt pulses must be Standard DEC Negative Pulses (2.5 volts, 0.4
microsecond) or equivalent. The de load presented to the signal by the input is
¼ unit of de emitter load. This load is shared by those inputs which are at
ground. The transient load presented to a pulse input is 1 unit pulse load.
1/0 Halt pulses are received by a Type 4116 Diode module at location 1Dl2
which functions as a negative OR gate. The inverted output of this gate sets
the 1/0 halt flip-flop when it is at ground potential. This flip-flop is contained
in the Type 4215 module at location 1D01. The 1 output at the 1/0 halt flip
flop sets the run flip-flop to 0. The run flip-flop is also contained in the module
at location lD0l.

The Restart pulse is received at the pulse input of a Type 4129 (negative)
Capacitor-Diode Gate at location 1E02. The conditioning level input to this
gate is provided by the one status of the 1/0 halt flip-flop. The Restart pulse
may be driven from a Standard DEC 0.4 microsecond -2.5 volt Negative
Pulse, or it may be driven from a negative-going level change. The level
change should be 2.5 to 3.3 volts, with a maximum fall time of 0.4 micro
seconds. The input represents 3 units of pulse load.

Cabling

Power and signal cables enter the computer cabinet through a port in the bot
tom. The power cable is permanently wired to the equipment and signal cables
mate with connectors, which are mounted on the front of the cabinet, facing
the center of the machine.

Power cables for the computer and for most peripheral equipment are supplied
with twist-lock connectors, rated at 30 amperes. To mate with the power
cables, power sources should be provided with Hubbell 73108, or equivalent
twist-lock, flush receptacles rated at 30 amperes, 115 volts alternating cur
rent. Note that the receptacle terminal stamped GR or marked with green
paint must be grounded.

Signal cables are 50-wire, shielded, with Amphenol 115-l 14P male connectors
and 1391 shells on both ends. To mate with a signal cable, special equipment
in the system must be provided with Amphenol 115-114$ female connectors.
Unless otherwise specified by the user, power cables are supplied in 20 foot
lengths; signal cables, in 25 foot lengths. Power cables are 11/16 inch in
diameter; signal cables are 13/16 inch in diameter.

55

1/0 Halt pulses must be Standard DEC Negative Pulses (-2.5 volts, 0.4
microsecond) or equivalent. The de load presented to the signal by the input is
¼ unit of de emitter load. This load is shared by those inputs which are at
ground. The transient load presented to a pulse input is 1 unit pulse load.
1/0 Halt pulses are received by a Type 4116 Diode module at location 1D12
which functions as a negative OR gate. The inverted output of this gate sets
the 1/0 halt flip-flop when it is at ground potential. This flip-flop is contained
in the Type 4215 module at location 1001. The 1 output at the 1/0 halt flip
flop sets the run flip-flop to 0. The run flip-flop is also contained in the module
at location 1 D0l.

The Restart pulse is received at the pulse input of a Type 4129 (negative)
Capacitor-Diode Gate at location 1 E02. The conditioning level input to this
gate is provided by the one status of the 1/0 halt flip-flop. The Restart pulse
may be driven from a Standard DEC 0.4 microsecond -2.5 volt Negative
Pulse, or it may be driven from a negative-going level change. The level
change should be 2.5 to 3.3 volts, with a maximum fall time of 0.4 micro
seconds. The input represents 3 units of pulse load.

Cabling
Power and signal cables enter the computer cabinet through a port in the bot
tom. The power cable is permanently wired to the equipment and signal cables
mate with connectors, which are mounted on the front of the cabinet, facing
the center of the machine.

Power cables for the computer and for most peripheral equipment are supplied
with twist-lock connectors, rated at 30 amperes. To mate with the power
cables, power sources should be provided with Hubbell 73108, or equivalent
twist-lock, flush receptacles rated at 30 amperes, 115 volts alternating cur
rent. Note that the receptacle terminal stamped GR or marked with green
paint must be grounded.

Signal cables are 50-wire, shielded, with Amphenol 115-114P male connectors
and 1391 shells on both ends. To mate with a signal cable, special equipment
in the system must be provided with Amphenol 115-114S female connectors.
Unless otherwise specified by the user, power cables are supplied in 20 foot
lengths; signal cables, in 25 foot lengths. Power cables are 11/16 inch in
diameter; signal cables are 13/16 inch in diameter.

55

APPENDIX 1

INSTRUCTIONS

MEMORY REFERENCE INSTRUCTIONS

Mnemonic Operation Time
Operation Symbol Code (,u,sec)

and Y 0 18 Logical AND. The AND operation is performed
between the C(Y) and the C(AC).
C(Y)i /\ C(AC)i = > C(AC)i.

tad Y 1 18 Twos complement add. The C(Y) are added to
the C(AC) in twos complement arithmetic.
C(Y) + C(AC) = > C(AC).

isz y 2 18 Index and skip if zero. The C(Y) are incre-
mented by one in twos complement arithmetic.
If the resultant C(Y) = 0, the next instruction
is skipped.
C(Y) + 1 = > C(Y).
If result = 0, C(PC) + 1 = > C(PC).

dca Y 3 18 Deposit and clear AC. The C(AC) are deposited
in core memory location Y and the AC is cleared.
C(AC) = > C(Y), then O = > C(AC).

jms y 4 24 Jump to subroutine. The C(PC) are deposited
in core memory location Y. The next instruction
is taken from location Y + 1.
C(PC) + 1 = > C(Y)
Y + 1 = > C(PC)

jmp y 5 12 Jump to Y. The C(PC) are set to address Y. Th'
next instruction is taken from core memory
location Y.
Y = > C(PC).

56

Mnemonic
Symbol

ion

iof

adc

rsf

rrb

rte

psf

pcf

ppc

pis

ksf

kcc

krs

krb

tsf

tcf

tis

BASIC IOT MICROINSTRUCTIONS

Octal
Code

6001

6002

6004

Operation

PROGRAM INTERRUPT

Turn interrupt on

Turn interrupt off

ANALOG-TO-DIGITAL CONVERTER

Convert analog to digital

HIGH SPEED PERFORATED TAPE READER

6011

6012

6014

Skip if Photoreader flag = 1

Read the contents of the photoreader buffer into C(AC)4_ 11

and clear the Photoreader flag

Clear Photoreader flag and buffer, fetch one character from
tape and load it into the photoreader buffer, and set the
Photoreader flag when done.

HIGH SPEED PERFORATED TAPE PUNCH

6021

6022

6024

6026

6031

6032

6034

6036

6041

6042

6046

Skip if High Speed Punch flag = 1

Clear the Punch flag and buffer

Load the punch buffer from C(AC)4_ 11 and punch the charac
ter (this instruction does not clear the High Speed Punch
flag or buffer).

Clear the Punch flag and buffer, load the punch buffer from
C(AC)4_ 11 , punch the character, and set the Punch flag when
done.

TELETYPE KEYBOARD/READER

Skip if Keyboard flag = 1

Clear AC and Keyboard flag.

Read the contents of the keyboard buffer into C(AC)4_ 11 (does
not clear AC or flag.)

Clear AC, read keyboard buffer into AC, clear Keyboard flag.

TELETYPE TELEPRINTER/PUNCH

Skip ifTeleprinterflag = 1

Clear Teleprinter flag

Load the LUO from the C(AC)4_ 11 , clear Teleprinter flag, and
print and/or punch the character.

57

Mnemonic
Symbol

dcx

dxl

dcy

dyl

dix

diy

dxs

dys

dsf

def

dlb

plsf

plcf

plpu

plpr

pldu

pldd

plpl

pldu

plpd

lcf

lpr

lsf

BASIC IOT MICROINSTRUCTIONS (continued)

Octal
Code

Operation

OSCILLOSCOPE DISPLAY AND PRECISION CRT DISPLAY

6051

6053

6061

6063

6054

6064

6057

6067

6071

6072

6074

6501

6502

6504

6511

6512

6514

6521

6522

6524

6652

6655

6661

Clear X buffer

Clear and load the X buffer
C(AC) 2_ 11 = > C(YB).

Clear Y buffer

Clear and load the Y buffer
C(AC) 2_ 11 = > C(YB).

Intensify the point defined by C(XB) and C(YB)

Intensify the point defined by C(XB) and C(YB)

Executes the combined functions of dxl followed by dix

Executes the combined functions of dyl followed by diy.

Skip if Display flag = 1

Clear Display flag

Load brightness register.
C(AC) 8_ 11 = > C(BR)

INCREMENTAL PLOTTER

Skip if Plotter flag = 1

Clear Plotter flag

Plotter pen up

Plotter pen right

Plotter drum upward

Plotter drum downward

Plotter pen left

Plotter drum upward

Plotter pen down

LINE PRINTER

Clear Line Printer flag.

Clear the format register. Load the format register from
C(AC)9_ 11 , print the line contained in the last half of the print
ing buffer, and advance the paper according to the contents
of the format register if C(AC) 8 = 1.

Skip if Line Printer flag= 1.

58

BASIC IOT MICROINSTRUCTIONS (continued)

Mnemonic Octal Operation
Symbol Code

LINE PRINTER (continued)
lcb 6662 Clear printing buffer.

lld 6664 Load printing buffer from C(AC) 6_ 11 •

CARD READER AND CONTROL

erst 6632 Skip if Card Reader flag= 1.

cers 6634 Card equipment read status. Reads the status of the card
reader into C(AC) 6_9•

crrb 6671 Read the contents of the card column buffer into the C(AC)
and clear the Card Reader flag.

crsa 6672 Select a card in alphanumeric mode.

crsb 6674 Select a card in binary mode.

CARD PUNCH CONTROL

cpsf 6631 Skip if Card Punch flag = 1.

cers 6634 Card equipment read status. Reads the status of the Card
Punch flag into bit 10 and the card punch error level into bit
11 of the AC.

cpcf 6641 Clear Card Punch flag.

cpse 6642 Select the card punch and transmit a card from the hopper
to the 80-column punch die.

cplb 6644 Load the card punch buffer from C(AC).

AUTOMATIC MAGNETIC TAPE CONTROL

mscr 6701 Skip if tape control unit is ready.
If TCR = 1, then C(PC) + 1 = > C(PC)

med 6702 Disable the TCR flag from the program interrupt; clear com-
mand register, WCO, and EOR. Used when C(AC) = 4000.

mts 6706 Disable the TCR flag from the program interrupt, clear WCO
and EOR. Select unit, parity mode, and density.

msur 6711 Skip if tape transport unit is ready.
If TTR = 1, then C(PC) + 1 = > C(PC)

mnc 6712 Terminate continuous mode. Used when C(AC) = 4000.

mtc 6716 Load tape control unit command register, start tape motion,

59

Mnemonic
Symbol

mswf

mdwf

mewf

miwf

msef

mdef

meed

meef

mief

mtrs

mcc

mrwc

mrca

mca

Mnemonic
Symbol

nop

iac

ral

rtl

BASIC IOT MICROINSTRUCTIONS (continued)

Octal
Code

Operation

AUTOMATIC MAGNETIC TAPE CONTROL (continued)

6721 Skip if WCO flag = 1
and clear AC.

6722 Disable WCO flag. Used when C(AC) = 2000.

6722 Enable WCO flag. Used when C(AC) = 4000.

6722 Initialize WCO flag (clear, enable). Used when C(AC) = 600.

6731 Skip if EOR flag = 1.

6732 Disable ERF.

6732 Clear ERF. Used when C(AC) = 2000.

6732 Enable ERF. Used when C(AC) = 4000.

6732 Initialize ERF (clear, enable). Used when C(AC) = 6000.

6734 Read tape status bits into C(AC). Used when C(AC) = 0000.

6741 Clear CA and WC.

6742 Read word counter. C(WC) = > C(AC)0_ 11

6744 Read current address. Used when C(AC) = 0000.
C(CA) = > C(AC)o-11

6745 Read current address, and clear CA and WC. Executes the
combined functions of mcc with mrca.

GROUP 1 OPERATE MICROINSTRUCTIONS

Octal Event Operation Code Time

7000 No operation. Causes a 12 fLSec program delay.

7001 3 Index AC.
C(AC) +1= > C(AC)

7004 2 Rotate the C(AC) and the C(L) left one place.
C(AC)i = > C(AC)i_1

C(L) = > C(AC) 11

C(AC)0 = > C(L)

7006 2,3 Rotate two left.

60

GROUP 1 OPERATE MICROINSTRUCTIONS (continued)

Mnemonic Octal Event Operation
Symbol Code Time

rar 7010 2 Rotate the C(AC) and the C(L) right one place.
C(AC)i = > C(AC)j+I

C(AC) 11 = > C(L)

C(L) = > C(AC)0

rtr 7012 2,3 Rotate two right.

emf 7020 2 Complement L.
C([) = > C(L)

cma 7040 2 Complement AC.
C(AC) = > C(AC)

ell 7100 1 Clear L.
0 = > C(L)

cla 7200 1 Clear AC.
0 => C(AC)

GROUP 2 OPERATE MICROINSTRUCTIONS

Mnemonic Octal Event
Operation Symbol Code Time

hit 7402 3 Halt. Stops the program.

osr 7404 3 OR with Switch Register
C(SR) V C(AC) = > (CAC)

skp 7410 1 Skip, unconditional.
C(PC) + 1 = > C(PC)

snl 7420 1 Skip on non-zero L.
If C(L) = 1, then C(PC) + 1 = > C(PC)

szl 7430 1 Skip on zero L.
If C(L) = 0, then C(PC) + 1 = > C(PC)

sza 7440 1 Skip on zero AC.
If C(AC) = 0, then C(PC) + 1 = > C(PC)

sna 7450 1 Skip on non-zero AC.
If C(AC) =I= 0, then C(PC) + 1 = > C(PC)

sma 7500 1 Skip on minus AC.
If C(AC)o = 1, then C(PC) + 1 = > C(PC)

spa 7510 1 Skip on positive AC.
If C(AC)o = 0, then C(PC) + 1 = > C(PC)

cla 7600 2 Clear AC
0 = > C(AC)

61

APPENDIX 2

ODES
'(CODE

6-Bit Trimmed 6-Bit Trimmed
8-Bit Code Code 8-Bit Code Code

Character (in octal) (in octal) Character (in octal) (in octal)

A 301 01 241 41
B 302 02 " 242 42
C 303 03 # 243 43
D 304 04 $ 244 44
E 305 05 % 245 45
F 306 06 & 246 46
G 307 07 ' 247 47
H 310 10 (250 50
I 311 11) 251 51
J 312 12 * 252 52
K 313 13 + 253 53
L 314 14 254 54
M 315 15 255 55
N 316 16 256 56
0 317 17 I 257 57
p 320 20 272 72
Q 321 21 273 73
R 322 22 < 274 74
s 323 23 = 275 75
T 324 24 > 276 76
u 325 25 ? 277 77
V 326 26 @ 300 00
w 327 27 [333 33
X 330 30 \ 334 34
y 331 31] 335 35
z 332 32 • 336 36
0 260 60 337 37
1 261 61 EOT 204
2 262 62 W RU 205
3 263 63 RU 206
4 264 64 BELL 207
5 265 65 Line Feed 212
6 266 66 Return 215
7 267 67 Space 240 40
8 270 70 ACK 374
9 271 71 ALT MODE 375

Rub Out 377

62

CARD READER AND LINE PRINTER OCTAL CODES

Card Line Card Line Card Line
Octal Reader Printer Octal Reader Printer Octal Reader Printer
Code Character Character Code Character Character Code Character Character

00 space 25 V V 53 $

01 1 1 26 w w 54 *
02 2 2 27 X X 55

03 3 3 30 y y 56

04 4 4 31 z z 57 (

05 5 5 32 ,, 60 +
06 6 6 33 61 A A

07 7 7 34 (> 62 B B

10 8 8 35 .+. 63 C C

11 9 9 36 ~ 64 D D

12 0 37 ? 65 E E

13 40 0 66 F F

14 41 J J 67 G G

15 42 K K 70 H H

16 43 L L 71

17 < 44 M M 72 X

20 0 45 N N 73

21 I I 46 0 0 74) +
22 s s 47 p p 75]

23 T T 50 Q Q 76

24 u u 51 R R 77 [

63

CARD READER AND LINE PRINTER BINARY CODES

High Order Bits

Low
00 01 10 11

Order Card Line Card Line Card Line Card Line
Reader Printer Reader Reader Reader Reader Reader Reader

Bits Character Character Character Character Character Character Character Character

0000 space 0 - 0 +[&] -
0001 1 1 I I J J A A
0010 2 2 s s K K B B
0011 3 3 T T L L C C
0100 4 4 u u M M D D
0101 5 5 V V N N E E
0110 6 6 w w 0 0 F F
0111 7 7 X X p p G G
1000 8 8 y y Q Q H H
1001 9 9 z z R R I I
1010 0 ' " X
1011 =[#] ,..., ' ' $ --
1100 '[@] ::::, ([%] > * -)[0] +
1101 V ,+.)]
1110 " - I
1111 < ? (. ... [

HOLLERITH CARD CODE

Zone
Digit No Zone 12 11 0

no punch blank +[&] 0
1 1 A J I
2 2 B K s
3 3 C L T
4 4 D M u
5 5 E N V
6 6 F 0 w
7 7 G p X
8 8 H Q y
9 9 I R z
8-3 =[#] $ ' 8-4 '[@]) [Dl * ([%]

64

APPENDIX 3

PERFORATED-TAPE LOADER SEQUENCES

READIN MODE LOADER

The readin mode (RIM) loader is a minimum length, basic, perforated-tape
reader for the PDP-5. It is initially stored in memory by manual use of the
operator console keys and switches. The loader is permanently stored in 17
locations of the highest numbered page.

A perforated tape to be read by the RIM loader must be in RIM format:

Tape Channel
87654S321 Format

10000.000 Leader-trailer code

0 1 Al A2 Absolute address to
00 A3 A4 contain next 4 digits

00 Xl X2 Contents of previous
00 X3 X4 4-digit address

0 1 Al A2
00 A3 A4 Address

00 Xl X2
00 X3 X4 Contents

(Etc.) (Etc.)

10000.000 Leader-trailer code

A tape in RIM format is generally concluded with address = 0000 and content
= SA-1, where SA indicates starting address. In this way, the SA of the routine
just loaded is stored in the program counter of the PDP-5. The next instruction
to be executed will then be taken from the SA, (i.e., the program counter is
incremented, then used as the address of the instruction). Therefore, the loaded
routine is self-starting. It is suggested that this procedure always be used. If
it is not desirable for the routine to be self-starting, simply store a halt instruc
tion in the SA. Pressing the CONTINUE key then starts the routine.

The RIM loader can only be used in conjunction with the 33 ASR reader (not the
high-speed perforated-tape reader). Because a tape in RIM format is, in effect,
twice as long as it need be, it is suggested that the RIM loader be used only to
read the binary loader when using the 33 ASR.

65

The complete PDP-5 RIM loader (SA = 1700 in systems with IK memory or
7700 in systems with 4K memory) is as follows:

Octal
Addr. Contents Tag lnst'n I Z Comments

700, 6032 beg, kcc /clear AC and flag
701, 6031 rsf /skip if flag = 1
702, 5301 jmp .-1 /looking for char
703, 6036 krb /read buffer
704, 7106 ell rtl
705, 7006 rtl /ch 8 in ACo
706, 7510 spa /checking for leader
707, 5301 jmp beg +1 /found leader
710, 7006 rtl /OK, ch 7 in link
711, 6031 ksf
712, 5311 jmp .-1 /read, do not clear
713, 6034 krs /checking for address
714, 7420 snl
715, 3720 dca i temp /store contents
716, 3320 dca temp /store address
717, 5300 jmp beg /next word
720, temp, /temp storage

Placing the RIM loader in core memory by way of the operator console keys
and switches is accomplished as follows:

1. Set the appropriate starting address in the switch register (SR).
2. Press LOAD ADDRESS key.
3. Set the first instruction in the SR.
4. Press the DEPOSIT key.
5. Set the next instruction in the SR.
6. Press DEPOSIT key.
7. Repeat steps 5 and 6 until all 16 instructions have been deposited.

To load a tape in RIM format, place the tape in the reader, set the SR to the
appropriate starting address, press the LOAD ADDRESS key, press the START
key, and start the Teletype reader.

BINARY LOADER

The binary loader (BIN) is used to read machine language tapes (in binary
format) produced by the program assembly language (PAL). A tape in binary
format is about one half the length of the comparable RIM format tape. It can,
therefore, be read about twice as fast as a RIM tape and is, for this reason, the
more desirable format to use with the 10 cps 33 ASR reader.

66

The format of a binary tape is as follows:

LEADER: about 2 feet of leader-trailer codes.

BODY: characters representing the absolute, machine language program in
easy-to-read binary (or octal) form. The section of tape may contain char
acters representing instructions (channels 8 and 7 not punched) or origin
resettings (channel 8 not punched, channel 7 punched) and is concluded by
2 characters (channels 8 and 7 not punched) that represent a check-sum for
the entire section.

TRAILER: same as leader

Example of the format of a binary tape:

Tape Channel
87654S321

10000.000
01000.010
00000.000
00111.010
00000.000
00001.010
0 0 1 1 1 . 1 1 1
00011.010
00111.110
00111.100
00000.010
01000.010
0 0 1 1 1 . 1 1 1
00000.000
00101.011
00001. 000
00000.111
10000.000

Memory Location

leader-trailer code

0200

0201

0202

0203

original setting at 0277

0277

sum check 1007
leader-trailer code

Contents

cla

tad 277

dca 276

hit

0053

After a BIN tape has been read in, one of the two following conditions exists:

a. No check-sum error: halt with AC 0
b. Check-sum error: halt with AC (computed check-sum) (tape check-

sum)

The BIN loader in no way depends upon or uses the RIM leader. To load a tape
in BIN format place the tape in the reader, set the SR to 1777, press the LOAD
ADDRESS key, press the START key, and start the tape reader.

67

APPENDIX 4

SOFTWARE

A programming parcel is supplied to each user of the PDP-5. Each parcel
consists of program descriptions and perforated-paper tapes applicable to a
particular system, selected from the DEC Program Library. The following pro
grams are included in each package:

a. Program Assembly Language (PAL)
b. Read in Mode and Binary Tape Loaders
c. Symbolic Tape Editor
d. Mnemonic-Octal Debugging Routine
e. Multiply and Divide Subroutines, single and double precision
f. Square Root, Sine, and Cosine Subroutines
g. Binary-to-Decimal and Decimal-to-Binary Conversion Subroutines
h. Interpretive Floating Point Package
i. Floating Point 1/0 Package
j. Teletype Output Package
k. Maintenance Programs

New techniques, routines, and programs are constantly being developed, field
tested, and documented in the DEC Program Library for incorporation in users'
systems.

68

APPENDIX 5

TABLE OF POWERS OF TWO

n
2 n

l 0
2
4
8 3

16 4
32
64 6

128 7
256 8
512 9

I 024 10
2 048 !I
4 096 12
8 192 13

16 384 14
32 768 15
65 536 16

131 072 17
262 144 18
524 288 19

I 048 576 20
2 097 152 21
4 194 304 22
8 388 608 23

16 777 216 24
33 554 432 25
67 108 864 26

134 217 728 27
268 435 456 28
536 870 912 29

I 073 741 824 30
2 147 483 648 31
4 294 967 !'96 32
8 589 934 592 33

17 179 869 184 34
34 359 738 368 35
68 719 476 736 36

137 438 953 472 37
274 877 906 944 38
549 755 813 888 39

1 099 511 627 776 40
2 199 023 255 552 41
4 398 046 511 104 42
8 796 093 022 208 43

I 7 592 186 044 416 44
35 184 372 088 832 45
70 368 744 177 664 46

140 737 488 355 328 47
281 474 976 710 656 48
562 949 953 421 312 49

I 125 899 906 842 624 50
2 251 799 813 685 248 51
4 503 599 627 370 496 52
9 007 199 254 740 992 53

18 014 398 509 481 984 54
36 028 797 018 963 968 55
72 057 594 037 927 936 56

144 115 188 075 855 872 57
288 230 376 151 711 744 58
576 460 752 303 423 488 59

l 152 921 504 606 846 976 60
2 305 843 009 213 693 952 61
4 611 686 018 427 387 904 62
9 223 372 036 854 775 808 63

18 446 744 073 709 551 616 64
36 893 488 147 419 103 232 65
73 786 976 294 838 206 464 66

147 573 952 589 676 412 928 67
295 147 905 179 352 825 856 68
590 295 810 358 705 651 712 69

l 180 591 620 717 411 303 424 70
2 361 183 241 434 822 606 848 71
4 722 366 482 869 645 213 696 72

-n
2
1.0
05
0.25
0.125
0.062 5
0.031 25
o.ois 625
0007 812 5
0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25
0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0,000 030 fll7 578 125
0.000 015 258 789 062 5
0.000 007 629 394 531 25
0 000 003 814 697 265 625
0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125
0.000 000 003 725 290 ?98 461 914 06? 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5
0 000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
0 000 000 000 000 454 747 350 886 464 118 957 519 531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
0.000 ooo ooo ooo 056 843 418 860 sos 014 a69 689 g41 406 2s
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
0.000 000 000 ooo 003 552 713 67S 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0.000 000 000 000 000 222 044 604 92S 031 308 084 726 333 618 164 062 5
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
0.000 000 000 ODO 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 1<43 497 085 571 289 062 5
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625
0.000 000 ODO 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
0.000 000 000 000 000 ODO 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5
0.000 000 000 000 000 ODD 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 ?5
0.000 000 000 000 000 ooo 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625

69

APPENDIX 6

INTERFACE CONNECTIONS
Connection points for interface signals at the 1/0 connectors lJOl and 1J02
are listed in the following table.

PDP-5 1/0 CONNECTIONS

Signal Symbol Terminal Signal Symbol Terminal

AC 1 Out -<> 1 AC 1 In -t> 17 0 4

AC 1 Out -<> 2 AC 1 In --i> 18 1 5

AC 1 Out -<> 3 AC 1 In -t> 19 2 6

AC 1 Out -<> 4 AC 1 In -{> 20 3 7

AC 1 Out -<> 5 AC 1 In -i> 21 4 8

AC 1 Out -<> 6 AC 1 In -t> 22 5 9

AC 1 Out -<> 7 AC lo In -t> 23 6

AC 1 Out -<> 8 AC 1 In -t> 24 7 11

AC 1 Out -<> 9 IOS -t> 25 8

AC 1 Out -<> 10 Pl -<> 26 9

AC lo Out -<> 11 MB ~ -<> 27

AC i11 Out -<> 12 MB 1 -- 28

AC 1 In -f> 13 MB 2 -- 29
0

AC 1 In -t> 14 MB l -+ 30 1

AC 1 In -i> 15 MB g -+ 31
2

AC 1 In --i> 16 MB § -+ 32
3

70

PDP-5 1/0 CONNECTIONS (continued)

Signal Symbol Terminal Signal Symbol Terminal

MB 0 -+ 6
33 IOP 4* 43

MB 1 -+ 6
34 IOP 4 _.

44

MB 0 -+ 7
35 1 MC clock

_.
45

MB 1 -+ 36 1/0 Hit _. 46 7

MB 0 -+ 37 AC Clear -t> 47 8

MB 1 -+ 38 Restart -. 48 8

IOP 1 ~' 39 Power -. 49
Clear

L IOP 1 ___. 40 Ground 50

IOP 2* 41

IOP 2 42

*Ground side of pulse transformer secondary winding.

71

Connection points for data break signals at connector 1J03 are presented in
the following table.

PDP-5 DATA BREAK CONNECTIONS

Signal Symbol Terminal Signal Symbol Terminal

MB l Out -<> 1 MB i11 In -0 24 0

MB l Out -<> 2 Data Addr. Bit 0 -<> 26 1

MB 1 Out -0 3 Data Addr. Bit 1 -<> 27 2

MB 1 Out -<> 4 Data Addr. Bit 2 -<> 28 3

MB 1 Out -<> 5 Data Addr. Bit 3 --<> 29 4

MB 1 Out -<> 6 Data Addr. Bit 4 -0 30 5

MB 1 Out -<> 7 Data Addr. Bit 5 -<> 31
6

MB 1 Out -<> 8 Data Addr. Bit 6 -<> 32
7

MB l Out -<> 8 9 Data Addr. Bit 7 -<> 33

MB 1 Out -0 10 Data Addr. Bit 8 -<> 34
9

MB /0 Out -<> 11 Data Addr. Bit 9 -<> 35

MB /i Out -<> 12 Data Addr. Bit 10 -<> 36

MB 1 In -<> 13 Data Addr. Bit 11 -<> 37
0

MB In -<> 14 Break1 State _., 41

MB 1 In -<> 15 Run 1 State -+ 42
2

MB 1 In -<> 16 Break Request -0 43
3

MB 1 In -<> 17 Transfer Direction _.,
44

4 (Into PDP-5)

MB 1 In -<> 18 Increment Request_., 45 5

MB 1 In -<> 19 SP 0
_. 46 6

MB 1 In -<> 20 Power Clear _. 47 7

MB 1 In -0 21 Data= > MB -t> 48 8

MB 1 In -<> 22 Address Accepted -t> 49 9

MB 1 In -<> 23 Ground _L 50 10

72

S U B J E C T m'4
'" Ikr81ws

D A T E
kn&yp#tl,

F R O M
awamII1")

-A-

C) f G I I A L EQUIPMEN : &. t 4RPCR 'AT ION . M A Y N A R D , M A S S A C H U S E T T S

I JNTEROFFiCE 1
MEMORANDUM

D A T E

" BJ New Computer Design Philosophy

TO Tom Stockebrand F R O M

February 21, 1963

Kenneth H. Olsen

A new computer i s long overdue at DEC but we have not been in a position to
build one because we have been so long in winding up the details from our present
computers. However, now we do have the techniques and the time and the money
for a new computer, I think we should go ahead and make one in a reasonably fast
time schedule.

The proposal is to do al l aspects of the computer design in parallel. This means
that at the end of the time schedule whether it I s four or six months, the job should be
done. Then after a rest of a month or two we could i f we wanted to go off and make
another computer. Here i s a l i s t of the itemswhich should be carried on in parallel:

Design and Build Central Processor
Write FORTRAN with Assembler and Simulator
Design and Build Tape Control Unit
Write Al l Manuals

We have never looked at competition before but I think as a result we have lost
out because we don't know the p i n k in which our machines are significantly better
than others. I think that we should consider doing this parallel effort sub-contracting
a survey out to someone like I. I. I. to compare our machine in detail with others.

Kenneth H. Olsen

D IGITAL E Q U I P M E N T C O R P O R A T I O N MAYNARD, M A S S A C H U S E T T S

I
INTEROFFICE

MEMORANDUM
D A T E February21, 1963

S U B J E C T Random Notes on New Computer

TO Tom Stockebrand * Kenneth H. Olsen

We received a quote from Amphenol on a 36 pin connector for use in large system
plug-in units but this wi l l not work out well because it has to be thicker and therefore
wi l l not f i t In our standard construction. Loren Prentice is now making a model of a
double width plug-in unit which wi l l have two 22 pin connecton on it which wi l l make
a total of 44. This looks l ike a reasonable approach to a large plug-in unit.

Gordon Bell suggests that we do a l l our register transfers through one common register.
This is the way the MTC Computer worked originally. This would cut down the number
of gates and they might end up using the very high speed transistor gates.

I asked Bob Savell to consider repackaging the reader, punch and typewriter control
panels to make them less expensive. We might put much of i t on a very small number
of large plug-in units. We might also include the micro-tape logic i n the same place.

I told Bob Swel l to start working on the new punch timing control for PDP-1 but to
plan to have it i n the new computer.

Dit Morse feels that the teletype typewriter i s a satisfactory typewriter for computer
use. He of course would like'a mwe extensive character set but a typewriter that works
has a very definite advantage. I can't see that we'll have time to evaluate any other
typewriter i n time.

Loren Prentice has been working on a new design for the PDP-1 and POP-4 console
fronts. I suggested that they drop a l l work on that and work on the console front for the
new computer. This one should include space for punch, reader, LlNC and control panel.

Some people like the idea sf having on extra register to store the contents of the
accumulator when it i s not being used. This would allow the accumulator to be used for
index adding and other things. The extra register could then be wed as a carry register
which would allow very fast multiply. If this carry register Is used as an accumulator
buffer, the accumulator might then be used as the register which transfers information
between registers. Several people have told me they would l ike to have a pointer register.

We have to decide whether we want indicators on a l l flip-flops or not. I have asked
Jack Smlth to estimate what it would cotst t o add an indicator.

It i s a real chore to change cabinet design. Our present mounting panels hold 25 plug-
in units and if we mwe the marginal checking panel, it wi l l hold 26. It would therefore
be convenient to keep the digit length of the machine 26 or l e u bits long.

