
POTEIR

C. GORDON BELL J. CRAIG MUDGE JOHN E McNAMARA

s an excellent book It admirably fulfills

rpose that the authors have set forth in

3face The connbination of authors with

3 insight and a broad experience and a

;t that covers a wide range of design

ts as illustrated by a highly successful

of machines is very rare This combina-

as resulted in a major contribution to the

jre of computer hardware
"

Gerrit A Blaauw
Professor. Digital Systems
Department of Digital Technique
Technical University of Twente

Enschede, Netherlands

IS a very unusual book I believe that the

it given as to the reasoning and evolu-

•y process involved in the development of

I product lines and the forces and imagi-

1 that contribute to the growth of an enter-

wiil be much appreciated by young
eers-both while they are in school and

early years of their careers To my knowl-

this kind of insight has never been

;nted before
"

Arthur A Collins

President. Arthur A Collins. Inc.

Founder. Collins Radio

nputer Engineering is a valuable historical

rd and a fascinating reference work for

neers and computer scientists to gam
ht into the issues and the traps of de-

Ding and marketing complex products in

ist changing field Congratulations to

jon Bell and his colleagues for their

evement
"

Jack 8 Dennis
Professor. Computer Science

and Engineering

Laboratory for Computer Science

Massachusetts Institute of Technology

ik'p

G. BELL
PAGE FARM RD.

LIIMCOLN, MASS. 01773

C.Qordon
611 Washington St. #2505

San Francisco. CA 941 11

FUTEIR

A DEC VIEW OF HARDWARE SYSTEMS DESIGN

C. GORDON BELL • J. CRAIG MUDGE • JOHN E. McNAMARA

DIGITAL PRESS

Copyright
® 1978 by Digital Equipment Corporation.

All rights reserved. Reproduction of this book, in

part or in whole, is strictly prohibited. For copy in-

formation contact Digital Press, Educational Ser-

vices, Digital Equipment Corporation, Bedford,

Massachusetts 01730.

Printed in U.S.A.

1st Printing, September 1978

Documentation Number JB066-A

Library of Congress Catalog Card Number 77-91677

ISBN 0-932376-00-2

The manuscript was created on a DEC Word Pro-

cessing System and, via a translation program, was

typeset on Digital's DECset-8000 Typesetting Sys-

tem.

Cover and display pages designed by Elliott N.

Hendrickson

To the people at Digital, especially

the engineers, and Ben

The progress which has brought the number of computers in use in the world

from dozens to millions within a generation has not been the result of a single

discovery or the work of a single inventor or company. Rather, men and women
from fields as diverse as semiconductor physics and mechanical engineering have

studied long hours and worked with various measures of inspiration and per-

spiration to make the discoveries and develop the technologies needed to advance

the state of the art in computer technology.
There are several aspects of the progress in computer technology which have

made it an exceptionally exciting and rewarding field for the people involved.

First of all, a great many of the major steps forward, such as the invention of the

transistor, have taken place within our lifetimes. Secondly, there has been an

opportunity to associate with many fine colleagues whose brilliance, courage of

conviction, and capacity for endless work have been a great inspiration. Finally,

there has been the great promise of computers - their ability to free men's minds

of repetitive and boring tasks, their ability to reduce the cost of producing goods,
their ability to improve the lives of so many people in so many ways - and the fun

and excitement of working with them.

In the chapters of this book, various authors relate some of their experiences in

the past twenty years, draw some conclusions about how computer technology

got to where it is, and project into the future from some of the trends they have

seen. While it is impossible in a single book to capture all of the excitement and

challenge of these years, they have done an admirable job for which they are to be

commended. Hopefully, this glimpse into the past and present will encourage the

students of the future to enter the computer engineering field and bring with them

ideas, ambition, and courage.

Kenneth H. Olsen

President

Digital Equipment Corporation

This book has been written for practicing computer designers, whether their

domain is microcomputers, minicomputers, or large computers, and for those

who by their contact with computer are students of design
- users, programmers,

designers of peripherals and memories, and students of computer engineering and

computer science.

Computer engineering is a collage of different activities and disciplines, only
one of which - the technical aspects (multiplier design, the behavior of synchro-
nizer circuits, and series/parallel tradeoffs, for example) - is covered by conven-

tional texts. This book uses the case study method to show how all the different

factors (technology push, the marketplace, manufacturing, etc.) form the real-

world constraints and opportunities which influence computer engineering.

Computer engineering can be thought of as a multivariable mathematical prob-
lem in which the engineer searches for an optimum within certain constraints.

Unfortunately, an optimum in one variable is rarely an optimum in another, and

thus a major portion of computer engineering is the search for reasonable com-

promises. A common method used to aid the search is to assign weights to various

system variables and to seek a weighted optimum. The weights vary with the

intended application. In one situation, speed might receive the maximum weight;

in another, instruction set compatibility might be the most important; and in yet

another, reliability might be paramount. The number of dimensions to the prob-
lem is large, and the meaningful measures for them are few. For example, the cost

variable is multidimensional and includes manufacturing, development, and field

support costs. In addition, there are numerous interdependencies among the vari-

ables such as the relationships between instruction set, machine organization,

logic design, and circuit design. These relationships and the contraints that con-

trol the weighting of the variables change with time. For example, the cost func-

tion changes when different subsystems use different technologies, and this

influences the relationships. In addition, constraints such as maintainability and

vii

viii PREFACE

compatibility vary in importance from year to year. Finally, while some of the

relationships, such as the time-space tradeoff in adder design, are well under-

stood, others, particularly those involving marketing factors, are not.

Because no theory exists to undergird this multidimensional design problem,
we believe that there is no substitute for an extensive, critical understanding of the

existing examples of designed and marketed systems. Therefore, this book uses

the case study approach. For examples, we have used the thirty DEC computers
that have been built over the twenty years that the company has existed, plus

some PDF- 11 -based machines built at Carnegie-Mellon University. Carnegie-

Mellon's machines explore interconnect structures that we feel will form the basis

of future generations.

The association between DEC and Carnegie-Mellon has produced not only
some interesting machines to examine but also some of the written material for

this book. People in universities can and do write, whereas engineers directly

involved in design work are less inclined or encouraged to publish their work.

A substantial portion of the material contributed by DEC authors is historical.

We strongly believe that historical information is worth the expense in terms of

writing, reading, and learning; machine design principles and techniques change

slowly. In fact, the machines currently being designed are based on principles that

have been understood and used for years, and we are often asked, "Are we run-

ning out of design issues?" Yes, we feel technology provides the forcing function

for new designs, not new principles.

Learning about design is always important. Although new designs often appear
to be a reapplication of old principles, in the process of being reapplied they

change and go beyond their first application. Design is learned by examining and

emulating previous designs plus incorporating general principles, new use, and

new technology. Indeed, the microcomputer developments draw (or should draw)

extensively from the minicomputers. As we build new structures, we should be

able to avoid the pitfalls of the immediate past design.

We have intentionally restricted our scope to DEC computers. The reason is

obvious: we can speak with first-hand knowledge. If we had used other com-

panies' designs, our data would have been less accurate, and some factors, e.g.,

design styles, would have been omitted. The main reason, however, is a key part

of the philosophy of the book. To understand machine design evolution, the

effects of changes in the underlying technologies, and time-invariant principles,

we must analyze a family beginning at birth and follow it over several generations

of technology. Four series of DEC computers allow such an analysis. DEC com-

puters also provide an opportunity to study another dimension of computer engi-

neering - the coexistence of complementary (and sometimes competing) products.

Particular design efforts must compete for resources (design talent, manufac-

turing-plant capacity, and software, marketing, and sales support). DEC com-

puters have, in general, been designed to be complementary and to avoid

overlapping or redundant products. Thus, another set of constraints can be seen

at work in the design space.

PREFACE

The book concerns itself with general purpose computers which are intended to

be widely available commercially. The engineering of computers for highly spe-

cialized applications, for which only a few copies are built, is not treated. More-

over, because not all major principles of computer architecture and computer

engineering are embodied in the DEC computers, the reader may want to examine

other designs, as well. For example, the reader cannot learn about descriptor

architectures, array processors, list-processing machines, or general purpose
emulators from this book.

At one time consideration was given to postponing the publication of a book

until 1982, at which time DEC will celebrate its twenty-fifth anniversary. This

idea was rejected because another five years would further impede the collection

of data about the early machines. More importantly, the twenty-year period of

DEC modules and computers (1957-1977) has extended from the early second

generation to the fourth generation. Today, the processor of several DEC com-

puters occupies a single large-scale integrated circuit consisting of several thou-

sand transistors, whereas in 1957 only one transistor could be fabricated on a

single piece of germanium. In another five years, the design, manufacture, and

distribution of computers will be radically different - so much so as to merit a new
book.

We expect an increasingly larger number of people to be involved in computer

engineering and hence students of this material, because we expect computers as

we know them today will disappear within ten years! With the processor-on-a-

chip, the number of computer systems designers (users) has risen by several orders

of magnitude.
In the area of large computer systems, the buyers and users are also clearly the

computer designers: they select components (from the set of available com-

ponents) and interconnect them to form specific structures. It is essential for us all

to have a model of the price, performance, and reliability parameters and how

they vary with time. Previous generations have focused first on the invention of

the computer, next on the understanding of price/performance tradeoffs, and

most recently on manufacturing -
especially the fabrication of the semiconductors

that now drive computer evolution. In the next five years, design will focus on

applications: conventional applications will be more efficient, computers will be

extended to reach new applications, and life-cycle costs will receive more atten-

tion. For the computer engineer, the evolution of DEC machines provides an

excellent perspective on the influence of applications on design. For those of us

who must deal with design goals, constraints, and objective functions to improve

reliability, availability and maintainabiHty, it is imperative that we first clearly

understand previous design problems.
For the programmers who use computers and are a part of the computer design

process, understanding this material is mandatory in order to know the rules of

the game. We say comparatively little about software, other than how it has

influenced hardware design. The increasing role of software functions in the hard-

ware domain is a clear process that has allowed (and forced) computer archi-

tecture to change. The engineering of DEC software will be treated in subsequent

PREFACE

volumes, perhaps one on language translators and one on operating systems. We
hope also that future volumes will be devoted to mass storage devices, terminals,

and applications.

Two notations, ISP and PMS, were introduced in the book. Computer Struc-

tures [Bell and Newell, 1971]. We continue to use them in this book, especially

since they have left the realm of notations and have become working design tools.

ISP was introduced to describe the instruction set processor of a computer - the

machine seen by the program (and programmer). ISP is now used for machine

description, simulation, verification of diagnostics, microprogramming, auto-

matic assembler generation, and the comparison of computer architectures. The
evolution and improvement of ISP is principally due to needs of the Army/Navy
Computer Family Architecture (CFA project and the work of Mario Barbacci.

The latest version, ISPS, is being used within DEC for implementing processors,

simulators, etc. ISPS language descriptions of current DEC machines (PDP-8,

PDP-10, PDP-1 1, VAX-1 1) and several terminals have been made. We hope that

these will be made widely available and so further stimulate the use of machine-

description languages. The widespread application of good languages would help

alleviate two current design problems: first, that of hand-crafted design tooling

keeping up with the rate of introduction of new technologies and second, the

problem of managing the ever-increasing complexity of computer structures. The

PDP-8 description presented in Appendix 1 has been verified by machine diagnos-

tics, in contrast to conventional descriptions.

PMS (processor-memory-switch) notation (given in Appendix 2) has not yet

been widely used in formal methods to aid design. It has, however, been used

extensively to describe computer structures. A prototype system which recognizes

PMS and performs several performance analysis functions was constructed by
Knodsen [1972]. Currently, ISPS is being extended to include the interconnection

of computational blocks so that PMS and ISPS form a single system describing

structure and behavior. In this book, we use PMS to describe functional blocks.

However, all PMS components are enclosed to form a block diagram, unlike the

original stick notation.

The book begins with three introductory chapters. The first presents the major
themes to be illustrated by the book. We show that computer evolution has been

based primarily on semiconductor and magnetic recording technologies. These

technologies determine costs, and therefore price, performance, reliability, size,

weight, power, and other dimensions which constitute the physical characteristics

of the machines. The major theme of the book is that technology has enabled (or

forced) three types of computers to be built:

1. Machines with constant performance and decreasing cost.

2. Machines with contant cost and increasing performance.
3. Radically new (large or small) structures, often research machines, which

create new computer classes outside the evolution possibilities.

PREFACE xi

Chapter 2 traces the evolution of memory and logic technology. Engineering is

firmly rooted in economics and inherently practical. Packaging (including com-

ponent interconnections) is covered in Chapter 3 for a very pragmatic reason: of

the total product cost of a small computer system, 50 percent is due to packaging
and power, and these costs are rising. To further emphasize the practical aspects

of engineering in Chapter 3, a section on high-volume manufacturing is included;

the result of a designer's creativity must not only work but be buildable by pro-

duction-line methods.

Following the introductory chapters are five parts:

I. In the Beginning

II. Beginning of the Minicomputer

III. The PDP-11 Family

IV. The Evolution of Computer Building Blocks

V. The PDP-10 Family

The introductions to each part describe what to look for in the evolution of

each machine: its interaction with designers, technology, and use (marketplace).

More importantly, we have tried to point out the classic (timeless
- so far) design

principles. Data that has become available since the original papers were pub-
lished is also included.

Part I describes modules, the product on which DEC was initially founded.

Chapter 5 shows how modules evolved and assimilated semiconductor technology
in order to build computers.
The PDP-1 and other 18-bit machines and the PDP-8 began the minicomputer

phenomenon as described in Part II. Although six computers form the 18-bit

family, there is only one chapter devoted to them, primarily because there has

been a dearth of written papers; this chapter was written for Computer Engineer-

ing. Chapter 7 shows the historical development of the 12-bit machines, and

Chapter 8 explores the structure of the PDP-8 in detail.

Part III, nearly two-thirds of the book, is based on the PDP-1 1. The PDP-11

has been implemented with multiple technologies and multiple design goals at a

given time, i.e., a set of machines to span a performance range. Because of cost

and performance goals, a number of problems have had to be solved to permit

subsetting (for the LSI-1 1) and supersetting (for the larger memory PDP-1 1/70
and for VAX-11).

Part IV is devoted to module set evolution. Chapter 18 describes the Register

Transfer Modules (RTMs, also called PDP-1 6), a set of modules for building

xii PREFACE

digital systems. Although these modules were unsuccessful in the marketplace,

they were the forerunner of the bit-slice approach now widely used for implement-

ing mid-range processors and special-purpose digital systems. Chapter 20 de-

scribes a set of modules based on the PDP-1 1 computer, called Computer Mod-

ules, which grew out of the original RTM research and were used to construct

Cm*, a multi-microprocessor system.

Part V covers the PDP-10. Prior to the publication of the paper reproduced
here as Chapter 21, very little had been published at the engineering level. The

published literature had emphasized operating systems, languages, networks, and

applications.

Computer Engineering is modeled after Computer Structures [Bell and Newell,

1971] and is intended to complement the subject matter therein. Computer Struc-

tures treats the design of instruction set architectures; Computer Engineering treats

the design of machines which implement instruction sets. Computer Structures

covers a broad range of ISP structures and PMS structures, from early stack

machines and bit-serial machines, through list processors and higher level lan-

guage machines, to supercomputers. By giving the seminal Burks, Goldstine, and

von Neumann paper and the Whirlwind paper, it reaches far back into history.

Computer Engineering on the other hand, takes a much narrower set of ISPs (four)

and examines their implementations in detail. Instruction set design is mentioned

only as it interacts with implementation. We focus on four computer families

from both the designer and the historical viewpoint. In particular, we emphasize
the lower level technological, economic, organizational, and environmental forces

affecting the evolution of DEC computer families.

Although this book is principally for designers and students, it will also be of

interest (as an historical record) to DEC employees who have been involved in the

design, manufacture, distribution, and servicing of the computers.
Our recommendations for the use of this text in university curricula are based

on teaching experience, requests from academic colleagues for material to teach

design, and our participation in curriculum development. The book directly ad-

dresses the philosophy of the IEEE Computer Society Task Force on Computer
Architecture [Rossman et ai, 1975]: "To appreciate how the architectures of

computer systems develop, one must analyze complete systems." As such. Com-

puter Engineering serves to complement Buchholz [1962], Bell and Newell [1971],

and Blaauw and Brooks [in preparation] in a course on computer architecture, for

example, IEEE course CO-3.*

For undergraduate courses on computer organization, such as IEEE CO-1*
and the ACM courses 13 and A2t, we believe that the book could be used as a

supplementary text. In a course on computer engineering, using the style given in

*"A Curriculum in Computer Science and Engineering-Committee Report," Model Curricula Sub-

committee, IEEE Computer Society, EHOI 19-8, January 1977.

f'Curriculum 68," Commun. ACM, //, 3, pp. 151-197, March 1968.

PREFACE

the syllabus of CO-2* (I/O and Memory Systems) as a model, this could be a

primary text, provided that material on other manufacturers' computers is made
available to show different viewpoints.

ACKNOWLEDGEMENTS

We gratefully acknowledge our contributing authors, whose insights have

greatly enhanced the scope of this book, and our colleagues at DEC, who assem-

bled information, and provided subject matter expertise and advice.

We would like to thank R. Eckhouse, R. Glorioso, S. Fuller, J. Lipovski, and P.

Jessel whose critiques of the preliminary drafts of the introductory chapters and

book outline proved very helpful. We would also like to thank J. Cudmore, R.

Doane, R. Elia-Shaoul, S. Fuller, L. Gale, L. Hughes, R. Peyton, and S. Teicher,

who provided data for Chapter 2 and valuable critiques of earlier drafts. We also

acknowledge the reviewers of the second draft of the manuscript, to whose criti-

cisms we have especially tried to respond. We received instructive comments and

evaluations from D. Aspinall, G. Blaauw, R. Clayton, D. Cox, J. Dennis, P.

Enslow, D. Freeman, J. Grason, J. Gray, W. Heller, G. Korn, J. Lipcon, J. Mar-

shall, E. McCluskey, C. Minter, M. Moshell, E. Organick, W. Schmitt, B.

Schunck, I. Sutherland, J. Wakerly, and J. Wipfli. We would like to extend special

thanks to H. Stone for his extensive and particularly useful review comments.

We are also indebted to many for their support in producing Computer Engi-

neering. We are particularly indebted to Heidi Baldus of Digital Press who coordi-

nated the production o{ Computer Engineering and whose encouragement kept us

going through a number of difficult times. For their expertise and patience, we
thank the Technical Documentation group, especially Denise Peters. We also

thank Mary Jane Forbes and Louise Principe for their constant support in the

course of this book's development and production. The manuscript creation and

preparation on the DEC Word Processing System, followed by transmission to

the DECset-8000 Typesetting System, permitted numerous drafts and rapid crea-

tion of the final typeset material.

C.G.B.

J.C.M.

J.E.M.

August 1978

AOCNOWLID

C.G. Bell, J.C. Mudge, and J.E. McNamara: Seven Views of Computer Systems.

C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Univer-

sity; J.C. Mudge and J.E. McNamara, Digital Equipment Corporation.

C.G. Bell, J.C. Mudge, and J.E. McNamara: Technology Progress in Logic and

Memories. C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon

University; J.C. Mudge and J.E. McNamara, Digital Equipment Corpo-
ration.

C.G. Bell, J.C. Mudge, and J.E. McNamara: Packaging and Manufacturing.
C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Univer-

sity; J.C. Mudge and J.E. McNamara, Digital Equipment Corporation.

K.H. Olsen: Transistor Circuitry in the Lincoln TX-2. Copyright
® 1957 by

AFIPS. Reprinted, with permission, from the Proceedings of the Western

Computer Conference, 1957, pp. 167-171. This work was supported jointly

by the U.S. Army, Navy, and Air Force under contract with M.LT. K.H.

Olsen, Lincoln Laboratory M.LT. (currently with Digital Equipment Cor-

poration).

R.L. Best, R.C. Doane, and J.E. McNamara: Digital Modules, the Basis for

Computers. R.L. Best, R.C. Doane, and J.E. McNamara, Digital Equip-
ment Corporation.

C.G. Bell, G. Butler, R. Gray, J.E. McNamara, D. Vonada, and R. Wilson: The

PDP-1 and Other 18-Bit Computers. C.G. Bell, Digital Equipment Corpo-
ration and Carnegie- Mellon University; G. Butler et ai. Digital Equipment

Corporation.

C.G. Bell and J.E. McNamara: The PDP-8 and Other 12-Bit Computers. C.G.

Bell, Digital Equipment Corporation and Carnegie-Mellon University; J.E.

McNamara, Digital Equipment Corporation.

XV

xvi ACKNOWLEDGEMENTS

C.G. Bell, A. Newell and D.P. Siewiorek: Structural Levels of the PDP-8. Revised

and updated version of Chapter 5, "The DEC PDP-8," Computer Struc-

tures: Reading and Examples, C.G. Bell and A. Newell, McGraw-Hill Book

Co., New York, 1971. C.G. Bell, Digital Equipment Corporation and Car-

negie-Mellon University; A. Newell and D.P. Siewiorek, Carnegie-Mellon

University.

C.G. Bell et ai: A New Architecture for Minicomputers - The DEC PDP-11.

Copyright
® 1970 by AFIPS. Reprinted, with permission, from the Pro-

ceedings of the Spring Joint Computer Conference, 1970, pp. 657-675. C.G.

Bell, Digital Equipment Corporation and Carnegie-Mellon University.

Those who have contributed subject matter expertise include R. Cady, H.

McFarland, B.A. Delagi, J.F. O'Loughlin, R. Noonan, and W.A. Wulf.

W.D. Strecker: Cache Memories for PDP-11 Family Computers. Copyright®
1976 by the Institute of Electrical and Electronics Engineers, Inc. Reprinted,

with permission, from the Proceedings of the 3rd Annual Symposium on

Computer Architecture, 1976, pp. 155-158. W.D. Strecker, Digital Equip-

ment Corporation.

J.V. Levy: Buses, The Skeleton of Computer Structures. J.V. Levy, Digital Equip-

ment Corporation (currently with Tandem Computer Corp.).

M.J. Sebem: A Minicomputer-Compatible Microcomputer System: The DEC
LSI-1 1. Copyright

® 1976 by the Institute of Electrical and Electronics Engi-

neers, Inc. Reprinted, with permission, from the Proceedings of the IEEE,

June 1976, Vol. 64, No. 6. Manuscript received by IEEE on October 10,

1975; revised December 12, 1975. M.J. Sebem, Digital Equipment Corpo-
ation (currently with Sebern Engineering, Inc.).

J.C. Mudge: Design Decisions for the PDP-11/60 Mid-Range Minicomputer.

Copyright
® 1977 by the Computer Design Publishing Corp. Reprinted,

with permission, from Computer Design, August 1977, pp. 87-95. Appears
under title "Design Decisions Achieve Price/Performance Balance in Mid-

Range Minicomputers" in Computer Design issue. J.C. Mudge, Digital

Equipment Corporation.

E.A. Snow and D.P. Siewiorek: Impact of Implementation Design Tradeoffs on

Performance: The PDP-11, A Case Study. Copyright
© 1978 by Edward A.

Snow and Daniel P. Siewiorek. This research was supported in part by the

National Science Foundation under grant GJ-32758X and by an IBM fel-

lowship. Engineering documentation was supplied by the Digital Equip-

ment Corporation. E.A. Snow (currently with Intel Corp.) and D.P.

Siewiorek, Carnegie-Mellon University.

R.F. Brender: Turning Cousins into Sisters: An Example of Software Smoothing
of Hardware Differences. R.F. Brender, Digital Equipment Corporation.

ACKNOWLEDGEMENTS xvii

C.G. Bell and J.C. Mudge: The Evolution of the PDP-1 1. Chapter includes mate-

rial from "What Have We Learned From the PDP-11?" by C.G. Bell, in

Perspectives on Computer Science: From the 10th University Symposium at

the Computer Science Department, Carnegie-Mellon University, A. Jones

(Ed.), Academic Press, Inc., 1978. C.G. Bell, Digital Equipment Corpo-
ration and Carnegie-Mellon University; J.C. Mudge, Digital Equipment

Corporation.

W.D. Strecker: VAX-1 1/780: A Virtual Address Extension to the DEC PDP-11

Family. Copyright
® 1978 by American Federation of Information Process-

ing Societies, Inc. Reprinted, with permission, from the Proceedings of the

National Computer Conference, June 1978, pp. 967-980. W.D. Strecker,

Digital Equipment Corporation.

C.G. Bell, J. Eggert, J. Grason, and P. Williams: The Description and Use of

Register Transfer Modules (RTMs). Copyright
® 1972 by the Institute of

Electrical and Electronics Engineers, Inc. Reprinted, with permission, from

the IEEE Transactions on Computers, May 1972, Vol. C-21, No. 5, pp.

495-500. Manuscript received by IEEE February 19, 1971; revised May 11,

1971. C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Uni-

versity; J. Eggert, Digital Equipment Corporation (currently with Eggert

Engineering); J. Grason, Carnegie-Mellon University (currently with Bell

Laboratories); P. Williams, Digital Equipment Corporation (currently with

Data Terminal Systems, Inc.).

T.M. McWilliams, S.H. Fuller, and W.H. Sherwood: Using LSI Processor Bit-

Slices to Build a PDP-1 1 - A Case Study in Microcomputer Design. Copy-

right
® 1977 by AFIPS. Reprinted, with permission, from the Proceedings of

the National Computer Conference, 1977, pp. 243-253. This work was par-

tially supported by the Advanced Research Projects Agency (ARPA) of the

Department of Defense under contract F44620-73-C-0074, monitored by
the Air Force Office of Scientific Research. T.M. McWilliams, Carnegie-

Mellon University (currently with Stanford University and Lawrence Liver-

more Laboratory, University of California); S.H. Fuller, Carnegie-Mellon

University (currently with Digital Equipment Corporation); W.H. Sher-

wood, Carnegie-Mellon University (currently with Digital Equipment Cor-

poration).

S.H. Fuller, J.K. Ousterhout, L. Raskin, P. Rubinfeld, P.S. Sindhu, and R.J.

Swan: Multi- Microprocessors: An Overview and Working Example. Copy-

right
® 1978 by Institute of Electrical and Electronics Engineers, Inc. Re-

printed, with permission, from the Proceedings ofthe IEEE, February 1978,

Vol. 61, No. 2, pp. 216-228. Manuscript received by IEEE November 11,

1977. This work was supported in part by the Advanced Research Projects

Agency of the Department of Defense under Contract F44620-73-C-0074,

which is monitored by the Air Force Office of Scientific Research, and in

xviii ACKNOWLEDGEMENTS

part by the National Science Foundation under Grant GJ 32758X. The LSI-

11s and related equipment were supplied by Digital Equipment Corpo-
ration. S.H. Fuller, Carnegie-Mellon University (currently with Digital

Equipment Corporation); J.K. Ousterhout et ai, Carnegie-Mellon Univer-

sity.

C.G. Bell, A. Kotok, T.N. Hastings, and R. Hill: The Evolution of the DECsys-
tem-10. Copyright

® 1978 by the Association for Computing Machinery.

Reprinted, with permission, from the Communications ofthe ACM, January

1978, Vol. 21, No. 1, pp. 44-63. C.G. Bell, Digital Equipment Corporation
and Carnegie-Mellon University; A. Kotok, T.N. Hastings, and R. Hill,

Digital Equipment Corporation.

M. Barbacci: Appendix 1
- An ISPS Primer for the Instruction Set Processor. M.

Barbacci, Carnegie- Mellon University.

J.C. Mudge: Appendix 2 - The PMS Notation. J.C. Mudge, Digital Equipment

Corporation.

C.G. Bell, J.C. Mudge, and J.E. McNamara: Appendix 3 - Performance. C.G.

Bell, Digital Equipment Corporation and Carnegie-Mellon University; J.C.

Mudge and J.E. McNamara, Digital Equipment Corporation.

TRADEMARKS

The following trademarks appear in Computer Engineering: A DEC View ofHard-

ware Systems Design.

Company

Foreword v

Preface vii

Acknowledgements xv

I
Seven Views of Computer Systems 1

C. Gordon Bell, J. Craig Mudge, and

John E. McNamara

jR| Technology Progress in

^
Logic and Memories 27

C. Gordon Bell, J. Craig Mudge, and

John E. McNamara

3 Packaging and Manufacturing ..••• 63

C. Gordon Bell, J. Craig Mudge, and

John E. McNamara

PART I

IN THE BEGINNING 93

4
Transistor Circuitry
in the Lincoln TX-2 97

Kenneth H, Olsen

S Digital Modules,
The Basis for Computers 103

Richard L. Best, Russell C. Doane, and

John E. McNamara

xix

XX CONTENTS

7

PART II

BEGINNING OF THE MINICOMPUTER 119

The PDP-1 and Other
18-Bit Computers 123

C. Gordon Bell, Gerald Butler, Robert Gray,
John E. McNamara, Donald Vonada, and
Ronald Wilson

The PDP-8 and Other
12-Bit Computers 175

C. Gordon Bell and John E. McNamara

Structural Levels of the PDP-8 209
C. Gordon Bell, Allen Newell, and
Daniel P. Siewiorek

PART III

THEPDP-II FAMILY 229

A New Architecture

^ for Minicomputers
—The DEC PDP-1 1 241

C. Gordon Bell, Roger Cady,
Harold McFarland, Bruce A. Delagi,
James F. O'Loughlin, Ronald Noonan, and
William A. Wulf

\^ Cache Memories for PDP-11^
Family Computers 263

William D. Strecker

n Buses, The Skeleton of

Computer Structures 269

John V. Levy

A Minicomputer-Compatible
Microcomputer System:
The DEC LSI-1 1 301

Mark J. Sebern

©

CONTENTS xxi

Design Decisions for the

PDP-1 1/60 Mid-Range Minicomputer 315

J. Craig Mudge

Impact of Implementation

Design Tradeoffs on Performance:

The PDP-1 1, A Case Study 327

Edward A. Snow and Daniel P. Siewiorek

Turning Cousins into Sisters:

An Example of Software Smoothing
of Hardware Differences 365

Ronald F. Brender

The Evolution of the PDP-1 1 379

C. Gordon Bell and J. Craig Mudge

VAX- 11/780:
A Virtual Address Extension

to the DEC PDP-11 Family 409

William D. Strecker

PART IV
EVOLUTION OF
COMPUTER BUILDING BLOCKS 429

The Description and Use of

Register Transfer Modules (RTMs) 441

C. Gordon Bell, John Eggert, John Grason,
and Peter Williams

Using LSI Processor Bit-Slices

to Build a PDP-1 1
— A Case Study

in Microcomputer Design 449

Thomas M. McWilliams, Samuel H. Fuller,

and William H. Sherwood

Multi-Microprocessors:
An Overview and Working Example 463

Samuel H. Fuller, John K. Ousterhout, Levy Raskin,
Paul I. Rubinfeld, Pradeep S. Sindhu,
and Richard J. Swan

xxii CONTENTS

PART V
THE PDP-10 FAMILY 485

^1
The Evolution of the DECsystem-10 489

C. Gordon Bell, Alan Kotok,
Thomas N. Hastings, and Richard Hill

Appendix 1

An ISPS Primer for the

Instruction Set Processor Notation 519

Mario Barbacci

Appendix 2

The PMS Notation 537

J. Craig Mudge

Appendix 3

Performance 541

C. Gordon Bell, J. Craig Mudge, and
John E. McNamara

Bibliography 553

Index 563

1

Seven Views of Computer Systems
C. GORDON BELL, J. CRAIG MUDGE,

and JOHN E. McNAMARA

A computer is determined by many factors,

including architecture, structural properties, the

technological environment, and the human as-

pects of the environment in which it was de-

signed and built. In this book various authors

reflect on these factors for a wide range ofDEC
computers - their goals, their architectures,

their various implementations and realizations,

and occasionally on the people who designed
them.

Computer engineering is the complete set of

activities, including the use of taxonomies, the-

ories, models, and heuristics, associated with

the design and construction of computers. It is

like other engineering, and the definition that

Richard Hamming (then at Bell Laboratories)

gave is especially appropriate: engineers first

turn to science for answers and help, then to

mathematics for models and intuition, and fi-

nally to the seat of their pants.
In the few decades since computers were first

conceived and built, computer engineering has

come from a set of design activities that were

mostly seat-of-the-pants based to a point where

some parts are quite well understood and based

on good models and rules of thumb, such as

technology models, and other parts are com-

pletely understood and employ useful theories

such as circuit minimization.

In this chapter, seven views are presented that

the authors have found useful in thinking about

computers and the process that molds their

form and function. They are intentionally inde-

pendent; each is a different way of looking at a

computer. A computer scientist or mathemati-

cian sees a computer as levels-of-interpreters.

An engineer sees the computer on a structural

basis, with particular emphasis on the logic de-

sign of the structure. The view most often taken

by a buyer is a marketplace view. While these

people each favor a particular view of com-

puters, each typically understands certain as-

pects of the other views. The goals of Chapter 1

are to increase this understanding of other

views and to increase the number of representa-

tions used to describe the object of study and,

hence, improve on its exposition. Thus, "The
Seven Views of Computer Systems" forms a

useful background for the subsequent chapters
on past, present, and future computers.

COMPUTER ENGINEERING

VIEW 1 : STRUCTURAL LEVELS OF A
COMPUTER SYSTEM

In Computer Stuctures [Bell and Newell,

1971], a set of conceptual levels for describing,

understanding, analyzing, designing, and using

computer systems was postulated. The model

has survived major changes in technology, such

as the fabrication of a complete computer on a

single silicon chip, and changes in architecture,

such as the addition of vector and array data-

types.

As shown in Figure 1, there are at least five

levels of system description that can be used to

PMS LEVEL

ELECTRICAL
CIRCUIT
LEVEL

TRANSISTOR

DEVICE
LEVEL IdEVICE ^ METAL 1

P AREA N AREA P AREA N AREA

Figure 1 . Hierarchy of computer levels, adapted from

Bell and Newell 119711.

describe a computer. Each level is characterized

by a distinct language for representing the com-

ponents associated with that level, their modes
of combination, and their laws of behavior.

Within each level there exists a whole hierarchy

of systems and subsystems, but as long as these

are all described in the same language, they do

not constitute separate levels. With this general

view, one can work up through the levels of

computer systems, starting at the bottom.

The lowest level in Figure 1 is the device level.

Here the components are p-type and n-type

semiconductor materials, dielectric materials,

and metal formed in various ways. The behav-

ior of the components is described in the lan-

guages of semiconductor physics and materials

science.

The next level is the circuit level. Here the

components are resistors, inductors, capacitors,

voltage sources, and nonlinear devices. The be-

havior of the system is measured in terms of

voltage, current, and magnetic flux. These are

continuously varying quantities associated with

various components; hence, there is continuous

behavior through time, and equations (includ-

ing differential equations) can be written to de-

scribe the behavior of the variables. The

components have a discrete number of termi-

nals whereby they can be connected to other

components.

Above the circuit level is the switching circuit

or logic level. While the circuit level in digital

technology is very similar to the rest of elec-

trical engineering, the logic level is the point at

which digital technology diverges from elec-

trical engineering. The behavior of a system is

now described by discrete variables which take

on only two values, called and 1 (or + and — ,

true and false, high and low). The components

perform logic functions called AND, OR,
NAND, NOR, and NOT. Systems are con-

structed in the same way as at the circuit level,

by connecting the terminals of components,
which thereby identify their behavioral values.

SEVEN VIEWS OF COMPUTER SYSTEMS

After a system has been so constructed, the laws

of Boolean algebra can be used to compute the

behavior of the system from the behavior and

properties of its components.
In addition to combinational logic circuits,

whose outputs are directly related to the inputs

at any instant of time, there are sequential logic

circuits which have the ability to hold values

over time and thus store information. The prob-
lem that the combinational level analysis solves

is the production of a set of outputs at time / as

a function of a number of inputs at the same

time /. The representation of a sequential

switching circuit is basically the same as that of

a combinational switching circuit, although one

needs to add memory components. The equa-

tions that specify sequential logic circuit struc-

ture must be difference equations involving

time, rather than the simple Boolean algebra

equations which describe purely combinational

logic circuits.

The level above the switching circuit level is

called the register transfer (RT) level. The com-

ponents of the register transfer level are regis-

ters and the functional transfers between those

registers. The functional transfers occur as the

system undergoes discrete operations, whereby
the values of various registers are combined ac-

cording to some rule and are then stored (trans-

ferred) into another register. The rule, or law, of

combination may be almost anything, from the

simple unmodified transfer (A <- B) to logical

combination (A ^ B A (AND) C) or arithmetic

combination (A ^ B -I- (PLUS) C). Thus, a

specification of the behavior, equivalent to the

Boolean equations of sequential circuits or to

the differential equations of the circuit level, is a

set of expressions (often called productions)
that give the conditions under which such trans-

fers will be made.

The fifth and last level in Figure 1 is called

the processor-memory-switch (PMS) level. This

level, which gives only the most aggregate be-

havior of a computer system, consists of central

processors, core memories, tapes, disks, in-

put/output processors, communications lines,

printers, tape controllers, buses, teleprinters,

scopes, etc. The computer system is viewed as

processing a medium, information, which can

be measured in bits (or digits, characters,

words, etc.). Thus, the components have capaci-

ties and flow rates as their operating character-

istics.

The program level from the original set of

levels shown in Bell and Newell has been

dropped because it is a functional rather than a

structural level.

Many notations are used at each of the five

structural levels. Two of the less common ones

are the processor-memory-switch (PMS) and

instruction set processor (ISP) notations. A
complete description of these notations is given
in Bell and Newell [1971: Chapter 2]. Those as-

pects of PMS that are used in this book are de-

scribed in Appendix 2. The ISP notation has

evolved to the ISPS language, which is de-

scribed in Appendix 1,

VIEW 2: LEVELS-OF-INTERPRETERS

In contrast to the Structural View, this view is

functional. According to this view, a computer

system consists of layers of interpreters, much
like the layers of an onion.

An interpreter is a processing system that is

driven by instructions and operates upon state

information. The basic interpretive loop, shown
in Figure 2, is most famiHar at the machine lan-

guage level but also exists at several other levels.

To formalize the notion of Levels-of-Inter-

pretation, one can represent a processing sys-

tem by the diagram in Figure 3.

The state information operated on by an in-

terpreter is either internal or external. This can

best be understood by considering the "onion

skin" levels of the five processing systems that

form a typical airline reservation system. These

levels are listed in Table 1.

The Level system is the logic that sequences
the Level 1 micromachine. The Level 1 system is

COMPUTER ENGINEERING

a microprogrammed processor implemented in

real hardware. It is the machine seen by the

logic designer. The Level 2 system is the central

processing unit (CPU). It is the machine seen by
the machine language programmer. The Level 3

system shown here is a FORTRAN language

processing system. The Level 4 system is an air-

line reservation system. Four of these five sys-

tems form the hierarchy shown in Figure 4,

where each system is an interpreter that se-

quences through multiple steps in order to per-

form a single operation for the next level

interpreter. The highest level system, the airline

reservation system, is an interpreter operating
on messages received from outside of the sys-

tem. It tests and modifies states and generates

messages to send back outside the system, thus

performing a single operation for the outermost

interpreter.

In practice, few systems are levels of pure in-

terpreters, although layers are present. Devia-

tions from the model have occurred for both

hardware and software reasons. In the hard-

ware deviation case, the micromachine shown
in Level 1 is often not present, but rather the

Level 2 central processing unit is implemented

directly using Level sequential controllers.

This practice of skipping Level 1 was initially

due to the lack of adequate read-only memories

but is now generally limited to the case of very

high speed machines such as the Cray 1 and the

Amdahl V6 which cannot tolerate the fetch and

execute cycle times associated with a control

store.

FETCH INSTRUCTION
POINTED TO BY

INSTRUCTION COUNTER

UPDATE
INSTRUCTION
COUNTER

DECODE
INSTRUCTION

rrm
EXECUTE INSTRUCTION

Figure 2. The basic interpretive

loop.

INSTRUCTIONS

INTERPRETER

SEVEN VIEWS OF COMPUTER SYSTEMS

Table 1. Five Levels-of- Interpreters for an Airline Reservation System

Level 4 Instruction:

Interpreter:

Internal state:

External state:

Seat allocation request message

Airline reservation system

Number of requests pending at this moment
Location of passenger list on a disk file

Number of lines connected to system

Number of reserved seats on a given flight

Airline name for a given flight

Level 3 Instructions:

Interpreter:

Internal state:

External state:

FORTRAN statement codes

FORTRAN execution system

Memory management parameters
User name
Main storage size

Location of disk files

Interrupt enable bits

Expression evaluation stack

Dimensions of arrays

Subroutine names
Values of data in arrays
Statement number

Program size

Value of an expression

DO-loop variable value

Printed characters on line printer

Level 2 Instructions:

Interpreter:

Internal state:

External state:

Machine language instructions

Processor

Program registers

Condition codes

Program counter

Data in main memory
Disk controller registers

Level 1 Instructions:

Interpreter:

Internal state:

External state:

Microcode

Micromachine

Instruction register

Flip-flops holding error status

Stack of microprogram subroutine links

Program registers

Condition codes

Program counter

Level Instructions:

Interpreter:

Internal state:

External state:

Hardwired combinational network

Sequential machine controlling the

micromachine

Clock, counters, etc., controlling

micromachine timing

Micromachine, console

COMPUTER ENGINEERING

There are two primary software driven depar-

tures from the pure interpreter model: (1) high

level languages are usually executed by a com-

piler rather than by an interpreter, and (2) some

layers are bypassed when more ideal primitives

exist at deeper levels. Figure 5 illustrates this

bypassing process. A pure interpreter imple-

mentation of FORTRAN would use an object

time system (OTS) for all FORTRAN C oper-

ations designated in the figure. The object time

system would require an operating system

(OPSYS) for the interpretation of some of its

operations, and the operating system in turn

Figure 5. Levels-of-interpreters with "pipes" that by-

pass levels. FORTRAN operation C is interpreted by an

OTS function which in turn is interpreted by the oper-

ating system which is interpreted by the ISP. FORTRAN

operation A has a pipe directly to the ISP interpreter.

would be interpreted by the instruction set in-

terpreter (ISP interpreter). However, the A op-

erations in the figure would be directly

interpreted by the instruction set interpreter.

In the final analysis, the number of levels is

just another tradeoff. Performance consid-

erations lead to the deletion of levels; com-

plexity leads to the addition of levels. Having

presented the pure interpreter model, one can

now return to the Onion-Skin-Layered Model

to better understand how the different layers re-

late.

The macromachine hardware can be thought
of as a base level interpreter. It is most often

extended upward with an operating system.

There may be several operating system levels so

that the machine can be built up in an orderly

fashion. A kernel machine might manage and

diagnose the hardware components (disks, ter-

minals) and provide synchronizing operations
so that the multiple processes controlling the

physical hardware can operate concurrently.

Next, more complex operations such as the file

system and basic utilities are added, followed by

policy elements such as facilities resource man-

agement and accounting. As viewed through
the operating system, one sees a much different

machine than that provided by the basic in-

struction set architecture. In fact, the resultant

machine is hardly recognizable as the archi-

tecture most usually given by a symbolic assem-

bler. It includes the basic machine but has more

capable I/O and often the ability to be shared

by many programs (or tasks).

Operating systems designers believe all these

facilities are necessary in order to implement
the next higher level interpreter

- the standard

language. The language level may include inter-

preters or compilers to translate back to the ma-

chine architecture for ALGOL, BASIC,
COBOL, FORTRAN, or any of the other

standard languages and their dialects.

VIEW 3: PACKAGING LEVELS-OF-
INTEGRATION

This is a structural view that packages the

various components (hardware and software)

into levels. The levels for DEC computers in

1978 were as follows:

9 Applications
8 Applications components
7 Special languages
6 Standard languages

SEVEN VIEWS OF COMPUTER SYSTEMS 7

5 Operating systems

4 Cabinets (to hold complete hardware

systems)

3 Boxes

2 Modules (printed circuit boards)

1 Integrated circuits

This view is the most important in the book,

because it shows how computer systems are ac-

tually structured and, hence, how their costs are

structured. As a structural view of the object

being sold, however, it is completely a function

of the technology, the organization building the

system, and the marketplace, all of which are

changing so rapidly that the view could better

be titled "Dynamic Levels-of-Integration."

There are three major changes taking place:

1. Changes in the hardware levels, where

the shrinking in physical size of func-

tions has three effects:

a. Lower levels subsume higher levels.

b. The semiconductor component sup-

plier is forced to assume higher and

higher level design responsibilities.

c. Levels disappear.

2. Changes in the software levels, again

with three effects:

a. Each level grows in size as more

functionality is added over time.

b. More levels are added as mini-

computers are applied to a broader

range of applications.

c. Functions migrate downward from

level to level.

3. Changes in the hardware/software inter-

face, where software functions migrate
into hardware for higher performance.

For the first of these areas of change, hard-

ware levels, it is interesting to note that inter-

connection and packaging now constrain and

limit design more than any other factor, exclud-

ing the basic lowest level component (semi-

conductor) technology.

The constraint caused by the interconnection

and packaging takes place because most manu-

facturing costs are associated with the physical

structure. As interconnection levels must be in-

troduced to build complex structures, many
usually undesirable side effects occur. Electrical

interconnection requires cables which require

space and interfere with cooling airflow. Long
interconnections increase signal transmission

delays, and these reduce performance. Signal

transmission not only makes the computer sus-

ceptible to electromechanical interference but

also may radiate electromagnetic waves that

need to be controlled.

Figure 6 shows the costs of various levels-of-

integration versus time for small computers.

The cost depends partly on implementation and

architecture word length. As the word length is

made shorter, there are some savings, particu-

larly for very small computers, because some

levels-of-integration cease to exist. For ex-

ample, most hand-held calculators are imple-

mented using 4-bit, stored program computers
with fixed programs that occupy a single in-

tegrated circuit. There are associated modules,

backplanes, boxes, and cabinets - but all are

contained in a single package that fits in the

hand.

Semiconductors, the lowest level of tech-

nology, have had the greatest price decline (Fig-

ure 6). Modules have a lesser price decline

because they are a mix of integrated circuits,

printed circuit boards, component insertion la-

bor, and testing labor. The price decHne for the

integrated circuit portion of the module cost is

moderated by the labor-intensive nature of

module fabrication, thus producing a price de-

cline for modules that is markedly less than that

for integrated circuits. At the box level-of-in-

tegration, power suppHes and metal or plastic

boxes are also labor-intensive and further mod-

erate the price decline provided by the in-

tegrated circuits. Finally, as boxes are

integrated (by people) and applied at a system

8 COMPUTER ENGINEERING

THE MINI COSTS LESS THAN S50.000 DEFINITION

Figure 6. Machine price for various levels-of-

integration versus time.

level (by people), the price decline almost dis-

appears.

Many of the cost improvements brought
about by new technology are derivative. They
are by-products of using less power and less

space, thus avoiding the labor-intensive levels

of packaging integration.

An astute marketing-oriented person might

ask, "How, with all the technology, can we do

something unique so that we can maximize the

benefit from the technology without having to

pay so much for labor-intensive items such as

packaging?" One answer: "Reduce prices by
not providing a power supply and mounting
hardware. Let the user provide all added-on

parts and mount the computer as needed. In

this way, the price, though not necessarily the

total cost to the user, is reduced. We'll sell at the

board level." Computer Automation followed

this philosophy when it introduced the Naked
Mini so that users could supply more added

value (packaging and power technology).

A similar effect can be seen in the PDP-11

series since the PDP-ll/20's introduction in

1970. At that time, the 4,096-word PDP- 11/20

(mounted in a box) sold for $9,300. In 1976, the

boxed version of an LSI- 11 cost $1,995, reflect-

ing a factor of 4.7 improvement over the PDP-

11/20. The 4,096-word core memory module

used in the PDP- 1 1/20 sold for $3,500, while a

16,384-word metal-oxide semiconductor (MOS)
memory module for an LSI- 11 sold for $1,800,

reflecting a factor of 7.8 improvement.
The changing levels-of-integration have also

changed the domain of the semiconductor sup-

pliers. In the early 1970s, Intel, North American

Rockwell, and other semiconductor companies

began to use the higher semiconductor densities

to reduce the number of levels-of-integration by

packaging a complete processor-on-a-chip.

These organizations had assimilated logic de-

sign, but were frustrated because their custom-

ers could really not identify higher functionality

units (beyond memory) requiring on the order

of 1,000 gates on a chip. Also, the speed of these

high density units was quite low.

They discovered that the best finite state ma-

chine to make was just a simple computer, be-

cause it provided the finite state machine plus

the useful functions that were not covered by

switching circuit theory. It was "simply a small

matter of programming" to do something use-

ful. Whereas programs for these simple com-

puters cost $1 to $100 per instruction to write,

the prices for processors-on-a-chip have fol-

lowed a very steep decline of up to 50 percent

price reduction per year.

Robert Noyce of Intel developed Figure 7 in

October 1975. It illustrates what has been hap-

pening in the semiconductor industry and has

been modified slightly to show the technology

SEVEN VIEWS OF COMPUTER SYSTEMS

COMPUTATION
SERVICE

APPLICATIONS

SYSTEM
INTEGRATION

SOFTWARE

ARCHITECTURE

LOGIC DESIGN

Al

DEVICE DESIGN

SYSTEM
TASKS f

MICRO-
COMPUTER

DESIGN
I

'<^

,, I h

APPLICATION

1970

YEAR

NOTE:
Each change of level of integration has forced
the component supplier to assume additional responsibilities

Figure 7. Semiconductor (Noyce) manufacturer's

levels-of-integration versus time.

that DEC has assimilated with time. It indicates

the breadth that semiconductor manufacturers

now have in technology, starting from the semi-

conductor device level, through Noyce's view of

the various levels-of-integration, and contin-

uing into end-user applications.

The Levels-of-Integration View can be sum-

marized as components of one level being com-

bined into a system at the next highest level in a

hierarchy. A level denotes a single conceptual

design discipline or set of interacting disciplines

which determine the function, structure, per-

formance, and cost of the constituent level.

"Level" is a deceptive word, because as Figure
8 shows, the structure is actually a lattice, or

network, style of hierarchy rather than the clas-

sical tree style of hierarchy. In Figure 8 various

standard languages can be used on any of sev-

eral different hardware/software systems,
which in turn can be implemented on several

different processors. Each processor is available

in several different boxes.

•.-«„«. • • • >STANDARDS

^ICE

I'
M/\\ SEMICONDUCTOR

BASED

Figure 8. A computer system is a network,

not just a tree-structured hierarchy of

eight distinct levels.

VIEW 4: A MARKETPLACE VIEW OF
COMPUTER CLASSES

Because it is the complete marketplace pro-

cess that produces the computer, this view is the

most complex. In terms of marketability, a

computer can be characterized as a function of

price, performance, and time of introduction in

what might appear to be a commodity-like envi-

ronment.

Because various computers operate at differ-

ent performance rates and at various costs,

computation can be purchased in multiple

ways, and price/performance ratios will thus af-

fect marketability. For example, computation
can be supplied by a shared large, central batch

computer; each organizational entity can own

10 COMPUTER ENGINEERING

and operate a shared minicomputer; an individ-

ual can operate a single desk-top system; or

each individual can operate a programmable
calculator.

The price/performance ratio is not the sole

factor determining marketability, however.

Program compatibiHty with previous machines

is important. Compatibility considerations are

based on the economic necessity of using a com-

mon software base. The computer user's invest-

ment in software dwarfs that of the computer
manufacturer, if the machine is successful. For

example, if there is only one man-year of soft-

ware investment associated with each of the

50,000 PDP-1 Is, and each man-year costs about

$40,000 and produces something on the order

of 5,000 instructions, there is then a cumulative

investment of $2 billion and 250 million lines of

program for the PDP-11. This investment is

roughly the same scale as the original hardware

cost.

Thus, while rapidly evolving technology per-

mits new designs to be more cost-effective -

even radical - in a price/performance sense,

there must be backward (in time) compatibility
in order to build on and preserve the user's pro-

gram base. The user must be able to operate

programs unchanged to take advantage of the

improvements brought about by technology

changes.

In a similar way, compatibility over a range
of machines at a given time allows a user to se-

lect a machine that matches his problem set

while having the comfort that the problems can

change and there will be a sufficiently large or

small machine available to solve the new prob-
lems.

For these reasons, nearly all modern com-

puter designs are part of a compatible computer

family which extends over price and time. Tech-

nology provides basic improvements with each

new generation at approximately six-year inter-

vals, and most new designs usually provide in-

creased performance at constant price.

The influence of technology on the com-

puters that are built and taken to the market-

place is so strong that the four generations of

computers have been named after the tech-

nology of their components: vacuum-tubes,

transistors, integrated circuits (multiple transis-

tors packaged together), and large-scale in-

tegrated (LSI) circuits.

Each electronic technology has its own set of

characteristics, including cost, speed, heat dis-

sipation, packing density, and reliability, all of

which the designer must balance. These factors

combine to limit the applicability of any one

technology; typically, one technology is used

until either a limit is reached or another tech-

nology supersedes it.

Design Alternatives

When an improved basic technology becomes

available to a computer designer, there are four

paths the designs can take to incorporate the

technology:

1. Use the newer technology to build a

cheaper system with the same perform-
ance.

2. Hold the price constant and use the tech-

nological improvement to get an in-

crease in performance.

3. Push the design to the limits of the new

technology, thereby increasing both per-

formance and price.

4. Find a drastically new structure using

the computer as a basic archetype (e.g.,

calculators) such that the design can be

considered off the evolutionary path.

Figure 9 shows the trajectory of the first three

design alternatives. In general, the design alter-

natives occur in an evolutionary fashion as in

Figure 10 with a first (base) design, and sub-

sequent designs evolving from the base.

SEVEN VIEWS OF COMPUTER SYSTEMS 1 1

DESIGN STYLE 3

» DESIGN STYLE 2

DESIGN STYLE 1

Figure 9. Three design styles on the

evolutionary path.

Figure 10. Evolution from the base

design B.

In the first design style, the performance is

held constant, and the improved technology is

used to build lower price machines which at-

tract new applications. This design style has as

its most important consequence the concept of

the minimal computer. The minimal computer
has traditionally been the vehicle for entering

new applications, since it is the smallest com-

puter that can be constructed with a given tech-

nology. Each year, as the price of the minimal

computer declines, new applications become

economically feasible.

The second, constant cost alternative uses the

improved technology to get better performance
at a constant price and will usually yield the

best increase in total system cost and effective-

ness, for reasons which will be discussed

shortly.

The third alternative is to use the new tech-

nology to build the most powerful machine pos-
sible. New designs using this alternative often

solve previously unsolved problems and, in

doing so, advance the state-of-the-art. This de-

sign alternative must be used cautiously, how-

ever, because going too far in price or

performance (i.e., building beyond the tech-

nology) is dangerous and can lead to a zero per-

formance, high-cost product. There are usually

two motivations for operating at this leading

edge: preliminary research motivated by the

knowledge that the technology will catch up;
and national defense, where an essentially in-

finite amount of money is available because the

benefit - avoiding annihilation - is infinite.

Table 2 shows the effect of pursuing the two

design strategies of: (1) constant performance at

decreased price, and (2) constant price at in-

creased performance. The first column gives the

base case at a given time /. Because this is the

base case, the price, performance, and

price/performance ratio of the computer are all

1 . As the computer is applied to a particular en-

vironment, operational overhead is added at a

cost of 2 to 4 times the original cost of the com-

puter; the total cost to operate the computer be-

comes 3 to 5 times higher, and the

performance/total cost ratio is reduced to be-

tween 0.33 and 0.2 (depending on the total

cost).

Now assume the same operating environ-

ment, with the same fixed (overhead) costs to

operate, at a new time / + 1, when technology
has improved by a factor of 2. Two alternative

designs are carried out; one is at constant

price/higher performance, and the other is at

constant performance/lower price (columns 2

and 3). The application is constant in three

cases (columns 1-3), and a new application is

discovered for the fourth case (column 4). Both

the constant-cost and constant-performance de-

signs give the same basic performance/cost im-

provement - when only the cost of the

computer is considered. However, when one

12 COMPUTER ENGINEERING

Table 2. Using New Technology for Constant Price and Constant Performance Designs

Introduction

SEVEN VIEWS OF COMPUTER SYSTEMS 13

Figure 1 1. Price versus time for each machine class.

new class appears at the low end of the price

scale where the minimal computer is introduced

at a significantly lower price level than existing

computers.
The measure used to define a new class is

price, whereas the measure defining an estab-

lished class is performance. This is because once

a new class has become established in the mar-

ketplace, the users become familiar with what

computers of that class can do for their appli-

cations and tend to characterize that class on a

performance basis. The characterization of ex-

isting classes on a performance basis is impor-
tant to this discussion because at each new

technology time, performance increases by one

category, and midi performance becomes avail-

able on a mini, for example.

The effect of technology upon computer clas-

ses can be summarized in the following thesis:

Continual application of technology via

the two major design styles results in: (1)

price declines creating new classes of

computers, (2) new classes becoming es-

tablished classes, and (3) established

classes being encroached upon.

Some question may arise as to how much of a

price reduction is necessary to create a new

class. The continuity implied by the thesis is de-

ceptive in that it suggests that new classes come

about by the continual appUcation of the con-

stant performance/decreasing cost style of de-

sign. Viewing the industry as a whole, this is

true. However, a new class is usually not cre-

ated by the same organization that is designing

computers in existing classes. A new company,
or new organization within a company, is usu-

ally required to provide the requisite fresh view-

point needed to create a new class. It is the fresh

viewpoint and not some arbitrary amount of

price reduction that creates a new class.

For both the minicomputer and micro-

computer, a fresh organization broke out. A
fresh viewpoint was needed because existing or-

ganizations, like most human organizations, act

to preserve the status quo, and adopt the in-

creased performance/constant price design al-

ternative for the existing customer base, as

indicated by the analysis given in the discussion

of Table 2. A new organization with a fresh

viewpoint goes after new applications and new

customers with a new minimal computer that

establishes a new class.