D IG ITAL E Q U I P M E N T C O R P O R A T I O N MAYNARD, M A S S A C H U S E T T S


~~~~~ 
MEMORANDUM 

D A T E  February 22, 1963 

S U B J E C T New Computer Design 

TO Ken Olsen F R O M  Tom Stockebrand 

My apologies for form and content of this memo, it i s  a rushed lob. In particular it does 
not include enough evaluation of the competition nor enough filtering of the ideas presented. 
While I an) on vacation, I wi l l  try to sketch out more of the machine design. 

Commitments on delivery dates, price and so on should be to Ken Olsen and the company 
and not to customers. 

This machine should be specifically designed to do the job as listed below superlatively 
well rather than to in  any way "look like the competition" or be an answer for them. 

This machine is to fill a vacuum we believe to  exist at the present time in  the computer 
market. 

Vie must make no compromises in  carrying out the ideas which are involved in  its design. 
The implication of the above is that, as is usual with DEC effort, the ideas shall be limited 
to those which are eminently easy to do, general, straightforward extensions of the art.. . . . 
In fact, "today's technology today. " ------ God . 

The sources of the ideas presented in  this note are indicated in an effort to provide "source 
data" while I'm gone. If the ideas are agreed upon, future aclministration of the 
project wi l l  be vastly improved. 

I f  we are to turn out machines regularly, we need some more official advanced development 
- that i s  answers to specific how-can-we-do-this-job questions. (Coax delays, micro-logic, 
serial, majority logic circuits, etc.) 

THE IMPORTANT NOTIONS 

It i s  time the Programmer was given real power i n  sub-routine writing ability so that 
no modifications of instructions are ordinarily necessary during program relocation. 

Multi-programming, time sharing, fast break-in or what-you-will i s  necessary in  the 
eyes of most users of our equipment and in fact necessary (though they don't know it) to 
many users who are comtemplating using our equipment. 

Data words need to match today's data requirements In accuracy. The analog people are 
almost entirely concerned with 14 bit accuracy for what they call  four significant digit precision. 

D I G I T A L  E Q U I P M E N T  C O R P O R A T I O N  MAYNARD,  M A S S A C H U S E T T S  



- Page Two - 

Large memories are here. Index registers are here. 

Some fair expansion of the machine should be planned for at the beginning though we 
understand that wholesale revisions of the machine' are out of order. 

- 

The rest of this memo is  a l i s t  of specifics pertaining to the generalities 

Routine Relocation Power - The ability to operate routines wherever they 
in memory after a dump from, say, the drum can be provided by the ability 
each memory reference by a constant while (2) checking that result against 

listed abwe. 

may be located 
to (1) modify 
specified bounds 

and trapping to a particular memory location or executive program if the required location i s  
outside of the bounded area. This feature can be achieved reasonably easily during the Initial 
design of a machine by allowing the index adder, or its equivalent, to do the work. Dit SQYS 

this feature would make programming "ten to a thousand times easier." Ed mys that if you 
can use the arithmetic element more and memory leu, you're way ahead and this feature 
would leap in that direction. (Dit, Shelley, Kotok, Ed and Ben.) This feature i s  considered 
by advanced type people to be crucial to the machine design. 

Trapping - Trapping meanlng to execute and instruction located at, for instance, the address 
indlcclted on the op code. This trapping would be done on non-used instructions or memory 
addresses outside of the bounds set by the executive routine in the relocation of power indicated 
abwe (Dit, Ben.) 

Character Handling Power - The ability, in one form or another, to address characters stored 
in memory hopefully to deal with character strings in I/O transfers such as i s  done in the Lisp 
and Comet Programs. Dit, Ben and Ed are in favor of this, Ivan goes even further and says 
that bit addressing features are of great power. However, Len disagrees. 

On Obsolescence - Trapping also allows optional expansion by do-it-now-with-program, 
later with wires. Also de-bugging and checking power i s  automatically incorporated. The 
machine should be built of modular parts of course like different memories and AE's and an 
extra bit or two should be assigned in the instruction word for future variations not thought of 
now when you absolutely have to have that bit! 

Multi-Processing - Multi-Programming - Ftrst and foremost, a fast break - this means primarily 
no need for many accesses of a clean-up variety to store awuy stuff in preparation for operations 
in response to abreak request. The m&t p tent  feature here -seems to be an extra registar in 
the AE to allow either exchanges with the AE for saving purposes, or as an address calculator (Dit) 
or as a multiply index by, or as an addend register, or as a carry register depending on your exact 
orientation. The second thing which would help this process out 1s probably a separate index 
adder though I believe a machine try should be made to use one adder for everything. Since it 
i s  reasonably certain that two groups of wide modules will be used, however, it i s  probably not 
unreasonable to suggest the index adder. In the future, that means perhaps with the development 
of another machine, separate program counten may be in order. For now, core program counters 
should certainly be enough If  they are necessary. To hell with data gather. The idea here i s  
to eliminate control problems from the channel and put them in the program where they belong. 



- Page Three - 

Channels should be only high-speed data gathering devices. (Dit) System capability is an 
okay phrase. (Dit) 

List Processing - This i s  a program technique which has general power which goes we1 I together 
with our ideas of a processor with general power. I t  requires index registers and increment and 
decrement by more than one and, ideally,-reg isten which can be packed with several addresses 
each (that is, word length equal to two times the address length.) However, I think a clever 
use of the relocation feature or of Dit's multiple indexing (1+ 2+ 4 scheme) wi l l  allow the 
shorter pack base address that this too short word machine wi l l  have. (Len) In general, this 
processing seems to be for the next machine though a small look into thie future i s  probably in  
order. Similarly, floating point AE's wi l l  probably have to wait until the next machine or at 
the very best, be planned as a different kind of AE attachable to this memory. 

Index Registers - These are clearly necessary. Dit feels that three register which could be 
added together in  a micro-program fashion that is, any combination of the three according . - 
to MACRO programmed bits in the word, would be of more use than seven registers addressed 
directly by the same three bits though Kotok disagrees. I have no feelings. Whether the 
three could be added together and in fact the complete design of the index adder might depend 
crucially on the ability to build a simple circuit which would detect four out of seven to provide 
carry for carries. If this circuit were easily available I believe that five registers could be added 
together simultaneously and stored in a fifth and the sketch accompanying this memo shows the 
powerful use that could be made of this feature. 

Addressable Reg isten - These would be very useful according to Len For much easy procetsfng 
without complicated instruction and could perhaps be implemented to do the character address- 
ing without using extra bits in the word by allowing certain kinds of character type transfers 
between registers. The most important addressable registers would perhaps be the in/out 
registers such as, for example, the scope buffer for use with the light pen -A- especially i f  i t  
were an incremental scope plus generator type. In this case too, the feature would allow 
sine, cosine and hyperbolic and parabolic function generation with no extra hardware. I t  
would save on the IOT read-in bits but cost some address decoding. 

Data Channel - Fast break SI, Data Channel SI, I/O Channel, no, - do i t  with program. (Dit) 

Cute Instructions - Ben feels that I w d  and deposit AC tn push down l i s t  would be a useful 
instruction at least to the prospects of a clever turn of mind if not to real users. lnstr~ction 
(Y+ )AC)) ---- AC i s  reasonably necessary for multi-dimentional matrices when indexing i s  
not readily available and wouldimplement easier l i s t  processing. Ben likes an instruction 
called execute effective address however, Len doesn't go along with him. Dit makes the 
comment that we should avoid doing things in l i t t le pieces. 

Word Length - There are two criterion for word length, one i s  the data word that wi l l  usually 

b e  of necessity, and the other one is the number of bits that you need in your instruction. For 
floating point work, 48 bits seems to  be a minimum and for graceful manipulation of the text 



- Page Four- 

this also seems like an appropriate word length. I do not believe that it i s  necessary to have 
precisely a multiple of six though this may be, in some carers, graceful for character proceuing. 
Many people would just love to have an extra bit or two to indicate whether this w t  of characters 
i s  to be considered in the l i s t  and for other marking purposes, ask Dit for example. I, myself, 
have run into this problem many times when programming character strings. Len wil l  also agree 
I think. As far as the packaging limitations go, I agree that it i s  essential to keep the packag- 
ing the same which means no more than 25 units in a rack panel wide; notice that if the address 
portion is 16 or 17 bits, even, there are 8 bits left over in the mounting panel supporting the 
"short-word" AE in which to provide extensions of the full register portion of the AE. Since the 
floating point people need 48 bits and we can't possibly take this much of a jump in the present 
machinery, we should either leave them out of consideration or consider two-wrd data accesses 
floating point words. To this end, Dit suggests a single bit in the data words to tell whether 
the word is to be interpreted as floating point or not. This might be an example of the use of 
a spare bit location in the word for use when a floating point processor might become available. 
How about word lengths for ordinary usen of fixed point type calculations? The competition 
seems to feel that 24 bits is  a reasonable length however, I submit that in many practical cases 
14 or SO bits i s  a reasonable length based on my discussions with various analog and hybrid types. 
This is because 14 bits represents four decimal digits which is  the current okay number in that 
industry, though there as here okay numben do not necessarily represent the best in engineering 
philosophy or power. Analog people further state that they need higher data rates than we can 
get and if we are to capitalize on our parallel computing and data handling power in order to 
try to overcome some of the taint of the current serial flap, we should consider, I think, 28 bits 
minimum so as to be able to pack two 14 bit words per register and thus, double our data output 
rate to digital to analog converters and the like - also to scopes. 

Now on to word length as determined by the instructions. Certainly 16 bits represents a 
reasonable address length to address 65 kilowords of memory, Everyone agrees that this would 
be a desirable number. 3 bits for index register seems about right and one bit for deferring. 
6 bits seem like a minimum for op code, 1 bit for a programmed operator - primarily to catch 
up to the competition of SDS. I insist on one spare bit and many people who feel character 
addressing i s  important would want to we my spare bit plus two others to do the character 
addressing in those instructions where it matters, und leave it for instruction modifications 
where it does not matter. This would give a total of 28 or 30 bits depending how you look at 
it. If you really believe that there should be a multiple of six, then I would recommend a 
30 bit machine. However, 28 bits I think i s  my current recommendation. Incidentally, i f  you 
allow 7 bit characters for 128 character set, which i s  quite a reasonable number, and a "step 
forwrd",then this even meets the criterfon that 2 bits of character addressing i s  enough and 
comes out even. In any case we have room for 33 bits and 17 address bits in the two mounting 
panels which have double trays so this gives us three extra slots for odds and ends. 
I STRONGLY RECOMMEND A 20 OR A 30 BIT WORD. 

Concurrent Programming - In this area I am not an expert but Dit seems to feel that the 
FORTRAN four langwge, which looks like the ALGOL language i s  the langwge to use 
for a l l  programming. I am not aware of the details of the character set required or like that. 



- Page Five - 
He wants to do it a l l  in ALGOL. I would have a good discussion with Dit on the subiect. 
Al l  agree that a full-time programmer should be working from the start of the proiect. 

More Work - Very soon, more work should be done in the fol lowi ng areas before the design 
f s completely hard. 

1 .  A careful compilation and discussion of the competition's 
ideas and features, also of LlNC and other semi-competitive 
machines. 

2. Whether an analog input is  a necessity - I believe it may be. 

3. Whether serial methods of computation would give us any real 
advantage. It may be that in the shorter worded index adder, 
the multiple additions that wil l  sometimes go on could be done 
very efficiently this way in the event that a maiority logic circuit 
did not work out as a good idea. This would allow many additions 
in only the time to circulate one word plus N extra bit times. 
Futthermore, I am not sure of the best AE design. I am convinced 
that we should have one programmer (hopefully Lennfe) working full 
time along with the design of this machine so that it i s  on cards or 
back panel wiring or like that right from the start. This, I think, 
wil l  eliminate in the future b ~ t t l e  necks which we are certainly going 
to run into i f  we plan to turn out new type machines regularly. 

Conclusions - 
Relocation 
Independence of AE and Memories 
Trapping 
Time Sharing or Multi-Processing or Addressable Register or 
Multi-Programming 

' Character Handling Power 

I think a tentative example of the breakdown of parallel tasks in the developments of this 
machine would be somewhat as followst 

1 . Programming with a good man such as Dit 

2. Manual DesignandDevelopmentalongwiththedeve~opmentof 
the machine with Stu Grwer 

3. AE design under Dit and Gordon 

4. Machine design under Gordon and I 

5.  Programming toward aiding the design of the machine under Len 



6. A small amount of research under Emile ar Russ Doane in the form 
of coaxial serial parallel conversion and multi-plexing and majority 
logic circuitry. 

7. 1/O development under Roland Boisvert or perhaps even better Me1 
Arsenau l t . 









s u 8J  E C PRELIMINARY THOUG HTS ON A NEW COMPUTER LINE 
- - - - --- 4 

- 1 C k t ' b 4 1 J  d t ' ~ . i r >  

TO N Mazzarese . E De Castro &t.,ll ,a*. 

believe that we should stari v : ; i y  Soi; -o develop both hardware and softwa:e 
f ' T , W L  9 

r a completely new line of srnc,, , r -rs. CL; current machines, because of their '"f' 
I, G c I l?f? 

/limited organization, hc. . -?ice ;I . -: +,:DIE ?a- is :a cdd features which cost very 
' 
c k R.J.+ 

- - 
(little and yet are standc z. GC,. - L -  r.c>st x r : . ~ ;  i;. '~e ir.scnines. The following __ d,&li 4 

I . . -. . are some of the most pre&.-. . - cr.: 6 ,  - .  z .  :r.c ies - ;,; . .nz :  

2. We Lo not have a f u l l  line c:.; the:LJ~~c. are prec .~c=~-  .ram c 

fc' - ~agment of the mark&:. 

-3 LC TQ\P i 9  3. We have yet rc sci, ,a  a , -~ -~> , -c r  m a i ,  enobsh and inexpensive -> e E ~ ~ J F , ~ C W ~ - , G '  

enough to f u l l y  satisFy :he Oil~ii, aducc:.;.nai and small laboratory 

mari<efs. 

4. We do not have compc;ioie :-.tzrfoces and therefore must develop f .  FS' 
/ 

A%.& 'f y- ----. 
and maintain different peripherals for each computer. c & i d i t  

7.11 PtsL(vQ 
5. We do not have program ~ o m ~ a t i b i l  ity and as new programming 

i concepts evolve or new applicatio~s areas become interesting we must 
\ either duplicate our efforts or forego the competitive advantage on ! 
i one machine or the other. I 

Completely replacing a computer line is certainly a large undertqking but 

wc now have several advantages which we have not en joyed during the recent past. 
-- 2 

,se are as follows: 
Y. 1 .  A large order backlog for standard products which can be produced 

,with a z i n i m u m  of en;Ineering assistance. 

- -. -- 
D I G I T A L  E Q U I P M E N T  CORPOPSATiC~N M A Y N A X D ,  M A S S A C H U S E T T S  



Page 2 .  

2 .  A competitive line which with only minor modifications can 

probably be sold successfully for another year. 

3 .  An adequate programming system which, although not fu l ly  

competitive is complete enough so as not to detract seriously from sales 

in the short run .  

4. Sufficient personnel in the small computer group capable in circuit 

, design, system design and programming . 
If we are going to avoid serious fluctuations in our production rate and still allow 

development to be done in a thorough and orderly manner we must siart now to plan 

the products which will take over as PDP-7 and 8 phase out. 

DESIGN OBJECT~VES 

For a new computer line to be successful in the market it must meet several 
b 

objectives some of which are in conflict cnd therefore compromises must be made. 

We must have a low cost basic configuration yet it must not be so inept that peripherals 

are prohibitively expensive or extremely unwieldy to attach. We must have machines 

that closely approach theaccepted standards yet not so complex in organization that 

we are unable to sell at a price slightly below that of competition for a computer of 

equal memory speed and word length. We must do everything possible to get the 
a. 

most mileage out of our engineering and programming effort. To further this objective 

central processors must all hpve an identical interface so that one line of peripherals 

may be designed to connect to any processor. C .P.  organization should be such that 

software may be transferred without change from one machine to another. In achieving 

this degree of compatibility we must not make it impossible for efficient programs to be . 

written for each machine in the series although this does not mean that the most efficient 

program for one machine is necessarily optimum for another. 

i 

- -,-----. .-......... -- .......... .. ...... . ,--.l~_-.~I,.-*.III -...... ..---.Y-̂ .--p -A 

i 3 I \ G f T / I L  E Q U I P M E N T  C(S;--:;L,:L;;..!ii3;i~3!< . MA't'r-iAr?ir>, M j - i s S A c p i L I s E ~ ~ ~  



Page 3. 

b GENERAL CHARACTERISTICS 

The line should consist of three computers having word lengths of 8, 16 and 

32 bits respectively. Each machine wi l l  have a parallel memory and be capable of 

performing arithmetic and logical functions in  parallel on operands equal to or smaller 

than the basic word length. In addition the two smaller machines will be able to per- 

form 16 and 32 bit operations by processing operands in serial. For example, i f  the 

small machine were programmed to add two 32 bit numbers it would make 4 calfs on 

memory to obtain operands and would add each 8 bit segment individually to the 

appropriate section of the accumuIator uing the same adding circuitry for each step. 

The 16 bit machine would require only w o  such steps. To achieve compatibility 

in  the other direction r h e  larser machinas wili be ca,ob:e of deaiir,g with words 

consisting of 1 ,  2 cr 4 - d bit bytes. Thus  the op code which causes rhe small 

machine to ada c: single word will be interpreted by the large machine as a command 

to add a single byte. 

It is desirable to make the 32 bit machine capable of performing some instruc- 

tion which will not be included in the repertoire of the smaller ones. To maintain 

compatibility all unused op codes will trap, i.e., cause the program to branch to 

a fixed location where a subroutine to simulate the non-existant instruction may be 

located. Some additional storage is thus required in the smaller machines to 

simulate these instructions. 

INSTRUCTION FORMAT 

All instructions are either 16 or 32 bits in iength and are fetched from memory 

in 1,  2 or 4 cycles as required. The small machine must make at least 2 references to 

memory for each instruction while the large machine may have 2 instructions in a 

single word. The 16 bit memory reference instruction word format is as follows: 

Address 

Ind i r ec t  
8='<12 L3 14 19 

Operand . Address 
Size 



The 32 bi t  word format is: 
lndex Register 

Address 
Selection 
e--, 

7 8 w 1 1  12 22 23 24 25 26 27 28 29 30 

Op Code lndex Operand 
Size 

"The OP Code portion1' i s  used in the traditional sense and merely selects 

the instruction to be performed. 

"The Address Mode" i s  decoded as follows: 
- -- 

0 = Immediate i .e. operand i s  contaiced in :he next 2 bytes tmrnediately ' following the instruction or in the same word on the 32 t i t  rrii:ine. 

& 1 = Relative forward. Add the c~ r~ ten t s  of the address p r i ; ~ r  ;o ihe current 

?a P .C . to obtain the address of the operand. 

4 \ ,., - 4 2  = Relative reverse. Subtract :he contents of the address porrion from the 
\\ a current P .C. to obtain the add:ess of the operand. 

3 = Full address. Fetch the next two bytes to obtain the address of the 

operand. 

Modes 0, 1 and 2 specify 16 bi t  instructions whereas mode 3specifies a 32 bi t  

instruction. 

"The Index bit" i f  a one indicates that the contents of the index register 

w i l l  be added to the address after any relctive address calculation has been made. 

"The Indirect bit" specifies defetred addressing in the usual sense. Mu l t i  

level indirect addressing i s  possible. During a defer cycle the address mode, index 

and indirect bits o f  each word are obeyed. 

"The Operand Size portion" indicates that the operand w i l l  be 8, 16 or 32 

bits long. ' "The Index ~ q i s t e r  selection bits" allow any one of 8 index registers to be 

specified in the ful l  address mode. In any other address mode only index register 0 

.ay be used. 



Page 5. 

"The Address portion" i s  used to select the first of the 1, 2 or 4 bytes which 
i 

wi l l  be used as the operand. Thus in the 8 bit  machine the address portion i s  equivalent I: 
5 

to the memory address. In the 32 bit  machine the least significant 2 bits are not used to I 
. address memory but rather are used as a byte pointer to select the desired portion of  the 

I 

1 
4 

word. 



Page 6. 

INSTRUCTION REPERTO IRE 

The instruction set i s  designed to be complete but straightforward. Many 

of the instructions can be implemented at very small cost'over and above the most 

basic useful set because they use existing gating and transfer paths. The following 

l i s t  represents a starting point and probably can be improved upon. Instructions are 

grouped by major function. 

1. Memory Reference 

. Arithmetic 

Add to accumulator C iL ' 
Add to memory 

Subtract from accc,~~ulc:o; 

~ u l t i p l y  (optional) 

Divide (optional) 

Log ica I 

AND 

Inclusive OR 

Exclusive OR 

Store and Load 

Load Accumulator 

Store Accumulator 

Store Zero in memory 

Load MQ (optional) 

Store MQ (optional) 

Index 

Increment Memory and skip i f  0 

Decrement Memory and skip i f  0 

> Compare 

Skip i f  same 

S ' 3 i f  different 



Page 7. 

Branching 

Jump conditional # I  

Jump conditional #2 

Jump to subroutine 

Jump and save P C in index register 

In -Out 

Transmit memory on 10 bus 

Transmit 10 bus to memory 

Test and jump 

Miscellaneo~s 

Execute 

Sniffs and Rotates 

Logical Shift right (1 or 8 places) 

Cogicci Shift !eft (1 or 8 places) 

Arithmetic Shift right (1 or 8 places) 

iiotate left (1 or 8 places) 

Rotate right ('I or 8 places) 
/ 

Long Shift right .(optional)J 
L 

Long Shift left (optional) 

Normalize (optional) " -- 

Clears and Com~lements 
-- 

Clear accumulator 

Complement accumulator 

Clear overflow 

Complement overflow 

Coun ting 

Increment accumulator 

Decrement accumulator 



Page 8. , 

Miscellaneous 

Halt 

Read switches into accum~ulator . ," . 

In -Out - 
. Select device 

Transmit AC on 10 bus 

Transmit 10 bus to AC 

Most of the instructions listed above are quite conventional . However the 

jump instructions require further explanation. Since the operand size portion has 

no meaning for these instructions i t  wi l l  be used to specify the condition for jumping. 

Conditions are decoded as follows: 

Jump # I  

0 = unconditional 

1 = i f A C = O  

2 = i f A C t O  

3 = i f  overflow = 1 

Jump #2 

0 = i f  AC i s  positive 

1 = i f  AC i s  negative 

2 = i f  overflow = 0 

4 = not used 

Test and Jump 

0 = i f  device flag 0 i s  a 1 

1 = i f  device flag 1 i s  a 1 

2 = i f  device flag 2 i s  a 1 

1 3 = i f  device flag 3 i s  a 1 

S I G l T A L  E Q U I P M E N T  C G R ? O R A T I O N  M A Y N A R D ,  M A S S A C H U S E T T S  



Page 9. 

DATA HANDLING 

Internal data i s  normally handled by moving i t  from memory to the accumulator 

where it is processed and then returned to memory. In a l l  machines the accumulator 

i s  a ful l  32 bit register. However its organization and transfer paths differ. The 

block diagrams below illustrate the organization of each member of the family. 

8 Bit Organization 

D I G I T A L  EQUIPMENT C O R P O R A T I O N  M A Y N A R D ,  M A S S A C H U S E T T S  



Page 10. 

16 Bit Organization 

Adder 

16 
Bits 

32 Bit Organization 

Adder 
32 
Bits 

Output r 

I Memory 

1 16 
f Bits 

I Output 

Memory 
32 

Bits 

D I G I T A L  E Q U I P M E N T  C O R P O R A T I O N  M A Y N A R D ,  M A S S A C H U S E T T S  



Page 11. 

I t  can be seen that in order to process a 32 bit number with an 8 bit machine, 

4 passes must be made through the adder in serial. This of course takes 4 times as 

long but also substantially reduces the cost since a l l  of the complex operations are 

done in the adder. The accumulator f l ip flops themselves are really quite simple and 

inexpensive. Carries out of any of the lower order portions of the accumulator wi l  

propagate into the next higher order part. Carries from the most significant bi t  w i  

set the overflow f l ip  flop. 

INDEX REGISTERS 

Eight index registers are provided and are normally located in core memory. 

They may however be replaced by f l ip  flop registers as an option. Each index register 

i s  16 bits long including a sign bit. During an index cycle the sign bit wi l l  be obeyed, 

i.e., if it i s  negative the index register w i l l  be subtracted from the address. If i t  i s  

positive i t  w i l l  be added. In addition i f  subtraction is  specified and the index register 

i s  equal to 0 the next instruction w i l l  be skipped. 

INPUT OUTPUT 

A l l  10 operations w i l l  be done on a bus system. Data transmission is  normally 

accomplished as a 2 step operation. The first step i s  to load the selection register 

and the second i s  to transmit the data. The selection register i s  8 bits long and i t s  

contents are transmitted to each device. Whenever a device recognizes its own code 

on the selection lines i t  w i l l  make a DC connection to the bus. Actual data transfers 

may be made with the accumulator using an augmented instruction or with memory 

using a memory reference instruction. i f  the transfer i s  with memory the instruction 

may be indexed and thus blocks of data may be conveniently transmitted or received. 

.' Either 1, 2 or 4 bytes wi l l  be transferred depending on the operand size portion of the 

instruction. 
1 
Device status may be tested by use of the test and jump instruction. This instruc- 

tion w i l l  sample any one of 4 status lines on the 10 bus. Since the selected device 

w i l l  have previously connected its status information to the bus the program may be 

branched in accordance with any of 4 different conditions from any of 256 devices. 

-- 
D I G I T A L  EQUIPMENT CORPORATIc3N . MAYNARD,  M A S S A C H U S E T T S  



Page 12. 

ADVANTAGES 

An organization along these lines gives us many advantages in  return for a 

small amount of added complexity to maintain compatibility. The most important 

of these are as follows: 

1. A 32 bit arithmetic capability. This wi l l  drastically reduce the 

amount of double and triple precision computations required and thus 

speed processing and reduce storage requirements. 

2. A fairly powerful order code structure which w i l l  allow us to write 

programs to operate in snialler memories. 

3. A more efficient method af handling data which allows easy character 

packing and does not require use of more memory than necessary for data 

of a given length. 

4. A full line with the possibilityof replacing a small machine with a 

larger one as requirements change. . 
5. A fully compatible line of peripherals which may be transferred from 

one machine to the next i f  the processor i s  replaced. . This w i l l  also reduce , 
, 

the engineering cost of peripheral equipment. 

6. A fully compatible programming system. This w i l l  allow us to invest a l l  

of our programming effort in a singale language and thus we w i l l  be able to 

develop better software at lower cost. 

7. Reduced module costs since a l l  machines w i l l  use the same circuits and 

thus volume wi l l  be much higher. 

%C 
K H Olsen, J Jones, R L Best, 
G Bell,tL Hantman 

.- - 
- 

D I G I T A L  E Q U I P M E N T  C O R P O R A T I O N  MAYNARD,  M A S S A C H U S E T T S  
- - 



[ I J B l  
MEMORANDUM 

D A T E  December 7, 1966 
sUBJECT Proposal f o r  t h e  PDP-14XGB - Logical S t ruc ture  of t he  

16 b i t  Processor. 
T O  K. Oleen E. DeCastro F R O M  

N. Mazzareee M. Ford Gordon B e l l  
W. Hindle H. Burkhardt 
S. Oleen J. Jones 
6.  Dinman L. Portner  
A. Kotok T. Johnson 
L. seligman R. ~ a n e  

Having attended a r a the r  hect ic ,  bu t  s t imulat ing meeting, a t  
DEC on November 23, 1966, I decided t o  w r i t e  down thoughts about 
the  machine(s), generally.  Those a r e  included i n  the  memo "New 
Machines Design Parameters". That memo deals  with parameterizing 
the  design, with attempts t o  l ist  the  goals. Having gone t h a t  f a r ,  
I couldn' t  resist t ry ing  t o  specify a machine, and t h a t ' s  included. 

The most impartant decisions i n  t he  machine(s), I bel ieve ,  are8 

1, Index Registers  
l e a  A r e  Index Registers,  AC, MQ iden t i ca l ,  general? 
1.b Number of general  r e g i s t e r s ?  
2. Addressing Storage, how many modes? The des i rab le  

a b i l i t i e s  ares 

a. Using a 32 b i t  ins t ruc t ion ,  d i r e c t l y  address 
any work i n  memory, i n  connection with a t  l e a s t  
one index reg i s te r .  The ins t ruc t ion  should be 
contiguous, s o  t he  assembler doesn' t  have t o  worry 
about building the  2nd ha l f  of it (with t he  address 
p a r t )  somewhere else nearby. 

b. Be ab le  t o  t r ans fe r  t o  a nearby address using a 
16 b i t  ins t ruc t ion  (nearby = -16*64 words). 

c. Pick up common 16 or 32 b i t  constants  o r  da t a  nearby 
f o r  a common rout ine  i n  a 16 b i t  ins t ruct ion.  

d. G e t  a t  l e a s t  a constant o r  immediate da ta  @f z5 
f o r  d i r e c t l y  specifying s h i f t s ,  se lec t ing  an 1/0 
device, etc. i n  a 16 b i t  ins t ruct ion.  

- - - - - 

DIGITAL  E Q U I P M E N T  C O R P O R A T I O N  - MAYNARD,  M A S S A C H U S E T T S  



e. Directly or indirectly address any of the 
general registers in a 16 bit instruction. 

f. Address such that temporary data is stored 
in an "impure partw so that subroutines are 
all re-entrant. 

g. Provide "inunediate" data in a 32 bit instruc- 
tion to avoid having assembler page difficulties. 

3. Calling subroutines - can the subroutines be naturally 
re-entrant? Need they? 

4 . G & - ~ ~ S Y S P O P / W O s / o r  - Programed Operators - 
can thesebe implemented so that desirable order codes 
be implemented with little overhead in time, and 
interpretive programming provided for? 

Address space - Is 215 or 216 large enough for fore- 
seeeble market? 

Multiple users? Protection and Relocation Scheme. 

Should page or relative addressing be used for 
short addresses? 

DIGITAL E Q U I P M E N T  CORPORATION . MAYNARD, MASSACHUSETTS 







, , 

fle9&%~ or- 
* - -  * 

' R M S  J 
Hey /WZO[Q : /s, 6 - 73 







: h  ! INTEROFFICE I 
.. 

a (  1 MEMORANDUM 

D A T E  February 6, 1967 

' S U B J E C T  
P o s s i b i l i t y  of  making many P e r i p h e r a l s  a t  DEC w i t h  a 

TO Common I n t e r f a c e  t o  a l l  p r e ~ g ' b h a n d  f u t u r e  computers. 

Ken Olsen Gordon B e l l  
N i c k  Mazzarese , 

Win Hindle  
S t a n  Olsen . 

CC: A. Kotok 
R. ' Save11 

From t ime  t o  t ime t h i s  has  been cons idered ,  b u t  has n o t  been 
p r a c t i c a l  because  t h e  i n t e r f a c e  has  been a t  t h e  computer- 
p e r i p h e r a l  c o n t r o l  boundry. A1~0 ,because  t h e  d e s i g n e r s  want 
t o  op t imize  each system t h e r e  i s  a  tendency t o  des ign  each 
c o n t r o l  t o  t u n e  a system. A common i n t e r f a c e  would b e n e f i t  
so f tware  des ign ,  a s  w e l l  a s  g i v i n g  p roduc t ion  f l e x i b i l i t y ,  
and minimizing system des igns .  I t h i n k  t h a t  due t o  i nc reased  
emphasis on remote t e r m i n a l s  t h e r e  is  a  t r e n d  (good one)  t o  
b e  a b l e  t o  remote any dev ice ,  and a s  such She s p e c i a l i z e d  
i n t e r f a c e  w i l l  h o p e f u l l y  van i sh  from o u r  un iverse .  For 
example, IBM w i l l  s h o r t l y  announce a c a r d  r e a d e r ,  c a rd  punch, 
l i n e  p r i n t e r  combination t h a t  connec ts  t o  a  s t anda rd  D a t a  
phone. 

Therefore, I hope t h a t  s i n c e  PDP-9,10, and 81 are i n  t h e i r  
p r e - p e r i p h e r a l  des ign  phases ,  such an approach be s t u d i e d  a s  
a means of  having common I/O c o n t r o l l e r s  a c r o s s  all computers 
ana l i n e s  i n c l u d i n g  new ones. Obviously, n o t  a l l  equipment 
f l t s  t h e  mold. 

The equipment which looks  most l i k e l y :  

A-D-A 
Paper  Tape Readers & Punches 
Card Readers and Punches 
P r i n t e r s  
P l o t t e r s  

D I G I T A L  E Q U I P M E N T  C O R P O R A T I O N  MAYNARD,  M A S S A C H U S E T T S  



/ " ~ e l e t ~ ~ e s ,  Typewriters 
Dataphones, and Phone Transmission stuff 
slow displays 
audio units 
computer-to-computer buffers 
relays, etc. (digital I/O) 
Discs, Drums, mag. tape, DECtape, and Disp 
undoubtedly too .fast. . 

One possibility for such a system would be: 
sketch. ) 

~lays are 

(see attached 

D I G I T A L  E Q U I P M E N T  C O R P O R A T I O N  - M A Y N A R D ,  M A S S A C H U S E T T S  





B INTEROFFICE M E M O R A N D U M  
DATE: 26 February 1968 

SUBJECT: V i s i t  t o  DEC 15 February 1968 

TO: J. A. Jones 
Stan Olsen 
Nick Mazzarese 

FROM: Gordon B e l l  

~d decas t ro  
~ i k e  Ford 
Win Hindle 
Ken Olsen 

After  spending a day t a l k i n g  about computers, I'm 

r e a c t i n g  by t r y i n g  t o  w r i t e  down my ve r s ion  of what 

t r ansp i red .  I hope o t h e r s  w i l l  do t h e  same, a s  I 

f e l t  a tremendous need t o  t r y  t o  put  th ings  i n t o  a 

framework. Also, s i n c e  Mike Ford asked me what 

machines t o  b u i l d ,  I wanted t o  w r i t e  an answer. 

To begin wi th ,  I 'm s o r r y  t o  hear  t h a t  t h e  X has  been 

k i l l e d ,  s i n c e  it p o t e n t i a l l y  could have formed t h e  

b a s i s  f o r  a compatible s e r i e s .  However, s i n c e  it  implied a 

l a r g e  number of compromises i n  each group, it probably 

i s  not  p o s s i b l e  

Ul t imate ly ,  it would have removed t h e  9 and 10 a s  product 

l i n e s  and no one l i k e s  t o  be p a r t  of a vanishing product 

l i n e .  



I n  Summary 

My f a v o r i t e  sugges t ions  (a l though I ' d  l i k e ' s o m e  o t h e r  p o i n t s  

looked a t )  now a r e  : 

Form a  product-planning group. 

Pa t en t  t h e  Homogeneous Read-only p l u s  Read-Write 
Memory (desc r ibed  below) . 
Don' t  b u i l d  a  24-bi t  computer, f a s t .  I f  you have t o ,  
you might look a t  t h e  PDP-X, which h a s  bo th  16 and 32-bi t  
i n s t r u c t i o n s  f o r  an average of 24 -b i t s  on ly  i t ' s  b e t t e r  
t han  most 24-bi t  computers. 

Bui ld  an 8/1 around l a r g e r  boards  and lower c o s t  and 
b e t t e r  c a b i n e t  f a b r i c a t i o n  ( s e e  Data ~ a c h i n e s / a n d  
Mike F o r d ' s  s u g g e s t i o n s ) .  I n c o r p o r a t i n g  o p t i o n s  f o r :  

a .  Lower b a s i c  c o s t .  
b. Use of Read-only Memory. 
c .  Not moving t h e  computer on s l i d e s ,  drawers ,  o r  books. 

Bui ld  10hDeve lop  10/1~emory f o r  u s e  i n  9/1, 10/1. 

A n i c e ,  modular, v a s t  9: 

a .  Very l o s t  c o s t .  
b.  Modular memory system a  l a  X i n  upper models. 
c .  Mult i -processor  a t  h igh  end. 
d. Use Read-only Memory ( e i t h e r  i n t e r n a l  o r  main) t o  

i n c r e a s e  speed of  a r i t h m e t i c ,  s o  t h a t  it competes 
w i t h  24-b i t  computers. 

e .  Add X R ' s  and some s c r a t c h  pad,  a  l a  Ed d e c a s t r o ' s  
l a r g e  16 X 32 b i t s  (18 X 32 )  o r  (18 X 16 ) .  

f .  Make a  p roces so r  f o r  i n t e r p r e t i n g  PDP-10 i n s t r u c t i o n s  
and hand l ing  PDP-10 I/O dev ices  u s i n g  Read-only 
Memory i n t e r n a l l y .  

Bui ld  t h e  9-b i t  c o n t r o l l e r .  A s  a  s tand-alone computer, 
and a  c o n t r o l l e r  t o  9,  and 10 dev ices .  



8. Try to build special, total systems, based on 
software packages for existing machines (e. g. TS8; 
TS9; Administrative Terminal System-like thing 
(IBM's Multi-terminal editor) ; ) 

9. Do something to consolidate market planning across 
product lines. 

10. Data Communications can still be yours, don't drop it! 



Other Comments 

Although my fol lowing arguments need t o  be  based on cost / l  

performance curves ,  I t h i n k  o u r ' s a l e s  r e s u l t  from o the r  

f a c t o r s ,  too:  i n e r t i a ,  (IBM e f f e c t ) ;  lowest c o s t ;  and 

cost/performance. 

The X group came up with some n i c e  a n a l y t i c a l  r e l a t i o n s h i p s  

( e . g . ,  i n s t r u c t i o n  s e t  u t i l i z a t i o n ,  performance of machines, 

checkout c o s t s ,  e t c . ) ,  e s p e c i a l l y  when it  was needed t o  back a  

dec is ion .  I would l i k e  t o  endorse t h e i r  a n a l y s i s  and would 

hope t h e  s e v e r a l  machines t h a t  a r e  being s t a r t e d  could a l l  be 

done on such underlying thoroughness. I 'm suggest ing a  

number of machines, and I ' d  r e a l l y  l i k e  t o  s e e  c o s t /  
i 

performance) memory s i z e  curves f o r  each of them. I ' m  enc los ing  I 
1 

examples I d i d  on t h e  360. 

I ' d  l i k e  t o  pu t  t h e  fol lowing i n t o  a  b e t t e r  framework then 

t h e  l i n e a r  l i s t  followin&, b u t  t h i n k  t h a t ' s  up t o  #1, below. 

The i tems a re :  

1. S e t  up a  market-study group t o  t r y  t o  consider  t h e  company 
a s  a  whole, and have it connect with each product- i 

marketing group. I would p r e f e r  t o  c a l l  and use t h e  ex- I 
I 

i s t i n g  marketing groups f o r  s a l e s  suppor t ,  and s a l e s ,  
and information c o l l e c t i o n .  Such a  group would be  
more along t h e  l i n e s  of product-planning group, doing 
market/cost a n a l y s i s  wi th  a  combination of design,  
product ion,  and market inpu t s  and would h e l p  guide 
product planning. 



2. Try t o  inc rease  t h e  p a r t s  which a r e  produced i n  common f o r  
a l l  computers ( f o r  product ion,  s a l e s  promotion, customer 
l ea rn ing ,  and t r a i n i n g  reasons through some formal 
o rgan iza t iona l  body (maybe product planning)). (For 
example: p a r t s  of memories, p e r i p h e r a l s ,  and p e r i p h e r a l  
c o n t r o l l e r s . )  The s t r u c t u r e  of t h e  8 ,  and 9  make it 
v i r t u a l l y  i d i o t i c  not  t o  have common c o n t r o l l e r s .  The 
advent of t h e  l a r g e r  log ic  cards ,  tha?LSI, r e a l l y  
n e c e s s i t a t e s  t h i s .  S p e c i f i c a l l y  Ed deCastro wound up with 
16 X 32 a r r a y ,  f a s t  memory t h a t  could be used i n  t h e  
91+ and 101. These p a r t s  inc lude  software ( see  5 below). 
About a  year  ago (memo Feb 6 ,  1967),  I suggested such 
a  scheme f o r  common p e r i p h e r a l s ,  t h e  arguments a r e  s t i l l  
v a l i d .  

3 .  S t a r t  p a t e n t  proceedings on t h e  Homogeneous Read-only, 
Read-Write Memory scheme, descr ibed below, which was 
developed on t h e  15 February meeting. I t  seems t o  be  
an e f f e c t i v e  way t o  g e t  a  n i c e  l o c a l  improvement i n  
speed, i n  t h e  case  of simple processors  l i k e  PDP-8, 9. 
I ' v e  looked a t  t h e  PDP-8/1 l o g i c ,  and i f  you can wai t  
long enough *l$ years ,  I w i l l  make it go a t  .3  psec/ 
read-only c y c l e ,  with only 15% more i n t e g r a t e d  c i r c u i t s .  

4. I t  i s  very d i f f i c u l t  t o  measure t h e  cos t -benef i t  of 
another product i n  t h e  l i n e .  I 'm aga ins t  any machine 
which i s  only incremental  and does not  t r y  t o  b e t t e r  
conso l ida te  a l l  DEC computers because I b e l i e v e  t h e  
c o s t  of development and maintenance ( e s p e c i a l l y  sof tware)  
i s  t o o  high.  For t h e  same amount of development $ I s ,  

I b e l i e v e  system a p p l i c a t i o n s  sof tware has  b e t t e r  
payoff ,  i . e . ,  a  computer i s  converted t o  a  p a r t i c u l a r  
device  (a l a  t y p e s e t t i n g ,  e t c . )  . 

5. Along t h e  l i n e s  of 4 ,  DEC could s t a r t  c o l l e c t i n g  
FORTRAN programs from p laces  l i k e  SHARE, G U I D E ,  e t c . ,  
which can be run on both t h e  9, and 10, and maybe 8. 
I n  f a c t ,  I t h i n k  t h e  genera l ized  a p p l i c a t i o n s  packages 
(e .g . ,  a  MATH-pak, or  a  STAT-pak, e t c . )  a r e  t h e  only 
reasons one would buy an IBM small  360 o r  1130/1800 
over DEC. This can be  overcome by g e t t i n g  t h e s e  packages 
i n t o  t h e  DECUS l i b r a r y .  A p o l i c y  t o  use FORTRAN t o  
code t h e s e  packages seems l i k e  a  good, long-range pol icy .  
Most such packages a r e  a v a i l a b l e ,  f r e e ,  now. (For example, 
a l l  CALCOMP p l o t t e r  programs e x i s t  i n  FORTRAN). 



6. I n v e s t i g a t e  s e v e r a l  design a l t e r n a t i v e s  thoroughly. 
(The only implementation which traded-off c o s t  f o r  

performance t o  come from DEC has been t h e  PDP-8/~)  
I ' d  l i k e  f o r  t h e s e  t o  be inves t iga ted .  

8/1-1 (lower c o s t  us ing  l a r g e r  boards,  and d i f f e r e n t  
bus s t r u c t u r e  t o  lower c o s t ) .  

8/1-2 (lower cost-lower performance - poss ib ly  a 
s e r i a l  ve r s ion  t o  run a t  2 ~sec /word  o r  so)  

8/1-3 b rope memory c o n t r o l  which allows some smal l  
s e t  of co re  o r  f l i p - f l o p  memory t o  be added 
along t h e  l i n e s  of t h e  homogeneous rope-core 
below) . 

9/1-1 (lower c o s t  9  - may o r  may not  use rope c o n t r o l  
l i k e  t h e  9 ) .  

9/1-2 ( f a n c i e r  9  s t r u c t u r e  with l o c a l  MI3 and MA i n  a 
memory). The memory opt ions  would be based 
on some X designs and include:  

(1) Memory box with connection o r  p o r t  t o  one 
processor  with 4K, 8 K  o r  16K. 

( 2 )  Memory box with connection o r  p o r t s  t o  two 
processors  o r  a  processor  and c o n t r o l l e r  
with 4K, 8K, o r  16K. 

(3) Box t o  al low m u l t i p l e  (4-8) processors  o r  
c o n t r o l l e r s  t o  connect t o  a  memory por t .  
The processor  might use rope con t ro l .  

9/1-3 (processor  with a homogeneous read-only co re  
s t r u c t u r e  i n  which Read-only s t r u c t u r e  might 
inc lude  programmed f l o a t i n g  p o i n t  o r  FORTRAN 
opera t ing  system i n t e r p r e t e r  t o  speed up 
numerical c a l c u l a t i o n s .  This s t r u c t u r e  could 
do numerical work f a s t e r  than  a  s i n g l e  24-bit 
machine). The main memory s t r u c t u r e  would be  
along l i n e s  of 9/1-2 i n  which some modules would 
be rope. 



(A f a n c i e r  processor  with rope contro:L, along 
t h e  l i n e s  of t h e  9 ,  bu t  a  l a r g e r  rope s o  t h a t  
f l o a t i n g  po in t  and o the r  common ops could be 
sped up.) Such a  s t r u c t u r e  would a l s o  allow 
c o n t r o l  func t ions ,  such a s  DECtape, Magtape, 
680-like t e l e t y p e s ,  high speed l i n e  concent ra tor ,  
t o  be  included. 

This f e a t u r e  would be so ld  t o  customers f o r  
t h e i r  use. 

A processor  which would connect t o  9/1-2 
Memories, and PDP-10 I/O bus,  and i n t e r p r e t  
only PDP-10 code (using rope memory). 
16K X 18-bi t s  would be minimum memory s i z e .  
Use 10/10 + software.  

A processor  which would connect t o  PDP-10 
Memories, and PDP-10 I/O bus and be 18-bi ts  
wide, and i n t e r p r e t  PDP-10 code. 16K X 18-bi ts  
would be minimum. Use 10/10 + software.  

A mult i -processor  9  (where m u l t i  a 2 1 ,  t h i s  should 
not  only ou t  perform a 24-bit computer, b u t  should 
be  cheaper,  and more r e l i a b l e .  

Increments 

From a f u t u r e  product planning p o i n t  of view, 
9 can b e  spruced up a  b i t ,  e. g. 

Three-core index r e g i s t e r s .  

Replacement of f i r s t  16-core r e g i s t e r  
t o  speed up opera t ions  using index 
r e g i s t e r s  temporary, and auto-index 
r e g i s t e r s .  

I n v e s t i g a t e  i f  M I T ' s  (Leej,  and Harvard's 
PDP-9 t ime-sharing system i s  marketable. 



(4) Incorporate Edinburg's PDP-7 MACRO 
Assembler in software. 

(5) See why the PDP-9 FORTRAN is so bulky, 
and slow. 

10/1 Integration of processor, compatible with 
LO. Integrate other components, attempt 
to use 9/1 sub-components. 

X- 1 Smaller scale version of X. 

24 Another computer. 

9-bit A smaller than PDP-8 computer which would 
corn- be part of a series of weakly, compatible 
puter machines of our 9, 18, 36-bit series. 

This would stand alone as a minimum 
computer. 

Also it would be specifically designed to 
serve as the controller for elaborate 
devices, or a group of devices which 
could be used on the 9 and 10, (also, 8 
if desirable). It would be a front-end 
controller for communication lines for 
the 9 and 10 (scanning and buffering). 
This could be an important product, if 
it can be designed. 



Note: This computer i s  along t h e  l i n e s  of one we'd 
l i k e  b u i l t  f o r  here.  I s e n t  Mike Ford a 
copy of an 8 -b i t  computer, along t h e s e  l i n e s  
which we thought could be b u i l t  f o r  $3K a t  
Carnegie. I would l i k e  t o  remind people t h a t  
t h e  t a s k s  which a r e  done i n  8 -b i t  chunks, can 
be done n i c e l y  i n  a 9-bi t  computer. I n  f a c t ,  
it may be  a ' s i l l y  1 -b i t  longer '. 

8-b i t  Although t h i s  i s  a l s o  minimum, it d o e s n ' t  
computer look very good a s  a c o n t r o l l e r  t o a n 1 8  o r  

36-bit  machine. I ' v e  never f e l t  t h a t  8 
i s  an e s p e c i a l l y  good base ,  and base  ( 2 9 ) 1 ~  
has  100% more s t a t e s  than an 8-b i t  base. 

Right now IBM has j u s t  announced an opt ion  t o  connect t o  
t h e  360/25 t o  g ive  64 t e l eg raph  l i n e s  i n  and two high I 

speed l i n e s  out  i n  a concent ra tor  and t h e  p r i c e  i s n ' t  awful ly I 

unreasonable,  e s p e c i a l l y  s i n c e  they  r e n t .  
I 

7. Do something about Data Communications Market (product) 
planning, be fo re  i t ' s  t o o  l a t e !  Although it s t i l l  i s n ' t  
t o o  l a t e ,  wa i t ing  another  year be fo re  s t a r t i n g  t o  p lan  
may be. (See memos of about 1% years  back) .  This i s  j u s t  
r i g h t  f o r  DEC a s  a market ( e s p e c i a l l y  with t h e  new 
9 X l o 6  b i t  d i s k ) .  This inc ludes  both t e l eg raph  message 
switching,  and d i s p l a y  (text-keyboard) a t  2400-bits/sec 
concent ra t ion .  Respond p o s i t i v e l y ,  c r e a t i v e l y ,  and 
c o r r e c t l y  t o  ARPA's RFQ f o r  t h e i r  network switkhing 
computers. This job may t ake  a PDP-9, and t h e  p resen t  

The proposed 24-bit machine 

I @ I 

I 

I th ink  t h i s  machine i s n ' t  e s p e c i a l l y  good a s  i t ' s  a i 
1 

DEC o rgan iza t iona l  s t r u c t u r e  precludes th ink ing  of t h e  
I 

problem t h i s  way. 

compromise between a medium computer (16/18-bits) and a I 
I 
! 

reasonably l a r g e  one (32/36-bits) .  Although a 24-bit  machine 
I 

w i l l  ou t  perform an 18-bi t  machine ( f o r  t h e  same l e v e l  of 

technology - i . e . ,  memory speed) due t o  added index 

r e g i s t e r  and e x t r a  i n s t r u c t i o n s .  I d o n ' t  g ive  one (e. g . ,  I 
1 

! 
910-920-like) more than  a f a c t o r  of 2 over a PDP-9 f o r  t h e  

same memory speed, although one can b u i l d  a 24-bit computer 

-9- 



t h a t  performs l i k e  a l a r g e  computer (e.g. CDC 3200). 

Mostly, I d o n ' t  l i k e  t h e  idea  of another  product which 

has  no chance of b r ing ing  t h e  o the r  p roduc t l s  product ion,  

programming, o r  s a l e s  t r a i n i n g  any c l o s e r  together .  (I 

can show you a r e a l  mess a t  I B M  p r i o r  t o  t h e  360 i n  which 

s l i g h t l y  b e t t e r ,  non-computible products  kep t  g e t t i n g  

s tuck  i n  cost/performance, c o s t ,  o r  performance ho les . )  

I agree t h a t  t h e r e i s  a s i g n i f i c a n t  h o l e  between t h e  9 and 

10. This h o l e  can be f i l l e d  with e x i s t i n g  product p a r t s  

r a t h e r  than  introduce another  incompatible s e r i e s .  I n  

both t h e  9 and 10, t h e r e  e x i s t s  t h e  p o s s i b i l i t i e s  f o r  a 

n ice  f i l l e r .  There i s  a d i scuss ion  of t h e  360 a s  an 

example of f i l l i n g .  

The i s s u e  of whether a multi-processor 9 is  b e t t e r  I 

than a mini-processor 10 (9/1-5 o r  9/1-6) should be  

based on cost/performance comparing say space/time f o r  I 

FORTRAN i n  t h e  two machines, p e r i p h e r a l  c o s t s ,  i n s t r u c t i o n  

s e t  power, and t h e  f a c t  t h a t  10 sof tware  i s  a l r eady  p r e t t y  I 

f a r  advanced. (Such a machine would use a memory of 

1 C K  words). I dont b e l i e v e  t h a t  t h e  PDP-10 group is  

capable  of making such a design o r  eva lua t ing  t h e f e a s a b i l i t y .  

d o -  



Again, I th ink  $ I s  should be spent  on support  sof tware 

ins tead  of b a s i c  sof tware l i k e  maintenance r o u t i n e s ,  

compilers ,  e t c .  A t h r e e  o r  four  year ex tens ive  e f f o r t  t o  

g e t  DEC t o  t h e  l e v e l  of t h e  SDS 900 s e r i e s .  Also, I b e l i e v e  

t h a t  i f  any p resen t  24-bit manufacturers want t o ,  they  could 

wipe you out! On t h e  o t h e r  hand, with a dual  processor  

18-bi t  machine, you could make th ings  rougher on them. 

I looked a t  some sample S D S  900 s e r i e s  programs, and though 

admit tedly not t y p i c a l ,  i n  100 i n s t r u c t i o n s  I counted, an 

8 -b i t  address  was s u f f i c i e n t  75% of t h e  time. This compares 

favorably with t h e  s t a t i s t i c s  i n  t h e  i n s t r u c t i o n s  measured 

by t h e  X group. I d o n ' t  b e l i e v e  t h e  smal l  address  hack 

i s  a hack, bu t  r a t h e r  an e f f i c i e n t  use of b i t s .  



360 Lessons 

Enclosed a r e  some notes  on a t a l k  given by Fred Brooks, one 

of t h e  IBM 360 des igners  a t  a t a l k  a t  IBM Poughkeepsie. I 

have a l s o  enclosed my IBM 360 cost/performance graphs,  

a s  I b e l i e v e  t h i s  kind of a n a l y s i s  i s  necessary t o  f i n d  

a f i l l e r  between t h e  9 and 10. The i s s u e  of ROS and 

mult i -processors  can be  seen from t h e  360. For example, 

t h e  u t i l i z a t i o n  of memory 

- - number of memory cycles  used 
number of memory cycles  a v a i l a b l e  

Model Memory U t i l i z a t i o n  

This i s  low compared t o  t h e  PDP-8,9 machines, b u t  on t h e  

o the r  hand, t h e  complex 360 i n s t r u c t i o n s  do move. Their 

1130 and 1800 a r e  l i k e  .75. ROS causes p a r t  of t h e  problem, 

b u t  t h e  complex i n s t r u c t i o n s  do too. The 10 would probably 

be p r e t t y  low t o o ,  due t o  f l o a t i n g  p o i n t ,  and m u l t i p l e  

memories ( i n  f a c t ,  a 3 2 K  system would put  it below - 5 ) .  

I proposed a smaller  s e t  of 360 processor  p r i m i t i v e s  which 

would g ive  b e t t e r  cost/performance i n  t h e  360, and I th ink  

t h e s e  a l s o  apply t o  t h e  9+, l o - ,  24-bit i s sue .  These a r e  

given below. 



An A l t e r n a t i v e  S e r i e s  of Processors t o  Cover t h e  Range of 

Computing Power. 

Graph 4 i n d i c a t e s  t h a t  an a l t e r n a t i v e  approach based on 

mul t ip le  P c ' s  i s  f e a s i b l e .  Suppose t h e  fol lowing P c ' s  a r e  

chosen a s  p r imi t ives  : 

Model Power 

Then by combining p r i m i t i v e s ,  t h e  performance values of 

t h e  p resen t  computer l i n e  can be obtained,  a s  shown below: 

Model PC Cost 

Note t h a t  i n  every case ,  t h e  mul t ip le  PC approach performs 

s i g n i f i c a n t l y  b e t t e r  than  t h e  uni-processor,  a t  a lower cos t .  

(The m u l t i p l e  PC in terconnect ion  c o s t  with Mp, and t h e  

problem of breaking t h e  t a s k  a p a r t  has  been ignored.)  



TO: p' 

Nick N a z ~ ; ~ r e s c  1 

FROM: 
John Cohen 

Win Hindlc. 
Ken 01 s e n  
Ed  DeCastr-o 
Gordon l?ell1 i 
L a r r y  P o r t n e r  , ,$ 

; I k * 4 '  

S i n c e  t h e  demise of t h e  P D P - X I  ainuml:jer of p o s s i b l l i t i c s  f o r  new p r o d u c t s  
have  been discus:;ed. One of t h e s e  i s  a  snedj.um--scale 2 4 - b i t  rni~chinc.  I~j:k.~a:l 
r e a c t i o n  was v e r y  negat i .ve  - i n  f a c t ,  everyone I spoke t o  w a s  a g a i n s t  i t .  
The f e e l i n g  was t h a t  t h e  marke t  w a s  t e n d i n g  away from e x i s t i n g  24-hi-t  
machines and no one was s u r e  who wou.ld buy such  a  machrine. However, f u r t h e r  
cons j .dera t . ion ,  c s p e c i  a l l y  a  t e c h n i c a l  cori!rnent by E d  DeCastro , make me wan.1: 
t o  b r i n g  the  i s s u e  up a g a i n .  

E d  p o i n t s  o u t  t h a t  memory s p e e d s  a r e  i n c r e a s i n g  f a s t e r  Zlhan h a r d x a r e  spee:!.~ 
and t h a t  t h i s  t r e n d  i s  e x p e c t e d  t o  c o n t i n u e  o v e r  t h e  n e x t  few y e a r s .  The 
i m p l i c a t i o n  i s  t h a t  it  w i l l  become more ancl more d i f f - i c u l - t  t o  d e s i g n  t h e  
hardware t o  keep up ~ . i i t h  t h e  memory. The s i m p l e r  t h e  addressj .ny scheme 
and i n s t r u c t i o n  s e t ,  t h e  e a s i e r  it i s  t o  a c h i e v e  hardware s p e e d s .  An 
i n s t r u c k i o n  l e n g t h  of IG or fewer  b i t s  n a t u r a l l y  l e a d s  t o  a  complicatcxl 
a d d r e s s i n g  sche:i~e - al.31-ig w i t h  t h e  a s s o c i a t e d  hardware compl.exily.  A 2 ?.-hi. t 
machine c a n  he  s imply  a r d  d i r e c t l y  a d d r e s s e d  - t h ~ s  w a r r a n t i n g  its f u r t h e r  
c o n s i d e r a t i o n .  

The next  s e c t i o n  r e v i c w s  a numbel- of  t e c h n i c a l  ancl rna1 : t .  t i n y  cons i  2 c r a  L-.icns 
which seem t o  l e a d  t o  2 4 - h i t s .  s e c t i o n  111 c o n t a i n s  a  s p e c j  f i c  
p r o p o s a l  t o  b u i l d  a 24--bi  t p r o d v c i  l i n e .  

A f t c r  tal-Iring wi-tl-1 rn;tr?y p c o p l . ~ ,  I t e r d  t o  f e e l  t h a t  t h e r e  a r e  t h r e e  val.ic? 
r e a s o n s  f o r  buj-1-ding a new C O I . ; : ~ ? U ~ C T  l i n e  . I n  o r d c r  of cstimz-ked impor tance  , 
t h e s e  a r e :  



- page 2 - 
Apsj.1. 1 , 1968/JC 

- - G e t  b e t  t c r  pel-Lor,rtancc/cosl . 
N e w  coricepts  of mzchjnc orcjaniza-tioll ma!-c i t  possib?.c  t-o produce  a corapuicr 
w i t h  b e t t e r  p e r f  or r ; la r l~ .~/cosL t l ian  t h e  P D P -  9 . Althouc~li perr 'orma~ice/cos L i s  
n o t  n e c e s s a s i  %y t h e  t h i ~ ~ c j  t h a t  s e l l s  computers ,  an  imp-ovcrwnt would n o t  
h u r t  . 

--Make programming easj-eu and c h e a p e r .  
Without  any q u e s t i o n ,  one of t h e  prohlemr; wikh our p r e s e n t  small. and 
medium s c a l e  computers  i s  t h a t  t h e y  a r e  d i f f  i.cu1.t t o  program. S i n c e  we a r e  
l i k e l y  t o  p r o v i d e  more a p p l i c a t i o n s  s o f t w a r e  t o  o u r  cus to iners  i n  f u t u r e  
y e a r s ,  t h i s  can  be  a r e a l  d i f f  i c u l - t y .  O n  a l o n g  term b a s i s ,  we waul-d s a v e  
money w i t h  a more "programable"  compu-Ler. 

' According t o  Ed DeCas-Lro, t h c  c u r r e n t  t r e n d  i.s f o r  hard.ware speed t o  i n c r e a s e  
more s lowly  t h a n  nlcnmry speed .  From a c o s t / p e r f o r ~ n a n c e  p o i n t  of v iew,  a 
computer i s  optimal.  I-y desj-gned when i t s  memory speed i s  n e a r l y  balanced. by 
i t s  l o g i c  s p e e d .  T h i s  i s  s e e n  t o  b e  t r u e  from t h e  f o l l o w i n g  r e a s o n i n g  - 
suppose  a computer memory i s  much f a s t e r  t h a n  t h e  hardware.  Then t h e  memory 
c o u l d  be  r e p l a c e d  by a s lower  (and c h e a p e r )  memory wj.thout s u b s t a n t i a l l y  
changing t h e  .performance of t h e  machine.  A s i m i l a r  argument h o l d s  i f  t h e  
hardware i s  much f a s t e r  t h a n  ' t h e  mernory. Henry Burkharclt p o i n t s  o u t  t h a t  
t h e  Sigma 2 i s  mj.sn~atched i n  t h e  s e n s e  t h a t  t h e i r  hardware i s  c o n s i d e r a b l y  

L s lower  t h a n  t h e  mernory. Th.ey c o u l d  r e p l a c e  t h e  f a s t  memory by a s lower  one 
w i t h o u t  h u r t i n g  t h e  t h r o u g h - p u t  c a p a b i l i t i e s .  

The i m p l i c a t i o n  of t h e  hardware/menory t r e n d  i s  t h a t  it w i l l  become more 
d i f f i c u l t ,  o v e r  t h e  n e x t  few years, t o  d e s i g n  hardware t o  keep up w i t h  
memory. The more complex an  i n s t r u c t i o n  s e t ,  t h e  more t h i s  e f f e c t  w i l l  be  
a m p l i f i e d .  A 1G-bi t  cornpu-ter must n a t u r a l l y  have complex e f f e c t i v e  a d d r e s s  
c a l c u l a t i o n .  For example, on t h e  PDP-X,a check f i r s t  must be  made t o  
d e t e r m i n e  i f  a n  i n s t r u c t i o n  i s  bas ic  o r  ex tended .  If it i s  b a s i c ,  it must be 
f u r t h e r  de te rmined  wllether it i s  s h o r t  o r  l o n g  form a d d r e s s i n g .  Then i t  
must  be de te rmined  i f  t h e  a d d r e s s i n g  i s  immediate o r  memory r e f e r e n c e .  The 
p o i n t  i s  t h a t  t h i s  t y p e  of  scheme w i l l  become more e x p e n s i v e  t o  impleinent a s  
memory s p e e d s  i n c r e a s e .  

T h i s  l e a d s  n a t u r a l l y  t o  t h e  cons ic lcra t ior :  of 2 4 - b i t s .  F i r s t  of a l l ,  I t h i c k  
any new machine w e  b u i l d  shou ld  have  a word l e n g t h  which i s  a m u l t i p l e  of 8 .  
T h i s  i s  becoming f a i r l y  s t a n d a r d  i n  t h c  i n d u s t r y  and p e o p l e  I t a l k  t o  
uiiiforn-tally a g r e e  that it w i l l  h e l p  u s  s e l l  sys tems which i n t e r f a c e  w i t h  
o t h e r  equipment  . A 24- -b i t  i n s t r u c t i o n  a l l o w s  d i r e c  t memory r e f e r e n c i n g  
w i  thou-L: pag ing  (PDP--2 ) o r  r e l a t t v e  a d d r e s s i n g  (PDP-X) . PJithout q u c s  t i o n ,  
t h i s  i s  a major  hardv:are and s o f t w a r e  simplj.fi.cat-.i.oi?. I t  malies a machj-lie 
more easy t o  unclers-t-.i~ncl f o r  a l l .  i n v o l v e d  - engineer:;, programmers , s a l - e s n l e n  
and c u s t o n c r s .  



Rcexamina Lion oE 24-1); ts -. page 3  -- 
A p r i l  I., 1368/JC 

I f  t h e  1 1rdwal-e speed/inc.r~~ory spped a r g v n c n t  i s  c o r r e c t ,  t h e  rnanufac tu~re r s  
of  16-bi t coRli)uters  KIP^ bc s w i t c h i n g  t o  2 4 - b i t s  i n  t h e  n e x t  2-4 y e a r s .  I f  
we a r e  n o t  conmitt;cd t o  16--biLs,  t h e r e  i s  no r e a s o n  whlf we shoul-d n o t  bc 
t h e  f i r s t  t o  " s w i t c h "  t o  2 4 .  

C . The -- Was k c  of  Flcmory - Argument 

Computers u s e  one of  two a d d r e s s i n g  t e c l ~ n i g u e s  which c o u l d  b e  ca l l -ed  d i r e c t  
and n o n - d i r e c t .  Many 1nedi.um s c a l e  and Xarge sys tems  u s e  t h e  d i r e c t  approach .  
Each i n s t r u c t i o n  c o n t a i n s  enouyh a d d r e s s  b i t s  t o  d i r e c t l y  r e f e r e n c e  a l l  of  
c o r e  memory. For  exampl.e, tlic PDP-10 i n s t r u c t i o n s  have  18 b i t s  t o  a d d r e s s  
a  maximun~ of  2561Z. The a d v a n t a g e s  of  such a  sche~ne  a r e  t h a t  i t  i s  r e l a t i v e l y  
e a s y  t o  implement i n  hardware and t h a t  it i s  c o n v e n i e n t  f o r  programining. 
However, many p e c p l e  s a y  t h a t  i t  h a s  t h e  d i s a d v a n t a g e  of w a s t i n g  i n s t r u c t i o i i  
b i t s .  Y'he c l a i m  i s  t h a t  most memory r e f e r e n c e s  r e f e r  t o  l o c a t i o n s  which 
a r e  r e l a t i v e 1 . y  n e a r  t h e  i n s t r u c t i o n .  Thus, t h e  c l a i m  i s  made t h a t  b i t s  can  
be  saved i f  a d d r e s s e s  a r e  g i v e n  r e l a t i v e  t o  t h e  i ssuin5j  i n s t r u c t i o n ,  o r  
" l o c a l "  t o  a  memory paqe .  

Two conlmonly used n o n - d i r e c t  methods a r c  t h e  page schcrm and t h e  r e l a t j - v e  
a d d r e s s  schernc. For  example, t h e  PDP-8 mcrnory i s  d i v i d e d  i n t o  256 word 
p a g e s .  I n  each  memory r e f e r e n c e ,  t h e  program must s p e c i f y  whether  t h e  
e f f e c t i v e  a d d r e s s  i s  i n  t h e  cur renL page o r  i n  a  s p e c i a l ,  f i x e d  page.  I f  
t h e  a d d r e s s  i s  i n  n e i t h e r  of  t h e s e ,  t h e n  t h e  r e f e r e n c e  must b e  made 
i n d i r e c t l y ,  u s i n g  a i lo the r  word. 

I n  t h e  P D P - X ,  a  " s h o r t  form" was used i f  t h e  e f f e c t i v e  a d d r e s s  was l o c a t e d  
w i t h i n  128 words of t h e  i n s t r u c t i o n .  Tf n o t ,  t h e n  a n o t h e r  f u l l  1 6 - b i t  word 
was n e c e s s a r y  t o  s p e c i f y  t h e  a d d r e s s .  

The p r o p o n e n t s  of t h e  n o n - d i r e c t  a d d r e s s i n g  schemes c l a i m  t h a t  30 t o  4 0  per 
c e n t  of t h e  b i t s  i n  d i r e c t  r e f e r e n c e  cor i~pu te r s  a r e  w a s t e z .  The opposing 
v iew h o l d s  t h a t  p a g i n s  and r e l a t i v e  schemes make t h e  computer i n h e r e n t l y  
more compl.icated and cause programming t o  b e  m o r e  d i f f i c u l t  and c o s t l y .  

I t  i s  my p e r s o n a l  f e e l i n g  t h a t  t h e  w a s t e  of memory argument  i s  a " r e d  
h e r r i n g " .  To be  s u r e ,  c e r t a i n  p r o g r a m  can  b e  coded i n ,  s a y ,  30% fewer  b i t s  
i n  a  n o n - d i r e c t  computer .  However, i f  t h e  prograrri i s .  h a l f  d a t a  and h a l f  

Y i n s t r u c t i o n s ,  t h e  s a v i n g s  i s  o n l y  1 5 % .  I n  a d d i t i o n ,  t h e r e  1s no need t o  
make r e l a t i v e l y  s m a l l  programs even smal l -er  i f  p a r t  of  t h e  computer memory 
i s n ' t  u sed .  T h e r e f o r e  I b e l i e v e  t h ~ > . t  t h e  30% f i g u r e  h a s  t o  be  d i s c o u n t e d  
t o  a  1 0 %  s a v i n g s .  M y  f e e l i n g  i.s t ! - l c? t  t h e  advan tages  of  t h i s  s a v i n g s  a r e  
more t h a n  o u t .  wc?icjhed by t h e  incrc.nseci hardware con~pl.exi t y  and s o f t w a r e  

. development c l i f f  i c u l - t i e s .  

D .  How Manv Recf is i :c rs?  



progv.ams arid t h e  p o s s i l ~ i l i  t y  of unf a v o r a h l e  cornpar i s o n s  on colnpet i  t i v e  
c h e c k l i s t s .  An example of a  computer w i t h  n ~ u l t i . p l e  accurnula.tors and 
i n d e x  r e g i s t e x - s  i s  the. PDP-1.0. I a g r e e  t h a t  t h e  ~ u u l t i p l e  r e g i s t e r s  
g i v e ,  t h e  c a p a b i l i t y  of  g e n e r a t i n < ;  s ~ n a l l c r  and more e f f i c i . e n t  programs . 
However, I f e e l  t h a t  t h e  e x t r a  c o s t s  i n v o l v e d  out -weiyl l t  t h e  a d v a n t a g e s .  
Hardware devcl.opment and maintenance  i s  more e x p e n s i v e .  

P o s s i b l y  t h e  b e s t  argument a g a i n s t  m u l t i p l e  r e g i s t e r s  i s  i n  s o f t w a r e  
developnler-t  . I n  my e x p e r i e n c e ,  I have  found t h a t  most programmers work 
b e t t e r  on machines which o f f e r  them 01il.y one  method t o  pe r fo rm a  g i v e n  
f u n c t i o n .  I f  t h e r e  i s  more t h a n  one m e t l ~ o d ,  t h e y  w i l l  spend much t i m e  
and e f f o r t  t r y i - n g  t o  o p t i m i z e .  The rea l .  o b j e c t i v e  i n  progr.aimr,ing u s u a l l y  
i s  t o  produce  a program t h a t  works ,  r a t h e r  t h a n  a  progr im which works and 
i s  t h e  f a s t e s t  program possj-bl-e and i s  t h e  s m a l l e s t  program p o s s i b l e .  T h i s  
o b j e c t i v e  c a n  be reached  most  easi1.y on a s i m p l e  computer w i t h  o n l y  one 
i n d e x  r e g i s t e r  and one a c c u m u l a t o r .  

U n f o r t u n a t e l y  I d o n j t  have  any s o l i d  f i g u r e s  t o  s u p p c r t  t h e  c o n t e n t i o n s  
made h e r e ,  b u t  I s t r o n g l y  s u g g e s t  t h a t  a  s i n g l e  index: r e g i s t e r  and accurn- 
u l - a t o r  i s  t o  o u r  advan tage .  I t  " f o r c e s "  ea.sy prograrr.ming and makes t h e  
hardware  e a s i e r  t o  b u i l d  and m a i n t a i n .  I n  a d d i t i o n ,  t h e  n a t u r e  of such a  
machine c a u s e s  s o f t w a r e  sys tems  t o  b e  more s imply  o r g a n i z e d  and t h u s  e a s i e r  
t o  m a i n t a i n .  

E .  The U s e  df Read Onlv Mernorv 

There  a r e  bas-i c a l l y  two a l t e r n a t i v e s  f o r  i n t e r n a l  computer s t r u c t u r e  - 
c o n v e n t i o n a l  o r g a i n i z a t i o n  and r e a d - o n l y  memory c o n t r o l .  The l a t t e r  h a s  
t h e  advantage:; of b e i ~ ~ g  f l e x i b l e  ancl c h e a p e r  f o r  c o ~ i p l e x  i n s t r u c t i o n  sets .  
I t  h a s  t h c  d i s a d v a n t a g e  of  b c i n g  i n h e r e n t l y  s lower  tkSan hardware .  Computexs 
b u i l t  w i t h o u t  ROM conLro l  t e n d  t o  be  f a s t e r ,  b u t  i n f l e x i b l e  i n  i n s t r u c t i o n  
se t .  However, i f  t h e  j n s t r u c t i o n  s e t  i s  s i m p l e ,  c o n b e n t i o n a l  o r g a n i z a t i o n  
i s  cheaper  t h a n  RON c o n t r o l .  

S i n c e  t h e  d i s c u s s i o n  h e r e  i s  a b o u t  a. s i ~ i l p l e  2 4 - h i t  n.i;lchine, I t h i n k  we a r e  
l e a d  t o  t h e  c o n c l u s i o n  t h a t  read-.only memory c o n t r o l  shou ld  n o t  be  u s e d .  

111. A Recommendation - 

About a  montll ago ,  I s u g g e s t e d  t h a t  DCC b u i l t  b o t h  a  16 and a  3 2  b i t  com- 
p u t e r .  Because of  t h e  considerations above I 'd recommend s h e l v i n g  t h e  16 
and 3 2  i d e a s  and focussri.ny on 2 4 .  I t h i n k  it promises  t h e  most inunediate 
pay-off and w i l l  i n t e r f e r e  l e a s t  w i t h  e x i s t i n g  p r o d u c t  l i n e s .  S p e c i f i c a l l y  
I recomncnd : 

A. 24--1::it Processor - - -- ---A- 



The instruc-i . i .on s e t  sIho111.d be nri~ch s i r i l j l i c r  ki~aii  t h e  PUP-10 o r  P D P - X .  
A n  examp1.e of  what; I have i n  liiriild a p p e a r s  i n  t h e  appcnii ix.  

The sys tem shoul-d n o t  bc orqC?rij zed aw ouncl time sl-mrj ng . Mu1 t i p l y ,  Dividf. 
and F l o a t i n g  P o i n t  slioulci be o p ' c i o ~ i n l  hcu c i v c x c .  tlhc colllpuicr shou ld  1:ot 
b e  micro+-programablc  v i a  r e a d  - o n l y  rnclno~-y. 

B . 8 - b i t  P e r i n h e r a l  C o n t r o l l e r  

W e  shou ld  a l s o  b u i l d  a  s irnple 8 - b i t  micro . .programable  p r o c e s s o r  t o  b e  used 
p r i m a r i l y  a s  a p e r i p h e r i l l  c o n t r o l - l e r .  I t  s h o u l d  b e  of i n t e r m e d i a t e  
i n t e r n a l  complexity-more complex t h a n  the I n t e r d a t a  11, less complex t h a n  
t h e  PDP--X -- a b o u t  a t  t h e  I B M  360/30 l e v e l .  The machine would have a 
secondary  u s e  a s  an  emula to r  f o r  the 24.--bi:t machine.  I t  would p robab ly  
s e l l  a t  1 /3  t h e  c o s t  and r u n  a t  1 / 1 0  t h e  speed .  I t  c o u l d  presumably be  
b u i l t  b e f o r e  the  2 4 - b i t  p r o c e s s o r  and c o u l d  bc used f 01: s o f t w a r e  develop-  
ment f o r  t h e  l a r g e r  machine. 

C . I n t e r f a c i n g  S t a n d a r d s  

Computer Technology L imi ted  h a s ,  i n  t h e o r y ,  a  p r o d u c t  l i n e  w i t h  e x c e e d i n g l y  
r i g i d  i n t e r f a c e  s t a n d a r d i z a t i o n .  I have the irnpressi.on t h a t  w e  have  n e v e r  
p u t  i n  enough e f f o r t  i n  t h i s  a r e a  and have had d i f f i c u l t i e s  when t r y i n g  
t o  c o n f i g u r e  non-s tandard  sys tems .  Our  e n g i n e e r s  shou ld  loo!; c l o s e l y  a t  
t h e  CII'Il k l ~ d u l a r  One and a t  f u n c t i o n a . l l y  l a r g e  macro-modules.  N e i t h e r  of  
t h e s e  may b e  t h e  answer t o  o u r  i n t e r f a c e  s t a n d a r d i z a t i o n  problems,  b u t  
t h e y  shou ld  p r o v i d e  u s  w i t h  a  s t a r t i n g  p o i n t .  



T h e  j n s t r u c t i o n  f o r m a t  i s :  

where O P  i s  a 6 - b i t  op code (G4 p o s s : i - b i l i t i e s )  
X i s  t h e  i n d e x  r e y i s t e x  s p e c i f i c a t i o n  
I i s  t h e  indi?:cc-t  a d d r e s s  s p e c i f i c a t i o n  

AD11 i s  a  1 6 - b i t  a d d r e s s  (up  t o  64K 2 4 - b i t  words)  

L o c a t i o n  0 r e f e r s  t o  t h e  accurnulatos.  L o c a t i o n  one r e f e r s  to -the 
rnul t ip ly /d iv i .de  ~ e g i s t c s ,  when t l ie  optrion i s  p r e s e n k  . Loca-t ion two 
i s  t h e  subrou-Line l in l rage  r e g i s t e r  niid l o c a t i o n  t h r e e  t h e  i n d e x  r e g i s t e r  
( s i m i l a r  t o  t h e  PUP-X) . An undef ined  o p e r a t i o n  code  c a u s e s  the program 
c o u n t e r  p l u s  one t o  be s t o r e d  i n  l o c a t i o n  four 2nd a  b ranch  t o  loca t ; -on  
f i v e  . 
The i n s t r u c t i o n s  a r e :  

LDA 
STA 
ADD 
SUB 
INC 
NEG 
COFT 
TST 
ERU 

, BAL 
RCT 
BCF 
RZT 
BZP 
B N 'I' 
BNF 
CPJR 
AND 
om 
XOR 
SIW 
B L1.I 
c ?4L 
C?li"\ 

l o a d  accumula to r  
s t o r e  accumula to r  
add 
s u b . t r a c t  
i n c r e m e n t  
n e g a t e  
complemznt 
t e s t  
b r a n c h  unconditionally 
branck  and l i n k  
b ranch  on c a r r y  t r u e  
b ranch  on carry f a l s e  
branch on zero t r u e  
b ranch  on z e r o  f a l s e  
branch on neyat:i.ve t r u e  
b ranch  on n e g a t i v e  f a l s e  
c l c a r  
and 
o r  
e x c l u s i v e  o r  
s h i f  .t 
h l o c k  move 
compare I.ogiczal 
c:c;!~l;la:ec as.-i:Ll~!x t i c :  



-. pacjc.. 7 - 
A p r i l  1, I.9GG/JC 

LUC l o a d  chai:;lcter 
STC s t o r e  character 
ICP ineremcn-;; cha:ract.cx po in - l c r  
MUL multi.pl.y 
D I V  d i v i d e  
LML l o g i c a l .  rmlt.:i.pl.y 
LDV l o g i c a l  d i v i d e  

LDA and STA l o a d  and s to i -c  t h e  accun~u1;:tor. AD11 and SU1: add and sub  tract 
t h e  e f f e c t i v e  word t o  the accumula to r .  INC adds  one  t o  t h e  e f f e c t i v e  worG. 
NEG and COM n e y a t e  and compl.ement t h e  c Cfec L i v c  word, r c s p e c i  i v e l y  . 
There  a r e  t h r e e  c o n d i t i o n -  code  f l i p - f l o p s  a s  i.n t h e  PDI?-X. One i s  c a r r y  
o r  o v e r f l o w ,  t h e  second i s  z e r o  r e s u l t  And t h e  t h i r d  n e g a t i v e  r e s u l t .  
TST s e t s  t h e s e  c o n d i t i . o n  codes  (exccp.t  c a r r y )  based on t h e  s t a t u s  of t h e  
e f  f e c - t i v e  t~?orci. BRU c a u s e s  a n  uncond.itiona.l loranch to -the e f f e c t i v e  a d d r e s s .  
BAL c a u s e s  t h e  program c o u n t e r  p l u s  one  t o  be s t o r e d  i n  t h e  s u b r o u t i n e  

\ l i n k a g e  r e g i s t e r  and t h e n  a  b ranch  t o  t h e  e f f e c t i v e  z .ddsess.  

BCT, B C F ,  B Z T ,  BZF, BNT and BNF cause .  c o n d i t i o n a l  brz.nches on t h e  c o n d i t i o n  
code s t a t u s .  

CLR s e t s  t h e  e f f e c t i v e  word t o  z e r o .  AND, OW1 ailcl XOR perforrn l o g i c a l  
o p e r a t i o n s  on t h e  e f f e c t i v e  word and t h e  a c c u m u l a t o r ,  l e a v i n g  t h e  r e s u l t  
i n  t h e  a c c u m u l a t o r .  SliF s h i f t s  t h e  accu.mu1-ator a s  s p e c i f i e d  by t h e  
e f f e c t i v e  a d d r e s s .  Zeros  are s h i f t e d  i n  from t h e  r i q h t  o r  l e f t .  No p r o -  
v i s i o n  i s  made f o r  s h i f t i n g  i n  o n e ' s  o r  f o r  r o t a t i n g  t h e  accumula to r .  

BLM i s  a  b l o c k  move i n s t z u c t i o n ,  which can  b e  a n  o p t i o n .  The e f f e c t i v e  
a d d r e s s  p o i n t s  t o  a  t h r e e  word b l o c k  c o n t a i n i n g  a  d e s t i n a t i o n  a d d r e s s ,  a 
s o u r c e  a d d r e s s  and t h e  c o u n t .  The number of  words s p e c i f i e d  by t h e  c o u n t  
i s  moved from t h e  s o u r c e  a d d r e s s  bl.oclr t o  t h e  d e s t i n a t i o n  a d d r e s s  blocl i .  
CML and. CMA compare t h c  accumula to r  t o  t h e  e f f e c t i v e  word and s e t  t h e  
c o n d i t i o n  codes  a p p r o p r i a t e l y .  CML d o e s  a  l o g i c a l  compare w h i l e  CMA d o e s  
a n  a r i t h m e t i c  compare. 

Three  i n s t r u c t i o n s  f o r  c h a r a c t e r  mar i ipula t ion  a r e  i n c l u d e d ,  possib1.y as  an 
o p t i o n .  Thcy o p e r a t e  on a c h a r a c t e r  p o i n t e r  w i t h  the: f o l l o w i n g  forruat :  

where CT i s  z e r o ,  one o r  two i n d i c a t i n g ,  t h e  f i r s t ,  second,  and t h i r d  
c h a r a c t e r s  i n  thc word. 

AT)R i s t h e  addj -ess  of t h e  word c o n t a i n i n g  t h e  s - e f  cl-enced c h a r a c t e r  . 
For  e x m p l e ,  i f  C'.V i s  one and zddresr ,  i s  .I., ?00 ,  tlle p o i n t e r  refers t o  t h e  
second o r  rnj.cldl.e chnrcxcter i.n memory l o c a t i o n  1 , 0 0 0 .  T h e  e i t e c t i v e  w o r d  
of  an  LDC i .ns t ruc i . ion  m u s - t  bc: a charac!-t:.r;?.r p o i n t e r .  The a p p r o p r i a t e  char- 
a c t e r  i s  moved i n t - o  the a c c u ! w ~ l a t o r  b i . t s  1-6-23. I3:i.t 0 throcccjli 1 5  of  t h e  



- paqe 8 - 
A p r i l  I, .1..968/JC 

accurnul-a-tor a:re sci: to xcro .  STC takes bits 1.6-23 of the accul!lu!.atof 
and  stores t l l e r n  2s specified by t h e  cl-iaracter poi.nCer in thc e f f e c t j . v e  
word.  I C T  increments t h e  c h a r a c t e r  po.i.nter. I f  C T  i s  z e r o  or o n c ,  one 
is a.cidcd to C??. If C'f is cjrcater t h a n  one,  C!r is set. to zero and one i s  
added t o  ADR.  

The opt.i.onal. rnu.l..ti.p9.y/div.ide hardware has foul: i n s t r ~ ~ c t i o n s  -- a r i t 1 m e t j . c  
multiply and divide and 1.ogi.cal. mul. tip1.y and divide. 

l j h  



R A N D U M  



F-85
5/66

PROGRAMMED DATA 

PROCESSOR-8 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



PROGRAMMED DATA 
PROCESSOR-8 

USERS HANDBOOK 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



Copyright 1966 Digital Equipment Corporation 



PREFACE 
This handbook concerns programming, operating, and interfacing the Programmed 

Data Processor-8; a high-speed stored-program digital computer manufactured by the 
Digital Equipment Corporation. Section A describes the functional operation, instruc

tions, and basic machine-language programming of the PDP-8 processor, core memory, 

processor options, and core memory options. Section B is devoted to the functional 

operation, instructions, and basic programming of standard and optional input/output 

equipment of a PDP-8 system. Section C presents information on operating the basic 

system and its options. Section D serves as an interface and installation manual, and 
contains information on planning and implementing the design and installation of any 

electrical interface required to connect a special device into a PDP-8 system. 

Appendixes at the end of this handbook provide detailed information which may be 
helpful in specific programming assignments. Although program examples are given 
in this document, no attempt has been made to teach programming techniques. The 
meaning and use of special characters employed in the programming examples are 

explained in the description of the Program Assembly Language, available from the 

Digital Program Library. 

iii 



iv 

CONTENTS 
Page 

System Introduction ........... . .. .............. xiii 

Computer Organization ............... . . ................................................... xiii 

Symbols ..................................... . xiv··· 

SECTION A MEMORY AND PROCESSOR 

Chapter 1 Memory and Processor Functional Description . . . . . .. .. .. .. . . . . . . . . . . .. .. . .. . .. 2 
Major Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

Accumulator (AC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Link (L) . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3 
Program Counter (PC) .. ... . ..... .... .. . . ... . .. . . .. .. ... ..... ... ... .. .. . . .. .. ... ... .. .. . . .... ... 3 
Memory Address Register (MA) . .. .. . ..... .... .. .... .. ... .. ......... .. .... .. ... ..... .. .. .. ... 3 
Switch Register (SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Core Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Memory Buffer Register (MB) . . ............. ....... ... .. .. .. ... ..... ....... .... ... ..... ... ... 4 
Instruction Register (IR) . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . .. 4 
Major state Generator . . .. . .. . . .. .. .. . .. .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 4 
Output Bus Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Functional Summary ....... .. . . .. . . .... ... ... .. ... ..... .. .. .. ..... .... ..... .. ..... ... .. ..... ...... 7 

Timing and Control Elements . . .. .. .. . . . . .. . . . . . . . .. . . .. .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . 7 
Timing Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7 
Register Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Program Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Interface ................................. ,. . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Chapter 2 Memory and Processor Instructions . . . . . .. .. . .. . . . . . . . . . .. . .. . . . . . . . . . .. .. . . .. .. .. . . . . . 10 
Memory Reference Instructions . . . .. . . . . . . . . . . .. . . .. . . . . . . .. . . . . . . . . .. .. .. . . . . . . . . . . . .. . . . .. . . . . .. . . . 10 
Augmented Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Input Output Transfer Instruction .......................................................... 12 
Operate Instruction . . . . . . . . . . . . . . . .. . ... . . . . . . .. . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . . . .. . .. 13 

Chapter 3 Memory and Processor Basic Programming ........................................ 21 
Memory Addressing ....................................................................................... 21 

Indirect Addressing . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Auto-Indexing ........................................................................................ 23 

Storing and Loading ...................................................................................... 23 
Program Control ............................................................................................ 23 
Indexing Operations ...................................................................................... 23 
Logic Operations ............................................................................................ 24 

Logical AND .......................................................................................... 24 
Inclusive OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Exclusive OR . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

Arithmetic Operations .................................................................................... 25 
Two's Complement Arithmetic ................................................................ 25 
Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Chapter 4 Program Interrupt .............................................................................. 27 
Instructions .................................................................................................... 27 
Programming ................................................................................................. 27 



CONTENTS (continued) 

Page 

Chapter 5 Data Break .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Single-Cycle Data Break . . . . . . . . . . . . . . . . . . . . . . ............................ 31 
Three-Cycle Data Break ... . . .. .. . . ... ... .. . . ................................................. 31 

Word Count State .................................................................................. 32 
Current Address State ........................................................................... 32 
Break State ............................................................................................ 32 

Chapter 6 Memory Extension Control Type 183 and Memory Module Type 184 .. 33 
Instructions .................................................................................................. 35 
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Chapter 7 Memory Parity Type 188 ................................................. 39 
Instructions . . . . . . . . . . . . . . ........................................................................... 39 
Programming ................................................................................................ 40 

Chapter 8 Extended Arithmetic Element Type 182 .............................................. 41 
Instructions .................................................................................................. 41 
Programming ................................................................................................ 45 

Multiplication . . . . . . . . . . . . . . . . . ................................................................. 45 
Division . . . . . . . . . . . . . .......................................................................... 46 

Chapter 9 Automatic Restart Type KROl ............................................................ 48 

SECTION B INPUT OUTPUT EQUIPMENT 

Chapter 1 Basic IOT Programming .................................................................... 52 
Programmed Data Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

Sense for Device Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
Assemble Data ...................................................................................... 53 
Effect a Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . 53 

Program Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Data Break Transfers . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Chapter 2 Teletype and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
Teletype Model 33 ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
Teletype Control ............................................................................................ 57 
Keyboard/Reader . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 58 
Teleprinter /Punch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
Teletype System Type LT08 ............................................................................ 61 

Chapter 3 High Speed Perforated Tape Reader and Control Type 750C . . . . . . . . . . . . . . 62 

Chapter 4 High Speed Perforated Tape Punch and Control Type 75E . . . . . . . . . . . . . . . . 64 

Chapter 5 Analog-to-Digital Converter Type 189 .................................................. 66 

Chapter 6 Analog-to-Digital Converter Type 138E and Multiplexer 
Control Type 139E . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

Chapter 7 Digital-to-Analog Converter Type AAOl . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 72 

V 



vi 

CONTENTS (continued) 

Chapter 8 Display Equipment 
Oscilloscope Display Type 34D ............................... . 
Precision CRT Display Type 30N . 
Light Pen Type 370 . 

Chapter 9 Incremental Plotter and Control Type 3508 . 

Chapter 10 Card Reader and Control Type CR0lC .............. 

Chapter 11 Card Reader and Control Type 451 . 

Chapter 12 Card Punch and Control Type 450 .... ······ ......... 

Chapter 13 Automatic Line Printer and Control Type 645 . 

Chapter 14 Serial Magnetic Drum System Type 251 
Instructions ............................................ . 
Programming .......... . 

Page 

73 
73 
76 

. .............. 76 

78 

81 

85 

87 

90 

94 
94 
97· 

Chapter 15 DECtape Systems . . ............... . 99 
99 DECtape Format ............... . 

DECtape Dual Transport Type 555 and DECtape Control Type 552 .. . .... 101 
Instructions .............. . 
Control Modes .. . . .. .. .. . . . ................ . 
Programmed Operation .. . . . . . .. .. . . .. .. .. ............. . 

DECtape Transport Type TU55 and DECtape Control Type TC0l . 
DECtape Transport Type TU55 ................ . 
DECtape Control Type TC0l ................... . 
Instructions .................. . 
Control Modes 
Functions 
Programmed Operation ... 

Software . 

Chapter 16 Automatic Magnetic Tape Control Type 57A .... 
Functionai Description ........... .. 
Instructions ........... .. 
Programming 

Chapter 17 Magnetic Tape System Type 580 .... 

Chapter 18 Data Communication Systems Type 680 
Data Line Interface Type 681 
Serial Line Multiplexer Type 685 . . .............. . 
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . -......... . 
Software ............. . 

SECTION C OPERATION 

Chapter 1 Standard PDP-8 Operation 
Controls and Indicators . 
Operating Procedures ........... . 

Manual Data Storage and Modification . 
Loading Data Under Program Control ...... 
Off-Line Teletype Operation ...... 

.. ..... 104 
.. ...... 106 
....... 106 

.. ... 108 
.. .............. 108 

109 
. .. 110 
.. 112 

........ 112 
....... 113 

.. ....... 116 

.. .. 118 
.. ...... 118 

. ......... 119 
..125 

...128 

.133 
............... 135 

... 137 

. .. 137 
. ....... 141 

... 144 

. .. 144 
.. 149 

. .. 149 
. ....... 149 

. ........ 150 



CONTENTS (continued) 
Page 

SECTION D INTERFACE AND INSTALLATION 
Chapter 1 PDP-8 Input/Output Facilities .. 

Programmed Data Transfers . 
Data Break Transfers . 
Logic Symbols 

Chapter 2 Programmed Data Transfers . 
Timing and IOP Generator . 
Device Selector (DS) . 
Input/Output Skip (IOS) . 
Accumulator 
Input Data Transfers . 
Output Data Transfers 
Program Interrupt (Pl) 
Multiple Use of IOS and Pl . 

Chapter 3 Data Break Transfers . 
Single-Cycle Data Breaks ........................ . 

Input Data Transfer . . ........... . 
Output Data Transfer . . .......... . 
Memory Increment 

Three-Cycle Data Breaks . 

Chapter 4 Digital Logic Circuits 
Basic Digital Circuits . . ......... . 

Inverters ...................................... . 
Diode Gates 
Diode-Capacitor-Diode Gates . 
Pulse Amplifiers . 
Bus Drivers ................. . 

Interface Circuits of the Computer . 
A502 Difference Amplifier 
R 123 Diode Gate . 
R210 PDP-8 Accumulator . 
R211 MA, MB, and PC . 
R650 Bus Driver 
S107 Inverter .. 
Sl 11 Diode Gate . 
S151 Binary-to-Octal Decoder . 
S203 Triple Flip-Flop ... 
S603 Pulse Amplifier . 
W640 Pulse Amplifier ........... . 

Interface Circuits of Peripheral Equipment . 
W103 Device Selector . 
R123 Diode Gate . 

Chapter 5 Interface Connections ................ . 
Miscellaneous Interface Signals . 

Address Extension Inputs and Data Fields Outputs . 
Analog Input Signal . . .......... . 
B Run Output Signal ..... . 
BTl and BT2A Output Pulses . 
B Power Clear Output Pulses 

. .. 154 
. ..... 155 

. .......... 155 
.. 155 

············· ........ 157 
. ... 159 

. .. ·············· ...... 161 
. ........... 162 

................... 163 
. ... 164 

...... 165 
........ 167 

. ...... 168 

. ...... 170 

. ...... 171 
. ... 171 

············ ... 173 
... 175 

.178 

... 181 
. ... 181 

.181 
.... 182 
. .. 184 

..... 185 
. .. 186 

186 
.. 187 

... 187 
. ... 187 
. .. 187 

. ...... 188 
. ...... 188 

.............. .189 
. ... 189 

..189 
. ....... 190 

. .... 190 
. ... 190 
. .. 191 

. .... 192 

. .... 193 
. .................. 199 

. ... 199 
. .......... 199 

. .................. 199 
. ... 199 

. .......... 200 

vii 



viii 

CONTENTS (continued) 
Page 

Loading and Driving Considerations ................................................................ 200 
Base Load .............................................................................................. 201 
Pulse Load ............................................................................................ 201 
Pulsed Emitter Load .............. ·.· .............................................................. 202 
DC Emitter Load .................................................................................... 202 

Chapter 6 Installation Planning .......................................................................... 203 
Space Requirements .. : ................................................................................... 203 
Environmental Requirements .......................................................................... 206 
Power Requirements ...................................................................................... 206 
Cable Requirements ...................................................................................... 206 
Installation Procedure .................................................................................... 206 

Appendix 1 Instructions .................................................................................... 210 
Memory Reference Instructions ...................................................................... 210 
Basic IOT Microinstructions ......................................................................... . 212 
Group 1 Operate Microinstructions ................................................................ 224 
Group 2 Operate Microinstructions ................................................................ 225 
Extended Arithmetic Element Microinstructions .............................................. 226 

Appendix 2 Codes .............................................................................................. 229 
Model 33 ASR/KSR Teletype Code (ASCII) in Octal Form .............................. 229 
Model 33 ASR/KSR Teletype Code (ASCII) in Binary Form ............................ 230 
Card Reader Code .......................................................................................... 231 
Line Printer Code .......................................................................................... 232 

Appendix 3 Scales of Notation ............................................................................ 233 

Appendix 4 Powers of Two .................................................................................. 234 

Appendix 5 Octal - Decimal Conversion .......................................................... 235 
Octal - Decimal Integer Conversion Table ................................................... 235 
Octal - Decimal Fraction Conversion Table .................................................. 239 

Appendix 6 Perforated-Tape Loader Programs ..................................................... 242 
Read in Mode Loader ........................................................................... ., ......... 242 
Binary Loader ................................................................................................ 243 

Appendix 7 Programming System ...................................................................... 245 
Featured Programs ........................................................................................ 245 
Abstracts of Programs .................................................................................. 247 

Figure 1 
Figure 2 
Figure 3 
Figure 4 
Figure 5 
Figure 6 
Figure 7 
Figure 8 
Figure 9 
Figure 10 

ILLUSTRATIONS 

Typical PDP-8 in Table-Top Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 
PDP-8 Major Register Block Diagram . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
PDP-8 Timing and Control Element Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Memory Reference Instruction Bit Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
IOT Instruction Bit Assignments .......................................................... 13 
Group 1 Operate Microinstruction Bit Assignments . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 13 
Group 2 Operate Microinstruction Bit Assignments . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 17 
EAE Microinstruction Bit Assignments .................................................. 41 
DECtape Track Allocation .................................................................... 100 

DECtape Mark Channel Format .......................................................... 100 



Figure 11 
Figure 12 
Figure 13 
Figure 14 
Figure 15 
Figure 16 
Figure 17 
Figure 18 
Figure 19 
Figure 20 
Figure 21 
Figure 22 
Figure 23 
Figure 24 
Figure 25 
Figure 26 
Figure 27 
Figure 28 
Figure 29 
Figure 30 
Figure 31 

Figure 32 
Figure 33 
Figure 34 
Figure 35 
Figure 36 
Figure 37 
Figure 38 
Figure 39 
Figure 40 
Figure 41 
Figure 42 
Figure 43 
Figure 44 
Figure 45 
Figure 46 
Figure 47 
Figure 48 
Figure 49 
Figure 50 
Figure 51 
Figure 52 
Figure 53 
Figure 54 
Figure 55 
Figure 56 
Figure 57 
Figure 58 
Figure 59 
Figure 60 

ILLUSTRATIONS (continued) 

Page 

DECtape Control Word and Data Word Assignments ............................ 100 
DECtape Format Details ....................................................................... 100 
DECtape Status Register A Bit Assignments ........................................ 114 
DECtape Status Register B Bit Assignments ........................................ 114 
Data Communication System Block Diagram ...................................... 133 
Typical Teletype Line Timing .............................................................. 134 
Teletype In Instruction Flow Diagram .................................................. 136 
PDP-8 Operator Console .................................................................... 144 
Teletype Model 33 ASR Console ........................................................ 148 
Digital Logic Symbols ........................................................................ 155 
Programmed Data Transfer Interface Block Diagram .......................... 158 
Programmed Data Transfer Timing .................................................... 158 
Typical IOT Instruction Decoding ........................................................ 159 
IOP Generator Logic .......................................................................... 160 
Generation of IOT Command Pulses By Device Selectors .................... 161 
Typical Device Selector (Device 34) .................................................. 162 
Use of IOS to Test the Status of an External Device ............................ 163 
Accumulator Input and Output ............................................................ 164 
Loading Data into the Accumulator from an External Device ................ 165 
Loading a 6-Bit Word into an External Device from the Accumulator .... 166 
Use of a Device Selector for Activating and Controlling 

an External Device .................................................................... 166 
Program Interrupt Request Signal Origin ............................................ 167 
Multiple Inputs to IOS and Pl Facilities .............................................. 168 
Data Break Transfer Interface Block Diagram .................................... 170 
Single-Cycle Data Break Input Transfer Timing Diagram ...................... 171 
Device Interface Logic for Single-Cycle Data Break Input Transfer ...... 172 
Single-Cycle Data Break Output Transfer Timing Diagram .................. 173 
Device Interface Logic for Single-Cycle Data Break Output Transfer .... 174 
Device Interface Logic for Strobing Output Data .................................. 175 
Memory Increment Data Break Timing Diagram .................................. 176 
Device Interface Logic for Memory Increment Data Break .................. 177 
Three-Cycle Data Break Timing Diagram ............................................ 179 
Inverter Circuit Sch€matic Diagram .................................................... 181 
Direct-Set Input Circuit Schematic of the R210 PDP-8 Accumulator .... 182 
Single-Input Diode Gate Circuit Schematic ............................. : ............ 182 
Multiple-Input Diode Gate Circuit Schematic ...................................... 183 
Parallel-Connected Diode Gate Circuit Schematic ................................ 183 
Diode Gate Logic Symbol .................................................................... 184 
Logic Operations Performed by Diode Gates ...................................... 184 
Diode-Capacitor-Diode Gate Circuit Schematic .................................... 185 
Diode-Capacitor-Diode Gate Logic Symbol .......................................... 185 
Parallel-Connected Trigger Pulse to DCD Gates .................................. 185 
Pulse Amplifier Output Circuit Schematic .......................................... 186 
Bus Driver Output Circuit Schematic .................................................. 186 
Device Selector Wl03 Logic Circuit .................................................... 191 
Diode Gate R123 Logic Circuit ............................................................ 192 
Table Mounted PDP-8 Installation Dimensions .................................... 203 
Cabinet Mounted PDP-8 Installation Dimensions ................................ 204 
Optional Cabinet and Table Installation Dimensions ............................ 205 
Typical PDP-8 System Configuration and Layout Planning .................. 209 

ix 



Table 1 
Table 2 
Table 3 
Table 4 
Table 5 
Table 6 
Table 7 
Table 8 
Table 9 
Table 10 
Table 11 
Table 12 

X 

TABLES 

Analog-to-Digital Converter Type 189 Characteristics .... 
Analog-to-Digital Converter Type 138E Characteristics . 
Operator Console Controls and Indicators . 
Teletype Controls and Indicators ........... . 
Programmed Data Transfer Input Signals . 
Programmed Data Transfer Output Signals . 
Data Break Transfer Input Signals ..... 
Data Break Transfer Output Signals . . .......... . 
Miscellaneous Input Signals ............................ . 

Miscellaneous Output Signals .. 
Installation Data 
Space Requirements . 

Page 

67 
68 

. ..... 144 
. ...... 148 
....... 194 

........ 195 

. ....... 196 
...... 197 
. .... 198 

. .. 198 
....... 207 

........ 208 



xi 



Figure 1 Typical POP-8 in Table Top Configuration 

xii 



SYSTEM INTRODUCTION 
The Digital Equipment Corporation Programmed Data Processor-8 (PDP-8) is designed 
for use as a small-scale general-purpose computer, an independent information 
handling facility in a larger computer system, or as the control element in a complex 
processing system. The PDP-8 is a one-address, fixed word length, parallel computer 
using 12 bit, two's complement arithmetic. Cycle time of the 4096-word random
address magnetic-core memory is 1.5 microseconds. Standard features of the system 
include indirect addressing and facilities for instruction skipping and program interrup
tion as functions of input-output device conditions. 

The 1.5-microsecond cycle time of the machine provides a computation rate of 333,333 
additions per second. Addition is performed in 3.0 microseconds (with one number in 
the accumulator) and subtraction is performed in 6.0 microseconds (with the subtra
hend in the accumulator). Multiplication is performed in approximately 315 micro
seconds by a subroutine that operates on two signed 12-bit numbers to produce a 
24-bit product, leaving the 12 most significant bits in the accumulator. Division of 
two signed 12-bit numbers is performed in approximately 444 microseconds by a sub
routine that produces a 12-bit quotient in the accumulator and a 12-bit remainder in 
core memory. Similar multiplication and division operations are performed by means 
of the optional extended arithmetic element in approximately 15 and 30 microseconds, 
respectively. 

Flexible, high-capacity, input-output capabilities of the computer allow it to operate a 
variety of peripheral equipment. In addition to standard Teletype and perforated tape 
equipment, the system is capable of operating in conjunction with a number of optional 
devices such as high-speed perforated tape readers and punches, card equipment, a 
line printer, analog-to-digital converters, cathode-ray-tube displays, magnetic drum 
systems, and magnetic-tape equipment. Equipment of special design is easily adapted 
for connection into the PDP-8 system. The computer is not modified with the addition 
of peripheral devices. 

PDP-8 is completely self-contained, requiring no special power sources or environ
mental conditions. A single source of 115-volt, 60-cycle, single-phase power is required 
to operate the machine. Internal power supplies produce all of the operating voltages 
required. FLIP CHIP modules utilizing hybrid silicon circuits and built-in provisions for 
marginal checking insure reliable operation in ambient temperatures between 32 and 
130 degrees Fahrenheit. 

Computer Organization 
The PDP-8 system is organized into a processor, core memory, and input/output equip
ment and facilities. All arithmetic, logic, and system control operations of the standard 
PDP-8 are performed by the processor. Permanent (longer than one instruction time) 
local information storage and retrieval operations are performed by the core memory. 
The memory is continuously cycling, automatically performing a read and write 
operation during each computer cycle. Input and output address and data buffering 
for the core memory is performed by registers of the processor, and operation of the 
memory is under control of timing signals produced by the processor. Due to the close 
relationship of operations performed by the processor and the core memory, these 
two elements are described together in Section A of this handbook. 

Interface circuits for the processor allow bussed connections to a variety of peripheral 
equipment. Each input/output device is responsible for detecting its own select code 
and for providing any necessary input or output gating. Individually programmed data 
transfers between the processor and peripheral equipment take place through the 
processor accumulator. Data transfers can be initiated by peripheral equipment, rather 

xiii 



xiv 

than by the program, by means of the data break facilities. Standard features of the 
PDP-8 also allow peripheral equipment to perform certain control functions such as 
instruction skipping, and a transfer of program control initiated by a program interrupt. 

Standard peripheral equipment provided with each PDP-8 system consists of a Tele
type Model 33 Automatic Send Receive set and a Teletype control. The Teletype unit 
is a standard machine operating from serial 11-unit-code characters at a rate of ten 
characters per second. The Teletype provides a means of supplying data to the com
puter from perforated tape or by means of a keyboard, and supplies data as an output 
from the computer in the form of perforated tape or typed copy. The Teletype control 
serves as a serial-to-parallel converter for Teletype inputs to the computer and serves 
as a parallel-to-serial converter for computer output signals to the Teletype unit. 

The Teletype and all optional input/output equipment is discussed in Section B of 
this handbook. 

Symbols 

The following special symbols are ·used throughout this handbook to explain the 
function of equipment and instructions: 

Symbol 

A=>B 

0=>A 

Aj 

AS 

A5(1) 

A6 - 11 

A6 - 11 = > BO - 5 

y 

V 

-¥· 

/\ 

A 

Explanation 

The content of register A is transferred into 
register B 

Register A is cleared to contain all binary zeros 

Any given bit in A 

The content of bit 5 of register A 

Bit 5 of register A contains a 1 

The content of bits 6 through 11 of register A 

The content of bits 6 through 11 of register A 
is transferred into bits 0 through 5 of register B 

The content of any core memory location 

Inclusive OR 

Exel usive OR 

AND 

Ones complement of the content of A 



SECTION A 

MEMORY AND PROCESSOR 

1 



2 

CHAPTER 1 

MEMORY AN:D PROCESSOR 
FUNCTIONAL DESCRIPTION 

Major Registers 

To store, retrieve, control, and modify information and to perform the required logicaf. 
arithmetic, and data processing operations, the core memory and the processor empfoy 
the logic components shown in Figure 2 and described in the following paragraphs. 

SWITCH 
I 

..... 
i.£°'5TE_i. ' .. 
OUT"'1' PIIOOft.lM 

IUI LIM! COUNT!JII 

°""'EM 
4096 # ORD 

Cl)ll( 

DATA 
t,f"'C:~1 

,2 -

#l~~AL DATA 

E......« 
111£1110ft'I' .,..,, .. 
ltffillTtll 

MT& CMn'PUT 
IUI 

Dlll'YCIIS 

ClflTIDNIIL ........ 11.M. 
.. WNTUIIIIIO TC IU.JOII 
MJI IIIIMNO.lfD ITAfE 

CIDCIIATDR 

II 

Figure 2 POP-8 Major Register Block Diagram 

ACCUMULATOR (AC) 

Arithmetic and logic operations are performed in this 12-bit register. Under program 
control the AC can be cleared or complemented, its content can be rotated right or 
left with the link. The content of the memory buffer register can be added to the content 
of the AC and the result left in the AC. The content of both of these registers may be 
combtned by the logical operation AND, the result remaining in the AC. The memory 
buffer register and the AC also have gates which allow them to be used together as the 
shift register and buffer register of a successive approximation analog-to-digital con
verter. The inclusive OR may be performed between the AC and the switch register on 
the operator console and the result left in the AC. 



The accumulator also serves as an input-output register. All programmed information 
transfers between core memory and an external device pass through the accumulator. 

LINK (L) 

This one-bit register is used to extend the arithmetic facilities of the accumulator. It 
is used as the carry register for two's complement arithmetic. Overflow into the L from 
the AC can be checked by the program to greatly simplify and speed up c:;ingle and multi pie 
precision arithmetic routines. Under program control the link can be cleared and 
complemented, and it can be rotated as part of the accumulator. 

PROGRAM COUNTER (PC) 

The program sequence, that is the order in which instructions are performed, is 
determined by the PC. This 12-bit register contains the address of the core memory 
location from which the next instruction. will be taken. Information enters the PC 
from the core memory, via the memory buffer register, and from the switch register on 
the ·operator console. Information in the PC is transferred into the memory address 
register to determine the core memory address from which each instruction is taken. 
Incrementation of the content of the PC establishes the successive core memory 
locations of the program and provides skipping of an instruction based upon a pro
grammed test of information or conditions: 

MEMORY ADDRESS REGISTER (MA) 

The address in core memory which is currently selected for reading or writing is 
contained in this 12-bit register. Therefore, all 4096 words of core memory can be 
addressed directly by this register. Data can be set into it from the memory buffer 
register, from the program counter, or from an 1/0 device using the data break facilities. 

SWITCH REGISTER (SR) 

Information can be manually set into the switch register for transfer into the PC as 
an address by means of the LOAD ADDRESS key, or into the AC as data to be stored 
in core memory by means of the DEPOSIT key. 

CORE MEMORY 

The core memory provides storage for instructions to be performed and information 
to be processed or distributed. This random address magnetic core memory holds 
4096 12-bit words in the standard PDP-8. Optional equipment extends the storage 
capacity in fields of 4096 words or expands the word length to 13 bits to provide 
parity checking. Memory location 08 is used to store the content of the PC following 
a program interrupt, and location ls is used to store the first instruction to be executed 
following a program interrupt. (When a program interrupt occurs, the content of the 
PC is stored in location Os, and program control is transferred to location 1 automati
cally.) Locations 10s through 17s are used for auto-indexing. All other locations can be 
used to store instructions or data. 

3 



4 

Core memory contains numerous circuits such as read-write switches, address de
coders, inhibit drivers, and sense amplifiers. These circuits perform the electrical 
conversions necessary to transfer information into or out of the core.array and perform 
no arithmetic or logic operations upon the data. Since their operation is not discern
ible by the programmer or operator of the PDP-8, these circuits are not described 
here in detail. 

MEMORY BUFFER REGISTER (MB) 

All information transfers between the processor registers and the core memory are 
temporarily held in the MB. Information can be transferred into the MB from the 
accumulator or memory address register. The MB can be cleared, incremented by 
one or two, or shifted right. Information can be set into the MB from an external 
device during a data break or form core memory, via the sense amplifiers. Information 
is read from a memory location in 0.8 microsecond and rewritten in the same location 
in another 0.8 microsecond of one 1.6-microsecond memory cycle. 

INSTRUCTION REGISTER (IR) 

This 3-bit register contains the operation code 9f the instruction currently being 
performed by the machine. The three most significant bits of the current instruction 
are loaded into the IR from the memory buffer register during a Fetch cycle. The 
content of the IR is decoded to produce the eight basic instructions, and affect the 
cycles and states entered at each step in the program. 

MAJOR STATE GENERATOR 
One or more major states are entered serially to execute programmed instructions or 
to effect a data break. The major state generator establishes one state for each com
puter timing cycle. The Fetch, Defer, and Execute states are entered to determine and 
execute instructions. Entry into these states is produced as a function of the current 
instruction and the current state. The Word Count, Current Address, and Break states 
are entered during a data break. The Break state or all three of these states are entered 
based upon request signals received from peripheral 1/0 equipment. 

Fetch 
During this state an instruction is read into the MB from core memory at the address 
specified by the content of the PC. The instruction is restored in core memory and 
retained in the MB. The operation code of the instruction is transferred into the IR to 
cause enactment, and the content of the PC is incremented by one. 

If a multiple-cycle instruction is fetched, the following major state will be either Defer 
or Execute. If a one-cycle instruction is fetched, the operations specified are performeq 
during the last part of the Fetch cycle and the next state will be another Fetch. 

Defer 
When a 1 is present in bit 3 of a memory reference instruction, the Defer state is 
entered to obtain the full 12-bit address of the operand from the address in the 
current page or page O specified by bits 4 through 11 of the instruction. The process 
of address deferring is called indirect addressing because access to the operand is 
addressed indirectly, or deferred, to another memory location. 



Execute 

This state is entered for all memory reference instructions except jump. During an 
AND, two's complement add, or increment and skip if zero instruction, the content of 
the core memory location specified by the address portion of the instruction is read 
into the MB and the operation specified by bits O through 2 of the instruction is 
performed. During a deposit and clear accumulator instruction the content oflhe AC is 
transferred into the MB and is stored in core memory at the address specified in the 
instruction. During a jump to subroutine instruction this state occurs to write the 
content of the PC into the core memory address designated by the instruction and to 
transfer this address into the PC to change program control. 

Word Count 

This state is entered when an external device supplies signals requesting a data break 
and specifying that the break should be a 3-cycle break. When this state occurs, a 
transfer word count in a core memory location designated by the device is read into 
the MB, is incremented by 1, and is rewritten in the same location. If the word count 
overflows, indicating that the desired number of data break transfers will be enacted 
at completion of the current break, the computer transmits a signal to the device. The 
Current Address state immediately follows the Word Count state. 

Current Address 

As the second cycle of a 3-cycle data break, this cycle establishes the address for the 
transfer that takes place in the following cycle (Break state). Normally the location 
following the word count is read from core memory into the MB, is incremented by 1 to 
establish sequential addresses for the transfers, and is transferred into the MA to 
determine the address selected for the next cycle. When the word count operation is 
not used, the device supplies an inhibit signal to the computer so that the word read 
during this cycle is not incremented. Transfers occur at sequential addresses due to 
incrementing during the Word Count state. During this sequence the word in the MB 
is rewritten at the same location and the MB is cleared at the end of the cycle. The 
Break state immediately follows the Current Address state. 

Break 

This state is entered to enact a data transfer between computer core memory and an 
external device, either as the only state of a 1-cycle data break or as the final state of 
a 3-cycle data break. When a break request signal arrives and the cycle select signal 
specifies a 1-cycle break, the computer enters the Break state at the completion of the 
current instruction. Information transfers occur between the external device and a 
device-specified core memory location, through the MB. When this transfer is complete, 
the program sequence resumes from the point of the break. The data break does not 
affect the content of the AC, L, and PC. 

OUTPUT BUS DRIVERS 

Output signals from the computer processor are power amplified by output bus driver 
modules of the standard PDP-8; allowing these signals to drive a heavy circuit load. 

5 



6 

ALL OPTIONAL _. ..._ 
PIRl'MIRAL -=;....-----------------------1..,.Dt 
EQUIPMENT 

SWl,TCH -RE~1STER -
OPTIONAL IC 

1-2 
DATA 

P£RPMIR.IL _ OITA -
EOUIPIKNT -
USM _ 
PflOGRAIIIIIEO 4---SEU:--CT'""""" 
TRAN9F£11S COOi ,., 

I~ 

OUTPUT I 
BUS I, 

LINK 

DRIVERS 'I 
I 

TELETYPE -

_____ .,__ 
ACCUMULATOR 

ADORESS _ , 

- t 
I 

PROGRAM 
COUNTER 
CONTROL 

CONTROL 

; I 

DATA - f--tlii..._ ___ ,2_,11-

{ 

DATA .._ 
ALL OPTIONAL ----------~.,..DI~ n ,i.-----. 1 
PERPHERAL I 
EQUlPIIENT Cl.£AR II:. ; CO:r~ 

OUTPUT r--8US 
DRIVERS 

MEMORY 
BUFFER 

REGISTER 

DATA 

INCREMENT MB 

H ...,._,.,. 
- -

12 REG*STER l 
.... 1 

+ 1 - CA INHIBIT 

OPTlONAL TRANSFER OIIECTION * 
P£RFH£RAL 
EQUIPMENT _,. - WORD COUNT OVERFLOW 
USM TH£ -... 

~~AIC IREAIC flEQUESf 

C1Cl..£ SELECT ** 
--. 8R£AIC STAT£ 

-- ADDRESS ACCEPTED 

.- IOP t.2. AND 4 PlA.SES 

--
--- RUN 

..,- I 

- 118 
CONTROL --

IOP PUl.SE 
GENERATOR 

RUN ANO ~SE 
CONTROL 

ALL OPT10NAL 
PERIPHERAL 
EQUIPMENT 

..,.POWER CLEAR PIA.SES POW('R CL AR PU _SE 4_a-;.....;---------------t GENERAiOR 

Tl AND T2A QDQ( PULSES 

----+ FLOW OtAECTION 

--
-

-

p 

MAJOR 
STATE 

GENERATOR 

SPECIAL PULSE 
GENERATOR 

TIMING StGNAL 
GENERATOR 

I 

l~-iMOAO 
I CORE 

MEMOR Y 

------• I 

MEMORY 
AOORESS 
REGISTER 

-------1 

* TRANSFER DIRECTION IS INTO PDP-8 
WHEN -5 VOLTS. OUT OF POP-8 
WHEN GROUND 

* * DATA BREAK REQUEST IS FOR lMIEE
CYCLE BREAK WHEN GROUND OR ONE• 
CYCLE BREU Wt4EN -J YOl.TS 

~ DEC STANOARO POSmYE PULS£ C-1 Y TO GROUNDl 
_. OEC STANOARO NEGATIVE PULS£ ,GROUNO TO -SY) 
---() DEC STANDARD GAOUNO LEVEL StGffAl 
____,. D£C STANDARD -5 VCM..T L£YEL SIGNAL 

Figure 3 PDP·B Timing and Control Element Block Diagram 



FUNCTIONAL SUMMARY 

Operation of the computer is accomplished on a limited scale by keys on the operator 
console. Operation in this manner is limited to address and data storage by means of 
the switch register, core memory data examination, the normal start/stop/continue 
control, and the single step or single instruction operation that allows a program to 
be monitored visually as a maintenance operation. Most of these manually initiated 
operations are performed by executing an instruction in the same manner as by auto
matic programming, except that the gating is performed by special pulses rather than 
by the normal clock pulses. In automatic operation, instructions stored in core memory 
are loaded into the memory buffer register and executed during one or more computer 
cycles. Each instruction determines the major control states that must be entered 
for its execution. Each control state lasts for one 1.5-microsecond computer cycle 
and is divided into distinct time states which can be used to perform sequential logical 
operations. Performance of any function of the computer is controlled by gating of a 
specific instruction during a specific major control state and a specific time state. 

Timing and Control Elements 

The circuit elements that determine the timing and control, of the operation of the major 
registers of the PDP-8 are added to Figure 2 to form Figure 3. Figure 3 shows the 
timing and control elements described in the succeeding paragraphs and indicates 
their relationship to the major registers. These elements can be grouped categorically 
into timing generators, register controls, and program controls. 

TIMING GENERATORS 

Timing pulses used to determine the computer cycle time and used to initiate sequen
tial time-synchronized gating operations are produced by the timing signal generator. 
Timing pulses used during operations resulting from the use of the keys and switches 
on the operator console are produced by the special pulse generator. Pulses that reset 
registers and control circuits during power turn on and turn off operations are pro
duced by the power clear pulse generator. Several of these pulses are available to, 
peripheral devices using programmed or data break information transfers. 

REGISTER CONTROLS 

Operation of the AC, MA, MB, and PC is controlled by an associated logic circuit. 
These circuits, in turn, transmit and receive control signals to and from 1/0 equipment. 
Programmed data transfer equipment can supply a pulse to the AC control to clear 
the AC prior to a data input ano can supply a pulse to cause the content of the PC to 
be incremented, thus initiating an instruction skip. Equipment using the data break 
facility passes signals with the MA control and MB control to determine the direction 
and timing of data transfers in this mode. 

PROGRAM CONTROLS 

Circuits are also included in the PDP-8 that produce the IOP pulses which initiate 
operations involved in input/output transfers, determine the advance of the computer 
program, and allow peripheral equipment to cause a program interrupt of the main 
computer program to transfer program control to a subroutine which performs some 
service for the 1/0 device. 

7 



8 

Interface 

The input/output portion of the PDP-8 is extremely flexible and interfaces readily with 
special equipment, especially in real time data processing and control environments. 

The PDP-8 utilizes a "bus" 1/0 system rather than the more conventional "radial" 
system. The "bus" system allows a single set of data and control lines to communicate 
with all 1/0 devices. The bus simply goes from one devi'ce to the next. No additional 
connections to the computer are required. A "radial" system requires that a different 
set of signals be transmitted to each device; and thus the computer must be modified 
when new devices are added. The PDP-8 need not be modified when adding new 
peripheral devices. 

External devices receive two types of information from the computer: data and control 
signals. Computer output data is present as static levels on 12 lines. These levels 
represent a 12-bit word to be transmitted in parallel to a device. Data signals are 
received at all devices but are sampled only by the appropriate one in response to a 
control signal. Control signals are of two types: levels and timing pulses. Six static 
levels and their complement are supplied by the MB on 12 lines. These lines contain 
a code representing the device from which action is required. Each device recognizes 
its own code and performs its function only when this code is present. There are three 
timing pulses which may be programmed to occur. These I0P pulses are separated in 
time by one microsecond and are brought to all devices on 3 lines. These pulses are 
used by a device only when it is selected by the appropriate code on the level lines. 
They may be used to perform sequential functions in an external register, such as clear 
and read, or any other function requiring one, two, or three sequential pulses. 

Peripheral devices transmit information to the computer on four types of "busses". 
These are the information bus, the clear AC bus, the skip bus, and the program 
interrupt bus. The information bus consists of 12 lines normally held at -3 volts by 
load resistors within the computer. Whenever one of these lines is brought to ground, 
a binary 1 will be placed in the corresponding accumulator bit. Each device may use 
the input bus only when it is selected; and thus, these input lines are time shared 
among all of the connected devices. The skip bus is electrically identical to the 
information bus. However, when it is driven to ground the next sequential instruction 
will be skipped. It too can be used only by the device currently selected and is effec
tively time shared. The program interrupt bus may be driven to ground at any time by 
any device whether currently selected or not. When more than one device is connected 
to the interrupt bus they should also be connected to the skip bus so the program can 
identify the device requesting program interruption. 

The transmission of device selection levels and timing pulses is completely under 
program control. A single instruction can select any one of 64 devices and transmit 
up to three I0P timing pulses. Since the timing pulses are individually programmable, 
one might be used to strobe data into an external device buffer, another to transmit 
data to the computer, and the third to test a status flip~flop and drive the skip bus to 
ground if it is in the enabling state. 



Data transfers may also be made directly with core memory at a high speed using 
the data break facility. This is a completely separate 1/0 system from the one described 
previously. It is standard equipment in every PDP-8 and is ordinarily used with fast 
1/0 devices such as magnetic drums or tapes. Transfers through the data break facility 
are interlaced with the program in progress. They are initiated by a request from the 
peripheral device and not by programmed instruction. Thus, the device may transfer a 
word with memory whenever it is ready and does not have to wait for the program to 
issue an instruction. Computation may proceed on an interlaced basis with these 
transfers. 

Interface signal characteristics are indicated in Section D of this handbook. 

9 



10 

CHAPT1ER 2 

MEMORY AND PROCESSOR INSTRUCT:IONS 
Instruction words are of two type~ memory reference and augmented. Memory refer· 
ence instructions store or retrieve data from core memory, while augmented instruc
tions do not. All instructions utilize bits O through 2 to specify the operation code. 
Operation codes of 01 through 51 specify memory reference instructions, and codes 
of 6, and 7, specify augmented instructions. Memory reference instruction execution 
times are muttiples of the l.S·microsecond memory cycle. Indirect addressing increases 
the execution time of a memory reference instruction by 1.5 microseconds. The 
augmented instructions, input-output transfer and operate. are performed in 3.75 
and 1.-5 microseconds respectively. 

Memory Reference Instructions 

Since the PDP·S system contains a 4096-word core memory, 12 bits are required 
to address all locations. To simplify addressing. the core memory is divided into 
blocks. or pages, of 128 words (2001 addresses). Pages are numbered 01 through 3711 

each field of 4096-words of core memory uses 32 pages, The seven address bits 
(bits 5 through 11) of a memory reference instruction can address any location in 
the page on which the current instruction is lbcated by placjng a 1 in bit 4 of the 
instruction. By placing a O in bit 4 of the instruction. any location in page O can be 
addressed directly from any page of core memory. All other core memory locations 
can be addressed indirectly by placing a 1 in bit 3 and placing a 7-bit effective 
address in bits 5 through 11 of the instruction to specify the location in the current 
page or page O which contains the full 12-bit absolute address of the operand. 

-= ....., ... 
~ 

0 l s 4 ! a 1 • 10 II 

'--.-' 
INO•MCT ADOREIS 

I\DDRISStNCI 

Figure 4 Memory Reference Instruction Bit Assignments 

Word format of memory reference instructions is shown in Figure 4 and the instruc
tions perform as foltows: 

LOGICAL AND (AND Y) 

Octal Code: 0 

Indicators: ANO, FETCH, EXECUTE 

EXf!CUtion Time: 3.0 microseconds with direct addressing, 4.5 microseconds with 
indirect addressing. 

Operation; The AND operation is performed between the content of memory rocation V 



and the content of the AC. The result is left in the AC, the original content of the 
AC is lost, and the content of Y is restored. Corresponding bits of the AC and Y are 
operated upon independently. This instruction, often called extract or mask, can be 
considered as a bit-by-bit multiplication. Example: 

Symbol: ACj /\ Yj = > ACj 

Original 
ACj 

0 
0 
1 
1 

Yj 

0 
1 
0 
1 

Final 
ACj 

0 
0 
0 
1 

TWO'S COMPLEMENT ADD (TAD Y) 

Octal Code: 1 

Indicators: TAD, FETCH, EXECUTE 

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds with 
indirect addressing. 

Operation: The content of memory location Y is added to the content of the AC in 
two's complement arithmetic. The result of this addition is held in the AC, the original 
content of the AC is lost, and the content of Y is restored. If there is a carry from AC0, 
the link is complemented. This feature is useful in multiple precision ~rithmetic. 

Symbol: AC0 - 11 + YO - 11 = > AC0 -11 

INCREMENT AND SKIP IF ZERO (ISZ Y) 

Octal Code: 2 

Indicators: ISZ, FETCH, EXECUTE 

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds with 
indirect addressing. 

Operation: The content of memory location Y is incremented by one in two's comple
ment arithmetic. If the resultant content of Y equals zero, the content of the PC is 
incremented by one and the next instruction is skipped. If the resultant content of Y 
does not equal zero, the program proceeds to the next instruction. The incremented 
content of Y is restored to memory. The content of the AC is not affected by this 
instruction. 

Symbol: Y + 1 => Y 
If resultant YO - 11 = 0, then PC + 1 = > PC 

DEPOSIT AND CLEAR AC (DCA Y) 

Octal Code: 3 

Indicators: DCA, FETCH, EXECUTE 

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds with 
indirect addressing., 

Operation: The content of the AC is deposited in core memory at address Y and the 

11 



12 

AC is cleared. The previous content of memory location Y is lost. 

Symbol: AC = > Y 
then O = > AC 

JUMP TO SUBROUTINE (JMS Y) 

Octal Code: 4 

Indicators: JMS, FETCH, EXECUTE 

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds with 
indirect addressing. 

Operation: The content of the PC is deposited in core memory location Y and the 
next instruction is taken from core memory location Y + 1. The content of the AC is 
not affected by this instruction. 

Symbol: PC + 1 = > Y 
Y + 1 = > PC 

JUMP TO Y (JMP _Y) 

Octal Code: 5 

Indicators: JMP, FETCH 

Execution Time: 1.5 microseconds with direct addressing, 3.0 microseconds with 
indirect addressing. 

Operation: Address Y is set into the PC so that the next instruction is taken from core 
memory address Y. The original content of the PC is lost. The content of the AC is not 
affected by this instruction. 

Symbol: Y = > PC 

Augmented Instructions 

There are two augmented instructions which do not reference core memory. They are 
the input-output transfer, which has an operation code of 6, and the operate which 
has an operation code of 7. Bits 3 through 11 within these instructions function as an 
extension of the operation code and can be microprogrammed to perform several 
operations within one instruction. Augmented instructions are one-cycle (Fetch) 
instructions that initiate various operations as a function of bit microprogramming. 
The operations initiated by each bit occur at a specified time with respect to the 
computer cycle time and are designated as event times 1, 2, and 3. Three event times, 
separated by 1 microsecond, occur during the input-output transfer instruction. Two 
event times occur during the 1.5-microsecond cycle time of an operate instruction. 

INPUT OUTPUT TRANSFER INSTRUCTION 

Microinstructions of the input-output transfer (IOT) instruction initiate operation of 
peripheral equipment and effect information transfers between the processor and an 
1/0 device. Specifically, when an operation code of 6 is detected, the PAUSE flip-flop 
is set and the IOP generator is enabled to produce IOP 1, IOP 2, and IOP 4 pulses as a 
function of the content of instruction bits 9 through 11. These pulses occur at !
microsecond intervals designated as event times 3, 2, and 1 as follows: 



Instruction IOP 
Bit Pulse 

11 IOP 1 
10 IOP 2 
9 IOP 4 

IOT 
Pulse 

IOT 1 
IOT 2 
IOT 4 

Event 
Time 

1 
2 
3 

The IOP pulses are gated in the device selector of the program-selected equipment to 
produce IOT pulses that enact a data transfer or initiate a control operation. Selection 
of an equipment is accomplished by bits 3 through 8 of the IDT instruction. These bits 
form a 6-bit code that enables the device selector in a given device. 

The format of the IOT instruction is shown in Figure 5. Operations performed by IOT 
microinstructions are e,cplained in Section B of this handbook. 

0 

~EltATtOH 
CODE IS 

2 4 6 7 8 

arN£MTE:s 
AN 10P 4 

PULSE AT 
EIIENTT- 1 

IF At 

~ 

9 10 

'--,--I 
GENEIIATES 

AN 10P 2 
PlA.S[ AT 

EVE._.T TIME2 
F A t 

Figure 5 IOT Instruction Bit Assignments 

OPERATE INSTRUCTION 

t1 

The operate instruction consists of two groups of microinstructions. Group 1 (OPR 1) 
is principally for clear, complement, rotate, and increment operations and is designated 
by the presence of a O in bit 3. Group 2 (QPR 2) is used principaUy in checking the 
content of the accumulator and rink and continuing to,or skipping,the next instruction 
based on the check. A 1 in bit 3 designates an OPR 2 microinstruction. 

Group 1 operate microinstruction format Is shown in Figure 6 and the microinstruc
tions are explained in the succeeding paragraphs. Any logical combination of bits within 
this group can be combined into one microinstruction. for example, it is possible to 
assign ones to bits 5, 6, and 11; but it is not logical to assign ones to bits 8 and 9 
sJmultaneously since they specify conflicting operations. The only restriction on com
bining OPR 1 operations within one instruction, other than logical conflicts, is that a 
rotate operation (bits 81 9, or 10) may not be combined with the increment AC oper· 
ation (bit 11) since they are e,cecuted at the same event time. 

0 

~ATION 
C00l 7 

I 

, I 2 

~ ~ 
CONTAINS A 1 111A 
TO SPECIFY 

GROUP 2 

' 7 

REVEltlt 
SIC1P 

$ENSING OF 
IITS 5,1,1 
~ 

8 

Figure 6 Group 1 Operate Instruction Bit Assignments 

13 



14 

NO OPERATION (NOP) 
Octal Code: 7000 

Event Time: None 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: This command causes a 1-cycle delay in the program and then the next 
sequential instruction is initiated. This command is used to add execution time to a 
program, such as to synchronize subroutine or loop timing with peripheral equipment 
timing. 

Symbol: None 

INCREMENT ACCUMULATOR (IAC) 

Octal Code: 7001 

Event Time: 2 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is incremented by one in two's complement arithmetic. 

Symbol: AC + 1 = > AC 

ROTATE ACCUMULATOR LEFT (RAL) 

Octal Code: 7004 

Event Time: 2 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is rotated one binary position to the left with the 
content of the link. The content of bits ACl - 11 are shifted to the next greater signifi
cant bit, the content of AC0 is shifted into the L, and the content of the L is shifted 
into AC11. 

Symbol: ACj = > ACj -1 
AC0 => L 
L => ACll 

Octal Code: 7006 

Event Time: 2 

ROTATE TWO LEFT (RTL) 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is rotated two binary positions to the left with the 
content of the link. This instruction is logically equal to two successive RAL operations. 

Symbol: ACj = > ACj -2 
ACl => L 
AC0 => AC11 
L => AClO 



ROTATE ACCUMULATOR RIGHT (RAR) 

Octal Code: 7010 

Event Time: 2 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is rotated one binary position to the right with the 
content of the link. The content of bits AC0 - 10 are shifted to the next less significant 
bit, the content of ACl 1 is shifted into the L, and the content of the Lis shifted into AC0. 

Symbol: ACj = > ACj + 1 
ACll => L 
L => AC0 

ROTATE TWO RIGHT (RTR) 

Octal Code: 7012 

Event Time: 2 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is rotated two binary positions to the right with the 
content of the link. This instruction is logically equal to two successive RA Roperations. 

Symbol: ACj = > ACj +2 
ACl0 = L 
ACll = AC0 
L => ACl 

COMPLEMENT LINK (CML) 

Octal Code: 7020 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the Lis complemented. 

Symbol: [ = > L 

COMPLEMENT ACCUMULATOR (CMA) 

Octal Code: 7040 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is set to the one's complement of the current content 
of the AC. The content of each bit of the AC is complemented individually. 

Symbol: ACj = > ACj 

15 



16 

COMPLEMENT AND INCREMENT ACCUMULATOR (CIA) 

Octal Code: 7041 

Event Time: l, 2 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the AC is converted from a binary value to its equivalent 
two's complement number. This conversion is accomplished by combining the CMA 
and IAC commands, thus the content of the AC is complemented during event time 1 
and is incremented by one during event time 2. 

Symbol: ACj = > ACj, 
then AC + 1 = > AC 

CLEAR LINK (CLL) 

Octal Code: 7100 

Event Time: l 

Indicators: QPR, FETCH 

Execution Time: l .~ microseconds 

Operation: The content of the Lis cleared to contain a 0. 

Symbol: 0 = > L 

Octal Code: 7120 

Event Time: l 

Indicators: OPR, FETCH 

Execution Time: 1.5 microseconds 

SET LINK (STL) 

Operation: The L is set to contain a binary 1. This instruction is logically equal to 
combining the CLL and CML commands. 

Symbol: 1 = > L. 

CLEAR ACCUMULATOR (CLA) 

Octal Code: 7200 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of each bit of the AC is cleared to contain a binary 0. 

Symbol: 0 = > AC 



SET ACCUMULATOR (STA) 

Octal Code: 7240 

Event Time: 1 

Indicators: OPR, FETCH 

Execution Time: 1.5 microseconds 

Operat,on: Each bit of the AC is set to contain a binary I. This operation is logically 
equal to combinmg the CLA and CMA commands. 

Symbol: I = > ACj 

Group 2 operate microinstruction format is shown in Figure 7 and the primary micro· 
instructions are explained in the following paragraphs. Any logical combination of bits 
within this group can be composed into one microinstruction, (The instructions 
constructed by most logical command combinations are listed in Appendix L) 

If skips are combined in a single instruction the inclusive OR of the conditions deter
mines the skip when bit 8 is a O: and the AND of the inverse of the conditions deter
mines the skip when bit B is a I. For example, if ones are designated in bits 6 and 
7 (SZA and SNL), the next instruction ;$ skipped if either the content of the AC == 01 

or the content of L = 1. If ones are contained in bits 5, 7, and 8, the next instruction 
is skipped tf the AC contains a positive number and the L contains a 0. 

~Att4 ROTATE lf'AO, 
AC AM) L i~ Q.A C. flGHT' 

~ ~ .-,"-\ r--'--t 

0 2 ! .. $ 6 7 8 9 ,1 
'---,--' "--v--' '--v--J ~ ........,_, 
CONT.U-. CLL CML ROTATE 
AO 10 AC AM) L 
IPtCFY LUT 
GROUP• 

Figure 7 Group 2 Operate Instruction Bit Assignments 

HALT (HLT) 

Octal Code: 7 402 

Event Time: 1 

Indicators: OPR, not RUN 

Execution Time: 1.5 microseconds 

IAC 

Operation: Clears the RUN flip.flop at event time 1, so that the program stops at the 
conclusion of the current machine cycle. This command can be combined with others 
in the QPR 2 group that are executed during either event time 1, or 2 1 and so are 
performed before the program stops. 

Symbol: 0 = > RUN 

17 



18 

OR WITH SWITCH REGISTER (OSR) 

Octal Code: 7404 

Event Time: 2 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The inclusive OR operation is performed between the content of the AC 
and the content of the SR. The result is left in the AC, the original content of the AC 
is lost, and the content of the SR is unaffected by this command. When combined with 
the CLA command, the OSR performs a transfer of the content of the SR into the AC. 

Symbol: ACj V SRj = > ACj 

SKIP, UNCONDITIONAL (SKP) 

Octal Code: 7410 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the PC is incremented by one so that the next sequential 
instruction is skipped. 

Symbol: PC + 1 = > PC 

SKIP ON NON-ZERO LINK (SNL) 

Octal Code: 7420 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the L is sampled, and if it contains a 1 the content of the PC 
is incremented by one so that the next sequential instruction is skipped. If the L contains 
a 0, no operation occurs and the next sequential instruction is initiated. 

Symbol: If L = 1, then PC + 1 = > PC 

SKIP ON ZERO LINK (SZL) 

Octal Code: 7430 

Event Time: 1 

Indicators: OPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the L is sampled, and if it contains a O the content of the 
PC is incremented by one so that the next sequential instruction is skipped. If the 
L contains a 1, no operation occurs and the next sequential instruction is initiated. 

Symbol: If L = 0, then PC + 1 = > PC 



SKIP ON ZERO ACCUMULATOR (SZA) 

Octal Code: 7440 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of each bit of the AC is sampled, and if-each bit contains a 0 
the content of the PC is incremented by one so that the next sequential instruction is 
skipped. If any bit of the AC contains a 1, no operation occurs and the next sequential 
instruction is initiated. 

Symbol: If ACO - 11 = 6, then PC+ 1 =>PC 

SKIP ON NON-ZERO ACCUMULATOR (SNA) 

Octal Code: 7 450 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of each bit of the AC is sampled, and if any bit contains a 1 
the content of the PC is incremented by one so that the next sequential instruction is 
skipped. If all bits of the AC contain a 0, no operation occurs and the next sequential 
instruction is initiated. 

Symbol: If ACO - 11 =/= 0, then PC + 1 = > PC 

SKIP ON MINUS ACCUMULATOR (SMA) 

Octal Code: 7500 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the most significant bit of the AC is sampled, and if it con
tains a 1, indicating the AC contains a negative two's complement number, the content 
of the PC is incremented by one so that the next sequential instruction is skipped. If 
the AC contains a positive number no operation occurs and program control advances 
to the next sequential instruction. 

Symbol: If ACO = 1, then PC + 1 = > PC 

SKIP ON POSITIVE ACCUMULATOR (SPA) 

Octal Code: 7510 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

19 



20 

Operation: The content of the most significant bit of the AC is sampled, and if it con
tains a 0, indicating a positive (or zero) two's complement number, the content of the 
PC is incremented by one so that the next sequential instruction is skipped. If the AC 
contains a negative number, no operation occurs and program control advances to the 
next sequential instruction. 

Symbol: If AC0 = 0, then PC + 1 = > PC 

CLEAR ACCUMULATOR (CLA) 

Octal Code: 7600 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: Each bit of the AC is cleared to contain a binary 0. 

Symbol: 0 =>AC 



CHAPTER 3 

MEMORY AND PROCESSOR 
BASIC PROGRAMMING 

Memory Addressing 

The following terms are used in memory address programming: 

Term 

Page 

Current Page 

Page Address 

Absolute Address 

Effective Address 

Definition 

A block of 128 core memory locations (2008 

addresses). 

The page containing the instruction being executed; 
as determined by bits O through 4 of the program 
counter. 

An 8-bit number contained in bits 4 through 11 of an 
instruction which designates one of 256 core mem
ory locations. Bit 4 of a page address indicates that 
the location is in the current page when a 1, or 
indicates it is in page O when a 0. Bits 5 through 11 
designate one of the 128 locations in the page 
determined by bit 4. 

A 12-bit number used to address any location in 
core memory. 

The address of the operand. When the address of 
the operand is in the current page or in page 0, the 
effective address is a page address. Otherwise, the 
effective address is an absolute address stored in 
the current page or page O and obtained by indirect 
addressing. 

Organization of the standard core memory or any 4096-word field of extended memory 
is summarized as follows: 

Total locations (decimal) 
Total addresses (octal) 

Number of pages (decimal) 
Page designations (octal) 

Number of locations per page (decimal) 
Addresses within a page (octal) 

4096 
7777 

32 
0-37 

128 
0-177 

21 



22 

Four methods of obtaining the effective address are used as specified by combinations 
of bits 3 and 4. 

Bit 3 

0 

0 

1 

1 

Bit 4 

0 

1 

0 

1 

Effective Address 

The operand is in page O at the address specified by 
bits 5 through 11. 
The operand is in the current page at the address 
specified by bits 5 th rough 11. 

The absolute address of the operand is taken from 
the content of the location in page O designated by 
bits 5 through 11. 

The absolute address of the operand is taken from 
the content of the location in the current page 
designated by bits 5 through 11. 

The following example indicates the use of bits 3 and 4 to address any location in core 
memory. Suppose it is desired to add the content of locations A, B, C, and D to the 
content of the accumulator by means of a routine stored in page 2. The instructions in 
this example indicate the operation code, the content of bit 4, the content of bit 3, 
and a 7-bit address. This routine would take the following form: 

Page 0 
Location Content 

A 
M 

xxxx 
C 

Page 1 
Location Content 

C 
D 

xxxx 
xxxx 

Page 2 
Location Content Remarks 

R TAD 00 A DIRECT TO DATA IN 
PAGE 0 

S TAD 01 B DIRECT TO DATA IN 
SAME PAGE 

T TAD 10 M INDIRECT TO ADDRESS 
SPECIFIED IN PAGE 0 

U TAD 11 N INDIRECT TO ADDRESS 
SPECIFIED IN SAME PAGE 

B 
N 

xxxx 
D 

Routines using 128 instructions, or less, can be written in one page using direct 
addresses for looping and using indirect addresses for data stored in other pages. 
When planning the location of instructions and data in core memory, remember that 
the following locations are reserved for special purposes: 

Address 

ls 

1 Os through 17 8 

Purpose 

Stores the contents of the program counter 
following a program interrupt. 

Stores the first instruction to be executed 
following a program interrupt. 

Auto-indexing. 



INDIRECT ADDRESSING 

When indirect addressing is specified, the address part (bits 5-11) of a memory refer
ence instruction is interpreted as the address of a location containing not the operand, 
but containing the address of the operand. Consider the instruction TAD A. Normally, 
A is interpreted as the address of the location containing the quantity to be added to 
the content of the AC. Thus, if location 100 contains the number 5432, the instruction 
TAD 100 causes the quantity 5432 to be added to the content oi the AC. Now suppose 
that location 5432 contains the number 6543. The instruction TAD I 100 (where I 
signifies indirect addressing) causes the computer to take the number 5432, which is 
in location 100, as the effective address of the instruction and the number in location 
5432 as the operand. Hence, this instruction results in the quantity 6543 being added 
to the content of the AC. 

AUTO-INDEXING 

When a location between 108 and 178 in page 0 of any core memroy field is addressed 
indirectly (by an instruction in which bit 3 is a 1) the content of that location is read, 
incremented by one, rewritten in the same location, and then taken as the effective 
address of the instruction. This feature is called auto-indexing. If location 12s contains 
the number 5432 and the instruction DCA I Z 12 is given, the number 5433 is stored 
in location 12, and the content of the accumulator is deposited in core memory location 
5433. 

Storing and Loading 

Data is stored in any core memory location by use of the DCA Y instruction. This 
instruction clears the AC to simplify loading of the next datum. If the data deposited 
is required in the AC for the next program operation, the DCA must be followed by a 
TAD Y for the same address. 

All loading of core memory information into the AC is accomplished by means of the 
TAD Y instruction, preceded by an instruction that clears the AC such as CLA or DCA. 

Storing and loading of information in sequential core memory locations can make 
excellent use of an auto-index register to specify the core memory address. 

Program Control 
Transfer of program control to any core memory location uses the JMP or JMS 
instructions. The JMP I (indirect address, 1 in bit 3) is used to transfer program 
control to any location in core memory which is not in the current page or page 0. 

The JMS Y is used to enter a subroutine which starts at location Y + 1 in the current 
page or page 0. The content of the PC + 1 is stored in the specified address Y, and 
address Y + 1 is transferred into the PC. To exit a subroutine the last instruction is 
a JMP I Y, which returns program control to the location stored in Y. 

Indexing Operations 
External events can be counted by the program and the number can be stored in core 
memory. The core memory location used to store the event count can be initialized 
(cleared) by a CLA command followed by a DCA instruction. Each time the event occurs, 
the event count can be advanced by a sequence of commands such as CLA, TAD, 
IAC, and DCA. 

23 



24 

The ISZ instruction is used to count repetitive program operations or external events 
without disturbing the content of the accumulator. Counting a specified number of 
operations is performed by storing a two's complement negative number equal to the 
number of iterations to be counted. Each time the operation is performed, the ISZ 
instruction is used to increment the content of this stored number and check the result. 
When the stored number becomes zero, the specified number of operations have 
occured and the program skips out of the loop and back to the main sequence. 

This .instruction is also used for other routines in which the content of a memory 
location is incremented without disturbing the content of the accumulator, such 
as storing information from an 1/0 device in sequential memory locations or using core 
memory locations to count 1/0 device events. · 

Logic Operations 

The PDP-8 instruction list includes the logic instruction, AND Y. From this instruction 
short routines can be written to perform the inclusive OR and exclusive OR operations. 

LOGICAL AND 

The logic AND operation between the content of the accumulator and the content 
of a core memory location Y is performed directly by means of the AND Y instruction. 
The result remains in the AC, the original content of the AC is lost, and the content 
of Y is unaffected. 

INCLUSIVE OR 

Assuming value A is in the AC and value B is stored in a known core memory address, 
the following sequence performs the inclusive OR. The sequence is stated as a utility 
subroutine called IOR. 

/CALLING SEQUENCE JMS IOR 
/ (ADDRESS OF B) 
/ (RETURN) 
/ENTER WITH ARGUMENT IN AC; EXIT WITH LOGICAL RESULT IN AC 

IOR, 

TEMl, 
TEM2, 

0 
DCA TEMl 
TAD I IOR 
DCA TEM2 
TAD TEMl 
CMA 
AND I TEM2 
TAD TEMl 
ISZ IOR 
JMP I IOR 
0 
0 



EXCLUSIVE OR 

The exclusive OR operation for two numbers, A and 8, can be performed by a sub
routine called by the mnemonic code XOR. In the following general purpose XOR 
subroutine, the value A (s assumed to be in the AC, and the address of the value 8 
is assumed to be stored in a known core memory location. 

/CALLING SEQUENCE 

I 
I 
/ENTER WITH ARGUMENT 

XOR, 

TEMl, 
TEM2, 

IN AC; EXIT WITH 

0 
DCA TEMl 
TAD I XOR 
DCA TEM2 
TAD TEMl 
AND I TEM2 
CMA IAC 
CLL RAL 
TAD TEMl 
TAD I TEM2 
ISZ XOR 
JMP I XOR 
0 
0 

JMS XOR 
(ADDRESS OF 8) 
(RETURN) 

LOGICAL RESULT IN AC 

An XOR subroutine can be written using fewer core memory locations by making use 
of the IOR subroutine; however, such a subroutine takes more time to execute. A 
faster XOR subroutine can be written by storing the value 8 in the second instruction 
of the calling sequence instead of the address of B; however, the resulting subroutine 
is not as utilitarian as the routine given here. 

Arithmetic Operations 
One arithmetic instruction is included in the PDP-8 order code, the two's complement 
add: TAD Y. Using this instruction, routines can easily be written to perform addition, 
subtraction, multiplication, and division in two's complement arithmetic. 

TWO'S COMPLEMENT ARITHMETIC 

In two's complement arithmetic addition, subtraction, multiplication, and division of 
binary numbers is performed in accordance with the common rules of binary arith
metic. In PDP-8, as in other machines utilizing complementation techniques, negative 
numbers are represented as the complement of positive numbers, and subtraction is 
achieved by complement addition. Representation of negative values in one's com
plement arithmetic is slightly different from that in two's complement arithmetic. 

The one's complement of a number is the complement of the absolute positive value; 
that is', all ones- are replaced by zeros and all zeros are replaced by ones. The two's 
complement of a number is equal to the one's complement of the positive value plus one. 

In one's complement arithmetic a carry from the sign bit (most significant bit) is 
added to the· least significant bit in an end-around carry. In two's complement arith
metic a carry from the sign bit complements the link (a carry would set the link to 1 
if it were properly cleared before the operation), and there is no end-around carry. 

25 



26 

A one's complement representation of a negative number is always one less than the 
two's complement representation of the same number. Differences between one's and 
two's complement representations are indicated in the following list. 

Number 1 's Complement 2's Complement 

+5 000000000101 000000000101 
+4 000000000100 000000000100 
+3 000000000011 000000000011 
+2 000000000010 000000000010 
+1 000000000001 000000000001 
+o 000000000000 000000000000 
-0 111111111111 Nonexistent 
-1 111111111110 111111111111 
-2 111111111101 111111111110 
-3 111111111100 111111111101 
-4 111111111011 111111111100 
-5 111111111010 111111111011 

Note that in two's complement there is only one representation for the number which 
has the value zero, while in one's complement there are two representations. Note also 
that complementation does not interfere with sign notation in either one's comple
ment or two's complement arithmetic; bit O remains a O for positive numbers and a 
1 for negative numbers. 

To form the two's complement of any number in the PDP-8, the one's complement 
is formed, and the result is incremented by one. This is accomplished by the instruc
tion CMA combined with an IAC instruction. Since both of these instructions are 
functions of the OPR 1 instruction and the actions occur at different event times, they 
can be combined to form the instruction CIA, Complement and Increment AC. 

ADDITION 

The addition of a number contained in a core memory location and the number 
contained in the accumulator is performed directly by using the TAD Y instruction, 
assuming that the binary point is in the same position and that both numbers are 
properly represented in two's complement arithmetic. Addition can be performed 
without regard for the sign of either the augend or the addend. Overflow is possible, 
in which case the result will have an incorrect sign, although the 11 least significant 
bits will be correct. Following the addition a test for overflow can be made by using 
the SZL command. 

SUBTRACTION 

Subtraction is performed by complementing the subtrahend and adding the minuend. 
As in addition, if both numbers are represented by their two's complement, subtrac
tion can be performed without regard for the sign of either number. Assuming that 
both numbers are stored in core memory, a routine to find the value of A-8 follows: 

CLA 
TAD 8 
CIA 
TAD A 

/LOAD SUBTRAHEND INTO AC 
/COMPLEMENT AND INCREMENT 8 
/AC = A - B 



CHAPTER 4 

PROGRAM INTERRUPT 

The program interrupt feature allows certain external conditions to interrupt the com
puter program. It is used to speed the information processing of input-output devices 
or to allow certain alarms to halt the program in progress and initiate another routine. 
When a prograrrl interrupt request is made the computer completes execution of the 
instruction in progress before acknowledging the request and entering the interrupt 
mode. A program interrupt is similar to a JMS to location O; that is, the content of the 
program counter is stored in location 0, and the program resumes operation in location 
1. The interrupt program commencing in location 1 is responsible for identifying the 
signal causing the interruption, for removing the interrupt condition, and for returning 
to the original program. Exit from the interrupt program, back to the original program, 
can be accomplished by a JMP I Z O instruction. 

Instructions 
The two instructions associated with the program interrupt synchronization element are 
IOT microinstructions that do not use the IOP generator. These instructions are: 

INTERRUPT TURN ON (ION) 

Octal Code: 6001 

Event Time: Not applicable 

Indicators: IOT, FETCH, ION 

Execution Time: 1.5 microseconds 

Operation: This command enables the computer to respond to a program interrupt 
request. If the interrupt is disabled when this instruction is given, the computer executes 
the next instruction, then enables the interrupt. The additional instruction allows exit 
from the interrupt subroutine before allowing another interrupt to occur. This instruction 
has no affect upon the condition of the interrupt circuits if it is given when the interrupt 
is enabled. 

Symbol: 1 = > INT. ENABLE 

INTERRUPT TURN OFF (IOF) 

Octal Code: 6002 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: This command disables the program interrupt synchronization element to 
prevent interruption of the current program. 

Symbol: 0 =>INT. ENABLE, INT. DELAY 

Programming 
When an interrupt request is acknowledged, the interrupt is automatically disabled by 
the program interrupt synchronization circuits (not by instructions). The next instruc-

27 



28 

tion is taken from core memory location 1. Usually the instruction stored in location 1 
is a JMP, which transfers program control to a subroutine which services the interrupt. 
At some time during this subroutine an ION instruction must be given. The ION can be 
given at the end of the subroutine to allow other interrupts to be serviced after program 
control is transferred back to the original program. In this application, the ION instruc
tion immediately precedes the last instruction in the routine. A delay of one instruction 
(regardless of the execution time of the following instruction) is inherent in the ION 
instruction to allow transfer of program control back to the original program before 
enabling the interrupt. Usually exit from the subroutine is accomplished by a 
JMP I Z O instruction. 

The ION command can be given during the subroutine as soon as it has determined 
the 1/0 device causing the interrupt. This latter method allows the subroutine which is 
handling a low priority interrupt to be interrupted, possibly by a high priority device. 
Programming of an interrupt subroutine which checks for priority and allows itself to 
be interrupted, must make provisions to relocate the content of the program counter 
stored in location O; so that if interrupted, the content of the PC during the subroutine is 
stored in location 0, and the content of the PC during the original program is not lost. 



CHAPTER 5 

DATA BREAK 

Peripheral equipment connected. to the data break facility can cause a temporary sus
pension in the program in progress to transfer information with the computer core 
memory, via the MB. One 1/0 device can be connected directly to the data break 
facility or up to seven devices can be connected to it through the Type DM0l Data 
Multiplexer. This cycle stealing mode of operation provides a high-speed transfer of 
individual words or blocks of information at core memory addresses specified by the 
1/0 device. Since program execution is not involved in these transfers, the program 
counter, accumulator, and instruction register are not disturbed or involved in these 
transfers. The program is merely suspended at the conclusion of an instruction execu
tion and the data break is entered to perform the transfer. then the Fetch state is 
entered to continue the main program. 

Data breaks are of two basic types: single-cycle and three-cycle. In a single-cycle data 
break, registers in the device (or device interface) specify the core memory address of 
each transfer and count the number of transfers to determine the end of data blocks. 
In the three-cycle data break two computer core memory locations perform these func
tions, simplifying the device interface by omitting two hardware registers. 

The computer receives the following signals from the device during a data break: 

Signal - 3 Volts 0 Volts 

Break Request No break request Break request 
Cycle Select One-cycle break Three-cycle break 
Transfer Direction Data into PDP-8 Data out of PDP-8 
Increment CA Inhibit CA incremented CA not incremented 
Increment MB (pulse) MB not incremented MB incremented 
Address (12 bits) Binary 0 Binary 1 
Data (12 bits) Binary 0 Binary 1 

The computer sends the following signals to the device during a data break: 

Signal 

Data (12 bits) 
Address Accepted 

WC Overflow 

Buffered Break 

Characteristics 

-3 volts = binary 0, 0 volts = binary 1 
400-nanosecond negative pulse begin
ning at memory done time 
400-nanosecond negative pulse occur
ring at Tl time 
-3 volts when in Break state 

To initiate a data break an 1/0 device must supply four signals simultaneously to the 
data break facility. These signals are the Break Request signal, which sets the BRK 
SYNC flip-flop in the major state generator to control entry into the data break states 
(Word Count for a three-cycle data break or Break for a single-cycle data break); a 
Transfer Direction signal, supplied to the MB control element to allow data to be 
strobed into the MB from the peripheral equipment and to inhibit reading from core 
memory; a Cycle Select signal which controls gating in the major state generator to 
determine if the one-cycle or three-cycle data break is to be selected; and a core 
memory address of the transfer which is supplied to the input of the MA. When the 

29 



30 

break request is made, the data break replaces entry into the Fetch state of an instruc
tion. Therefore the data break is entered at the conclusion of the Execute state of 
most memory reference instructions and at the conclusion of a Fetch state of aug
mented instructions. Having established the data break, each machine cycle is a Word 
Count, Current Address, or Break cycle until all data transfers have taken place, as 
indicated by removal of the Break Request signal by the peripheral equipment. 

More exactly, the Break Request signal enables a diode-capacitor-diode gate at the 
binary 1 input of the BRK SYNC flip-flop. Midway through each computer cycle (Tl) 
this gate is pulsed to set the flip-flop if the Break Request signal has been received. 

At the beginning (T2) of each machine cycle the major state generator is set to estab
lish the state for the cycle. At this time the status of the BRK SYNC flip-flop is sampled 
and the flip-flop is cleared. If the BRK SYNC flip-flop is in the 1 state at this time, the 
Word Count or Break state is set into the major state generator and a data break 
commences. 

Therefore, to initiate a data break, the Break Request must be at ground potential for 
at least 400 nanoseconds preceding Tl of the cycle preceding the data break cycle. A 
Break Request signal should be supplied to the computer when the address, data, 
Transfer Direction and Cycle Select signals are supplied to the computer, and not 
before. 

When a data break occurs, the address designated by the device is loaded into the 
MA during time T2 of the last cycle of the current instruction, and the major state 
generator is set to the Word Count state if the Cycle Select signal is at ground, or 
is set to the Break state if this signal is at -3 volts. The program is delayed for the 
duration of the data break, commencing in the following cycle. A break request is 
granted only after completion of the current instruction as specified by the following 
conditions: 

1. At the end of the Fetch cycle of an OPR or IOT instruction, or a directly
addressed JMP instruction. 

2. At the end of the Defer cycle .of an indirectly addressed JMP instruction. 

3. At the end of the Execute cycle of a JMS, DCA, ISZ, TAD, or AND instruction. 

At the beginning of the Word_ Count cycle of a three-cycle data break or the Break 
cycle of a one-cycle data break the address supplied to the input of the MA is strobed 
into the MA and the computer supplies an Address Accepted pulse to the device. Entry 
into the Break cycle is indicated to the peripheral equipment by a Buffered Break signal 
and by an Address Accepted pulse that can be used to enable gates in the device to 
perform tasks associated with the transfers. The Addresss Accepted pulse is the most 
convenient control to be used by 1/0 equipment to disable the Break Request signal, 
since this signal must be removed at the end of T2 time to prevent continuance at the 
data break into the next cycle. Also at the beginning of the Break cycle, the MB is 
cleared in preparation for receipt of data from either the core memory or the external 
-device. If the Transfer Direction signal establishes the direction as out of the computer, 
the content of the core memory register at the address specified is transferred into the 
MB and is immediately available for strobing by the peripheral equipment. If the 
Transfer Direction signal specifies a data direction into the PDP-8, reading from core 
memory is inhibited and data is transferred into the MB from peripheral equipment. 



The status of the BRK SYNC flip-flop is sensed at the beginning of a Break cycle to 
determine if an additional Break cycle is required. If a Break Request signal has been 
received since T2, the Break state is maintained in the major state generator; if the 
Break Request signal has not been received by this time; the Fetch state is set into 
the major state generator to continue the program. The Break Request signal should be 
removed by the end of the Address Accepted signal if additional Break cycles are not 
required. 

Single-Cycle Data Break 

One-cycle breaks transfer a data word into the computer core memory from the device, 
transfer a data word into a device from the core memory, or increment the content of a 
device-specified core memory location. In each of these types of data break one com
puter cycle is stolen from the program by each transfer; Break cycles occur singly (in
terleaved with the program steps) or continuously (as in a block transfer), depending 
upon the timing of the Break Request signal. 

During the memory strobe portion of the Break cycle, the content of the addressed cell 
is read into the MB if the transfer direction is out of the computer (into the 1/0 device). 
If the transfer direction is into the computer, generation of the Memory Strobe pulse is 
inhibited so that the MB (cleared during the previous cycle) remains cleared. Informa
tion is transferred from the output data register of the 1/0 device into the MB and is 
written into core memory during time Tl of the Break cycle. In an outward transfer, the 
write operation restores the original content of the address eel I to memory. 

The MB is cleared during time T2 of the Break cycle. If there is a further break request, 
another Break cycle is initiated. If there is no break request, the content of the PC is 
transferred into the MA, the IR is cleared, and the major state generator is set to Fetch. 
The program then executes the next instruction. 

The increment MB facility is useful for counting iterations or events by means of a data 
break, so that the PC and AC are not disturbed. Within one Break cycle of 1.5 micro
seconds, a word is fetched from a device-specified core memory location, is incremented 
by one, and is restored to the same memory location. The Increment MB signal input 
must be supplied to the computer only during a Break cycle in which the direction of 
transfer is out of the PDP-8. These restrictions can be met by a sim pie AND gate in the 
device; an Increment MB signal is generated only when an event occurs, the Buffered 
Break signal from the computer is present, and the Transfer Direction signal supplied 
to the computer is at ground potential. 

Three-Cycle Data Break 

The three-cycle data break provides an economical method of controlling the transfer of 
data between the computer core memory and fast peripheral devices. Transfer rates in 
excess of 220 kc are possible using this feature of the PDP-8. 

The three-cycle data break differs from the one-cycle break in that a ground-level Cycle 
Select signal is supplied so that when the data break conditions are fulfilled the program 
is suspended and the Word Count state is entered. The Word Count state is entered to 
increment the fixed core memory location containing the word count. The device 
requesting the break supplies this address as in the one-cycle break, except that this 
is a fixed address supplied by wired ground and -3v signals rather than from a register. 
The only restriction on this address is that it must be an even number (bit 11 = 0). 

31 



32 

Following the Word Count state a Current Address state occurs in which the location 
following the Word Count address (bit 11 = 1 after + 1 = > MA) is read, incremented 
by one, restored to memory, and loaded into the MA to be used as the transfer address. 
Then the normal Break state is entered to effect the transfer between the device and 
the computer memory cell specified by the MA. 

WORD COUNT STATE 

When this state is entered the content of the core memory address specified by the 
external device is read into the MB during time state Tl. The word count, established 
previously by instructions, is the 2's complement negative number equal to the required 
number of transfers. The word in the MB is incremented by 1 to advance the word 
count, and if the word becomes O when incremented, the computer generates a WC 
Overflow pulse and supplies it to the device. During time T2 the incremented word count 
is rewritten in memory, the MB is cleared, the content of the MA is incremented by 1 
to establish the next location as the address for the following memory cycle, and the 
major state generator is set to the Current Address state. 

CURRENT ADDRESS STATE 

Operations during the second cycle of the three-cycle data break depend upon the 
condition of the Increment CA Inhibit ( + 1 ~ CA lphibit) signal supplied to the com
puter from the 1/0 device. During Tl the address following the word count is read into 
the MB. If the Increment CA Inhibit signal is at ground potential, no further operations 
occur during Tl. If this signal is at -3v, the content of the MB is incremented by 1 
during Tl to advance the address of the transfer to the next sequential location. During 
T2, the content of the MB is rewritten into core memory, the address word in the MB 
is transferred into the MA to designate the address to be used in the succeeding mem
ory cycle, the MB is cleared, and the major state generator is set to the Break state. 

BREAK STATE 

The actual transfer of data between the external device and the core memory, through 
the MB, occurs during the Break state as during a single-cycle data break, except that 
the address is determined by the current content of the MA rather than directly by 
the device. 



CHAPTER 6 

MEMORY EXTENSION CONTROL TYPE 183 
AND MEMORY MODULE TYPE 184 

Extension of the storage capacity of the standard 4096-word core memory is accom
plished by adding fields of 4096-word core memories, each field being a Type 184 
Memory Module. Field select control and address extension control for Type 184 
Memory Modules are provided by the Type 183 Memory Extension Control. Up to 
seven fields can be added to the standard 4096-word memory, providing a maximum 
storage of 32,768 words. Direct addressing of 32,768 words require 15 binary bits 
(2 15 = 32,768). However, since programs and data need not be directly addressed for 
execution of each instruction, a field can be program-selected, and all 12-bit addresses 
are then assumed to be within the current memory field. Program interrupt of a pro
gram in any field automatically specifies field 0, address O for storage of the program 
count. The memory extension control consists of several 3-bit flip-flop registers that 
extend addresses to 15 bits to establish or select a field. 

Addition of a memory extension control to a standard PDP-8 requires a simple modifi
cation of the operator console to activate indicators and switches associated with the 
instruction field register and the data field register of the control. These switches 
function in the same manner as the switch register, to load information into associated 
registers when the LOAD ADDRESS key is pressed. 

The seven functional circuit elements which comprise the memory extension control 
perform as follows: 

Instruction Field Register (IF): The IF is a 3-bit register that serves as an extension of 
the PC. The content of the IF determines the field from which all instructions are taken 
and the field from which operands are taken in d-l,re_ctly-addressed AND, TAD, ISZ, or 
DCA instructions. Operating the LOAD ADDRESS key clears the IF, then sets it by a 
transfer of ones from the INSTRUCTION Fl ELD switch register on the operator console. 
During a JMP or JMS instruction the IF is set by a transfer of information contained in 
the instruction buffer register. When a program interrupt occurs, the content of the IF 
is automatically stored in bits O through 2 of the save field register for restoration to 
the IF from the instruction buffer register at the conclusion of the program interrupt 
subroutine. 

Data Field Register (OF): This 3-bit register determines the memory field from which 
operands are taken in i~directly-addressed AND, TAD, ISZ, or DCA instructions. The 
OF is cleared and set by a ones transfer of information contained in the DATA FIELD 
switch register by operation of the LOAD ADDRESS key. The OF is set by a transfer of 
information from bits 6 through 8 of the MB during a CDF microinstruction to establish 
a microprogrammed data field. When a program interrupt occurs, the content of the 
OF is automatically stored in the save field register. The DF is set by a transfer of 
information from bits 3 through 5 of the save field register by the RMF microinstruc
tion to restore the data field at the conclusion of the program interrupt subroutine. 

33 



34 

Instruction Buffer Register (IB): The 18 serves as a 3- bit input buffer for the instruction 
field register. All field number transfers into the instruction field register are made 
through the instruction buffer, except transfers from the operator console switches. 
The 18 is cleared and set by operation of the LOAD ADDRESS key in the same manner 
as the instruction field register. A CIF microinstruction loads the 18 with the pro
grammed field number contained in MB 6-8. An RMF microinstruction transfers the 
content of bits 0 through 2 of the save field register into the 18 to restore the instruc
tion field to the conditions that existed prior to a program interrupt. 

Save Field Register (SF): When a program interrupt occurs, this 6-bit register is cleared, 
then loaded from the instruction field and data field registers. The RMF microinstruc
tion can be given immediately prior to the exit from the program interrupt subroutine 
to restore the instruction field and data field by transferring the content of the SF 
into the instruction buffer and the data field register. The SF is cleared during the cycle 
in which the program count is stored at address 0000 of the JMS instruction forced 
by a program interrupt request, then the instruction field and data field are strobed 
into the SF. 

Start Field Signal Generator: When the PDP-8 core memory capacity is extended, the 
standard memory is designated as field 0. This circuit produces the Enable Field 0 
signal when data field O is selected, instruction field O is selected, or when break field 
0 is selected. Similar circuits are provided for each of the other (up to seven) fields. 

Accumulator Transfer Gating: This gating allows the content of the save field register, 
instruction field register, or the data field register to be strobed into the accumu
lator. Transfer of information in this manner is accomplished by circuits which sample 
the content of registers and supply positive pulses to the AC upon receipt of IOT 
command pulses. During an RIB microinstruction, bits 6 through 11 of the AC are 
set by the content of the save field register. During an RIF microinstruction, bits 6 
through 8 of the AC are set by the content of the instruction field register. During an 
RDF microinstruction, bits 6 through 8 of the AC are set by the content of the data 
field register. 

Device Selector: Bits 3 through 5 of the IOT instruction are decoded to produce the 
IOT command pulses for the memory extension control. Bits 6 through 8 of the instruc
tion are not used for device selection since they specify a field number in some com
mands. Therefore, the select code for th is device selector is designated as 2X. 

Each Type 184 Memory Module consists of a core array, address selection circuits, 
inhibit selection circuits, sense amplifiers, and memory drivers which are identical 
with these in the standard PDP-8. 



Instructions 
The instructions for the Type 183 option do not use the IOP generator and extend the 
IOT instruction list to include the following: 

CHANGE TO DATA FIELD N (CDF) 

Octal Code: 62Nl 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: The data field register is loaded with the program-selected field number 
(N = 0 to 7). All subsequent memory requests for operands are automatically switched 
to that data field until the data field number is changed by a new CDF command, or 
during a program interrupt. 

Symbol: MB6 - 8 = > DF 

CHANGE INSTRUCTION FIELD (CIF) 

Octal Code: 62N2 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: The instruction buffer register is loaded with the program-selected field 
number (N = 0 to 7). The next JMP or JMS instruction causes the new field to be 
entered. 

Symbol: MB6 - 8 = > 18 

Octal Code: 6214 

Event Time: Not applicable 

Indicators: IOT, FETCH 

READ DATA FIELD (RDF) 

Execution Time: 1.5 microseconds 

Operation: The content of the data field register is transferred into bits 6, 7, 8 of the· 
AC. All other bits of the AC are unaffected. 

Symbol: DF = > AC6 - 8 

READ INSTRUCTION FIELD (RIF) 

Octal Code: 6224 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the instruction field register is transferred into bits 6, 7, 8 of 
the AC. All other bits of the AC are unaffected. 

Symbol: IF = > AC6 - 8 

35 



36 

READ INTERRUPT BUFFER (RIB) 

Octal Code: 6234 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: The instruction field and data field held in the save field register during a 
program interrupt are transferred into bits 6 through 8, and 9 through 11 of the AC 
respectively. 

Symbol: SF O - 2 => AC6 - 8 
SF 3 - 5 = > AC9 - 11 

RESTORE MEMORY FIELD (RMF) 

Octal Code: 6244 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: This command is used upon exit from the program interrupt subroutine in 
another field. The data and instruction fields that were interrupted by the subroutine 
are restored by transferring the content of the save field register into the instruction 
buffer and data field registers. 

Symbol: SF0 - 2 => 18 
SF 3 - 5 =>OF 

Programming 
Instructions and data are accessed from the currently assigned instruction and data 
fields, where instructions and data may be stored in the same or different memory 
fields. When indirect memory references are executed, the operand address refers first 
to the instruction field to obtain an effective address, which in turn, refers to a location 
in the currently assigned data field. All instructions and operands are obtained from 
the field designated by the content of the instruction field register, except for indirectly
addressed operands which are specified by the content of the data field register. In 
other words, the DF is effective only in the Execute cycle that is directly preceded by 
the Defer cycle of a memory reference instructions, as follows: 

Indirect Page or Z Bit Field 
(Bit 3) (Bit 0) In IF 

0 0 m 

0 1 m 

1 0 m 

1 1 m 

Field 
In DF 

n 

n 

n 

n 

Effective 
Address 

The operand is in page O of field m at the 
page address specified by bits 5 through 
11. 

The operand is in the current page of field 
m at the page address specified by bits 5 
through 11. 

The absolute address of the operand in 
field n is taken from the content of the 
location in page O of field m designated by 
bits 5 through 11. 

The absolute, address of the operand in 
field n is taken from the content of the 
location in the current page of field m 
designated by bits 5 through 11. 



Each field of extended memory contains eight autoindex registers in addresses 10 
through 17. For example, assume that a program in field 2 is running (IF = 2) and 
using operands in field 1 (OF = 1) when the instruction TAD I 10 is fetched. The Defer 
cycle is entered (bit 3 = 1) and the content of location 10 in field 2 is read, incre
mented, and rewritten. If address 10 in field 2 originally contained 4321, it now con
tains 4322. In the Execute cycle the operand is fetched from location 4322 of field 1. 

Program control is transferred between memory fields by the CIF commands. This 
instruction does not change the instruction field directly, since this would make it 
impossible to execute the next sequential instruction. The CIF instruction sets the new 
instruction field into the I B for automatic transfer into the IF when either a J MP or 
JMS instruction is executed. The OF is unaffected by the JMP and JMS instructions. 
The 12-bit program counter is set in the normal manner and, since the IF is an 
extension on the most significant end of the PC, program sequence resumes in the 
new memory field following a JMP or JMS. Entry into a program interrupt is inhibited 
after the CIF instruction until a JMP or JMS is executed. 

To call a subroutine that is out of the current field, the data field register is set to 
indicate the field of the calling JMS, which establishes the location of the operands as 
well as the identity of the return field. The instruction field is set to the field of the 
starting address of the subroutine. The following sequence returns program control to 
the main program from a subroutine that is out of the current field. 

/PROGRAM OPERATIONS IN MEMORY FIELD 2 
/INSTRUCTION FIELD = 2; DATA FIELD= 2 
/CALL A SUBROUTINE IN MEMORY FIELD 1 
/INDICATE CALLING FIELD LOCATION BY THE CONTENT OF THE DATA FIELD 

CIF 10 

JMS 1 
CDF 20 

SUBRP, SUBR 

/CALLED SUBROUTINE 

0 

RDF 

TAD RETURN 

DCA EXIT 

EXIT, 

RETURN, 

r~MP 
\. CIF 

I SUBR 

SUBRP 

/CHANGE TO INSTRUCTION 
/FIELD 1 = 6212 

/SUBRP = ENTRY ADDRESS 
/RESTORE DATA FIELD 

/POINTER 

/SUBR = PC + 1 AT CALLING POINT 

/READ DATA FIELD INTO AC 

/CONTENT OF THE AC = 6202 + DATA 
/FIELD BITS 

/STORE IN_STRUCTION SUBROUTINE 

/A CIF INSTRUCTION 

/RETURN 

37 



38 

When a program interrupt occurs, the current instruction and data field numbers are 
automatically stored in the 6-bit save field register, then the IF and OF are cleared. 
The 12-bit program count is stored in location 0000 of field O and program control 
advances to location 0001 of field 0. At the end of the program interrupt subroutine 
the RMF instruction restores the IF and OF from the content of the SF. The following 
instruction sequence at the end of the program interrupt subroutine continues the 
interrupted program after the interrupt has been processed: 

CLA 
TAD AC 
RMF 
ION 
JMP I 0 

/RESTORE MQ IF REQUIRED 

/RESTORE L IF REQUIRED 

/RESTORE AC 
/LOAD 1B FROM SF 
/TURN ON INTERRUPT SYSTEM 
/RESTORE PC WITH CONTENT OF 
/LOCATION O AND LOAD IF FROM 1B 

A device using the computer data break facility supplies a 12-bit address to the MA 
and a 3-bit address extension to the Memory Extension Control Type 183. The address 
extension is received by a break field decoder which selects the memory field used for 
the data break. 



CHAPTER 7 

MEMORY PARITY TYPE 188 
Data transmission checking of each word written in and read from core memory is 
provided by this option. The option replaces the 12-bit core memory with a 13-bit 
system (driving, inhibiting, sensing circuits as well as a core array constructed of 
13 planes) and includes a parity generator and .a parity checking circuit. The parity 
generator produces the 13th bit for each 12-bit data word written in core memory 
so that the entire word contains an odd number of binary ones. The parity checking 
circuit monitors each word read from core memory to assure that the odd parity is 
maintained. If a word read contains an even number of ones a transmission error 
is indicated by setting a parity error flag. This flag is connected to the program inter
rupt synchronization element of the computer to initiate a program interrupt sub
routine. This routine sequentially checks all equipment error flags to determine the 
option causing the interrupt and initiates an appropriate service and returns to the 
main program, or provides a suitable error printout and halts programmed operations. 
Upon determining that a memory parity error has occurred the program interrupt sub
routine can repeat the main program step that caused the error to check the reliability 
of the error condition, can perform a simple write/read/check routine at the error 
address, or can determine the status of the machine when the error was detected and 
re-establish or print out these conditions and halt. 

Instructions 

Two instructions are associated with the Type 188 option. They are: 

SKIP ON NO MEMORY PARITY ERROR (SMP) 

Octal Code: 6104 

Event Time: 3 

Indicator: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The memory parity error flag is sensed and if it contains a O (signifying 
no error has been detected) the PC is incremented so that the next successive instruc
tion is skipped. 
Symbol: If Memory Parity Error Flag = 0, then PC + 1 = > PC 

Octal Code: 6102 

Event Time: 2 

CLEAR MEMORY PARITY ERROR FLAG (CMP) 

Indicator: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The memory parity error flag is cleared. 

Symbol: 0 = > Memory Parity Error Flag 

39 



40 

Programming 

Both instructions for this option are used in the program interrupt subroutine and in 
diagnostic maintenance programs. The SMP command is used as a programmed check 
for memory parity error. In the program interrupt subroutine this command can be 
followed by a jump to a portion of the routine that services the memory parity option 
as described previously. The CMP command is used to initialize the memory parity 
option in preparation for normal programmed operation of the computer. 



CHAPTER 8 

EXTENDED ARITHMETIC ELEMENT TYPE 182 

This option consists of circuits that perform parallel arithmetic operations on positive 
binary numbers. A 12-bit multiplier quotient register (MQ), a 5-stage step counter 
(SC), and various shifting and control logic constitute the option. The AC and MB are 
used in conjunction with these logic elements to perform arithmetic operations. With 
the addition of this option to a PDP-8 system, indicators on the operator console for 
the content of each bit of the MQ are activated and a class of instructions is added to 
the Group 2 Operate instruction list. 

Instructions 

The exended arithmetic element (EAE) microinstructions are specified by an operate 
instruction (operation code 7) in which bits 3 and 11 contain binary ones. Being 
augmented instructions, the EAE commands are microprogrammed and can be com
bined with each other to perform non,conffictmg logical operations. Format and bit 
assignments of the EAE commands are indicated 1n Figure 8 

OP£1tATIOM 
Z•MU'I :S • OVI 
4•MIII ti •SHL 

CCXII! ., ~ SCA 6•ASA 7•LSA 
~ ~ 

I 0 I I 
11 

z I 3 I 4 I ' I 6 I 1 I 8 I 9 I 
'--r---' '-y-.1 '-r---' 
CQHTAJNS MOA MQL 

A 1 TD 
Sl'ECIFT 

fAIEGffOUP 

Figure 8 EAE Mtcromstruct1on Bit Assignments 

MULTIPLY (MUY) 

Octal Code: 7405 

Event Time: 2 

Indicators; OPR. FETCH, PAUSE 

Execution Time: 9,0 to 21.0 microseconds 

10 I II 
~ 
t'ONTAINS 
A I TO 
SP£CIFT 

EAE OAQI.P 

Operation: The number held in the MQ is multiplied by the number held in core 
memory location PC + 1 (or the next successive core memory location after the MUY 
command). At the conclusion of this command the link contains a 0, the most signifi· 
cant 12 bits of the product are contained in the AC and the least significant 12 bits of 
the product are contained in the MQ. 

Symbol: Y X MQ = > AC, MQ 
0 - > l 

41 



42 

Octal Code: 7407 

Event Time: 2 

DIVIDE (DVI) 

Indicators: QPR, FETCH, PAUSE 

Execution Time: 36.5 microseconds or less 

Operation: The 24-bit dividend held in the AC (most significant 12 bits) and the MQ 
(least significant 12 bits) is divided by the divisor held in core memory location 
PC + 1 (or the next successive core memory location following the DVI command). At 
the conclusion of this command the quotient is held in the MQ, the remainder is in 
the AC, and the L contains a 0. If the L contains a 1, divide overflow occurred so the 
operation was concluded after the first cycle of the division. 

Symbol: AC, MQ 7 Y = > MQ 

NORMALIZE (NMI) 

Octal Code: 7411 

Event Time: 2 

Indicators: QPR, FETCH, PAUSE 

Execution Time: _1.5 microseconds + 0.5 microsecond for each shift 

Operation: This instruction is used as part of the conversion of a binary number to a 
fraction and an exponent for use in floating-point arithmetic. The combined content 
of the AC and the MQ is shifted left by this one command until the content of AC0 is 
not equal to the content of ACl, or until 6000 0000 is contained in the combined 
AC and MQ, to form the fraction. Zeros are shifted into va~ated MQl 1 positions for 
each shift. At the conclusion of this operation, the step counter contains a number 
equal to the number of shifts performed, which can be loaded into the AC by an SCA. 
command to form the exponent. The content of L is lost. Both positive and negative 
two's complement numbers can be normalized. 

Symbol: ACj = > ACj - 1 
AC0 => L 
MQ0 => ACll 
MQj = MQj - 1 
0 = > MQll until AC0 * ACl or until AC MQ = 6000 0000 

SHIFT ARITHMETIC LEFT (SHL) 

Octal Code: 7413 

Event Time: 2 

Indicators: QPR, FETCH, PAUSE 

Execution Time: 3.0 microseconds + 0.5 microsecond for each shift 

Operation: This instruction is used for scaling by shifting the combined content of the 
AC and MQ to the left one position more than the number of positions indicated by 
the content of core memory at address PC + 1 (or the next successive core memory 
location following the SHL command). During the shifting, zeros are shifted into 
vacated MQl 1 positions. The L, AC, and MQ are treated as one long register during 
this operation. Bits shifted out of AC0 enter the L, and bits shifted out of the L 
are lost. 



Symbol: Shift Y + 1 positions as follows: 
ACj => ACj - 1 
AC0 => L 
MQ0 => ACll 
MQj => MQj -1 
0=>MQll 

ARITHMETIC SHIFT RIGHT (ASR) 

Octal Code: 7415 

Event Time: 2 

Indicators: QPR, FETCH, PAUSE 

Execution Time: 3.0 microseconds + 0.5 microsecond for each shift. 

Operation: This instruction is used for scaling and treats the AC and MQ as one long 
register. The combined content of the AC and the MQ is shifted right one position more 
than the number contained in memory locatfon PC + 1 (or the next successive core 
memory location following the ASR command). The sign bit, contained in AC0, enters 
vacated positions, the sign bit is preserved in the link, information shifted out of MQl l 
is lost, and the L is set to correspond to the sign bit during this operation. 

Symbol: Shift Y + 1 positions as follows: 
AGO=> L 
AC0 = > AC0 
ACj = > ACj + 1 
ACll = > MQ0 
MQj = > MQj + 1 

LOGICAL SHIFT RIGHT (LSR) 

Octal Code: 7417 

Event Time: 2 

Indicators: OPR, FETCH, PAUSE 

Execution Time: 3.0 microseconds + 0.5 microsecond for each shift .. 

Operation: This instruction is used for scaling and treats the AC and MQ as one long 
register. The combined content of the AC and MQ is shifted right one position more 
than the number contained in memory location PC + 1 (or the next successive core 
memory location following the LSR command). This command is similar to the ASR 
command except that zeros enter vacated positions instead of the sign bit entering 
these locations. lr:iformation shifted out of MQl 1 is lost and the L is cleared during 
this operation. 

Symbol: Shift Y + 1 positions as follows: 

0 = > L 

0 => AC0 

ACj => ACj +- 1 

AC11 => MQ0 

MQj => MQj + 1 

43 



44 

LOAD MULTIPLIER QUOTIENT (MQL) 

Octal Code: 7421 

Event Time: 2 

Indicators: OPR, FETCH 

Execution Time: 1.5 microseconds 

Operation:- This command clears the MQ, loads the content of the AC into the MQ, 
then clears the AC. This operation is essential to initializing any multiply or divide 
routine and can be combined with a MUY or DVI command to perform the operation 
just prior to executing a multiplication or a division using a 12-bit dividend. 

Symbol: 0 = > MQ 
AC=> MQ 
0 => AC 

STEP COUNTER LOAD INTO ACCUMULATOR (SCA) 

Octal Code: 7441 

Event Time: 2 

Indicators: OPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the step counter is transferred into the AC. This command 
is used following an NMI command to establish the exponent of a normalized number 
to be used in floating point arithmetic. The AC should be cleared prior to issuing 
this command or the CLA command can be combined with the SCA to clear the AC 
then effect the transfer. 

Symbol: SC V AC = > ~C 

MULTIPLIER QUOTIENT LOAD INTO ACCUMULATOR (MQA) 

Octal Code: 7501 

Eveot Time: 2 

Indicators: OPR, FETCH 

Execution Time: 1.5 microseconds 

Operation: The content of the MQ is transferred into the AC. This command is given 
to load the 12 least significant bits of the product into the AC following a multiplication 
or to load the quotient into the AC following a division. The AC should be cleared prior 
to issuing this command or the CLA command can be combined with the MQA to clear 
the AC then effect the transfer. 

Symbol: MQ V AC = > AC 

CLEAR ACCUMULATOR (CLA) 

Octal Code: 7601 

Event Time: 1 

Indicators: QPR, FETCH 

Execution Time: 1.5 microseconds 



Operation: The AC is cleared during event time 1, allowing this command to be 
combined with the other EAE commands that load the AC during event time 2 (such 
as SCA and MQA). 

Symbol: 0 = > AC 

Programming 

MULTIPLICATION 

Multiplication is performed as follows: 

1. Load the AC with the multiplier using the TAD instruction. 

2. Transfer the content of the AC into the MQ using the MQL command. 

3. Give the MUL command. 

Note that steps 2 and 3 can be combined into one instruction. 

The content of the MQ is then multiplied by the content of the next succesive core 
memory address (PC + 1). At the conclusion of the multiplication the most significant 
12 bits of the product are held in the AC and the least significant 12 bits are held in 
the MQ. This operation takes a maximum of 21.0 microseconds, at the end of this time 
the next instruction is executed. 

The following multiplication program examples indicate the operation of the Type 182 
option in closed subroutines(routines which are incorporated into larger routines and 
are not written in a form which allows them to be called as a normal mathematical 
subroutine). 

Multiplication of 12-Bit Unsigned Numbers 

Enter with a 12-bit multiplicand in AC and a 12-bit multiplier in core memory. Exit with 
high order half of product in a core memory location labeled HIGH, and with low order 
half of product in the AC. Program time is from 13.5 to 25.5 microseconds. 

MQL MUY 

MLTPLR 
DCA HIGH 
MQA 

/LOAD MQ WITH MULTIPLICAND, INITIATE 
/MULTIPLICATION 
/MULTIPLIER 
/STORE HIGH ORDER PRODUCT 
/LOAD AC WITH LOW ORDER PRODUCT 

Multiplication of 12-Bit Signed Numbers, 24-Bit Signed Product 

Enter with a 12-bit multiplicand in AC and a 12-bit multiplier in core memory. Exit 
with signed 24-bit product in core memory locations designated HIGH and LOW. 
Program time is from 40.5 to 66.0 microseconds. 

CLL 
SPA 
CMA CML IAC 
MQL 
TAD MLTPLR 
SPA 
CMA CML IAC 
DCA MLTPLR 
RAL 

/MULTIPLICAND POSITIVE? 
/NO. FORM TWO'S COMPLEMENT 
/LOAD MULTIPLICAND INTO MQ 

/MULTIPLIER POSITIVE? 
/NO. FORM TWO'S COMPLEMENT 

45 



46 

DCA SIGN /SAVE LINK AS SIGN INDICATOR 
MUY /MULTIPLY 

MLTPLR, 0 /MULTIPLIER 
DCA HIGH 
TAD SIGN 
RAR /LOAD LINK WITH SIGN INDICATOR 
MQA 
SNL /IS PRODUCT NEGATIVE? 
JMP LAST /NO 
CLL CMA IAC /YES 
DCA LOW 
TAD HIGH 
CMA 
SZL 
IAC 
DCA HIGH 
SKP 

LAST, DCA LOW 

DIVISION 

Division is performed as follows: 

1. Load the 12 least significant bits of the dividend into the AC using the TAD 
instruction, then transfer the content of the AC into the MQ using the 
MQL command. 

2. Load the. 1.2 most significant bit of the dividend into the AC. 

3. Give the DVI command. 

The 24-bit dividend contained in the AC and MQ is then divided by the 12-bit divisor 
contained in the next successive core memory address (PC + 1). This operation takes 
a maximum of 36.5 microseconds and is concluded with a 12-bit quotient held in the 
MQ, the 12-bit remainder in the AC, and the link holding a O if divide overflow did not 
occur. To prevent divide overflow, the divisor in the core memory must be greater than 
the 12-bits of the dividend held in the AC. When divide overflow occurs, the link is set 
and the division is concluded after only one cycle. Therefore the instruction following 
the divisor in core memory should be an SZL microinstruction to test for overflow. The 
instruction following the SZL can be a jump to a subroutine that services the overflow. 
This subroutine can cause the program to type out an error indication, rescale the 
divisor or the dividend, or perform other mathematical corrections and repeat the 
divide routine. 

The following division program examples indicate the operation of the Type 182 option 
in closed subroutines. 

Division of 12-Bit Unsigned Numbers 

Enter with a 12-bit unsigned dividend in the AC and a 12-bit unsigned divisor in core 
memory. Exit with remainder in core memory location labeled REMAIN and with the 
quotient in the AC. Program time is a maximum of 44.0 microseconds. 



CLL 
MQL DVI 
DIVSOR 
SZL 
JMP 
DCA REMAIN 
MQL 

/LOAD MQ, INITIATE DIVISION 
/DIVISOR 
/OVERFLOW? 
/YES, EXIT 

/LOAD AC WITH QUOTIENT 

Division of a 12-Bit Signed Numbers 

Enter with a 12-bit signed dividend in the AC and a 12-bit signed divisor in core 
memory. Exit with unsigned remainder in core memory location REMAIN and a 12-bit 
signed quotient in the AC. Program time is a maximum of 65.0 microseconds. 

CLL 
SPA 
CMA CML IAC 
MQL 
TAD .+11 
SPA 
CMA CML IAC 
DCA .+6 
SNL 
CMA 
CLL 
DCA SIGN 
DVI 
DIVSOR 
SZL 
JMP 
MQL 
ISZ SIGN 
CMA IAC 

/DIVIDEND POSITIVE? 
/NO 

/DIVISOR POSITIVE? 
/NO 

/QUOTIENT NEGATIVE? 
/NO 

/SET SIGN INDICATOR 

/DIVISOR 
/OVERFLOW 
/EXIT ON OVERFLOW 

47 



48 

CHAPTER 9 

AUTOMATIC RESTART TYPE KR01 

This prewired option protects an operating program in the event of failure of the source 
of computer primary power. If a power failure occurs, this option causes a program 
interrupt and enables continued operation for 1 millisecond, allowing the interrupt 
routine to detect the power low condition as initiator of the interrupt, and to store the 
content of active registers (AC, L, MQ, etc.) and the program count in known core 
memory locations. When power is restored, the power low flag clears and a routine 
beginning in address 0000 starts automatically. This routine restores the content of 
the active registers and program counter to the conditions that existed when the 
interrupt occurred, then continues the interrupted program. 

The KR0 1 option consists of three logic circuits: 

A power interrupt circuit monitors the status signal of the computer power supply, and 
sets a power low flag when power is interrupted (due to a power failure or due to the 
operation of the POWER lock on the operator console). This flag causes a program 
interrupt when an interruption in computer power is detected. 

A restart circuit assures that when a power interrupt occurs the logic circuits of the 
computer continue operation for 1 millisecond to allow a program subroutine to store 
the content of the active registers; maintains the inoperative condition of the computer 
during periods of power fluctuation; and clears the power low flag and restarts the 
program when power conditions are suitable for computer operation. A manual RE
START switch on the processor marginal-check frame enables or disables the auto
matic restart operation. With this switch in the ON (down) position, the option clears 
the program counter immediately and produces a signal to simulate operation of the 
START key on the operator console 200 milliseconds after power conditions are satis
factory. The PC is cleared so that operation restarts by executing the instruction in 
address 0000. This instruction is a JMP to the starting address of the subroutine which 
restores the content of the active registers and the program counter to the conditions 
that existed prior to the power low interrupt. The 200-millisecond delay assures that 
slow mechanical devices, such as Teletype equipment, have come to a complete stop 
before the program is resumed. Simulation of the manual START function causes the 
processor to generate a Power Clear pulse to clear internal controls and 1/0 device 
registers. With the RESTART switch in the OFF (up) position, the power low flag is 
cleared but the program must be started manually, possibly after resetting peripheral 
equipment or by starting the interrupted program from the beginning. 

A skip circuit provides programmed sensing of the condition of the power low flag by 
adding the following instruction to the computer repertoire: 

Octal Code: 6102 

Event Time: 2 

SKIP ON POWER LOW (SPL) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 



Operation: The content of the power low flag is sampled, and if it contains a 1 (indi
cating a power failure has been detected) the content of the PC is incremented by one 
so the next sequential instruction is skipped. 

Symbol: If Power Low flag = 1, then PC + 1 .= > PC 

Since the time that operation of the computer can be extended after a power failure is 
limited to 1 millisecond, the condition of the power low flag should be the first status 
check made by the program interrupt subroutine. The beginning of the program inter
rupt subroutine, containing the SPL microinstruction and the power fail program 
sequence can be executed in 25.5 microseconds on a basic PDP-8 with an extended 
arithmetic element. The power fail program sequence stores the content of the active 
registers and program count in designated core memory locations, then relocates the 
calling instruction of the power restore subroutine to address 0000, as follows: 

Address 

0000 
0001 

FLAGS, 

RESTRT 

Instruction 

JMP FLAGS 

SPL 
JMP OTHER 

DCA AC 

RAR 
DCA LINK 
MQA 
DCA MQ 
TAD 0000 
DCA PC 
TAD RESTRT 
DCA 0000 
HLT 
JMP ABCD 

Remarks 

/STORAGE FOR PC AFTER PROGRAM INTERRUPT 
/INSTRUCTION EXECUTED AFTER PROGRAM 
/INTERRUPT 
/SKIP IF POWER LOW FLAG = 1 
/INTERRUPT NOT CAUSED BY POWER LOW, 
/CHECK OTHER FLAGS 
/INTERRUPT WAS CAUSED BY POWER LOW, 
/SAVE AC 
/GET LINK 
/SAVE LINK 
/GET MQ 
/SAVE MQ 
/GET PC 
/SAVE PC 
/GET RESTART LOCATION 
/DEPOSIT RESTART LOCATION IN 0000 

/ABCD IS LOCATION OF RESTART ROUTINE 

Automatic program restart begins by executing the instruction stored in address 0000 
by the power fail routine. The power restore subroutine restores the content of the 
active registers, enables the program interrupt facility, and continues the interrupted 
program from the point at which it was interrupted, as follows: 

Address Instruction Remarks 

0000 JMP ABCD 
ABCD, TAD MQ /GET MQ 

MQL /RESTORE MQ 
TAD LINK /GET LINK 
CLL RAL /RESTORE LINK 
TAD AC /RESTORE AC 
ION /TURN ON INTERRUPT 
JMP I PC /RETURN TO INTERRUPTED PROGRAM 

49 



50 



SECTION B 

INPUT- OUTPUT 
EQUIPMENT 

51 



52 

CHAPTER 1 

BASIC IOT PROGRAMMING 

Three basic modes of programming can be used to transfer information or control 
signals between input/output devices and the PDP-8. These modes are programmed 
data transfers, program interrupt, and data break transfers. To understand the use 
which can be made of each of these control modes assume that the PDP-8 is connected 
as the primary control element in a system which contains several furnaces or kilns, 
continuous-belt conveyors which transport products through the furnaces, a visual 
monitor panel, and a drum memory. Assume that each furnace or zone of an oven 
contains a controller which has a digital temperature readout, and overtemperature 
and undertemperature alarms which can be set by a digital readin. Next, assume that 
the conveyor for each oven is automatically loaded with blocks of products spaced at 
given distances on the conveyor and that the conveyor has a normal speed, a high 

· emergency speed, and a stop control. Finally, assume that the visual mon'itor and 
drum memory periodically cause data breaks to transfer temperature and controls status 
information from core memory into visual display devices and drum storage. The 
following explanation of the use of each of the three control modes in programming 
this hypothetical system can easily be translated into examples of data processing 
or other control system programs. 

Programmed Data Transfers 
All peripheral equipment transfers information to or from the computer by pro
grammed instructions. This means of communication can be used as the sole method 
of transferring information or can be used to initialize equipment using the program 
interrupt or data break facilities. This mode of operation utilizes the IOT instruction 
which is divided into three parts. Bits 0, 1, and 2 contain an operation code of 6 to 
specify the IOT microinstruction. Bits 3 through 8 serve as a device selection code 
which is transmitted to all peripheral equipment and which activates only the equip
ment designated by a specific code number contained within these bits. Bits 9, 10, 
and 11 control the IOP generator within the processor and enable or disable 
generation of IOPl, IOP2, and IOP4 pulses during each IOT instruction. A device 
selector within each peripheral equipment monitors the device selection lines and 
enables pulse amplifiers when its assigned select code has been detected within bits 
3 through 8 of an IOT instruction. When enabled in this manner the pulse amplifiers 
produce positive or negative IOT pulses when triggered by an associated IOP pulse. 
The IOT pulses, in turn, perform data transfers to or from the computer or perform 
control functions within the peripheral equipment. 

Each peripheral equipment can contain one or more device selector. A device selector 
can consist of a Type 4605 Pulse Amplifier system module, a Type W103 Device Selec
tor FLIP CHIP module, or can be constructed of three FLIP-CHIP modules such as 
the Type R603 Pulse Amplifier, Rl 11 Diode Gate, and R002 Diode Cluster. Regardless 
of its circuit components, a device selector consists of a 6-input negative diode NANO 
gate which is enabled only when the select code of the specified device is contained 
in the instruction. The output from this NANO gate enables gating circuits at the il)put 
of each of three pulse amplifiers which are triggered by the IOPl, IOP2, or IOP4 
pulse. 



SENSE FOR DEVICE READY 

In preparation for a normal data transfer the computer program normally checks the 
ready status of the transmitting or receiving device by means of a skip instruction. 
This skip instruction can skip on either the ready or not ready status of the device, 
depending upon the internal operations of that device. In our imaginary PDP-8 control 
system, assume that the control for each furnace contains an "up to temperature flag" 
and an associated instruction which provides a Skip pulse to the program counter 
control element when the operating temperature range has been attained. Therefore 
the programming can contain this skip on-up-to-temperature instruction followed by a 
JMP instruction which transfers program control back in a loop so that it repeatedly 
checks the up to temperature flag until the acceptable temperature range has been 
attained. Then the next step in the program proceeds with an operation, such as 
initiate loading of the conveyor and movement of the conveyor at the normal speed. 
In some instances the program will proceed to assemble data so that it can be trans
ferred into or out of the computer. 

ASSEMBLE DATA 

The ready control described under the previous heading can indicate that a device 
is operating in a known control mode or that data is ready for transmission. In our 
example the former condition is true so that data assembly follows the sense for ready 
operation. To assemble data the program issues commands in one or more IOT 
instructions to clear and load a buffer with data to be transferred from the accumu
lator, or to clear and load the accumulator for data to be transferred to a peripheral 
equipment buffer. In the imaginary control system described earlier, data assembly 
could consist of an instruction which generates an IOTl pulse to clear an information 
buffer, generates an IOT2 pulse to load a temperature setting into the six least signifi
cant bits of this buffer and loads the status of the undertemperature and overtem
perature flags into the two most significant bits of this buffer. 

EFFECT A TRANSFER 

Actual data transfer between peripheral equipment and the PDP-8 accumulator is 
performed by an IOT instruction. Usually a transfer into the PDP-8 is performed by 
an instruction in which an IOTl pulse is generated to clear the accumulator and a 
later IOT pulse is generated to strobe the content of an external buffer into the 
accumulator. In transfers from the accumulator to an external buffer the static accu
mulator data lines are used to condition gates at the input of a static buffer, then an 
IOT pulse is generated to actuate the gates and transfer the static conditions into 
the buffer. In the case of our hypothetical process control system an IOT instruction 
can be developed to clear the accumulator, then read the content of the data buffer 
into the accumulator. 

The entire sequence of operations described under Programmed Data Transfers is 
summarized in the following program example, using legitimate memory reference 
and operate instructions, and using artificial IOT instructions. 

53 



54 

Initialize 

Sense for 
device ready 
(one or more 
devices) 

Assemble } 
Data 

Effect Transfer 

Process 
Data 

CLA 
TAD 
LOT 

CLA 
TAD 
LUT 

TON 

{ 
SUT 
JMP -1 
IPC 

LDB 

ROB 

RAL 

SNL OR SZL 
JMS 

RAL 

SNL OR SZL 
JMS 

RTR 
DCA 

/LOAD OVERTEMPERATURE VALUE INTO AC 
/CLEAR AND LOAD OVERTEMPERATURE SET 
/POINT 

/LOAD UNDERTEMPERATURE VALUE INTO AC 
/CLEAR AND LOAD UNDERTEMPERATURE SET 
/POINT 
/TURN ON FURNACE 

/SKIP ON DEVICE #l UP TO TEMP. 
/LOOP IF NOT UP TO TEMP 
/INITIATE PRODUCT TRANSPORT TO CONVEYOR 
/AND CONVEYOR OPERATION AT NORMAL 
/SPEED 

/CLEAR AND LOAD DEVICE BUFFER WITH DATA 
/AND STATUS 

/CLEAR AC AND READ DATA BUFFER INTO AC 

/ROTATE OVERTEMP. CONTROL STATUS FROM 
/ACO INTO L 
/SENSE OVERTEMP. CONTROL 
/JUMP TO OVERTEMP. SUBROUTINE WHICH 
/TURNS OFF FURNACE, STOPS PRODUCT 
/LOADING INTO CONVEYOR, ADVANCES 
/CONVEYOR AT EMERGENCY SPEED TO 
/REMOVE PRODUCTS FROM FURNACE, THEN 
/STOPS CONVEYOR 
/ROTATE UNDERTEMP. CONTROL STATUS 
/INTO L 
/SENSE UNDERTEMP. CONTROL 
/JUMP TO SUBROUTINE WHICH STOPS 
/CONVEYOR MOTION AND JUMPS BACK TO 
/THE BEGINNING OF THE MAIN ROUTINE TO 
/WAIT FOR UP TO TEMP. 
/RELOCATE DATA 
/STORE TEMPERATURE DATA 

Program Interrupt 

Urgent requirements for programmed data transfer or programmed control functions 
by peripheral equipment can be satisfied through use of the program interrupt facility. 
This facility allows an external device to cause the main computer program to be 
interrupted and a subroutine to be initiated to service the interrupting device. Use of 
this facility simplifies basic programming by eliminating the need for checking alarm 
conditions and allows the alarm conditions themselves to activate corrective operations, 
rather than waiting for cyclic checking by the main routine. 

When the program interrupt feature is used address 0001 is automatically specified 
as the first address of a subroutine that checks and services the interrupt condition. 
Usually the instruction stored in this address is a jump to a location where the sub
routine really begins. As designated in Chapter 4 of Section A of this handbook the 



program interrupt subroutine must locate the device causing the interruption, take 
some corrective action, restore or enable the program interrupt synchronization ele
ment of the computer by execution of an ION instruction, and return program control 
to the main program at the point at which the interrupt occurred. If only one device is 
connected to the program interrupt facility no checking is required to locate the inter
rupting device. However, if many devices are connected to the program interrupt bus 
(as normally is the case) the interrupt subroutine must perform repeated skip instruc
tions to test the condition of the various devices. This testing should be accomplished 
by a program-established priority system so that the devices which need servicing in 
the least amount of time or which require servicing most frequently are checked first, 
depending upon the application. 

In our hypothetical process control system if the overtemperature alarms for each 
furnace are connected to the program interrupt bus the interrupt subroutine can 
skip on the condition of the overtemperature flag to a portion of the routine which 
de-energizes the appropriate furnace and performs any required operations in the 
control of the conveyor for that oven (such as inhibiting additional loading of the 
conveyor, removing products from the oven by high speed advance of the conveyor, or 
by initiating other shut down procedures). The sequence of testing for the furnace 
causing the overtemperature alarm can proceed from the first furnace to the last 
furnace if it is most important to prevent unfired products from entering the defective 
oven, can be performed from the last to the first furnace if over firing cannot occur, 
or can be performed in the sequence determined by the various furnace temperatures. 

Data Break Transfers 

Peripheral equipment requiring rapid or periodic data transfers to or from the core 
memory of the PDP-8 can be connected to use the data. break facilities. Where more 
than one such input/output device is used in the computer system they must be 
connected to the data break facility through a multiplexer switch(such as the Type DMOI 
option) which assigns a pre-established priority to each device. This facility allows the 
main computer program to be suspended for a time while individual or block data 
transfers occur between the memory buffer register and the peripheral equipment. 
In some cases these transfers occur to or from blocks of sequential core memory 
addresses or occur individually, but each transfer occurs at a device-specified address. 
Where individual transfers occur sporadically in time, each transfer is interleaved 
with portions of the main program. Following each data break the transferring equip
ment can issue a program interrupt to enter a sub-routine which reinitializes the device 
with the transfer direction and address information required for the succeeding break. 

In our hypothetical process control system it can be assumed that a real-time clock 
in the visual display produces a data break periodically to transfer temperature and 
control status information from specific core memory addresses into visual readout 
or display devices. The drum memory can be assumed to initiate data breaks to read 
and store data from core memory so that it can be analyzed for quality control evalua
tion after running the heat. The frequency of the data break requests performed in 
this manner must be related to the program timing required to read this information 
into core memory from the temperature controlling devices, assuming the maximum 
amount of time for any program interrupts and data breaks during the program. 

The data break is accomplished by supplying Break Request and Cycle Select signals 
to the major state generator, supplying a Transfer Direction signal to the memory 
buffer register control element, supplying an address to the memory address register, 

55 



56 

and (for a transfer into the PDP-8) supplying a data word to the memory buffer 
register. When a single-cycle data break is requested in this manner, at the conclusion 
of the current instruction the Break state is entered to transfer a data word. When 
the direction of transfer is into the PDP-8, the data word must be supplied the memory 
buffer register within the first half of the Break cycle. When the direction of transfer 
is out of the PDP-8, the data word is available for strobing by the device approximately 
350 microseconds after entry into the Break state. When a three-cycle data break is 
requested, at the conclusion of the current instruction the Word Count state is entered 
to commence the data break; but the transfer does not occur until the the third 
(Break) cycle of the data break. 

Timing and data requirements of the input/output device determine the number of 
consecutive data breaks that occur before control of computer operations is returned 
to the program. One Break cycle is required for each data word transfer, so very 
fast devices which require blocks of information can maintain the Break Request signal 
to perform consecutive data breaks until a device-specified block length transfer is 
completed. Devices using consecutive data breaks must synchronize their operations 
to the speed of the computer to transfer words with core memory at the single-cycle 
rate of 666 kc (one word every 1.5 microseconds) or at the three-cycle rate of 222 kc 
(one word every 4.5 microseconds). Normal clock pulses used with the computer 
are available to synchronize the operation of peripheral equipment with the PDP-8 
during a data break. Slower equipment using the data break facilities must initiate a 
separate data break for each word transfer. 



CHAPTER 2 

TELETYPE AND CONTROL 

Teletype Model 33 ASR 

The standard Teletype Model 33 ASR (automatic send-receive) can be used to type in 
or print out information at a rate of up to ten characters per second, or to read in or 
punch out perforated paper tape at a ten characters per second rate_ Signals transferred 
between the 33 ASR and the control logic are standard serial, 11 unit code Teletype 
signals. The signals consist of marks and spaces which correspond to idle and bias 
current in the Teletype,and to zeros and ones in the control and computer. The start 
mark and subsequent eight character bits are one unit of time duration and are 
followed by the stop mark which is two units. 

The 8-bit code used by the Model 33 ASR Teletype unit is the American Standard Code 
for Information Interchange (ASCII) T17odified. To convert the ASCII code to Teletype 
code add 200 octal (ASCII + 200a = Teletype). This code is read in the reverse of the 
normal octal form used in the PDP-8 since bits are numbered from right to left, from 1 
through 8, with bit 1 having the least significance. Therefore perforated tape is read: 

8 7 6 5 4 

Most Significant 
Octal Bit 

s 3 2 1 

Least Significant 
Octal Bit 

The Model 33 ASR set can generate all assigned codes except 340 through 374 and 
376. Generally codes 207, 212, 215, 240 through 337, and 377 are sufficient for Tele
type operation. The Model 33 ASR set can detect all characters, but does not interpret 
all of the codes that it can generate as commands. The standard number of characters 
printed per line is 72. The sequence for proceeding to the next line is a carriage return 
followed by a line feed (as opposed to a line feed followed by a carriage return). 
Appendix 2 lists the character code for the Teletype. Punched tape format is as follows: 

Tape Channel 

87 654 s 321 
Binary Code 

10 110 100 
(Punch = 1) 
Octal Code 2 6 4 

Teletype Control 

Serial information read or written by the Teletype unit is assembled or disassembled by 
the control for parallel transfer to the accumulator of the processor. The control also 
provides the program flags which cause a program interrupt or an instruction skip 
based upon the availability of the Teletype and the processor as a function of the 
program. 

In all programmed operation, the Teletype unit and control are considered as a Teletype 
in (TTI) as a source of input intelligence from the keyboard or the perforated-tape 
reader and is considered a Teletype out (TTO) for computer output information to be 
printed and/or punched on tape. Therefore, two device selectors are used; the select 

57 



58 

code of 03 initiates operations associated with the keyboard/reader, and the device 
selector, assigned the select code of 04, performs operations associated with the tele
printer /punch. Parallel input and output functions are performed by corresponding IOT 
pulses produced by the two device selectors. Pulses produced by IOPl pulse trigger 
skip gates; pulses produced by the IOP2 pulse clear the control flags and/or the ac
cumulator; and pulses produced by the IOP4 pulse initiate data transfers to or from 
the control. · 

Keyboard/Reader 

The keyboard and tape reader control contains an 8-bit buffer (TTI) which assembles 
and holds the code for the last character struck on the keyboard or read from the tape. 
Teletype characters from the keyboard/reader are received serially by the 8-bit shift 
register TTI. The character code of a Teletype character is loaded into the TTI so that 
spaces correspond with binary zeros and marks correspond to binary ones. Upon 
program command the content of the TTI is transferred in parallel to the accumulator. 
When a Teletype character starts to enter the TTI the control de-energizes a relay in the 
Teletype unit to release the tape feed latch. When released, the latch mechanism stops 
tape motion only when a complete character has been sensed, and before sensing of 
the next character is started. A keyboard flag is set to one, and causes a program 
interrupt when an 8-bit computer character has been assembled in the TTI from a 
Teletype character. The program senses the condition of this flag with a KSF micro
instruction and issues a KRB microinstruction which clears the AC, clears the keyboard 
flag, transfers the content of the TTI into the AC, and enables advance of the tape feed 
mechanism. Instructions for use in supplying data to the computer from the Teletype. 
are: 

SKIP ON KEYBOARD FLAG (KSF) 

Octal Code: 6031 

£.vent Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The keyboard flag is sensed, and if it contains a binary 1 the content of 
the PC is incremented by one so that the next sequential instruction is skipped. 

Symbol: If Keyboard Flag = 1, then PC + 1 = > PC 

Octal Code: 6032 

Event Time: 2 

CLEAR KEYBOARD FLAG (KCC) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: Both the AC and the keyboard flag are cleared in preparation for transfer
ring a Teletype character into the AC. 

Symbol: 0 = > AC 
0 = > Keyboard Flag 



READ KEYBOARD BUFFER STATIC (KRS) 

Octal Code: 6034 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of the TTI is transferred into bits 4 through 11 of the AC. This 
is a static command in that neither the AC nor the keyboard flag is cleared. 

Symbol: TTI V AC 4-11 = > AC 4-11 

READ KEYBOARD BUFFER DYNAMIC (KRB) 

Octal Code: 6036 

Event Time: 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The AC and the keyboard flag are both cleared, then the content of the TTI 
is transferred into bits 4 through 11 of the AC. 

Symbol: 0 = > AC, Keyboard Flag 
TTI V AC 4-11 =>AC 4-11 

A program sequence loop to read input information into the computer from the Tele
type keyboard or tape reader can be written as follows: 

LOOK, KSF 
JMP LOOK 
KRB 

/SKIP WHEN TTI IS FULL 

/READ TTI INTO AC 

Teleprinter/Punch 

Eight-bit computer characters from the accumulator are loaded in parallel into the 
8-bit flip-flop shift register TTO for transmission to the Teletype unit. The control 
generates the start space, then shifts the eight character bits into the printer selector 
magnets of the Teletype unit, and then produces the stop mark. This transfer of infor
mation from the TTO into the Teletype unit is accomplished in a serial manner at the 
normal Teletype rate. A teleprinter flag in the teleprinter control is set when the last 
bit of the Teletype code has been sent to the teleprinter/punch, indicating that the 
TTO is ready to receive a new character from the AC. The flag is connected to both 
the program interrupt synchronization element and the PC control (instruction skip) 
element. Upon detecting the set (binary one) condition of the flag by means of the 
TSF microinstruction the program issues a TLS microinstruction which clears the flag 
and loads a new computer character into the TTO. 

59 



60 

The instruction list for printing or punching is: 

SKIP ON TELEPRINTER FLAG (TSF) 

Octal Code: 6041 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The teleprinter flag is sensed, and if it contains a binary 1 the content of 
the PC is incremented by one so that the next sequential instruction is skipped. 

Symbol: If Teleprinter Flag = 1, then PC + 1 = > PC 

Octal Code: 6042 
CLEAR TELEPRINTER FLAG (TCF) 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The teleprintedlag is cleared to 0. 

Symbol: 0 = > Teleprinter Flag 

Octal Code: 6044 

Event Time: 3 

LOAD TELEPRINTER AND PRINT (TPC) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The TTO is loaded from the content of bits 4 through 11 of the AC; then 
the Teletype character just loaded is selected, and punched and/or printed. 

Symbol: AC4-11 =>TTO 

Octal Code: 6046· LOAD TELEPRINTER SEQUENCE (TLS) 

Event Time: 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The teleprinter flag is cleared; then a Teletype character code is transferred 
from the content of AC 4-11 into the TTO, the character is selected and punched and/or 
printed. 

Symbol: 0 = > Teleprinter Flag 
AC 4-11 = > TTO 

A program sequence loop to print and/or punch a character when the TTO is free can 
be written as follows: 

FREE, TSF 
JMP FREE 
TLS 

/SKIP WHEN FREE 

/LOAD TTO, PRINT OR PUNCH 



Teletype System Type L T08 

The Teletype facility of the basic computer can be expanded to accommodate several 
Model 33 or Model 35 Automatic Send Receive or Keyboard Send Receive units by 
addition of the Type LT08 option. Each Teletype line added to the PDP-8 system con
tains logic elements that are functionally identical to those of the basic Teletype control. 
Therefore, instructions and programming for each line of an L T08 equipment are 
similar to those described previously for the basic Teletype unit, The following device 
select codes have been assigned for five lines of LT08 equipment: 

Line Select 
Unit Codes 

1 40 and 41 
2 42 and 43 
3 44 and 45 
4 46 and 47 
5 11 and 12 

Instruction mnemonics for Teletype equipment in the LT08 system are not recognized 
by the program assembler (PAL Ill) and must be defined by the programmer. Mnemonic 
codes can be defined by the mnemonic code of the comparable basic Teletype microin
struction, suffixed with "LT" and the line number. For example, the following instruc
tions can be defined for line 3: 

Mnemonic Octal Operation 

TSFLT3 6441 Skip if teleprinter 3 flag is a 1. 

TCPLT3 6442 Clear teleprinter 3 flag. 

TPCLT3 6444 Load teleprinter 3 buffer (TTO3) from the content 
of AC4-11 and print and/or punch the character. 

TLSLT3 6446 Load TTO3 from the content of AC4-ll, clear tele-
printer 3 flag, and print and/or punch the character. 

KSFLT3 6451 Skip if keyboard 3 flag is a 1. 

KCCLT3 6452 Clear AC and clear keyboard 3 flag. 

KRSLT3 6454 Re1d keyboard 3 buffer (TT 13) static. The content of 
TTI 3 is loaded into AC4-l 1 by an OR transfer. 

KRBLT3 6456 Clear the AC, clear keyboard 3 flag, and read the 
content of TT 13 into AC4-l l. 

61 



62 

CHAPTER 3 

HIGH SPEED PERFORATED TAPE READER 
AND CONTROL TYPE 750C 

This device senses 8-hole perforated paper or Mylar tape photoelectrically at 300 
characters per second. The reader control requests reader movement, transfers data 
from the reader into the reader buffer (RB), and signals the computer when incoming 
data is present. Reader tape movement is started by a reader control request to simul
taneously release the brake and engage the clutch. The 8-bit reader buffer sets the 
reader flag to 1 when it has been filled from the reader and transfers data into bits 
4 through 11 of the accumulator under program control. The reader flag is connected 
to the computer program interrupt and instruction skip facilities, and is cleared by 
IOT pulses. Tape format is as described for the Teletype unit. Computer instructions 
for the reader are: 

SKIP ON READER FLAG (RSF) 

Octal Code: 6011 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The reader flag is sensed, and if it contains a binary 1 the content of the 
PC is incremented by one so that the next sequential instruction is skipped. 

Symbol: If Reader Flag = 1, then PC + 1 = > PC 

READ READER BUFFER (RRB) 

Octal Code: 6012 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the reader buffer is transferred into bits 4 through 11 of 
the AC and the reader flag is cleared. This command does not clear the AC. 

Symbol: RB V AC 4-11 = > AC 4-11 
0 = > Reader Flag 

Octal Code: 6014 

Event Time: 3 

READER FETCH CHARACTER (RFC) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The reader flag and the reader buffer are both cleared, one character is 
loaded into the reader buffer from tape, and the reader flag is set when this operation 
is completed. 



Symbol: 0 = > Reader Flag, RB 
Tape Data = > RB 
1 = > Reader Flag when done 

A program sequence loop to read a character from perforated tape can be written 
as follows: 

LOOK, 
RFC 
RSF 
JMP LOOK 
CLA 
RRB 

/FETCH CHARACTER FROM TAPE 
/SKIP WHEN RB FULL 

/LOAD AC FROM RB 

63 



64 

CHAPTER 4 

HIGH SPEED TAPE PUNCH CONTROL 
TYPE 75E 

This option consists of a Teletype BRPE paper tape punch that perforates 8-hole tape 
at a rate of 63.3 characters per second. Information to be punched on a line of tape 
is loaded in an 8-bit punch buffer (PB) from AC bits 4 through 11. The punch flag 
becomes a 1 at the completion of punching action, signaling that new information 
may be transferred into the punch buffer, and punching initiated. The punch flag is 
connected to the computer program interrupt and instruction skip facility. Tape format 
is as described in Chapter 2. The punch instructions are: 

SKIP ON PUNCH FLAG (PSF) 

Octal Code: 6021 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The punch flag is sensed, and if it contains a binary 1 the content of the 
PC is incremented by one so that the next sequential instruction is skipped. 

Symbol: If Punch Flag = 1, then PC + 1 = > PC 

CLEAR PUNCH FLAG (PCF) 

Octal Code: 6022 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Both the punch flag and the punch buffer are cleared in preparation for 
receiving a new character from the computer. 

Symbol: 0 = > Punch Flag, PB 

LOAD PUNCH BUFFER AND PUNCH CHARACTER (PPC) 

Octal Code: 6024 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: An 8-bit character is transferred from bits 4 through 11 of the AC into the 
punch buffer and then this character is punched. This command does not clear the 
punch flag or the punch buffer. 

Symbol: AC4-11 V PB=> PB 



LOAD PUNCH BUFFER SEQUENCE (PLS) 

Octal Code: 6026 

Event Time: 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The punch flag and punch buffer are both cleared, the content of bits 4 
through 11 of the AC is transferred into the punch buffer, the character in the PB is 
punched in tape, and the punch flag is set when the operation is completed. 

Symbol: 0 = > Punch Flag, PB 
AC4-11 => PB 
1 = > Punch Flag when done 

A program sequence loop to punch a character when the punch buffer is "free" can 
be written as follows: 

FREE, PSF 
JMP FREE 
PLS 

/SKIP WHEN FREE 

/LOAD PB FROM AC AND PU NCH 
/CHARACTER 

65 



66 

CHAPTER 5 

ANALOG-TO-DIGITAL CONVERTER 

TYPE 189 

This converter operates in the conventional successive approximation manner, using 
the memory buffer register as a distributor shift register and using the accumulator 
as the digital buffer register. Converter operation is initiated by an IOT command that 
produces a Pause pulse (as most IOT commands do) and starts the conversion proc
ess. With the AC cleared, this process starts by asuming that the value of the analog 
input signal is at mid scale by setting a binary 1 into the most significant bit of the 
accumulator and producing a voltage equal to the center of the input range of the 
converter (ground to -10 volts). This voltage is produced by a digital-to-analog 
converter which operates as a function of a number contained in the accumulator. 
This voltage is then compared with the analog input signal and the result of the 
comparison is used to clear the most significant bit of the accumulator if the approxi
mated voltage generated is of greater amplitude than the analog input signal. This 
process is then repeated by setting the next least significant bit of the accumulator 
to the 1 state, generating the analog signal according to the content of the accumu
lator, and comparing this signal with the analog input signal to clear the bit of the 
AC which was just set previously if the generated signal is greater than the input 
signal being measured. This process is repeated a number of times depending upon 
the prewired accuracy of the conversion. Each approximation reduces the error of the 
resultant binary number in the AC by approximately one half. The bit of the accu
mulator which is first set and then evaluated, is controlled by the memory buffer regis
ter. During the first approximation, a binary 1 is set into most significant bit of the MB 
and is shifted right one place at the conclusion of each approximation. The bit of the 
accumulator which is processed is determined by the location of this binary 1 in the 
MB. Sensing of the location of this binary 1 in the MB is also used to control the 
number of approximations performed, and hence determines the accuracy of the con
version. Since the conversion is started at the time the binary 1 is shifted in the MB, 
one conversion takes place after the sensing of the 1 in the MB which discontinues 
the conversion process. At the conclusion of the conversion a Restart pulse is pro
duced by the converter which clears the MB and continues the normal computer 
program. At this time the digital equivalent of the analog input signal is contained in 
the accumulator as a 12-bit unsigned binary number. Insignificant magnitude bits can 
be rotated out of the AC by an instruction such as 7110 (RAR and CLL). 

To save program running time, the converter should be adjusted to provide only the 
accuracy required by the program application. Maximum error of the converter is 
equal to the switching point error plus the quantization error. Maximum quantization 
error is equal to the binary value of the least significant bit. Switching point error 
and total conversion time are functions of the adjusted accuracy of the converter as 
indicated in Table 1. 



TABLE 1 ANALOG-TO-DIGITAL CONVERTER TYPE 189 CHARACTERISTICS 

Adjusted Switching Conversion Total 
Bit Point Time per Conversion 

Accuracy Error Bit Time 
(in per cent) (in microseconds) (in microseconds) 

6 ±1.6 1.0 6 
7 ±0.8 1.85 13 
8 ±0.4 2.5 20 
9 ±0_2 2.7 24 

10 ±0.1 2.7 27 
11 ±0.05 4.1 45 
12 +0.025 4.6 55 

The ADC is the only instruction associated with the Type 189 converter. 

CONVERT ANALOG TO DIGITAL (ADC) 

Octal Code: 6004 

Event Time: Not applicable 

Indicators: IOT, FETCH, PAUSE 

Instruction 
Execution 

Time 
(in microseconds) 

7.6 
14.6 
21.6 
25.6 
28.6 
46.6 
56.6 

Execution Time: This time is related to the adjusted converter accuracy as listed in 
Table 1. 

Operation: The analog input signal is converted to an unsigned digital value which is 
held in the AC at the end of the conversion. 

Symbol: None 

67 



68 

CHAPTER 6 

ANALOG-TO-DIGITAL CONVERTER TYPE 138E 
AND MULTIPLEXER CONTROL TYPE 139E 

The Type 138E/139E General-Purpose Analog-to-Digital Converter and Multiplexer 
Control combines a versatile, multipurpose converter with a multiplexer to provide a 
fast, automatic, multichannel scanning and conversion capability. It is intended for use 
in systems in which computers sample and process analog data from sensors or 
other external signal sources at high rates. For example, analog data on each of 64 
channels can be accepted and converted into 12-bit digital numbers 415 times per 
second.,:, Switching point accuracy in this instance is 99.975 per cent, with an addi
tional quantization error of half the least significant bit (LSB). If less resolution and 
accuracy is required, all 64 channels can be scanned and the analog signals on them 
converted into 6-bit digital numbers 1,360 times each second.'-":' Switching point 
accuracy in this case is 99.2 per cent, again with the additional quantization error 
of half the digital value of the LSB. 

The Type 139 Multiplexer Control can include from 1 to 32 series AI00 Multiplexer 
modules determined by the user. Each module addresses one of two channels for a 
maximum of 64 channels per Type 139E control. In the lndividal Address mode, the 
Type 139 routes the data from any selected channel to the Type 138E converter input. 
In the Sequential Address mode, the multiplexer advances its channel address by one 
each time it receives an increment command, returning to channel zero after scanning 
the last channel. Sequenced operations can be short-cycled when the number of 
channels in use is less than the maximum available. 

*Conversion rate=[(35+2.5) (10· 6) (64)]" 1 =415 cycles/sec 
**Conversion rate=[(9+2.5) (10· 6) (64)] 1 =1360 cycles/sec 

TABLE 2 ANALOG-TO-DIGITAL CONVERTER TYPE 139E CHARACTERISTICS 

Total 
Switching Conversion Conversion 

Word Length Point Error*** Time Rate 
(in bits) (in percent) (in microseconds) (in kc) 

6 +1.6 9.0 110.0 
7 +0.8 10.5 95.0 
8 +0.4 12.0 83.0 
9 ±0.2 13.5 74.0 

10 +0.1 17.0 58.5 
11 +0.05 25.0 40.0 
12 ±0.025 35.0 28.5 

* * * + ½ LSB for quantizing error. 

The Type 138E is a successive approximation converter that measures a 0 to 10 volt 
analog input signal and provides a binary output indication of the amplitude of the 
input signal. Output indication accuracy is a function of the conversion time, and is 
determined by a switch on the front panel. Each of the seven positions of the rotary 
switch establishes an output word length, conversion accuracy, and conversion time 
for operation of the converter. Overall conversion error equals switching point error 
plus a quantization of + ½ the digital value of the LSB. Converter characteristics 
selected for each switch position are specified in Table 2. 



CONVERTER SPECIFICATIONS 

Monotonicity: Guaranteed for all settings 

Aperture Time: Same as conversion time 

Converter Recovery Time: None 

Analog Input: 0 to -10 volts is standard. Bipolar or specific amplitude range input 
can be accommodated on special request. If a different voltage range is desired, it is 
recommended that an amplifier be used at the source, since this will also provide a 
low driving impedance and reduce the possibilities of noise pickup between the source 
and the converter. 

Input Loading: ± 1 microampere and 125 picofarads for the standard O to -10 
volt input. 

Digital Output: A signed 6- to 12-bit binary number in 2's complement notation. A 0 
volt input yields a digital output number of 40008; a -5 volt input produces 0000s; 
and a -10 volt input gives an output of 3777 8 • 

Controls: Binary readout indicators and a seven-position rotary switch for selecting 
converter characteristics are provided on the front panel. 

The Type 139E Multiplexer Control is intended for use with the Type 138E or Type 189 
analog-to-digital conversion systems in applications where the PDP-8 must process 
sampled analog data from multiple sources at high speeds. Under program control 
the multiplexer can select from 2 to 64 analog input signal channels for connection 
to the input of an analog-to-digital converter. Channel selection is provided by Type 
AlOO, AlOl, A102, or A103 Multiplex Switch FLIP CHIP modules. These module types 
each have slightly different timing, impedance, and power characteristics so that 
multiplexers can be built for wide differences in application by selecting the appropri
ate module type. Each module contains two independent, floating, transistor switches 
letting the user select any multiple of two channels to a maximum of 64. In the indi
vidual address mode, the Type 139E routes the analog data from any program-selected 
channel to the· converter input. In the sequential address mode, the multiplexer 
advances the channel address by one each time it receives an incrementing command, 
returning to channel zero after scanning the last channel. Sequenced operations can 
be short-cycled when the number of channels in use is less than the maximum 
available. 

A 6-bit channel address register (CAR) specifies a channel number from 0-77 8 • A 
channel address may be chosen in one of two ways. It can be specified by the con
tent of bits 6-11 of the AC or by incrementing the content of the CAR. 

MULTIPLEXER SPECIFICATIONS 

Indicators: Six binary indicators on the front panel give visual indication of the 
selected channel. 

Multiplexer Switching Time: The time required to switch from one channel to any 
program-specified channel, or to select the next adjacent channel when the content 
of the CAR is incremented is 2.5 microseconds. This time is measured from when 
either a select or increment command is received. 

Both the converter and multiplexer circuits are constructed entirely of FLIP CHIP 
modules. Both the Type 138E converter and the Type 139E Multiplex Control (imple
mented to 24 input channels) circuits can be contained in one standard 64-connector 
module mounting panel. 

69 



70 

The following IOT commands have been assigned to the Type 138E/139E converter 
system: 

SKIP ON A-D FLAG (ADSF) 

Octal Code: 6531 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The A-D converter flag is sensed, and if it contains a binary 1 (indicating 
that the conversion is complete) the content of the PC is incremented by one so that 
the next instruction is skipped. 

Symbol: If A-D Flag= 1, then PC + 1 = > PC 

CONVERT ANALOG VOLTAGE TO DIGITAL VALUE (ADCV) 

Octal Code: 6532 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: This time is a function of the accuracy and word l.ength switch setting 
as listed in Table 2. 

Operation: The A-D converter flag is cleared, the analog input voltage is converted to 
a digital value, and then the A-D converter flag is set to 1. The number of binary bits 
in the digital-value word and the accuracy of the word is determined by the preset 
switch position. 

Symbol: 0 = > A-D Flag at start of conversion, then 
1 = > A-D Flag when conversion is done. 

READ A-D CONVERTER BUFFER (ADRB) 

Octal Code: 6534 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The converted number contained in the converter buffer (ADCB) is trans
ferred into the AC as a normalized word (shifted into the most significant bits), unused 
bits of the AC are cleared, and the A-D converter flag is cleared. 

Symbol: ADCB = > AC 
0 = > A-D Converter Flag 

Octal Code: 6541 

Event Time: 1 

CLEAR MULTIPLEXER CHANNEL (ADCC) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The channel address register (CAR) of the multiplexer is cleared in prepara
tion for setting of a new channel. 

Symbol: 0 = > CAR 



SET MULTIPLEXER CHANNEL (ADSC) 

Octal Code: 6542 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The channel address register of the multiplexer is set to the channel 
specified by bits 6 through 11 of the AC. A maximum of 64 single-ended or 32 differen
tial input channels can be used. 

Symbol: AC 6-11 = > CAR 

INCREMENT MULTIPLEXER CHANNEL (ADIC) 

Octal Code: 6544 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of the cha,:,nel address register of the multiplexer is incre
mented by one. If the maximum address is contained in the register when this command 
is given, the minimum address (00) is selected. 

Symbol: CAR + 1 =>CAR 

A program to cycle through all channels of the converter a given number of times, 
storing the conversion values at successive core memory locations can be written as 
follows: 

LOOP, ADIC 
ADCV 
ADSF 
JMP.-1 
ADRB 
DCA I Z 10 

ISZ CNTR 
JMP LOOP 

/INCREMENT CAR 
/INITIATE CONVERSION 
/WAIT FOR FLAG 

/READ A-D CONVERTER BUFFER 
/STORE RESULT IN ADDRESS SPECIFIED 
/BY AUTO-INDEX REGISTER 10 
/INCREMENT CYCLE COUNTER 
/REPEAT CYCLE 
/END OF LOOP 

Executive of this program loop takes 25.5 microseconds plus the conversion time, 
which is 35 microseconds maximum. Therefore, the worst case conditions for this 
routine require a 60.5-microsecond execution time and a minimum conversion rate 
of 16.5 kc. 

71 



72 

CHAPTER 7 

DIGITAL-TO-ANALOG CONVERTER 
TYPE AA01A 

The general purpose Digital-to-Analog Converter Type AA0lA converts 12-bit binary 
computer output numbers to analog voltages. The basic option consists of three 
channels, each containing a 12-bit digital buffer register and a digital-to-analog con
verter (DAC). Digital input to all three registers is provided, in common, by one 12-bit 
input channel which receives bussed output connections from the PDP-8 accumulator. 
Appropriate precision voltage reference supplies are provided for the converters. 

One IOT microinstruction simultaneously selects a channel and transfers a digital 
number into the selected register. Each converter operates continuously on the content 
of the associated register to provide an analog output voltage. 

Type AA0lA options can be specified in a wide range of basic configurations; e.g., with 
from one to three channels, with or without output operational amplifiers, and with 
internally or externally supplied reference voltages. Configurations with double buffer 
registers in each channel are also available. 

Each single-buffered channel of the equipment is operated by a single IOT command. 
Select codes of 55, 56, and 57 are assigned to the AA0lA, making it possible to 
operate nine single-buffered channels or various configurations of double-buffered 
channels. A typical instruction for the AA0lA is: 

LOAD DIGITAL-TO-ANALOG CONVERTER 1 (DAU) 

Octal Code: 6551 

Event Time: l 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the accumulator is loaded into the digital buffer register of 
channel 1. 

Symbol: AC = > DAC 1 

The analog output voltage of a standard converter is from ground to -9.9976 volts 
(other voltages are available in/equipment containing output operational amplifiers). 
All binary input numbers are assumed to be 12 bits in length with negative numbers 
represented in 2's complement notation. An input of 4000s yields an output of ground 
potential; an input of 00008 yields an output of -5 volts; and an input of 1777a yields 
an output of -10 volts minus the analog value of the least significant digital bit. 
Output accuracy is -+-0.0125 % of full scale and resolution is 0.025% of full scale 
value. Response time, measured directly at the converter output, is 3 microseconds 
for a full-scale step change to 1 least significant bit accuracy. Maximum buffer register 
loading rate is 2 megacycles. 



CHAPTER 8 
DISPLAY EQUIPMENT 

Cathode-ray tube display equipment available for use with the PDP-8 includes· the 
Oscilloscope Display Type 340 and the Precision Display Type 30N. The Light Pen Type 
370 operates with either of these devices. 

Oscilloscope Display Type 34D 

Type 340 is a two axis digital-to-analog converter and an intensifying circuit, which 
provides the Deflection and Intensify signals needed to plot data on an oscilloscope. 
Coordinate data is loaded into an X buffer (XB) or a Y buffer (YB) from bits 2 through 
11 of the accumulator. The binary data in these buffers is converted to a -10 to 0 
volt Analog Deflection signal. The 30-volt Intensify signal is connected to the grid 
of the oscilloscope CRT. The duration of this signal, and hence the intensity of the 
point displayed, is determined by a 2-bit brightness register (BR). The content of 
the BR controls timing circuits that establish nominal durations of 1-, 2-, or 4-micro
second for the Intensify signal. The BR is loaded from a number contained in the 
appropriate IOT instruction. Application of power to the computer or pressing of the 
START key resets the BR to the maximum brightness. Points can be plotted at approxi
mately a 30-kilocycle rate. The instructions for this display are: 

CLEAR X COORDINATE BUFFER (DCX) 

Octal Code: 6051 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The X coordinate buffer is cleared in preparation for receiving new X-axis 
display data. 

Symbol: 0 = > XB 

CLEAR AND LOAD X COORDINATE BUFFER (DXL) 

Octal Code: 6053 

Event Time: 1, 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The X cordinate buffer is cleared, then loaded with new X-axis data from 
bits 2 through 11 of the AC. 

Symbol: 0 = > XB 
AC2-ll = > XB 

73 



74 

Octal Code: 6061 

Event Time: 1 

CLEAR Y COORDINATE BUFFER (DCY) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The Y coordinate buffer is cleared in preparation for receiving new Y-axis 
display data. 

Symbol: 0 = > YB 

CLEAR AND LOAD Y COORDINATE BUFFER (DYL) 

Octal Code: 6063 

Event Time: 1, 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The Y coordinate buffer is cleared then loaded with new Y-axis data from 
bits 2 through 11 of the AC. 

Symbol: 0 =>YB 
AC2-11 =>YB 

Octal Code: 6054 

Event Time: 3 

INTENSIFY (DIX) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Intensify the point defined by the content of the X and Y coordinate buffers. 
This command can be combined with the DXL command. 

Symbol: None 

Octal Code: 6064 

Event Time: 3 

INTENSIFY (DIY) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Intensify the point defined by the content of the X and Y coordinate buffers. 
This command is identical to the DIX command except that it can be combined with 
the DYL command. 

Symbol: None 



X COORDINATE SEQUENCE (DXS) 

Octal Code: 6057 

Event Time: 1, 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: This command executes the combined functions performed by the DXL and 
DIX commands. The X coordinate buffer is cleared then loaded from the content of 
AC2 through ACll, then the point defined by the content of the X and Y buffers is 
intensified. 

Symbol: 0 = > XB 
AC2-11 =>XB 
then intensify 

Y COORDINATE SEQUENCE (DYS) 
Octal Code: 6067 

Event Time: 1, 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: This command executes the combined functions performed by the DYL and 
DIY commands. The Y coordinate buffer is cleared, then loaded from the content of bits 
AC2 through 11, then the point defined by the content of the X and Y coordinate buffers 
is intensified. 

Symbol: 0 = > YB 
AC2-ll =>YB 
then intensify 

SET BRIGHTNESS CONTROL (DSB) 
Octal Code: 607X 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The brightness register (BR) is loaded from the content of bits 10 and 11 
of the instruction. When the instruction is 6075 the minimum brightness (0.4 micro
second) is set, when 6076 the medium brightness (0.8 microsecond) is set, and when 
6077 the maximum brightness (3.0 microseconds) is set. 

Symbol: MBl0-11 = > BR 

The following program sequence to display a point assumes that the coordinate data is 
stored in known addresses X and Y . 

X, 
Y, 
BEG, CLA 

TAD X 
DXL 
CLA 
TAD Y 
DYS 

/LOAD AC WITH X 
/CLEAR AND LOAD XB 

/LOAD AC WITH Y 
/CLEAR AND LOAD YB, DISPLAY POINT 

75 



76 

Precision CRT Display Type 30N 

Type 30N functions are similar to those of the Type 34D Oscilloscope Display in 
plotting points on a self-contained 16-inch cathode ray tube. A 3-bit brightness register 
is contained in Type 30N to control the duration of the Intensify signal supplied to 
the CRT. The content of this register specifies the brightness of the point being dis
played according to the following scale: 

BR Content 
3 
2 
1 
0 
7 
6 
5 
4 

Intensity 
brightest 

average 

dimmest 
The BR register is loaded by jam transfer (transfer ones and zeros so that clearing 
is not required) from the AC by the instruction: 

LOAD BRIGHTNESS REGISTER (DLB) 

Octal Code: 6074 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The brightness register (BR) is loaded by a jam transfer of information 
contained in bits 9 through 11 of the AC. 

Symbol: AC 9-11 = > BR 

All other instructions and the instruction sequence are similar to those used in the 
Type 34D. 

Light Pen Type 370 

The light pen is a photosensitive device which detects the presence of information 
displayed on a CRT. If the light pen is held against the face of the CRT at a point 
displayed, the display flag will be set to a 1. The light pen display flag is connected 
into the computer instruction skip facility. The commands are: 

SKIP ON DISPLAY FLAG (DSF) 

Octal Code: 6071 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the display flag is sensed, and if it contains a 1 the content 
of the PC is incremented by one so that the next sequential instruction is skipped. 

Symbol: If Display Flag = 1, then PC + 1 = > PC 



CLEAR THE DISPLAY FLAG (DCF) 

Octal Code: 6072 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The display flag is cleared in preparation for sensing another point on 
the CRT. 

Symbol: 0 = > Display Flag 

77 



78 

CHAPTER 9 

INCREMENTAL PLOTTER AND CONTROL 
TYPE 3508 

Four models of California Computer Products Digital Incremental Recorder can be 
operated from a DEC Type 350 Increment Plotter Control. Characteristics of the four 
recorders are: 

Step Paper 
CCP Size Speed Width 
Model (inches) (steps/minute) (inches) 

563 0.01 or 0.005 12,000 31 
565 0.01 or 0.005 18,000 12 

The principles of operation are the same for each of the four models of Digitai Incre
mental Recorders. Bidirectional rotary step motors are employed for both the X and Y 
axes. Recording is produced by movement of a pen relative to the surface of the graph 
paper, with each instruction causing an incremental step. X-axis deflection is produced 
by motion of the drum; Y-axis deflection, by motion of the pen carriage. Instructions 
are used to raise and lower the pen from the surface of the paper. Each incremental 
step can be in any one of eight directions through appropriate combinations of the 
X and Y axis instructions. All recording (discrete points, continuous curves: or symbols) 
is accomplished by the incremental stepping action of the paper drum and pen carriage. 
Front panel controls permit single-step or continuous-step manual operation of the 
drum and carriage, and manual control of the pen solenoid. The recorder and control 
are connected to the computer program interrupt and instruction skip facility. 

Instructions for the recorder and control are: 

SKIP ON PLOTTER FLAG (PLSF) 

Octal Code: 6501 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter flag is sensed, and if it contains a 1 the content of the PC is 
incremented by one so the next sequential instruction is skipped. 

Symbol: If Plotter Flag = 1, then PC + 1 = > PC 



CLEAR PLOTTER FLAG (PLCF) 

Octal Code: 6502 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter flag is cleared in preparation for issuing a plotter operation 
command. 

Symbol: 0 = > Plotter Flag 

PEN UP (PLPU) 

Octal Code: 6504 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter pen is raised from the surface of the paper. 

Symbol: None 

PEN RIGHT (PLPR) 

Octal Code: 6511 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter pen is moved to the right in either the raised or lowered position. 

Symbol: None 

Octal Code: 6512 

Event Time: 2 

DRUM UP (PLDU) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The plotter paper drum is moved upward. This command can be combined 
with the PLPR and PLOD commands. 

Symbol: None 

79 



80 

DRUM DOWN (PLOD) 

Octal Code: 6514 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter paper drum is moved downward. 

Symbol: None 

PEN LEFT (PLPL) 

Octal Code: 6521 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The plotter pen is moved to the left in either the raised or lowered position. 

Symbol: None 

DRUM UP (PLUD) 

Octal Code: 6522 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter paper drum is moved upward. This command is similar to 
command 6512 except that it can be combined with the PLPL or PLPD commands. 

Symbol: None 

Octal Code: 6524 

Event Time: 3 

PEN DOWN (PLPD) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The plotter pen is lowered to the surface of the paper. 

Symbol: None 

Program sequence must assume that the pen location is known at the start of a routine 
since there is no means of specifying an absolute pen location in an incremental plotter. 
Pen location can be preset by the manual controls on the recorder. During a subroutine, 
the PDP-8 can track the location of the pen on the paper by counting the instructions 
that increment position of the pen and the drum. 



CHAPTER 10 

CARD READER AND CONTROL 
TYPE CR01C 

The Card Reader and Control Type CROlC reads standard 12-row, 80-column punched 
cards at a maximum rate of 100 cards per minute. Cards are read by column, begin
ning with column 1. One select instruction starts the card moving past the read station. 
Once a card is in motion, all 80 columns are read. Data in a card column is sensed by 
mechanical star wheels which close an electrical contact when a hole (binary 1) is 
detected. Column information is read in one of two program selected modes: alpha
numeric and binary. In the alphanumeric mode the 12 information bits in one column 
are automatically decoded and transferred into the least significant half of the accumu
lator as a 6-bit Hollerith code. Appendix 2 lists the Hollerith card codes. In the binary 
mode the 12 bits of a column are transferred directly into the accumulator so that the 
top row (12) is transferred into ACO and the bottom row (9) is transferred into ACl l. 
A punched hole is interpreted as a binary 1 and no hole is interpreted as a binary 0. 

Three program flags indicate card reader conditions to the computer. The data ready 
flag rises and requests a program interrupt when a column of information is ready to be 
transferred into the AC. A read alphanumeric or read binary command must be issued 
within 1.5 milliseconds after the data ready flag rises to prevent data loss. The card done 
flag rises and requests a program interrupt when the card leaves the read station. A new 
select command must be issued within 25 milliseconds after the card done flag rises to 
keep the reader operating at maximum speed. Sensing of this flag can eliminate the 
need for counti~g columns, or combined with column counting can provide a check for 
data loss. The reader-not-ready flag can be sensed by a skip command to provide indi
cation of card reader power off, no card in the read station, or that a reader failure 
has been detected. When this flag is raised the reader cannot be selected and select 
commands are ignored. The reader-not-ready flag is not connected to the program inter
rupt facility and cannot be cleared under program control. Manual intervention is 
required to clear the reader-not-ready flag. Instructions for the CROlC are: 

Octal Code: 6631 

Event Time: 1 

SKIP ON DATA READY (RCSF) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the data ready flag is sensed, and if it contains a 1 (indi
cating that information for one card column is ready to be read) the content of the 
PC is incremented by one so the next sequential instruction is skipped. 

Symbol: If Data Ready Flag = 1, then PC + 1 = > PC 

81 



82 

READ ALPHANUMERIC (RCRA) 

Octal Code: 6632 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The 6-bit Hollerith code for the 12 bits of a card column are transferred 
into bits 6 through 11 of the AC, and the data ready flag is cleared. 

Symbol: AC6-11 V Hollerith Code = > AC6-11 
0 = > Data Ready Flag 

READ BINARY (RCRB) 

Octal Code: 6634 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The 12-bit binary code for a card column is transferred directly into the AC, 
and the data ready flag is cleared. Information from the card column is transferred into 
the AC so that card row 12 enters ACO, row 11 enters ACl, row O enters AC2, .... and 
row 9 enters AC 11. 

Symbol: AC V Binary Code = > AC 
0 = > Data Ready Flag 

SKIP ON CARD DONE FLAG (RCSP) 

Octal Code: 6671 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the card done flag is sensed, and if it contains a 1 (indi
cating that the card has passed the read station) the content of the PC is incremented 
to skip the next sequential instruction. 

Symbol: If Card Done Flag = 1, then PC + 1 = > PC 

SELECT CARD READER AND SKIP IF READY (RCSE) 

Octal Code: 6672 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the reader-not-ready flag is sensed and if it contains a 1 
(indicating that the card reader is ready for programmed operation) the PC is incre-



mented to skip the next sequential instruction; a card is started towards the read 
station from the feed hopper; and the card done flag is cleared. If the reader-not-ready 
flag contains a O (indicating power is off or no card is in the read station) card selection 
(motion) does not occur and the skip does not occur. 

Symbol: If Reader-Not-Ready Flag = 1, then PC + 1 = > PC 
0 = > Card Done Flag 

CLEAR CARD DONE FLAG (RCRD) 

Octal Code: 667 4 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The card done flag is cleared. This command allows a program to stop 
reading at any point in a card deck. 

Symbol: 0 = > Card Done Flag 

A logical instruction sequence to read cards is: 

START, 

NEXT, 

RCSE 
JMP NOT ROY 

RCSF 
JMP .-1 
RCRA or RCRB 

DCA I STR 
RCSD 
JMP NEXT 
JMP OUT 

/START CARD MOTION AND SKIP IF READY 
/JUMP TO SUBROUTINE THAT TYPES OUT 
/"CARD READER MANUAL INTERVENTION 
/REQUIRED" OR HALTS 
/DATA READY? 
/NO, KEEP WAITING 
/YES, READ ONE CHARACTER OR ONE 
/COLUMN 
/STORE DATA 
/END OF CARD? 
/NO, READ NEXT COLUMN 
/YES, JUMP TO SUBROUTINE THAT CHECKS 
/CARD COUNT OR REPEATS AT START FOR 
/NEXT CARD 

No validity or registration checking is performed by the CROlC. A programmed validity 
check can be made by reading each card column in both the alphanumeric and the 
binary mode (within the 1.5 millisecond time limitation), then performing a compari
son check. 

Before commencing a card reading program energize the reader, load the feed hopper 
with cards, and manually feed the first card to the read station. The function of the 
manual controls and indicators are as follows (as they appear from right to left on 
the card reader): 

83 



84 

Control or Indicator 

ON/OFF switch 

AUTO/MAN switch 

REG switch 

SKIP switch 

CHECK READER indicator 

READY indicator 

CARD RELEASE pushbutton 

Function 

Controls the application of primary power to the 
·reader.When power is applied, the reader is ready 
to respond to operation of the other keys or pro
grammed commands. 

Controls card reading. In the manual position this 
switch disables the card feed mechanism so that 
cards must be manually placed on the read table 
and registered by pressing the REG key. In the 
automatic position card motion from the feed hop
per through the read station is under program 
control. 

When the AUTO/MAN switch is in the AUTO posi
tion the REG key is used to feed the first card to 
the read station. When the AUTO/MAN switch is 
in the MAN position the REG key is used to feed 
a card manually placed on the read table. 

This key is not connected on the CR0lC and has 
no effect on equipment operation. 

This lamp is not connected on the CR0lC. 

Lights when the reader is energized and cards are 
present in the feed hopper. The plastic card cover 
should always be used on top of a deck of cards 
to assure that the ready switch and indicator are 
activated. 

When pressed, this pushbutton (adjacent to the 
read station) releases a card already in the read 
station. 



CHAPTER 11 

CARD READER AND CONTROL TYPE 451 
The Card Reader and Control Type 451A operates at a rate of 200 cards per minute, 
and the Type 451 B operates at a rate of 800 cards per minute. Cards are read column 
by column. Column information is read in either alphanumeric or binary mode. The 
alphanumeric mode converts the 12-bit Hollerith code of one column into the 6-bit 
binary-coded decimal-code with code validity checking. The binary mode reads a 12-bit 
column directly into the PDP-8. Approximately one percent of the computer program 
running time is required to execute a routine that reads the 80 columns of information 
at the 200 cards per minute rate. 

The control of the card reader differs from the control of other input devices, in that 
the timing of the read-in sequence is dictated by the device. When the command to 
fetch a card is given, the card reader reads all 80 columns of information in sequence. 
To read a column, the program must respond to a flag set as each new column is 
started. The instruction to read the column must come within 2.2 milliseconds of the 
flag at 200 cards per minute, or must come within 400 microseconds at 800 cards 
per minute. The commands for either card reader are: 

SKIP ON CARD READER FLAG (CRSF) 
Octal Code: 6632 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the card reader flag is sensed, and if it contains a 1 (indi
cating that a card column is present for reading) the content of the PC is incremented 
by one so that the next sequential instruction is skipped. 

Symbol: If Card Reader Flag = 1, then PC + 1 = > PC 

READ CARD EQUIPMENT STATUS (CERS) 

Octal Code: 6634 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the card reader flag and status levels are transferred into 
the content of bits AC6 through AC9. The AC bit assignments are: 

AC6 = Flag is set to 1 (the flag rises after reading each of the 80 rows). 

AC7 = Card done. 

AC6 = Not ready (covers not in place, power is off, START pushbutton has not 
been pressed, hopper is empty, stacker is full, a card is jammed, a validity 
check error has been detected, or the read circuit is defective). 

AC9 = End of the file (EOF) (hopper is empty and operator has pushed EOF 
pushbutton). 

Symbol: Status = > AC6-9 

85 



86 

Octal Code: 6671 

Event Time: 1 

READ CARD READER BUFFER (CRRB) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the card column buffer (CCB) is transferred into the AC and 
the card reader flag is cleared. One CRRB command reads either alphanumeric or 
binary information. 

Symbol: CCB = > AC 

SELECT ALPHANUMERIC (CRSA) 

Octal Code: 6672 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The card reader alphanumeric mode is selected and a card is started moving 
past the read heads. Information read into the CCB is in 6-bit alphanumeric form 
(the Hollerith code representing the decoded 12 row character in one column). 

Symbol: None 

SELECT BINARY (CRSB) 

Octal Code: 667 4 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Operation: The card reader alphanumeric mode is selected and a card is started mov
ing past the read heads. Information read into the CCB is in 12-bit binary form. 

Symbols: None 

Upon instruction to read the card reader buffer, the content of the 12-bit CCB is 
transferred into the AC. In the alphanumeric mode a 6-bit Hollerith code is transferred 
into AC6 through ACl 1 and AC0 through AC5 are cleared. In the binary mode the 
binary content of the 12 bits (or rows) in a card column are transferred into the AC 
so that row X is read into AC0, row Y into ACl, row 0 into AC2 .... and row 9 into 
ACl 1. The mode is specified by either the CRSA or CRSB command and can be 
changed while the card is being read. 



CHAPTER 12 

CARD PUNCH CONTROL TYPE 450 

The Card Punch Control Type 450 permits operation of a standard IBM Type 523 Sum
mary Punch with the PDP-8. Punching can occur at a rate of 100 cards per minute. 
Cards are punched one row at a time at 40-millisecond intervals. 

The card punch dictates the timing of a read-out sequence, much as the card reader 
controls the read-in timing. When a card leaves the hopper, all 12 rows are punched at 
intervals of 40 milliseconds. Punching time for each row is 24 milliseconds, leaving 
16 milliseconds to load the buffer for the next row. A card punch flag indicates that 
the buffer is ready to be loaded. The commands for the card punch control are: 

SKIP ON CARD PUNCH FLAG (CPSF) 

Octal Code: 6631 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The card punch flag is sensed, and if it contains a binary 1 (indicating that 
the punch buffer is available and can be loaded) the content of the PC is incremented by 
orie so the next sequential instruction is skipped. 

Symbol: If Card Punch Flag = 1, then PC + 1 = > PC 

CARD EQUIPMENT READ STATUS (CERS) 

Octal Code: 6634 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of the card punch flag and the status of the Card Punch Error 
signal in the control are transferred into bits 10 and 11 of the AC, respectively. 

Symbol: Card Punch Flag = > ACl0 
Card Punch Error = > AC 11 

CLEAR PUNCH FLAG (CPCF) 

Octal Code: 6641 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The card punch flag is cleared in preparation for giving a selector punch 
command. 

Symbol: 0 = > Card Punch Flag 

87 



88 

SELECT CARD PUNCH (CPSE) 

Octal Code: 6642 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The card punch is selected and a card is transported to the 80-column 
punch die from the hopper. 

Symbol: None 

LOAD CARD PUNCH (CPLB) 

Octal Code: 6644 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the AC is transferred into a portion of the 80-bit card punch 
row buffer (CPB). Seven CPLB commands are required to fill the CPB. 

Symbol: AC = > CPB 

Since 12 bits are transmitted with each IOT instruction, seven IOT instructions must 
be issued to load the 80-bit row buffer. The first six loading instructions fill the first 72 
bits (or columns); the seventh loads the remaining 8 bits of the buffer from AC bits 4 
through 11. After the last row of punching is complete, 28 milliseconds are available 
to select the next card for continuous punching. If the next card is not requested in 
this interval, the card punch will stop. The maximum rate of the punch is 100 cards 
per minute in continuous operation. A delay of 1308 milliseconds follows the command 
to select the first card; a delay of 108 milliseconds separates the punching of cards 
in continuous operation. 

The card punch flag is connected to the program interrupt and to bit 10 of the CERS 
instruction. Faults occurring in the punch are detected by status bit 11 of the CERS 
and signify the punch is disabled, the stacker is full, or the hopper is empty; 

A program sequence to punch 12 rows of data on a card can be written as follows, 
assuming the data to be punched in each row is stored in seven consecutive core 
memory locations beginning in location 100. The program begins in register PNCH. 



PNCH, 

LPl, 

LP2, 

LOC, 
RCNT, 
GPCT, 
TEMl, 
TEM2, 

CLA 
CERS 
RAR 

SZL 
JMP CPERR 
CPSE 
CLA 
TAD LOC 
DAC 10 
TAD RCNT 
DCA TEMl 
CLA 
TAD GPCT 
DCA TEM2 
CPSF 
JMP .-1 
CLA 
TAD I 10 
CPLB 
ISZ TEM2 
JMP LP2 
ISZ TEMl 
JMP LPl 
HLT 
77 
-14 
-7 
0 
0 

/READ CARD STATUS 
/ROTATE PUNCH ERROR BIT (ACll) 
/INTO LINK 
/PUNCH ERROR? 
/YES, JUMP TO PUNCH ERROR SEQUENCE 
/NO, SELECT CARD PUNCH 

/INITIALIZE CARD IMAGE 

/INITIALIZE 12 ROW COUNTS 

/INITIALIZE 7 GROUPS PER ROW 

/SENSE PUNCH LOAD AVAILABILITY 

/7 GROUPS OF 12 BITS PER ROW 
/LOAD BUFFER 

/TEST FOR 12 ROWS 

/END PUNCHING OF 1 CARD 
/LOCATION OF CARD IMAGE 
/12 ROWS PER CARD 
/7 GROUPS PER ROW 
/ROW COUNTER 
/GROUP COUNTER 

89 



90 

CHAPTER 13 

AUTOMATIC LINE PRINTER AND CONTROL 
TYPE 645 

The line printer can print 300 lines of 120 characters per minute. Each character is 
selected from a set of 64 available, by a 6-bit binary code (Appendix 2 lists the ASCII 
character specified for each code). Each 6-bit code is loaded separately into a core 
storage printing buffer (LPB) from bits 6 through 11 of the AC. The LPB is divided into 
two 120-character sections. To load one section of the LPB requires 120 load instruc
tions. A print. command causes the characters specified by the last-loaded section of 
the LPB to be printed on one line. As printing of one section of the LPB is in progress, 
the other section can be reloaded. After the last character in a line is printed, the 
section of the LPB from which characters were just printed is cleared automatically. 
The section of the LPB that is loaded and printed is alternated automatically within the 
printer and is not program specified. 

The line printer can load characters into the LPB at a 10-microsecond rate, clears one 
section of the LPB in 3 to 6 milliseconds, and moves paper at the rate of one line every 
18 milliseconds. When transfer of one code into the LPB is completed, the line printer 
done flag rises to indicate that the printer is ready to receive another code. When 
printing of the last character of a section of the LPB is completed, the line printer done 
flag rises and causes a program interrupt to request reloading of that section. of the 
LPB. A line printer error flag rises and causes a program interrupt if the line printer 
detects an inoperative condition (printer power off, control circuits not reset, paper 
supply low, etc.). 

A 3-bit format register (FR) in the printer is loaded from bits 9 through 11 of the AC 
during a print command. This register selects one of eight channels of a perforated 
tape in the printer to control spacing of the paper. The tape moves in synchronism 
with the paper until a hole ·is sensed in the selected channel to halt paper advance. 
A recommended tape has the following characteristics: 

FR Code Paper Tape 
(Octal) Spacing Track 

0 1 line 2 
1 2 lines 3 
2 3 lines 4 
3 6 lines (1/4 page) 5 
4 11 lines (1/2 page) 6 
5 22 lines (3/4 page) 7 
6 33 lines (line feed) 8 
7 top of form 1 

The IOT microinstructions which command the line printer are: 



Octal Code: 6651 

Event Time: l 

SKIP ON LINE PRINTER ERROR (LSE) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of line printer error flag is sensed, and if it contains a binary 1, 
indicating that an error has been detected, the content of the PC is incremented by one 
so that the next sequential instruction is skipped. 

Symbol: If Line Printer Error Flag = 1, then PC + 1 = > PC 

CLEAR PRINTER BUFFER (LCB) 

Octal Code: 6652 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Both sections of the line printer buffer are cleared in preparation for re
ceiving new character information. 

Symbol: 0 = > LPB 

LOAD PRINTER BUFFER (LLB) 

Octal Code: 6654 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: A section of the printer buffer is loaded from the content of bits 6 through 
11 of the AC, then the AC is cleared. 

Symbol: AC6 - 11 = > LPB, then O = > AC 

SKIP ON LINE PRINTER DONE FLAG (LSD) 

Octal Code: 6661 

Event Time: l 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of the line printer done flag is sensed and if it contains a binary 
1 the content of the PC is incremented by one so that the next sequential instruction is 
skipped. 

Symbol: If Line Printer Done Flag = 1, then PC + 1 = > PC 

91 



92 

CLEAR LINE PRINTER FLAGS (LCF) 

Octal Code: 6662 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The line printer done and error flags are cleared 

Symbol: 0 = > Line Printer Done Flag 
0 = > Line Printer Error Flag 

CLEAR FORMAT REGISTER (LPR) 

Octal Code: 6654 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The line printer format register (FR) is cleared then loaded from the con
tent of bits 9 through 11 of the AC, and the AC is cleared. The line contained in the 
section of the printer buffer (LPB) loaded last is printed. Paper is advanced in accord
ance with the selected channel of the format tape if the content of AC8 is a 1. If AC8 
is a O paper advance is inhibited. 

Symbol: 0 = > FR 
AC9 - 11 =>FR 
0 => AC 
The content of half of the LPB is printed 
If AC8 = 1, then advance paper according to format tape channel FR 

The following routine demonstrates the use of these commands in a sequence which 
prints an unspecified number of 120-character lines. This sequence assumes that the 

· printer is not in operation, that the paper is manually positioned for the first line of 
print, and that one-character words are stored in sequential core memory locations 
beginning at 2000. The PRINT location starts the routine. 

PRINT, 

LRPT, 

LOOP, 

LCB 
CLA 
TAD LOC 
DCA 10 
TAD CNT 
DCA TEMP 
LSD 
JMP LOOP 
LCF 
TAD I 10 

LLB 
ISZ TEMP 
JMP LOOP 

/INITIALIZE PRINTER BUFFER 

/LOAD INITIAL CHARACTER ADDRESS 
/STORE IN AUTO-INDEX REGISTER 
/INITIALIZE CHARACTER COUNTER 

/WAIT UNTIL PRINTING BUFFER READY 

/CLEAR LINE PRINTER FLAG 

/LOAD AC FROM CURRENT CHARACTER 
/ADDRESS 
/LOAD PRINTING BUFFER 
/TEST FOR 120 CHARACTERS LOADED 



LOC, 
CNT, 
TEMP, 
FRM, 

TAD FRM 
LPR 
JMP LRPT 
1777 
-170 
0 
10 

/LOAD SPACING CONTROL AND 
/PRINT A LINE 
/JUMP TO PRINT ANOTHER LINE 
/INITIAL CHARACTER ADDRESS -1 
/CHARACTER COUNTER = 120 DECIMAL 
/CURRENT CHARACTER ADDRESS 
/SPACING CONTROL AND FORMAT 

93 



94 

CHAPTER 14 
SERIAL MAGNETIC DRUM SYSTEM TYPE 251 
The Type 251 Serial Magnetic Drum System is a standard option that serves as an 
auxiliary data storage device. Information in the PDP-8 can be stored (written) in the 
drum system and retrieved (read) in sectors of 128 computer words. After program 
initialization, sectors are transferred automatically between the computer core memory 
and the drum system, transfer of each word being interleaved with the running com
puter program under control of the computer data break facility. A word is transferred 
in parallel (12 bits at a time) and is read or written around the surface of the drum 
serially (one bit at a time). Within the drum system words consist of 12 information 
bits and a parity bit. Parity bits are generated internally during writing, and are read 
and checked during reading. Each word is transferred in about 66 microseconds; a 
sector transfer is completed in 8.2 milliseconds. Average access time is 8.65 milli
seconds (17.3 milliseconds maximum). Track and sector format on the drum surface 
is such that all transfers require the same amount of time, so track and sector are 
specified together as an 11-bit address for 128 words. 

Drum systems are available with 8, 16, 32, 64, 128, 192, or 256 tracks; each track 
holds 8 sectors of 128 13-bit words. The various drum system capacities are desig
nated by a letter suffix to the system type number as follows: Type 251A, 8K words; 
2518, 16K words; 251C, 32K words; 2510, 65K words; 251E, 131K words; 251F, 
196K words; and 251G, 262K words. 

Indicator lamps on a front panel usually display the content of the four major registers 
and the status of control flip-flops. The major registers are: 

Drum Core Location Counter (DCL): A 15-bit register which addresses the next core 
memory location to or from which a word is to be transferred. As a word is transferred, 
DCL is incremented by one. 

Drum Address Register (DAR): An 11-bit register which addresses the drum track and 
sector which is currently transferring data. The eight most significant bits of the DAR 
specify the track and the least significant three bits specify a sector on that track. 
At the completion of a successful sector transfer (error flag is 0) DAR is incremented 
by one. 

Drum Final Buffer (DFB): A 12-bit register under control of the data break facility which 
is a buffer between the memory buffer register and the drum serial buffer. During writ
ing, the DFB holds the next word to be written. During reading, the DFB stores the word 
just read from the drum until it is transferred to the PDP-8. 

Drum Serial Buffer (DSB): A 14-bit register which contains a d_ata word and two control 
bits. It is a serial-to-parallel converter during drum reading, and a parallel-to-serial 
converter during drum writing. Information is read from the drum into DSB serially and 
transferred to DFB in parallel. During drum writing, a word is transferred in parallel 
from DFB into DSB and written serially around the drum. 

Instructions 
The commands for the drum system are as follows: 

LOAD DRUM CORE LOCATION COUNTER AND READ (DRCR) 

Octal Code: 6603 

Event Time: 1, 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 



Operation: The core memory location information in the AC is transferred into the 
DCL and the drum is prepared to read one sector of information for transfer to the 
specified core memory location.,:, 

Symbol: AC = > DCL 
1 = > Read Control 

LOAD DRUM CORE LOCATION COUNTER AND WRITE (DRCW) 

Octal Code: 6605 

Event Time: 1, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The core memory location information in the AC is transferred into the 
DCL and the drum is prepared to write on one sector the information beginning at the 
specified core memory address.':' 

Symbol: AC = > DCL 
1 = > Write Control 

CLEAR DRUM FLAGS (DRCF) 

Octal Code: 6611 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE on computer and COMPLETION FLAG and ERROR 
FLAG on the drum system become dark. 

Execution Time: 3.75 microseconds 

Operation: Both completion flag and error flag are cleared 

Symbol: 0 = > Completion Flag 
0 = > Error Flag 

LOAD PARITY AND DATA ERROR (DREF) 

Octal Code: 6612 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of both the parity error and data timing error flip-flops of the 
drum control is transfer,red into bits ACO and ACl, respectively. The command allows 
the program to evaluate the cause of an error flag setting. 

Symbol: Parity Error = > ACO 
Data Timing Error = > ACl 

*The sector, track, and core memory address are suitably incremented and allow transfer of 
the next sequential sector without respecifying addresses. The DRCN instruction must be given 
within 50 microseconds after the completion flag is set to 1 during the previous sector. 

95 



96 

Octal Code: 6615 

Event Time: 1, 3 

LOAD THE TRACK AND SECTOR (ORTS) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Track and sector information in bits 1-11 of the AC is transferred into the 
DAR, the completion and error flags are cleared, and a transfer (reading or writing) 
is begun. 

Symbol: ACl-11 = > DAR 
0 = > Com pl et ion Flag 
0 = > Error Flag 

SKIP ON DRUM ERROR (DRSE) 

Octal Code: 6621 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The error flag is sampled and if it contains a O (indicating no error has been 
detected) the PC is incremented to skip the next instruction. 

Symbol: If Error Flag = 0, then PC + 1 = > PC 

SKIP ON DRUM COMPLETION (DRSC) 

Octal Code: 6622 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The completion flag is sampled and if it contains a 1 (indicating a sector 
transfer is complete) the PC is incremented to skip the next instruction. 

Symbol: If completion Flag = 1, then PC + 1 = > PC 

INITIATE NEXT TRANSFER (DRCN) 

Octal Code: 6624 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Both the error and completion flags are cleared, then the transfer of the 
next sector is initiated. 

Symbol: 0 = > Error Flag 
0 = > Completion Flag 
then start transfer 



Programming 

Two instructions cause the transfer of a 128-word sector. The first (ORCR or ORCW) 
specifies the initial core memory location of the transfer and the direction of the 
transfer (drum-to-core or core-to-drum). The second instruction (ORTS) specifies the 
track and sector address and initiates the transfer. Transfer of each word is under 
control of the computer data break facility and completion of a sector transfer is 
indicated by a completion flag that causes a program interrupt. 

The eight most significant bits of a drum address select one of 256 tracks; the three 
least significant bits select one of eight sectors on the track. A 300-microsecond gap 
identifies the beginning of a track (sector 0). Even numbered sectors (0, 2, 4, and 6) 
are recorded consecutively following the 300-microsecond gap. A 50-microsecond gap 
identifies the beginning of the odd number sectors (sector 1). Odd numbered sectors 
(1, 3, 5, and 7) are recorded consecutively following the 50-microsecond gap. This 
format allows the transfer of two consecutively numbered sectors in one drum revolu
tion, provided the continuation instruction (ORCN) is issued in the first 50 micro
seconds after the drum flag rises to indicate completion of a sector transfer. The 
program interrupt subroutine can easily determine that the drum system caused an 
interrupt, check the number of sectors transferred, check for drum errors by sampling 
the error flag, and issue the continuation instruction in 50 microseconds. 

Because the selection of a track read-write head requires 200 microseconds stabiliza
tion time, a new track must be specified during the first 200 microseconds of the 
300-microsecond gap for continuous transferring. If selected tracks and sectors are 
consecutive, uninterrupted transferring may be programmed merely by specifying con
tinuation, since the drum system address and the core memory address are auto
matically incremented. However, if a data timing or parity error occurs, the track and 
sector number is not advanced and operations stop at the conclusion of a sector 
transfer. This feature allows the program to sense for error conditions and to locate 
the track and sector at which transmission fails. 

The drum completion flag is set to 1 upon completion of a sector transfer, causing a 
program interrupt. The flag is cleared either by a clear flag instruction (ORCF) or 
automatically when one of two transfer instructions (ORTS, ORCN) is given. 

The error flag, which should be checked at the completion of each transfer, indicates 
either of the following conditions: 

(1) That a parity error has been detected after reading from drum to core. 

(2) That the Break Request signal from the drum system was not answered within the 
required 66-microsecond period. This condition occurs either because other devices 
with higher priority are being serviced by the data break facility, or because an 
instruction requiring longer than 66 microseconds for completion is in progress 
when the break request is made. In reading from the drum, a data word is incorrect 
in core memory. In writing on the drum, the next word has not been received from 
the computer. 

The following program examples indicate the operation of the drum system in single 
and multiple sector transfers. 

97 



98 

SUBROUTINE TO TRANSFER (READ) ONE SECTOR 

READ, 

CLA /CALLING SEQUENCE 
TAD ADDR /INITIAL CORE MEMORY ADDRESS 
JMS READ 
0 
0 
0 

/TRACK AND SECTOR ADDRESS 
/RETURN 

DRCR /DRCW TO WRITE 
TAD I READ /LOAD AC WITH TRACK AND SECTOR ADDRESS 
ORTS 
DRSC 
JMP .-1 
DRSE 
JMP ERR 
ISZ READ 

/DONE? 
/NO 
/ERRORS? 
/JUMP TO ERROR CHECK ROUTINE 

JMP I READ /RETURN 

SUBROUTINE TO TRANSFER SUCCESSIVE (TWO) SECTORS 

READ, 

CLA /CALLING SEQUENCE 
TAD ADDR /INITIAL CORE MEMORY ADDRESS 
JMS READ 
0 
0 
0 

/TRACK AND SECTOR ADDRESS 
/RETURN 

DRCR /DRCW TO WRITE 
TAD I READ /LOAD AC WITH TRACK AND SECTOR ADDRESS 
ORTS 
DRSC 
JMP .-1 
DRSE 
JMP ERR 
DRCN 

DRSC 
JMP .-1 
DRSE 
JMP ERR 
ISZ READ 

. /DONE? 
/NO 
/ERRORS? 
/JUMP TO ERROR CHECK ROUTINE 
/CLEAR FLAGS, CONTINUE TRANSFER 
/OF NEXT SECTOR 

JMP I READ /RETURN 



CHAPTER 15 

DECTAPE SYSTEMS 

The DECtape system is a standard option for the PDP-8 which serves as an auxiliary 
magnetic tape data storage facility. The DECtape system stores information at fixed 
positions on magnetic tape as in magnetic disk or drum storage devices, rather than 
at unknown or variable positions as is the case in conventional magnetic tape systems. 
This feature allows replacement of blocks of data on tape in a random fashion without 
disturbing other previously recorded information. In particular, during the writing of 
information on tape, the system reads format (mark) and timing information from 
the tape and uses this information to determine the exact position at which to record 
the information to be written. Similarly, in reading the same mark and timing informa
tion is used to locate data to be played back from the tape. 

This system has a number of features to improve its reliability and make it exception
ally useful for program updating and program editing applications. These features are: 
phase or polarity sensed recording on redundant tracks, bidirectional reading and 
writing, and a simple mechanical mechanism utilizing hydrodynamically lubricated tape 
guiding (the tape floats on air and does not touch any metal surfaces). 

DECtape Format 

DECtape utilizes a 10-track read/write head. Tracks are arranged in five nonadjacent 
redundant channels: a timing channel, a mark channel, and three information channels. 
Redundant recording of each character bit on nonadjacent tracks materially reduces 
bit drop outs and minimizes the effect of skew. Series connection of corresponding 
track heads within a channel and the use of Manchester phase recording techniques, 
rather than amplitude sensing techniques, virtually eliminate drop outs. 

The timing and mark channels control the timing of operations within the control unit 
and establish the format of data contained on the information channels. The timing 
and mark channels are recorded prior to all normal data reading and writing on the 
information channels. The timing of operations performed by the tape drive and some 
control functions are determined by the information on the timing channel. Therefore, 
wide variations in the speed of tape motion do not affect system performance. Infor
mation read from the mark channel is used during reading and writing data, to 
indicate the beginning and end of data blocks and to determine the functions per
formed by the system in each control mode. 

During normal data reading, the control assembles 12-bit computer length words 
from four successive lines read from the information channels of the tape. During 
normal data writing, the control disassembles 12-bit words and distributes the bits 
so they are recorded on four successive lines on the information channels. A mark 
channel error check circuit assures that one of the permissible marks is read in every 
six lines on the tape. This 6-line mark channel sensing requires that data be recorded 
in 12-line segments (12 being the lowest common multiple of 6-line marks and 4-line 
data words) which correspond to three 12-bit words. 

99 



100 

TIMlirtG Tlll'.ICIC t 

1111Ab 'TAACM I 0 0 0 0 0 0 D a 0 0 

!Nf:CNIIIIIIATn:!M '""°' I 
0 0 0 0 0 D 0 0 

11JtF01n11,n,o,. fff-*CI( ,. 0 D 0 0 0 0 D 0 0 0 

tJllln)AMAflOJlil "'Ill;!< • 0 0 D 0 0 0 0 0 0 

7 
,,.. 

J NFDlltMTIDIIII Tlllt.lOC I A 
0 0 0 0 0 D 0 0 0 (S-" If II 

1 .. mllMflOft TRACK I!! I 0 D D 0 D 0 0 0 0 0 UG1•1111 a1 IT II 

I NFDRIIIAffQ.. TA'Aae SA 0 0 0 0 0 0 0 D 0 0 llllDUNDIJrff 
u .... 1,1, T""-CICI 

II.MW Hit.al: IA 
0 0 0 D 0 0 0 0 D D 0 0 u.-.-• WT II 

TU1Ufllll TUC. I iii 
f-,....•n ll 

Figure 9 DECtape Track Allocations 

• ------------ -al IUICII -.0,1'~111l -=*"'1 ~TINS--------------! .. r----~ q~lll OH& iaio,io .,._.TMJ"I ----.. ,111,I ! 
t ...... ... I --- --- - -- ~~ .~ .... II: IU6JIO l.QC:lf ... n.... ,, ..... ,& Mf& on• DHI Ol,U1 ,..,.,.._, ....... 111,M ~ ... IIO ..... COCI I 

.... I II ... ... 0 0 D • C • .... l "' ... ......... __ .. ~D .,..__.,.., -
11.1 ... lflll IJM'I' DI' IL.GU MIi 
....... c:owv ............ 10 
lDDl'1,Tili.oat'I 

"""'1DII •1111tt ,-.o-rlC1'IOII lfll IIIWPtl 
o,11t«J!<111 &11111,w11111nn 

t 
0. 

t t 
0, 0, 

l t 
a, 0, 

r r, r r 
.... u... D., o .. o .. ITT-:;:,,.·-- ....... .. .,. ... 

ll,DCJI "UIIIIHII Q llll(dJIII ;, .. CTO. 

1411111 Nfi!Cftllllll U Ill~ U1CC 

i.DT ,use lillll l'illhl CN"IUllaJ1D11t- -,1 
"'D'!IIOIID l'Q .Au..N CQIIIKTlll'-'1' •1l111 
OfNll CilllHIUKn 

IIIIIO'f1:aD flilll•lotje&I, IHOII N01"1C:n• 

lllfl01'111:H .,,.,. 1• hl:IJ' OIi ,.._n CHUI"'-,____ ·-
"°"!Ml &\lltCllflll.ltlC. tlll'IClllt atttfrOIII 

MiCI llliO-Df" IU:ICa NTIC110II 91C111 IIUDIIIIII 

Ill IOfN Dl .. tfrDltl _________ _, •DhTihff '11111,. N.T.A __, &-'ID .. lilUl"J'I 
'-------- 'CMICICIIJIIII 

-u.t u ru,a i• nvP11 11i111111c.rn* .,..f ..... .... -------------' 
lolilllll &1 NI• J"I JIIIIIL Ill -«"dMI! DUII.CllOfill 
!MCIOIIODIITl__,I -------------

'--'--'---------------- i.ODtitll!Nt&L N'I- 9CIIIOl-

,, .. ,..., ,•1.c:111: 
.... TllliliU 

l!Oll ,:11111- lltl*I lJNIOI 1or,m,l 'NI .,,..CAL l.illllll 
QIIII fNI llN.1 All 1lC Ola, .... tlOT INDWII 

~ • ........ lj ........ -· ...... fiM&tl't'I ""' ....... 

Figure 10 DECtape Mark Channel Format 

~ -------------- a+iil C011PllTI MU • MO n 40H IWC«S --------------"ii 

______ :c __________ _ 

i-.--------- 01« ILOC,II", • tl·II' •ORD lOCAhOt!IS --------

QD -

{: 111111111111 I lftUIIII 1ll 'lllllil I 1111111 ljlll 
J U1 rll I I I ls; i 1w11u11u IIIIIW lt si i ! I g 11 ix ~•u 

,.°:::~-+------ CCMlllOL llll'O~ _____ ,..I .. --- , .. ~ DATA """° UltATI- l all<TIIOI. - .l . .::;, 

Figure 11 DECtape Control Word and Data Word Assignments 

·--· [' ...... . 
l""IIIIC:Kt 

' 0 

0 0 

Figure 12 DECtape Format Details 



A tape contains a series of data blocks that can be of any length which is a multiple 
of three 12-bit words. Block length is determined by information on the mark channel. 
Usually a uniform block length is established over the entire length of a reel of tape 
by a program which writes mark and timing information at specific locations. The 
ability to write variable-length blocks is useful for certain data formats. For example, 
small blocks containing index or tag information can be alternated with large blocks 
of data. (Software supplied with ·DECtape allows writing for fixed block lengths only.) 

Between the blocks of data are areas called interblock zones. The interblock zones 
consist of 30 lines on tape before and after a block of data. Each of these 30 lines 
is divided into five 6-line control words. These 6-line control words allow compati
bility between DECtape written on any of DEC's 12-, 18-, or 36-bit computers. As used 
on the PDP-8, only the last four lines of each control word are used. 

Block numbers normally occur in sequence from 1 to N. There is one block 
numbered 0 and one block N + 1. Programs are entered with a statement of the first 
block number to be used and the total number of blocks to be read or written. The 
total length of the tape is equivalent to 849,036 lines which can be divided into any 
number of blocks up to 4096 by prerecording of the mark track. The maximum number 
of blocks is determined by the following equation in which N8 = number of blocks and 
Nw = number of words per block (Nw must be divisible by 3). 

212112 
Ns = (Nw + 15) - 2 

DECtape format is illustrated in Figures 9 through 12. 

DECtape Dual Transport Type 555 
and 

DECtape Control Type 552 
The Type 555 Dual DECtape Transport consists of two logically independent tape 
drives, capable of handling 3.5-inch reels of 0.75-inch magnetic tape. Bits are recorded 
at a density of 350 -+-55 bits per track inch at a speed of over 80 inches per second 
on the 260-foot length of a reel. Each line on the tape is read or written in approxi
mately 331/3 microseconds. Simultaneous writing occurs in three channels (three pairs 
of redundant information tracks), while reading occurs in the mark and timing channels 
(two pairs of redundant tracks). 

The Type 552 DECtape Control operates up to four 555 transports (8 drives) to 
transfer binary information read from the tape into 12-bit computer words approxi
mately every 1331/3 microseconds. In writing, the control disassembles 12-bit com
puter words so that they are written at four successive lines on tape. Transfers between 
the computer and the control always occur in parallel for a 12-bit word. Data transfers 
use the data break facilities of the computer. As the start and end of each block are 
detected by the mark track detection circuits, the control raises a DECtape (DT) flag 
which causes a computer program interrupt. The program interrupt is used by the 
computer program to determine the block number and when it determines that the 
forthcoming block is the one selected for a data transfer, it selects the read or write 
control mode. Each time a word is assembled or the DECtape is ready to receive a 
word from the computer, the control raises a data flag. This flag is connected to the 
computer data break facility to signify a break request. Therefore, when the desired 
block is detected, the data flag causes a data break and initiates a transfer. By using 
the mark track decoding circuits and data break facility in this manner, computation 
in the· main computer program can continue during tape operations. 

101 



102 

Data Buffer (DB): This 12-bit register serves as a storage buffer for data to be 
transferred between DECtape and the computer memory buffer register. During a 
read operation information sensed from the tape is transferred into the DB from the 
read/write buffer and is transferred to the computer during a data break cycle. During 
a write operation the DB received information from the computer and transfers it to 
the read/write buffer for disassembly and recording on tape. In this manner the DB 
synchronizes pata transfers J)y allowing transfers between itself and the read/write 
buffer as a function of the tape timing. 

Read/Write Buffer (R/WB): This 12-bit register is composed of three 4-bit shift 
registers. During reading, one bit from each information track is read into a separate 
segment of the R/WB and shifted right or left as a function of the direction of tape 
movement. When four tape positions have been read, the content of the R/WB 
is set into the DB as an assembled 12-bit computer word. During writing, the 
contents of each segment of the R/WB is shifted serially to the write register (one bit 
from each of the three segments of the R/WB is transferred into the write register at 
a time to provide the data to be written at one line) for recording on tape. 

Write Register: A 3-bit register which is alternately loaded from the R/WB and 
complemented to write the phase-coded information on tape. 

Select Register: This 4-bit register is loaded under program control to specify 
the tape drive selected for operation from the control unit. A single Type 522 
DECtape Control can select the drives of four Type 555 Dual DECtape Transports 
(eight tape drives). 

Motion Register: This 2-bit register contai11s a go/stop flip-flop and a forward/ 
reverse flip-flop which control the motion of the selected tape drive. The register is 
set under program control. 

Longitudinal Parity Buffer (LPB): This 6-bit register performs a parity check of 
the information in the three information tracks. The check essentially reads the 
nu'mber of binary zeros in each half of a 12-bit data word and forms a parity bit to 
be recorded in the checksum control word at the end of the data block. This is 
effected by setting the information read from two consecutive tape positions into the 
LPB and then complementing a bit of the LPB if the corresponding bit of the R/WB 
contains a 0. After reading a block of data the LPB holds a number which indicates 
the parity of bits O and 6, 1 and 7, etc. A 1 in the LPB at this time indicates odd 

parity and a O indicates even parity. When a block of data has been read correctly the 
LPB contains all binary ones. If the LPB does not contain all ones when a block of data 
has been read, the parity or mark track error flip-flop is set to 1. 

Memory Address Counter (MAC): This 12-bit register specifies an address in computer 
core memory to be used for each word transfer. During program initialization, 
the starting address of a transfer is set into MAC from the computer accumulator. 
During the transfer, the address contained in MAC is transferred into the computer 
memory address register for each data word. The contents of MAC is incremented by 
1 at the conclusion of each word transfer so that the transfers occur between succes
sive addresses of computer core memory and tape, regardless of tape direction. 

Window (W): This 9-bit register serves as a control signal generator for the 
DECtape system. The mark track data is stored in the W and control signals are 
generated as a function of the mode of operation in progress and the contents of 
the W. For example, in the search mode when the W detects a block mark, control 
signals are generated to raise the DECtape (OT) flag to indicate the presence of a 
block number in the DB and signals the start of data block to the computer. 



Device Selector (DS): The device selector is a gating circuit which produ~es the IOT 
pulses necessary to initiate operation of the DECtape system and strobe information 
into the computer. 

Dectape Flag (DT): This flip-flop serves as an indicator of DECtape system operation 
to the computer and is connected to the computer program interrupt facility. The 
function of the OT flag is determined by the control mode in operation at the time, 
as follows: 

a. In the search mode the OT flag rises each time a block mark (block number) 
is read to indicate the beginning of a new block and to allow programmed 
determination of the block number which just passed the read/write head. 

b. In the read data or write data modes the OT flag rises at the end of each 
block to indicate the end of a data block. Under these conditions the computer 
program can sense for this flag to determine when the transfer is complete. 

c. In the read all bits or write all bits modes the OT flag rises to indicate 
completion of each 12-bit word transfer. Since block marks are not observed 
in these modes, this flag can be used by the computer program to count the 
number of words transferred as a means of determining tape location. 

Error Flag: This flag is raised by four error conditions. When the flag rises it initiates 
a program interrupt to allow the computer interrupt subroutine to determine the 
condition of the 552 control by means of a read status command. The four error 
conditions indicated are: 

a. End: The tape of the selected transport is in the end zone and tape motion 
is stopped automatically. Under these conditions end is an error if it is 
not expected by the program in process or is a legitimate signal used to 
indicate the end of a normal operation (such as rewind) if it is anticipated 
by the program. If the transport is not selected when the tape enters the 
end zone this signal is not given, tape motion is not stopped automatically, 
and the tape can run off the end of the reel. 

b. Timing Error: The program was not able to keep pace with the tape transfer 
rate or a new motion or select command was issued before the previous 
command was completely executed. 

c. Parity or Mark Track Error: Indicates that during the course of the previous 
block transfer a data parity error was detected, or one or more bits have 
been picked up or dropped out from either the timing track or the mark track. 

d. Select Error: Signifies that a tape transport unit select error has occurred 
such that more than one transport in the system have been assigned the same 
select code or that no transport has been assigned the programmed select code. 

Therefore, a select error indicates an error by the operator, a timing error is a program 
error, and a parity or mark channel error indicates an equipment malfunction. Under 
certain conditions the end may also be an indication of equipment malfunction. 

Data Flag: This flag is raised each time the DECtape system is ready to transfer a 
12-bit word with the computer. When raised, the flag produces a computer data break. 

103 



104 

INSTRUCTIONS 

DECtape system commands are microinstructions of the PDP-8 input-output transfer 
(IOT) instruction, as listed in the folfowing paragraphs: 

LOAD SELECT REGISTER (MMLS) 
Octal Code: 6751 
Event Time: 1 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: The unit select register (USR) is loaded from the content of bits 2, through 
5 of the AC, the DECtape flag (DT) is cleared, and a delay is initiated. Loading of 
the USR involves relay switching which takes approximately 70 milliseconds. When 
the delay expires the DT flag is set as an indication that loading of the USR is 
complete and the next DECtape instruction can be given. 

Symbol: AC2-5 = > USR 
1 = > DT when done 

LOAD MOTION REGISTER (MMLM) 
Octal Code: 6752 
Event Time: 2 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: The motion register (MR) is loaded from the content of bits 7 and 8 of the 
AC, the DECtape flag is cleared, and a 70 millisecond delay is initiated. When the 
delay expires the DT flag is set, indicating that loading of the MR is completed and 
the next DECtape instruction can be given. 

Symbol: AC7-8 = > MR 
I = > DT when done 

LOAD FUNCTION REGISTER (MMLF) 
Octal Code: 6754 
Event Time: 3 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: The function register (FR) is loaded from the content of bits 9 through 
11 of the AC, then the AC is cleared. Octal decoding of these three bits establish 
the following DECtape control modes: 

0 = Move 4 = Write data 
1 = Search 5 = Write all bits 
2 = Read data 6 = Write mark and timing 
3 = Read all bits 

Symbol: AC9-11 = > FR, 
then O =>AC 

Octal Code: 6761 
SKIP ON DECTAPE FLAG (MMSF) 

Event Time: 1 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: The content of the DECtape flag is sensed, and if it contains a binary 1, 
the content of the PC is incremented by one so the next instruction is skipped. 

Symbol: If DT = 1, then PC + 1 = > PC 



CLEAR MEMORY ADDRESS COUNTER (MMCC) 
Octal Code: 6762 
Event Time: 2 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: The memory address counter (MAC) is cleared. 

Symbol: 0 = > MAC 

LOAD MEMORY ADDRESS COUNTER (MMLC) 
Octal Code: 6764 
Event Time: 3 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: A transfer of binary ones is performed from the content of the AC into the 
memory address counter, then the AC is cleared. 

Symbol: AC V MAC = > MAC 
then O = > AC 

Octal Code: 6771 
Event Time: 1 

SKIP ON ERROR FLAG (MMSC) 

Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 
Operation: The content of the error flag is sensed, and if it contains a 1 (signifying 
that an error has been detected) the content of the PC is incremented by one so the 
next sequential instruction is skipped. 

Symbol: If Error Flag = 1, then PC + 1 = > PC 

CLEAR FLAGS (MMCF) 
Octal Code: 6772 
Event Time: 2 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

Operation: Both the DECtape and error flags are cleared. 

Symbol: 0 = > OT, Error Flag 

READ STATUS (MMRS) 
Octal Code: 6774 
Event Time: 3 
Indicators: IOT, FETCH, PAUSE 
Execution Time: 3.75 microseconds 

105 



106 

Operation: The condition of the status levels is transferred into bits O through 7 of 
the AC. The AC bit assignments are: 

ACO = DT flag 
ACl = Error flag 
AC2 = End (selected tape at end point) 
AC3 = Timing error 
AC4 = Reverse tape direction 
AC5 = Go 
AC6 = Parity or mark track error 
AC7 = Select error 

Symbol: Status Levels V AC0-7 = > AC0-7 

CONTROL MODES 
The seven modes of operation loaded into the function register during the MMLF 
command are used as follows: 

Move: Initiates movement of the selected transport tape in either direction. Mark 
channel errors are inhibited in this mode. 

Search: As the tape is moved in either direction, sensing a block mark causes both 
the data flag and the DT flag to rise. The data flag causes a computer data break 
to deposit the block number in core memory at the address held in MAC. The DT flag 
initiates a program interrupt to cause the program to jump to a subroutine which is 
responsible for checking the block numbers by using either the block number stored 
during this operation or by counting the number of times the DT flag rises. 

Read Data: A block of data is read in either direction, the data flag rises to cause a 
data break each time a 12-bit word is to be transferred, and the DT flag is raised to 
initiate a program interrupt at the end of the data block. The program is responsible 
for controlling tape motion at the end of a block transfer and must stop motion or 
change the content of the function register when the DT flag rises. The transport 
continues reading until taken out of the read data mode. 

Read All Bits: In this mode of operation the three information channels in data blocks 
and interblock zones are continuously read and transferred to the computer. This mode 
is similar to the read data mode except that the DT flag rises each time the data flag 
rises. The read all bits mode is used to read an unusual tape format which is not 
compatible with the read data mode. The DT flag is inhibited from causing a program 
interrupt in this mode 

Write Data: A block of data is written on tape in either direction, the data flag is raised 
to effect each transfer, and the DT flag is raised at the end of the block as in the read 
data mode. 

Write All Bits: This special mode of operation is used to write information at all posi
tions, disregarding blocks (such as in writing block numbers). The mode is similar to 
the read all bits mode for writing. The DT flag does not cause a program interrupt in 
this mode. 

Write Mark and Timing: Ths mode is used to write on the timing and mark channels 
to establish or change block length. 

PROGRAMiM,ED OPERATION 
Prerecording of a reel of DECtape, prior to its use for data storage, is accomplished 
in two passes. During the first pass, the timing and mark channels are placed on the 
tape. During the second pass, forward and reverse block mark numbers, the standard 
data pattern, and the automatic parity checks are written. Since part of the data word 



must be reserved to produce the mark channel, it is impossible to write intelligent data 
in the information channels at the same time. For this reason, the two passes are re
quired. Prerecording utilizes the write timing and mark channel control mode and a 
manual switch in the control which permits writing on the timing and mark channels, 
activates a clock which produces the timing channel recording pattern, and enables 
flags for program control. Unless both this control mode and switch are used simul
taneously, it is physically impossible to write on the mark or timing channels. A red 
indicator lights on all transports associated with the control when the manual switch is 
in the "on" position. Under these conditions only, the write register and write amplifier 
used to write on information channel O (bits 0, 3, 6, and 9) is used to write on the 
mark channel. 

Two PDP-8 IOT microinstructions initiate operation of the DECtape system: the first 
(MMM M) loads the select register, motion register, and function register by means 
of instruction 6757 (combining MMLS, MMLM, and MMLF) and the second command 
(MMML is 6766, combining MMCC and MMLC) loads the MAC with the core memory 
address to be used to store the block number during searching. After initiating opera
tion of the DECtape system, the program should always check for errors immediately 
by means of the MMSC instruction. This instruction should also be used at the conclu
sion of each transfer. A program should always start the DECtape system in the 
search mode to locate the block number selected for a transfer, then when the block 
number has been located the transfer is accomplished by loading the function register 
with the read data or write data mode. 

In searching, each block number is read by the transport and is transferred to the 
control. The control raises the OT flag upon receipt of each block number and stores 
the number in the computer core memory at the address contained in MAC. The 
computer program, then samples the OT flag and either counts the number of blocks 
passed or reads the block number from core memory and compares it with the number 
it is seeking. The results of the data obtained in this way are used to further control 
the search operation. Upon determining that the forthcoming block is the one selected 
for a data transfer, the program loads the function register with either the read data 
or write data mode. Entering another mode discontinues the search mode. The starting 
address to be used for the first core memory address of the transfer is then set into 
the MAC by the computer. 

When the start of the data position of the block is detected the data flag is raised to 
initiate a data break each time the DECtape system is ready to transfer a 12-bit word. 
Therefore, the main computer program continues running but is interrupted approxi
mately every 133113 microseconds during a data break for the transfer of a word. 
Transfers occur between DECtape and successive core memory locations, commencing 
at the address previously set into MAC. The number of words transferred is determined 
by the size of the selected tape block. At the conclusion of the block transfer the 
OT flag is raised and a program interrupt occurs. The interrupt subroutine checks the 
DECtape error flag to determine the validity of the transfer and either initiates a 
search for the next information to be transferred or returns to the main program. 

During all normal writing transfers, a checksum (the 6-bit exclusive OR of the words 
in the data block) is computed automatically by the control and is automatically 
recorded as one of the control words in the interblock zone immediately following the 
end of the data block. This same checksum is used during reading to determine that 
the data playback and recognition takes place without error. 

107 



108 

Any one of the eight tape drives may be selected for use by the program. After using 
a particular drive, the program can stop the drive currently being used and select a 
new drive, or can select another drive while permitting the original selection to con
tinue running. This is a particularly useful feature when rapid searching is desired, 
since several transports may be used simultaneously. Caution must be exercised 
however, for although the earlier drive continues to run, no tape end detection or 
other sensing takes place. Automatic end sensing that stops tape motion occurs in 
all modes, but only in the selected tape drive. 

Whenever either the motion or select code is changed, the program must wait until 
the DT flag is set to 1 before giving another motion or selection command. In other 
words, to prevent a timing error all operations of the currently selected drive must be 
completed before issuing a new select code. 

DECtape Transport Type TU55 

and 

DECtape Control Type TC01 

A DECtape system configuration contains up to eight TU55 transports operated from 
one TC0l control. All data transfers occur between the computer and the control and 
are effected by the three-cycle data break facility. A 12-bit data buffer in the control 
synchronizes transfers between the TC0l and the PDP-8 data break facility. Data read 
from four consecutive lines on tape by the transport are assembled into 12-bit words 
by a read/write buffer in the control for transfer to the computer. Data loaded into the 
control from the computer is disassembled by the read/write buffer and supplied to 
the transport for writing on four lines of tape. 

Transfer of command and control signals between the computer and the control is 
effected by normal IOT instructions. Small registers and control flip-flops in the TC0l 
are joined to serve as two status registers for the transfer of command and control 
information with the PDP-8 accumulator. Bit assignments of these registers is indi
cated in Figure 13 and Figure 14 . 

DECTAPE TRANSPORT TYPE TU55 
The TU55 is a bidirectional magnetic-tape transport consisting of a read/write head 
for recording and playback of information on five channels of the tape. Connections 
from the read/write head are made directly to the external control which contains the 
read and write amplifiers. 

The logic circuits of the TU55 control tape movement in either direction over the read/ 
write head. Tape drive motor control is exercised completely through the use of solid 
state switching circuits to provide fast reliable operation. These switching circuits con
tain silcon controlled rectifiers which are controlled by normal DEC diode and tran
sistor logic circuits. These circuits control the torque of the two motors which transport 
the tape across the head according to the established function of the device, i.e., go, 
stop, forward, or reverse. In normal tape movement, full torque is applied to the forward 
or leading motor and a reduced torque is applied to the reverse or trailing motor to keep 
proper tension on the tape. Since tape motion is bidirectional, each motor serves as 
either the leading or trailing drive for the tape, depending upon the forward or reverse 
control status of the TU55. A positive stop is achieved by an electromagnetic brake 



mounted on each motor shaft. When a stop command is given, the trailing motor brake 
latches to stop tape motion. Enough torque is then applied to the leading motor to take 
up slack in the tape. 

Tape movement can be controlled by commands originating in the computer and 
applied to the TU55 through the TCOl DECtape Control, or can be controlled by com
mands generated by manual operation of rocker switches on the front panel of the 
transport. Manual control is used to mount new reels of tape on the transport, or as a 
quick maintenance check for proper operation of the control logic in moving the tape. 

DECTAPE CONTROL TYPE TC01 
The TCOl DECtape Control operates up to eight TU55 DECtape Transports. Binary 
information is transferred between the tape and the computer in 12-bit computer words 
approximately every 133½ microseconds. In writing, the control disassembles 12-bit 
computer words so that they are written at four successive lines on tape. Transfers 
between the computer and the control always occur in parallel for a 12-bit word. Data 
transfers use the three-cycle data break facility of the computer. As the start and end 
of each block of data are detected by the mark track detection circuits, the control 
raises a DECtape control flag (DTCF) which requests a computer program interrupt. 
The program interrupt is used by the computer program to determine the block num
ber. When it determines that the forthcoming block is the one selected for a data 
transfer it establishes the appropriate read or write function. Each time a word is 
ass~mbled or the DECtape system is ready to receive a word from the computer, the 
control raises a data flag (OF). This flag is connected to the computer data break 
facility to request a data break. Therefore, when each 12-bit computer word is assem
bled, the data flag causes a transfer via the three-cycle data break. By using the mark 
channel decoding circuits and the data break in this manner, computation in the main 
computer program can continue during DECtape operations. 

Four program flags in the control serve as condition indicators and request originators. 

DECtape Flag (OT): This flag indicates the active/done status of the current function 
and is connected to the instruction skip facility. 

Data Flag (OF): This flag requests a data break to transfer a block number into the 
computer during a search function, or when a data word transfer is required during a 
read or write function. 

DECtape Control Flag (DTCF): This flag, when enabled by a binary 1 in bit 9 of status 
register A, requests a program interrupt if either the DECtape flag or the error flag is set. 

Error Flag (EF): Detectior:i of any non-operative condition by the control sets this flag 
in status register B and stops the selected transport. The error conditions indicated 
by this flag are: 

a. Mark Track Error: This error occurs any time the information read from the 
mark channel is erroneously decoded. 

b. End of Tape: The end zone on either end of the tape is over the read head. 

c. Select Error: This error occurs a few microseconds after loading status reg
ister A to indicate any one of the following conditions: 

1. Specifyin·g a unit select code which does not correspond to any transport 
select number, or which is set to multiple transports. 

2. Specifying a write function with the WRITE ENABLED/WRITE LOCK switch 
in the WRITE LOCK position on the selected transport. 

109 



110 

3. Specifying an unused function code (i.e. AC6-8 = 111). 

4. Specifying any function except read all with the NORMAL/WRTM/RDMK 
switch in the RDMK position. 

5. Specifying any function except write timing and mark track with the 
NORMAL/WRTM/RDMK switch in the WRTM position. 

6. Specifying the write timing and mark track function with the NORMAL/ 
WRTM/RDMK switch in a position other than WRTM. 

d. Parity Error: This error occurs during a read data function if the longitudinal 
parity over the entire data word, the reverse checksum, and the checksum 
is not equa! to 1. 

e. Timing Error: This error indicates a program fault caused by one of the fol
lowing conditions: 

1. A data break did not occur within 66 microseconds of the data break 
request. 

2. The OT flag was not cleared by the program before the control attempted 
to set it. 

3. The read data or write data function was specified while a data block was 
passing the read head. 

INSTRUCTIONS 
Instructions for a TC01/TU55 system are microprogrammed commands of the PDP-8 
IOT instruction and are defined as follows: 

READ STATUS REGISTER A (DTRA) 

Octal Code: 6761 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of status register A is loaded into the accumulator by an OR 
transfer. The AC bit assignments are: 

AC0-2 = Transport unit select number 
AC3(0) = Forward 
AC3(1) = Reverse 
AC4(0) = Stop 
AC4(1) = Go 
AC5(0) = Normal mode 
AC5(1) = Continuous mode 
AC6-8 = 0 = Move function 
AC6-8 = 1 = Search function 
AC6-8 = 2 = Read data function 
AC6-8 = 3 = Read all function 
AC6-8 = 4 = Write data function 
AC6-8 = 5 = Write all function 
AC6-8 = 6 = Write timing and mark tracks function 
AC6-8 = 7 = Unused (causes a select error if issued) 
AC9(0) = DECtape control flag and error flag disabled from causing a program 

interrupt 



AC9(1) = DECtape control flag and error flag enabled to cause a program 
interrupt 

Symbol: AC0-9 V Status Register A=> AC0-9 

CLEAR STATUS REGISTER A (DTCA) 

Octal Code: 6762 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Status register A is cleared. The DECtape control and error flags are 
undisturbed. 

Symbol: 0 = > Status Register A 

LOAD STATUS REGISTER A (DTXA) 

Octal Code: 6764 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The exclusive OR of the content of bits 0 through 9 of the accumulator is 
loaded into status register A, and bits 10 and 11 of the accumulator are sampled to 
control clearing of the error and DECtape flags, respectively. Loading status register A 
from AC0-9 establishes the transport unit select code, motion control, function, and 
enables or disables the DECtape control flag to request a program interrupt as de
scribed in the DTRA instruction. The sampling of ACl0 and ACl 1 is as follows: 

ACl0(0) = Clear all error flags 
ACl0(l) = All error flags undisturbed 
ACl 1 (0) = Clear DECtape flag 
ACll(l) = DECtape flag undisturbed 

Symbol: AC0-9 V Status Register A = > Status Register A 

If ACl0 = 0, then 0 = > EF Flag 
If ACl 1 = 0, then 0 = > OT Flag 

Octal Code: 6771 

Event Time: 1 

SKIP ON FLAGS (DTSF) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of both the error flags and the DECtape control is sampled, and 
if any flag contains a binary 1, the content of the program counter is incremented by 
one to skip the next sequential instruction. 

Symbol: If EF Flag = 1 V DTCF Flag= 1, then PC + 1 = > PC 

111 



112 

READ STATUS REGISTUS B (DTRB) 

Octal Code: 6772 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of status register B is loaded into the accumulator by an OR 
transfer. The AC bit assignments are: 

AC0 = Error flag (Error flag = mark track error V end of tape V select error V 
parity error V timing error) 

ACl = Mark track error 
AC2 = End of tape 
AC3 = Select error 
AC4 = Parity error 
AC5 = Timing error 
AC6-8 = Memory field 
AC9-10 = Unused 
ACl 1 = DECtape flag 

Symbol: AC V Status Register B = > AC 

LOAD STATUS REGISTER B (DTLB) 

Octal Code: 6774 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The memory field register portion of status register B is loaded by an OR 
transfer from the content of bits 6 through 9 of the accumulator. 

Symbol: AC6-8 V Memory Field = > Memory Field 

CONTROL MODES 
The DECtape system operates in either the normal or continuous mode, as determined 
by bit 5 of status register A during a DTXA command. Operation in each mode is as 
follows: 

Normal (NM): Data transfers and flag settings are controlled by the format of infor
mation on the tape. 

Continuous (CM): Data transfers and flag settings are controlled by a word count (WC) 
read from core memory during the first cycle of each three-cycle data break; .and by 
the tape format. 

FUNCTIONS 
The DECtape system performs one of seven functions, as determined by the octal 
digit loaded into status register A during a DTXA command. These functions are: 

Move: Initiates movement of the selected transport tape in either direction. Mark 
channel decoding is inhibited in this mode except for end of tape. 



Search: As the tape is moved in either direction, sensing a block mark causes a data 
transfer of the block number. If the word count overflows (WCO) in either NM or CM, 
the DT flag is set and causes a program interrupt. After finding the first block number, 
the CM can be used to avoid all intermediate interrupts between the current and the 
,desired block number. This makes a virtually automatic search possible. 

Read Data: This function is used to transfer blocks of data into core memory with the 
transfer controlled by the tape format. In NM the DT flag is set at the end of a block 
and causes a program interrupt. In CM transfers stop when the word count overflows, 
the remainder of the block is read for parity checking, and then the DT flag is set. 

Read All: Read all is used to read tape in an unusual format, since it causes all lines 
to be read. In NM the DT flag is set at each data transfer. In CM the DT flag is set when 
WCO occurs. In either case the DT flag causes a program interrupt. 

Write Data: This function is used to write blocks of data with the transfer controlled 
by the standard tape format. After WCO occurs, zeros are written in all lines of the tape 
to the end of the current block. Then the parity checksum for the block is written. The 
DT flag rises as the in the read data function. 

Write All: The write all function is used to write an unusual tape format (e. g., block 
numbers). The DT flag raisings are similar to the read all function. 

Write Timing and Mark Track: This function is used to write on the timing and mark 
tracks. This permits blocks to be established or block lengths to be changed. The DT 
flag raisings are also similar to the read all function. This function is illegal unless a 
manual switch in the control is on. 

PROGRAMMED OPERATION 

Prerecording of a reel of DECtape, prior to its use for data storage, is accomplished 
in two passes. During the first pass, the timing and mark channels are placed on the 
tape. During the second pass, forward and reverse block mark numbers, the standard 
data pattern, and the automatic parity checks are written. These functions are per
formed by the DECTOG program. Prerecording utilizes the write timing and mark chan
nel function and a manual switch on the control which permits writing on the timing 
and mark channels, activates a clock which produces the timing channel recording 
pattern, and enables flags for program control. Unless both this control function and 
switch are used simultaneously, it is physically impossible to write on the mark or 
timing channels. A red indicator lamp on the control lights when the manual NORMAL/ 
WRTM/RDMK switch is in the WRTM position. Under these conditions only, the write 
register and write amplifier used to write on information channel 1 (bits 0, 3, 6, and 9) 
is used to write on the mark channel. This operation of prerecording need only be per
formed once for each reel of DECtape. 

There are two registers in the TCOl DECtape Control that govern tape operation and 
provide status information to the operating program. Status register A (see Figure 13) 
contains three unit selection bits, two motion bits, the continuous mode/normal mode 
bit, three function bits, and three bits that control the flags. Status register B (see 
Figure 14) contains the three memory field bits and the error status bits. PDP-8 IOT 
microinstructions are used to clear, read, and load these registers. In addition, there 
is an IOT skip instruction to test control status. 

113 



114 

ENA8LE DECTAPE 
CONTROL 

FLAG TO CAUSE CLEAR/CLEA" 
TRANSPOIIT UNIT 
SELECT NUMBl:R 

NORI\IAL/ 
CONTIIIIUOUS 

I\IOOE 
jl, PRQGRjl,M 
INTERRUPT 

DECTAPE 
FLAG 

ERROii 
FLAG 

,A--

0 

1l 

t 

,--A--.. r-"'----i ~ 

UJ ·I '-,,.--' 
FOAWAlffl,/ STOP/ 
\ 11£VERSET GO I 

'-OTION 

FUNCTION CLEAR/~ 

1a, MOVE" 
a ERROR 

'5• WR'rfE ALL \ FL.AGS 

I •SEARCH 6 • WRITE TIMING 

2 • READ DATA ANO I\IARK TIUICKS 
J • READ ALL l'• ur.lUSED !CAUSES 
4 WRtfE DATA SELECT ERROR! 

Figure 13 DECtape Status Register A Bit Assignments 

EM> OF PAIIIH I\IEMORY 0£CTAPE 
TAPE ERROR I[ D FLAG 

~ ,-->-.. I r-1'-. 

I 2 I ~ I 4 I 5 I 6 1 I e I 9 I 10 I ,, I 
'-._) "--v--' ..__., 

~ 
MAM. SELECT TIMING UNUSED 
TRACK ERROR ERROR 
ERROR 

Figure 14 DECtape Status Register B Bit Assignments 

Since all data transfers between DECtape and PDP·S memory are controlled by the 
data break facility, the program must set the word count (WC) and current address 
(CA) registers (locations 7754 and 7755 respectively) before a data break. After ini
tiating a DECtape operation, the program should always check for error conditions (a 
program interrupt would be initiated if the error flag is enabled and if the program 
interrupt system is enabled). The DECtape system should be started in the search 
function to locate the block number selected for transfer and then, when the correct 
block is found, the transfer is accomplished by programmed setting of the WC, CA. 
and status register A. 

When searching, the DECtape control reads only block numbers. These are used by 
the operating program to locate the correct block number. In NM, the DECtape flag 
is raised at each block number. In CM, the DECtape flag is raised only after the word 
count reaches zero. The current address is not incremented during searching and the 
block number is placed in core memory at the location specified by the content of the 
CA. Data is transferred to or from the PDP-8 core memory from locations specified by 
the CA register; which is incremented by one before each transfer. 

When the start of the data position of the block is detected, the data flag is raised to 
initiate a data break request to the data break facility each time the DECtape system 
is ready to transfer a 12·bit word. Therefore, the main computer program continues 
running but is interrupted approximately every 133 ½ microseconds for a data break 
to transfer a word. Transfers occur between DECtape and successive core memory 
locations specified by the CA. The initial transfer address -1 is stored in the CA by an 
initializing routine. The number of words transferred is determined only by tape format 
in NM, or by tape format and the word count in CM. At the conclusion of the data 
transfer the DT flag is raised and a program interrupt occurs. The interrupt subroutine 



checks the DECtape error bits to determine the validity of the transfer and either initi
ates a search for the next information to be transferred or returns to the main program. 

During all normal writing transfers, a checksum (the 6-bit logical equivalence of the 
words in the data block) is computed automatically by the control and is automatically 
recorded as one of the control words immediately following the data portion of the 
block. This same checksum is used during reading to determine that the data playback 
and recognition take place without error. 

Any one of the eight tape transports may be selected for use by the program. After 
using a particular transport, the program can stop the transport currently being used 
and select another transport, or can select another transport while permitting the 
original selection to continue running. This is a particularly useful feature when rapid 
searching is desired, since several transports may be used simultaneously. Caution 
must be exercised however, for although the original transport continues to run, no 
tape end detection or other sensing takes place. Automatic end sensing that stops tape 
motfon occurs in all functions, but only in the selected tape transport. 

The following is a list of timing considerations for programmed operations. (Ns = the 
number of block numbers to be read in the search function and continuous mode, 
counting through the one causing the WC0. Only the block number causing the WC0 
requests a program interrupt. No = number of words transferred -;- the number of 
words per block. If the remainder *- 0, use the next larger whole number. NA = num
ber of words transferred.) 

Operation 

Answer a data break request 

Word transfer rate 

Block transfer rate 

Start time 

Stop time 

Turn around time 

Change function from search to 
read data for the current block 
after DT flag from block number 

Change function from search to 
write data for current block 
after DT flag from block number 

Change function from read data 
to search for the next block after 
DT flag from transfer completion 

Change function from write data 
to search for next block after 
DT flag from transfer completion 

DECtape flag rises 
In continuous mode 

Move function 
Search function 
Read data function 
Read all function 
Write data function 
Write all function 
Write T & M function 

Timing 

Up to 66 microseconds, +30% 

One 12-bit word every 133 microseconds, ±30% 

One 129-word block every 18.2 milliseconds, ±30% 

200 milliseconds, ±20% 

150 milliseconds, ±20% 

200 milliseconds, +20% 

400 microseconds, ±30% 

400 microseconds, ±30% 

1133 microseconds, ±30% 

1133 microseconds, +30% 

Never 
(Ns) x (18.2 milliseconds, +30%) 
(No) x (18.2 milliseconds, +30%) 
(NA) x (133 microseconds, +30%) 
(No) x (18.2 milliseconds, ±30%) 
(NA) x (133 microseconds, +30%) 
(NA) x (133 microseconds, +30%) 

115 



116 

Operation 

In normal mode 
Move function 
Search function 
Read data function 
Read all ,function 
Write data function 
Write all function 
Write T & M function 

Timing 

Never 
Every 18.2 milliseconds, -+-30% 
Every 18.2 milliseconds, -+-30% 
Every 133 microseconds, -+-30% 
Every 18.2 milliseconds, -+-30% 
Every 133 microseconds, -+-30% 
Every 133 microseconds, ±30% 

Software 
Three types of programs have been developed as DECtape software for the PDP-8: 

a. Subroutines wbich the programmer may easily incorporate into a program 
for data storage, logging, data acquisition, data buffering (queing), etc. 

b. A library calling system for storing named programs on DECtape and a me·ans 
of calling them with a minimal size loader. 

c. Programs for preformatting tapes controlled by the content of the switch 
register to write the timing and mark channels, to writ block formats, to exer
cise the tape and check for errors, and to provide ease of maintenance. 

Program development has resulted in a series of subroutines which read or write any 
number of DECtape blocks, read any number of 129-word blocks as 128 words (one 
memory page), or search for any block (used by read and write, or to position the 
tape). These programs are assembled with the user's program and are called by a 
JMS instruction. The program interrupt is used to detect the setting of the DECtape 
flag, thus allowing the main program to proceed while the DECtape operation is being 
completed. A program flag is set when the operation has been completed. Thus, the 
program effectively allows concurrent operation of several input/output devices along 
with operation of the DECtape system. These programs occupy two memory pages 
(400s = 25610 words). 

The library system has the following features: First and perhaps foremost, the system 
leaves the state of the computer unchanged when it exits. Second, it calls programs by 
name from the keyboard and allows for expansion of the program file stored on the tape. 
Finally, it conforms to existing system conventions, namely, that all of memory, except 
for the last memory page (76008-7777 8), is available to the programmer. This conven
tion ensures that the Binary Loader program (paper tape), and/or future versions of 
this loader, can reside in memory at all times. 

The PDP-8 DECtape library system is loaded by a 17 winstruction bootstrap routine 
that starts at address 7600a. This loader calls a larger program into the 1ast memory 
page, whose function is to preserve on the tape, the content of memory from 60008 

through 7577s, and then load the INDEX program and the directory into those same 
locations. Since the informatibn in this area of memory has been preserved, it can be 
restored when operations have been completed. The basic system tape contains the 
following programs: 

a. INDEX: Typing this word causes the names of all programs currently on file 
to be typed out. 

b. UPDATE: Allows the user to add a new program to the files. Update queries 
the operator about the program's name, its starting address, and its location 
in core memory. 

c. GETSYS: Generates a skeleton library tape on a specified DECtape unit. 

d. DELETE: Causes a named file to be deleted from the tape. 



Starting with the basic library tape, the user can build a complete file of his active 
programs and continuously update it. One of the uses of the library tape may be illus
trated as follows: 

A program is written in PDP-8 FORTRAN that is to be used repeatedly. The programmer 
may call the FORTRAN compiler from the library tape and with it, compile the program, 
obtaining the object program. The FORTRAN operating system may then be called from 
the library tape and used to load the object program. At this time the library program 
UPDATE is called, the operator defines a new program file (consisting of the FORTRAN 
operating system and the object program), and adds it to the library tape. As a result, 
the entire operating program and the object program are now available on the DECtape 
library tape. 

The last group of programs, called DECTOG, is a collection of short routines controlled 
by the content of the switch register. It provides for the recording of timing and mark 
channels and permits block formats to be recorded for any block length. Patterns may 
be written in these blocks and then read and checked. Writing and reading is done in 
both directions and checked. Specified areas of tape may be "rocked" for specified 
periods of time. A given reel of tape may thus be thoroughly checked before it is used 
for data storage. These programs may also be used for maintenance and checkout 
purposes. 

117 



118 

CHAPTER 16 
AUTOMATIC MAGNETIC TAPE CONTROL 

TYPE 57A 
Functional Description 

This control buffers, compiles, synchronizes, and controls data transfers between up 
to eight magnetic tape transports and the PDP-8, using program interrupts and data 
breaks. Each transport requires a small interface circuit for connection to the control. 
The interface required and the characteristics of the transports that can be connected 
to the 57 A are: 

Transport 

DEC Type 50 
DEC Type 545 
IBM Model 72911, IV 
IBM Model 7330':' 
I BM Model 729V, VI 

Tape 
Speed 
(ips) 

75 
45 
75 
36 
112.5 

Densities 
(bpi) 

200/556 
200/556/800 
200/556 
200/556 
200/556/800 

Interface 

Type 520 
Type 521 
Type 552 
Type 552 
Type 552 

The following functions are controlled by various combinations of IOT instructions: 

Write 
Write End of File 
Write Blank Tape 
Read 
Read Compare 
Space Forward 

Space Backward 
Rewind 
Rewind/Unload 
Write Continuous 
Read Continuous 

Tape transport motion is governed by one of two control modes: normal, in which 
tape motion starts upon command and stops automatically at the end of the record; 
and continuous, in which tape motion starts on command and continues until stopped 
by the program as a function of synchronizing flags if status conditions appear. 

All data transfers are under control of the PDP-8 data break facility; and commands 
issued during a transfer control ,operate, and monitor Type 57A functions by means 
of the PDP-8 program interrupt facility. Assembled 12-bit PDP-8 data words pass 
between the computer MB and the control final data buffer register. The core memory 
address of each word transferred is specified to the computer MA by the control current 
address register. Use of the program interrupt facility allows the main computer 
program to continue during long tape operations without running in a loop which 
waits for tape flags. The program interrupt subroutine for Type 57A loads the AC 
with numbers, then issues IOT instructions to the control. Specific tape control modes 
are interpreted from the content of the AC during some IOT instructions. In addition, 
the current address (CA) register and the word count (WC) registers of the control 
a re loaded from the AC. 

Tape functions can be monitored by the program either during or at the end of an 
operation. They can be altered during operation to a limited degree. The control senses 
for several types of possible error condition throughout an operation. The results of 
this sensing can be interrogated by the subroutine at any time. 

Two crystal clocks are used to generate one of three character writing rates, depending 

*With restrictions 



on the density (200, 556, 800) specified by the program. In writing or reading, a 
composite 12-bit binary word passes between the computer and the control; that is, 
bits O through 5 constitute one tape character, and bits 6 through 11 constitute a 
second tape character. 

In normal operation, six IOT commands initiate reading or writing of one record. When 
the word count exceeds the number stored in the WC, the transport is stopped and 
the control is free for another command. In continuous operation, any number of 
records is written or read without the need for further transport commands except stop. 

The following automatic safeguards are inherent in the design of Type 57 A: 

END POINT 
If the end point is reached during reading or writing, the control ignores the end point and 
finishes the operation (ample tape is allowed). Beyond the end point tape commands 
specifying forward direction are illegal and the tape will not respond to such com
mands. If the end point is passed during spacing, the transport is shut down regardless 
of word count. 

LOAD POINT 
If the load point is reached during back spacing the transport is stopped regardless 
of word count. At load point, a space back command is legal, and the tape may be 
unloaded. When the write command is given at load point, the tape is erased 3 inches 
beyond the load point before writing the first record. After giving a read command 
at the load point, the read logic is disabled until the load point marker passes the 
read head, then the read logic is enabled. 

WRITE LOCK RING 
Without the write lock ring in the tape reel, writing is illegal and the transport will 
not respond to a write command. 

FORMAT CONTROL 
If the PDP-8 halt command is given during normal reading or read comparing, the 
tape proceeds to the end of record, and the control shuts down the transport. If a 
halt is given in continuous reading or read comparing the transport will proceed to 
end of tape and shut down. If a halt command is given in normal spacing, the trans
port will proceed to EOR and shut down. If halt is given during continuous spacing, 
the transport will proceed until WC overflows or until it senses a file marker, load 
point, or end point, then shut down. 

If halt is given during writing in the normal mode, the last word to be transferred 
is written, the rest of the record is written as zeros, and the transport is shut down. 
If halt is given during writing in the continuous mode, the record is completed; then 
zeros are written to the end of the tape. If a WC overflow occurs during a normal 
read or read compare, the transport proceeds to EOR before shutting down. 

Instructions 
The functions of Type 57A Automatic Magnetic Tape Control are controlled by combi
nations of the following IOT instructions: 

119 



120 

SKIP ON TAPE CONTROL READY (MSCR) 

Octal Code: 6701 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The Tape Control Ready signal level is sampled, and it is in the binary 1 
status, indicating the tape control is free to accept commands, the content of the PC is 
incremented by one so that the next sequential instruction is skipped. 

Symbol: If Tape Control Ready = 1, then PC + 1 = > PC 

CLEAR AND DISABLE (MCD) 

Octal Code: 6702 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The job done ·flag, command register, word count overflow (WCO) flag, and 
end of record (EOR) flag are cleared. This instruction should be immediately preceded 
by the two instructions CLA and TAD (4000) to obtain the operation indicated. Both 
the WCO and EOR flags are connected to the program interrupt facility. 

Symbol: Inhibit Job Done Flag 
0 = > Command Register, WCO, EOR 

TAPE SELECT (MTS) 

Octal Code: 6706 

Event Time: 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The job done flag is inhibited from causing a program interrupt and clear 
the WCO and EOR flags are cleared. Then select the transport unit, the mode of parity, 
and the bit density from the content of the AC. The AC bit assignments are: 

ACl(O) = High sense level 
ACl (1) = Low sense level 

AC2(0) = 200 or 556 bpi density 
AC2(1) = 800 or 550 bpi density 

AC8(0) = 200 bpi density 
AC8(1) = 556 bpi density 

AC2 AC8 Density 

0 
0 
1 
1 

0 
1 
0 
1 

200 
556 
800 
556 



AC7(0) = Even parity (BCD) 
AC7(1) = Odd parity (binary) 

AC9-ll = These three bits select one of eight 
tape units, addresses O through 7. 

Symbol: Inhibit Job Done Flag 
0 => WCO, EOR 
ACl-11 = > Select Status 

Octal Code: 6711 

Event Time: 1 

SKIP ON TAPE UNIT READY (MSUR) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The selected tape transport ready (TTR) status is sampled, and if the 
transport is ready the content of the PC is incremented by one and the next instruction 
is skipped. The selected unit must be free before the following MTC command is given. 

Symbol: If TTR = 1, then PC + 1 = > YPC 

TERMINATE CONTINUOUS MODE (MNC) 

Octa/Code: 6712 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The CONTINUE flip-flop in the control is cleared to establish the Normal 
mode of operation, then the AC is cleared. This command should be immediately 
preceded by CLA and TAD commands to load the AC with the number 4000 to obtain 
the operation indicated. 

Symbol: 0 ==>CONTINUE, AC 

LOAD TAPE COMMAND (MTC) 

Octal Code: 6716 

Event Time: 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The tape command register is loaded from the content of bits 3 through 
6 of the AC. Bit 6 selects the motion mode and bits 3 through 5 are decoded as follows: 

AC6(0) = Normal 
AC6(1) = Continuous 

AC3-5 = 0 = No operation 
1 = Rewind 
2 = Write 
3 = Write end of file (EOF) 
4 = Read compare 
5 = Read 
6 = Space forward 
7 = Space backward 

Symbol: AC3-6 = > Tape Command Register 

121 



122 

SKIP ON WCO FLAG (MSWF) 

Octal Code: 6721 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the word count overflow (WCO) flag is sensed, and if it con
tains a 1 the content of the PC is incremented by one so the next instruction is skipped. 

Symbol: If WCO = 0, the PC + 1 = > PC 

DISABLE THE WCO FLAG (MDWF) 
Octal Code: 6722 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The WCO flag is inhibited from causing a program interrupt. 

Symbol: None 

CLEAR WCO FLAG (MCWF) 
Octal Code: 6722 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The WCO flag is cleared. This instruction should be immediately preceded 
by commands that load the number 2000 into the AC to obtain the indicated operation. 

Symbol: 0 = > WCO 

ENABLE WCO FLAG (MEWF) 
Octal Code: 6722 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The WCO flag is enabled to cause a program interrupt upon word count 
overflow. To obtain this operation the MEWF command must be immediately preceded 
by a sequence that loads the number 4000 into the AC. 

Symbol: None 

INITIALIZE WCO FLAG (MIWF) 
Octal Code: 6722 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The WCO flag is initialized. To obtain the operation the MIWF command 
must be immediately preceded by commands that load the number 6000 into the AC. 

Symbol: None 



SKIP ON EOR FLAG (MSEF) 

Octal Code: 6731 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the EOR flag is sensed, and if it contains a 1 the content of 
the PC is incremented by one so the next instruction is skipped. 

Symbol: If EOR = 1, then PC + 1 = > PC 

DISABLE ERF FLAG (MOEF) 

Octal Code: 6732 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Operation of the ERF flag is inhibited. 

Symbol: None 

CLEAR THE ERF FLAG (MCED) 

Octal Code: 6732 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The ERF flag is cleared to O in preparation for returning to the main pro
gram from the program interrupt subroutine. This command must be immediately 
preceded by commands that load the number 2000 into the AC to obtain the indi
cated operation. 

Symbol: 0 = > ERF 

Octal Code: 6732 

Event Time: 2 

ENABLE ERF FLAG (MEEF) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The ERF flag rs enabled. This command must be immediately preceded by 
commands that load the number 4000 into the AC to obtain the indicated operation. 

Symbol: None 

123 



124 

INITIALIZE ERF FLAG (MIEF) 

Octal Code: 6732 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The ERF flag is initialized by clearing and enabling. This command must be 
immediately preceded by commands that load the number 6000 into the AC to obtain 
the operation indicated. 

Symbol: None 

READ TAPE STATUS (MTRS) 

Octal Code: 6734 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The condition of tape status levels is loaded into the AC. This command 
must be immediately preceded by a command that clears the AC to obtain a valid 
information transfer. The AC bit assignments are: 

AGO = Data request late 
ACl = Tape parity error 
AC2 = Read com pa re error 
AC3 = End of file flag set 
AC4 = Write lock ring out 
AC5 = Tape at load point 
AC6 = Tape at end point 
AC7 = Tape near end point (Type 520) 
AC7 = Last operation write (Type 521 and 522 interfaces) 
AC8 = Tape near load point (Type 520) 
AC8 = Write echo (Type 522 interface) 
AC8 = B control using transporting (Type 521 interface 

with multiplex transport) 
AC9 = Transport rewinding 

AClO = Tape miss character 
ACl l = Job done flag interrupt 

Symbol: Status Levels = > AC0-11 

CLEAR CURRENT COUNT (MCC) 

Octal Code: 6741 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The current address register (CA) and word count register (WC) are both 
cleared. 

Symbol: 0 = > CA, WC 



READ WORD COUNT (MRWC) 

Octal Code: 6742 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the AC is transferred into the word count register. 

Symbol: AC = > WC 

READ CURRENT ADDRESS (MRCA) 

Octal Code: 6744 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the current address register is transferred into the AC. This 
command does not clear the AC and must be preceded by a command that clears the 
AC to obtain a valid information transfer. 

Symbol: CA V AC = > AC 

LOAD CURRENT ADDRESS (MCA) 

Octal Code: 6745 

Event Time: 1, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The current address register and word count register are both cleared, then 
the content of the AC is transferred into the current address register. 

Symbol: 0 = > CA, WC 
AC=> CA 

Programming 

The following seven control mod~s are programmed in use of the Type 57 A: 

WRITE NORMAL 

One of two characters, N words and one or two characters, or N words can be written 
in BCD mode. When writing BCD, convert all characters (OOs) to (12s). The WCO flag 
is set during the writing of the next to last word in a record. In a one-word transfer 
only, the WCO flag is set before the data transfer begins. The ERF flag is set when the 
EOR (check character) is written. Parity is read and compared while writing. 

The data request late bit will be set if the PDP-8 does not transfer a new word to or 
from the control before another data request is given. When a 522 interface is being 
used, a write echo status appears if the character zero (OOs) is written BCD. 

125 



126 

WRITE END OF FILE (EOF) 

The end of the marker is written 17, BCD. It is automatically detected during reading or 
spacing. One instruction, MTC, initiates this operation, carries it out, and stops the 
transport WCO does not occur. The ERF flag is set when the EOR (check character) 
is detected. CA and WC are not modified. 

WRITE BLANK TAPE 

To write three inches of blank tape, the program gives a write EOF command and 
then a space backward command. In either case CA and WC are not modified. 

READ NORMAL 

One or two characters, N words and one or two characters, or N words can be read 
in either parity mode. The WCO flag is set during the record when the specified word 
count is exceeded. The ERF flag is set when the EOR (check character) is detected. 
Parity errors may be read by examining the appropriate tape status bit. 

When reading in BCD mode, convert all 128 to 00 8 • When readin in binary mode 
and an EOF is detected, the parity error status bit will be set. If while reading, 
a character does not appear within the allotted time, the miss character status bit 
will be set. 

READ COMPARE 

Words from tape may be compared against consecutive on non-consecutive locations 
in core memory for equality. An inequality sets the read compare error flag and the 
CA holds the location of the inequality. Read compare is like read, except that WCO 
occurs before the last word is compared. The ERF is always set at EOR. Should WCO 
occur before EOR, the ERF will be set upon comparison of the last word and at EOR. 

SPACE 

Spacing forward or backward one record is automatic and does not modify the CA 
or WC. Spacing N records in either direction can be done on the Continuous mode, and 
continues until a WCO occurs or EFF is encountered, whichever comes first. If CA 
is cleared initially, it will contain the record count and may be examined by the pro
gram. The program may command stop prematurely with MNC, after which the tape 
stops as soon as EOR is seen. The parity error flag will be set if a parity error is detected. 

REWIND, REWIND/UNLOAD 

Rewind and rewind/unload do not require the use of CA, WC, data interrupt mode, or 
program interrupt mode. Rewind/unload is selected by specifying rewind and Con
tinuous mode. The transport will not respond to a forward command for 12 milliseconds 
after the tape has been rewound and stopped at load point. 



All operations begin with the program events indicated in the following basic program 
sequence. When the main program branches to this sequence (having received for 
example, a high priority data break request from the tape control), the control and 
transport are interrogated for availability (MSCR, MSUR) and if ready are instructed to 
carry out the specified task (MTS, MTC). If the task is one of the eight listed in the 
instruction list under MTC, the MSCR instruction completes the program sequence; 
if not, the program branches at BEGIN to another routine (write, read, etc.), returning 
afterwards to WAIT in the basic program. 

BEGIN, 

WAIT, 

MSCR 

JMP.-1 

CLA 

TAD (IA - 1 

MCA 

CLA 

TAD (- N + 1 

MRWC 

CLA 

TAD ( 

MTS 

MSUR 

JMP.-1 

MTC 

MSCR 

JMP.-1 

HLT 

/SKIP IF TAPE CONTROL FREE 

/TAPE CONTROL NOT FREE, JUMP BACK TO 
/MSCR INSTRUCTION 

/LOAD AC WITH INITIAL ADDRESS MINUS ONE 

/TRANSFER AC TO CA 

/LOAD AC WITH COMPLEMENT OF NUMBER OF 
/WORDS TO BE TRANSFERRED PLUS ONE 

/TRANSFER AC TO WC 

/LOAD AC WITH SELECTED INFORMATION':' 

/TRANSFER AC TO CONTROL WITH PARITY 
/DENSITY AND UNIT NUMBER 

/SKIP IF TAPE TRANSPORT READY 

/TRANSPORT NOT READY, JUMP BACK TO 
/MSUR INSTRUCTION 

/TRANSFER AC TO CONTROL WITH COMMAND 
/AND TAPE MOTION MODE 

/WAIT FOR TAPE FUNCTION TO COMPLETE 

/TAPE FUNCTION NOT COMPLETE, JUMP 
/BACK TO MSCR 

/OPERATION COMPLETION 

When programming in the interrupt mode, the TCR flag causes an interrupt in the 
operating program and the flag may be tested by using the MSCR instruction. The 
TCR flag must be cleared with the MCD command before dismissing the interrupt. 
WCO and ERF flags must be disabled before dismissing the interrupt with the option 
of clearing or not clearing the flags. 

127 



128 

CHAPTER 17 

MAGNETIC TAPE SYSTEM TYPE 580 
The Magnetic Tape System Type 580 is a semi-automatic data storage system that 
can be used with the PDP-8. One tape control and one magnetic tape transport con
stitute the Type 580 system. Data transmission is under program control, while the 
timing of motion delays, end-of-record delays, write clock pulses, etc., is automatic. 
Densities are 200 and 556 bits per inch (selected by program), and maximum transfer 
rate is 25,000 characters per second. Format is compatible with IBM NRZI in either 
binary or BCD parity mode. 

The control contains a 12-bit data buffer, which accumulates the data word in both 
reading and writing, and a 9-bit command register. All commands, data, and status 
indications are transferred to or from the computer accumulator. 

The system performs the following functions: 

Write 
Read forward 
Read reverse 
Space forward (one or N records) 
Space reverse (one or N records) 
Rewind 
Write real time (one word at a time) 
Read real time (one word at a time) 

These functions are specified by the presence or absence of ones in the accumulator 
as shown in the following list: 

ACI (0) = Sets the SPACE flip-flop 

AC3(1) = Sets the GO flip-flop 

AC4(1) = Establish write function 

AC5(0) == Establish even parity (BCD) 
AC5(1) = Establish odd parity (binary) 

AC6(1) = Establish read function 

AC7(0) = Establish the reverse direction 
AC7(1) = Establish the forward direction 

AC8(0) = Select density of 200 BPI 
AC8(1) = Select density of 556 BPI 

ACI0(l) = Set rewind 
ACll(l) = Set the REAL TIME flip-flop 

When the desired function has been encoded in the accumulator, an IOT instruction 
is given to initiate the pulses that carry out the function. There are nine IOT micro
instructions for the Type 580 system, as follows: 



TAPE SYSTEM INITIALIZE FUNCTION AND MOTION (TIFM) 

Octal Code: 6707 

Event Time: 1, 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: All tape control registers are cleared, the command register is loaded from 
bits 1 through 11 of the AC, and motion delays are initiated. The bit assignments of 
the command register are: 

ACl = Space 
AC3 = Go 
AC4 = Write 
AC5 = Parity mode (0 = even, 1 = odd) 
AC6 = Read 
AC7 = Direction (0 = reverse, 1 = forward) 
ACS = Density (0 = 200 BPI, 1 = 556 BPI) 

AClO = Rewind 
ACll = Real time 

Symbol: 0 = > All Control Registers 
ACl-11 =>Command Registers 

Octal Code: 6715 

Event Time: 1,3 

TAPE SYSTEM READ (TSRD) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Clear the AC, then load the AC from the content of the data buffer (DB) 
and clear the data flag. 

Symbol: 0 = > AC 
DB=> AC 
0 = > Data Flag 

TAPE SYSTEM WRITE (TSWR) 

Octal Code: 6716 

Event Time: 2, 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: Clear the data buffer, then load the data buffer from the content of the AC 
and clear the data flag. 

Symbol: 0 = > DB 
AC=> DB 
0 = > Data Flag 

129 



130 

SKIP ON TAPE SYSTEM DATA FLAG (TSDF) 

Octal Code: 6721 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the data flag is sampled, and if it contains a 1 the content of 
the PC is incremented by one so the next instruction is skipped. 

Symbol: If Data Flag = 1, then PC + 1 = > PC 

SKIP ON TAPE SYSTEM END OF RECORD FLAG (TSSR) 

Octal Code: 6722 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The end of record (EOR) flag is sensed, and if it contains a binary O the 
content of the PC is incremented by one so the next instruction is skipped. The data 
flag is also sensed, and if it contains a binary 1 the next instruction is skipped. 

Symbol: If EOR = 0 or if the Data Flag = 1, then, PC + 1 = > PC 

TAPE SYSTEM STOP DATA TRANSFER (TSST) 

Octal Code: 6724 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: This instruction is issued following transmission of the last character in 
a record. It initiates tape shut down procedures such as writing the longitudinal parity 
bit, end of record mark, and the 0.75-inch inter-record gap. It also clears the SPACE 
flip-flop, when the correct number of records to be spaced has been reached. 

Symbol: None 

TAPE SYSTEM READ STATUS (TSRS) 
Octal Code: 6734 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the status register is transferred into the AC. The bit 
assignments are: 

ACO(l) = Parity error 
ACl (1) = Motion delay set 
AC2(1) = Transport is ready 
AC3(1) = Clock delays set 
AC4(1) = End of tape 
AC5(1) = Tape at load point 

Symbol: Status Register = > AC0-5 



TAPE SYSTEM WRITE REAL TIME (TWRT) 

Octal Code: 6731 

Event Time: 1 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: One character is written on tape. This instruction can be used at any 
frequency and therefore determines the density of information written on tape. 

Symbol: None 

TAPE SYSTEM CLEAR PROGf:AM INTERRUPT (TCPI) 

Octal Code: 6732 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The status of the program interrupt flag in the control is sampled, and if it 
is a 1 (indicating that the 580 system caused a program interrupt) the content of the 
PC is incremented by one so that the next sequential instruction is skipped. This com
mand clears the program interrupt request flag during a space operation and clears 
the STOP flip-flop. 

Symbol: If Program Interrupt Request Flag = 1, then PC + 1 = > PC 
0 = > Program Interrupt Request Flag, STOP flip-flop 

The following instruction sequence is an example of a routine to write data, and 
assumes that a previous portion of the program has tested the status of the 580 and 
that it is ready, etc. 

/CENTRAL LOOP OF A WRITE DATA ROUTINE 

WRT, 

TWl, 

TW2, 

TW3, 

CLA 
TAD I AUTO 
TMP TW2 

CLA 
TAD I AUTO 
TSDF 
JMP .- 1 

TSWR 
TSZ CNTR 
JMP TWl 

CLA 
TSRS 
TSDS 
JMP .- 1 
TSST 

/GET Fl RST WORD 
/VIA AUTO INDEX REGISTER 
/GO TO A WRITE INSTRUCTION 

/WAIT FOR THE DATA FLAG 

/WRITE 
/COUNT THE NUMBER OF 
/WORDS TO BE WRITTEN 

/READ STATUS 
/WAIT FOR LAST 
/WORD TO BE WRITTEN 
/STOP DATA 

131 



132 

The following instruction sequence indicates the core of a subroutine to read data 
from the Type 580 system. As such, this routine is unencumbered with initializing 
and testing operations, and presents the basic commands used with the tape system. 

/CENTRAL LOOP OF A READ DATA ROUTINE 

RED, 

TRI, 

TR2, 

TR3, 

CLL CML 
TSDF 
JMP .- 1 
JMP TR2 

TSSR 
JMP .- 1 
TSDF 
JMP TR3 

TSRD 
SZL 
DCA I AUTO 
I SZ CNTR 
JMP TRl 
CLL 
JMP TRl 

CLA 
TSRS 

/SET THE LINK 
/WAIT FOR FIRST CHAR. OR 
/WORD TO ENTER BUFFER 
/GO TO A READ INSTRUCTION 

/SKIP IF END OF RECORD 
/OR A DATA FLAG 
/SKIP IF DATA FLAG = 1 
/END OF THE RECORD 

/READ 
/IF LINK SET 
/STORE IN MEMORY VIA AUTO INDEX 
/COUNT THE WORDS STORED 

/CLEAR LINK TO INHIBIT 
/STORAGE 

/READ STATUS 



CHAPTER 18 

DATA COMMUNICATION SYSTEMS TYPE 680 

A data communication system consists of a PDP-8 computer with a Data Line Interface 
Type 681 option, a Serial Line Multiplexer Type 685. and other equipment connected 
to form a message switching system or to form a data link between serial data trans
mission equipment and a larger computer. As a message switching system, the 680 
system transmits and receives data with up to 128 local or distant Teletype units. As 
a data link, the 680 system is an economical device for buffering, formatting, and trans
ferring information between a computer and Teletype or other serial processing equip
ment operating at one or more data speeds. Assuming only minor data handling before 
transmission to the larger computer, a 680 system can handle up to 128 5-bit Teletype 
lines at SO baud. Although the 680 system programming has provision for handling 
only Teletype lines, programs to pack and unpack massages for other equipment are 
easily written. 

Software for the 680 system is designed to concentrate Teletype data in serial bit 
format. Although Teletype format is assumed, other data transmission formats that 
present information in serial format can be used. Subroutines, as presently written, 
are designed for the 8-bit Teletype code, the 5-bit Teletype code, or a combination of 
both codes. They also handle mixed speeds on either 8-bit or 5-bit lines with minor 
changes. Full duplex lines are assumed, but the subroutines operate with half duplex 
lines, providing the user handles the expected echo. 

A Data Communication System Type 680 hardware configuration varies according to 
the number, type, and distribution of the Teletype units it contains, and upon the use 
made of the system. Figure 15 shows the basic 680 system configuration, assuming 
15 lines: eight local lines, and seven remote lines. 

PDP-8 

r~-;C"".-
1 INTERFACE 

L __ &~'--

II LOCAL LNIES 

SERIAL L!NE _ ........ _____ MATRICON 

~ULf tPLEHR I A\TCH 
ee~ I PANEL 

II.IP TO , 68• I 
154 LINESI I (OPTIONAL) I 

I LIN!: CARRIES 
ALL LOCAL ANO 
R[MOT£ SIGNALS 

7 R£11ikJT£ LIN[S 

I 
I 
I 
I 
I 

TELETYPE 
CONNECTOR 

PANEL 
681! 

TELEGRAPH 
LEVEL 

CONVERTER 
683 

Figure 15 Data Communication System Block Diagram 

LOCAL 
TTV 

LINES 

RDIOTI! 
TTY 

LINES 

133 



134 

Teletype signals from remote stations are transmitted and received by a Telegraph 
Level Converter Type 683. Interface for local units is provided by a Teletype Connector 
Panel Type 682. Teletype signals for each station run from the 682 or 683 to a Serial 
Line Multiplexer Type 685. A Matricon Patchboard Type 684 also provides manual 
selection of channel connections between the 683 and 685. The 685 consists of a 
multiplexer for Teletype lines and a clock that causes a program interrupt at a rate 
eight times the line baud frequency. Single line connections are made between the 
685 and the Data Line Interface Type 681, and between the 685 and the normal 
computer interface. The Type 681 option provides an output instruction to transfer 
Teletype information from the accumulator to the 685 and provides an input instruction 
to read Teletype information directly into the computer core memory from the 685 . 
AU Teletype information transfers occur serially, one bit at a time. 

In any serial data transmission system a word consists of an indication that character 
transmission is about to start, several bits that specify a character code, and an indica
tion that the character is done. Figure 16 shows the format of 11-unit code Teletype 
words as a typical word format used in serial data transmission. In such a system, 
the device receiving the word signal must determine the bit sampling time so that 
information is transferred reliably, even though the digital information signal is severely 
integrated (pulse rise and fall times increased and pulses rounded) due to trans
mission path impedance, and even though no synchronization is provided between 
sending and receiving units or between information on different lines. In addition, 
jitter (time displacement) of the information signal caused by the mechanical CQntact 
nature of the equipment originating the signal, must be considered when determining 
the strobe time. 

110 IAUD LINE 
ll•UNIT CODE 
l•IIT CHAIIACTDI COOE 

r .... u .. ,, ..... 

pa,n 1 2 l 4 5 6 7 I STDP .... "K 1 =u,..-..... M·T--,.--T--T-""'[-r-· l" 
: 1 I : '" J • 1 

l"ACE O - - ---"•-J.-- - -1--.A.-- -..L-...1 L 
I CHARACTEII IIITS 

610 tLOC1t 11111111 -1c . 
!I )I BAUD UNIT lt&T£ 

START IIIT • t UNIT 19.0tO MlU.ISECOIIIDSI 
CHAIIACTElt IJT11 • 1 UNIT EACH 

OR EYER'r t.lH IIILI.IRCOIIIDII STDP IIT • 2 UNIT I 

Figure 16 Typical Teletype Line Timing 

The Data Communication System Type 680 uses a clock which operates at eight times 
the bit rate of information on the signal line to determine the sampling time. By count
ing pulses from this clock, strobe time in receiving and bit timing m transmitting can 
be controlled within 12.5 percent. Character transmission and reception in the 680 
system is controlled by a combination of the hardware and software, providing the 
most flexibility and economy. This clock in the Serial Line Multiplexer Type 685 
requests a program interrupt eight times during each character bit. The program 
interrupt subroutine counts the clock pulses and strobes a received bit after four clock 



pulses have occurred since the line became active, thus assuring that the bit is 
sampled after the middle of the pulse and within 12.5 percent of the center of the 
pulse. In like manner, clock pulses are counted by the program interrupt subroutine 
to transmit a bit after eight clock pulses have occurred. 

Data Line Interface Type 681 

The Type 681 option of the PDP-8 enables use of the computer with a Data Com
munication System Type 680. The Type 681 option controls and executes transmission 
and reception of Teletype information between the computer and the Type 680 system. 
Installation of a Type 681 option in a PDP-8 system adds a Teletype In (TTI) and a 
Teletype Out (TTO) instruction to the instruction repertoire, and adds two major states 
to the processor major state generator. The Status (S) and Character (C) states are 
entered in executing the complex Teletype In instruction. 

The TTI and TTO instructions transfer one bit of a Teletype character between the 
computer and the Serial Line Multiplexer Type 685. These instructions are executed 
in subroutines entered through the program interrupt subroutine. These subroutines 
are responsible for determining when a character is completely assembled in the char
acter assembly word (CAW), and for any relocation or translation of assembled char
acters. Characters are always assembled so that the last bit transmitted shifts into the 
most significant bit of the CAW and preceding bits are loaded into less significant bits 
of the CAW, regardless of the Teletype code or transmission path being used. 

Teletype In is a complex memory reference instruction which deals with the incoming 
Teletype line and with two core memory locations. The two locations addressed by 
the TTI instruction are the next two successive locations following it. These locations 
contain a line status word (LSW) and a character assembly word (CAW), respectively, 
so the following sequence is established: 

Address 

y 

Y+l 
Y+2 

Content 

TTI 
LSW 
CAW 

Bits in the LSW are assigned to record the active/inactive status of the line and serve 
as a real time clock which determines when line sampling should take place. The 
format of the LSW is: 

Not Used 

0 1 2 3 4 5 6 7 8 9 10 11 
___,,_____ 
Active Count 

The CAW stores partially assembled characters. Individual bits on the incoming line 
enter the most significant bit (bit 0) and are shifted towards the less significant bit 
(to the right) during the assembly process. 

The TTI instruction is normally executed following a program interrupt caused by the 
clock in the multiplexer. Figure 17 shows the flow diagram of the TTI instruction. 

135 



136 

FETCH CYCLE 
!ADDRESS TT I IN Y) 

INCREMENT 
LI NE REGISTER 

STATUS CYCLE 
!ADDRESS LSW IN Y+ll 

,---
1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 

INCREMENT 
LINE STATUS 
WORD {REAL 

TIME CLOCK IN 
LOCATION Y+1J 

_____ _J 

MBo,o !INACTIVE) 

ENTE 
NEXT 

F 

CHARACTER CYCLE 
{ADDRESS CAW IN Y+2) 

,- -

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SHIFT CHARACTER 
I IN LOCATION Y+2) 

RIGHT ONE POSITION 
AND ENTER LINE 

VALUE INTO BIT 0 
OF CHARACTER 

L __ ___ _J 

Figure 17 Teletype In Instruction, Flow Diagram 

Execution of the TTI instruction causes the next location in memory to be read and 
examined. This location contains the LSW. The first bit examined is the active bit 
(bit 0). If bit O contains a 0, indicating that the line was inactive when last tested, 
the current content of the line will be set into the active bit. That is, if a start bit 
is currently being received, the active indicator bit will be set to 1. If no start bit is 
being received it remains a 0. In either event the character assembly word is skipped 
over and the next instruction will be executed. Should examination of the active bit 
indicate that the line is already active, the count portion of the LSW is incremented by 
one and, unless the resulting count equals 4, the CAW is skipped. When the count 
becomes equal to 4, indicating that four clock interrupts have been received since 
the line first became active or that 4/8 of a bit time has elapsed so the center of the 
bit has been reached and it should be sampled. Thus the character assembly word is 
read, its content is shifted right one position, and the bit presently being received 
on the line is set into the leftmost position of the CAW. After the first bit has been 
received eight clock periods occur before the count is again equal to 4 and thus each 
bit in the serial train is sampled within 12.5 % of the center of the bit. 

The Teletype Out instruction affects only the content of the accumulator and the out
going line. It is executed during a single memory cycle. It shifts the content of the 
accumulator one position to the right and transmits the least significant bit on the 
outgoing line_ Since a bit is transmitted every time this instruction is executed it 
should be programmed to occur only after eight clock interrupts have been received 
si nee the last output. 

These instructions are used only in subroutines and are not used in the main program. 
The following explanation of their use is for description only. 

The Teletype In command brings the bits coming over the line into memory and 
assembles the bits into one Teletype character. The TTI command uses three memory 
locations as follows: 



TTI 
0 /status and counter word (LSW) 
2000 /character assembly word (for 8-bit code) (CAW) 

The program then returns to TTI + 3 

The character assembly word is preset so that 1 appears in bit 11 when the entire 
character, including one stop bit, has been shifted in. The subroutines, finding a 1 in 
bit 11, assume that an entire character has been read, place the character in its own 
internal buffer together with the line number it came from, and reinitializes the TTI 
command by resetting the line status word to O and the character assembly word to 
the proper number. At each clock pulse the program only checks 1/8th of the lines 
(1/4 for 5-bit codes) for completion. 

Unlike the TTO command, the TTI command is executed for all lines at each clock
produced program interrupt. However, once the incoming character is started (i.e., 
bit O of the LSW = 1) the first bit (the start code) is read at the fourth pulse and each 
succeeding bit is read at the eighth pulse thereafter, thus guaranteeing that the bit 
is read at the optimum time. 

The Teletype Out command shifts the content of the accumulator right one position, 
sends the previous content of bit 11 to the Teletype line specified by the line select 
register, and brings a O into bit O of the accumulator. The program sequence to trans
mit a word from core memory to a Teletype unit might be as follows: 

TAD CHAR 
TTO 
DCA CHAR 

/GET CHARACTER TO TRANSMIT 
/SHIFT AND TRANSMIT ONE BIT 
/SAVE REMAINDER OF CHARACTER 

This sequence assumes that the line select register has been loaded with the correct 
line number using commands for the Serial Line Multiplexer Type 685. 

Serial Line Multiplexer Type 685 
The 685 is simply a switch which allows the 681 to be connected to any one of 64 
Teletype lines. To select a line, the accumulator is set to the number of the desired 
line, and its content is then transferred into the line select register of the 685 by an 
IOT command. The line select register (LSR) may be loaded at any time with a program
selected address, or can be incremented by a command which may be micropro
grammed with the TTI or TTO instructions to scan all lines in numbered sequence. 
Incrementing is used for high-speed sequential scans. This unit also contains a flip-flop 
for each outgoing line. This flip-flop is set or cleared by a TTO instruction and holds 
the line in the proper state until the next TTO instruction is executed. 

Instructions 
All instructions for the 680 system contain an operation code of 6, indicating that 
they are IOT commands. Commands which are associated with the 681 transfer one bit 
of a character with the computer and have a select code of 40. These commands are 
functionally memory reference instructions used to perform an input/output transfer 
operation. Commands associated with the line select register of the 685 use select 
codes 40 and 41. Commands associated with the clocks of the 685 use select code 
42 through 45. All commands using select codes of 41 and 42 use the IOP pulses 
and are true IOT instructions. The instructions for the 680 system are: 

137 



138 

TELETYPE INCREMENT (TTINCR) 

Octal Code: 6401 

Event Time: Not applicable in the normal sense of IOT event times. However 'it can be 
considered event time 1, si nee it is executed before al I other operations in the TTI 
or TTO commands with which it can be combined. 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds when performed individually, or equal to the execu
tion time of other commands when microprogrammed. 

Operation: The content of the line select register (LSR) in the Serial Line Multiplexer 
is incremented by one to address the next sequentially numbered line unit. This 
operation occurs at Tl time of the Fetch cycle. 

Symbol: LSR + 1 = > LSR 

Octal Code: 6402 

Event Time: Not applicable 

Indicators: IOT, FETCH 

TELETYPE IN (TTI) 

Execution Time: 3.0 or 4.5 microseconds 

Operation: Three core memory locations are required by the TTI instruction. The first 
location contains the TTI instruction, and the two succeeding locations contain a line 
status word (LSW) and a character assembly word (CAW), respectively. Bit 0 of the 
LSW records the active/inactive status of the selected Teletype line, and bits 9 through 
11 of the LSW serve as a real time clock to determine the bit assembly time for the 
CAW. Both of these words should be cleared prior to the first use of the TTI instruction 
in a subroutine. The TTI instruction checks the status of the selected line and the 
number in the real time clock. If the line is active and the clock indicates the center 
of a bit has passed, one bit of the Teletype line is shifted into the CAW. 

The TTI instruction is executed in two or three computer cyles. The first cycle is in the 
Fetch state to read the instruction from core memory and to establish the next sequen
tial core memory location as the address to be read during the next cycle. By placing 
a 1 in bit 11, this instruction can be microprogrammed to increment the content of 
the flip-flop line register of the Serial Line Multiplexer Type 685 during the Fetch cycle. 

The second cycle is a Status state in which the LSW is read, the active/inactive status 
of the line is checked, the timing of the current bit is checked, and (based on these 
conditions) the inactive status of the line is recorded in MB0 and the program advances 
to the next instruction, the real time clock count is incremented in the LSW and the 
program advances to the next instruction, or the real time clock count is incremented 
and the third cycle is initiated. 

The active/inactive status of the Teletype line is checked by sampling the condition of 
bit 0 of the LSW. If MB0(0), indicating that the line is inactive (not transmitting a 
character) the LSW is shifted one position to the right in the MB, and the complement 
of the Teletype line is set into MB0. Therefore, if the line is now active, a 1 is set into 
MB0 and will be read during the Status cycle of the next TTI instruction. The program 
count is then incremented by one to skip over the CAW, the LSW is restored to core 
memory, the MB is cleared, and (providing no break request had been received) the 
Fetch state is entered to fetch the next instruction. 



If the MB0(l) at the beginning of the Status cycle, the LSW is incremented by one to 
advance the real time clock and the LSW number is sampled. If LSW=:,f:3 it is too early 
to sample the active line so the program count is incremented to skip over the CAW, 
the LSW is restored to core memory, the MB is cleared, and the program advances to 
the Fetch state for the next instruction. If LSW = 4 after incrementation, the LSW is 
rewritten in memory and the major state generator (MSG) is set to the Character state 
to strobe the line into the CAW during the next cycle. 

The third cycle is a Character state in which the CAW is read in_to the MB from core 
memory, the character is shifted right one position with the line bit being shifted into 
MB0, then the CAW is rewritten in memory. The program then advances to the Fetch 
state for the next instruction. 

Symbol: Status state 
If MB0(0), then line shifted into LSW and F= > MSG for next instruction. 
If MB0(l), and MB#3, then LSW + 1 => LSWand F => MSG for next instruction. 
If MB0(l) and MB = 3, then LSW + 1 = > LSW and C = > MSG to continue TTI 
instruction in next cycle. 

Character state 
Line shifted into CAW and F = > MSG for next instruction. 

TELETYPE OUT (TTO) 

Octal Code: 6404 

Event Time: Not applicable 

Indicators: IOT, FETCH 

Execution Time: 1.5 microseconds 

Operation: This instruction must be preceded by a command sequence (such as CLA 
and TAD) that loads the AC with the character to be (or being) transferred to the ex
ternal Teletype equipment. The TTO instruction clears the L, shifts the content of the 
AC and the L one position to the right, then transfers the bit contained in ACl 1 to the 
selected Teletype line. 

Symbol: 0 = > L 
L => AC0 and ACj => ACj + 1, then 
AC 11 = > Selected Line 

Octal Code: 6411 

Event Time: l 

CLEAR LINE SELECT REGISTER (TTCL) 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The line select register is cleared, so line 0 is addressed. 

Symbol: 0 = > LSR 

139 



140 

LOAD LINE SELECT REGISTER (TTSL) 

Octal Code: 6412 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The line select register is set by an OR transfer from the content of bits 5 
through 11 of the accumulator, then the accumulator is cleared. 

Symbol: AC5-l l V LSR = > LSR, then 
0 => AC 

READ LINE SELECT REGISTER (TTRL) 

Octal Code: 6414 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The content of the line select register is loaded into bits 5 through 11 of 
the accumulator by an OR transfer. 

Symbol: LSR V AC5-11 = > AC5-11 

SKIP ON CLOCK 1 FLAG (TTSKP) 

Octal Code: 6421 

Event Time: l 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The content of clock 1 flag of the Serial Line Multiplexer is sampled, and 
if it contains a 1 (indicating that a clock pulse has occurred and the flag has been 
enabled to request a program interrupt) the content of the program counter is incre
mented by 1 to skip the next sequential instruction. If the skip occurs clock 1 caused 
a program interrupt if the interrupt system was enabled when the clock pulse occurred. 

Symbol: If Clock 1 Flag = 1, then PC + 1 = > PC 

TU RN ON CLOCK 1 (TTXON) 

Octal Code: 6422 

Event Time: 2 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3. 75 microseconds 

Operation: The CLOCK 1 ENABLE flip-flop is set and the clock 1 flag is cleared. When 
the CLOCK 1 ENABLE flip-flop is set the next clock pulse sets the clock 1 flag and 
requests a program interrupt. 

Symbol: 1 = > Clock 1 Enable 
0 = > Clock 1 Flag 



TURN OFF CLOCK 1 (TTXOFF) 

Octal Code: 6424 

Event Time: 3 

Indicators: IOT, FETCH, PAUSE 

Execution Time: 3.75 microseconds 

Operation: The CLOCK 1 ENABLE flip-flop is cleared and the clock 1 flag is cleared. 
When the CLOCK 1 ENABLE flip-flop is cleared the clock 1 flag can not be set by the 
clock, and can not request a program interrupt or be skipped upon. The clock is un
affected and continues to run, but all operations caused by clock pulses are disabled. 

Symbol: 0 = > Clock 1 Enable 
0 = > Clock 1 Flag 

When the system handles multiple-baud frequencies additional clocks and instructions 
are provided. Instructions similar to TTSKP, TTXON, and TTXOF use select code 43 
for clock 2 and use select code 44 for clock 3. 

Software 
Subroutines for the 680 system, as presently coded, occupy 4008 core memory loca
tions plus locations for internal buffering of the input and output characters and for 
thet TTI instructions. In addition; autoindex registers and core memory locations in 
page Oare required as specified in the following list: 

5-Bit 
8-Bit 5-Bit (2nd speed) Meaning 
-- --

TT8BGN TT5BGN TT4BGN Beginning of subroutine 
T8AX1 T5AX1 T4AX1 Autoindex register 
T8AX2 T5AX2 T4AX2 Autoindex register 
T8AX3 
T8AX3 T5AX3 T4AX3 Autoindex register 

T5AX4 T4AX4 Autoindex register (5-bit only) 
TT8PG0 TT5PG0 TT4PG0 Start of area in page 0 
T8O8F2 T5OBF2 T4OBF2 Start of 2nd output buffer (length = N) 
T81BF T51BF T51BF Start of input buffer (length = 2N) 
T81N T51N T51N Start of TTl area (length = 3N + 1) 
TTCHAR TTCHAR TTCHAR Character area (appears only once) 

The total amount of core memory used by 680 subroutines, including the tags and 
autoindex registers in page 0, is as follows: 

4228 + 7N (for 8-bit) 
or 

4388 -1-- 7N (for 5-bit) 

where N is the number of lines specified to the subroutines. Within limits, the programs 
can be stored anywhere in the PDP-8 core memory. 

If the 5-bit subroutines are being used all of the tags mentioned should substitute 
5s for 8s shown. If both 8-bit and 5-bit systems are being used, both sets of sub
routines are necessary and all tags and memory requirements must be duplicated 
for the second system. At present, coding is available for a single 8-bit system and 
for two different 5-bit systems to allow the programmer to assemble all of the necessary 
components with a main program at one time. 

141 



142 

Percentages of machine time used in the average case for various types of systems 
are presented in the following list. Any additional features which may be required for 
the Teletype handling must be added to these times. The formulas for calculating these 
times are included so that times for systems with an intermediate number of lines or 
with combinations of lines can be calculated. For combined systems, add the per-
centages for each component. 

Number 8-Bit 5-Bit 5-Bit 
of lines 110 Baud':' 50 Baud':":' 75 Baud········· 

32 34.1% 20.0% 30.0% 
64 57.7% 35.1% 52.7% 
96 81.3% 50.3% 75.5% 

128 104.9% 65.5% 98.3% 

* Formula Used: Where N = the number of lines, the 8-bit subroutines require an average 
of 8.38N + 119.5 microseconds. 

**Formula Used: Where N = the number of lines, the 5-bit subroutines require an average 
time of 11.85N + 120 microseconds. Clock flags (at 50 baud) occur every 2500 micro
seconds. 

***Formula Used: The percentages for 75 baud are merely 1.5 x 50 baud rate. Clock flags 
occur every 1667 microseconds. 

For further information, refer to DEC Program Library documents DEC-35-S-A and 
DEC-35-S-B. 



SECTION C 

OPERATION 

143 



144 

CHAPTER 1 

STANDARD PDP-8 OPERATION 
Controls and Indicators 

Manual control of the PDP-8 is exercised by means of keys and switches on the 
operator console. Visual indications of the machine status and the content of major 
registers and control flip-flops is also given on this console. Indicator lamps light to 
denote the presence of a binary 1 in specific register bits and in control flip-flops. The 
function of these controls and indicators is listed in Table 3, and their location is 
shown in Figure 18. The functions of all controls and Indicators of the Model 33 ASR 
Teletype unit are described in Table 4, as they apply to operation of the computer. 
The Teletype console is shown in Figure 19. 

Figure 18 PDP-8 Operator Console 

TABLE 3 OPERATOR CONSOLE CONTROLS AND INDICATORS 

Control or Indicator 

PANEL LOCK switch 

POWER switch 

Function 

With this key-operated switch turned clockwise, all keys and 
switches except the SWITCH REGISTER switches on the 
operator console are disabled. In this condition the program 
can not be disturbed by inadvertent key operation. The 
program can, however, monitor the content of the SR by 
execution of the OSR instruction. With this switch turned 
counterclockwise all operator console keys and switches 
function normally. 

In the counterclockwise position this key-operated switch 
removes pnmary power from the computer, and in the clock
wise position it applies power. 



TABLE 3 OPERATOR CONSOLE CONTROLS AND INDICATORS (continued) 

Control or Indicator Function 

START key Starts the computer program by turning off the program 
interrupt circuits; clearing the AC, L, MB, and IR; setting 
the Fetch state, transferring the content of the PC into the 
MA; and setting the RUN flip-flop. Therefore, the word 
stored at the address currently held by the PC is taken as 
the first instruction. 

LOAD ADDRESS key 

DEPOSIT key 

EXAMINE key 

CONTINUE key 

STOP key 

SINGLE STEP 
switch 

Pressing this key sets the content of the SR into the PC, sets 
the content of the INST Fl ELD switches into the IF, and sets 
the content of the DATA FIELD switches into the DF. 

Lifting this key sets the content of the SR into the MB and 
core memory at the address specified by the current content 
of the PC. This operation is performed by setting the Execute 
state and forcing a DCA instruction. The content of the PC 
is then incremented by one, to allow storing of information 
in sequential memory addresses by repeated operation of 
the DEPOSIT key. 

Pressing this key sets the content of core memory at the 
address specified by the content of the PC into the MB and 
AC. This operation is performed by clearing the AC, setting 
the Execute state, and forcing a TAD instruction. The con
tent of the PC is then incremented by one to allow examina
tion of the content of sequential core memory addresses by 
repeated operation of the EXAMINE key. 

Pressing this key sets the RUN flip-flop to continue the 
program in the state and instruction designated by the 
lighted console indicators, at the address currently specified 
by the PC. 

Causes the RUN flip-flop to be cleared at the end of the 
cycle in progress at the time the key is pressed. 

The switch is off in the down position. In the up position the 
switch causes the RUN flip-flop to be cleared to disable the 
timing circuits at the end of one cycle of operation; There
after, repeated operation of the CONTINUE key steps the 
program one cycle at a time so that the content of registers 
can be observed in each state. 

145 



146 

TABLE 3 OPERATOR CONSOLE CONTROLS AND INDICATORS (continued) 

Control or Indicator Function 

SINGLE INSTRUCTION 
switch 

SWITCH REGISTER 
switches 

DATA FIELD indicators 
and switches* 

INST FIELD 
indicators and switches* 

PROGRAM COUNTER 
indicators 

MEMORY ADDRESS 
indicators 

The switch is off in the down position. In the up position the 
switch causes the RUN flip-flop to be cleared at the end of 
the next instruction execution. When the computer is started 
by means of the START or CONTINUE key, this switch 
causes the RUN flip-flop to be cleared at the end of the last 
cycle of the current instruction. Therefore, repeated opera
tion of the CONTINUE key steps the program one instruction 
at a time. 

Provide a means of manually setting a 12-bit word into the 
machine. Switches in the up position; corresponds to binary 
ones, down to zeros. The content of this register is loaded 
into the PC by the LOAD ADDRESS key or into the MB 
and core memory by the DEPOSIT key. The content of the 
SR can be set into the AC under program control by means 
of the OSR instruction. 

The indicators denote the content of the data field register 
(DF) and the switches serve as an extension of the SR to 
load the DF by means of the LOAD ADDRESS key. The DF 
determines the core memory field of data storage and 
retrieval. 

The indicators denote the content of the instruction field 
register (IF) and the switches serve as an extension of the 
SR to load the IF by means of the LOAD ADDRESS key. The 
IF determines the core memory field from which instructions 
are to be taken. 

Indicate the content of the PC. When the machine is stopped 
the content of the PC indicates the core memory address of 
the first instruction to be executed when the START or 
CONTINUE key is operated. When the machine is running 
the content of the PC indicates the core memory address of 
the next instruction. 

Indicate the content of the MA. Usually the content of the 
MA denotes the core memory address of the word currently 
or previously read or written. After operation of either the 
DEPOSIT or EXAMINE key, the content of the MA indicates 
the core memory address at which information was just 
written or read. 

* Activated only on systems containing the Type 183 Memory Extension Control option. 



TABLE 3 OPERATOR CONSOLE CONTROLS AND INDICATORS (continued) 

Control or Indicator Function 

MEMORY BUFFER Indicate the content of the MB. Usually the content of the 
indicators MB designates the word just read or written at the core 

memory address held in the MA. 

ACCUMULATOR indicators 

LINK indicator 

MULTIPLIER QUOTIENT 
indicators* 

Instruction indicators 
(AND, TAD, ISZ, DCA, 
JMS, JMP, IOT, OPR) 

FETCH, EXECUTE 
DEFER, BREAK indicators 

ION indicator 

PAUSE indicator 

RUN indicator 

Indicates the content of the AC. 

Indicates the content of the L. 

Indicate the content of the multiplier quotient (MQ). The MQ 
holds the multiplier at the beginning of a multiplication and 
holds the least significant half of the product at the con
clusion. It holds the least significant half of the dividend at 
the start of a division and at the end holds the quotient. 

Indicate the decoded output of the IR as the instruction 
currently in progress. 

Indicate the primary control state of the machine and that 
the current memory cycle is a Fetch, Execute, Defer or 
Break cycle, respectively. 

Indicates the 1 status of the INT. ENABLE flip-flop, When lit, 
the program in progress can be interrupted by receipt of a 
Program Interrupt Request signal from an 1/0 device. 

Indicates the 1 status of the PAUSE flip-flop when lit. An 
IOT instruction sets the PAUSE flip-flop at Tl time to initiate 
operation of the IOP generator and to inhibit advance of the 
normal timing generator. When IOP generator operation is 
completed (approximately 2.5 microseconds later), a T2 
pulse is generated and the PAUSE flip-flop is cleared to 
enable advance of the timing generator in synchronism with 
the basic computer clock. 

Indicates the 1 status of the RUN flip-flop. When lit, the 
internal timing circuits are enabled and the machine per
forms instructions. 

*Activated only on systems containing the Type 182 Extended Arithmetic Element option. 

147 



148 

Figure 19 Teletype Model 33 ASR Console 

TABLE 4 TELETYPE CONTROLS AND INDICATORS 

Control or Indicator Function 

REL. pushbutton Disengages the tape in the punch to allow tape removal or 
tape loading. 

B. SP. pushbutton Backspaces the tape in the punch by one space, allowing 
manual correction or rub out of the character just punched. 

OFF and ON pushbuttons Control use of the tape punch with operation of the Teletype 
keyboard/printer. 

START/STOP/FREE switch Controls use of the tape reader with operation of the Tele
type. In the lower FREE position the reader is disengaged 
and can be loaded or unloaded. In the center STOP position 
the reader mechanism is engaged but de-energized. In the 
upper START position the reader is engaged and operated, 
under program control. 

Keyboard Provides a means of printing on paper in use as a type
writer and punching tape when the punch ON pushbutton 
is pressed, and provides a means of supplying input data to 
the computer when the LINE/OFF/LOCAL switch is in the 
LINE position. 

LINE/OFF /LOCAL switch Controls application of primary power in the Teletype and 
controls data connection to the processor. In the LINE posi
tion the Teletype is energized and connected as an 1/0 
device of the computer. In the OFF position the Teletype is 
de-energized. In the LOCAL position the Teletype is ener· 
gized for off-line operation. and signal connections to the 
processor are broken. Both line and local use of the Teletype 
require that the computer be energized through the POWER 
switch. 



Operating Procedures 

Many means are available for loading and unloading PDP-8 information. The means 
used are, of course, dependent upon the form of the information, time limitations, and 
the peripheral equipment connected to the computer. The following procedures are 
basic to any use of the PDP-8, and although they may be used infrequently as the 
programming and use of the computer become more sophisticated, they are valuable 
in preparing the initial programs and learning the function of machine input and 
output transfers. 

MANUAL. DATA STORAGE AND MODIFICATION 

Programs and data can be stored or modified manually by means of the facilities on 
the operator console. Chief use of manual data storage is made to load the readin 
mode loader program into the computer core memory. The readin mode (RIM) loader 
is a program used to automatically load programs into PDP-8 from perforated tape in 
RIM format. This program and the RIM tape format are described in Appendix 6 of this 
handbook and in Digital Program Library descriptions. The RIM program listed in the 
Appendix can be used as an exercise in manual data storage. To store data manually 
in the PDP-8 core memory: 

1 _. Turn the PANEL LOCK switch counterclockwise and turn the POWER switch 
clockwise. 

2. Set the bit switches of the SWITCH REGISTER (SR) to correspond with the 
.address bits of the first word to be stored. Press the LOAD ADDRESS key and 
observe that the address set by the SR is held in the PC, as designated by lighted 
PROGRAM COUNTER indicators corresponding to switches in the 1 (up) position 
and unlighted indicators corresponding to switches in the O (down) position. 

3. Set the SR to correspond with the data or instruction word to be stored at the 
address just set into the PC. Lift the DEPOSIT key and observe that the MB, and 
hence the core memory, hold the word set by the SR. 

Also, observe that the PC has been incremented by one so that additional data 
can be stored at sequential addresses by repeated SR setting and DEPOSIT 
key operation. 

To check the content of an address in core memory, set the address into the PC as in 
step 2, then press the EXAMINE key. The content of the address is then designed by 
the MEMORY BUFFER and ACCUMULATOR indicators. The content of the PC is in
cremented by one with operation of the EXAMINE key, so the content of sequential 
addresses can be examined by repeated operation after the original (or starting) 
address is loaded. The content of any address can be modified by repeating both 
steps 2 and 3. 

LOADING DATA UNDER PROGRAM CONTROL 
Information can be stored or modified in the computer automatically only by enacting 
programs previously stored in core memory. For example, having the RIM loader stored 
in core memory allows RIM format tapes to be loaded as follows: 

1. Turn the PANEL LOCK switch counterclockwise and turn the POWER switch 
clockwise. 
2. Set the Teletype LINE/OFF/LOCAL switch to the LINE position. 

149 



150 

3. Load the tape in the Teletype reader by setting the START /STOP/FREE switch 
to the FREE position, releasing the cover guard by means of the latch at the 
right, loading the tape so that the sprocket wheel teeth engage the feed holes 
in the tape, closing the cover guard, and setting the switch to the STOP position. 
Tape is loaded in the back of the reader so that it moves toward the front as it 
is read. Proper positioning of the tape in the reader finds three bit positions 
being sensed to the left of the sprocket wheel and five bit positions being 
sensed to the right of the sprocket wheel. 

4. Load the starting address of the RIM loader program (not the address of 
the program to be loaded) into the PC by means of the SR and the LOAD 
ADDRESS key. 

5. Press the computer START key and set the 3-position Teletype reader switch 
to the START position. The tape will be read automatically. 

Automatic storing of the binary loader (BIN) program is performed by means of the 
Rlly'I loader program as previously described. With the BIN loader stored in core 
memory, program tapes assembled in the program assembly language (PAL Ill) binary 
format can be stored as described in the previous procedure except that the starting 
address of the BIN loader (usually 7777) is used in step 4. When storing a program in 
this manner, the computer stops and the AC should contain all zeros if the program is 
stored properly. If the computer stops with a number other than zero in the AC, a 
checksum error has been detected. When the program has been stored, it· can be 
initiated by loading the program starting address (usually designated on the leader 
of the tape) into the PC by means of the SR and LOAD ADDRESS key, then pressing 
the START key. 

OFF-LINE TELETYPE OPERATION 

The Teletype can be used separately from the PDP-8 for typing, punching tape, or 
duplicating tapes. To use the Teletype in this manner: 

1. Assure that the computer PANEL LOCK switch is turned counterclockwise 
and turn the POWER switch clockwise. 

2. Set the Teletype LINE/OFF/LOCAL switch to the LOCAL position. 

3. If the punch is to be used, load it by raising the cover, manually feeding the 
tape from the top of the roll into the guide at the back of the punch, advancing 
the tape through the punch by manually turning the friction wheel, and then 
closing the cover. Energize the punch by pressing the ON pushbutton, and 
produce about two feet of leader. The leader-trailer can be code 200 or 377. 
To produce the code 200 leader, simultaneously press and hold the CTRL and 
SHIFT keys with the left hand; press and hold the REPT key; press and release 
the @ key. When the required amount of leader has been punched release all 
keys. To produce the 377 code, simultaneously press and hold both the REPT 
and RUB OUT keys until a sufficient amount of leader has been punched. 

If an incorrect key is struck while punching a tape, the tape can be corrected as 
follows: if the error is noticed after typing and punching N characters, press the 
punch 8. SP. (backspace) pushbutton N + 1 times and strike the keyboard RUB 
OUT key N + 1 times. Then continue typing and punching with the character which 
was in error. 

To duplicate and obtain a listing of an existing tape: Perform the procedure under the 



current heading. Then load the tape to be duplicated as described in step 2 of the 
procedure under Loading Data Under Program Control. Initiate tape duplication by 
setting the reader START /STOP /FREE switch in the START position. The punch and 
teleprinter stop when the tape being duplicated is completely read. 

Corrections ·to insert or delete information on a perforated tape can be made by 
duplicating the correct portion of the tape, and manually punching additional infor
mation or inhibiting punching of information to be deleted. Th.is is accomplished by 
duplicating the tape and carefully observing the information being typed as the tape 
is read. In this manner the reader START /STOP/FREE switch can be set to the STOP 
position just before the point of the correction is typed. Information to be inserted 
can then be punched manually by means of the keyboard. Information can be deleted by 
pressing the punch OFF pushbutton and operating the reader until the portion of 
the tape to be deleted has been typed. It may be necessary to backspace and rub 
out one or two characters on the new tape if the reader is not stopped precisely on 
time. The number of characters to be ru·bbed out can be determined exactly by the 
typed copy. Be sure to count spaces when counting typed characters. Continue 
duplicating the tape in the normal manner after making the corrections. 

New, duplicated, or corrected perforated tapes should be verified by reading them 
off line and carefully proofreading the typed copy. 

151 



152 



SECTION D 

INTERFACE 
AND 

INSTALLATION 

153 



154 

CHAPTER 1 

PDP-8 INPUT/ OUTPUT FACILITIES 

Since the processing power of a computer system depends largely upon the range and 
number of peripheral devices that can be connected to it, the PDP-8 has been designed 
to interface readily with a broad variety of external equipment. Section D of this hand
book defines the interface characteristics of the computer to allow the reader to design 
and implement any electrical interfaces required to connect devices to the PDP-8. 
Chapters 2 and 3 functionally describe the logic circuit elements involved in programmed 
data transfers and data break transfers, respectively. Chapter 4 gives detailed circuit 
information on the modules used in the computer interface and that are available for use 
in special device interfaces. Chapter 5 lists connection point, module type, module 
location, etc., for each interface signal; gives detailed loading and driving character
istics for each module in the computer interface; then presents some general rules and 
characteristics to be considered in selecting or designing electrical circuits to be con
nected to the PDP-8. Chapter 6 presents information for planning the instal lotion of a 
basic PDP-8 and the available standard optional equipment. 

The simple 1/0 techniques of the PDP-8, the avai la bi Ii ty of DEC's FLIP CHIP logic cir
cu it modules, and DEC's pol icy of giving assistance wherever possible a I low i nexpen
sive, straight-forward device interfaces to be realized. Should questions arise relative 
to the computer interface characteristics, the design of device interfaces using DEC 
modules, or installation planning, customers are invited to telephone the main plant in 
Maynard, Massachusetts, or any of the sales offices. Digital Equipment Corporation makes 
no representation that the interconnection of its circuit modules in the manner described 
herein wi 11 not infringe on existing or future patent rights. Nor do the descriptions con
tained herein imply the granting of iicense to use, manufacture, or sell equipment con
structed in accordance therewith. 

The basic PDP-8 contains a processor and core memory composed of FLIP CHIP circuit 
modules. These bybrid si I icon circuits have an operating temperature range exceeding 
the limits of 32° to 130°F, so no air-conditioning is required at the computer site. 
Standard 115v, 60-cps power operates an· internal sol id-state power supply that produces 
all required voltages and currents. 

High-capacity, high-speed 1/0 capabi I iti es of the PDP-8 al low it to operate a variety 
of peripheral devices in addition to the standard Te le type keyboard/printer, tape reader, 
and tape punch. DEC options, consisting of an interface and normal data processing 
equipment, are available for connecting into the computer system. These options include 
card equipment, Ii ne printers, magnetic tape transports, magnetic drums, analog-to-
dig ital converters, CRT displays, and digital plotters. The PDP-8 system can also accept 
other types of instruments or hardware devices that have an appropriate interface. Up 
to 61 devices re qui ring three programmed command pu I ses, or up to 193 devices requiring 
one programmed command pulse can be connected to the computer. One machine using 
the data break foe i I ity can be connected directly to the PDP-8, or up to seven such 
machines can be connected through a Data Multiplexer Type DM0l. Interfacing of any 
devices to the computer requires no modifications to the processor and can be achieved 
in the field. 

Control of some kind is needed to determine when an information exchange is to take 
place between the PDP-8 and peripheral equipment and to indicate the location(s) in the 
computer memory which will accept or yield the data. Either the computer program or 



the device external to the computer can exercise this control. Transfers controlled by 
the computer, hence under control of its stored program, are cal led programmed data 
transfers. Transfers made at times control led by the external devices through the data 
break facility are called data break transfers. 

Programmed Data Transfers 

The majority of 1/0 transfers occur under control of the computer program. To transfer 
and store information under program control requires about six times as much computer 
time as under data break control. In terms of real time, the duration of a programmed 
transfer is rather small, due to the high speed of the computer, and is well beyond that 
required for laboratory or process control instrumentation. 

To realize fu 11 benefit of the bu i It-in control features of the PDP-8 programmed 1/0 
transfers shou Id be used in most cases. Controls for devices using programmed data- trans
fers are usually simpler and less expensive than controls for devices using data break 
transfers. Using programmed data transfer facilities, simultaneous operation of devices 
is limited only by the relative speed of the computer with respect to the device speeds, 
and the search time required to determine the device requiring service. Analog-to
digital converters, digital-to-analog converters, digital plotters, line printers, message 
switching equipment, and realy control systems typify equipment using only programmed 
data transfers. 

Data Break Transfers 

Devices which operate at very high speed or which require very rapid response from the 
computer use the data break facilities. Use of these facilities permits an external de
vi.ce, almost arbitrarily, to insert or extract words from the computer core memory, by
passing all program control logic. Because the computer program has no cognizance of 
transfers made in th is manner, programmed checks of input data are made prior to use of 
information received in this manner. The data break is particularly well-suited for de
vices that transfer large amounts of data in block form, e.g., high-speed magnetic tape 
systems, high-speed drum memories, or CRT display systems containing memory elements. 

Logic Symbols 

Figure 20 defines the symbols used in Section D of this handbook to express signals and 
digital logic circuits. 

2 
~' 

DEC STANDARD NEGATIVE PULSE 

DEC STANDARD POSITIVE OR POSITIVE-GOING PULSE 

DEC STANDARD NEGATIVE LEVEL 

DEC STANDARD GROUND LEVEL 

FLOW 

-15V LOAD RESISTOR CLAMPED AT -3V 

PNP TRANSISTOR INVERTER 
1. EMITTER 
2. BASE 
3. COLLECTOR 

Figure 20 Logic Symbols 

155 



156 

,~. 

LOGIC AND GATE FOR 
NEGATIVE SIGNALS 
WITH COMPLEMENTARY 
OUTPUT SIGNALS 

LOGIC OR GATE FOR 
GROUND LEVEL SIGNALS 
WITH COMPLEMENTARY 
OUTPUT SIGNALS 

LOGIC NAND GATE FOR 
NEGATIVE SIGNALS 

DIODE-CAPACITOR-DIODE GATE 
t. CONDITIONING LEVEL INPUT 
2. TRIGGERING PULSE INPUT 
3. PULSE OUTPUT 

FLIP-FLOP (BISTABLE MULTIVIBRATOR) 
t. GATED SET-TO-t INPUT 
2. GATED CLEAR-T0-0 INPUT 
3. DIRECT CLEAR-T0-0 INPUT 
4,5 OUTPUTS 

INVERTING BUS DRIVER 

B OR W SERIES 
PULSE AMPLIFIER, OUTPUT 
CAN BE MADE POSITIVE OR 
NEGATIVE BY REVERSING 
GROUND AND SIGNAL OUTPUT 
TERMINALS 

R OR S SERIES PULSE AMPLIFIER 
OUTPUT ALWAYS POSITIVE, 
REFERENCED TO -3V, 

DEVICE SELECTOR 
LOGIC AS USED FOR ONE 
SELECT CODE 

Figure 20 Logic Symbols (continued) 



CHAPTER 2 

PROGRAMMED DATA TRANSFERS 

The majority of 1/0 transfers take place under control of the PDP-8 program, taking 
advantage of control elements bui It into the computer. Although programmed transfers 
take more computer and actual time than do data break transfers, the timing discrepancy 
is insignificant, considering the high speed of the computer with respect to most per
iphera I devices. The maximum data transfer rate for programmed operations of 12-bit 
words is 148 kc when no status ch~cking, end transfer check, etc., is done. This speed 
is we 11 beyond the norm a I rate required for typical laboratory or process control instru
mentation. 

The PDP-8 is a paral le I-transfer machine that distributes and collects data in bytes of 
up to twe Ive bits. Al I programmed data transfers take place trhough the accumulator, 
the 12-bit arithmetic register of the computer. The computer program controls the load
ing of information into the accumulator (AC) for an output transfer, and for storing infor
mation in core memory from the AC for an input transfer. Output information in the AC 
is power amplified and supplied to the interface connectors for bussed connection to 
many peripheral devices. Then the program-selected device can sample these signal 
lines to strobe AC information into a control or information register. Input data arrives 
at the AC as pulses received at the interface connectors from bussed outputs of many 
devices. Gating circuits of the program-selected device produce these pulses. Com
mand pulses generated by the device flow to the input/output skip facility (10S) to 
sample the condition of 1/0 device flags. The 10S allows branching of the program 
based upon the condition or availability of peripheral equipment, effectively making 
programmed decisions to continue the current program or jump to another part of the 
program, such as a subroutine that services an 1/0 device. 

The bussed system of input/output data transfers imposes the following requirements on 
peripheral equipment: 

a. The ability of each device to sample the select code generated by 
the computer during IOT instructions and, when selected, to be capable 
of producing sequential IOT command pulses in accordance with 
computer-generated IOP pulses. Circuits which perform these functions 
in the peripheral device are cal led the device selector (DS). 

b ~ Each device receiving output data from the computer must contain 
gating circuits at the input of a receiving register capable of strobing 
the AC signal information into the register when triggered by a com
mand pu I se from the DS. 

c. Each device which supplies input data to the computer must contain 
gating circuits at the output of the transmitting register capable of 
sampling the information in the output register and supplying a pulse 
to the computer input bus when triggered by a command pulse from 
the DS. 

d. Each device should contain a busy/done flag (flip-flop) and gating 
circuits which can pulse the computer input/output skip bus upon com
mand from the DS when the flag is set in the binary l state to indicate 
that the device is ready to transfer another byte of information. 

157 



158 

Figure 21 shows the information flow within the computer which effects a programmed 
data transfer with input/output equipment. Al I instructions stored in core memory as 
a program sequence are read into the memory buffer register (MB) for execution, The 
transfer of the operation code in the three most significant bits (bits 0, 1, and 2) of the 
instruction into the instruction register (IR) takes place and is decoded to produce ap
propriate control signals. The computer, upon recognition of the operation code as an 
I OT instruction, enters a 3 .75 1-1sec expanded computer cycle and enables the I OP gen
erator to produce time sequenced I OP pulses as determined by the three least significant 
bits of the instruction (bits 9, 10, and 11 in the MB). These IOP pulses and the buffered 
output of the select code from bits 3-8 of the instruction word in the MB are bussed to 
device selectors in all peripheral equipment. Figure 22 indicates the timing of pro
grammed data transfers and Figure 23 shows the decoding of the I OT instruction. 

-----"" 0-1 ,. -· IOT -,---... ~~ -
r .. srstve ''°""' 

•£Gl~T[ R 
1 1111 

10P .,.. _ _ , 

.,,_ --
~ ... ·t" .. =-'.a.'...;"",;._----------.i 

11111 

Figure 21 Programmed Data Transfer Interface Block Diagram 

--

0 
I ···I 

.. ,._ 
I 

-
ITAIIT a, ,t'IQO C"fCLl 
RIii NOT .afllUCTtOfll 

-#IQ,S ---------------------··------

Ill_., UAIIT 11110-
""'-HI F- MOSI 

,,, 
IIOr Ill ---..., -r• ____ _.1.._-----------------i----__, 

~;cf.~~- - -------,-.1.-~---_-,_L_ _ __JI 

1""°"- PULIHI •6 IQ,S - - arn• Tl IOP I lllllMTID 
W ft 11111 , -

0------------------.... 
Z:O USTMT IIOOIINC ·- -
PUL!ll ·-MOIi ., rrll.TS 

IU'U:&f.WW-1,r::,i~----

Figure 22 Programmed Data Transfer Timing 



OP£RATION 

~ 

Figure 23 Typical I OT Instruction Decoding 

Devices which require immediate service from the computer program, or which take an 
exorbitant amount of compyter time to discontinue the main program unti I transfer needs 
ore met, con use the prograrn interrupt (Pl) facility. In this mode of operation, the 
computer can initiate operation of 1/0 equipment and continue the main program until 
the device requests servicing. A signal input to the Pl requesting a program interrupt 
causes storing of the conditions of the main program and initiates a subroutine to service 
the device. At the conclusion of this subroutine, the main program is reinstated until 
another interrupt request occurs. 

Timing and IOP Generator 

When the IR decoder detects an operation code of 6a, it identifies an IOT instruction 
and the computer generates a l --+ Pause pulse. This pulse disables the normal timing 
generators of the processor and initiates operation of the IOP gene,ator. The logic cir
cuits of the IOP generator ore shown in Figure 24 to consist of three similar channels; 
each channel consisting of o gated delay, a goted pulse amplifier, and on output pulse 
amplifier. Operation of the first chonnel is triggered by the 1 ____..,. Pause pylse and 
operation of the other two channels is triggered by the pulse output of the delay in the 
previous channel. Series connection of the delays produces sequential operation of the 
three channels. The pulse output of the third channel delay restarts the normal timing 
generators of the proces50r. Since the time delays are 0.5, 1 .0, and 1 .O ~sec, the 
cycle time of an IOT instruction is 3.75 µsec. (IOT instructions associated with enabling 
and disabling the program interrupt facility, and those for the Analog-to-Digital 
Converter Type 189, the Memory Extension Control Type 183, and the Data Line In
terface Type 681 inhibit generation of the 1 ____..,. Pause pulse and so occur in the nor
mal computer cycle time of 1.5 µsec. In these commands the IOP generator Is inhibited 
so the normal timing pulses of the processor and special device selectors execute these 
instructions.) 

159 



160 

Figure 24 I OP Generator Logic 

The gated pulse amplifier of each channel samples the content of one bit of the instruc
tion when the delay output pulse occurs. If the sampled bit contains a binary 1, the 
gated pulse amplifier is triggered and the output pulse amplifier is operated to produce 
an IOP pulse. A diode-capacitor-diode (DCD) gate at the input of each gated pulse 
amplifier serves as a 2-input AND gate. The binary l status of one of the least signif
icant bits of the instruction in the MB supplies the conditioning level of each of these 
gates. The output of the gated pulse amplifier initiates operation of the output pulse 
amp Ii fi er to generate an I OP pulse which is avai I able at the interface connector as a 
DEC standard 0.4 µsec negative pulse. This configuration allows each IOP pulse to be 
individually programmed, permits a sequence of up to three events to occur within each 
instruction, and provides l µsec between events for normal device circuit set-up times. 
The instruction bit that enables or disables generation of each IOP pulse, the correspong
ing number of the IOT pulse produced in the DS from the IOP pulse, and the event time 
for each I OP pu I se is: 



Instruction IOP IOT Event 
Bit Pulse Pulse Time 

11 IOP 1 IOT 1 1 
10 IOP 2 IOT 2 2 
9 IOP 4 IOT 4 3 

Device Selector (DS) 
Bits 3 through 8 of an IOT instruction serve as a device or subdevice select code. Bus 
drivers in the processor buffer both the binary l and O output signals of MB3-8 and dis
tribute them to the interface connectors for bussed connection to all device selectors. 
Each DS is assigned a select code and is enabled only when the assigned code is present 
in the MB. When enabled, a DS regenerates IOP pulses as IOT command pulses and 
transmits these pulses to skip, input, or output gates within the device and/or to the 
processor to c I ear the AC. 

Each group of three command pulses requires a separate DS channel (Wl 03 module), and 
each DS channel requires a different select code (or 1/0 device address). One 1/0 
device can, therefore, use several DS channels, Note that the processor produces the 
pulses identified as IOP l, (OP 2, and IOP 4 and supplies them to all device selectors. 
The device selector produces pulses IOT 1, IOT 2, and (OT 4 which initiate a transfer 
or effect some control. Figure 25 shows generation of command pulses by several DC 
channels. 

!OP I 
IOP 2 

IOP4 

8MB 3 

BMB 4 

BMB 5 

8MB6 

BM67 

BM88 

Figure 25 Generation of IOT Command Pulses by Device Selectors 

} 

BUSSED INPUT 
TO ALL DEVICE 
SELECTORS 

161 



162 

The logical representation for a typical channel of the DS, using channel 34, is shown 

in Figure 26. A 6-input NAND gate wired to receive the appropriate signal outputs 
from MB3-8 for select code 34 activates the channel. In the DS module, the NAND 
gate contains 14 diode input terminals; 12 of these connect to the complementary outputs 
of MB3-8, and 2 are open to receive subdevice. or control condition signals as needed. 
Either the l or the O signal from each MB bit is disconnected by removing the appropriate 
diode from the NAND gate when establishing the select code. The ground level output 
of the NAND gate indicates when the IOT instruction selects the device, and can there
fore enable circuit operations within the device. This output also enable~ three gating 
inverters, allowing them to trigger a pulse amp Ii fier if an I OP pulse occurs. The posi
tive output from each pulse amplifier is an IOT command pulse identified by the select 
code and the number of the initiating IOP pulse. Three inverters receive the positive 
IOT pulses to produce complementary IOT output pulses. A pulse amplifier module can 
be connected in each channel of the DS to provide greater output drive or to produce 
pulses of a specific duration required by the selected device. 

Figure 26 Typical Device Selector (Device 34) 

Input/Output Skip (108) 

Generation of an I OT pulse can be used to test the condition or status of a device flag, 
and to continue to or skip the next sequential instruction based upon the results of this 
test. This operation is performed by a 2-input AND gate in the device connected as 
shown in Figure 27. One input of the skip gate receives the status level (flag output 
signal), the second input receives an lOT pu I se, and the output drives the computer I OS 
bus to ground when the skip conditions are ful fi 11 ed. When the I OS bus is driven to 
ground, the content of the program counter is incremented by l to advance the program 



count without executing the instruction at the current program count. In this manner an 
IOT instruction can check the status of an 1/0 device flag and skip the next instruction 
if the device requires servicing. Programmed testing in this manner allows the routine 
to jump out of sequence to a subroutine that services the device tested. 

2-INPUT DIODE I 
STATUS FLIP- FLOP OF NANO GATE 
EXTERNAL DEVICE 

<"~~~ : //~ " ~~ j 
~~ ,, >L 

J " CONNECTED TO THE IN/OUT 
- ,.,,/- SKIP BUS OF THE 1/ ~ / ,, COMPUTER 

U ~4 \\v ,,,, 
,/';::, 

, 1/ \ 
;:;::_,,, \ INSTRUCTION 6342 

, \ SKIP NEXT INSTRUCTION 
IF DEVICE 34 IS READY 
TO RECEIVE DATA 

Figure 27 Use of 10S to Test the Status of an External Device 

Assuming that a device is already operating, a possible program sequence to test its 
avai !ability follows: 

Address 

l 00, 
101, 
l 02, 

Instruction 

6342 
5100 
5XXX 

Remarks 

/SKIP IF DEVICE 34 IS READY 
/JUMP .-1 
/ENTER SERVICE ROUTINE FOR 
/DEVICE 34 . 

When the program reaches address l 00, it executes an instruction skip with 6342. The 
skip occurs only if device 34 is ready when the IOT 6342 command is given. If device 
34 is not ready, the flag signal disqualifies the skip gate, and the Skip pulse does not 
occur. Therefore, the program continues to the next instruction which is a jump back to 
the skip instruction. In this example, the program stays in this waiting loop unti I the 
device is ready to transfer data, at which time the skip gate in the device is enabled and 
the Skip pulse is sent to the computer IOS facility. When the skip occurs, the instruction 
in location l 02 transfers program control to a subroutine to service device 34. This 
subroutine can load the AC with data and transfer it to device 34, or can load the AC 
from a register in device 34 and store it in some known core memory address. 

Accumulator 

The binary l output signal of each flip-flop of the AC, buffered by a bus driver, is avail
able at the interface connectors. These computer data output lines are bus connected to 

163 



164 

al I peripheral equipment receiving programmed data output information from the PDP-8. 
A direct-set terminal on each flip-flop of the AC is connected to the interface connectors 
for bussing to al I peripheral equipment supplying programmed data input to the PDP-8. 
A pulse that drives the direct-set terminal to ground causes setting of an AC flip-flop to 
the binary 1 state. Output and input connections to the accumulator appear in Figure 28. 

BACl1 

AC11 

Figure 28 Accumulator Input and Output 

Figure 28 illustrates the twelve bits of the accumulator and the link bit. The status of the 
link bit is not available to enter into transfers with peripheral equipment (unless it is 
rotated into the AC). A non inverting bus driver continuously buffers the output signal 
from each AC flip-flop. These buffered accumulator (BAC) signals are avai I able at the 
interface connectors. 

Input Data Transfers 

When ready to transfer data into the PDP-8 accumulator, the device sets a flag connected 
to the I OS. The program senses the ready status of the flag and issues an I OT instruction 
to read the content of the external device buffer register into the AC. If the AC is not 
cleared before the transfer, the resultant word in the AC is the inclusive OR of the pre
vious word in the AC and the word transferred from the device buffer register. 

The illustration in Figure 29 shows that the accumulator has an input bus for each bit 
flip-flop. Setting a 1 into a particular bit of the accumulator necessitates grounding 
of the interface input bus by the standard DEC inverter. In the i I lustration, the 2-input 
AND gates set various bits of the accumulator. In this case an IOT pulse is AND com
bined with the flip-flop state of the external device to conditionally set l 1s into the 
accumulator. (The program must include a clear AC command prior to loading in this 
manner; otherwise an inclusive OR takes place between the previous content of the ac
cumulator and the content of the data register being read.) 



Figure 29 Loading Data into the Accumulator from an External Device 

Fol lowing the transfer (possibly in the same instruction) the program can issue a command 
pulse to initiate further operation of the device and/or clear the device flag. 

Output Data Transfers 

The AC is loaded with a word (e.g., by a CLA TAD instruction sequence); then the I OT 
instruction is issued to transfer the word into the control or data register of the device 
by an IOT pulse (e.g., IOP 2), and operation of the device is initiated by another IOT 
pulse (e.g., IOP 4). The data word transferred in this manner can be a character to be 
operated upon, or can be a control word sampled by a status register to es tab Ii sh a con
trol mode. 

Since the BAC interface bus lines continually represent the status of the AC flip-flops, 
th-e receiving device can strobe them to sense the value in the accumulator. In Figure 
30 a strobe pulse samples six bi ts of the accumulator to conditionally set an external 
6-bit data register. Since this is not a jam transfer, it is necessary first to clear the ex
ternal data register before setting l's into it. The readin gates driving the external data 
register are part of the external device and are not supplied by the computer. The data 
register can contain any number of flip-flops up to a maximum of twelve. (If more than 
twelve flip-flops are involved, two or more transfers must take place.) Obviously the 
clear pulse and the strobe pulse show'1 in Figure 30 must occur when the data to be placed 
in the external data register is held in the accumulator. These pulses therefore must be 
under computer control to effect synchronization with the operation' or program of the 
computer. 

165 



166 

EXTERNAL DEVICE 
INPUT GATES 

Figure 30 Loading a 6-Bit Word into an External Device from the Accumulator 

Figure 31 i I lustrates the use of two of the pulses being gated by the device selector coded 
for 11 34. 11 Pulse IOT l clears the data register and IOT 4 strobes the data from the ac
cumulator into the data register. Note that the processor produces the IOP 1, IOP 2, 
and IOP 4 pulses and supplies them to all device selectors. The program-selected DS 
produces IOT 1, IOT 2, and IOT 4 pulses which initiate a transfer or effect some con
trol. As indicated in Figure 31 this particular system adds two new microinstructions to 
the PDP-8 repertoire. One generates a pulse to clear the data register of device number 
34. The other microinstruction produces a pulse to load the data register of device 
number 34 with the content of the accumulator. 

CLEAR DATA REGISTER 
OF DEVICE 34 -._. 

DEVICE SELECTOR 
CODED FOR 34 

SIX ACCUMULATOR BITS 

Figure 31 Use of a Device Selector for Activating and 
Controlling an External Device 



The timing of the I OT eye le is shown in Figure 22. Note that the AC bus drivers are 
quiescent 400 nsec before the I OP l pu I se occurs. Since FLIP CHIP DCD gates require 
a 400-nsec set-up time, the I OP l pulse cannot be used to load the content of the AC 
into an external buffer register having input DCD gates. If the device register has DCD 
gates, IOP l should be used to reset or clear registers, controls, or flags. The IOP l 
pulse can be used to read the content of the AC into an external device register that is 
equipped with input diode gates. IOP 2 or IOP 4 can be used to strobe the content of 
the AC through DCD gates if the lead lengths of the BAC lines and the pulse lines pro
vide equivalent transmission delays. Only IOP l or IOP 2 (not IOP 4) can be used with 
the IOS facility. 

Program Interrupt {Pl) 

When a large amount of computing is required, the program should initiate operation of 
an 1/0 device then continue the main program, rather than wait for the device to be
come ready to transfer data. The program interrupt facility, when enabled by the pro
gram, relieves the main program of the need for repeated flag checks by al lowing the 
ready status of 1/0 device flags to automatically cause a program interrupt. When the 
program interrupt occurs, program control transfers to a subroutine that determines which 
device requested the interrupt and initiates an appropriate service routine. 

In the example shown in Figure 32, a flag signal from a status flip-flop operates a stan
dard inverter with no col lee tor load. When the status flip-flop indicates the need for 
device service, the inverter drives the Program Interrupt Request bus to ground to request 
a program interrupt. 

STATUS 
FLIP- FLOP 

IOT PULSE TO REMOVE 
CONDITION CAUSING THE 
INTERRUPT BY CLEARING 
THE STATUS FLIP - FLOP 

CONNECTED TO PROGRAM 
INTERRUPT REQUEST BUS 
OF COMPUTER 

Figure 32 Program Interrupt Request Signal Origin 

If only one device is connected to the Pl facility, program control can be transferred di
rectly to a routine that services the device when an interrupt occurs. This operation 
occurs as fol lows: 

167 



168 

SR 

Address 

1000 
1001 
1002 

0000 
0001 
2000 

3001 
3002 
3003 
1003 
1004 

Instruction Remarks 

/MAIN PROGRAM 
/MAIN PROGRAM CONTINUES 
/INTERRUPT REQUEST OCCURS 

INTERRUPT OCCURS 

JMP SR 

ION 
JMP I 0000 

/PROGRAM COUNT (PC=l003) IS STORED IN 0000 
/ENTER SERVICE ROUTINE 
/SERVICE SUBROUTINE FOR INTERRUPTING 
/DEVICE AND SEQUENCE TO RESTORE 
/ AC, AND RESTORE L IF REQUIRED 
/TURN ON INTERRUPT 
/RETURN TO MAIN PROGRAM 
/MAIN PROGRAM CONTINUES 

In most PDP-8 systems numerous devices are connected to the Pl facility, so the routine 
beginning in core memory address 0001 must determine which device requested an in
terrupt. The interrupt routine determines the device requiring service by checking the 
flags of all equipment connected to the Pl and transfers program control to a service 
routine for the first device encountered that has its flag in the state required to request 
a program interrupt. In other words, when program interrupt requests can originate in 
numerous devices, each device flag connected to the Pl must also be connected to the 
IOS. 

Multiple Use of 10S and Pl 

In common practice, more than one device is connected to the Pl facility. Therefore, 
since the computer receives a request that is the inclusive OR of requests from all devices 
connected to the Pl, the IOS must identify the device making the request. When a pro
gram interrupt occurs, a routine is entered from address 0001 to sequentially check the 
status of each flag connected to the Pl and to transfer program control to an appropriate 
service routine for the device whose flag is requesting a program interrupt. Figure 33 
shows I OS and Pl connections for three typical devices. 

Figure 33 Multiple Inputs to IOS and Pl Facilities 



The following program example illustrates how the program interrupt routine determines 
the device requesting service: 

Tag Address 

1000 
1001 
l 002 

0000 
0001 

FLG CK 

Instruction Remarks 

/MAIN PROGRAM 
/MAIN PROGRAM CONTINUES 
/INTERRUPT REQUEST OCCURS 

INTERRUPT OCCURS 
/STORE PC (PC = 1003) 

JMP FLG CK /ENTER ROUTINE TO DETERMINE WHICH DEVICE 

IOT 6341 
SKP 
JMP SR34 
IOT 6441 
SKP 
JMP SR44 
IOT 6541 
SKP 
JMP SR54 

/CAUSED INTERRUPT 
/SKIP IF DEVICE 34 IS REQUEST! NG 
/NO - TEST NEXT DEVICE 
/ENTER SERVICE ROUTINE 34 
/SKIP IF DEVICE 44 IS REQUESTING 
/NO - TEST NEXT DEVICE 
/ENTER SERVICE ROUTINE 44 
/SKIP IF DEVICE 54 IS REQUESTING 
/NO - TEST NEXT DEVICE 
/ENTER SERVICE ROUTINE 54 

Assume that the device that caused the interrupt is an input device (e.g., tape reader). 
The following example of a device service ·routine might apply: 

SR 

lnstructi on 

DAC TEMP 
IOT XX 
DAC I 10 
ISZ COUNT 
SKP 
JMPEND 

TAD TEMP 
ION 
JMPI0 

Remarks 

/SAVE AC 
/TRANSFER DATA FROM DEVICE BUFFER TO AC 
/STORE IN MEMORY LIST 
/CHECK FOR END 
/NOT END 
/END. JUMP TO ROUTINE TO HANDLE END OF 
/LIST CONDITION 

/RESTORE LAND EPC IF REQUIRED 
/RELOAD AC 
/TURN ON INTERRUPT 
/RETURN TO PROGRAM 

If the device that caused the interrupt was essentially an output device (receiving data 
from computer), the IOT - then - DAC I 10 sequence might be replaced by a TAD I 10-
then - I OT sequence. 

169 



170 

CHAPTER 3 

DATA BREAK TRANSFERS 

The data break facility allows one 1/0 device to transfer information directly with the 
PDP-8 core memory on a cycle-stealing basis. Up to seven devices can connect to the 
data break facility through the optional Dato Multiplexer Type DM0l • The data break 
is particularly wel I-suited for devices which transfer large amounts of information in 
block form. 

Peripheral 1/0 equipment operating at high speeds con transfer information with the com
puter through the data break facility more efficiently than through programmed means. 
The combined maximum transfer rate of the data break facility is over 7 .8 million bits 
per second. Information flow to effect a data break transfer with an 1/0 device appears 
in Figure 34. 

U[IIIORY 

tt~~= IC)i-a=;;;;;;..a;;;;,;;;;;,, ...... 
fTPf tl4 

-ICC(l'TED . 
i - 0 COUOlf -- ITA11E -Oll'IA .... ......,. 

lllt:U 
~JICILJTT , ,._p 

- CTIOIIIWI -
C'IQ.J: tlUCT -..-...+ I_,. CA __, 

-
IIICIIIIIPf W 

Figure 34 Data Break Transfer Interface Block Diagram 

In contrast to programmed operations, the data break facilities permit an external device 
to control information transfers. Therefore, data-break device interfaces require more 
control logic circuits, causing a higher cost than programmed-transfer interfaces, 

Data breaks are of two basic types: single-cycle and three-cycle. In a single-cycle 
data break, registers in the device (or device interface) specify the core memory address 
of each transfer and count the number of transfers to determine the end of data blocks. 
In the three-cycle data break two computer core memory locations perform these functions, 
simplifying the device interface by omitting two hardware registen. 

In general terms, to initiate a data break transfer of information, the interface control 
must do the following: 



a. Specify the affected address in core memory. 

b. Provide the data word by establishing the proper logic levels at the 
computer interface (assuming an input data transfer), or provide readin 
gates and storage for the word (assuming an output doto transfer). 

c. Provide a logical signa I to indicate direction of data word transfer. 

d. Provide a logical signal to indicate single-cycle or three-cycle 
break operation • 

e. Request a data break by supplying o proper signal to the computer 
data break facility. 

Single-Cycle Data Breaks 

Single-cycle breaks are used for input date transfer1, to the computer, output data transfer1, 
from the computer, and memory increment data breaks. Memory increment is a special 
output data break in which the content of a memory address is read, incremented by 1, 
and rewritten at the same address. It is useful for counting iterations or external events 
without disturbing the computer program counter (PC) or AC registers. 

INPUT DATA TRANSFERS 
Figure 35 illustrates timing of an input transfer data break. The address to be affected in 
core is norma lly provided in the device interface in the form of a 12-bit flip-flop regis
ter (data break address register) which has been preset by the interface control by pro
grammed transfer from the computer , 

D4U SIGHL -T TO ... 

cvi:u ULln Sl811AL IIIIPUT 
TO 114- STATE Q[NUI.TDII 

DATA -EH -H- IIA 1ioo
PIA.!E DCCUMIG AT THO.~I 

.--SI 4CCP'T(D l'IA.'lf MOO__, catTPUT 
·- WMot IUPPLll:D TII 110 DIV ICE 

MT•---1100- !'VUE 
•-MOJI 

I 11111:A• llhl•L _,.,_,ED 
TO HO DCVICE 

~rrff 
TIIIE 

Tl 
I 

fl 
I 

T1 
J 

Tt r 
_ _.tit£ - .. ----------,1-~EHLf::T TIii P-! TO llflllOvt 

,,,,, .tJl'""-MI.C _j ~-- SS IS Af STlllf llf'llll:A• CY'CU 

6 t:l't:L,C 
f Cl'Cl.l' - .__ ___________ ...,. ____ _ 

I • 
t o-------

ITIIOef; GATA -UI -· _,,.,,011• 
-J ""''s ------

in------ ~ , 
-J !IOI.TS - L..........J 

Figure 35 Single-Cycle Data Break Input Transfer Timing Diagram 

171 



172 

Externa I registers cind control flip-flops supplying information and control signa Is to the 
data break facility and other PDP-8 interface elements are shown in Figure 36. The in
put buffer register (1B in Figure 36) holds the 12-bit data word to be written into the com
puter core memory location specified by the address contained in the address register (AR 
in Figure 36). Appropriate output terminals of these registers are connected to the com
puter to supply ground potential to designate binary l's. Since most devices that transfer 
data through the data break facility are designed to use either single-cycle or three
cycle breaks, but not both, the Cycle Select signal can usually be supplied from a stable 
source (such as a ground connection or a -3v clamped load resistor) rather than from a 
bistable device as shown in Figure 36. 

DATA BREAK INTERFACE 
OF PDP-8 / 

/ 

IB = INPUT BUFFER 

D = TRANSFER DIRECTION FLIP-FLOP 

BR= BREAK REQUEST FLIP-FLOP 

CS = CYCLE SELECT (USUALLY SUPPLIED 
BY FIXED WIRING TO -3 VOL TS 
RATHER THAN BY A FLIP-FLOP) 

Figure 36 Device Interface Logic for Single-Cycle 
Data Break Input Transfer 

Other portions of the device interface, not shown in Figure 36, establish the data word 
in the input buffer register, set the address into the address register, set the direction 
flip-flop to indicate an input data transfer, .and control the break request flip-flop. 
These operations can be performed simultaneously or sequentially, but al I transients should 
occur before the data break request is made. Note that the device interface need supply 
only static levels to the computer, minimizing the synchronizing logic circuits necessary 
in the device interface. 



When the data break request arrives, the computer completes the current instruction, 
generates an Address Accepted pulse (at Tl time r.if the cycle preceding the data break) 
to acknowledge receipt of the request, then enters the Break state to effect the transfer 
(see Section A, Chapter 5 of this handbook for more details on data break operations 
performed by the computer). The Address Accepted pulse can be used in the device in
terface to clear the break request flip-flop, increment the content of the address register, 
etc. If the Break Request signal is removed before Tl time of the data break cycle, the 
computer performs the transfer in one l .5-... sec cycle and returns to programmed operation. 

OUTPUT DATA TRANSFERS 

Timing of operations occurring in a single-cycle output data break is shown in Figure 37. 
Basic logic circuits for the device interface used in this type of transfer are shown in 
Figure 38 • Address and contra I signo I generators a re similar to those discussed previously 
for input data transfers, except that the Transfer Direction signal must be at ground po
tential to specify the output transfer of computer infonnotion. An output data register 
(OB in Figure 38) is usually required in the device interface to receive the computer in
formation • The device, and not the PDP-8, controls strobing of data into this register. 
The device must supply strobe pulses for all data transfers out of the computer (programmed 
or data break) since circuit configuration and timing characteristics differ in each device. 

COMl'IITDI Tl " " Tit 
flllC ' l t 

ADIJJll $5, !i,1Gfri1Al, I .. P"T fO ... """" .... f" -
/IIOT ,1r,11t..ur.f" 

1•.u,s,1i. DlllfC'hOlo -AL ou; J •NPIIT !0 1M C°"TTtol. 

C•Cs I Sl!UCT SIGU L _,.._, ! , o,c,.r 
TO lll&J0'1 STATr G(,CIIATO- IC>f:1.1: 

lll!U• ltt:OlllU 6-l II<~~· ,,~~, -
ro W4"JOII nnt &1.••••041 /IID flE~St 

llltt: •• t>to: rt.•-'•011 , -
r, 

DATA 4"-H-IIA .._,LK IMID - t -J VOL,-5 

ADOlt£95 A«(f'T(D "111.K 
GND 

.1vt1t.rs -

I_._ tllUL - r--,-.,1 • 
.Do\TA 6\<AI.ULI IN .. 11(1 L.OT(i. 

DATA AWAoLOLt Ill IA '°" AV,1/L...._C _ 1'~6~ 350- 6HE~ Tf ---...., 

51'110111"5 H I 10 Dl:YICf L_ 
NOt """IL•IILC 

Figure 37 Single-Cycle Data Break Output Transfer Timing Diagram 

173 



174 

OB = OUTPUT BUFFER 
AR = ADDRESS REGISTER 
D = DIRECTION FLIP-FLOP 
BR = BREAK REQUEST FLIP-FLOP 
CS =CYCLE SELECT (USUALLY SUPPLIED 

BY FIXED WIRING TO -3 VOL TS 
RATHER THAN BY A FLIP- FLOP) 

Figure 38 Device Interface Logic 
for Single-Cycle Data Break Output Transfer 

When the data break request arrives, the computer completes the current instruction and 
generates an Address Accepted pulse as in input data break transfers. At T2 time the 
address supplied to the PDP-8 is loaded into the MA, the Break state is entered, and the 
MB is cleared. Not more than 350 nsec after T2, the content of the device-specified 
core memory address is read and available in the MB. (This word is automatically re
written at the same address during the last half of the Break cycle and is available for 
programmed operations when the data break is finished.) Data Bit signals are available 
as static levels of ground potential for binary l 1s and -3v for binary O's. The MB is 
cleared at T2 time of each computer cycle, so the data word is available in the MB for 
approximately l. 15 µsec to be strobed by the device interface. 

Generation of the strobe pulse by the device interface can be synchronized with computer 
timing through use of timing pulses B Tl or B T2A, which are available at the computer 
interface. In addition to a timing pulse (delayed or used directly from the computer), 
generation of this strobe pulse should be gated by condition signals that occur only dur
ing the Break eye le of an output transfer. Figure 39 shows typica I logic circuits to effect 
an output data transfer. In th is example the B Break signal and an inverted Transfer Di
rection signal are combined in a diode NAND gate to condition a diode-capacitor-diode 
gate. A buffered B T2A pulse triggers the DCD gate to produce the strobe pulse. The 
B T2A pulse determines the timing of the transfer in this example, since the input of the 
output buffer register has DCD gates. Conventional DCD gates require a minimum set
up time of 400 nsec, which is adequately provided between the time when data is avail-



able in the MB and T2 time. A I though the MB is c I eared and the major state generator 
is changed at T2 time, the B T2A pulse can effect this transfer because the delay built 
into FLIP CH IP flip-flops a I lows the output to be sampled while the input is being pulsed. 
If diode gates or other devices with a set-up time of less than 400 nsec are used at the 
input of the output buffer register, the B Tl pulse, or some other pulse generated by the 
device interface before T2 time, can trigger strobe pulse generation. 

Figure 39 Device Interface for Strobing Output Data 

By careful design of the input and output gating, one register can serve as both the input 
and output buffer register. Most DEC options using the data break foci lity have only one 
data buffer register with appropriate gating to a How it to serve as an output buffer when 
the Transfer Direction signal is at ground potential or as an input buffer when the Transfer 
Direction signal is -3v. 

MEMORY INCREMENT 

In this type of data break the content of core memory at a device-specified address is 
read into the MB, is incremented by l, and is rewritten at the same address within one 
l .5-1.1sec cycle. This feature is particularly useful in building a histogram of a series of 
measurements, such as in pulse-height analysis applications. For example, in a computer
controlled experiment that counts the number of times each value of a parameter is meas
ured, a data break can be requested for each measurement, and the measured value can 
be used as the core memory address to be incremented (counted). 

Signal interface for a memory increment data break is similar to an output transfer data 
break except that the device interface generates an Increment MB signal and does not 
generate a strobe pulse (no data transfer occurs between the PDP-8 and the device). 
Timing of memory increment operations appear in Figure 40, and an example of the logic 
circuits used by a device interface appears in Figure 41. 

175 



176 

.,,. Tl Tl T1 ft 
I ' I 

____ ,,ou -..uu :J .,,.,..,.,. 
~- DIIICTf1111 -A~ IIIPIIT a: :.J TO 1111 ClllffllOI. 

CTCI.I IIUCT - INPUT TO 1 rra.c 
MA,IQIIITAflWlltll&- lnRE-.... ·-" -· _, ,..,.., ... 
TII IIA.IOII ITATE ltlltl4TOII ..... ,..J 

, . 
.... 1\'tlen,._,~ 

0 

u,a---114111Ul• -,. t -:IIIOll7 

-- ACCl"'ID ll'IA.K -· _,_,., _ 
..... ._ .. ,.. 

~ = _., __ ,.., -
-IIT 11<-ST _,.L ,_,. ,,,_.,, - r----TO ... COIITIIOL lfO HWCIT 

--~ - IUflCTIVU,1' T-119 
TtC l:Olffflff o, Tl4I: -~ICTEO CX.: - -I.OC,l,TOII .. .,, ttC - AP-,_Afl~T 
-U'TII UI _., _,.., -
- N --lltl TM€ COITPT --C. TIC NAT Tl T..r:I 

-1111111.r.J 

r.1.u,11,,r-:or:::= .,,,,,. - ,-, mat lG:¥.~ffl..'TTII TIC 

_,_,_ 

Figure 40 Memory Increment Data Break Timing Diagram 

An interface for a device using memory increment data breaks must supply twelve Data 
Address signals, a Transfer Direction signal, a Cycle Select signal, and a Break Request 
signal to the computer data break facility as in on output transfer data break. In addi
tion, a ground potential Increment MB signal must be provided at least 400 nsec before 
Tl time of the Break cycle. This signal can be generated in the device interface by AND 
combining the B Break computer output signal, the output transfer condition of the Trans
fer Direction signal, and the condition signal in the device that indicates that an incre
ment operation should take place. When tf,e computer receives this Increment MB signal, 
it forces the MB control element ta generate a Count MB pulse at Tl time to increment 
the content of the MB • 

The device interface logic shown in Figure 41 samples the normal Data Bit output signal 
for the most significant bit of the data word (BMB0) to determine if it overflows when 
incremented. If MB0 changes from the 0 to the 1 state when the data word is incremented, 
this logic requests a program interrupt to allow the program to take some appropriate ac
tion, such as incrementing a core memory counter for numbers above 4096, stopping the 
test to compile the data gathered to the current point in the operation, reinitializing the 
addressing, etc. The logic in the figure uses the select code of programmed data trans-
fer operation to skip on the overflow condition to determine the cause of a program in
terrupt, to clear the overflow flip-flop, and to clear the device flag. Note that the 
devices that use data break transfers almost always use programmed data transfers to start 
and stop operation of the device, to initialize registers, etc., and do not rely on data 
break facilities alone to control their operations. 



-=-,.----------------fllT[IIF~ ____________ ., 
DEVICE PDP-& 

IOT4 

1111:su 
OEvttt 
»IDFlAG 

I ,on 

IOT2 

I 
L_ 

Figure 41 Device Interface logic for Memory Increment Data Break 

177 



178 

Three-Cycle Data Breaks 

Timing of input or output 3-cycle data breaks is shown in Figure 42. The 3-cycle break 
uses the block transfer control circuits of the computer. The block transfer control pro
vides an economical method of control ling the flow of data at high speeds between PDP-8 
core memory and fast periphera I devices, e.g., drum, disc, magnetic tape and I ine print
ers, a I lowing transfer rates in excess of 220 kc. 

The three-eye le data break foci I ity provides separate current address and word count 
registers in core memory for the connected device, thus eliminating the necessity for 
flip-flop registers in the device control. When several devices are connected to this 
foci lity, each is assigned a different set of core locations for word count and current 
address, a I lowing interlaced operations of a 11 devices as long as their combined rate 
does not exceed 220 kc. The device specifies the location of these registers in core 
memory, and thus the software remains the same regardless of what other equipment is 
connected to the machine. Since these registers are located in standard memory, they 
may be loaded and unloaded directly without the use of IOT pulses. In a procedure 
where a device requests to transfer data to or from core memory, the three-cycle data 
break foci lity performs the fol lowing sequence of operations: 

a. An address is read from the device to indicate the location of the 
word count register. This address is always the same for a given device; 
thus it can be wired in and does not require a flip-flop register. 

b. The content of the speci fled address is read from memory and 1 is 
added to it before rewriting. If the content of this register becomes 0 
as a result of the addition, a WC Overflow pulse will be transmitted 
to the device. To transfer a block of N words, this register is loaded 
with - N during programmed initialization of the device. After the 
block has been fu I ly transferred th is pulse is generated to signify com
pletion of the operation. 

c. The next sequentia I location is read from memory as the current 
address register. Although the content of this register is normally in
cremented before being rewritten, an Increment CA lnh ibit 
(+1 _. CA Inhibit) signal from the device may inhibit incremen
tation. To transfer a block of data beginning at location A, this regis
ter is program initialized by loading with A-1. 

d. The content of the previously read current address is transferred to 
the MA to· serve as the address for the data transfer. Th is transfer may 
go in either direction in a manner identical to the single-cycle data 
break system . 

The three-eye le data break foci I ity uses many of the gates and transfer paths of the sing le
e ye le data break system, but does not preclude the use of standard data break devices. 
Any combination of three-cycle and single-cycle data break devices can be used in one 
system, as long as a multiplexer channel is available for each. Two additional control 
lines are provided with the three-cycle data break. These are: 

a. Word Count Overflow. A standard O .4-f-lsec negative computer 
output pulse is transmitted to the device when the word count becomes 
equa I td zero. 



-..... 
<D 

C'ICU l[UCT _..._ -T TO 
- STATI 11111EIIAT01t 

- HIIC FL•-FLW' 

- C:OUO,T IWCl STAT[ 

CUllltt:NT AIIOMH !CAI STAT( 

•tH 1111 sT•n 

DATA ADDlltH -IIA 

ADDIIESS ACCtPTEII 

=rn.:Ft• OIII.Yl 

DATA -ILAIU .. 111 FOIi 
··- av JIii Dt:YICE IOUTl'UT HilNVlt:11 OHUl 

=,~,!5rtsf" 
H-t:• OF a ILOCa T -1111 

,c~ 
I Clff.E 

Tl 
I 

Tl Tt 
I 

u 
I 

Tl 
I 

Tl Tl 
I 

Tl 
I 

-A&£ 
t/lDr .,AII.AaE 

, cl4'1UT , .. t:~ TOIIWOV[Olt_,.. :..i~_-_-_-_-_-_-_-_--_-_-_--_-_-_--,-----..,...._, -~ ,a IT Tl Of' - AIIOIIQI C\'Q.I 

•-II.IT TM-•-[ TO ~LITIIT TM ---[ TO _, •c••11TATOI C/f Cl, 11 ------::.iiowt:-"iial'T111: -- AT UTll'I IIITO CIWIIT A-I ITATE :.J ~OIIT>C-IS.acevTt:IIPULSI 

; :..J 
,_ 
0 

, -
0 

, 
0 I _,,+~ -- L -,tG.rs --3 WX.T.f --_,_,.., 

DATA ilVIII.Alll.t .. - IIO LilT£• --E IIDT .,AllAAE 
~-=-,:~,u n a, 11.,., -------_.,,~.--------,L 

--,-r.1 -

Figure 42 Three-Cycle Data Break Timing Diagram 



180 

b. Increment CA Inhibit. When ground potential, this device-supplied 
signal inhibits incrementation of the current address word. 

In summary, the three-cycle data break is entered similarly to the single-cycle data 
break, with the exception of supplying a ground-level Cycle Select signal to allow entry 
of the WC (Word Count) state to increment the fixed core memory location containing 
the word count. The device requesting the break supplies this address as in the one-
eye le data break, except that th is address is fixed and can be supplied by wired ground 
and -3v signa Is, rather than from a register. The sole restriction on th is address is that 
it must be an even number (bit l l = O). Fol lowing the WC state a CA (Current Address) 
state is entered in which the core memory location fol lowing the WC address (bit l l = l 
after PC +l => PC) is read, incremented by one, restored to memory, and used as the trans
fer address (by MB =>MA). Then the norma I B (Break) state is entered to effect the 
transfer. 



CHAPTER 4 

DIGITAL LOGIC CIRCUITS 

PDP-8 is constructed of Digital FLIP CHIP modules. The Digital Logic Handbook, C-105, 
describes more than 100 of these modules, all their component circuits, and the associated 
accessories, i.e., power supplies and mounting pane Is. The user shou Id study th is cata
log carefully before beginning the design of a special interface. 

Basic Digital Circuits 

The basic component circuits used in the interface of the PDP-8 as wel I as in most FLIP 
CHIP modules are inverters, diode gates, diode-capacitor-diode (DCD) gates, pulse 
amplifiers, and bus drivers. 

INVERTERS 

An inverter circuit is analogous to a switch. Figure 43 shows the basic inverter circuit. 
If the inverter base is at -3v and the emitter is at ground (most transistors in FLIP CHIP 
modules have a permanent connection from the emitter to ground), the PNP transistor is 
saturated and a conduction path is established between the emitter and collector output. 
Conversely, when the input at the base of the inverter is at ground, the transistor is cut 
off and the output at the collector goes negative. Collector points can connect to a load 
with in the module or a remote load at the driven circuit. lnterna I collector loads are 
clamped at -3v. In series-R modules the load resistor is 7 .5K to draw 2 ma, and in series-
5 modules the load resistor is 3K to draw 5 ma. 

-3V -15V 

Lt·K 
56 µ.F 

~ 
Figure 43 Inverter Circuit Schematic Diagram 

Flip-flops are cross-coupled inverters using the same circuit. The state of a flip-flop is 
changed by driving the base of the conducting transistor to ground, thereby turning it off. 
Figure 44 shows the direct-set input circuit of the Type R210 PDP-8 Accumulator module. 

181 



182 

+1ov 

INPUTo-...... --Dt--
1500 

-15V -3V -15V 

Figure 44 Direct-Set Input Circuit Schematic of 
the R210 PDP-8 Accumulator 

DIODE GATES 

The diode gate is used in the R and S series to combine, amp I ify, invert, and standardize 
the signals which represent various logic functions. Figure 45 is a circuit schematic dia
gram of a simple diode gate with one input. 

-3V -15V 

CLAMPING* ! LOAD 
DIODE ~ RESISTOR 

-15V 

BIASING 
RESISTOR 

BIASING 
NOOE RESISTOR 

INPUT 
CONNECTION +1ov 

I 
I COLLECTOR 

OUTPUT 
CONNECTION 

Figure 45 Single-Input Diode Gate Circuit Schematic 

When the input is negative, the node point is also negative and current flows from the 
transistor emitter through the biasing diodes and the biasing resistor to -15v. As a result, 
the PNP transistor is turned on forming a short circuit between the collector and the emit
ter. Thus, when the input voltage is negative, the output voltage is ground potential. 
Since the output is from a saturated transistor, it has a low output impedance and good 
driving power. 

When the diode gate input voltage is ground, the biasing diodes and the resistor, which 
is connected to the +]Ov supply, hold the transistor base more positive than the emitter, 
and the transistor is turned off. The output is then an open circuit, and it follows the 
voltage of any other circuit connected to it. 

If the load resistor and clamp diode are attached to the transistor collector, they serve as 
a voltage source and hold the output at -3v while the transistor is off. When the tran
sistor is on, the diode is cut off and the load resistor fol lows the output to ground. 



The single-input diode gate therefore has three functions: 

a. It inverts the input signa I. 

b. It standardizes the output voltage to -3v or ground (if the clamped load 
diode and resistor are connected). 

c. Since the output current available from the transistor is much greater 
than the required input current, the diode gate amplifies. 

A fourth function, gating, obtained by adding more diode inputs to the node point, is il
lustrated in Figure 46. 

-3V -15V 

-15V 

~--<>OUTPUT 

NODE 

Figure 46 Multiple-Input Diode Gate Circuit Schematic 

The node terminal is at approximately the same voltage as the most positive input. Thus, 
when any input terminal is grounded, the node terminal is also at ground and the circuit 
output is at -3v. If all of the inputs are negative, the node terminal is negative and the 
circuit output is at ground. 

Figure 47 shows how gating functions can be performed by wiring together two or more 
diode gate outputs and one load resistor. When any input is negative, it saturates the cor
responding transistor and forces the output line to ground. If all inputs are at ground, all 
of the transistors are open circuits and the output voltage, determined by the clamped 
load resistor, is -3v. 

-3V -15V 

-15V 
..._ __ ,......_-OOUTPUT 

INPUTS 

+10V 

Figure 47 Parallel-Connected Diode Gate Circuit Schematic 

183 



184 

It is possible to use the basic diode gate to construct very complex logical functions. A 
drawing showing all of the circuit components, however, would be difficult both to draw 
and read, so for this reason logic diagrams use a shorthand notation, representing one or 
more components as a single functional unit. Figure 48 shows a diode gate in the con
ventional way. The transistor circuit, including the biasing resistors and diodes, appears 
as a simple rectangle with an arrowhead indicating the direction of the transistor emitter. 
The load resistor appears as a resistor with a large dot at the top indicating that it is diode 
clamped to -3v . 

INPUTS <>-l-:,i-.. 

NODE 

t CLAMPED ! LOAD 

Figure 48 Diode Gate Logic Symbol 

Diamonds show assertion input and output voltage levels. A solid diamond indicates a -3v 
level, and an open diamond indicates a ground level. In the 2-input diode gate of Figure 
49, for example, if input A and input B are both negative, the output is at ground. If 
either A or Bis at ground, the output is negative. 

Figure 49 Logic Operations Performed by Diode Gates 

DIODE-CAPACITOR-DIODE GATES 

The diode-capacitor-diode (DCD) gate is used to standardize the input to various units 
such as flip-flops, delays, and pulse amplifiers. It provides logical isolation between 
pulse and level inputs and produces a logical delay which is essential for sampling flip
flops at the same time they are being changed. It also acts as a logical AND gate since 
both pulse and level inputs must meet certain requirements for a signal to. appear at the 
output. Either positive pulses or positive-going level changes (both -3v to ground) may 
be used as the pulse input. 

A schematic drawing of a DCD gate is shown in Figure 50. If the level input is held at 
ground and the pulse input is held at -3v, the capacitor becomes charged after the set
up time has passed. If the pulse input then suddenly goes to ground, a positive-going 
pulse appears at the output. There is delay at the level input, but the pulse input goes 
to the output without delay. Even if the level input changes simultaneously with a posi
tive transition at the pulse input, the delay acts as a temporary memory: the pulse input 
is gated according to the level input that existed during the interval before the pulse. 



PULSE 
OUTPUT 

LEVEL 
INPUT 

-15V 

Figure 50 Diode-Capacitor-Diode Gate Circuit Schematic 

An X in the rectangle distinguishes the symbol for the DCD gate (Figure 51) from the diode 
gate. The output is at the top, the delayed (level) input is at the bottom, and the differ
entiating (level change or pulse) input is on the side. An arrowhead rather than a diamond 
indicates the input signal to be differentiated, whether a level change or a pulse. The 
pulse symbols are ho I low when positive-going and sol id when negative-going. In the DCD 
gate, the pulse input must be positive-going. 

PULSE 
OUTPUT 

PULSE_ _1 INPUT7 
LEVEL 
INPUT 

Figure 51 Diode-Capacitor-Diode Gate Logic Symbol 

Since the same pulse may drive many DCD gates, the side of the rectangle opposite the 
pulse may be used to show a continuation of the same line, as in Figure 52. The illus
tration on the left below is a simplified version of the identical logical conHguration on 
the right. 

SYMBOL 
CONNECTION 

Figure 52 Parallel-Connected Trigger Pulse to DCD Gates 

PULSE AMPLIFIERS 

The PDP-8 uses two types of putse amplifier circuits. Modules such as the Type S603 
contain monostable mu ltivibrators (one-shots) to produce a standard l 00-nsec negative 
output pulse. Modules such as the Type W640 use a transformer-coupled pulse-forming 
circuit to produce standard 400-nsec or 1-µsec pulses. The time required to saturate the 
inter-stage coup I ing transformer determines output pulse duration, and grounding the ap
propriate side of the output pulse transformer determines output polarity. Figure 53 shows 
schematically the final stages of this type of pulse amplifier circuit. 

185 



186 

-3V 

I 

-15V 

Figure 53 Pulse Amplifier Output Circuit Schematic 

BUS DRIVERS 
Bus driver circuits that drive a heavy load contain a push-pull output stage, as shown in 
Figure 54. The Type R650 module uses a de, inverting, amplifier circuit with a timing 
capacitor to control rise and fall times. With the capacitor shunted to ground, typical 
rise and fall time is 700 nsec; with this capacitor floating, typical rise and fall time is 
50 nsec. A resistor output terminal is provided for driving coaxial cable. 

+10V 

82 

OUTPUTS 

-15V 

Figure 54 Bus Driver Output Circuit Schematic 

Interface Circuits of the Computer 
Circuit modules of the PDP-8 receiving input signals and supplying output signals are as 
follows: 

Type 

A502 
Rl23 
R210 
R211 
S107 
S111 
S151 
S203 
S603 

Input 

Name 

Difference Amplifier 
Diode Gate 
PDP-8 Accumulator 
MA, MB, and PC 
Inverter 
Diode Gate 
Binary-to-Octal Decoder 
Triple Flip-Flop 
Pulse Amplifier 

Type 

R650 
S107 
W640 

Output 

Name 

Bus Driver 
Inverter 
Pulse Amplifier 



A502 DIFFERENCE AMPLIFIER · 

Only the PDP-8 containing a Analog-to-Digital Converter "Fype 189 option uses the A502 
Difference Amplifier. The A502 is a high-speed difference amplifier which compares two 
input voltages and indicates which of the two is the more negative. The comparator has 
a resolution of l mv, and an input range of O to -10v. The maximum combined error due 
to a change in the common input voltage from O to -10v and a 20°C temperature change 
is 5 mv equivalent input offset. Two potentiometers allow adjustment of the zero set and 
common balance. 

The comparator switching time is less than 250 nsec for a +l O mv square wave. The switch
ing time is also less than 250 nsec when one input is at -5. OOv and the other is switched 
from ground to -5. 02v. For finer resolution, the switching time is increased. When the 
comparator is driven from a high impedance, fast switching source, such as a digital-to
ana log converter, time shou Id also be a I lowed for transients to settle. 

The O to -10v input draws up to l µa depending on the relative polarity of the two voltage 
inputs. The maximum current difference between positive and negative input voltages is 
l µa. The difference input capacitance is 75 pf. 

R123 DIODE GATE 

The Data Line Interface Type 681 option uses the Rl23 as an interface module only where 
it receives the Line(l) Teletype signal. The Rl 23 contains six 2-input negative NAND 
gates, with no load resistors for the gates since they usua I ly drive the input of a flip-flop 
register. Standard ground and -3v levels with a duration of at least l 00 nsec drive the 
input. Input load is l ma shared among the inputs that are at ground. 

Standard ground and -3v levels are produced at the output. Each output can drive 20 ma 
of load at ground. The output terminals of diode gates may be connected in parallel. One 
clamped load is sufficient for para I lei outputs when using less than 2 ft of wire. If the wire 
exceeds this length, additional clamped loads may be necessary for a sufficiently fast fall 
time in higher frequency applications. Two gates in parallel, driven by the same signal, 
can drive 38 ma at ground (20 ma each, less the 2-ma clamped load). Gates in parallel, 
not driven by the same signa I, can drive 20 ma at ground minus 2 ma for each clamped 
load used. 

R210 PDP-8 ACCUMULATOR 

The R210 is a double-height module that seives as one bit of the accumulator register, 
with a 11 of the necessary input gates. Bus driver modules from th is module apply outputs 
to the interface. Interface input connections consist of the direct-set connection used as 
the input bus for programmed data transfers. This input accepts standard levels of ground 
and -3v. A ground level of 400-nsec minimum duration activates the input. Input load 
is 11 ma at ground, and when not in use, the direct-set input terminal must be at -3v. 

R211 MA, MB, AND PC 

The R21 l is a double-height module that contains one bit of the memory address, memory 
buffer, and program counter registers of the PDP-8. Connections from th is module to the 
interface receive the Data Address and Data Bit signals supplied by external equipment 

187 



188 

that uses the data break foe i I ity. These signa Is are received as the I eve I input to three 
DCD gates on each module. Two of these gates serve as a complementary input to the 
MA for the Data Address signa I. An inverter in the module precedes the DCD gate on the 
clear side of the MA flip-flop; so the single address signal input either sets or clears the 
flip-flop. The third DCD gate connects to the l side of the MB flip-flop to receive the 
Data Bit signal directly. Control circuits within the computer provide trigger pulses to all 
these gates. Input signa Is must be at ground I eve I to designate a binary l or -3v to de
signate a binary 0. These signals must precede the trigger pulse by at least 400 nsec. 
Each Data Address input represents 12 ma of load. Each Data Bit input represents .1 l ma 
of load. 

R650 BUS DRIVER 

The AC, MB, Break, and Run(l) output signals are buffered by bus driver circuits of Type 
R650 modules before connection to the interface. 

The R650 contains two inverting bus drivers for driving heavy current loads to either ground 
or negative voltages. The bus drivers operate at frequencies up to 2 me with typical rise 
and fall times of 25 nsec. The typical total transition times are 60 nsec for output rise and 
65 nsec for output fa 11 • 

By grounding pin H or S the rise and fol I time can be increased to avoid ringing on ex
ceptionally long lines. The driver then operates\at frequencies up to 500 kc with typical 
rise delay of 50 nsec, fall delay of 50 nsec, and total transition time of 800 nsec for out
put rise and 700 nsec for output fa 11. Termina I K or U can be used for driving coax ia I 
cable. 

The direct output (termina Is J and T) drives 20 ma of externa I load at either ground or -3v. 
The resistor output (terminals Kand U) drives 90-ohm coaxial cable s~ch as RG-62-U. 
This output drives 5 ma of external load at either ground or -3v. The direct output con
nects to the interface connectors of the PDP-8. 

S107 INVERTER 

In the basic computer, Type S107 Inverter modules receive the Increment MB and Cycle 
Select signals used with the data break. In the Memory Extension Control Type 183 option 
the S l 07 Inverter receives the Address Extension 1-3 signa Is, and in the Data Line Inter
face option Type 681 it receives the Teletype Line(l) signal. Within these two options 
the Type S l 07 supplies the Data Fie Id and Teletype Instruction (TT Inst) output signa Is. 

The S l 07 Inverter contains seven inverter circuits with sing le-input diode gates. Six of 
the circuits are used for single-input inversion; the seventh circuit can be used for gating 
by tying additional diode input networks to its node terminal. Clamped load resistors of 
5 ma are a permanent part of each inverter. Typical output total transition times are 
60 nsec for rise and 50 nsec for fa 11. 

The diode input accepts standard level inputs of ground and -3v that are a minimum of 
l 00 nsec in duration. This l ma input load is shared among the inputs at ground. The 
node terminal input accepts only R00l or R002 Diode Network output connections, or 
their equivalents. The combined length of all leads attached to the node terminal must 
not exceed 6 inches. Input signa I and load characteristics for diode networks are the 
same as those given for the diode input above. 



Output signa Is from the inverters are standard I eve Is of ground and -3v. Each inverter 
drives 15 ma of load at ground. Output terminals of inverters may be connected in 
parallel. Only one clamped load resistor is needed at the output when less than 2 feet 
of wire is used. If the wire exceeds th is length, additiona I clamped load resistors may 
be necessary for a fast enough fall ti~e in high frequency applications. 

S111 DIODE GATE 

Type S 111 modules in the computer receive the Program Interrupt Request and Transfer 
Direction (Data In) signa Is. 

The S 111 Diode Gate contains three diode gates, each connected to a transistor inverter. 
The gate operates as a NAND for negative inputs and as a NOR for ground inputs. Each 
gate has three input terminals: two are connected to diodes; a third is connected directly 
to the node point of the diode gate. The third terminal allows the number of input diodes 
to be increased by adding externa I diode networks such as the R00l or R002 modules. 
External diodes must be connected in the same direction as the diodes in the S 111. Typi
cal output total transition times are 60 nsec for rise and 50 nsec for fall. 

Input signals to the diode terminals must be standard levels of ground or -3v, and must 
have a minimum duration of l 00 nsec. Input load is l ma shared among the inputs at 
ground. Input signals to the node terminals accept only connections from Type R00l or 
R002 Diode Network modules, or their equivalents. The maximum combined length of 
all leads attached to a node terminal is 6 inches. Input signal load is similar to the 
diode input. 

S151 BINARY-TO-OCTAL DECODER 

A Type S 151 module (in para lie I with a Type S l 07) receives Address Extension 1-3 signa Is 
supplied to the Memory Extension control option Type 183. 

This S 151 decodes binary information from three flip-flops into octal form. When the en
able input is at ground, the selected output line is at ground and the other seven outputs 
are at -3v. When the enable input is at -3v, a 11 outputs are at -3v. The interna I gates 
are similar to those in the Sl 11. The enable input is the common emitter connection of 
the output inverters. Typical total transition times are 75 nsec for output rise and 60 nsec 
for output fa II. 

Standard input levels are -3v and ground, 100 nsec minimum duration. The 2.3 ma input 
load is shared among the inputs at ground. 

S203 TRIPLE FLIP-FLOP 

The S203 contains three identical flip-flops. Each flip-flop has a direct clear and a DCD 
gate for conditional readin. The level input to one of these gates connects to the inter
face to receive the Data Break Request signal. This input receives standard ground and 
-3v levels. The conditioning level must be ground level to condition the gate and to re
quest a break. This conditioning must occur at least 400 nsec before an internal computer 
pulse triggers the gate. The level input represents a 2-ma load at ground. 

189 



190 

S603 PULSE AMPLIFIER 

Pulse amplifiers of Type S603 modules receive the Clear AC and Skip inputs of the PDP-8. 
An 5603 module contains three pulse amplifier circuits for power amplification and stan
dardizing pulses in amp I itude and width. Each amp I ifier produces standard l 00-nsec neg
ative pulses each time the input triggers from the diode or DCD gate inputs. Both inter
face input signals flow to the diode input of a pulse amplifier. The pulse amplifier can 
accommodate input pulses at any frequency up to 2 me. Delay through the pulse.amplifier 
is approximately 50 nsec. The diode input receives standard l 00-nsec pulses (-3v to 
ground) or positive-going level changes (-3v to ground) with a rise time no longer than 
60 nsec. The input level must be returned to -3v for at least 400 nsec before another in
put may occur at either the diode or DCD gate input. The diode input represents a 1-ma 
load at ground. 

W640 PULSE AMPLIFIER 

The IOP pulses, BTl and BT2 timing pulses, and the B Power Clear pulses are supplied to 
the interface as outputs from Type W640 modules. The W640 module contains three un
gated pulse amplifiers capable of producing either 1-µsec or 400-nsec pulses. In the 
norma I PDP-8, these outputs are standard negative 400-nsec pulses. Each output drives 
10 ma of load (equivalent to 10 inverter bases such as the 8104 or Sl 11). These ampli
fiers should not be used without a terminating resistor; typical values are 47 to 150 ohms. 

Interface Circuits of Peripheral Equipment 
Several FLIP CHIP circuit modules are of particular interest in the design of equipment 
to interface with the PDP-8. Chief among these are the Wl 03 Device Selector and the 
R 123 Diode Gate. In addition to these, the following modules serve specia I interface 
applications: 

Type 

8681 

8684 

W040 

W051 

W501 

W510 

Name 

Power Inverter 

Bus Driver 

Solenoid Driver 

Driver 

Schmitt Trigger 

Positive Input 
Converter 

Application 

Genera I purpose digita I logic to supply 
or operate devices requiring up to 32 ma. 

Provides output driving current of up to 
40 ma. 

Provides driving capability for electro
mechanical devices such as counters, 
clutches, and other solenoid-actuated 
equipment requiring currents of up to 
600 ma at -2 .5 to -70v. 

Provides driving capability for devices 
that require up to l 00 ma at O to - l 5v. 

Provides level conversion from voltages 
of± l 0v to the standard levels required 
by DEC modules. 

Converts positive voltage signal levels to 
ground and -3v levels for DEC modules. 



W600 

W601 

Name 

Negative Output 
Converter 

Positive Output 
Converter 

Application 

Converts standard DEC logic levels of 
ground and -3v to levels of ground and 
a negative voltage between -1 and - l 5v 
determined by the level of an external 
supply. 

Converts standard DEC logic levels of 
ground and -,-3v to levels of ground and 
some positive voltage between + l and 
+20v as determined by the level of an 
external supply. 

W103 DEVICE SELECTOR 

The Wl 03 selects an input/output device according to the code in the instruction word 
(being held in the memory buffer during the IOT cycle). Figure 55 shows the logic cir
cuits of the Wl 03 module. 

AD 

AK 

AR 

BE 

BF 

BH 

BJ 

BK 

BL 

BM 

BN 

BP 

BR 

BS 

BT 

BU 

BV 

IOT1 
AF 

PA AE 

!OP\ 

AH AJ 

AM 

AL 

IOP2 

IOP4 

DEVICE SELECTED 
-"Nl,----<t----+-------------<'>BD 

MB3 (0) 

MB3 (1 l 

MB4 (0) 

MB4 ( 1) 

MB5 (Ol 

MB5 (1 l 

MBG (0) 

MB6 (1) 

MB7 (01 

M87 (1) 

MB8(0) 

MB8 l 1) 

SPARE 

SPARE 

NOTE, 
CONNECTED AS SHOWN, OUTPUT 
PULSES ARE 100 nsec, TO OBTAIN 
400 nsec OUTPUT PULSES CONNECT 
TERMINALS AH TO AJ, AN TO AP, 
AND AU TO AV 

Figure 55 Device Selector Wl 03 logic Circuit 

191 



192 

The twelve input diodes permit selection of any arbitrary 6-bit code, and decode the 
number held in MB bits 3 through 8. When the proper enabling code arrives at the diode 
gate, the three input gates driving the three pulse amp Ii fie rs are enabled and permit pas
sage of the programmed IOP pulses. To establish a code on the module, the six unneces
sary diodes are disabled by snipping one of their leads or removing them altogether. If 
MB bit 3 is a binary l to set up the correct code, the diode going to the binary 0 side of 
MB bit 3 is disabled. Two spare diodes are included for additional gating flexibility. 

Three pulse amplifiers produce R-series TO0-nsec positive-going output pulses. Inverted 
pulse amplifier output pulses are provided for gates (such as the Type Rl 11 Diode Gate) 
which require negative or negative-going pulses. Jumper terminals on each pulse amplifier 
establish a pulse duration of 400 nsec for the output pulse. It is recommended that the 
400-nsec pulse duration be used when transmitting the pulse over long distances. The 
400-nsec pulse also c I ears R-series flip-flops whose carry gates are permanent! y enabled. 
The positive pulse output of each pulse amplifier is rated 65 ma of external load at ground; 
the negative output is rated 15 ma at ground (when driving a load connected to - l 5v). 
These outputs are not designed to drive loads when at -3v (loads connected to ground). To 
drive this type of load, a clamped load resistor must be connected to the pulse amplifier 
output terminal to supply the current. 

R123 DIODE GATE 

This module contains six 2-input NAND gates for negative levels and is useful for trans
ferring data into or out of the PDP-8 accumulator. Standard DEC negative levels or 
0.4 microsecond negative pulses such as those from the Wl03 Device Selector can be used 
as input signals. Input load per gate is l ma shared among the inputs at ground. 

NOTES: 
i. STROBE PULSE INPUT TO TERMINALS F, M, AND T WHICH ARE 

CONNECTED IN COMMON WHEN USED AS A BUS GATE 

2. DATA BIT INPUTS TO TERMINALS D, E, K, L, R, AND S 

3. TWO MODULES ARE REQUIRED TO STROBE A 12- BIT WORD 

N 

Figure 56 Diode Gate R 123 Logic Circuit 

Two R 123 modules provide sufficient gating to transfer one 12-bit word into the accumu
lator. If more gates are needed to load the AC from severa I sources, the output termina Is 
can be OR connected by bussing together additional gate collectors. 



CHAPTER 5 

INTERFACE CONNECTIONS 

Al I interface connections to the PDP-8 are made at assigned module receptacle connectors 
in the left (memory-M) or right (processor-P) mounting frame (door). Capital letters des
ignate horizontal rows of modules within a mounting frame from top to bottom. Module 
receptacles are numbered from left to right as viewed from the wiring side (right to left 
from the module side). Terminals of a connector or module are assigned capital letters 
from top to bottom, omitting G, I, 0, and Q. Therefore, terminal PE2H is in the right 
mounting frame (P), the fifth row from the top (E), the second module from the left (2), 
and the seventh terminal from the top of the connector (H). 

The module receptacles and assigned assigned use for interface signal connections are: 

Receptacle 

PE2 
PE3 
PE4 
PF2 
PF3 

PF4 
ME30 
ME34 
ME35 
MF34 
MF35 

Signal Use 

AC 0-8 inputs 
Data Address 0-8 inputs 
Data Bit 0-8 inputs 
AC 9-11, Skip, Clear AC inputs and Run output 
Data Address 9-11 inputs, and Address Accepted and 

B Break outputs 
Data Bit 9-11 inputs 
Address Extend l, 2, 3 inputs and Data Field 0-2 outputs 
BAC 0-8 outputs 
BMB 0-5 outputs 
BAC 9-11, IOTs, BTl, BT2A, and B Power Clear outputs 
BMB 6-11 outputs 

Terminals C, F, J, L, N, R, and U of these receptacles are grounded within the com
puter and terminals D, E, H, K, M, P, S, T, and V carry signals. These terminals mate 
with Type W0l l Signal Cable Connectors at each end of 93-ohm coaxial cable. 

Interface connection to the PDP-8 can be established for all peripheral equipment by 
making series cable connections between devices. In this manner only one set of cables 
is connected to the computer and two sets are connected to each device: one receiving 
the computer connection from the computer itself or the previous device; and one pass
ing the connection to the next device. Where physical location of equipment does not 
make series bus connections feasible, or when cable length becomes excessive, additional 
interface connectors can be provided near the computer. 

All logic signals passing between the PDP-8 and the input/output equipment are standard 
DEC levels or standard DEC pulses. Logic signals have mnemonic names that indicate the 
condition represented by assertion of the signal. Standard levels are either ground poten
tial (0.0 to -0.3v), designated by an open diamond (--0) or are -3v (-3.0 to -4.0v), 
designated by a sol id diamond (-+). Standard pulses in the positive direction are des
·ignated by an open triangle (-----{>) and negative pulses are designated by a sol id triangle 
(---.). Pulses originating in R or S series modules are positive-going pulses which start 
at - 3v, go to ground for 100 nsec, then return to - 3v. Pulses originating in W series 
modules are always negative, are always referenced to ground, are 2.5v in amplitude 
(2. 3 to 3. 0v) with a 2v overshoot, and are of 400-nsec duration. 

193 



194 

The following tables present cable connections and logic circuit identification informa
tion for PDP-8 interface signals. Computer input signals that must drive the interface 
bus to ground (data inputs to the AC, Clear AC, Skip, and Interrupt Request) must be 
connected to the collector of a grounded-emitter transistor, and so can be considered 
transistor-gated negative pulses ( ~ ) or levels ( 4 ). 

TABLE 5 PROGRAMMED DATA TRANSFER INPUT SIGNALS 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

AC 0 ~ PE2D PA7E R210 

AC l ~ PE2E PA8E R210 

AC2 ~ PE2H PA9E R210 

AC 3 ~ PE2K PAl0E R210 

AC 4 ~ PE2M PAll E R210 

AC 5 ~ PE2P PA12E R210 

AC 6 ~ PE2S PA13E R210 

AC 7 ~ PE2T PA14E R210 

AC 8 ~ PE2V PA15E R210 

AC 9 ~ PF2D PA16E R210 

AC 10 ~ PF2E PA17E R210 

AC 11 ~ PF2H PA18E R210 

Clear AC ~ PF2P PA19J S603 

Interrupt ~ PF2M PD36K S 111 
Request 

Skip 4 PF2K PB21V S603 



TABLE 6 PROGRAMMED DATA TRANSFER OUTPUT SIGNALS 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

BAC 0 (l) -<> ME34D ME26J R650 

BAC l (l) -<> ME34E ME26T R650 

BAC 2 (l) -<> ME34H ME27J R650 

BAC 3 (l) -<> ME34K ME27T R650 

BAC 4 (l) -<> ME34M ME28J R650 

BAC 5 (l) -<> ME34P ME28T R650 

BAC 6 (l) -<> ME34S MF26J R650 

BAC 7 (l) -<> ME34T MF26T R650 

BAC 8 (1) -<> ME34V MF27J R650 

BAC 9 (l) -<> MF34D MF27T R650 

BAC l 0 (l) -<> MF34E MF28J R650 

BAC 11 (l) -<> MF34H MF28T R650 

IOP l ~ MF34K MC31H W640 

IOP 2 ~ MF34M MC31N W640 

IOP 4 _____. MF34P MC31U W640 

8MB 3 (0) -<> ME35K MC27T R650 

BMB 3 (l) -<> ME35M MC28J R650 

BMB 4 (0) -<> ME35P MC28T R650 

8MB 4 (l) -<> ME35S MC29J R650 

8MB 5 (0) -<> ME35T MC29T R650 

BMB 5 (1) -<> ME35V MD25J R650 

8MB 6 (0) -<> MF35D MD25T R650 

BMB 6 (l) -<> MF35E MD26J R650 

8MB 7 (0) -<> MF35H MD26T R650 

BMB 7 (l) -<> MF35K MD27J R650 

BMB 8 (0) -<> MF35M MD27T R650 

BMB 8 (1) --<> MF35P MD28J R650 

195 



TABLE 7 DATA BREAK TRANSFER INPUT SIGNALS 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

Data Address O (l ) --<> PE3D PC7R R21 l 

Data Address l (l) --<> PE3E PC8R R2ll 

Data Address 2 (1 ) ---<> PE3H PC9R R21 l 

Data Address 3 (1 ) ---<> PE3K PClOR R21 l 

Data Address 4 (l) ---<> PE3M PCl lR R21 l 

Data Address 5 (1 ) --<> PE3P PC12R R21 l 

Data Address 6 (1 ) ---<> PE3S PC13R R21 l 

Data Address 7 (l) --<> PE3T PC14R R21 l 

Data Address 8 (1 ) --<> PE3V PC15R R21 l 

Data Address 9 (1 ) ---<> PF3D PC16R R21 l 

Data Address l O (l ) --<> PF3E PC17R R21 l 

Data Address 11 (1 ) --<> PF3H PC18R R21 l 

Data Bit O (l) --<> PE4D PD7M R211 

Data Bit l (l) --<> PE4E PD8M R211 

Data Bit 2 (1) --<> PE4H PD9M R2l l 

Data Bit 3 (1) --<> PE4K PDlOM R21 l 

Data Bit 4 (l) --<> PE4M PDllM R211 

Data Bit 5 {l) --<> PE4P PD12M R21 l 

Data Bit 6 (1) ---<> PE4S PD13M R21 l 

Data Bit 7 (l) --<> PE4T PD14M R21 l 

196 



TABLE 7 DATA BREAK TRANSFER INPUT SIGNALS (continued) 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

Data Bit 8 (l) -0 PE4V PD15M R211 

Data Bit 9 (1) -<> PF4D PD16M R211 

Data Bit 10 (1) --0 PF4E PD17M R211 

Data Bit 11 (1) --0 PF4H PD18M R21 l 

Break Request ~ PF3K PC32J S203 
-=-

Transfer Direction ..-- PF3M PD23E S 111 

Increment MB _..** PF3T PD31M Sl07 

Cycle Select -<> PF4K PE7S S107 

Increment CA _. PF4M PEl0F Rl2l 

*Direction is into PDP-8 when signal is -3v, out of PDP-8 when ground potential. 

**The Increment MB input to the PDP-8 must be the output of a gating circuit that en-
ables generation of the ground level signal only when the B Break signal is present. 

TABLE 8 DATA BREAK TRANSFER OUTPUT SIGNALS 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

BMB 0 (l) --0 ME35D MC26J R650 

BMB l (l) --<> ME35E MC26T R650 

BMB 2 (1) --<> ME35H MC27J R650 

BMB 3 (l) --<> ME35M MC28J R650 

BMB 4 (1) -<> ME35S MC29J R650 

BMB 5 (1) --<> ME35V MD25J R650 

BMB 6 (l) --<> MF35E MD26J R650 

197 



198 

TABLE 8 DATA BREAK TRANSFER OUTPUT SIGNALS (continued) 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

BMB 7 (1) --<> MF35K MD27J R650 

BMB 8 (1) --<> MF35P MD2SJ R650 

BMB 9 (1) --<> MF35S MD2ST R650 

BMB 10 (1) --<> MF35T MD29J R650 

BMB 11 (1) --<> MF35V MD29T R650 

B Break -.. PF3P PEST R650 

Address Accepted ---{> PF3S PFl0H W640 

WC Overflow _. PF4P PFl0N W640 

TABLE 9 MISCELLANEOUS INPUT SIGNALS 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

ADDR Extension 1 -<> ME30D ME8K, MC3K S107, S151 

ADDR Extension 2 --<> ME30E MESH, MC3E Sl 07, S 151 

ADDR Extension 3 --<> ME30H MESE, MC3J Sl 07, S151 

Analog In* _. Special BNC PEl 1 N A502 

*Input to Analog-to-Digital Converter Type 189 is made to BNC connector on back of 
processor fan mounting. 

TABLE 10 MISCELLANEOUS OUTPUT SIGNALS 

Signal Symbol 
Interface Module Module 

Connection Terminal Type 

B Run (1) -.. PF2S PE8J R650 

Data Fie Id 0 (1) -<> ME30K ME7L S107 

Data Field 1 (1) --0 ME30M ME7N S107 

Data Field 2 (1) -<> ME30P ME7R S107 

BTl _. MF34S MD30H W640 

BT2A _. MF34T MD30U W640 

B Power Clear __. MF34V MD30N W640 



Miscellaneous Interface Signals 

The following input and output signal connections are available for use with DEC equip
ment options or for use in specia I interface equipment designed by the customer. 

ADDRESS EXTENSION INPUTS AND DATA FIELD OUTPUTS 

When the Memory Extension Control Type 183 is in the computer system, devices using 
the data break facility must supply a 12-bit data address and a 3-bit address extension. 
Conversely, the programmed transfer of an address to a register in a device that uses 
the data break occurs as a 12-bit word from the accumulator and a 3-bit data field ex
tension from the 183. 

The Address Extension 1-3 signals must be ground potential to designate a binary l and 
-3v to designate a binary 0. Each of these signals supplies an input to both an inverter 
of a Type S l 07 module and a Type S 151 Binary-to-Octal Decoder module. Each signal 
at ground potential is loaded by 2 ma and each signal at -3v receives no load. 

The Data Field 0-2 signals are constantly available at the interface connectors. They 
are flip-flop output signals buffered by an inverter of a Type 5107 module. Each signal 
can drive 15 ma at ground potential, specifying a binary l. 

ANALOG INPUT SIGNAL 

The Analog-to-Digital Converter Type 189 option receives an analog input signal be
tween 0 and -10v. A BNC connector mounted on the outside of the processor fan hous
ing at the back of the computer provides connection for this signal. Internal wiring 
cables this connector to the input of a Type A502 Comparator module. This module com
pares the analog input signal with a Oto -10v analog signal produced in Type A601 and 
A604 Digital-Analog Converter modules. The input draws up to l µa depending on the 
relative polarity of the two voltage inputs of the A502 module. The maximum current 
difference between positive and negative input voltages is l µa. The difference input 
capacitance is 75 pf. 

B RUN OUTPUT SIGNAL 

The binary l output of the RUN flip-flop flows to external equipment through the inter
face circuits. This signal is at -3v when the computer is performing instructions and is 
at ground potential when the program halts. Magnetic tape and DECtape equipment use 
this signal to stop transport motion when the PDP-8 halts, preventing the tape from run
ning off the end of the reel. The B Run signal is routed to the interface connector 
through a Type R650 Bus Driver module which can drive a 20-ma load. 

BT1 AND BT2A OUTPUT PULSES 

Two buffered timing pulse signals, designated BTl and BT2A, are supplied to 1/0 devices. 
These signals can synchronize operations in external equipment with those in the computer. 
The BTl and BT2A pulse signals are derived from the Tl and T2A pulse signals generated 
by the timing signal generator of the PDP-8. The Type W640 Pulse Amplifier module 

199 



200 

standardizes the Tl and T2A pulses as negative 400-nsec pulses. The resu I ting (buffered) 
BTl and BT2A pulses are supplied to the interface connections. Interface cable connec
tions for each of the pulse outputs can drive a 10-ma load. 

B POWER CLEAR OUTPUT PULSES 

The Power Clear pulses generated and used within the PDP-8 are made available at the 
interface connections. External equipment uses these pulses to clear registers and control 
logic during the power turn-on period. Use of Power Clear pulses in this manner is valid 
only when the logic circuits cleared by the pulses are energized before or at the same time 
the PDP-8 POWER switch is turned on. 

Loading and Driving Considerations 

All PDP-8 circuits providing output or receiving input interface signals are R-, S, or W
series FLIP CHIP modules. Therefore the PDP-8 interface is defined entirely in terms of 
current driving or draining characteristics. 

All R- and S-series modules are capable of driving currents in the direction from ground 
to -15v, assuming Ben Frank I in 's definition of current flow. In no cases are R- or S-series 
modules designed to drive loads which are essentially base loads. If such loads are to be 
driven, extra clamped load resistors must be added to make up the necessary differential 
in current. Therefore, R- and S-series loads are defined in terms of milliamperes at ground 
and O ma at -3v. In general, the output of any R- or S-series inverter, including the 
flip-flop, can drive 20 ma. However, a 2-ma load in R or 5-ma load in S modules is in
cluded within most flip-flops and this current must be deducted from the available driving 
capabi I ity. 

Inputs are also defined in terms of milliamperes. Level inputs to level gates are defined 
as 1 ma at ground. Level inputs to diode-capacitor-diode (DCD) gates are 2 ma at ground, 
and pulse inputs to DCD gates are 3 ma at ground. Since capacitive loading presents 
problems with R-series modules, where long lines are being driven, the user should add 
extra clamped loads to sufficiently discharge cable capacitance. Approximately an extra 
2 ma of clamped load current should be added for every foot of wire beyond 1-1/2 ft. In
puts to the Type R650 Bus Driver module are exempted from this rule since this module is 
designed to drive coaxial cable of 93-ohms characteristic impedance. 

The Type R650 Bus Driver module has two types of outputs, the fast and the slow (or ramp) 
output. Using the fast output, the bus driver operates as a fast amplifier. In using the 
ramp output, an integrating capacitor between input of the bus driver and the output stage, 
causes the output lines to move from ground to -3v or in the reverse direction in ·approxi
mately 500 nsec. This connection on the AC lines reduces cross-talk between lines. Al I 
other R650 module outputs are fast. 

The Type W640 Pulse Amp I ifier modules shou Id be carefully terminated. If sufficient 
noise is generated at the output of the W640, it may cause the pulse amplifier to regener
ate; hence it is also recommended that output lines of W640 modules be well shielded. 
The outputs of W640 modules may be either 400 nsec or 1 µsec in width. All connections 
on the standard PDP-8 use the 400-nsec pulse width. 

Input signals to the PDP-8 are, in many cases, a clamped load resistor of 10 ma and a 
direct input to a flip-flop or pulse amp I ifier. The input load is, therefore, 10 ma for the 



clamped load and l ma for the flip-flop or the pulse amplifier. Capacitive loads must be 
at -3v before the pulse amp I ifier or flip-flop is used for the next machine eye le. There 
are some exceptions to th is statement. First, the Data Bit inputs to the MB require 2 ma 
at ground and no current at -3v. The Transfer Direction signal requires l ma at ground. 
The Break Request signal input has a l 0-ma clamped load plus 2 ma for the internal cir
cuitry or 12 ma at ground. The output of a 11 DEC inverters in the system module series 
drives 15 ma. In genera I, the clamped load which rs norma I ly used absorbs l O ma. However, 
on the input signal interface, no clamped load is used; hence, the above numbers may be 
used. 

Timing is, in general, determined by the machine itself. However, a few statements can 
be made about module timing. The Type S 111 Diode Gates set up in approximately 50 nsec 
in either direction under normal load conditions. Fall times are faster with heavier loads. 
The diode-capacitor-diode gates set up in 400 nsec. This 400 nsec is determined from the 
end of the preceding 100-nsec pulse, and both the level and pulse must return to -3v for 
400 nsec before the next pulse arrives. Pulses originating in R- or S-series modules are 
l 00 nsec in width, measured from the l 0% point of the leading edge to the 90% point of 
the tra i I ing edge. Fa 11 time is not critica I on these pulses provided the pulse has returned 
to -3v in time to come up for the next pulse. 

The following definitions and rules serve as a useful guide in determining the driving capa
bility of output signals and the load presented to input signals by B-series FLIP CHIP mod
ules or DEC System Modules used in peripheral equipment connected to the PDP-8. 

BASE LOAD 

Base load is the current which must be drawn from the base of a de inverter to keep it satur
rated. In this condition the inverter circuit input terminal is at -3v, the emitter is at 
ground, and a nominal l ma of current flows through the 3000-ohm base resistor from 
ground. A 1500-ohm load resistor clamped at -3v can nom ina I ly accept 8 ma, but toler
ance considerations limit this number to 7 ma. Thus, an inverter collector with a 1500-
ohm clamped load can drive a maximum of seven base loads. 

PULSE LOAD 

Pulse load is the load presented to the output of a pulse source by an inverter base in the 
same speed series, or by the direct set or clear input of a flip-flop. Pulse amplifiers are 
usually limited to driving 16 pulse loads. This number should be decreased if the bases 
are widely separated physically, and can be increased to 18 if the bases are physically 
close together. The series inductance and shunt capacity of connecting wires make pulses 
at the end of a series of bases either large or small. Consequently, when driving nearly 
the maximum number of bases, the pulse amplitude should be carefully checked after in
sta I lotion. A terminating resistor in the l 00- to 300-ohm range is desirable to reduce 
ringing on a heavily loaded pulse line. The loading on a pulse source is approximately 
the same when driving a base as a direct input to a flip-flop. One pulse source, of course, 
cannot drive both direct input of flip-flops and inverter bases because the direct inputs 
require DEC standard positive pulses, and base inputs require DEC standard negative pulses. 
A pulse load is largely determined by the value of the speed-up capacitor connected in 
para lie I with the 3000-ohm base resistor. In the 4000-series 500-kc modules th is capacitor 
is 680 pf; in l 000-series 5-mc modules it is 82 pf; and in 6000-series l 0-kc modules it is 
56 pf. 

201 



202 

PULSED EMITTER LOAD 
Pulsed emitter load is the load applied to the collector of an inverter which drives the 
pulse input to a flip-flop, pulse amplifier, or delay. The pulse current passes through all 
of the inverters in series with the pulse input, and it shou Id be assumed to be the load on 
each of the series inverters. 

DC EMITTER LOAD 

The load applied to the collector of an inverter driving a clamped load resistor is the de 
emitter load. This load is also presented by the collector of an inverter which drives an 
emitter in an inverter network terminated by a clamped load resistor. Under these condi
tions, the collector of an inverter driving an emitter in a transistor gating network must 
also supply the base current leaving the succeeding inverters which are saturated. Th is 
current is small, but in complex networks it must be considered. An inverter in the DEC 
1000- or 6000-series modules can supply 15 ma, and in the 4000-series modules can sup
ply 20 ma. 

An inverter network can always be analyzed by assuming: 

1 . A short circuit exists between the emitte.r and collector when -3v is 
applied to the base. 

2. Base current of 1 ma wi II flow if either the collector or emitter is 
held at ground potential. 

3. The maximum de collector current through an inverter is 20 ma for 
4000-series 500-kc modules and is 15 ma for a 11 other DEC series modules. 

A capacitor-diode gate level input does not present any de load. A transient load 
occurs when the input level changes. Note that all capacitor-diode gates require that 
the level input precede the initiating pulse input by at least 1 µsec. 



CHAPTER 6 

INSTALLATION PLANNING 

Space Requirements 

Space must be provided at the installation site to accommodate the PDP-8 and peripheral 
equipment and to allow access to all doors and panels for maintenance. 

Installation dimensions for a table-mounted and a rack-mounted PDP-8 are shown in Fig
ures 57 and 58, respectively. Dimensions of a rack-mounted PDP-8 in an optiona I DEC 
computer cabinet and of a table-mounted PDP-8 on an optional DEC winged table are 
shown in Figure 59. Floor space for a basic optional computer cabinet is 22-1/4 inches 
wide (with two end panels) and 27-1/16 inches deep, plus additional space for a table. 
Figure 59 can be used in planning the installation of all 1/0 equipment mounted in stand
ard computer cabinets noting that other cabinets may be equipped with a table, and that 
cabinets bolted together are 19-3/4 inches wide with 1-1/4 inch end panels mounted on 
the outer ends. Minimum service clearance on all standard DEC computer cabinets is 
8-3/ 4 inches at the front and 14-7 /8 inches at the back. A standard DEC computer cab
inet contains space for one mounting panel (two rows)of FLIP CHIP modules or an indi
cator panel above the computer, and for three mounting panels below the operator con
sole. The memory frame and the processor frame are hinged to provide access to the 
wiring side of the mounting panels. Both of these frames extend beyond the back of the 
power supply in the table model to allow entrance of interface cables. Cables enter the 
cabinet model through a port in the bottom of standard cabinets. Wheels and leveling 
devices on the cabinets a I low cable clearance so that subflooring is not required. 

34ts 

Figure 57 Table Mounted PDP-8 Installation Dimensions 

203 



204 

SIDE VIEW OF 
MOUNTING HARDWARE 

11 
21ii 

~ 
FRONT-

T EXTREMETIES 
THESE LINES REPR~~~~ED IN THIS AREA 
OF COMPONENTS M 

ARE FOR 
ALL OtMENSION~N MACHINES 
POWER SUPPLY NUMBER 30 
ABOVE SERIAL 

Figure 58 · ns 11 t . n Dimens10 DP 8 lnsta a io Cabinet Mounted p -



I 

u L 

~u u~ 

T 
21, 7 

6 

1-/¼ 

~=r====;===;;;=!I J_ 
~22-¼ .. 1. 9- "l.~v IT i--1a---+---21ik---.. 

---------10.!.. ________ ., 
4 

f---23--j ~-----+-~-~ 

1 35..!. 
2 

1¾ 

::::=::::::;::;::::====~;§§,1§2. ~S======:;::;::::::::::tr, 

. µ 
'i' 

Figure 59 Optional Cabinet and Table Installation Dimensions 

w w 

~ 

205 



206 

The standard Teletype automatic send receive set requires floor space approximately 
22-1/4 inches wide by 18-1/2 inches deep. Signal cable length restricts the location 
of the Teletype to within 18 inches of the side of the computer. 

Environmental Requirements 

Ambient temperature at the installation site can vary between 32 and 130 F (between 0 
and 55 C) with no adverse effect on computer operation. However, to extend the I ife 
expectancy of the system, it is recommended that the ambient temperature at the in
stallation site be maintained between 70 and 85 F (between 21 and 30 C). 

During shipping or storing of the system, the ambient temperature may vary between 32 
and 130 F (between 0 and 55 C). Although al I exposed surfaces of al I DEC cabinets 
and hardware are treated to prevent corrosion, exposure of systems to extreme humidity 
for long periods of time should be avoided. 

Power Requirements 

A source of 115v (±17v), 60-cps (±0 .5 cps), single-phase power capable of supplying 
at least 15 amp must be provided to operate a standard PDP-8. To al low connection to 
the power cable of the computer, this source should be provided with a Hubbell 3-
terminal, except for the basic table top PDP-8 grounded-neutral flush receptacle (or its 
equivalent). A table-mounted PDP-8 is provided with a 15-amp power plug; a rack
mounted PDP-8 has a 20 amp twist-lock plug; and systems that draw more than 20 amps 
use a 30-amp twist-lock plug. 

Power dissipation of a standard PDP-8 is approximately 780w, and the heat dissipation 
is approximately 2370 Btu/hr. Upon special request, a PDP-8 can be constructed to 
operate from a 220v (±33v), 60-cps (±0.5 cps), single-phase power source or from a 
100v (±15v), 50-cps (±0.5 cps), single-phase power_source. 

Cable Requirements 

Nine-conductor coaxial cables with Type W0l 1 Cable Connectors provide signal con
nection between the computer and optional equipment in free-standing cabinets. These 
cables are connected by plugging the W0l 1 connectors into standard FLIP CHIP module 
receptac I es. 

Al I free standing cabinets require independent 115v receptacles. However, these units 
may be turned on or off or control led from the PD P-8 operator console. 

Cables connect to cabinets through a drop panel in the bottom of cabinets. Subflooring 
is not necessary because casters elevate the cabinets from the floor to afford sufficient 
cable clearance. 

Installation Procedure 
During system check-out, customers are invited to visit the Maynard manufacturing 
facility to inspect and become familiar with their equipment. Computer customers may 
also send personne I to instruction courses on computer operation, programming, and 
maintenance conducted regularly in Maynard, Massachusetts. 



DEC's engineers ore available during installation and test for assistance or consultation. 
Further technical assistance in the field is provided by home office design engineers or 
branch office application engineers. 

Tobie 11 gices installation data to be considered when installing a PDP-8. Tobie 12 
lists space requirements. Figure 60, a typical PDP-8 system configuration, con be used 
as a guide for planning layout. 

TABLE 11 INSTALLATION DATA 

Service Heat Current Power Weight Dimensions 
Clearance Dissipation (amps) Dissipation (lbs) 

Height Width Depth Front Rear Btu/hr Norn Surge (kw) 

PDP-8 
Table Top 250 32 21-1/2 21-1/4 - - 2660 7.5 - 0.78 

PDP-8 (3) <D @ 
Rack Mount 250 31-1/4 19-5/8 21-7/8 22 - 2660 7.5 - 0.78 

Standard Cabinet 
CAB88 (Empty) 225 69-1/8 22-1/4 27-1/16 22 15 - - - -

Teletype 
ASR-33 40 45 23 19 - - (Included in Standard PDP-8) 

Serial Drum 
251 500 70 23 28 9 15 1540 5 

Card Reader 
CR0lC 25 8-1/4 18 10 - - 270 0.57 

Card Reader 
451A 225 42 30 18 - 7 450 1.3 

Magnetic Tape 
Transport 50 600 69-1/8 22-1/4 27-1/16 18-5/8 15 2114 8 

Magnetic Tape 
T ranS(IIOrt 570 850 68 32-1/8 32-3/8 19 17 9900 25 

Magnetic Tape 
Transport 545 400 69-1/8 22-1/4 27-1/16 9 15 2870 7.3 

Magnetic Tape 
System 580 400 69-1/8 22-1/4 27-1/16 9 15 2870 7.3 

DECtape 
Transport TU55 35 10-1/2 19-1/2 9-3/4 9 - 410 1 

Precision Display 
30N 350 49 53 39 - 15 3140 8 

NOTES: 

<D 19 inch console panel available on request 
(2) Overall depth is 24-3/8 inches from front of console ta back of chassis track slices. 
(3) When PDP-8 is mounted in CABS (A or B), there is additional room for: 

8 

1 

7 

12 

40 

8 

8 

2 

8 

a. One standard (5-1/4 inch high) DEC logic mounting panel above the computer in front. 
b, Three standard DEC logic mounting panels below the comp·,ter table level in fr~t. 
c. On the rear plenum door, space is available for 1 short mounting pal'lel at the top and 

three sh~rt paneis below table level. 

0.45 

0.06 

0.2 

0.96 

2.9 

0.9 

0.9 

0.11 

0.9 

207 



208 

TABLE 12 SPACE REQUIREMENTS 

MOUNTING PANELS* 
Option Remarks 

Logic Other 

Memory Extension - - Mounts within standard PDP-8 packoge 
Control 183 

Memory Module 184 2 - Should be mounted in expander 
cabinet next to PDP-8 

Automatic Multiply- - - Mounts within standard PDP-8 package 
Divide 182 

Memory Parity 188 - - Mounts within standard PDP-8 package 

Automatic Restart KROi - - Mounts within standard PDP-8 package 

Data Channel - 2 
Multiplexer DM0l 

Perforated Tape Reader 
750C 2 10 in. front panel 

Perforated Tape Punch 2 15-3/4 in. vertical 
75E clearance in cabinet 

These 5 options share same two 
Oscilloscope Display 34 D 2 10 in. front panel mounting ponels for control logic. 

Incremental Plotter 350B 2 Tobie space needed 
for plotter 

Card Reader CR0l C 2 Tobie space needed 
for reader 

A/D Converter 1 89 - - Mounts within standard PDP-8 package 

A/D Converter and 2 5-1/4 in. for No additional space needed for 
Multiplexer 138E/139E indicator panel 64 channel multiplexer expansion 

Light Pen 370 - - Logic and power supply included in 
34D or 30N 

DCS 680 - - Mounted within standard PDP-8 
681 - - package for up to 64 full duplex chan-
685 2 -
682 2 - ne Is connectors for up to 64 Te I ety pes 

Teletype System L T08 2 - Handles up to 5 Teletypes 

Magnetic Tape 7 5-1/4 in. connector Controls up to 8 IBM-compotible tape 
Control 57A panel units (570, 50, or 545) 

DECtape Control TC0l 3 - Controls up to 8 TU55 DECtape 
Transports 

*Mounting Panels ore standard DEC 5-1/4 in, high logic panels, 

NOTE: Power supplies for option logic are normally mounted on rear door of DEC cabinets. Customers 
using their own cabinets should allow additional spoce for power supplies. 



BAY 0 BAY 1 

*** 2ND 4K BLANK 
MEMORY 

PDP-8 
1ST 4K 
MEMORY 

o•o 
DECTAPE TU55 

OPERATOR 
CONSOLE 

DATA 
MULTIPLEXER 

DEC TAPE DM 01 CONTROL 
TCOI 

TELETYPE 
SYSTEM 

BLANK LT08 

FRONT 

BAY 2 BAY 1 

BLANK 

BLANK 

B34B * 
POWER CONTROL 

779 
POWER SUPPLY 779 

POWER SUPPLY 

** ** 

REAR 

BAY 2 

A/D 
138/139 

INDICATORS 

138E/139E 
A/D LOGIC 

TYPE AA03 
INTERFACE 

BLANK 

TAPE 
READER/PUNCH 

HARDWARE 

TEKTRONIC 
RM 503 

OSCILLOSCOPE 

TAPE READER/PUNCH 
PC 01,0SCILLOSCOPE 
DISPLAY 348, AND 

NCREMENTAL PLOTTER 
CONTROL 350 

D/A LOGIC 
AAOI 

BAY 0 

BLANK 

** 

4 USABLE MOUNTING 
PANEL SPACES BELOW 
TABLE LEVEL 

* THIS SPACE MAY BE UTILIZED BY 
EQUIPMENT WHICH EXTENDS INTO 
THE CABINET BY NO MORE THAN 
31/2 INCHES 

** A.C.-JONES STRIP. THIS MUST BE 
AT LEAST A TWO INCH BLANK TO 
ALLOW POWER SUPPLIES TO 
CL EAR THE FAN 

***ONE USEABLE MOUNTING PANEL 
SPACE ABOVE PDP-8 

Figure 60 Typical PDP-8 System Configuration and Layoff Planning 

209 



Mnemonic 
Symbol 

ANDY 

TAD Y 

ISZ Y 

210 

APPENDIX 1 
INSTRUCTIONS 

MEMORY REFERENCE INSTRUCTIONS 
Direct Addr. 

Operation States Execution 
Code Entered Time 

(,u-sec) 

0 F, E 3.0 

1 F, E 3.0 

2 F, E 3.0 

Indirect Addr. 

States Execution 
Entered Time 

(,usec) 

F, D, E 4.5 

F, D, E 4.5 

F, D, E 4.5 

Operation 

Logical AND. The AND 
operation is performed 
between the content of 
memory location Y and 
the content of the AC. 
The result is left in the 
AC, the original content 
of the AC is lost, and 
the content of Y is re
stored. Corresponding 
bits of the AC and Y 
are operated upon inde
pendently. 
ACj /\ Yj => ACj 

Two's complement add. 
The coritent of memory 
location Y is added to 
the content of the AC 
in two's complement 
arithmetic. The result of 
this addition is held in 
the AC, the original 
content of the AC is 
lost, and the content of 
Y is restored. If there 
is a carry from ACO, the 
link is complemented. 
AC+ Y => AC 

I ncremeQt and skip if 
zero. The content of 
memory location Y is in
cremented by one . If 
the resultant content of 
Y equals zero, the con
tent of the PC is incre
mented and the next 
instruction 1s skipped. 
If the resultant content 
of Y does not equal 
zero, the program 
proceeds to the next 
instruction. The incre
mented content of Y is 
restored to memory. 
If resultant Y = 0, 
PC+ 1 => PC 



MEMORY REFERENCE INSTRUCTIONS (continued) 

Direct Addr. Indirect Addr. 

Mnemonic Operation States Execution States Execution Operation 
Symbol Code Entered Time Entered Time 

(1-,sec) (µsec) 

DCA Y 3 F, E 3.0 F, D, E 4.5 Deposit and clear AC. 
The content of the AC 
is deposited in core 
memory at address y 
and the AC is cleared. 
The previous content of 
memory location y is 
lost. 
AC=> Y 
0 => AC 

JMS y 4 F, E 3.0 F, D, E 4.5 Jump to subroutine. 
The content of the PC 
IS deposited in core 
memory location Y and 
the next instruction is 
taken from core mem-
ory location Y ____l_ 1. 
PC _L 1 ---= > Y 
y -1 1 ~> PC 

JMP Y 5 F 1.5 F, D 3.0 Jump to Y. Address y 
is set into the PC so 
that the next instruc-
tion is taken from core 
memory address Y. The 
original content of the 
PC is lost. 
Y =>PC 

211 



212 

Mnemonic 

ION 

IOF 

ADC 

BASIC IOT MICROINSTRUCTIONS 

Octal 

6001 

6002 

Operation 

PROGRAM INTERRUPT 

Turn interrupt on and enable the computer to respond 
to an interrupt request. When this instruction is 
given, the computer executes the next instruction, 
then enables the interrupt. The additional instruc
tion allows exit from the interrupt subroutine before 
allowing another interrupt to occur. 
Turn interrupt off i.e. disable the interrupt. 

ANALOG-TO-DIGITAL CONVERTER TYPE 189 

6004 Convert the analog input signal to a digital value. 

HIGH SPEED PERFORATED TAPE READER AND CONTROL TYPE 750C 

RSF 

RRB 

RFC 

6011 

6012 

6014 

Skip if reader flag is a 1. 

Read the content of the reader buffer and clear the 
reader flag. (This instruction does not clear the AC.) 
RB V AC 4-11 = > AC 4-11 

Clear reader flag and reader buffer, fetch one char
acter from tape and load it into the reader buffer, 
and set the reader flag when done. 

HIGH SPEED PERFORATED TAPE PUNCH AND CONTROL TYPE 75E 

PSF 6021 Skip if punch flag is a 1. 
PCF 6022 Clear punch flag and punch buffer. 
PPC 6024 Load the punch buffer from bits 4 through 11 of the 

AC and punch the character. This instruction does 
not clear the punch flag or punch buffer.) 
AC 4-11 V PB=> PB 

PLS 6026 Clear the punch flag, clear the punch buffer, load 
the punch buffer from the content of bits 4 through 
11 of the accumulator, punch the character, and set 
the punch flag to 1 when done. 

TELETYPE KEYBOARD/READER 

KSF 6031 Skip if keyboard flag is a 1. 
KCC 6032 Clear AC and clear keyboard flag. 
KRS 6034 Read keyboard buffer static. (This is a static com-

man in that neither the AC nor the keyboard flag is 
cleared.) 
TTI V AC 4-11 = > AC 4 -11 

KR.B 6036 Clear AC, clear keyboard flag, and read the content 
of the keyboard buffer into the content of AC 4-11. 



Mnemonic 

TSF 
TCF 
TPC 

TLS 

DCX 
DXL 

DIX 

DXS 

DCY 
DYL 

DIY 

DYS 

DSB 
DSB 
DSB 

DLB 

DSF 
DCF 

SMP 
CMP 

SPL 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

TELETYPE TELEPRINTER/PUNCH 

6041 
6042 
6044 

6046 

Skip if teleprinter flag is a 1. 
Clear teleprinter flag. 
Load the TTO from the content of AC 4-11 and 
print and/or punch the character. 
Load the TTO from the content of AC 4-11, clear 
the teleprinter flag, and print and /or punch the 
character. 

OSCILLOSCOPE DISPLAY TYPE 34D AND PRECISION 
CRT DISPLAY TYPE 30N 

6051 
6053 

6054 

6057 

6061 
6063 

Clear X coordinate buffer. 
Clear and load X coordinate buffer. 
AC 2-11 => XB 
Intensify the point defined by the content of the X 
and Y coordinate buffers. 
Executes the combined functions of DXL followed by 
DIX. 
Clear Y coordinate buffer. 
Clear and load Y coordinate buffer. 
AC 2-11 => YB 

6064 Intensify the point defined by the content of the X 
and Y coordinate buffers. 

6067 Executes the combined functions of DYL followed by 
DIY. 

OSCILLOSCOPE DISPLAY TYPE 34D 

6075 
6076 
6077 

Set minimum brightness. 
Set medium brightness. 
Set maximum brightness. 

PRECISION CRT DISPLAY TYPE 30N 

6074 

6071 
6072 

6101 
6104 

Load brightness register (BR) from bits 9 through 
11 of the AC. 
AC9-ll=>BR 

LIGHT PEN TYPE 370 

Skip if display flag is a 1. 
Clear the display flag. 

MEMORY PARITY TYPE 188 

Skip if memory parity error flag = 0. 
Clear memory parity error flag. 

AUTOMATIC RESTART TYPE KROl 
6102 Skip if power is low. 

213 



214 

Mnemonic 

CDF 

CIF 

RDF 

RIF 
RIB 

RMF 

TTINCR 

TTI 

TTO 

TTCL 
TTSL 

TTRL 

TTSKP 
TTXON 

TTXOF 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

MEMORY EXTENSION CONTROL TYPE 183 

62Nl 

62N2 

6214 

6224 
6234 

6244 

Change to data field N. The data field register is 
loaded with the selected field number (0 to 7). All 
subsequent memory requests tor operands are auto
matically switched to that data field until the data 
field number is changed by a new CDF command. 
Prepare to change to instruction field N. The instruc
tion buffer register is loaded with the selected field 
number (0 to 7). The next JMP or JMS instruction 
causes the new field to be entered. 
Read data field into AC 6-8. Bits 0-5 and 9-11 
of the AC are not affected. 
Same as RDF except reads the instruction field. 
Read interrupt buffer. The instruction field and data 
field stored during an interrupt are read into AC 6-8 
and 9-11 respectively. 
Restore memory field. Used to exit from a program 
interrupt. 

DATA COMMUNICATION SYSTEMS TYPE 630 

6401 

6402 

6404 

6411 
6412 

6414 

6421 
6422 

6424 

The content of the line select register is incremented 
by one. 
The line status word is read and sampled. If the 
line is active for the fourth time, the line bit is 
shifted into the character assembly word. If the line 
is active for a number of times less than four, the 
count is incremented. If the line is not active, the 
active/inactive status of the line is recorded. 
The character in the AC is shifted right one position, 
zeros are shifted into vacated positions, and the 
original content of ACl 1 is transferred out of the 
computer on the Teletype line. 
The line select register is cleared. 
The line select register is loaded by an OR transfer 
from the content of AC5-11, then the AC is cleared. 
The content of the line select register is read into 
AC5-11 by an OR transfer. 
Skip if clock 1 flag is a 1. 
Clock 1 is enabled to request a program interrupt 
and clock 1 flag is cleared. 
Clock 1 is disabled from causing a program inter
rupt and clock 1 flag is cleared. 



Mnemonic 

PLSF 
PLCF 
PLPU 
PLPR 
PLDU 
PLOD 
PLPL 
PLUD 
PLPD 

ADSF 
ADCV 

ADRB 

ADCC 
ADSC 

ADIC 

DRCR 

DRCW 

DRCF 
DREF 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

INCREMENTAL PLOTTER AND CONTROL TYPE 350B 

6501 
6502 
6504 
6511 
6512 
6514 
6521 
6522 
6524 

Skip if plotter flag is a 1. 
Clear plotter flag. 
Plotter pen up. Raise pen off of paper. 
Plotter pen right. 
Plotter drum (paper) upward. 
Plotter drum (paper) downward. 
Plotter pen left. 
Plotter drum (paper) upward. (Same as 6512.) 
Plotter pen down. Lower pen on to paper. 

GENERAL PURPOSE CONVERTER TYPE 138E AND 
MULTIPLEXER CONTROL TYPE 139E 

6531 
6532 

6534 

6541 
6542 

6544 

Skip if A/D converter flag is a 1. 
Clear A/D converter flag and convert input voltage 
to a digital number, flag will set to 1 at end of con
version. Number of bits in converted number deter
mined by switch setting, 11 bits maximum. 
Read A/D converter buffer into AC, left justified, 
and clear flag. 
Clear multiplexer channel address register. 
Set up multiplexer channel as per AC 6-11. 
Maximum of 64 single ended or 32 differential input 
channels. 
Index multiplexer channel address (present address 
+ 1). Upon reaching address limit, increment will 
cause channel 00 to be selected. 

SERIAL MAGNETIC DRUM SYSTEM TYPE 251 

6603 

6605 

6611 
6612 

Load the drum core location counter with the core 
memory location information in the accumulator. 
Prepare to read one sector of information from the 
drum into the specified core location. Then clear 
the AC. 
Load the drum core location counter with the core 
memory location information in the accumulator. 
Prepare to write one sector of information into the 
drum from the specified core location. Then clear 
the AC. 
Clear completion flag and error flag. 
Clear the AC then load the condition of the parity 
error and data timing error flip-flops of the drum 
control into accumulator bits O and 1 respectively 
to allow programmed evaluation of an error flag. 

215 



216 

BASIC IOT MICROINSTRUCTIONS (continued) 

Mnemonic Octal Operation 

SERIAL MAGNETIC DRUM SYSTEM TYPE 251 (continued) 

DRTS 

DRSE 
DRSC 

DRCN 

RCSF 
RCRA 

RCRB 

RCSP 
RCSE 

RCRD 

CRSF 

CERS 

CRRB 

6615 

6621 
6622 

6624 

Load the drum address register with the track and 
sector address held in the accumulator. Clear the 
completion and error flags, and begin a transfer 
(reading or writing). Then clear the AC. 
Skip next instruction if the error flag is a O (no error). 
Skip next instruction if the completion flag is a 1 
(sector transfer is complete). 
Clear error flag and completion flag, then initiate 
transfer of next sector. 

CARD READER AND CONTROL TYPE CROlC 

6631 
6632 

6634 

6671 
6672 

6674 

Skip if card reader data ready flag is a 1. 
The alphanumeric code for the column is read into 
AC6-11, and the data ready flag is cleared. 
The binary data in a card column is transferred into 
AC0-11, and the data ready flag is cleared. 
Skip if card reader card done flag is a 1. 
Clear the card done flag, select the card reader and 
start card motion towards the read station, and skip 
if the reader-not-ready flag is a 1. 
Clear card done flag. 

CARD READER AND CONTROL TYPE 451 

6632 

6634 

6671 

Skip if card reader flag is a 1. If a card column is 
present for reading, the next instruction is skipped. 
Card equipment read status. Reads the status of the 
card reader flag and status levels into bits 6 through 
9 of the AC. The AC bit assignments are: 
AC6 = Flag is set to 1 (the flag rises after reading 

each of the 80 rows). 
AC7 = Card done. 
ACS = Not ready (covers not in place, power is off, 

START button has not been pressed, hopper 
is empty, stacker is full, a card is jammed, a 
validity check error has been detected, or 
the read circuit is defective). 

AC9 = End of file (EOF) (hopper is empty and opera-
tor has pushed START button). 

Read the card column buffer information into the 
AC and clear the card reader flag. One CRRB com
mand reads alphanumeric information. Two CRRB 
instructions read the upper and lower column binary 
information. 



Mnemonic 

CRSA 

CRSB 

CPSF 

CERS 

CPCF 
CPSE 

CPLB 

LSE 
LCB 

LLB 

LSD 
LCF 

LPR 

MSCR 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

CARD READER AND CONTROL TYPE 451 (continued) 

6672 

6674 

Select a card in alphanumeric mode. Select the card 
reader and start a card moving. Information appears 
in alphanumeric form. 
Select a card in binary mode. Select the card reader 
and start a card moving. Information appears in 
binary form. 

CARD PUNCH AND CONTROL TYPE 450 

6631 

6634 

6641 
6642 

6644 

Skip if card punch flag is a 1. The card punch flag 
indicates the punch buffer is available, and should 
be loaded. 
Card equipment read status. Reads the status of 
the card punch flag and the card punch error level 
into bits 10 and 11 of the AC, respectively. 
Clear card punch flag. 
Select the card punch. Transmit a card to the SO
column punch die from the hopper. 
Load the card punch buffer from the content of the 
AC. Seven load instructions must be given to fill the 
buffer. 

AUTOMATIC LINE PRINTER AND CONTROL TYPE 645 

6651 
6652 

6654 

6661 
6662 

6664 

Skip if line printer error flag is a 1. 
Clear both sections of the printing buffer. 
Load printing buffer from the content of AC 6-11 and 
clear the AC. 
Skip if the printer done flag is a 1. 
Clear line printer done and error flags. 
Clear the format register, load the format register 
from the content of AC 9-11, print the line contained 
in the section of the printer buffer loaded last, clear 
the AC, and advance the paper in accordance with 
the selected channel of the format tape if the content 
of AC 8 = 1. If the content of AC 8 = 0, the line is 
printed and paper advance is inhibited. 

AUTOMATIC MAGNETIC TAPE CONTROL TYPE 57A 

6701 Skip if the tape control ready (TCR) level is 1. A 1 
is added to the content of the program counter if 
the tape control is free to accept a command. 

217 



218 

BASIC IOT MICROINSTRUCTIONS (continued) 

Mnemonic Octal Operation 

AUTOMATIC MAGNETIC TAPE CONTROL TYPE 57A (continued) 

MCD 6702 

MTS 6706 

MSUR 6711 

MNC 6712 

MTC 6716 

Clear the job done flag, clear command register, 
clear word count overflow (WCO) flag, and clear end 
of record (EOR) flag. This instruction should be 
immediately preceded by the two instructions CLA 
and TAD (4000) to obtain the operation indicated. 
The job done flag is connected to the program 
interrupt facility. 
Disable the job done flag from the program inter
rupt, turn on the WCO flag and EOR flag and select 
the unit, the mode of parity, and the density from the 
content of the AC. The AC bit assignments are: 

(Type 521 and 522 interface only) 
ACl(O) = High sense level 
ACl (1) = Low sense level 

AC2(0) = 200 or 556 density 
AC2(1) = 800 or 556 density 

AC8(0) =--= 200 density 
AC8(1) = 556 density 

AC2 ACS 

0 0 
0 1 
1 0 
1 1 

AC7(0) = Even parity (BCD) 
AC7(1) = Odd parity (binary) 

Density 

200 
556 
800 
556 

AC9-11 These three bits select one of eight tape 
units, addresses 0-7. 

Skip if the tape transport is ready (TTR). The select
ed tape unit is checked, using this command, and 
must be free before the following MTC command is 
given. 
Terminate the continuous mode. This instruction 
clears the AC at completion. It should be immediately 
preceded by the two instructions CLA and TAD 
(4000) to obtain the operation indicated. 
Place the content of AC 3-6 in the tape control 
command register and start tape motion. Bit 6 
selects motion mode. 

AC6(0) = Normal 
AC6(1) = Continuous 



BASIC IOT MICROINSTRUCTIONS (continued) 

Mnemonic Octal Operation 

AUTOMATIC MAGNETIC TAPE CONTROL TYPE 57A (continued) 

MTC 

MSWF 

MDWF 
MCWF 

MEWF 

MIWF 

MSEF 

MDEF 
MCED 

MEEF 

MIEF 

MTRS 

6716 (cont) AC3-5 are decoded as follows: 
0 = No operation 

6721 

6722 
6722 

6722 

6722 

6731 

6732 
6732 

6732 

6732 

6734 

1 = Rewind 
2 °00 Write 
3 '---' Write end of file (EO F) 
Ll. = Read compare 
5 = Read 
6 = Space forward 
7 = Space backward 

Skip if the WCO flag is a 1. The WCO flag is con
nected to the program interrupt. 
Disable WCO flag. 
Clear WCO flag. This instruction should be imme
diately preceded by the two instructions CLA and 
TAD (2000) to obtain the operation indicated. 
Enable WCO flag. This instruction should be imme
diately preceded by the two instructions CLA and 
TAD (4000) to obtain the operation indicated. 
Initialize WCO flag. This instruction should be imme
diately preceded by the two instructions CLA and 
TAD (6000) to obtain the operation indicated. 
Skip if the EOR flag is a 1. This flag is connected to 
the program interrupt. 
Disable ERF. 
Clear ERF. This instruction should be immediately 
preceded by the two instructions CLA and TAD 
(2000) to obtain the operation indicated. 
Enable ERF. This instruction should be immediately 
preceded by the two instructions CLA and TAD 
(4000) to obtain the operation indicated. 
Initialize ERF, clear and enable. This instruction 
should be immediately preceded by the two instruc-
tions CLA and TAD (6000) to obtain the operation 
indicated. 
Read tape status bits into the content of the AC. 
This instruction should be immediately preceded by 
a CLA instruction to obtain the operation indicated. 
The bit assignments are: 

0 = Data request late 
1 = Tape parity error 
2 = Read compare error 
3 = End of file _flag set 
4 = Write lock ring out 
5 = Tape at load point 

219 



220 

BASIC IOT MICROINSTRUCTIONS (continued) 

Mnemonic Octal Operation 

AUTOMATIC MAGNETIC TAPE CONTROL TYPE 57A (continued) 

MTRS 

MCC 
MRWC 
MRCA 

MCA 

TIFM 

TSRD 

TSWR 

TSDF 

6734 (cont.) 6 cc- Tape at end point 
7 = Tape near end point (Type 520) 
7 = Last operation write (Type 521 and 522 

interface) 
8 = Tape near load point (Type 520) 
8 c-- Write echo (Type 522 interface) 
8 = B control using transporting (Type 521 

interface with multiplex transport) 
9 -~ Transport rewinding 

10 = Tape miss character 
11 = Job done flag interrupt 

6741 Clear CA and WC. 
67 42 Transfer the content of AC into the WC. 
6744 Transfer the content of the CA into the AC. Th is 

instruction should be immediately preceded by a 
CLA command to obtain the operation indicated. 

6745 Clear CA and WC, and transfer the content of the 
AC into the CA. 

MAGNETIC TAPE SYSTEM TYPE 580 

6707 

6715 

6716 

6721 

Tape initialize function and motion. Clears all tape 
control registers, loads the command register from 
the content of the AC, and initiates motion delay. 
The bit assignments of the command register are: 

ACl = Space 
AC3 = Go 
AC4 - Write 
AC5 = Parity mode (0 = even, 1 - odd) 
AC6 Read 
AC? ~ Direction (0 = reverse, 1 = forward) 
ACS = Density (0 c_ 200 BPI, 1 - 556 BPI) 

AClO ---= Rewind 
ACll =0 Real time 

Tape system read. Clear the AC then load the AC 
from the content of the data buffer and clear the 
data flag. 
Tape system write. Clear the data buffer, then load 
the data buffer from the content of the AC and clear 
the data flag. 
Tape skip on data flag. If the data flag is a 1, the 
next instruction is skipped. 



Mnemonic 

TSSR 

TSST 

TWRT 

TCPI 

TSRS 

MMLS 

MMLM 

MMLF 

MMMF 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

MAGNETIC TAPE SYSTEM TYPE 580 (continued) 

6722 

6724 

6731 

6732 

6734 

Tape skip on end of record. If the end of record 
delay is a O or if the data flag is a 1, the next 
instruction is skipped. 
Tape system stop data transfer. This instruction is 
issued following transmission of the last character 
in a record. It initiates tape shut down procedures 
such as writing the longitudinal parity bit, end of 
record mark, and the 0.75-inch inter-record gap. 
It also clears the SPACE flip-flop. 

Tape system write real time. One character is written 
on tape. This instruction can be used at any fre
quency and therefore determines the density of 
information written on tape. 

Tape clear program interrupt. The program interrupt 
request flag is sampled and if it is a 1 the next 
instruction is skipped. This command also clears the 
program interrupt request flag in the control during 
a space operation and clears the STOP flip-flop. 

Tape system read status. The content of the status 
register is transferred into the AC. The bit assign
ments are: 

ACO(l) = Parity error 
ACl(l) = Motion delay set 
AC2(1) = Transport is ready 
AC3(1) = Clock delays set 
AC4(1) c--= End of tape 
AC5(1) = Tape at load point 

DECTAPE DUAL TRANSPORT TYPE 555 AND 
DECTAPE CONTROL TYPE 552 

6751 

6752 

6754 

6756 

Load unit select register from the content of AC 2-5 
and set DECtape (OT) flag when done. 
Load motion register from the content of AC7-8 and 
set DT flag when done. 

Load function register from the content of AC 9-11 
then clear the AC. The octal code of these three bits 
establishes the following DECtape control modes: 

0 = Move 
1 = Search 
2 = Read data 
3 = Read all bits 

4 = Write data 
5 = Write all bits 
6 = Write mark and 

timing 

Load motion register from AC7-8, load function 
register from AC9-11, clear the AC, and set the DT 
flag when done. 

221 



222 

Mnemonic 

MMMM 

MMSF 
MMCC 
MMLC 

MMML 
MMSC 
MMCF 
MMRS 

DTRA 

DTCA 
DTXA 

DTSF 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

DECTAPE DUAL TRANSPORT TYPE 555 AND 
DECTAPE CONTROL TYPE 552 (continued) 

6757 

6761 
6762 
6764 

6766 
6771 
6772 
6774 

Load the unit select register, motion register, and 
function register from AC2-l 1; clear the AC, and 
set the DT flag when done. 
Skip if OT flag is a 1. 
Clear memory address counter (MAC). 
Load MAC from the content of AC0-11 and then 
clear the AC. 
Clear MAC, load MAC from AC0-11, and clear AC. 
Skip if error flag is a 1. 
Clear error flag and DT flag. 
Read status bits into the content of AC 0-7. The bit 
assignments are: 

ACO = DT flag 
ACl = Error flag 
AC2 = End (selected tape at end point) 
AC3 = Timing error 
AC4 = Reverse tape direction 
AC5 = Go 
AC6 = Parity or mark track error 
AC7 = Select error 

DECTAPE TRANSPORT TYPE TU55 AND 
DECTAPE CONTROL TYPE TCOl 

6761 

6762 
6764 

6771 

The content of status register A is read into AC0-9 
by an OR transfer. The bit assignments are: 
AC0-2 = Transport unit select number 
AC3-4 = Motion 
AC5 = Mode 
AC6-8 = Function 
AC9 = Enable/disable DECtape control flag 
Clear status register A. All flags undisturbed. 
Status register A is loaded by an exclusive OR trans
fer from the content of the AC, and AClO and AC11 
are sampled. If AClO=O, the error flags are cleared. 
If AC11 = 0, the DECtape control flag is cleared. 
Skip if error flag is a 1 or if DECtape control flag 
is a 1. 



Mnemonic 

DTRB 

DTLB 

BASIC IOT MICROINSTRUCTIONS (continued) 

Octal Operation 

DECTAPE TRANSPORT TYPE TU55 AND 
DECTAPE CONTROL TYPE TCOl (continued) 

6772 

6774 

The content of status register 8 is read into the AC 
by an OR transfer. The bit assignments are: 
ACO = Error flag 
ACl = Mark track error 
AC2 = End of tape 
AC3 = Select error 
AC4 = Parity error 
AC5 = Timing error 
AC6-8 = Memory field 
AC9-10 = Unused 
ACl 1 = DECtape flag 
The memory field portion of status register 8 is 
loaded by an OR transfer from the content of AC6-8. 

223 



224 

Mnemonic 
Symbol 

NOP 
IAC 

RAL 

RTL 

RAR 

RTR 

CML 
CMA 

CIA 

CLL 
CLL RAL 
CLL RTL 
CLL RAR 
CLL RTR 
STL 
CLA 

CLA IAC 
GLK 
CLA CLL 
STA 

GROUP 1 OPERATE MICROINSTRUCTIONS 

Octal 
Code 

7000 
7001 

7004 

7006 

7010 

7012 

7020 
7040 

7041 

7100 
7104 
7106 
7110 
7112 
7120 
7200 

7201 
7204 
7300 
7240 

Event 
Time 

2 

2 

2 

2 

2 

1 
1 

1, 2 

1 
1, 2 
1, 2 
1, 2 
1, 2 

1 
1 

1, 2 
1, 2 

1 
1 

Operation 

No operation. Causes a 1.5 11sec program delay. 
Increment AC. The content of the AC is incremented 
by one in two's complement arithmetic. 
Rotate AC and L left. The content of the AC and the 
L are rotated left one place. 
Rotate two places to the left. Equivalent to two suc
cessive RAL operations. 
Rotate AC and L right. The content of the AC and 
Lare rotated right one place. 
Rotate two places to the right. Equivalent to two 
successive RAR operations. 
Complement L. 
Complement AC. The content of the AC is set to 
the one's complement of its current content. 
Complement and increment accumulator. Used to 
form two's complement. 
Clear L. 
Shift positive number one left. 
Clear link, rotate two left. 
Shift positive number one right. 
Clear link, rotate two right. 
Set link. The L is set to contain a binary 1. 
Clear AC. To be used alone or in OPR 1 combina
tions. 
Set AC= 1 
Get link. Transfer L into AC 11. 
Clear AC and L. 
Set AC = - 1. Each bit of the AC is set to contain 
a l. 



Mnemonic 
Symbol 

HLT 

OSR 

SKP 
SNL 
SZL 
SZA 
SNA 
SZA SNL 
SNA SZL 
SMA 

SPA 

SMA SNL 
SPA SZL 
SMA SZA 
SPA SNA 
CLA 

LAS 
SZA CLA 
SNA CLA 
SMA CLA 
SPA CLA 

GROUP 2 OPERATE MICROINSTRUCTIONS 

Octal 
Code 

7402 

7404 

7410 
7420 
7430 
7440 
7450 
7460 
7470 
7500 

7510 

7520 
7530 
7540 
7550 
7600 

7604 
7640 
7650 
7700 
7710 

Event 
Time 

1 

2 

1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
1 
1 
1 
2 

1 
1 
1 
1 
1 

Operation 

Halt. Stops the program after completion of the cycle 
in process. If this instruction is combined with others 
in the OPR 2 group the other operations are com
pleted before the end of the cycle. 
OR with switch register. The OR function is per
formed between the content of the SR and the 
content of the AC, with the result left in the AC. 
Skip, unconditional. The next instruction is skipped. 
Skip if L =fa- 0. 
Skip if L = 0. 
Skip if AC = 0. 
Skip if AC =fa- 0. 
Skip if AC = 0, or L = 1, or both. 
Skip if AC =fa- 0 and L = 0. 
Skip on minus AC. If the content of the AC is a 
negative number, the next instruction is skipped. 
Skip on positive AC. If the content of the AC is a 
positive number, the next instruction is skipped. 
Skip if AC < 0, or L = 1, or both. 
Skip if AC > 0 and if L = 0. 
Skip if AC > 0. 
Skip if AC > 0. 
Clear AC. To be used alone or in OPR 2 combina
tions. 
Load AC with SR. 
Skip if AC = 0, then clear AC. 
Skip if AC =fa- 0, then clear AC. 
Skip if AC < 0, then clear AC. 
Skip if AC ;;::: 0, then clear AC. 

225 



226 

EXTENDED ARITHMETIC ELEMENT MICROINSTRUCTIONS 

Mnemonic Octal 
Symbol Code 

MUY 7405 

DVI 7407 

NMI 7411 

SHL 7413 

Event 
Time 

2 

2 

2 

2 

Operation 

Multiply. The number held in the MQ is multiplied by 
the number held in core memory location PC + 1 
(or the next successive core memory location after 
the MUY command). At the conclusion of this com
mand the most significant 12 bits of the product are 
contained in the AC and the least significant 12 bits 
of the product are contained in the MQ. 
Y x MQ = > AC, MQ 
Divide. The 24-bit dividend held in the AC (most 
significant 12 bits) and the MQ (least significant 
12 bits) is divided by the number held in core mem
ory location PC + 1 (or the next successive core 
memory location following the DVI command). At 
the conclusion of this command the quotient is held 
in the MQ, the remainder is in the AC, and the L 
contains a 0. If the L contains a 1, divide overflow 
occurred so the operation was concluded after the 
first cycle of the division. 
AC, MQ --c- Y = > MQ 
Normalize. This instruction is used as part of the 
conversion of a binary number to a fraction and an 
exponent for use in floating-point arithmetic. The 
combined content of the AC and the MQ is shifted 
left by this one command until the content of ACO 
is not equal to the content of ACl, to form the frac
tion. Zeros are shifted into vacated MQll positions 
for each shift. At the conclusion of this operation, 
the step counter contains a number equal to the 
number of shifts performed. The content of L is lost. 
ACj = > ACj - 1 
ACO => L 
MQ O = > ACll 
MQj = MQj -1 
0 = > MQl 1 until ACO =,t= ACl 
Shift arithmetic left. This instruction shifts the com
bined content of the AC and MQ to the left one posi
tion more than the number of positions indicated by 
the content of core memory at address PC + 1 (or the 
next successive core memory location following the 
SHL command). During the shifting, zeros are shifted 
into vacated MQl 1 positions. 
Shift Y + 1 positions as follows: 
ACj = > ACj -1 
ACO => L 
MQO => ACll 
MQj => MQj -1 
O=>MQll 



EXTENDED ARITHMETIC ELEMENT MICROINSTRUCTIONS 
(continued) 

IVlnemonic Octal 
Symbol Code 

ASR 7415 

LSR 7417 

MQL 7421 

SCA 7441 

MQA 7501 

Event 
Time 

2 

2 

2 

2 

2 

Operation 

Arithmetic shift right. The combined content of the 
AC and the MQ is shifted right one position more 
than the number contained in memory location 
PC I- 1 (or the next successive core memory location 
following the ASR command). The sign bit, con
tained in ACO, enters vacated positions, the sign bit 
is preserved, information shifted out of MQl 1 is 
lost, and the L is undisturbed during this operation. 
Shift Y + 1 positions as follows: 
ACO = > ACO 
ACj = > ACj + 1 
ACll => MQO 
MQj => MQj + 1 
Logical shift right. The combined content of the AC 
and MQ is shifted left one position more than the 
number contained in memory location PC + 1 (or 
the next successive core memory location following 
the LSR command). This command is similar to the 
ASR command except that zeros enter vacated posi
tions instead of the sign bit entering these locations. 
Information shifted out of MQll is lost and the L is 
undisturbed during this operation. 
Shift Y + 1 positions as follows: 
0 => ACO 
ACj = > ACj + 1 
ACll => MQO 
MQj => MQj + 1 
Load multiplier quotient. This command clears the 
MQ, lqads the content of the AC into the MQ, then 
clears the AC. 
0 => MQ 
AC=> MQ 
0 => AC 
Step counter load into accumulator. The content of 
the step counter is transferred into the AC. The AC 
should be cleared prior to issuing this command or 
the CLA command can be combined with the SCA 
to clear the AC, then effect the transfer. 
SC VAC => AC 
Multiplier quotient load into accumulator. The con
tent of the MQ is transferred into the AC. This com
mand is given to load the 12 least significant bits 
of the product into the AC following a multiplication 
or to load the quotient into the AC following a divi
sion. The AC should be cleared prior to issuing this 
command or the CLA command can be combined 
with the MQA to clear the AC then effect the transfer. 
MQ V AC=> AC 

227 



228 

EXTENDED ARITHMETIC ELEMENT MICROINSTRUCTIONS 
(continued) 

Mnemonic Octal 
Symbol Code 

CLA 7601 

CAM 7621 

Event 
Time 

1 

1, 2 

Operation 

Clear accumulator. The AC is cleared during event 
time 1, allowing this command to be combined with 
the other EAE commands that load the AC during 
event time 2 (such as SCA and MQA). 
0 => AC 

Clear accumulator and multiplier quotient, 
CAM == CLA LMQ. 



APPENDIX 2 
CODES 

MODEL 33 ASR/KSR TELETYPE CODE (ASCII) 
IN OCTAL FORM 

8-Bit Code 
Character 

8-Bit Code 
Character (in octal) (in o"ctal) 

A 301 241 
B 302 242 
C 303 # 243 
D 304 $ 244 
E 305 % 245 
F 306 & 246 
G 307 247 
H 310 ( 250 
I 311 ) 251 
J 312 * 252 
K 313 + 253 
L 314 254 
M 315 255 
N 316 256 
0 317 I 257 
p 320 272 
Q 321 273 
R 322 < 274 
s 323 275 
T 324 > 276 
u 325 ? 277 
V 326 @ 300 
w 327 [ 333 
X 330 \ 334 
y 331 ] 335 
z 332 ,t 336 

<E 337 
0 260 

1 261 Leader /Trailer 200 
2 262 Line-Feed 212 
3 263 Carriage-Return 215 
4 264 Space 240 
5 265 Rub-out 377 
6 266 Blank 000 
7 267 

8 270 

9 271 

229 



230 

MODEL 33 ASR/KSR TELETYPE CODE (ASCII) 
IN BINARY FORM 

1 = HOLE PUNCHED = MARK 

0 = NO HOLE PUNCHED = SPACE 

..---
@ SPACE NULL/IDLE -A ! START OF MESSAGE -
8 " END OF ADDRESS .___ 
C # END OF MESSAGE -D $ END OF TRANSMISSION -E % WHO ARE YOU ..,___ 
F & ARE YOU -G ' BELL -H ( FORMAT EFFECTOR -I ) HORIZONTAL TAB -J * LINE FEED -K + VERTICAL TAB ,___ 
L 

' 
FORM FEED -M - CARRIAGE RETURN -N SHIFT OUT -0 .._ I SHIFT IN 

p 0 DCO -Q 1 READER ON .._ 
R 2 TAPE (AUX ON) -s 3 READER OFF -T 4 (AUX OFF) -u 5 ERROR ,___ 
V 6 SYNCHRONOUS IDLE .._ 
w 7 LOGICAL END OF MEDIA ..,___ 
X 8 so -y 9 S 1 ..,___ 
z S2 .._ 
[ 

' 
S3 ------ < S4 

f---

] = S5 -j_ > S6 

RUB OUT .. ? S7 ----I I ,, •• 

.. -
--
~ 

---

MOST SIGNIFICANT BIT 

(LEAST SIGNIFICANT BIT~ 

8 7 6 5 4 S 3 2 1 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 1 0 

0 0 0 1 1 

0 0 1 0 0 

0 0 1 0 1 

0 0 1 1 0 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 0 1 1 

0 1 1 0 0 

0 1 1 0 1 

0 1 1 1 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 0 1 

1 0 0 1 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 0 1 

1 0 1 1 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 0 1 

1 1 0 1 0 

1 1 0 1 1 

1 1 1 0 0 

1 1 1 0 1 

1 1 1 1 0 

1 1 1 1 1 

'--v---J '-----v----1 
~r 

A 

' 1 0 0 SAME 

1 0 1 SAME 

1 1 0 SAME 

1 1 1 SAME 



CARD READER CODE 

Card Code Card Code 
Internal Internal 

Zone Num. Code Character Zone Num. Code Character 

- - 01 0000 Blank 11 0 10 1010 • 12 8-3 111011 11 1 10 0001 J 
12 8-4 111100 ) 11 2 10 0010 K 
12 8-5 11 1101 ] 11 3 10 0011 L 
12 8-6 11 1110 < 11 4 10 0100 M 
12 8-7 111111 .... 11 5 10 0101 N 
12 - 11 0000 + 11 6 10 0110 0 
11 8-3 10 1011 $ 11 7 10 0111 p 
11 8-4 10 1100 * 11 8 10 1000 Q 
11 8-5 10 1101 [ 11 9 10 1001 R 
11 8-6 10 1110 > 0 8-2 01 1010 

' 
11 8-7 10 1111 & 0 2 01 0010 s 
11 - 10 0000 - 0 3 01 0011 T 
0 1 01 0001 I 0 4 010100 u 
0 8-3 01 1011 

' 
0 5 01 0101 V 

0 8-4 01 1100 ( 0 6 01 0110 w 
0 8-5 01 1101 " 0 7 01 0111 X 
0 8-6 011110 # 0 8 01 1000 y 

0 8-7 01 1111 % 0 9 01 1001 z 
- 8-3 00 1011 = - 0 00 1010 0 
- 8-4 00 1100 @ - 1 00 0001 1 
- 8-5 00 1101 • - 2 00 0010 2 
- 8-6 00 1110 ' - 3 00 0011 3 
- 8-7 00 1111 ...__ - 4 00 0100 4 
12 0 11 1010 ? - 5 00 0101 5 
12 1 11 0001 A - 6 00 0110 6 
12 2 11 0010 B - 7 000111 7 
12 3 11 0011 C - 8 00 1000 8 
12 4 11 0100 D - 9 00 1001 9 
12 5 11 0101 E All other codes 00 0000 ... 
12 6 110110 F 
12 7 110111 G 
12 8 11 1000 H 
12 9 11 1001 I 

231 



AUTOMATIC LINE PRINTER CODE 

Character 6-Bit Code Character 6-Bit Code 
(ASCII) (in octal) (ASCII) (in octal) 

@ 0 D 40 
A 1 41 
B 2 42 

C 3 # 43 
D 4 $ 44 
E 5 % 45 
F 6 & 46 
G 7 47 
H 10 50 
I 11 51 
J 12 * 52 
K 13 ' 53 
L 14 54 
M 15 55 
N 16 56 
0 17 I 57 
p 20 ~ 60 
Q 21 1 61 

R 22 2 62 
s 23 3 63 
T 24 4 64 
u 25 5 65 
V 26 6 66 
w 27 7 67 
X 30 8 70 
y 31 9 71 

z 32 72 

33 73 

\ 34 < 74 
] 35 ~ 75 
-t- 36 > 76 

+ 37 ? 77 

232 



3 
46 

575 
7 346 

X 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 

10" 

APPENDIX 3 

SCALES OF NOTATION 
2x IN DECIMAL 

2' X 2' X 

1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 
1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 
1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 
1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 
1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 
1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 
1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 
1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 
1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 

1o±n IN OCTAL 
n 10-0 10" n 

2' 
1.07177 34625 36293 
1.14869 83549 97035 
1.23114 44133 44916 
1.31950 79107 72894 
1.41421 35623 73095 
1.51571 65665 10398 
1.62450 47927 12471 
1.74110 11265 92248 
1.86606 59830 73615 

10-, 

1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66 
12 1 0.063 146 314 631 463 146 31 351 035 564 000 11 0.000 000 000 000 537 657 77 

144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0000 000 000 000 043 136 32 
1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35 

23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11 

303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01 
641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63 
113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14 
360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01 
545 000 9 0.000 000 000 104 560 276 41 

n IOQ10 2, n 1092 10 IN DECIMAL 
n n log10 2 n log2 10 n n log1 o 2 n log2 10 
1 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693 
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642 
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591 
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 n540 
5 1.50514 99783 16.60964 04744 JO 3.01029 99566 33 21928 09489 

ADDITION AND MULTIPLICATION TABLES 
Addition Multiplication 

Binary Scale 

o+o= 0 0 XO= 0 
o+l=ltO= 1 0 X 1 = l X O ~ 0 

1 1 = 10 1 X 1 = I 

Octal Scale 

0 01 02 03 04 05 06 07 02 03 04 05 06 07 

02 03 04 05 06 07 10 2 04 06 10 12 14 16 

2 03 04 05 06 07 10 11 3 06 11 14 17 22 25 

3 04 05 06 07 10 11 12 4 JO 14 20 24 30 34 

4 05 06 07 10 11 12 13 5 12 17 24 31 36 43 

5 06 07 10 11 12 13 14 6 14 22 30 36 44 52 

6 07 10 11 12 13 14 15 7 16 25 34 43 52 61 

7 10 11 12 13 14 15 16 

MATHEMATICAL CONSTANTS IN OCTAL SCALE 
7i = 3.11037 552421, e= 2.55760 521305, ( = 0.44742 147707 a 

r.-1 = 0.24276 301556, e-1 = 0.27426 53066 ls In/'=-:- 0.43127 233602, 

Vrr = 1.61337 611067, Ve= 1.51411 230704, log,y = - .0.62573 030645, 

In"= 1.11206 404435, log10e = 0.33626 754251, V2= 1.32404 746320, 

log, rr = 1.51544 163223, log, e = 1.34252 166245, In 2 = 0.54271 027760, 

vT5 = 3.12305 407267 8 log, 10 = 3.24464 741136, In 10 = 2.23273 067355, 

233 



n 
2 

2 
4 
8 

16 
32 
64 

128 
256 
512 
024 

2 048 
4 096 
8 192 

16 384 
32 768 
65 536 

131 072 
262 144 
524 288 
048 576 

2 097 152 
4 194 304 
8 388 608 

16 777 216 
33 554 432 
67 108 864 

134 217 728 
268 435 456 
536 870 912 
073 741 824 

2 147 483 648 
4 294 967 296 
8 589 934 592 

17 179 869 184 
34 359 738 368 
68 719 476 736 

137 438 953 472 
274 877 906 944 
549 755 813 888 

1 099 511 627 776 
2 199 023 255 552 
4 398 046 511 104 
8 796 093 022 208 

17 592 186 044 416 
35 184 372 088 832 
70 368 744 177 664 

140 737 488 355 328 
281 474 976 710 656 
562 949 953 421 312 
125 899 906 842 624 

2 251 799 813 685 248 
4 503 599 627 370 496 
9 007 199 254 740 992 

18 014 398,509 481 984 
36 028 797 018 963 968 
72 057 594 037 927 936 

144 115 188 075 855 872 
288 230 376 151 711 744 
576 460 752 303 423 488 

1 152 921 504 606 846 976 
2 305 843 009 213 693 952 
4 611 686 018 427 387 904 
9 ;223 372 036 854 775 808 

18 446 744 073 709 551 616 
36 893 488 147 419 103 232 
73 786 976 294 838 206 464 

147 573 952 589 676 412 928 
295 147 905 179 352 825 856 
590 295 810 358 705 651 712 

1 180 591 620 717 411 303 424 
2 361 183 241 434 822 606 848 
4 722 366 482 869 645 213 696 

234 

n 
0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

-n 
2 
1.0 
0.5 
0.25 
0.125 
0.062 5 
0.031 25 

APPENDIX 4 
POWERS OF TWO 

0.015 625 
0.007 812 5 
0.003 906 25 
0.001 953 125 
0.000 976 562 5 
0.000 488 281 25 
0.000 244 140 625 
0.000 122 070 312 5 
0.000 061 035 156 25 
0.000 030 517 578 125 
0.000 015 258 789 062 5 
0.000 007 629 394 531 25 
0.000 003 814 697 265 625 
0.000 001 907 348 632 812 5 
0.000 000 953 674 316 406 25 
0.000 000 476 837 158 203 125 
0.000 000 238 418 579 101 562 5 
0.000 000 119 209 289 550 781 25 
0.000 000 059 604 644 775 390 625 
0.000 000 029 802 322 387 695 312 5 
0.000 000 014 901 161 193 847 656 25 
0.000 000 007 450 580 596 923 828 125 
0.000 000 003 725 290 298 461 914 062 5 
0.000 000 001 862 645 149 230 957 031 25 
0.000 000 000 931 322 574 615 478 515 625 
0.000 000 000 465 661 287 307 739 257 812 5 
0.000 000 000 232 830 643 653 869 628 906 25 
0.000 000 000 116 415 321 826 934 814 453 125 
0.000 000 000 058 207 660 913 467 407 226 562 5 
0.000 000 000 029 103 830 456 733 703 613 281 25 
0.000 000 000 014 551 915 228 366 851 806 640 625 
0.000 000 000 007 275 957 614 183 425 903 320 312 5 
0.000 000 000 003 637 978 807 091 712 951 660 156 25 
0.000 000 000 001 818 989 403 545 856 475 830 078 125 
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 5u7 
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 
0.000 000 000 000 000 006 938 893 903 907 228 377,647 697 925 567 626 
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 

5 
25 
625 
812 5 
906 25 
953 125 
476 562 5 
738 281 25 
369 140 625 
684 570 312 5 
342 285 156 25 

0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5 
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25 
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625 
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5 
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25 
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125 
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5 
0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 16l 250 339 820 981 025 695 800 781 25 
0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625 



0000 
to 

0777 
(Octal) 

0000 
to 

0511 
(Decimal) 

Octal Decimal 
10000 · 4096 
20000 · 8192 
30000 · 12288 
40000 · 16384 
50000 · 20480 
60000 · 24576 
70000 · 28672 

1000 
to 

1777 
(Octal) 

0512 
to 

1023 
(Decimal) 

APPENDIX 5 
OCTAL-DECIMAL CONVERSION 

OCTAL-DECIMAL INTEGER CONVERSION TABLE 

0 1 2 3 4 5 6 7 0 I 2 3 

0000 0000 0001 0002 000,.1 0004 0005 0006 0007 0400 0256 0257 0258 0259 
0010 0008 OOQ-9 00~0 001-l 0012 0013 0014 0015 
0020 0016 0017 0018 0019 0020 0021 0022 0023 

0410 0264 0265 0266 0267 
0420 0272 0273 0274 0275 

0030 0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 
0040 0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 
0050 0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 
0060 0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 
0070 0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 

0100 0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 
0110 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 03JO 0331 
0120 0080 0081 0082 0083 0084 0085 0086 0087 05~0 0336 0337 0338 0339 
0130 0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 
0140 0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 
0150 0104 0105 0106 0107 0108 0109 0110 Olli 0550 0360 0361 0362 0363 
0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 
0220 0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 
0230 0152 0153 0154 0155 0156 0157 0158 01~9 0630 0408 0409 0410 0411 
0240 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 
0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 
0260 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 
0270 0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 

0300 0192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 
0310 0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 
0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 
0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 
0340 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 
0350 0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 
0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 
0370 0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 

0 I 2 3 4 5 6 7 0 l 2 3 

1000 0512 0513 0514 0515 0516 0517 0518 0519 1400 0768 0769 077Q 0771 
1010 0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777 0778 0779 
1020 0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 0786 0787 
1030 0536 0537 0538 0539 0540 0541 0542 0543 1430 0792 0793 0794 0795 
1040 0544 0545 0546 0547 0548 0549 0550 0551. 1440 0800 0801 0802 0803 
1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 080~ 0810 0811 
1060 0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0817 0818 0819 
1070 0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825 0826 0827 

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833 0834 0835 
1110 0584 0585 0586 0~87 0588 0589 0590 0591 1510 0840 0841 0842 0843 
1120 0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849 0850 0851 
1130 0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 
1150 0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 
1160 0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 
1170 0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 
1210 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 
1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 
1230 0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922 0923 
1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 
1250 0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 
1260 0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 
1270 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 

1300 0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963 
1310 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 
1320 0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978 0979 
I 330 0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985 0986 0987 
1340 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 0995 
1350 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 
1360 0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011 
1370 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 

4- 5 6 7 

0260 0261 0262 0263 
0268 0269 0270 0271 
0276 0277 0278 0279 
0284 0285 0286 0287 
0292 0293 0294 0295 
0300 0301 0302 0303 
0308 0309 0310 0311 
0316 0317 0318 0319 

0324 0325 0326 0327 
0332 0333 0334 0335 
0340 0341 0342 0343 
0348 0349 0350 0351 
0356 0357 0358 0359 
0364 0365 0366 0367 
0372 0373 0374 0375 
0380 0381 0382 0383 

0388 0389 0390 0391 
0396 0397 0398 0399 
0404 0405 0406 0407 
0412 0413 0414 0415 
0420 0421 0422 0423 
0428 0429 0430 0431 
0436 0437 0438 0439 
0444 0445 0446 0447 

0452 0453 0454 0455 
0460 0461 0462 0463 
0468 0~69 0470 0471 
0476 0477 0478 0479 
0484 0485 0486 0487 
0492 0493 0494 0495 
0500 0501 0502 0503 
0508 0509 0510 0511 

4 5 6 7 

0772 0773 0774 0775 
0780 0781 0782 0783 
0788 0789 0790 0791 
0796 0797 0798 0799 
0804 0805 0806 0807 
0812 0813 0814 0815 
0820 0821 0822 0823 
0828 0829 0830 0831 

0836 0837 0838 0839 
0844 0845 0846 0847 
0852 0853 0854 0855 
0860 0861 0852 0863 
0868 0869 0870 0871 
0876 0877 0878 0879 
0884 0885 0886 0887 
0892 0893 059,; 0895 

0900 0901 0902 0903 
0908 0909 0910 0911 
0916 0917 0918 0919 
0924 0925 0926 0927 
0932 0933 0934 0935 
0940 0941 0942 0943 
0948 0949 0950 0951 
0956 0957 0958 0959 

0964 0965 0966 0967 
0972 0973 0974 0975 
0980 0981 0982 0983 
0988 0989 0990 0991 
0996 0997 0998 0999 
1004 1005 1006 1007 
1012 1013 1014 1015 
1020 1021 1022 1023 

235 



0 

2000 1024 
2010 1032 
2020 1040 
2030 1048 
2040 1056 
2050 1064 
2060 1072 
2070 1080 

2100 1088 
2110 1096 
2120 1104 
2130 1112 
2140 1120 
2150 1128 
2160 1136 
2170 1144 

2200 1152 
2210 1160 
2220 1168 
2230 1176 
2240 1184 
2250 I 192 
2260 1200 
2270 1208 

2300 1216 
2310 1224 
2320 1232 
2330 1240 
2340 1248 
2350 1256 
2360 1264 
2370 1272 

0 

3000 1536 
3010 1544 
3020 1552 
3030 1560 
3040 1568 
3050 1576 
3060 1584 
3070 1592 

3100 1600 
3110 1608 
3120 1616 
3130 1624 
3140 1632 
3150 1640 
3160 1648 
3170 1656 

3200 1664 
3210 1672 
3220 1680 
3230 1688 
3240 1696 
3250 1704 
3260 1712 
3270 1720 

3300 1728 
3310 1736 
3320 1744 
3330 1752 
3340 1760 
3350 1768 
3360 1776 
3370 1784 

236 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued) 

1 2 3 4 5 6 7 0 1 

1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 
1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 
1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 
1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 
1057 1058 1059 1060 1061 1062 1063 2440 1312 1 313 
1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 
1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 
1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 

1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 
1097 1098 1099 llOO 1101 1102 1103 2510 1352 1353 
1105 1106 1107 ll08 ll09 1110 1111 2520 1360 1361 
lll3 1114 1115 1116 lll 7 1118 l ll9 2530 1368 1369 
1121 1122 1 !23 ll24 1125 1126 1127 2540 1376 1377 
ll29 1130 1131 ll32 1133 1134 1135 2550 1384 1385 
ll37 1138 1139 1140 1141 1142 1143 2560 1392 1393 
1145 114G 1147 ll48 1149 1150 1151 2570 1400 1401 

1153 1154 1155 1156 1157 ll58 ll59 2600 1408 1409 
1161 1162 1163 1164 1165 ll66 ll67 2610 1416 1417 
1169 1170 1171 1172 1173 ll74 ll75 2620 1424 1425 
1177 1178 ll79 ll80 1181 1182 ll83 2630 1432 1433 
1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 
1193 1194 1195 1196 ll97 1198 1199 265(, 1448 1449 
1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 
1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 

1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 
1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 
1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 
1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 
1249 1250 1251 1252 1253 1254 1255 2740 1504 1505 
1257 1258 1259 1260 1261 1262 1263 2750 1512 1 5 I 3 
1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 
1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 

1 2 3 4 5 6 7 0 1 

1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 
1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 
1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 
1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 
1569 1570 1571 1572 I 573 1574 1575 3440 1824 1825 
1577 1578 1579 1580 1581 1582 1583 3450 1832 1B33 
1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 
1593 1594 1595 1596 1597 1598 1599 3470 1848 1849 

1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 
1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 
1617 1618 1619 1620 1621 1622 1623 3520 1872 1B73 
1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 
1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 
1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 
1649 1650 1651 1652 1653 1604 1655 3560 1904 1905 
1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 

1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 
1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 
1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 
1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 
1697 1698 1699 1700 l 701 1702 1703 3640 1952 1953 
1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 
1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 
1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 

1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 
1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 
1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 
1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 
1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 
1769 1770 1771 1772 1773 1774 1775 37 50 2024 2025 
1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 
1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 

2 3 4 

1282 1283 1284 
1290 1291 1292 
1298 1299 1300 
1306 1307 1308 
1314 1315 1316 
1322 1323 1324 
1330 1331 1332 
I 338 1339 1340 

1346 1347 1348 
1354 1355 1356 
1362 1363 1364 
1370 1371 1372 
1378 1379 1380 
1386 1387 1388 
1394 1395 I 396 
1402 1403 1404 

1410 1411 1412 
1418 1419 1420 
1426 1427 1428 
1434 1435 1436 
1442 1443 1444 
1450 1451 1452 
1458 1459 1460 
1466 1467 1468 

1474 1475 1476 
1482 1483 1484 
1490 1491 1492 
1498 1499 1500 
1506 1507 1508 
1514 1515 1516 
1522 1523 1524 
1530 1531 1532 

2 3 4 

1794 1795 1796 
1802 1803 1804 
1810 1811 1812 
1818 1819 1820 
1826 1827 1828 
1834 1835 1836 
1842 1843 1844 
1850 1851 1852 

1858 1859 1860 
1866 1867 1868 
1874 1875 1876 
1882 1883 1884 
1890 1891 1892 
1898 1899 1900 
1906 1907 1908 
1914 1915 1916 

1922 1923 1924 
1930 1931 1932 
1938 1939 1940 
1946 1947 1948 
1954 19:,5 1956 
1962 1963 1964 
1970 1971 1972 
1978 1979 1980 

1986 198'/ 1988 
1994 1995 1996 
2002 2003 2004 
2010 2011 2012 
2018 2019 2020 
2026 2027 2028 
2034 2035 2036 
2042 2043 2044 

5 6 

1285 1286 
1293 1294 
1301 1302 
1309 1310 
1317 1318 
1325 1326 
1333 1334 
1341 1342 

1349 1350 
1357 1358 
1365 1366 
1373 1374 
1381 1382 
1389 1390 
1397 1398 
1405 1406 

1413 1414 
1421 1422 
1429 1430 
1437 1438 
1445 1446 
1453 1454 
1461 1462 
1469 1470 

1477 1478 
1485 1486 
1493 1494 
1501 1502 
1509 1510 
1517 1518 
1525 1526 
1533 1534 

5 6 

1797 1798 
1805 1806 
1813 1814 
1821 1822 
1829 1830 
1837 1838 
1845 1846 
1853 1854 

1861 1862 
1869 1870 
1877 1878 
1885 1886 
1893 1894 
1901 1902 
1909 1910 
1917 1918 

1925 1926 
1933 1934 
1941 1942 
1949 1950 
1957 1958 
1965 1966 
197 3 1974 
1981 1982 

1989 1990 
1997 1998 
2005 2006 
2013 2014 
2021 2022 
2029 2030 
2037 2038 
2045 2046 

7 

1287 
1295 
1303 
1311 
1319 
l 327 
1335 
1343 

1351 
1359 
1367 
1375 
1383 
1391 
1399 
1407 

1415 
1423 
14 31 
1439 
1447 
1455 
1463 
1471 

1479 
1487 
1495 
1503 
1511 
1519 
1527 
1535 

7 

1799 
1807 
1815 
1823 
1831 
1839 
1847 
1855 

18o3 
1871 
1879 
1887 
1895 
1903 
1911 
1919 

1927 
1935 
1943 
1951 
1959 
1967 
1975 
1983 

1991 
1999 
2007 
2015 
2023 
2031 
2039 
204-7 

2000 I 1024 
to to 

2777 1535 
(Octal) (Decimal) 

Octal Decimal 
10000 · 4096 
20000 · 8192 
30000 · 12288 
40000 · 16384 
50000 · 20480 
60000 · 24576 
70000 · 28672 

3000 
to 

3777 
(Octal) 

1536 
to 

2047 
(Decimal) 



OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued) 

4000 
to 

4777 
(Octal) 

2048 
to 

2559 
(Decimal) 

Octal Decimal 
10000 · 4096 
20000 · 8192 
30000 · 12288 
40000 · 16384 
50000 · 20480 
60000 · 24576 
70000 · 28672 

5000 
to 

5777 
(Octal) 

2560 
to 

3071 
(Decimal) 

0 

4000 2048 
4;110 2056 
4020 2064 
4030 2072 
4040 2080 
4050 2088 
4060 2Q96 
4070 2104 

4100 2112 
41 I 0 2120 
4120 2128 
4130 2136 
4140 2144 
4150 2152 
4160 2160 
4170 2168 

4200 2176 
4210 2184 
4220 2192 
4230 2200 
4240 2208 
4250 2216 
4260 2224 
4270 2232 

4300 2240 
4310 2248 
4320 2256 
4330 2264 
4340 2272 
4350 2280 
4360 2288 
4370 2296 

I o 

5000 2560 
5010 2568 
5020 2576 
5030 2584 
5040 2592 
5050 2600 
5060 2608 
5070 2616 

5100 2624 
5110 2632 
5120 2640 
5130 2648 
5140 2656 
5150 2664 
5160 2672 
5170 2680 

5200 2688 
5210 2696 
5220 2701 
5230 2712 
5240 2720 
5250 2728 
5260 2736 
5270 2744 

5300 2752 
5310 2760 
5320 2768 
5330 2776 
5340 2784 
5350 2792 
5360 2800 
5370 2808 

I 

2049 
2057 
2065 
2073 
2081 
2089 
2097 
2105 

2113 
2121 
2129 
2137 
2145 
2153 
2161 
2169 

2177 
2185 
2193 
2201 
2209 
2217 
2225 
2233 

2241 
2249 
2257 
2265 
2273 
2281 
2289 
2297 

2561 
2569 
2577 
2585 
2593 
2601 
2609 
2617 

2625 
2633 
2641 
2649 
2657 
2665 
2673 
2681 

2689 
2697 
2705 
2713 
2721 
2729 
2737 
2745 

2753 
2761 
2769 
2777 
2785 
2793 
2801 
2809 

2 3 4 5 

2050 2051 2052 2053 
2058 2059 2060 2061 
2066 2067 2068 2069 
2074 2075 2076 2077 
2082 2083 2084 2085 
W90 2091 2092 2093 
2098 2099 2100 2101 
2106 2107 2108 2109 

2114 2115 2116 2117 
2122 2123 2124 2125 
2130 21 31 2132 2133 
2138 2139 2140 2141 
2146 2147 2148 2149 
2154 2155 2156 2157 
2162 2163 2164 2165 
2170 2171 2172 2173 

2178 2179 2180 2181 
2186 2187 2188 2189 
2194 2195 2196 2197 
2202 2203 2204 2205 
2210 2211 2212 2213 
2218 2219 2220 2221 
2226 2227 2228 2229 
2234 2235 2236 2237 

2242 2243 2244 2245 
2250 2251 22s2- 2253 
2258 2259 2260 2261 
2266 2267 2268 2269 
2274 2275 2276 2277 
2282 2283 2284 2285. 
2290 2291 2292 2293 
2298 2299 2300 2301 

3 4 5 

2562 2563 2564 2565 
2570 2571 2572 2573 
2578 2579 2580 2581 
2586 2587 2588 258~ 
2594 2595 2596 2597 
2602 2603 2604 2605 
2610 2611 2612 2613 
2618 2619 2620 2t>21 

2626 2627 2628 2629 
2634 2635 2636 2637 
2642 264 3 2644 2645 
2650 2651 2652 2653 
2658 2659 2660 2661 
2666 2667 2668 2669 
2674 2675 2676 2677 
2682 2683 2684 2685 

2690 2691 2692 2693 
2698 2699 2700 2701 
2706 2707 2708 2709 
2714 2715 2716 2717 
2722 2723 2724 2725 
2730 2731 2732 2733 
2738 2739 2740 2741 
2746 2747 2748 2749 

2754 2755 2756 2757 
2762 2763 2764 2765 
2770 2771 2772 2773 
2778 2779 2780 2781 
2786 2787 2788 2789 
2794 2795 2796 2797 
2802 2803 2804 2805 
2810 2811 2812 2813 

6 7 0 1 2 3 4 5 

2054 2055 4400 2304 2305 2306 2307 2308 2309 
2062 2063 4410 2312 2313 2314 2315 2316 2317 
2070 2071 4420 2320 2321 2322 2323 2324 2325 
2078 2079 4430 2328 2329 2330 2331 2332 2333 
2086 2087 4440 2336 2337 2338 2339 2340 2341 
2094 2095 4450 2344 2345 2346 2347 2348 2349 
2102 2103 4460 2352 2353 2354 2355 2356 2357 
2110 2111 4470 2360 2361 2362 2363 2364 2365 

2118 2119 4500 2368 2369 2370 2371 2372 2373 
2126 2127 4510 2376 2377 2378 2379 2380 2381 
2134 2135 452012384 2385 2386 2387 2388 2389 
2142 2143 4~30. 2392 2393 2394 2395 2396 2397 
2150 2151 4540 2400 2401 2402 2403 2404 2405 
2158 2159 4550 2408 2409 2410 2411 2412 2413 
2166 216'7 4560 2416 2417 2418 2419 2420 2421 
2174 2175 4570 2424 2425 2426 2427 2428 2429 

2182 2183 4600 2432 2433 2434 2435 2436 2437 
2190 2191 4610 2440 2441 2442 2443 2444 2445 
2198 2199 4620 2448 2449 2450 2451 2452 2453 
2206 2207 4630 ,2456 2457 2458 2459 2460 2461 
2214 2215 4640 ·, 2464 2465 2466 2467 2468 2469 
2222 2223 
2230 2231 
2238 2239 

2246 2247 
2254 2255 
2262 2263 
2270 2271 
2278 2279 
2286 2287 
2294 2295 

4650 i 2472 2473 2474 2475 2476 2477 
4660,2480 2481 2482 2483 2484 2485 
467012488 2489 2490 2491 2492 2493 

4 700 '2496 2497 2498 2499 2500 2501 
471012504 2505 2506 2507 2508 2509 
472012512 2513 2514 2515 2516 2517 
4730i 2520 2521 2522 2523 2524 2525 
474012528 2529 2530 2531 2532 2533 
475012536 2537 2538 2539 2540 2541 
4760, 2544 2545 2546 2547 2548 2549 

2302~ 14770! 2552 2553 2554 2555 2556 2557 

6 7 I o 1 2 3 4 ~ 

2566 2567 5400 2816 2817 2818 2819 2820 28?.I 
2574 2575 5410 2824 2825 2826 2827 2828 2829 
~5tl2 2583 5420 2832 2833 2834 2835 2836 2837 
2590 2591 5430 2840 2841 2842 2843 2844 2845 
2598 2599 5440 2848 2849 2850 2851 2852 2853 
2606 2607 5450 2856 2857 2858 2859 2860 2861 
2614 2615 5460 2864 2865 2866 2867 2868 2869 
2622 2623 5470 2872 2873 2874 2875 2876 2877 

2630 2631 5500 2880 2881 2882 2883 2884 2885 
2638 2639 5510 2888 2889 2890 2891 28n 2893 
2646 2647 5520 2896 2897 2898 2899 2900 2901 
2654 2655 5530 2904 2905 2906 2907 2908 2909 
2662 2663 5540 2912 2913 2914 2915 2916 2917 
2670 2671 5550 2920 2921 2922 2923 2924 2925 
2678 2679 5560 2928 2929 2930 2931 2932 2933 
2686 2687 5570 2936 2937 2938 2939 2940 2941 

2694 2695 5600 2944 2945 2945 2947 2948 2949 
2702 2703 5610 2952 2953 2954 2955 2956 2957 
2710 2711 5620 2960 2961 2962 2963 2964 2965 
2718 2719 5630 2968 2969 2970 2971 29i2 2973 
2726 2727 5640 2976 2977 2978 2979 2980 2981 
2734 2735 5650 2934 2985 2986 2987 2988 2989 
2742 2743 5660 2992 2993 2994 2995 2996 2997 
2750 2751 5670 3000 3001 3002 3003 3004 3005 

2758 2759 ~700 3008 3009 3010 3011 3012 3013 
2766 2767 5710 3016 3017 3018 3019 3020 3021 
2774 2775 5720 3024 3025 3026 3027 3028 3029 
2782 2783 5730 3032 3033 3034 3035 3036 3037 
2790 2791 5740 3040 3041 3042 3043 3044 3045 
2798 2799 5750 3048 3049 3050 3051 3052 3053 
2806 2807 5760 3056 3057 3058 3059 3060 3061 
2814 2815 5770 3064 3065 3066 3067 3068 3069 

6 7 

2310 2311 
2318 2319 
2326 2327 
2334 2335 
2342 23'13 
2350 2351 
2358 2359 
2366 2367 

2374 2375 
2382 2383 
2390 2391 
2398 2399 
2406 2407 
2414 2415 
2422 2423 
2430 2431 

2438 2439 
2446 2447 
2454 2455 
2462 24~3 
2470 2471 
2478 2479 
2486 2487 
2494 2495 

2502 2503 
2510 2511 
2518 2519 
2526 2527 
2534 2535 
2542 2543 
2550 2551 
2558 2559 

6 7 

2822 2823 
2830 2831 
2838 2839 
2846 2847 
2854 2855 
2862 2863 
2870 2871 
2878 287\l 

2886 2887 
2894 2895 
2902 2903 
2910 2911 
2918 2919 
2926 2927 
2934 2935 
2942 2943 

2950 2951 
2958 2959 
2966 2967 
2974 2975 
2982 2983 
2990 2991 
2998 2999 
3006 3007 

3014 3015 
3022 3023 
3030 3031 
3038 3039 
3046 3047 
3054 3055 
3062 3063 
3070 3071 

237 



0 

6000 3072 
6010 3080 
6020 3088 
6030 3096 
6040 3104 
6050 3112 
6060 3120 
6070 3128 

6100 3136 
6110 3144 
6120 3152 
6130 3160 
6140 3168 
6150 3176 
6160 3184 
6170 3192 

6200" 3200 
6210 3208 
6220 3216 
6230 3224 
6240 3232 
6250 3240 
6260 3248 
6270 3256 

1!300 3264 
6310 3272 
6320 3280 
6330 3288 
6340 3296 
6350 3304 
6360 3312 
6370 3320 

0 

7000 3584 
7010 3592 
7020 3600 
7030 3608 
7040 3616 
7050 3624 
7060 3632 
7070 3640 

7100 3648 
7110 3656 
7120 3664 
7130 3672 
7140 3680 
7150 3688 
7160 3696 
7170 3704 

7200 3712 
7210 3720 
7220 3728 
7230 3736 
7240 3744 
7250 3752 
7260 3760 
7270 3768 

7300 3776 
7310 3784 
7320 3792 
7330 3800 
7340 3808 
735:) 3816 
7360 3824 
7370 3832 

238 

OCTAL-DECIMAL INTEGER· CONVERSION TABLE (continued) 

1 2 3 4 5 6 7 0 I 2 3 4 5 6 7 

3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335 
3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340 3341 3342 3343 
3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350 3351 
3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359 
3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 3365 3366 3367 
3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375 
3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382 3383 
3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391 

3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399 
3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407 
3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415 
3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423 
3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431 
3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438 3439 
3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447 
3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455 

3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462 3463 
3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470 3471 
3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479 
3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487 
3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495 
3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503 
3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511 
3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519 

3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527 
3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 3533 3~34 3535 
3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543 
3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551 
3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559 
3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566 3567 
3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575 
3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582 3583 

l 2 3 4 5 6 7 0 l 2 3 4 5 6 7 

3585 3586 3587 3588 3589 3590 3591 
3593 3594 3595 3596 3597 3598 3599 
3601 3602 :f603 3604 3605 3606 3607 
3609 3610 3611 3612 3613 3614 3615 
3617 3618 3619 3620 3621 3622 3623 
3625 3626 3627 3628 3629 3630 3631 
3633 3634 3635 3636 3637 3638 3639 

7400 3840 3841 3842 3843 3844 3845 3846 3847 
7410 3848 3/149 3850 3851 3852 3853 3854 3855 
7420 3856 3857 3858 3859 3860 3861 3862 3863 
7430 3864 3865 3866 3867 3868 3869 31170 3871 
7440 3872 3873 3874 3875 3876 3877 3878 3879 
7450 3880 3881 3882 3883 3884 3885 3886 3887 
7460 3888 3889 3890 3891 3892 3893 3894 3895 

3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 3901 3902 3903 

3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 3909 3910 3911 
3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918 3919 
3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924 3925 3926 3927 
3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934 3935 
3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942 3943 
3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951 
3697 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956 3957 3958 3959 
3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966 3967 

3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 3973 3974 3975 
3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 3981 3982 3983 
31129 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990 3991 
3737 3738 3'139 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 3997 3998 3999 
3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007 
3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 4013 4014 4015 
3761 3762 3763 3764 3765 3766 3767 7660 4016 4017 4018 4019 4020 4021 1022 .4023 
3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031 

3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039 
3785 3786 3787 3788 3789 3790 3791 '7710 4040 4041 4042 4043 4044 4045 4046 4047 
3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054 4055 
3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062 4063 
3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 4069 4070 4071 
3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4076 4077 4078 4079 
3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 4085 4086 4087 
3833 3834 3835 3836 3837 3838 3839 7770 4088 4089 4090 4091 4092 4093 4094 4095 

6000 
to 

6777 
(Octal) 

3072 
to 

3583 
(Decimal) 

Octal Decimal 
10000- 4096 
20000 · 8192 
30000 · 12288 
40000 · 16384 
50000 - 20480 
60000 · 24576 
70000 · 28672 

7000 
to 

7777 
(Octal) 

3584 
to 

4095 
(Decimal) 



OCTAL-DECIMAL FRACTION CONVERSION TABLE 

Octal Decimal Octal Decimal Octal Decimal Octal Decimal 

. 000 .000000 • 100 • 125000 • 200 • 250000 • 300 .375000 
• 001 . 001953 . 101 . 126953 . 201 .2!>1%3 .301 .376953 
.002 • 003906 .102 .128906 .202 . 25390G • 302 • 378906 
.003 • 005859 • 103 . 130859 . 203 • 255859 .303 .380859 
• 004 • 007812 • 104 • 132812 • 204 • 257812 . 304 • 382812 
• 005 • 009765 .105 .134765 .205 . 259765 .305 .384765 
• 006 . 011718 • 106 • 136718 . 206 .261718 • 306 .386718 
.007 • 013671 • 107 • 138671 .207 • 263671 .307 • 388671 

. 010 . 015625 .110 .140625 .210 . 265625 • 310 .390625 

.Oll • 017578 . lll • 142578 . 211 • 267578 . 311 .392578 

.012 . 019531 .112 • 144531 • 212 . 269531 .312 .394531 
• 013 • 021484 .113 .146484 • 213 .271484 .313 • 396484 
.014 .023437 .ll4 • 148437 .214 • 273437 • 314 • 398437 
• 015 • 025390 .115 • 150390 .215 . 275390 .315 .400390 
.016 • 027343 .116 .152343 . 216 • 277343 .316 .402343 
.017 • 029296 • ll7 • 154296 .217 ,279296 ,317 .404296 

• 020 • 031250 .120 .156250 . 220 • 281250 • 320 .406250 
.021 .033203 • 121 .158203 .221 • 283203 .321 .408203 
• 022 • 035156 .122 .160156 .222 .285156 .322 .410156 
• 023 • 037109 .123 • 162109 .223 • 287109 • 323 .412109 
• 024 • 039062 .124 .164062 .224 . 289062 .324 .414062 
. 025 ,041015 • 125 • 166015 ,225 .291015 .325 .416015 
.026 .042968 .126 .167968 .226 .292968 .326 .417968 
. 027 • 044921 .127 • 169921 .227 .294921 • 327 .419921 

• 030 • 046875 • 130 • 171875 .230 • 296875 .330 ,421875 
. 031 • 048828 • 131 .173828 .231 • 298828 ,331 .423828 
,032 • 050781 . 132 .175781 .232 . 300781 . 332 .426781 
. 033 ,052734 • 133 . 117734 .233 . 302734 .333 .427734 
. 034 .054687 . 134 • 179687 .234 • 304687 • 334 .429687 
. 035 • 056640 • 135 • 181640 .235 . 306640 .335 .431640 
.036 ,058593 • 136 • 183593 . 236 .308593 .336 .433593 
• 037 • 060546 • 137 . 185546 .237 .310546 • 337 .435546 

.040 ,062500 .140 • 187500 .240 .312500 .340 .437500 

.041 • 064453 . 141 .189453 • 241 • 314453 .341 ,439453 
• 042 • 066406 • 142 . 191406 . 242 • 316406 • 342 .441406 
• 043 .068359 • 143 • 193359 • 243 • 318359 • 343 .443359 
.044 .070312 • 144 . 195312 . 244 • 320312 .344 .445312 
• 045 • 072265 • 145 .197265 • 245 • 322265 • 345 ,447265 
• 046 .074218 • 146 .199218 .246 • 324218 .346 .449218 
. 047 .076171 . 147 . 201171 .247 • 326171 .347 .451171 . 
.050 • 078125 .150 . 203125 .250 ,328125 .350 .453125 
.051 • 080078 .151 • 205078 .251 • 330078 .351 • 455078 
.052 .082031 •. 152 • 207031 .252 • 332031 .352 • 457031 
.053 • 083984 • 153 • 208984 .253 • 333984 • 353 .458984 
. 054 ,085937 • 154 • 210937 • 254 • 335937 .354 • 460937 
.055 .087890 .155 • 212890 .255 .337890 .355 .462890 
• 056 • 089843 • 156 • 214843 .256 .339843 ,356 .464843 
. 057 .091796 .157 • 216796 .257 .341796 .357 • 466'796 

,060 ,093750 • 160 • 218750 .260 .343750 .360 ,468750 
• 061 • 095703 • 161 • 220703 • 261 • 345703 • 361 .470703 
.062 • 097656 .162 • 222656 • 262 • 347656 .362 , 472656 
. 063 .099609 • 163 • 224609 • 263 • 349609 .363 .474609 
.064 . 101562 • 164 • 226562 • 264 • 351562 .364 ,4?6562 
.065 • 103515 • 165 .228515 • 265 .353515 .365 ,478515 
• 066 • 105468 .166 • 230468 .266 .355468 .366 .4€0468 
. 067 • 107421 • 167 . 232421 .267 • 357421 .367 .482421 

.070 • 109375 • 170 .234375 • 270 .359375 • 370 ,484375 

.071 • 111328 • 171 ,236328 .271 .361328 .371 ,486328 

.072 • 113281 • 172 .238281 • 272 • 363281 ,372 ,4882~1 

. 073 • 115234 . 173 .240234 .273 • 365234 • 373 .490234 

.074 , ll7187 . 174 • 242187 ,274 .367187 , 374 ,492187 

.075 • 119140 . 175 • 244140 .275 • 369140 .375 • 494140 

.076 . 121093 • 176 .246093 • 276 • 371093 .376 ,496093 

.077 ,123046 • 177 • 248046 • 277 • 373046 .377 ,498046 

239 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued) 

Octal Decimal Octal Decimal Octal Decimal Octal Decimal 

.000000 • 000000 .000100 • 000244 .000200 • 000488 • 000300 • 000732 
.000001 .000003 • 000101 .000247 • 000201 .000492 .000301 • 000736 
.000002 • 000007 .000102 .000251 , 000202 ,000495 ,000302 • 000740 
, 000003 .000011 .000103 ,000255 , 000203 , 000499 .000303 • 000743 
,000004 • 000015 , 000104 , 000259 ,000204 • 000503 , 000304 .000747 
• 000005 • 000019 • 000105 ,000263 , 000205 .000507 ,000305 • 000751 
,000006 , 000022 ,000106 .000267 ,000206 • 000511 .000306 • 000755 
,000007 .000026 , 000107 , 000270 , 000207 ,000514 , 000307 , 000759 

, 000010 .000030 ,000110 , 000274 .000210 .000518 ,000310 .000762 
, 000011 , 000034 , 000111 ,000278 , 000211 ,000522 , 000311 .000766 
,000012 , 000038 , 000112 .000282 , 000212 , 000526 , 000312 , 000770 
, 000013 ,000041 , 000113 ,000286 , 000213 • 000530 • 000313 • 000774 
, 000014 .000045 , 000114 ,000289 , 000214 ,000534 , 000314 .000778 
, 000015 .000049 , 000115 , 000293 ,000215 • 000537 , 000315 , 000782 
, 000016 ,000053 , 000116 , 000297 ,000216 • 000541 • 000316 , 000785 
.000017 , 000057 , 000117 ,000301 ,000217 • 000545 , 000317 ,000789 

• 000020 , 000061 ,000120 , 000305 , 000220 , 000549 ,000320 , 000793 
,000021 , 000064 ,000121 ,000308 , 000221 • 000553 ,1)00321 .000797 
.000022 ,000068 ,000122 .000312 , 000222 , 000556 ,000322 ,000801 
,000023 , 000072 ,000123 , 000316 , 000223 . 000560 • 000323 • 000805 
, 000024 , 000076 , 000124 , 000320 , 000224 , 000564 ,000324 .000808 
.000025 • 000080 , 000125 , 000324 , 000225 .000568 ,000325 , 000812 
,000026 ,000083 • 000126 .000328 ,000226 .000572 ,000326 • 000816 
, 000027 , 000087 , 000127 , 000331 , 000227 • 000576 ,000327 ,000820 

,000030 , 000091 , 000130 , 000335 • 000230 ,000579 • 000330 , 000823 
, 000031 ,000095 • 000131 .000339 , 000231 .000583 • 000331 .000827 
,000032 , 000099 , 000132 ,000343 ,000232 .000587 , 000332 ,000831 
, 000033 • 000102 ,000133 .000347 • 000233 ,000591 ,000333 .000835 
,000034 , 000106 ,000134 ,000350 • 000234 , 000595 , 000334 , 000839 
,000035 ,OOOllO , 000135 ,000354 ,000235 ,000598 ,000335 , 000843 
, 000036 , 000114 , 000136 , 000358 • 000236 , 000602 ,000336 , 000846 
, 000037 ,000118 ,000137 ,000362 • 000237 • 000606 .000337 ,000850 

,000040 , 000122 ,000140 ,000366 • 000240 ,000610 , 000340 ,000854 
,000041 , 000125 , 000141 , 000370 , 000241 , 000614 ,000341 ,000858 
,000042 , 000129 ,000142 ,000373 , 000242 • 000617 ,000342 • 000862 
.000043 • 000133 ,000143 ,00037T , 000243 • 000621 ,000343 ,000865 
• 000044 • 000137 ,000144 ,000381 • 000244 • 000625 • 000344 • 000869 
.000045 • 000141 , 000145 • 000385 • 000245 , 000629 • 000345 , 000873 
.000046 • 000144 .000146 • 000389 • 000246 • 000633 , 00034t. . 000877 
,(100047 ,000148 ,000147 ,000392 , 000247 , 000637 ,000347 ,000881 

, 000050 , 000152 , 000150 • 000396 , 000250 .000640 ,000350 • 000885 
,000051 • 000156 ,000151 ,000400 ,000251 , 000644 ,000351 • 000888 
• 000052 , 000160 , 000152 • 000404 , 000252 , 000648 ,000352 .000892 
, 000053 • 000164 , 000153 ,000408 ,000253 , 000652 , 000353 .000896 
,000054 , 000167 .000154 , 000411 .000254 • 000656 , 000354 • 000900 
• 000055 , 000171 ,000155 , 000415 , 000255 ,000659 ,000355 ,000904 
,000056 , 000175 ,000156 ,000419 , 000256 , 000663 , 000356 • 000907 
,000057 ,000179 • 000157 , 000423 • 000257 • 000667 , 000351 • 000911 

,000060 ,000183 .000160 .000427 ,000260 , 000671 ,000360 • 000915 
,000061 , 000186 ,000161 .000431 ,000261 ,000675 ,000361 , 000919 
, 000062 ,000190 .000162 ,000434 • 000262 ,000679 ,000362 , 000923 
, 000063 • 000194 , 000163 ,000438 , 000263 , 000682 , 000363 ,000926 

.000064 , 000198 .000164 • 000442 , 000264 • 000686 ,000364 , 000930 

, 000065 ,000202 .000165 ,000446 , 000265 ,000690 ,000365 , 000934 

, 000066 ,000205 .000166 ,000450 • 000266 ,000694 ,000366 ,000938 
,000067 , 000209 ,000167 ,000453 , 000267 .000698 • 000367 , 000942 

, 000070 , 000213 ,000170 , 000457 , 000270 , 000701 ,000370 , 000946 
, 000071 • 000217 ,000171 ,000461 • 000271 • 000705 ,000371 , 000949 
,000072 , 000221 • 000172 .000465 .000272 ,000709 , 000372 • 000953 
,000073 .000225 ,000173 ,000469 ,000273 ,000713 .000373 ,000957 
,000074 , 000228 ,000174 • 000473 ,000274 , 000717 , 000374 , 000961 
, 000075 ,000232 , 000175 , 000476 ,000275 ,000720 , 000375 • 000965 
.000076 ,000236 ,000176 ,000480 , 000276 .000724 , 000376 , 000968 • ,000077 , 000240 • 000177 , 000484 , 000277 , 000728 ,000377 , 000972 

240 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued) 

Octal Decimal Octal Decimal Octal Decimal Octal Decimal l 
• 000400 .000976 • 000500 ,001220 , 000600 .001464 • 000700 ,001708 
• 000401 .000980 ,000501 ,001224 • 000601 • 001468 .000701 ,001712 
• 000402 • 000984 ,000502 ,001228 • 000602 • 001472 , 000702 ,001716 
• 000403 .000988 .000503 ,001232 • 000603 • 001476 • 000703 • 001720 
• 000404 • 000991 ,000504 ,001235 , 000604 • 001480 ,000704 ,001724 
,000405 ,000995 .000505 ,001239 • 000605 ,001483 • 000705 . 001728 
• 000406 • 000999 • 000506 • 001243 • 000606 • 001487 • 000706 ,001731 
,000407 • 001003 • 000507 ,001247 ,000607 ,001491 • 000707 ,001735 

,000410 • 001007 • 000510 • 001251 ,000610 • 001495 .000710 ,001739 
• 000411 • 00101c • 000511 .001255 • 000611 ,001499 • 000711 ,001743 
,000412 • 001014 .000512 .001258 • 000612 ,001502 ,000712 ,001747 
• 000413 • 001018 ,000513 ,001262 ,000613 ,001506 • 000713 .001750 
, 000414 • 001022 • 000514 • 001266 • 000614 • 001510 • 000714 ,001754 
,000415 • 001026 .000515 ,001270 ,000615 • 001514 , 000715 ,001758 
,000416 • 001029 ,000516 ,001274 • 000616 , 001518 • 000716 ,001762 
.000417 • 001033 ,000517 • 001277 • 000617 • 001522 , 000717 ,001766 

.000420 . 001037 • 000520 .001281 • 000620 • 001525 • 000720 .001770 
,000421 . 001041 .000521 ,001285 ,000621 • 001529 • 000721 ,001773 
. 000422 • 001045 ,000522 • 001289 • 000622 • 001533 • 000722 ,001777 
,000423 • 001049 ,000523 ,001293 • 000623 • 001537 . 000723 ,001781 
,000424 , 001052 • 000524 .001296 , 000624 • 001541 • 000724 ,001785 
,000425 • 001056 ,000525 • 001300 • 000625 ,001544 , 000725 ,001709 
• 000426 • 001060 .000526 ,001304 • 000626 • 001548 • 000726 .001792 
,000427 , 001064 ,000527 ,001308 ,000627 • 001552 ,000727 ,001796 

, 000430 • 001068 ,000530 ,001312 . 000630 • 001556 • 000730 ,001800 

. 000431 . 001071 ,000531 . 001316 . 000631 ,001560 . 000731 ,001804 

. 000432 . 001075 .000532 .001319 • 000632 ,001564 .000732 ,001808 

. 000433 . 001079 . 000533 . 001323 • 000633 ,001567 ,000733 ,001811 
,000434 • 001083 . 000534 . 001327 • 000634 .001571 , 000734 ,001815 

.000435 .001087 .000535 ,001331 ,000635 ,001575 • 000735 ,001819 

. 000436 • 001091 • 000536 .001335 ,000636 .001579 • 000736 .001823 

• 000437 • 001094 • 000537 ,001338 • 000637 ,001583 ,000737 , 001827 

• 000440 • 001098 • 000540 • 001342 • 000640 ,001586 ,000740 ,001831 

.000441 • 001102 • 000541 • 001346 ,000641 ,001590 ,000741 ,001834 
,000442 • 001106 • 000542 .001350 . 000642 • 001594 • 000742 . 001838 

.000443 • 001110 • 000543 • 0'01354 • 000643 ,001598 • 000743 ,001842 

• 000444 • 001113 • 000544 .001358 • 000644 • 001602 • 000744 . 001846 

• 000445 .001117 • 000545 .001361 • 000645 • 001605 • 000745 ,001850 

• 000446 • 001121 • 000546 • 001365 ,000646 • 001609 • 000746 .001853 
• 000447 • 001125 ,000547 ,001369 ,000647 ,001613 ,000747 ,001857 

• 000450 • 001129 ,000550 ,001373 • 000650 ,001617 ,000750 ,001861 

.000451 • 001132 ,000551 • 001377 • 000651 • 001621 • 000751 ,001865 

. 000452 • 001136 ,000552 .001380 ,000652 • 001625 • 000752 .001869 
• 000453 • 001140 ,000553 • 001384 • Q00653 • 001628 • 000753 ,001873 
.000454 • 001144 ,000554 • 001388 • 000654 ,001632 .000754 .001876 
,000455 • 001148 ,000555 ,001392 • 000655 • 001636 , 000755 ,001880 

• 000456 • 001152 • 000556 • 001396 ,000656 • 001640 • 000756 • 001884 

• 000457 • 001155 ,000557 • 001399 .000657 • 001644 ,000757 ,001888 

• 000460 • 001159 ,000560 • 001403 • 000660 ,001647 • 000760 ,001892 
.000461 • 001163 ,000561 ,001407 .000661 ,001651 ,000761 ,001895 

• 000462 , 001167 ,000562 • 001411 • 000662 , 001655 ,000762 .001899 
• 000463 • 001171 ,000563 • 001415 • 000663 • 001659 • 000763 ,001903 
• 000464 • 001174 ,000564 ,001419 000664 ,001663 • 000764 ,001907 
,000465 ,001178 .000565 • 001422 • 000665 • 001667 .000765 ,001911 
, 000466 • 001182 ,000566 , 001426 .000666 , 001670 ,000766 ,001914 
,000467 • 001186 ,000567 , 001430 -000667 • 001674 • 000767 .001918 

• 000470 , 001190 ,000570 • 001434 .000670 • 001678 • 000770 ,001922 
• 000471 , 001194 • 000571 ,001438 • 000671 • 001682 • 000771 • 001926 

,000472 .001197 • 000572 • 001441 • 000672 • 001686 • 000772 ,001930 
• 000473 • 001201 • 000573 ,001445 .000673 • 001689 ,000773 ,001934 
.<>00474 • 00120:; • 000574 .001449 • 000674 • 001693 • 000774 .001937 
• 000475 • 001209 • 000575 • 001453 .000675 • 001697 • 000775 ,001941 
• 000476 • 001213 . 000576 ,001457 • 000676 ,0017.01 .000776 ,001945 
• 000477 • 001216 • 000577 • 001461 • 000677 ,001705 ,000777 • 001949 

241 



242 

APPENDIX 6 

PERFORATED-TAPE LOADER SEQUENCES 

READIN MODE LOADER 
The readin mode (RIM) loader is a minimum length, basic, perforated-tape reader 
program for the 33 ASR. It is initially stored in memory by manual use of the operator 
console keys and switches. The loader is permanently stored in 18 locations of page 37. 

A perforated tape to be read by the RIM loader must be in RIM format: 

Tape Channel 
87654S321 Format 

10000.000 Leader-trailer code 

0 1 Al A2 Absolute address to 
00 A3 A4 contain next 4 digits 

00 Xl X2 Content of previous 
00 X3 X4 4-digit address 

0 1 Al A2 
00 A3 A4 Address 

00 Xl X2 
00 X3 X4 Content 

(Etc.) (Etc.) 

10000.000 Leader-trailer code 

The RIM loader can only be used in conjunction with the 33 ASR reader (not the 
high-speed perforated-tape reader). Because a tape in RIM format is, in effect, twice 
as long as it need be, it is suggested that the RIM loader be used only to read the 
binary loader when using the 33 ASR. (Note that PDP-8 diagnostic program tapes are 
in RIM format.) 
The complete PDP-8 RIM loader (SA = 7756) is as follows: 

Absolute Octal 
Address Content Tag Instruction z Comments 
7756, 6032 BEG, KCC /CLEAR AC AND FLAG 
7757, 6031 KSF /SKIP IF FLAG = 1 
7760, 5357 JMP .-1 /LOOKING FOR CHARACTER 
7761, 6036 KRB /READ BUFFER 
7762, 7106 CLL RTL 
7763, 7006 RTL /CHANNEL 8 IN ACO 
7764, 7510 SPA /CHECKING FOR LEADER 
7765, 5357 JMP BEG+ 1 /FOUND LEADER 
7766, 7006 RTL /OK, CHANNEL 7 IN LINK 
7767, 6031 KSF 
7770, 5367 JMP .-1 
7771, 6034 KRS 
7772, 7420 SNL /READ, DO NOT CLEAR 
7773, 3776 DCA I TEMP /CHECKING FOR ADDRESS 
7774, 3376 DCA TEMP /STORE CONTENT 
7775, 5356 JMP BEG /STORE ADDRESS 
7776, 0 TEMP 0 /NEXT WORD 
7777, JMP START OF BIN LOADER 0 /TEMP STORAGE 



Placing the RIM loader in core memory by way of the operator console keys and 
switches is accomplished as follows: 

1. Set the starting address 77 56 in the switch register (SR). 
2. Press LOAD ADDRESS key. 
3. Set the first instruction (6032) in the SR. 
4. Press the DEPOSIT key. 
5. Set the next instruction (6031) in the SR. 
6. Press DEPOSIT key. 
7. Repeat steps 5 and 6 until all 16 instructions have been deposited. 

To load a tape in RIM format, place the tape in the reader, set the SR to the starting 
address 7756 of the RIM loader (not of the program being read), press the LOAD 
ADDRESS key, press the START key, and start the Teletype reader. 

Refer to Digital Program Library document Digital-8-1-U for additional information 
on the Readin Mode Loader program. 

BINARY LOADER 
The binary loader (BIN) is used to read machine language tapes (in binary format) 
produced by the program assembly language (PAL). A tape in binary format is about 
one half the length of the comparable RIM format tape. It can, therefore, be read 
about twice as fast as a RIM tape and is, for this reason, the more desirable format to 
use with the 10 cps 33 ASR reader or the Type 750C High Speed Perforated Tape 
Reader. 

The format of a binary tape is as follows: 

LEADER: about 2 feet of leader-trailer codes. 

BODY: characters representing the absolute, machine language program in 
easy-to-read binary (or octal) form. The section of tape may contain characters 
representing instructions (channels 8 and 7 not punched) or origin resettings 
(channel 8 not punched, channel 7 punched) and is concluded by 2 characters 
(channels 8 and 7 not punched) that represent a checksum for the entire section. 
TRAILER: same as leader 

Example of the format of a binary tape: 

Tape Channel Memory 
87654S321 Location Content Comments 

10000. 000 leader-trailer code 
01000.010 
00000.000 0200 
00111.010 
00000.000 0200 CLA origin setting 
00001 .010 
0 0 1 1 1 1 1 1 0201 TAD 277 
0 0 0 1 1 0 1 0 
0 0 1 1 1 1 1 0 0202 DCA 276 
0 0 1 1 1 100 
00000.010 0203 HLT 
01000.010 
0 0 1 1 1 . 1 1 1 0277 origin setting 
00000.000 
0 0 1 0 1 . 0 1 1 0277 0053 
00001.000. 
00000. 111 1007 sum check 
10000.000 leader-trailer code 

243 



244 

After a BIN tape has been read in, one of the two following conditions exists: 

a. No checksum error: halt with AC = 0 
b. Checksum error: halt with AC = (computed checksum) - (tape checksum) 

Operation of the BIN loader in no way depends upon or uses the RIM loader. To load 
a tape in BIN format place the tape in the reader, set the SR to 7777 (the starting 
address of the BIN loader), press the LOAD ADDRESS key, set SR switch O up for 
loading via the Teletype unit or down for loading via the high speed reader, then press 
the START key, and start the tape reader. 

Refer to Digital Program Library document Digital-8-2-U-RIM for adaitional information 
on the Binary Loader program. 



APPENDIX 7 
PROGRAMMING SYSTEM 

FEATURED PROGRAMS 

The programming system for the PDP-8 consists of the MACRO-8 Symbolic Assembler, 
FORTRAN System compiler, Symbolic On-Line Debugging Program, Symbolic Tape 
Editor, Floating Point Package, mathematical function subroutines, and utility and 
maintenance programs. All operate with the basic computer. The programming system 
was designed to simplify and accelerate the process of learning to program. At the 
same time, experienced programmers will find that it incorporates many advanced 
features. The system is intended to make immediately available to each user the full, 
general-purpose data processing capability of the PDP-8 and to serve as the operating 
nucleus for a growing library of programs and routines to be made available to all 
installations. New techniques, routines, and programs are constantly being developed, 
field-tested, and documented in the Digital Program Library for incorporation in users' 
systems. 

MACR0-8 Symbolic Assembler 

The use of an assembly program has become standard practice in programming 
digital computers. This process allows the programmer to code his instructions in a 
symbolic language, one he can work with more conveniently than the 12-bit binary 
numbers which actually operate the computer. The assembly program then translates 
the symbolic language program into its machine code equivalent. The advantages are 
significant: the symbolic language is more meaningful and convenient to a programmer 
than a numeric code; instructions or data can be referred to by symbolic names without 
concern for, or even knowledge of, their actual addresses in core memory; decimal 
and alphabetical data can be expressed in a form more convenient than binary 
numbers; programs can be altered without extensive changes; and debugging is 
considerably simplified. 

The MACRO-8 Symbolic Assembler accepts source programs written in the symbolic 
language and converts core memory locations, computer instructions, and operand 
addresses from the symbolic to the' binary form. It produces an object program tape, 
a symbol table defining memory allocations, and useful diagnostic messages. 

FORTRAN System Compiler 

The FORTRAN (for FORmula TRANslation) System compiler for the PDP-8 lets the 
user express the problem he is trying to solve in a mixture of English words and 
mathematical statements that is close to the language of mathematics and is also 
intelligible to the computer. In addition to reducing the time needed for program 
preparation, the compiler enables users with little or no knowledge of the computer's 
organization and operating language to write effective programs for it. The FORTRAN 
Compiler contains the instructions the computer requires to perform the clerical work 
of translating the FORTRAN version of the problem statement into an object program 
in machine language. It also produces diagnostic messages. After compilation, the 
object program, the operating system and the data it will work with, are loaded into 
the computer for solution of the problem. 

The FORTRAN language consists of four general types of statements: arithmetic, logic, 
control, and input/output. FORTRAN functions include addition, subtraction, multi
plication, division, sine, cosine, arctangent, square root, natural logarithm, and 
exponential. 

245 



246 

Symbolic On-Line Debugging Program 

On-line debugging with DDT-8 gives the user dynamic printed program status infor
mation. It gives him close control over program execution, preventing errors ("bugs") 
from destroying other portions of his program. He can monitor the execution of single 
instructions or subsections, change instructions or data in any format, and output a 
corrected program at the end of the debugging session. 

Using the standard Teletype keyboard/reader and teleprinter/punch, the user can 
communicate conveniently with the PDP-8 in the symbols of his source language. He 
can control the execution of any portion of his object program by inserting breaks, 
or traps, in it. When the computer reaches a break, it transfers control of the object 
program to DDT. The user can then examine and modify the content of individual 
core memory registers to correct and improve his object program. 

Symbolic Tape Editor 
The Symbolic Tape Editor program is used to edit, correct, and update symbolic 
program tapes using the PDP-8 and the Teletype unit. With the editor in core memory, 
the user reads in portions of his symbolic tape, removes, changes, or adds instruc
tions or operands, and gets back a complete new symbolic tape with errors removed. 
He can work through the program instruction by instruction, spot-check it, or 
concentrate on new sections. 

Floating Point Package 

The Floating Point Package permits the PDP-8 to perform arithmetic operations that 
many other computers can perform only after the addition of costly optional hard
ware. Floating point operations automatically align the binary points of operands, 
retaining the maximum precision available by discarding leading zeros. In addition 
to increasing accuracy, floating point operations relieve the programmer of scaling 
problems common in fixed point operations. This is of particular advantage to the 
inexperienced programmer. 

Mathematical Function Routines 
The programming system also includes a set of mathematical function routines to 
perform the following operations in qoth single and double precision: addition, sub
traction, multiplication, division, square root, sine, cosine, arctangent, natural 
logarithm, and exponential. 

Utility and Maintenance Programs 

PDP-8 utility prbgrams provide printouts or punchouts of core memory content in 
octal, decimal, or binary form, as specified by the user. Subroutines are provided for 
octal or decimal data transfer and binary-to-decimal, decimal-to-binary, and Teletype 
tape conversion. 

A complete set of standard diagnostic programs is provided to simplify and expedite 
system maintenance. Program descriptions and manuals permit the user to effectively 

· test the operation of the computer for proper core memory functioning and proper 
execution of instructions. In addition, diagnostic programs to check the performance 
of standard and optional peripheral devices are provided with the devices. 



ABSTRACTS OF PROGRAMS 

The PDP-8 is delivered to the user complete with an extensive selection of system programs 

and routines making the fu 11 data processing capabi I ity of the new computer immediately 

available to each user, eliminating many commonly experienced initial programming 

delays. 

The programs described in these abstracts come from two sources, past programming 

effort on the PDP-5 computer, and present and continuing programming effort on the 

PDP-8. Thus the PDP-8 programming system takes advantage of the many man-years of 

program development and fie Id testing by PDP-5 users. 

Although in many cases PDP-8 programs originated as PDP-5 programs, all utility and 

functional program documentation is issued in a new, recursive format introduced with 

the PDP-8. Programs written by users of either the PDP-5 or the PDP-8 and submitted 

to the DECUS library (DECUS - Digital Equipment Corporation Users' Society) are im

mediately available to PDP-8 users. Consequently, users of either computer can take 

advantage of the continuing program developments for the other. 

Digital-8-1-S 

Symbolic Editor 

System Programs 

The Symbolic Editor program is used to generate, edit, correct, and update symbolic program 
tapes using the tape teleprinter. With the Editor in memory, the user reads in portions of his symbolic 
tape, removes, changes, or adds instructions or operands, and gets back a new, complete, symbolic tape 
with errors -removed. He can _work through the program instruction by instruction, spot check it, or con
centrate on new sections. The tape can contain either symbolic machine language, FORTRAN source 
statement, data, or text information. This program is available for use with either the 33ASR reader/punch 

or the high speed reader/punch. 

Digital-8-2-S 

FOR TRAN System 

One-pass FORTRAN compiler and operating system compiles FORTRAN source language 
statements into an object program tape. The operating system executes the program. This system con
tains the interpreter, arithmetic function subroutines, and input/output packages. 

Digital-8-3-S 

PAL Ill (Program Assembler Language) 

Symbolic machine language assembler. Converts programs coded in symbolic machine 
language to binary machine language. The basic process performed by the Assembler is the substitution 

247 



248 

of numeric values for symbols, according to associations defined in the symbol table. In addition, the 
user may request that the Assembler itself assign values to the user's own symbols at assembly time. These 
symbols are normally used to name memory locations, which may then be referenced by name. An as
sembly listing may be produced.· 

Digital-8-4-S 

DDT-8 

Dynamic Debugging Tape provides a means for on.;.line program debugging at the symbolic 
or mnemonic level. By typing commands on the console teleprinter, memory locations can be examined 
and changed, program tapes can be inserted, selected portions of the prognm can be run, and the up
dated program can be punched. 

Digital-8-5-S 

Floating-Point System 

A Basic System 
B Interpreter, 1/0, 1/0 Controller 
C Interpreter, 1/0, Functions 
D Interpreter, 1/0, 1/0 Controller, Functions 

Includes Floating-Point lnte'rpreter and 1/0 subsystems. Allows the programmer to code his 
problem in floating-point machine language. 

Floating-point operations automatically align the binary points of operands, retaining the 
maximum precision available by discarding leading zeros. In addition to increasing accuracy, floating
point operations relieve the programmer of the scaling problems common in fixed-point operations. This 
system includes elementary function subroutines programmed in floating-point. These subroutines are sine, 
cosine, square root, logarithm, arc tan, and exponential functions. Data being processed in floating
point is maintained in three words of memory (12-bit exponent, 24-bit mantissa). An accuracy of seven 
decimal places is maintained. 

Digital-8-6-S 

Symbol Print 

Loaded over the FORTRAN Compiler, this program lists the variables used and where they 
wi 11 be located in core. It also indicates the section of core not used by the compiled program and data. 

Digi tal-8-7-S 

DECtape Library System 

The PDP-8 DECtape Library System is loaded by a 171 Q instruction bootstrap routine that starts 
at 76008. This loader calls a larger program into the last memory page, whose function is to preserve on 
tape the contents of memory from 6000g-7577g, and then to load the INDEX program and the directory 
into those same locations. Since the information in this area of memory has been preserved, it can,be 
restored· when operations have been completed. The skeleton system tape contains the fol lowing programs: 

INDEX Typing this causes the names of all programs currently on file to 
be typed out. 



UPDATE 

GETSYS 

DELETE 

Al lows the user to add a new program to the files. UPDATE 
queries the operator about the program's name, its starting 
address, and its location in core memory. 

Generates a skeleton library tape on a specified DECtape unit. 

Causes a named file to be deleted from the tape. 

Starting with the skeleton I ibrary tape, the user can bui Id up a complete file of 
his active programs and continuously update it. 

Digital-8-8-5 

MACRO-8 

The MACRO-8 Symbolic Assembler accepts source programs written in symbolic language 
and translates them into binary form in two passes. MACRO-8 produces an object program tape (binary), 
a symbol table (for use with DDT), and octal symbolic assembly listing, and useful diagnostic messages. 
MACRO-8 is compatible with PAL 111, and has the following additional features: user-defined macros; 
double precision integers, floating-pointconstants, arithmetic and Boolean operators, literals, text facil
ities, and automatic Link generation. 

Digital-8-10-5 

CALCULATOR 

CALCULATOR is an equation evaluation routine. It differs from FORTRAN in that the func
tion to be evaluated is entered via keyboard and calculated immediately upon termination of entry. 
Format control is provided so that computed results may be conveniently tabulated. Expressions causing 
the calling of common function subroutines are included. 

Digital-8-11-5 

DATAK 

The DAT AK system permits a complex, program-control led data acquisition system to be adapted 
to a particular experimenta I environment through the use of a sophisticated and concise pseudo code. In 
addition to data-acquisition applications, DAT AK furnishes the experimenter with a means of calibrating 
transducers and is a powerfu I aid in troubleshooting a complex data-gathering system. Paper tape output 
produced is acceptable as FORTRAN input. 

Digital-8-12-5 

ODT-11 

ODT-11 (Octal Debugging Tape) aids in debugging a PDP-8 program by facilitating communi
cation with the program being run via the ASR 33 Teletypewriter. ODT-11 features include register examin
ations and modification, control transfer, word searching, octal dumping, and instruction traps. 

Digital-8-13-5 

One-Dimensional Display and Analysis 

The one-dimensional pulse-height analysis program is used to read in and analyze 1024-
channe I energy spectra data. The program receives and executes commands from the keyboard. These 
commands start and stop data taking and determine into which data region it goes, displays the data with 
markers, allows areas of interest on the display screen to be expanded, integrates between markers, writes 
out data, punches out data, and controls background subtraction. 

249 



250 

Digital-8-14-S 

Multiparameter Display and Analysis 

The two-dimensional pulse-height analysis program is used to read in and analyze two-parameter 
energy and spectra data. The program receives and executes commands from the keyboard. These com
mands start and stop data taking, control the displays, and control writing and punching of the data. The 
displays available are: isometric, vertical and horizontal slicing, differential and integral contours, and 
"twinkle box, 11 The program is flexible with respect to the dimensions of the data matrix. 

Digital-8-15-S 

Oceanographic Analysis 

This program represents the basic accepted physical oceanography method for the reduction 
of data concerning depth, temperature, and salinity measurements of the water column. 

This program has been designed to allow the field oceanographer a rapid means of immediately 
calculating Sigma-T, anomaly of speci fie volume, and sound velocity fol lowing a Nansen cast whereby 
he may examine in detail the results of his endeavor, to determine not only the structure of the environ
ment he has just sampled but also to check the validity of his measurements. 

In addition to the above, an interpolation routine is incorporated into the program as well as 
a depth integration of the anomaly of specific volume. 

Digital-8-16-S 

Master Tape Duplicator 

The tape duplicator for the PDP-8 is a single-buffered read and punch program, utilizing the 
program interrupt. It computes a character count and checksum for each tape and compares with checks 
at the end of the tape. 

Digital-8-35-S 

A 680 5-Bit Character Assembly Subroutines 
B 680 8-Bit Character Assembly Subroutines 

These subroutines concentrate Teletype data by assembling serial-bit data into 5-bit (8-35-S-A) 
or 8-bit (8-35-S-B) characters and presenting the user with line number and character data. They also add 
start and stop bits and transmit characters serially. Full-duplex lines are assumed, but the subroutines will 
work with half-duplex if the user handles the expected echo. 

Elementary Function Routines 

Digital-8-9-F 

Square Root Subroutine - Single Precision 

Forms the square root of a single-precision number. An attempt to take the square root of a 
negative number will give O for a result. 

Digital-8- l l-F 

Signed Multiply Subroutine - Single Precision 

Forms a 22-bit signed product from l l-bit signed multiplier and multiplicand. 



Digital-8-12-F 

Signed Divide Subroutine - Single Precision 

This routine divides a signed 11-bit divisor into a signed 23-bit dividend giving a signed 
11 -:-bit quotient and a remainder of 11 bits with the sig·n of the dividend. 

Digital-8-13-F 

Double-Precision Multiply Subroutine - Signed 

This subroutine multiplies a 23-bit signed multiplicand by a 23-bit signed multiplier and 

returns with a 46-bit signed product. 

Digital-8-14-F 

Double-Precision Divide Subroutine - Signed 

This routine divides a 23-bit signed divisor into a 47-bit signed dividend and returns with a 
23-bit signed quotient and a remainder of 23 bits with the sign of the dividend. 

Digital-8-16-F 

Sine Routine - Double Precision 

The Double-Precision Sine Subroutine evaluates the function Sin(X) for -4 < X < 4 (X is in 
radians). The argument is a double-precision word, 2 bits representing the integer part and 21 bits repre
senting the fractional part. The resu It is a 23-bit signed fraction -1 < Sin(X) < l • 

Digital-8-18-F 

Cosine Routine - Double Precision 

This subroutine forms the cosine of a double-precision argument (in radians). The input 
range is - 4 < X < 4. 

Digital-8-20-F 

Four-Word Floating-Point Package 

This is a basic floating-point package that carries data as three words of mantissa and one 
word of exponent. Common arithmetic operations are included as well as basic input/output control. 
No functions are included. 

Digital-8-21-F 

Signed Multiply (Uses EAE Type 182) Single Precision 

This subroutine forms a 22-bit signed product from an 11-bit signed multiplier and multiplicand 
using the Extended Arithmetic Element Type 182. It occupies less storage and takes less time to execute 
than its non-EAE counterpart (Digital-8-11-F-Sym), and it has the same cal ling sequence. 

Digital-8-22-F 

Signed Divide (Uses EAE Type 182) Sing le Precision 

This subroutine divides a double-precision signed 22-bit dividend by a signed 11-bit divisor, 
producing a signed 11-bit quotient and a remainder of 11 bits having the sign of the dividend. 

251 



252 

It makes use ofthe Extended Arithmetic Element Type 182 instruction set and occupies less 
storage and takes less time to execute than its non-EAE counterpart Digital-8-12-F. It has the same 
calling sequence except that the subroutine name is changed from DIVIDE to SPDIV. 

Digital-8-23-F 

Signed Multiply (Uses EAE Type 182) Double Precision 

This subroutine multiplies a 23-bit, signed 2 1s complement binary number by a 23-bit signed 
2 1s complement binary number, giving a 46-bit product with two signs on the higher order end. It makes 
use of the Extended Arithmetic Element Type 182 instruction set and, because of this, occupies less stor
age and takes less time to execute than its non-EAE counterpart (Digital-8-13-F). Its cal I ing sequence 
is compatible with the non-EAE version. 

Digital-8-25-F 

EAE Floating-Point Package 

These packages perform the same tasks as the Floating-Point Packages (Digital-8-5-S A, B, 
C, D) except that certain routines have been speeded up by the use of the Extended Arithmetic Element 
Type 182. 

For a detailed description of PDP-8 floating-point arithmetic and the Interpretive Floating
Point Packages, the reader is referred to Digital-8-5-S. 

Utility Programs 

Digital-8-0 

Format for PDP-8 Program Documentation 

With the advent of the PDP-8, Digital Equipment Corporation introduced a new, recursive 
format for program documentation. This format is used for routines and subroutines, such as utility and 
functional, but not necessarily for system programs. 

This format and its use are described in this document. 

Digital-8-1-U 

Read-In-Mode Loader 

The RIM Loader is a minimum-sized routine for reading and storing the information in Read
In-Mode coded tapes via the ASR 33 Perforated Tape Reader. 

Digital-8-2-U 

Binary Loader (33ASR, 750, 183 Memory Extension) 

The Binary Loader is a short routine for reading and storing the information in binary-coded 
tapes via the ASR 33 Perforated Tape Reader or by means of the Type 750 High-Speed Perforated Tape 
Reader. 

The Binary Loader wi 11 accept tapes prepared by the use of PAL (Program Assembly Language; 
see Digital-8-3-S) or MACRO-8 (see Digital-8-8-S). Diagnostic messages may be included on tapes 
produced when using either PAL or MACRO. The Binary Loader wi 11 ignpre al I diagnostic messages. 



Digital-8-3-U 

DECtape Library System Loader 

The use of the DECtape Library System Loader is discussed. Certain conventions with respect 
to last page storage are established for this loader as well as for the Read-In-Mode and Binary Loaders. 

Digital-8-4-U-RIM 

Read-In-Mode Punch ASR 33 

This program provides a means of punching out the information in selected blocks of core 
memory as RIM-coded tape via the ASR 33 Perforated Tape Reader. 

Digital-8-5-U 

Binary Punch 33/75A 

This program provides a means of punching out the information in selected blocks of core mem
ory as binary-coded tape via the ASR 33 Perforated Tope Punch or via the High-Speed Punch 75A. 

Digital-8-6-U 

Octa I Memory Dump 

This routine reads the console switches to obtain the upper and lower limits of an area of 
memory, then types on the Teletype an absolute address plus the octal contents of the first four words 
specified and repeats this until tne block is exhausted, at which time the user may repeat the operation. 

Digital-8-7-U 

Logical Subroutines 

Subroutines for performing the logical operations of inclusive and exclusive OR are presented 
as a package. 

Digital-8-8-U 

Shift Right, Shift Left Subroutines (Single and Double Precision) 

Four basic subroutines, shift right and shift left, each at both single and double precision, 
are presented as a package. 

Digital-8-9-U 

Logical Shi ft Subroutines 

Two basic subroutines, shift right at both single and double precision, are presented as a 
package. The shifts are logical in nature. 

Digital-8- l 0-U 

Binary-Coded-Decimal to Binary Conversion Subroutine 

This basic subroutine converts unsigned binary-coded-decimal numbers to their equivalent 
binary values. 

Digital-8- l l -U 

Double Precision BCD-to-Binary by Radix Deflation 

This subroutine converts a 6-digit BCD number to its equivalent binary value contained in 
two computer words. 

253 



254 

Digital-8-12-U 

Incremental Plotter Subroutine 

This subroutine moves the pen of an incremental plotter to a new position along the best 
straight line. The pen may be raised or lowered during the mction. 

Digital-8-14-U 

Binary to Binary-Coded-Decimal Conversion 

This subroutine provides the basic means of converting binary data to binary-coded-decimal 
(BCD) data for typeout, magnetic tape recording, etc. 

Digi tal-8-15-U 

Binary-to-Binary-Coded-Decimal Conversion (Four Digit) 

This subroutine extends the method used in Digital-8-14-U so that binary integers from Oto 
4095 in a single computer word may be converted to four binary-coded-decimal characters packed in two 
computer words. 

Digital-8-17-U 

EAE (Type 182) Instruction Set Simulator 

This routine permits the automatic multiply-divide hardware option to be simulated on a 
basic PDP-8. 

Digital-8-18-U 

Subroutine for Alphanumeric Me~sage Typeout 

This is a basic subroutine to type messages packed in computer words. Two 6-bit characters 
are packed internally in a single word. Al I ASR 33 codes from 301 to 337 and from 240 to 277 (excepting 
243 and 245) can be typed. The typing of I ine feed (code 212) and carriage return (code 215) are made 
r,ossible by arbitrarily assigning internal codes of 43 and 45, respectively, to represent these characters, 
thus preventing the output of ASCII codes 243 (#) and 245 (%). 

Digital-8-19-U 

Teletype Output Subroutines 

A group of subroutines usefu I in control I ing ASR 33 output is presented as a package. Pro
vision is made for simulation of tabulation stops. The distance "tabbed" may be controlled by the user. 
Characrers whose ASR 33 codes are in the groups 241 through 277, inclusive, and 300 through 337, in
clusive, are legal. Space, carriage return then line feed, and tabulation are provided via subroutines. 

Digital-8-20-U 

Character String Typeout Subroutine 

This basic subroutine types messages stored internally as a 11 string 11 of coded characters. All 
ASR 33 characters are lega I. 



Digital-8-21-U 

Symbolic Tape Format Generator 

The Format generator al lows the user to create PDP-8 symbolic tapes with Formatting. It 
may be used to condense tapes with spaces by inserting tabs, or merely to align tabs, instructions, and 
comments. 

Digital-8-22-U 

Unsigned Decimal Print 

This subroutine permits the typeout of the contents of a computer word as a 4-digit, positive, 
decimal integer. 

Digital-8-27-U 

DECtape Subroutines 

Allows the programmer to read, write, or search DECtape using prewritten and tested sub
routines. A series of subroutines which will read or write any number of DECtape blocks, read any number 
of 129-word blocks as 128 words (or one memory page), or search for any block (used by read and write, 
or to position the tape). These programs ore assembled with the user program and are cat'led by a jump 
to subroutine instruction. The program interrupt detects the setting of the DECtape (DT) flag, allowing 
the main program to proceed while the DECtape operation is being completed. A program flag is set when 
the operation is completed. The program thus effectively allows concurrent operation of several input/ 
output devices with the DECtape. 

Digital-8-32-U 

Binary Punch (6 Channel) 

This program provides a means of punching out the information in selected blocks of core 
memory as binary-coded tape via the 6-channel high-speed punch. 

Digital-8-33-U 

5/8 TOG (DECtape Formatter) 

This program is designed to write timing tracks, mark tracks, and block numbers onto a reel 
of DECtape providing the tape with the basic skeletal format necessary for its inclusion in any programmed 
DECtape system. The Formatter program also performs preliminary read-data and write-data checks to 
assure the user that the tape produced can be reliably included in such an environment. 

Digital-8-34-U 

DECEX DECtape Exerciser 

This program provides complete certification of the DECtape format produced. 

Maintenance Programs 

Maindec 801-1 

PDP-8 Instruction Test Part 1 

This program is a minimal test of memory reference instructions, operate instructions, intei:,rupt 
mode, and the keyboard printer. This test should be used when the state of the processor prevents read-in 

255 



256 

of more advanced diagnostic programs. It is simply a "go-no go" test of the instructions and is not intended 
to be diagnostic. 

Mai ndec 801-2A 

PDP-8 Instruction Test Part 2A 

This program is a test of memory reference instructions, operate instructions, and interrupt 
mode. An attempt is made to detect and isolate errors to their most basic faults and to the minimum 
number of logic cards. 

Maindec 801-2B 

PDP-8 Instruction Test Part 2B 

This program is a test of TWOS ADD (TAD) and ROTATE logic, (RAL, RTL, RAR, RTR). 
Random numbers are used in the TWOS ADD portion of the test and sequential numbers are used in the 
ROTATE portion. Program control is dependent upon operator manipulation of four switches in the 
SWITCH REGISTER (bits 0, 1, 2, 3). Error information is normally printed out on the keyboard printer. 

Maindec 801-2C 

PDP-8 JMS and JMP Test 

This program tests the JMP and JMS instructions by doing a JMP and JMS to locations 177-
4000. The program also tests the JMS return address for accuracy. 

Maindec 801-.3A 

PDP-8 Instruction Test (EAE Type 182) Part 3A 

This program is a test of the Extended Arithmetic Element Type 182. The following instructions 
are tested: MQL, MQA, SHL, LSR, ASR, NMI, SCA. An attempt is made to detect and isolate errors 
to their most basic faults and to the minimum number of logic cards. Multiply and divide are tested by 
Maindec 801-3B. 

Mai ndec 801-3B 

PDP-8 Instruction Test (EAE Type 182) Part 3B 

Divide overflow detection hardware and divide and multiply hardware are tested by using a 
pseudo random-number generator to produce the parameters foi each test. A software simu ltated divide 
and multiply are used to test the results of the hardware divide and multiply. 

Maindec 802 

Memory Checkerboard Test 

Maindec 802 tests memory for core failure on half-selected lines under the worst possible 
conditions for reading and writing. It is used primarily for testing the operation of memory at marginal 
voltages. 

There are two versions of Maindec 802. The tow End program occupies registers 0003-0111 
octal and tests memory from 0112-7777 octal. The High End program occupies registers 7450-7555 octal 
and tests memory from 0000-7447 octal. 

Maindec 803 

PDP-8 Memory Address Test 

Maindec 803 is designed to provide rough inspection of the performance of the Memory Ad-



dress register and the decoder network which selects a given memory cell. It is used primarily to detect 
errors arising from open or shorted selection I ines. 

Maindec 810 

PDP-8 Teletype Reader Test 

Maindec 810 tests performance of the Teletype Model 33 Perforated Tape Reader using the 
reader to scan a closed-loop test tape punched with alternating groups of character codes 000 and 377. 

Each character is tested for bits dropped or gained while reading; each group of characters 
is checked for characters missed entirely or read more than once. 

Maindec 811 

PDP-8 High Speed Reader Test 

This program tests performance of the Type 750 High Speed Perforated Tape Reader and control 
by scanning a closed-loop test tape for transmission accuracy. The reader control is tested for correct 
operation with the PDP-8 interrupt system. 

Maindec 812 

PDP-8 Teletype Punch Test 

Maindec 812 punches a test tape in a predetermined pattern. The tape passes directly from 
the Teletype punch to the Teletype reader, which checks the pattern for accuracy. 

Maindec 814 

PDP-8 Teleprinter Test 

The PDP-8 Teleprinter Test tests performance of the Teletype 33 Keyboard Printer. There are 
two parts to the test, selectable by the operator. The first part tests keyboard input by immediately caus
ing the character typed to be printed for comparison. The second part tests continuous operation of the 
teleprinter by causing a line consisting of the ASCII character set to be repeatedly printed. The latter 
also tests for correct functioning of the interrupt after a character has been printed. 

Maindec 817 

PDP-8 High Speed Punch Test 

This program consists of two separate tests. The first causes the High Speed Punch Type 75E 
to produce a tape containing a sequence of "pseudo-random II character codes. This tape is checked for 
accuracy using either the high-speeci reader or the Teletype reader. 

In the second test, the character code represented by the setting of SR 
4

_ 1
1 

is punched re
peatedly. The switch setting may be changed while the test is running. 

Maindec 820-1 

Extended Memory Control Part l 

This program exercises and tests Extended Memory Type 183 instructions CDF, CIF, RDF, RIF, 
RMF, and RIB, for proper operation. Basically, this program tests the contro I section of the Type 183 
memory. Data is tested by tests Maindec 802 and Maindec 820-2. 

Maindec 820-2 

Extended Memory Checkerboard Part 2 

Maindec 820-2 is a preliminary test for core memory failures on half-selected lines under 

257 



258 

worst-case conditions of reading and writing. It is used to test memory module X while running the pro
gram in memory module Y. 

Maindec 825 

680 Static Test 

The 680 Static Test verifies correct operation of the 681 and 685 circuits associated with the 
680 Data Communications System, in a static state. That is, the program does not actually transmit char
acters, but tests only the logical operation of the hardware. Hardware malfunctions detected by the 
program resu It in a processor halt. 

Maindec 826 

A 680 8-Bit Character Exerciser 

B 680 5-Bit Character Exerciser 

The 680 Character Exerciser Program further verifies correct operation of the 680 Data Com
munications System. This test assumes that the Teletype lines are full duplex. However, if the line out
puts are jumpered to the line inputs, the test does verify that the input characters are received as 
transmitted. 

Maindec 827 

580 Utility Routines and Compiler 

This program is designed to exercise the 580 Tape System. The test routines are called from 
a smal I compiler, and are under control of a pseudo language, which may be stored on paper tape for daily 
maintenance, or typed on-line for debugging and observing malfunctions of the 580 Tape System. 

Maindec 827-U 

Magnetic Tape Type 580 Utility Routines 

These subroutines allow the user to operate the 580 Magnetic Tape System by providing most 
commands associated with a more sophisticated (hardware) tape system. 

Maindec 828 

PDP-8 L T08 Teleprinter Test 

The L T08 Teleprinter Test verifies correct operation of the L T08 Control Line hardware and 
any configuration of from one to five teleprinters. Hardware malfunctions detected by the program result 
in a processor halt. The test includes a Concurrent Output Routine, a Concurrent Input Routine, an 
Output Scope Loop, and a WRU Test that verifies that none of the teleprinters associated with the L T08 
respond to a WRU (who are you) code. 

Maindec 829 

PDP-8 Memory Power On/Off Test 

This program tests memory for bit drop out and pick up after a simulated power failure. 

Maindec 830 

Type 30G Symbol Generator Exercise'r 

This program exercises symbol generator logic by using selected character patterns. 



Maindec 831 

PDP-5/8 DECtape Maintenance Package 

The PDP-5/8 DECtape Maintenance Package is a collection of routines designed to be used 
by maintenance personnel as aids in debugging hardware troubles and as periodic confidence checks on 

correct operation of the device. Routines are provided to test IOT instructions, delays, control registers, 
timing, and basic modes of operation. Other routines are included which allow the operator to adjust the 
device more efficiently and exercise different modes of ope ration pursuant to "scoping 11 machine functions. 
Routines to obtain octal dumps of core memory and routines to write varying bit patterns in core are also 
available. 

Maindec 832 

Real-Time Clock Test 

This program tests the real-time clock IOT logic, and crystal oscillator specifications. 

Maindec 833 

Lots of Little Pictures on the Eight 

This program contains 12 individual 338 buffered display routines. The routines were selected 
to enable adjustment and validation of CRT Analog/Digital hardware. 

Maindec 834 

Type 338 Display PJMP Test 

Th is program is a test of the P JMP instruction. On the 338 di splay analyses of the Pushdown 
Pointer, Display Address Counter, Status, Push Jump Destination and Return Addresses are printed upon 
detection of an error in these areas. 

Maindec 835 

Type 338 Di splay POP Test 

This program is a test of the POP instruction. On the 338 Display analyses of the Display 
Address Counter and Pushdown Pointer are printed upon error detection. 

Maindec 839 

PDP-8 Memory Parity Option 

This program is designed to exercise and detect memory parity control and data errors on the 
PDP-8. 

259 



260 

DECUS Library 

DEC US No. 5- l and 5-2 

Service and Debugging Subroutines for the PDP-5 

Two basic subroutine packages for use in communicating with the PDP-5 for service and de
bugging functions have been written at Bell Telephone Laboratories. The first package, 
called the Binary Package, is a completely independent one-page subroutine for handling 
paper tape input-output. The second, called the Octal Package, is a two-page set of sub
routines which facilitates exchange of information between the operator and the computer 
via the Teletype 33ASR unit. As an addition to the Octal Package, there is a symbolic in
struction dump subroutine package which occupies three pages of storage. 

l. The Binary Package contains a Bl N format loader, and provisions for dumping 
of bracketed locations in BIN or RIM format, punching leader trailer, punch
ing a check sum on BIN tapes, and punching a starting address for self-starting 
RIM tapes. If entered as a subroutine, the appropriate return can be made. 
Control of the package is made by the switch register and CONTINUE switch 
on the PDP-5 control panel. 

2. The Octal Package contains provisions for an eight to the line octal dump of 
bracketed locations, moving of blocks of information in the memory, and load
ing of memory from the Teletype. Li.nks to the Binary Package and the sym
bolic dump are also included. Control for this package is through the Tele
type and the switch register. 

The symbolic dump portion of the Octal Package provides for a printing on the 
Teletype of up to four pieces of information for each location of a bracketed 
group of locations. These include the address, the octal contents of that ad
dress, the interpretation as two trimmed Teletype code characters of the octal 
contents and the symbolic instruction decoding of the contents. Any combina
tion of these pieces of information can be selected through use of the switch 
register. 

DECUS No. 5-3 

BRL - A Binary Relocatable Loader with Transfer Vector Options for the PDP-5 Computer 

BRL is~ binary_loader program occupying 4640
8 

to 61778 registers: also 160 to 177. It has 
two main functions: 

l. It al lows a PDP-5 operator to read a suitably prepared binary program into any 
page location in memory except the registers occupied by BR L. Thus, a pro
gram need not be reassembled from symbolic to binary tape whenever it is de
sired to relocate it. 

2. It greatly simplifies the calling of programmed subroutines by allowing the pro
grammer to use an arbitrary subroutine cal ling sequence when writing his pro
gram, instead of hc;iving to remember the location ot the subroutines. For 
example, it a programmer wishes to cal I "Square Root," he does not have to 
know where Square Root is stored in memory; BRL wil I instead keep track of 
this for him. This feature is available to the IBM 7094 programmer and is 
known as a "transfer vector" option. 

DECUS No. 5-4 

Octal Typeout of Memory Area with Format Option 

Write-up and Listing Only 



DECUS No. 5-5 

Expanded Adding Machine 

Expanded Adding Machine is a minimum-space version of Expensive Adding Machine (DEC-
5-43-D) using a table lookup method and including an error space facility. 

This is a basic version to which additional control functions can easily be added: Optional 
vertical or horizontal format, optional storage of intermediate result without reentry, fixed
point output of results within reason, and other features that can be had in little additional 
space under switch register control. 

Write-up and Listing Only 

DEC US No. 5-6 

BDC to Binary Conversion of 3-Digit Numbers 

This program is based on DEC-5-4 and is intended to illustrate the use of alternative models 
in program construction. 

While not the fastest possible, this program has one or two interesting features. It converts 
any 3-digit BCD-coded decimal number, D

1 
D

2
D

3 
into binary in the invariant time of 372 

microseconds. Efficient use is made of BCD positional logic to work the conversion formula 
(l0D 1 + D

2
) 10 + D

3 
by right shifts in the accumulator. In special situations, it could be 

profitable to insert and initial test/exit on zero, adding 12 microseconds to the time for 
non-zero numbers. 

Write-up and Listing Only 

DECUS No. 5/8-7 

Decimal to Binary Conversion by Radix Deflation on PDP-8 

Write-up and Listing Only 

DECUS No. 5-8 

PDP-5 Floating Point Routines 

Consists of: 
l. Square Root - Tape and Symbolic Listing 
2. Sine-Cosine - Tape 
3. Exponential - Tape 

DEC US No. 5/8-9 

Analysis of Variance PD P-5/8 

Th Ee analysis of variance program was written for the standard PD P-5/8 configuration (i.e. 
4K memory, ASR33 teletype). The output consists of: 

A. For each sample: 
l . Sample number 
2. Sample size 
3. Sample mean 
4. Sample variance 
5. Sample standard deviation 

B. The grand mean 

C. Analysis of Variance Table: 
l • The grand mean. 
2. The weighted sum of squares of class means about the grand mean. 
3. The degrees of freedom between samples. 
4. The variance between samples. 
5. The pooled sum of squares of individual ~alue about the means of their 

respective classes. 

261 



262 

6. The degrees of freedom within samples. 
7. The variance within samples. 
8. The total sum of squares of deviations from the grand mean. 
9. The degrees of freedom. 

10. The total variance. 
11. The ratio of the variance between samples to the variance with samples. 

This is the standard analysis of variance table that can be used with the F test to determine 
the significance, if any, of the differences between sample means. The output is also use
ful as a first description of the data. 

Al I arithmetic ca lcu lat ions are carried out by the F looting Point Interpretive Package 
(Digital-8-5-S). 

DECUS No. 5-10 

Paper Tape Reader Test 

A test tape can be produced and will be continuously read as an endless tape. Five kinds 
of errors will be detected and printed out. The Read routine is in 6033-6040. Specifica
tions: Binary with Parity Format - Length: registers in locations (octal): 10, 11, 40 
through 67 (save 63, 64), and 6000-7777. 

DECUS No. 5-11 

PD P-5 Debug System 

Purpose of this program is to provide a system capable of: 

1. Octa I dump 1 word per I ine. 
2. Octal dump 10

8 
words per line. 

3. Modifying memory using the typewriter keyboard. 
4. CI earing to zero parts of memory. 
5. Setting to HALT codes part of memory. 
6. Entering breakpoints into a program. 
7. Initiating jumps to any part of memory. 
8. Punching leader on tape. 
9. Punching memory on tape in RIM format. 

10. Punching memory on tape in PARITY format. 
11 • Load memory from tape in PARITY format. 

DECUS No. 5-12 

Pack-Punch Processor and Reader for the PDP-5 

The processor converts a standard binary-format tape into a more compressed format, with 
two twelve-bit words contained on every three lines of tape. Checksums are punched at 
frequent intervals, with each origin setting or at least every 200 words. 

The reader, which occupies locations 7421 to 7577 in the memory, wi 11 load a program 
which is punched in the compressed format. A test for checksum error is made for each 
group of 200 or less words, and the program wil I halt on detection of an error. Only the 
most recent group of words wi II have to be reloaded. Read-in time is about ten percent 
less than for ccmventional binary format, but the principal advantage is that little time is 
lost when a checksum error is detected, no matter how long the tape. 

DECUS No. 5-13 

PDP-5 Assembler 

This program accepts symbolic programs punched on cards and assembles them for the PDP-5. 
An assembly listing is produced, and a magnetic tape is generated containing the program. 
This magnetic tape can be converted to paper tape and then read into the PDP-5, or it can 
be read directly into a PDP-5 with an IBM compatible tape unit. Cards are available. 



DECUS No. 5/8-14 

Dice Game for the PDP-5, PAL 

Binary tape and write-up only. Program uses program interrupt facility. 

DECUS No. 5-15 

ATEPO (Auto Test in Elementary Programming and Operation of a PDP-5 Computer) 

The program wi II type questions or instructions to be performed by tf-ie operator of the 
PD P-5 (4K) computer. The program wi II check' to see if the operator has followed the in
structions or has answered the questions correctly. If this is the case, it wil I type the next 
question or i~struction. 

The program itself uses the locations 200
8 

to 500
8

, and the messages to be typed are in 

600
8 

-3410
8

. The area 500
8 

-577
8 

is used to store the RIM and BIN loaders while the 

programming is running. Page O and the locations above 4000
8 

are a "work area 11 in 

which al I the instructions are going to be executed, and in which the operator can make 
practically al I kinds of mistakes, because the contents of the locations in that area are re
set after typing any message. The program requires the RIM and Bl N loaders to be in loca
tions 7700

8
-7777 

8 
in order to transfer to the "safe area. 11 

After using the program, the loaders can be returned to their original position by ju~t start
ing the computer in location 377; it will jump to a small subroutine in 3500

3
-3515

8 
that 

wi II make the transfer. The possibi I ity of mistakes that wou Id interfere with the program 
itself is reduced to practically zero, if the bit O is permanently kept (except when answer
ing question 4) in the position 1. With the exception mentioned above, al I of the other 
solutions can be accomplished with the bit O in position 1. For that reason, we strongly 
recommend that a piece of tape, or something similar, be put over the switch correspond
ing to that bit when being used by an operator without experience, for whom the program 
was designed. 

DECUS No. 5/8-16 

Tape Duplicator for the PDP-5/8 

The tape duplicator for the PDP-5/8 is a single buffered read and punch program utilizing 
the program interrupt. It computes a character count and checksum for each tape and 
compares with checks at the end of the tape. 

Checks are also computed and compared during punching. There a"re three models of 
operation: 

A. SWITCH fj ON 

B. SWITCH 1 ON 

C. SWITCH 2 ON 

MAKE MASTER TAPE 

DUPLICATE MASTER TAPE 

VERIFY DUPLICATION 

During duplication, the program will notify the operator whether or not more copies can 
be made without re-reading the master. 

Binary and symbolic tapes are avai I able. 

DECUS No. 5/8-17 

Type 250 Drum Transfer Routine For Use on PDP-5/8 

Transfer data from drum to cor-e (Read) or core to drum (Write) via ASR-33 Keyboard Control. 

DECUS No. 5-18 

Bin Tape Disassembler for the PDP-5* 

This program disassembles a PDP-5 program, in Bin format, on punched paper tape. The 

*Work performed under the auspices of the U. S. Atomic Energy Commission 

263 



264 

tape is read by a high-speed reader, but the program may be modified to use the ASR-33 
reader. The margin setting, address, octal contents, mnemonic interpretation (PAL), and 
the effective address are printed on the ASR-33 Teletype. 

DECUS No. 5-19 

DDT-5-2 Octal-Symbolic Debugging Program 

DDT-5-2 is an octal-symbolic debugging program for the PDP-5 which occupies locations 
5600 through 7677. It is able to merge a symbol table punched by PAL 11 and stores sym
bols, 4 locations per symbol, from 5577 down towards 0000. The mnemonics for the eight 
basic instructions and various OPR and IOT group instructions are initially defined (see 
DEC-5-1-S Attachment II, p. 21), and the highest available location for the user is initi
ally 5373. 

From the teletype, the user can symbolically examine and modify the contents of any mem
ory location. DDT-5 allows the user to punch a corrected program in BIN format. 

DDT-5 has a breakpoint facility to help the user run sections of his program. When this 
facility is used, the debugger also uses location 0005. 

This program has nearly al I the features of DDT for the PDP-1. The meaning of the control 
characters of ODT (DEC-5-5-S) are the same in DDT-5. 

DECUS No. 5/8-20 

Remote Operator FORTRAN System 

Program modifications and instructions to make the FCRTRAN OTS version dated 2/12/65 
operated from remote stations. 

DECUS No. 5/8-21 

Triple Precision Arithmetic Package for the PDP-5 and the PDP-8 

This is an arithmetic package to operate on 36-bit signed integers. The operations,are add, 
subtract, multiply, divide, input conversion, and output conversion. Triple precision rou
tines have a higher level of accuracy for work such as accounting. The largest integer 
which may be represented is 235-1 or 10 decimal digits. The routines simulate a 36-bit 
(3 word) accumulator in core locations 40, 41, and 42 and a 36-bit multiplier quotient 
register in core locations 43, 44, and 45. 

Aside from the few locations in page 0, the routines use less core storage space than the 
equivalent double-precision routines. 

DECUS No. 5/8-22 

DEC tape Dupl icate 

This is a DECtape routine to transfer all of one reel (transport l) to another (transport 2). 
This program occupies one page of memory beginning at 7400. The last page of memory 
is not used during the operation of the program, however, the memory from l to 7436 is 
used to set the DECtape reels in the proper starting attitude and is then destroyed during 
duplication. Duplication wi 11 commence after which both reels wi 11 rewind. Parity error 
wi 11 cause the program to halt with 0040 in the accumulator. 

DECUS No. 5/8-23 

PDP-5/8 Oscilloscope Symbol Generator 

The subrout.ine may be cal led to write a string of characters, a pair of characters, or a 
single character on an oscilloscope. Seventy (octal)symbols in ASCII Trimmed Code and 
four special 11 format 11 commands are acceptable to this routine. The program is operated 
in a fashion similar to the DEC Teletype Output Package. 



Binary tape with parity format, PAL binary tape, Assembler listing, and cards for an LRL 
Assembly are avai I able. 

Specifications: 

DECUS No. 5-24 

Vector Input/Edit 

1. Bl N with parity format or PAL Bl N 
2. Length - registers 200-577 (octal) 
3. Oscilloscope display unit 

This program accepts Teletype and effects editing options by implementing a man-machine 
dialogue. Development of the program was supported, in part, by the Air Force Office of 
Scientific Research and the Army Research Office. 

DECUS No. 5-25 

A Pseudo Random Number Generator for the PDP-5 Computer 

The random number generator subroutine, when cal led repeatedly, wi 11 return a sequence 
of 12-bit numbers which, though deterministic, appears to be drawn from a random se
quence uniform over the interval 0000

8 
to 7777 

8
• Successive numbers wi 11 be found to be 

statistically uncorrelated. The sequence will not repeat itself until it has been called over 
4 billion times. · 

The program tape is prefixed witl:i a text for a relocatable loader, used at NYU, but this 
may be bypassed and the binary section wi 11 then read directly into 3000-3077. 

DECUS No. 5-26 

Compressed Binary Loader (CBL) Package 

PDP-5 Installations using an ASR-33 Teletype for reading in binary tapes can save signifi
cant time (approximately 25%) by taking advantage of all eight channels of the tape. The 
C BL loader only occupies locations 7700 through 7777. The tape formatted into individual 
blocks, each with a checksum. 

On detection of an error, the loader halts so the tape may be repositioned in the leader area 
of the block which caused the error. 

PAL 11 has been modified to punch in C BL format, and a DDT-5-3 (comparable to DDT-5-5, 
DEC US No. 5-19) has been written. 

The following programs are included in the package: 

1. CBL Loader 
2. CBC Converter (BIN to CBL) 
3. CONV Converter (CBL to BIN) 
4. PAL IIC (punches CBL format) 
5. DDT-5-3 (reads and punches CBL format) 

DECUS No. 5/8-27 

ERC Boot 

The ERC Boot is a bootstrap routine somewhat simpler than the one presently available for the 
PDP-8. This routine restores the entire last page, consisting of: 

1 . Clear Memory Routine 

2 . RIM Loader 

3. Modified Binary Loader. 

The Clear Memory routine is entered at 7600 (octal). It clears (to 0000) the lower 31 pages of 
memory, then branches to the Binary Loader. 

265 



266 

The modified Binary Loader ha Its after reading tape with the checksum in the accumulator. If 
the binary tape is properly terminated, pressing CONTINUE takes a branch to the beginning 
location of the program. PAL com pi led programs may be properly terminated by ending the PAL 
symbolic tape in the fol lowing manner: 

* START (any named starting address) 
$ 

The Binary Loader stores the octa I value for START in the location labeled ORIGIN in BIN. · 
The instruction fol lowing H LT in BIN is replaced by JMP I ORI GIN (5616), causing a branch 
to START. 

DECUS No. 8-28 

PAL Ill Modifications for PDP-8 and ASR-33 

This modification of the PAL Ill Assembler speeds up assembly on the ASR-33/35 and operates 
only with this 1/0 device. The symbolic tape is rea9 only once, on pass 0, and stored in the 
machine. This pass initiates as does pass l, except that both switches O and l must be down. 
Other passes of the assembly initiate norma I ly, but do not end the symbolic tape. 

If the program is too large for the buffer, the Teletype punches 50-200 codes before halting. 
If the program size is doubtful, it is advisable to leave the punch on during pass O and not con
tinue to pass l . 

The user and symbol table starts at 2736 and the buffer begins at 3103, allowing room for 25 user 
symbols only. The highest location of the buffer is 7440. This leaves a buffer size of 43368 or 
227010, which is sufficient for a large program or a small program with many comments, owing 
one tape character per location. To increase symbol table size, constants at 1413 and 1414 
may be adjusted. For instance, if 50 symbols are desired: 

141 3 BU F, 3246 
1414 BUFCNT, -4172 

A few other modifications have been made to aid in circumventing the slow speed of the Teletype. 
The length of the leader-trailer tape has been shortened; there is no pass 111 leader punched; and 
the symbol table has no leader or trailer on either pass, making the symbol tape incompatible 
with DDT (an appropriate leader can be punched manua I ly). To restore any of these character
istics, the appropriate statements in the modifications tape may be deleted. 

Symbolic tape may be modified as above and a new binary tape produced. The binary tape must 
then read in after loading the assembler for modification. This process can be done each time 
the assembler is loaded, or the modified assembler can be punched as a complete separate tape. 

DEC US No. 8-29 

BCD to Binary Conversion Subroutines 

The~e two subroutines improve upon the DEC supplies conversion routine. Comparison cannot 
be made to the DECUS-supplied fixed-time conversion, DECUS No. 5-6, because it is specified 
only for the PDP-5. One routine is designed for minimal storage, the other for minimal time. 
Both are fixed-time conversions; time specified is for a l .6-µsec machine. 



Minimal time routine: 73.6 1-1sec/32 locations 

Minimal storage routine: 85 1-1sec/29 locations 

DEC routine: 64-237 1-1sec/37 locations 

Time for number D
1

, D
2

, and D
3 

is 64 + (D
1 

+ D
2
) 9.61-1sec. 

DECUS No. 5-30 

GENPLOT - General Plotting Subroutine 

This self-contained subroutine is for the PDP-5 with a 4K memory and a CALCOMP incremental 
plotter. The subroutine can move (with the pen in the up position) to location (x, y), make an 
11 X11 at this location, draw a line from this present position to location (x, y), and initialize 
the program location counters. A binary, relocatable tape is available. 

If the subroutine is to be relocatable, the titles are: MOve, Plot, DRaw, and !Nit. The readin 
procedure is the same as for other relocatable subroutines. 

DEC US No. 5-31 

FORPLOT - FORTRAN Plotting Program for PDP-5 

FORPLOT is a general-purpose plotting program for the PDP-5 computer in conjunction with the 
CALCOMP 560 Plotter. It is self-contained and occupies memory locations 0000g to 4177g. 
FORPLOT accepts decimal data inputted on paper tape in either fixed or floating point formats. 
Formats can be mixed at will. PDP-5 FORTRAN output tapes are acceptable directly and any 
comments on these are filtered out. 

FORPLOT scales input data. The operator informs the computer, in advance, of the data values 
to be assigned to the top, bottom, right, and left plot boundaries. There are no restrictions on 
these data values. It is not necessary that any of them be zero, nor is it necessary that the top 
and right boundaries correspond to more positive data values than the bottom and left boundaries, 
respectively .. 

Al I plotted graphs are l O inches in the ordinate direction. The operator controls the length of 
the abscissa which may reach a maximum of 39. 99 inches. 

A number of plot format options are available to the user. The program is capable of drawing 
an abscissa and ordinate axis, each ticked at intervals of l inch, at the right and bottom bound
aries of the plot, respectively. If the user chooses to omit these axes, a circled point is placed 
at the starting point to indicate the bottom-right plot boundary. Points are left unconnected 
unless connected through user control. Finally, at the option of the user, FORPLOT can locate 
either a small 11 x 11 or a small octagon (approximately 1/16 inch across), or a superposition of 
both at each plotted point to make the point more plainly visible. 

A column selection feature is provided enabling the operator to select data columns from tapes 
containing several of them. In this bulletin "column" refers to a column in the arrangement of 
the data when it is printed on the ASR-33. If desired, the operator can supply only the ordi
nates and the program will space the plotted points uniformly in the abscissa direction according 
to a preset constant. 

DEC US No. 5/8-32 

Program to Relocate and Pack Programs in Binary Format 

This relocation program a I lows automatic transfer of a program in binary format into any portion 
of memory, no matter what starting address it has been allocated. Each program is given a 

267 



268 

fixed starting address, allowing it to be loaded in the normal manner without using the relocation 
program. This includes moving a program to an entirely different starting address on a different 
page of memory. The program is now in use at CRNL and is proving a most effective tool in as
sembling a combination of existing programs and in amending and fault-finding new programs. 

This package includes three programs to aid in relocating and retrieving subroutines: 

1. A Clear Memory routine which clears registers 200
8 

through 3777
8

. 
Length is 12 locations. 

2. A programmed display routine which displays the entire memory. Empty 
registers appear on the base line while occupied addresses appears as 4096 
counts on the display. The length is 15 locations. 

3. Because it is often necessary to retrieve relocated programs on paper tape, 
a punch routine is included which punches those areas of the first ha If of mem
ory which contain the program. The punch program senses and deletes gaps in 
memory. 

This program saves much time since starting and ending addresses need not be 
remembered as w.th ODT and other types of binary punch programs. 

The tape is punched in binary format complete with checksum, and is pre
ceded by and fol lowed with a length of leader. The length is 90 locations. 

The relocation program and associated programs are themselves relocatable. 

DECUS No. 5/8-33 

Tape to Memory Comparator 

Tape to Memory Comparator is debugging program which allows comparison of the computer 
memory with a binary tape. It is particularly useful for detecting reader problems, or during 
stages of debugging a new program. 

A typeout occurs whenever the memory disagrees with the contents of the binary program tape. 
The typeout consists of the memory location, contents of memory, and contents of the tape on 
one I ine. The checksum is typed out as an error at one location greater than the last address 
on the tape. 

Presently, the program uses a high-speed reader; however it may be modified for the TTY reader. 
The program occupies 165 octal locations on a sing le page. It does not use page O or auto index 
registers. 

DEC US No. 5-34 

Memory Halt - A PDP-5 Program to Store Halt in Most of Memory 

With Memory Halt and OPAK, (DECUS No. 5-2.1), in memory, it is possible to store halt 
(7402) in the following memory locations: 

0000 to 0005 
0007 to 6177 
7402 and 7403 

Memory Ha It occupies locations 0200 to 0237 with a starting address of 0200. When started, 
it stores 7402 in locations 0001 to 0005 and locations 7402 and 7403. It then sets up some 
memory location so that OPAK can store 7402 in locdtions 0007 to 6177. 



Ha Its in memory are usefu I when a program transfers control to an area of memory not occupied 
by the program itself. Upon executing the JMP or JMS instruction, the computer halts. With 
careful investigation, the programmer can determine why the transfer of control took place. 

DEC US No. 5/8-35 

Binary Coded Decimal to Binary Conversion Subroutine and Binary to Binary Coded Decimal 
Subroutine (Double Precision) 

This program consists of a pair of relatively simple and straightforwai;d double-precision conver
sions. They make no claim to speed or brevity. A double entry has been used which is: 

TAD HIGH 
JMS BCD BIN 
TAD LOW 
JMS BCD BIN+3 

DECUS No. 5-36 

Octal Memory Revised 

The Octal Memory Dump on Teletype is a DEC routine (DEC-5-8-U) which dumps memory by 
reading the switch register twice; once for a lower limit and again for an upper limit. It then 
types an address, the contents of the program and the next three locations, issues a CR/LF, 
then repeats the process for the next four locations. This leaves the right two-thirds of the Tele
type page unused. The 78 10 instructions occupy two pages. 

This revised routine uses the complete width of the Teletype page and occupies only one memory 
page, using less paper and two less instructions. Now an address and the contents of 15 locations 
are typed out before a carriage return. 

Octal Memory Dump Revised has proved its value as a subroutine and/or a self-contained dump 
program when it is necessary to dump large sections of DECtape, magnetic tape (IBM compatible), 
or a binary formatted paper tape. 

DEC US No. 5-37 

Transfer II 

For users who have more than one memory bank attached to the PDP-5/8, Transfer II may prove 
valuable in moving information from one fie Id to another. Often areas designated for loaders 
are being used for other reasons, only to find the loaders necessary a few minutes later. When 
debugging, Transfer II enables a programmer to make a few changes in a new program and test 
it without reading in the original program again, especially if his corrections did not work. 
In short, Transfer II enables more extensive use of memory banks. 

269 



1. IDENTIFICATION 

1.1 F-85 

1.2 PDP-8 Users Handbook Change Notice 

1.3 October 7, 1966 

PDP 

a 
LI BR ARY 



Change Notice for PDP-8 Users Handbook - F-85 

Page 4; line 13-14 

Change FROM: is read from a memory location in 0.8 microsecond 
and rewritten in the same location in another 0.8 
microsecond of one 1.6-microsecond memory cycle. 

TO: is read from a memory location in 0.75 microsecond 
and rewritten in the same location in another 0.75 
microsecond of one 1.5-microsecond memory cycle. 

Page 13; Figure 6 

Change FROM: Format diagram incorrect as shown. 

TO: Format diagram shown as Figure 7 on page 17. 

Page 17; Figure 7 

Change FROM: 

TO: 

Page 20; line 9 

Change FROM: 

TO: 

Format diagram incorrect as shown. 

Format diagram shown as Figure 6 on page 13. 

Event Time: 1 

Event Time: 2 

Page 39; line 24 

Change FROM: 

TO: 

Octal Code: 6104 

Octal Code: 6101 

Page 39; line 33 

Change FROM: 

TO: 

Octal Code: 6102 

Octal Code: 6104 

Page 45~ line 10 

Change FROM: 3. Give the MUL command. 

TO: 3. Give the MUY command. 



Page 68; line 26 

Change FROM: 

TO: 

Page 95; line 5 

Table 2 Analog-to-Digital Converter Type 139E 
Characteristics 

Table 2 Analog..:.to-Digital Converter Type l38E 
Characteristics 

Add after line 5: Clears the AC after execution. 

Page 95; line 15 

Add after line 15: Clears the AC after execution. 

Page 128; line 24 

Change FROM: ACl(O) = Sets the SPACE flip-flop 

TO: ACl(O) = Sets the SPACE flip-flop, also enables the 
interrupt 

Page 131; line 27 

Change FROM: TMP TW2 /GO TO A WRITE INSTRUCTION 

TO: JMP TW2 /GO TO A WRITE INSTRUCTION 

Page 131; line 33 

Change FROM: TSZ CNTR /COUNT THE NUMBER OF 

TO: ISZ CNTR /COUNT THE NUMBER OF 

Page 131; line 37 

Change FROM: TSDS /WAIT FOR LAST 

TSDF /wAIT FOR LAST 

Page 198; line 10 

Change FROM: Address Accepted ---t:> PF3S PFlOH W640 

TO: Address Accepted • PF3S PFlOH W640 



\ 
\ 

revision a.:£te """'""'..,.""""'_....,,,._.4' • ., . ..,"'-""--

t; / I /(/J 

s/1<./t 7 

X/o Svb b·d--
1~ it 

0~f(J fVVcP-'b'¥0 J 

VN vn0h "'Y 
U !( Y( pv~'r() (! fl 1 

. v 

PDP-X 

D(:rnoriptior! 

1 Yh I= \ ( J n.r , \ ! "-1' 0 ' 1 

' (i IJ<-:t.J (• llG 

J :. 
.,,-

Ct:> rn nt v v\..:",. , .• ~~~ ....... 
c. ) o v, & ') 1 • 

t" t.l (!. i: ;J (') t· 

·"~ ~,. ¢-tl ' 



Inclox 

0 Tnti·od.uct:i.on 

] D I. C ·t' · . ef'f.e;n :::':i. ·oria 

' l. 1 Perforr.iance ran£}3f3 of cu::'rent u1·00.11cts 

1.2 Hod.els 

1. 3 Desi{3"n goals 

1.4 Desi,s;n decisiom; 

2 S:rstem .i\::.•chi tee tur.e 

2.1 Instruction format 

2.2 
1
Instructions 

basic and extended 

2.3 General RogisterA 

2 .4 Program Status Y10:ed 

and concUtion code 

2.5 Add:ressing 

ancl adclrcss calculation 

2.6 Data formats 

2.7 Priority (:i.nterruut) structure 

2.8 l'roteotion 

3. IO S~7s tern 

3 .1 Devices and contro11o:rs 

3.2 Modes of data transfer 

3.3 Operation of multinJ.exo:r channe1 and interrunt 

3.4 IO bus 

3.5 13us flow diagrams 

4 :?:rog:i.'2.1r:r:1ing Examples 

4.1 Not~tional conventions 

4.2 ?..oontrant :SOP simulator 

5.1 Concise definition of instructionA 



• > 

P))P-X is a mode::.'n, ~i~JY high perforr:1ance, third generation 

computer family designed for the small computer market. Upv,a,rd and 

downward pro6ram compr-i.tiM.li ty permits easy system growth and enhances 

application progre,mming. Standard IO and Hemory interfaces are used for 

all processor mod.els and all perhipheral devices. The arch.i tectu:ro 

lends itself to fourth genere.tion hardnare implementation and the 

development of multiprocessor systems. 

The system architecture of the I'DP-.X com:i,uter family is 

descril)ed below. In acldi tion to specif yin{'.~ the organization of the 

entire family, detaJ ls of a pa1. ... tict1la.1 .. i.mplcn1ento.tion hR.vo beer1 incln.r\r,t. 

The major a.esign objective has beo:n' ~i{:ni:.f:'icantl;y-. incl'oadecl perforrnanoo 

in order to meet incroaGingl7 more :::10:,histicatecl uc'.)r d9:-:1::-D1cls. 



\'J 

1.1 Tho performance of cur1·m,t -orod.ucts 

___ Al thoug}1 the1'e is no_ magic fo:e1r:uJ.a :i:nto vrhich parr~,m8ters of 

vastly a.if'ferent mach:ircs r:1::-i,y be svlistitutecl to achieve an a1)crnlute r!leasu:re of· 
' 

performance, the relative performance of :oarJt and curr<=mt 1)".'..';C small cor.r::mter centre.1 

processo:c's ma\· be ostimatocl sir:co their archit8ctures are so closely related. 

Factor,J r'elating to vrord. Jcngth, order code, mei:,ory uneecl possibJ.o, etc., have 

been evaluated ancl are given in figure 1. PD1) t/ . .... ,.-,) 10 has bet111 sornevvhat 

arbitrarily estimatea. to be an ord.or magni tucle more po?10rfttJ- than PDP-7 /9. 
System performance dependence u:oon nvailA.1)le soi't-."iaro and optional perhipherals 

r PTlP n1 c,·,-c_.,, . .I, has been specifically or:ii ttetl. '!ote thP.. t the - , -c;. 0000 not appear, i 1,S 

performance is idonti.cal to that of the PffP-8; 9+ ano l+ represent versions v1hich 

inc ludo optional multiply/ divide a,,d priori t;y interrupt hardvm;re. 

The PD?--X, cJ.esignod to be, iDi tiaJ.J.~r, a replacement for the P:DF-9, 

has a minimum })0rforrnance at loa~:t oq_uaJ. to the 9+ ancl nossibJ;-,r several times 

better. This perfo1'r:.ance cxtencls U-p',:ards Vii th th0 ao.ditj on of processor 

options. Other impJ.omentationri of the same architecture span markets cur:rontl~r 

be1d b;y PnI'--8 a.nd the currently nonr_d'tant 24 "bit machine. Sellint; pricos 

as a cri terior1 f·or tb.c r1ac11:i.r1e ,vot1ld. shift th.e F3ot of c11rvcs :Co:r· ··.P})p_)~ 

Jeft. rI'h(i PTI-P-9 repJ.a.cement h2.s P.Dpro::dmatoly thr., nci.mo amount of hardr,are and. 

basea. upon estimates of intcc;:ratecl circuit cost~: derived from PJ)PD-8I, i tn 

manufactu,:,ing cont shoulcl b::, half FDP~9. Sirnilar1:t', the ver~r smallest r,o,"101, 

a _o1~v momor:r, shouJ.cl cost less to rn2,1.1u:!:'act1Jrc than the PDP--GS. 

~~ Tho pe:d'o:rma.nco/yiricr) ratio of P})I'-X to FDP-9 iB, consorva.tively, 

~ Verification of this ratio is difficult uithout more cott cstination 

/2.,-
and a considerable })".ror;:rD.rr:miri.:; test. Perhn.ns the best measure vd.11 be the 

relative performance and sh.,o of the FoTtTan IV conpiled programs and the 

effoTt requ:i.:red to write the corn:oiler itself. - '1vW- ~ wt· . ..\ ~\.<... {·l... -V iA.,bc~~ ~ f',-'1_ 

\ 



'. 
'' 

v-
~~li 

..,,., ,/ 
~fl .,., ,/) 

I
\ \ 
\l 

"'1 l\.'1 

().'~fl r~.r ~ ~ 
/

V' ,iA. ~ 

1. Q. ?toclols 

'.Phree bas;i.c rnoa.eJ.s. are y:orth singling out of the possible/._/-/// ~:1/~~ 
····· irn:plemen+,at}ons. As shown in figm'e 1, thoy covor a performance . vtl" 

range from PD:0 -8 to smaller versions of FDP-10 and may bo aimed. ~, 

respectively, the PDP-8, PDP-9, erid e. currently non extant 24 pl t 
' . 

processo1°. The hro· larger mod.els \7ould compaJ.'e in perforrnane'e to 

the SDS Sigma 2 and Sigma 5. 
/', 

/ 
The smallest processor, the PDP-X / 14, has only tho basic 

instruction set :implemented anc. all i to registers are /ocated in main 

core memory; a typical ADD instruction takeD 4 memm'i C;/C1es at _less 

h ·r 1 · _,,,,,,,·a t an a microsecond. each. 'he longer ,rord. 1emgth, lo)vcr price, an. ,..--,.._ ____ _ 
superior instruction set make this machine su:peri<ft' to the -8.· The 

proccsr10r may also be :i.mplcmcmted using o.n oven~ }er.rn expensive memory 

t t h . tb . ' t '5 c.o-,-V,-t'lVNt 1 ,.,, • t s-,1,"S cm o ac 1eve .e m1n:i.rnum cost rue comnu ·er. _..,xnans1on o ==-" .. -
a system with hardy;arc ge~eral Tegisi;erG is not possible since the 

flow c-hart must cliff9r to optimize each processor. 

The medium processor, P'DP-X / 16, implements its registers 

in a fast memory array a.nd is provicled. y/i th an e.:x:pa.nded. instruction set. 

Ad.di tional instruct.ions as weJ.l as a number of interrupt channels ,:1i1;h 

corresponding general register sets may be optionally installed. As in 

/ 14 the memory width is 16 bits but some double word instructions are 

implemented. 

The lar{;est processor, P:DP-X / 32, is an exoamled version of· 

the above. Al though the v,ord length is stili 16 bits, many double vrnrd 

1, L"'J. 

,, 
instructions, includinc,- floating point, are implemented and the basic \,/\(.A.\~;: 

n, • '\. !. ,j 
memory ·width is 32 bi ts to speed instruction processing. ihe econom:i.cs 1 -\ ,.,~ ' 

of building this ma.chine, especially for markets \7hich do little if an~,-J· ")<~,_\, 
serious arithmetic computation, needs car0ful scrutiny. · t rr 

1 ~:} ·\~:' 

. J"" ~ \ 
',~\t J 

t~~- \\l°' 
t'e- \_ \ 

\,') t/ 
~''/ ,1 ,, 

(,' ',~ll 

l~{· 



1.3 

\ 

nesign goal~ 

a. Ac1.vcinced concepts:- '1be system architecture 

'of currently 2.vailable ancl antic:iJ)atecl technology. In particubs, 

program core sto:ea::;e requirements must bo reduced to minimize 

the relatively expon,Jive memory' 01 contribution to total system 

cost and the archi toctu::.'o should be amenable to the use of 

internal scJ~atch :pad mGmor:1.0s, gate arrays, and other forms o:: -large scale integration. ---

b~ Implomentatio:r1s- The architecture should be implementable in several 

processor moclels whose) p:rico ana. performance span the entire small 

comuutor mP.rk:ot and :include a model small enoup;h to use as part 

of an IO dov:ice cm1troller or selector channel. Smooth evolution 

and re:Lm})lementation should ·be possEJle over the ne:x:t several 

years as the architecture leads to many DffW mod.els. 

c. Software- Al though ms.jar hardware imr,J:ovemcmts are po::rni blo, even more 

sienif':i.cant gains can be achieved. through further d.eve1on,nent of 

software sys tom,,.. 'l1ho harrlv1are necessary f'or dy11amic memo:ry 

alloc a:tion/:orotection, privileged instruction tl'a!)s, and. other 

features of co:!iplex rwftr,are systems must be imbeda.ed into the 

basic closign. 11 t:r·ue real-time compiler, especially oni:, • thR,t 

permits c1ynam:i.c m-3mory assignment, seems a necessity. 'l1hore 

are mahy special apnlication nackages that would make t~o 

sys tom far more US'Jfu1 in many nev: market areas. 

d. Stana.ard interface~- Standard. memory a.na. IO interfaces must be sha:roc} 

by all procerrnor mod.o ls, memories, and. perhipherals :in orclr:ir to 

unify the s,3t of O]Jtions anii to f;::,ciJ.itato fie1d expansion of 

systems. 

e. Goals of the im:r)1ementations- To the normal goal of lowest possi blc . 
manufactureing costs for· any model ma.:r bo adcled the roquiremont 

of autor:,at'.~d nroduct:ion and prodl1ction test fa,cil:i tics. S7stem 

selli;1g p:r·ic,3s shou1(1 be reduced. by makin[; it· :oossi1)le to uroduce 

useful reuult::, us:1nc: les,_1 of the r;101'0 povrnrful hardwure and 

softVICt!."0. 



:r. Specific IO goals- Control signals availe.ble at the IO inte:r.·face 

should permit charrno l control of a,Jl basic perbi~1herals; 

device hardwa;;~e requirementr:1 should be minimized, anj ::1ucc:i.al 

' timing, for exo.rn:nle, should be a.one in th'3 processor IO logic; 

the systco shoulrl respond 11:dromely ra1)irl.l:1 to interrupts, even 

those requirine the full nroce,i::wr comput<i.tj onal abi.l:i. t:r; 

oommunicntion wHh devices 'Physic far i'rorn the procc:::rnor 

should be p0s,Ji11].(:,; tho IO 1)u;::; Ghou1,l 'b8 mechani.cally d·11pl-~. 

g. SpecH'ic :9roce;;so:c goals- t}rn ord2r cod.G s11ou.J.d bn ris eonc:: ,:;ol,y 

program as :oossir)le; a single :i ns-t.ruct:ion should be a1,J 2 to 

d.irectJ.y ad.dress au;,,·:,hc-Jr8 in me',K1:cy ,J,s ,-.,ell P.S calJ. upon nn 

immediate operand.; tho most common im,·cr·uct:Lons must be 

available in compressecl form to comiervc 1:-iomory requir·, nents; 

recursive, reentrant, and. pure eocle should be possi1)le. 

h. The system archi toc.ture should in 110 way lirni t 

a multiprocessor. 1''uture imrilcrnon tatio:ns should jnc J.uu.o 

1:\ I i\, 

a d::,ma:-nlcally rest:ructm'ea1)le mnltiproccssor v.rhich ex~1i1)i ts f::dl 

rJOft featm~es •. 



1.4 DesiGn Decisions 

a The basic vrord lene-th han beel1 clioosen :fo be 16- ratlie:r. than 

•18 bits in order t6 maintain compatibility with the majority 

of the newer corri},uters, especially IBr~. The byte and character 

are 8 bi ts long; e. double woro. consi sJrn of 4 bytes; a floating 

point word, with hexadecimal radix, contains either 4 or 8 data -bytes. -
b The word, 16 bits of data, has been choosen to be the basic 

addressable unit althoueh instructions are available which 
t.\.r1f"'L. J._,.a I . 

reference 1)its, bytes, doublowords, etc. as data. Dour>leword. 

instructions need not fall on doublowora. boundaries al thour;h 

double data Yrords must. 

The basic structure contains multiple accumulators/index 

registers. rrhe wmeral register structure simr,lifies the 

ordor code and. proves greater programming power over more 

conventional single accumulator organizations. Tho floating 

point rcgistm~r1, more of a p:roe;.rammh1g convention than ha;rdvrare 

featu:ce on the two smaller processors, a,re distinct from tho 

general registerc. 

lfo base registers are mrnd in acldressine;, instructions are 

capable of ad.dresf.d.ng relatively, indexed, and to page O in the 

short format. A long format permits direct specification of 

any v1ord n.nyY1he:re in the entire r.1emory oystom. rrho most common 

instructions ar0 available in sho:et form, all. are avai la1)le in 

long formo 

e The bas:i c unit of IO data is the byte. rrhis unit in natural 

fo:'.' :i:,2,pErr tapo perhiphorals, tho most common t;'{pes, as ,vel1 as 

the teletype. The bus orp;anization.nermits the tram3r.1ission of 
• 

a fu11 word vrhenever noccssar:;r. 

· \ f A :priority interrupt system which permits direct device 

OI recognition iici pI'ovided as stnndarcl. Separate re0 istox· sets 
i 

/ for the interruut levo1s are p-r·ovidod to maximize IO bandwidth. 

r II g A standa1~cli7,od., unified IO st~0 ucture common· to all processors 

:oermi ts both 11:c'ogram controlled and choxrr.el cor,trolled tram1:f'ers 

over the sp,me bue vri th a minimum of device harcl~."lar.e. 

\ 

I 1 



2.1 Instruction Format 

OP 

R 

X 

Dl 

D2 
I 

r~or 
DA 

~hort form •··- •-·-·•·« . .,,,._. ____ ,,. ·+-, 
j 

I 
. . ... -, 

basic op • ··-·• ·-c.- ., • • p 
.. - ·•~··. ·-• ... , ··•··. . . . 

D 
long form 

j OP j 
.... ,. ..• ·-• .. -~.J.--

·'-' . ~- . . .. . .2. . . . . 
extended 
op form 

IO form 

3 

3 

2 

8 

15 
1 

8 

8 

• ..• . .. -~- • . .. . .. 
j .. . . .. . 

11 1 0 ' R ' X BOP 
I • -- .. . . .. • • ~ • • • 0 • . . 

·,~ .... -~---~--····· 
11 1 1 · R 

.. -. . . . .. . .. 
DA 

I • 
• ---·•·· ........ ,.,. ,-,fl~ .• . . . 

• " f ' 
... . 7, ... • 

, I l 
• • . • • • . 
. ' •.... , •···· .. -- ... 

i Ii . ! 
•• ~,....191 • • • • • • 

• . . • . 
I5 
.2. • . • • . 

. . ., • • • • 

• 
1) 
.2. • • 

basic operation codo apocifying major jnstruetion class 

eeneral register specification or sub :function selection for 

non accumulat n reference instructions 

index register and address mode selector 

short form address and immediate operand 

lon~ form addTess 

indirect add.l·essing s:occ:i.fica.tion 

extended operation code spncifjine instruction 

IO device acldress 2.rnl bus seJ.ection 

. . . 
e- -·-• . 
• . . 

• • 

• • • 



' . 

2.2 Instructionn 

Instructions may be divided into 2 croups , bisic a,:ncl extendr-;d. 

The/ basic instructJ 01,s appear :in all models ana_ may ej_ther 11e in J.on5 o:c 

sho,~:·t format. Bxtem1ed instructions arc implem~mted in some modelr:i, they 
I 

trap when executocl in r.m.chines for v,hich no harctware has been provided.; 2.11 

extended. instructions n.-1.·e long format only. Instruction class is 

determined by the 3 Op Code bits (0,1,2) of th0 instruction word. EOP 

(extended) instructiomi are characterized by a 110 pattern in the Cp 

Code ancl the specif:i.c opo1·ation in the D
1 

bi tn. 

I /14 

All basic instructions 

a1•e implemented; the 

EOP class is uniformly 

trapped. 

/16 

All 1)asic and some 

BOP instructions, 

tho rcmaind.er of 

/32 

AJ.l EQP and basic 

clasn instructions, 

some 1~0P class are, 

b;,,r convention, 

stiJ.J trapped 

Instructions may also be classified b;y the type of opor2,nc7-

they effect. These include: 

arithmetic 

locical 

floating 

branch 

IO 

signed Yrordb 

unsigned words 

floatinr; point clouble/quarl:ruple words 

address po:i.ni;crs 



A,11, .. ,1 • •. "---·--"'-",.-.. _~--·--··· 

(HJ:nc:'i,.-

cl~ss 

load . 

add .. 

\ 

OP mnem def:i.ni t1.on 

i 
0 ! L load selected register {R) from·memory; condition code 

remains unchanged t 

t 
' ~ ST 
i 

store selected register (R) into mem:ory; condition.code 

remains ur,changed i 
~ 

l N 

j 
~ . 

and'selected register (R) with memory, place result in 

selected. register; condition code 0 remains unchange_d __ -
1 set· if nega·tive- result 
2 cleared if zero result, 

set oth0rwise i . 
} A .I add contents of selected register (R) to memory following 
i . 

the rules of t·wo I s complement arithmetic, place result in 

selected register; cond.i ti.on code bi ts a.re first cleared and 
i,. I i then. set as follows: 0 set if cµ.rri out of bit 0 
1.: I 1 set if negative result 
· ·· I~ 2. cleared if' zero result; s·et otno:r'ii:i,.:Se 

! · . ! general Conditional br:~h and sub:~u~~ne ;i~;;.,~:::,;,,tion; l r R bi ts specify :particular operation. When R=7 the program 

I_ i counter, updated to point to the instruction following the 

J · · · ( bra.'1ch, is saved in general register 2. The condition coc..c 

\ · l remains unchanged for all branch instructions. 

!1'· f:!!· __,...;;..;.;.:.;;;:.;;::...:_;;;;..;;..-:.:;,-------------------. _ comli ,don 
I I . 

-~ BCZ l O ; branch if condition code bit O 1:1{t· 
fB:-or f1f 1 
1, BN •_ .. ! 2 i 2 ! -i ~ -
i \ ' i B I 3 ( unconditional branch 

{ BNC l 4 ] branch if condition code bit O Jl9.i set 
, -o·p I i 
'-"'- '5 !· 

t B:l !6 ! 
·f BAL i 7 i branch 
~ I :t • 

! · l l 

-----~, ~·--··--..,........,_~----------

_ _,,, 
and link 

1 

·2 

----- -----------------· ----- .. ---------------- .. 

~' ",, 1 

10<'12_1~, 



' .. 
· , 'A,:1 i·, "' 

OtJ.I? ';-

(. 

,._J' 

·--.. 

clnss OP· mnem definition ' \ 

. ---- _ ... · - ----, . ! AdO.:.> 

i Ocl3)(; -.... ... --' 

r. 

l !' 

modify 15 n' 
. i ~ 

general memory modification instruction, ;R bits.specify 

particular operation.· Condition code bit O is changed 

only by the two shii't instructions (R"."4,5). Condition 

\ 

1 j 
I :J 

:_~1-·: __ : ' · 1~1.'! 

code bits are set as followsc:for ill mod.if'y instructions: 

b 
Q 

. , 1 set if' negative result, cleared if' -positive 
2·cha:rea.· if. zcro·x:esu}:t·, 'sot/;ther•:iise· . 

! I 
··1· n o:;:ie1·a:t:i.on--: I T f. ~- no oporatfon"but co:ndi tion code' is set to reflect state ' .. § . f 
1

1·.·.·. le 'l ::g:::lm:::::e::::, the memory word is complemented 0° 

. '. j a bit by bi_t basis ·. I . 'll f I 2 inc:::-cr::cnt, one is added. to. the sepcified memory locat:..o:·, 

:1 · l CI t 3 ari thr.-iotic · 00:'1:plement { two I s), complement· then inc::"G:r.0'":; ~ 
;l t I 
I\ I' negate 

.J • -~t shift rir:ht, the me;no:::'~Y vtord and cOndi tion code bit 0 ti i ~ -4 ·ttS:'.; 41 
'. ! are rotated together as a 17 bit :register one :place to 
,1 f · .. the rittht. lo~dinor./condition coda bit ·o, from bit 15 r ,t l l ~, 
] f SL · 5 shift le::t, the memory word a:nd condi_tion code bit 0 
l ;I :~ · ~ '· 1 · t are ro-ta:ted left_ together as ;,. 17 bit register, loac.i::1c· 
. I I i 1 r, · 1 oondi tion code bit O from bit O of th:-, ;;1emory word 

-I S3 . i 6. i. s,;1a:p ,:bytes, the left and righ,c bytes of the r.,emory word 

} . J . f are interchanged 

f CL . f, 7 l clear, the memory word is set to al1 zer.os· 

I. 



_,..; 1,11,•, -··-ii.-···-----·---··-· 
,Ad()C, 

,.oc1:1~ i I o>i:,>;, 
--... ..... 

clRSS OP nnem defi~ition ..;....~......c-,---~-"-'---=--;-=------=""--'-'--=------------------------------"~-
EOP 6 # 

1 
I 

jextended operation code class; forced long format; 
! 
jD1 bits specify particular operation to be performed 

jby selecting an en_t:r:-;y _point into a read only memori" 
froutine. The effect on the condition-code {s 
i 
1 'determined by t:he particular opei'ation perforrr.8d. 

EOP class instruction doubleword 

r: .. ~._ ........... ,,.: .... l .. _,.,.., ___ "'" .... ~-..... >,~. ~> ....... ,-~. , ...... _,.._..,;_~ ........... ··- ·----·--·,..-• .., •• ,-..,. .;;..~-;-:·~·---.. --~--... .... ,~ .. -, •• ~ .. .,,_ .. _ .............. >·_-.......... : .. c>:-·· ·-·-··--;, .. , ~ .. w --r 
I OP = 6 R \ X I D l I l . . D . . l ·-·-···-::i::~·; :~==~:J;;;;;:,::::=:~:=:ilC . ~ . . . . . . 

general operation specifies 
register memory word 

If the operation specified has not been implemented in the 

machine a trap occurs as follows: 

location ~10 receives t::10 u:oclated program counter 

9 EOP instructio~ 

10 effect.i"'..re address 

11 con:tains the er.try point into the EOP ha~dler. 

This word is loaded into the program counter 

Since J\,· codes O through 3110 arc never implemented in the 

machine hardware, some 3210 programmed 9perators are 

available. 



. -------- -~yt:_-- --~;;._~~--~--~--j;.::;~f:sJJ ... , o_,. ~L t~1~-*- i~· o-f 1;t\ti:1 -t~~'?#~,(p1-v ~ (J,:)J-
Wu... Jtu~.vw-J. f, ,.{,H-Or;:.-J.{)-~ u¼ ) ,r:: o-J..:.;_~ &,t.o ... (.lr....., ri....,-dc.,t,1 C:.,i--U,Q,;., _(d~ t 

I fD LDC 

. I tJ I 5l( 

f-\ \J l,) 

' ~t c.O, ,,€A/· .,,4 ~ t5 
• 

\ 



--104~ ------- -- -------l)(v--- _- -- _- __ 

/OS 

( ,, ,. l, \ 
r:'.Jre- .• 

Sh,·H-, 
__ )J,r (t · L~ ·( 

\ 

H?w1 ~ti'lJ ~;,,,., 
~vd,~:·+ 

/J it, .J (,Ltf ~:-'.\ ! .. -' • ._ ,<t-·t1'.' l·<-f 6~q ..._,, t ,. ' 'i 

ti&<Lta.:.h1 , 



0/ ··t, I M-\i,.t t,,.ti.l.l.1 CC r1 -
. 4'"'t Cl' 

/1) 

11 

r, , A J . ,. \ ; ,. . .J ,~ \....l' ... '-~tv'~ ... '-./\I : ~ \' ~ J.l :t y) {/\ 
cc¢, cc t,~'-:). i. I ~ 

f•\. t\ :). f>-\.(_ 

} 

~tr:,,-.~ · cJ, ··.~ ~,\~J .. e,,.._1;1 C.r,~li f i.t: Ct.Li 

...e_,v,JC;.q ~- jj~ J:.u~,} ,J'A /4 , 

(,,·'S, · t. ,;·~_-:,,..!. ;!~ .. ,~ ...... 

,- ', -t 



J /_D__ ~=- : 1-'>l f\) - · ... c ~ / :~t ;- ,r ;1-~ _ }J.,, Af½d : ~rtk.' -P-:J" :1j;l ·_· ({JC<\c,'.-~l:1; : 
# JJ_,_ Cl\,. t__,t,,J " ( JC< ~···:;· i:)v,.-_t (-(_"'·,, ',c.t.,~, ~.i ,1 C,'tl.JJ.J,,_f',• ·-.A· •... , 

Trro 

'I :) 
_;; 

LC Hf 

lls {\ ( ,\.! ._: 
l , i I 

,./;J,l :lt,•'v'A ~ i?/:J:.(·,.·.{:,,.:/ -h Ltt _''l:0Lt,(~!, 
f 

' t I . 
(

' f f I /, <-,, /; ·.,. ! 
• - :,("·' \J, ._ ,· •• \ 

• • .t 

,..{'+• -~ , .. -~,.,~ ,;· ! ',. 
i \ 

,:.~,.I>::._'""·: ~_.c.t,,.t~.; 
' 

t~ : 1-;) v-.·· . 



i 

f) 

. ! 
l .. 
j l 

'-'~ ~, J 
I 1'~ l(!, :_.I._;·>.,.; 

/~ itr 1-i -v~ J 

·-., ·/1,' ,·, .. 

~ ,; ' 
(;'..:\:\f_"}L (.s,:,t A~ ... ·.,,~ 

;.2<.1:/'. ·· fc..,,.,.:,1 

I ,-
-\_ 

.,',,,.,. I 



• 
,-;~f}i~t 

.. - ... ," I) t " 

> .· 
) ·- t.ta'~, \•! ~. 

\t 

l"J.c-l/tJ-·\, !·t. 

\ 



}.,i,,·, . 
. fJH'.lX'1t 

IO 7 

I • ! 
\ 
' 

I 
I,. 

I \ 
r 
l 
! 
> 

t l " ~ 
~ t 'l 

.~ 

f · f. 
~ r. 
t t 

I 
{ 

in:put/out~~ut instruction class; R bi t_s s~oecify particular 

operation; f'oroed l"ong format. i\ is taken to specify the 

· device, th(:J lower order 6 bits select a device code, the 

high order 2 bits select one of 4 possible IO busses. 

Cond.i tion cod.e bit O is unchanccrl. Cond.i ti.0:0. code bit 

1 :i.s set on tho :read. status ( IOS) instruction if no 

d!'lvice res::oomln and. on thA command ( IOC) instruction 

:i.:f' the command is unacceptable. Bit 2 is cleared if the 

iata byte or wo:d. resulting from the operation is 

· dentically zero, it :i.s set otherwise. This has na:rtfoula-r 

eaning in the IO test status (IOT) instruction. 

.A byte is :no:c·mifTly t:rarrs:nHted to the device from the :i:ight 

half of the effective address, some device$ will automaticc:,lly 

ta...'lce the second byte also. 

_R_, ..... o ..... n ... e .... r,?tio ... n...,_ ____ _ 

ro:a 

1
. o 

IOS l 
1, 2 
I 

read device data word into selected memory word 

read device _s~atu13 :into seloc-te.d memory word . 
unassigned 

TOW 

roe 
IOT 

l._ 

3 

4 

5 

: I 

unassigned. 

VD'i te device data word from selected selected memo::::-y ,10:-..·d 

conmand, ,1ri te device status from selected memory ·wo1·d 

test status; the device· status and. the selected memory y;o:::c 

.\'"D I are . ..,1~ ec1, a non ze:!::'o result sets condition cod.e b:i,t l,.. 

unassigned 

IO class instruction d.oub1~1."0rd 

device vrord 

R~ad. inst!'uctior,z to u d2viC(.:i that can 'i7:'.'i te only o:r '\:rri te instructions 

to a clevice that can only read will rezul t in 110 data transfer. 



.-··;• - - ' ,--~- ~~-·----
), I(,•,, 
(J(J.I~ i" 

,. 

f-,,';::,. 

,_ 

/ 

, OO_J/'"; ·----... ,' 

., : 

2.3 Generai registers 

E~c~h level o? ~ri·o+v 4 ry cont" ~ + - - J:' .._ aa.llu a Se V of 16 general registers, 8 of 
which raay be used by the program as accumulators, index registers, etc. 'I'hs 

progr?-m status word (PSiH) occu:pies rei:;isters O a.2,d 1. These registers occu;e>Y 

page O words Oto 7 in the memory space fl.Swell as the R bits in the instruction, 

hence register to register instructions are possible. The registers may be 

stored, loaded, added into, etc. depending on t:i.e operat~on code of the 

particular instruction used. ·-The ·se'oond g:roup of 8 registers contain the 
-···-- -··-- ·--· --- - .- - --·- - - - ·- ·--··- ---·----·--· · ... ~-.,,.---· 

trap lo::::ations for unimplemented EOP instructions and the :pu,;h down y;ords. 
I 

These may be modified or read as memory words but are not explicitly 

·referenced accumulators. 

register use . 

0 

l 

2 

3 

4 

5 
6 

7 
8 

status word,:contains condition code, c:tc. 

status word., cont?.ins progra.'11 cou.vite_r (PC) 

accumulato:r-, subroutine lh1kage registe:r-, o:r secondary inde::c 

accumulator or main index :register - 7 

accumula±or 
11 

II 

II 

EOP, receives the updated program covnter ._ 

(9 Bor, 
-pfrt3 

II 

II 

instruction itse~f 

10 

11 

12 

13 
14 
15 

--

,.J J. ' effective addxess 

EO?,contains the entry point _into the EOP handler, loaded into PC 

_contains the push down pointer 
II II 11 P counte:r 

reserved for use by processor 

Teserved for use by processor 

.,,t,•,, 
1.0.•.1.1:, 

.-·· 



Ii'or each J.evE•l of machine prio:d ty, both backgrotmd and IO, 

thire exists a set of {~e11eraJ. registe1~q in add.i tion, the harclvrnre 
insm,es that the applicable set 1t:;';'.'\ is available at anparent locations 

0-15
10 

in memory address space. Thus, the general registers need not b~ 

stored .and restored. during interrupts. 

The lowest (background) priority level contains f'loating pohit 

registern. These registers are not available for use on the higher 

prio:d ty levels unless they are exnlici tly stored and restored. 1mder 

program control. Each of the 4 f:loatine; point registers is 64 bits 

(4 words) long, permitting multiple precision floating point instructions. 

In all floating operations the R bits of the instructions specify these 

regir1ters, only the low order 2 bi ts of R are Ufled. 

T~e £mt of ~enera.l rer;isters ma:p onto the main Memory space :in 

page o. The f1'\ure on the left sho-ws the entire memor3r spa.cc; the fieure 

on the right is an exploded view of physical memory. Apparent memory is 

the memory space as seen by the running process; this differs from ph:rsicaJ 

mem9ry in the locati?n of its general registers as is shovm for a priority 

level 2 process in the bottom figure. 

Jn.Q.i.0.1. _ lc~Q.J.f,, _ ·--------

14 2, core 

16 2 minimum hardware, 4 maximum 

32 4 hardware 



memory space 
r···-·-·-·i ·----------,------· 
1-•. ....J__________ . ____ _____, 
. I 
1----.,___------·-·----- ···--· .... 

page 0 

1 

--~ .... , ......... 
i 

l 

i 
t ....... -··------·· ·-- ~-----

<----------Page 127 lo 

~---·page 126
10 

,< 
----·--··---·--·-----·----··--··----1 

level 2 
r0p;iste1·~- ·· ---,\ 

: 
.... ~-~~~-.... -~--~- -...... _ -~----~----·-'"-·--·-. ·--~-· 

flo,itin(; \ 
~---·-·-point ···········---·· ~ ". 

level 1 
<----registers 

level 0 
<···· registers 

\ 

page Oas seen 

by level 2 process 

I 
.._ • .,,__ ..... -.~ ... -.--.--- .. -~.,-... ~ ... ,., ..... _. __ -,-.-~. -~~-~-" ...• ----- ~ I 

I 
I 



2.4 Program Status Word 

1,he col]ection of bits that constitute the state of .tho. processor 

between in~tructions arc called, collecthrel;y, the Program Status Word· 

( P('"(1f) 
01, • This state word occupies the doublewo:rd at memory locations 0 

and 1 of the active process, corrospond.in5 to ceneral registers P. 0 and R
1

• 

fl. _.....,_::t.tn··R·· .:F·-. ·~····•···1l -·•· ·r .;.~ .. '.·.··· ·-c·c· .. -r.,i ;:...·,.·G•1···1i-~ ;.,G··r, 0···1 -· .. - •·· .,, ..... ···• • ··• ...... ·---•··-.. • -···•·· .. .......... 1 
r\ J..J I r,... .I.\. .J..L..'1 _ • .. • ..... PC.· ..• · . •. ··• ....• · .. --• · ......... •····· ·-.. -~------~•---...... --. --•····-·•···-1-1---•-·--•·--i---~-····-·•···,l--- --····•·-• - - --

hlJ.. ...... s_...) __ ,..9.efillJ ... it9.n.,._ __ . _______ ~---------

0 

1 

2 

3 

4 

5 

6-7 
8 

9 
10 

11 

12-13 

14-15 
16 

17-31 

\ 

arithmetic (acld, divide, floating, etc.) enabled if bit 8 = 1 

machine C·he·ck ( p:rocessor or memory error) 

nonexistant memory ( reference to an ad.dress not in the memory 

system or to a protect(Jd area) 

nonexistant inntruction (attempt to use an instruction foT which 

no such ha·rdware has been provided) 

priveleeed instruction (att<:'Jrnpt to execute a system instruction 

while in user mode) 

read only violation (attempt to write into a write protocf.ed 

memory area) 

unused 

arithmetic trap enable 

condition code bit 0 

condition code bit 1 

condition code bit 2 

priority of act:i.ve process (current re~ister grou:o) 

priority of interrupted process (last register group) 

unused, alv,ays 0 

program counter of active process 



2 .5 Ad.dressing 

Add.rcsses are gencn1ted by either lo:ng or nhort form2;t instructions. 

In pi ther Case, the processor ·forms a 15 bit effec -1:ive address (1~FA) which 

it 1kends to the memory system. 'l'he left byte (high order 7 bits) of the 
I 

addros~ is called the :paeo, the right byte is co,lled. tho l:i.ne; there a-re 

128 :.oages of 256 Yrord.s each directly acJ.drcssabJ.e. 

The available addressing modes are : 

direct (no indexine) to any word in memory, 
~ . 

relative (..:. 127i
0 
words from the inHtruction); 

immediate (the next word is the operand, 

linked (: the subroutine linkage register is used to pick up arguments or 

make returns), 

indexed. The shor-t a.isplacement (D 1 ) is taken to be a two I s complement 

negative number whoso si.e,n is to be extcndecl. JJone format aa.a~r.osses are 

specified \'lhencwer D1 =12f\0 or the instruction implicitly forces t!1 in 

format ( all IO and extena.ed op cocle instructions). 

Add:cessing table 

X ,9'-· •. s.J:l.!E.i....--1.?Jl,,<..._.:_ ______ -9..0,:.:'2.9J:J,.1?.tJ.9_iL_~--·-···----··-

O ! 
1 

2 

3 

n2+n2 

D2+R3 

direct 

relative/immediate 

linked 

indexed 

The basic addressable uni~i; is the wore, ( tv10 bytes, 16 bi ts), al thou[;h 

certain instructions do reference bytes or doublev,ords. Vlords in Btorage are 

consecutively nu.mbered starting with O. The 15 bit address field accomo.'tatos 

a naxirnum of 32,768 words. Vlhen onl;r a pa:l't of the ma:x:ir:rum storago ca:oacit:.r 

is available in a given inntallation, the available storaee is contir;i.i.ousl~, 

addrer:sn.ble from o. A no:nexistant memo:c·y trap occurs when an~r OJ)erand. is 

located. beyond the instalJ.ccl caJ)aci ty. The invaJ.id. add.:rcns :i.s recocnizcd 

when the data ie accessecl and a :orocram interru-otion occurs. 



) ',, ,''' ,. 
~ 011.1/. 

Priority (Interrupt) Structure 

The j.nterrupt systeo is clesigned to hand.le 
I 

1-i . 'f levels of priority 

inclJding the main 
I 

an iriternal source 

program(at ·the lowest lf.,vel). The i:nte.rrupt due to 

(trap) or external source cauces ·the nev,;r, appropriate 

set of general regis·~ers to be used in place of the previous.ly operatbg 
.. ,. 

set. hence, no time is ·lost before the interrupt service program can begi:'l. 

Priorities ?f service are fully nested; high priority ~eq_uests int0r1·put 

low priority processes but even lower ones are delayed., J,inkage between 

the interrupted process and the interrupt process is :peJl'.'.forme_d by the 

LRG bits of the program status word (PSJ). These bi ts r'8ceive the prio::t.'i ty 

number cif 1the interruptE:d process; the priority of' the ;currently active 

p1'ocesf~ is contained in al bit :register, the :register {r.roup (RG) regicter-. 

Priorities are assigned a::: follows: 

Level (R°a='Y · use 

0 

l 

2 

3 

ma.in Pl'Ogl'am 

traps, lowest hard.ware device level 

device harcx:.are level 

hi5hest hardwa:-e device' level 

When an interrupt occu:r:s, the LRG bi ts of' the new PSW are loaded. 

from the RG register. The RG register is then sot. to t:lb.e ne:w priority level. 

Subsoq_uent instructions will co:ne from the in•_;errupt pr-..l)cess PC and ree;ister 

set. 'I'he interr1;1pt is oleai-ec1 wi tp. a d.eo:;.~eak IO 1.nstruc:tion which load.::; 

. the RG register fr9m the LRO bi t_s of the current PSW. :Elubseq_uent instructiotis 

,:fil1 be. from the origim:,lly interrupted process. 



3.q 1 Devices and controllers 

'fhe hardvn,,r-e involved in IO O})cr·at:i.on is locica11y divid.ed into. 

4 p".l'rts: I~ section, IO bus, controller, and clcvico. The IO section 
I 

and/buG, are described j_n detai1 below. Controllers and devices are 

generally d.ifferent for each type of IO media; from the programming })oint 

of vie,\· most controller functions mGrge vdth IO device functions. 

In all cases, the controller ftmction :i.s to -provid0, the locica1 

and. buffering capab:i.li ti es necessary to operate tho 2.ssociated IO device. 

Each contl·oller functions only with the IO d.ovj_ce for which it is 

designed, but each controller has standard sinnal connect:i.ons vri th :rce;ard 

to the IO bu~. The telet~rne d8vjce (keyboard, printer), for example, 
I 

connects to the IO bmi throu0h teJ.etyJJC controllor logic ( single character 

data buf'fering and· inta1·rupt logic). r11h0 d.etaj_Jod meaning of the command/ 

statun bi ts read under :proc;ram control t!n·oveh the IO section from 

controller type to t;;rpe 1mt the geneTal format remains unchanr,ea • 

• 



3. 2 1\fodes of' data transfer 

There are 3 baBfoally different modos of' data transfe1..; iivailable 

in the IO systen: prog::.'arn controlloc'1., multiplexor chrtnnel, and. selector 
I 

chafmel. All three use the standard IO bus inte2:f'acc; the thi:cd, optionally 
' implem~nted, provides an nddj_ tional !)h~.rd.ci11 bu~i interface and ad(E t:i.0;1aJ 

control loc;ic at tho pr·occ:ssor- c:ncl. T.~a:d.mum clata tra:-12:'-"a:-- re.te of 020h 

rn·e ini t:i.atc,ct by IO :i:n~,t:·uctions issuerl to the a})1_-,.;::-oprif~to cont:r.oJ.ler, 

rat;1cr tho.n to tho chri.nnol. 

1 P1,ogra,r:· controlled tranr:;for, ,:rhtle sJ.01:.rc:1:'., '~, provtdns the greatest 

fle:~ibility. Data ma;/ bo modi·:"ied, limit checked, or othc:,ai::rn monitored 

. as :it is inputted an<l s1)ecia1 control seq_ucnccs rot:c:_u:ircd b~r apecial 

purpose or custom closif;n(Hl JO oquip:nent ma;/ bo r:encro.tea. }i'o:C'· t!10. slc>';ror 

devices, especailly paper tane or te,_~it -·...:,, ,1 -J·:.·~(\-~ 0-i,0 oc:::-v,1 cont:·ol o" 

IO leads to simpler· proc:ramP·d.ng. 

rEul tiplcxor channels are urovidoc1 b1 the 1)asic proccss01·n. Y!hon 

a device requirefJ channel serv:i.c:ing, tho s;ato oi: t'E::o procos::-wr is du~med, 

the device serviced, and thP. state of tho })TOCGGf;o~ rentored. The progra:-n 

never realizes that the trann:fer took place e:xce:pt that it haG been subjcct0d 

to a short delay. The multiplexor chann0l is capab;Je of sustai;1ing 

concurrent IO o:pe1°ations Yd th scvDl'al devices. B;rtt.es of data are 

i.nt~Jrleaverl toc;ether and. :routed to or from the sele,cted. IO devices and. to 

or from the desired locations in main .... 
S vOJ~age • The! cha .. 11,ncl' s sincle 

aata pat!l is time nharea_ by the concurrently o:perat:ing dcvictrn. 

Selector channG1s n..rc capable of ·operatin5; only one device at a 

tim0:, however they permit e::rtremely hie;h data rates,'9 over a million bytGs 

ner second is possible. nevices such as disc files; operate on1y v:i th 

s:;c 1cc tor channels, othe.r devices operate in· all da:ta transfer modef1. 

As with tho mnl tiplexor channel, the selector channc,1 is invisible to the 

1n·or,;:ran:r:-1er; a11 instructions arc cHrected at the cl2:vicc rather the-n the 

chrinnol. DovicE;,J rec1u:iring special hr_,;eclY:arc :f'eatur:'.'crn in tho JO syster:1, 

-- sucli as signal ave:r·a.r;:tn1:;, nor-rnall:r ,vould add a sele,etor cha.nnel vli.tb 

o,:,:m:ropriate ROS cont-r·ol 



3. 3 Operation of the nm1 ti!)lexor ch~rnnel and interrupt 

A clovice sip;nals that it neecls .:,__t'Lention by :ro·11trecting servic:e at the 

priorit;r J.evel that has been e.ssi[;'ned to t~10 device. Devices operatint; on 

the multiplex'or channel require ~ttention for ovcry byte (word) of inforno.t:io:n 

transferred; devices under program contro1 require attention v:henever the~r 

c01:1plete ·a spec:ified. operation, Vlhon tho priority of the active process 

drops be low the priority of the roquer,t, the intorrul)tion oceurs. 'l1he state 

of tho old process is stored in its general 1•egister set (i\, and I\ cont~in 

the processor state) and a now ce:neral register set is switched in. The. 

priori t~r of the old process is saved in the LRG bits of the new status word. 

Processor hardware then requests the dovico to transmit itG address (6 bits); 

the address is or'ed into bit positions 8 through 15 of a word with bit 

posit.ion 7 set to 1 and. all other poBjtionf3 o. rr1his arld.res,1, called. th~ 

inte1·1~upt add:ress, lies somEw1here on page 1. 

Su1)sequent operation depends on the Y,ord. fou.,,'1.d Rt tho inter:r·upt ad.d'.".'ess. 

Any instruction class otheJ~ the,n JO is executed, such an instruction is 

normall,y a branch to an IO service routine for proc;ra.m controlled transfer 

operation. An IO clas:::J instruction signifiM1 th1. t the device is under 

multiplexor channel control. A byte (word) of data is read from (v:ritten to) 

the devJce and packecl into mer:iory ( unrJackcd. from mer.iory). 'l1he byte a,ddross 

:Pointer and byte counter are updaterl. If the byte counter wont to ~,;ero 

j_ndicating that the 12,st b:rte (-word) has been transferred. or the clevice 

incl:i.cated an unusual condition, the instruction follo':iii13' the IO class 

inst:ruction in a1so executecl. This is normaJ.ly a branch to an IO service 

routine that re-ini tiaJ izes the device and char1nol for Bubsoq_uent onera:tions. 

If no unusuc1l condition was detoctea. a.net the byte counter d.id not over-flff:r, 

tho a.evice continues ope:rating and ·will reinte:c-rupt with the next data. ·byte. 

\ 



The format of the words statting at the interrupt address for 

nmJ.tiplexor channel opr)ratj_on a:ro giiron below. Tho double ,-,ord at that 

addrerrn fo::- pror,-ram controlled transfer is a simple sinele or doublcword 
• 

branch instruction. :Sranc'h instructions are normally-unconditional, direct. 

BC stand:;: for byte counter and maintains a count of data bytes 

as they are trannf erred to ancl f1'om the dcivice. Pi·ior to each transfe1' 

BC is incremented to determine whether or not this is the last byte. 

Yihen init:i.alizing a device for mul t:i.plexor channel operation, the 

proerammer must J.oad. BC vri th the t·wo' s corrrplern,3nt of the number of 

bytes to be transferred. id; tho end of channel o:per·ation, the 011ti~re 

worcl at the inter:rupt address ·will be set to zrJro. }~xceptional cona_:i.tions 

whj_ch cause termination before tho suecif:i.ed. number. of bytes is re~,d 

leave the TIOrd non zero. 

:SA stanc1.s for byte address and maintains the aclo:rerrn of the dp,ta 

byte no:tt tobci transferred. t_o and from memory. Prior to each ti·ansfor 

BA is i:ncro@ontcd to form the byte address of' the data byte. This 

byte address is shifted r:i.r,ht before use to form a word acld_-ress, the encl 

bit detorihines which half of the wo:rd. the data byte vrill be loaded into. 

A 1 in die ates the lef-t b:rte, a zero the r ic;h t b;:{te. ')hen the _progran 

:tnitia1izes the channel ·it muct load BA ·with the byte address of 

the first b;,cte to transferred. 

Unless the v,o:r·d executed at interrupt address ( or interrupt 

address + 2 when reached dur:i.ng channel ouoration) is a branch clar:is, 

o6ntrol i~mcdiately returns to the interrupted process. The priority 

level is reBto:r'ed. fro1".l the LRG bi ts a.nd the proccsnor cont:i.1mos with 

the old procram counteri status, and general registers. 

\ 



),, I•,•,.· • 
".,ti \I 1 

'"'> ~' ,,, ,,.~ 
...,,,0, t To o6s -

---The CO:!'.:..Ylection betweo:-1 · th~ processo:C a:1cl the IO device control tr.'li ts 
f 

is call
0ed ~the fo Bus·. Th~ interface cons:i.sts of signal lines that connect 

the control U:'lits to the processor; except for the si[;nal used to establish 

selection~ all conm1unications lines to and from the processor are common 

to all control units • .At any one instant, however, only one control unit 

may be logically connec.ted to the processor. The logical:'.. co:r-.nection is 

maintained from the time.it is first established by the processor until 

it is broken by the processor. The rise and fall .of all signals trar.smittecl 

over t~e interface are controlled by interlocked responses. This inte:.:-

locking removes the dependence of the intcr:fc:.ce on circuit speed and bus 

le:r.gth, me}.:ing it applicable to a wide variety of circuits and de:ta rates. 

32 signals oonprise the bus including 16 control signals and 16 data 

signals. Half of the sii-nals transmit to the :processor, the other half 

recievc from it. The Select Out signal is retransmitted by each dcvico 9 

as is Select In. 

; .t,c, h ,, , 

; (),'Ji:; 



Line (direction) function ~---------·~--, .... ,.. . ..-,_,... _______ ... _ .. _ __.,..... ..... __________ _ 
Adclress . 

, 

Address 

Command 

nata 0 

• .. .. 
Data 7 
Data 0 

t 

• 
Data 1 
·Direction 

l'Jful tip lo 

Operational 

In 

Out 

Out 

Out 

Out 

In· 

In 

In 

In 

Out 

Request 1 In 

• 
0 

• 
Request 3 

Service 

Service 

Status 

Status 

Select 1 

Select 3 

\ 

In 

In 

Out 

In 
Out 

Out 

Out 

echo on Address Out, used·to detect nonoxtant 
device; iesponse to Select Out 

selection code is on data lines, respond with 
Service In and become selected 

command is on d.ata J.inos, respond v:i th Service In 
if acceptabJc; else, respond with Statun In 

data lines from processor to device controllers, 
also includes command. specification rod address 

data lines from d.·ev:i.cc controller to processor, 
also includes ntatw:; and aclclress 

additional response to Service Out for to cornnuter 
data transfer 

response to SGJ'V:i.ce out when addi ti.cmal byt'.:'! is reqi;:i :i·f,d 

system :reset when down 

rcquoGt to proc<2ssor for attention 2-t each of ·3 I priority lovela (1 loacot 1 3 hi~16st) . 

drops as response to most Out signals, rises as 
response to Address In 

accept or transmit data on data lines, respond by 
dro:p~o:inp; Serv:co In o:t rais:i.nr; Multiple Tri 

respon8e to C0ic1mand Out if unacceptable cor.1,aand 

processor request for controller status, rosnond 
by s0no:i.ng status and. raising Direction In 

nrooessor request for add:r-ess from requesti:nr, dov:i.ce ! at the same priority leve. Select Out is propacatcd 

I by those devices not requostine, blocked by tl10 fi:.r·,d.; 
I device requcsti:ri,IT, respond w:i.th Address In, send. 
f address on data lines 



3.5 J3us flow diagrams 

- --- .. 

The followincs diagrams indicate: signal timing_ relatiomihi w1 

on the bus for various forrrw ·of transfer. · Note that t.he only difference 

between read and vrri te is the status of the Direction In bus line, that 

line ?olely determines the d.irection of tran$"Jf'Br. Devices capable of 

both readina and writin{l,' have a status b1t which determines the direction· 

and use of the corres:pondinC,' Direction In bv.s sienal. 

\ 



'I 

( 

\ 

--·-··~-------· ----~ 



_Address· 
.. Out _ -

Service 
In 

Service 
Out. 

Multiple 
In 

Data 
In or 

Direction 
In 

_, ...... -,...,,_.--.. ___ , ____ _ ·-------------~-------

~OW Co1;1~nancl opGration sequence 



~~~ess ···~ .:.. -~j L_:.,_: ___ ;_,:,~:_:_,:."": .. .:..:____:_, __ 

i~rvicri ___ ~ r::::z---/-;i ~-·
Service~ ·--~-----....J ..;j D.-=-~-·---~----· \i ,~S~" '•-.. H-·--•cAT1 _
Out

EultipJ.e
In

Data
In or Out

Direction
In

~~ ,,.,,...w_•>l¢,.,.,.-,,=;.,i:~ :.i.:ic,v.,.,..i,.1,-,r..-•,)I'_,_~"' .:J!P''"""-'W""~f~,,.,;; .• ,p..,,.,..J,..,;Q."t;C-,-.>11; :,,R .,..,l",<.r.•~'~, ,,_. ,,.,.,~,/'/" .. ,-."ri-'~~>rt-~1>'f<•r-: ~ ,..,. ~~ct ... •:,,.,..,""' ,.,..."".:'"'--S:\-•,..,_.,.._......,,.,~,/,"'- .----·-~ ~ -ac,,..,,,..

1--A-;;;~:*~~ .. ~-¢t
lfl"'!,,"-.•~'f.,..<f.r,.l,o.y.~~,"f'4"-!::r<'.'-J."<'/O;l'.,~~"¥W;V"h,.,_,"'h'.,_,..'.!'"'·':'1"""•''.1~L~WJ.,_,l"'?.';,,..-:;'-~S.,...::;,,.,,.~.,..--,af~"'".,..,.;¼ .• 1.4.••,1:•.<"w,,

IOR Comma.nd oneration flcq_uenco
I -

Adclress
Out 1

I

i
Se}vice
In'

Status
Out

l!ul tip le
In

Data
In or Out

Direction
In

IoT.,IOS Command operation sequence

Address
Oui;

I
Se.tr,,vice
In

Command
Out

Multiple
In

lJata
In or Out

Direction
In

<;~ f -
7 ,--~~.,--,.,.··-.,.-....... -----

_] ,--· ·--~--. ·~·--'···~~---::--r ... -------~·---·-- . Li --
~1· 7·~-------·

:..~-.--... ~~"""""~,1;-v;.;iw.,,,,,--.... ~',i;!,,."i,., ____ J

.IOC Command operation seq_uonce

Addi'ess
Out 1

I
Se)vice
Ini

*
Out

Multiule
In ..

Data
In or

Direction
In

* Service, Ccm7:1and, Status

i'.Iulhple Byte transfer

Acld.ress
Out

Service
In'

Comri1arid
Out

Status
In

Data
In or Out

\

,.

r t\ \)1) fl j Valid I
.,.,,..,'-1,Z•.C·t".,'·' ,,,.~,., .• ,,,,,,.,,;,,·.-•~-·· , •• ,,,_,.,,,,,,,, ,,,._,..,~.-J,,._,.,,, ,,.,.,.,,.. "' .•... , •. , •""'"''' i·." ,,.,c,, •. ,c .. .,,.,,'<;.%,,•,•,•u•NW-·~----·--·--..,..----

Jlleeal Commarnl operation sequence

Request
. In

Select
Out

Address
In

S0:-YiCe
o,,.i. v.V

ServicG
In

Data
In or Out

;;IL· ---

\,, 7 '7---~--
\ . .

r
v+

" j

~T-~-·-·----
., (. .,..0 class _Lt:iil

"-.',,__J_f .l. ,,,, r--- -;. L... -···-··--,, 1\,_/. -I

. ·-.';\;.,, _,/ ~-
) -·

instruction at interrunt aa_rlress..;. show for
~ out transfer)

Addr Valid ·-Valid_
_____________________ :;_ __________ .:._ ______________ .J. ___________ L ______________ ~~~ ... ~.,.-------

~u
ro
i))

'd
0
~
i.Q
(t)

c+
0

I-'•
:i
c+ :,
f-:l
Ii

-r:=·
·o
d·

1.0 Introduction

'I'his doqument proposes a high speed, serJal IO l?'J§ ______ _

- - --

system in which 2 coaxial cables emanate in the processor and

thread their way through all IO devices. The bus is broken

(terminated, received, and retransmitted) in each device to

establish priorities and to permit long lines without degrading

the performance of physically close devices. All signal flow

is syncronized to code blocks originating in the processor.

The following are the major properties of the system:

1. Simple cabling - two single, simple coaxial cables with

standard connectors are used.

2. High performance circuitry - since only 1 receiver and

2 transmitters are required at each device, it is economical

to use very highly reliable, very high performance circuitry.

3. Information is transmitted in code blocks much as they are

by teletype.

4. IO devices require a serial to parallel conversion buffer,

some very high speed· control logic, and the analog circuitry

used in the receivers and transmitters. Much of this logic

would be required in any bus system.

s. Multibus - since the bus itself is simple, devices may

easily be interfaced to several. The intent is, partially,

to facilitate expansion to multiprocessor systems without

expensive crossbar S\.·1i tching systems.

With a SOns ~it rate on the bus, a code block would

require 0.8 usec for transmission. Round trip time through 20

\

devices and a total of 100 1 of cable yields a basic half cycle

-.of 5 usec _ ·io_r fhE: far_ cte.vices and about· 1 usec · for the· close ones.

These are rates comparable to PDP-9.

\

block length
device delay 20x0.2
cable delay l00x0.,-002

-2-

.8
4.0

.. 2
s.o usec

2.0 Basfo device Hardvmre

- -·· --·· ···· -2.'l Block Diagram

• I <B-------·--·-·1 ····-··---·-. ·. - .. -· ···--
.:L '

---<}-; ___.

./""'~, -···--«------·- ,!__}
l,

~ information flow

:Bu8 Out Bus In

I

switch
controJ

information flow
. ··--·-----~- _.,_ .. , .. , _____ ~

/

I J'-..· -~-J ,,~--------" :x:mt_ ·t--- --~---··· ·\, 1
. I ·~,, f "7' J ~-· ,.,.__; I . i ,.,/L_

\ ;.,•· . ·-·
,- ~-- IJ I : • -

/ ! -~-
' --

2.2 Control circuit details

.,

parallel data/address
inputs and outp~ts

Eus
In

J

2.3 Terminator

3.0 Code For~~t

' f if c . f 1·: i • -• -• ··u • -• -~
......... , ..•.....•. 1 •. •·~··•·-·•·- ~ -~• -~ ... "'
'\'

sta::•t. sync J

C comme:::.110 t,y::ie

~.:r r.fi co·,m,1a.:rd. r10J.e
l 2

D data or ad.dress

3.1 Comnand t;::-p;)r_:

icllc

0 Select

1 Sct:t11

2 Road.

3 Vi\:.1 i.te

arldrcfrn fol1o';:s, becoT:1.e sel~ct~(l if e.cldress match

processor loo}::lng for inteT:C:'U'Dt, send atldross

selected device to sond data

solectad device to accept data

3.2 Command mo1e

Hodo is usec1. a:: ad.diti.ona1 con-fa·ol inf'or:;1ation during read

or wr·it,) o:perations. Distinction i8 mad.e botwecn read/write stc>.tuu

vs data, acld.i ti.anal 'bytes, ille{SaJ. 001:imands, etc.

3.3 Data
Data bits transmit a byte of information or an a,1.,:lre::rn. On

vrri te opz1·ations they a.re supplied. b:r the procesr:;or; on read they arc

inserted by the device.

4.o Bus signal electrical nroperties

The bus signal consists of a group of coa.c bits spaced at 50ns
i

in'tervalo·. 'I1he hieh state j_ndicates a 11 111
, the lov, state a 11 0".

I
R~se and. :fall t1m,rn are on the order of 10 ns.

I

hi~h

low
\;,.._-----··-··--·---._j~ . ., -·'"·-·-···. ---··--- -

13 data bit:3

16 bit block

5.0 Basic operation

, Devices receive a bit stream -from the adjacent device, phase
i

their /interm{l clock to the start bit at the beg:i.ning of the stream, ancl

gener?,lly retransmit the stream to the next device after a-oproximately 4

bits of delay time. Decocl:me the bit stream on Bus In may, however, resu1t

in a very different operation. In res},onding to a read command, for example,

the selected device modifies the command. string, appending its d.ata bits, and

sends it back along the second bus but does not foward it.

5.1 Scan operation

Whenever the computer interrupt system is on, the processor

periodically issues scan seq_uences. Vlhen :c-eceived by a J.'equesting device,

the seq_uence is modified to include the address of the requeroitine device and

is transmitted back to the processor; it is not fowa.rded. The device address

is mapped by the processor into an interrput address and the interrupt is

processed. Scan seq_uence frequency is determined. b;)' bus length. The encl of

bus terminator returns the una,cknowledged sce.n sequence. Internal request

syscronization in each d.evice is accompJ.inhed at the beg:ining of each block.

tiLo~To1-ro·-;r·-+-·•-·•·· -•-·•·····roTo ··o'!
.. • ... ,.. L.:. .. ,_......,..,.~._.__...,._,~,•-·_._,•-~• ,,,.., ..,...,,_., .. -.. ,•~~-· •

Ii\ 1
1 ii no)address from device

response,
inserted by terminator

5.2 Selection Block

A selectlon block comprises tho first nart of a read or w:dte

operation. An address is transmitted to all devices, one of which responds .to

address match by setting an internal select fli-o flop. The seq_ucnce itself is

retransmitted by each device to the next.

TiTooTctoTo · or· .. ······ -· ··· .. Tor ztoT
----,f--~w·• ·--·••-'r• •<'. •,R-"•• .• ·~•·-•••••••• ••»•• • ,.~,••••' ••• ~-, e • •.

,'r,.
!address from processor

•

5.3 Read

A reaa. block is initiated b;i;r the proc,~Sf:lOr-,:rhon it ':t:ransmfts.
;

a dummf d.ata '(11ord. All non se:lected devices marely re-t:ram:r:n t forward

the inpoming sequence, the SE"llectod device does not forward. the block,
'

rather it. inserts tts b;yte to be reaclj 110cessar;y con-trol information, etc.

and returns it to the procosr:ior. If no device has beon fJelected, the

terminator will rotransmi t the block with a11 error indication.

.1 for
0 for

5.,4 Write

lii 1~ 01 ··. ···r .• ... • • . • • 1 1 o· o'.
·--·,._· •'"··•• ,- • ·-•n,i. -· .i,- ,. ' ~·- ··--.•-··•· .. ···•• .. •-~·$ '"'·~· •. ,.,,.;-,., ,o,_ _,_., t t,. 1\ 1:.::;...__ 'i .- r·~ ---..,

data , ,.J \ / data i:n8ertod ~ l if Fiore bytes required,
status 5 ~ b)' device inserted by device

1 if no response, inserted by terminator

A vrrite data or write status (command) o:noratio:n begins v:ith a

selection block.· The proce,rnoi· the11 transmits a wri t<3 block which contains

the data byte •. The block is not forwarded. but is retransmitted to the processor

with any necessary control information. As in read, if no device has been

selected, the termjnator will retransmit the block with an error indicatoJ~.

E7i.jJ·-···-r -~·-·-- 1
--.. ·--·-~-·

1 -7· i o~·or
•. , , . . , I .,. .. , .• ••••·••"• ·• ••···•-~"-- , •• •'>•••••• •·••• .. , •.. _,.,,.,_ .. 1\ /\ 1}.. f~

1 for data \...J J data im:o:r.ted "- 1
0 for status) by processor

if more bytes required,
inserted by device

1 if no reciponso, inserted by ter~inator

<
0

S~···
,,J, ,r . \

,.~ -

A new architecture for mini-computers
The DEC PDP-11

by G. BELL,* R. CADY, H. l\foFARLAND, B. DELAGI, J. O'LAUGHLIN and R. NOONAN

Digital Equipment Corporation
Maynard, Massachusetts

and

W. WULF

Carnegie-Mellon University
Pittsburgh, Pcnr.sylvania

INTRODUCTION

The mini-computer** has a wide variety of uses: com
munications controller; instrument controller; large
system pre-processor; real-time data acquisition
systems ... ; desk calculator. Historically, Digital
Equipment Corporation's PDP-8 Family, with 6,000
installations has been the archetype of these mini
computers.

In some applications current mini-computers have
limitations. These limitations show up when the scope
of their initial task is increased (e.g., using a higher
level language, or processing more variables). Increasing
the scope of tli:e task generally requires the use of
more comprehensive executives and system control
programs, hence larger memories and more processing.
This larger system tends to be at the limit of current
mini-computer capability, thus the user receives
diminishing returns with respect to memory, speed
efficiency and program development time. This limita-

* Also at Carnegie-Mellon University, Pittsburgh, Pennsylvania.

tion is not surprising since the basic architectural
concepts for current mini-computers were formed in
the early 1960's. First, the design was constrained by
cost, resulting in rather simple processor logic and
register configurations. Second, application experience
was not available. For example, the early constraints
often created computing designs with what we now
consider weaknesses :

1. limited addressing capability, particularly of
larger core sizes

2. few registers, general registers, accumulators,
index registers, base registers

3. no hardware stack facilities
4. limited priority interrupt structures, and thus

slow context switching among multiple programs
(tasks)

5. no byte string handling
6. no read only memory facilities
7. very elementary I/O processing

** The PDP-11 design is predicated on being a member of one (or more) of the micro, midi, mini, ... , maxi (computer name) mark~ts.
We will define these names as belonging to computers of the third generation (integrated circuit to medium scale integrated circuit
technology), having a core memory with cycle time of .5 ,.__, 2 microseconds, a clock rate of 5 ,.__, 10 Mhz .. . , a single processor with inter
rupts and usually applied to doing a particular task (e.g., controlling a memory or communications lines, pre-processing for a larger
system, process control). The specialized names are defined as follows:

micro
mini
midi

maximum addressable
primary memory (words)

8K
32K

65 ,.__, 128 K

processor and
memory cost

(1970 kilodollars)

5 ,.__, 10
10 ,.__, 20

657

word
length
(bits)

8"' 12
12 ,.__, 16
16 "'24

processor
state

(words)

2
2--4
4-16

data types

integers, words, boolean vectors
vectors (i.e., indexing)
double length floating point

(occasionally)

658 Spring Joint Computer Conference, 1970

8. no larger model computer, once a user outgrows a
particular model

9. high programming costs because users program
in machine language.

In developing a new computer the architecture
should at least solve the above problems. Fortunately,
in the late 1960's integrated circuit semiconductor
technology became available so that newer computers
could be designed which solve these problems at low
cost. Also, by 1970 application experience was available
to influence the design. The new architecture should
thus lower programming cost while maintaining the
low hardware cost of mini-computers.

The DEC PDP-11, Model 20 is the first computer
of a computer family designed to span a range of func
tions and performance. The Model 20 is specifically
discussed, although design guidelines are presented
for other members of the family. The Model 20 would
nominally be classified as a third generation (integrated
circuits), 16-bit word, 1 central processor with eight
16-bit general registers, using two's complement
arithmetic and addressing up to 216 eight bit bytes of
primary memory (core). Though classified as a general
register processor, the operand accessing mechanism
allows it to perform equally well as a 0-(stack),
!-(general register) and 2-(memory-to-memory) address
computer. The computer's components (processor,
memories, controls, terminals) are connected via a
single switch, called the Unibus.

The machine is described using the PMS and ISP
notation of Bell and Newell (1970) at different levels.
The following descriptive sections correspond to the
levels: external design constraints level; the PMS
level-the way components are interconnected and
allow information to flow; the program level or ISP
(Instruction Set Processor)-the abstract machine
which interprets programs; and fin.ally, the logical
design level. (We omit a discussion of the circuit
level-the PDP-11 being constructed from TTL inte
grated circuits.)

DESIGN CONSTRAINTS

The principal design objective is yet to be tested;
namely, do users like the machine? This will be tested
both in the market place and by the features that are
emulated in newer machines; it will indirectly be
tested by the life span of the PDP-11 and any offspring.

Word length

The most critical constraint, word length (defined
by IBM) was chosen to be a multiple of 8 bits. The

memory word length for the Model 20 is 16 bits,
although there are 32- and 48-bit instructions and S
and 16-bit data. Other members of the family might
have up to 80 bit instructions with 8-, 16-, 32-and
48-bit data. The internal, and preferred external
character set was chosen to be 8-bit ASCII.

Range and performance

Performance and function range (extendability)
were the main design constraints; in fact, they were
the main reasons to build a new computer. DEC
already has (4) computer families that span a range*
but are incompatible. In addition to the range, the
initial machine was constrained to fall within the
small-computer product line, which means to have
about the same performance as a PDP-8. The initial
machine outperforms the PDP-5, LINC, and PDP-4
based families. Performance, of course, is both a
function of the instruction set and the technology.
Here, we're fundamentally only concerned with the
instruction set performance because faster hardware
will always increase performance for any family.
Unlike the earlier DEC families, the PDP-11 had to
be designed so that new models with significantly
more performance can be added to the family.

A rather obvious goal is maximum performance for
a given model. Designs were programmed using bench
marks, and the results compared with both DEC and
potentially competitive machines. Although the selling
price was constrained to lie in the $5,000 to $10,000
range, it was realized that the decreasing cost of logic
would allow a more complex organization than earlier
DEC computers. A design which could take advantage
of medium- and eventually large-scale integration was
an important consideration. First, it could make the
computer perform well; and second, it would extend
the computer family's life. For these reasons, a general
registers organization was chosen.

Interrupt response

Since the PDP-11 will be used for real time control
applications, it is important that devices can com
municate with one another quickly (i.e., the response
time of a request should be short). A multiple priority
level, nested interrupt mechanism was selected; addi
tional priority levels are provided by the physical
position of a device on the Unibus. Software polling is

* PDP-4, 7, 9, 15 family; PDP-5, 8, 8/S, 8/I, 8/L family; LINC,
PDP-8/LINC, PDP-12 family; and PDP-6, 10 family. The
initial PDP-1 did not achieve family status.

unnecessary because each device interrupt corresponds
to a unique address.

Software

The total system including software is of course the
main objective of the design. Two techniques were
used to aid programmability: first benchmarks gave a
continuous indication as to how well the machine
interpreted programs; second, systems programmer
continually evaluated the design. Their evaluation
considered: what code the compiler would produce;
how would the loader work; ease of program reloc
ability; the use of a debugging program; how the
compiler, assembler and editor would be coded-in
effect, other benchmarks; how real time monitors
would be written to use the various facilities and
present a clean interface to the users; finally the ease
of coding a program.

Modularity

Structural flexibility (sometimes called modularity)
for a particular model was desired. A flexible and
straightforward method for interconnecting components
had to be used because of varying user needs (among
user classes and over time). Users should have the
ability to configure an optimum system based on cost,
performance and reliability, both by interconnection
and, when necessary, constructing new components.
Since users build special hardware, a computer should
be easily interfaced. As a by-product of modularity,
computer components can be produced and stocked,
rather than tailor-made on order. The physical struc
ture is almost identical to the PMS structure discussed
in the following section; thus, reasonably large building
blocks are available to the user.

Microprogramming

A note on microprogramming is in order because of
current interest in the "firmware" concept. We believe
microprogramming, as we understand it (Wilkes, 1951),
can be a worthwhile technique as it applies to processor
design. For example, microprogramming can probably
be used in larger computers when floating point data
operators are needed. The IBM System/360 has
made use of the technique for defining processors that
interpret both the System/360 instruction set and
earlier family instruction sets (e.g., 1401, 1620, 7090).
In the PDP-11 the basic instruction set is quite straight
forward and does not necessitate microprogrammed

The DEC PDP-11 659

interpretation. The processor-memory connection is
asynchronous and therefore memory of any speed can
be connected. The instruction set encourages the user
to write reentrant programs; thus, read-only memory
can be used as part of primary memory to gain the
permanency and performance normally attributed to
microprogramming. In fact, the Model 10 computer
which will not be further discussed has a 1024-word
read only memory, and a 128-word read-write memory.

[J nderstandability

Understandability was perhaps the most funda
mental constraint (or goal) although it is now somewhat
less important to have a machine that can be quickly
understood by a novice computer user than it was a
few years ago. DEC's early success has been predi
cated on selling to an intelligent but inexperienced
user. Understandability, though hard to measure, is
an important goal because all (potential) users must
understand the computer. A straightforward design
should simplify the systems programming task; in the
case of a compiler, it should make translation (par
ticularly code generation) easier.

PDP-11 STRUCTURE AT THE PMS LEVEL*

Introduction

PDP-11 has the same organizational structure as
nearly all present day computers (Figure 1). The
primitive PMS components are: the primary memory
(Mp) which holds the programs while the central
processor (Pc) interprets them; io controls (Kio) which
manage data transfers between terminals (T) or second
ary memories (Ms) to primary memory (Mp); the
components outside the computer at periphery (X)
either humans (H) or some external process (e.g.,
another computer); the processor console (T. console)
by which humans communicate with the computer
and observe its behavior and affect changes in its
state; and a switch (S) with its control (K) which
allows all the other components to communicate with
one another. In the case of PDP-11, the central logical
switch structure is implemented using a bus or chained
switch (S) called the Unibus, as shown in Figure 2.
Each physical component has a switch for placing
messages on the bus or taking messages off the bus.
The central control decides the next component to

* A descriptive (block-diagram) level (Bell and Newell, 1970) to
describe the relationship of the computer components: processors
memories, switches, controls, links, terminals and data operators.

660 Spring Joint Computer Conference, 1970

central
processor

control

aecoodary
.,..ory

disk

console

human user
or

other process

hmnan user

Conventional block diagram

I

Pc-- T.console----'-- H
I /

Mp-s----, /
: I I //
• ~io. • • flo. ;..v periphery

Ha l-

form
c.ponent/X

• :- b

..1----,
X X

Components :• (Proceasor/P I
Memory/MI Switch/& I
Control/K J Termina 1/T I
Data operation/D/Link/Lj
Huan/H)

X(al :vl t •2:v2; ·· · 8 n:vb)

inde,r. number/f

na•/'

1
PMS Notation

miacellaneou• abbreviations :- (

COUBeDt
~ is an a Uas (abbreviation

for a ~omponent ia separated by /)

• ia aadpled the meaning of b

deliaita •utually exclusive alter•
natives

set of primitive components and
cheir abbreviations

n attribute/a, value/v pain.
Attribute may be omitted if it
can be inferred from di•nsions
of value.

attribute giving component number

ntribute 1tvi.D.g coapoaent name

Mp/pri•ry memoryjH•/secoadary •morylPc/central proceuorl
Kioho control}Pio/io proceuor 1•/aec/aecond• I char/character/
b/bit Iv/word Ii information I

infor•tioa carrying link
(bi-d tree t iona l)

uni-directional ioformtion
carryiq 1 inks

delimit• alternative•

Figure I-Conventional block diagram and PMS diagram
of PDP-11

use the bus for a message (call). The S (Unibus)differs
from most switches because any component can com-
municate with any other component. •

The types of messages in the PDP-11 are along the

lines of the hierarchical structure common to present
day computers. The single bus makes conventional
and other structures possible. The message processes
in the structure which utilize S(Unibus) are:

1. The central processor (Pc) requests that data
be read or written from or to primary memory
(Mp) for instructions and data. The processor
calls a particular memory module by concur
rently specifying the module's address, and the
address within the modules. Depending on wheth
er the processor requests reading or writing,
data is transmitted either from the memory to
the processor or vice versa.

2. The central processor (Pc) controls the initializa
tion of secondary memory (Ms) and terminal (T)
activity. The processor sets status bits in the
control associated with a particular Ms or T, and
the device proceeds with the specified action
(e.g:, reading a card, or punching a character into
paper tape). Since some devices transfer data
vectors directly to primary memory, the vector
control information (i.e., the memory location
and length) is given as initialization information.

3. Controls request the processor's attention in the
form of interrupts. An interrupt request to the
processor has the effect of changing the state of
the processor; thus the processor begins executing
a program associated with the interrupting
process. Note, the interrupt process is only a
signaling method, and when the processor inter
ruption occurs, the interruptee specifies a unique
address value to the processor. The address is a
starting address for a program.

4. The central processor can control the transmission
of data between a control (for T or Ms) and
either the processor or a primary memory for
program controlled data transfers. The device
signals for attention using the interrupt dialogue
and the central processor responds by managing
the data transmission in a fashion similar to
transmitting initialization information.

computer H x X

periphery t- ___ + ____ , __
Ma,., T, ••

Mp Pc Ki, K,o
S f S S } Unibus switching

... l ___,J~~----,.--1..I __ __,11L...,j_~s-t_r_ucture

1 Unibus control packaged with Pc

Figure 2-PDP-11 physical structure PMS diagram

5. Some device controls (for T or Ms) transfer data
directly to/from primary memory without central
processor intervention. In this mode the device
behaves similar to a processor; a memory address
is specified, and the data is transmitted between
the device and primary memory.

6. The transfer of data between two controls, e.g., a
secondary memory (disk) and say a terminal/T.
display is not precluded, provided the two use
compatible message formats.

As we show more detail in the structure there are,
of course, more messages (and more simultaneous
activity). The above does not describe the shared
control and its associated switching which is typical of
a magnetic tape and magnetic disk secondary memory
systems. A control for a DECtape memory (Figure 3)
has an S('DECtape bus) for transmitting data between

Ms(:/f0:7; 'DECtape) ..•

~
sr'DECtape bus;] I Lconcurrency: 1

Kio('DECtape)
s Unibus

I ~

Figure 3-DECt_ape control switching PMS diagram

a single tape unit and the DECtape transport. The
existence of this kind of structure is based on the
relatively high cost of the control relative to the cost
of the tape and the value of being able to run concur
rently with other tapes. There is also a dialogue at the
periphery between X-T and X-Ms which does not use
the Unibus. (For example, the removal of a magnetic
tape reel from a tape unit or a human user (H) striking
a typewriter key are typical dialogues.)

All of these dialogues lead to the hierarchy of present
computers (Fig. 4). In this hierarchy we can see the
paths by which the above messages are passed
(Pc-Mp;Pc-K; K-Pc; Kio-T and Kio-Ms; and Kio-Mp;
and, at the periphery, T-X and T-Ms; and T.console-H).

Model 20 implementation

Figure 5 shows the detailed structure of a um
processor, Model 20 PDP-11 with its vanous

The DEC PDP-11 661

I H
,-IT .console---------, periphery

~pl- s ir1-s-r ?07-s-r I-:-x
Kio~ L Ms _J_x

I

Figure 4-Conventional hierarchy computer strnctnre

components (options). In Figure 5 the Unibus charac
teristics are surpressed. (The detailed properties of the
switch are described in the logical design section.)

Extensions to increase performance

The reader should note (Figure 5) that the important
limitations of the bus are: a concurrency of one, namely,
only one dialogue can occur at a given time, and a
maximum transfer rate of one 16-bit word per .75 µsec.,
giving a transfer rate of 21.3 megabits/second. While
the bus is not a limit for a uni-processor structure, it is
a limit for multiprocessor structures. The bus also
imposes an artificial limit on the system performance
when high speed devices (e.g., TV cameras, disks) are

Pc2 -T.console -

Mp1- (f0)

Mp(f7)

T[Teletype; Model 33,35 ASR;

S3 full duplex; 10 char/ sec;

char set: ASCII; 8 bit/char

T [i>aper tape; reader;

~00 char/sec; 8 bit/char
] ._

Trpaper tape; punch;] -,

L100 char/sec; 8 bit/char

M[secondary/s; fixed head disk;]
16 b/w; 32768 w; i.rate; 66 µs/w;

t.access: 0 - 34 msec.

(60 cycle clock)-L(60 cycle line)-
1Mp(technology: core; 4096 words; t.cycle: 1.2 µs; t.access:

.6 µs; 16 bits/word)
8 P(central/c; Model 30; integrated circuit; general registers;

2 addresses/instruction; addresses are: register, stack,

~; data types: bits, bytes, words, word integers, byte

integers, boolean vectors; 8 bits/byte; 16 bits/word

operations:(+,-,/ (optional), x (optional), /2, x2,

-,, - (negate); v, ::,) ;
M(processor state; 'general registers; 8 + 1 word; integrat-

ed circuit))
3 S('Unibus; non-hierarchy; bus; concurrency:!; 1 word/.75 µs)

Figure 5-PDP-11 structure and characteristics PMS diagram

fi62 Spring Joint Computer Conference, 1970

M
M
s
I

a. 1 port

s

b. 4 port

Figure 6-1 and 4 port memory modules PMS diagram

transferring data to multiple primary memories. On a
larger system with multiple independent memories the
supply of memory cycles is 17 megabits/ second times
the number of modules. Since there is such a large
supply of memory cycles/ second and since the central
processor can only absorb approximately 16 megabits/
second, the simple one Unibus structure must be
modified to make the memory cycles available. Two
changes are necessary: first, each of the memory modules
have to be changed so that multiple units can access
each module on an independent basis; and second, there
must be independent control accessing mechanisms.
Figure 6 shows how a single memory is modified to have
more access ports (i.e., connect to 4 Unibusses).

Figure 7 shows a system with 3 independent memory
modules which are accessed by 2 independent Uni
busses. Note that two of the secondary memories and
one of the transducers are connected to both Unibusses.
It should be noted that devices which can potentially
interfere with Pc-Mp accesses are constructed with
two ports; for simple systems, the two ports are both
connected to the same bus, but for systems with more
busses, the second connection is to an independent bus.

Ms or T to
Mp messages

Figure 7-Three Mp, 2 S('Unibus) structure PMS diagram

Figure 8 shows a multiprocessor system with two
central processors and three U nibusses. Two of the
Unibus controls are included within the two processors,
and the third bus is controlled by an independent con
trol unit. The structure also has a second switch to
allow either of two processors (Unibusses) to access
common shared devices. The interrupt mechanism
allows either processor to respond to an interrupt and
similarly either processor may issue initialization
information on an anonymous basis. A control unit is
needed so that two processors can communicate with
one another; shared primary memory is normally used
to carry the body of the message. A control connected
t? two Pc's (see Figure 8) can be used for reliability;
either processor or Unibus could fail, and the shared
Ms would still be accessible.

Higher performance processors

Increasing the bus width has the greatest effect on
performance. A single bus limits data transmission to
21.4 megabits/second, and though Model 20 memories
are 16 megabits/second, faster (or wider) data path
width modules will be limited by the bus. The Model
20 is not restricted, but for higher performance pro
cessors operating on double word (fixed point) or triple
word (floating point) data two or three accesses are
required for a single data type. The direct method to
improve the performance is to double or triple the
primary memory and central processor data path
widths. Thus, the bus data rate is automatically
doubled or tripled.

For 32- or 48-bit memories a coupling control unit
is needed so that devices of either width appear iso
morphic to one another. The coupler maps a data

1 K('Unibus)
2 S('Unibus Multiple bus to single bus coupler;

from: 2 Unibus; to: 1 Unibus)
3 K('Processor to processor coupler)

•Ms (duplex)

Ms Ms

data transfers

Figure 8-Duai Pc multiprocessor system PMS diagram

request of a given width into a higher- or lower-wid~h
request for the bus being coupled to, as shown m
Figure 9. (The bus is limited to a fixed number of
devices for electrical reasons; thus, to extend the bus
a bus repeating unit is needed. The bus repeating
control unit is almost identical to the bus coupler.) A
computer with a 48-bit primary memory and processor
and 16-bit secondary memory and terminals (trans
ducers) is shown in Figure 9.

In summary, the design goal was to have a modular
structure providing the final user with freedom and
flexibility to match his needs. A secondary goal of the
Unibus is open-endedness by providing multiple busses
and defining wider path busses. Finally, and most
important, the Unibus is straightforward.

THE INSTRUCTION SET PROCESSOR (ISP)
LEVEL-ARCHITECTURE*

Introduction, background and design constraints

The Instruction Set Processor (ISP) is the machine
defined by hardware and/or software which interprets
programs. As such, an ISP is independent of technology
and specific implementations.

The instruction set is one of the least understood
aspects of computer design; currently it is an art. There
is currently no theory of instruction sets, although
there have been attempts to construct them (Maurer,
1966), and there has also been an attempt to have a
computer program design an instruction set (Haney,
1968). We have used the conventional approach in
this design: first a basic ISP was adopted and then
incremental design modifications were made (based on
the results of the benchmarks).**

• The word architecture has been operationally defined (Amdahl,
Blaauw and Brooks 1964) as "the attributes of a system as seen
by a programmer, i.e., the conceptual structure and functional
behavior, as distinct from the organization of the data flow and
controls, the logical design and the physical implementation."
** A predecessor multiregister computer was proposed which
used a similar design process. Benchmark programs were coded
on each of 10 "competitive" machines, and the object of the
design was to get a machine which gave the best score 011 the
benchmarks. This approach had several fallacies: the machine
had no basic character of its own; the machine was difficult to
program since the multiple registers were assigned to specific
functions and had inherent idiosyncrasies to score well on the
benchmarks; the machine did not perform well for progra= o~her
than those used in the benchmark test; and finally, compilers
which took addvantage of the machine appeared to be difficult
to write. Since all "competitive machines" had been hand-coded
from a common flowchart rather than separate flowcharts for each
machine, the apparent high performance may have been due to
the flowchart organization.

The DEC PDP-11 663

Although the approach to the design was conven
tional, the resulting machine is not. A common classi
fication of processors is as zero-, one-, two-, three-, or
three-plus-one-address machines. This scheme has the
the form:

op ll, l2, l3, l4

where l1 specifies the location (address) in which to
store the result of the binary operation (op) of the
contents of operand locations Z2 and Z3, and Z4 specifies
the location of the next instruction.

The action of the instruction is of the form:

l1 +- l2 op l3; goto l4

The other addressing schemes assume specific values
for one or more of these locations. Thus, the one
address von Neumann (Burks, Goldstine and von
Neumann, 1946) machines assume Zl = l2 = the
"accumulator" and Z4 is the location following that of
the current instruction. The two-address machine
assumes Z1 = Z2; l4 is the next address.

Historically, the trend in machine design has been
to move from a 1 or 2 word accumulator structure as
in the von Neumann machine towards a machine with
accumulator and index register(s). * As the number of
registers is increased the assignment of the registers to
specific functions becomes more undesirable and
inflexible; thus, the general-register concept has
developed. The use of an array of general registers in
the processor was apparently first used in the first
generation, vacuum-tube machine, PEGASUS (Elliott
et al., 1956) and appears to be an outgrowth of both
1- and 2-address structures. (Two alternative struc
tures-the early 2- and 3-address per instruction
computers may be disregarded, since they tend to
always access primary memory for results as well as
temporary storage and thus are wasteful of time and
memory cycles, and require a long instruction.) The
stack concept (zero-address) provides the most efficient

Mp(48 b) Pc(48 b) Ms,,, T.,.

I I

\
48 bit Unibus

K['Bus to Bus .
coupler;

from: 48 16 bit Unibus
to: 16 bits

Figure 9-Computer with 48 bit Pc, Mp with 16 bit Ms, T
PMS diagram

• Due in part to needs, but mainly technology which dictates how
large the structure can be.

664 Spring Joint Computer Conference, 1970

access method for specifying algorithms, since very
little space, only the access addresses and the operators,
needs to be given. In this scheme the operands of an
operator are always assumed to be on the "top of the
stack". The stack has the additional advantage that
arithmetic expression evaluation and compiler state
ment parsing have been developed to use a stack
effectively. The disadvantage of the stack is due in
part to the nature of current memory technology. That
is, stack memories have to be simulated with random
access memories, multiple stacks are usually required,
and even though small stack memories exist, as the
stack overflows, the primary memory (core) has to be
used.

Even though the trend has been toward the general
register concept (which, of course, is similar to a two
address scheme in which one of the addresses is limited
to small values), it is important to recognize that any
design is a compromise. There are situations for which
any of these schemes can be shown to be "best". The
IBM System/360 series uses a general register struc
ture, and their designers (Amdahl, Blaauw and Brooks,
1964) claim the following advantages for the scheme:

1. Registers can be assigned to various functions:
base addressing, address calculation, fixed point
arithmetic and indexing.

2. Availability of technology makes the general
registers structure attractive.

The System/360 designers also claim that a stack
organized machine such as the English Electric KDF 9
(Allmark and Lucking, 1962) or the Burroughs B5000
(Lonegran and King, 1961) has the following disad
vantages:

1. Performance is derived from fast registers, not the
way they are used.

2. Stack organization is too limiting and requires
many copy and swap operations.

3. The overall storage of general registers and stack
machines are the same, considering point #2.

4. The stack has a bottom, and when placed in
slower memory there is a performance loss.

5. Subroutine transparency is not easily realized
with one stack.

6. Variable length data is awkward with a stack.

We generally concur with points 1, 2, and 4. Point 5 is
an erroneous conclusion, and point 6 is irrelevant (that
is, general register machines have the same problem).
The general-register scheme also allows processor
implementations with a high degree of parallelism since
instructions of a local block all can operate on several

registers concurrently. A set of truly general purpose
registers should also have additional uses. For example,
in the DEC PDP-10, general registers are used for
address integers, indexing, floating point, boolean
vectors (bits), or program flags and stack pointers. The
general registers are also addressable as primary
memory, and thus, short program loops can reside
within them and be interpreted faster. It was observed
in operation that PDP-10 stack operations were very
powerful and often used ((accounting for as many as
20% of the executed instructions, in some programs,
e.g., the compilers.)

The basic design decision which sets the PDP-11
apart was based on the observation that by using
truly general registers and by suitable addressing
mechanisms it was possible to consider the machine as
a zero-address (stack), one-address (general register),
or two-address (memory-to-memory) computer. Thus,
it is possible to use whichever addressing scheme, or
mixture of schemes, is most appropriate.

Another important design decision for the instruction
set was to have only a few data types in the basic
machine, and to have a rather complete set of opera
tions for each data type. (Alternative designs might
have more data types with few operations, or few data
types with few operations.) In part, this was dictated
by the machine size. The conversion between data
types must be easily accomplished either automatically
or with 1 or 2 instructions. The data types should
also be sufficiently primitive to allow other data types
to be defined by software (and by hardware in more
powerful versions of the machine). The basic data
type of the machine is the 16 bit integer which uses
the two's complement convention for sign. This data
type is also identical to an address.

PDP-11 model 20 instruction set (basic instruction set)

A formal description of the basic instruction set is
given in Appendix 1 using the ISPL notation (Bell
and Newell, 1970). The remainder of this section will
discuss the machine in a conventional manner.

Primary memory

The primary memory (core) is addressed as either
216 bytes or 215 words using a 16 bit number. The
linear address space is also used to access the input
output devices. The device state, data and control
registers are read or written like normal memory
locations.

General register

The general registers are named: R[0:7](15:0)*;
that is, there are 8 registers each with 16 bits. The
naming is done starting (at the left with bit 15 (the
sign bit) to the least significant bit 0. There are syno
nyms for R[61 and R[71:

Stack Pointer/SP(15:0) := R[6](15:0)
used to access a special stack which is used to
store the state of interrupts, traps and sub
routine calls

Program Counter/PC(l5:0) := R[7](15:0)
points to the current instruction being inter
preted. It will be seen that the fact that PC is
one of the general registers is crucial to the
design.

Any general register, R[0: 7], can be used as a stack
pointer. The special Stack Pointer (SP) has additional
properties that force it to be used for changing processor
state interrupts, traps, and subroutine calls (It also
can be used to control dynamic temporary storage
subroutines.)

In addition to the above registers there are 8 bits
used (from a possible 16) for processor status, called
PS(l5.0) register. Four bits are the Condition Codes
(CC) associated with arithmetic results; the T-bit
controls tracing; and three bits control the priority of
running programs Priority (2:0). Individual bits are
mapped in PS as shown in Appendix 1.

Data types and primitive operations

There are two data lengths in the basic machine:
bytes and words, which are 8 and 16 bits, respectively.
The non-trivial data types are word length integers
(w.i.); byte length integers (by .i); word length boolean
vectors (w.bv), i.e., 16 independent bits (booleans) in
a 1 dimensional array; and byte length boolean vectors
(by.bv). The operations on byte and word boolean
vectors are identical. Since a common use of a byte is
to hold several flag bits (booleans), the operations can
be combined to form the complete set of 16 operations.
The logical operations are: "clear," "complement,"
"inclusive or," and "implication" (x :=) y or --,x V y).

There is a complete set of arithmetic operations for
the word integers in the basic instruction set. The
arithmetic operations are: add, subtract, multiply
(optional), divide (optional), compare, add one, sub
tract one, clear, negate, and multiply and divide by

* A definition of the ISP notation used here may be found in
Appendix 1.

The DEC PDP-11 665

powers of two (shift). Since the address integer size is
16 bits, these data types are most important. Byte
length integers are operated on as words by moving
them to the general registers where they take on the
value of word integers. Word length integer operations
are carried out and the results are returned to memory
(truncated).

The floating point instructions defined by software
(not part of the basic instruction set) require the
definition of two additional data types (of length two
and three), i.e., double word (d.w.) and triple (t.w.)
words. Two additional data types, double integer
(d.i.) and triple floating point (t.f. or f) are provided
for arithmetic. These data types imply certain addi
tional operations and the conversion to the more
primitive data types.

Address (operand) calculation

The general methods provided for accessing operands
are the most interesting (perhaps unique) part of the
machine's structure. By definiljlg several access methods
to a set of general registers, to memory, or to a stack
(controlled by a general register), the computer is able
to be a 0, 1 and 2 address machine. The encoding of
the instruction Source (S) fields and Destination (D)
fields are given in Fig. 10 together with a list of the
various access modes that are possible. (Appendix 1
gives a formal description of the effective address
calculation process.)

It should be noted from Figure 10 that all the com
mon access modes are included (direct, indirect, im
mediate, relative, indexed, and indexed indirect) plus
several relatively uncommon ones. Relative (to PC)
access is used to simplify program loading, while
immediate mode speeds up execution. The relatively
uncommon access modes, auto-increment -and auto
decrement, are used for two purposes: access to a
stack under control of the registers* and access to
bytes or words organized as strings or vectors. The
indirect access mode allows a stack to hold addresses
of data (instead of data). This mode is desirable when
manipulating longer and variable-length data types
(e.g., strings, double fixed and triple floating point).
The register auto increment mode may be used to
access a byte string; thus, for example, after each
access, the register can be made to point to the next
data item. This is used for moving data blocks, search
ing for particular elements of a vector, and byte
string operations (e.g., movement, comparisons, edit
ing).

*Note, by convention a stack builds toward register 0, and when
the stack crosses 400s, a stack overflow occurs.

D

666 Spring Joint Computer Conference, 1970

[, Id I r

{ 11 10 9 8 6 bit

am ad ar

r 4 3 2 1 blt

d,a dd dr

r • register speclficatioo. R[r]

d • defer (indirect) address bit

••mode (00 • R(r]; 01 • R[r]; next R(r] +•1;1

10 • R(r], R(r] ·al, next R[2]

11 • indexed with next word)

The following access modes can be specified:

direct-to a register, R(r]

indirect-to a register, R[r] for address of data

2 auto increment via register (pop) - use reghter as addreu, then

3 aucoinfJcel£retnfWl'fl11scer (pop) - defer
4 auto decrement via register (push) - decre:meot regbter, then uee

reglater as addreH

S auto decrement indirect - decrement register, then uae register •• the

address of the address of data

2 immediate data - next full word 1s the data (r-PC)

J direct data - next full word is the addrets of data (r-PC)

6 direct indexed .. uae next full word indexed with a[r] •• addre•• of data

7 direct indexed .. indirect • u•• next full word tn.d1:1red with •Cr] •• the

addreu of the addre•• of data

6 relative access - next full word plu• PC b the addn•• (r-PC)

7 relative indirect acceu ... next full word plua PC h the addret• of the

addreaa of data (r-PC)

1addreaa tncr ... nt/ai value ia 1 or 2

Figure IO-Address calculation formats

This addressing structure provides flexibility while
retaining the same, or better, coding efficiency than
classical machines. As an example of the flexibility
possible, consider the variations possible with the most
trivial word_ instruction MOVE (see Figure 11). The
MOVE instruction is coded as it would appear in
conventional 2-address, I-address (general register)
and 0-address (stack) computers: The two-address
format is particularly nice for MOVE, because it
provides an efficient encoding for the common opera
tion: A - B (note, the stack and general registers are
not involved). The vector move A[I] - B(I) is also
efficiently encoded. For the general register (and
I-address format), there are about 13 MOVE opera
tions that are commonly used. Six moves can be
encoded for the stack (about the same number found
in stack machines).

Instruction formats

There are several instruction decoding formats
depending on whether 0, 1, or 2 operands have to be
explicitly referenced. When 2 operands are required,
they are identified as Source/S and Destination/D and

the result is placed at Destination/D. For single
operand instructions (unary operators) the instruction
action is D - u D; and for two operand instructions
(binary operators) the action is D - D b S (where u
and b are unary and binary operators, e.g., ---, , - and
+, - , X, /, respectively. Instructions are specified
by a 16-bit word. The most common binary operator
format (that for operations requiring two addresses)
is shown below.

15 12 11 0

op D s

The other instruction formats are given in Figure 12.

Instruction interpretation process

The instruction interpretation process is given in
Figure 13, and follows the common fetch-execute
cycle. There are three major states: (1) interrupting
the PC and PS are placed on the stack accessed by
the Stack Pointer/SP, and the new state is taken from
an address specified by the source requesting the trap
or interrupt; (2) trace (controlled by T-bit)-essen
tially one instruction at a time is executed as a trace

Aueebler Fgrut

Two AddreH Machine forut:
)l)V£ 1,A l

IIOVI ffl,A
IIOVI l(RZ), A(RZ)

IIOVI (J.3) +, (R4) +

. ~• . ~·
A[l] ~ 1(1]

A{l) ~ l[l];
I +- I + 1

General Reaiater Machine fonaat:

NOYE A,R.1 R.1 ... A

MOVE R.1, A A ... R.1

NOVI eA,,11 Rl ... N(A]

NOVI 1.1, lJ 11 13

MOVE B.1, A(BZ) A[I] ... al

MOV1 el(B.O),Rl Rl ~N[A[l]J

110V1 (kl), 113 Rl ~N[R2]

JIKJYI (B.1) +. RJ 113 ~NCI]

Stack Machine format:

IIOV1' ffl, -<ao> s ~·
110VE A, -(RO) s ~·
IIOV1' e(Ro)+, -(RO) S t-N(S]

NOVI (RO)+, A • ~s
IIOV1' (a0)+, e(RO)+ N[S2] ~ 81

t A11=:1!:0t;~:~) s ~·
() denotes content• of memory addreaaed by
• d•crement regiater f1r11t
,... increment Tegister aftaT
0 indirect
~ literal

Deacriptiop

repl,ice A with content• of I

rep l,ice A with number• N

rep l•ce element of • c011Dec tor

repl•ce ele•nt of a vector,
move to next e le•nt

load reaiater

•tore re1iater

load or atore indirect via
ele•nt A

re1i1ter to re1hter trader

atore indexed (load indexed)
(or ttore)

load (or atore) indexed iadirect

load indirect via reahter

load (or atore) deaen.t indirect
via reai•ter, move to next ele•nt

load •tack with literal

load atack with coa.tea.ta of A

load •tack with •aory apecifled
by top of •tack

atore •tack iD A

•tore atack top in aeaory
addreHed by a tack top - 1

dupUcate top of atack

Figure 11-Coding for the MOVE instruction to compare with
conventional machines

Binary arithmetic and logical operations: '--"'b.::,op'-'-! _s;;..___,_.....::_D...11 1

fo't"m: D +- S b D

example: ADD (:::zboo:::0010) ~ (CC,D ~ D+S);

Unary arithmetic and logical operation: [:;;-r-nJ
form: D+-uD;

examples: NEG (•=uop=00001 Oil 00) (CC ,D +-- - D) - negate

ASL (:auop=00000110011) --+ (CC,D •- r, x 2); shift left

Branch (relative) operators: J hrop I offaetf

form: .!! brop condition .sh.la (PC +- PC + offset);

example: BEQ (: • brop • 03
16

) (Z --+ (PC +-- PC + offset)):

Jump: ! 0 000 000 001 l D I
form: PC +- D + Pc

Jump to subroutine: I o 000 100 l D !
save R.[sr] on stack, enter subroutine at D + PC

Misc. operations: ~
form: ST +- f

example: HALT (: • instruction. O) ~(RUN+- O);

1
Note: these instructions are all 1 word. D and/or S uy each require 1

additional imaediate data or addreaa vor~. Thus instructions can

be 1, 2, or 3 words long.

Figure 12-PDP-11 instruction formats (simplified)

Iaatructioa I.cute
State1

Figure 13-PDP-11 instruction interpretation process
state diagram

The DEC PDP-11 667

trap occurs after each instruction, and (3) normal
instruction interpretation. The five (lower) states in
the diagram are concerned with instruction fetching,
operand fetching, executing the operation specified by
the instruction and storing the result. The non-trivial
details for fetching and storing the operands are not
shown in the diagram but can be constructed from the
effective address calculation process (Appendix 1). The
state diagram, though simplified, is similar to 2- and
3-address computers, but is distinctly different than a
1 address (1 accumulator) computer.

The ISP description (Appendix 1) gives the opera
tion of each of the instructions, and the more conven
tional diagram (Fig. 12) shows the decoding of instruc
tion classes. The ISP description is somewhat incom
plete; for example, the add instruction is defined as:
ADD(:= bop = 0010) - (CC,D - D + S); addition
does not exactly describe the changes to the Condition
Codes/CC (which means whenever a binary opcode
[bop] of 00102 occurs the ADD instruction is executed
with the above effect). In general, the CC are based
on the result, that is, Z is set if the result is zero, N if
negative, C if a carry occurs, and V if an overflow was
detected as a result of the operation. Conditional
branch instructions may thus follow the arithmetic
instruction to test the results of the CC bits.

Examples of addressing schemes

Use as a stack (zero address) machine

Figure 14 lists typical zero-address machine instruc
tions together with the PDP-11 instructions which
perform the same function. It should be noted that
translation (compilation) from normal infix expressions
to reverse Polish is a comparatively trivial task. Thus,
one of the primary reasons for using stacks is for the
evaluation of expressions in reverse Polish form.

Consider an assignment statement of the form

D-A + B/C

which has the reverse Polish form

DABC/+-

and would normally be encoded on a stack machine
as follows

load stack address of D
load stack A
load stack B
load stack C

I
+
store

668 Spring Joint Computer Conference, 1970

cRMPP •uck. iQUrvsUPR=
place addre•• value A 011 1taclt

load ataclt froa aeaory addreH 1pecified
by ,tacit

load atack froa _..,r, location A

atore ,tack at •ac,ry addreaa 1peclfied
by atack

atore 1tac1t ... at meaory location A

duplicate top of atack

+ 1 add 2 top data of atack to stack

-, x, /: 1ubtract 1 asltiply, divide

.. ; negate top data of ataclt

clear top data of atack

v; "inclualve or" 2 top data of stack "and"
2 top data of stack ,

-,; complement top of stack

teat top of stack (set branch indicaton)

branch oa. indicator

Juai> unconditi-1

add addressed location A to top of atack •
<aot common for stack machine) equivalent
to: load uack, add swap top 2 atack data

r-eaet stack location to N

A, "and" 2 top stack data

lqutvalent PDP-11 tastructign:

MOVE tA, • (R0,1

MOVE e(RO)+, • (RO)

MOVE A, .(RO)

MOVE (RO)+, e(RO)+

MOVE (RO)+, A

MOVE (1.0), • (I.O)

ADD (llO) +, ellO

(aee add)

111G ellO

CL& ellO

BSET (llO)+, ellO

COM ellO

TST ellO

BR. <-. ~- >, .t, <, ~>
JUMP

ADD A, eao
MOVE (llO)+, Rl
MOVB (RO)+, R2
HOVI! Ill, .(RO)
MOVE R2, .(I.O)
HOVI! fll, 11.0
COM ellO
BCL& (RO)+, ellO

1suck pointer ha• beeo arbitrarily uaed a• register RO for this example.

Figure 14-Stack computer instructions and equivalent
PDP-11 instructions

However, with the PDP-11 there is an address method
for improving the program encoding and run time,
while not losing the stack concept. An encoding im
provement is made by doing an operation to the top
of the stack from a direct memory location (while
loading). Thus the previous example could be coded
as:

load stack B
divide stack by C
add A to stack
store stack D

Use as a one-address (general register) machine

The PDP-11 is a general register computer and
should be judged on that basis. Benchmarks have
been coded to compare the PDP-11 with the larger
DEC PDP-IO. A 16 bit processor performs better
than the DEC PDP-IO in terms of bit efficiency, but
not with time or memory cycles. A PDP-11 with a 32
bit wide memory would, however, decrease time by
nearly a factor of two, making the times essentially
comparable.

Use as a two-address machine

Figure 15 lists typical two-address machine instruc
tions together with the equivalent PDP-11 instructions

for performing the same operations. The most useful
instruction is probably the MOVE instruction because
it does not use the stack or general registers. Unary
instructions which operate on and test primary memory
are also useful and efficient instructions.

Extensions of the instruction set for real (floating point)
arithmetic

The most significant factor that affects performance
is whether a machine has operators for manipulating
data in a particular format. The inherent generality
of a stored program computer allows any computer by
subroutine to simulate another-given enough time
and memory. The biggest and perhaps only factor
that separates a small computer from a large computer
is whether floating point data is understood by the
computer. For example, a small computer with a
cycle time of 1.0 microseconds and 16 bit memory
width might have the following characteristics for a
floating point add, excluding data accesses:

programmed:

programmed (but special normalize
and differencing of exponent
instructions):

microprogrammed hardware:

hardwired:

250 microseconds

75 microseconds

25 microseconds

2 microseconds

It should be noted that the ratios between pro
grammed and hardwired interpretation varies by
roughly two orders of magnitude. The basic hardwiring
scheme and the programmed scheme should allow
binary program compatibility, assuming there is an
interpretive program for the various operators in the
Model 20. For example, consider one scheme which
would add eight 48 bit registers which are addressable
in the extended instruction set. The eight floating
registers, F, would be mapped into eight double length

Two Address Computer

A +- B; tranafer B to A

A .-A+B; add

., x, /
A .- -A; negate

A +-A v B; lncluaive or

A .,__, A; oot

jump unconditioned

Teat A, and transfer to B

.!'.!!!'.:l!.
MOVE B,A

ADD B,A

(oee add)

NIG A

1SETB,A

COM

JlMP

TST A

Bil (., ~. >, a, <, :,;) I

Figure 15-Two address computer instructions and equivalent
PDP-11 instructions

(32 bit) registers, D. In order to access the various
parts of F or D registers, registers F0 and Fl are
mapped onto registers RO to R2 and R3 to R5.

Since the instruction set operation code is almost
completely encoded already for byte and word length

binary ops op

bop' s D -+

X
I

compare
unary ops

uop' D

LOGICAL DESIGN OF S(UNIBUS) AND PC

The logical design level is concerned with the physi
cal implementation and the constituent combinatorial
and sequential logic elements which form the various
computer components (e.g., processors, memories,
controls). Physically, these components are separate
and connected to the Unibus following the lines of the
PMS structure.

Unibus organization

Figure 16 gives a PMS diagram of the Pc and the
entering signals from the Unibus. The control unit for
the Unibus, housed in Pc for the Model 20, is not
shown in the figure.

The PDP-11 Unibus has 56 bi-directional signals
conventionally used for program-controlled data trans
fers (processor to control), direct-memory data trans
fers (processor or control to memory) and control-to
processor interrupt. The Unibus is interlocked; thus
transactions operate independent of the bus length
and response time of the master and slave. Since the
bus is bi-directional and is used by all devices, any
device can communicate with any other device. The
controlling device is the master, and the device to
which the master is communicating is the slave. For
example, a data transfer from processor (master) to
memory (always a slave) uses the Data Out dialogue
facility for writing and a transfer from memory to
processor uses the Data In dialogue facility for reading.

The DEC PDP-11 669

data, a new encoding scheme is necessary to specify
the proposed additional instructions. This scheme adds
two instructions: enter floating. point mode and execute
one floating point instruction. The instructions for
floating point and double word data would be:

floating point/f and double word/d

FMOVE DMOVE
FADD DADD
FSUB DSUB
FMUL DMUL
FDIV DDIV
FCMP DCMP

FNEG DNEG

Bus control

Most of the time the processor is bus master fetching
instructions and operands from memory and storing
results in memory. Bus mastership is determined by
the current processor priority and the priority line
upon which a bus request is made and the physical
placement of a requesting device on the linked bus.

Unib~

.
('Bu• Addreu)

,,..."',.,, r 1· /Ar•hlft) ' ,.. """16 -rd; io<e1rated
,.Jl~(addor, loa;oal opo) \ 1rcult; ocratchpad;

~ · (proceuor state; 8

_.M(1A; latch)a ,.M('I; latch)a Cteaporar,; 2 worde);
/ / 16 bite/word

Mt 'N; 18 bite)II

J~--..J
proceeeor etate

Control

. ,J!~~;::::-:----.. -._-,,-.,-_,-/n-;-,-. -.. -,.->,---•1·::::::::; :::ft, 1~:::''01

~
/ add, M(11e:ratchpad), coaponenu

<atatue), A, I, IR,

Q<]:<t> Slaf Sync: 1 Parity Available oaeole; M(20 bite)

lt(':Pc lu.s Control)"'-----~ K('Timia1) ~L('lue Coatrol) 3 -

•:::::: !L, Sync, ••• •••Y !(clock)'

:~ : :::r~:r:;1:n:0:: ~1~f:~.~h!!t!::.:: :!:!:' - ueuelly caabinatorial
3K - control unit•; •equential switching circuit•
4S - •vitch, u•ed to gate content• of an M to a •et of lin ..
15 T - Transducer - to encode ti1H into a lo1ic (clock) d&nal
"Notation to denote 16 linu naad 15,14, •.•• 1,0

Figure 16-PDP-11 Pc structure

670 Spring Joint Computer Conference, 1970

The assignment of bus mastership is done concurrent
with normal communication (dialogues).

Unibus dialogues

Three types of dialogues use the Unibus. All the
dialogues have a common protocol which first consists
of obtaining the bus mastership (which is done con
current with a previous transaction) followed by a
data exchange with the requested device. The dialogues ·
are: Interrupt; Data In and Date In Pause; and Data
Out and Data Out Byte.

Interrupt

Interrupt can be initiated by a master immediately
after receiving bus mastership. An address is trans
mitted from the master to the slave on Interrupt.
Normally, subordinate control devices use this method
to transmit an interrupt signal to the processor.

Data in and data in pause

These two bus operations transmit slave's data
(whose address is specified by the master) to the
master. For the Data In Pause operation data is read
into the master and the master responds with data
which is to be rewritten in the slave.

Data out and .data out byte

These two operations transfer data from the master
to the slave at the address specified by the master.
For Data Out a word at the address specified by the
address lines is transferred from master to slave. Data
Out Byte allows a single data byte to be transmitted.

Processor logical design

The Pc is designed using TTL logical design com
ponents and occupies approximately eight 8" X 12"
printed circuit boards. The organization of the logic is
shown in Figure 17. The Pc is physically connected to
two other components, the console and the Unibus.
The control for the Unibus is housed in the Pc and
occupies one of the printed circuit boards. The most
regular part of the Pc, the arithmetic and state section,
is shown at the top of the figure. The 16-word scratch
pad memory and combinatorial logic data operators,
D(shift) and D(adder, logical ops), form the most
regular part of the processor's structure. The 16-word

memory holds most of the 8-word processor state
found in the ISP, and the 8 bits that form the Status
word are stored in an 8-bit register. The input to the
adder-shift network has two latches which are either
memories or gates. The output of the - adder-shift
network can be read to either the data or address
parts of the Unibus, or back to the scratch-pad array.

The instruction decoding and arithmetic control are
less regular than the above data and state and these
are shown in the lower part of the figure. There are
two major sections: the instruction fetching and
decoding control and the instruction set interpreter
(which in effect defines the ISP). The later control
section operates on, hence controls, the arithmetic

· and state parts of the Pc. A final control is concerned
with the interface to the Unibus (distinct from the
Unibus control that is housed in the Pc).

CONCLUSIONS

In this paper we have endeavored to give a complete
description of the PDP-11 Model 20 computer at four
descriptive levels. These present an unambiguous
specification at two levels (the PMS structure and the
ISP), and, in addition, specify the constraints for the
design at the top level, and give the reader some idea
of the implementation at the bottom level logical
design. We have also presented guidelines for forming
additional models that would belong to the same
family.

ACKNOWLEDGMENTS

The authors are grateful to Mr. Nigberg of the tech
nical publication department at DEC and to the
reviewers for their helpful criticism. We are especially
grateful to Mrs. Dorothy Josephson at Carnegie
Mellon University for typing the notation-laden
manuscript.

REFERENCES

1 R H ALLMARK J R LUCKING
Design of an arithmetic unit incorporationg a nesting store
Proc IFIP Congress pp 694-698 1962

2 G M AMDAHL G A BLAAUW F P BROOKS JR
Architecture of the IBM System/360
IBM Journal Research and Development Vol 8 No 2 pp
87-101 April 1964

3 C G BELL A NEWELL
Computer structures
McGraw-Hill Book Company Inc New York In press 1970

4 A W BURKS H H GOLDSTINE J VON NEUMANN
Preliminary discussion of the l-Ogical design of an electronic
romputing instrument, Part II
Datamation Vol 8 No 10 pp 36-41 October 1962

5 W S ELLIOTT CE OWEN CH DEVONALD
BG MAUDSLEY
The design philosophy of Pegasus, a quantity-production
computer
Proceedings IEEE Pt. B 103 Supp 2 pp 188-196 1956

6 FM HANEY
Using a computer to design computer instruction seis
Thesis for Doctor of Philosophy degree College of
Engineering and Science Department of Computer Science
Carnegie-Mellon University Pittsburgh Pennsylvania May
1968

APPENDIX 1

7 W LONERGAN P KING
Design of the B5000 system

The DEC PDP-11 671

Datamation Vol 7 No 5 pp 28-32 May 1961
8 W D MAURER

A theory of computer instructions
Journal of the ACM Vol 13 No 2 pp 226-23.'} April 1966

9 S ROTHMAN
R/W 40 data processing system
International Conference on Information Processing and
Auto-math 59 Ramo-Wooldridge (A division of Thompson
Ramo Wooldridge Inc) Los Angeles California June 1959

10 M V WILKES
The best way to design an automatic calculating machine
Report of Manchester University Computer Inaugural
Conference July 1951 (Manchester 1953)

DEC PDP-11 instruction set processor Description (in ISPL*)

The following description is not a detailed description of the instructions. The description omits the trap behavior of
unimplemented instructions, references to non-existent primary memory and io devices, SP (stack) overflow, and power
failure.
Primary Memory State

M/Mb/Memory[0:216 - 1](7:0)
Mw[0:215 -1](15:0): = M[0:216 -1](7:0)

Processor State (9 words)

(byte memory)
(word memory mapping)

R/Registers[0: 7] (15: 0)
SP(15:0): = R[6](15:0)
PC(15:0): = R[7](15:0)

(word general registers)
(stack pointer)
(program counter)

*ISP NOTATION

Although the ISP language has not been described in publications, its syntax is similar to other languages. The language is inherently
interpreted in parallel, thus to get sequential evaluation the word "next" must be used. Italics are used for comments. The following
notes are in order:
a:= f(. ..) equivalence or substitution process used for name and process substitution. For every occurrence of

a<-f(.. .)

register declaration, e.g.,
Q[0:l] [0:4095] {15:0)

(a:b)n

[c:d]

a->b;

"next"

instruction declaration, e.g.,
ADD (: = bop = 0010)->

(CC, D <-D + S)

D

a,f(. ..) replaces it.

Replacement operator; the contents in register a are replaced by the value of the function.

an array of words of two dimensions 2 and 4096; each word has 16 bits denoted 15, 14, 13, ... , 1, 0

Denotes a range of characters a, a + 1. ... , b to base n. If n is not given, the base is 2.

Array designation c, c + 1, ... , d

equivalent to ALGOL if a then b

sequential interpretation

defines the "ADD" instruction, assigns it a value, and gives its operation. ADD is executed when
bop = 00102• Equivalent to:

ADD-> (CC, D <-D + S)
where
ADD: = (bop = 0010) bop has been previously declared

concatenation, consider the combined registers as one

operators:= (+/add I -/subtract/negate I X/multiply I / /divide I t\ /and I V /or I v /not I Ell/exclusive or I = /equal/> /greater

than I 2 l < I ~ I ~ I modulo I etc.)

672 Spring Joint Computer Conference, 1970

PS(15:0)
Priority/P(2:0): = PS(7:5)

CC/ConditionL.JCodes(3:0): = PS(3:0)

Carry/C : = CC(O)

Negative/N: = CC(3)

Zero/Z : = CC(2)

Overflow /V : = CC (1)

. Trace/T : = ST(4)

Undefined(7:0): = PS(15:8)
Run
Wait

Instruction Format
(Bit assignments used in the various instruction formats)

i/instruction (15: 0)
bop(3:0): = i(15:12)
uop(15:6): = i(15:6)
brop(15:8): = i(15:8)
sop(15:6): = i(15:6)
s/source(.5:0): = i(ll:6)

sm,0:1): = s(5:~)
sd : = s(3)
sr : = s(2:0)

d/destination(5:0) : = i(5:0)
dm(O: 1) : = d(5:4)
dd : = d(3)
dr(2:0) : = d(2:0)

offset(7:0: = i(7:0)
addressL.J increment/ ai

Data Types
by /byte(7:0)
w/word(15:0)
by.i/byte.integer(7: 0)
w.i/word.integer (15: 0)
by. bv /byte. boolean L.J vector (7: 0)
w. bv /word. booleanL.J vector (15: 0)

(processor state register)
(under program control; priority
level of the process currently being
interpreted a higher level process
may interrupt or trap this process)

(under program control; when set,
each instruction executed will trap;
used for interpretive and break
point debugging)

(a result condition code indicating
an arithmetic carry from bit 15 of
the last operation)

(a result condition code indicating
last result was negative)

(a result condition code indicating
last result was zero)

(a result condition code indicating
an arithmetic overflow of the last
operation)

(denotes whether instruction trace
trap is to occur after each instruc
tion is executed)

(unused)
(denotes normal execution)
(denotes waiting for an interrupt)

(binary operation code)
(unary operation code)
(branch operation code)
(shift operation code)
(source control byte)
(source mode control)
(source def er bit)
(source register)
(destination control byte)

(signed 7 bit integer)
(implicit bit derived from i to denote
byte or word length operations)

(signed integers)

(boolean vectors (bits))

d/doubleLJ word(31 :0)
t/tripleLJ word (47: 0)
f /t.f/triple.floatingLJpoint(47: 0)

Source/Sand Destination/D Calculation
S/Source(15:0) : = (-, sd---. (

(sm = 00)---. R[sr];
(sm = 01) /\ (sr ~ 7)---. (M[R[sr]]; next R[srJ- R[sr] + ai);

~,(sm = 01) /\ (sr = 7)---. (M[PC]; PC - PC+ 2);
(sm = 10)---. (R[sr J - R[sr] - ai; next M[R[sr]]) ;
(sm = 11) /\ (sr ~ 7)---. (M[M[PCJ + R[sr]]; PC- PC+ 2);
(sm = 11) /\ (sr = 7) ---. (M[M[PC] + PC]; PC - PC + 2));

sd---. (
(sm = 00) ---. M[R[sr]] ;
(sm = 01) /\ (sr ~ 7) ---. (M[M[R[sr]]]; next R[sr] - R[sr] + ai);
(sm = 01) /\ (sr = 7)---. (M[M[PC]J; PC - PC+ 2);
(sm = 10)---. (R[sr] - R[sr] - ai; next M[R[sr]]);
(sm = 11) /\ (sr ~ 7)---. (M[M[PCJ + R[sr]]; PC - PC+ 2);
(sm = 11) /\ (sr = 7)---. (M[M[M[PCJ + PC]]; PC - PC+ 2))

The DEC PDP-11 673

(*double word)
(*triple word)
(*triple floating point)

(direct access)
(register)
(auto increment)
(immediate)
(auto decrement)
(indexed)
(relative)
(indirect access)
(indirect via register)
(indirect via stack, auto decrement)
(direct absolute)
(indirect via stack, auto 1·ncrements)
(indirect, indexed)
(indirect relative)

(The above process defines how operands are determined (accessed) from either memory or the registers. The various
length operands, Db(byte), Dw(word), Dd(double) and Df(floating) are not completely defined. The Source/S and
Destination/D processes are identical. In the case of jump instruction an address, D', is used-instead of the word in
location M[CI].)

Instruction Interpretation Process
-, InterruptLJrqs /\ Run /\ Wait---. (i - M[PC]; PC - PC+ 2;

T ---. (SP - SP + 2; next
M[SPJ-PS;
SP - SP + 2; next
M[SPJ-PC;
PC-M[14s]
ST- M[16s]))

next instructionLJ execution; next

InterruptLJrq[j] /\ (CC[j] > CC) /\ Run---. (T - O;
SP - SP + 2; next
M[SPJ-PS;

SP-SP+ 2;
M[SPJ-PC
PC- M[f(j)J
PS - M[f(j) + 2])

Instruction Set and the Execution Process

(fetch)
(execute)
(trace bit store state)

(interrupt)

(store state and PC enter new proc
ess). The locations M[f(J")] are:
reserved instruction = M[JO]
illegal instruction = M [4 J
stack overflow = M[4]
bus errors = M[4])

(The following instruction set will be defined briefly and is incomplete. It is intended to give the reader a simple under
standing of the machine operation.)

InstructionLJexecution : = (
MOV(: = bop = 0001)---. (CC,D - S);
MOVB(: =bop= 1001)---. (CC,Db-Sb);

* not hardwired or optional

(move word)
(move byte)

674 Spring Joint Computer Conference, 1970

Binary Arithmetic: D f- D b S;
ADD(: = bop = 0110) - (CC,D - D+s);
SUB(:= bop = 1110) - (CC,D - D - S);
Cl\iP(: = bop = 0010) - (CC - D - S);
CMPB(: = bop = 1010) - (CC- Db - Sb);
MUL(: =bop= 0111) - (CC,D - DX S);

DIV(:= bop = 1111) - (CC,D - D/S);

Unary Arithmetic D - u S;
CLR(: = uop = 0,50s) - (CC,D - 0);
CLRB(: = uop = 1050s) - (CC,Db -o);
COM(:= uop = 0,51 8) - (CC,D - -,D);
COMB(: = uop = 1051 8) - (CC,Db - -,Db);
INC(: = uop = 0528) - (CC,D - D + 1);
INCB(: = uop = 10528) - (CC,Db- Db+ 1);
DEC(: = uop = 0538) - (CC,D - D - 1);
DECB(: = uop = 10538) - (CC,Db - Db - 1);
NEG(: = uop = 0548) - (CC,D - - D);
NEGB(: = uop = 10548) - (CC,Db - -Db)
ADC(: = uop = 055 8) - (CC,D - D + C);
ADCB(: = uop = 10558) - (CC,Db - Db + C);
SBC(: = uop = 0568) - (CC,D - D - C);
SBCB(: = uop = 1056s) - (CC,Db - Db - C);
TST(: = uop = 057s) - (CC - D);
TST(: = uop = 10578) - (CC-Db);

Shift operations: D - D X 2n;
ROR(: =sop= 0608) - (COD - COD/2{rotatel;
RORB(: =sop= 10608) - (CODb- CODb/2{rotatel);
ROL(: = sop = 061 8) - (COD - COD X 2{rotatel);
ROLB(: =sop= 1061 8) - (CODb- CODb X 2{rotatel);
ASR(: = sop = 0628) - (CC,D - D X 2);
ASRB(: = sop = 10628) - (CC,Db - Db/2);
ASL(: = sop = 0638) - (CC,D - D X 2);
ASLB(: = sop = 10638) - (CC,Db - Db X 2);

--ROT(: = sop = 0648) - (COD - D X 2•);
ROTB(-: = sop = 1064s) - (CODb - D X 2•);
:LSH(:= sop= 065 8)-(CC,D-D X 2•{logical});
LSHB(: =sop= 10658) - (CC,Db-Db X 2'{logicall);
ASH(: = sop = 0668) - (CC,D - DX 2•);
ASHB(: = sop = 10668) - (CC,Db - Db X 2•);
NOR(: = sop = 067 8) - (CC,D - normalize(D));

(R[r'] - normalizeLJexponent(D));
NORD(: = sop = 1067 8) - (Db f- normalize(Dd);

R[r'] - normalizeLJexponent(D));
SWAB(:= sop= 3) - (CC,D -D(7:0, 15:8))

Logical Operations
BIC(: = bop = 0100) - (CC,D - D - D /\ -,S);
BICB(: = bop = 1100) - (CC,Db - Db V -,Sb);
BIS(:= bop= 0101) - (CC,D- D VS);
BISB(: =bop= 1101) - (CC,Db- Db V Sb);
BIT(:= bop = 0011) - (CC - D /\ S);
BITB(: = bQp = 1011) - (CC- Db/\ Sb);

(add)
(subtract)
(word compare)
(byte compare)
(*multiply if D is a register then a
double length operator)

(*divide, if D is a register, then a
remainder is saved)

(clear word)
(clear byte)
(complement word)
(complement byte)
(increment word)
(increment byte)
(decrement word)
(decrement byte)
(negate)
(negate byte)
(add the carry)
(add to byte the carry)
(subtract the carry)
(subtract from byte the carry)
(test)
(test byte)

(rotate right)
(byte rotate right)
(rotate left)
(byte rotate left)
(arithmetic shift right)
(byte arithmetic shift right)
(arithmetic shift left)
(byte arithmetic shift left)
t,-otate)
(byte rotate)
(*logical shift)
(*byte logical shift)
(*arithmetic shift)
(*byte arithmetic shift)
(*normalize)

(*normalize double)

(swap bytes)

(bit clear)
(byte bit clear)
(bit set)
(byte bit set)
(bit test under mask)
(byte bit test under mask)

Branches and Subroutines Calling: PC - f;
JMP(: = sop = 00018) - (PC - D');
BR(:= brop = 011&) - (PC - PC+ offset);
BEQ(: = brop = 0316) - (Z- (PC-PC+ offset));
BNE(: = brop = 0216) - (---,Z - (PC - PC+ offset));
BLT(:= brop = 0516) - (NEB V - (PC - PC+ offset));
BGE(: = brop = 0416) - (N = V - (PC - PC+ offset));
BLE(: = brop = 0716) - (Z V (NEB V) - (PC - PC+ offset));
BGT(: = brop = 0616) - (-, (Z V (NEB V)) - (PC - PC+ offset));
BCS/BHIS(: = brop = 871s) - (C - (PC - PC + offset));

BCC/BLO(: = brop = 861s) - (---,C - (PC - PC+ offset));
BLOS(: = brop = 83 16) - (C /\ Z - (PC - PC+ offset));
BHI(: = brop = 8216) - ((---,CV Z) - (PC-PC+ offset));
BVS(: = brop = 8516) - (V - (PC - PC + offset));
BVC(: = brop = 8416) - (---, V - (PC - PC + offset));
BMT(: = brop = 81 16) - (N - (PC - PC+ offset));
BPL(: = brop = 8016) - (---,N - (PC - PC+ offset));
JSR(: = sop = 0040s) - (

SP - SP - 2; next
M[SP] - R[sr];
R[sr]-PC;

PC-D);
RTS(: = i = 0002008) - (

PC-R[dr];
R[dr]- M[SP];
SP-SP+ 2);

Miscellaneous processor state modification:

RTI(: = i = 2s) - (PC - M[SP];
SP - SP + 2; next
PS - M[SP]; ---·- - -·

SP-SP+ 2);
HALT(:= i = O) - (Run-O);
WAIT(:= i = 1)-(Wait-1);
TRAP(:= i = 3) - (SP-SP+ 2; next

M[SPJ-PS;
SP - SP + 2; next
M[SPJ- PC; '.) (1,,

PC-M[34s];
PS-M[f2J);

EMT(: = brop - 8216) - ('"----

SP - SP + 2; next
M[SPJ-PS;
SP - SP + 2; next
M[SPJ-PC;
PC- M[(30s];
PS - M[i,2s]);

IOT(: = i = 4) - (see TRAP) .
RESET(: = i = 5) - (not described)
OPERATE(:= i(5:15) = 5) - (

i(4) - (CC - CCV i(3:0));
-,i(4) - (CC - CC /\---, i(3:0))) ;

end InstructionL-J execution

The DEC PDP-11 67;'5

(jump unconditional)
(branch unconditional)
(equal to zero)
(not equal to zero)
(less than (zero))
(greater than or equal (zero))
(less than or equal (zero))
(less greater than (zero))
(carry set; higher or same (un-
signed))

(carry clear; lower (unsigned))
(lower or same (unsigned))
(higher than (unsigned))
(overflow)
(no overflow)
(minus)
(plus)
(jump to subroutine by puttiny
R[sr], PC on stack and loading
R[sr J wi"th PC, and going to sub
routine at D)

(return from subroutine)

(return from hiterrupt)

(trap to M[34s] store status a11cl
PC)

(enter new process)

(emulator trap)

(I/O trap to 111[20s])
(reset to external devices)
(condition code operate)
(set codes)
(clear codes)

,._,-,----r

mnmnoma
· di.gital equipment corporation

Copyright 1969 by
Digital Equipment Corporation

PDP is a registered trademark
of Digital Equipment, Corporation

The material in this handbook is for information pur-
poses only and is subject to change without notice.

TABLE OF CONTENTS

.

CHAPIER 1 lNTRODUCTlOR

PDP-11 SYSTEMS .:.. 1
UNIBUS . , . 1
KAl 1 PROCESSOR . ?. 1

Priority Interrupts ,...............,..... 1
Reentrant Code .
General Registers . :... 2
Instruction Set_..
Addressing . ..~...~........,...,......... z
Asynchronous Operation . L 2

PACKAGJNG ..I
SOmARE: ..

CHAPTER 2 SYSTEM INTRODUCTION

SYSTEM DEFINITION ..
SYSTEM COMPONENTS ...
UNIBUS

Single Bus
Bidirectional Lines*
Master-Slave Relation
Interlocked .Communication ..
Dynamic Master-Slave Relation ...

KAll CENTRAL PROCESSOR ..
General Registers ..
Central Processor Status Register ..

CORE MEMORY ...
PERIPHERAL DEVICES ..
SYSTEM INTERACTION ..
TRANSFER OF BUS MASTER ..
PRIORITY STRUCTURE

NPR RequestsI
Interrupt Requests ..

CHAPTER 3 ADDRESSING MODES

INTRODUCTION;
ADDRESS FIELDS

General Register Addressing
*Indexed

.:.
Addressing

Autoincrement Mode Addressing ..
Autodecrement Addressing

STACK PROCESSING ..
USE OF THE PC AS A GENERAL REGISTER _ ...

Immediate Addressing ...
Absolute Addressing:.
Relative Addressing ..
Deferred Relative Addressing:.

USE OF THE SP AS A GENERAL REGISTER
DOUBLE OPERAND ADDRESSING ..

&iAPTER 4 INSTRUCTlOil Sk

INSTRUCTION TIMING ..
NOTATION ..

2
3

5
5
5
5
5
5

:
6

l 6
6
6
7

5
7

:

11
11
11
12
12
12
13
13
13
13
14
14
14
14

17
17

Ill

. .
DOUBLE OPERAND-INSTRUCTIONS i.. 17

Arithmetic Operations 1. 18
Boolean 20

BRANCHES
Instructions ...

.. .:. 21
Unconditional Branch ..

I Simple Conditional Branches .. ;:
Signed Conditional Branches .. 23
Unsigned Conditional Branches ..
JUMP .. 9:

SUBROUTINES ... 27
Examples .. 28

SINGLE OPERAND INSTRUCTIONS ..
Multiple Precision Operations .. zi
Rotates .. 33
Shifts .. 34
Examples .. 36

BYTE OPERATIONS .. 36
Double Operand Byte Instructions 36
Example 37
Single Operand Instructions .. 38

CONDITION CODE OPERATORS ..
MISCELLANEOUS CONTROL INSTRUCTIONS , i!
PROCESSOR TRAPS .. 41

Trap Instructions 41
Stack Overflow Trap ..
Bus Error Traps .. ii
Trace Traps .. 43

CHAPTER 5 I ADDRESS ALLOCATION
ADDRESS MAP .. 45

Interrupt and Trap Vector .. 46
Processor Stack and General Storage
Peripheral Registers .. z

CORE MEMORY .. 46
Read-Write Core Memory , 46
Read-Only Core Memory ..
Wordlet Memory ..

g

CHAPTER 6 PROGRAMMING OF PERIPHERALS
- DEViCE REGISTERS

CONTROL & STATUS REGISTERS ...
;;

Device Function Bits :..
Memory Extension

$

Done Enable and Interrupt Enable
Condition Bitsi ii
Unit Bits ..
Error Bits I ..:. ...

g

DATA BUFFER REGISTERS .. .: 48
PROGRAMMING EXAMPLES--NON INTERRUPT 48
INTERRUPT STRUCTURE .. 50
PROGRAMMING EXAMPLE .. 51

CHAPTER 7 PERIPHERAL BULLETINS .
TELETYPE (MODEL LT33-DC/DD) ..

Size ..
;;

Power Requirement .. 53

IV

. \
TELETYPE CONTROL (MODEL KLll) ...

Teletype Control .. r
Keyboard/Reader Operation ..

Registers (TKS, TKB) ..
Teleprinter/Punch ..

Registers (TPS, TPB) ..
Programming Example ..
Peripheral Address Assignments ..
Mounting

HIGH-SPEED PERFORATED TAPE READER (MODEL PCll)
Tape Reader ..

Registers (PRS, PRB) ...
Programming Example ..
Peripheral Address Assignments

Tape Punch ..
Registers (PPS, PPB)
Programming Example

.,
..

Peripheral Address Assignments
Mounting ...
Environmental ...
Line Frequency Clock (Model KWll-L) I,
Register:.
Peripheral Address Assignments ..
Mounting ...
Vector Address ..
Priority Level ..

CHAPTER 8 DESCRIPTION OF THE UNIBUS (
GENERAL CONCEPTS OF THE UNIBUS

Single Bus ..
Bidirectional Bus ..
Master-Slave Relation ..
Interlocked Communication . ..
Dynamic Master-Slave Relation ...

UNIBUS SIGNALS ..
NON-INTERRUPT SIGNALS ..

Data Linesr.~.
Address Lines ..
Control Lines .:. ...
Master Sync &‘Slave Sync ..
Parity Available & Parity Bit ..
Initialization ..
Spare 1 & Spare 2 ..

INTERRUPT SIGNALS *.
Bus Request Lines ... 9 ..

I Bus Grant Lines r.. ..
Non-Processor Request ..
Non-Processor Grant ..
Selection Acknowledge ..
Interrupt (and) Bus Busy ..

UNIBUS DATA TRANSFER OPERATIONS
DATO and DATOB ..
DATI and DATIP ..
Examples of Data Transfers
Signal Description of Data Transfers

...........
.........

V

53
53
53
54
54

.55
55
55
55
55
55
56
56
56
56
57

E
57
58

5588
58
58
58
58

59
59
59
59
60
60
60

:?I

E

::
61

,61
61

z:
61
61

6":
61

:z
62
63

UNIBUS CONTROL ’
Priority Arbitration ...
Selection of Next m m ..
Interrupt Sequence
Example of Interrupt, etc. ..
Example of NPR Operation ..

CHAPTER 9 WI’TERF~MC
REGISTERS ..
BUS DRIVERS AND RECEIVERS ..
ADDRESS SELECTOR ..
INTERRUPT CONTRbL
DEVICE CONTROL LOGIC ..

CHAPTER 10 CONFlGUMTICM AND MSTALLATIOW PlANNlm;
MODULAR CONSTRUCTION ..
MOUNTING BOXES AND CABINETS ..

. PDP-11 Tabletop Box for 11/20, Etc.
PDP-11 Basic Mounting Box ..
PDP-11 Tabletop Extension Mounting Box
PDP-1 l-Freestanding Base Cabinet
Freestanding Programmer’s Table ...

SYSTEM UNITS AND CABLES ..
Peripheral Mounting Unit ..
Blank System Unit: ...
Unibus Module ..
Unibus Cable :. ..

CABLE REQUIREMENTS ..
PDP-11/20 POWER REQUIREMENTS ..
TELETYPE REQUIREMENTS ..
ENVIRONMENTAL REQUIREMENTS ..
INSTALLATION PROCEDURE

CHAPTER 11 PAPER TAPE SOFlWARE SYSTEM
PTS FEATURES ..

PAL-11A Assembler ..
. ED11 Editor ..

ODT On-Line Debugging ..
IOX Input/Output, etc. ..
Math Package ...
Loaders ..
Core Dump Routines

CHAPTER 12 THE OPERATOR’S CONSOLE
CQNSOLE ELEMENTS .. \ Indicator Lights ...

Register Displays ..
Switch Register ..
Control Switches .. i’.

.. CONTROL SWITCH OPERATION ..

APPENDIX A-PDP-11 INSTRUCTION REPERTOIRE

APPENDIX B-ADDRESSING SUMMARY-
ADDRESSING MODES

General Register Addressing ..
PC Register Addressing \.

69
69

76

:; x;
a7
89

91

95

E
95

-- VI

INSTRUCTION FORMATS ._.___...........___.. 95

APPENDIX C-ADDRESS MAP . 97

APPENDIX D-UNIBUS OPERATIONS . 99
DATA-TRANSFERS .__............._._... 99

DATI and DATIP .
DATO and DATOB_..

F’TR-PRIORITY TRANSFER
/ lzo”

. ..__...................... 101
INTR-INTerRupt . 102
GENERAL NOTES ON THE BUS OPERATIONS _.__._,...._...__.,.,,...... 102

l

VII

The PDP-11”is available in two versions-PDP-ll/lO and PDP-
11/20. The basic PDP-ll/lO contains 1,024 words of read only
memory in conjunction with 128 words of read/write memory and
the basic PDP-ll/PO includes 4,096,words of read/write memory.

VIII

CHAPTER 1

INTRODUCTION
This publication is a handbook for Digital Equipment Corporation’s PDP-11.
It provides a comprehensive overview of the system structure, the instruction
repertoire, input/output programming, peripherals, general interfacing, soft-
ware, and console operation.

PDP-11 is Digital’s answer to the demand for a modular system for real-time
data acquisition, analysis and control. PDP-11 systems can handle a wide
variety of real-time control applications-each system being individually
tailored from a comprehensive array of modular building blocks. Digital is
unique among manufacturers of small-scale computers-in its ability to pro-
vide not only fast and efficient processing units, but also a large family of its
own compatible I/O devices including A/D and D/A converters, magnetic
tape, disk storage, paper tape, and displays, as well as a wide range of
general-purpose modules. This capability offers the user a hew, more efficient
approach to real-time systems.

The following paragraphs introduce the new PDP-11 by way of highlighting
several of the important design features that set it apart from other machines
in its class. Subsequent chapters of this manual place these features in their
proper context and provide detailed descriptions of each.

PDP-11 SYSTEMS
The PDP-11 is available in two versions designated as PDP-ll/ 10 and PDP-
11/20. The PDP-ll/ 10 contains a KAll processor, 1,024 words of 16-bit
read-only memory, and 128 16-bit words of read-write memory. The basic
PDP-ll/PO contains a KAll processor and 4,096 words of 16.bit read-write
core memory, a programmer’s console, and an ASR-33 Teletype. Both ver-
sions can be similarly expanded with either read-write or read-only memory
and peripheral devices.

UNIBUS _
Unibus is the name given to the single bus structure of the PDP-11. The
processor, memory and all peripheral devices share the same high-speed
bus. The Unibus enables the processor to view peripheral devices-as active
memory locations which perform special functions. Peripherals can thus be
addressed as memory. In other words, memory reference insfructions can
operate directly on’control, status, or data registers in peripheral devices.
Data transfers from input to output devices can bypass the processor com-
pletely.

KAll PROCESSOR
The KAll processor incorporates a unique combination of powerful features
not previously available in ldbit computers.

Priority Interrupts-A four-level automatic priority interrupt system permits
the processor to respond automatically to conditions outside the system, or
in the processor itself. Any number of separate devices can be attached to
each level.

Each perkpheral device in a PDP-11 system has a hardware pointer to its own
unique pair of memory locations which, in turn, point to the device’s service
routine. This unique identification eliminates the need for polling of devices

1

to identify an interrupt, since the interrupt servicing hardware selects and
begins executing the appropriate service routine.

The device’s interrupt priority and service routine priority are independent.
This allows dynamic adjustment of system behavior in response to real-time
conditions.

The interrupt system allows the processor continually to compare its own
priority levels with the levels of any interrupting devices and to acknowledge
the device with the highest level above the processor’s priority level. Servic-
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower priority device can be resumed aUtOmaticallY
upon completion of the higher level servicing. Such a process, called nested
interrupt servicing, can be carried out to any level.

Rentrant Code-Both the interrupt handling hardware and the subroutine
call hardware are designed to facilitate writing reentrant code for the
PDP-11. This type of code allows use of a single copy of a given subroutine
or program to be shared by more than one process or task. This reduces,the
amount of core needed for multi-task applications such as the concurrent
servicing of many peripheral devices.

General Register-The PDP-11 is equipped with eight general registers. All
are program-accessible and can be used as accumulators, as pointers to
memory locations, or as full-word index registers. Six registers are used for
general-purpose access while the seventh and eighth registers are used as
a stack pointer and program counter respectively.

Instruction Set-An important feature of the PDP-11 instruction set is the
availability of double operand instructions. These instructions allow memory-
to-memory processing and eliminate the need to use registers for Storage of
intermediate results. By using double operand instructions, every memory
location can be treated as an accumulator. This significantly reduces the
length of programs by eliminating load and store operations associated with
single operand machines.

Addressing-Much of the power of the PDP-11 is derived from its wide range
of addressing capabilities. PDP-11 addressing modes include list sequential
addressing, full address indexing, full 16qbit word addressing, 8-bit byte
addressing, stack addressing, and direct addressing to 32K words.
Variable length instruction formatting allows a minimum number of bits to
be used for each addressing mode. This results in efficient use of program
storage space.

Asynchronous Operation-The PDP-11’s memory and processor operations
are asynchronous. As a result, I/O devices transferring directly to or from
memory may steal memory cycles during instruction operation.

PACKAGING ’
The PDP-11 has adopted a modular approach to allow custom configuring Of
systems, easy expansion, and easy servicing. Systems are composed of basic
building blocks, called System Units, which are completely independent sub-
systems connected only by pluggable Unibus and power connections.
There is no fixed wiring between them. An example of this type of subsystem
is a 4,096-word memory module.
System Units can be mounted in many combinations within the PDP-11
hardware, since there are no fixed positions for memory or l/O device con-
trollers. Additional units can be mounted easily and connected to the system

2

.

in the field. In case maintenance is required, defective System Units can be
replaced with spares and operation resumed within a few minutes.

-E ’
A corn-e package of user-oriented software includes:

Absolute assembler providing object and source listings
Stritig-oriented editor
Debugging routines capable of operating in a priority interrupt environ-
mint
Input/output handlers for standard peripherals
Relocatable integer and floating point math library

3

All PDP-11 processors, memories and peripherals are electrically
and mechanically modular subsystems .supported in System Units.
which are simply plugged together to form a computer tailored to
user needs.

‘4

I
CHAPTER i

SYSTEM INTRODUCTION
SYSTEM DEFINITION
Digital Equipment Corporation’s PDP-11 is a 16.bit, general-purpose, parallel-
logic computer using two’s complement arithmetic. The PDP-11 is a variable ’
word length processor which .directly addresses 32,768 16.bit words or
65,536 8-bit bytes. All communication between system components is done
on a single- high-speed bus called a Unibus. Standard features of the system
include eight general-purpose registers which can be used as accumulators.
index registers, or address pointers, and a multi’level automatic priority in-
terrupt system.

SYSTEM COMPONENTS
UNIBW-There are five concepts that are very important for understanding
both the hardware and software implications of the Unibus.

Single Bus--The Unibus is a single, common path that connects the central
processor memory, and all peripherals. Addresses, data, and control informa-
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the Unibus. The
processor uses the same set of signals to communicate with memory as with
peripheral devices. Peripheral devices also use this set of signals when com-
municating with the processor, memory, or other peripheral devices.

Peripheral device registers may be manipulated as flexibly as core memory
by the central processor. All the instructions that can be applied to data in
core memory can be applied equally well to data in peripheral device regis-,

.ters. This is an especially powerful feature, considering the special capability
of PDP-11 instructions to process data in any memory location as though it
were an accumulator.

Bidirectiona) Lines--Unibus lines are bidirectional, so that the same signals
which are received as input can be driven as output. This means that a
peripheral device register can be either read or set by the central processor
or other peripheral devices; thus, the same register can be used. for both
input and output functions.

Master-Slave Relation-Communication between two devices on the bus is
in the form of a master-slave relationship. At any point in time, there is one
device that has control of the bus. This controlling device is termed the
“bus master.” The master device controls the bus when communicating with
another device on the bus, termed the “slave.” A typical example of this
relationship is the processor, as master, fetching an instruction from mem-
ory (which is always a slave). Another example is the disk, as master, trans-
ferring data to memory, as slave.

interlocked Communication--Communication on tliq Unibus is interlocked
so that for each control signal issued by the master device, there must be-a
response from the slave in order to complete the transfer. Therefore, com-
munication is independent of the physical bus length and the response time
of the master and slave devices. The maximum transfer rate on the Unibus
is one 16-bit word every 750 nanoseconds, or 1.3 million 16-bit words- per
second.

Dvnamlc Master-tive #?e!&eM astar-slave relationships are dynamic. The
,processor, for example, may p&s bus control to a disk. The disk, as master,
could then communicate with a slave memory bank.

Since the Unibus is used by the processor and all I/O devices, there is a
priority structure to determine which device gets control of the bus. There
fore, every device on the Unibus which is capable of becoming bus master
has a ‘Priority assigned to it. When two devices which are kapable of becorn-
ing a bus master request use of the bus simultaneously, the device with the
higher priority will receive control first. Details of what conditions must be
satisfied before a device will get control of the bus are given in the section
on System Interaction.

,+(A11 CENTRAL PROCESSOR-There are four major features which are of
particular interest to the programmer: l), the General Registers: 2), the
Processor Status Word; (3), the Addressing Modes; and 4), the Instruction
Set. The addressing modes and the instruction set of the PDP-11 processor
will be discussed in detail in Chapters 3 and 4.

‘Ganeral Registers-The KAll processor contains eight 16.bit general regis-
Ms. These eight general registers (referred to as RO, Rl, R7) may
be used as accumulators, as index registers, or as stack pointers. One of
these registers, R7, is reserved as. a program counter (PC). Generally, the
PC holds the address of the next instruction, but it may point to data or
to an address of data. The register R6 has the special function of processor
stack pointer.

Central Processor Status Register-The Central Processor Status Register
(PS) contains information on the current priority of the processor, the result
of previous operations, and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The priority of the
central processor can be set under program control to any one of eight.
levels. This information is held in bits 5, 6, and 7 of the PS.
Four bits of the PS are assigned to monitoring different results of previous
instructions. These bits are set as follows:

Z-if the result was zero
N-if the result was negative .
C-if the operation resulted in a carry from the most significant bit
V-if the operation resulted in an arithmetic overflow

The T bit is used in program debugging and can be set or cleared under pro-
gram control. If this bit is set, when an instruction is fetched from memory
a processor trap will’ be caused by the completion of the instruction’s
execution.

Central Processor Status Register (PS)
CORE MEI;(ORy-The PDP-11 allows both 16.bit word and 8-bit byte ad-
dressing. The address space may be filled by core memory and peripheral
device registers. The top 4,096 words generally are reserved for peripheral
device registers. The remainder of address space can be used for read-write
core memory or read-only core memory.

Read-write core memory is currently available in 4,096 1Qbit word segments.
This memory has a cycle time of 1.2. microseconds and an access time of
500 nanoseconds. It is a standard part of a PDP-ll/PO system.

6

Read-only core memory (ROM) is available in 1,024 16 bit-word segments.
The access time of the ROM is 500 nanoseconds. Memory is also available in
128 16-bit word segments with a 2.0 microsecond cycle time. Both 1,024
words of read-only memory and 128 words of read-write memory mount in
a single System Unit and are a standard part of the PDP-ll/lO system.

PERIPHERAL DEVICES-The ASR-33 Teletype with low-speed paper tape
reader and punch is provided in the basic PDP-11/20 system. Options for the
.PDP-11 include a paper tape reader capable of reading 300 characters per
second, a paper tape punch with an output capacity of 50 characters per
second, and additional Teletype units. Provision is made for the addition
of numerous peripheral devices. These include standard DEC peripherals as
well as other devices which will be unique to the PDP-11.

SYSTEM INTERACTION
At any point in time only one device can be in control of the bus, or be bus
master. The master communicates with another device on the bus which is
called the slave. Usually, the established master will communicate with the
slave in the form of data transfers.

Full 16-bit words or 8-bit bytes of information can be transferred on the bus
between the master and the slave. The information can be instructions, ad-
dresses, or data. This type of ‘operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and re-
storing the results into memory after execution of instructions. Pure data
transfers occur between a disk control and memory.

TRANSFER OF BUS MASTER-When a device (other than the central pro-
cessor) is capable of becoming bus master and requests use of the bus, it is
generally for one of two purposes: 1) to make a non-processor transfer of
data directly to or from memory, or 2) to interrupt program execution and
force the processor to branch to a specific address where an interrupt
service routine is located.

PRIORITY STRUCTURE-When a device capable of becoming. bus master
requests use of the bus, the handling of that request depends on the loca-
tion of that device in the priority structure. These factors must be considered
to determine the priority of the request;

1. The processor’s priority can be set under program control to one of
eight levels using bits 7, 6, and 5 in the processor status register.
These three bits set a priority level that inhibits granting of bus re-
quests on lower levels.

2. Bus requests from external devices can be made on one of five re-
quest lines. A non-processor request (NPR) has the highest priority,
and its request is honored by the processor between bus cycles of
an instruction execution. Bus request 7 (BR7) is the next highest

--priority, and BR4 is the lowest. The four lower level priority requests
are honored by the processor between instructions. When the pro-
cessor’s priority is set to a level, for example 6, all bus requests on
BR6 and below are ignored.

3. When more than one device is connected to the same bus request
(BR) line, a device nearer the central processor has a higher priority
than a device farther away. Any number of devices can be connected
to a given BR or NPR line.

Once’s device other than the processor has control of the bus, it is for one
of two types of requests: 1) NPR Request, 2) ‘Interrupt Request.

7

NPR Requeata-NPR data transfers can be made between any two peripheral
devices without the supervision of the processor. Normally, NPR transfers
are between a mass storage device, such as a disk, and core memory.
The structure of the bus also permits device-to-device trat’ISfer% allowing.
customer-designed peripheral controllers to access other devices such as
disks directly. -

An NPR device has very fast access to the bus and can transfer at high data
rates once it has control. The processor state is not affected by the transfer:
therefore the processor can relinquish control while an instruction is in
Progress. This can occur at the end of any bus cycle except in between a
read-modify-write-sequence. (See Chapter 8 for details). In the PDP-11, an
NPR device can gain bus control in 3.5 microseconds or less. An NPR device
in COritrOl of the bus may transfer ldbit words from memory at memory
speed or every 1.2 microseconds in the PDP-ll/EO or every 1.0 microseconds
in the PDP-ll/lO.

IIIterrUpt Requests-Devices that request interrupts on the bus request lines
(BR7, BR6, BR5, BR4) can take advantage of the power and flexibility of
the processor. The entire instruction set is available for manipulating data
and status registers. When a device servicing program must be run, the task
currently under way in the central processor is interrupted and the device
service routine is initiated. Once the device request has been satisfied, the
processor returns to the interrupted task.

In the PDP-11, the return address for the interrupted routine and the proces-
sor status word are held in a “stack.” A stack is a dvnamic seauential
list of data with special provision for access from one end. A stack-is also
called a “push down” or “LIFO” (Last-In First-Out) list. Storaee and re-
trieval from stacks is called “pushing” and “popping” respecti&ly. These
operations are illustrated in Figure 2-1.

In the PDP-11, a stack is automatically maintained by the hardware for inter-
rupt processing. Thus, higher level requests can interrupt the processing of
lower level interrupt service, and automatically return control to the lower
level interrupt service routines when the higher level servicing is completed.

Here is an example of this procedure. A peripheral requires service and
requests use of the bus at one of the.BR levels (BR7, BR6, BR5, BR4). The
operations undertaken to “service” the device are as follows:

I l.AN EMPTY
STACK

E2

El El

E0

4. ANOTHER
PUSH

El

El
E0

5 POP

E0 ,

3.PlJStlING ANOTHER
~tiW&CNTO THE

E3

I3 E4

EO

6. PUSH

E3

Fig 2-1 Illustration of Push and Pop Operations

8

Priorities permitting, the processor relinquishes the bus to that
device.
When the device has control of the bus, it sends the processor an
interrupt command with the address of the words in memory con-
taining the address and status of the appropriate device service
routine.
The processor then “pushes”- first, the current central processor
status (PS) and then, the current program counter (PC) onto the
processor stack.
The new. PC and PS (the “interrupt vector”) are taken from the loca-
tion specified by the.device and the next location. and the device

Figure 2-2 Nested device Servicing

9

service routine is begun. Note that those operations all occur auto-
matically and that no device-polling is required to determine which
service routine to execute.

5. 7.2 microseconds is the time interval between the central Processor’s
receiving the interrupt command and the fetching of the first inStruC-
tion. This assumes there were no NPR transfers during this time.

6. The device service routine can resume the interrupted process by
executing the RTI (Return from interrupt) instrudion which ‘ipops”
the processor stack back into the PC and PS. This requires 4.5
microseconds if there are no intervening NPR’s.

7, A device service routine can be interrupted in turn by a sufficiently
high priority bus request any time after completion of its first in-
struction.

8. lf such an interrupt occurs, the PC and PS of the device service .
routine are aUtOITX3tiCally pushed into the stack and the new device
routine initiated as above. This “nesting” of priority interrupts can
go on to any level, limited only by the core available for the stack.
More commonly, this process will nest only four levels deep since
there are four levels of BR signals. An example of nested device
servicing is shown in Figure 2-2. A rough core map is given for each
step of the process. The SP points to the top word of the stack as
shown.