As a by-product of the use of new tech-

nology, conflicts occur within the established

computer classes. An established computer

class, which is defined on the basis of perform-

ance, is encroached upon by constant

cost/higher performance successors from the

class below it. Moreover, suppliers within a

class are, by their dominant constant

14 COMPUTER ENGINEERING

price/higher performance evolution, operating

to move up out of their class.

While movement by computer designs and

computer suppliers between and among the var-

ious classes may be encouraged by price and

performance trends, the speed with which that

movement occurs is moderated by the software

compatibility considerations discussed earlier.

The computer class thesis is not meant to imply
that each class implements the same instruction

set processor and processor-memory-switch

configurations with the only difference being

speed. Rather, much specialization occurs in

each class, and many of the attributes of the

higher performance machines appear in sub-

stantially less degree in the lower performance
classes. For example, there are more data-types

in the larger machines, their address spaces

(both physical and virtual) are larger, and the

software support is generally broader. Re-

sources devoted to increasing reliability and

availabiUty are more common in the higher

priced machines. The PDP-1 1 Family, from the

LSI- 11 up to the VAX- 11/780, exemplifies

these functionality differences.

Definition of the Minicomputer

The concept of computer classes that can be

distinguished by price and named submicro, mi-

cro, mini, midi, maxi, and super may be of as-

sistance in finding a definition for the

minicomputer, a definition which has thus far

been rather elusive. While the classes suggest

that minicomputers are those computers whose

prices fall between microcomputers and midi-

computers, and thus somewhere near the

middle of the range of computers available, ear-

lier definitions [Bell and Newell, 1971a] use the

term mini to denote minimal.

The Marketplace View defines new computer
classes according to price and established com-

puter classes according to performance. This

would suggest that a definition of the mini-

computer should include some historical data

on price and some comments on performance,
or at least some indication of performance by a

discussion of applications and configurations.
In 1977 Gordon Bell provided such a hybrid
definition for the Director of Computer Re-

sources, U. S, Air Force. The definition was as

follows:

MINICOMPUTER: A computer
originating in the early 1960s and predi-

cated on being the lowest (minimum)
priced computer built with current tech-

nology. From this origin, at prices rang-

ing from 50 to 100 thousand dollars, the

computer has evolved both at a price re-

duction rate of 20 percent per year and
has also evolved to have increased func-

tionality and a slightly higher price with

increasing functionality and perform-
ance.

Minicomputers are integrated into

systems requiring direct human and pro-
cess interaction on a dedicated basis (ver-

sus being configured with a structure to

solve a wide set of problems on a highly

general basis).

Minicomputers are produced and dis-

tributed in a variety of ways and levels-

of-integration from: printed circuit

boards containing the electronics; to

boxes which hold the processor, primary

memory, and interfaces to other equip-

ment; to complete systems with periph-
erals oriented to solving a particular

application(s) problem. The price

range(s) for the above levels-of-in-

tegration, in 1978, are roughly: 500 to

2,000; 2,000 to 50,000; and 5,000 to

250,000.

This discussion of the Marketplace View has

been a qualitative explanation of the effect of

technology on the computer industry. It is an

engineering view, rather than one that would be

given by technology historians or economists.

The 20 years described in this book and the in-

dividual cost and performance measures surely

invite analysis by professionals. The studies re-

ported in Phister [1976] and Sharpe [1969] are a

good departure point.

SEVEN VIEWS OF COMPUTER SYSTEMS 15

VIEW 5: AN APPLICATIONS/
FUNCTIONAL VIEW OF COMPUTER
CLASSES

Because of the general purpose nature of

computers, all of the functional specialization

occurs at the time of programming rather than

at the time of design. As a result, there is re-

markably little shaping of computer structure

to fit the function to be performed.

The shaping that does take place uses four

primary techniques.

1. PMS level configuration. A con-

figuration is chosen to match the func-

tion to be performed. The user (designer)

chooses the amount of primary memory,
the number and types of secondary

memory, the types of switches, and the

number and types of transducers to suit

his particular application.

2. Physical packaging. Special environmen-

tal packaging is used to specialize a com-

puter system for certain environments,

such as factory floor, submarine, or

aerospace applications.

3. Data-type emphasis. Computers are de-

signed with data-types (and operations

to match) that are appropriate to their

tasks. Some emphasize floating-point

arithmetic, others string handling. Spe-

cial-purpose processors, such as Fast

Fourier Transform processors, belong in

this category also.

4. Operating system. The generality of the

computer is used to program operating

systems that emphasize batch, time shar-

ing, real-time, or transacting processing

needs.

Current Dimensions of Use

In the early days of computers, there were

just two classifications of computer use: scien-

tific and commercial. By the early 1970s, com-

puter use had diversified to seven different

functional segmentations: scientific, business,

control, communication, file control, terminal,

and timesharing. Since that time, very little has

changed in terms of functional characterization,

but two points are worthy of mention. First, file

control computers still have not materialized as

mainstream separate functional entities, despite

isolated cases such as the IBM 3850 Mass Stor-

age System; second, terminal computers have

evolved to a much higher degree than expected.

The high degree of evolution in terminals has

been due to the use of microprocessors as con-

trol elements, thus providing every terminal

with a stored program computer. Given this

generality, it has been simple to provide the ter-

minal user with facilities to write programs. In

turn, this phenomenon has affected the evolu-

tion of timesharing (when using the term to de-

note close man-machine interaction as opposed
to shared use of an expensive resource).

Functional segmentation into categories with

labels such as business, control, communication,

and file control reflects a naming convention

rooted in the old two-category scien-

tific/commercial tradition. An alternative clas-

sification, more useful today, is the

segmentation scheme shown in Table 3. It is

based on the intellectual disciplines and envi-

ronment (e.g., home based) that use and de-

velop the computer systems. It shows the

evolving structures in each of the disciplines,

permitting one to see that nearly all the environ-

ments evolve to provide some form of direct,

interactive use in a multiprogrammed environ-

ment. The structures that interconnect to me-

chanical processes are predominately for

manufacturing control. Other environments,

such as transportation, are also basically real-

time control. Another feature of discipline-

based functional segmentation is that each of

the disciplines operates on different symbols.

For example, commercial (or financial) envi-

ronments hold records of identifier names for

entities (e.g., part number) and numbers which

are values for the entity (e.g., cost, number in

inventory).

16 COMPUTER ENGINEERING

Table 3. Discipline/Environment-Based
Functional Segmentation Scheme

Commercial environment

Financial control for industry, retail/wholesale, and

distribution

Billing, inventory, payroll, accounts receivable/

payable
Records storage and processing

Traditional batch data entry

Transaction processing against data base

Business analysis (includes calculators)*

Scientific, engineering, and design
Numbers, algorithms, symbols, text, graphs, storage,

and processing

Traditional batch computation*
Data acquisition

Interactive problem solving*

Real time (includes calculators and text processing)

Signal and image processing*

Data base (notebooks and records)

Manufacturing
Record storage and processing

Batch*

Data logging and alarm checking

Continuous real-time control

Discrete real-time control

Machine based

People/parts flow

Communications and publishing

Message switching

Front-end processing

Store and forward networks

Speech input/output

Terminals and systems
Word processing, including computer conferencing

and publishing

Transportation systems
• Network flow control

• On-board control

Education
• Computer-assisted instruction

• Algorithms, symbols, text storage, and processing
• Drill and practice
• Library storage

Home using television set

• Entertainment, record keeping, instruction, data base

access

•
Implies continuous program development

The scientific, engineering, and design dis-

ciplines use various algorithms for deriving

symbols or evaluating values. Texts, graphs,

and diagrams, the major ways of representing

objects, have to be processed. For these envi-

ronments, the computer has changed from a

calculator (it was initially funded to do tra-

jectory calculations for ballistic weapons) to a

sophisticated notebook for keeping specifica-

tions, designs, and scientific records. Whereas

the minicomputer was initially only used as a

transducer to collect data to be analyzed on

larger machines, it has since evolved to direct

recording and analysis of time-varying signals

and images and even to direct analysis and con-

trol. With minicomputers taking on such addi-

tional capabilities, connections to larger

computers are used solely in a network fashion

to handle graphic display and control functions.

The function of computers in both the manu-

facturing and the commercial environments has

evolved from simple record keeping to direct

on-line human control.

Process control computers have evolved from

their initial use of assisting human operators

(controllers) with data logging and alarm condi-

tion monitoring to full control of processes with

either human or secondary computer backup.

The structure of the computer and the control

task vary widely depending on whether the pro-

cess is continuous (e.g., refinery, rolling mill) or

discrete (e.g., warehouse, automotive, appliance

manufacturing).

Transportation applications for aircraft,

trains, and eventually automotive vehicles are

forms of real-time control that use both discrete

and continuous control. Control is carried out

in two parts: on board the vehicle and in the

network (airspace, highway) that carries the ve-

hicles. The transportation control function dic-

tates three unique characteristics for the

computer structure:

1 . Very high reliability. Society has placed

such a high value on a single human life

SEVEN VIEWS OF COMPUTER SYSTEMS 17

that all computers in this environment

cannot appreciably raise the likelihood

of a fatality.

2. Very small size for on-board computers,
3. Extreme operating and storage temper-

ature range for on-board computers - es-

pecially for automotive vehicles.

Communications and message-based com-

puters have evolved from telephone switching

control, message switching, and front ends to

other computers to become the dominant part

of communications systems. With these evolv-

ing systems, the communications links have

changed from analog-based transmission to

sampled-data, digital transmission. By using

digital transmission, data and voice (and video)

can ultimately be used in the same system.

Word processing (i,e,, creation, editing, and

reproduction) together with long term storage

and retrieval and transmission to other sites

(i,e., electronic mail) have evolved from several

systems:

1, Conventional teletypewriter messages
and torn-tape message switching (e,g.,

TWX, Western Union, Telex).

2, Terminals with local storage and editing

(e,g,, Flexowriters, Teletype (with paper

tape reader and punch), magnetic card/

magnetic tape automatic typewriters,

and the evolving stand-alone word pro-

cessing terminals for office use).

3, Large, shared text preparation systems
for centralized documentation prepara-

tion, newspaper publication, etc.

4, Large systems with central filing and

transmission (distribution). These will

negate the need for substantial hard

copy. With these systems, text can be

prepared either centrally with the system
or with local intelligent word processing

systems,

5, Computer conferencing. People can sit

at terminals and converse with others

without leaving their office.

The education-based environment implies a

system which is a combination of transaction

processing (for the human interaction part), sci-

entific computation as the computer is required
to simulate real world conditions (i,e,, phys-

ical/natural phenomena), and information re-

trieval from a data base. These systems are

evolving from the simple drill-and-practice sys-

tems which use a small simple algorithm,

through simulation of particular real world

phenomena, to knowledge-based systems which

have a limited, but useful, natural language
communications capabiHty,

Home-based computers are beginning to

emerge. The dominant use to date is in provid-

ing entertainment in the form of games that

model simple, real world phenomena, such as

ping-pong. Appliances are beginning to have

embedded computers that have particular

knowledge of their environments. For example,

computer-controlled ranges can cook in fairly

standard ways. Alternatively, cooking can be

controlled by embedded temperature sensors.

Simple calculators to record checkbooks have

existed for quite some time. These will soon

evolve to provide written transactions for re-

cording and control purposes. Many domestic

activities are in essence scaled-down versions of

commercial, scientific, educational, and mes-

sage environments.

With the evolution of each computer class,

one can see several cases of machine structures

which begin as highly specialized and evolve to

being quite general. This evolution is driven by

applications in accordance with the Appli-

cations/Functional View of Computer Classes,

The applications-driven evolution toward

generality applies to both hardware and soft-

ware. As a hardware example, consider the case

of a computer installations using large, highly

general computers, where minicomputers are

applied to offload the large computers. The first

application of the minicomputer is thus on a

well-defined problem, but then more problems
are added, and the minicomputer system is soon

18 COMPUTER ENGINEERING

performing as a general computation facility

with the help of a general purpose operating

system. A similar effect occurs in software,

where operating systems take on multiple func-

tions as they evolve with time because users

specify additional needs, and operating systems

designers like to add function. Thus, a COBOL
run-time environment might be added to a

simple FORTRAN-based real-time operating

system. At the next stage, a comprehensive file

system might be added. In the hardware system,
the next step in the evolution is usually offload-

ing the minicomputer; in the software case, the

next step is often the development of a new

small, simple, and fast operating system.

Part of this evolution is due to the inherent

generality of a computer, and part is a con-

sequence of constant-cost design philosophy.
The evolution is observable in computers of all

classes, including calculators. The early scien-

tific calculators evolved from just having logs,

exponentials, and transcendental functions to

include statistical analysis, curve fitting, vec-

tors, and matrices.

Machines, then, evolve to carry out more and

more functions. Since a prime discriminant is

data-type. Figure 12 is presented to show an es-

timate of data-type usage for various appli-

cations, using mostly high level data-types, e.g.,

process descriptions. The estimates shown are

very rough, because attempts to measure such

distributions to date have not shown marked
differences across applications (except for nu-

merical versus non-numerical) because the

data-types have not been of a sufficiently high
level.

VIEW 6: THE PRACTICE OF DESIGN

Whereas previous views emphasized the ob-

ject being designed, this is a view of the design

process which gives rise to the object. Two
models of design, those of Asimow and Simon,
are presented, followed by some remarks on

factors that particularly influence computer de-

sign.

NUMERICAL COMPUTATION

n^
WORD PROCESSING

1=^
COMMUNICATIONS

PROGRAM DEVELOPMENT

I 1

REAL TIME PROCESS CONTROL

TRANSACTION PROCESSING

Figure 12. Data-type usage by application.

In Introduction to Design [1962], Asimow

gives a general perspective of engineering design
and how the formal alternative generators and

evaluating procedures are used. He also in-

dicates where these formalisms break down and

where they do not apply. He defines engineering

design as an activity directed toward fulfilling

human needs, based on the technology of our

culture.

Asimow distinguishes two types of design:

design by evolution and design by innovation.

SEVEN VIEWS OF COMPUTER SYSTEMS 19

DISCIPLINE
OF DESIGN

COURSE OF
'EVALUATIVE '>v. ACTION
FUNCTION

'INFORMATION.

I ABOUT A I

\
PARTICULAR f

DESIGN /
(A PARTICULAR DESIGN)

Figure 13. Philosophy of design. The feedback be-

comes operable when a solution is judged to be in-

adequate and requires improvennent. The dotted

elennents represent a particular application (Asimow,

1962:5).

While there are examples of both in this book,

design by evolution predominates both in this

book and in the computer industry. Asimow's
first diagram (Figure 13), called Philosophy of

Design, shows the basic design process. Asi-

mow lists the following principles [Asimow,
1962: 5-6].

1 . Need. Design must be a response to indi-

vidual or social needs which can be satis-

fied by the technological factors of

culture.

2. Physical realizability. The object of a de-

sign is a material good or service which
must be physically realizable.

3. Economic worthwhileness. The good or

service, described by a design, must have
a utility to the consumer that equals or

exceeds the sum of the proper costs of

making it available to him.

4. Financial feasibility. The operations of

designing, producing, and distributing
the good must be financially suppor-
table.

5. Optimality. The choice of a design con-

cept must be optimal among the avail-

able alternatives; the selection of a

manifestation of the chosen design con-

cept must be optimal among all per-
missible manifestations.

6. Design criterion. Optimality must be es-

tablished relative to a design criterion

which represents the designer's com-

promise among possibly conflicting
value judgments that include those of the

consumer, the producer, the distributor,

and his own.

7. Morphology. Design is a progression
from the abstract to the concrete. (This

gives a vertical structure to a design proj-

ect.)

8. Design process. Design is an iterative

problem-solving process. (This gives a

horizontal structure to each design step.)

9. Subproblems. In attending to the solu-

tion of a design problem, there is uncov-

ered a substratum of subproblems; the

solution of the original problem is de-

pendent on the solution of the sub-

problem.

10. Reduction of uncertainty. Design is a pro-

cessing of information that results in a

transition from uncertainty about the

success or failure of a design toward cer-

tainty.

1 1 . Economic worth of evidence. Information

and its processing has a cost which must
be balanced by the worth of the evidence

bearing on the success or failure of the

design.

12. Bases for decision. A design project (or

subprobject) is terminated whenever

confidence in its failure is sufficient to

warrant its abandonment, or is contin-

ued when confidence in an available de-

sign solution is high enough to warrant

the commitment of resources necessary
for the next phase.

13. Minimum commitment. In the solution of

a design problem at any stage of the pro-

cess, commitments which will fix future

20 COMPUTER ENGINEERING

design decisions must not be made be-

yond what is necessary to execute the im-

mediate solution. This will allow the

maximum freedom in finding solutions

to subproblems at the lower levels of de-

sign.

14. Communication. A design is a descrip-

tion of an object and a prescription for

its production; therefore, it will have ex-

istence to the extent that it is expressed
in the available modes of commu-
nication.

Asimow goes on to define the phases of a

complete project.

1 . Feasibility study. The purpose is to deter-

mine some useful solutions to the design

problem. It also allows the problem to

be fully defined and tests whether the

original need which initiated the process
can be realized. Here the general design

principles are formulated and tested.

2. Preliminary design. This is the sifting,

from all possible alternatives, to find a

useful alternative on which the detailed

design is based.

3. Detailed design. This furnishes the engi-

neering description of a tested and pro-

ducible design.

While the above are the primary design

phases, there are four succeeding phases result-

ing from the need for production and con-

sumption by the outside world.

4. Planning the production process. This is

really another design process which is

simply a special case of design. The goal
is to design and build the system that will

produce the object.

5. Planning for distribution. This activity in-

cludes all aspects related to sales, ship-

ping, warehousing, promotion, and

display of the product.

6. Planning for consumption. This includes

maintenance, reliability, safety, use, aes-

thetics, operational economy, and the

base for enhancements to extend the

product life.

7. Retirement of the product.

Obviously all of these activities overlap one

another in time and interact as the basic design

is carried out. Phister [1976] posits a model of

this process (Figures 14 and 15) and gives the

amount of time spent in each activity (Figure

16) for a hardware product.

Simon uses a more abstract model of design

for human problem solving, which he calls gen-

erate and test. In The Sciences of the Artificial,

Simon [1969] discusses the science of design and

breaks the problem into representing the design

problem alternatives, searching (i.e., generating

alternatives), and computing the optimum.
When it is too expensive to search for the opti-

mum, as is often the case, satisfactory alterna-

tives (which Simon calls satisficing alternatives)

must be selected and tested. For most parts of

computer design, the design variables are se-

lected on the basis of satisfactory rather than

optimal choice. Simon also discusses the tools

TECHNOLOGY DEVELOPMENT

PRODUCT
SPECIFICATION

D

t.
PRODUCT DEVELOPVENT

I
MANUFACTURINGC3

r MARKETING 1

TIME (YEARS!

Figure 14. Hardware product development
schedule I, comprehensive view [Phister, 1976].

SEVEN VIEWS OF COMPUTER SYSTEMS 21

TECHNOLOGY DEVELOPMENT

r D

DETAILED DESIGN (31

)

• • •

Q

TEST (51
I

f (7)
'"l

DOCUMENTATIO

DEVELOPMENT

MANUFACTURING

u
c

I
PURCHASING J I

PILOT RUN f J

o

J L

TIME (MONTHS)

Figure 1 5. Hardware product development schedule II,

development organization details [Phister, 1976).

DIAGNOSTICS (25%)

DETAILED DESIGN
(33%) TEST

(16%)

VI
DOCUMENTATION

(15%)

4 8 12 16 20

ELAPSED TIME FROM START OF PROJECT (MONTHS)

NOTE;
Excludes 40 man-months of technology engineering
to develop ten plug-in modules.

Figure 1 6. Hardware development costs for developing
a $50,000 processor in 1974 [Phister. 1976).

of design, including the use of simulation both

as an alternative to building the complete sys-

tem and as a method to evaluate the behavior of

various alternatives.

In addition to his contribution of the gener-
ate and test design model to the Practice of De-

sign View, Simon's work has also contributed

indirectly to the first three views discussed ear-

lier in the chapter. In his discussion of the im-

portance of the design hierarchy, Simon
introduced the notion of architecture of com-

plexity.

In the search for design optima, whether it be

by generate and test or some other algorithm,
the problem of design representation is often

encountered. The more representations one has,

the larger the number of design problems that

can be tackled and, hence, the closer one can get

to a global optimum. Most discipHnes have at

least two representations: schematic and visual.

In chemical engineering, heat balance is ob-

tained by thermodynamic equations, not from a

plant piping diagram. In the design of power

supplies, transformer design is accomplished

using equivalent circuits, not by using physical

representations. In the design of computer
buses, most designers work with timing dia-

grams, although state diagrams and Petri nets

are alternative representations.

In general, the importance of alternative rep-

resentations in computer engineering is not well

understood. The large number of representa-

tions that exist at the programming level is de-

ceptive. There are many different algorithmic

languages, but they differ mostly in syntax, not

in semantics.

It is too simplistic to think that computer de-

sign should be a well-defined activity in which

mathematical programming can be employed to

obtain optimum solutions. There are major

problems, five of which are listed below:

1. The cost function is multivariable.

2. The primary measure, performance, is

not well understood.

22 COMPUTER ENGINEERING

3. The objective function that relates cost

and performance is not understood.

4. Objectives are not as objective as they
look.

5. There is a dynamic aspect (because the

technology changes rapidly) which is

hard to quantify.

These problems are explored in the following

extract from a discussion of design given in Bell

et ai, [1972a:23-24].

Objectives can often be stated as max-

imizing or minimizing some measure on
a system. A system should be as reliable

as possible, as cheap as possible, as small

as possible, as fast as possible, as general
as possible, as simple as possible, as easy
to construct and debug as possible, as

easy to maintain as possible
- and so on,

if there are any system virtues that have

been left out.

There are two deficiencies with such

an enumeration. First, one cannot, in

general, maximize all these aspects at

once. The fastest system is not the

cheapest system. Neither is it the most

reliable. The most general system is not

the simplest. The easiest to construct is

not the smallest, and so on. Thus, the

objectives for a system must be traded

off against each other. More of one is

less of another and one must decide

which of all these desirables one wants

most and to what degree.
The second deficiency is that each of

these objectives is not so objective as it

looks. Each must be measured, and for

complex systems there is no single satis-

factory measurement. Even for some-

thing as standardized as costs there are

difficulties. Is it the cost of the materials
- the components? Does one use a listed

retail cost or a negotiated cost based on
volume order? What about the cost of

assembly? And should this be measured
for the first item to be built, or for sub-

sequent items if there are to be several?

What about the costs of design? That is

particularly tricky, since the act of de-

signing to minimize costs itself costs

money. What about cost measured in

the time to produce the equipment?
What about the cost of revising the de-

sign if it isn't right; this is a cost that may
or may not occur. How does one assign
overhead or indirect costs? And so on.

In a completely particular situation one

can imagine an omniscient designer

knowing exactly which of these costs

count and being able to put dollar fig-

ures on each to reduce them all to a com-
mon denominator. In fact, no one
knows that much about the world they
live in and what they care about.

The dilemma is real: there is no reduc-

ing the evaluation of performance in the

world to a few simple numbers. The so-

lution is to understand what systems ob-

jectives are: they are guides to

understanding and assessing system be-

havior in various partial aspects. Vari-

ous measures for each type of objective
are developed, and each shows some-

thing useful. Since all measures are par-
tial and approximate (even
conceptually), rough and ready mea-
sures that are easy to make, display and

understand are often to be preferred to

more exact and complex measures.

Standard measures are to be developed
and used, even if not perfect. Experience
with how a measure behaves on many
systems is often to be preferred to a bet-

ter, but unique, measure with which no

experience exists.

Although this book does not systematically

treat all the different system measures, many of

them are illustrated throughout the book. Table

4 provides a guideline, listing in one place the

components that contribute to overall cost and

performance.
The following list points out some tradeoffs,

taken from experience, among the various ac-

tivities.

System Cost Versus Component Cost.

DEC sells products at each of the packaging

levels-of-integration
- from chips to turnkey ap-

plication systems. Because each product is con-

structed from lower packaged levels, and

because the levels model (View 3: Packaging

SEVEN VIEWS OF COMPUTER SYSTEMS 23

Table 4. Cost and Performance Components
for a System [Bell etal., 1972a:24]

Cost Components
Arising from the design effort

Specifying

Designing (drawing, checking, verifying)

Prototyping

Packaging design

Describing (documenting)
Production system design

Standardizing

Arising from production

Buying (parts)

Assembling

Inspecting

Testing

Arising from selling and distribution

Understanding

Configuring (i.e., user designing)

Purchasing

Applying

Operating in the environment (heat, humidity, vibra-

tion, color, power, space)

Repairing

Remodeling

Redesigning

Retiring

Performance Components
Arising from designing, producing, and selling environ-

ment
• For a single task

• For a set of tasks

operation times

operation rate

memory size and utilization

•
Reliability, availability, maintainability, and error rate

mean time between failures (MTBF)

availability (percent)

mean time to repair (MTTR)
error rate (detected, undetected)

Levels-of-Integration) strictly applies, it is very

difficult to have designs that are optimally com-

petitive at every level. For example, ifDEC sold

just hardware systems (cabinet level) it would
not need a boxed version of its central proces-

sors. The box level could then be deleted and

the price of the systems product would be pro-

portionately lower. When primitives are to be

used as building blocks, there is a cost associ-

ated with providing generality. For example,
some boxes have too much power for most of

their final applications because the powering
was designed for the worst possible con-

figuration of modules within the box. (Some
boxes have too little power because increased

logic density was accompanied by increased

power density, permitting new worst-case con-

figurations in existing boxes.)

Initial Sales Price Versus User Life Cycle
Cost. There is a cost associated with parts that

break and have to be repaired and maintained.

Nearly every part of the computer can be im-

proved over a range of a maximum of a factor

of 10 to provide increased reliability (extended

mean time between failure) for a price. To the

extent that these costs are added, the product
will be less competitive in terms of a higher pur-

chase price. However, if the total life cycle costs

are considered, the product may still be better

even at the higher initial cost.

Reliability, Availability, Maintainability

(and Producibility) Versus Performance. By

designing to take advantage of the fastest com-

ponents and operating them at the limit of their

capability, one is able to have increased per-

formance. In doing so, the tradeoff is clear: pro-

ducibility, reliability (error rate), and

maintainability (ease of fixing) all generally suf-

fer.

Performance Versus Cost. This is the most

traditional design tradeoff. In addition to the

conventional product selection, the planning of

a computer family further increases the selec-

tion/tradeoff process.

Early Shipment Versus Product Life and

Quality. Delivering products before they are

fully engineered for manufacture is risky. If

faults are found that have to be corrected in the

factory or field, the cost far outweighs any early

product availability.

24 COMPUTER ENGINEERING

Length of Time to Design Versus Product

Life. By allowing more time for design, a prod-
uct can be designed in such a way that it is eas-

ier to enhance. On the other hand, if

prospective customers, especially new custom-

ers, are faced with a choice between the com-

petitor's available nonoptimum product and

your unavailable optimum product, they may
not be willing to wait.

Operating Environment Versus Cost. Here

there are numerous tradeoffs even within a con-

ventional environment. In each of the packag-

ing dimensions (heat, humidity, altitude, dust,

electromagnetic interface (EMI), etc.), there are

similar tradeoffs that may appeal to unique
markets or may simply translate to increased re-

liability in a given setting. The Norden 1 1/34M
is an example of packaging to provide a PDP-1 1

for the aerospace environment.

The principles of computer design and the

optimization efforts associated with those prin-

ciples are parts of computer science and elec-

trical engineering, the responsible disciplines.

From computer science come many of the tech-

nical aspects (such as instruction set archi-

tecture), much of the theory (such as algorithms
and computational complexity), and almost all

of the software design (such as operating sys-

tems and language translators) applied in the

practice of computer engineering. However, in

their construction, computers are electrical; and

the discipline that has fundamental responsi-

bility is electrical engineering. Thus, discussion

of the Practice of Design View concludes with

Table 5, a set of maxims compiled by Don Vo-

nada, an experienced DEC engineer. Many
other engineers in many other companies have

developed similar sets of maxims.

VIEW7:THEBLAAUW
CHARACTERIZATION OF COMPUTER
DESIGN

Another view is based on the work of Blaauw

[1970]. He distinguishes between architecture,

implementation, and realization as three sepa-

rable levels in the construction of anything, in-

cluding computer structures.

The architecture of a computer system de-

fines its functionality (behavior) as it appears to

the machine level programmer and can be char-

acterized by the instruction set processor (ISP).

The implementation of a computer system is the

actual hardware structure - the register transfer

(RT) level behavior and data-flow organization.

This also includes various algorithms for con-

trolling a machine as it interprets an archi-

tecture. Realization encompasses the actual

Table 5. Vonada's Engineering Maxims

1. There is no such thing as ground.

2. Digital circuits are nnade from analog parts.

3. Prototype designs always work.

4. Asserted tinning conditions are designed first; unasserted tinning conditions are found later.

5. When all but one wire in a group of wires switch, that one will switch also.

6. When all but one gate in a nnodule switches, that one will switch also.

7. Every little pico farad has a nano henry all its own.

8. Capacitors convert voltage glitches to current glitches (conservation of energy).

9. Interconnecting wires are probably transmission lines.

10. Synchronizing circuits may take forever to make a decision.

1 1 . Worse-case tolerances never add - but when they do, they are found in the best customer's machine.

12. Diagnostics are highly efficient in finding solved problems.

13. Processing systems are only partially tested since it is impractical to simulate all possible machine states.

14. Murphy's Laws apply 95 percent of the time. The other 5 percent of the time is a coffee break.

SEVEN VIEWS OF COMPUTER SYSTEMS 25

technologies used and includes the kind of logic

and how it is packaged and interconnected. Re-

alization includes all the details associated with

the physical aspects of the machine.

Modern architectures (ISPs) usually have

multiple (RT) implementations. For example,
the LSI- 1 1 , PDP- 1 1 /40, and PDP- 1 1 /60 are dif-

ferent implementations of the same basic PDP-
1 1 instruction set. Sometimes, although rarely,

a particular implementation has more than one

realization. For example, the IBM 7090 has the

same architecture and implementation (i.e., the

same ISP and RT structure) as the IBM 709.

The difference lies in realization: the 709 used

vacuum tubes, the 7090 transistors. For a more
recent example, two models of the PDP-11 ar-

chitecture that share the same implementation
are the DEC PDP-11/34 and Norden's

11/34M. The realization differs, however, as

the latter uses militarized semiconductor com-

ponents and component mountings, and a dif-

ferent packaging and cooHng system. Table 6

attempts to clarify the distinguishing character-

istics of architecture, implementation, and reaH-

zation.

This book concentrates on the realization

and implementation columns in Table 6. In-

struction set architecture is discussed only in-

sofar as it interacts with the other two
characteristics. There are also some differences

between the views of Blaauw and Brooks [in

preparation] and those expressed in this book.

It is important to try to reconcile these differen-

ces, because everyone engaged in computer en-

gineering uses the words "architecture,"

"implementation," and "realization" -
quite

often to mean different things. This book will

not limit the definition of architecture to just a

machine as seen by a machine language pro-

grammer. Instead, it will use architecture to

mean the ISP associated with any of the ma-
chine levels described in View 2, Levels-of-In-

terpreters. Therefore, architecture standing
alone will mean the machine language, the ISP.

This book will also use architecture ofthe micro-

programmed machine as seen by a micro-

programmed machine's microprogrammer,
architecture of the operating system as the com-
bined machine of operating system and ma-
chine language, and architecture of a language

Table 6. Characteristics of Design Areas [Blaauw and Brooks,
in preparation: Chapter 1]

26 COMPUTER ENGINEERING

for each language machine. For example, AL-

GOL, APL, BASIC, COBOL, and FORTRAN
all have as separate and distinct architectures as

a PDP-10 and a PDP-11 do. This use of archi-

tecture, because it describes behavior, is quite

consistent with that of Blaauw. Moreover,

when applied to software structures, Blaauw's

framework fits well. There are two implementa-

tions, FORTRAN IV-PLUS (an optimizing

compiler) and the initial FORTRAN IV of the

one ANSI FORTRAN architecture. Moreover,

different implementations use different realiza-

tion techniques: some use BLISS, others use as-

sembler language.

Although Blaauw and Brooks define imple-

mentation and realization clearly, these defini-

tions are not widely used. The main problem is

that both terms are sensitive to technology

changes and, hence, interact closely. Computer

engineers tend to overuse and intermix them so

that the two words are used interchangeably.

This is reflected in this book, where they are

used to have roughly the same meaning (e.g.,

"The KIIO processor for the PDP-10 was im-

plemented using high-speed (H-Series) transis-

tor-transistor logic"). In Table 6, definitions

are given for the two words so that the reader

may further relate descriptions back to these

definitions. "Implementation" is the register

transfer level machine, roughly the micro-

programmed machine; "realization" is the

physical realization, the physical implementa-
tion in terms of packaging and technology.

The most useful distinction is between archi-

tecture, on the one hand, and implementation

(subsuming realization), oh the other. Seeing
the distinction clearly enables one to preserve

architectural compatibility between machine

models, and this is crucial if users' and manu-

facturers' software investments are to be pre-

served. Implementation can then be as dynamic
as desired, being continually changed by tech-

nology. Architecture must remain static for

long periods (10 years is a common goal).

In 1949 Maurice Wilkes, only one month af-

ter his EDSAC computer was operational and

before any stored program computers in the

United States were operating, had already per-

ceived the value in having a series, or set, of

computers share the same instruction set:

When a machine was finished, and a

number of subroutines were in use, the

order code could not be altered without

causing a good deal of trouble. There

would be almost as much capital sunk in

the library of subroutines as the machine

itself, and builders of new machines in

the future might wish to make use of the

same order code as an existing machine

in order that the subroutines could be

taken over without modification.

Technology Progress in

Logic and Memories
C. GORDON BELL, J. CRAIG MUDGE,

and JOHN E.McNAMARA

It is customary when reviewing the history of

an industry to ascribe events to either market

pull or technology push. The history of the auto

industry contains many good examples of mar-

ket pull, such as the trends toward large cars,

small cars, tail fins, and hood ornaments. The

history of the computer industry, on the other

hand, is almost solely one of technology push.

Technology push in the computer industry

has been strongest in the areas of logic and

memory, as the case studies in the following

chapters indicate. Where the following chapters

give examples of the effects of the technology

push in these areas, this chapter explores indi-

vidual elements of that push, with particular

emphasis on the role of semiconductors.

Semiconductor devices are discussed from

the viewpoint of the user because, until recently,

DEC has always bought its semiconductors (es-

pecially integrated circuits) from semiconductor

manufacturers, and its engineers (users of in-

tegrated circuits) have viewed the integrated cir-

cuit as a black box with a carefully defined set

of electrical and functional parameters. Most

design engineers will probably continue to hold

that view (and be encouraged to do so), even

though some integrated circuits will be supplied

by an in-house design and manufacturing facil-

ity. The advantages and disadvantages of in-

house integrated circuit design will be discussed

later in the chapter.

The portion of the discussion dealing with

semiconductors begins by presenting a family

tree of the possible technologies, arranged ac-

cording to the function each carries out and

showing how these have evolved over the last

two or three generations to affect computer en-

gineering. The cost, density, performance, and

reliability parameters are briefly reviewed; the

application of semiconductors, using various

logic design methods, is then discussed with

particular emphasis on how the semiconductor

technology has pushed the design methods.

The discussion of the use of semiconductors

in logic applications is followed by a section on

memories for primary, secondary, and tertiary

storage. While semiconductors have been a

dominant factor in technology push within the

computer industry, for both logic and memory
applications, magnetic recording density on

disks and tapes has evolved rapidly, too, and

must be understood as a component of cost and

as a limit of system performance.

27

28 COMPUTER ENGINEERING

The section on memory is followed by a sec-

tion containing some general observations

about technology evolution: how technology is

measured, why it evolves (or does not), cases of

it being overthrown, and a general model for

how its use in computers operates and is man-

aged.

SEMICONDUCTOR LOGIC TECHNOLOGY

A single transistor circuit performing a primi-

tive logic function within an integrated circuit is

among the smallest and most complex of man-
made objects. Alone, such a circuit is in-

trinsically trivial, but the fabrication process re-

quired for a set of structures to form a complete

integrated circuit is complex. For users of

digital integrated circuits there are several rele-

vant parameters:

1. The function of an individual circuit in

the integrated circuit, the aggregate

function of the integrated circuit, and

the functions of a complete integrated

circuit family such as the 7400-series.

2. The number of switching circuit func-

tions per integrated circuit. This quan-

tity and density is a measure of the

capability of the integrated circuit and

the ingenuity of the designers.

3. Cost.

4. The speed of each circuit and the speed
of the integrated circuit and set of in-

tegrated circuits within a family. The

semiconductor device family (transistor-

transistor logic
= TTL, Schottky TTL =

TTL/S, emitter-coupled logic
= ECL,

metal oxide semiconductor = MOS,
complementary MOS = CMOS, silicon

on saphire = SOS, integrated injection

logic
= PL) usually determines this per-

formance.

5. The number of interconnections (pins)

to communicate outside the integrated

circuit.

6. The reliability. This is a function of the

circuit technology, the density, the num-
ber of pins, the operating temperature,
the use (or misuse), and the maturity (ex-

perience) of the manufacturing process.

7. Power consumption and speed-power

product. A frequently used metric is the

speed-power product, where the delay

through a typical gate is multiplied by
the power consumption of the gate. For

a particular technology, the speed-power

product tends to be constant because

short gate delays usually are accom-

panied by high power consumption. A
technical advance that lowers the speed-

power product is considered note-

worthy.

Figure 1 shows a family tree (taxonomy) of

the most common digital integrated circuits.

The least complex functions are in the upper

portion of the figure, and the most complex are

at the bottom. In addition, the circuits are or-

dered by generation, starting with the second

generation on the left side of the figure and

progressing to the fifth generation on the right

side. The circuits are clustered roughly by the

regularity of the function and whether memory
is associated with the function. Circuit regu-

larity is important in large-scale integrated cir-

cuits because it is desirable to implement

regular structures to minimize area-consuming
interconnections and, thus, to simplify layout

and understanding and to aid testing.

As indicated in Figure 1, the branching of the

integrated circuit family tree began in earnest at

the beginning of the third generation. At that

time, advances in integrated-circuit technology

permitted collections of basic logic primitives

(AND, NAND, etc.) and sequential circuit

components (flip-flops, registers, etc.) to oc-

cupy a single integrated circuit rather than an

entire module. This had the benefit of providing
a drastic reduction in size between the second

and third generation computer designs, as

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 29

SECOND

30 COMPUTER ENGINEERING

(20) fV.
B2 OR 82—< -a ^

SlORBliHiJ\.

50 OR BO—H -J ^>-

Table 2

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 31

memories have so many uses, this branch is dis-

cussed separately in the memory section of this

chapter.

The remainder of the interesting logic func-

tions include combinations of logic and mem-

ory. There are various special functions such as

linear predictive coding algorithms for use in

real-time applications and data encryption al-

gorithms for use in communication systems.

One of the most useful communications func-

tions, and the first one to use large-scale in-

tegration, is the Universal Asynchronous

Receiver/Transmitter (UART).
There is a special branch for bit-slice com-

ponents that can be combined to form data

paths of arbitrary widths. These are being used

to construct most of today's high speed digital

systems, mid-range computers, and computer

peripherals. Although there have been several

bit-slice families, the AMD Corp. 2900-series

whose register transfer diagram is shown in Fig-

ure 3 has become the most widely used. Note
that all the primitives of this series were present
in the Register Transfer Module Family (Chap-
ter 18), including the microprogrammed control

unit referred to as the Programmed Control Se-

quencer.

The final branch of the tree in Figure 1 is the

most complex and is used to mark the fourth

(microprocessor-on-a-chip) generation of tech-

nology and the beginning of the fifth (com-

puter-on-a-chip) generation. The fourth

generation is marked by the packaging of a

complete processor on a single silicon die; by
this standard, the fifth generation has already

begun since a complete computer (processor
with memory) now occupies a single die. The
evolution in complexity during each generation

simply permits larger word length processors or

computers to be placed on one chip. At the be-

ginning of the fourth generation, a 4-bit proces-
sor was the benchmark; toward the end of the

fourth generation, a complete 16-bit processor
such as the PDP-1 1 could be placed on a single

chip.

H
DESTINATION
CONTROL

3X
ALU

FUNCTION

31
ALU

SOURCE

MICROINSTRUCTION DECODE

Tcr

I?

BMREAD/
WRITE)
ADDRESS

S
B" DATA IN

ADDRESS RANI
16 ADDRESSABLE

REGISTERS
ADDRESS

DATA
OUT

„g.,

DATA
OUT

^ V- Sk*^

dUE
Q SHIFT

SI ::LL

O-REGISTER

ALU DATA SOURCE

n Ji

8 FUNCTION ALU

OUTPUT
enable'

3Ji

^N+4
F2 ISIGNI

OVERFLOW

OUTPUT DATA SELECTOR

TT

Figure 3. AMD2900 four-bit microprocessor slice

block diagram (registers and data path).

Gates per Chip

The function performed by a chip is clearly

dependent on the number of gates that can be

placed on a chip. Thus, density in gates per chip

is the single most important parameter deter-

mining chip functionality. By this measure, one

can predict the functions likely to be imple-

mented by just following the tree. It should be

noted that the whole tree is relatively alive and

has dense areas of new branches everywhere ex-

cept at the top, where unconnected gate and

register structures have been relatively static. In

32 COMPUTER ENGINEERING

the growing areas, as density increases suf-

ficiently, a new branch grows. For example, the

processor-on-a-chip started out as a 4-bit pro-

cessor (or rather as 2 chips for a single proces-

sor) and then progressed to 8-bit and then 16-

bit processors on a single chip. Similar effects

can be observed with the arithmetic logic unit

and with memories.

The number of gate circuits per chip not only
determines chip functionality, it also is the mea-

sure of density as seen by a user (Figure 4). This

metric is the product of the circuit area and the

number of circuits per unit area. Progress in

lithography has led to a reduction of conductor

linewidths and a corresponding reduction of

circuit size to yield higher speeds and higher
densities. Linewidths have decreased from 10

microns in early large-scale integrated circuit

chips to 6 microns in the LSI- 11 chips, and

more recently to 3 or 4 microns in Intel's 8086.

Linewidths of less than a micron have been

achieved at the research level, but they require

electron beam techniques instead of present

photographic methods of production. The pro-

cessing techniques to create semiconductor ma-

terials have also been improved for better man-

ufacturing yields (and lower costs). Circuit and

device innovation (such as reducing the number
of transistors per memory cell) have also con-

tributed to density and yield increases.

The result given in Figure 4 is exponential
and indicates that the number of bits per chip
for a metal oxide semiconductor (MOS) mem-

ory doubles every two years according to the

relationship:

Number of bits per chip
= 2'"'^^^

There are separate curves, each following this

relationship, for read-only memories in pro-

totype quantities, read-only memories in pro-
duction quantities, read-write memories in

prototype quantities, and read-write memories

in production quantities. Thus, depending on

the product and the maturity of its production

process, products lead or lag behind the above

Figure 4. Components per single integrated circuit die

versus time. Number of components per circuit in the

most advanced integrated circuits has doubled every

year since 1959, when the planar transistor was devel-

oped. Gordon E. Moore, then at Fairchild Semiconductor,

noted the trend in 1 964 and predicted that it would con-

tinue (from [Noyce, 1977:67|; courtesy of Scientific

American).

State-of-the-art time line by one to three years

according to the following rules:

• Bipolar read-write memories lag by two to

three years.
• Bipolar read-only memories lag by about

one year.
• MOS read-only memories lead by one

year.

This model gives the availability of various

sizes of semiconductor memories as shown in

Figure 5. The significance of various size mem-

ory availabilities is that they determine (tech-

nology push) when certain architectures and

implementations can occur. The chapter dis-

cussing the PDP-11 (Chapter 16) uses this

model to show how semiconductors accomplish
this push.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 33

1

z
c
H

:

t

3

(

i

34 COMPUTER ENGINEERING

to the die area); but at higher volumes, assem-

bly, testing, packaging, and distribution be-

come the dominant cost factors. Furthermore,

for those low volume circuits that have not yet

reached commodity status, the prices also de-

pend on the strategy of the supplier
- whether

he is willing to encourage competition.

Two curves are presented to reflect the price

of various components (transistors) imple-

mented in integrated circuits. Figure 6 shows

the price per gate for MOS and TTL circuits as

a function of time and scale of integration.

Table 1 gives some idea of how circuit density

(in elements) relates to actual function.

The cost history of integrated circuits is re-

flected very dramatically in the cost history of a

special class of integrated circuits, semi-

conductor memory. The semiconductor mem-

ory cost curves, given in Figure 7, are also

interesting because of the important role of

memory in past and future computer structures.

As shown in the figure, the 1978 cost per bit was

roughly 0.08(J and 0.070 per bit for the 4-Kbit

and 16- Kbit integrated circuit chips, respec-

tively, giving costs of $3.30 and $1 1.50.

Two factors influence the cost of integrated

circuits: density in bits per integrated circuit

and cost per bit. The two factors have not had

equal influence in reducing costs because, while

chip density has improved by a factor of 2 each

year (Figure 4) [Noyce, 1977], the cost per bit

(at the integrated circuit level) has not declined

by a factor of 2 every two years. The equation

for the line drawn in Noyce's [1977] Figure 7 is:

•^

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 35

Table 1. The Number of Areal Elements to Implement Logic Functions in Different Technologies

36 COMPUTER ENGINEERING

Table 2. Characteristics of Dominant (1978) Semiconductor Technologies

Type Evolution Use

TTL (transistor-transistor logic)

ECL (emitter-coupled logic)

MOS (metal oxide semiconductor) p-channel

CMOS (complementary MOS)

TTL

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 37

performance, for the various technologies as

they have evolved with time. The speed-power

product metric for a technology at a given time

indicates what performance versus power trade-

offs the user can make. There are limits to this

tradeoff. Only about one watt can be dissipated

by the off-the-shelf integrated circuit package,

and tradition in integrated circuit package de-

sign has been strong. The table was formulated

by Jerry Luecke of Texas Instruments (TI) at a

time when PL technology had just been in-

troduced (October, 1975) by TI.

Reliability

Over the past 15 years, the failure rate for

standard integrated circuits has been reduced

by two orders of magnitude to the neighbor-

hood of 0.01 percent per 1,000 hours. This cor-

responds to 10^ hours (about a millenium) mean

time to failure (MTTF) per component. Figure

8, from a recent survey article by Hodges

[1977:63], shows the trend. The lower curves

show the higher reliability obtained when more

extensive testing and screening are employed.
The improved MTTF of between 10* and 10'

are obtained at a cost increase of 4 to 100 times

per component.

WITH CAPTIVE/CONTROLLED
LINE ASSEMBLY

1967 1969

YEAR

1975 1977

Figure 8. Failure rate of silicon integrated circuits.

(Rate of 0.0001 percent per 1,000 hours is 10^ hours

mean time to failure.) (Hodges, 1977:63)

I/O Connections

The number of pins per integrated circuit

package has risen relatively slowly because of

the mechanical handling equipment (e.g., sort-

ers, bonders, testers, inserters) to the point

where 48 pins has just become accepted in 1978.

The packages of the 1980s will no doubt go be-

yond 100 with the abiUty for multiple die per

package.

The Large-Scale Integrated Circuit

Dilemma

As indicated in the discussion of Figure 1, a

dilemma involving a search for universal cir-

cuits has developed in the manufacture of large-

scale integrated (LSI) circuits. The economics

of the LSI industry make it essential that in-

tegrated circuit suppliers produce circuits with a

high degree of universality. This is because the

learning curve of a manufacturing process

causes cost to be inversely proportional to vol-

ume, and for a design to be sold in high volume,

it must be usable in a large number of appli-

cations. However, the trend in circuit com-

plexity, which allows semiconductor
manufacturers to put more transistors on a con-

stant die area each year, tends to increase spe-

cialization of function, lowering the volume and

raising the price.

The LSI product designer is therefore contin-

ually in search of universal primitives or build-

ing blocks. For a certain class of applications,

such as controller applications, the micro-

processor is a fine primitive and has been so ex-

ploited [Noyce, 1977]. For other applications,

circuit complexity can embrace even higher

functionality at the processor-memory-switch
level. The Intel 827X is an interesting example:

two processors, a 1.25-microsecond byte-pro-

cessor and a 250-nanosecond bit-processor, are

combined in one large-scale integrated circuit

[Louie era/., 1977].

38 COMPUTER ENGINEERING

Moore [1976] discusses the LSI dilemma in a

paper on the role of the microprocessor in the

evolution of microelectronic technology. He

points out that a similar situation existed when

integrated circuits were first introduced. Users

were reluctant to relinquish the design pre-

rogative they had when they built circuits from

discrete components. It was not until sub-

stantial price reductions were made that the im-

passe was broken. Then the cost advantages

were sufficient to force users to adopt the new

technology circuits.

The first high functionality, high universality

circuit that comes to mind is the micro-

processor-on-a-chip. For many applications, in-

cluding most computer systems, the

microprocessor-on-a-chip is not a cost-effective

building block, and other solutions to the di-

lemma are used. For example, micro-

programming is a highly general way of

generating control signals for data path ele-

ments, and table lookup using read-only memo-
ries is a highly general technique. Both methods

are attractive because they use memory, an in-

herently low cost LSI circuit. Micro-

programming, however, does have limitations.

The extra level of interpretation extracts a per-

formance penalty, and some potential data path

parallelism is often given up to reduce cost. A
more subtle, but practical, limitation is the de-

velopment cost of microcode. Assuming the

writing rate to be 700 microwords per man-year
for wide-word, unencoded (horizontal) micro-

machines, a desire to limit the effort to 20-24

man-years would Hmit the maximum control

store size to about 16 Kwords. This maximum
will tend to increase in the future, when the use

of better microprogramming tools increases the

microcode writing rate beyond 700 microwords

per man-year.
At the register transfer level, the standard mi-

croprogramming design method is (conserva-

tively) twice as expensive per instruction as

conventional programming. Moreover, because

microinstructions are usually not as powerful as

conventional instructions, more micro-

instructions than conventional instructions are

usually required to solve a given problem.
These two factors, more expense per instruction

and more instructions, cause a microprogram
to be five to ten times as expensive as a conven-

tional program to solve the same problem.

However, the instruction execution speeds of a

microprogrammed controller are at least 10

times faster than the instruction execution

speeds of a conventional mini.

The characteristics of microprocessor and

read-only memory design methods of creating

customized results from universal large-scale in-

tegrated circuits are summarized, along with the

characteristics of a number of other methods, in

Table 4.

Table 4.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 39

The increased basic circuit functionality

available at each new generation has not only

been an important part of semiconductor de-

sign, but has also caused design methods to

change with the generations. This book pro-

vides examples, as summarized in Table 5.

The design of most relatively high speed

digital systems (including low- to mid-range

minicomputers) is carried out using standard

register transfer integrated circuits complete
with data path and memory. For higher per-

formance computers, there is no alternative to

using either tightly packed standard integrated

circuits or building a unique set of integrated

circuits using some form of customization. The

high performance IBM and Amdahl machines,

for example, use custom ECL circuits or gate

arrays to improve packaging. Although Sey-

mour Cray continues to build his high speed

computers (the CDC 6600, 7600 and Cray 1)

with no custom logic, he does so by using im-

pressively dense modules with high density in-

terconnection and freon cooHng.
The current spectrum of integrated circuits

and their use is summarized in Table 6.

The Changing Nature of System Design

With the advent of the processor-on-a-chip,

digital system design has been, or soon will be,

converted completely to computer system de-

sign (design at the processor-memory-switch
level of Chapter 1, View 1). Problems such as

controlling a CRT, controlling a lathe, building

Table 5. Design Method versus Generation

Design Method First

Generations

40 COMPUTER ENGINEERING

Table 6. Integrated Circuit Organization and Use in Various Computers

Unique Performance

Organization Technology Chips (MIPS) Cost Examples

Microcomputer

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 41

are several factors that prevent this from being

done reliably and cheaply by large numbers of

engineers.

One factor which impedes this progress to the

fifth generation is the (fundamental) inter-

connect problem. Currently, many small-scale

integration components are required to handle

the mismatch between microprocessor chips

and memory and I/O subsystems. Further-

more, buses are hard to specify, as will be dis-

cussed in Chapter 11.

Another impediment is that system level be-

havior (the interaction of processors, memories,

and transducers via switches and links) is less

understood than is interaction at the register

transfer level.

Of substantial assistance in easing the transi-

tion to the fifth generation would be base level

operating systems that were embedded in hard-

ware. These should be placed in read-only

memory to give a feeling of permanence so that

users would be less likely to embark on the ex-

pensive, unreliable rediscovery path.

In summary, standard components must be

built that can be interfaced to a wide range of

external systems, via clearly defined links, using

parameters that are specified by a field pro-

gramming method (instead of using logic design

and building with interconnection on modules).
In this way, the complexity of individual in-

tegrated circuits can be increased; and with a

standard method for interconnection, higher
volume and lower costs will result.

Design Costs versus Unit Costs

Before discussing the alternatives associated

with integrated circuit design, it is important to

characterize the various costs. Figure 9 shows,

at a crude level, what the relative design costs

might be for various inter- and intra-integrated

circuit design methods. The design cost is highly

variable depending on the project size, its goals,

the manufacturing volumes expected, and most

important, the computer aided design programs
that are available.

STANDARD
CELL

USER
DESIGNED

> ICs

INTRA IC

DESIGN

GATE ARRAY

HYPOTHETICAL
UNIVERSAL LOGIC
ARRAYS ISEE NOTE)

STANDAROCkts . LOGIC DESIGN
ROM/PLA DRIVEN DESIGNS
MICROPROGRAMMING LSTANOARD
MASKED ROM MICROPROGRAMMING [CIRCUITS
PROGRAMMING - USING
MICROPROCESSORS

J I L

CIRCUIT DENSITY

NOTE
None exist to date.

Figure 9. Current design cost (or time) versus circuit

density using various design methods.

The lowest design cost is achieved by staying

completely away from modifying the integrated

circuits, except for programming read-only

memories. There are two elements to the cost of

read-only memories, programming cost and

parts cost. The programming cost has already

been discussed, so this discussion is limited to

parts cost. There are two kinds of read-only

memories, the programmable read-only mem-

ory (PROM) and the masked read-only mem-

ory (ROM). PROM chips have a higher initial

cost than ROMs, but they provide some inven-

tory advantages in a manufacturing environ-

ment because a common stock of unpro-

grammed parts can be divided into various pro-

grammed parts rather than stocking a full sup-

ply of each required part. In many high volume

applications, however, the cost of the extra test-

ing steps involved in the common stock ap-

proach, plus the extra piece part costs for

PROMs, make masked ROMs preferable.

The design costs discussed in the preceeding

paragraphs are summarized in Figure 10, which

shows the costs for conventional programming,
costs for microprogramming, and the design

42 COMPUTER ENGINEERING

CUSTOM DESIGN

STANDARD CELL

GATE ARRAY
(ASSUME A FAMILY)

STANDARD CIRCUITS.
LOGIC DESIGN

ROM/PLA DESIGN
USING COMBINATIONAL
DESIGN

MICROPROGRAMMING
STANDARD PARTS
DESIGN

PROGRAMMING

VLSI

CIRCUIT DENSITY

Figure 10. Manufacturing costs versus LSI circuit

density for various design techniques.

costs for methods which use combinational

techniques rather than programming tech-

niques. These latter methods, employing read-

only memories and programmable logic arrays,

will be discussed shortly. The most costly ap-

proach of all shown in Figure 10, excluding in-

tra-IC design, is design using standard circuits

and associated design techniques.

Design of Integrated Circuits (Intra- 1 C

Design)

Despite the prospects of higher design cost

with custom integrated circuits than with stand-

ard integrated circuits, and, in some cases,

higher manufacturing cost, there are numerous

reasons that a designer is often forced to design

integrated circuits. These are summarized in

Table 7.

There are some drawbacks to custom in-

tegrated circuit design. These are listed in Table

8.

The use of custom integrated circuits to re-

duce the number of discrete components or to

reduce the total number of integrated circuits in

a machine improves the reliability because the

reliability of a system is mostly a function of the

number of explicit physical connections, includ-

ing the bonds to the semiconductor die. Thus,
the anticipated reliability of two equal function-

ality designs can be compared by counting dis-

crete circuit pins, integrated circuit pins,

module pins, and connector pins.

Gate Array Design

The most straightforward and extensively

used intra-integrated circuit design method is to

modify an existing design. If this approach can-

not be used, the next most straightforward

method is to use arrays of gates and inter-

connect them to form the desired function. De-

sign with gate arrays occurs in a completely
defined environment because there is only one

circuit from which the gate is formed and the

gate can be completely characterized. The man-

ufacture of gate arrays is fairly simple because

the fabrication technique of all but the last few

semiconductor processing steps is identical for

all designs. The customization, accomplished

by interconnection of the gates by metal, is car-

ried out last. Interconnection is a well under-

stood aspect of logic design and is used to form

the more complex macrostructures (various

flip-flop types, adders, etc.) and then to form

the higher levels of design by using arrays of

gate arrays. A disadvantage of gate arrays is

that gate array design methods do not permit

the high density possible with the more custom

methods because device placement is fixed.

It should be noted that gate array design is

not a new idea brought about by the need for a

simple method of customizing large-scale in-

tegrated circuits. Instead, it was one of the de-

sign philosophies advocated in the first few

generations. The concept then was to have a

single module containing a set of gates, and all

subsequent logic design would be done in terms

of that module. For example, flip-flops would

be constructed by interconnecting the gates. A
design predicated on a single module type im-

mensely simplifies the spare stocking and ser-

vicing aspects, and it is possible to troubleshoot

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 43

Table 7. Reasons To Do Custom Integrated Circuit Design

1. A performance advantage can be gained.

2. Product life cycle costs can be lower if diagnosability and reliability features are added.

3. Diagnostic labor can be a high percentage of printed circuit board manufacturing cost. Diagnosis to the chip level

can be sped up by features within the chip, and by a lower chip count, with a resultant lower manufacturing cost.