10

CHAPTER 3
ADDRESSING jdODES‘

Most data in a program is structured in some way-in a table, in a stack, in
a table of addresses, op perhap$ in a small set of frequently-used variables‘
local to a limited region of a program. The PDP-11 handles these common
data structures -with addressing modes specifically designed for each kind
of access. In addition, addressing for unstructured data is general enotfgh *’
to permit direct random ac%ess to all of core. Memory is not brokeri up into
pages and fields (often awkward and wasteful of core storage).

Addressing in the PDP-11 is dohe through the general registers. PrOWems
requiring several stacks can use the general registers for stack pointers.
Those requiring many local variables can use general registers as accumu-
lators. The general registers can be used interchangeably as index ,registen
or as sequential list pointers to access tabularrdata. Address arithmetic may
be done directly in the general registers. ,

ADDRESS FIELDS
PDP-11 instruction words contain a 6-bit address field divided into two sub-
fields selecting the general register and the mode generating the effective
address.

The register subfield specifies which of the eight general registers is to be
used in the address calculation. The mode subfield indicates how this register
is to be used in determining the operand. These modes will be described
in the following paragraphs.

GENERAL REGISTER ADDRESSING-The general registers will be used .as
simple accumulators for operating on frequently-accessed variables. In this
mode, the operand is held directly in the general register. The general reg-
isters are in iast memory, (280-nanosecond cycle time) resulting in a speed
improvement for operations on these variables.

PAL-11, the PDP-11 assembler, interprets instructions of the form

OPR R
as general register operations. R has been defineb as a register name and
OPR is used to represent a general instruction mnemonic. ihe address field
for general register operations is

Operands that are pointed to -by addresses (indirect or deferred) are de-
noted to PAL-11 by the @ symbol. Thus, instructions of the form

* .
OPR @R

specify deferred register addressing and have the following address field.

,

11

Deferred register addressing may also be selected in PAL-11 by the form
OPR (R).

INDEXED AD~RE&G-T~IZ general fegisters may be used as index reg
jr&en to per&t random access of items in tables or stacks of data. InStrUC-
tions of the form

OPR X(R)
specify indexed mode addressing. The effective address is the sum of X
and the contents of the specified general- register R.

The index word containing X follows the instructi& word.

Index mode addressing can be deferred to permit access of data elements
through tables or stacks of their addresses. The address field for index de-
ferred mode is

It is specified by instructions of the form

OPR @X(R) _

AUTOINCREMENT ADDRESSlNCiAutoincrement addressing provides for
automatic stepping of a pointer through sequential elements of a table
of operands. In this mode, the address of the operand is taken from the
general register and then the contents of the register are stepped (incre-
mented by one or two) to address/the next word or byte depending upon
whether the instruction operates on byte or word data. Instructions of the
form *

01% (RI+
specify autoincrement addressing. The address field for autoincrement ad-
dressing is

This mode may also be deferred. Instructions of the form

OPR @(Wk
specify deferred autoincrement addressing and assemble with the followihg
address field.

AUTODECREMENT ADDRESSlN*Autode&ement addressing steps the spe-
cified general register to the next lower byte (decrement by one) or word

12

(decrement by two) address and-uses the new contents of the general reg-
ister as the operand address. Instructions of the form

-0PR -(RI
specify autodecrement addressing. The address field for autodecrement ad- ’
dressing is

This mode also may be deferred and specified by instructions of the form
OPR @ -(R). When deferred the address field is

STACK PROCESSING
The combination of autoincrement addressing in which the general register is
stepped forward after the operand address is determined and autodecrement
addressing in which the general register is stepped backward before the
operand address is determined is the basic requirement for convenient low
overhead stack operations.

The PDP-11 has extensive stack processing capabilities. The stack pointer
(SP), R6, maintains a stack for the nested handling of interrupts. All of the
general registers can maintain stacks under program control. Elements in
the middle of stacks may be accessed through indexed addressing. This
provides for convenient access of dynamically assigned temporary storage,
especially useful in nested procedures.

USE OF THE PC AS A GENERAL REGISTER
There are special implications in the use of the addressing modes already
described when applied to the PC (R7). The use of the PC with the address-
ing modes described above generates immediate, absolute, relative, and
deferred relative addressing.

IMMEDIATE ADDRESSING-Immediate addressing provides time and space
improvement for access of constant operands by including the constant in .
the instruction. The instruction word referencing an immediate operand
specifies autoincrement addressing through the program counter. The ad-
dress field would be

The program counter points to the word after the instruction word. The con-
tents of this word are therefore used as the operand and the program counter

. is stepped to the next word. PAL-11 recognizes address expressions of the
form “#n” as immediate operands and codes them with the address field
shown above followed by a word of data (n).

A full word is assembled for immediate operands even in byte instructions
so that instruction words are always fetched from even locations.

ABSOLUTE ADDRESSING-The contents of the location following the instruc

13

tion word may be taken as the address of an operand by specifying deferral
in immediate mode addressing. That is, instructions of the form

refer to the operand at, address A. PAL-11 assembles address cxprwssions of
this form into an address field

followed by a word containing the o
P

erand address.

MUTmE ADDRESSIF&-Relative addressing specifies the operand address
relative to the instruction location. This is accomplished by using the pc as
an index regkter. The PC is considered as a base address. The of&&, the
distance betwe’en the. location of the operand and the PC, is held in the
index word of the instruction. PAL-11 assembles instructions of the form

OPR A
(where A has not been assigned as a name of a general register) as an
instruction word with the address field

followed by an index word of the form

k-f OF TM* IIIID.2

DEFERRED RELATIVE ADDRESSING-Deferral of relative addressing permits
access to data through memory locations holding operand addresses. The
“@I” character specifies deferred addressing: i.e., OPR @A. The address field
for deferred relative addressing is

USE OF THE SP AS A GENERAL REGISTER
The processor stack pointer will in most cases be the general register used
in PDP-11 stack operations. Note that the content of SP, (SP), refers to the
top element of the stack, that -(SP) will push data onto the stack, that
(SP)+ will pop data off the stack, and that X(SP) will permit random access
of items on the stack. Since the SP is used by the processor for interrupt
handling, it has a special attribute: autoincrements and autodecrements are
always done in steps of two. Byte operations using the SP in this way will
simply leave odd addresses unmodified.

DOUBLE OPFRAND ADDRESSING
Operations which imply two operands such as add, subtract .and compare
are presented in the PDP11 by instructions which specify two addresses. The *
instruction word for 6uch operations is of the form

Instruction Word-Double Operand Instructions

14

and is followed by index words and immediate operands for the source and
destination address fields as appropriate. Source address calculations are
performed before destination address calculations. Since each operand may
be anywhere in core storage or in the general registers, each memory location
is thus effectively provided with the arithmetic capabilities of an accumulator.
Further, since peripheral device registers and memory location are addressed
in the same way, the contents of peripheral data buffers can be stored or
loaded directly to and from memory without use of any general register. This
means that interrupt routines can be executed without saving and restoring
any of the general registers.

19

CHAPTER 4
INSTRUCTION SET

This chapter Presents the order code for the PDP-11. Each PDP-11 instruc-
tion is described in terms of five parameters: operation, effect on condition
codes, base timing, assembler mnemonics, and octal representation. Special
comments are included where appropriate.

NOTATION
The following notations will be used in this section:

(XXX) : The contents of XXX
src : The Source Address
dst : The Destination Address
A : Boolean “AND” Function
V : Boolean “OR” Function
tf : Boolean “Exclusive OR” Function

: Boolean ‘NOT” Function (Complement)

i

: “becomes”
: “is popped from the stack”
: “is pushed onto the stack”

INSTRUCTION TIMING
The PDP-11 is an asynchronous processor in which, in many cases, memory
and processor operations are overlapped. The execution time for an instruc-
tion is the sum of a basic instruction time and the time to determine and
fetch the source and/or destination operands. The following table shows the
addressing times required for the various modes of addressing source and
destination operands. The instruction time for each operation is given
(throughout this chapter) for the 11/20 configuration. All times stated are
subject to +20% variation.

ADDRESSING FORM
(src or dst)

R
(RI or @R

L”c’Rf

@(W +
G?-(R)
BASE(R)
@BASE(R) or @(R)

TIMING

src bs)t
0

dst Wt
0

1.5 1.4*
1.5 1.4’

1.4*
::7” 2.6*

2:;
2.6*
2.6*

3.9 3.8’

l dst time is .4 ws. less than listed time if instruction was a
CoMPare. CoMPare Byte
Bit Test, Bit Test Byte
TeST, or TeST Byte

none of which ever modify the destination word.
t referencing bytes at odd addresses adds 0.6~s to sn and dst times.

DOUBLE OPERAND INSTRUCTIONS-Double Operand Instructions are repre-
sented in assembly language as:

OPR src, dst
,’ where src and dst are the addresses of the source and destination operands

respectively. The execution time for these operations is comprised of the
source time, the destination time; and the instruction time. The source and
destination times depend on addressing modes and are described in the pre.
ceding table.

17

Arithmetic Operations-

Operation: (src) + (dst)

Condition Codes:
Z: set if (src) = 0; cleared otherwise
N: set if (src) < 0; cleared otherwise
C: not affected
V: cleared

Description: Moves the source operand to the destination location. The pre-
vious contents of the destination are lost. The contents of the source are
not affected.

The MOV instruction is a generalization of ‘load,” “store,” “setup,” ‘push,”
“pop,’ and interregister transfer operations.

General registers may be loaded with the contents of memory addresses with
instructions of the form:

MOV src, R

Registers may be loaded with a counter, and pointer values with MOV in-
structions:

MOV #n. R
iwhich loads the number n into register R)

Operands may be pushed onto a stack by:
MOV src, -(R)

and may be popped off a stack by:
MOV (R)+, dst

Interregister transfers are simply:
MOV RA, RB

(RA and RB are general registers)

Memory-to-memory transfers may be done with the MOV instruction in the
general form:

MOV src, dst

ADD ADD WC. dsi 2.3~

0 , 6 WC
I I I I I 1

dst ,
I I

(5 12 11 6 5 0

Operation: (src) + (dst) + (dst)

Condition Codes: Z: set if result = 0; cleared otherwise
N: set if result < 0; cleared otherwise
C: set if there was a carry from the most significant bit

of the result; cleared otherwise
V: set if there was arithmetic overflow as a result of the

operation, that is, if both dperands were of the same
sign and the result was of the opposite sign; cleared
otherwise

18

Description: Adds the source operand to the destination operand and stores
the re< at the destination address. The original contents-of the destination
are lost. Ttr, ktmcI of the sowe are not a#ectod. Two’s cwpt addi-
tion is perfoti.

The ADD instruction inckdes as special cases the “add-to-register,” “add-t@
memory,” and ‘Md-reister-to-rwister” functions:

Add-to&gister ADD WC, R ,
A&l-to*mory ADD R, +t
Add Register-to-Register ADD RA. RB

Arithmetic may also be done directly in memory by the general form ADD
instruction

ADD src, dst

. Use of this form saves considerable loadindand storing of accumulators.

Two special cases of the ADD instruction are particularly useful in coppilers,
interpreters, and other stack arithmeti processes:

ADD (R +,
II

(RI
(where R is th stack pointer)

which replaces the top two elements ‘pf the stack with their sum; and ADD
src. (R), which increases the top eletient of the stack by the contents of
the source address.

The “Add Immediate” operation is y&t another special case of this general-
ized .ADD iristruction:

ADD #n, dst *

Immediate operations are useful in dealing with constant operinds. Note
that:

ADD #n. R
steps the register R (which may be an index register) through n addresses
eliminating the need for a special “add-to-index register” instruction.

All these special cases of the ADD instruction apply equally well to the other
double operand instruetions that follow.

suBtract SUB WC, drt 2.3 YI

1 , 6
I t I

WC
I I t II t

drt
I I t I

15 12 11 6 5 0

Operation: (dst) - (src) + (dst) [in detail, (dst) + - (src) + 1 + (dst)]
Condition Codes: 2: set if result = 0; cleared otherwise

N: set if result < 0; cleared otherwise
C: cleared if there was a carry from the most significant

bit of the result: set othen@se

4

V: set if there was arithmetic overflow as a result of the
operation, that is, if-the operands were of opposite
signs and the sign of source was the Same as the
sign of the result; cleared otherwise.

Description: Subtract; the source operand from the destination operand and
leaves the result at the destination address. The original contents of the
destination are lost. The contents of the source are not affected.

19

COMParo CMP rrc.dst 2.3ur’

01 2 WC dst
I I I I 1 1 1 I I I t

(5 12 11 6 5 0

.Operation: (src) - (dst) [in detail, (src) + - (dst) + 11
Condition Codes: Z: set if result = 0; cleared otherwise

N: set if ‘result < 0; cleared ptherwise
C: cleared if there was a carry from the most significant

bit of the result; set otherwise
V: set if there was arithmetic overflow; that is, operands

were of opposite signs and the sign of the destination
was the same as the sign of the result; cleared
otherwise.

Description: Arithmetically compares the source and destination operands.
Affects neither operand. The only action is to set the condition codes
appropriately.

Boolean Instructions-These instructions have the same format- as the
double operand arithmetic group. They permit operations on data at the
bit level.

Bll set BIS src.dst 2.31~~

0 , 5
It~IJ*I~~I’~l

15 12 11 6 5 0

.

Operation: (src) V (dst) + (dst)

Condition Codes: ,Z: set if resu’lt = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared

Description: Performs “Inclusive OR” transfer between the source and des-
tination operands and leaves the result at the destination address; that is,
corresponding bits set in the source are set in the destination. The original
contents of the destination are lost. The source is not affected.

Bit Clear BIC src, dst 2 9us

0 4 src dst
1 I L I t I t t I I I

15 12 11 6 5 0

Operation: - (src) A (dst) + (dst)

Conditions Codes: Z: set if result = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared .

Description: The BIC instructi,on clears each bit in the destination that car-
responds to a set bit in the source. The original contents of the destination
are lost. The contents of the sources are unaffected.

*There is no read/modify/write cycle in the CMP, BIT. and TST operations. This.iaves
0.4 ws in all destination address modes except register mode.

20 ’

Bll Test BIT rrc,dst .2.9***

* 0, 3 WC
I I I I I I

dd ,
I I 1 I

. 15 12 11 6 5 0

Operation: (src) A (dst)

Condition Codes: Z: set if result = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared

Description: Performs logical “and” comparison of the source and destination
operands and modifies condition codes accordingly. Neither the source nor
destination operands are affected.

The BIT instruction may be used to test whether any of the corresponding
bits that are set in the destination are also set in the source or whether
all corresponding bits set in the destination are clear in the source.

Note.that the operations of BIS, BIC, and BIT are parallel in that the same
mask may be used to set, clear and test the state of particular bits in a word.

BRANCHES-Branches have the instruction format

Opwotion exx IOC Instruction Time

operation code offs*1

I II I I I I II 1 I,1 1 II’1 I
ts - 6 7 0

The offset is treated as a signed two’s complement displacement to be mul-
tiplied by 2 and applied to the program counter. The program counter points
to the next word in sequence. The effect is to cause the next instruction to
be taken from an address, “lot”, located up to 127. words back (-254
bytes) or 128 wordsahead (+ 256 bytes) of the branch instruction. PAL-11
gives an error indication in the instruction if “lot” is outside this range. .
The PDP-11 assembler handles address arithmetic for the user and com-
putes and assembles the proper offsets field for branch instructions in the
form

Bxx lot
where lot is the address to which the branch is to be made. The branch
instructions have no effect on condition codes.

Unconditional Branch-

BRbnch Wncondilionol) BR IOC 2.6~s

01 lOI I I Ol I4 I I I I I I
15 6 7 0

Operation: lot + (PC)

Description: Provides a way of transferring program control within a limited
range with a one word instruction. The execution time is equal to the in-
struction time (2.6~s) for the operation.

21

gbnpk corldttbnrit Bran&es-Conditioned branches combine in one instruc-
tion a conditional sMp, unconditional branch sequence. .
Timing for the conditional branches is shown as execution time if the con-.
dition is not met, followed by the execution time if the condition is met (end
a program branch occurs).

Branch on Eauol(z.ro) BEQ IOC ~.SILS,~,~.~ILS

0 , ,O I I I I I I I I, I, 1 I 4
offrrt

15 6 7 0

Operation: lot + (PC) if Z = 1

Description: Tests the state of the Z-bit and causes a. branch if Z is set. It
is used to test equality following a CMP operation, to test that no bits set
in the destination were also set in the source fdllowing a BIT operation, and
generally, to test that the result of the previouq operation was zero.

Thus the sequence

CMP A,B ; compare A and B
BEQ C ; branch if they are equal

will branch to C if A = B (A - B A 0)
and the sequence

ADD A.B ; addAtoB
BEQ C ; branch if the result = 0

will branch to C if A + B = 0.
Branch on Not EqualGk~) BNE IOC 1.5113.2.6 ILS

0 1 0
offset

I1 I I I I I I III I 1 0

15 B 7 0

Operation: lot + (PC) if Z = 0

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear. BNE is the complementary -operation to BEQ. It is. used to test in-
equality following a CMP, to test that some bits set in the destination were
also set in the source, following a BIT end, generally, to test that the result
of the previous operation was not zero.

Branch on Minus BMI IQC 1.5u.s, 2.6~

1 I 0 I I 0 III 4 I Ill offsri II I I
15 B 7 0

Operation: lot --, (PC) if N = 1

Description: Tests the state of the’N-bit and causes a branch if N is set. It
is used to test the sign (most significant bit) of the result of the previous
operation.

Branch on PLUS 6PL IOC t.5 AU, 2.61~

0ffS.t
1 I 0 I, 0 II 0 I1 I I I I1 1
15 -. B 7 0

Operation: lot + (PC) if N = 0.

Description: Tests the state of the N-bit and causes a branch if N is,clear.
BPL is the complementary operation to BMI.

Branch on Carry Set BCS lot 1.5~s ,Z.~ALS

1 , 0, ,
31 I4 I I I I I I I

t5 8 7 0

Operation: lot + (PC) if C = 1

Description: Tests the state of the C-bit and causes a branch if C is set. It
is used to test for a carry in the result of a previous operation.

Bmnch on Carry Clear BCC IOC t.5 U.S. 2.61~5

1
, 0

I I
3

I I
0

I Offset I I I III I I

15 8 7 0

Operation: lot + (PC) if C’= 0

Description: Tests the state of the C-bit and causes a branch if C is clear.
BCC is the complementary operation to BCS.

Branch on overflow set BVS IOC 1.5us,2.6us

1 , 0 I 2 I I I 4 I
offset

I I I t I 1 I
15 8 7 0

Operation: lot + (PC) if V = 1

Description: Tests the state of the V-bit (overflow) and causes a branch. if
the V-bit is set. BVS is used to detect arithmetic overflow in the previous
operation.

eranch on Overflow clear WC IOC 1.5us.2.61~~

1 I 0 I 121 PI I I I I I I 1 I
oftset

15 8 7 0

*

Operation: lot + (PC) if V = 0

Description: Tests the state of the V-bit and causes a branch if the V-bit is
clear. BVC is the complementary operation to BVS.

Signed Condiiional Branches--Particular combinations of the condition code
bits are tested with the signed conditioned branches. These instructions are
used to test the results of instructions in which the operands were consid-
ered as signed (two’s complement) values.

Note that the sense of signed comparisons differs from that of unsigned
comparisons in that in signed 16-bit, two’s complement arithmetic the
sequence of values is as follows:

23

largest . 077777
077776

positive .
.
.

000001
000000
177777
177776

negative

lQo00l
smallest 100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be .

highest ~ . 177777
.

000002
00000 1

lowest _. .._. . . . _.. ._ ,. ._ __, 000000

Branch on Less ThadZero) BLT lot l.Sir. 2.6~

01 0
I I I II I I I I I I I

2 4
offset

15 8 7 0

Operation: lot + (PC) if N V V = 1

Description: Causes a branch if the “Exclusive OR” of the N- and V-bits are’
1. Thus BLT will always branch following an operation that added two neg
ative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even if overfloti
occurred). Further, BLT will never cause a branch when it follows a CMP
instruction operating on a positive source and negative destination. BLT
will not cause a branch if the result .of the previous operation was zero
(without overflow).

Branch on Greater than or Equal (Zero) BGE lot 1.5 rrs.2.6~~

0 1 0 I I 2, IO
offset

I I I I I I
15 8 7 0

Operation: lot + (PC) if N V V = 0

Description: Causes a branch if N and V are either both clear or both set.
BGE is .the complementary operation to BLT. Thus BGE will always cause
a branch when it follows an operation that caused addition to two positive
numbers. BGE will also cause a branch on a zero result.

24

Branch on Less than or Equal(Z*ro) BLE lot 1.5~~. 2.6~

01 to, I ‘31 14 offset
I t I I I

i5 07 0

Operation: lot + (PC) if Z v (N V V) = 1

Description: Operation of BLE is similar to that of BLT but in addition will
cause a branch if the result of the previous operation was zero.

Branch on Greater Than (Zero) BGT lot 1.51u,2.6u~

0, 0 I 3 I I II 0 11 1 offset ’ 1 ”
15 8 7 0

Operation: lot -+ (PC) if Z v (N tt V) = 0

Description: Operation of BGT is’ similar to BGE, except that BGT will not
cause a branch on a zero result.

Unsigned Conditional Branches-The Unsigned Conditional Branches pro-
vide a means of testing the result of comparison operations in which the
operands are considered as unsigned values.

Branch on Hlgher BHI l.Sur,2.6ur

1 , , 0 I, I I 1 ‘0
offset

11.1 I I I I I
‘t 5 8 7 0

Gperation: lot + (PC) if both C and Z = 0

Description: Causes a branch if the previous operation caused neither a carry
nor a zero result. This will happen in comparison (CMP) operations as
as the source has a higher unsigned value than the destination.

long

Branch on Lower of same BLOS lot 1.5~. 2.61~s

I,0 f , 1 I'
offset

I I I I I 1 1
(5 8 7 0

Operation: lot + (PC) if C v Z = 1

Description: Causes a branch if the previous operation caused either a carry
or a zero result. BLOS is the complementary operation to BHI. The branch ’
will occur in comparison operations as long as the source is equal to, or has
a lower unsigned value than, the destination.

Comparison of unsigned values with the CMP instruction can be tested for
“higher or same” and “higher” by a simple test of the C-bit. For convenience,
the mnemonics BHIS (Branch on Higher. or Same) and BLOS (Branch on
Lower Or Same) have been defined such that BHIS = BCC and BLO = BCS.

Bmnch on Higher Q Same BHIS IQC - 1.5~. 2.6~

t 1 0 I, Ii I I 3 0
offset

I, I I , I
15 -8 7 0

Operation: lot + (PC) if C = 0

Description: BHIS is the same instruction as BCC

25

Branch on LOwn BLO IOC t.5 YS, 2.6~s

Offset

t 1 0, 1 , 3 , 1 4 I I I I I 1.1
95 e 7 0

Operation: lot + (PC) if C = 1

Description: BLO is the same instruction as BCS

q The following example illustrates the use of some of the instructions and
addressing modes described thus far. Two new instructions are used: INC
(INCrement) and ASL (Arithmetic Shift Left) which respectively, add 1 (INC)
and multiply an operand by 2 (ASL). Their operation is fully described later
in this chapter.

This example demonstrates the generation of a table (histogram) that shows
the frequency of occurrence of each value in another table (within a range
of values l-100). Histogram generation (including initialization) requires
22 words. Values outside the range l-1OB are ignored.

HIST: MOV #OTABLE, RO
MOV #-loo., Rl

CLOOP: ‘yg p+

BNE CLOOP
MOV #ITABLE, RO
MOV # -lOOO., Rl
MOV #lOO., R2

HLOOP: MOV (RO)+, R4
BLE NOCOUNT
CMP R4, R2
BGT NOCOUNT
ASL R4
INC OTABLE (R4)

NOCOUNT: INC- Rl
BNE HLOOP
HALT

;set up to clear output table
;lOO entries in output table
;clear next entry
;check if done
;if not, continue clearing
;set up input pointer
;length of table
;max input value
;get next input value
;ignore if less than or equal zero
;check against max value
;ignore if greater
;2 bytes per table entry
;increment proper element
;input done?
;if not, continue scanning
;histogram complete

The JUMP Instruction-JMP (JUMP) provides more flexible program branch-
ing then is provided with the branch instructions. Control may be transferred
to any location in memory (no range limitation) and can be accomplished
with the full flexibility of the PDP-11 addressing modes.

JUMP JMP dst 1.2US

01 ‘0 0 1
dst

I I I I I I I I I I t 1
15 6 5 0

Operation: dst + (PC)

Conditioned Codes: not affected

Description: Register mode is illegal in JMP instructions and will cause an
“illegal instruction” condition. (Program control cannot be transferred to a
register.) Register deferred mode is legal and will cause program control to
be transferred to the address held in the specified register. Note that instruc-
tions are word data and must therefore be fetched from an even-numbered

26

address. A “boundary error” condition will result when the processor at-
tempts to fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of control to the
address contained in a selectable element of a. table of dispatch vectors.

SUBROUTINES-The subroutine call in the PDP-II provides for automatic
nesting of subroutines, regntrancy, and multiple entry points. Subroutines
may call other subroutines (or indeed themselves) to any level of nesting
without making special provision for storage of return addresses at each
level of subroutine call. The subroutine calling mechanism modifies no fixed
location in memory and thus also provides for reentrancy. This allows one
copy of a subroutine to be shared among several interrupting processes.

01 0 I I I I, 4 -Q dsi
I I, I I,,

15 9 6 6 3 0

Operation: dst + (tmp) (tmp.is an internal processor register)
Oes) & (push reg contents onto processor stack)
(W -+ (rea) (PC holds location following JSR; this address

_ (tmp) + Up now put in reg)

Condition Codes: not affected

Description: Execution time for JSR is the sum of instruction and destination
times. In execution of the JSR, the old’contents of the specified-register,
(the “linkage pointer”), are automatically pushed onto the ‘processor stack
and new linkage information placed in the register. Thus subroutines nested
within subroutines to any depth may all be called with the same linkage
re&ter. There is no need either to plan the maximum depth at which any
particular subroutine will be called or to include instructions in each routine
to save and restore the linkage pointer. Further, since all linkages are saved
in a reentrant manner-on the processor stack-execution of a subroutine
may be interrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine can then be
resumed when other requests are satisfied. This process (called nesting) can
proceed to any level.

A subroutine called with a JSR reg, dst instruction can access the arugments
following the call with either autoincrement addressing, (reg) +, (if argu-
ments are accessed sequentially) or by indexed addressing, X(reg), (if ac-
cessed in random order). These addressing modes may also be deferred,
@(reg)+ and @X(reg) if the parameters are operand addresses rather than
the operands themselves.

JSR PC, dst is a special case of the PDP-11 subroutine call suitable for
subroutine calls that transmit parameters through the general registers. No
register except the program counter is modified by this call.

Another special case of the JSR instruction is JSR PC, (SP)+ which ex-
changes the top element of the processor stack and the contents of the
program counter. Use of this instruction allows two routines to swap pro-

- gram control and resume operation when recalled where they left off. Such
-routines are called “co-routines.”

Return from a subroutine is done by the RTS instruction: RTS reg loads the
&tents of the reg into the PC and pops the top element of the processor
stack into the specified register.

27

ReTurn from Sutwoutine 3.5&S

15
I

3 2 0

Operation: (reg) + (PC)
T (ret3

Condition Codes: not affected

Description: Loads content of reg into PC and pops the top element of the.
Processor stack into the specified register. Execution time for RTS is equal
to the basic instruction time.

Return from a subroutine is typically made through the same register that
was used in its call. Thus, a subroutine called with a JSR PC, dst exists
with a RTS PC and a subroutine called with a JSR R5, dst, picks up param-
eters with addressing modes (R5)+, X(R5);or @X(R5) and finally exists
with a RTS R5.

Programming Examples of the Use of Subroutines-

1. Passing arguments in subroutine calls-The subroutine TOLER
checks each element in an array of unsigned integers to determine
whether any elements are outside specified limits. If all are within
tolerance, the value 0 is returned in the register RO. If TOLER find
an element out of tolerance, it returns the address of the bad
element + 2 in RO. The calling sequence for TOLER is:

JSR R5, TOLER .
. WORD ARRAY ‘I

;address of array ts be
:checked (*WORD expres-
ision-defines a word equal
;to the value of the expres-
;sion)

. WORD -LENGTH ;minus # of items in array
/

. WORD HILIM ;upper limit of tolerance

. WORD LOLIM ;lower limit of tolerance
;subroutine returns here

;Tolerance Check-Array Elements Within Limits?
TOLER: , MOV (R5)+, RO ;get array address

MOV (R5)+, Rl ;get minus the length
MOV (R5)+, R2 :get high tolerance limit
MOV (R5)+, R3 ;get low tolerance limit

TLOOP: MOV (RO)+;
CMP R4, R2
BHI TEXIT
CMP R4, R3
BLO TEXIT
INC Rl

; BNE TLOOP
CLR RO

TEXIT: RTS R5

R4 ;get next element of array
;check it against high limit
;leave routine if higher
;check it against low limit
;leave routine if lower
;increment count, check
;whether at end of array
;contihue if not at end yet
;exit with RO = 0 if all ok

;return, RO holds poirter
:or 0

28

The instruction INC Rl increases the contents of Rl by 1 and the instruction
CLR RO zeroes the register RO

2. Saving and restoring registers on the stack-This subroutine pushes
RO-R5 onto the stack. It is called by:

SAVE:
JSR R5, SAVE

MOV R4, -(SP) ;R5 was pushed by the JSR
MOV R3, -(SP) ;R5 will be at the bottom

;of the stack
\ MOV R2, -(SP) ;R4, R3, R2, Rl, and RO

;in order
MOV Rl, -(SP) ;will be above it
MOV RO, -(SP) ;RO is at the top of the

;stack
JMP R5 ;R5 holds ‘the return ad-

;dress

The TST operation is equivalent to comparing the operand with 0, i.e.,
TST opr = CMP opr, #0

The only effect is to set the appropriate condition codes.

The following example illustrates a subroutine
stack.

to restore RO-R5 from the

REST: TST (SP) +
MOV (SP)+, RO
MOV (SP)+, Rl
MOV (SP)+, R2
MOV (SP)+, R3
MOV (SP)+, R4
RTS R5

;this increments the SP by 2
;the registers are restored
:in reverse order to that in
which
;they were put on the stack
;R5 is loaded into the PC
and the old R5 restored

The operation TST (SP)+ removes the top element on the stack. At the time
it is used, the top element holds the contents of R5 that were saved by the
call to REST. Since R5 is to be loaded with the value saved on the stack
by SAVE, this information is not needed.

3. Stacks, recursion, and nesting -The following subroutine converts
an unsigned binary integer to a string of typed ASCII characters. In
the routine, the remainders of successive divisions by 10 are saved
and then typed in reverse order.

The operation of the subroutine is to call a part of itself (begin-
ning with DECREM) repeatedly until a zero quotient is calculated
by an integer divide subroutine, IDIVR. At each iteration, the dividend
is divided by 10, the resulting quotient replaces the dividend, and
the remainder is pushed onto the processor stack. The processor
stack thus holds interleaved data (remainders) and control informa-
tion (return addresses from calls to DECPNT and DECREM) when
the quotient finally comes up as 0 and the branch is made to
DECTIY. The portion of the routine beginning at DEClTY then pops
a remainder from the stack, converts it to an ASCII character, types
it and then returns control to DECTTY (with RTS PC) until the stack
is reduced finally to its state immediately after the call to DECPNT.

29

At this point execution of RTS PC returns control to the main
program.

A character is typed in DECTY by loading the teleprinter buffer
(TPB) and waiting for the teleprinter READY flag, the most significant
bit of the low-order byte of the teleprinter status word (TPS),
to be set.

The symbols CR and LF are assumed equal to the ASCII repre-
sentations for carriage return and line feed respectively.

This’subroutine types the unsigned integer in RO. It illustrates recursion and
the use of stacks.

, DECPNT: MOV #lo., R2
DECREM: JSR PC, IDIVR

MOV Rl, -(SP)

TST RO

BEQ DECTTY

DECTTY:

l-rYOUT:

l-rYLUp:

JSR PC, DECREM
MOV (SP)+, RO
ADD #60, RO
MOV RO, TPB

TST TPS ’

BPL ll-YLlJP

CMP. #CR, RO

BEQ TI-YLF

RTS PC

T-IYLF: MOV ‘#LF, TPB
BR TTYLUP

;set up divisor of 10
;subroutine divides (RO) by
;W’)
;quotient is in RO, remain-
;der is in Rl
;after pushing remainder
;onto stack test quotient
;if the quotient is 0, we‘re
;done getting remainders
;if not try again
;get next remainder
;make an ASCII character
;type the ASCII character in
;RO
;wait for the teleprinter to
;be done
;TPS is negative when the
;TP is done
;was the character of a car-
;riage return
;if not: return, if so; get a
;line feed
;returns either to DEClTY
;or main program
;type a line feed
;and wait for it to be corn-
;pleted

4. Multiple entry points-In the example that follows, the subroutines
described above are used to type out all the entries in a table of
unsigned integers that are not within specified tolerance. .

The subroutine TOLER is entered at TOLER for initialization and at
TLOOP to pick up each bad entry of the array after the first one.

The subroutine DECPNT is entered at DECPNT to print the value of
’ the unsigned binary number held in RO and at TlYOUT to print the

ASCII character held in RO. TTYOUT prints the carriage return, line
feed sequence when it sees the carriage return character.

This routine types all out-of-tolerance elements of an integer array.
The program starts at TYPOUT.

30

TYPFIN: HALT

TYPOUT: JSR R5, TOLER
-

. WORD ARRAY
. WORD -LENGTH
. WORD HILIM

TYPCHK:
. WORD LOLIM
BEQ TYPFIN

JSR R5, SAVE

MOV -(RO), RO

JSR PC, DECPNT
MOV #CR, RO
JSR PC, TTYOUT

JSR R5, REST
JSR R5, TLOOP

BR TYPCHK

;suspend processor opera-
;tion, wait for key continue
;get address of bad item:
;initialization entry
;address of array
;-length of array
;high limit
;low limit
;Z-bit is set if no more out
;of limits
;an element is out of limits,
;save registers
;RO holds address + 2, get
;operand into RO
Tprint out number
;type CR, LF
mote use of second entry
;point
;restore registers
;continue searching array,
;alternate entry
;another bad element?

SINGLE OPERAND INSTRUCTIONS-Single Operand Instructions are repre-
sented as:

OPeRotion OPR dst Instruction Time

I I’ I I I

operation code dst
I t ,I I I I 1 I I I I I

15 6 5’ 0

The execution time for single operand instructions is the sum of the basic
instruction time and destination a$dress time for the operation.

General Operations-
CLMR CLR dd 2.3~

0 1 0 I
I

51 I 101 dd
I I I 1

15 6 5 0

Operation: 0 + (dst)

Condition Codes: Z: set
N: cleared
C: cleared
V: cleared

Description: Zeroes the specified destination.

INCrement = _ Hcdst 2.3~

0 1 0 I I II I
5 2.

drt --
I I l t I 11

15 6 5 0

Operation: (dst) + 1 + (dst)

Condition Codes: Z: set if the result is 0; cleared otherwise
N: set if t&e result is < 0; cleared otherwise
C: not affected
V: set if (dst) held 077777; cleared otherwise

Description: Adds 1 to the contents of the destination.

31

DECrment DEC drt 2.3~

01 10, I 15‘ I 13, I I I I I

15 6 5 ‘0

Operation: (dst) - 1 + (dst)

Condition Codes 2: set if the result is 0; cleared otherwise
N:-set if the result is < 0;cleared otherwise
V: not affected
C: set if (dst) was 100000; cleared otherwise

Description: Subtracts 1 from the contents of the destination.

NEGate NEG dst 2.3~

0 1 0 I I t I I I I I I I I I 5 4
drt

15 6 5 0

Operation: - (dst) + (dst)

Condition Codes: as in SUB dst, #0
z: set if the result is 0; cleared otherwise
N: set if the result is < 0; cleared otherwise
c: cleared if the result is 0; set otherwise
v: set if the result is 100000; cleared otherwise

Description: Replaces the contents of the destination address by their two’s
complement. (However, 100000. is replaced by itself-in two’s complement
notation the most negative number has no positive counterpart.)

To-ST TST dst 2.3~s *

0 1 0 I t 1. I , I I I’1 I I I 5 7
dst

15 6 5 0

Operation: 0 - (dst)

Condition Codes: as in CMP #0, dst
Z: set if the result is 0; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: cleared
V: cleared

Description: Sets the condition codes Z and N according to the contents of
the destination address.

COMplement COM dst 2.31~ *

01 IO, I 15, I I’,
dst

t I I I I

15 6 5 0

Operation: - (dst) + (dst)

Condition Codes: Z: set if result is 0; cleared otherwise
N: set if most significant bit. of result set; cleared other-

wise
C: set
V: cleared

Description: Replaces:. the co.nten)s. of tl$’ destination address by their
logical complement (each: bit .equal- to. 0 is .set.and each bit e&al to1 is
cleared).

l See the note for the CMP instruction.

32

Multiple Precision Operations-It is sometimes convenient to d6 arithmetic
on operands considered as multiple words.‘The PDP-11 makes special pro-
vision for such operations with the instructions ADC (ADd Carry) and SBC
(SuBtract Carry).

ADd carry ADC dst 2.3YS

01 IO, 1 I I I I 1
5 5

dst
1 I I I

15 6 5 0

Operation: (dst) + (F) + (dst)

Condition Cobes: Z: set if result = 0; cleared otherwise
N: set if result < 0; cleared otherwise
c: set if (dst) was 177777 and (C) was 1; cleared other-

wise
V: set if (dst) was 077777 and (C) was 1; cleared other-

wise.

Description: Adds the contents of the C-bit into the destination. This permits
the carry from the addition of the two low-order words to be carried into the
high-order result.

Double precision addition may be done with the following instruction se-
quence:

ADD AO, BO ; add low-order parts
ADC Bl, ; add carry into high-order
ADD Al,Bl ; add high-order parts

suatract Carry SEC dst 2.3~

0 1 0 ,.. 5
I I I I I I I I J

6
dst

t5 6 5 0

Operation: (dst) - (C) -, (dst)

Condition Codes: Z: set if the result 0;‘cleared otherwise
N: set if the result < 0; cleared otherwise
C: cleared if the result is 0 and C = 1; set otherwise
V: set if the result is 100000; cleared otherwise

Description: Subtracts the contents of the C-bit from the-destination. This
permits the carry from the subtraction of two low-order wdtds to be sub-
tracted from the high-order part of the result.

Double precision subtraction is done by:-

SUB AO, BO
SBC Bl
SUB Al, Bl

Double precision negation is accomplisheg bith:

NEG BO ;negate low-order part; sets C unless BO = 0
SBC Bl ;makes “NEG Bl” = “COMB Bl” unless BO = 0

l NEG Bl ;negate high-order part

Rotates-Testing of sequential bits of’s word and detailed bit manipulation
are aided with rotate operations. The instructions ROR (RDtate Right) and
ROL (ROtate Left) cause the C-bit of the status register to be effectively
appended to the destination operand in circular bit shifting.

33

ROtaA Right ROR dst 2.3~

dst
01 lOI I I 6 I .I 0 , I I I I 1

15 6 5 0

Condition Codes: Z: set if all bits of result = 0; cleared otherwise.
N: set if the high-order bit of the result is set; cleared

otherwise
C: loaded with the low-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the rotate operation).

Description: Rotates all bits of the destination right one place. Bit 0 is loaded
into the C-bit of the status word and the previous contents of the’C-bit are
loaded into bit 15 of the destination. ’

ROtato Left ROL dst 2.3~

0 1 0 I 16, I I I I 1 I I 1 I 1 1 dst

15 6 5 0

Condition Codes: Z: set if all bits of the result word = 0; cleared other-
wise

N: set if the highlorder bit of the result word is set;
cleared otherwise

C: loaded with the high-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the rotate operation)

Description: Rotates all bits of the destination left one place. Bit 15 is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into bit 0 of the destination.

SWAO Bytes SWAB dst 2.3~

01 10, I 10, .I 131
dst

I I I I

15 6 5 0

Condition Codes: Z: set if low-order byte of result = 0; cleared otherwise
N: set if high-order bit of low-order byte (bit 7) of result

is set: cleared otherwise
C: cleared
V: cleared

Description: Exchanges high-order byte and low-order byte of the destination
word (dst must be a word address).

Shifts-Scaling data by factors of 2 is accomplished by the shift instructions:
ASR-Arithmetic Shift Right
ASL-Arithmetic Shift Left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The
low-order bit is filled with 0 in shifts to the left. Bits shifted out of the C-bit
are lost.

/

34

- Arithmetic Shift Right ASR dst 2.3 us

dst
01 , 0, 1 , 6, 1 , 2 , I t I e I

15 6 5 0

Condition Codes: Z: set if the result = 0; cleared otherwise
N: set if the high-order bit of the result is set; cleared

otherwise
C: loaded from the low-order bit of the destination
V: loaded from the Exclusive OR of the N-bit and C-bit

.(as set by the completion,of the shift operation)

. Description: Shifts all bits of the destination right one ‘place. Bit 15 is rePli-
cated. The C-bit is loaded from bit 0 of the destination. ASR performs signed
division of fhe destination by 2.

Arithmetic Shift Left ASL dst 2.31~

01 , , 1 , , 1 , 0 6 3,
dst

1 I I I I

(5 6 5 0

Condition Codes: Z: set if the result = 0; cleared otherwise
N: set if the high-order bit of the result is set; cleared

otherwise
C: loaded with the high-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the shift operation)

Description: Shifts all bits of the destination left one place. Bit 0 is loaded
with a 0. The C-bit of the status word is loaded from the most significant bit
of the destination. ASL performs a signed multiplication of the destination
by 2.

Multiple precision shifting is done with a sequence of shifts and rotates.

Double Precision Right Shift:
ASR Al; low-order bit of Al to C-bit
ROR AO; C-bit to high-order bit of.AO

Double Precision Left Shift:
ASL AO;. high-order bit of A0 to C-bit
ROL Al; C-bit to low-order bit of Al

Normalization of operands (scaling of the operand until the operand taken
as a 15-bit fraction with sign is in the range - l/e < operand < l/e) pro-
ceeds as follows:

NORM: ASL A
BEQ NFIN

BVC NORM ’
ROR A
BR NDONE

NFtNy.3 i ’ ROR ‘A ”
: 1 “‘ 1 ? ,ASR A,

NDONE: . . .

; shift O’s into low-order bit
; if the result is 0, the operation is
; complete
; if the sign did not change, continue
;restore the sign
; normalization complete
: &store the sign: 000000 or 100000
f atiiYmplicate R?OOOOOO or 140000 \

Double precision norma’lization proceeds similarly: ,

DNORM: ASL A0 ; double precision left shift
ROL Al
BEQ DZERO ; high order result O?. if so, check.10~
BVC DNORM ; if the sign did not change, continue
ROR Al ; restore the sign
BR \ DNDONE ; normalization complete

DZERO: TST A0 ; low order zero, too?
BNE DN0RM ; if not, continue normalization
ROR Al ; restore the sign; 000000 or 100000
ASR Al ; and replicate it; 000000 or 140000

DNDONE: :. .

The following example illustrates the use of shifts and rotates in a 16-bit un-
signed integer multiply subroutine. Access of operands through address
parameters following the subroutine is also shown. The multiplication takes
115170 &s in in-line code. The entire subroutine as shown below takes
approximately 200 ps and requires 16 words. The calling sequence is JSR
R5, MULT. I

. WORD MCAND ; address of multiplicand ,
. WORD MPLIER ; address of multiplier
. WORD PROD ;.address of product

MULT: CLR RO
MOV @ (R5) +, Rl ; get multiplier into Rl
MOV @ (R5) +, R2 ; get multiplicahd into R2
MOV #-169 R3 ; set counter

M LOOP: ASL RO ; double prec shift
ROL Rl
BCC NOADD
ADD R2, RO
ADC Rl

NOADD: INC R3
BNE MLOOP
MOV (R5) +, R2
MOV RO, (R2) +
MOV Rl, (R2)
RTS R5

; shift and add multiply
; most significant bit governs add
; if set add in multiplicand
; keep 32-bit product
; done?
; if not continue
; get address to store prod.
; put low-order away, move to high
; put high-order away
; return to calling program

Bni OPERATIONS--The PDP-11 processor includes a full complement of
instructions that manipulate byte operands. Addressing is byte-oriented so
that instructions for byte manipulation are straightforward. In addition, byte
instructions with autoincrement or autodecrement direct addressing cause
the specified register to be stepped by one to point to the next byte of data.
Byte operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word or
byte processor.

Timing of byte instructions is the same as for word instructions except that
an additional 0.6 ps is required for access of bytes at odd addresses.

Double Operand Byte Instructions-

Move !sytr MOVB WC, dst 2.3~

WC dst
1 , t

I I I I I I I’, I I I I I

. 15 t2 11 6 5 0

-36

Operation: (src) + (dst)

Condition Codes: Set on the byte result as in MOV

Description: Same as MOV instruction. The MOVB instruction in register mode
(unique among byte operations) extends the most significant bit of the byte
register (sign extension). Otherwise MOVB operates on bytes exactly as MOV
operates on words.

Coware Byte CMPS src,dst 2.3us*

src dst
‘I I 12 -I 1 I I 1 1 I I , I

t5 12 H 6 5 0

Operation: (src) - (dst) ; in detail (src) + - (dst) + 1

Condition Codes: Set on the byte result as in CMP

Description: Same as CMP instruction.

811 Set Byte BISB src,dst 2.3~

SW dst
t1 ,s,- I I I I I I I I I

I5 12 11 6 5 0

Operation: (src) V (dst) + (dst)

Condition Codes: Set on the byte result as in BIS

Description: Same as ,BIS.
,

Bll CIm3r Byte BICB crc .dat 2.31~

SK dst
114, , I I I I I I I I

t5 12 H 6 5 0

Operation: - (src) (dst) i, (dst)

Condition Codes: set on the byte result as in BIC

Description: Same as BIC.

Bit Tart Byte BIT6 m,drt 2.31~~

UC 41 , 3, I I I drt 1 I
I I I I

t5 12 11 6 5 0

Operation: (src) (dst)

Condition Codes: Set on the byte result as in BIT

Description: Same as BIT.

The following subroutine scans a packed character string of variable length
lines, removes blanks and unpacks the string to left-justified length lines.
INSTRING is the address of the INput STRING, OUTSTRING is the address
of,the OUTput String. EOLCHAR. SPCHAR.‘and EORCHAR are the End Of
Line CHARacter, Space CHARacter, and End of Record CHARacter respec-
tively.

* See the note for the CMP instruction.

37 \

LNLINE is the Length of uNpacked LINES. The routine requires 24 words.

EDIT: MOV # INSTRING, RO ; set up input byte pointer
MOV #OUTSTRING, Rl ; set up output byte pointer
MOV #EOLCHAR, R2 ; put high use constant in reg.
MOV #SPCHAR, R3 ; to save time in loop

NOLINE: MOV #LNLINE, R4 ; R4 holds # char left in line
NXTCHR: MOVB (RO) + ,R5 ; get next byte

CMP R5, R2 ; end of line?
BEQ FILINE ; if yes, fill line
CMP R5, R3 ; blank?
BEQ NXTCHR ; if yes, skip character
DEC R4 ; decrement # of characters left in line
MOVB R5, (Rl) + ; move byte to output string
BR NXTCHR ; continue

FILINE: CLRB (Rl) + ; put a blank byte in output
DEC R4 ; decrement # char left
BNE FILINE ; continue if not end

CHKEND: CMPB (RO), #EORCHAR ; end of record?
BNE NULINE ; if not EOR, start next line

Single Operand Byte Instructions-

CLeaR Byte CLRB dst _ 2.3~

‘I lOI I 15, I rot
dst

I I I I I

t5 6 5 0

Operation: 0 + (dst)

Condition Codes: Set on the byte result as in CLR

Description: Same as CLR

INCrement Byte INCB dst 2.3~

‘I 101 I 15, I 121
dst

I I I # I
15 6 5 0

Operation: (dst) + 1 + (dst)

Condition Codes: Set on the byte result as in INC

Description: Same as INC. The carry from a byte does not affect any other
byte.

OECrcmcnt Byte OECBdst 2.3~

1 1 oi 1 5 I I I 3
dst

I 1 I I

15 6 5 0

bperation: (dst) - 1 + (dst)

Condition Codes: Set on the byte result as in DEC

Description: Same as DEC.

38

~.

NEGote Byte NEGB -dst 23ns

I Ii,
dst

‘I 101 I 141 I I I t

I5 6 5 0
l -.

Operation: -(dst) + (dst) ; in detail, - (dst) f. 1 + (dst)

Condition Codes: Set on the byte result as NEG

Description: Same as NEG.

T&T Byte TSTB dst 2.3~(1*

dst

‘I lOI 5, I 17, I I I I

15 6 5 0

Operation: 0 - (dst)

Condition Codes: Set on the byte result as TST

Description: Same as TST.
cohtp*m(Hlt Byte COMB dst 2.3~

‘I 101 I 151% I I’,
dst

I I I I I

15 6 5 0

Operation: - (dst) + (dst)

Condition Codes: Set on the byte result as COM

Description: Same as COM.

AOd Carry Byte ADCB dst 2.3~

‘I lOI I 15, I I 5 ,
dst

I I I I

15 6 5 0

‘\ Operation: (dst) + (C) + (dst)

Condition Codes: Set on the byte result as ADC

Description: Same as ADC.
SuBtract Carry Byte iBC0 dst 2.3~~

I , 0 I 15, I I I I I , I , , 6
dst

15 6 5 0

Operation: (dst) - (C) + (dst)

Condition Codes: Set on the byte result as SBC

Description: Same as SBC.

ROtate R’ght Byte RORB dst 2.3u+
I

‘I 10, I 16, I ,“I
dst

I I I 1 n

15 - 6 5 0

Operation: as in ROR.on byte operands

Condition Codes: Set on the byte result as ROR

Description: Same as ROR

l See the note for the CMP instruction.

39

, .
mtate Left Byte ROLB drt ’ ~ 2.3~1 Q

dst

1

,

, 0 I 6 3 I t 1 I I .I 1 1 1 ’ ’ 1
15 6 5 0

Operation: as in ROL on byte operands

Condition Codes: set on the byte results as ROL

Description: Same as ROL

Arithmetic Shift Riaht Bvte ASRB dst 2.3~7

1 1 0 I 16’1 I I
2 I

I

15 6 5 0

Operation: as in ASR on byte operands

ConditionCodes: set on the byte result as ASR

Description: Same as ASR

Arithmetic Shift Left Byte ASLB dst 2.3u**

‘I 101 I I ‘61 I 131
dst

I I I I I

t5 6 5 0

Operation: as in ASL on byte operands

Condition Codes: set on the byte results as ASL

Description: Same as ASL

CONDITION CODE OPERATORS--Condition code operators set and clear con-
dition code bits. Selectable combinations of these bits may be cleared or set .
together in one instruction.

Condition Code Qpemtors

15 5 4 3 2 1 0

Condition code bits corresponding to bits in the condition code operator
(bits 3-O; N, Z, V, C) are modified according to the sense of bit 4, the set/
clear bit of the operator. The following mnemonics are permanent symbols
in the assembler:

Mnemonic Operation Op Code Mnemonic Qperetion Op Code
CLC Clear C 000241 SEC Set C 000261
CLV Clear V 000242 SEV Set V 000262

K
Clear Z oo(2244 SEZ Set Z 000264
Clear N 000250 SEN Set N 000270

Timing for all condition code operators is the basic instruction time (1.5~s)
for the operators. (The codes 000240 and 000260 are the shortest “no+opera-
tion” instructions.)

T Shift and rotate operations r,equire an additional 0.6 we to etceee bytes at odd
addresses.

40

Combinations of the above set or clear operations may be ORed together to
form new instruction mnemonics. For example: CLCV = CLC ! CLV. The new
instruction clears C and V bits. (‘I!” signifies “inclusive or” in PAL-11.)

MISCELLANEOUS CONTROL iNSTRUCTIONS

RESet ExTernol bus RESET 20 ms

01 IO, I 101 I 101 I lOI I I 5 ,

15 0

Condition Codes: not affected

Description: Sends an INIT pulse along the Unibus by the processor. AlI
devices on the bus are reset to their state at power-up.

\
WAit for IntempT WAIT 1.8 IL*

15

Condition Codes: not affected

0

Description: Provides a way for the processor to relinquish use of the bus
while it waits for an external interrupt. Having been given a WAIT command,
the processor will not compete for bus use by fetching instructions or
operands from memory. This permits higher transfer rates between a device
and memory, since no processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions, the PC points
to the next instruction following the WAIT operation.

Thus when an interrupt causes the PC and PS to be pushed onto the proces-
sor stack, the address of the next instruction following the WAIT is saved.
The exit from the interrupt routine (i.e. execution of an RTI instruction) will
cause resumption of the interrupted process at the instruction following the
WAIT.

HALT HALT l.SlLS

01 101 I IO, I ,Ol I 101 I 101
45 0

Condition Codes: not affected
Description: Causes the processor operation to cease. The console is given
control of the bus. The console data lights display the contents of RO; the
console address lights display the address of the halt instruction. Transfers
on the Unibus are terminated immediately. The PC points to the next in-
struction to be executed. Pressing the continue key on the console causes
processor operation to resume. No INIT signal is given.

Processor Traps -Processor Traps are internally generated interrupts.
Error conditions, completion of an instrustion in trace mode (i.e. T-bit of
status word set), and certain instructions cause traps. As in interrupts, the
current PC and PS are saved on the processor stack and a new PC and PS
are loaded from the appropriate trap (interrupt) vector. See Appendix C for
a summary of Trap Vector Addresses.

,Trapf Instructions-Trap Instructions provide for calls to emulators, i/O
monitors, debugging packages, and user-defined interpreters.

41

EMulotw Traps EMT xycx 9.9 us

1
XXI

‘I 101 ,4, 0, , , , 1 , ,

15 9 7 0

Operation: (PS) J, SP
WI J SP
(30) + PC
(3?) + PS

Condition Codes: loaded from trap vector.
.

Description: Performs a trap sequence with a trap vector address of 30.
All operation codes from 104000 to 104377 are EMT calls. The low-order
byte, bits O-7 of the EMT instructions, may be used to transmit information
to the emulating routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the Word at address 30;
the new central processor status (PS) is taken from the word at address 32.

TRAP TRAP xxx 9.9JLs

.‘I 10, 4 4 xxx
I I I I I

15 9 7 0

Operation: as in E&IT except the trap vector is located at 34.

Condition Codes: loaded from trap vector.

Description: Performs a trap sequence with a trap vector address of 34.
’ Operation codes from 104400 to 104777 are TRAP instructions. TRAPS and

EMTs are identical in operation, except that the trap vector for TRAP is at
address 34.

l/O Trap IOT 9.9LS

01 IO, I 101 I 101 I 101 I 141
15 0

Operation: as EMT except the trap vector is located at address 20 and no
information is transmitted in the low byte. ,

Condition Codes: loaded from trap vector.

Description: Used to call the I/O executive routine IOX.

No defined mnemonic 000003 9.9us

“I_-,04 I 101 I 101 I IO, I I 3 I

15 0

Operation: Same as IOT except that trap vector is located at address 14.

Condition Codes: loaded from trap vector.

Description: Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these debugging aids.

42

R.Turn from Interrupt RTI 4.Bus

/ 01 ,o, I IO, I 101 I 101 I a21

IS 0

Operation: SP T (PC), SP t (PS).

Condition Codes: loaded from processor stack.

Description: Used to exit from an interrupt or TRAP service routine. The PC
and PS are restored (popped) from the processor stack.

Instruction traps are also caused by attempts to execute instruction codes
reserved for future processor expansion (reserved instructions) ‘Or instruc-
tions with illegal addressing modes (illegal instructions). Order codes not
corresponding to any of the instructions described above are considered to
be reserved instructions. Illegal instructions are JMP and JSR with register
mode destinations. Reserved and illegal instruction traps occur as described
under EMT, but trap through vectors at addresses 10 and 04 respectively.

Stack Overflow Trap-Stack.Overflow Trap is a processor trap through the
vector at address 4. It is caused by referencing addresses below 400, through

,

the processor stack pointer R6 (SP) in autodecrement or autodecrement de-
ferred addressing. The instruction causing the overflow is completed before
the trap is made.

Bus Error Traps-Bus Error Traps are:

1. Boundary Errors-attempts to reference word operands at odd ad-
dresses.

2. Time-Out Errors-attempts to reference addresses on the bus that
made no response within 10 ps. In general, these are caused by at-
tempts to reference nonexistent memory, and attempts to referf?nce
nonexistent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap-Trace Trap enables bit 4 of the PS word and causes processor -
traps at the end of instruction executions. The instruction that is executed
after the instruction that set the T-bit will proceed to completion and then
cause a processor trap through the trap vector at address 14.

The following are special cases and are detailed in subsequent paragraphs.

1. The traced instruction cleared the T-bit.
2. The traced instruction set the T-bit.
3. The traced instruction caused an instruction trap.
4. The traced instruction caused a bus error trap.
5. The traced instruction caused a stack overflow trap.
6. The process was interrupted between the time the T-bit was set and

the fetching of the instruction that was to be traced.
7. The traced instruction was a WAIT.
8. The traced instruction was a HALT.

I

An instruction that cleared the T-bit-Upon fetching the traced instruction
an internal flag, the trace flag, was set. The trap will still occur at the end
of execution of this instruction. The stacked status word, however, will have
a clear T-bit.

43

An instruction that set the T-bit-Since the T-bit was already set, Settiflg it
again has no effect.

An instruction that caused an Instruction Trap--The instruction trap is
sprung and the entire routine for the service trap is executed. If the service
routine exists with an RTI or in any other way restores the stacked status
word, the T-bit is set again, the instruction following the traced instruction
is executed and, unless it ,is one of the special cases noted above, a trace
trap occurs.

An instruction that caused a Bus Error-This is treated as in an Instruction
Trap. The only difference is that the error service is not as likely to exit

with an RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow-The instruction COmpleteS

execution as usual-the Stack Overflow does not cause a trap. The Trace
Trap Vector is loaded into the PC and PS, and the old PC and, PS are pushed
onto the stack. Stack Overflow occurs again, and this time the trap is made.,

An interrupt between setting of the T-bit and fetch of the traced instruction
The entire interrupt service routine is executed and then the T-bit is set again
by the exiting RTI. The traced instruction is executed (if there have been no
other interrupts) and, unless it is a special case noted above, causes a trace
trap.

Note’that no interrupts are acknowledged between the time of fetching any
trapped instruction (including one that is trapped by reason of the T-bit being
set) and completing execution of the first instruction of the trap service.

A WAIT-The trap occurred immediately. The address of the next instruction
is saved on the stack. .

A HALT-The processor halts. When the continue. key on the console is
pressed, the instruction following,the HALT is fetched and executed. Unless
it is one of the exceptions noted above, the trap occurs immediately follow-
ing execution.

Trap priorities-In case multiple processor trap conditions occur simultane-
ously the following order of priorities is observed (from high to low):

1. Bus Errors
2. instruction Traps
3. Trace Trap
4. Stack Overflow Trap

The details on the trace trap process have been described in the trace trap
operational description which includes cases in which an instruction being
traced causes a bus error, instruction trap, or a stack overflow trap,

If a bus error is caused by the.trap process handling instruction traps, trace
traps, stack overflow traps, or a previous bus error, the processor is halted.

If a stack overflow is caused by the trap process in handling bus errors, in-
struction traps, or trace traps, the process is completed and then the stack
overflow trap is sprung.

44

CHAPTER 5

ADDRESS ALLOCATION
The PDP-11 provides for a very flexible addressing structure. Both 16-bit
words and 8-bit bytes can be directly addressed. Addresses are 1Bbits long
allowing for direct addressing of 32,768 words or 65,536 bytes.

ADDRESS MAP
As a result of the organization of the PDP-11, bus addresses serve several
functions. A map of possible PDP-11 bus address allocation is shown

BUS ADDRESS
0

CONTENT

Program Counter

Processor Status Word

Processor.
Trap Vectors
and Device
Interrupt
Vectors

4608 Stack Pointer Overflow Limit

Stacks, Program and Data Storage

160bOOs

.
Status Register and
Data Buffer Register

.
Device Address Register
Word Count Register
Memory Address Register
Control and Status Registers

Typical
Registers for
Programmed
Transfer
Device

Typical
Registers
for a
Block
Transfer

* Device

1777778

Figure 5-1
Simplified Address Allocation Map

45

in Figure 5-1. Three areas of addresses of particular interest to the Pro-
grammers are: 1) Interrupt and Trap VeMors; 2) Processor Stack and General
Storage; and 3) Peripheral Device Registers.

INTERRUPT AND TRAP VECTORS-Addresses between lOCatiOn zero and
location 4001 are generally reserved for interrupt and trap vectors.

PROCESSOR STACK AND GENERAL STORAGE-Addresses between 4001
and the limit of implemented core are available for the processor stack or
other programs and data. The highest address in ttiis region is 157777*.

PERIPHERAL DEVICE REGISTERS-Addresses above 160000, generally are
reserved for peripheral device status, control, and data registers. The general
registers and the processor status can be addressed from the program
console using addresses in this area.

A more detailed address allocation map can be found in Appendix D.

CORE MEMORY
The three types of core memory that can be used in a PDP-11 system are:
1) Read-Write Core Memory: 2) Read-Only Core Memory; and 3) Wordlet
Memory. These memories can be located anywhere in address space provided
they do not overlap. They do not have to be in continuous address locations.’

MMll-E READ WRITE CORE MEMORY-The MMll-E has the following
specifications: ,

Capacity: 4,096 l&bit words or 8,192 8-bit bytes -
Cycle Time: 1.2 microseconds
Access Time: 500 nanoseconds
Configuration: Planer 3-wire, 3-D using 22 mil cores
Packaging: One standard PDP-11 System Unit
interface: Designed to work with PDP-11 bus, l-FL-compatible

MRll-A READ-ONLY CORE MEMORY (ROM)-The ROM has the following
specifications:
Capacity: 1,024 l&bit words or 2,048 8-bit bytes
Access Time: 500 nanoseconds
Configuration: P-piece core with wire braid, 256 wires, 64 cores
Packaging: 3/4 of one standard PDP-11 System Unit
Interface: Designed to work with PDP-11 bus, TTL-compatible

MWllA WORDLET MEMORY-The wordlet memory is used with ROM sys-
tems and provides read-write memory capacity for temporary data and in- ’
struction storage.
Capacity: 128 16.bit words or 256 8-bit bytes
Cycle Time: 2.0 microseconds
Access Time: 1.0 miorosecond
Configuration: 5-Wire, 3D
Packaging: l/4 standard PDP-11 single System Unit-
Interface: The wordlet memory will work with the ROM and interfaces

through the ROM System Unit to the PDP-11 bus.

46

CHAPiER 6
PROGRAMMING OF PERIPHERALS

Programming of peripherals is extremely simple in the PDP-11-a special
class of instructions to deal with input/output operations is unnecessary.
The Unibus permits a unified addressing structure in which control, status,
and data registers for peripheral devices are directly addressed as memory
locations. Therefore all operations on these registers, such as transferring
information into or out of them or manpulating data within them, are per-
formed by normal memory reference instruction.

The ability to use all memory reference instructions on peripheral device.
registers greatly increases the flexibility of input/output programming. ln-
formation in a device register can be compared directly with a value and a
branch made on the result.

CMP #lOl, PRB
BEQ SERVICE

In this case the program looks for 101, from the paper tape reader data
buffer, and branches if it finds it. There is no need to transfer the informa-
tion into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can trans-
fer the character into a user buffer in core or in another peripheral device.

MOV PRB, LOC
This instruction transfers a character from the paper tape reader buffer into
a user-defined location.

All arithmetic operations can be performed on a peripheral device register.

ADD #lo, -DSX
This instruction will add lo8 to a display’s x-deflection register.

All peripheral device registers can be treated as accumulators. There is no
need to funnel all data transfers, arithmetic operations, and comparisons
through a single or small number of accumulator registers.

DEVICE REGISTERS
All peripheral devices are specified by a set of registers which are addressed

‘as core memory and manipulated as flexibly as an accumulator. There are
two types of registers associated with each device: 1) Control and Status.Reg-
isters (CSR); and 2) Data Registers.

CONTROL AND STATUS REGISTERS (CSR)-Each peripheral has one or more
control and status registers which contain all the information necessary to
communicate with that device. The general form of a control and status
register is shown below.

General Control and Status Register
, This general form does not necessarily apply to any device, but is presented

as a format which could be used as a guideline for designing peripheral

47

devices. Many devices will require less than sixteen status bits. Other devices
will require more than sixteen bits and therefore will require additional status
and control registers.

Device Function Bits-These three bits specify operations that a device iS
to perform. An example of one operation for a paper tape read&r is read
one character. For a disk one operation would be read a block of words from
memory and store them on the disk.

Memory Extension Bits-These two bits are resewed for future expansion.
They will allow devices to ‘use a full 18 bits to specify addresses on the bus.

Done Enable and Error Enable Bits-These two bits are independently Pro-
grammable. If bit 6 is set, an interrupt will occur as a reSUlt of a function
done condition. If bit 5 is set, an interrupt will occur as the result of an
error condition. This occurs when one or more of the error bits is sat to a
one. To initiate an interrupt routine to read from the paper tape reader,
the instruction

MOV #lOl, PRS
could be used. This sets bit 0 and bit 6 of the paper tape reader control and
status register. Setting bit 0 starts the read operation and setting bit 6
enables an interrupt to occur when the read operation’is complete.

Condition Bits--The CSR contains a DONE bit, a READY bit, or a DONE-
BUSY pair of bits, depending on the device. These bits are set and cleared
by the hardware, but may be queried by the program to determine the
availability of the device. For example, the teleprinter status register (TPS)
has a READY bit (7) that is cleared on request for output and then set when
output is complete. The keyboard status register (TKS) has a DONE-BUSY
pair (Bits 7 and 11) that distinguishes between no input (DONE = BUSY
= 0), input under way (DONE = 0, BUSY = 1). and input complete (DONE
= 1, BUSY = 0).

.
The DONE bit could be used to control an input loop for reading from- the
paper tape reader as follows:

LOOP: TSTB PRS ; test low byte of paper tape status register
BPL LOOP ; branch back if DONE bit (bit 7) is not set

Unit Bits-Some peripheral systems have more than one device per control.
For example, a disk system can have multiple surfaces per control and an
analog-to-digital converter can have multiple channels. The unit bits select
the proper surface or channel.

Error Bits--Generally there. is an individual bit associated with a specific
error. When more bits are required for errors, they can be obtained by ex-
panding the error section in the word or by using another status word.

Example of Control and Status Register -The high-speed paper tape reader
control and status register (PRS) is as follows:

These bits may be read or set by instructions which use the appropriate
effective address. Bit 0 of the PRS is the function bit for reading one char-

48

acter. Incrementing the PRS will set bit 0 and cause one character to be
read. The instruction

INC PRS
performs that function. MOV #l, PRS does the same thing but takes one
more word.

DATA BUFFER REGISTERS-Each device has at least one buffer register
for temporarily storing data to be transfer into or out of the computer. The
number and type of data registers is a function of the device. The paper
tape reader and punch use single 8-bit data buffer registers. A disk would
use I&bit data registers and some devices may use two ldbit registers for
data buffers.

PROGRAMMING EtiMPLES
PROGRAM CONTROLLED DATA TRANSFER WITH THE INTERRUPT DISABLED
-Single character I/O devices (teletype, paper tape reader/punch) have an
addressable register buffer through which data is transferred. For input, the
data buffer register is the source operand of the instruction used to get the

. data; for output, it% the destination operand. For example assuming the
paper tape reader interrupt is not enabled, character input could proceed
as follows:

MOV R, -(SP) ; save R on the stack
MOV #8UFFER, R ; pointer to input buffer into register R

START: INC PRS ; start up reader
LOOP: BIT PRS, # 100200 ; test DONE and ERROR bits

BEQ LOOP ; branch back if none on yet
BMI ERROR ; branch to error routine if minus
MOVB PRB, (R)+ ; move byte from device buffer reg-

; ister to user’s buffer and increment
; pointer

CMP #LIMIT R, ; check for end of buffer
BGE START ; get next character.
MOV (SP)+, R ; restore R

-
Character output to the paper tape punch might be executed as follows:

LOOP:

MOV RO, L(SP)
MOV Rl, -(SP)
MOV NCHAR, RO
MOV BUFFER, Rl
BIT PPS, #100200
BEQ LOOP
BMI ERROR
MOVB (Rl)+, PPB
DEC RO

BGT LOOP
MOV (SP)+, RO
MOV (SP)+, Rl

; save RO
; save Rl
; *number of characters into RO
; user buffer address into Rl
; test device ready and error bits
; fall through if on
; branch on error
; output character, increment pointer
; decrement character counter (and
; set condition codes)
; repeat if greater than zero
; restore RO
; restore Rl

BLOCK TRANSFER WITH THE INTERRUPT DISABLED-High-speed block
transfer devices use the Unibus to make data transfers between the device
and core memory. These devices are provided with addressible registers
that control the flow of data.

49

A tvoical set might be: _.
1. Control-and status register
2. Memory address register
3. Word count register
4. Device address register

Loading the device address register would in general initiate the transfer,
which then proceeds without processor intervention. The device issues non-
processor requests for the Unibus that, when granted, allow direct data
transfer between the device and memory. These requests are interleaved
with processor. requests for the bus. If very fast transfer is required, the
processor may execute a WAIT instruction after starting the block transfer.

The DONE or appropriate -error bits are set in the CSR with Completion of
the transfer or when an error occurs. These may be enabled to cause an
interrupt or may be tested to determine when the device needs assistance.

A block transfer could be executed as follows:

’ MOV #401, DKS, ; read block of data (function 1)
; from unit 1

MOV #BUFADR, DKMA ; buffer address to memory ad-
; dress register

MOV #BUFCNT, DKWC ; word count to word count register
MOV #BLKNO, DKDA ; block number to device address

; register, which starts the trans-
; fer

.
: when data is needed.

LOOP: BIT #DKMSK, DKS ; test done bit and error bits
BEQ LOOP ; branch back if none on \
BIT #DKEMSK, DKS ; test for any error bits
BNE ERROR ; branch if any on

; data is now in buffer at BUFADR

INTERRUPT STRUCTURE
If the appropriate interrupt enable bit is on, in,the control and status register
of a device, transition from 0 to 1 of the DONE or READY bit causes an
interrupt request to be issued to the processor. Also if DONE or READY’ is a _
1 when the interrupt enable is turned on, an interrupt request is made. If
the device makes the request at a priority greater than that at which the
processor is running and no other conflicts exist, the request is granted and
the interrupt sequence takes place:

a. the current program counter and processor status are pushed onto
the processor stack;

.b. the new PC and PS are loaded from a pair of locations (the interrupt
vector) in low core unique to the interrupting device.

Since each device has a unique interrupt vector which dispatches control to
the appropriate interrupt handling routine immediately, no device polling is
required.. Furthermore, since the PS contains the processor priority, the
priority at which an interrupt request is serviced can be set under program
control and is independent of the priority of the interrupt request. The

50

ReTurn fmm Interrupt instruction is used to reverse the action of the
interrupt sequence. The top two words on the stack are popped into the PC
and PS, returning control to the interrupted sequence.

PROGRAMMING EXAMPLE
A paper tape reader interrupt service could appear as follows:

First the user must initialize the service routine by specifying an address
pointer and a word count
INIF MOV #BUFADR, #0 ; set up address pointer

POINTR = . - 2 ; in third word of MOV instruction.
MOV #CNTR, #0 ; set up character count in
CRCNT=.-2 ; third word of MOV instruction.
MOV #lOl, PRS ; read a character with interrupt

_ ; enabled.

When the interrupt request occurs and is acknowledged, the processor stores
the current PC and PS on the stack. Next it picks up the interrupt vector or
new PC and PS beginning at location 70~. The next instruction executed is
the first instruction of the device service routine at PRSER.
PRSER: TST PRS

BMI ERROR I

MOVB PRB, @POINTR ;

INC POINTR
DEC CRCNT
BEQ DONE

. INC PRS
DONE: RTI ;

test for error
branch to error routine if
bit 15 of PRS is set.
move character (byte)
from reader to buffer
increment pointer \
decrement character count
branch when input done
start reader for next character
return from interrupt

51

The DIGITAL M225 module contains 8 high speed general-purpose
registers. The M225 general registers provide program flexibility
when used as accumulators, index registers, and pointers to data
words.

52

CHAPTER 7
TELETYPE (MODEL LT33-DC/DD)
The standard Teletype Model 33 ASR (Automatic Send-Receive) can be used
to type in or print out information at a rate of up to ten characters per sec-
ond, or to read in or punch out perforated paper tape at a ten characters
per second rate. Signals transferred between the 33 ASR and the control
logic are standard serial, 11-unit code Teletype signals. The signals consist
of “marks” and “spaces” which correspond to idle and bias current in the
Teletype serial line, and to O’s and l’s in the control and computer. The
start mark and subsequent eight bits are each one unit of time duration and
are followed by the stop mark which is two units.

The 8-bit-code used by the Model 33 ASR Teletype unit is the America1
Standard Code for Information Interchange (ASCII) modified. To convert the
ASCII code to Teletype code, add 200 octal (ASCII + 200s = Teletype).

The Model 33 ASR can generate all assigned codes except 340 through
374 and 376. The Model 33 ASR can detect all characters, but does not
interpret all codes that it can generate as commands. The standard number
of characters printed per line is 72. The sequence for proceeding to the next
line is a carriage return followed by a line feed. Punched tape format is as
follows:

Tape Channel

Binary Code
(Punch = 1)

87 654 S 321

10 110 100

Octal Code 2 6 4
(S = Sprocket)

SIZE- Floor space approximately 221/” wide, 181/2” deep
Cable length 8 feet

MODEL POWER REQUIREMENTS
LT33-DC 115 v 510% 60 kO.45 Hz
LT33-DD 230 V -t-iO% 50 kO.75 Hz

TELETYPE CONTROL (MODEL KLll)

TELETYPE CONTROL-Serial information read or written by a Teletype unit
is assembled or disassembled by the control for parallel transfer on the
Unibus. The control also provides the flags which cause a priority interrupt
and indicate the availability of the teletype.

KEYBOARD/READER-The Teletype control contains an 8-bit buffer (TKB)
which assembles and holds the code ‘for the last character struck on the
keyboard or read from the tape. Teletype characters from the keyboard/
reader are received serially by the 8-bit -shift register TKB. The code of -a
Teletype character is loaded into the TKB so that “spaces” correspond to
binary O’s and holes, “marks,” correspond to binary 1’s. Upon program
command, the contents of the TKB may be transferred in parallel to a
memory location or a general register.

A character is read from the low-speed reader by setting the Teletype reader
enable bit, (RDR ENB), to a 1. This sets the busy bit (BUSY) to a 1. When a
Teletype character starts to enter, the control de-energizes a relay in the

53

Teletype unit to release the tape feed latch. When releasea the latch
mechanism stops tape motion only when a complete character has been
sensed, and before sensing of the next character is statthd. When the charac-
ter is available in buffer (TKB), the busy bit (BUSY) i$ cleared and the done
flag (DONE) is set. If the interrupt is enabled, a request is made for the bus
at level 4 (BR4). The interrupt vector is at location 60,. The DONE bit is
cleared by any instruction which reads the contents of the buffer (TKB) into
the processor. If the DONE flag is cleared before the interrupt is granted, no
interrupt will occur. The keyboard must be read within 18 milliseconds of
DONE to ensure no loss of information.

Registers1

Teletype Keyboard Status (TKS)

IS 1t 7 6 0

I 0*
l-BUSY ’ $&TENB L- ROR

ENB

Bit
0 RDR ENB Requests that one character be read from the

reader; set from the bus: (Note: Setting RDR
ENB causes tape to advance by one character
which is shifted into TK8 if DONE is cleared.)
Receipt of START bit on the serial input line sets
BUSY, clears RDR ENB and clears TKB.

6 INT ENB O-No interrupt; l-Attach the keyboard and
reader to the priority interrupt system at bus
request level 4.

7 DONE Character available; cleared by reading the buf-
fer (TKB).

11 BUSY Character is being read; set by RDR EN8 going
’ to a 1. Cleared by DONE going to a 1.

I The following notation will be used throyghout this chapter for describing registers.
0 -A power clear sets this bit to 0.
1 -A power clear sets this bit to 1.
l -This bit can only be read from the bus.
$-This bit can only be set from the bus. If it is read, it will always appear

as zero.

Teletype Keyboard Buffer (TKB).

I I &BIT CHARACTER
*

15 B 7 0

TELEPRINTER/PUNCH-On program command, a character is sent in parel-
lel from a memory location (or a general register) to the TPB shift register
for transmission to the teleprinter/punch unit. The control generates the . .
start “space,” then shifts the eight bits serially into the Teletype u&,-and
then generates the stop “marks.” This transfer of information from the TPB
into the teleprinter/punch unit is accomplished at the normal Teletype rate
and requires 100 milliseconds for completion. The READY flag in the tele-
printer/punch indicates that the TP8 is ready to receive a new character. A
maintenance mode is.provided which connects the TPB eutput to the TKB
input so that the parallel serial and serial parallel shifting may be verified.

54

Registers
Teleprinter Status Word (TPS)

7 6 2

I

*

1 0 0 1

L I- IN-f EN6 L MAINTENANCE
READY CONTROL

Bit
2 MAINT Maintenance function which connects TPB serial

output to TKB serial input.
6 INT ENB O-No interrupt; 1 -attaches the Teleprinter to

the priority interrupt system at BR4.
7 READY Set by punch/printer DONE; cleared by loading

the teleprinterbuffer (TPB).

Teleprinter Buffer (TPB)

I a-BIT CHARACTER OATA l

15 8 7 0

PRDGRAMMING EXAMPLE-To read i character from tape and echo it on
the printer:
ECHO: INC TKS ; set RDR ENB

c TSTB TKS ; test for DONE set
BPL .-2 ; test again if not set
TSTB TPS ; test for printer READY set
BPL .-2 ; test again if not set
MOVB TKB, TPB ; put input character into’output

buffer to be printed
BR ECHO ; return for another character

PERIPHERAL ADDRESS ASSIGNMENTS
TKS 177560
TKB 177562
TPS 177564
TPB 177566

VECTOR ADDRESS Keyboard/ Reader 60
Teleprinter/ Punch 64

PRIORITY LEVEL set to BR&Teletype printer is lower than the Teletype
key board

MOUNTING-Requires one small peripheral controller mounting s,pace (l/4
of a DDll or one of two such spaces in KAll)

HIGH-SPEED PERFORATED TAPE READER PUNCH ‘AND
CONTROL (TYPE PCll)

TAPE READER-This device senses 8-hole perforated paper or Mylar tape
photo-electrically at 300 characters per second. The reader control requests
reader movement, transfers data from the reader into the reader buffer
(PRB), and signals the computer when incoming data is present. It does this

55

by setting a DONE bit. If the interrupt is enabled and the interrupt is granted,
the processor traps to location 70, and may immediately begin executing the
service routine for the paper tape reader.

Reghters

Paper Tape Reader Status Word (PRS)

15 15 11 11 7 7 6 6 0 0

* * it it * *

0 0 0 0 0 0 0 0 0 0

l- l- ERROR ERROR L BUSY L BUSY L L LINT EN6 LINT EN6 L L ROR RDR

DONE DONE ENB ENB

Bll ~

0 RDR ENB Requests read of next character; can be set from
bus only if ERROR = 0. Clears PRB, sets BUSY.

6 INT ENB O-No interrupt; 1 -attached to priority interrupt
system at BR4. (Note: Interrupt occurs when INT
ENB is a 1 and either the error flag, ERROR, or
the done flag, DONE, becomes a 1.)

7 DONE Set by character available; cleared by reading the
paper, tape reader buffer (PRB).

11 BUSY Set by RDR ENB going to a 1; cleared by DONE
going to a 1. J

15 ERROR Error Flag - Set or cleared by out-of-tape sensor *
or off line switch.

Paper Tape Reader Buffer (PRB)

I I
E-BIT CHARACTER

it

15 8 7 0

PROGRAMMING EXAMPLE/Gape reading subroutine (not using interrupt):

READ: INCB PRS ; enable reader
TEST: BIT $100 200 PRS ; test for error or done

BEQ TEST ; branch back if not done
BML ERROR ; branch if error = 1
MOVB PRB. RO ;~ get character from buffer
RTS R ; return to caller

ERROR: (message type out routine)
HALT ; wait for operator intervention
JMP READ ; try again when continue switch is hit.

TAPE PUNCH-This option of a Royal McBee paper tape punch that per-
forates B-hole tape at a rate of 50 characters per second. Information to be
punched on a line of tape is loaded in an B-bit punch buffer (PPB) from a
memory location or one of the general registers. The punch flag, READY,
becomes a 1 at the completion of punching action, signaling new information
may be transferred into the punch buffer and punching initiated.

56

Registers

Paper Tape Punch Status Word (PPS)

Bit
6

7

15

INT ENB

READY

ERROR

O-No Interrupt; l-Attached fo priority iflterrUFt

system. (Note: An interrupt occurs when 1NT EN8
is a 1 and either the ERROR flag or the READY flag
becomes a ‘1.) i

Set by punch done; cleared by loading the paper
tape punch buffer (PPB).
Error Flag-Set by out-of-tape sensor: or unit power
off switch.

Paper Tape Punch Buffer (PPB)

I
1

I
I

&BIT CHARACTER DATA l
I

(5 s 7 0

Loading the buffer initiates punching.

PROCRAMMING EXAMPLE
PUNCH: BIT # 100200, PPS ; test for ready or error

BEQ PUNCH
BMI ERROR
MOV RO. PPB
RTS R ;

ERROR: (message type out)
HALT; wait for operator to fix punch
JMP PUNCH; try again when Continue is hit.

PERIPHERAL ADDRESS ASSIGNMENTS

PRS 177550
PRB 177552
PPS 177554
PPB 177556

VECTOR ADDRESSEGReader 70
Punch 74

PRIORITY LEVEL-Set to BR4. Punch is lower than reader.

MOUNTING-Electromechanical assembly-EIA Standard 19” rack, lOI/,”
vertical mounting space, by 171/2” deep.

PCll-M Controller--One small peripheral controller mounting space (l/4
of DDll or one of two such places in KAll).

-\
57

ENVIRONMENTAL

55”-100°F
20% -95% RH (without condensation) ~-

MODEL DESCRIPTION POWER REQUIREMENTS
PC11 Reader, Punch & Control 115+10% 60 Hz
PCllA Reader, Punch &Control 115+-10% 50 Hz
PRll Reader 81 Control 115-c10°h 50-60 Hz

LINE FREQUENCY CLOCK (TYPE KWll-L)
The KWll=L real timeclock provides a method of measuring time intervals
at line frequency. This clock consists of a frequency source and control logic.
When enabled the clock causes an interrupt every 16.6 or 20 milliseconds,
depending upon Iflie frequency.

Register
Line Time Clock Status Register (LKS)

7 6
- (I

0 0 I

Bit
6 INTR ENB

7 CLOCK

t LINTR ENB
CLOCK

When set, an interrupt will occur every time CLOCK goes true.
Cleared by program or reset or start sequence.

Set to 1 every 16.6 milliseconds (60 Hz) or 20 milliseconds (50
Hz). Cleared by reading LKS, RESET or pressing ttie START
switch.

PERIPHERAL ADDRESS ASSIGNMENTS
LKS 177546

VECTOR ADDRESS 100
PRIORITY LEVEL BR6

MOUNTING-This option plugs into the KAll processor.

.
58

CHAPTER 8 -~

DESCRIPTION OF THE UNIBUS
Communication between all system units in a PDP-11 configuration is done
by a single common bus: the Unibus. All communication-both instructions
and logical operations-is defined by a set of 56 signals. This set of 56 sig
nals is used for program controlled data transfers, direct memory data trans-
fers, priority bus control, and program interrupt.

This chapter presents the concepts of the Unibus and how they affect pro-
gram software and interfacing hardware. The use of the 56 bus signals to
effect.data transfers and to control bus use is also described.

GENERAL CONCEPTS OF THE UNIBUS
There are five major aspects of the Unibus that affect both software and
hardware considerations in the PDP-11.

SINGLE BU!j-The set of 56 signals that comprise the Unibus is the one
and only bus connecting all peripheral devices, memories, and the central
processor. Thus, to every device there exists a single set of signals by which
it can be interrogated by the processor or other devices, or be used by the
device itself to transfer data to and from memory.

The processor uses this same set of signals to communicate with all mem-
ories and devices. The important point here is that the form- of the com-
munication used by processor and peripheral devices is identical. Conse-
quently; the same set of program instructions used to reference memory
is used to reference peripheral devices. (A look at the PDP-11 instruction
set will reveal that there are no explicit l/O instructions.)

Peripheral devices in a PDP-11 system are designed to respond to the Unibus
in the same manner as memory. Device status registers, device con-
trol registers, and device data registers are each assigned unique “memory”
addresses. For example, the instruction MOVB RO, PUNCH would load the
punch buffer register with an 8-bit character contained in RO. Other in-
structions would monitor the punch status and the program could deter-
mine when the punching operation was complete.

BIDIRECTIONAL BUS-Unibus bus signals are bidirectional-the signal re-
ceived as an-input can be driven as an output, as shown in Figure 8-1.

t

r--- ----- Aurn7

RECEIVE. BUS SIGNAL

DRtVE BUS StGNAL
I

I

l-
DEVtCE LDGtC

----------- J

Figure 8-l Bidirectional Nature of the Bus

MASTER-SLAVE RELATION-At any one point in time, there is one device,
called the master, that has control of the bus. The master device controls

59

the bus to communicate with other devices, call,ed slaves, on the bus. An
example of this relationship is the processor (master) fetching an instruction
from memory (which is always a slave).

INTERLOCKED COMMUNICATION-For erich control signal issued by the

master device, there is a response from the slave; thus bus communication
is independent of the physical bus length and the response time of the mas-
ter and slave devices. Also, master-slave relationships can exist in nearly
any combination between fast-responding and slow-responding devices.

* DYNAMIC MASTER-SLAVE RELATION-Master-slave relationships are dy-
namic. The processor, for example, can pa&s bus control to a disk. The disk,
as master, could then communicate with a slave memory bank.

UNIBUS SIGNALS
The 56 Unibus signals can be divided into two major groups-the interrupt
group and the non-interrupt group. The interrupt group can then be sub-
divided into two classes-the request and control class and the grant class.
All bus signals except the grant class are bidirectional in nature and are

% connected to every device (though they may not be used by every device).
The grant signals, because of their special nature in priority bus control
(to be explained later), are bussed through each device and are unidiiectional
in nature.

NON-INTERRUPT SIGNALS
Data Lines (0 < 15:OO >)-(Note that the notation A <a:b> specifies
b - a + 1 signal lines which are named Aa through Ab.) The 16 data lines
are used to transfer information between master and slave. This is the bit
format:

I HIGH BYTE I LOW BYTE 1

(5 8 7 0

Address Lines (A < 17:00 >)-The 18 address lines are used by the master
device’to select the slave (a unique core memory or device register address)
with which it will be communicating. This is the bit format of the 18 signals:

A < 15:Ol > are used to specify a unique 16-bit word group. In byte opera-
tions, A00 is used to specify the byte being referenced. If a word is refer-
enced at X (X must be even, since words can be addressed on even bound-
aries only), the low byte can be referenced at X and the high byte at X + 1.

A < 15:00 > are supplied by the software as memory reference addresses.
Al7 and Al6 are used as extended memory bits for relocation and as pro-
tection schemes in future systems. In the PDP-11/20 and the PDP-ll/lO,
Al7 and Al6 are asserted or forced to 1 whenever an attempt is made to
reference a memory location where A15’= Al4 = Al3 = 1. Thus the hard-
ware converts the 18bit software address to a full Is-bit-bus address.

An address map is shown in Figure 8-2.

60

.
scFrwAF& AOORESS HAROWARE ADDRESS oooo#O-017777 trt 4K

MEMORY BANK
02CWO-037777

El
oooooo-own7

02ooOO-037777
2nd 4K

MEMORY 0Aw

I I
I I

t40000-t57777 t40000-157777
7th 4K

MEMORY BANK _
t6oooo-t77777

El

760000-777777
PERIPHERAL

BANK

Figure 8-2 Address Map .

The peripheral bank is composed of the processor’s fast memory, status
register, console switch register, and all device registers.

Control Lines (C < 1:0 >)-These two bus signals are coded by the master
device to indicate to the slave one of four possible data transfer operations.

Master Synchronization and Slave Synchronization (MSYN, SSYN)-MYSN
is a control signal used by the master to indicate to the slave that address
and control information is present. SSYN is the slave’s response- to MSYN

lnititiliiation (INIT)-This signal is a power clear signal asserted by the con-
sole and the processor which is used to reset peripheral devices.

PA, PB. SPl. SP2-These lines are not implemented on the PDP-ll/lO or
PDP-ll/PO.

INTERRUPT SIGNALS
Bus Request Lines (BR i: 7:4 >)-These four bus signals are used by
peripheral devices to request control of the bus.

Bus Grant Lines (BG < 7:4 >-)-These signals are the processor’s response
to a BR. They will be asserted only at the end of instruction execution.

Non-Processor Request (NPR)-This is a bus request from -a peripheral
device to the processor.

Non-Processor Grant (NPG)-This isthe processor’s response to an NPR. It
occurs at the end of bus cycles within the instruction execution.

Selection Acknowledge (SACK)-SACK is asserted by a bus-requesting device
that has received a bus grant. Bus control will pass to this device when the
current master of the bus completes its operations.

INTERRUPT (INTR)-This signal is asserted by the master to start program
interruption in the processor.

Bus Busy (BBSY)-This signal denotes bus in use by a master device.

UNIBUS DATA TRANSFER OPERATIONS
Direction of data transfers on the Unibus is defined in relation to the master

61

device. A data transfer from processor to memory (always a slave) is “data
out,” and a transfer from memory to processor is “data in.”

TYPES OF DATA TRANSFERS-The type of data transfer being made between
master and slave is determined by the C lines coded as follows: _

DATO AND DATOB-The DATO and DATOB operations are used to transfer
data out of the master to the slave. DATO is used to transfera word to the
address specified by A < .17:01 >. The slave ignores A00 and the data ap
pears onD < 15:00>. DATOB is used to transfer a byte of data to the ad-
dress specified by A < 17:OO >. A00 = 0 indicates, the low byte, and data
appears on D < 07:OO >; A00 = 1 indicates the high byte, and data appears
on D < 15:08 >.

DATI AND DATIP-The DATI and DATIP operations transfer data from a slave
whose address is specified on A < 17:Ol > into the master. Both transfers
are made in words on D < 15:00 >. In destructive read-out devices, DATI
commands a read-write operation, while a DATIP commands a read operation
only and sets a pause flag. When the device receives the subsequent DATO
or DATOB and its pause flag is set, the usual read cycle is skipped and an
immediate write cycle is initiated. Thus, DATlPs are immediately followed
by a DATO or DATOB to effect a read-modify-write data exchange. In non-
destructive read-out devices, DATI and DATIP are treated identically.

This diagram illustrates the data flow in the four data transfers:
DATI OR DATIP
DATA= D<l5:00> I

15 8.1 7 0

SLAM ~~EGISTER
I HIGH BYTE , LOW BYTE
I

A A
DAToBI\AOO DATOBhm

DATA=D<t5:08 > DATA=D <OX00 >

DATA=CKl5:00>

Figure 8-3 Data Flow

Note that all transfers into the master are word operations; it is up to the
master to accept the appropriate byte. On a DATOB, the master must place
the byte on the appropriate data lines; the slave must accept the proper byte.

DATA TRANSFER EXAMPLES-The bus operations used by the processor for
a typical instruction sequence illustrates how the data transfer operations
are used. The “program” starts at location 1000:

1000: INCB @RO
ADD #3, @RO

where RO contains 500 and location 500 contains 10023. The result of this

62

I instruction sequence will leave 10027 in location 500. In binary form, this
coding appears as:

1000: 105210 ;INCB @RO
1002: 062710 ;ADD (PC)+, @RO
1004: 000003 ;3

. The following table lists the bus operations that result
of these two instructions:

Processor Cycle Bus Operation Bus Address

1. Fetch DATI (PC),= 001000
2. Destination DATIP (RO) = 000500
3. Execute DATOB (RO) = 000500
4. Fetch DATI (lqz) = 001002
5. Source DATI (PC)= 001004
6. Destination DATIP (RO) = 000500
7. Execute DATO (RO) = 000500

as a consequence

Dais Transferred _
105210
010923
000024
062710
000003
010024
010027

Note that instep 3, it is inconsequential what data appears on D < 15:OB >;
the slave accepts only the modified low byte.

A second example of bus ‘operation compares the contents of the Teletype
keyboard data buffer whose address is 177560 with the ASCII value for the
letter “A.”

200: CMPB @#177560, #301

This instruction is assembled in three words as follows:
200: 123727 ;CMPB @@7)+, WV+
202: 177560 ;Address of data buffer
204: 000301 ;301

The processor will execute this instruction with these cycles:

Processor Cycle Bus Operation Bus Address Data Transferred
1. Fetch DATI (PC) = 200 123727 ’
2. Source DATI (PC)=202 177560
3. Source DATI 777560 ASCII
4. Destination DATI (PC) = 204 000301
5. Execute none - condition codes set internally.

Note that in step 3, the soware specified address 177560 was converted to
the bus address 777560.

SIGNAL DESCRIPTION OF DATA TRANSFERS-Figure 8.4(a) shows the sig
nal flow between master and slave during a DATO operation. (The sequence
is similar for DATOB except that only a byte of information is transferred.)
The master sets Control for DATO, sets Address for the unique slave address,
and sets Data for the information to be transferred. The master then asserts
MSYN. This signal is received by the slave that recognizes its address: it
responds by accepting the data arid asserting SSYN. SSYN is received by the
master which then negates Control, Address, Data, and MSYN. The slave
sees MSYN negated and negates SSYN. The master device continues its
operation when it sees SSYN negated.

63

MASTER
\

SLAVE

OPERATION: DAl-0

A.C,D
MSYN ‘4

rg------ SSYN

A’C’D 3

I SSYN

Figure 8-4(a)

The flow of signals for DATI is shown in Figure 8.4(b). (DATIP is similar
except that the internal operation of the slave device is modified.) The master
sets Control for DATI, sets Address for the slave to be se’lected, and asserts
MSYN. The selected slave responds by setting Data for the information re-
quested and asserts SSYN. The master sees SSYN, accepts the data, and
then negates Control, Address, and MSYN. The slave sees MSYN negated
and negates SSYN. The master continues when it sees SSYN negated.

A more detailed signal sequence for the DATI, DATIP, DATO, and DATOB bus
operations can be found in Appendix D.

MASTER
/

SLAVE

OPERATION: DATI

W
MSYN

i

, SSYNaD

v

$% _

ssVN6

i ’

Figure 8-4(b)

UNIBUS CONTROL OPERATIONS
The following section will deal with how a device becomes master of the bus
.and how control of the bus is transferred from one device to another. TWO
additional bus operations will be presented-the PTR (Priority Transfer) and
INTR (Interrupt).

In normal operation, the processor is bus master, fetching instructions and
operands from memory. Other devices on the bus have the capability of
becoming bus master, and use the bus for one of two purposes: l), to gain
direct memory access or 2). to interrupt program execution and force the
processor to branch to a specific address:

PRIORITY ARBITRATION-Transfer of bus control from one device to another
is determined by a priority scheme in which three factors must be considered.

First, the processor’s priority is determined by bits 7, 6, and 5 in the pro-

64

cessor status register. These three bits set a priority level that inhibits
granting of bus requests-on lower levels.

Second, bus requests from external devices can be made on oni of five
request lines. NPR has the highest priority, and its request is honored by the
processor between bus cycles of an instruction execution. BR7 is the next
highest; BR4 is the lowest. These four lower level requests are honored by
the processor between instructions, except when the instruction currently
being executed causes an internal trap (either an error or trap instruction).
In this case, BR requests will not be honored until completion of the first
instruction after the trap sequence. Thus if two requests are made to the
processor for bus control, the higher of the two requests will be honored first.

Third, in response to a bus request, the processor may honor the request by
asserting a bus grant (BG) corresponding to the line on which the bus re-
quest was made. This signal is passed serially through each device in the
system. If a device had made a request, it would. block the grant signal
and prevent it from reaching the following devices. Thus, in this “pass-the-
pulse” chain, the device that is closest to the processor has the highest

~ priority on that request level.

This table lists device priorities:
Highest: Devices on NPR

Processor when priority = 111
Devices on BR7
Processor when priority = 110
Devices on BR6
Processor when priority = 101
Devices on BR5
Processor when priority = 100
Devices on BR4
Processor when priority = 011
Internal options
Processor when priority = 010
Internal options I
Processor when priority = 001
Internal options

Lowest: Processor when priority = 000

When the processor’s priority is set at N, all requests for bus control at
level N and below are ignored.

SELECTION OF NEXT BUS MASTER-The signal sequence by which a device
becomes selected as next bus master is the PTR (Priority Transfer) bus ,
operation. Note that this operation does not actually transfer bus control:
it only selects a device as next bus master. It takes one additional condition
to complete the transfer: the current bus master must complete its bus
operations. The signal that indicates this is BBSY. Thus, when a device makes
an NP,R or BR request to the processor for bus control, it waits until it first
becomes selected as next bus master by the PTR operation and second, it
no longer senses BBSY, The negation of the BBSY signal indicates that
the current master has completed its bus operation. The selected device
now becomes bus master and asserts BBSY itself.

INTERRUPT SEQUENCE---Once the device has bus control and is asserting
BBSY itself, it‘is sole user of the bus until it releases its control. This release
of control can be made either actively or passively. Passive release is realized

65

by negating BBSY. Bus control will then pass to either a device that was
selected in the meantime by another PTR sequence or back to the processor,
which will continue where it was interrupted. Active release of bus control
is realized through the INTR bussequence.

The INTR (interrupt) operation is used by the bus master to transfer to the
processor a memory address (called the interrupt vector). Two consecutive
words, the starting address of an interrupt service routine and a new status
word, are stored at the interrupt vector address. After the INTR sequence is
Complete, the Processor automatically becomes bus master and begins a trap
sequence in which it stores the current value of the PC and PS on the stack
and fetches a new PC and PS from the location pointed to by the interrupt
vector. Thus, the next instruction executed is the Start of, the interrupt
service routine.

It is illegal to issue an INTR command after gaining control of the bus by
requesting on an NPR line. NPR requests are granted during instruction
execution and external bus masters must restrict their bus use* to nonpro-
cessor activities.

Interrupt Servicing Sequence Example-The following is an example of the .*
INTR sequence. , _

When a peripheral requires service and requests control of the bus with a
BR signal, the operations undertaken to “service” the device are as follows:

l Gain Control of the Bus-When the processor has no higher priority tasks
to complete, it relinquishes the bus to that device. Higher priority items are
(in order of priority):
1. Acknowledging an NPR request
2. Handling a processor error (illegal instructions, requirements for non-

existent memory, etc.)
3. Completing the current instruction
4. Acknowledging a trace trap
5. Continuing a higher priority process
6. Acknowledging a higher level BR signal
7. Acknowledging same level BR signals for devices closer to the processor

l Do INTR Sequence-when the device has cpntrol of the bus, it initiates
an INTR sequence, transferring to the processor the interrupt vector address
which specifies two words in memory containing the address and status of
the appropriate device service routine.

0 Push Old Interrupt Vector Onto Stack-The processor then “pushes”-
first, the current central processor status (PS) and then the current program
counter (PC) onto the processor stack.

l Fetch New Interrupt Vector-The new PC and PS (the “interrupt vector”)
are taken from the address specified by the device, and the device service
routine is begun. Note that those operations all occur automatically and that
no device polling is required to determine which service routine to execute.

Example of NPR Operation-Disk operation gives an example of a device
‘which uses the bus for direct memory access. Under program.control, the
processor would initialize registers in the disk control that specify word count
(WC, number of words in block of data to be transferred), memory address
(MA, the address at which the block of /data is found or is loaded), and Track
Address (TA, the point on the disk where the block of data starts). Also, the

66

program would set certain function bits in the disk’s command and status
register that specify a read or write function. For this example, assume the
disk was set to read. *

Once the disk’s control registers are initialized, the disk control logic’starts
a search for the requested data. (fhe processor in the meantime has con-
tinued in its program execution.) When the disk has found the data, it
assembles the first l&bit word from the disk surface into its data register.
The disk now requests bus control via the NPR request line. The processor,
when it has completed its current bus cycle of the current instruction and
no higher NPR requests exist, grants control of the bus to the disk. The disk,
as bus master, effects a DATO bus operation, transferring the contents to
its data buffer to the core address held in its MA. The MA is now incremented
and the WC is decremented. When the DATO operation is COftydete, the disk
passively releases control of the bus.

When the second word has been assembled, the disk again requests bus
control, does a data transfer, and then releases bus control. This cycle is
repeated until the WC reaches zero. At this point, the disk has completed
the transfer that was requested.

To notify the program that the transfer is finished, the disk initiates a request
for bus control at the BR level, gains control when higher priority requests
are satisfied, and does an immediate INTR to the processor and causes the
program to branch to a specific service program (as described in the previous
example). \

Details of the INTR and PTR bus operations can be found in Appendix D.

67

,

,I ;

.

.

The plug-in console board with modular construction is supplied
in the basic 11/20 configuration. In addition to aiding program-
ming, console contributes to ease of maintenance on the PDP-11. *

68

CHAPTER 9

Interfacing

A typical device bus interface as shown in Figure 9-l is composed of five
major components: 1). Registers; 2), Bus Drivers and Receivers; 3). Address
Selector; 4). interrupt Control; and 5), Device Control Logic.

REGISTERS
Each device is assigned bus addresses at which the program can inter-
rogate and/or load the device status, control, and data registers. The stan-
dardized mapping for these registers and the bit assignments of the corn- .
mandlstatus register (CSR) were given in Chapters 5 and 6.

As shown in Figure 9-1, all information flow between the device logic and ’
the Unibus is done through the registers. In general, registers are designed
to be both loadable and readable from the bus. This allows the program to
use such instructions as ADD RO, REG, or INC REG. However, registers can
be “one-sided,” either “read-only” or “write-only.” Examples of read-only
bits are the DONE and BUSY flags in the device’s CSR. These bits are de-
rived from the internal state of the device log& and are not under direct
program control. Write-only registers are used when it is unnecessary to
read back information. Attempting to read such a register would result in an .
all-zero transfer. The instructions effective with this type of register are then
limited to those which load the register such as MOV RO, REG, or CLR REG
(as opposed to ADD REG, RO, or INC REG).

Figure 9.1 Typical Peripheral Device Interface

BUS DRIVERS AND RECEIVERS
To maintain the transmission-line characteristics of the Unibus, special cir-
cuits are required to pass signals to and from the bus. The majority of bus
signals (all except the five grant lines) are received, driven and terminated
as shown in Figure 9-2.

69

I

I
I
I
I
I
I
I
L-

M930

--- i WI-- -J
DRIVER

Rl , R2=190fi 5% 1/4W
R3. R4 = 390A 5% iI4W

Figure 9.2 Typical Unibus Line

Information is received from the bus using gates which have a high input
impedance and proper logic thresholds. High input levels must be greater
than 2.5 V with an input current less than 160 pa. Low level input must be
less than 1.4 V with an input current greater than 0 pa.

information transmitted on the bus must be driven with open collector drivers
capable of sinking 50 ma with a collector voltage of less than .8 V. Output
leakage current must be less than 25 ~a.

In PDP-11 systems, the bus signals are terminated at both ends by resistor
dividers provided on the M930 module. Physically, an M930 is located in
the processor; another is located at the last unit on the bus. A bus signal
sits at logical “0” (inactive, or negated state) at a voltage of 3.4 V. A bus
line is at logical “1” (active, or asserted) when it is pulled to ground.

Drivers and receivers meeting these specifications are available on the
M783, M784 and M785 modules as shown in Figures 9-3, 9-4 and 9-5.

70

Ml05 ADDREsS SELECTOR
Tho ‘Ml05 Address Selector as shown in Figure 9-6 is used to provide gating
signals for up to four device registers. The selector decodes the 18-bit bus
address on A < 17:00 > as follows:

Figure 9.3 M783 Unibus Drivers ix

Figure 9.4 M784 Unibus Receivers

. Figure 9.5 M785 Unibus Drivers and Receivers

A00 is used for byte control. A01 and A02 are decoded to provide one of
four addresses. A < 1203 > are determined by jumpers on the card. When
the jumper is in, the selector will look for a 0 on that address line-
A < 17:13 > must all be l’s-(this defines the external bank). Other bus
inputs to the selector are C < 1:0 > and MSYN. The single bus output is
SSYN. The user signals are SELECT 0. 2, 4, and 6 (corresponding to the
decoding of A02 and AOl, one of which is asserted when A < 17:13 > are all-
l’s and A < 12:03 > compare with the state of the jumpers. Other user sig-
nals are OUT HIGH (gate data into high byte), OUT LOW (gate data into low
byte), and IN (gate data onto the bus). The equations for these last three
signals are as follows: .

OUT HIGH = DATO + DATOB;AOO
OUT LOW = DATO + DATOB*m
IN = DATI + DATIP

where “+” means a logical or and “*” means a logical and.
Use of the M105, drivers, receivers and a flip-flop register is shown in- Fig
ure 9-7.

72

EXT. CAP

I

-J f , 1 1 SELECT 2 H

EH
t

SELECT 4 H

SELECT 6 Ii

A62L J I
A61 L

AmL I
OUTHl6HH

GIL OUT LW Ii
CaL a IN tl

Figure 9.6 Ml05 Address Selector

M782 INTERRUPT CONTROL
4

The M782 Interrupt Control module contains the necessary logic circuits to
allow a peripheral device to gain bus control and perform a program inter-
rupt. The three circuits on this card are block diagrammed in Figure 9-8.
Note that only signals relevant to the user’s interface are shown; bus
signals SSYN, BBSY and SACK have been omitted for clarity.

The Master Control circuit is used to gain bus control. When INT and INT
ENB are asserted, a bus request is made on the request line to which BR
is jumpered. When the processor issues the corresponding grant and other
bus conditions are met, the MASTER signal is asserted, indicating that this
device now has bus control. Note that this circuit also can be used to gain
bus control on an NPR line for a device which requests the bus for direct
memory access.

73

-i
I

. .

L--- -- ------2

Figure 9.7 Typical Peripheral Device Regker

74

In addition to two Master Control circuits, a third logic network provides the
necessary signals and gating to perform the INTR bus operation. When either
of the START INTR signals is asserted, the INTR bus signal is asserted
along with a vector address qn D < 07:02 >. Bits 07:03 are determined by
jumpers on the card. A jumper “in” forces a 0 in that bit. Bit 2 is controlled
by Vector Bit 2. When the processor responds to the INTR signal by asserting
SSYN, the INTR DONE signal is asserted. This line is used to clear the
condition which asserted INTR START.

Figure 9.8 M782 Interrupt Control

Figure 9-9 shows a possible interconnection of the M782 to provide inde-
pendent interrupts for two possible conditions in a device: ERROR and DONE.
The ERROR and DONE signals shown in Figure 9-9 are signals from bits 15
and 7 in a device’s CSR. Likewise ERROR INT ENB and DONE INT ENB are
derived from the CSR. Both interrupts in this example are tied to the BR4
level: the corresponding grant line BG4 enters the ERROR Master Control and
is passed on to the DONE Master Control. Thus, ERROR ha% a slightly higher
priority interrupt level than DONE.

Both MASTER signals are tied to the INTR control. Thus, whenever either
ERROR or DONE gains bus control, an INTR operation is initiated. Note
that Vector Bit 2 is a 1 or 0 as a function of which master control

_ is interrupting. Also, INTR DONE is tied to MASTER CLEAR to clear the
master condition.

,

DEVICE CONTROL LOGIC
The type of control logic for a peripheral depends on .the nature of)h”
device. Digital offers a wide line of general-purpose logic IllO~Ul~S for IITF
plementing control logic. These modules are described in detail In another
Digital publication: The Logic Handbook.

Figure 9.9 Typical‘lnterconnection of M782 Interrupt Control

.

76 .

CHAPTER 10
CONFlGURATtON AND INSTALLAflON PLANNING

MODULAR CONSTRUCTlbN
Physically, the PDP.11 is composed of a number of System Units. Each
System Unit is composed of three 8-slot connector blocks mounted end-to-
end as shown in Figure 10-l. The Unibus connects to the System Unit at
the lower left and at the upper left. Power also connects to the unit in the
leftmost black. A System Unit is connected to other System Units only via
the Unibus.

UNIBUS CONNECTION

p:*~~

Figure 10.1 System Unit

The remainder of the System Unit contams logic for the processor, memory
or an I/O device interface. This logic is composed of single height, double
height, or quad height modules which are 8.5 ” deep.

The use of System Units allows the PDP-11 to be optimally packaged for
each individual application. Up to six System Units can be mounted into a
single mounting box. For a basic PDP-ll/PO system, the processor/console
would fill 21/2 System Unit spaces and 4096 words of core memory would
fill one System Unit space. This leaves 21/, spaces for user-designated op
tions. This would allow the user to add 8,192 words of additional core
memory, a Teletype control, and a High-Speed Paper Tape Control, or 4,096
words of core memory and six Teletype interfaces, Larger systems will
require a BAll-EC or BAll-ES Extension Mounting Box which contains space
for six additional System Units.

The use of System Units also facilitates expansion of systems in the field
and service. To add an additional option to a PDP-11 system, the proper
System Unit is mounted in the Basic or Extension Mounting 80x and the
Unibus is extended. Servicing of the PDP-11 can be done by swapping
modules or by swapping System Units.

MOUNTING BOXES AND CABINETS
The PDP-11 is available as either a tabletop or rack-mounted configura-
tion. The rack-mounted configuration may be installed in a DEC cabinet or
mounted in a customer cabinet. The PDP-11 mounts in an EIA standard 19-
inch cabinet. The rack-mounted PDP-11 has tilt-slides as standard mount-
ing hardware.

1 The following mounting units and cabinets are‘available for PDP-II systems.

PDP-11 TABLETOP BOX AND POWER SUPPLY FOR 11/20, ll/lO SYSTEMS-
fBAll-CC AND H720)-This cover and box may be specified with a basic
i1/20 and ll/lO system and includes:

'1. H720 Power Supply
2. 15’ of power cord with ground wire

77

+ For 115 V standard, 3prong; U-ground, 15-ampere connectors
+ For 230 V pigtail leads on one end
3. Cooling Fans
4. Filter
5. Programmers Console with 11/20 or Turn-Key Console with ll/lO

Approximate Size-11" high, 26” wide, 24” deep. Figure 10-2 shows the
layout of this unit.

I
*

Figure 10.2 Table Top PDP-11 Dimensions

Approximate Weight-100 Ibs. (including CP, console and 4K core)

. Power-12OV +- 10%,47-63 Hz 6 amps.
(BAll-CC and H720-A)

single phase

230V -c 10%,47-63 Hz
(BAll-CC and H720.B)

3 amps. single phase

PDP-11 BkC MOUNTING BOX AND PGWER SUPPLY(BAll-CS AND H720)
-This basic mounting box may be specified with a basic 11/20 or a ll/lO
system and includes:

1. Tilt and Lock Chasis Slides
2. H720 Power Supply
3. 15’ of power cord with ground wire
+ For 115 V standard, 3-prong, Uground, 15-ampere connector
+ For 230 V pigtail lead% on one end I
4. Cooling Fans
5. Filter
6. Programmers Console ‘with 11/20 or Turn-Key Console with lI/IO

Approximate Size-lbl/2” high, 19" wide, 23” deep. Figures
lo-5 show the layout of this unit and give slide dimensipns.

16-3, IO-4 and

78
.

. Approximate Weight-90 Itis. (including CP, cdnsole and AK core)

Power-12OV zflO%,47-63 Hz 6 amps. single phase
@All-C5 and H720-A) X -

230V +10%,47-63 Hz 3 amps. single phase
(BAll-C5 and H720-B)

~
Figure 10.3 Rack Mountable PDP-11 Dimensions

Figure 10.5 Side View of Mounting Hardware

PDP-11 TABLETOP UcFENSfdh MOUNTING BOX (BAll-EC)-The tabletop
Extension Box is supplied, when ordered, for mounting of up to 6 additional
System Units which can not be contained in the Basic Mounting Box. This
unit is supplied with:

1. 15' of power cord with ground wire
+ For 115 V standard, 3-prong, U-ground, 15-ampere connector
+ For 230 V pigtail leads on one end
2. Cooling Fans
3. Filter
4. Front Panel
5. Unibus Cable from Basic Mounting Box, 8’6” long

Approximate Size-11" high, 20” wide, 24” deep

Power-120 V -C lo%, 47-63 Hz 6 amps. r single phase
(when H720-A is added)

230 V + 10%,47-63 Hz 3 amps. single phase ‘)
(when H720-B is added)

PDP-Ll EXTENSION MOUNTING BOX(BAll-ES)-The Extension Box is sup
plied, when ordered, for mounting of up to 6 additional System Units which
can not be contained in the Basic Mounting Box. This unit contains:

1. Tilt and Lock chassis slides
2. 15’ of power cord with ground wire
+ For 115 V standard, 3-prong, U-ground, 15-ampere connector
+ For 230 V pigtail leads on one end
3. Cooling Fans
4.. Filter
5. Front Panel
6. Bus Cable from Basic Box, 8’ 6” long

Approximate size--101/z” high, 19” wide, 23” ,deep

Power-120 V + lo%, 47-63 Hz 6 amps.
(when H720-A is added).

230V +10%,47-63 Hz 3 amps.
(when H720-B is added)

single phase

single phase

PDP-11 FREESTANDING BASE CABINET (H969CA)This optional cabinet
cabinet can be used to mount the BAll-CS Basic Mounting Box and a
BAll-ES Extension Mounting Box supplied with Tilt and Lock chassis slides
in addition to other PDP-11 equipment. . .

Panel capacity is six lOI/” high mounting spaces, each of which is covered
with black plastic panels if equipment is not mounted-(5 panels, maximum,
supplied).

items supplied with the cabinet include:
1. H950-A Frame
2. H952-E Coasters
3. H-952-F Levelers
4. H-952-C Fan Assembly (in top of cabinet)
5. H-950-S Filter
6. PDP-11 Logo
7. H-950-B Rear Door
8. lOl/," Plastic Bezels, maximum of 5 supplied
9. Two H952-A End Panels

80

10. H955)-D Mounting Panel Doors
11.. H952-B Stabilizer Feet
12. #7406782 Kick Plate
13. #7005909 Power Distribution Panel (ac ?rrd dc, mounted on upper

left side)

Approximate Size-22” wide, 39” deep (including stabilizer feet), 711/” high

Approximate height-150 Ibs. (without computer)

e Voltage-115 V 60 Hz (for fans)
230 Y 50 Hz (for fans)

PDP-11 POWER SUPPLY SUBSYSTEM H728-This Power supply is used in
the Basic and Extension Mounting boxes and supplies power to all devices
mounted in one of these boxes. It is included in. basic PDP-11 systems,

‘but must be ordered separately with a BAllES or BAllEC Extension Mount-
ing Box.

Approximate Size-161/,” wide, 8” high, 6” deep

Approximate Weight-25 Ibs.

Voltages-(specify input voltage)
IN 108V +-lo%, 47-63 Hz

120V *lo%. 47-63 Hz
216V *lo%, 47-63 Hz
228V +-lo%, 47-63 Hz
240V *lo%, 47-63 Hz

6 amps (H720A)
6 amps l (H720A)
3 amps
3 amps gEE;
3 amps. (H7208)

OUT +5v ,*50/o . 12 amps
-15v ‘5% 10 amps

+8RMS (unregulated)
-22v (unregulated)

1.5 amps,
1.0 amps

FREESTANDING PROGRAMMER’S TABLE (H952-HA)-This freestanding table
fits directly below the programmer’s console in the Freestanding Base
Cabinet and extends into the cabinet approximately 1”. The surface plate is
supported by its own adjustable height legs.

Approximate Size-20” extension from cabinet, 19” wide, 27” above floor

SYSTEM UNITS AND CABLES
The following items are available for mounting standard and special periph-
eral device logic into a PDP-11 system.

PERIPHERAL MOUNTING UNIT (DDll-A)-The DDll is a prewired System
Unit which allows standard small peripheral interfaces to be mounted in a
PDP-11 system. It accepts standard small peripheral interfaces (up to 4)
such as the KLll Teletype Control or the controller portion (PCll-M) of the
High Speed Reader/Punch. For mounting, it requires one-sixth (l/6) of a
BAll Mounting Box.

BLANK SYSTEM. UNIT (BBll)-The BBll consists of three 288-pin con-
nector blocks connected end-to-end. This unit Is unwired except for Unibus
and power connections and allows customer-built interfaces to be integrated
easily into a PDP-11 system. For mounting it requires one-sixth (l/6) of a
BAll Mounting Box.

81

UNIBUS MODULE (M920)-The M920 is a double module which connects
the Unibus from one System Unit to the next within a Mounting Box. The
printed circuit cards are separated ‘by 1” for this-purpose. A single M920
will carry all 56 Unibus signals .and 14 grounds.

UNIBUS CABLE (BCllA)-The BCllA is a 120~conductor flexprint cable used
to connect System Units in .different mounting boxes or a peripheral device
which is removed from the mounting boxes.

The 120 signals consist of the 56 Unibus lines plus 64 grounds., Signals and +
grou,nds alternate to minimize cross talk. .

BCl lA-2. 2’
BCllA-5 5’
BCllA-BA 8’6”
BCllA-10 10’
BCl l A-15 15‘
BCl lA-25 25’

CABLE REQUIREMENTS
When an Extension Mounting Box is used, an external cable, the @CIlA, is
the only signal.conn@ion between mounting boxes. This external bus cable
may also be. used to connect other peripherals to the PDP11. The maximum
combined, internal and external, bus cable.length is 50’. -

’ PDP-11/20 POWER REQUlkEMENTS /
Input Voltage and Current-105-125 Vat, 6 amperes, 210-260 Vat 3 am-
peres, (single phase)

Line Frequency47-63 Hz

Pdwer Dissipation400 watts d

A standard 15-foot, 3-prong,- U-ground, 15-ampere, line cord is provided on
the rear of the PDP-11 for connection to the power source on 120 Vat
models. On 230 Vat models, a 15-foot, S-conductor cable with pigtails is
provided.

TELETYPE REQUIREMENTS
The standard Teletype requires a floor space approximately 221/2 inches
wide by 181/s inches deep. The Teletype cable length restricts its location to
within 8 feet of the si#e of the computer.

Input Voltage-115 Vat *lo%, 60 Hz kO.45 Hz, 230 Vat *lo%, 50 Hz
-CO.75 Hz

Line Current Drainl2.0 amperes

Power Dissipation-150 watts

The Teletype plugs into the rear of the PDP-11 Basic Mounting Box and is ’
turned ON and OFF by the~eower s,witch on the front panel of the PDP-11.

ENVIRONMENTAL REQUIREMENTS
The PDP-11 is designed to operate from +lO to +5O”C and with a relative
humidity of from 20 to 95% (without condensation).

82 .

. INSTALLATION .PROCEDlJRE
The PDP-11 is crated for shipment to the customer site to prevent damage.
Installation is provided by DEC personnel at the customers site.

Computer customers may send persorinel to instruction courses on camput&
operation, programming, and maintenance conducted regularly in Maynard,
Massachusetts, Palo Alto, California, and Reading, England.

83

The PDP-11 has adopted a moddlar packaging approach to allow
custom configuring of systems, easy expansion and easy servicing.

. . 84

CHAPTER 11

PAPER TAPE SiFTWARE SYSTEM‘
’ PAPER TAPE SOFTWARE SYSTEM (PTS)

PTS is a compatible group of software packages designed to aid development
of PDP-11 application programs. A brief description of each item with its
major features is offered below with detailed programming information avail-
able in corresponding software user’s manuals.

PTS FEATURES

l 4K Absolute Assembler
l Symbolic Program Editor for editing of paper tape which is string oriented
0 On-Line Debugging Aid allowing rapid and accurate modification of assem-

bled programs
0 I/O Driver Routine.allowing subroutine level communication with periph-

eral devices. and double buffered input/output operation concurrent with
running programs

0 Floating Point Math Package’using both reentrant and relocatable code
0 General Utilities in.cluding loaders and dump routines

PALIlA ASSEMBLER-This two- or three-pass assembler runs on a PDP-11
with 4K words bf core memory and an ASR-33. It will also accommodate a
high-speed reader/punch. Optional outputs include the absolute object code,
an assembly listing containing each sdurce statement, and an indication of
any errors detected in the statement. A symkol table may be alphabetically
listed.

ED11 EDITOR-The PDP-11 Editor (EDll) allows the user to type identified
portions of source program on the teleprinter and to make corrections or
additions. This is accomplished by typing simple commands that cause the
Editor to-read, print, punch out on paper tape, search, delete and/or add to
the text of the program.

Use of the ED11 presupposes no special knowledge or technical skill beyond
that of the operation of explicitly defined one-character commands. The
commands are grouped according to function: input, positioning of the
current-character location pointer, output, search (which is done by charac-
ter string), insert, delete, and exchange of text portions.

ED11 uses 2,000 words of-core and requires an ASR-33 unit which includes
a printer, keyboard, paper tape reader and paper tape punch. Alternatively,
a KSR-33 may be used in conjunction with the high-speed paper tape’reader
and punch.

ODT-11 ON-LINE DEBUGGING TECHNIQUE-ODT-11 is a core resident pro-
gram which allows the user to debug his binary programs at the console by
running them in specific segments and checking for expected results at vari-
ous points. If modification of the program is needed, the user can alter the
contents of the appropriate location by “opening’! it and typing in new data.

Two versions of ODT are available, one being a subset of the other. The
larger system uses 750 words of core and utilizes an ASR-33, or a KSR-33
and a high-speed paper tape punch and reader. The smaller version uses the
same peripherals and 500 words of core. Up to eight breakpoints can be set
using the larger .version of ODT, while one breakpoint is allowed in the
smaller version.

85

Debugging operations alternate between commands to ODT and the running
of the program to be debugged. Breakpoints are set in the user’s program by
ODT commands, and a command to run starts execution of the program.
When a breakpoint is encountered, the program run is suspended, and the
progress of its execution can be monitored and altered. This is accomplished
by using commands to open memory locations of interest, as well as special
registers.

An Operator may examine and change the operating priority of both ODT
and the user’s program, the mask and address range for searches, results
of logical and arithmetic operations, the SP and PC, and the general registers.
Other commands will search for values of specified bits of a word, or for
references to.an address within an address range, calculate 16-bit and 8-bit
offsets to an address and restart the running of the user’s program at any
address.

IOX input/Output Utility ‘Peripheral Driver-lox is a set of service routines
allowing sing&or double buffered I/O processing on an ASR-33 and/or a high-
speed paper tape reader and punch. This routme atlows the user to make
simple assembly language calls specifying devices and data forms to accom-
plish interrupt-controlled data transfer concurrent with execution of the run-
ning program. Multiple devices can be run simultaneously.

IOX frees the user from the details of dealing directly with the device and
allows development of programs which may be run under the direction of a
monitor with minimum modification.

IOX also provides some degree of real-time control by allowing pser programs
to be executed at priority leaIs at the completion of some device action or
data transfer.

MATH PACKAGE-A number of commonly used subroutines are available to
simplify programming. These routines are reentrant and relocatable to pro-
vide maximum flexibility. Arguments are treated as floating point numbers
with a signed 31.bit fraction and a signed 15-bit exponent. Subroutines sup-
plied include:

ADD
MULtiply
SUBtract
DlVide
SIN
cos
ATAN
FIX-FLOAT
FLOAT-FIX
NORmalize
(Integer MULtiply and DlVide are also supplied)

LOADiER%Two loaders are used:

l A Bootstrap loader loads the ABSolute loader and jumps to it.

l ABSolute loader loads PAL-1lA output, checks for checksum errors and ,’
jumps to a user program or halts when done.

CORE DUMP ROUTINES-Routines are provided which dump specified
ranges of core locations on paper tape in absolute format or on the tele-
printer in octal.

’

86

CHAPTER 12 1. ’

THE OPERATOR’S CONSOiE
‘The PDP-11 Operator’s Console has been configured to achieve convenient
control of the system. Through switches and keys on the console, programs
or information can be manually inserted or modified. Also.indioator lamps on

, the console face display the status of the machine, the contents of t’he Bus
Address Register and the data at the output of the data paths. _

The consoie is shown in Figure 12-1.

kllilaliltlalll lcidial ll

Figure 12-1

CONSOLE ELEMENTS
The console has the following indicators and switches:

1. A bank.of 8 indicators, indicating the following conditions or oper-
‘ations: Fetch, Execute, Bus, .Run, Source, Destination and Address
(2 bits).

2. An l&bit Address Register Display
3. .A 18bit Data Register Display
4. An l&bit Switch Register
5. Control Switches:

a. LOAD ADDR (Load Address)
b. EXAM (Examine)
c. CONT (Continue)

,d. .ENABLE/ HALT
e. SIINST-S/CYCLE (Single Instruction/Single Cycle)
f. START
g. DEP (Deposit)

INDICATOR LIGHTS-The indicators signify specific machine functions,
operations, or states. Each is defined below.

1. Fetch-indicates that thdcentral processor is in the state of fetching
an instruction.

2. Execute-indicates that the central processor is in the state of
executing an instruction.

87

3. Bus-indicates that a peripheral is controlling the bus. It is lit when
BBSY (Bus Busy) is asserted, unless the processor (which includes
the Console) is asserting BBSY.

4. Run-indicates that the processor is running. It monitors the cdntrol
flip-flop for the internal clock.

5. Source&ndicates that the central processor is. obtaining source
data except from an internal register.

6. Destination-indicates that the central processor is obtaining des
tination data (except from an internal register).

7. Address-identifies the source or destination address cycle of the
’ central processor, using two lights that are decoded zero, one, two,

or three. When references are made via the Unibus to the.addresses,
the lights tell the machine’s source or destination cycle. For an in-
ternal register reference, there is a “zeroth” addressing operation.

REGISTER DISPLAYS-The Operator’s Console has an l&bit Address Regis-
ter Display and a 16-bit Data Register Display. The Address Register Display
is tied directly to the output of an l&bit flip-flop register called the Bus
Address Register. This register displays the address of data examined or
deposited.

*The l&bit data register is divided on the face of the console by a line into
two 8-bit bytes. This register is tied to t,he output of the processor data paths
and will reflect the output of the processor adder.

SWITCH REGISTER-The PDP-ll/lO’and PDP-ll/PO can reference 216 bytes
addresses. However, the Unibus ,has expansion capability for 218 byte ad-
dresses. In order that the console can access the entire l&bit address
scheme, the switch register is 18 bits wide. These bits are assigned as 0
through 17. The highest two are used only as addresses. A switch in the
“up” position is considered to have a “1” value and in the “down” position
to .have a “0” value. The condition of the 18 switches can be loaded into the
bus address register or any memory location by using the appropriate control
switches which are described below.

.

CONTROL SWITCHES-The switches listed in item 5 of the “Console
Elements” have these specific control functions:,

1.

2.

3.

4.

5.

6.

7.

LOAD ADDR-transfers the contents of the l&bit switch register
into the bus address register.
EXAM-displays the contents of the location specified by the bus
address register.
DEP-deposits the contents of the low 16 bits of the switch register
into the address then displayed in the address register. (This switch
is actuated by raising it.)
ENABLE/HALT-allows or prevents running of programs. For a pro-
gram to run, theswitch must be in the ENABLE position (up). Placing
the switch in the HALT position (down) will halt the system.
START-starts executing a program when the ENABLE/HALT switch
is in the ENABLE position. When the START switch is depressed, it
asserts a system initialization signal; the system actually starts when
the switch is released. The processor will start executing at the
address which was last loaded by the LOAD ADDR key.
CONT-allows ‘the machine to continue without initialization from
whateyer state it was in when halted.
S/ INST-S/CYCLE-determines whether a single instruction or a
single bus cycle is performed when the CONT switch is depressed
while the machine is in the halt mode.

88
. .

When the system is running a program, the LOAD ADDR, EXAM, and DE-
POSIT functions are disabled to prevent disrupting the,program. When the
machine is to be halted, the ENABLE/HALT switch is thrown to the halt
position. The machine will halt either at the end of the current instruction,
or at the end of the current bus cycle, depending upon the position of the
S/ INST-S/CYCLE switch.

-OPERATING THE CONTROL SWlTCHES
When the PDP-11 has been halted, it is possible to examine and update bus
locations. To examine a specific location, the operator sets the switches of
the switch register to correspond to the location’s address. The operator then
presses LOAD ADDR, which will transfer the contents of the switch register
into the bus address register. The location of the address to be examined is
then displayed in the address register display. The operator then depresses
EXAM. The data in that location will appear in the data register display.

If the operator then depresses EXAM again, the, bus address register will be
incremented by 2 to the next word address and the new location will be
examined. In the PDP-11, the bus address register will always be pointing to
the data currently displayed in the data register,.The incrementation occurs
when the EXAM switch is depressed, and then the location is examined.

The examine function has been designed so that if LOAD ADDR and then *
EXAM are depressed, the address register will not be incremented. In this
case, the location reflected in the address register display is examined
directly. However, on the second (and successive) depressings of EXAM, the
bus address register is incremented. This will continue for successive de-
pressings as long as another control switch is not depressed.

If.the operator finds an incorrect entry in the data register, he can enter new
data there by putting it in the switch register and raising the DEP key. The
address register will not increment when this.data is deposited. Therefore.
when the operator presses the EXAM key, he can examine the data he just
deposited. However, when he presses EXAM again, the system will increment.

If the operator attempts to examine data from, or deposit data into, a non-
existent memory location, the “time out” feature will cause an error flag. The
data register will then reflect location 4, the trap location, for references to
nonexistent locations. To verify this condition, the operator should try to
deposit some number other than four in that location; if four is still indi-
cated, this would indicate that either nothing is assigned to that location, or
that whatever is assigned to that location is not working properly.

When doing consecutive examines or consecutive deposits, the address will
increment by 2, to successive word locations. However, if the programmer is
examining the fast registers (the “scratch pad” memory), the system only
increments by 1. The reason for this is that once the switch register is set
properly, the programmer can then use the four least significant bitsof the
switch register in examining fast memory registers from the front panel.

To start a PDP-11 program, the programmer loads the starting address of
the program in the switch register, depresses LOAD ADDR, and after ensur-
ing that the ENABLE/HALT switch is in the ENABLE position, depresses
ST;:. The program will ,start to run as soon as the START switch is re-

The Run indicator lamp is driven off the flip-flop that controls the clock.
Normally, when the system is running, not only will this light be on, .but the

89

other lights; (Fetch, Execute, Source, Destination; the.Address lights, and the
Address and Data registers) will be flickering. If the run light is on, and none
ofthe other indicators are flickering, the system could. be executing a “wait”
instruction which waits for an interrupt.

While in the halt mode;if the operator wishes to do a siqgle instruction, he
places the S/INST-S/CYCLE switch in the S/lNST position and depresses
CONT. When CONT is depressed, the console momentarily passes control to
the processor, allowing the machine to execute one instruction before regain-
.ing control. Each time the CONT switch is depressed, the machine will
execute one instruction.

.

Similarly, if the operator wishes to have the machine perform a single bus
cycle, he places the S/INST-S/CYCLE switch in the S/CYCLE position and
presses CONT. The machine will then perform one complete bus cycle and
halt. The operator cannot do an,examine or deposit function at the end of a
single bus cycle unless the cycle ends coincidental with the end of an in-
struction. This prevents altering machine flow. Only when the machine is at
the end of an instruction and in the halt mode’can the examine or deposit
functions operate.

To start the machine running its program again, the operator places the
ENABLE/HALT switch in the ENABLE position, and depresses the CONT
switch. ‘.

.

90

APPENDIX A-PDFIi INSTRUCTION REPERTOIRE

Mnemonic
instruction Codes
Operation OP Code ZNCV

DOUBLE OPERAND GROUP: OPR scr;dst
MOV(B) MOVe (Byte)

(src) + (dst)
CMP(B) CoMPare (Byte)
/ Cm) - (dst)
BIT(B) Blt Test (Byte)

(src) A (dst)
BIG(B) Blt Clear (Byte)

- (src) A (dst) + (dst)
BIS(B) Blt Set (Byte)

(src) v (dst) + (dst)
ADD ADD ’

suBtra(@ + (dst) -, (dst)
SUB

’ (dst)‘- (src) + (dst)

.
.lSSDD / d-0

-2SSDD / r’ fI r/

.3SSDD 4 i-0

4SSDD ,,’ i-0

.5SSDD / d-0
’

06SSDD r/ r’ / ,/

16SSDD / / / /

CONDITIONAL BRANCHES: Bxx lot
BR * BRanch (unconditionally) 0004xx

BNE
lad+ (PC) -. -

Bratch if Not Equal (Zero)
lot + (PC) if Z = 0

0010xx

BEQ Branch if Equal (Zero). 0014xX
loc+(PC)ifZ=l

BGE Branch‘if Greater or Equal (Zero) 002oxx
loc+(PC)ifNVV=O)

BLT Branch if Less Than (Zero) 0024Xx
loc+(PC)ifNYV=l

BGT Branch if Greater Than (Zero) 003oxx
loc+(PC)ifZv(NVt~O)

BLE Branch if Less Than or Equal (Zero) 0034xX
loc+(PC)ifZv(NVV)=l

BPL Branch if PLUS ioooxx

BMI

BHI

BLOS

BVC

BVS

, BCC
(or BHIS)
BCS
(or BLO)

loc+(PC)ifN=O b
Branch if Minus 1004xX -

loc+(PC)ifN=l
Branch if Higher

lot-* (PC) ifCvZ=O
1010xx -

Branch if Lower-o? Same
loc+(PC)ifCvZ=l

Branch if overflow Clear
- loc+(PC)ifV=O

Branch if overflow Set
lot+ (PC) if V= 1

Branch if Carry Clear
lot+ (PC) ifC=O

Branch if Carry Set
lot + (PC) if C = 1

1014xX -

102OXX -

1024Xx \-

103oxx -

1034xX -

Timing

2.3

2.3;

2.9*

2.9

2.3

2.3

2.3

2.6-

2.6-

2.6-

2.6 -

2.6-

2.6 -

2.6 -

i.6- ’

2.6 -

2.6 -,

2.6 -

2.6 -

2.6 -

2.6 -

2.6 -

91

SUBROUTINE CALL: JSR reg,dst
1 JSR Jump to SubRoutine

(dstb (tmp), 0%) J
(PC> + (w3), Ww) + (PC)

SUBROUTINE RETURN: RTS reg
RTS ReTurn from Subroutine

(w) + PC. t (w3)

SINGLE OPERAND GROUP: OPR dst

CLR(B)

< COM(B)

INC(B)

DEC(B)

NEG(B)

ADW)

SBC(B)

TST(B)

ROR(B)

ROL(B)

A5R(B)

ASL(B)

JMP

SWAB

CLeaR (Byte)
0 + (dst)

COMplement (Byte)
- (dst) + (dst)

INCrement (Byte)
(dst) ,+ 1 + (dst)

DECrement (Byte)
(dst) 1 i 4 (dst)

NEGate (Bvte)
+‘(dstj + 1 + (dst)

ADd Carry (Byte)
(dst) + (Q --, (dst)

SuBtract Carry (Byte)
(dst) - (C) + (dst)

TeST (Byte)
0 - (dst)

Rotate Right (Byte).
- rotate right 1 place with C

ROtate Left (Byte)
rotate left 1 place with C

Arithmetic Shift Right (Byte)
shift right with sign extension

Arithmetic Shift Left (Byte)
shift left with lo-order zero

.063DD 4’4 r/ 4 2.3”

JUMP OOOlDD - 1.2
GM) + (PC)

SWAP Bytes 0003DD ,.‘t/OO 2.3 _
bytes of a word are exchanged

004RDD - 4.2

00020R - 3.5

.050DD 1000 2.3

-051DD 4 400 2.3

-052DD

.053DD

.05,4DD

.055DD

.056DD

.057DD

.060DD

.061DD

.062DD r’ r’/ d 2.3”

. CONDITION CODE OPERATORS: OPR 1.5
Condition Code Operators set or clear combinations of condition code bits.
Selected bits are set if S = 1 and cleared otherwise. Condition code bits cor-
responding to bits set as marked in the word below are set or cleared.

CONDITION CODE OPERATORS;

- 0 0 0
1 I 1 I I

2
I I i

4SNZVC

15 54324 0

Thus SEC ‘= 000261 sets the C bit and has no effect on the other condition
code bits (CLC = 000241 clears the C Bit)

OPERATE GROUP: OPR-
HALT HALT 000000

processor stops; (RO) and the HALT address in lights
l.8 I

WAIT WAIT 00000 1 1.8
processor releases l&s, waits for interrupt

92

RTI

IOT

RESET

ReTurn from Interrupt 000002 4 d / / 4.8
t Pa f (W
Input/Output Trap 000004 d/v’/ 8.9

(PSI 4 s (PC) 4, (20) + (PC), (22) + (PS)
RESET 000005

an INIT oulse;s issued bv the CP
- 20 ms.

EMT - EMulator Trap’ 104400--1104377

TRAP TRAP
(PS) 4, (PC) 4, (30) + (PC), (32) + (PS)’

104400-104777 4
PSI 4, (PC) 4 r (34) + (PC), (36) + (PSI

NOTATION:
1. for order codes

word/byte bit, set for byte (+lOOOOO)
SS-source field, .
DD-destination field
XX-offset (8 bit)

2. for operations
A and,
V or,

(’
not,
contents of,
XOR

& “is pushed onto the processor stack”

-

-r “the contents of the top of the processor stack is
popped and becomes”

+ “becomes”
3. for timing

* 0.4 ‘p.s less if not register mode
- 0.9 ps less if conditions for branch not met
0 1.2 r.~s more if addressing odd byte
/ (0.6 r~s additional in addressing odd bytes otherwise)

4. for condition codes
f ~;a;~;$=W

1 set

93

/

94

APPENDIX R-ADDRESSING SUhMlARY
ADDRESSING. ‘MODES.

S,C or’ dst

GENERAL REGISTER ADDRESSING

Mode
0 ’

1
2

5
6
7

Description
register
register deferred
auto increment
auto increment deferred
auto decrement
auto decrementdeferred
indexed
indexed deferred

SymboJii

$ R or (R)
CR) +
@ (RI +
- CR)
@ - 09
X CR)
@ X (RI or @ CR)

PC REGISTER ADDRESSING

Mode Description Symbolic

f
immediate
absolute

.6 relative
F?YA

7 relative deferred @A

Timing (ws)
src dst
00’ 00
1.5 1.4
1.5 1.4
2.7 2.6
1.5 1.4
2.7 2.6
2.7 2.6
3.9 3.8

Timing w)

E
dst
1.4

2.7 2.6
2.7 2.6
3.9 3.8

INSTRUCTION FORMATS

DOUBLE OPERAND GROUP: OPR src,dsl

I PI CODE 4 11’15 I I I I Y I dsi,
I I

15 12 11 6 5 0

CONDITIONAL BRANCHES: Sax lot (loc=bffset-2)+ +2)

SUBROUTlNE CALL: JSR r*g.dsl

SUBROUTINE RETURN; RTS rr9

0 , 0 I, 0 I I 2 t I I I 0 II 1 r*g II
15 3 2 0

.

SINGLE OPERAND GROUP: OPR drt

I
OP COOE

15 6 s, 0

CONDITION CODE OPERATORS:

0 0 0“ 2
I I 1 I I 1 I I

4SNZVC

15 5432t 0

.

.

0
4

10
14

i:
30
34
40
44
50,

1 54

z

70
74
.
.
.
.
.
.

400
.
.
.

*
.
.

PROCESSOR STACK
PROGRAM AND DATA
RESIDENT SYSTEM SOFTWARE

(ABSOLUTE LOADER, BOOTSTRAP, I/O EXECUTIVE)
(end of implemented storage)
160000

APPENDIX C-ADDRESS MAP .
USER DEVfCE INTERRUPT VECTOR
BUS ERROR, ILLEGAL INSTRUCTION, STACK OIKRFLOW TRAP

VECTOR
RESERVED INSTRUCTIONS TRAP VECTOR
CODE 000003 AND TRACE TRAP VECTOR
IOT INSTUCTION TRAP VECTOR
POWER FAIL INTERRUPT VECTOR
.EMT INSTRUCTION TRAP VECTOR
TRAP INSTUCTION TRAP VECTOR

SYSTEM SOFTWARE COMMUNQTION

TELEPRINTER INTERRUPT YECTOR
TELETYPE KEYBOARD AND LOW SPEED READER INTERRUPT

VECTOR
HIGH SPEED PAPER TAPE PUNCH INTERRUPT VECTOR
HIGH SPEED PAPER TAPE READER INTERRUPT VECTOR

(additional interrupt vectors)

.
. SMALL READ-ONLY STORAGE UNITS

.
. OTHER PERIPHERAL DEVICE REGISTERS

177550 HIGH SPEED READER AND PUNCH DEVICE STATUS AND BUFFER
REGISTERS

97

177560 TELElYP;- KEYBOARD AND PUNCH DEVCE STATUS AND EUFFER
REGISTER -’

.

.

.

*
177576
17-7600

.
RESERVEP FOR EXPANSION OF PROCESSOR REGISTERS

177677
177700

.
GENERAL REGISTERS RO - R7 .

1777;6 CENTRAL PROCESSOR STATUS REGISTER (PS)

.

.

APPENDIX l+UNlBUS OPERATIONS
There are ‘six bus operations: four to effect data transfers, on9 to transfer
bus control, and one to effect a program interrupt. This appendix describes
the signal interaction on the Unibus to perform these six operations.

DATA TRANSFERS
The four data transfers use the C lines coded as follows:

Cl co
0 0 DATI-DATa In
0 1 DATIP-DATa In, Pause
1 0 DATO-DATa Out
1' 1 DATOB-DATa Out, Byte

DATI AND DATIP-These two bus operations transfer data from a Slave
whose address is specified by A < 17:Ol > into the master. Both transfers
are made in words on D, < 15:OC >. In destructive read-out devices,
DATI commands a read-restore operation, while DATIP commands a read-
pause operation and the setting of a pause flag. DATlPs are to be followed
by a DATO or DATOB to effect a read-modify.write data exchange. In non _
destructive read-out devices, DATI and DATIP are treated identically. The
sequence of operations is as follows:

1. Master puts address on A, 0 or 1 on C, and waits 150 nanoseconds.
(75 nanoseconds for deskewing address + 75 nanoseconds for ad-
dress decoding). .

2. Master asserts MSYN.
3. Slave decodes address, sees 0 er 1 on C, and MSYN and ldegins read

cycle (flip-flop register would simply gate flop outputs to bus).
4. Slave completes read cycle, outputs data to D lines, and asserts

SSYN. If the slave is a destructive read-out device, it now restores
data on a OATI: it sets a pause flag on a DATIP.

Figure D-l shows the signals for a DATI operation.

a
SIGNALS Al MASTER

ADtRESS-CONTROL AT ! I

DATA jR

MSYN JT
L .

SSYN IR

SIGNALS AT SLAVE

ADDRESS-CONTROL IR 1

DATA p T I
I

MSYN IR I

SSYN

MEMORY CYCLE
I

T= SIGNAL AS TFIANSMITTEO ,
R*SIGNAL AS RECEIVED

Figure D-l DATI Operation

99

+

5.

6.

Master sees SSYN and waits 75 nanoseconds, minimum (data des-
kewing + internal gating deskewing).
Master.strobes data, drops MSYN, and waits 75 nanoseconds (des-
kew address).

7. Masfer drops A and C and waits for SSYN to fall.
8. Slave sees MSYN fall and drops SSYN and D lines.
9. Master sees SSYN fall, signaling-end of bus operation.

NOTES:
1. Step 1 of the next data transfer may begin at step 7 of the current DATI or

DATI P.

l

‘2. Step 2 of the next data transfer may begin at step 9 of the current DATI or
DATIP.

MT0 AND DATOB-These two bus operations transfer data out of the mas-
ter to the slave. DATO is used to transfer a word to the address specified
by A < 17:Ol >. The slave ignores A00 and the data appear. on D < 15:00 >.
DATOB is used to transfer a byte to the add<ess specified by A < 17:00 >.
A00 = 0 indicates the low byte and data appears on D < 07:OO >; A00 f 1
indicates high byte and data appears on D < 15:08 >. The sequence of op
eration is as follows:

1.

. 2.
3.

4.

2:
7.

Master puts address on A, data on D, 2 or 3 on C, and waits 150
nanoseconds (75 nanoseconds for deskewing address + 75 nano-
seconds for address decoding).
Master asserts MSYN.
Slave decodes address, sees 2 or 3 on C and MSYN and strobes in
word or byte. When slave has taken data, it asserts SSYN. If the slave
is a destructive read-out device and its pause flag is set (by DATIP),
slave begins write cycle; if .not, slave must first do a read cycle to
clear the memory cell and then a write.
Master sees SSYN and drops MSYN and waits 75 nanosecondi (des-
kew address).
Master drops A, D, and C, and waits for SSYN to fall.

e

Slave sees MSYN fall and drops SSYN.
Master sees SSYN fall, signaling end of bus operation.

Figure D-2 shows the signals for a DATO operation.
DATO

SIGNALS AT MAST&
.

DATA
I

MSYN

SSYN

IT I

IT

IR I

SIGNALS AT SLAVE

ADDRESS-CONTROL IR I

BATA IR 1

MSYN IR I

SSYN * ‘T

MEMORY CYCLE -1

Figure D-2 DATO Operation

100

\
NOTES:

1. Step 1 of the next-data transfer-may begin at step 5 of the current DATO or
DATOB.

2. Step .2 of the next data transfer may begin at step 7 of the current DATO or
DATOB. \

PTR-PRIORITY TRANSFER
This bus operation is used to pass control of the bus from one master to
another. The steps which fbllow are performed simultaneously with the data
transfers:

0.
1.
2.

3.

4.

5.

6.
7. .

8.

9.

Current master device always has BBSY asserted.
Requesting device asserts its assigned BR line.
Processor sees BR asserted, determines which BR is highest, and
asserts the corresponding BG line if the processor’s Current Prior@
level’allow that level of bus request.
Each device that receives the BG passes it on to the next device
unless it itself is requesting.

.

The BG is propagated a!ong the priority chain until it reaches the
first .requesting device. This device becomes selected as next bus
master and does not allow the BG to pass to succeeding devices.
The selected device asserts SACK and drops its BR, .and waits for
BBSY,,BG, and SSYN to drop. .
The processor sees SACK and drops BG.
The device which is current master completes its data transfers,
drops BBSY, and ceases to be bus master. .
The selected device sees BG, BBSY, and SSYN drop, becomes bus
master, asserts BBSY, drops SACK, and begins data transfers.
New master relinquishes bus control, either to the processor or to a
requesting device, by dropping BBSY at the end of its last bus op
eration. This is termed a passive release of bus control.

NOTES:
1. NPR bus requests ore handled as above.
2. Processor defers action on BR <7:4> until last bus cycle of an instruction

execution or interrupt sequence, NPR is acted upon immediately.
. 3. Processor becomes bus master and asserts BBSY whenever it sees BBSY = 0

end no other’ device has been selected or is being selected as next bus master.
4. Processor will not execute step 2 if SACK is asserted. See note 2 under INTR.

Figure D-3 shows the signals for a PTR operation.

PTR
SIGNALS AT DEVICE

BR JT . I

BG II3 I

I

SACK IT

SIGNALS AT PROCESSOR

BR JR I

‘0G

SACK IR

T= SIGNAL AS TRANSMITTED

R * SIGNAL AS RECEIVED

Figure D-3 PTR Operation

101

.

INTR-lNTerRupt
This bus operation is initiated by a master immediately after receiving bus
control to effect a program interrupt in the processor. It proceeds as follows:

0.

::

::

- 5.

Device has become bus master via PTR and BBSY is as&ted.
Master puts interrupt vector address on D and asserts INTR.
Processor sees INTR and waits 75 nanoseconds (deskewdata).
Processor strobes data and asserts SSYN.
Master sees SSYN, drops INTR, -D, and BBSY. The master has now
relinquised bus control directly to the processor. The INTR sequence
is termed an active release of bus control.
Processor sees INTR drop and drops SSYN and. enters interrupt
sequence to update PC and PS.

1. Step 1 must be made simultaneously with step 8 of FTR; that-is, SACK cannot
be dropped until INTR i,s asserted.

2.’ When the processor’sees SACK drop. it waits 75 nanoseconds (deskew). If, at
that time, INTR = 1. the processor issues no SG’s until the interrupt sequence
is complete.

Figure D-4 shows the signals for the INTR operation.

~

SIGNALS Al MASTER

BBSY T JR

DATA IT 1

INTR IT

SMN rR 1

-%NALS AT FIWCESSOR
BBSY -i UT

MTA

INTR

SBYN

-R I

jR 1

IT

T. SIGNAL AS TRANSMITTED

R * SIGNAL AS RECEIVED

Figure D-4 INTR Operation

GENERAL NOTES ON THE BUS OPEliATlONS
1. A master device doing a read-modify-write operation must keep bus

control BBSY asserted for both bus transactions (both the DATIP
. and the DATO or DATOB). This is the one case where an NPR request

will not be honored between bus transactions.
2. A device becomes master by the PTR operation. If ‘the request for

bus control was made on the NPR line, bus control must be released
passively (by dropping BBSY). Bus control is then passed either back
to the processor to execute the next bus cycle of the instruction or
to another device requesting on the NPR tine. If a device becomes
master via a,BR request line, control may be passed actively back
to the processor by using the INTR operation or passively (by drop

pitig BBSY); If control is given up actively, only NPR~requests will‘be
honored during the interrupt sequence of.updating the PC and PS.
If control is given up passively, control may pass either to +he
processor to fetch the next instruction or to an NPR requesting
device.

io3

’ I

c

The PDP-11 provides Direct Device Addressing. All memory-and
devices on the Unibus are directly addressable and may be op
erated upon by all computer instructions. Direct device to device
transfers are possible.

,
.

104

,

INTRODUCTION TO RT-11

Order No. DEC-11-0RITA-A-D

,

-

August 1977

This document is an introductory manual for the RT· 11 V03 operating
system. Its purpose is to acquaint new users with the RT·11 commands
that perform common system operations. This manual presents the
background material necessary to understand the system operations. It
also contains a series of :ommand examples and demonstration exercises
that complement the text.

INTRODUCTION TO RT-11

Order No. DEC-11-0RITA-A-D

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION: RT-11 V03

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, August 1977

The information in this document is subject to change without notice and should not be construed as a commit
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright@ 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-I 0
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20

9/77-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-II

CONTENTS

Page

PREFACE ix

CHAPTER 1 INTRODUCING THE RT-11
COMPUTER SYSTEM 1-1

SYSTEM HARDWARE 1-1
The Computer 1-1
The Terminal. 1-4,
The Storage Medium l-6
Optional Devices . 1-8

SYSTEM SOFTWARE 1-l 0
The RT-1 l Operating System 1-11
Language Processors . 1-1 2
Application Packages 1-13

SYSTEM DOCUMENTATION 1-13
Hardware Manuals 1-13
Software Manuals 1-14
Source Listings . l -14

CHAPTER 2 STARTING THE RT-11 COMPUTER
SYSTEM 2-1

COMPUTER MEMORY 2-1
HARDWARE CONFIGURATION 2-1

Terminal 2-3
Computer 2-3
System Volume 2-3
Storage Volume 2-3
Optional Devices and Supported Languages 2-4

BOOTSTRAP PROCEDURE 2-4

CHAPTER 3 INTERACTING WITH THE RT-11
COMPUTER SYSTEM 3-1

USING THE CONSOLE TERMINAL TO
EXCHANGE INFORMATION 3-1
USING MASS STORAGE VOLUMES TO STORE
INFORMATION 3-4

File Storage 3-8
File Protection 3-8

CHAPTER 4 USING THE MONITOR COMMAND
LANGUAGE 4-1

ENTERING COMMAND INFORMATION 4-i
General Command Format 4-2
Control Commands 4-3
Recreating the Examples 4-4

iii

Page

CORRECTING TYPING MISTAKES 4-5
INITIAL MONITOR COMMAND OPERATIONS 4-6

Using VT 11 Display Hardware 4-6
Entering the Date and Time-of-Day 4-9
Assigning Logical Names to Devices 4-10
Listing Volume Directories 4-14
Initializing the Storage Volume 4-16

CHAPTER 5 CREATING AND EDITING TEXT FILES 5-1
THE RT-11 EDITOR 5-1
CREATING A TEXT FILE 5-2
EDITING A TEXT FILE 5-4
USING UPPER- AND LOWER-CASE CHARACTERS 5-13
USING A GRAPHICS DISPLAY TERMINAL
DURING EDITING , "-16

Normal Use of the Graphics Display 5-16
Immediate Mode 5-17

CREATING THE DEMONSTRATION PROGRAMS 5-20

CHAPTER 6 COMPARING TEXT FILES 6-1
PERFORMING A COMPARISON 6-1

CHAPTER 7 PERFORMING FILE MAINTENANCE
OPERATIONS 7-1

FILE DIRECTORY OPERATIONS 7-1
MULTIPLE FILE OPERATIONS 7-3
FILE COPYING OPERA TIO NS 7-3
FILE RENAMING OPERATIONS 7-5
FILE DELETION OPERATIONS 7-6
FILE LISTING OPERATIONS 7-7

CHAPTER 8 CHOOSING A PROGRAMMING
LANGUAGE 8-1

HIGH-LEVEL VS MACHINE-LEVEL LANGUAGES 8-1
RT-11 PROGRAMMING LANGUAGES 8-3
CHOOSING A LANGUAGE FOR THE
DEMONSTRATION 8-4

CHAPTER 9 RUNNING A FORTRAN IV PROGRAM 9-1
THE FORTRAN IV PROGRAMMING LANGUAGE 9-1
THE FORTRAN IV LANGUAGE PROCESSOR 9-2
USING LIBRARY MODULES 9-2
COMPILING THE FORTRAN IV PROGRAM 9-3
LINKING OBJECT MODULES TOGETHER 9-9
RUNNING THE FORTRAN IV PROGRAM 9-11
COMBINING OPERATIONS 9-12

iv

Page

ALTERNATE FUNCTIONS 9-13
FILE MAINTENANCE 9-14

CHAPTER 10 RUNNING A BASIC-11 PROGRAM 10-1
THE BASIC-I I PROGRAMMING LANGUAGE 10-1
THE BASIC LANGUAGE PROCESSOR 10-1
USING THE BASIC INTERPRETER 10-2

Immediate Mode 10-3
Creating and Editing a BASIC Program 10-4

RUNNING A BASIC PROGRAM 10-9
FILE MAINTENANCE 10-13

CHAPTER 11 RUNNING A MACRO-11 ASSEMBLY
LANGUAGE PROGRAM 11-1

THE MACR0-11 ASSEMBLY LANGUAGE 11-1
THE MACR0-11 LANGUAGE PROCESSOR 11-2

The Program Counter 11-3
The Symbol Table 11-4
Machine Language Code 11-5

ASSEMBLING THE MACRO-I I PROGRAM 11-7
LINKING OBJECT MODULES TOGETHER 11-15
RUNNING THE MACR0-11 PROGRAM 11-17
COMBINING OPERA TIO NS 11-18
FILE MAINTENANCE 11-19

CHAPTER 12 LINKING OBJECT PROGRAMS 12-1
RESOLVING SYMBOLIC AND LIBRARY
REFERENCES 12-2
PROGRAM RELOCATION AND ADDRESS
ASSIGNMENT 12-3

Absolute and Relocatable Program Sections 12-4
The Overlay Feature 12-7
PRODUCING A LOAD MODULE AND
A LOAD MAP 12-7

CHAPTER 13 CONSTRUCTING LIBRARY FILES 13-1
KINDS OF LIBRARY FILES 13-1

Macro Libraries 13-1
Object Libraries 13-2

CREATING AND MAINTAINING A LIBRARY FILE 13-2
Creating Object Library Input Files 13-3
Building the Object Library 13-5
Updating the Object Library 13-6

FILE MAINTENANCE 13-8

V

Page

CHAPTER 14 DEBUGGING A USER PROGRAM 14-1
AVOIDING PROGRAMMING ERRORS 14-1
WHEN PROGRAMMING ERRORS OCCUR 14-2
USING THE ON-LINE DEBUGGING TECHNIQUE 14-4
FILE MAINTENANCE 14-13

CHAPTER 15 USING THE FOREGROUND/
BACKGROUND MONITOR 15-1

THE FOREGROUND/BACKGROUND
ENVIRONMENT 15-1
CHANGING MONITORS 15-2
USING THE FB MONITOR 15-3

Communication in a Two-Job Environment 15-3
Creating the Foreground Job 15-4
Executing the Foreground and Background
Jobs 15-6

FILE MAINTENANCE 15-11

CHAPTER 16 USING INDIRECT FILES 16-1
CREA TING AN INDIRECT FILE 16-1

Entering Monitor Commands 16-2
Using the Editor to Create an Indirect File 16-2

EXECUTING AN INDIRECT FILE 16-4
FILE MAINTENANCE 16-10

CHAPTER 17 ADVICE TO NEW USERS 17-1

APPENDIX A MANUAL BOOSTRAPPING OPERATIONS A-1

APPENDIX B SELECTED SYSTEM TOPICS B-1

GLOSSARY Glossary-1

IND EXlndex-1

FIGURES

FIGURE PREF ACE-1 Flowchart for Selective Reading xii
1-1 RT-11 Computer System 1-2
1-2 PDP-11 Computers 1-3
1-3 Terminal Devices 1-4
1-4 Random-access Storage Media and

their Devices . 1-6
1-5 Peripheral Devices , 1-8
1-6 RT-11 System Software 1-10
1-7 RT-11 Operating System 1-11
2-1 The Boostrap/Computer Relationship .. 2-2
3-1 LA36/VT52 Terminals 3-2

vi

3-2
3-3
4-1
5-1
5-2
9-1
9-2
9-3
9-4
9-5

10-1

11-1
11-2
11-3
11-4
11-5
11-6
·12-1
12-2
A-1
A-2

TABLE 2-1
3-1
4-1
4-2
4-3
4-4
5-1
5-2

Page

Keyboard Layouts. 3-3
Mass Storage Volumes 3-6
VTl 1 Display Hardware 4-7
Editing with RT-11 5-2
Text Window Format 5-16
Evolution of a FORTRAN Program ... 9-2
Function of a FORTRAN Compiler ... 9-2
Dimensions of FUN(X, Y) 9-7
The Link Operation 9-10
The Result of GRAPH.SA V 9-12
Functions of the BASIC Language
Processor 10-2
PDP-11 Programming Card 1 i-1
Evolution of a MACRO-I I Program .. 11-2
Function of a MACRO-11 Assembler . 11-3
PDP-11 Computer Memory 11-4
PDP-11 Word 11-6
The Link Operation. 11-16
Link Functions 12-1
Object Module Relocation 12-5
Pushbutton Console A-2
Switch Register Consoles A-4

Representative System Volumes 2-3
Keyboard Characters 3-5
Keyboard Symbols 44
Physical Device Names 4-11
Special Logical Device Names 4-11
File Types 4-15
Command Arguments 5-5
Immediate Mode Commands 5-17

8-1 Language Comparisons 8-2
11-1 Decimal/Octal/Binary Conversion 11-6
A-1 Binary Conversion A-5

vii

TABLES

The RT-11 (Real Time- I I) computer system is a single-user com
puter/operating system that serves the programming needs of both
the beginning and the advanced programmer. It supports a number of
programming languages, including industry-standard FORTRAN and
BASIC; easily-learned FOCAL; APL; and for more advanced users,
the PDP-11 assembly language, MACRO-11. In addition, it provides a
comprehensive set of operating commands that programmers at all
levels use to control system operations.

The purpose of this introductory manual is to acquaint you with a
number of RT-11 operating commands that are used to perform
common system operations. The manual does this by first presenting
the background material that you need to understand a particular
system operation; then it shows you how to apply the system opera
tion in a series of operating commands and exercises that you re
create; finally, it provides a list of reference materials that contain
more information about the operation. This approach makes it possi
ble for you to learn quickly the major features of the system; at the
same time, it eliminates many of the early learning problems en
countered by new users.

This manual describes system usage fundamentals. It is not the intent
of this manual to teach you to program the PDP-11 computer. You
may already be proficient in one or more of the available program
ming languages. Likewise, no attempt has been made in this manual
to cover all the possible applications for which the RT-11 computer
system is suited. You will discover many applications yourself as you
continue to use the system.

This manual is designed specifically for three categories of RT-11
users:

• Those having little or no previous "hands-on" computer experi
ence (including those whose experience has been limited to
batch environments)

ix

PREFACE

MANUAL INTENT

MANUAL DESIGN

Preface

• Those who are experienced users of a computer system other
than RT-11

• Those who have used previous versions of the RT-11 computer
system but wish a quick introduction to the newest features of
the current system (Version 3 and later releases)

The manual contains 1 7 chapters and 2 appendixes. The descriptions
that follow and the chart at the end of this section will help you
determine your own reading path.

Chapter 1, Introducing the RT-11 Computer System, discusses gen
eral system concepts. It introduces the roles of hardware and soft
ware in a computer system and describes the specific hardware and
software components of the RT-11 computer system. Chapter 1 is
intended for users in the first two categories.

Chapter 2, Starting the RT-11 Computer System, shows all users how
to start the system.

Chapter 3, Interacting with the RT-11 Computer System, demon
strates how you use the console terminal to control system opera
tions. Again, this chapter is most helpful to users in the first two
categories.

Chapters 4 through 7 describe system operations that are useful to all
categories of users. Each chapter begins with a textual explanation of
a particular system operation and expands into computer demonstra
tions showing the operation in use. Topics covered are: Using the
Monitor Command Language; Creating and Editing Text Files; Com
paring Text Files; and Performing File Maintenance Operations.
Experienced RT-11 users may prefer to skip the textual explanations
and review only the computer exercises.

Chapter 8, Choosing a Programming Language, helps you determine
which language to use. Choose BASIC-I 1, FORTRAN IV, MACRO
! 1, or a combination of these three languages to continue the exer
cises in the manual (BASIC-I I and FORTRAN IV capabilities are
optional).

If your choice is FORTRAN IV, read Chapter 9, Running a FOR
TRAN IV Program.

If you wish to use BASIC-I I, read Chapter I 0, Running a BASIC-11
Program.

X

If you choose to exercise MACRO-11, read Chapter 11, Running an
Assembly Language Program.

MACRO and FORTRAN users continue to Chapter 12, Linking
Object Programs, and Chapter 13, Constructing Library Files.

All.users should read Chapter 14, Debugging a User Program, which
provides some suggestions for finding and fixing errors in user
programs.

Those users who plan to exercise the foreground/background capa
bility of the RT-11 system should read Chapter 15, Using the Fore
ground/Background Monitor.

Fmally, all users should continue to Chapter 16, Using Indirect Files,
which describes the procedure for performing operations unattended,
and Chapter 17, which gives some Advice to New Users.

Two appendixes are provided for reference. Appendix A discusses
system bootstrapping procedures that are not generally needed, but
may be required by some system users. Appendix B provides some
additional information on selected system usage.

A glossary of technical terms appears at the end of the manual for
reference purposes.

The following flowchart will help you plan your reading path
through the manual. Read the chart from top to bottom; answer
the questions and follow the direction of the arrows to see which
chapters you should read.

NOTE

The demonstration portions of this manual are for use
with Version 3 and later releases of RT-11. The exercises
are quite lengthy, and you may prefer not to complete
them in one sitting. You may pause at the end of any
individual chapter. It is important that you stop only at
the end of a chapter since you will otherwise not complete
an exercise and thus may introduce errors that will affect
later exercises. Instructions for pausing and beginning
again are given in Appendix B.

xi

Preface

Preface

Yes

Read
Chapter 10

Read
Chapter 14

BASIC

Figure PREF ACE-I

xii

No

Start

Read Chapter
1, 2and 3

Read
Chapters 4
through S

Read
Chapter 9

Read
Chapters 12
and 13

Read
Chapter 14

Past Versions of RT-11

MACRO

Read
Chapter 15

Read
Chapter 11

Read
Chapters 12
and 13

Read
Chapter 14

Read
Chapter 2

Read
Chapters 16,
and 17

Done

Flowchart for Selective Reading

CHAPTER 1
INTRODUCING THE RT-11 COMPUTER SYSTEM

A computer system is a collection of compommts working together
to process data. The purpose of a computer system is to make it as
easy as possible for you to use a computer to solve problems. To
accomplish this goal, hardware elements are combined with software
elements to form a functioning unit. The hardware elements are the
mechanical devices in the system, the machinery and the electronics
that perform physical functions. The software elements are the pro
grams that have been written for the system; these perform logical
and mathematical operations and provide a means for you to control
the system. Documentation includes the manuals and listings that tell
you how to use the hardware and software. Collectively, these com
ponents provide a complete computer system that allows both lay
man and expert alike to use a computer. 1

SYSTEM HARDWARE
SYSTEM SOFTWARE

+ SYSTEM DOCUMENTATION

COMPUTER SYSTEM

The RT-11 computer system requires three basic hardware items:
the computer itself, which performs all data processing; a terminal
device, used like a typewriter for 2-way communication between the
user and the system; and a storage medium, for storing programs and
data. Figure 1-1 illustrates the hardware components of a typical
RT-11 computer system.

The computer does the real work of the system; it performs all in
struction decoding and data processing. The RT-11 computer system
is constructed around a DIGITAL PDP-11 computer, several of
which are shown in Figure 1-2. Any model of PDP-11 can be used in
an RT-11 system.

1 This chapter attempts to build a working vocabulary that is both meaningful to
the new user and consistent with standard DIGIT AL terminology. Some defini
tions may appear inconsistent with those you have previously learned or used.

1-1

SYSTEM
HARDWARE

The Computer

Introducing the RT-1 I Computer System

Figure 1-1 RT-11 Computer System

Notice in Figure 1-2 that the front panel, or operator's console, of
each PDP-I I computer is slightly different. The switches, buttons,
and lights that are on the operator's console can be used for various
kinds of computer operations and applications. In the RT-11 com
puter system they are used only to start the system. Once the system
has been started, your interaction with the computer system occurs
through the terminal.

1-2

Introducing the RT-11 Computer System

Figure 1-2 PDP-11 Computers

1-3

Introducing the RT-11 Computer System

The Terminal The terminal allows 2-way communication between you (the user)
and the computer system. You enter information - operating com
mands, for example from the terminal keyboard, which is operated
much like a typewriter keyboard. The computer, in turn, prints in
formation and messages on the terminal's printer or screen. Figure
1-3 shows many of the terminal devices that can be used in an RT-11
computer system.

LA36

1111 ! 11'' u' I' nu',, I u H 1111 Im ll nmlltllll Ill 11 Ill

VT52

Figure 1-3 Terminal Devices

1-4

Introducing the RT-I 1 Computer System

VTOS

LA30

Figure 1-3 Terminal Devices (Cont.)

Generally, an RT-11 computer system has only one terminal through
which all system/user interaction takes place. This is called the con
sole terminal. If the system has more than one terminal, one of them
is still designated the console terminal; others simply provide auxil
iary message-printing capabilities.

1-5

Introducing the R T-11 Computer System

The Storage
Medium

The third important hardware device in an RT-11 computer system is
the storage medium (usually a disk). It stores programs - those that
make up the computer system software and those that you create. It
serves as a distribution medium; system software is often packaged
and distributed on a disk by the system supplier. Finally, it stores
other data, information that is eventually needed for a computer
operation (called input), the results of a computer operation (called
output), or textual information such as a report. Figure 1-4 shows
the random-access storage media (within their specific drive units)
that can be used in an RT-11 computer system (random access means
that access time for data is independent of the location of data.
Contrast this concept with sequential access).

RK06

RP03

Figure 1-4 Random-access Storage Media and their Devices

1-6

Introducing the RT-11 Computer System

DECtape

RK05

RXO 1 Diskette

Figure 1-4 Random-access Storage Media and their Devices (Cont.)

1-7

Introducing the RT-11 Computer System

Optional Devices

These three devices ~ the computer, the terminal, and the storage
medium ~ are the required hardware components of an RT-11 com
puter system. With the exception of the computer, all hardware
devices are called peripheral devices. Peripheral devices supplement
the computer by providing external resources for operations that the
computer cannot handle alone. In addition to the terminal and stor
age medium (which are required peripheral devices), other peripheral
devices can be used in an RT-11 computer system.

Optional peripheral devices are added to a computer system accord
ing to the specific needs of the system users. For example, computer
systems that are used primarily for program development may have
extra storage devices and a high-speed printing device. Computer sys
tems used in a laboratory environment may have graphics display
hardware, an oscilloscope device, and an analog-to-digital converter.
Computer systems that provide (or use) information in conjunction
with another kind of computer system usually have a magtape device
because magtape is an industry-standard storage device.

Peripheral devices are categorized as input/output (1/0) devices
since the functions they perform provide information (input) to the
computer, accept information (output) from the computer, or do
both. Some common input devices are card readers, paper tape
readers, and programmable clocks. Output devices include line
printers, paper tape punches, and plotters. Input/output devices
include terminals and storage devices because they are capable of
performing both input and output operations.

Figure 1-5 shows several of the optional peripheral devices that are
often added to an RT-11 computer svstem.

Magtape Card Reader

Figure 1-5 Peripheral Devices

1-8

Introducing the RT-11 Computer System

Line Printer

Paper Tape Reader/Punch

VT-II Display

Figure 1-5 Peripheral Devices (Cont.)

1-9

Introducing the RT-11 Computer System

SYSTEM
SOFTWARE

The hardware configuration of your own RT-11 computer system
includes the computer, the terminal, the storage medium, and any
other peripheral devices you choose to add.

System software is an organized set of supplied programs that effec
tively transform the system hardware components into usable tools.
These programs include operations, functions, and routines that
make it easier for you to use the hardware to solve problems and pro
duce results. For example, some system programs store and retrieve
data among the various peripheral devices. Others perform difficult
or lengthy mathematical calculations. Some programs allow you to
create, edit, and process application programs of your own. Still
others handle entire applications for you; these programs are strictly
business-related or laboratory-related.

As illustrated in Figure 1-6, system software always includes an oper
ating system, which is the "intelligence" of the computer system.
Usually the system software includes one or several language proces
sors; it sometimes also includes specific applications.

OPERATING
SYSTEM

LANGUAGE APPLICATION
PROCESSORS PROGRAMS

Figure 1-6 RT-11 System Software

1-10

Introducing the RT-11 Computer System

An operating system is a collection of programs that provides an
environment in which you can create and run programs of your own.
The operating system organizes all the hardware and software re
sources of the computer system into a working unit and gives you
control.

The RT-11 operating system comprises a monitor/executive program
for system control and supervision; several device handlers (pro
grams), one for each of the supported hardware devices; a variety of
utility programs for program/data creation and manipulation; and
finally, the interfaces that are necessary to support several program
ming language processors. The operating system is illustrated in
Figure 1-7.

DEVICE
HANDLERS

SUPPORT FOR
LANGUAGE
PROCESSORS

MONITOR

EDITOR

FILE
MAINTENANCE

DEBUGGING

FILE
COMPARE

LIBRARIAN

Figure 1-7 RT-11 Operating System

The monitor (executive) program is the interface between the system
hardware, the system software, and you. Part of the monitor func
tion is to accept, process, and execute your instructions for control
ling the system. A comprehensive set of monitor operating com
mands allows you to direct, from the console terminal keyboard,
those system operations that you want to occur.

Device handlers are routines that provide the interface to the various
hardware devices that are part of the computer system. A handler
exists for every peripheral device that the system supports.

1-11

The RT-11
Operating System

Introducing the RT-11 Computer System

Language
Processors

Utility programs cover a wide range of resources; such programs
allow you to create and edit text, maintain other programs, and help
you locate user-programming errors. Some specific utility programs
in the RT-11 operating system are the following:

• An editor, which allows you to create and modify textual
material; this material could be the statements that make
up a computer program, a memo, or any text you wish to
create

• File maintenance utility programs, which allow you to
manipulate and maintain your programs and data to
transfer them between devices, to update them, and to
delete them when you are done with them

• A debugging program, which helps you uncover and cor
rect errors in your programs

• A librarian, which makes it easy for you to store and re
trieve often-used programming routines

• A linking program, which converts object modules into a
format suitable for loading and execution

• A source comparison program, which is used to compare
two ASCII files and to output any differences to a speci
fied output device

• A dump program, which outputs to the console or line
printer all or any part of a file in octal words, octal bytes,
ASCII characters and/or Radix-SO characters.

The RT-11 operating system also provides support for several pro
gramming languages and their respective language processors.

A language processor is a translating program that you use to process
a source program you have created. A language processor exists for
every programming language supported by the system, whether it is a
high-level language or a machine-level language. 1

High-level languages, such as BASIC-11 and FORTRAN IV, are rela
tively easy languages to learn and use. Since a single language state
ment often performs a whole series of intricate computer operations,_.

1 Language selection is discussed in Chapter 8 of this manual.

1-12

Introducing the RT-11 Computer System

high-level languages let you direct your attention to solving the prob
lem at hand. They do not require that you understand how the com
puter interprets the problem. High-level languages supported hy the
RT-11 operating system, in addition to FORTRAN and BASIC,
include FOCAL-11, APL, and DIBOL, DEC's interactive commercial
language.

Machine-level or assembly languages are available for users who
prefer to work at the instruction level of the computer. At this level,
you have control over such factors as program size and speed of exe
cution. Machine-level languages do require that you be familiar with
the computer and the hardware devices of the system. RT-11 pro
vides the MACRO-I I assembly language processor for those who
would rather work at this more intricate level.

The RT-11 operating system supports several applications packages.
These include a laboratory applications package for the standard
functions found in most laboratory environments. Another package
called GAMMA-11 is designed specifically for the needs of a nuclear
medicine laboratory. A scientific subroutine package (for FORTRAN
users) provides a large selection of mathematical and statistical rou
tines commonly required in scientific programming. And a graphics
support package for BASIC and FORTRAN users provides display
features such as vectors, alphanumerics, points, multi-intensities and
blinks. Because of the specialized nature of these applications pack
ages, they are not described further in this manual.

The third and final component of a computer system is its documen
tation. This includes manuals that tell how you use the software and
hardware of the computer system, plus any source listings of actual
programs that make up the operating system.

Hardware manuals describe the devices in the computer system.
RT-11 hardware documentation includes a Processor Handbook that
describes the PDP-11 computer you are using, and a User's Guide or
Maintenance Manual for each peripheral device in your computer
system. These manuals tell you how to operate the devices and give
you special programming information that you may need if you
intend to write device drivers or special system software that involve
the devices.

1-13

Appllcatlon
Packages

SYSTEM
DOCUMENTATION

Hardware Manuals

Introducing the RT-11 Computer System

Software Manuals

Source Listings

REFERENCES

Software manuals 1 describe the operating system and the language
processors. RT-11 software documentation falls into three major
categories: introductory or once-only manuals (intended to be used
once and then stored away); computer manuals (intended to be used
at the computer); and desk manuals (intended to be used at your
desk for reference purposes).

Once-only manuals include this manual and others that are needed
only when your system is initially installed. You may have little or
no occasion to use these manuals once your computer system is in
operation and you are familiar with its use.

Computer manuals are those manuals that tell you how to use the
computer system. They describe in detail command usage and
syntax, list summaries of system operations, and give the meanings
of system messages.

Desk manuals are those manuals that you continually use for refer
ence as you write your own application programs. These manuals
include the general language reference manuals and the advanced pro
gramming manuals that contain programming information specific to
the RT-11 computer system.

Source listings are actual listings of the assembly-language code that
makes up the RT-11 operating system. These listings are very de
tailed and are generally needed only if you intend to modify the
system software. They can be ordered on micro-fiche film from the
DIGITAL Software Distribution Center.

This completes a general introduction to the RT-11 computer sys
tem. Subsequent chapters of this manual describe how you use the
various system components mentioned here to perform a series of
related computer operations. You begin in Chapter 2 by learning
how to start the RT-11 computer system.

Eckhouse, Richard H., Minicomputer Systems: Organization and Programming
(PDP-11). Englewood Cliffs, New Jersey: Prentice-Hall, 1975.

A guide to programming fundamentals, PDP-11 organization and structure,
and programming techniques. See Chapter 1.

1 All RT-11-related software manuals are listed in the RT-I I Documentation
Directory. Many of these manuals are provided with your system; others can
be ordered from the DIGIT AL Software Distribution Center.

1-14

Introducing the RT-11 Computer System

Katzan, Harry Jr., Information Technology, The Human Use of Computers. Ne;v
York: Mason & Lipscomb Publishers, Inc., Petrocelli Books, 1974.

An introductory textbook covering basic computing concepts, program
ming languages, and topics in computers and society. See Chapters 1, 2, 4,
5, and 10.

PDP-11 Computer Family, Products and Services. Maynard, Mass.· Digital Equip
ment Corporation, 1977.

An overview of the available PDP-11 family products and services; includes
capsule descriptions of the various PDP-11 computers, peripherals, and
operating systems, and describes the supportive services provided by
DIGITAL.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corporation,
1976.

A technical summary of the available PDP-11 peripheral devices; includes
descriptions, specifications, programming, and interfacing information for
PDP-I I peripheral devices.

PDP·ll Processor Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A hardware manual for the owners and users of the PDP-11 family of com
puters and for those who will be using the PDP-I I assembly language
instruction set.

PDP·l 1 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A general overview and introduction to available PDP-11 software, operat
ing systems, and language processors.

RT-11 Documentation Directory (DEC-11-ORDDB-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

A listing and brief summary of current RT-11-related software documen
tation.

Spencer, Donald D., Fundamentals of Digital Computers. Indianapolis, Kansas
City, New York: Howard W. Sams & Co., Inc., The Bobbs-Merrill Co., Inc.,
1969.

A discussion of the history and evolution of computers, computer appli
cations, and fundamentals of computer use. See Chapters 1 through 12
and Chapter 20.

1-15

CHAPTER 2
STARTING THE RT-11 COMPUTER SYSTEM

Before you can use the RT-11 computer system to perform any
operations, you must start it. Starting the system involves turning
on the computer and the various hardware devices and loading the
appropriate software components into computer memory.

Within every PDP-11 computer is a physical, designated storage area
called memory. Computer memory is where system information and
data is temporarily loaded and stored for use during the various sys
tem operations.

Each time you use the corµputer system, there may already be in
formation in computer memory left there by whoever used the
system last. For example, there may be the results or data of another
user's program; there may be the results of a particular system opera
tion; there may even be an entirely different operating system in
memory. For your use, computer memory must contain the RT-11
operating system, and specifically the RT-11 monitor program.
Thus, your first operation as a system user is to transfer the monitor
program from the disk device, where it was stored during system
installation, to computer memory, where you can use it. The process
of transferring the RT-11 monitor is called bootstrapping the system
and is the only system operation that requires you to use the op
erators console on the front panel of the computer (see Figure 2-1).

Starting the RT-11 computer system requires that you know how to
operate your system's hardware devices. Since you may not have had
the opportunity to use any of the devices yet, ask an experienced
user to help you the first time. Follow the instructions in the section
in this chapter entitled "Bootstrap Procedure." If necessary, refer to
the various hardware manuals provided with your system and to any
special instructions that have been left by the DIGITAL representa
tive who installed your system.

First read through the following material and fill in the appropriate
information where requested. You should be able to determine all
responses by checking the RT-11 System Generation Manual.

2-1

COMPUTER
MEMORY

HARDWARE
CONFIGURATION

Starting the RT-11 Computer System

mlilil

[mm

I=

0
0
0 ·-

ornJ
arn~/

-

0

-
llmllll -
lm§D arn~i

l I= om~/
I= '-.,llilO:JQI

BOOTSTRAP:)
I= '-.,llilCIJQI

Figure 2-1 The Bootstrap/Computer Relationship

You must have the following materials to start the system and to
perform the exercises in this manual:

• The disk device containing the RT-11 operating system
(called the system volume); a system volume may have
been created specifically for your use with this manual

• The volume containing the FORTRAN and/or BASIC
language processors if these languages are not stored on the
system volume (available only to FORTRAN and BASIC
users)

• A volume for program storage (for example, magtape or
another disk); this volume should contain no important
information since all information on it will be erased
during a later computer exercise

• A copy of the RT-11 System Generation Manual

NOTE

Hardware configuration information, along with instruc
tions for starting (bootstrapping) your RT-11 system,
should have been provided by the DIGITAL representative

2-2

Starting the RT-11 ComrJUter System

who initially installed your system. This information
should appear in the RT-11 System Generation Manual
and should be adequate for you to answer all the questions
asked here. If you have trouble, see Appendix B, "Sugges
tions for Bootstrapping the System." Do not continue to
any other chapter in this manual until you understand the
following configuration information and can bootstrap the
system yourself.

I. What kind of terminal device are you using (for example,
LA36 DECwriter II, VT52 video terminal, etc.)?

2a. Does your computer operator's console have pushbuttons
or switches?

2b. How much memory does your computer have?

3a. What kind of system volume are you using (for example,
RK06 disk, RX0l diskette, etc.)?

3b. What is the 2-letter code for this volume (typical codes are
given in Table 2-l; respond with the code for your own
volume)?

Table 2-1 Representative System Volumes

Volume Code

RX0 I diskette DX
RK05 disk RK
RK06 disk DM
RP02/03 disk DP
RF 11 disk RF
RJS03/4 disk DS
TCll DECtape DT

4a. What volume are you using for program storage (for
example, TM 11 magtape, RK05 disk)?

4b. In which device unit will you use this volume (0, I, etc.?
choose any available device unit)?

2-3

Terminal

Computer

System Volume

Storage Volume

Starting the RT-11 Computer System

Optional Devices
and Supported
Languages

BOOTSTRAP
PROCEDURE

5. What peripheral devices are part of your system (for
example, line printer, magtape, VT 11 display hardware;
list all devices other than the terminal and the computer)?

6. What programming languages does your system support
(MACRO- I I or BASIC- I 1, for example)?

Once you have determined your hardware configuration, you are
ready to bootstrap the system. The purpose of the bootstrap
procedure is to load and start the RT-11 monitor in computer
memory, making the RT-11 computer system available for you to
use.

1. Turn the terminal to an on-line condition. If there is a
baud rate switch, set it to 300.

2. Make sure the computer power is on and that the
computer is not already in use. Stop the computer:

• If your operator's console has switches, set the
switches to HALT, then ENABLE

• If your operator's console has pushbuttons, locate the
button labeled CNTRL; hold it down and push the
button labeled HLT/SS; then release both.

3. Place the system volume in its corresponding device unit 0.
Ensure that the system volume is write-protected (for all
except RXOl diskette, which is always write-enabled).

4. Place the storage volume in the device unit noted in
question 4b in the Hardware Configuration section. Ensure
that this volume is write-enabled.

5. Check the operator's console on your computer (refer to
question 2a in the Hardware Configuration section). If
your console has pushbuttons, continue. Otherwise, go to
step 8.

6. Locate the pushbutton labeled CNTRL, hold it down and
push the button labeled BOOT. Check the terminal printer
or screen. If there is no response. read the section in
Appendix A entitled "Using a Pushbutton Console to
Bootstrap"; otherwise continue to step 7.

2-4

Starting the RT-11 Computer System

7. Your terminal printer or screen should show several
numbers followed by:

Type on the terminal keyboard the 2-letter code that
represents your system volume (from question 3b in the
Hardware Configuration section) followed by a carriage
return (the RETURN key), represented throughout the
text by the characters (R~T)1. Be sure to use the SHIFT key
so that you type upper-case characters. For example, for
RX0 1 diskette, type:

DX~

Continue to step 11.

8. Check your switch console. If it has a 3-way dial labeled
DC OFF, DC ON, and STAND BY, go to step 9. If it has
three individual switches labeled DC ON/OFF, ENABLE/
HALT, and LTC ON/OFF, go to step 10. If it has a long
row of switches across the entire console, read the section
in Appendix A entitled "Using a Switch Register Console
to Bootstrap".

9. Set the 3-way dial to DC ON. Then locate the BOOT
switch (to the left of the dial) and raise it. Go to step 11.

10. Put all three switches in the up position; then move the DC
ON/OFF switch down and up and check the terminal
response.

• Ifitis:

$

type on the terminal keyboard the 2-letter code that
represents your system volume (from question 3b in
the Hardware Configuration section) followed by a
carriage return (the RETURN key), represented
throughout the text by the symbol ([[j)_ Be sure to
use the SHIFT key so that you type upper-case
characters. For example, for RX0I diskette, type:

DX (fill)

1The RK05 disk is an exception. Hardware bootstraps use "DK", not "RK",
for RKOS.

2-5

Starting the RT-11 Computer System

REFERENCES

Continue to step I 1.

• Any other response indicates that you must type the
bootstrap on the terminal keyboard. Read the section
in Appendix A entitled "Typing the Bootstrap on the
Terminal Keyboard."

11. If your system has been correctly bootstrapped, a message
prints on the console terminal. Check this message; it
should read:

RT-11 SJ V03-xx (the xx's have developmental
significance only and can be
ignored)

If this version number (with the exception of the xx's)
does not appear, read the section in Appendix B entitled
"Suggestions for Bootstrapping the System."

The proper response indicates that the monitor component
of the RT-11 operating system is active. Set the system
volume to a write-enabled condition (for all except RXO 1
diskette, which is always write-enabled).

You should now direct your attention to the console terminal since
system interaction continues on this device.

DECscope User's Manuat 1 (EK-OVTSX-OP-001), Cross Products. 1975.

A hardware manual for the owners and operators of the DECscope (VTS0)
family of video terminals and for those who will be programming com
puters to interact with these devices.

PDP-11 Processor Handbook, Maynard, Mass.: Digital Equipment Corpora
tion, 1975.

A hardware manual for the owners and users of the PDP-11 family of com
puters and for those who will be using the PDP-11 assembly language
instruction set.

RX8/RXJ 1 Floppy Disk System Maintenance Manual 1 (EK-ORX0I-MM-PRE2),
Maynard, Mass.: Digital Equipment Corporation. 1975.

A hardware manual for the owners and operators of RX0l diskettes and
for those who will be programming computers to interact with this device.

RT-11 System Generation Manual (DEC-11-ORGMB-A-D) and RT-11 System
Release Notes (DEC-11-ORNRB-A-D). Maynard, Mass.: Digital Equipment
Corporation, 1977.

Two RT-I I-specific software manuals that contain instructions for in
stalling, customizing, and starting the RT-11 computer system.

1 Used as an example; consult hardware user or maintenance manuals specific to
your system.

2-6

CHAPTER 3
INTERACTING WITH THE RT-11 COMPUTER SYSTEM

Interaction with the RT-11 computer system involves an exchange of
information between you (the user) and the software operating
system. The exchange may be active, with you dictating command
information from the terminal keyboard and the system responding
immediately; or it may involve the storing of information on mass
storage volumes for later use.

During the bootstrap procedure you activated the RT-11 computer
system by loading and starting the monitor program in computer
memory. One of the functions of the monitor program is to provide
you with the capability to use the console terminal. Since the
console terminal can perform both input and output operations, it
is used to interface between the system and the user. With it, you
can:

• Type the commands that control system operation

• Receive messages and responses from the system

All console terminals have a keyboard used to enter information, and
a paper output device or video screen used to echo characters typed
at the keyboard and to print system messages and responses. Fig
ure 3-1 shows the two most commonly used terminals, the LA36 and
the VT52.

The difference between these two terminals occurs in their output
mechanism. While the LA36 terminal has only a paper printer, the
VT52 has a video screen. The screen and the paper printer serve the
same purpose they show user input and system responses; how
ever, paper output can be saved for later use while screen output is
temporary. The keyboards of both terminals are the same and are
shown in Figure 3-2. Also shown in this figure is an LA30 (VT0S)
keyboard so that you can note some of the differences found in the
keyboards of older terminals.

3-1

USING THE
CONSOLE

TERMINAL TO
EXCHANGE

INFORMATION

Interacting wth the RT-11 Computer System

~111mm11111111111111111m!1

VT52

LA36

Figure 3-1 LA36/VT52 Terminals

3-2

Interacting with the RT-I 1 Computer System

VTS2/LA36 Keyboard

VT0S/LA30 Keyboard

Figure 3-2 Keyboard Layouts

Using Figure 3-2 as a guide, study your own terminal keyboard.
First, notice that the keys for the alphabetic characters are posi
tioned in the same way as on most standard typewriters. The SHIFT
key allows you to select between numeric and special characters and
between,.. upper- and lower-case characters1 . The position of the
numeric and special characters varies somewhat among the different
terminals so you may need to hunt for a particular key until you
become familiar with your own terminal.

Locate the DELETE key (LA36/VT52 terminals) or the RUBOUT
key (LA30/VT05 terminals). These keys perform the same function:
they are used to correct a typing mistake. Pressing the key once
cancels the last character typed. Pressing it twice cancels the last
two characters, and so on, back to the beginning of the line.

1With the exception of system messages and one other exception explained in
Chapter 5, the RT-11 computer system uses upper-case characters exclusively.

3-3

Interacting with the RT-11 Computer System

USING
MASS STORAGE
VOLUMES
TO STORE
INFORMATION

Locate the TAB key. Tab stops on a computer terminal are posi
tioned every eight spaces across the line, beginning at column l.
Pressing the TAB key moves the character pointer (that is, the posi
tion on the line where the next character will be typed) to the
beginning of the next tab stop.

The key marked RETURN (LA36/VT52 terminals) or CR (LA30/
VT0S terminals) performs a carriage return; it both returns the
character pointer to the beginning of the line and advances it to the
next line. This key is used to terminate the line currently being typed
and to terminate certain RT-11 system commands.

Locate the ESC (SEL) key and LINE FEED key (LA36/VT52 ter
minals) and ALT and LF keys (LA30/VT05 terminals). These are
special command terminators that are described later in Chapters 5
and 14.

An important key is the CTRL key. The CTRL key is always used in
conjunction with another character key to perform one of several
specific system operations. CTRL commands are explained in
detail when you begin to use them later in the manual.

Table 3-1 reviews the console terminal keyboard characters. Keys not
specifically mentioned are not used by the RT-11 computer system
and can be ignored.

You will have ample opportunity to become familiar with your ter
minal keyboard as you perform the demonstrations in this manual.

Mass storage volumes provide an area (apart from computer memory)
to keep information for later use. The information may be user
application programs, data needed by a program, the results of a
program run, textual infdrmation, batch-type programs, and so on.
As an example, the RT-11 operating system is stored on a mass
storage volume called the system volume. When information is
needed, as it was during bootstrapping, you can transfer the informa
tion from the storage volume into computer memory, where it can
be used.

Before you can access the information stored on any storage volume,
however, you must first insert the volume (the medium) into its

3-4

Interacting with the RT-11 Computer System

Table 3-1 Keyboard Characters

Key Function

ALT See ESC
ALTMODE

BACK SPACE Ignored during normal system use

BREAK Ignored during normal system use

CR See RETURN

CTRL Control; part of several two-key command
combinations that perform specific system
functions

DELETE Erase; cancels the last character typed

ESC Command terminator; terminates an
editing command string; typed twice, trans-
mits the command(s) to the computer and
performs a carriage return

LF Command terminator; terminates certain
LINE FEED system commands; transmits the command

to the computer and performs a carriage
return

NEW LINE See LF

REPEAT Ignored during normal system use

RETURN Line terminator, command terminator;
terminates the current line; terminates
certain system commands; transmits the
command to the computer and performs a
carriage return

RUBOUT See DELETE

SHIFT Selects the uppermost of two characters
appearing on a key

TAB Moves the character pointer ahead to the
beginning of the next tab stop

any other Transmits the alphanumeric or special
key character to the computer

3-5

Interacting with the RT-11 Computer System

corresponding device unit (drive) which is the hardware device con
nected to the computer. Once a volume has been inserted into a
device unit, the unit's symbol also identifies the volume. There may
be more than one device unit for any given volume, in which case
each individual device unit is numhered 0, 1, 2, and so on. As you
learned in the bootstrap procedure, the system volume is inserted
in device unit O and remains in this device unit as long as you are
using the system. Other storage volumes can be inserted in any
available (corresponding) device units. Figure 3-3 illustrates several
mass storage volumes.

Diskette

RK06

Figure 3-3 Mass Storage Volumes

3-6

Interacting with the RT-I 1 Computer System

RP03

RKOS

Magtape

Figure 3-3 Mass Storage Volumes (Cont.)

3-7

Interacting with the RT-11 Computer System

File Storage

FIie Protection

\.fass storage volumes are capable of holding large amounts of in
formation. However, most volumes are physically small enough so
that you can transport them away from the system, to your desk
perhaps, or to another computer system. In addition to all disks
(shown earlier in Figure 1-4), magtapes and cassettes are also mass
storage volumes.

You store information on a mass storage volume in the form of files.
Each file is simply a logical collection of data. Files may be parts
of programs or entire programs, program input data, or text such as a
letter or report. Whatever its content, each file is treated as a unit
and occupies a fixed physical area of the volume.

Every file on a mass storage volume has a unique name that is com
posed of a file name and file type. The file name and file type serve
to identify the file and distinguish it from other files on the volume.
You can instruct the system to print on your terminal the names of
all files on any given volume. The resulting list is called the volume
directo.ry listing. By ref erring to the volume directory, you can find
the name, size, and creation date of each file residing on that volume
and erase old files that you no longer need. Whenever you perform
an operation that affects the contents of the volume, a new volume
directory reflects the change.

uccasionally, after many files are added to a storage volume. the
volume runs out of room for new information. The storage volume
may also become damaged, lost, stolen, or worn through use. For
these reasons it is a good idea to have several extra storage volumes
on hand and to protect your more important files against accidental
erasure or loss.

One way to protect a file is to make a copy of it on a second storage
volume. The copy is called a backup file and is your security in case
the original file (or its respective storage volume) becomes damaged
or lost.

ln addition, some storage volumes provide a mechanism that pro
tects files against accidental erasure. This mechanism is generally a
switch on the volume itself, or on the device unit, that you can
manually set to a write-protect or write-enable condition (as you did
during bootstrapping). When the volume is write-protected, informa
tion can be copied only from the volume to computer memory or to

3-8

Interacting with the RT-11 Computer System

another volume that is write-enabled. A volume that is write-enabled,
on the other hand, additionally allows information to be copied from
memory back to the volume.

The RT-11 operating system itself also provides a protection feature.
This optional feature requires that you confirm certain system com
mands that might otherwise erase important information. The system
also issues prompting messages to ensure that you provide the proper
file information when it is needed by a command.

In Chapter 4 and succeeding chapters you will use the terminal to
enter command information and you will start performing file copy
and other system operations. Before you continue, make sure that
there is a backup copy of your system volume. If you cannot locate
one, read Appendix B, Backing Up the System Volume. before going
on.

DECscope Users' Manual 1 (E K-VTSX-OP-00 l), Maynard. Mass.: Digital Equip
ment Corporation, 1975.

A hardware manual for the owners and operators of VT-50 and VT-52
video terminals and for those who will be programming the computer to
interact with these devices.

LA36/LA35 DECwriter II User's Manual 1 (EK-LA3635-OP-001), Maynard,
Mass.: Digital Equipment Corporation, 1975.

A hardware manual for the owners and operators of the LA36/LA35
DECwriter II and for those who will be programming the computer to
interact with these devices.

RT-11 System Message Manual (DEC-11-ORMEB-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

An explanation of system messages that may occur during normal system
use; includes required user actions.

1 Used as an example; consult hardware user or maintenance manuals specific to
your system.

3-9

REFERENCES

CHAPTER 4
USING THE MONITOR COMMAND LANGUAGE

During the bootstrap operation, the RT-11 monitor was copied into
computer memory and started. The RT-11 monitor is actually many
different components working together to supply basic system func
tions. For example, part of the monitor is called the resident monitor
and provides console terminal service, a system volume device
handler, and centrally-required program code to provide a working
environment for both system and user programs. The resident moni
tor is so named because it always remains in computer memory
regardless of other system operations that may be occurring. Other
parts of the monitor are brought into memory from the system
volume as needed. These include the user service routine (USR)
which provides support for the RT-11 file system, and the keyboard
monitor (KMON) which controls terminal keyboard .interaction.
From your standpoint, the keyboard monitor is the most visible part
of the system software. Among other services, it supplies the monitor
command language that you use to control system operations.

The monitor command language is a set of English-like command
words that you type on the terminal keyboard to initiate and control
system operations. There are two general formats that you can use to
type a command; one is a long format and the other a short format.
The long format causes the system to print prompting messages.
These messages ask you to supply specific information, such as file
names and device names. The long format is helpful until you be
come familiar with the commands. You will then probably prefer to
use the short format. This format allows you to enter all required
information on a single command line; prompts are issued only if
you neglect to supply necessary information. Both formats are
demonstrated throughout this manual.

You terminate all monitor commands by typing a carriage return.
That is, after you type the required command information, you press
the carriage return key (represented in this manual by (RET)). This
instructs the monitor to initiate the command and to perform the
operation.

The monitor prints a period at the left margin of the terminal printer
or screen whenever it is waiting for you to type a command. The

4-1

ENTERING
COMMAND

INFORMATION

Using the Monitor Commund Language

General Command
Format

period is your cue that the system is in monitor command mode and
ready to accept a monitor command. Check the output on your ter
minal printer or screen. You should see at the left margin:

RT-1 lSJ V0'.i-xx

RT-1 lSJ identifies the RT-11 monitor called the single-job (SJ)
monitor. Following this is the version (and update) number of the
system in use, in this case, Version 3. The period on the next line
indicates that the system is in monitor command mode and is waiting
for you to type a monitor command.

Whenever you issue a monitor command, you must supply certain
information needed to guide command processing. This information
includes the following (square brackets indicate optional qualifiers
and characters):

COMMAND[/option]

INPUT[/option]

OUTPUT[/option] 1

First you indicate, by command,
which system operation you want ini
tiated. Command options are available
to allow you to alter the normal
(default) operation.

You next indicate, by device and file
name, input information that is to be
used during the operation. The system
volume serves as the default input
device. You must explicitly indicate
other volumes that you want used for
input, and you must usually indicate
the file names and file types of the
input files. Input file options are avail
able to allow you to alter assumed
(default) input operations.

Finally you indicate, by device and
file name, output information that is
to be created as a result of the opera
tion. The system volume serves as the

1oUTPlJT[/option] is not always used; sometimes output must be specified as
COMMAND[/option] INPUT/OUTPUT:filespec.

4-2

Using the Monitor Command LanguaRe

default output device. You must ex
plicitly indicate other volumes that
you want used for output, and you
must usually indicate the file names
and file types of the output files to be
created. Output file options are avail
able to allow you to alter assumed
{default) output operations.

As mentioned earlier, there are two ways you can type this command
information on the terminal keyboard; both formats are illustrated
below:

Long Command Format (system prompts for specific information)

.COMMAND[/option] (RET)
INPUT PROMPT? INPUT[/option] (RET)

OUTPUT PROMPT? OUTPUT[/option] (fill)

Short Command Format (no prompts)

.COMMAND[/option] INPUT[/option] OUTPUT[/option l (RET)

Notice that you use a slash (/) character to separate an option from
the portion of the command that it qualifies, and a carriage return
(RET) to terminate each individual command line. When you have
supplied all the necessary information, the carriage return signals the
monitor to execute the command. You may use whichever format
you wish. Both command formats are demonstrated throughout the
manual.

In addition to monitor commands, there are several special function
commands, called control commands, that you type by first pressing
the CTRL key on the terminal keyboard, and then (while holding it
down) typing the appropriate letter key of the command. These
commands require no terminator; the system performs the function
as soon as you type the command.

Control commands are special function commands used to correct
typing errors, to interrupt program execution, to inhibit terminal
output, and other similar special system operations. They are de
scribed in the manual as you need to use them.

4-3

Control
Commands

Using the Monitor Command Language

Recreating
the Examples

During the course of this chapter, and throughout the remainder of
the manual, you·wm use a number of monitor commands to perform
some common system operations. For example, you will list the
directories of device volumes, copy files between devices, create files,
and execute system and user programs. You perform these opera
tions by recreating on the terminal keyboard the examples already
provided for you.

You should first read the entire explanation of a command to be
aware of its format, the operation it performs, and the options that
are available. Then type the command on the terminal keyboard
exactly as you see it used. Characters that you type appear in the
demonstrations in red print. Characters that are system responses
are shown in black print.

Table 4-1 lists symbols that you will see used throughout the demon
strations. These symbols represent various keys on the terminal key
board. When you see one of these symbols in a command line, type
the appropriate key on the keyboard.

Table 4-1 Keyboard Symbols

Symbol Type

(ill) carriage return key
,-

@ line feed key

@ space bar (once for each time the symbol is shown).
Assume that you should type a single space unless
you are otherwise instructed; the space symbol is
used only if there is doubt as to the number of
spaces to type.

(TAB) TAB key (once for each time the symbol is shown)

(DEL) DELETE (RUBOUT) key (once for each time the
symbol is shown)

(ESC) ESCAPE (ALTMODE) key (once for each time the
symbol is shown)

(cTRL/x) CTRL key (hold down CTRL key while typing the
letter character (x))

4-4

Using the Monitor Command Language

All commands that you give the system are typed on the terminal
keyboard. If you make a mistake while typing a command, there are
two easy ways that you can correct it.

One way to correct a typing error is to use the DELETE key on the
keyboard. Pressing the DELETE key once cancels the character just
typed; pressing it a second time cancels the next to last character
typed, and so on, from right to left, until the beginning of the cur
rent line is reached. Then additional DELETEs are ignored.

The second way to correct a typing error is to use a special control
command, CTRL/U. Typing this command once is equivalent to typ
ing as many DELETEs as are needed to cancel every character in the
current line.

Type the following characters on the keyboard - the letters DABE,
followed by two DELETEs, (ollowed by the letters TE - and notice
the system's response:

I.I .'- J:! 1::· 'DEL' (DEL) T 1::· + • (.1 ~ I •••

The monitor echoes each deleted character and encloses them within
backslashes. As far as the monitor is concerned, the only characters
you have typed are DATE.

+DAitE\EB\TE

Thus, your current line is DATE. Continue by typing a CTRL/U.
Remember to first press the CTRL key and then type the U key
while holding the CTRL key down; no carriage return is necessary.

(CTRL/U)

Notice that CTRL/U echoes on the terminal printer or screen as -u.

+ DABE\EB', TE'"U

4-5

CORRECTING
TYPING

MISTAKES

Using the Monitor Command Language

INITIAL MONITOR
COMMAND
OPERATIONS

Using VT11
Display Hardware

All characters on the line are effectively cancelled and the character
pointer is moved to the beginning of a new line so that you can enter
another command. You are still in monitor command mode even
though no prompting period appears at the left margin.

Once the carriage return or line feed key is pressed, the previous line
cannot be corrected via DELETE or CTRL/U.

These two methods are commonly used to correct typing errors
made at the keyboard. You can choose whichever method seems
most convenient.

The kinds of command operations that you usually perform immedi
ately after the monitor is bootstrapped are those that set up initial
conditions such as the current date and time of day, and those that
initialize and prepare the system for future operations such as file
transfers. If your system has VTl l display hardware and you decide
that you want to use it, you should also enable (turn on) the graphics
display screen.

Display hardware on an RT-11 computer system consists of a
cathode ray tube that allows programs to use graphics displays. If
your system has display hardware 1 , which is illustrated in Figure 4-1,
you can use the graphics screen in place of the terminal printer or
screen if you wish.

NOTE

Check question 5 in the Hardware Configuration section
of Chapter 2 to determine if your system has display hard·
ware. If you do not have display hardware, go on to the
next section in this chapter, Entering the Date and Time
of-Day.

The monitor command that enables the graphics screen is the GT
command. The GT command is used to change the condition of the
graphics display. In this case, you will use it to activate the graphics
display hardware so that the VTl 1 display screen replaces the con
sole terminal printer or screen as the terminal output device.

1Video terminal screens are not considered graphics display hardware.

4--6

Using the Monitor Command Language

Figure 4-1 VTl 1 Display Hardware

Type the following on your terminal keyboard (if necessary, refer to
Table 4-1 to review the special symbols):

Long and Short Command Format

+GT ON <1ill)

If your system does not have display hardware, the monitor prints a
message 1 on the terminal printer or screen informing you that the
command is illegal for your system configuration:

?KMON-F-Ille~al command

Otherwise, the command is accepted and you should notice that all
character echoing and system responses now appear on the graphics
screen instead of the terminal printer or screen. A period appears
there, indicating that the system is waiting for another command.
The character pointer is visible as a blinking rectangular- or L-shaped
cursor situated after the period.

1The meanings of all system messages are listed in the RT-11 System Message
Manual.

4-7

Using the Monitor Command Language

Like the terminal screen, output that appears on the graphics screen
is temporary. Once the screen is filled, lines are rolled off the top and
are lost to view. However, if your terminal has a printer, a special
control command allows you to control console terminal output so
that it appears on both the graphics screen and the terminal printer
simultaneously. In this manner, you can direct selected portions of
terminal output, directory listings for example, to be both displayed
and printed at the same time. The advantage of this is that the dis
play copy is eventually lost but you create a printed copy for later
use.

The control command that provides this function is CTRL/E. It is
initiated by holding the CTRL key down while typing the E key. No
carriage return is necessary. When you type this command, no char
acters echo on the graphics screen, but you should notice that all
subsequent characters (both input and output) appear on both the
graphics screen and the terminal printer.

Thus, if your terminal has a printer and you wish to use the printer
in addition to your VTl 1 graphics screen, type once:

(Remember, this command does not echo.)

Now type the following and notice where the characters echo:

• w1:,:DNG CDMMf'1ND <crnuu>

To disable the printer at any time so that character echoing occurs
only on the graphics screen, type another CTRL/E command:

(CTRUE)

Finally, to return terminal output control to the terminal, disabling
the graphics screen, use the GT OFF command; this changes the ter
minal device handler back to its original output setting:

Long and Short Command Format

• en OFF CRET)

Decide now whether to use the graphics screen for the remaining
demonstrations. If so, use the GT ON command to enable the
graphics screen, and remember that the CTRL/E command is avail
able when you wish to produce simultaneous output.

4-8

Using the Monitor Command Language

Entering the current date and time-of-day are record-keeping system
operations; they help you later identify when other system opera
tions were performed.

For example, by entering the current date you instruct the system to
assign this date to all files you create. The date will also appear in
volume directories and listings produced by the various language
processors and utility programs. If your system has a clock, by speci
fying the current time-of-day you instruct the system to keep track
of time based on the time you set. The current time is printed on
listings when they are produced, and may also be used to control
certain program operations.

Enter the date by typing the monitor DATE command as follows
(there is only one format):

Long and Short Command Format

• DATE 13····JUN····'.77 (~~})

This sets the date to June 13, 1977. Since this date is not current,
reenter the correct date using the same command format:

• DATE dcl···mmm-·i:i':I

Typing the new date overrides the previous date entered.

The monitor TIME command is used to set the time-of-day. Time
must be specified in 24-hour notation. The system then keeps track
of time in hours, minutes, and seconds, based on the initial time that
you enter in the command. Enter the time as follows (there is only
one format):

Long and Short Command Format

• TI ME :1. '.;:i : 0 :I. ! 00 (§!I)

If your system does not have a clock, the monitor prints a message
on the terminal informing you that the command is not valid for
your system configuration:

?KMON-F-no clock

4-9

Entering the Date
and Tlme-of•Day

Using the Monitor Command Language

Assigning Logical
Names to Devices

Otherwise, the time is set to 3: 01 p.m. If your system has a clock,
reenter the correct time, using the same command format:

• T IM E h h : in m ! s; s C[D)

Typing the new time overrides the previous time entered.

To check the time and date at any time while you are using the sys
tem, simply type either the DATE command or the TIME command,
followed by a carriage return only:

Long and Short Command Format

+ [1ATF @:ill
1 ~5···· . .Jun··-'?'7

·r··1·M1::· ~ +

:t.\':i!06::I.?

The system responds by printing the date or the time based on the
information you previously entered.

Setting the time is temporary. If you want it to be kept current, you
must reenter it whenever you bootstrap the system.

Each hardware device in the RT-11 system is identified by a 2-char
acter code name. These names, listed in Table 4-2, are defined in the
system software and are recognized and used by the operating sys
tem. These are the device names that you generally use in command
input and output lines. However, you may want to temporarily
change any of these device names for a variety of reasons. The fol
lowing paragraphs describe both using the physical device names
shown in Table 4-2 and assigning logical (temporary) device names to
devices.

Two additional logical device names are used. These special names
are described in Table 4-3.

You use device names in the input and output portions of a com
mand line to identify where input information can be found and

4-10

Using the Monitor Command Language

Table 4-2 Physical Device Names

Code Device

CR: Card Reader
CTn: Cassette
DMn: RK06 Disk
DPn: RP02/03 Disk
DSn: RJS03/4 Disk
DTn: DECtape
DXn: RXO 1 Diskette
LP: Line Printer
MMn: TJU16 Magtape
MTn: TM 11 Magtape
PC: Paper Tape Punch/Reader
RF: RFl l Disk
RKn: RKl 1 Disk
TT: Console Terminal Keyboard/Printer

Table 4-3 Special Logical Device Names

Code Device

SY: The volume from which the monitor was boot-
strapped; i.e., the system volume.

DK: The default storage volume (initially the same as
SY:; i.e., the system volume).

where output information will be sent. If a file is involved, you also
include its file name and file type in the following format:

devicename: filename .file type

The device name is followed by a colon, and is always separated from
any file name and file type by a colon. The device name is generally
one of the codes listed in Tables 4-2 and 4-3. When you use a device
name in any command, you must also include the device unit num
ber (represented by the letter 'n' in Table 4-2) unless the number is
0. The system assumes unit O of the device if no unit number is
given. Thus, diskette unit O is DX: or DXO:; diskette unit 1 is DXI:;
RK:· disk unit 2 is RK2:; and so on. Note from Table 4-3, that you

4-11

Using the Monitor Command Language

can use the device codes SY: or DK: for your system volume in addi
tion to its standard device name. However, since the system volume
is initially the default storage volume for all operations, you do not
need to use a device name for your system volume.

The names listed in Tables 4-2 and 4-3 are the device names defined
within the system software. However, you can temporarily change
any of these name assignments, either by reassigning existing names
to different devices, or by assigning new logical names of your own
choosing to devices.

There are many reasons why you might want to temporarily change a
device name and assign it a logical name. You may, for example, have
a program that is written for a specific device. If that particular
device is not available on your system, you need only assign its name
to a device that is available. The program then uses the new device
instead. 1

Since not all RT-11 users have access to the same kind of storage
volume, you are instructed to assign the logical name VOL: to what
ever volume you are using for storage. After you make this assign
ment, subsequent command lines can be the same for everyone using
this manual.

Similarly, the special logical device name DK:, presently assigned to
your system volume, could be assigned to any kind of storage vol
ume. Not only would DK: signify your storage volume regardless of
its physical device name, but you could also avoid typing DK: since
it is the default storage volume for most commands (only the R com
mand requires that the file specified must be on the system volume
SY:).

To assign a logical name to your storage volume, first determine its
physical device name. Check questions 4a and 4b in the Hardware
Configuration section of Chapter 2 to see which device and which
device unit you are using for your storage volume. Translate this into
the appropriate name and number using Table 4-1 as a guide.

Use the monitor ASSIGN command to change this physical name to
a logical name. Substitute for physical-device-name in the command

1This is called device independence.

4-12

Using the Monitor Command Language

lines below the physical name and device unit number for your stor
age volume (for example, for RK05 disk unit 1, substitute RKl):

Long Command Format

• A<"<:,' ·1· ('·' N (fi~T) -.:>, l

Ph!~s:i.cal device namf:-:-'i' Ph\,1s:i.cal· dG·:vicP···name @)
l...o!.Hcal devicE~ name'!' VOL: (RET)

Short Command Format

• f.1Sl:;IGN F--h\,1~:;:i.cal·--·d~~v:i.cf:~·-·name VOL Cm)

Once the assignment is made, the system recognizes the logical name
VOL: as the device name for your storage volume. This is the only
logical assignment you need to make. Since you are not changing the
DK: assignment, the system volume remains the default device for all
I/0 operations.

As you continue to use the system, you may well ma1<:e many device
assignments and deassignments. To check the status of all assign
ments made during a computer session, you can use the monitor
SHOW command to print on your terminal a list of all the logical
assignments currently in effect. For example, use the SHOW com
mand now to check the status of the assignment just made:

Long and Short Command Format

c··u(·lw r·,F.-- 11 ·1· .. ,, ... ,., ~
• ~)fl. • .. :. V .. L ::_;:) '8E]j

Check the list printed on your terminal to make sure that the code
VOL: has been assigned to your storage volume. The letters VOL:
should follow the appropriate device name in the list, similar to the
response shown below in which VOL: represents disk unit 1:

4-13

Using the Monitor Command Language

Listing Volume
Directories

DIRECTORY

TT
F~K (RESIDENT)

RK() ···· SY , DK
t=~K:I. :::: VOL

DS
DM
F<F
DF'
DX
DT
MT
CT
LF'
BA
NL..
<FREE>

Uf.~R ~;~JAP

Logical device assignments are temporary. Thus, if you want a par
ticular device assignment to always remain in effect, you must re
assign it each time the system is bootstrapped.

Both your system volume and your storage volume have directories,
which are a compiled list of all the files stored on the volume. You
can print a volume directory on your terminal, using the monitor
DIRECTORY command. 1 For example, to list the directory of your
system volume, type:

Long and Short Command Format

1·1 ·1· 1:;,1::·('''T'f" l:;,v (RET) + .•. ', • .J '· I (The system volume is the default
device.)

Since the directory of the system volume may be quite long, after
approximately 10 lines have printed on the terminal, type:

This special control command echoes as AO and inhibits the re
mainder of the listing output from printing on the terminal. When
control returns to monitor command mode, look at the directory

1 Users of VTl l display hardware may wish to use the CTRL/E command to
enable both the graphics screen and the terminal printer for the following
exercises.

4-14

Using the Monitor Command Language

listing. At the top of the listing is today's date, as you entered it
earlier in the DATE command. Following the date is a list of the
files on the volume. Notice the 2-column format of each line in the
directory:

13-Jun-77
RKMNSJ,SYS 86 02·-Jun·-77
RKMNXM,SYS 106 02--J•Jn--77
DMMNSJ,SYS 88 02-JtJn·-77
DMMNXM,SYS l.08 02-Jun·-Tl
DXMNFB,SYS 97 02-Jun·-7'7
DXMNSJ,BL 83 02-,Jun·-7'7
DTMNFB,SYS 'n 02--"0

137 File•• 3857 Blocks
90::'i Free blocl<.s

1:::1,MNFB, SYS 97 02-,Jun-77
RKMNSJ,BL 83 02-J•.m-77
DMMNFB,SYS 98 02---,Jun·-77
DXMNSJ,SYS 8l, 02-·Jun-77
DXMNXM,SYS 107 02-Jun-77
DTMNSJ,SYS 8f., 02-Jun-77

First the file name appears, followed by a dot and a file type that is
frequently used to identify the file's fonnat. For example, SYS
represents a system file; other RT-11 file types used to represent dif
ferent kinds of files are listed in Table 4-4. After the file type is a
number that indicates the size of the file. The size is given in blocks,
a term used to designate a standard amount of information. A file
that is 1 to 10 blocks long is fairly small, while a file over 100 blocks
in length is quite large. The date on which the file was created is
shown at the right. This space is empty if a date was not specified
(via the DATE command) on the day the file was created. If you let

Table 4-4 File Types

File Type Meaning

.BAC BASIC compiled file

.BAK Editor backup file

.BAS BASIC source file

.BAT BATCH source file
.COM Indirect command file
.CTL BATCH control file
.DAT BASIC or FORTRAN data file
.DBL D IBO L sourc;e file
.DIR Directory listing file
.FOR FORTRAN source file
.LST Listing file
.MAC MACRO source file
.MAP Linker map file
.OBJ MACRO, FORTRAN, or DIBOL object output

file or library file
.REL Executable foreground program file
.SAV Executable background program file
.SML System MACRO library
.SYS System files and handlers

4-15

Using the Monitor Command Language

DIRECTORY/BRIEF

CTRL/C CTRL/C

DIRECTORY
/PRINTER

lnltlallzlng the
Storage Volume

the directory list to completion, at the end you are told how many
files are on the volume, their total length, and the number of free
blocks available for your use.

You can also obtain an abbreviated directory, which omits file
lengths and dates and lists only file names and file types in 5-column
format. To do this, you use the DIRECTORY command with its
/BRIEF option. Type the following, and after several lines have
listed, interrupt the directory by typing two CTRL/C command char
acters. This double control command echoes two ACs, requesting the
running program to abort immediately, independent of what the pro
gram is doing (one CTRL/C aborts an executing program waiting for
input from the console terminal). Control returns to monitor com
mand mode.

Long and Short Command Formats

, LIH!ECTORY/BIUIC:F VU! ... :*•*
i.3·-Jun·-77

RKMNSJ,SYS
DMMNFB,SYS
DXMNSJ,Bl
DSMNFB,SYS

RKMNFB,SYS
DMMNXM,SYS
DTMNS,J, SYS
DSMNXM,SYS

RKMNXM,SYS
nxMNS,J. SYS
DTMNFB,SYS
DPMNS.J, SYS

RKMNS.J,BL
DXMNFB,SYS
DTMNS.J, BL
DF'MNFB, SYS

DMMNSJ, SY!,
DXMNXM,SYS
DSMNSJ.SYS
UPMNXM,SYS

Volume directories can also be printed on a line printer if one is
available on your system. Check question 5 in the Hardware Con
figuration section of Chapter 2 to determine if your system has a
line printer. Since listings print faster on a line printer than on the
console terminal, it is to your advantage to use the line printer for
large amounts of output. The /PRINTER option is used with the
DIRECTORY command to cause a directory to be printed on the
line printer instead of the terminal. Make sure your line printer is
turned on, and then type the DIRECTORY command as shown
(users who do not have a line printer can ignore this command):

Long and Short Command Format

+ DIRECTOF~Y /F'FdNTEI;< (RET)

The entire listing may be quite long. When the line printer is done
printing, retrieve the listing.

Initializing a storage volume completely clears its directory. A new
(unused) volume should always be initialized before it is first used. In

4-16

Using the Monitor Command Language

addition, any storage volume that contains files that are no longer
needed can be initialized to recover the storage space. Note, however,
that the effect of an initialize operation is to remove all file names
from the directory. So before you initialize any volume, be sure that
there are no files on it that you might later want.

Since you will use your storage volume to store several new files
(created as a result of the various exercises in this manual), clear its
directory using the monitor INITIALIZE command. This ensures
that there is room on the volume for new files.

Long Command Format

• INITIALIZE (RET)
Device? VOL.: (RET) (VOL: is the assigned logical device

name for your storage volume.)
V0L:/Init are hlDU sure?Y

Short Command Format

.INITIAI ... JZE VOL! @l)
VOL: /Ini t are ~1m.1 st..tl'f.~?Y @TI)

The system prompt physical-device-name/Init are you sure? is always
printed to provide an opportunity for you to verify the command.
Typing a Y initiates the operation, while N aborts (ignores) the oper
ation and returns control to monitor command mode. Check your
command line, make sure you are initializing your storage volume,
and then type a Y. Again list the directory of the storage volume. It
should be empty.

Long and Short Command Formats

• DIRECTOF~Y VOL! (11D)
1.3·-Jun--77

0 Files, 0 Blocks
4762 Free blocks

The number of blocks available for use on the volume is printed at
the end of the directory and varies depending on the type of device
you use as your storage volume.

The commands you have performed in this chapter have prepared the
system for major operations that will follow. In Chapter 5 you begin
by using the RT-11 editor to create text files that you will store on
your initialized storage volume.

4-17

INITIALIZE

Using the Monitor Command Language

SUMMARY:
INITIAL MONITOR
COMMANDS

ASSIGN physical-device-name logical-device-name
Assign a logical device name to a physical device name.

DATE
Print the current date, if previously set.

DA TE dd-mmm-yy
Set the current date (day-month-year).

DIRECTORY dn:
List the volume directory on the terminal (dn: is the code for
the device name; the default storage volume (DK:) is assumed if
dn: is not specified).

DEASSIGN
Remove logical device assignments.

DIRECTORY/BRIEF dn:
List a brief volume directory on the terminal, showing only file
names.

DIRECTORY/PRINTER dn:
List the volume directory on the line printer.

DIRECTORY/PRINTER/BRIEF dn:
List a brief volume directory on the line printer.

INITIALIZE dn:
Clear the directory of the indicated volume (dn: is the code for
the device name and must be specified).

GT OFF
Disable the VT 11 display hardware.

GTON
Enable the VTl 1 display hardware so that the graphics screen
replaces the terminal printer/screen as the terminal output
device.

SHOW DEVICES
Print the status of all current logical device name assignments.

TIME
Print the current time, if previously set.

4-18

Using the Monitor Command Language

TIME hh:mm:ss
Set the current time-of-day (hour:minute:second).

CTRL/C CTRL/C
Interrupt the current operation or program and return control
to monitor command mode.

CTRL/E
Direct terminal output to both the graphics screen and the ter
minal printer simultaneously. Type a second CTRL/E to return
output control to only the graphics screen. (Valid only when
VTI 1 display hardware is enabled.)

CTRL/O
Inhibit the remainder of output from printing on the terminal.

CTRL/U
Cancel every character in the current line.

DELETE
Cancel the last character typed on the current line.

LPll/LSll Line Printer Manual (EK-LPl l-TM-005). Maynard, Mass.: Digital
Equipment Corporation, 197 5.

A hardware manual for the owners and operators of LP 11 /LS 11 line
printers and for those who will be programming computers to interact
with this device.

RT-11 Pocket Guide (DEC-11-ORRCB-A·D). Maynard, Mass.: Digital Equip
ment Corporation, 1977.

A summary of all RT-11 monitor commands and command options, and
system utility program operating commands.

RT-11 System User's Guide (DEC-I 1-ORGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapters 3 and 4.

4-19

SUMMARY:
SPECIAL

CONTROL
COMMANDS

REFERENCES

CHAPTER 5
CREATING AND EDITING TEXT FILES

The ability to create and edit text files is one of the most useful
features of the RT-11 operating system. Not only can you create
computer programs, data files, memos, and reports on-line (i.e.,
under the control of the system), but you can alter them by adding
or removing text without retyping the entire file.

You create and edit text files more often than you perform any
other system operation. Therefore it is essential that you become
familiar with the editing process as quickly as possible. Editing
should become second nature to you as you learn to use the RT-11
computer system.

The RT-11 editor is a system utility program called EDIT.SAY,
which is stored as part of the RT-11 operating system on your sys
tem volume. Text files that you create with the editor are stored in
the computer in ASCII format. ASCII, which stands for the Ameri
can Standard Code for Information Interchange, is an industry
standard code that consists of a numeric representation for each of
the alphabetic characters (A to Z), the numeric characters (0 to 9),
the punctuation characters, and some special communication control
characters. When you type text on the terminal keyboard, the
system automatically converts the text to the appropriate ASCII
codes; when you request listings on the terminal or line printer,
the system converts the ASCII code back to the appropriate text
characters.

The RT-11 editor uses a specially reserved area of computer memory
to hold the text you are creating or editing. This area of memory is
called the text buffer. When you create text, the characters that you
type on the terminal keyboard are transmitted directly into the text
buffer. When you edit already existing text, the characters are copied
from the input file into the text buffer. Once in the text buffer, the
characters are available for modification. When you have edited the
text in the buffer to your satisfaction, the characters are moved out
of the text buffer to the output file (Figure 5-1).

5-1

THE RT-11 EDITOR

Creating and Editing Text Files

CREATING A
TEXT FILE

EDIT/CREATE

COMPUTER

INPUT

OR

Figure 5-1 Editing with RT-11

Since the text buffer is a finite area of computer memory, you may
at times try to input more text than the buffer can accommodate. If
this condition becomes apparent to the editor, it prints a warning
message on the terminal telling you that before you can input any
more text, you must make room in the buffer, either by transferring
text to the output file or by erasing text already in the buff er.

You can avoid this inconvenience during editing if you make use of a
concept called paging. When you create a large text file, instead of
typing the file as one long stream of text, divide it into individual
pages of approximately 5 0-60 lines in length; this corresponds
roughly to the size of a line printer of terminal listing page. You can
then copy the text into and out of the buffer one page at a time. A
single page of text is never too large for the text buffer and also fits
nicely on the line printer or terminal perforated paper when you
obtain a listing.

You activate the editing capability by using the monitor EDIT com
mand. When creating a file, you must use the /CREATE option
followed by the file name and file type you want assigned to the new
file. The default storage volume (DK:) serves as the default device,
so unless you specify a device using one of the codes in Table 4-2, ·
the editor creates the new file on the device DK: (which is the sys
tem volume, unless changed via ASSIGN).

First, if you are using display hardware, disable it with the monitor
GT OFF command; the editor has a special display capability that is
not described until later in the chapter:

5-2

Creating and Editing Text Files

Long and Short Command Format

• GT OFF (RET)

Next, use the editor to create a short text file of only five lines. Call
the file DECIND.USA and use the default storage volume (currently
the same as the system volume) for the file.

Long and Short Command Format

.[ItIT/CF(EATE l)FCJND.USA (~ET)

*

Once the output file is open (that is, when the appropriate file has
been established for output operations), the editor prints a prompt
ing asterisk at the left margin. The asterisk indicates that control is
in editing command mode and is your cue to enter an editing
command.

The editing command used to create text is the I (Insert) command.
Type:

All subsequent characters that you type on the terminal keyboard
will now be entered into the text buffer just as you type them. Enter
the following text exactly as shown, including all spaces and errors.
Before you type the RETURN key, check the line to make sure that
it matches what is shown here. Remember, if you make a typing
mistake that is not intentional, you can use the DELETE key on the
terminal keyboard to erase individual characters and the CTRL/U
command to erase all characters on the current line. When you finish
typing the five lines, type the ESCAPE (AL TM ODE) key twice. The
ESCAPE key echoes on the terminal as a$ and is used to execute an
editing command and to return control to editing command mode.

)j(J:l,JE HCJLD THEBE TRun; TD BEE SELF-··EVIDENh (@)
THt-H f.H .. L MEN ARE Cl=<EATED ECHJAL,, THAT THEY (RET)
L·JA 11 1=~ IJN1:·,c1 ·cArl E. ·1·1::·N1·1E=·Nc1·E(:' ()F wu·[1·,u ruE:·y ~ r ··v ~c d , ... -.l . n. Jn n .. ~

Fd=t'. ENDOWED BY THEIR CF<EAHm, n-ti~T AMCJND (RET)

1·1J1·-p1··· A1·· i::· I ·c , ... E.. I '[r: E"F' ·ry ANI HAF. l E-NE'(''C' r,:;;::-:;::,. ·1 ::. ,:> ::. '\ 1::. ••. • . .. :. , d :. ·~ I • ·' _ .. : • .:> ~> • ,Jl§

*

5-3

I INSERT I

ESCAPE ESCAPE

Creating and Editing Text Files

EDITING A TEXT
FILE

BEGINNING

Forget for the moment that this text contains several misspellings
and other errors, and assume instead that you are satisfied with it
and ready to transfer it from the text buff er to the output file. The
EX (Exit) editing command performs this function. This command
terminates editing, transfers all text currently in the text buffer to
the output file, closes the currently open output file (making it
unavailable for further output operations), and returns control to
monitor command mode, indicated by a dot at the left margin. Use
the EX command to close the file DECIND.USA:

You now have a file on your system volume called DECIND.USA,
consisting of the five lines of text you just created.

The file DECIND.USA needs editing. To edit an existing file, you
again use the EJ?IT command to activate the editor. Next indicate in
the command line the two-character device code for the volume on
which the file resides (the default storage volume, DK:, is assumed).
Following this, you indicate the file name and file type of the file.
The editor then opens the file, making it available for input
operations.

Thus, to open the file DECIND.USA for editing, type:

+EDIT DECIND+USA(RET)

·*

The EDIT command opens the input (and output) files. Use the R
(Read) editing command to read the first page of text from the input
file into the text buffer. No output occurs to the output file, but the
file is available for output at a later time. The input file itself is not
altered in any way.

R(ESC)(ESC)

*

Whenever text is read into the text buffer, a pointer is automatically
positioned at the beginning of the text. This pointer is an invisible
indicator that serves as a target for editing commands. The pointer
pinpoints the exact location in the file where the next character will
be inserted. For example, when you finished inserting text earlier
(just prior to using the EX command), the pointer was positioned at

5-4

Creating and Editing Text Files

the end of the file. Now that the EDIT command has been used to
read text into the text buffer, the pointer is positioned at the
beginning of the text in the text buffer. If the pointer is not at the
beginning and you want to move it there, you can use the B
(Beginning) command; this command moves the pointer to the
beginning of the text in the text buffer, no matter where the pointer
is currently positioned:

With the pointer positioned at the beginning of the text buffer, you
can use the L (List) editing command to list the text currently in the
text buffer on your terminal printer. The List command lists text,
starting at the pointer and continuing to whatever place you indicate
by the command argument.

A command argument is simply a prefix to an editing command that
sets limits on the command's actions. Command arguments are used
frequently and are summarized in Table 5-1. Study this table for a
moment before continuing.

Table 5-1 Command Arguments

Argument Meaning

n n represents any integer in the range -163 83 to
+16383; n may be preceded by a+ or-. If no
sign precedes n, it is assumed to be positive.
Whenever an argument is acceptable in a
command, its absence implies an argument of I
(or 1 if only the is present).

0 0 refers to the beginning of the current line.

I / refers to the end of text currently in the text
buffer.

Thus, with the pointer positioned at the beginning of the text, use
the / argument and the L command to list on the terminal all text in
the buffer. The position of the pointer does not change. List the te"xt
and compare your output with the five lines shown on the following
page; they should match exactly:

5-5

Creating and Editing Text Files

*/1...
WE HOLD THESE TRUTS TO BEE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL, THAT THEY
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
AR ENDOWED BY THEIR CREATOR, THAT AMONG
THESE ARE LIFE, LIBERTY AND HAPLENESS+
*

If your output and the five lines above do not match exactly, then
you probably typed some unintentional errors into DECIND.USA.

Unfortunately, the remaining EDIT commands in this exercise
depend upon an exact reproduction of DECIND.USA to function
properly. Therefore, since you are not yet familiar with the EDIT
commands necessary to correct your file, an existing copy of
DECIND.USA with intentional errors must be substituted.

Prepare the text buffer by erasing it with CTRL/C (Esc) (Esc). This
unusual command combination is required by the EDIT program to
exit without creating an output file. The structure of the command
prevents you from accidentally eliminating a file with a single
CTRL/C.

* (CTRL/C) (ESC) (ESC)

The monitor command mode period appears, signalling your de
parture from the editing command mode. Your system volume still
contains the file DECIND.USA that you created earlier. However, it
also contains the copy provided with the system, DEMOED.TXT,
that you will use for the remainder of the exercise.

Before going any further, you must rename DEMOED.TXT to
DECIND.USA to avoid confusion. A RENAME operation, ex
plained fully in the FILE COPYING OPERATIONS section of
Chapter 7, 1s the method of choice. Type RENAME DEMOED.TXT
DECIND.USA C@:!) .

• RENAME DEMOED.TXT DECIND.USA

The contents of DEMOED.TXT are now labelled DECIND.USA.
Type EDIT DECIND.USA (R~T) to open the file for input and the R
command to read it into the text buffer .

• El)IT DECIND.USA
* 1:;; (ESC) (ESC)

5-6

Creating and Editing Text Files

Since the pointer automatically returns to the text's beginning with
an R command, you can type /L to list the entire file.

*/L.(ESC)(ESC)

WE HOLD THESE TRUTS TO BEE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL, THAT THEY
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
AR ENDOWED BY THEIR CREATOR, THAT AMONG
THESE ARE LIFE, LIBERTY AND HAPLENESS.
*

The text contains errors and misspellings necessary for this chapter's
proper functioning. To correct the errors, reposition the pointer so
that it is near the text you wish to change. The J (Jump) command,
for instance, in conjunction with a command argument, moves the
pointer either backward or forward by the specified number of
characters, including spaces. Type the J command now, using an
argument of 18, to reposition the pointer ahead 18 places1 :

*:I.BJ
*

Although you cannot see it, the pointer has moved from the
beginning of the text buffer to the right of the 18th character. You
can verify this using the List command again. The List command
with no argument prints from the .pointer to the end of the current
line and thus exposes the location of the pointer:

*L
S TO BEE SELF-EVIDENT,
*

The characters above should match the current line on your terminal,
showing the pointer positioned at the first error in the text where an
H is missing in the word TRUTS. Since the pointer is positioned
between the second T and the S, use the Insert command to insert an
Hin the proper place:

*IH(§I)

*

1 Anytime you use the Jump command to move the pointer forward (or
backward) by enough characters so that it moves to a new line, you must
account for two extra characters in the command argument. This is because the
editor treats the carriage return at the end of each line as two characters a
return and a line feed.

5-7

Creating and Editing Text Files

Now use the V (Verify) command to verify the line. The V
command, which does not require arguments, prints the entire line
containing the pointer (the current line) on the terminal. It allows
you to verify that a correction was properly made. The pointer is not
moved as a result of the V command; its position remains just to the
right of the last inserted character (shown here by the arrow):

*VCI[£)
WE HOLD THESE TRUTHS TO BEE SELF-EVIDENT,
* f

So far you have entered and executed editing commands one at a
time. You can enter multiple commands by separating each indi
vidual command with a single ESCAPE. Typing two ESCAPEs then
executes all the commands in the entire command string in
consecutive order. For example, combine the J and L commands as
shown in the following command string:

*'7,J L
E SE!...F· .. ·E 1-JIDENT,

*

71 moves the pointer seven positions to the right and L then lists
from the pointer to the end of the line so that you can see the
pointer's new position.

A special CTRL command is available to erase multiple editing
commands. The CTRL/X command (hold the CTRL key down and
type the X key) causes the editor to ignore an entire command string
that might extend over several lines if the 1 command is involved.
The editor echoes with ~x, issues a carriage return, and prints an
asterisk indicating that you are still in editing command mode and
can enter a new command. For example, type:

*?O,JCI[£)ISTAF:T A (RET)
N[L,J L.1 NE (CTRL/X)

*

In addition to the CTRL/X command, you may still use the
DELETE key to erase individual characters in the command line one
at a time, and the CTRL/U command to erase all characters entered
on the current command line.

5-8

Creating and Editing Text Files

Since you used the CTRL/X to ignore this last command string, the
pointer is still positioned at the next error in the file - just before
the extra E in the word BEE. You can erase this extra character by
using the D (Delete) command 1 . The D command removes one
character (or space) to the right of the pointer for every +l in its
argument and one character to the left for every I. Use the D
command to erase the extra E and then verify the line (+ 1 is assumed
if no aJ nt is used):

*D V
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,

*
..

As you can see from the position of the pointer above (shown by the
arrow), the D command does not actually move the pointer, but
simply erases characters around the pointer. Since the extra E was
erased, the pointer is now positioned between the E and the space.

Just as the Jump command moves the pointer by characters, you can
use the A (Advance) command to move the pointer by entire lines.
Again you give the command an argument which indicates the
number of lines, either forward or backward. The pointer is
positioned at the beginning of the new line. Use the A command to
move the pointer forward two lines, and then list the current line:

*2(.~(ESC) l..
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
*

This entire line does not belong in the text. To erase it, you could
count the number of characters in the line and use this number as an
argument to the D command; however, there is an easier way. The K
(Kill) command erases the entire line following the pointer and
positions the pointer at the beginning of the next line in the text.
Type:

*I·-~ L.
AR ENDOWED BY THEIR CREATOR, THAT AMONG
*

1The Delete command should not be confused with the DELETE key on the
terminal keyboard. While both perform the delete function, the D command is
used to erase characters already within a text file; the DELETE key is used to
erase freshly-typed characters in a command string or during text creation.

5-9

ADVANCE

Creating and Editing Text Files

The pointer is now at the beginning of the next line in the text. As
you can see, this line also contains an error, the word AR is
incorrectly spelled. Use the J command to jump over two characters,
insert the E, and then verify the line:

*2,..1 IE V
ARE ENDOWED BY THEIR CREATOR, THAT AMONG
* t

The arrow shows where the pointer is now positioned. This line still
contains an error - it is missing some text; the words WITH
CERTAIN INALIENABLE RIGHTS should follow the word
CREATOR. You can count the number of characters from the
pointer to the second R in CREATOR and then jump the pointer by
this number, or you can use the G (Get) command. The G command
searches, from the pointer, for the first occurrence of a specified
character string and leaves the pointer at the end of that string. Use
the G command to search for the string OR (in CREATOR); then
insert the missing words and list the lines that have changed. Notice
how you use the carriage return to break the line into two parts (the
® symbol is used to show where you should insert spaces):

*Go1=::cEsc) I@t,.JJ TH @cEr~Tt,:rNCRn)
I Nf.~,L. I ENABLE@!=< I GHT~; (Esc) A ;:;!L.
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS, THAT AMONG

*

To list both lines, it was necessary to move the pointer back to the
beginning of the first line you changed; this was done by the -A
command. The 2L command then listed both lines. Notice where the
pointer is; it was moved by the -A command and was not
repositioned by the L command.

You must be careful when you use the Get command. This command
searches for the first occurrence of the character string you specify.
This character string may be any number of characters but must be
unique if you want the pointer to move to the correct spot. For
example, if the characters OR had occurred anywhere after the
pointer and before the word CREATOR, the pointer would have
stopped there instead and you would have inserted text in the wrong
place.

The final errors in this text occur in the last line. The words THE
PURSUIT OF are missing, and the word HAPLENESS is a
misspelling. Use the Get command to move the pointer to the word

5-10

Creating and Editing Text Files

AND and insert the missing text. Move the pointer again with the
Get command to the "PLE" of HAPLENESS, erase the LE and insert
Pl. Then verify the line.

*GAND ®i:·u1::;sUIT®DF@f)@EJ
:t-.Gl'LE@D 2D @0'v1 @D@f)
THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.
;~:

Large text files of 50 lines or greater should be delimited into pages.
To do this, you insert a form feed into the text at the place where
you want the page to end. A form feed is typed as a CTRL/L (hold
the CTRL key down and type the L key). Typing a CTRL/L inserts a
form feed into the text, which the editor then recognizes as a page
break.

Since this text file is only five lines long, there is really no need to
delimit it as a page. However, for the sake of practice, insert a form
feed at the end of this file. Then move the pointer to the beginning
of the text buffer and list the entire text. Compare your text with
that shown below. If errors remain in your file, fix them using the
commands described so far.

)l::G .(I© J
(CIBi::ZI)

(ill) fl @) / L (ill) (ill)

(CTRL/L echoes as eight line feeds.)

WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL, THAT THEY
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS, THAT AMONG
THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS,

*

This text is correct in spelling and content, but the last two lines
should be justified to make reading them easier. The pointer is
currently at the beginning of the text. Use the G command to search
for the character string AMONG; then insert and delete text to
justify the lines. Finally, list the text again:

:+:0(\M!JNG(ill:)l @THE'.:>E @Al(E(ill:)A(ill:) 10D(ill:) B(ill:}/L~@f)
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL, THAT THEY
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS, THAT AMONG THESE ARE
LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.

*

5-11

Creating and Editing Text Files

Once you are satisfied with your text, you are ready to transfer it to
the output file. You could use the EX command to transfer the text,
as you did earlier in the section Creating a Text File. However,
suppose your input file has additional pages of text that require
editing. If you use the EX command, all remaining text in the input
file will be read through the text buffer into the output file and the
files closed without giving you a chance to do more editing. To avoid
this, you can use the N (Next) command. This command transfers
the text currently in the text buffer to the output file, clears the text
buffer, and reads in the next page from the input file. The pointer is
positioned at the beginning of the text buffer.

*N(ESC) (ESC)

?EDIT-F-End of inPut file
*

(No text remains in the
input file.)

If you use the N command when no text remains in the input file (as
just happened), the editor prints a message on the terminal telling
you so. At this point, you can type the EX command to close the
file.

When you close a file after editing, the editor creates a file on the
default storage volume (or system volume). It gives this new file the
file name and file type that you indicated for input. It then renames
the input file so that the file retains its file name but is assigned a file
type of .BAK .. BAK identifies it as a backup file, here an original
input file retained in case of editing mistakes or accidental deletion
of the new file. Thus you now have two versions of the DECIND file
on your system volume: DECIND.USA, which is the edited version,
and DECIND.BAK, which is the unedited (original) input file. Verify
this using the monitor DIRECTORY command:

Long and Short Command Format

• DIF;:FCTCJRY /Bf~IEF DEC IND,* @Ii)
:L3····Jun---J/

DEC IND, BAK :l 09·-·Ma\d 77 DEC IND• USA l l.3-Jun·-77
2 Files, 2 Blocks
904 Fn.H:·i l:.d.ockfi

The * following DECIND. is a type of shorthand notation called
wildcard construction. Here it means to list all files named DECIND
regardless of their file type. Wildcard construction is explained in
greater detail in the Multiple File Operations section of Chapter 7.

Whenever you edit the same file a number of times, new versions
overwrite old versions. Thus only two versions of the edited file
(filnam.BAK and filnam.typ) ever reside on a volume at one time.

5-12

Creating and Editing Text Files

Later model terminals(e.g., LA36 DECwriters and VT52 DECSCOPE
tvrminals) have the capability to print in upper- and lower-case.
Certain line printers also have this capability. You can use the
upper-flower-case capability of these devices if you type the EL (Edit
Lower) editing command before entering the text you want to insert
in lower-case. The EL command instructs the system to accept all
characters typed as they appear on the keyboard. The monitor
facility which converts all alphabetic characters to upper case is dis
abled. In addition, the characters are echoed on the terminal printer
or screen as upper- and lower-case characters.

Open the file DECIND.USA again and type the

Long and Short Command Format

.EDIT DECIND.U::>A(RET)

*

command:

Once you have typed the EL command, you can use the SHIFT key
on the terminal to designate upper-case, just as you do on a
typewriter. Editing commands may be entered as either upper- or
lower-case characters. For example, type the following commands,
which change the characters in the first line of the file DECIND.USA
to upper- and lower-case:

*) b(~)v,c~'-1',''-''-'

WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,
.,_,._'-"'~",,i.WE-i hoJd thP',,P tr•.1th~, to be hf:-!lf·-Eividt:~nt,CT!Ii)
(ESC) "·i:J(ESC)V(@(@

We hold these truths to be self-evident,

*

The upper- and lower-case capability is useful for reports, memos and
other textual material that you list on upper-flower-case devices.
However, all characters are printed as upper-case if you list the file
on a line printer or terminal that does not have the upper-/lower-case
capability.

If at any time you want to revert to strictly upper-case editing, type
the EU (Edit Upper) command:

*f.H.J(ESC) (ESC)

*

5-] 3

USING UPPER
AND

LOWER-CASE
CHARACTERS

Edit lower

Edit Upper

Creating and Editing Text Files

SUMMARY:
EDITING
COMMANDS

Upper-case editing is a default mode. Whenever you open a file for
editing or create a new file, you must enter the EL command if you
want to use the upper-flower-case capability.

Close the file DECIND.USA by typing:

*EX (ESC)(ESC)

*

EDIT filespec
Activate the editor and open the file for editing.

EDIT /CREA TE filespec
Activate the editor and create a new file.

Control Commands

CTRL/L
Insert a form feed. The form feed character is used to delimit
pages of text in a file (introduced as part of text by the Insert
command).

CTRL/X
Ignore all commands in the current editing command string.

Command Arguments

n(+ or--)

0

I

n is an integer value between -16383 and + 16383 which sets
the range of a command's actions base'd on the pointer's current
position.

Beginning of the current line (the line containing the pointer).

End of the text in the text buffer.

Input/Output Commands (pointer is not repositioned)
(x indicates that an argument may be used)

EX
Exit; terminate editing, transfer the contents of the text buffer
and the remainder of input file to the output file; close input
and output files; return to monitor command mode.

5-14

xL

xN

V

Creating and Editing Text Files

List; list, from the pointer, x lines of text.

Next; write the contents of the text buffer to the output file,
clear the text buffer, and read into it the next page from the
input file; perform this write/read sequence x times.

Verify; list the current line (the line containing the pointer) on
the terminal.

Pointer Location Commands (pointer is repositioned)
(x indicates that an argument may be used)

xA

B

xJ

Advance; move the pointer to the beginning of the xth line
from the current pointer position.

Beginning; move the pointer to the beginning of the text buffer.

Jump; move the pointer forward or backward by x characters.

Text Modification Commands (pointer is repositioned)
(x indicates that an argument may be used)

xD
Delete; erase x characters to the right (or left) of the pointer.

I text (Esc)

xK

Insert; insert text into the text buffer at the present pointer
position.

Kill; erase x lines of text, beginning at the pointer.

Search Command (pointer is repositioned)
(x indicates that an argument may be used)

xG text
Get; search the text buffer, beginning at the pointer, for the x
occurrence of the indicated text string and leave the pointer at
the end of the text string.

5-15

Creating and Editing Text Files

USING A
GRAPHICS
DISPLAY
TERMINAL
DURING EDITING

Normal Use of the
Graphics Display

Upper-/Lower-Case Commands (pointer is not affected)

EL
Edit Lower; accept characters typed at the keyboard as upper-/
lower-case.

EU
Edit Upper; revert back to upper-case editing (after EL).

If your system configuration includes VT 11 display hardware, there
are several advantages to your using it during editing 1• First, the
graphics screen becomes a window into the text buffer, exposing
twenty lines of text at a time (the current line, the ten lines
preceding it and the nine lines following it). Figure 5-2 illustrates this
format. As you edit, the lines in view shift to conform to the current
line. In addition, the pointer is visible and appears as a blinking
cursor. Its position is automatically adjusted as you execute editing
commands. Finally, four lines at the bottom of the screen display the
last three command lines plus the current command line. Horizontal
dashes separate the text of the file from your commands.

10 PRECEDING i.
LINES OF TEXT

CURSOR
(CURRENT LINE)

AND 9
FOLLOWING
LINES OF TEXT

SEPARATION

Figure 5-2 Text Window Format

WINDOW
INTO THE
TEXT BUFFER

All editing commands and functions described so far can be used
when the graphics screen is enabled. The only difference is that
terminal 1/0 is rearranged on the screen as shown in Figure 5-2. Note
that the L and V editing commands become superfluous since the

1 If your system does not have VTI 1 display hardware, skip to the next section,
Creating the Demonstration Programs.

5-16

Creating and Editing Text Files

pointer is always displayed on the screen. Also, since twenty lines of
text are always displayed, any List command within that range is
unnecessary.

Currently, your graphics screen is not enabled. To enable it, use the
monitor GT ON command as you did in Chapter 4:

Long and Short Command Format

+CT DN (R~T)

Now when you use the EDIT command to activate the editor, the
graphics screen will be rearranged as shown in Figure 5-2. You can
use the CTRL/E command, described in Chapter 4, to request
simultaneous 1/0 on the terminal printer and graphics screen.

In addition to the regular editing capability, a quick and easy method
of graphics editing, called immediate mode, is available. Immediate
mode uses a simplified set of editing commands that are limited to
pointer relocation and character deletion and insertion. Most of these
commands are similar to the special CTRL commands because to
type them you use the CTRL key in combination with another
character key. However, the use of these particular control com
mands is meaningful only in the editor immediate mode. Table 5-2
lists the commands.

Table 5-2 Immediate Mode Commands

Command Meaning

CTRL/N Advance the cursor to beginning of next line
(equivalent to A)

CTRL/G Move the cursor to the beginning of the previ-
ous line (equivalent to -A)

CTRL/D Move the cursor forward by one character
(equivalent to J)

CTRL/V Move the cursor back by one character (equiva-
lent to -J)

DELETE Delete the character immediately preceding
the cursor (equivalent to -D)

ESCAPE Return control to the editing command mode

double
ESCAPE summon immediate mode

5-17

Immediate Mode

Creating and Editing Text Files

ESCAPE ESCAPE

Character Insertion

Use the editor to open a new file called IMMODE.TXT:

Long and Short Command Format

+ l:::ItIT/CRE,~TE IMMODE. TXT (RET)

*

Now activate immediate mode. You do this by typing the ESCAPE
key twice in response to the editing command mode asterisk. Since
there are no other commands in the command line, the editor
recognizes the double ESCAPE as an immediate mode command.

*

The editor responds by printing an exclamation mark in the com
mand portion of the screen; the exclamation mark signifies that you
are using immediate mode.

Character insertion is the default operation and occurs whenever you
type a character other than one of the immediate mode commands
listed in Table 5-2.

The next several paragraphs demonstrate the use of the immediate
mode commands on a selected portion of text. Remember that all
characters that you type that are not immediate mode commands
are treated as input. Commands do not ,echo on the graphics screen
so all you ever see is the current text file. Type the following:

TO BE, OR NOT TO BE-THAT IS THE QUESTION:
WHETHER 'TIS NOBLER IN THE MIND AND HEART TO SUFFER@)
THE SLINGS OF OUTRAGEOUS FORTUNE
OR TO TAKE ARMS AGAli\ST A SEA OF TROUBLES,~
AND BY OPPOSING END THEM?

As you can see on the graphics screen, the cursor (pointer) is posi
tioned at the beginning of a new line. CTRL/G, equivalent to -A
in standard editing, moves the cursor to the beginning of the previous
line; the cursor is repositioned immediately. Type:

5-18

Creating and Editing Text Files

The · cursor has moved backward three lines, one line for each
CTRL/G command and is positioned before the line:

THE SLINGS OF OUTRAGEOUS FORTUNE,

CTRL/V, equivalent to -J, moves the cursor back by one character.
Move the cursor back over the carriage return and line feed at the
end of the previous line by typing the CTRL/V command eleven
times (remember, the carriage return and line feed count as two
characters):

(eleven (11) times)

WHETHER 'TIS NOBLER IN THE MIND AND HEART TO SUFFER

This positions the cursor before the word TO. DELETE, equivalent
to -D, deletes the character immediately preceding the cursor. Type
the DELETE key ten times:

(ten (10) times)

WHETHER 'TIS NOBLER IN THE MIND TO SUFFER

CTRL/N, equivalent to A, advances the cursor to the beginning of
the next line:

(CTRL/N)

THE SLINGS OF OUTRAGEOUS FORTUNE,

CTRL/D, equivalent to J, moves the cursor forward by one charac
ter; type CTRL/D ten times:

(ten (10) times)

THE SLINGS OF OUTRAGEOUS FORTUNE,

Next type this text (it will be inserted immediately to the left of
the cursor) :

@AND@ ARROWS

5-19

Creating and Editing Text Files

CTRL/C ESCAPE
ESCAPE

CREATING THE
DEMONSTRATION
PROGRAMS

The text on the screen should now look as follows:

TO BE OR NOT TO BE-THAT IS THE QUESTION;
WHETHER 'TIS NOBLER IN THE MIND TO SUFFER
THE SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE,
OR TAKE ARMS AGAINST A SEA OF TROUBLES,
AND BY OPPOSING END THEM?

Check your results and correct any other mistakes you may notice.

To return to the standard editing command mode, type a single
ESCAPE.

*

This ESCAPE command does not echo on the screen. You should
notice that the exclamation point immediately disappears and the
text window format returns; an asterisk appears immediately below
the exclamation point on the screen.

You use immediate mode only to create and edit text. Operations
that move text in and ·out of the text buffer must be done with
standard editing commands.

You do not need to save the text you have just created, so use the
CTRL/C command and two ESCAPEs to return control directly to
monitor command mode. As mentioned before, EDIT requires
this unusual command combination to prevent an accidental
CTRL/C from killing your text.

(CTRL/C)

Following are two demonstration programs. One is written in the
FORTRAN IV programming language and one is written in the
MACR0-11 assembly language. Both programs are used in later chap
ters of this manual and both contain intentional misspellings and
errors.

5-20

Creating and Editing Text Files

Use the editor to create these programs. Type them exactly as they
are shown, including errors. Use tabs and spaces to format each line
as shown (remember that tab stops are positioned every eight spaces
across the terminal page). Use any of the editing commands
described in this chapter. Activate the display editor and immediate
mode if you wish.

When you are done, check each file carefully. The two files should
match those shown here exactly, including tabs and spaces. Correct
any errors that you find that are not intentional. Obtain a listing of
each file using B (Esc) (Esc) before closing the file.

Create the FORTRAN file first. Call it GRAPH.FOR and use the
system volume for storage. Then create the MACRO program. Call it
SUM.MAC and again use the system volume for storage.

NOTE

Knowledge of the FORTRAN IV and MACR0-11
languages is not necessary to create these demonstration
programs.

C GRAPH,FOR VERSION 1
C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
C OF AN EXTERNAL FUNCTION, FUNCX,Y>
C THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS
C 'STAB" rs FILLED WITH A TABLE OF WEIGHT FLAGS
C 'STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING

SCALIZMIN,ZMAX,MAXZ,K>•ZMINtFLOATCK-1>*(ZMAX-ZMIN)/FLOATCMAXZ-1)
LOGICAL*1 STRINGC13,3),STABC100)
DATA XMIN,XMAX,MAXX/-5,5,45/
DATA YMIN,YMAX,MAXY/-5,5,72/
DATA FMIN,FMAX/0,0,1,0/
CALL SCOPY('- 1 2 3 4 5 6 7 8 9 +',STAB>
MAXFLEN<STAB>
DO 20 Ix,:: l, MAXX

X=SCALCXMIN,XMAX,MAXX,IX>
CALL REPEATC'*',STRING,MAXY)
IF<IX.EQ,1 ,OR, IX.EO,MAXX) GOTO 20

DO 10 IY=2,MAXY-1
Y=BCAL<YMIN,YMAX,MAXY,IY)
IFUNm2+INTCFLOATIMAXF-3>*<FUNCX,Y>-FMINJ/(FMAX-FMIN)J

10 STRINGCIY>•STAB<MINO(MAXF,MAXOC1,IFUN)))
30 CALL PUTSTRING17,STRING,' ')

CALL EXIT
END

FUNCTION FUNCX,Y>
R=SQRTIX**2+Y**2>
FUN=X*YIRIEXPC-R>>**2
RETURN
END

5-21

Creating and Editing Text Files

REFERENCES

EXP:

FrnST:

SECOND:

FOURTH:

FIFTH:

.TITLE SUM,MAC VERSION 1

,MCALL +TTYOUT, ,EXIT, ,PRINT

N '" 70. ;NO+ OF DIGITS OF 'E' TO CALCULATE

'E' THE SUM OF THE RECIPROCALS OF THE FACTORIALS
1/0! t 1/1! t 1/2! t 1/3! t 1/41 t 1/5! t •••

,PRINT tMESSAG
MOU tN,R:':i
MOU ,tN+1,RO
MOU tA,Rl.
ASL @R1
MOU trn l. , ·- (SP)
ASL @IU
ASL @R1
/'.\DD (SP)+, <R1 >+
DEC RO
BNE 2ND
MOU tN,RO
MOU ·-<RU ,R3
MOU ,t--· 1, R2
INC R2
SUB RO ,Fi3
BCC FOURTH
ADD RO,R3
MOV 1:;;3 .@1=;:1

ADD R2·<'(R1)

DEC RO
BNE fHIRD
MOU .. -<Rl),RO
SUB tlO, ,RO

BCC FIFTH
ADD 110-1-'0,RO
,HYON
CLR @ru
DEC F~5
EtNE F:msT
,EXIT

,REPT N+:l
, WOl~D l
,ENDR

;PRINT INTRODUCTORY TEXT
IND, OF CHARS OF 'E' TO PRINT
IND, OF DIGITS OF ACCURACY
IADDRESS OF DIGIT VECTOR
IDO MULTIPLY BY 10 (DECIMAL>
ISAVE *2
;*4
aa
INOW *10, POINT TO NEXT DIGIT
IAT END OF DIGITS?
;BRANCH IF NOT
IGO THRU ALL PLACES, DIVIDING
IBY THE PLACES INDEX
IINIT QUOTIENT REGISTER
;BUMP CWfJT I ENT
ISUBTRACT LOOP ISN'T BAD
INUMERATOR IS ALWAYS 10*N
;FIX REMAINDER
;SAVE REMAINDER AS BASIS
jf-OR NEXT DIGIT
IGREATEST INTEGER CARRIES
no GIVE DIGIT
;AT END OF DIGIT VECTOR?
;BRANCH IF NOT
IGET DIGIT TO OUTPUT
;FIX THE 2,7 TO ,7 SO
ITHAT IT IS ONLY 1 DIGIT
;(REALLY DIVIDE BY 10)
IMAKE DIGIT ABC II
IOUTPUT THE DIGIT
ICLEAR NEXT DIGIT LOCATION
;MORE DIGITS TO PRINT?
I Bl:::ANCH IF YES
IWE ARE DONE

;INIT VECTOR TO ALL ONES

MESSAG! ,ASCII /THE VALUE OF EIS:/ <15><12> /2+/ <200>
,EVEN

,ENttEXP

When you have created and checked these two programs, obtained
listings, and stored them as files on your system volume, go on to
Chapter 6, Comparing Text Files. Chapter 6 demonstrates a proof
reading aid that helps you evaluate your editing ability.

RT-11 System User's Guide (DEC-11-0RGDA-A-D), Maynard, Mass.· Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 5.

5-22

CHAPTER 6
COMPARING TEXT FILES

The RT-11 operating system provides a proofreading aid, called a
source comparison, to help you quickly establish the differences be
tween two ASCII text files. During a source comparison, the system
compares the two files, character for character, and prints on the
terminal (or line printer) any lines that contain differences.

Usually, you perform a source comparison against two files that you
expect to be the same or at least similar in content. For example, if
an individual has copied one of your files to make changes to it, you
can quickly scan the changes by performing a source comparison be
tween the new version and your original. Another use of a source
comparison is to check edits that you've made to a file. By compar
ing the backup file against the edited version, you can proofread the
changes since only the portions of text that are different are printed.

In this chapter, you will use source comparisons to find editing errors
that may exist in the demonstration programs (SUM.MAC and
GRAPH.FOR) that you created in Chapter 5. These demonstration
programs contain intentional misspellings and misplaced text which
you must correct before the programs can be used in later demon
strations. On your system volume is a counterpart for each file.
These counterparts are provided as part of the RT-11 operating sys
tem so that you can use them to perform a source comparison
against your own versions. The provided programs have essentially
been carried one step further in the editing process than your own;
they contain no editing errors. Therefore, when you compare them
against your versions, the list of differences that is printed will reflect
the typing errors that still exist in your versions - some of these
errors are intentional; others you may have inadvertently introduced
during editing. All must be corrected before you can use the
programs.

The monitor command used to compare two text files is the DIF
FERENCES command. When you type this command on the ter
minal, it activates the RT-11 utility program called SRCCOM.SAV,
which is part of the RT-11 operating system stored on the system
volume. The system prompts you for the input file names. Respond

6-1

PERFORMING
A COMPARISON

Comparing Text Files

DIFFERENCES

to the input prompts with the names of the files you want to com
pare; the default storage volume is the system volume. The output
will be sent to the terminal which is the default device for output.

The programs that you created in Chapter 5 are called SUM.MAC
and GRAPH.FOR. Their respective counterparts on the system
volume are called DEMOXl.MAC and DEMOFl.FOR. Use the DIF
FERENCES command to compare the MACRO (.MAC) files first.
The /MATCH option indicates the number of lines that determine a
"match", explained in a moment. 1

Long Command Format

I·, ·r. f:· F 1::· 1:·· 1::· N --1::· q ,. M A- ·r· (' ! .. f • ·1 (fill) t .. , ... \ ... l,... ... , .. I •<' + ••

F;· ... 1. ·.1. ,,,. 1 ,., r-1 , ... M f) " ·1 MA r' ,;:;;:-:;:-.. ,;; .!. ! J.. ::. .. A . . • . \,, \l:!!.!J

'
... : J ·· ''>'? <"'I IM MA!'' ~ .. .I. . . ~-~ ,:.. . ,:) ... •, \I:!!.!!

Short Command Format

• D IFFEHENCE!:;/M1~1 TCH ! :l DEM DX :I.• MfiC SUM. MAC (fill)

The list of differences printed on your console terminal should be
similar to that shown below. It will show all the differences listed
here, plus any others that you may have introduced yourself during
editing.

Notice the format of the list. Individual sections are marked to help
you become acquainted with the format. A description follows the
list and you should refer to it as you study the list.

A 111 ,fITLE DEMOX1,MAC <VERSION PROVIDED)
A 2):l ,TITLE SUM.MAC: VERGION 1

C l) :I BNE: SECDN[I ;BfiANCH IF NOT
D l.l MOV ,JN,RO ;oo THRU ALL PLACES, DIVIDING

8 **** C 2) :l BNE 2ND ;Bf/ANCH IF NOT
D 2) MOV ,JN,1'<0 ;oo THRU ALL PLACES, DIVIDING

********** C ll 1 ADD t10+'0,R0 ;MAKE DIGIT ASCII
D 1) , TTYON ;OUTPUT THE DIGIT

B **** C ;!)1 f.\DD ,uo+'0,R0 ;MA~E DIGIT ABC II
D 2) , TTYON ;OUTPUT THE DIGIT

********** C 1)1 ,END EXF'

8 **** C 211 ,ENDEXP

D **********
Files are differer1t

1 Users of display hardware may wish to enable both the graphics screen and the
terminal printer by first typing the CTRL/E command.

6-2

The first line of each file is always printed for identification purposes
(see lines A in the example list). Usually differences that occur in
these two lines are intentional and reflect information that is unique
to each file, such as name and file type, version or edit number, and
perhaps date of creation.

The numbers that appear at the left margin of the list further iden
tify the files. For example, 1)1 indicates the first page of the first file
(the file entered first in the command, in this case, DEMOXl .MAC);
2) I indicates the first page of the second file (SUM.MAC).

The lines of both files are compared character for character. Blank
lines are ignored, but all other characters, including tabs and spaces,
are compared. When two lines are found to be different, the system
prepares a difference section which it will subsequently print (see B).

The system prepares the difference section as follows. When it finds
two lines that are different, it notes the page number and records the
lines (see C). Next it searches for a match. A match is a certain num
ber of lines in each file which are exactly the same. Since you speci
fied a match of 1 in the /MATCH:n option (/MATCH: 1), the system
in this case searches for a single line in each file which is exactly the
same. When the system finds a match, it records the last line of the
match for identification purposes (see D). Then it prints the differ
ence section and repeats the process, preparing a subsequent differ
ence section if more differences exist. Individual difference sections
are separated from one another by a long row of asterisks, while the
short rows of asterisks separate the lines of the first file from those
of the second.

A message is printed following the comparison. Files are different
is printed if differences exist; No differences encountered is printed
if the files are exactly the same.

Check the list printed on your terminal to find the errors the system
detected. Mark each error on the listing of SUM.MAC that you ob
tained in Chapter 5.

Now perform a source comparison between the FORTRAN files,
DEMO Fl .FOR and GRAPH.FOR.

6-3

Comparing Text Files

DIFFERENCES/
MATCH:n

Comparing Text Files

Long Command Format

•DI FFEF~ENCES/MATCH: :I. ([IT)
File 11 DEMDF1+FOR (RH)
1::-i le 2'!" CH<f.~PH. FDR (ffi)

Short Command Format

•DI FFEF~ENCES/MATCH t 1 DEMOF :I.. FDF< GRAPH+ FOR (RET)

Ul
2) 1

C DEMOFl,FOR
C Gl~APH. FOR

(VERSION PROVIDED)
VERSION l

1)1 C 'STAB" IS FILLED WITH A TABLE OF HEIGHT FLAGS
1) C "STRING' rs USED TO BUILD A LINE OF GRAPH FOR PRINTING

2)1 C "STAB" IS FILLED WITH A TABLE OF WEIGHT FLAGS
2) C "STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING

1)1 MAXF=LEN(STABl
ll DO 20 IX•1,MAXX

2) :t
2)

1) 1 30
1)

**** 2) 1 ;30
2)

MAXFLEN(STAB)
no 20 1x,~1,MAXX

CALL PLJTSTR (7, STRING, ' ')
CAL.I... EXIT

CALL. PUTSTRING(7,STRING,' ')
CALL EXIT

Files sra different

Likewise, mark the errors on the listing of GRAPH.FOR that you
obtained in Chapter 5.

Now return to the section in Chapter 5 entitled "Editing a Text
File." Review the editing commands described there and the sum
mary at the end of the section. Use the appropriate commands to
correct the files SUM.MAC and GRAPH.FOR. When you finish edit
ing, again perform source comparisons against DEMOXl .MAC and
DEMOFl.FOR. If you have edited the files correctly, this message
should print on your console terminal in each case:

No differences encountered

This message indicates that no differences were found during the
comparison. Thus, your programs are ready for use in later demon
strations and you know how to successfully create and edit programs.

If differences still exist in your files and you cannot seem to resolve
them by reediting, you may continue to the next chapter if you
wish. However, you need practice editing and it is to your advantage
to rework the examples in both Chapter 5 and this chapter.

6-4

DIFFERENCES
List the differences between two ASCII text files.

DIFFERENCES/MATCH :n
Indicate the number of lines (n) to determine a match; the
default number is 3.

RT-11 System User's Guide (DEC-11-0RGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapters 4 and 15.

6-5

Comparing Text Files

SUMMARY:
COMPARISON

COMMAND

REFERENCES

CHAPTER 7
PERFORMING FILE MAINTENANCE OPERATIONS

The system volume, as it is initially supplied, contains only the files
of the RT-11 operating system the monitor files, the system device
handlers, the system utility programs, and perhaps the language proc
essors. Since the system volume serves as the default storage volume
for all system operations (unless DK: was assigned to another vol
ume), you will discover that it acquires many additional files during
normal use. For example, files that you create with the editor are
written on the system volume; edited files automatically create
backup versions on the system volume; many utility programs create
output and listing files on the system volume as part of their normal
processing operations. By the time you finish an average session of
computer operations, several new file names are added to the direc
tory of your system volume. Eventually your system volume may
become full and its directory cluttered with the names of files for
which you have no use. To avoid this you should perform regular
housekeeping, or file maintenance, operations as you use the system.
You should update and transfer copies of your important files to
other storage volumes for safekeeping and later use, and you should
delete from your system and storage volume directories the names of
files for which you no longer have a need.

The RT-11 operating system provides a number of monitor com
mands for this purpose. These commands activate the RT-11 utility
programs called PIP.SAY, DUP.SAY, and DIR.SAY (which are part
of the RT-11 operating system stored on your system volume) allow
ing you to perform file transfer and file erase operations. The com
mands used in this chapter show one way to maintain your system
and storage volume. When you become more familiar with system
operations and learn some of the commands not described here, you
may prefer other methods.

Before you perform operations that might move or erase files on a
volume, first list a directory of the volume involved. The directory
tells you the full names of files, their sizes, and whether backup
copies exist. A directory of your system volume shows the additional
files that have been added to it through normal use.

7-1

FILE DIRECTORY
OPERATIONS

Performing File Maintenance Operations

First obtain a directory of your system volume (as you learned in
Chapter 4), using the appropriate command to list it on either the
terminal or the line printer. The directory is relatively long; let it list
to completion.

Long and Short Command Formats

(Line printer)

• DIRECTDF~Y /PRINTER <fil})

(Terminal)

•DI F<ECT Clf<Y (RET)

At the end of the system volume directory you should see several
additional entries. These files are the result of the system operations
you have performed so far:

DECINII.USA 2 13--"HJN-77
DECIND.BAK '') .,_ 13-.. JUN-77
Gl~AF'H +FOR

,., 13-JUN-77
GRAPH .BAK :~ :L3·-·JUN-77
SUM +MAC 4 13-JLJN-77
SUM +BAK 4 :l 3--,JUN--77

Next list a brief directory of your storage volume. This directory
should be empty (void of any file names or file types) since you
initialized the directory in Chapter 4.

Long and Short Command Formats

(Line printer)

+ DI!:;:ECTDF<Y /BRIET/F'RINTEF~ VOL. t (RET)

(Terminal)

• DH~ECTORY /BRIEF VOL: (RET)

These directories give you the information you need to erase and
copy files. For example, you know the additional files that are now
on your system volume and you know that since the directory of the
storage volume is empty, there is ample room on it for new files to
be copied.

7-2

Performing File Maintenance Operations

You often have occasion to perfonn the same utility operation on
several files. For example, you may copy from one volume to an
other all files with the file type .MAC, or you may erase from a
volume all files with the name TEST. Rather than perform the re
quired operation on the files one at a time, it is easier to use a short
hand method provided by the RT-11 operating system called the
wildcard construction. This construction allows you to substitute an
asterisk (*) or percent sign (%) for a portion of the file name which
is variable among all the files you want used in the operation. For
example, specifying DECIND. * in a command causes the operation
to act on all files with the file name DECIND, regardless of their file
type;* .BAK causes the system to act on files with the file type BAK,
regardless of their file name. Specifying TEST%.FOR causes the op
eration to act on all files having a type of FOR, starting with the four
characters TEST, and having any fifth character (e.g., TESTA.FOR,
TESTI.FOR, etc.).

A special use of the wildcard construction involves substitution
of an asterisk for both file name and file type. *. * implies that all
files, regardless of the file name or file type, are to be used in the
operation.

Exercises in this chapter and throughout· the remainder of the
manual demonstrate various uses of the wildcard construction. How
ever, it is valid only for the file maintenance commands listed in
this chapter; the wildcard construction is not valid for any other
commands.

Storage volumes provide an area where you can store important files.
Since most files are originally created on the default system volume,
you must copy them from the system volume to the storage volume.
The following exercises show you how to make backup copies on
your storage volume of the two provided demonstration programs
(DEMOFI.FOR and DEMOXl.MAC), and how to copy to the
storage volume the two programs you created (GRAPH.FOR and
SUM.MAC).

The monitor command that copies files between volumes is the
COPY command. This command instructs the system to duplicate
the file that you indicate as input; it then gives the new file the name
and file type that you specify as output. The original version of the
file is unaffected; that is, the original version is not physically moved
to the new volume, but a copy of it is made there.

7-3

MULTIPLE FILE
OPERATIONS

FILE COPYING
OPERATIONS

B

Performing File Maintenance Operations

To copy GRAPH.FOR to your storage volume under the new name
GRAPH.TWO, type:

Long Command Format

.CCJPY @:i)
F rClm? m;:AF'H. Fem CR:~T)

To '!' vo1...: rn:;:APH. Two (R~T)

Short Command Format

(System volume is assumed
for input.)

• COPY GF:AF'H + FClF~ VOL: GF~APH + TWO (RET)

The system makes an exact copy of the file GRAPH.FOR on the
storage volume and gives the copy the name GRAPH.TWO. When the
operation is complete, the monitor prints a period at the left margin
and waits for you to enter the next command. This time, copy
SUM.MAC to the storage volume.

Long Command Format

• CClF'Y (RET)
F T'C)IT1'Y SUM+ MAC (RET)

To '!' VOL.! ~>UM. Mr-~C Ci§II)

Short Command Format

+ CUPY SUM. MAC VOL.: SUM. MAC (RET)

The system copies the file SUM.MAC to your storage volume and
gives the copy the name SUM.MAC.

Now, copy the two provided demonstration programs,
DEMOFl.FOR and DEMOXl.MAC, to the storage volume.

Long Command Format

• COPY @.ill
FrtJm'l' DEMDFl. FOt~ (§ID
To ? VUI...: I:tFMClF:t. FCJH (RU)

.COPY (BET)

From'!' DEMDX :I.. MAC @ill
To 'i' VOi...: DEMOX :l + MAC (RET)

7-4

Performing File Maintenance Operations

Short Command Format

• COPY DEMOF 1. FOR 1JOL: DEM OF :I.+ FOR (R:ET)

+COPY DEMOX1 .MAC VCH .. tDEMOX:l +MAC ([EI)

A directory of your storage volume should verify that it now con
tains these four files: 1

Long and Short Command Formats

,DIRECTORY VOL: @
13-JiJn·-77

GRAPH ,TWO 2 13-Jun-77
SUM ,MAC 3 13-Jun-77

4 Files, 11 Blocks
4751 Free blocks

DEMOFl,FOR
DEMOX1,MAC

2 13-Jun-77
4 13-Jur,-77

The directory you just listed shows that you copied the GRAPH
-demonstration file to your storage volume under a new file type,
.TWO. Assume you did not intend to copy it using a new file type
and now wish that it were assigned its original file type, .FOR. Use
the monitor RENAME command to rename the file already on the
storage volume. 2

Long Command Format

l:·,1::·NAMI::· @Ii) . '
F r•om'P VOi ... : Gl=~APH + TI..JO @)
Tei 'P VOL.: GFMPH. FDR @I)

Short Command Format

• F;:ENAME VOL.: Gl~AF'H. TWO VOL. t GRAPH. FOR Cm)

The RENAME command simply changes the file name and/or file
type of a file in the volume directory without altering or moving

1 If you are using magtape or cassette as your storage volume, read the section in
Appendix B entitled "Directory vs Nondirectory-Structured Volumes".

2Magtape and cassette users cannot use the RENAME command and should
read Appendix B, "Alternate RENAME Operation for Magtape and Cassette
Users".

7-5

FILE RENAMING
OPERATIONS

Performing File Maintenance Operations

FILE DELETION
OPERATIONS

the file itself. When you perform a rename operation, the volume
indicated in the input and output portions of the command must be
the same; otherwise a system message is printed.

Rename the file copies DEMOXl.MAC and DEMOFl.FOR presently
on your stora,ge volume to EXAMP.MAC and EXAMP.FOR respec
tively. Also rename a file currently on your system volume only,
DEMOSP.MAC, to SPOOL.MAC for a later exercise .

• F~ENAME VOi...: DE MOX 1. MAC VOL: EXAMP + MAC (R~T)

+RENAME VOL:DEMOFi+FOR VOL.!EXAMP.FOR

+RENAME DEMOSP.MAC BPOOL..MAC CBI±)

Again list a directory of your storage volume to verify that the re
naming operation occurred.

Long and Short Command Formats

, DIRECTORY VOL: (R![I)
l3-Jun-T7

GRAPH ,FOR 2 13-Jun-77
SUM ,MAC 3 13-Jun-77

4 Files, 11 Blocks
4751 Free blocks

EXAMP ,FOR
EXAMP ,MAC

2 13-Jun-·77
4 L)·-Jur,-77

Once copies of your important files are stored on a storage volume,
you can delete (erase) from the system (or any other) volume those
files that you no longer need. The file deletion operation deletes the
entry from the volume directory. Thus the space that the file
occupies on the volume becomes available for reuse. Files that you
want to delete generally include .BAK files created during editing,
temporary files created by utility programs, or any other unnecessary
files.

Now that you have copies of your important files, you can delete
several file names from your system volume. For example, you can
delete all files with a .BAK file type created as a result of editing.
You can delete the file DECIND.USA, since this was created only for
editing practice. Finally, you can delete the files GRAPH.FOR and
SUM.MAC since copies of these are now on VOL:.

Do not delete EXAMP.FOR or EXAMP.MAC even though copies of
these are also on VOL:. You should consider these two files part of

7-6

Performing File Maintenance Operations

the RT-11 operating system, and therefore should not be erased from
the system volume. These copies can serve as additional backups for
the files on the storage volume.

The monitor DELETE command is used to delete file names from a
volume. The DELETE command defaults to requesting confirmation
from the user by printing each file name on the terminal before it
deletes it. This gives you the opportunity to confirm each file before
deletion. If you type a Y response, the system deletes the file name,
while an N response instructs the system to ignore that file name and
go on to the next. You can specify as many as six input files for dele
tion. Notice how you use the wildcard construction in one of the
input files to delete all files with a .BAK file type.

Long Command Format

+DEI...ETE ~
Files? DECIND.USAv*.BAKvGRAPH.FOR,SUM,MAC

FiJ.1-:.,s dE!l.€~ted;
DI(: DEMDF1. BAK ?
DI',: INTEXT. BAI(?
DK: DEC IND. BAI(?
tit'\: DEC IND. USA ?
DK:SUM.MAC
DK!GRAPH.BAK
DI{: DE MOX l • BAI(
DK; mi:APH. FDF,

Short Command Format

+DFI...FTE DEC I ND. USA,*. BAK, GF~APH. FDF< ~ :~;uM. MAC @ill
DK:DECIND.USA? Y
DK:DECIND.BAK? Y
DK:GRAPH .BAK? Y
DK: SUM + BAI(? Y (ill)
DK:GRAPH .FOR? Y
DI(: SUM • MAC'? Y (@)

You sometimes need to obtain a listing of a file before you can de
cide whether or not to delete it. In Chapter 5, you used the RT-11
editor to obtain listings of the files you created. You can also obtain
listings of files using monitor commands. One command lists a file on
the console terminal; another lists a file on the line printer. 1 The
system volume is the assumed storage volume for the input file.

1 If a line printer is available on your sysrem, you should always use it for list
ings. Line printer listings are neater and print faster than terminal listings.

7-7

DELETE

FILE LISTING
OPERATIONS

Performing File Maintenance Operations

B
B

SUMMARY: FILE
MAINTENANCE
COMMANDS

Type one of the following sets of commands to obtain listings of
EXAMP.MAC and EXAMP.FOR.

Long Command Format

(Line Printer)

• F'R TNT (fil})
F 1 le~;'? VOL: EX AMP. MAC (RET)

• F·i:<INT
Fil1"s? VCJL!EX,~MP,FDI.: ([fi)

Short Command Format

(Terminal)

,TYPE
Fi l<c1s'f

,TYPE
F1 lc;is?

(Line Printer) (Terminal)

'I • , ... XAMt··, MA(" @TI) VtJ ... • ::. .. " • ·· .,,

VDL: EX AMP+ FOi:;; ([fi)

• PR INT VOi ... : EXAMP, MAC • TYPE ')DI..: EXAMP, MAC CBII)

, PldNT VOL: EX AMP, FOR @TI) • TYPE 'JOI...: EX AMP+ Fem (ill)

These file maintenance operations are the kinds of operations that
you should perform periodically as you use the system. File mainte
nance keeps your system and storage volumes up-to-date and pro
vides maximum free space on volumes for new files.

COPY
Copy the specified file from one volume to another.

DELETE
Delete the specified file(s) from the volume's directory. Con
firmation required before deleting the file.

DIRECTORY
List the volume directory on the terminal.

DIRECTORY/PRINTER
List the volume directory on the line printer.

PRINT
List the contents of the specified file on the line printer.

RENAME
Give a new name to the specified file.

TYPE
List the contents of the specified file on the terminal.

7-8

RT-11 System User's Guide (DEC-11-0RGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Olapter 4.

7-9

Performing File Maintenance Operations

REFERENCES

CHAPTER 8
CHOOSING A PROGRAMMING LANGUAGE

Programming languages and language processors are aids provided by
the operating system to help you develop programs of your own.
Whenever you plan to write a program, you must first decide on the
programming language that you will use, since most computer sys
tems support several. After you have chosen the language, you must
design and code your program using appropriate language statements
and being careful to follow language formatting rules and restric
tions. Finally, you must use the corresponding language processor,
which is stored on the system volume or on a volume of its own,
to convert your program statements into a format suitable for
execution.

Hundreds of programming languages have been developed for com
puter systems. Some languages can be used only for specific applica
tions or in conjunction with a particular computer system. Other
languages are general purpose; they are suitable for a variety of
problem-solving situations and, in addition, are easy to learn and
use. The languages demonstrated in this manual include two well
known and widely-used high-level programming languages (BASIC
and FORTRAN IV) and one RT-11 system-specific machine-level
programming language (MACRO-11).

High-level languages, like BASIC and FORTRAN, are usually easy to
learn and use. You write programs using language statements that
need not deal with the specifics of the computer system. The
language processor (and perhaps other utility programs as well)
handle all conversions that are necessary for program execution.
Since a single high-level language statement may perform several
computer operations, and since you need not be concerned or
familiar with the structure of the computer and peripheral devices,
you can concentrate solely on solving the problem at hand. The
language processor takes care of translating the statements into the
appropriate computer information.

Thus, high-level languages are considered machine-independent
languages because language statements are such that any program
written in the language can usually be executed on an entirely

8-1

HIGH-LEVEL VS
MACHINE-LEVEL

LANGUAGES

Choosing a Programming Language

different computer system (that supports the language) with no or
relatively few modifications.

On the other hand, machine-level languages, like the assembly
language MACRO-I 1, require that you do have knowledge of the
computer and peripheral devices and how they work together. You
write programs in formats that are closer to those required for execu
tion. Since a single machine-level language statement usually per
forms only one computer operation, you must account in your
program for each computer operation that will be required.

For this reason, machine-level languages are machine-dependent
languages. The program is coded in a format that is not usually
interchangeable among systems. Machine-level language programs can
be efficient because the knowledgeable programmer will choose the
fastest and most precise instructions for getting the job done.

Table 8-1 lists a comparison of high-level vs. machine-level languages.

Table 8-1 Language Comparisons

High-Level Machine-Level

Easy to learn and use; no ex
perience required

Machine-independent

Many hidden conversions
necessary for program exe
cution; more computer
memory is used

Slower execution time

Less efficient; the system
makes decisions concerning
computer operations

Easier to debug (find and fix
errors)

Easier to understand pro
grams; functions added with
less difficulty

8-2

More difficult to learn and
use; familiarity with the com
puter system required

Machine-dependent

Only direct translation is
necessary for program exe
cution; less computer
memory is used

Faster execution time

More efficient; the program
mer makes decisions concern
ing computer operations

Harder to debug (find and fix
errors)

Harder to understand pro
grams; functions added with
greater difficulty

Choosing a Programming Language

In general, beginning programmers, students, commercial applica
tions programmers, and the casual computer user tend to prefer
high-level languages because they are less difficult to learn and use
and produce fast results. System programmers, on the other hand,
may prefer machine-level languages. The programs they write (those
that make up an operating system, for example) must often be as
fast, efficient, and concise as possible.

The designers of a computer system generally select programming
languages that they feel will satisfy and suit the current (or perhaps
potential) system user environment. The RT-11 computer system is
designed for use in many environments: education, business,
laboratory, etc. Some of its applications include data acquisition and
analysis, record keeping, control systems, and learning through
computer simulation. RT-11 programmers and users include both
the very knowledgeable and the student/beginner.

To satisfy the varied requirements of these environments, RT-11
supports several programming languages:

High-Level

BASIC-11
FORTRAN IV
DIBOL
APL
FOCAL-11

Machine-Level

MACR0-11

Whenever you choose one or more of these programming languages
for your own use, consider the following criteria:

• What is your programming experience? What languages
do you already know?

• How much time do you have to learn a new language?

• For what applications will you use the language? How
important are program speed and efficiency?

• Will you use your program on any other computer
systems?

If you are already familiar with a language supported by the system,
you may prefer to continue using that language rather than spend

8-3

RT-11
PROGRAMMING

LANGUAGES

Choosing a Programming Language

CHOOSING
A LANGUAGE
FOR THE
DEMONSTRATION

time learning a new one. However, if you want to learn a language,
consider your application. High-level languages handle most program
ming jobs. Unless you plan to write extremely detailed or time
critical programs you should select a high-level language.

If you are a beginning programmer, you may prefer to start with a
language like BASIC or FOCAL. Both are conversational, interactive
languages. Language statements use simple, English-like words and
common mathematical expressions. You can request immediate
answers to problems by using the immediate modes of the languages,
or you can create detailed programs by combining single language
statements into larger segments. FOCAL- I I is DIGIT AL's program
ming language for solving numerical problems; BASIC-11 is a super
set of the industry-standard BASIC developed at Dartmouth College.
Chapter 10 of this manual describes BASIC-I I in more detail.

If your application mainly requires the use of complicated mathe
matical operations or mixed data types, you may prefer to select
the programming language APL. This language uses a concise and
powerful shorthand notation to perform arithmetic and logical
operations on vectors, matrices, and arrays.

RT-I I FORTRAN IV is a superset of the industry-standard
FORTRAN IV. This language has long been recognized for its use in
the scientific field; in addition, it is one of the most commonly sup
ported languages across systems. You may decide to choose
FORTRAN IV because it is a more powerful language than either
FOCAL or BASIC or because you plan to use your programs on
more than one system. Chapter 9 of this manual describes
FORTRAN IV in more detail.

Finally, if you are an experienced user, you may select the machine
level programming language MACRO-11. This is a powerful language
that allows user programs to access and utilize every possible feature
available on the RT-11 computer system. The language requires a
considerable amount of computer experience and knowledge to be
used effectively, however. The MACRO- I I language is best for you if
you are a system programmer or an experienced high-level language
programmer. It is described in more detail in Chapter 11 of this
manual.

Three RT-11 programming languages are demonstrated in the next
several chapters of this manual; FORTRAN IV, BASIC-I 1, and
MACRO-I 1. Consider your ability as a programmer. If you are a
beginner, BASIC is probably the best language for you to start with:

8-4

Choosing a Programming Language

FORTRAN is also a good choice. However, you need not be profi
cient in any of these programming languages to perform the exercises
provided in this manual.

Your particular RT-11 computer system may not provide all three
languages. First check question 6 in the Hardware Configuration
section of Chapter 2 to find out which languages are available on
your system.

Then select a language to continue the demonstration. If you choose
FORTRAN IV, continue to Chapter 9. If you choose BASIC-11, go
on to Chapter 10. If you choose MACRO-11, go to Chapter 11.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb Publishers, Inc., Petrocelli Books, 1974.

A textbook covering basic computing concepts, programming languages,
and topics in computers and society. See Part II, Chapters 7, 8, and 9.

PDP-11 Computer Family Software and Services. Maynard, Mass.: Digital
Equipment Corporation, 1977.

An overview of the available PDP-11 family products and services.

PDP-11 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A general overview and introduction to available PDP-11 software, op
erating systems, and language processors. See Section III, Chapters l, 2,
and 5.

8-5

REFERENCES

CHAPTER 9

RUNNING A FORTRAN IV PROGRAM

The FORTRAN IV programming language1 is a machine
independent programming language that was originally designed as a
quick and easy aid for solving mathematical equations and formulas.
However, FORTRAN IV is a powerful language and not difficult to
learn- or use, and is also well-suited to many other kinds of
applications.

FORTRAN (FORmula TRANslation) is an algebraically-oriented
language. You write a FORTRAN program as a sequence of language
statements that combine common English words with quasi-algebraic
formulas. You then arrange groups of the language statements into
logical units called program units. One or more program units
comprise the entire executable FORTRAN source program.

When you are satisfied with the logic of your FORTRAN source
program, you use the RT-11 editor to create it as a file (like you did
in Chapter 5). You use tabs and spaces to properly format each line,
and you may choose to insert comment, statements throughout the
source code to explain what various parts of the program are doing.
When you have finished creating the program as a complete, edited
file, you next enter it as input to the FORTRAN IV language
processor, which is stored on your system volume or on a separate
volume of its own. The FORTRAN IV language processor processes
(compiles) the language statements, converting them into internal
machine-language code called object code. This code is next
processed by the system linker, which combines your program units
and necessary system-supplied routines to make your program
suitable for execution. The development of an executable
FORTRAN program is represented in Figure 9-1.

1The PDP-11 FORTRAN IV programming language conforms to the
specifications for American National Standard FORTRAN X3.9-l 966.

9-1

THE FORTRAN IV
PROGRAMMING

LANGUAGE

Running a FOR TRAN IV Program

THE FORTRAN IV
LANGUAGE
PROCESSOR

USING LIBRARY
MODULES

CREATE EDIT COMPILE LINK RUN

Figure 9-1 Evolution of a FORTRAN Program

The FORTRAN IV language processor is a compiler that accepts
information in one format (i.e., your source program) and translates
it into another format (i.e., a machine language program). Since you
originally use the editor to create a FORTRAN source program in
ASCII format, you must next translate it into a machine format that
the computer can use. The FORTRAN compiler performs the trans
lation, producing as output a new version of the program in object
format, called an object module. You may optionally instruct the
FORTRAN compiler to produce a listing of the source program at
the same time. Figure 9-2 is a diagram of the compiler's function.

SOURCE - COMPILE - OBJECT
PROGRAM - - MODULE

LISTING

(OPTIONAL)

Figure 9-2 Function of a FORTRAN Compiler

Typical FORTRAN IV programs often require similar operations.
For example, most programs use routines and instructions that calcu
late square roots, exponentials, and other arithmetic functions; handle
input and output operations; detect certain kinds of error conditions;
test values; calculate subscripts; perform conversions; and other
similar kinds of processes. Thus, these commonly-used operations
have been gathered into a special file called SYSLIB.OBJ (default
System Library), which is provided with the RT-11 operating system
and is stored on your system volume.

9-2

Running a FOR TRAN IV Program

During processing of your source program, the FORTRAN IV com
piler examines each language statement in your program. If you use
operations that are provided in SYSLIB, the compiler notes this and
makes the appropriate references to SYSLIB. It translates all the
information gathered during processing (your converted language
statements and the references to SYSLIB) into numerical data called
object code, a machine language code that the system linker can use.
The result of the compilation, therefore, is an object format file,
called an object module, which is automatically joined with SYSLIB
(containing many object modules) and with any other required
object modules, at link time. Linking all the necessary object
modules together produces a complete, workable FORTRAN
program.

In Chapter 5 you used the RT-11 editor to create a FORTRAN
source program, which you then stored on your storage volume.
Since a source program is in ASCII format, the next step is to use the
FORTRAN IV compiler to convert it to object code.

Some RT-11 systems store the FORTRAN IV compiler on a volume
apart from the system volume 1. You can quickly determine whether
the FORTRAN IV compiler is on your system volume by using the
DIRECTORY command.

+DIRECTOl=i:Y DY: Fmn,~u~. SAV @ID

Note the system response. If the directory entry for FORTRA.SAV
is listed on your terminal, then the required FORTRAN files are on
your system volume. However, if FORTRA.SAV did not appear in
the directory listing, then the required files are not part of your
system volume. Before you can use the compiler, you must make a
volume substitution. Read the section in Appendix B entitled "Using
the FORTRAN/BASIC Language Volume".

The next step is using the monitor COPY command to copy the
FORTRAN source program from the storage volume (where you
stored it in Chapter 7) back to the system volume which serves as the
default volume for input/output operations.

1 This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the FORTRAN system files. RXOl diskette is an
example.

9-3

COMPILING THE
FORTRAN IV

PROGRAM

Running a FOR TRAN IV Program

FORTRAN

Remember that on your storage volume are two FORTRAN source
programs, the one you created (GRAPH.FOR) and the one provided
as part of the system (EXAMP.FOR). Which of these you should use
depends on the results of the source comparison you performed in
Chapter 6. If the comparison resulted in NO DIFFERENCES
ENCOUNTERED, copy your own program (GRAPH.FOR) as
follows:

Long Command Format

.COPY (@)
From? VOL! GF:APH. FDR Cf:!Ir)
To ? GRAPH. FOR (R§T)

Short Command Format

+ COPY VOL: Gt=~APH. For~ Gl=i:i!~PH. ro1:~ @ID

However, if the FILES ARE DIFFERENT message was generated by
the comparison, use the provided program (EXAMP.FOR) instead,
copying it under the new name GRAPH.FOR:

Long Command Format

• COPY (RET)

From? VOL!EXAMP.FOR
To ? GRAPH.FOR (filI)

Short Command Format

+ COPY VOL: EXAMP. nm GE'.APH. FOR @ID

The FORTRAN source file now resides on your system volume
under the name GRAPH.FOR and is the file that you will process
with the FORTRAN IV compiler. The command used to compile a
FORTRAN source program is the monitor FORTRAN command.

Use the FORTRAN command with its /LIST option to compile your
program and produce a listing. The system prompt asks you to
supply the input file name. You can omit typing the .FOR file type
since the FORTRAN command assumes this file type unless you
indicate otherwise. The system will assign the name GRAPH.OBJ to
the object module and GRAPH.LST to the listing file and store both
newly-created files on the default storage volume.

9-4

Long Command Format

+FORTRAN
Fi lel:>? mMPH/L.IST CR[!)

Short Command Format

Running a FORTRAN IV Program

Compilation begins. If the compiler discovers an error during
processing, it prints a message. In this particular case, you should see
the following on your terminal printer or screen:

+MAIN+
?FORTRAN-I-t.MAIN+J Errors: 5, Warnings: 0
FUN
?FORTRAN-I-tFUN J Errors: 1, Warnin~s: 0

This indicates that during processing, the FORTRAN IV compiler
found a total of six errors in the source program. It helps at this
point to look at the listing produced by the compiler, because more
information is shown there. Print the listing on either the line printer
or terminal, using the appropriate command below:

Long Command Format

(Line printer)

.F'RINTC@r)
F-.] ? GF''AF'l"I L s·r· ~ 1 . es. , •. ~ ~

Short Command Format

(Terminal)

+TYPE
Files? Gl:~APH. L.ST (fill)

(Line printer) (Terminal)

+PRINT Gr-<APH + l.ST @TI> • TYPE GRAPH+ L.ST Cii[r)

Your listing should look like the following example.

NOTE

It is not necessary that you understand the FORTRAN IV
language or the way this program works to successfully
complete the exercises in this chapter.

9-5

Running a FOR TRAN IV Program

roRrnAN JV rue 05-Jul -77 12:1s:13

C
C
C

LXAMP,FOR <VERSION PROVIDED)
fHIS PROGRAM PRODUCES A F~OT ON THE TERMINAL
OF AN EXTERNAL FUNCTION, FUN(X,YI

PAGE 001

C
C

THE LIMITS OF THE PLOT ARE DEfERMlNED BY fHE DATA STATEMENTS
"STAB' 16 FILLED WITH A TABLE OF HEIGHT FLAGS

0001
0002

C 'STRING' IS USED TO BUILD A LINE OF GRAPH FOR PRINTING
SCAL(ZMIN,ZMAX,MAXZ,KJmZMINtFLOAT(K-lJ*IZMAX-ZMINJ/FLOAT(MAXZ-ll
LOGICAL*l STRINGl13,3),STAB(1001

0003
00()4
000:,
0006
00()7
0008
OOO'i'
0010
0011
0013

DATA XMIN,XMAX,MAXX/-5,5,45/
DATA YMIN,YMAX,MAXY/-5,5,72/
DATA FMIN,FMAX/0,0,1,0/
ct,u. fiCOF'Y(, .. l 2] 4 !:i 6 7 8 9 +' ,STAB)
MAXF ,aLENISTABJ
DO 20 IX~:l,MAXX

x~scALIXMIN,XMAX,MAXX,IX)
CALL REPEATl'l',STRING,MAXY)
IF(IX,E0,1 ,OR, IX,EO,MAXX> GOTO 20

DO 10 IY~2,MAXY-1
0014
0()15
0()16 l()

Y=SCALCYMIN,YMAX,MAXY,IYI
IFUN=2+INT(FLOATIMAXF-31*(FUNCX,YI-FMINI/IFMAX .. FMIN>J
STRINGIIYl=STABIMINOIMAXF,MAXOCl,IFUNlll

()()17 3()

()()HJ
()()1';1

FOIHRAN IV

CM .. t. PUTSml7,STRING,' '>
CALL fcXl T
END

Diasnost1cs for Program Unit .MAIN.

lrr lir,e 0003, E·rror:
Ir, line 0004, Error:
In lina 0008, Errorl
In I :tne 001:.:.i-, Error·:

Modes cf variable MXMINQ and data item differ
Modes of variable ·rMINff and data item differ
Refererlce to undefined statement labei
F~eferer)CR to undefined statement label

In J. int' 0016, Error': W1·ur1S 11umber of s~1bscriPts for arraw •STRING·

FDRTl'iAN IV Stora~e MaP for Prosram Unit ,MAIN.

lt)cal Va,·iables, ,PSECl $DATA, Size ()()0334 110, words}

Ndm(:.?

XMIN
FMAX
M!,Xl
X
IX
y

MINO

J':JPf''

Rl4
fi*4
1*2
R*4
1*2
F(Jl(4

1,2

Offs;et
()()0214
()()()2,30

0002~;4
000262
()()()274

()(/()J02
000:!1•1

N.amE~
YMIN
ZMIN
I\
XMAX
MAXY
YMAX
MhX()

Local and COMMON Arra~s:

Na-111£:) T~J~'-~e

SIRING LIJ Vee
STAB l.*1

!;t;c·tion Offsc~t
$Dt,TA 000000
,rnATA 000047

fypt,-;:i

R*4
f\14
[12
1~14
[*2
R*4
[12

Off,:;et,
000220
000244
()()0256
0002/,/,
()00276
ooo:rn6
00().316

Name lsil'·!?

FMIN R*4
ZMAX Rl4
MAXF U2
MAXX [*2
IY 1*2
IFUN I*2

Size Dimensions
()()()()47 20,) (13,3)
000141 (5(), J (100/

St~teIT1f·~1·1t Funi::·ticirtfi and Proces::::;or····DPf1ned f·unctions Re·fE'rE•nct~d!

Offset,
00()224
000250
000260
000272
00030()
000312

Nam@ fYPe Name T~Pe Name r~Pe Name TsPe Name T~Pe Name f~Pe
SCAL Rl4 F10AI R*4

Name
SCOF'Y
EXII

r":JF'(f·) NamE1

1'<14 LEN
fill(4

r '.:H;, (+\ N cs m E•

u;• J,D·'UiT
f!sr,e:- Name.:}
R*4 IN!

T~:iPe Name
1*2 FIJN

T~P<-? Name
Rl4 F'UTSrn

T\:,r<e

1'1*4

FDf<TF<AN IV Tue 05-Jul 77 12:15:17 PAGE 001

0001
0002
0003
***** F·
0004
O()()ci

FORHl~,N IV

FDl'nf/AN IV

FUNCTION FUN(X,YI
R~SORTIXl*2+Y**21
FUN~X*YIRIEXP(-Rllll2

RFlUl·{N
END

Diasnastil:s for ~ro~ram Ur~it fUN

0000;,()

Ni1me lvPe Offset Name ,-~Pe Offset
FUN R*4 Emv 000004 X Rl4 @ 000000
R R*4 0000:lO

9-6

81 wor·ds)

Name 1·ype Offset
Y R*4 @ 000002

Running a FORTRAN IV Program

External SUBROUTINE or FUNCTION SubPro•rams Referenced:

Name T~Pe Name T~Pe Name T~Pe Name T~Pe Name TYPe Name T~Pe
scrnT R*4

The first part of the listing shows the main program unit and consists
of the language statements up to, but not including, the function.
This is followed by a diagnostics list, then by a storage map. Next the
language statements comprising the function program unit are listed,
again followed by a diagnostics list and a storage map.

Before considering the individual sections of the program listing, first
examine the program logic to determine what this program should
do. The first few lines of this program are user comment, lines that
briefly describe the program. Essentially, this program produces on
the terminal a graph of a "three-dimensional" function, FUN(X, Y).
The graph is plotted using 45 lines down and 72 characters across the
terminal page. The limits of the X and Y axes are +5 and - 5. The
third dimension, height, is a real number within the range Oto 1 and
is represented in the listing as a number within a scale of I to 9.
These dimensions are illustrated in Figure 9-3.

The SCAL function determines the value of the next coordinate on
the graph. The statements within the DO loops calculate the
coordinates using the SCAL function and determine the height value.
This is done for an entire line of coordinates across the terminal

-------'-· 72 Characters------

-5

/
z I

I,// V

-5 -----------7----------- +5

I
I

X /

+5

/
/

I
I

Figure 9-3 Dimensions of FUN(X, Y)

9-7

Running a FORTRAN IV Program

page. The entire line is then printed on the terminal using the CALL
PUTSTR statement; the number 7 in this statement is the
FORTRAN method of naming the terminal as the output device.
This procedure is repeated until all 45 lines of the graph have been
printed.

The function to be plotted is shown in the last few lines of the
program. It is compiled as a separate program unit and you can edit
these lines to plot any function of your choice (several alternate
functions are suggested later in the chapter).

This program as it stands contains errors. The compiler detected
certain error conditions during processing that prevent the program
from working properly. The compiler printed appropriate messages
in the diagnostics sections of the program listing. 1 Look first at the
messages following the main program unit. Errors were discovered in
lines 3, 4, 8, 12, and 16.

The messages for lines 3 and 4 indicate that the floating-point
variables "XMIN" and "YMIN" are assigned integer values. The
DATA statements must be changed. (Note that the same error exists
for "XMAX" and "YMAX"; however, the compiler lists only the
first error that it discovers in a line. Both "MAXX" and "MAXY" are
integer variable names, so no error exists for them.) You must
correct the DATA statements (lines 3 and 4), then, as follows:

DATA XMIN,XMAX,MAXX/-5.0,5.0,45/
DATA YMIN,YMAX,MAXY/-5.0,5.0,72/

The next two messages in the diagnostics section show that reference
has been made from both lines 8 and 12 to an undefined label. (Line
12 is actually the second portion of line 11, the GO TO statement.)
Statement label 20 is referenced in each ~ase, but only labels 10 and
30 are shown in the program. This indicates that either a statement is
missing, or that a typing error exists. Examination of the program
logic shows a typing error in line 1 7. Label 30 should actually be 20.
Correct line 17 as follows:

20 CALL PUTSTR(7,STRING,' ')

1 Refer to the RT-11 System Message Manual for greater detail of any system
messages printed.

9-8

Running a FOR TRAN IV Program

The last message in this diagnostics section states that an incorrect
number of subscripts was given for the array "STRING". Again,
examination of program logic shows that the error is actually in line
2. "STRING" is really a vector (a one-dimension array), not a matrix
(a 2-dimension array). Thus the comma is a typing error and line 2
should be changed as follows:

LOGICAL*! STRING(133>,STAB(100>

Skip next to the diagnostics section for the FUN program unit. The
message printed there refers you back to the source listing, to line 3.
A letter "P" appears next to this line. The RT-11 System Message
Manual describes a "P" error as an indication of unbalanced
parentheses. Notice that the parentheses are not properly matched in
this line. Thus, line 3 should be corrected as follows:

This explains the errors flagged by the compiler in the diagnostics
sections. Other sections of the program listing (storage map, for
example) simply provide additional information that is helpful to
programmers who wish to check the data types of various symbols
and later make sure that object modules have been appropriately
linked.

Before you can continue the exercises in this chapter, you must edit
those statements in the source program that contain errors. If
necessary, review the editing commands in Chapter 5. Then use the
RT-11 editor to edit the file GRAPH.FOR on your system volume so
that the five lines pointed out are error-free. Do not rename the file.
When you are ready, recompile the program using the FORTRAN
command and obtain a new object module and a new listing. This
time the program should compile without error (i.e., no diagnostics
should list). If diagnostics occur, you have not edited the program
correctly. Compare listings and try to correct your errors or go back
to the beginning of this chapter and repeat the demonstration.

The object module produced by the FORTRAN command is in itself
incomplete. As mentioned earlier, it needs parts of the system .
library, SYS LIB, and perhaps other object modules and libraries as
well, to form a complete functioning program. 1 All required object
modules must be joined, or linked together, before the program can
work.

1 For more information on linking files and using library files, see Chapter 12
and 13 respectively.

9-9

LINKING OBJECT
MODULES

TOGETHER

Running a FOR TRAN IV Program

B

Even if your program did not require any other object modules, you
must still link it. In addition to joining object modules together, the
link operation adjusts the object code to account for many program
units being placed one after the other. The result of the link
operation is a memory image load module, which is actually a picture
of what computer memory looks like just prior to program
execution. Figure 9-4 is a diagram of the link operation.

SYSLIB

Other OBJ's

I

OBJECT - LINK
LOAD -

MODULE MODULE

Figure 9-4 The Link Operation

To link the object modules, use the monitor LINK command. The
system prompts you to enter the names of the input modules and
any libraries other than the system library to be joined together. You
can omit typing the .OBJ file types in the command line, since the
LINK command assumes this file type for input. The system
automatically assigns the file name of the first input file and a file
type of .SAV to the output file. The linker will always scan the
SYSLIB library if it is present on the system volume.

Long Command Format

.LINK (ill)
F:ilf.~t;'r GRAPH(fil})

Short Command Format

• L. INK GRAPH <fil3:)

9-10

Running a FORTRAN IV Program

Any messages printed on the terminal identify error conditions
discovered by the system during the link operation (for example, if
you fail to specify all the object modules that are needed as input).
However, assuming you edited your source program correctly and
that it compiled without error, it should also now link without error.

A load module is one that you can run on the system. Unless your
program contains logic errors that prevent it from running properly
(errors which the system cannot always detect), running the .SAY
version of your file should produce the results you intended.
However, if logic errors exist within your program, running the
program will produce either erroneous results or none at all. If this is
the case, you must study the source program, rework it, reedit it, and
perform the compile and link operations again.

If your FORTRAN program is error-free, running the .SAY version
should produce the expected results. In this demonstration, running
the GRAPH.SAY file should produce a graph on the terminal printer
or screen.

Before you run GRAPH.SAY, you have the option of changing the
output device from the terminal printer or screen to the line printer
by using the monitor ASSIGN command to assign device names (see
Chapter 4, Assigning Logical Names to Devices). If you prefer to
print the graph on the line printer, simply assign the logical device
name 7 (which is the FORTRAN code for the terminal) to the line
printer code (LP:). You have designated a new output device without
altering the source program. To change the device assignment to the
line printer, type:

Long Command Format

• ASSIGN (RET)

F'h!:lsical device name'? LF': (RET)
Losical device n<.-3me,.~ '7 (13!I)

Short Command Format

.ASSIGN L.P: '7 Ci!IT)

This assignment remains in effect until you deassign the names or
reboot the monitor.

Now, to execute the FORTRAN demonstration program, use the
monitor RUN command. You can omit typing the .SAY file type
since it is assumed within the RUN command. Type:

9-11

RUNNING THE
FORTRAN IV

PROGRAM

B

Running a FORTRAN IV Program

COMBINING
OPERATIONS

EXECUTE

Long and Short Command Format

+ RUN GRAPH (ill)

After a brief pause, the graph begins to print on the terminal (or line
printer) and should look like the graph shown in Figure 9-5.

**
* 111111111111111111 111111111111111111 *
* 111111111111111111111 111111111111111111111 *
* 11111111 11111 11111 11111111 *
* 1111111 1111 1111 1111111 *
* 111111 22222222222 111 111 22222222222 111111 *
11111 22222 2222 111 111 2222 22222 11111
1111 2222 3 22 11 11 22 3 2222 1111
1111 222 333333333 22 11 11 22 333333333 222 1111
111 22 333 333 22 11 11 22 333 333 22 111
111 222 333 4444 33 2 1 1 2 33 4444 333 222 111
111 222 33 4444444 3 2 11 11 2 3 4444444 33 222 111
111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111
111 222 33 4444 444 3 2 11 11 2 3 444 4444 33 222 111
1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111
11111 222 33 444 3 2 11 11 2 3 444 33 222 11111
* 1111 22 3333 333 2 1 1 2 333 3333 22 1111 *
* 11111 222 22 11 11 22 222 11111 *
* 11111 222222222 111 111 222222222 11111 *
* 11111111 1111 1111 11111111 *
* 1111 1111 *
* *
* *
* * * 1111 1111 *
* 11111111 1111 1111 11111111 *
* 11111 222222222 111 111 222222222 11111 * * 11111 222 22 11 11 22 222 11111 *
* 1111 22 3333 333 2 1 1 2 333 3333 22 1111 *
11111 222 33 444 3 2 11 11 2 3 444 33 222 11111
1111 222 33 44444444 33 2 ll 11 2 33 44444444 33 222 1111
111 222 33 4444 444 3 2 11 11 2 3 444 4444 33 222 111
111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111
111 222 33 4444444 3 2 11 11 2 3 4444444 33 222 111
•111 222 333 4444 33 2 1 1 2 33 4444 333 222 111*
111 22 333 333 22 11 11 22 333 333 22 111
1111 222 333333333 22 11 11 22 333333333 222 1111
1111 2222 3 22 11 11 22 3 2222 1111
11111 22222 2222 111 111 2222 22222 11111
* 111111 22222222222 111 111 22222222222 111111 *
* 1111111 1111 1111 1111111 *
* 11111111 11111 11111 11111111 *
* 111111111111111111111 111111111111111111111 *
* 111111111111111111 111111111111111111 *
**

Figure 9-5 The Result of GRAPH.SA V

To produce these results, you first compiled the FORTRAN source
program (GRAPH.FOR), then linked it with the default library
(SYSLIB.OBJ), then ran the resulting .SAV file (GRAPH.SAY). You
can combine these three operations using one monitor command, the
EXECUTE command. This command instructs the system to select
the appropriate language processor (which you indicate as an
option), then process, link, and run the program. For example, to
combine the compile·link-run operations that you performed in this

9-12

Running a FORTRAN JV Program

chapter, you would use the following command (do not actually
type this command until you have read the next section, Alternate
Functions):

Long and Short Command Format

.EXECUTE GRAPH/FOFHRAN/L.IST@)

The following are some alternate functions that you can substitute in
your FORTRAN source program to produce different graphs. Simply
reedit the program (GRAPH.FOR) so that lines 1-5 in the function
portion at the end contain one of the following alternate functions.
Then use the EXECUTE command to rerun the program. The source
program compiles, links, and runs and the new graph automatically
prints on the terminal (or lineprinter).

FUNCTION 1

FUNCTION FUN(X,Y)
FUN=EXP(-SQRT<X**2+Y**2))
RETURN
ENr1

FUNCTION 2

FUNCTION FUN(X,Y)
R=SQRT<X**2+Y**2)
FUN•X*Y*<R-3.)/(1.tEXP(J.*<R-3.5)))
RETURN
END

FUNCTION 3

FUNCTION FUN<X,Y>
FUN=EXPC+SQRTCX**2+Y**2))/1177.4
RETUl:~N
END

EXECUTE
Combine the compile-link-run operations into one command.

EXECUTE file/FORTRAN
Combine the compile-link-run operations into one command,
and specify the input file to be a FORTRAN file.

9-13

ALTERNATE
FUNCTIONS

SUMMARY:
COMMANDS TO
RUN FORTRAN

PROGRAMS

Running a FORTRAN IV Program

FILE
MAINTENANCE

EXECUTE file
Combine the compile-link-run operations into one command.
Specify the libraries to be used during linking.

EXECUTE/LIST
Combine the compile-link-run operations into one command.
Obtain a listing file of the source program and print on line
printer.

FORTRAN
Compile the FORTRAN source program and produce an object
module.

FORTRAN/LIST
Compile the FORTRAN source program and produce both an
object module and a listing file.

LINK
Link individual object modules together to form a complete
program and produce a load module.

RUN
Run the indicated load module.

Before continuing further you should perform the necessary file
maintenance operations. Obtain a directory of all files on your
system volume that have the name GRAPH regardless of file type;
these files were created as a result of the exercises in this chapter:

Long and Short Command Format

• D lFIECTCH(, Gl'<(.1PH, * (@)
05·-,Jul·· .. 77

GRAPH ,BAK 2 24-Jun-77
GRAPH .FOR 2 05-Jul-77
GRAPH +OBJ 16 05-Jul-77

6 Files, 51 Blocks
1231 Free blocks

i,mt-1PH • f:lAV
GRAPH ,LST
Gl'~AF'H • MAP

20 o~-:; Ju l ··· 77
8 0:'5---.Jul---77
:-J 23·-,Jun· .. ·77

The fact that you have corrected errors in the source file
GRAPH.FOR makes the version of that file on your storage volume
obsolete. Thus, transfer the updated copy from your system volume
to VOL:, replacing the copy of GRAPH.FOR on the storage volume
with the new version.

9-14

Long Command Format

• COF'Y (RET)

From'? GFMPH. FOi;: (RET)

To "!' VOL..: GRAPH. FOi;: (BID

Short Command Format

Running a FORTRAN IV Program

Next similarly transfer GRAPH.LST and GRAPH.SA V to your
storage volume. This allows you to examine a listing or rerun the
FORTRAN program without recompiling and relinking the source.

Long Command Format

+ COPY (RET)

F rom'i' GR,~PH. L.ST, m;:,;PH. (3AV @ITl
TO 'i' VOL: (RET)

Short Co'mmand Format

• COPY GRAPH. un, GRAPH. SAV VOL.: (RD)

Once you have transferred all files of value to your storage volume,
delete the useless files from the system volume (i.e., all the GRAPH
files):

Long Command Format

• DELETE (RET)

Fi 1 es? GHAPH. * (R];r)
Fi le~1 deleter.H

[II(! GJ:;:APH. BAK ? Y (RET)

DK: GRAPH+ SAV ? Y (RET)
DK: GRAPH+ FOF~ 'f Y {RET)
mo GF<APH. L.ST 'i' Y CR Er)
DK: GRAPH. OB,.J ? y (RET)

DK:GRAPH+MAP ? Y

Short Command Format

• DELETE GRAPH.* (RET)

Files deleted:
DK: GRAPH. BAI\ '!' y (RET)
DI(: Gl~APH • SAV 'i' Y (Bi±)
[IK; GRAPH+ FOR rt Y (RET)
DK: GRAPH+ LST ,.,. Y (~ET)
DK; GRAPH. OBJ 'F y (R~T)

DK: GRAPH. MAP '? Y (ifn)

9-15

Running a FORTRAN IV Program

REFERENCES

Finally, obtain an up-to--date directory listing of your storage volume
so that you can see its current status:

Long and Short Command Format

Dit=([CTOJ'.<Y 'JOL.
08-·,.JuJ.····77

GRAPH +FOR 2 OS-Jul-77
GRAPH +LST 8 05-Jul-77
SUM +MAC 3 13-Jun-77

6 Files, 39 Blocks
4723 Free blocks

EXAMP +FOR
Gl:;:APH + SAV
EXAMP ,MAC

2 ::!.B···Jan·-·77
20 0::'i--Jul··-77

4 2!5-··Fe;ib--77

This completes the FORTRAN demonstration. Continue to Chapter
12 to read about the linking process. If you followed the special
instructions in Appendix B to load the language volume, leave this
volume in device unit O until you have finished Chapter 12.

McCracken, Daniel D., A Simplified Guide to FORTRAN Programming. New
York: Wiley, 1974.

An introduction to programming in the FORTRAN language.

PDP-11 FORTRAN Language Reference Manual (DEC-11-LFLRA-C-D, DNl).
Maynard, Mass.: Digital Equipment CofPoration, 1977.

A reference manual and guide to programming in the PDP-11 FORTRAN
IV language.

RT-11 FORTRAN IV Installation Guide (DEC-11-LRSIA-A-D) Maynard,
Mass.: Digital Equipment Corporation, 1977.

An RT-11-specific manual that contains instructions for installing the
RT-11 FORTRAN language processor, and that describes differences be
tween versions and known problems.

RT-11 RSTS-E FORTRAN IV User's Guide (DEC-I 1-LRRUB-A-D). Maynard,
Mass.: Digital Equipment Corporation, 1977.

An RT-I I-specific manual that contains information necessary to compile,
link, run, and debug a FORTRAN IV program.

9-16

CHAPTER 10

RUNNING A BASIC-11 PROGRAM

The BASIC-11 program language1 is a machine-independent program
ming language that is one of the easiest languages for the beginning
programmer to learn. It has both elementary language features that
you use to write simple programs, and more advanced operations
that allow you to produce complex and efficient programs. In addi
tion, a special "immediate mode" lets you use BASIC like a calculator
to obtain instant answers to mathematical problems.

BASIC (Beginner's All-purpose Symbolic Instruction Code) is con
versational in nature. It uses simple English keywords and common
mathematical expressions to form easily-understood language
statements.

You write a BASIC program as a series of one or more program lines.
You begin each program line with a number that both identifies the
line and indicates the order in which the line will be processed.
Individual program lines contain one or more BASIC language state
ments that define the operations to be performed.

When you are satisfied with the logic of your BASIC source program,
you create it as a file. However, unlike other programming languages
that you may use, you create the file under the control of the BASIC
language processor, which is part of the E.T-11 operating system and
is stored on your system volume or on a separate volume of its own.
Thus, you use commands that are part of the BASIC language
processor to create and edit the program, list it, run it, and save it for
later use.

The BASIC language processor is an interactive interpreter. It allows
you to create and execute a program in its entirety or a few lines at

1 BASIC-I l is a superset of the standard BASIC language developed at Dartmouth
College.

10-1

THE BASIC-11
PROGRAMMING

LANGUAGE

THE BASIC
LANGUAGE

PROCESSOR

Running a BASIC-I 1 Program

USING
THE BASIC
INTERPRETER

r------------------------,
I I
I BASIC I
1 _____ ------ ___ _,I

I CREATE I · I EDIT I · I RUN I
~------------------------J

Figure 10-1 Functions of the BASIC Language Processor

a time. The interpreter examines each program language statement,
interprets it, and executes it before going on to the next. If it dis
covers an error that prevents further processing, it prints a message
on the terminal informing you of the error condition and stops. You
correct the error so that execution can continue past that point, and
then rerun the program.

The functions of program creation, editing, processing, and execution
are all handled by the BASIC language processor. Some RT-11
systems store the BASIC interpreter (language processor) on a volume
apart from the system volume. 1 You can quickly determine whether
the BASIC interpreter is on your system volume by typing the
monitor DIRECTORY command and specifying the BASIC.SAY
program.

+DIRECTORY BASIC+SAV C~u)

Note the system response. If the directory entry for BASIC.SA V is
listed on your terminal, then the required BASIC files are on your
system volume and you are ready to use the interpreter. However, if
BASIC.SA V did not appear in your listing, then the required files
are not part of your system volume. Before you can use the inter
preter, you must make a volume substitution. Read the section in
Appendix B entitled "Using the FORTRAN/BASIC Language
Volume".

1This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the BASIC system files. RXOl diskette is an example.

10-2

Now use the monitor BASIC command to activate the BASIC
interpreter:

Long and Short Command Format

+ BASIC (RET)
BASIC-11/RT-11 V02-02
OPTIONAL FUNCTIONS CALL, NONE, OR INDIVIDUAL)?

A prompting message is printed by BASIC. You must respond with
an A, N, or I and a carriage return to indicate whether you want to
preserve all, none, or some of the arithmetic functions initially pro
vided by BASIC. BASIC's functions include operations that calculate
random numbers, determine absolute values, convert octal and
binary numbers to decimal, and so on. You can conserve memory
space by saving only those functions that your program needs. How
ever, for now, instruct BASIC to save all the functions by typing:

A (RET)

READY

BASIC prints the READY message to indicate that it is ready to
accept a BASIC command. Any text that you type that is not
preceded by a BASIC command is accepted as program (or immediate
mode) input. If at any time you wish to return to the monitor
command mode, simply type the BYE command following the
READY message. READY appears after any completed BASIC
execution, one interrupted by a double CTRL/C, or any BASIC
wait condition terminated by a single CTRL/C.

NOTE

It is not necessary that you understand the BASIC language
or the way the examples work to successfully perform the
exercises in this chapter.

Immediate mode allows you to use the BASIC interpreter as you
would a calculator to obtain immediate answers to arithmetic prob
lems. You enter the appropriate BASIC statement keyword and any
necessary mathematical formula. When you type a carriage return
(the RET key), BASIC immediately calculates and prints the results.
Use the terminal DELETE key and the CTRL/U command to correct
any typing errors. For example, type:

10-3

Running a BASIC-I I Program

Immediate Mode

Running a BASIC-I I Program

EJ

Creating and
Editing a
BASIC Program

PRINT (128+75>*3 (@)
609

BASIC adds the two numbers in parentheses, multiplies them by 3,
and prints the answer. The PRINT statement causes the answer to be
printed on the terminal. As another example:

PRINT INT(34.67) ~
34

READY

The greatest integer less than or equal to 34.67 is printed.

You can combine several statements on a single line, or on several
lines, including variable names, arithmetic equations, and data.
Individual statements are separated from one another by a back
slash (\) character. BASIC considers all the information, calculates
the answer and prints it on the terminal. For example:

READY
PRINT "THE HEIGHT Hl" YA*SIN(C)HH "METEFrn" (RET)
THE HEIGHT IS 15.8216 METERS

READY

The first statement equates variable names with values; the second
statement introduces a formula for calculating a result and prints it.

You can use immediate mode to solve fairly lengthy and complicated
mathematical problems by combining statements and printing identi
fying messages. However, immediate mode information is temporary.
You cannot save it, and you can change it only by retyping every
statement line. If your needs are more complex, or if you want to
save your statements, you should create a BASIC program.

To create a BASIC program, you simply assign line numbers to
language statements and then type the numbered statements on
the terminal keyboard.

10-4

Now your program lines are saved in memory and you can transfer
program control to specific lines within the program, repeat parts
of the program any number of times, store the entire program for
later use, and perform other similar operations that are not possible
in immediate mode.

Once you have created the program, you use BASIC editing com
mands to list lines, change lines, add and erase lines, and correct
typing errors. In addition to the DELETE key and the CTRL/U
command, BASIC provides a SUB command (SUBSTITUTE) for the
purpose of correcting typing errors. This command allows you to
substitute new characters for existing ones in a line. For example,
type:

1() F'IUNT "THIS IS A B,~DIC Pl=i:ClGt:;:,~M" (RET)
suB 1 o @BADCeBAsc1 (RET)

10 PRINT ·THIS IS A BASIC PROGRAM"

l~EAI1Y

The SUB command substitutes the letters BAS for BAD in line 10.
Use a delimiting character (shown here as @) to separate the old
text from the new. The delimiter can be any character as long as
it is unique in the line. The corrected line is automatically printed
by BASIC following use of the command. As another example, type:

15 B==10\C==~5 (RET)
20 LET A·-B+C\Pt:;:INT C (RET)

There are two typing errors in line 20; the should be an = and the
C at the end of the line should be A. These errors can be corrected
with the SUB command, as follows:

SUB 20 @-C1=fr~ <iiu)
20 LET A=BtC \ PRINT C

READY
SUB 20 @C(M@2
20 LET A=BtC \ PRINT A

REAIIY

The second SUB command changes the second occurrence (specified
by the 2 after the last @) of C to A.

10-5

Running a BASIC-I I Program

Running a BASIC-11 Program

You can erase an entire line by typing the line number followed by a
carriage return,

1() (RET)

or by using BASIC's DEL command 1. Use the DEL command
(DELETE) to erase a single line or several:

DEL 1 !5·-20 Cm)

This erases all numbered statement lines with numbers between and
including lines 15 and 20.

To list lines of a program, BASIC provides the LIST command. First,
create a few program lines:

'.'.'i FOR I:::: :l. TD 10 (RET)
.2() INPUT ~J (RET)
25 LET T::::T+,J (fili)
50 NEXT I (RET)
5~5 Pl=<INT "THE TOTAL. I~:; 11 YT (R~T)
BB END (RET)

List individual lines by specifying the line number. For example,
type:

NONAME 08-JUL-77 00:19:49

5 FCH~ J:::::1 TD :to

li:EADY

Notice that BASIC prints a header line. Since you have not as yet as
signed a name to your program, BASIC assigns it the name NONAME

1 Do not confuse the BASIC DEL command with the DELETE key on the
terminal keyboard.

10-6

and prints this name, along with the date (which is only correct if
previously entered via the DATE monitor command) and the time
when you use the LIST command. You can omit the header line by
using the LISTNH command instead of the LIST command:

I ·r r-··r·N1 I •=·() nn ~ ... • ,:; " ,.J C> CJ \.8llJ

50 NEXT I
55 PRINT "THE TOTAL IS"fT
BB END

F~EADY

By typing the LIST or LISTNH commands without indicating any
line numbers, you can print on the terminal a listing of your entire
program. Terminate the command with only a carriage return:

LISTNH (RET)
5 FOR 1::::1 TD :t.O
20 INPUT J
25 LET T==T+,..J
50 NEXT I
55 PRINT •THE TOTAL IS"JT
88 END

READY

Finally to erase the entire program, which you must do before typing
a new program, use the SCR command (SCRATCH). Type:

SCR @Ii)

READY

All program lines are erased from memory.

line#
Erase the indicated program lines.

DEL line#
Erase the indicated program lines.

LIST
List the entire program and print a header that includes the
program name, date, and time.

10-7

Running a BASIC-I I Program

SUMMARY:
BASIC EDITING

COMMANDS

Running a BASIC-11 Program

LIST line#
List the indicated lines and print a header that includes the
program name, date, and time.

LISTNH
List the entire program but do not print a header.

LISTNH line #

SCR

List the indicated lines but do not print a header.

Erase all program lines from memory and change the name to
NONAME.

SUB line # @FIRST @ SECOND @ n
Replace the nth occurrence of the FIRST character(s) with
the SECOND character(s) in the indicated line (default is n=l).

Create the following demonstration program I using the appropri
ate BASIC editing commands, exactly as it appears here. If you
forget to insert a line, type it at the end or when you notice the
omission; BASIC sorts and arranges lines by number prior to execu
tion regardless of the order in which they are typed. When you are
done, list the entire program and make a final check for typing
errors.

100 REM THE PROGRAM 23 MATCHES
101 flEM
110 PRINT 'WE BEGIN WIIH 23 MAfCHU,. YUU MOVE Frnsr. YOtJ MAY TAKE'
115 PRINT "1, 2, OR 3 MAfCHES, TYF~ YOUR CHOICE FOLLOWED BY A CAR·'
120 PRINT "RIAGE REIURN, THEN fHE COMPUTER CHOOSES 1, 2, OR 3"
125 PRINT 'MATCHES, YOU CHOOSE AGAIN, AND SU ON, WHOEVER MUST'
130 PRINT 'TAKE fHL LAST MATCH, LOSES,'
140 PRINT \ LET Mm23
200 REM THE HUMAN MOVES
201 REM
210 PRINT \ PRINT "THERE ARE NOW"iMl'MATCHLS,"
215 f'RJNT \ Pf<INI 'IWW MANY J!O YDI.J !AKE";
~!30 INPU1 H
240 lF H>M l~EN 510
250 IF H<>INTCH THEN 510
260 IF H<~O THEN 510
270 IF H>=4 THEN 510
2fl0 L.ET M•"M·+I
290 IF M=O THEN 410
300 REM THE COMPUTER MOVES
301 l~EM
305 IF M=l fHEN 440
310 LET R•M-4*INT(M/41
320 IF R•>l THEN 350
330 LET C=INTl3*RND>tt \GOTO 360
350 LET C=(Rt3l-4*INTICR+3)/4)
360 LET MccM ··C
370 IF M=O THEN 440
380 PRINT \ PRINT 'THE COMPUTER rOOK"ICI',,,,•;
:390 GO TO 31()
400 REM SOMEBODY WON
401 REM

123 Matches, IO I BASIC Computer Games, Maynard, Mass.: Digital Equipment
Corporation, 1975.

10-8

Running a BASIC-11 Program

410 PRINT \ PRINl 'THE COMPUTER WON,' \GOTO 999
440 PRINT \ PRINT 'YOU WON,' \GOTO 999
500 REM BAD INPUT
501 REM
510 PRINT 'ENTER ONLY 1, 2, OR 3,' \GOTO 215
999 END

As you can see from the first few lines of the listing, this program is a
mathematical game in which you match your logic against the
program logic. The PRINT statements in the program print messages,
game instructions, results, and so forth, on the terminal. The REM
statements identify comment lines -- remarks that provide general
information about the program, but that are ignored by BASIC
during processing. The INPUT statement in line 230 allows you to
supply data from the terminal. Depending on the value you enter,
program control transfers to various other parts of the program. For
example, if you type an illegal value, program control skips ahead to
a PRINT statement in line 510 informing you of your mistake and
then returns to line 215 to ask for a value again. The mathematical
algorithms of this program are in lines 310 through 350 and
determine the number of matches the computer will select based on
your choice.

Once you have typed the program and checked the listing to be sure
that it corresponds to the example, you are ready to run it. The
BASIC RUN command initiates program execution. This command
prints a header that includes the program name, data, and time. If
you want to omit the header line, type the RUNNH command
instead.

RUNNH @IT>

If you typed the program correctly, you will see this text print on
your terminal:

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU MAY TAKE
1, 2, OR 3 MATCHES. TYPE YOUR CHOICE FOLLOWED BY A CAR
RIAGE RETURN, THEN THE COMPUTER CHOOSES 1, 2, OR 3
MATCHES, YOU CHOOSE AGAIN, AND SO ON, WHOEVER MUST
TAKE THE LAST MATCH, LOSES.

THERE ARE NOW 23 MATCHES.

HOW MANY DO YOU TAKE?

NOTE

If this response does not appear, you have not entered the
program correctly. Compare your listing very carefully

10-9

RUNNING A
BASIC PROGRAM

Running a BASIC-11 Program

against the one provided earlier. Spacing does not matter,
but all other characters must match. To correct your errors
type CTR L/C, which, under control of BASIC only,
returns you to BASIC command mode, indicated by the
READY message. Correct the program and then rerun it.

When the program pauses and asks you a question, you must supply
data, in this case a 1, 2, or 3. Type your choice (represented here by
n) followed by a carriage return:

n CfilI)
?SYNTAX ERROR AT LINE 250

READY

BASIC discovered an error 1 in line 250 that prevents further
processing. Check line 250 in your listing or list it on the terminal:

250 IF H<>INT(H THEN 510

READY

Note that a right parenthesis is missing after the second Hin this line.
Correct the line using the SUBSTITUTE command:

SUB 2:::iO fr/ (HW (H) W @])
250 IF H<>INT(H) THEN 510

f,:EADY

You are ready to run the program again. Type:

BASIC begins processing at the start of the program.

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST, YOU MAY TAKE
1, 2, OR 3 MATCHES, TYPE YOUR CHOICE FOLLOWED BY A CAR
RIAGE RETURN, THEN THE COMPUTER CHOOSES 1, 2, OR 3
MATCHES, YOU CHOOSE AGAIN, AND SO ON, WHOEVER MUST
TAKE THE LAST MATCH, LOSES,

THERE ARE NOW 23 MATCHES,

HOW MANY DO YOU TAKE?

1 Refer to the RT-11 System Message Manual for greater detail of any messages
printed during normal system use.

10-10

Type your choice again. But notice this time that a different kind of
error is detected. The BASIC interpreter has entered an infinite loop,
a series of commands that it repeats endlessly. After several lines
have printed, type a double CTRL/C; this interrupts execution and
returns control to BASIC command mode.

n

THE CCJMPUTEJi: TOOK 1 •• + +

THE COMPUTER TOOK :L + + + +

THE COMPUTH(TOOK 3 + + • +-

THE COMF'UTEJi: TOOi\ '")

··- • + • +

THE COMPUTEF.: TOOK '') ,. ... + + + +

THE COMPUTEF~ TOOi\ 3 + + • +

THE COMPUTER TOOK 1 ••••
THE COMPUTEF~ TOOK 1 • -+ + +

THE COMPUTER TOOi\ ;3 + • + •

THE COMPUTER TOOK 1 +

THE COMPUTER TOOK 3 + + + •
(crnuc)

STOP AT LINE 380

l~EADY

An infinite loop is a programming logic error. However, since the
error does not prevent processing, BASIC does not print an error
message. Instead BASIC is caught in a loop of instructions and
executes them endlessly. This particular loop is obvious because it
prints a line of text; other kinds of loops may not be so evident. At
this point you must examine the program logic to determine why
these instructions are being repeated.

Look at your listing of this program. The problem in this case is in
line 390. This line instructs program control to return to line 31 0;
therefore lines 310 through 390 are repeated endlessly without ever
obtaining your next value choice. Program control should really
return to line 210. Correct line 390 as follows:

SUB 390 @3@2@)
390 GO TO 210

HEAIIY

Now you are ready to run the program again. This time the entire
program should execute without error. Enter your value choices
when requested. (A hint to playing the game: your first value choice
determines whether you can win; if your first choice is wrong, the
program has the advantage throughout.) A sample run follows.

10-11

Running a BASIC-11 Program

CTR L/C CTR L/C

Running a BASIC-] 1 Program

SUMMARY:
BASIC EXECUTION
COMMANDS

RUN

l<UNNH @TI)

WE BEGIN WITH 23 MATCHES, YOU MOVE FIRST, YOU MAY TAKE
1, 2, OR 3 MATCHES, TYPE YOUR CHOICE FOLLOWED BY A CAR
RIAGE RETURN, THEN THE COMPUTER CHOOSES 1, 2, OR 3
MATCHES, YOU CHOOSE AGAIN, AND SO ON, WHOEVER MUST
TAKE THE LAST MATCH, LOSES,

THERE ARE NOW 23 MATCHES,

HOW MANY DO YOU TAKE'!' J (ill)

THE COMPUTER TOOK 1 ,,,,
THERE ARE NOW 21 MATCHES,

HOW MANY DO YOU TAKE? 1

THE COMPUTER TOOK 3 ,,,,
THERE ARE NOW 17 MATCHES,

HOW M(\NY ltCJ YDU TAi':E'i' ;> @TI)

THE COMPUTER TOOK 2 ,,,,
THERE ARE NOW 13 MATCHES,

HDW MP1NY DO YOU Tfil<;E? ·1 ~

THE COMPUTER TOOK 3 ••••
THERE ARE NOW 9 MATCHES,

HOW MANY DO YOU TM(E? J (fill)

THE COMPUTER TOOK 3 ••••
THERE ARE NOW 5 MATCHES,

HOW MANY DD YOU TAKE'!' 3 (fill)

THE COMPUTER TOOK 1 ,,,,
THERE ARE NOW 1 MATCHES,

HOW MANY DO YOU TAl{E'i' O @If)
ENTER ONLY 1, 2, OR 3,

HOW MANY DO YOU TAl<E'!' J @If)

THE COMPUTER WON,

n:ADY

Execute the BASIC program currently in memory; print a
header line including the program name, date and version
number.

RUNNH
Execute the BASIC program currently in memory; omit the
header line.

CTRL/C
Under control of BASIC only, interrupt execution of the
BASIC program and return control to BASIC command mode.

10-12

BYE
Return control to monitor command mode (only when using
BASIC).

You can transfer the BASIC program currently in memory to a
storage volume by using the SA VE command of BASIC. The SA VE
command copies the program to the storage volume giving it the file
name and file type that you indicate in the command line. A file
type of .BAS is assigned automatically unless you indicate otherwise.

Use the SA VE command to store this BASIC program as
MATCH.BAS on the storage volume (VOL:) as follows:

!:>AVE VOL.! MATCH @TI)

READY

After you save a BASIC program on a storage volume, you can create
a new program in memory by typing the BASIC NEW command.
This command erases the current memory contents and asks you for
a new program name:

NEW (RET)
NEW FILE NAME···-

Type any file name you wish and BASIC assigns it to the file you
create. Or you can respond by typing only a carriage return: BASIC
then assigns the file name NONAME.

Another way to create a new program in memory is to type the
BASIC SCR command. This command simply erases the current
memory contents. It assigns the name NONAME:

SCR@)

READY

To use an existing BASIC program, one that you have previously
stored on a storage volume, type the BASIC OLD command:

OLD~
OLD FILE NAME--

10-13

Running a BASIC-I I Program

FILE
MAINTENANCE

B

Running a BASIC-11 Program

REPLACE

Reply by typing the device name, file name and file type of the file
that you want to use. If you omit an explicit device name, BASIC
assumes DK: (the default volume), and if you omit an explicit file
type, BASIC assumes .BAS. BASIC erases memory and then copies
the program from the volume into memory. For example, type:

MATCH
!~EADY

This copies DK: MATCH.BAS back into memory.

Assume that you have edited or changed the MATCH.BAS file and
now want to transfer it back to VOL:. Since the file already exists as
MATCH.BAS on that volume, you must use the BASIC REPLACE
command:

REPLACE VOL:MATCH

ri:EADY

The REPLACE command replaces an existing file with a new version.

The SA VE and REPLACE commands copy a BASIC program from
computer memory to a storage volume. As these commands copy the
program, they convert it from the internal format used by BASIC to
ASCII format. Thus, you can, if you prefer, use the RT-11 editor to
create and edit BASIC programs, since the editor also uses ASCII
format. However, many users would rather use BASIC to create and
edit a BASIC program, since they can then run the program, reedit it,
rerun it, and save the new version. all in BASIC command mode,
rather than perform the several corresponding monitor commands.

The last file maintenance operation that you should perform is to
obtain an up-to-date directory of your storage volume so that you
can see its current status; however, you must return to monitor
command mode to do this. Type the BYE command; this BASIC
command (rather than CTRL/C) returns control to monitor
command mode. Next use the DIRECTORY monitor command to
check the status of your storage volume.

BYE @I!)
, DrnECTOl~Y /f.<l'UFI" <J()L: ~
08· .. Jul 77

GRAPH ,FOR EXAMP ,FOR GRAPH .LSI
EXAMP ,MAC MATCH ,BAS

7 File&, 40 Blocks
4722 Free blocks

10-14

Gl'IAPH , BAV SUM ,M/\C

NEW

OLD

Create a new BASIC program, assigning the file name indicated.

Copy into memory (for use under BASIC) an existing BASIC
program.

REPLACE
Copy the BASIC program currently in memory to the indicated
storage volume, replacing the version that already exists on that
volume.

SAVE
Copy the BASIC program currently in memory to the indicated
storage volume.

This completes the BASIC demonstration. Before you continue to
Chapter 14 to learn about program debugging, make sure that the
main system volume is loaded in device unit 0. If you followed the
special instructions in Appendix B to load the language volume, you
should now stop the system, unload that volume, load the main
system volume, and rebootstrap the system.

BASJC-11 Language Reference Manual (DEC-I 1-LIBBB-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1976.

A reference manual and guide to programming in the BASIC-I I language.

BASIC-11/RT-l l Installation Guide (DEC-I 1-LIBT A-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

An R T-11-specific manual that contains instructions for installing the
RT-11 BASIC language processor and that lists known problems and
differences between versions.

BASIC-11/RT-l 1 User's Guide (DEC-I 1-LIBUA-A-D). Maynard, Mass. Digital
Equipment Corporation, 1977.

An RT- I I-specific manual that contains information necessary to create,
edit, run and debug a BASIC program.

10-15

Running a BASIC-I I Program

SUMMARY:
BASIC FILE

MAINTENANCE
COMMANDS

REFERENCES

CHAPTER 11

RUNNING A MACR0-11 ASSEMBLY LANGUAGE PROGRAM

The MACRO-11 programming language is a machine-dependent pro
gramming language developed for the PDP-11 programmer, or for the
FORTRAN IV programmer who intends to combine assembly lan
guage routines and FORTRAN routines. ·The MACRO-1.1 language
enables the knowledgeable programmer to access all the features of
the RT-11 computer system using a precise and efficient program
ming code.

The MACRO-11 assembly language uses the PDP-11 instruction set,
a list of mnemonic instructions that correspond to various PDP-11
computer operations. These instructions allow you to add, compare,
increment, complement, and perform many other manipulations on
numerical data. The instructions are summarized in a pocket-sized
folding card, called the PDP-11 Programming Card (Figure 11-1),
and are described in detail in the PDP-11 Processor Handbook. By
choosing the appropriate instructions, and by providing any addi
tional data needed, you can create a complete program.

-·~ .. "--"\
'"-""""'""*"" t _ .• ,.. ...

c .. C ~
•\I>- •- .. -,... --~- -

Figure 11-1 PDP- I I Programming Card

You write the MACRO-11 program as a sequence of lines, each a
single assembly language statement in the following format:

LABEL: OPERATOR OPERAND(S) COMMENTS

1 1-1

THE MACR0-11
ASSEMBLY
LANGUAGE

RunninJ;; a MACRO-I 1 Assembly Language Program

THE MACRO-11
LANGUAGE
PROCESSOR

The operator and/or operand are either instructions selected from
the PDP-11 instruction set, data needed by the instructions, or
assembler directives (instructions to the assembler to guide the
assembly process). The optional statement label identifies the state
ment line so that you can refer to the instructions or data on that
line from other parts of the program. Optional comments describe
generally what operations are being done. Sequences of language
statements constitute a routine (to perform a specific function);
groups of routines and data compose the entire executable program.

When you are satisfied with the logic of your MACR0-11 source pro
gram, you use the RT-11 editor to create it as a file (like you did in
Chapter 5). You use tabs and spaces to make the program more
readable. When you have finished creating the program as a com
plete, edited file, you next enter it as input to the MACR0-11 lan
guage processor, which is part of the RT-11 operating system and is
stored on your system volume. The MACR0-11 language processor
processes (assembles) the language statements, converting them into
an internal machine language code called object code. This code is
next processed by the system linker, which combines your program
units, making the program suitable for execution. Figure 11-2 repre
sents the development of an executable MACR0-11 program.

CREATE H EDIT H ASSEMBLE H LINK H RUN

Figure 11-2 Evolution of a MACR0-11 Program

The MACR0-11 language processor is an assem bier that accepts
information in one format (i.e., your source program) and trans
lates it into another format (i.e., a machine language program).
The assembler interprets and processes the assembly language state
ments, one at a time, and generates one or more computer instruc
tions or data items. Since you originally use the editor to create a
MACR0-11 program in ASCII format, you must next translate it
into a machine format that the computer can use. The MACR0-1 l
assembler performs this conversion, producing as output a new ver
sion of the program in object format, called an object module. You
may request the MACRO assembler to produce a listing of the source
program at the same time. The role of the assembler is represented
below in Figure 11 -3.

11-2

Running a MACRO-I 1 Assembly Language Program

SOURCE OBJECT

PROGRAM
ASSEMBLE

MODULE

LISTING
(OPTIONAL I

Figure 11-3 Function of a MACR0-11 Assembler

During assembly processing, the MACR0-11 assembler

• Accounts for all instructions used within the source pro
gram and determines their relative positions in computer
memory; it does this by means of a storage location (pro
gram) counter

• Keeps track of all user-defined symbols and their respec
tive values in a symbol table

• Converts assembly language mnemonics, user-defined sym
bols, and data values into their respective machine lan
guage (object code) equivalents

The function of the program counter is to keep track of addresses in
computer memory where instructions and data will be stored.

PDP-11 computer memories are composed of physical storage loca
tions which can hold numerical data. These locations are numbered
consecutively from O up to the highest memory location, which
varies according to the amount of memory acquired with the com
puter system (see Figure 11-4). PDP-11 computers used in an RT-11
system have at least 16,384 bytes (8,192 words); most RT-11 sys
tems have more than that number.

11-3

The Program
Counter

Running a MACRO-] 1 Assembly Language Program

The Symbol Table

CONVERTED INSTRUCTION I o ...__ _____________ _
CONVERTED INSTRUCTION

CONVERTED INSTRUCTION

1000

1001

1002

Figure 11-4 PDP-11 Computer Memory

During processing, the assembler converts each program language
statement into numerical data (the object code) and assigns the
data a relative storage location. The system linker will convert the
relative storage locations assigned by the assembler to absolute
storage locations in the computer memory 1 . The location's associ
ated number is called its address. As the assembler translates and
assigns each statement, it updates the value of the program counter
accordingly.

Since you may not know which locations, or how many locations,
the program needs, you use symbolic names (variables, constants,
and labels) to represent individual locations and their contents. As
the assembler processes the source program, it constructs a symbol
table, which is a compiled list of all the symbolic names and labels
that you have used within the program. The MACR0-11 assembler

1 The system linker is discussed in Chapter 12.

11-4

Running a MA CR 0-11 Assembly Language Program

defines each symbolic name by assigning an address or data value, as
appropriate, and adds the symbol definition to the symbol table.
After assembly, you can refer to the symbol table, which is printed
at the end of the assembly listing, to find all symbol definitions.

The third function of the assembler is to convert your MACRO-11
source language statements into machine language code (the object
module).

NOTE

The following information will aid your understanding of
the assembly listing used later in this chapter.

Machine language code is numerical data in the form of binary
numbers (numbers composed of only the digits 0 and l). Binary
numbers are appropriate because the digits O and l can be easily
manipulated by the two-state electronic logic of the computer.

For example, a typical assembled instruction in PDP-11 computer
memory looks like this:

location
address

01000
01001

location
contents

11000000
11100101

Since a single instruction requires two (or more) consecutive memory
locations, the instruction is actually put together in memory in the
following manner:

01001 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 01000

Each individual digit of the instruction is called a bit (binary digit).
A single memory location, called a byte, contains 8 bits; two
memory locations, called a PDP-11 word, contain 16 bits.

The byte in the even-numbered memory address is called the low
order byte and is stored first; the byte in the odd-numbered memory

11-5

Machine
Language Code

Running a MACR0-11 Assembly Language Program

address is called the high-order byte and is stored next. Both bytes
together form one PDP-11 16-bit word (Figure 11-5).

PDP-11 Word

01001 1 1 0 0 0 0 0 0 0 0 01000

~t etc.

0 1 , ,

bit
--........, _____,,.-_____ ,_,,,.,...__ -----......,,.--------/

High-order byte Low-order byte

Figure 11-5 PDP-11 Word

The computer works in terms of 8-bit bytes and 16-bit words of
binary data. However, binary numbers are generally too long and
cumbersome to be used effectively by a programmer. But binary
numbers can be easily represented as octal numbers (numbers com
posed of digits within the range O to 7). Since octal numbers are
closer to the familiar decimal number system and are much more
readable than binary numbers, the programmer more often uses octal
numbers than binary numbers.

Table 11-1 shows the decimal numbers O through 10 and their
respective octal and binary equivalents. Tables and formulas are
available to calculate higher conversions (see the RT-11 Advanced
Programmer's Guide for one such table).

Table 11-1 Decimal/Octal/Binary Conversion

Decimal Octal Binary

0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 1 000
9 11 1 001

10 12 1 010

11-6

Runninf! a MACR0-11 Assembly Language Program

Thus, you can think of the binary instruction shown earlier in terms
of its octal equivalent as follows (conversion is done from low-order
to high-order byte in groups of three bits):

01001 1 I O O 1 0 I 1 I O O O O O O O 1000

6 2 7 0 0 = 162700(8)

A MACRO-11 assembly listing shows the addresses of memory loca
tions and their contents as octal numbers. The octal numbers repre
sent the respective binary machine language code that makes up the
object module.

In Chapter 5 you used the RT-11 editor to create a MACRO-11
sour.ce program; you then stored it on your storage volume. Since a
source program is in ASCII format, the next step is to use the
MACRO-11 assembler to convert it to object code.

Copy the MACRO source program from the storage volume'back to
the system volume (which is the default volume for input/output
operations).

On your storage volume are two MACRO source programs, the
one you created (SUM.MAC) and the one provided for you
(EXAMP.MAC). Which of these you should copy depends on the
results of the source comparison you performed in Chapter 6. If
the comparison resulted in NO DIFFERENCES ENCOUNTERED,
copy your own program (SUM.MAC) as follows:

Long Command Format

•COPY (Ku)
From'!• VOL: SUM. MAC (RET)

To ? ~:ilJM.M.-:.)C (~~T)

Short Command Format

.COPY VOL: SUM. MAC :3!.H1. MAC (§IT)

However, if the FILES ARE DIFFERENT message was generated,
substitute EXAMP.MAC:

11-7

ASSEMBLING
THE MACR0-11

PROGRAM

Running a MACRO-I 1 Assembly Language Program

Long Command Format

, COPY Cill)
F rmr,'r VDL: EX AMP+ MAC ~
To 'r SUM+ MP.,C Cr§Ir)

Short Command Format

• COPY VOL.: EX,~MP + MAC SUM• MAC @I)

Whichever source file you copied now resides on your system volume
under the name SUM.MAC and is the file that you will process
with the MACRO-1 l assembler. The command used to assemble
a MACRO source program is the monitor MACRO command.

Use the MACRO command with its /LIST and /CROSSREFERENCE
options to assemble your source program and produce a cross
referenced assembly listing. The system prompt asks you to supply
the input file name. You can omit typing the .MAC file type since
the MACRO command assumes this file type unless you indicate
otherwise. The system will automatically assign the name SUM.OBJ
to the object module and SUM.LST to the listing file and store both
newly-created files on the system volume.

Long Command Format

+MAc1:w CR]!)
F . 1 ·~ 'j> C' UM 1 1]' (:' ·r· I('' 1:·, i') r' -:··1:·, 1::· 1::· 1=· 1:·· 1::· N .. , 1::· ~ l e .:. . ..i ., -· . ,.> ., ., "· ,:>,.> , ... ~ .. , ... L ... ~

Short Command Format

MA(~ 1··· Cl <·· tJ M 11 ·c ,=- ·r· l ('' 1:·, Cl,:, ,:: 1··· 1::· 1:: 1::· 1:·, 1::· \ 1 (., 1::· ~ + .,,. ,:) ••••••.) ; ., \ .,.),.,, \ •.. ,~., ... ~

Assembly begins. When it is finished, a message similar to the follow
ing prints on the terminal printer or screen:

ERRORS DETECTED: 6

This message indicates the number of lines in which the assembler
detected errors during processing. In this case, the assembler found
six lines in your source program with errors. It helps at this point
to look at the listing produced by the assembler for information.

11-8

Running a MACRO-I I Assembly Language Program

Long Command Format

.MACRO/LIST (!ill)

SUM (RET)

UETECTED:
Files?
ERRORS 6

Short Command Format

•MACRO/LIST !:HJM
ERRORS DETECTED!

Your listing should look like the following example. An explanation
of this listing follows. You should refer to the listing as you read the
accompanying explanation.

AR

NOTE

It is not necessary that you understand the MACR0-11
language or the way this program works to successfully
complete the exercises in this chapter.

lO
11
I>
13
14
15
lb
17
IS
IQ
20
21
21
1J
14

" ,.
21 ,. ,.
)H

31
32
33
!4
35
1'
17
Jij
!9
40
41
42
4l
44
45

•• .,
•• ••
50
51

52
5l
S4

QtH.HlOO
f)()()(jQf,

onr,o t 2
11111,0 I Jli
UUU{l ,2
ou{Hi74
U!lOlJ?,-.
l)l)Of•Jn

ooonn
VftflO 14
001111~"
,)(1(104(}

()1)1)044

()()004t-,
Q1\tJU':)}

OOHOS4
llOOi1'5f.,
/JOOOf-0
()l)OH12

01)1!(,h4

il\JOI04
llOCTiflts
1100111
1')01)114

000116
ooui -;;:i
Ofl012?

O!)Ot (4

000342
Ot)0.345
OOUJSO
000)',l:
0003',6
OOOH,t
l)OQJh4

000.lbi

0001 Ob

n) 2JP5
011700
o,:no,
OC6,H1
()J 114tt
OGtdl J
0Qtd11
062b)l
(l0'5t 11n
tWtl71
0117tl0
n141 OJ
l/l]/02'
005;,02
lbUOO l
t0H7')
(lt,fW03
OHHll

111:)bl l'l7

00!,300
oQUt-d
Ot 41 VO
I h27()0

111.3]7':J
Ot 21 ()0
/)(}0000
00501 J
005305
(101134

1100107

D4
040
ll 4
040
040
Ill
01 S

05"

000tl00 1

"14CRO vo1.oo 8-JUt.•1'1 01: 1 b! t 7 PAGE'. J

.,,.CA,t.1, .TTYOUT, .EXIT, .PPlNT

" : 15. ;N('I. OF DIGITS f1F' 'E' TO C4LCULATF:

1g1 : fl-tf F,UM OF THE AEClP~OCALS Of TH€ ~"ACTOR ULS
1/0! . l/1 l . 1/2! . 113 ! + 114! + l/5!

fXP: .?/.llh"T 1r.ir:'.SSAG I P?i NT I NTRODUCTOIH TEXT
()Ofll 0,, snv •t-J .R~ :1tn. nit CHA~S flf .. ' TO PRINT
OOfli 07 F IAST! •nv I !~-t-1 • RO :NO. o.- DIGITS OF' 4CCUPACY
no01100 ...:nv #A ,Pl I Afltij,lESS OF DIGIT ¥ECTOR

Sf:tiNO: ASL •e1 :DO ~ULT I PLY ., 10 (DEC [~AL)
•nv ""Hl ,•(SP) :Si\Yf •2
ASL ""' : •4
AS!, -'I : *8
a-JO (SP}'+,11<1)+ :r.m,, *liJ. PlllNT TO ~E.XT DI CIT
DEC ""

,., ENO or t'IIGITS?
~~F Sf CON[) : Bl<JaNCH lf NOT

OQflt Of'> ¥'\\/ tnr,wo :GO TJ;Pll ALL PLAC£S, DIV!D!NG
H!IIHH ¥<1V --u:iau.10 :P.Y nn,: ~LACE:.'.S INDEX

1 77771 ,..nv ••1 ,R2 :1 NlT flUO'TtENT REG I STE~
FOi.iF! fH: J>IC "2 : Bl!..,_P l)lJOTlENT

SH~ PO ,Rj :su~TPACT 1,00P 1SN 1 T ••o sec fi!J1JP1'H : NUMEkAT[)f! IS ALw,\YS < lO*N
1<0 ,!sj I F'JX f?EMA lNOt-:k

¥<)\/ R1z,iRJ ;SAVf f!EMAtNDE'R AS 8.\51S
:FOfi fllt'.XT OIGlT

1100000 000000 ,\,)fl R2-2(Rl) :GkEATEST H<t£Gf.R C&.RRU:s
:To t.tn .. ntGrr

f!J;'.(' HU ;,11r nm or OlGlT VECTOR?
H~f: TH [PO :kRAf.,/CH IF "IOT
M()V •(i:;1}, RO :GFT UIGIT TO OUTPUT

1)00012 FIFTH: SUH II t O. ~ ~0 :fl): THE 2.' TO • 1 so
;THAT !T JS O~LY 1 VIG IT

sec f'J F'1'H ; CfifALl,Y DIVIDE BY !Ol
(100070 AOD J (O+ IO ,?0 ; MA!iE fJIGfT ASCII

• !TY(lN ; OUTPflT THF: OlGIT
::i.-i::i- ""' : CLF:AR r~t:XT DlGtT LOCATION
iJEC •5 I Ml1fif DIGITS 1'0 PRINT?
~Nf FIRS r ~RkANCti IP YES
.FXrf :Wf ARE 0!1Nf

fXP; .•H'.PT ...
• ..;nRD 1 ~ TN J T VfCTO-R TO ALL ONES
.f:.'"1DP

110 105 IIIESSP.G; ~ASCl l tTHE VALUE f)f E lS:/ <15><12> 12. I <200>
126 101
125 105
117 106
I 05 040
123 012
017 062

200

.. f~D EXP

11-9

Running a MA CR0-11 Assembly Language Program

SUM,..M-AC' V£R8JON t
SYMSOL TAHU

•ACRO V0),.00 if•JUL-77 OJ:tn:11 PAGt. 1-2

A s ••uu F{FTH OOOIOOR li'i''HIHTH 00001:t2k ,_. = 00010b

EXP OOOOOOR fl~ST 000012~ lolf'.S.SAG 000 J42H SH.''0HD (H)0022R

. -as. 000000 ooo
ooon1 orq

ERROR& OF.Tf.CTEO: b

VIRTUAL lilF.JiiORY USFO: SH WIJRDS (J PACf'.S)
01'1lMlC MEMORY AVltL48U'. fOR ti~ PAGES
OK s&UM,LP ;su,11hr;t)K: SU~/C

SUM.MAC VF.:RSfON 1 ~AcRn 1/0.J.OO f!:•JUL-77 01: lb! l7 PAGf-: S•I
CROSS RF:FF:RENC'f. TAKLF- (CfH:f' V01•05)

.TTYON 1•41

• 1-1 S
EXP l•l:H 1•471 1•54
FIFTH 1•.37t l•J<i:
FIRST 1•10 1•44
POURTH t-2ti• 1 •lB
NESS AG 1•12 1•51•

• 1•7' 1•13 1 •14 1•23 ... 47

.SECONO J•! 6r 1•22
TKHtD 1•74t t •35

SUN.MAC' VtRSTo-. 1 MA-CRP V(l).00 8•.JIH.,•17 Ol!lb:17 PAGF: 14-1
CRO~S qEFEPEN:CE TAHLF: (CPF'F VOl•O!- l

.EXIT l•H 1 .. 45

.PRtN't t-.U l .. 12

.TTYOU t-h

SUJlll,.MlC VERSlf'H'4 I M:°ACMO VOl,.00 M-JUL-71 Oltlti:11 PAGF. £--J
CROSS Rli:F'f:~E:NC'E TAftt.,E {CM'f.f vot-05)

A 1•32
D 1•1,4
M I •12 1 •41
R 1-.n
u 1-1 s• 1-41

TH !RD 000044k
~ TTYON:t ••••••

This listing was printed on an 132-column line printer. The first part
of the listing has four logical sections, as follows:

line
number

octal
memory
address

octal
instruction
value(s)

statement line

The assembler assigns consecutive decimal line numbers to each line
of the source program, including blank lines and comment lines.
These numbers are used for reference purposes. The next column to
the right shows the relative1 even-numbered octal memory (byte)
addresses of storage locations assigned by the program counter to
each instruction in the program. This program has been assigned
relative memory addresses O through 3 70. The third column (and
possibly fourth and fifth) shows the octal equivalent of the as
sembled instruction or data value. An apostrophe following an octal
value indicates a relative value that must be modified before it can
be used (the actual value is determined during linking). Finally, the
source program as you.created it appears in the right-hand portion of
the listing.

1The assembler assigns relative memory addresses to instructions. Actual ad·
dresses are nor determined until the link operation is performed. Linking and
address relocation are discussed in Chapter 12.

11-10

Running a MACR0-11 Assembly Language Program

For example, look at line 19 of the listing:

19 000030 00h311 ASL

The instruction ASL @Rl is stored in relative memory locations 30
and 31 as binary data (the comment, ;"'8, is ignored):

31 0 0 0 0 1 0 0 1 I O O 1 0 0 1 30

0 0 6 3

Some instructions require more than two memory locations, for
example, those at lines 13 and 14. The number of memory locations
required depends upon the operation.

Following the assembled code in the listing is the symbol table, an
alphabetic listing of user-defined symbols and labels in the program
and their respective definitions. Symbols are defined as values. For
example, the symbolic variable name N is defined (in line 7) as
000106(octal) or 70(decimal), an absolute value. Labels are defined
as addresses. The symbolic label FIRST is defined (in line 14) as
00012, a relocatable address (the R following 00012 in the symbol
table indicates that the address will be relocated or modified during
linking.) A row of asterisks next to any symbolic name in the table
indicates that for some reason (possibly a programming error) the
assembler could not define the symbol.

At the very end of the symbol table (where.the. ABS. occurs) is the
program's size information (or synopsis) in terms of the total number
of octal storage locations it requires (in this case, 372). Following is
the number of errors detected, and the amount of free and used
memory pages (statistics provided by the assembler).

Following the symbol table is the cross reference (CREF) listing. The
CREF listing is optional (as is the assembly listing) but provides you
with useful reference and debugging information, especially if the
program is large. The CREF listing can contain several kinds of tables
of reference information, each beginning on a new page. The default
tables are the three shown here.

Every reference in a CREF table shows the page number of the
listing (in the preceding example, all references are on page 1),
followed by the appropriate line number. A number sign following a

11-11

Running a MACRO-I 1 Assembly Lan~uage Program

line number indicates that this line is where a label or symbol
definition occurs.

The first CREF table shown here lists alphabetically all user-defined
symbol and label references.

The second CREF table lists alphabetically all macro symbol
references. (Macro symbols are a special feature of the MACR0-11

· assembly language; they are described shortly.)

The third CREF table lists alphabetically the codes of the errors
detected during assembly. These errors must be corrected before you
can run the program.

Now that you are familiar with the format of an assembly listing, go
back to the beginning of the example listing to determine what this
program should do.

The first two comment lines (preceded by semicolons) indicate that
the program calculates the value of 'E', which is the sum of the
inverse of the factorials between l and infinity. The algorithm used
in this program is somewhat complicated (this was necessary to keep
the program reasonably short). 'E' is calculated one digit at a time by
using a difference function between its actual value and the current
approximation for each new digit. The program forms:

1 +(l +(l + ... +(1 +((l +(1 /N))/(N-1))/N- 2))/ ... /2)/1)

and is 2.11111 ... in the inverse factorial base system, which is the
first sum shown in the program listing.

The statements at lines 1 through 7 define initial states to the
assem biers such as the value of N, and designate the macros that will
be used throughout the program.

Macros, from which the MACRO-I I language processor derives its
name, are a very important and useful feature of the MACRO- I I
assembly language. You can define as a macro any recurring sequence
of coding instructions. Hy giving the macro a name, you can there
after call it by name from any other part of the program using a
single language statement.

11-12

Running a MACR0-11 Assembly Language Program

In addition to user-defined macros, the RT-11 system provides
system macros that your programs can access. System macros are
defined in a special system library file called SYSMAC.SML (SML
stands for System Macro Library). SYSMAC.SML is part of the
RT-11 operating system and is stored on the system volume. If you
request a system macro from your source program, the MACRO-11
assembler automatically searches SYSMAC.SML for the required
information.

The system macros defined in SYSMAC.SML are calls to certain
services performed by the RT-11 monitor such as terminal handling,
input and output operations, program termination, file capabilities,
and so on. The portion of th'e monitor that performs or is capable of
getting the necessary program code to perform these services is
always in memory and therefore is called the resident monitor. Thus,
whenever your source program is in memory to be executed, the
resident monitor is also there with its available services.

You communicate the need for a monitor service by issuing a
programmed request in your source program. A programmed request
consists simply of a macro call to a specific macro defined in
SYSMAC.SML. The macro expands into the appropriate machine
language code, which, during program execution, makes a request to
the resident monitor to supply the desired service.

You specify all programmed requests that you intend to use in your
source program in an .MCALL statement, like that shown at line 3 in
the listing. For example, the programmed request .TTYOUT requests
the monitor to print an ASCII character on the console terminal.
During assembly, the .TTYOUT macro in SYSMAC.SML is expanded
into machine language code. During program execution this code
requests the resident monitor to take the indicated ASCII character
and send it to the console terminal.

Line 12 in the program uses another programmed request, .PRINT,
to print a message on the terminal.

Lines 13 through 15 are initialization instructions: they set initial
values in three of the special registers. Lines 16 through 22 are a
routine that does a multiplication by 10. Lines 23 and 24 are setup
instructions for the division routine of lines 25 through 28. Lines 29
through 35 save the quotient and remainder. Lines 36 through 40
print the digits of E. Lines 43 and 44 count the number of digits.

The statements at lines 47 through 49 reserve a buffer area (a series
of locations in memory) to be used by the program and therefore not
to be assigned to other instructions. The statement at line 51

11-13

Running a MACRO-I I Assembly Language Program

provides the data for printing the ASCII text message THE VALUE
OF EIS: 2.

This program, however, contains errors. The assembler discovered six
lines with errors that prevent the program from assembling properly.
The assembler flags (points out) errors by printing a code letter in
the assembly listing or on the terminal if no listing is requested. 1

The first error occurs at line 12 and is an M error. This means a label
was defined more than once. You can refer to a label any number of
times, but you may define it only once. By looking at the CREF user
symbol table, you can see that the label is defined at line 12 and
again at line 47; one of these definitions is wrong. Examination of
the program logic reveals that the definition at line 12 is correct.
Before deciding how to change line 47, though, check the other
errors to see if one of them indicates what should be done. In fact,
the next error encountered (line 15) shows what is wrong. AU error
identifies an undefined symbol. The label A is referenced in line 15,
but is never defined within the program. It should logically be
defined at line 4 7. Therefore, line 4 7 should be changed to read:

A: .REPT 1'1+1

Thus, this one change eliminates three errors flagged by the
assembler; those at lines 12, 15, and 47.

The next error occurs at line 32. Actually, the assembler flagged two
errors here. An A error indicates an addressing problem and an R
error indicates a register error (illegal use of a register, a special
PDP-11 storage feature). If you look at the language statement in
line 32, you can see that the ADD operator is followed by one
operand. However, ADD is an instruction that requires two operands
(two values to be added together) separated by a comma. This
statement simply contains a typing error which can be corrected by
inserting a comma between the R2 and the - 2(R 1). Thus, changing
the line as follows both corrects the addressing problem and
eliminates the illegal register expression:

ADD R2,-2(R1)

1 Refer to the RT-11 System Message Manual for greater detail on any system
messages printed during normal system use.

11-14

Running a MACRO-I 1 Assembly Language Program

At line 41 is another undefined symbol, the macro symbol .TTYON.
Since the program designated the macro symbol .TTYOUT in line 3,
this error indicates a misspelling. Correct line 41 to read:

.TTYOUf

Finally, a D error occurs in line 54. This indicates that reference was
made to a symbol that is defined more than once. This error has
alrady been eliminated as a result of the correction made to line 47.

Thus, by changing the three lines indicated, you can correct all the
errors flagged during assembly. So the next step is to edit the
appropriate lines in the source program. If necessary, review the
editing commands in Chapter 5, and then edit the file SUM.MAC on
your system volume so that the three lines indicated are error-free.
Do not rename the file. When you are ready, reassemble the program
using the MACRO command and obtain a new object module and a
new listing. This time the program should assemble without error. If
errors occur, you have not edited the program correctly. Compare
listings and try to correct your errors or go back to the beginning of
this chapter and repeat the demonstration.

The object module produced by the MACRO command may in itself
be incomplete. It may need to be joined with other object modules
or library files to form a complete functioning program 1, since all
required object modules must be joined before the program can
work.

Thus you must next link the SUM object module with any other
object modules it requires. However, the only file used by this
program was the macro library file SYSMAC.SML, and it was used
during assembly. So in this case, you do not need to join the SUM
object module with any other modules. However, you must still link
the file. The link operation, in addition to joining object modules
together, also assigns absolute memory addresses to the relative
addresses calculated by the MACRO-I I assembler. Since the memory
addresses of one object module must be relocated to accommodate
addresses used in another object module, the link operation serves to
resolve all address changes. The result of the link is a memory image

1 For more information on linking files and using library files, see Chapters 12
and 13 respectively.

11-15

LINKING OBJECT
MODULES

TOGETHER

Running a MACRO-I I Assembly Language Program

load module, with all module links resolved and all absolute memory
addresses and storage information assigned (Figure 11-6). The
memory image module, then, is actually a picture of what computer
memory looks like just prior to program execution.

OTHER
OBJECTS

I

OBJECT LOAD -
MODULE - LINK __.,.

MODULE

Figure 11-6 The Link Operation

To link the object modules, use the LINK command. The system
prompts you to enter the names of the input object modules to be
linked together. You can omit typing the .OBJ file type in the
command line since the LINK command assumes this file type for
input. After you have entered the input information, the system
begins linking the object module. You do not have to specify an
output file, since the system automatically assigns the file name of
the first input file and a file type of .SAV to the output file.

Long Command Format

.. LI.NI\ (RET)

Fi le!:,'J> f>l.JM

Short Command Format

.. LI NI< SUM (RET)

Any messages printed inform you of error conditions discovered
during the link operation (for example, if you fail to specify all the
necessary input object modules that are needed). However, assuming
you edited your source program correctly and that it assembled
without error, it should also now link without error.

11-16

Running a MACRO-I I Assembly Language Program

A load module is one that you can run on the system. Unless your
program contains logic errors that prevent it from running properly
(errors which the system cannot always detect), running the .SA V
version of your program should produce the results you intended.
However, if logic errors exist within your program, running the
program will produce either erroneous results or none at all. If this is
the case, you must study the source program, rework it, reedit it,
then perform the assembly and link operations again.

If your MACRO program is error-free, running the .SA V version
should produce the expected results. In this demonstration, running
the SUM.SA V file should produce a value on the terminal that is the
constant E (2 followed by 70 digits).

To execute the MACRO demonstration program, use the monitor
RUN command. You can omit typing the .SA V file type since the
RUN -command assumes this file type. Type the following and note
the results printed on the terminal:

Long and Short Command Format

, RUN SUM (R ET)
THE VALUE OF E rs:
2,5/606/606237,2301314,06525/130440275535025,71477737352744745405502,544

You can see that something is wrong. Slashes and periods appear in
the result and indicate that an error still exists somewhere in the
program.

Programming errors, called "bugs", can be very difficult to find and
fix. A debugging aid is described in Chapter 14. You will use it to
correct the program's final error and to rerun the program. For now,
however, the error will be pointed out and explained.

Look at line 40 in the assembly listing. Notice that the line's
instruction converts a digit into the appropriate ASCII code before
printing it on the terminal. To do this, the constant l O is added back
into the value of the digit already stored in memory, and then the
value is converted (via 'O, which is the ASCII code for 0) to an ASCII
code which can be printed. However, unless you explicitly designate
a value as decimal, the assem bier assumes all values used in the
program are octal. Therefore, it interprets the constant as 10(octal),
or 8(decimal), and adds the wrong value every time. The conversion
consequently causes the codes of the ASCII characters / and . to be
used as results in some cases. The codes of other digits, while
representing numeric values, are also off by two. To correct this

11-17

RUNNING THE
MACR0-11
PROGRAM

Running a MACR0-11 Assembly Language Program

COMBINING
OPERATIONS

EXECUTE

SUMMARY:
COMMANDS TO
RUN MACR0-11
PROGRAMS

error, you must insert a period after the 10 in line 40. The period
instructs the assembler to accept the constant value 10 as a decimal
value.

To produce program results, you first assembled the MACRO source
program (SUM.MAC), then linked it, then ran the resulting .SA V file
(SUM.SA V). You can combine these three operations using one
monitor command, the EXECUTE command. This command in
structs the system to select the appropriate language processor
(which you indicate using an option), then process, link, and run the
program. For example, to combine the assemble-link-run operations
you performed in this chapter, you use the following command:

Long Command Format

+ EXECUTE (§g)
Fi 1 es'r GUM.II... I ST/CF;!U;j~3I:;:EFERENCE @)

Short Command Format

.l.n.CU[L ciUM/1.J::,T/Cl"dJ::,EfiFf ua:Nr:r .. @ii)
ERFWRS DETECTED: 0
THE VALUE OF E ISi
2,5/606/606237.23013!4.06525/130440275535025,7147773735274474540550:.544

Notice how you use the /LIST and /CROSSREFERENCE options
following the file name to request both an assembly and a
cross-referenced listing.

EXECUTE
Combine the assemble-link-run operations into one command.

EXECUTE file/MACRO
Combine the process-link-run operations into one command and
specify the input file to be a MACRO file.

EXECUTE/CROSSREFERENCE
Produce a cross-referenced listing file.

EXECUTE/LIST
Produce a listing file of the source program.

LINK
Link individual object modules together to form a complete
program and produce a load module.

11-18

Running a MACRO-I I Assembly Language Program

MACRO
Assemble the MACRO- I I source program and produce an
object module.

MACRO/CROSSREFERENCE
Assemble the MACRO-11 source program and produce both an
object module and a cross-referenced listing file.

MACRO/LIST
Assemble the MACR0-11 source program and produce both a
listing on the line printer and an object module.

RUN
Run the indicated load module.

Before continuing further, you should perform the necessary file
maintenance operations. Obtain a directory of all files on your
system volume that have the name SUM, regardless of file type; these
files were created as a result of the exercises in this chapter:

Long and Short Command Format

, Dil~ECTOl'(Y SUM.* (RET)
08·-J1Jl···l'7

SUM ,BAV 2 08-Jul-77
SUM ,MAC 3 08-Jul-77
SUM ,LST ~ 08-Jul-77

5 Filas, 18 Blocks
28:32 Frt~e blm:l<.s

SUM ,BAK
BUM ,OBJ

3 08-·JuJ.···77
J. OB-Jul-··77

The fact that you have corrected errors in the source file of
SUM.MAC makes the· version of that file on your storage volume
obsolete. Thus, transfer the updated copy from your system volume
back to VOL: replacing the copy of SUM.MAC on the storage
volume with the new version:

Long Command Format

• COPY (RET)

From? SUM.MAC
To ? VOL:SUM.MAC

Short Command Format

• COPY SUM+ MAC VOL: SUM+ MAC (Rn)

11-19

FILE
MAINTENANCE

Running a MACR0-11 Assembly Language Program

Next, similarly transfer SUM.SA V to your storage volume. This
allows you to rerun the MACRO program without reassembling and
relinking the source.

Long Command Format

.COPY
From? SUM.SAV (RET)

To 1 VOL:SUM.SAV ~It)

Short Command Format

• COPY SUM+ S~,V VOL! SUM+ SA'·J (RET)

Once you have transferred to your storage volume the files you want
saved, delete from the system volume those you no longer need (i.e.,
all the SUM files):

Long Command Format

• DELETE/NO(~UEl,:Y (RET)
F .· 1 'i' ("'LJM * ~ 1 es . ,:; • . \B!..!J

Short Command Format

Finally, obtain an up-to-date directory listing of your storage volume
so that you can see its current status:

Long and Short Command Formats

•DIRECTOl~Y VOL! (Rii__t)
08--lul-77

GRAPH ,FOR
SUM ,SAV
SUM ,MAC

2 0~'i-Jul··-77
2 08-• .Jul----'7'7
3 08·-- • .J1 .. 11 ···77

5 Files, 13 Blocks
4749 F1•ee blocks

EXAMP ,FDR
EXAMP ,MAC

2 28·--Jan·--77
4 2:5-+;;ib·T7

This completes the MACRO demonstration. Continue now to
Chapter 12 to learn more about the link operation.

11-20

Running a MA CR 0-11 Assembly Language Program

Eckhouse, Richard H. Jr., Minicomputer Systems: Organization and Pro
gramming (PDP-11). Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 197 5.

A detailed guide to programming concepts, operations, and applications
involving minicomputers, with emphasis on the PDP-11.

PDP-11 MACR0-11 Language Reference Manual (AA-5075A-TC). Maynard,
Mass.: Digital Equipment Corporation, 1977.

A reference manual for the PDP- I I programmer using the MACRO-I I
assembly language.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corporation,
1976.

A technical description of the PDP-11 peripheral devices, including
necessary programming information.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A technical description of the various PDP-11 processors, including
complete information concerning the PDP-11 instruction set.

PDP-11 Programming Card. Maynard, Mass.: Digital Equipment Corporation,
1975.

A pocket-sized folding card summary of PDP- I I machine instructions used
by the various PDP-I I assembly language processors.

PDP-11 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
I 975.

A general overview and introduction to available PDP-11 software,
operation systems, and language processors. See especially Section I,
Chapter 3, Section II, Chapter 2; and Section III, Chapter 1.

RT-11 Advanced Programmer's Guide (DEC-11-ORAPA-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

An RT-1 I system-specific programming manual for the MACRO-! I
programmer.

RT-11 System User's Guide (DEC-11-ORGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapters 4 and 10.

11-21

REFERENCES

CHAPTER 12

LINKING OBJECT PROGRAMS

Programs that you write in the MACRO-I I and FORTRAN IV pro
gramming languages require additional processing after their con
version to object format. Before you can run them on the system,
you must link them. The link operation:

• Joins together the object modules that use a symbol with
the object module that defines it.

• Relocates individual object modules as necessary and
assigns absolute (permanent) memory addresses; if neces
sary, it also defines an overlay structure.

• Produces a load module and an optional load map (Fig
ure 12-I }.

OBJECT LOAD
MODULE(S) LINK MODULE

LOAD MAP
(OPTIONAL)

Figure 12-1 Link Functions

The advantage of program linking is that is allows you to use a
modular approach to your programming. You can create an entire
program as a series of smaller, independent subprograms. One of
these you write as the main, or controlling, program, and the rest
as subordinate subprograms and subroutines. You use the appropri
ate language processor to translate each part of the program into an
object module. Then you use the linker to join all the object modules
together into a complete, functioning unit.

12-1

Linking Object Programs

RESOLVING
SYMBOLIC AND
LIBRARY
REFERENCES

Modular programming facilitates program creation and debugging.
For example, several programmers can simultaneously work on a
single program, each creating a portion of it. The individual portions,
or subprograms·, can be processed and linked with test programs and
debugged for logic errors separately. Then all the object modules can
be joined together to form a complete program that can be tested as
a whole. If errors occur at this stage, only those object modules in
error need be debugged and changed.

In addition, modular programming allows you to make use of library
files. These are files that contain already-written and debugged sub
programs and subroutines. Since you join library files with your
program at link-time, their routines can be used by your program as
needed.

The linker reads through all the object modules that you indicate as
input to the LINK command. It gathers and evaluates from them
information provided by the language processor that is necessary for
program linking. For each input module, this information includes
the object code, information needed for relocation, the relative
address of the first instruction, the global symbols used, and the
absolue length of each program and program section.

One of the linker's first functions is to resolve all user-defined
symbolic references and library references in the joined routines.
There are actually two types of user-defined symbols internal
symbols and global symbols.

Internal symbols are limited to the object module in which they
appear; thus, they cannot be referenced from any other module or
defined in any other module. A program containing only internal
symbolic references (such as are found in the demonstration program
in Chapter 11) is complete itself and does not need to be joined with
any other object programs at link-time. Thus, internal symbols are
not resolved at link-time because they have already been resolved by
the language processor.

Global symbols, on the other hand, are the key to modular program
ming. Global symbols provide the communication between object
modules. Such symbols may be symbolic labels to instructions,
symbolic labels to data, or symbols that are equated to a value or
constant. Global symbols are defined in one object module and
referenced from other separately-assembled or compiled object
modules. Such symbols must be designated as global in the source
code. The following segment of MACR0-11 assembly language code
illustrates the use of global symbols.

12-2

,MAIN. MACRO V03, 00 5-JUI. "77 13!39:00 F'AGE 1

AU l 000000 000000 000010' 000000 ,GLOBAL A,C,VALUE ;[tECLARE A, C, AND VALUE

000006 000030'
i AS GL OEcAL SYHl:10L5

4 000010 013500 A! HOV f~ (kt,>+, kO iGLOML SYMBOL A JS DEFINEI1

5 ; HERE AND CAN BE REFERENCED
6 ; F ROH OTHER HODUU:S • PROBABLY

7 HIY A SUBROUTINE C:ALl
B 000012 016701 000014 HOV LOCAL,Rl ;LOCAL IS AN INTERNAL SYMBOL
9 ;DEFINED AND REFERENCED ONLY

10 H.IITHIN l'HIS MODULE
11
12 000016 004167 000000 JSf..' F'C,C ;CALL ro GLOBAL ROUTINE C,
13 ;DEFINED IN ANOTHE:R MODULE
14
15 000022 013501 MDV @(F;5l+.R1
16 000024 005003 CLR SJ
17
18 000026 000207 Rrs ~'C
19
20 000030 000011 VALUE: ,WOR[1 11 ;GLOBAL SYMBOL DATA IS USED TO
21 H<!;.:n:F.:ENCE THIS [Jl,ITA LOCATION
22
:..!3 00003::! 177777 LOCAL: ,WOf.:£1 177 777 ; INTERNAL SYMBOL USED FOR DATA

24 000001 .END

While internal symbolic references, such as LOCAL in the example,
can be resolved by the assembler or compiler within the single pro
gram unit, global references, such as C, cannot. They require other
object modules. During translation, the language processor notes
in the object module those symbols that are global. During linking,
the linker keeps track of the global references and definitions found
in all the object modules; and as linking proceeds, makes the appro
priate correlations and modifies instructions or data as necessary.
After linking, the linker prints on the terminal a list of all symbolic
references that were not resolved (undefined globals), either due to a
program.ming error or because all necessary object modules were not
included in the link.

References to library files also involve the use of global symbols. You
access the routines in a library by naming a routine as a global sym
bol in the source code of your program. You then link your program
with the appropriate library file and the linker resolves the library
references just as it does any global symbol. Library usage is dis
cussed in greater detail in Chapter 13.

A second important function of the linker is to "fix" the relative
memory addresses so that they are absolute. 1 The object module
represents translated source instructions that have been assigned
memory addresses relative to a base address of 0.

Look back at the assembly listing in Chapter 11. Note the second
column; these addresses are relative to a base address of 0. Thus the
first instruction is assembled at relative address 0, the second at

1 FORTRAN and BASIC users who have not performed the demonstration in
Chapter 11, may wish to read the section in that chapter entitled "The
MACR0-11 Language Processor." That section explains the concept of con
verting and storing instructions in computer memory.

12-3

Linking Object Programs

PROGRAM
RELOCATION

AND ADDRESS
ASSIGNMENT

Linking Object Programs

Absolute and
Relocatable
Program Sections

relative address 2, and so on. A program cannot actually be stored
and run in memory using locations relative to address 0, however,
because sys.tern information is already stored in some of these loca
tions. For example, the RT-11 operating system uses byte addresses
40 through 57 to store information about the program currently
executing. In addition, the RT-11 operating system uses locations in
the upper range of memory for storing the resident monitor. Thus,
the linker must assign memory addresses to your program that are
not already in use or that will not be used during program execution.
It must, therefore, assign absolute memory addresses to the relative
addresses assigned by the language processor.

The linker normally starts assigning memory addresses at ad
dress 1000, since this begins a large section of free memory space.
So, to obtain the actual addresses used for program loading, you
must add the relocation constant 1000 to each relative address
shown in the assembly listing.

A conflict arises when several individually-processed object modules
are linked together. The linker cannot assign memory addresses
starting at 1000 to every module, since address assignments of one
would then override those of another. However, part of the informa
tion that the language processor calculates and passes to the linker
is the size of each program section in each module. So the linker
simply adds this size into the relocation constant for each module
and assigns higher addresses, appropriately modifying all instructions
and data as necessary to account for the relocation of each individual
module. Figure 12-2 illustrates the relocation that must occur to
accommodate object modules linked together. 1

Just as global symbols allow yo1i1 to create an entire program using
several individual object modules, program sections allow you to
create an object module as a series of individual sections. The advan
tages gained through the sectioning of programs relate primarily to
control of memory allocation, program modularity, and more ef
fective partitioning of memory. The linker processes the program
section information in the object modules as directions on how to
create the executable program image.

The FORTRAN IV and MACRO-11 language processors insert
program sectioning information into the object module. The
FORTRAN IV language processor does this automatically when
program sectioning is implied by the source language statements in a
user program. For example, FUNCTION, SUBROUTINE, and

1 A load map for this relocation example is shown later in the chapter.

12-4

0

l
0

372 (octal!
PROG bytes RESERVED

370 1000

I l J PROG

SUBONE
42 (octal)
bytes 1370

1372

SUBONE
1432

0 1434

) "· (OCbll SUBTWO bytes SUBTWO

166 1622
1624

Relative addresses of three
assembled/compiled programs

Absolute addresses of three
linked programs

Figure 12-2 Object Module Relocation

COMMON statements result in the production of program section
directives. In MACRO-I I assembly language, you are responsible for
explicitly directing the assembler to output program section informa
tion for the linker. You do this via the .PSECT (or .CSECT and
.ASECT) MACR0-11 assembly language statement.

Some of the basic functions associated with program sections are:

I. Instructions or data can be placed in absolute locations at
memory. The named absolute program section (. ABS.)
allows you to instruct the linker on exactly where to place
program code or data. Declaring a section as part of the
absolute program section instructs the assembler or com
piler to use the internal value of the program counter as
the physical memory address to be assigned after linking.
This section is processed relative to absolute memory
address O and is not relocated at link time.

2. Named relocatable program sections are used to group data
or instructions into logical portions of memory. The
FORTRAN COMMON statement invokes this construct to
allow access to named data areas from many separate
routines. Declaring a section as part of a named relocatable
program section causes the section to be processed at re
locatable address 0. Such sections are relocated by the
linker.

12-5

Linking Object Programs

Linking Object Programs

3. A program section exists known as the blank program sec
tion. If you do not care to have exact control over where a
portion (section) of a program will be placed in memory,
use the blank program section. The linker treats this
section as relocatable and the linker decides where to place
it in the loadable memory image. The blank program sec
tion is the default for a MACRO- I I source program and
remains in effect until an explicit program section is identi
fied (the program example in Chapter 11 used the blank
program section).

4. A program section can be identified as an instruction
section. The linker, using this information, can provide
automatic loading of declared overlay code when needed
by the executing program (this will be discussed in more
detail.

The language processor, then, actually maintains several program
counters one for the absolute program section, one for the un
named relocatable program section, and as many as needed (maxi
mum is 254) for named relocatable program sections. The assembled
example that follows helps to explain this concept.

,MAIN, NACfi.'0 V03,00 5-JUL-77 13:43:57 PAGE 1

3
4
5
6
7
8 000000 005000
9 000002 012701 000034'

10 000006 062100
11 000010 022701 000044'
12 000014 100374
13 000016 01::!767 00~000 000020
14 0000~4 005003
15
16 000000
17 000000
18 000004
19
20 000010
21 000012
22 000014
23
24 000000
25
26 000042
27
28
29
30 000026
31 000026
32 000032
33 000034

000042
34
35 000044
36
37
3&
39
40
41

01:.1703 000100
01:::?701 000044'

005021
005303
001375

000042
001000

005267 000012
000000
000001 000002 000003
000004

000000

000001

SlARTl ClR
MOV

LDOF·: A!Jt1
Ct1f'
•PL
HOV
CLR

RO
tft[G,Ri
(Rl >+,RO

t2000 ,A[IDR
R3

, f''J(C I CLEAi-:
MDV tlOO,R,3
MOV t-A[rt1R, R 1

AGAIN! CLR Oi:1)+
[l£C R3
BNC AGAIN

,ASECT
, ~42
,WOfUI 1000

,F'SFCT
INC A[1[1F,•
HAU

~EG: ,WORfl 1,2,3,4

An[IR: • WOkII 0

iUNNAMH1 f\'ELOCATABLE. f'ROGFMM
;SECTION IS IIECLARrn (BY tlEFAULl)
; (• ,F·SECl' IS ASSUHE[I)

;NAM[LI RELOCATABLE F'ROGRAH
;sEcrION IS DECLARED (VIA •• F=·sECT NAHE")

; ABSOLUTE F'ROGRAM SECT ION
HlECLARE[i (VlA ',ASECT")
nHE VALUE 1000 WILL Et£
,S'TORE!I IN ABSOLUTE l'IEMOFIY LOCAHON 42
iWHEN THE F·ROGRAl't IS EXECUTED

HrACt\ fO UNNAHE[I RELOCATABLE
i PROGRAM SECl ION

;NOTE THAT YOU CAN WRITE LANGUAGE STATEl't(NIS lHAT WILL BE'. LOADH1

;c;oNTIOUOUSlY IN MEMOR'f, BUT (10 NOT NECESSARILY OCCUR CONTIGUOUSLY
i IN 'THE SOUh'CE PROGRAM (I, E, , THE:. COIIE. AT l INES 1 15AN[1 29 40)

,EN[1

Since the system does not know at assembly (or compile) time in
what actual memory locations each relocatable section goes, all refer
ences between sections (see line 18) are relative to the base of the
section. This information is then passed to the linker so that it can
make the appropriate adjustments at link time.

12-6

The RT-11 linker is capable also of handling the special relocation
and address assignments that are required whenever you indicate
that an overlay structure is needed. An overlay structure is necessary
when you write a program that is too large to fit in the available
memory of your system. You write the program in discrete parts
(some programming restrictions must be observed) so that your pro
gram can subsequently be executed in parts. One segment of the
program is called the root segment and must remain in memory at
all times. The root segment contains the necessary information for
use by the other segments of the program, called overlay segments.
Overlay segments are stored on storage volumes and brought into
memory as needed. The purpose of the overlay structure is for parts
of the program to share the available memory in such a way that
when one part is complete, it is overlaid (and therefore erased) by
another.

You indicate how to plan to overlay your program by using the
/PROMPT option in the LINK command line. The linker then
creates a load module that contains the_ necessary information for
loading the appropriate segments as needed during execution. The
RT-11 System User's Guide explains the overlay feature in more
detail in Chapter 11. You need not specify an overlay structure for
the examples demonstrated in this chapter.

The load module is the result of the linking processes described thus
far; joining object modules, resolving symbolic and _library references,
relocating object modules, assigning absolute addresses, and creating
an overlay structure if required. The load map is essentially a synop
sis of the load module ~ that is, what memory looks like when the
program is loaded and ready to be executed.

In Chapters 9 and 11, you produced load modules but you did not
request load maps. You obtain a load map by using the /MAP option
with the LINK (or EXECUTE) command. At this time, relink the
FORTRAN or MACRO object module that you stored on VOL: and
use the /MAP option to produce a load map on the line printer. 1 The
load map is created as a file on the default storage volume and has
the name of the first input module and a file type of .MAP.

1 FORTRAN users who followed the special instructions in Appendix B for
loading the language volume should check that this volume is loaded in device
unit 0.

12-7

Linking Object Programs

The Overlay
Feature

PRODUCING A
LOAD MODULE

AND A LOAD
MAP

B

Linking Object Programs

Long Command Format

(Macro Object Module)

+LINK (RET)

Files? VOL:SUM/MAP(R]n

(FORTRAN object module)

+L.INI<@
Fi J. €:'!,/i' VOL.: GRAF'H/M,~F'@TI)

Short Command Format

(MACRO object module)

+ I... I NI, VOL: SUM/Mt:,F' CB]!)

(FORTRAN object module)

+LINK VOL: GRAPH/MAP (RET)

Now list the .MAP file on either the line printer or terminal, choosing
the appropriate command:

Long Command Format

(Line printer)

• L.INl,./MAP (fill)
File!:; 'i' VOL: SUM (RET)

Short Command Format

(Terminal)

+L.INl<IMAP!TT: (RET)
Files? VOL: SUM (RET)

(Line printer) (Terminal)

• L. I Nl"</MAP VOL.: SUM (RET) • L :r NK/MAP: TT: VOi ... : SUM (RET)

For your convenience, both maps are provided here. In addition, a
load map of the relocation example used in Figure 12-2 is also
provided.

I 2-8

Linking Object Programs

RT-11 LINK Load Mi3P Tue.:~ 05·· Jul····/7 :L3:1;'.'.t31
SUM ,SAV Title: SUM,MA Ident:

Section Addr Size Global Value Global Valut~ Global Value

ABS, 000000 001000 CRW,I,GBL,ABS,OVR)
001000 000372 CRW,l,LCL,REL,CONI

Trar,sfer address ·- 001000, Hish limit 001372 3!31.. words

R1'-11 LINK Load Map Tue 05-Jul·-77 13:10:23
GRAPH ,SAV Title! ,MAIN, Ident: FORY02

Section Addr Size Global Val•Je Global Value Global Val•Je

ABS, 000000 001000 (RW,I,GBL,ABS,OVRI
$USRSW 000000 $RF2A1 000000 $HRDWR 000000
,VIR 000000 ,V014A 000001 $NLCHN 000006
$SYSV$ 000007 $WASIZ 000131 $LRECL 000210
$TRACE 004737

OTSU 001000 017074 (RW,I,LCL,REL,CON)
$$0TSI 001000 $CVTIF 001000 $CVTIC 001014
$CVTID 0()1014 CCU 001026 CllU 001026
$IC 001026 $![I 001026 CFU 001042
UR 001042 EXP 001126 MUF$PS 001466
MUF$MS 001472 MUFHS 001502 $MULF 001510
MUF$SS 001522 $MLR 001522 SORT 002032
DIF$F'S 002226 DIF$MS 002232 DIFUS 002242
$DIVF 002250 DIF$SS 002262 $DVR 002262
ADFUS 002550 ADF$PS 002556 SUF$F'S 002562
SUF$MS 002566 ADF$MS 002600 SUFUS 002610
$ADDF 002616 $SUBF 002632 SUF$SS 002644
$SBR 002644 ADF$SS 002650 $Al)R 002650
ADD$ 002664 $0TI 003336 $$OT! 003340
$$SET 0()5046 I DINT 005342 INT 005342
MAXO 005370 MINO 005414 !SN$ 005440
HSNTR 005444 LSN$ 005460 $LSNTR 005464
Al:IUSS 005620 ADUSA 005624 ADU SM 005630
AIIUIS 005634 ADHIA 005640 AD.TUM 005644
ADUMS 005650 ADUMA 005654 ADUMM 005660
suuss 005664 SUUSA 005670 SLJUSM 005674
suurn 005700 SLJUIA 005704 SUUIM 005710
SUUMS OO~i714 SLJUMA 005720 SLJI$MM 005724
ICl$S 0()5730 ICI$M 005734 ICl$F' 005740
ICUA 005742 DCUS 005746 DCUM 005'7~j2
DCI$P 005756 DCI$A 005760 MOF$SS 005764
MllF$SM 005776 MOF$Sf' 006006 LLE$ 006012
LED$ 006014 LGH 006022 LGE$ 006024
I.NE$ 0060:,4 LLT$ 0060;,6 IOR$ 006042
AND$ 0()1.,046 EClV$ 006054 XllR$ 006056
TSl.$S 006072 TSL$M 006076 TSLU 006102
TSL1iP 006110 REHL 006116 RET$F 0061.22
REHI 0061;,o REH 006132 MOUSS 006166
MOL$Sl, 006166 MOUSM 006172 MOUSA 006176
MOU IS 006202 MOL$IS 006202 REL$ 006202
MllUIM 006206 MOIUA 006212 MOUMS 006216
MOUMM 006222 MOUMA 006226 Mlll$0S 006232
MOUOM 0062:36 MllHOA 006242 MOHiS 006246
MOIUM 006254 MOUlA 006262 EXIT 006270
NG[l$S 006274 NGF$S 006::74 NGD$M 006306
NGF$M 006306 NGD$P 006322 NGF$f' 006322
NGD$A 006326 NGF$A 006326 CAI$ 006:532
CAL$ 006:340 MOI$IP 006370 MOUSF' 006372
MllI$F'i"' 006400 MllUMF' 006404 MOUPS 006414
MCJT$PM 006422 MOUF'A 006430 MOUOF' 006436
MOI$1F' 006444 CMI$SS 0064~i4 CMUSI 00646()
CMUSM 006464 CMUIS 006470 CMUII 006474
CMUIM 006~i00 CMI$MS 006504 CMUMI 006510
CMUMM 006514 NMI$1M 006520 NMIUI 006532
BLE$ 006542 BED$ 006~i44 BGH 006552
BGE$ 006554 BRA$ 006556 BNE$ 006562
BLT$ 006564 MOF$RS 006574 MOF$RM 006602
MOF$RA 006612 MllF$Rf' 006616 MOF$MS 006622
MOF$F'S 0066:34 MOF$MM 006640 MllF$MA 006652
MOF$MF' 006660 MllF$PM 006666 MOF$PA 006672
MOF$PF' 006676 MOL$SM 006702 MOL$SA 006706
MOL.$MS 006712 MOL.$MM 006722 MOL.$MA 0067~?6
MOL$Sf' 006732 MOL$F'F' 006740 MOL$MF' 006744
MOL$F'M 006754 MOL$F'S 006762 MOL$PA 006766
MllL$IM 006774 MOL$IA 007002 MOL.UP 007010
STK$L 007020 STK$I 007024 STK$F 007030
MOI$RS 007040 MOL$RS 007040 MOI$RM 007044
MOURF· 007050 MOURA 007052 $llTIS 007056
HllTIS 007060 SALUM 007200 SAL$SM 007~102
SVL$IM 007206 SVL$SM 007210 SAL.$MM 007216
SVL$MM 007222 $CVTFB 007226 $CVTFI 007226
$CVTCB 007242 $CVTCI 007242 $CVTDB 007242
$CVT[II 007242 CIC$ 007254 CHI$ 007254
CLC$ 007254 GLD$ 007254 $[11 007254
CIF$ 007264 CLF$ 007264 $RI 007264
CIL$ 007376 CLI$ 007402 TVL$ 007404

12-9

Linking Object Programs

Section Addr Size Global Value Global Value Global Value

OTS$P 020074 000050
SYS$! o:w144 000212

USER$! 0203'.36 0()000()
$CODE 0203:,6 001316

OTS$0 0216'74 001()l6

SYS$0 022712 000000
$DATAP 022712 000106
OTS$D 023020 000006
OTS$S 023026 000002

SYS$S 023030 000004

tTVL 007404 TVFI
TVDI 007420 STVD
STVQ 007426 TVP$
TVII 007442 ITV!
ERR$ 007610 SFND
IFWS 007662 SIFW
ICHKER 010000 IIOEXI
EOLI 010054 ISTPS
ISTP 010176 FOOt
SALIIP 010346 SALISP
SVLSSP 010356 SALSMP
SERRTB 010374 $ERRS
SAVRG$ 014126 T~~DI
$GETDL 014516 IEOFIL
IPUTRE 014736 $WAIT
IINITI 015326 $CLOSE
$$Fl0 016616 IDUMPL

CRW,D,GBL,REL,OVRl
IRW,I,LCL,REL,CONl

LEN 020144 REPEAl
IRW,I,LCL,REL,CON)
(RW,I,LCL,REL,CDNI

$$0TSC 020356 FUN
CRW,I,LCL,REL,CON>

$10TSO 021674 IOPEN
CRW,I,LCL,REL,CONI
(RW,D,LCL,REL,CON)
<RW,D,LCL,REL,CONI
CRW,D,LCL,REL,CON)

$AOTS 02:rn~!6
CRW,D,LCL,REL,CDNI

00}412
()074,!()
()()7434
()()7442
0076:.!:!
007666
010024
0101/0
0l.0202
0111:i,rn
0103{,4
010501
014;304
01470::!
Ol~l16b
01:'l440
017746

02()162

021234

$TVF
TV(l$
$TV!''
END$
$El~R
IFW$$
$EOL
STF'I
$EXIT
BVL$IF'
!Nl3MF'
$VIN IT
$l"UTBL
$[0F2
$FCHNL
$FIi)

SCOPY

l'I.ITSTf,

00741:.!
00/4:?6
007434
()()7:576
007640
oon:rn
01 OO:'i~'
0101/6
010222
010:1:',4
01037()
014124
014;:,06
01471.f,
0152JO
01.6612

o:w:rno

0;>140;,,

IBYSLB 023030 ILOCK
IRW,D,LCL,REL,CON)
(RW,D,LCL,REL,CONl
IRW,D,GBL,REL,OURI

023032 ICRASH 023033
$DATA 023034 oooe,:i6
USER$[1 023572 000000
.$$$$. '023572 000000

Transfer address~ 020356, Hish limit= 023572 = 5053. words

RT-11 LINK
LNEXF'l,SAV

L.oad MaP Tue 05-·JlJl·-77 13!53:10
l'itle: .MAIN. Ident:

Section Addr Size Global Value Global Value Global Value

, ABS, 000000 001000 IRW,I,GBL,ABS,OVR)
001000 000034 (RW,I,LCL,REL,CON)

Transfer address~ 000001, Hi•h limit 001034

The second line has the name and file type of the load module
created. Next, the absolute section and each named and unnamed
section are listed under the SECTION column. To the right are
abbreviated codes designating whether the section contains Instruc
tions or Data, is Read/Write or Read Only, is a Local or Global
section, is Relocatable or Absolute, is Concatenated or Overlaid.
Below this falls a listing of all the global symbols (GLOBAL) and
their values (VALUE). Finally, at the end of the map is the transfer
address where the program actually starts when executed, followed
by the high limit the total number of bytes used by all the in
dividual program sections.

Look first at the MACRO load map. The default absolute section
starts at absolute location O; its size is 1000 bytes. Thus, it extends
from absolute menrory location O through absolute memory location
777. The unnamed program section (there were no named program
sections in this program) starts at absolute 1000; its size is 372 bytes.
Thus it extends from absolute location 1000 to absolute location
1372. The high limit of this program (total bytes) is therefore 1372.
Since this program is not linked to any other object modules, there
are no global symbols and the rest of the map is blank.

12-10

Look now at the FORTRAN load map, remembering that it reflects
the appropriate expansions into machine language code provided by
the FORTRAN compiler. Again the absolute section extends from
absolute O through absolute 777. Globals listed in the absolute sec
tion show the global variable names that the program uses as con
stants throughout the program.

The unnamed relocatable program section begins at absolute loca
tion 1000. Some of the named relocatable sections declared are
OTSP, SYS!, and $CODE. Global symbols and their respective
addresses appear to the right of all sections. The total number of
bytes used is 22534.

The third load map again shows the absolute section, from absolute
memory location O through 777. Next. the entry points of the
modules (PROG, SUBONE and SUBTWO) are shown; 1000, 1372,
and 1434. The transfer address is 1000 and the total number of bytes
used is 1624, followed by that value in decimal words.

Loap maps are most helpful when used in debugging to locate and
correct assembly language programming errors. They are not
generally obtained or used for FORTRAN programs, except to
determine program size. In Chapter 13 you will see how a load map
is used to debug the one remaining error in the MACRO demonstra
tion program.

LINK
Link individual object modules together to form a complete
program and to produce a load module.

LINK/MAP
Link individual object modules and produce a load map show
ing all address assignments made during linking.

NOTE

FORTRAN users who followed the special instructions in
Appendix B to load the language volume should now stop
the system, unload that volume, load the main system
volume, and rebootstrap the system before going on to
Chapter 13.

RT-11 System User's Guide (DEC-11-0RGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 19 77.

A guide to the use of the RT-11 operating system. See Chapter 11.

12-11

Linking Object Programs

SUMMARY:
COMMANDS FOR

LINKING
PROGRAMS

REFERENCE

CHAPTER 13

CONSTRUCTING LIBRARY FILES

A library is a specially constructed file consisting of one or more
programming routines. Generally, these routines provide services that
you are apt to need repeatedly or services that are related and so
have been gathered together for ease in use and storage. You use the
routines in a library by joining the library file with your source
program. Usually this occurs at link-time: but in the case of assembly
language programs, it may also occur at assembly-time.

The RT-11 operating system provides several library files; SYSLIB
and VTLIB for example. These libraries supply the monitor services,
input and output routines, conversion routines, and other program
ming services that user programs may need. You can create other
library files yourself. Thus you can construct libraries that contain
routines specific to your programming needs or to the combined
needs of those using your RT-11 system.

There are two kinds of library files - macro libraries and object
libraries.

Macro libraries, such as SYSMAC.SML, are used by MACR0-11
source programs at assembly-time and consist entirely of macros.
A macro is described in Chapter 11 as a recurring sequence of coding
instructions which, when defined in a .MACRO statement, can then
be called and used anywhere in your program. A macro library is
merely several macro definitions gathered together into a single file.
To use the macros in a macro library, you simply name those macros
you plan to use in an .MCALL statement. When the assembler
encounters the .MCALL statement during processing, it searches the
appropriate macro library (SYSMAC.SML is default) for the defini
tions. It takes the definitions from the library and inserts them in a
special table called the macro symbol table where they become avail
able for use during assembly.

13-1

KINDS OF
LIBRARY FILES

Macro Libraries

Constructing Library Files

Object Libraries

CREATING AND
MAINTAINING A
LIBRARY FILE

Object libraries, such as SYSLIB, are used by assembled MACRO-11
source programs and/or by compiled FORTRAN IV source programs
at link-time. These libraries consist of object modules that contain
global routines; such routines have been defined with global entry
points and then named as global symbols in the source program. Dur
ing the link operation, the linker searches the object libraries to
determine if they provide definitions for any undefined globals. If
the linker finds definitions, it takes those object modules containing
the definition from the library and includes them in the link.

A special table, called the global symbol table, lists each global in a
given object library. You can print this list on the terminal or the line
printer and thus keep track of an object library's current contents.

You create a library file by combining several macro routines, or
several object modules, into a single larger file using the monitor
LIBRARY command.

To build a macro library, first use the editor to create an ASCII
text file that contains all the macro definitions. Then process this
file using the LIBRARY command in combination with its /MACRO
option. To update a macro library (that is, to add or delete macro
definitions), simply edit the ASCII text file and then reprocess the
file with the LIBRARY command.

T·o build an object library, again use the editor to create an ASCII
text file. The file contains the routines and functions written as
complete program segments in either the MACRO-11 assembly
language or the FORTRAN IV programming language. Then process
the file, producing an object module. Next use the LIBRARY com
mand in combination with its /CREATE option. Once the library file
is created, you update it (add and delete routines) by means of
various other options to the LIBRARY command.

In the following exercises, you create an object library that contains
three input object modules. The routines in two of these modules
can be used by both MACRO and FORTRAN programs; the routine
in the third module can be used only by FORTRAN programs.

To build the library file, first use the editor to create the three ASCII
text files. Then convert the ASCII text files to object format
Finally, process the object files with the LIBRARY command. Once
you create the library file, use LIBRARY command operations and
options to add and delete modules and globals and to obtain a listing
of the library file contents.

13-2

The first step in building an object library is to prepare the source
code of the routines and functions that you choose to include in the
library. Use the editor to create the following three text files, calling
them FIRST.MAC. SECOND.MAC, and THIRD.FOR respectively.
FORTRAN users should create all three files; MACRO users (who do
not use FORTRAN) should create only the first two files.

FIRST.MAC

LEN:

u:

• TITLE COMB
.MCALL .PRINT
I=LEN(A)
.GL.OBL LEN
TST (R5>t
MOV @R5,RO
TSTB <ROH
BNE 1$
DEC RO
SUB @R5,RO
ras PC

,SKIP t OF ARGS
9GET STRING POINTER
;FIND END OF STRING
;LOOP UNTIL NULL BYTE
;BACK UP
;CALC t OF CHARS IN STRING

CALL PRINT<ISTRNG)
• GLIJBL PRINT

PRINT! MDV 2CR5),RO ;ADDR OF !STRNG
;.PRINT .PRINT

RTS PC
.END

SECOND.MAC

;
.TITLE ITTOUR
I=ITTOUR(ICHAR>

; AND f<ETURN

I=O CHARACTER HAS BEEN OUTPUT
=1 RING BUFFER IS FULL

.MCALL. +TTOUTR

.GLOBL ITTOUR
ITTOUR:MOVB @2(R5),RO

+TTOUTR
BIC
ADC
RTS
+END

THIRD.FOR

RO,RO
RO
PC

;GET CHARACTER
;.TTOUTR
;cLEAR ERROR FLAG

;RETURN

C CALL PUTSTRCLUN,AREA,CC)
SUBROUTINE PUTSTR(L.UN,AREA,CC)
LOGICAL.*1 AREAC25O),CC
IF<CC) GOTO 1
WRITE (LUN,99)(AREA(I>,I=1,LENCAREA))
RF.TURN

1 WRITECLUN,99)CC,CAREA<I>,I~1,LEN<AREA>)
99 FORMATC250A1)

ENI)

13-3

Constructing Library Files

Creating Object
Library Input Files

Constructing Library Files

The routines in these files are representative of the kinds of service&
generally provided in a library file. They are, in fact, taken from the
RT-11 system subroutine library, SYSLIB.

FIRST.MAC contains two global routines, LEN and PRINT. The
LEN routine returns the number of characters in a string. PRINT
outputs an ASCII stnng terminated with a zero byte to the terminal
(it is the FORTRAN equivalent of the system macro .PRINT, used
in the demonstration program in Chapter 11). SECOND.MAC con
tains one global routine, _ITTOUR, which transfers a character to
the console terminal. THIRD.FOR also contains one global routine -
PUTSTR. This routine can be used only by FORTRAN programs
and writes a variable-length character string on a specified
FORTRAN logical unit (see GRAPH example).

Once you create these text files, the next step 1s to convert them
from ASCII format to object format. You assemble or compile the
text files as appropriate, first assembling FIRST.MAC and obtaining
an object module (a listing is not necessary). FORTRAN users who
are not familiar with the assembly process simply type the MACRO
commands as shown.

Long Command Format

• MACRO (filT)

Fi les1 FIRST <fill)
ERRORS DETECTED: 0

Short Command Format

+ MACRO FIRST (RET)
ERRORS DETECTED: 0

The command creates an object module called FIRST.OBJ on the
system volume. The assembler prints a message on the terminal
indicating the number of errors encountered during assembly:
this message should show O errors.

Likewise assemble SECOND.MAC. Again, no errors should occur.

Long Command Format

+ MACRO (RET)
Fi 1 es? SECOND (fiET)
ERRORS DETECTED: 0

13-4

Short Command Format

.MACRO SECOND rnEr)
ERRORS DETECTED: 0

If any errors occur during the assembly operations, you have in
correctly typed the source files. Find the correct the typing errors,
and reassemble.

If you are a FORTRAN user, continue by compiling THIRD.FOR.

NOTE

If in Chapter 9 you needed to load the special FORTRAN/
BASIC language volume, you must again load that volume
before you can compile THIRD.FOR. Read Appendix B,
"Substituting Volumes During Operations", before
continuing.

Long Command Format

• FORTRAN (RET)

Files? THIRD@)
PUTSTR

Short Command Format

.FORTRAN THIRD@)
F'IJTSTR

Notice that the compiler prints the name of the global (PUTSTR)
generated. If any errors occur during the compile operation, you
have incorrectly typed the source file. Find and correct the typing
errors and recompile.

Once you have produced the object modules, you are ready to build
the object library file.

Use the LIBRARY command in combination with its /CREA TE
option to construct a library file. You must indicate in the com
mand the name of the library file and the names of the input object
modules. Call the library file LIBRA and specify as input the two
object modules, FIRST and SECOND. The LIBRARY command
assumes that the input modules have the .OBJ file type (unless
you indicate otherwise) and automatically assigns .OBJ to the
library file.

13-5

ConstructinK Library Files

Building the
Object Library

Constructing Library Files

LIBRARY/
CREATE

LIBRARY /LIST

Updating the
Object Library

Long Command Format

• LIBRAl~Y /CREATE (RET)
LibrarYrt LIBl~A (RET)
Files '? FIF~ST p SECOND(RET)

Short Command Format

+LIBRARY/CREATE LIBRA FIRST,SECOND

Once the CREAT-E operation is complete, obtain a listing of the
library file's contents using the LIBRARY command with its LIST
operation. The line printer is the assumed output device for the list
file, although you may indicate a different output device by adding
the 2-letter device code to the LIST option shown below.

Long Command Format

(Line printer)

• L.IBRAl:~y /1... IST@IE)
Librar\:.I? L.IBHA ([ill

Short Command Format

(Line printer)

.LIBRARY/LIST LIBRA

(Terminal)

I l . r:11··· ~1-·Y/I "[c;·r· •TT• 'REI' • -· J:. '\l··J' ,_ • • ~

Librar!:1'f LIBl:~A

(Terminal)

The listing produced shows the library file's current contents. This
library has three entry points: LEN and PRINT in the first module
and ITTOUR in the second module.

RT-11 LIBRARIAN V03.05 FRI 08-JUL-77 11:03:29
LIBRA FRI 08-JUL-77 10:59:43

MODULE GLOBALS

LEN
ITTOlJR

GLOBALS

F'fi:INT

GLOBALS

Once you have created an object library, you use various LIBRARY
command operations to update and maintain it - to add and
delete modules and globals.

13-6

If you created the THIRD.OBJ object module, you can add it to the
library file using the INSERT option. If you did not create this
module, read through this section anyway; the command steps apply
to any object module you wish to insert.

Long Command Format

I ·1· "-·i1:··A· 1··,y; r N<"'1=·1:·,·r· (RET) •.....•. ,, ~, ... ,
Libra T'!:I'~ L HH~A (RET)
Fi lf?S '~ THil:~D (§TI)

Short Command Format

This · operation inserts the object module contained in the file
THIRD.OBJ, including all its globals, into the library file LIBRA.
Obtain a listing of the library contents, using the LIST option, to
verify that the new globals have been added. The listing should look
like this:

RT-11 LIBRARIAN V03+05 FRI 08-JUL-77 11!05118
LIBRA FRI 08-JUL-77 11!04121

MODULE: GLOBALS

LEN
ITTOUF~
PUTSTR

GLOBALS

PF~INT

GLOBALS

This listing shows the complete library file containing the globals
from all three modules.

You can remove individual globals by using the REMOVE option.
For example, to remove the global ITTOUR, type:

Long Command Format

+L. I Bl=i:Al:.:Y /F,:E:MOVE (RU)
I ... i bra r!:l'? L. I Bfrn @:!)
(., ·1 l l '·> ·r ·y--r OlJR' r,.,-;:-:;:-, ., .. 0,.:1,:L ! . · '~

G l ()bi~ 1 '!' (R[T)

13-7

Constructing Library Files

LIBRARY/
INSERT

LIBRARY/
REMOVE

Constructing Library Files

SUMMARY:
COMMANDS FOR
MAINTAINING
LIBRARY FILES

FILE
MAINTENANCE

Short Command Format

• L. I Bl=i:ARY /REMOVE LI BRA (RET)
Global 1 ITTOUI:;: (RET)
Globa11(RET)

The library file's contents now look like this:

RT-11 LIBRARIAN V03.05 FRI OB-JUL-77 11!10!22
LIBRA FRI 08-JUL-77 11:10:05

MODULE GLOBALS

LEN
PUTSTR

GLOBALS

PRINT

GLOBALS

These are some of the library maintenance operations that you can
perform using the LIBRARY command. Other library operations
are available and are explained in the RT-11 System User's Guide,
Chapter 12.

LIBRARY /MACRO
Create a macro library.

LIBRARY /CREATE
Create an object library.

LIBRARY /REMOVE
Remove globals from the object library.

LIBRARY /INSERT
Insert object modules into the object libraty.

LIBRARY /LIST [:filespec]
List the current contents of an object library on the line
printer: [:filespec] is an optional output file and/or device.

Since all the object modules used in this chapter already exist as
modules within the provided system library SYSLIB, there is no
need to save them or the LIBRA library file. You can delete these
object modules and their source files from your system volume
using the DELETE command as follows (exclude THIRD.* from the
command line if you did not create this file):

13-8

Long Command Format

+ DELl:.TE/NOQUE:1:;:y (RET)
Files'? Fil=i:ST. *,SECOND+*, TI-IIFW +*,LI.BRA. OBJ@)

Short Command Format

•DELETE/NOQLJERY FIRST ·*'SECOND •. *,THIR[I ·*,LIBRA. mu (RET)

FORTRAN users who performed the special instructions given in
Appendix B should also delete the THIRD files from the storage
volume.

Long Command Format

+DELETE/NOQUERY@)
Files? VOL.!THIRD.*(RET)

Short Command Format

•DELETE/NOl~UERY VOL: THIRD.* (fin)

RT-11 System User's Guide (DEC-11 ORGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 12.

13-9

Constructing Library Files

REFERENCE

CHAPTER 14

DEBUGGING A USER PROGRAM

Debugging is the process of finding and fixing the programming
errors that almost every user program initially contains. From
your experience in Chapters 9, I 0, and 11, you already know about
some of the kinds of programming errors that can prevent a program
from working properly when you run it on the system.

Frequently, debugging a program requires more time and persistence
than actually writing the program code. Therefore, you should
anti_cipate the debugging process throughout the entire program
development cycle. That is, you should follow some common pro
gramming practices that help you to avoid making programming
errors. When errors become apparent during the various phases of
development, correct them immediately. Test the validity of any
algorithms used within your program. Finally, even though the
program appears to be working properly, check it thoroughly with
test data.

There are several steps you can take to decrease the likelihood of
introducing errors into your program and to make debugging easier
should it become necessary.

First, always use a high-level language if one will suit your program
ming needs. High-level language programs tend to use fewer state
ments. English-like words and phrases in the language statements
make the program logic easier to follow.

Design the program. Flowcharting the program, then correlating
it with the program coding, is found to be helpful by many. This
technique simplifies tracking the program logic and module inter
relationships.

Use modular programming. Create the program as a series of smaller,
self-contained subprograms. Debug the program in parts.

14-1

AVOIDING
PROGRAMMING

ERRORS

Debugging A User Program

WHEN
PROGRAMMING
ERRORS OCCUR

Maximize the use of subroutines, subprograms, and, in the case of
assembly language program:;, macros for frequently-needed func
tions. These help to structure the program and make it easier to
alter or to add features that may be required in the future.

Make use of any software provided for you by the system such as
library routines and functions. System software has already been
debugged and can save you the trouble of recreating the services.

Make the general flow of a program proceed down the page. Avoid
non-structured branching and convoluted logic as these tend to
produce programs that are difficult to debug. Finally, use comments
liberally throughout the program to show what individual statements
or groups of statements do. Use spaces and tabs in the program code
to make it easier to read.

Following these preventative steps eliminates many common pro
gramming errors and helps to create a programming style. However,
even the most careful programmer may overlook a small detail: a
typing error during program creation, an undefined label in the code,
or some other programming bug. When something is overlooked,
debugging becomes necessary

There are three general types of programming errors - syntax,
clerical, and logical.

Syntax errors are errors in the physical coding, such as omitting
necessary portions of the statement (delimiters for example), revers
ing the order of information within the statement, or misspelling
keywords or instructions.

Clerical errors are non-syntax errors in the physical coding, such as
mistyped letters or digits in data. Clerical errors may result in valid
statements that do not reflect correct programming logic.

Logical errors are errors made in program development.

The translating program (compiler/assembler/interpreter) generally
catches syntax errors and flags them as such in the program listing
or on the terminal. On the other hand, you must locate clerical and
logical errors by reexamining the program code and logic, using one
or more debugging techniques.

14-2

Some debugging techniques involve insertion of special debugging
code within the program for checking its execution. For example,
one way to locate logical errors is to write out intermediate results
of a program. You can insert WRITE or PRINT statements at stra
tegic points in the program logic to show the intermediate state
of values being calculated. When debugging is complete, you can
remove these statements or change them to comments.

You may also find it useful to write a special debugging subroutine
that writes out values, particularly .if the same variables must be
examined in several places or many times.

Another method for finding logic errors is to break the program into
smaller parts and test each part separately with artificial data (called
unit testing). After you test all parts individually, you can test
routine and module linkage to see that all related code fits together
properly (called system testing).

Check the program with test data. A standard method for checking
out modules is to write a test program that calls the program with
possible options. The test should cause the program to execute all
steps in all algorithms. Check programs first with representative data,
then with improper data (data that is not in the correct range or
size). Scramble input data to ensure that its sequence has no effect
on the results. You should also do volume testing to see that the
program works successfully with a representative amount of data.

Each programming language has special debugging aids for examining
immediate states. t<or example, BASIC has a STOP statement that
you can insert at strategic points in the program. When execution
arrives at a STOP statement, it pauses and you can then use BASIC's
immediate mode to examine variables, values, and so on. Use an
immediate mode GO TO statement pointing to the appropriate line
number to continue execution.

FORTRAN IV has a special DEBUG statement indicator, a Din the
first column of a statement line. Operations in statements marked
with a D can perform useful debugging functions, such as printing
intermediate results. You can treat such statements as source text
(and thus execute them) or as comments (and thus ignore them)
depending on your use of a special compiler command option. In
addition, FORTRAN IV has a traceback feature that locates the
actual program unit and line number of a runtime error. If the

14-3

Debugging A User Program

Debugging A User Program

USING THE
ON-LINE
DEBUGGING
TECHNIQUE

program unit is a subroutine or function subprogram, the error
handler traces back to the calling program unit and displays the name
of that program unit and the line number where the call occurred.
This process continues until the calling sequence has been traced
back to a specific line number in the main program unit. Finally,
FORTRAN IV has an optional interactive debugger called FDT
(FORTRAN DEBUGGING TECHNIQUE) that can be linked with
a user program.

For MACRO-11 users, RT-11 provides a special on-line debugging
tool called ODT (On-line Debugging Technique). This is provided as
part of the RT-11 operating system and is an object program on your
system volume. It is used exclusively for debugging assembled
MACRO-I I programs.

The use of ODT is described next for MACRO-11 users and for those
FORTRAN IV users who will be combining MACRO and FORTRAN
program code. Other users can continue to Chapter 15, or go back
and perform one of the other language demonstrations. Refer to the
reading path outlined in the Preface.

ODT is an interactive debugging tool that allows you to monitor
program execution from the console terminal. ODT is provided as
the object module ODT.OBJ on your system volume. To use it, you
link ODT.OBJ with the assembled MACRO program that needs de
bugging. You then start execution of the resulting load module,
not at the transfer address of your program, but at the entry point of
the ODT module (shown on the linker load map as the global symbol
O.ODT). Once ODT is started, you can use its special debugging com
mands to control the execution of your assembled machine language
program from the console terminal, to examine memory locations, to
change their contents, and to stop and continue program execution.

The MACRO demonstration program in Chapter 11 still contains one
error which you can locate and correct using ODT. Several ODT
debugging commands are demonstrated in the process.

Throughout the examples in this chapter you need to refer to the
program assembly listing that you produced in Chapter 11 (SUM)
and storage volume. Print it now on either the terminal or
line printer:

Long Command Format

(Line printei:)
+PRINT@)
Fi les1 VOL: SUM .LST C[[i)

14-4

(Terminal)
.TYPE (@T)

Files? VOLtSUM.L.Sl(RET)

Short Command Format

(Line printer) (Terminal)

• PRINT VOL: SUM. L.ST (fill) • TYPE VOL: SUM. L.ST (ill)

BUH,IMC vtltSl(JH 1 NrllCRO VOJ,00 8-.JUt..-7'1 00tt610l PltOE l

• TITLE SUH,MAC VERSION 1

,HCALL .TTYOUT, ,EXXT, ,PfUMT

000106 N .. 70, INO, OF OIGITS or 'E' TO CALCULATE

10
11

'E' = THE SUH OF THE RECIPROCALS OF THE FACTORIALS
1/01 + 1/1! t 1/2! + 1/31 + 1/41 + 1/51 t •••

12 000000
13 000006 012705
14 000012 012700
15 000016 I 012701
16 000022 006311
11 000024 011146
18 000026 006311
19 000030 006311
20 OOOOJ2 062621
21 00003,4 005300
22 000036 001371
23 000040 012700
24 000044 014103
2S 0000 1 !. 012102
26 0000~2 005202
27 00005-4 UOOOJ
28 000056 103375
29 000060 060003
30 000062 010311
31
32 000064 060261
33
J<I 000010 00'5JOO
3'5 000072 001364
J.S 000074 OUJOO
37 000076 162700
38
39 000102 103315
40 000104 062700
41 000110
42 000114 005011
U 000116 00530:5
... 000120 001JJ<I
4!5 000122

•• 47 0001<4 000107

•• •• 50

000106
000107
00012-4'

000106

177711

177776

000012

000070

FIRST:

SECOND I

HURD!

FOURTH!

FlFTHl

.,

,PRHH
NOU
NOV
NOU
ASL
NOV
ASL
ASL
ADD
DCC

••• NOV
NOV
NOV
INC
SUB
•cc
ADD
MOV

ADD

DEC
BNE
HOV
SUB

tt1ES5AG
tN,R5
fN+l ,RO
tA,R1
••1
(IRJ,-{SF'J ••1 ••1 (SP)hHUH

•• SECOND
tN,RO
-(Rl) ,RJ
t-1,R2 .,
RO,RJ
FOURTH
RO,RJ
Rl,IR1

RO
THIRD
-UU>,RO
tto, ,RO

ace FIFTH
ADD t10+'0,RO
, TTYOUT
CLR IIU
DEC J::5
BNE F"lRST
,EXIT

,REPT
,WORD
,ENDR

"" !

JPRINT INTRODUCTORY TEXT
JNO, OF CHARS OF 'E' ro PRINT
JNO, OF DIOITS OF ACCURACY
JADDRESS OF DlOIT VECTOR
~DO MULTIPLY BY 10 <DECIMAL>
,s.-vc 112 ... , ..
INOW UO, POINT TO NEXT D.tGU
JAT END OF DIGITS'!'
;&RANCH IF NOf
100 THRU ALL PLACES, DIVIDING
IBY THE PLACES INDEX
UNIT QUOTIENt REGISTEF<
HIUMP QUDTIENl
JSUBTRACT LDOF> ISN'T BAO
INUMERATOR 15 ALWAYS < lO*N
JFIX REMAINDER
ISAVE REMAINDER AS BASIS
ffOR NEXT Dlon
H3REATEST lNTtoER CARRIES
HO GIVE DIGll
MT END OF DIIUT VECTORT
I BRANCH IF NOT
IOET DlOJT ro OUTPUT
IFI)(THE 2,1 TO ,7 SO
HHAT IT 1S ONLY J. DIGIT
I (REALLY DIVIOE 1i1Y 10)
lt1AKE DIGIT ASCII
I OUTPUT THE DlGIT
JCLEAR NEXT DIGIT LOCATlON
IMDRE DICUTS lO PRINT'f
18RANCH JF YES
IWE ARE DONE

J INIT VECTOR lO ALL ONES

,1 000:1.-2 124 110
12'
120
117
105
123
012

100
101
105
106

l"IESSAGi ,ASCII /THE VALUE OF E IS:/ -<.1::1><12> /2./ <200>
OOOJ4S 040
0003~0 114
0003:SJ 0-40
0003'!56 0-tO
000361 111
06036.4 015

•••
072
062

sutt.NAC VERSION 1 MACRO VOJ,00 8-JUL-77 oo:u:oJ PAO[1-1

52
03 ••

00036'1

000000'

200
,EVEN

,ENO EXP

SUN, Nf!IC VERIUON 1
SYl180L TABLE

MACRO VOJ,00 8-JUL-71 00116:03 lbAOE 1-2

•
EXP

000124R
OOOOOOR

, ABS, 000()00 000
000312 001

ERRORS DETECTED: 0

FIFTH 000016R
FIRST 000012R

VIRTUAL NEHORY USED: 537 WORPS (3 F'AGESl
DYMANIC HEHOFO' AVAILABLE FOR 60 PAGES
l'K:SUH,Dk iSUH/C•DK :SUM

FOURlH OOOOS2R
NESSAO 000342R

SUN,NAC VERSION 1 f1ACRO VOJ,00 9-JUL-71 oo:u:oJ PAGE S-1
CROSS REF'ERENC£ TABLE (CREF VO 1-0:5 >

• 1-H5 1-47t
EXP 1-12• 1-:5-4
FIFTH 1-J?t 1-39
FIRST 1-Ht 1-H
FOURTH 1-2,. 1-28
HE•BAG 1.-12 i-st•
N 1-'1t 1-13 1-1-4 1-2::, 1-<17
SECOND 1-1,1 1-22
TH!AO 1-241 1-35

Butt.MAC IIEASIOH 1 MACRO VOJ,00 9-.JUl..-77 00:16103 PAGE M-1
Clt088 REFElll'll!NCE TABLE (CREF vo1-o~)

.[)(JT 1-lt 1-45

.PRINT s-a• 1-12
, THOU 1-lt 1-•U

N • 000106
SECOND 000022R

THIRO 0000<t4R

Now link the MACRO program object module (SUM.OBJ) stored
on the storage volume (VOL:) with ODT.OBJ by using the /DEBUG

14-5

Debugging A User Program

LINK/DEBUG

Debugging A User Program

option, and print a load map directly on the terminal or lineprinter
choosing the appropriate command line below:

Long Command Format

(Lineprinter)

• LINK/MAP/DEBUG CfilI)
Files? VOUSUM@TI)

Short Command Format

(Line printer)

(Terminal)

• LINl-<IMAP: TT: /DEBUG @ID
Fi1es'1' VOUSUM@TI)

(Terminal)

• LINl-<IMAF'/IIEBUG SIJM(filIJ • LINl-<IMAF': TT! /DEBUG SIJM(filIJ

Load MaP Tue 05-.Jul···77 13!07:12 RT-11 LINK
SUM ,SAV Title: DDT Ident:

Section Addr Size Global Value Global Value Global Value

, ABS, 000000 001000 (RW,I,GBL,ABS,UVR)
001000, 006472 (RW,I,LCL,REL,CON)

O,ODT 00l2132

Transfer address= 001232, Hilh limit= 007472 w 1949, words

Look at the load map and note that ODT, which is always linked
first in memory by the /DEBUG option, starts at address 1000. The
two modules together, ODT and SUM, reside in memory up to loca
tion 74 72, the high limit. Look at the symbol table listing for the
MACRO program. This shows that the program is 3 72 (octal) words
long. To find where the MACRO program begins in memory, sub
tract 372 from the high address, 7472. The MACRO program starts
at location 7100.

To load and start execution of the load module, use the monitor
RUN command. The RUN command brings the entire load module,
called SUM.SA V, into the absolute (physical) memory locations
shown in the load map and begins execution automatically at the
starting, or transfer, address of the first module in memory, which is
ODT. Type:

Long and Short Command Formats

• RUN SUM CBTI)
ODT VO:L. 06

*

14-6

ODT prints an identifying message on the terminal and an asterisk
indicating that you are in ODT command mode and can enter an
ODT command. You are now using ODT to control the execution
of your p'rogram. 1 ODT commands let you execute the entire
program or only portions of it, examine individual locations of
locations, examine the contents of the PDP-11 general registers,
and change the contems 01 any iocat1ons you wish. If you make a
mistake while you are typing any commands, type the DEL key;
ODT reponds with a ? and an asterisk, allowing you to enter another
command.

Look at locations 6 through 16 in the assembly listing. With ODT,
you can examine these locations in memory as follows (all ODT
commands use octal numbers, as does the assembly listing):

*7106/012705@
007110 /()00106 @
007112 /012700@
007114 /000107@
007116 /()12701 @TI)

By typing a location address and a slash, you open that location for
examination and possible modification. A line feed closes that
location and opens the next sequential location for examination.
A carriage return simply closes the currently open location.

Note that since the MACRO program was linked to begin at address
7100, you must add the constant 7100 to each address shown in
the assembly listing to obtain the actual address used during loading.
ODT can do this for you using special internal locations called
relocation registers. Each register can be set to a relocation constant.
Thus, if you have linked several modules together, you can set
various relocation registers to the appropriate relocation constants of
the individual modules. You then indicate in your command which
register to use, and ODT automatically adds the constant in that
register to the address specified in your command. For example,
set relocation register O to 7100:

1Be sure to read Chapter 16 of the RT-11 System User's Guide before you use
ODT with any of your own programs. You must observe certain precautions
when you write your program and when you load it with ODT. For example,
you should make sure that ODT is not loaded into memory locations used by
your program. There are steps you can take to prevent this from occuring.

14-7

Debugging A User Program

Debugging A User Program

Now, to examine locations 100 through 110, type:

*0,100/000012
0,000102 /l.()3375@
0,000104 /062700@
0,000106 /000070
011000110 /10434l. (@)

Indicate the number of the relocation register (followed by a
comma) in your commands, since generally you will have more than
one register set at a time.

Execute the MACRO program now using the ODT ;G command,
indicating in the command where you wish execution to start. In
this case, the program's start (transfer) address is 7100, so type:

*O,OIG
THE VALUE OF EIS:
2,5/606/606237.2301314,06525/130440275535025,71477737352744745405502,544

As you discovered in Chapter 11, these program results are incorrect,
Note that a period has printed, indicating that you are back in
monitor command mode. This particular MACRO program returns
to the monitor after execution. Therefore, to continue using ODT,
you must RUN the load module again:

Long and Short Command Format

• RUN SUM (RET)

OIIT V01 + 06

*
Changes that you make to a program while using ODT, and ODT
register assignments that you make, are temporary. Thus when
you restart ODT, you must reenter any commands, such as reloca
tion register commands, that you want to remain in effect. Reset
relocation register O:

*7100;0R

To help you find programming errors, ODT provides a breakpoint
feature. Setting one or more breakpoints in a program causes pro
gram control to pause at those locations during execution. When
control pauses, ODT prints a short message on the terminal, inform
ing you that a breakpoint has occurred and showing the location
at which execution has stopped. This pause returns control to ODT

14-8

and gives you the opportunity to examine and possibly modify
variables or data. Breakpoints are numbered from O to 7, thus you
can have a total of eight breakpoints set at various instructions in
the program at one time.

For example, set breakpoint O at location 22 (line 16 in the assembly
listing) and breakpoint l at location 40 (line 23):

*o,22;0B
*0,40;1B

Now when you run the program, control pauses first at location 22.
Since the breakpoint was set at the instruction at location 22, that
instruction has not yet been executed, but all preceding instructions
have:

*o,o;G
TBo;o,000022

Note the message that ODT prints when execution reaches the
breakpoint. Normally when execution encounters a breakpoint, only
the breakpoint number and location are printed on the terminal.
In this case, the letter T precedes the breakpoint message. This
happens because of the way the ODT program uses the console
terminal. The assembly instruction at line 12 of the assembly listing
(.PRINT) requests the monitor to print a program message at the
same time that ODT needs to print the breakpoint message. ODT,
however, has higher priority. By the time the .PRINT request starts
to print the program message, execution reaches the breakpoint and
gives control to ODT. The .PRINT request has time to print only
one character of its message before ODT takes over and prints the
breakpoint message. When the program regains control, its message
will continue printing from the second character.

Program control has paused at location 22 in the MACRO program.
Look in the assembly listing at the instructions that occur there. The
instruction at location 16 (line 15) stores the address of the digit
vector (at label A) in register 1 (RI). Examine the contents of
register 1 to discover what this address is; then open the address and
examine its contents and the contents of the next several addresses
following it using two new ODT commands,$ and@:

*$1/007224@
0,000124 /000001
0,000126 /00000l@
0,000130 /00()00:1.Cill
O,OOO:L:32 /OO()O()l@ID

14-9

Debugging A User Program

Debugging A User Program

The $ command opens for examination the contents of one of the
general PDP-11 registers O through 7. The @ command uses the
contents of the currently open location as an address and opens that
location for examination. Notice that the digit vector A, which
~egins at location 124, has been initialized to the value l, the precise
value indicated by the comments at line 48 of the program listing.

If you were to continue program execution now, the branch instruc
tion at line 22 of the assembly listing would cause program control
to loop back to the instruction at line 16 where breakpoint O is set,
again causing execution to pause. Since you wanted to continue to
the next breakpoint (set at location 40), you must first cancel the
breakpoint at location 22. To do this, type:

This removes the breakpoint at location 22. The number (in this case
0) indicates which breakpoint is to be removed. Now continue
program execution using the ;P command (proceed from break
point): execution progresses through the loop and continues until
it reaches the breakpoint set at location 40:

*;p
HB1;0,000040

(Note that the monitor has time to print the second character, and
perhaps additional characters, of the program message before ODT
gains control.) Now examine the contents of several of the program
vector locations beginning at location 124;

* 0, 124/0000 :I.~? @
(), 000:1.26 /000012 (ill
0,000130 /00()0:L2@
0,000:1.32 /00()0:L2 @TI)

The instructions prior to the breakpoint at location 40 constitute a
multiplication routine. This routine multiplies the vector contents
by 10 (12 octal), as you have just verified.

You can see how the breakpoint feature is a very useful debugging
aid. It allows you to execute selected portions of a program and
verify that data and variables are being used correctly during exe
cution. You can use the breakpoint feature to locate the error that
is in this program.

14-10

First, clear all previously set breakpoints (in this case, there is only
the one at location 40) by typing the ;B command with no argument.

Now set a breakpoint at location 110 (line 41 of the assembly
listing). You want to verify the data that is being passed to the
monitor in register O in the ADD instruction in line 40. Type:

*()d1(HOB
*;p
EBOtO,OOOl:1.0

Now examine the contents of register 0:

* $0/000()6!:'i \06!5 =~~:; (flil)

At this point in execution, register 0 contains 000065. The backslash
(\) command prints the low-order byte of the opened location
on the console terminal and also converts this to an ASCII character
(if it is a valid ASCII code) and prints the character. In this case, the
number 5 prints. If you look back at the program results printed
earlier in this chapter, you can see that 5 is the first digit of the
tabulated result (following the message "THE VALUE OF E IS
2"). If you are experienced in mathematics, you know this result is
incorrect because the approximate value of E is 2. 718. And you now
also know that the program error is not in the interface to the
monitor service used to print the result (.TTYOUT), but occurs
somewhere before location 110. So the next step in debugging this
program is to set a breakpoint at some earlier point in the program
logic and to rerun the program. You must restart ODT to do this.
Return to monitor mode by typing CTRL/C. The remainder of the
program message prints on the terminal, then the monitor period
appears, indicating that you are in monitor mode:

* (CTRL/C)
VALUE OF E :cs;

Restart ODT and reset relocation register O:

.RUN SUM@)

0IIT V01+06
*7:LOO H)li:

14-11

Debugging A User Program

Debugging A User Program

SUMMARY:
COMMANDS FOR
DEBUGGING
PROGRAMS

Set a breakpoint at location 76 (line 37 in the assembly listing) and
start program execution at its beginning:

*0,76,0B
*O, 0 H,
TB0;0,000076

Again, examine register Oto VArify its contents:

By following the program logic in the assembly listing, you know
that the value in re~ister 0 should at this point be 33(octal) (2.7, pre
viously multiplied by 10, 27(decimal) = 33(octal)). So the value
in register 0 is correct. From this, you can deduce that the error
must occur somewhere between locations 76 and 110. The proper
step now is to check the assembly listing, where you find the error
at line 40. The decimal point that should follow the 10, identifying
it as a decimal 10, is missing. Therefore the program treats the 10 as
and octal 10, or 8(decimal), making each digit in the result off by an
additive factor of 2. The data in location 106, then, should be 72,
not 70. Since this data has not yet been used, you can change it now
with ODT and continue program execution; if it had been used, you
would need to restart ODT and then change the data. To change the
contents of a location, simply open the location, type in the new
contents, and close the location using a carriage return.

*o, 1041000070 72 c@

Now eliminate all breakpoints and continue program execution; the
correct results should print:

*; F'
HE VALUE OF E ISi
2.7182818284590452353602!J/47135266249775724709369995957496696762/7240766

To Start ODT

LINK/DEBUG
Link the assembled program (the program to be debugged)
with the ODT object module.

To Use ODT1

@
Close the currently open location and open the next sequential
location for examination and possible modification.

1 Only a very few of the available debugging commands have been demonstrated
in this chapter. Consult Chapter 16 of the RT-11 System User's Guide for all
ODT commands.

14-12

Close the currently open location.

addr/
Open the location indicated (addr) for examination and possible
modification.

addr;G

;P

Begin program excution at the indicated address (addr).

Continue program execution from wherever it was stopped at
a breakpoint.

addr;nB

;nB

;B

Set one of the eight available breakpoints (n) at the indicated
address (addr).

Cancel the indicated breakpoint (n).

Cancel all breakpoints.

addr;nR

$n

@

\

Set on of the eight available relocations registers (n) to the
relocation constant value indicated by addr.

Open one of the eight general registers (n) for examination and
possible modification.

Use the contents of the currently open location as an address;
close the currently open location; go to the new address and
open it for examination and possible modification.

Print on the console terminal the low-order byte of the cur
rently open location; if possible, convert the value to an ASCII
code and print the corresponding character on the terminal.

Changes you make with ODT are temporary. Therefore you should
now use the editor to correct the source program SUM.MAC. You
should edit line 40 so that it reads:

AIIII :t10.+'0,RO ;MAKE DIGIT ASCII

14-13

Debugging A User Program

FILE
MAINTENANCE

Debugging A User Program

REFERENCE

The file SUM.MAC is currently stored on the storage volume VOL:.
Edit this file and update the comment; then reassemble, relink, and
rerun it to verify that it is correct. When you have done this, store
the updated version of the source file on the storage volume under
the same name (SUM.MAC).

After you have corrected and rerun the program, continue on to
Chapter 15, or go back and perform one of the other language
demonstrations. Refer to the reading path outlined in the Preface.

RT-11 Sytem User's Guide (DEC-! 1-0RGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 16.

14-14

CHAPTER 15

USING THE FOREGROUND/BACKGROUND MONITOR

A special feature of the RT-11 operating system is that it provides
a choice of operating environments. Thus far, you have used its
single-job environment to run the system utility programs and the
demonstration programs one at a time. A second environment, called
the foreground/background environment, is also available. This
environment causes two independent programs to reside in memory
at the same time and to execute concurrently.

Because there are different operating environments, there are ac
tually different monitors. You are familiar with the single-job (SJ)
monitor. You have used the single-job monitor so far to control the
system and to perform the various exercises in this manual.

To use the foreground/background environment, you activate a
second monitor, called the foreground/background (FB) monitor.
The FB monitor is simply an extension of the SJ monitor; it is com
pletely compatible with the SJ monitor, but provides extended
monitor command operations for controlling a 2-job environment. 1

The foreground/background environment is designed so that two
programs can (but need not) share memory and run concurrently.
One of these programs you designate as the foreground program. The
system gives priority to the foreground program (or job, as it is
usually called) and allows it to nm until some condition, perhaps
waiting for an 1/0 completion, causes it to relinquish control to the
other program (the background job). The system then allows the
background job to run until the foreground job again requires con
trol, and so on. The two programs thereby share system resources.
Whenever the foreground program is idle, the background program
runs. Yet whenever the foreground program requires service, its
requests are immediately satisfied. To the user at the terminal, the
two programs appear to run simultaneously.

1The RT-11 operating system also provides a third operating environment
called the extended memory environment. This environment is governed by
the extended memory (XM) monitor and allows advanced users to utilize up
to 128K (words) of memory. See Chapter 3 of the RT-! 1 Advanced Pro
grammer's Guide for more information.

15-1

THE
FOREGROUND/
BACKGROUND
ENVIRONMENT

Using the Foreground/Background Monitor

CHANGING
MONITORS

Foreground priority programs are generally time-critical. For ex
ample, you may want to designate as the foreground job a program
that collects and analyzes data. Background programs are usually
nontime-critical. Thus, you can continue to do program development
using monitor commands to run the editor, the FORTRAN compiler,
the linker, and so forth, as the background job.

Foreground/background operation requires that you have at least
16K words of computer memory (each 4K equals 4096 words) plus a
system clock. Not all RT-11 computer systems support foreground/
background operation since the hardware it requires is optional. To
determine if your system can support FB operation, check the Hard
ware Configuration section in Chapter 2. If you have at least 16K of
memory and the system accepts a TIME command, you can use the
foreground/background monitor to perform the exercises in this
chapter. Otherwise, you do not have the hardware that is necessary
to support an FB environment and you should skip ahead to Chapter
16.

Whenever you bootstrap the RT-11 system, it prints a message on the
console terminal telling you which monitor has been loaded into
memory. The message for the single-job monitor is:

RT·-1 lSJ

The single-job monitor is currently in memory. To use the FB envi
ronment, you must reboot the system so that the FB monitor is
loaded into memory, overwriting the SJ monitor. You use the moni
tor BOOT command to make this switch.

If you have not entered the date and time, do so before booting the
FB monitor. These features remain active throughout the booting
procedure if the BOOT command is used.

Refer to question 3b in Chapter 2 to obtain the device code for your
system volume and substitute this 2-character code for sy in the com
mand line shown below:

15-2

Using the Foreground/Background Monitor

Long Command Format

• BOOT (RET)
Device or file? :;YMNFfl (RET)

RT-llFit

Short Command Format

• BOOT SYMNFB (RET)

RT-11FB

Once the system executes the BOOT command, the monitor for
merly in memory is no longer active. It is replaced by the alternate
monitor. The message p1inted on the console terminal tells you
which monitor has been loaded. 1

Using the FB monitor is essentially no different than using the SJ
monitor. All commands that are legal in the SJ environment are legal
in the FB environment; their syn tax and use are exactly the same. In
addition, programs that you write for the single-job environment can
always run as the background job in the FB environment.

Since the FB monitor is actually an extension of the SJ monitor, it
provides some additional commands and programming features that
the SJ monitor does not have. These allow you to control the 2-job
environment. They let you interact with the two jobs and let the two
jobs interact with one another.

When two jobs nm simultaneously, you must have some means of
indicating to which job you are directing commands. Likewise, the
two jobs must have the means to identify themselves when they have
messages to print. The following are some conventions that apply to
system communication in a 2-job environment.

1. The foreground job has priority. If both the foreground
and the background job are ready to print output at the
same time, the foreground job does so first. The fore
ground job prints a complete line, then the background job
prints a complete line and so on.

1To reboot the single-job monitor, simply reply to the BOOT command's
DEVICE OR FILE? prompt by typing syMNSJ.SYS (RET)

15-3

USING THE FB
MONITOR

Communication
in a Two-Job
Environment

Using the Foreground/Background Monitor

Creating the
Foreground Job

2. Either job can interrupt your input at the terminal if it has
a message to print.

3. Messages printed by the background job are preceded by
the characters B>.

4. Messages printed by the foreground job are preceded by
the characters F>.

5. Typed commands are initially directed to the background
job. You can redirect control alternately to the foreground
and background jobs using the CTRL/F and CTRL/B
commands.

To direct typed input to the foreground job, type
CTRL/F. This command instructs the monitor that all sub
sequent terminal input (commands and text) is directed to
the foreground job. Typing this command causes the sys
tem to print an F> on the tenninal unless output is
already coming from the foreground job. Command input
remains directed to the foreground job until the fore
ground job terminates, or until it is redirected to the back
ground job via CTRL/B.

To direct typed input to the background job, type
CTRL/B. This command instructs the monitor that all sub
sequent terminal input (commands and text) is directed to
the background job. Typing this command causes the sys
tem to print a B> on the terminal unless output is already
coming from the background job. Command input remains
directed to the background job until redirected to the fore
ground job via CTRL/F.

These conventions apply only if two jobs are running simultaneously.
If only one job is nmning, communication is the same as in the
single-job environment.

In this demonstration you use the FB monitor to run two programs.
You run the editor as the background job to create a short text file
while you run a printing output program as the foreground job.

The printing program resides on your system volume as a file called
SPOOL.MAC. Its function is to transfer all files on an assigned vol
ume called SPL: that have a file type of .LST to another device,
deleting the files from the assigned volume once they are transferred.
Generally, the line printer serves as the output device so that the
.LST files can be printed. However, if you do not have a lineprinter
available, you can use your storage volume.

15-4

Using the Foreground/Background Monitor

While the foreground program processes the .LST files, you use the
editor to create a short text file, giving this text file a .LST file type
so that it too can be processed by the SPOOL program once it is
created.

The SPOOL program is an assembly language source file and must be
assembled and linked before you can use it. If you performed the
demonstration in Chapter 11, you are already familiar with
assembly/link operations and the following command explanations
can serve as review. If you did not read Chapter 11, simply type the
command lines as shown. Following assembly, the system prints a
message on the terminal indicating the number of errors encountered
during assembly. This message will show O errors.

Long Command Format

• MAc1:w (REr)
I::· .. 1 .. , <:· 'j) r· 1::, CJ ("J 1 11 ·1· c· ·r· CR Er) 1..€ ... ,. ,:, ··-)

ERRORS DETECTED: 0

Short Command Format

• MAG/:;:O SPOOI.../L I ST Cffi)
ERRORS DETECTED: 0

The output resulting from this MACRO command includes an
object file called SPOOL.OBJ and a listing file called SPOOL.LST.
The command creates both files on your system volume. You must
link the .OBJ file to produce a runnable foreground program. You
use the LINK command, just as you have in earlier chapters, but you
also use the /FOREGROUND option 1. This option produces a load
module with a .REL file type which signifies to the system that the
file is a foreground program and is to be run as the priority job.

Long Command Format

• I ... I NI"\ /FOF~EGl:~OLJND (@
Fi J. €~'El 'i' SPOOi... @:!)

Short Command Format

.I... I Nl"\.IFDF~EDl:~Cll.JND (:;POOL.(@)

1This command option also applies to compiled FORTRAN programs that are
to be linked as a foreground job.

I 5-5

LINK/
FOREGROUND

Using the Foreground/Background Monitor

Executing the
Foreground and
Background Jobs

Since the purpose of this foreground program is to process files that
have a .LST file type, the next step is to provide some .LST files for
it to use. The file SPOOL.LST, just created by the MACRO com
mand, can serve as one. The background program you create using
the editor can serve as another. If you want to list additional files
as part of this exercise, create them now so that they have .LST
file types. Remember that the SPOOL program deletes the .LST
files from the system volume once they are processed.

Now you are ready to operate the 2-job environment. First decide
which device to use for the output of the foreground program. If
you have a line printer, use it for the output device or use your
storage volume; in the latter case, the SPOOL program simply
transfers, the .LST files to the storage volume and deletes them
from the system volume.

The program assumes that the output device is the line printer.
Therefore, if you prefer to use your storage device, assign the line
printer code (LP:) using the ASSIGN command. Type the following
command, substituting the 2-character code from Table 4-2 for the
storage volume in place of xx (line printer users may ignore this
command):

Long Command Format

A(:-<"' ·cc·· N (filj) + ,.>,:, . .1

F'h~~sical. devic<-;) name? :o(t (RET)
Losical device na,r,c.:7? I...F'! @ID

Short Command Format

+ASSIGN LP t (~ET)

When you use the FB monitor, you must always load into memory
the peripheral device handlers needed by the foreground program.
You use the monitor LOAD command to make a device handler per
manently resident in memory. Since the SPOOL program uses the
line printer, you must load the LP device handler. If you have
assigned the code LP: to another device, the svstem automatically
loads the assigned handler. Type:

15-6

Load Command Format

.LOAD@)
Device? LP!

Short Command Format

• LOAD LP :Ct!fil)

Using the Foreground/Background Monitor

The command to load and start execution of the foreground job is
FRUN. It is similar to the RUN command except the system auto
matically loads and starts the execution of the foreground .REL pro
gram. Use this command to start the execution of SPOOL.REL.

Long and Short Command Format

• Ffi:UN m:·OOI... (ffi)

F>
ASSIGN or LOAD SPL

B>

Here is an example of foreground communication. The foreground
SPOOL program detected an error condition that prevented its fur
ther execution. Before it printed an explanatory message, however,
the system first identified the message as foreground output by print
ing the characters F>. The background monitor next printed the
characters B> and a period, indicating that control returned to moni
tor command mode. Command input remains directed to the back
ground job.

The message printed by the. foreground job (ASSIGN or LOAD SPL)
informs you that before you can use the program you must make
another device assignment you must assign the logical name SPL:
to whatever device contains the .LST files. In this case, that device is
the system volume. Substitute the 2-character code for your system
volume (refer to step 3b of Chapter 2) in place of sy in the command
below:

Long Command Format

, AS~3IGN
Ph~if.d cal device name'l' s\,1 ! (RET)
Lo~.=Hcal d(i?VicE1 namEJ'i' BPL ! <BI!)

15-7

Using the Foreground/Background Monitor

Short Command Format

A(°'(:' I ("'N •.. "• C'1::•1 • @TI) • ..:>'I,.) . J .:> .:, + ...) ... y

Once you make this assignment, you are ready to run the foreground
job again.

Long and Short Command Format

• FFWN i:lPOOI... ~

F>
Started OK, LP I SPL davices are assi~ned & loaded

B>

If you are using the line printer as the output device, notice that a
listing begins to print on it almost immediately. This is the fore
ground job executing. You will not be aware of the foreground job
processing the .LST files if you are using your storage volume as the
output device.

If the foreground program runs out of .LST files to process, it simply
waits for you to provide more, checking at 30 second intervals until
then. Thus you can ignore the foreground job for now and concen
trate on using the editor as the background job. Run the editor to
create the text file shown below. Call this file TEXT.LST. When you
have finished entering the text, close the file with the EX command.

Long and Short Command Format

• EflIT/Gl'/E,c.iTE TEXT. LE,T@

* I CillJ
AB I AM JNSEl'ITING THI/3 TEXT, THE FOf/EGf/OUND ,JOf/ I[, SENDING@
THE , Li:,T FILES TO THE LINE F'l'UNTEl'I, OR WHATEVEI~ OUTPUT DEVICE Ciilll
I AGSIGN[l:i, ONE i'\FH::n THE OTl·IER. I AM RUNNING THE EOITOIC: (iill)

AbTHE HACI\Gl~DUN!J .JOB, T COULD ,JLH:;T M, EASILY BE RUNNING@
1,r.,::;1c, FOl'(fl(AN, ANOTHEI< M,'1Cl'W 1"1:wrn~AM, cm ,'1NY OTHER SYffl'E:M ru
UTILI rY u1:i USLl'i·--Wf11TTLN l"'l'/CJGl'i,01M, ®II
Cf.?£) (ill)

*EX@l

Since this file has a .LST file type, the foreground job will process it.
In fact, as long as there are .LST files on your system volume, the
SPOOL foreground processes them. When it runs out of files to proc
ess, it simply waits for more. Meanwhile, you can continue to work
in the background.

15-8

Using the Foreground/Background Monitor

When you think the foreground program is done processing all the
.LST files that you have provided (for example, if the line printer
stops printing), obtain a directory listing of your system volume.
There should be no .LST files left.

Long and Short Command Format

• nn;:ECTORY *. LST (RET)
:w--,.Jul-·77

0 Files, 0 Blocks
607 Fref: block!:,

If there are still files to be processed, wait a bit, then obtain another
directory listing. While you wait, you can create another file, rerun
one of the previous demonstrations, or perform any other system
operation that you wish. You can use the background of an FB envi
ronment in the same way as the SJ environment.

When the SPOOL program has processed all the available .LST files,
you should terminate the foreground job. To do this, you must first
use the CTRL/F command to direct terminal input to the fore
ground. Type:

+ (CTRL/F)

F>

The system prints the characters F> to remind you that you are now
directing command input to the foreground job. Use the double
CTRL/C command to interrupt and terminate the execution of the
foreground job and return control to the background job.

(CTRL/C)

(CTRL/C)

B>

Since you are now using only the background of the foreground/
background environment, the system is operating like a single-job
system.

You should unload the foreground job and the LP handler to
reclaim the memory space for background use. Use the monitor
UNLOAD command as follows:

15-9

UNLOAD

Using the Foreground/Background Monitor

SUMMARY:
COMMANDS
USED IN AN FB
ENVIRONMENT

Long and Short Command Format

• UNLOAD FG v 1...P :(RET)

FG· represents the foreground job and you should use this code
whenever you want to unload it. You represent devices by their 2-
character device codes.

Retrieve the listings produced as the result of this demonstration
from the line printer. If you used your storage volume as the output
device for the SPOOL program, obtain a directory listing to see that
the .LST files were transferred as expected:

Long and Short Command Format

• DH~ECTOfi:Y VOL!*. LST (R}T)

20--,Ju 1 ··-77
SPOOL .LST 14 20-Jul-77 TEXT.LST 1 20-Jul-77

2 Files, 15 Blocks
4747 Free blocks

(The listings and the directory may be shown here in a different
order since the SPOOL program processed them as they became
available.)

The foreground program has access to all the system features avail
able to a background program - opening and closing files, reading
and writing data, and so on. However, before you begin to write and
use programs in the foreground, be sure to read Chapter I of the
RT-11 Advanced Programmer's Guide for coding restrictions.

BOOT
Bootstrap the indicated monitor (RT-1 lSJ, RT-1 lFB, RT-
1 IXM) on the system volume.

CTRL/B
Direct all keyboard input to the background job (until
CTRL/F).

CTRL/F
Direct all keyboard input to the foreground job (until CTRL/B).

15-10

Using the Foreground/Background Monitor

FRUN
Load and start execution of the foreground job.

LOADdh
Make the indicated device handler (dh) resident in memory.

UNLOAD dh
Make the indicated device handler (dh) non-resident in memory,
reclaiming its memory space.

LNLOAD FG
Reclaim the memory space used by the foreground job.

If you reassigned the device name LP: to your storage volume, first
use the DEASSIGN command to restore its original assignment:

Long and Short Command Format

,DEASSIGN L.P!

During this exercise you created several .LST files on your system
volume: these were all deleted as a result of foreground job execu
tion. You assembled the source file SPOOL.MAC and produced an
.OBJ file, linking it to produce SPOOL.REL. Thus, you should save
on your storage volume the files SPOOL.REL and SPOOL.MAC and
delete from your system volume the file SPOOL.OBJ. Do not delete
SPOOL.MAC since this file was distributed as part of the RT-11
operating system. You may also retain SPOOL.REL for later general
use as a line printer spooling program.

Long Command Format

• COPY (f!D)
From? SPODL.. Mf':1C f SPOOL. F~EL. (RET)
To "!" VOL!*.* (RET)
Files coF,ied!

DKISPOOL.MAC to VOL!SPOOL+MAC
DK!SPOOL.REL to VOLISPOOL+REL

+DELETE/NOOUERY
Files? SPOOL.OBJ

15-11

FILE
MAINTENANCE

Using the Foreground/Background Monitor

REFERENCES

Short Command Format

+COPY SPOOi .MAC,SPOOL..REL VOL:*•*
Files coPied:

DK:SPOOL+MAC
DK:SF'OOL.REL

to VOL!SPOOL+MAC
to VOL:SF'OOL.REL

•DELETE/NOQUERY SPOOL. OBJ (RET)

Finally, obtain a brief directory listing of your storage volume so
that you can see its current status:

Long and Short Command Format

, D l !II' I TOl(Y / BI\I: El' VI.ii. :

SPOOL. , Lffr
SUM • OB.J
i,,UM .un

TEXT ,LST
GFU\PH ,F(Jf<
SPOOL ,MAC

13 Files, /9 Blocks
4683 Free blocks

EXAMP ,FOR
GfMPH ,LST
SPOOL ,REL

EXAMP ,MAC
!,UM ,MAC

MATCH ,BAS
GRAF'H ,OBJ

TEXT.LST and SPOOL.LST appear if you used the storage volume
as the output device for the SPOOL program.

RT-11 Advanced Programmer's Guide (DEC-11-0RAPA-A-D), Maynard, Mass.:
Digital Equipment Corporation, 1977.

A technical manual providing RT-11 programming concepts. See Chapter 1.

RT-11 System User's Guide (DEC-11-0RGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapters 2, 3 and 4.

15-12

CHAPTER 16

USING INDIRECT FILES

The RT-11 system proviues an operational aid called an indirect file
that allows the system to run unattended. An indirect file is a file
composed entirely of monitor operating commands. When you start
the execution of the indirect file, the monitor processes these
commands in consecutive order. So once you have created an
indirect file and started its execution, you can direct your attention
to other tasks or even physically leave the system, since the monitor
executes the commands automatically and consecutively. 1

The kinds of operations that RT-11 can best perform in an indirect
file are those that involve much computer processing but that do not
require your supervision or intervention. For example, multiple
assemblies, compilations, and data transfer operations are ideal
operations for indirect file processing. Also, any series of commands
that you are likely to type often can easily run as an indirect file.

Use the editor to create an indirect file as a text file. You can call the
file by any file name you wish, but you should give it a file type of
.COM, since this file type is the default used by the monitor to locate
the file.

You structure the lines of text that make up an indirect file just like
keyboard input. Thus, if you were to list the indirect file it would
look like terminal keyboard text without any monitor prompts.

1 The indirect file concept is similar to BATCH processing. Al though indirect
files lack many of the BATCH capabilities, they are easier to use than BATCH
(The RT-11 computer system also supports a BATCH processor discussed in
RT-I I System User's Guide).

16-1

CREATING AN
INDIRECT FILE

Using Indirect Files

Entering Monitor
Commands

Using the Editor
to Create
an Indirect File

You enter monitor commands into the indirect file as you would on
the terminal. As an example, both of the following accomplish the
same operation when executed as part of an indirect file:

COPY (fill)
]. N1::· ·1· 1 M ~ {'' (RET) • I I.,

DUTF I I.... Mt-1C (@)

COPY INFII....M(1C OUTFIL+MAC (RET)

Since monitor prompts are not included in the indirect file, using the
long command format requires that you anticipate each prompt and
its proper response. It is suggested that you use the short command
format and insert the command as a single line of text. Terminate
each command line with a carriage return.

The indirect file that you will now create incorporates several of the
commands previously demonstrated in this manual. Thus it serves
both as an example of the format of indirect file input and as a brief
review of the monitor commands used to copy, process, and delete
files. In addition, one new command, DEASSIGN, is demonstrated.

Use the EDIT /CREATE monitor command to create a file called
INDCT.COM, inserting the commands according to the directions in
the right-hand column. When you. have finished creating the file, list
it and check for typing errors. Correct any errors you find and then
close the file using the EX editing _command.

Long and Short Command Format

, EV IT/CREATE INDCT ,COM (Bij'.)

lkIDATE 12-MAY-77 (fill)
TIME 8:00:00

liATlc

DEA!,SIGN

ASSIGN Tr: LF':

ASSIGN XX VOL: (fill)

16-2

Enter a hypothetical date and time
(if your system has a clock).

Print the date.

Deassign all previous device assign
ments and set new ones as follows:

Assign the logical name LP: to the
terminal.

Assign the device code of the stor
age volume (xx) to the logical name
VOL:.

DIRECTORY/BRIEF VOLi

COPY VOL: GRM·J-1. nm i,F,AF'H, F"OR

CDF·Y VOL: SUM. MAC SUM• MAI.: ~

COPY VOLIMAfCH.BAS MAT~~.BAH

FOR11'<AN/L I sr Gl<AF'H ~
LINK/MM· Gl~APH <BI!)

List an abbreviated directory of
VOL:.

FORTRAN users insert this com
mand to copy the FORTRAN
demo program to the system
volume.

MACRO users insert this command
to copy the MACRO demo program
to the system volume.

BASIC users insert this command
to copy the BASIC demo program
to the system volume.

FORTRAN users who do not need
to load the language volume include
these commands to compile and
link the demo program.

suM All users assemble and link the
demo program.

RENAME MA fCH. BA~l MA fCH. MAI'' (j_ig BASIC users simply rename the
demo program.

MAc1,o/u1,r1c1w,:;s1,F1TRrncr m·ooi@ID All users assemble and link the
ur-11,1i:u1,Eo1,ouN1>1MAF' ,worn @ID SPOOL file.

DEL.ETE/ND(ll.JE.l~Y GRAF'll. *

DE:i_ETE/NOOUfl/Y BUM,* ~

DELETE/NOOUERY MAfCH,M~·

DEASSIGN

llME

List a directory of .OBJ files.

FORTRAN users delete the
GRAPH files.

MACRO users delete the SUM fih~,.

BASIC users delete the MATCH
file.

Deassign all device assignments.

If your system has a clock, print
the time to show how long total
processing took.

16-3

Using Indirect Files

Using Indirect Files

EXECUTING AN
INDIRECT FILE

(ill)
* fl /l @£)
DATE 12-MAY-77
TI ME B: 00 l\/\)

DATE

DEASSIGN

ASSIGN TT: LP:

ASSIGN f/K 1: VOL.:

DIRECTORY/BRIEF VOL:

COPY VOL:GRAPH,FOR GRAPH,FOR

COPY VOL:SUM,MAC SUM,MAC

COPY VOL:MATCH,BAS MATCH.BAS

FORTRAN/LIST GRAPH
LINK/MAP GRAPH

MACRO/LIST/CROSSREFERENCE SUM
UNK/MAF' SUM

RENAME MATCH,BAS MATCH,MAP

MACRO/LIST/CROSSREFERENCE SPOOL
LINK/FOREGROUND/MAP SPOOL

DIRECTORY *, OE<.J

DELETE/NOQUERY GRAPH,*

DELETE/NOQUERY SUM,*

DELETE/NOQUERY MATCH.MAP

DEASSlGN

TIME

Now terminate the insert command
and list the indirect file to check
for errors. (Example input is shown
here.)

Close the file INDCT.COM.

Once you create an indirect file with the editor and check it for
errors, you are ready to start its execution. You can run an indirect
file under control of the single-job monitor or as the background job
under control of the foreground/background monitor. If you run an
indirect file in the background of a foreground/background system
while a foreground job is running however, you must take care to
avoid conflicts between nondirectory-structured devices of the two
jobs. For example, the jobs should not request the same magnetic
tape or cassette.

The command to start the execution of an indirect file is the At sign
(@) character followed by the appropriate file name (the file type
.COM is assumed unless you indicate otherwise). Execution starts
immediately and the system processes commands in the indirect file
in consecutive order. Each command is echoed on the terminal as it
is processed. If an error within the indirect file affects the processing
of a command, the system prints a system message on the terminal
and stops execution of the entire file. Therefore, it is particularly

16-4

important that you check your indirect file for errors before you
start it and then leave the area. You can stop execution of an indirect
file at any time by typing two CTRL/Cs.

Run the indirect file that you have just created by typing:

• G! I (!DCT

It takes a minute or two for the commands in this file to be
processed and for the listings to print. If your system has a clock, the
time printed at the end of execution tells you exactly how long
command processing has taken. Following is an example run.

,@IN[ICT

, [1ATE 12-MAY ··77

. TIME 8l OOl 00

,DATE
12-MaH~-77

, DEASSIGN

.ASSIGN rr: LP!

.ASSIGN RK1! VOL!

,DIRECTORY/BRIEF VOL:
12-May·-· 77

SUM ,MAC GRAPH ,rOR
4 Fl.lt~s, 13 Elloc:-1-:.s
4749 Free blocks

i:iPO[JL , MAC

.COPY VOL:GRAPH,FOR GRA~~.FOR

,COPY VOL:SUM,MAC SUM,MAC

,COPY VOL:MATCH,BAS MATCH,BAS

MATCH ,BAS

,FORTRAN/LIST GRAPH
F IJf(ff/AN IV Thu 12-Ma~-77 oa:00;14

C GRAPH,FOR VERSION 1
C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
C OF AN EXTERNAL FUNCTION, FUNIX,Y)

PAGE 001

C THE LIMITS OF THE PLOl ARE DETERMINED BY THE DATA STATEMENTS
C "STAB' 1S FILLED WifH A TABLE OF HEIGHT FLAGS

000:l
0002
0003
0004
000'.S
0006
0007
0008
0009
0010
0011
0013
0014

C 'STRING' rs USED TO BUILD A LINE OF GRAPH FOR PRINTING
SCALIZMIN,ZMAX,MAXZ,Kl•ZMIN+FLOATCK-ll*CZMAX-ZMINJ/FLOAllMAXZ-1>
LOGICAL*l STRINGC1331,STABl100)
DATA XMIN,XMAX,MAXX/-5.o,s.0,45/
DATA YMIN,YMAX,MAXY/-5,0,5,0,72/
DATA FMIN,FMAX/0,0,1,0/
CALL SCOPYC'- 1 2 3 4 5 6 7 8 9 t',STABI
MAXF•LENISTABI
DO 20 IX~l,MAXX

X=SCALCXMIN,XMAX,MAXX,IXJ
CALL REPE.ATI '*' ,STRING,MAXY)
IFIIX,EQ,1 ,OR, !X,EQ,MAXXI GOTO 20

DO 10 IY•2,MAXY-1

001~5
0016 10
0017 20
0018
0019
,MAIN,

Y•SCALIYMIN,YMAX,MAXY,IYJ
IFUN=2tINTCFLOATIMAXF-3)*CFUNCX,Yl-FMIN)/CFMAX-FMINI)
STRINGCIY>•STABCMINOCMAXF,MAXOCJ.,IFUNII)

CALL PUTS TR< 7, STRING,' • I
CALL EXIT
END

?FORTRAN-I-[.MAIN.J Errors! O, Warninss! 2
FORTRAN IV Storase MaP for Prosram Unit ,MAIN,

Local Variables, ,PSECT $[1ATA, Size ~ 000470 (156, words)

Name T'::IPe Offset Na,r,e 7':JPe Offset Name TYPe
XMIN R*4 000352 XMAX R*4 000356 MAXX I*2
YMIN R*4 000364 YMAX R*4 000370 MAXY I*2
FMIN R*4 000376 FMAX R*4 000402 ZMIN R*4
ZMAX R*4 000422 MAXZ I*2 000426 K I*;~
MAXF 1*2 000432 IX 1*2 000434 X R*4
IY I*2 000442 y R*4 000444 IFUN 1*2

Loe.al and COMMON Arrays:

16-5

Offset
000362
000374
000416
000430
000436
0004:'lO

Using Indirect Files

Using Indirect Files

Name T1JPe Section Offset
$PATA 000000
$J)ATA 000205

Size Di~ensions
STRING LU
STAil L*1

000205 C 67,) (133)
000144 < 50,) (100)

Statement Functions and Processor-Defined Functions Referenced:

Name T~Pe Name T'JPe Name T~Pe Name T~Pe Name T~Pe Name T~Pe
SCAL R*4 FLOAT R*4

External SUBROUTINE or FUNCTION SubProsrams Referenced:

Name
SCOPY
MAXO
FORTRAN

0001
0002
0003
0004
0005

T1:1Pe Nan,e T1&Pe
R*4 LEN 1*2
1*2 PUTSTR R*4
IV Y02,09

Name
REPEAT
EXIT

Thu

TS1Pe Name T"'"" Name
R*4 INT 1*2 FUN
R*4

12-Ma,,.-77 os:01:49

FUNCTION FUNCX,Y)
R=SORT<X**2+Y**21
FUN=<X*Y*R*EXPC-R))**2
RETURN
END

FUN
FORTRAN IV Storase MaP for Pro~ram Unit FUN

TS!Pe Name TS!Pe
R*4 MINO 1*2

F'AGE 001

Local Variables, ,PSECT SDATA, Size• 000024 10. words)

Name
FUN
R

Offset
000004
000010

Name
X

T111>e Offset
R*4 @ 000000

Nsme
y

TsiPe Offset
R*4 @ 000002

External SUBROUTINE or FUNCTION SubPro~rams Referenced:

Name T1JPe Name T1JPe Name TYPe Name TYPe Name TwPe Name T~Pe
SQRT R*4 EXP R*4

,LINK/MAP GRAPH
RT-11 LINK Load MaF> Th<J 12-Maw-77 oa:02:2:;
GRAPH ,SAV Title: ,MAIN, !dent! FORY02

Section Addr Size Global Val•Je Global Value Global ValiJe

ABS, 000000 001000 <RW,I,GBL,ABS,OVR)
$USRSW 000000 $RF2A1 000000 SHRIIWR 000000
,VIR 000000 ,V014A 000001 $NLCHN 000006
$SYSV$ 000007 $WASIZ 000131 SLRECL 000210
$TRACE 004737

OTSU 001000 017074 CRW,l,LCL,REL,CONI
$$0TSI 001000 $CVTIF 001000 $CVTIC 001014
$CV r rn 001014 CCI$ 001026 CDU 001026
$IC 001026 $l[r 001026 CFU 00104<1
$If< 001042 EXP OOl.126 MlJF$F'S 001466
MI./F$MS 001472 MLJF$1S 001502 $MULF 001510
MIJF$SS 001522 $Ml.Fi 001522 SQRT 002032
DIF$F"5 002226 DIF$MS 002232 DIF$IS 002242
$lHVF 002250 DIF$SS 002262 $DVR 002:~62
ADF$19 002550 ADF$PS 002556 SUF$F'S 002562
SLIF$MS 002566 ADF$MS 002600 SUF$IS 002610
$A[l[IF 002616 $SUBF 002632 SUF$Sil 002644
$Sf.m 002644 ADF$SS 002650 $A[<R 002650
ADD$ 002664 $0TI 003336 UOTI 00:5340
$$SET 005046 I DINT 005342 INT 005342
MAXO 005370 MINO 005414 ISN$ 005440
HSNTR 005444 LSN$ 00~.i460 $LSNTR 005464
ADl$SS 005620 ADUSA OO~.J624 AtlUSM 005630
ADUHi 005634 ADU IA 00564() ADIUM 005644
A[ll$MS 005650 AD1$MA 005654 ADUMM 005660
SlJI$S!3 005664 !3UI$SA 005670 SUI$SM 005674
'.:JUI!fdt? 005700 SIJUIA 005704 SIJUIM 00'.5710
~;u1 $MS 005'714 Sl/I$MA 005'720 SUI$MM 005'7:~4
lCJ$G 005730 ICUM 005734 ICHF· 0()5740
TC:l$A OO~i742 DCHS 005746 DCUM 005752
[!CUP 005756 DCI$A 005760 MOF$SS 0()5764
MllF$SM 00~1776 MOF$SF· 006006 l.LE$ 006012
LEt:1$ 006014 LGT$ 006022 l.GE$ 006024
LNE$ 006034 LLT$ 006036 lllR$ 006042
AND$ 006046 EGV$ 0060'.H XDf/$ 006056
f"SL$S 006072 TSL$M 006076 TSL$I 006102
rSL$F' 006110 REHL 006116 R[T$F 006122
r,F.:T$.l 006130 1~[1 $ 006132 MOI$S!:> ()06166
MUL.$SS 006166 MDUSM 00617';} MOUSA 006176
Mourn 006202 MDL.US 006:W2 REL.$ 006<!02
MOUlM 006;!06 MOJ$1A 006212 MOUMS 006216
MIJUMM ()06222 HOUMA 006~26 MOI$0S 0062:!2
MDU0M 006236 M01$0A 006242 MOI$1S 006246
HOIUM 0062:i4 MfJU1A 006262 EXIT 006270
NGD$S 006274 NGF$S 006274 NG[1$M 006306
NllF$M 006306 NGD$f'' 006322 NGF$F' 006322
NGD$A 0063;!6 NGF$A 006326 CAI$ 006:B:1
CAL$ 006:140 MOUIF' 006:370 MOUtW 006372
Moun· 006400 MOUMF' 006404 MOUF'S 00641.4
MOI$F'M 006)422 MDUF'A 006430 MOUOP 006436
~;0Ulf'' 006444 CMUSS 00641l4 CMUST 006460
CMUSM 006464 CMUHi 006470 CMIUI 006474
c.~UIM 006500 CMI$M!3 006504 CMUMI 006510
C11UMM 006:l!4 NMIUM 006~;;,!0 NM1$1.! 00653:,.!
Ill.E$ 006!542 BE:Cl$ 006~~44 I•GT$ 006552
BGE$ 006'.i54 BRA$ 0065% BNE$ 006562
BLT$ 006564 MOF$RS 006574 MOF$RM 006602

16-6

MOF$RA 006612 MOF$RF' 006616 MOF$MS 006622
MOF$F'S 006634 MOF$MM 006640 MOF$MA 006b!:i2
MOF$MP 006660 MOF$F'M 006666 MOF$PA 006672
MOF$PF' 006676 MOL$SM 006702 MOLSSA 006706
MOL$MS 006712 MOL$MM 006722 MOL$MA 006726
MOL$SP 006732 MOL.$F'P 00674() MOL$MP 006744
MOUWM 006754 MOL$F'S 006762 MOL$F'A ()06766
MDLHM 006774 MOLHA 0070()2 MOL.UP ()07010
S'TK$L 007020 STK$I 007024 STKSF 007030
MOURS 007040 MOL$RS 007040 MDI$RM ()07044
MOURP 007050 MOI$RA 007052 $OTIS 00705,,
$$OTIS 007060 SALUM 007200 SAr,$SM 007202
SVL$IM 007206 SVL$SM 007210 SAl.$MM 007216
SVL$MM 007222 $CVTFB 007226 $CVTFI 0072~)6
$CVTCB 007242 $CVTCI 007242 $CVTDB 007242
$CVTfJI 00724;! CIC$ 007254 CID$ 007.254
CLC$ 007254 CLD$ 007254 $DI ()07254
CIF$ 007264 CLF$ 007264 $RI 007264
CIL$ 007376 CU$ 007402 TVL$ 007404
$TVL 007404 TVF$ 007412 $TVF 007412
rVD$ 007420 $!VD 007420 TVG$ ()074;!6
$TVl1 00'7426 rVF'$ 007434 nvP 007434
TVI$ 007442 HVI 007442 ENI)$ 007576
ERR$ 007610 $END 007622 $ERR 007640
IFW$ 007662 $IFW 007666 IFW$$ 007730
$CHKER 01000() $lOEXI 010()24 $EOL 010052
EOL.$ 010054 $STF'S 010170 STF·$ 010176
$STP 010176 FOO$ 010202 $[XI1 010222
SAL$IP 010346 SAL$SF' 01035() SVL$IF' 010354
SVL$SF' 010356 SAL$MP 010364 SVL$Mf' 01037()
$ERRTB 010374 $ERRS 010501 $VINH ()14124
SAVRG$ 014126 rHIW$ ()14304 $PIJTBL. 014306
$GETBl. OJ.4516 $EOFIL 014702 $EOF2 014716
1>f'IJ1RE 014/36 $WAH 01'5166 $FCHNL 01~)230
$INITI 015326 $CLOSE 015440 $Fl0 0166.t::'
$$F10 0166.16 U•I.JMF'L. 017746

OTS$P 020074 000050 (RW,D,GBL,REL,OVR)
SYS$! 020144 000212 (RW,I,LCL,REL,CON)

LEN 020144 REPEAT 0~?01.6::~ SCCIF'Y 020:10()
USER$I 020356 000000 IRW,I,LCL,REL,CDNI
$COI•E 020356 001316 IRW,I,LCL,REL,CONI

uornc 020:!56 FUN 02l2JA PUTS1R ()2140:,
OTS$0 021674 001016 CRW,I,LCL,REL,CDNI

$$OTSU 021674 $OPEN 021674
SYS$0 022712 000000 (RW,I,LCL,REL,CONJ
$IIATAP 022712 000106 (RW,D,LCL,REL,CONI
OTSH< 023020 000006 IRW,D,LCL,REL,CON)
OTS$S 023026 000002 (RW,D,LCL,REL,CONI

$AfJTS 023026
,;YS$S 023030 000004 <RW,D,LCL,REL,CONI

$SYSLB 0230:lO $LOCK 023032 $CRASH 02~1033
$DATA 023034 ooo:;36 IRW,D,LCL,REL,CON)
USER$0 023572 000000 IRW,D,LCL,REL,CON)
.$$$$, 02357:' QOO.OOO IRW,D,GBL,REL,OVRI

Transfer address= 020356, High limit~ 023572

.MACRCl/LIST/CROSSREFERENCE SUM

50~.)3 • WO t'dS

SUM.MAC VERSION 1 MACRC V03,00 12-MAY-77 08107129 PAGE

• TITLE SUM.MAC VERSION 1

.MCALL .TTYOUT, .EXIT, .PR1N1

6
7 000106 N • 70,
s

iNO~ Of DIGITS OF 'E' HI CALCULAH:

9 'E' THE SLIM OF THE REClf-'ROCALS or THE FACTORIALS
10 1/0t • 1/1 ! • 1/2 ! ' 1/3' f 1/41 + 1/51 + ... 11
12 000000 EXF'! ,F'RINT -tMESSAG ;F1HNT INTRODUl:TOffY fEXT
13 000006 012/05 000106 MDV .tN,RS iNO. OF CHAF.:S OF 'E' TO F'RINT
14 000012 -012700 000107 FIRST: MDV tN+l ,F.:O iNO, OF ItIGl TS OF ACCURACY
15 000016 012701 000124' MOV tA,f.."1 f A11DRESS OF [rIGIT VECTOR
16 000022 006311 !:>ECOND! ASL @Rl ; DO MULTI Pl Y FY 10 (DECIM1k >
17 0-00024 011146 MOV @f<1, -(St') iSAVE *:?
18 000026 0()6311 A<,L IIR! a4
19 000030 006311 ASL 11~1 ;*8
20 00003:.? 06:262.1 A(ID (SF')t, (Rl) t ;NOW :HO, f'OINT TO NEXT DIGIT
~1 000034 005300 DEC RO ;AT END OF IHG1TS7 -- 000036 001371 l<NE 51::COND >llRANCH IF Nor
::'3 000040 012100 000106 HO'J IN,,.,'O ; GO THRU ALL PLACES, DIV1I.!1NG 04 000044 01410,3 TH1F-:D! MDV -(RJ) ,R3 ; BY THE PLACES IN[IEX 25 000046 012702 17 7717 MOY t-1 ,t.::? ;1NIT GUOTIENT REGISTER 26 00005~! 00::.20:: fOURTH: INC R2 1£JUMf' 0:UOTIENT 27 000054 160003 SUB RO,R3 ;s:u1nkACT LOOP ISN'T BAD 08 000056 103.315 .BCC FOURTH ;r,tUMERATOR rs ALWAYS 10*N 29 000060 060003 ADD RO,fi.'J HIX REMAINt!ER 30 000062 010i511 MOV RJ,@R1 iSAVE REMAINIIER AS BASIS 31 iFOR NEXT DIGIT
J:::! 000064 060:?61 1777?6 All(I f-2,-20•:1) ;Gf..:EATEST INTEGER CARRIES
33 fTD GIVE DIGIT
34 000070 oo:.:soo l.•lC so •AT £1\:: OF DIGIT V[C TOR?
35 000072 001j6'4 8N£ 1HlR[I ; flRANCH IF NOT
36 000074 01-4100 HOV -,;Rl/,f<O iG[l DIGIT TO OUTF'UT
37 000076 16:tlOO 000012 f- H· rn: SUEr 110, ,RO iFIX THE ;:;. 7 TO .7 so
38 ; THAT IT IS ONLY 1 DIGIT
! ,)001-02 10JJ7~:, BCC F•lFTH ;(REALLY DIVIDE BY 10)
1 \4-· J.00104 06-:'700 000070 ADD t10t'O,RO iMAK(DIGIT ASCII 4, 000110 . nvour OOU1F'Uf 1H£ nrGn
42 000114 005011 CLR !MU ;cu.:AR NEXT [l!GI1 LOCATION 43 000116 005305 DEC f<5 ;MORE DIGITS TO F'RINf? 44 000120 0013:~4 BNE FlRST ;BRANCH IF YES 45 00012::! ,EXIT ;w1:. ARE [IONE 46
«7 0001::'.:4 000107 A! ,REPT Ntl

16-7

Using Indirect Files

Using Indirect Files

48
49
50

,IJORII
,ENDR

t!NIT VECTOR TO All ONES

51 OOOJ4::?
000345
000350
000353
000356
000361
000364

124 110 105 MESSAG: ,ASCII /THE VALUE OF E IS!/ "15, ,1:::,::. /2,/ :200
040 126 101
114 125 IO!S
040 117 106
040 105 040
111 123 on
015 012 062

SUM.MAC VERSION 1 MACf,:O V03.00 1~-MAY-7/ 06:0J::.:>9 HH)E i-1

()00367 056 ::oo
"2 ,EVEN
OJ
;";4 000000' , DUI EXP

SU/1.l"IAC VE,kSID~ 1 MACRO V03,00 12-HAY-77 09!07:.::'.9 F'AUE 1··~
SYt'l)Ol 1ABLE

A
!:Xf·

000124R
000000!,.

, ABS, 000000 000
000.JJ'.:' 001

E.RRORS Di Jlca:11: 0

FfflH 0000161<
FIF.ST 00001:!F.

VIRTUAL MEMORY U5.E!ll $37 IJOfWS { J PAOES)
DYNAH IC Ml MOf.:Y AVAILABLE- f UR 63 f·otiGES
[1K :SUM, Lf,·: StJf"i.,-flh: SUM/C

E:,f.:RORS VE fLCl E: It! 0

FOUR1 t,, 00005:!R
MESSAG OOOJ-42F·:

Suh.Hille VE.kSIDH 1 MACRO voJ.oo 12~/'IAY-·n 00:01:29 f-'AGE s-1
CIWSS IG:f::FHOCNCf lAliU <CF:li:F V01·~0~)

A 1;, 1--4/t
I:: ~f· t'.'t 1--!:,4
FH-lH J/t l Jg
r IRsr 14t 1 44
fOLIRl H .·t.,f 1 :!U
NFFif.AF, t~ 1 ;~ Lt
N llt lf.~ 1-t4 t·ll
15Ef.UH11 1- t 6t 1 .';.'
flilRJJ 1-:''4t 1 :1~,
SLJl"l.l"!flC VF.1-\SJON 1. l'filtitf\O VOJ.00 t;'-11AY-77 (l8:07::,y PAGE M-1
CROSS k6:H.fi'CNCE rAErlE (CRH VOl -05)

,t);JT
• ~·t-.1HI
.1rn)u

.L lM"-/l"~f· SUM
1~1~1; LINI\ Lo•rl M,.H fh'J 12-Hay·// OB:u:o_.i
':iUl'I ,SAV Title: SUH./"IA Idv1,t!

• ABS. 000000 0:)100{1 r;,w71,t,b! ,Af-'..i,UVI<)
00100\) O()OY/:' (h'W, f,I Lt .t,tl ,COM>

lrAr,-,fpr .;.ddrt.•s::. 001000, H1•<l, t1.n,11. 001:57:!

.RENAMf MArCH.frAS MA1Ul.MfH

• MAC/i!J/1 1131 /CkUSSHU U([NU. ::wool

ltEMOSf- t JNf r•f.:JN!ff; f;P,JDLCk

N 000106
s£CONt1 0000:::::!R

TttIR!1 000044R

, I nu. OE.HU!if- LINE F'RINH.R Sf-'00l£k

9
10
11
12
13
14
15
16 00000-0
17
18
1,
20
21
22
23
24
2S 000000
26 000002
27 000004
28 000010
29 000020
30 00002-4
31
l2 000036

000052
0010(.10

000
000004'
000000
07-4514
0-46636

024

003410
000000
000-000

33 000040 012702 000742'
34 000044 012737 000036'
3, 000052
36 0000,2
37 000064
38 000070
39 000072
-40 000076
41
42 000100

103403
005762
001003
01270-0
000426

43 00012.. j.OJ762

00-0004

000560'

.... 000126 012701 000010'
45 000132
4,6 000140 103-403
-47 000142 005762 00000'4
48 000H6 001004
49 000150 012100 000574
50 00015-4
:Sl 000156
"2
~J 000160
:S-4 000166
:55 000174 005061 000002
54 000200

00-0000

000046

, IDE.t,T /X01, 0 l/

; THIS F'ROGRAM WILL L 1$1 ANY f-'JU 1HAT IS ON I1EVICE "Sf'L' WITH EXTENSION 'LST"
; AND ONCE USTH1 IT WILL BE DELETED, BEFORE 'fRUN f'R!Nl' t TH:£ USER fiUST
J ASSIGN THE l!EVlCE WHICH HAS THE FIL£S TO "SPl",
; EX! ,ASSIGN RKt:SPL
; ALSO, ANY NUN~RESl[lEN'T HANDLERS MUST BE LOADED,

EX: .LOAD Lf',DT
i ,FRUN f''RINT
i IF THE Sf'L I!EVICE 1$ OFF LINE OR A tllRECfORY READ
; ERROR THE F'ROGf.:AM WILL GO INTO A WAIT STATE AND TRY AGAIN LATER,

,MCALL ,R£A0t,h .WRlTW, ,LOOKUF·, .DELETE, ,PUl"Gt~ ,TWAIT
,MCALL ,DSTATU,,f'RINT~ ,RCTRLOt ,EXIT, ,CLOll, •• v-2 ••
•• 1)2 ••

ERRBYT :::12 ;EttT £RR'OR BYTE: ADDRESS
WDCT = ~l:Z, ;WOJi;JJ i::ouNT FOf< R£A0'5 <2 !ILOCKS>

l PLACE TME EMT REQUESTS :EILOCl<.:S BEFORE THE CODE SO THAT THE USR CAN
i $,WAF" OVEf<: THE AREA STARTING AT 'START',

,NLIST
TIMBLK ! • IfYTE

.worw
TINE: .wor.r1
DSLII.: .RAOSO
Lf>t ,RA.050
AREA: ,BLK~

START: ,RGTRLO
"ov
"ov

BEX
0,24
TINE
0,60. *JQ.
/SPL LST /
/LF'O
s

t.autr.,:.:2
tSfART,@t46

,[!$TATU R2,tLF'
BCS u
rn 4(R2)

BNt 2•
u: MOV tHSGO,RO

BR OUlT

2$1 ,LOOKUP tAREA,11,tLf'
BCS u
"ov tDBLk~FU
,DSTATUS R::!,Rl
!<CS ,.
TST 4<R2>
BNC GO

3$! ""v tHSG1 ~Ro
tltttr: ,PRINT

.nor

GOt .PRINT tOK
HND; .PURGE tO

CLR 2{Rl}
,LOOKUP tAREA,tO,Rl

1$! MOV t£1:UFF,R2

Hi.tAIT tODE

fWAIT ,30 SECONDS

iEMT REOUEST AREA

; HAKE THE TTY SPEAK If ERROR
; R'.2 F'RE(SPACE BUFPER AREA
tUSR LOAD ADDR. (HUST HAVE ONE FOR fG)
; SEE If" LP LOADE:I1

ilF ENTRY F'OHH"'O,
;NOT IN CORE
J RO LP NOT LOA!iE[1 MESSAGE

t OPEN CHANNEL 1 FOR OUTPUT

,Utl -, [l£V:FILl'll#ltl'l,£XT
i Iii[IF SPL L0'11[1£D
;,:-,tilLEr11'
; IF [HT.It'!' POINT • 0 THEN NOT LOAIIED

;PREPARE FOR FAILOR

mun AFTER ERROR

PRINT ALL IS 01!. N£SSAOE
FREE CHANNEL O ro;.: USE
WHEN FILENAME IS O THEN

READ'S WILL BE ABSOLUTE BLOC!'\ MODE
R2 -', BUFFER ARtA fOR READS ~, 000222 012702 000742'

DENOSP LIN£ PRINT£R SPOOLER MACRO VOJ.QO 12-MAY-77 oe:11:24 PA-GE 1-1

16-8

58 0-00226 012703
!59 000232 00,63-03
60 000234 062?03
61 000240
62 0002?4 103411
63
,. 00<>276 010205
,:s 000360 062105
66 000304 032715
6'1 ooo:uo 001407
1,8 000312 016203
69 0-00316 001345
70 000320 012700
7l 000324
72 000326 000717
73
74 000330 0)272'5
7:5 000334 001404
76 OOOJJ6 026527
n 000344 0()1403
78 OOOJ.46 062705
19 000352 0007$'1 •• 81 000354 012561
8.2 000360 012561
83 0¢0364
8-4 00-0406 103667
85 000410 005005
86
87
88
89 000412
90 000446 103424
91 000450 010004
92 000452
9J 000504 103003

000001

000004

000012
oo•ooo

000002

000000'

002000

000004

000014

00000::'
000004

94 000506 01:?700 000726'
95- 000512 0006::'0
96
97 000514 QQ:";7;'';;,

98' 000516 000735
99

.lOO 0000;,;o l0::i7J7 00005:?
101 000524 001.410J
102 0005:.:'6

.2•:

.lt:

u:

:'if:

6f!

047014

, ..
COPJEf.:t

u:

3t-!

KOV thf<3 !DIRECTORY STARTS AT BLK 6
ASL R3 ;:;ey 2
ADD t4~RJ
.R:EADW tAREA,tO,R2,tWOCT ,R:t ;CHAN, BUFf ,WDCT ~BL!\
BCS ,. ;(l!fi:£CTORY READ Et?ROR~

rntvICE OFF LINE, so WAH.
HOV ,;;2,R5 iCOPY START OF BUFR PTR
ADD +12,RS IR5 -> fllE STATUS 1,10
BIT t4000,IJR5 JENO Of SEGMENT JP=4)00(

•rn ••
HOV 2(1-:2> ,F>3 ;NEXT DIR 5£G F'TR

••• 2t ;o 1F HO N£XT se:o:
NOV tTIMBLKYRO ;NO FILE TO• LIST SO WAlT
• T-WAIT

•• FHHI

811 t2000, (R5H I F"ERHANENT ENTRY ?
BED 7$ JNO IF EQ
CH? 4<RS> ,+"RLST HES,L00K AT EXT£N$l0N
BEO COPIER HF EXTENSION • LST THEM GO COPY rllE
ADD tt-1,R!S ;SKIP OTHER FILE ENTRY WORDS

•• ••
MOV (R5 lt ~ 2 (Rl) n·ur FILNAM lN DBL!\
MOV iR5>-t,'l(Rl)
.LOOKUF' tAREA,t2,R1
BCS FIN[1 ;LOOKUP FAILED
CLR RS !RELATIVE BLK f

; HAVE THE FILE., NOW LIST 1T

,R(A(IW
BCS
MOV
.W.IHTIJ
E!CC
MOV
FR

tsi
BR

tAREA,J:J,R:J,tl,WCT ,fi:5
3$ Hi:EAlJ ERROR Ok EOF
R:O~R4 H4UMBEF: Of WOR[!S ACTUALLY fi'.EA[l
tAREA,tl ,R2,R4,R5
2,
tEfi'.ROUT, FcO
nun

(f?5)+
u

IRO HSG FOR aun·uT (RfWR

TSHI HERRBYT ; EHT ERROR BYTE
H.'.OF IFe::O)[Cl 4t:

,PRINT tERfUN
103 000534 , CLOSE 42 ICLOSE INPUT CliAN'HEL I DELETE LST FILE
104 000542
105 0005'64 00060-0
106
107
108 000566 116 157
109 000574 101 123
110 000617 12.5 164
111 000702 114 123
i 1Z 000726 1:'7 t62
113
114

DEHOSP LINE F'RINTEF: !.::iF'OOLEF:

040
123
141
124
151

MSGOl
HS01!
ot..:
ERR IN:
ERfWUfl

,O!:L(T[tAfi:EA,t.2,Rl HU lllillK
BR FIN[1 tCONTINUE

, ENABL LC
,4$C1Z /No LP/
,ASC!Z /ASSIGN or LOAD SPL/
,ASCIZ /St-arted OK, LP l SPL de,..u:.-tn; are ass.isn•d I load•d/
,ASCIZ /LSl f'i le read t>l"f'l'H'/
.ASCIZ /Write error/
,EVEN

MACRO VOJ.00 12-MAY-?7 08l ll ! 24 PAGE 1-2

115 000742
116

l!UHl ,BlKB 4U'l6,+START-, ;ROOH FOR USR l SUFFER AREA

117 000036 .END START
DEMOSF' LINE F'RINTER SPOOLEfi: MACRO VOJ.QO 12-NAY-77 08:11!24 PAGE: 1-3
S'fHBOL TA!ILE

AREA
BUFF
COPIER
DBLK

000024R
0007421'<
OOOJ54R
000010R

• ABS, 000000 000
010036 001

ERRORS DETECTEDt 0

ERRBYT"' 00005::
ERRlN 000702R
ERROUT 000726R
FHm 000166R

VIRTUAL HEMORY USEU: 2..3:c>9 WOkllS (10 f'AGCS>
flYNAl11C ME.HOR'!' A.VAILABLl~ FiJR 6J PAGE,S
t,K: SPOCJL ,L F'; SPOOL-=Ii"-!5f·OQL /C

ERRORS [1ETECT[[1; 0

60
LP
11SGO
HSG1

000160R
000020R
000566R
000574R

OK
QUIT
START
TINBLK

D~rtOS.:P Lil'if£ P~INTER IPOOL£R HACRO V03,00 l:'-HAY ll 00!11!24 PAGE S-1
CROSS fi'EfEREHCE T~BLE {CREF VOl 0~, >

••• v1 1-16t 1·-3:::i
1-83 1-QJ

• • ,V2 1-42 1-U
1-83 1-113
1-104 1-10~

AREA 1-301 t-42
f!lJf:"F 1-:n' 1-:i?
COPIER 1-77 1··81t
DE<U< 1-28t 1·-44

ERRBYT l - i8t 1 -100
ERIHN 1-1-02 1-1111
fRFl'OUT l-94 1-112+
FIND 1-50 1-72
GO 1-48 l-53*
LF' 1-291 1-35
MSGO 1-39 1-108t
NSGi 1-49 1-109t
OK 1-'53 1--110+
OUIT 1-40 1 ··SOt
STAkf 1-3:;?t 1-34
TIMBLI\ 1"25t 1-70
TIHE 1-26 l-27+

1-56
1--115t

1-84

WDCT 1-191 1-01 1 89

1-42
1-89
1- 42t
1~aJt
1 104t
l-61

1-105

1-117

1--42
1--9'.!
1-5<1
1 ··85'

1-5.U
1-B'J

1--89

1-56
1-69t

DEHOSP LINE PRINTER Sf'OOLEh HACRC VOJ,00 l2·-M:At-77 08!11!24 F'AGE N··1
CROSS REFEf\tfNCE TABLE (CRfT VOl --05)

•• ~CHO
• , .CH1
••• c112

• , ,CHJ
, , .CN-4
., ,CM5
•, .CM6
•• v2 ••
,CLOSE
,DEL.El
~DST AT
,EXIT
,LOOKU
,PRINT
,PURGE
.RCtA:L
~READW
~ TWAIT
,WRITW

1-16t
1-lOt
1-lbt
1-89
1· 16t
1-161
1-16t
1·· 16t
1-151
1-15t
1-1-4•
1-15t
1-i5t
1~ut
1-15t
1-Ht
1-l5t
1-1-0
1-14•
1-14f

1-J~
1-42
1-<12
1-0,
1-::;4
1-61
1-J~
1-71
1-16
1-103
1-104
1-35
1-51
1-42
1-~o
1-54
1-32
1-61
1-71
1-92

l-"4:"i
1-~6
1-42
1-92
1-10J
t-69
1-'42

1-45

1-56
1-::;3

J-89

1-6.1
1-Z6
1-92

1-9:.?
1-45

1-83
1-102

1-56 l-61

1-92
1-61
1-104

1-71

1-56
i-103
1-56
1-89t

1-10-4

1-83

OOQ617R
0001:54R
000036R
<)00000R

1-56
1-t0-4
1-56f
1--92

1-89

16-9

l·-56
1-104
1-56f
1-92

1-92

TIME 000004R
WDCT • 001000
•• ~vi • 000002
••• v2 ., 000021

1-61
1-104
1-61
1-9,2t

1-83

1-104

1-61

1-61
1-92+

l-83

1-6U
1-103

1-89

Using Indirect Files

1-83

1-61+
1-1031

Using Indirect Files

SUMMARY:
COMMAND
TO START
AN INDIRECT FILE

FILE
MAINTENANCE

REFERENCE

• L. INI-UFOHEGROUND/MAP SPOOL
RT-11 LINK Load MaP Thu 12-Maw-77 08!11109
SPOOL ,REL Title: DEMOSP Ident: xo1.01

Section Addr Size

• ABS, 000000 001000
001000 0100:56

Global Value Global Value Global Value

(RW,I,GBL,ABS,OVR)
CRW,I,LCL,REL,CONI

Transfer address= 001036, Hi•h limit= 011036 2319, words

,f!IREClORY *,0B,J
12·-M,9w···· 77

GRAPH ,DB,J
SPOOL ,DBJ
MUBRTE,OrU
MUBZNl,OBJ
MUBXT1,0BJ
MUBS1D,OBJ

16 12-Ma\,/-77
2 12-Maw·-77
l 04-Ma\,/·-T?
l 04····Maw·-77
1 04····Ma\;·-77
1 04··-Ma\;·· 77

20 ~iles, 611 Blocks
564 Free blocks

,DELETE/NOQUERY GRAPH,*

,DELETE/NOQUERY SUM,*

,DEL.ETE/NOQUERY MATCH.MAP

,DEASSIGN

• TIME
0(1 ! 19: 52

@filnam.COM

SUM ,OBJ
SYSLIB,OBJ
MUBTAB,OBJ
MUBET1 ,OBJ
MUBZl ,OBJ
FORLIB,OBJ

1 12-Ma\,/-77
198 23-J•Jn-77

1 04-Maw-77
1 04-Maw-77
1 04-Maw·-77

l.57 26-APr··-77

Start the execution of the specified indirect file (filnam.COM).

CTRL/C CTRL/C
Halt execution of the indirect command file (use with caution).

This indirect file contains commands that perform the appropriate
copy and delete file maintenance operations. If the commands were
not already part of the file, you would need to perform the
appropriate file maintenance commands, in monitor command mode,
after execution.

RT-11 System User's Guide (DEC-I 1-0RGDA-A-D), Maynard, Mass,: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 4.

16-10

CHAPTER 17

ADVICE TO NEW USERS

This manual introduces you to several common RT-I I functions but
is neither exhaustive nor comprehensive in its treatment of system
features, commands, or their options. For many, these fundamental
system operations are sufficient; other users, however, may need or
want to learn a programming language, extended system features, or
the internal workings of the RT-11 system. These people should
consult the references at the end of each chapter, the RT-I I
Documentation Directory, or the RT-II System User's Guide. The
RT-I I Documentation Directory lists all RT-11-related material
available from DIGITAL: the User's Guide explains in detail each
command contained in this manual and additional monitor com
mands, including all possible command options.

The Introduction to RT-II has shown you the right way to use some
important system features and their associated monitor commands.
This information, combined with the following basic guidelines for
using the system, can help you to avoid pitfalls common to new
users:

• Do not become dependent on a single copy of a file.
Always make a backup copy of any useful file.

• When using the editor, do not insert text in large segments.
Divide long editing sessions into short ones so that user (or
hardware) errors do not cost long hours of editing. Close
the file with the EX command and begin editing again
from where you left off.

• Avoid careless use of wildcard operations that manipulate
multiple files. Use the /QUERY option to verify the
operation to be performed.

• When using indirect files or BATCH streams, avoid
operations that manipulate any of the system (.SYS) files
or the indirect file in use. Check the indirect file carefully
for errors before you use it. Once the command stream is
initiated, you may be unable to detect and prevent
possibly serious errors.

17-1

Advice to New Users

• If you nm two jobs under control of the foreground/
background monitor, be sure there is no conflict of
nondirectory-structured devices (LP:, MT:, CT:, PC:,
TT:) used by the two jobs.

17-2

APPENDIX A

MANUAL BOOTSTRAPPING OPERATIONS

This appendix describes the manual bootstrapping procedures used
for PDP-11 computers that do not have the automatic bootstrapping
capability described in Chapter 2. Three categories are covered:

Typing the Bootstrapping on the Terminal Keyboard

Using a Pushbutton Console to Bootstrap

Using a Switch Register Console to Bootstrap

The bootstrap for your RT-11 computer system consists of a series
of 6-digit numbers that you must type on the terminal keyboard.
First, obtain the bootstrap from the RT-11 System Generation
Manual and copy the numbers into the space below:

Now, type each number in the column on your terminal keyboard
using the following method (if you make a mistake, type the
DELETE key on the terminal keyboard once for each typing error
and then retype the digit(s)):

I. Type 001000

2. Type slash(/)

3. Type the first number in the bootstrap column

4. Type the LINE FEED key on the keyboard

5. Type the next number in the bootstrap column

A-1

TYPING THE
BOOTSTRAP ON

THE TERMINAL
KEYBOARD

Manual Bootstrapping Operations

USING A
PUSHBUTTON
CONSOLE TO
BOOTSTRAP

6. Repeat steps 4 and 5 until you have typed all the num
bers in the column

7. Type the RETURN key on the keyboard

8. Type I 000G

9. Continue to Step 11 in Chapter 2

If your computer has a pushbutton console on its front panel similar
to that shown in Figure A-1, you can use the buttons to manually
give the computer the information it needs to bootstrap the system.

Figure A-1 Pushbutton Console

The bootstrap for your RT-I I computer system consists of a series
of 6-digit numbers which you must load into the computer using the
push-button console. First, obtain the bootstrap of your system
device from the RT-11 System Generation Manual and copy the
numbers into the space provided below. If your system has a
hardware bootstrap1 , the bootstrap will consist of only two numbers
which you should copy into the left-hand space; otherwise, the
bootstrap will consist of two columns of numbers labeled Location
and Contents which you should copy into the right-hand space:

Hardware Bootstrap

Load Address =
Start Address =

Other Bootstraps

1 A hardware bootstrap is bootstrapping information that is already in computer
memory but that you must activate by entering a load address and a start
address, each a 6-digit number.

A-2

Manual Bootstrapping Operations

To activate the hardware bootstrap, set the numbers into the
pushbuttons using the following method (if you make a mistake,
push the button labeled CLR, then reenter the number):

1. Push the appropriate buttons for the load address (read the
number from left to right)

2. Push LAD

3. Push the appropriate buttons for the start address (read
the number from left to right)

4. Push the button labeled CNTRL and while holding it
down, push the button labeled START

5. Continue to step 11 in Chapter 2

To activate other bootstraps, set the numbers into the pushbuttons
using the following method (if you make a mistake, push the button
labeled CLR, then reenter the number):

1. Push 1000 (read the number from left to right)

2. Push LAD

3. Push the appropriate buttons for the first number in the
Contents column (read the number from left to right)

4. Push DEP; push CLR

5. Push the appropriate buttons for the next number in the
Contents column (read the number from left to right}

6. Repeat steps 4 and 5 until all numbers in the column have
been used

7. Push 1000

8. Push LAD

9. Push the button labeled CNTRL and while holding it down
push the button labeled ST ART

I 0. Continue to step 11 in Chapter 2

A-3

Manual Bootstrapping Operations

USING A SWITCH
REGISTER
CONSOLE TO
BOOTSTRAP

If your computer has a switch register console on the front panel
similar to those shown in Figure A-2, you can use the switches to
manually give the computer the bootstrapping information it needs
to start the system.

t1f~Jl !Oft<i't"Jl ~"''"'W'"~.,,"- -

,n -n 11'''1

Figure A-2 Switch Register Consoles

Several switches on the console are spring-loaded. This means that
the switch moves in only one direction and returns to its initial
position after you use it. You must set the remaining switches either
up or down as instructed.

The bootstrap for your RT-11 computer system consists of a series
of 6-digit numbers which you must load into the computer using the
switch register console. First, obtain the bootstrap of your system
device from the RT-11 System Generation Manual and copy the
numbers into the space provided below. If your system has a
hardware bootstrap1 , the bootstrap consists of only two numbers,
which you should copy into the left-hand space; otherwise, the
bootstrap consists of two columns of numbers labeled Location and
Contents which you should copy into the right-hand space:

Hard ware Bootstrap

Load Address =
Start Address=

Other Bootstraps

Next convert the numbers in the column to binary numbers using the
conversion process shown in Table A-1.

1 A hardware bootstrap is bootstrapping information that is already in computer
memory but that you must activate by entering a load address and a start
address, each a 6-digit number.

A-4

Manual Bootstrapping Operations

Table A-1 Binary Conversion

Octal Binary

0 000
1 = 001
2 010
3 = 011
4 = 100
5 101
6 = 110
7 = 111

For example, the number 173100 is converted to 001 111 011 001
000 000. You set this 18-digit binary number into the switch register
by placing each individual switch in an up position for a 1 or a down
position for a 0. The number 173100 is set into the switch register as
follows:

The number 012700 is converted to 000 001 010 111 000 000 and is
set into the switch register as follows:

NOTE

The switch register is the group of switches appearing on
the left of the console. Your switch register may have only
16 switches rather than 18; in this case you can ignore the
lefthand two digits of the binary number when you set the
switches.

To activate the hardware bootstrap:

1. Set the switch register to the appropriate positions for the
load address

2. Press the spring-loaded LOAD ADDR switch

A-5

Manual Bootstrapping Operations

3. Set the switch register to the appropriate positions for the
start address

4. Press the spring-loaded START switch

5. Continue to step 11 in Chapter 2

To activate other bootstraps, set the numbers into the switch register
using the following method:

1. Set the switch register to the appropriate positions for the
number 001000

2. Press the spring-loaded LOAD ADDR switch

3. Set the switch register to the appropriate positions for the
first number in the Contents column

4. Press the spring-loaded DEP switch

5. Set the switch register to the appropriate positions for the
next number in the Contents column

6. Repeat steps 4 and 5 until all the numbers in the column
have been used

7. Set the switch register to the appropriate positions for the
number 001000

8. Press the spring-loaded LOAD ADDR switch

9. Press the spring-loaded START switch

10. Continue to step 11 in Chapter 2

A-6

APPENDIX B

SELECTED SYSTEM TOPICS

The remarks in this appendix cover a variety of topics that should
prove helpful to you as you perform the demonstrations in the
manual. Included, for example, are instructions for starting and
stopping the system, alternate methods f~r performing some system
operations, and directions for using the language volume. The
sections are listed here in the order in which they are referenced
from within the text of the manual.

You can plan to take a break at the end of any individual chapter in
this manual. If you intend to be-away from the computer system for
any length of time, you should halt the system and remove your
belongings so that others may use the system hardware.

Perform the following steps in order:

1. Stop the computer. Press HALT switch if your computer
operator's console has switches; hold the CNTRL button
down and push the HLT /SS button if your computer
operator's console has pushbuttons.

2. Unload the system volume. Turn the device unit to an
off-line condition and remove the system volume.

3. Unload the storage volume. Turn the device unit to an
off-line condition and remove the storage volume.

4. Remove and save all terminal and line printer output
listings.

Perform the following steps in order:

1. Follow the bootstrap procedure in Chapter 2.

2. Enter the current date and time-of-day (Chapter 4).

B-1

STOPPING AND
STARTING THE

SYSTEM

Stopping the
System

Starting the
System

Selected System Topics

THE SYSTEM
STOPS
UNEXPECTEDLY

SUGGESTIONS
FOR
BOOTSTRAPPING
THE SYSTEM

3. Make any necessary logical device assignments. For the
examples in this manual, you must assign the logical name
VOL: to your storage volume (Chapter 4).

If for any reason the computer system stops unexpectedly, request
help from an experienced user. Once the problem is diagnosed, start
the system by following the procedure above.

You must be able to bootstrap your RT-11 system before you can
perform the demonstrations in this manual. Three common boot
strapping problems and suggestions for their correction are described
below.

1. You cannot locate the bootstrapping information provided
by the DIGITAL representative who installed your system.

First, if an experienced RT-11 user is available to help
you, ask this person to fill in the missing information in
the RT-11 System Generation Manual. Then retry the
bootstrap procedures in Chapter 2 of this manual.

If no one is available to help you, consult the appropriate
hardware manuals for the devices that are part of your
system; these manuals provide a description of the device
and operating procedures. Read the system build and
start operations that are outlined in the RT-11 System
Generation Manual. Then try the bootstrap procedures in
Chapter 2 again.

2. You have followed the bootstrapping instructions cor
rectly but your system printed a message other than what
you expected.

a. If the message is one of the following:

?BOOT-F-Insufficient memorw

?BOOT-F-I/0 error

?BOOT-F-No memorw manasement hardware

?BOOT-F-No monitor file on volume

it is a bootstrap error message and indicates that a
problem in the system is preventing bootstrapping.
These four messages are fully explained in the RT-11

B-2

System Message Manual, but you should not attempt
to correct the problem yourself if an experienced user
is available to help.

b. If the message is one of the following:

RT-··11FB

RT·-·1 :I.XM

V03-·)·D·(

a valid RT-11 V3 monitor program has been boot
strapped, but it is not the one you should be using.
Reboot the correct monitor program by typing the
following commands on the terminal (sy is the
appropriate 2-character code for your system
volume see question 3b in the Hardware Configura
tion section of Chapter 2); (RET) indicates that
you should type the RETURN key on your terminal
keyboard:

+BODT
Devicf? or fih:.•'r· s!:1MNSJ+SYS(RET)

c. Any other message indicates that an old version of
RT-11 (Vl, V2, V2B, V2C) has been bootstrapped.
Only Version 3 and later releases of RT-11 can be
used to perform the demonstrations in this manual.

3. You followed the bootstrapping instructions correctly but
nothing happened, i.e., there was no terminal response at
all.

Retry the bootstrap procedure from the beginning. Before
you begin, be sure that the system volume is properly
mounted in device unit 0. Check that the computer is on
but is not running (the light labeled RUN should not be
lit); if it is running, stop it as described above. Check that
the terminal is on-line and that its baud rate switch (if
present) is set to 300. If you are using a display, be sure
the screen is bright enough. If your terminal uses a paper
printer, be sure that the paper is properly loaded.

A copy of the system volume should have been made during system
installation. This copy is called the master copy and should be stored
away for safekeeping. If you cannot locate a master copy for your
system volume, make one before you continue. Backup instructions
are in the R T-11 System Generation Manual and should be per
formed by an experienced user.

Selected System Topics

BACKING UP THE
SYSTEM VOLUME

Selected System Topics

DIRECTORY VS
NONDIRECTORY
STRUCTURED
VOLUMES

Storage volumes are called file-structured volumes because they are
capable of physically storing files. They can be further categorized
as directory-structured and nondirectory-structured volumes based
on their method of directory information storage, collection, and
printing.

The directory information kept on a volume includes file names and
file types, dates of creation, and (in most cases) file lengths. When
you type the DIRECTORY command, this directory information
prints on the terminal. Volumes such as disk, diskette, and DECtape
keep this information in a single place at the beginning of the
volume. Each time you add or erase a file, the directory information
at the beginning of the volume is updated accordingly. Thus, these
volumes have a true volume directory and are said to be directory
structured. Magtape and cassette volumes, on the other hand, do not
keep directory information in any single place on the tape but rather
with each individual file. Their directory information is obtained by
sequentially reading through all the files on the tape and collecting
the directory for printing as each file is encountered. Thus, these
volumes are said to be nondirectory-structured.

You can list the volume directories in either a complete or an
abbreviated format. Complete volume directories include the file
name, file type, file length (usually), and date of creation if you
entered a date via the DATE command before creation. For most
volumes, the directory format is as follows:

08-JUL-77
FILE .TYP 26 23-JUN-77

Cassette directories are slightly different. Their directories do not
indicate file lengths, but instead show a sequence number for each
file:

08-JUL-77
FILE .TYP O 23-JUN-77

The sequence number simply indicates whether the file is continued
from another cassette. 0 means the file is not continued from an
other cassette while any other number indicates that the file is con
tinued. The number of blocks printed at the end of a cassette
directory does not represent the total size of the files on the volume,
but instead represents the total of the sequence numbers.

B-4

Abbreviated volume directories are handled the same for all
directory-structured and nondirectory-structured volumes; they
include only the file name and file type, and are printed in five
columns on the terminal. For more information about directory
structured and nondirectory-structured volumes, see the RT-11
System User's Guide, Chapter 3.

Because of the sequential (nondirectory-structured) nature of
magtapes and cassettes, you cannot use the RENAME monitor
command. To perform the RENAME operation, you must first copy
the file using the new file name and then erase the old file name.

Thus, to change the name of GRAPH.TWO on your magtape or
cassette storage volume to GRAPH.FOR, first make a copy of
GRAPH.TWO, giving the new file the name GRAPH.FOR:

Long Command Format

• COPY ([u)

From? VOL!GRAPH.TWO
To ? GRAPH.FOR(@)

Short Command Format

+ COPY VOL: GRAPH. TWO GF~APH. FOR (ill)

Now there are two copies of the GRAPH file. Erase the one not
wanted using the monitor DELETE command (this command is
described in Chapter 7 in the section entitled "File Delete
Operations."):

Long Command Format

• DELETE/NCHn!E:T<Y
Files? VOL!GRAPH.TWO

Short Command Format

• DELETE:/NOC~UE:l:;:Y VOL.: GRAPH. TWO (ill)

B-5

Selected System Topics

ALTERNATE
RENAME

OPERATION FOR
MAGTAPE AND

CASSETTE
USERS

Selected System Topics

USING THE
FORTRAN/BASIC
LANGUAGE
VOLUME

A single copy of GRAPH.FOR now resides on your default storage
(system) volume. Copy the file onto your MT: or CT: storage
volume:

Long Command Format

• COPY (RET)

From?' GRAPH.FOR
To ? VOL: GRAPH. FOR (RET)

Short Command Format

.COPY GRAPH.FOR VOL:GRAPH.FOR

Delete the original file:

Long Command Format

• DELETE/NOQUERY C[[i)
Files? GF~APH. FOF<@)

Short Command Format

+ DELETE/NOQUEF,Y GRAPH. FOR Ct§]})

The combined effect of these four commands is to "rename"
GRAPH.TWO to GRAPH.FOR.

During system installation, a special system volume was created
specifically for your use with this manual. This volume contains
the FORTRAN and/or BASIC language processors and the necessary
monitor files required to use these language processors. Before you
can perform the FORTRAN or BASIC demonstrations, you must
substitute this FORTRAN/BASIC language volume for the system
volume that is currently mounted in device unit 0. The language
volume then becomes, and is used like, the system volume during the
course of the FORTRAN and BASIC demonstrations.

Make sure no system operations are in progress (the monitor prompt
ing period should appear at the left margin of the terminal printer)
and stop the system (see "Stopping and Starting the System", this
appendix). Now remove the system volume currently loaded in

B-6

device unit O and insert the language volume, write-protected. Boot
strap the system (see "Stopping and Starting the System", this
appendix). The following monitor message should appear:

RT-·11S . .J VO 3···;-: :-:

Write-enable the volume. Then enter the current date and time-of
day and assign the logical name VOL: to your storage volume, just
as you did in Chapter 4. When you have done this, you are ready to
run the language demonstration. Return to the main text of the
manual.

Diskette users and FORTRAN users who have the FORTRAN
language processor on a volume apart from their system volume must
occasionally perform the kinds of file copying and volume swapping
operations described below. These operations are necessary when
the files you need to use are not stored on the volume(s) currently
mounted. The situation requires that you make the appropriate
volume substitutions before you continue.

Thus, before you can compile the FORTRAN file THIRD.FOR, you
must substitute the language volume containing the FORTRAN com
piler for the system volume currently loaded in device unit 0. How
ever, first you must copy the file THIRD.FOR to your storage
volume so that it will be available to use.

Long Command Format

.coPY
Frnm'? THil1.'.D.FCJR (RET)
To ? VOL:THIRD.FOR

Short Command Format

+COPY THIRD.FOR VOL:THIRD.FDR

Stop the system, remove the system volume currently loaded in
unit 0, and insert the language volume write-protected. See "Stop
ping and Starting the System" (this appendix) if necessary. The
following message should appear when you bootstrap the language
volume.

RT-l.1S,J VO 3 ··- :-: :-:

B-7

Selected System Topics

SUBSTITUTING
VOLUMES

DURING
OPERATIONS

Selected System Topics

Write-enable the volume. Then enter the current date and time-of
day and assign the logical name VOL: to your storage volume, just as
you did in Chapter 4.

Next compile the FORTRAN program THIRD.FOR, which is now
on VOL:

Long Command Format

• FORTRAN (RU)
Fil€~S? !)()L:THIRD+FOR(RET)
F'IJTSTr~

Short Command Format

• FORTRAN VOL.: TH I l~D (RET)
PUTSTR

This command causes the object module to be created on the default
storage volume (DK:) which is presently the system volume (i.e., the
language volume). If errors occur during the compile operation, they
indicate that you have incorrectly typed the source file. In this case,
you must edit the file THIRD.FOR, recompile, and then copy the
file to VOL:. Once you have an object module that compiles without
error and is stored on VOL:, reload the main system volume in
unit 0. Again, follow the directions in "Stopping and Starting the
System". Once you have bootstrapped the volume, write-enable the
system volume, enter the current date and time-of-day, and assign
the logical name VOL: to your storage volume.

Now copy the object module on VOL: back to the system volume.

Long Command Format

• COPY (R::Ii)
From? VOL.: TH IFd). OF.<.J (RET)
To ? THIRD.OBJ(RET)

Short Command Format

• COPY VOL: THIRD. OBJ THIRD. rn:u (Ru)

Return to Chapter 13 to the section entitled "Building the Object
Library."

Absolute address
The binary number that is assigned as the address of a physical
memory storage location.

Absolute section
The portion of a program in which the programmer has
specified physical memory locations of data items.

Access time
The interval between the instant at which data is required from
or for a storage device and the instant at which the data actually
begins moving to or from the device.

ADC (Analog to Digital converter)
A circuit which converts analog signals to binary data.

Address
A label, name or number that designates a location in memory
where information is stored.

Algorithm
A prescribed set of well-defined mies or processes for the
solution of a problem in a finite number of steps.

Alphanumeric
Ref erring to the subset of ASCII characters that includes the 26
alphabetic characters and the IO numeric characters.

ANSI
American National Standards Institute.

APL (A Programming Language)
A condensed, high-level language capable of describing complex
information processing in convenient notation. It uses arrays as
basic data elements and manipulates them with a set of
powerful operators. Statements are usually interpreted during
execution and require no compilation whatsoever.

Application program (or package)
A program that performs a function specific to a particular
end-user's (or class of end-user's) needs. An application program
can be any program that is not part of the basic operating
system.

Glossary-I

GLOSSARY

Glossary

Argument
A variable or constant value supplied with a command that
controls its action, specifically its location, direction, or range.

Array
An ordered arrangement of subscripted variables.

ASCII
The American Standard Code for Information Interchange; a
standard code using a coded character set consisting of 8-bit
coded characters for upper and lower case letters, numbers,
punctuation and special communication control characters.

· Assembler
A program that translates symbolic source code into machine
instructions by replacing symbolic operation codes with binary
operation codes and symbolic addresses with absolute or
relocatable addresses.

Assembly language
A symbolic programming language that normally can be
translated directly into machine language instructions and is,
therefore, specific to a given computing system.

Assembly listing
A listing, produced by an assembler, that shows the symbolic ·
code written by a programmer next to a representation of the
actual machine instructions generated.

Asynchronous
Pertaining to an event triggered by the occurrence of an un
related event rather than "synchronous" or related operations
scheduled by time intervals.

Background program
A program operating automatically, at a low priority, when a
higher priority (foreground) program is not using system
resources.

Backup file
A copy of a file created for protection in case the primary file is
unintentionally lost or destroyed.

Base address
An address used as the basis for computing the value of some
other relative address; the address of the first location of a
program or data area.

BASIC (Beginner's All-purpose Symbolic Instruction Code)
An interactive, "algebraic" type of computer language, that
combines English words and decimal numbers. It is a widely
available, standardized, simple beginner's language capable of
handling industry and business applications.

Glossary-2

Batch processing

Baud

A processing method in which programs are run consecutively
without operator intervention.

A unit of signaling speed (one bit per second).

Binary
The number system with a base of two used by internal logic of
all digital computers.

Binary code

Bit

A code that uses two distinct characters, usually the numbers 0
and 1.

A binary digit. The smallest unit of information in a binary
system of notation. It corresponds to a 1 or O and one digit
position in a physical memory word.

Block
A group of physically adjacent words or bytes of a specified size
that is peculiar to a device. The smallest system-addressable
segment on a mass-storage device in reference to I/0.

Bootstrap
A technique or routine whose first instructions are sufficient to
load the remainder of itself and start a complex system of
programs.

BOT (Beginning of Tape)
A reflective marker applied to the backside of magtape which
identifies the beginning of the magtape's recordable surface.

Bottom address
The lowest memory address into which a program is loaded.

Breakpoint
A location at which program operation is suspended to allow
operator investigation.

Buffer

Bug

A storage area used to temporarily hold information being
transferred between two devices or between a device and
memory. A buff er is often a special register or a designated area
of memory.

A flaw in the design or implementation of a program which may
cause erroneous results.

Glossary-3

Glossary

Glossary

Bus

Byte

Call

A circuit used as a power supply or data exchange line between
two or more devices.

The smallest memory-addressable unit of information. In a
PDP-11 computer system, a byte is equivalent to eight bits.

A transfer from one part of a program to another with the
ability to return to the original program at the point of the call.

Calling sequence
A specified arrangement of instructions and data necessary to
pass parameters and control to a given subroutine.

Central processing unit (CPU)
A unit of a computer that includes the circuits controlling the
interpretation and execution of instructions.

Character
A single letter, numeral, or symbol used to represent
information.

Character pointer
The place where the next character typed will be entered. (The
character pointer is visible as a blinking cursor on VT-11 display
hardwp.re.) During editing, the character pointer indicates the
place in an ASCII text file where the next character typed will
be entered into the file.

Clear
To erase the contents of a storage location by replacing the
contents, normally with Os or spaces.

Clock

Code

A device that generates regular periodic signals for
synchronization.

A system of symbols and rules used for representing informa
tion - usually refers to instructions executed by computer.

Coding
To write instructions for a computer using symbols meaningful
to the computer itself or to an assembler, compiler or other
language processor.

Glossary-4

Command
A word, mnemonic, or character, which, by virtue of its syntax
in a line of input, causes a computer system to perform a
predefined operation.

Command language
The vocabulary used by a program or set of programs that
directs the computer system to perform predefined operations.

Command language interpreter
The program that translates a predefined set of commands into
instructions that a computer system can interpret.

Command string
A line of input to a computer system that generally includes a
command, one or more file specifications, and optional
qualifiers.

Compile
To produce binary code from symbolic instructions written in a
high-level source language.

Compiler
A program that translates a high-level source language into a
language suitable for a particular machine.

Computer
A machine that can be programmed to execute a repertoire of
instructions. Programs must be stored in the machine before
they can be executed.

Computer program
A plan or routine for solving a problem on a computer.

Computer system
A data processing system that consists of hardware devices,
software programs, and documentation that describes the
operation of the system.

Concatenation
The joining of two strings of characters to produce a longer
string.

Conditional assembly
The assembly of certain parts of a symbolic program only when
certain conditions are met during the assembly process.

Configuration
A particular selection of hardware devices or software routines
or programs that function together.

Glossary-5

Glossary

Console terminal
A keyboard terminal that acts as the primary interface between
the computer operator and the computer system. It is used to
initiate and direct overall system operation through software
running on the computer.

Constant
A value that remains the same throughout a distinct operation.
(Compare with Variable.)

Context switching
The saving of key registers and other memory areas prior to
switching between jobs with different modes of execution, as in
background/foreground programming.

Conversational
See Interactive.

CPU
See central processing unit.

Crash
A hardware crash is the complete failure of a particular device,
sometimes affecting the operation of an entire computer
system. A software crash is the complete failure of an operating
system usually characterized by some failure in the system's
protection mechanisms or tlaw in the executing software.

Create
To open, write data to, and close a file for the first time.

Cross reference listing
A printed listing that identifies all references in a program to
each specific symbol in a program. It includes a list of all
symbols used in a source program and the statements where
they are defined or used.

Current location counter

Data

A counter kept by an assembler to determine the address
assigned to an instruction or constant being assembled.

A term used to denote any or all facts, numbers, letters, and
symbols. Basic elements of information that can be processed
by a computer.

Data base
An organized collection of interrelated data items that allows
one or more applications to process the items without regard to
physical storage locations.

Glossary-6

Data collection
The act of bringing data from one or more points to a central
point for eventual processfog.

Debug
To detect, locate, and correct coding or logic errors in a
computer program.

Default
The value of an argument, operand, or field assumed by a
program if not specifically supplied by the user.

Define
To assign a value to a variable or constant.

Delimiter
A character that separates, terminates, or organizes elements of
a character string, statement, or program.

Device
A hardware unit such as an 1/0 peripheral, magnetic tape drive,
card reader, etc. Often used erroneously to mean "volume".

Device control unit
A hardware unit that electronically supervises one or more of
the same type of devices. It acts as the link between the
computer and the I/0 devices.

Device handler
A routine that drives or services an 1/0 device and controls the
physical hardware activities on the device.

Device independence
The ability to program 1/0 operations independently of the
device for which the 1/0 is intended.

Device name
A unique name that identifies each device unit on a system. It
usually consists of a 2-character device mnemonic followed by
an optional device unit number and a colon. For example, the
common device name for RKOS disk drive unit 1 is "RKI :".

Device unit
One of a set of similar peripheral devices (e.g., disk unit 0,
DECtape unit 1, etc.). May be used synonymously with volume.

Diagnostics
Pertaining to a set of procedures for the detection and isolation
of a malfunction or mistake.

Glossary-?

Glossary

Glossary

Digit
A character used to represent one of the non-negative integers
smaller than the radix (e.g., in decimal notation, one of the
characters O to 9; in octal notation, one of the characters O to 7;
in binary notation, one of the characters O and 1).

Direct access
See Random access.

Directive
Assembler directives are mnemonics in an assembly language
source program that are recognized by the assembler as
commands to control a specific assembly process.

Directory
A table that contains the names of and pointers to files on a
mass-storage volume.

Directory-structured
Refers to a storage volume with a true volume directory at its
beginning that contains information (file name, file type,
length, and date-of-creation) about all the files on the volume.
Such volumes include all disks, diskettes, and DECtapes.

Disk device
An auxiliary storage device on which information can be read or
written.

Display
A peripheral device used to portray data graphically (normally
refers to some type of cathode-ray tube system).

Downtime

Echo

Edit

The time interval during which a device or system is inoperative.

The printing by an 1/0 device, such as terminal or CRT, of
characters typed by the programmer.

To arrange and/or modify the format of data (e.g., to insert or
delete characters).

Editor
A program that interacts with the user to enter text into the
computer and edit it. Editors are language independent and will
edit anything in character representation.

Effective address
The address actually used in the execution of a computer
instruction.

Glossary-8

Emulator
A hardware device that permits a program written for a specific
computer system to be run on a different type of computer
system.

Entry point
A location in a subroutine to which program control is
transferred when the subroutine is called.

EQT (End Of Tape)
A reflective marker applied to the backside of magtape which
precedes the end of the reel.

Error
Any discrepancy between a computed, observed, or measured
quantity and the true, specified, or theoretically correct value
or condition.

Execute
To carry out an instruction or run a program on the computer.

Expression
A combination of operands and operators that can be evaluated
to a distinct result by a computing system.

Extension
Historically-used synonym for file type.

External storage

Field

A storage medium other than main memory, e.g., a disk or tape.

A specified area of a record used for a particular category of
data.

FIFO (first in/first out)

File

A data manipulation method in which the first item stored is
the first item processed.

A logical collection of data treated as a unit, which occupies
one or more blocks on a mass-storage volume such as disk or
magtape, and has an associated file name (and file type).

File maintenance
The activity of keeping a mass-storage volume and its directory
up to date by adding, changing, or deleting files.

File name
The alphanumeric character string assigned by a user to identify
a file. It can be read by both an operating system and a user. A

Glossary-9

Glossary

Glossary

file name has a fixed maximum length that is system dependent.
(The maximum in an RT-11 operating system is six characters,
the first of which must be alphabetic. Spaces are not allowed.)

File type
The alphanumeric character string assigned to a file either by an
operating system or a user. It can be read by both the operating
system and the user. System-recognizable file types are used to
identify files having the same format or type. If present in a file
specification, a file type follows the file name in a file
specification, separated from the file name by a period. A file
type has a fixed maximum length that is system dependent.
(The maximum in an RT-11 operating system is three charac
ters, excluding the preceding period and not including any
spaces.)

File specification
A name that uniquely identifies a file maintained in any
operating system. A file specification generally consists of at
least three components: a device name identifying the volume
on which the file is stored, a file name, and a file type.

File-structured device

Flag

A device on which data is organized into files. The device
usually contains a directory of the files stored on the volume.
(For example, a disk is a file-structured device, but a line printer
is not.)

A variable or register used to record the status of a program or
device; the noting of errors by a translating program.

Floating point
A number system in which the position of the radix point is
indicated by the exponent part and another part represents the
significant digits or fractional part (e.g., 5.39 X 108 Decimal;
137.3 X 84 - Octal; 101.10 X 213 Binary).

Flowchart
A graphical representation for the definition, analysis, or
solution of a problem, in which symbols are used to represent
operations, data, tlow, and equipment.

FOCAL (FOrmula CALculator)
An on-line interactive, service program designed to help
scientists, engineers, and students solve numerical problems.
The language consists of short imperative English statements
which are easy to learn. FOCAL is used for simulating
mathematical models, for curve plotting, for handling sets of
simultaneous equations, and for many other kinds of problems.

Glossary-10

Foreground
The area in memory designated for use by a high-priority
program. The program that gains the use of machine facilities
immediately upon request.

FORTRAN (FORmula TRANslation)
A problem-oriented language designed to permit scientists and
engineers to express mathematical operations in a form with
which they are familiar. It is also used in a variety of
applications including process control, information retrieval,
and commercial data processing.

Full duplex
In communication, pertaining to a simultaneous, 2-way in
dependent "asynchronous" transmission.

Function
An algorithm accessible by name and contained in the system
software which performs commonly-used operations. For ex
ample, the square root calculation function.

Garbage
Meaningless signals or bit patterns in memory.

General register
One of eight 16-bit internal registers in the PDP-11 computer.
These are used for temporary storage of data.

Global

Hack

A value defined in one program module and used in others.
Globals are often referred to as entry points in the module in
which they are defined and as externals in the other modules
that use them.

A seemingly inspirea, but obscure, solution that is superior by
some measure to a straightforward one.

Half duplex
Pertaining to a communication system in which 2-way com
munication is possible, but only one way at a time.

Handler
See device handler.

Hardware
The physical equipment components of a computer system.

Hardware bootstrap
A bootstrap that is inherent in the hardware and need only be
activated by specifying the appropriate load and start address.

Glossary-11

Glossary

Glossary

High-level language
A programming language whose statements are typically trans
lated into more than one machine language instruction. Ex
amples are BASIC, FORTRAN and FOCAL.

High-order byte
The most significant byte in a word. The high-order occupies bit
positions 8 through 15 of a PDP-11 word and is always an odd
address.

Image mode
Refers to a mode of data transfer in which each byte of data is
transferred without any interpretation or data changes.

Indirect address
An address that specifies a storage location containing either a
direct (effective) address or another indirect (pointer) address.

Indirect file
A file containing commands that are processed sequentially, but
that could have been entered interactively at a terminal.

Industry-standard
A condition, format, or definition that is accepted as the norm
by the majority of the (computer) industry.

Initialize
To set counters, switches, or addresses to starting values at
prescribed points in the execution of a program, particularly in
preparation for re-execution of a sequence of code. To format a
volume in a particular file-structured format in preparation for
use by an operating system ..

Input
The data to be processed; the process of transferring data from
external storage to internal storage.

Input/Output device
A device attached to a computer that makes it possible to bring
information into the computer or get information out.

Instruction
A coded command that tells the computer what to do and
where to find the values it is to work with. A symbolic
instruction looks more like ordinary language and is easier for
people to deal with. Symbolic instructions must, however, be
changed into machine instructions (usually by another program)
before they can be executed by the computer.

Interactive processing
A technique of user/system communication in which the
operating system immediately acknowledges and acts upon
requests entered by the user at a terminal. Compare with batch
processing.

Glossary-12

Interface
A shared boundary. An interface might be a hardware com
ponent to link two devices or it might be a portion of storage or
registers accessed by two or more computer programs.

Internal Storage
The storage facilities fanning an integral physical part of the
computer and directly controlled by the computer, e.g., the
registers of the machine and main memory.

Interpreter
A computer program that translates then executes a source
language statement before translating (and executing) the next
statement.

Interrupt
A signal that, when activated, causes a transfer of control to a
specific location in memory, thereby breaking the normal flow
of control of the routine being executed.

Interrupt driven
Pertaining to software that uses the interrupt facility of a
computer to handle 1/0 and respond to user requests: RT-11 is
such a system.

Interrupt Vector
Two words containing the address of an interrupt service
routine and the processor state at which that routine is to
execute.

Iteration

Job

Repetition of a group of instructions.

A group of data and control statements which does a unit of
work, e.g., a program and all of its related subroutines, data,
and control statements; also, a batch control file.

Kluge
A crude, makeshift solution to a problem.

Label
One or more characters used to identify a source language
statement or line.

Language
A set of representations, conventions, and rules used to convey
information.

Latency
The time from initiation of a transfer operation to the
beginning of actual transfer; i.e., verification plus search time.
The delay while waiting for a rotating memory to reach a given
location.

Glossary-13

Glossary

Glossary

Library
A file containing one or more macro definitions or one or more
relocatable object modules that are routines that can be
incorporated into other programs.

LIFO (last in/first out)
A data manipulation method in which the last item stored is the
first item processed; a push down stack.

Light pen
A device resembling a pencil or stylus which can detect a
fluorescent CRT screen. Used to input information to a CRT
display system.

Linkage
In programming, code that connects two separately-coded
routines and passes values and/or control between them.

Linked file
A file whose blocks are joined together by references rather
than consecutive locations.

Linker
A program that combines many relocatable object modules into
an executable module. It satisfies global references and com
bines program sections.

Listing

Load

The printed copy generated by a line printer or terminal.

To store a program or data in memory. To place a volume on a
device unit and put the unit on-line.

Load map
A table produced by a linker that provides information about a
load module's characteristics (e.g., the transfer address, the
global symbol values, and the low and high limits of the
relocatable code).

Load module
A program in a format ready for loading and executing.

Location
An address in storage or memory where a unit of data or an
instruction can be stored.

Locked
Pertaining to routines in memory that are not presently (and
may never be) candidates for swapping or other shifting around.

Glossary-14

Logical device name
An alphanumeric name assigned by the user to represent a
physical device. The name can then be used synonymously with
the physical device name in all references to the device. Logical
device names are used in device-independent systems to enable a
program to refer to a logical device name which can be assigned
to a physical device at run-time.

Loop
A sequence of instructions that is executed repeatedly until a
terminal condition prevails.

Low-order byte
The least significant byte in a word. The low-order byte occu
pies bit positions O through 7 in a PDP-11 word and is always an
even address.

Machine instruction
An instruction that a machine can recognize and execute.

Machine language
The actual language used by the computer when performing
operations.

Macro
An instruction in a source language that is equivalent to a
specified sequence of assembler instructions, or a command in a
command language that is equivalent to a specified sequence of
commands.

Main program
The module of a program that contains the instructions at
which program execution begins. Normally, the main program
exercises primary control over the operations performed and
calls subroutines or subprograms to perform specific functions.

Manual input

Mask

The entry of data by hand into a device at the time of
processing.

A combination of bits that is used to manipulate selected
portions of any word, character, byte, or register while retaining
other parts for use.

Mass storage
Pertaining to a device that can store large amounts of data
readily accessible to the computer.

Matrix
A rectangular array of elements. Any matrix can be considered
an array.

Glossary-15

Glossary

Glossary

Memory
Any form of data storage, including main memory and mass
storage, in which data can be read and written. In the strict
sense, memory refers to main memory.

Memory image
A replication of the contents of a portion of memory, usually in
a file.

Mnemonic
An alphabetic representation of a function or machine
instruction.

Monitor
The master control program that observes, supervises, controls
or verifies the operation of a computer system. The collection
of routines that controls the operation of user and system
programs, schedules operations, allocates resources, performs
1/0, etc.

Monitor command
An instruction or command issued directly to a monitor from a
user.

Monitor command mode
The state of the operating system (indicated by a period at the
left margin) which allows monitor commands to be entered
from the terminal.

Mount a volume
To logically associate a physical mass storage medium with a
physical device unit. To place a volume on a physical device
unit (for example, place a magtape on a magtape drive and put
the drive on-line).

Multiprocessing
Simultaneous execution of two or more computer programs by
a computer which contains more than one central processor.

Multi programming
A processing method in which more than one task is in an
executable state at any one time, even with one CPU.

Nondirectory-structured
Refers to a storage volume that is sequential in structure and
therefore has no volume directory at its beginning. File
information (file name, file type, length, and date-of-creation)
is provided with each file on the volume. Such volumes include
magtape and cassette.

Nonfile-structured device
A device, such as paper tape, line printer, or terminal, in which
data cannot be organized as multiple files.

Glossary-16

Object Code
Relocatable machine language code.

Object module
The primary output of an assembler or compiler, which can be
linked with other object modules and loaded into memory as a
runnable program. The object module is composed of the
relocatable machine language code, relocation information, and
the corresponding global symbol table defining the use of
symbols within the module.

Object Time System
The collection of modules that is called by compiled code in
order to perform various utility or supervisory operations (e.g.,
FORTRAN object time system).

Octal

ODT

Pertaining to the number system with a radix of eight; for
example, octal l 00 is decimal 64.

On-line Debugging Technique: an interactive program for finding
and correcting errors in programs. The user communicates in
octal notation.

Off-line
Pertaining to equipment or devices not currently under direct
control of the computer.

Offset
The difference between a base location and the location of an
element related to the base location. The number of locations
relative to the base of an array, string, or block.

One's complement
A number formed by interchanging the bit polarities in a binary
number: e.g., ls become Os; Os become ls.

On-line
Pertaining to equipment or devices directly connected to and
under control of the computer.

Op-code (operation code)
The part of a machine language instruction that identifies the
operation the instruction will ask the CPU to perform.

Operand
That which is operated upon. An operand is usually identified
by an address part of an instruction.

Operating system
The collection of programs, including a monitor or executive
and system programs, that organizes a central processor and
peripheral devices into a working unit for the development and
execution of application programs.

Glossary-17

Glossary

Glossary

Operation
The act specified by a single computer instruction. A program
step undertaken or executed by a computer, e.g., addition,
multiplication, comparison. The operation is usually specified
by the operator part of an instruction.

Operation code
See op-code.

Operator's console
The set of switches and display lights used by an operator or a
programmer to determine the status of and to start the
operation of the computer system.

Option
An element of a command or command string that enables the
user to select from among several alternatives associated with
the command. In the RT-11 computer system, an option
consists of a slash character (/) followed by the option name
and, optionally, a colon and an option value.

Output
The result of a process; the transferring of data from internal
storage to external storage.

Overflow
A condition that occurs when a mathematical operation yields a
result whose magnitude is larger than the program is capable of
handling.

Overlay segment
A section of code treated as a unit that can overlay code already
in memory and be overlaid by other overlay segments when
called from the root segment or another resident overlay
segment.

Overlay structure

Page

A program overlay system consisting of a root segment and
optionally one or more overlay segments.

That portion of a text file delimited by form feed characters
and generally 50-60 lines long. Corresponds approximately to a
physical page of a program listing.

Parameter
A variable that is given a constant value for a specific purpose or
process.

Parity
A binary digit appended to an array of binary digits to make the
sum of all bits always odd or always even.

Glossary-18

Patch

PC

PDP

To modify a routine in a rough or expedient way, usually by
modifying the binary code rather than re-assembling it.

See Program counter.

Programmed data processor.

Peripheral device
Any device distinct from the computer that can provide input
and/or accept output from the computer.

Physical device
An 1/0 or peripheral storage device connected to or associated
with a computer.

Priority
A number associated with a task that determines the preference
its requests for service receive from the monitor, relative to
other tasks requesting service.

Process
A set of related procedures and data undergoing execution and
manipulation by a computer.

Processor
In hardware, a data processor. In software, a computer program
that includes the compiling, assembling, translating, and related
functions for a specific programming language (e.g., FORTRAN
processor).

Processor status word
A register in the PDP-11 that indicates the current priority of
the processor, the condition of the previous operation, and
other basic control items.

Program
A set of machine instructions or symbolic statements combined
to perform some task.

Program counter (PC)
A register used by the central processor unit to record the
locations in memory (addresses) of the instructions to be
executed. The PC (register 7 of the 8 general registers) always
contains the address of the next instruction to be executed, or
the second or third word of the current instruction.

Program development
The process of writing, entering, translating, and debugging
source programs.

Glossary-19

Glossary

Glossary

Program section
A named, contiguous unit of code (instructions or data) that is
considered an entity and that can be relocated separately
without destroying the logic of the program.

Programmed request
A set of instructions (available only to programs) that is used to
invoke a monitor service.

Protocol

PSW

A formal set of conventions governing the format and relative
timing of information exchange between two communicating
processes.

See Processor status word.

Queue
Any dynamic list of items; for example, items waiting to be
scheduled or processed according to system or user assigned
priori ties.

Radix
The base of a number system; the number of digit symbols
required by a number system.

RAM (random access memory)
See Random access.

Random access
Access to data in which the next location from which data is to
be obtained is not dependent on the location of the previously
obtained data. Contrast Sequential access.

Read-only memory (ROM)
Memory whose contents are not alterable by computer
instructions.

Real-time processing
Computation performed while a related or controlled physical
activity is occurring so that the results of the computation can
be used in guiding the process.

Record
A collection of related items of data treated as a unit; for
example, a line of source code or a person's name, rank, and
serial number.

Recursive
A repetitive process in which the result of each process is
dependent upon the result of the previous one.

Glossary-20

Re-entrant
Pertaining to a program composed of a shareable segment of
pure code and a non-shareable segment which is the data area.

Register
See General register.

Relative address
The number that specifies the difference between the actual
address and a base address.

Relocate
In programming, to move a routine from one portion of storage
to another and to adjust the necessary address references so that
the routine, in its new location, can be executed.

Resident
Pertaining to data or instructions that are normally permanently
located in main memory.

Resource
Any means available to users, such as computational power,
programs, data files, storage capacity, or a combination of
these.

Restart
To resume execution of a program.

ROM
See Read-only memory.

Root segment
The segment of an overlay structure that, when loaded, remains
resident in memory during the execution of a program.

Routine

Run

A set of instructions arranged in proper sequence to cause a
computer to perform a desired operation.

A single, continuous execution of a program.

Sector
A physical portion of a mass storage device.

Segment
See Overlay segment.

Sequential access
Access to data in which the next location from which data is to
be obtained sequentially follows the location of the previously
obtained data. Contrast Random access.

Glossary-21

Glossary

Glossary

Software
The collection of programs and routines associated with a
computer (e.g., compilers, library routines).

Software bootstrap
A bootstrap that is activated by manually loading the instruc
tions of the bootstrap and specifying the appropriate load and
start address.

Source code
Text, usually in the form of an ASCII format file, that
represents a program. Such a file can be processed by an
appropriate system program.

Source language
The system of symbols and syntax easily understood by people
that is used to describe a procedure that a computer can
execute.

Spooling
The technique by which 1/0 with slow devices is placed on mass
storage devices to await processing.

Storage
Pertaining to a device into which data can be entered, in which
it can be held, and from which it can be retrieved at a later
time.

String
A connected sequence of entities such as a line of characters.

Subprogram
A program or a sequence of instructions that can be called to
perform the same task (though perhaps on different data) at
different points in a program, or even in different programs.

Subroutine
See Subprogram.

Subscript
A numeric valued expression or expression element that is
appended to a variable name to uniquely identify specific
elements of an array. Subscripts are enclosed in parentheses.
There is a subscript for each dimension of an array. Multiple
subscripts must be separated by commas. For example, a
two-dimensional subscript might be (2,5).

Supervisory programs
Computer programs that have the primary function of sched
uling, allocating, and controlling system resources rather than
processing data to produce results.

Glossary-22

Swapping
The process of moving data from memory to a mass storage
device, temporarily using the evacuated memory area for
another purpose, and then restoring the original data to
memory.

Synchronous
Pertaining to related events where all changes occur simultane
ously or in definite timed intervals.

Syntax
The structure of expressions in a language and the rules
governing the structure of a language.

System program
A program that performs system-level functions. Any program
that is part of or supplied with the basic operating system (e.g.,
a system utility program).

System volume
The volume on which the operating system is stored.

Table
A collection of data into a well-defined list.

Terminal
An 1/0 device, such as an LA36 terminal, that includes a
keyboard and a display mechanism. In PDP-11 systems, a
terminal is used as the primary communication device between
a computer system and a person.

Timesharing
A method of allocating resources to multiple users so that the
computer, in effect, processes a number of programs
concurrently.

Toggle
To use switches on the computer operator's console to enter
data into the computer memory.

Translate

Trap

To convert from one language to another.

A conditional jump to a known memory location performed
automatically by hardware as a side effect of executing a
processor instruction. The address location from which the
jump occurs is recorded. It is distinguished from an interrupt
which is caused by an external event.

Truncation
The reduction of precision by ignoring one or more of the least
significant digits; e.g., 3.141597 truncated to four decimal digits
is 3.141.

Glossary-23

Glossary

Glossary

Turnkey
Pertaining to a computer system sold in a ready-to-use state.

Two's complement
A number used to represent the negative of a given value in
many computers. This number is formed from the given binary
value by changing all Is to Os and all Os to 1 s and then adding
I.

Underflow
A condition that occurs when a mathematical operation yields a
result whose magnitude is smaller than the smallest amount the
program can handle.

User program
An application program.

Utility program
Any general-purpose program included in an operating system
to perform common functions.