4. Data buses can be absorbed entirely within a chip to avoid bus interface costs. Even shortening a data bus from

multi-board to single-board length may reduce cost and/or improve performance by reducing stored energy and its

attendant drive/speed penalties.

5. Innovations concealed within a chip are difficult for competitors to study and duplicate.

6. Performance barriers may be breakable only through custom large-scale integration. In central processor design

especially, and perhaps for certain memory interface applications, a custom integrated circuit approach may be the

only practical way to get around conflicting issues of size, power, capacitance, etc.

7. In some engineering environments there are extremely small amounts of space or very little power.

Table 8. Reasons Not To Do Custom Integrated Circuit Design

1. For designs in the 100-500 equivalent gate complexity range, it may take up to a year to do the design with

primitive design tools.

2. For designs in the 100-500 equivalent gate complexity range, it may take up to $100,000 to do the design.

3. Unless substantial product volumes are obtained, the chip cost will be high relative to off-the-shelf chips.

4. A decision will have to be made whether to have the design done by an outside vendor or within the company. This

can be a very complicated and expensive decision.

5. The logic design and logic partitioning for large-scale integrated circuit design is different from that of conventional

logic design, and designers used to dealing with conventional design will have to assimilate new knowledge to

design large-scale integrated circuits themselves or even to talk with integrated circuit designers.

a problem by simply replacing circuits accord- Type 1

ing to a pattern. Designers did not find these • 3 external driver gates (4-input NAND)
advantages important enough at that time, • 5 internal driver gates (3-input NAND)
however, so the gate array concept was set aside • 5 internal expansion gates (3-input
until it was rediscovered by integrated circuit NAND)
designers. Type 2

A representative gate array is a Raytheon • 2 external driver gates (4-input NAND)
RA-1 16. It has 300 TTL Schottky gates, of two • 5 internal driver gates (3-input NAND)
cluster configurations, each repeated twelve • 5 internal expansion gates (3-input
times within the 160 mil X 160 mil chip: NAND)

44 COMPUTER ENGINEERING

Within each cluster, the expansion gates may
be combined with the driver gates to form 7 or 8

input NAND gates and AND-OR-INVERT
circuits with up to six product terms. The gates

have a typical propagation delay of 5-6 nanose-

conds and dissipate 5.5-6 milliwatts per driver

and 1 miUiwatt per OR expander. Two metal

layers are used for interconnect, and the result-

ing circuitry can be connected to the outside

world by means of 56 external pins, including

power and ground.
Because the use of integrated circuit gate ar-

rays is recent, data on package count reduction

is scarce, but one informal study for the Ray-
theon RP-16 aerospace computer measured a

nine to one replacement ratio and an overall im-

provement by a factor of 2 over a system con-

structed with standard components [Parke,

1978].

A 920-gate MOS array of 3 input NOR gates

has been reported by Nakano et al, [1978]. Its

3-nanosecond gate delay illustrates the per-

formance potential as the metal oxide semi-

conductor process continues to progress toward

smaller, faster gates. For truly high speed appli-

cations, an ECL gate array can be used. These

devices, with subnanosecond speeds, exploit the

inherent properties of current mode logic to ob-

tain a particularly flexible element [Gaskill et

al.. 1976].

Standard Cell Design

An alternative to gate array design is stand-

ard cell design. Standard cell design is identical

to the logical design of the first few generations
because there is a previously designed, well

characterized set of primitive components
(AND gates, flip-flops) in which the design is

carried out. The advantage of the standard cell

design methods is that special functions can be

mixed on the chip in greater variety. There may
also be a density advantage over gate arrays.

However, in some schemes each cell occupies a

different space and has a fixed shape. Careful

planning of the cell arrangements is necessary
to minimize loss of space. Hence, the improve-
ment in packing density is not as substantial as

direct comparisons between standard cell tech-

nology and gate array technology might at first

indicate. In addition, if there are a large number
of circuit types, their interconnection rules may
not be characterized well enough to achieve a

quick, cheap design that works the first time.

Custom Design

Custom design is in some ways a variant of

the standard cell because designers typically

have a set of favorite circuits which they inter-

connect to create designs for specified appli-

cations. With custom design, the designer can

(theoretically) specify a circuit for each use

within a particular logic design. For example,

upon observing that a particular gate or flip-

flop only drives a certain load, the designer can

modify that gate or flip-flop to provide only the

appropriate driving capability. Therefore, with

custom design, the whole integrated circuit can

theoretically be an optimum size, since each

part is no larger than it need be. The advantages
are clearly size, cost, and speed. The design

costs are high because each part can, in prin-

ciple, be customized. The quality of the circuit

design is totally dependent on the designer, who
must analyze each circuit geometry in terms of

his expectation of performance, operating mar-

gins, etc. To the extent that this analysis is car-

ried out, the circuit is clearly optimal.

Universal Logic Arrays, PROMs, and ROMs

Also shown in Figure 9 is a hypothetical line

for universal logic arrays. For at least 15 years,

academicians have studied the possibility of de-

signing a single array of logical design elements,

or a collection of such arrays, that could be in-

terconnected on a custom basis to carry out a

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 45

given function. The gate array can be looked at

as the simplest example of this type of design.

While many are skeptical that such a device ex-

ists, a line representing it is placed on the graph
as a target for those who search for the one

truly universal logic array.

Both programmable read-only memories and

masked read-only memories are commonly
used, but trivial, forms of the truly universal ar-

rays, because they can be used in a table lookup
fashion to create several functions of a number
of input variables. For example, a 1,024 word

read-only memory arranged in a 256 X 4-bit

fashion can generate 4 independent functions of

8 variables. This is a distinct alternative for us-

ing a conventional gate structure to carry out

combinational functions. A disadvantage of

this method is that the required read-only mem-

ory size doubles for each additional input vari-

able.

Programmable Logic Arrays

The progammable logic array (PLA) is a

combinational circuit which remedies the dis-

advantages of the read-only memory implemen-
tation of combinational functions by allowing
the use of product terms rather than completely

decoding the input variables. Figure 1 1 shows a

typical circuit, which consists of separate AND
and OR arrays. Inputs are connected to the

AND array, and outputs are drawn from the

OR array. Each row in the programmable logic

array can implement an AND function of se-

lected inputs or their complements, thus form-

ing a Boolean product term, and the OR array
can combine the product terms to implement
any Boolean function.

A simple application is operation-code de-

coding. For the PDP-11, the 16-bit Instruction

Register could be directly connected to a pro-

grammable logic array and the output thereof

used to specify the address of the microprogram
that executed that instruction. Three different

types of operation-code decoding are custom-

arily applied to PDP-11 instructions: source

mode decoding, destination mode decoding,
and instruction decoding. With a program-
mable logic array implementation, a PLA could

be used for each of these decoding operations,

and only three chips would be required. A read-

only memory implementation, on the other

hand, would require 128 K X 8 bits for address

mode decoding and 64 K X 8 bits for instruc-

tion decoding. Using 2 K X 8-bit read-only

memories, 33 chips would be required. For this

reason, modern minicomputers, such as the

PDP- 11/34, use programmable logic arrays

rather than read-only memories or com-
binational logic for instruction decoding. The

technique is also extended downward into mi-

crocomputers such as the LSI-11, where pro-

grammable logic arrays are used to conserve the

die area used by the microcomputer control

units.

The programmable logic array becomes an

even more useful building block when it is made
field programmable - the FPLA. The program-
mable connectors shown in Figure 11 are fu-

sible nichrome links that are burned out when
the unit is programmed.

When a register is added to the outputs of the

programmable logic array and incorporated in

the same integrated circuit, a simple sequential

machine is obtained in one package. Since regis-

ter circuit packages are pin intensive, adding

registers to programmable logic arrays (or to

read-only memories) permits about a factor of 2

package count reduction in typical applications.

The first programmable logic arrays had

propagation times of the order of 150 nanose-

conds and were thus suitable building blocks

for slow, low-cost computers. Propagation
times of 45 nanoseconds are quite common to-

day, and the programmable logic array is now
more widely used. An attractive application

with these higher speed components is the re-

placement of the small-scale integration and

46 COMPUTER ENGINEERING

ri5C

.7^
AND

MATRIX

PnOGRAMMABLE
CONNECTORS

'

a V
48

"""
()

I , MATRIX

OR V
MATRIX : -1-

^E»-.

MAGNETIC

^ A AHIERARCHY y OPEN // \ plOPPY \STORE / REEL / / \
^°

^^„^\
CASSETTE AUDIO # VIDEO ^i

RIGID FLEXIBLE

MEDIA MEDIA

OPEN
REEL f CARDS

MOVING FIXED

NOULLI HEAD HEAD

INSTRUMENTATION

CARTRIDGE
A\

Figure 1 1 . Signetics field programmable logic array

(FPLA) (courtesy of Signetics Corporation, from Signetics

Field Programmable Logic Arrays - An Applications

Manual. February 1977; copyright
® 1977 by Signetics

Corporation).

Figure 1 2. Family tree of memory technology (courtesy

of Memorex Corporation and S.H. Puthuff, 1977).

medium-scale integration packages used to im-

plement the control logic for Unibus arbitration

in PDP-11 computers.

A more complex application than instruction

decoding has been documented [in Logue et al.,

1975]. An IBM 7441 Buffered Terminal Con-

trol Unit was implemented using program-
mable logic arrays and compared with a version

implemented with small- and medium-scale in-

tegration. The programmable logic array design

included two sets of registers fed by the OR ar-

ray (PLA outputs): one set fed back to the

AND array (PLA inputs); the other set held the

PLA outputs. A factor of 2 reduction in printed

circuit board count was obtained with the pro-

grammable logic array version. The seven pro-

grammable logic arrays used in the design

replaced 85 percent of the circuits in the small-

and medium-scale intregration version. Of these

circuits, 48 percent were combinational logic

and 52 percent were sequential logic.

MEMORY TECHNOLOGY
The previous section discussed the use of

memory for microprogramming and table

lookup in logic design, but that is not the princi-

pal use of memory in the computer industry.

The more typical use of memory components is

to form a hierarchy of storage levels which hold

information on a short-term basis while a pro-

gram runs and on a longer term basis as per-

manent files. Figure 12 shows the various

technologies employed in these memory appli-

cations. Although the principal focus of this

section is on core and semiconductor memories,

slower speed electromechanical memories

(drums, disks, and tapes) are considered super-

ficially, as their performance and price im-

provements have pushed the computer
evolution. Because the typical uses for memory
usually require read and write capabilities,

write-once or read-only memory such as video

disks is excluded from the discussion.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 47

Measurement Parameters

Because memory is the simplest of com-

ponents, it should be possible to discuss mem-

ory using a minimal number of measurement

parameters. One of the most important parame-
ters is the state of development of the memory
technology at the time the other parameters are

measured, relative to the likely life span of that

technology. Unfortunately, this is one of the

most difficult parameters to quantify, although
its effects are readily observable, principally in

the rate of change of the other parameters asso-

ciated with that technology. Thus, in new tech-

nologies many of the parameters vary rapidly
with time. This is particularly true of semi-

conductor memory price, which has declined at

a compound rate of 28 percent per year (which
amounts to about 50 percent in two years). The

price is expressed only as price/bit, but it is im-

portant to know the price (or size) of the total

memory system for which that price applies. To

get the lowest price per bit, a user may be forced

to a large system because of economy of scale.

Performance for cyclical memories, both the

electromechanical types such as disks and the

electronic types such as bubbles, is expressed in

two parameters: the time to access the start of a

block of memory and the number of bits that

can be accessed per second after the transfer be-

gins. Other parameters, such as power con-

sumption, temperature sensitivity, space

consumption, and weight, affect the utility of

memories in various applications. In addition,

reliability measures are needed to see how much

redundancy must be placed in the memory sys-

tem to operate at a given level of availability

and data integrity.

In summary, the relevant parameters for a

given memory are:

1 . State of development of the technology
at the time the measurements are taken

relative to the likely life span of the tech-

nology.

2. Price per bit.

3. Total memory size or total memory
price.

4. Performance.

a. Access time to the first word of the

block.

b. Time to transfer each word (data

rate) in the block.

5. Operational power, temperature, space,

weight.

6. Volatility.

7. Reliability and repairability.

As indicated by the rapidity of the parameter

changes, a good example of a technology that is

young relative to its expected total lifetime is

semiconductor memory. Figure 7 gives past

prices and expected future prices of semi-

conductor memory. As mentioned above, these

memories have declined in price every two years

by 50 percent, and that rate of decline is ex-

pected to continue well into the 1980s because

of continued increases in semiconductor den-

sities. Figure 13, a graph by Dean Toombs of

Texas Instruments, shows memory size versus

performance with time for random-access mem-
ories, and cyclically accessed charge-coupled
devices (CCDs) and magnetic bubbles.

Core and Semiconductor Memory
Technology for Primary Memory

The core memory was developed early in the

first generation for Whirlwind (1953) and re-

mained the dominant primary memory com-

ponent for computers until it began to be

superseded by semiconductor technology. The
advent of the 1-Kbit memory chip in 1972

started the demise of core as the dominant

primary memory medium, and the crossover

point occurred for most memory designs with

the availability of the 4-Kbit semiconductor

chip in 1974.

Over the period since the early 1960s, the

price of core memory declined roughly at a rate

48 COMPUTER ENGINEERING

RANDOM ACCESS SERIAL ACCESS

PERIPHEHAL-

I

1 100 1.000

ACCESS TIME (MICROSECONDS)

Figure 1 3. Memory size versus access time for various

memories and yearly availability (courtesy of Dean

Toombs, Texas Instruments, Inc.).

CORE/SEMICONDUCTOR
MEMORY CROSS OVER
TIME

Figure 14. Cost per bit of core memory estimated by
various market surveys and future predictions.

of 19 percent per year. This decline can be seen

in the DEC 12-bit machine memory prices, the

DEC 18-bit machine memory prices, and in the

IBM 360/370 memory prices (since 1964). The

price of PDP-10 memory has decUned at 30 per-

cent per year, although it is unclear why. A pos-

sible reason is that the modular memory
structure had a high overhead cost; with sub-

sequent implementations, the memory module

size was increased, thereby giving an effective

decrease in overhead electronics and packaging
costs and a greater decrease in the cost per bit.

The cost of various memories was projected

by several technology marketing groups in the

period 1972-1974. Each study attempted to

analyze and determine the core/semiconductor

memory crossover point. Three such studies are

plotted in Figure 14 along with Turn's [1974]

memory price data and Noyce's [1977a] semi-

conductor memory cost (less overhead electron-

ics) projection. Most crossover points were

projected to be in 1974, whereas one study

showed a 1977 crossover. Even though all stud-

ies were done at about the same time, the varia-

tion in the studies shows the problem of getting

consistent data from technology forecasts.

While these graphs of core and semi-

conductor prices and performance permit an

understanding of trends in the principal use

areas for these devices, additional information

is needed for disk and tape memory in order to

complete the collection of memory technologies

that can be used to form a single memory hier-

archy.

Disk Memories

Disk memories are a significant part of most

systems costs in the middle-range minicomputer

systems; in larger systems, they dominate the

costs.

Although access time is determined by the

rotational delays and the moving head arm

speed, the single performance metric that is

most often used is simply memory capacity and

the resultant cost/bit. In the subsequent section

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 49

on memory hierarchies, it will be argued that

performance parameters are less important
than cost because more higher speed memory
can be traded off to gain the same system level

performance at a lower cost.

Memory capacity is measured in disk surface

areal density (i.e., the number of bits per in^)

and is the product of the number of bits re-

corded along a track and the number of tracks

of the disk. Figure 15 shows the progress in

areal recording densities using digital recording
methods. Figure 16 shows the price of the state-

of-the-art large, multiple platter, moving head

disks. Note that the price decHne is a factor of

10 in 9 years, for a price decUne of 22 percent

per year.

Figure 17 shows the performance plotted

against the price per bit for the technology in

1975 and 1980.

10

50 COMPUTER ENGINEERING

Magnetic Tape Units

Figure 18 shows the relevant performance
characteristics of magnetic tape units. The data

is for several IBM tape drives between 1952 and

1973. It shows that the first tape units started

out at 75 inches per second and achieved a

speed of 200 inches per second by 1973. Al-

though this amounts to only a 5 percent im-

1.000

(10.0001

100

(1.0001

DATA-RATE f~1

(29%/YEAR) ,"

RECORDING
DENSITY

(23%/YEAR)

TAPE SPEED
IS%AEARI

A
D

TAPE UNIT SPEED
(inches/second!

TAPE RECORDING DENSITY
(characters/inch)

TAPE DATA RATE

(KbYtes/second)

provement per year in speed over a 21 -year

period, this is a rather impressive gain consid-

ering the physical mass movement problems in-

volved. It is akin to a factor of 3 improvement
in automobile speed.

The bit density (in bits per linear inch) has

improved from 100 to 6,250 in the same period,

for a factor of 62.5, or 23 percent per year. With

the speed and density improvements, the tape

data rate has improved by a factor of 167, or 29

percent per year.

Tape unit prices (Figure 19) are based on the

various design styles. Slow tape units (mini-

tapes) are built for lowest cost. The most cost

effective seem to be around 75 inches per sec-

ond (the initial design), if one considers only the

tape. High performance units, though dis-

proportionately expensive, provide the best sys-

tem cost effectiveness.

Memory Hierarchies

A memory hierarchy, according to Strecker

[1978:72], "is a memory system built of a num-

ber of different memory technologies: relatively

small amounts of fast, expensive technologies

and relatively large amounts of slow, in-

expensive technologies. Most programs possess

the property of locality: the tendency to access a

3
1

-

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 51

small, slowly varying subset of the memory lo-

cations they can potentially access. By exploit-

ing locality, a properly designed memory
hierarchy results in most processor references

being satisfied by the faster levels of the hier-

archy and most memory locations residing in

the inexpensive levels. Thus, in the Hmit a mem-

ory hierarchy approaches the performance of

the fastest technology and the per bit cost of the

least expensive technology."
The key to achieving maximum performance

per dollar from a memory hierarchy is to de-

velop algorithms for moving information back

and forth between the various types of storage
in a fashion that exploits locality as much as

possible. Two examples of hierarchies which de-

pend on program locality for their effectiveness

are the one level store (demand paging), first

seen on the Atlas computer [Kilburn et al.,

1962], and the cache, described by Wilkes

[1965] and first seen on the IBM 360/85 [Lip-

tay, 1968]. Because both of these are automat-

ically managed (exploiting locality), they are

transparent to the programmer. This is in con-

trast to the case where a programmer uses sec-

ondary memory for file storage: in that case, he

explicitly references the medium, and its use is

no longer transparent.

Table 9 lists, in order of memory speed, the

memories used in current-day hierarchies.

Table 9. Computer System Memory Component and Technology

Part

Transparency
(To Machine

Language
Programs)

Characteristics on

Which Its Use is

Based

Microprogram memory

Processor state

Alternative processor state

context

Cache memory

Program mapping and

segmentation

Primary (program) memory

Paging memory

Local file memory

Archival files memory

Yes

No

Yes

Yes

Yes

No

Yes

No

Yes (preferably)

Very fast

Very small, very fast register set (e.g., 1 6 words)

Same (so speed up processor context swaps)

Fast. Used in larger machines for speed.

Small associative store

Relatively fast, and large depending on proces-

sor speed

Can be electromechanical, e.g., drum, fixed head

disk, or moving head disk. Can be CCD or bub-

bles.

Usually moving head disk, relatively slow, low

cost.

Very slow, very cheap to permit information to

be kept forever.

52 COMPUTER ENGINEERING

There is a continuum based on need together

with memory technology size, cost, and per-

formance parameters.

The following sections discuss the individual

elements of the heirarchy shown in Table 9.

Microprogram Memories. Nearly every

part of the hierarchy can be observed in the

computers in this book. Part III describes PDP-
1 1 implementations that use microprogram-

ming. These microprogram memories are trans-

parent to the user, except in machines such as

the PDP- 11/60 and LSI- 11 which provide user

microprogramming via a writable control store.

Mudge (Chapter 13) describes the writable con-

trol storage user aspects associated with the

1 1/60 and the user microprogramming.

In retrospect, DEC might have built on the

experience gained from the small read-only

memory used for the PDP-9 (1967) and ex-

ploited the idea earlier. In particular, a read-

only memory implementation might have pro-
duced a lower cost PDP- 11/20 and might have

been used to implement lower cost PDP- 10s

earlier.

In principle, it is possible to have a cache to

hold microprograms; hence, there could be an-

other level to the hierarchy. At the moment, this

would probably be used only in high cost/high

performance machines because of the overhead

cost of the loading mechanism and the cache

control. However, like so many other technical

advances, it will probably migrate down to

lower cost machines.

Processor State Registers. To the machine

language program, the number of registers in

the processor state is a very visible part of the

architecture. This number is solely dictated by
the availability of fast access, low cost registers.

It is also occasionally the means of classifying

architectures (e.g., single accumulator based,

general register based, and stack based).

In 1964, even though registers were not avail-

able in single integrated circuit packages, the

PDP-6 adopted the general register structure

because the cost of registers was only a small

part of the system cost. In Chapter 21 on the

PDP- 10, there is a discussion of whether an ar-

chitecture should be implemented with general

registers in an explicit (non-transparent) fash-

ion, or whether the stack architecture should be

used. Although a stack architecture does not

provide registers for the programmer to man-

age, most implementations incur the cost of reg-

isters for the top few elements of the stack. The

change in register use from accumulator based

design to general register based design and the

associated increase in the number of registers

from 1 to 8 or 16 can be observed in com-

parisons of the 12-bit and 18-bit designs with

the later PDP- 10 and PDP-11 designs.

Alternative Processor State Context

Registers. As the technology improved, the

number of registers increased, and the proces-

sor state storage was increased to provide mul-

tiple sets of registers to improve process context

switching time.

Cache Memory. In the late 1960s, the cache

memory was introduced for large scale com-

puters. This concept was then applied to the lat-

est PDP-10 processor (KLIO). It was applied to

the PDP- 1 1/70 in 1975 when the relatively large

(1 Kbit), relatively fast (factor of 5 faster than

previously available) memory chip was in-

troduced. The cache is described and discussed

extensively in Chapter 10. It derives much

power by the fact that it is an automatic mecha-

nism and is transparent to the user. It is the best

example of the use of the principle of memory
locality. For example, a well designed cache of 4

Kbytes can hold enough local computational

memory so that, independent of program size,

90 percent of the accesses to memory are via the

cache.

Program Mapping and Segmentation. A
similar memory circuit is required to manage
(map) multiprogrammed systems by providing
relocation and protection among various user

programs. The requirements are similar to the

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 53

cache and may be incorporated in the caching
structure. The PDP-10 models with the KIIO

processor use an associative memory for this

mapping function, and the VAX 1 1/780 uses a

64-entry, 2-way associative memory.

Paging Memory. The Atlas computer [Kil-

burn, et al., 1962] was designed to have a single,

one level, large memory. This structure ulti-

mately evolved so that multiple users could

each have a large virtual address and virtual

machine. The paging mechanism works because

of the locality exhibited by program references.

Denning pointed out the clustering of pages for

a given program at a given time and introduced

the notion of the working set [1968]. For most

programs, the number of pages accessed locally

is small compared with the total program size.

Initially, a magnetic drum was used to imple-
ment the paging memory; but as disk tech-

nology began to dominate the drum, both fixed

head and moving head disks (backed up with

larger primary memories) were used as the pag-

ing memories. Denning's tutorial article [1970]

is an excellent discussion of this section of the

memory hierarchy. In the next few years, the

relatively faster and cheaper charge coupled de-

vice semiconductor memories and bubble mem-
ories are clearly the candidates for paging
memories. Hodges [1975] compares the candi-

dates for paging memory in terms of reliability,

power, cost per bit, and packaging.

Local File Memory and Archival File

Memory. For local file memory in medium-
sized to large-scale systems there is no alterna-

tive to disks. Archival files, however, are usu-

ally kept on magnetic tapes, which permit files

to be stored cheaply on an indefinite basis.

There are usually fewer memory technologies
used in smaller systems than in larger systems
because the smaller systems cannot afford the

overhead costs (disk drives, tape drives, etc.) as-

sociated with the various technologies. At most,
two levels of storage would probably exist as

separate entities in smaller systems.

Alternatively, one might expect a com-
bination of floppy disk, low cost tape, and mag-
netic bubbles to be used to reduce the primary

memory size and to provide file and archival

memory. Currently, the floppy disk operates as

a single level memory. Here there are two alter-

natives for technology tradeoff using parts in

the hierarchy: a tape or floppy disk can be used

to provide removability and archivability,

whereas bubbles or charge-coupled devices can

be used to provide performance. The Strecker

paper [1978] quoted at the beginning of this sec-

tion on memory hierarchies elaborates on these

concepts.

MEASURING (AND CREATING)
TECHNOLOGY PROGRESS

The previous sections have presented tech-

nology in terms of exponentially decreasing

prices and/or exponentially increasing perform-
ance. This section presents a basis for this con-

stant change rate. The progress of a particular

technology as a function of time, T\t), has been

classically observed to be:

T(t}
= K X e ct

where K = the base technology at the beginning
of the time frame, and c = a learning constant.

This can be converted to a yearly improvement
rate, r, by changing the base of the exponential
to:

T(t)
= TX r t-tO

where T = the base technology at tO. and r =

yearly increase (or decrease) in the technology
metric.

This is the same form used for declining (or in-

creasing) cost from base c:

C = c Xr^-^0

54 COMPUTER ENGINEERING

Clearly there are manufactured goods that

neither improve nor decrease in price exponen-

tially, although many presumably could with

the proper design and manufacturing tooling

investments. The notion of price decline is com-

pletely tied to the cumulative learning curves of:

(1) people building a product for a long time,

(2) process improvement based on learning to

build it better, and (3) design improvement by

engineers learning from the history of design.

Production learning per se is inadequate to

drive cost and prices down because, after an ex-

tremely long time in production, more units

contribute little to learning. With inflation in la-

bor costs, the costs actually rise when the learn-

ing is flat. In order to provide a base for

predicting the inflationary effect, the consumer

price index has been plotted in Figure 20.

Learning curves do not appear to be under-

stood beyond intuition. They are (empirical)

observations that the amount of human energy.

En, required to produce the «th item is:

En = KXn^

where K and d are learning constants. Thus, by

producing more items, the repetitive nature of a

task causes learning, and the time (and perhaps

cost) to produce an item decreases with the

number produced and not with the calendar

time in which an object is produced.
In his study of technology progress, Fusfeld

[1973] took six items, chose a measure of prog-

ress in the production thereof, and plotted that

measure against cumulative units produced. In

each case, he found a relationship of the form:

n = a X /
^

where / is the number of units produced and 77

is the value of his selected technology progress

measure at the rth unit - the same as the learn-

ing curves would predict.

The graph for turbojet engines, where he used

fuel consumed per pound as the technology

measure, is reproduced in Figure 21. The results

for all six items studied are shown in Table 10.

Where two values are given for the tech-

nology progress constant, a second rate of prog-

ress was observed after a significant shift in the

industry occurred. For example, such a shift oc-

curred in the automobile industry in the late

1920s when the acceptance of the automobile,

the development of a new tire, and the expan-
sion of the public road network operated con-

currently to change the nature of the industry.

-

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 55

Examination of the table will reveal sub-

stantial variations in the technology progress

constant from item to item. This is probably be-

cause most of the technologies represented

above are mechanically oriented with associ-

ated physical limits. Computer technology is

electronically oriented and has not yet reached

its limits. In essence, the table is comparing sys-

tems constrained by Newton's Laws with those

constrained by Maxwell's Equations.

Using the two formulas.

and

T{t)
= KX e^i

Ti = aX i

Fusfeld [1973] related the unit learning curve

concept to the more conventional, timely view

of technology progress when the number of

units produced increases exponentially with

time, that is, relations expressed in the first two

formulas are equivalent when the condition ex-

pressed by the following formula holds:

/ = gc/bxt

This previous formula indicates that the pro-
duction rate is a constant fraction of the total

production to date -
i.e., production occurs

with exponential growth.
While the Fusfeld information shows inter-

esting results, it does not explain why tech-

nology improves exponentially, nor does it

explain why cost declines exponentially. Learn-

ing curves and an exponential increase in the

quantity of items produced may depress cost,

but simple production learning does not ac-

count for the rapid technology changes in the

integrated circuit, for example, where totally

different production processes have been

evolved to support the greater technology.
In the computer industry, the mobility of

technical personnel from company to company
has certainly been a significant factor in tech-

nology innovation. The strongest force toward

technology innovation in the computer in-

dustry, however, has been the computer users.

They have been doing a significant portion of

the inventing, both in hardware development
and in software development. Although the

case studies in this book indicate several specific

places where users have influenced hardware

design, it would be a substantial oversight not

to mention the profound effect users had on the

creation of PL/1 and COBOL. Furthermore, all

applications work is done first by users and

then developed by manufacturers at a later date

along the lines of the above model.

The Influence of Technology Innovation on
Cost

The cost of computing is the sum of the costs

which correspond to the various levels-of-in-

tegration described in Chapter 1, plus the oper-
ational costs. The levels are integrated circuits,

Table 10. Fusfeld's [19731 Measures of Technology Progress

56 COMPUTER ENGINEERING

boards, boxes, cabinets, operating systems,

standard languages, special languages, appli-

cations components, and applications. In prac-

tice, each additional level-of-integration is often

looked at as overhead. Using standard account-

ing practice, the basic hardware cost, at the low-

est level, is then multiplied by an overhead

factor at each subsequent outer level. While an

overhead-based model may work operationally

for a stable set of technologies, such a model

will not adequately allow for rapidly evolving

technologies or the elimination of levels. By ex-

amining each level, observations can be made
about the use and substitution of technology.

More importantly, conclusions can be drawn

about how structures are likely to evolve.

Cost, Performance, and Economy of Scale

For most technologies used in the computer

industry, there is a relationship between cost,

performance, and economy of scale:

Performance = A: X cost-^ X r^

where k = base case performance, s = economy
of scale coefficient, r = rate of improvement of

technology, and t = calendar time.

There are four possibilities for the effect of

economy of scale on the production of any de-

vice. These are:

1. Economy of scale holds. A particular

object can be implemented at any price,

and the performance varies exponen-

tially with price.

Performance = k X price •^; 5 > 1

2. Linear price performance relationship.

a. Performance = k X price

b. Performance = base + K X price

3. Constant performance, price independ-
ent.

Performance = k

4. Only a particular device has been imple-

mented. The performance (or size) is a

linear sum of such devices.

Performance = n X (k X price)

Sometimes, economy of scale effects are ob-

served in situations where they would not nor-

mally be expected. For example, assume a

performance improvement feature exists that

costs the same whether it is added to a large

computer or added to a small computer. Add-

ing that feature to a product that is already high

priced will have a modest effect (say 5 percent)

on the cost but a substantial effect (say 100 per-

cent) on the performance. Adding the same

constant cost feature to a lower cost product
will have a substantial effect (say 200 percent)

on the cost but only a performance effect (again

100 percent) similar to that obtained with the

higher cost system. This condition is especially

true in disks and computer systems. Use of a

particular recording method employing costly

logic for encoding/decoding, or addition of a

cache memory, is often employed to the high

priced systems first. With time and learning, the

technique can then be applied to lower cost sys-

tems. For example, cache, a nearly perfect ex-

ample of the constant cost add-on, first

appeared in such large machines as the IBM

360/85 in 1968 and later migrated down to large

minicomputers such as the PDP-1 1/70 in 1975.

On a research basis, cache even reached the

small minicomputer, the cache-based PDP-8/E
at Carnegie-Mellon University (Chapter 7).

In Figure 22, the cost of the lowest price unit

is kept to a minimum and decreases, while the

cost of the mid-range product continues to in-

crease. The cost of the highest performance

product increases the most, because it can af-

ford the overhead costs. Looking at the basic

technology metric, there are really three curves,

as shown in Figure 23. The first curve repre-

sents the application of new technology to a

high cost/high performance product to get a

substantial performance improvement. With

time, the technology evolves and is reapplied to

the mid-range products (the first level copy),

and finally, several years later, the technique be-

comes commonplace and is applied to low cost

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 57

Figure 22. Cost versus time.

Figure 23. Technology versus time.

58 COMPUTER ENGINEERING

a substitute is found. The following is a list of

some of the substitutions that have occurred:

1. Semiconductor memories are now used

in place of core memories. Since the lat-

ter has evolved more slowly in terms of

price decline, semiconductors are now
used to the exclusion of cores. (This has

not occurred where information must be

retained in the memory during periods

of time without power.)

2. Read-only semiconductor memories are

now substituted for semiconductor logic

elements.

3. In a similar way, programmable logic ar-

rays can be potentially substituted for

read-only memories, and true content

addressable memories can replace vari-

ous read-write and read-only memories.

4. The judicious use of charge-coupled de-

vices or bubble memories can cause

drastic reduction (and quite possibly the

elimination) of the use of MOS random-

access memories for primary memory.
The fixed head disk could be eliminated

at the same time.

5. For small systems, the main operational

memories could be completely nonelec-

tromechanical; electromechanical mem-
ories (e.g., tape cassettes and floppies)

would be used for loading files into the

system and for archives. For even lower

cost systems, semiconductor read-only

memories could replace cassettes and

floppies for program storage, as in pro-

grammable calculators.

After a while those components of computer

system cost which are decreasing less rapidly

than other components, remaining static, or are

rising (like the packaging and power) may be-

come a significant fraction of the total cost. Be-

cause costs are additive, the exponential
decrease in some costs, such as those for semi-

conductor logic and memories, will cause the

costs that are not similarly decreasing to be

more evident. This causes pressure for struc-

tural change and may cause new packaging, for

example, to become an especially important at-

tribute of a new design. For instance, although

the PDP-8 is normally considered to be the first

minicomputer, it postdates the CDC 160 (1960)

and DEC'S PDP-5 (1963). However, the PDP-8

was unique in its use of technology because:

1 . It eliminated the full frame cabinets used

by other systems. This also presented a

new computer style such that users could

embed the computer in their own cabi-

nets. A separate small box held the pro-

cessor, memory, and many options.

2. Automatic wire-wrap technology was

used to reduce printed circuit board in-

terconnection cost. This also eliminated

errors and reduced checkout time.

3. Printed circuit board costs were reduced

by using machine insertion of com-

ponents.

4. The Teletype Corporation Model 33

Automatic Send Receive (ASR) tele-

printer (also used on PDP-5) was con-

nected as the peripheral. It had a

combined printer, keyboard, and paper

tape I/O device (for program loading). It

eliminated the paper tape reader and

punch.

Technology Progress, Product

Development, and the State-of-the-Art Line

If there were no such thing as technological

progress, there would be no such thing as an

obsolete product. In such a situation, it would

not matter when a product was introduced into

the market, as it would be technically equal to

the other products available. In the computer

industry, this is far from the case: for computer

processors, peripherals, and systems, there is a

state-of-the-art line that indicates the average

technological level at which present products

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 59

are being offered. Since higher technology has

generally meant better price/performance, new

products introduced in the market must have a

proper relationship to the state-of-the-art line.

The following paragraphs elaborate on the in-

teraction between technology progress, product

development, and the state-of-the-art line.

The complete development process can be en-

visioned as a pipeline process with the following

stages: research, applied research, advanced de-

velopment (product breadboard), development,

test, sell/build, and use. In this model, ideas

and information flow through the various or-

ganizations in a process-like fashion, culminat-

ing in a product. Each product type has a

different set of delays associated with the parts

of the pipeline. At the end of the pipeHne, the

"education of use" delay occurs while the pros-

pective customers are taught how the product
meets their needs; this delay culminates in mar-

ket demand. For well defined, commodity-like

products such as disks and primary memory,
the education of use delay is zero, as each user

"knows" the product. For a new language, on

the other hand, there is a large education of use

delay, and the market demand usually develops

slowly.

The disk supply process is a good example of

the pipeline nature of the development process.

The technology (as measured by the number of

bits per areal inch) doubles about every two

years (i.e., the density improves 41 percent per

year). IBM is estimated to invest about 100 mil-

lion dollars per year in the development and as-

sociated manufacturing process pipelines.

Because of this massive investment, the IBM
disks essentially establish the state-of-the-art

line in a structure that is typified by Figure 23.

Using the pipeline development process, devel-

opment of competitive disks by other com-

panies would lie somewhere about four to six

years behind the state-of-the-art line. This can

be seen by looking at the development process

and taking into account the delays through each

stage. To be more competitive, the disk industry

short circuits various delays by engaging in re-

verse engineering; this results in only two-year

lags. In reverse engineering, the tools are mi-

crometers and reverse molds. At the time of the

first shipment of a new product by the tech-

nology leader, the product is purchased by com-

petitors and basically copied on a function per
function basis. The more successful designs use

pin for pin compatibility to take maximum ad-

vantage of the leader's design decisions.

From the process, it is also easy to see how

merely copying competitive products guaran-
tees products that will be at least two years be-

hind leadership products and lagging behind

the state-of-the-art. Nonetheless, if there is a

strong market function which operates to define

products based on existing product use, and if

the design and manufacturing process at the

copying company is quite rapid, such a strategy

can be effective. The copying process can also

be very effective for software products because,

while there are no delays associated with manu-

facture, the time to learn about the product pro-

vides a time window in which copiers can catch

up with the leaders.

A high technology, exponentially increasing

(volume) product is denoted by:

1. Exponential yearly cost improvement

(price decline) rates through product

technology improvements as measured

by price decline of greater than 20 per-

cent (e.g., disk price this year
= 0.8 last

year's disk price, CPU = 0.79, primary

memory =
0.7).

2. Short product life (less than 4 years).

3. Various types of learning curves. Some

products require very little learning,

while others require a great deal of learn-

ing or require re-learning because of per-

sonnel turnover or the frequent hiring of

additional personnel.

60 COMPUTER ENGINEERING

The Product Problem (Behind the State-of-

the-Art)

Typical product situations, including com-

petitive "problems," can be seen in Figure 25.

When a product is introduced to the market, it

has a relationship to the state-of-the-art line.

There are five possible situations:

1 . Ideal (on the state-of-the-art line).

2. Advanced (moves below the line).

3. Late (slip in time to the right).

4. Expensive (more than expected in cost,

straight above the line).

5. Late and expensive (to the right and

above the line).

Situations 3, 4, and 5 are product problems
because they are behind the state-of-the-art line

and, hence, less competitive. This implies in-

creased sales costs, lower margins, loss of sales,

and so on. Note that a late product could be

acceptable if somehow the cost were lower.

Similarly, an expensive product is acceptable if

it appears earlier in time.

EFFECTIVE LATENESS

EXPENSIVE
LATE AND EXPENSIVE

LATE >

IDEAL

ADVANCED

IDEAL NEXT
PRODUCT

EFFECTIVE
OVER COST

c = base Xr'. e.g.. c = 0.8*

?'>r

TIME (YEARS)

Figure 25. Use of the state-of-the-art line to model

product cost problems and timing problems.

Time Is Money (and vice versa)

Thus, product problems can be solved by ei-

ther:

1. Movement in time (left) to get on the

line.

2. Movement in cost (straight down) to get

on the line.

With exponential price declines, a family of

products over a long time will follow a cost

curve, c:

c = b X r'

where c = cost at time, / (in years), b = base

cost, and r = rate of price decline.

With dc = change in cost above (or below) to

get back to the state-of-the-art line and dt = de-

lay (or advance) in time to get back to the state-

of-the-art line, let:

/= dc/c
— fraction of cost away from line

/ =
1
— r^^ = (poor cost, expressed as

project slip)

and:

dt = \n (\
—
f) /\n(r)

=
(poor timing, ex-

pressed as poor cost)

These formulas permit the interchange of time

and money (cost). For example, in disks or cen-

tral processors where r = 0.8 and In. 8 = 0.22,

note:

/= 1 -O.S'^'

A one-year slip is equal to a 20 percent cost

overrun.

dt = - 4.45 X ln(l -/)

A 10 percent cost increase is equal to a 0.47-

year slip.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 61

Engineering, Manufacturing, and Inflation

Effects

Engineering, by establishing the product di-

rection, has the greatest effect on the product.

However, since most product problems may
have multiple components, it is worth looking
at each.

1 . Timing.

a. Engineering. Schedule slips translate

into a competitive cost problem as a

sub state-of-the-art, late product.

b. Manufacturing. Building up the

learning curve base quickly by mak-

ing many units before the design is

mature is risky, but it has a high

payoff when considering the appar-
ent cost and/or delay.

2. Cost.

A number of components and organiza-

tions contribute to the total product cost

in an evolutionary fashion, as shown in

Figure 26.

NET = f (LEARNING. TECHNOLOGY,
INFLATION, FUNCTIONALITY)

MANUFACTURING ASSEMBLY
(LEARNING)

NEW TECHNOLOGY,
MATERIALS

INFLATION FACTOR

INCREASE IN FUNCTIONALITY
(ENGINEERING)

Figure 26. The various components that contribute to

product cost.

a. Engineering. Perhaps the major de-

terminant of cost by the product de-

sign
- number of parts, ease of

assembly, etc. The most common
cost problems occur by continued

product enhancement during the de-

sign stage to provide increased func-

tionality (called "one-plussing the

design"). One-plussing often occurs

because the market had not been

modeled before the design was be-

gun, and without a model of the

market, engineering is a ship with-

out a rudder.

b. Manufacturing. Direct labor and

manufacturing overhead really mat-

ter when determining productivity.

Making major changes in the design

of a product or the location of man-

ufacture for a product starts a new

learning curve and serves to stretch

the production time out, and the in-

creased costs associated therewith

put false pressure on engineering to

design new products. One curve in

Figure 26 shows the direct costs as-

sociated with manufacturing assem-

bly. Some learning should take place

as long as product volumes increase

exponentially, to get a net lower

cost. New technology materials

show the greatest cost improvement
for computers, assuming that semi-

conductors and other electronic ma-

terials continue to improve with

time. By capital equipment invest-

ment (tooling), there can be stepwise

cost reductions in materials costs.

c. Inflation. While not a direct cost

function, it combines with labor cost

to negate the downward cost trends

that were obtained from learning ef-

fects.

62 COMPUTER ENGINEERING

d. Compound Cost. The costs are taken

altogether. In terms of a sub state-

of-the-art product, the costs are

compound.

3. Manufacturing learning. Learning curves

and forgetting curves really matter. Left

alone, a typical product may go down
three alternative paths (Figure 27):

a. c = bX 0.95^

(a decrease of 5 percent/year)

b. c = b

(staying constant with little atten-

tion)

c. c = bX \ .06^

(increasing with inflation as little

learning occurs after many units are

produced)
Where c = cost at time, / (in years), and

b = base cost.

Mid-Life Kicker for Product Rejuvenation

By enhancing an existing product (the "mid-

life kicker"), one can improve the

cost/performance metric of a given product.

This is non-trivial, and for certain products

must be inherent (i.e., designed in). Under these

conditions, improvements in cost go immedi-

ately to get the product back onto the state-of-

the-art line. For example, a factor of 2 in per-

formance halves cost/performance. The effect

of doubhng the density of a disk is to move the

product back to the state-of-the-art line by a

time shift. The preceding formula gives:

dt = 4.45 X In (0.5)
= 3.1 years

This situation is shown in Figure 28 and is com-

pared with a 5 percent per year learning curve.

SUMMARY
The discussions above have attempted to

show how technology progress, particularly in

the areas of semiconductor logic, semi-

conductor memories, and magnetic memory
media, have influenced progress in the com-

puter industry and have provided choice and

challenge for computer design engineers.

As was implied in the Structural Levels-of-

Integration and Packaging Levels-of-In-

tegration Views of Chapter 1, computer engi-

neering is not a one-dimensional undertaking
and is not simply a matter of taking last year's

circuit schematics and this year's semi-

conductor vendor catalogues and turning some
kind of design process crank. Instead, it is much
more complicated and includes many more di-

mensions.

Two additional dimensions with which a dis-

cussion of computer engineering must deal, be-

fore going on the DEC computers as case

studies, are packaging and manufacturing.

These are discussed in Chapter 3.

OBSOLESCENCE. M.
ATT

Packaging and Manufacturing
C. GORDON BELL, J. CRAIG MUDGE,

andJOHN E. McNAMARA

As indicated in the previous chapter, com-

puter engineering is more complicated than

simply applying new technology to existing de-

signs or designing new structures to exploit new

technology. To design a successful new com-

puter, the engineer must often deal with issues

of packaging, manufacturing, software com-

patibility, marketing, and corporate policy.

Some of these issues have been briefly referred

to in the first two chapters, and some are be-

yond the scope of this text. However, two issues

that can and should be discussed before explor-

ing the case studies are packaging and manufac-

turing. Both of these are crucial to DEC, as well

as to the computer industry in general.

GENERAL PACKAGING

Packaging is one of the most important ele-

ments of computer engineering, but also one of

the most complex. The importance of packag-

ing spans the size and performance range of

computers from the super computers (CDC
6600, CDC 7600, Cray 1) to the pocket calcu-

lator. Seymour Cray, the designer of the super

computers cited, has described packaging as the

most difficult part of the computer designer's

job. The two major problems he cites are heat

removal and the thickness of the mat of wires

covering the backplane. (The length of the wires

is also important.) His rule of thumb indicates

that with every generation of large computer

(roughly five years), the size decreases by

roughly a factor of 5, making these problems

yet worse. In his latest machine, the Cray 1, the

C-shaped physical structure is an effort to re-

duce the time-consuming length of backplane
wires while providing paths for the freon cool-

ing system by having wedge-shaped channels

between the modules.

At the opposite end of the size and perform-
ance range, pocket calculators are also greatly

influenced by packaging. In fact, they are deter-

mined by packaging. The first hand-held scien-

tific calculator, the Hewlett-Packard HP35, was

simply a new package for a common object, the

calculator, which had been around for about a

hundred years. It was not until semiconductor

densities were high enough to permit implemen-
tation of a calculator in a few chips, and not

until those chips could be repackaged in a par-

ticular fashion, that the hand-held calculator

came into existence. Currently this embodiment

is synonymous with the calculator name, but

63

64 COMPUTER ENGINEERING

Other forms are appearing. The calculator

watch, the calculator pencil, the calculator

alarm clock, and the calculator checkbook have

all been advertised.

Between the two extremes of super computers
and calculators, packaging has also been impor-
tant in minicomputers and large computers. In

particular, packaging seems to be the dominant

reason for the success of the PDP-8 and the

minicomputer phenomenon, although market-

ing, the coining of the name, and the ease of

manufacture (also part of packaging) are alter-

native explanations. The principal packaging

advantage of the PDP-8 over predecessor ma-
chines was the half-cabinet mounting which

permitted it to be placed on a laboratory bench

or built into other equipment, both locations

being important to major market areas.

The Packaging Design Problem

The importance of packaging is equalled only

by its complexity. The complexity stems from

the range of engineering disciplines involved.

Packaging is the complete design activity of in-

terconnecting a set of components via a me-

chanical structure in order to carry out a given
function. To package a large structure such as a

computer, the problem is further broken into a

series of levels, each with components that carry
out a given function. Figure 1 shows the hier-

archy of levels that have evolved in the last

twenty years for the DEC computers. There are

eight levels which describe the component hier-

archy resulting in a computer system.
For each packaging level there is a set of in-

terrelated design activities, as shown in Figure
2. The activities are almost independent of the

level at which they are carried out, and some

design activities are carried out across several

levels.

While the initial design activities indicated in

Figure 2 are each aimed at solving a particular

problem, the solving of one problem in com-

puter engineering usually creates other prob-

INTERCONNECTION COMP^MENT HOLDING
1 / STRUCTURE

rEI*'

PCB AND MODULES
WIRE-WRAP BACKPLANES

(NOTE 3)

MODULE HOLDERS.
CONNECTORS

COMPONENT PACKAGES
DISCRETE OR IC

(NOTE 4)
PRINTED

CIRCUIT BOARD \

/
METAL, DIFFUSION
POLYSILICON

NOTES
1. Not present In second generation
2. Can be taken together as a single level in later generations
3. Sometimes hand wired
4. Third and fourth generations only

Figure 1 . Eight-level packaging hierarchy for second to

fourth generation computer systems.

lems as side effects. For example, the integrated

circuits and other equipment that do informa-

tion processing require power to operate. Power

creates a safety hazard and is provided by

power supplies that operate at less than 100 per-

cent efficiency. These side effects create a need

for designing insulators and providing methods

of carrying the heat away from the power sup-

ply and the components being powered. In this

way, cooling problems are created. Cooling can

be accomplished by conducting heat to an out-

side surface so that it may be carried away by
the air in a room. Alternatively, cooling can be

done by convection: a cabinet fan draws air

across the components to be cooled and then

carries the heated air out of the package into the

PACKAGING AND MANUFACTURING 65

COMPONENTS
INTERCONNECTION^
HOLDING STRUCTURE

.} "L

{
POWER CONVERSION
AND CONTROL PART}^

ELECTROMAGNETIC

MECHANICAL CHARACTERISTICS
(E G . VIBRATION. SIZE. WEIGHTI

ACOUSTIC NOISE

COST TO
• DESIGN • OPERATE
• MANUFACTURE • SERVICE
• BUY • MODIFY
• SHIP • DISCARD

VISUAL IMPRESSION
(SHAPE, COLOR, TEXTUREI

HUMAN INTERFACE

FUNCTIONAL BEHAVIOR AND
PERFORMANCE FOR TASK
(MAINLY LOGICAL ANO
MEMORY SYSTEM DESIGN!

RELIABLE SIGNAL TRANSMISSION

^ [cooling, HEATING,

<i HUMIDITY, ENVIRONMENT
*"

(EG .WATERTIGHT!

SYSTEM INTERFACE

Figure 2. Packaging

design activities.

a set of closely interrelated

room. In either case, the air conditioning sys-

tem is left with the problem of carrying the heat

away, and the fans associated with that system
are added to the fans associated with the com-

puter to create acoustical noise pollution in the

room, making it more difficult for people to

work. Furthermore, if the computer is used in

an unusually harsh environment, a special heat

exchanger is required in order to avoid con-

tamination of the components within the com-

puter by the pollutants present in the cooling
airflow.

Finally, the mechanical characteristics of a

particular package such as weight and size

directly affect manufacturing and shipment
costs. They determine whether a system can be

built and whether it can be shipped in a certain

size airplane or carried by a particular distribu-

tion channel such as the public postal system.

The mechanical vibration sensitivity character-

istics determine the type of vehicle (ordinary or

special air ride van) in which equipment can be

shipped.

It is also necessary to examine the particular

design parameter in order to determine whether

it is a constraint (such as meeting a particular

government standard), a goal (such as min-

imum cost), or part of a more complex objective

function (such as price/performance). Table 1

lists the various kinds of design activities and

constraints, goals, or parts of more complex ob-

jective functions that they determine. The table

also gives the dimensions of various metrics

(e.g., cost, weight) available to measure the de-

signs; many of these metrics are used in sub-

sequent comparisons.
Given the basic design activities, one may

now examine their interaction with the hier-

archy of levels (i.e., the systems) being designed

(see Table 2). This is done by looking at each

level and examining the interaction of the de-

sign activities for that level with other design

activities (e.g., function requires power, power

requires cooling, cooling requires fans, fans cre-

ate noise, and noise requires noise suppression).

Computer Systems Level. The topmost
level in Table 2 is the computer system, which

for the larger minicomputers and PDP-10 com-

puters consists of a set of subsystems (proces-

sor, memories, etc.) within cabinets, housed in a

room, and interconnected by cables. The func-

tional design activity is the selection and inter-

connection of the cabinets, with a basic

computer cabinet that holds the processor,

memory, and interfaces to peripheral units.

Disks, magnetic tape units, printers, and termi-

nals occupy free standing cabinets. The func-

tional design is usually carried out by the user

and consists of selecting the right components

66 COMPUTER ENGINEERING

Table 1 . Design Activities, Metrics, and Environment Goals and Constraints

Design Activity Environment and [Metrics]

Primary function and

performance (e.g., memory)

Human engineering

Visual/aesthetics

Acoustic noise

Mechanical

Electromagnetic radiation

Power

Cooling and environment

Safety

Cost

Cost/metric ratios

Density metrics

Power metrics

Reliability

Market, the consumer of the system

[Memory size in bits, operation rate in bits/sec]

Human factors criteria, competitive market factors

Market, other similar objects, the environment in which the object is to exist

Government standards, operating environment, market

[Decibels in various frequency bands]

Shippability by various carriers, handling, assembly/disassembly time

(Weight, floor area, volume, expandability, acceleration, mechanical frequency

response]

Government standards, must operate within intended environment

[Power versus frequency]

Operating environment, market

(watts, voltage supply range]

Market, intended storage and operating environment, government standards

[Heat dissipation, temperature range, airflow, humidity range, salinity, dust par-

ticle, hazardous gas]

Government standards

(Cost/performance (its function) - cost/bit and cost/bit/sec, cost/weight,

cost/area, cost/volume, cost/watt]

(Weight/volume, watts/volume, operation rate/volume]

[Operation rate/watt; efficiency
= power out/power in]

(Reliability
- failure rate (mean time between failures), availability

- mean time

to repair)

to meet cost, speed, number of users, data base

size, language (programming), reliability, and

interface constraints. Aside from the functional

design problem, cooling and power design are

significant for larger computers. For smaller

computers, accessibility, acoustic noise, and vis-

ual considerations are significant because these

machines become part of a local environment

and must "fit in."

Cabinet Level. Since the cabinet is the low-

est level component that users interface to and

observe, physical design, visual appearance,

and human factors engineering are important

design activities. For the computer hardware

designer, on the other hand, the component
mounted in the cabinet is usually the largest sys-

tem. Functional design efforts ensure that the

various components (i.e., boxes) that make up a

PACKAGING AND MANUFACTURING 67

Table 2. Interrelationship of Hierarchy of Levels and Design Activities

Design

Activity Chip

Chip
Carrier

Level of Packaging

Module Backplane Box Cabinet

Computer

System

FurKtional Logic —
electrical

Configuration Selection of

options right

components

by user

68 COMPUTER ENGINEERING

cabinet level system will operate correctly when

interconnected. Safety and electromagnetic in-

terference characteristics are important because

the cabinet serves as the outermost place in

which shielding can be installed. Cooling and

power distribution must be considered, since a

number of different boxes may be mounted

within the same cabinet. Finally, the mechani-

cal structure of a cabinet must be designed to

maintain its physical integrity when shipped.

Box Level. Box level functional design con-

sists of taking one or more backplanes, the

power supplies for the box, and any user inter-

face such as an operator's console and inter-

connecting them mechanically (see Figure 3).

For systems that are not sold at the box level,

no separate box is required, and the power sup-

ply and backplanes are mounted directly in a

cabinet (see Figure 4) or other holding structure

such as a desk or terminal case, so that box and

backplane design merge. If systems are sold at

the box level, then the visual characteristics may
be important; otherwise, the design is basically

mechanical and consists of cooling, power dis-

tribution, and control of acoustic noise. The
structure must be sound to protect the unit dur-

ing shipment.
Of all the dimensions to consider in the de-

sign, perhaps the most important is how the box

(or module mounting structure) is placed in a

cabinet. This placement affects airflow, ship-

pability, configurability, cable placement, and

serviceability, and is a classical case of design

tradeoffs. The scheme that provides the best

metrics, such as packaging density and weight,

may have the poorest access for service and the

most undesirable cable connection character-

istics. These characteristics are given in Table 3.

Table 3. Fixed, Drawer, and Hinged Box/Cabinet Mounting

Mounting

PACKAGING AND MANUFACTURING 69

REMOVABLE SIDE PANEL REMOVABLE TOP COVER

SLIDE GUIDE DECORATIVE PANEL

(a) Front view (with top cover).

BACKPLANE UNIT MODULE SIDE

POWER SUPPLY INTERNAL SCL CABLE

(b) Side view (with top cover removed).

Figure 3. PDP-1 1/05 computer box.

70 COMPUTER ENGINEERING

CPU CABINET
FAN HOUSING

BASIC
MEMORY FRAME

POWER SUPPLY
WITH REGULATORS

POWER SUPPLY
WITH REGULATORS

CONNECTOR FOR
PANEL

MOUNTING SPACE
FOR CONTROLLERS

IUPT0 4I AND
SMALL PERIPHERAL

CONTROLLERS
(UP TO 61

CABLE SUPPORT STRAP
AND CABLE HARNESS

CPU
MOUNTING BOX

CONNECTOR FOR
CPU MOUNTING
BOX FAN POWER
AND THERMAL

SENSOR

MOUNTING SPACE
FOR OPTIONAL

FLOATING POINT
PROCESSOR

POWER CONTROL

LOWER LOGIC FANS
(HIDDEN)

Figure 4. Major components and assemblies of PDP-1 1/70 mounted in standard DEC cabinet.

PACKAGING AND MANUFACTURING 71

Backplane Level. This level of design is the

final level of interconnection for the computer

components that are designed to stand alone,

such as a basic computer disk or terminal.

Backplane design is part of the computer's log-

ical design. In second generation machines such

as the PDP-7 (Figure 24a, Chapter 6), the back-

plane was wire-wrapped. In the early 1970s

printed circuit boards were used to interconnect

modules (Figure 5). Secondary design activities

include holding, powering, and cooling the

modules so they will operate correctly. Since the

signals are transmitted on the backplane, there

is an electromagnetic design problem. For in-

dustrial control systems whose function is to

switch power mains voltages, additional safety

problems are created.

Module Level. In the second generation,

module level design was a circuit design activity

taking discrete circuits and interconnecting
them to provide a given logic function. In the

third and fourth generations, this interface be-

tween circuit and logic design moved within

chip level design, so that module level design
became the process of dealing with the physical

layout problems associated with logic design.

Module level design is basically electronic, so

power, cooling, and electromagnetic inter-

ference (cross talk) considerations dominate.

Integrated Circuit Package and Chip
Level. Most integrated circuits used in the com-

puter industry today are sold in a plastic or ce-

ramic package configuration that has two rows

of pins and is called a dual inline package

(DIP). The majority of the integrated circuits in

the module shown in Figure 6 are 16-pin DIPs.