Variable
The symbolic representation of a logical storage location that
can contain a value that changes during a processing operation.

Vector
A consecutive list of associated data.

Volume
A mass storage medium that can be treated as file-structured
data storage.

Wildcard operation
A shorthand method of referring to all files with a specific
characteristic in their name.

Word
Sixteen binary digits treated as a unit in PDP-11 computer
memory.

Write-enable
The condition of a volume that allows transfers that would
write information on it.

Write-protect
The condition of a volume that is protected against transfers
that would write information on it.

Glossary-24

@ character, 16-4
Absolute location, 11-4
Absolute program section, 12-4, 12-5
Address, 11-4, 11-11
Address,

starting, 14-6
transfer, 14-6

Address assignment, 12-3
Advance command (A),

EDIT, 5-9
Advice to new users, 17-1
Alternate functions for FORTRAN

program, 9-13
ALTMODE

see ESCAPE
APL language, 8-3, 8-4
Application program, 1-10
Applications package, 1-13
Argument, 5-5
Arguments,

EDIT, table, 5-5
ASCII format, 5-1
Assembler listing, 11-10
Assembling the MACRO-11

program, 11-7
Assembly language, 1-13

see also MACRO-I 1, Machine-level language
ASSIGN command, 4-12
At sign(@), 16-4
Avoiding programming errors, 14-1

Backup file, 3-8
BASIC-11 Ianguage, 8-3, 8-4, 10-1
BASIC command, 10-3
BASIC demonstration program (23

Matches), 10-8
BASIC editing commands,

summary, l 0-7
BASIC execution commands,

summary, 1 0-12

BASIC file maintenance commands,
summary, l 0-15

BASIC immediate mode, 10-3
BASIC interpreter,

using the, 10-2
BASIC program,

creating a, 10-4
editing a, I 0-4
running a, 10-1, 10-9

Beginning command (B),
EDIT, 5-4

Binary digit, 11-5
Bit, 11-5
Blank program section, 12-6
BOOT command, 15-2
Bootstrapping, 2-1, 2-4
Breakpoints, 14-8
/BRIEF option,

DIRECTORY, 4-16
Bug, 11-17
Buffer, text, 5-1
BYE command,

BASIC, 10-3
Byte, 11-5

Carriage return, 4-1
see also RETURN key

Cathode ray tube (CRT), 4-6
Changing monitors, 15-2
Character insertion, 5-18
Choosing a programming language, 8-1
Clerical errors, 14-2
Clock, 4-9
Code,

machine language, 11-5
object, 9-1, 9-3, 11-4

Command format, 4-2
Command to start an indirect

file, summary, 16-8

Index-I

INDEX

Index

Commands,
control, 4-3
keyboard monitor, 4-1

Commands for debugging programs,
summary, 14-12

Commands for linking programs,
summary, 12-11

Commands for maintaining
library files, sumrnazy, 13-8

Commands used in an FB environment,
summary, 15-10

Communication in a 2-job
environment, 15-3

Comparing files, 6-1
Comparison command, 6-1

see also DIFFERENCES
Comparison command,

summary of, 6-5
Compiler, 9-2
Compiling the FORTRAN IV

program, 9-3
Corn puter, 1-1
Computer,

PDP-11, 1-1
Computer manuals, 1-14
Computer system, 1-1
Computer system,

interacting with the RT-11, 3-1
RT-11, 1-1
starting the RT-11, 2-1

Console terminal, 1-5, 3-1
Constructing library files, 13-1
Control commands, 4-3

CTRL/B, 15-4
CTRL/C, 4-16, 5-20, 10-11
CTRL/D, 5-19
CTRL/E, 4-8
CTRL/F, 15-4
CTRL/G, 5-18
CTRL/L, 5-11
CTRL/N, 5-19
CTRL/Q, 4-14
CTRL/U, 4-5
CTRL/V, 5-19
CTRL/X, 5-8

Control commands,
summary of, 4-19

CTRL key, 3-4
Conversion, decimal/ octal/

binary, 11-6

Correcting typing mistakes, 4-5
COPY command, 7-3
Copying files, 7-3
/CREATE option,

EDIT, 5-2
LIBRARY, 13-2, 13-5

Creating a BASIC program, I 0-4
Creating a file, 5-2
Creating the foreground job, 15-4
Creating an indirect file, 16-1
Creating a library file, 13-2
CREF, 11-11

see also Cross reference
/CROSSREFERENCE option,

EXECUTE, 11-18
MACRO, 11-8

Cross reference listing, 11-11
see also CREF

CRT,
see Cathode ray tube

Data,
test, 14-3

DATE command, 4-9
Date,

entering the, 4-9
DEASSIGN command, 16-2
/DEBUG option,

LINK, 14-6
Debugging, 14-1
Decimal/Octal/Binary conversion, 11-6
DECIND.USA, 5-3
DELETE command,

BASIC, 10-6
EDIT, 5-9, 5-19
monitor, 7-7

DELETE key, 3-3, 4-4
Deleting files, 7-6
Demonstration p_rogram,

BASIC (23 Matches), 10-8
EDIT (DECIND.USA), 5-3
FORTRAN (GRAPH.FOR), 5-21
MACRO (SUM.MAC), 5-22

Desk manuals, 1-14
Devices,

input, 1-8
output, 1-8
peripheral, 1-8
terminal, 1-4

lndex-2

Device names,
logical, 4-10

table, 4-11
physical, 4-10

table, 4-11
Device handler, 1-11
Device status, 4-13
Device unit, 3-6
DIBOL language,. 8-3
DIFFERENCES command, 6-1, 6-2, 6-3

see also Comparison command
Differences listing, 6-3
Directory, 3-8
Directory,

file, 7-1
DIRECTORY command, 4-14, 4-16
Directory listing, 3-8
Disk, 1-6
Display hardware, 4-6

see also Graphics
Display hardware,

VTl 1, 4-6, 5-16
Distribution medium, 1-6
Documentation, 1-1, 1-13
Drive,

see Device unit

EDIT arguments, 5-5
EDIT command, 5-2, 5-4
Editing a BASIC program, 104
Editing commands,

summary of, 5-14
Editing a file, 54
Editor, RT-11, 5-1
Edit Lower command (EL),

EDIT, 5-13
·Edit Upper command (EU),

EDIT, 5-13
Entering the date, 4-9
Entering the time, 4-9
Errors,

avoiding programming, 14-1
clerical, 14-2
_logical, 14-2
programming, 11-1 7
syntax, 14-2

ESC,
see ESCAPE

ESCAPE, 5-3, 5-18, 5-20
ESCAPE key, 34

EXECUTE command, 9-12, 11-18
Executing an indirect file, 164
Executive,

see Monitor
Exit command (EX),

EDIT, 54

FB
see F01:eground/Background

FDT,
see FORTRAN Debugging Technique

File, 3-8
Files,

backup, 3-8
comparing, 6-1
copying, 7-3
creating, 5-2
deleting, 7-6
editing, 54
indirect, 16-1
listing, 7-7
renaming, 7-5

File directory, 7-1
File maintenance, 7-1
File maintenance commands,

summary of, 7-8
File name, 3-8
File protection, 3-8
File storage, 3-8
File type, 3-8

table, 4-15
/FOREGROUND option,

LINK, 15-5

Index

Foreground/background environment, 15-1
Foreground/background monitor (FB),

using the, 15-1
Foreground job,

creating the, 154
FOCAL-11 language, 8-3, 84
Form feed, 5-11
Format,

ASCII, 5-1
command, 4-2
long command, 4-1
short command, 4-1

FORTRAN command, 94
FORTRAN Debugging Technique

(FDT), 144
FORTRAN IV language, 8-3, 84, 9-1

Index-3

Index

/FORTRAN option,
EXECUTE, 9-13

FORTRAN IV program,
alternate functions for, 9-13
compiling the, 9-3
running a, 9-1, 9-11

Front panel, 1-2
FRUN command, 15-7

GAMMA-11, 1-13
Get command (G),

EDIT, 5-10
Global symbols, 12-2
Global symbol table, 13-2
Graphics, 4-6, 5-16

see also Display hardware
GRAPH. FOR, 5-21
GT command, 4-6

Handler, device, 1-11
Hardware, 1-1
Hardware,

display, 4-6
see also Graphics

system, 1-1
VTl 1 display, 4-6, 5-16

Hardware configuration, 2-1
Hardware manuals, 1-13
High-level language, 8-1

Indirect files, 16-1
Indirect files,

creating, 16-1
executing, 16-4
using, 16-1

INITIALIZE command, 4-17
Initializing a storage volume, 4-16
Input devices, 1-8
Insert command (I),

EDIT, 5-3
/INSERT option,

LIBRARY, 13-7
Insertion,

character, 5-18
Instruction program section, 12-6
Interacting with the RT-11

computer system, 3-1
Internal symbols, 12-2
Interpreter, 10-1
Immediate mode,

BASIC, 10-3

EDIT, 5-17
Immediate mode commands,

EDIT,
table, 5-17

Jump command (J),
EDIT, 5-7

Key,
CTRL, 3-4
DELETE, 3-3, 4-4
ESCAPE, 3-4
LINE FEED, 3-4
RETURN, 3-4, 4-1
see also Carriage return

TAB, 3-4
Keyboard,

terminal, 1-4, 3-3
Keys, 3-3

table, 3-5, 4-4
Keyboard characters,

see Keys
Keyboard layouts, 3-3
Keyboard monitor (KMON), 4-1
Keyboard monitor commands, 4-1

see also Monitor command
language, Monitor commands

Kill command (K),
EDIT, 5-9

KMON,
see Keyboard monitor

LA36 terminal, 3-1
Label, 11-2, 11-11
Language,

assembly, 1-13
see also MACRO-I 1, Machine-level language

choosing a programming, 8-1
high-level, 8-1
machine-dependent

see Machine-level language
machine-independent

see High-level language
machine level, 1-13, 8-2

see also MACRO- I 1, Assembly
language

monitor command, 4-1
see also Keyboard monitor

commands, Monitor commands
RT-11 programming, 8-3

lndex-4

Language processor, 1-1 0. 1-12
Library, 13-1
Library,

macro, 13-1
object, 13-2

LIBRARY command, 13-2
Library references,

resolving, 12-2
Library modules,

using, 9-2
Library file, 13-1, 13-2
LINE FEED key, 3-4
LINK command, 9-10, 11-16
Linking object modules, 9-9, 11-15
Linking object programs, 12-1
LIST command,

BASIC, 10-6
EDIT (L), 5-5

/LIST option,
EXECUTE, 9-13, 11-18
FORTRAN, 9-4
LIBRARY, 13-6
MACRO, 11-8

Listing,
assembler, 11-10
cross reference, 11-11

see also CREF
differences, 6-3
directory, 3-8
source, 1-14

Listing files, 7-7
LISTNH command,

BASIC, 10-6
LOAD command, 15-6
Load map, 12-7
Load module, 9-10, 12-7
Location, 11-3
Location,

absolute, 11-4
relative, 11-4

Logical device name, 4-10
table, 4-11

Logical errors, 14-2
Long command format, 4-1
Loop, 10-11
Lower case, 5-13

Machine-dependent language,
see Machine-level language

Machine-independent language,
see High-level language

Machine-level language, 1-13, 8-2
see also MACRO-IL Assembly

language
Machine language code, 11-5
Macro, 11-12, 13-1
Macro,

system, 11-13
MACRO command, 11-8
MACRO-11 language, 1-13, 8-4, 11-1

see also Assembly language,
Machine-level language

Macro library, 13-1
/:f\,tACRO option,

LIBRARY, 13-2
MACRO-11 program,

assembling the, 11-7
running, 11-1, 11-17

Maintaining a library file, 13-2
Main program, 12-1
Manuals,

computer, 1-14
desk, 1-14
hardware, 1-13
once-only, 1-14
software, 1-14

Map,
load, 12-7

/MAP option,
EXECUTE, 12-7
LINK, 12-7

/MATCH option,
DIFFERENCES, 6-3

Memory, 2-1
Mistakes,

correcting typing, 4-5
Module,

load, 12-7
object, 9-2, 9-3, 11-5

Modules,
linking object, 11-15

Modular programming, 12-2, 14-1
Monitor, 1-11
Monitor,

foreground/background (FB), 15-1
keyboard (KMON), 4-1
resident (RMON), 4-1
single-job (SJ), 4-2

Monitor command language, 4-1
see also Keyboard monitor

commands, Monitor
commands

lndex-5

Index

Index

Monitor commands,
summary of, 4-18

Monitor commands,
see also Keyboard

monitor commands,
Monitor command language

ASSIGN, 4-12
BASIC, 10-3
BOOT, 15-2
COPY, 7-3
DATE, 4-9
DEASSIGN, 16-2
DELETE, 7-7
DIFFERENCES, 6-3
DIRECTORY, 4-14
EDIT, 5-2
EXECUTE, 9-12, 11-18
FORTRAN, 9-4
FRUN, 15-7•
GT, 4-6
INITIALIZE, 4-1 7
LIBRARY, 13-2
LINK, 9-10, 11-16
LOAD, 15-6
MACRO, 11-8
RENAME, 5-6, 7-5
RUN, 9-11
SHOW, 4-13
TIME, 4-9, 7-8
UNLOAD, 15-9

Multiple file operations,
see Wildcards

Name,
file, 3-8
logical device, 4-10

table, 4-11
physical device, 4-1 0

table, 4-11
Named relocatable program

section, 12-5
NEW command,

BASIC, 10-13
New users,

advice to, 17-1
Next command (N),

EDIT, 5-12
Numbers,

octal, 11-6

Object code, 9-1, 9-3, 11-4
Object library, 13-2
Object module, 9-2, 9-3, 9-10, 11-5
Object modules,

linking, 9-9, 11-15
Object programs,

linking, 12-1
Octal numbers, 11-6
ODT,

see On-line Debugging Technique
OLD command,

BASIC, 10-13
Once-only manuals, 1-14
On-line Debugging Technique

(ODT), 14-4
On-line Debugging Technique,

using the, 14-4
Operand, 11-2
Operating system, 1-10, 1-11
Operating system,

RT-11, 1-11
Operator, 11-2
Operator's console, 1-2
Output devices, 1-8
Overlay segment, 12-7
Overlays, I 2-7

Package,
applications, 1-13

Paging, 5-2
PDP-11 computer, 1-1
PDP-11 instruction set, 11-1
PDP-11 Programming Card, 11-1
Peripheral devices, 1-8
Physical device name, 4-10

table, 4-11
Pointer, 4-7
PRINT command,

BASIC, 10-4
monitor, 7-8

/PRINTER option,
DIRECTORY, 4-16

Processor,
language, 1-12

Producing a load map, 12-7
Producing a load module, 12-7
Program,

application, 1 -10
demonstration, 5-20
linking an object, 12-1

Index-6

main, 12-1
utility, 1-12

Program counter, 11-3, 12-6
Program relocation, 12-3
Program section,

absolute, 12-5
blank, 12-6
instruction, 12-6
named relocatable, 12-5

Program units, 9-1
/PROMPT option,

LINK, 12-7
Programmed request, 11-13
Programming,

modular, 12-2, 14-1
Programming errors, 11-17
Programming errors,

avoiding, 14-1
Programming language,

choosing a, 8-1

Random access, 1-6
Read command (R),

EDIT, 5-4
Relative location, 11-4
Relocation constant, 14-7
Relocation registers, 14-7
Relocatable section, 12-4
/REMOVE option,

LIBRARY, 13-7
RENAME command, 5-6, 7-5
Renaming files, 7-5
REPLACE command,

BASIC, 10-14
Request,

programmed, 11-13
Resident monitor (RMON), 4-1
Resolving library references, 12-2
Resolving symbolic references, 12-2
RETURN key, 3-4, 4-1

see also Carriage return
RMON,

see Resident monitor
Root segment, 12-7
Routine,

user service (USR), 4-1
RT-11 computer system, 1-1
RT-11 computer system,

interacting with, 3-1
starting, 2-1

RT-11 editor, 5-1
R T-11 operating system, 1-11
RT-11 programming languages, 8-3
RUBOUT,

see DELETE
RUN command,

BASIC, 10-9
monitor, 9-11

index

Running a BASIC-11 program, 10-1, 10-9
Running a FORTRAN IV program, 9-1, 9-11
RunningaMACRO-11 program, 11-1, 11-17
RUNNH command,

BASIC, 10-9

SA VE command,
BASIC, 10-13

SCRATCH command (SCR),
BASIC, 10-7

Sequential access, 1-6
Short command format, 4-1
SHOW command, 4-13
Single-job monitor (SJ), 4-2
SJ,

see Single-job monitor
Software, 1-1
Software,

system, 1-10
Software manuals, 1-14
Source listings, 1-14
Starting address, 14-6
Starting the RT-11 computer

system, 2-1
Status,

device, 4-13
STOP statement,

BASIC, 14-3
Storage medium, 1-1, 1-6
Storage volume, 2-3, 3-4
Storage volume,

initializing a, 4-16
Subprogram, 12-1
Subroutine, 12-1
SUBSTITUTE command (SUB),

BASIC, 10-5
SUM.MAC, 5-22
Summary,

BASIC editing commands, 10-7
BASIC execution commands, 10-12
BASIC file maintenance

commands, 10-15

Index-7

Index

commands for debugging programs, 14-12
commands used in an FB environment,

15-10
commands to run FORTRAN programs, 9-13
commands for linking programs, 12-11
commands to run MACRO-11 programs,

11-18
commands for maintaining library files,

13-8
command to start an indirect file, 16-8
comparison command, 6-5
control commands, 4-19
editing commands, 5-14
file maintenance commands, 7-8
monitor commands, 4-18

Symbol, 11-11
Symbols,

global, 12-2
internal, 12-2

Symbol table, 11-4, 11-11
Symbolic references,

resolving, 12-2
Syn tax errors, 14-2
SYSMAC.SML, 11-13
System,

computer, 1-1
opera ting, 1-11

System hardware, 1-1
System macro, 11-13
System software, 1-10
System testing, 14-3
System volume, 2-2, 2-3

table, 2-3

TAB key, 3-4
Terminal, 1-1
Terminal,

console, 3-1
LA36, 3-1
VT52, 3-1

Terminal devices, 1-4
Terminal keyboard, 1-4, 3-3
Testing,

system, I 4-3
unit, 14-3

Test data, 14-3
Text buffer, 5-1
Time,

entering the, 4-9
TIME command, 4-9
Traceback, 14-3
Transfer address, 14-6
Type,

file, 3-8
TYPE command, 7-8
Typing mistakes,

correcting, 4-4

Unit,
device, 3-6
program, 9-1

Unit testing, 14-3
UNLOAD command, 15-9
Upper case, 5-13
User service routine (USR), 4-1
Using the BASIC interpreter, 10-2
Using the foreground/background

monitor, 15-1
Using indirect files, 16-1
Using library modules, 9-2
Using the On-line Debugging

Technique, 14-4
USR,

see User service routine
Utility program, 1-12

Verify command (V),
EDIT, 5-8

Video screen, 3-1
Volume,

storage, 3-4
Volume directory,

see Directory
VTl 1 display hardware, 4-6, 5-16

see also Graphics
VT52 terminal, 3-1

Wildcards, 5-12, 7-3
Word, 11-5
Write enable, 3-9
Write protect, 3-8

Index-8

I
I
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
111>

I~
:a I-
I§
r:
p~
I ~
1i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

READER'S COMMENTS

Introduction to RT-11
DEC-11-0RITA-A-D

NOTE: This form is for document comments only. DIGIT AL will use comments submitted on this form at the
company's discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer
0 Higher-level language programmer
0 Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Non-programmer interested in computer concepts and capabilities

Name ________________ Date __________________ _

Organization----------------------------------

Street ___________________________________ _

City ________________ State ______ Zip Code ________ _

or
Country

--·Fold Here--

----------------------------------· Do Not Tear • Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML S-5/E39
Maynard, Massachusetts O 17 54

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

,..

digital eq11~ent corporation

Printed 1n U .S A.

,-

-

RT-11
System User's Guide

Order No. DEC-11-0RGDA-A-D

,

-

CONTENTS
Page

PREFACE ... xv

PART I

CHAPTER
1.1
1.2
1.3

CHAPTER 2
2.1
2.2
2.3
2.4
2.5

PART II

CHAPTER 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

CHAPTER 4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4

RT-11 OVERVIEW . I-l

SYSTEM COMPONENTS . 1-l
PROGRAM DEVELOPMENT 1-1
SYSTEM SOFTWARE COMPONENTS.............................. 1-2
SYSTEM HARDWARE COMPONENTS. 1-3

OPERATING ENVIRONMENTS 2-1
RT-11 SINGLE-JOB MONITOR. • . 2-1
RT-I 1 FOREGROUND/BACKGROUND MONITOR. 2-1
RT-I I EXTENDED MEMORY MONITOR . 2-1
FACILITIES AVAILABLE ONLY IN RT-I 1 FB .. 2-2
FACILITIES AVAILABLE ONLY IN RT-11 XM ...••................•. 2-2

SYSTEM COMMUNICATION 11-1

SYSTEM CONVENTIONS 3-1
SYSTEM STARTUP......... 3-1
DATA FORMATS . 3-1
PHYSICAL DEVICE NAMES • . 3-2
FILE NAMES AND FILE TYPES 3-2
DEVICE STRUCTURES. 3-2
SPECIAL FUNCTION KEYS 3.5
FOREGROUND/BACKGROUND TERMINAL 1/0 . 3-5
TYPE-AHEAD FEATURE • • . 3.7

INTERACTIVE COMMANDS . 4-1
COMMAND SYNTAX •••.............•........................ 4-1
WILDCARDS . 4-5
INDIRECT FILES........................ 4-7

Creating Indirect Files . • • . 4-7
Executing Indirect Files . 4-10
Startup Indirect Files . 4-11

KEYBOARD MONITOR COMMANDS . 4-12
APL . 4-13
ASSIGN. 4-14
B . . • . 4-15
BASIC. • 4-16
BOOT • . 4-17
CLOSE . 4-18
COMPILE . 4-19
COPY ... 4-24
D . 4-31
DATE•................•...........•............ 4-32
DEASSIGN. 4-33

ill

CONTENTS (Cont.)

Page

4.4 KEYBOARD MONITOR COMMANDS (Cont.). 4-12
DELETE . 4-34
DIBOL ... 4-36
DIFFERENCES . 4-39
DIRECTORY . 4-42
DUMP .. 4-51
E . 4-56
EDIT . 4-57
EXECUTE . 4-59
FOCAL ... 4-65
FORTRAN. • . 4-66
FRUN....................................... 4-71
GET ... 4-72
GT .. 4-73
HELP . 4-74
INITIALIZE ; 4-76
INSTALL. 4-78
LIBRARY . 4-79
LINK .. 4-84
LOAD .. 4-89
MACRO ... 4-90
PRINT .. 4-94
R••.............•.•..................... 4-96
REENTER . 4-97
REMOVE . 4-98
RENAME . 4-99
RESET. 4-101
RESUME . 4-102
RUN.... • . 4-103
SAVE .. 4-104
SET . 4-105
SHOW ... , . 4-112
SQUEEZE . • . . • . • . • • . 4-114
START ... 4-115
SUSPEND . 4-116
TIME . 4-117
TYPE • • • . • . • • • • . . • . . • • • . . . • . • • • • 4-1 18
UNLOAD . 4-120

PART UI TEXT EDITING . III-1

CHAPTER S TEXT EDITOR . 5-1
5.1 CALLING AND USING EDIT.... 5-1
5.2 MODES OF OPERATION 5-1
5.3 SPECIAL KEY COMMANDS.............. 5-2
5.4 COMMAND STRUCTURE . 5-3
5.4.1 Arguments . 5.5
5.4.2 Command Strings . 5-5
S.4.3 The Current Location Pointer . 5-6

iv

5.4.4
5.4.5
5.5
5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.3
5.6.3.1
5.6.3.2
5.6.3.3
5.6.4
5.6.4.1
5.6.4.2
5.6.4.3
5.6.5
5.6.5.1
5.6.5.2
5.6.6
5.6.6.1
5.6.6.2
5.6.6.3
5.6.6.4
5.6.6.S
5.6.7
5.6.7.1
5.6.7.2
5.6.7.3
5.6.7.4
5.6.7.5
5.6.7.6
5.7
5.7.1
5.7.2
5.8
5.9

PART IV

CHAPTER 6
6.1
6.2

CONTENTS (Cont.)

Page

Character- and Line-Oriented Command Properties . • • 5-6
Corrunand R,epetition . • 5-8

MEMORY USAGE•...................................... 5-9
EDITING COMMANDS . 5-10

File Open and Close Commands. • • . . • • . . • 5-11
Edit Read. • . 5-11
Edit Write•.................. ,, 5-11
Edit Backup . 5-12
End File. • . • . 5-13
File Input/Output Commands • 5-14
Read . • . . . • • . . • 5-14
Write • . • 5-14
Next . 5-16
EXit • . • 5-16
Pointer Relocation Commands. 5-17
Beginning. . • • • • • 5-17
Jump. 5-18
Advance. • S-18
Search Commands • . 5-19
Get . • S-19
Find . . . • . 5-20
Position • • . 5-21
Text Listing Commands . 5-21
List • . • • • • • . . • 5-21
Verify . 5-22
Text Modification Commands • 5-22
Insert. • . 5-23
Delete • . . • • . 5-23
Kill • . . . • • • • • . • • • . 5.24
Change. 5-25
eXchange . 5-27
Utility Commands . • 5-27
Save . • • 5-27
Unsave . S-28
Macro . 5-28
Execute Macro • • • . 5-29
Edit Version • . 5-30
Upper- and Lower-Case Commands.. • . 5-30

THE DISPLAY EDITOR . 5-31
Using the Display Editor. • . • 5-32
Setting the Editor to Immediate Mode . 5-33

EDIT EXAMPLE . • . 5-34
EDIT ERROR CONDITIONS . 5-3S

UTILITY PROGRAMS. IV-1

COMMAND STRING INTERPRETER . 6-1
COMMAND STRING INTERPRETER SYNTAX . 6-1
PROMPTING CHARACTERS . • 6-2

V

CHAPTER 7
7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.2
7.2.2.l
7.2.2.2
7.2.2.3
7.2.2.4
7.2.2.5
7.2.2.6
7.2.2.7
7.2.2.8
7.2.2.9
7.2.2.10
7.2.2.11
7.2.2.12
7.2.2.13
7.2.3
7.2.4
7.2.5
7.2.6

CHAPTER 8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.11.1
8.2.11.2
8.2.11.3
8.2.11.4

CHAPTER 9
9.1
9.2
9.2.1
9.2.2
9.2.3

CONTENTS (Cont.)

Page

PERIPHERAL INTERCHANGE PROGRAM (PIP) 7-1
CALLING AND USING PIP • . 7-1
PIP OPTIONS . • . 7-2

Operations Involving Magtape and Cassette . 7-3
Using Cassette. • • . . • . 7-3
Using Magtape.. 7-7
Copy Operations • . 7-8
Image Mode . 7-9
ASCII Mode (/A). • . 7-9
Binary Mode (/B). 7-9
The Newfiles Option (/C) . 7-9
The Ignore Errors Option (/G). 7-9
The Copies Option (/K:n). 7-10
Noreplace Option (/N) . 7-10
The Predelete Option (/0). 7-10
The Exclude Option (/P). 7-10
The Single-block Transfer Option (IS). 7-10
The Setdate Option (}T). 7-10
The Concatenate Option (/U) • . . • • 7-11
The System Files Option (/Y) . 7-11
The Delete Operation (JD) . 7-11
The Rename Operation (JR) . • • . 7-11
The Logging Operation (/W) . 7-12
The Query Option (/Q)..... 7-12

DEVICE UTILITY PROGRAM (DUP) . 8- l
CALLING AND USING DUP 8-l
DUP OPTIONS . 8-1

The Create Option (/C:m[:n]) • . 8-~
The Image Copy Option (/I) . 84
The Bad Block Scan Option (/K) . 8-4
The Boot Option (/0) . 8-5
The Squeeze Option (/S) . • • 8-6
The Extend Option (/T:n). 8-7
The Bootstrap Copy Option (/U) • 8· 7
The Volume ID Option (/V[:VOL]) . 8-8
The Small, Single-disk System Option (/W) . 8-9
The Noquery Option (/Y).. 8-10
The Directory Initialization Option (/Z[:n]) . 8-10
Changing Directory Segments (/N:n). 8-11
Storing Volume ID (IV) • . 8-11
Replacing Bad Blocks (/R[:RET]) . 8-11
Covering Bad Blocks (/B) • . 8-12

THE DIRECTORY PROGRAM (DIR) 9-1
CALLING AND USING DIR 9-1
DIR OPTIONS . 9-1

The Alphabetical Option (/ A) • . . • 9-3
The Block Number Option (/B) . . • • . . . • • 9-3
The Columns Option (/C:n) . 9-3

vi

CHAPTER

CHAPTER

9.2.4
9.2.5

9.2.6
9.2.7

9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.2.15
9.2.16
9.2.17

IO
10.1
10.2
10.3
10.4
10.4.l
10.4.2
10.4.3
I 0.4.4
10.4.4.1
10.4.4.2
10.4.5
10.5
10.6

11
11.l
11.2
11.3
11.4
11.5
11.5.l
11.5.2
11.5.3
11.5.4
11.6
11.7
11.8

CONTENTS (Cont.)

Page

The Date Option (/D [:date]) . 9-3
The Entire Option (IE). 9-4

The Fast Option (IF) . 94
The Begin Option (/G) . 94
The Since Option (J[:date])........ 9-5
The Before Option (/K {:date]) . 9-5
The Listing Option (IL) . 9-5
The Unused Areas Option (/M) . 9-5
The Summary Option (IN) . 9-6
The Octal Option (/0) . 9-6
The Exclude Option (/P) . 9-6
The Deleted Option (IQ) . . • • • . • . • . • . • • • . . • • • • . . . • . . 9-6
The Reverse Option (/R) . 9-7
The Sort Option (IS [:xxx]) . 9-7

MACRO-II PROGRAM ASSEMBLY 10-1
INITIATING THE MACR0-11 ASSEMBLER 10-1
TERMINATING THE MACR0-11 ASSEMBLER 10-2
TEMPORARY WORK FILE . 10-3
FILE SPECIFICATION OPTIONS 10-3

Listing Control Options . 10-5
Function Control Options 10-6
Macro Library File Designation Option . 10-7
Cross-Reference (CREF) Table Generation Option. 10-7
Obtaining a Cross-Reference Table . 10-7
Handling Cross-Reference Table Files . 10-8
Assembly Pass Option 10-9

MACRO-11 8K VERSION 10-9
MACRO-I I ERROR CODES 10-9

LINKER (LINK) . 11-1
CALLING AND USING THE LINKER. 11-1
OPTIONS SUMMARY ... 11-2
MEMORY ALLOCATION 11-4
GLOBAL SYMBOLS . 11-7
INPUT AND OUTPUT . 11-7

Object Modules .. 11-7
Load Module ... 11-8
Load Map ... 11-9
Library Files . 11- I 0

USING OVERLAYS . 11-10
USING LIBRARIES ... 11-14
OPTION DESCRIPTIONS 11-17

11.8.1 Bottom Address Option (/B:n) 11-17
11.8.2 Continue Option (/C) or (//) . 11-17
11.8.3 Extend Program Section Option (/E:n) 11-18
11.8.4 Default FORTRAN Library Option (IF) .••..••..••••............ 11-18
11.8.5 Highest Address Option (/H:n) 11-18
11.8.6 Include Option (/1) 11-19

vii

CONTENTS (Cont.)

Page

11.8.7 Memory Size Option (/K:n) 11-19
11.8.8 LOA Format Option (/L) 11-19
11.8.9 Modify Stack Address Option (/M[:n]) I 1-19
11.8.10 Overlay Option (/0:n) 11-20
11.8.11 Library List Size Option (/P:n) 11-21
11.8.12 REL Format Option (/R[:n]) 11-21
11.8.13 Symbol Table Option (JS) 11-22
11.8.14 Transfer Address Option (/T [:n]) . 11-22
11.8.15 Round Up Option (/U:n) 11-23
11.8.16 Map Width Option (/W) 11-23
11.8.17 Bit Map Inhibit Option (IX) 11-23
11.8.18 Boundary Option (/Y:n) 11-23
I l.8.19 Zero Option (/Z:n) 11-23
11.9 LINKER PROMPTS ... 11-24

CHAPTER 12 LIBRARIAN (LIBR) .. 12-1

CHAPTER

CHAPTER

12.1 CALLING AND USING LIBR 12-l
12.2 OPTION COMMANDS AND FUNCTIONS FOR OBJECT LIBRARIES 12-2
12.2.1 Command Continuation Options (JC and //) 12-3
12.2.2 Creating a Library File 12-4
12.2.3 Inserting Modules into a Library ..•...............•.•..•....... 12-4
12.2.4 Delete Option (/D) . 12-4
12.2.5 Extract Option (IE) 12-5
12.2.6 Delete Global Option (JG)•. 12-5
12.2.7 Include Module Names Option (IN) 12-6
12.2.8 Include P-section Names Option (IP)•..••............... 12-6
12.2.9 Replace Option (/R) 12-7
12.2.10 Update Option (Ill) 12-7
12.2.11 Wide Option (/W) . 12-7
12.2.12 Listing the Directory of a Library File 12-8
12.2. 13 Merging Library Files . 12-9
12.2.14 Combining Library Option Functions 12-9
12.3 OPTION COMMANDS AND FUNCTIONS FOR MACRO LIBRARIES 12-10
12.3.l Command Continuation Options UC or//) 12-10
12.3.2 Macro Option (/M[:n]) 12-10

13
13.1
13.2
13.3

14
14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5

DUMP .. 13-1
CALLING AND USING DUMP 13-1
DUMP OPTIONS ... 13-1
EXAMPLES .. 13-2

FILEX 14-1
FILE FORMATS ... 14-1
CALLING AND USING FJLEX•.................. 14-2
FILEX OPTIONS .. 14-2

Transferring Files Between RT-11 and DOS/BATCH (or RSTS) 14-2
Transferring Files Between RT-11 and Interchange Diskette 14-5
Transferring Files to RT-11 from DECsystem-IO. 14-6
Listing Directories . • . 14· 7
Deleting Files From DOS/BATCH (RSTS) DECtapes and Interchange
Diskettes . 14-8

viii

CHAPTER

PART

CHAPTER

CHAPTER

CONTENTS (Cont.)

Page

15 SOURCE COMPARE (SRCCOM) 15-1
IS.I CALLING AND USING SRCCOM 15-1
15.2 SRCCOM OPTIONS ... 15-1
15.3 SRCCOM OUTPUT FORMAT•............................... 15-2
15.3.1 Sample Text . 15-2
15.3.2 Sample Output Listing . 15-3

V ALTERING ASSEMBLED PROGRAMS V-1

16 ON-LINE DEBUGGING TECHNIQUE (ODT) 16-1
16.1 CALLING AND USING ODT 16-1
16.2 RELOCATION .. 164
16.3 COMMANDS AND FUNCTIONS 16-5
16.3.1 Printout Formats ... 16-5
16.3.2 Opening, Changing, and Closing Locations 16-5
16.3.2.1 The Slash(/) .. 16-6
16.3.2.2 The Backslash(\) ... 16-6
16.3.2.3 The LINE FEED Key (LF) 16-6
16.3.2.4 The Circumflex or Up-Arrow("') 16-7
16.3.2.5 The Underline or Back-Arrow (-E-) ...•..••••.•••••.••••.•..••.• 16-7
16.3.2.6 Open the Addressed Location(@) 16-7
16.3.2.7 Relative Branch Offset(>) 16-7
16.3.2.8 Return to Previous Sequence (<) 16-7
16.3.3 Accessing General Registers 0-7 16-8
16.3.4 Accessing Internal Registers 16-8
16.3.5 Radix-SO Mode (X) 16-9
16.3.6 Breakpoints .. 16-10
16.3.7 Running the Program (r;G and r;P) 16-10
16.3.8 Single Instruction Mode 16-12
16.3.9 Searches ... 16-12
16.3.9.1 Word Search (r;W) .. 16-12
16.3.9.2 Effective Address Search (r;E) 16-13
16.3.10 The Constant Register (r;C) , 16-13
16.3.11 Memory Block Initialization (;F and ;I) 16-14
16.3.12 Calculating Offsets (r;O) 16-14
16.3.13 Relocation Register Commands 16-15
16.3.14 The Relocation Calculators nR and n!. 16-15
16.3.15 ODT Priority Level, $P 16-16
16.3.16 ASCII Input and Output (r;nA) 16-17
16.4 PROGRAMMING CONSIDERATIONS 16-17
16.4.1 Using ODT with Foreground/Background Jobs .. , 16-17
16.4.2 Functional Organization 16-18
16.4.3 Breakpoints .. 16-18
16.4.4 Searches ... 16-20
16.4.5 Terminal Interrupt .. 16-21
16.5 ERROR DETECTION ... 16-21

17
17.1
17.1.1

PATCH ... 17-1
CALLING AND USING PATCH 17-1

PATCH Options ... 17-1

ix

17.1.2
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.2.S
17.2.6
17.2.7
17.2.8
17.3

CHAPTER 18
18.1
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.4.1
18.2.4.2
18.2.S

APPENDIX A
A.l
A.2
A.2.1
A.2.1.1
A.2.1.2
A.2.2
A.2.2.1
A.2.2.2
A.2.2.3
A.2.2.4
A.2.3
A.2.4
A.2.S
A.3
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.S
A.4.6
A.4.6.1
A.4.7
A.4.8
A.4.9
A.4.10

CONTENTS (Cont.)

Page

Checksum ... 17-2
PATCH COMMANDS .. 17-2

Patching a New File (F) 17-2
Exiting from Patch (E) 17-2
Examining and Changing Locations in the File 17-2
Translating and Indirectly Modifying Locations with a File 17-4
Setting Values in the Overlay Handler Tables of a Program 17-6
Including the Old Contents Into the Checksum 17-6
Setting the Bottom Address . 1 7-6
Setting Relocation Registers 17-7

PATCH EXAMPLES .. 17-7

OBJECT MODULE PATCH UTILI1Y (PAT) 18-1
CALLING AND USING PAT 18-1
HOW PAT APPLIES UPDATES 18-2

The Input File . 18-2
The Correction File 18-2
Creating the Correction File 18-4
How PAT and the Linker Update Object Modules. 184
Overlaying Lines in a Module . 18-4
Adding a Subroutine to a Module 18-S
Determining and Validating the Contents of a File 18-7

BATCH ... A-1
HARDWARE AND SOFTWARE REQUIREMENTS TO RUN BATCH A-1
BATCH CONTROL STATEMENT FORMAT A-2

Command Fields . A-2
Command Names. A-2
Command Field Options. A-2
Specification Fields . A-4
Physical Device Names . A-S
File Specifications . A-S
Wildcard Construction . A-6
Specification Field Options . A-6
Comment Fields . A-7
BATCH Character Set. A-7
Temporary Files . A-9

GENERAL RULES AND CONVENTIONS A-10
BATCH COMMANDS . A-10

$BASIC Command .. A-11
$CALL Command .. A-12
$CHAIN Command A-13
$COPY Command . A-14
$CREATE Command A-IS
$DATA Command .. A-1S
Using $DATA with FORTRAN Programs A-16
$DELETE Command . A-16
$DIRECTORY Command A-17
$DISMOUNT Command . A-17
$EOD Command ... A-18

X

A.4.11
A.4.12
A.4.13
A.4.14
A.4.15
A.4.16
A.4.17
A.4.18
A.4.19
A.4.20
A.4.21
A.4.22
A.4.23
A.5
A.5.1
A.5.2
A.5.2.1
A.5.2.2
A.5.2.3
A.5.2.4
A.5.2.5
A.5.3
A.6
A.7
A.7.1
A.7.2
A.7.3
A.7.4
A.8

APPENDIX B

CONTENTS (Cont.)

Page

$EOJ Command ... A-18
$FORTRAN Command. A-18
$JOB Command . A-20
$LIBRARY Command . A-21
$LINK Command . A-21
$MACRO Command A-23
$MESSAGE Command . A-25
$MOUNT Command. A-25
$PRINT Command A-27
$RTI 1 Command . A-27
$RUN Command. A-27
$SEQUENCE Command . A-28
Sample BATCH Stream. A-28

RT-11 MODE ... A-30
Communicating with RT-11 . A-31
Creating RT-11 Mode BATCH Programs A-31
Labels . A-32
Variables . A-32
Terminal I/0 Control . A-34
Other Control Characters . A-34
Comments . A-35
RT-1 l Mode Examples A-35

CREATING BATCH PROGRAMS ON PUNCHED CARDS A-36
OPERATING PROCEDTJRES A-37

Loading BATCH . A-37
Running BATCH . A-39
Communicating with BATCH Jobs. A-41
Terminating BATCH. A-43

DIFFERENCES BETWEEN RT-1 l BATCH AND RSX-110 BATCH A-43

MONITOR COMMAND ABBREVIATIONS AND SYSTEM PROGRAM
EQUIVALENTS . B-1

INDEX . Index-I

FIGURE 4-1
4-2
5-1
10-1
10-2
11-l
11-2
11-3
11-4
11-5
16-1

FIGURES

Sample Command Syntax Illustration . 4-2
Format of a 12-bit Binary Number. 4-105
Display Editor Format, 12 in. Screen . 5-31
Sample Assembly Listing . 10-4
Cross-Reference Table . 10-10
Load Map . 11-10
Overlay Scheme. 11-11
Memory Diagram Showing BASIC Link with Overlay Regions. 11-11
The Run-Time Overlay Handler................................... 11-12
Library Searches . 11-16
Linking ODT with a Program. 16-1

xi

FIGURE

TABLE

18-1
18-2
A-1

1-1
3-1
3-2
3.3

3-4
4-1
4-2
4-3
4-4
4.5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5.9
5-10
5-11
5-12
5-13
5-14
5-15
6-1
7-1
8-1
8-2
8-3
9-1

CONTENTS (Cont.)

FIGURES (Cont.)

Page

Updating a Module Using PAT 18-1
Processing Steps Required to Update a Module Using PAT 18-3
EOF Card ... A-37

TABLES

RT-11 Hardware Components . 1-4
Permanent Device Names . 3-3
Standard File Types . 3-4
Device Structures. 3-5
Special Function Keys . 3-6
Commands Supporting Wildcards . 4-6
Wildcard Defaults. 4-6
Sort Categories . 4-47
Optiinization Codes . 4-68
FORTRAN Listing Codes . 4-69
Display Screen Values . 4-73
Default Directory Sizes. 4-77
LIBRARY Execution and Prompting Sequence. 4-82
LINK Prompting Sequence . 4-88
Cross-reference Sections . 4-91
.DSABL and .ENABL Directive Summary . 4-91
.LIST and .NLIST Directive Summary. 4-93
SET Device Conditions. 4-105
EDIT Key Commands . 5-2
EDIT Command Categories . 5-3
Command Arguments. 5-5
EDIT Commands and File Status. 5-13
Write Command Arguments. 5-15
Jump Command Arguments . 5-18
Advance Command Arguments . 5-19
List Command Arguments. 5-22
Delete Command Arguments . 5-24
Kill Command Arguments. 5-25
Change Command Arguments . 5-26
eXchange Command Argwnents. 5-27
U Command and Arguments . 5-28
M Command and Arguments . 5-29
Immediate Mode Commands . 5-33
Prompting Characters . 6-2
PIP Options . 7-2
DUP Options and Categories . 8-1
DUP Options . 8-2
Default Directory Sizes. 8-11
DIR Options. 9-2

xii

TABLE 9-2
10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
12-1
12-2
13-1
14-1
14-2
15-1
16-1
16-2
16-3
16-4
16-5
17-1
17-2
17-3
A-1
A-2
A-3
A-4
A-5
A-6
A-7
B-1

CONTENTS (Cont.)

TABLES (Cont.)

Page

Sort Codes . 9-7
Default File Specification Values . 10-3
File Specification Options . 10-3
Valid Arguments for /L and /N Options . 10-5
Valid Arguments for /E and /D Options . 10-6
/C Option Arguments. 10-8
MACRO-I I Error Codes . 10-11

Linker Defaults . 11-2
Linker Options . 11-3
P-section Attributes . 11-5
Section Attributes . 11-6
Global Reference Resolution . 11-7
Linker Prompting Sequence . 11-24
LIBR Object Options . 12-2
LIBR Macro Options . 12-10
DUMP Options . 13-1
Legal FILEX Devices . 14-1
FILEX Options. 14-3
SRCCOM Options . 15-2
Forms of Relocatable Expressions (r) . 16-5
In tern al Registers. 16-8
Radix-SO Terminators. 16-9
Single Instruction Mode Commands . 16-12
ASCII Terminators . 16-17
PATCH Options . 17-1
PATCH Commands . 17-3
PATCH Control Characters . 17-4
Command Field Options. A-3
File Types . A-6
Specification Field Options. A-7
Character Explanation . A-8
BATCH Commands ... A-IO
Operator Directives to BATCH Run-Time Handler A-41
Differences Between RT-11 and RSX-I ID BATCH A-43
Monitor Command/System Program Equivalents. B-1

xiii

PREFACE

This manual describes how to use the RT-11 system; it provides enough information for you to perform ordinary
tasks such as program development, program execution, and file maintenance. This manual is appropriate for you if
you are already familiar with computer software fundamentals and have some experience using RT-11. If you have
no RT-11 experience, you should read the Introduction to RT-11 before consulting this manual. If you have experi
ence with an earlier release of RT-11 (this is version 3), you should read the RT-11 System Release Notes to learn
how RT-11 V03 differs from earlier versions. If you are interested in more sophisticated programming techniques or
in system programming, you should read this manual first and then proceed to the RT-11 Advanced Programmer's
Guide.

The next section, Chapter Summary, briefly describes the chapters in this manual and suggests a reading path to
help you use the manual efficiently.

CHAPTER SUMMARY
The first two chapters make up Part I of this manual, RT-11 Overview. Read Part I to gain an understanding of the
RT-11 system as a whole.

Chapter I describes the program development process in general as well as the system software and hardware com
ponents.

Chapter 2 describes the three monitors that are available with an RT-11 system.

Chapters 3 and 4 compose Part II of the manual, System Communication. Read Part II to become familiar with
RT-11 system conventions and to learn how to interact with the RT.11 monitor directly from the console terminal.

Chapter 3 describes system conventions, such as data formats, file naming conventions, and terminal keyboard
special functions.

Chapter 4 introduces the keyboard monitor commands. These important commands are your means of communicat
ing with the monitor and performing computer tasks.

Part Ill, Text Editing, consists of Chapter 5, EDIT. Read Chapter 5 to learn how to manipulate text on the RT-11
system.

Part IV, Utility Programs, consists of 10 chapters that describe the many programs provided with the RT-11 system.
If you are an advanced user, you may want to read Chapters 6 through 15 to learn about the RT-11 system programs
in detail. However, if you are a new user or primarily a high-level language programmer, you do not have to under
stand how these system programs work to make use of them through the monitor command language (described in
Chapter 4).

Chapter 6 describes the Command String Interpreter and explains the command syntax you use to communicate with
the RT-11 system programs.

Chapters 7 through 9 describe the RT-11 system utility programs, PIP, DUP, and DIR.

Chapter IO describes MACRO, the RT-11 assembly language.

xv

Preface

Chapters 11 through 15 describe the RT-11 system utility programs, LINK, LIBR, DUMP, FlLEX, and SRCCOM.

Part V, Altering Assembled Programs, explains the use of some sophisticated programming tools.

Chapters 16 through 18 describe the RT-11 programs, ODT, PATCH, and PAT. These three programs can help you
debug programs and make changes to programs that are already assembled.

Appendix A contains a description of RT-11 BATCH. Appendix B contains a table of the keyboard monitor
commands, their abbreviations, and their system program equivalents.

DOCUMENTATION CONVENTIONS
This section describes the symbolic conventions used throughout this manual. Familiarize yourself with these con
ventions before you continue reading the manual.

Conventions used in this manual include the following items:

I. Examples consist of actual computer output wherever possible. In the examples, responses entered by a
user are shown in red to distinguish them from computer output, which is shown in black.

2. Unless the manual indicates otherwise, terminate all commands or command strings with a carriage return.
Where necessary, this manual uses the symbol (@) to represent a carriage return, @ to represent a
line feed, @ for a space, and to represent a tab.

3. Terminal and console terminal are general terms used throughout all RT-11 documentation to represent any
terminal device, including DECwriters, displays, and Teletypes1

4. To produce several characters in system commands you must type a combination of keys concurrently. For
example, hold down the CTRL key and type Oat the same time to produce the CTRL/0 character. Key
combinations such as this one are documented as CTRL/0, CTRL/C, SHIFT/N, etc.

5. In descriptions of command syntax, capital letters represent the command name, which you must type.
Lower case letters represent a variable, for which you must supply a value.

Square brackels [] enclose optional choices; you can include the item in brackets, or you can omit it, as
you choose.

Braces { } enclose a group of options from which you can choose only one.

The ellipsis symbol(...) represents repetition. You can repeat the item that precedes the ellipsis.

The hyphen(·) is a continuation character. Use it at the end of a line if you continue a command string to
another line.

The following is a typical example of command syntax:

DELETE[/option ...] filespec[/option ...]

This example shows that you must type the word DELETE, and that you can follow it with one or more op
tions of your choice (none are required). You must then leave a space and supply a file specification. The
file specification can also be followed by one or more options (none are required). Here is a typical command
string:

.DELETE/NOQUERY DTltMYFILE.FOR

1 Teletype is a registered trademark of the Teletype Corporation.

xvi

PART I

RT-11 OVERVIEW

RT-11 is a single-user programming and operating system for the PDP-11 series of computers. This system can use a
wide range of peripherals and can access up to 124K (126,976) words of either solid state or core memory. (4K words
of the maximum 128K (] 31,072) words: of memory are reserved for device interfacing.)

Three system monitors are provided by RT-11: the single-job monitor (SJ), the foreground/background monitor
(FB), and the extended memory monitor (XM).

The single-job monitor allows one program at a time to reside in memory. The program executes until it completes
or until you interrupt it with a keyboard command.

The foreground/background monitor allows two independent programs to reside in memory at one time. The fore
ground program, however, takes priority over the background program. RT-11 allows the background program to
execute whenever the foreground program is in a wait state. Typically, the foreground program performs a time
dependent task, such as sampling material every few seconds and then analyzing the resultant data. A background
program, on the other hand, usually performs a time-independent task, such as file maintenance or program develop
ment. This sharing of resources between two tasks: greatly increases the efficiency of your RT-11 system.

The extended memory monitor provides all the features of the foreground/background monitor and, in addition,
allows you to access up to 124K (126,976) words of memory. The other two monitors are restricted to 28K words
of main memory. (4K words of the 32K words of memory available are reserved for device interfacing.)

These three monitors are upward compatible. That is, the foreground/background monitor provides all the features
of the single-job monitor, and the extended memory monitor offers all the features of the foreground/background
monitor.

You control the RT-11 system from the console terminal. The monitor commands that you use to direct the system
are described in Chapter 4 of this manual.

In addition to the three monitors, RT-11 provides a full complement of system programs that can perform some more
specific tasks than the keyboard monitor commands can. If you are an average user, though, the keyboard monitor com
mands should be sufficient for your needs. There is a summary of the system programs in Section 1.2; they are de
scribed in more detail in individual chapters of this manual.

RT-11 also supports a variety of language processors including MACRO-11, an assembly language, and several high
level languages such as FORTRAN IV and BASIC.

The following two chapters describe system software and hardware components, program development, and the three
RT-11 monitors.

1-1

CHAPTER 1

SYSTEM COMPONENTS

This chapter describes briefly the software and hardware components available for you to use with the RT-11 system.
The software components include the text editor and the many system programs that perform specific tasks. The
hardware components include system clocks, printing and display terminals, external storage devices (such as magnetic
tape drives), and other peripheral devices (such as card readers and line printers).

1.1 PROGRAM DEVELOPMENT
Computer systems (such as RT-11) are ideal for program development. You can make use of the programming tools
available on your system to develop programs to suit your needs. The number and type of tools available on any
given system depend on many factors (including the size of the system, its application, and its cost). Most DIGITAL
systems, however, provide several basic program development aids. These aids generally include an editor, an assembler,
a linker, a debugger, and a librarian. A high level language, such as FORTRAN or BASIC, is also usually available.

You can use an editor to create and modify textual material. Text may be the lines of code that make up a source
program written in some programming language, or it may be other ASCII data. Text may be reports, memos, or, in
fact, any subject matter you wish. In this respect, using an editor is analogous to using a typewriter; you sit at a key
board and type text. However, the advantages of an editor far exceed those of ll. typewriter. Once text has been cre
ated, you can modify, relocate, replace, merge, or delete it, all by means of simple editing commands. When you are
satisfied with your text, you can save it on a storage device where it is available for later reference.

If you use the editor to write a source program, development does not stop with the creation of this program. Since
the computer cannot understand any language but machine language (which is a set of binary command codes), you
need an intermediary program to convert source code into the instructions the computer can execute. This is the
function of an assembler or language translator.

The assembler accepts alphanumeric representations of PDP-11 coding instructions (i.e., mnemonics), interprets the
code, and produces as output the appropriate object code. You can direct the assembler to generate a listing of both
the source code and binary output, as well as more specific listings that are helpful during the program debugging
process. In addition, the assembler is capable of detecting certain common coding errors and issuing appropriate
warnings.

The assembler produces output called object output because it is composed of object (or binary) code. On PDP-11
systems, the object output is called a module; it contains your source program in the binary language that is acceptable
to a PDP-11 computer.

Source programs may be complete and functional by themselves;however, some programs are written in such a way
that they must be used with other programs (or modules) to form a complete and logicaJ flow of instructions. For
this reason, the object code produced by the assembler must be relocatable. That is, assignment of memory locations
must be deferred until the code is combined with all other necessary object modules. The linker performs this function.

The linker combines and relocates separately-assembled object programs. The output produced by the linker is a load
modu1e, the final linked program that is ready for execution. You can, at your choke, request a load map that displays
all addresses assigned by the linker.

You can very rarely create a program that does not contain at least one unintentional error, either in the logic of the
program or in its coding. You may discover errors while you are editing your program, or the assembler may find errors

1-1

System Components

during the assembly process and inform you by means of error codes. The linker may also catch certain errors and
issue appropriate messages. Often, however, it is not until execution that you discover that your program is not
working properly. Programming errors may be extremely difficult to find, and for this reason, a debugging tool is
usually available to aid you in determining the cause of your error.

A debugging program allows you to interactively control the execution of your program. With it, you can examine
the contents of individual locations, search for specific bit patterns, set designated stopping points during execution,
change the contents of locations, continue execution, and test the results, all without editing and reassembling the
program.

When programs are successfully written and executed, they are useful to other programmers. Often, routines that are
common to many programs (such as input and output routines) or sections of code that are used over and over again,
are more useful if they are placed in a library where they can be retrieved by any interested user. A librarian provides
such a service by allowing creation of a library file. Once created, the library can be expanded, updated, or listed.

High-level languages simplify your work by providing an alternate means, other than assembly language mnemonics,
of writing a source program. Generally, high-level languages are easy to learn. A single command causes the computer
to perform many machine-language instructions. You do not need to know about the mechanics of the computer to
use a high-level language. In addition, some high-level languages (like BASIC) offer a special immediate mode that
allows you to solve equations and formulas as though you were using a calculator. You can concentrate on solving
the problem rather than on using the system.

These are a few of the programming tools offered by most computer systems. The next section summarizes specific
programming aids available to you as an RT-11 user.

1.2 SYSTEM SOFTWARE COMPONENTS
The following is a brief summary of the specific system programs and programming available to you as an RT-11 user:

1. The keyboard monitor commands (described in Chapter 4) are your means of controlling the system. You
can use these English-language commands to perform file maintenance, library maintenance, handler modi
fication, program development, and program execution. If you are an average user, the keyboard monitor
commands should be sufficient for your needs.

2. The text editor (EDIT, described in Chapter 5) creates or modifies source files for use as input to language
processing programs such as the assembler or FORTRAN. EDIT contains text manipulation commands that
permit quick and easy editing of a text file. EDIT also allows you to use a VTI 1 or VS60 display processor
if one is part of the hardware configuration.

3. The peripheral interchange program (PIP, described in Chapter 7) is the RT-11 file maintenance program. It
transfers files among all devices that are part of the RT-11 system and renames or deletes files.

4. The device utility program (DUP, described in Chapter 8) performs general device utilities such as initializing
devices, duplicating their contents, and reorganizing files on the devices. It operates only on RT-11 file
structured devices.

5. The directory program (DIR, described in Chapter 9) produces directory listings.
6. The MACRO assembler (described in Chapter 10) is a 2-pass assembler that assembles one or more ASCII

source files of statements and assembler language instructions into a single binary object file.
7. The linker (LINK, described in Chapter 11) converts a collection of object modules from compiled or as

sembled programs and subroutines into a memory image file that RT-11 can load and execute. LINK pro
vides some optional features that:

a. Search library files for subroutines that you specify
b. Produce a load map that lists the assigned absolute addresses
c. Provide overlay capabilities to very large programs
d. Produce files suitable for execution in the foreground.

1-2

System Components

8. The librarian (LIBR, described in Chapter 12) lets you create and maintain libraries off unctions and routines.
TI1ese routines are stored on a random access device in library files, where the linker can reference them. You
can also create MACRO libraries to be used by the MACRO assembler.

9. DUMP (described in Chapter 13) prints for examination all or any part of a file in octal words, octal bytes,
ASCII and/or Radix-SO characters.

10. The file exchange utility (FILEX, described in Chapter 14) transfers files between DECsystem-IO, PDP-I l
RSTS, and DOS BATCH on DECtape and disks, and between RT-11 and IBM systems on diskettes.

11. The source compare utility (SRCCOM, described in Chapter 15) performs a character-by-character comparison
of two ASCII text files. You can request that the differences be listed in an output file or directly on the line
printer or terminal to ensure that edits have been performed correctly.

12. On-line debugging technique (ODT, described in Chapter 16) aids you in debugging assembled and linked
object programs. It can:

a. Print and optionally change the contents of specified locations
b. Execute all or part of the object program
c. Single-step through the program
d. Search the object program for bit patterns.

13. The patching utility program (PATCH, described in Chapter 17) performs minor modifications to memory
image files (output files produced by the linker).

14. The object module patching program (PAT, described in Chapter 18) performs minor modifications to files
in object format (output files produced by the FORTRAN compiler or the MACRO assembler). It can merge
several object files into one.

I 5. The RT-11 FORTRAN system subroutine library (described in the RT-11 Advanced Programmer's Guide)
is a collection of FORTRAN callable routines that make the programmed requests and various utility func
tions available to you as a FORTRAN programmer. This library also provides a string manipulation package
and 2-word integer package for RT-1 l FORTRAN.

16. BATCH (Appendix A) is a complete job-control language that allows RT-11 to operate unattended.

1.3 SYSTEM HARDWARE COMPONENTS
The smallest RT-11 system, one that uses the SJ monitor exclusively, requires a PDP-11 series computer with at least
8K words of memory, a random-access device, and a console terminal. The addition of the FB monitor requires another
BK words of memory and either a line frequency or a programmable clock. The addition of the XM monitor requires
a KTl 1 memory management unit and still another 8K words of memory.

The RT-11 operating system adapts itself to take advantage of any amount of memory on a system and does not
need to be reconfigured for a particular memory size. The SJ monitor operates in systems ranging from 8K words
to 28K words in memory size. The FB monitor operates in systems ranging from 16K words to 28K words in memory
size. The XM monitor operates in systems ranging from 24K words to 124K (126,976) words in memory size.

Table 1-1 lists the devices that RT-11 supports.

1-3

System Components

Table 1-1 RT-11 Hardware Components

Type Controller Device

Disk

Cartridge RKll RK0S/RK0SF
RK611 RK06

Fixed-head RFl I RSI I
RHll RJS03, RJS04

Removable Pack RPll RP02, RP03
Diskette RXl l RX0l

DECtape TCll TU56

Magtape TMl 1/TMAl 1 TUlO, TS03
RHll TJU16, TU45

Cassette TAll TU60

High-Speed Pell PCl 1 (both)
Paper Tape PRll PR] 1 (reader only)
Reader/Punch

Line Printer LSI 1 lSll, LA180
LVI l LVl 1 (printer only)
LPl 1 all LPl 1 controlled

printers

Card Reader CRl 1 CRI 1
CMII CMl 1

Terminal DLII LT33, LT35, LA30P,
LA36, LAI 20,
VTS0, VT52, VTSS,
VT0S
VT61

Display Processor VTll VR14-L, VRl 7-L
VS60

Clock KWl 1-L, KWl 1-P

Terminal DLl 1-W terminal/ clock
and Clock combination

1-4

CHAPTER 2

OPERATING ENVIRONMENTS

The RT-11 system offers three complete operating environments: single-job (SJ) operation, foreground/background
(FB) operation, and extended memory (XM) operation. You control each environment with the appropriate monitor:
SJ, FB, and XM.

You must define your needs before deciding which environment to use and consequently which monitor to run. The
following sections provide information to help you ascertain which monitor is suitable for your application.

2J RT-11 SINGLE-JOB MONITOR
The RT-11 single-job monitor provides a single-user, single-program system that can operate in as little as 8K words
of memory. The SJ monitor is useful for extensive program development; since the monitor itself requires only 2K
words of memory, there are at least 6K words left for your program and its buffers and tables. The SJ environment
is also suitable for running programs that require a high data transfer rate, since the SJ monitor services interrupts
quickly.

You can use all the system programs (listed in Section 1.2) under the SJ monitor. Monitor commands and programmed
requests are also available to you as an SJ user.

In summary, the SJ monitor is smaller and faster than the FB and XM monitors; it is most useful when you are con
cerned with program size versus available memory and when you need a dedicated system.

2.2 RT-t 1 FOREGROUND/BACKGROUND MONITOR
Quite often, the central processor of a computer system spends much of its time waiting for some external event to
occur. Usually, this event is a real-time interrupt or the completion of an I/0 transfer. This situation is particularly
true of real-time jobs. The foreground/background environment lets you take advantage of the unused processor
capacity to accomplish lower-priority tasks.

In a foreground/background system, the foreground job is the time-critical, real-time job, and the FB monitor gives
it priority over the background job. Whenever the foreground job reaches a state in which no useful processing can
be done until some external event occurs, the monitor executes the background job, if possible. The background job
then runs until the foreground job is again ready to execute. The processor then interrupts the background job and
resumes the foreground job.

In effect, the RT-11 foreground/background monitor allows a time-dependent job to run in the foreground while a
time-independent job, such as program development, runs in the background. All RT-11 system programs can run
as the background job in a FB system. Thus, you can run FORTRAN, BASIC, MACRO, etc. in the background while
the foreground is collecting, storing, and analyzing data. In addition, the FB monitor gives you the ability to set
timer routines, suspend and resume FB jobs, and send data and messages betweer,i the two jobs. The FB monitor is
most often used for laboratory work, data acquisition, and real-time applications.

You can link most of the programs you write for an RT-11 system to run as foreground jobs. There are a few coding
restrictions, which are explained in the RT-11 Advanced Programmer's Guide. A foreground program has access to
all of the features available to the background job (opening and closing files, reading and writing data, etc.).

2.3 RT-11 EXTENDED MEMORY MONITOR
The extended memory monitor (XM) is an extension of the foreground/background (FB) environment. Genernlly,
references in this manual to FB operation also apply to XM operation. The single-job monitor does not support

2-1

Operating Environments

extended memory. The XM monitor permits either foreground or background jobs to extend their effective logical
program space beyond the 32K word restriction imposed by the 16-bit address word of the PDP-I I processors.
The XM monitor manages extended memory space as a system resource and dynamically allocates it as you request.
A program can map selected portions of its addressing space into extended memory by means of a set of programmed
requests. A detailed description of extended memory and how to use it appears in the RT-I I Advanced Programmer's
Guide.

2.4 FACILffiES AVAILABLE ONLY IN RT-11 FB
Some features available to you as a FB user include:

I. Mark time. The .MRKT programmed request allows your program to set clock timers for specified amounts
of time. When the timer runs out, the system enters the routine that you specify. You can enter as many
mark time requests as you need, providing that you reserve system queue space. The mark time feature is
available to SJ monitor users as a SYSGEN option.

2. Timed wait. The .TWAIT programmed request allows your program to "sleep" until a period of time that
you specify elapses. A foreground program, for example, may need to act on sample data and write it to
mass storage once every few minutes. While the foreground program is idle, the background program can
run.

3. Send data, receive data. The .SDAT and .RCVD programmed requests permit the foreground and back
ground programs to communicate with each other. The send and receive data functions let one program
send messages or data of variable size blocks to the other program. For example, you can transfer data
directly from a foreground collection program to a background analysis program.

4. Channel copy. The .CHCOPY programmed request allows two programs to share the same data file.
5. Device. The .DEVICE programmed request allows you to turn off specific devices upon program termination.
6. Protect. The .PROTECT programmed request lets you protect the vectors that one program uses from inter

ference by another program.
7. Channel status. The .CST AT programmed request returns status data about an open channel.

You can learn more about these programmed requests and how to use them in Chapter 2 of the RT-I I Advanced
Programmer's Guide.

2.5 FACILITIES AVAILABLE ONLY IN RT-11 XM
An optional extension of the FB environment is the extended memory monitor (XM), which permits you to extend
the logical address space for either foreground or background jobs. Some features available to you only when you use
the XM monitor are:

1. Create a region. The .CRRG programmed request allows you to allocate a region in extended memory for the
current program.

2. Eliminate a region. The .ELRG programmed request eliminates an extended memory region and returns it to
the free list so it can be used by other programs.

3. Create an address window. The .CRAW programmed request unmaps and eliminates conflicting address
windows, creates new windows to address extended memory, and maps new windows to the regions you
specify. It directs the monitor to give the program a window into the region it has created. This request
allows the program to access the physical memory as if it were local to the program.

4. Eliminate an address window. The .ELA W programmed request unmaps and eliminates address windows.
5. Map. The .MAP programmed request lets you map and remap windows.
6. Status. The .GMCX programmed request returns status data about window mapping.
7. Unmap. The .UNMAP programmed request lets you unmap a window.

You can learn more about these programmed requests and how to use them in Chapter 3 of the RT-I I Advanced
Programmer's Guide.

2-2

PART II

SYSTEM COMMUNICATION

The monitor is the center of RT-11 system communications; it provides access to system and user programs, performs
input and output functions, and enables control of background and foreground jobs.

You communicate with the monitor through programmed requests and keyboard commands. You can use the key
board commands (described in Chapter 4) to load and run programs, start or restart programs at specific addresses,
modify the contents of memory, and assign and deassign alternate device names, to name only a few of the func
tions.

Programmed requests (described in detail in Chapter 2 of the RT-11 Advanced Programmer's Guide) are source pro
gram instructions that request the monitor to perform monitor services. These instructions allow assembly language
programs to use the available monitor features. A running program communicates with the monitor through programmed
requests. FORTRAN programs have access to programmed requests through the system subroutine library. Programmed
requests can, for example, manipulate files, perform input and output, and suspend and resume program operations.

The two chapters in this part describe system conventions and contain information that helps you get started with
RT-11. Chapter 4 introduces the keyboard monitor commands, which are your means of controlling the RT-11 sys
tem.

11-1

CHAPTER 3

SYSTEM CONVENTIONS

This chapter contains information to help you start using the RT-11 system. It describes:

• Startup procedure
• Data formats
• Physical device names
• File names and file types
• Device structures
• Special function keys
• Foreground input and output
• Monitor type-ahead feature

Before you operate the RT-11 system, you should be familiar with the special character commands, file naming pro
cedures and other conventions that are standard to the system. These conventions are described in this chapter.

3.1 SYSTEM STARTUP
For information on building the system and loading the monitor, refer to the Introduction to RT-I I, to the RT-11
System Generation Manual, or to any instructions provided by your DIGIT AL representative.

When the system has been built and you load the monitor into memory, the monitor prints one of the following
identification messages on the terminal:

RT-11 SJ Vnnx-nnx
RT-1 IFB Vnnx-nnx
RT-llXM Vnnx-nnx

The message that prints indicates which monitor (SJ, FB, or XM) is loaded; you establish which is to be loaded during
the system build operation.

Vnnx represents the version and release number of the monitor - for example, V03, for Version 3 (release A). nnx
represents the library submission number and the patch level for example, 01 B, for library number 1 (patch
level B).

As soon as a monitor takes control of the system, it attempts to execute keyboard monitor commands from an in
direct file called ST ARTS.COM for the SJ monitor, STARTF.COM for the FB monitor, and STARTX.COM for the
XM monitor. You can place commands in this startup ftle to perform routine tasks for you, such as assigning logical
device names to physical devices or setting the current date. (Indirect files are discussed in Section 4.3.) If the monitor
does not find the appropriate file, it issues a warning message. The system then prints its prompt(.) indicating that it
is ready to accept commands. You should now write-enable the system device.

To bring up an alternate monitor while imder control of the one currently running, use the BOOT command described
in Section 4.4 of this manual.

3.2 DATA FORMATS
The RT-I I system stores data in two formats: ASCII and binary. The binary data can be organized in many formats,
including object, memory image, relocatable image, and load image.

3-1

System Conventions

Files in ASCII format conform to the American National Standard Code for Information Interchange, in which each
character is represented by a 7-bit code. Files in ASCII format include program source files created by the editor
and BASIC, listing and map files created by various system programs, and data files consisting of alphanumeric char
acters.

Files in binary object format consist of data and PDP-I I machine language code. Object files are the files the assembler
or FORTRAN compiler outputs; they are used as input to the linker.

The linker can output files in one of three formats: l) memory image format (.SA V), 2) relocatable image format
(.REL), or 3) load image format (.LOA).

A memory image file (.SAY) is a picture of what memory looks like after you load a program. The file itself requires
the same number of disk blocks as the corresponding number of 256-word memory blocks. A memory image file
does not require relocation, and can run in an SJ environment or as a background program under the FB or XM moni
tor.

A relocatable image file (.REL) differs from a memory image file. Although the relocatable file is linked as though its
bottom address were 1000, relocation information is included with its memory image. When you call the program
with the FRUN command, the file is relocated as it is loaded into memory. A relocatable image file can run in a
foreground environment.

You can produce a load image (.LDA) file for compatibility with the PDP-11 paper tape system. The absolute binary
loader loads this file. You can load and execute load image files in stand-alone environments without relocating them.

There are a number of other types of binary data that different parts of the RT-I l system use in addition to the
more common types listed here.

3.3 PHYSICAL DEVICE NAMES
When you request services from the monitor, it is sometimes necessary to specify a physical peripheral device on
which the service is to be performed. You can reference devices by means of a standard 2-character device name.
Table 3-1 lists each name and its related device. If you do not specify a unit number for devices with more than one
unit, the system assumes unit 0.

In addition to using the fixed names shown in Table 3-1, you can assign logical names to devices. A logical name
takes precedence over a physical name and thus provides device independence. With this feature, you do not have to
rewrite a program that is coded to use a specific device if the device becomes unavailable. You associate logical
names with physical devices by using the ASSIGN command, which is described in Section 4.4.

3.4 FILE NAMES AND FILE TYPES
You can reference files symbolically by a name of one to six alphanumeric characters (followed, optionally, by a
period and a file type of up to three alphanumeric characters). No spaces or tabs are allowed in the file name or
file type. The file type generally indicates the format or contents of a file. rt is a good practice to conform to the
standard file types for RT-11. If you do not specify a ftle type for an input or output file, most system programs
assign an appropriate default file type. Table 3-2 lists the standard file types used in RT-11.

3.S DEVICE STRUCTURES
RT-I I devices are categorized according to two characteristics: I) the device's physical structure and 2) the device's
method of processing information. All RT-11 devices are either randomly accessed or sequentially accessed.

Random-access devices allow the system to process blocks of data in random order that is, independent of the
data's physical location on the device or its location relative to any other information. All disks and DECtape fall
into this category. Random-access devices are sometimes called block-replaceable devices, because you can manipu
late (rewrite) individual data blocks without affecting other data blocks on the device.

3-2

System Conventions

Table 3-1 Pennanent Device Names

Permanent Name 1/0 Device

CR: CRI 1/CMll Card Reader

CTn: TAll Cassette (n is O or 1)

DK: The default logical storage device for all files. DK: is initially the same as SY:

DK.n: The specified unit of the same device type as DK: if DK: is unassigned

DMn: RK06 Disk (n is an integer in the range 0-7)

DPn: RP02, RP03 Disk (n is an integer in the range 0-7)

DSn: RJS03/4 Fixed-Head Disks (n is an integer in the range 0-7)

DTn: DECtape (n is an integer in the range 0-7)

DXn: RXOl Floppy Disk (n is an integer in the range 0-3)

EL: Error Logging Handler

LP: Line Printer

MMn: TJUl 6/TU45 (industry compatible) Magtape (n is an integer in the range
0-7)

MTn: TMl 1/TMAl 1 /TS03 (industry compatible) Magtape (n is an integer in the
range 0-7)

NL: Null device

PC: PCl l combined High-Speed Paper Tape Reader and Punch

RF: RFl l Fixed-Head Disk Drive

RK.n: RKOS Disk Cartridge Drive (n is an integer in the range 0-7)

SY: The default logical system device; the device and unit from which the system
is bootstrapped

SYn: The specified unit of the same device type as SY: if SY: is unassigned

TT: Console Terminal Keyboard and Printer

3-3

System Conventions

Table 3-2 Standard File Types

File Type Meaning

.BAD Files with bad (unreadable) blocks; you can assign this file type whenever bad areas
occur on a device. The .BAD file type makes the file permanent in that area, pre-
venting other files from using it and consequently becoming unreadable

.BAK Editor backup file

.BAS BASIC source file (BASIC input)

.BAT BATCH command file

.COM In dire ct file

.CTL BATCH control file generated by the BATCH compiler

.CTT BATCH internal temporary file

.DAT BASIC or FORTRAN data file

.DBL DIBOL source file

.DIF SRCCOM output file

.DIR Directory listing file

.DMP DUMP output file

.FOR FORTRAN IV source file (FORTRAN input)

.LDA Absolute binary file (optional linker output)

.LOG BATCH log file

.LST Listing file (MACRO, FORTRAN, LIBR, or DIBOL output)

.MAC MACRO source file (MACRO or SRCCOM input)

.MAP Map file (linker output)

.OBJ Relocatable binary file (MACRO or FORTRAN output, linker input, LIBR input
and output)

.REL Foreground job relocatable image (linker output, default for monitor FRUN com-
mand)

.SAV Memory image; default for R, RUN, SAVE and GET keyboard monitor commands;
also default for linker output

.SML System MACRO library

.sou Temporary source file generated by BATCH

.STB Symbol table file in object format containing all the symbols produced during a
link

.SYS System files and handlers

3-4

System Conventions

Sequential-access devices require sequential processing of data; the order in which the system processes the data must
be the same as the physical order of the data. RT-11 devices that are sequential devices are magtape, cassette, paper
tape reader and punch, card reader, line printer, terminal, and the null device.

File-structured devices are those devices that allow the system to store data under assigned file names. RT-11 devices
that are file-structured include all disk, DECtape, magtape, and cassette devices. Non-file-structured devices, however,
contain a single logical collection of data. These devices, including the line printer, card reader, terminal, and paper
tape reader and punch, are generally used for reading and listing information.

File-structured devices that have a standard RT-11 directory at the beginning are RT-11 directory-structured devices.
A device directory consists of a series of directory segments that contain the names and lengths of the files on that
device. The system updates the directory each time a program moves, adds, or deletes a file on the device. The RT-I I
Software Support Manual contains a more detailed explanation of a device directory. RT-11 directory-structured
devices include all disks and DECtape. Non-RT-11 directory-structured devices are file-structured devices that do not
have the standard RT-11 directory structure. For example, some devices, such as rnagtape and cassette, store directory
type information at the beginning of each file, but the system must read the device sequentially to obtain all informa
tion about all files.

The RT-11 Software Support Manual explains methods of interfacing a device with a user-defined directory structure
to the RT-11 system.

Table 3-3 shows the relationships among devices, access methods, and structures.

Table 3-3 Device Structures

Non-
RT-11 RT-11

Random- Sequential- File- Non-file- directory- directory-
Device Access Access Structured Structured Structured Structured

Disk X X X

DECtape X X X

Magtape X X X

Cassette X X X

Paper tape X X

Card reader X X

Line printer X X

Terminal X X

3.6 SPECIAL FUNCTION KEYS
Special function keys and keyboard commands let you communicate with the RT-11 monitor to allocate system re
sources, manipulate memory images, start programs, and use foreground/background services.

The special functions of certain terminal keys you need for communication with the keyboard monitor are explained
in Table 3-4. In the FB system, the keyboard monitor runs as a background job when no other background job is
running.

Enter CTRL commands by holding the CTRL key down while typing the appropriate letter.

3.7 FOREGROUND/BACKGROUND TERMINAL 1/0
Console input and output under PB are independent functions; therefore, you can type input to one job while another
job prints output. You may be in the process of typing input to one job when the system is ready to print output from
the other job on the terminal. In this case, the job that is ready to print interrupts you and prints the message on the
terminal; the system does not redirect input control to this job, however, unless you type a CTRL/B or CTRL/F. If

3-5

System Conventions

Table 3-4 Special Function Keys

Key FWiction

CTRL/A CTRL/ A is valid only after you type the monitor GT ON command and use the
display. CTRL/A, a command that does not echo on the terminal, pages output
if you use it after a CTRL/S. The system permits console output to resume until
the screen is completely filled again; text currently displayed scrolls upward off
the screen. CTRL/A has no special meaning if GT ON is not in effect.

CTRL/B CTRL/B causes the system to direct all keyboard input to the background job.
The FB monitor echoes B> on the terminal. The system takes at least one line
of output from the background job. The foreground job, however, has priority,
so the system returns control to the foreground job when it has output. CTRL/B
directs all typed input to the background job until a CTRL/F redirects input to
the foreground job. CTRL/B has no special meaning when used under a single-
job monitor or when a SET TT NOFB command is in effect.

CTRL/C CTRL/C terminates program execution and returns control to the keyboard
monitor. CTRL/C echoes"C on the terminal. You must type two CTRL/Cs to
terminate execution unless the program to be terminated is waiting for terminal
input or is using the TT handler for input. In these cases, one CTRL/C is suffi-
cient to terminate execution. Under the FB monitor, the job that is currently
receiving input is the job that is stopped (determined by the most recently typed
command, CTRL/F or CTRL/B). To ensure that the command is directed to the
proper job, type CTRL/B or CTRL/F before typing CTRL/C.

CTRL/E The CTRL/E command causes all terminal output to appear on both the display
screen and the console terminal simultaneously. CTRL/E is valid after you type
the monitor GT ON command and use the display. The command does not echo
on the terminal. A second CTRL/E disables console terminal output. CTRL/E
has no special meaning if GT ON is not in effect.

CTRL/F CTRL/F causes the system to direct all keyboard input to the foreground job
and take all output from the foreground job. The FB monitor echoes F> on
the terminal unless output is already coming from the foreground job. If no
foreground job exists, the monitor prints an error message and directs control
to the background job. Otherwise, control remains with the foreground job
until redirected to the background job (with CTRL/B) or until the foreground
job terminates. CTRL/F has no special meaning when used under a single-job
monitor, or when a SET TT NOFB command is in effect.

CTRL/0 CTRL/0 causes RT-11 to suppress teleprinter output while continuing pro-
gram execution. CTRL/0 echoes"O on the terminal. RT-11 reenables teleprinter
output when one of the following occurs:

I. You type second a CTRL/0.
2. You return control to the monitor by typing CTRL/C or by issuing the .EXIT

request.
3. The running program issues a .RCTRLO programmed request (see Chap-

ter 2 of the RT~ 11 Advanced Programmer's Guide). RT- I I system programs
reset CTRL/0 to the echoing state each time you enter a new command
string.

(Continued on next page)

3-6

System Conventions

Table 3-4 (Cont.) Special Function Keys

Key Function

CTRL/Q CTRL/Q resumes printing characters on the terminal from the point printing
previously stopped because of a CTRL/S. CTRL/Q does not echo and has no
special meaning under the FB monitor if a SET TT NOPAGE command is in
effect.

CTRL/S CTRL/S temporarily suspends output to the terminal until you type a CTRL/Q.
CTRL/S does not echo. Under the FB monitor, CTRL/S is not intercepted by
the monitor if TT NOP AGE is in effect.

CTRL/U CTRL/U deletes the current input line and echoes as "U followed by a car-
riage return at the terminal. (The current line is defined as all characters back
to, but not including, the most recent line feed, CTRL/C, or CTRL/Z.)

CTRL/Z CTRL/Z terminates input when used with the terminal device handler (TT).
It echoes "Z on the terminal. The CTRL/Z itself does not appear in the input
buffer. If TT is not being used, CTRL/Z has no special meaning.

DELETE DELETE deletes the last character from the current line and echoes a back-
or slash plus the character deleted. Each succeeding DELETE deletes and echoes

RUBOUT another character. The system prints an enclosing backslash when you type a
key other than DELETE. This erasure is performed from right to left up to
the beginning of the current line. If you are using a video display terminal,
DELETE deletes characters with a backspace, space, backspace sequence. Your
corrections appear on the screen; RUBOUT does not enclose them with back-
slash characters.

you type input to one job while the other has output control, the system suppresses the echo of the input until the
job accepting input gains output control; at this point, all accumulated input echoes.

If the foreground job and background job are ready to print output at the same time, the foreground job has priority.
The system prints output from the foreground job until it encounters a line feed. At that point, output from the
background job prints until a line feed is encountered, and so forth.

When the foreground job terminates, control reverts automatically to the background job.

3.8 TYPE-AHEAD FEATURE
The monitor has a type-ahead feature that lets you enter terminal input while a program is executing. For example:

.DIRECTORY/PRINTER
DATE

While the first command line is executing, you can type the second line. The system stores this terminal input in a
buffer and uses it when the system completes the first operation.

If you type a single CTRL/C while the system is in this mode, the system puts CTRL/C into the buffer. The program
currently executing exits when you make a terminal input request. Typing a double CTRL/C returns control to the
monitor immediately.

3-7

System Conventions

If type-ahead input exceeds the input butter capacity (usually 80 characters), the terminal bell rings and the system
accepts no characters until a program uses part of the type-ahead buffer, or until you delete characters. No input is
lost. Type-ahead is particularly useful when you specify multiple command lines to system programs. If you
terminate a job by typing two CTRL/Cs, the system discards any unprocessed type-ahead.

If you use type-ahead with EDIT or BASIC, the system does not echo characters on the terminal but stores them in
the buffer until the system processes a new command. The program echoes the characters only when it actually uses
them.

3-8

CHAPTER 4

INTERACTIVE COMMANDS

Keyboard commands allow you to communicate with the RT-11 system. You enter keyboard commands at the termi
nal and the operating system immediately acknowledges and acts upon these requests.

4.1 COMMAND SYNTAX
This section describes the syntax conventions this manual uses to discuss the monitor command language. The Preface
to this manual contains a more detailed list of the symbolic conventions used throughout the manual. You should
familiarize yourself with the symbols and their meanings before you continue reading this chapter.

The system accepts commands in two ways: as a complete string containing all the information necessary to execute
a command, or as a partial string. In the latter case, the system prompts you to supply the rest of the information.
Terminate each command with a carriage return.

The general syntax for a command is:

or

where

COMMAND [/option ...] input-filespec [/option ...] output-filespec [/option ...]

COMMAND [/option ...]
PROMPT!? input-filespec[/option ...]
PROMPT2? output-filespec [/option ...]

COMMAND

/option

input-filespec

/option

output-filespec

/option

is the command name.

represents a command qualifier that specifies the exact action to be taken. Any option
you supply here applies to the entire command string.

represents the file on which the action is to be taken.

represents a file qualifier that specifies more detailed information about that particular
file.

represents the file that is to receive the results of the operation.

represents a file qualifier that specifies more detailed information about that particular
file.

This manual provides a graphic illustration to clarify the syntax for each of the keyboard monitor commands. See
Figure 4-1 for an illustration of a typical command. The illustrations provide a ready-reference list of the options that
the commands accept, as well as information that makes the commands easier to use. The following list describes the
conventions that are used in the illustrations.

4-1

Interactive Commo.nds

l. Capital letters represent command names or options, which you must type as shown. (Abbreviations are
discussed later in Section 4.1 .)

2. Lower case letters represent arguments or variables for which you must supply values. For options that
accept numeric arguments, the system interprets the values as decimal, unless otherwise stated. Some
values, usually memory addresses, are interpreted as octal; these cases are noted in the accompanying text.

3. Square brackets [] enclose optional choices; you can include the item that is enclosed in the brackets or
you can omit it, as you choose. If a vertical list of items is enclosed in square brackets, you can combine
the options that appear in the list. However, if an option is set off from the others by blank lines (see
/BOOT and /DEVICE in Figure 4-1), you cannot combine that option with any other option in the list.

4. Braces {} enclose options that are mutually exclusive. You can choose only one option from a group of
options that appear in braces.

5. It is conventional to place command options (those qualifiers that apply to the entire command line) imme
diately after the command. However, it is also acceptable to specify a command option after a file specifica
tion. File options (those that qualify a particular file specification) must appear in the command line directly
after the file to which they apply. The illustration for each command shows which options are file qualifiers,
and whether they must follow input or output file specifications.

6. A line such as [NO} QUERY represents two mutually exclusive options: QUERY and NOQUERY.
7. Underlining indicates default options.

COPY /BOOT

/DEVICE

{

/ASCII l
/BINARY

/!M.8.fil
/CONCATENATE
/EXCLUDE
/IGNORE
/[NOi LOG
/NEW FILES
/PACKED
/PREDELETE
/(NO]OUERY
/[NOi REPLACE
/SETDATE
/SLOWLY
/SYSTEM

@ input-fihnpecs ~- /DOS-[/OWNE~: (nnn,nnn] l ~ @ output-filespec ~ /ALLOCATE :size - ~
'/INTERCHANGE J /DOS (
)/POSITION:n) IINTERCHANGE[:size) (
(/TOPS (IPOSITION:n J

Figure 4-1 Sample Command Syntax umstration

A filespec represents a specific file and the device on which it is stored. Its syntax is:

dev:filnam.typ

where

dev:

filnam

.typ

represents either a logical device_ name or a physical device name, which is a two- or
three-character name from Table 3-1.

represents the one- to six-character alphanumeric name of the file.

represents the one- to three-character alphanumeric file type, some of which are listed
in Table 3-2.

4-2

Interactive Commands

There are several ways to indicate the device on which a file is stored. You can explicitly type the device name in the
file specification:

DXl:TEST.L..ST

You can omit the device name:

TEST.L.ST

In this case, the system assumes that the file is stored on device DK:.

If you want to specify several files on the same device, you can use a technique called factoring:

DTO:CTEST.LST,TESTA.L.ST,TESTB.LST)

The command shown above has the same meaning and is easier to use than the next command.

DTO:TEST+LST,DTO:TESTA+LST,DTO:TESTB.LST

When you use factoring, as the example above shows, the device outside the parentheses applies to each file specifica
tion inside the parentheses. Without factoring, the system interprets each file specification to be DK:filespec unless
you explicitly specify another device name.

NOTE
There is a restriction on the use of factoring in a command
line. The command string that results from the expansion
of the line you enter must not exceed 80 characters in
length. If you use six-character file names and you also use
factoring, specify only five files in a command line.

If you omit the file type in a file specification, the system assumes one of a number of defaults, depending on which
command you issue. The MACRO command, for example, assumes a file type of .MAC for the input file specification,
and the PRINT command assumes .LST. Some commands (such as COPY) do not assume a particular file type. If you
need to specify a file with no file type in a command that assumes a default file type, type a period after the file name.
For example, to run the file called TEST, type:

RUN TEST.

If you omit the period after the file name, the system assumes a .SA V file type and tries to execute a file called
TEST.SAY.

You can enter up to six input files and up to three output files for some commands. If the command string does not
fit on one line of your tenninal, use the hyphen(·), followed by a carriage return, as a continuation character and
break the string into smaller sections. Use a carriage return to terminate the command string.

Some of the command and file qualifiers are mutually exclusive options. You should avoid using a combination of
options that gives contradictory instructions to the system. For example:

.DELETE/QUERY/NOQUERY TEST.LST

This command is not meaningful. Some mutually exclusive options are less obvious; these are noted, where necessary,
in the list of options following each command and are enclosed by braces in the graphic representation of the command
syntax.

4-3

Interactive Commands

The keyboard monitor commands are all English-language words. This feature makes the commands easier for you to
understand and use. However, it can become tedious to type words like CROSSREFERENCE and ALLOCATE fre
quently. You can use as abb1eviations the minimum number of characters that are needed to make the command or
option unique. Table B-1 in Appendix B lists the minimum abbreviations for the commands and options.

An easy way to abbreviate a command or qualifier, and one that is always correct, is to use the first four characters
or the first six characters if the qualifier starts with NO. For example:

CONCATENATE can be shortened to CONC
NOCON CA TENA TE can be shortened to NOCONC

The system prints an error message if you use an abbreviation that is not unique. For example, typing the following
command produces an error, because C could mean COPY or COMPILE.

C TEST.LST

The prompting form of the command may be easier for you to learn if you are a new user. If you type a command
followed by a carriage return, the system prompts you for an input file specification:

COPY/CONCATENATE
From?

You should enter the input file specification and a carriage return:

DX1:<TEST.LST,TESTA.LST)

The system prompts you for an output file specification:

To?

You should enter the output file specification and a carriage return:

DX2:TEST.LST

The command now executes.

The system continues to prompt for an input and output file specification until you provide them. If you respond to a
prompt by entering only a cauiage return, the prompt prints again. You can combine the normal form of a command
with the prompting form, as this example shows .

• COPY ABf_• LST
To ? ItEF.LST

The system always prompts you for infonnation if any required part of the command is missing. You can also
enter just an option in response to a prompt. The two following examples are equivalent.

.COPY
From ? *•MAC/NOLOG
To '!' *•BAK

,COPY
From ? /NOLOG
From ? *•MAC
To 1 *•BAK

44

Interactive Commands

4.2 WILDCARDS
Some commands accept wildcards (% and "') in place of the file name, file type, or characters in the file name or file
type. The system ignores the contents of the wild field and selects all the files that match the remaining fields.

An asterisk(*) can replace a file name:

*•MAC

The system selects all files on device DK: that have a .MAC file type, regardless of their name.

An asterisk(*) can replace a file type:

TEST.*

The system selects all files on device DK: that are named TEST, regardless of their file type.

An asterisk("') can replace both a file name and a file type:

·
The system selects all files on device DK:.

An embedded asterisk(*) can replace any number of characters in the input file name or file type:

The system selects all files on device DK: with a file type of .MAC whose file names start with A and end with B.
For example, AB, AXB, A YYB, etc. would be selected.

The percent symbol(%) is always considered an embedded wildcard. It can replace a single character in the input
file name or file type.

AXI~. MAC

The system selects all files on device DK: with a file type of .MAC whose file names are three characters long, start
with A, and end with B. For example, AXB, A YB, AZB, etc. would be selected.

Table 4-1 lists commands that support wildcards.

4.5

Interactive Commands

Table 4-1 Commands Supporting Wildcards

Accepts Wildcards in Input Accepts Wildcards in Output
Command File Specification File Specification

COPY X X

DELETE X

DIRECTORY X

HELP X

PRINT X

RENAME X X

TYPE X

For the commands that support wildcards the system has a special way of interpreting the file specifications you
type. You can omit certain parts of the input and output specifications, and the system assumes an asterisk(*) for
the omitted item. Table 4-2 shows the defaults that the system assumes for the input and output specifications of
the valid commands.

Table 4-2 Wildcard Defaults

Input Output
Command Default Default

COPY, RENAME •• • •

DIRECTORY DK:*.*

PRINT, TYPE *.LST

DELETE filnam.*

For example, if you need to copy all the files called MYPROG from DK: to DXI:, use this command:

.cOPY/NOQUERY MYPROG DX11

The system interprets this command to mean:

.cOPY/NOQUERY DK:MYPROG+* DX1:*•*

The system copies all the files called MYPROG, regardless of their file type, to device DXI: and gives them the same
names.

If you need a directory listing of all the files on device DK:, type the following command:

,DIRECTORY

The system interprets this command to mean:

.DIRECTORY DK!*•*

4-6

Interactive Commands

To list on the printer all the files on device DK: that have a .lST file type, use this command:

.PRINT DK:

Tfie system mterprets this command to mean:

To delete all the files on device DK: called MYPROG, regardless of their file type, use this command:

.DELETE/NOQUERY MYPROG

The system interprets this to mean:

+DELETE/NOQUERY DK:MYPROG,*

You can use the SET WILDCARDS EXPLICIT command (described in Section 4.4) to change the way the system
interprets these commands.

4.3 INDIRECT FILES
You can group together as a file a collection· of keyboard commands that you want to execute sequentially. This
collection is called an indirect command file, or indirect file. Indirect files are best suited for tasks that require a sig
nificant amount of computer time and that do not require your supervision or intervention. Any series of commands
that you are likely to type often can also run easily as an indirect file. The indirect file concept is similar to BATCH
processing. Although indirect files lack some of the capabilities of BATCH, they are easier to use, use the same com
mands as normal operations, and generally require less memory overhead than the BATCH processor. (RT-11 BATCH
is described in Appendix A of this manual.) This section describes how to create indirect files and how to execute them.

4.3.1 Creating Indirect Files
Create an indirect file by using the EDIT/CREATE command described in Section 4.4. It is conventional to use a
.COM file type for an indirect file, but you can choose any file name that you wish. Structure the lines of text to look
like keyboard input, placing one command on each line of the file and terminating each line with a carriage return.
Do not include the prompt character(.) in the line. Any keyboard monitor command you can type at the terminal you
can also include in an indirect file. The following file, for example, prints the date and time, and creates backup copies
of all FORTRAN source files:

DATE
TIME
COPY *,FOR *,BAK

Control returns to the monitor at the console terminal after this indirect file executes.

In addition to using the keyboard monitor commands, you can also run one of the RT-11 system utility programs in an
indirect file. In this case, structure your input to conform to the Command String Interpreter syntax described in Chap
ter 6. The following file starts the directory system utility program and lists the directory of two devices on the line
printer.

R DIR
L.P:=CTO:/C!:3
LP! =DT 1 ! /C: :3
"'C

Note that the last command line is "'C. This is not the standard CTRL/C sequence you enter by holding down the CTRL
key and typing a C. Rather, it is a readable CTRL/C that consists of two separate characters: a circumflex (uparrow)

4-7

Interactive Commands

followed by a C. This sequence represents CTRL/C in indirect files because the two-character sequence is easier to read
if you list the contents of the indirect file with the PRINT or TYPE command. This two-character sequence terminates
the directory program so that control returns to the monitor when the indirect file finishes executing. Otherwise, the
directory program would be left waiting for input from the console terminal when the indirect file finishes executing.

Remember to terminate the last command line with a carriage return, as you would any other line.

Some commands normally require a response from you as they execute. The INITIALIZE command, for example,
prints the ARE YOU SURE? message and waits for you to type Y and a carriage return before it executes. The
DELETE command requests confirmation from you before it deletes a file. There are three ways to control interaction
with the executing command. One way is to use the /NOQUERY option on each command that allows it. This option
suppresses the confirmation messages entirely when you use the command in an indirect file. A second procedure is
suitable for a command like INITIALIZE, which has only one confirmation query. INITIALIZE can accept your
response from within the indirect file. Place the Y response on a separate line in the indirect file, as the following
example shows.

INITIALIZE/DOS DTl!
y

A third method of interacting applies to a command like DELETE. This command can have a variable number of con
firmation queries, especially if you use a wildcard in the file specification. This type of command accepts your responses
directly from the terminal and allows you to make a decision before deleting each file. However, in this case the in
direct file cannot operate unattended.

There is yet another way to deal with commands that require a response from you. Both the INITIALIZE and LINK
commands have options that prompt you for data. This section describes two methods of responding to these prompts,
when more than just a Y response is required.

The INITIALIZE command with the /VOUJMEID option permits you to specify a volume ID and owner name for a
device. You can place your responses in the indirect file, as this example shows:

INITIALIZE/NOQUERY/VOLUMEID DT!
TAPE6
PAYROLL

You can change the indirect file so that the prompts appear on the console terminal and you can type your responses
there:

INITIALIZE/NOQUERY/VOLUMEID DT:
... c

The "C informs the system that the responses are to be entered at the terminal. Execution of the indirect file pauses
until you enter the responses.

Similarly, the LINK command lets you specify some data either in the indirect file or from the console terminal. The
following example contains the response to the TRANSFER prompt.

LINK/TRANSFER MYPROG,ODT
O.ODT

You can specify the same information interactively, as this example shows:

LINK/TRANSFER MYPROG,ODT
'"'C

4-8

Interactive Commands

fhe "C informs the system that the response to the prompt is to be entered at the terminal. Execution of the indirect
file pauses until you enter your response.

You can specify overlays to the LINK command by either of these two methods. The following indirect file links an
overlaid program consisting of a root module and four overlay modules that reside in two overlay segments.

LINK/PROMPT ROOT
0VR1/0:1
0VR2/0!:l
OVR3/0:2
OVR4/0:2//

Note in the above example that two slashes(//) terminate the module list. You can also enter all or part of the overlay
information interactively, as this example shows:

LINK/PROMPT ROOT
OVRl/0!1
~c

The '"'C informs the system that more overlay information is to be entered from the terminal. Execution of the indirect
file pauses when the system requires the information. Respond to the asterisk prompt by entering the overlay informa
tion. Terminate the last overJay line with two slashes (/ /). Execution of the indirect file then proceeds. Chapter 11
describes the LINK program and explains how to use overlays.

If you need to link more than six modules, you can specify the extra modules on the next line in the indirect file, as
this example shows:

LINK/PROMPT FIL1,FIL2,FIL3,FIL4,FIL5,FIL6
FIL.7,FIL8//

Or, you can enter the extra modules from the terminal:

LINK/PROMPT FIL1,FIL2,FIL3,FIL4 FIL5,FIL6
'"'C

Execution of the indirect file pauses until you enter the remaining module names. Remember to follow the last name
by two slashes (//).

You can include comments in an indirect file to help you document your work. These comments do not print on the
console terminal when the indirect file executes. Begin a comment with an exclamation point (!). The system ignores
any characters it finds between the exclamation point and the end of the current line. The following example shows
an indirect file that contains comments.

!INDIRECT FILE TO ASSEMBLE THE MONITOR
R MACRO
RKt:RTllSJ=SJ,SYCND,KMON,USR,RMONSJ,KMOVLY
RKl:RKBTSJ=SJ,SYCND,BSTRAP !ASSEMBLE THE BOOT
RKl!RK=SJ,SYSDEV,SYCND,RK !AND RK DRIVER
RK1:SYSTBL=SJ,SYCND,SYSTBL !AND SYSTBL
-c
!ALL DONE

4.9

Interactive Commands

4.3.2 Executing Indirect Files
You can execute indirect files under the SJ monitor, or in the background area under the FB or XM monitor.

To execute an indirect file, specify a command string according to the following syntax:

@ftlespec

where

@

filespec

is the monitor command that indicates an indirect file.

represents the name and file type of the indirect file, as well as the device on which it is
stored. The default file type is .COM.

If you omit the device specification, DK: is assumed. If you specify any other block-replaceable device, the monitor
automatically loads the handler for that device. It is conventional to type the indirect file command directly in response
to the monitor's prompt, as this example shows:

.@INDCT

However, you can place the indirect command anywhere in a keyboard monitor command string, as long as it is the
last element in the string, not including comments. For example:

DELETE/NOQLJERY @INDCT!COMMENTS

This is a valid command string. The first line of the file should contain the list of files to be deleted. In the example
above, assume the first line of the indirect file is:

*•BAK

This is the command that will actually execute:

DELETE/NOOUERY *•BAK

Check your indirect file carefully for errors before you execute it. When the monitor or any program that has control
of the system encounters an illegal command line, or if an execution error of any kind occurs, that particular line does
not execute properly. Execution of the indirect file does proceed, however, until any program that may be running
relinquishes control to the monitor. Be careful of this if you run a system utility program in an indirect file, as this
example shows:

R PIP
DX:I. !*•*=::DXO!*•*
DXO:*.MAC/I:I
-~c
PRINT DXO: *. UH

If device DXI: becomes full before all the ftles from DXO: are copied to it, the second line of the indirect file does not
execute completely. Execution then passes to the next line and the system deletes all MACRO files from DXO:. The
"'C returns control to the monitor, which aborts the rest of the indirect file. This example shows that it is possible to
destroy files accidentally because of the way indirect files execute. To be safe, use only keyboard monitor commands
in an indirect file. This way the monitor gets control after each operation and can abort the indirect fde as soon as it
detects an error. A better way to perform the same operations as the indirect file shown above is as follows:

4-10

COPY DXO:*•* DX11*•*
DELETE DXO:*.MAC
PRINT DXO!*.LST

Interactive Commands

You can use the SET ERROR command, described in Section 4.4, to define the severity of error that causes an indirect
me to stop executing.

Normally, as each line of an indirect file executes, it echoes on the console terminal so that you can observe the prog
ress of the job. However, you can use the SET IT QUIET command, described in Section 4.4, to suppress this print
out. In this case, only the prompting me_ssages, if any, print. You can stop execution of an indirect file at any time
by typing two CTRL/C characters. Control returns to the monitor and you can enter a new command. You can also
abort the indirect file by typing a single CTRL/C in response to a query or prompt. If you use an indirect file to exe
cute a MACRO program, read Section 2.4.15 of the RT-11 Advanced Programmer's Guide to learn about certain re
strictions on using the .EXIT call with indirect files.

You can call another indirect file from witWn an indirect file. This procedure is called nesting. Restrict nesting to
three levels of indirect files. The following example shows two-level nesting. Assume a programmer types this com
mand at the console terminal in response to the monitor's prompt:

@FIRST

The file FIRST.COM contains these lines:

DATE
TIME
COPY *•MAC *•BAK
@SECOND
PRINT C
DIRECTORY/PRINTER DK!
DELETE/NOQUERY *•MAC

When this file executes it calls another indirect file, SECOND.COM, which contains tWs line:

HACRO/CROSSREFERENCE A+BfC/LIST

When file SECOND.COM finishes executing, control returns to file FIRST.COM at the line following the indirect
file specification. FIRST .COM then prints the contents of the fiJe C.LST on the line printer, followed by a directory
listing of device DK:. Then control returns to the monitor at the console terminal.

4.3.3 Startup Indirect Files
Section 3.1 introduced the startup indirect command files: STARTS.COM (for SJ), STARTF.COM (for FB), and
STARTX.COM (for XM). Each monitor automatically invokes its own indirect command file when you bootstrap
the system. You can modify these files to perform standard sy1tem configurations for you. Since many of the system
parameters are reset by a bootstrap operation (see the SET command, Section 4.4), you should use the startup in
direct files to set the system parameters you normally use. FOJ example, if you use the FB monitor and have a visual
display console terminal that supports hardware tabs, add the SET IT: SCOPE and SET IT: TAB commands to
the file STARTF.COM. You could also include a SET TT: QUIET command at the beginning of STARTF.COM and
a SET TT: NOQUJET command at the end to suppress extra type-out at bootstrap time. If you have a list of com
mands that you need to execute regardless of the monitor you bootstrap, include these commands in a separate in
direct file, such as COMMON.COM, and invoke this file from all three startup indirect files. The following example
shows a typical STARTF.COM file.

4-II

SET TT:
SET TT:
SET TT!
@COMMON
SET TT!

QUIET
SCOPE
TAB

·NOQUIET

Interoctive Commands

!TURN OFF TTY PRINTING

!PERFORM COMMON OPERATIONS
!TURN ON TTY PRINTING

If you use BATCH frequently, use a startup indirect file to assign devices and load handlers. You can also use the
startup indirect files to run your own programs, set the date, or do other housekeeping chores.

4.4 KEYBOARD MONITOR COMMANDS
The keyboard monitor commands are your means of communicating with the system and controlling the monitor.
This section lists the keyboard monitor commands in alphabetical order. Each command description includes the
command syntax, a table of valid options, and some sample command lines, as well as a general discussion of how to
use the command.

You can type almost all the commands to any of the three monitors. The exceptions are FRUN, SUSPEND, and
RESUME. These are not legal for the SJ monitor because they apply to foreground programs.

Any reference to the background program applies as well to the program running under the SJ monitor. Any refer
ence to FB operation also applies to the XM operation.

If you make a mistake in a command line, or if the system cannot perform the action you request, an error message
prints on your terminal. The error message indicates which error occurred; see the RT-11 System Message Manual
for a more complete description of the error and for the recommended action you should take. The error message
also indicates which system utility program detected the error. This is for your information only and requires no
action.

4-12

Interactive Commands APL

The APL command invokes the APL interpreter.

APL has its own command language. Therefore, the APL command accepts no options and no file specifications.

4-13

ASSIGN Interactive Commands

The ASSIGN command associates the logical name you specify with a physical device.

ASSIGN @ physical-device-name@ logical-device-name

In the command syntax illustrated above, physical-device-name represents the RT-I I standard permanent name that
refers to a particular device. Table 3-1 contains a list of these names. The term logical-device-name represents an alpha
numeric name, from one to three characters long, that you assign to a particular device. Note that you should not use
spaces or tabs in the logical device name. If you omit the physical device name, the system prompts you with Physical
device name?. If you omit the logical device name, the system prompts you with Logical device name?.

The ASSIGN command can simplify programming. When you write a program, for example, you can request input from
a device called INP: and direct output to a device called OUT:. When you are ready to execute the program, you can as
sign those logical names to the actual physical devices you need to use for that job. The ASSIGN command is especially
helpful when a program refers to a device that is not available on a certain system; the ASSIGN command allows you to
redirect input and output to an available device.

If the logical device name you supply is already associated with a physical device, the system disassociates the logical
name from that physical device and assigns it to the current device. You can assign only one logical name with each
ASSIGN command, but you can use several ASSIGN commands to assign different logical names to the same device.
You can also use the ASSIGN command to assign FORTRAN logical units to physical devices.

If you are running under the foreground/background monitor (FB), FB is not allowed as a logical device name. How
ever, it is valid under the single-job monitor. Note that the following names are always illegal logical device names: BA,
FG, and EL.

The following command, for example, causes data that you write to device OUT: to print on the line printer.

.ASSIGN L.F': our:

If your program attempts to access a device by using a logical name (such as OUT:) and you do not issue an appropri
ate ASSIGN command, an error occurs in the program.

The following command redirects printer output to the terminal.

• AS~, I GN TT : LF':

The command shown above illustrates how you can run a program that specifically references IP: without using a
line printer.

The next command redefines the default file device .

• ASS HJN mo. : DI\!

If you supply a file specification and omit the device name, it now defaults to RKI :. Note that this does not affect
the default system device, SY:.

The last example is typical for a system that uses a dual drive diskette device. Several users can share the same system
software on DXO: and maintain their own data files on diskettes that they run in drive 1. When you use the following
command, references to files without an explicit device name automatically access DXI: .

• M;SIGN DX:1.: DK:

Use the SHOW DEVICES command to display logical device name assignments on the terminal.

4-14

Interactive Commands B

The B (Base) command sets a relocation base. To obtain the address of the location to be referenced, the system adds
this relocation base to the address you specify in a subsequent Examine or Deposit command.

I Bl® ,dd,es,]

In the command syntax shown above, address represents an octal address that the system uses as a base address for
subsequent Examine and Deposit commands. If the address you supply is an odd number, the system decreases it by
one to make the address even. Note that if you do not specify an address, this command sets the base to zero.

Use the Base command when using the Examine and Deposit commands to reference linked modules. (Note that the
Base command has no effect on program execution.) The system adds the current base address to the value you supply
in an Examine or Deposit command. You can set the current base address to the address where a particular module is
loaded. Then you can use the relocatable addresses printed in the assembler, compiler, or map listing of that module
to reference locations within the module.

The following command sets the base to 0.

The next two commands both set the base to 1000.

+B 1000
.f! lOOl

4-15

BASIC Interactive Commands

The BASIC command invokes the BASIC language interpreter.

I BASIC

BASIC has its own command language. Therefore, the BASIC command accepts no options and no file specifications.

4-16

Interactive Commands BOOT

The BOOT command directs a new monitor to take control of the system. It can also read into memory a new copy
of the monitor that is currently controlling the system.

I BOOT ® filo,p,,

In the command syntax illustrated above, ftlespec represents the device or monitor file to be bootstrapped. If you
omit the filespec, the system prompts you with Device or file?. The BOOT command can perform either of two opera•
tions: I) a hardware bootstrap of a specific device, or 2) a direct bootstrap of a particular monitor file that does not
affect the bootstrap blocks on the device.

To perform a hardware bootstrap, specify only a device name in the command line. The following devices are legal
for this operation: OTO:, RK.0:-RK.7:, RF:, SY:, DK:, DP0:-DP7:,DX0:-DX1 :, DM0:-DM7:, and DS0:-DS7:. The
hardware bootstrap operation gives control of the system to the particular monitor whose bootstrap is written on
the device. (You can change this monitor by using the COPY/BOOT command.) This example bootstraps the single
job monitor, RK.MNSJ, whose bootstrap information is written on device DK: .

• BOOT DK:

RT·-115.J V03-01

To bootstrap a particular monitor ftle, specify that file name and the device on which it is stored, if necessary, in the
command line. SY: is the default device and .SYS is the default file type. Note that the first two characters of the
physical device name and the monitor file name must be the same, as in the following example .

• BOOT [IXO; IIXMNS.J

RT-115J V03-01

You can use the BOOT command to alternate between the single:iob and foreground/background monitors. When you
use the BOOT command to change monitors you do not have to reenter the date and time. The system clock, however,
can lose a few seconds during a reboot. The next example bootstraps the foreground/background monitor on device
SY:, which is currently RKO:.

+BOOT RKMNFB

RT-1 tFB V03-·0:J.

The system recognizes only the RT-11 standard monitor names. You cannot, therefore, bootstrap a monitor file
that has been given a non-standard name.

4.17

CLOSE Interactive Commands

The CLOSE command makes permanent all output files that are currently open in the background job.

I CLOSE

The CLOSE command accepts no options or arguments.

You can use the CLOSE command to make tentative open files permanent; otherwise, they do not appear in a normal
directory listing and the space associated with the files is available for reuse. The CLOSE command is particularly use
ful after you type a CTRL/C to abort a background job. You can also use it after an unexpected program termination.
The CLOSE command preserves any new files that were being used by the terminated program. Note that the CLOSE
command has no effect on a foreground job and that you cannot use CLOSE on files opened on magnetic tape or
cassette.

The CLOSE command does not work if your program defines new in put or output channels (with the .CDFN pro
grammed request). Because CTRL/C or .EXIT resets channel definitions, the CLOSE command has no effect on chan
nels it does not recognize.

The following example shows how the CWSE command makes temporary files permanent .

• R PF.:OG

4-18

Interactive Commands COMPILE

The COMPILE command invokes one or more language processors to assemble or compile the files you specify.

COMPILE /LIST(:filespec] [/ALLOCATE:size)
/[NO] OBJECT[:filespec] [/ALLOCATE:size]

/DIBOL

[

/ALPHABETIZE]
/CROSSREFERENCE
/[NO] LINENUMBERS
/ONDEBUG
/(NO) WARNINGS

/FORTRAN
/CODE:type
/DIAGNOSE
/EXTEND
/HEADER
/14
/(NO] LINENUMBERS
/ONOEBUG
/(NO] OPTIMIZE[:type]
/RECORD:length
/SHOW[:valuel
/STATISTICS
/(NOi~
/UNITS:n
/[NO) VECTORS
/WARNINGS

/MACRO

[

/CROSSREFERENCE(:type(... :type]]
/DISABLE:value [... :value]
/ENABLE:value [... :value]
/INO] SHOW:value

@filespecs [/LIBRARY]
/PASS:1

In the command line shown above, filespecs represents one or more files to be included in the compile or assembly.
The default file types for the output files are .LST for listing files and .OBJ for object files. The defaults for input
files depend on the particular language processor involved. These defaults include .MAC for MACRO files, .FOR for
FORTRAN fdes, and .DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, separate the files by plus(+) signs in the com
mand line. Unless you specify otherwise, the system creates an object file with the same name as the first input file
and gives it an .OBJ file type. To compile multiple files in independent compilations, separate the ftles by commas(,)
in the command line. This generates a corresponding object file for each set of input files. You can combine up to six
files for a compilation producing a single object file.

Language options are position dependent. That is, they have different meanings depending on where you place them
in the command line. Options that qualify a command name apply across the entire command string. Options that
follow a file specification apply only to the file (or group of files separated by plus signs) that they follow in the com
mand string.

You can specify the entire COMPILE command as one line, or you can rely on the system to prompt you for informa
tion. The COMPILE command prompt is Files?.

There are several ways to establish which language processor the COMPILE command invokes. One way is to specify
a language-name option, such as /MACRO, which invokes the MACRO assembler. Another way is to omit the

4-19

COMPILE Interactive Commands

language-name option and explicitly specify the file type for the source files. The COMPILE command then invokes
the language processor that corresponds to that file type. Specifying the file SOURCE.MAC, for example, invokes the
MACRO assembler. A third way to establish the language processor is to let the system choose a file type of .MAC,
.DBL, or .FOR for the source file you name. To do this, the handler for the device you specify must be loaded. If
you specify DXI :A and the DX handler is loaded, the system searches for source files A.MAC and A.DBL, in that
order. If it finds one of these files, the system invokes the corresponding language processor. If it cannot find one of
these files, or if the device handler associated with the input file is not resident, the system assumes a file type of .FOR
and invokes the FORTRAN compiler.

If the language processor selected as a result of one of the procedures described above is not on the system device
{SY:), the system issues an error message.

The following sections explain the options you can use with the COMPILE command.

/ALLOCATE:size - Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The
argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1
to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE Use this option with DIBOL to alphabetize the entries in the symbol table listing. This is useful
for program maintenance and debugging.

/CODE:type Use this option with FORTRAN to produce object code that is designed for a particular hardware con
figuration. The argument, type, represents a three-letter abbreviation for the type of code to produce. The legal values
are the following: EAE, EIS, FIS, and THR. See Section 1.1.l of the RT-11/RSTS/E FORTRAN IV User's Guide
for a complete description of the types of code and their functions.

/CROSSREFERENCE[:type[... :type]] - Use this option with MACRO or DlBOL to generate a symbol cross
reference section in the listing. This information is useful for program mamtenance and debugging. Note that the
system does not generate a listing by default. You must also specify /LIST in the command line to get a cross-reference
listing.

With MACRO, this option takes an optional argument. The argument, type, represents a one-character code that in
dicates which sections of the cross-reference listing the assembler should include. Table 4-10 summarizes the valid
arguments and their meaning.

/DIAGNOSE Use the option with FORTRAN to help analyze an internal rompiler error. /DIAGNOSE expands the
crash dump information to include internal compiler tables and buffers. Submit the diagnostic printout to DIGIT AL
with an SPR form. The information in the listing can help the DIGITAL programmers locate the compiler error and
correct it.

/DIBOL - This option invokes the DIBOL language processor to compile the associated files.

/DISABLE:value[... :value] Use this option with MACRO to specify a .DSABL directive. Table 4-11 summarizes
the arguments and their meaning. See Section 6.2 of the PDP-11 MACRO Language Reference Manual for a descrip
tion of the directive and a list of all legal values.

/ENABLE:value[... :value] Use this option with MACRO to specify an .ENABL directive. Table 4-1 l summarizes
the arguments and their meaning. See Section 6.2 of the PDP-11 MACRO Language Reference Manual for a descrip
tion of the directive and a list of all legal values.

/EXTEND - Use this option with FORTRAN to change the right margin for source input lines from column 72 to
column 80.

/FORTRAN - This option invokes the FORTRAN language processor to compile the associated files.

4-20

Interactive Commands COMPILE

/HEADER - Use this option with FORTRAN to include in the printout a list of options that are currently in effect.

/14 - Use this option with FORTRAN to allocate two words for the default integer data type (FORTRAN only uses
one-word integers) so that it takes the same physical space as real variables.

/LIBRARY - Use this option with MACRO to identify the file the option qualifies as a macro library file; use it only
after a macro library file specification in the command line. The MACRO assembler looks first to any macro libraries
you specify before going to the default system macro library, SYSMAC.SML, to satisfy references (made with the

.MCALL directive) from MACRO programs. In the example below, the two files A.FOR and B.FOR are compiled
together, producing B.OBJ and B.LST. The MACRO assembler assembles C.MAC, satisfying .MCALL references from

MYLIB.MAC and SYSMAC.SML. lt produces C.OBJ and C.LST .

• COMPILE AtB/lIST/OBJECT,MYLIB/LIBRARY+C.MAC/LIST/OBJECT

/LINENUMBERS Use this option with DIBOL or FORTRAN to include internal sequence numbers in the execut
able program. TI1ese are especially useful in debugging programs. This is the default operation.

/NOLINENUMBERS - Use this option with DIBOL or FORTRAN to suppress the generation of internal sequence
numbers in the executable program. This produces a smaller program and optimizes execution speed. Use this option

to compile only those programs that are already debugged; otherwise the DIBOL or FORTRAN error messages are
difficult to interpret.

/LIST[:ftlespec] - You must specify this option to produce a compilation or assembly listing. The /LIST option has
different meanings depending on where you put it in the command line.

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the system generates a listing that prints on the line printer. If you follow /LIST with a device name, the system cre
ates a listing file on that device. If the device is a file-structured device, the system stores the listing file on that device,
assigning it the same name as the input file with a .LST file type. The following command produces a listing on the
terminal.

.COMPILE/LIST:TT: A.FOR

The next command creates a listing file called A.LST on RK3:.

+COMPILE/LIST!RK3! A.MAC

If the /LIST option contains a name and file type to override the default of .I.ST, the system generates a listing file
with that name. The following command, for example, compiles A.FOR and B.FOR together, producing files A.OBJ
and FILEl .OUT on device DK:.

,COMPILE/FORTRAN/LIST:FILE1+0UT A+B

You cannot use a command line like the next one. In this example, the second listing file would replace the first one
and, therefore, cause an error.

.COMPILE/LIST:FILE2 A.MAC,B.MAC

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file
with the same name as a particular input file, you can use a command similar to this one:

+COMPILE/DIBOL AtB/LIST:RK3:

4-21

COMPILE Interactive Commands

The command shown above compilesA.l>BL and B.DBL together, producing files DK:A.OBJ and RK3:B.LST. If you
specify a file name on a /LIST option following a file specification in the command line, it has the same meaning as
when it follows the command. The following two commands have the same results .

• COMPILE/MACRO A/LIST:B

,COMPILE/MACRO/LIST:B A

Both the commands shown above generate as output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they follow
in the command string. For example:

.COMPILE A.MAC/LIST,B.FOR

This command compiles A.MAC, producing A.OBJ and A.LST. It also compiles B.FOR, producing B.OBJ. However,
it does not produce any listing file for the compilation of B.FOR.

/MACRO - This option invokes the MACRO assembler to assemble the associated files.

/OBJECT[:filespec) - Use this option to specify a file name or device for the object file. Because the COMPILE
command creates object files by default, the following two commands have the same meaning .

• COMPILE/FORTRAN A

.COMPILE/FORTRAN/OBJECT A

Both commands compile A.FOR and produce A.OBJ as output. The /OBJECT option functions like the /LIST option;
it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example,
assembles A.MAC and B.MAC separately, creating object files A.OBJ and B.OBJ on RKI : .

• COMPILE/OBJECT!RK1: A.MACYB.MAC

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.DBL and BDBL together, creating files B.LST and B.OBJ .

• COMPILE/DIBOL AtB/LIST/OBJECT

/NOOBJECT - Use this option to suppress creation of an object file. As a command option, /NOOBJECT suppresses
all object files; as a file option, it suppresses only the object file produced by the related input files. In this command,
for example, the system compiles A.FOR and B.FOR together, producing files A.OBJ and B.LST. It also compiles
C.DBL and produces C.LST, but does not produce C.OBJ .

• COMPILE A.FOR+B.FOR/LIST,C.DBL/NOOBJECT/LIST

/ON DEBUG Use this option with DIBOL to include a symbol table in the object file. You can then use a debugging
program to find and correct errors in the object file.

Use /ONDEBUG with FORTRAN to include debug lines (those that have a Din column one) in the compilation. You
do not, therefore, have to edit the file to include these lines in the compilation or to logically remove them. This option
is useful in debugging a program. You can include messages, flags, and conditional branches to help you trace program
execution and find an error.

4-22

Interactive Commands COMPILE

/OPTIMIZE[:type] - Use this option with FORTRAN to enable certain options that optimize object code for
various conditions. The argument, type, represents the three-letter code for the type of optimization to enable.
Table 4-4 summarizes the codes and their meanings.

/NOOPTIMIZE[:type] - Use this option with FORTRAN to disable certain options that optimize object code
for various conditions. The argument, type, represents the three-letter code for the type of optimization to dis
able. Table 4-4 summarizes the codes and their meanings.

/PASS:1 - Use this option with MACRO on a prefix macro file to process that file during pass-1 of the assembly
only. This option is useful when you assemble a source program together with a prefix file that contains only
macro definitions, since these definitions do not need to be redefined in pass-2 of the assembly. The following
command assembles a prefix file and a source file together, producing files PROGl.OBJ and PROGl .LST .

• COMPILE/MACRO PREFIX/PASS!1tPROG1/LIST/OBJECT

/RECORD:length - Use this option with FORTRAN to override the default record length of 132 characters for
ASCII sequential formatted input and output. The meaningful range for the argument, length, is from 4 to 4095.

/SHOW:value Use this option with FORTRAN to control FORTRAN listing format. The argument, value, repre
sents a code that indicates which listings the compiler is to produce. Table 4-5 summarizes the codes and their
meanings.

Use this option with MACRO to specify any MACRO .LIST directive. Table 4-12 summarizes the valid arguments
and their meanings. Section 6.1.1 of the PDP-I I MACRO Language Reference Manual explains how to use these
directives.

/NOSHOW:value - Use this option with MACRO to specify any MACRO .NLIST directive. Table 4-12 summarizes
the valid arguments and their meanings. Section 6.1.1 of the PDP-I I MACRO Language Reference Manual explains
how to use these directives.

/STATISTICS - Use this option with FORTRAN to include in the listing compilation statistics, such as amount of
memory used, amount of time elapsed, and length of the symbol table.

/SWAP - Use this option with FORTRAN to permit the USR (user service routine) to swap over the FORTRAN
program in memory. This is the default operation.

/NOSWAP - Use this option with FORTRAN to keep the USR resident during execution of a FORTRAN program.
This may be necessary if the FORTRAN program uses some of the RT-11 System Subroutine Library calls (see Chapter
4 of the RT-I I Advanced Programmer's Guide). If the program frequently updates or creates a large number of different
files, making the USR resident can improve program execution. However, the penalty for making the USR resident is 2K
words of memory.

/UNITS:n - Use this option with FORTRAN to override the default number of logical units (6) to be open at one
time. The maximum value you can specify for n is 16.

/VECTORS - This option directs FORTRAN to use tables to access multidimensional arrays. This is the default mode
of operation.

/NOVECTORS - This option directs FORTRAN to use multiplication operations to access multidimensional arrays.

/WARNINGS - Use this option to include warning messages in DIBOL or FORTRAN compiler diagnostic error mes
sages. These messages call certain conditions to your attention, but do not interfere with the compilation. This is the
default operation for DIBOL.

/NOWARNINGS - Use this option with DIBOL to suppress warning messages during compilation. These messages are
for your information only; they do not affect the compilation. This is the default operation for FORTRAN.

4-23

COPY Interactive Commands

The COPY command performs a variety of file transfer and maintenance operations.

COPY /BOOT

/DEVICE

@ input·filespecs~(/DOS[/OWNER: [nnn,nnn))~@ output-filespec ~ /ALLOCATE:size ~
'/INTERCHANGE (J /DOS
)/POSITION:n (l /lNTERCHANGE[:size) (
\ /TOPS J /POSITION:n J

'~=~i~RYl
(!IMAGE

/CONCATENATE
/EXCLUDE
/IGNORE
/[NO] LOG
/NEWFILES
/PACKED
/PRE DELETE
/[NO] QUERY
/[NO] REPLACE
/SETDATE
/SLOWLY
/SYSTEM

The COPY command transfers:

• One file to another file
• A number of files to a single file by concatenation
• One device to another device
• A bootstrap to a device.

In the command syntax shown above, input-filespecs represents the data to copy. The input-filespec can be a
device name, if you use the /DEVICE option. Otherwise, you can specify as many as six files for input. Output
filespec represents the device or file to receive the data. You can specify only one output device or file.

Normally, commas separate the input files if you specify more than one. However, you can separate them by plus
(+) signs if you want to combine them. In this case, you can also omit the /CONCATENATE option, as the follow
ing example shows.

,COPY A,FOR+B.FOR C.FOR

This command combines DK:A.FOR with DK:B.FOR and stores the results in DK:C.FOR.

You can use wildcards in the input or output file specification of the command. However, the output file specifica
tion cannot contain embedded wildcards. Note that for all operations except CONCATENATE, if you use a wild
card in the in put file specification, the corresponding output file name or file type must be a *. This example uses
wildcards correctly:

.COPY A¼B.MAC *,BAK

In the CONCATENATE operation, the output specification must represent a single file. Therefore, no wildcards are
allowed.

You can enter the COPY command as one line, or you can rely on the system to prompt you for information. The
COPY command prompts are: From? for the input file specification and To? for the output file specification.

4-24

Interactive Commands COPY

The system has a special way of handling system (.SYS) files and files that cover bad blocks (.BAD files). So that
you do not copy system files by accident when you use a wildcard in the file specification, the system requires you
to use the /SYSTEM option when you need to copy system files. To copy a .BAD file, you must specify it by
explicitly giving its file name and file type. Since .BAD files cover bad blocks on a device, you usually do not need
to copy, delete, or otherwise manipulate these files.

The following sections describe the COPY command options and include command examples.

/ALLOCA TE:size Use this option after the output file specification to reserve space on the device for the out-
put file. The argument, size, represents the number of blocks of space to allocate. The meaningful range for this
value is from l to 32767. A value of l is a special case that creates the largest file possible on the device.

/ASCII TI1is option copies files in ASCII mode, ignoring nulls and rubout characters. It converts data to the
ASCII 7-bit format, and treats CTRL/Z (32 octal) as the logical end-of-file on input. Files that consist of ASCII
format data include source files you create with the editor, map files, and list files. The following example copies
a FORTRAN source program from DXO: to DXI :, giving it a new name, and reserves SO blocks of space for it .

• COPY/ASCII DXO:MATRIX.FOR DX1:TEST.FOR/ALLOCATE:50

/BINARY - Use this option to copy tormatted binary files. These include .OBJ files produced by the assembler
or the FORTRAN compiler, and .LDA files produced by the linker. The system verifies checksums and prints a
warning if a checksum error occurs. If this happens, the copy operation does not complete. Note that you cannot
copy library files with the /BINARY option because of a checksum error. Copy them in image mode. The follow
ing command copies a binary file from DK: to a diskette .

• COPY/BINARY ANALYZ.OBJ DXl:*•*

/BOOT - This option copies bootstrap information from a monitor file to blocks O and 2 through 5 of a random
access device. This permits you to use that device as a system device. Note that you cannot combine /BOOT with
any other option. Before you use the /BOOT option, make sure that the appropriate monitor file is already stored
on the disk. To create a bootable system diskette, for example, you could use the foreground/background file
called DXMNFB.SYS. If you copy the monitor file onto the diskette from another device, be careful not to rename
it. The COPY/BOOT operation recognizes only standard RT-11 monitor file names. You can use a procedure similar
to the following to create a system device:

1. Initialize the disk. Use the monitor INITIALIZE command to do this.
2. Copy files onto the disk. Use the COPY /SYSTEM command for this step.
3. Use COPY/BOOT to write the monitor bootstrap onto the disk.

The following example shows how to create a system diskette .

• INITIALIZE DXU

DX1:/Init are you sure?Y

.COPY/SYSTEM DXO!*•* DX1:*•*
Files COPit'i'dl

DXOIDXMNSJ.SYS to DXl!DXMNSJ.SYS
DXOlDT.SYS to DX1:DT.SYS
DXO!DX.SYS to DX1:Dx.svs
DXO:TT.SYS to DXl!TT.SYS
DXO:LP.SYS to DX1:LP.SYS
DXO:DIR.SAV to DX1:DIR.SAV
DXO!DUP.SAV to DX1:DUP.SAV

4-25

COPY

DXO:ABC.MAC
DXO:AAF.MAC
DXO:CT.SYS
DXOtPIP.SAV
DXO:MT.SYS
DXO:MM.SYS
DXO:COHB.
nxo:DXMNFB.SYS

Interactive Commands

to DXltABC.MAC
to DXl:AAF.MAC
to DXl:CT.SYS
to DXl: F'IP. SAV
to rixt:HT.SYS
to DXt:MM.SYS
to DXl:COMB.
to nx1:nxHNFB.SYS

.COPY/BOOT DXl:DXMNFB.SYS DXl:

/CONCATENATE Use this option to combine several input files into a single output file. Remember that wild-
cards are illegal in the output file specification. This option is particularly useful to combine several object modules
into a single file for use by the linker or librarian. The foil owing command combines all the .FOR files on DXl:
into a file called MERGE.FOR on DX0: .

• COPY/CONCATENATE DXl:*.FOR DXO:MERGE.FOR
Files coPied:

DXl:A.FOR
DX1!B.FOR
DX1!C.FOR

to DXO!MERGE.FOR
to DXO!MERGE.FOR
to DXO:MERGE.FOR

/DEVICE - This option copies block for block the image of one device to another. You cannot combine any
other option with /DEVICE. This option copies one disk to another without changing the fde structure or the
location of the files on the device. This is convenient in that the bootstrap blocks also remain unchanged. You
can also copy disks that are not in RT-11 format, as long as they have no bad blocks. If the system encounters
a bad block during the COPY/DEVICE operation, it prints an error message. However, it then retries the operation
and performs the copy one block at a time. If only one error message prints, you can assume that the transfer
completed correctly.

If one device is smaller than the other, the system copies only as many blocks as the smaller device contains. It is
possible to copy blocks between disk and magtape, even though magtape is not a random access device. The data
is stored on tape formatted in 1 K word blocks. There is room for only one disk image on a magtape. The following
command copies an image of DX0: to DXI: .

• COPY/DEVICE DXO: DX1!

DXt:/CaP~ are YOU sure?Y

Respond to the query message by typing Y and a carriage return. Any other response cancels the command and
the COPY operation does not proceed.

/DOS Use this option to transfer files between RSTS/E 01 DOS-11 format and RT-11 format. The option must
appear in the command line after the file to which it applies. Valid input devices are DECtape and RK0S; the only
valid output device i.s DECtape. The only other options allowed with /DOS are /ASCII, /BINARY, /IMAGE, and
/OWNER: [nnn,nnn]. The following command transfers a BASIC source file from a D0S-11 disk to an RT-11 disk .

• COPY RK!PROG.BAS/DOS/OWNER!C200,200J SYS*•*

The next command copies a memory image file from an RT-11 disk to a RSTS/E format DECtape .

• COPY DUMP.SAV DT:*•*/DOS

4-26

Interactive Commands COPY

/EXCLUDE - This option copies all the files on a device except the ones you specify. The following command
copies all files from DX0: to DXI: except .OBJ and .SAV files .

• COPY/EXCLUDE DXO:<*.OBJ,*.SAV> DX1:*•*

/IGNORE Use this option to ignore input errors during a copy operation. /IGNORE forces a single-block data
transfer, which you can invoke at any other time with the /SLOWLY option. Use /IGNORE if an input error
occurred when you tried to perform a normal copy operation. This procedure can sometimes recover a file that is
otherwise unreadable. If there is still an error, an error message prints on the terminal, but the copy operation
continues. This option is illegal with /DOS, /TOPS, and /INTERCHANGE.

/IMAGE - If you enter a command line without an option, or if you use the /IMAGE option, the copy operation
proceeds in image mode. Use this method to transfer memory image files and any files other than ASCII or formatted
binary. Note that you cannot reliably transfer memory image files to or from paper tape, or to the line printer or
console terminal. You can image-copy ASCII and binary data with the following restrictions:

I. For ASCII data, there is no check for nulls.
2. For binary data, there is no checksum consideration.

This command copies a text file to a DECtape for storage:

.COPY LETTER.TXT DTO:*•*

/INTERCHANGE[:size] - This option transfers data in interchange (proposed ANSI standard) format between
RT-11 block-replaceable devices and interchange diskettes that are compatible with IBM 3741 format. The option
must appear in the command line after the file to which it applies. If the output file is to be in interchange format,
you can specify the length of each record. The argument, size, represents the record length in characters. The fol
lowing command transfers the RT-I I file WAIT.MAC from device DK: to device DXI: in interchange format,
giving it the name WAIT.MA. The record length is set to 128 (decimal) bytes .

• COPY WAIT.MAC DXl:*•*/INTERCHANGE:128.

/LOG - This option lists on the terminal the names of the files that were copied by the current command. Normally,
the system prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the system prints
the name of each file and asks you for confirmation before the operation proceeds. In this case, the query messages
replace the log, unless you specifically type /LOG/QUERY in the command line. The following example shows a
copy command line and the resulting log .

• COPY DX1:*.SAV DXO:*.SAV
Files coPied:

nx1:DIR.SAV
nx1:nuP.sAv
nx1:PIP.SAV

tc.1 DXO: DIR. SAV
to DXO:DUP+SAV
to DXO: PIF'. SAV

/NOLOG - This option prevents a list of the files copied from printing on the terminal.

/NEWFILES - Use this option in the command line if you want to copy only those files that have the current date.
The following example shows a convenient way to back up all new files after a session at the computer.

.COPY/NEWFILES *•* DX1:*•*
Files co?ied:

DK:A.FOR
DK:B.FOR
DK:C.FOR

to DX1:A.FOR
to DXUB.FOR
to DX1:C.FOR

4-27

COPY Interactive Commands

/OWNER:[nnn,nnn] - Use this option with /DOS to represent a DOS-11 user identification code (UIC) for a
DOS-11 input device. Note that the square brackets are part of the UIC; you must type them. The initial

default for the UIC is [1,1 J . If you supply a UIC, it becomes the default for all future transfers.

/PACKED This option copies files in PDP-IO, DOS, or interchange mode. You can use /PACKED on an input file
specification with the /TOPS, /DOS, or /INTERCHANGE option to transfer files to RT-11 format.

/POSITION:n Use this option when you copy files to or from magtape or cassette. The /POSITION:n option
lets you direct the tape operation; you can move the tape and perform an operation at the point you specify. For
all operations, omitting the argument, n, has the same effect as setting n equal to 0 (n is interpreted as a decimal
number).

For magtape read (copy from tape) operations, the /POSITION :n option initiates these procedures:

1. If n is 0:
The tape rewinds and the system searches for the file you specify. If you specify more than one file, the
tape rewinds before each search. If the file specification contains a wildcard, the tape rewinds only once
and then the system copies all the appropriate files.

2. If n is a positive integer:
The system looks for the file at file sequence number n. If the file it finds there is the one you specify,
the system copies it. Otherwise, the system prints an error message. If you use a wildcard in the file speci
fication, the system goes to file sequence number n and then begins to look for the appropriate files.

3. If n is -1:
The system starts its search at the current position. Note that if the current position is not the beginning
of the tape, it is possible that the file you specify will not be found, even though it does exist on the tape.

For magtape write (copy to tape) operations, the /POSITION:n option has this effect:

1. If n is O:
The tape rewinds before the system copies each file. A warning message prints on the terminal if the system
finds another file on the tape with the same name and file type.

2. If n is a positive integer:
The system goes to file sequence number n or to the logical end of tape, whichever comes first. Then it
enters the file you specify. If you specify more than one file, or if you use a wildcard in the file specifi
cation, the tape does not rewind before the system writes each file, and the system does not check for
duplicate file names.

3. If n is -1:
The system goes to the logical end of tape and enters the file you specify. It does not check for duplicate
file names.

4. Ifn is -2:
The tape rewinds between each copy operation. The system enters the file you specify at logical end-of.
tape or at the first occurrence of a duplicate file name.

The system also has special procedures for handling cassettes. For cassette read (copy from tape) operations, the
/POSITION :n option initiates these procedures:

1. If n is 0:
The cassette rewinds and the system searches for the file you specify. If you specify more than one file,
or if you use a wildcard in the file specification, the cassette rewinds before each search.

2. If n is a positive integer:
The system starts from the cassette's present position and searches for the file you specify. If the system
does not find the file you specify before it reaches the nth file from its starting position, it reads the nth
file. Note that if the starting position is not the beginning of the tape, it is possible that the system will
not find the file you specify, even though it does exist on the tape.

4-28

Interactive Commands COPY

3. Jf n is a negative integer:

The cassette rewinds, then the system follows the procedure outlined in step 2 above.

For cassette write (copy to tape) operations, the /POSITION :n option has this effect:

I. If n is 0:
The cassette rewinds and the system writes the file you specify at the logical end-0f-tape. The system auto
matically deletes any file it finds along the way that has the same name and file type as the file you

specify.
2. If n is a positive integer:

The system starts from the cassette's present position and searches n files ahead, deleting along the way
any file it finds that has the same name and file type as the file you specify. If the system does not
reach the logical end-of-tape before it reaches the nth file from its starting position, it enters the file you
specify over the nth file and deletes any files beyond it on the tape. If the system reaches the logical end
of-tape before it reaches the nth file, it writes the file you specify at the end-of-tape position.

3. If n is a negative integer:
The cassette rewinds, then the system follows the same procedure outlined in step 2 above.

Section 7 .2.1 contains more detailed information about operations involving magtape and cassette.

/PREDELETE - This option deletes a file on the output device if you copy a file with the same name to that de
vice. The system deletes the file on the output device before the copy occurs. Normally, the system deletes a file
of the same name after the copy operation successfully completes. This option is useful for operations involving
devices that have limited space, such as diskette. Be careful when you use the /PREDELETE option; if for any
reason the input file is unreadable, the output file will already have been deleted and you can be left with no
useable version of the file.

/QUERY If you use this option, the system requests confirmation from you before it performs the operation.
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for an operation. The /QUERY option is valid on the COPY command only if both input
and output are in RT-11 format. Note that if you specify /QUERY in a copy command line that also contains a
wildcard in the file specification, the confirmation messages that print on the terminal replace the log messages
that would normally appear. You must respond to a query message by typing Y (or anything that begins with a
Y) and a carriage return to initiate execution of a particular operation. The system interprets any other response
as NO and it does not perform the specific operation. The following example copies three of the four FOR files
stored on DK: to DXI : .

• COPY/QUERY DK:*.FOR DX1!*•*
Files copied:

ItK:A.FOR
ItK:B.FOR
DK!C.FOR
DK!ItEMOFl.FOR

to DXl!A.FOR ? Y
to rix1:B.FOR ? Y
to DXl!C.FOR ? NO
to DX1!DEMOF1.FOR? Y

/NOQUERY - This option suppresses the confirmation message that the system prints for some operations, such
as COPY /DEVICE.

/REPLACE This is the default mode of operation for the COPY command. Jf a file exists on the output device
with the same name as the file you specify for output, the system deletes that duplicate file after the copy opera
tion successfully completes.

/NOREPLACE This option prevents execution of the copy operation if a file with the same name as the output
file you specify already exists on the output device. /NOREPLACE is valid only if both the input and output are
in RT-11 format.

4-29

COPY Interactive Commands

/SETDATE - This option causes the system to put the current date on all files it transfers, unless the current sys
tem date is zero. Normally, the system preserves the existing file creation date when it copies a file block for
block. This option is invalid for operations involving magtape and cassette because the system always uses the
current date for tape files.

/SWWLY This option transfers files one block at a time. On some devices, a single-block transfer increases
the chances of an error-free transfer. Use this option if a previous copy operation failed because of a read or
write error.

/SYSTEM - Use this option if you need to copy system (.SYS) files. If you omit this option, the .SYS files are
excluded from all operations and a message is printed on the terminal to remind you.

/TOPS This option transfers files on DECsystem-IO DECtape to RT-11 format. The option must follow the
input file specification. Note that DECtape is the only valid input device. You cannot perform this copy opera
tion while a foreground job is running. Use /PACKED with /TOPS to convert from TOPS-IO 7-bit ASCII format
to standard PDP-11 byte ASCII format. The following command copies in ASCII format all the files named
MODULE from the DECsystem-IO DECtape OTO: to RT-11 device RK0: .

• COPY/ASCII DTO!MODULE.*/TOPS RKO:*•*

4-30

Interactive Commands D

The D (Deposit) command deposits values in memozy beginning at the location you specify.

I D @ a1.,1 , .. 1

In the command syntax illustrated above, address represents an octal address that, when added to the relocation
base value from the Base command (if you used one), provides the actual address where the system must deposit
the values. The argument, value, represents the new contents of the address. If you do not specify a value, the
system assumes a value of O. If you specify more than one value and separate the vaJues by commas, the system
deposits the values in sequential locations beginning at the location you specify.

The Deposit command accepts both word and byte addresses, but it always executes the command as though you
specified a word address. (If you specify an odd address, the system decreases it by one to make it even.) The
Deposit command stores all values as word quantities.

Use commas to separate multiple values in the command line. Two or more adiacent commas cause the system to
deposit Os at the location you specify and at the following locations, if indiCi!.ted.

Note that you cannot specify an address that references a location outside the area of the backgroundjob. You
can use the D command with GET and START to temporarily alter a nrograrn's execution. Use the SAVE com
mand before START to make the alteration permanent.

The following command deposits Os into locations 300, 302, 304, and 306.

+D ~~00::-c 1 , ,

The next command sets the base address to 0 .

• B

The following command deposits 3705 into location 1000 .

• D 1000=3705

The next command sets the relocation base to 1000 .

• B 1.000

The last command puts 2503 into location 1500 and 22 into location l 502 .

• n soo::::2so:3, 22

4-31

DATE Interactive Commands

Use the DATE command to set or to inspect the current system date.

I DATE[@ dd-mmm-yy]

In the command syntax shown above, dd represents the day (a decimal number from 1 to 31), mmm represents
the first three characters of the name of the month, and yy represents the year (a decimal number from 73 to 99).

To enter a date into the system, specify the date in the format described above. You should do this as soon as
you bootstrap the system. The system uses this date for newly created files, for files that you transfer to magtape
or cassette, and for listing files. The following example enters the current date.

•DATE 18-MAY-77

The system automatically changes the date each day at midnight. However, it does not change the date correctly
at the end of each month. Do this by issuing the DATE command.

To display the current system date, type the DATE command without an argument, as this example shows.

•DATE
l8-Ha1.:1·-77

4-32

Interactive Commands

The DEASSIGN command disassociates a logical device name from a physical device name.

I OEASSIGN(@log;c,1-de,;o,-namel

DEASSIGN

In the command syntax illustrated above, logical-device-name represents an alphanumeric name, from one to three
characters long, that is assigned to a particular device. Note that spaces and tabs are not permitted in the logical
device name.

To remove the assignment of a particular logical device name to a physical device, specify that logical device name
in the command line. The following example disassociates the logical name INP: from the physical device to which
it is assigned .

• DEASSIGN INP!

If you specify a logical name that is not currently assigned, the system prints an error message, as this example
shows .

• DEASSIGN INP!
?KMON-F-Losical name not found

To disassociate all logical names from physical devices, type the DEASSIGN command without an argument. The
following example disassociates all logical device names (except DK: and SY:) from physical devices .

• DEASSIGN

If DK: is assigned to a device (such as DXI :, for example), the following command disassociates DK: from DXI:
and restores the default association of DK: to SY:, the system device .

• UEASSIGN DK:

4-33

DELETE Interactive Commands

The DELETE command deletes the files you specify.

DELETE /DOS

/INTERCHANGE

/EXCLUDE
/LOG
/NEWFILES
/POSITION:n
/[NO] QUERY
/SYSTEM

@filespecs

In the command syntax shown above, filespecs represents the files to be deleted. You can specify up to six files;
separate them by commas. You can enter the DELETE command as one line, or you can rely on the system to
prompt you for information. If you omit the file specification, the DELETE command prompts you with Files?.
If you delete a file accidentally, it is possible to recover the file if you act immediately. A procedure for doing
this is described in Chapter 8.

The system has a special way of handling system (.SYS) files and files that cover bad blocks (.BAD files). So that
you do not delete system files by accident when you use a wildcard in the file specification, the system requires
you to use the /SYSTEM option when you need to delete system files. To delete a .BAD file, you must specify it
by explicitly giving its file name and file type. Since .BAD files cover bad blocks on a device, you usually do not
need to copy, delete, or otherwise manipulate these files.

Another feature of the DELETE command is that the system always requests confirmation from you before it
actually deletes a file. You must respond to the query message by typing Y followed by a carriage return in order
to execute the command.

The following sections describe the options you can use with the DELETE command.

/DOS - Use this option to delete a file that is in 00S-11 or RSTS/E format. Remember that the valid devices for
this type of file are disks and DECtape. You cannot combine any other option with /DOS.

/EXCLUDE - This option deletes all the files on a device except the ones you specify. The following command,
for example, deletes all files from DXl: except .SAV files. Remember to use /SYSTEM if you need to include
.SYS files in the operation.

•DELETE/EXCLUDE DXOl*,SAV
?PIP-W-No .SYS action
Files deleted:

DXOtABC.OLD 1 y
DXO:AAF.OLD ? y
DXO:COMB. ? y
nxo:MERGE.OLD? y

/INTERCHANGE - Use this option to delete from a diskette a file that is in interchange (proposed ANSI standard)
format. You cannot combine any other option with /INTERCHANGE.

/LOG This option lists on the terminal a log of the files that are deleted by the current command. Note that
if you specify /LOG, the system does not ask you for confirmation before execution proceeds. Use both /LOG
and /QUERY to invoke logging and querying.

4-34

Interactwe Commands DELETE

/NEWFILES - Use this option to delete only the files that have the current system date. This is a convenient
way to remove all the new files that you just created in a session at the computer. The following example deletes
the backup files created today .

• DELETE/NEWFILES DX1:*.BAK
Files deleted:

DXl:MERGE+BAK? Y

{POSlTION:n - You can use this option when you delete files from cassette. It permits you to direct the tape
operation; you can move the tape and perform an operation at the point you specify. Omitting the argument, n,
has the same effect as setting n equal to O (n is interpreted as a decimal number). The /POSITION:n option has
the following effect:

1. If n is O:
The cassette rewinds and the system searches for the file you specify. If you specify more than one file,
or if you use a wildcard in the fde specification, the cassette rewinds before each search.

2. If n is a positive integer:
The system starts from the cassette's present position and searches for the file you specify. If the system
does not find the file you specify before it reaches the nth file from its starting position, it deletes the
nth file. Note that if the starting position is not the beginning of the tape, it is possible that the system
will not find the file you specify, even though it does exist on the tape.

3. If n is a negative integer:
The cassette rewinds, then the system follows the procedure outlined in step 2 above.

/QUERY - Use this option to request a confirmation message from the system before it deletes each file. This
option is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for the operation. This is the default mode of operation. Note that specifying /LOG
eliminates the automatic query; you must specify /QUERY with /LOG to retain the query function. You must
respond to a query message by typing Y (or anything that begins with a Y) and a carriage return to initiate execu
tion of a particular operation. The system interprets any other response as NO and it does not perform the opera
tion. The following example shows querying. Only one file is deleted .

• DELETE DX1:*•*
Files deleted!

DX1:ABC.MAC ? N
DX1!AAF.MAC ? Y
DX1!MERGE.FOR 1 N

/NOQUERY - This option suppresses the confirmation message that the system prints before it deletes each file.

/SYSTEM Use this option if you need to delete system (.SYS) files. If you omit this option, the system ftles
are excluded from the delete operation, and a message is printed on the terminal to remind you.

4-35

DIBOL Interactive Commands

The DIBOL command invokes the DIBOL compiler to compile one or more source programs.

DIBOL /LIST[:filespec] [/ALLOCATE:size] @ filespecs
/(NO] OBJECT(:filespec] [/ALLOCATE:size]

/ALPHABETIZE
/CROSSREFERENCE
/[NO) LINENUMBERS
/ONDEBUG
/[NOi WARNINGS

In the command syntax illustrated above, filespecs represents one or more files to be included in the compilation.
If you omit a file type for an input file, the system assumes .DBL. Output default file types are .I.ST for listing
files and .OBJ for object files. To compile multiple source files into a single object file, separate the ftles by plus
(+) signs in the command line. Unless you specify otherwise, the system creates an object file with the same name
as the first input file and gives it an .OBJ file type. To compile multiple files in independent compilations, separate
the files by commas (,) in the command line. This generates a corresponding object file for each set of input files.

Language options are position dependent. That is, they have different meanings depending on where you place
them in the command line. Options that qualify a command name apply across the entire command string. Op
tions that follow a ftle specification apply only to the file (m group of files separated by plus signs) that they
follow in the command string.

You can enter the DIBOL command as one line, or you can rely on the system to prompt you for information.
The DIBOL command prompt is: Files? for the input specification.

The DIBOL-11 Language Reference Manual contains more detailed information about using DIBOL. The following
sections describe the options you can use with the DIBOL command.

/ALLOCATE:size - Use this option with /LIST or /OBJECT to reserve space on the device for the output file.
The argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is
from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE Use this option to alphabetize entries in the symbol and label tables. This is useful for program
maintenance and debugging.

/CROSSREFERENCE - This option generates a symbol cross-reference section in the listing. This options adds as
many as four separate sections to the listing. These sections are: 1) symbol cross-reference table, 2) label cross
reference table, 3) external subroutir'l cross-reference table, 4) COMMON cross-reference table. Note that the
system does not generate a listing by default. You must also specify /LIST in the command line to get a cross
reference listing.

/LINENUMBERS - This option generates line numbers for the program during compilation. These line numbers
are referenced by the symbol table segment, label table segment, and the cross-reference listing; they are especially
useful in debugging DIBOL programs. This is the default operation.

/NOUNENUMBERS This option suppresses the generation of line numbers during compilation. This produces
a smaller program and optimizes execution speed. Use this option to compile only those programs that are already
debugged; otherwise the DIBOL error messages are difficult to interpret.

/UST[:filespec] You must specify this option to produce a DIBOL compilation listing. The /LIST option has
different meanings depending on where you place it in the command line.

4-36

Interactive Commands DIBOL

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the DIBOL compiler generates a listing that prints on the line printer. If you follow /LIST with a device name,
the system creates a listing file on that device. If the device is a file-structured device, the system stores the listing
file on that device, assigning it the same name as the input file with a .l.ST file type. The following command pro
duces a listing on the terminal .

• DIBOL/LIST:TT: A

The next command creates a listing file called A.l.ST on RK.3: .

• DIBOL/LIST:RK3: A

If the /UST option contains a name and file type to override the default of .l.ST, the system generates a listing
file with that name. The following command, for example, compiles A.DBL and B.DBL together, producing files
A.OBJ and FILELOUT on device DK: .

• DIBOL/LIST!FILE1.0UT AtB

You cannot use a command line like the next one. In this example, the second listing flle would replace the first
one and, therefore, cause an error .

• DIBOL/LIST!FILE2 A,B

Another way to specify /UST is to type it after the file specification to which it applies. To produce a listing
file with the same name as a particular input file, you can use a command similar to this one:

.DIBOL AtB/LIST!RK3!

The command snown above compiles A.DBL and BDBL together, producing files DK:A.OBJ and RK.3:B.l.ST. If
you specify a file name on a /LIST option following a file specification in the command line, 1t has the same mean
ing as when it follows the command. The following two commands have the same results:

.DIBOL A/LI!H!B

• DIBOL/LIST :r~ A

Both the above commands generate as output files A.OBJ and B.l.ST.

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they
follow in the command string. For example:

.DIBOL A/LIST,B

This command compiles A.DBL, producing A.OBJ and A.LST. It also compiles B.DBL, producing B.OBJ. However,
it does not produce any listing file for the compilation of B.DBL.

/OBJECT[:filespec] - Use this option to specify a file name or device for the object file. Because DIBOL creates
object files by default, the following two commands have the same meaning .

• DIBDL A

• DIBOL/DB~JECT A

4.37

DIBOL Interactive Commands

Both commands compile A.DBL and produce A.OBJ as output. The /OBJECT option functions like the /LIST
option; it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example,
compiles A.DBL and ·a.DBL separately, creating object files A.OBJ and B.OBJ on RKl : .

• DIBOL/OBJECT!RK1! A,B

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles ADBL and B.DBL together, creating files B.LST and B.OBJ .

• DIBOL AtB/LIST/OBJECT

/NOOBJECT - Use this option to suppress creation of an object file. As a command option, /NOOBJECT sup
presses all object files; as a file option, it suppresses only the object file produced by the related input files. In
this command, for example, the system compiles A.DBL and B.DBL together, producing files A.OBJ and B.LST.
It also compiles C.DBL and produces C.LST, but does not produce C.OBJ .

• DIBOL AtB/LIST,C/NOOBJECT/LIST

/ONDEBUG - This option includes a symbol table in the object file. You can then use a debugging program to
find and correct errors in the object file.

/WARNINGS - Use this option to include warning messages in DIBOL compiler diagnostic error messages. These
messages call certain conditions to your attention, but they do not interfere with the compilation. This is the
default operation.

/NOWARNINGS - Use this option to suppress warning messages during compilation. These messages are for your
information only; they do not affect the compilation.

•,

4-38

Interactive Commands DIFFERENCES

The DIFFERENCES command compares two files and lists the differences between them in a file or on a device.

DIFFERENCES

{

/OUTPUT:filespec [/ ALLOCATE :size)l
/PRINTER
/TERMINAL

/BLAN KLINES
/[NO) COMMENTS
/FORMFEED
/MATCH:n
/[NO] SPACES

@ filespec 1,filespec 2

In the command syntax shown above, filespecl represents the first file to be compared and filespec2 represents
the second file to be compared. The default output device is the console terminal. The default file type for input
files is .MAC; for output files it is .DIF. You can specify the entire command on one line, or you can rely on the
system to prompt you for information. The DIFFERENCES command prompts are File 1? and File 2?.

The DIFFERENCES command is particularly useful when you want to compare two similar versions of a source
program. A file comparison listing highlights the changes made to a program during an editing session. The follow
ing sections describe the various options you can use with the DIFFERENCES command. Following the descrip
tions of the options is a sample listing and an explanation of how to interpret it.

/ALLOCA TE:size Use this option with /OUTPUT to reserve space on the device for the output listing file. The
value, size, represents the number of blocks of space to allocate. The meaningful range for this value is from I to
32767. A value of I is a special case that creates the largest file possible on the device.

/BLANKUNES - Use this option to include blank lines in the file comparison. Normally, the system disregards
blank lines.

/COMMENTS - When you use this option, the system includes in the file comparison all assembly language com
ments (text on a line preceded by a semicolon) it finds in the two files. This is the default operation.

/NOCOMMENlS Use this option to exclude comments (text on a line preceded by a semicolon) and spacing
(spaces and tabs) from the comparison. This is useful if you are comparing two MACRO source programs with
similar contents but different formats.

/FORMFEED - Use this option to include form feeds in the output listing. Normally, the system compares form
feeds but does not include them in the output listing.

/MATCH:n - Use this option to specify the number of lines from each file that must agree to constitute a match.
The value, n, is an integer in the range 1 to 200. The default value for n is 3.

/OUTPUT:filespec - Use this option to specify a device and file name for the output listing file. Normally, the
listing appears on the console terminal. If you omit the file type for the listing file, the system uses .DIF.

/PRINTER Use this option to print the listing of differences on the printer. Normally, the listing appears on the
console terminal.

/SPACES - This option includes spacing (spaces and tabs) in the file comparison. This is the default operation.
This is particularly useful when you are comparing two text files and must pay careful attention to spacing.

4-39

DIFFERENCES Interactive Commands

/NOSPACES - Use this option to exclude spacing (spaces and tabs) from the file comparison. This is useful when
you are comparing two source programs whose contents are similar but whose formats are different.

/TERMINAL - Use this option to make the list of differences appear on the console terminal. This is the default
operation.

To understand how to interpret the output listing, first look at the following two text files .

• TYPE FILE1.TXT
FILE1

HERE'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR, MAN?

WHA KENS, BEFORE HIS LIFE MAY END,
WHAT HIS SHAME MAY BE 0' CARE, MAN?

THEN CATCH THE MOMENTS AS THEY FLY,
AND USE THEM AS YE OUGHT, MAN! -

BELIEVE ME, HAPPINESS IS SLY,
AND COMES NOT AY WHEN SOUGHT, MAN.

.TYPE FIL..E2.TXT
FILE1

-···SCOTT I SH SONG

HERE'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR, MAN?

WHA KENS, BEFORE HIS LIFE MAY END,
WHAT HIS SHARE MAY BE O' CARE, MAN?

THEN CATCH THE MOMENTS AS THEY FLY,
AND USE THEM AS YE OUGHT, MAN: -

BELIEVE ME, HAPPINESS IS SHY,
AND COMES NOT AY WHEN SOUGHT, MAN.

-··· SCOTTISH SONG

Notice that FILEl .TXT contains two typing errors. In the fourth line of the song, "shame" should be "share."
In the seventh line, "sly" should be "shy."

The following command compares the two files, creating a listing file called DIFF .TXT .

• DIFFERENCES/MATCH!1/0UTPUT:DIFF.TXT FILE1.TXT,FILE2.TXT

%FILES ARE DIFFERENT

The following listing shows file DIFF .TXT .

• TYPE DIFF.TXT
1) 1
2) l.

FILEl.
FIU:1

4-40

1) 1
1)

Interactive Commands

WHAT HIS SHAME MAY BE 0' CARE, MAN?
THEN CATCH THE MOMENTS AS THEY FLY,

2)1 WHAT HIS SHARE MAY BE 0' CARE, MAN?
2) THEN CATCH THE MOMENTS AS THEY FLY,

1)1 BELIEVE ME, HAPPINESS IS SLY,
1) AND COMES NOT AY WHEN SOUGHT, MAN+

2)1 BELIEVE ME, HAPPINESS IS SHY,
2) AND COMES NOT AY WHEN SOUGHT, MAN+

If the files are different, the system always prints the first line of each file as identification.

1) 1
2) 1

FILE1
FILE1

DIFFERENCES

The numbers at the left margin have the form n)m, where n represents the source file (either 1 or 2) and m repre
sents the page of that file on which the specific line is located.

The system next prints a blank line and then lists the differences between the two files. The /MATCH:n option
was used in this example to set to I the number of lines that must agree to constitute a match.

The first three lines of the song are the same in both files, so they do not appear in the listing. The fourth line
contains the first discrepancy. The system prints the fourth line from the first file, followed by the next matching
line as a reference.

1) 1
1)

WHAT HIS SHAME MAY BE 0' CARE, MAN?
THEN CATCH THE MOMENTS AS THEY FLY,

The four asterisks terminate the differences section from the first file.

The system then prints the fourth line from the second file, again followed by the next matching line as a refer
ence:

2)1 WHAT HIS SHARE MAY BE 0' CARE, MAN?
2) THEN CATCH THE MOMENTS AS THEY FLY,

The ten asterisks terminate the listing for a particular difference section.

The system scans the remaining lines in the files in the same manner. When it reaches the end of each file, it
prints the %FILES ARE DIFFERENT message on the terminal.

If you compare two files that are identical, the system does not create an output file or listing, as this example
shows.

+DIFFERENCES FILE1.TXT,FILE1,TXT
NO DIFFERENCES ENCOUNTERED

4-41

DIRECTORY Interactive Commands

The DIRECTORY command lists information you request about a device, a file, or a group of files.

DIRECTORY { /OUTPUT:filespec [/ ALLOCATE :size)}
/PRINTER
/TERMINAL

/BADBLOCKS [/Fl LES)

/DOS[/OWNER: [nnn,nnn))

/INTERCHANGE

/TOPS

/VOLUMEID

(/BEFORE[date))
J /DA TE [date) (
) /NEWFILES (
l tSINCE [date) J

l /ALPHABETIZE[/REVERSE] l
/ORDER[:category) [/REVERSE)
/SORT[:category] [/REVERSE]
/BLOCKS
/BRIEF
/COLUMNS:n
/DELETED
/EXCLUDE
/FAST
/FREE
/FULL
/OCTAL
/POSITION
/SUMMARY

[@ filespecs[/BEGINI]

In the command syntax shown above, filespecs represents the device, file, or group of files whose directory informa
tion you request. The DIRECTORY command can list directory information about a specific device, such as the
number of files stored on the device, their names, and their creation dates. It can list details about certain ftles,
too, including their names, their file types, and their size in blocks. You can specify up to six files explicitly, but
you can obtain directory information about many files by using wildcards in the file specification. The DIRECTORY
command can also print a device directory summary, and it can organize its listings in several ways, such as alpha
betically or chronologically.

Normally, the DIRECTORY command prints listings in two columns on the terminal. Read these listings as you
would read a book: read across the columns, moving from left to right, one row at a time. Directory listings that
are sorted (with /ALPHABETIZE, /ORDER, or /SORT) are an exception to this. Read these listings by reading
the left column from top to bottom, then reading the right column from top to bottom.

The DIRECTORY command does not prompt you for any information. If you omit the file specification, the
system lists directory information about device DK:, as this example shows.

442

Interactive Commands DIRECTORY

+DIRECTORY
19-Ma':1-77

DXMNSJ.SYS 88 08-·Apr-77 AAF .MAC 2 19-Apr·-77
FIX463.SAV 2 29-Jul-76 ABC .MAC 4 19·-Apr--77
JMUL .OBJ 1 03-Ma!::1-77 DEMOFG.MAC 5 18-·Jan··-77
PTCH .BAK 1 05··-Ma\~-77 CT .SYS 5 OB-·Ar:-r····77
DX .SYS 3 08-Apr-77 MERGE • For~ 6 24-AF-r·-77
MYPROG.MAC 7 24-Feb-77 VTMAC .MAC 7 31-Aus·-76
ALIB .OBJ 3 03-May-·77 MX .SYS 9 08-Apr-77
DXMNFB.SYS 97 08-·Apr-77 DIR .SAV 16 08-Apr--77
DUP +SAV 17 13·-Apr-77 PIP .SAV 16 14-Ai,, r··· 77

18 Files, 289 Blocks
191 Free blocks

If you specify only a device in the file specification, the system lists directory information about all the files on
that device. If you specify a file name, the system lists information about just that file, as this example shows .

• DIRECTORY DXO:MYPROG.MAC
19-Ma!::1-77

MYPROG+MAC 7 24-Feb-77
1 Files, 7 Blocks
191 Free blocks

The following sections describe the options you can use with the DIRECTORY command and provide sample
directory listings. Some of the options accept a date or part of a date as an argument. The syntax for specifying
the date is:

[:dd] [:mmm] [:yy]

where

dd represents the day (a decimal integer in the range 1-31).

mmm represents the first three characters of the name of the month.

yy represents the year (a decimal integer in the range 73-99).

The default value for the date is the current system date. If you specify just the day, the system interprets it as
the given day of the current month and year. If you specify just the month, the system interprets it as the first
day of the given month in the current year. If you specify only the year, the system interprets it as the start of
that year. If the current system date is not set, it is considered O (the same as for an undated file in a directory
listing).

/ALLOCATE:size - Use this option with /OUTPUT to reserve space on the device for the output listing file.
The value, size, represents the number of blocks of space to allocate. The meaningful range for this value is from
I to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE - This option lists the directory of the device you specify in alphabetical order by file name
and file type. It has the same effect as the /ORDER:NAME option.

/BADBLOCKS Sometimes devices (disks and DECtapes) are manufactured with bad blocks, or they develop
bad blocks as a result of use and age. Use the /BADBLOCKS option to scan a device and locate bad blocks on it.
The system prints the absolute block number of these blocks on the devices that return hardware errors when

443

DIRECTORY Interactive Commands

the system tries to read them. This procedure does not destroy data that is already stored on the device. Remember
that block numbers are octal and the first block on a device is block 0. If a device has no bad blocks, only the
heading prints, as this example shows .

• DIRECTORY /BAitBLOCKS DXl.:
BAD BLOCKS TYPE FILENAME REL BLK

/BEFORE[date] - This option prints a directory of files created before the date you specify. The following com
mand lists on the terminal all files stored on device DXO: that were created before April 1977 .

• DIRECTORY/BEFORE:APR DXO:
24-MaY-77

FIX463.SAV 2 29-Jul-76
MYPROG.MAC 7 24-Feb-77

4 Files, 21 Blocks
191 Free blocks

DEMOFG.MAC
VTMAC .MAC

5 18-- ... Jan-:77
7 31-Aus-·76

/BEGIN - This option lists the directory of the device you specify, beginning with the file you name and includ
ing all the files that follow it in the directory. The occurrence of file names in the listing is the same as the order
of the files on the device.

The following example lists the file VTMAC.MAC on device DXO: and all the files that follow it in the directory .

• DIRECTORY DXO:VTMAC.MAC/BEGIN
24-May-77

VTMAC .MAC
MX • SYS
DIR • SAV
PIP .SAV

7 31·-A•Jst-76
9 08-Ar:• r·-77

16 08-Apr-77
16 14-APr-7'7

7 Files, 165 Blocks
191 Free blocks

ALIB • OB.J
DXMNFB.SYS
DUP .SAV

3 03-May·-77
97 08-APr-77
17 13·-APr·-7'7

/BLOCKS - This option prints a directory of the device you specify and includes the starting block number in
decimal of all the files listed. The following example lists the directory of DXO:, including the starting block
numbers of files .

• DIRECTORY/BLOCKS DXO:
19-Ma!:i-77

DXHNSJ.SYS 88 08-APr-77 14 AAF .MAC 2 19·-Ar:.r-·77 102
FIX463.SAV 2 29-Jul-76 104 ABC .MAC 4 19-Apr-77 106
JMUL .OBJ 1 03-Ma!:1-77 110 DEMOFG.MAC 5 18·-Jan-77 138
PTCH .BAK 1 05-Ma!:1-77 143 CT .SYS 5 08·-AP r-77 150
DX .SYS 3 08-APr-77 155 MERGE .FOR 6 24··AF•r-77 158
MYPROG.MAC 7 24-Feb-77 l.64 VTMAC +MAC 7 ;31-Aus-··76 171
ALIB .OBJ 3 03-MaY-77 178 MX .SYS 9 08·-Apr-77 189
DXHNFB.SYS 97 08-APr-77 207 D:CR .SAV 16 08-APr-77 327
DUF' .SAV 17 13-APr-77 343 PIP .SAV 16 14-Apr-77 360

18 Files, 289 Blocks
191 Free blocks

/BRIEF - This option lists only file names and file types, omitting file lengths and associated dates. It produces
a 5-column listing, as the following example shows.

444

Interactive Comm.ands DIRECTORY

.DIRECTORY/BRIEF nxo:
19'-Ha!:1-77

DXMNSJ.SYS AAF .MAC FIX463.SAV ABC +MAC JHUL .OBJ
DEMOFG.MAC PTCH .BAK CT .SYS DX .SYS MERGE: .FOR
MYPROG.HAC VTMAC .MAC ALIB .OBJ MX .SYS DXMNFB.SYS
DIR .SAV DUP .SAV PIF' .SAV

18 Files, 289 Blocks
191 Free blocks

/COLUMNS:n - Use this option to list a directory in a specific number of columns. The value, n, represents an
integer in the range 1.9. Normally, the system uses two columns for regular listings and five columns for brief
listings. The following example lists the directory information for device MTO: in one column.

+DIRECTORY/COLUMNS:1/POSITION MTO:
15-APt·-77

VTMAC .MAC 7 15-APr-77 1
SYCND .MAC 5 15-·APr-77 2
DIRECT.MAC 112 15-APr-77 3
PIPSYM.MAC 4 15-Apr-77 4
PIF'005.MAC 176 15-A,=,r-77 5
VTMAC .MAC 7 15-Apr-77 6
SYCND .MAC 5 15-APr-77 7
DIRECT.MAC 112 15-APr-77 8
PIPSYM.MAC 4 15--Apr-77 9
PIP005.HAC 176 15-Apr-77 10

10 Files, 608 Blocks

In the example shown above, the numbers in the rightmost column represent the magtape file sequence numbers,
which appear because of the /POSITION option.

/DATE[date] - Use this option to include in the directory listing only those files with the date you specify. The
following command lists all the files on device DXO: that were created on 8 April 1977 .

• DIRECTORY/DATE:8:APR:77 Dxo:
19-Ms!-!1-77

DXMNSJ.SYS 88 08-APr-77
DX .SYS 3 08-APr-77
DXMNFB.SYS 97 08-Apr-77

6 Files, 218 Blocks
191 Free blocks

CT
MX
DIR

.SYS

.SYS

.SAV

5 08-APr-77
9 08-APr-77

16 08-Apr-77

/DELETED - This option lists a directory of the device you specify, listing the file names, types, sizes, creation
dates and starting block numbers in decimal of files that have been deleted but whose file name information has
not been destroyed. The file names that print represent either tentative files or files that have been deleted. This
can be useful in recovering files that have been accidentally deleted. Once you identify the file name and location,
you can use DUP to rename the area. See Section 8.2.1 for this procedure. The following command lists files on de
vice DTI: that have been deleted .

• DIRECTORY/DELETED DT1:
19-Ma!:1-77

TEST .LST 530 27-APr-77 48
0 Files, 0 Blocks
O Free blocks

4-45

DIRECTORY Interactive Commands

Note in the example shown above that, since a deleted file does not really exist, the total number of files,
blocks, and free blocks is 0.

/DOS - Use this option to list the directory of a device that is in RSTS/E or DOS/BATCH format. The only
other options valid with /DOS are /BR1EF, /FAST, and /OWNER. The valid devices are DECtape and RKOS.

/EXCLUDE This option lists a directory of all the files on a device except those files you specify. The follow-
ing example lists all files on DXO: except the .SAV and .SYS files •

• DIRECTORY/EXCLUDE DXOIC*+SAV,*.SYS)
24-MaY-77

AAF .MAC 2 19-Apr-77
JMUL .OBJ 1 .03-MaY-77
PTCH .BAK 1 05-May-77
MYPROG.MAC 7 24-Feb-77
ALIB .OBJ 3 03-Ma~-77

9 Files, 36 Blocks
191 Free blocks

ABC .MAC
DEMOFG.MAC
MERGE .FOR
VTMAC .MAC

4 19-·AF-r-77
5 1 s~-.Jan-· 77
6 24-Ar--r-77
7 31-Aus-76

/FAST This option lists only file names and file types, omitting file lengths and associated dates. This option
is the same as /BRIEF.

/FILES Use this option with /BADBLOCKS to print the file names of bad blocks. This is particularly useful if
the device is not a standard RT-11 directory-structured device. If the system does not find any bad blocks, it
prints only the heading, as this example shows .

• DIRECTORY/BADBLOCKS/FILES DTt:
BAD BLOCKS TYPE FILENAME REL BLK

/FREE ~ Use this option to print a directory of unused areas and their size·. This example lists the unused areas
on device DK:.

+DIRECTORY/FREE
19-Ma~-77

-::: UNUSED >~ 1 ·< UNUSED :> 1
·< UNUSED :> 1 ·(UNUSED :> 2
-::: UNUSED ..

_.,;. 1 .::: UNUSED :> 2
~::: UNUSED)· 24 ·< UNUSED >· 38
~< UNUSED :> 40 ·< UNUSED ~~ .~ 3
~(UNUSED >· 1 ·(UNUSED)· 2
-::: UNUSED)· 5 ~::: UNUSED ~:. 2
<: UNUSED :::. 98

0 Files, 0 Blocks
221 Free block~;;

/FULL - This option lists the entire directory, including wrnsed areas and their sizes in blocks (decimal). The
following example lists the entire directory for device OTO: .

• D1RECTORY/FULL DTO:
19-Ma1::1-77

EDIT! .DEM
FlX463+SAV
EDIT3 .DEM
PUTSTR.OBJ

1 03-·Ma1::1-77
2 29-JtJl-76
1 03-Ma1::1·-77
7 14·-AP r-77

EDIT2 .DEM
FU.El • TXT
FORTRA.SAV
PROMPT.KEP

446

1 03-Ma1::1-77
1 19-Ma!:1-77

201 O:l-Ma1::1-77
2 05-Ma~-77

Interactive Commands DIRECTORY

PROHPT.SAV 2 05-HaY-77 ROOT .SAV 3 05-May-77
ROOT .KEP 3 05· .. Ma!:1-77 PROMPT.BAK 2 05-Ha~:1-77
PROMPT.MAC 2 05-HaY-77 PROMPT.OBJ 1 05-May-77
OVRLAY.BAK 1 05-Ma1::1-77 PTCH .BAK 1 05-HaY-77
PTCH .HAC 1 05-MaY-77 OVRLAY.MAC 1 05·-HaY-77
PTCH +OBJ 1 05-MaY-77 OVRLAY+OB.J 1 05-May-77
FILE2 .TXT 1 19-MaY-77 .::: UNUSED> 328

21 Files, 236 Bloclt .. s
328 Free blocks

/INTERCHANGE - Use this option to list the directory of a diskette that is in interchange (proposed ANSI
standard) format. The only other options valid with /INTERCHANGE are /BRIEF and /FAST.

/NEWFILES - This option includes in the directory listing only those files that were created today. This is a
convenient way to list the files you created in a session at the computer. The following command lists the new
files on 19 May 1977

.DIRECTORY/NEWFILES DTO:
19-HaY-77

FILE1 +TXT 1 19-HaY-77
2 Files, 2 Blocks
328 Free blocks

FILE2 .TXT 1 19-May-77

/OCTAL - This option lists the sizes (and starting block numbers if you also use /BLOCKS) in octal. If the device
you specify is a magtape or cassette, the system prints the sequence numbers in octal. The following example
shows an octal listing of device DXO:.

.DIRECTOPY./OCTAL. DXO!
19-MaY-77

DXMNSJ.SYS 130 08-APr-77 AAF .MAC 2 19-AF-r-77
FIX463.SAV 2 29-Jul-76 ABC .MAC 4 19·-APr-77
JHUL +OBJ 1 03-HaY-77 DEHOFG.MAC 5 18-Jan-77
PTCH .BAK 1 05-·Ha~~-77 CT .SYS 5 08-Apr-77
DX .SYS 3 08-APr-77 MERGE .FOR 6 24-APr-77
MYPROG,HAC 7 24-Feb-77 VTHAC .MAC 7 31-Aus-76
ALIB .OBJ 3 03-Ma!:1-7/ MX .SYS 11 08-APr-·77
DXMNFB.SYS 141 CB-Apr-77 DIR .SAV 20 08-APr-77
DUP +SAV 21 13-APr-77 PIP .SAV 20 14-APr-77

18 Files, 441 Blocks
277 Free blocks

/ORDER[:category J This option sorts the directory of a device according to the category you specify. Table
4-3 summarizes the categories and their functions.

Table 4-3 Sort Categories

Catesu,y Explanation

DATE Sorts the directnry chronologically by creation date. Files that have the same date are sorted alphabetically by file name
and file type

NAME Sorts the directory alphabetically by file name. Files that have the same file name are sorted alphabetically by file type
(this has the same effect as the / ALPHABETIZE option).

POSITION lists the files in order by their position on the deVice. This is the same as using /ORDER with no category.

SIZE Sorts the directory based on file size in block&. Files that are the same size are sorted alphabetically by file name and
file type.

TYPE Sorts the directory alphabetically by file type. Files that have the same ffle type are sorted alphabetically by file name.

4-47

DIRECTORY Interactive Commands

The following examples list the directory of device DXO:, in order by each of the categories .

• DIRECTORY/ORDER:DATE nxo:
19-Ma1;:1-77

FIX463.SAV 2 29-· .. hJl·-76 MX .SYS 9 08-APr-77
VTMAC .MAC 7 31-Aus····76 DUP .SAV 17 13-APr-77
DEMOFG.MAC 5 18-Jan-77 PIP .SAV 16 14-APr-77
MYPROG.MAC 7 24-Feb-77 AAF .MAC 2 19--Apr-77
CT .SYS 5 08-Apr-77 ABC .MAC 4 19-APr-77
DIR .SAV 16 08-APr-77 MERGE .FOR 6 24-APr-77
DX .SYS 3 08-APr-·77 ALIB .OBJ 3 03-Ma!:1-77
DXMNFB.SYS 97 08-APr-77 JMUL .OB.J 1 03-Ma1;:1-77
DXMNSJ.SYS 88 08-APr-77 PTCH .BAK 1 05-Ma'::I-:-77

18 Files, 289 Blocks
191 Free blocks

.DIRECTORY/ORDER:NAME rixo:
19-Ma!:1-77

AAF .MAC 2 19-APr-·7"7 DXMNSJ.SYS 88 08-APr-77
ABC +MAC 4 19-APr-77 FIX46:LSAV 2 29·-Jul· .. ·76
ALIB .OBJ 3 03-Ma!:1-77 JMUL .OBJ 1 03-Ma1:1-77
CT .SYS 5 08-APr--77 MERGE .FOR 6 24-APr-77
DEMOFG.MAC 5 18-Jan·-77 MX .sys 9 08-APr-77
DIR .SAV 16 08-APr·-77 MYPROG.MAC 7 24-Feb·-77
DUP .SAV 17 13-APr-77 PIP .SAV 16 14-Apr-77
DX .SYS 3 08--APr-77 PTCH .BAK 1 05-Ma!:1-77
DXMNFB.SYS 97 08-Apr-77 VTMAC .MAC 7 31-Aus-76

18 Files, 289 Blocks
191 Free blocks

.DIRECTORY/ORDER:POSITION rixo:
19-Ma~-77

DXMNSJ.SYS 88 08-APr-77 MERGE .FOR 6 24-APr-77
AAF .MAC 2 19-APr-77 MYPROG.MAC 7 24-Feb·-77
FIX463.SAV 2 29-Jul··-76 VTMAC .MAC 7 31-Au!=i-76
ABC .MAC 4 19-APr-77 ALIB .OBJ 3 03-Ma'=l-77
JMUL .OBJ 1 03-Ma!:1··77 MX .SYS 9 08-Apr-77
DEMOFG.MAC c- 18-Jan-77 DXMNFB.SYS 97 08·-AP r--77 .J

PTCH .BAK 1 05-May-77 DIR .SAV 16 08-APr-77
CT .SYS 5 08-APr-77 DUP .SAV 17 13-APr-77
DX .SYS 3 08-APr· .. ·77 PIP .SAV 16 14-APr-77

18 Files, 289 Blocks
191 Free blocks

.DIRECTORY/ORDER:SIZE nxo:
19-MaY-77

JMUL .OBJ 1 03-MaY-·77 MERGE .FOR 6 24-APr·-77
PTCH .BAK 1 05- Ma!~-77 MYPROG.MAC 7 24-Feb-77
AAF .MAC 2 19··-AP r-77 VTMAC .MAC 7 31··-Aus-76
FIX463.SAV ,,, 29-Jul-76 MX .SYS 9 08-AP r·"· 77 4

ALIB .OBJ 3 03-Ma~-77 DIR .SAV 16 08-APr-·77

448

Interactive Commands DIRECTORY

DX +SYS 3 08-APr-77 PIP +SAV 16 14-APr-77
ABC +MAC 4 19-Ar--r-77 DUP +SAV 17 13-Apr-77
CT ,SYS 5 08· .. Apr·-··77 DXMNSJ+SYS 88 08-APr-77
DEMOFG.MAC 5 18···,Jan-77 DXMNFB+SYS 97 08-APr-77

18 Files, 289 Bloc:ks
191 Free blocks

.DIRECTORY/ORDER!TYPE DXO!
19-MaY-77

PTCH +BAK 1 05-Ma!:1-77 DIR .SAV 16 08-APr-77
MERGE .FOR 6 24-APr·-77 DUP ,SAV 17 13-APr-77
AAF .MAC 2 19-APr·-77 FIX463.SAV 2 29-Jul ·-76
ABC .MAC 4 19-Apr-77 PIP .SAV 16 14-APr-77
DEMOFG.MAC 5 18-·Jan-77 CT .SYS 5 08-APr-77
MYPROG.MAC 7 24-·Feb-77 DX .SYS 3 OB-APr-77
VTMAC .MAC 7 31 ··A•.Jsi-76 DXMNFB.SYS 97 08-APr-77
ALIB .OB.J 3 03-Ma!:1-77 DXMNSJ.SYS 88 08-APr-77
JMUL .OBJ 1 03-MaY-77 MX .SYS 9 08-Apr-77

18 Files, 289 Blocks
191 Free blocks

/OUTPUT:rtlespec - Use this option to specify a device and file name for the output listing file. Normally, the
directory listing appears on the console terminal. If you omit the file type for the listing file, the system uses .DIR.

/OWNER:[nnn,nnn] - Use this option with /DOS to specify a user identification code (UIC). Note that the square
brackets are part of the UIC; you must type them.

/POSffiON - Use this option to list the fde sequence numbers of files stored on a magtape. See /COLUMNS:n
for a sample listing.

/PRINTER - Use this option to print the directory listing on the line printer. The default output device is the
terminal.

/REVERSE - This option lists a directory in the reverse order of the sort you specify with /ALPHABETIZE,
/ORDER, or /SORT. The following example sorts the directory of DXO: and lists it in reverse order by size .

• DIRECTORY/ORDER!SIZE/REVERSE rixo:
24-Ma!:i-77

[tXMNFB. SYS 97 08-APr-77 CT .SYS "" ,J 08-·Apr-77
DXMNSJ.SYS 88 08-APr·-77 DEMOFG.MAC 5 18-Jan-77
DUF' +SAV 17 13·-Apr-77 ABC +MAC 4 19-APr-77
DIR .SAV 16 08-APr-77 ALIB .OBJ 3 03-·Malz-77
PIF' .SAV 16 14-Ar--r-77 DX .SYS 3 08-APr·-77
MX .SYS 9 08-Apr-77 AAF +MAC 2 19-APr-77
HYPROG.MAC 7 24-Feb-77 FIX463.SAV 2 29-~Jul-76
VTMAC .MAC 7 31.-AIJs-76 JMUL .OBJ 1 03-Ma!:1-77
MERGE .FOR 6 24-APr-77 PTCH .BAK 1 05-Ma\:l-77

18 Files, 289 Blocks
191 Free blOd!.S

/SINCE[date] - This option lists a directory of all files stored on the device you specify that were created on or
after the date you specify. The following command lists only those files on DXO: that were created on or after
3 May 1977.

4-49

DIRECTORY Interactive Commands

.DIRECTORY/SINCE!3!MAY!77 DXO!
19-Ma'::1-77

JMUL +OBJ 1 03-MaY-77 PTCH .BAK
ALIB .OBJ 3 03-MaY-77

3 Files, 5 Blocks
191 Fref.~ blocks

1 OS··Ma'::1-77

/SORT[:category] - This option sorts the directory of a device according to the category you specify. Titis is the
same as /ORDER[:category].

/SUMMARY - This option lists a summary of the segment structure of the device directory. The following example
lists the segment structure of the directory for device DK:.

,DIRECTORY/SUMMARY
19-May-77

72 Files in sesment 1

46 Files in sesment :l

36 Files in sesment 4

33 Files in segment 3

33 Files in sesment, "'" ,.J

16 Available sesments, 5 in 1.J!,,e

220 Files, 4543 Inocks
219 Free blocks

/TERMINAL - This option lists directory information on the console terminal. This is the default operation.

/TOPS - Use this option to list the directory of a DECtape that is in PDP-10 format. The only other options
valid with /TOPS are /BRIEF and /FAST.

/VOLUMEID - Use this option to display the volume identification of a particular device. The following example
displays the volume ID of device DK:.

,DIRECTORY/VOLUMEID

VOL I[l==BL10
OWNER NAME::::JOYCE

4-50

Interactive Commands DUMP

The DUMP command can print on the terminal or line printer, or write to a file all or any part of a file in octal
words, octal bytes, ASCII characters, and/or Radix-SO characters. It is particularly useful for examining directories
and files that contain binary data.

DUMP l /OUTPUT :filespec [/ALLOCATE :size]}
/PRINTER

/TERMINAL

/[NO) ASCII
/BYTES
/IGNORE
/ONL Y:block
/RAD50
[/START:block) 1/END:block)
/WORDS

@ filespec

1n the command syntax shown above, filespec represents the device or file you need to examine. If you do not specify
an output file, the listing prints on the line printer. If you do not specify a file type for an output file, the system uses
.DMP. You can specify the entire command on one line, or you can rely on the system to prompt you for information.
The DUMP command prompt is Device or file?.

Notice that some of the options (/ONLY, /START, and /END) accept a block number as an argument. Remember
that all block numbers are in octal, and that the first block of a device or file is block 0. To specify a decimal
block number, follow the number by a decimal point. If you are dumping a file, the block numbers you specify
are relative to the beginning of that file. If you are dumping a device, the block numbers are the absolute (physi
cal) block numbers on that device.

The system handles operations that involve magtape and cassette differently from operations involving random ac
cess devices. If you dump an RT-11 file-structured tape and specify only a device name in the file specification,
the system reads only as far as the logical end-of-tape. Logical end-of-tape is indicated by an end-of-file label fol
lowed by two tape marks. For non-file-structured tape, logical end-of-tape is indicated by two consecutive tape
marks. If you dump a cassette and specify only the device name in the file specification, the results are unpredict
able. For magtape dumps, tape mark messages appear in the ouptut listing as the system encounters them on the
tape.

The following sections describe the options you can use with the DUMP command. Following the options are some
sample listings and an explanation of how to interpret them.

/ALLOCATE:size - Use this option with /OUTPUT to reserve space on the device for the output listing file. The
value, size, represents the number of blocks of space to allocate. The meaningful range for this value is from l to
32767. A value of -1 is a special case that creates the largest file possible on the device.

/ASCII - This option prints the ASCII equivalent of each octal word or byte that is dumped. A dot (.) represents
characters that are not printable. This is the default operation.

/NOASCII Use this option to suppress the ASCII output, which appears in the right hand column of the listing.
This allows the listing to fit in 72 columns.

/BYTES - Use this option to display information in octal bytes.

/END:block - Use this option to specify an ending block number for the dump. The system dumps the device or
file you specify beginning with block 0 (unless you use /START) and continuing until it dumps the block you
specify with /END.

4-51

DUMP Interactive Commands

/IGNORE - Use this option to ignore errors that occur during a dump operation. Use /IGNORE if an input error
occurred when you tried to perform a normal dump operation.

/ONLY:block - Use this option to dump only the block number you specify.

/OUTPUT:filespec Use this option tu specify a device and file name for the output listing file. Normally, the
listing appears on the line printer. If you omit the file type for the listing file, the system uses .DMP.

/PRINTER This option causes the output listing to appear on the line printer. This is the default operation.

/RADS0 - This option prints the Radix-SO equivalent of each octal word that is dumped.

/START:block - Use this option to specify a starting block number for the dump. The system dumps the device
or file beginning at the block number you specify with /ST ART and continuing to the end of the device or file
(unless you use /END).

/TERMINAL - This option causes the output listing to appear on the console terminal. Normally, the listing
appears on the line printer.

/WORDS This option displays information in octal words. This is the default operation.

The following command dumps block 1 of the file SYSMAC.MAC. The output listing, which shows octal bytes
and their ASCII equivalent, is stored in file MACLIB.DMP. The PRINT command prints the contents of the file
on the line printer.

.DUMP/OUTPUT!MACLIB/BYTES/ONLY:1 ~1Y!3MAC. MAC

.nnNr MACI ... I B. DMP

DK1SYIMAC.MAC:
BLOCK NUMBIR 00001
0001 040 t24 1t '7 040 124 110 109 123 105 040 114 111 10] t 05 116 123

T 0 T M E s IC L t C t N s
020/ 109 oco 124 t 05 122 115 123 ,:,56 040 124 1 lt 124 tl4 105 040 124

E T ! R fi1 I • T ! T L E T
0401 11'7 040 101 116 t04 040 u, 12'7 116 105 122 123 110 111 120 040

0 A N D 0 w N ! R s H r p
0601 117 106 040 124 110 105 040 015 012 0'7 J rt40 121 11' 106 124 12,

0 , T H ! • • ' s r, r T w
1001 101 122 105 040 123 110 101 114 114 040 101 124 040 101 114 114

a R r: s H l L t, A T A L L
1201 04() 124 111 115 105 121 040 122 105 115 101 111 116 040 111 ,u

T t M ! a ,_ I: M A I N I N
1401 040 104 111 107 t 11 124 101 114 056 015 012 0'73 OU 012 073 040

D I G I T l L • • • ' • • ' 1601 124 110 105 ()40 111 116 106 11' 122 115 101 t24 111 11' 116 040
T H ! I N , 0 ,_ M A T ! 0 N

2001 ll 1 116 oco 124 110 111 123 040 123 11' t06 124 12, 101 122 105
I N T H l s s 0 , T w A p !

2201 040 1tt 12'.I n4o 12, 12! S02 112 1 O!S 103 124 040 124 11'7 015 012
r s s u B J t C T T 0 • • 2401 0'71 040 SOJ ttO ,01 116 10'7 105 040 127 111 124 ttn 117 125 124 , C H A N G ! w I T ff 0 u ,.

2601 040 116 tl' 124 111 103 105 040 101 116 104 040 123 110 11' 12!
N 0 T I e E A N D s H 0 u

4-52

Interactive Commands DUMP

)OO/ 114 104 040 116 11 '7 124 040 102 t05 040 101 t1., 116 123 t24 122
L I) tf n T R ! e 0 N s T R

1201 129 101 104 015 012 0'7J 040 101 12! 040 101 040 103 11 '7 lt!5 115
u g .0 ' A s A C n M M • •

1401 t1 t 124 115 105 116 ,24 040 t02 Ut 040 104 11 t 107 1t 1 124 101
l T M ! N T 8 y D I G I T A

JIOI 114 040 105 121 125 111 120 115 105 116 124 040 tOJ l1., 122 120
L ! Q u t p M p; N T C n R p

400/ tt 7 122 101 124 ttt 11 '7 116 056 OU 012 n11 015 012 0'71 040 104
0 .. A T I n N • • • ' • • ' " 420/ 111 101 11 t 124 101 t14 040 101 121 t2l 125 tU 105 123 040 116
I G t T A L A s s u M E ! N

440/ 111 040 122 105 123 120 117 116 123 111 102 t 11 114 111 124 11,
0 .. I! a p n N s I B T L I T y

4601 040 106 11'7 122 040 124 110 t05 040 125 123 !05 01!5 012 073 040 , 0 .. T H r, u s r. • • ' 500/ n, 122 040 122 105 114 111 t0t 102 111 114 111 124 131 t'l40 117
0 II A ,: L ? A 8 I L ! T y 0

520/ 106 040 111 124 123 040 123 117 106 124 12'7 1.01 122 105 040 117 , I T s s 0 , T w A R E " 540/ 116 040 105 121 S2! 111 120 119 105 116 124 1')15 012 0'7) 040 12'7
N t Q u I p M ! N T • • ' w

160/ 110 111 103 110 040 111 123 040 116 117 124 040 123 125 120 120
H 1 e H l s N 0 T s u p p

100/ 114 II 1 10!5 104 040 102 ,u 040 104 111 107 11 t 124 101 114 056
L I I: D B y D I C I T • L • 1201 015 p12 0'7J 015 012 0'71 040 10!5 106 0!54 112 104 054 114 120 054
• • ' • • ' I: , , J D , L p ,

6401 102 10) 054 104 126 0!54 10J 122 054 110 112 015 012 014 «'56 11!5
I e , D V , e p , H J • • • • M

6101 101 10J 122 111 040 0!56 056 126 061 056 056 0 t !5 012 056 115 103
A C Ft D • • V t • • • • I M C

'7001 101 114 114 011 096 0!56 056 103 115 060 054 056 056 056 10) 115
A L L • • I • r! M 0 , • • • C ,..

'720/ 061 0!54 056 ~!56 056 103 11!5 062 0!54 056 056 056 103 115 063 054
t ,

I • • C M 2 ,
I • • e M 3 ,

'740/ 0!56 055 096 103 115 064 0!4 056 056 0!56 103 115 06!5 054 056 ri56

• • t e M 4 , • • • C M 5 ,
t I

'760/ 056 101 115 066 015 012 096 056 056 126 061 0715 061 056 01 !I 012

• C: M ' • • • • • V 1 • l • • •
In the printout above, the heading shows which file was dumped and which block of the file follows. The numbers
in the leftmost column indicate the byte offset from the beginning of the block. Remember that these are all
octal values, and that there are two bytes per word. The octal bytes that were dumped appear in the next eight
columns. The ASCII equivalent of each octal byte appears underneath the byte. The system substitutes a dot (.)
for non-printing codes, such as those for control characters.

The last example shows block 6 (the directory) of device RKO:. The output is in octal words with Radix-SO
equivalents below each word .

• DUMP/NOASCII/RAD50/0NLY:6 RKO:

4-53

DUMP lnteractfve Commands

RKOt/N/X/016
BLOC){ NUM81111 00006
OOft/ 000020 000002 00000!5 000000 000046 002000 071105 0!59202

p 8 ! 8 YX FIICM N&J
020/ 079273 000130 00001!5 01210!5 002000 07110!!5 054162 075273

IYS 8H M Ct/ YX RKM NFB SYS
0•01 000141 ooaot! 012105 002000 0111 os 055515 075273 000150

IQ M Cl/ YX RICM NXM SYS BX
0101 000015 012105 002000 015425 05!202 075271 000112 000015

M Ct/ YX DMM NSJ SYS BJ M
100/ 012105 002000 015425 054162 079273 000141 00001! 012105

Cl/ YX DMM NFB SYS BS M Ct/
120/ 002000 01542!5 0!55519 0'7tJ27l 0001!52 000015 012105 002000 rx DMM NUI SYS BZ M C!I/ YX
1401 016Jt5 0!552ft2 075273 000130 000015 012105 002000 016Jt!5

DXM N&J SYS 8H M CJ/ YX DXM
1601 054112 o,s21J 000141 00001!5 012105 002000 016]1! 0!551!

NFB IY& 80 M ex, YX DXM NXM
200/ 075271 000141 000015 012105 002000 01505!5 055202 0,s21,

IYI IQ M CI I YX DTM NSJ SYS
220/ 000130 000015 012105 002000 016055 054162 0'75273 000141

9M M Ct/ YX 0TM Nra SYS SQ
240/ 000019 012105 002000 01605!5 055115 075273 000151 000015

M CTI YX DTM NXM IYI BY M
260/ 012105 002000 016005 055202 0'7927J 000110 00001!5 012105

CJ/ YX DSM NIJ SY8 8H M CJ:/
1001 002000 016009 094112 075273 000141 000015 01210!5 002000

YX DSM .,. SYS BQ M Cl/ YX
)20/ 011005 0!5519 07527J 000150 000015 0 l 2l 05 002000 0156 l 5

DIM NXM SYS BX M CI/ YX DPM
J40/ 095202 015271 000130 000015 012105 002000 015615 0!4162

NIJ IYA 9H M Cl/ YX DPM NP'B
JIOI 075271 000141 000019 012105 002000 015615 0!!55!519 0752'71

SYS IQ M C:1/ YX DPM MXM SYS
400/ 000t!1 000015 012105 002000 07097!5 0!1!5202 075273 0001]0

It M CJ/ YX RFM NSJ SYS SH
420/ 000019 01210!5 002000 0709'79 OS4U2 0'7527l 100141 000015

M Cl/ TX RrM ~, .. SYS !IQ M
440/ 012105 002000 07097!5 059515 fl7!273 0001!50 000015 012105

Ctl YX RPM NXM SYS IX M C:?I
460/ 002000 0'71105 056973 0'7!21l 00012) 000018 012105 002000

YX RKM NIK SYS BC M CI/ YX
900/ OllJS! 058573 075273 000121 000015 01210!5 002000 016040

DXM NIK l!IYl!I IC M Cl/ YX DT
920/ 000000 07927) 000003 000019 012105 002000 01!600 000000

SYII 8 M Cll YX DP
540/ 079271 000002 000015 012109 002000 011.UOO 000000 07521)

SYS e M C:tl YX DX SYS
9601 000001 000019 012105 002000 0'70560 000000 0752,, 000002 e M er, YX RF SYS B
600/ 000015 012105 002000 01tO?O 000000 07!52'7J non002 000015

M Ct/ YX IUC SYS B M
620/ 012109 002000 011410 ~00000 n7527J 000004 000015 012105

Cl/ YX DM SYA 0 M CI/ ,,01 002000 0157'70 000000 015213 noooo2 00001!5 01210!5 002000
YX DI SYA 9 M Cl/ YX

4.54

Interactive Commands DUMP

660/ toon•o 000000 0'7927J 000002 000019 012109 002000 046600
TT SYS 8 M CII YX LP

1001 000000 0'792'7J 000002 000019 012109 002000 012620 000000
SYS B M C:ll YX eR

720/ 0792'7J nooo01 000019 012109 002000 0!2140 000000 0'7!52'7J
IYS C M Ct/ YX MT SYS

'740/ 000010 000015 012105 002000 0!51510 000000 0'792'7J onoo11
H M Ct/ YX MM SYS l ,,01 000019 01210! 002000 094540 000000 01927J 000002 000019
M Cl/ YX NL SYS B ~

4-55

E Interactive Commands

The E (Examine) command prints in octal the contents of an address on the console terminal.

I E@ ,dd.,H(~ddreH]

In the command syntax illustrated above, address represents an octal address that, when added to the relocation
base value from the Base command (if you used one), provides the actual address that the system examines. This
command permits you to open specific locations in memory and inspect their contents. It is most frequently used
after a GET command to examine locations in a program.

The Examine command accepts both word and byte addresses, but it always executes the command as though you
specified a word address. (If you specify an odd address, the system decreases it by one to make it even.)

If you specify more than one address (in the form address I -address2), the system prints the contents of address I
through address2, inclusive. The second address (address2) must always be greater than the first address. If you
do not specify an address, the system prints the contents of relative location 0.

Note that you cannot examine addresses outside the background area.

The following example prints the contents of location 1000, assuming the relocation base is 0 .

• E 1000

127401

The next command sets the relocation base to 1000 .

• B 1000

The following command prints the contents of locations 2000 through 2005 .

• F 100:l 100~i

127401 007624 127400

4-56

Interactive Commands EDIT

The EDIT command invokes the text editor.

EDIT [l/CREATE l] @ filespec[/ALLOCATE:size)
/INSPECT
/OUTPUT:filespec [/AL LOCATE :size]

The text editor is a program that creates or modifies ASCII text files or source files for use as input to programs
such as the MACRO assembler or the FORTRAN compiler. The editor reads ASCII files from any input device,
makes specified changes and writes the file on any output device. It also allows efficient use of VTI 1 or VS60 dis
play hardware, if this is part of the system configuration.

The editor considers a file to be divided into logical units called pages. A page of text is generally 50-60 lines long
(delimited by form feed characters) and corresponds approximately to a physical page of a program listing. The edi
tor reads one page of text at a time from the input file into its internal buffers where the page becomes available
for editing. You can then use editing commands to:

• Locate text to be changed
• Execute and verify the changes
• List an edited page on the console terminal
• Output a page of text to the output file.

In the command syntax illustrated above, filespec represents the file you need to edit. You can enter the EDIT
command on one line, or you can rely on the system to prompt you for information. If you do not supply a file
specification for the file to edit, the system prompts you with File?. If you do not specify any option with the
EDIT command, the text editor performs an edit backup operation on the file you name in the file specification.
To do this, it changes the name of the original file, giving it a file type of .BAK when you finish making your
editing changes. The actual file renaming occurs when you successfully exit by using an EX, EF, or EB command.
You can also perform an edit backup operation while you are working with the text editor by using the Edit
Backup (EB) command, which is described in Chapter 5.

When you issue an EDIT command, the system invokes the text editor. It is possible to receive an error or warning
message as a result of this command. If, for example, the file you need to edit does not exist on device DK:, the
editor issues an error message and remains in control.

+EDIT/INSPECT EXAMP3.TXT
?EDIT-F-File not found
*'~C$$

When a situation like this occurs, you can either issue another command directly to the text editor or enter
CTRL/C followed by two ESCAPEs to return control to the monitor.

The following sections describe the options you can use with the EDIT command. A more complete description
of the text editor is contained in Chapter 5.

/ALLOCATE:size - Use this option with /OUTPUT or after the file specification to reserve space on the device
for the output file. The value, size, represents the number of blocks of space to allocate. The meaningful range
for this value is from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/CREA TE - Use this option to build a new file. You can also create a new file while you are working with the text
editor by using the Edit Write (EW) command, which is described in Chapter 5. The following example creates a
file called NEWFIL.TXT on device DK:, inserts one line of text, and then closes the file.

4-57

EDIT Interactive Commands

+EDIT/CREATE NEWFIL.TXT
*ITHIS IS A NEW FILE.
$$
*EX$$

/INSPECT - Use this option to open a file for reading. This option does not create any new output files. You can
also open a file for inspection while you are working with the text editor by using the Edit Read (ER) command,
which is explained in Chapter 5.

The following command opens an existing file for inspection, lists its contents, and then exits.

+EDIT/INSPECT NEWFIL,TXI
*R$$
*II... $1;
THIS IS A NEW FILE.
*-C$1;

/OUTPUI':fdespec This option directs the text you edit to the file you specify, leaving the input file unchanged.
You can also write text to an output file while you are working with the text editor by using the Edit Write (EW)
command, which is explained in Chapter 5. The following command reads file ORIG.TXT and writes the edited
text to file CHANGE.TXT.

+EDIT /OUTPUT! CHANGE. TXl OF~ JG. TXT
*

4-58

Interactive Commands EXECUTE

The EXECUTE command invokes one or more language processors to assemble or compile the ftles you specify. It
also links object modules and initiates execution of the resultant program.

EXECUTE /EXECUTE[:filespec) 1/ALLOCATE:siza)
/LIST(:filespec] l/ALLOCATE:1ize)
/MAP[:filespec) 1/ALLOCATE:size) [/WIDE)
/08.JECT[:filespec] I/ALLOCATE:1iza)

/BOTTOM:n
/DEBUG (:filespec]
/LINKLIBRARY [:filespec)
/[NO) RUN

['"{f ~~~;!:~.]
/ONDEBUG
/[NO] WARNINGS

/FORTRAN
/CODE:type
/DIAGNOSE
/EXTEND
/HEADER
/14
/(NO] LINENUMBERS
/ONDEBUG
/INO) OPTIMIZE [:type]
/R ECORD:length
/SHOW [:value]
/ST A TISTICS
/[NOi SWAP
/UNITS:n
/[NOi VECTORS
/WARNINGS

/MACRO

[

/CROSSREFERENCE[:type[... :typel]
/DISABLE :value(... :value]
/ENABLE :value [... :value)
/[NO] SHOW:value

@ file1pecs [/LIBRARY]
/PASS:1

In the command line shown above, fllespecs represents one or more files to be included in the compilation assembly.
The default file types for the output ftles are .LST for listing files, .MAP for load map files, .OBJ for object files,
and .SAV for memory image files. The defaults for input files depend on the particular language processor involved.
These defaults include .MAC for MACRO files, .FOR for FORTRAN files, and DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, separate the files by plus(+) signs in the com
mand line. Unless you specify otherwise, the system creates an object file with the same name as the first input file
and gives it an .OBJ file type. To compile multiple files in independent compilations, separate the files by commas(,)
in the command line. This generates a corresponding object ftle for each set of input files. The system then links to
gether all the object files and creates a single executable file. You can combine up to six files for a compilation produc
ing a single object file. You can specify the entire EXECUTE command as one line, or you can rely on the system to
prompt you for information. The EXECUfE command prompt is Files?.

There are several ways to establish which language processor the EXECUTE command invokes. One way is to specify
a language-name option, such as /MACRO, which invokes the MACRO assembler. Another way is to omit the language
name option and explicitly specify the file type for the source files. The EXECUTE command then invokes the language
processor that corresponds to that file type. Specifying the file SOURCE.MAC, for example, invokes the MACRO as
sembler. A third way to establish the language processor is to let the system choose a file type of .MAC, .DBL, or .FOR
for the source file you name.

4.59

EXECUTE Interactive Commands

To do this, the handler for the device you specify must be loaded. If you specify DXl :A, and the DX handler is loaded,
the system searches for source files A.MAC and A.DBL, in that order. If it finds one of these files, the system invokes
the corresponding language processor. If it cannot find one of these files, or if the device handler associated with the
input file is not resident, the system assumes a file type of .FOR and invokes the FORTRAN compiler.

If the language processor selected as a result of one of the procedures described above is not on the system device
(SY:), the system issues an error message.

Language options are position dependent. That is, they have different meanings depending on where you place them
in the command line. Options that qualify a command name apply across the entire command string. Options that
follow a file specification apply only to the file (or group of files separated by plus signs) that they follow in the com
mand string.

The following sections describe the options you can use with the EXECUTE command.

/ALLOCATE:size - Use this option with /EXECUTE, /LIST, /MAP, or /OBJECT to reserve space on the device for
the output file. The argument, size, represents the number of blocks of space to allocate. The meaningful range for
this value is from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE - Use this option with DIBOL to alphabetize the entries in the symbol table listing. This is useful
for program maintenance and debugging.

/BOTTOM:n Use this option to specify the lowest address to be used by the relocatable code in the load module.
The argument, n, represents a 6-digit unsigned even octal number. If you do not use this option, the system positions
the load module so that the lowest address is location 1000 (octal). This option is illegal for foreground links.

/CODE:type Use this option with FORTRAN to produce object code that is designed for a particular hardware con
figuration. The argument, type, represents a three-letter abbreviation for the type of code to produce. The legal values
are the following: EAE, EIS, FIS, and THR. See Section 1.1.1, Compiler Generated Code, of the RT-11 /RSTS/E
FORTRAN IV User's Guide for a complete description of the types of code and their function.

/CROSSREFERENCE[:type[... :type]] - Use this option with MACRO or DIBOL to generate a symbol cross
reference section in the listing. This information is useful for program maintenance and debugging. Note that the sys
tem does not generate a listing by default. You must also specify /LIST in the command line to get a cross-reference
listing.

With MACRO, this option takes an optional argument. The argument, type, represents a one-character code that indi
cates which sections of the cross-reference listing the assembler should include. Table 4-10 summarizes the valid argu
ments and their meaning.

/DEBUG [:filespec] - Use this option to link ODT (on line debugging technique, described in Chapter 16) with your
program to help you debug it. If you supply the name of another debugging program, the system links the debugger
you specify with your program. The debugger is always linked low in memory relative to your program.

/DIAGNOSE - Use the option with FORTRAN to help analyze an internal compiler error. /DIAGNOSE expands the
crash dump information to include internal compiler tables and buffers. Submit the diagnostic printout to DIGIT AL
with an SPR form. The information in the listing can help the DIGITAL programmers locate the compiler error and
correct it.

/DIBOL - This option invokes the DIBOL language processor to compile the associated files.

/DISABLE:value[... :value] - Use this option with MACRO to specify a .DSABL directive. Table 4-11 summarizes
the arguments and their meaning. See Section 6.2 of the PDP-11 MACRO Language Reference Manual for a description
of the directive and a list of all legal values.

4-60

Interactive Commands EXECUTE

/ENABLE:wlue[... :value] - Use this option with MACRO to specify an .ENABL directive. Table 4-11 summarizes
the arguments and their meaning. See Section 6.2 of the PDP-I 1 MACRO Language Reference Manual for a description
of the directive and a list of all legal values.

/EXECUTE[:filespec] - Use this option to specify a file name or device for the executable file. Because the EXECUTE
command creates executable files by default, the following two commands have the same meaning:

~EXECUTE MYPROG

+EXECUTE/EXECUTE MYPROG

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a result. The /EXECUTE option has different
meanings when it follows the command and when it follows the file specification. The following command creates an
executable file called PROG 1 .SAV on device RKl:.

• EXECUTE/EXECUTE: F~Kl: PFWG l. , PFWG2

The next command creates an executable file called MYPROG.SAV on device DK: .

• EXECUTE RTN 1., f.:TN:?, MYPROG/EXECUTE

/EXTEND - Use this option with FORTRAN to change the right margin for source input lines from column 72 to
column 80.

/FORTRAN This option invokes the FORTRAN language processor to compile the associated files.

/HEADER - Use this option with FORTRAN to include in the printout a list of options that are currently in effect.

/14 - Use this option with FORTRAN to allocate two words for the default integer data type (FORTRAN only uses
one-word integers) so that it takes the same physical space as real variables.

/LIBRARY - Use this option with MACRO to identify the file the option qualifies as a macro library file. Use it only
after a library file specification in the command line. The MACRO assembler looks first to the library associated with
the most recent /LIBRARY option to satisfy references (made with the MCALL directive) from MACRO programs.
It then looks to any libraries you specified earlier in the command line, and it looks last to SYSMAC.SML.

In the example below, the two files A.FOR and B.FOR are compiled together, producing B.OBJ and B.l..ST. The
MACRO assembler assembles C.MAC, satisfying .MCALL references from MYLIB.MAC and SYSMAC.SML. It
produces C.OBJ and C.LST. The system then links B.OBJ and C.OBJ together, resolving undefined references from
SYS LIB.OBJ and produces the executable file B.SAV. Finally, the system loads and executes B.SAV.

+EXECUTE AtB/LIST/OBJECT~MYLIB/LIBRARYtC.MAC/LIST/OBJECl

/LINENUMBERS - Use this option with DIBOL or FORTRAN to include internal sequence numbers in the executable
program. These are especially useful in debugging programs. This is the default operation.

/NOLINENUMBERS - Use this option with DIBOL or FORTRAN to suppress the generation of internal sequence
numbers in the executable program. This produces a smaller program and optimizes execution speed. Use this option
to compile only those programs that are already debugged; otherwise the DIBOL or FORTRAN error messages are
difficult to interpret.

/LINKLIBRARY:fflespec - Use this option to include the library file name you specify as an object module library
during the linking operation. Repeat the option if you need to specify more than one library file.

4-61

EXECUTE Interactive Commands

/LIST[:ftlespec] - You must specify this option to produce a compilation or assembly listing. The /LIST option
has different meanings depending on where you put it in the command line.

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the system generates a listing that prints on the line printer. If you follow /LIST with a device name, the system
creates a listing file on that device. If the device is a file-structured device, the system stores the listing file on that
device, assigning it the same name as the input file with a .l.ST file type. The following command produces a listing
on the terminal .

• EXECUTE/LIST:TT A.FDR

fhc next command creates a listing file called A.LST on RK3: .

• EXECUTE/LIST:RK3: A+MAC

If the /LIST option contains a name and file type to override the default of .l.ST, the system generates a listing file
with that name. The following command, for example, compiles A.FOR and B.FOR together, producing files A.OBJ
and FILEl .OlJf on device DK:. It then links A.OBJ (using SYSLIB.OBJ as needed) and produces ASAV .

• EXECUTE/NORLJN/FORTRAN/LIST:FILEl.OUT AtB

You cannot use a command line like the next one. In this example, the second listing file would replace the first one
and, therefore, cause an error .

• EXECUTE/LIST!FILE2 A.MAC,B.MAC

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file with
the same name as a particular input file, you can use a command similar to this one:

.EXECUTE DIBOL A+B/LIST!RK3:

The command shown above compiles A.DBL and B.DBL together, producing files DK:A.OBJ and RK3:B.LST. It then
links A.OBJ (using SYSLIB.OBJ as needed) and produces DK:A.SAV. If you specify a file name on a /LIST option
following a file specification in the command line, it has the same meaning as when it follows the command. The fol.
lowing two commands have the same results .

• EXECUTE/MACRO A/LIST:B

.EXECUTE/MACRO/LIST:B A

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they follow
in the command string. For example:

• EXECUTE/NClF'WN A. MAC/I. I GT v B. FOl=i:

This command compiles A.MAC, producing A.OBJ and A.l.ST. It also compiles B.FOR, producing B.OBJ. However,
it does not produce any listing file for the compilation of B.FOR. Finally, the system links A.OBJ and B.OBJ together,
producing A.SAV.

/MACRO - This option invokes the MACRO assembler to assemble the associated files.

/MAP[:filespec] - You must specify this option to produce a load map after a link operation. The /MAP option has
different meanings depending on where you put it in the command line. It follows the same general rules outlined
above for /LIST.

4-62

Interactive Commands EXECUTE

/OBJECT[:filespec] - Use this option to specify a file name or device for the object file. Because the EXECUTE
command creates object files by default, the following two commands have the same meaning:

.EXECUTE/FORTRAN A

.EXECUTE/FORTRAN/OBJECT A

Both commands compile A.FOR and produce A.OBJ as output. The /OBJECT option functions like the /LIST option;

it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example, as
sembles A.MAC and B.MAC separately, creating object files A.OBJ and B.OBJ on RKl :.

+EXECUTE/OBJECT:RK1: A.MAC,B.MAC

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.DBL and B.DBLtogether, creating fdes B.LST, B.OBJ, and B.SAV .

• EXECUTE/DIBOL AtB/LIST/OBJECT/EXECUTE

/ONDEBUG - Use this option with DJBOL to include a symbol table in the object file. You can then use a debugging
program to find and correct errors in the object file.

Use /ONDEBUG with FORTRAN to include debug lines (those that have a Din column one) in the compilation. You
do not, therefore, have to edit the file to include these lines in the compilation or to logically remove them. This option
is useful in debugging a program. You can include messages, flags, and conditional branches to help you trace program
execution and find an error.

/OP11MIZE:type - Use this option with FORTRAN to enable certain options that optimize obiect code for various
conditions. The value, type, represents the three-letter code for the type of optimization to enable. Table 4-4 sum·
marizes the codes and their meanings.

/NOOmMIZE:type Use this option with FORTRAN to disable certain options that optimize object code for
various conditions. The value, type, represents the three-letter code for the type of optimization to disable. Table 4-4
summarizes the codes and their meanings.

/PASS:1 - Use this option with MACRO on a prefix macro file to process that file only during pass-1 of the assembly.
This option is usefuJ when you assemble a source program together with a prefix file that contains only macro defini
tions, since these do not need to be redefined in pass-2 of the assembly. The following command assembles a prefix
file and a source file together, producing files PROGI.OBJ, PROGI.LST, and PROGI.SAV .

• EXECUTE/NORLIN/MACRO PREFIX/PASS:1+PROG1/LIST/OBJECT/EXECUTE

/RECORD:length - Use this option with FORTRAN to override the default record length of 132 characters for ASCH
sequential formatted input and output. The meaningful range for length is from 4 to 4095.

/RUN - Use this option to initiate execution of your program if there are no errors in the compilation or the link. This
is the default operation.

/NORUN - Use this option to suppress execution of your program. The system performs only the compilation and
the link.

/SHOW{:value] - Use this option with FORTRAN to control FORTRAN listing format. The argument, value, repre
sents a code that indicates which listings the compiler is to produce. Table 4-5 summarizes the codes and their meaning.

4-63

EXECUTE Interactive Commands

Use this option with MACRO to specify any MACRO .LIST directive. Table 4-12 summarizes the valid arguments and
their meaning. Section 6.1.l, .LIST and .NLIST Directives, of the PDP-11 MACRO Language Reference Manual ex
plains how to use these directives.

/NOSHOW:value - Use this option with MACRO to specify any MACRO .NLIST directive. Table 4-12 summarizes
the valid arguments and their meaning. Section 6.1 J, .LIST and .NLIST Directives, of the PDP-I I MACRO Language
Reference Manual explains how to use these directives.

/STATISTICS - Use this option with FORTRAN to include in the listing compilation statistics, such as amount of
memory used, amount of time elapsed, and length of the symbol table.

/SWAP - Use this option with FORTRAN to permit the USR (user service routine) to swap over the FORTRAN pro
gram in memory. This is the default operation.

/NOSWAP - Use this option with FORTRAN to keep the USR resident during execution of a FORTRAN program.
This may be necessary if the FORTRAN program uses some of the RT-11 system subroutine library calls (see Chap
ter 4 of the RT-11 Advanced Programmer's Guide). If the program frequently updates or creates a large number of
different files, making the USR resident can improve program execution. However, the penalty for making the USR
resident is 2K words of memory.

/UNITS:n - Use this option with FORTRAN to override the default number of logical units (6) to be open at one
time. The maximum value you can specify for n is 16.

/VECTORS This option directs FORTRAN to use tables to access multidimensional arrays. This is the default mode
of operation.

/NOVECTORS - This option directs FORTRAN to use multiplication operations to access multidimensional arrays.

/WARNINGS Use this option to include warning messages in DIBOL or FORTRAN compiler diagnostic error
messages. These messages call certain conditions to your attention, but do not interfere with the compilation. This
is the default operation for DIBOL.

/NOWARNINGS - Use this option with DIBOL to suppress warning messages during compilation. These messages
are for your information only; they do not affect the compilation. This is the default operation for FORTRAN.

/WIDE Use this option with /MAP to produce a wide load map listing. Normally, the listing is wide enough for
three GLOBAL VALUE columns, which is suitable for paper with 72 or 80 columns. The /WIDE option produces
a listing that is six GLOBAL V ALOE columns wide, which is ideal for a 132-column page.

4-64

Interactive Commands FOCAL

The FOCAL command invokes the FOCAL language interpreter.

I FOCAL

FOCAL has its own command language. Therefore, the FOCAL command accepts no options and no file specifica
tions.

4-65

FORTRAN Interactive Commands

The FORTRAN command invokes the FORTRAN IV compiler to compile one or more source programs.

FORTRAN /LIST[:filespec] [/ALLOCATE:size] @ filespecs
/[NO] OBJECT[:fitespecl [/ALLOCATE:size]

/CODE:type
/DIAGNOSE
/EXTEND
/HEADER
/14
/[NO] LINENUMBERS
/ONDEBUG
/[NO) OPTIMIZE[:type)
/RECORD:length
/SHOW[:valuel
/STATISTICS
/[NO) SWAP
/UNITS:n
/[NO] VECTORS
/WARNINGS

In the command syntax illustrated above, filespecs represents one or more files to be included in the compilation. If
you omit a file type for an input file, the system assumes .FOR. Output default file types are .l.ST for listing files and
.OBJ for object files. To compile multiple source files into a single object file, separate the files by plus(+) signs in the
command line. Unless you specify otherwise, the system creates an object file with the same name as the first input
file and gives it an .OBJ file type. To compile multiple files in independent compilations, separate the files by commas
(,) in the command line. This generates a corresponding object file for each set of input files.

Language options are position dependent. That is, they have different meanings depending on where you place them
in the command line. Options that qualify a command name apply across the entire command string. Options that fol
low a file specification apply only to the file (or group of files separated by plus signs) that they follow in the command
string. You can enter the FORTRAN command as one line, or you can rely on the system to prompt you for informa
tion. The FORTRAN command prompt is Files? for the input specification.

The RT-11 /RSTS/E FORTRAN IV User's Guide contains more detailed information about using FORTRAN. The fol
lowing sections describe the options you can use with the FORTRAN command.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The
argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 to
32767. A value of 1 is a special case that creates the largest file possible on the device.

/CODE:type Use this option to produce object code that is designed for a particular hardware configuration. The
argument, type, represents a three-letter abbreviation for the type of code to produce. The legal values are the follow
ing: EAE, EIS, FIS, and THR. See Section 1.1.1 of the RT-11 /RSTS/E FORTRAN IV User's Guide for a complete
description of the types of code and their functions.

/DIAGNOSE - Use this option to help analyze an internal compiler error. /DIAGNOSE expands the crash dump infor.
mation to include internal compiler tables and buffers. Submit the diagnostic printout to DIGITAL with an SPR form.
The information in the listing can help the DIGITAL programmers locate the compiler error and correct it.

/EXTEND - Use this option to change the right margin for source input lines from column 72 to column 80.

4-66

Interactive Commands FORTRAN

/HEADER - This option includes in the printout a list of options that are currently in effect.

/14 - Use this option to allocate two words for the default integer data type (FORTRAN uses one-word integers) so
that it takes the same physical space as real variables.

/LINENUMBERS - Use this option to include internal sequence numbers in the executable program. These are es
pecially useful in debugging a FORTRAN program. They identify the FORTRAN statements that cause run-time
diagnostic error messages. This is the default operation.

/NOUNENUMBERS - This option suppresses the generation of internal sequence numbers in the executable program.
This produces a smaller program and optimizes execution speed. Use this option to compile only those programs that
are already debugged; otherwise the line numbers in FORTRAN error messages are replaced by question marks and
the messages are difficult to interpret.

/LIST[:fdespec) - You must specify this option to produce a FORTRAN compilation listing. The /LIST option has
different meanings depending on where you place it in the command line.

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the FORTRAN compiler generates a listing that prints on the line printer. If you follow /UST with a device name,
the system creates a listing file on that device. If the device is a file-structured device, the system stores the listing file
on that device, assigning it the same name as the input file with a .LST file type. The following command produces a
listing on the terminal .

• FORTRAN/LIST:TT: A

The next command creates a listing file called A.LST on RK3: .

• FORTRAN/LIST:RK3: A

If the /LIST option contains a name and file type to override the default of .I.ST, the system generates a listing file
with that name. The following command, for example, compiles A.FOR and B.FOR together, producing files A.OBJ
and Fil.El .OUT on device DK: .

• FORTRAN/LIST:FILE1.0UT AtB

You cannot use a command line like the next one. In this example, the second listing file would replace the first one
and, therefore, cause an error .

• FORTRAN/LIST:FILE2 A,B

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file with
the same name as a particular input file, you can use a command similar to this one:

.FORTRAN AtB/LIST:RK3:

The above command compiles A.FOR and B.FOR together, producing files DK:A.OBJ and RK3 :B.LST. If you specify
a file name on a /LIST option following a file specification in the command line, it has the same meaning as when it
follows the command. The following two commands have the same results .

• FORTRAN A/LIST:B

.FORTRAN/LIST:B A

Both the above commands generate as output files A.OBJ and B.LST.

4-67

FORTRAN Interactive Commands

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they follow
in the command string. For example:

.FORTRAN A/LIST,B

This command compiles A.FOR, producing A.OBJ and A.LST. It also compiles B.FOR, producing 8.0BJ. However,
it does not produce any listing file for the compilation of B.FOR.

/OBJECT[:ftlespec) - Use this option to specify a file name or device for the object file. Because FORTRAN creates
object files by default, the following two commands have the same meaning .

• FORTRAN A

.FORTRAN/OBJECT A

Both commands compile A.FOR and produce A.OBJ as output. The /OBJECT option functions like the /LIST option;
it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example, com
piles A.FOR and B.FOR separately, creating object files A.OBJ and B.OBJ on RK.1: .

• FORTRAN/OBJECT:RK1! A,B

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.FOR and B.FOR together, creating files B.LST and B.OBJ .

• FORTRAN AtB/LIST/OBJECT

/NOOBJECT - Use this option to suppress creation of an object file. As a command option, /NOOBJECT suppresses
all object files; as a file option, it suppresses only the object file produced by the related input files. In this command,
for example, the system compiles A.FOR and B.FOR together, producing files A.OBJ and B.LST. It also compiles
C.FOR and produces C.LST, but does not produce C.OBJ .

• FORTRAN AtB/LIST,C/NOOBJECT/LIS·r

/ONDEBUG - Use this option to include debug lines (those that have a Din column one) in the compilation. You
do not, therefore, have to edit the file to include these lines in the compilation or to logically remove them. This
option is useful in debugging a program. You can include messages, flags, and conditional branches to help you trace
program execution and find an error.

/OmMIZE:type - Use this option to enable certain options that optimize object code for various conditions. The argu
ment, type, represents the three-letter code for the type of optimization to enable. Table 4-4 summarizes the codes and
their meanings.

Table 4-4 Optimil.ation Codes

Code Meaning

BND Global register bindings for inline code generation

CSE Common subexpression elimination

SPD Optimization for speed of execution as opposed to minimal program size

STR Strength reduction optimization

4-68

Interactive Commands FORTRAN

/NOOPTIMIZE:type - Use this option to disable certain options that optimize object code for various conditions.
The argument, type, represents the three-letter code for the type of optimization to disable. Table 4-4 summarizes
the codes and their meanings.

/RECORD:length - Use this option to override the default record length of 132 characters for ASCII sequential
formatted input and output. The meaningful range for length is from 4 to 4095.

/SHOW[:value] - Use this option to control FORTRAN listing output. The argument, value, represents a code that
indicates which listings the compiler is to produce. Table 4-5 summarizes the codes and their meaning. You can com
bine options by specifying the sum of their numeric codes. For example:

/f:iHDW:?
or

/SHOlJ:ALL

The two options shown above have the same meaning. If you specify no code, the default value is 3, a combination of
SRC and MAP.

Table 4-S FORTRAN Listing Codes

Code Meaning

0 Lists diagnostics only

l or SRC Lists source program and diagnostics

2 or MAP Lists storage map and diagnostics

3 Lists diagnostics, source program, and storage map

4 or COD Lists generated code and diagnostics

7 or ALL Lists diagnostics, source program, storage map, and generated code

/STATISTICS - Use this option to include compilation statistics in the listing, such as amount of memory used, amount
of time elapsed, and length of the symbol table.

/SWAP - Use this option to permit the USR (user service routine) to swap over the FORTRAN program in memory.
This is the default operation.

/NOSWAP - This option keeps the USR resident during execution of a FORTRAN program. This may be necessary if
the FORTRAN program uses some of the RT-11 System Subroutine Library calls (see Chapter 4 of the RT-11 Advanced
Programmer's Guide). If the program frequently updates or creates a large number of different files, making the USR
resident can improve program execution. However, the penalty for making the USR resident is 2K words of memory.

/UNITS:n - Use this option to override the default number of logical units (6) to be open at one time. The maximum
value you can specify for n is 16.

/VECTORS - This option directs FORTRAN to use tables to access multidimensional arrays. This is the default mode
of operation.

/NOYECTORS - This option directs FORTRAN to use multiplication operations to access multidimensional arrays.

4-69

FORTRAN Interactive Commands

/WARNINGS - Use this option to include warning messages in FORTRAN compiler diagnostic error messages. These
messages call certain conditions to your attention, but do not interfere with the compilation. A warning message
prints, for examp]e, if you change an index within a DO loop, or if you specify a variable name longer than six charac
ters.

4.70

Interactive Commands FRUN

The FRUN command initiates foreground jobs.

In the command syntax illustrated above, filespec represents the program to execute. Because this command runs a
foreground job, it is valid for the FB and XM monitors only.

If another foreground job is active when you issue the FRUN command, an error message prints on the terminal. You
can run only one foreground job at a time. If a terminated foreground job is occupying memory, the system reclaims
that region for your program. Then, if the system finds your program and if your program fits in the available memory,
execution begins.

The following sections describe the options you can use with FRUN. Note that the option must follow the file speci
fication in the command line.

{N:n - Use this option to reserve space in memory over the actual program size. The argument, n, represents the num
ber of words of memory to allocate. You must use this option to execute a FORTRAN foreground job.

/P Use this option to help you debug a program. When you type the carriage return at the end of the command
string, the system prints the load address of your program and waits. You can examine or modify the program (by
using ODT, described in Chapter 16) before starting execution. You must use the RESUME command to restart the
foreground job. The following command loads the program DEMOSP.REL, prints the load address, and waits for a
RESUME command to begin execution .

• FRUN DEMOSF'/F'
Loaded at 127276
.RESUME

/T:n - Use this option to assign a terminal to interact with the foreground job. The argument, n, represents a terminal
logical unit number. The default value is 0, which represents the original console terminal. By assigning a different ter
minal to interact with the foreground job, you eliminate the need for the foreground and background jobs to share the
console terminal. Note that the original console terminal still interacts with the background job and with the keyboard
monitor, unless you use the SET TT: CONSOL command to change this.

4-71

GET Interactive Commands

The GET co~and loads a memory image file into memory.

I GET ® filosp,,

In the command syntax shown above, filespec represents the memory image file to be loaded. The default file type
is .SAV. Note that magtape and cassette are not block-replaceable devices and, therefore, are not permitted with the
GET command. Use the GET command for a background job only. You cannot use GET on a virtual program that
executes under the XM monitor. The GET command is useful when you need to modify or debug a program. You
can use GET with the Base, Deposit, Examine, and START commands to test changes. Use the SAVE command to
make these changes permanent. You can combine programs by issuing multiple GET commands, as the following
example shows. This example loads a program, DEMOSP.SAV, loads ODT.SAV (on-line debugging technique, de
scribed in Chapter 16), and starts the program using the address of ODT's entry point, O.ODT .

• GET DEMOSP

.GET ODT

.START

DDT VOl.04

*
If more than one program requires the same locations in memory, the program you load later overlays the previous
program. Note that you cannot use GET to load overlay segments of a program; it can load only the root. If the file
you need to GET resides on a device other than the system device, the system automatically loads that device handler
into memory when you issue the GET command. This prevents problems from occurring if you use the ST ART com
mand and your program is overlaid.

4.72

Interactive Commands

The GT command enables or disables the VTl I or VS60 display hardware.

GT®i::· I
t [~;~] j

GT

When you issue the GT OFF command, you disable the display hardware. The printing console terminal then becomes
the device that transmits your commands to the system.

When you issue the GT ON command, the display screen replaces the printing console terminal. The display screen
offers some advantages over the printing terminal: 1) it is quieter than a printing terminal, 2) it is faster than a printing
terminal, 3) it does not require a supply of paper, and 4) it is the device for which the text editor's immediate mode is
intended. The display screen can speed up the editing process (see Chapter 5 for information on how to use the text
editor). You can use CTRL/ A, CTRL/S, CTRL/E, and CTRL/Q to control scrolling. These commands are explained in
Section 3.6. Note that RT-11 does not permit you to use display hardware (with GT ON) in an 8K configuration. You
cannot issue GT ON when a foreground job is active; this causes the system to print an error message. Issue the GT ON
command before you begin execution of the foreground job. ODT (on-line debugging technique, described in Chap-
ter 16) is the only system program that cannot use the display screen. Its output always appears on the console terminal.

Table 4-6 Display Screen Values

Screen Size Lines Top Position

12 inch l-31 l-744

17 inch 1-40 l-1000
(or larger)

The following options let you control the number of lines that appear on the screen and position the first line vertically.

/L:n - Use this option to change the number of lines of text that display on the screen. Table 4-6 shows the valid range
for the argument, n, in decimal. If you do not use this option, the system determines the screen size and automatically
assigns the largest valid value.

/T:n Use this option to change the top position of the scroll display. Table 4-6 shows the valid range for the argu
ment, n, in decimal. If you do not use this option, the system determines the screen size and automatically assigns the
largest valid value.

The following command enables the display screen .

• GT ON

The next command disables the display screen .

• GT OFF

4-73

HELP Interactive Commands

The HELP command lists useful information.

HELP [{ /PRINTER }] [@topic[@ subtopic[:iteml 11
/TERMINAL

In the command syntax shown above, topic represents a specific subject about which you need information. In the
help file supplied with RT-11, the topics are the keyboard monitor commands. The subtopic represents a specific cate
gory within a topic. In the RT-11 help file, the subtopics are syntax, semantics, options, and examples. The item repre
sents one member of the subtopic group. You can specify more than one item in the command line if you separate the
items by colons(:).

The HELP command permits you to access the file HELP .TXT. The help file distributed with RT-11 contains information
about the keyboard monitor commands and how to use them. However, the concept of the help file is a general one.
That is, you can create your own help file to supply quick reference material on any subject. Structure your HELP.TXT
file in the same format as the standard RT-11 HEI.P.TXT. Note that the HELP command reads the file that is specifi
cally named HELP.TXT. There are only two options you can use with the HELP command. They are /PRINTER and
/TERMINAL.

/PRINTER Use this option to list helpful information on the line printer.

/fERMINAL This option lists helpful information on the console terminal. This is the default operation.

The following examples all make use of the standard RT-11 help file.

The following command lists all the topics for which assistance is available .

• HELF'*

HELP
APL
ASSIGN
BASIC

Lists helpful information
Invokes the APL lan~ua~e interpreter
Associates a losical device name with a Ph~sical device
Invokes the BASIC lan~ua~e interpreter

The next command lists all the information about the DATE command .

• HELP DATE

DATE

SYNTAX

Sets er disPla~s the current s~stem date

DATE[dd-mmm-~~J

SEMANTICS
All numeric values are decimal; mmm rePresents the first
three characters of the name of the month.

4-74

Interactive Commands

OPTIONS
Ne>ne

EXAMPLES
DATE 12-MAY-77

The next command lists all the options that are valid with the DIRECTORY command .

• HELP DIRECTORY OPTIONS

OPTIONS
ALLOCATE: r.;ize

HELP

Use with /OUTPUT to reserve sPace for the outPut listin~ file
ALPHABETIZE

Sorts the directory in alPhabetical order b~ file name and
t\.-lPe

The last command lists information about the /BRIEF option for the DIRECTORY command .

• HELP DIRECTORY OPTIONS!BRIEF

£!RIEF
Lists only file names and file t~Pes of files; same as /FAST

4.75

INITIALIZE Interactive Commands

Use the INITIALIZE command to clear and initialize a device directory.

INITIALIZE /DOS[/[NO] ~] @device

/FIL E:filespec

/INTERCHANGE[/[NO] QUERY]

/[NO] QUERY
/VOLUMEID[:ONLY]
/SEGMENTS:n

{
/REPLACE [:RETAIN]}
/BADBLOCKS

In the command syntax illustrated above, device represents the device you need to initialize. The initialize operation
must always be the first operation you perform on a new device after you receive it from the manufacturer. This pro
cedure destroys any data that may already exist on a device. After you use the INITIALIZE command, there are no
files in the directory. If you use the INITIALIZE command with no options, the system simply initializes the device
directory. You can enter the INITIALIZE command as one line, or you can rely on the system to prompt you for the
name of the device with Device?. The following sections describe the options you can use with INITIALIZE and give
some examples of their use.

/BADBLOCKS - Use this option to scan a device (disk or DECtape) for bad blocks and write .BAD files over them. For
each bad block the system encounters on the device, it creates a file called FILE.BAD to cover it. After the device is
initialized and the scan completed, the directory consists only of FILE.BAD entries that cover the bad blocks. This
procedure ensures that the system will not attempt to access these bad blocks during routine operations. If the system
finds a bad block in either the boot block or the device directory, it prints an error message and the device is not usable.
The following command initializes device RKl: and scans for bad blocks .

• INITIALIZE/BADBLOCKS RK1:

RK1:/Init are You sure?Y

/DOS - Use this option to initialize a DECtape for DOS-I I format.

/FILE:f"despec - Use this option to initialize a magtape and create a bootable tape. For filespec, substitute
dev:MBOOT.BOT. This ftle is distributed with RT-1 I for this purpose only. Consult the RT-11 System Generation
Manual for more infonnation. The following example creates a bootable magtape:

.INITIALIZE/FILE:MBOOT.BOT MTO:

/INTERCHANGE - Use this option to initialize a diskette for interchange (proposed ANSI standard) format. The fol
lowing example initializes DXl : in interchange format.

.INITIALIZE/INTERCHANGE DX1:
nx1:1z ARE YOU SURE? Y

/QUERY - This option prompts you for confirmation before it initializes a device. Respond by typing a Y followed by
a carriage return to initiate execution of the command. The system interprets a response beginning with any other char
acter to mean NO. /QUERY is the default operation.

4-76

Interactive Commands INITIALIZE

/NOQUERY - Use this option to suppress the confirmation message that the system prints before it proceeds with
the initialization.

/REPLACE(:RETAIN] - Use the /REPLACE option to scan the disk for bad blocks when you initialize an RK06.
If the system finds any bad blocks, it creates a replacement table so that routine operations access good blocks instead
of bad ones. Thus, the disk appears to consist of only good blocks. Note, though, that accessing this replacement table
slows response time for routine input and output transactions. If you use :RETAIN with /REPLACE, the system ini
tializes the RK.06 but does not create a replacement table for bad blocks. Instead, it uses the replacement table that
is already on the device as a result of a previous initialization. This procedure allows the initialization to proceed faster.

/SEGMENTS:n - Use this option if you need to initialize a disk and change the number of directory segments. The
number of segments in the directory determines the number of files that can be sorted on a device. 'fhe system allows
a maximum of 72 files per directory segment, and 31 directory segments per device. The argument, n, represents the
number of directory segments you need to create. The valid range for n is from 1 to 31 (decimal). Table 4-7 shows
the default values ofn for standard RT-11 devices.

Table 4-7 Default Directory Sizes

Size (decimal) of
Device Directory in Segments

RKOS 16
DT 4
RF 4
DS 4
DP 31
DX 4
RK06 31

/VOLUMEID[:ONLY] - Use this option to write a volume identification on a device when you initialize it. This
identificatjon consists of a volume ID (up to 12 characters long for a block-replaceable device, up to 6 characters long
for magtape) and an owner name (up to 12 characters long for a block-replaceable device, up to 10 characters long for
magtape). The following example initializes device RKl: and writes a volume identification on it.

.INITIALIZE/VOLUMEID RK1:

RK1:/Init are You sure?Y

VOL ID?BACKUF'2

OWNER NAHE?ENGINEERING

Use /VOLUMEID:ONLY to write a new volume identification on a device without reinitializing the device.

4-77

INSTALL Interactive Commands

The INST ALL command installs the device you specify into the system.

I INSTALL@ do,iee[, ... do,iee[

In the command syntax shown above, device represents the name of the device to be installed. The INST ALL command
accepts no options. The INSTALL command allows you to install into the system tables a device that was not originally
built into the system. (A device handler must exist in the system tables before you can use that device.) The device oc
cupies the first available device slot. Using the INSTALL command does not change the monitor disk image; it only
modifies the system tables of the monitor that is currently in memory.

You can enter the command on one line, or you can rely on the system to prompt you for information. The INSTALL
command prompt is Device?.

When you specify a device name, the system searches the system device for the corresponding device handler file. For
SJ and FB systems, if LP: is to be installed, the INSTALL command searches for the file SY:LP.SYS. For XM systems,
INSTALL searches for SY:LPX.SYS. The INSTALL command does not allow a device handler built for a different
configuration of the system to be installed in a given system. For example, you cannot install an error logging handler
if your currently running monitor is not designed for error logging. Note that you cannot install the following device
names: FG (with FB or XM monitor only), and BA.

To permanently install a device, include the INSTALL command in the standard system startup indirect command
file. This file is invoked as an indirect file automatically when you boot the system. The INST ALL command also
allows you to configure a special system for a single session without having to reconfigure to get back to the standard
device configuration. Rebooting the system restores the original device configuration. Note that if there are no free
device slots (use the SHOW DEVICES command to determine this), you must remove an existing device (with the
REMOVE command) before you can install a new device.

The following command installs the card reader into the system tables from the file CR.SYS. Note that the colon(:)
that follows the device handler name is optional.

• IN!:;Ttil..l... CF<!

The next example installs the line printer, the card reader, and DECtape .

• INSTALL LP:,CR:,DT:

4-78

Interactive Commands LIBRARY

The LIBRARY command lets you create, update, modify, list, and maintain library files.

LIBRARY /LIST{:filespec] [/ALLOCATE:size]
/{NO) OBJECT[:filespec] [/ALLOCATE:size]

[

{ /CREATE }]

® library[@ filespecs [l /REPLACEt]]

/UPDATE J

J/EXTRACT(
) /INSERT {

l /MACRO '
/DELETE
/PROMPT
/REMOVE

In the command syntax illustrated above, library represents the library file name and filespecs represents the input
module file names. Separate the library file specification from the module file specifications by a space. Separate
the module file specifications by commas. The system uses .LST as the default file type for library directory listing
files. It also uses .OBJ as the default file type for object libraries and object input files, and it uses .MAC for macro
libraries and macro input files. The default operation, if you do not specify an option, is /INSERT. If you do not
specify a library file in the command line, the system prompts you with Library?. If you specify /CREATE,
/INSERT, or /MACRO and omit the module file specification, the system prompts you with Files?. If you specify
/EXTRACT, the system prompts you with File?. Note that no other options cause the File? or Files? prompts.

The LIBRARY command can perform all the functions listed above on object library files. It can also create macro
library files for use with the MACR0-11 assembler. A library file is a direct access file (a file that has a directory)
that contains one or more modules of the same module type. The system organizes the library files so that the linker
and MACRO-I I assembler can access them rapidly. Each object library is a file that contains a library header, library
directory, and one or more object modules. The object modules in a library file can be routines that are repeatedly
used in a program, routines that are used by more than one program, or routines that are related and simply gathered
together for convenience. The contents of the library file are determined by your needs. An example of a typical
object library file is the default system library, SYSLIB.OBJ, used by the linker. An example of a macro library file
is SYSMAC.SML.

You access object modules in a library file from another program by making calls or references to their global sym
bols; you link the object modules with the program that uses them by using the LINK command to produce a sing.le
executable module. Each input file for an object library consists of one or more object modules, and is stored on a
device under a specific file name and file type. Once you insert an object module into a library file, you no longer
reference the module by the file name of which it was a part. Reference it now by its individual module name. For
example, the input file FORT.OBJ may exist on DT2: and can contain an object module called ABC. Once you in
sert the module into a library, reference only ABC and not FORT .OBJ.

The input files normally do not contain main programs but only subprograms, functions and subroutines. The library
files must never contain a FORTRAN "BLOCK DATA" subprogram: there is no undefined global symbol to cause
the linker to load it automatically.

The following sections describe the LIBRARY command options and explain how to use them. The last section
under this command describes the LIBRARY prompting sequence and order of execution for commands that com
bine two or more LIBRARY options. Chapter 12 contains more detailed information on object and macro libraries.
The following sections describe the options available with the LIBRARY command.

/ ALLOCATE:size - Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The
argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1
to 32767. A value of -1 is a special case that creates the largest file possible on the device.

4.79

LIBRARY Interactive Commands

/CREATE - Use this option to create an object library. Specify a library name followed by the file specifications
for the modules that are to be included in that library. The following command, for example, creates a library called
NEWLIB.OBJ from the modules contained in files FIRST.OBJ and SECOND.OBJ .

• LIBRARY/CREATE NEWLIB FIRST,SECOND

/DELETE - Use this option to delete an object module and all its associated global symbols from the library.
Specify the library name in the command line. The system prompts you for the names of the modules to delete.
The prompt is:

Module name?

Respond with the name of a module. (Be sure to specify a module name and not a global name.) Follow each module
name with a carriage return. Enter a carriage return on a line by itself to terminate the list of module names. The
following example deletes modules SGN and TAN from the library called NEWLIB.OBJ .

• LtBRARY/DELETE NEWLIB
Module name? SGN
Module name? TAN
Mod1Jle name?

/EXTRACT Use this option to extract an object module from a library and store it in a file with the same name
as the module and a file type of .OBJ. You cannot combine this option with any other option. The system prompts
you for the name of the object module to be extracted. The prompt is:

If you specify a global name, the system extracts the entire module of which that global is a part. Follow each
global name with a carriage return. Enter a carriage return on a line by itself to terminate the list of global symbols.
The following example, which also shows the system prompts, extracts the module ATAN from the library called
NEWLIB.OBJ, storing it in file AT AN .OBJ on DXI: .

• LI BRAF~Y /EXTRACT
Library? NEWL:rn
File ? DX1:ATAN
Global T ATAN
Global?

/INSERT - Use this option to insert an object module into an existing library. Although you can insert two or
more object modules having the same name, this practice is not recommended because of the difficulty involved in
replacing or updating these modules. Note that /INSERT is the default operation. If you do not specify any option,
insertion takes place. The following example inserts the modules contained in the files THIRD.OBJ and
FOURTH.OBJ into the library called OLD LIB.OBJ .

• LIBRARY/INSERT OLDLIB THIRD,FOURTH

/LIST[:filespec] - Use this option to obtain a directory listing of an object library. The following example obtains
a directory listing of OLDLIB.OBJ on the tenninal (the line printer is the default device) .

• LIBRARY/LIST:TT: OLDLIB

The directory listing prints global symbol names. A plus sign (+) in the module column indicates a continued line. See
Section 12.2. 7 for a procedure to include module names in the directory listing.

4-80

Interactive Commands LIBRARY

You can also use /LIST with other options (except /MACRO) to obtain a directory listing of an object library after
you create or modify it. The following command, for example, inserts the modules contained in the files THIRD.OBJ
and FOURTH.OBJ into the library called OLDLIB.OBJ, and prints a directory listing of the library on the terminal .

• LIBRARY/INSERT/LIST:rr: OLDLIB THIRD,FOURTH

You cannot obtain a directory listing of a macro library (see /MACRO).

/MACRO - Use this option to create a macro library. Note that this is the only valid function for a macro library.
You can create a macro library, but you cannot list or modify it. To update a macro library, simply edit the ASCII
text file and then reprocess the file with the LIBRARY/MACRO command. The following example creates a macro
library called NEWLIB.MAC from the ASCII input file SYSMAC.MAC .

• LIBRARY/MACRO NEWLIB SYSMAC

/OBJECT[:filespec] - The system creates object library files by default as a result of executing a LIBRARY com
mand. When you modify an existing library, the system actually makes the changes to the library you specify, thus
creating a new, updated library that it stores under the same name as the original library. Use this option to give a
new name to the updated library file and preserve the original library. The following example creates a library called
NEWLIB.OBJ, which consists of the library OLDLIB.OBJ plus the modules that are contained in files THIRD.OBJ
and FOURTH.OBJ .

• LIBRARY/INSERT/OBJECT:NEWLIB OLDLIB THIRD,FOURTH

/NOOBJECT - Use this option to suppress the creation of a new object library as a result of a LIBRARY command.

/PROMPT - Use this option to specify more than one line of input file specifications in a LIBRARY command.
This option is valid with all other library functions except the /EXTRACT option. You must specify// as the last
input in order to properly tenninate the input list. The following example creates a macro library called MACLIB.MAC
from seven input files .

• LIBRARY/MACRO/PROMPT MACLIB A,B,C,D
*E,F,G
*II

/REMOVE - This option permits you to delete a specific global symbol from a library file's directory. Since globals
are only deleted from the directory (and not from the object module itself), all the globals that were previously
deleted are restored whenever you update that library, unless you use /REMOVE again to delete them. This feature
lets you recover a library if you have inadvertently deleted the wrong global. The system prompts you for the names
of the global symbols to remove. The prompt is:

Global?

Respond with the name of a global symbol to be removed. Follow each global symbol with a carriage return. Enter
a carriage return on a line by itself to terminate the list of global symbols. The following example deletes the globals
GA, GB, GC, and GD from the library OLDLIB.OBJ .

• LIBRARY/REMOVE OLDLIB
Global? GA
Global? GB
Global'!' GC
Global? GD
Global?

4-81

UBRARY Interactive Commands

/REPLACE - Use this option to replace modules in an existing object library with modules of the same name con
tained in the flies you specify. If an old module does not exist with the same name as the input module you specify,
or if you specify /REPLACE with a library file name, the system prints an error message and ignores the command.
The following example replaces a module called SQRT in the library MATHLB.OBJ with a new module, also called
SQRT, from the ftle called MFUNCT.OBJ .

• LIBRARY HATHLB HFUNCT/REPLACE

Note that the /REPLACE option must follow each file specification that contains a module to be inserted into the
library.

/UPDATE This option combines the functions of /INSERT and /REPLACE. Specify it after each me specification
to which it applies. If the modules in the input file already exist in the library, the system replaces· those library
modules. If the modules in the input file do not exist in the library, the system inserts them. The following example
updates the library OLDLIB.OBJ .

• LIBRARY OLDLIB FIRST/UPDATE,SECOND/UPDATE

You can combine the LIBRARY options with the exceptions of /EXTRACT and /MACRO, which you cannot com
bine with most of the other functions. Table 4-8 lists the sequence in which the system executes the LIBRARY
options and prompts you for additional information.

Table 4-8 LIBRARY Execution and Prompting Sequence

Option Prompt

/CREATE

/DELETE Module namer

/REMOVE Global?

/UPDATE

/REPLACE

/INSERT

/LIST

The following example combines several options.

LIBRARY/LIST:TT:/REMOVE/INSERT NEWLIB LIB2/REPLACE,LIB3
Global? SURT
Global?
RT-11 LIBRARIAN V03.05 FRI 15-JUL-77 00108:37
NEWLIB FRI 15-JUL-77 00:00:35

MODULE GLOBALS GLOBALS

cos SIN
IIATAN DATAN2
ATAN i!iTAN2
ncos DSIN

4-82

GLOBALS

Interactive Commands LIBRARY

The command executes in the following sequence:

1. Removes global SQRT from NEWLIB
2. Replaces any duplicates of the modules in the file LIB2.0BJ
3. Inserts the modules in the file LIB3.0BJ
4. Lists the directory of NEWLIB.OBJ on the terminal.

4-83

LINK Interactive Commands

The LINK command converts object modules produced by an RT-11 supported language processor into a format
suitable for loading and execution.

LINK / [NO) EXECUTE [:filespec) @ filespecs
/MAP[:filespec) [/ALLOCATE:size) [/WIDE)

/LDA

/FOREGROUND[:stacksize)
/FILL:n

/BOTTOM:n
/FILL:n
/RUN
/STACK(:n)

/BOUNDARY:value
/DEBUG [:filespec]
/EXTEND:n
/INCLUDE
/LIBRARY:filespec
/LINKLIBRARY:filespec
/PROMPT
/ROUND:n
/SLOWLY
/TRANSFER [:n)

The RT-11 system lets you separately assemble a main program and each of its subroutines without assigning an
absolute load address at assembly time. The linker can then process the object modules of the main program and
subroutines to relocate each object module and assign absolute addresses. It links the modules by correlating global
symbols that are defined in one module and referenced in another, and it creates the initial control block for the
linked program. The linker can also create an overlay structure (if you specify the /PROMPT option) and include the
necessary run-time overlay handlers and tables. The linker searches libraries you specify to locate unresolved global
symbols, and it automatically searches the default system library, SYSLIB.OBJ, to locate any remaining unresolved
globals. Finally, the linker produces a load map (if you specify /MAP) that shows the layout of the executable
module. Read Chapter 11 for a more detailed explanation of the RT-11 linker.

In the command syntax illustrated above, filespecs represents the object modules to be linked. Each input module
should be stored on a random-access device (disk or DECtape); the output device for the load map file can be any
RT-11 device. The output for an .LDA file (if you specify /LDA) can also be any RT-11 device, even those that are
not block replaceable, such as paper tape.

The default file types are as follows:

Load Module
Map Output
Object Module

.SA V, .REL(/FOREGROUND), .LDA(/LDA)

.MAP

.OBJ

If you specify two or more files to be linked together, separate the files by commas. The system creates an execut
able file with the same name as the first file in the input list (unless you use /EXECUTE to change it).

4-84

Interactive Commands LINK

The following sections describe the LINK command options and explain how to use them. The last section under
this command describes the LINK prompting sequence for commands that combine two or more LINK options.

/ALLOCATE:size - Use th.is option with /MAP to reserve space on the device for the output file. The argument,
size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 to 32767. A
value of 1 is a special case that creates the largest file possible on the device.

/BOTIOM:n Use this option to specify the lowest address to be used by the relocatable code in the load module.
The argument, n, represents a six-digit unsigned even octal number. If you do not use this option, the linker positions
the load module so that the lowest address is location 1000 (octal). This option is illegal for foreground links.

/BOUNDARY:value - Use the /BOUNDARY option to start a specific program section on a particular address bound
ary. The system generates a whole number multiple of the value you specify for the starting address of the program
section. The argument, value, must be a power of 2. The system extends the size of the previous program section to
accommodate the new starting address for the specific section. When you have entered the complete LINK com
mand, the system prompts you for the name of the section whose starting address you need to modify. The prompt
is:

Boundar~ section?

Respond with the appropriate program section name. Terminate your response with a carriage return.

/DEBUG[:filespec] Use this option to link ODT (on-line debugging technique, described in Chapter 16) with your
program to help you debug it. If you supply the name of another debugging program, the system links the debugger
you specify with your program. The system links the debugger low in memory relative to your program.

/EXECUTE[:filespec J - Use this option to specify a file name or device for the executable file. Because the LINK
command creates executable files by default, the following two commands have the same meaning .

• I ... I NI, MYPROG

.LINK/EXECUTE MYPROG

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a result. The /EXECUTE option has different
meanings when it follows the command and when it follows the file specification. The following command creates an
executable file called PROG l.SA Von device RKl: .

• LINK/EXECUTE:RK1! PROG:L,PROG2

The next command creates an executable file called MYPROG.SAV on device DK: .

• LINK RTN1,RTN2,MYPROG/EXECUTE

/NOEXECUTE - Use this option to suppress creation of an executable file.

/EXTEND:n - This option allows you to extend a program section to a specific octal value, n. The resultant program
section size is equal to or greater than the value you specify, depending on the space the object code actually requires.
When you have entered the complete LINK command, the system prompts you for the name of the program section
you need to extend. The prompt is:

E:-:t.end sect i c:>n?

Respond with the appropriate program section name. Terminate your response with a carriage return.

4-85

UNK Interactive Commands

/FILL:n Use this option to initialize unused locations in the load module and place a specific value in those loca
tions. The argument, n, represents the octal value to place in the unused locations. Note that the linker automatically
initializes unused locations in the load module to O; use this option to place another value in those locations. This
option can be useful in eliminating random results that occur when a program references uninitialized memory by
mistake. It can also help you determine which locations have been modified by the program and which are left un
changed.

/FOREGROUND[: stacksize] - This option produces an executable file in relocatable (.REL) format for use as a
foreground job under the FB or XM monitor. You cannot use .REL files in the single-job system. This option assigns
the default file type .REL to the executable file. The argument, stacksize, represents the number of bytes of stack
space to allocate for the foreground job. The value you supply is interpreted as an octal number; specify an even
number. Follow n with a decimal point (n.) to represent a decimal number. The default value is 128 (decimal) bytes
of stack space.

/INCLUDE This option lets you take global symbols from any library and include them in the linked memory image.
When you have entered the complete LINK command, the system prompts you for a list of global symbols to include
in the load module. The prompt is:

LU.Har~ search?

Respond by typing the global symbols to be included in the load module. Type a carriage return after each global
symbol. Type a carriage return on a line by itself to terminate the list. This provides a method for forcing modules
(that are not called by other modules) to be loaded from the library.

/LOA - This option produces an executable file in LOA format. The LOA-format file can be output to any device,
including those that are not block-replaceable, such as the paper tape punch or cassette. This option assigns the de
fault file type .LDA to the executable file. This option is useful for files that you need to load with the Absolute
Binary Loader.

/LIBRARY - This option is the same as /LINKLIBRARY. It is included for compatibility with other systems.

/LINKLIBRARY:filespec - You can use this option to include the library file you specify as an object module library
in the linking operation. This option is not necessary because the system automatically recognizes library files in the
linking operation; it is provided for compatibility with the EXECUTE command.

/MAP[:filespec] - You must specify this option to produce a load map listing. The /MAP option has different
meanings depending on where you put it in the command line.

If you specify /MAP without a file specification in the list of options that immediately follows the command name,
the system generates a listing that prints on the line printer. If you follow /MAP with a device name, the system
creates a map file on that device. If the device is a file-structured device, the system stores the listing file on that de
vice, assigning it the same name as the first input file with a .LST file type. The following command produces a load
map on the terminal.

.LINK./MAF'!TT! MYF'ROG

The next command creates a map listing file called MYPROG.LST on RK3: .

• LINK/MAF'!RK3! MYPRDG

If the /MAP option contains a name and file type to override the default of .LST, the system generates a listing with
that name. The following command, for example, links PROGi and PROG2, producing a map listing file called
MAP.OUT on device DK:.

4-86

Interactive Commands LINK

.LINK/MAP:MAP+OUT PROG1,PROG2

Another way to specify /MAP is to type it after the file specification to which it applies. To link a file and produce
a map listing file with the same name, use a command similar to this one .

• LINK PROG1,PROG2/EXECUTE/MAP

The command shown above links PROGl and PROG2, producing files PROG2.SAV and PROG2.MAP. If you specify
a file name on a /MAP option following a file specification in the command line, it has the same meaning as when it

follows the command.

/PROMPT Use this option to enter additional lines of input. The system continues to accept lines of linker input
until you enter two slashes(//). Chapter 11 describes the commands you can enter directly to the linker. The
/PROMPT option also gives you a convenient way to create an overlaid program from an indirect file. The file
HERB.COM contains these lines:

A/PROMPT
SUBl/0: 1.
SUB2/0:1
SUB3,SUB4/0:1
II

The following command produces an executable file, DK:HERB.SAV, and a link map on the printer .

• LINK/MAP @HERB

/ROUND:n - This option rounds up the section you specify so that the size of the root segment is a whole number
multiple of the value, n, you supply. The argument, n, must be a power of 2. When you have entered the complete
LINK command, the system prompts you for the name of the section that you need to round. The prompt is:

Ro1.md sect.i(.")rt'?

Respond with the appropriate program section name. Terminate your response with a carriage return.

/RUN - Use this option to initiate execution of the resultant .SA V file. This option is valid for background jobs only.

/SWWLY - This option instructs the system to allow the largest possible memory area for the link symbol table at
the expense of making the link process slower. Use this option only if an attempt to link a program failed because of
symbol table overflow.

/STACK[:n] This option lets you modify the stack address. This address, location 42, is the address that contains
the value for the stack pointer. When your program executes, the stack pointer (SP) is automatically set to the con
tents of location 42. The argument, n, is an even, unsigned six.digit octal number that defines the stack address. When
you have entered the complete LINK command, the system prints the following prompt message if you did not al
ready specify a numeric value for n.

Stack S!-Jmbol '?

Respond with the global symbol whose value is the stack address. You cannot specify a number at this point. Termi
nate your response with a carriage return. If you specify a nonexistent symbol, the system prints an error message.
It then sets the stack address to 1000 (for memory image files) or to the bottom address if you used /BOTTOM.

4-87

LINK Interactive Commands

/TRANSFER[:n] - The transfer address is the address at which a program starts when you initiate execution with
R, RUN, or FRUN. The /TRANSFER option lets you specify the start address of the load module. The argument,
n, is an even, unsigned six-digit octal number that defines the transfer address. When you have entered the complete
LINK command, the system prints the following prompt message if you did not already specify a numeric value for
n:

Respond with the global symbol whose value is the transfer address. You cannot specify a number at this point. Ter
minate your response with a carriage return. If you specify a nonexistent symbol, an error message prints and the
linker sets the transfer address to 1 so the system cannot execute the program. If the transfer address you specify is
odd, the program does not execute after loading and control returns to the monitor.

/WIDE - Use this option with /MAP to produce a wide load map listing. Normally, the listing is wide enough for
three GLOBAL VALUE columns, which is suitable for paper with 72 or 80 columns. The /WIDE option produces a
listing that is six GLOBAL VALUE columns wide, which is ideal for a 132-column page.

This section describes the prompting sequence that occurs when you combine the LINK options. Table 4-9 lists the
sequence in which the system prompts you for additional information.

Table 4-9 LINK Prompting Sequence

Option Prompt

/TRANSFER Transfer symbol'?

/STACK Stack symbol?

/EXTEND:n Extend section?

/BOUNDARY :value Boundary section?

/ROUND:n Round section?

/INCLUDE Library search?

If you combine any of the options listed in Table 4-9, the system prompts you for information in the sequence
shown in the table. Note that the Library search? prompt is always last. This is the only prompt that accepts more
than one line as a response. For all the prompts, terminate your response with a carriage return. Terminate your list
of responses to the Library search'? prompt by placing a carriage return on a line by itself. Note that if the command
lines are in an indirect file and the system encounters an end-of-file before all the prompting information has been
supplied, it prints the prompt messages on the terminal.

4-88

Interactive Commands LOAD

The WAD command makes a device handler resident in memory for use with BATCH or foreground/background
jobs.

LOAD@ device[=jobtype] [, ... device[=jobtype] I

In the command syntax shown above, device represents the device handler to be made resident;jobtype, which can
have the values B or F, assigns the device handler to the background or foreground job, respectively. The jobtype
specification is invalid with the SJ monitor.

The LOAD command helps control system execution by bringing a device handler into memory and optionally
allocating the device to a job. The system allocates memory for the handler as needed. Before you use a device in a
foreground program with the FB monitor, or any device at all with the XM monitor, you must first load the device
handler. A device can be owned exclusively by either the foreground or background job. {Note that BATCH, if
running, is considered to be a background job under the FB and XM monitors.) This exclusivity prevents the input
and output of two different jobs from being intermixed on the same non-file-structured device. In the following
example, magtape belongs to the background job while DECtape is available for use by either the background or
foreground job; the line printer is owned by the foreground job. All three handlers are made resident in memory .

• LOAD DT:~MT:=B~LP:=F

Different units of the same random-access device controller can be owned by different jobs. Thus, for example, DTl:
can belong to the background job while DTS: can belong to the foreground job. If no ownership is indicated, the
device is available for public use. To change ownership of a device, use another LOAD command. It is not necessary
to first unload the device. For example, if the line printer has been loaded into memory and assigned to the fore
ground job as in the example above, the following command reassigns it to the background job without unloading
the handler first.

+LOAfl L.F':=B

Note, however, that if you interrupt an operation that involves magtape or cassette, you must unload (with the
UNLOAD command) then reload the appropriate device handler (MM, MT, or CT).

You cannot assign ownership of the system unit (the unit you bootstrapped) of a system device, and any attempt to
do so is ignored. You can, however, assign ownership of other units of the same type as the system device. LOAD is
valid for use with user-assigned names. For example:

.ASSIGN RK1! XY
+LOAD XY:=F

If you are using the diskette monitor, loading the necessary device handlers into memory can improve system per
formance since no handlers need to be loaded dynamically from the diskette. Use the SHOW DEVICES command to
display on the tenninal the status of device handler and device ownership.

4-89

MACRO Interactive Commands

The MACRO command invokes the MACRO assembler to assemble one or more source files.

MACRO /LIST[:files pee] [/ALLOCATE :size]
/[NO] OBJECT[:filespec] [/ALLOCATE:size]

/CROSSREFERENCE [:type [... :type])
/DISABLE:value [. .. :value]
/ENABLE:value [. .. :value]
/[NO) SHOW[:value]

@ filespecs [/LIBRARY]
/PASS:1

In the command syntax shown above, filespecs represents one or more files to be included in the assembly. If you
omit a file type for an input file, the system assumes .MAC. Output default file types are .LST for listing files and
.OBJ for object files.

To assemble multiple source files into a single object file, separate the files by plus(+) signs in the command line.
Unless you specify otherwise, the system creates an object file with the same name as the first input file and gives
it an .OBJ file type. To assemble multiple files in independent assemblies, separate the files by commas(,) in the
command line. This generates a corresponding object file for each set of input files.

Lmguage options are position dependent. That is, they have different meanings depending on where you place them
in the command line. Options that qualify a command name apply across the entire command string. Options that
follow a file specification apply only to the file (or group of files separated by plus signs) that they follow in the
command string.

You can enter the MACRO command as one line, or you can rely on the system to prompt you for information.
The MACRO command prompt is Files? for the input specification. The system prints on the terminal the number
of errors MACRO detects during an assembly, as this printout shows:

.MACRO/CROSSREFERENCE PROG1+PROG2/LIST/OBJECT
ERRORS DETECTED: 0

Chapter 10 and the PDP-I I MACRO Language Reference Manual contain more detailed information about using
MACRO. The following sections describe the options you can use with the MACRO command.

/ALLOCATE:size - Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The
argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1
to 32767. A value of 1 is a special case that creates the largest file possible on the device.

/CROSSREFERENCE:type[. .. : type] - Use this option to generate a symbol cross-reference section in the listing.
This information is useful for program maintenance and debugging. Note that the system does not generate a listing
by default. You must also specify /LIST in the command line to get a cross.reference listing. The argument, type,
represents a one-character code that indicates which sections of the cross-reference listing the assembler should in
clude. Table 4-10 summarizes the valid arguments and their meanings.

/DISABLE:value[... : value] Use this option to specify a MACRO .DSABL directive. See Section 6.2 of the
PDP-11 MACRO Language Reference Manual for a description of the directive and a list of all legal values. Table
4-11 summarizes the arguments and their meaning.

4-90

Interactive Commands MACRO

Table 4-10 Cross-reference Sections

Argument Section Type

s User-defined symbols

R Register symbols

M Macro symbolic names

p Permanent symbols (instructions, directives)

C Control sections (.CSECT and .PSECT symbolic names)

E Error codes

no argument Equivalent to :S:M:E

Table 4-11 .DSABL and .ENABL Directive Summary

Argument Default Enables or Disables

ABS disable Absolute binary output

AMA disable Assembles all absolute addresses as relative addresses

CDR disable Treats source columns 73 and greater as comments

FPT disable Floating point truncation

GBL disable Treats undefined symbols as globals

LC disable Accepts lower case ASCII input

l..SB disable Local symbol block

PNC enable Binary output

REG enable Mnemonic definitions of registers

/ENABLE:value[. .. :value] - Use this option to specify a MACRO .ENABL directive. See Section 6.2 of the
PDP-I I MACRO Language Reference Manual for a description of the directive and a list of all legal values. Table
4-11 summarizes the arguments and their meaning.

/UBRARY This option identifies the file it qualifies as a library file; use it only after a macro library file speci
fication in the command line. The MACRO assembler looks first to the library file or files you specify and then to
the system library, SYSMAC.SML, to satisfy references (made with the .MCALL directive) from MACRO programs.
In the example below, the command string includes two user libraries .

• MACRO MYLIB1/LIBRARY+AtMYLIB2/LIBRARYtB

When MACRO assembles file A, it looks first to the library, MYLIBl .MAC, and then to SYSMAC.SML to satisfy
.MCALL references. When it assembles file B, MACRO searches MYLIB2.MAC, MYLIBI.MAC, and then
SYSMAC.SML, in that order, to satisfy references.

/UST[:filespec] You must specify this option to produce a MACRO assembly listing. The /LIST option has dif
ferent meanings depending on where you place it in the command line.

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the MACRO assembler generates a listing that prints on the line printer. If you follow /LIST, with a device name, the
system creates a listing file on that device. If the device is a file-structured device, the system stores the listing file on
that device, assigning it the same name as the input file with a .l..ST file type. The following command produces a
listing on the terminal.

4-91

MACRO Interactive Commands

.MACRO/LISTtTTI A

The next command creates a listing file called A.LST on RK3: .

• MACRO/LISTtRK3! A

If the /LIST option contains a name and me type to override the default of .LST, the system generates a listing file
with that name. The following command for example, assembles A.MAC and B.MAC together, producing files
A.OBJ and FILEl.OUT on device DK: .

• MACRO/LIST:FILE1.0UT AtB

You cannot use a command like the next one. In this example, the second listing file would replace the first one and,
therefore, cause an error.

.MACRO/LIST:FILE2 A,B

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file
with the same name as a particular input file, you can use a command similar to this one:

,MACRO AtB/LIST:RK3:

The above command assembles A.MAC and B.MAC, producing files DK:A.OBJ and RK3:B.LST. If you specify a
file name on a /LIST option following a file specification in the command line, it has the same meaning as when it
follows the command. The following two commands have the same results:

.MACRO A/LIST:B

.MACRO/LitHtB A

Both the above commands generate as output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are separated by plus signs) they follow in
the command string. For example:

.MACRO A/LIST,B

This command assembles A.MAC, producing A.OBJ and A.LST. It also assembles B.MAC, producing B.OBJ. How
ever, it does not produce any listing file for the assembly of B.MAC.

/OBJECT[:fdespec J - Use this option to specify a file name or device for the object file. Because MACRO creates
object files by default, the following two commands have the same meaning .

• MACRO A

• MACRO/OB,JECT A

Both commands assemble A.MAC and produce A.OBJ as output. The /OBJECT option functions like the /UST
option; it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example,
assembles A.MAC and B.MAC separately, creating object files A.OBJ and B.OBJ on R.Kl : .

• MACRO/OBJECT:RKl! A,B

4-92

Interactive Commands MACRO

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
assembles A.MAC and B.MAC together, creating files B.l.ST and B.OBJ .

• MACRO A+B/LIST/OBJECT

/NOOBJECT Use this option to suppress creation of an object file. As a command option, /NOOBJECT suppresses
all object files; as a file option, it suppresses only the object file produced by the related input files. In thls command,
for example, the system assembles A.MAC and B.MAC together, producing files A.OBJ and B.l.ST. It also assembles
C.MAC and produces C.LST, but does not produce C.OBJ .

• MACRO AtB/LIST,C/NOOBJECT/LIST

/PASS:1 Use this option on a prefix macro file to process that file during pass-I of the assembly only. This option
is useful when you assemble a source program together with a prefix file (one that contains only macro definitions),
since these definitions do not need to be redefined in pass-2 of the assembly. The following command assembles a
prefix file and a source file together, producing files PROG l .OBJ and PROG 1.l.ST .

• MACRO PREFIX.MAC/PASS:1+PROG1/LIST/OBJECT

/SHOW:value - Use this option to specify any MACRO .LIST directive. Section 6.1.1 of the PDP-11 MACRO
Language Reference Manual explains how to use these directives. Table 4-12 summarizes the valid arguments and
their meaning.

Table 4-12 .LIST and .NLIST Directive Summary

Argument Default Controls listing of

SEQ list Source line sequence numbers

LOC list Location counter

BIN list Generated binary code

BEX list Binary extensions

SRC list Source code

COM list Comments

MD list Macro definitions, repeat range expansions

MC list Macro calls, repeat range expansions

ME nolist Macro expansions

MEB nolist Macro expansion binary code

CND list Unsatisfied conditionals, JF and .ENDC statements

LD nolist Listing directives with no arguments

roe list Table of Contents

TTM terminal mode Listing output format

SYM list Symbol table

/NOSHOW:value Use this option to specify any MACRO .NUST directive. Section 6.1.l of the PDP-11 MACRO
Language Reference Manual explains how to use these directives. Table 4-12 summarizes the valid arguments and
their meaning.

4-93

PRINT Interactive Commands

The PRINT command lists the contents of one or more files on the line printer.

PRINT [/COPIES:n] @ filespecs
/DELETE
/(NO] LOG

/NEWFILES
/QUERY

In the command syntax illustrated above, filespecs represents the file or files to be printed. You can explicitly specify
up to six files as input to the PRINT command. The system prints the files in the order in which you specify them
in the command line. You can also use wildcards in the fde specification. In this case, the system lists the files in the
order in which they occur in the directory of the device you specify. If you specify more than one file, separate the
files by commas. If you omit the file type for a file specification, the system assumes .LST. You can specify the en•
tire command on one line, or you can rely on the system to prompt you for information. The PRINT command
prompt is Files?. Note that if the output device is an LPOS, you must terminate the file with a line feed, form feed,
or carriage return.

The following sections describe the PRINT command options and include command examples.

/COPIES:n - Use this option to print more than one copy of the file. The meaningful range of values for the decimal
argument, n, is from 2 to 32 (1 is the default). The following command, for example, prints three copies of the file
REPORT.LST on the line printer.

.PRINT/COPIES!3 REPORT

/DELETE - Use this option to delete a file after it prints on the line printer. This option must appear following the
command in the command line. The PRINT/DELETE operation does not ask you for confirmation before it executes.
You must use /QUERY for this function. The following example prints a BASIC program on the line printer, then
deletes it from DXl: .

• PRINT/DELETE DX1:PROG1.BAS

/LOG - This option lists on the terminal the names of the files that are printed by the current command. Normally
the system prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the query messages
replace the log, unless you specifically type /LOG/QUERY in the command line. The following example shows a
PRINT command and the resultine: 1011: •

• PRINT/LOG/DELETE REPORT
Files copies/deleted:

DK:REPORT.LST to LP:

/NO LOG This option prevents a list of the files that were printed from typing out on the terminal. You can use
this option to suppress the log when you use a wildcard in the file specification.

/NEWFILES - Use this option in the command line if you need to print only those files that have the current date.
The following example shows a convenient way to print all new files after a session at the computer.

,PRINT/NEWFILES *•LST
F:i.les C(JPied:

Dl<:OUTFIL.LST
IIKtREPORT.LST

tc:, LP!
to LP:

4-94

Interactive Commands PRINT

/QUERY - If you use this option, the system requests confirmation from you before it performs the operation.
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for an operation. Note that if you specify /QUERY in a PRINT command line that also
contains a wildcard in the file specification, the confirmation messages that print on the terminal replace the log
messages that would normally appear. You must respond to a query message by typing Y (or anything that begins
with Y) and a carriage return to initiate execution of a particular operation. The system interprets any other response
to mean NO; it does not perform the specific operation. The following example uses /QUERY.

,PRINT/QUERY *•LST
Files COPied:

DK:OUTFIL.LST
tiK:REPORT.LST

to LP:? NO
to LP:? Y

4-95

R Interactive Commands

The R command loads a memory image file from the system device into memory and starts execution.

I ·®··-...
In the command syntax shown above, ftlespec represents the program to be executed. The default file type is .SAY.
The default device is SY:. The R command is similar to the RUN command except that the file you specify in an R
command string must be on the system device (SY:). Use the R command only with background jobs. The following
command loads and executes MYPROG.SA V from device SY: .

• R MYPROG

4-96

Interactive Commands

The REENTER command starts the program at its reentry address (the start address minus two).

I REENTER

REENTER

The REENTER command accepts no options or arguments. REENTER does not clear or reset any memory areas.

Use it to avoid reloading the same program for repetitive execution. You can use REENTER to return to a system
program or to any program that allows for a REENTER after the program terminates. You can also use REENTER
after you have used two CTRL/Cs to interrupt those programs.

If you issue the REENTER command and it is not valid for a program, the message ?KMON-F-lliegal command
prints. You must start that program with an R or RUN command. '

In the following example the directory program (DIR) lists the directory of DK: on the line printer. Two CTRL/Cs
interrupt the listing and return to the monitor. REENTER starts DIR at its reentry address and DIR prompts for a
line of input .

• R DIR
L.P:=DK!•*
,_c;

.REENTER

*
Note in the example above that using REENTER does not continue the directory listing where it was interrupted.

4-97

REMOVE Interactive Commands

The REMOVE command removes a device from the system tables.

I REMOVE @do,io,[, , .. 1

In the command syntax shown above, device represents the device to remove from the system tables. The REMOVE
command accepts no options. You can enter the REMOVE command on one line, or you can rely on the system to
prompt you for information. The REMOVE command prompt is Device?.

Using the REMOVE command does not change the monitor disk image; it only modifies the system tables of the
monitor currently in core. This allows you to configure a special system for a single session at the computer without
having to reconfigure to return to your standard device configuration. Bootstrapping the system device restores the
original device configuration. To permanently REMOVE a device, include the REMOVE command in the standard
system startup indirect command file.

You cannot remove the following system devices: SY (the handler for the system device), BA (the BATCH handler),
and TT (the terminal handler). You can use the INSTALL command to install a new device after using the REMOVE
command to remove a device (thus creating a free device slot).

The following command removes the line printer handler and the card reader handler from the system. Note that the
colons (:) are optional.

• 1:;:EMOVE LP: , CR:

Use the SHOW DEVICES command to display on the terminal a list of devices that are currently available on your
system.

4-98

Interactive Commands

The RENAME command assigns a new name to an existing file.

RENAME /[NO] LOG @ input-filespecs@ outptit·filespec
/NEWFILES
/QUERY
/[NO] REPLACE
/SETDATE
/SYSTEM

RENAME

In the command syntax illustrated above, input-filespecs represents the files to be renamed, and output-filespec rep
resents the new name. You can specify up to six input files, but only one output file. Note that the device specifica
tion must be the same for input and output; you cannot rename a ftle from one device to another. If a fde exists with
the same name and file type as the output file you specify, the system deletes the existing file unless you use the
/NOREPLACE option to prevent this.

The system has a special way of handling system (.SYS) files and files that cover bad blocks (.BAD) files. So that you
do not rename system files by accident when you use a wildcard in the file specification, the system requires you to
use the /SYSTEM option when you need to rename system files. To rename a .BAD file, you must specify it by ex
plicitly giving its file name and file type. Since .BAD files cover bad blocks on a device, you usually do not need to
rename or otherwise manipulate these files.

The following sections describe the options you can use with the RENAME command.

/LOG - This option lists on the terminal the files that were renamed by the current command. Normally, the system
prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the query messages replace
the log (unless you specifically type /LOG/QUERY in the command line).

This example demonstrates logging .

• RENAME DXOtAZ¼.MAC DXO:*.FOR
Files renamed:

DXO!ABC.MAC to nxo:ABC.FOR
DXO!AAF.MAC to DXO!AAF+FOR

/NOLOG - This option prevents a list of the files that are renamed from appearing on tile terminal.

/NEWFILES - Use this option in the command line if you want to rename only those files that have the current date.
This is a convenient way to access all new files after a session at the computer.

/QUERY - If you use this option, the system requests confirmation from you before it perform8 the operation.
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for the operation. Note that if you specify /QUERY in a command line that also contains
a wildcard in the ftle specification, the confirmation messages that print on the terminal replace the log messages
that would normally appear. You must respond to a query message by typing Y (or anything that begins with Y) and
a carriage return to initiate execution of a particular operation. The system interprets any other response to mean
NO; it does not perform the specific operation. This example demonstrates querying .

• RENAME/QUERY DXO!(PIPt.SAV PIP.SAU)
Fi let; renamed!

DXOIPIP1.SAV to DXO:PIP.SAV ? Y

4.99

RENAME Interactive Commands

/REPLACE-This is the default mode of operation for the RENAME command. If a file exists with the same name
as the file you specify for output, the system deletes that duplicate file when it performs the rename operation.

/NOREPLACE This option prevents execution of the rename operation if a file with the same name as the output
file you specify already exists on the same device. The following example uses /NOREPLACE. In this case, the out
put file already exists and no action occurs .

• RENAME/NOREPLACE DXO:TEST.SAV DXO:DUP.SAV
?PIP-W-OutPut file found, no OPeration Performed DXO:TEST.SAV

/SETDATE - 1his option causes the system to put the current date on all files it renames, unless the current system
date is not set. Normally, the system preserves the existing file creation date when it renames a file. The following
example renames files and changes their dates .

• RENAME/SETDATE nxo:c*.FDR *·OLD)
Files renamed:

DXO:ABC.FOR to DXO:ABC.OLD
DXO:AAF.FOR to DXO:AAF.OLD
DXO?MERGE.FOR to DXO:MERGE.OLD

/SYSTEM - Use this option if you need to rename system (.SYS) files. If you omit this option, the system files are
excluded from the rename operation and a message is printed on the terminal to remind you of this. This example
renames MM.SYS to MX.SYS .

• RENAME/SYSTEM DXO:MM.SYS DXO:MX.SYS

4-100

Interactive Commands RESET

The RESET command resets several background system tables and does a general clean-up of the background area.

I RESET

The RESET command accepts no options or arguments. The RESET command causes the system to purge all open
input/output channels, initialize the user program memory area, and unload any device handlers that were not ex
plicitly made resident with the LOAD command. It also disables CTRL/0, clears locations 40-53, and resets the
KMON (keyboard monitor) stack pointer. Use RESET before you execute a program if a device or the monitor needs
reinitialization, or when you need to discard the results of previously issued GET commands. The RESET command
had no effect on the foreground job. The following example uses the RESET command before running a program.

•F<ESET
.1:~ MYF'ROG

4-101

RESUME Interactive Commands

The RESUME command continues execution of the foreground job at the point the SUSPEND command was issued.

I RESUME

No arguments or options are permitted with the RESUME command. When you issue the RESUME command, the
foreground job enters any completion routines that were scheduled while the job was suspended. Note that RESUME
is valid only with the FB and XM monitors. The following command resumes execution of the foreground job that
is currently suspended .

• F~ESUME

You can also use the RESUME command to execute a foreground job that you start with FRUN using /P.

4-102

Interactive Commands RUN

The RUN command loads a memory image file into memory and starts execution.

RUN@ filespec [{@ input-list I@ output-list){]

@ argument f

In the command syntax illustrated above, filespec represents the program to execute. The system assumes a .SAV
file type for the executable file, which can reside on any RT-11 block-replaceable device. The default device is DK:.
The RUN command automatically loads the device handler for the device you specify if it is not already resident.
This eliminates the need to explicitly load a device handler when you run an overlaid program from a device other
than the system device. The RUN command executes only those programs that have been linked to run as back
ground jobs. You cannot use RUN on a virtual job that executes under the XM monitor. The following command,
for example, executes MYPROG.SAV, which is stored on device DXl : .

• RUN DX1:MYPROG

You can also specify in the RUN command an argument to pass to the program, or a list of input and output specifi
cations. This allows you to specify a line of input for a user program or for a system utility program (which accepts
file specifications in the special syntax described in Chapter 6). The system automatically converts the input-list and
the output-list you specify into a format that the CSI (Command String Interpreter) accepts. For example, to execute
the directory program (DIR) and obtain a complete listing of the directory of DXI: on the printer, you can use the
following command .

• RUN DIR DXl:*•* LP:/E

This command has the same effect as the following lines .

• RUN DIR
*LP: /F.>=DX1 ! *. *
*'~C

Note that when you use either an argument or an input-list and output-list with RUN, control returns to the monitor
when the program completes.

4-103

SAVE Interactive Commands

The SA VE command writes memory areas in memory image format to the file and device that you specify.

I SAVE@ fil .. poc(@ 1

In the command syntax shown above, ftlespec represents the ftle to be saved on a block-replaceable device. If you do
not specify a file type, the system uses .SA V. The parameters represent memory locations to be saved.

Parameters are of the form:

where

address [-address(2)] [,address(3) [-address(n)]]

address is an octal value representing a specific block of memory locations to be saved. If you
specify more than one address, each address must be higher than the previous one.

RT-11 transfers memory in 256-word blocks beginning on boundaries that are multiples
of 256 (decimal). If the locations you specify make a block that is less than 256 words,
the system saves additional words to make a 256-word block.

The system saves memory from location O to the highest memory address specified by the parameter list or to the
program high limit (location 50 in the system communication area). Initially, the system gives the start address and
the JSW (Job Status Word) the default value O and sets the stack to I 000. If you want to change these or any of the
following addresses, you can use the Deposit command to alter them and the SA VE command to save the correct
areas.

AREA LOCATION

Start address 40

Stack 42

JSW 44

USRaddress 46

High address 50

Fill characters 56

If you change the values of the addresses, it is your responsibility to reset them to their default values. For more
information concerning these addresses refer to the RT-11 Advanced Programmer's Guide. Note that the SAVE
command does not write the overlay segments of programs; it saves only the root segment.

The following command saves location 10000 through 11777 and 14000 through 14777. It stores the contents of
these locations in the file FILEI .SAV on device DK: .

• SAVE FILE1 10000-11000,14000-14100

The next example sets the reenter bit in the JSW and saves locations l 000 through 5777 in file PRAM.SAY on
device SY: .

• ri 44=2000
.SAVE SY:PRAM 1000-5777

4-104

Interactive Commands SET

The SET command changes device handler characteristics and certain system configuration parameters.

SET@ f ~hysical-device-name} @ condition

l.tem

In the command syntax illustrated above, physical-device-name represents the device handler whose characteristics
you need to modify.

See Table 3-1 for a list of the standard RT-11 permanent device names. The argument, item, represents a system
parameter that you need to modify. The system items you can change include error handling (SET ERROR) and
wildcard handling (SET WILDCARDS). Table 4-13 lists the devices and items you can modify as well as the valid
conditions for these devices and items. If you set more than one condition for a device, separate the conditions by
commas. With the exception of the SET TT, SET USR, and SET item commands, the SET command locates the file
SY:device.SYS and permanently modifies it. The SET commands are valid for all three RT-11 monitors unless other
wise specified. They permanently modify the device handlers (except where noted); this means that the conditions
remain set even across a re.boot. For those SET commands that do not permanently modify the device handlers, the
conditions return to the default setting after a reboot. To make these settings appear permanent, include the appro
priate SET commands in your system's startup indirect command file (see Section 4.3.3). The command you enter
must be completely valid for the modification to take place. If a handler is already loaded when you issue a SET
command for it, you must unload the handler and install a fresh copy from the system device for the modification
to have an effect on execution. Note that the colon(:) after each device name is optional.

PDP-11 WORD
15 14 13 12

UNUSED (ALWAYS 0)
I I I

Device
or

Item Condition

CR: CODE=n

CR: CRLF

CR: NOCRLF

CR: HANG

11 10 9 8 7 6 5 4 3 2 0

ZONE ZONE ZONE ZONE ZONE ZONE ZONE ZONE ZONE ZONE ZONE ZONE
12 11 0 1 2 3 4 5 6 7 8 9

Figure 4-2 Format of a 12-bit Binary Number

Table 4-13 SET Device Conditions

Action

Modifies the card reader handler to use either the DEC 026 or DEC 029
card codes. The argument, n, must be either 26 or 29. The default value
is 29.

Appends a carriage return/line feed combination to each card image.
This is the normal mode.

Transfers each card image without appending a carriage return/line feed
combination. The default is CRLF.

Waits for you to make a correction if the reader is not ready at the start
of a transfer. This is the normal mode.

(Continued on next page)

4-105

SET Interactive Commands

Table 4-13 (Cont.) SET Device Conditions

Device
or
Item Condition Action

CR: NOHANG Generates an immediate error if the device is not ready at the start of a
transfer. The handler waits (regardless of how the condition is set) if the
reader becomes not ready during a transfer (i.e., the input hopper is
empty, but an end-of-file card has not been read). The default is HANG.

CR: IMAGE Causes each card column to be stored as a 12-bit binary number, one
column per word. The CODE option has no effect in IMAGE mode.
Figure 4-2 illustrates the format of the 12-bit binary number. This format
allows the system to read binary card images. It is especially useful if you
use a special encoding of punch combinations. Mark-sense cards can be
read in this mode. The default is NOIMAGE.

CR: NOIMAGE Allows the normal translation (as specified by the CODE option) to take
place. The system packs data one column per byte. It translates invalid
punch combinations into the error character, ASCII backslash (\), which
is octal code 134. This is the normal mode.

CR: TRIM Removes trailing blanks from each card that the system reads. You should
not use TRIM and NOCRLF together because card boundaries become
difficult to read. TRIM is the normal mode.

CR: NOTRIM Transfers a full 80 characters per card. The default is TRIM.

CT: RAW Performs a read-after-write check for every record written. It retries if an
output error occurs. If three retries fail, the system indicates an output
error. The default is NORAW.

CT: NORAW Writes every record directly without reading it back for verification. This
setting significantly increases transfer rates at the risk of increased error
rates. This is the normal mode.

EDIT EDIT Invokes the text editor EDIT with the keyboard monitor EDIT command.
This is the normal mode. The system returns to this condition after a
reboot.

EDIT TECO Invokes the text editor TECO with the keyboard monitor EDIT command.
The default is EDIT. The system returns to that condition after a reboot.

ERROR ERROR Causes indirect command files and keyboard monitor commands that
perform multiple operations (such as EXECUfE, which combines
assembling, linking, and running) to abort if errors or severe errors occur.
An ex.ample of an error is an undefined symbol in an assembly. An example
of a severe error is a device that is write-locked when the system attempts
to write to it. If either condition occurs, the indirect command file or
keyboard monitor command aborts the next time the monitor get control
of the system. This is the normal setting. The system returns to this con-
dition after a reboot.

(Continued on next page)

4-106

Interactive Commands SET

Table 4-13 (Cont.) SET Device Conditions

Device
or

Item Condition Action

ERROR NONE Allows indirect command files and keyboard monitor commands to
continue to execute even though they contain significant errors. Most
monitor fatal errors still cause the indirect command file or keyboard
monitor command to abort. See SET ERROR ERROR. SET ERROR
ERROR is the default setting. The system returns to that condition
after a reboot.

ERROR SEVERE Causes indirect command files and keyboard monitor commands to
abort if severe errors occur. See SET ERROR ERROR. SET ERROR
ERROR is the default setting. The system returns to that condition
after a reboot.

ERROR WARNING Causes indirect command files and keyboard monitor commands to
abort if warnings, errors, or severe errors occur. See SET ERROR
ERROR. SET ERROR ERROR is the default setting. The system
returns to that condition after a reboot.

LP: CR Sends carriage returns to the printer. To allow overstriking on the
printer, use this condition for any FORTRAN program that uses
formatted input and output. Use CR also for any LSI I or LP05 line
printer to prevent loss of the last line in the buffer. This is the normal
mode.

LP: NOCR Prevents the system from sending carriage returns to the printer. This
setting produces a significant increase in printing speed on LPI 1
printers. The line printer controller causes a line feed to perform the
functions of a carriage return. The default is CR.

LP: CTRL Passes all characters, including nonprinting control characters, to the
printer. Use this condition to pass the bell character to the LAI 80
printing terminal. You can use this mode for LSI I line printers. (Other
line printers print a space for a control character.) The default is
NOCTRL.

LP: NOCTRL Ignores non-printing control characters. This is the normal mode.

LP: FORM0 Issues a form feed before a request to print blocks 0. This is the normal
mode.

LP: NOFORM0 Turns off FORM0 mode. The default is FORM0.

LP: HANG Waits for you to make a correction if the line printer is not ready or
becomes not ready during printing. If you expect output from the line
printer and the system does not respond or appears to be idle, check to
see if the line printer is powered on and ready to print. This is the normal
mode.

(Continued on next page)

4-107

SET Interactive Commands

Table 4-13 (Cont.) SET Device Conditions

Device
or

Item Condition Action

lP: NOHANG Generates an immediate error if the line printer is not ready. The default
is NOHANG.

LP: LC Allows the system to send lower case characters to the printer. Use this
condition if your printer has a lower case character set. The default is
NOLC.

LP: NOLC Translates lower case characters to upper case before printing. This is
the normal mode.

LP: TAB Sends TAB characters to the LA 180 line printer. The default is NOT AB.

lP: NOTAB Does not send TAB characters to the line printer. This is the normal
mode.

LP: WIDTH=n Sets the line printer width to n, where n is an integer between 30 and
255, inclusive. The system ignores any characters that print past column
n.

MM: DEFALT=9 Returns to default settings for 9-track tape. The 9-track defaults are:

DENSE=809
ODDPAR
NODUMP

MM: DENSE=[800 or 809 or 1600]
Sets density for the 9-track tape handler. Do not alter the density setting
within a volume. A density setting of 1600 bits per inch (BPI) auto-
matically sets parity to odd. The valid density settings for 9-track tape
are:

800 BPI
1600 BPI

MM: ODDPAR Sets parity to odd for 9-track tape. DIGITAL recommends this setting.

MM: NOODDPAR Sets parity to even for 9-track tape. DIGITAL does not recommend
this setting for normal operation, and provides it only for compatibility
with other systems.

MT: DEFALT=[7 or 9]
Returns to default settings for 7- or 9-track tape. The 7-track defaults are:

DENSE=807
ODDPAR
DUMP

(Continued on next page)

4-108

Interactive Commands SET

Table 4-13 (Cont.) SET Device Conditions

Device
or

Item Condition Action

MT: The 9-track defaults are:
(Cont.)

DENSE=809
ODDPAR
NODUMP

MT: DENSE=[200 or 556 or 807 or 800 or 809]
Sets density for 7- or 9-track tape. 807 represents 800 BPI for 7-track
tape; 800 or 809 represents 800 BPI for 9-track tape. Do not alter the
density within a tape volume. You must set density to 807 for 7 track
tape if you want dump mode. The valid density settings for 7 and 9
track tape are:

7-track: 200 BPI
556 BPI
800 BPI
800 BPI Dump

9-track: 800 BPI

MT: DUMP Writes bytes to 7-track tape. You must also set density to 807.

MT: ODDPAR Sets parity to odd for 7- or 9-track tape. DIGITAL recommends this
setting.

MT: NOODDPAR Sets parity to even for 7- or 9-track tape. DIGITAL does not recommend
this setting for normal operation, and provides it only for compatibility
with other systems.

TT: CONSOL--n Directs the system to use as the console terminal, the terminal whose
logical unit number you specify. The default value is 0, which rep-
resents the original console terminal. The terminal whose logical unit
number you specify must not be currently attached by the foreground
job. The system returns to this default after a reboot.

TT: CRLF Issues a carriage return/line feed combination on the console terminal
whenever you attempt to type past the right margin. You can change
the margin with the WIDTH command. This is the normal mode. This
setting is not valid for the SJ monitor. The system returns to this con-
dition after a reboot.

TT: NOCRLF Takes no special action at the right margin. This setting is not valid for
the SJ monitor. The default is CRLF. The system returns to that con-
dition after a reboot.

(Continued on next page)

4-109

SET Interactive Commands

Table 4-13 (Cont.) SET Device Conditions

Device
or

Item Condition Action

TI: FB Treats CTRL/B and CTRL/F as background and foreground program
control characters and does not transmit them to your program. This
is the normal mode. This setting is not valid for the SJ monitor. The
system returns to this condition after a reboot.

TT: NOFB Causes CTRL/B and CTRL/F to have no special meaning. Issue SET TT
NOFB to K.MON, which runs as a background job, to disable all com-
munication with the foreground job. To enable communication with the
foreground job, issue the command SET TI FB. This setting is not valid
for the SJ monitor. The default is FB. The system returns to that condi-
tion after a reboot.

TT: FORM Indicates that the console terminal is capable of executing hardware
form feeds. This setting is not valid for the SJ monitor.

TT: NOFORM Simulates form feeds by generating eight line feeds. This setting is not
valid for the SJ monitor. This is the normal mode. The system returns
to this condition after a reboot.

TT: HOLD Enables the Hold Screen mode of operation for the VT50 terminal. The
command has no effect on any other terminal, but it can cause a left
square bracket([) to print. This setting is valid for all monitors. This is
the normal mode. The system returns to this condition after a reboot.

TT: NOHOLD Disables the Hold Screen mode of operation for the VT50 terminal. The
command has no effect on any other terminal, but it can cause a back-
slash(\) to print. This setting is valid for all monitors. The default is
HOLD. The system returns to that condition after a reboot.

TT: PAGE Treats CTRL/S and CTRL/Q characters as terminal output hold and
unhold flags and does not transmit them to your program. This setting
is not valid for the SJ monitor. This is the normal mode. The system
returns to this condition after a reboot.

TT: NOPAGE Causes CTRL/S and CTRL/Q to have no special meaning. This setting
is not valid for the SJ monitor. The default is PAGE. The system returns
to that condition after a reboot.

TT: QUIET Prevents the system from echoing lines from indirect files. The default
is NOQUIET. The system returns to that condition after a reboot.

TT: NOQUIET Echoes lines from indirect files. This is the default mode. The system
returns to this condition after a reboot.

TT: SCOPE Echoes RUBOUT characters as backspace-space-backspace. Use this mode
if your console terminal is a VT50, VT05, VT52, VT55, VT61, or if GT
ON is in effect. This setting is not valid for the SJ monitor. The default
is NOSCOPE. The system returns to that condition after a reboot.

4-110 (Continued on next page)

Interactive Commands SET

Table 4-13 (Cont.) SET Device Conditions

Device
or

Item Condition Action
-

TI: NOSCOPE Echoes each RUBOl.JT character as a backslash followed by the character
deleted. This is the normal mode. This setting is not valid for the SJ
monitor. The system returns to this condition after a reboot.

TI: TAB Indicates that the console terminal is capable of executing hardware tabs.
This setting is not valid for the SJ monitor. The default is NOT AB. The
system returns to that condition after a reboot.

TT: NOTAB Simulates tab stops every eight positions. VT0S and VTS0 terminals
generally have hardware tabs. This setting is not valid for the SJ monitor.
This is the nmmal mode, The system returns to this condition after a
reboot.

TI: WIDTH=n Sets the terminal width ton, where n is an integer between 30 and 25S.
The system initially sets the width to 72. This setting is not valid for the
SJ monitor. (See SET TI CRLF.) The system returns to width 72 after
a reboot.

WILOCARDS EXPLICIT Causes the system to recognize file specifications exactly as you type
them. If you omit a file name or a file type in a file specification the
system does not automatically replace the missing item with an asterisk
(*). Wildcards are described in Section 4.2. The default is IMPLICIT.
The system returns to that condition after a reboot.

WILDCARDS IMPLICIT Causes the system to interpret missing fields in file specifications of
certain commands as asterisks(*). Wildcards are described in Section 4.2
of this manual. Table 4-2 shows how the system interprets commands
that have missing fields. This is the normal mode. The system returns
to this condition after a reboot.

USR SWAP Allows the background job to place the USR in a swapping state. This
setting is not valid for the XM monitor. This is the normal mode. The
system returns to this condition after a reboot.

USR NOSWAP Prevents the background job from placing the USR in a swapping state
This setting is not valid for the XM monitor. The default is SW AP. The
system returns to that condition after a reboot.

The following examples illustrate the SET command. This command allows the system to send lower case characters
to the print~r:

.SET LF'! LC

The next command sets the system wild card default to implicit .

• SET WILDCARDS IMPLICIT

As a result of this command the system inserts an asterisk in place of a missing file name or file type in a file specifi·
cation for certain commands. See Table 4-2 for a list of these commands.

4-111

SHOW Interactive Commands

The SHOW command prints at the terminal all the devices known to the system and any logical names assigned to
these devices.

I SHOW[® DEVICES[

The devices the system lists are those known by the RT-11 monitor currently running in memory. This list reflects any
additions or deletions you have made with the INSTALL and REMOVE commands. The final entry in the listing shows
whether the USR is set to SWAP or NOSWAP. The listing also includes additional information about particular devices.
The informational messages and their meanings are:

(B)
or =B

(F)
or =F

<FREE>

(LOADED)

(RESIDENT)

=logical-device-name(l),
logical-device-name(2) ...
)ogical-device-name(n)

Indicates that the device or unit is assigned to the background job. (For FB
and XM monitors only.)

Indicates that the device or unit is assigned to.the foreground job. (For FB
and XM monitors only.)

Shows that the device slot is unused. You can use the INSTALL command
to install a device into the free slot. Create a free slot by using the REMOVE
command to remove a device.

Shows that the handler for the device has been loaded into memory with the
LOAD command.

Indicates that the handler for the device is included in the resident monitor.

Shows that the device or unit has been assigned the indicated logical device
names with the ASSIGN command.

The following example was created under the FB monitor. It shows the status of all devices known to the system .

• SHOW
TT <Resident)
RK (Res i d(,mt)

RKO :::: SY
<F1·ee>
<F ref?.)

DX (Loaded)
DXO < B)
DX1 :::: DK

DT
MT (Loaded=F)
CT
LP
<Fre.•e>
<Free>
BA
EL
NL
<Free>

USR Swap

= OUT

4-112

Interactive Commands SHOW

The listing shows first that TT and RK are resident in memory. The other device handlers known to the system are:
DX, DT, MT, CT, LP, BA, EL, and NL There are five free slots in the table. RKO: has the logical name SY: and DXI:
has the logical name DK:. The logical name OUT: is assigned to l.P:. The DX handler is loaded and device DXO: be
longs to the background job. The MT handler is loaded and belongs to the foreground job. The USR is set to SW AP.

4-113

SQUEEZE Interactive Commands

The SQUEEZE command consolidates in a single area all unused blocks on the device you specify.

SQUEEZE [/OUTPUT:device] @ device

/[NO] QUERY

In the command syntax illustrated above, device represents the disk or DECtape to be compressed. To perform a
squeeze operation, the system moves all the files to the beginning of the device you specify, producing a single unused
area after the group of files. The squeeze operation does not change the bootstrap blocks of a device. The system prints
a confirmation message before it performs the squeeze operation. You must type Y followed by a carriage return to
execute the command.

The squeeze operation does not move files with .BAD file types. This feature prevents you from reusing bad blocks
that occur on a disk. The system inserts files before and after .BAD files until the space between the last file it moved
and the .BAD file is smaller than the next file to be moved.

If you perform a squeeze operation on the system device, the system automatically reboots when the compress opera
tion completes. This reboot takes place in order to prevent system crashes that might occur when the monitor file is
moved.

/OUTPUT:filespec - Use this option to transfer all the files from the input device to the output device in compressed
format. This operation leaves the input device unchanged. The output device must be an initialized disk or DECtape.
(Use the INITIALIZE command to do this.) Note that the system never queries you for confirmation before this opera
tion proceeds. If the output device is not initialized, the system prints an error message and does not execute the com
mand. The following example transfers all the files from RKO: to RKl: in compressed format, leaving RKO: unchanged .

• SQUEEZE/OUTPUT:RK1: RKO:

/QUERY This option causes the system to print a confirmation message before it executes a squeeze operation. You
must respond by typing a Y followed by a carriage return for execution to proceed. This is the default operation.
/QUERY is meaningless with the /OUTPUT option.

/NOQUERY - Use this option to suppress the confirmation message that prints before a squeeze operation executes.
The following command compresses all the files on device DT 1: and does not query .

• SQUEEZE/NOQUERY DT1:

4-114

Interactive Commands START

The START command initiates execution of the program currently in memory (loaded with the GET command) at
the address you specify.

I START(@ 1

In the command syntax shown above, address is an even octal number representing any 16-bit address. If you omit the
address or if you specify 0, the system uses the starting address tha.t is in location 40. If the address you specify does
not exist or is invalid for any reason, a trap to location 4 occurs and the monitor prints an error message. Note that
this command is valid for background jobs only. The following command loads MYPROG .SA V into memory and be
gins execution .

• GET MYPROG
.START

The next example loads MYPROG.SAVand ODT.SAVinto memory, and begins execution at ODT's starting address .

• GET MYF'ROG
,GET DDT
,START
orn vo1.04

*

4-115

SUSPEND Interactive Commands

The SUSPEND command stops execution of the foreground job.

I SUSPEND

No arguments or options are accepted with this command. The SUSPEND command is not valid for the SJ monitor.
The system permits foreground input and output that are already in progress to finish; however, it issues no new input
or output requests and enters no completion routines (see the RT-11 Advanced Programmer's Guide for a detailed ex
planation of completion routines). You can continue execution of the job by typing the RESUME command. The
following command suspends execution of the foreground job that is currently running.

+!:;USF'ENII

4-116

Interactive Commands

Use the TIME command to set the time of day or to display the current time of day.

I TIME(@hh,mm, .. J

TIME

In the command syntax shown above, hh represents hours (from Oto 23); mm represents minutes (from Oto 59) and
ss represents seconds (from Oto 59). The system keeps time on a 24-hour clock.

To enter the time of day, specify the time in the format described above. You should do this as soon as you bootstrap
the system. The fol)owing example enters the time, 11: 15 :00 A.M .

• TIME 11:15

As this example shows, if you omit one of the arguments the system assumes O. The system automatically resets the
time each day at midnight.

To display the current time of day, type the TIME command without an argument, as this example shows .

• TIME
11:15:01

When the RT-11 system is installed, the clock rate is preset to 60 cycles. Consult the RT-11 System Generation Manual
for information on setting the clock to a SO-cycle rate.

4-117

TYPE Interactive Commands

The TYPE command types (or prints) the contents of one or more files on the terminal.

TYPE [/COPIES:n l @ filespecs
/DELETE
/[NO) LOG
/NEW FILES
/QUERY

In the command syntax illustrated above, filespecs represents the file or files to be typed. You can explicitly specify up
to six files as input to the TYPE command. The system types the files in the order in which you specify them in the
command line. You can also use wildcards in the file specification. In this case, the system types the files in the order
in which they occur in the directory of the device you specify. If you specify more than one file, separate the files by
commas. If you omit the file type for a file specification, the system assumes .LST. You can specify the entire com
mand on one line, or you can rely on me system to prompt you for informauon. The TYPE command prompt is
Files?.

The following sections describe the TYPE command options and include command examples.

/COPIES:n - Use this option to type more than one copy of the file. The meaningful range of values for the decimal
argument, n, is from 2 to 32 (I is the default). The following command, for example, types three copies of the file
REPORT.LST on the terminal.

+TYPE/COPIES:3 REPORT

/DELETE - Use this option to delete a file after it is typed on the terminal. This option must appear following the
command in the command line. The TYPE/DELETE operation does not ask you for confirmation before it executes.
You must use /QUERY for this function. The following example types a BASIC program on the terminal, then deletes
it from DXl:.

+TYPE/DELETE DX1:PROG1+BAS

/LOG - This option prints on the terminal the names of the files that were typed by the current command. Normally,
the system prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the query message
replaces the log, unless you specifically type /LOG/QUERY in the command line. The following example shows a
TYPE command and the resulting log .

• TYPE/LOG OUTFIL+LST
File~; copied:

ItK:OUTFIL.LST to rT:

/NOLOG - This option prevents a list of the files that were typed from printing on the terminal. You can use this op
tion to suppress the log if you use a wildcard in the file specification.

/NEWFILES - Use this option in the command line if you need to type only those files that have the current date. The
following example shows a convenient way to type all new files after a session at the computer .

• TYPE/NEWFILES *•LST
Files copied:

DK:REPORT.LST to TTl

4-118

Interactive Commands TYPE

/QUERY - If you use this option, the system requests confirmation from you before it performs the operation.
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for an operation. Note that if you specify /QUERY in a TYPE command line that also con
tains a wildcard in the file specification, the confirmation messages that print on the terminal replace the log messages
that would normally appear. You must respond to a query message by typing Y (or anything that begins with Y) and
a carriage return to initiate execution of a particular operation. The system interprets any other response as NO and
it does not perform the specific operation .

• TYPE/QUERY/DELETE *•LST
Files coPied/deleted:

DK:OUTFIL.LST to TTi? NO
DKiREPORT.LST to TT:? Y

4-119

UNLOAD Interactive Commands

The UNLOAD command makes handlers that were previously loaded non-resident, thus freeing the memory space they

occupied.

I UN LOAD @ de,k, I ""'"' I

In the command syntax shown above, device represents the device handler to unload.

UNLOAD clears ownership for all units of the device type you specify. A request to unload the system device handler
clears ownership for any assigned units for that device, but the handler itself remains resident. After you issue the
UNLOAD command, the system returns any memory it frees to a free memory list. The backgroundjob eventually re
claims free memory. Note that if you interrupt an operation that involves magtapes or cassette, you must unload and
then load (with the LOAD command) the appropriate device handler (MM, MT, or CT).

The system does not accept an UNWAD command while a foreground job is running if the foreground job owns any
units of that device. This is because a handler that the foreground job needs might become nonresident. You can un
load a device while a foreground job is running if none of its units belong to the foreground job.

A special function of this command is to remove a terminated foreground job and reclaim memory, since the system
does not automatically return the space occupied by the foreground job to the free memory list. The next command
unloads the foreground job and frees the memory it occupied. This command is valid only if the foreground job is not
running .

• UNLOAD RK:

The following command clears ownership of all units of RK if RK: is the system device .

• UNLOAD LF':,DT:

The next command releases the line printer and DECtape handlers and frees the area they previously held .

• UNLOAD FG

4-120

PART III

TEXT EDITING

You use an editor to create and modify textual material. PART III describes the RT-11 text editor, EDIT, and ex.

plains how to use it.

III-I

CHAPTER 5

TEXT EDITOR

The text editor (EDIT) is a program that creates or modifies ASCII source files for use as input to other system
programs such as the MACRO assembler or the FORTRAN compiler. EDIT, which accepts commands you type at
the terminal, reads ASCII files from any input device, makes specific changes, and writes on any output device.
EDIT allows efficient use of VTl 1 or VS60 display hardware, if they are part of the system configuration.

The editor considers a file to be divided into logical units called pages. A page of text is generally 50-60 lines long
{delimited by form feed characters) and corresponds approximately to a physical page of a program listing. The
editor reads one page of text at a time from the input file into its internal buffers where the page becomes available
for editing. You can then use editing commands to:

• Locate text to be changed

• Execute and verify the changes

• List an edited page on the console terminal

• Output a page of text to the output file.

5.1 CALLING AND USING EDIT
You can call the text editor when you are at monitor level. The syntax of the command is:

EDIT [l/CREATE }] @filespec[/ALLOCATE:size]
/INSPECT
/OUTPUT:filespec [/ALLOCATE :size]

See Section 4.4 for a description of the EDIT command and its options.

5.2 MODES OF OPERATION
Normally, the editor operates in either command mode or text mode. In command mode the editor interprets all
input you type on the keyboard as commands to perform some operation. In text mode the editor interprets all
typed input as text to replace, insert into, or append to the contents of the text buffer.

Immediately after being loaded into memory and started, the editor is in command mode. EDIT prints an asterisk
at the left margin of the console terminal page to indicate that it is ready to accept a command. Terminate all com
mands by pressing the ESCAPE key twice in succession. Execution of commands proceeds from left to right. Should
hDIT encounter an error before it begins execution of a command string, it prints an error message followea oy an
asterisk at the beginning of a new line, indicating that it is still in command mode and awaiting a legal command.
EDIT does not execute the command in error or any succeeding command. You should retype the command
correctly.

5-1

Text Editor

To enter text mode, type a command that must be followed by a text string. These commands insert, replace, ex
change, or otherwise manipulate text. When you type one of these commands, EDIT recognizes all succeeding
characters as part of the text string until it encounters an ESCAPE character. The ESCAPE terminates the text
string and causes the editor to reenter command mode.

You can use a special editing mode, called immediate mode, whenever the VT-11 display hardware is running.
Section 5.7.2 describes this mode.

5.3 SPECIAL KEY COMMANDS
Table 5-1 lists the EDIT key commands. Type a control command by holding down the CTRL key while typing the
appropriate character.

Key

ESCAPE,
ALTMODE,
OI SEL

CTRL/C

Table 5-1 EDIT Key Commands

Explanation

Echoes$. A single ESCAPE terminates a text string. A double ESCAPE (two
consecutive ESCAPEs) executes the command string. For example:

*GMOV AYB$-1D$$

The first ESCAPE($) terminates the text object (MOV A,B) of the Get command.
The double ESCAPE($$) terminates the Delete command and executes the enure
command string. In this example, the character B will be deleted as a result of
execution.

Echoes at the terminal as "C. If EDIT encounters a CTRL/C as a command in
command mode, it terminates execution and returns control to the monitor. You
can restart the editor by typing R EDIT or REENTER in response to the monitor's
prompt. If EDIT encounters. a CTRL/C in a text object, EDIT includes the CTRL/C
in the text object, just like any other character. If the editor is executing a lengthy
command and you want to stop EDIT, type two CTRL/C commands in succession.
This will abort the command, generate the ?EDIT-F-COMMAND ABORTED error
message, and return the editor to command mode. For example:

*I~C~C""C$$
*'"'C$$

In the first command, the three CTRL/C characters are part of the text object of
the Insert command. EDIT treats them like any other character. In the second
command string, the CTRL/C occurs at command level, and causes the editor to
terminate.

If no commands (other than CLOSE) are executed between the time you terminate
the editor and the time you issue a REENTER command, the text buffer is preserved
exactly as it was at program termination. However, only the text buffer is preserved.
The input and output files are closed, and the save and macro buffers are reinitialized.

If you inadvertently terminate an editing session before the output file can be
closed, you can often use the monitor CLOSE command to make permanent the
portion of the output file that has already been written (see Section 4.4). You
can then reenter the editor, open a new output file, and continue the editing
session.

(Continued on next page)

5-2

Text Editor

Table 5-1 (Cont.) EDIT Key Commands

Key Explanation

CTRL/O Echoes "O and a carriage return. Inhibits printing on the terminal until completion
of the current command string. Typing a second CTRL/O resumes output.

CTRL/U Echoes "U and a carriage return. Deletes all the characters on the current terminal
input line. (Equivalent to pressing the RUBOUT key until all the characters back
to the beginning of the line are deleted.)

RUBOUT Deletes a character from the current command line; echoes a backslash followed
or by the character deleted. Each succeeding RUBOUT you type deletes and echoes

DELETE another character. An enclosing backslash prints when you type a key other than
RUBOUT. This erasure is done from right to left. Since EDIT accepts multiple
line commands, RUBOUT can delete past the carriage return/line feed combina-
tion and delete characters on the previous line. You can use RUBOUT in both
command and text modes.

TAB Spaces to the next tab stop. Tab stops are positioned every eight spaces on the
terminal; pressing the TAB key causes the carriage to advance to the next tab
position.

CTRL/X Echoes "X and a carriage return. CTRL/X causes the editor to ignore the entire
command string you are currently entering. The editor prints a carriage return/line
feed combination and an asterisk to indicate that you can enter another command.
For example:

*IABCD
EFGH'"'X

*
A CTRL/U would cause only deletion of EFGH; CTRL/X erases the entire
command.

5.4 COMMAND STRUCTURE
EDIT commands fall into eight general categories. Table 5-2 lists these categories and the commands they include.

Table S-2 EDIT Command Categories

Category Commands Section

File open and close Edit Backup 5.6.1.3
Edit Read 5.6.1.1
Edit Write 5.6.1.2
End File 5.6.1.4

File input/output EXit 5.6.2.4
Next 5.6.2.3
Read 5.6.2.1
Write 5.6.2.2

(Continued on next page)

5-3

Text Editor

Table 5-2 (Cont.) EDIT Command Categories

Category Commands Section

Immediate mode ESCAPE 5.7.2
CTRLD 5.7.2
CTRLG 5.7.2
CTRLN 5.7.2
CTRLV 5.7.2
RUBOUT 5.7.2

Pointer location Advan..:e 5.6.3.3
Beginning 5.6.3.l
Jump 5.6.3.2

Search Find 5.6.4.2
Get 5.6.4.1
Position 5.6.4.3

Text listing List 5.6.5.1
Verify 5.6.5.2

Text modification Change 5.6.6.4
Delete 5.6.6.2
eXchange 5.6.6.5
Insert 5.6.6.l
Kill 5.6.6.3

Utility Edit Console 5.7.1
Edit Display 5.7.l
Edit Lower 5.6.7.6
Edit Upper 5.6.7.6
Edit Version 5.6.7.5
Executive Macro 5.6.7.4
Macro 5.6.7.3
Save 5.6.7.1
Unsave 5.6.7.2

The general syntax for all the EDIT commands, with the exception of the immediate mode commands, is:

[n]C[text]$

or

[n]C$

where

n represents one of the legal arguments from Table 5-3.

C represents a 1- or 2-letter command.

text represents a string of successive ASCII characters.

54

Text Editor

As a rule, commands are separated from one another by a single ESCAPE; however, if the command requires no text,
the separating ESCAPE is not necessary. Commands are terminated by a single ESCAPE; typing a second ESCAPE
begins execution. (You use ESCAPE differently when immediate mode is in effect; Section 5.7 .2 details its use in

this case.)

The syntax of display editor commands is somewhat different from the normal editing command format, and is
described in Section 5. 7.

5.4.l Arguments
An argument is positioned before a command letter. It specifies either the particular portion of text to be affected
by the command or the number of times to perform the command. With some commands, this specification is
implicit and no argument is needed; other editing commands require an argument. Table 5-3 lists the possible
arguments and their meanings.

Table 5-3 Command Arguments

Argument Meaning

n Stands for any integer in the range -16383 to+ 16383 and may, except where
noted, be preceded by a plus (+) or minus (-) sign. If no sign precedes n, it is
assumed to be a positive number. The absence of n implies a 1 (or - 1 if a minus
sign precedes a command). n can represent the number of characters or lines
forward or backward(+ or -) to move the pointer, or it can represent the
number of times to execute the operation.

0 Indicates the text between the beginning of the current line and the reference
pointer (see Section 5.4.3).

I Refers to the text between the reference pointer and the end of the text in the
buffer.

= Use only with the J, D, and C commands to represent -n, where n is equal to the
length of the last text argument used.

The roles of all arguments are explained more specifically in the following sections.

5.4.2 Command Strings
All EDIT command strings are terminated by two successive ESCAPE characters. Use spaces, carriage returns, and
line feeds within a command string to increase command readability. EDIT ignores them unless they appear in a
text string. Commands to insert text can contain text strings that are several lines long. Each line you enter is
terminated by the carriage return key, which inserts both a carriage return and a line feed character into the text.
The entire command is terminated by a double ESCAPE.

You can string several commands together and execute them in sequence. For example:

text object text object text object
~ ,-.... ~

*BGMOV PC,R0$-2CR1$5KGCLR @R2$$

l !::::nd T~m,l !~:m,nd
first
command

fourth
command

5-5

where

B

GMOVPC,R0

-2CR1

SK

GCLR@R2

$

$$

Text Editor

is the first command.

is the second command (MOV PC,R0 is the text object).

is the third command (RI is the text object).

is the fourth command.

is the fifth command (CLR@R2 is the text object).

separates the end of each text object from the following command.

executes the commands.

Execution of a command string begins when you type the double ESCAPE and proceeds from left to right. Except
when they are part of a text string, EDIT ignores spaces, carriage returns, line feeds, and single ESCAPEs:--Foi
example:

*BGMOV RO$=CCLR R1SAVSS

You can also type this command as:

*BS GMOl.) RO$
:::,CCLR R1$
A$ V$$

Execution of the two commands will be the same.

S.4.3 The Cunent Location Pointer
Most EDIT commands function with respect to a movable reference pointer that is normally located between the
most recent character operated upon and the next character in the buffer. It is important to think of this pointer as
being between two characters and never directly on a character. At the start of editing operations, the pointer
precedes the first character in the buffer, although it is not displayed on the console terminal. At any given time
during the editing procedure, think of the pointer as representing the current position of the editor in the text. The
pointer moves during editing operations according to the type of editing operation being performed. Refer to text
in the buffer as so many characters or Jines preceding or following the pointer.

5.4.4 Character- and Line-Oriented Command Properties
Edit commands are either character-oriented or line-oriented: character-oriented commands affect a specified num
ber of characters preceding or following the pointer; line-oriented commands operate on entire lines of text.

The argument of character-oriented commands specifies the number of characters in the buffer on which to operate.
If n is unsigned (positive), the command operates in a forward direction. If n is preceded by a minus sign (negative),
the command moves the reference pointer backwards. @, (RET), and null characters, although not printed.
are embedded in text lines, counted as characters in character-oriented commands, and treated as any other text
characters. When you press the @ key, both a carriage return and a line feed character are inserted into the text.
For ex.ample, assume the pointer is positioned as indicated in the following text (t represents the current position
of the pointer):

MOV #VECT ,R2@ ® t
CLR @R2(A]f}@

5-6

Text Editor

The EDIT command -2J moves the pointer back two characters to precede the carriage return character.

MOV #VECT,R24{fifil)@
CLR @R2 @:ill@

The command 1 OJ advances the pointer forward by ten characters and places it between the (fifil) and @charactets
at the end of the second line. Note that the tab character preceding @R2 is also counted as a single character.

MOV #VECT,R2 (RET)@
CLR @R2 (RET)t@

Finally, to place the pointer after the C in the first line, use a-14J command. The J (Jump) command is explained
in Section 5 .6.3.2.

MOV #VECT,R2@)@
CLR @R2 t (@±)@

When you use line-oriented commands, the argument of the commands specifies the number of lines on which to
operate. Because EDIT counts the line-terminating characters to determine the number oflines on which to operate~
an argument, n, does not affect the same number oflines forward (positive) as it affects backward (negative). For
example, the argument-1 applies to the line beginning with the first character following the second previous end
of-line and ending with the character preceding the pointer. The argument 1 in a line-oriented command, however,
applies to the text beginning with the first character following the pointer and ending at the first end-of-line. Thus,
if the pointer is at the center of the line, the argument -1 affects one and one-half lines backwards from the pointer
and the argument 1 affects one-half line beyond the pointer.

For example, assume the buffer contains:

MOV
ADD
MOV
CLR

PC,Rl (RfT)@
t
#DRIV-.,RlCRfil')@
#VECT ,R2 @If)@
@R2(RET)@

The command to advance the pointer one line (IA) causes the fo]lowing change:

MOV
tADD
MOV
CLR

PC ,RI (ffi)@
#DRIV- .,Rl(RET)@
#VECT ,R2 (jru-)@
@R2(fil)@

The command 2A moves the pointer over two @ID@ combinations to precede the fourth line:

MOV
ADD
MOV

fLR

PC,Rl@)@
#DRJV-.,Rl(RET)@
#VECT ,R2 (RET)@
@R2([[r)@

Assume the buffer contains:

MOV PC,Rt(ill)@
ADD #DRIV-.,RHRET)@
MOV #VECT ,R2 (RET}@
CLR @R2 t(ffi)@

5.7

Text Editor

A command of - lA moves the pointer back by one and one-half lines to precede the second line.

MOY
tADD
MOY
CLR

PC,RlC@@
#DRIV-.,Rl(RET)@
#YECT ,R2 (!ill)@
@R2(RET)@

Now a command of - lA moves the pointer back by only one line.

tMOY
ADD
MOY
CLR

PC,Rl(ill)@
#DRIY-.,Rl(RET)@
#YECT ,R2(R ET)@
@R2(RET)@

5.4.S Command Repetition
You can execute portions of a command string more than once by enclosing the portion in angle brackets(<>)
and preceding the left angle bracket with the number of iterations you desire. The syntax is:

n<command>

For example:

CI $C2$n <C3$C4$ >CS$$

where

C represents a command.

n represents an iteration argument.

Commands C 1 and C2 each execute once, then commands C3 and C4 execute n times. Finally, command CS
executes once and the command line is finished. The iteration argument (n) must be a positive number (in the
range I through 16,383) and, if you do not specify it, it is assumed to be I. If the number is negative or too large,
an error message prints. You can nest iteration brackets up to 20 levels. EDIT checks command lines to make
certain the brackets are correctly used and match prior to execution.

Essentially, enclosing a portion of a command string in iteration brackets and preceding it with an iteration argument
(n) is equivalent to typing that portion of the string n times. For example:

*BGhAAi~3< ····DI f.<$····,.J>V$$
*BGAAA$-DIBS-J-DIB$-J-DIBS-JV$$

These two strings are equivalent.

Similarly, the following two strings are equivalent:

*B3<2<AD>V> ~; 11;
*BADADVADADVADADV$$

The following bracket structures are examples of legal usage:

<<><<<><>>>>
<<<>>><><>

5-8

Text Editor

The following bracket structures are examples of illegal combinations that will cause an error message since the

brackets are not properly matched:

><><
<<<>>

During command repetition, execution proceeds from left to right until a right bracket is encountered. EDIT then
returns to the last left bracket encountered, decreases the iteration counter, and executes the commands within the
brackets. When the counter is decreased to 0, EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the innermost brackets and then works its way
back again. The most common use for iteration brackets is found in commands, such as Unsave (U), that do not
accept repeat counts. For example:

* 3<U'.>$$

Assume you want to read a file called SAMP (stored on device DK:), and you want to change the first four occur•
rences of the instruction MOV #200,RO on each of the first five pages to MOV #244,R4. Enter the following com
mand line:

*EBSAMPS5<N4<BGMOV 1200fR0$=JS3<GOS•C4))>EX$$

l __
.....,
~j

B

A

The command line contains three sets of iteration loops (A,B,C) and executes as follows:

Execution initially proceeds from left to right; EDIT opens the file SAMP for input and reads the first page into
memory. EDIT moves the pointer to the beginning of the buffer and initiates a search for the character string
MOY #200,RO. When it fmds the string, EDIT positions the pointer at the end of the string, but the =J command
moves the pointer back, so that it is positioned immediately preceding the string. At this point, execution has passed
through each of the first two sets of iteration loops (A,B) once. The innermost loop (C) is next executed three
times, changing the Os to 4s. Control now moves back to pick up the second iteration ofloop B, and again moves
from left to right. When loop C has executed three times, control again moves back to loop B. When loop B has
executed a total of four times, control moves back to the second iteration of loop A, and so forth, until all iterations
have been satisfied.

5.S MEMORY USAGE
The memory area used by the editor is divided into four logical buffers as follows:

5.9

Text Editor

MACRO BUFFER

High Memory

SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory

TEXT BUFFER

The text buffer contains the current page of text you are editing, and the command input buffer holds the command
you are currently typing at the terminal. If a command you are currently entering is within ten characters of exceeding
the space available in the command buffer, the following message prints on the terminal.

?EDIT-W-Ccmmand buffer almost full

If you can complete the command within ten characters, you can finish entering the command; otherwise you
should press the ESCAPE key twice to execute that portion of the command line already completed. The message
prints each time you enter a character in one of the last ten spaces.

If you attempt to enter more than ten characters, EDIT prints the following message and aborts the command.

?EDIT-F-Ccmmand buffer full;no command(s) executed

This will never occur if you heed the preceding warning and terminate the command immediately.

The save buffer contains text stored with the Save (S) command, and the macro buffer contains the command string
macro entered with the Macro (M) command. (Both commands are explained in Section 5.6.7 .)

EDIT does not allocate space for the macro and save buffers until an M or S command executes. Once you enter an
Mor S command, a OM or OU (Unsave) command returns that space to the free area.

The size of each buffer automatically expands and contracts to accommodate the text you are entering; if there is
not enough space available to accommodate required expansion of any of the buffers, EDIT prints the error message:

?EDIT-F-Insufficient memors

5.6 EDITING COMMANDS
This section describes the commands and procedures required to:

• Read text from the input files to the buffer

• Create a backup version of the file

• List the contents of the buffer on the terminal

• Move the reference pointer

5-10

Text Editor

• Locate specific characters or strings of characters within the text buffer

• Insert, relocate, or delete text in the buffer

• Close the output file

• Terminate the editing session.

The following sections are arranged, in order, by category of command function, as illustrated in Table 5-2.

S.6.1 File Open and Oose Commands
You can use file open and close commands to:

• Open an existing file for input and prepare it for editing

• Open a file for output of newly created or edited text

• Open an existing file for editing and create a backup version of it

• Close an open output file.

S.6.1.1 Edit Read - The Edit Read (ER) command opens an existing file for input and prepares it for editing.
Only one file can be open for input at a time.

The syntax of the command is:

ERdev:filnam.typ$

The string argument (dev:filnam.typ) is limited to 19 characters and specifies the file to be opened. If you do not
specify a device, DK: is assumed. If a file is currently open for input, EDIT closes the file and opens the new one.

Edit Read does not input a page of text nor does it affect the contents of the other user buffers.

You can use Edit Read on a file that is already open to close that file for input and reposition EDIT at its beginning.
The first Read command following any Edit Read command inputs the first page of the file.

*ERDT1!SAMP.MAC$$

This command string, for example, opens the file SAMP .MAC on device DTl: for input.

NOTE
If you enter EDIT with the monitor EDIT/INSPECT or
EDIT/OUTPUT command, an Edit Read command is
automatically performed on the file named in the EDIT
command.

S.6.1.2 Edit Write - The Edit Write (EW) command opens a file for output of newly created or edited text.
However, no text is output and the contents of the buffers are not affected. Only one file can be open for output
at a time. EDIT closes any output files currently open and preserves any edits made to the ftle.

The syntax of the command is:

EWdev:filnam.typ [n] $

5-11

Text Editor

The string argument (dev:filnam.typ [n]) is limited to 19 characters and is the name you assign to the output file
being opened. If you do not specify a device, DK: is assumed. [n] is an optional decimal number that represents
the length of the file to be opened. Note that the square brackets [] are part of the argument, n. You must type
them. If you do not specify [n] , the default size will be used. That is, the system will choose the larger of l) one
half the largest available space, and 2) the second largest available space. If this is not adequate for the output file
size, you must close this file and open another when this one becomes full. You should use the [nJ construction
whenever there is doubt as to whether enough space is available on the device for one output file.

If a file with the same name already exists on the device, EDIT deletes the existing file when you type an Exit,
End File, or another Edit Write command. EDIT prints the warning message:

?EDIT-W-SuPersedinS existin~ file

The following command, for example, opens for output the file FILE.BAS on device DK: and allocates 11 blocks
of space for it.

*EWFILE.BAS[11J$$

NOTE
If you enter EDIT with the monitor EDIT/CREATE com
mand, an Edit Write command is automatically performed
on the file named in the EDIT command. If you enter EDIT
with the monitor EDIT/OUTPUT command, an Edit Write
is automatically performed on the file named with the
/OUTPUT option.

5.6.1.3 Edit Backup - Use the Edit Backup (EB) command to open an existing file for editing and at the same
time create a backup version of the file. EDIT closes any input and output file currently opened. No text is read or
written with this command.

The syntax of the command is:

EBdev:filnam.typ [n] $

The device designation, file name, and file type are limited to 19 characters. If you do not specify a device, DK: is
assumed. [n] is optional and represents the length of the file to be opened; if you do not specify [n], the default
size will be used. That is, the system will choose the larger of I) one-half the largest available space, and 2) the
second largest available space.

The file you indicate in the command line must already exist on the device you designate, since text will be read
from this file as input. At the same time, EDIT opens an output file under the same file name and file type. When
the output file is closed, EDIT renames the original file (used as input) with the current file name and a .BAK file
type and deletes any previous file with this file name and a .BAK file type. EDIT closes the new output file and
assigns it the name you specify in the EB command. This renaming of files takes place when an Exit, End File, or
subsequent Edit Write or Edit Backup command executes. If you terminate the editing session with a CTRL/C
command before the output file is closed, the new output file is not made permanent, and the renaming of the
current version to .BAK does not take place.

*EBSY:BAS1+MACS$

This command opens BAS I.MAC on device SY:. When editing is complete, the old BASl.MAC becomes BASLBAK,
and the new file becomes BAS I.MAC. EDIT deletes any previous version of BAS I.BAK.

5-12

Text Editor

NOTE
In EB, ER, and EW commands, leading spaces between
the command and the file name are not permitted be
cause EDIT assumes the file name to be a text string. All
dev:filnam.typ specifications for EB, ER, and EW com
mands conform to the RT-11 conventions for file naming
and are identical to file names entered in command
strings used with other system programs.

If you enter EDIT with an unqualified monitor EDIT
command, an Edit Backup command is automatically
performed on the file named in the EDIT command.

5.6.1.4 End File - The End File (EF) command closes the current output file and makes it permanent. You can
use the EF command to create an output file from a section of a large input file or to close an output file that is
full before you open another file. Modifiers are illegal with an EF command. Note that an implied EF command is
included in EW and EB commands.

The syntax of the command is:

EF

Table 54 illustrates the relationship between the file open and close commands and the buffers and files themselves.

Table 5-4 EDIT Commands and File Status

Command Input File Text Buffer Output File

ERXXX$ Opens XXX for input; Unchanged Unchanged
closes existing input file,
if any

EWXXX$ Unchanged Unchanged Opens XXX for output; closes existing
output file, if any; performs .BAK re-
naming if EB is in effect

EBXXX$ Opens XXX for input; Unchanged Opens a temporary file for output;
closes existing input file, closes existing output file, if any;
if any performs .BAK renaming if EB is in

effect

EF$ Unchanged Unchanged Closes output file; performs .BAK
renaming if EB is in effect

EX$ Copies to output file Copies to Closes output file after copying
output file complete; performs .BAK renaming

if EB is in effect

5-13

5.6.2 File Input/Output Commands
You use file input/output commands to:

Text Editor

• Read text from an input file into the buffer

• Copy lines of text from the buffer into an output file

• Terminate the editing session.

5.6.2.l Read - Before you can edit text, you must read the input file into the buffer. The Read (R) command
reads a page of text from the input file (previously specified in an ER or EB command) and appends it to the current
contents, if any, of the text buffer.

The command is:

R

No arguments are used with the R command. If text resides in the buffer prior to the R command, the pointer does
not move; however, if no text resides in the buffer, the pointer is placed at the beginning of the buffer. EDIT trans
fers text to the buffer until one of the following conditions occurs:

1. A form feed character, signifying the end of the page, is encountered.
2. The text buffer is 500 characters from being full. (When this condition occurs, the Read command

inputs up to the next carriage return/line feed combination, then returns to command mode. An
asterisk prints as though the read were complete, but text will not have been fully input).

3. An end-of-file is encountered, (the ?EDIT-F-END OF INPUT FILE message prints when all text in the
ftle has been read into memory and no more input is available).

The maximum number of characters that you can bring into memory with an R command depends on the system
configuration and the memory requirements of other system components. EDIT prints an error message if the read
exceeds the memory available or if no input is available.

The following example edits a file using the EB and R commands.

*EBSJK1.BAS$$

This command opens SJ Kl .BAS on DK: and permits modification.

*R/L$$
THIS IS PAGE ONE OF
F ILE S ,J K 1 • BAS •

This command reads the first page of SJKI.BAS into the buffer. The pointer is placed at the beginning of the buffer.
/L lists the contents of the buffer on the terminal beginning at the pointer and ending with the last character in the
buffer.

5.6.2.2 Write The Write (nW) command copies lines of text from the text buffer to the output file (as specified
in the EW or EB command). The contents of the buffer are not altered and the pointer is left unchanged (unless an
output error occurs).

NOTE
EDIT uses a system of intermediate buffers to store output
before it actually writes the data to an output file. The Write
command logically writes to the file, but actual output to a

5-14

Text Editor

device does not occur until the intermediate buffer fills.
When the editor closes a file (that is, after you issue an
EF, EB, EX, or EW command), the editor writes from
the buffer to the file and the file is complete. If the
editor does not close a fi1e (if you exit with CTRL/C and
use the CLOSE command), it is possible that the output
file will be missing the last 512 characters.

The syntax of the command is:

nW

The argument you supply with the W command determines the lines of text to copy. Table 5-5 lists the arguments
for the W command and their effect.

Table S-S Write Command Arguments

Argument Meaning

n Writes n lines of text beginning at the pointer and ending with the nth end-of-line
character to the output file.

-n Writes n lines of text to the output file beginning with the first character on the -nth
line and terminating at the pointer.

0 Writes to the output file the current line up to the pointer.

I Writes to the output file the text between the pointer and the end of the buffer.

If the buffer is empty when the write executes, no characters are output.

The following examples illustrate the use of the W command.

*5W$$

This command writes the five lines of text following the pointer into the current output file.

This command writes the two lines of text preceding the pointer into the current output file.

This command writes the entire text buffer to the current output fiJe.

NOTE
If an output file fills while a Write command is executing,
EDIT prints the ?EDIT-F-OUTPUT FILE FULL message.
In this case, EDIT positions the reference pointer after
the last character it wrote successfully. You can then use
the following recovery procedure:

1. Close the current output file. (EF command)
2. Open a new output file. (EW command)
3. Delete the characters just written by using-nD or

-nK, where n is any arbitrary number that exceeds the
number of lines or characters in the buffer.

4. Resume output.

S-15

Text Editor

5.6.2.3 Next - The Next (nN) command writes the contents of the text buffer to the output file, deletes the
text from the buffer, and reads the next page of the input file into the buffer. The pointer is positioned at the
beginning of the buffer. The syntax of the command is:

nN

If you specify the argument n with the Next command, the sequence is executed n times.

If EDIT encounters the end of the input file when trying to execute an N command, it prints ?EDIT-F-END OF
INPUT FILE to indicate that no further text remains in the input file. Since the contents of the buffer has already
been transferred to the output file, the buffer is empty.

Using the N command is a quick way to write edited text to the output file and set up the next page of text in the
buffer. The N command functions as though it were a combination of the Write, Delete, Read, and Beginnir,g com
mands. (Delete is a text modifo.,ation command, described in Section 5.6.6.2; the Beginning command is a pointer
relocation command, described in Section 5.6.3.1.) Using the N command with an argument is a convenient way to
set up text in the buffer, if you already know its page location. The N command operates in a forward direction
only; therefore, you cannot specify negative arguments with an N command.

In the following example, an N command copies an input file with more than one page of text to the output file.

*EBDK!TEST.MAC$S

This command opens the file TEST.MAC on device DK: and creates a new file entitled TEST.MAC for output.

* NIL$$
THIS IS PAGE ONE OF
FILE TEST.MAC.

This command reads the first page of the input file, TEST.MAC, into the buffer and lists the entire page on the
terminal.

*NIL$!~
?EDIT-F-End of inPut file
*

This command transfers the contents of the buffer to the output file, clears the buffer, and encounters the end of
the file. Because it cannot complete the N sequence, EDIT prints ?EDIT-F-END OF INPUT FILE on the terminal.
The buffer is empty and the entire input file has been written to the output file.

5.6.2.4 EXit
following:

Type the Exit (EX) command to terminate an editing session. The Exit command does the

• Writes the text buffer to the output file

• Transfers the remainder of the input file to the output file

• Closes all open files

• Renames the backup file with a .BAK file type if an EB command is in effect

• Returns control to the monitor.

5-16

Text Editor

The command is:

EX

No arguments are accepted. Essentially, Exit copies the remainder of the input file into the output file and returns
to the monitor. Exit is legal only when there is an output file open. If an output file is not open and you want to
terminate the editing session, return to the monitor with CTRL/C.

NOTE
You must issue an EF or EX command in order to make
an output file permanent. If you use CTRL/C to return
to the monitor without issuing an EF command, the cur
rent output file will not be saved. (You can, however, make
permanent that portion of the text file that has already
been written out by using the monitor CLOSE command.)

An example of the contrasting uses of the EF and EX commands follows. Assume an input file, SAMPLE, contains
several pages of text. The first and second pages of the file will be made into separate files called SAMl and SAM2,
respectively; the remaining pages of text will then make up the file SAMPLE. This can be done using these commands:

*ElJSAM1$$
*r:1:~SAMPI ... E!~!r,
*RNEF$$
*EIJSAM2i~ i;
*NEF$!l·
*E lJ SAM F· L E $ [X $1;

Note that the EF commands are not strictly necessary in this example since the EW command closes a currently
open output file before opening another.

5.6.3 Pointer Relocation Commands
Pointer relocation commands allow you to change the current location of the reference pointer within the text buffer.

S.6.3.1 Beginning - The Beginning (B) command moves the current location of the pointer to the beginning of
the text buffer.

The command is:

B

There are no arguments ..

For example, assume the buffer contains:

MOVB
ADD
CLR
MOVB

5(Rl),@R2
Rl,(R2)+
@/-2
6(RI),@R2

The B command moves the pointer to the beginning of the text buffer.

5-17

Text Elli/or

The text buffer now looks like this:

tMOVB
ADD
CLR
MOVB

5(Rl),@R2
Rl,(R2)+
@R2
6(Rl),@R2

5.6.3.2 Jump - The Jump (nJ) command moves the pointer past the specified number of characters in the text
buffer. The syntax of the command is:

nJ

Table 5-6 shows the arguments for the J command and their meanings.

Table 5-6 Jump Command Arguments

Argument Meaning

(+or-)n Moves the pointer (forward or backward) n characters.

0 Moves the pointer to the beginning of the current line (equivalent to OA).

I Moves the pointer to the end of the text buffer (equivalent to /A).

= Moves the pointer backward n characters, where n equals the length of the last text
argument used.

Negative arguments move the pointer toward the beginning of the buffer; positive arguments move it toward the end.
Jump treats carriage returns, line feeds, and form feed characters the same as any other character, counting one buffer
position for each one.

The following commands illustrate the use of the J command.

This command moves the pointer ahead three characters.

*·"4..lili$

This command moves the pointer back four characters.

* B $ G ,~BC it,:::: J !~ $

This command moves the pointer so that it immediately precedes the first occurrence of ABC in the buffer.

5.6.3.3 Advance - The Advance (nA) command is similar to the Jump command except that it moves the pointer
a specific number of lines (rather than single characters) and leaves it positioned at the beginning of the line. The
syntax of the command is:

nA

Table 5-7 lists the arguments for the A command and their meanings.

5-18

Text Editor

Table 5-7 Advance Command Arguments

Argument Meaning

n Moves the pointer forward n Jines and positions it at the beginning of the nth line.

-n Moves the pointer backward past n carriage return/line feed combinations and positions

it at the beginning of the -nth line.

0 Moves the pointer to the beginning of the current line (equivalent to OJ).

I Moves the pointer to the end of the text buffer {equivalent to /J).

Following are examples that use the A command.

*3A$$

This command moves the pointer ahead three lines.

Assume the buffer contains:

CLR @1\2

The following command moves the pointer to the beginning of the current line:

Now the buffer looks like this:

fLR @R2

5.6.4 Search Commands
Use search commands to locate specific characters or strings of characters within the text buffer.

NOTE
Search commands always have positive arguments. They
search ahead in the file. This means that you cannot search
for a character string that has already been written to the
output file. To do this, you must first close the currently
open files {with EX) then edit the file that was just used
for output (with EB).

5.6.4.l Get - The Get {nG) command is the basic search command in EDIT. It searches the current text buffer
for the nt.h occurrence of a specific text string starting at the current location of the pointer. If you do not supply
the argwnent n, EDIT searches for the first occurrence of the text object. The search terminates when EDIT either
finds the nth occurrence or encounters the end of the buffer. If the search is successful, EDIT positions the pointer
to follow the last character of the text object. EDIT notifies you of an unsuccessful search by printing ?EDIT-F
SEARCH FAILED. In this instance, EDIT positions the pointer after the last character in the buffer.

The syntax of the command is:

nGtext$

The argument (n) must be positive. If you omit it, EDIT assumes it to be 1.

5-19

Text Editor

The text string can be any length and must immediately follow the G command. EDIT makes the search on the
portion of the text between the pointer and the end of the buffer.

For example, assume the pointer is at the beginning of the buffer shown below.

tMOV PC,Rl
ADD #DRIV-.,Rl
MOV #VECT,R2
CLR @R2
MOVB S{Rl),@R2
ADD Rl,(R2)+
CLR @R2
MOVB 6(Rl),@R2

The following command searches for the first occurrence of the characters ADD following the pointer and places
the pointer after the searched characters.

*GA!l[I$$

Now the buffer looks like this:

MOV
ADDt

PC,Rl
#DRIV-.,Rl

The next command searches for the third occurrence of the characters @R2 following the pointer and leaves the
pointer immediately following the text object.

*3G@r~2$$

The buffer is changed to:

ADD Rl,{R2)+
CLR @R2t

After successfully completing a search command, EDIT positions the pointer immediately following the text object.
Using a search command in combination with =J places the pointer in front of the text object, as follows:

*GTEST$::::,J$$

This command combination places the pointer before TEST in the text buffer.

5.6.4.2 Find - The Find (nF) command starts at the current pointer location and searches the entire input file
for the nth occurrence of the text string. If EDIT does not find the nth occurrence of the text string in the current
buffer, it automatically performs a Next command and continues the search on the new text in the buffer. When
the search is successful, EDIT leaves the pointer immediately following the nth occurrence of the text string. If the
search fails (i.e., EDIT detects the end-of-file for the input file and does not find the nth occurrence of the text
string), EDIT prints ?EDIT-F-SEARCH FAILED. In this instance, EDIT positions the pointer at the beginning of an
empty text buffer. When you use the F command, EDIT deletes the contents of the buffer after writing it to the
output file.

The syntax of the command is:

nFtext$

5-20

Text Editor

The argument (n) must be positive. EDIT assumes it to be 1 if you do not supply another value.

You can use an F command to copy all remaining text from the input file to the output file by specifying a non
existent text object. The Find command functions like a combination of the Get and Next commands.

The following example uses the F command.

*2FMOVB 6(R1),@R2$$

This command searches the entire input file for the second occurrence of the text string MOVB 6(Rl),@R2.
EDIT places the pointer following the text string. EDIT writes the contents of each unsuccessfully searched buffer
to the output file.

5.6.4.3 Position - The Position (nP) command is identical to the find (F) command with one exception. The F
command transfers the cont en ts of the text buffer to the output file as each page is unsuccessfully searched, but the
P command deletes the contents of the buffer after it is searched, without writing any text to the output file.

The syntax of the command is:

nPtext$

The argument (n) must be positive. If you omit it, EDIT assumes it to be 1.

The nP command searches each page of the input file for the nth occurrence of the text object starting at the pointer
and ending with the last character in the buffer. If EDIT finds the nth occurrence, it positions the pointer following
the text object, deletes all pages preceding the one containing the text object, and positions the page containing the
text object in the buffer.

If the search is unsuccessful, EDIT clears the buffer and does not transfer any text to the output file. EDIT positions
the pointer at the beginning of an empty text buffer.

The position command is a combination of the Get, Delete, and Read commands; it is most useful as a means of
JJlacing the pointer in the input file. For example, if your aim in the editing session is to create a new file from the
second half of the input file, a position search saves time.

The following example uses the P command.

This command searches the input file for the first occurrence of the text object, 3. EDIT positions the pointer after
the text object.

*OL$$
INPUT FILE PAGE 3

The command lists on the terminal the current line up to the pointer.

5.6.5 Text Listing Commands

5.6.5.1 List - The List (nL) command prints at the terminal lines of text as they appear in the buffer. The syntax
of the command is:

nL

5-21

Text Editor

An argument preceding the L command indicates the portion of text to print. For example, the command, 2L,
prints on the terminal the text beginning at the pointer and ending with the second end-of-line character. The
pointer is not altered by the L command. Table 5-8 lists arguments and their effect upon the list command.

Table S-8 List Command Arguments

Argument Meaning

n Prints at the terminal n lines beginning at the pointer and ending with the nth
end-of-line character.

-n Prints all characters beginning with the first character on the -nth line and terminating
at the pointer.

0 Prints the current line up to the pointer. Use this command to locate the pointer
within a line.

I Prints the text between the pointer and the end of the buffer.

These examples illustrate the use of the L command.

*-2L$$

This command prints all characters starting at the second preceding line and ending at the pointer.

*4L$$

This line prints all characters beginning at the pointer and terminating at the 4th carriage return/line feed combination.

Assuming the pointer location is:

MOVB S(Rl),@R2
ADD+ RI ,(R2)+

The following command prints the previous one and one-half lines up to the pointer:

The terminal output looks like this:

MOVB 5 <FU) 1 @1:;::;i.
ADD

S.6.S.2 Verify The Verify (V) command prints at the terminal the entire line in which the pointer is located.
lt provides a ready means of determining the location of the pointer after a search completes and before you give
any editing commands. (The V command combines the two commands OLL.) You can also type the V command
after an editing command to allow proofreading of the results. No arguments are allowed with the V command.
The location of the pointer does not change.

5.6.6 Text Modification Commands
You can use the following commands to insert, relocate, and delete text in the text buffer.

5-22

Text Editor

5.6.6.1 Insert - The Insert (I) command is the basic command for inserting text. EDIT inserts the text you
supply at the location of the pointer, then places the pointer after the last character of the new text.

The syntax of the command is:

ltext$

No arguments are allowed with the insert command, and the text string is limited only by the size of the text buffer
and the space available. All characters except ESCAPE are legal in the text string. ESCAPE terminates the text string.

NOTE
If you forget to type the I command, the text will be
executed as commands.

EDIT automatically protects against overflowing the text buffer during an insert. If the I command is the first com
mand in a multiple command line, EDIT ensures that there will be enough space for the insert to be executed at
least once. If repetition of the command exceeds the available memory, an error message prints.

The following example illustrates the use of the I command.

*IMOV
MDV
MOVB
*

:ff:BUFF ~ F:2
:11:LINEi·r<:I.
·-:l.(R2) dW!~$

This command inserts the text at the current location of the pointer and leaves the pointer positioned after RO.

DIGIT AL recommends that you insert large amounts of text into the file in small sections rather than all at once.
This way, you are less vulnerable to loss of time and effort due to machine failure or human error. This is the rec
ommended technique for inserting large amounts of text:

1. Open the file with the EB command
2. Insert or edit a few pages of text
3. Insert a unique text string (like ????) to mark your place
4. Use the Exit command to preserve the work you have done so far
5. Start again, using the F command to search for the unique string you used to mark your place
6. Delete your marker and continue editing.

By using this procedure, you reduce your loss (should there be a machine or human error) to the few pages of text
on which you just worked.

5.6.6.2 Delete The Delete (nD) command is a character-oriented command that deletes n characters in the text
buffer beginning at the current location of the pointer. The syntax of the command is:

nD

If you do not specify n, EDIT deletes the character immediately following the pointer. Upon completion of the D
command, EDIT positions the pointer immediately before the first character following the deleted text. Table 5-9
lists each argument for the D command and its effect.

5-23

Text Editor

Table 5-9 Delete Command Arguments

Argument Meaning

n Deletes n characters following the pointer. Places the pointer before the first
character following the deleted text.

-n Deletes n characters preceding the pointer. Places the pointer before the first character
following the deleted text.

0 Deletes the current line up to the pointer. The position of the pointer does not change
(equivalent to OK).

I Deletes the text between the pointer and the end of the buffer. Positions the pointer
at the end of the buffer (equivalent to /K).

= Deletes -n characters, where n equals the length of the last text argument used.

The following examples illustrate the use of the D command.

This command deletes the two characters immedi:1tely preceding the pointer.

*B$FMOV R1$::::[1$$

This command string deletes the text string MOY Rl. (=Din combination with a search command deletes the
indicated text string.)

Assume the text buffer contains the following:

ADD Rl ,(R2)+
CLR t@R2

The following command deletes the current line up to the pointer:

*OD$$

The buffer now contains:

ADD RI ,(R2)+
t@R2

5.6.6.3 Kill - The Kill (nK) command removes n lines of text (including the carriage return and line feed
characters) from the page buffer, beginning at the pointer and ending with the nth end-of-line. The syntax of the
command is:

nK

EDIT places the pointer at the beginning of the line following the deleted text. Table 5-10 describes each argument
and its effect upon the Kill command.

5-24

Text Editor

Table S-10 Kill Command Arguments

Argument Meaning

n Removes the character string (including the carriage return/line feed combination)
beginning at the pointer and ending at the nth end-of-line.

-n Removes the character string beginning at the nth end-of-line preceding the pointer
and ending at the pointer. Thus, if the pointer is at the center of a line, the modifier
-1 deletes one and one-half lines preceding it.

0 Removes the current line up to the pointer (equivalent to OD).

I Removes the characters beginning at the pointer and ending with the last line in the
text buffer (equivalent to /D).

The following examples use the K command.

*2K$$

This command deletes lines starting at the current location of the pointer and ending at the second carriage return/
line feed combination.

Assume the text buffer contains the following:

ADD Rl,(R2)+
CLR+ @R2
MOVB 6(Rl),@R2

This command removes the characters beginning at the pointer and ending with the last line in the text buffer:

*/K$$

The buffer now contains:

ADD Rl ,(R2)+
CLRt

Kill and Delete commands perform the same function, except that Kill is line-oriented and Delete is character-oriented.

S.6.6.4 Change - The Change (nC) command changes a specific number of characters following the pointer. The
syntax of the command is:

nCtext

AC command is equivalent to a Delete command followed by an Insert command. You must insert a text object
following the nC command. Table 5-11 lists each argument and its effect upon the C command.

5-25

Text Editor

Table S-11 Change Command Arguments

Argument Meaning

n Replaces n characters following the pointer with the specified text. Places the pointer
after the inserted text.

-n Replaces n characters preceding the pointer with the specified text. Places the pointer
after the inserted text.

0 Replaces the current line up to the pointer with the specified text. Places the pointer
after the inserted text (equivalent to OX).

I Replaces the text beginning at the pointer and ending with the last character in the
buffer. Places the pointer after the inserted text (equivalent to /X).

Replaces - n characters with the indicated text string, where n represents the length of
the last text argument used.

The size of the text is limited only by the size of the text buffer and the space available. All characters are legal
except ESCAPE, which terminates the text string.

If the C command is to be executed more than once (i.e., it is enclosed in angle brackets) and if there is enough
space available for the command to be entered, it will be executed at least once (provided it appears first in the
command string). If repetition of the command exceeds the available memory, an error message prints.

The following examples use the C command.

* 5Cf.VECT$$

This command replaces the five characters to the right of the pointer with #VECT.

Assume the text buffer contains the following:

CLR
MOVt

@R2
5(Rl),@R2

The next command replaces the current line up to the pointer with the specified text.

* OCADDB$$

The buffer now contains:

CLR @R2
ADDBt 5(RI),@R2

You can use =C with a Get command to replace a specific text string. Here is an example:

*GFIFTYIS=CFIVE:S

This command finds the occurrence of the text string FIFTY: and replaces it with the text string FIVE:.

5-26

Text Editor

5.6.6.5 eXchange The eXchange (nX) command is similar to the change command except that it changes lines
of text, instead of a specific number of characters. The syntax of the command is:

nXtext

The nX command is identical to an nK command followed by an Insert command. Table 5-12 lists each argument
and its effect upon the eXchange command.

Table S-12 eXchange Command Arguments

Argument Meaning

n Replaces n lines including the carriage return and line feed characters following the
pointer. Places the pointer after the inserted text.

-n Replaces n lines including the carriage return and line feed characters preceding the
pointer. Positions the pointer after the inserted text.

0 Replaces the current line up to the pointer with the specified text. Positions the
pointer after the inserted text (equivalent to OC).

I Replaces the text beginning at the pointer and ending with the last character in the
buffer with the specified text (equivalent to /C). Positions the pointer after the
inserted text.

All characters are legal in the text string except ESCAPE, which terminates the text.

If the X command is enclosed within angle brackets to allow more than one execution, and if there is enough memory
space available for the X command to be entered, EDIT executes it at]east once (provided it is first in the command
string). If repetition of the command exceeds the available memory, an error message prints.

The following example uses the X command.

* 2XADD R1,. (f~2H·
CLR @H2
$$

*
This command exchanges the two lines to the right of the pointer with the text string.

5.6. 7 Utility Commands
During the editing session, you can store text in external buffers and subsequently restore this text when you need
it later on in the editing session. The following sections describe the commands that perform this function.

5.6.7.l Save - The Save (nS) command lets you store text in an externaJ buffer called a save buffer (described
previously in Section 5.5), and subsequently insert it in several places in the text.

The syntax of the command is:

nS

The Save command copies n lines, beginning at the pointer, into the save buffer. The S command operates only in
the forward direction; therefore, you cannot use a negative argument. The Save command destroys any previous
contents of the save buffer; however, EDIT does not change the location of the pointer or the contents of the text
buffer.

5-27

Text Editor

If you specify more characters than the save buffer can hold, EDIT prints ?EDIT-F-INSUFFICIENT MEMORY.
None of the specified text is saved.

For example, assume the text buffer contains the following assembly-language subroutine:

; SUBROUTINE MSGTYP
; WHEN CALLED, EXPECTS RO TO POINT TO AN
; ASCII MESSAGE THAT ENDS IN A ZERO BYTE,
; TYPES THAT MESSAGE ON THE USER TERMINAL

MSGTYP:

MLOOP:

MOONE:

TSTB
BEQ
TSTB
BPL
MOVB
BR
RTS

(RO)
MOONE
@#177564
MLOOP
(R0)+,@#177566
MSGTYP
PC

;DONE?
; YES-RETURN
; NO-IS TERMINAL READY?
;NO-WAIT
; YES PRINT CHARACTER
;WOP
;RETURN

The following command stores the entire subroutine in the save buffer (assuming the pointer is at the beginning of
the buffer):

*12S$$

You can insert the contents of the save buffer into a program whenever you choose by using the Unsave command.

5.6.7.2 Unsave The Unsave (U) command inserts the entire contents of the save buffer into the text buffer at
the pointer and leaves the pointer positioned following the inserted text. You can use the U command to move
blocks of text or to insert the same block of text in several places. Table 5-13 lists the U commands and their meanings.

Table 5-13 U Command and Arguments

Command Meaning

u Inserts the contents of the save buffer into the text buffer.

OU Clears the save buffer and reclaims the area for text.

The only argument the U command accepts is 0.

The contents of the save buffer are not destroyed by the Unsave command (only by the OU command) and can be
unsaved as many times as desired. If the Unsave command causes an overflow of the text buffer, the ?EDIT-F
INSUFFICIENT MEMORY error message prints, and the command does not execute.

For example:

This command inserts the contents of the save buffer into the text buffer.

5.6.7.3 Macro - The Macro (M) command inserts a command string into the EDIT macro buffer. Table 5-14
lists the M commands and their meanings.

5-28

Text Editor

Table 5-14 M Command and Arguments

Command Meaning

M/ command string/ Stores the command string in the macro buffer.

OM or M// Clears the macro buffer and reclaims the area for text.

The slash(/) represents the delimiter character. The delimiter is always the first character following the M command,
and can be any character that does not appear in the macro command string itself.

Starting with the character following the delimiter, EDIT places the macro command string characters into its inter
nal macro buffer until the delimiter is encountered again. At this point, EDIT returns to command mode. The macro
command does not execute the macro string; it merely stores the command string so that the Execute Macro (EM)
command can execute later. The Macro command does not affect the contents of the text or save buffers.

All characters except the delimiter are legal macro command string characters, including single ESCAPEs to terminate
text commands. All commands, except the M and EM commands, are legal in a command string macro.

In addition to using the OM command, you can type the M command immediately followed by two identical
characters (assumed to be delimiters) and two ESCAPE characters to clear the macro buffer.

The following examples illustrate the use of the M command.

*M//$$

This command clears the macro buffer.

*H/GR0$-·C1 $/$$

This command stores a macro to change RO to RI.

NOTE
Be careful to choose infrequently-used characters as
macro delimiters; use of frequently-used characters can
lead to inadvertent errors. For example:

*M GMOV ROS=CADD R1$ $S
?EDIT-F-No file oPen for inPut

In this case, it was intended that the macro be GMOV
RO$=CADD Rl $ but since the delimiter character (the
character following the M) is a space, the space following
MOY is used as the second delimiter, terminating the
macro. EDIT then returns an error when it interprets the
R as a Read command.

5.6.7.4 Execute Macro - The Execute Macro (nEM) command executes the command string previously stored
in the macro buffer by the M command.

The syntax of the command is:

nEM

5-29

Text Editor

The argument (n) must be positive. The macro is executed n times and returns control to the next command in the
original command string.

The following example uses the EM command.

* M/f.lGRO$·-C 1 ~;/~;ir,

* B1000EM$!~
?EDIT-F-Search failed

*
This command sequence executes the macro stored in the previous example. EDIT prints an error message when it
reaches the end of the buffer. (This macro changes all occurrences of RO in the text buffer to Rl .)

*IMOV PC,R1S2EMICLR @R2$$

*
This command inserts MOV PC,Rl into the text buffer, then executes the command in the macro buffer twice
before inserting CLR @R2 into the text buffer.

5.6.7.5 Edit Version - The Edit Version (EV) command displays the version number of the editor in use on the
console terminal.

The command is:

EV

This example displays the running version of EDIT:

*·EV$$
V0:3.:36

*
5.6. 7 .6 Upper- and Lower-Case Commands - If you have an upper- and lower-case terminal as part of your
hardware configuration, you can take advantage of the upper- and lower-case capability of this terminal. Two editing
commands, EL and EU, permit this.

When the editor is first started with the EDIT command, upper-case mode is assumed; all characters you type are
automatically translated to upper case. To allow processing of both upper- and lower-case characters, enter the Edit
Lower command. For example:

* EL$$
*i You can enter text and commands in UPPER and lower case.IS

*
The editor now accepts and echoes upper- and lower-case characters received from the keyboard and prints text on
the terminal in upper and lower case.

To return to upper-case mode, use the Edit Upper command:

* EU$$

Control also reverts to upper-case mode upon exit from the editor (with EX or CTRL/C).

5-30

Text Editor

Note that when you issue an EL command, you can enter EDIT commands in either upper or lower case. Thus, the
following two commands are equivalent:

*GTEXTS=Cnew text$V$$

*~TEXTS~cnew text$v$$

The editor automatically translates (internally) all commands to upper case independent of EL or EU.

NOTE
When you use EDIT in EL mode, make sure that text
arguments you specify in search commands have the
proper case. The command GTeXt$, for example, will
not match TEXT, text, or any combination other than
TeXt.

5.7 THE DISPLAY EDITOR
In addition to all functions and commands mentioned thus far, the editor can use VT-11 and VS-60 display hardware
that may be part of the system configuration (GT40, GT44, DECLAB 11/40, DECLAB 11/34). The most obvious
feature is the ability to use the display screen rather than the console terminal for printing all terminal input and
output. Another feature is that the top of the display screen functions like a window into the text buffer. When all
the features of the display editor are in use, a 12 in. screen displays text as shown in Figure 5-1.

10 PRECEDING
LINES OF TEXT

CURSOR
(CURRENT LINE)

AND9
FOLLOWING
LINES OF TEXT

SEPARATION
LINE

3 PRECEDING r
COMMAND LINES~

CURRENT

Figure 5-1 Display Editor Format, 12 in. Screen

5-31

WINDOW
INTO THE
TEXT BUFFER

Text Editor

The major advantage is that you can now see immediately where the pointer is. The pointer appears between characters
on the screen as a blinking L-shaped cursor and you can see it easily. Remember that pressing the (8]I) key causes both
a carriage return and a line feed character to be inserted into the text. Note that if the pointer is placed between a
carriage return and line feed, it appears in an inverted position at the beginning of the next line.

In addition to displaying the current line (the line containing the cursor), the 15 lines of text preceding the current
line and the 14 lines following it are also in view on a 17 in. screen. Each time you execute a command string (with a
double ESCAPE), EDIT refreshes this portion of the screen so that it reflects the results of the commands you just
performed.

The lower section of the 1 7 in. screen contains eight lines of editing commands. The command line you are currently
entering is last, preceded by the most recent command lines. A horizontal line of dashes separates this section from
the text portion of the screen. As you enter new command lines, previous command lines scroll upward off the com
mand section so that only eight command lines are ever in view.

A 12 in. screen displays 20 lines of text and 4 command lines.

5. 7.1 Using the Display Editor
The display features of the editor are automatically invoked whenever the system scroller is in use (a monitor GT
ON command is in effect) and you start the editor. However, if the system does not contain display hardware, the
display features are not enabled.

Providing that the system does contain display hardware and that you wish to employ the screen during the editing
session, you can activate it in one of two ways, whether or not the display is in use. All editing commands and
functions previously discussed in this chapter are valid for use.

l. If the scroller is in use (the GT ON monitor command is in effect), EDIT recognizes this and automatically
uses the screen for display of text and commands. However, it rearranges the scroller so that a window
into the text buffer appears in the top two-thirds of the screen, while the bottom third displays command
lines. This arrangement is shown in Figure 5-1.

You can use the Edit Console command to return the scroller to its normal mode so that text and commands
use the full screen, and the window is eliminated.

The command is:

EC

This example uses the EC command:

*BAEC2L$$

This command lists the second and third lines of the current buffer on the screen; there is no window
into the text buff.er at this point.

EDIT ignores subsequent EC commands if the window into the text buffer is not being displayed.

To recall the window, use the Edit Display command:

ED

The screen is again arranged as shown in Figure 5-1.

5-32

Text Editor

2. Assume the scroller is not is use (the GT ON command is not in effect). When you call EDIT with the
.EDIT command, an asterisk appears on the console terminal. Use the ED command at this time to provide
the window into the text buffer; however, commands continue to be echoed to the console terminal.

When you use ED in this case, it must be the first command you issue; otherwise, it becomes an illegal
command (since the memory used by the display buffer and code, amounting to over 600 words, is
reclaimed as working space). You cannot use the display again until you load a fresh copy of EDIT.

While the display of the text window is active, EDIT ignores ED commands.

Typing the EC command clears the screen and returns all output to the console terminaL

NOTE
After an editing session that uses the ED command is over,
clear the screen by typing the EC command or by returning
to the monitor and using the monitor RESET command.
Failure to do this may cause unpredictable results.

S.7.2 Setting the Editor to Immediate Mode
An additional mode is available in EDIT to provide easier and faster interaction during the editing session. This mode
is called immediate mode and combines the most-used functions of the text and command modes - namely, reposi
tioning the pointer and deleting and inserting characters.

You can oply use immediate mode when the VT-11 display hardware is active and the editor is running. Enter it by
typing two ESCAPEs (only) in response to the command mode asterisk:

The editor responds by echoing an exclamation point on the screen.

The exclamation character remains on the screen as long as control is in immediate mode.

Once you enter immediate mode, you can use only the commands in Table 5-1 S. Any other commands or characters
are treated as text to be inserted. None of these commands echoes, but the text appearing on the screen is constantly
refreshed and updated during the editing process.

To return control to the display editor's normal command mode at any time while in immediate mode, type a single
ESCAPE. The editor responds with an asterisk and you can proceed using all normal editing commands. (Immediate
mode commands you type at this time will be accepted as command mode input characters.} To return control to the
monitor while in immediate mode, type ESCAPE to return to command mode, then type CTRL/C followed by two
ESCAPEs.

Table S-15 Immediate Mode Commands

Command Meaning

CTRL/N Advances the pointer (cursor) to the beginning of the next line (equivalent
to A).

CTRL/G Moves the pointer (cursor} to the beginning of the previous line (equivalent
to-A).

(Continued on next page)

5-33

Text Editor

Table S-15 (Cont.) Immediate Mode Commands

Command Meaning

CTRL/D Moves the pointer (cursor) forward by one character (equivalent to J).

CTRL/V Moves the pointer (cursor) back by one character (equivalent to -J).

RUBOUT or DELETE Deletes the character immediately preceding the pointer (cursor) (equivalent
to-D).

ESCAPE or ALTMODE Single character returns control to command mode; double character directs
control to immediate mode.

Any character other than Inserts the character as text positioned immediately before the pointer
those above (cursor) - equivalent to I.

S.8 EDIT EXAMPLE
The following example illustrates the use of some of the EDIT commands to change a program stored on the device
DK:. Sections of the terminal output are coded by letter and corresponding explanations follow the example.

A{ EDIT/OUTPUT!TEST2.MAC TEST1.MAC
*R$$

B

*IL$$
; TEST r:-1:mGl~AM

STAF(r: MOV
MO'J
JSF<
HAI ... T

:ff; :I.()()() y ::;p
=It-MSG~ RO
PCYMGGTYP

M!:>G: •,~!:;CI J /IT WORl<S/
.BYTE 1.5
,BYTE :I.:?
.BYTE 0

*Hif; l ,.J 'Ii ~5D !~ ~;

Jf!GP R DG 1:~,.~I M ii; ':Ii
~V)l ... $!1,

;INITIALIZE STACK
;POINT RO TO MESSAGE
tPF;:INT IT
YBTOP

v PROGl:~AM*I TO TEi:;r 1:;1.1n1=::nuT l NF
;nTHE TEST PROGRAM WORKS"

ME\GTYF', TYPES

;oN THE TEM1\IM\RMINAL$$
F / G.i:)bCIJ/'l,:li

\ *BCTHE TEST PROGRAM WORKS$$

(

*P PYTF ,, -.i

G .*.G • :{;; ··{ ·1·· 1;:: :\. l 1 ,,. ,, u~ ,. ,.r,
.BYTE 0

5-34

H

,(
A

B

C

D

E

F

G

H

.END
~,B/L$'f;

Text Editor

y PROGf<1":iM TD TE::;r r;ur:1=,·uuT INE MSGTYP. TYPE!i
;"THE lEST PROGRAM WORKS"
t ON THE TEF~MINAL

START: MOV 11000,SP ;INITIALIZE STACK
MDV tHSG,RO ;pQINT RO TO MESSAGE
JSR PC,MSGTYP ;PRINT IT
HALl ;STOP

MSG! .ASCII/THE TEST PROGRAM WORKS/
• BYTE :I. '.:'i

• BYTE :I.~'.
.BYTE 0
.END

Calls the EDIT program and prints*. The input file is TESTJ .MAC; the output file is TEST2.MAC. Reads
the first page of input into the buffer.

lists the buffer contents.

Places the pointer at the beginning of the buffer. Advances the pointer one character (past the ;) and
deletes the TEST.

Positions the pointer after PROGRAM and verifies the position by listing up to the pointer.

Inserts text. Uses RUBOUT to correct typing error.

Searches for .ASCII/ and changes IT WORKS to THE TEST PROGRAM WORKS.

Types CTRL/X to cancel the P command. Searches for .BYTE O and verifies the location of the pointer
with the V command.

Inserts text. Returns the pointer to the beginning of the buffer and lists the entire contents of the buffer.

Closes the input and output files after copying the current text buffer as well as the rest of the input ftle
into the output file. EDIT returns control to the monitor.

5.9 EDIT ERROR CONDITIONS
The editor prints an error message whenever a detectable error condition occurs. EDIT checks for three general types
of error conditions: 1) syntax errors, 2) execution errors and, 3) macro execution errors. This section describes the
error message form for each type of error condition.

Before it executes any commands, EDIT first scans the entire command string for errors in command syntax, such
as illegal arguments or an illegal combination of commands. If the editor finds an error of this type, it prints a
message of this form:

?EDIT-F-Message; no command(s) executed

You should retype the command.

5-35

Text Editor

If a command string is syntactically correct, EDIT begins execution. Execution errors, such as buffer overflow or
input and output errors, can still occur. In this case, EDIT prints a message of the form:

?EDIT·F·Message

EDIT executes all commands preceding the one in error. It does not execute the command in error or any commands
that follow it.

When an error occurs during execution of a macro, EDIT prints a message of the form:

?EDIT-F-Message in macro; no command(s) executed
or
?EDIT-F-Message in macro

Most errors are syntax errors. These are usually easy to correct before execution.

The RT-11 System Message Manual contains a complete list of the EDIT error messages, along with recommended
corrective action for each error.

5-36

PART IV

UTILITY PROGRAMS

The following chapters describe in detail the system programs available to you as an RT-11 user. You can take
advantage of nearly all of the capabilities of the RT-11 system by using the keyboard monitor commands, which
are described in Chapter 4. However, it is the system utility programs (and not the monitor itself) that actually
perform many of the system's functions. When you issue a monitor COPY command, for example, it is a system
utility program (PIP, DUP, or FILEX, in this case) that performs the copy operation. Part N of this manual, Util
ity Programs, explains how to carry out utility operations, those not performed directly by the monitor, by run
ning a specific system utility program instead of using the keyboard monitor commands. It is not necessary to
have an understanding of the material contained in Part IV in order to use the RT-11 system. However, the infor
mation in Part IV may be of interest to you if you have experience with a previous version of RT-11, or if you
are a systems programmer and need to perform certain functions with the utility programs that are not available
with the keyboard monitor commands. Note that the syntax the Command String Interpreter requires for input
and output specifications is different from the syntax you use to issue a keyboard monitor command. Chapter 6,
the Command String Interpreter, describes the general syntax of the specification string that the system utility
programs accept, and explains certain conventions and restrictions. Read this chapter carefully before you use any
of the system utility programs directly, and bear in mind that there are many differences between issuing a monitor
command and running a utility program. Chapters 7 through 1 5 describe the system utility programs themselves.

N-1

CHAPTER 6

COMMAND STRING INTERPRETER

The Command String Interpreter (CSI) is the part of the RT-11 system that accepts a line of ASCII input, usually
from you at the console terminal, and interprets it as a string of input specifications, output specifications, and
options for use by a system utility program. To call a utility program, respond to the dot (.) printed by the key
board monitor by typing R followed by a program name and a carriage return. This example shows how to call
the directory program (DIR):

.R DIR

The Command String Interpreter prints an asterisk (*) at the left margin on the terminal, indicating that it is
ready to accept a list of specifications and options. The following section describes the syntax of the specifica
tions and options you can enter.

6.1 COMMAND STRING INTERPRETER SYNTAX
Once you have started a system program, you must enter the appropriate information before any operation can
be performed. You type a specification string in response to the prompting asterisk. The specifications are in the
following general syntax:

output-filespecs/option=input-filespecs/option

(A few system programs - EDIT and PATCH, for example - require you to enter this information slightly dif
ferently. Complete instructions are provided in the appropriate chapters.)

In all cases, the syntax for output-filespec is:

dev:filnam.typ(n], ... dev:filnam.typ[n]

The syntax for input-ftlespec is:

dev:ftlnam.typ , ... dev:filnam.typ

The syntax for /option is:

where

/o:oval or /o:dval.

dev: represents either a logical device name or a physical device name, which is a 2. or 3-
character name from Table 3-1.

If you do not supply a device name, the system uses device DK:. DK:, or whatever
device you specify for the first file in a list of input or output files, applies to all the
files in that input or output list, until you supply a different device name. For example:

*DTl :FIRST .OBJ ,LP:=T ASK.l ,RKI :TASK.2,T ASK.3

6-1

filnam.typ

[n]

/o:oval or
/o:dvaJ.

=

Command String Interpreter

This command is interpreted as follows:

*DTl :FIRST.OBJ,LP:=DK:TASK.l,RKl :TASK.2,RKI :TASK.3

File FIRST.OBJ is stored on device DTl:. File TASK.I is-stored on default device DK:.
Files TASK.2 and TASK.3 are stored on device RK.1:. Notice that ftle TASK.I is on de
vice DK:. It is the first file in the input file list and the system uses the default device
DK:. Device DTl: applies only to the file on the output side of the command.

represents the name of a ftle (consisting of one to six alphanumeric characters followed
optionally by a dot and a zero to three character file type). No spaces or tabs are allowed
in the file name or file type. As many as three output and six input files are allowed.

is an optional declaration of the number of blocks (n) you need for an output file; n is a
decimal number (<65 ,535) enclosed in square brackets immediately following the output
filnam.typ to which it applies.

represents one or more options whose functions vary according to the program you are
using (refer to the option table in the appropriate chapter); oval is either an octal number
or one to three alphanumeric characters (the first of which must be alphabetic) that the
program converts to Radix-SO characters; dval. is a decimal number followed by a decimal
point.

This manual uses the /o:oval construction throughout, except for the keyboard monitor
commands, where all values are interpreted as decimal (unless indicated otherwise) and the
decimal point after a value is not necessary. However, the /o:dval. format is always valid.
Generally, these options and their associated values, if any, should follow the device and
file name to which they apply.

If the same option is to be repeated several times with different values (e.g., /L:MEB/L:
TTM/L:CND) you can abbreviate the line as /L:MEB:TTM:CND. You can mix octal,
Radix-SO, and decimal values.

If required, is a delimiter that separates the output and input fields. You can use the <
sign in place of the = sign. You can omit the separator entirely if there are no output files.

6.2 PROMPTING CHARACTERS
Table 6-1 summarizes the characters RT-11 prints either to indicate that the system is awaiting your response or
to specify which job (foreground or background) is producing output.

Table 6-1 Prompting Characters

Character Explanation

. The keyboard monitor is waiting for a command .

~ When the console terminal is being used as an input file, the uparrow (or circumflex)
prompts you to enter information from the keyboard. Typing a CTRL/Z marks the
end-of-file.

>· The > character identifies (only if a foreground job is active) which job, foreground
or background, is producing the output that currently appears on the console terminal.
Each time output from the background job is to appear, B > prints first, followed by
the output. If the foreground job is to print output, F > prints first.

* The current system utility program is waiting for a line of specifications and options.

6-2

CHAPTER 7

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The peripheral interchange program (PIP) is a file transfer and file maintenance utility program for RT-11. You
can use PIP to transfer files between any of the RT-11 devices (listed in Table 3-1) and to merge, rename, and

delete ftles.

7.1 CALLING AND USING PIP
To call PIP from the system device, respond to the dot (.) printed by the keyboard monitor by typing:

R PIP(RET)

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to type
a command string. If you type only a carriage return at this point, PIP prints its current version number and
prompts you again for a command string. You can type CTRL/C to halt PIP and return control to the monitor
when PIP is waiting for input from the console terminal. You must type two CTRL/Cs to abort PIP at any other
time. To restart PIP, type R PIP or REENTER followed by a carriage return in response to the monitor's dot.
Chapter 6, Command String Interpreter, describes the general syntax of the command line that PIP accepts. You
can type a~ many as six input file names, but only one output file name is allowed. You can put command op
tions at the end of the command string or type them after any file name in the string. Operations involving mag
tape are an exception to this rule because the /M option is device dependent, and has a different meaning when
you specify it on the input or output side of a command line. Type any number of options in a command line,
as long as only one operation (insertion, deletion, etc.) is represented. You can, however, combine copy and
delete operations on one line. If you specify a command involving random access devices for which the output
specification is the same as the input specification, PIP does not move any files. However, it can change the cre
ation dates on the files if you use /T, or it can rename the files if you use /R.

Since PIP performs file transfers for all RT-11 data formats (ASCII, object, and image), it does not assume file
types for either input or output files. You must explicitly specify all file types, where file types are applicable.

On random access devices, such as disks and DECtape, PIP operations retain a file's creation date. If the file's
creation date is 0, PIP gives it the current system date. However, in transfers to and from magtape and cassette,
PIP always gives files the current system date.

You can use all variations of the wildcard construction for the input file specifications in the PIP command line
(Section 4.3 describes wildcard usage). Output file specifications cannot contain embedded wildcards. If you use
any wild character in an input file specification, the corresponding output file name or file type must be an
asterisk. The concatenate copy operation is an exception to this rule because n ctoes not allow wildcards in the
output specification. These two lines are examples of wild card usage:

**•B=AY.B.MAC

B•=AY.B.MAC

The first command string is legal. The second generates an error message because the file name field of the input
specification contains a wild card and the output specification is not •.

The following command, for example, deletes all files with the file type .BAK (regardless of their file names) from
device DK:.

7-1

Peripheral Interchange Program (PIP)

**•BAK/D

The next command renames all files with a .BAK file type (regardless of file names) so that these files now have
a .TST file type (maintaining the same file names).

**•TST=-*+BAK/R

PIP performs operations on files in the order in which you specify them in the command string. However, if the
specification contains a wildcard, PIP operates on the files in the order in which they appear in the device direc
tory. PIP ignores system files with the file type .SYS unless you also use the /Y option. PIP prints the error mes
sage ?PIP-W-NO.SYS ACTION if you omit the /Y option on a command that would operate on .SYS fues.

PIP ignores all files with the file type .BAD unless you explicitly specify both the file name and file type in the
command string. PIP does not print a warning message when it does not include .BAD files in an operation. Be
cause of the way PIP handles .BAD files, you cannot use a wildcard (* .BAD) to perform any operation on them.

This example transfers all files, including system files, (regardless of file name or file type) from device DK: to
device RKl:. It does not transfer .BAD files.

7.2 PIP OPTIONS
Certain options permit you to perform various operations with PIP. Table 7-1 summarizes the operations that PIP
performs. If you do not specify an option, PIP assumes that the operation is a file transfer in image mode. The
following sections are organized by function. Operations involving magtape and cassette are discussed first because
these operations are treated uniquely by PIP. The other functions (copy, delete, rename, log, and query) are de
scribed next. Explanations of the options are arranged alphabetically in the discussions of the appropriate functions.

Table 7-1 PIP Options

Option Section Explanation

/A 7.2.2.2 Copies files in ASCII mode, ignoring nulls and rubouts. It converts to 7-bit
ASCII and treats CTRL/Z (32 octal) as the logical end-of-file on input (the
default copy mode is image).

/B 7.2.2.3 Copies files in formatted binary mode (the default copy mode is image).

/C 7.2.2.4 Can be used with another option. It causes PIP to include only files with
the current date in the specified operation.

/D 7.2.3 Deletes input files from a specific device. Note that PIP does not automati-
cally query before it performs the operation. If you combine /D with a
copy operation, PIP performs the delete operation after the copy completes.
This option is illegal in an input specification with magtape.

/G 7.2.2.5 Ignores any input errors that occur during a file transfer and continues copy-
ing.

/K:n 7.2.2.6 Makes n copies of the output files to LP:, TT:, or PC:.

/M:n 7.2.l You can use /M:n when 1/0 transfers involve either cassette or magtape.
(See Section 7.2.1, Operations Involving Magtape or Cassette.)

(Continued on next page)

7-2

Peripheral Interchange Program (PIP)

Table 7-1 (Cont.) PIP Options

Option Section Explanation

/N 7.2.2.7 Does not copy or rename a file if a file with the same name exists on the
output device. This option protects you from accidentally deleting a file.
This option is illegal for rnagtape and cassette in the output specification.

/0 7.2.2.8 Deletes a file on the output device if you copy a file with the same name
to that device. The delete operation occurs before the copy operation.
This option is illegal for rnagtape and cassette in the output specification.

/P 7.2.2.9 Copies or deletes all files except those you specify.

/Q 7.2.6 Use only with another operation. The /Q option causes PIP to print the
name of each file to be included in the operation you specify. You must
respond with a Y to include a particular file.

/R 7.2.4 Renames the file you specify. This operation is illegal for magtape and
cassette.

/S 7.2.2.10 Copies files one block at a time.

/T 7.2.2.11 Puts the current date on all files you copy or rename, unless the current
date is 0. This option is illegal for magtape and cassette; operations involv-
ing those devices always use the current date.

/U 7.2.2.12 Copies and concatenates all files you specify.

/W 7.2.5 Prints on the terminal a log of copy, rename, and delete operations.

/Y 7.2.2.13 Includes .SYS files in the operation you specify. You cannot modify or
delete these files unless you use the /Y option.

7.2.1 Operations Involving Magtape and Cassette
PIP handles operations that involve magtape and cassette devices differently from operations that involve random
access devices, such as disks and DECtape. That is because rnagtape and cassette are sequential access devices.
This means that files are stored serially, one after another, on the device and that there is no directory at the
beginning of each device that lists the files and gives their location. Because of the serial nature of tape, you
can access only one file at a time on each device unit. Avoid commands that specify the same device unit number
for both the input and output files - they are illegal. The /M:n option is designed to make operations that involve
magtape and cassette more efficient. This option lets you specify different tape handling procedures for PIP to
follow. The following sections outline the operations that involve magtape and cassette and describe the different
procedures for using these devices that you can specify with the /M:n option. Remember that when you use the
/M:n option, n is interpreted as an octal number. You must use n. (n followed by a decimal point) to represent
a decimal number.

7.2.1.1 Using Cassette - The cassette is an inexpensive auxiliary storage medium. Cassettes are typically used to
store data such as text files or source programs. Clear plastic leader indicates the beginning-of-tape (BOT) and
physical end-of-tape (EOT). A special sentinel file marks the end of current data and indicates where new
data can begin. The /M:n option lets you position the tape a particular way, or rewind it, before beginning an
operation. You can also use it to specify a special procedure for tape handling during cassette operations with PIP.
The following operations are valid for use with cassettes: /A, /B, /C, /D, /G, /M, /P, /Q, /R, /S, /U, /W, and /Y.

7.3

Peripheral Interchange Program (PIP)

These options are illegal with cassettes: /K, /N, /0, /R, and /T. If you omit the /M:n option in a cassette opera
tion, the cassette rewinds before each operation. Using /M:0 has the same effect. The character n represents a
count of the number of files from the present position on the cassette. Note that the /M:n option has a different
meaning for cassette and magtape. Section 7.2.1.2 describes how to use /M:n with magtape.

For cassette read (copy from tape) operations, the /M:n option initiates these procedures:

1.Ifnis0:

The cassette rewinds and PIP searches for the file you specify. If you specify more thari one file, or if
you use a wildcard in the file specification, the cassette rewinds before PIP searches for each file.

2. If n is a positive integer:

PIP starts from the cassette's present position and searches for the file you specify. If PIP does not find
the file by the time it reaches the nth file from its starting position, it uses the nth file for the read
operation. Note that if PIP's starting position is not the beginning of the cassette, it is possible that PIP
will not find the file you specify, even though it does exist on the tape.

3. If n is a negative integer:

The cassette rewinds, then PIP follows the procedure outlined in step 2 above.

For cassette write (copy to tape) operations, the /M:n option initiates these procedures:

1. If n is 0:

The cassette rewinds and PIP writes the file you specify starting at the logical end-of-tape (LEOT) posi
tion. PIP automatically deletes any file it finds along the way that has the same name and file type as
the file you specify.

2. If n is a positive integer:

PIP starts from the cassette's present position and searches n files ahead, deleting along the way any file
it finds that has the same name and file type as the file you specify. If it does not reach LEOT before it
reaches the nth file from its starting position, it enters the file you specify over the nth file and deletes
any files beyond it on the tape. If PIP reaches LEOT before it reaches the nth file, it writes the file you
specify at the end-of-tape.

3. If n is a negative integer:

The cassette rewinds, then PIP follows the same procedure outlined in step 2 above.

If you are copying a file to cassette and reach the physical end-of-tape before the copy completes, PIP automati
cally continues the file on another cassette. The cassette device handler prints the CTn: PUSH REWIND OR
MOUNT NEW VOLUME message. If you want to halt the copy operation at this point, push the cassette rewind
button. The tape rewinds, PIP prints an error message, and then PIP prompts you for a new command. However,
if you want to continue the file on another cassette, remove the first cassette and put another initialized cassette
in its place. The new cassette rewinds immediately. PIP then continues copying the file. The continued part of
the file has the same file name and file type as the first part of the file, but PIP adds 1 to its sequence number to
show that it is a continued file. Make sure you have a supply of initialized cassettes handy for cassette copy opera
tions; you cannot interrupt the copy operation to initialize a cassette when PIP is waiting for a new volume. The
following example shows a copy operation that fills one cassette and continues to another.

7-4

Peripheral Interchange Program (PIP)

CT1!·*=RK!RK*.SYS,7.¾.SYS/Y/W/M!1
Files copied:

RK:RKMNSJ.SYS to CT1:RKMNSJ.SYS
CT1: PUSH REWIND OR MOUNT NEW VOLUME
RK!RKMNFB.SYS to CTl:RKMNFB.SYS
RK!DT.SYS to CT1:DT.SYS
RK:Ilf'.SYS to CT1:DP.SYS
RK:rix.svs to cr1:nx.sYs
f<t,!RF .SYS to CT1!RF.SYS
RKtRK.SYS to CT1!RK.SYS
RK!DM.SYS tfJ CT1:DM.SYS
RK!US+SYS to CT1 :r1S. SYS
RK?TT.SYS to CTl!TT.SYS
RK!LP.SYS tc> CT1!LF'+SYS
RK!CR.SYS t.o CTUCR.SYS
RK!MT.SYS to CT1!MT.SYS
RK:MM.SYS to CT11MM.SYS
RKtNL.SYS to CT:l: NL. SYS
RK:PC.SYS tc> CT1:PC.SYS
RK!EL..SYS to CT:l.!EL.SYS
RK!CT.SYS to CTl!CT.SYS
Rt<:BA+SYS to CT1!BA.SYS
JI(

A directory listing of the second cassette shows that the first file, RKMNFB.SYS, is continued from a previous
tape. (The number of blocks in a cassette directory listing is not meaningful; it really represents the total of se
quence numbers in the directory.)

,DIRECTORY CT:I.!
15-Af,r· .. ·77

RKHNFB.SYS 1 15·-Ar-- r··· Tl DT .SYS 0 1 ~;--AP J'·· 7?
DP .SYS 0 15-··Ar>r·-·77 [IX .SYS 0 :l 5···AF, r·· .. Tl
l~F .SYS 0 15--A~,., r··· 77 RK .SYS () i.5-APr-·77
l:iM .SYS 0 15-APr·-77 DS .SYS () :L ~j .. ·AP r-.. 77
TT .SYS 0 15····Ar-~ r··-77 LP .SYS 0 15·-AF-T'·-77
CR .SYS 0 15··-Ar->r-7'7 MT .SYS 0 1.5-AP r·-77
MM .SYS 0 15-APr-77 NL .SYS 0 15-·APr···77
F'C .SYS 0 15·-AP r·-77 EL .SYS 0 15-AP f'"" 77
CT .SYS 0 15-AP r·-77 BA .SYS 0 15-Apr-77

18 Files, 1 Blocks

If you are reading a file from cassette that is continued on another volume, the cassette handler also prints the
CTn: PUSH REWIND OR MOUNT NEW VOLUME message when it reaches the end of the first tape. To abort
the operation, push the cassette rewind button; PIP then issues an error message and prompts for a new command.
To continue the read operation, remove the first cassette and mount the second one in its place. The second cas
sette rewinds immediately and PIP searches for a file with the correct name and sequence number. PIP
repeats the new volwne message if it does not find the correct file. The following example copies a file that is
continued on a second cassette.

RK1!•*=CT1:RKMNFB.SYS/Y/W
Files co,=,ied:

CT1! PUSH REWIND OR MOUNT NEW VOLUME
CT1:RKMNFB.SYS to RK1:RKMNFB.SYS
*

7.5

Peripheral Interchange Program (PIP)

If you type a double CTRL/C during any output operation to cassette, PIP does not write a sentinel file at the
end of the tape. Consequently, you cannot transfer any more data to the cassette unless you follow one of these
two recovery procedures:

L First, rewind the cassette. Then, transfer all good files from the interrupted cassette to another cassette
and initialize the interrupted cassette as the following example shows. Use any arbitrarily large number
for /M:n.

CTl:•*=CTO:DMPX.MAC,EXAMP.FOR/M:1000
*~c
.R ttUP
*CTO:/Z/Y

*
2. Determine the sequential number of the file that was interrupted and use the /M:n construction to enter

a replacement file (either a new file or a dummy) over the interrupted file. PIP writes the replacement
file and a sen tin el file (LEOT) after it. The following example assumes the bad file is the fourth file on
the cassette.

*CTO:DUMHY.FIL=DTO:GLOBAL.MAC/Mt-4
*'"'C

.DIRECTORY cro:
19-APr-77

DMPX .MAC
EXAMP .FOR

() 19-Apr-77
0 19-APR-77

4 Files, 0 Blocks

MATCH .BAS
DUMMY +FIL

A directory listing of the cassette shows three files and the replacement file.

To copy multiple files to a cassette with a wildcard command, use the following:

0 19-·APr-77
0 19-Ar:-r-77

Continue to moWit new cassettes in response to the PUSH REWIND OR MOUNT NEW VOLUME message. Do
not abort the process at any time (using two CTRL/Cs) since continuation files may not be completed and no
sentinel file will be written on the cassette.

To read multiple files from a cassette, use a command like the following one. Use any arbitrarily large number
for /M:n.

dev:.*=CTn:•.•/M:1000

Whenever PIP detects a continued volume, the PUSH REWIND OR MOUNT NEW VOLUME message appears,
Witil the entire fde has been copied (assuming that you mount each sequential cassette in response to each
occurrence of the message). When PIP copies the final section of a continued file, it returns to command level.
To copy the remaining files on that cassette, reissue the command:

*dev: *. •=CTn:• .*/M: l 000

Repeat the process as often as necessary to copy all files. Do not abort the process at any time (using two
CTRL/Cs) since continuation files may not be completed.

7-6

Peripheral Interchange Program (PIP)

7.2.1.2 Using Magtape Magnetic tape is a convenient auxiliary storage medium for large amounts of data. Mag-
tapes are often used as backup for disks. Reflective strips indicate the beginning and end of the tape. A special
label (an EOFI or EOVI tape label) followed by two tape marks indicates the end of current data and indicates
where new data can begin. The following PIP options are valid for use with magtape: /A, /B, /C, /G, /M, /P, /Q,
/S, /U, /W, and /Y. These options axe illegal with magtape: /D, /K, /N, /0, /R, and /T. The /M:n option lets you
direct the tape operation; you can move the tape and perform an operation at the point you specify. The /M:n
option can be different for the output and input side of the command line. Since the option applies to the device
and not to the files, you can specify one /M:n option for the output file and one for the input files. The /M:n

option has a different meaning for cassette and magtape. Section 7.2.1.l describes how to use /M:n with cassette.

Sometimes PIP begins an operation at the current position. To determine the current position, the magtape handler
backspaces from its present position on the tape until it finds either an EOF indicator or the beginning of tape,
whichever comes first. PIP then begins the operation with the file immediately following the EOF or BOT. The
magtape handler also has a special procedure for locating a file with sequence number n:

1. If the file sequence number is greater than the current position, PIP searches the tape in the forward di
rection.

2. If the file sequence number is more than one file before the current position, or if the file sequence
number is less than five files from the beginning-of-tape (BOT), the tape rewinds before PIP begins its
search.

3. If the file sequence number is at the current position, or if it is one file past the current position, PIP
searches the tape in the reverse direction.

Whenever you fetch or load a new copy of the magtape handler, the tape position information is lost. The "new"
handler searches backwards until it locates either BOT or a label from which it can learn the position of the tape.
It then operates normally, according to steps 1, 2, and 3 described above.

If you omit the /M:n option, the tape rewinds between each operation. Using /M:0 has the same effect as omitting
/M:n. When n is positive, it represents the file sequence number. When n is negative, it represents an instruction to
the magtape handler.

For magtape read (copy from tape) operations, the /M:n option initiates these procedures:

I. If n is 0:

The tape rewinds and PIP searches for the file you specify. If you specify more than one file, the tape
rewinds before each search. If the file specification contains a wildcard, the tape rewinds only once and
then PIP copies all the appropriate files.

2. If n is a positive integer:

PIP goes to file sequence number n. If the file it finds there is the one you specify, PIP copies it, Other
wise, PIP prints the ?PIP-F-FILE NOT FOUND message. If you use a wildcard in the file specification
PIP goes to file sequence number n and then begins to search for matching files.

3. If n is - 1:

PIP starts the search at the current position. Note that if the current position is not the beginning of the
tape, it is possible that PIP will not fmd the file you specify, even though it does exist on the tape.

For magtape write (copy to tape) operations, the /M:n option initiates these procedures:

7-7

Peripheral Interchange Program (PIP)

LlfnisO:

The tape rewinds before PIP copies each file. PIP prints a warning message if it finds a file with the same
name and file type as the input file and does not perform the copy operation.

2. If n is a positive integer:

PIP goes to the file sequence number n and enters the file you specify. If PIP reaches LEOT before it
finds file sequence number n, it prints the ?PIP-F-FILE SEQUENCE NUMBER NOT FOUND message.
If you specify more than one file or if you use a wildcard in the file specification, the tape does not re
wind before PIP writes each file, and PIP does not check for duplicate file names.

3. If n is 1:

PIP goes to the LEOT and enters the file you specify. It does not check for duplicate file names.

4. If n is -2:

The tape rewinds between each copy operation. PIP enters the file at LEOT or at the first occurrence of
a duplicate file name.

If PIP reaches the physical end-of-tape before it completes a copy operation, it cannot continue the file on another
tape volume. Instead, it deletes the partial fde by backspacing and writing a logical end-of-tape over the file's
header label. You must restart the operation and use another magtape.

If you type two CTRL/Cs during any output operation to magtape, PIP does not write a logical end-of-tape at
the end of the data. Consequently, you cannot transfer any more data to the tape unless you follow one of the
two following recovery procedures. In addition, if the magtape handler was loaded (with the monitor LOAD com
mand), you must unload it before you can access the tape.

1. Transfer all good files from the interrupted tape to another tape and initialize the interrupted tape in the
following manner:

devl :.*=devO:*.*
""c
.ROUP
*devO:/Z/Y

2. Determine the sequential number of the file that was interrupted and use the fM:n construction to enter
a replacement file (either a new file or a dummy) over the interrupted file. PIP writes the replacement
file and a good LEOT after it. The following example assumes the bad file is the fourth file on the tape:

"'devO:file.new=file.dum/M:4

7.2.2 Copy Operations
The following sections describe the types of copy operation that PIP can perform. PIP copies files in image,
ASCII, and binary format. Other options let you change the date on the files, access .SYS files, combine files, and
perform other similar operations. PIP automatically allocates the correct amount of space for new files in copy
operations (except for concatenation). For block•replaceable devices, PIP stores the new file in the first empty
space large enough to accommodate it. If an error occurs during a copy operation, PIP prints a warning message,
stops the copy operation, and prompts you for another command. You cannot copy .BAD files unless you speci·
fically type each file name and file type.

7-8

Peripheral Interchange Program (PIP)

7 .2.2.1 Image Mode - If you enter a command line without an option, PIP copies files onto the destination
device in image mode. Note that you cannot reliably transfer memory image files to or from paper tape, or to
the line printer or console terminal. PIP can image-copy ASCII and binary data but it does not do any of the data
checking described in Sections 7.2.2.2 or 7.2.2.3.

The following command makes a copy of the file named XYZ.SA Y on device DK: and assigns it the name
ABC.SAY. (Both files exist on device DK: following the operation.)

*ABC.SAV=XYZ.SAV

The next example copies from DK: all .MAC files whose names are three characters long and begin with A. PIP
stores the resulting files on DXl :.

7.2.2.2 ASCD Mode (/A) - Use the /A option to copy files in 7-bit ASCII mode. PIP ignores nulls and
rubouts in an ASCII mode file transfer. PIP treats CTRL/Z (32 octal) as logical end-of-file if it encounters that
character in the input file. The following command copies F2.FOR from device DK: onto device DTl: in ASCII
mode and assigns it the name FI.FOR.

*DTt:Ft.FOR=F2.FOR/A

7.2.2.3 Binary Mode (/B) - Use the /B option to transfer formatted binary files (such as .OBJ files produced
by the assembler or the FORTRAN compiler and .LDA files produced by the linker). The following command,
for example, transfers a formatted binary file from the paper-tape reader to device DK: and assigns it the name
FILE:OBJ.

When performing formatted binary transfers, PIP verifies checksums and prints a warning if a checksum error
occurs. If there is a checksum error and you did not use /G to ignore the error, PIP does not perform the copy
operation. You cannot copy library files with the /8 option; PIP prints the ?PIP-F-LIBRARY FILE NOT COPIED
message. Copy them in image mode.

7.2.2.4 The Newftles Option (JC) - Use the /C option in the command line if you want to copy only those
files with the current date. Specify /C only once in the command line. It applies to all the file specifications in
the entire command. The following command copies {in ASCII mode) all files named ITEM I.MAC that also have
the current date. It also copies the file ITEM2.MAC, if it has the current date, from DK: to DT2 :. It combines
all these files under the name NN3.MAC.

DT2:NN3.MAC=ITEM1.MAC/C,ITEM2.HAC/A/U

The next command copies all files with the current date (except .SYS and .BAD files) from DK: to DXl :. This
is an example of an efficient way to back up all new files after a session at the computer.

7.2.2.5 The Ignore Errors Option UG) - Use the /G option to copy files, but ignore all input errors. This option
forces a single-block transfer, which you can invoke at any other time with the /S option. Use the /G option if an
input error occurred when you tried to perform a normal copy operation. The procedure can sometimes recover a
file that is otherwise unreadable. If an error still occurs, PIP prints the ?PIP-W-INPUT ERROR message and continues
the copy operation. The following command, for example, copies the file TOP.SAY in image mode from device DTl:
to device DK: and assigns it the name ABC.SAY.

*ABC.SAV=DT1:TOP.SAV/G

7.9

Peripheral Interchange Program (PIP)

The next command copies files FI.MAC and F2.MAC in ASCII mode from device DTI: to device DT2:. This
command creates one file with the name COMB.MAC, and ignores any errors that occur during the operation.

*DT2:COMB,MAC=DT1:F1.MAC~F2.MAC/A/G/U

7.2.2.6 The Copies Option (/K:n) The /K:n option directs PIP to generate n copies of the file you specify.
The only legal output devices are the console terminal, the line printer, and paper-tape punch. Normally, each
copy of the file begins at the top of a page; copies are separated by form feeds.

*LP:=FOO.LST/K!3

This command, for example, prints three copies of the listing file, FOO.LSI, on the line printer.

7.2.2.7 Noreplace Option (/N) - The /N option prevents execution of a copy or rename operation if a file with
the same name as the output file already exists on the output device. This option is illegal for magtape and
cassette. The following example uses the /N option.

*Dxo:cT.SYS=DK!CT,SYS/Y/N
?PIP-W-OutPut file found, no oPeratian performed DK:CT.SYS

*
The file named CT.SYS already exists on DX0:, and the copy operation does not proceed.

7.2.2.8 The Predelete Option (/0) - The /0 option deletes a file on the output device if you copy a file with
the same name to that device. PIP deletes the file on the output device before the copy operation occurs. Normally,
PIP deletes a file of the same name after the copy completes. This option is illegal for magtape and cassette. The
following example uses the /0 option.

*RK1!TEST1.MAC=DT2:TEST.MAC/O

If a file named TESTl.MAC already exists on RKl :, PIP deletes it before copying TEST.MAC from DT2: to
TESTl.MAC on RKl :.

7.2.2.9 The Exclude Option (/P) - The /P option directs PIP to transfer all files except the ones you specify.

This command, for example, directs PIP to transfer all files from DXI: to DT0: except the .MAC files.

7.2.2.10 The Single-block Transfer Option (IS) - The /S option directs PIP to copy files one block at a time.
On some devices, this operation increases the chances of an error-free transfer. You can combine the /S option
with other PIP copy options. For example:

*RK1:TEST.MAC=RKO:TEST.MAC/S

PIP performs this transfer one block at a time.

7 .2.2.11 The Setdate Option (/T) - This option causes PIP to put the current date on all files it transfers,
unless the current date is 0. Normally, PIP preserves the existing ftle creation date on copy and rename operations.
This option is invalid for operations involving rnagtape and cassette because PIP always uses the current date for
tape files. The following command puts the current date on all the files stored on device DK:.

**•*=*•*/Y/T

7-10

Peripheral Interchange Program (PIP)

Note that the command shown above changes only the dates; PIP does not move or change the files in any other
way.

7.2.2.12 The Concatenate Option (/U) - To combine more than one file into a single file, use the /U option.
This option is particularly useful to combine several object modules into a single file for use by the linker or
librarian. PIP does not accept wildcards on the output specification. The following examples use the /U option.

*DK!AA.OBJ=DTl:BB.OBJ,CC.OBJ,DD.OBJ/LJ

The command shown above transfers files BB.OBJ, CC.OBJ and DD.OBJ to device DK: as one file and assigns
this file the name AA.OBJ.

*DT3!MERGE.MAC=DT2!FILE2.MAC,FILE3.MAC/A/LJ

This command merges ASCII files FILE2.MAC and FILE3.MAC on DT2: into one ASCII file named MERGE.MAC
on device DT3:.

7.2.2.13 The System Files Option (/Y) - Use the /Y option if you need to perform an operation on system
files (.SYS). For example:

This command copies to device DK:, in image mode, all files (including .SYS files) from device DT3:. Because of
the /G option, PIP ignores any input errors.

7.2.3 The Delete Operation (/D)
Use the /D option to delete one or more files from the device you specify. Note that PIP does not automatically
query you before it performs the operation; you must use /Q. Remember to use the /Y option to delete .SYS
files. You cannot delete .BAD files unless you name each one specifically, including file name and ftle type. You
can specify only six files in a delete operation unle~ you use wildcards. You must always indicate a file specifica
tion in the command line. A delete command consisting only of a device name (dev:/D) is invalid. The delete
option is also illegal for magtape. The following examples illustrate the delete operation.

*FILEl.SAV/D

The command shown above deletes FILEl .SAV from device DK:.

DX1:•*ID
?PIP-W-No .SYS action
*

The command shown above deletes all files from device DXl: except those with a .SYS or .BAD file type. If
there is a ftle with a .SYS file type, PIP prints a warning message to remind you that this file has not been deleted.

**•MAC/D

This command deletes all ftles with a .MAC file type from device DK:.

7.2.4 The Rename Operation (/R)
Use the /R option to rename a file you specify as input, giving it the name you specify in the output specification.
You must supply an equal number of input' and output files that reside on the same device. PIP prints an error
message if the command specifications are not valid. Use the /Y option with /R if you rename .SYS files. You
cannot use /R with magtape or cassette.

7-11

Peripheral Interchange Program (PIP)

The rename command is particularly useful when a fde on disk or DECtape contains bad blocks. By renaming
the ftle, giving it a .BAD ftle type, you can ensure that the file permanently resides in that area of the device.
Thus, the system makes no other attempts to use the bad area. Once you give a file a .BAD file type, you
cannot move it during a compress operation. You cannot rename .BAD files unless you specifically indicate
both the file name and file type. The following examples illustrate the rename operation.

*DT1:F1.MAC•DT1:FO.MAC/R

The oommand shown above renames PO.MAC to Fl.MAC on device DTl:.

*DX110UT.SYS•DX1:CT.SYS/Y/R

This command renames ftle CT.SYS to OUT.SYS.

7 .2.S The Logging Operation (/W)
When you use the /W option, PIP prints a list of all files copied, renamed, or deleted. The /W option is useful if
you do not want to take the time to use the query mode (the /Q option, described in Section 7.2.6), but you do
want a list of the files operated on by PIP.

PIP prints the log for an operation on the terminal beneath the command line. This example shows logging with
the delete operation.

DXlt•*ID/1.J
?PIP-W-No +SYS action
Files deleted:

nx1:TEST.MAC
[IX1:FIX463,SAV
[IX1:GRAPH.BAK
DX1:DMPX,MAC
DX1:MATCH,BAS
DX1:EXAMP.FOR
DXl:GRAPH,FOR
DX1:GLOBAL.MAC
DXt:F'ROSEC.MAC
DX1:KB.MAC
DXl:EXAHP.MAC
*

7.2.6 The Query Option (/Q)
Use the /Q option with another PIP operation to list all files and to confirm individually which of these files
should be processed. Typing a Y (or any string that begins with Y) followed by a carrige return causes the named
file to be processed; typing anything else excludes the file. The following example deletes files from DXI :.

DXl:•*/D/Q
Files deleted:

DX1:FIX463.SAV?
oxt:GRAPH.BAK? y
nx1:DHPX.MAC ?
DXUMATCH.BAS ?
DXl:EXAMP.FOR?
DX1:GRAPH.FOR? Y
nx1:GLOBAL.MAC? Y
DXl:PROSEC.HAC? Y
DXt:KB,MAC ?
DXUEXAHP ,MAC 1

*
7-12

CHAPTER 8

DEVICE UTILITY PROGRAM (DUP)

The device utility program (DUP) is a device maintenance utility program you can use with the RT-I 1 system.
DUP creates files on file-structured RT-11 devices (disks, DECtape, rnagtape, and cassette). It can also extend
files on certain file-structured devices (disks and DECtape), and it can compress, image copy, initialize, or boot
RT-11 fde-structured devices. DUP does not operate on non-fde-structured devices {line printer, card reader,
terminal, and paper tape).

8.1 CALLING AND USING DUP
To call DUP from the system device, respond to the dot (.) printed by the keyboard monitor by typing:

R DUP([fi)

The Command String Interpreter prints an asterisk (•) at the left margin of the terminal and waits for a command
string. If you enter only a carriage return in response to the asterisk, DUP prints its current version number. You
can type CTRL/C to halt DUP and return control to the monitor when DUP is waiting for input from the console
terminal. You must type two CTRL/Cs to abort DUP at any other time. The /S, /T, and /C operations, however,
lock out the CTRL/C command until the operation completes; these three operations cannot be interrupted with
CTRI.jC. To restart DUP, type R DUP or REENTER in response to the monitor's dot. Chapter 6, Command
String Interpreter, describes the general syntax of the command line that DUP accepts. DUP accepts only one input
file specification and one output file specification in the command line.

8.2 DUP omONS
Certain options are available for use with DUP. These options are divided into two categories: l) Action and 2)
Mode. Action options cause specific operations to occur. You can use these options alone or with valid mode
options. Usually, you can specify only one action option at a time. Mode options modify action options. Table
8-1 illustrates whch mode options you can use with a particular action option.

Table 8-1 DUP Options and Categories

Action Mode

C W,Y
I W,Y
K W,F,H
0 W,Y
s W,X,Y
T W,Y
u w
V w
z W,B,N,R,V,Y

Note that /V can be either an action or a mode option, depending on how you use it.

You can use DUP action options to create files, copy devices, scan for bad blocks, perform a bootstrap operation,
and so on. You can use the DUP mode options to modify the action options, where necessary. The following
sections describe the various DUP options and give examples of typical uses. Table 8-2 summarizes the options you
can use with DUP.

8-1

Device Utility Program (DUP)

Table 8-2 DUP Options

Option Section Explanation

/B 8.2.l 1.4 Use with /Z to write files with the file type .BAD over any bad
blocks DUP finds on the disk to be initialized.

/C:m[:n] 8.2.l Creates a file on the device you specify; m represents the starting
block number (in octal) and n represents the size of the file in
blocks.

/F 8.2.3 Use with the /K option to output the file name containing the bad
block together with the relative block number of the bad block in
the file.

/H 8.2.3 Use with the /K option to read the bad block, write to the bad block,
and then read it again. This operation does not destroy information
already stored on the device.

/I[:rstart 8.2.2 Copies the image of a disk to another disk or magtape or from mag-
:rstop tape to disk. The arguments :rstart, :rstop, and :wstart represent
:wstart] block numbers.

/K[:start 8.2.3 Scans a device for bad blocks and outputs the octal address of the
(:stop]] logical bad blocks to the output device. The arguments :start and

:stop represent block numbers.

/N:n 8.2.11.l Use with /Z to set the number of directory segments you require if
you do not want the default size; n is an integer in the range 1-3 7
(octal).

/0 8.2.4 Boots the device or ftle you specify.

/R[:RET] 8.2.11.3 Use with /Z to scan the RK06 device for bad blocks and to create a
replacement table on the disk for any bad blocks DUP finds. If you
use :RET, DUP retains the replacement table that is already on the
disk and does not pre-scan the disk for bad blocks.

IS 8.2.5 Compresses a disk (or DECtape) onto itself or onto another disk (or
DECtape); the output device, if any, must be initialized.

/T:n 8.2.6 Extends an existing file by the number of blocks you indicate by :n.

/U 8.2.7 Writes the bootstrap portion of the monitor file in blocks O and 2-5
of the target device.

/V[:VOL] 8.2.8, Prints the user ID and owner name. Use it with /Z (as a mode option)
8.2.11.2 to insert a user ID and owner name in block l of the initialized disk,

or in the VOLl header block on magtape (not applicable for cassette).
Using /V: VOL as an action option causes only the ID and owner name
to be changed, and does not initialize the device (not applicable for
cassette).

(Continued on next page)

8-2

Device Utility Program (DUPJ

Table 8-2 (Cont.) DUP Options

Option Section Explanation

/W 8.2.9 Use with any action option (but only one) to initiate an operation
and then pause. This is useful on small, single-disk systems because
it lets you replace the system device with another disk before per-
forming an operation.

/X 8.2.5 Use with /S to inhibit automatic booting of the system device when
it is compressed.

/Y 8.2.10 Use with /C, /I, /0, /S, /T, or /Z to inhibit the dev:/xxxx ARE YOU
SURE? message and the FOREGROUND JOB LOADED, CONTINUE?
message and ensure immediate execution of the operation.

/Z[:n] 8.2.11 Initializes the directory of the device you specify. The size of the
directory defaults to the standard RT-11 size; use :n to allocate
extra directory words for each entry beyond the default.

8.2.1 The Create Option (/C:m(:n])
The /C option creates a file with a specific name, location, and size on the block-replaceable device that you
specify. This command is useful to recover files that have been deleted. The /C option only creates a directory en
try for the file. It does not store any data in the file. You must specify both the file name and file type of the file
to be created. The syntax of the command is:

where

files pcc=/C :m [:n]

filespec

:m

:n

represents the device, file name and file type of the file to be created.

represents the numeric value, in octal, of the starting block of the file to be created.

represents the size of the file in blocks. If you do not supply a value for n, DUP creates a
I-block file.

You can use the /C option to cover bad blocks on a disk by creating a file with a file type .BAD to cover the
bad area.

Use /C also to recover accidentally-deleted files. In this case, use DIR to obtain a listing of the device. Use the
/E and the /Q options in DIR; obtain a separate listing with each one. DIR lists files, tentative files, empty areas,
and the sizes of all areas. You can then assign a file name to the area that contains the data you lost.

You can also use DUP to set aside a file on disk without performing any input or output operations on the file.

When you use the /C option, make sure that the area in which the file is to be created is empty. If there are more
blocks in the empty than the file you are creating needs, DUP attempts to put the extra blocks in empties that are
contiguous to the file you are creating. If there is not enough room in contiguous empties, the error message
?DUP-F-ILLEGAL CONTIGUOUS FILE prints and DUP does not create the file. The /C option checks for du
plicate file names. If the file name you specify already exists on the device, DUP issues an error message and does
not create a second file with the same name.

8-3

Device Utility Program (DUP)

This is an example of a command that uses /C:

*DKl:FILE.MAC=/C:140!3

This command creates a file named FILE.MAC consisting of blocks 140, 141, and 142 on device DKl :.

8.2.2 The Image Copy Option (/I)
The /I option copies block for block from one device to another. (This operation is not applicable for magtape
or cassette.) If DUP encounters a bad block, it prints an error message. However, it retries the operation and
performs the copy one block at a time. If only one error message prints, you can assume that the transfer com
pleted correctly. The /I option is often used to copy one disk to another without changing the file structure or
location of files on the device. In this case, it is an added convenience that you do not have to copy a boot block
to the device. You can also copy disks that are not in RT-11 format, if they have no bad blocks.

Qualifiers to the /I option let you specify the blocks to be read from the input device; you can also specify a
starting block number on the output device for the write operation. The syntax of the command is:

where

output-device :=input-device :/1 [:rstart :rstop:wstart]

:rstart

:rstop

:wstart

represents the starting block number on the input device for the read operation.

represents the ending block number on the input device for the read operation.

represents the starting block number on the output device for the write operation.

The command string must include an input and an output specification; there is no default device. If you need
to specify a block number, you must supply all three block values. The /I operation does not copy to or from
a device that has logical bad blocks. (Physical bad blocks can be logically replaced or covered, as Sections
8.2.11.3 and 8.2.11.4 describe.) If one device is smaller than the other, DUP copies only the number of blocks
of the smaller device.

You can copy blocks between disk and magtape with /I. DUP stores the data on the tape, formatting it in lK
word blocks. It is possible to store only one disk image on a magtape, regardless of the size of the tape.

The following examples use the /I option. The file name A is not significant; it is a dummy file name required
by the Command String Interpreter.

*RKl !A=:::RKO!/I

RKl!/CoP~ are YOU sure?

The command shown above copies all blocks from DK: to RK.1 :.

*RK1:A=RK0:1r:o:soo:501

RKl!/CoP~ are ~ou sure?Y

lbis command copies blocks 0-500 from RK0: to RKI:, starting at block 501.

8.2.3 The Bad Block S"3n Option (/K)
Sometimes devices (disks and DECtapes) are manufactured with bad blocks, or they develop bad blocks as a
result of use and age. You can use the /K option to scan a device and locate bad blocks on it. DUP prints

84

Device Utility Program (DUP}

the absolute block number of those blocks on the device that return hardware errors when DUP tries to read
them. If you specify an output device (only TT: and LP: are valid), DUP prints the bad block report on that
device. Remember that block numbers are octal and the first block on a device is block 0. If DUP finds no bad
blocks, it prints only the header. A complete scan of a disk pack takes from one to several minutes depending
on the size of the device. It does not destroy data that is stored on the device.

DUP reads only one block at a time when it scans a disk for bad blocks. Errors can occur on a multi-block copy
even if DUP does not detect any with /K. Copy the data to a scratch disk with the /I option to discover any
other bad blocks. You should scan a device for bad blocks before using /S to compress the device; if a read error
occurs during a compress operation, the device may become unuseable.

You can scan selected portions of a device by specifying a beginning and ending block number. The syntax of
this command is:

[output-device:= J input-device :/K[:start [:stop]]

where

:start represents the block number of the first block to be scanned.

:stop represents the block number of the last block to be scanned.

If you specify only a starting block number, DUP scans from the block you specify to the end of the device.
You cannot specify an ending block number unless you also specify a starting block number.

If the device to be scanned has files on it, you can use /F with the /K option to print the name of the file
containing the bad block together with the relative block number within the file that is bad.

You can use /H with /K to read the bad block, write to the bad block, and then read it again. If the block is
still bad, DUP reports a HARD error. If the block recovers, DUP reports a SOFT error. This procedure does not
destroy data already stored on the device.

The following command line uses the /K option to scan the entire disk, RKl :.

*RKl?/K/F
BAD BLOCKS FILENAME

6615 EMPTY1.TST
6645 EHPTY2.TST
7255 EMPTY3.TST

8.2.4 The Boot Option (/0)

REL BU(
6547
6577
7207

TYPE
HARD
HARD
HARD

The /0 option can perform two operations: I) a hardware bootstrap of a specific device and 2) a bootstrap of a
particular monitor file that does not affect the bootstrap blocks on the device. The command syntax for a device
bootstrap is as follows:

dev:/0

This operation has the same results as a hardware bootstrap. Legal devices for the boot operation are DTO:,
RKO:-RK7:, RF:, SY:, DK:, DPO:-DP7:, DXO:-DXl :, DMO:-DM7:, and DS0:-0S7:.

Use the following syntax to boot the monitor you specify without changing the bootstrap on the device.

dev:monitor-name/0

8-5

Device Utility Program (DUP)

This makes it easy for you to switch from one monitor to another. Whether bootstrapping a specific monitor or
a specific device, DUP checks to see if the bootstrap blocks are correctly formatted. If the boot operation you
request is invalid for any reason, DUP prints an error message and waits for another command.

When you reboot with the /0 option, you do not have to reenter the date and time of day with the monitor

DATE and TIME commands. However, the clock does lose a few seconds during the reboot.

The following command reboots the RT-11 system under the single-job monitor:

*RKO:RKMNSJ.SYS/0

RT··-1:LS..J V03.01

Notice in this command that the device you specify must be the same device type as the first two characters of
the monitor file indicate. Because of this restriction on the monitor-name bootstrap operation, the following
command is illegal:

*RKO:DXMNFB.SYS/0

However, the next command is a valid one:

*RKO:RKMNFB.SYS/0

8.2.5 The Squeeze Option (IS)
Use the /S option to compress a device (disk or DECtape) onto itself or onto another disk or DECtape. To do
this, DUP moves all the files to the beginning of the device, producing a single, unused area after the group of
files. The squeeze operation does not change the bootstrap blocks of a device. The output device you specify,
if any, must be an initialized device. If you specify an output device, DUP does not query you for confirmation
before it performs the operation. If you do not specify an output device, DUP prints the ARE YOU SURE?
message and waits for your response before proceeding. You must type Y followed by a carriage return to execute
the command. Since it is critical to perform an error-free squeeze operation, be sure to scan a device (with /K)
before you use /S.

The /S option does not move files with .BAD file types. This feature prevents you from reusing bad blocks that
occur on a disk. You can rename files containing bad blocks, giving them a .BAD file type, and DUP then leaves
them in place when you execute a /S. DUP inserts files before and after .BAD files until the space between the
last file it moved and the .BAD file is smaller than the next file to be moved. If an error occurs during a squeeze
operation, DUP continues the operation, performing it one block at a time. If only one error message prints, you
can assume that the operation completed correctly.

The syntax of the command is:

[output-device=] input-device/S

Do not use/Son the system device (SY:) when a foreground job is loaded. A ?DUP-F-CANNOT WRITE SY:
WHILE FJOB LOADED error message results if you attempt this and DUP ignores the /S operation. You must
unload the foreground job before using the /S option.

NOTE
If you perform a compress operation on the system device,
the system automatically reboots when the compress op
eration is completed. This operation takes place in order
to prevent system crashes that can occur when the
monitor file is moved.

8-6

Device Utility Program (DUP)

You can use /X with /S to suppress the automatic reboot and leave DUP running. However, you should use /X
only if you are certain that the monitor file will not move. Even then, you should reboot the system when
the squeeze operation completes if the device handlers have moved. If you specify the /X option but for some
reason the USR cannot be made resident, DUP reboots the system anyway. If you use /X and the system is
not rebooted, the ?DUP-W-REBOOT message prints. This is a warning message; it is for your information only.

The following examples use the /S command:

SY!/Saueeze are ~ou sure?Y

RT-11S,.J V0:3.01

The command shown above compresses the files on the system device and reboots the system when the compress
operation completes.

*IHl ! A::=[IT:?.: /S

This command transfers all the files from device DT2: to device DTl:, leaving DT2: unchanged. The file name
A is not significant; it is a dummy file name required by the Command String Interpreter.

8.2.6 The Extend Option (/T:n)
Use the /T option to extend the size of a. file. The syntax of the command is:

filespec/T:n

where

filespec

n

represents the device, file name, and file type of the ftle to be extended.

represents the number of blocks to add to the file.

You can extend a file in this manner only if it is followed by an unused area at least n blocks long. Any blocks
not required by the extend operation remain in the unused area.

The following example uses the /T option:

*DT1!ZYZ.TST/T!100

This command assigns 100 more blocks to the file named ZYZ.TST on device DTl :.

8.2. 7 The Bootstrap Copy Option (/U)
In order to use a disk as a system device, you must copy a bootstrap onto the disk. To do this, first make sure
that the appropriate monitor file is stored on the disk. For a diskette system, for example, you could use the
foreground/background monitor file called DXMNFB.SYS. If you copy the monitor file onto the diskette from
another device, be careful not to rename it. DUP recognizes only standard RT-I 1 monitor file names in the
bootstrap copy operation. Use the /U option to copy the bootstrap portion of the monitor file into absolute
blocks O and 2-5 of the device. You can then use the /0 option to boot the device.

To copy a bootstrap for the single-job monitor on RKI :, for example, use the following procedure:

8-7

Device Utility Program {DUP)

1. Obtain a formatted disk. (Most disks and DECtapes are formatted by the manufacturer. However, the
RT-11 System Generation Manual does outline the procedure for re-formatting an RK.05 disk.)

2. Initialize the disk with /Z.

3. Copy files onto the disk.

4. Copy the monitor onto the disk.

5. Copy the monitor bootstrap onto the disk with /U.

The following example shows how to initialize a diskette, copy files to it, and write a bootstrap onto the diskette:

*-DX1!/Z/Y

The command shown above (step 2 of the procedure described above) initializes the diskette.

*nx1:A::::nxo:1s

This command, which combines steps 3 and 4, squeezes all the files from DX0: onto DXl :.

*DX1:A=DX1:DXMNFB+SYS/U

The last command (step 5) writes the bootstrap for the diskette foreground/background monitor onto the boot
strap blocks (blocks 0 and 2-5) of DXl :. The file name A is not significant; it is a dummy file name required
by the Command String Interpreter.

8.2.8 The Volume ID Option (/V[: VOL])
You can use the /V option as an action option to print the volume ID of a device or to change the volume ID
without initializing the device. The syntax of the command is:

device:/V[:VOL]

where

device: is the device whose volume ID you want to display or change.

If you specify only /V, the volume ID and owner name of the device you specify print out on the console ter
minal. If you specify /V:VOL, DUP assumes you need to change the volume ID and owner name. DUP prompts
you for a volume ID:

VOL ID1

Respond with a volume ID that is up to 12 characters long for a block-replaceable device, or up to 6 characters
long for magtape. Terminate your response with a carriage return. DUP then prompts for an owner name:

OWNER NAME'r

Respond with an owner name that is up to 12 characters long for a block-replaceable device, or up to 10 charac
ters long for magtape. Terminate your response with a carriage return. DUP ignores characters you type beyond
the legal length. The /V:VOL command changes only the volume ID and owner name; it does not initialize the
device. Section 8.2.11.2 describes how to use /V with the /Z option to initialize a device and write volume iden
tification on it.

8-8

Device Utility Program (DUP)

DUP stores the volume ID and owner name information in block I of a disk. The volume ID is stored in words
236-241 (decimal), the owner name is stored in words 242-247, and the format type, which is always RTllA,
is stored in words 248-253. The remainder of block I (words 0-235 and 254-255) is reserved for the system to
use. If you are initializing a magnetic tape, DUP stores the volume identification information in the VOLI header
block of the rnagtape. The volume ID is stored in bytes 5-10 and the owner name is stored in bytes 41-50. The
first byte of the header block is byte I; DUP stores VOLl information up to byte 80.

The following example uses the /V:VOL option:

VOL ID? VOUCHERS

OWNER NAME? PAYABLES

This command writes a new volume ID and owner name on device RKI :.

8.2.9 The Small, Single-disk System Option (/W)
The /W option is useful for small (8K), single-disk systems. It is a mode option that you can use with any of the
action options. However, you can perform only one operation at a time. The /W option initiates execution of a
command, but then pauses and prints the message CONTINUE?. At this time you can remove the system disk and
mount the disk on which you actually want the operation to take place. When the new disk is loaded, type a Y
followed by a carriage return to execute the operation. When the operation completes (except the /0 operation,
which boots the system), the "CONTINUE?" message again prints. Replace the system device and type a Y fol
lowed by a carriage return. The asterisk (*) prompt prints and DUP waits for you to enter another command.
The following example uses the /W option:

*[IX1 :11,/F/W
CONTINUE'?Y
BAD BLOCKS TYPE FILENAME
CONTINUE?Y

REL BLK

*
This command directs DUP to scan the disk for bad blocks. During the first pause, the system disk is removed
and another disk is mo,wited. A Y is typed and the scan operation executes. During the second pause, the system
disk is replaced and another Y is typed. DUP prompts for another command.

NOTE
It is not necessary to use the /W option to change disks
if the USR can be made resident with the SET USR
NOSWAP command. In this case you can change disks
when the asterisk (*) prompt prints. Type and execute
the command with the new disk in place. Replace the
system disk when the next prompt prints.

There is one exception to the general usage of /W. You cannot use the /U option to write a bootstrap on another
disk if you have a single-disk system with only SK words of memory. Follow this procedure to write a bootstrap
on another disk:

I. Make the USR resident:

.SET I.JSR NOSWAP

8-9

Device Utility Program (DUP)

2. Call the MDUP program (a program similar to DUP, but smaller):

• I~ MDUP

*
3. Change disks when MDUP prompts with an asterisk (*), as shown in step 2.

The new disk must already have the monitor file stored on it. Then enter the /U command to copy the
bootstrap, as this example shows:

*RKO:A=RKO:RKMNSJ.SYS/U

When MDUP prints another asterisk, replace the system disk and type CTRL/C to return to the monitor.

8.2.10 The Noquery Option (/Y)
Use the /Y option to suppress the query messages that some commands print. The following options normally
print the FOREGROUND JOB LOADED, CONTINUE? message if a foreground job is loaded when you issue one
of these DUP commands: /C, /1, /0, /S, /T, and /Z. You must respond to the query message by typing Y followed
by a carriage return for the operation to proceed. Some other options (/C, /I, /0, /S, /V, and /Z) print the ARE
YOU SURE? message and wait for your response. If a foreground job is loaded and you specify one of these op
tions, DUP combines the two query messages into one message and waits for your response. You can suppress all
these messages and the pause associated with them by specifying /Y in the command string.

8.2.11 The Directory Initialil.ation Option (/Z[:n))
You must initialize a device before you can store files on it. Use the /Z option to clear and initialize the directory
of an RT-11 directory-structured device. The /Z operation must always be the first operation you perform on a
new device after you receive it, formatted, from a manufacturer. After you use /Z, there are no files in the direc
tory.

The syntax of the command is as follows:

device:iZ[:n]

In this command, the optional argument, n, is an octal number (greater than or equal to l) indicating the change
in size of each directory entry on a directory-structured device. The size of the directory determines the number
of files that can be stored on a device. The system allows a maximum of 72 files per directory segment, and 31
directory segments per device. Each segment uses two blocks of available disk space. If you do not specify n, each
entry is seven words long (for file name, creation date, and file length information). When extra words are allocated,
the number of entries per directory segment decreases. The formula for determining the number of entries per
directory segment is:

5-7/((# of extra words) +7)

For example, if you use /Z:l, you can make 63 entries per segment. RT-I I does not normally support non-standarc'
directory formats. DIGITAL does not recommend altering the directory format. The number of directory segments
in the directory defaults to the decimal value shown in Table 8-3 for the specified device.

8-10

Device Utility Program (DUP)

Table 8-3 Default Directory Sizes

Size (decimal) of
Device Directory in Segments

RK.05 16
OT 4
RF 4
DS 4
DP 31
DX 4
RK.06 31

8.2.11.1 Changing Directory Segments (/N:n) If you do not want the default size of the device, use /N
with /Z to set the number of directory segments for entries in the directory. The syntax of the command is as
follows:

/N:n

In this command, n represents the number of directory segments; n is an integer in the range 1-31.

The following example initializes the directory on device RKl: and allocates six directory segments.

*RK:l.!/:Z./N!6

RK1:/Init are ~au sure1Y

8.2.11.2 Storing Volume ID (IV) When you initialize a disk or magtape, DUP stores a default device ID
of RTl lA in block 1 of the device. You can use the /V option with /Z to insert a user ID and owner name in
block 1 of the device. For example, the following command initializes device RKI: and prompts you for a
volume ID and owner name. Section 8.2.8 illustrates these prompts and shows how to respond to them.

*Rl,l: /Z/ 1,J

RK1:/Init are ~cu sure?Y

VOL ID? VDLJCl .. 11::RS

OWNER NAME? PAYABLES

8.2.11.3 Replacing Bad Blocks (/R[:RET]) - You can use the /R option with /Z if the device being initialized
is an RK06. If DUP finds any bad blocks, it builds a replacement table of good blocks for them. The replacement
table is stored in words 0-63 of block I. (/R supports up to 32 bad blocks.) The RK06 then appears to have no
bad blocks. Files that span the bad block use a replacement block instead of the bad block. The replacement
blocks are located in the last cylinder of the disk. Speed of input and output operations decreases only when the
replacement blocks for bad blocks are accessed. You can avoid this overhead by using the /B option (see Section
8.2.11.4) and not using bad block replacement. If DUP finds any bad blocks in a non-replaceable part of the disk,
DUP reports that the disk is bad. When you initialize a device and want to retain the bad block replacement table
that was created by a previous /R command, use /R:RET. The /R:RET option makes it easy to reinitialize an
RK06 without rescanning it. After a disk is initialized with the /Z/R option combination, a scan of the disk with
/K should reveal no bad blocks. If DUP finds a bad block during the /Z/R operation that is in blocks O through
5, it reports that the disk is not usable. If DUP finds a bad block that is not already marked on the disk as such,

8-11

Device Utility Program (DUP)

it prints the ?DUP-W-UNMARKED BAD BLOCK message. This disk is not usable and must be reformatted by
the manufacturer. If DUP finds bad blocks in the device directory, it prints a warning message. Bad blocks in
the directory can cause considerable overhead and slow system perfonnance on ENTER, WOKUP, and CLOSE
operations.

8.2.11.4 Covering Bad Blocks (/B) To scan the disk for bad blocks and write files over them, use the /B
option with /Z. For every bad block DUP encounters on the device, it creates a file called FILE.BAD to cover
it. After the disk is initialized and the scan completed, the directory consists only of file FILE.BAD entries that
cover the bad blocks. If DUP finds a bad block in the boot block or the directory, it prints an error message and
the disk is not usable.

/Rand /B are mutually exclusive options. You can use one or the other, but not both.

8-12

CHAPTER 9

THE DIRECTORY PROGRAM (Dffi)

The directory program (DIR) performs a wide range of directory listing operations. It can list directory information
about a specific device, such as the number of ftles stored on the device, their names, and their creation dates. DIR
can list details about certain files, too, including their names, their file types, and their size in blocks. DIR can also
print a device directory summary, and it can organize its listings in several ways, such as alphabetically or chrono
logically.

9.1 CALLING AND USING DIR
To call DIR from the system device, respond to the dot(.) printed by the keyboard monitor by typing:

R DIR@If)

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to enter a

command string. If you enter only a carriage return in response to the asterisk, DIR prints its current version num
ber. You can type CTRL/C to halt DIR and return control to the monitor when DIR is waiting for input from the
console terminal. You must type two CTRL/Cs to abort DIR at any other time. To restart DIR, type R DIR or
REENTER in response to the monitor's dot. Chapter 6, Command String Interpreter, describes the general syntax
of the command line that DIR accepts. Unless otherwise indicated, numeric arguments are interpreted as octal.
Remember to put a decimal point after a decimal number to distinguish it from an octal number. Some of the DIR
options accept a date as an argument in the command line. The syntax for specifying the date is:

dd.:mmm:yy.

where

dd. represents the day (a decimal integer in the range 1-31).

mmm represents the month (the first three characters of the name of the month).

yy. represents the year (a decimal integer in the range 73-99).

You can specify only one input device and one output device, but you can specify up to six file names on the input
device. The default device for output is the terminal. The default file type for an output file is .DIR. The default
device for input is DK:. If you omit the input specification completely, DIR uses DK:•.•. If you do not supply an
option, DIR performs the /L operation. Note that wildcards are valid with DIR for the input specification only.

Directory listings normally print on the terminal in two columns. Read the entries across the columns, moving from
left to right, one row at a time. Directory listings that are sorted, however, are an exception to this. (Sorted direc
tories are produced by /A, /R, and /S.) Read these listings by reading the left column from top to bottom, then
reading the right column from top to bottom.

9.2 DIR OPTIONS
You can perform many different directory operations by specifying options in the DIR command line. Table 9-1
summarizes the operations these options permit you to perform with DIR. The following sections describe the
various DIR options and give examples that use the options. The sections are arranged alphabetically by option.

9-1

The Directory Program {DIR)

Table 9-1 DIR Options

Option Section Explanation

/A 9.2.1 Lists the directory of the device you specify in alphabetical order by file
name and type (this is the same as /S:NAM).

/B 9.2.2 Lists the directory of the device you specify, including file names and
types, creation dates, starting block number in decimal, and the number
of blocks in each file. For magtape, the starting block number is the file
sequence number.

/C:n 9.2.3 Lists the directory in n columns; n is an integer in the range 1-9. The
default value is two columns for normal listings and five columns for
abbreviated listings.

/D[:date] 9.2.4 Includes in the directory listing only those files with the date you specify.
If you do not supply a date, DIR uses the system's current date.

/E 9.2.5 Lists the device directory including unused spaces and their sizes. An
empty space on a cassette directory represents a deleted file.

/F 9.2.6 Prints in five columns a short directory (file names and types onJy) of the
device you specify.

/G 9.2.7 Lists the file you specify and all files that follow it in the directory. This
option does not list any files that precede the file you specify.

/J[:date) 9.2.8 Prints a directory of the files created on or after the date you specify. If
you do not supply a date, DIR uses the system's current date.

/K[:date] 9.2.9 Prints a directory of files created before the date you specify. If you do
not supply a date, DIR uses the system's current date.

/L 9.2.10 Lists the directory of the device you specify, including the number of
files, their dates, and the number of blocks each file occupies. (This is the
default operation.)

/M 9.2.11 lists a directory of unused areas of the device you specify.

IN 9.2.12 Lists a summary of the device directory.

/0 9.2.13 Similar to /L but lists the sizes and block numbers of the files in octal.

/P 9.2.14 Prints a directory of the device you specify, excluding the files you list.

/Q 9.2.15 Lists a directory of the device you specify, listing the file names and types,
sizes, creation dates and starting block numbers of files that have been
deleted and whose file name information has not been destroyed.

/R 9.2.16 Lists the files in the reverse order of the sort specified with / A or /S.

/S[:xxx] 9.2.17 Lists the directory of the device you specify in the order you specify;
xxx indicates the order in which DIR sorts the listing (xxx can be DAT,
NAM, POS, SIZ, or TYP).

9-2

The Di.rectory Program (DIR)

9.2.1 The Alphabetical Option (/A)
The /A option lists the directory of the device you specify in alphabetical order by file name and type. It has the
same effect as the /S:NAM option. The following example lists the directory of device DXO: in alphabetical order
on the terminal.

*DXO:/A
13-AP r··· 77

DIR + SAV
l)T • SYS
DIJP • SAV
DXMNS.J. SYS
EDIT +SAV
LINK .SAV

16 15-Mar-·77
2 0l···Mar·-77

:L 7 04···Mar-·77
91 0l-M,n-77
2:1. 0:J.··M,,ir-77

11 Files, 265 Blacks
215 Free Blocki,;

9.2.2 The Block Number Option (/B)

LF' .SYS
MACRO .SAV
PIP +SAV
SY(:iMAC. MAC
TT .SYS

2 01 .. ··Mar-7"7
46 01·--M,:ir··-77
16 16-·Mar-77
27 18-·Feb-77

2 01···Mar··7'7

The /B option prints a directory of the device you specify and includes the starting block number in decimal of all
the files listed. The following example lists the directory of device DXO:, including the starting block numbers of
files.

*DXO!/B
1 :3-··hi:0 r ·· 77

DXMNS,J. SYS
LP .SYS

in O 1 ·-Mar··· 77
2 01····Mi:ir···77

EDIT ,SAV 21 01-Mar-77
DUP .SAV 17 04-Mar-77
PIP +SAV 16 16-Mar-77
SYSMAC+MAC 27 18-Feb-77

11 Files~ 265 Blocks
21~:i Fr+:'H;.J blocks

9.2.3 The Columns Option (/C:n)

14 TT
107 DT
u 1. LIM!<
:lS7 n11::.:
1 <?o MACRO
"')I" ,..,
.... ,.J ,.; ..

.SYS '") 0:l.···M,;r····7"? 10~5 ·-.SYS ''l () 1. ···Ma r·····77 109

.!=;AV ,•)J::'
,t,',,\J 01 ··Mar···T? :1.32

+SAV 16 1.'.'5····Mar···77 :l.74
.SAV 46 01 ··MaT'··77 206

The /C[:n] option lists the directory in the number of columns you specify. The argument, n, represents an integer
in the range 1-9. If you do not use the /C:n option, DIR lists the directory in two columns for normal listings and
five columns for abbreviated listings. The following command, for example, lists on the terminal the directory of
device DXl : in one column.

*DXl!/C!:L
13·-APr···77

FORTRf-i + S1W
BASIC .SAV
SYSLI:B.OBJ

191 2B···Fe,., ·77
51 2::)·"Feb·-7?

200 31·--Mar-77
2 Files, 442 Blocks
38 Frr'E~ blocki,=.

9.2.4 The Date Option (ID[:date])
The /DI :date] option includes in the directory listing only those files with the date you specify. The default date is
the system's current date. For example, the following command lists on the terminal all the files that were created
on 1 March 1977.

9-3

The Directory Program (DIR)

*DXO:/D:01.!MAR:77.
13···(.ip r··· 7 7

DXMNSJ.SYS 91 01-Mar-77 TT .SYS ')
~:.. 01-·Mar'"-77

LP +SYS 2 01-Mar-77 DT .t~Yf3 2 0 :I Ma T'···· 77
EDIT .SAV 21 O1-Mar-77 !...INK • r:;,t.1v
MACRO .SAV 46 Ol-Mar-77

:~~ ~?; () 1 .. ·Mi:J r···· Tl

7 Files, 149 Blocks
215 Free blocki,;

9.2.S The Entire Option (/E)
The /E option lists the entire directory including the unused areas and their sizes in blocks (decimal). The following
example lists on the terminal the entire directory of device DXI : , including unused areas.

*IIX:l!/E
03-·Ma!:1····7"7

DH~ .SAV :I. l.1 08°··Ar:, T'-77
ABC .MAC 4 19····Ai,,r···77
PIP .SAV 16 :L 4·· .. AP r·· T7
MERGE +FOR 6 24···AP p····77

7 Files, 65 Blocks
415 Free blocks

9.2.6 The Fast Option (/F)

DUP .SAV 17 13··Ar:, r···· 77
AAF .MAC

,., 19··-AP ,, 77 .:.
COMB .SAV 4 :I. 1,-Ar:, -r··-77
·< UNUSED >· 4:L5

The /F option lists only file names and file types, omitting file lengths and associated dates. For example, the fol
lowing command lists on the terminal only file names and types from device DTO:.

*DTO:/F
13-.. Apr-77

DMPX .MAC
GLOBAL.MAC

MATCH • l:IAS
PROSEC.MAC

GRAPH +BAK DTMNSJ.SYS
12 Files, 167 Blocks
397 F-ree block!.:.

9.2.7 The Begin Option (/G)

EXAMP .FOR
l·<Ii • MAC

GRAPH .FOR
EXAMP .MAC

SPOOL .MAC
FIX463.SAV

The /G option lists the directory of the device you specify, beginning with the file you specify and including all the
files that follow it in the directory. Usually, the disk you a.re using as a system device contains a number of files that
the operating system needs. These files include .SYS monitor files, .SAV utility program fdes, and various .OBJ,
.MAC, and .BAT files. They are generally grouped together and usually list at the beginning of a normaJ device
directory. Files that you create and use, such as sowce files and text files, are also grouped together and follow the
operating system files in the directory. If you specify the name of the last system file with the /G in the command
line, DIR prints a directory of only those files that you created and stored on the device. The following command,
for example, lists the last system file (CT .SYS) and all the user files that follow it.

*rixo:cT.SYS/G
15-APr·-77

CT .SYS c:· ,.,, 08·-Ai:-,r-77
PROG .BAS 3 1 ~j-·-AP r .. ·77
MATCH +BAS 3 15-APr·-77
GRAPH .FOR 2 15-AP r·-77
PROSEC.MAC 2 15.,·Ar->r-77
EXAMP .MAC 4 15-APr-77
GRAPH +BAK 18 28·-.Jan-77

13 Files, 97 Blocks
199 Free bloc:ks

TEXT .TST 18 28·-Jan·-77
flMPX .MAC 3 15-Aie-r-77
EXAMP .FOR 2 15·-Ar:-r-77
GLOBAL.MAC 2 :l 5·-Ar-> r-· 77
KB .MAC 33 15--AF- r-· 77
FIX463.SAV 2 29-Ji.Jl-76

94

The Directory Program (DIR}

9.2.8 The Since Option (J[:date])
The /J[:date] option lists a directory of all files stored on the device you specify that were created on or after the
date you supply. The default date is the system's current date. The following command lists on the tenninal all
files on device OTO: that were created on or after 28 January 77.

*DTO!/J!28.!JAN!77.
13-A~"-r·-77

GRAPH .BAK 18 28-Jan-77
2 Files, 109 Blocks
397 Frf.H:~ blocks

9.2.9 The Before Option (/K[:date])

DTMNSJ.SYS 91 01-Mar-7'7

The /K[:date] option prints a directory of files created before the date you specify. The default date is the system's
current date. The following command lists on the terminal all files stored on device DXI: that were created before
l 5 March 1977.

n, X l ! / I, : l ~.'i • : M Mi: ! T7 •
13-APr-77

FORTRA.SAV 191 28-Feb-77
2 Files, 242 Blocks
38 Free blocks

9.2.10 The Listing Option (/L)

BASIC .SAV 51 25·-Feb-77

The /L option lists the directory of the device you specify. The listing contains the current date, all files and their
associated creation dates, the number of blocks used by each file, total free blocks on the device (if disk or DECtape),
the number of files listed, and the total number of blocks used by the files. File lengths, number of blocks and num
ber of files are indicated as decimal values. For example, the following command lists on the line printer the directory
for device DTl : .

*LF'!=DX1!/L

The line printer output looks like this:

03•MAY•77
DIR ,SAV 16 ~8•APR•77
ABC ,MAC 4 19•APR•77
PIP ,SAV 16 t4•~PM•77

b FIL~S, 61 BLOCKS
419 FREE BLOCKS

9.2.11 The Unused Areas Option (/M)

DUP ,SAV
AAF ,MAC
"4ERGF • P'OR

17 13•APR•77
2 t9•APFl•77
6 24•APP•77

The /M option prints only a directory of unused areas and their size on the device you specify. For example, the
following command lists on the terminal all the unused areas on device DK:.

*IM
03-Ma~--- 77

< UNU!3E:D > 21
<UNUSED> 16

0 Files, 0 Blocks
926 Free blcic:ks

<UNUSED>
<UNUSED>

9-5

295
594

The Directory Program (DIR)

9.2.12 The Summary Option (/N)
The /N option prints a summary of the device directory. The following command lists on the terminal the summary
of the directory for device DK:.

*- IN
13-APr-77

72 Files

72 Files

72 Files

12 Files

in

in

in

in

16 Available

228 Files, 4141
621 Free blocks

seEtmerit 1

sesmftnt. 2

sesmE-~nt 3

se~.'!ITl(·?nt 4

se:\'!ments,

Blocks

9.2.13 The Octal Option (/0)

4 :in U!iif?

The /0 option is similar to the /L option, but lists the sizes and starting block numbers (if you use /B) of the files
in octal. If the device you specify is a magnetic tape or cassette, DIR prints the sequence number in octal. For
example, the following command lists on the terminal the directory of device DXO:, with sizes in octal.

*DXO:/O
13·-APr-77 Octal

DXMNSJ.SYS 133 01-Mar-77 TT .SYS 2 01-Mar·-77
LP .SYS 2 01-Mar-77 OT .SYS ") 01 ·-·Ma r··-77 .:..

EDIT .SAV 25 01-Mar-77 LINK .SAV 31 01-Mar-77
DUP +SAV 21 04-Mar-77 DIR .SAV 20 :LS-·Mar·-7'7
PIP .SAV 20 16-Mar-77 MACRO .SAV 56 01-·Mar--77
SYSMAC.MAC 33 18-Feb-77

11 Files, 411 Blocks
327 Free blocks

9.2.14 The Exclude Option (/P)
The /P option lists a directory of all files on a specific device, excluding those that you list. You can specify up to
six file specifications.

DX1!.SAV/P
03-Ma~-77

ABC .MAt 4 19-APr-77
MERGE .FOR 6 24-APr-77

3 Files, 12 Blocks
419 Free blocks

AAF .MAC

'This command lists on the terminal all files on device DXl : except .SA V files.

9.2.lS The Deleted Option (/Q)

2 19-··A?r····77

The /Q option lists a directory of the device you specify, listing the file names, types, sizes, creation dates, and
starting block numbers in decimal of files that have been deleted but whose file name information has not been
destroyed. The file names that print represent either tentative files or files that have been deleted. This can be

9-6

The Directory Program (DIR)

useful in recovering files that have been accidentally deleted. Once you identify the file name and location, you can
use DUP to rename the area. See Section 8.2.1 for this procedure.

*DISK. DIR::.:/Q

This command creates a file called DISK.DIR on device DK: that contains directory information about unused areas
from device DK:.

Use the monitor TYPE command to read the file:

.TYPE DISK.DIR/LOG
Files cor:,iQd!

DK:DISK+DIR to TT:
03-Ma~-·77

EDIT DEM 21 03-May-77
DEMOF1,0BJ 16 26-APr-77
SCOPE .PIC 297 03-May-77

0 Files, 0 Blocks
0 Free blm:ks

9.2.16 The Reverse Option (/R)

;3134:3 DUM
4:L79 DISK
4503

295 03-Ma~-77 3882
.DIR 297 03-Ma~-77 4206

The /R option lists a directory in the reverse order of the sort you specify with the / A or /S option.

»:DXO: /S: DAT /r{
13·-AF-r·-77

PIP ,SAV 16 16-Mar-77 LINK ,SAU 25 01-Mar-···77
DIR ,SAU 16 15-Mar-77 LP .SYS 2 01-Mar-77
DUP ,SAV :L7 04-Mar-77 MACHO .SAU 46 01·-Mal'-77
DT ,SYS 2 01-Mar-77 TT ,SYS 2 0 :l ···Map·--77
DXMNSJ,SYS 91 01-Mar-77 SYSMAC.MAC 27 18-Feb-·77
EDIT .SAU 21 01-Mar-77

11 Files, 265 Blocks
215 Free blocks

This command lists on the terminal the directory of device DXO: in reverse chronological order.

9.2.17 The Sort Option (/S[:xxx])
The /S[:xxx] option sorts the directory of the specified device according to a 3-character code you specify with
:xxx. Table 9-2 summarizes the codes and their functions.

Table 9-2 Sort Codes

Code Explanation

DAT Sorts the directory chronologically by creation date. Files that have the same date are sorted
alphabetically by file name and file type.

NAM Sorts the directory alphabetically by file name. Files that have the same file name are sorted
alphabetically by me type (this has the same effect as the / A option).

POS lists the files in order by their position on the device. This is the same as using /S with no code.

SIZ Sorts the directory based on file size in blocks. Files that are the same size are sorted alphabeti-
cally by file name and file type.

TYP Sorts the directory alphabetically by file type. Files that have the same file type are sorted
alphabetically by file name.

9.7

The Directory Program (DIR)

The following examples illustrate the /S option.

*[IXO!/S!DAT
1 :·5-AP r--77

BYSMAC.MAC 27 19 F eb·-77
DT .sys 2 0 1 ·-·Ma r·-77
DXMNSJ.SYS 9:1. 0 :I. --M,3 r-- 77
EDIT +SAV 21 01·-MeH' 77
LINK +SAV "¼)I!:'

,<..,J Ol M.11r· .. ·T7
LP .SYS 2 01 '"·Ma r·-77

1.1 Filf'.::SS, :.;~6::'i Blocks
215 Fre.:1e block i:;

*DXO!/S!NAM
13-·Apr··-77
DIR .SAV 16 15-Mar-77
DT .SYS 2 01-Mar-77
DUP .SAV 17 04-Mar-77
DXHNSJ.SYS 91 01-Mar-77
EDIT +SAV 21 01-Mar-77
LINK .SAV 25 01-Mar-77

11 Files, 265 Blocks
215 Frf.~~::, blocks

*nxo:1s:Pos
13 .. -Apr-·77

DXMNS • .J. SYS
TT .SYS
LP .SYS
DT .SYS
EDIT .SAV
LINK .SAV

91
r)
.:..

~?
2

21
")c:'
.... ..J

01-··M,H·-77
01. ·-Mar·-Tl
01-·Mar----77
01·-Mar---77
01 ·-·M;,n--77
0 :I. ··Ma r·-·77

11 Fi :t..:.11,;, 265 Blc<::ks
215 Frf?e blor.:k~;

*DXO!/S:TYF'
13--·Ar,,r 77

SYSMAC.MAC 27 18-Feb-77
DIR +SAU 16 15-Mar-77
DUP +SAV 17 04-Mar-77
EDIT .SAV 21 Ol-Mar-77
LINK .SAV 25 01-Mar-77
MACRO .SAV 46 01-Mar-77

11 Filas, 265 Blocks
21~~; FNH? bl1:ic:k!:,

*DXO:/!:;:SI:Z
:t;3 .. ·Ar:, r·-77

DT .SYS
LP .SYS
TT .sys
BIR • SAV
PIP +SAV
DUF' .SAV

r)
~:.

2 ,.,
,1.:: ••

16
16
:L 7

01·-M,n-·77
O:L-Mar·-77
01 ···Mar 7'7
1.~5 .. ·Mar·-77
1.6 .. --Mm r 77
04 .. ·M;:1 r 77

11 Fil€~s, 265 B1ocki5
215 F rE-~t:! bl or.:ki,;

MACRO .SAV
TT .BYS
DUF' .SAV
DIR .SAV
PIP .SAV

LP • SYS
M1~CRCl • GA\J
P:CP .BAV
SY!:iMAC.MAC
TT • SYS

IHIP .SAV
DIR .SAV
PIP • SAIJ
MACRCl .SAV
SYSMAC.MAC:

PIP .SAV
DT • SYS
DXMNSJ.BYG
LP .SYS
TT +SYS

EDIT .SAV
LINK • ~:lAV
SYSMAC.MAC
MACRO .SAV
DXMNS.J.SYS

9.g

41., OJ Mar .. -77
2 0 l--Mi.H' 77

17 04--Ma r• 77
16 15-Mar 77
16 16··-Mm• 77

2 01 ·-Mar··· 77
46 01-·Mar·--77
16 16· .. ·Mar· .. ·77
27 11:l--.. F~=b--.. 77

2 0:1.···Mar·-·77

17 04·-Miiir·--·77
16 15·-Ma r··-77
16 16-Ma:r·--7?
46 0 :I. ·-·Ma T'"" 7 7
27 18-·Feb·-·77

16 16--Mar-'7'7
2 01---Mar·-·77

9 :L O 1. ·--Mar-... 77
2 0:L·--Mar--77
2 01 .. --M,n·-·77

~;1 01-Ma,•···77
25 01·-Mar 77
27 18-·Feb .. ·77
46 01 .. ·Mar·-77
9:1. 01 .. ·Mar-77

CHAPTER 10

MACR0-11 PROGRAM ASSEMBLY

This chapter describes how to assemble MACRO-11 programs under the RT-11 operating system, assuming that you
have written those programs according to the rules stated in the PDP-11 MA CR0-11 Language Reference Manual,
used associated debugging tools and the linker (see Chapter 11), and understand the RT -11 operating system.

The MACRO-11 assembler operates in two distinct phases, or passes. Chapter 1 of the PDP-11 MACR0-11 Language
Reference Manual contains a detailed description of the two-pass assembler action.

The assembly output includes any or all of the following items:

1. A binary object file - the machine-readable logical equivalent of the MACRO-11 assembly language source
code

2. A listing of the source input file
3. A cross-reference file listing
4. A table of contents listing
S. A symbol table listing

To use the MACRO-1 l assembler correctly under RT-11 control, you should understand how to:

1. Initiate and terminate the MAC RO-11 assembler (including how to format command strings to specify files
MACRO-I 1 uses during assembly)

2. Assign temporary work files to non-default devices, if necessary
3. Use file specification options to override file control directives in the source program
4. Use the small version of MACRO-11 for PDP-11 systems with 8K memory, if necessary
5. Interpret error messages

The following sections describe these topics.

IO.I INITIATING THE MACRO-11 ASSEMBLER
To call the MACRO-11 assembler from the system device, respond to the system prompt (a dot printed by the key
board monitor) by typing:

When the assembler responds with an asterisk(*), it is ready to accept command string input. (You can also call the
assembler using the keyboard monitor MACRO command; see Chapter 4 for a description of this command.)

The assembler now expects a command string consisting of the following items, in sequence

1. Output file specifications
2. An equal sign
3. Input file specifications

Format this command string as follows (punctuation is required where shown):

dev:obj,dev:list,dev:cref/s:arg=dev:sourcei, ... ,dev:sourcen/s:arg @:[I)

10-1

where

dev

obj

list

cref

/s:arg

sourcei

MACRO-I I Program Assembly

is any legal RT-11 device for output; any file-structured device for input

is the file specification of the binary object file that the assembly process produces; the dev for this
file should not be TT or LP·

is the file specification of the assembly and symbol listing that the assembly process produces

is the file specification of the CREF temporary cross-reference file that the assembly process pro
duces. (Omission of device:cref does not preclude a cross-reference listing, however.)

is a set of file specification options and arguments. Section 10.2 describes these options and associ
ated arguments. Before that section, they are omitted from examples.

Each sourcei is a file specification for an ASCII MACRO-11 source file or MACRO library file.
These files contain the MACRO language programs that you need to assemble. You can specify as
many as six source files.

The following command string calls for an assembly that uses one source file plus the system MACRO library to pro
duce an object file BINF .OBJ and a listing. The listing goes directly to the line printer.

*DK:BINF.OBJ,LP!=DK!SRC.MAC

All output file specifications are optional. The system does not produce an output file unless the command string
contains a specification for that file.

The system determines the file type of an output file specification by its position in the command string, as deter
mined by the number of commas in the string. For example, to produce only a listing, and no object file, you must
include an empty object specification.

To omit the object file, you must begin the command string with a comma. The following command produces a
listing, including cross-reference tables, but not binary object files.

* Y LF" ! /(:>::(source file specification)

Notice that you need not include a comma after the final output file specification in the command string.

Table 10-1 lists the default values for each file specification.

10.2 TERMINATING THE MACR0-11 ASSEMBLER
If you have typed R MACRO and received the asterisk prompt but have not yet entered the command string, you
can terminate MACRO-11 control by typing CTRL/C once. After you have completed the command string (thus
beginning an assembly) you can halt the assembly process at any time by typing CTRL/C twice. This returns control
to the system monitor, and a system monitor dot prompt appears on the terminal.

To restart the assembly process, type R MACRO in response to the system monitor prompt. You can also restart
using the REENTER command in most cases; however, the RT-11 system does not accept the REENTER command
if the assembler is producing a cross-reference listing when you halt the assembly.

10-2

MACRO-I I Program Assembly

Table 10-1 Default File Specification Values

Default Default File Default File
File Device Name Type

Object DK: Must specify .OBJ

Listing Same as for object file Must specify .LST

Cref DK: Must specify .TMP

First source DK: Must specify .MAC

Additional source Same as for preceding source file Must specify .MAC

System MACRO System device SY: SYSMAC .SML
Library

User MACRO DK: if first file, otherwise same as Must specify .MAC
Library for preceding source file

10.3 TEMPORARY WORK FILE
Some assemblies need more symbol table space than anilable memory can contain. When this occurs the system
automatically creates a temporary work file called WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK. To cause the system to assign a different device, enter the following command:

+AS£>IGN dev: WF

The dev parameter is the logical name of a file-structured device. The system assigns WRK.TMP to this device.

10.4 FILE SPECIFICATION OPTIONS
At assembly time you may need to override certain MACRO directives appearing in the source programs. You may
also need to direct MACRO-11 on the handling of certain files during assembly. You can satisfy these needs by in
cluding special options in the MACRO-11 command string in addition to the file specifications. Table 10-2 lists the
options and describes generally the effect of each.

The general format of the MACRO-I I command string is repeated below for your convenience:

dev:obj,dev:list,dev:cref/s:arg:;;;;dev:sourcel, ... ,dev:sourcen/s:arg

Table 10-2 File Specification Options

Option Usage

/L:arg Listing control, overrides source program directive .LIST

/N:arg Listing control, overrides source program directive .NLIST

/E:arg Object file function enabling, overrides source program directive .ENABL

/D:arg Object file function disabling, overrides source program directive .DSABL

/M Indicates input file is MACRO library file

/C:arg Control contents of cross-reference listing

/P:arg Specifies whether input source file is to be assembled during pass 1 or pass 2

10-3

......
0
.t,..

SYM

.~AlN• MACt:1O Y03,"0 6•JU~•71 00a0ls51 PAG~ 1

I slo I ~ -i ITI I ri,fif00 I 2 ' LY• ~12
• M(; AL!,

I BEX I ~ ,is.C!<O ,j St< ,,,..._
.t:r-1"1" r

P0000i?I'\ AU 6 itlHhUl(J !1IIH90 ci,P1110d0 .C:LO~AL
1 iiHh1100 .CSE.CT
8 vH00il ilt 2'11t2 "000s;.i • STAPT1 1'10\"

AU 9 P.iHh'loil4 r,30P00 e0000a 1S .TTYII\'
10 i,Hhtl61 ,11 t ta0:n Ml)\18

tt F.llt01()l2 1:liiJ0l7 00"('1 l 2 C._,PB
AIJ 1 a ij"0016 11/tH 377 ll lJ F

l) "-'"lit'U 105022 CLH,
14 :tilf0l 2 lt:ZH'3 01:'10050' H'~
IS ji'll.,26

~CACL u lithl026 -~4761 1'00000 JSR
16 i"+l!IU2 103762 bCE>
17 .JIJ0334 CALL

u v,00 J 4 1t"4767 01iht1:10fll JSi<
18 i0,h'140 ,10~67 f!flf,!~02 1111\1

ti '1~0044
i04J50------@

.EXI1
liUhldH t:,:,n

20 lht00U. ANSWEP I • f-L K IV

21 (;.Ji05i:J bUFF£P: 0
P.Ll<B

2l IJ " "" 0 .ii • • F;,.D

,MAJN. MACRO ve1.0~ 6•JON•77 ~0,0,157 PAGF J•I
SYMBOL, TABLE

• ·r T '{ I "I , , EX 11
CALL NJ.fl!:.
PC, NIP•!::

SUbPI, SU!:-11<2
PPor;
1BUff't1',R2

RV,, (R?) +
f<,', 11.,F"

u
(R,ll+
H1•Uf"f"F'H, Pl

SU8P1
PC,SUFll<I
.STAPT
Slll'l R 2
f'C,SUFIH?
i,:,,)N5wl'"1<

ANSwEJl 1110U4611 00:Z LF • 00~012
8Uf'P'£R H00'50FI 00:Z ST~~T ~0~0~~R

SUB.l<l • ••••••
002 SUfR2 c ••••••

• •as, 0a0ea0 ~00
0a0"eti 01'111

PROG 0~0160 002
ERRORS OF.TtCTE01 5

;I~O lATtHt,AL SUijk()WIINfS
;lJ!:1"[f',t A CSrCT
•k2: AOPS{kUff~Hl
;kl:AU A CHA~ r~ro ~~
;AND sro;.E lt< cuftt:1-<
:"A5 It ;. Ll1'f fn.ot
;~vr~. ~tfP ~t:AUl~G
; i.1.,sr. f I.Ar; 1c1,il Of L lto .,. J.111 Z.E.i<O
;~J: AUHSt8Uft~HJ ~UP S~SRl
;l~VU~t: CALL ~AC~U

iGl:T A ~t~ l~F lt CAMM~ St:J
;fLS~ CAIL U[N~H bUok,

;A~~ ~TOH!: I~ AUbAlk
; k U U l< t.. 1 ,l Fi I • 11

;O~~[h~ 1145..,~P S10RA~~
;!f',PUf Ll~~ kUf~l:k

0 GLOBA• •••••• .11111'1: ••••••

VIRTUAL ME~ORY USEDJ 407 WONDS (, PAGES)
DYNl~IC ME~OPY lVAILA8L£ FOR 6l PAvt.S
,L0 1•DT1CR'1GIL11'1EBICtSrF1P1f'1~,c • I COPY OF COMMAND STRING THAT REQUESTED LISTING l

Figure 10-1 Sample Assembly Listing

MACRO-] 1 Program Assembly

The /Mand /P options affect only the particular source file specification to which they are directly appended in the

command string.

Other options are unaffected by their placement in the command string. The /L option, for example, affects the
listing file, regardless of where you place it in the command string.

The following subsections describe in detail how to use the several file specification options.

10.4.1 Listing Control Options
Two options, /L:arg and /N :arg, pertain to listing control. By specifying these options with a set of selected argu
ments (see Table 10-3) you can control the content and format of assembly listings. You can override at assembly
time the arguments of .LIST and .NLIST directives in the source program.

Figure 10-1 shows an assembly listing of a small program. This listing shows the more important listing features. It
labels each feature with the mnemonic ASCII argument that determines its appearance on the listing; the argument
SEQ, for instance, controls the appearance of the source line sequence numbers.

Specifying the /N option with no argument causes the system to list only the symbol table, the table of contents,
and error messages.

Specifying the /L option with no arguments causes the system to ignore .LIST and .NLIST directives that have no
arguments.

The following example lists binary code throughout the assembly using the 132-column line printer format, and
suppresses the symbol table listing.

*I,LP:/L!MEB/N:SYM~FILE

Table 10-3 Valid Arguments for/Land /N Options

Argument Default Controls Listing of

SEQ list Source line sequence number

LOC list Address location counter

BIN list Generated binary code

BEX list Binary extensions

SRC list Source code

COM list Comment

MD list Macro definitions, repeat range expansion

MC list Macro calls, repeat range expansion

ME no list Macro expansions

MEB no list Macro expansion binary code

CND list Unsatisfied conditionals, .IF and .ENOC statements

LD no list List control directives with no arguments

TOC list Table of Contents

TTM no list 132-column line printer format when not specified, terminal mode when specified

SYM list Symbol table

10-5

MACRO-I I Program Assembly

10.4.2 Function Control Options
Two options, /E:arg and /D:arg allow you to enable or disable functions at assembly time, and thus influence the
form and content of the binary object file. These functions can override ENABL and DSABL directives in the source
program.

Table I 0-4 summarizes the acceptable /E and /D function arguments, their normal default status, and the functions
they control. See Section 5 .5 .2 for further details of the functions.

Table 10-4 Valid Arguments for /E and /D Options

Argument Default Mode Function

ABS Disable Allows absolute binary output

AMA Disable Assembles all absolute addresses as relative addresses

CDR Disable Treats all source information beyond column 72 as commentary

CRF Enable Allows cross-reference listing. Disabling this function inhibits CREF
output if option /C is active

FPT Disable Truncates floating point values (instead of rounding)

GBL Disable Treats undefined symbols as globals

LC Disable Allows lower case ASCII source input

LSB Disable Allows local symbol block

PNC Enable Allows binary output

REG Enable Allows mnemonic definitions of registers

For example, if you type the following commands the system assembles a file while treating columns 73 through
80 of each source card as commentary .

• f< PIP
*CARDS.MAC=CR!/A
*'~C
• F~ Mf.1CFW
*YLP!=CARDS.MAC/E!CDR

Because MACRO-I I is a two-pass assembler, you cannot read the cards directly from the card reader or other non
file structured device. You must use PIP (or the keyboard monitor COPY command) to transfer input to a file.
structured device before beginning the assembly.

Use either the function control or listing control option and arguments at assembly time to override corresponding
listing or function control directives in the source program. For example, assume that the source program contains
the following sequence:

.NI...IST MEB

· (MACRO references)

+I ... If:>T MEB

10-6

MACRO-I] Program Assembly

In this example, you disable the listing of macro expansion binary code for some portion of the code and subse
quently resume MEB listing. However, if you indicate /L:MEB in the assembly command string, the system ignores
both the .NLIST MEB and the .LIST MEB directives. This enables MEB listing throughout the program.

10.4.3 Macro Library File Designation Option
The /M option is meaningful only if appended to a source file specification. It has no arguments, and it designates
its associated source file as a macro library.

If the command string does not include the standard system macro library SYSMAC.SML, the system automatically
includes it as the last source file in the command string.

When the assembler encounters an .MCALL directive in the source code, it searches macro libraries according to
their order of appearance in the command string. When it locates a macro record whose name matches that given in
the .MCALL, it assembles the macro as indicated by that definition. Thus if two or more macro libraries contain
definitions of the same macro name, the macro library that appears leftmost in the command string takes precedence.

Consider the following command string:

* (output file specification) ====AL ID. MAC/M, BL. I B. MAC/M 1 XI Z

Assume that each of the two macro libraries, ALIB and BLIB, contain a macro called .BIG, but with different defini
tions. Then, if source file XIZ contains a macro call .MCALL .BIG, the system includes the definition of .BIG in the
program as it appears in the macro library ALIB.

Moreover, if macro library ALIB contains a definition of a macro called .READ, that definition of .READ overrides
the standard .READ macro definition in SYSMAC.SML.

10.4.4 Cross-Reference (CREF) Table Generation Option
A cross-reference (CREF) table lists all or a subset of the symbols in a source program, identifying the statements that
define and use symbols.

10.4.4.1 Obtaining a Cross-Reference Table To obtain a CREF table you must include the /C:arg option in the
command string. Usually you include the /C:arg option with the assembly listing file specification. You can in fact
place it anywhere in the command string.

If the command string does not include a cref file specification, the system automatically generates a temporary
file on device DK:. If you need to have a device other than DK: contain the temporary cref file, you must include the
dev: cref field in the command string.

If the listing device is magtape or cassette, load the handler for that device before issuing the command string, using
the monitor LOAD command (described in Chapter 4).

A complete CREF listing contains the following six sections:

1. A cross reference of program symbols; that is, labels used in the program and symbols followed by a
operator.

2. A cross reference of register equate symbols; that is, symbols defined in the program by the construct:

symbol-n

with 0>n>7.

Normally, these symbols include RO, RI, R2, R3, R4, RS, SP, and PC.

10-7

MACR0-11 Program Assembly

3. A cross reference of MACRO symbols; that is, those symbols defined by .MACRO and .MCALL directives.
4. A cross reference of permanent symbols, that is, all operation mnemonics and assembler directives.
5. A cross reference of program sections. These symbols include the names you specify as operands of .CSECT

or .PSECT directives.
6. A cross reference of errors. The system groups and lists all flagged errors from the assembly by error type.

You can include any or all of these six sections on the cross-reference listing by specifying the appropriate arguments
with the /C option. These arguments are listed and described in Table 10-5.

Argument

s

R

M

p

C

E

Table 10-5 /C Option Arguments

CREF Section

User defined symbols

Register symbols

MACRO symbolic names

Permanent symbols including instructions and directives

Control and program sections

Error code grouping

NOTE
Specifying /C with no arguments is equivalent to specifying
/C:S:M:E. That special case excepted, you must explicitly
request each CREF section by including its arguments. No
cross-reference file occurs if the /C option is not specified,
even if the command string includes a CREF file specification.

10.4.4.2 Handling Cross-Reference Table Files - When you request a cross-reference listing by means of the /C
option, you cause the system to generate a temporary file, DK:CREF.TMP.

If device DK: is write-locked or if it contains insufficient free space for the temporary file, you can allocate another
device for the file. To allocate another device, specify a third output file in the command string; that is, include a
dev:cref specification. (You must still include the /C option to control the form and content of the listing. The
dev:cref specification is ignored if the /C option is not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and deletes it automatically after producing the
CREF listing.

The following command string causes the system to use RK.2:TEMP.TMP as the temporary CREF file.

*vLP:,RK2:·rEMP,TMP=SOURCE/C

Another way to assign an alternative device for the CREF.TMP file is to enter the following command prior to
entering R MACRO:

• MlHIGN dev: CT

This method is preferred if you intend to do several assemblies, as it relieves you from having to include the dev:cref
specification in each command string. If you enter the ASSIGN dev: CF command, and later include a cref specifica
tion in a command string, the specification in the command string prevails for that assembly only.

10-8

MACRO-I 1 Program Assembly

The system lists requested cross-reference tables following the MACRO assembly listing. Each table begins on a new
page. (Figure 10-2 combines the tables to save space, however.)

The system prints symbols and also symbol values, control sections, and error codes, if applicable, beginning at the
left margin of the page. References to each symbol are listed on the same line, left-to-right across the page. The sys
tem lists references in the form p-1; where pis the page in which the symbol, control section, or error code appears,
and 1 is the line number on the page.

A number sign (#)next to a reference indicates a symbol definition. An asterisk(*) next to a reference indicates a
destructive reference that is, an operation that alters the contents of the addressed location.

10.4.5 Assembly Pass Option
The /P:arg option is meaningful only if appended to a source input file specification. You must specify either of two
arguments with it: 1 or 2.

The specification /P: 1 calls for assembly of the file during pass 1 only. Some files consist entirely of code that is com
pletely assembled at the end of pass 1. By specifying /P: 1 for these files, you can cause MACRO-11 to skip processing
of these files through pass 2. In some cases this procedure can save considerable assembly time.

The specification /P:2 calls for assembly of the file during pass 2 only. (NOTE: Situations where the /P:2 option
can be meaningfully employed are unusual.)

10.S MACRO-I I 8K VERSION
A subset version of MACRO-I 1, with file name MACSK.SAV, is available for systems with SK words of memory
that is, systems with insufficient memory to support operation of the full MACRO-I I assembler.

The full assembler (MACRO) requires approximately 1 OK words of memory, or must be operating on at least a 12K
system using the single-job (SJ) monitor.

The subset version {MACSK) requires approximately 6K words of memory, or must be operating on an SK system
using the baseline SJ monitor.

The subset version differs from the full assembler as follows:

I. All handlers must be resident (that is, loaded) before you call MAC8K.
2. The full assembler prints the input command string at the end of the listing; the subset version does not.
3. The subset version does not recognize the following items:

a. The operation codes exclusive to PDP-11 /45 and PDP-11 /70
b. The Commercial Instruction Set (CIS)
c. The FLT2 and FLT4 floating point directives

4. The system device is the only available file medium under MAC8K.
5. The subset version does not support the cross-reference file and ignores attempts to obtain such a listing.
6. Assembly times of the subset version are noticeably longer.
7. The subset version operates only under control of the baseline single-job monitor (see the RT-11 System

Generation Manual).

10.6 MACRO-I I ERROR CODES
The MACRO-I I system prints diagnostic error codes as the first character of a source line on which the assembler
detects an error. This error code identifies the type of error; for example, a code of M indicates a multiple definition
of a label. Table 10-6 shows the error codes that might appear on an assembly listing. For detailed information on
error code interpretation and debugging, see the MACR0-11 Language Reference Manual.

10-9

MACR0-11 ProgramAssembly

.MAIN, MlCPO Vt3,~0 b•JUN.77 001~3157 ~AG~ S•I
CPOSS RlfiRENC€ TABLE (CREf v01-~s J

1GLOBI. 1•6
,TTYI" 1•9
1.N6liE~ l•IIU 1•,161
BUfl'"E.R 1•9 1•14 1•211
Lf' 1•11 I• I I
STARf I •ll I 1 • 16 1•22
SUBRt \ •t, l •\'I
SUBP? I•!> 1•17

,MAIN. ~I.CPO V03,0~ 6•JUN•77 J~:~31~7 PAGt P•l
CPOSI NE•tRENCE lABLE (CPFf V~t-~! J

PC
R0
R2
RJ

I• I~•
I• I l!
I •II• ,., ..

,MAI~. rACRO Vi3,i0 6•JUN•77 ~01~31§7 ~Ar.t ~-t
CPOSS REfER~~CE TABLE CCPFf' V~t•M! l

,£XJT
,TTHN
CAt.l

,MAIN, MACRO VP),00 6•JUN.77 dP1~3157 PA~E P•I
CROSS RtfEPENC~ TABLE (CREf V01•~5)

1 8Lll'B 1•21
1 F!Ll(w 1•2.11
,cse:cr 1•7
,,rnn •·n
,MACPO t•3
,MClLL 1•2
BCS 1•16
8Ni 1•1-Z
CLRe l•U
CMPP 1•\1
&:MT I •19
JSR I •I 5 1•17
MOV l•R 1•14 l•\8
'40Ve I •Ill

,MAIN, MACRO f~],0~ 6•JUN•77 ~~103157 PAGl C•I
CPOSS REflRENCE TIBLE (CRIF V~l•05)

lJ•,}
• ABS, -,.-,
PPOG 1 •7

.~AJN. MACPO Vf3,i0 6•JUN•77 W01Pl157 PACE t•l
CROSS REFERENCE TABLE (CREF V~t-~~ J

A
u

Figure 10-2 Cross-Reference Table

10-10

I• I 7

MACRO-I 1 Program Assembly

Table 10--6 MACRO-I I Error Codes

Error Code Meaning

A Addressing or relocation error. This occurs when an instruction operand has an invalid
address, or when the definition of a local symbol occurs more than 128 words from the
beginning of a local symbol block.

B Boundary error. The current setting of the location counter would cause the assembly
of instruction or word data at an odd memory address. The system increments the
location counter by 1 to correct this.

D Reference to multiple-definition symbol. The program refers to a non-local label that is
defined more than once.

E No END directive. The assembler has reached the end of a source file and found no END
directive. The system generates .END and continues.

I Illegal character detected. The assembler has encountered in the source file a character
that is not included in the language character set. The system replaces each illegal charac-
ter with a ? on the assembly listing and proceeds as if the illegal character were not
present.

L Link buffer overflow. The assembler has encountered an input line greater than 132 char-
acters. In terminal mode the system ignores additional characters.

M Multiple definition of a label. The source program is attempting to define a label equiva-
lent in the first six characters to a label defmed previously.

N Decimal point missing from decimal number. A number containing the digit 8 or 9 lacks
a decimal point.

0 Op-code error. A directive appears in an inappropriate context.

p Phase error. The definition or value of a label differs from one pass to another, or a local
symbol occurs more than once in a local symbol block.

Q Questionable syntax. This can have any of several causes, as follows:

1. There are missing arguments.
2. The instruction scan is not complete.
3. A line feed or form feed does not immediately follow a carriage return.

R Register-type error. The source program attempts an invalid reference to a register.

T Truncation error. A number generates more than 16 significant bits, or an expression
generates more than 8 significant bits while a .BYTE directive is active.

u Undefmed symbol. A symbol not defined elsewhere in the program appears as a factor
in an expression. The assembler assigns the undefined symbol a constant zero value.

z Incompatible instruction (warning). The instruction is not defined for all PDP-11 hard·
ware configurations.

10-11

CHAPTER 11

LINKER (LINK)

The RT-11 linker (LINK) converts object modules produced by an RT-11 supported language translator into a for
mat suitable for loading and execution. If you have no previous experience with the linker, read Chapter 12 of the
Introduction to RT-11 for an introductory-level description of the linking process. You can separately assemble a
main program and each of its subroutines without assigning an absolute load address at assembly time. The linker
processes the object modules of the main program and subroutines to:

• Relocate each object module and assign absolute addresses

• Link the modules by correlating global symbols that are defined in one module and referenced in another

• Create the initial control block for the linked program that the GET, R, RUN, and FRUN commands use

• Create an overlay structure if specified and include the necessary run-time overlay handlers and tables

• Search libraries you specify to locate unresolved globals

• Automatically search a default system library to locate any remaining unresolved globals

• Produce a load map showing the layout of the load module

• Produce a symbol definition file,

The RT-11 linker requires two passes over the input modules. During the first pass it constructs the symbol table,
including all program section names and global symbols in the input modules. After it processes all non-library files,
the linker scans the library files to resolve undefined globals. It links only those modules that are required into the
root segment (that part of the program that is never overlaid). During the final pass, the linker reads the object
modules, performs most of the functions listed above, and produces a load module (which is in memory image
format for background jobs or for jobs that run in the single-job environment, relocatable format for foreground
jobs, and formatted binary for use with the Absolute Loader).

The linker runs in a minimal RT-11 system of 8K words of memory; the linker uses any additional memory to
facilitate efficient linking and to extend the size of the symbol table. The linker accepts input from any random
access device on the system; there must be at least one random-access device (disk or DECtape) for memory image
or relocatable format output.

11.1 CALLING AND USING THE LINKER
To call the RT-11 linker from the system device, respond to the dot printed by the keyboard monitor by typing:

RUNK@)

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to
accept a command line. If you enter only a carriage return at this point, the linker prints its current version number.

Type two CTRL/Cs to halt the linker at any time (or a single CTRL/C to halt the linker when it is waiting for con·
sole terminal input) and return control to the monitor. To restart the linker, type R LINK or REENTER in response
to the monitor's dot.

11-1

Linker (LINK)

The first command string you enter in response to the linker's prompt has this syntax:

where

[binout-filespec] , [mapout-filespec] , [stbout-filespec] = obj-filespec [/option ...] [, ... obj-fi.lespec [/option ...]]

binout-filespec

mapout-filespec

stbout-filespec

obj-filespec

/option

represents the device, name and file type to be assigned to the linker's output load mod

ule file.

represents the device, file name and file type of the load map output file.

represents the device, file name and file type of the symbol definition file.

represents an object module (that can be a library file) to be linked.

is one of the options from Table 11-2.

In each filespec above, the device should be a random access device, with these exceptions: the output device for the
load map file can be any RT-11 device, as can the output device for an .LDA file if you use the /L option. If you do
not specify a device, the linker uses default device DK:. Note that the linker load map contains lower case characters.
Use the SET LP LC command to enable lower case printing if your printer has lower case characters.

If you do not specify an output file, the linker assumes that you do not desire the associated output. For example,
if you do not specify the load module and load map (by using a comma in place of each file specification) the linker
prints only error messages, if any occur.

Table 11-1 shows the default values for each specification.

Table 11-1 Linker Defaults

Device File Name File Type

Load Module DK: none SAV, REL(/R), LDA(/L)

Map Output Same as load module none MAP

Symbol Definition Output DK: or same as previous none STB
output device

'Object Module DK: or same as previous none OBJ
object module

If you make a syntax error in a command string, the system prints an error message. You can then type a new com
mand string following the asterisk. Similarly, if you specify a nonexistent file, a warning error occurs; control returns
to the Command String Interpreter, an asterisk prints and you can enter a new command string.

11.2 OPTIONS SUMMARY
Table 11-2 lists the options associated with the linker. You must precede theletter representing each option by the
slash character. Options must appear on the line indicated if you continue the input on more than one line, but you
can position them anywhere on the line. (Section 11.8 provides a more detailed explanation of each option.)

11-2

Linker (LINK)

Table 11-2 Linker Options

Option Name Command Line Section Explanation

/B:n first 11.8.1 Changes the bottom address of a program to n (illegal
for foreground links).

/C any but last 11.8.2 Continues input specification on another command line
(you can use /C also with /0; do not use /C with the / /
option).

/E:n first 11.8.3 Extends a particular program section to a specific value.

/f:i first 11.8.4 Instructs the linker to use the default FORTRAN library,
FORLIB.OBJ; this option is provided only for com pa ti-
bility with previous versions of RT -11.

/H:n first 11.8.5 Specifies the top (highest) address to be used by the
relocatable code in the load module.

/I first 11.8.6 Extracts the global symbols you specify (and their
associated object modules) from the library and links
them into the load module.

/K:n first 11.8.7 Inserts the value you specify (the valid range for n is
from 1 to 28) into word 56 of block 0 of the image file;
this option is provided only for compatibility with the
RSTS operating system.

/L first 11.8.8 Produces a formatted binary output file (illegal for fore-
ground links).

/Mor first 11.8.9 Causes the linker to prompt you for a global symbol that
fM:n represents the stack address, or sets the stack address to

the value n.

/O:n any but 11.8.10 Indicates that the program is an overlay structure; n

the first specifies the overlay region to which the module is
assigned.

/P:n first 11.8.11 Changes the default amount of space the linker uses for
a library routines list.

/R[:n] first 11.8.12 Produces output in relocatable format and can indicate
stack size for a foreground job.

/S first 11.8.13 Makes the maximum amount of space in memory avail-
able for the linker's symbol table. (You only need to use
this option when a particular link stream causes a symbol
table overflow.)

(Continued on next page)

11-3

Linker (LINK)

Table 11-2 (Cont.) Linker Options

Option Name Command Line Section Explanation

/Tor first 11.8.14 Causes the linker to prompt you for a global symbol
/T:n that represents the transfer address, or sets the transfer

address to the value n.

/U:n first I 1.8.l 5 Rounds up the section you specify so that the size of
the root segment is a whole number multiple of the
value you supply (n must be a power of 2).

/W first 11.8.16 Directs the linker to produce a wide load map listing.

/X 11.8.17 Does not output the bitmap if the code is below 400;
this option is provided only for compatibility with the
RSTS operating system.

/Y:n first 11.8.18 Starts a specific program section on a particular address
boundary.

/Z:n first 11.8.19 Sets unused locations in the load module to the value n.

II first 11.8.20 Allows you to specify command string input on additional
and last lines. Do not use this option with /C.

11.3 MEMORY ALLOCATION
The linker allocates the physical memory and address space that the load module requires. The area of memory that
the linker allocates for a load module contains the following elements:

• a system communication area

• hardware vectors

• a stack

• a set of named areas called program sections (p-sections).

Section 11.5 .2 describes the system communication area.

The stack is an area that a program can use for temporary storage and subroutine linkage. General register 6, the
stack pointer (SP), references the stack.

The system communication area, the hardware vectors, and the stack areas are all part of the load module area
called the absolute section. The absolute section is often called the ASECT because it is the assembler directive
.ASECT that allows information to be stored there. This section appears in the load map with the name .ABS. and
is always the first section in the listing. The absolute section (ASECT) normally ends at address 1000 (octal).

A program section is an area of the load module that contains code and/or data; you can reference it by name. The
set of attributes associated with each p-section controls the allocation and placement of the section within the load
module.

114

Linker(LINK)

A p-section is the basic unit of memory for a program. It is composed of the following elements:

• a name by which it can be referenced

• a set of attributes that defines its contents, mode of access, allocation, and placement in memory

• a length that determines how much storage is reserved for the p-section.

You create p-sections by using the COMMON statement in FORTRAN, or the .PSECT (or .CSECT) directive in
MACRO. You can use the .PSECT (or .CSECT) directive to attach attributes to the section. Note that the attributes
that follow the p-section name are not part of the name; only the name itself distinguishes one p-section from
another. You should make sure, then, that p-sections of the same name that you want to link together also have
the same attribute list. Do this because the linker uses the first appearance of the .PSECT and its attributes through
out the operation. If the linker encounters p-sections with the same name that have different attributes, it prints a
warning message.

The linker collects from the input modules scattered references to a p-section and combines them in a single area of
the load module. The attributes, which are listed in Table 11-3, control the way the linker collects and places this
unit of storage.

Table 11-3 P-section Attributes

Attribute Value Explanation

access-code 1 RW Read/Write - data can be read from, and written into, the p-section.

RO Read Only - data can be read from, but cannot be written into, the
p-section.

type-code D Data - the p-section contains data.

I Instruction - the p-section contains either instructions, or data and
instructions.

scope-code GBL Global - the p-section name is recognized across overlay segment
boundaries. The linker allocates storage for the p-section from
references outside the overlay segment.

LCL Local - the p-section name is recognized only within each individual
overlay segment. The linker allocates storage for the p-section from
references within the overlay segment only.

reloc-code REL Relocatable - the base address of the p-section is relocated relative
to the virtual base address of the program.

ABS Absolute - the base address of the p-section is not relocated. It is
always 0.

alloc-code CON Concatenate all allocations to a given p-section name are concaten-
ated. The total allocation is the sum of the individual allocations.

OVR Overlay - all allocations to a given p-section name overlay each other.
The total allocation is the length of the longest individual allocation.

1 Not used by the linker.

11-5

Linker (LINK)

The scope-code and type-code are meaningful only when you define an overlay structure for the program. In an
overlaid program, a global section is known throughout the entire program. Object modules contribute to only one
global section of the same name. If two or more segments contribute to a global section, then the linker allocates
that global section in the root segment of the program. In contrast to global sections, local sections are only known
within a particular program segment. Because of this, several local sections of the same name can appear in different
segments. Thus, several object modules contributing to a local section do so only within each segment. An example
of a global section is named COMMON in FORTRAN. An example of a local section is the default blank section
for each macro routine.

The alloc-code determines the starting address and length of memory allocated by modules that reference a common
p-section. If the alloc-code indicates that such a p-section is to be overlaid, the linker places the allocations from each
module starting at the same location in memory. It determines the total size from the length of the longest reference
to the p-section. The last input module that stores information in a particular location determines which values the
linker stores in the indicated locations of the load module. If the alloc-code indicates that a p-section is to be con•
catenated, the linker places the allocations from the modules one after the other in the load module; it determines
the total allocation from the sum of the lengths of the contributions.

The allocation of memory for a p-section always begins on a word boundary. If the p-section has the D (data) and
CON (concatenate) attributes, all storage that subsequent modules contribute is appended to the last byte of the
previous allocation. This occurs whether or not that byte is on a word boundary. For a p-section with the I
(instruction) and CON attributes, however, all storage that subsequent modules contribute begins at the nearest
following word boundary.

The .CSECT directive of MACRO is converted internally by both MACRO and the linker to an equivalent .PSECT
with fixed attributes. An unnamed CSECT (blank section) is the same as a blank PSECT with the following attri
butes: RW, I, LCL, REL, and CON.

A named CSECT is equivalent to a named PSECT with these attributes: RW, I, GBL, REL, and OVR. Table 11-4
shows these sections and their attributes.

The names assigned to p-sections are not considered to be global symbols; you cannot reference them as such. For
example:

MOV tPNAME,RO

This statement, where PNAME is the name of a section, is illegal and generates the Undefined global error message
if no global symbol of PNAME exists. A symbol can be the same for both a p-section name and a global symbol.
The linker treats them separately.

The linker determines the memory allocation of p-sections by the order of occurrence of the p-sections in the input
modules. The absolute section (. ABS.) always comes first, followed by the blank section of the input file (if one
exists) and the named section. If there is more than one named section, the named sections appear in the same order
in which they occur in the input files. For example, the FORTRAN compiler arranges the p-sections in the main
program module so that the USR can swap over pure code in low memory rather than over data required by the
function making the USR call.

Table 114 Section Attributes

access-code type-code scope-code reloc-code alloc-code

CSECT RW I LCL REL CON

CSECTname RW I GBL REL OVR

ASECT RW I GBL ABS OVR

COMMON/name/ RW D GBL REL OVR

11-6

Linker(LINK)

11.4 GLOBAL SYMBOLS
Global symbols provide the link, or communication, between object modules. You create global symbols with the
.GLOBL or .ENABL GBL assembler directive (or with double colon,::, or double equal sign,"'"'). If the global
symbol is defined in an object module (as a label using:: or by direct assignment using"'"'), other object modules
can reference it. If the global symbol is not defined in the object module, it is an external symbol and is assumed
to be defined in some other object module. If a global symbol is used as a label in a routine, it is often called an
entry point. That is, it is an entry point to that subroutine.

As the linker reads the object modules it keeps track of all global symbol definitions and references. It then modifies
the instructions and data that reference the global symbols. The linker always prints undefined globals on the con
sole terminal after pass-I. If you request a load map on the terminal, they appear at the end of the load map.

Table 11-5 shows how the linker resolves global references when it creates the load module.

Table 11-5 Global Reference Resolution

Module Global Global
Name Definition Reference

INl Bl A
B2 L1

Cl
XXX

IN2 A B2
Bl

IN3 Bl

In processing the first module, IN 1, the linker finds definitions for Bl and B2, and references to A, L 1, C 1, and
XXX. Because no definition currently exists for these references, the linker defers the resolution of these global
symbols. In processing the next module, IN2, the linker finds a definition for A that resolves the previous reference,
and a reference to B2 that can be immediately resolved.

When all the object modules have been processed, the linker has three unresolved global references remaining: Cl,
Ll, and XXX. A search of the default system library resolves XXX. The global symbols Cl and LI remain unresolved
and are, therefore, listed as undefmed global symbols.

The relocatable global symbol, BI, is defmed twice and is listed on the terminal as a multiply defined global symbol.
The linker uses the first defmition of a multiply defmed symbol. An absolute global symbol can be defined more
than once without being listed as multiply defmed as long as each occurrence of the symbol has the same value.

11.5 INPUT AND OUTPUT
Linker input and output is in the fonn of modules; the linker uses one or more input modules to produce a single
output (load) module.

11.5.1 Object Modules
Object files, consisting of one or more object modules, are the input to the linker (the linker ignores files that are
not object modules). Object modules are created by an appropriate language translator. The module name item
declares the name of the object module. The first six Radix-50 characters of the .TITLE assembler directive are
used as the name of the object module. These six characters must be Radix-50 characters (the linker ignores any
characters beyond the sixth character). The linker prints the first module name it encounters in the input file
stream (nonnally the main routine of the program) on the second line of the map following .TITLE. It ignores
additional module names. The linker reads each object module twice. During the first pass it reads each object

11-7

Linker (LINK)

module to construct a symbol table and to assign absolute values to the program section nam"!S and global symbols.
The linker uses the library files to resolve undefined globals. It places their associated object modules in the root.
On the second and final pass, the linker reads the object modules, links and relocates the modules and outputs the
load module.

11.5.2 Load Module
The primary output of the linker is a load module that you can run under RT-11. The linker creates as a load module
a memory image file (SAV) for use under a single-job system or the background job. If you need to execute a pro
gram in the foreground, use the /R option to produce a relocatable fonnat (REL) foreground load module. The
linker can produce an absolute load module (LDA) if you need to load the module with the Absolute Loader.

The load module for a memory image file is arranged as follows:

Root Segment Overlay Segments
(optional)

For a relocatable image file the load modules are arranged as follows:

Root Segment Overlay Segments Relocation information for root and
(optional) overlay segments

The first 256-word block of the root segment (main program) contains the memory usage bit map and the locations
the linker uses to pass program control parameters. The memozy usage bit map outlines the blocks of memozy the
load module uses; it is located in locations 360 through 377.

The control parameters are located in locations 40 through 50. They contain the following infonnation when the
module is loaded:

Address

40
42
44
46
50

lnfonnation

Start address of program
Initial setting of SP (stack pointer)
Job status word (overlay bit set by LINK)
USR swap address (0 implies normal location)
Highest memory address in program (high limit)

The linker stores default values in locations 40, 42, and 50, unless you use options to specify otheiwise. The /T
option affects location 40, for example, and /M affects location 42. You can also use the .ASECT directive to
change the defaults. The overlay bit is located in the job status word. LINK automatically sets this bit if the program
is overlaid. Otherwise, the linker initially sets location 44 to 0. Location 46 also contains zero unless you specify
another value by using the .ASECT directive.

For a foreground link, the following additional parameters contain information:

Address

14, 16
20,22
34,36
52
54
56
60
62

(XM only) BPT trap
(XM only) JOT trap
TRAP vector

lnfonnation

Size of root segment in bytes
Stack size in bytes (value with /R or default 128)
Size of overlay region in bytes
Identification that file is in relocatable (REL) format
Relative block number for start of relocation information

11-8

Linker(LINK)

You can assign initial values to memory locations 0-476 (which include the interrupt vectors and system communica
tion area) by using an .ASECT assembler directive. They appear in block O of the load module, but there are restric
tions on the use of ASECTs in this region. You should not perfonn ASECTs of location 54 or oflocations 360-377
because the memory usage map is passed in those locations. In addition, for foreground links, ASECTs of words
52-62 are not permitted because additional parameters are passed to the FRUN command in those locations.

You can set with an .ASECT any location that is not restricted, but be careful if you change the system communica
tion area. The program itself must initialize restricted areas, such as the region 360-377. There are no restrictions on
ASECTs if the output format is LDA.

Locations in the region 0-476 might not be loaded at execution time even though your program uses an ASECT to
initialize them. For background programs, this is because the R, RUN, and GET commands do not load addresses
that are protected by the monitor's memory protection map. For foreground programs, the FRUN command loads
only locations 14-22 and 34-50. It ignores all other ASECTs. To initialize a location at run time, use the .PROTECT
programmed request. If it is successful, follow it by a MOV instruction.

11.S .3 Load Map
If you request, the linker produces a load map following the completion of the initial pass. This map, shown in
Figure 11 ·I, diagrams thfl layout of memory for the load module.

The load map lists each program section that is included in the linking process. The line for a section includes the
name and low address of the section and its size in bytes. The rest of the line lists the program section attributes,
as shown in Table 11-3. The remaining columns contain the global symbols found in the section and their values.

The map begins with the version of the linker, followed by the date and time the program was linked. The second
line Jists the file name of the program, its title (which is determined by the first module name record in the input
file), and the first identification record found. The absolute section is always shown first, followed by any non
relocatable symbols. The modules located in the root segment of the load module list next, followed by those
modules that were assigned to overlays in order by their region number (see Section 11.6). Any undefined global
symbols then list. The map ends with the transfer address (start address) and high limit or relocatable code in both
octal bytes and decimal words.

NOTE
The load map does not reflect the absolute addresses for
a REL file that you create to run as a foreground job; you
must add the base relocation address determined at FRUN
time to obtain the absolute addresses. The linker assumes
a base address of 1000.

For example, assume the FRUN command is used to rW1 the program CARL:

•FRUN CARL/P
Loaded at 127276

The /P option causes FRUN to print the load address, which is 127276 in this example. To calculate the actual loca
tion in memory of any global in the program, first subtract 1000 from that global's value. (The value 1000 represents
the base address assigned by the linker. This offset is not used at load time.) Then add the result to the load address
determined with /P. The fmal result represents the absolute location of the global. For example, the absolute Joca·
tion of TIME (see Figure 11-1) is 127302 (1004-1000tl27276=127302).

11-9

r!T•LI LJNK
CAFL ,REL

V ,j 3 • /,; I
T1tle:

Section Addr Size

• ABS, i'fl,h'IV,, ;-r:AI J-,.~
•'-,\\'10J ,.1 ,J,']6

[,inker (LINK)

l,Oi "1 "li!P
l)F M05P ldent z

c;lohal V3ltJe

frl H3•Jun•77 18:~J:07
\11t1l ,1iq

C,lObal Value Global

(P~,I,G~L,ABS,OVP)
C1<w,J,LCL,PEL,COt>i)

fl~BLK 11t'Jli'~~ Tl~E iH~J 004 ObLK
L,P ~hH0J~ ARl:.A \1111117124 START
t!HrF '11(12Vl22

rranster addr@ss = ~J,~36, Ki~n limit= ~t1~3b = 2Jl9. words

Figure 11-1 Load Map

11.S.4 Library Files

Va1ue

0!/1 tl: 1"'
wi0t03b

The RT-11 linker can automatically search libraries. Libraries consist oflibrary ftles, which are specially fonnatted
files produced by the librarian program (described in Chapter 12) that contain one or more object modules. The
object modules provide routines and functions to aid you in meeting specific programming needs. (For example,
FORTRAN has a set of modules containing all necessary computational functions - SQRT, SIN, COS, etc.). You
can use the librarian to create and update libraries. Then you can easily access routines that you use repeatedly or
routines that different programs use. Selected modules from the appropriate library file are linked as needed with
your program to produce one load module. Libraries are further described in Section 11. 7 and in Chapter 12.

11.6 USING OVERLAYS

NOTE
Library fdes that you combine with the monitor COPY
command or with the PIP /U or /B option are illegal as
input to both the linker and the librarian.

The ability of RT-11 to use overlays gives you virtually wtlimited memory space for an assembly language or
FORTRAN program. A program using overlays can be much larger than would normally fit in the available memory
space, since portions of the program (called overlay segments) reside on a backup storage device (disk or DECtape).

The RT-11 overlay scheme is a strict multi-re6ion arrangement; it is not tree-structured. Figure 11-3 diagrams this
scheme. The overlay system that you construct from your completed program is composed of a root segment that
is always memory resident, the current memory-resident overlay segments, and the overlay segments stored on the
backup storage device. The root segment is a required part of every overlay program and contains the transfer
address, stack space, impure variables, data, and variables needed by many different segments; it must, therefore,
never be overlaid. There is a distinct memory area for each overlay region. The overlay segments are brought into
memory as they are needed. A segment consists of a set of modules and program sections. Segments that overlay
each other must be logically independent; that is, the components of one segment cannot reference the components
of another segment with which it shares address space. In addition to being concerned with the logical independence
of the overlay segments, you should also consider the general flow of control within the program. Programs execute
most efficiently when the system spends only a small amount of execution time (less than 10 percent) overlaying
progran1 segments. Figure 11-2 shows a diagram of an overlay scheme. Some examples of overlaid programs are the
linker and the FORTRAN compiler.

Overlay segments that share both the same physical memory location and address space form a 1egion. You specify
overlay regions to the linker with the / 0 option as described in Section 11.8. 7. The linker calculates the size of any
region to be the size of the largest segment within that region. Thus, to reduce the size of a program (that is, the
amount of memory it needs), you should first c.oncentrate on reducing the size of the largest segment in each region.
The linker creates the overlay regions and edits the program to produce the desired overlays at run-time. Figure 11-3
shows a listing of a diagram of memory showing a link with an overlay structure. Figure 114 shows the run-time
overlay handler.

11-10

A=A/C
B/0: 1/C

C/0:1/C
D/0:2/C

E/0:2

ADDRESS

0

1000

~;::;

linker (LINK)

= Root
= Segment 1 } = Region 1
= Segment 2 B C
= Segment 3 } = Region 2

A
Segment 4

Figure 11·2 Overlay Scheme

SYSTEM AREA

OVERLAY HANDLER AND TABLES
(INCLUDED BY LINKER)

ROOT SEGMENT OF PROGRAM

(ROOT, math package, and some system dependent routines)

SEGMENT IDENTIFICATION WORD

I I
OVERLAY REGION 1

execute edit file 1/0
DATE/TIME

error message
conversion

overlay overlay overlay overlay
overlay

SEGMENT IDENTIFICATION WORD

OVERLAY REGION 2

optional functions, initiali2:ation code, user area ::..

MONITOR

Figure 11-3 Memory Diagram Showing BASIC Link with Overlay Regions

11-11

Region 2

Region 1

Root

Linker(LINK)

.SBTTL $0VRH TijE RUN•TIME OVEPLAY HANDLER
JTHE fOLLOWING CODE IS INCLUDED lN THE US£R•s ppOGRAM aY THE
JLlNKER iHENEVER OVERLAYS ARE REQUESTED BY THE USE~.
JTHE RUN•TlM£ OVEPLlY HANDLEP IS CALL!D 8Y A DU~My
,sua~OUTlNE or THF. roLLO~ING FORMa

,
I ,

JSR
,WORO
,WORD

RS,SOVRH
<OtERLAY #>
<ENTRY AOOR>

JCALL TO COMMON CODE
,. or DESIRED StG~~NT
JACTUAL CORE ADOR

JONE DUMMY ROUTINE or THE ABOVE FORM IS STORED IN THE RESIDENT PORTION
,or THE USER·s PROGRAM FOR EACH tNTRY POINT TO AN OVERLAY SEG~ENT.
rALL REFEPENCES TO THE ENTRY POINT ARE MOOlflED S1 THE LINiE~ TO INSTEAD
J8E REFERENCES TO THE APPROPRIATE DUM~Y ~OUTINE. EACH OVERLAY SEG~ENT
rlS CALLlD INTO CDRt AS A UNIT AHO ~UST BE CONtIGUOUS IN CORE. AN
,nvFRLAY SEGMENT ~AY ijAVE ANY NUMBER OF ENTRY pOJijTS, TD THE LIMITS
JOF CORE MEMORY, ONLY ONE SEGMF.~T AT A TlME MAY OCCUPY AN OV€RLAY REGION,

ef:NA8L LS8
$0VTABat03~+$0iPHE•$0VRH

$OVPH1 MOV k~,•(SP)
MOV R1,•(SP)
MOV R2,•(SP)

1$1
I MOV C FIS)+, R0

3S bP
MOV Rll,FII

rPICK UP OVERLAY NU~Bt~
rFIRST CALL ONLY**•

#SOVTAij•b,Rl JCALC TABLE ADDR SOVF1HA1 ADD
MO~
CMP
SEQ
,Rl.ADl>1
bCS

(Rl)+,R2 sGEr CORE ADOp OF OVtRLAY ~~GTON

2SI MOV

lSS

SHROOT:

$HOVLY:
48&

5$1

MOV
MOV
MOV
rt1'S

MOV
MOV
.worm
MOV
.WORD
CLR
CMP
BLO
BR

EMT
.snE

SOVRHEs
.os•eL LSS

R~,api sIS OVERLAY ALREADY RESIDENT?
2$ JYES, BRAMC~ TO IT
t1,R2,(RtJ+,(Pl)+ rREAD FROM OVERLAY FILE
ss
(SPl+,R2
(SP)+,Rl
(SP)•,R~
l!IR5,R5
Fl5

#l 25.J0, 1$
(PC l+, R 1
i:J
(PC)+,R2
0
(Pt)+
Rt,P2
4$
1 S

376
~. 37}

rGET ENTRY ADDRESS
rENTER OVIHLAY ROUTINE AND
1RESTORl USER'S k5

rRESTQRE S~ITcH INSTH (~OV (R15)+,R0)
sSTAkT AUDR tOR CLEAR OPERATION
rHIGtt ADDF OF ROOT SEG~ENT
rCOUNT
JHlGH LIMJT OF OVEHLAYS
rCLEAR ALL OVERLAY REGIO~s

JAND p[TURN TO CALL IN PPOGRE~S

,sySTEM EPRn~ 1~ (OVERLAY I/0)

,ovERLAY SEGMF,NT TABLE FOLLOijs:
J SOVTAB1 .wopo <CO~E AODR>,<PELATlVl BL~>,<wORD COUNT>
rTHREF WORDS rER ~NTRY, ONE ENTPY F!R OVERLAY srG~ENt.

JlLSO, THE~E JS ONt ~ORO P~FFlltD 10 EACH OVEPLAY ~tGlON
1THJT IDENTIFIES THE SEGMENT CUR~FNTL1 RESIDEN1 lN THAT ~EGION•

Figure 11-4 The Run-Time Overlay Handler

11-12

Linker (LINK)

You do not need a special code or function call to use overlays. Observe the following rules when you reference
parts of your program that might be overlaid.

I. You must make calls or jumps to overlay segments directly to global symbols defined in an instruction
p-section (entry points). For example, if ENTER is a global symbol in an overlay segment, the first com
mand is valid, but the second is illegal:

JMP ENTER
JMP ENTER+6

2. You can use globals defined in an instruction p-section (entry points) of an overlay segment only for
transfer of control and not for referencing data within an overlay section. The assembler and linker can
not detect a violation of this rule so they issue no error. However, such a violation can cause the program
to use incorrect data. If you reference these global symbols outside of their defining segment, the linker
resolves them by using dummy subroutines of four words each in the overlay handler. If such a reference
occurs, it is indicated on the load map by a "@" following the symbol.

3. The linker directly resolves global symbols that you define in a data p-section. It is your program's respon
sibility to load the data into memory before referencing a global symbol defined in a data section. One
way to load the data section of an overlay segment is to call an entry point in that segment. This loads
the segment if it is not already resident in memory.

4. When you make calls to overlays, the entire return path must be in memory. Observing the following
rules accomplishes this:

a. You can make calls (with expected return) from an overlay segment only to entries in the same
segment, the root segment, or an overlay segment with a greater region number.

b. Calls you make to entries in the same region as the call must be entirely within the same segment,
not within another segment in the same region.

c. You can make jumps (with no expected return) from an overlay segment to any entry in the program.
However, jumps should not reference an overlay region whose number is lower than the region from
which the last unreturned call was made (for example, if a call was made from region 3, then no
jumps should reference regions 1, 2 or 3 until the call has returned).

d. You can call subroutines in the root segment from overlay segments; in turn, they can call entries
from the same overlay segment that called them, or from the root segment, or from another overlay
segment with a greater region number. Such subroutines are considered to be part of the overlay
segment that called them.

5. You cannot use a p-section (.PSECT or .CSECT) name to pass control to an overlay. It does not load the
appropriate segment into memory. (For example, JSR PC,OVSEC is illegal if you use OVSEC as a section
name in an overlay.) As stated in I, above, you must use a global symbol to pass control from one segment
to the next. If OVSEC is not a global symbol, the system flags it as an undefined global.

6. Your program cannot use channel 17 (octal) because overlays are read on that channel.
7. You cannot place object modules that are automatically acquired from a library file into overlays. The

linker always places those modules in the root segment. However, you can extract modules from a library
by using the librarian utility program (see Chapter 12) and then explicitly include them in any segment.

8. You cannot specify library files on the same command line as an overlay. Specify them before you enter
any overlay lines.

9. You must specify overlay regions in ascending order. They are read-only. Unlike USR swapping, an overlay
handler does not save the segment it is overlaying. Any tables, variables, or instructions that are modified
within a given overlay segment are reinitialized to their original values in the SA V or REL file if that

· segment has been overlaid by another segment. You should place any variables or tables whose values must
be maintained across overlays in the root segment.

10. ASECTs at location 1000 or above in an overlay foreground link are illegal; the error message
?LINK-F-Illegal ASECT prints and the link aborts.

11. A global program section that is referenced in more than one segment has its memory allocation in the
root segment. This permits common access across the different segments. See Section 11.3.

11-13

Linker (LINK)

Note the following information when you write FORTRAN overlays:

1. When you divide a FORTRAN program into a root segment and overlay regions (and subsequently divide
each overlay region into overlay segments), you should carefully consider routine placement. Remember
that it is illegal to call a routine located in a different overlay segment in the same overlay region, or an
overlay region with a lower numeric value (as specified by the linker overlay option, /O:n) from the calling
routine. Divide each overlay region into overlay segments that never need to be resident simultaneously.
For example, if segments A and Bare assigned to region X, they cannot call each other because they occupy
the same locations in memory.

2. Place the FORTRAN main program unit in the root segment.
3. In an overlay environment, subroutine calls and function subprogram references can refer only to one of

the following:
a. a FORTRAN library routine (such as ASSIGN, DCOS)
b. a FORTRAN or assembly language routine contained in the root segment
c. a FORTRAN or assembly language routine contained in the same overlay segment as the calling

routine
d. a FORTRAN or assembly language routine contained in a segment whose region number is greater

than that of the calling routine.
4. In an overlay environment, you must place the COMMON blocks so that they are resident when you

reference them. Blank COMMON is always resident because it is always placed in the root segment. You
must place all named COMMON either in the root segml''lt or in the segment whose region number is
lowest of all the segments that reference the COMMON block. A named COMMON block cannot be
referenced by two different segments in the same region unless the COMMON block appears in a segment
of a lower region number. The linker automatically places a COMMON block into the root segment if it is
referenced by the FORTRAN main program or by a subprogram that is located in the root segment. Other
wise, the linker places a COMMON block in the first segment encountered in the linker command string
that references that COMMON block.

5. All COMMON blocks that are initialized with DATA statements must be similarly initialized in the segment
in which they are placed.

Refer to the RT-11/RSTS/E FORTRAN IV Users Guide for more details.

The ASECT never takes part in overlaying in any way. It is part of the root and is always resident.

The aforementioned sets of rules apply only to communications among the various modules that make up a program.
Internally, each module must only observe standard programming rules for the PDP-11 (as described in the PDP-11
Processor Handbook and in the MACRO-] I Language Reference Manual).

Note that the condition codes set by your program are not preserved on the call across overlay segment boundaries.
You can still use the C-bit for error returns.

The linker provides overlay services by including a small resident overlay handler in the same file with your program
to be used at program run time. The linker inserts this overlay handler plus some tables into your program beginning
at the bottom address. The linker moves your program up in memory by an appropriate amount to make room for
the overlay handler and tables, if necessary.

11.7 USING LIBRARIES
You specify libraries in a command string in the same way you specify nonnal modules; you can include them any
where in the command string, except in overlay lines. If a global symbol is undefined at the time the linker encounters
the library in the input stream, and if a module is included in the library that contains that global definition, then the
linker pulls that module from the library and links it into the load image. Only the modules needed to resolve refer
ences are pulled from the library; unreferenced modules are not linked.

11-14

Linker (LINK)

NOTE
Modules in one library can call modules from another
library; however, the libraries must appear in the com
mand string in the order in which they are called. For
example, assume module X in library ALIB calls Y from
the BLIB library. To correctly resolve all globals, the
order of ALIB and BLIB should appear in the command

line as:

*Z=B,ALIIl,BLIB

Module Bis the root. It calls X from ALIB and brings X
into the root. X in tum calls Y which is brought from
BLIB into the root.

The linker selectively relocates and links object modules from specific user libraries that were built by the librarian.
Figure 11-5 diagrams this general process. During pass-1 the linker processes the input files in the order in which
they appear in the input command line. If the linker encounters a library file during pass-I, it makes note of the
library in an internal save status block, and then proceeds to the next file. The linker processes only non-library
files during the initial phase of pass-I. In the final phase of pass-I the linker processes only library files. This is when
it resolves the undefined globals that were referenced by the non-library files.

The linker processes library files in the order in which they appear in the input command line. The default system
library (SYSLIB.OBJ) is always last. The processing steps are as follows:

1. If there are any undefined globals, the linker proceeds to step 2. Otherwise, it skips to step 5.
2. The linker reads as much of the library directory as the input buffer can hold.
3. The linker then searches the entire list of undefined globals for a match with the library directory. It places

any globals that match in an internal library module list. If more of the library directory remains to be read,
the linker proceeds to step 2.

4. The linker now processes the modules from the library that are associated with the matching undefined
globals. If this processing results in new undefined globals that can be resolved by the current library, the
linker goes back to step 2.

5. The linker closes the current library and processes the next library file, starting with step L

This search method allows modules to appear in any order in the library.You can specify any number of libraries
in a Jink and they can be positioned anywhere, with the exception of forward references between libraries. The
default system library, SYSLIB.OBJ, is the last library file the linker searches to resolve any remaining undefined
globals.

Some languages, such as FORTRAN, have an Object Time System (OTS) that the linker takes from a library and
includes in the final module. The most efficient way to accomplish this is to include these OTS routines (such as
NHD, OTSCOM, and V2NS for FORTRAN) in SYSLIB.OBJ.

Libraries are input to the linker in the same way as other input files. Here is a sample LINK command string:

*TASK01,LP:=MAIN,MEASUR

This causes program MAIN.OBJ to be read from DK: as the first input file. Any undefined symbols generated by
program MAIN.OBJ should be satisfied by the library file MEASUR.OBJ specified in the second input file. The
linker tries to satisfy any remaining undefined globals from the default library, SYSLIB.OBJ. The load module,
TASK0l .SA V, is stored on DK: and a load map prints on the line printer.

11-15

EXIT PASS

Linker (LINK)

START

NO

NO

OPEN FILE

NO

READ AS MUCH OF LIBRARY
DIRECTORY AS POSSIBLE

SEARCH FOR UNDEFINED
GLOBALS FROM LIBRARY

PROCESS LIBRARY
MODULES

NO

YES

YES

CLOSE LIBRARY

Figure 11-5 Library Searches

I 1-16

REPOSITION TO
BEGINNING OF
UBRARY FILE

Linker (LINK)

11.8 OPTION DESCRIPTIONS
The options summarized in Table 11-2 are described in detail below.

11.8.l Bottom Address Option (/B:n)
The /B:n option supplies the lowest address to be used by the relocatable code in the load module. The argument,
n, is a 6-digit unsigned octal number that defines the bottom address of the program being linked. If you do not
supply a value for n, the linker prints:

?LINK-F-/B No value

Retype the command, supplying an even octal value.

When you do not specify /B, the linker positions the load module so that the lowest address is location 1000 (octal).
If the ASECT size is greater than 1000, the size of ASECT is used.

If you supply more than one /B option during the creation of a load module, the linker uses the first /8 option
specification. /B is illegal when you are linking to a high address (/H). /B is also illegal with foreground links. These
modules are always linked to a bottom address of 1000 (octal).

NOTE
The bottom value must be an unsigned even octal num
ber. If the value is odd, the '!LINK-F-/B odd value error
message prints. Reenter the command string specifying
an unsigned even octal number as the argument to the
/B option.

The following command causes the relocatable code from the input file to be linked starting at location 500 (octal).

*OUTPUT,LPt•INPUT/B:500

11.8.2 Continue Option (IC) or (//)
The continue option (IC) lets you type additional lines of command string input. Use the /C option at the end of
the current line and repeat it on subsequent command lines as often as necessary to specify all the input modules
in your program. Do not enter a /C option on the last line of input.

The following command indicates that input is to be continued on the next line; the linker prints an asterisk.

*OUTPUT,LP:=INPUT/C

*
An alternate way to enter additional lines of input is to use the// option on the first line. The linker continues to
accept lines of input until it encounters another// option, which can be either on a line with input file specifica
tions, or on a line by itself. The advantage of using the// option instead of the /C option is that you do not have
to type the / / option on each continuation line. This example shows how the linker itself is linked:

*LINK,LINK=LINKO/B:700/W//
*'-Nl<OV 1 /0: 1
*LNI\GSD/Cl: 1
*LNKHtu:VCJ: l
*LNKMAF'/0; 1
*'-Nl<SAV/0 ! :L
*LNKEM/0: :L
*I/

11-17

Linker (LINK)

You cannot use the /C option and the / / option together in a link command sequence. That is, if you use // on the
first line, you must use// to terminate input on the last line. If you use/Con the first line, use/Con all lines but
the last.

11.8.3 Extend Program Section Option (/E:n)
The /E:n option allows you to extend a program section to a specific value. Type the /E:n option at the end of the
first command line. After you have typed all input command lines, the linker prompts with:

E>:tend section'?

Respond with the name of the program section to be extended. The resultant program section size is equal to or
greater than the value you specify depending upon the space the object code actually requires. Note that you can
extend only one section.

The following example extends section CODE to 100 (octal) blocks.

*X,TT:=LK001/E:100
Extend section? CODE

11.8.4 Default FORTRAN Library Option (/F)
By indicating the /F option in the command line, you can link the FORTRAN library (FORLIB.OBJ on the system
device SY:) with the other object modules you specify. You do not need to specify FORLIB explicitly. For example:

*FILE, LF': ::::AB/F

The object module AB.OBJ trom DK: and the FORTRAN library SY:FORLIB.OBJ are linked together to form a
load module called FILE.SA V.

The linker automatically searches a default system library, SY:SYSLIB.OBJ. The library normally includes the
modules that compose FORLIB. The /F option is provided only for compatibility with other versions of RT-11.
You should not have to use /F.

11.8.S Highest Address Option (/H:n)
The /H:n option allows you to specify the top (highest) address to be used by the relocatable code in the load module.
The argument, n, represents an unsigned even octal number. If you do not specify n, the linker prints:

?LINK-F-/H no value

Retype the command, supplying an even octal number to be used as the value.

lfyou specify an odd value, the linker responds with:

1LINK-F-/H odd value

Retype the command, supplying an even octal number.

If the value is not large enough to accommodate the relocatable code, the linker prints:

?LINK-F-/H value too low

Relink the program with a larger value.

The /H option cannot be used with the /R or /Y or /B options.

11-18

Linker (LINK)

NOTE
Be careful when you use the /H option. Most RT-11 pro·
grams use the free memory above the relocatable code as
a dynamic working area for 1/0 buffers, device handlers,
symbol tables, etc. The size of this area differs on different
memory configurations. Programs linked to a specific high
address might not run in a system with less physical mem
ory because there is less free memory.

11.8.6 Include Option (/1)
The /I option lets you take global symbols from any library and include them in the linking process even when they
are not needed to resolve globals. This provides a method for forcing modules that are not called by other modules
to be loaded from the library. When you specify the /1 option, the linker prints:

Librar~ search?

Reply with the list of global symbols to be included in the load module: type a carriage return to enter each symbol
in the list. A carriage return alone terminates the list of symbols.

The following example includes the global $SHORT in the load module:

*SCCA=RKl.:SCCA/I
Librar~ search? $SHORT
Librar~ search?

11.8.7 Memory Size Option (/K:n)
The /K:n option lets you insert a value into word 56 of block O of the image file. The argument, n, represents the
number of l K blocks of memory required by the program; n is an integer in the range 1-28. You cannot use the /K
option with the /R option. The /K:n option is provided mainly for compatibility with the RSTS operating system.
You should not need to use it with RT-11.

11.8.8 LDA Format Option (IL)
The /L option produces an output file in LDA format instead of memory image format. The LOA format file can
be output to any device including those that are not block-replaceable, such as paper tape or cassette. It is useful
for files that are to be loaded with the Absolute Loader. The default file type .LOA is assigned when you use the /L
option. You cannot use the /L option with the overlay option (/0) or the foreground link option (JR). The following
example links files IN and IN2 on device DK: and outputs an LOA format file OUT.LOA to the cassette and a load
map to the line printer.

*CT!OUT,LP!=INYIN2/L

I 1.8.9 Modify Stack Address Option (/M[:n])
The stack address, location 42, is the address that contains the initial value for the stack pointer. The /M option lets
you specify the stack address. The argument, n, is an even, unsigned 6-digit octal number that defines the stack ad
dress. After all input lines have been typed, the linker prints the following message if you have not specified a value
for n:

Stack s~mb<J 1?

In this case, specify the global symbol whose value is the stack address. You cannot specify a number. If you specify
a nonexistent symbol, an error message prints and the stack address is set to the system default (1000 for SAV files)
or to the bottom address if you used /B. If the program's absolute section extends beyond location 1000, the default
stack space starts after the largest .ASECT contribution.

l l-19

Linker (LINK)

Direct assignment (with .ASECT) of the stack address within the program takes precedence over assignment with
the /M option. The statements to do this in a MACRO program are as follows:

.ASECT

.=42
.WORD INITSP
.PSECT

;INITIAL STACK SYMBOL VALUE
;RETURN TO PREVIOUS SECTION

The following examole modifies the stack address.

*DUTPUT=INPUT/M
Stack symbol? BEG

11.8.10 Overlay Option (/0:n)
The /0 option segments the load module so that the entire program is not memory resident at one time. This lets
you execute programs that are larger than the available memory. The argument, n, is an unsigned octal number (up
to six digits in length) specifying the overlay region to which the module is assigned. The /0 option must follow (on
the same line) the specification of the object modules to which it applies, and only one overlay region can be specified
on a command line. Overlay regions cannot be specified on the first command line; that is reserved for the root seg
ment. You must use /C or// for continuation.

You specify co-resident overlay routines (a group of subroutines that occupy the overlay region and segment at
the same time) as follows:

*OBJA,OBJB,OBJC/0:1/C
*OBJD,OBJE/0!2/C

All modules that the linker encounters until the next /0 option will be co-resident overlay routines. If you specify,
at a later time, the /0 option with the same value you used previously (same overlay region), then the linker opens
up the corresponding overlay area for a new group of subroutines. The new group of subroutines occupy the same
locations in memocy as the first group, but not at the same time. For example, if subroutines in object modules R
and Sare to be in memocy together, but are never needed at the same time as T, then the following commands to
the linker make Rand S occupy the same memory as T (but at different times):

*MAIN,LP:=ROOT/C
*l~1S/O: 1/C
*T/0:l.

The example shown above can also be written as follows:

*M~IN,LP:=ROOT/C
*R/O:t/C
*S/C
* T /0: 1

The following example establishes two overlay regions.

*OUTPUT,LPl=INPUT//
*OBJA/0:1
*OB,JB/D: 1
*OBJC/0!2
*OB.JD/CJ: 2
*I I 11-20

Linker (LLVK)

You must specify overlays in ascending order by region number. For example:

*A::::A/C
*B/0:1/C
*CIO: 1/C
*rvo: 11c
*E,F/Dt2/C
*(3/0 ! 2

The following overlay specification is illegal since the overlay regions are not given in ascending numerical order (an
error message prints in each case):

*X=::LIBFW/ /
*L I BR l./ O : 1
*LIBR2/0!0
?LINK-W-/0 ignored
*II

In the above example, the overlay option immediately preceding the error message is ignored.

11.8.11 Library List Size Option (/P:n)
The /P:n option lets you change the amount of space allocated for the library routine list. Normally, the default
value allows enough space for your needs. It reserves space for approximately 256 W1ique library routines, which is
the equivalent of specifying /P:256. (decimal) or /P:400 (octal).

The error message ?LINK-F-Library list overflow, increase size with /P indicates that you need to allocate more
space for the library routine list. You must relink the program that makes use of the library routines. Use the
/P:n option and supply a value for n that is greater than 256.

You can use the /P:n option to correct for symbol table overflow. Specify a value for n that is less than 256. This
reduces the space used for the library routine list and increases the space allocated for the symbol table. If the value
you choose is too small, the ?LINK-F-Library list overflow, increase size with /P message prints. In the following
command, the amount of space for the library routine list is increased to 300 (decimal).

*SCCA•RKitSCCA/P:300.

11.8.I 2 REL Fonnat Option (/R(:n])
The /R[:n] option produces an output fde in REL format for use as a foregound job with the FB or XM monitor.
You cannot use .REL files with the SJ monitor. The /R option assigns the default file type .REL to the output me.
The optional argument, n, represents the amount of stack space to allocate for the foreground job. The default value
is 128. (decimal) bytes of stack space. If you also use the /M option, the value or global symbol associated with it
overrides the /R value.

The following command links files FILEI.OBJ and NEXT.OBJ and stores the output on DT2: as FILEO.REL. It
also prints a load map on the line printer.

*DT2:FILEO,LP:~FILEI,NEXTIR:200

You cannot use the /8, /H, and /L options with /R since a foreground REL job has a temporary bottom address of
1000 and is always relocated by FRUN. An error message prints if you attempt this. The /K option is also illegal
with /R.

11-21

Linker (LINK)

11.8.13 Symbol Table Option (IS)
The /S option instructs the linker to allow the largest possible memory area for its symbol table at the expense of
input and output buffer space, which makes the linking process slower. You should use the /S option only if an
attempt to link a program failed because of symbol table overflow. Often, use of/Sallows the program to link.

11.8.14 Transfer Address Option (IT[:n])
The transfer address is the address at which a program starts when you initiate execution with an R, RUN, or FRUN
command. It prints on the last line of the load map. The /T option lets you specify the start address of the load
module. The argument, n, is a six-digit unsigned octal number that defines the transfer address. If you do not specify
n, the following message prints:

Transfer s!:!mbol'l'

In this case, specify the global symbol whose value is the transfer address of the load module. Terminate your
response with a carriage return. You cannot specify a number in answer to this message. If you specify a nonexistent
symbol, an error message prints and the transfer address is set to 1 so that the program traps immediately if you
attempt to execute it. If the transfer address you specify is odd, the program does not start after loading and control
returns to the monitor.

Direct assignment (.ASECT) of the transfer address within the program takes precedence over assignment with the
/T option. The transfer address assigned with a /T has precedence over that assigned with an .END assembly directive.
To assign the transfer address within a MACRO program, use statements similar to these:

START1:

START2:

.ASECT

.=40

.WORD

.PSECT

or

.END

START1

START2

;SYMBOL VALUE FOR TRANSFER ADDRESS
;RETURN TO PREVIOUS SECTION

;SECONDARY STARTING ADDRESS

The following example links the files LIBR0.OBJ and ODT.OBJ together and starts execution at ODT's transfer
address.

*LBRODT,LBRODT=LIBRO,ODT/T/W//
*LIF.!Rl/Cl!:L
*LIBFa/O: 1.
*LIBF.:3/O: l
*LI BF~4/0: :I.
*I...II-H-<'.':i/0! l
*LBF~EM/D: 1 / I
Transfer sYmbol? 0,0DT

*

11-22

Linker (LINK)

1 l.8.15 Round Up Option (/U:n)
The /U :n option rounds up the section you specify so that the size of the root segment is a whole number multiple
of the value you supply. The argument, n, must be a power of 2. When you specify the /U:n option, the linker
prompts:

Round ~;ection?

Reply with the name of the program section to be rounded. The program section must be in the root segment.
Note that you can round only one program section. The following example rounds up section CHAR.

*LK007,TT:=LK007/U:200
Round section? CHAR

If the program section you specify cannot be found, the linker prints ?LINK-W-Round section not found. The
linking process continues with no rounding.

11.8.16 Map Width Option (/W)
The /W option directs the linker to produce a wide load map listing. If you do not specify the /W option, the listing
is wide enough for three GLOBAL VALUE columns (nonnal for paper with 80 columns). If you use the /W com
mand, the listing is six columns wide, which is ideal for a 132 column page.

11.8.17 Bit Map Inhibit Option (/X)
The /X option instructs the linker not to output the bit map if code is below 400. This option is provided only for
compatibility with the RSTS operating system. The bit map is stored in locations 360-377 in block O of the load
module. The linker normally stores the program memory usage bits in these eight words. Each bit represents one
256-word block of memory. This information is used by the R, RUN and GET commands when loading the program;
therefore, use care when you use this option.

11.8.18 Boundary Option (/Y :n)
The /Y:n option starts a specific program section on a particular address boundary. The linker generates a whole
number multiple of n, the value you specify, for the starting address of the program section. The argument, n, must
be a power of 2. The linker extends the size of the previous program section to accommodate the new starting ad
dress. When you have entered all the input lines, the linker prompts:

Boundarw section?

Respond with the name of the program section whose starting address you are modifying. Terminate your response
with a carriage return. Note that you can specify only one program section for this option. If the program section
you specify cannot be found, the linker prints ?LINK-W-BoW1dary section not found. The linking process continues.

The RT-11 monitors have internal 2-block overlays. The first overlay segment, OVLYO, must start on a disk block
boundary:

*RKMNSJ.SYS=RKBTSJ,RT11SJ,RKTBSJ,RK/Y:1000
Boundarw Section? OVLYO

11.8.19 Zero Option (/Z:n)
The /Z:n option fills unused locations in the load module and places a specific value in these locations. The argument,
n, represents the value to be placed in the unused locations. This option can be useful in eliminating random results
that occur when the program refernnces uninitialized memory by mistake. The system automatically zeroes unused
locations. Use the /Z:n option only when you want to store a value other than zero in unused locations.

11-23

Linker (LINK)

11.9 LINKER PROMPTS
Some of the linker operations prompt for more information, such as the names of specific global symbols or sections.
The linker issues the prompt after you have entered all the input specifications, but before the actual linkmg begins.
Table 11-6 shows the sequence in which the prompts occur.

Table 11-6 Linker Prompting Sequence

Prompt Option

Transfer symbol? /T
Stack symbol? /M
Extend section? /E:n

Boundary section? /Y:n

Round section? /U:n

Library search? /I

The library search prompt is last because it can accept more than one symbol and is terminated by a carriage return
on a line by itself.

Note that if the command lines are in an indirect file and the linker encounters an end-of-file before the prompting
information has been supplied, it prints the prompt messages on the terminal.

The following example shows how the linker prompts for information when you combine options.

*LK001=LK001/T/M/E!100/Y!400/LJ!20/I
Transfer swmbol? O.ODT
Stack s~mbol? ST3
Extend section? CHAR
Boundar~ section? CODE
Round section? STKSP
Library search? $SHORT
Library search'?

*

11-24

CHAPTER 12

LIBRARIAN (LIBR)

The librarian utility program (LIBR) lets you create, update, modify, list, and maintain object library files. It also
lets you create macro library files to use with the V03 MACR0-11 assembler.

A library file is a direct access ftle (a file that has a directory) that contains one or more modules of the same module
type. The librarian organizes the library files so that the linker and MACR0-11 assembler can access them rapidly.
Each library contains a library header, library directory (or global symbol or macro name table), and one or more
object modules or macro definitions. The object modules in a library file can be routines that are repeatedly used
in a program, routines that are used by more than one program, or routines that are related and simply gathered
together for convenience. The contents of the library file are determined by your needs. An example of a typical
object library file is the default system library that the linker uses, SYSLIB.OBJ. An example of a macro library file
is SYSMAC.SML, which MACRO uses automatically to process programmed requests.

You access object modules in a library file from another program by making calls or references to their global
symbols; you then link the object modules with the program that uses them, producing a single load module (see
Chapter 11).

Consult the RT-11 Software Support Manual for more information on the internal data structure of a library file.
However, that infonnation is not necessary for your understanding of this chapter.

12.1 CALLING AND USING LIBR
To call the RT-11 librarian from the system device, respond to the dot (.) printed by the keyboard monitor by
typing:

RLIBR(RET)

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to
accept a command line. Chapter 6, Command String Interpreter, describes the general syntax of the command line
LIBR accepts.

Type two CTRL/Cs to halt the librarian at any time (or a single CTRL/C to halt the librarian when it is waiting for
console terminal input) and return control to the monitor. To restart the librarian, type R LIBR or REENTER in
response to the monitor's dot.

Section 12.2 explains how to use the librarian to create and maintain object libraries; Section 12.3 describes how to
create macro libraries.

Specify the LIBR command string in the following general format:

library-filespec [n] ,list-filespec [n] =input-file specs/ options

where

library-file spec [n] represents the library file to be created or updated. The optional argument, n,
represents the number of blocks to allocate for the output file.

12-1

list-filespec [n]

input-filespec

option

Librarian (LJBR)

represents a listing file for the library's contents. The optional argument, n, represents
the number of blocks to allocate for the listing file.

represents the input object modules (you can specify up to six input files); it can also
represent a library file to be updated.

represents an option from Table 12-1.

You specify devices and file names in the standard RT-11 command string syntax, with default file types assigned
as follows:

File

list file:
library file:
input files:

File Type

.LST

.OBJ

.OBJ

If you do not specify a device, the default device (DK:) is assumed.

Each input file consists of one or more object modules and is stored on a given device under a specific file name and
file type. Once you insert an object module into a library file you no longer reference the module by the name of the
file of which it was a part; instead, you reference it by its individual module name. You assign this module name with
the assembler with either a .TITLE statement in the assembly source program, or with the default name .MAIN. upon
absence of a .TITLE statement or the subprogram name for FORTRAN routines. Thus, for example, the input file
FORT.OBJ can exist on DT2: and can contain an object module called ABC. Once you insert the module into a
library file, reference only ABC (not FORT.OBJ).

The input files normally do not contain main programs but rather subprograms, functions, and subroutines. The
library file must never contain a FORTRAN "BLOCK DATA" subprogram; there is no undefined global symbol to
cause the linker to load it automatically.

12.2 OPTION COMMANDS AND FUNCTIONS FOR OBJECT LIBRARIES
You maintain object library files by using option commands. Functions that you can perform include object module
deletion, insertion and replacement, library ftle creation, and listing of an object library file's contents.

Table 12-1 summarizes the options available for you to use with RT-11 LIBR for object libraries. The following
sections, which are arranged alphabetically by option, describe the options in greater detail.

Table 12-1 UBR Object Options

Option Command Line Section Meaning

JC any but last 12.2.l Command continuation; allows you to type the input
specification on more than one line.

JD first 12.2.4 Delete; deletes modules that you specify from a library file.

JE first 12.2.5 Extract; extracts a module from a library and stores it in an
.OBJ file.

JG first 12.2 .. 6 Global deletion; deletes global symbols that you specify
from the library directory.

JN first 12.2.7 Names; includes the module names in the directory.

12-2
(Continued on next page)

Librarian (LIBR)

Table 12-1 (Cont.) LIBR Object Options

Option Command Line Section Meaning

/P first 12.2.8 P-section name5; includes the program section names in the
directory.

IR first 12.2.9 Replace; replaces modules in a library file. lhls option must
follow the file specification to which it applies.

IU first 12.2.10 Update; inserts and replaces modules in a library file. This
option must follow the file specification to which it applies.

IW first 12.2.11 Indicates wide format for the listing file.

I I first and last 12.2.1 Command continuation; allows you to type the input
specification on more than one line.

There is no option to indicate module insertion. If you do not specify an option, the librarian automatically inserts
modules into the library file.

12.2.1 Command Continuation Options (JC and 11)
You must use a continuation option whenever there is not enough room to enter a command string on one line. The
maximum number of input files that you can enter on one line is six; you can use the IC option or the I I option to
enter more. Type the IC option at the end of the current line and repeat it at the end of subsequent command lines
as often as necessary, so long as memory is available; if you exceed memory, an error message prints. Each continua
tion line after the first command line can contain only input file specifications (and no other options). Do not specify
a IC option on the last line of input. If you use the I I option, type it at the end of the first input line and again at the
end of the last input line.

The following example creates a library file on the default device (DK:) under the file name ALIB.OBJ; it also creates
a listing of the library file's contents as LIBLST .LST (also on the default device). The file names of the input modules
are MAIN .OBJ, TEST .OBJ, FXN .OBJ, and TRACK.OBJ, all from DTl:.

tALIB,LIBLST=DTl:MAIN,TEST,FXN/C
:>ICDTl.: Tf~ACK

The next example creates a library file on the default device (DK:) under the name BLIB.OBJ. It does not produce
a listing. Input files are MAIN.OBJ from the default device, TEST.OBJ from RKl:, FXN.OBJ from RK0:, and
TRACK.OBJ from DTl :.

*BL I B=00 MA IN//
*F:h:l: TEST
*':~1,0: FXN
it DT l : TF~ACl'U /

Another way of writing this command line is:

*BLIB=MAINvRK1!TEST,RKO:FXN//
*DT :/.: TJ=~hCI,
*//

12-3

Librarian (LIBR)

12.2.2 Creating a Ubrary File
To create a library file, specify a: file name on the output side of a command line.

The following example creates a new library called NEWLIB.OBJ on the default device (DK:). The modules that
make up this library file are in the files FIRST .OBJ and SECOND.OBJ, both on the default device.

*NEWLIB=FIRST,SECOND

12.2.3 Inserting Modules into a Library
Whenever you specify an input file without specifying an associated option, the librarian inserts the modules in the
fl.le into the library file you name on the output side of the command string. You can specify any number of input
files. If you include section names (if you use /P) in the global symbol table and if you attempt to insert a file that
contains a global symbol or PSECT (or CSECT) having the same name as a global symbol or PSECT already existing
in the library file, the librarian prints a warning message. The librarian does, however, update the library file, ignore
the global symbol or section name in error, and return control to the CSI. You can then enter another command
string.

Although you can insert object modules that exist under the same name (as assigned by the .TITLE statement), this
practice is not recommended because of the difficulty and ambiguity involved when you need to update these modules
(Sections 12.2.2.9 and 12.2.2.10 describe replacing and updating).

NOTE
The librarian performs module insertion, replacement,
deletion, merge, and update concurrently with creating
the library file. Therefore, you must indicate the library
file to which the operation is directed on both the input
and output sides of the command line, since effectively
the librarian creates a "new" output library file each
time it performs one of those operations. You must
specify the library file first in the input field.

The following command line inserts the modules included in the files FA.OBJ, FB.OBJ, and FC.OBJ on DTl: into a
library file named DXYNEW.OBJ on the default device. The resulting library also includes the contents oflibrary
DXY.OBJ.

*DXYNEW=DXY,DTl!FA~FB,FC

The next command line inserts the modules contained in files THIRD.OBJ and FOURTH.OBJ into the library
NEWLIB.OBJ.

*NEWLIB,LIST=NEWLIB,THIRD,FOURTH

Note that the resulting library contains the original library plus some new modules. Note a:lso that the resulting
library replaces the original library because the same name was used in this example for the input and output library.

12.2.4 Delete Option (ID)
The /D option deletes modules and a:11 their associated global symbols from the library.

When you use the /D option, the librarian prompts:

Respond with the name of the module to be deleted followed by a carriage return; continue until you have entered
all modules to be deleted. Type a carriage return immediately after the Module name? message to terminate input
and initiate execution of the command line.

12-4

Librarian (LIBR)

The following example deletes the modules SGN and TAN from the library file TRAP .OBJ on DT3:.

*DT3!TRAP=DT3!TRAP/D
Module name? SGN
Module name? TAN
Module name?

The next example deletes the module FIRST from the library LIBFIL.OBJ; all modules in the file ABC.OBJ replace
old modules of the same name in the library; it also inserts the modules in the file DEF .OBJ into the library.

*LIBFIL=LIBFIL/D,ABC/R,DEF
Module name? FIRST
Module name?

In the following example, the librarian deletes two modules of the same name from the library file LIBFIL.OBJ.

*LIBFIL=LIBFIL/D
Module name? X
Module name? X
Modt.Jle name?

12.2.5 Extract Option UE)
The /E option allows you to extract an object module from a library file and place it in an .OBJ file.

When you specify the /E option, the librarian prints:

Global?

Respond with the name of the object module to be extracted. If you specify a global name, the librarian extracts
the entire module of which that global is a part.

You cannot use the /E option on the same command line with any other option.

The following example extracts the ATAN routine from the FORTRAN library, SYSLIB.OBJ, and stores it in a file
called AT AN.OBJ on DXl :.

*DX1:ATAN=SYSLIB/E
Global? ATt-iN
Gl e>ba l 'r

The next example extracts the $PRINT routine from SYSLIB.OBJ and stores it on DMI: as PRINT.OBJ.

*DM1:PRINT=SYSLIB/E
Globi.'Jl? $PfnNT
Glc)bal?

The extract option is particularly useful if you need to use a routine in only one overlay segment. Normally, all
modules that the linker acquires automatically from a library go into the root segment. To circumvent this, you can
extract a routine with /E, then link it into an overlay segment instead of into the root segment.

12.2.6 Delete Global Option (JG)
The /G option lets you delete a specific global symbol from a library file's directory.

When you use the /G option, the librarian prints:

12-5

Librarian (L/BR)

Gle>bal?

Respond with the name of the global symbol to be deleted followed by a carriage return; continue until you have
entered all globals to be deleted. Type a carriage return immediately after the Global? message to terminate input
and initiate execution of the command line.

The following command instructs the librarian to delete the global symbols NAMEA and NAMEB from the directory

found in the library file ROLL.OBJ on DK:.

*FWLl...::::fWLL/G
13:t.cibal'? NAMEA
Glcib,:ll 'l' NAMEB
Global'?

The librarian deletes globals only from the directory (and not from the library itself). Whenever you update a library
file all globals that you previously deleted are restored unless you use the /G option again to delete them. This feature
lets you recover if you inadvertently delete the wrong global.

12.2.7 Include Module Names Option (/N)
The librarian does not include module names in the directory unless you use the /N option on the first line of the
command. The linker loads modules from libraries based on undefined globals, not on module names. The linker
also provides equivalent functions by using global symbols and not module names. Normally, then, it is a waste of
space and a performance compromise to include module names in the directory.

If you do not include module names in the directory, the MODULE column of the directory listing is blank unless
the module requires a continuation line to print all its globals. A plus(+) sign in the MODULE column indicates
continued lines. The /N option is useful mainly when you create a temporary library in order to obtain a directory
listing.

If the library does not have module names in its directory, you must create a new library to include the module
names. The following example illustrates how to do this. It creates a temporary new library from the current library
(by specifying the null device for output) and lists its directory on the terminal. The current library OLDLIB remains
unchanged,

*NL:TEMPrTT:=OLDI...IB/N
RT-11 LIBRARIAN V03.00
TEMP

MODULE

IRAil50
JMUL
LEN
SUBSTR
JADD
.JCMP

Gl..OBAL..!3

IRAD50
. .JMUL.
LEN
SUBSTR
,JADD
,JCMP

12.2.8 Include P-section Names Option (IP)

TUE 03-MAY-77 20:36:41
TUE 03-MAY-77 20:36!40

GLOBALS

RAD50

GLOBALS

The librarian does not include program section names in the directory unless you use the /P option on the first line
of the command. The linker does not use section names to load routines from libraries; including the names can de
crease linker perfonnance. Including program section names also causes a conflict in the library directory and sub
sequent searches, since the librarian treats section names and global symbols identically.

This option is provided for compatibility with RT-l 1V2C. DIGITAL recommends that you avoid using it with
RT-l lV03.

12-6

Librarian (LIBR)

12.2.9 Replace Option (JR)
Use the /R option to replace modules in a library file. The /R option replaces existing modules in the library file you
specify as output with the modules of the same names contained in the file(s) you specify as input. In the command
string, enter the input library ftle before the files used in the replacement operation.

If an old module does not exist under the same name as an input module, or if you specify the /R option on a library
file, the librarian prints an error message preceded by the module name, and ignores the replace command. /R must
follow each input file name containing modules for replacement.

The following command line indicates that the modules in the file INB.OBJ are to replace existing modules of the
same names in the library ftle TFILOBJ. The object modules in the ftles INA.OBJ and INC.OBJ are to be added to
TFIL. All ftles are to be stored on the default device DK:.

*TFIL=TFIL,INA,INB/R,INC

The same operation occurs in the next command as in the preceding example, except that this updated library file
is assigned the new name XFIL.

tXFIL=TFIL,INA,INB/R,INC

12.2.10 Update Option (/U)
The /U option lets you update a library file by combining the insert and replace functions. If the object modules
that compose an input ftle in the command line already exist in the library fde, the librarian replaces the old modules
in the library ftle with the new modules in the input ftle. If the object modules do not already exist in the library
fde, the librarian inserts those modules into the library. (Note that some of the error messages that might occur with
separate insert and replace functions do not print when you use the update function.) /U must follow each input
file that contains modules to be updated. Specify the input library file before the input fdes in the command line.

The following command line instructs the librarian to update the library file BALIB.OBJ on the default device. First
the modules in FOLT.OBJ and BART.OBJ replace old modules of the same names in the library file, or if none al
ready exist under the same names, the modules are inserted. The modules from the ftle TAL.OBJ are then inserted;
an error message prints if the name of the module in TAL.OBJ already exists.

*DALIB=BALIB,FOLT/U,TAL,BART/U

In the next example, there are two object modules of the same name (X) in both Z and XLIB; these are first deleted
from XLIB. This ensures that both the modules called X in file Z are correctly placed into the library. Globals SECI
and SEC2 are also deleted from the directory but automatically return the next time the library XLIB.OBJ is updated.

*XLIB=XLIB/D,Z/U/G
Modu h~ name'!' X
Module l'H:JITH:? X
Module 1·H~me?
Global'!' SEC1
(Hobml? SEC2
Glnbal'?

12.2.11 Wide Option UW)
The /W option gives you a wider listing if you request a listing file. The wider listing has six GLOBAL columns in·
stead of three, as in the nonnal listing. This is useful if you list the directory on a line printer or a terminal that has
132 columns.

12-7

Librarian (LJBR)

12.2.12 Listing the Directory of a Library File
You can request a listing of the contents of a library me (the global symbol table) by indicating both the library file
and a list file in the command line. Since a library file is not being created or updated, you do not need to indicate
the file name on the output side of the command line;however, you must use a comma to designate a null output
library file.

The command syntax is as follows:

"',LP:=library-ftlespec

or

"')ist -filespec=library -filespec

where

library -file spec represents the existing library file.

LP: indicates that the listing is to be sent directly to the line printer (or terminal, if
you use IT:}.

list-filespec represents a list file of the library file's contents.

The following command outputs to DT2: as LIST.LST, a listing of the contents of the library me LIBFIL.OBJ on
the default device.

*,DT2:LIST=LIBFIL

The next command sends to the line printer a listing of all modules in the library file FLIB.OBI, which is stored on
the default device.

Here is a sample section of a large directory listing:

*,TT:=SYSLIB
RT-11 LIBRARIAN V03.00
SYSLIB

MODULE GLOBALS

DCO$
+ GCO$

DIC$1S
+ DIC$SS

Aflfl$JS
+ AD[l$SS
+ SUD$F'S

TUE 03-MAY-77 21!01!01
TUE 03-HAY-77 20:59:47

GLOBALS

ECO$
RC!$
DIC$MS
$[1JVC
ADDSMS
SUD$1S
SUD$SS

GLOBALS

FCO$

DIC$PS
$DVC
ADD$PS
SUD$MS
$ADD

The first line of the listing file shows the version of the librarian that was used and the current date and tune. The
second line prints the library file name and the date and time the library was created. Module names are not included
in this example. Each line in the rest of the listing shows only the globals that appear in a particular module. If a
module contains more global symbol names than can print on one line, a new line will be started with a plus(+) sign
in column 1 to indicate continuation.

12.8

Librarian (LIBR)

12.2.13 Merging Library Files
You can merge two or more library files under one file name by specifying in a single command line all the library
files to be merged. The librarian does not delete the individual library files following the merge unless the output
file name is identical to one of the input file names.

The command syntax is as follows:

where

*library-filespec=input-filespecs

library -file spec

input-filespec

represents the library file that will contain all the merged files. (If a library file
already exists under this name, you must also indicate it in the input side of the
command line so that it is included in the merge).

represents a library ftle to be merged.

Thus, the following command combines library files MAIN .OBJ, TRIG .OBJ, STP .OBJ, and BAC.OBJ under the
existing library file name MAIN.OBJ; all files are on the default device DK:. Note that this replaces the old contents
of MAIN.OBJ.

*MAIN=MAIN,TRIGYSTP,BAC

The next command creates a library file named FORT .OBJ and merges existing library files A.OBJ, B.OBJ, and
C.OBJ under the file name FORT.OBJ.

NOTE
Library ftles that you combine using PIP are illegal as
input to both the librarian and the linker.

12.2.14 Combining Library Option Functions
You can request two or more library functions in the same command line, with the exception of the /E option, which
cannot be specified on the same command line with any other option. The librarian performs functions (and issues
appropriate prompts) in the following order:

l. /C or//
2. /D
3. /G
4. /U
5. /R
6. Insertions
7. Listing

Here is an example that combines options:

*FILE,LP:=FILE/D,MODX,MODY/R
Module name? XYZ
McJdu 1 i.,~ n,BITlf?'? A
Mc:1d1 .. 1 l (,~ namf:1?

12-9

Librarian (LIBR)

The librarian performs the functions in this example in order, as follows:

l. Deletes modules XYZ and A from the library me FILE.OBJ.
2. Replaces any duplicate of the modules in the ftle MODY.OBJ.
3. Inserts the modules in the file MODX.OBJ.
4. Lists the directory of FILE.OBJ on the line printer.

12.3 OPTION COMMANDS AND FUNCTIONS FOR MACRO LIBRARIES
The librarian lets you create macro libraries. A macro library works with the V03 MACR0-11 assembler to reduce
macro search time.

The MACRO directive produces the entries in the library directory (macro names). LIBR does not maintain a direc
tory listing file for macro libraries; you can print the ASCII input file to list the macros in the library.

The default input and output me type for macro files is .MAC.

Be careful not to give the library file the same name as one of the input files. This deletes the input file when the
library is created.

Table 12-2 summarizes the options you can use with macro libraries. The options are explained in detail in the
following two sections.

Table 12-2 LIBR Macro Options

Options Command Line Section Meaning

/C any but last 12.3.1 Command continuation; allows you to type the input
specification on more than one line.