Because of the popularity of this packaging

style, the terms "integrated circuit," "chip,"
and "DIP" are often used interchangeably. This

is not strictly correct; an integrated circuit is ac-

tually a 0.25- X 0.25-inch portion of semi-

conductor material (die or chip) from a 2- to 4-

inch diameter semiconductor wafer. Except for

cases where multiple die are packaged within a

single DIP, the integrated circuit, chip, and DIP
can be discussed as a single level.

Design considerations at the integrated cir-

cuit level include power consumption, heat dis-

sipation, and electromagnetic interference.

Because some integrated circuits are designed to

operate in hostile environments, there is consid-

erable mechanical design activity associated

BACKPANELPINS

•LAYER 4

INSULATING
LAYERS

(PLATED THROUGH
TO LAYER II

LAYER 1

(-5V)

>- (PLATED THROUGH
TO LAYER 1)

Figure 5. Cross-section of a printed circuit

backplane.

Figure 6. LSI-1 1 processor with 8 Kbytes of memory
and microcode for commercial instruction set.

72 COMPUTER ENGINEERING

with packaging, interconnection, and manufac-

turing.

The Packaging Evolution

Figure 7 shows the relation of packaging and

the computer classes for the various computer

generations. For each new generation there is a

short, evolutionary transition phase. Ulti-

mately, however, the new technology is re-

packaged such that a complete information

storage or processing component (bit, register,

processor) occupies a small fraction of the space
and costs a small fraction of the amount it did

in the prior generation. Discrete events mark

packaging characteristics of each generation,

starting from 1 bit per vacuum tube chassis in

the first generation and evolving to a complete

computer on a single integrated circuit chip in

the fifth generation. Not only the size of the

packaging changed, but also the mounting
methods. In the first generation, logic units

were permanently mounted in racks, where they
were removable for ease in servicing in later

generations.

While the timeline of Figure 7 shows the

packaging evolution of a complete computer.
Table 4 shows how a particular component.

PACKAGING AND MANUFACTURING 73

now called the Universal Asynchronous Re-

ceiver/Transmitter (UART), has evolved.

The UART logic carries out the function of

interfacing to a communications line that car-

ries serial data and transforms the data to paral-

lel on a character-by-character basis for entry

into the rest of the computer system. The
UART has three basic components: the se-

rial/parallel conversion and buffering, the in-

terfaces to both the computer and to the

communication line, and the sequential con-

troller for the circuit.

The UART is probably the first fourth gener-

ation computer component, since it is some-

what less complex than a processor yet rich

enough to be identifiable with a clean, standard

interface.*

THE DEC COMPUTER PACKAGING
GENERATIONS

With this general background on packaging,
one can examine the DEC packaging evolution

more specifically and against the general arche-

type of Figure 1. Figure 9 shows how the hier-

archies have changed with the technology

generations. The figure is segmented into the

different product groupings. A product is iden-

tified as being at a unique level if it is sold at the

particular packaging level. The first DEC com-

puters (i.e., PDP-1 to PDP-6) were sold at the

cabinet level as complete hardware systems. Al-

though the PDP-8 was available at the cabinet

level for complete systems, it was significantly

smaller than the previous machines and was

principally sold at the mechanical box level.

Figure 8. 4707 transmitter line unit

of the late second generation.

*
Historically, DEC played a significant part in the development of the UART technology. With the PDP-1, the first UART
function was designed using 500-KHz systems modules and was used in a message switching application as described in

Chapter 6. The interface was called a line unit and was subsequently repackaged in the late second generation as two
extended systems modules (Figure 8). The UART function was also built into the PDP-8/I using two modules that were

substantially smaller than those for the PDP-1. In the 680/1, a PDP-8/I-driven message switch, the UART function was

accomplished by programmed bit sampling. Late in the third generation (or at the beginning of the fourth generation), some

designers from Solid State Data Systems of Long Island, N.Y., worked with Vince Bastiani at DEC and developed a UART
that occupied a single chip. This subsequently evolved into the standard integrated circuit and is used throughout the

industry.

74 COMPUTER ENGINEERING

GENERATIONS.

COMPUTER
(NOTE 1)

IS HELD BY:

BOX
(SLIDE OR
FIXED IN

CABINET)

CABINET(SI
BACKPLANES
MODULES
DISKCKT

CABINET(SI
BOX

PDP-1,4. 5

LINC ISYSTEMl
PDP-6. 7. 8. I

KA10.
'

PDP-9. 9/L

(EARLY FLIP CHIPI

PDP-8, 8/S,

LINC'8

SEE NOTE 2

BOX WITH
BACKPLANEISI
MODULES

CABINETISI

BACKPLANE(SI
MODULES
ICCHIP

CABINETISI
BOX

1

POP 15. KMO,
KL10.
VAX- 11/780

SEE NOTE 2

BOX WITH
BACKPLANE
MODULES
ICCHIP

BACKPLANE

POP 8, 8/S,

LINC 8,

POP 14

|R SERIES
FLIP CHIPI

1. Processor, memory, and basic

I/O controller logic

2. Evolution from box with multiple backplanes

interconnected by cables to a single

box and backplane (i.e., 1 level).

PDP-8/1. L E.

F. M. A.

POP 11/04 -

11/70

IMSERIES
FLIP CHIPSI

{MODULE SERIES)^—— EVOLUTION
PART OF HIERARCHY

PACKAGING AND MANUFACTURING 75

level to the price list. An example of the proces-

sor-on-a-chip is the CMOS-8, described in

Chapter 7. The new packaging level offered to

the customer is the CMOS-8 module, which is a

single-board complete computer with proces-

sor, 16-Kword memory, and all the optional

controllers to directly interface up to five pe-

ripheral options.

DEC Boxes and Cabinets

Since the function of the cabinet and box is to

hold backplanes that in turn hold modules that

in turn hold circuit level components, the metric

of electronic enclosures is the number of printed
circuit boards they hold. The earliest DEC
method of mounting was to place the back-

planes directly in a 6-foot-high cabinet which

held 19-inch-wide equipment in a 22- X 30-inch

floor space and weighed about 185 pounds. Fig-

ure 10 shows the top view of the various cabi-

nets used to hold module backplanes and boxes

for minicomputers since 1960. The changes to

the basic DEC 6-foot cabinet have mainly been

for improved producibility. The latest (circa

1973) was to use riveted upright supporting
members so the cabinet could be assembled eas-

ily without requiring bulk space for shipment
and storage.

The original cabinet used the entire cabinet as

an air plenum so that air was forced between

the modules and out the front doors. When the

PDP-7 used the same cabinet and the module

mounting frame cut off the airflow, it was nec-

essary to add fans to the back doors to blow air

at the modules. Since cooling was one of the

weak points in the PDP-7, the PDP-9 used a

self-contained mounting and cooling structure

in which air was circulated between the modules
with air pulled in from outside without going

through the cabinet.

A second, later packaging method, initiated

with the PDP-8, packaged the metal-boxed

minicomputer inside the 6-foot cabinet. Figure
1 1 shows the significant boxes that have been

used to package minicomputers both within the

6-foot cabinet and freestanding. The box pack-

aging history begins with the PDP-8. The rows

of Figure 1 1 indicate the four ways that are

available to access the circuitry (fixed, book,

slides, and tilt for access). The PDP-8 design
was followed by the PDP-8/S design which ori-

ented the modules with the pins up for access to

the backplane. By tilting (rotating) the box, the

handle side of the modules could be accessed.

For the PDP-8/I (not shown), modules were

mounted in a vertical plane.

Several fixed backplane module mounting
structures were formed beginning with the

PDP-8/A (1975), which was the first DEC mini-

computer since the PDP-5 to be mounted in a

fixed structure in a cabinet.

DEC Backplanes

Backplanes provide the next level-of-in-

tegration packaging below cabinets and boxes;

they are used to hold and interconnect a set of

modules which form a computer or an option

(e.g., processor, memory, or peripheral con-

troller). Figure 12 gives the relative cost of in-

terconnecting backplane module pins. Here the

cost per interconnection is roughly the same as

with a printed circuit module interconnection

(Figure 13). This can be somewhat misleading
because backplanes require a negligible cost for

testing and few failures occur during testing.

Figure 12 shows various kinds of inter-

connection technologies. Even though there are

exponential increases in quantities produced,
the cost continues to increase in the long run

with only occasional downward steps. The

greatest cost decline occurred when inter-

connections were carried out using automatic

wire-wrap machinery, but the PDP-8/E was

equally significant by being the first DEC com-

puter to use a completely wave-soldered back-

plane. Figure 12 also shows how effectively the

module pins were used (i.e., whether all avail-

able pins were used).

76 COMPUTER ENGINEERING

i

1 1 1 1 1 1 1 1 I I I ff
'

(25 X 12) "
SYSTEMS MODULES (60-641

PDP'1. 4. S. 6: ORIGINAL CABINET

O \cos^\c^

l l li ll l ll l lllFff
(32 X 24) 3

FLIP CHIP MODULES

(64) PDP 7

166-691

POP 9. LINC'8. PDP-12

H950
CABINET
TO HOLD

METAL BOXES

(67-)

ALL POP lis

50 INCHES HIGH 60 INCHES HIGH

ll l l lll l ll l l i llllll ill l l

CABLING AREA

I II I I I N il I I I I l ll ll I il l illli!

HEX FLIP CHIPS. POP'11/60 177)

HlNCHESr"

ALL CABINETS 72 INCHES HIGH

TOP VIEWS

SUPER HEX FLIP CHIP; VAX 11/780 (781

60 INCHES HIGH

IIIII I III I IIIKHfH

NOTE
Air enters

St top: PS

under module

SUPER HEX 1781

OECSYSTEM-2020

Figure 10. Cabinets used to hold various DEC computers (in fixed, book, and box configurations).

PACKAGING AND MANUFACTURING 77

SLIDES AND BOOK

32 INCHES HIGH

6 X 32/ SIDE

l l l l lll l ijjj l l l llh ^fc
10; 20

MODULES

PC
I

llll l lllll

21 INCHES HIGH

•
lllllllllllllll-

78 COMPUTER ENGINEERING

I
— ^ PDP-4

HANDWIRED
AND
SOLDERED

KL10
(TWISTED PAIR AND
WAVE SOLDERED
PC BOARD)

LEGEND

COST/AVAILABLE PIN

^•»— COST/ACTUAL PIN

^^^^PINS/IN^ ON BACKPLANE

0VAX 11/780

MACHI
_ WIRE-

WRAPPED

(OMNIBUS -

ALL WAVE
SOLDERED
PC BOARD)

1970

YEAR

Figure 1 2. Relative cost per possible and actual inter-

connection versus time for various DEC computer back-

planes: also pin density (in pins per in^) versus time.

1965 1970
YEAR

1975 1980

Figure 13. Relative cost per interconnection on DEC

printed circuit board modules versus time.

DEC Modules

Since the function of modules is to inter-

connect and hold components, the metrics for

modules are the area for mounting the com-

ponents and the cost of each circuit inter-

connection. For minicomputers, the emphasis
has been to have larger modules with more

components packed on a module as a means to

lower the interconnection cost. Figure 14 shows

the area of DEC modules and the number of

external pins per module versus time. Because

integrated circuit densities have been increas-

ing, in effect providing lower interconnection

costs, a given module automatically provides

increased interconnects simply by packaging
the same number of integrated circuits on a

module. Obviously, one does not want to credit

this effect to improved module packaging. By

increasing the components per module, the cost

per interconnect can be reduced provided the

cost to test the module increases less rapidly

than the increase in components. The emphasis
on module size is usually most intense for larger

systems, where a relatively large number of

modules are needed to form a complete system.

Until recently, the increase in module area

was accompanied by increases in the number of

pins available to interconnect to the backplane.

In the case of the VAX- 11/780 and the DEC-
SYSTEM 2020, the number of pins did not in-

crease significantly over previous designs,

although the board area was 50 percent larger.

In these cases, the number of integrated ciruits

that could be cooled limited the density. In

other cases, either the number of pins or the

module size limited the module's functionality.

There are similar effects throughout the gener-

ations.

In the early second generation Systems Mod-
ule designs, the number of pins and the circuit

board area (in square inches) were about the

same. Components were fairly large and loosely

packed on modules. With the Flip Chip series,

circuits were modified to pack a larger number

PACKAGING AND MANUFACTURING 79

FLIP CHIP—i^^—^*i -»I»»LARGE"

MODULE AREA

A NUMBER OF PINS

(INTERCONNECTIONS TO
BACKPLANE

PIN LIMITED

MODULE LIMITED

BALANCED

PDP-6

MEM. A

PDP bZA
REG •

„ . EXTENDED
DOUBLE-PINJ »^ Q^^t,
DENSITY

POP-4 REG

A ^
A

^^larsibivi f
Sj' POP 1 FLIP J
•laboratory CHIP

I

-J I I L

VAX-1 1/780

EXTENDED
DOUBLE

LSin/2

J L
1958 I960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980

YEAR

Figure 14. Module printed circuit board area and number of pins per module versus time for DEC modules.

of smaller components on a single module, us-

ing automatic component insertion equipment,
and some of the space-consuming components
(e.g., pulse transformers) of the earlier circuits

were removed so that a module design was a

better balance between area and pins. As a re-

sult, the early second generation Flip Chip
modules had higher packing densities than

comparable Systems Modules.

With the beginning of the third generation,
the need for more printed pins to the backplane
was clear because so many interconnections

were made on the computer's backplane. The

PDP-8/I was the first DEC integrated circuit

computer, and the packaging philosophy

strictly followed that of the second generation.

As a result, the sudden increase in component
functions meant that the modules were drasti-

cally lacking in pins. By putting pins on both

sides of the module, the number of pins for a

double-height module (20 in^) was increased

from 36 to 72, which was still inadequate. As-

suming that each integrated circuit has 14 signal

pins and a module has 70 signal pins, only 5

80 COMPUTER ENGINEERING

integrated circuits could be placed on a board

and still have pins brought out to the backplane

pins, although the lO-in^ area of the module

could potentially hold 20 integrated circuits.

Although the 8/1 was packaged using the 20-

in^ 72-pin modules, it was clear that another

packaging scheme was necessary to utilize in-

tegrated circuits, modules, pins, and back-

planes. Thus, when the PDP- 11/20 and the

PDP-8/E were designed (about 1970), they used

larger modules in order to carry the large num-

ber of intramodule interconnections required

when many integrated circuits were placed on a

single module.

It is interesting to note that in a recent case of

a processor using high density integrated cir-

cuits, the LSI-11/2, the module area was too

large to have a single option on a module, and

since the LSI- 11 Bus only required a few sig-

nals, the number of pins was more than ade-

quate. Here, the modules were functionality

limited rather than pin limited. Figure 14 in-

dicates situations in which either pins or mod-

ules limited the design.

Although the size of the module is important
in determining the systems that can be built,

how they are serviced, and how they are manu-

factured, the important module metric is the

cost per interconnection on the printed circuit

board (and remainder of the system). Figure 13

shows how this has varied with time. Here one

can see that the introduction of Flip Chip mod-

ules initially increased costs (because learning

had to start almost anew).

Interconnection costs consist of the costs of

the printed circuit board, the insertion of the

components on the module, and the testing of

the module. Printed circuit board costs have

been decreasing with time, reflecting benefits

both of learning and of placing more integrated

circuits on a single module, giving a compound
economy-of-scale effect. The cost to assemble

the components on the module have decreased

rapidly, reflecting the increasing use of auto-

matic component insertion machines. Testing

has not been a significant cost component in

module manufacturing, although it does repre-

sent a substantial cost by the time the module

has been integrated into a system and delivered

to the customer's site. The total cost per inter-

connection has been decreasing, but the trend

may either remain constant or even increase as

greater use of large-scale integration decreases

the number of total connections in a system but

makes the remaining interconnections more ex-

pensive to assemble and test.

Many of the important problems in packag-

ing, specifically heat and electromagnetic inter-

ference, originate not from a computer's logic

but rather from the power supplies that power
the logic.

POWER SUPPLIES

Although logic functions can be performed

using small quantities of electrons and can thus

be accommodated in very small physical struc-

tures, the power to move those electrons at use-

ful speeds comes from power supplies which do

not scale down in size as readily as the logic

functions they support. Power supply tech-

nology has not provided the impressive in-

creases in capability per dollar or capabiHty per

cubic foot that semiconductor technology has.

Power supplies involve such materials proper-

ties as voltage breakdown limits, dielectric con-

stants, magnetic permeability, and heat

conductivity. Since these properties vary with

physical dimension, increased capabilities in

terms of voltage breakdown rating, capaci-

tance, inductance, or heat dissipation are

gained by making the component physically

larger.

The performance criteria for power supplies

are predominantly determined by the appli-

cation for which they are designed. These cri-

teria are given in terms of various efficiencies of

volume, weight, power conversion, and cost. It

is somewhat difficult to compare the various

supplies because all are available at different

PACKAGING AND MANUFACTURING 81

Table 5. Characteristics of Power Supply Types

82 COMPUTER ENGINEERING

10

09

PACKAGING AND MANUFACTURING 83

1 UNREGULATED

— *2B0 WATTS

84 COMPUTER ENGINEERING

Table 6. Expansion Box Characteristics

PACKAGING AND MANUFACTURING 85

D»

1974

YEAR

NO OF HEX MODULES

Figure 21. Relative cost of box materials versus num-
ber of hex size modules for various DEC minicomputer
boxes.

Figure 1 9. Space utilization (ft^ of modules per cubic

foot) of various DEC computer boxes.

• K P0P-8/A

1974 1976 1978

YEAR

Figure 20. Cost payload (relative cost of materials per
ft3 of modules held) of various DEC computer boxes.

The Life Cycle of a Product

Figure 22 shows a simplistic process flow for

the major phases and milestones in the life of a

product. In reality, planning and designs for

many of the phases go on concurrently. The

early research, advanced development, and def-

initional phases are not shown. Often, products

proceed from the idea stage to the engineering
breadboard and are then terminated because

they do not meet original goals or because bet-

ter ideas arise.

To facilitate changes, the engineering
breadboard is usually built with wire-wrapped
rather than printed circuit boards if the circuit

technologies used permit the long wire lengths
characteristic of wire-wrapped boards. At or

before the breadboard stage, manufacturing

start-up schedules are made. Other organiza-
tions formulate and execute plans: systems engi-

neering, for product test/verification; software

engineering, for special software and veri-

fication; marketing, for promotion and product

distribution; sales, for training; field service, for

training and parts logistics; and software sup-

port.

86 COMPUTER ENGINEERING

IDEA

PACKAGING AND MANUFACTURING 87

PERIPHERALS
SOFTWARE.

MANUALS. ANO
DOCUMENTATION

INTEGRATED
CIRCUITS

PRINTED CIRCUIT

BOARD
MANUFACTURING

Figure 23. Overview of manufacturing computer system flow.

Process maturity testing verifies that the

product is being manufactured with the desired

cost, quality, and production rate. After process

maturity testing, the steady state phase of man-

ufacturing continues (with possible per-
turbations due to the introduction of product

enhancements, engineering change orders, or

process changes to lower product costs) until

the product is phased out.

Manufacturing Process Flows

An overview of a manufacturing process is

given in Figure 23 which shows how a product
moves through the various factories. There are

often different plants for boards, peripherals,

memories, and central processors. Integration

from the other stages and stock storage occurs

at the stage called "final assembly and test"

(Figure 24). Here, the software system that is to

be run, operations manuals, and other docu-

mentation are also integrated and tested.

Figure 25 gives the complete flow for a typi-

cal volume manufacturing line, the PDP- 11/60
central processor facility in Aguadilla, Puerto

Rico.

Testing

Since testing occurs at each stage in the man-

ufacturing process, dedicated logic must be

added to the design to provide physical access

probes for the test equipment. To test a particu-

lar function, it must be specifiable, invokable,

and observable. For example, the function of an

adder can be clearly specified, but it cannot be

easily invoked or observed if its inputs and out-

puts are etch runs on a printed circuit board.

Several testing strategies are used: add signal

lines from the adder to the backplane where

there are adequate probe access points, probe

directly onto the module etch or pins, and sub-

sume the adder in a function whose inputs and

outputs can be more easily controlled and ob-

served. The problems of observation and con-

trol exist at all levels-of-integration. Examples
of observation points at each level for the PDP-
1 1/60 are given in Table 7.

The problem of testability must be addressed

at design time. Providing access for testing al-

ways incurs added product cost (extra logic and

module pins or circuit pins) but lowers manu-

facturing cost and field service costs. As gate

88 COMPUTER ENGINEERING

Table 7. Examples of Observation Points at Each Structural Level for the PDP-11/60

Level in

Computer
Hierarchy

Observation

Point

Stage in

Manufacture

of Computer Example

Electrical circuit

Switching circuit

Register transfer

Register transfer

Central processor

Central processor

Computer

Computer

Transistor contacts on

metallization layer

Leads on IC

package

Etch run

Backplane

Unibus

Contents of memory

Contents of memory

Unibus

Semiconductor

fabrication

Incoming inspection

of ICs

Module

Module

Central processor

Central processor

System integration

System integration

Wafer test with microprobe

IC tester

Probe on module

(module-specific tester)

Memory exerciser for cache

Unibus voltage margin tester

Diagnostic programs at subsystem

level, e.g., memory management unit

or processor instruction

set tests

Peripheral diagnostic programs

Bus exerciser

Figure 24. Final assembly and test (FA&T) for computer systems.

PACKAGING AND MANUFACTURING 89

MODULES
FROM

BOARD PLANT

2224

CACHE
MEMORY TEST

CPU
DIAGNOSTIC

TEST

MODULE
QC

INSPECTION
—M STOCK I

r REPAIR J f^
BEPAIR^J

CONSOLE
ANO

ASSEMBLYK—L

ASSEMBLY
OF CARRIER

l/^

MODULE
INTEGRATION

FAULT
ISOLATION
ANO MODULE
REPLACEMENT

FAULT
ISOLATION
ANO MODULE
REPLACEMENT

BACKPLANE.
CAGE. BOX
ASSEMBLY

(REPAIR J

FAULT
ISOLATION

AND MODULE
REPLACEMENT

^
C REPAIR J

I \ LOOSE PIECE
' • SHIPMENTS

C REPAIR J

OPTION TESTED MODULES

CPU
INTEGRATION

POWER
SUPPLIES

(BURNED IN

AND TESTED)

CPU
TEST

FAULT
ISOLATION
AND MODULE
REPLACEMENT

i

'%'' 1

90 COMPUTER ENGINEERING

Figure 26. GenRad Corp. (GR) tester for modules.
Figure 27. Quick-Verify (QV) station to verify that

tested modules operate within a system.

Figure 28. Chambers for thermal cycling operating modules.

PACKAGING AND MANUFACTURING 91

Corp. (GR) tester of the type first used (Figure

25) to detect this type of fault. A module-spe-
cific program in the tester guides the operator

through a fault-finding procedure. Approx-

imately 95 percent of all Type 1 failures are di-

agnosed and repaired at this step.

Type 2 is dynamic. It seeks to detect faults

which are caused by timing parameters being
out of specification range, by logic in-

compatibilities, and by other functional prob-
lems. Figure 27 shows a tester (Figure 25)

performing this type of test.

Type 3 is the reliability or burn-in test. The

manufacturing process includes extensive ther-

mal cycling to ensure that component "infant

mortality" cases are discovered early during

manufacturing because it is more expensive to

find defective components at the later, more in-

tegrated systems level. For some components.

notably integrated circuits, thermal cycling is

done when the components are received from
the vendor. In addition, thermal cycling and
burn-in are done near the end of the production

process for entire processors and options. The

temperature/humidity environmental chambers

used, which house twelve or sixteen processors

each, are shown in Figure 28. Test chambers to

heat entire computer systems are also used.

ACKNOWLEDGEMENTS

We gratefully acknowledge the following col-

leagues who provided data for this chapter and

valuable critiques of earlier drafts: Jim Cud-

more, Russ Doane, Sam Fuller, Lorrin Gale,

Dick Gonzales, Jim Scanlan, Henk Schalke, Joe

Smith, Steve Teicher, and Dave Widder.

Opposite:

• DEC Systems Modules.

m^u

NTH

In the Beginning

Because modules were DEC's first product, and for many years their major

product, it is appropriate to study the history of DEC's modules and the influence

of technology on their development. The history of modules is a subset of the

history of computers, and many of the views of computers expressed in Chapter 1

apply as readily to modules. In particular, the Structural View and the Packaging

Levels-of-Integration View plainly apply. Further, a study of module history

shows the effects of progress in semiconductor technology, as discussed in Chap-
ter 2, and demonstrates on a small scale many of the packaging and manufac-

turing concepts discussed in Chapter 3.

With the advent of microprocessors, the distinction between a module and a

computer has become blurred, and complete computer systems have become
available at the printed circuit board/module level of packaging integration. The
structural levels (Chapter 1, Figure 1) found on a single module have changed
from solely circuit level to logic level, then to register transfer level, and finally to

processor-memory-switch level. These developments will be explored more fully

in Part IV, "The Evolution of Computer Building Blocks"; the discussion here is

limited to the simpler modules that characterized the first 18 years of DEC's

computers.
The two chapters in this part consist of a 1957 paper by Ken Olsen and a

historical review by Dick Best. Both of these papers, but in particular the Olsen

paper, give a glimpse of how early computer design was heavily weighted toward

the electrical circuit level shown in Figure 1 of Chapter 1 . As indicated above, the

capability of modern technology to package complete switching circuit level and

register transfer level systems into single chips has been a motivating force moving

computer design toward the PMS level. There has also been increased activity

"downward" however, as is also shown in Figure 1 of Chapter 1. To fit the mod-

ern, more complex systems into chips, increased attention to the lowest level (the

device level) has also been required. Since this has been more the domain of the

materials scientist than the computer scientist, it is not discussed in detail here.

While module design and computer design have evolved a great deal in the past

18 to 20 years, certain aspects of the Olsen paper reflect design methods which

have counterparts today. In particular, convenient maintenance was plainly one

of the important goals in the TX-2 circuit design effort. The use of a single, stand-

ard type of flip-flop and the use of a minimum number of different plug-in units

were important elements in meeting that goal. These features simplified the de-

sign, simplified maintenance training, and reduced the variety of spare modules

95

96 IN THE BEGINNING

that needed to be stocked. A voltage adjusting (margining) system for identifying

marginal circuits was another important feature of the TX-2 circuit design.

Today, computer engineers generally try to use a limited number of flip-flop

types (or RAM types, etc.) because they have certain favorites whose character-

istics they understand well and because the cost of bringing new parts into a com-

pany is very high. The old reasons - to simplify design, training, and stocking of

spares
- continue to apply as well. Even though keeping the number of different

plug-in units (modules) to a minimum continues to have these advantages, this

cannot be done as easily as it once was, principally because the increased func-

tionality now available has customized modules to such a great degree. For ex-

ample, in the case of an LSI-11, the computer is a single module.

Modern designs do not use margining except in special cases where the refresh

clock cycles of dynamic memories are altered to detect failures. However, special

maintenance logic is often included in current designs. The idea of built-in main-

tenance features is in some ways similar to the old margining idea: in other ways it

is a substantial deviation because additional parts are required, and the old de-

signers were extremely careful of the parts count. The emphasis on low com-

ponent cost and parts count expressed in these chapters may seem odd to modern

designers, but the gradual lessening of this concern (as discussed in Chapter 4)

serves as an excellent example of the declining cost of electronic technology and of

semiconductor technology in particular.

In summary, the modules chapters which follow form a starting point, both in

time and in technology, for a study of how the views, concepts, and trends de-

scribed in the first two chapters have applied in the development of DEC modules
and computers.

4

Transistor Circuitry

in the Lincoln TX-2

KENNETH H. OLSEN

CIRCUIT CONFIGURATIONS

Only two basic circuits are needed to perform
most of the logical operations in the TX-2 com-

puter: a saturated transistor inverter and a satu-

rated emitter follower. To the logical designer

who works with them, these circuits can be con-

sidered as simple switches that are either open
or closed.

The schematic diagram of an emitter follower

and the symbol used by the logical designers is

shown in Figure 1. With a negative input, the

output is "shorted" to the -3 V supply as

through a switch. When several of these emitter

followers are combined in parallel, as in Figure

2, any one of them will clamp the output to -3

V. We then have an OR circuit for negative sig-

nals and an AND circuit for positive signals.

The transistor inverter is shown in Figure 3 with

its logic symbol. Basic AND, OR circuits result

from the connection of these simple switches in

series or parallel (Figures 4 and 5). More com-

plex networks Hke the TX-2 carry circuit use

these elements arranged in series-parallel (Fig-

ure 6).

In Figure 3 the resistor R\ is chosen so that

under the worst combinations of stated com-

ponent and power supply variations, the drop

•-€)

Figure 1 . Emitter follower. Figure 2. Parallel emitter follower.

97

98 IN THE BEGINNING

across the transistor will be less than 200 mV
during the "on-condition." R2 biases the tran-

sistor base positive during the off condition to

provide greater tolerance to noise, /qo, and sig-

nal variations. Capacitance C was selected to

remove all of the minority carriers from the

base when the transistor is being turned off. The

effect of C on a test circuit driven by a fast step

is shown in Figure 7. Note that the delay due to

hole storage is only a few millimicroseconds.

We run the circuits under saturated condi-

tions to achieve stability and a wide tolerance to

parameters without the need for clamp diodes.

Unlike vacuum tubes, which always need an ap-

preciable voltage across them for operation, a

transistor requires practically no voltage across

it. In spite of the delay in turning off saturated

transistors, these circuits are faster than most

vacuum tube circuits. Faster circuit speed is not

due to the fact that the transistors are faster

than vacuum tubes, but because they operate at

much lower voltage levels. A vacuum tube takes

several volts to turn it from fully "on" to fully

"off; a transistor takes less than 1 V.

GND

T

TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2 99

FLIP-FLOP

On the basis of previous experience, we de-

cided that the advantages of having one stan-

dard flip-flop were worth some complication in

TX-2 circuitry. The circuit diagram of the flip-

flop package in Figure 8 is basically an Eccles-

Jordan trigger circuit with a 3-transistor ampli-
fier on each output. The input amplifiers isolate

the pulse input circuits and give high-input im-

pedance. The amplifiers give enough delay to

allow the flip-flop to be set at the same time that

it is being sensed. Figure 9 shows the waveforms

of this flip-flop package when complemented at

a 10-megapulse rate. The rise and fall times,

about 25 millimicroseconds, are faster than one

normally sees in a single inverter or an emitter

follower because on each output there is an in-

verter that pulls to ground and an emitter fol-

lower that pulls to -3 V. Figure 10 is a plot of

the pulse amplitude necessary to complement
the flip-flop at various frequencies. Note the in-

dependence of trigger sensitivity to pulse repeti-

tion rate. This circuit will operate at a 10-

megapulse rate, twice the maximum rate at

which it will be used in TX-2.

The TX-2 circuits reproduced most often

were designed with a minimum number of com-

ponents to achieve economies in manufacture

and maintenance. The design of less frequently

reproduced circuits made liberal use of com-

ponents - even redundancy - to achieve long
life and broad tolerance to component varia-

tions. The goal was system simplicity and high

performance with a lower total number of com-

ponents than might otherwise be possible. For

NOTE:
AM capacitances in fm1<i-

Figure 8. TX-2 flip-flop.

100 IN THE BEGINNING

OUTPUT
(UNLOADED)

OUTPUT LOADED
WITH 100 MMFD.
"1000 U

Tl

/V\AAA/Vr;
J I I I I L

TRIGGER
PULSES
OMCS)

100 200 300 400 500 600

MILLIMICROSECONDS

Figure 9. Flip-flop waveforms.

»•—
•

TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2 101

7 9 11 13 15.

MARGIN SUPPLY (VOLTSI

Figure 13. -10 V supply margins.

«••-••
OPERATING

POINT

v»~*.

PULSE AMPLITUDE (VOLTS)

Figure 16. Pulse margins.

Figure 14. -3 V supply margins.

o

u
S -10

(

-20 L

TEMPERATURE C C)

Figure 15. Temperature margins. Figure 17. TX-2 plug-in unit.

varied one at a time for most critical checking
of the circuit. The following curves show the

locus of failure points for various parameters as

a function of the marginal checking voltage.

Figure 1 1 shows the tolerance to tau, a measure

of hole storage, and Figure 12 shows the toler-

ance to beta, the current gain. Operating mar-

gins for supply voltages, temperature, and pulse

amplitude are shown in Figures 13 through 16.

PACKAGING

The number of types of plug-in units was

kept small for ease of production and to keep
the number of spares to a minimum. The cir-

cuits are built on dip-soldered etched boards,

and the components are hand soldered in solid

turret lugs. The boards are mounted in steel

shells shown in Figure 17 to keep the boards

102 IN THE BEGINNING

Figure 18. TX-2 back panel.

from flexing. The male and female contacts are

machined and gold plated. The sockets are

hand wired and soldered in panels (Figure 18).

simplicity of the circuits has encouraged a de-

gree of logical sophistication that would not

have been chanced before.

CONCLUSION

The result of these design considerations is a

5-megapulse control and arithmetic element

that will take less than 40 square feet of space
and dissipate less than 800 watts of power. The

ACKNOWLEDGEMENTS

A number of people took part in the work

reported here. Major contributions were made

by B. M. Gurley, J. R. Fadiman, R. A. Hughes,
K. H. Konkle, and M. E. Petersen.

Digital Modules,
The Basis for Computers

RICHARD L. BEST, RUSSELL C. DOANE.
and JOHN E.McNAMARA

The circuits and design concepts described in

Chapter 4 were the basis for the subsequent de-

velopment of DEC modules. In Chapter 5, the

discussion of this development is broadened to

include not only circuits and design concepts
but also packaging and the effects of progress in

semiconductor technology. DEC modules are

important because the progress in semi-

conductor technology that has formed the ma-

jor element of the technology push driving the

computer industry is evident in the history of

DEC modules on a scale convenient for close

examination and understanding.

The first modules produced by DEC were

called Digital Laboratory Modules and were in-

tended to sit on an engineer's workbench or be

mounted in a scientist's equipment rack. To fa-

cilitate the rapid construction of logic systems

using these modules, interconnection was ac-

complished with simple cords equipped with

banana plugs. As shown in Figure 1, the mod-
ules were mounted in aluminum cases 1-3/4 X

4-1/2 X 7 inches in size. All of the logic signals

were brought out to the front of the case, where

they appeared on miniature banana jacks

mounted in a schematic diagram of the logic

function performed by the module. The mod-

ules were offered in three speed ranges with

compatible signal levels. The three speed ranges

were 5 MHz (1957), 500 kHz (1959), and 10

MHz (1960).

The Digital Laboratory Module product line

was supplemented by the Digital Systems Mod-
ules. These modules, samples of which are

Figure 1 . Digital Laboratory Modules.

103

104 IN THE BEGINNING

Figure 2. Digital System Modules.

€
CIRCUIT -±r

Figure 3. Schematic drawing of an

inverter used in digital system modules.

shown in Figure 2, were identical to the Labora-

tory Modules in circuitry, signal levels, and

speed range, but they had a different packaging
scheme. The System Module packaging was de-

signed for rack mounting and used 22-pin Am-
phenol connectors at the backs of the modules

rather than banana plugs at the front. The 22-

pin connectors were originally available only in

a soldered connection version, but a taper pin

version was later offered. The System Module

mounting method was chosen for the PDP-1

computer, as it permitted a wired panel of 25

modules to be mounted in a 5-1/4-inch section

of standard 19-inch rack.

The circuits used in both module series were

based on the M.I.T. Lincoln Laboratory TX-2

computer circuits described in Chapter 4. All of

the TX-2 basic circuits were used, except those

gates which used emitter followers. The emitter

follower gates were not short circuit proof, and

it was felt that misplaced patch cords in Labo-

ratory Module configurations or slipping scope

probes in System Module configurations would

cause a high fatality rate for those circuits.

What follows is a brief review of some of the

circuits to indicate how much present day logic

design differs from the logic design of 20 years

ago. Today designers deal with arithmetic logic

units and microprocessors as units, whereas in

the early 1960s, single gates and flip-flops were

units.

In the early module designs, most logical op-
erations were performed using saturating PNP
germanium transistors. While the use of transis-

tors in radios and television sets relies on the

linear relationship between base current and

emitter-to-collector current to provide the am-

plification of radio frequency and audio fre-

quency signals, the use of transistors in

computer circuits (except those using emitter-

coupled logic (ECL)) relies primarily on the be-

havior of transistors in either the saturated state

or the cutoff state. The use of transistors in such

circuits can best be appreciated from the simple

example shown in Figure 3.

Figure 3 is a schematic drawing of an in-

verter. When the emitter is at ground and the

base lead is brought to a sufficiently negative

voltage, the resulting base current will saturate

the transistor, effectively connecting the emitter

to the collector. If, on the other hand, the base

is grounded, then no base current flows, no

emitter-to-collector current flows, and the tran-

sistor is in the cutoff state. The collector would

then assume the voltage of the negative voltage

DIGITAL MODULES, THE BASIS FOR COMPUTERS 105

I CO

I EM

I

I

I

±

Figure 4. Symbolic drawing of an inverter. Figure 5. Sample circuits using series and parallel

arrangements of inverters.

source, were it not for the clamp diode which

limits the voltage of the collector to —3 volts.

To facilitate maintenance, the +10-volt bias

supply shown in Figure 3 was adjustable for

margin checking, a feature which had been used

in the TX-2 and which is discussed in Chapter 4.

To simplify the logic drawings, a symboHc
drawing like that in Figure 4 was customarily
used to represent the inverter circuit. Note that

neither Figure 3 nor Figure 4 shows the emitter

directly connected to ground or the collector

directly connected to the negative supply.

Rather, a dotted line is used on the drawings to

indicate that Laboratory Modules and System
Modules often used a series connection of up to

three inverter gates between the negative supply
and ground to accomplish various logic func-

tions. Parallel and series-parallel arrangements
were also used, as shown in the sample circuits

in Figure 5.

The Digital Laboratory Modules and the

Digital System Modules used a dual polarity

logic system employing both levels and pulses.

The logic voltage levels were —3 volts and

ground. Correspondence between the logic

state, ONE or ZERO, and the voltage levels of
— 3 and ground were indicated at each point in

the logic diagram by a diamond. The diamond

defined the necessary voltage level for the ac-

tion desired. A solid diamond denoted that a
— 3-volt level was an assertion, and a hollow di-

amond indicated that a ground level was an as-

sertion. This convention gave two signal names

to one physical signal: if a given asserted signal

A was passed through an inverter, four signals

resulted, as shown in Figure 6.

A logic function lower in cost yet equivalent
to both the series and parallel inverter arrange-
ments used diodes added to the circuit of Figure
3 to form AND or OR gates, as shown in Fig-

ures 7 and 8.

Except for very small amounts of delay, the

inputs and outputs of these circuits changed si-

multaneously; thus, no information was stored.

The storage of information was accomplished

by bistable devices called "flip-flops" whose

state was controlled by the application of pul-

ses. Before discussing the construction of flip-

flops, it is therefore necessary to briefly describe

pulses, which were an important type of logic

signal.

A pulse, as the name implies, was a very well

controlled, short event in which a logic signal

was asserted. Pulses were used for computer
clocks and for carrying out the register transfer

operations between the registers. Pulses were

106 IN THE BEGINNING

1

DIGITAL MODULES, THE BASIS FOR COMPUTERS 107

Figure 9. Primitive flip-flop.

Figure 10. Primitive flip-flop with inverter.

gates. The buffer amplifiers also provided de-

lays at the outputs of the flip-flops such that the

output did not change until after the activating

pulse was over. This permitted the state of the

flip-flop to be sensed while the flip-flop was

being pulsed, a necessary feature for the simple

implementation of shift registers, simultaneous

data exchange between two registers, counters,

and adders.

Collections of the inverters, gates, and flip-

flops just described were packaged in appropri-
ate quantities (i.e., as many as would fit within

the module size and pin constraints) and sold as

Laboratory Modules and System Modules.

There were a relatively small number of module

types available in the Laboratory Module
Series. For example, the first product line, the

100 Series, included:

103

108 IN THE BEGINNING

D -• AC
CARRY 1MB. ACI

AC
7AC -» AC
AC ® MB -• AC
AC + 1 -> AC

ETC

AC< 0,17 >

DIGITAL MODULES, THE BASIS FOR COMPUTERS 109

one inverter would drive many capacitor-diode
combinations in the same module.

A negative capacitor-diode gate is illustrated

in Figure 14. With the level input at —3 and the

capacitor input at ground for a sufficient time

to allow the charge on the capacitor to become

stable, a negative level change or a negative

pulse at the capacitor input will cause the tran-

sistor to conduct. The conducting transistor

grounds the output for an amount of time de-

termined by the gate time constant or the input

pulse width, whichever is shorter. Gates of this

type could be used to set and clear unbuffered

flip-flops by momentarily grounding the correct

flip-flop outputs in a fashion similar to the in-

verter gate that was added to Figure 9 to obtain

Figure 10.

The principal advantages of the capacitor-
diode gates were:

1. The level input to the gate was used to

charge a capacitor and was isolated from

the rest of the circuit by a diode. Thus,
no dc load was presented to the circuit

driving the level input of a capacitor-
diode gate.

2. The resistor-capacitor time constant of

the gate required that the conditioning
level be present a certain amount of time

before the pulse input occurred. This in-

troduced a delay between the application
of a new gate level and the time the gate
was conditioned, and allowed the sam-

pling of unbuffered flip-flop outputs at

the same time that the flip-flop was

being changed.
3. The resistor-capacitor combination dif-

ferentiated level changes, permitting a

level change to create a pulse.

The use of saturating micro alloy diffused

transistor (MADT) transistors and toroidal

pulse transformers appeared to be nearing an

operating limit at 10 MHz. The pulses needed

to operate the circuits shown in the previous di-

<^h>

-^ '->*
LEVEL
INPUT

Figure 13. Positive C-D gate.

1
I

OUTPUT

J- _L INP

INPUT
)l—<>

-E3

LEVEL
INPUT

LEVEL
INPUT

Figure 14. Negative C-D gate.

agrams were 40 percent of the cycle time of 10-

MHz logic (40 nanoseconds), which tightly con-

strained transformer recovery time and made it

difficult to design circuits that were not exces-

sively sensitive to repetition rate. Furthermore,

gate delays were large enough to prevent some
needed logic configurations from propagating
within the 100 nanosecond interval implied by
the 10-MHz rating.

A major break with previous circuit geo-
metries appeared necessary. The use at IBM (in

the IBM 7030 "STRETCH" machines) of non-

saturating logic encouraged an exploration in

110 IN THE BEGINNING

that direction. The project was called the "VHF
Logic" project because operation at 30 MHz or

better (the bottom end of the very high fre-

quency (VHF) radio band) was the goal.

The complex 30-MHz flip-flops were pack-

aged one to a module (Figure 15), with the re-

sult that a great many interconnections were

needed to implement logic functions. In systems

designed for 30-MHz operation, the use of leads

longer than a few centimeters was expected to

require special care; hence, it was thought es-

sential for ease of use that a satisfactory trans-

mission line hookup medium be available. A
new solid wall coaxial cable had just been in-

troduced, the 50-ohm impedance version of

which was chosen to hook up the VHF mod-

ules. It appeared to have a strong enough center

conductor for practical hookup between mod-

ules without being too bulky for easy hand-

bending.

Due to the low impedance needed for the

coaxial cable connections, substantial driving

current was necessary to achieve adequately

high signal voltages, and considerable power
had to be dissipated. The ability to drive a load

at any point along the transmission line was

deemed necessary for practical hookup, and 3-

volt swings had to be available to insure com-

patibility with existing modules. These needs

were met by choosing a 60-milliampere output

current, producing a 1.5-volt swing on a

double-terminated 50-ohm line and a 3-volt

swing with a 50-ohm load when interfacing to

existing slower logic. These voltage and current

levels required the addition of heat sinks to the

output transistors. This was accomplished by

installing spring clips that fastened the cases of

the transistors directly to the connector pins,

exploiting the connectors as heat sinks and at

the same time providing a minimum inductance

connection from the transistor collector (com-
mon to the case) out of the module.

The VHF modules contained a novel delay

line implementation which has reappeared in

recent days in the emitter-coupled logic boards

used in the latest PDP-10 processor (KLIO).

Flip-flop output delay was provided by a 10-

nanosecond stripline etched onto the printed

circuit board. A meander pattern was selected

with a degree of local coupling between the

loops to achieve a 7 to 1 delay-to-risetime ratio.

Both the delayed and undelayed ends of this 50-

ohm stripline were made available at the mod-

ule pins. The undelayed outputs switched sim-

ultaneously with the flip-flop outputs, allowing
a subsequent gate to subtract a delayed flip-flop

output from the undelayed complement output
side of the flip-flop and produce a 10-nanose-

cond pulse when the flip-flop changed state.

The performance of the VHF modules was

rated at 30 MHz, which was the limit of the

module testers used on the production floor.

Bench testing demonstrated 40-MHz capability

with the promise of 50-MHz performance if ad-

equate testing apparatus could be found. Rise-

times were better than 1 nanosecond.

Modules delivered to customers were used to

build satisfactory high performance systems,

but the need for such high performance was not

widespread. In addition, the product devel-

opment cycle was, by the standards of the time,

quite long (two years) and enthusiasm for the

VHF modules among DEC engineers waned,
further slowing product momentum. Despite

their failure as a product, with only eight mod-

ules in the series, the VHF modules eventually

made a contribution to computer progress. To

produce timesharing systems, the PDP-6
needed a way of comparing relocated addresses

at very high speed. A high speed register com-

parator was quickly designed using current

mode logic similar to that in the VHF modules.

As a series of general purpose products for

engineers to use, the VHF modules were too

costly and their wiring too inconvenient. Fur-

ther developments in general purpose logic

modules were to lie in the opposite direction:

toward cheaper, more compact, easier to use,

and slower units.

DIGITAL MODULES, THE BASIS FOR COMPUTERS 1 1 1

I o a a

-W—T W—M—N—M—W-

if

it

if

if

if

^-^^^

^^b—

- o S t 5 -

ec 5 ^
-AAA(

'I WV—• II __^ ^'~~"

!L^

< p: I "9

if

^^-O^k'^
_ i

"t-HQ"

Xt=!

rM

-Wv-

II—vs/v

'-I- o6 ^^ si—
'-9t

?

i I s s o

T3
O
E
a.
o

5 S « " ° o

0) !5 2 < o °

112 IN THE BEGINNING

By 1964, because of the decreasing cost of

semiconductors during the early 1960s, the cost

of System Module mounting hardware and of

^
'm

W^^J0') ::)

Figure 1 6. Single and double Flip Chip modules used in

PDP-7 and PDP-8.

wiring had become a significant portion of the

total system cost. In response to this trend, a

new type of module was developed which was a

2.5- X 5-inch printed circuit card with a color-

coded plastic handle (Figure 16). The printed
circuit card provided its own mechanical sup-

port - there was no metal frame around it as

there had been in the System Module design.

The new modules, called Flip Chip modules,

plugged into 144-pin connector blocks that

could support eight such modules, providing 18

pins per module. While the improvements in the

cost of module mounting hardware realized

with the new modules were important, the ma-

jor advantage of the new Flip Chip modules

was that automatic Gardner-Denver Wire-wrap

equipment could be used to wire the module

mounting blocks.

The first series of the new modules was desig-

nated the R-Series and was identified by using

red handles. The R-Series circuits were a reac-

tion to the rather complicated set of rules devel-

oped for using the previous products. The goal
was to make these modules easy to use and in-

expensive. Integrated circuits were not used be-

cause they were more expensive than discrete

components, and the computer industry had

not yet decided on the type of integrated circuit

to use. The building block for R-Series logic

was the diode gate, an example of which is

shown in Figure 17. The other basic circuit was

the diode-capacitor-diode (D-C-D) circuit

shown in Figure 18. The diode-capacitor-diode

gate was used to standardize inputs to active de-

vices such as flip-flops and to produce the logic

delay necessary to sense and change flip-flops at

the same time.

A second series of the new modules was de-

veloped for the first PDP-8s. This series was

called the S-Series, although it also had red han-

dles. The S-Series modules used the same cir-

cuits as their R-Series counterparts, but with

variations in the values of the load resistors and

diode-capacitor-diode gate storage capacitors

to obtain greater speed.

DIGITAL MODULES. THE BASIS FOR COMPUTERS 113

W <•—W M-

-W u

i > OUTPUT

-w-

^

o ou

DIODE GATE SYMBOL

-w-^

Figure 17. Diode gate. Figure 18. D-C-D gate.

The B-Series with blue handles was essen-

tially the same as the 6000 Series of 10-MHz

System Modules, except that it was repackaged
on new 2.5- X 5-inch cards and used silicon

transistors rather than germanium transistors.

The new silicon transistors were a mixed bless-

ing. While they had temperature sensitivity

characteristics superior to those of the germa-
nium transistors, and their voltage drop charac-

teristics permitted the elimination of the bias

resistor to +10 volts, they did not saturate as

well as the germanium transistors. Because they
did not saturate well, the voltage between the

collector and the emitter in the saturated state

was not as low as it was with germanium tran-

sistors. This meant that the series arrangement
of three inverters discussed in conjunction with

the dotted lines in Figure 4 could not be used.

Instead, only two of the silicon transistor in-

be connected in series if the output was in-

tended to drive another inverter. The first com-

puter to use the B-Series modules was the PDP-

7, and the series was heavily used and extended

by the first PDP-10 processor (KAIO).

Analog applications were the target market

for the A-Series modules, which had amber

handles. This series, still being manufactured

today, includes analog multiplexers, oper-

ational amplifiers, sample and hold circuits,

comparators, digital-to-analog converters, ref-

erence voltage supplies, analog-to-digital con-

verters, and various accessory modules. The

development rate of analog modules peaked in

1971 with 38 new types and declined to 5 new

types in 1977.

While all of the preceding modules had been

designed as user-arrangeable building blocks,

the green handled G-Series was intended for

114 IN THE BEGINNING

modules that would be sold only as part of a

system. For example, all of the DEC core mem-

ory circuits have been in the G-Series because a

core memory system is sufficiently complex that

a cookbook approach using a standard series of

modules is not appropriate. The G-Series is still

actively used today for circuits other than logic,

generally in peripheral devices such as disks,

tapes, and terminals.

Like the A-Series and G-Series, the W-Series

(white handle) is still manufactured and is used

to provide input/output capability between

Flip Chip modules and other devices. Lamp
drivers, relay drivers, solenoid drivers, level

converters, and switch filters are included in

this family, but the only modules used widely

today are those modules which include cable

termination modules and blank boards upon
which the user can mount integrated circuits

and wire-wrap them together.

While the W-Series modules provided a vari-

ety of interface capabilities, their circuitry was
still too fast for typical industrial applications.

Computer logic, by its very nature, is high speed
and provides noise immunity far below that re-

quired in small-scale industrial control systems
located physically close to the process they con-

trol.

Unfortunately, industrial electrical noise is

not predictable to the nearest order of magni-
tude. Thus, attempts to solve noise problems
with high level logic, whose voltage thresholds

were merely a few times greater than computer

logic thresholds, did not work well.

A new series of modules was developed, the

K-Series (with blac(K) handles), which relied

on a combination of voltage, current, and time

thresholds to protect storage elements such as

flip-flops and timers from false triggering. Since

industrial controls typically interact with phys-

ically massive equipment which moves slowly
relative to electronic speeds, time thresholds are

particularly attractive. There are four ways of

exploiting these:

1. Using basic 100 KHz slow-down circuits

everywhere.

2. Making optional 5 KHz slow-down cir-

cuits available.

3. Providing transition-sensitive (edge-de-

tecting) circuits with hysteresis to allow

additional discrete capacitor loading of

the input when all else fails.

4. Replacing the conventional mono stable

multivibrator or "one-shot" circuit with

a timing circuit which has both a low im-

pedance and hysteresis at the input.

The hardware for the K-Series was specifi-

cally designed to fit the NEMA (National Elec-

trical Manufacturers Association) enclosures

traditionally used with relay implemented in-

dustrial controls. The K-Series used the same
connectors as the other Flip Chip modules,

however. Sensing and output terminals were

provided with screw terminals and indicator

lights, and appropriate arrangements were

made to interface with 120-volt ac devices.

Wire-wrap terminals were protected from exter-

nal voltages but were available for oscilloscope

probes. Magnetically latched reed relays and

diode arrays that could be programmed by

snipping out diodes were provided as memory
elements that would retain data during power
failures.

Gating in early K-Series modules was accom-

plished with discrete diode-transistor circuits

such as that shown in Figure 19. Other K-Series

modules used integrated circuits for the logic

functions. In these designs the inputs to the in-

tegrated circuits were protected with fil-

ter/trigger circuits which filtered out the noise

and then restored the fast risetimes required by
the integrated circuits. Outputs were protected

from output-induced noise and converted to

standard K-Series signals by circuits similar to

those used in the discrete logic gates.

DIGITAL MODULES, THE BASIS FOR COMPUTERS 1 1 5

EXPANSION

=o

Pf ^
Figure 1 9. K-Series circuit.

Figure 20. Basic TTL NAND gate circuit.

Unlike other DEC modules, the K-Series

modules were not directly useful for construct-

ing computers or computer data processing

subsystems due to their low speed and high

cost. They did play an important part in bring-

ing digital logic into industrial applications, and

the noise protection techniques developed for

these modules were useful in the design of the

PDP-14 Industrial Controller (Chapter 7).

By 1967 the electronics world had settled on

transistor-transistor logic (TTL) and the dual

in-line package (DIP) as the technology and

package of choice for integrated circuits. In ad-

dition, the cost for logic functions implemented
in TTL integrated circuits had dropped below

that of discrete circuit implementations. With

much more logic fitting into the same printed

circuit board area, a single Flip Chip card could

now accommodate much more complicated
functions. However, there were not enough
connector pins available to get the necessary

signals on and off the card. The answer to the

problem was to keep the cards the same size,

but to have etch and associated contacts on

both sides of the printed circuit board. This in-

creased the number of contacts from 18 to 36,

and a new series with magenta handles (the M-

Series) was born. Subsequently, some G-Series

and W-Series modules were also designed with

integrated circuits and double-sided boards.

The advent of transistor-transistor logic

brought the first power supply and signal level

change in DEC's history. The —15-volt and

+ 10-volt supplies were no longer required.

Only a single +5-volt supply was needed to sup-

ply the logic signals which were now O and +3
volts. The packaging was kept consistent, how-

ever, as the old single-sided modules could be

plugged into the new connector blocks. Careful

attention to pinning arrangements allowed half

of the circuits of a double-sided module to be

used in a single-sided block.

The basic TTL circuit is the NAND gate

shown in Figure 20. Since the change to TTL
logic brought a change in logic symbols, a

sample of the new symbology is also shown in

Figure 20.

The input of the TTL gate is a multiple emit-

ter transistor. If either input is at or near

ground (0 to 0.8 volts), transistor Ql becomes

saturated, bringing the base voltage of transis-

tor Q2 low, turning off transistor Q3 while turn-

ing on transistor Q4, and making the output

high (+2.4 to +3,6 volts). If both inputs are

high (above 2 volts), Q2 has base current sup-

plied to it through the collector diode of Ql,

turning Q2 on. This in turn provides base cur-

rent to Q3, saturating it and cutting off Q4,

making the output low (0 to 0.4 volts).

Like the transistor inverter circuits discussed

in conjunction with System Modules, TTL
NAND gates can be cross-connected to form

flip-flops.

116 IN THE BEGINNING

The first generation of M-Series modules was

used in a redesign of the PDP-8, called the

PDP-8/I. The circuits used in these modules

used TTL integrated circuits which were called

7400 series integrated circuits because of a

growing tendency in the semiconductor in-

dustry to standardize part numbers for TTL cir-

cuits, calling a package of 4 NAND gates a

7400, a package of 6 inverters a 7404, etc. Soon

there was a need in the computer industry for

higher speed circuits. This need led to the devel-

opment of the 74H00 series. The 74H00 circuits

were similar to those in the earlier 7400 series,

but they were faster and used much more

power. The first PDP-11 (the PDP-11/20), the

second PDP-10 processor (KIIO), and the PDP-

8/E used both 7400 and 74H00 series integrated

circuits. The PDP-11/45, designed between

1970 and 1972, used Schottky TTL, a circuitry

with such rapid switching speeds and high

power consumption that four-layer boards had

to be used such that the inner layers of power
and ground etch could provide both shielding

and an adequate supply of power and ground.

In 1972 work began on a new PDP-10 proces-

sor, the KLIO. This used current switching non-

saturating logic from several vendors, including

the MECL (Motorola Emitter Coupled Logic)

10,000 series. This line of circuits is in some

ways an integrated circuit version of the VHP
modules. The basic gate is shown in Figure 2 1 .

In the circuit shown in Figure 21, transistor

Q6 has a temperature compensated, internally

generated reference voltage of — 1 .3 volts on its

base. The outputs drive 50-ohm terminated

transmission lines returned to —2 volts. There is

a complementary pair of outputs so that the cir-

cuit is both an OR and a NOR gate. At 25 de-

grees Celsius the upper level will be between

—0.81 and —0.96 volts, while the lower level

will be between —
1 .65 and —

1 .85 volts. The cir-

cuits, like the Schottky circuits, are so fast that

multi-layer boards are required. In addition, a

great deal of care in signal line termination is

required. As with the previous logic families

studied, flip-flops can be created. The ECL
master-slave flip-flops are quite complex, typi-

cally requiring 32 transistors and 7 diodes.

VcC2lGN0) VccilGNDI

"CI-
220!

rC)°'r€)"rS!)"r<)°' Q^;
. Rp i|

OR
OUTPUT

—
S/
—

INPUTS

vee

(-6.2 V)

Figure 21. ECL circuit.

DIGITAL MODULES. THE BASIS FOR COMPUTERS 1 1 7

VEAR

88 60 62 64 66 68 70 72 74 76

I

I

I 1
—

\

—
\

—
\

—
\

—r^
20 MODULES

•i:

POP 4, PDP 5

3000 SERIES
LAB 500 kHz

AN0 1 MHz

I^
8000 SERIES SYSTEMS

TECHNOLOGIES USED TTL TTL/H
1^ f f n r

TTL/S ECL NMOS CMOS

Figure 22. Modules introduced each year at DEC.

118 IN THE BEGINNING

As the various module circuit technologies

developed, more logic functionality fit in a

given space, and the space provided on individ-

ual logic modules was increased. The modules

used in the PDP-8/I, PDP-8/L, PDP-10 (KIIO

processor), and PDP-15 were single (2.5 X 5-

inch) and double (5 X 5-inch) general purpose

modules, and these machines had relatively low

packing densities because most inter-

connections were carried out on the wired back-

plane. The PDP-8/E (and, to a lesser extent, the

PDP-11/20) used 8.5 X 10.4-inch "extended

quad" modules which were functionally special-

ized and eliminated many of the backplane con-

nections required in previous designs. By 1973,

the "hex" module (8.5 X 15.6 inches) was

widely used, principally in the PDP-11 family.

By 1978 two DEC computers, the VAX 11/780

(1977) and the DECSYSTEM 2020 (1978), were

using 12 X 15.6-inch "super hex" modules to-

further reduce interconnection cost by placing
more logic on a single module.

An evolution in circuits has continued as the

technology has changed. As integrated circuits

have become more functional by the reduction

of the size of their active elements, each new

computer introduced is smaller, faster, and less

costly than its predecessor. While only DEC ex-

amples have been mentioned here, the trend to-

ward smaller, faster, and less costly computers
has been consistent for all computer manufac-

turers.

The chart in Figure 22 shows the number of

module types introduced each year from 1957

to 1977.

ACKNOWLEDGEMENTS
We gratefully acknowledge the review assist-

ance offered by Allan Kent, Tom Stockebrand,

Phil Tays, and Don White.

Opposite:

• PDP-8.

pap

Beginning of the Minicomputer

In November 1960, the first PDP-1 computer was delivered. This machine and

the 49 other PDP-ls that followed established Digital Equipment Corporation in

the computer business. Four and a half years later, in April 1965, the first PDP-8

was delivered. This machine, and the 40,000 PDP-8s that followed, established the

concept of minicomputers, leading the way to a multibillion dollar industry. In

the chapters of Part II, the development of DEC's 12-bit and 18-bit computers are

explored in detail, with special attention paid to the factors influencing their de-

velopment, the technology used in their implementation, and the reception of

each machine in the marketplace. Sections of these chapters were co-authored by
the designers or key project team members of the machine where possible. This

permits a glimpse into the thoughts of the designers as they recollect and critique

the designs in the light of subsequent developments.

Chapter 6 begins with a discussion of the PDP-1, showing the influence of

various M.I.T. machines and exploring the design goals of the PDP-1, many of

which are only speculations at this late date. The discussion of the PDP-1 is fol-

lowed by brief discussions of the PDP-4, PDP-7, and PDP-9. The PDP-1 5, the

most significant of the 18-bit machines in terms of longevity, number in use, and

product range, is also discussed. The architectural changes that made the PDP-1 5

substantially different from the PDP-4, 7, and 9 are not included in the PDP-1 5

discussion, but an interesting retrospective view of the design goals and decisions

is included. Thus, this section provides a good model of how design should be

carried out and reviewed -
hopefully, on an a priori basis.

The final section of Chapter 6 on 18-bit machines compares them in terms of

cost, performance, and physical metrics. This section can be read independently

of the machine design descriptions. Here, it is important for designers to realize

that there is a continuity to design and that subsequent designs have to be better

along one or more of the evaluation dimensions. Ignoring or not understanding
the dimensions can lead to failure in the marketplace.

Chapter 7 describes the PDP-5 and the PDP-8 Family of 12-bit machines. The

original PDP-8 is described, along with the various implementations of the same

instruction set that occurred over the following fifteen years. Included is a brief

discussion of the latest implementation, a computer on a single 40-pin chip. The

chapter concludes with a discussion of the technology, price, and performance of

the 12-bit computers, including a number of charts.

Chapter 8 is a top-down, hierarchical description of the implementation of the

PDP-8 computers; it is based on material from Computer Structures by Bell and

121

122 BEGINNING OF THE MINICOMPUTER

Newell [1971]. This chapter includes some use of ISP and PMS notation, and

readers who are unfamiHar with these notations are advised to study Bell and

Newell, read Appendices 1 and 2, or scan this chapter lightly.

ACKNOWLEDGEMENTS

Although the reviewers of Part II are credited elsewhere, Wes Clark and Dan

Siewiorek deserve special thanks. Wes reviewed the draft for historical content

and contributed various early memos and technical reports, and Dan did a great

deal of work revising and clarifying the PDP-8 hierarchical description.

The PDP-1 and Other
18-Bit Computers

C. GORDON BELL, GERALD BUTLER, ROBERT GRAY,
JOHN E. McNAMARA, DONALD VONADA,

and RONALD WILSON

THE PDP-1

Although Digital Equipment Corporation
was formed in 1957 with the explicit goal of

constructing computers, the company's first

computer, the PDP-1, was not demonstrated

until almost two years later. The principal

backer of DEC, American Research and Devel-

opment headed by General Georges F. Doriot,

was somewhat skeptical that a computer com-

pany could be successful. They were enthusias-

tic, however, about the business possibilities in

logic modules for laboratory and system use,

and they felt that the plan to build computers
should be conditional upon building a soUd

base in the module business.

After a year of operation, DEC met its profit

and sales goals and was permitted to move on

to the construction of computers. However,
Ken Olsen felt it would be worthwhile to wait

an additional year to obtain more business ex-

perience and to build a larger customer and fi-

nancial base. Thus, it was not until the summer

of 1959 that an engineer, Ben Gurley, was hired

to design and build the PDP-1. Ben headed

computer engineering until he left in 1962. In

addition to logic and computer design, he spe-

cialized in complex analog circuitry, including

the circuits for core memories and displays. The

displays (including high precision and color

point plotting) were pivotal to DEC's success,

and many of the display circuits that he de-

signed remained unchanged until the 1970s. His

death in 1963 was a tragic loss to computer en-

gineering and the industry.

Ben Gurley and other engineers* at DEC had

worked at the Massachusetts Institute of Tech-

nology (M.I.T.) Computer Laboratory on

Whirlwind and had then gone on to develop

computers at the M.I.T. Lincoln Laboratory.
As a result, the machines constructed at the

M.I.T. campus and at Lincoln Laboratory

greatly influenced the design and construction

of the PDP-1. In fact, the DEC System Modules

*HarIan Anderson, Dick Best, Ken Olsen, Stan Olsen, and Bob Save!!.

123

124 BEGINNING OF THE MINICOMPUTER

that formed the basis of the PDP-1 were directly

patterned after the circuits of the TX-0 and the

TX-2 computers at M.I.T., as discussed in

Chapter 5.

The TX-0 and TX-2 computers were among
the most advanced machines of their time and

were the offspring of M.I.T.'s Whirlwind [Ever-

ett, 1951; Redmond and Smith, 1977], a com-

puter that was operational in 1950. Whirlwind

(Figure 1) was an important ancestor of the TX-

0, the PDP-1, and modern minicomputers be-

cause of the short word length (16 bits), because

of the high speed operation, and because of the

people involved in its development. The high

speed operation was accomplished by using an

M. I.T.-developed random-access storage tube

rather than a drum for primary memory. Sub-

sequently, performance was further upgraded

by using the core memory that was developed

by Jay Forrester at M.I.T. in 1951 [Forrester,

1951].*

To test the Whirlwind core memory, a special

computer called the Memory Test Computer
(MTC) was developed by a design team headed

by Ken Olsen, a recent M.I.T. graduate. The
core memory worked so well that it was imme-

diately moved to Whirlwind. A 4-Kword mem-

ory was built for MTC, permitting MTC to be

operated as a special purpose computer for sev-

eral years.

MTC is shown in Figure 2 as it was first as-

sembled and operated in a factory building near

M.I.T. Its word length was selected to be 16 bits

because that was the size of the Whirlwind

memory being tested and because 16 bits were

adequate to represent the data for M.I.T.'s

Project Lincoln air defense applications.

The MTC turned out to be a useful training

ground for the designers (especially K. Olsen)

when they went to Project Lincoln's new facil-

ity, Lincoln Laboratory in Lexington, Massa-

chusetts. The MTC packaging, circuits, and

toggle switches influenced the subsequent TX-0

design. The MTC packaging used various

standard radio relay racks and had a somewhat

homely appearance; this encouraged the design-

ers to be more concerned about appearance in

the future. The MTC circuits used significantly

smaller modules than those in Whirlwind and

used a gated pulse delay line clock for control

rather than the synchronous clock used in

Whirlwind. In addition, MTC used a dc bus for

gating registers to one another that was carried

out on an open-wired bus (versus coaxial cable)

that ran the entire length of the computer. The
MTC toggle switches formed a memory of 32

registers. As it turned out, when the 512 toggle

switches were put together, they formed about

the most unreliable part of the computer. At the

time, lifetesting in large batches was not done;

hence, the experience with the MTC toggle

switches formed the basis for significant im-

provement of switch designs in the TX-0.

Although the speed of the MTC was about

the same as the speed of Whirlwind, it was not

fully used, perhaps because it lacked the soft-

ware and peripherals.

Like the MTC, the TX-0 was designed as a

test device. It was designed to test transistor cir-

cuitry, to verify that a 256 X 256 (64-Kword)
core memory could be built [Mitchell and Ol-

sen, 1956] and to serve as a prelude to the con-

struction of a large-scale 36-bit computer, the

TX-2. The transistor circuitry being tested fea-

tured the new Philco SBTIOO surface barrier

transistor, costing $80, which greatly simplified

transistor circuit design. The work on the 256 X
256 core memory, using vacuum-tube drivers.

* Whirlwind was dismantled in 1959 and moved to Wolf Research and Development where it was reassembled and operated
until the 1970s. Whirlwind is now part of the Digital Distributed Museum Project, although the first core memory module
and other parts have been given to the British Science Museum, the Smithsonian, and other museums.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 125

Figure 1. M.I.T. Whirlwind computer (courtesy of M.I.T. Lincoln Laboratory).

Figure 2. M.I.T. Memory Test Computer (MTC) used to test first core memory (courtesy of M.I.T. Lincoln Laboratory).

was done by William Papian and Dick Best

[Best, 1957] and proceeded independently of

work on the computer.
The original TX-0 (Figure 3) had a number of

I/O devices. After it was moved to M.I.T., the

largest device was a 12-inch point-plotting cath-

ode ray tube (designed by Ben Gurley) and light

pen console, giving the TX-0 some physical re-

semblance to Whirlwind. In addition to the

cathode ray tube, there was a high speed (300

characters per second) Ferranti paper tape

reader and a Friden Flexowriter that was used

as both a typewriter and paper tape punch.
There was also a large bank of toggle switches,

some of which formed the two program acces-

sible registers and some of which formed the

126 BEGINNING OF THE MINICOMPUTER

Figure 3. Lincoln Laboratory TX-0 computer (courtesy of M.I.T. Lincoln Laboratory).

first 16 memory locations, permitting direct en-

try of variables. However, despite the multiple

I/O devices, the TX-0 had no program inter-

rupt mechanism.

The two program accessible registers were

called the Accumulator and the Live Register.

The Accumulator was used for logic functions

and the Live Register was used for controlling

and buffering transfers to various I/O equip-

ment. The initial version of the TX-0 had only
four instructions encoded in two bits, leaving

sixteen bits to access the large, 64-Kword mem-

ory. Three of the instructions accessed memory:
"store in location," "add from location," and

"transfer if Accumulator is negative to loca-

tion." The fourth instruction, "operate," was

for program controlled I/O transfers and in-

cluded commands that could be combined to

produce a large number of instructions. The

combining process was called "micro-

programming" because bits in the instruction

specified particular register transfer operations

and could be programmed. Among the instruc-

tions that could be created were "clear the right

half of the Accumulator," "cycle the Accu-

mulator right one position," and "start the pa-

per tape reader," The operations encoded in the

instruction could occur at any one of six pos-

sible times during the instruction; thus, a multi-

function instruction could be formed, such as

one to display a point on the screen and to gen-

erate a new pseudo-random point.

In 1958 the TX-0 was transferred (by Earl

Pugh and John MacKenzie) from Lincoln Lab-

oratory to the M.I.T. campus for laboratory ex-

periment control and for teaching. The memory
size was reduced from 64 Kwords to 4 Kwords
but used one of the first all-transistor driven

core memories. A second memory stack was

later added to provide 8 Kwords. In 1960 Pro-

fessor Jack Dennis assumed the management of

TX-0 and extended the architecture in an up-

THE PDP-1 AND OTHER 18-BIT COMPUTERS 127

Figure 4. Lincoln Laboratory TX-2 computer (courtesy of M.I.T. Lincoln Laboratory).

ward compatible fashion to include an index

register and more instructions.*

Following the completion of the original TX-
at Lincoln, work began on what became the

TX-2 [Clark, 1957; Frankovich and Peterson,

1957]. The TX-2 was a large machine, using

22,000 transistors compared to the 3,600 in the

TX-0 (Figure 4). A principal design goal of the

new machine was to create an I/O organization

that would be far more efficient than that of ex-

isting machines. To accomplish this, the idea of

a separate I/O processor was rejected, and a

minimum buffering scheme with direct transfers

to memory was chosen instead. Additional pro-

gram sequences with associated program

counters were provided to facilitate the I/O
transfers, using the processing facilities of the

central processor to effect the I/O transfers.

This I/O system [Forgie, 1957] formed much of

the basis for the PDP-1 Sequence Break System
and nearly all subsequent DEC computer de-

signs.

In addition to the I/O system improvements,
the TX-2 featured increased parallelism. There

were separate adders for indexing, program
counter incrementation, and instruction execu-

tion. The increase in word length from 18 bits

for the TX-0 to 36 bits for the TX-2 permitted
the construction of a 36-bit arithmetic unit that

could be reconfigured dynamically and in-

*The TX-0 remained in service at M.I.T. until 1975, when it was purchased by DEC for display in the Digital Distributed

Museum Project.

128 BEGINNING OF THE MINICOMPUTER

eluded 4 X 9-bit, 2 X 18-bit, 9/27-bit, and 36-

bit arithmetic*

By the time the PDP-1 was designed in 1959,

most of the important ideas of logical organiza-

tion, such as addressing, address modification,

sequencing control, arithmetic, and I/O con-

trol, had been invented. However, the major ad-

vances in the hardware realizations of these

concepts were yet to come. Machines were just

entering the second (transistor) generation. A
review of the state of the art in logical organiza-

tion is given in [Beckman et al., 1961]. A review

of the state of the hardware art in core memo-
ries is given in Rajchman [1961], and examples
of the transistor circuitry used at the time are

given in Chapter 4.

There is no record of the goals, constraints,

and objectives of the PDP-1 design. It is clear

that the PDP-1 instruction set processor was a

reaction to the TX-0, but it is unclear whether

an effort to make the PDP-1 compatible to the

TX-0 was ever considered. It seems unlikely be-

cause there was little software when TX-0 ar-

rived at M.I.T. As it turned out, it is fortunate

that no such effort was pursued because the

TX-0 was continuously extended, making com-

patibility a difficult goal to achieve. Instead of

being program compatible with the TX-0, the

PDP-1 was oriented toward being producible

by a commercial enterprise and usable by a va-

riety of programmers. To this end, it had more

instructions than the TX-0 and a simpler I/O
structure for ease in interfacing. In contrast to

the existing large-scale scientific and business

computers, the PDP-1 had a much shorter word

length (18 bits) and a simpler instruction set (28

instructions). The I/O structure included a se-

quence break option (the name given to the six-

teen channel interrupt mechanism) and a high

speed channel (now called Direct Memory Ac-

cess). The hardware implementation of the ma-

chine used DEC'S 5 MHz 1000-series system

modules and a 4-Kword memory which was

later expanded to 64 Kwords. The processor

and memory occupied four cabinets.

The registers and functional units of the

PDP-1 are shown in Figure 5, a diagram taken

from the original PDP-1 programming manual.

The PDP-1 registers were named after those of

• CONTROL

MEMORY BUFFER (MB)

D ACCUMULATOR (AC)
D IN/OUT REGISTER 1101 P

Figure 5. PDP-1 processor register transfer diagram.

*TX-2 operated until 1977, when it was dismantled. In the last decade of its use, it was modified and operated as a multi-

programmed timesharing system [Forgie, 1965]. The machine was used for a variety of applications. Two notable works

included Sutherland's Sketchpad [1963], an interactive graphic design program, and the first computer network experiment

between Lincoln Laboratory and the System Development Corporation computer [Marill and Roberts, 1966].

THE PDP-1 AND OTHER 18-BIT COMPUTERS 129

the TX-0, except for the TX-O's Live Register,

which was renamed the Input-Output Register.

The I/O register was also used as the Multi-

pHer-Quotient register when used as an accu-

mulator extension. An appreciation of the

relatively high cost of logic at the time of the

PDP-l's design can be obtained from the fact

that an index register was rejected because of

the high cost.

Even more important than the cost of logic

was the cost of memory, which had a major im-

pact on the machine's price. Since the cost of

memory so strongly determined the machine's

price, a 4-Kword minimum was selected for the

PDP-1, although a 1-Kword system also ap-

peared in the price list.

The instruction format used the 18 bits in a

fashion quite different from the 2 bits for in-

struction/16 bits for address method of the

original TX-0. In the PDP-1, five bits were used

to encode the instruction, one bit was used for

indirect addressing, and twelve bits were used

for addressing the 4-Kword memory. Because

the machine was oriented to control appli-

cations and low cost was a goal, the only data-

types which were included were word, integer,

and Boolean vector (logical). Hence, just seven

data operators (+, —
, X, /, AND, OR, and

EXCLUSIVE OR) for the one accumulator

structure and some control instructions were re-

quired.

The first description of the PDP-1 order code

by Harlan Anderson, DEC's Vice President, ap-

peared in a company memorandum dated Octo-

ber 27, 1959. That two-page memo assigned the

order code and the instruction names for the 24

instructions that were used in the initial design.

A few instructions were later added to improve
subroutine calling; thus, 28 instructions were

eventually used in production machines. The in-

struction set description of the PDP-1 is given
in Figure 6, and the corresponding description

for the PDP-4 is also shown for purposes of

comparison.

To make it a commercially viable machine,

the PDP-1 had not only more instructions than

the TX-0, but also a simpHfied I/O structure to

permit various I/O devices to be easily inter-

faced to the computer. One of the first user

manuals was the Input-Output Systems Manual,

which described the methods available for inter-

facing. These methods, now standard in mini-

computer and microcomputer design, included:

1. Program controlled transfers.

2. Program controlled transfers using the

Sequence Break System (now called an

interrupt system).

3. Multiple channel interrupt programmed
control.

4. High speed channel data transmission

(now called Direct Memory Access).

The first method, program controlled trans-

fers, was a well established method, but the sec-

ond method was a unique capability. The

Sequence Break System permitted a program to

handle much of the processing associated with

I/O devices instead of using special hardwired

controllers. Each time that an I/O device had

information to be transferred to memory, it

caused an interrupt to the processor and the

processor handled the transfer. This was a

marked change from the large computers that

used extensive (and expensive) I/O processors,

such as the IBM 7090 channels. A single IBM
channel was more expensive than a PDP-1.

The I/O character rates for devices such as

magnetic tapes and drums exceeded the rates

which could be handled by the program, so in-

formation was transmitted directly to the PDP-

l's memory in blocks under the control of the

device. Inter-block control was handled by the

interrupt facility, however. This basic scheme is

still in use in today's DEC computers.
A block diagram of the magnetic tape control

unit used on the PDP-1 is shown in Figure 7.

130 BEGINNING OF THE MINICOMPUTER

pdpl :
=

Begin |oc| ! One's Complement

*• Processor.State *•

AC\Accumuiator<0:17>,

IO\Input.Output.Register<0:17>,

PC\Program.Counter<6:17>,
OV\Overflow<>,

PF\Program.Flags< 1 :6>,

RUN< >

*
Memory.State **

M\Memory[0:4095]<0:l7>,

** Console.State **

TWS\Test.Word.Switches<0:17>,
SS\Sense.Switches<l:6>,

AS\Acldress.Switches<0: 1 5>,

** instruction. Format **

i\instruction<0

op<0:4>
ib< >
y<6:17>
cli< >
lat< >
cma< >
hlt< >
cla< >

lap< >
stf< 0:3>
c!f<0:3>

spi< >
szo< >
sza< >

spa< >
smaO
szs<0:2>

szf<0:2>

17>,
= i<0:4>.
= i<5>,
= i<6:17>,
= i<6>,
= i<7>,
= i<8>,
= i<9>,
= i<10>,
= i<ll>,
= i<14:17>,
= i<!4:17>,
= i<7>,
= i<8>,
= i<9>,
= i<10>,
= i<ll>,
= i<12:14>,
= i<15:17>.

** Effcctivc.Addrcss

z<6:17> :
=

Begin
z =

y Next

Repeat Begin
If Not ib =^ Leave z Next

z = ib@y = M[y]<5:17>
End

Operation Code
Indirect Bit

Address

Clear 10
OR AC and Test Switches

Complement AC
Halt

Clear AC
Load PC
Set Program Flags
Clear Program Flags

Skip if Positive lO

Skip if Zero OV
Skip if Zero AC
Skipif Positive AC
Skipif Negative AC
Skip if Zero Switches

Skip if Zero Flags

! indefinite indirect

pdp4 :
=

Begin |tc| ! Two's Complement

** Processor.State **

AC\Accumulator<0:17>,

PC\Program.Counter<5:17>,
L\Link< >,

RUN< >

** Memory .State
**

M\Memory[0:8191]<0:17>.

** Console.State **

ACS\AC.Switches<0:17>,

AS\Address.Switches<0: 1 2> ,

** Instruction.Format **

i\instruction<0

op<0:3>
ib< >

y<5:17>
cla< >
cIlO
rt< >
hlt< >
rar< >
ral< >
oas< >
cml< >
cma< >
is< >
szK >
snl< >
sna< >
sza< >
spa< >
sma< >

17>.
= i<0:3>,
= i<4>,
= i<5:17>,
= i<5>,
= i<6>,
= i<7>,
= i<12>.
= i<13>,
= i<14>,
= i<15>,
= i<16>,
= i<17>,
= i<8>,
= i<9>,
= i<9>,
= i<10>,
= i<10>,
= i<!l>,
= i<ll>.

Operation Code
Indirect Bit

Address

Clear AC
Clear L

Rotate Twice

Halt

Rotate Right
Rotate Left

OR AC and Switches

Complement L

Complement AC
Invert Sense of Skip

Skipif Zero Link

Skip if Non-Zero Link

Skip if Non-Zero AC
Skip if Zero AC
Skip if Positive AC
Skip if Negative AC

End,

** Effective.Address **

z<5:17> :
=

Begin
z =

y Next

If Not ib 4> Leave z Next

If z Eqv #0001? =^ M[z] = M[z] + 1 Next

z = M[z]<5:17>

End,

Figure 6. PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 1 of 5).

THE PDP-1 AND OTHER 18-BIT COMPUTERS 131

Instruction. Interpretation Instruction. Interpretation
**

interp :
=

Begin

Repeat Begin
if Not RUN ^Stop()Next
i
= M[PC]Next
PC = PC + I Next

execute()

End

End.

interp :
=

Begin

Repeat Begin
If Not RUN =S>Stop()Next
i= M [PC] Next

PC = PC + 1 Next

execute()

End

End,

execute :
=

Begin
Decode op ^

Begin
! Load and Store Group
lac

lie

law

dac

dio

dap

dip
drm

=AC = M[z()],

= IO=M[z()l,
=AC<= ib@y,
= M[z()] = AC.
= M[z()] = IO,

! Load Accumulator

! Load I/O Register

! Load Immediate (sign extension)

! Deposit Accumulator

! Deposit I/O Register
= M[z()]<6:I7> = AC<6:I7>, ! Dep. Address Part

= M[z()]<0:5> = AC<0:5>,! Deposit Instruction Part

= M[z()]
= 0, ! Deposit in Memory

! Arithmetic and Logical Group
add :

=
Begin

OV@,AC = AC + M[z()] Next

IfAC Eqv #777777 = > AC =

End,

sub :
=
Begin

OV@(AC = AC - M[z()] Next

If AC Eqv #777777 = > AC =

End,
mus :

=
Begin ! Multiplication Step
If IO<17> ^ AC = AC + |us| M[z()] Next

AC@IO = (AC@IO)SrO 1 Next
IfAC Eqv #777777 => AC =

End,

dis :
=
Begin ! Division Step

AC@IO = AC<l:17>®IO@(Not AC<0>)Next
IfIO<17> => AC = AC-|usiM[z()]Next
IfNot IO<17> ^ AC = AC + |usM(z()]+ I Next

IfAC Eqv #777777 =J> AC =

End.
and. :

=AC = AC And M(z()],

132 BEGINNING OF THE MINICOMPUTER

cal.jda :
=
Begin

THE PDP-1 AND OTHER 18-BIT COMPUTERS 133

Decode szf =^ ! Test Program Flags

Begin

#0 :
= No.Op(),

#7 :=IfPFEqlO=r>skip= 1,

Otherwise := If PF<szf> eqvO =J> skip
=

1

End

End,
:
= Begin ! Reverse Test

If szo And (OV Xor 0)
= > (skip

=
1 ; OV =

0);

Ifsza And(ACNeqO)^skip =
1;

Ifspa And(ACLssO) => skip
=

1;

If sma And (AC Geq 0) =» skip
=

1;

If spi And (lO Lss 0) =» skip
= 1 ;

Decode szs ^ ! Test Sense Switches

Begin

#0 := No.OpO,
#7 := IfSSNeqO=> skip

=
1,

Otherwise := IfSS<szs> XorO => skip
=

1

End;
Decode szf 4> ! Test Program Flags

1 :
= Reverse Test

Ifszl And (LEqvO)=^ skip
=

1;

If sna And (AC Neq 0) => skip
=

1;

Ifspa And (AC Geq 0) =^ skip
=

1

End

#0 := No.OpO,
#7 := IfPF Neq 0=> skip

=
1,

Otherwise := If PF<szf> XorO => skip
=

1

End
End

End Next
If skip => PC = PC + 1 ! Skip

End,

operate.group :
=

Begin
If hit =?> RUN =

0;

If cla =» AC = 0:

If cli => lO =
0;

Decode elf =^

Begin

#01:#06:= PF<clf<l:3>> =0,
#07:= PF =

#00,

Otherwise := No.Op()

End;
Decode stf =>>

Begin

#11:#16:= PF<stf<l:3>> =
1,

#17:= PF =
#77,

Otherwise := No.Op()

End Next

If lat =?> AC = AC Or TWS Next

If lap =>> Begin
AC<0> = AC<0> OrOV;
AC<1:5> =0;
AC<6:17> = PC
End Next

If cma =S> AC = Not AC

End,

! Shift and Rotate Operations

hardware function ones(x<0:8>)<0:3>, ! Count Number of I's in x

End Next

Ifskip=J> PC = PC+ 1

End,

operate.group :
=

Begin
If hit => RUN = 0;

skip.group() Next

If cla => AC =
0;

If ell =^ L = 0;

If rt ^ shift.rotate.group() Next

iSkip

If oas =S> AC = AC Or ACS;

If cma => AC = Not AC;
If cml => L = Not L;

shift. rotate.group()

End,

! Shift and Rotate Operations

Figure 6. PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 4 of 5).

1 34 BEGINNING OF THE MINICOMPUTER

shift.op<0:3> := i<5:8>,

shift.n<0:8> :=i<9:17>.

Begin ! AC Left

:= AC = AC SIO Ones(shift.n),

1 := AC = AC Sll Ones(shift.n)

End,

§1 5\sar :
= AC = AC Srd Ones(shift.n),

i)l06\sil := Decode IO<0> ^
Begin

:= lO = lO SlOOnes(shift.n),
1 :=I0 = I0SI10nes(shift.n)

End,

#16\sir := lO = lO Srd Ones(shift.n),

))(07\scl := Decode AC<0> =J>

Begin
:= AC@IO = AC@IO SIO Ones(shift.n),

1 := AC@IO = AC@IO Sll Ones(shift.n)

End,

#17\scr := AC@IO = {AC@IO) Srd Ones(shift.n),

Otherwise := Undefined()

End
End

! Shift Conditions

! Shift Count

shift.rotate.group :
=

THE PDP-1 AND OTHER 18-BIT COMPUTERS 135

f flagV

INPUT/
OUTPUT
REGISTER

TAPE CONTROL
UNIT

n

MAGTAPE
TRANSPORT
(TYPE 60)

,^^^BITE*^

LOCAL
CONTROL

ELECTRONICS

Figure 7. Program control-based magnetic tape control

from PDP-1 register transfer diagram.

Figure 8. PDP-1 /A prototype (circa 1960).

136 BEGINNING OF THE MINICOMPUTER

Figures. PDP-1 /A CRT console.

Figure 10. PDP-l/B at BBN (circa 1960).

but this design was subsequently dropped for

cost reasons. The use of a cathode ray tube in-

tegrated into the console never returned to the

DEC main line of computers, except briefly in a

few PDP-6S and in the LINC and PDP-1 2 lab-

oratory computers. In modern fourth gener-

ation (large-scale integration) computers, the

entire computer is integrated into the cathode

ray tube housing.

Bolt, Beranek, and Newman (BBN), a con-

sulting firm in Cambridge, Massachusetts, pur-

chased the first production machine (1/B) for

delivery in November 1960. This machine is

shown in Figure 10. A third machine, similar to

THE PDP-1 AND OTHER 18-BIT COMPUTERS 137

Figure 1 1. PDP-1/C production version (circa 1961).

the 1/A and 1/B, was constructed for internal

use.

After building the first three machines, it was
clear that modifications were needed to im-

prove producibility, lower production costs,

and improve reliability. The separate console

required many cables, and the connectors be-

tween the console and the computer were unre-

liable. For this reason, the final design (called

the PDP-l/C) used an operator/maintenance
console integrated into the cabinets, as shown
in Figure 11. The cabinets were produced by
DEC and were designed as air plenums to im-

prove air flow by having air enter at the bottom
of the cabinet and flow past all the modules.

The PDP-l/C cabinet design and module

mounting scheme were used directly in the

PDP-4 and PDP-5 computers and have re-

mained relatively unchanged (except for airflow

direction) through the years. They are being
used in housings of the smaller metal-boxed

minicomputers and in options of the third (in-

tegrated circuit) and the fourth (large-scale in-

tegrated circuit) generations.

The PDP-l/C design used four cabinets in-

stead of the three cabinets of the earlier versions

and preassigned the space in those cabinets for

improved producibility and configuration con-

trol. Each of the multiply-divide, sequence

break, memory extension control, and high

speed channel options had an assigned location.

Figure 12 shows the numerous options that

were offered for the PDP-1. Figure 13 shows a

side view of a typical cabinet and shows the

space for interconnecting to other options. Ex-

pansion was accommodated by adding bays to

the basic four-bay mechanical structure and by

interconnecting stand-alone options via cables.

Rather than the bused connection scheme com-

monly used today, the PDP-1 used a radial in-

terconnect system. The radial design of the I/O
structure and the free-standing controllers for

the magtape, displays, card equipment, printer,

and other devices made cabling relatively easy.

138 BEGINNING OF THE MINICOMPUTER

CENTRAL PROCESSOR OPTIONS

MEMORY
MODULE
TYPE 12

SEQUENCE
BREAK
SYSTEM
TYPE 120

MEMORY
MODULE
TYPE 12

(UP TO 161

I I ' ' ' ' I

HIGH-SPEED
DATA CONTROL

TYPE 131

MEMORY EXTENSION CONTROL
TYPE 16

HIGH-SPEED
CHANNEL
CONTROL
TYPE 19

STANDARD
PDP-1

CENTRAL PROCESSOR
INCLUDING MULTI-CHANNEL

SEQUENCE BREAK, AUTOMATIC
MULTIPLY DIVIDE. AND CORE

MEMORY OF 4096 18-BIT WORDS

5-INCH
SCOPE

ULTRA-PRECISION
CRT

CONTROL
TYPE 31

TAPE
TRANSPORT
TYPE 50

CARD
PUNCH

MULTIPLEXER
CONTROL
TYPE 139

TAPE
TRANSPORT
IBM 729

TAPE
TRANSPORT
TYPE 50

AUTOMATIC
LINE

PRINTER

A/D
CONVERTER
TYPE 138

.INPUT/OUTPUT OPTIONS

Figure 12. PDP-1 system block diagram.

As with device controllers, history is repeating

itself today in this area, as new fourth gener-

ation designs are returning to radial inter-

connect due to the decreased cost of logic, the

high cost of interconnect, and the need to

bound the system.

The additional year of module design be-

tween American Research and Development's

permission to construct computers and DEC's
actual commencement of computer construc-

tion had permitted more low speed (500 KHz)
modules to be designed. These newer modules

used the same circuit techniques as their prede-

cessors, but they used less expensive, slower

transistors. These new modules were used for

the I/O equipment. The PDP-1 was built from

only 34 module types, including memory mod-

ules. Each module type was fully general pur-

pose, except the five module types that were

used for the analog memory circuitry. The mod-

ule types are shown in Table 1.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 139

CENTRAL PROCESSOR
Table 1. PDP-1 Modules

140 BEGINNING OF THE MINICOMPUTER

Aside from the experience gained from hav-

ing to produce computers that could run unat-

tended and without service, the most important
result of the ITT order was that it allowed DEC
to build a number of identical machines without

special engineering. This in turn provided a pro-

duction base with decreased costs (as described

in Chapter 3) and a discipline to be less special

systems oriented. The first few machines or-

dered by other customers had been nearly all

different, requiring DEC to build options that

were sold only a few times. In addition, many of

those machines had interfaces that were unique
to the applications.

It should be noted that because the hardware

for the PDP-1 was relatively inexpensive, DEC
could afford to stock an ample supply of basic

modules for building special interfaces. Con-

structing interfaces and specialized hardware

was relatively easy compared to modern day
hardware design. Also, design errors could be

corrected with simple wiring changes - a much
easier process than that demanded by the mod-
ern day, where expensive printed circuit boards

have fine etch lines to be cut and read-only
memories to be changed. Finally, the special in-

terfaces and controllers for the PDP-1 were

quite simple compared to modern designs.

While the ITT sale was important to DEC's

future, the Bolt, Beranek, and Newman (BBN)
sale was important to the future of the entire

computer industry because it was one of the

events leading to the development of time-

sharing. A number of computer scientists at

M.I.T. and BBN believed that it was necessary
to provide interactive access to computers. The

only way to make this economically viable was

to simultaneously share the computer among
the users. Three experiments were carried out to

demonstrate its feasibility: the IBM 7090 system
at M.I.T. [Corbato et ai, 1962] which later be-

came the Compatible Time Sharing System

(CTSS), the multiuser PDP-1 at M.I.T. [Den-

nis, 1964] which was operational in 1963, and
the shared PDP-1 at BBN [McCarthy et al.

1963].

Batch multiprogramming [Strachey, 1959]

was an important part of the design of the

Stretch computer [Buchholz, 1962] and the

Atlas computer [Kilburn et ai, 1962]. They
were oriented toward hardware efficiency in

that they aimed for high utilization of all com-

ponents. Timesharing, on the other hand, was

concerned with the efficiency of the people try-

ing to use the computer - the efficiency of the

man-computer interaction [Corbato et ai,

1962].

A set of requirements was identified for a

timesharing system. Unless the workload was

restricted to programs that were specially de-

signed to run concurrently and to programs
that were error-free, one needed the following:

1. Memory protection.

2. Program and data relocatability.

3. A supervisor program.
4. A timed return to the supervisor.

5. Interpretive execution of the I/O in-

structions.

The BBN timesharing system began oper-

ation in September 1962. Five teleprinter users

shared the upper 4 Kwords of memory; the

lower 4 Kwords held the supervisor program,
called the "channel 17 routine." The modifica-

tions to the PDP-1 to effect timesharing were

embodied in the "restricted mode" of oper-

ation. They matched the above requirements in

the following way:

1. Memory protection. Switching between

the two 4-Kword areas required the use

of an I/O instruction.

2. Program and data relocatability. Because

only one user was resident at one time,

this was not needed.

3. A supervisor program. The channel 17

clock routine fulfilled this function.

4. A timed return to the supervisor. The

channel 17 clock generated an interrupt

every 20 milliseconds.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 141

5. Interpretive execution of I/O instructions.

Whenever the PDP-1 was in restricted

mode, an attempt to obey an I/O in-

struction caused a sequence break.

The TYC Control Language, a debugging aid

adapted from the DDT language devised for the

PDP-1 and its predecessor languages, was re-

garded as important because it allowed direct

language program debugging. The "restricted

mode" modifications, a high speed swapping
drum, and the use of the new multiport memory
designed for the PDP-6 formed the PDP-1 /D
design. Timeshared computers were built and

operated at BBN, Stanford, and M.I.T. These

timesharing efforts later influenced the use of

timesharing in the PDP-6 (Chapter 21).

THE PDP-4

About two years after the PDP-1 was first

shown, the notion of a much smaller machine

developed during discussions of process control

applications with Foxboro Corporation and

various other customers. A machine called the

DC- 12 Digital Controller was proposed. This

would be a 12-bit computer oriented toward

process control data collection and laboratory
data processing. During the preparation of the

proposal, the CDC 160 was studied, and the

DEC engineers briefly considered building a

copy or version of the 10-bit L-1 computer de-

signed by Wes Clark at Lincoln Laboratory.

However, the principal idea input for the

Digital Controller came from another Wes
Clark computer, the Laboratory Instrument

Computer (LINC).
The DC- 12 Digital Controller was never built

by that name; instead, it became the PDP-5

(Chapter 7). Some of the ideas studied in the

LINC and L-1 were used in other DEC ma-

chines, including the machine that became the

PDP-1 successor, the PDP-4 (Figure 14). The
PDP-2 designation was saved for a possible 24-

bit machine, but none was ever built. DEC also

never built a PDP-3, although one was designed
on paper as a 36-bit machine.*

The decision to make the next machine an 18-

bit machine, rather than a 12-bit machine, was

taken very lightly when it was made in Decem-
ber of 1962. In retrospect, it may have been a

poor decision, but the reasoning went some-

what as follows.

Based on the programming experience of the

TX-0, Gordon Bell felt that an 18-bit machine

significantly simpler than the PDP-1 could be

built and that simple machines with few instruc-

tions for a given number of data-types would

perform nearly as well as those with more in-

structions. This feeling was based on the use of

Whirlwind, TX-0 as it evolved through its vari-

ous versions, and the PDP-1. This was later

proven to be true, as the PDP-4 was imple-

mented in less than half the space of the PDP-1

and provided 5/8 the performance for 1/2 the

price. There is some question, however, as to

how much of the size reduction was due to the

simpler architecture, how much to the sub-

stantially better logic design implementation,
and how much to the increased logic packing

density.

Gordon Bell had conceived the idea of auto-

incrementing memory registers. This allowed

vectors to be accessed easily instead of using in-

dex registers. The auto-incremented memory
registers performed about as well as index regis-

ters and were much less expensive to imple-

ment.

The PDP-1 had used one's complement arith-

metic, which was especially poor for the fast

multiple precision operations and floating-

point arithmetic that DEC's customers needed.

*ln I960 a customer (Scientific Engineering Institute, Waltham, Massachusetts) built a PDP-3. It was later dismantled and

given to M.I.T.; as of 1974, it was up and running in Oregon.

142 BEGINNING OF THE MINICOMPUTER

Figure 14. PDP-4.

Multiple precision operations required the de-

tection of carry or borrow and the ability to add

or subtract the result into the next most signifi-

cant word. One's complement (especially as im-

plemented on PDP-1) did not conveniently

provide this capability, whereas two's com-

plement arithmetic did. Therefore, the PDP-4

was designed to use two's complement arith-

metic and to use the Link bit idea from the Lin-

coln Laboratory L-1 design to permit the

efficient programming of multiple precision

arithmetic operations.

Two control instructions were changed so

that they would not affect the Accumulator and

interfere with arithmetic instructions. The

"jump to subroutine" instruction was changed

to store the return link in the program area.

This convention would not be used today be-

cause it destroys the state of subroutines, thus

precluding reentrant programming, and it

makes the use of read-only memory difficult.

The other change was that the "index and skip"

instruction operated on memory only.

Those PDP-1 features that cost logic but

added little to performance were eliminated.

Among these were program flags, sense

switches, and the wired-in program (read-in

mode) that controlled the automatic reading of

paper tape.

The PDP-1 had used 4-Kword memory with

memory bank switching, an arrangement that

was common when the useful software required

THE PDP-1 AND OTHER 18-BIT COMPUTERS 143

8 Kwords of memory. It was felt that 8 Kwords
of directly addressable memory would be ideal.

The corollary to Parkinson's Law that pro-

grams expand to fill any physical memory size

was clearly not understood. However, it turned

out that most PDP-4s stayed within the 8-

Kword constraint, although the machine could

operate with up to 32 Kwords of memory.
It was decided that the goal was to build a

modular design such that the optional equip-

ment cost would be associated with the option
rather than wired into all of the machines. It

was also decided that the Teletype Corporation
Model 28 should be used instead of a modified

IBM Model B typewriter such as that used on

the PDP-1. It was felt that this would provide a

lower failure rate, less time to repair, and lower

cost.

The logic design of the PDP-1, although quite

straightforward, was optimized in the PDP-4 by

eliminating redundant terms and encoding the

instructions in ways that would simplify the im-

plementation. (The only way to get a signifi-

cantly smaller machine was to start over with a

new instruction set processor.) However, the ex-

isting peripherals and memories for the PDP-1
could be used immediately to assist the imple-
mentation of the new machine. This was an-

other important factor in favor of building a

new 18-bit machine rather than going to a 12-

bit design.

In addition to the hardware design consid-

erations, software offerings were an important
consideration. The PDP-1 users and the pros-

pective customers for the new machine were

adamant about writing process control appli-

cations in a high level language. The designers
at DEC briefly considered providing ALGOL
60, but decided that it would be better to pro-
vide a FORTRAN II for the new machine. It

turned out that FORTRAN was used some-

what for computation, but most users stayed
with assembly language programming, espe-

cially where real-time programming was con-

cerned.

The designers had a fairly clear idea of the

intended market for the new machine. Like its

predecessor, the PDP-1, the PDP-4 was to be

used predominately for process control, with

some use in the laboratory for pulse height

analysis, data gathering, and other similar ap-

plications. In fact, during the planning for the

PDP-4, meetings were being held with Foxboro

Corporation about applications at Nabisco for

baking control and with Corning Glass about

the control of a glass tube manufacturing pro-
cess. The meetings with Foxboro may have

been another factor in the 12-bit versus 18-bit

decision, as Foxboro favored the longer word

length due to their previous experience with a

24-bit RCA control computer. When the PDP-4
machines were produced, both Foxboro and

Corning bought them.

The simplifications achieved in the PDP-4
can best be appreciated by comparing the PDP-
1 and PDP-4 ISPs, as shown in Figure 6, and

the register transfer structures, as shown in Fig-

ures 5 and 15.

As with the PDP-1, the major design goal of

the I/O system was that users be able to connect

equipment easily. The use of an I/O bus struc-

ture such as party line or daisy chain was not

considered for the PDP-4, although one was de-

veloped one year later for the PDP-5. Instead,

the design effort focused on improving the ex-

isting radial scheme to achieve greater periph-

eral compatibility. The I/O section, called the

Real-Time Control (Figure 16), included the

ability to interface with PDP-1 peripherals.

There was a small taper pin patch panel where

cable drivers and input gates could be patched
to the cables which radiated out to the peripher-

als from the main computer cabinets. The input

capabilities were somewhat better than the

cable drive capabilities, as the process control

operations of that day were really more process

monitoring than process control, a reflection of

industry's distrust of the rehability of com-

puters for actual control applications. The sim-

plicity of the I/O distribution contributed a

144 BEGINNING OF THE MINICOMPUTER

(INTERNALPROCESSOR

n

r
CONTROL LOGIC

GENERATES CONTROL
LEVELS AND PULSES
FOR ALL REGISTERS

ACCUMULATOR lACI

 MM
I I d_L_L

•0 CYCLE
I PROGRAM
I
BREAK LINES

1=:

rr—r

-h

DIRECT
INFORMATION
TRANSFER

n—r >

20 X 3 LINES

REALTIME
OPTION

-• CONTROL

Figure 1 5. PDP-4 processor/real-time option register

transfer diagram.

ARITHMETIC AND CONTROL ELEMENT

OPERATOR
CONSOLE
(SEE NOTE)

INTERNAL
PROCESSOR
(SEE NOTEI

CORE
MEMORY
(SEE NOTEI

MEMORY
MODULE
TYPE 17

REALTIME
OPTION
TYPe26

PROGRAMMED MAGNETIC
TAPE CONTROL

TYPE 64

J
—r

1
MAGNETIC TAPE
TRANSPORT
TYPE 50

LIGHT PEN

TYPE 32

PERFORATED
TAPl punch AND
CONTROL TYPE 75

CARD PUNCH
CONTROL
TYPE 40-4

AUTOMATIC LINE
PRINTER AND
CONTROL
TYPE 62

PERFORATED
TAPE READER
(SEE NOTEI

TO OTHER
• OUTPUT
EQUIPMENT

INPUT/OUTPUT
EQUIPMENT

CARD READER
AND CONTROL

TYPE 41 4

FROM OTHER
INPUT EQUIPMENT I a standard PDP-4.

Figure 16. PDP-4 block diagram.

great deal to the compactness of the PDP-4. A
complete PDP-4 with card reader, magnetic

tape, display, and other options required three

bays, but many systems could fit within the two

standard bays (Figure 17), making PDP-4 sys-

tems less than half the size of comparable PDP-
1 systems.

In addition to the physical aspects of the I/O
system, the logical design of the I/O system in-

cluded some new features. One of these was the

ability to count events. Event counting was im-

portant in scientific applications such as pulse

height analysis, and the first customer to ex-

press a need for it was the Columbia University

Physics Department. It was also important in

process control applications such as metering

fiows and counting discrete items. Options such

as the 16-channel clock implemented the event

counting feature by having the option access a

memory cell and then rewrite its contents plus

one, thus changing the contents of memory as it

was rewritten. Counting could occur at event

rates up to the 125-KHz memory rate.

This method of event counting lead to the de-

sign of a relatively low cost, high performance
Direct Memory Access feature called the Three

THE PDP-1 AND OTHER 18-BIT COMPUTERS 145

IB

INTERNAL
1C PROCESSOR

CONTROL UNIT
ANO

10 ARITHMETIC
UNIT

1E

READER
CONTROL

PUNCH
CONTROL

KEYBOARD/PRINTER
CONTROL

MEMORY
MODULE

REAL-TIME
^^ CONTROL

nnnnan
2J IN/OUT PLUGS

CONTROL
UNITS
FOR

2M OPTIONAL
EQUIPMENT

2N

POWER CONTROL
PANEL
813

146 BEGINNING OF THE MINICOMPUTER

reduced the cost and increased reliability by re-

ducing the number of active elements. Rather

than use a transistor per gate as in the earlier

designs, a diode-transistor logic design was

used. In addition, capacitor-diode gates were

used for the AND gates associated with register

transfers.

The changes in the technology not only per-

mitted lower cost, greater noise immunity, and

greater reliability, they also permitted greater

densities. This made it possible, in some cases,

to design entire device controls on a single mod-

ule. Because the modules had only 22 pins (18

pins for signals), the increased densities could

not be applied directly to the more complicated

logic functions. To solve this problem, a 10-pin

connector was added on the back of each mod-

ule for the register transfer gating signals. In

this way, bit-slice architecture could be used,

packaging one bit of the Accumulator register

and all of the associated input gates on a single

module (Figure 18).

An interesting device with multiple stable

states was devised to simplify the control sec-

tion of the PDP-4. It was a generalization of the

flip-flop to n stable states, using n NAND gates

in a cross-coupled way with each NAND gate

having n-1 inputs. A patent was awarded for this

circuit, and it was subsequently used in other

computers and in the module product line.

Maintenance did not represent such a high

portion of the product cost as it does today, and

the designers of the PDP-4 did not feel that the

fraction of the total system represented by the

memory justified such present day features as

parity memory. Nonetheless, maintenance was

a major consideration in the PDP-4 design,

motivating the simplicity of architecture,

straightforwardness of implementation, care in

logic design, and clarity of the maintenance

documentation. The machine instruction set de-

scription occupied only one letter-size page.

The logic design flow chart (a state diagram) oc-

cupied only one D-size (22 X 34 inch) drawing,

and the design drawings for the processor occu-

AC CARRY OUT

AC ® MB
-»AC

AC CARRY IN

NOTE:
P102 and RB inputs are disconnected if computer
includes real-time option type 25.

Figure 18. PDP-4 Accumulator bit-slice

register transfer diagram.

pied seven D-size sheets. To facilitate under-

standing the machine operation, each signal

name on the drawings had a mnemonic prefix

identical to the drawing name (e.g., AC) in-

dicating from which of the seven drawings that

signal originated. This convention has been car-

ried forward through many other DEC ma-

chines.

The operator's console, shown in Figure 19,

included several functions to assist mainte-

nance. The console switches (Read, Read Next,

Write, Write Next, Start, Continue) could be re-

peated at a clock rate varied by a speed control

THE PDP-1 AND OTHER 18-BIT COMPUTERS 147

•••••••••••A*

» 1^ 4t « •

Figure 19. PDP-4 operator console.

on the console. This simplified testing by per-

mitting easy use of an oscilloscope. In addition,

simple checks on memory could be performed

by using the console Read and Write switches

and observing the results on the console lights.

Because the PDP-1 had been generally used

in dedicated applications, the users had written

their own programs. M.I.T., for example, had

contributed a good macroassembler, linking

loader, and interactive debugging program -

DDT. BBN had contributed various sub-

programs. DEC had invested very little in PDP-
1 software and thus had no concern for the cost

of writing system software or for the concept
that a new machine should capitalize on pre-

vious systems programming. It was easy for

people at DEC to believe that a small part of

the savings achieved by building a simpler ma-

chine could be used to pay for the writing of

new software for that machine.

In the present day, designers of new com-

puters realize that program compatibility is a

constraint and that any new machine must be

on an improving cost/performance line. (This is

discussed in greater detail in Chapters 2 and

15.) At the time that compatibility decisions

were being made with regard to the PDP-4,
about 20 PDP-ls had been installed out of an

eventual population of 50. Looking back from

today's vantage point, a compatible machine

might have been built that would have inter-

preted most of the PDP-1 programs and offered

the same improved cost/performance ratios as

the PDP-4 did, but still not have been very

much larger than the original PDP-4.

The PDP-4 was a Hmited success. While it

met the corporate profit standard, it did not sell

as well as had been expected. The market de-

mands were not as completely elastic as they

had been for the PDP-1, and 5/8 of the per-

formance for 1/2 the price was not good

enough. According to the evolution model dis-

cussed in the final section of this chapter, a ma-

chine with a lower price should have had the

same performance as the PDP-1, or else it

should have been priced much less than the

PDP-1 to compensate for the relatively poor

performance. In summary, the PDP-4 was not

aggressive enough in performance or in price.

There is an additional reason for the poor fi-

nancial showing of the PDP-4. Experience with

other machines that were the first of a series,

such as the PDP-5, PDP-6, LINC-8, PDP-14,
and PDP-1 1/20, indicates that the financial per-

formance of the first machine is always the

poorest of the series, largely because of the lack

of a software and hardware option base. The

PDP-7, 9, 9/L, and 15 were necessary succes-

sors that used the software and hardware op-
tion base created by the PDP-4.

THE PDP-7

In many ways the original concept of the

PDP-7 (or what was finally named the PDP-7)
started with the design of the PDP-1 /D, The in-

itial plans were to simply repackage the PDP-1,

using some higher density systems modules, and

to reduce the processor cycle time. The goal was

to use these changes to produce a lower price

machine with much better performance. This

goal was met quite well in the PDP-7, as it had a

greater performance/price gain over its prede-

cessors than any other DEC 18-bit computer.
The plan to simply repackage the PDP-1 was

abandoned when consideration was given to the

148 BEGINNING OF THE MINICOMPUTER

relative sizes of the existing software and pe-

ripheral option bases of the PDP-1 and the

PDP-4. The PDP-4 had more extensive soft-

ware than the PDP-1, including an operating

system and a FORTRAN compiler. The PDP-4
also had a much larger peripheral hardware op-

tion base than the PDP-1, Therefore, the goal of

program compatibility with the PDP-4 was

added to the goal of a substantial perform-

ance/price improvement, and the I/O interface

scheme for the new machine was constrained to

match the timing and structure of the past com-

puters. Although sounding quite broad, these

goals were rather restrictive, especially the re-

quirements for program and peripheral com-

patibility. The sales goal was truly broad,

however. That goal was to sell 120 systems,

more machines than the total of all other DEC
computer systems sold to date.

To sell all those systems, a substantial ad-

vance in performance would be required. Thus,
the performance goal was to decrease the cycle

time from 8 microseconds to 1.75 micro-

seconds, the practical limit of core memories at

the time. This was a rather ambitious goal and

required designing a new core memory system
and a new set of modules, the B-Series, which

were FHp Chip modules based on the 10-MHz

systems modules (Chapter 5). These new mod-
ules were used for the central processor and

memory. Originally, they were also used in the

I/O section of the system, but that was sub-

sequently redesigned to use primarily 2-MHz
R-Series modules, as will be described near the

end of this section. (Note the similarity to the

PDP-1, where cheaper, lower speed, 500-KHz
modules were used in the I/O.)

Program compatibility between the PDP-7
and the PDP-4 was maintained generally, but

was slightly modified in the I/O section to facil-

itate the introduction of the ASCII 8-level code.

The PDP-4 console teleprinter had been a Tele-

type Corporation Model 28 KSR teleprinter

that used Baudot (5-level) code. A shift to AS-
CII (8-level) code had already started in the in-

dustry, so the PDP-7 was designed to use the

Teletype Corporation Model 33 KSR. This

change necessitated that all programs determine

whether they were running on a PDP-4 or on a

PDP-7 so that they could determine how to in-

terpret the characters typed on the console tele-

printer. Other than this, an upward
compatibility was maintained. Downward com-

patibility was not maintained, as the PDP-7 had

some additional instructions, a trap feature,

and a multilevel interrupt option to allow multi-

user environments. In addition, the program
read-in mode of PDP-1 days returned to the

console. This feature permitted the user to press

a key and cause a paper tape, punched in a spe-

cial format with address and data or termi-

nating address, to be loaded into the computer's

memory. (Figure 20 shows the PDP-7 operator

console.)

The structure of the processor with its regis-

ters and the interfaces to I/O and memory are

shown in Figure 21. Note that the structure and

style of the design was essentially the same as

that used in the earlier designs, but modified for

the higher speed technology. The PDP-7 and

the PDP-4 had identical architectures and sim-

ilar implementations, but they had radically dif-

ferent realizations. Although the I/O section

and the new options were designed to operate at

the 1.75 microsecond cycle rate, to use the

slower PDP-4 compatible I/O equipment, spe-

cial pulses were used to implement a slow cycle

of 8 microseconds.

Figure 20. PDP-7 operator console.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 149

FROM INPUT/OUTPUT
EQUIPMENT USING DATA
BREAK TRANSFERS

FROM INPUT/OUTPUT
EQUIPMENT USING
PROGRAMMED STATUS
CHECKS

TO DEVICE SELECTOR OF
INTERFACE

I/O SKIP
CONTROL

I/OP
PULSE !•-

GENERATOR

ACCUMULATOR
SWITCH
REGISTER

FROM INPUT/OUTPUT
EQUIPMENT VIA THE
INFORMATION COLLECTOR
OF THE INTERFACE

TO INPUT/OUTPUT
EQUIPMENT VIA THE
INFORMATION
DISTRIBUTOR OF THE
INTERFACE

FOR INPUT/OUTPUT
EQUIPMENT USING DATA
BREAK TRANSFERS

DIRECT CONNECTION
AVAILABLE FOR ANY
INPUT/OUTPUT EQUIPMENT
OR FOR DEVICE SELECTOR
OF INTERFACE

a
r

ACCUMULATOR

INCREMENT MB

ADDRESS
SWITCH
REGISTER

MEMORY
BUFFER
REGISTER

PROGRAM
COUNTER
CONTROL

MEMORY
ADDRESS
REGISTER

MINOR STATES (INSTRUCTION STATESI

MAJOR STATES IF.D.E.BI
MAJOR
STATE

GENERATOR

/- ADDRESS ACCEPTED

DIRECT CONNECTION
AVAILABLE FOR

INPUT/OUTPUT I

EQUIPMENT
USING DATA BREAK
TRANSFERS

DATA ACCEPTED

DATA READY

TRANSFER DIRECTION

DATA BREAK REQUEST

DIRECT CONNECTION
AVAILABLE FOR ANY
INPUT/OUTPUT
EQUIPMENT

PROGRAM
INTERRUPT
CONTROL

REAL TIME
CLOCK

PROGRAM
INTERRUPT

SYNC.

CLEAR PULSE

150 BEGINNING OF THE MINICOMPUTER

The system diagram of the PDP-7 (Figure 22)

shows the options and the general inter-

connection scheme. It was fundamentally the

same structure as its predecessors and was de-

signed for use with many of the earlier periph-

eral controllers.

Physically, the PDP-7 was larger than the

PDP-4 because the console was mounted on the

side plane to facilitate maintenance instead of

on the end as in PDP-1 and PDP-4. This per-

mitted a service man to both look at a scope
and operate the console. Also, the paper tape

I/O equipment, which had been on an extra

table in the PDP-1 and PDP-4, was now housed

in the third bay of the main computer cabinets.

Figure 23 shows that the number of logic panels

for the processor of the PDP-7 was the same as

that for the PDP-4, even though the circuit

board area of the modules in the PDP-7 (3,348

in^) was slightly larger than that in the PDP-4

(3,300 in^). Although it does not show in the

diagrams or in the photos, a significant portion

of the volume of the PDP-4 was cable con-

nectors to various subassemblies. The PDP-7

improved the cabling by having all of the con-

nectors in the backplane so that all of the wiring

ANALOG/

DIGITAL

REMOTE
TELEPRINTER

REMOTE
TELEPRINTER

630
DATA COMM.
SYSTEM

550

DECtape
CONTROL

555

DECtape
TRANSPORT

555

DECtape
TRANSPORT D

57A
MAGTAPE
CONTROL

BASIC PDP-7

CONSOLE
TELEPRINTER

L-

DATA INTERRUPT.

CORE MEMORY
1.75^5

HIGH-SPEED
PAPER TAPE
READER

HIGH-SPEED
PAPER TAPE
PUNCH

PDP-7
PROCESSOR

R) REAL-TIME
CLOCK J

MEMORY
EXTENSION
CONTROL

Figure 22. PDP-7 system block diagram.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 151

could be done in a single wiring operation. The

PDP-7 was thus the first DEC computer de-

signed for automated wire-wrapping. Mechani-

cal block holders were designed to mount the

connector blocks for the modules and cable

connectors in the cabinets and a semi-automatic

wire-wrapping technique was developed to al-

low a much higher speed production of wire-

wrapped backplanes. Also, a Gardner-Denver

fully automatic Wire-wrap machine was or-

dered and programs to control it were devel-

oped.
The PDP-7 (shown in Figure 24) was a suc-

cessful product. The design costs, excluding

module and labor costs, were less than $100,000

from the start of the project to completion of

the first prototype. Time was considered a very

important factor in the design of the PDP-7.

The project started on April 1, 1964, and the

first production system was delivered on De-

cember 22 of the same year. The entire logic im-

plementation was undertaken by Ron Wilson

and one assistant. Jack WilHams. Later, a Field

Service representative, Don Zereski, literally

hand-built the first production system to be de-

livered to Bell Laboratories. The memory con-

trol and stack were designed by a memory
design engineer. Derrick Chin, who coordi-

nated his design with the processor logic design.

Despite the hand-building of the first unit, the

production of the PDP-7 was the beginning of

several mass production techniques at DEC,
and it was an important machine in the history

of DEC 18-bit computers.
The development problems that were over-

come were quite formidable. A complete new

BAY 3

152 BEGINNING OF THE MINICOMPUTER

(a) Front.

(b) Rear.

Figure 24. PDP-7.

line of modules, the Flip Chip series, was devel-

oped (although 10-MHz circuits had been

tested in the PDP-6). New connector blocks had

to be obtained to hold the modules, a design
effort that was concurrent with similar efforts

for the PDP-8. New wire-wrap techniques had
to be devised to ease the labor requirements so

that systems could be wired faster. Toward this

end, a program was ultimately developed for

the PDP-4 to do wire-routing and to control the

Gardner-Denver machine. System layouts had

to be developed to facilitate wire-wrapping. The
mechanical packaging and cooling had to be al-

tered to accommodate the new wiring panels, as

the existing PDP-1, PDP-4, and PDP-5 air ple-

num scheme was completely blocked by the new
connector blocks. The memory performance

goals (1.75 microseconds) were difficult to

achieve, as the best memory performance to

date was that of the PDP-6, which was 2 micro-

seconds. All of the above had to be done within

the cost goals.

As the design phase of the PDP-7 neared an

end and production models were being deliv-

ered, two developments occurred that suggested

the possibility of an improved production
model. One of these was the R-Series module

developments. These modules were lower speed
than the B-Series modules that formed the pro-

cessor, but they were lower in cost and more

complete in the range of functions available.

After analyzing the configurations that the cus-

tomers were ordering, the designers came up
with a new I/O panel that used R-Series mod-

ules as much as possible and was prewired for

several of the most popular peripheral controls,

thus reducing the amount of special wiring re-

quired to produce a system. This improved sys-

tem was called the PDP-7/A.
With the PDP-7/A completed, the designers

contemplated the possibilities of a next gener-

ation system that would use the new tools that

were now in place, such as the Gardner-Denver

fully automatic Wire-wrap machine. The design

criteria for the new machine would be that it be

completely wire-wrappable using the automatic

THE PDP-1 AND OTHER 18-BIT COMPUTERS 153

machine and that a system with 8 Kwords of

memory sell for approximately $35,000. The

new machine was called the PDP-7/X.
To meet the goals set for the new machine, a

new cabinet design was started that would

mount the wire-wrap panels on door-type
frames. These frames opened to allow access ei-

ther to the connector side for oscilloscope trac-

ing or to the module handle side for module

replacement. The new cabinets also dealt with

two problems involving the air flow. One of

these was that the air flow needed to be in-

creased due to the high density of the new logic,

and the second was that the existing air flow

method pulled air from the floor, which was

sometimes dirty. To solve these two problems, a

horizontal air flow system was implemented.
To control the system costs, which were be-

coming a major factor, the computer was di-

vided both logically and physically into three

divisions: memory, central processor, and in-

put/output logic. This was done to permit the

calculation and control of costs more accurately

and to divide the computer into the largest

single panels that the Gardner-Denver machine
could wrap.
The cabinet design and system partitioning

completed, the logic design moved ahead

smoothly. At this time, Larry Seligman, who
had designed the Extended Arithmetic Element

for the PDP-7, took over the project from Ron
Wilson. By this time, the project had changed
its name from PDP-7/X to PDP-9.

THE PDP-9

The basic logic and hardware for the PDP-9

(Figure 25) were the same as that used in the

PDP-7. Although some integrated circuits were

available, no standards had yet been set, and

there were no cost or speed advantages to be

gained. Therefore, the logic used discrete PNP

Figure 25. PDP-9.

154 BEGINNING OF THE MINICOMPUTER

transistor, capacitor-diode circuitry operating

with signal levels of —3 volts and ground. The

modules were about 2.5 X 5 inches or 5 X 10

inches and were plugged into an assembly of

144-pin connector blocks interconnected by 24-

gauge wire-wrap.

The major technology advance of the PDP-9

over the PDP-7 was in memory. A new memory
had been designed that used a 2-1/2 D driv-

ing/sense structure. The 2-1/2 D system re-

quired only three wires through each core in the

stack, rather than the four wires used in earlier,

coincident current designs such as that used in

the PDP-8 memory. The new memory obtained

a cost advantage by being oriented in an 8-

Kword organization rather than a 4-Kword or-

ganization. The costs of the discrete component

logic in the machine were still high compared to

those of memory, so the cost advantage was not

as exciting as the second advantage of the new

memory, which was speed. The new memory
had a cycle time of 1 microsecond as opposed to

1 .75 microseconds for the memory in the PDP-
7. Because memory speed limited system per-

formance, the new memory would permit the

system performance of the PDP-9 to be 1.75

times better than that of the PDP-7.

The structure of the PDP-9 processor is

shown in Figure 26. It was a great deal simpler

than earlier designs and used a general data

path through the adder rather than the ad hoc

register structure of the earlier machines. The

basic PDP-9 implemented the PDP-4 instruc-

tion set processor and the Extended Arithmetic

Element option using microprogrammed con-

trol. It was the first DEC computer to use this

technique.
In addition to being a technological advance-

ment, the PDP-9 was an interesting precursor of

things to come. A 64-word, 36-bit, 212-nanose-

cond read-only, transformer-coupled, rope

memory was used as the microprogrammed
control store. The design allowed for easy

bench modification in the event that the micro-

code required changing. It was originally in-

CENTRAL PROCESSOR

'^1a
££13^-0

OUT GATES

(i) A [i] A -?:r

t t t t

I
ll/O BUS (B)

r

I/O ADDR"-

J TELEPRINTER

^PTPUlOPTI

NCH
OPTIONI

r-[

r^

i_.

K
^COIDl!

.J

Figure 26.

diagram.

PDP-9 central processor register transfer

tended that the control words be arranged for

unary encoding, or what is now called horizon-

tal microprogramming. In such an arrange-

ment, each bit in the microinstruction denotes

an action and can be specified independently of

other microinstructions. This behavior is sim-

ilar to the operate class of instructions in the 12-

bit and 18-bit computers. However, the in-

tention of using horizontal microprogramming

THE PDP-1 AND OTHER 18-BIT COMPUTERS 155

was soon lost in the complexities of design, and

the bits were encoded to reduce the width of the

control words. This eliminated the possibility of

providing special purpose machines by a simple

read-only memory change, a feature that the de-

signers had originally hoped to include.

The necessity of staying within the size con-

straints of the read-only memory also con-

strained the extendability and use of the

microprogram control, in that floating-point

arithmetic could not be included due to space
limitations. There were not enough words, a

problem all too familiar when programming ei-

ther macro or micromachines. The Extended

Arithmetic Element was included in the micro-

program-controlled portion of the machine.

The Extended Arithmetic Element demon-

strated the power of the control store technique
because this option, a 36-bit multiply/divide

option, was implemented in only six single

height (5 X 2.5 inch) Flip Chip modules. The

processor occupied about 320 module slots, for

a total printed circuit board area of 3,100 in^.

This was not only less than the 3,348 in^ for a

PDP-7, but it also included both the optional

arithmetic element and much of the I/O con-

trol. Thus, when functionality is considered, the

PDP-9 was about half the size of earlier ma-

chines.

Interesting sidelights of the processor design

effort included the discovery of an error in the

PDP-1 signed integer divide algorithm and

Richard Sogge's design of a discrete carry adder

which would develop the carry over 18 bits in

under 30 nanoseconds. This was an especially

impressive circuit since ECL technology is re-

quired even today to obtain this speed.

Figure 26 shows a register transfer level dia-

gram of the processor together with I/O and

memory interface lines. The I/O control ex-

tended the features of earlier machines by im-

plementing an eight level nested automatic

priority interrupt facility and a data channel

transfer facility. The Automatic Priority Inter-

rupt had four levels of hardware interrupt capa-

bility at the I/O Bus and four levels of software

priority. The Data Channel Transfer Facility

was the same as a Direct Memory Access chan-

nel, but used the Three Cycle Data Break Sys-
tem pioneered in the magnetic tape control for

the PDP-4 (page 144).

The Direct Memory Access channel was the

most disappointing part of the I/O bus concept
because the speed requirement dictated the use

of an extra set of data and address lines which

were carried between the DMA device and the

memory bus multiplexer via an extra set of ca-

bles. In addition, a second port to memory was

required. A clean bus cabling scheme for high

speed transfer devices could not be imple-
mented because of the extra lines required, and

the only alternative, slowing down the machine

to handle the transfers, was not acceptable.

Logic for the PDP-9 was mounted in three

sections, each capable of holding eight rows of

forty modules (Figure 27). Each of the three

sections had self-contained cooling and final

power regulation.

A system block diagram of the PDP-9 (Fig-

ure 28) shows the evolution of the I/O and

memory bus structured computer. This scheme,
derived from the PDP-5 and PDP-6, was in con-

trast to the radial structure of the earlier 18-bit

computers and provided greater modularity
and a major cost improvement. The new bus

was daisy-chained from device to device using
twisted pair cables. This technique provided

uniformity in I/O backplane wiring compared
with the PDP-7, which was customized for each

option. The daisy-chain method allowed inde-

pendent development, manufacturing, and test

of I/O options and simpHfied the field installa-

tion of options. Also, it allowed costs to be as-

sociated with each option rather than being

initially higher as in the radial scheme where all

options had to be planned for in the central pro-
cessor. The new bus structure was a mixed

blessing in that it created the illusion that sys-

tems of unlimited size could be built.

156 BEGINNING OF THE MINICOMPUTER

THE PDP-1 AND OTHER 18-BIT COMPUTERS 157

Table 2. The PDP-1 5 Family of 18-Blt Computer Systems

Model

158 BEGINNING OF THE MINICOMPUTER

Figure 29. PDP-15/10.

DEC 19'INCH CABINET OEMENSIONS:
30 INCHES DEEP; 21-11/16 INCHES WIDE; AND
71-7/16 INCHES HIGH

Figure 30. PDP-15 side/front logic layout.

and new peripherals, level converters on the

I/O Bus were required.

In addition to the cost improvements antici-

pated from the use of integrated circuits, it was

also hoped that new memory systems available

would offer both cost and performance im-

provements. The PDP-15 memory is contrasted

with the PDP-1 memory in Table 3.

With the new memories and changes in ad-

dressing capabilities through the Index Register

and relocation options, memory size could be

expanded to 131 Kwords. A separate control

unit, called the I/O Processor, handled the

bookkeeping for the I/O channels and I/O Bus.

Figure 30 shows a typical PDP-15 system. The
two processors (main processor and I/O Pro-

cessor) occupied only a third of the cabinet

space of a comparable PDP-9 system, yet were

faster and had more capability. While on the

subject of cabinets, note that the packaging for

the PDP-15 reverted to the simplicity of the ear-

lier PDP-1, PDP-4, and PDP-7 cabinets by us-

ing a fixed mounting structure rather than

having the module connector blocks mounted
on a door.

The goals for the PDP-15 were to obtain an

850 nanosecond cycle time, to be compatible
with the PDP-9, to have a low manufacturing

cost, to improve priority interrupt latency, to fit

the basic system in one cabinet, to extend the

length of the I/O Bus, and to improve main-

tainability. The success in meeting these goals

varied.

The goal of achieving an 850-nanosecond

cycle time was exceeded, as the PDP-15 was

shipped with an 800-nanosecond cycle time. It

was particularly gratifying that this goal was

met and exceeded because there had been a

number of obstacles to overcome. The central

processor, memory, and I/O had been made

asynchronous to reduce I/O latency, but this re-

quired synchronizing logic that resulted in sig-

nificant circuit delays. A dc (round-trip)

interlocked memory bus had been designed so

that speed independent memories could be

used, but this caused communications delays.

Finally, to minimize cabling, a single set of lines

had been used for communicating address and

data information to the memory. This caused

further communications delays.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 159

Table 3. Comparison of PDP-1 and PDP-1 5 Memories

160 BEGINNING OF THE MINICOMPUTER

tested on a jig. The cabling was reduced to one

console cable, one teleprinter cable, one I/O
bus cable assembly, and two memory bus ca-

bles. In trying to limit console cabling, a time

division multiplex communication scheme was

designed to get the signals to the lights and from

the switches. In this scheme, a number of sig-

nals were transmitted on the same wires on a

timeshared basis, and the console lamp fila-

ments were used as storage elements. While this

scheme was clever enough to gain the PDP-15's

only patent, it was generally unsatisfactory. It

made the console logic so complex that when it

failed, it was harder to fix than the processor.

The goal of reducing interrupt latency to two

microseconds was not achieved. With the par-

ity, memory protect, and memory relocation

options implemented, and with adder and syn-

chronizing delays added in, the latency could

only be reduced to four microseconds; but that

was acceptable.

The goal of packaging the basic system (cen-

tral processor, I/O processor, console, and 32

Kwords) in one cabinet was met; it was a close

fit, and there were virtually no spare module

slots. Since few small systems were sold, it is not

clear that this emphasis was warranted.

The goal of extended I/O bus length was

achieved by switching from an unterminated,

diode-clamped I/O bus such as the PDP-9 used,

to a new, terminated I/O bus. A new set of bus

transceiver modules was designed to provide

greater speed and less bus loading. The new bus

design, with cleaner signals and no reflections,

combined with the new bus transceiver mod-

ules, permitted the I/O bus to be extended to 75

feet. The penalty paid was higher power con-

sumption and greater power supply cost than in

the PDP-9.

The goal of better maintainability was par-

tially achieved by equipping the logic with a

means of monitoring 400 signal points. This

feature was combined with a single step feature

which permitted troubleshooting from the con-

sole without the use of an oscilloscope. As it

turned out, the single step feature was used in-

frequently because of the training required to

use it properly.

Figure 31 shows the register transfer struc-

ture of the PDP-15 processor. It was based on

elements and features used in earlier designs

and had a basic data path which permitted the

results from any of the 1 1 registers to be read

into the arithmetic unit and then back into the

registers. In order to achieve high speed oper-

ation, a number of separate registers (such as

the Step Counter, the Program Counter, and

the Multiplier-Quotient registers), operated in

INSTRUCTION
REGISTER IIRI

TO MEMORY

FROM
I/O BUS

MEMORY
OUTPUT
REGISTER

PROGRAM
COUNTER IPC)

OPERAND
ADDRESS
REGISTER

FROM MEMORY

MEMORY
INPUT •_)

DATA SWITCH
REGISTER

FROM
"CONSOLE

INDEX
REGISTER

INPUT GATING

ARITHMETIC UNIT

I

EX1

ACCUMULATOR

u

EXTENDED
ARITHMETIC
ELEMENT

n
STEP

COUNTER

MULTIPLIER
QUOTIENT

I _^r3l

Figure 3 1 . PDP-1 5 processor register transfer

diagram.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 161

parallel with the basic data path. In this way,

significant overlap occurred, permitting the

800-nanosecond cycle time. The contrast be-

tween this design and the PDP-4 design is

noteworthy. The PDP-4 had only four registers

in the basic machine, but the use of integrated

circuits in the PDP-1 5 permitted more registers

to be used without so much concern for cost.

The first major extension of the PDP-1 5 was

the addition of the Floating-Point Processor

(Figure 32) to enable it to perform well in the

scientific/computation marketplace using
FORTRAN and other algorithmic languages.

With the addition of the Floating-Point Proces-

sor, the time for a programmed floating-point

operation was reduced from 100-200 micro-

seconds to 10-15 microseconds, giving nearly a

factor of 10 increase in FORTRAN perform-
ance - depending on the mix of floating-point

FP15
FLOATING POINT r"^""""""!

PROCESSOR I
}

I
CONTROL

I

I I

36 BIT ADDER

ADDtR BUS

operations. For most machines, the difference

between built-in and programmed data-types is

higher; but, because the machine was originally

designed to operate effectively without hard-

wiring, the difference is quite low. Table 4 gives

a summary of the performance improvements
offered by the floating-point option.

The addition of the floating-point unit re-

quired that a number of instructions be added

to the machine. The irony of this extension is

that the PDP-11 and nearly all minicomputer
instruction set extensions exactly follow this ev-

olution.

A low cost multi-user protection system was

added in the form of a relocation register and a

boundary register. Because this was marketed

as an add-on option, it degraded the machine

performance more than necessary. However,
the minimum machine cost maintained the per-

formance/cost target.

The first PDP-1 5 was shipped in February

1970, 18 months after the project had started. A
number of difficulties had been encountered, in-

cluding personnel turnover, that caused a two-

month slip. However, the project at first cus-

tomer ship was within the budget and, by 1977,

Table 4. Floating-Point Computation Times

Figure 32. PDP-1 5 Floating-Point Processor register

transfer diagram.

162 BEGINNING OF THE MINICOMPUTER

790 machines had been shipped - more than the

total of all other DEC 18-bit machines.

Two of the PDP-15 models are of special in-

terest. A dual central processor version and the

PDP- 15/76. These are treated separately below.

DUAL CENTRAL PROCESSOR PDP-15

In 1973 the PDP-15 product Une proposed
and sold a system that was a dual processor.

From the dual processor project came a dual

port memory, which eventually was transferred

to the PDP-15 standard product line. The dual

port memory also expanded memory to the full

128 Kwords built into the PDP-15 addressing
structure. The unit occupied a single rack and

used the M-Series logic modules. Because there

was space to add a third port within the rack

unit, the dual port memory was actually built to

be a three port device. At the time, the labora-

tory breadboard was an impressive array of

three cabinets containing 128 Kwords of mem-

ory and two processors.

The logic included what went unrecognized
as a "synchronizer" problem for two months,

despite reviews by some senior engineers. The

synchronizer problem, first described by
Chaney and Molnar [1973] of Washington Uni-

versity, is a classical logic design problem that is

theoretically unsolvable. When synchronizing

(detecting) the presence of an event occurring at

a random time relative to a fixed clock event, a

small amount of energy is available to set the

flip-flop. When the flip-flop is triggered with

such a small signal, it can go into an undecided

(metastable) state for a relatively long (even in-

determinant) period of time. The problem oc-

curred in the dual port memory design because

the three inputs (2 ports and the memory clock)
needed to be synchronized. Despite the theo-

retical lack of a solution, the practical solution

is usually to wait longer (e.g., two clock times)
or to improve the circuit by unbalancing it.

Once the problem was recognized, the design
went to a quick completion.

PDP-15/76

Of the systems listed in Table 2, the PDP-

15/76 was one of the most interesting. A sim-

plified block diagram of the final evolved state

of the PDP-15/76 is shown in Figure 33. The

diagram is referred to as an evolved design be-

cause the PDP-11 connection and the floating-

point arithmetic features were not part of the

original PDP-15 design.

The design of the PDP-15/76, also referred to

as the Unichannel 15/76, began as a problem:
find the most cost-effective way to attach a new

moving head, removable platter disk to the

PDP-15. After a review of the problem, it be-

came clear that the correct way to solve the

problem was to use a PDP-1 1 processor and the

controller that had been designed for the PDP-
1 1 . The key reason for this was not the cost of

designing a controller for the PDP-15, but

rather the cost of writing a new set of disk diag-

nostics in PDP-15 code. (By that time, it was

clear to all designers that hardware costs were

swamped by software costs.)

As the system design progressed, it became

clear that the PDP- 1 1 could be used to run the

other PDP-11 family peripherals that were the

object of most of DEC's development and pro-

duction efforts. The list of new peripherals

quickly grew to include communications lines,

plotters, printers, and card equipment. Figure
34 shows the options available for the PDP-

15/76.

PROCESSOR

FLOATING
POINT

PROCESSOR

Figure 33. PDP-15/76 simple system block diagram.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 163

MEMORY

164 BEGINNING OF THE MINICOMPUTER

The project had a very small but excellent

staff, and the hardware part of the program
went very smoothly. Al Helenius did much of

the logic design for the memory multiplexer de-

vice, using existing M-Series logic modules, and

the prototype was operational in early Novem-
ber 1972. The complexity and size of the soft-

ware task was clearly underestimated.

However, the successful system operation de-

pended on having more software. Rick Hully

proposed an operating system structure that,

for the era and application, was elegant, ad-

vanced, and yet straightforward. The reality

was that the PDP-15/76 was a "multi-

processor" system, and today's terms "back-

end processor" and "file processor" apply to

what was accomplished on this machine in the

early 1970s. Also, this structure was used by
IBM in the coupled 7090/7044 system and the

360 Attached Support Processor.

From an application point of view, the PDP-

15/76 dual processor system was extremely ef-

fective, especially in the following applications:

1. Computer-aided design. With the PDP-1 5

processor handling figures and com-

putation while the PDP-11 processor
handled an input digitizer, high speed

plotter, and printer; with the PDP-11

and PDP-1 5 sharing memory and the

new disk.

2. Batch processing. With the PDP-1 5 and

the floating-point option handling com-

putation while the PDP-11 handled

spooling to printers, input from card

readers, and terminals.

THE SERIES AND ITS EVOLUTION

It is useful to compare the five 18-bit com-

puters that were designed over the course of

roughly 10 years. The series began in the early

second (transistor) generation and extended to

the early part of the third (integrated circuit)

generation. Had the series been extended to the

fourth (large-scale integrated circuit) gener-

ation, a version of the PDP-1 5 could have been

easily implemented on a single silicon chip. The

paragraphs which follow each summarize the

important characteristics of one or two mem-
bers of the series, and Table 5 gives the techni-

cal information.

Contributions of Individual Machines to

Series Development

The PDP-1 had a number of innovations over

its laboratory predecessors, the Whirlwind and

TX-0. It contributed extremely straightforward

I/O interfacing capability together with a multi-

channel interrupt structure and Direct Memory
Access capability which enabled a high I/O
data rate. These characteristics made it ideal for

high performance laboratory applications. The
PDP-1 also represented a major stepping stone

in the early days of timesharing computers. The

message switching application contributed sig-

nificantly to its market success and motivated

the design of good communication interfaces in

subsequent computers. Because the PDP-1

served as a thorough test vehicle for the circui-

try of the 1000-series system modules, these

modules were more suitable for their general

application in building digital systems.

The PDP-4 contributed in small ways: there

were minor improvements in the instruction set

processor; and, because the PDP-4 was oriented

to a much lower cost, some of the modules were

refined. The simplified logic design of the PDP-
4 was a major influence on the implementation

style of subsequent computers. It also contrib-

uted the fundamental minicomputer notion that

successor machines should be lower cost. More-

over, the PDP-4 extended the marketplace to

industrial control, which had not been possible

at PDP-l's price levels, and further improved
the ease of I/O interfacing.

The PDP-7 and PDP-9 Families exploited a

significant refinement in the wire-wrap packag-

ing technology. Although the circuits were

THE PDP-1 AND OTHER 18-BIT COMPUTERS 165

Table 5. Characteristics of DEC's 18- Bit Computers

166 BEGINNING OF THE MINICOMPUTER

Table 5. Characteristics of DEC's 18- Bit Computers (Cont)

THE PDP-1 AND OTHER 18-BIT COMPUTERS 167

Table 5. Characteristics of DEC's 18- Bit Computers (Cont)

168 BEGINNING OF THE MINICOMPUTER

though the power consumption increased. The
board area in the processor decreased by a fac-

tor of three over previous implementations,
where it had been relatively constant at about

3,000 in^. The two major contributions of the

PDP-15 were the notion that systems include

both hardware and software and that the ma-

chine would span a range of sizes. Finally, to

extend the life of the machine, a number of im-

provements (e.g., in memory, PDP-11 I/O)
were later made to reduce price and to increase

performance (floating-point, multiple proces-

sors).

Project Developnnent Times and Product
Lifetimes

The duration of the projects generally in-

creased with time, reflecting the longer tooling
time for increased production volumes. The
PDP-4 is an exception; it had the shortest de-

sign time because the circuits and mechanical

packaging were based on the PDP-1. In addi-

tion to increased development times with pass-

ing years, later members of the series had longer

product lifetimes; hence, longer times elapsed
before re-implementations occurred. The time

between the first few implementations was only
about two years. The final implementation, the

PDP-15, was produced for seven years. The

early (too frequent) implementations were per

haps indicative of the attention paid to low

hardware cost and performance, rather than to

application and software enhancements to in-

crease the market life.

Price

Figure 35 shows that the price for a basic

"bare-bones" system declined by more than 19

percent per year. The price of the typical mid-

size system has never been properly analyzed,
but roughly speaking, the average price de-

clined from an initial cost of $250K for a PDP-1
to $65K for a PDP-9. For a given processor,

however, the size of typical systems purchased

THE PDP-1 AND OTHER 18-BIT COMPUTERS 169

.7.31 X 0.84'-19<>0 9

CROSSOVER FOR PDP-8 MEMORY •
PRICES (2 00 X 0.81'-'9«6| POP 9

"

61 62 63 64 66 66 67 68 69 70 71 72 73 74

YEAR

Figure 36. Price/word of 18-bit memory versus time.

PDP.16
WITH
FLOATING
POINT

(MINIMUM
PERFORMANCE!

-J 1 I I I I L.

60 61 62 63 64 65 66 67 68 69 70 71 72

Figure 37. Performance of 18-bit computers versus

time.

shipped with PDP-1 memory, the next ma-

chines had 8-Kword memory systems that cost

about half that of the PDP-1. The price of the

18-bit memory systems decreased at a rate

slightly less than that of the 12-bit or 36-bit

computers. One possible explanation would be

an economy of scale in quantity shipped in the

12-bit case and an economy of scale in word

length in the 36-bit case.

Performance

Performance (in millions of words accessed

per second by the processor) is shown in Figure

37 and exhibits a 29 percent yearly increase.

Neither the PDP-1 5 nor PDP-4 fall on the Hne

because both were oriented to lower price

rather than to increased performance. In real-

ity, the PDP-1 5 later evolved to have much

greater effective performance when built-in

floating-point arithmetic was added. Then its

real performance (a factor of 2 to 10 better for

FORTRAN programs involving floating-point)

exceeded the line position. Midlife extensions of

this sort were generally missing on the other 18-

bit computers, as design resources went into de-

veloping new processors.

Price/Performance

The performance/price ratio, a reasonable

index for simple systems, is shown in Figure 38.

This ratio has improved by 52 to 69 percent per

year over the 10-year period. A variant of this

plot is shown in Figure 39, where price is

plotted against the performance (in miUions of

accesses per second by the processor).

The lines of constant performance/price are

separated by a factor of 2. In this representa-

tion, any measure which changes by 41 percent

per year takes two years to move from one line

to another. A yearly improvement of 26 percent

takes three years to double, and a yearly im-

provement of 19 percent takes four years to

double.

170 BEGINNING OF THE MINICOMPUTER

1000

THE PDP-1 AND OTHER 18-BIT COMPUTERS 171

^ 50

y 40

J I L_J LJL. -I I L.
20 30 40 60 100 200 300 400 SOO 800

NUMBER OF MACHINES SOLO

Figure 40. Price versus number of 18-bits machines

sold.

O 0.004

tt 0.003

0.001

0.0009
J I I

I I I I

100 200 300 400 SOO

NUMBER OF MACHINES SOLO

Figure 41 . Price/performance versus number of 1 8-bit

machines sold.

merits in packing density. In this respect, the

PDP-4 was a better implementation than the

PDP-1. The PDP-7 was even better in packing

density and provided a great performance im-

provement. The PDP-9 improvements were in

memory performance and packaging for manu-

facturing, rather than in logic-related perform-
ance or packaging, as it used the same logic (10

MHz) as the PDP-7. The PDP-1 5 achieved its

size reduction using integrated circuit tech-

nology. The weight/price appears to have risen

and almost seems to be correlated with in-

flation. Power and weight density measure-

ments are given in the table together, as are

several ratios involving cost, weight, power, and

performance. Note that performance changes

most as a direct result of core memory speed

improvements. The calculated mean time be-

tween failures has declined by over a factor of 2

between the PDP-1 and PDP-1 5.

The reader should compare the implementa-
tions. With the exception of PDP-1 and PDP-

15, all computers required about 5,000 in^ of

printed circuit board area for the processor,

memory, and basic I/O. The bit-slice approach
of the PDP-4 made possible a major reduction

in backpanel interconnections by using two spe-

cialized modules. All subsequent implementa-
tions used the bit-slice approach with a few

special purpose modules. Of special interest is

the number of logic module types and power

supply types. All but the PDP-1 5 had about 40

different logic types. The PDP-1 5 had 54 types

because the advent of integrated circuits en-

abled higher packing density per module which

resulted in lower generality per module given

the limitation of the pins on each module. This

small number of module types and relatively

low cost per module meant that the cost of a

complete package of spare modules for a com-

puter represented a small fraction of the com-

puter's price. This is in contrast to the fourth

and fifth generations, where a single module

contains the whole computer and the cost of

spare modules is therefore a large fraction of

the computer's price.

Options

Table 6 shows the options available for the

various machines. Note that PDP-1 had quite a

complete set of options, including both high

172 BEGINNING OF THE MINICOMPUTER

Table 6. Options for DEC's 18- Bit Computers*

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15

Multiply/Divide Std. [18]EAE

Priority interrupt 1 ch. std.; [1 20] 1 ch. std.

- 16 ch.; also

256 ch.

[177]

1 ch. std. [172] 1 ch. std; 8opt.
16 ch.

EAE opt., floating-

point opt.

1 ch. std; 8 opt.

Direct Memory [19]3ch.
Access

Clock

Power failure

Yes

N/A

1 std.; 3 opt.

1 std; [1 32)
16ch.

Std.

[1731 3 ch.

Opt.

+ 1 to mem.

(std.)

Opt.

Up to 64

Opt.

Opt.

Memory protect 4-Kwordcore None

images

Secondary Memory

Magtape (prog. [5 1
[

-
[50] 200 [54]

-
[50] 200

control) b/i b/i

[KA70A] base

and bounds
[KA70A1 [KA70AI

Magtape (DMA)

THE PDP-1 AND OTHER 18-BIT COMPUTERS 173

Table 6. Options for DEC's 18-Bit Computers (Cont)*

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15

Paper tape

174 BEGINNING OF THE MINICOMPUTER

precision and color cathode ray tubes. The

PDP-1, 4, and 7 were relatively compatible in

terms of I/O interconnection and evolved to

have about the same set of options. PDP-9

changed to an I/O bus structure, requiring new

option interfaces. Although PDP-1 5 used that

same I/O bus structure and signals, the voltages

were different; again, new option interfaces

were required.

Displays have been major options through-
out the series. Moving head disks were first

available on the PDP-1 5. Although a number of

card handling options were available, few were

sold, reflecting the real-time, laboratory, and

multiprogrammed (timesharing) use.

Evolution
•

This chapter concludes by relating the 18-bit

series evolution to the model of minicomputer
evolution presented in Chapter 1. Three design

styles are distinguished in the model, as can be

seen in Figure 42. Chapter 7 shows the 12-bit

family (PDP-8) evolving mostly along the con-

stant performance/decreasing price curve. The
16-bit PDP-1 1 family, presented in the chapters
of Part IV, evolved based on all three design

styles.

INCREASING PRICE,
INCREASING PERFORMANCE
(NEW PERFORMANCE-ORIENTED
MARKET OPPORTUNITIES)

CirVEW

PEH(-0«

MARKET OPP(

c CONSTANT PRICE.
INCREASING PERFORMANCE

r
DECREASING PRICE.
CONSTANT PERFORMANCE
(NEW MARKET
OPPORTUNITIES)

Figure 42. Three design styles.

For a family to evolve in more than one de-

sign style, design resources must be available

for parallel development efforts. While the

PDP-1 1 family had the multiplicity of designers

and architects to do this, the 18-bit series did

not. Each new implementation was designed by
a member of a previous implementation team.

For such a single-thread approach to be suc-

cessful, it appears that one of the three design

styles of the evolution model must be chosen

and consistently followed. With the exception
of PDP-4, the 18-bit series has followed the-

middle style: constant price/increased perform-
ance.

It appears that a clear identity is needed to

guide design decisions. Consider the physical

packaging of the last of the 18-bit machines, the

PDP-15. Although a comparable speed/

performance PDP-11 required more integrated

circuits to implement (the PDP-11 has more
modes of addressing, more instructions, and

more data-types), the PDP-15 implementation
cost more. The PDP-15 remained packaged in a

large cabinet, used smaller modules, and the

component density per module was lower than

that of the PDP-11. Had the evolution been

guided by a consistently lower cost goal, metal

box packaging rather than cabinet packaging
would have been used. As it was, the PDP-15

had to compete against the PDP-11 with the

handicap of an extra level-of-integration in its

physical packaging.

ACKNOWLEDGEMENTS

Several people helped gather the data for this

chapter and critiqued its design: Dick Best, Earl

Cain, Wes Clark, Dick Devlin, Craig Mudge,
Carl Noelcke (reliability calculations), Ed Raw-

son, Jack Shields, Dan Siewiorek, Don White,

and Don Zereski. Mary Jane Forbes and Louise

Principe deserve thanks for typing the numer-

ous drafts.

7

The PDP-8 and Other
12-Bit Computers

C. GORDON BELL and JOHN E. McNAMARA

THE LINC

Since the Laboratory Instrument Computer

(LINC) was one of the machines that had a

great influence on the design of the PDP-4 and

the PDP-5, a discussion of the DEC 12-bit ma-

chines must start with the LINC.

The LINC was designed by Clark and Mol-

nar [Clark and Molnar, 1964; 1965], who were

in turn influenced by Control Data Corpo-
ration's (CDC) 160, designed by Seymour Cray.

The relationship of these early computers is

shown in Figure 1. The first version of the

LINC was built at the M.I.T. Lincoln Labora-

tory where it was demonstrated in March 1962

(Figure 2). In 1963 the LINC was redesigned for

production at a special M.I.T. laboratory, the

Center Development Office.

While the LINC contributed to DEC history

primarily as a forerunner of the PDP-4 and

PDP-5, it also generated a number of other de-

velopments. The LINC tape unit and the system

ideas that permitted a user to have personal files

were later incorporated directly into the DEC-

tape design and programs. The tape system and

a powerful CRT-based console made possible

the first complete personal computer available

to a user, in this case the researcher, at a reason-

able price. The LINC machines had been con-

structed mainly from DEC Systems Modules, a

convenience when DEC subsequently manufac-

tured LINC machines directly from the 1963

design. Later, Wes Clark with Dick Clayton de-

signed the LINC-8, a two-processor machine

(LINC + PDP-8) which executed both instruc-

tion sets in parallel. Clayton also designed the

PDP-12, a single physical processor that exe-

cuted either PDP-8 or LINC instructions se-

quentially by switching modes.

Some of the characteristics of the LINC

Family machines are given in Table 1, and pho-

tographs appear in Figures 3, 4, and 5. Note

that the size remained essentially constant at

one cabinet throughout the life of this computer

family.

On machines prior to the LINC, DEC had

been stressing design flexibility and modularity,

providing many ways to interconnect computer

components in order to create a variety of struc-

tures. This detracted from having a base system

configuration complete with software. In con-

trast, the LINC was quite constrained, with

175

176 BEGINNING OF THE MINICOMPUTER

Table 1. LINC Family Characteristics

LINC UNC-8 PDP-12

Project start

First shipment
Withdrawn

Number produced
Price (minimum)

Goals and features

Size

(in inches)

Memory-processor
accesses (per second)

1961

3/62

12/69

50 (21 by DEC)

$43,600

Complete system for labora-

tory user (including file sys-

tem and scope)

69 X 32 X 30 plus separate

tape, keyboard, console, and

interconnection boxes

125 K

Summer 1965
8/66

12/69

143

$38,500

Low cost, speed, PDP-8
software/hardware, com-

patibility

69 X 32 X 33

667 K

(PDP-8 memory)

6/67

6/69

6/75

1.000

$28,100

Larger scope, bus com-

patible with PDP-8/1

76 X 35 X 33

667 K

(PDP-8/1 memory)

Power (watts) 1.000 2.000 <2.000

Cathode ray tube Originally 2 oscilloscopes:

later only 1

IE XT)

THE PDP-8 AND OTHER 12-BIT COMPUTERS 177

Figure 2. The LINC (Laboratory Instrument Computer) is a small stored program digital computer designed to accept

analog as well as digital inputs directly from experiments, to process data immediately, and to provide signals for the

control of experimental equipment. The LINC system comprises five physically distinct subassemblies which include

four console modules connected by separate cables to a remote cabinet containing the electronics and power supplies.

The control module contains indicator lights, push buttons, and switches used in operating the LINC. A second module

provides for display oscilloscopes, while a third module holds two magnetic tape transports of special design. The last

module is provided with sockets, jacks, and terminals for interconnecting the LINC and other laboratory equipment. This

photograph shows the prototype version demonstrated on March 27, 1962, at the M.I.T. Lincoln Laboratory (courtesy

of M.I.T. Lincoln Laboratory, from Clark and Molnar [19641).

178 BEGINNING OF THE MINICOMPUTER

Figure 4. The LINC-8.

Figure 5. The LINC-12.

only 1 Kword or 2 Kwords of primary memory
available, two LINC tapes, and one CRT. By
bounding the system to a single configuration,
it was possible to provide a complete computing
environment including software and to provide
for convenient interchange of user software.

THE PDP-5

As indicated in Chapter 6, discussions with

Foxboro Corporation in the fall of 1961 led to

the design, using many LINC ideas, of a 12-bit

digital controller called the DC- 12. Instead of

building the DC- 12, DEC built the 18-bit PDP-
4 and sold one to Atomic Energy of Canada
Limited. AECL used the PDP-4 for a reactor

control computer system at Chalk River, an ap-

plication requiring an elaborate analog mon-

itoring system as a front-end. To reduce the

complexity of the analog system, a special

front-end computer was needed. The Wes Clark

10-bit L-1 design was considered but rejected

because the encoded analog values required
words longer than 10 bits, and because the size

and complexity of the program seemed too

great for such a small computer. After visiting

Chalk River in the winter of 1962, DEC engi-

neers decided that a 12-bit design based on the

DC- 12 would be excellent for such a front end

in PDP-4 process control applications. The in-

struction set for the new machine, the PDP-5,
was specified in detail by Alan Kotok and Gor-

don Bell, and the logic design was carried out

by Edson DeCastro, the applications engineer

responsible for building the analog front end at

Chalk River.

The intent of the design was to simplify the

system so that it would take no longer to design

the PDP-5 than it had taken to design the

analog front end that it would be replacing. The

machine used the standard modules developed
for the PDP-4, including the concept of bit-sHce

THE PDP-8 AND OTHER 12-BIT COMPUTERS 179

Figure 6. The PDP-5.

construction for the Accumulator, Memory
Address, and Memory Buffer registers. The

analog nature of the initial application was ad-

dressed by building an analog-to-digital con-

verter into the Accumulator, thus providing this

capability at extremely low cost. The other part

of the design that addressed cost was the use of

an I/O Bus instead of the radial structure that

had been used in the 18-bit designs. The I/O
Bus permitted equipment options to be added

incrementally from a zero base instead of hav-

ing the pre-allocated space, wiring, and cable

drivers that characterized the radial structure.

This lowered the entry cost of the system and

simplified the later reconfiguring of machines in

the field.

Although the design was optimized around

the 4-Kword memory, the PDP-5 ultimately

evolved to 32-Kword configurations using a

memory extension unit. Similarly, although the

base machine design did not include built-in

multiply and divide functions, these were added

later in the form of an Extended Arithmetic Ele-

ment. While the PDP-5 was designed for real

time and control, the aspirations for it to be

used generally in a system can be clearly seen in

an early photograph (Figure 6).

THE PDP-8

While the PDP-5 had been a reasonably suc-

cessful computer, it soon became evident that a

new machine capable of far greater perform-
ance was required. A new series of modules, the

Flip Chip series, was being developed for the

PDP-7 and for the new version of the PDP-5.

The new logic promised a substantial speed im-

provement, and new core memory technology

was becoming available that would permit the

memory cycle time to be shortened from 6 mi-

croseconds in the PDP-5 to 1.6 microseconds in

the new machine. In addition, the cost of logic

was now low enough so that the program
counter could be moved from the memory to a

separate register, substantially reducing instruc-

tion execution times. The new machine was

called the PDP-8 (Figure 7).

180 BEGINNING OF THE MINICOMPUTER

Figure 7. The PDP-8.

In a fashion similar to the technical devel-

opments that marked the 18-bit family, the new
12-bit machine was physically smaller than its

predecessor. This time, however, the change
was more than simply a change from three cabi-

nets to two or from two cabinets to one. It was a

change from one cabinet to a half cabinet. The
new small size meant that the PDP-8 was the

first true minicomputer. It could be placed on

top of a lab bench or built into equipment. It

was this latter property that was the most im-

portant, as it laid the groundwork for the origi-

nal equipment manufacturer (OEM) purchase
of computers to be integrated into total systems
sold by the OEM.

The improvements in logic density permitted

by the new Flip Chip modules also influenced

packaging and manufacturing methods. The
PDP-8 logic modules were mounted in con-

nector blocks, which were in turn mounted in

frames. The two frames were each the max-
imum size that could be accommodated in the

new Gardner-Denver automatic Wire-wrap ma-
chine. Automatic wire-wrapping was very im-

portant to the mass production success of the

PDP-8 because it was both fast and accurate.

The two wire-wrapped frames hung vertically

and were hinged about a vertical axis at the rear

of the computer cabinet. In some ways they re-

sembled the pages of a book, with the wire-

wrap pins on the surfaces that faced each other.

The swinging gate backplane permitted access

by maintenance personnel to both the con-

nection pins and the modules.

Like its predecessor the PDP-5, the PDP-8
was a single-address 12-bit computer designed
for task environments with minimum arith-

metic computing and small primary memory re-

quirements. Typical of these environments were

process control applications and laboratory ap-

plications such as controlling pulse height

analyzers and spectrum analyzers.

In addition to the originally envisioned appli-

cations, the PDP-8 was used for innumerable

other applications. One of the most interesting

was message switching. The PDP-8 message

switching hardware assembled characters by bit

sampling, checking the status of teleprinter lines

at 5 times the anticipated bit rate to accurately

recover data. Another interesting application

was the TSS/8 small-scale general purpose

timesharing system developed by Carnegie-
Mellon University and DEC [van de Goor et

al., 1969]. While only a hundred or so systems
were sold, TSS/8* was significant because it es-

*TSS/8 was designed at Carnegie-Mellon University with graduate student Adrian van de Goor, in reaction to the cost,

performance, reliability, and complexity of IBM's TSS/360 (for their Model 67). Although the TSS/360 was not marketed,
it eventually worked and contributed some ideas and trained thousands for IBM. At Carnegie-Mellon (CMU), a TSS/8
operated until 1974 when the special swapping disk expired. The cost per user or per job tended to be about 1/20 of the

TSS/360 system CMU ran.

THE PDP-8 AND OTHER 12-BIT COMPUTERS 181

tablished the notion that multiprogramming

applied even to minicomputers. Until recently,

TSS/8 was the lowest cost (per system and per

user) and highest performance/cost timesharing

system. A major side benefit of TSS/8 was the

training of the implementors, who went on to

implement the RSTS timesharing system for the

PDP-11 based on the BASIC language.

The PDP-8 was the first of the "8 Family." A
subset, called "Omnibus 8" machines, is in-

troduced later when the PDP-8/E, PDP-8/M,
and PDP-8/A machines are discussed. Finally,

computers which implement the PDP-8 instruc-

tion set in a single complementary metal oxide

semiconductor (CMOS) chip will be referred to

as "CMOS-8" based systems.

The PDP-8, which was first shipped in April

1965, and the other 8-Family machines that fol-

lowed it achieved a production status formerly

reserved for IBM computers, with about 50,000

machines produced, excluding the CMOS-8
based computers. During the 15 years that these

machines have been produced, logic cost per

function has decreased by orders of magnitude,

permitting the cost of entire systems to be re-

duced by a factor of 10. Thus, the 8 Family of-

fers a rare opportunity to study the effect of

technology on implementations of the same in-

struction set processor.

The PDP-8 was followed in late 1966 by the

PDP-8/S, a cost-reduced version (Figure 8).

The PDP-8/S was quite small in size, scarcely

larger than a file cabinet drawer. It achieved its

low cost by implementing the PDP-8 instruc-

tion set in serial fashion. This did reduce the

cost, but it so radically reduced the perform-
ance that the machine was not a good seller.

In 1968, the PDP-8/I (Figure 9) was pro-

duced, using medium-scale integration (MSI)

integrated circuits to implement the PDP-8 in-

struction set with better performance than the

PDP-8, and at two-thirds the price. For those

customers wishing a package with less option

mounting space but the same performance, the

PDP-8/L (Figure 10) was introduced later the

same year.

Figure 8. The PDP-8/S.

Figure 9. The PDP-8/1.

182 BEGINNING OF THE MINICOMPUTER

t W^^i^7'. ,.

The PDP-8/S, PDP-8/I, and PDP-8/L are

mentioned only briefly here because their char-

acteristics were basically dictated by the cost

and performance improvements made possible

by the emerging integrated circuit technology.

The cost and performance figures for these ma-

chines are examined in greater detail in the

charts at the end of this chapter.

THE PDP-8/E. PDP-8/M, AND PDP-8/A

Shortly after the introduction of the PDP-

8/L, it became evident that customers wanted a

faster and more expandable machine. The con-

tinuing technological trend toward higher den-

sity logic and some new concepts in packaging

made it possible to satisfy both of these require-

ments but to still produce a new machine that

would be cheaper than its predecessor. The new

machine was the PDP-8/E (Figure 1 1).

A block diagram of a complete PDP-8/E
computer system is shown in Figure 12. Note

that the lower half of the drawing shows an

adapter for interconnecting the positive bus

family (PDP-8/I and PDP-8/L) I/O devices. In

addition, signal convCTters were available to

convert a step further to the older negative bus

family (PDP-5, PDP-8, and PDP-8/S) I/O de-

vices. In this way, the new machine could capi-

talize on the existing hardware option base. It

Figure 10. The PDP-8/L Figure 11. The PDP-8/E.

THE PDP-8 AND OTHER 12-BIT COMPUTERS 183

^

r±
Lii

°- O" < oc

O C3 2
f- < O
5 O

It

=i>

STTIE

;

" <
Sj
—

I

<^

1£ 1£ li

i O 5

1?^ c=^^

U

p=:>

^

=^

^

iii <:=^

3 j£ <

so i

U.5;

= 2 S

!«

ill Vn

c=^

»i :<^

iir-

<z.

^« ^il!

<^

<^

l<^

<^

^

^

^

^

7=^ Is

^

i=0

< Z K
111 O u

£ <

s

o5

o

184 BEGINNING OF THE MINICOMPUTER

IZ
KAS-e

POSITIVE I/O

INTERFACE

KOS'E
DATA BREAK
INTERFACE

irni
KD8 E

DATA BREAK
INTERFACE

KDS'E
DATA BREAK
INTERFACE

KOBE
DATA BREAK
INTERFACE

RKOS'P
DISK PACK
CONTROL

7^
Cn

DF32 DP
DISK FILE

AND CONTROL

7\
Cn

\>

CONTROLLER

H

DW08A
I/O CONVERSION

PANEL

ic=:>f

7^
Iz.

UP TO 3 UNITS

MAXIMUM

AND CONTROL

s
EXTERNAL I/O BUS

i^^n
DC02F a Q
MULT. TTY.

CONTROLLER

Iz
VWOl

WRITING
TABLET

RF08

THE PDP-8 AND OTHER 12-BIT COMPUTERS 185

The Omnibus, which is still in use in the

PDP-8/A, has 144 pins, of which 96 are defined

as Omnibus signals. The remainder are power
and ground. The large number of signals permit
a great number of intraprocessor comrrju-

nications links as well as I/O signals to be ac-

commodated. The Omnibus signals can be

grouped as follows:

1. Master timing to all components.
2. Processor state information to the con-

sole.

3. Processor request to memory for instruc-

tions and data.

4. Processor to I/O device commands and

data transfer.

5. I/O device to processor, signaling com-

pletion (interrupts).

6. I/O Direct Memory Access control for

both direct and Three Cycle Data Break

transfers.

The approximately 30 signals in groups 4 and

5 provide programmed I/O capability. There

are about 50 signals in group 6 to provide the

Direct Memory Access capability. These 80 sig-

nals are nearly equivalent in quantity and func-

tion to the preceding PDP-8 I/O Bus design,

making the conversion from Omnibus structure

to PDP-8/I and PDP-8/L I/O equipment very

simple.

The complement of signals is quite different

from that in the PDP-1 1 Unibus, which is more

strictly an I/O bus, and the PDP-8/E processor
handled many more of the Direct Memory Ac-
cess and interrupt control functions than does

the PDP-11 processor. One specific signaling

structure that differs between the two machines

is the interrupt system, which in a PDP-11
Unibus passes a Bus Grant signal through the

I/O options to be propagated further or ab-

sorbed by the option. There are no such pass-

through signals on the Omnibus; hence, any op-
tion can occupy any slot, and intervening slots

between installed options can be left vacant. A

by-product (or perhaps goal) of the Omnibus
structure is that there are a fixed number of

slots. The lack of cabling between options
means that the electrical transmission charac-

teristics are well defined.

The processor for the PDP-8/E occupied
three 8 X 10-inch boards; 4 Kwords of core

memory took up three more boards; a memory
shield board, a terminator board, a teleprinter

control board, and the console board com-

pleted the minimum system configuration.

Thus, a total often 8 X 10-inch boards formed

a complete system. The three-board PDP-8/E
processor, occupying 240 in^, was in striking

contrast to the 100-board PDP-5 processor,

which occupied 2,100 in^.

The PDP-8/E implementation was deter-

mined by the availability of integrated circuits.

Multiplexers, register files, and basic arithmetic

logic units performed the basic operations in a

straightforward fashion using a simple sequen-
tial controller. Microprogrammed control was

not feasible because suitable read-only memo-
ries were not available. The read-only rope

magnetic memory of the PDP-9 was too expen-
sive and was unsuitable for PDP-8/E packag-

ing. Integrated circuit read-only memories

available at that time were too small, holding

only about 64 bits.

There was some problem partitioning the

processor logic among the three modules. Fig-

ure 13 shows the final arrangement, which was

to place timing and interrupt on one module,
the data path on a second, and the control on

the third. Even with this partitioning, more pins

were required between the data and control

modules than were available through the Om-
nibus. To provide the necessary connections,

additional connectors were installed on each

module on the edge opposite the Omnibus con-

nection.

The PDP-8/E was mounted in a chassis

which had space and power to accommodate
two blocks of Omnibus slots. Thirty-eight mod-
ules could be mounted in the slots, allowing

186 BEGINNING OF THE MINICOMPUTER

Space for the processor and almost 30 periph-

eral option controllers. Many customers

wanted to build the PDP-8/E into small cabi-

nets and have it control only a few things. They
found the large chassis and its associated price

to be more than they wanted. To reach this

market, the PDP-8/M was designed.

The PDP-8/M was essentially a PDP-8/E cut

in half. The cabinet had half the depth of a

PDP-8/E, and the power supply was half as big.

There were 18 slots available, enough for the

basic processor-memory system and about eight

options. The processor was the same as that for

a PDP-8/E.

PDP-8/E ORGANIZATION

CENTRAL PROCESSOR UNIT

I

MAJOR REGISTERS

rr^^

INPUT
GATING

L I NETWORK
ADDER AND
SHIFTER

I

H LOAD
GATES

n

OMNIBUS
LOADS

LEGEND

DATA LINES -

CONTROL LINES

sus;:^

I TELETYPE |

I- I

SWITCH
REGISTER

CONTROL
SWITCHES

INDICATOR
LIGHTS

CONSOLE FRONT PANEL
I

MEMORY

Figure 13. PDP-8/E basic system block diagram.

THE PDP-8 AND OTHER 12-BIT COMPUTERS 187

By 1975, DEC had been building "hex" size

printed circuit boards for the PDP- 11/05 and
PDP- 11/40 for at least two years. The hex

boards were 8X15 inches, half again as big as

the "quad" boards used in the PDP-8/E and

PDP-8/M, which were 8 X 10 inches. The di-

mensional difference was along the contact side

of the board. A hex board had six sets of 36

contacts while the quad board had only four

sets. Semiconductor memory chips had also be-

come available, so a new machine was designed
to utilize the larger boards and new memories
to extend the PDP-8/E, PDP-8/M to a new,
lower price range. The new machine was the

PDP-8/A. The PDP-8/A processor and register

transfer diagram is shown in Figure 14 and the

8/A processor in Figure 15.

The hex modules permitted some of the pe-

ripheral controller options that had occupied
several boards in the PDP-8/E to fit on a single

board in the PDP-8/A (Figure 16). The avail-

ability of hex boards and of larger semi-

conductor read-only memories permitted the

PDP-8/A processor to use microprogrammed
control and fit onto a single board. It should be

noted here that when a logic system occupies
more than one board, a lot of space on each

board is used by etch runs going to the con-

nectors. This was particularly true of the PDP-

8/E and PDP-8/M processor boards, due to the

contacts on two edges of the boards. When an

option is condensed to a single board, more

space becomes available than square inch com-

parisons would at first indicate because many of

the etch lines to the contacts are no longer re-

quired.

The first PDP-8/A semiconductor memory
took only 48 chips (1 Kbit each) to implement 4

Kwords of memory. Memories of 8 Kwords
and 16 Kwords were also offered. In 1977, only
96 16-Kbit chips were needed to form a 128-

Kword memory. With greater use of semi-

conductor memory, especially read-only mem-
ory, a scheme was devised and added to the

PDP-8/A to permit programs written for read-

write memory to be run in read-only memory.
The scheme adds a 13th bit to the read-only

memory to signify that a particular location is

actually a location that is both read and written.

When the processor detects the assertion of the

13th bit, the processor uses the other 12 bits to

address a location in some read-write memory
which holds the variable information. This ef-

fectively provides an indirect memory reference.

In 1976, an option to improve the speed of

floating-point computation was added to the

PDP-8/A. This option is a single accumulator

floating-point processor occupying two hex

boards and compatible with the floating-point

processor in the PDP- 12. It supports 3- or 6-

word floating-point arithmetic (12-bit exponent
and 24- or 60-bit fraction) and 2-word double

precision 24-bit arithmetic. As a completely in-

dependent processor with its own instruction

set processor, it has its own program counter

and eight index registers. The performance, ap-

proximately equal to that of an IBM 360 Model

40, provides what is probably the highest per-

formance/cost ratio of any computer.
More Omnibus 8 computers (PDP-8/E,

PDP-8/M, PDP-8/A) have been constructed

than any of the previous models. The high de-

mand for this model appears to be due to the

basic simplicity of the design, together with the

ability of the user to easily build rather arbi-

trary system configurations.

In the fall of 1972, DEC began the design of a

single chip P-channel metal oxide semi-

conductor (MOS) processor to execute the

PDP-8 instruction set. This processor was to be

called the PDP-8/B, and it was hoped that pro-

duction chips could be obtained by the spring of

1974 for systems to be shipped in the fall of

1974. The designers had progressed through the

design tradeoffs in partitioning a PDP-8 for a

single 40-pin chip when the project was stopped
in the summer of 1973. The key reasons for

stopping the project included the industry trend

188 BEGINNING OF THE MINICOMPUTER

m
^ n

l:_.„

/\

:ii

CT

J

n'

n
8

r"

eg

III

l-5i-

^iH

S8< J

Ir I

;H

Sh

3i-h
I

I

0(0oz

\Z

a.
o
a.

THE PDP-8 AND OTHER 12-BIT COMPUTERS 189

Figure 15. PDP-8/A processor.

Figure 16. PDP-8/A processor (interior).

190 BEGINNING OF THE MINICOMPUTER

from P-channel to N-channel and the fact that

the Omnibus did not lend itself to cost reduc-

tions with large-scale integrated circuit tech-

nology. While the Omnibus was ideal for

medium-scale integration and ease of inter-

facing, it was not as cost-effective as the buses

that microcomputers used, which multiplexed

address and data on the same leads at different

times. The percentage of system cost and com-

plexity represented by the processor in an Om-
nibus-8 system was too low to make the move
to large-scale integrated (LSI) processor attrac-

tive at that time. For these reasons, it was de-

cided to apply the newer N-channel process to a

system in which the processor was a more com-

plex and costly part of the system - the PDP-1 1

Family. Thus, in the summer of 1973, a project

started in cooperation with Western Digital

Corporation to build a PDP-1 1 on one or more

N-channel LSI chips.

In 1976, Intersil offered the first PDP-8 pro-

cessor to occupy a single chip, using CMOS
technology. DEC verified that it was a PDP-8
and began to apply it to a product in the fall of

1976. In the meantime, in addition to Intersil,

Harris Semiconductor became a second source

of chip supply for DEC. The two manufacturers

each have their own designation for these chips,

but in the discussion below they will be called

"CMOS-8" chips. A microphotograph of the

chip is shown in Figure 17.

The CMOS-8 processor block diagram is

given in Figure 18. Not surprisingly, it looks

very much like a conventional PDP-8/E proces-

sor design using medium-scale integrated cir-

cuits. It has a common data path for

manipulating the Program Counter (PC), Mem-
ory Address (MA), Multiplier-Quotient (MQ),
Accumulator (AC), and Temporary (Temp)

registers. The Instruction Register (IR), how-

ever, does not share the common arithmetic

logic unit (ALU). Register transfers, including

those to the "outside world," are controlled by
a programmable logic array (PLA), as indicated

by the dotted lines in the figure. CMOS-8 is an

example of the use of programmable logic ar-

rays for instruction decoding and for control

purposes, as discussed in Chapter 2.

While the CMOS-8 is the first DEC processor
to be built on a single chip, the most interesting

thing about it is the systems configurations that

it makes possible. It is not only small in size (a

single 40-pin chip), but it also has miniscule

power requirements due to its CMOS construc-

tion. Thus, some very compact systems can be

built using it. The block diagram in Figure 19

shows a system built with a CMOS-8 and com-

patible components. In contrast to those of past

systems, some of the other components in this

system now represent more dollar cost and

more physical space than the processor itself.

Among these are the random-access read-write

memory, the read-only memory, and the Paral-

lel Interface Elements associated with the I/O
devices. The Parallel Interface Elements enable

interrupt signals to be sent back to the proces

sor and decode the In-Out Transfer (lOT) com-

mands that control data transfers. Also shown
in Figure 19 are some specific I/O devices such

as the Universal Asynchronous Receiver/
Transmitter (UART) chips that do se-

rial/parallel conversions and formatting for

communication lines.

An excellent example of the use of a CMOS-8
as part of a packaged system is the VT78 video

terminal shown in Figure 20. The goals for this

terminal were to drastically reduce costs by in- /

eluding the keyboard, cathode ray tube, and

processor in a single package the size of an or-

dinary terminal. The CMOS-8 chip and high

density RAM chips made this possible. To form

a complete, stand-alone computer system that

supports five terminals, mass storage was

added. Because the mass storage was floppy

disks, it was not in the terminal but in a small

cabinet. Even without the mass storage, how-

ever, the VT78 forms an "intelligent terminal."

An intelligent terminal is usually defined to in-

THE PDP-8 AND OTHER 12-BIT COMPUTERS 191

MAJOR STATE
GENERATOR

TIMING AND
STATE CONTROL

PROGRAMMED LOGIC
ARRAY (PLA) PLA OUTPUT LATCH

MEMORY/
DEVICE
CONTROL

INSTRUCTION
REGISTER

/

192 BEGINNING OF THE MINICOMPUTER

LEGEND
INTERNAL CONTROL LINES
EXTERNAL INPUTS-OUTPUTS

^^— DATA LINES

XTA, XTB, XTC
OMAGNT
INTGNT.
IFETCH,
DATAF. RUN

•"
.2)

THE PDP-8 AND OTHER 12-BIT COMPUTERS 193

Figure 20. The VT78 video terminal.

elude a eomputer whose program can be loaded

(usually via a communication line) to take on a

variety of characteristics -
i.e., it can learn. Fig-

ure 2 1 is a block diagram of a VT78 system ter-

minal.

An intelligent terminal can be used either as

part of a network or as a stand-alone computer
system. In the former case, the application is de-

termined by the network to which the terminal

is attached, but in the latter case, the terminal

functions as a desk-top computer running vari-

ous PDP-8 software.

TECHNOLOGY, PRICE. AND
PERFORMANCE OF THE 12-BIT
FAMILY

The PDP-8 has been re-implemented 10 times

with new technology over a period of 15 years.

The performance characteristics of these imple-
mentations are given in Figure 22. As discussed

in Chapter 1, new technology can be utilized in

the computer industry in three ways: lower cost

implementations at constant performance and

functionality, higher performance implementa-
tions at constant cost, implementation of new
basic structures. Of these three ways, the PDP-8

Family has primarily used lower cost imple-
mentations of constant performance and func-

tionality.

The points in Figures 23 and 24 are arranged
to show the cost trends of three configurations.
The first configuration is merely a central pro-
cessor with 4 Kwords of primary memory. The
second configuration adds a console terminal,

and the third configuration adds DECtapes or

floppy disks for file storage. Note that the basic

system represented in the first configuration has

declined in price most rapidly: 22 percent per

year in the early days and 15 percent per year in

recent years. The price of primary memory, on
the other hand, has declined at the rate of 19

percent per year, as seen in Figure 25.

The price and performance trajectories for

the PDP-8 family of machines are plotted in

194 BEGINNING OF THE MINICOMPUTER

DC
POWER
SUPPLY

TT.KEYBOARD/VIDEO DISPLAY n

SUPPLY
AND

CONTROL

KEYBOARD

AstartA^—iswitch j

MICRO-
PROCESSOR

SERIAL 4 1
LINE 2

j

FLOPPY DISK SYSTEM

INTERFACE

PRINTER AND
MISCELLANEOUS DEVICES

J

I I I I I I I I

64 6S 66 67 68 69 70 71 72 73 74 76 76 77 78

YEAR

Figure 21. Block diagram of the VT78 microprocessor

system terminal.

Figure 22. Performance of DEC'S 12-bit computers

versus time.

Figure 26, with lines of constant price/

performance separated at factors of 2. Note

that the early implementations had significantly

lower performance than the original PDP-8.

Memory performance and instruction execu-

tion performance were directly related in all of

these machines except the PDP-5 (which kept

the Program Counter in primary memory) and

the PDP-8/S (which was a serial machine).

Thus, with the design emphasis on lowering the

cost with each new machine, performance con-

tinued to lag behind that of the PDP-8 until

higher speed primary memory was available

without a cost penalty. Other performance im-

provements, such as the addition of floating-

point hardware or the addition of a cache, are

not treated in this comparative analysis..

Figure 27 gives the performance/price ratio

for the PDP-8 Family machines, and it can be

directly compared with that of other macljines

described in this book. The 18-bit machines im-

proved at a rate of 52 percent to 69 percent per

year over a short time, as indicated on the

graph. Setting aside the PDP-5 design point, the

improvement for the 12-bit machines was sim-

ilar during the same period but has since slowed

to only 22 percent per year.

Rather than try to fit a single exponential to

the performance/price data points in Figure 27,

it might be better to try two independent expo-

nentials. The reason for this is that the data

points really mark the transition between two

generations. The PDP-5 was a mid-second

(transistor) generation machine, and the PDP-8

THE PDP-8 AND OTHER 12-BIT COMPUTERS 195

NOTE
LINC, LINC-8, and PDP-12
include 2 LINCtapes
(or OECtapes) and scopes and
A/D conversion.

4 Kw ANO CPU

PROGRAM-LOAONG DEVICE

1 USER SYSTEM WITH
8 Kw. 2 DECtapes
(OR EQUIVALENT) AND HARD COPY

J i \ L J L J L
66 66 67 68 69 70 71 72 73 74 75 76 77 78

YEAR

Figure 23.

time (log).

Price of DEC's 12-bit computers versus

represents a late second generation machine.

The PDP-8/I and PDP-8/L were beginning
third (integrated circuit) generation designs.

These four machines represent a relatively rapid
evolution from 1963 to 1968. After the PDP-

8/L, the evolution slows somewhat between
1968 and 1977, as medium-scale integrated cir-

cuits continued to be the implementation tech-

nology, and the cost of packaging and

connecting components continued to be con-

trolled by the relatively wide bus structure.

During their evolution, the DEC 12-bit com-

puters have significantly changed in physical

structure, as can be seen from the block dia-

grams in Figure 28. The machines up through
the PDP-8/L had a relatively centralized struc-

ture with three buses to interface to memory,
program-controlled I/O devices, and Direct

Memory Access devices. The Omnibus-8 ma-

g 4 Kw WITH
<l\ HARD copy an
•\ PAPER TAPE °\^7l

SER SYSTEM
WITH 8 Kw,

ECtapes. HARD COPY, TERMINAL

POP 8/E

PDP 8/M

J \ I L
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

YEAR

Figure 24. Price of DEC's 12-bit computers versus

time (linear).

chines bundled these connections together in a

simpler physical structure. The CMOS-8 avoids

the wide bus problem by moving the bus to lines

on a printed circuit board. The number of inter-

connection signals on the bus is then reduced by

roughly a factor of 4 to about 25 signals which

can be brought into and out of the chip within

the number of pins available.

Figures 23 and 24 and Table 2 illustrate the

price/performance oscillating history of the de-

sign evolution summarized below:

1. While the PDP-5 was designed to keep

price at a minimum, the PDP-8 had ad-

ditions to improve the performance

196 BEGINNING OF THE MINICOMPUTER

4

THE PDP-8 AND OTHER 12-BIT COMPUTERS 197

while not increasing price significantly

over that of a slower speed design. The
cost per word was modestly higher with

the PDP-8 than with the PDP-5, but the

PDP-8 had 6 times the perfomance of a

PDP-5. Thus, the PDP-8 crosses three

lines of constant price/performance in

Figure 26.

2. The PDP-8/S was an attempt to achieve

a minimum price by using serial logic

and a minimum price memory design.

However, the performance of the PDP-

8/S was slow,

3. The market pressures created by PDP-

8/S performance probably caused the re-

turn to the PDP-8 design, but in an in-

tegrated circuit implementation, the

PDP-8/I.

4. The PDP-8/I was relatively expensive,
so the PDP-8/L was quickly introduced

to reduce cost and bring the design into

line with market needs and expectations.

5. The PDP-8/E was introduced as a high

performance machine that would permit
the building of systems larger than those

possible with the PDP-8/L.

6. The PDP-8/M was a lower cost, smaller

cabinet version of the PDP-8/E and was
intended to meet the needs of the OEM
market.

The design goal of machines subsequent to

the PDP-8/M has been primarily one of price

reduction. The PDP-8/A was introduced to fur-

ther reduce cost from the level of the PDP-8/E
and PDP-8/M, although some large system

configurations are still built with PDP-8/E ma-
chines. The CMOS-8 chips represent a sub-

stantial cost reduction but also a substantial

performance reduction. The CMOS-8 perform-
ance is one-third that of a PDP-8/A, so a stand-

alone system using a CMOS-8 is less cost-effec-

tive than an PDP-8/A when the central proces-
sor is used as the only performance criterion.

I
T console

XT
-i KII/OI

I

K(l/0 OR
SECONDARY
MEMORVI

(a) Negative (PDP-5, 8, 8/S) and

positive (8/1, 8/L) logic families.

D {EXTENDED
ARITHMETIC OR
FLOATING POINTIII I I ARITHMETIC OR I I

T console I
I

'"'=
I FLOATING POINTI I ""P

|] [

ONMIBUS 196 SIGNALS!

(b) Omnibus family (PDP-8/E, 8/F, 8/M, 8/A).

I/O IE G . SERIAL LINE)

iMplRAM ROMll I

CMOS 8 BUS ~ 25 SIGNALS

(c) CMOS-8 (61 00) processor-on-a-chip family.

-[
16 KWORD
COMPUTER

ON A
BOARD
lUSES
CMOS 81

T(VT62 integral CRTI^
L {SERIAL LINE. «2 31

L IPARALLEL: TO PRINTER. ETC.I

-L Ms (program load)

-[MslfO 1. floppyl

(d) VT78 computer-in-a-terminal.

Figure 28. Evolution of PDP-8 Family PMS structures.

The main reason for using large-scale in-

tegration is the reduced cost and smaller pack-

age rather than performance. Obviously, the

next step is increased performance or more

memory, or both more performance and more

memory on the same chip.

198 BEGINNING OF THE MINICOMPUTER

a. <D

E c _
8i S

t; 2 E

5 ^£

o>

THE PDP-8 AND OTHER 12-BIT COMPUTERS 199

1- ^ in

»-•-(>«

a.

E

200 BEGINNING OF THE MINICOMPUTER

Figure 29 and Table 2 present the power re-

quirements, weight, and volume of the 12-bit

machines. In general, the power requirements
have remained relatively constant. This is both

because each package must house a fixed num-

ber of devices and because each device has a rel-

atively high overhead power cost associated

with driving the Omnibus. However, the limited

configuration, lack of an Omnibus, and low

power requirements of CMOS make the VT78
an exception to this rule. The weight and vol-

ume have declined significantly with time as the

design has moved from two cabinets to a half

cabinet, and then from a half cabinet to being
embedded in a terminal.

SPECIAL DEVICES BASED ON THE
PDP-8
The PDP-8/A and the products which in-

corporate the CMOS-8 chip are the current 12-

bit product offerings, so the discussion of the

J I L J L

(b) Weight versus time.

1000

900
800

POP 5«
700

600

PDP-8 POP 8/1

I I I I J L
84 85 66 87 88 89 70 71 72 73 74 75 76 77 78

YEAR

90
80

THE PDP-8 AND OTHER 12-BIT COMPUTERS 201

development of DEC's 12-bit computers in

chronological order must stop here. However,

during the development of the main line of 12-

bit computers, some interesting systems based

on DEC 12-bit processors have been developed,
both by DEC and by others. Among these are

the DEC 338 Display Computer, the cache-

based PDP-8, and the PDP-14 Programmable
Controller (a 1-bit machine similar in its in-

struction set to the PDP-8 and using Omnibus

packaging concepts).

DEC 338 Display Computer

The 338 display, a variant of the PDP-8, is

interesting for its historical importance [Bell

and Newell, 1971: Chapter 25]. It was one of the

earliest display processor-based computers - if

not possibly the first. The problem of displaying
data on a cathode ray tube clearly shows how
the application need drives a complete change
in hardware in order to interpret the necessary

data-type (in this case, a graphic picture).

The 338 display idea was extended and ap-

plied to the displays used with the PDP-9, PDP-

15, and the PDP-11 series. Although the 338

had the right general capabilities, it did not

have the refinements of later display processors

for the PDP-15 and PDP-1 1 (GT40 and GT60).
An observation that display and other spe-

cialized processors evolve in a fashion called the

"wheel of reincarnation" [Myer and Suther-

land, 1968] is diagrammed in Figure 30. As the

figure shows, the process starts with a very

simple basic design - here, to have graphics pic-

ture output for a computer. The trajectory

around the wheel follows:

Position 1 : Point-plotting. The computer
includes a single instruction display controller

which can plot a picture on a point-by-point
basis under command of the central processor.
For most displays, except storage scopes, the

processor can barely calculate the next point
fast enough to keep the display refreshed.

Hence, the system is processor bound, and the

display may be idle. The original PDP-1 display

is typical of this position, and a display of this

type is offered on most DEC minicomputers.
Position 2: Vector-plotting. By adding the

ability to plot lines (i.e., vectors), a single in-

struction to the display processor will free some
of the processor and begin to keep all but the

fastest display busy.

Position 3: Character-plotting and al-

phanumeric plotting. With the realization that

characters are a major part of what is displayed,

commands to display a character are added,

further freeing the processor. Many of the

point-plotting displays were extended to have

character generation capability.

Position 4: General figure and character

display. In reality, a picture does not consist of

just characters and vectors; each element of the

picture is actually a string of characters and a

set of closed or open polygons to be displayed

starting at a particular point. By providing the

control display with a Direct Memory Access

channel, the display can fetch each string of text

and generate polygons without involving the

central processor.

Position 5: Display processors. With the

ability to put up sub-pictures with no processor

intervention, it is easy for the whole picture to

be displayed by linking the elements together in

some fashion. This merely requires "jump" and

"subroutine" call instructions so that common

picture elements do not have to be re-defined.

The 338 and other display processors have

roughly this capability.

Position 6: integrated display and central

processor. Now, all the data paths and states

are present for a fully general purpose processor

so that the central processor need never be

called on again. This requires a slightly more

general purpose interpreter. By minor per-

turbations, the processor design can be refined

in such a way as to execute the same instruction

set as the original host computer because the

cost of incompatibility is too great. Two proces-

sors require two compilers, diagnostics, man-

uals, and support for use. This state provides

the same capability as that shown in Position 1.

202 BEGINNING OF THE MINICOMPUTER

FpT-j-TpH

-ED-ED—CD-
(NOTE FIRST
PROCESSOR IS

FREE)

FH-r-Fn

0- =

*>>^—'^ 8 A ED—ED~ED—ED"

oS

iSia
> z

NOTE:
Kd perfo

Pc may b« busy poMing (unlai

block transfer is usad).

EEIyEH!^}—El-

Figure 30. The wheel of reincarnation.

The original processor is completely free, and

there is a display processor with the capability

of executing both the original instruction set

and the display instruction set.

Position 7: Two computer structures. Al-

ternatively, the processor can be isolated as a

separate computer and reconnected in some
fashion to the central processor-primary mem-

ory pair in Position 1 . Such a structure is just a

basic computer with the addition of a general

figure and character display (Position 4).

Position 8: A separate computer. A sepa-

rate computer is formed solely for display, and

the options available for picture processing can

be decided again from the "wheel of reincarna-

tion."

The Cache- Based PDP-8

This structure uses a small, fast memory to

hold the results of recent references to primary

memory. The structure has been subsequently

THE PDP-8 AND OTHER 12-BIT COMPUTERS 203

Table 3. Performance/Cost Comparison of 8/E and 8/E with Cache

Model

204 BEGINNING OF THE MINICOMPUTER

by using solid state sensing and switching. The

new controller, designated the PDP-14, repre-

sented a cost reduction over controllers com-

posed strictly of industrial modules. It did this

by using time-multiplexing so that one control

structure in memory - the processor
- could

serve as the interconnection (and processing)

structure, as opposed to physically inter-

connecting the modules together to behave as a

controller. This tradeoff is a good example of

how computers are used instead of hardwired

logic to carry out a task. In terms of the Levels-

of-Interpreters View explained in Chapter 1, an

algorithm (machine) can be made entirely at the

lowest level (Figure 31), or alternatively, a

higher level interpreter can carry out the same

algorithm.

The design requirements that the PDP-14 had

to meet were as follows:

1. Be lower priced (with lower life-cycle

costs) and easier to operate than existing

control alternatives.

2. Solve the control problem and be pro-

grammable by users who have solved

problems using a different representa-

tion (e.g., relay ladder diagrams).
3. Operate in a high electrical noise envi-

ronment.

4. Operate in the physical environment

characteristic of the machine it con-

trolled.

5. Have the appropriate I/O interfaces to

sense contacts and to control power re-

lays.

Although a PDP-8/I might have been pro-

grammed to carry out the task, it was either not

considered or rejected because the cost was per-

ceived to be too great, and there was some per-

ception that a conventional stored program
computer could not solve the problem. In addi-

tion, the PDP-8/I circuits did not appear to

have adequate noise margins to operate in the

anticipated environment, and there was in-

adequate I/O capability.

:>

7=^

CONTROL
WIRES

c

TIMERS
COUNTERS

AIR

CONTROL
COUNTERS

:>

iiii

' LIMIT SWITCHES

il
HYDRAULIC
PNEUMATIC
ACTIVATORS

OPERATORS
PANEL

fi

PUSHBUTTON
SELECTOR

MOTORS
HEATERS

HIGH-ENERGY
ELECTRICAL
DEVICES
LAMPS
BELLS

iL
MOTOR

STARTERS
CONTACTORS

c

POWER
WIRES

Figure 31. Hardwired machine for industrial control.

As a result, the PDP-14 was proposed and de-

signed expressly to solve the problem and cost

less than the PDP-8/I which was just going into

production. The PDP-14 had no data oper-
ations except on a single Boolean value using a

1-bit accumulator called TEST. Even with so

little arithmetic capability, the machine's struc-

ture and processor state were roughly equiva-
lent to those in a PDP-8 design. Ultimately, the

processor state was extended beyond that of a

PDP-8 as the problem changed (e.g., when com-

munication was required with host processors),

but these extensions will not be discussed here.

In order to solve the Boolean equations that a

conventional relay controller solves in parallel,

the PDP-14 had to solve equations sequentially

at a rate of approximately 30 Hz - fast enough
to give the illusion that the equations were

being solved in parallel.

To operate in an environment with high elec-

trical noise, the circuit logic was slowed down
to improve noise margins. It was felt that core

memory did not have adequate noise immunity,
so a braided wire, read-only rope memory was

used. To battle the effects of the poor physical

environment, the unit was housed in a dust-

proof enclosure. To sense contacts and control

THE PDP-8 AND OTHER 12-BIT COMPUTERS 205

PDP14 ;= ! original pdp-14. not 14/30

Begin

** Memory .Slate
**

Mp\Primary.Memory(0;4095]<0;ll>.

•* Processor. State
**

PC\Program.Counter<0:ll>.
SR\Subroutine.Return.Register<0: 1 1 >,

TestXOne. Bit.Accumulator<>,
IR\lnstruction.Register<0: 1 1 >,

Op\Operation.Code<0:3> := IR<0:3>,
Z\Effective.Address<4:ll> := 1R<4:II>.

••
Input.Output. State

**

l\lnput.Contacts(0:255]< >.

O\Output.Relays[0;255]< >.

*• Instruction.Cycle
**

lExecMnstruction. Execution :
=

Begin
Decode Op =>>

Begin
! Test input for ON

•0I01\TXN:= If Not Test And I[Z1 =J> Test =
I,

!Test input for OFF
•OIOOXTXF .= IfNotTest And Not l[Z]=?> Test =

1,

! Test output for ON
•OOllXTYN := If Not Test And 0|Z] => Test =

I,

! Test output for OFF
•OOIOXTYF ;= If Not Te.st And Not 0[Z] =i> Test =

I,

I Jump if Test ON
•10ll\JFN;=(lfTest => PC<4:II> = Z: Test =

0).

! Jump if Test OFF
•lOIOXJFF :=(lfNotTest => PC<4:II> = Z: Test =

0),

! Set Output ON
•01ll\SYN;=O|Z]= I.

! Clear Output
•01 10 := (If Z Neq #377 =J> 0[Z] = 0: If Z Eql #377 => O[0:255] =

),

! Jump
1000\JMP:= IfZEql#224 =?> PC = Mp[PC],

! Jump to Subroutine

•1001\JMS;= lfZEql#245 =» (SR = PC next PC = Z),

I Return from Subroutine, Skip
•0000 :=(lfZ Eql #154 => PC = SR: If Z Eql #144 ^ PC = PC + 1),

Otherwise ;= No.Op()

End
End.

ICycleMnterpretation.Cycle ;
=

Begin

Repeal (IR = Mp(PC] next PC = PC + I next IExec())

End
End

Figure 32. ISP description of the PDP-14 (courtesy of

Mario Barbacci).

power relays, appropriate I/O interfaces were

designed.

The instruction set of the PDP-14, shown in

Figure 32, was among the smallest, most trivial

instruction sets that could be found. Techni-

cally, the PDP-14 was called a computer be-

cause it could perform computation in the same

way a Turing machine can - without an arith-

metic unit. However, it encoded the Boolean

data operators for which it was designed more

efficiently than nearly any other computer, pro-

vided the equations were simple enough.
There were four instructions to take values

from input switches or relay outputs and to

compute new output values (the right side of a

Boolean equation). Therefore, the PDP-14 also

could simulate a sequential machine (state dia-

gram or flowchart). Two additional instructions

sensed the value of intermediate results (stored

in TEST) and were used to eliminate the need to

completely evaluate an equation each time. To
direct program flow, there were four more in-

structions: "jump," "skip," "jump to sub-

routine" (a single level) and "return from

subroutine." To handle the "accessories box,"

there was special I/O rather than having this

carried out internally to a program. This I/O
included up to 16 Boolean variables for timers

consisting of external one-shot multivibrators,

and control memory bits.

A good way to understand the PDP-14's op-

eration is to start with the application. Figure

33 shows a combinational relay logic network

that evaluates a Boolean expression (in paral-

lel). When this network is implemented with the

PDP-14, the inputs and outputs are simply con-

nected, and the program forms the inter-

connection which constitutes the solution of the

equation (Figure 336). Figure 33c gives the

Boolean expression for the network in Figure

33a. To evaluate this equation using a PDP-14

requires a sequential program (Figure 33<^.

This program requires between 120 micro-

seconds and 200 microseconds to compute the

output value, >'8, since each instruction requires

20 microseconds. The speed of a computerized
controller compared to that of relay operations

is phenomenal. Heavy duty industrial control

relays typically operate at a 30 Hz rate (33 mil-

liseconds). If the PDP-14 can solve each equa-

tion with 4 terms in approximately 150

microseconds, the PDP-14 can solve 222 such

equations in the time necessary to operate the

relay. The memory requirements to solve the

222 equations are not large either. This equa-

206 BEGINNING OF THE MINICOMPUTER

SOLENOID 8

(a) Ladder diagram representation of a solenoid

activated by two push buttons and two linnit switches.

yS = (X6 A X4) V (-1 X7 A -1 X5)

(b) Boolean equation expressing behavior of ladder

diagram.

SOLENOID 8

tion required 12 locations; hence, 222 such

equations require about 2.5 Kwords.

A number of PDP-14s were built and in-

stalled for the intended applications over the

period 1970 to 1972. Programming was carried

out in languages supported by compilers that

operated on PDP-8. The languages allowed

users to:

1. Write ordinary assembly programs (re-

sembling PDP-8 programs).
2. Express a problem directly as a set of

Boolean equations.

3. Express ladder diagrams (in effect, these

are a set of Boolean equations).

4. Write a program as a flowchart, i.e., as a

sequential machine that goes state by
state and tests and branches on various

input values to create output state, per-

mitting both combinational (Boolean

equations) and sequential circuits to be

implemented.
5. Simulate the behavior of the program

and system.

(c) Contact input (using normally open contacts) and

solenoid output connections to PDP-14.

INSTRUCTION (SEE NOTEI

 TXF 6

TXF 4

JFF 50

I (-.X6 V -.X4I

TXN7
TXN 6

JFF 60

^ (X7VX61
SYF8

k;

TEST = X7 V

(-iX7 V -iXS)

RETURN TO SCAN CONTACTS AGAIN.

NOTE:

Auufn* TEST = OFF initially.

(d) PDP-14 program to simulate solenoid network by

sequentially (and repeatedly) solving Boolean equation

(33b).

Figure 33. Combinational network representations for

solving Boolean equations.

As the PDP-14 and contemporary machines

were used, the demand arose for a second gen-

eration controller. By 1972, the additional re-

quirements included lower cost, higher speed,

an easily changed read-only memory, and the

ability to load programs via a communications

line or connected console. In addition, the con-

trollers were required to connect in a network

fashion and report back status and results to a

supervisory computer at the next level of a hier-

archy. The second generation controller should

be capable of recording events such as counting

the number of parts processed. It also needed

timers which could be used as part of the con-

trol equations. The new unit should operate

over an even wider environmental range than

existing PDP-14 and have a more complete set

of I/O interfaces.

From these requirements, the PDP- 14/30
evolved (Figures 34 and 35). The initial read-

only memory was replaced by an 8-Kword core

THE PDP-8 AND OTHER 12-BIT COMPUTERS 207

AC OUTPUT
SWITCHING

CONTROLLER

Figure 34. The PDP- 14/30.

EXTERNAL INTERFACES

«
CONTROL
LOGIC

I/O LOGIC

r-/T—r Y~Z~
IaddressingI ,/o o„,ve„
I AND I STORAGE f^f,^ .

I
INTERNAL

I MEMORY MULTIPLEXERS LjlFUNCTIONS

I

128 INPUTS
128 INPUTS
128 INPUTS
28 INPUTS
128 OUTPUTS
28 OUTPUTS

MAIN MEMORY

[" 1~INTERNAL
-

PROGRAM STORAGE FUNCTION
' STORAGE

1_J

Figure 35. Block diagram of PDP- 14/30.

208 BEGINNING OF THE MINICOMPUTER

memory. In this way, the programs could be

easily changed rather than having to be re-

turned to DEC for manufacturing. Because the

original PDP-14 was so slow compared to the

capability of the logic from which it was made,
the instruction time was reduced from 20 micro-

seconds to 2.5 microseconds to achieve better

frequency response and to handle a larger num-
ber of equations. Additionally, because a large

number of special registers had been added to

hold numeric values (the shift registers, timers

and counters), an arithmetic unit was added to

the PDP- 14/30 in an ad hoc fashion. All these

additions forced the instruction set processor to

change. The PDP- 14/30 extensions could not

be made in such a way as to have binary com-

patibility; thus, software changes were also re-

quired.

An interesting offshoot of PDP-14 devel-

opment was the creation of a special terminal

for a programming, program load and observa-

tion console. This terminal consisted of a CRT
and PDP-8 mounted in a portable housing.
Since the PDP- 14/30 could report the status of

its input and output variables, the terminal also

had the ability to display the status of ladder

diagrams (i.e., relay and contact position). A
typical screen display is shown in Figure 36.

Figure 36. Typical screen display.

At the time when the PDP- 14/30 was pro-

posed, there were some who felt that it should

not be built because a standard 8 Family com-

puter was cheaper to build, and more produc-
tion volume and lower costs could be obtained

by not constructing a special unit. In addition,

the 8 Family machine could be extended to have

the original PDP-14 instruction set; and the

PDP-8 instruction set would be available for

evolving tasks, such as self-diagnosis, more ex-

tensive counting and timing functions, and

dealing with non-Boolean data such as time, or

non-discrete events including angular position.

The more powerful PDP-8 instruction set

would also be useful for handling general con-

trol in both the analog and the digital domains

communicating with computer networks re-

quiring protocol control for intelligent and er-

ror-free communication, and using algorithms
to encode the control function instead of rela-

tively large program state methods with no abil-

ity to perform computation.

Many of the previous arguments against us-

ing PDP-8s had now lost their merit. Since the

PDP- 14/30 was proposed to be built using the

same circuit family as that of the PDP-8s, the

electrical noise margins arguments no longer

held. Furthermore, the PDP-8 could be pack-

aged in a proper cabinet for the physical envi-

ronment, and there could be adequate
interfaces built. Besides, the proposed PDP-

14/30 would incorporate a PDP-8 anyway, and

two computers were obviously more expensive
than one. In addition, adding the necessary cab-

inet and interface enhancements to the PDP-8
would have greatly improved the marketability

of PDP-8 for all industrial applications. Al-

though the design group did not buy the argu-

ments that the PDP- 14/30 should become a

PDP-8 with appropriate extensions and packag-

ing, some PDP-8 parts were used in the PDP-

14/30 design.

ACKNOWLEDGEMENTS
The authors were pleased to have Wes Clark

and Dick Clayton read and critique this chapter.

structural Levels of the PDP-8
C. GORDON BELL, ALLEN NEWELL,

and DANIEL P. SIEWIOREK

The history of the DEC 18-bit and 12-bit

computers, summarized briefly in the previous

two chapters, was basically that of a recursive

process in which new technology was applied

and re-applied to the same basic designs to ob-

tain improved price/performance ratios. In the

late 1960s, the availability of relatively in-

expensive integrated circuits made logic cost a

less pressing concern. Computer engineering,

and architectural issues of elegance, flexibility,

and expandability, grew more important as the

importance of architecture to total system

price/performance became more evident. The
PDP-11 papers in Part III elaborate on these

issues, but first the hierarchical nature of com-

puter systems design will be explored by exam-

ining the PDP-8 from the top down to lay the

basic groundwork for future architectural dis-

cussions. The description of the PDP-8 will use

some of the processor-memory-switch (PMS)
and instruction set processor (ISP) notations in-

troduced in Computer Structures [Bell and

Newell, 1971]. These compact and straight-

forward notations are useful in comparing and

analyzing computer architectures, and their use

in the PDP-8 context should be helpful to the

reader when encountering these notations in

other papers.

A map of the PDP-8 design hierarchy, based

on the Structural Levels View of Chapter 1, is

given in Figure 1, starting from the PMS struc-

ture, to the ISP, and down through logic design

to circuit electronics. These description levels

are subdivided to provide more organizational

details such as registers, data operators, and

functional units at the register transfer level.

The relationship of the various description

levels constitutes a tree structure, where the or-

ganizationally complex computer is the top
node and each descending description level rep-

resents increasing detail (or smaller component

size) until the final circuit element level is

reached. For simplicity, only a few of the many
possible paths through the structural descrip-

tion tree are illustrated. For example, the path

showing mechanical parts is missing. The de-

scriptive path shown proceeds from the PDP-8

computer to the processor and from there to the

arithmetic unit or, more specifically, to the Ac-

cumulator (AC) register of the arithmetic unit.

Next, the logic implementing the register trans-

fer operations and functions for theyth bit of

209

210 BEGINNING OF THE MINICOMPUTER

|X{ indicates figure number of instance.

Figure 1 . PDP-8 hierarchy of descriptions.

the Accumulator is given, followed by the flip-

flops and gates needed for this particular imple-
mentation. Finally, on the last segment of the

path, there are the electronic circuits and com-

ponents from which flip-flops and gates are

constructed.

ABSTRACT REPRESENTATIONS

Figure 1 also lists some of the methods used

to represent the physical computer abstractly at

the different description levels. As mentioned

previously, only a small part of the PDP-8 de-

scription tree is represented here. The many
documents which constitute the complete repre-

sentation of even this small computer include

logic diagrams, wiring lists, circuit schematics,

printed circuit board photo etching masks, pro-

duction description diagrams, production parts

lists, testing specifications, programs for testing

and diagnosing faults, and manuals for modifi-

cation, production, maintenance, and use. As
the discussion continues down the abstract de-

scription tree, the reader will observe that the

tree conveniently represents the constituent ob-

jects of each level and their interconnection at

the next highest level.

THE PMS LEVEL

The PDP-8 computer in PMS notation is:

C('PDP-8; technology:transistors; 12 b/w;

descendants:'PDP-8/S, 'PDP-8/I, 'PDP-8/L,

'8/E, '8/F, '8/M, '8/A, 'CMOS-8;
antecedents: 'PDP-5;

Mp(core; #0:7; 4096 words; to: 1.5 /is/word);

STRUCTURAL LEVELS OF THE PDP-8 21 1

Pc(Mps(2 to 4 words);
instruction length: 1

1

2 words;

address/instruction: 1 ;

operations on data:(=, +, Not, And, Minus

(negate), Srr l(/2). Sir 1 (X2), +1)

optional operations:(X,/,normalize);

data-types:word,integer, Boolean vector;

operations for data access:4);

Redisplay; '338);

P(c; 'LINQ;
S('I/0 Bus; 1 Pc; 64 K);

Ms(disk, 'DECtape, magnetic tape);

T(paper tape, card, analog, cathode-ray tube)

As an example of PMS structure, the LINC-

8-338 is shown in Figure 2; it consists of three

processors (designated P): Pc('LINC),

Pc('PDP-8), and P.displayC338). The LINC

processor described in Chapter 7 is a very ca-

pable processor with more instructions than the

PDP-8 and is available in the structure to inter-

pret programs written for the LINC. Because of

the rather limited instruction set being inter-

preted, one would hardly expect to find all the

components present in Figure 2 in an actual

configuration.

The switches (S) between the memory and the

processor allow eight primary memories (Mp)
to be connected. This switch, in PMS called

S('memory Bus; 8 Mp; 1 Pc; time-multiplexed;

1.5 ^s/word), is actually a bus with a transfer

rate of 1 .5 microseconds per word. The switch

makes the eight memory modules logically

equivalent to a single 32,768-word memory
module. There are two other connections (a

switch and a link) to the processor excluding the

console. They are the S('I/0 Bus) and L('Data

Break; Direct Memory Access) for inter-

connection with peripheral devices. Associated

with each device is a switch, and the I/O Bus

links all the devices. A simplified PMS diagram

(Figure 3) shows the structure and the logical-

physical transformation for the I/O Bus, Mem-

ory Bus, and Direct Memory Access link. Thus,

the I/O Bus is:

SCI/O Bus duplex; time-multiplexed; 1 Pc; 64 K;
Pc controlled, K requests; t:4.5 fis/w)

The I/O Bus is nearly the same for the PDP-

5, 8, 8/S, 8/1, and 8/L. Hence, any controller

can be used on any of the above computers pro-

vided there is an appropriate logic level con-

verter (PDP-5, 8, and 8/S use negative polarity

logic; the 8/1 and 8/L, positive logic). The I/O
Bus is the link to the controllers for processor-

controlled data transfers. Each word trans-

ferred is designated by a processor in-out trans-

fer (lOT) instruction. Due to the high cost of

hardware in 1965, the PDP-8 I/O Bus protocol

was designed to minimize the amount of hard-

ware to interface a peripheral device. As a re-

sult, only a minimal number of control signals

were defined with the largest portion of I/O
control performed by software.

A detailed structure of the processor and

memory (Figure 4) shows the I/O Bus and Data

Break connections to the registers and control

in the notation used in the initial PDP-8 refer-

ence manual. This diagram is essentially a func-

tional block diagram. The corresponding logic

for a controller is given in Figure 3 in terms of

logic design elements (ANDs and ORs). The

operation of the I/O Bus starts when the pro-

cessor sends a control signal and sets the six I/O
selection lines (IO.SELECT<0:5>) to specify a

particular controller. Each controller is hard-

wired to respond to its unique 6-bit code. The

local control, K[k], select signal is then used to

form three local commands when ANDed with

the three lOT command lines from the proces-

sor. These command lines are called

lO.PULSE.l, IO.PULSE.2, and IO.PULSE.4.

Twelve data bits are transmitted either to or

from the processor, indirectly under the con-

troller's control. This is accomplished by using

the AND/OR gates in the controller for data

input to the processor, and the AND gate for

data input to the controller. A single skip input

is used so that the processor can test a status bit

in the controller. A controller communicates

back to the processor via the interrupt request

line. Any controller wanting attention simply

ORs its request signal into the interrupt request

212 BEGINNING OF THE MINICOMPUTER

Mp(ii>0:

(NOTEIliL (NOTE 3) I I (NOTE 4)

S(DM01 Data

Multiplexer:
radial;

from 7 P, K;

to Mp)

Pc(Laboratory
instrument

Computer/LINCI

1 Mp (core; 1.5 (is/w; 4096 w; (12 + 1)b)

2 SCMemory Bus)

3 Red ^ 2 w/instruction: data: w, i. by: 12 b/w;

M.processor state (2-1/2 ~ 3-1/2) w:

technology: transistors;

antecedents. PDP-S; descendants:

PDP-8/S, POP-8/1, PDP-8/L, Omnibus family

4 SCI/O Bus; from: Pc, to: 64 K)

6. K(1 ^ 4 instructions: M. buffer (1 char - 2 wl)

c

"7 1 (NOTE 5) I L
T(Teletype; 10 char/s: 8 b/char; 64 char)

T(papertape: (reader: 300 char/s
| (punch:

100 char/s): 8 b/char)

Q- Tdncremental point plot: 300 point/s; 0.01

in/ point)

-H—I—Q—I

—Eh

T(card; reader; 200 800 card/min)

T(card: punch; 100 card/min) J-
T (line; printer: 300 line/min: 120 col/line:

64 char/col)

€]—(

T(CRT, display area: 10 X 10 in^i 5X5 in^;

3 «s/point: 01
j

05 in/point)

—B- Tdight; pen)

€1—1 TIDataphone: 12 - 4 8 kb/s)

—
-|

K(r|i1
lOlj [Uanalog output: - - 10 volts

—
I
K

I 1
S

|
—

|l(»0:63. analog; input
^ -10 volts)

-EhEH

>

K(#0 63, Teletype, 110, 180 b/s)

Tn m |Ms(#0:7;D
-L_J L_J I 133ms/w

ECtape; addressable magnetic tape:

length: 260 ft; 350 char/in; 3 b/char) >
CHZh Ms(#0:7; magnetic tape; 36

I

45
|

75
|
112.5in/s; _

200,556.800 b/in: 6 8 b/char)

G-E}-
Ms({tiO:3; fixed head disk; t.delay: 0-^17 ms;

66 Ms/w; 32768 w)
1
(16 ms/w; 262144 wl; |—

(12, 1 parity)b/w)

-| T(#0:3; CRT: display: area 10 X 10 in^

T(0:3: light: pen)

T(#0:3; push buttons;

y-

y

Ms(#0:1; LINCtape: addressable magnetic tape;

6.25kw/s: 2'^ w)

T(#0:15; knobs, analog, input)

I T(CRT; display; 5X5 in^)

TIdigital: input, output)

TCOata Terminal Panel; digital; input, output)

Figure 2. LINC-8-338 PMS diagram.

STRUCTURAL LEVELS OF THE PDP-8 213

K select = (10 SELECKO 8> Eqv k)

lO PULSE PI And K select

(used for 10 SKIP|k| * PC = PC + II

10 PULSE. P2 And K. select

(used lor AC = INPUT DATA |k|l

10 PULSE P4 And K select

(used for OUTPUT OATA|k| = AC)

j INTERRUPT REQUEST |k|

DMA Data Break link

Ks for slow-data-rate, proflram-controlled data transfers

Kf for liiah-data-ratB. direct-memory-access transfers

Figure 3. PDP-8 S('l/0 Bus) logic and PMS diagrams.

214 BEGINNING OF THE MINICOMPUTER

PERIPHERAL
EQUIPMENT

I/O BUS

I/O BUS
PERIPHERAL
EQUIPMENT

USING
PROGRAMMED
TRANSFERS

{>

DATA
SWITCHES

DATA (12)o

TELETYPE
MODEL 33

ASR

TELETYPE
CONTROL

SELECT
CODE
(MB)

OUTPUT
BUS

DRIVERS

-t>

PERIPHERAL
EQUIPMENT

-0

{>

ACCUMULATOR

PERIPHERAL
EQUIPMENT
USING THE
DATA BREAK
FACILITIES

OUTPUT
BUS

DRIVERS

INCREMENT MB

INHIBIT CURRENT ADDRESS COUNT

o
-0

TRANSFER DIRECTION (NOTE 11

.WORD COUNT OVERFLOW

MEMORY
BUFFER
REGISTER

MB
CONTROL

PROGRAM
COUNTER
CONTROL

PROGRAM
COUNTER

4096 WORD
CORE

MEMORY

BREAK REQUEST

CYCLE SELECT INOTE 2)

BREAK STATE

MAJOR
STATE

GENERATOR

ADDRESS 112)

.ADDRESS ACCEPTED

MEMORY
ADDRESS
REGISTER

MA
CONTROL

PERIPHERAL
EQUIPMENT -

I/O BUS

lOP 1, 2. AND 4 PULSES (3)

STRUCTURAL LEVELS OF THE PDP-8 215

signal. Normally, the controller signal causing
an interrupt is also connected to the skip input,

and skip instructions are used in the software

polling that determines the specific interrupting

device.

The Data Break input for Direct Memory
Access provides a direct access path for a pro-
cessor or a controller to memory via the proces-

sor. The number of access ports to memory can

be expanded to eight by using the DM01 Data

Multiplexer, a switch. The DM01 port is re-

quested from a processor (e.g., LINC or Model
338 Display Processor) or a controller (e.g.,

magnetic tape). A processor or controller sup-

plies a memory address, a read or write access

request, and then accepts or supplies data for

the accessed word. In the configuration (Figure

1), Pc('LINC) and P('338) are connected to the

multiplexer and make requests to memory for

both their instructions and data in the same way
as the PDP-8 processor. The global control of

these processor programs is via the processor
over the I/O Bus. The processor issues start and

stop commands, initiaHzes their state, and ex-

amines their final state when a program in the

other processor halts or requires assistance.

When a controller is connected to the Data
Break or to the DM01 Data Multiplexer, it only
accesses memory for data. The most complex
function these controllers carry out is the trans-

fer of a complete block of data between the

memory and a high speed transducer or a sec-

ondary memory (e.g., DECtape or disk). A spe-
cial mode, the Three Cycle Data Break

(described in Chapter 6), allows a controller to

request the next word from a block in memory.

The DECtape was derived from M.I.T.'s Lin-

coln Laboratory LINCtape unit, as indicated in

Chapter 7. Data was explicitly addressed by
blocks (variable but by convention 128 words).

Thus, information in a block could be replaced
or rewritten at random. This operation was un-

Hke the early standard IBM format magnetic

tape in which data could be appended only to

the end of a file.

PROGRAMMING LEVEL (ISP)

The ISP of the PDP-8 processor is probably
the simplest for a general purpose stored pro-

gram computer. It operates on 12-bit words, 12-

bit integers, and 12-bit Boolean vectors. It has

only a few data operators, namely, =, +, minus

(negative of), Not, And, Sir 1 (rotate bits left),

Srr 1 (2 rotate bits right), (optional) X, /, and
normalize. However, there are microcoded in-

structions, which allow compound instructions

to be formed in a single instruction.

The ISP of the basic PDP-8 is presented in

Appendix 1 of this book. The 2'2-word memory
(declared M[0:4095]<0;11>) is divided into 32

fixed-length pages of 128 words each (not

shown in the ISPS description). Address calcu-

lation is based on references to the first page.

Page.Zero, or to the current page of the Pro-

gram Counter (PC\Program.Counter). The ef-

fective address calculation procedure, called

eadd in Appendix 1, provides for both direct

and indirect reference to either the current page
or the first page. This scheme allows a 7-bit ad-

dress to specify a local page address.

A 2 '5-word memory is available on the PDP-

8, but addressing more than 2'^ words is com-

paratively inefficient. In the extended range,
two 3-bit registers, the Program Field and Data
Field registers, select which of the eight 2'^-

word blocks are being actively addressed as

program and data. These are not given in the

ISPS description.

There is an array of eight 12-bit registers,

called the Auto.Index registers, which resides in

Page. Zero. This array (Auto.Index[0:7]<0
:11>: = M[#10: #17]<0:11>) possesses a useful

property: whenever an indirect reference is

made to it, a 1 is first added to its contents.

(That is, there is a side effect to referencing.)

Thus, address integers in the register can select

the next member of a vector or string for access-

ing.

The processor state is minimal, consisting of

a 12-bit accumulator (AC\Accumulator

216 BEGINNING OF THE MINICOMPUTER

<0:11>), an accumulator extension bit called

the Link (L\Link), the 12-bit Program Counter,

the RUN flip-flop, and the INTER-
RUPT.ENABLE bit. The external processor

state is composed of console switches and an

interrupt request.

The instruction format can also be presented

as a decoding diagram or tree (Figure 5). Here,

each block represents an encoding of bits in the

instruction word. A decoding diagram allows

one more descriptive dimension than the con-

ventional, linear ISPS description, revealing the

assignment of bits to the instruction. Figure 5

still requires ISPS descriptions for the memory,
the processor state, the effective address calcu-

lation, the instruction interpreter, and the exe-

cution for each instruction. Diagrams such as

Figure 5 are useful in the ISP design to deter-

mine which instruction operation codes are to

be assigned to names and operations, and which

instructions are free to be assigned (or en-

coded).

PRINCIPAL
ADDRESSABLE
INSTRUCTIONS

Op Eqv

#4\

*6\

Operate, opr

group. 1 z> (

OPERATE GROUPS MICROCOOED INSTRUCTIONS
i<j> = group. 1 And i < j> And time [1. 2. 3. 4 I

10 11

EXTENDED
ARITHMETIC
ELEMENT, EAE.
INSTRUCTIONS
•ae And time |3|

group2 And i<i> And tima |1,2.3.|

6 7 8

X

STRUCTURAL LEVELS OF THE PDP-8 217

There are eight basic instructions encoded by
3 opcode bits of the instruction, that is,

op<0:2> := i<0:2>. Each of the first memory
reference six instructions, where the opcode is

less than or equal to 5, has four addressing

modes (direct Page.Zero, direct Current. Page,

indirect Page.Zero, and indirect Current. Page).

The first six instructions in the following four

categories are:

1. Data transmission.

"deposit and clear Accumulator" (dca).

(Note that the add instruction, tad, is

used for both data transmission and

arithmetic.)

2. Binary arithmetic.

"two's complement add to the Accu-

mulator" (tad).

3. Binary Boolean.

"and to the Accumulator" (and).

4. Program control.

"jump/set Program Counter" Omp);

"jump to subroutine" (jms); "index

memory and skip if results are zero"

(isz).

The subroutine calling instruction, jms, pro-

vides a method for transferring a link to the be-

ginning (or head) of the subroutine. In this way
arguments can be accessed indirectly, and a re-

turn is executed by a "jump indirect" instruc-

tion to the location storing the returned

address. This straightforward subroutine call

mechanism, although inexpensive to imple-

ment, requires reentrant and recursive sub-

routine calls to be interpreted by software

rather than by hardware. A stack for subroutine

linkage, as in the PDP-11, would allow the use

of read-only memory program segments con-

sisting of pure code. This scheme was adopted
in the CMOS-8.
The "in-out transfer" instruction, opcode 6,

lOT (op Eqv #6), uses the remaining nine bits of

the instruction to specify instructions to in-

put/output devices. The six lO.SELECT bits

select 1 of 64 devices. Three conditional pulse

commands to the selected device, lO.PULSE. 1,

IO.PULSE.2, and IO.PULSE.4, are controlled

by the lOT, io.control<0:2> operation code

bits. The instructions to a typical I/O device

are:

1. Testing a Boolean Condition of an lO De-

vice.

IflO.PULSE.l =>

(If IO.SKIP.FLAG[IO.SELECT] ^
PC = PC + 1)

2. Output data to a device from Accumulator.

If IO.PULSE.4 =>

(OUTPUT. REGISTER[IO.SELECT] =

AC)

3. Input data from a device to Accumulator.
If IO.PULSE.2 =»

(AC = INPUT.REGISTER[IO.SELECT])

There are three microcoded instruction

groups selected by (op<0:2> Eqv #7), called

the operate instructions. The instruction decod-

ing diagram (Figure 5) and the ISP description

show the microinstructions which can be com-

bined in a single instruction. These instructions

are: operate group 1 ((op<0:2> Eqv jfl) And
Not ib) for operating on the processor state; op-

erate group 2 ((op<0:2> Eqv #7) And ib<3>
And i< 1 1 >) for testing the processor state; and

the Extended Arithmetic Element group
(op<0:2> Eqv #7 And i<3> And i<ll>) for

multiply, divide, etc. Within each instruction

the remaining bits, <4:10> or <4:11>, are ex-

tended instruction (or opcode) bits; that is, the

bits are microcoded to select additional instruc-

tions. In this way, an instruction is actually pro-

grammed (or microcoded, as it was originally

named before "microprogramming" was used

extensively). For example, the instruction, "set

link to 1," is formed by coding the two micro-

instructions, "clear link" followed by "com-

plement link."

218 BEGINNING OF THE MINICOMPUTER

If ((op <0:2> Eqv #7) And (group Eqv 0)) => (

If i<5> => L = 0;Next
If i<7> => L = Not L)

Thus, in operate group 1, the instructions

"clear link, complement link, and set Hnk" are

formed by coding i<5,7> = 10,01, and 11, re-

spectively. The operate group 2 instructions are

used for testing the condition of the processor

state. These instructions use bits 5, 6, and 8 to

code tests for the Accumulator. The AC skip

conditions are coded as never, always, AC Eql

0, AC Neg 0, AC Lss 0, AC Leq 0, AC Geq
and AC Gtr 0. The optional Extended Arith-

metic Element (EAE) includes additional Mul-

tiplier Quotient (MQ) and Shift Counter (SC)

registers and provides the hardwired operations

''multiply," "divide," "logical shift left,"

"arithmetic shift," and "normalize," If all the

nonredundant and useful variations in the two

operate groups were available as separate in-

structions in the manner of the first seven (dca,

tad, etc.), there would be approximately 7 + 12

(group 1) + 10 (group 2) + 6 (eae)
= 35 instruc-

tions in the PDP-8.

THE INTERRUPT SCHEME

External conditions in the input/output de-

vices can request that the processor be inter-

rupted. Interrupts are allowed if the processor's

interrupt enable flip-flop is set (If INTER-
RUPT.ENABLE Eqv 1). A request to interrupt

(i.e., INTERRUPT.REQUEST=1) clears the

interrupt enable bit (INTERRUPT.ENABLE
=

0), and the processor behaves as though a

"jump to subroutine" instruction (jms 0) had

been executed. A special lOT instruction

(i<0:ll> Eql #6001) followed by a "jump to

subroutine indirect" to 0, and instruction

(i<0:ll> Eql #5220) returns the processor to

the interruptable state with INTER-
RUPT.ENABLE a 1 . The program time to save

the processor state is six memory accesses (9 mi-

croseconds), and the time to restore the state is

nine memory accesses (13.5 microseconds).

Only one interrupt level is provided in the

hardware. If multiple priority levels are desired,

programmed polling is required. Most I/O de-

vices have to interrupt because they do not have

a program-controlled device interrupt-enable

switch. For multiple devices, approximately
three cycles (4.5 microseconds) are required to

poll each interrupter.

REGISTER TRANSFER LEVEL

More detail is required than is provided by
either the PMS or ISP levels to describe the in-

ternal structure and behavior of the processor
and memory. Figure 4 shows the registers and

controllers at a block diagram level, and Figure

6 gives a more detailed version using PMS nota-

tion. Table 1 gives the permissible register

transfer operations that the processor's sequen-

tial control circuit can give to the PDP-8 regis-

ters.

Although electrical pulse voltages and pola-

rities are not shown in Table 1, the operations

are presented in considerably more detail than

shown in Figure 4. As Figure 6 shows, the regis-

ters in the processor cannot be uniquely as-

signed to a single function. In a minimal

machine such as the PDP-8, functional separa-

tion is not economical. Thus, there are not com-

pletely distinct registers and transfer paths for

memory, arithmetic, program, and instruction

flow. (This sharing complicates understanding
of the machine.) However, Figure 6 clarifies the

structure considerably by defining all the regis-

ters in the processor (including temporaries and

controls). For example, the Memory Buffer

(MB\Memory.Buffer<0:ll>) is used to hold

the word being read from or written to memory.
The Memory Buffer also holds one of the oper-

ands for binary operations (for example, AC =

AC And MB). The Memory Buffer is also used

as an extension of the Instruction. Register dur-

ing the instruction interpretation. The addi-

STRUCTURAL LEVELS OF THE PDP-8 219

Sense Amplifiers
<0 11 >

M|0 4095|<0;11>
Mp

Selection. Sv
<0 11>

Inhibit. Drivers

<0:11>

MB<o n;
Mps

^

MA<0 11>

Mps ^

AC<0:11>. L

LAC
Mps; D

PC<0 11>

Mps;0

MEMORY BUS interface

(to 1:7 Mp modules!

DB DATA BREAK
interface

TO REGISTERS
AND control'

1

220 BEGINNING OF THE MINICOMPUTER

Table 1. PDP-8 Register Transfer Control Signals and
Data Break Interface

AC\Accumulator, L\Link and combined L, AC LAC
AC = 0; AC = #7777; AC = Not AC; LAC = LAC + 1

L = 0; L = 1 ; L = Not L;

LAC = LAC Srr 1; LAC = LAC Srr 2; ! rotates right

LAC = LAC Sir 1; LAC = LAC Sir 2; Irotates left

AC = AC Or SWITCHES; AC = AC And MB; AC = lO.BUS

AC = AC Xor MB; LAC = Carry (AC.MB);

(note that previous two commands form: LAC = AC + MB).

MB\Memory. Buffer

MB = 0; MB = MB + 1;

MB = PC; MB = AC; MB = MjMAJ; MB = DB.DATA.

MA\Memory.Address
MA<0:4> = 0; MA =
MA = DB.ADDRESS.

PC; MA = MB; MA<5:11> = MA<5:11>:

PC\Program.Counter

PC = 0; PC = PC + 1; PC<0:4> = 0;

PC = MB; PC<5:11> = MB<5:11>.

I R\l nstruction. R egister

IP = 0; IR = M|MA|<0:2>

M\MemoryI0:40951<0:1 1 >
M[MA1 = MB Iwrite

MB = M|MA1 Iread

DB\DATA.BREAK interface

DB.DATA<0:11>
DB.ADDRESS<0:11>
MB<0:11>
DB.REQUEST
DB.DIRECTION
DB.CYCLE.SELECT<0: 1 1 >
ADDRESS.ACCEPTED
WORD.COUNT.OK
BREAK.STATE

I Input to MB
! Input to MA

! Control inputs to Pc

I Control outputs from Pc

physical processor. The physical processor is

constrained by actual hardware logic and lower

level detals even at the circuit level. For ex-

ample, a core memory is read by a destructive

process and requires a temporary register (MB)
to hold the value being rewritten. This is not

represented within a single ISPS language state-

ment because ISPS defines only the non-

destructive transfer; however, it can be

considered as the two parallel operations MB =

M[MA]; M[MA] = 0. The explanation of the

physical machine, including the rewriting of

core using ISPS, is somewhat more tedious than

the highest level description shown in Appendix
1. For this reason, the state diagram is used

(Figure 7), and the description of the physical

machine (in ISPS) is left as an exercise for the

reader.

STRUCTURAL LEVELS OF THE PDP-8 221

FETCH " INSTRUCTION MEMORY CYCLE

Wait (tmsl Next
MB = M|MA|;
IR = IR Or M|MA|<0:2>Next

Wait(tml) Next

If Not MB<3>

222 BEGINNING OF THE MINICOMPUTER

"DEFER" (INDIRECT)

ADDRESS MEMORY CYCLE •EXECUTION " MEMORY CYCLE

Waitdms) Next
.°°J MB = M|MA| Next

Waitdmsl Next
MB = M|MA| Next

Waitltl) Next

01 I lfMA<0:8> Eql #001 ^
MB = MB -f 1 Next

El 1 Wait(tl) Next

If tad =t>

AC = AC Xor MB Next

Wait(tmd) Next

M|MA| = MB Next

MA - MB Next

If isi *
Begin
MB = MB -t- 1 Next
If MB Eql ^

PC + 1

End Next

If dca =>

MB = AC Next
If Jms *
MB = PC Next

Wait(tnid) Next

M|MA| = MB Next
If Not jms * MA = PC;
If Jms ==> MA = MA -K 1 Next

03 I Wait(t2) Next E3 1 Wait(t2) Next

If jmp =i>

PC = MB Next

MB = 0:

State = Next

(fo>

If Not jmp * If and. ^
AC = AC And MB Next

MB = 0;

State = 2 Next

If tad =>

AC = carryiACMBI Next

I,
r.o)

If dca ^
AC = 0:

If jms *
PC = MA:

IR = 0.

MB = 0.

State = NNext

Figure 7. PDP-8 Pc state diagram (part 2 of 2).

value is selected. The State. Register value is al-

ways held for the remainder of the cycle; i.e.,

only the sequences FO, Fl, F2, F3, or DO, Dl,

D2, D3, or EO, El, E2, E3 are permitted.

LOGIC DESIGN LEVEL (REGISTERS AND
DATA OPERATIONS)

Proceeding from the register transfer and ISP

descriptions, the next level of detail is the logic

module. Typical of the level is the 1-bit logic

module for an accumulator bit, AC<j>, illus-

trated in Figure 8. The horizontal data inputs in

the figure are to the logic module from AC<j>,
MB<j>, AC<j> input from the lO.Bus.In,

and SWITCHES <j>. The control signal inputs

whose names are identified using the vertical

bar (e.g., |

AC =
|) command the register op-

erations (i.e., the transfers). They are labeled by
their respective ISP operations (for example,
AC = AC And MB, AC = AC Sir 1, for rotate

once left). The sequential state machine, for the

processor Pc(K), generates these control signal

inputs using a combinational circuit such as the

one shown in Figure 9.

LOGIC DESIGN LEVEL (PC CONTROL,
PC(K) SEQUENTIAL STATE MACHINE
NETWORK)

The output signals from the processor se-

quential machine (Figure 9) can be generated in

STRUCTURAL LEVELS OF THE PDP-8 223

BUS TO EACH BIT OF AC

A

Not

AC<j>-

carry

output

[4n

AC<i>
(SEE NOTE)

carry

input
I
AC - Not AC

I

SWITCHES<j>

Not

AC<j + 1>'

Not

AC<i-1>'

AC<i+ 1> •

10. Bus In

I
AC = AC Or SWITCHES

I

I
LAC = CarrylAC. MB)

I (AC = ACXorMB| |AC = ACXorMB|

NOTE:

AC = AC + 1 it formed by AC<11> carry input.

Figure 8. PDP-8 AC<j> bit logic diagram.

AC

<)>

'-|AC=1|
—|AC= 0|

I

LAC = LAC Srr|

I
LAC = LAC Sir

I

AC
register
transfer

control

signals

Hox IR <0>

224 BEGINNING OF THE MINICOMPUTER

a Straightforward fashion by formulating the

Boolean expressions directly from the state dia-

gram in Figure 7. For example, the AC = con-

trol signal is expressed algebraically and with a

combinational network in Figure 9. Obviously,

these Boolean output control signals are func-

tions which include the clock, the

State. Register, and the states of the arithmetic

registers (for example, AC =
0, L =

0, etc.). The

expressions should be factored and minimized

so as to reduce the hardware cost of the control

for the interpreter. Although the sequential

controller for the processor is mentioned here

only briefly, it constitutes about half the logic

within the processor.

CIRCUIT LEVEL

The final level of description is the circuits

that form the logic functions of storage (flip-

flops) and gating (NAND gates). Figures 10

and 1 1 illustrate some of these logic devices in

detail. In Figure 10 a direct set/direct clear flip-

flop (a sequential logic element) is described in

o-W
DIReCT

STRUCTURAL LEVELS OF THE PDP-8 225

-1S volts

-3 volts

<^-»H' W W

INPUTS <

INPUT

226 BEGINNING OF THE MINICOMPUTER

terms of circuit implementation, combinational

logic equivalent, a state table, and its algebraic

behavior. Note that this is not a conventional

textbook circuit because it has no output delay

and responds directly and immediately to an in-

put. Some conventional sequential logic ele-

ments are used in the PDP-8, including RS

(Reset-Set), T(Trigger), D(Delay), and JK. A
delay in the flip-flops makes them behave in the

same way as the "textbook" primitives in se-

quential circuit theory. The outputs require a

series delay, At, such that, if the inputs change
at time, t, the outputs will not change until t +
At. In actuality, the PDP-8 uses capacitor-diode

gates at the flip-flop inputs so that input

changes will not be noticed until after the clock

passes. This achieves the same effect.

Figure 1 1 illustrates the combinational logic

elements used in the PDP-8. The circuit selec-

tion is limited to the inverter circuit with single

or multiple inputs. These are more familiarly

called NAND gates or NOR gates, depending
on whether one uses positive and/or negative

logic level definitions (described in Chapter 4).

The core memory structure is given in Figure
6. A more detailed block diagram showing the

core stack with its twelve 64 X 64 1-bit core

planes is needed. Such a diagram, though still a

functional block diagram, takes on some of the

aspects of a circuit diagram because a core

memory is largely circuit level details. The

memory (Figure 12) consists of the component
units: the two address decoders (which select 1

each of 64 outputs in the X and Y axis direc-

tions of the coincident current memory); selec-

tion switches (which transform a coincident

logic address into a high current path to switch

the magnetic cores); the 12 inhibit drivers

(which switch a high current or no current into

a plane when either a 1 or is rewritten); 12

sense amplifiers (which take the induced low

sense voltage from a selected core from a plane

being switched or not switched and transform it

into a I or 0); and the core stack, an array

M[#0:#7777]<0:11>. Figure 12 also includes

the associated circuit level hardware needed in

the core memory operation (e.g., power sup-

plies, timing, and logic signal level conversion

ampHfiers).

The timing signals are generated within the

control portion of the processor and are shown

together with processor clock in Figure 13. The

process of reading a word from memory is:

1. A 12-bit selection address is estabHshed

on the MA<0:11> address lines, which

is 1 of #10000 (or 4096) unique numbers.

The upper 6 bits <0:5> select 1 of 64

groups of Y addresses, and the lower 6

bits <6: 1 1 > select 1 of 64 groups of X
addresses.

2. The read logic signal is made a 1 at time

t2.

3. A high current path flows via the X and

Y selection switches. In each of the X
and Y directions, 64 X 12 cores have se-

lection current (Ix and ly). Only one core

in each plane is selected since Ix =
ly

=

Iswitching/2, and the current at the se-

lected intersection = Ix + ly
= Switch-

ing.

4. If a core is switched to (by having

Iswitching amperes through it), then a 1

is present and is read at the output of the

plane bit sense amplifiers. A sense ampli-

fier receives an input from a winding
that threads every core of every bit

within a core plane [#0:#7777]. All 12

cores of the selected word are reset to 0.

The time at which the sense amplifier is

observed is tms (the memory strobe),

which also causes the transfer MB =

M[MA].
5. The read current is turned off by timing

in the memory module.

6. The inhibit and write (slightly delayed)

logic signals are turned on at time tl.

The bit inhibit signal is present or not,

depending on whether a or 1, respec-

tively, is written into a bit.

STRUCTURAL LEVELS OF THE PDP-8 227

FROM
MA<0:11>
(DATA
INPUT)

T Is/2 READ
Is/2 WRITE

— LOGIC SIGNALS

HIGH CURRENT
-SIGNALS

(0|+ I./2I-U/2)

Is/2

READ

26- 1

X SELECTION
(CURRENT
SWITCHES)

ot ... 26- 1 t

READ

WRITE

Is/2 I

INHIBIT WIRE
V = SELECT WIRE

LOW LEVEL WINDING
'(SENSE SIGNALS) FOUR WIRES THROUGH A CORE

X ADDRESS
DECODERS

+ (READ)
- (WRITE)

SA SENSE .

AMPLIFIERS /*•
MB DATA
INPUTS<0 11>

SELECTION
CURRENT

POWER SUPPLY

I

REAO WRITE

CURRENT DIRECTION CONTROLS

Figure 12. PDP-8 four-wire coincident current (three dimensions) core memory logic diagram.

CLOCK
PULSES

(tms)

(NOTE 1)

(tmd)

(NOTE 2)

I I J I I
I I I I I I I

MEMORY
STROBE

V//////y/y/////A

m^////^y//A

\////////MyA

 (MB = M|MA|I

NOTES
1 . tms memory-strobe
2 tmd memory.done (determined by memory)

Figure 13. PDP-8 clock and memory timing diagram.

228 BEGINNING OF THE MINICOMPUTER

7. A high current path flows via the X and

Y selection switches, but in an opposite

direction to the read case (see item 2). If

a 1 is written, no inhibit current is pre-

sent and the net current in the selected

core is
—
Iswitching. If a is written, the

current is —Iswitching +(Iswitching/2)

and the core remains reset.

8. The inhibit and write logic signals are

turned off at time tmd specified by tim-

ing in the memory module, and the

memory cycle is completed.

Device Level

For a discussion of the behavior of the tran-

sistor as it is used in these switching circuit

primitives, the reader should consult semi-

conductor electronics and physics textbooks. It

is hoped that the reader has gained a sense of

how to think about the hierarchical decomposi-
tion of computers into particular levels of anal-

ysis (and synthesis) and that the hierarchical

approach will be of aid in the reading of Part

III.

Opposite:

Top, left to right:

• PDT-11 programmable data terminal

• VAX-1 1/780.

Bottom, left to right:

• Model 20 central processor.
• PDP-1 1 packaging showing cabinet level integration.

p^p

THE FDP=Tnim

The PDP-11 Family

The PDP-1 1 has evolved quite differently from the other computers discussed

in this book and, as a result, provides an independent and interesting story. Like

the other computers, the factors that have created the various PDP-11 machines

have been market and technology based, but they have generated a large number
of implementations (ten) over a relatively short (eight-year) lifetime. Because

there are multiple implementations spanning a performance range at the same

time, the PDP-1 1 provides problems and insight which did not occur in the evolu-

tions of the traditional mini (PDP-8 Family), the optimal price/performance ma-
chines (18-bit), and the high performance timesharing machines (the DECsystem
10). The PDP-1 1 designs cover a range of 500:1 in system price ($500 to $250,000)
and 500:1 in memory size (4 Kwords to 2 Mwords).

Rather than attempt to summarize the goals of designers, sentiments of users,

or the thoughts of researchers, the discussion of the PDP-11 is divided into chap-
ters which, in most cases, consist of papers written contemporaneously with vari-

ous important PDP-11 developments. The chapters are arranged in five

categories: introduction to the PDP-11, conceptual basis for PDP-11 models, im-

plementations of the PDP-11, evaluation of the PDP-11, and the virtual address

extension of the PDP-11.

INTRODUCTION TO THE PDP-11

Chapter 9, first pubHshed when the PDP-11 was announced, introduces the

PDP-1 1 architecture, gives its goals, and predicts how it might evolve. The con-

cept of a family of machines is quite strong, but the actual development of that

family has differed a good deal from the projections in this chapter. The major
reasons (discussed in Chapter 16) for the disparity between the predicted and
actual evolution are:

1. The notion of designing with improved technology, especially for a family
of machines, was not understood in 1970. This understanding came later

and was presented in a paper in 1972 [Bell et al., 1972b].

2. The Unibus proved unacceptable for intercommunications at the very high
and low-end designs. Although Chapter 9 suggests a multiprocessor and

multiple Unibuses for high-end designs, such a structure did not evolve as

a standard.

3. The address space for both physical and virtual memory was too small.

231

232 THE PDP-11 FAMILY

4, Several data-type extensions were not predicted. Although floating-point

arithmetic was envisioned, the character string and decimal operations

were not envisioned, or at least were not described. These data-types

evolved in response to market needs that did not exist in 1970.

CONCEPTUAL BASIS FOR THE PDP-11 MODELS

Chapters 10 and 1 1 consist of two papers that form some of the conceptual
basis for the various PDP-11 models. Chapter 10 by Strecker is an exposition of

cache memory structure and its design parameters. The cache memory concept is

the basis of three PDP-11 models, the PDP-11/34A, the PDP- 11/60, and the

PDP-1 1/70, in addition to the cache-8 (Chapter 7) and the KLIO processor for the

PDP-10 (Chapter 21).

Strecker gives the performance evaluation in terms of cache miss ratios,

whereas the reader is probably interested in performance or speedup. These two

measures, shown in Figure 1, are related [Lee, 1969] in the following way (assum-

ing an infinitely fast processor):

p = Total number of memory accesses by the processor Pc

m = Number of memory accesses that are missed by the cache and

have to be referred to the primary memory Mp
t.c = Cycle time of cache memory Mc
t.p

=
Cycle time of primary memory Mp

R =
t.p/ t.c (ratio of memory speeds), where R is typically 3 to 10

The relative execution speeds are:

/ (no cache)
= pR

t (to cache)
= p + mR

speedup = pR/(p -\- mR) = R/{\ + (m/p) R)
a = miss ratio = m/p

Therefore:

speedup
=

/?/(l + aR) =
l/(a + \/R)

Note that:

If a = (100% hit), the speedup is R
If a = 1 (100% miss), the speedup is R/{\ + R), i.e., the speedup is

less than 1 (i.e., time to reference both memories)

Chapter 1 1 contains a unique discussion of buses - the communications link

between two or more computer system components. Although buses are a stand-

ard of interconnection, they are the least understood element of computer design

THE PDP-11 FAMILY 233

p = TOTAL NUMBER OF MEMORV ACCESSES
BY THE PROCESSOR, Pc

Mp

NUMBER OF MEMORY ACCESSES THAT ARE
MISSED BY CACHE AND HAVE TO BE
REFERRED TO Mp

Figure 1 . The structure of Pc, Mcache,

and Mp of cached computer.

because their implementation is distributed in various components. Their behav-

ior is difficult to express in a state diagram or other conventional representation

(except a timing diagram) because the operation of buses is inherently pipelined;

hence, design principles and understanding are minimal.

In Chapter 11, Levy first characterizes the intercommunication problem into

the constituent dialogues that must take place between pairs of components. After

giving a general model of interconnection, Levy provides examples of PDP-11
buses that characterize the general design space. Finally, he discusses the various

intercommunications (model) aspects: arbitration (deciding which components
can intercommunicate), data transmission, and error control.

IMPLEMENTATIONS OF THE PDP-11

Chapter 12 is a descriptive narrative about the design of the LSI-1 1 at the chip,

board, and backplane levels. Since it was written from the viewpoint of a knowl-

edgeable user, it lacks some of the detail that the designers at Western Digital

(Roberts, Soha, Pohlman) or at DEC (Dickhut, Dickman, Olsen, Titelbaum)

might have provided. A detailed account of the chip-level design is available,

however [Soha and Pohlman, 1974].

Two design levels are described: the three chip set microprogrammed computer
used to interpret the PDP-11 instruction set, and the particular PMS-level com-

ponents that are integrated into a backplane to form a hardware system. Chapter
12 also provides a discussion of the microprogramming tradeoff that took place

between the chip and module levels. This tradeoff was necessary to carry out the

clock, console, refresh, and power-fail functions which are normally in hardware.

Since the time that the Sebern paper (Chapter 12) was written, packaging for

LSI-1 1 systems has moved in two directions: toward the single board micro-

computer and toward modularity. The single board microcomputer concept is

234 THE PDP-11 FAMILY

exemplified by the bounded system shown in Figure 2. This integrated system
contains an LSI- 11 chip set, 32 Kwords of memory, connectors for six commu-
nication line interfaces, and a controller for two floppy disk drives. It uses 175

circuits (to implement the same functionality using standard LSI- 11 modules

would require 375 integrated circuits). The modularity direction is exemplified by
the LSI-1 1/2, for which typical option modules are shown in Figure 3.

Unlike the reports from an architect's or reporter's viewpoint. Chapter 13 is a

direct account of the design process from the project viewpoint. A mid-range
machine is an inherently difficult design because it is neither the lowest cost nor

MOS RAM
4-8'16-32K X 16

1 K X 16 ROM

STACKING
CONN

PERIPHERAL
MODULE

(3-6USARTS)

] c

STACKING
CONN.

EIA CONNECTOR MODULE

C CONSL) (PRNTR) (COMM)

EIA CONNECTOR MODULE

(TERM 1) (TERM. 2) (TERM 3)

TERMINAL INTELLIGENCE MODULE

LSI-1 1

CHIPSET

CZl

MICRO PROC
I/O EMULATOR

16-PIN

DIP

CONN

c

-t-5 V

+ 12 V

-5 V

+ 24 V

SOW
POWER
SUPPLY

FLOPPY READ/WRITE
CONTROLLER
MODULE

MOS CONTROLLER
CHIP DRIVE 1

(OPTION)

Figure 2. A bounded LSI-1 1 based system.

THE PDP-11 FAMILY 235

the highest performance machine of the family, and thus has to have the right

balance of features, price, and performance against criteria that are usually vague.
Four interesting aspects of computer engineering are shown in the PDP-1 1/60:

the cache to reduce Unibus traffic; trace-driven design of floating-point arith-

metic processors; writable control store; and special features for reliability, avail-

ability, and maintainability.

The Unibus was found to be inadequate for handling all the data traffic in high

performance systems, but by using a cache, most processor references do not use

the Unibus and so leave it free for I/O traffic. In the PDP-1 1/60 work described

in this chapter, Mudge uses Strecker's (Chapter 10) program traces and method-

ology. The cache design process is implicit in the way in which the work is carried

out to determine the structure parameters. Sensitivity plots are used to determine

the effects of varying each parameter of the design. The time between changes of

context is an important parameter because all real-time and multiprogrammed

systems have many context switches. The study leading to the determination of

block size is also given.

Microprogramming is used to provide both increased user-level capability and

increased reliability, availability, and maintainability. The writable control store

option is described together with its novel use for data storage. This option has

been recently used for emulating the PDP-8 at the OS/8 operating system level.

Chapter 14 presents a comprehensive comparison of the eight processor imple-

mentations used in the ten PDP-11 models. The work was carried out to invest-

igate various design styles for a given problem, namely, the interpretation of the

PDP-1 1 instruction set. The tables provide valuable insight into processor imple-

mentations, and the data is particularly useful because it comes from Snow and

Siewiorek, non-DEC observers examining the PDP-11 machines.

The tables include:

1. A set of instruction frequencies, by Strecker, for a set often different appli-

cations. (The frequencies do not reflect all uses, e.g., there are no floating-

point instructions, nor has operating system code been analyzed.)

2. Implementation cost (modules, integrated circuits, control store widths)

and performance (micro- and macroinstruction times) for each model.

3. A canonical data path for all PDP-1 1 implementations against which each

processor is compared.

With this background data, a top-down model is built which explains the per-

formance (macroinstruction time) of the various implementations in terms of the

microinstruction execution and primary memory cycle time. Because these two

parameters do not fully explain (model) performance, a bottom-up approach is

also used, including various design techniques and the degree of processor over-

lap. This analysis of a constrained problem should provide useful insight to both

computer and general digital systems designers.

236 THE PDP-11 FAMILY

KD11-HA
LSI-1 1/2 micrcxjomputer

processor

MSV11-D DLV11-J

Dynamic MOS RAM memory Four-line serial interface

MO
IBV11-A
IEEE instrument bus interface

MRVll-BA
4K UV PROM board with

256-word RAM

MRV11-AA
4K PROM board

Figure 3. The double-height modules forming the LSI-1 1/2 (part 1 of 2).

THE PDP-11 FAMILY 237

DRV11
1 6-bit parallel interface

DCK11-AC
Interface foundation kit

RXV11
Interface module for RXOl

floppy disk

iTTjS- 5* ^ ^
If I i I

REV11-A
Refresh/ bootstrap/

diagnostic/ terminator

module

KPV11-A
Power sequencer/ line clock

module

DLV11

Single-line serial interface

Figure 3. The double-height modules forming the LSI-1 1/2 (part 2 of 2).

238 THE PDP-11 FAMILY

EVALUATION OF THE PDP-11

Chapter 15 evaluates the PDP-1 1 as a machine for executing FORTRAN. Be-

cause FORTRAN is the most often executed language for the PDP-1 1, it is im-

portant to observe the PDP-1 1 architecture as seen by the language processor
- its

user. The first FORTRAN compiler and object (run) time system are described,

together with the evolutionary extensions to improve performance. The FOR-
TRAN IV-PLUS (optimizing) compiler is only briefly discussed because its im-

provements, largely due to compiler optimization technology, are less relevant to

the PDP-11 architecture.

The chapter title, "Turning Cousins into Sisters," overstates the compatibility

problem since the five variations of the PDP-1 1 instruction set for floating-point

arithmetic are made compatible by essentially providing five separate object (run)

time systems and a single compiler. This transparency is provided quite easily by
"threaded code," a concept discussed in the chapter.

The first version of the FORTRAN machine was a simple stack machine. As

such, the execution times turned out to be quite long. In the second version, the

recognition of the special high-frequency-of-use cases (e.g., A «- 0, A <- A + 1) and

the improved conventions for three-address operations (to and from the stack)

allowed speedup factors of 1.3 and 2.0 for floating-point and integers.

It is interesting to compare Brender's idealized FORTRAN IV-PLUS machine

with the Floating-Point Processors (on the PDP-1 1/34, 1 1/45, 1 1/55, 1 1/60, and

1 1/70). If the FORTRAN machine described in the paper is implemented in mi-

crocode and made to operate at Floating-Point Processor speeds, the resulting

machines operate at roughly the same speed and programs occupy roughly the

same program space.

The basis for Chapter 16, "What Have We Learned From the PDP-11?" [Bell

and Strecker, 1976] was written to critique the original expository paper on the

PDP-1 1 (Chapter 9) and to compare the actual with the predicted evolution. Four

critical technological evolutions - bus bandwidth, PMS structure, address space,

and data-type
- are examined, along with various human organizational aspects

of the design.

The first section of Chapter 16 compares the original goals of the PDP-11

(Chapter 9) with the goals of possible future models from the original design

documents. Next, the ISP and PMS evolutions, including the VAX extension, are

described. The Unibus characteristics are especially interesting as the bus turns

out to be more cost-effective over a wider range than would be expected.

The section of the chapter which deals with multiprocessors and multi-

computers gives the rationale behind the slow evolution of these structures. Be-

cause a number of these computer structures have been built (especially at

Carnegie-Mellon University), they are described in detail.

The final section of the chapter interrelates technology with the various imple-

mentations (including VAX- 11/780) that have occurred. Table 6 gives the per-

formance characteristics for the various models with the relevant technology,

contributions, and implementation techniques required to span the range.

THE PDP-11 FAMILY 239

VIRTUAL ADDRESS EXTENSION OF THE PDP-11

The latest member of the PDP-1 1 family, the Virtual Address Extension 1 1 or

VAX-11, is described in Chapter 17. This paper, by the architect of VAX-11,
discusses the new architecture and its first implementation, the VAX- 11/780.

VAX-1 1 extends the PDP-1 1 to provide a large, 32-bit virtual address for each

user process. The architecture includes a compatibility mode that allows PDP-1 1

programs written for the RSX-1 IM program environment to run unchanged. In

this way, PDP-1 1 programs can be moved among VAX and PDP-1 1 computers,

depending on the user's address size and computational and generality needs.

Chapter 17 provides a clean, somewhat terse, yet comprehensive description of

the VAX-1 1 architecture. Because the VAX part of the architecture is so complete

in terms of data-types, operators, addressing and memory management, it can

also serve as a textbook model and case study for architecture in general. Goals,

constraints, and various design choices are given, although explanations of what

was traded away in the design choices are not detailed.

A New Architecture

for Minicomputers
-The DEC PDP-11

C. GORDON BELL. ROGER CADY, HAROLD McFARLAND,
BRUCE A. DELAGI. JAMES F. O'LOUGHLIN,
RONALD NOONAN, and WILLIAM A. WULF

INTRODUCTION

The minicomputer* has a wide variety of

uses: communications controller, instrument

controller, large-system preprocessor, real-time

data acquisition systems, . . . desk calculator.

Historically, Digital Equipment Corporation's

(DEC) PDP-8 family, with 6000 installations

has been the archetype of these minicomputers.
In some applications current minicomputers

have limitations. These limitations show up
when the scope of their initial task is increased

(e.g., using a higher level language, or process-

ing more variables). Increasing the scope of the

task generally requires the use of more com-

prehensive executives and system control pro-

grams, hence larger memories and more

processing. This larger system tends to be at the

limit of current minicomputer capability, thus

the user receives diminishing returns with re-

spect to memory, speed efficiency, and program

development time. This limitation is not sur-

prising since the basic architectural concepts for

current minicomputers were formed in the early

1960s. First, the design was constrained by cost,

resulting in rather simple processor logic and

'The PDP-I I design is predicated on being a member of one (or more) of the micro, midi, mini, . . . maxi (computer name)
markets. We will define these names as belonging to computers of the third generation (integrated circuit to medium-scale

integrated circuit technology), having a core memory with cycle time of 0.5~2 /us, a clock rate of 5~10 MHz ... a single

proce.s.sor with interrupts and usually applied to doing a particular task (e.g., controlling a memory or communications
lines, preprocessing for a larger system, process control). The specialized names are defined as follows.

242 THE PDP-11 FAMILY

register configurations. Second, application ex-

perience was not available. For example, the

early constraints often created computing de-

signs with what we now consider weaknesses:

1. Limited addressing capability, particu-

larly of larger core sizes.

2. Few registers, general registers, accu-

mulators, index registers, base registers.

3. No hardware stack facilities.

4. Limited priority interrupt structures,

and thus slow context switching among
multiple programs (tasks).

5. No byte string handHng.
6. No read-only memory (ROM) facilities.

7. Very elementary I/O processing.

8. No larger model computer, once a user

outgrows a particular model.

9. High programming costs because users

program in machine language.

In developing a new computer, the archi-

tecture should at least solve the above prob-

lems. Fortunately, in the late 1960s, integrated

circuit semiconductor technology became avail-

able so that newer computers could be designed

that solve these problems at low cost. Also, by

1970, application experience was available to

influence the design. The new architecture

should thus lower programming cost while

maintaining the low hardware cost of mini-

computers.
The DEC PDP-1 1 Model 20 is the first com-

puter of a computer family designed to span a

range of functions and performance. The

Model 20 is specifically discussed, although de-

sign guidelines are presented for other members
of the family. The Model 20 would nominally
be classified as a third generation (integrated

circuits), 16-bit word, one central processor
with eight 16-bit general registers, using two's

complement arithmetic and addressing up to 2'^

8-bit bytes of primary memory (core). Though
classified as a general register processor, the op-

erand accessing mechanism allows it to perform

equally well as a 0- (stack), 1- (general register),

and 2- (memory-to-memory) address computer.
The computer's components (processor, memo-

ries, controls, terminals) are connected via a

single switch, called the Unibus.

The machine is described using the processor-

memory-switch (PMS) notation of Bell and

Newell [1971] at different levels. The following

descriptive sections correspond to the levels: ex-

ternal design constraints level; the PMS level -

the way components are interconnected and al-

low information to fiow; the program level - the

abstract machine that interprets programs; and

finally, the logical design level. (We omit a dis-

cussion of the circuit level, the PDP-11 being

constructed from TTL integrated circuits.)

DESIGN CONSTRAINTS

The principal design objective is yet to be

tested; namely, do users like the machine? This

will be tested both in the marketplace and by
the features that are emulated in newer ma-

chines; it will be tested indirectly by the life span
of the PDP-1 1 and any offspring.

Word Length

The most critical constraint, word length (de-

fined by IBM), was chosen to be a multiple of 8

bits. The memory word length for the Model 20

is 16 bits, although there are 32- and 48-bit in-

structions and 8- and 16-bit data. Other mem-
bers of the family might have up to 80-bit

instructions with 8-, 16-, 32- and 48-bit data.

The internal, and preferred external character

set, was chosen to be 8-bit ASCII.

Range and Performance

Performance and function range (exten-

dability) were the main design constraints; in

fact, they were the main reasons to build a new

computer. DEC already has four computer

A NEW ARCHITECTURE FOR MINICOMPUTERS 243

families that span a range* but are in-

compatible. In addition to the range, the initial

machine was constrained to fall within the

small-computer product line, which means to

have about the same performance as a PDP-8.

The initial machine outperforms the PDP-5,

LINC, and PDP-4 based families. Performance,

of course, is both a function of the instruction

set and the technology. Here, we are fundamen-

tally only concerned with the instruction set

performance because faster hardware will al-

ways increase performance for any family. Un-
like the earlier DEC families, the PDP-11 had

to be designed so that new models with signifi-

cantly more performance can be added to the

family.

A rather obvious goal is maximum perfor-

mance for a given model. Designs were pro-

grammed using benchmarks, and the results

were compared with both DEC and potentially

competitive machines. Although the selling

price was constrained to lie in the $5,000 to

$10,000 range, it was realized that the decreas-

ing cost of logic would allow a more complex

organization than that of earlier DEC com-

puters. A design that could take advantage of

medium- and eventually large-scale integration

was an important consideration. First, it could

make the computer perform well; second, it

would extend the computer family's life. For

these reasons, a general register organization
was chosen.

Interrupt Response. Since the PDP-11 will

be used for real-time control applications, it is

important that devices can communicate with

one another quickly (i.e., the response time of a

request should be short). A multiple priority

level, nested interrupt mechanism was selected;

additional priority levels are provided by the

physical position of a device on the Unibus.

Software polling is unnecessary because each

device interrupt corresponds to a unique ad-

dress.

Software

The total system including software is, of

course, the main objective of the design. Two
techniques were used to aid programmability.

First, benchmarks gave a continuous indication

as to how well the machine interpreted pro-

grams; second, systems programmers contin-

ually evaluated the design. Their evaluation

considered: what code the compiler would pro-

duce; how would the loader work; ease of pro-

gram relocatability; the use of a debugging

program; how the compiler, assembler, and edi-

tor would be coded - in effect, other bench-

marks; how real-time monitors would be

written to use the various facilities and present a

clean interface to the users; finally, the ease of

coding a program.

Modularity

Structural flexibility (sometimes called mod-

ularity) for a particular model was desired. A
flexible and straightforward method for inter-

connecting components had to be used because

of varying user needs (among user classes and

over time). Users should have the ability to

configure an optimum system based on cost,

performance, and reliability, both by inter-

connection and, when necessary, constructing

new components. Since users build special

hardware, a computer should be interfaced eas-

ily. As a by-product of modularity, computer

components can be produced and stocked,

rather than tailor-made on order. The physical

structure is almost identical to the PMS struc-

ture discussed in the following section; thus,

PDP-4, 7, 9, 15 family; PDP-5, 8, 8/S, 8/1, 8/L family; LINC, PDP-8/LINC, PDP-12 family; and PDP-6, 10 family. The
initial PDP-1 did not achieve family status.

244 THE PDP-11 FAMILY

reasonably large building blocks are available

to the user.

Microprogramming

A note on microprogramming is in order be-

cause of current interest in the "firmware" con-

cept. We believe microprogramming, as we
understand it [Wilkes and Stringer, 1953], can

be a worthwhile technique as it applies to pro-

cessor design. For example, microprogramming
can probably be used in larger computers when

floating-point data operators are needed. The
IBM System 360 has made use of the technique
for defining processors that interpret both the

System 360 instruction set and earlier family in-

struction sets (e.g., 1401, 1620, 7090). In the

PDP-11, the basic instruction set is quite

straightforward and does not necessitate micro-

programmed interpretation. The processor-

memory connection is asynchronous; therefore,

memory of any speed can be connected. The in-

struction set encourages the user to write reen-

trant programs. Thus, read-only memory can

be used as part of primary memory to gain the

permanency and performance normally attri-

buted to microprogramming. In fact, the Model
10 computer, which will not be further dis-

cussed, has a 1024-word read-only memory,
and a 128-word read-write memory.

Understandability

Understandability was perhaps the most fun-

damental constraint (or goal) although it is now
somewhat less important to have a machine

that can be understood quickly by a novice

computer user than it was a few years ago.
DEC'S early success has been predicated on sell-

ing to an intelligent but inexperienced user. Un-

derstandability, though hard to measure, is an

important goal because all (potential) users

must understand the computer. A straight-

forward design should simplify the systems pro-

gramming task; in the case of a compiler, it

should make translation (particularly code gen-

eration) easier.

PDP-11 STRUCTURE AT THE PMS
LEVEL*

Introduction

PDP-11 has the same organizational struc-

ture as nearly all present-day computers (Figure

1). The primitive PMS components are: the

primary memory Mp which holds the programs
while the central processor Pc interprets them;

I/O controls Kio which manage data transfers

between terminals T or secondary memories Ms
to primary memory Mp; the components out-

side the computer at periphery X either humans
H or some external process (e.g., another com-

puter); the processor console (T.console) by
which humans communicate with the computer
and observe its behavior and affect changes in

its state; and a switch S with its control K which

allows all the other components to commu-
nicate with one another. In the case of PDP-1 1,

the central logical switch structure is imple-

mented using a bus or chained switch S called

the Unibus, as shown in Figure 2. Each physical

component has a switch for placing messages
on the bus or taking messages off the bus. The
central control decides the next component to

use the bus for a message (call). The S (Unibus)
differs from most switches because any com-

ponent can communicate with any other com-

ponent.
The types of messages in the PDP-11 are

along the lines of the hierarchical structure

common to present-day computers. The single

*A descriptive (block-diagram) level [Bell and Newell, 1970] to describe the relationship of the computer components:
processors, memories, switches, controls, links, terminals, and data operators. PMS is described in Appendix 2.

A NEW ARCHITECTURE FOR MINICOMPUTERS 245

^^PERl

CENTRAL
PROCESSOR

246 THE PDP-11 FAMILY

and the central processor responds by

managing the data transmission in a

fashion similar to transmitting in-

itialization information.

5. Some device controls (for T or Ms)
transfer data directly to/from primary

memory without central processor inter-

vention. In this mode the device behaves

similarly to a processor; a memory ad-

dress is specified, and the data is trans-

mitted between the device and primary

memory.
6. The transfer of data between two con-

trols, e.g., a secondary memory (disk)

and say a terminal/T. display is not pre-

cluded, provided the two use compatible

message formats.

As we show more detail in the structure there

are, of course, more messages (and more simul-

taneous activity). The above does not describe

the shared control and its associated switching

which is typical of a magnetic tape and mag-
netic disk secondary memory systems. A con-

trol for a DECtape memory (Figure 3) has an S

('DECtape bus) for transmitting data between a

single tape unit and the DECtape transport.

The existence of this kind of structure is based

on the relatively high cost of the control relative

to the cost of the tape and the value of being
able to run concurrently with other tapes. There

is also a dialogue at the periphery between X-T

and X-Ms that does not use the Unibus. (For

example, the removal of a magnetic tape reel

from a tape unit or a human user H striking a

typewriter key are typical dialogues.)

All of these dialogues lead to the hierarchy of

present computers (Figure 4). In this hierarchy
we can see the paths by which the above mes-

sages are passed: Pc-Mp; Pc-K; K-Pc; Kio-T
and Kio-Ms; and Kio-Mp; and, at the per-

iphery, T-X and T-Ms; and T. console-H.

Model 20 Implementation

Figure 5 shows the detailed structure of a

uniprocessor Model 20 PDP-1 1 with its various

components (options). In Figure 5, the Unibus

characteristics are suppressed. (The detailed

properties of the switch are described in the log-

ical design section.)

Extensions to Increase Performance

The reader should note (Figure 5) that the

important limitations of the bus are: a con-

currency of one, namely, only one dialogue can

occur at a given time, and a maximum transfer

rate of one 16-bit word per 0.75 microsecond,

giving a transfer rate of 21.3 megabits/second.
While the bus is not a limit for a uniprocessor

structure, it is a limit for multiprocessor struc-

tures. The bus also imposes an artificial limit on

the system performance when high-speed de-

vices (e.g., TV cameras, disks) are transferring

Ms(#0:7; DECtape)

DECtape
bus

S DECtape bus;

concurrency:!

KioCDECMpel

Eih rEh
HD- • -EM

• —
rKio|—

>

a
 PERIPHERY

rEh HZHhE]

4E1-HZI

Figure 3. DECtape control switching PMS diagram. Figure 4. Conventional hierarchy computer structure.

A NEW ARCHITECTURE FOR MINICOMPUTERS 247

data to multiple primary memories. On a larger

system with multiple independent memories,

the supply of memory cycles is 17 mega-

bits/second times the number of modules. Since

there is such a large supply of memory cycles

per second and since the central processor can

absorb only approximately 16 mega-
bits/second, the simple one-Unibus structure

must be modified to make the memory cycles

available. Two changes are necessary. First,

each of the memory modules has to be changed
so that multiple units can access each module

on an independent basis. Second, there must be

independent control accessing mechanisms.

Figure 6 shows how a single memory is modi-

I Mp I^OI L

I
Mp (#7) I-

ED-E y-

T Teletype: Model 33. 35 ASR;
full duplex; 10 char/second:

char set: ASCII: 8 bit/char

T Paper tape: reader:

100 char/second: 8 bit/char

^ T Paper tape: punch:
100 char/second: 8 bit/char

M Secondary s: fixed head disk;

16 bits/word; 32768 words;

i.rate: 66Ms/word;
t.access: -^ 34 ms

^ K (60 cycle clock) - L (60 cycle line)-

NOTES
1. Mp (technology: core: 4096 words; t.cycle: 1.2 /it;

t access: 06 us: 16 bits/word)

2. P(central c: Model 30; integrated circuit; general registers;

2 addresses/instruction; addresses are register, stack. Mp:
data-types: bits, bytes, words, word integers, byte integers,

Boolean vectors; 8 bits/byte; 16 bits/word; operations:

(+ . -. / (optional), X (optional). /2, X2,-i, - (negate);

(V, 3);

M(processor state; 'general registers; 8+1 word;

integrated circuit))

3. S CUnibus; non-hierarchy; bus; concurrency: 1:

1 word/0 7S ^s)

Figure 5. PDP-11 structure and characteristics

PMS diagram.

fied to have more access ports (i.e., connect to

four Unibuses).

Figure 7 shows a system with three independ-
ent memory modules that are accessed by two

independent Unibuses. Note that two of the

secondary memories and one of the transducers

are connected to both Unibuses. It should be

noted that devices that can potentially interfere

with Pc-Mp accesses are constructed with two

ports; for simple systems, both ports are con-

nected to the same bus, but for systems with

more buses, the second connection is to an inde-

pendent bus.

Figure 8 shows a multiprocessor system with

two central processors and three Unibuses. Two
of the Unibus controls are included within the

two processors, and the third bus is controlled

by an independent control unit. The structure

also has a second switch to allow either of two

processors (Unibuses) to access common shared

devices. The interrupt mechanism allows either

(a) 1 -port.

^
tp

248 THE PDP-11 FAMILY

I
Pc

I
rKCUnlbusTI |t 1

\

\

INITIALIZATION
AND INTERRUPT
MESSAGES.

PH...^

Mp U- g

M> OR T TO
Mp MESSAGES

Figure 7. Three Mp, two S (Unibus) structure

PMS diagram.

E] El E1...E]...T T T T R. ...

DATA TRANSFERS

1. K('Unibus)

2. Kl'Unibus multiple bus to single bus coupler:

from: 2 Unibus: to: 1 Unibus)

3. KCProcessor-to-processor coupler)

4. Ms(duplex)

Figure 8. Dual Pc multiprocessor system PMS diagram.

processor to respond to an interrupt, and sim-

ilarly either processor may issue initialization

information on an anonymous basis. A control

unit is needed so that two processors can com-

municate with one another; shared primary

memory is normally used to carry the body of

the message. A control connected to two Pc's

(Figure 8) can be used for reliability; either pro-

cessor or Unibus could fail, and the shared Ms
would still be accessible.

Higher Performance Processors

Increasing the bus width has the greatest

effect on performance. A single bus limits data

transmission to 21.4 megabits/second, and

though Model 20 memories are 16 mega-

bits/second, faster (or wider) data path width

modules will be limited by the bus. The Model

20 is not restricted, but for higher performance

processors operating on double-word (fixed-

point) or triple-word (floating-point) data, two

A NEW ARCHITECTURE FOR MINICOMPUTERS 249

or three accesses are required for a single data-

type. The direct method to improve the per-

formance is to double or triple the primary

memory and central processor data path
widths. Thus, the bus data rate is automatically

doubled or tripled.

For 32- or 48-bit memories, a coupling con-

trol unit is needed so that devices of either

width appear isomorphic to one another. The

coupler maps a data request of a given width

into a higher- or lower-width request for the bus

being coupled to, as shown in Figure 9. (The
bus is limited to a fixed number of devices for

Pc (48 BITS)

f

R
from: 48 bit

to 16 bits

48'BITUNIBUS
f

18-BIT UNIBUS

Figure 9. Computer with 48-bit Pc, Mp with 1 6-bit

Ms, T.PMS diagram.

electrical reasons; thus, to extend the bus, a bus-

repeating unit is needed. The bus-repeating con-

trol unit is almost identical to the bus coupler.)

A computer with a 48-bit primary memory and

processor and 16-bit secondary memory and

terminals (transducers) is shown in Figure 9.

In summary, the design goal was to have a

modular structure providing the final user with

freedom and fiexibility to match his needs. A
secondary goal of the Unibus is open-endedness

by providing multiple buses and defining wider

path buses. Finally, and most important, the

Unibus is straightforward.

THE INSTRUCTION SET PROCESSOR
(ISP) LEVEL-ARCHITECTURE"

Introduction, Background, and Design
Constraints

The Instruction Set Processor (ISP) is the

machne defined by the hardware and/or soft-

ware that interprets programs. As such, an ISP

is independent of technology and specific imple-

mentations.

The instruction set is one of the least under-

stood aspects of computer design; currently, it

is an art. There is currently no theory of instruc-

tion sets, although there have been attempts to

construct them [Maurer, 1966], and there has

also been an attempt to have a computer pro-

gram design an instruction set [Haney, 1968].

We have used the conventional approach in this

design. First, a basic ISP was adopted and then

incremental design modifications were made

(based on the results of the benchmarks).!

Although the approach to the design was

conventional, the resulting machine is not. A
common classification of processors is as 0-, 1-,

2-, 3-, or 3-plus-l -address machines. This

scheme has the form:

op/1,/2, /3, /4

*The word "architecture" has been operationally defined [Amdahl et ai. 1964] as "the attributes of a system as seen by a

programmer, i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flow and

controls, the logical design, and the physical implementation."

+ A predecessor multiregister computer was proposed that used a similar design process. Benchmark programs were coded on
each of ten "competitive" machines, and the object of the design was to get a machine that gave the best .score on the

benchmarks. This approach had several fallacies: The machine had no basic character of its own: the machine was difficult

to program since the multiple registers were assigned to specific functions and had inherent idiosyncrasies to score well on

the benchmarks; the machine did not perform well for programs other than those used in the benchmark test; and finally,

compilers that took advantage of the machine appeared to be difficult to write. Since all "competitive machines" had been

hand-coded from a common fiowchart rather than separate flowcharts for each machine, the apparent high performance
may have been due to the flowchart organization.

250 THE PDP-11 FAMILY

where /I specifies the location (address) in

which to store the result of the binary operation

(op) of the contents of operand locations 12 and

/3, and /4 specifies the location of the next in-

struction.

The action of the instruction is of the form:

/I i- 12 op /3; goto /4

The other addressing schemes assume specific

values for one or more of these locations. Thus,

the one-address von Neumann [Burks et al.,

1962] machines assume l\ = H = the accu-

mulator and 14 is the location following that of

the current instruction. The two-address ma-

chine assumes /I =12; 14 is the next address.

Historically, the trend in machine design has

been to move from a 1- or 2-word accumulator

structure as in the von Neumann machine to-

ward a machine with accumulator and index

register(s).* As the number of registers is in-

creased, the assignment of the registers to spe-

cific functions becomes more undesirable and

inflexible; thus, the general register concept has

developed. The use of an array of general regis-

ters in the processor was apparently first used in

the first generation, vacuum-tube machine,

PEGASUS [Elliott et al., 1956] and appears to

be an outgrowth of both 1- and 2-address struc-

tures. (Two alternative sructures - the early 2-

and 3-address-per-instruction computers may
be disregarded, since they tend to always access

primary memory for results as well as tempo-

rary storage and thus are wasteful of time and

memory cycles and require a long instruction.)

The stack concept (O-address) provides the most

efficient access method for specifying al-

gorithms, since very little space, only the access

addresses and the operators, needs to be given.

In this scheme the operands of an operator are

always assumed to be on the "top of the stack."

The stack has the additional advantage that

arithmetic expression evaluation and compiler
statement parsing have been developed to use a

stack effectively. The disadvantage of the stack

is due, in part, to the nature of current memory
technology. That is, stack memories have to be

simulated with random-access memories; mul-

tiple stacks are usually required; and even

though small stack memories exist, as the stack

overflows, the primary memory (core) has to be

used.

Even though the trend has been toward the

general register concept (which, of course, is

similar to a 2-address scheme in which one of

the addresses is limited to small values), it is im-

portant to recognize that any design is a com-

promise. There are situations for which any of

these schemes can be shown to be "best." The

IBM System 360 series uses a general register

structure, and their designers [Amdahl et al.,

1964] claim the following advantages for the

scheme.

1. Registers can be assigned to various

functions: base addressing, address cal-

culation, fixed-point arithmetic, and in-

dexing.

2. Availability of technology makes the

general register structure attractive.

The System 360 designers also claim that a

stack organized machine such as the English

Electric KDF 9 [Allmark and Lucking, 1962] or

the Burroughs B5000 [Lonergan and King,

1961] has the following disadvantages.

1. Performance is derived from fast regis-

ters, not the way they are used.

2. Stack organization is too limiting and re-

quires many copy and swap operations.

3. The overall storage of general registers

and stack machines are the same, consid-

ering point 2.

*Due, in part, to needs, but mainly to technology that dictates how large the structure can be.

A NEW ARCHITECTURE FOR MINICOMPUTERS 251

4. The Stack has a bottom, and when

placed in slower memory, there is a per-

formance loss.

5. Subroutine transparency is not easily re-

alized with one stack.

6. Variable length data is awkward with a

stack.

We generally concur with points 1, 2, and 4.

Point 5 is an erroneous conclusion, and point 6

is irrelevant (that is, general register machines

have the same problem). The general register

scheme also allows processor implementations
with a high degree of parallelism since all in-

structions of a local block can operate on sev-

eral registers concurrently. A set of truly

general purpose registers should also have addi-

tional uses. For example, in the DEC PDP-10,

general registers are used for address integers,

indexing, floating point. Boolean vectors (bits),

or program flags and stack pointers. The gen-

eral registers are also addressable as primary

memory, and thus, short program loops can re-

side within them and be interpreted faster. It

was observed in operation that PDP-10 stack

operations were very powerful and often used

(accounting for as many as 20 percent of the

executed instructions in some programs, e.g.,

the compilers).

The basic design decision that sets the PDP-
1 1 apart was based on the observation that by

using truly general registers and by suitable ad-

dressing mechanisms, it was possible to con-

sider the machine as a 0-address (stack), 1-

address (general register), or 2-address (mem-

ory-to-memory) computer. Thus, it is possible

to use whichever addressing scheme, or mixture

of schemes, is most appropriate.

Another important design decision for the in-

struction set was to have only a few data-types

in the basic machine, and to have a rather com-

plete set of operations for each data-type. (Al-

ternative designs might have more data-types

with few operations, or few data-types with few

operations.) In part, this was dictated by the

machine size. The conversion between data-

types must be accomplished easily either auto-

matically or with one or two instructions. The

data-types should also be sufficiently primitive

to allow other data-types to be defined by soft-

ware (and by hardware in more powerful ver-

sions of the machine). The basic data-type of

the machine is the 16-bit integer which uses the

two's complement convention for sign. This

data-type is also identical to an address.

PDP-11 Model 20 Instruction Set (Basic

Instruction Set)

A formal description of the basic instruction

set is given in the original paper [Bell et ai,

1970] using the ISPL notation [Bell and Newell,

1970]. The remainder of this section will discuss

the machine in a conventional manner.

Primary Memory. The primary memory
(core) is addressed as either 2'* bytes or 2'-''

words using a 16-bit number. The linear address

space is also used to access the input/output de-

vices. The device state, data and control regis-

ters are read or written like normal memory
locations.

General Register. The general registers are

named: R[0:7]<15:0>; that is, there are eight

registers each with 16 bits. The naming is done

starting at the left with bit 15 (the sign bit) to

the least significant bit 0. There are synonyms
for R[6] and R[7]:

1. Stack Pointer\SP<15:0>
:= R[6]<@15:0>
Used to access a special stack that is

used to store the state of interrupts,

traps, and subroutine calls.

2. Program Counter\PC<15:0>
:= R[7]<@15:0>
Points to the current instruction being

interpreted. It will be seen that the fact

that PC is one of the general registers is

crucial to the design.

252 THE PDP-11 FAMILY

Any general register, R[0:7], can be used as a

stack pointer. The special Stack Pointer SP has

additional properties that force it to be used for

changing processor state interrupts, traps, and

subroutine calls. (It also can be used to control

dynamic temporary storage subroutines.)

In addition to the above registers there are 8

bits used (from a possible 16) for processor sta-

tus, called PS< 15:0> register. Four bits are the

Condition Codes\CC associated with arith-

metic results; the T-bit controls tracing; and 3

bits control the priority of running programs

Priority <2:0>. Individual bits are mapped in

PS as shown in the appendix.

Data-Types and Primitive Operations.

There are two data lengths in the basic machine:

bytes and words, which are 8 and 16 bits, re-

spectively. The nontrivial data-types are word-

length integers (w.i.); byte-length integers (by.i);

word-length Boolean vectors (w.bv); i.e., 16 in-

dependent bits (Booleans) in a 1 -dimensional

array; and byte-length Boolean vectors (by.bv).

The operations on byte and word Boolean vec-

tors are identical. Since a common use of a byte

is to hold several flag bits (Booleans), the oper-

ations can be combined to form the complete
set of 16 operations. The logical operations are:

"clear," "complement," "inclusive or," and

"implication" (x D y or~ix V y).

There is a complete set of arithmetic oper-

ations for the word integers in the basic instruc-

tion set. The arithmetic operations are: "add,"

"subtract," "multiply" (optional), "divide"

(optional), "compare," "add one," "subtract

one," "clear," "negate," and "multiply and di-

vide" by powers of two (shift). Since the address

integer size is 16 bits, these data-types are most

important. Byte-length integers are operated on

as words by moving them to the general regis-

ters where they take on the value of word in-

tegers. Word-length-integer operations are

carried out and the results are returned to mem-

ory (truncated).

The floating-point instructions defined by
software (not part of the basic instruction set)

require the definition of two additional data-

types (of length two and three), i.e., double

words (d.w.) and triple words (t.w.). Two addi-

tional data-types, double integer (d.i.) and triple

floating-point (t.f. or f) are provided for arith-

metic. These data-types imply certain addi-

tional operations and the conversion to the

more primitive data-types.

Address (Operand) Calculation. The gen-

eral methods provided for accessing operands
are the most interesting (perhaps unique) part

of the machine's structure. By defining several

access methods to a set of general registers, to

memory, or to a stack (controlled by a general

register), the computer is able to be a 0-, 1-, and

2-address machine. The encoding of the instruc-

tion source (S) fields and destination (D) fields

are given in Figure 10 together with a list of the

various access modes that are possible. (The ap-

pendix gives a formal description of the effec-

tive address calculation process.)

It should be noted from Figure 10 that all the

common access modes are included (direct,

indirect, immediate, relative, indexed, and in-

dexed indirect) plus several relatively uncom-

mon ones. Relative (to PC) access is used to

simplify program loading, while immediate

mode speeds up execution. The relatively un-

common access modes, auto-increment and

auto-decrement, are used for two purposes: ac-

cess to a stack under control of the registers*

and access to bytes or words organized as

strings or vectors. The indirect access mode al-

lows a stack to hold addresses of data (instead

of data). This mode is desirable when manipu-

lating longer and variable-length data-types

(e.g., strings, double fixed, and triple floating

*Note that, by convention, a stack builds toward register 0, and when the stack crosses 400«, a stack overflow occurs.

A NEW ARCHITECTURE FOR MINICOMPUTERS 253

254 THE PDP-11 FAMILY

BINARY ARITHMETIC AND LOGICAL OPERATIONS:

HOTE)"llSEE NC

FORM: D - S b D

EXAMPLE: ADD (:
= bop= 0010» - (CC.D - D+ S):

UNARY ARITHMETIC AND LOGICAL OPERATION:

uop

FORM: O^u D:

EXAMPLES: NEG (:
= uop= 0000101 100) ^ (CC.D -- Dl -NEGATE

ASL{: = uop=00000110011)^(CC.D -D X 2): SHIFT LEFT

BRANCH (RELATIVE) OPERATORS:

FORM: IF brop condition, then (PC .- PC + offset);

EXAMPLE: BEQ (:= brop = 03i6l(2 - (PC ^ PC + offset)

FORM: PC-D + Pc

JUMP TO SUBROUTINE

000 100

SAVE R|sr| ON STACK. ENTER SUBROUTINE AT D + PC

MISCELLANEOUS OPERATIONS:

op code

FORM: ST^f

EXAMPLE: HALT (:
= instruction = 0) - (RUN ^ 0):

NOTE:
These instructions are all one word. O and/or S may each

require one additional immediate data or address word.

Thus, instructions can be one. two. or three words long.

Figure 11. PDP-11 instruction formats (simplified).

INSTRUCTION

> EXECUTE
STATES

Figure 12. PDP-11 instruction interpretation process

state diagram.

the ADD instruction is executed with the above

effect). In general, the CC are based on the re-

sult, that is, Z is set if the result is zero, N if

negative, C if a carry occurs, and V if an over-

flow was detected as a result of the operation.

Conditional branch instructions may thus fol-

low the arithmetic instruction to test the results

of the CC bits.

state diagram, though simplified, is similar to 2-

and 3-address computers, but is distinctly dif-

ferent than a 1 -address (1 -accumulator) com-

puter.

The ISP description (appendix) gives the op-

eration of each of the instructions, and the more

conventional diagram (Figure 1 1) shows the de-

coding of instruction classes. The ISP descrip-

tion is somewhat incomplete; for example, the

add instruction is defined as:

ADD (:= bop = OOIO2) =i> (CC,D ^ D -(- S)

Addition does not exactly describe the changes
to the Condition Codes CC (which means
whenever a binary opcode [bop] of OOIO2 occurs

Examples of Addressing Schemes

Use as a Stack (Zero-Address) Machine.

Table 2 lists typical O-address machine instruc-

tions together with the PDP-1 1 instructions that

perform the same function. It should be noted

that translation (compilation) from normal in-

fix expressions to reverse Polish is a com-

paratively trivial task. Thus, one of the primary

reasons for using stacks is for the evaluation of

expressions in reverse Polish form.

Consider an assignment statement of the

form:

D ^ A -h B/C

A NEW ARCHITECTURE FOR MINICOMPUTERS 255

Table 1. Coding for the MOVE Instruction To Compare with Conventional Machines

Assembler Format Effect Description

2-Address Machine

256 THE PDP-11 FAMILY

Table 2. Stack Computer Instructions and

Equivalent PDP-11 Instructions

Common
Stack Instruction

Equivalent
PDP-11 Instruction

Place address value A on

stack

Load stack from memory
address specified by stack

Load stack from memory lo-

cation A

Store stack at memory ad-

dress specified by stack

Store stack at memory loca-

tion A

Duplicate top of stack

-f-, add two top data of stack

to stack

-, X, /; subtract, multiply,

divide

-; negate top data of stack

Clear top data of stack

v; "inclusive or" two top

data of stack "and" two top

data of stack

—
I ; complement of stack

Test top of stack (set branch

indicators)

Branch on indicator

Jump unconditional

Add addressed location A to

top of stack (not common
for stack machine) equiva-

lent to: load stack, add swap
top two stack data

Reset stack location to N

A, "and" two top stack data

MOVE M. -(RO)'

MOVE @(R0)+ , -(RO)

MOVE A, -(RO)

MOVE (R0)+ , @(R0)+

MOVE (R0)+ , A

MOVE (RO), -(RO)

ADD (R0)+ , @R0

See add

NEC @R0

CLR @R0

BSET (RO)-I-, (s^RO

COM @R0

TST @R0

BR (-, Jt. <, >. >, <)

JUMP

ADD A, @R0

MOVE (R0)+ , R1

MOVE (RO)-I-, R2
MOVE R1, -(RO)

MOVE R2, -(RO)

MOVE N, RO
COM @R0

BCLR (R0)+ , @R0<-

PDP-11 with the larger DEC PDP-10. A 16-bit

processor performs better than the DEC PDP-
10 in terms of bit efficiency, but not with time

or memory cycles. A PDP-1 1 with a 32-bit-wide

memory would, however, decrease time by

nearly a factor of 2, making the times essentially

comparable.
Use as a 2-Address Machine. Table 3 lists

typical 2-address machine instructions together

with the equivalent PDP-11 instructions for

performing the same operations. The most use-

ful instruction is probably the MOVE instruc-

tion because it does not use the stack or general

registers. Unary instructions that operate on

and test primary memory are also useful and

efficient instructions.

Table 3. Two-Address Computer Instructions

and Equivalent PDP-11 Instructions

Two-Address Computer PDP-11

A<-B; transfer B to A

A<-A -I- B; add

-, X,/

A<— A; negate

A <- A V B; inclusive or

A <- —lA; not

Jump unconditional

Test A, and transfer to B

MOVE B, A

ADDB.A

See add

NEG A

BSETB, A

COM

JUMP

TST A
BR(-. ?^,>,<, <, »B

*
Stack pointer has been arbitrarily used as register RO for this

example.

Extensions of the Instruction Set for Real

(Floating-