/M [:n] first 12.3.2 Macro; creates a macro library from the ASCII input file
containing .MACRO directives.

II first and last 12.3.1 Command continuation; allows you to type the input
specification on more than one line.

12.3.1 Command Continuation Options (/C or//)
These options are the same for macro libraries as for object libraries. See Section 12.2.1.

12.3.2 Macro Option (/M[:n])
The /M [:n] option creates a macro library file from an ASCII input file that contains .MACRO directives. The op
tional argument, n, determines the amount of space to allocate for the macro name directory. Remember that n is
interpreted as an octal number; you must follow n by a decimal point (n.) to indicate a decimal number. Each 64
macros occupy one block of library directory space. The default value for n is 128, enough space for 128 macros,
which will use 2 blocks for the macro name table.

The command syntax is as follows:

*library-filespec=input-filespec/M [:nJ

where

library-file spec represents the macro library to be created.

12-10

Librarian (LIBR)

input-filespec represents the ASCII input file that contains .MACRO definitions.

/M[:n] is the macro option.

The continuation options (/C or//) are the only options you can use with the macro option.

The following example creates the macro library SYSMAC.SML from the ASCII input file SYSMAC.MAC. Both
files are on device DK:.

*SYSMAC.SML=SYSMAC/M

12-11

CHAPTER 13

DUMP

DUMP is the RT-11 program that prints on the console or line printer, or writes to a file all or any part of a file
in ocfal words, octal bytes, ASCII characters, and/or Radix-SO characters. DUMP is particularly useful for examin
ing directories and files that contain binary data.

13.1 CALLING AND USING DUMP
To call the DUMP program from the system device, respond to the dot (.) printed by the keyboard monitor by
typing:

R DUMP(RET)

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to
accept a command line. If you respond to the asterisk by typing only a carriage return, DUMP prints its current
version number.

You can type CTRL/C to halt DUMP and return control to the monitor when DUMP is waiting for input from
the console terminal. You must type two CTRL/Cs to abort DUMP at any other time. To restart DUMP, type
R DUMP or REENTER and a carriage return in response to the monitor's dot. Chapter 6, Command String
Interpreter, describes the general syntax of the command line that DUMP accepts. If you do not specify an out
put file, the listing prints on the line printer. If you do not specify a file type for an output file, the system uses
.DMP.

13.2 DUMP OPTIONS
Table 13-1 summarizes the options that are valid for DUMP.

Table 13-1 DUMP Options

Option Explanation

/B Outputs octal bytes.

/E:n Ends output at block number n, where n is an octal block number.

/G Ignores input errors.

/N Suppresses ASCII output.

/0:n Outputs only block number n, where n is an octal block number. With the /0 option, you
can dump only one block for each command line.

/S:n Starts output with block number n, where n is an octal block number. For random access
devices, n cannot be greater than the number of blocks in the file.

/T Defines a tape as non-RT-11 file-structured.

/W Outputs octal words (the default mode).

IX Outputs Radix-SO characters.

13-1

DUMP

ASCII characters are always dumped unless you type /N.

If you specify an input file name, the block numbers (n) you supply are relative to the beginning of that file. If
you do not specify a file name; that is, if you are dumping a device, the block numbers are the absolute (physical)
block numbers on that device. Remember that the first block of any file or device is block 0.

DUMP handles operations that involve magtape and cassette differently from operations involving random access
devices.

If you dump an RT·l 1 file-structured tape and specify only a device name in the input specification, DUMP reads
only as far as the logical end-of-tape. Logical end-of-tape is indicated by an end-of.file label followed by two tape
marks. For non-file-structured tape, logical end-of-tape is indicated by two consecutive tape marks. If you dump a
cassette and specify only the device name in the input specification, the results are unpredictable. For magtape
dumps, tape mark messages appear in the output listing as DUMP encounters them on the tape.

If you use JS :n with magtape, n can be any positive value. However, an error can occur if n is greater than the
number of blocks written on the tape. For example, if a tape has l 00 written blocks and n is I IO, an error can
occur if DUMP accesses past the 100th block. If you specify /E:n, DUMP reads the tape from its starting position
(block 0, unless you specify otherwise) to block number n or to logical end-of-tape, whichever comes first.

13.3 EXAMPLES
This section includes sample DUMP commands and the listings they produce.

The fo11owing command string directs DUMP to print in octal words information contained in block l of the file
DMPX.SAV stored on device DK:.

*ItMPX, SAVIO: 1

OMPX,SAV/Ot1
BLOCK NUMBE~ 00001
000/ 012700 OOOOlll 000261 006101 106100 110024 012700 000206 -~ ••• 1,A,a•••~•••*
020/ 006301 001403 106100 103174 000166 000207 0S2140 023364 *A.,,~.,.v,,.~rT&•
040/ 0220)0 021424 015326 023747 000000 023747 0067b6 021401 *,S,#V,G' •• Grv,~••
060/ 050500 062145 177400 177001 051042 040'J0!5 020104 042515 *(HIEE', •, _,, RE~O "'E*
100/ 0210•1\ 000000 000377 000001 ooo.no 001000 000400 177777 * 1" •••••• -·······* 120/ 000000 000000 ooonon 0(')0000 000000 000000 000000 000000 ·················* 140/ 000000 ooooon 000000 000000 000000 000000 000000 000000 ••.•...•.. ,
160/ 000000 000000 001)000 000000 000000 000000 000000 000000 ·················* 200/ 0000()0 000000 000000 000000 onoooo 000000 000000 000000 •....•.•......•. '*
220/ 000000 000000 000000 000000 000000 000000 000000 000000 ., .•......... ,., ..
240/ 000000 000000 0()0000 000000 000000 000000 000000 000000 * •••• ' t •••••••••••

260/ 000000 000000 000000 000000 000000 000000 000000 000000 ·········••••••1•* JOO/ 000000 000000 000000 000000 00001)0 000(100 000000 oooooc •......•..... , ...•
320/ 000000 001'.1000 riooooo oouooo 000000 000000 000000 000000 ·················* 340/ 000000 000001) 000000 000000 000000 000000 000000 000000 *················*)60/ 000000 000000 000000 000000 000000 t'I00000 000000 000000 .,, ,,.,.,,.
400/ 000000 000000 000000 000000 ooooou 000000 000000 000000 * t ' I • t • t • I e I e ti I • •.

420/ 000000 000000 000000 000000 000000 000000 000000 000000 ••• ' •• ' •••••••••• *
440/ 000000 000,,00 ll00000 000000 000000 000000 000000 000000 ... ,.,, , ..
4&0/ 000000 000000 00000() 000000 000000 000000 000000 000(\00 • 9 I I t t t t • I t I t I I I I.

500/ 000000 000000 000000 000000 000000 000000 000000 000000 , ..•...•••...•
520/ 000000 000000 000000 000000 000000 01>0000 000000 000000 ·················* 540/ 000000 000000 000000 000000 000000 000000 000000 000000 *,,,.,., , •..•
560/ 000000 000000 000000 000000 000000 000000 000000 000000 , ,
600/ 000000 000000 000000 000000 000000 000000 000000 000000 * •••••••••••••••••
b20/ 000000 oooouo 000000 000000 000000 00000() 000000 000000 ••.•.•......... , ..
640/ 000000 000000 000000 000000 000000 000000 000000 000000 ·················* 660/ 000000 000000 000000 000000 000000 000000 000000 000000 •........ , .. ,
700/ 000000 000000 00()000 000000 000000 000000 000000 000000 •••••••••••••• t •••

720/ 000000 00001)0 000000 000000 000000 000000 000000 000000 * •••••• ' •• ' •••••••
7401 000000 000000 000000 000000 000000 000000 000000 000000 • I • • • • • I • • • I • I I I I*

760/ 000000 oooouo 0000(.)(i onoooo 000000 000000 000000 000000 *········~·······*
13-2

DUMP

In the printout above, the heading shows which block of the file follows. The numbers in the leftmost column
indicate the byte offset from the beginning of the block. Remember that these are all octal values and that there
are two bytes per word. The octal words that were dumped appear in the next eight columns. The rightmost
column contains the ASCII equivalent of each octal word. DUMP substitutes a dot (.) for non-printing codes,
such as those for control characters.

The next command dumps block 1 of file PIP.SA V. The /N option suppresses ASCII output.

lkF'IF',SAV/N/O:l

PIP,SAV/N/011
BLOC!< NIJMBER 00001
000/ 100101 000000 000000 000002 00()001 100102 000000 000000
020/ 000001 000002 1001ol 000000 000000 000000 000000 000104
040/ 000000 177152 00200(1 000004 100107 000000 000000 000000
060/ 000000 100111 000000 000000 00&002 0()0020 \00115 0()0000
100/ 000000 002000 000040 100116 000000 onoooo 000500 000200
120/ 100117 000000 000000 000300 000400 100120 000000 000000
140/ 002000 001000 1001H 000000 000000 000000 000000 000122
160/ 000000 177602 001164 002000 100123 onoooo 001'1000 000000
200/ 000000 100124 000000 000000 000000 onoooo 100125 000000
220/ 000000 000020 ()04000 100127 000000 000000 000000 000000
240/ 100130 000000 000000 000000 000000 100131 000000 000000
260/ 000000 000000 000000 100115 000000 000000 002b00 000100
300/ 004000 000001 000000 orJ01on 000000 000000 000000 000000
320/ 000000 uOOOOO 000000 000000 000000 000000 000000 000000
340/ 000000 000000 000000 000000 000000 000000 000000 000000
360/ 000000 oooouo 000000 000000 000000 000000 000000 000000
400/ 000000 000000 000000 000000 000000 000000 000000 000000
420/ 000000 000000 000000 000000 000000 000000 000000 000000
440/ 000000 000000 000000 000000 000000 000000 000000 000000
4&0/ 000000 000000 000000 ouoooo 000000 000000 000000 000000
500/ 000000 000000 000000 000000 000000 000000 000000 000000
520/ 000000 000000 000000 000000 000000 000000 000000 000000
540/ 000000 000000 000000 000000 000000 000000 000ono 000000
560/ 000000 000000 000000 000000 000000 000000 000000 000000
600/ 000000 000000 onoooo 000000 000000 000000 000000 000000
&20/ 000000 000000 000000 000000 000000 000000 000000 000000
640/ 000000 000000 uuoooo 000000 000000 000000 000000 000000
&&0/ 000000 000000 000000 000000 000000 000000 000000 000000
700/ 000000 000000 JOOOOO 000000 000000 000000 000000 000000
720/ 000000 000000 000000 000000 000000 000000 onoooo 000000
740/ 000000 000000 000000 000000 003054 002543 002510 00251>2
760/ 002314 002407 002421> 002342 002446 002614 0021>76 002177

The following command dumps block 1 of SYSMAC.MAC in octal bytes. ASCII equivalents appear underneath
each byte.

*SYSMAC,MAC/B/0:1

SYS MAC• MAC /B /0 I 1
BLOCK t-4UM!-lEFI 00001
000/ 040 124 117 040 124 110 105 123 105 040 114 111 103 105 1H• 123

T 0 T H E s E L .l C E N s
020/ 105 040 124 1 05 122 115 123 056 040 124 111 124 114 105 040 124

E T E R M s • T I T , .. E T
040/ 117 040 1 O I 116 104 040 117 127 116 105 122 123 11 0 111 120 040

0 A N D Q w N E R 5 H I p
060/ 117 106 040 124 11 O 105 040 015 012 073 040 123 117 106 124 127

0 F' 1' Ii E • • I s 0 f T I'<

100/ 101 122 105 040 123 110 101 1 14 114 040 1 0 l 124 040 101 114 114
A R E s H A L, Li A T A L L

13-3

DUMP

120/ 040 124 111 115 105 123 040 122 105 115 101 111 116 040 111 11b
T I M E s R g M A I N I N

140/ 040 104 1 t t 107 111 124 101 114 05& 015 012 OH 015 012 OH 040
0 I G I T .. L • I • J • • 1

160/ 1:24 110 105 040 111 1U t 06 117 122 115 101 124 11 t 11 7 11& 040
T H E I N r 0 R M A T I . 0 N

200/ 111 116 040 125 110 111 123 040 123 117 100 124 t 27 101 122 105
l N T H I s s 0 F' T w A R E

220/ 040 111 123 040 123 125 102 112 105 103 124 040 124 117 015 012
I s s u 6 J t. C T T 0 • • 240/ 073 040 101 110 101 116 107 105 040 127 \ 11 124 \1() 117 125 124

' C H A 'I G t: w I T H 0 u T
260/ 040 116 117 124 111 103 105 040 101 116 104 040 123 110 117 125

,.: a T I C E A ;I 0 s Ii 0 u
300/ 114 104 ()40 116 117 124 040 102 105 040 \03 t17 116 123 124 122

L 0 ~ 0 T B I;; C 0 N s T R
320/ 125 1 OS 104 015 Ot2 07 3 040 10 t 123 040 101 Oto 103 117 115 115

u E 0 • • I A s A C 0 M M
HrO/ 111 124 115 105 116 124 040 102 131 040 104 111 107 111 124 101

I T 14 E N T Ii y D I G I T A
360/ 114 040 105 121 125 111 120 115 105 116 124 040 103 117 122 120

L e: Q u r p M I!: N T C 0 R p
400/ 11' l 22 \01 124 111 117 116 056 015 Otl 073 015 012 OH 040 104

0 R A T I 0 N • • • , • • ' 0
420/ 111 t 0'7 11 l 124 101 114 040 101 lH 123 125 115 105 123 040 11&

I G 1 T A L A s s u M E s I',

440/ 117 040 122 105 123 120 tl 7 116 123 111 l 02 111 114 111 124 13\
0 R E 6 p 0 N s l B I L I T y

460/ 040 106 117 122 040 124 110 105 040 125 123 105 015 012 073 040
r 0 ~ r H E u 5 E • • ' 500/ 117 122 040 112 105 114 lt 1 101 102 11 t 114 111 124 111 040 111

0 R R E L I A 8 l L I T 'l 0
520/ 106 040 11 t 124. 123 040 123 11 7 106 124 127 101 122 105 040 117

r I T s s 0 f' T w A R ~ 0
540/ 116 040 105 121 125 111 120 115 105 tt6 124 015 012 073 040 127

N E Q u t p .. e: N T . • t w
!560/ 110 111 103 110 040 111 123 040 116 117 124 040 12.J 125 120 120

H t C H J s N 0 T s u p p
600/ 114 11 t 105 104 040 102 131 040 104 11 \ 107 111 124 101 114 050

L I e: 0 a y D r G r T A L .
620/ 01'5 012 0'1l ot~ 012 073 040 105 106 054 112 104 054 114 120 054

• • I • • ' E f J 0 f Lt p ,
'40/ 102 101 054 104 126 054 103 122 054 110 112 015 012 014 05b 115

I:! C f [) V , C R ' H J • • • • ,..
660/ 101 10) 122 117 040 n 511 056 126 061 056 056 01'5 012 056 115 103

A C R 0 • • V l • • • • • M C
1001 101 114 114 011 056 056 0'56 103 l 15 060 054 056 056 056 103 115

A L L . . . • C M 0 • • I C ,.,
720/ Of,1 054 056 056 056 !OJ tlS 062 054 05 Ii 056 056 103 115 O&l 054

1 • • I C
""

2 f • I • C 14 3 ,
1401 056 056 056 103 115 064 054 056 056 056 103 115 065 054 056 056

• • • C M 4 • I C ,.. 5 , • 760/ 056 103 115 ()66 015 012 056 056 056 126 061 0'75 061 056 015 012
C M .,

• • V 1 • 1 •

The last example shows block 6 (the directory) of device RKO:. The output is in octal words with Radix-SO equiva-
lents below each word.

*RKO:/N/X/0:6

RKOt/N/X/OU
BLOCK NUMBER 00006
000/ 000020 000004 000004 000000 00004b 001000 071105 055202

p D D 8 YX PKM NSJ
020/ 075273 000130 000015 0111405 002000 071105 054162 075273

SYS SH M B,7 YX RKM Nf'8 SYS
040/ 000141 000015 010405 002000 071105 055515 075273 000150

bQ M 8 0 7 u RKM NX'-1 SYS BX

13-4

DUMP

060/ 000015 010405 002000 0\5425 055202 075273 000132 000015
H 8,7 YX OMM tJSJ SYS FlJ M

100/ 010405 002000 015425 054162 07527l 000143 000015 010405
B,7 H OMM NfB SYS BS M B,7

120/ 002000 015425 055515 075273 000152 000015 010405 002000
YX OM~ .~x,., SYS BZ M 8 , 7 YX

140/ 016315 055202 1')7527 J 00Qll0 000015 0\0405 002000 010315
OXM NSJ SYS BH M B,7 YX DXM

160/ 054162 075273 000141 000015 010405 002000 016315 055515
NFB SYS SQ M B,7 YX DXM NXM

200/ 07527 l 000141 000015 010405 002000 016055 055202 075 273
SYS BQ M 8,7 n DTM NSJ SYS

220/ 000130 000015 010405 n112000 016055 054162 07527l 000141
BH M B,7 ¥X OTM NFB SYS FlQ

240/ 00001!5 010405 002noo 016055 055515 07S27l 000150 000015
M B,7)'X DTM NXM SYS BX "' 260/ 010405 002000 Olb005 055202 075273 000130 000015 0104(15 e., YX DSM NSJ SYS BH M B,7

300/ 002000 016005 054162 075273 000141 000015 010405 002000
0 DSM NFS SYS BQ M B,7 YX

]20/ 016005 05'5515 075273 000150 000015 01040~ 002000 015615
DSt-' NXM SYS BX M B,7 YX DPM

340/ 055202 075273 000130 000015 010405 002000 015615 054162
NSJ SYS Sh 14 B,7 "U OPM NrB

360/ 01527 3 000141 00001!!1 010405 002000 015615 055515 075273
5YS SQ M B,7 YX DPM NXM SYS

400/ 000150 000015 010405 00,000 070575 055202 075,73 000130
BX M A,7 YX RFM NSJ SYS RH

UOI 000015 010405 00:2000 070575 0541b:l 07527l 000141 000015
M B,7 YX RF14 HFB SYS SQ M

UOI 010405 002000 070575 055515 07527.3 000150 000015 010405
B,7 YX RP'M NUI SYS BX M B,7

460/ 002000 071105 056573 07S27J 00012.3 000015 0104(15 002000
n RICM h8K SYS ac l'I B,7 YX

500/ 01631!!1 056573 0752'13 00012l 000015 010405 002000 01D040
OXM NSK SYS BC Iii B,7 YX DT

520/ 000000 075273 000002 000015 010405 002000 015600 000000
SYS It M B1 7 '{X DP

540/ 075273 000002 000015 010405 002000 016300 000000 075273
SYS a H B,7 YX DX S"tS

560/ 000003 000015 010405 002000 070560 000000 075273 000002
C M B,'7 YX RF SYS 1:1

600/ 000015 010405 002000 071010 000000 075273 000002 000015
M 8 1 7 YX RI< SYS B t,I

620/ 010405 002000 015410 000000 075,73 000004 000015 010405
B,7 rx DM SYS D M B,7

640/ 0U2000 015770 000000 075'.27l 000002 000015 010405 002000
¥X DS SYS B M 8 0 7 YX

660/ 100040 000000 075273 000002 000015 010405 002000 046600
TT SYS B M H,7 YX LP

700/ 000000 07'i27 3 000002 000015 010405 002000 012620 000000
sn B M B,7 n CR

720/ 075273 000003 000015 010405 002000 052140 000000 075273
SYEo C ~ B • '7 YX MT SYS

7401 000010 00('1015 010405 002000 051510 000000 07527] 000011
H M B,7 YX t,O.i SYS I

7601 000015 010405 002000 054540 000000 07527 3 000002 000015
M 8 1 7 YX NL S"tS B M

13-5

CHAPTER 14

FILEX

The file exchange program (FILEX) is a general file transfer program that converts files from one format to another
so that you can use them with various operating systems. You can initiate transfers between any block-replaceable
RT-11 directory-structured device and any device listed in Table 14-1.

Table 14-1 Legal FILEX Devices

Valid as Valid as
DeYice Input Output

PDP-11 X X
DOS/BATCH
DECtape

DOS/BATCH X
Disk

RSTS X X
DECtape

DECsystem-I 0 X
DECtape

Interchange X X
Diskette

FILEX does not support magtape or cassette in any operation.

Section 4.2 of this manual describes how to use wildcards. You can use wildcards in the FILEX command string.
However, you can not use embedded wildcards in any file name or file type. For example, the following line repre
sents a valid file specification.

**•MAC

The next line is an illegal file specification for FILEX.

*T7.ST.MAC

14.1 FILE FORMATS
FILEX can transfer files created by four different operating systems: RT-11, DECsystem-10, universal interchange
format (IBM) and DOS/BATCH (PDP-11 Disk Operating System). You can use the following three data formats in
a transfer: ASCII, image, and packed image. ASCII files conform to the American Standard Code for Information
Interchange in which each character is represented by a 7-bit code. In ASCII mode, FILEX deletes null and rubout
characters, as well as parity bits.

14-1

FlLEX

Because the file structure and data formats for each system vary, options are needed in the command line to indicate
the file structures and the data formats involved in the transfer. These options are discussed in Section 14.3. FILEX
assumes that all devices are RT-11 structured. You can use options from Table 14-2 to indicate otherwise.

14.2 CALLING AND USING FILEX
To call FILEX from the system device, respond to the dot(.) printed by the keyboard monitor by typing:

RFILEX@

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to enter a
command. If you enter only a carriage return at this point, the current version number of FILEX prints on the
terminal.

Type two CTRL/Cs to halt FILEX at any time (or a single CTRL/C to halt FILEX when it is waiting for console
terminal input) and return control to the monitor. To restart FILEX, type R FILEX or REENTER in response to
the monitor's dot.

14.3 FILEX OPTIONS
Table 14-2 lists the options that initiate various FILEX operations. The table is divided into three sections: tra~fer
options, operation options and file structure options. Transfer options direct FILEX to copy data in a certain mode.
The three transfer modes are: ASCII, image, and packed image. Operation options perform another function in
addition to the data transfer. These additional functions include deleting files, producing directory listings and
zeroing device directories. File structure options indicate the formats of devices that are involved in a transfer. These
formats are DOS/BATCH or RSTS, DECsystem-10, and interchange. FILEX accepts one transfer option and one
operation option in a single command. You can specify one device option for each file involved in the transfer. The
device options (IS, /T, and /U) must appear following the device and file name to which they apply; other options
can appear anywhere in the command line. These options are explained in more detail in the following sections.

14.3.1 Transferring Files Between RT-11 and DOS/BATCH (or RSTS)
You can transfer files between block-replaceable devices used by RT-11 and the PDP-11 DOS/BATCH system. Input
from DOS/BATCH can be either disk or DECtape. You can use both linked and contiguous files.

If the input device is a DOS/BATCH disk, you should specify a DOS/BATCH user identification code (UIC). The
me is of the form [nnn,nnn], where nnn represents an octal integer less than or equal to 377. The first part of the
code represents a user-group number; the second is the individual user number. The initial default value is [I ,1 J.
The UIC you supply will be the default for all future transfers. If you do not specify a UIC, FILEX will use the
current default UIC. Note that the square brackets [] are part of the UIC; you must type them if you specify a
UIC.

Output to DOS/BATCH is limited to DECtape only. You do not need a UIC in a command line when you are
accessing only DECtape. Individual users do not "own" files on DECtape under DOS. However, no error occurs if
you do use a UIC. DECtape used under the RSTS system is legal as both input and output, since its format is identi
cal to DOS/BATCH DECtape. You can use any valid RT-11 file storage device for either input or output in the
transfer. The RT-11 device DK: is assumed if you do not indicate a device.

An RT-11 DECtape.can hold more information than a DOS/BATCH or RSTS DECtape. Be careful when you copy
files from a full RT-11 tape to a DOS DECtape. Some information might not transfer. In this case, an error message
prints and the transfer does not complete.

When a transfer from an RT-11 device to a DOS DECtape occurs, the block size of the file can increase. However,
if the file is later transferred back to an RT-11 device, the block size does not decrease.

14-2

FILEX

Table 14-2 FILEX Options

Transfer Options Explanation

/A Indicates a character-by-character ASCII transfer in which FILEX deletes rubouts
and nulls. If you use /U with / A, FlLEX ignores all sector boundaries on the diskette.
If you use /T with / A, Fl LEX assumes that each PDP-IO 36-bit word contains five
7-bit ASCII bytes. If you use /U with/ A, FILEX assumes that records are to be
terminated by a line feed, vertical tab, or form feed. The transfer terminates when a
CTRL/Z is encountered. (This feature is included for compatibility with RSTS.)
FILEX does not transfer the CTRL/Z.

/I Performs an image mode transfer. If the input is DOS/BATCH, RSTS, interchange
diskette, or RT-11, the transfer is word-for-word. If the input is from DECsystern-10,
/l indicates that the file resembles a file created on DECsystem-IO by MACY I 1,
MACXI I, or LNKXl 1 with the /I option. In this case, each PDP-10 36-bit word will
contain one PDP-I 1 8-bit byte in its low-order bits. If input or output is an inter-
change diskette, FILEX reads and writes four diskette sectors for each RT-11 block.

/P Performs a packed image mode transfer. If the input is DOS/BATCH, RSTS, or
RT-11, the transfer is word-for-word. If the input is from DECsystem-IO, /P indicates
that the file resembles a file created on DECsystem-IO by MACYI 1, MACXl 1, or
LNKXI I with the /P option. In this case, each PDP-10 36-bit word will contain
four PDP-11 8-bit bytes aligned on bits 0, 8, 18, and 26. This is the default mode.
If the input is interchange diskette, the data is assumed to be EBCDIC. If the output
is interchange diskette, FILEX writes the data as EBCDIC.

Operation Options Explanation

/D Deletes the file you specify from the device directory. This option is valid only for
DOS/BATCH, RSTS DECtape, and interchange diskette.

/F Produces a brief listing of the device directory on the terminal. It lists only file names
and file types.

/L Produces a complete listing of the device directory on the console terminal, including
file names, block lengths, and creation dates.

/Y Suppresses the dev:/ZERO ARE YOU SURE? message.

/Z Zeroes the directory of the device you specify in the proper format. This option is
valid only for DOS/BATCH, RSTS DECtape, and interchange diskette.

File Structure Options Explanation

/S Indicates that the device is a legal DOS/BATCH or RSTS block-replaceable device.

/T Indicates that the device is a legal DECsystem-IO DECtape.

/U[:n.] Indicates that the device is an interchange diskette; n. represents the length of each
output record, in characters; n. is a decimal integer in the range 1-128. The default
value is 80; n. is not valid with an input file specification, or with / A or /I.

14-3

FILEX

To transfer a file from a legal DOS/BATCH block-replaceable device or RSTS DECtape to a legal RT-11 device, use
this command syntax:

where

•output-filespec=inpu t-filespec/ S [/option]

output-filespec

input-filespec

/S

/option

represents any valid RT-11 device, file name, and file type (if the device is not
file structured, you can omit the file name and file type).

represents the DOS/BATCH or RSTS device, UIC, file name and file type to be
transferred. See Table 14-1 for a list of valid devices.

is the option from Table 14-2 that designates a DOS/BATCH or RSTS block·
replaceable device. This option must be included in the command line.

is one of the three transfer options from Table 14-2.

To transfer ftles from an RT-11 storage device to a DOS/BATCH or RSTS DECtape, use this command syntax:

•DTn:output-filename/S[/option] =input-filespec

where

DTn:output-filename represents the file name and file type of the file to be created, as welt as the
DOS/BATCH or RSTS DECtape on which to store the file.

input-filespec

/S

/option

represents the device, file name, and file type of the RT -11 file to be transferred.

is the option from Table 14-2 that designates a DOS/BATCH or RSTS DECtape.
Tiris option must be included in the command line.

is one of the three transfer options from Table 14-2.

The following examples illustrate the use of the /S option.

The following command instructs FILEX to transfer a file called SORT.ABC from the RT-11 default device DK: to
a OOS/BATCH or RSTS format DECtape on unit DT2. The transfer is done in image mode.

*DT2:SORT.ABC/S=SORT.ABC/I

The next command allows a file to be transferred from DOS/BATCH (or RSTS) DECtape to the papertape punch
under RT-I 1. The transfer is done in ASCII mode.

*PC:=DT2:FIL.TYP/S/A

The next command causes the file MACRI .MAC from the DOS/BATCH disk on unit I, which is stored under the
UIC [1,2], to be transferred to the RT-I 1 device DK:. [I ,2] becomes the default UIC for any further DOS/BATCH
operations.

DK:•*=RK1:C1,2JMACR1.MAC/S

14-4

FILEX

14.3.2 Transferring Files Between RT-11 and Interchange Diskette
You can transfer files between block-replaceable devices used by RT-11 and interchange format (proposed ANSI
format) diskettes. Files are transferred in one of the following three formats: ASCII, image, and packed image
(EBCDIC) mode.

A universal diskette consists of 77 tracks (some of which are reserved), each containing 26 se1.,iors numbered from
1 to 26. A sector contains one record of 128 or fewer characters. A record must begin on a sector boundary on an
interchange diskette in packed image mode. There must be only one record per sector. If a record does not fill
a sector, the remainder is filled with blanks. Since packed image (EBCDIC) mode is inefficient and wastes space,
it is only recommended to read or write diskettes that must be compatible with IBM 3741 format.

Image mode provides an exact copy of a file. Nulls, rubouts, and parity are preserved in a transfer. ASCII and image
mode perform similar functions; however, for most operations, you should probably use ASCII. Use image mode to
transfer data when the parity bit or nulls are significant (i.e., when you are not transferring ASCII data).

Packed image (EBCDIC) mode is generally compatible with IBM 3741 format. (FILEX does not support error
mapping of bad sectors and multi-volume files.) Packed image (EBCDIC) is the default mode, so you must use one
of the options from Table 14-2 to specify ASCII or image mode. All records of a file must be the same size. You
indicate this with the /U:n. option.

NOTE
File types are not normally recognized in interchange format;
instead, a single 8-character ftle name is used. However, in
order to provide uniformity throughout RT-11, Fl LEX has
been designed to accept a 6-character file name with a 2-
character file type. If you transfer a file from RT-11 to in
terchange diskette, any 3-character file type is truncated
to two characters.

To transfer mes from RT-11 format to interchange format, use this command syntax:

where

•output-filespec/U[:n.] [/option] =input-filespec

output-filespec

/U[:n.]

/option

input-filespec

represents the de:vice, file name, and file type of the interchange file to be created.

is the option from Table 14-2 that designates an interchange diskette. Thls option
must be included in the command line; n. represents the length of each output record,
in characters; 1 ~n ~ 128 (default is 80).

is one of the three transfer options from Table 14-2.

represents the device, file name, and file type of the RT-11 file to be transferred.

To transfer files from interchange diskette to RT-1 l format, use this command syntax:

*output-filespec=input-filespec/U [/option J

14-5

where

output-filespec

input-filespec

/U

/option

FILEX

represents the device, file name, and file type of the RT-11 file to be created.

represents the device, file name, and file type of the interchange file to be
transferred.

is the option from Table 14-2 that designates an interchange diskette. This option
must be induded in the command line.

is one of the three transfer options from Table 14-2.

The following command transfers the file IV AN.CAT from RT-11 RK05 unit 2 to the diskette on unit I. The
transfer is done in exact image mode {indicated by /I), ignoring all sector boundaries.

*DX1:IVAN.CAT/U/I•RK21IVAN.CAT

The next command instructs FILEX to transfer the fiJe BENMAR.FRM from the RT-11 disk unit 2 to the diskette
on unit 0, and rename it KENJOS.JO. The /U option indicates that the format is to be changed from ASCII to the
interchange format. There will be one record per sector of 128 or fewer characters. If there are fewer than 128 char
acters, the remainder of the sector will be filled with spaces.

*DXO!KENJOS.JO/U=RK2:BENMAR.FRM

The next command transfers the ftle TYPE.SET from RT-11 diskette unit Oto the interchange diskette on unit 2.
The exchange converts ASCII to interchange format putting a maximum of 7 (indicated by : 7 .) characters into each
sector until the entire record has been transferred. Records in excess of seven char~cters will be broken up and placed
in succeeding sectors on the diskette. New records always begin on a sector boundary; carriage returns and line feeds
are discarded. However, if you use / A or /I, FI LEX ignores boundary limits and preserves carriage returns and line
feeds.

*DX2!TYPE.SE/LJ:7.=RXO:TYPE.SET

File TYPE.SET before transfer:

ABCDEFGHIJKLMN

File TYPE.SET after transfer:

ABCDEFG - (spaces up to 128 characters) Sector 1
HIJKLMN (spaces up to 128 characters) Sector 2

The next command copies file IVAN.CA from the interchange diskette on unit 1 to the RT-11 line printer, treating
the input as ASCII characters. Note that once a record has been divided into sectors, it cannot be transferred back to
its original large size.

*LP:=DXltIVAN.CA/U/A

14.3.3 Transferring Files to RT-11 from DECsystem-10
Files can not be transferred to RT-11 devices from a DECsystem-10 DECtape when a foreground job is running. This
restriction is due to the fact that when FILEX reads DECsystem-IO files, it accesses the DECtape control registers
directly instead of using the RT-11 DECtape control handler. Output can be to any valid RT-11 device. DECsystem-IO

DECtape is the only valid input device. To transfer files from DECsystem-IO format to RT-11 format, use this
command syntax:

14-6

where

FILEX

•output· filespec=in pu t-filespec/T [/option]

output-filespec

input-filespec

/T

/option

·'
represents any valid RT-11 device, file name, and file type (if the device is not file.
structured, you can omit the file name and file type).

represents the DECtape unit, file name, and file type of the DECsystem-10 file to be
transferred.

is the option from Table 14-2 that signifies a DECsystem-10 DECtape. When you use
/T, and especially when you also use / A, the system clock loses time. Examine the
time and reset it if necessary with the TIME command.

is one of the three transfer options from Table 14-2.

You can not convert RT-11 files to DECsystem-IO format directly. However, there is a two-step procedure for doing
this. First, run RT-11 FILEX and convert the files to DOS formatted DECtape. Then run DECsystem-IO FILEX to
read the DOS DECtape.

The following command converts the ASCII file STAND.LIS from DECsystem-IO ASCII format to RT-11 ASCII
format and stores it under RT-11 on DECtape 2 as ST AND.LIS.

*DT2 ! STAND. L IS=•:DT 1 ! STAND.LI S/T /A

Transfers from DECsystem-IO DECtape to RT-11 DECtape can cause an <UNUSED> block to appear after the
file on the RT-11 device. This is a result of the method by which RT-I I handles the increased amount of information
on a DECsystem-IO DECtape.

The next command indicates that all files on DECsystem-IO DECtape 0 with the file type .LIS are to be transferred
to the RT-11 system device using the same file name and a file type of .NEW. The /P option is the assumed transfer
mode.

SY!.NEW=DTO!*.LIS/T

14.3.4 Listing Directories
You can list a directory of any of the block-replaceable devices used in a FILEX transfer. The directory listing prints
on the console terminal. The command syntax is:

•device: /L/option

where

device

/L

represents the block-replaceable device. These are the valid device types:

DOS/BATCH, RSTS DTn: or any disk

DECsystem-I 0 DTn:

interchange diskette DXn:

is the listing option from Table 14-2. You can substitute /F if you want a brief listing
of file names only.

14-7

FILEX

/option is /S, /T, C' /U[:n.]. These are the valid format and option combinations:

DOS/BATCH, RSTS

DECsystem-IO

interchange diskette

/S

IT

/U

The following example shows the complete disk directory for UIC [I ,7] of the device RKl:. The letter C following
the file size on a DOS/BATCH or RSTS directory listing indicates that the file is a contiguous file.

*r.;:Kl. ! /L/S [l ~ 7J
BADB .SYS 1 22·-JUL-74
MONLIB .en. l.75C ~!.::!···JUL ·-74
DU11 .PAL.. 4:i 24·-JUl...-74
VERIFY +LDA 67C 22-.. ,JUL..···74
CILUS .I..DA 39 22-JUL.·-74

The next command lists all files with the file type .PAL that are stored on DECtape unit I.

*DTl: *. F'AL/L/f:l

The next command produces a brief directory listing of the interchange diskette on unit 0, giving file names only.

*DXO!/U/F

The following command lists all files on DECsystem-IO formatted DECtape unit l, regardless of file name or file
type; a brief directory is requested {/F) in which only file names print.

14.3.S Deleting Files From DOS/BATCH (RSTS) DECtapes and Interchange Diskettes
Use FILEX to delete files from DOS/BATCH and RSTS formatted DECtapes, and from interchange diskettes.

To delete files, use this command syntax:

•filespec/D/option

where

filespec

/D

/option

represents the device, file name and file type of the file to be deleted.

is the delete option from Table 14-2.

can be either /S, for DOS/BATCH and RSTS block-replaceable devices, or /U, for
interchange diskettes.

The following command deletes all files with the file type .PAL on DECtape unit 0.

* Dl O : * , F' (i L /ft/ !3

The next command deletes the file TABLE.OBJ from the DECtape on unit 2.

*DT2:TABLE,OBJ/D/S

14-8

FILEX

The next command deletes all files with an .RN file type from the interchange diskette on unit 0.

IIXO!.RN/D/IJ

You can also use FILEX to initialize the directories of DOS/BATCH and RSTS DECtapes, and interchange diskettes.
Use this command syntax:

*device:/Z/option [/Y]

where

device

/Z

/option

/Y

represents the DOS/BATCH or RSTS DECtape, or the interchange diskette to be
zeroed.

is the zero option from Table 14-2.

can be either /S, for DOS/BATCH and RSTS DECtapes, or /U, for interchange diskettes.

inhibits the FILEX verification message.

The following command directs FILEX to initialize the directory of the interchange diskette on unit 0.

*DXOt/Z/U
DXO:/Zero are ~au sure?

Respond with a Y for initialization to begin. Any other response aborts the command.

The next command initializes the DECtape on unit 1 in DOS/BATCH (RSTS) format. Note that by using the /Y
option you suppress the verification message.

*DT1%/Z/S/Y

NOTE
An initialized universal diskette 's directory has a single file
entry, DATA, that reserves the entire diskette. You must
delete this file before you can write any new files on this
diskette. This arrangement is necessary for IBM compatibility.
Do this by using the following command:

*DX0:DATA/D/U

14-9

CHAPTER 15

SOURCE COMPARE (SRCCOM)

The RT-11 source compare program (SRCCOM) compares two ASCII files and lists the differences between them.
SRCCOM can either print the results or store them in a file. SRCCOM is particularly useful when you need to
compare two similar versions of a source program. A file comparison listing highlights the changes made to a pro
gram during an editing session.

15.1 CALLING AND USING SRCCOM
To call SRCCOM from the system device, respond to the dot (.) printed by the keyboard monitor by typing:

R SRCCOM (RET)

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to enter a
command string. If you respond to the asterisk by entering only a carriage return, SRCCOM prints its current ver
sion number. The syntax of the command is:

[output-ftlespec=] input-filespecl ,input-filespec2 [/option ...]

where

output-ftlespec

input-filespecl

input-filespec2

option

represents the destination device or file for the listing of differences.

represents the first file to be compared.

represents the second file to be compared.

is one of the options from Table I S-1.

The console terminal is the default output device. The default file type for input files is .MAC. SRCCOM assigns
.DIF as the default file type for output files.

You can type CTRL/C to halt SRCCOM and return control to the monitor when SRCCOM is waiting for input
from the console terminal. You must type two CTRL/Cs to abort SRCCOM at any other time. To restart SRCCOM,
type R SRCCOM or REENTER and a carriage return in response to the monitor's dot.

SRCCOM examines the two source files line by line, looking for groups of lines that match. When SRCCOM finds
a mismatch, it lists the lines from each file that are different. SRCCOM continues to list the differences until a
specific number of lines from the first file match the second file. The specific number of lines that constitutes a
match is a variable that you can set with the /L:n option.

15.2 SRCCOM OPTIONS
Table 1 S-1 summarizes the operations you can perform with SRCCOM. You can place these options anywhere in
the command string, but it is conventional to place them at the end of the command line.

1 S-1

Source Compare (SRCCOM)

Table 15-1 SRCCOM Options

Option Explanation

/B Compares blank lines; normally, SRCCOM ignores blank lines.

/C Ignores comments (all text on a line preceded by a semicolon) and spacing (spaces and tabs).
A line consisting entirely of a comment is still included in the line count.

/F Includes form feeds in the output listing; SRCCOM normally compares form feeds, but does
not include them in the output listing.

/H Types on the console terminal a list of options available; this is the "help" text.

/L:n Specifies the number of lines that determines a match; n is an octal integer in the range
1-310. The default value for n is 3.

/S Ignores spaces and tabs.

15.3 SRCCOM OlITPUT FORMAT
This section describes the SRCCOM output listing format and explains how to interpret it.

15.3.1 Sample Text
It will be helpful first to look at a sample text file, DEMO.BAK:

Fil.El
HERE'S A BOTTLE AND AN HONEST FRIEND!

WHAT WAD YE WISH FOR MAIR, MANT
WHA KENS, BEFORE HIS LIFE MAY END,

WHAT HIS SHAME MAY BE O' CARE, MAN?
THEN CATCH THE MOMENTS AS THEY FLY,

AND USE THEM AS YE OUGHT, MAN: -
BELIEVE ME, HAPPINESS IS SLY,

AND COMES NOT AY WHEN SOUGHT, MAN+

....... i:;coTT :r '.:;H ~:,ONG

This file contains two typing errors. In the fourth line of the song, "shame" should be "share". In the seventh
line, "sly" should be "shy". Here is a file called DEMO.TXT that has the correct text:

FI LE:?.
HERE'S A BOTTLE AND AN HONEST FRIEND 1

WHAT WAD YE WISH FOR MAIR, MAN?
WHA KENS, BEFORE HIS LIFE MAY END,

WHAT HIS SHARE MAY BE 0' CARE, MAN?
THEN CATCH THE MOMENTS AS THEY FLY,

AND USE THEM AS YE OUGHT, MAN:-
BELIEVE ME, HAPPINESS IS SHYr

AND COMES NOT AY WHEN SOUGHT, MAN,

·-··-·!:;COTT I f:;H f;CJNG

I S-2

Source Compare (SRCaJM)

15.3.2 Sample Output Listing
SRCCOM lists the differences between the two files. The example below compares the original file, DEMO.BAK,
to its edited version, DEMO.TXT:

*DEMO.BAK,DEMO.TXT/L:1
1>1
2)1

FILE1.
FILE2

WHAT HIS SHAME MAY BE O' CARE, MAN? 1 > 1
1) THEN CATCH THE MOMENTS AS THEY FLY,

2)1 WHAT HIS SHARE MAY BE O' CARE, MAN?
2) THEN CATCH THE MOMENTS AS THEY FLY,
********** 1)1 BELIEVE ME, HAPPINESS IS SLY,
1) AND COMES NOT AY WHEN SOUGHT, HAN.

2) 1 BELIEVE ME, HAPPINESS IS SHYY
2)

AND COMES NOT AY WHEN SOUGHT, MAN+

%FILES ARE DIFFERENT

SRCCOM always prints the first line of each file as identification:

1) 1
2)1

FlLE:I.
FILE~:.

The numbers at the left margin have the form n)m, where n represents the source file (either l or 2) and m repre
sents the page of that file on which the specific line is located.

SRCCOM next prints a blank line and then lists the differences between the two files. The /L:n option was used
in this example to set to l the number of Jines that must agree to constitute a match.

The first three lines of the song are the same in both files, so they do not appear in the listing. The fourth line
contains the first discrepancy. SRCCOM prints the fourth line from the first file, followed by the next matching
line as a reference.

1) 1 WHAT HIS SHAME MAY BE 0' CARE, MAN?
:I.) THEN CATCH THE MOMENTS AS THEY FLY,

The four asterisks terminate the differences section from the first file.

SRCCOM then prints the fourth line from the second file, again followed by the next matching line as a reference:

2)1 WHAT HIS SHARE MAY BE O' CARE, HAN 7

2> THEN CATCH THE MOMENTS AS THEY FLY,

The ten asterisks terminate the listing for a particular difference section.

SRCCOM scans the remaining lines in the files in the same manner. When it reaches the end of each file, it prints
the %FILES ARE DIFFERENT message on the terminal.

15.3

Source Compare (SRCCOM)

The second example is slightly different. The default value for the /L:n option sets to 3 the number of lines that
must agree to constitute a match. The output listing is directed to the file DIFF.TXT on device DK:.

*DIFF.TXT=DEMO+BAK,DEMO.TXT

%FILES ARE DIFFERENT

The monitor TYPE command lists the information contained in the output file:

.TYPE DIFF.TXT

1) 1
2)1

1) 1
1)
1)
:l)

1)
1)

1)

1)

2)1
2)
2)
2)
2)
2)
2)
2)

FILEl
FILE2

WHAT HIS SHAME HAY BE O' CARE, HAN?
THEN CATCH THE MOMENTS AS THEY FLY,

AND USE THEM AS YE OUGHT, MAN:-
BELIEVE ME, HAPPINESS IS SLYr

AND COMES NOT AY WHEN SOUGHT, MAN.

........ f:;CCJTT I SH SCJNG

WHAT HIS SHARE MAY BE O' CARE, MAN?
THEN CATCH THE MOMENTS AS THEY FLY,

AND USE THEM AS YE OUGHT, MAN:-
BELIEVE ME, HAPPINESS IS SHY,

AND COMES NOT AY WHEN SOUGHT, MAN.

··-··-!:;COTTISH !30NG

As in the first example, SRCCOM prints the first line of each file:

1) :L
2 > 1

FILE1
FII ... E2

The first three lines of each file are identical and, therefore, constitute a match. Again, the fourth lines differ.
SRCCOM prints the fourth line of the first file, followed by the next matching line:

1)1 WHAT HIS SHAME MAY BE O' CARE, MAN?
1) THEN CATCH THE MOMENTS AS THEY FLY,

However, SRCCOM did not find a match (three identical lines) before it encountered the next difference. So, the
second matching line prints, followed by the next differing line from the first file:

1)
1)

AND USE THEM AS YE OUGHT, MAN!-
BELIEVE ME, HAPPINESS IS SLYv

Again, the next matching line prints:

1) AND COMES NOT AY WHEN SOUGHT, MAN.

15-4

Source Compare (SRCCOM)

The /B option to include blank lines in the comparison was not used in this example. Thus, SRCCOM recognizes
only one more line before the end of file. Since the two identical lines do not constitute a match (three are needed)
SRCCOM prints the last line as part of the difference section for the first file:

1)

l) ·-··-~iCOTTI!3H BONG
1)

In a similar manner, SRCCOM prints a differences section for the second file, ending the listing with the %FILES

ARE DIFFERENT message.

NOTE
Regardless of the output specification, the differences
message always prints on the terminal. If you compare
two files that are identical and specify a file for the
output listing, the message NO DIFFERENCES EN
COUNTERED prints on the terminal and SRCCOM
does not create an output file.

15-5

PART V

ALTERING ASSEMBLED PROGRAMS

This part of the manual consists of the following three chapters: ODT, PATCH, and PAT. The three programs that
these chapters describe can help you debug programs and make changes to programs that are already assembled.

Chapter 16 describes the on-line debugging technique (ODT). This program aids you in debugging assembly
language programs. With ODT, you can control your program's execution, examine locations in memory and alter
their contents, and search the object program for specific words.

Chapter 17 describes the PATCH utility program. PATCH can make code modifications to any RT-11 file. You use
PATCH to examine and then change words or bytes in a file. PATCH's checksum feature is particularly useful when
you are making a correction or improvement to an existing executable program; it verifies that the changes you
make are correct.

Chapter 18 describes the object module patching utility (PAT). This program allows you to patch, or update, code
in a relocatable binary object module. PAT accepts a file containing corrections or additional instructions and
applies these corrections and additions to the original object module.

V-1

CHAPTER 16

ON-LINE DEBUGGING TECHNIQUE (ODT)

RT-11 on-line debugging technique (ODT) is a program (supplied with the system) that aids in debugging assembly
language programs. From your terminal, you direct the execution of your program with ODT. ODT performs the
following tasks:

• Prints the contents of any location for examination or alteration

• Runs all or any portion of an object program using the breakpoint feature

• Searches the object program for specific bit patterns

• Searches the object program for words that reference a specific word

• Calculates offsets for relative addresses

• Fills a single word, block of words, byte or block of bytes with a designated value.

Make sure you have an assembly listing and a link map available for the program you want to debug with ODT. You
can make minor corrections to the program on line during the debugging session, and you can then execute the pro
gram under the control of ODT to verify the corrections. If you need to make major changes, such as adding a
missing subroutine, note them on the assembly listing and incorporate them in a new assembly.

16.1 CALLING AND USING ODT
ODT is supplied as a relocatable object module. You can link ODT with your program (using the RT-11 linker) for
an absolute area in memory and load it with your program. When you link ODT with your program, it is a good idea
to link ODT low in memory relative to the program. If you link ODT high in memory, you must be sure that the
buffer space for your program is contained within program bounds. Otherwise, if your program uses dynamic buff
ering, program execution can destroy ODT in memory. Figure 16-1 shows possible relationships between ODT and
the program MYPROG in memory.

HIGH MEMORY

LOW MEMORY

MYPROG

and its
buffers

ODT

MYPROG

DOT

Recommended

ODT

MYPROG
and its
buffers

ODT

MYPROG

Also Correct

Figure 16-1 Linking ODT with a Program

16-1

MYPROG

Not Recommended

On-line Debugging Technique (ODT)

Once loaded in memory with your program, ODT has three legal start or restart addresses. Use the lowest (O.ODT)
for normal entry, retaining the current breakpoi r.s. The next (O.ODT+2) is a restart address that clears all break
points and reinitializes ODT, thus saving the general registers and clearing the relocation registers. Use the last
address (O.ODT+4) to reenter ODT. A reenter saves the processor status and general registers, and removes the
breakpoint instructions from your program. ODT prints the bad entry (BE) error message. Breakpoints that were
set are reset by the next ;G command. (;Pis illegal after a BE message.) The ;G and ;P commands run a program;
they are explained in Section 16.3.7.

The system uses as an absolute address the address of the entry point O.ODT shown in the linker load map.

NOTE
If you link ODT with an overlay-structured file, it should
reside in the root segment so that it will always be in mem
ory. Remove all breakpoints from the current overlay
segment before execution proceeds to another overlay
segment. A breakpoint inserted in an overlay is destroyed
if it is overlaid during program execution.

The following examples show how to link and load ODT and how to restart ODT.

1. This example links ODT low in memory relative to MYPROG, creating the executable module
MYPROG.SAV. Running MYPROG causes ODT to start automatically.

•LINK/MAP:TT:/DEBUG
RT-11 LINK V03+01

MYHWG

MYPRDG. f:iAV Tit.l<':!:

Sf.•ct:i.on Addr

Lc,ad Mi:1P

DDT I df~nt:

Global Valuc-:-i

Mon 09-Mahl-77 18!50!42
XOl.01

Global Val 1.m Global Valu<ci

, ABS. 000000 001000 <RW,I,GBL,ABS,OVR>
001000 016130 <RW,I,LCL,REL,CON>

D,DDT 001222

Transff?T' addrfii,;s ··· 00:1.222, H:i.i.=.!h 1:im:it :::: 01.7130 ···· 3f:lf:l4, wcirch;

, F~ MYPFWG

DDT V01,04

*
2. This example links MYPROG low in memory relative to ODT and specifies O.ODT as the transfer address.

Running MYPROG causes ODT to start automatically. The advantage to this method is that MYPROG is
loaded at its normal execution-time address.

,l.INK/MAP:TT: MYPRDG,DDT/TRANSFER
T ra1·1i;: fp r add r Ii-ii,;·==;? D. ODT
RT-:1.1 LINK V03,0:I.
MYF'FWG + E,AV T:itle:1•:

S1-:~c-L :i. on ,;dd r

• ABS. 000000 00:1.000
001000 0:1.6:1.30

Load MaP
DEMO SP I df?nt:

Mon 09-Mahl-77 lf:l:53:16
X01 ,01

Global lJal.1..110 Global Valuf~

CRW,I,GBl...vABS,OVR>
CRW,I,LCL,REL,CON>

0,0DT Oll.260

GlDbal Valuf,'

Transfer address - 0:1.1260, Hi~h limit= 017130 - 38f:l4. words

16-2

ODT VOl.04

*

On-line Debuggi,:zg Technique (ODT)

3. Titls example is similar to Example 2 above, except that execution does not automatically begin with ODT.
When you start the program (MYPROG in this case) you must specify the address of O.ODT as shown in
the link map.

•LINK/MAP:TT: MYPROG,ODT
RT-11 LINK V0J.01 Load MaP Mon 09-Maw-77 18!55l03
MYPROG.SAV Title! DEMOSP !dent: xo1.01

Sectinr1 Ad<.1r Sb:e Global Vaha~ Glcibal VaJ.1.Je

• ABS. 000000 001000 (RW,I,GBL,ABS,OVR>
001000 016130 (RWYivLCL,RELYCON)

Glol:.1al tJmlw:

(J. ODT O 1 :L 21.>0~-------------,

Transfer address a 001036, Hi•h limit= 017130: 3884. words

• GE! MYFFWG

,Bl'Af::r :l.l.260\------------------------------'

OUT 1..JO :1. • 04

*
4. This example links ODT with a bottom address of 4000, then loads ODT.SAV and MYPROG.SAV into

memory. As in Example 3 above, when you start the program, you must specify the address of O.ODT
as shown in the link map.

, L INl<i'MAP: TT 1 DDT/BOTTOM: 4000
RT-11 LINK V03.01 Lead MaP Hon 09-Haw-77 1Bt59!42

/f.!!004000 ODT .SAV Title: DDT Ident:

Sf.~ction Addr

, ABS, ()()0000 0040()()
004000 006072

Global Valw~ Global Val1Jr.,•

(RW,I,GBL,ABS,OVR)
<RW,I,LCL,REL,CON>

Global Valut:~

0. ODT 004:n;'.r----------------,

Transfer address - 004222, Hish limit= 012072 2 :'5 l:l 9 • w () rr.:l!:;

, GET DDT, Sr-V)

, GET MYPFWU, ::;AV

DDT V0.1.,04
*

5. You can restart ODT by specifying O.ODT+2 as the start address. This reinitializes ODT and clears all
breakpoints.

16-3

On-line Debugging Technique (ODT)

,'.-3T/.~RT 4224

*
6. You can reenter ODT by specifying O.ODT+4 as the start address .

.0[004242

*

If ODT is awaiting a command, a CTRL/C from the keyboard calls the RT-11 keyboard monitor. The monitor
responds with "Con the terminal and awaits a command. (You can use the monitor REENTER command to
reenter ODT only if your program has set the reenter bit and ODT is linked high in memory relative to the program;
otherwise, ODT is reentered at address O.ODT+4 as shown in Example 6 in Section 16.1.)

If you type CTRL/U during a search printout, the search terminates and ODT prints an asterisk.

16.2 RELOCATION
When the assembler produces a relocatable object module, the base address of the module is assumed to be location
000000. The addresses of all program locations, as shown in the assembly listing, are relative to this base address.
After you link the module, many of the values and all of the addresses in the program are incremented by a constant
whose value is the actual absolute base address of the module after it has been relocated. This constant is called the
relocation bias for the module. Since a linked program can contain several relocated modules, each with its own re
location bias, and since, in the process of debugging, these biases have to be subtracted from absolute addresses
continually in order to relate relocated code to assembly listings, RT-11 ODT provides automatic relocation.

The basis of automatic relocation is the eight relocation registers, numbered 0 through 7. You can set them to the
values of the relocation biases at different times during debugging. Obtain relocation biases by consulting the link
map. Once you set a relocation register, ODT uses it to relate relative addresses to absolute addresses. For more in
formation on the exact nature of the relocation process, consult Chapter 11, Linker.

ODT evaluates a relocatable expression as a 16-bit (6-digit octal) number. You can type an expression in any one of
the three forms presented in Table 16-1. In this table, the symbol n stands for an integer in the range Oto 7 inclusive,
and the symbol k stands for an octal number up to six digits long, with a maximum value of 177777. If you type
more than six digits, ODT takes the last six digits typed, truncated to the low-order 16 bits. k can be preceded by
a minus sign, in which case its value is the two's complement of the number typed. For example:

k (number typed) Values

1 000001
-1 177777
400 000400
-177730 000050
1234567 034567

Section 16.3.13 describes the relocation register commands in greater detail.

16-4

On-line Debugging Technique (ODTJ

Table 16-1 Forms of Relocatable Expressions (r)

Form Expression Value of r

A) k The value of k.

B) n,k The value of k plus the contents of relocation register n. (If the n part
of this expression is greater than 7, ODT uses only the last octal digit
ofn.)

C) C or Whenever you type the letter C, ODT replaces C with the contents of a
C,k or special register called the constant register. (This value has the same role
n,C or as the k or n that it replaces. The constant register is designated by the
c,c symbol $C and can be set to any value, as indicated below.)

16.3 COMMANDS AND FUNCTIONS
When ODT starts (as explained in Section 16.1) it indicates readiness to accept commands by printing an asterisk on
the left margin of the terminal page. You can issue most of the ODT commands in response to the asterisk. You can
examine a word and change it; you can run the object program in its entirety or in segments; you can search memory
for specific words or references to them. The discussion below explains these features.

16.3.l Printout Formats
Normally, when ODT prints addresses, it attempts to print them in relative fonn (Form Bin Table 16-1). ODT looks
for the relocation register whose value is closest to, but less than or equal to, the address to be printed. It then repre
sents the address relative to the contents of the relocation register. However, if no relocation register fits the require
ment, the address prints in absolute form. Since the relocation regi.sters are initialized to -1 (the highest number),
the addresses initially print in absolute form. If you change the contents of any relocation register, it can then,
depending on the command, qualify for relative form.

For example, suppose relocation registers 1 and 2 contain 1000 and 1004 respectively, and all other relocation
registers contain numbers much higher. In this case, the following sequence might occur (the slash command causes
the contents of the location to be printed; the line feed command, LF, accesses the next sequential location):

*1000;1.R
* l , 4; 2F~
*774/000000@
oooTlf.> /00"76,~~:; <ID
l 1000000 /000000®
:l, ()000()2 /()()()000@
2,000000 /000000

sets relocation register 1 to 1000
sets relocation register 2 to 1004
opens location 774
opens location 776
opens absolute location 1000
opens absolute location 1002
opens absolute location 1004

The printout format is controlled by the format register, $F. Normally, this register contains 0, in which case ODT
prints addresses relatively whenever possible. You can open $F and change its contents to a non-zero value, however.
In that case, all addresses print in absolute form (see Section 16.3.4, Accessing Internal Registers).

16.3.2 Opening, Changing, and Oosing Locations
An open location is one whose contents ODT prints for examination, making those contents available for change. In
a closed location, the contents are no longer available for change. Several commands are used for opening and closing
locations.

Any command (except for the slash and backslash commands) that opens a location when another location is already
open causes the currently open location to be closed. You can change the contents of an open location by typing
the new contents followed by a single character command which requires no argument (i.e., LF, A, RET, +-, @, >,
<).

16-5

On-line Debugging Technique (ODT)

16.3.2.1 The Slash (/) - One way to open a location is to type its address followed by a slash. For example:

*1000/ 0 l 2'746

This command opens location 1000 for examination and makes it ready to be changed.

If you do not want to change the contents of an open location, press the RETURN key to close the location. ODT
prints an asterisk and waits for another command. However, to change the word, simply type the new contents
before giving a command to close the location. For example:

*1000/ 012746 01. ::~34!:i (~

*
This command inserts the new value, 012345, in location 1000 and closes the location. ODT prints another asterisk
indicating its readiness to accept another command.

Used alone, the slash reopens the last location opened. For example:

*l 000/ () :L 2:34!~i :?.34() (RET)

*I 002340

This command opens location 1000, changes its address to 002340, and then closes the location. ODT prints an
asterisk, indicating its readiness to accept another command. The / character reopens the last location opened and
verifies its value.

Remember that opening a location while ;another is open automatically closes the currently open location before
opening the new location.

Also note that if you specify an odd-numbered address with a slash, ODT opens the location as a byte and subse
quently behaves as if you had typed a backslash (see the following paragraph).

16.3.2.2 The Backslash(\) - In additlion to operating on words, ODT operates on bytes. Typing the address of
the byte followed by a backslash character opens the byte. (On the LT33 or LT35 terminal, type\ by pressing the
SHIFT key while typing the L key.) This causes ODT to print the byte value at the specified address, to interpret
the value as ASCII code, and to print the ,corresponding character, if possible, on the terminal. (ODT prints a? when
it cannot interpret the ASCII value as a printable character.)

*:I.OOl \ 1.01 ::::A

A backslash typed alone reopens the last open byte. If a word was previously open, the backslash reopens its even
byte:

*l 002/ 0()00()4 \ ()()4 ::::'i)

16.3.2.3 The LINE FEED Key {LF) - If you type the LINE FEED key when a location is open, ODT closes the
open location and opens the next sequential location:

*l 000/ 002340~
00:1.002 /()t:(740

In this example, the LINE FEED causes ODT to print the address of the next location along with its contents and to
wait for further instructions. After the above operation, location 1000 is closed and 1002 is opened. You can modify
the open location by typing the new conttmts.

If a byte location is open, typing a line fef:d opens the next byte location.

16-6

On-line Debugging Technique (ODT)

16.3.2.4 The Circumflex or Up-Anow (''') If you type the circwnflex (or up-arrow) when a location is open
(circumflex is produced on an LT33 or LT35 by typing SHIFT/N), ODT closes the open location and opens the

previous location. To continue from the example above:

*()01()()2/012740 r,
001000 /00~?.:340

This command closes location 1002 and opens location 1000. You can modify the open location by typing the new

contents.

If the opened location is a byte, the circumflex opens the previous byte.

16.3.2.S The Underline or Back-Arrow(+-) - If you type the underline, or back-arrow, (use SHIFT/O on an LT33
or LT35 terminal) to an open word, ODT interprets the contents of the currently open word as an address indexed
by the I ogram counter (PC) and opens the addressed location:

*1 ()06/ 000006 ·-
001016 /000405

Notice in this example that the open location, 1006, is indexed by the PC as if it were the operand of an instruction
with addressing mode 67 (PC relative mode).

You can make a modification to the opened location before you type a line feed, circumflex, or underline. Also, the
new contents of the location will be used for address calculations using the underline command. For example:

*10()/()00~~2::?. 4@
000102 /000111 6-
000100 /000004 200_
000302 /123456

modifies to 4 and opens next location
modifies to 6 and opens previous location
changes to 200 and opens location indexed
by PC

16.3.2.6 Open the Addressed Location(@) - You can use the at(@) symbol (SHIFT/Pon the LT33 or LT35
terminal) to optionally modify a location, close it, and then use its contents as the address of the location to open
next. For example:

*1006/001044@.
001044 /000500

*1006/001044 2100@
002100 /000167

opens location 1044 next

modifies to 2100 and opens location
2100

16.3.2.7 Relative Branch Offset(>) The right-angle bracket,>, optionally modifies a location, closes it, and
then uses its low-order byte as a relative branch offset to the next word to be opened. For example:

*l.032/000407 ~501 > modifies to 301 and interprets as a
000636 /000010 relative branch

Note that 301 is a negative offset (- 77). ODT doubles the offset before it adds it to the PC; therefore,
1034+(-176)=636.

16.3.2.S Return to Previous Sequence(<) - The left-angle bracket,<, lets you optionally modify a location,
close it, and then open the next location of the previous sequence that was interrupted by an underline, or right
angle bracket command. Note that underline,@, or right-angle bracket causes a sequence change to the open word.
If a sequence change has not occurred, the left-angle bracket simply opens the next location as a LINE FEED does.
This command operates on both words and bytes.

16-7

On-line Debugging Technique (ODT)

*1032/000407 301>
0001.>36 /0000 :I. 0 <
001034 /001040 (~
001040 /000405 ,oos - <
001035 ,002 ::::rr <
001036 ,004 ::::?

16.3.3 Accessing General Registers 0-7

> causes a sequence change
returns to original sequence
@ causes a sequence change
< now operates on byte
< acts like@

Open the program's general registers 0-7 with a command in the following format:

$n/

The symbol n is an integer in the range 0-7 that represents the desired register. When you open these registers, you
can examine them or change their contents by typing in new data as with any addressable location. For example:

*!~0/000033(@

*
*~t,4/()00474 464 (REf)

*

examines register 0 then closes it

opens register 4, changes its contents
to 000464, then closes the register

The example above can be verified by typing a slash in response to ODT's asterisk:

*1000464

You can use the LINE FEED, circumflex, underline or @command when a register is open.

16.3.4 Accessing Internal Registers
The program's status register contains the condition codes of the most recent operational results and the interrupt
priority level of the object program. Open it by typing $S. For example:

*$S/000311

$S represents the address of the status register. In response to $Sin the example above, ODT prints the 16-bit word,
of which only the low-order eight bits are meaningful. Bits 0-3 indicate whether a carry, overflow, zero, or negative
(in that order) has resulted, and bits 5-7 indicate the interrupt priority level (in the range 0-7) of the object program.
(Refer to the PDP-11 Processor Handbook for the status register format.)

You can also use the$ to open certain other internal locations listed in Table 16-2.

Table 16-2 Internal Registers

Register Section Function

$B 16.3.6 Location of the first word of the breakpoint table

$M 16.3.9 Mask location for specifying which bits are to be examined during a
bit pattern search

$P 16.3.15 Location defining the operating priority of ODT

$S 16.3.4 Location containing the condition codes (bits 0-3) and interrupt
priority level (bits 5-7)

(Continued on next page)

16-8

On-line Debugging Technique (ODT)

Table 16-2 (Cont.) Internal Registers

Register Section Function

SC 16.3.10 Location of the constant register

$R 16.3.13 Location of relocation register 0, the base of the relocation register
table

$F 16.3.1 Location of the format register

16.3.5 Radix-SO Mode (X)
Many PDP-11 system programs employ the Radix-SO mode of packing certain ASCII characters three to a word.
You can use Radix-SO mode by specifying the MACRO .RADS0 directive. ODT provides a method for examining
and changing memory words packed in this way with the X command.

When you open a word and type the X command, ODT converts the contents of the opened word to its 3-character
Radix-50 equivalent and prints these characters on the terminal. You can then type one of the responses from
Table 16-3.

Table 16-3 Radix-SO Terminators

Response Effect

RETURN key ((@')) Closes the currently open location

LINE FEED key (@) Closes the currently open location and opens the next one in sequence

Circumflex(") Closes the currently open location and opens the previous one in
sequence

Any three characters Converts the three characters into packed Radix-SO format. Legal
whose octal code is 040 Radix-SO characters for this response are:
(space) or greater

$
Space
D through 9
A through Z

If you type any other characters, the resulting binary number is unspecified (that is, no error message prints and the
result is unpredictable). You must type exactly three characters before ODT resumes its normal mode of operation.
After you type the third character, the resulting binary number is available to be stored in the opened location. Do
this by closing the location in any one of the ways listed in Table 16-3. For example:

*1000/042431 X=KBI CBA
*1000/011421 X=CBA

NOTE
After ODT converts the three characters to binary, the
binary number can be interpreted in one of many dif
ferent ways, depending on the command that follows.
For example:

*1234/063337 X=PRO XIT/013704

16-9

On-line Debugging Technique (ODT)

Since the Radix-SO equivalent of XIT is 113574, the
final slash in the example causes ODT to open location
113574 if it is a legal address.

16.3.6 Breakpoints
The breakpoint feature helps you monitor the progress of program execution. You can set a breakpoint at any

instruction that is not referenced by the program for data. When a breakpoint is set, ODT replaces the contents of
the breakpoint location with a BPT trap instruction so that program execution is suspended when a breakpoint is
encountered. Th.en the original contents of the breakpoint location are restored, and ODT regains control.

With ODT, you can set up to eight breakpoints, numbered O through 7, at any one time. Set a breakpoint by typing
the address of the desired location of the breakpoint followed by ;B. Thus, r;B sets the next available breakpoint at
location r. (If all eight breakpoints have been set, ODT ignores the r;B command.) You can set or change specific
breakpoints with the r;nB command, where n is the number of the breakpoint. For example:

*-:I.02o;B
* 1030 H<
* 1040 HI
*1032;:LB

*

sets breakpoint 0
sets breakpoint 1
sets breakpoint 2
resets breakpoint 1

The ;B command removes all breakpoints. Use the ;nB command to remove only one of the breakpoints, where n
is the number of the breakpoint. For example:

*; :rn
*

removes the third breakpoint

ODT keeps a table of breakpoints; you can access that table. The $Bf command opens the location containing the
address of breakpoint 0. The next seven locations contain the addresses of the other breakpoints in order. You can
sequentially open them by using the LINE FEED key. For example:

*- $B/OO :I. 020@
()() J. :I. 36 /00 l 0:-32@
00 :I. :1. 40 /00?0?0 ®
00:1.142 /00'?0?0®
OO:l :1.44 /00'70?0@
00:1.146 /00:1.046®
00:1. 1!".'iO /001066 (ill
00 :I. :I. !:'i2 /00'70?0

In this example, breakpoint 0 is set to 1020, breakpoint 1 is set to 1032, breakpoint 5 is set to 1046, and breakpoint
6 is set to 1066. The other breakpoints are not set.

Note that a repeat count in a proceed command (;P) refers only to the breakpoint that ODT most recently encoun
tered. Execution of other breakpoints is determined by their own repeat counts.

16.3.7 Running the Program (r;G and r;P)
ODT controls program execution. There are two commands for running the program: r;G and r;P. The r;G command
starts execution (go) and r;P continues (proceed) execution after halting at a breakpoint. For example:

* :I. ()0();: (3

16-10

On-line Debugging Technique (ODT)

This command starts execution at location 1000. The program runs until it encounters a breakpoint or until it
completes. If it gets caught in an infinite loop, it must be either restarted or reentered as explained in Section 16.1.

Upon execution of either the r;G or r;P command, the general registers 0-6 are set to the values in the locations
specified as $0-$6. The processor status register is set to the value in the location specified as $S.

When ODT encounters a breakpoint, execution stops and ODT prints Bn; (where n is the breakpoint number), fol
Jowed by the address of the breakpoint. You can then examine locations for expected data. For example:

)Ii 1010;;3f.{
*1ooo;G
B3;001010

*

sets breakpoint 3 at location 1010
starts execution at location 1000
stops execution at location 1010

To continue program execution from the breakpoint, type ;P in response to ODT's last prompt (*).

When you set a breakpoint in a loop, you can allow the program to execute a certain number of times through the
loop before ODT recognizes the breakpoint. Set a proceed count by using the k;P command. This command specifies
the number of times the breakpoint is to be encountered before ODT suspends program execution (on the kth en
counter). The count, k, refers only to the numbered breakpoint that most recently occurred. You can specify a
different proceed count for the breakpoint when it is encountered. Thus:

B:3;001010
*1026;~n=i
*4,P
B3;001026

halts execution at breakpoint 3
resets breakpoint 3 at location 1026
sets proceed count to 4 and
continues execution; the program loops
through the breakpoint three times and halts on
the fourth occurrence of the breakpoint

*

Following the table of breakpoints (as explained in Section I 6.3 .6) is a table of proceed command repeat counts
for each breakpoint. You can inspect these repeat counts by typing $B/ and nine line feeds. The repeat count for
breakpoint O prints (the first seven line feeds causes the table of breakpoints to be printed; the eighth types the single
instruction mode, explained in the next section, and the ninth line feed begins the table of proceed command repeat
counts). The repeat counts for breakpoints l through 7 and the repeat count for the single-instruction trap follow in
sequence. ODT initializes a proceed count to O before you assign it a value. After the command has been executed,
it is set to - 1. Opening any one of these repeat counts provides an alternative way of changing the count. Once the
location is open, you can modify its contents in the usual manner by typing the new contents followed by the
RETURN key. For example:

nnnnnn
nnnnnn
nnnnnn
nnnnnn

nnnnnn
nnnnnn

/001036@
1006t.i:rn@
/000000 l!.'i@
/000000@

/000000@
/nnnnnn

address of breakpoint 7
single instruction address
count for breakpoint 0; changes to 15
count for breakpoint 1

count for breakpoint 7
repeat count for single instruction mode

Both the address indicated as the single instruction address and the repeat count for single instruction mode are ex
plained in the following section.

16-11

On-line Debugging Technique (ODT)

16.3.8 Single Instruction Mode
With this mode, you specify the number of instructions to be executed before ODT suspends the program run. The
proceed command, instead of specifying a repeat count for a breakpoint encounter, specifies the number of succeeding
instructions to be executed. Note that breakpoints are disabled in single instruction mode. Table 164 lists the single
instruction mode commands.

Table 164 Single Instruction Mode Commands

Command Explanation

;nS Enables single instruction mode. (n can be any digit and serves only to distinguish
this form from the form ;S). Breakpoints are disabled.

n;P Proceeds with program run for the next n instructions before reentering ODT.
(If n is missing, it is assumed to be 1.) Trapping instructions and associated trap
handlers can affect the proceed repeat count (see Section 16.4.2).

;S Disables single instruction mode.

When the repeat count for single instruction mode is exhausted and the program suspends execution, ODT prints:

F:!8; nnnnnn

where nnnnnn is the address of the next instruction to be executed. The $B breakpoint table contains this address
following that of breakpoint 7. However, unlike the table entries for breakpoints 0-7, direct modification has no
effect.

Similarly, following the repeat count for breakpoint 7 is the repeat count for single instruction mode. You can
modify this table entry directly. This is an alternative way of setting the single-instruction mode repeat count. In
such a case, ;P implies the argument set in the $B repeat count table rather than an assumed 1.

16.3.9 Searches
With ODT, you can search all or any specific portion of memory for any bit pattern or for references to a particular
location.

16.3.9.1 Word Search (r;W) Before initiating a word search, you must specify the mask and search limits.
The location represented by $M specifies the mask of the search. $M/ opens the mask register. The next two sequen
tial locations (opened by LINE FEEDs) contain the lower and upper limits of the search. ODT examines in the
search all bits set to 1 in the mask; it ignores other bits.

You must then give the search object and the initiating command, using the r;W command, where r is the search
object. When ODT finds a match, (i.e., each bit set to 1 in the search object is set to 1 in the word ODT searches
over the mask range) the matching word prints. For example:

*1;M/OOOOOO :I. ?7400@
nnnnnn .1000000 l ooo@
nnnnnn /000000 :I. 040 (fill)
*400; l.J
00:1.0:1.0 /0007'70
00:1.034 /00040-4

*

tests high-order eight bits
sets low address limit
sets high address limit
initiates word search

16-12

On-line Debugging Technique (ODTJ

In the above example, nnnnnn is an address internal to ODT; this location varies and is meaningful only for reference
purposes. In the first line above, the slash was used to open $M, which now contains 177400; the LINE FEEDs open
the next two sequentiaJ locations, which now contain the upper and lower limits of the search.

In the search process, ODT performs an exclusive OR (XOR) with the word currently being examined and the search
object; the result is ANDed to the mask. If this result is 0, a match has been found and ODT reports it on the termi
nal. Note that if the mask is 0, all locations within the limits print. This proVides a convenient method for dwnping
all memory locations within given limits using ODT.

Typing CTRL/U during a search printout terminates the search.

16.3.9.2 Effective Address Search (r;E) - ODT proVides a search for words that reference a specific location.
Open the mask register only to gain access to the low and high limit registers. After specifying the search limits (as
explained for the word search), type the command r;E (where r is the effective address) to initiate the search.

Words that are an absolute address (argument r itself), a relative address offset, or a re1ative branch to the effective
address print after their addresses. For example:

*if;M/177400@
nnnnnn / 00 :1. 000 l O :I.()
nnnnnn /001040 1060
*l034ii[
001016 /00:1006
001.0~)4 /002767
*1020~[
00:1022 /177774
0010;·50 /001020

opens mask register only to gain
access to search limits

initiates search
relative branch
relative branch
initiates a new search
relative address offset
absolute address

Give particular attention to the reported effective address references. A word can have the specified bit pattern of
an effective address without actually being used as one. ODT reports all possible references whether they are actually
used or not.

Typing CTRL/U during a search printout terminates the search.

16.3.10 The Constant Register (r;C)
It is often desirable to convert a relocatable address into its value after relocation or to convert a number into its
two's complement, and then to store the converted value in one or more places in a program. Use the constant
register to perform this and other useful functions.

Typing r;C evaluates the relocatable expression to its 6-digH octal value, prints the value on the terminal, and stores
it in the constant register. Invoke the contents of the constant register in subsequent relocatable expressions by
typing the letter C. Examples follow:

:t·· .. 443:.); C:::; :I. 73346

.,,L ;. .. ",., 1 () L ,.,.7. () ·L c·· ~
1J\\:)cJ\., ,\·: ..• .. <:i..:.'. "' . "'~

*1,4272;C=005272

places the two's complement of 4432 in the
constant register

stores the contents of the constant register
in location 6632

sets relocation register 1 to 1000

reprints relative location 4272 as an
absolute location and stores it in the
constant register

16-13

On-line Debugging Technique {ODT)

16.3 .11 Memory Block Initialization { ;F and ;I)
Use the constant register with the commands ;F and ;I to set a block of memory to a specific value. While the most
common value required is 0, other possibilities are + 1, - l, ASCII space, etc.

When you type the command ;F, ODT stores the contents of the constant register in successive memory words
starting at the memory word address you specify in the lower search limit and ending with the address you specify
in the upper search limit.

Typing the command ;I stores the low-order eight bits in the constant register in successive bytes of memory
starting at the byte address you specify in the lower search limit and ending with the byte address you specify in the
upper search limit.

For example, assume relocation register I contains 7000, 2 contains 10000, and 3 contains 15000. The following
sequence sets word locations 7000-7776 to 0, and byte locations 10000-14777 to ASCII spaces:

* ·~M/000000@
nnnnnn /000000
nnnnnn /0()0000
* 0; {>0000()()
*~F
* $M/OOO()OO@
nnnnnn /007000
nnnnnn /0077?6
* 40; C::::00004()

.l , 0

:;>y()@
··.;; ·,@)
\., 7 ••

16.3.12 Calculating Offsets (r;O)

opens the mask register to gain
access to search limits
sets the lower limit to 7000
sets the upper limit to 7776
sets the constant register to zero
sets locations 7000-7776 to zero

sets the lower limit to 10000
sets the upper limit to 14777
sets the constant register to 40
(space)
sets the byte locations 10000-14777
to the value in the low-order 8
bits of the constant register

Relative addressing and branchlng involve the use of an offset. An offset is the number of words or bytes forward
or backward from the current location to the effective address. During the debugging session it is sometimes neces
sary to change a relative address or branch reference by replacing one instruction offset with another. ODT calcu
lates the offsets in response to the r;O command,

The command r;O causes ODT to print the 16-bit and 8-bit offsets from the currently open location to address r.
For example:

* 3461000034 414 v o <)00044 022 :n (RET)
*./000022

This command opens location 346, calculates and prints the offsets from location 346 to location 414, changes the
contents of location 346 to 22 (the 8-bit offset), and verifies the contents oflocation 346.

The 8-bit offset prints only if it is in the range - 128(decimal) to 127(decimal) and the 16-bit offset is even, as was
the case above. In the next example, the offset of a relative branch is calculated and modified so that it branches to
itself.

*1034/103421 1034?0 177776 377 \021 377
:,\(/:1.03777

Note that the modified low-order byte 377 must be combined with the unmodified high-order byte.

16-14

On-line Debugging Technique (ODT)

16.3.13 Relocation Register Commands
The use of the relocation registers is described briefly in Section 16.2. At the beginning of a debugging session, it is
desirable to preset the registers to the relocation biases of those relocatable modules that will be receiving the most
attention. Do this by typing the relocation bias, followed by a semicolon and the specification of relocation registers,
as follows:

r;nR

The symbol r can be any relocatable expression, and n is an integer in the range 0-7. If you omit n, it is assumed to
be 0. For example:

* :I. 000; ~.'iF~
* !'.'i, :I. 00; ~SF~
::I<'

puts 1000 into relocation register 5
adds 100 to the contents
of relocation register 5

Once a relocation register is defined, you can use it to reference relocatable values. For example:

* :1000; l F: puts 2000 into relocation register 1
* :I. i,? :L? 6./002466 examines the contents of location 4176
* l :1 3 '?:I.? ; 0 D sets a breakpoint at location 5712

Sometimes programs can be relocated to an address below the one at which they were assembled. This could occur
with PIC code (position independent code), which is moved without using the linker. In this case, the appropriate
relocation bias would be the two's complement of the actual downward displacement. One method for easily evalu
ating the bias and putting it in the relocation register is illustrated in the following example.

Assume a program was assembled at location 5000 and was moved to location 1000. Then the following sequence
enters the two's complement of 4000 in relocation register 1.

* :1.000 ~ :I.Fi:
:+ :I.,, '.'SOOO; l Fi'

*
Relocation registers are initialized to -1 so that unwanted relocation registers never enter into the selection process
when ODT searches for the most appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation registers to -1, type ; R.

ODT maintains a table of relocation registers, beginning at the address specified.by $R. Opening $R ($Rf) opens
relocation register 0. Successively typing a LINE FEED opens the other relocation registers in sequence. When a
relocation register is opened in this way, you can modify it as you would any other memory location.

16.3.14 The Relocation Calculators, nR and n!
When a location has been opened, it is often desirable to relate the relocated address and the contents of the location
back to their relocatable values. To calculate the relocatable address of the opened location relative to a particular
relocation bias, type:

n!

The symbol n specifies the relocation register. This calculator works with opened bytes and words. If you omit n, the
relocation register whose contents are closest to, but less than or equal to, the opened location is selected automati
cally by ODT. In the following example, assume that these conditions are fulfilled by relocation register 3, which
contains 2000. Use the following command to find the most likely module that a given opened byte is in:

16-15

On-line Debugging Technique (ODT)

*2500\011 = !=3,000500

To calculate the difference between the contents of the opened location and a relocation register, type:

nR

The symbol n represents the relocation register. If you omit n, ODT selects the relocation register whose contents
are closest to but less than or equal to the contents of the opened location. For example, assume the relocation bias
stored in relocation register 1 is 7000:

*1•500/11032 lR=l,2032

The value 2032 is the content of 1,500, relative to the base 7000. The next example shows the use of both reloca
tion calculators.

If relocation register 1 contains 1000, and relocation register 2 contains 2000, use the following command to cal·
culate the relocatable addresses oflocation 3000 and its contents relative to 1000 and 2000:

*3000/006410 1 1 =1,002000 2!=2,001000 lR=l,5410 2R=2,4410

16 .3 .1 S ODT Priority Level, $P
$P represents a location in ODT that contains the interrupt (or processor) priority level at which ODT operates. If
$P contains the value 377, ODT operates at the priority level of the processor at the time ODT is entered. Otherwise,
$P can contain a value between O and 7 corresponding to the fixed priority at which ODT operates.

To set ODT to the desired priority level, open $P. ODT prints the present contents, which you can then change:

*~1;i::· / 00000{, 4@) lowers the priority to allow interrupts
:+: from the terminal

If you do not change $P, its value is seven.

You must set ODT's priority to O if you are using ODT in an FB environment while another job is running.

ODT does not always service breakpoints that are set in routines that run at different priority levels. For example,
a program running at a low priority can use a device service routine that operates at a higher priority level. If you
set $Plow, ODT waits for terminal input at a low priority. If an interrupt occurs from a high priority routine, the
breakpoints in the high priority routine are not recognized since they were removed when the earlier breakpoint
occurred. That is, interrupts that are set at a priority higher than the one at which ODT is running are serviced, but
any breakpoints are not recognized. To avoid this problem, set breakpoints at one priority level at a time. That is,
set breakpoints within an interrupt service routine, but not at mainline code level. For a more complete discussion
of how the PDP.I I handles priority and interrupts, refer to the processor handbook for your particular machine.
ODT disables all breakpoints in the program whenever it gains control. Breakpoints are enabled when ;P and ;G
commands are executed. For example:

:f(it,F'/00007 ~5
*lOOOiB
*:?OOOvB
*l000;iG
r:io;oo:1.000

* an interrupt occurs and is serviced

If a higher level interrupt occurs while ODT is waiting for input, the interrupt is serviced, and no breakpoints are
recognized,

16·16

On-line Debugging Technique (ODT}

16.3.16 ASCII Input and Output (r;nA)
Inspect and change ASCII text by using a command of this syntax:

r;nA

The symbol r represents a relocatable expression, and n is a character count. If you omit n, it is assumed to be 1.
ODT does not check the magnitude of n. ODT prints n characters starting at location r, followed by a carriage
return/line feed combination. Table l 6-5 lists responses and their effect.

Table 16-5 ASCII Tenninators

Response Effect

RETURN key(@)) ODT outputs a carriage return/line feed combination followed by an
asterisk and waits for another command.

LINE FEED key (@) ODT opens the byte following the last byte output.

Up to n characters of text ODT inserts the text into memory, starting at location r. If you type
fewer than n characters, terminate the command by typing CTRL/U.
This causes a carriage return/line feed/asterisk combination to print.
However, if you type exactly n characters, ODT responds with a
carriage return/line feed combination, the address of the next available
byte, and then a carriage return/line feed/asterisk combination.

16.4 PROGRAMMING CONSIDERATIONS
Information in this section is not necessary for the efficient use of ODT. However, it does provide a better under
standing of how ODT performs some of its functions. In certain difficult debugging situations, this understanding
is necessary.

16.4.l Using ODT with Foreground/Background Jobs
It is possible to use ODT to debug programs written as either background or foreground jobs. ODT does not debug
virtual tasks that use extended memory. In the background or under the single-job monitor, you can link ODT with
the program as described in Example 1 in Section 16.1. To debug a program in the foreground area, DIGITAL recom
mends that you run ODT in the background while the program to be debugged is in the foreground. The sequence of
commands to do this is as follows:

• Fm.JN F"FWG/F'
L.OADE:I:i AT nnnnnn
• fWN OIIT
DDT VOL Ol
* nnnnnn ; Of",:

*$F/OOOOOO 0
*O, nnnnnn ; OB

loads the foreground program
the first address of the job prints
runs ODT in the background
and sets a relocation register
to the start of the job

clears the format register to enable
proper address printing
sets a breakpoint

starts the keyboard monitor again

starts the foreground job

TI1e copy of ODT you use must be linked low enough so that it fits in memory along with the foreground job.

16-17

On-line Debugging Technique (ODT)

NOTE
Since ODT uses its own terminal handler, it cannot be
used with the display hardware. If GT ON is in effect,
ODT ignores it and directs its input and output only to
the console terminal.

If you use ODT in a foreground/background environment while another job is running, set ODT's priority bit to 0
as follows:

»:!~P/ ()()()()()/ () (RET)

This puts ODT into the wait state at level 0, not at level 7. If you leave ODT's priority at 7, all interrupts (including
clock) are locked out while ODT is waiting for terminal input.

16.4.2 Functional Organization
The internal organization of ODT is almost totally modularized into independent subroutines. The internal structure
consists of three major functions: command decoding, command execution, and utility routines.

The command decoder interprets the individual commands, checks for command errors, saves input parameters for
use in command execution, and sends control to the appropriate command execution routine,

The command execution routines take parameters saved by the command decoder and use the utility routines to
execute the specified command. Command execution routines either return to the command decoder or transfer
control to your program.

The utility routines are common routines such as SA VE-RESTORE and 1/0. They are used by both the command
decoder and the command executers.

16.4.3 Breakpoints
The function of a breakpoint is to give control to ODT whenever a program tries to execute the instruction at the
selected address. Upon encountering a breakpoint, you can use all of the ODT commands to examine and modify
the program.

When a breakpoint is executed, ODT removes all the breakpoint instructions from the code so that you can examine
and alter the locations. ODT then types a message on the terminal in the form Bn;r, where r is the breakpoint address
and n is the breakpoint number. ODT automatically restores the breakpoints when execution resumes.

There is a major restriction in the use of breakpoints: the program must not reference the word where a breakpoint
was set since ODT altered the word. You should also avoid setting a breakpoint at the location of any instruction
that clears the T-bit. For example:

~SET PRIORITY TO LEVEL 5

NOTE
Instructions that cause or return from traps (e.g., EMT,
RTI) are likely to clear the T-bit, since a new word from
the trap vector or the stack is loaded into the status
register.

A breakpoint occurs when a trace trap instruction (placed in your program by ODT) is executed. When a breakpoint
occurs, ODT operates according to the following algorithm:

1. Sets processor priority to 7 (automatically set by trap instruction).
2. Saves registers and sets up stack.

16-18

On-line Debugging Technique (ODT)

3. If internal T-bit trap flag is set, goes to step 13.
4. Removes breakpoints.
5. Resets processor priority to ODT's priority or user's priority.
6. Makes sure a breakpoint or single-instruction mode caused the interrupt.
7. If the breakpoint did not cause the interrupt, goes to step 15.
8. Decrements repeat count.
9. Goes to step 18 if non-zero; otherwise resets count to 1.

10. Saves terminal status.
11. Types message about the breakpoint or single-instruction mode interrupt.
12. Goes to command decoder.
13. Clears T-bit in stack and internal T-bit flag.
14. Jumps to the go processor.
15. Saves terminal status.
16. Types BE (bad entry) followed by the address.
17. Clears the T-bit, if set, in the user status and proceeds to the command decoder.
18. Goes to the proceed processor, bypassing the TT restore routine.

Note that steps 1-5 inclusive take approximately 100 microseconds. Interrupts are not permitted at this time, since
ODT is running at priority level 7.

ODT processes a proceed (;P) command according to the following algorithm:

l. Checks the proceed for legality.
2. Sets the processor priority to 7.
3. Sets the T-bit flags (internal and user status).
4. Restores the user registers, status, and program counter.
5. Returns control to the user.
6. When the T-bit trap occurs, executes steps l, 2, 3, 13, and 14 of the breakpoint sequence, restores break

points, and resumes normal program execution.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction causing a trap, ODT follows this algorithm:

1. When the breakpoint occurs as described above, enters ODT.
2. When ;Pis typed, sets the T-bit and executes the IOT, EMT, TRAP, or other trapping instruction.
3. Pushes the current PC and status (with the T-bit included) on the stack.
4. Obtains the new PC and status (no T-bit set) from the respective trap vector.
5. Executes the whole trap service routine without any breakpoints.
6. When an RTI is executed, restores the saved PC and PS (including the T-bit). Executes the instruction

following the trap-causing instruction. If this instruction is not another trap-causing instruction, the
T-bit trap occurs; reinserts the breakpoints in the user program, or decrements the single-instruction
mode repeat count. If the following instruction is a trap-causing instruction, repeats this sequence
starting at step 3.

NOTE
Exit from the trap handler must be by means of the RTI
instruction. Otherwise, the T-bit is lost. ODT cannot regain
control since the breakpoints have not yet been reinserted.

Note that the ;P command is illegal if a breakpoint has not occurred (ODT responds with ?). ;Pis legal, however,
after any trace trap entry.

The internal breakpoint status words have the fo11owing format:

16-19

On-line Debugging Technique (ODT)

1. The first eight words contain the breakpoint addresses for breakpoints 0-7. (The ninth word contains the
address of the next instruction to be executed in single-instruction mode.)

2. The next eight words contain the respective repeat counts. (The following word contains the repeat count
for single-instruction mode.)

You can change these words at will, either by using the breakpoint commands or by directly manipulating $B.

When program runaway occurs (that is, when the program is no longer under ODT control, perhaps executing an
unexpected part of the program where you did not place a breakpoint) give control to ODT by pressing the HALT
key to stop the computer and then restarting ODT (see Section 16.1). ODT prints an asterisk, indicating that it is
ready to accept a command.

If the program you are debugging uses the console terminal for input or output, the program can interact with ODT
to cause an error since ODT uses the console terminal as well. This interactive error does not occur when you run
the program without ODT.

Note the following rules concerning the ODT break routine:

1. If the console terminal interrupt is enabled upon entry to the ODT break routine, and no output interrupt
is pending when ODT is entered, ODT generates an unexpected interrupt when returning control to the
program.

2. If the interrupt of the console terminal reader (the keyboard) is enabled upon entry to the ODT break
routine, and the program is expecting to receive an interrupt to input a character, both the expected
interrupt and the character are lost.

3. If the console terminal reader (keyboard) has just read a character into the reader data buffer when the
ODT break routine is entered, the expected character in the reader data buffer is lost.

16.4.4 Searches
The word search lets you search for bit patterns in specified sections of memory. Using the $M/ command, specify
a mask, a lower search limit ($M+2), and an upper search limit ($M+4). Specify the search object in the search com
mand itself.

The word search compares selected bits (where ls appear in the mask) in the word and search object. If all of the
selected bits are equal, the unmasked word prints.

The search algorithm is as follows:

I. Fetches a word at the current address.
2. XORs (exclusive OR) the word and search object.
3. ANDs the result of step 2 with the mask.
4. If the result of step 3 is 0, types the address of the unmasked word and its contents; otherwise, proceeds

to step 5.
5. Adds 2 to the current address. If the current address is greater than the upper limit, types* and returns

to the command decoder; otherwise, goes to step 1.

Note that if the mask is 0, ODT prints every word between the limits, since a match occurs every time (i.e., the
result of step 3 is always 0).

In the effective address search, ODT interprets every word in the search range as an instruction that is interrogated
for a possible direct relationship to the search object. The mask register is opened only to gain access to the search
limit registers.

The algorithm for the effective address search is as follows ((X) denotes contents of X, and K denotes the search
object):

16-20

On-line Debugging Technique {ODT)

1. Fetches a word at the current address X.
2. If (X)==K [direct reference] , prints contents and goes to step 5.
3. If (X)+ X+2=K [indexed by PC), prints contents and goes to step 5.
4. If (X) is a relative branch to K, prints contents.
5. Adds 2 to the current address. If the current address is greater than the upper limit, performs a carriage

return/line feed combination and returns to the command decoder; otherwise, goes to step 1.

16.4.S Terminal Interrupt
Upon entering the TT SAVE routine, ODT follows these steps:

1. Saves the lSR status register (TKS).
2. Clears interrupt enable and maintenance bits in the TKS.
3. Saves the TT status register (TPS).
4. Clears interrupt enable and maintenance bits in the TPS.

To restore the TT:

1. Wait for completion of any 1/0 from ODT.
2. Restore the TKS.
3. Restore the TPS.

16.5 ERROR DETECTION

NOTES
1. If the TT printer interrupt is enabled upon entry to the

ODT break routine, the following can occur:

a. 1f no output interrupt is pending when ODT
is entered, an additionaJ interrupt always occurs
when ODT returns control to the user.

b. If an output interrupt is pending upon entry,
the expected interrupt occurs when the user
regains control.

2. If the TT reader (keyboard) is busy or done, the expected
character in the reader data buffer is lost.

3. If the TT reader (keyboard) interrupt is enabled upon
entry to the ODT break routine, and a character is
pending, the interrupt (as well as the character)is lost.

ODT detects two types of error: illegal or unrecognizable command and bad breakpoint entry. ODT does not check
for the legality of an address when you command it to open a location for examination or modification. Thus the
command:

:l.?7?74/
?MON-F-TraP to 4 003362

references nonexistent memory, there by causing a trap through the vector at location 4. If the program you are de
bugging with ODT has requested traps through location 4 with the .TRPSET EMT, the program receives control at
its TRPSET address.

Typing something other than a legal command causes ODT to ignore the command and to print:

(echoes illegal command) 'i'

*
16-21

On-line Debugging Technique (ODT)

and to wait for another command. Therefore, to cause ODT to ignore a command just typed, type any illegal
character (such as 9 or RUBOUT) and the command will be treated as an error and ignored.

ODT suspends program execution whenever it encoW1ters a breakpoint (that is, traps to its breakpoint routine). If
the breakpoint routine is entered and no known breakpoint caused the entry, ODT prints:

HFnnnnnn

*
and waits for another command. BEnnnnnn denotes bad entry from location nnnnnn. A bad entry may be caused
by an illegal trace trap instruction, by a T-bit set in the status register, or by a jump to some random location within
ODT.

16-22

CHAPTER 17

PATCH

You can use the PATCH utility program to make code modifications to any RT-11 file (see Table 3-2 in this manual
for a complete list ofRT-11 file types). You use PATCH to interrogate and then to change words or bytes in the
file.

It is always a good idea to create a backup version of the file you want to patch, because PATCH makes changes
directly to the file as you work.

17.1 CALLING AND USING PATCH
To call PATCH from the system device, respond to the dot(.) printed by the keyboard monitor by typing:

RPATCH(firn

PATCH then prints:

FILE NAME
*

You should enter the name of the file you want to patch according to this general syntax:

filespec[/option ...]

where:

filespec

/option

represents the device, file name, and file type of the file you want to patch.

is one of the options listed in Table 17-l.

If you do not specify a file type, PATCH assumes a .SA V file type.

17.U PATCH Options
Table 17-1 summarizes the options that are valid for PATCH at this point in the opening command.

Table 17-1 PATCH Options

Option Meaning

/A Use with a device specification with or without a file specification. Use without a file specification to
repair damaged RT-I I directories on directory-structured devices or to patch the bootstrap on disk
block 0. Use with a file specification when the file is a source file or has a file type other than .SAY.

/M Use if the file is an RT-I I monitor file.

/0 Use if the file is an overlay-structured file.

/C Requires you to enter a checksum. If you make no modifications, PATCH ignores the /C option.

ID Use if you do not know the checksum for a particular patch. PATCH prints the checksum for that
patch. If you make no modifications, PATCH ignores the /D option.

17-1

PATCH

Note that you must enter the complete file specification and accompanying options at this point; they are not legal
at any other time. If you enter a carriage return instead of a file specification, however, PATCH prints its current
running version number. It then repeats the prompt for a file specification.

After you enter the file specification, PATCH prints another asterisk and waits for commands.

17.1.2 Checksum
The checksum option helps you verify your work. It lets you compare the patch that you make to another patch
that is known to be correct. The checksum does not tell you specifically where your error is, but it does tell you
that an inconsistency exists.

PATCH can maintain a running total of the value of each command, argument, and character you enter. This total
is called the checksum for the patch.

For example, if you receive from DIGITAL a patch to improve your system's performance, the patch contains a
checksum value. You should use the JC option in the first PATCH command line, then make the modifications
to your file exactly as shown in the DIGITAL patch. When you exit, PATCH asks you for a checksum. Enter
the value from the DIGITAL patch. If the checksum you enter and the checksum that PATCH generated when
you made your modifications do not match, PATCH prints the ?PATCH-W-CHECKSUM ERROR message. You
then know that you made an error in patching your file, and that you need to try again.

17 .2 PATCH COMMANDS
Table 17-2 summarizes the PATCH commands. Upper case characters represent PATCH commands; lower case
characters represent octal values or ASCII characters. The following sections describe the commands in detail.
Section 17.3 provides examples that use PATCH.

17 .2.1 Patching a New File (F)
The F command causes PATCH to request you to enter a checksum, or it prints the required checksum (depending
upon the options you specify). It also causes PATCH to close the currently open file and to print an asterisk indi
cating its readiness to accept another command string. No checksum dialogue is invoked if you have not previously
specified checksum options (with/Dor /C).

17 .2.2 Exiting from Patch (E)
The E command causes PATCH to close the currently open file after printing the checksum dialogue according
to the options you specify and return control to the RT-11 monitor. As with the F command, the checksum
dialogue is by-passed if you have not specified checksum options.

17 .2.3 Examining and Changing Locations in the File
For a non-overlay file, you can open a word address (as with ODT) by typing:

[relocation register,] offset/

PATCH types the contents of the location and waits for you to enter either a new location contents or another
command.

For an overlay file, the format is:

[segment number:] [relocation register,] offset/

Segment number represents the overlay segment number as it is printed on the link map for the file. If you omit
the segment number, PATCH assumes the root segment. ff you make an error in a command stnng while patching
an overlaid program, you can use CTRL/U to cancel the command. However, PATCH assumes the entire line is
incorrect and preserves only the previously set relocation registers. PATCH preserves the segment number only
across the " and (ill commands.

17-2

PATCH

Table 17-2 PATCH Commands

Command Section Explanation

v;nR 17.2.8 Sets relocation register n to value v.

x;B 17.2.7 Sets the bottom address of the overlay file to the value x.

r,o/ 17.2.3 Opens the word location indicated by the contents of relocation
register r plus offset o.

r,o\ 17.2.3 Opens the byte location indicated by the contents of relocation
register r plus offset o.

s:r,o/ 17 .2.3 Opens the word location indicated by the contents of relocation
register r plus offset o in overlay segment s.

s:r,o\ 17.2.3 Opens the byte location indicated by the contents of relocation
register r plus offset o in overlay segment s.

(@) 17.2.3 Closes the currently open word or byte.

@ 17 .2.3 Closes the currently open word or byte and opens the next sequen·
tial word or byte.

n 17.2.3 Closes the currently open word or byte and opens the previous word
or byte.

@ 17.2.3 Closes the currently open word and opens the word it addresses.

F 17.2.1 Closes the ftle currently open and requests a new file specification.

E 17.2.2 Closes the file currently open and returns control to RT-11 monitor.

x;o 17.2.5 Indicates that a value in the overlay handler or its tables is being
modified to the value x and that the overlay structure must be re-
initialized. A value of O is illegal and generates an error message.

& 17.2.6 Indicates that PATCH should add the contents of all subsequently
opened locations to the checksum, until it encounters another &
symbol.

A 17 .2.4 Prints the contents of the opened word or byte as ASCII characters
(if a byte is open, one character prints; if a word is open, two charac-
ters print).

X 17.2.4 Prints the contents of the opened word as an unpacked Radix-SO word.

C(x[x]) 17.2.4 Resets the contents of the opened word or byte to the ASCII value
you type (if a byte is open, you must type one character; if a word is
open, you must type two characters).

P(xxx) 17.2.4 Resets the contents of the currently opened word to the packed Radix-SO
value of the three ASCII characters you type (you must type three
characters).

17-3

PATCH

Similarly, you can open a byte address in a file. The format for non-overlay files is:

[relocation register,} offset\

The format for overlay files is:

[segment number: J [relocation register,] offset\

Once a location has been opened, you i.:an optionally type in the new contents in the format:

(relocation register,} octal value

Follow this line by one of the control characters from Table 17-3.

Table 17-3 PATCH Control Characters

Character Function

(RET) Closes the current location by changing contents to the new contents
(if any) and awaits additional control input.

@ Closes the current location by changing its content to the new contents
(if any) and opens the next sequential word or byte.

,..
Closes the current location by changing its contents to the new contents
(if any) and opens the previous word or byte.

@ Closes the current word location and opens the word it addresses (in
the same segment if it is an overlay file).

17 .2 .4 Translating and Indirectly Modifying Locations with a File
After opening a location within a file, you can translate the contents into ASCII characters or into the equivalent
of a Radix-50 packed word.

To obtain the ASCII equivalent of the opened location, type the following command after PATCH prints the
contents in octal.

A

PATCH then translates the word or byte into two (or one, if a byte is opened) ASCII characters. In this example,
a byte is opened:

*1,100'\ 102 A= B@

PATCH prints only the printable ASCII characters in the opened word or byte (all non-printing characters, such
as ASCII codes 0-37, are represented by the? character). In this example, a word is opened:

*1, 100/ 302

In the next example, a word is opened, and both ASCII characters are printable:

*1, 100/ 33502 A~

17-4

PATCH

In these examples, one or both of the characters cannot be printed:

*O, 400/ 466 A = 67

*1• 202/ 55001 A= ?Z

*616/ 401 A ··- ?'~ @ii)

To unpack a Radix-SO word as three ASCH characters, type the following command after PATCH prints the con
tents of the opened word.

X

PATCH then unpacks the opened word and prints three ASCII characters.

Note that you must open a word and not a byte.

If the word you open contains an illegal Radix-SO word, PATCH prints?'??. If the translated character is not print
able, PATCH prints? in place ofit.

Neither the A command nor the X command alters the contents of the open location; however, PATCH updates
the checksum to reflect the fact that you have entered a new command.

You can specify the A and X commands in any order on the same command line without altering the contents
of the open location. For example,

* 1, 15022/ 50553 X = MAC A= kQ

After examining the location with the A or X command, you can change the location if you wish. For example,

*45660/10146 A= F? X = BX8 12122 or@

If the same location is reopened, the following change appears:

*45660/12122

You can change the contents of a location to the ASCII code of the value you specify by using the C command.
You can use the P command to change a word to the packed Radix-SO word of the three characters you specify.
This example changes an open byte to the ASCII code for the letter Z:

*1~ 11~:5\ 101 C (Z>(@.i)

Note that PATCH prints the parentheses itself; you type only the character Z.

When reopened, that byte contains the ASCII code for Z:

*1., 115\ 132

Similarly, PATCH inserts the ASCII code for two ASCII characters into the low order and high order bytes,
respectively, of one word. This example changes an open word to the ASCII code for AZ:

*0,10116/ 103523 C (AZ) ~

17-5

PATCH

If reopened, the location contains the ASCII code for AZ:

*O, 10:L 16/ 55101 A= AZ

You can examine the same location in more conventional ways, as this example shows:

*0,10116\ 101
0,10117\ 132

Similarly, you can use the P command to change the contents of an open word to the Radix-50 packed word
equivalent of the three ASCII characters you specify. This example changes the Radix-SO word equivalent of SA V
to REL:

*2: 1, 400/ 73376 :-: = SAV P rnEL)@:m

17.2.S Setting Values in the Overlay Handler Tables of a Program
Use the ;O command to effect any changes to the overlay handler tables in an overlaid program. For example,

*616/

*
1043 110();: 0

This command line increases the size of the referenced overlay region hy 35(8) words or 58(10) bytes, to allow
room for a patch. The value being modified is a value associated with the overlay handler tables, or a value required
by the overlay handler for proper overlay structure initialization. The overlay structure is reinitialized and you can
enter commands to modify the new region on the next line. A value of O is not permitted with the ;O command.
If you omit the preceding argument, or use 0, an error message prints on the terminal.

17 .2.6 Including the Old Contents lnto the Checksum
Sometimes it is important that the present contents of the locations being changed have known specific values.
This is the case when DIGIT AL publishes system patches. The & command is designed to aid in implementing
system patches. It automatically includes the old contents of an open location into the checksum. This command
is a simple switch. The first occurrence of the & turns the switch on, the second turns it off. While the switch
is on, the old contents of every location you open and close properly become part of the checksum. To use the
& command, type:

&

Patch then prints a carriage return-line feed sequence and another * indicating its readiness to accept another
command. This switch is then enabled.

If you type the command on a line where a location is currently open, PATCH closes the location and resets the
switch. PATCH then prompts with an asterisk indicating that it is ready to accept additional commands.

17 .2.7 Setting the Bottom Addre~
To patch an overlay file, PATCH must know the bottom address at which the program was linked, if it is different
from the initial stack pointer. This is the case if the program sets location 42 in an .ASECT. To set the bottom
address, type:

bottom address;B

You must issue the B command before you open any locations in an overlay for modification.

17-6

PATCH

17 .2.8 Setting Relocation Registers
You set the relocation registers 0-7 (as with ODT) with the R command. The R command has the syntax:

relocation value ;relocation register R

Be careful when you type this command string. If you inadvertently substitute a comma(,) for the semicolon(;)
in the R command, PATCH does not generate an error message. However, it does not set the value you specify
in the relocation register.

Once you set one of the eight relocation registers, the expression:

relocation register,octal number

in a command string will have the value:

relocation value + octal number

17 .3 PATCH EXAMPLES
This section consists of two patch examples: one example for a non-overlaid file, and one example for an overlaid
file. In each case, the steps that are taken to assemble, link, and patch the files are clearly illustrated.

The following command assembles the MACRO program PROMPT.MAC:

.MACRO/LIST PROMPT
ERRORS DETECTED! 0

The following listing is produced on the line printer as a result of the assembly. It consists of two parts: 1) the
assembly listing of the source program and 2) the symbol table listing.

l'!lOMPT,~JC

1
2
l
4 000000
5
6 000001) I 12700 00 ovs 2
1 nooon4
B 000010
'l 000011 12270'1 ~00040

10 '100020 1"13~7
l I nnoon I ~27u,1 n,,00~1
12 Of}l'l:020 (J tl t 0 t 1
13 OOQQ)O
\4 000034 122100 nuo12,
IS OU0040 n1.i 1 no,.
I 6 00004}

S1APT1 'IOV!!
,nrnur
, TT {I~

C>IP~
8•1I
CMPB
8N[
,THIN
C•PB
l!NE
,PRINT

•'•,RO . , ,RO
START
l"/,RO
ER!<OP

• *'v, ~o
El<POR
,,.sG

, TITU:
,~CALL
,~CALI,
,CS~CT
,NL!ST

PIIO~PT,~AC
,P/11/,T, ,EXIT
,rrrour, ,TTHN
llG!iSEG
ee:x

PRJrJT,,,,
••,A Pp()MP!,
ACCEPT A C'4AR4CTf.P Fl'WM T~E ~Etl>QAl\l>

' TS IT A CONTROL CsARACTER7
x,;s . MUST BE A M!STAKI::,
"0 . IS IT A U /II 1
,',l(J - ~l::MRT THE ERROR,
!FS • GEI ,~x r,
IS n A "V" C~AI\ACT;:R?
NO - REPORT Tij! t•RDA,

I tff, - PRINT lrif, Y,PS!O~ ~~SSAGE,,,
17 0000~0
!R 0{)0052

on, ,EXIT , , ,AND T1t£q E:X!T TO T~F. Rr•l1 MONITOR,

19 ()00060
20 0000b2
21 nnnob4
n
23

l'RO~Pr ,~AC
sYMBQ!, TABLk:

1)00747
077
dl'?

tJ(dJQO"

E~RQR1 ,PRINT
BR

oou Ct.10t;RR1 ,ASClZ
'112 lOQ MSG1 .~.5CIZ

CMDEPR IJ000~2 p G02 ..X ti

, ABS, oonoor ono
0\)00')(' 9"1

HGHSEG oon1n1 un2
E~!tOPS ~~TECTED1 0

VIPTUAL •E~OPV ns1n1 ~ii -~RDS I 3 PAG~S)
DYNA~IC NE"n~v AVAI!,AALE FOP 5R PAGES
DK1P!lONPT,LPIDRO~fT=DK1PR~~PT,~IC/C

ICMDEKII PRINT TH£ "l(R~l)(T,Y)",,.,
START • .,.AND Tlle.N RESTART,
11 I
<!6><12>/F'JLE VO),Ol

,LIST l:IEX
, 1;~1; START

000050~ 0000~41< no, stART nonoooR uo,

17-7

PATCH

The next command links file PROMPT.OBJ and produces an executable module called PROMPT.SAY.

+LINK/MAP PROMPT

The following listing is produced on the line printer as a result of the link operation.

RT•11 LINK
PROMPT,SAV

VOl,01
TITLES

LOAO MAP
PROMP'r IDENT1

THU 05•MAY•77 16155ti8

SECTION ADDR

I ABS,
HGHSEG

000000
ootono

SIZE

001000
0()0110

GLOBAL VALUE GLOBAL VALUt

(RW,1,GBL,ABS,OVR)
CRW,I,GBL,REL,OVR)

GLOBAL VALUE

TRANSFER ADDRESS: 001000, HIGH LIMIT= 001110 • 292, WORDS

The program PROMPT has an error. On line 21 the characters <16> should really be <IS>. The following example
uses PATCH to correct the error.

+ F~ PATCH

FILE NAME·-.. -
*PFWMPT /II
*l000;1R
*1,64\ 16 15
*E
?PATCH-I-Checksum - 30633

The example shown above uses the /D option, which requests PATCH to print the checksum when the operation
completes. Next, relocation register 1 is set to the transfer address, which the link map shows is I 000. The next
command opens relative location 64, which contains the error, as the assembly listing shows at line sequence num
ber 21. The value 15 is substituted for 16 (by typing 15 followed by a carriage return) and the exit command is
issued (with E). PATCH then prints the checksum for the operation. It is 30633.

The next example verifies the change just made .

• R PATCH

FI LE NAME·-···
* PFWMPT
*1000;1R
*l.,64\
1,65\

15
12

1,66\
1,67\
1,70\
1,71\
1,72\
:1., 73\
1,74\
1,75\
:I. ,76\

106
111
114
105
40
40
126
60
63

17-8

PATCH

1, 77\ 56
1,100\ 60
1,101.\ 61
1,102\ 40
1,103\ 40
1,104\ 15
1., 10~i\ 12
*E
•

As before, relocation register I is set to 1000 and location 64 is opened. Now it contains the correct value, 15.
The rest of the command lines are terminated with a line feed. This closes the open location and opens the next
one. This example shows the values from line 21 of the assembly listing (Bil)@ FILE V03.0l (Bfil) @ as they
are stored in memory.

The following commands assemble two MACRO programs: PTCH.MAC, the main program, and OVRLAY.MAC,
the overlay .

• MACRO/LIST PTCI--I
ERRORS DETECTED: 0

+MACRO/LIST OVRLAY
ERRORS DETECTEDl O

The following listings were produced by the two assemblies.

PTCH,~AC •ACPIJ

I
2
) nooooo
4
s onooo,J fH\Q4fl~

6 000002 ~1270(>
7 000006
9 no,)()! n ~0416'
q 00,>014

10

vo1,u;, 5•"'Al•77 17,~81.15

snn,
tl(.;()111 b Ill

0:}1).(JOJG ~;nr1

PAGE I

!I~
MOV
,P~INT
,ISP
.t·or

EXU
IMSG,RO

,rnu
,l'CALI,
,CSF.C1
,t.LOBL

l'TCl1,"AC
,PRl~T, ,EXIT
HGHSE:G
l::r.TRt,>ISG1

aPA•CH l>lf[D!ATfLY TD CALL o,~RLII,
I ALTER~ATJ\ELi PR!•T A MESSAG!
I t,O Tl'if. PRU,T,
: CALL I• Thi DllPt..,Y,
1 1~E~ ~XIT D~ MVT0M•.

,s!,l5T ~!:X
!! OQOOlt, OIS ut2
12 000055 ~1~ n12
13

!H 4SG:
124 MSfHt

,ASCIZ
.Asen

<15><12>/fHIS IS I St.CCLIIFPL P•TCH/Ct5>Cl2>
Cl5><l2>1Th!S IS A~ OVERLAY'~ATCH/<15><12>

,LIST ~EX
14 P-10u00 •

PTCH ,MlC •ACPO vn3,oo 5•~AY•77 1715ijrJS
UMBOL H~T.,r,:

ENTRY " •••••• G nrr ooo,1lnk

• ABS, nooooo •)OO

000000 •101
IIGIISEG oon112 ,,02
ER~O~S DETECT1';D1 0

Vl!!IUAL MIMOPI UllDI ,o~ WD~DS (l PICESJ
DYNAMIC MIMO~I -VA!LlbLE FDR 59 plC[S
DK1PTCH,LP1PTCHcDJ1PTCH

Q,;;

PAGE

~SG

OV!!LA't, MIC

I

~ACPO VOJ,0n ~•Mll•ll 17158157 PAGl

i
l 000000

•

I• 1

oooolbP

5 000000 ~00403
012700

i:NTRYI 8P RETU~~
6 000002
7 0!'0006
8 000010
9

OQ02U7
000001

0110 1!00G aov tMSGt,RO
,PRINT

RlTUR~; PTS PC

17-9

,END snn

, TITL,f
,.~CALL
,CS!:CT
,GUJBL

OV~LAY,MAC
,l'~lNT
OVLSEG
MSGl,ENTRY

BRANCH IMMEClAT!LI TO RETUAN,
ALTER~ATiilLI PR!sT A M!SSkGE

TriEN RETUFN,

0(,2

PATCH

OVRLAY,MAC ~ACRO VOJ,00 S•MAY•77 17158157 PAGE l•I
SYMRr)L TARLE

!NTRY DOOOOnRG Od2 HSGl ~ •••••• G

, ABS, ooooon ooo
000000 001

OVLSEG 000012 002
tRROP~ DETECTED: 0

VI~TUAL MEMORY USEDr)54 WO~us (2 PAGES)
DYNAMIC M€MOPY AV~!LABLE FOM ~g ~AG€$
DK10VRLAY,LP10VRL~Y~D~1DV~L~Y

R<TURN 0000,oR ou2

The next command links the module PTCH.OBJ and the overlay module OVRLAY.OBJ, producing the executable
module ROOT.SAY .

• LINK/MAP/PROMPT/EXECUTEtROOT PTCH
fCJVRLAY/O::L
*//

The following listing is the load map that results from this link.

RT•lt LINK
ROOT .s~v

V03,01
TITLE:

LOAD MAP
PTCH,M IDENT:

THU 05•MAY•77 17159151

SECTTON ADDR

I ABS,
HGHSEG

000000
001122

SIZE

001122
000112

GLOBAL VALUE GLOBAL V i.t,UE

(Rw,I,G~L,ABS,OVP)
(R~,I,GBL,REL,OVB)

MSGl 001177
SEG~ENT SIZE: 001234: 334, WORDS
OVEPLA¥ REGTON 000001 SEGMENT 000001

OVLSEG 001236 Ou00l2 CR~,I,G8L,REL,OVR)
ENTRY Ii 001236

SEG~ENT s1zg = ~00012 = 5, wOROS

GLOBAL VALUE

T~ANSFER ADDRESS: 001122, HIGH LIMIT= 001250 s 340, WORDS

The following example shows how to patch an overlay segment .

• F~ PATCH

FILE NAME···-
*FWOT/0/C
*:1.2:36;1R
*1:1,0/ 403 240
*E

Checksum? 45475

• F~ ROOT

THIS IS AN OVERLAY PATCH

17-10

PATCH

The options /0 and/Care used in the file specification. /0 indicates that the file is overlaid. /C causes PATCH to
verify that the changes are correct by requesting a checksum value, which it compares to the actual checksum
value the changes generate internally. The patch for this example was supplied by an experienced user, and the
checksum for the correct patch is known to be 45475.

The first command line sets relocation register 1 to the start of the overlay segment to be patched. The load
maps show that overlay segment 1 begins at location 1236. The next command opens the first location in over
lay segment 1. It contains a branch instruction (403). A no-op instruction is substituted for it (240) followed by
a carriage return, and Eis used to exit. PATCH then requests the checksum value and 45475 is entered. This
matches the checksum that the changes generated internally, so control returns to the monitor and the patch is
successful.

The program is executed by typing:

R ROOT (RET)

Control branches immediately to the overlay segment. Since the branch instruction at ENTRY: is now inopera
tive, control passes to the next line and the message prints on the terminal.

NOTE
The linker allocates space for overlay segments in 256-word
blocks. Each segment begins on a block boundary. If a par
ticular overlay segment's size is less than a whole number
multiple of 256, you can add patches in the free space that
exists between the end of that overlay segment and the be
ginning of the next block. To do this you must first modify
the word-count word in the overlay handler table so that the
patches you add are included in the size of the overlay seg
ment. Be careful not to patch into the next block, though,
because the next overlay segment begins there.

17-11

CHAPTER 18

OBJECT MODULE PATCH UTILITY (PAT)

PAT, the RT-11 object module patch utility, allows you to patch, or update, code in a relocatable binary object
module. PAT does not permit you to examine the octal contents of an object module; use PATCH (described in
Chapter 17) to do that. PAT makes the patch to the object module by means of the procedure outlined in Figure
18-2. One advantage to using PAT is that you can add relatively large patches to an object module without perform
ing any octal calculations. PAT accepts a file containing corrections or additional instructions and applies these
corrections and additions to the original object module. You prepare the correction input in MACRO source form
and assemble it with the MACR0-11 assembler.

Input to PAT is two files: 1) the original input file and 2) a correction file containing the corrections and additions
to the input file. The input file consists of one or more concatenated object modules. You can correct only one of
these object modules with a single execution of the PAT utility. The correction file consists of object code that,
when linked by the linker, either replaces or appends to the original object module. Output from PAT is the updated
input file.

18.1 CALLING AND USING PAT
To call PAT from the system device, respond to the dot(.) printed by the keyboard monitor by typing:

R PAT (iili)

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to
accept a command line. Chapter 6 describes the general syntax of the command line that PAT accepts.

Type two CTRL/Cs to halt PAT at any time (or a single CTRL/C to halt PAT when it is waiting for console terminal
input) and return control to the monitor. To restart PAT, type R PAT in response to the monitor's dot. When PAT
executes an operation it returns control to the RT-11 monitor.

Figure 18-1 shows how you use PAT to update a file (FILEl) consisting of three object modules (MODI, MOD2,
and MOD3) by appending a correction file to MOD2. After running PAT, you use the linker to relink the updated
module with the rest of the file and to produce a corrected executable program.

Fl LE1

MODl FILEl

MOD2
MODl

MOD3 PAT
MOD2

UPDATE2

MOD3
UPDATE2

Figure 18-1 Updating a Module Using PAT

18-1

Object Module Patch Utility (PAT)

There are several steps you must perform to use PAT to update a file. First, create the correction file using a text
editor. Then, assemble the correction file to produce an object module. Next, submit the input file and the correc
tion file in object module form to PAT for processing. Finally, link the updated object module, along with the object
modules that make up the rest of the file, to resolve global symbols and create an executable program. Figure 18-2
shows the processing steps involved in generating an updated executable file by using PAT.

Specify the PAT command string in the following form:

{output-filespec] =input-filespec [/C[:n]] ,correct-filespec[/C[:n]]

where:

output-filespec

input-filespec

correct-file spec

C

n

is the file specification for the output file. If you do not specify an output file,
PAT does not generate one.

is the file specification for the input file. This file can contain one or more con
catenated object modules.

is the file specification for the correction file. This file contains the updates being
applied to a s.ingle module in the input file.

specifies the checksum option for the associated file. This directs PAT to generate
an octal value for the sum of all the binary data composing the module in that
file. (See Section 18.2.5 for more infonnation on checksums.)

specifies an octal value. PAT compares the checksum value it computes for a
module with the octal value you specify.

18.2 HOW PAT APPLIES UPDATES
PAT applies updates to a base input module by using the additions and corrections you supply in a correction file.
This section describes the PAT input and correction files, gives information on how to create the correction ftle,
and gives examples of how to use PAT.

18.2.1 The Input File
The input file is the file to be updated; it is the base for the output file. The input file must be in object module
fonnat. When PAT executes, the module in the correction file applies to this file.

18.2.2 The Correction File
The correction file must also be in object module format. It is usually created from a MACRO-I I source file in the
following fonnat:

.TITLE inputname

.IDENT updatenum

inputline

inputline

18-2

LINKER

TEXT

EDITOR

CORECT.MAC

EJ
CORECT.OBJ

EJ
MY FILE.OBJ

EJ
MY FILE.OBJ

Object Module Patch Utility (PAT)

->

V

1.

2.

3.

Create a correction file using the

text editor,

Execute the assembler (or compiler)

to create an object module version

of the file.

Execute PAT using as input the

correction file and the module to

be updated.

4. a) If the corrected object module is

part of something that typically

exists as a program (e.g., BASIC),

execute the linker to resolve new

addresses and create an executable
program.

b) If the corrected module is an

element in a library (e.g., SYSLIB),

run the librarian and create or

update the library to contain the

new (corrected) object module.

c) If the corrected module is some

thing that typically exists as an

object module (e.g., ODT), you

need do nothing. Whenever you

link this module, the corrections

will be included.

CORE CT.MAC

->LJ
CORECT.OBJ

-----,>EJ

MYFILE.OBJ

->EJ

MYFILE.SAV

->LJ

Figure 18-2 Processing Steps Required to Update a Module Using PAT

18-3

where:

input name

updatenum

inputline

Object Module Patch Utility (PAT)

is the name of the module to be correc1ed by the PAT update. That is, inputname
must be the same name as the name on the input file .TITLE directive for a single
module in the input file.

is any value acceptable to the MACR0-11 assembler. Generally, this value reflects
the µpdate version of the file being processed by PAT, as shown in the examples
below.

are lines of input for PAT to use to correct and update the input file.

During execution, PAT adds any new global symbols that are defined in the correction file to the module's symbol
table. Duplicate global symbols in the correction file supersede their counterparts in the input file, provided both
definitions are relocatable or both are absolute.

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT, provided:

• both have the same relocatability attribute (ABS or REL):

• both are defined with the same directive (.PSECT or .CSECT).

If PAT encounters duplicate PSECT names, it sets the length attribute for the PSECT to the length of the longer
PSECT and appends a new PSECT to the module.

If you specify a transfer address, it supersedes that of the module you are patching.

18.2.3 Creating the Correction File
As shown in Figure 18-2, the first step in using PAT to update an object file is to generate the correction fde. Use
the editor to build a file that contains these additions and corrections. The correction file must be in object module
format before PAT can process it. Assemble the correction ftle with the MACR0-11 assembler to produce an object
module that PATCH can process.

18.2.4 How PAT and the Linker Update Object Modules
The following examples show the source code for an input file and a correction file to be processed by PAT and the
linker. The examples show as output a single source ftle that, if assembled and linked, would produce a binary module
equivalent to the fi1e generated by PAT and LINK. Two techniques are described: one is for overlaying lines in a
module and the other is for appending a subroutine to a module.

18.2.4.1 Overlaying Lines in a Module - The first example illustrates a technique for overlaying lines in a module
by using a patch file. First, PAT appends the correction file to the input file. The linker then executes to replace code
within the input file.

The source code for the input file for this example is:

.TITLE ABC

.IIIENT /01/

.ENABL GBL
ABC:!

MOV A,C
JSR F'C,XYZ
RTS PC

.END

184

Object Module Patch Utility (PAT)

To add the instruction ADD A,B after the JSR instruction, the following patch source file is included:

.TITLE ABC

.IDENT /01.01/

.ENABL GBL
.=.+:1.2

ADD A,B
RTS F'C
.END

The patch source is assembled using MACR0-11 and the resulting object file is input to PAT along with the original
object file. The following source code represents the result of PAT processing:

.TITLE ABC

.IDENT 101.011

.ENABL GBL
ABC::

MOV A,C
JSR F'C,XYZ
RTS PC

.=ABC

.=.12
ADD A,B
RTS PC
.END

After the linker processes these files, the load image appears as this source-code representation shows:

.TITLE ABC

.!DENT /01.01/

.ENABL GBL
ABC::

MDV A,C
JSR PC,XYZ
ADD A,B
RTS PC
.END

The linker uses the .= .+ 12 in the program counter field to determine where to begin overlaying instructions in the
program. The linker overlays the RTS instruction with the patch code:

ADD A,B
RTS PC

18.2.4.2 Adding a Subroutine to a Module - The second example illustrates a technique for adding a subroutine
to an object module. In many cases, a patch requires that more than a few lines be added to patch the file. A con
venient technique for adding new code is to append it to the end of the module in the form of a subroutine. This
way, you can insert a JSR instruction to the subroutine at an appropriate location. The JSR directs the program to
branch to the new code, execute that code, and then return to in-line processing.

The source code for the input file for the example is:

18-5

Object Module Patch Utility (PAT)

.TITLE ABC

.IDENT /01/

.ENABL GBL
ABC::

MOV A,B
JSR PC,XYZ
HOV C,RO
RTS PC-
.END

Suppose you wish to add the instructions:

MOV D,RO
ASL RO

between

HOV A,B

and

JSR PC,XYZ

The correction file to accomplish this goal is as follows:

PATCH:

.TITLE

.ItiENT

.ENABL
JSR
NOP
.PSECT

ABC
101.011
GBL
PC,PATCH

PATCH

MDV A,B
MOV D,RO
ASL RO
RTS PC
.END

PAT appends the correction file to the input file, as in the previous example. The linker then processes the file and
generates the following output file:

.TITLE ABC

.IDENT /01.01/

.ENABL GBL
ABC::

JSR PC,PATCH
NOP
JSR PC,XYZ
HOV C,RO
RTS PC
.PSECT PATCH

18-6

PATCH:
MOV
MOV
ASL
RTS
,END

A,B
D,RO
RO
PC

Object Module Patch Utility (PAT)

In this example, the JSR PC ,PATCH and NOP instructions overlay1 the three-word MOV A,B instruction. (The NOP
is included because this is a case where a 2-word instruction replaces a 3-word instruction. NOP is required to main
tain alignment.) The linker allocates additional storage for .PSECT PATCH, writes the specified code into this pro
gram section, and binds the JSR instruction to the first address in this section. Note that the MOY A,B instruction
replaced by the JSR PC,PATCH is the first instruction the PATCH subroutine executes.

18.2.5 Detennining and Validating the Contents of a File
Use the checksum option (/C) to determine or validate the contents of a module. The checksum option directs PAT
to compute the swn of all binary data composing a file. If you specify the command in the form /C:n, /C directs
PAT to compute the checksum and compare that checksum to the value you specify with n.

To determine the checksum of a fde, enter the PAT command line with the /C option applied to the appropriate
f:ale (the ftle whose checksum you need to determine). For example:

*=INFILE/C,INFILE.PAT

PAT responds to this command with the message:

1'PAT-W-InPut module checksum is nnnnnn

PAT generates a similar message when you request the checksum for the correction fde.

To validate the changes made to a ftle, enter the checksum option in the fonn /C:n. PAT compares the value it
computes for the checksum with the value you specify with n. If the two values do not match, PAT displays a
message reporting the checksum error:

?PAT-W-InPut file checksum error

or

?PAT-W-Correction file checksum error

Checksum processing always results in a nonzero value.

Do not confuse this checksum with the record checksum byte.

18-7

APPENDIX A

BATCH

RT-11 BATCH is a complete job control language that allows RT-11 to operate unattended. RT-11 BATCH processing
is ideally suited to frequently-run production jobs, large and long-running programs, and programs that require little or
no interaction with you, the user. Using BATCH, you can prepare your job on any RT-11 input device and leave it for
the operator to start and run.

RT -11 BATCH permits you to:

• Execute an RT-11 BATCH stream from any legal RT-11 input device

• Output a log file to any legal RT-11 output device (except magtape or cassette)

• Execute the BATCH stream with the single-job monitor or in the background with the foreground/back
ground monitor or the extended memory monitor

• Generate and support system-independent BATCH language jobs

• Execute RT-11 monitor commands from the BATCH stream.

RT-11 BATCH consists of 1) the BATCH compiler and 2) the BATCH run-time handler. The BATCH compiler reads
the batch input stream you create, translates it into a fonnat suitable for the RT-11 BATCH run-time handler, and
stores it in a file. The BATCH run-time handler executes this file with the RT-11 monitor. As each command in the
batch stream executes, BATCH lists the command, along with any terminal output generated by executing the com
mand, on the BATCH log device.

A.1 HARDWARE AND SOFTWARE REQUIREMENTS TO RUN BATCH
You can run RT-11 BATCH on any single-job system that is configured with at least 12K words of memory. You
need a minimum system of 16K words of memory to run BATCH in the background in a foreground/background
environment. BATCH can run in any extended memory environment. A line printer, although optional, is highly
desirable as the log device.

BATCH uses certain RT-11 system programs to perform its operations. For example, the $BASIC command executes
the file BASIC.SAY. Make sure that the following RT-11 programs are on the system device, with exactly the fol
lowing names, before you run BATCH:

BASIC.SAY
BA.SYS
BATCH.SAY
CREF.SAY
SYSLIB.OBJ
FORTRA.SAY
LINK.SAY
MACRO.SAY
PIP.SAY
DIR.SAY

(BASIC users only)

(MACRO users only)
(FORTRAN and MACRO users)
(FORTRAN users only)

(MACRO users only)

A-1

BATCH

A.2 BATCH CONTROL STATEMENT FORMAT
You can use two forms of input to RT-1 l BATCH. Generate a file using the RT·l l editor and input it from any
RT-11 input device, or input punched cards from the card reader. In both cases, the input consists of BATCH con
trol statements. A BATCH control statement consists of three fields, separated from one another with spaces:
1) command fields, 2) specification fields, and 3) comment fields. The control statement has the syntax:

$command/ option specification/ option [!comment}

Each control statement requires a specific combination of command and specification fields and options (see.
Section A.4). Control statements cannot be longer than 80 characters, excluding multiple spaces, tabs, and com
ments. You can use a hyphen(·) as a line continuation character to indicate that the control statement is continued
on the next line (see Table A-4). Even if you use the line continuation character, the maximum control statement
length is still 80 characters.

The following example of a $FORTRAN command illustrates the various fields in a control statement.

$FORTRAN/LIST/RUN

command/options

A.2.1 Command Fields

PROGA/L.IBRARY PROGB/EXE

spec fields/options

!RUN FORTRAN

comment field

The command field in a BATCH control statement indicates the operation to be performed. It consists of a command
name and certain command field options. Indicate the command field with a $ in the first character position and ter
minate it with a space, tab, blank, or carriage return.

A.2.1. l Command Names - The command name must appear first in a BATCH control statement. All BATCH
command names have a dollar sign($) in the first position of the command (for example, $JOB). No intervening
spaces are allowed in the command name. BATCH recognizes only two fonns of a command name: the full name
and an abbreviation consisting of$ and the first three characters of the command name. For example, you can
enter the $FORTRAN command as:

$FORTRAN

or

$FOR

Y 011 cannot enter it as:

$FORT

or

$FORTR

A.2.1 .2 Command Field Options - Options that appear in a command field are command qualifiers. Their
functions apply to the entire control statement. All option names must begin with a slash(/) that immediately
follows the command name. Table A-1 describes the command field options that are legal in BATCH and indicates
the commands on which you can use them. Those option characters that appear in square brackets are optional.
These are described in greater detail in the sections pertaining to the commands with which you use them.

A-2

Option

/BAN[NER]

/NOBAN[NER]

/CRE[F]

/NOCRE[F]

/DEL[ETE]

/NODEL [ETE]

/DOL[LARS]

/NODOL [LARS]

/LIB[RARY]

/NOLIB [RARY]

/LIS [T]

/NOLIS[T]

/MAP

BATCH

NOTE
All /NO options are the defaults, except the /WAIT
option in the $MOUNT and $DISMOUNT commands
and the /OBJECT option in the $LINK command.

Table A-1 Command Field Options

Explanation

Prints the header of the job on the log file. BATCH allows this option only
on the $JOB command.

Does not print a job header.

Produces a cross reference listing during compilation; BATCH allows this
option only on the $MACRO command.

Does not create a cross reference listing.

Deletes input files after the operation completes. BATCH allows this option
on the $COPY and $PRINT commands.

Does not delete input files after operation completes.

The data following this command can have a $ in the first character position
of a line. BATCH allows this option on the $CREATE, $DATA, $FORTRAN,
and $MACRO commands. BATCH terminates reading data when you use
one of the following commands or when it encounters a physical end-of-ftle
on the BATCH input stream:

$JOB
$SEQUENCE
$EOD
$EOJ

Following data cannot have a$ in the first character position; a$ in the first
character position signifies a BATCH control command.

Includes the default library in the link operation. BATCH allows this option
on the $LINK and $MACRO commands.

Does not include the default library in the link operation.

Produces a temporary listing file (see Section A.2.5) on the listing device
(LST:) or writes data images on the log device (LOG:). BATCH allows
this option on the $BASIC, $CREATE, $DATA, $FORTRAN, $JOB,
and $MACRO commands. When you use /LIST on the $JOB command,
/LIST sends data lines in the job stream to the log device (LOG:).

Does not produce a temporary listing file.

Produces a temporary link map on the listing device (LST:). BATCH allows
this option on the $FORTRAN, $LINK, and $MACRO commands.

(Continued on next page)

A-3

BATCH

Table A-1 (Cont.) Command Field Options

Option Explanation

/NOMAP Does not create a MAP file.

/OBJ[ECT] Produces a temporary object file as output from compilation or assembly
(see Section A.2.5). BATCH allows this option on the $FORTRAN, $LINK,
and $MACRO commands. When you use /OBJECT on $LINK, BATCH
includes temporary files in the link operation.

/NOOBJ [ECT] Does not produce an object file as output of compilation; with $LINK, does
not include temporary files in the link operation.

/RT11 Sets BATCH to operate in RT-11 mode (see Section A.S). BATCH allows
this option only on the $JOB command.

/NORTl 1 Does not set BATCH to operate in RT-11 mode.

/RUN Links (if necessary) and executes programs compiled since the last "link-and-
go" operation or start of job. BATCH allows this option on the $BASIC,
$FORTRAN, $LINK, and $MACRO commands.

/NORUN Does not execute or link and execute the program after perfonning the
specified command.

/TIM[E] Writes the time of day to the log file when BATCH executes. BATCH allows
this option only on the $JOB command.

/NOTIM[E] Does not write the time of day to the log file.

/UNI[QUE] Checks for unique spelling of options and keynames (see Section A.4.13).
BATCH allows this option only on the $JOB command.

/NOUNI [QUE) Does not check for unique spelling.

/WAI [T] Pauses for operator action. BATCH allows this option on the $DISMOUNT,
$MESSAGE, and $MOUNT commands.

/NOWAI[T] Does not pause for operator action.

/WRl[TE] Indicates that the operator is to WRITE ENABLE a specified device or
volume. BATCH allows this option only on the $MOUNT command.

/NOWRI[TE] Indicates that no writes are allowed or that the specified volume is read-only;
informs the operator, who must WRITE LOCK the appropriate device.

A.2.2 Specification Fields
Specification fields immediately follow command fields in a BATCH control statement. Use them to name the
devices and files involved in the command. You must separate these fields from the command field, and from each
other, by blanks or spaces.

A-4

BATCH

If a specification field contains more than one file to be used in the same operation, separate the fields by a plus(+)
sign. For example, to assemble files Fl and F2 to produce an object file F3 and a temporary listing file, type:

$MACRO/LIST F1tF2/SOURCE F3/0BJECT

If you need to repeat a command for more than one field specification, separate the files by a comma(,). For
example, the following command assembles Fl to produce F2, a temporary listing file, and a map file F3. It then
assembles F4 and FS to produce F6 and a temporary listing file.

$MACRO/LIST Fl/SOURCE F2/0BJECT F3/MAP,F4tF5/SOURCE
F6/0BJECT

Note that the command field options apply to the entire line, but the specification field options apply only to the
field they follow.

Depending on the command you use, specification fields can contain a device specification, file specification, or an
arbitrary ASCII string. You can use an appropriate specification field option (see Table A-3) with any of these three
items.

A.2.2.1 Physical Device Names - Represent each device in an RT-11 BATCH specification field with a standard
2- or 3-character device name. Table 3-1 in Chapter 3 lists each name and its related device. If you do not specify a
unit number for devices that have more than one unit, BATCH assumes unit 0.

In addition to the permanent names shown in Table 3-1, you can assign logical device names to devices. A logical
device name takes precedence over a physical name, thus providing device independence. With this feature, you do
not need to rewrite a program that is coded to use a specific device if the device is unavailable. For example, DK: is
normally assigned to the system device, but you can assign that name to diskette unit 1 (DXI :) with an RT-11
monitor ASSIGN command.

You must assign certain logical names prior to running any BATCH job. BATCH uses these logical names as default
devices. These names are:

LOG: BATCH log device (cannot be magtape or cassette)
LST: Default device for listing files generated by BATCH stream.

The following are not legal device names in RT-11; if you use them, the operator must assign them as logical names
with the ASSIGN command. You can use these names in BATCH streams written for other DIGITAL systems.

DF: Fixed-head disk (RF).
LL: Line printer with upper case and lower case characters.
M7: 7-track magtape.
M9: 9-track magtape.
PS: Public storage (DK: as assigned by RT-11).

Refer to Sections 4.3 and A. 7 .1 for instructions on assigning logical names to devices.

A.2.2.2 File Specifications - You can reference files symbolically in a BATCH control statement with a name
of up to six alphanumeric characters followed, optionally, by a period and a file type of three alphanumeric charac
ters. Tabs and embedded spaces are not allowed in either the file name or file type. The file type generally indicates
the format of a file. It is a good practice to conform to the standard file types for RT-11 BATCH. If you do not
specify a file type for an output file, BATCH and most other RT-11 system programs assign appropriate default file
types. If you do not specify a file type for an input file, the system searches for that file name with a default file
type. Table A-2 lists the standard file types used in RT-11 BATCH.

A-5

BATCH

Table A-2 File Types

File Type Explanation

.BAS BASIC source file (BASIC input)

.BAT BATCH command file

.CTL BATCH control file generated by the BATCH compiler.

.CTT BATCH temporary file generated by the BATCH compiler.

.DAT BASIC or FORTRAN data file

.DJR Directory listing fi1e

.FOR FORTRAN IV source file (FORTRAN input)

.LST Listing file

.LOG BATCH log file

.MAC MACRO source file (MACRO or SRCCOM input)

.MAP Link map output from $LINK operation

.OBJ Object fi1e output from compilation or assembly

.sou Temporary source file

.SAV $RUNable file or program image output from $LINK

A.2.2.3 Wildcard Construction - You can use wildcards in certain BATCH control statements (such as, $COPY,
$CREATE, $DELETE, $DIRECTORY, $PRINT). You can use the asterisk as a wildcard to designate the entire file
name or file type. See Chapter 4, Section 4.2, for a complete description of the wild card construction.

NOTE
You cannot use embedded wildcards (* or%) in BATCH
control statements. However, you can use them in the key
board monitor commands if you use the RT-11 mode of
BATCH.

A.2.2.4 Specification Field Options Specification field options follow file specifications in a BATCH control
statement and designate how the file is to be used. These options apply only to the field in which they appear. Option
names begin with a slash. The specification field options legal in RT-11 BATCH are listed in Table A-3. Optional
characters in the option names are in square brackets.

A-6

BATCH

Table A-3 Specification Field Options

Option Explanation

/BAS[IC] BASIC source file

/EXE[CUTABLE] Indicates the executable program image file to be created as the result of a
link operation

/FOR[TRAN] FORTRAN source file

/INP[UT] Input file; default if you specify no options

/LIB[RARY] Library file to be included in link operation (prior to default library)

/LIS [T] Listing file

/LOG[ICAL] Indicates that the device is a logical device name; use in $DISMOUNT and
$MOUNT commands

/MAC[RO] MACRO source file

/MAP Linker map file

/OBJ[ECT] Object file (output of assembly or compilation)

/OUT[PUT] Output file

/PHY [SIC AL] Indicates physical device name

/SOU[RCE] Indicates source file

/VID Volwne identification

A.2.3 Comment Fields
Comment fields, which document a BATCH stream, are identified by an exclamation point(!) appearing anywhere
except the first character position in the control statement. BATCH treats any character following the ! and pre
ceding the carriage return/line feed combination as a comment. For example:

$RUN PIP !DELETE FILES ON DK:

This command runs the RT-11 system program PIP. BATCH ignores the comment.

You can also include comments as separate comment lines by typing a$ in character position 1, followed immedi
ately by the ! operator and the comment. For example:

$!DELETE FILES ON DK:

A.2.4 BATCH Character Set
The RT-11 BATCH character set is limited to the 64 upper case characters (ASCII 40 through 137). The current
ASCII set is assumed (character 137 is underscore and not left arrow, and character 136 is circumflex, not up-arrow).
The BATCH job control language does not support any control characters other than tab, carriage return, and line
feed.

A-7

BATCH

Table A4 shows how BATCH nonnally interprets certain characters. Character interpretations are different if you
use RT-11 mode (see Section A.5).

Character

blank/space

II

$

0-9

A-Z

=

\

+

Table A4 Character Explanation

Explanation

Specification field delimiter. It separates arguments in control statements.
BATCH considers any string of consecutive spaces and tabs (except in quoted
strings) as a blank (that is, equivalent to a single space).

Comment delimiter. The input routine ignores all characters after the excla
mation point, up to the carriage return/line feed combination.

Passes a text string containing delimiting characters where the normal
precedence rules would create the wrong action. For example, use it to
include a space in a volume identification (/VID).

BATCH control statement recognition character. A dollar sign($) in the
first character position of a BATCH input stream line indicates that the line
is a control statement.

Delimiter for file type.

Indicates line continuation if the character after the hyphen is one of the
following:

• A carriage return/line feed
• Any number of spaces or tabs followed by a carriage return/line feed
• A comment delimiter (!)
• Spaces followed by a comment delimiter(!).

If any other character follows the hyphen, the hyphen is assumed to be a
minus sign indicating a negative value in an option.

Precedes an option name. An alphanumeric string must immediately follow it.

Numeric string components.

Immediately follows a device name. You can also use it to separate an option
name from its value or to separate an option value from its subvalue (you can
use : interchangeably with = for this purpose).

Alphabetic string components.

Separates an option name from a value.

Illegal character except when it precedes a directive to the BATCH run-time
handler from the operator (see Section A.7.3). (To include\ in an RT-11
mode command, use \ \ .)

File delimiter. Separates multiple files in a single specification field. Also
indicates a positive value in options.

(Continued on next page)

A-8

BATCH

Table A-4 (Cont.) Character Explanation

Character Explanation

I Separates sets of arguments for which the command is to be repeated.

* A wildcard in utility command file specifications.

CR/LF Carriage return/line feed. It indicates end-of-line (or end oITogical record)
for records in the BATCH input stream.

A.2.S Temporary Files
When you do not include field specifications in a BATCH command line, BATCH sometimes generates temporary
files. For example, you can enter a $FORTRAN command that is followed in the BATCH stream by the FORTRAN
source program as:

$FORTRAN/RUN/OBJECT/LIST
FORTRAN source program

$EOD

This command generates: 1) a temporary source file from the source statements that follow, 2) a temporary object
file, 3) a temporary listing file, and 4) a temporary memory image file.

BATCH sends temporary files to the default device (DK:) or the listing device (l.ST:) according to their nature.
If the device is file-structured, BATCH a.c;signs fde names and file types as follows:

nnnmmm.LST
nnnmrnm.MAP
nnnppp.OBJ
nnnppp.SAV
nnnppp.SOU

where:

nnn

mmrn

PPP

for temporacy listing files (sent to LST:)
for temporary map files (sent to LST:)
for temporary object files (sent to DK:)
for temporary memocy image files (sent to DK:)
for temporal)' source files (rent to DK:)

represents the last three digits of the sequence number assigned to the job by the
$SEQUENCE command (see Section A.4.22). Thus, a sequence number of 12345
produces a file name beginning 345. Ifyou do not use the $SEQUENCE command,
BATCH sets nnn to 000.

represents the number of listing (or map) files that BATCH generated since the
BATCH run-time handler (BA.SYS) was loaded. The first such file, listing or map,
is 000. Each time BATCH generates a new temporary file, it increments the ftle
name by I. Thus, the second listing file produced under job sequence number 12345
is 345001.l.ST, and the first map ftle produced is 345000.MAP.

represents the number of object, rnemoiy image, or source files in the current
BATCH run. The first such ftle (object, memory image, or source) is 000. Each
time BATCH generates a new temporary file, it increments the file name by I.
BATCH resets these file names to 000 every time that you run BATCH and after
evecy $LINK, $MACRO, or $FORTRAN command that uses the temporaries.

A-9

BATCH

A.3 GENERAL RULES AND CONVENTIONS
You must adhere to the following general rules and conventions associated with RT-11 BATCH processing.

1. Always place a dollar sign ($) in the first character position of a command line.
2. Each job must have a $JOB and $EOJ command (or card).
3. You can spell out command and option names entirely or you can specify only the fast three characters

of the command and required characters of the option.
4. Specify wildcard construction(*) only for the utility commands ($COPY, $CREATE, $DELETE,

$DIRECTORY, and $PRINT) and for commands that normally accept wildcards in RT-11 mode.
5. Include comments at the end of command lines or in a separate comment line. When you include comments

in a command line, place them after the command but precede them by an exclamation mark.
6. Include only 80 characters per control statement (card record), excluding multiple spaces, tabs, and

comments.
7. When you omit file specifications from BATCH commands and supply data in the BATCH stream, the

system creates a temporary file with a default name (see Section A.2.5).
8. You can use the RT-11 monitor type-ahead feature only with BATCH handler directives (see Section

A.7.3) to be inserted into a BATCH program. No other terminal input (except input to a foreground pro
gram) can be entered while a BATCH stream is executing.

9. You cannot use an indirect command file to call BATCH.

A.4 BATCH COMMANDS
Place BATCH commands in the input stream to indicate to the system which functions to perform in the job. All
BATCH commands have a dollar sign($) in the first character position (e.g., $JOB). Intervening spaces are not
allowed in command names. The command name must always start in the first character position of the line (card
column 1).

BATCH commands are presented in alphabetical order in this chapter for ease of reference. However, if you are not
familiar with BATCH, read the commands in a functional order as listed in Table A-5. The characters shown in
square brackets are optional.

Table A-S BATCH Commands

Command Section Explanation

$SEQ [VENCE] A.4.22 Assigns an arbitrary identification number to a job.

$JOB A.4.13 Indicates the start of a job.

$EOJ A.4.11 Indicates the end of a job.

$MOU[NT] A.4.18 Signals the operator to mount a volume on a device and option-
ally assigns a logical device name.

$DIS[MOUNT] A.4.9 Signals the operator to dismount a volume from a device and
deassigns a logical device name.

$FOR[TRAN] A.4.12 Compiles a FOR TRAN source program.

$BAS[IC) A.4.1 Compiles a BASIC source program.

$MAC[RO] A.4.16 Assembles a MACRO source program.

$LIB[RARY] A.4.14 Specifies libraries that BATCH should use in link operations.

(Continued on next page)

A-10

BATCH

'fable A-S (Cont.) BATCH Commands

Command Section Explanation

$LIN(KJ A.4.15 Links modules for execution.

$RUN A.4.21 Causes a program to execute.

$CAL[L] A.4.2 Transfers control to another BATCH file, executes that BATCH
file, and returns to the calling BATCH stream.

$CHA[IN] A.4.3 Passes control to another BATCH file.

$DAT[AJ A.4.6 Indicates the start of data.

$EOD A.4.10 Indicates the end of data.

$MES[SAGE] A.4.17 Issues a message to the operator.

$COP[Y] A.4.4 Copies files.

$CRE[ATEJ A.4.5 Creates new files from data included in the BATCH stream.

$DEL[ETEJ A.4.7 Deletes files.

$DIR[ECTORY] A.4.8 Provides a directory of the specified device.

$PRI[NT) A.4.19 Prints files.

$RT[ll) A.4.20 Specifies that the following lines are RT-11 mode commands.

For each command listed below, the term filespec represents a device name, a file name, and a file type.

It has this form:

dev: filnam. typ

As a general rule, BATCH assumes device DK: if you omit a device specification.

A.4.1 $BASIC Command
The $BASIC command calls RT·l 1 single-user BASIC to execute a BASIC source program. The $BASIC command
has the following syntax:

$BASIC(/option ...] [filespec/option]) [!comments]

where:

/option indicates an option you can append to the $BASIC command. The options are as
follows:

/RUN indicates that BATCH should execute the source program.

/NORUN indicates that BATCH should only compile the program, and send error
messages to the log file.

A-11

filespec

/option

/LIST

BATCH

writes data images that are contained in the job stream to the log file
(LOG:).

/NO LIST writes data images to the log file only if you specify $JOB/LIST.

indicates the name and type of the source file and the device on which it resides. If
you omit the file type, BATCH assumes .BAS. If you omit this specification, the
source statements must immediately follow the $BASIC command in the input
stream.

Terminate the source program after a $BASIC statement with either a $EOD command
or with any other BATCH command that starts with a$ in the first position.

indicates an option that can follow the source file name. BATCH assumes that any
file name with no option appended is the name of a source file. This option can have
one of the following values (or you can omit it):

/BASIC indicates that the file name you specify is a BASIC source program.

/SOURCE performs the same function as /BASIC.

/INPUT performs the same function as /BASIC.

You can follow the $BASIC command with the source program, legal BASIC commands (such as RUN), or data.
The following two BATCH streams, for example, produce the same results.

$BASIC
10 INPUT A
20 PRINT A
30 END
RUN
123
$EOit

A.4.2 $CALL Command

$BASIC/RUN
10 INPUT A
20 PRINT A
30 END
$DATA
:L23
$EDD

The $CALL command transfers control to another BATCH control file, temporarily suspending execution of the
current control file. BATCH executes the called file until it reaches $EOJ or until the job aborts; control then re
turns to the statement following the $CALL in the originating BATCH control file. You can nest calls up to 31
levels. BATCH includes the log file for the called file in the log file for the originating BATCH program. (See NOTE
following the $EOJ command.)

The syntax of the $CALL command is:

$CALL filespec [!comments]

BATCH does not permit options in the $CALL command. BATCH saves $JOB command options across a $CALL;
however, they do not apply to the called BATCH file. If you specify .CTL as the file type, BATCH assumes a pre
compiled BATCH control file. If you do not specify a file type, BATCH assumes .BAT and compiles the called
BATCH stream before execution.

A-12

A.4.3 $CHAIN Command

BATCH

NOTE
If the called program generates temporary files, those files
can supersede currently existing temporary files if the two
jobs have the same sequence number. For example, con
sider the following two BATCH streams:

$FOR/OB ..) A
$FOR/OB,J B
$LINK/RUN

$FOR/OBJ A
$CALL C
$FOR/OBJ B
$LINl</RIJN

The called BATCH file (C.BAT) contains the following:

$JOB
$FOR/OBJ Ai
$FOR/OBJ Bl
$LINK/RUN
$EOJ

The temporary object files that C.BAT generates change the
behavior of the previous two BATCH statement sequences.
The first temporary file created by C.BAT (000000.OBJ)
supersedes the temporary file produced by the first
$FORTRAN command (000000.OBJ). Avoid this situation
by giving the BATCH job C.BAT a unique sequence number
(see Section A.4.22).

The $CHAIN command transfers control to a named BATCH control file but does not return to the input stream
that executed the $CHAIN command. The syntax of the $CHAIN command is:

$CHAIN filespec[!comments]

BATCH does not permit options in the $CHAIN command. If you specify .CTL as the file type, BATCH assumes a
precompiled BATCH control file. If you do not specify a file type, BATCH assumes .BAT and compiles the chained
BATCH stream before execution.

A $EOJ command should always follow the $CHAIN command in the BATCH stream.

NOTE
The values of BATCH run-time variables remain constant
across a $CALL, $CHAIN, or return from call. See Section
A.5.2.2 for a description of these variables.

Use the $CHAIN command to transfer control to programs that you need to run only once at the end of a BATCH
stream. For example, you could use the following BATCH program (PRINT.BAT) to print and then delete all tem
porary listing files generated during the current BATCH job.

$JOB
SPRINT/DELETE *,LST
SEOJ

!PRINT ALL LIST FILES

A-13

BATCH

You could then run PRJNT.BA T with the $CHAIN command as follows:

$JOB
$MACRO/RUN A
$MACRO/RUN B
$CHAIN PRINT
$EOJ

A.4.4 $COPY Command

ALST/LIST
BLST/l.IST

The $COPY command copies files in image mode from one device to another. You can use the wildcard construc
tion (see Section A.2.2.3) in the input and output file specifications. You can concatenate several input files to form
one output file (as long as the output specification does not contain a wildcard). The $COPY command has the fol

lowing syntax:

$COPY[/option] output-filespec [... , output-filespec] /OUTPUT
input-filespec[... , input-filespec] [/INPUT] [!comments]

where:

/option

output-filespec

iOUTPUT

input-filespec

/INPUT

indicates options that you can append to the $COPY command.

/DELETE

/NODELETE

deletes input files after the copy operation.

does not delete input files after the copy operation.

represents an output file. You must specify a file type.

indicates that a file specification is for an output file.

represents a file to be copied.

BATCH copies files to the output file in the order that you list them (except when
you use wildcards).

indicates that a file specification is for an input file. If you do not specify an option,
BATCH assumes INPUT.

The following are examples of the $COPY command:

$COPY *•BAS/OUTPUT DTl:*.BAS

This command copies all files with the file type .BAS from the DECtape on unit 1 to the default storage device DK:.

$COPY FILE2+FOR/OUTPUT FILEO.FOR+FILE1.FOR

This command merges the input files FILED.FOR and FILEl .FOR to form one file called FILE2.FOR and stores
FILE2.FOR on device DK:.

$COPY *•*/OUT DTOl*+FOR, DTl:*•*IDUT DTO:*•*

This command copies all files with the file type .FOR from DTO: to DK: and all files on DTO: to DTl:.

A-14

BATCH

A.4.5 $CREATE Command
The $CREATE command generates a file from data records that follow the $CREATE command in the input stream.
An error occurs if the data does not immediately follow the $CREATE command. You cannot precede the data
records with a $DATA command.

You can follow the $CREATE data with a $EOD command to signify the end of data, or you can use any other
BATCH control statement to indicate end of data and initiate a new function. The $CREATE command has the
following syntax:

$CREATE[/option ...] filespec [!comments]

where:

/option

filespec

indicates an option you can append to the $CREATE command. The options are:

/DOLLARS indicates that the data following this command can have a $ in the
first character position of a line.

/NODOLLARS indicates that a$ cannot be in the first character position of a line.

/LIST

/NOLIST

writes data image lines to the log file.

does not write data image lines to the log file. If you specify $JOB/
LIST, BATCH ignores this option.

represents the file you want to create.

NOTE
If you use the /DOLLARS option, you must follow the last
data record with a $EOD command (see Table A-1).

The following is an example of the $CREATE command:

$CREATE/LIST PROG.FOR
FORTRAN source file

$EDD

The data records following the $CREATE command become a new file (PROG.FOR) on the default device (DK:).
BATCH generates a listing on logical device LOG:.

A.4.6 $DATA Command
Use the $DATA command to include data records in the input stream. Data you include in this manner needs no file
name. BATCH transfers the data to the appropriate program as though it were input from the console terminal. For
example, you can follow the $RUN command for a particular program by a $DATA command and the data records
for the program to process. The data records must be valid data for the program that is to use them.

The $DAT A command has the following syntax:

$DATA[/option ...] [!comments]

Four options that you can use with the $DATA command are as follows:

/DOLLARS indicates that the data following this command can have a $ in the first character
position of a line.

A-15

/NO DOLLARS

/LIST

/NOLIST

BATCH

indicates that a $ cannot be in the first character position of a line.

writes data image lines to the log file.

does not write data images to the log file. If you specify $JOB/LIST, BATCH ignores
this option.

NOTE
Any command beginning with a $ normally follows the last
data record. However, if you specify $DATA/DOLLARS,
you must follow the last data record with $EOD.

The following example shows data entered into a BASIC program (TESTl .BAS).

$BASIC/RUN TEST1.BAS
$DATA
25,75,125,146
180,210,520,874
$EOD

A.4.6.1 Using $DATA with FORTRAN Programs - When you use the $DATA command to provide input to a
FORTRAN program, you must insert a CTRL/Z into the BATCH file after the last data line and before $EOD (or
before the next BATCH command if you do not use $EOD). This procedure permits FORTRAN to properly detect
an end-of-file after it reads the last data line. For example:

$FORTRAN/RUN A.FOR
$DATA
1
2
3
"'Z (RET)@
$EOD
$RUN PIP

The above program reads three numbers from the input stream and then detects an end-of-file when it attempts to
read a fourth number. If you include an END=n statement in your FORTRAN program, statement n gets control
when the end-of-file is detected. If the CTRL/Z (RET)@ is not present, the program aborts when it reaches $EOD
and never executes the END=n statement.

A.4.7 $DELETE Command
Use the $DELETE command to delete files from the device you specify. This command has the syntax:

$DELETE filespec [... , filespec] (!comments]

where:

filespec represents the name of a file to be deleted.

The following example deletes all files named TESTl on the default device DK:.

$DELETE TEST!.*

A-16

BATCH

The following example deletes all files with .FOR file types on DTl:, then deletes all files with .MAC file types on
DK:.

A.4.8 $DIRECTORY Command
The $DIRECTORY command outputs a directory of the device you specify to a listing file. If you do not specify
a listing file, the listing goes to the BATCH log file. lhis command has the syntax:

$DIRECTORY {filespec/LIST] [filespec[... , filespec]] [/INPUT] {!comments]

where:

ftlespec/LIST

filespec/lNPUT

indicates the name of the directory listing file.

indicates the input files to be included in the directory (default).

The following are examples of the $DIRECTORY command:

$DIRECTORY

This command outputs a directory of the device DK: to the BATCH log file.

$DIRECTORY FOR.DIR/LIST *•FOR

This command creates a directory file (FDR.DIR) on the device DK:. The directory contains the names, lengths,
and dates of creation of all FORTRAN source files on the device DK:.

A.4.9 $DISMOUNT Command
The $DISMOUNT command removes the logical device name assigned by a $MOUNT command. When BATCH
encounters $DISMOUNT while executing a job, it prints the entire $DISMOUNT command line on the console
terminal. lhis message tells the operator which device to unload. This command has the syntax:

$DISMOUNT[/option] logical-device-name: [/LOGICAL] [!comments]

where:

/option indicates an option you can append to the $DISMOUNT command. The options are:

/WAIT

/NOWAIT

indicates that the job must pause until the operator enters a
response. If you do not specify either /WAIT or /NOW AIT,
BATCH assumes /WAIT. BATCH rings a bell at the terminal,
prints the physical device name to be dismounted followed by a
question mark(?), and waits for a response. (At this point you can
enter input to the BATCH handler. See Section A.7.3.)

does not pause for operator response, BATCH prints the physical
device name to be dismounted.

logical-device-name: is the logical device name to be deassigned from the physical device.

/LOGICAL identifies the device specification as a logical device name.

A-17

BATCH

The following example instructs the operator to dismount the physical device with the logical device name OUT:
and removes the logical assignment of device OUT:. In this example, OUT: is DT0:. The operator dismounts DTO:
and then types a carriage return.

$DISMOUNT/WAIT OUT:/LOGICAL
OTO?

A.4.10 $EOD Command
The $EOD command indicates the end-of-data record or the end of a source program in the job stream. The syntax
of this command is:

$EOD [!comments]

The $EOD command can signal the end of data associated with any of the following commands:

$BASIC
$CREATE
$DATA
$FORTRAN
$MACRO

In the following example, the $EOD command indicates the end of a source program that is to be compiled, linked,
and executed.

$FORTRAN/RUN
source program

$EDD

A.4.11 $EOJ Command
The $EOJ command indicates the end of a job. This command must be the last statement in every BATCH job. The
command has the following syntax:

$EOJ [!comments]

If BATCH encounters a $JOB command, a $SEQUENCE command, or a physical end-of-file in the input stream before
$EOJ, an error message appears in the log file.

NOTE
Make sure that the $EOJ command is the last line in a .BAT
file.

A.4.12 $FORTRAN Command
The $FORTRAN command calls the FORTRAN compiler to compile a source program. Optionally, this command
can provide printed listings or list files and can produce a link map in the listing. The $FORTRAN command has the
following syntax:

$FORTRAN[/option ...] lsource-filespec[/option]] [filespec/OBJECT] [filespec/LIST] -
[filespec/EXECUTE] [tilespec/MAP] [filespec/LIBRARY] [!comments]

where:

/option indicates an option you can append to the $FORTRAN command. The options are
as follows:

A-18

source-filespec

/option

filespec/OBJECT

/RUN

/NORUN

/OBJECT

/NOOBJECT

/LIST

/NOLIST

/MAP

/NOMAP

/DOLLARS

BATCH

indicates that FORTRAN is to compile the source program, link it
with the default library, and execu,te it. The default library is
SYSLIB.OBJ. You can change it with the $LIBRARY command.

compiles the program only.

produces a temporary object file.

does not produce a temporary object file.

produces a list file on the listing device (LSI:).

does not produce a list file.

produces a link map on the listing device (LSI:).

does not create a MAP file.

indicates that the data following this command can have a $ in the
first character position of a line.

/NODOLLARS indicates that a$ cannot be in the first character position of a line.

indicates the device, file name, and file type of the FORTRAN source file. If you do
not specify the file name, the $FORTRAN source statements must immediately fol
low the $FORTRAN command in the input stream; BATCH generates a temporary
source file that it deletes after FORTRAN compiles the temporary source file (see
Section A.2.5).

You can terminate the source program included after a $FORTRAN statement by
either a $EOD command or by any other BATCH command. If, however, you use
dollar signs in the first position in the source program, you must enter the source pro
gram with $CREATE/DOLLARS. In this case, you cannot use $FORTRAN/DOLLARS.

represents an option that can have one of the following values:

/FORTRAN

/SOURCE

/INPUT

indicates that the file name you specify is a FORTRAN source pro
gram. BATCH assumes that any file name with no option appended
is the name of a source file.

performs the same function as /FORTRAN.

performs the same function as /FORTRAN.

indicates the device, file name, and file type of the object file produced by compila
tion. The object file remains on the device you specify after the job finishes. You must
follow the object file specification, if you include it, by the /OBJECT option.

If you omit the object file specification but specify $FORTRAN/OBJECT, BATCH
creates a temporary object file. BATCH includes this temporary file -in any $LINK
operations that follow it in the job, and deletes it after the link operation.

A-19

filespec/LIST

files pee /EXECUTE

filespec/MAP

filespec/LIBRARY

BATCH

indicates the name you assign to the list file created by the compiler. BATCH does
not automatically print the list fde if you assign LST: to a file-structured device, but
you can list it using the $PRINT command. Follow the list file specification by the

/LIST option.

indicates the name you assign to a memory image file. Follow the memory image file
specification by the /EXECUTE option. If you do not include this field, BATCH
generates a temporary memory image file (see Section A.2.5) and then deletes the
temporary file.

indicates the name you assign to the link map file created by the linker. Follow the
map specification by the /MAP option.

indicates that BATCH must include the file you specify in the link procedure as a
library before SYSLIB.OBJ. The file must be a library file (produced by the RT -11
librarian). Follow the library specification by the /LIBRARY option.

The following are examples of $FORTRAN commands:

$FORTRAN/RUN PR0GA.FDR

This command calls FORTRAN to compile and execute a source program named PROGA.FOR.

SF0RTRAN/NO0BJ/LIST
source program

SEOD

This command sequence compiles the FORTRAN program but does not produce an object file. BATCH creates a
temporary listing file on LST:.

A.4.13 $JOB Command

NOTE
See Section A.4.6.1 for instructions on using the $DATA
command with FORTRAN programs.

The $JOB command indicates the beginning of a job. Each job must have its own $JOB command. Trus command
has the following syntax:

$JOB[/option ...] [!comments]

BATCH allows the following options in the $JOB command:

/BANNER

/NOBANNER

/LIST

/NOLIST

/RTll

prints a header (a repetition of the $JOB command) on the log file.

does not print a job header.

writes data image lines that are contained in the job stream to the log file.

writes data image lines to the log file only when a /LIST option exists on a $BASIC,
$CREA TE, or $DAT A command that has data lines following it.

ifno $ appears in column 1 when BATCH expects one, BATCH assumes that the line
or card is an RT-11 mode command (see Section A.5).

A-20

/NORTll

/TIME

/NOTIME

/UNIQUE

/NOUNIQUE

BATCH

does not process RT-11 mode commands.

writes the time of day to the log file when BATCH executes command lines (except
$DATA command lines).

does not write the time of day.

checks for unique spelling of options and keynames. When you use this option, you
can abbreviate commands and options to the least number of characters that still
make their names unique. For example, you can abbreviate the /DOLLARS option to
/DO since no other option begins with the characters DO.

checks only for normal option and keyname spellings.

End each job with a $EOJ command if you want to run it. If an input stream consists of more than one job, BATCH
automatically terminates one job when it encounters the $JOB command for the next job. BATCH will never run a
job terminated with another $JOB command; an error message will appear in the log.

The following $JOB command writes the time of day to the log file before BATCH executes each command beginning
with a$. It also accepts unique abbreviations of BATCH commands and options.

$JOB/TIME/UNIQUE

A.4.14 $LIBRARY Command
The $LIBRARY command lets you specify a list of library files that will be included in FORTRAN links or with
other link operations that have the /LIBRARY option. By default, the list oflibraries contains only SYSLIB.OBJ,
the RT-11 system library. This command has the syntax:

$LIBRARY filespec (!comments]

or

$LIBRARY filespec+SYSLIB [!comments]

where:

filespec represents a library file; the default file type is .OBJ.

SYSLIB is the RT-11 system library that you create at system generation.

libraries are linked in order of their appearance in the $LIBRARY command.

The following example shows two libraries (LIBl .OBJ and LIB2.0BJ) that are included in FORTRAN links before
SYSLIB.OBJ.

$LIBRARY LIB1.0BJ+LIB2.0BJ+SYSLIB.OBJ

A.4.15 $LINKCommand
Use the $LINK command to produce memory image files from object files. This command links the files you specify
(if any) with all temporary object files created since the last link or link-and-go operation (if any).

Temporary object files are those files you create as a result of a $FORTRAN or $MACRO command without naming
an object file (with the /OBJECT option) or suppressing an object file (with the /NOOBJECT option). Create perma
nent object files by using the /OBJECT option on a $FORTRAN or $MACRO file descriptor.

A-21

BATCH

BATCH links files in the following order:

1. First, it links temporary files in the order in which they were compiled.
2. Then, it links permanent files in the order in which they are specified in the $LINK command.
3. If the $LINK command specifies a library, BATCH links it next, providing that unresolved references

remain.
4. If you specify $LINK/LIBRARY, BATCH searches and links the default library list.

The syntax for this command is:

$LINK[/option ..] [filespec/OBJECT] [filespec/LIBRARY] [filespec/MAP] [filespec/EXECUTE] •
[!comments]

where:

/option

filespec/ OBJECT

filespec/LIBRARY

ftlespec/MAP

filespec/EXECUTE

indicates an option that you can append to the $LINK command. The options are
as follows:

/LIBRARY includes the RT-11 system library (SYSLIB.OBJ) and any default
libraries specified in the $LIBRARY command in this $LINK opera
tion. Use this option when the files being linked do not include any
temporary FORTRAN object files. You can also use it when you
specify $FORTRAN without the /RUN or /MAP option, but you
want to search the default library list for unresolved references.

/NOLIBRARY does not include the default libraries.

/MAP produces a temporary load map on the listing device (I.ST:).

/NOMAP does not produce a map file.

/OBJECT includes temporary object files in the link. If you specify neither
/OBJECT nor /NOOBJECT, BATCH assumes $LINK/OBJECT.

/NOOBJECT does not include temporary files in the link.

/RUN executes the memory image files associated with this $LINK com·
mand when the link is complete.

/NORUN only links the program and does not execute it.

indicates the name of the object file BATCH must link. If you do not specify
/OBJECT, BATCH assumes it as the default.

indicates that the file you specify is to be included in the link procedure as a library.
The file you specify must be a library file (produced by the RT-11 librarian).

indicates the load map file BATCH must create as a result of the $LINK command.

indicates the memory image file BATCH must create as a result of the $LINK
command.

A-22

BATCH

The following are examples of the $LINK command:

SLINK/RUN

This command links all temporary object files created since the last $LINK command or the last $FORTRAN/OBJ

or $MACRO/OBJ command.

SLINK/HAP PROGl.OBJtPROG2+0BJ/OBJ PROGA.SAV/EXE

This command links the temporary files and the object files PROG l .OBJ and PROG2.0BJ to form a memory image
file named PROGA.SA V. It also creates and outputs a temporary map file.

A.4.16 $MACRO Command
The $MACRO command calls the MACRO assembler to assemble a source program and, optionally, to provide
printed listings or list files. You must specify MACRO listing directives, if any, in the source program. You cannot
enter them at BATCH command level.

The $MACRO command has the following syntax:

$MACRO[/option ...] [source-filespec[/option]] [filespec/OBJECT] {ftlespec/LIST] -
[ftlespec/MAP] [filespec/LIBRARYJ [filespec/EXECUTE] (! comments J

where:

/option indicates an option you can append to the $MACRO command. The options are as
follows:

/RUN

/NORUN

/OBJECT

/NOOBJECT

/LIST

/NOLIST

/CREF

/NOCREF

/MAP

/NOMAP

/DOLLARS

assembles, links, and runs the source program.

only assembles the source program.

produces a temporary object file.

does not produce a temporary object file.

produces a listing file on the listing device (LST:).

does not produce a list file.

produces a cross reference listing during assembly.

does not produce a cross reference listing during assembly.

produces a link map as part of the listing file on LST:.

does not create a MAP file.

indicates that the data following this command can have a $ in the
first character position of a line.

/NODOLLARS indicates that a$ cannot be in the first character position of a line.

/LIBRARY includes the default library (SYSLIB.OBJ) in the link operation.

source-filespec

/option

filespec/OBJECT

filespec/LIST

fi.lespec/MAP

filespec/LIBRARY

filespec/EXECUTE

BATCH

/NOLIBRARY does not include the default library in the link operation.

indicates the name of the source file. If you do not specify a file name, the $MACRO
source statements must immediately follow the $MACRO command in the input
stream.

You can terminate the source program you include after a $MACRO statement by
either a $EOD command or by any other BATCH command. If, however, you include
dollar signs in the first position in the source program, you must use the $CREATE/
DOLLARS command to enter the source program. In this case, you cannot use
$MACRO/DOLLARS.

can have one of the following values:

/MACRO

/SOURCE

/INPUT

indicates that the file name you specify is a MACRO source pro
gram. BATCH assumes that any file name with no option appended
is the name of a source file.

performs the same function as /MACRO.

performs the same function as /MACRO.

indicates the name you assign to the object file produced by compilation. The object
file remains on the device you specify after the job finishes. If you include an object
file specification, follow it with the /OBJECT option.

If you omit the object file specification but specify $MACRO/OBJECT, BATCH
creates a temporary object file. BATCH also includes the temporary object file in any
$LINK operations that follow the $MACRO command in the job, and deletes it after
the link operation (see Section A.2.5).

indicates the name you assign to the list file created by the assembler. BATCH does
not automatically print the list file if you assign LST: to a file-structured device, but
you can list it using the $PRINT command. The /LIST option must follow the list
file specification.

indicates the file to which BATCH must output the storage map.

indicates that BATCH must include the file you specify in the link procedure as a
library. The /LIBRARY option must follow the library file specification.

indicates the name you assign to a memory image file. The /EXECUTE option must
follow the memory image file specification. If you do not include this field but do use
$MACRO/RUN, BATCH generates a temporary memory image file (see Section A.2.5)
and runs it.

The following $MACRO command assembles a program named PROCO.MAC and creates a temporary object file
and a temporary listing file.

$MACRO/LIST/OBJECT PROGO.MAC

A-24

BATCH

A.4.17 $MESSAGE Command
Use the $MESSAGE command to issue a message to the operator at the console terminal. It provides a means for
the job to communicate with the operator. The $MESSAGE command has the syntax:

$MESSAGE[/option] message [!comments]

where:

/option

message

indicates an option you can append to the $MESSAGE command. The options are:

/WAIT

/NOWAIT

indicates that the job is to pause until the operator either types a
carriage return to continue or enters commands to the BATCH
handler followed by a carriage return (see Section A.7.3).

does not pause for operator response.

is a string of characters that must fit on one console line. BATCH prints the message
on the console.

For example, if you include the following message in the input stream:

$MESSAGE/WAIT MOUNT SCRATCH TAPE ON MTO:

The message:

MOUNT SCRATCH TAPE ON MTO:
?

appears on the console terminal and a bell sounds. The operator mounts the tape and types carriage return to allow
further processing of the job. (See Section A.7 .3 for operator interaction with BATCH.)

A.4.18 $MOUNT Command

NOTE
BATCH compresses multiple spaces and tabs in BATCH
command lines; therefore, attempts to format $MESSAGE
output with tabs or spaces do not provide you with the
desired results.

The $MOUNT command assigns a logical device name and other characteristics to a physical device. When BATCH
encounters $MOUNT during the execution of a job, it prints the entire $MOUNT command line on the console
terminal to notify the operator which volume to use.

The $MOUNT command has the syntax:

$MOUNT[/option ...) physical-device-name: [/PHYSICAL] [/VID=x]
[logical-device-name:/LOGICAL] [! comments J

where:

/option indicates an option you can append to the $MOUNT command. The options are:

/WAIT indicates that the job is to pause until the operator enters a response.
If you do not specify either /WAIT or /NOW AIT, BATCH assumes
/WAIT. BATCH rings a bell, prints the physical device name and a

A-25

/NOWAIT

/WRITE

/NOWRITE

BATCH

question mark(?), and waits for a response. (The response can
consist of input for the BATCH handler~ see Section A.7.3.J

does not pause for operator response. BATCH prints the name of
the physical device to be mounted.

tells the operator to WRITE ENABLE the volume.

tells the operator to WRITE PROTECT the volume.

physical-device-name is required and specifies the physical device name and an optional unit number fol
lowed by a colon (for example, DXI:). If you specify a device name without a unit
number, the operator can enter one in response to the question mark printed by the
$MOUNT command. If you want the operator to supply a unit number, do not use
the /NOW AIT option because it assumes unit 0.

/PHYSICAL identifies the device specification as a physical unit specification. If you do not spec
ify either /PHYSICAL or /LOGICAL, BATCH assumes /PHYSICAL.

/VID=x provides volume identification. The volume identification is the name physically
/VID= .. x" attached to the volume. Include it to help the operator locate the volume. Use this

option only on the physical device file specification. If x contains spaces, specify it
as "x".

NOTE
This volume identification is only a visual check for the
operator. Make this volume identification match the
visual label on the volume, not the volume identification
that you wrote onto the volume at initialization time with
the INITIALIZE/VOLUMEID command.

logical-device-name/LOGICAL
is required to identify the logical device name, if any, you assign to the device. The
/LOGICAL option must follow the logical device name specification.

The following command instructs the operator to select a DECtape unit and mount DECtape volume BAT0l on
that unit, WRITE ENABLED. It informs the operator by printing:

$MOUNT/WAIT/WRITE DT:/VID=BAT01 2:/LOGICAL
DT'i'

The operator selects a unit, mounts DECtape volume BAT0l, WRITE ENABLED, and responds to the question
mark by typing the unit number (such as 1) followed by a carriage return. BATCH assigns logical device name 2 to
the physical device (in this case DTI :) and proceeds.

If no unit number response is necessary, as this command shows,

$MOUNT/WAIT/WRITE DT1: 2:/LOGICAL
DT1'i'

the operator responds with a carriage return after mounting the DECtape and WRITE ENABLING the device.

A-26

BATCH

A.4.19 $PRINT Command
Use the $PRINT command to print the contents of the files you specify on the listing device (LST:). This command
has the syntax:

$PRINT[/option] filespec [... ,filespec] [/INPUT] [!comments]

where:

/option

filespec

/INPUT

indicates an option you can append to the $PRINT command. The options are:

/DELETE

/NODELETE

deletes input files after printing.

does not delete input files after printing.

represents a file to be printed.

indicates that the file is an input file; BATCH assumes /INPUT if you omit it.

The following command prints a listing of files with file type .MAC that are stored on default device DK:.

$PRINT *•MAC

The following example creates listing files for the programs A and B, prints the listing files, and then deletes them.

$MACRO A.MAC A/LIST
$MACRO B.MAC B/LIST
$PRINT/DELETE A.LST,B.LST

A.4.20 $RT1 I Command
The $RT11 command allows the BATCH job to communicate directly with the RT-11 system. DIGITAL recommends
that you use RT-11 mode if you use BATCH. This command puts BATCH in RT-11 mode until BATCH encounters
a line beginning with$. In RT-11 mode, BATCH interprets all data images as commands to the RT-11 monitor, to
RT-11 system programs, or to the BATCH run-time system. The $RT11 command has the syntax:

$RT1 l [!comments]

See Section A.S for a complete description of the RT-11 mode.

A.4.21 $RUN Command
The $RUN command executes a program for which a memory image file (.SA V) was previously created. It can also
run RT-11 system programs.

The $RUN command has the syntax:

$RUN filespec[!comments]

where:

filespec represents the file to be executed. If you omit the file type, BATCH assumes .SAY.

A-27

BATCH

For example, you can run DIR to print a directory listing:

$RUN DIR
$DATA
LPt=DK:/L
$EOD

A.4.22 $SEQUENCE Command
The $SEQUENCE command is an optional command. If you use it, it must immediately precede a $JOB command.
The $SEQUENCE command assigns a job an arbitrary identification number. BATCH assigns the last three charac
ters of a sequence number as the first three characters of a temporary listing or object file (see Section A.2.5). If a
sequence number is less than three characters long, BATCH fills it with zeroes on the left.

The syntax of this command is:

$SEQUENCE id [!comments]

where:

id represents an unsigned decimal number that indicates the identification number of
a job.

The following are examples of the $SEQUENCE command:

$SEQUENCE 3
$JOB

$SEQUENCE 100
$JOB

A.4.23 Sample BATCH Stream

!SEQUENCE NUMBER IS 003

!SEQUENCE NUMBER IS 100

The following sample BATCH stream creates a MACRO program, assembles and links that program, and runs the
memory image file. It then deletes the object, memory image, and source files it created and prints a directory of
DK: showing the files the BATCH stream created.

$JOB
$MESSAGE
$MESSAGE
$CREATE/LIST
.TITLE EXAMPL

+MCALL
START: .PRINT

+EXIT
MESS AG: • ASC I Z

.END
$EOD

THIS IS AN EXAMPLE BATCH STREAM
NOW CREATE A MACRO PROGRAM
EXAMPL.MAC

FOR BATCH
.PRINT,.EXIT
t:MESSAG

/EXAMPLE MACRO PROGRAM FOR BATCH/
START

$MACRO EXAHPL EXAMPL/OBJECT EXAMPL/LIST !ASSEMBLE
$LINK EXAMPL EXAMPL/EXECUTE !AND LINK
$PRINT/DELETE EXAMPL.LST
$MESSAGE RUN THE MACRO PROGRAM
$RUN EXAMPL !AND EXECUTE
$DELETE EXAMPL.OBJ+EXAMPL.SAV+EXAMPL.MAC
$MESSAGE PRINT A DIRECTORY
$DIRECTORY DKIEXAMPL.*
$MESSAGE END OF THE EXAMPLE BATCH STREAM
$EOJ

A-28

BATCH

To run this batch stream, type the following commands at the console. BATCH prints the messages.

tLOAD BA,LP
.ASSIGN LP: LOG
• ASSIGN LP! LST
• R BATCH
*EXAMF'L

THIS IS AN EXAMPLE BATCH STREAM
NOW CREATE A MACRO PROGRAM
RUN THE MACRO PROGRAM
PRINT A DIRECTORY
END OF THE EXAMPLE BATCH STREAM

END BATCH

The above sample BATCH stream produces the following log file on the line printer:

NOTE
The amount of free core and the directory format are variable.

$JOB

$MESSAGE

$MESSAGE

$CREATE/LIST

, TITLE EXAMPLE
,MCALL

START: ,PRINT
,EXIT

MESSAG! ,ASCIZ
,EVEN
,END

0

$EDD

THIS IS AN EXAMPLE BATCH STREAM

NOW CREATE A MACRO PROG,

EXAMPL,MAC

FOR BATCH
,PRINT, ,EXIT
tMESSAG

/EXAMPLE MACRO PROGRAM FDR BATCH/

START

$MACRO EXAMPL EXAMPL/OBJECT EXAMPL/LIST !ASSEMBLE

ERRORS DETECTED: 0

EXAMPLE FOR BATCH MACRO V03,00 21-JUN-77 00:os:29

1 , TITLE EXAMPLE
2 ,MCALL
3 000000 START: ,PRINT
4 000006 ,EXIT
5 000010 105 130 101 MESSAG: ,ASCIZ

000013 115 120 114
000016 105 040 115
000021 101 103 122
000024 117 040 120
000027 122 117 107
000032 122 101 115
000035 040 106 117
000040 122 040 102
000043 101 124 103
000046 110 000

6 ,EVEN
7 000000' ,END

A-29

PAGE 1

FOR BATCH
,PRINT, ,EXIT
tMESSAG

/EXAMPLE MACRO

START

PROGRAM FOR BATC

BATCH

EXAHPLE FOR BATCH
SYHBOL TABLE

HACRO V03.00 21-JUN-77 00:os:29 PAGE 1-1

HESSAG 000010R START OOOOOOR

• ABS. 000000 000
000050 001

ERRORS DETECTED: 0

VIRTUAL HEHORY USED: 508 WORDS C 2 PAGESl
DYNAHIC HEHORY AVAILABLE FOR 48 PAGES
EXAHPL,EXAHPL=EXAHPL

$LJNK EXAHPL EXAMPL/EXECUTE

SPRINT/DELETE EXAHPL,LST

! AND LINK

tHESSAGE

tRUN EXAHPL

RUN THE HACRO PROGRAH

!AND EXECUTE

EXAHPLE HACRO PROGRAH FOR BATCH

tDELETE EXAHPL,OBJtEXAHPL,SAV+EXAHPL,HAC

SHESSAGE

SDI RECTORY

21-JUN-77

PRINT A DIRECTORY

DKIEXAHPL.*

EXAHPL.BAK 2 14-JUN-77 EXAHPL.BAT 2 21-JUN-77
EXAHPL,CTL 3 21-JUN-77

3 FILES, 7 BLOCKS
1903 FREE BLOCKS

SHESSAGE

SEOJ

END OF THE EXAHPLE BATCH STREAH

A.5 RT-11 MODE
RT-11 mode lets you enter commands to the RT-11 monitor or to system programs, and lets you create BATCI
programs. You can enter RT-11 mode with either the $JOB/RT1 l command or the $RT11 command. If you e1
RT-11 mode with the $JOB/RT11 command, RT-11 mode remains in effect until BATCH encounters the next
command. If you enter RT-11 mode with the $RT11 command, RT-11 mode is in effect until BATCH encount
a$ in the first position of the command line.

The characters.,$,*, and tab or space appearing in the first position of a line (or card column 1) are control cl
acters and indicate the following:

*

command to the RT-11 monitor, such as

.R PIP

data line; any line not intended to go to the RT-11 monitor or to the BATCH nm
handler, such as a command to the RT-11 PIP program:

*FILEl.DAT/[I

NOTE
BATCH does not pass the • as data to the program.
Comment lines (!) cannot appear on data lines as
BATCH would consider them as data.

A-30

BATCH

$ BATCH command. It causes an exit from RT-11 mode if you entered RT-11 mode
with the $RT1 l command. For example:

$RT11
.R PIP
*FILE1.DAT/II
$FORTRAN

!ENTER RT-11 MODE

!LEAVE RT-11 MODE

space/tab separator to indicate a line directed to the BATCH run-time handler. This separator
is indicated by a (TAB) in the following descriptions.

A.S.1 Communicating with RT-11
The most common use of RT-11 mode is to send commands to the RT-11 monitor and to run system programs.
For example, you can insert the following commands in the BATCH stream to run PIP and save backup copies of
files on DECtape:

$RT11
.R PIP
DT1!•*=*.FDR

You must anticipate and include in the BATCH input stream responses that the called program requires, such as the
Y response to DUP's ARE YOU SURE? query. Place a line in your BATCH file consisting of Y and RETURN or use
the DUP /Y option to suppress the query. For example:

$RT11
• INITIALIZE 1:;:K1:
*Y

You can communicate directly with the RT-11 monitor by using the keyboard monitor commands that are described
in Section 4.3. For example:

$RT11
.trELETE/NOQUERY DX1!*.MAC

This command deletes all files with a file type of .MAC from device DXl:.

You cannot mix BATCH standard commands with RT-11 mode data lines (lines beginning with an asterisk). For
example, the proper way to do a $MOUNT within a sequence of RT-11 mode data commands is:

$JOB/RT11
.R MACRO
*A1=A1
*A2=A2
$MOUNT DTO!/PHYSICAL
.R MACRO
*B1=DT!B:l
*B2=DT!B2

A.S.2 Creating RT-11 Mode BATCH Programs
Advanced system programmers can use RT-11 mode to create BATCH programs. These BATCH programs consist of
standard RT-11 mode commands (monitor commands, data lines for input to system programs, etc.) plus special
RT-11 mode commands. The BATCH run-time handler interprets these special commands to allow dynamic calcula
tions and conditional execution of the RT-11 mode standard commands. The following can help you create BATCH
programs and dynamically control their execution at run-time:

A-31

BATCH

• Labels

• Variable modification:

1) equating a variable to a constant or character (LET statement)
2) incrementing the value of a variable by 1
3) reading a value into a variable
4) conditional transfers on comparison of variable values with numeric or character values (IF and GOTO

statements)

• Commands to control terminal I/0

• Other Control Characters

• Comments

A.S.2.1 Labels - You define labels in RT-11 mode to provide a symbolic means of referring to a specific location
within a BATCH program. If present, a label must begin in the first character position, must be unique within the
first six characters, and must terminate with a colon (:) and a carriage return/line feed combination.

A.5.2.2 Variables - A variable in RT-11 mode is a symbol representing a value that can change during program
execution. The 26 variables BATCH permits in a BATCH program have the names A-Z; each variable requires one
byte of physical storage. You can assign values to variables in a LET statement. You can then test these values by an
IF statement to control the direction of program execution.

Assign values to variables with a LET statement of the following form:

(TAB) LET x=" c

where:

X represents a variable name in the range A-Z.

II
C indicates the ASCII value of a character.

For example:

(TAB) LET A=•o

This example indicates that the value of variable A is the 7-bit ASCII value of the character O (60).

The LET statement can also specify an octal value in the form:

(TAB) LET A=n

where:

n represents an 8-bit signed octal value in the range 0-377. Positive numbers range from
0-177; negative numbers range from 200-377 (- 200 to -1).

You can use variables to introduce control characters, such as ESCAPE, into a BATCH stream. For example, wher
ever 'A' appears in the following BATCH stream, BATCH substitutes the contents of variable A (the code for an
ESCAPE):

A-32

$JOB/RT11
LET A=33
!A rs AN ESCAPE

.R EDIT
*EBFILE,MAC'A"A'
*R'A"A'

BATCH

!EDIT FILE TO CHANGE THE VERSION NUMBER TO 2
*GVERSION='A'flI2 1 A'
*EX'A"A'

Increment the value of a variable by 1 by placing a percent sign(%) before the variable. For example:

This command indicates that BATCH must increase the unsigned contents of variable A by 1.

Indicate with an IF statement conditional transfers of control according to the value of a variable. The IF statement
has the syntax:

@ID IF(x-"c) labell, label2, label3

or

(TAB) IF(x-n) labell, label2, label3

where:

X

,,
C

n

labell
label2
label3

represents the variable to be tested.

is the ASCII value to be compared with the contents of the variable.

is an octal integer in the range 0- 3 77.

represent the names of labels included in the BATCH stream.

When BATCH evaluates the expression (x-" c) or (x-n), the BATCH run-time handler transfers control to:

• labell if the value of the expression is less than zero.

• label2 if the value of the expression is equal to zero.

• label3 if the value of the expression is greater than zero.

If you omit one of the labels, and the condition is met for the omitted label, control transfers to the line following
the IF statement.

NOTE
Since this comparison is a signed byte comparison, 377 is
considered to be - 1 .

A-33

BATCH

The characters + and - allow you to control where BATCH begins searching for lab ell , label2, and label3. If you
precede the label by a minus sign(-), BATCH starts the label search just after the $JOB command. If a plus sign
(+) or no sign precedes the label, the label search starts after the IF statement. For example:

(TAB)IF (B- • 9) -LOOP, LOOP 1,

This statement transfers program control to the label LOOP following the $JOB command if the contents of variable
Bare less than the ASCII value of 9. It transfers control to the label LOOPl following the IF statement if B is equal
to ASCII 9. If the contents of variable B are greater than the ASCll value of 9, program control goes to the next
BATCH statement in sequence.

The GOTO statement unconditionally transfers program control to a label you specify as the argument of the state
ment. You can use one of the following three forms of this statement:

(TAB) GOTO label

(TAB) GOTO +label

(TAB) GOTO - label

transfers control to the first occurrence of label that appears after this GOTO state
ment in the BATCH stream.

same as GOTO label.

transfers control to the first occurrence of label that appears after the $JOB command.

The following GOTO statement transfers control unconditionally to the next label LOOP if such a label appears in
the BATCH stream following the GOTO statement.

(TAB) GOTO LOOP

NOTE
If BATCH cannot find a label (for example, if you unintentionally
omit a minus sign) the BATCH handler searches until it reaches
the end of the .CTL file and ends the job.

A.S.2.3 Terminal 1/0 Control - You can issue commands directly to the BATCH run-time handler to control
logging console terminal input and output. If you do not enter any of the following commands, BATCH assumes
TIYOUT.

(TAB) NOTTY

(TAB) TIYIN

(TAB) TTYIO

(TAB) TTYOUT

does not write terminal input and output to the log file. Comments to the log are
still logged.

writes only terminal input to the log file.

writes terminal input and output to the log file. (You should enter this command if
you are using RT-11 mode so that RT-11 mode commands go to the log file.)

writes only terminal output to the log file (default).

A.5.2.4 Other Control Characters The system permits other control characters in an RT-11 mode command that
begins with a period(.) or an asterisk(*). Following are these control characters and their meanings:

'text' command to BATCH run-time handler, where text can be one of the following:

CTY

FF

accepts input from the console terminal; notifies the operator that
action is required by ringing a bell and printing a question mark(?).

outputs the current log buffer.

A-34

NL

X

"message"

BATCH

inserts a new line (line feed) in the BATCH stream.

inserts the contents of a variable where x is an alphanumeric variable
in the range A through Z. It indicates that BATCH should insert the
contents of the variable as an ASCII character at this place in the
command string.

directs the message to the console terminal.

The following commands allow the operator to enter the name of a MACRO program to be assembled. The BATCH
stream contains:

$JOB/RT11
.R MACRO
*'•ENTER MACRO COMMAND STRING• 11 CTY'

The operator receives the following message at the terminal and types a response, followed by carriage return;
BATCH processing continues.

ENTER MACRO COMMAND STRING
'l'FILE, FILE==FILE

To run the same BATCH file on several systems with different configurations you need to assign a device dynamically.
The following RT-11 mode command lets you request that the listing device name be entered by the operator .

• ASSIGN ··PLEASE TYPE LST DEVICE NAME···cTY' LST

The operator receives the message and responds with the device to be used as the listing device (DT2:).

PLEASE TYPE LST DEVICE NAME
?DT2!

A.5.2.5 Comments - You can include comments in RT-11 mode as separate comment statements. Include com
ments by typing a separator followed by a ! and the comment. For example:

(TAB)! OPERATOR ACT ION IS RE GUESTED IN THIS ,.JOB. BE PREPARED.

A.5.3 RT-11 Mode Examples
The following are examples of BATCH programs using the RT-11 mode.

This BATCH program assembles, lists, and maps 10 programs with only 12 BATCH commands.

$JOB/RT11
TTYIO

!ASSEMBLE, LIST, MAP PROGO to PROG9

!WRITE TERMINAL I/0 TO THE LOG FILE
LET N="O
!START AT FILE PROGO

LOOP:
.R MACRO
*PROG'N',LOG:/C=PROG'N'/N:TTM
.R LINK
*,LOG:=PROG'N'

%N
!INCREMENT VARIABLE N
IFCN-"9>-LOOP,-LOOP,END
!TEST FOR END

END:
$EOJ

A-35

BATCH

The following program lets you set up a master control stream to run several BATCH jobs with one call to BATCH.
First set up a BATCH job (!NIT.BAT) that performs a $CHAIN to the master control stream:

$JOB/RT11

IN[IEX
LET I=•o
!INITIALIZE

$CHAIN MASTER
$EOJ

!GO TO MASTER

The following is the master control stream (MASTER.BAT) to which INIT chains.

$JOB/RT11 !MASTER CONTROL STREAM
¾I
! BUMP INitEX BY 1
IF(I- 1 7>,,END

.R BATCH
!THIS IS A $CHAIN

*JOB'I'
!RUNS JOB1-JOB7

ENDt
$MESSAGE END OF BATCH RUN
$EOJ

Each job that MASTER.BAT runs must contain the following:

$JOB
!BATCH COMMANDS

$CHAIN MASTER
$EO,J

Activate the master control stream by calling BATCH as follows:

+R I<ATCH
*INIT

A.6 CREATING BATCH PROGRAMS ON PUNCHED CARDS
To create a BATCH program on punched cards, punch into the cards the commands described in Section A.4. Each
command line occupies a single punched card. Only one card, the EOF card, is different from the standard BATCH
commands. The EOF (end-of-file) card terminates the list of jobs from the card reader.

To create the EOF card, hold the MULT PCH key on the keypunch keyboard while typing the following characters:

&016789

This procedure produces an EOF card with holes punched in the first column (see Figure A-1).

To run multiple jobs from the card reader, simply combine the jobs into a single card deck. Ensure that each job has
its own $JOB and $EOJ card. Then follow the last $EOJ card with two EOF cards.

Although in general, you terminate BATCH jobs on cards by placing two EOF cards after the last $EOJ card, some
card readers require that you type \F followed by a carriage return. Put two EOF cards and a blank card in the reader
and ensure that the card reader is ready. Note that a small card deck (less than 512 characters) can require more than
two EOF cards to terminate the deck.

A-36

I
I

BATCH

ID OE O O O O O O O O O O O O O O O a O O O O O O O O O O O O O Ou O O O O O O O O ODO O O O O O O O 3 0 0 0 0 DO O O O O ODO O O O O ODO O O GO 0
l z J o1 5 6 S g 10 !l 11 ;J Ii lJ ft !7 I&!~ :1.:2 lU3 l42516l128 :!!JCJI l2 JJJOS)>:JI fl)S 4Q4l 414lU•s•o4i4849 ~351 ~2535.;5s:;11i;JSiS9EOli) 62636~ liHUtlUS fl] i\ tliJ 10:i 70 Ir 1ft rn ~l)

I l 1111 111111111 1111 I 111 I 1111111111111 l l I 111111 I l I I I l Ill l I l I l Ill l l I l I Ill l l l l l l l l

2 Z2 22 22 2 2 'l7 22 2 2l 2 2 22 22 22 2 2 22 2 2 2 22 2 2 22 2 22 2 2 2 2 2 2 2 2 2 2 22 22 2 2 2 2 2 2 2 2 22 2 2 2 22 2 2 1 1 2 22 2 2 Z 2

3 3 lJ 3 J J 3 3 l 3 n 33 33 J 3 J 3 J J J J J 3 ~ 33 33 J 3 33 3 3 3 J J 3 3 1 l 3 3 33 3 l J J 3 3 3 3 33 3 3 J 3 3 3 J J 3 J 3 l 3 3 3 3 3 33 11

44 4 4 4 4 d 4 4 4 4 44 4 U U 1 4 4 4 4 4 4 4 4 ~ 4 4 H 4 4 4 ~ ~ 44 4 4 ~ 4 4 4 4 44 4 I. ! 4 i 4 44 4 4 44 4 4 4 4 4 44 44 44 4 A 4 4 ·1 4 -14 4

5 5 5 5 5 S5 5 !'> 5 5 5 S 5 5 5 5 S 5 5 S 5 S 5 5 5 5 5 S S 5 ~ 5 5 5 5 S S S S 5 5 5 5 5 5 5 5 5 S ~ 5 5 5 ~ 5 5 5 5 s 5 5 5 S 5 5 S 5 5 55 5 5 5 5 5 H S :i

I 6 6 6 6 6 6 6 66 6 6 6 6 € 6f. 6 8 G 6 6 6 6 6 6 6 r ii 66 6 6 6 6 6 G 6 6 6 6 6 6 6 6 ~ 6 6 6 G G 6 6 S 6 5 6

11 I l I l I 7 I I I 77 111 111111 11 7 I l : / 11 1 17 11 11 7 1 I 1 111 / 1 11 I 11 I I l 1 111 17 I I I 1 11 I 11 I 1 I 1l I 1 i 11

I ~ 8 8 B B 8 8 B B 8 8 a E 8 6 8 B 8 8 8 8 8 8 8 8 8 6 8 6 80 8 S 8 H R 8 8 8 8 8 8 8 8 8 8 B 8 8 B 8 0 R a B 8 8 B BB B B 8 B 8 a B B 3 8 H 8 8 GB 8 ~ B 0

,~s~9999999999599g99999999g(,999 919'1 q9999999999993~99999999999999999999999n9999
i :· 1•11:, • Ii: 1:IH 1.11,::ti'.:•e : lll41~t~::.!211'JJl ' •1 ',;,~r •;,,J.u4S11.,~/: ~j 't1'.l;l1'!/;il;,1~fbHJ&S%fiJH'tiCl1J.'1tc1(tt·,:'"'"·l

Figure A-1 EOF Card

A.7 OPERATING PROCEDURES

A.7.1 Loading BATCH
After you bootstrap the RT-I I system and enter the date and time, you must make the BATCH run-time handler
resident by typing the RT-11 LOAD command as follows:

.LOAD BA!

You detach and unload the BATCH run-time handler with the /U option in the BATCH compiler command line
(see Section A.7 .2).

NOTE
If BATCH crashes, you must unload BATCH with the
UNLOAD command and then reload BATCH with the
LOAD command. This ensures that the BATCH handler
is properly initialized when you rerun BATCH.

You must make the BATCH log device resident unless the log device is SY:, or unless it is a device for which the
handler is already resident. Load the log device by typing:

.LOAD log

where:

log represents the device to which BATCH must write the log file.

For example:

.LOAD LP:

You can, of course, load device handlers with a single LOAD command. For example:

tLOA[I BA: , LP:

A·37

BATCH

You must then assign the logical device name LOG to the log device. Use the RT-11 monitor ASSIGN command in
the form:

.ASSIGN log LOG

For example, if LP: is the log device, type:

.ASSIGN LP: LOG

Then assign the logical device name LST: using the RT-1 l ASSIGN command in the form:

.ASSIGN list-device LST

where:

list-device represents the physical device BATCH must use for listings.

If, for example, you want to produce listings on the line printer, type:

,ASSIGN LP? LST

NOTE
Do not use the DEASSIGN command with no arguments in
a BATCH program since it deassigns the log and list devices,
possibly causing the BATCH job to terminate.

You must also make resident the BATCH run-time handler input device (compiler output device). If this device is
already resident or is SY:, you do not need to load it. For example, to load the DECtape handler as the input device,
type:

.LOAD DT:

If the input file to the BATCH compiler is on cards, load the card reader handler by typing:

.LOAD CR:

NOTE
If input is on cards, you must use the RT-11 monitor SET
command (before loading the handler) to specify CRLF and
NOIMAGE modes. That is, the following command appends
a carriage return/line feed combination to each card image .

• SET CR: CRLF

The following command translates the card by packing card
code into ASCII data, one column per byte .

• SET CR: NOIMAGE

If card images do not properly translate to ASCII, you may
have to change the card translation codes by using one of the
following commands:

,SET CR: CODE=29

or

.SET CR: CODE=26

See Section 4.4.

A-38

BATCH

A.7.2 Running BATCH
When you have loaded all necessary handlers, run the BATCH compiler as follows:

.R BATCH

BATCH responds by printing an asterisk(•) to indicate its readiness to accept commands. In response to the •, type
the output file specifications for the control file followed by an equal sign. Then type the input file specifications
for the BATCH file as follows:

[[output-filespec] [,log-filespec] [/option ...] =] input-filespec [... , input-filespec] [/option ...]

where:

output-filespec

log-file spec

input-filespec

/option

is the BATCH compiler output device and file the BATCH run-time handler must use.
The device you specify must be random-access. Your BATCH job should not delete
or move this file. Your BATCH job should avoid compressing the system volume with
the SQUEEZE command or the DUP /S option. If you omit the output-filespec,
BATCH generates a file on the default device DK: with the same name as the first in
put file but with a .CTL file type. If you do not specify a file type in the output-file
spec, BATCH assumes .CTL.

is the log file created by the BATCH run-time handler. If you do not specify a log
device, BATCH assumes LOG:. The device name you specify for log-filespec must be
the same as you assign to WG:.

You can change the size of a log file on a file-structured device from the default size of
64 (decimal) blocks. To make this change, enclose the required size in square brackets.
For example:

•, FILE.WG[lO] =FILE

The default file type for the log-filespec is .LOG.

represents an input file. If you do not specify a file type, BATCH assumes .BAT. If
you specify a .CTL file, BATCH assumes a precompiled file that must be the only file
in the input list.

is an option from the following list:

/N

/T:n

/U

compiles but does not execute. This option creates a BATCH control
file (.CTL), generates an ABORT JOB message at the beginning of
the log file, and returns to the RT-l l monitor.

if n=O, sets the /NOTIME option as the default on the $JOB com
mand. If n=l, the default option on the $JOB command is /TIME.

indicates that the BATCH compiler must detach the BATCH run-time
handler from the RT-I 1 monitor and unload the handler.

NOTE
You need not specify the RT-I I monitor UNLOAD BA
command to actually remove the handler. Specifying /U
to BATCH causes the handler to detach and unload.

A-39

/X

BATCH

indicates that the input is a precompiled BATCH program. Use this
option when you do not specify the .CTL file type.

prints the version number of the BATCH compiler.

The following example calls BATCH to compile and execute the three input files (PROGI.BAT, PROG2.BAT,
PROG3.BAT) to generate on DK: the compiler output files, and to generate on LOG: a log file.

+R BATCH
*PROG1.BAT,PROG2,BAT,PROG3.BAT

The following commands print the version number of BATCH, then compile and run SYBILD.BAT .

• R BATCH
* <ill)
BATCH V03.02
*SYBILrt

The following commands compile PROTO.BAT to create PROTO.CTL but do not run the compiled program.

• R BATCH
*PROTO/N

Type the following commands to unlink BA.SYS from the monitor and to unload it.

+R BATCH
*IU

The following commands compile FILE.BAT from magtape to create FILE.CTL on RK.1:. They execute the com
piled file and create a log file named FILE.LOG (of size 20) on LOG:.

+R BATCH
*RK1:FILE,FILEC20J=MT:FILE

The following commands execute a precompiled job called FILE.TST.

• R BATCH
*-FILE. TST /X

The following commands execute a precompiled job called FILE.CTL.

• R BATCH
*FILE/X

The following commands accept input from the card reader to create a file called TEMP.CTL. BATCH stores this
file on DK: and executes it.

• R BATCH
*CR:

The following commands accept input from the card reader to create a file called JOB.CTL. BATCH stores the file
on DK: and executes it.

• R BATCH
* JOB=CR:

A-40

BATCH

A.7.3 Communicating with BATCH Jobs
During the execution of a BATCH stream, BATCH can request the operator to service a peripheral device, to provide
information, or to insert a command line into the BATCH stream. The operator does this by typing directives to the
BATCH handler on the console terminal.

NOTE
These directives are equivalent to the compiler output that
BATCH generates in the .CTL file. The .CTL file is an ASCII
file that you can list by using the PRINT or TYPE commands
or by running PIP.

These directives have the form:

\dir

where:

dir represents one of the directives listed in Table A-6.

To use these directives, the operator must get control of the BATCH run-time handler by typing a carriage return
on the console terminal When BATCH executes a command, it acknowledges the carriage return and prints a
carriage return/line feed combination at the terminal. The operator can then enter a directive from Table A-6. The
most useful directives are marked with an asterisk (*).

Table A-6 Operator Directives to BATCH Run-Time Handler

Directive Explanation

•\A Changes the input source to be the console terminal.

*\B Changes the input source to be the BATCH stream.

*\C Sends the following characters to the log device.

•\D Considers the following characters as user data.

*\E Sends the following characters to the RT-11 monitor.

*\F Forces the output of the current log block. If this directive is followed by any
characters other than another BATCH backslash(\) directive, the BATCH job
prints an error message and terminates. BATCH then returns control to the
RT-11 monitor.

\Hn Is the help function to change the logging mode; n specifies the following:

0 logs only .TTYOUT and .PRINT.
1 logs .TTYOUT, .PRINT, and .TTYIN
2 does not log .TTYOUT, .PRINT, and .TTYIN
3 logs only .TTYIN

In this example, the operator must interrupt the BATCH handler to enter information from the console. As a result
of a /W AlT or 'CTY' in the BATCH stream, the following message appears at the terminal:

$MESSAGE/WAIT WRITE NECESSARY FILES TO DISK

A-41

BATCH

To divert BATCH stream input from the current file to the console terminal, the operator types a \E, enters com
mands to the RT-11 monitor, then types a \B. Control then returns to the BATCH stream. The following example
illustrates this procedure .

• R BATCH
*NEXT

WRITE NECESSARY FILES TO DISK
?\A\E

\ECOPY DTl:FILE.MAC RK:

FILES COPIED:
DT1!FILE.HAC TO RK!FILE.HAC

\E\F\B

END BATCH

The following BATCH program lets you make frequent edits to a file and list only the edits. First, create a BATCH
program that assembles with a listing and then link the file. This BATCH program, called COMPIL.BAT, contains:

$JOB/RT11
TTYIO
!WRITE TERMINAL I/0 TO LOG FILE

.R MACRO
!CALL THE MACRO ASSEMBLER

*FILE,FILE/C=FILE
$MESSAGE/WAIT OK TO TYPE EDIT COMMANDS
.R LINK

!CALL THE RT-11 LINKER
*FILE,LOG:=FILE
$EOJ

At run-time, you can insert commands into the BATCH stream from the console terminal. These commands search
for the section of the listing file that has been edited then lists this section to the log. You must insert the command
after the R MACRO command but before the R LINK command. The following example illustrates this procedure.

• F, BATCH
lkCOMPIL

OK TO TYPE EDIT COMMANDS
?\A\E

\ER EDIT

*EF~FILE,LS.1$!~
*EWFILE,m:C1.$
*PFffH::Y: ·i,=,,J$$

*\l .. $•~
RETRY: 0 ;HIGH ORDER BIT USED FOR "RESET IN PROGRESS FLAG

49 000020 016705 177764 MDV RKCQE,R5 ;GET Q P
~'j() 000024
~'j :l 0()0026
~52 000032
53 000034
~54 000036
~5~.) 000()40

011502
01<">504 000002
006204
006204
006204
OOOJ04

A42

MDV
MDV
ASR
ASR
ASR
SWAB

~>R~i • 1:;;2
~-' CR~D, R4
l'\4
R4
R4
R4

;t:(2 == BL
HM UN
; ISOLATE

n:xu

56 000042 042704 0l7777
57 000046 000404

\F\C\B

END BATCH

A.7.4 Terminating BATCH

BATCH

BIC
BF,

,t"C< l 60000>, R4
2$,ENTEF1 C

When BATCH terminates normally, it prints the following message and returns control to the RT-11 monitor:

END BATCH

To abort BATCH while it is executing a BATCH stream, interrupt the BATCH handler by typing a carriage return.
When BATCH executes the next command after the carriage return, it prints a carriage return/line feed combination
at the console terminal. You then gain control of the system. Type \F followed by a carriage return. The BATCH
handler responds with the FE (forced exit) error message and writes the remainder of the log buffer. Control returns
to the RT-11 monitor.

Typing two CTRL/Cs interrupts and terminates BATCH immediately. Use two CTRL/Cs when BATCH is in a loop
or when a long assembly is running. In these cases, BATCH does not respond promptly (or at all) to your carriage
return interrupt.

A.8 DIFFERENCES BETWEEN RT-11 BATCH AND RSX-110 BATCH
Some programmers run their RT-11 BATCH programs under RSX-1 lD. Note the differences between the two
BATCH implementations listed in Table A-7. BATCH programs that run under both systems must be compatible
with both RT-11 and RSX-llD BATCH.

Table A-7 Differences Between RT-11 and RSX-11O BATCH

Characteristic RT-11 RSX-11D

File descriptors filespec/option SY :filnam.typ/option

Default listing file type .LST(or .LIS) .LIS

Executable file type .SAY .EXE

Incompatible commands $BASIC $MCR
$CALL
$CHAIN
$LIBRARY
$RT11
$SEQUENCE

Incompatible options $COPY /DELETE
$CREATE/DOLLARS
$CREATE/LIST
$DAT A/DOLLARS
$DATA/LIST
$DIR file/LIST $DIR file/DIRECTORY
$DISMOUNT/WAIT
$DISMOUNT lun:/LOGICAL
$FORTRAN/DOLLARS
$FORTRAN/MAP

{Continued on next page)
A-43

BATCH

Table A-7 (Cont.) Differences Between RT-11 and RSX-11D BATCH

Characteristic RT-11 RSX-11D

Incompatible options $JOB/BANNER $JOB/NAME
(Cont.) $JOB/LIST $JOB/LIMIT

$JOB/RTll $JOB/MCR
$JOB/TIME
$JOB/UNIQUE
$LINK/LIBRARY $LINK/MCR
$LINK/OBJECT
$MACRO/CREF
$MACRO/DOLLARS
$MACRO/LIBRARY
$MACRO/MAP
$MESSAGE/WAIT
$MESSAGE/WRITE
$PRINT/DELETE

SDATAinput appears as if from input appears as if from a file named
FOR00LDAT

Logical device names in $MOUNT and $DISMOUNT logical unit numbers only

$RUN you must specify file name RSXl 1 DBAT .EXE is default

A-44

APPENDIX B

MONITOR COMMAND ABBREVIATIONS AND

SYSTEM PROGRAM EQUIVALENTS

This appendix provides a table of correspondence (Table B-1) between the Keyboard monitor commands with their
options and the system utility programs with their options. Remember that the syntax you use to issue a keyboard
monitor command is different from the syntax that the Command String Interpreter requires for input and output
specifications for the system utility programs. Bear in mind that there are many differences between issuing a moni
tor command and running a utility program. Table B-1 lists all the keyboard monitor commands and options. A
dash under the corresponding system program or option column indicates that the command has no real system pro
gram equivalent, that the function is inherent in the keyboard monitor, or that the function is the default mode of
operation. The minimum abbreviation for each command and option is underlined.

Table B-1 Monitor Command/System Program Equivalents

Monitor System Utility
Command Option Program Option

APL RAPL -
ASSIGN -

!!
BASIC R BASIC
BOOT DUP /0
CLOSE
COMPILE -

/ ALLOCATE :size - [n]
/ ALPHABETIZE DIBOL /A
/CODE:type FORTRAN /I
/CROSSREFERENCE[:type[... :type]} MACRO, DIBOL /C
/DIAGNOSE FORTRAN /B
/DIBOL -
/DISABLE:value[... :value] MACRO ID
/ENABLE :value [... : value] MACRO /E
/EXTEND FORTRAN /E
/FORTRAN -

/!!_EADER FORTRAN /0
/14 FORTRAN /T
/LIBRARY MACRO /M
/LINENUMBERS - -
/NOLINENUMBERS DIBOL, /0

FORTRAN JS
/LIST[:filespec l -
/MACRO - -
/OBJECT [:filespec] -
/NOOBJECT
/ONDEBUG DIBOL, FORTRAN /D
/OPTIMIZE[:type] FORTRAN /P
/NOOPTIMIZE [:type} FORTRAN /M
/PASS: I MACRO /P

B-1
(Continued on next page)

Monitor Command Abbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/RECORD:length FORTRAN /R
/SHOW:value FORTRAN, MACRO /L
/NOSHOW:value MACRO IN
/STATISTICS FORTRAN /A
/SWAP -

/NOSWAP FORTRAN /U
/!JNITS:n FORTRAN /N
/VECTORS - -

/NOVECTORS FORTRAN /V
/WARNINGS FORTRAN /W
/NOWARNINGS DIBOL /W

COPY -
/ ALLOCATE:size _, rnJ
/ASCH PIP /A
/BINARY PIP /8
/BOOT DUP /U
/.£0NCATENATE PIP /U
/DEVICE DUP /I
/DOS FILEX /S
/g_XCLUDE PIP /P
/IGNORE PIP /G
/IMAGE - -
/INTERCHANGE [:size] FILEX /U
/b_OG PIP /W
/NOLOG
/NEWFILES PIP /C
/OWNER: [nnn, nnn] FILEX UIC
/PACKED FILEX /P
/POSITION:n PIP /M
/PREDELETE PIP /0
/QUERY PIP IQ
/NOQUERY
/REPLACE - -
/NO REPLACE PIP /N
/SETDATE PIP /T
/SLOWLY PIP /S
/SYSTEM PIP /Y
/TOPS FILEX IT

Q -
DATE -
DEASSIGN -
DELETE -

/DOS FILEX /S
/§.XCLUDE PIP /P
/INTERCHANGE FILEX /U
/hOG PIP /W

(Continued on next page)

B-2

Monitor Command Abbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/NEWFILES PIP /C
/POSITION:n PIP /M
/QUERY PIP /Q
/NOQUERY - -

/SYSTEM PIP /Y
DIBOL RDIBOL

/ALLOCATE:size [n]
/ ALPHABETIZE DIBOL /A
/CROSS REFERENCE DIBOL /C
/LINENUMBERS -
/NOLINENUMBERS DIBOL /0
/LIST [: filespec] - -

/OBJECT[:filespec] - -

/NOOBJECT - -
/ONDEBUG DIBOL /D
/WARNINGS -
/NOWARNINGS DIBOL /W

DIFFERENCES RSRCCOM
/ALLOCATE:size [n]
/!!_LANKLINES SRCCOM /B
/f..OMMENTS - -
/NOCOMMENTS SRCCOM /C
/fORMFEED SRCCOM IF
/MATCH:n SRCCOM /L
/OUTPUT:filespec
/PRINTER
/.§_PACES
/NOSPACES SRCCOM /S
/TERMINAL

DIRECTORY RDIR
/ALLOCATE:size - [n]
/ ALPHABETIZE DIR /A
/BAD BLOCKS DUP /K
/BEFORE [date] DIR /K
/BEGIN DIR /G
/BLOCKS DIR /B
/BRIEF DIR, FILEX /F
/COLUMNS:n DIR /C
/DATE[date] DIR /D
/DELETED DIR /Q
/DOS FILEX /S
/_g_XCLUDE DIR /P
/FAST DIR, FILEX /F
/FILES DUP /F
/FREE DIR /M
/FULL DIR /E
/INTERCHANGE FILEX /U

(Continued on next page)

B-3

Monitor Command Abbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/NEWFILES DIR JD
/OCTAL DIR JO
/ORDER [:category] DIR JS
/OUTPUT:filespec -
/OWNER: [nnn, nnn] FILEX UIC
/POSITION DIR /B
/PRINTER
/g_EVERSE DIR JR
/SINCE [date] DIR /J
/SORT[:category] DIR JS
/SUMMARY DIR IN
/TERMINAL -

/TOPS FILEX /T
/VOLUMEID DUP /V

DUMP RDUMP -
/ ALLOCATE:size - [n]
/ASCII - -
/NOASCII DUMP /N
/~YTES DUMP /B
/~ND:block DUMP /E
/IGNORE DUMP JG
/ONLY:block DUMP JO
/OUTPUT: files pee
/PRINTER
/RAD50 DUMP /X
/~T ART:block DUMP JS
/TERMINAL -
/WORDS DUMP /W

E - --
EDIT EDIT EB -

/ALLOCATE:size - [n]
/£REATE EDIT EW
f.!_NSPECT EDIT ER
/OUTPUT:filespec EDIT EW

EXECUTE - --
/ALLOCATE:size - [n]
/ ALPHABETIZE DIBOL /A
/BOTTOM:n LINK /B
/CODE:type FORTRAN /I
/CROSSREFERENCE[:type[... :type]] DIBOL, MACRO JC
/DEBUG [: filespec]
/DIAGNOSE FORTRAN /B
/DIBOL
/DISABLE:value[... :value] MACRO /D
/ENABLE:value[... :value] MACRO /E
/EXECUTE [: files pee] -
/EXTEND FORTRAN /E

(Continued on next page)

B-4

Monitor Command Abbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/FORTRAN -
/!!EADER FORTRAN /0
/14 FORTRAN /T
/LIBRARY MACRO /M
/LINENUMBERS
/NOLINENUMBERS DIBOL, /0

FORTRAN /S
/LINKLIBRARY: filespec
/LIST[:filespec] - -
/MACRO -
/MAP[:filespec] -
/OBJECT [: filespec] - -
/ONDEBUG DIBOL, FORTRAN ID
/OPTIMIZE:type FORTRAN /P
/NOOPTIMIZE:type FORTRAN /M
/PASS:l MACRO /P
/RECORD:length FORTRAN /R
/RUN - -
/NORUN -
/SHOW[:vaJue] FORTRAN, MACRO /L
/NOSHOW:value MACRO /N
/STATISTICS FORTRAN /A
/SWAP -
/NOSWAP FORTRAN /U
/!:!:NITS:n FORTRAN /N
/YECTORS -
/NO VECTORS FORTRAN /V
/WARNINGS FORTRAN /W
/NOWARNINGS DIBOL /W
/WIDE LINK /W

FOCAL RFOCAL -
FORTRAN RFORTRAN -

/ALLOCATE :size - [nJ
/CODE:type FORTRAN /I
/DIAGNOSE FORTRAN /8
/EXTEND FORTRAN /E
/!!EADER FORTRAN /0
/!4 FORTRAN /T
/LINENUMBERS
/NOLINENUMBERS FORTRAN /S
/LIST [: filespec] -
/OBJECT[:filespec] -
/NOOBJECT - -
/ONDEBUG FORTRAN /D
/OPTIMIZE:type FORTRAN /P
/NOOPTIMIZE:type FORTRAN /M
/RECORD:length FORTRAN /R
/SHOW [:value] FORTRAN /L

(Continued on next page)

8-5

Monitor Command Abbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/ST A TISTICS FORTRAN /A
/SWAP -
/NOSWAP FORTRAN /U
/UNITS:n FORTRAN /N
/VECTORS - -
/NO VECTORS FORTRAN /V
/WARNINGS FORTRAN /W

FRUN - -- /N:n - -

/P -

if:n -
GET -
GT OFF
GTON --

/!::n
f.!_:n -

HELP - --
/fRINTER - -
/IERMINAL - -

INITIALIZE - --
/BAD BLOCKS DUP /B
/DOS FILEX /S
/,!:ILE:filespec - -
/INTERCHANGE FILEX /U
/QUERY - -
/NOQUERY DUP, FILEX /Y
/REPLACE [:RETAIN] DUP /R
/SEGMENTS:n DUP /N
/~OLUMEID[:ONLY] DUP /V

INSTALL - -
LIBRARY RLIBR -- / ALLOCATE:size - [n]

/CREATE - -
/DELETE LIBR /D
/EXTRACT LIBR /E
/INSERT - -
/LIST[:filespec] - -
/MACRO LIBR /M
/OBJECT [: filespec]
/NOOBJECT - -
/PROMPT LIBR II
/REMOVE LIBR /G
/REPLACE LIBR /R
/gPDATE LIBR /U

LINK RUNK - / ALLOCATE:size [n)
/BOTTOM:n LINK /B

(Continued on next page)

B-6

Monitor Commana Abbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/BOUNDARY:value LINK /Y
/DEBUG [: ftlespec] - -
/EXECUTE [: files pee]
/NO EXECUTE - -

/EXTEND:n LINK /E
/FILL:n LINK /Z
/FOREGROUND [:stacksize] LINK /R

/!NCLUDE LINK /I
/LDA LINK /L
/LIBRARY :filespec - -

/LINKLIBRARY:filespec
/MAP [: filespec] -
/PROMPT LINK II
/ROUND:n LINK /U
/RUN - -

/SLOWLY LINK /S
/STACK[:n] LINK /M
/TRANSFER[:n] LINK /T
/WIDE LINK /W

LOAD - -

MACRO RMACRO
/ALLOCATE:size - [n]
/CROSSREFERENCE[:type[... :type]] MACRO /C
/DISABLE:value[... :value] MACRO ID
/ENABLE:value[... :value] MACRO /E
/LIBRARY MACRO /M
/LIST [: filespec]
/OBJECT [: files pee] -
/NOOBJECT -

/PASS:1 MACRO /P
/SHOW:value MACRO /L
/NOSHOW:value MACRO /N

PRINT - -

/COPIES:n PIP /K
/DELETE PIP JD
/1_0G PIP /W
/NOLOG - -
/NEWFILES PIP /C
/QUERY PIP /Q

R -
REENTER -
REMOVE - -
RENAME

/1.0G PIP /W
/NOLOG
/NEWFILES PIP JC
/QUERY PIP /Q

(Continued on next page)

B-7

Monitor Command Ahbreviations and System Program Equivalents

Table B-1 Monitor Command/System Program Equivalents (Cont.)

Monitor System Utility
Command Option Program Option

/REPLACE - -
/NO REPLACE PIP /N
/SETDATE PIP /T
/SYSTEM PIP /Y

RESET
RESUME
RUN --
SAVE -
SET - -
SHOW - -
SQUEEZE - -

/OUTPUT:filespec - -
/QUERY - -
/NOQUERY DUP /Y

START - -

SUSPEND - -
TIME -
TYPE -

/COPIES:n PIP /K
/DELETE PIP JD
/!:_OG PIP /W
/NOLOG -
/NEWFILES PIP JC
/QUERY PIP /Q

QNLOAD

B-8

II option,
LIBR, 12-3
LINK, 11-17

@character, 4-10

/A option,
DIR, 9-3
FILEX, 14-7
PIP, 7-9

Abbreviations,
keyboard monitor commands, 4-4, B-1

Absolute address, 11-1
Absolute base address, 16-4
Absolute section,

see ASECT
Adding a subroutine, 18-S
Address,

absolute, 11-1
absolute base, 16-4
bottom, 17-6
relative, 16-4
start,

see Transfer address
transfer, 11-22

Address search, 16-13
Addressed location,

opening the, 16-7
Advance command (A),

EDIT, 5-18
/ALLOCATE option,

COMPILE, 4-20
COPY, 4-25
DIBOL, 4-36
DIFFERENCES, 4-39
DIRECTORY, 443
DUMP, 4-51
EDIT, 4-57
EXECUTE, 4-60
FORTRAN, 4-66
LIBRARY, 4-79
LINK, 4-85
MACRO, 4-90

Allocation,
memory, 114

/ALPHABETIZE option,
COMPILE, 4-20
DIBOL, 4-36
DIRECTORY, 4-43
EXECUTE, 4-60

INDEX

Index-I

ALT,
see ESCAPE

ALTMODE,
see ESCAPE

APL command, 4-13
Area,

system communication (SYSCOM), 11-4
ASCII, 16-17. 17-4
ASCII characters,

dumping, 1-3
ASCII format, 3-1, 3-2, 14-1
I ASCII option,

COPY, 4-25
DUMP, 4-51

ASCII text files,
comparing, 1-3

ASECT, 11-9, 11-22
Assembler, 1-1

see also MACRO-I I assembly language,
Assembly language

Assembler,
MACRO-I 1, 1-2, 1-3, 10-1
see also Assembler, Assembly language

Assembly language, 1-2
see also MACRO-I 1, Assembler

ASSIGN command, 4-14
Assignment,

direct,
see ASECT

Asterisk (*), 4-5
At sign (@), 4-10
Attributes,

program section, 11-5

B command,
see Base command

/B option,
DIR, 9-3
DUMP, 13-1
DUP, 8-4, 8-12
LINK, 11-17
PIP, 7-9
SRCCOM, 15-2

Backarrow(+-) character, 16-7
Backslash character (\), 16-5
/BADBLOCKS option,

DIRECTORY, 4-43
INITIALIZE, 4-76
see also Replacing bad blocks

Bad blocks,
covering, 8-12
replacing, 8-1 I

BAD files, 7-2
Base address,

absolute, 16-4
Base (8) command, 4-15
$BASIC command,

BATCH, A-11
BASIC command, 4-16
BATCH, A-1
BATCH,

differences between RSX-11D and RT-I l,
A-43

loading, A-31
RT-ll mode, A-30
RT-I I mode control characters, A-34
RT-11 mode example, A-35
running, A-39
terminating, A-43

BATCH characters, A-7
table, A-8

BATCH command options, A-2
table, A-3

BATCH command syntax, A-2
BATCH commands, A-10
BATCH commands,

$BASIC, A-I 1
$CALL, A-12
$CHAIN, A-13
$COPY, A-14
$CREATE, A-15
$DATA, A-15
$DELETE, A-16
$DISMOUNT, A-17
$EOD, A-18
$EOJ, A-18
$FORTRAN, A-18
$JOB, A-20
$LIBRARY, A-21
$LINK, A-21
$MACRO, A-23
$MESSAGE, A-25
$MOUNT, A-25
$PRINT, A-27
$RTI 1, A-27
$RUN, A-27
$SEQUENCE, A-28

BATCH compiler, A-I
BATCH device names, A-5
BATCH example, A-28

INDEX (Cont.)

Index-2

BATCH file specifications, A-5
BATCH file types, A-6
BATCH hardware requirements, A-1
BATCH jobs,

communicating with, A-41
BATCH operating procedures, A-37
BATCH programs on punched cards, A-36
BATCH rules and conventions, A-10
BATCH run-time handler. A-I

operator directives to, A-41
BATCH software requirements, A-1
BATCH specification options, A-6

table, A-7
BATCH temporary files, A-9
BATCH wildcards, A-o
/BEFORE option,

DIRECTORY, 4-44
/BEGIN option,

DIRECTORY, 4-44
Beginning command (B),

EDIT, 5-17
Bias,

relocation, 16-4
Binary format, 3-1, 3-2
Binary object file,

see Object module
Binary object format,

see Binary format
/BINARY option,

COPY, 4-25
Bitmap, 11-23
/BLANKLINES option,

DIFFERENCES, 4-39
Block-replaceable device,

see Random-access device
/BLOCKS option,

DIRECTORY, 4-44
BOOT command, 4-17
/BOOT option,

COPY, 4-26
Bottom address, 11-17, 17-6
/BOTTOM option,

EXECUTE, 4-60
LINK, 4-85

/BOUNDARY option,
LINK, 4-85

Branch offset,
relative, 16-7

Breakpoints, 16-10, 16-18
/BRIEF option,

DIRECTORY, 4-44

Buffer,
macro, s.10
save, 5.10
text, S-10

/BYTES option,
DUMP, 4-51

/C option,
DIR, 9-3
DUP, 8-3
LIBR, 12-3
LINK, 11-17
MACRO-11, 10-7
PIP, 7-9
SRCCOM, 15-2

Calculating offsets, 16-14
Calculators,

relocation, 16-15
$CALL command,

BATCH, A-12
Calling and using,

DIR, 9-1
DUMP, 13-1
DUP, 8-1
EDIT, 5-1
FllEX, 14-2
LIBR, 12-1
LINK, 11-1
MACRO-11, 10-l
ODT, 16-1
PAT, 18-1
PATCH, 17-1
PIP, 7-1
SRCCOM, 15-1

Cassette, 7-3
$CHAIN command,

BATCH, A-13
Change command (C),

EDIT, 5-25
Changing locations,

ODT, 16-5
PATCH, 17-2

Changing monitors, 4-17
Character-oriented commands,

EDIT, S-6
Characters,

BATCH, A-7
table, A-8

BATCH RT-11 mode control, A-34
dumping ASCII, 1-3

INDEX (Cont.)

lndex-3

Characters (Cont.),
dumping Radix-SO, 1-3
PATCH control, 17 4
prompting, 6-2

CHCOPY programmed request, 2-2
Checksum,

PAT, 18-7
PATCH, I 7-2, 17-6

Circumflex ("), 16-7
CLOSE command, 4-18, 5-2
Closing locations, 16-5
Code,

error, 1-2
object,

see Object module
/CODE option,

COMPILE, 4-20
EXECUTE, 4-60
FORTRAN, 4-66

/COLUMNS option,
DIRECTORY, 44S

Combining library options, 12-9

Commands,
BATCH, A-10
character-oriented, 5-6
EDIT key, 5-2
keyboard monitor,

see Monitor commands
interactive,

see Monitor commands
line-oriented, 5-6
monitor,

see Monitor commands
ODT, 16-5
PATCH. 17-2
relocation register, 16-15

Command abbreviations,
monitor, B-1

Command continuation, Preface,
11-17, 12-3, 12-10

Command mode,
EDIT, 5-1

Command options,
BATCH, A-2

table, A-3
Command repetition,

EDIT, 5-8
Command strings,

EDIT, 5-5
Command String Interpreter {CSI), 6-I

Command syntax,
BATCH, A-2
EDIT, 5-1

MACRO-I 1, 10-1
monitor, 4-1

/COMMENTS option,
DIFFERENCES, 4-39

Communicating with BATCH jobs, A-41
Communications,

system, II-1
Communication area,

system (SYSCOM), 11-4
Comparing files, 4-39
COMPILE command. 4-19
Compiler,

BATCH, A-I
Components,

system hardware, 1-3
table, 1-4

system software, l -2
Compressing a device,

see SQUEEZE
/CONCATENATE option,

COPY, 4-26
Constant register, 16-13
Continuation,

command, Preface, I l -17, 12-3, 12-10
Control characters,

see also CTRL, Up-arrow
BATCH RT-11 mode, A-34
PATCH, 17-4

/COPIES option,
PRINT, 4-94
TYPE, 4-118

$COPY command,
BATCH, A-14

COPY command, 4-24
Copy operations,

PIP, 7-8
Copying files, 4-24
Correction file,

PAT, 18-2, 18-4
Count,

proceed, 16-11
repeat, 16-11

CRAW programmed request, 2-2
$CREATE command,

BATCH, A-15
/CREA TE option,

EDIT, 4-57
LIBRARY, 4-80

Creating a file, 4-57

INDEX (Cont.)

Index-4

Creating indirect files, 4-7
Creating a library file, 12-4
Creating a macro library, 4-81
Creating an object library, 4-80
CREF

see /CROSSREFERENCE option, Cross-reference
listing

/CROSSREFERENCE option,
COMPILE, 4-20
DIBOL, 4-36
EXECUTE, 4-60
MACRO, 4-90

Cross-reference listing, 10-7
sample, 10-10

CRRG programmed request, 2-2
CSECT, 11-5, 18-4
CSI,

see Command String Interpreter
CSTAT programmed request, 2-2
CTRL, 3-5

see also Control characters, Up-arrow
CTRL/A, 3-6
CTRL/B, 3-6
CTRL/C, 3-6, 5-2
CTRL/D, 5.34
CTRL/E, 3-6
CTRL/F, 3-6
CTRL/G, 5-33
CTRL/N, 5-33
CTRL/O, 3-6, 5-3
CTRL/Q, 3-7
CTRL/S, 3-7
CTRL/U, 3-7, 5-3
CTRL/V, 5-34
CTRL/X, 5-2
CTRL/Z, 3-7

Current location pointer, 5-6

D command,
see Deposit command

/D option,
DIR, 9.3
FIL, 14-8
LIBR, 12-4
MACRO-I 1, 10-6
PIP, 7-11

$DAT A command,
BATCH, A-15

Data formats, 3-1
Dale,

entering the, 4-32
DATE command, 4-32

/DATE option,
DIRECTORY, 445

DEASSIGN command, 4-33
/DEBUG option,

EXECUTE, 4-60
LINK, 4-85

Debugging Technique,
On-line, 1-3, 16-1
see also /ONDEBUG

DECsystem-IO,
transferring files from, 14-6

DECsystem-IO file format, 14-1
DECsystem-IO file transfers, 1-3, 14-6
Default system subroutine library,

see SYSLIB.OBJ
$DELETE command,

BATCH, A-16
DELETE command, 4-34
Delete command (D),

EDIT, 5-23
DELETE key, 3-7,5-3, 5-34
/DELETE option,

LIBRARY, 4-80
PRINT, 4-94
TYPE, 4-118

/DELETED option,
DIRECTORY, 445

Deleting files, 4-34
Deleting DOS-11 files, 14-8
Deleting interchange files, 14-8
Deposit (D) command, 4-31
Dev:, 6-1
Development,

program, 1-1
Device,

block-replaceable,
see Random-access device

compressing,
see SQUEEZE

directory-structured, 3-5
file-structured, 3-5
FILEX-supported, 14-1
random-access, 1-3, 3-2
sequential-access, 3-5

Device directory, 3-5
Device handlers,

loading, 4-89
unloading, 4-120

Device names,
BATCH, A-5
logical, 3-2, 4-14, 4-33

INDEX (Cont.)

Device names (Cont.),
permanent, 3-2

table, 3-3
physical, 3-2, 4-14, 4-33

/DEVICE option,
COPY, 4-26

DEVICE programmed request, 2-2
Device structures, 3-2
Device utility program (DUP),

see DUP
/DIAGNOSE option,

COMPILE, 4-20
EXECUTE, 4-60
FORTRAN, 4-66

DIBOL command, 4-36
/DIBOL option,

COMPILE, 4-20
EXECUTE, 4-60

Differences between BATCH and RSX-11 D BATCH,
A43

DIFFERENCES command, 4-39
DIR, 1-2, 9-1

lndex-5

DIR,
calling and using, 9-1

DIR options, 9-1
table, 9-2

Direct-access file, 12-1
Direct assignment,

see ASECT
Directory-structured device, 3-5
Directory,

device, 3-5
library, 12-1
listing, 4-4 2, 14-7
listing a library, 12-8
initializing a OOS-11, 14-9
initializing an interchange, 14-9

DIRECTORY command, 4-42
Directory program (DIR),

see DIR
/DISABLE option,

COMPILE, 4-20
EXECUTE, 4-60
MACRO, 4-90

$DISMOUNT command,
BATCH, A-17

Display editor, 5-31, 5-32
Display hardware, 5-2, 5-31
/DOS option,

COPY, 4-26
DELETE, 4-34

/DOS option (Cont.),
DIRECTORY, 4-46
INITIALlZE, 4-76

DOS-11,
initializing a directory, 14-9
transferring files between RT-11 and, 14-2

DOS-11 file format, 14-1
DOS-11 file transfers, 1-3, 14-2
DOS-11 files,

deleting, 14-8
.DSABL directive, 4-20, 4-60

table, 4-91
DUMP, 1-3, 13-1
DUMP,

calling and using, 13-1
DUMP command, 4-51
DUMP options, 13-1
DUMP utility program (DUMP),

see DUMP
DUP, 1-2,8-1
DUP,

calling and using, 8-1
DUP options, 8-2

E command,
see Examine command

/E option,
DIR, 9-4
DUMP, 13-1
LIBR, 12-5
LINK, 11-18
MACRO-I I, 10°6

EBCDIC,
see Packed image format

EDIT, 1-2, 5-1
EDIT,

calling and using, 5-1
Edit Backup command (EB),

EDIT, 5-12
EDIT command, 4-57
EDIT command strings, 5-5
EDIT command syntax, 5-1, 5-4
Edit Console command (EC),

EDIT, 5-32
Edit Display command (ED),

EDIT, 5-32
EDIT error conditions, 5-35
EDIT key commands, 5-2
Edit Lower command (EL),

EDIT, 5-30

INDEX (Cont.)

EDIT program (EDIT),
see EDIT

Edit Read command (ER),
EDIT, 5-11

Edit Upper command (EU),
EDIT, 5-30

Edit Version command (EV),
EDIT, 5-30

Edit Write command (EW),
EDIT, 5-11

Editing files, 4-57
Editor,

display, 5-31
text, 1-1, 5-1

ELAW programmed request, 2-2
ELRG programmed request, 2-2
.ENABL directive, 4-20, 4-61

table, 4-91
/ENABLE option,

COMPILE, 4-20
EXECUTE, 4-61
MACRO, 4-91

End File command (EF),
EDIT, 5-13

/END option,
DUMP, 4-51

Entering the date, 4-32
Entering the time, 4-117
Entry points, 16-2
$BOD command,

BATCH, A-18
$EOJ command,

BATCH, A-18
Error codes, 1-2
Error codes,

MACRO-I 1, 10-9
table, 10-11

Error conditions,
EDIT, 5-35

Error detection,
ODT, 16-21

ESC,
see ESCAPE

ESCAPE, 5-2, 5-33, 5-34
Examine (E) command, 4-56
Examining locations,

PATCH, 17-2
Exchange command (X),

EDIT, 5-27
Exchange program,

file,
see FILEX

lndex-6

/EXCLUDE option,
COPY, 4-27
DELETE, 4-34
DIRECTORY, 4-46

Executable module, 1-1, 11-8
Executable program, 18-1
EXECUTE command, 4-59
/EXECUTE option,

EXECUTE, 4-61
LINK, 4-85

Execute Macro command (EM),
EDIT, 5-29

Executing indirect files, 4-10
Executing programs, 4-103
Execution,

program (ODT), 16-10
Exit command (EX),

EDIT, 5-16
Exiting from PATCH, 17-2
Expression,

relocatable, 16-4
/EXTEND option,

COMPILE, 4-20
EXECUTE, 4-61
FOR TRAN, 4-66
LINK, 4-85

Extended memory monitor (XM), 1-1, 2-1
Extended memory monitor.

memory requirements, 1-3
/EXTRACT option,

LIBRARY, 4-80

/F option,
DIR, 9-4
DUP, 8-5
FILEX, 14-8
LINK, 11-18
SRCCOM, 15-2

Factoring, 4-3
/FAST option,

DIRECTORY, 4-46
FB,

see Foreground/background monitor
File,

ASCII text,
comparing, 1-3, 4-39, 15-1

binary object,
see Object module

creating a, 4-57
creating a library, 124

INDEX (Cont.)

Index-7

File (Cont.),
direct-access, 12-1
library, 1-3, 12-1
load image (LDA), 3-2
memory image (SAV), 1-2, 3-2
PAT correction, 18-2, 18-4
PAT input, 18-2
patching a new, 17-2
prefix macro, 4-23, 4-63
relocatable image (REL), 3-2
startup, 3-1
symbol definition, 11-1

Files,
BAD, 7-2
BATCH temporary, A-9
comparing, 4-39, 15-1
copying, 4-24, 7-1, 14-1
deleting, 4-34, 14-8
editing, 4-57, 5-1
indirect command, 4-7
library, 11-10, 12-9
renaming, 4-99
startup indirect, 4-11
SYS, 7-11
transferring, 14-2, 14-5, 14-6

/FILES option,
DIRECTORY, 4-46

File directory,
listing a, 4-4 2

File exchange program,
see FILEX

File format,
DECsystem-IO, 14-1
DOS-11, 14-1
IBM, 14-1
RT-11, 14-1
universal interchange, 14-1

File names, 3-2
/FILE option,

INITIALIZE, 4-76
File specifications,

BATCH, A-5
File-structured device, 3-5
File types, 3-2

BATCH, A-6
LIBR, 12-2
PATCH, 17-1
standard, 3-4

FILEX, 1-3, 14-1
calling and wing, 14-2

INDEX (Cont.)

FILEX devices, 14-1
FILEX options, 14-2

table, 14-3
/FILL option,

LINK, 4-86
Filnam, 6-2
FOCAL command, 4-65
/FOREGROUND option,

LINK, 4-86
see also Relocatable image file

Foreground/background monitor (XM), 1-1, 2-1, 2-2
Foreground/background monitor,

memory requirements, 1-3
Foreground/background terminal 1/0, 3-5
Foreground jobs,

using ODT with, 16-17
Foreground program,

running a, 4-71
FORLIB.OBJ, 11-18
Format,

ASCII, 3-1, 3-2, 14-1
binary, 3-1, 3-2
data, 3-1
DECsystem-IO file, 14-1
DOS-11 file, 14-1
IBM file, 14-1, I 4-5
image, 14-1
object, 1-3
packed image, 14-1, 14-5
RT-11 file, I 4-1
universal interchange file, 14-1

/FORMFEED option,
DIFFERENCES, 4-39

$FORTRAN command,
BATCH, A-18

FORTRAN callable routines, 1-3
FORTRAN command, 4-66
FORTRAN library option, 11-18
FORTRAN optimizations,

table, 4-68
see also /OPTIMIZE option

/FORTRAN option,
COMPILE, 4-20
EXECUTE, 4-61

FORTRAN overlays, 11-14
/FREE option,

DIRECTORY, 4-46
FRUN command, 3-2, 4-71, 11-9
/FULL option,

DIRECTORY, 4-46

Function control,
MACRO-11, 10-6

Function keys,
special, 3-5

Index-8

table, 3-6

/G option,
DIR, 9-4
DUMP, 13-1
LIBR, 12-5
PIP, 7-9

General registers, 16-8
Get command (G),

EDIT, 5-19
GET command, 4-72
Globalsymbols, 11-1,11-7
Global symbol table, 12-1
GMCX programmed request, 2-2
Graphic illustrations,

monitor commands, 4-1
sample, 4-2

GT OFF command, 4-73
GT ON command, 4-73

/H option,
DlW, 8-5
LINK, 11-18
SRCCOM, 15-2

Handler,
see Device handler

Handler,
BATCH run-time, A-1
overlay table, 17-1, 17-6

Hardware,
display, 5-2, 5-31
system, 1-3

Hardware components, 1-4
Hardware requirements,

BATCH, A-1
Hardware vector, 11-4
Header,

library, 12-1
/HEADER option,

COMPILE, 4-21
EXECUTE, 4-61
FORTRAN, 4-67

HELP command, 4-74
High-level language, 1-2

/I option,
DUP, 8-4
FILEX, 14-5
LINK, 11-19

/14 option,
COMPILE, 4-21
EXECUfE, 4-61
FORTRAN, 4-67

IBM file format, 14-1
IBM file transfers, 1-3
/IGNORE option,

COPY, 4-27
DUMP, 4-52

Image format, 14-1
packed, 14-1, 14-5

/IMAGE option,
COPY, 4-27

Immediate mode, l-2, 5-1, 5-33
Immediate mode commands, 5-33
/INCLUDE option,

LINK, 4-86
Indirect command files,

creating, 4-7
executing, 4-l 0
startup, 4-11

INITIALIZE command, 4-76
Initialization ,

memory block, 16-14
Initializing a DOS-11 directory, 14-9
Initializing an interchange directory, 14-9
Input file,

PAT, 18-2
Input specification, 6-1
Insert command (I),

EDIT, 5-23
/INSERT option,

LIBRARY, 4-80
Inserting modules into a library, 12-4
/INSPECT option,

EDIT, 4-58
INSTALL command, 4-78
Instruction mode,

single, 16-12
Interchange diskette,

initializing a directory, 14-9
transferring files on, 14-5

Interchange file,
deleting, 14-8

Interchange file format,
universal, 14-l

INDEX (Cont.)

Index-9

/INTERCHANGE option,
COPY, 4-27
DELETE, 4-34
DIRECTORY, 4-4 7
INITIALIZE, 4-76

Interchange program,
peripheral,
see PIP

Internal registers, 16-8
Interpreter,

Command String, 6-1
Interrupts, 16-16, 16-21
Interactive commands,

see Keyboard monitor commands
I/0,

foreground/background terminal, 3-5

/J option,
DIR, 9-5

$JOB command,
BATCH, A-20

Job control language,
see BATCH

Jump command (J),
EDIT, 5-18

/K option,
Ul.R, 9-5
DUP, 8-4
LINK, 11-19
PIP, 7-10

Key commands,
EDIT, 5-2

Keyboard monitor commands,
see Monitor commands

Keys,
special function, 3-5

table, 3-6
Kill command (K),

EDIT, S-24

/L option,
DIR, 9-5
FILEX, 14-7
GT ON command, 4-73
LINK, 11-19
MACRO-I 1, I 0-5
SRCCOM, 15-2

Language,
assembly, 1-2

see also MACRO-I 1, Assembler
high-level, 1-2
job control,

seeBATCH
Language translator, 1-1
LDA file,

see Load image file
/LDA option,

LINK, 4-86
Length,

program section. 11-5
LIBR, 1-2, 1-3, 12-1

calling and using, 1 2-1
LIBR command syntax, 12-1
LIBR file types, 12-2
LIBR macro options, 12-10
LIBR object options, 12-2
Librarian utility program (LIBR),

see LIBR
Libraries,

using with LINK, 11-14
Library,

creating a macro, 4-81
creating an object, 4-80
default,

see SYSUB.OBJ
inserting modules into, 12-4
macro, 4-21
system subroutine,

see SYSLIB.OBJ
$LIBRARY command,

BATCH, A-21
LIBRARY command, 4-79
Library directory, I 2-1
Library file directory listing, 12-8
Library files, 1-3, 4-79, 11-10, 12-1

copying, 4-25
creating, 12-4
macro, 10-7
merging, 12-9

Library header, 12-1
/LIBRARY option,

COMPILE, 4-21
EXECUTE, 4-61
LINK, 4-86
MACRO, 4-91

Library options,
combining, 12-9

Line-oriented commands, 5-6

INDEX (Cont.)

/LINENUMBERS option,
COMPILE, 4-21
DIBOL, 4-36
EXECUTE, 4-61
FORTRAN, 4-67

LINE FEED, 16-5
LINK, 1-2,4-84, 11-1

callingandusing, 11-1
$LINK command,

BATCH, A-21
LINK command, 4-84
LINK command syntax, 11-2
Link map,

see Load map
LINK options, 11-2, 11-17

table, 11-3
LINK prompts, 11-24
Linker,

see LINK
linking object modules, 4-84
Linking ODT, 16-2
/LINKLIBRARY option,

EXECUTE, 4-61
LINK, 4-86

List command (L),
EDIT, 5-21

.LIST directive, 4-23, 4-63
table, 4-69, 4-93

/LIST option,
COMPILE, 4-21
DIBOL, 4-36
EXECUTE, 4-62
FORTRAN, 4-67
LIBRARY, 4-80
MACRO, 4-91

Listing control,
MACR0-11, 10-5

Listing directories, 4-42, 12-8, 14-7
LOAD command, 4-89
Load image file (LDA), 3-2
Load map, 1-1, 11-1, 11-9
Load module,

see Executable module
Loading BATCH, A-37
Loading device handlers, 4-89
Location pointer,

EDIT, 5-6
Locations,

lndex-10

changing, 16-5, l 7 -2
closing, 16-5
examining, 17-2

Locations (Cont.),
modifying, 1 7 -4
opening, 16-5
opening the addressed, 16-7
translating, 17-4

/LOG option,
COPY, 4-27
DELETE, 4--34
PRINT, 4-94
RENAME, 4.99
TYPE, 4-118

Logical device names, 3-2, 4-14, 4.33

/M option,
DIR, 9-5
LIBR, 12-10
LINK, 11-19
MACRO-I 1, 10-7
PIP, 7-3, 7-7

MACRO-I 1 assembly language, 1-2, 1-3, 4--90,
10-1

MACRO-II,
calling and using, 10-1
see also Assembler, Assembly language

MACRO-I I 8K version, 10-9
MACRO-11 command syntax, 10-1
MACRO-I I error codes, 10-9

table, 10-ll
MACRO-I I function control, I 0-6
MACRO-11 listing control, 10-5
MACRO-l I options, I 0-3
MACRO-I I program assembly, 10-1
MACRO-I I work file, 10-3
$MACRO command,

BATCH, A-23
Macro command (M),

EDIT, 5-28
MACRO command, 4-90
Macro buffer, 5-10
Macro defmitions, 12-1
Macro file,

prefix, 4-23, 4-63
Macro library, 1-3, 4-21

creating a, 4-81
Macro library file, 10-7
Macro name table, 12-1
/MACRO option,

COMPILE, 4-22
EXECUTE, 4-62
LIBRARY, 4-81

INDEX (Cont.)

Macro options,
LIBR, 12-10

Magtape, 7-7
Map,link,

see Load map
Map,

load, 1-1, 11-1, 11-9
/MAP opt.ion,

EXECUTE, 4-62
LINK, 4-86

MAP programmed request, 2-2
/MATCH option,

DIFFERENCES, 4-39
MDUP program, 8-10
Memory allocation, 11-4
Memory block initialization, 16-14
Memory image file (SA V), 1-2, 3-2
Memory requirements,

extended memory monitor, 1-3
foreground/background monitor, 1-3
single-job monitor, 1-3

Merging library files, 12-9
$MESSAGE command,

BATCH, A-25
Mode,

command, 5-1
immediate, 5-2
single instruction, I 6-12
text, 5-1

Modifying locations with PATCH, I 7-4
Module,

executable, 1-1, 11-8
load,

see Executable module
object, 1-1, 11-7, 12-1, 16-4, I 8- I
object patching program,

see PATCH
Modules,

inserting into a librarv, 12-4
linking object, 4-84

Monitor,
extended memory (XM), 1-1, 2-1
foreground/background (FB), J-1, 2-1, 2-2
keyboard,

commands,
see Monitor commands

single-job (SJ), J-1, 2-1
Monitor commands, 1-2, 4-1, 4-12

APL, 4-13
ASSIGN, 4-14

Index-I I

Monitor commands (Cont.),
Base, 4-15
BASIC, 4-16
BOOT, 4-17
CLOSE, 4-18
COMPILE, 4-19
COPY, 4-24
Deposit, 4-31
DATE, 4-32
DEASSIGN, 4-33
DELETE, 4.34
DIBOL, 4-36
DIFFERENCES, 4-39
DIRECTORY, 4-42
DUMP, 4-51
Examine, 4-56
EDIT, 4-57
EXECUTE, 4-59
FOCAL, 4-65
FORTRAN, 4-66
FRUN, 4-71
GET, 4-72
GT, 4-73
HELP, 4-74
INITIALIZE, 4-76
INSTALL, 4-78
LIBRARY, 4-79
LINK, 4-84
LOAD, 4-89
MACRO, 4-90
PRINT, 4-94
R, 4-96
REENTER, 4-97
REMOVE, 4-98
RENAME, 4.99
RESET, 4-101
RESUME, 4-102
RUN, 4-103
SAVE, 4-104
SET, 4-105
SHOW, 4-112
SQUEEZE, 4-114
START, 4-115
SUSPEND, 4-116
TIME, 4-117
TYPE, 4-118
UNLOAD, 4-120

Monitor command abbreviations, 44, B-1
Monitor command,

graphic illustrations, 4-1
sample, 4-2

INDEX (Cont.)

Monitor command syntax, 4-1

Monitors,
changing, 4-17

$MOUNT command,
BATCH, A-25

MRKT programmed request, 2-2
Mutually exclusive options, 4-3

/N option,
DIR, 9-6
DUMP, 13-1
DUP, 8-11
FRUN command, 4-71
LIBR, 12-6
MACR0-11, 10-5
PIP, 7-10

Name,
file, 3-2
permanent device, 3-3
program section, 11-4

/NEWFILES option,
COPY, 4-27
DELETE, 4-35
DIRECTORY, 4-47
PRINT, 4-94
RENAME, 4-99
TYPE, 4-118

lndex-12

New file,
patching a, 17-2

Next command (N),
EDIT, 5-16

.NLIST directive, 4-23, 4-64
table, 4-93

/NOASCII option,
DUMP, 4-51

/NOCOMMENTS option,
DIFFERENCES, 4-39

/NOEXECUTE option,
LINK, 4-85

iNOLINENUMBERS option,
COMPILE, 4-21
DIBOL, 4-36
EXECUTE, 4-61
FORTRAN, 4-67

/NOLOG option,
COPY, 4-27
PRINT, 4-94
RENAME, 4-99
TYPE, 4-118

/NOOBJECT option,
COMPILE, 4-22
DIBOL, 4-38
FORTRAN, 4-68
LIBRARY, 4-81
MACRO, 4-93

/NOOPTIMIZE option,
COMPILE, 4-23
EXECUTE, 4-63
FORTRAN, 4-69

/NOQUERY option,
COPY, 4-29
DELETE, 4-35
INITIALIZE, 4-77
SQUEEZE, 4-114

/NOREPLACE option,
COPY, 4-29
RENAME, 4-100

/NORUN option,
EXECUTE, 4-63

/NOSHOW option,
COMPILE, 4-23
EXECUTE, 4-64
MACRO, 4-93

/NOSPACES option,
DIFFERENCES, 4-40

/NOSWAP option,
COMPILE, 4-23
EXECUTE, 4-64
FORTRAN, 4-69

/NOVECTORS option,
COMPILE, 4-23
EXECUTE, 4-64
FORTRAN, 4-69

/NOWARNINGS option,
COMPILE, 4-23
DIBOL, 4-38
EXECUTE, 4-64

/0 option,
DIR, 9-6
DUMP, 13-1
DUP, 8-5
LINK, 11-20
PIP, 7-10

Object code,
see Object module

Object file,
binary,

see Object module

INDEX (Cont.)

Object fonnat, 1-3
Object library,

creating a, 4-80
Object module, 1-1, 11-7, 12-1, 18-1
Object modules,

linking, 4-84
relocatable, 164

Object module patching utility ·program
(PATCH),

seePATCH
/OBJECT option,

COMPILE, 4-22
DIBOL, 4-37
EXECUTE, 4-63
FORTRAN, 4-68
LIBRARY, 4-81
MACRO, 4-92

Object options,
LIBR, 12-2

Object program,
see Object module

Object Time System (OTS),
see OTS

/OCTAL option,
DIRECTORY, 447

ODT, 1-3, V-1, 16-1
ASCII in, 16-I 7
calling and using, 16-1
linking, 16-2
organization of, 16-18
program execution with, 16-10
Radix-SO in, 16-9
restarting, 16-2
using with FB jobs, 16-17

ODT address search, 16-13
ODT breakpoints, 16-10, 16-18
ODT commands, 16-5
ODT constant register, 16-13
ODT entry points, 16-2
ODT error detection, 16-21
ODT general registers, 16-8
ODT internal registers, 16-8
ODT interrupts, 16-16
ODT memory block initialization, 16-14
ODT offset calculation, 16-14
ODT printout formats, 16-5
ODT priority level, 16-16
ODT proceed count, 16-11
ODT programming considerations, 16-17
ODT relative branch offset, 16-7

Index-13

ODT relocation calculators, 16-15
ODT relocation register commands, 16-15
ODT repeat count, 16-11

ODT returns to previous sequence, 16-7
ODT searches, 16-20
ODT single-instruction mode, 16-12
ODT terminal interrupt, 16-21
ODT word search, 16-12
Offset,

calculating, 16-14
relative branch, 16-7

On-line Debugging Technique (ODT),
see ODT

/ONDEBUG option,
COMPILE, 4-22
DIBOL, 4-38
EXECUTE, 4-63
FORTRAN, 4-68

/ONLY option,
DUMP, 4-52

Openinglocations, 16-5, 16-7
Operating environments,

see Single-job monitor, Foreground/
background monitor, Extended
memory monitor

Operating procedures,
BATCH, A-37

Operating system,
RT-11, 1-1

Operator directives to BATCH run-time
handler, A-41

/OPTIMIZE option,
COMPILE, 4-23
EXECUTE, 4-63
FORTRAN, 4-68

Option, 6-1

Options,
BATCH command, A-2

table, A-3
combininglibrary, 12-9
DIR, 9-1
DUMP, 13-1
DUP, 8-2
FILEX, 14-3
UBR. 12-2, 12-10
LINK, 11-3, 11-17
monitor command,

see Monitor commands
mutually exclusive, 4-3
PIP, 7-2
SRCCOM, 15-2

INDEX (Cont.)

/ORDER option,
DIRECTORY, 4-47

Organization of ODT, I 6-18
ors, 11-15
/OUTPUT option,

DIFFERENCES, 4-39
DIRECTORY, 4-49
DUMP, 4-52
EDIT, 4-58
SQUEEZE, 4-114

Output specification, 6-1
Oval, 6-2
Overlays, 11-1, 11-6

see also Root segment
Overlays,

FORTRAN, 11-14
using with LINK, 4-87, 11-10

Overlay handler table, 17-6, 17-11
Overlay segment, 11-8, 17-11
Overlaying lines with PAT, 18-4
/OWNER option,

COPY, 4-28
DIRECTORY, 4-49

/P option,
DIR, 9-6
FILEX, 14-3
FRUN command, 4-71
LIBR, 12-6
LINK, 11-21
MACRO-I I, 10-9
PIP, 7-10

P-section,
see Program section

Packed image format, 14-1, 14-5
/PACKED option,

COPY, 4-28
Page, 4-57, 5-1
/PASS:1 option,

COMPILE, 4-23
EXECUTE, 4-63
MACRO, 4-93

PAT, 1-3, V-1, 18-1
adding a subroutine with, 18-5
calling and using, 18-1
overlaying lines with, I 8-4

PAT checksum, 18-7
PAT command syntax, 18-2
PAT correction file, 18-2, 18-4
PAT input file, 18-2

Index-14

PAT processing steps, I 8-3
PATCH, 1-3, V-1, 17-1

ASCII in, 17-4
calling and using, 17 -1
changing locations with, 17-2, 17-4
examining locations with, 17-2
exitingfrom, 17-2
translating locations with, 17-4

PATCH bottom address, 17-6
PATCH checksum, 17-2, 17-6
PATCH commands, 17-2

table, 17-3
PATCH command syntax, 17-1
PATCH control characters, 17-4
PATCH file type, I 7-1
PATCH options, 17-1
PATCH relocation registers, 17-7
Patchinganewfile, 17-2
Patching utility program,

see PATCH
PDP-11 RSTS file transfers, 1-3
Percent symbol(%), 4-5
Peripheral Interchange Program (PIP),

see PIP
Permanent device names, 3-2

table, 3-3
Physical device name, 4-14, 4-33
PIP. 1-2. 7-1

calling and using, 7- I
PIP options, 7-2
Pointer,

see Current location pointer
Position command (P),

EDIT, 5-21
/POSITION option,

COPY, 4-28
DELETE, 4-35
DIRECTORY, 4-49

/PREDELETE option,
COPY, 4-29

Prefix macro file, 4-23, 4-63
Previous sequence,

returning to, 16-7
$PRINT command,

BATCH, A-27
PRINT command, 4-94
/PRINTER option,

DIFFERENCES, 4-39
DIRECTORY, 4-49
DUMP, 4-52
HELP, 4-74

INDEX (Cont.)

Printout format,
ODT, 16-5

Priority level, I 6-16
Proceed count, 16-11
Processing steps,

PAT, 18-3
Program,

debugging, 1-2
see also ODT, /ONDEBUG option
device utility,

see DUP
directory,

see DIR
dump utility,

see DUMP
executable, 18-1
executing a, 4-103
file exchange,

see FILEX
librarian u till ty,

see LIBR
object,

see Object module
object module patching utility,

see PATCH
peripheral interchange,

see PIP
running a foreground, 4-71
source compare utility,

see SRCCOM
Program development, 1-1, 1-2
Program development aids,

see Programming tools
Program execution with ODT, 16-10
Program section, 11-4

see also PSECT
Program section attributes, 11-5

table, 11-5, 11-6
Program section length, 11-5
Program section name, 11-5
Programmed requests, 1-3, 2-2
Programming considerations,

ODT, 16-17
Programming tools, 1-1 to 1-3
/PROMPT option,

LIBRARY, 4-81
LINK, 4-87

Prompting characters, 6-2
Prompting command format, 4-3
Prompts,

LINK, 11-24

Index-IS

PROTECT programmed request, 2-2
.PSECT, 11-5, 18-4

see also Program section
Punched cards,

BATCH, A-36

/Q option,
DIR, 9-6
PIP, 7-12

/QUERY option,
COPY, 4-29
DELETE, 4-35
INITIALIZE, 4-76
PRINT, 4-95
RENAME, 4-99
SQUEEZE, 4-114
TYPE, 4-119

R command, 4-96
/R option,

DIR, 9-7
DUP, 8-11
LIB, 12-7
LINK, 11-21
PIP, 7-11

RADS0,
see Radix-SO characters

/RADSO option,
DUMP, 4-52
see also Radix-SO characters

Radix-SO characters, 1-3, 16-9, 17-4
see also /RADS O option

Random-access device, 1-3, 3-2
RCVD programmed request, 2·2
Read command (R),

EDIT, 5-14
/RECORD option,

COMPILE, 4-23
EXECUTE, 4-63
FORTRAN, 4-69

REENTER command, 4-97, 5-2
Reference pointer,

see Current location pointer
Registers,

constant, 16-13
general, 16-8
internal, I 6-8
relocation, 16-4, 17-7

REL file,
see Relocatable image file

Relative address, 16-4

INDEX (Cont.)

Relative branch offset, 16-7
Relocatable image file, 3-2

see also /FOREGROUND option
Relocatable expression, 16-4
Relocatable object module, 16-4
Relocation, 16-4
Relocation bias, 16-4
Relocation calculators, 16-15
Relocation registers, 16-4, 16-15, 17-7
REMOVE command, 4-98
/REMOVE option,

LIBRARY, 4-81
RENAME command, 4-99
Renaming files, 4-99
Repeat count, 16-11
Repetition,

EDIT command, 5-8
/REPLACE option,

COPY, 4-29
INITIALIZE, 4-77
LIBRARY, 4-82
RENAME, 4-100

Replacing bad blocks, 8-11
see also /BADBLOCKS option

Requests,
see Programmed requests

RESET command, 4-101
Restarting ODT, 16-2
Retuming to previous sequence, 16-7
RESUME command, 4-102
/REVERSE option,

DIRECTORY, 4-49
Root segment, 11-8

see also Overlays
/ROUND option,

LINK, 4-87
Routines,

FORTRAN callable, 1-3
RSTS,

see DOS-11
RSX-llD BATCH, A-43
R T-11 file transfers,

DECsystem-IO, 14-6
DOS-11, 14-2
interchange diskette, 14-5

$RT1 I command,
BATCH, A-27

RT-11 file format, 14·1
RT-11 mode,

BATCH, A-30
RT-11 mode control characters,

BATCH, A-34

Index-16

RT- I I operating system, I-I
RUBOUT, 3-7, 5-2, 5-34
Run-time handler,

BATCH, A-1,
operator directives, A-41

$RUN command,
BATCH, A-27

RUN command, 4-103
/RUN option,

EXECUTE, 4-63
LINK, 4-87

Running BATCH, A-39
Running a foreground program, 4-71
Running programs,

see Executing programs

/S option,
DIR, 9-7
DUMP, 13-1
DUP, 8-6
FILEX, 14-8
LINK, 11-22
PIP, 7-10
SRCCOM, 15-2

SAV file,
see Memory image file

Save buffer, 5-10
Save command (S),

EDIT, 5-27
SAVE command, 4-104
SDAT programmed request, 2-2
Searches,

address, 16-13
ODT, 16-20
word, 16-12

Section,
program, 11-4
see also PSECT

Segment,
overlay, 11-8, 17-11
root, 11-8

/SEGMENTS option,
INITIALIZE, 4-77

SEL,
see ESCAPE

Sequence,
returning to previous, 16-7

$SEQUENCE command,
BATCH, A-28

Sequential-access device, 3-5
SETcommand, 4-105

INDEX (Cont.)

/SETDATE option,
COPY, 4-30
RENAME, 4-100

SHOW command, 4-112
/SHOW option,

COMPILE, 4-23
EXECUTE, 4-63
FORTRAN, 4-69
MACRO, 4-93

/SINCE option,
DIRECTORY, 4-49

Single-job monitor (SJ), 1-1, 2-1
Single-job monitor,

memory requirements, 1-3
Single instruction mode, 16-I 2
SJ,

see Single-job monitor
Slash character (/), 16-6
/SLOWLY option,

COPY, 4-30
LINK, 4-87

Software,
system,

components, 1-2
Software requirements,

BATCH, A-1
/SORT option,

DIRECTORY, 4-50
Source compare utility program,

seeSRCCOM
/SPACES option,

DIFFERENCES, 4-39
Specia1 function keys, 3-5

table, 3-6
Specification,

input, 6-1
output, 6-1

Specification options,
BATCH, A-6

table, A-7
SQUEEZE command, 4-114
SRCCOM, 1-3, 15-1
SRCCOM,

calling and using, 15-1
SRCCOM command syntax, 15-1
SRCCOM options, 15-1

table, 15-2
Stack, 11-4
/STACK option,

LINK, 4-87
Standard file types, 3-4

Index-17

Start address, 11-22
START command, 4-115
/ST ART option,

DUMP, 4-52
Startup,

system, 3-l
Startup indirect files, 3-1, 4-11
STARTF.COM, 3-1, 4-11
STARTS.COM, 3-1, 4-11
STARTX.COM, 3-1, 4-11
/STATISTICS option,

COMPILE, 4-23
EXECUTE, 4-64
FORTRAN, 4-69

Strings,
EDITcommand, 5-5

Steps,
PAT processing, 18-3

Structures,
device, 3-2

Subroutine,
adding with PAT, 18-5

Subroutine library,
see SYSLIB.OBJ

/SUMMARY option,
DIRECTORY, 4-50

SUSPEND command, 4-116
/SWAP option,

COMPILE, 4-23
EXECUTE, 4-64
FORTRAN, 4-69

Swapping,
see /SW AP, /NOSW AP

Symbols,
global, 11-7

Symbol definition file, 11-1
Syntax,

BATCH command, A-2
Command String Interpreter, 6-1
EDIT command, 5-1, 5-4
LIBRcommand, 12·1
LINK command, 11-2
monitor command, 4-1
PAT command, 18-2
PATCH command, 17-1
SRCCOM command, 15-1

SYS files, 7-11
SYSCOM area,

see System communication area
SYSUB.OBJ, 1-3, 11-15, 11-18, 12-1
SYSMAC.SML, 12-1

INDEX (Cont.)

System communication area, 11-4
System communications, II-1
System hardware components, 1-3
/SYSTEM option,

COPY, 4-30
DELETE, 4-3S
RENAME. 4-100

System software components, 1-2
System startup, 3-1
System Subroutine Library,

see SYSUB.OBJ

/T option,
DUMP, 13-1
DUP, 8-7
FILEX, 14-7
FRUN command, 4-71
GT ON command, 4-73
LINK, 11-22
PIP, 7-10

TAB, 5-2
Table,

global symbol, 12-1
macro name, 12-1
overlay handler, 17-6, 1 7-11

Technique,
On-line Debugging,
see ODT

Temporary tiles,
BATCH, A-9

Terminal interrupt, 16-21
/TERMINAL option,

DIFFERENCES, 4-40
DIRECTORY, 4-50
DUMP, 4-52
HELP, 4-74

Tenninating BATCH, A-43
Text buffer, S-10
Texteditor, 1-1,5-1
Text mode, 5-1
TIME command, 4-117
Time,

entering the, 4-117
/TOPS option,

COPY, 4-30
DIRECTORY, 4-50

Transfer address, 11-22
/TRANSFER option,

LINK, 4-88
Transferring files to RT-11 from DECsystem-IO,

14-6

Index-18

Transferring files between RT-11 and DOS-11,
14-2

Transferring files between RT-I l and inter
change diskette, 14-5

Translating locations with PATCH, 17-4

Translator,
language, 1-1

TWAIT programmed request, 2-2
Typ, 6-2
Type-ahead, 3-7
TYPE command, 4-118
Types,

file, 3-2
table, 3-4

/U option,
DUP, 8-7
FILEX, 14-5
LIBR, 12-7
LINK, 11-23
PIP, 7-11

Underline(-), 16-7
/UNITS option,

COMPILE, 4-23
EXECUTE, 4-64
FORTRAN, 4-69

Universal interchange file format, 14-1
UNLOAD command, 4-120
Unloading device handlers, 4-120
UNMAP programmed request, 2-2
Unsave command (U),

EDIT, 5-28
Up-arrow (t), 16-7

see also CTRL, control characters
/UPDATE option,

LIBRARY, 4-82
Using libraries with LINK, 11-14
Using ODT with FB jobs, 16-17
Using overlays with LINK, 11-10
Utility program,

device,
see DUP

dump,
see DUMP

file exchange,
see FILEX

librarian,
see LIBR

object module patching,
see PATCH

INDEX (Cont.)

Utility program (Cont.),
source compare

seeSRCCOM

/V option,
DUP, 8-8, 8-11

Vector, 11-4
/VECTORS option,

COMPILE, 4-23
EXECUTE, 4-64
FORTRAN, 4-69

Verify command (V),
EDIT, 5-22

/VOLUMEID option,
DIRECTORY, 4-50
INITIALIZE, 4-77

/W option,
DUMP, 13-1
DUP, 8-9
LIBR, 12-7
LINK, 11-23
PIP, 7-12

/WARNINGS option,
COMPILE, 4-23
DIBOL, 4-38
EXECUTE, 4-64
FORTRAN, 4-70

/WIDE option,
EXECUTE, 4-64
LINK, 4-88

Wildcards, 4-5, 7-1, 14-1
Wild cards,

BATCH, A-6
setting the default, 11-1

Word search, 16-12
/WORDS option,

DUMP, 4-52
Write command (W),

EDIT, 5-14
Work file,

MACRO-I 1, 10-3

/X option,
DUMP, 13-1
DUP, 8-7
LINK, 11-23

XM,
see Extended memory monitor

Index-19

/Y option,
DUP, 8-10
FILEX, 14-9
LINK, 11-23
PIP, 7-11

INDEX (Cont.)

/Z option,

lndex-20

DUP, 8-10
FILEX, 14-9
LINK, 11-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I
I
I
I
I
I
I
I
I
I
I a.i

C: ,=:
:.2 , ...
I§
I ';j
1a
I~

(I.)

I a::

READER'S COMMENTS

RT-11
System User's Guide
DEC-11-0RGDA-A-D

NOTE: This forrn is for document comments only. DIGIT AL will use comments submitted on this form at the
company's discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Non-programmer interested in computer concepts and capabilities

Name ________________ Date __________________ _

Organization-----------------------------------

Street ____________________________________ _

City ________________ State ______ Zip Code ________ _

or
Country

-----·-------------Fold Here---

·---· Do Not Tear • Fold Here and Staple--·

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML 5-S/E39
Maynard, Massachusetts 017 54

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed m U S,A

	Supnik DEC architecture18b (2)
	PDP 1 Programmed Data Processor-1 1960 pp32
	PDP 1 Programmed Data Processor-1 Manual 1961 15B pp40
	PDP 1 IO System Manaul written by GBell F-25
	PDP 4 Manual 1962 pp77
	PDP 5 Manual 1964 F 55 pp80
	PDP Memos 1963-1968 c
	PDP-8_Users_Handbook_F-85_1966-05 pp287
	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	_01
	_02
	_03

	PDP-X Description 6705 c
	DEC PDP11, Joint Computer Conference, 1970
	PDP11 Handbook 1969 ng c4
	RT-11 Intro 7708 Rpp261
	RT-11 System User's Guide 7708 c

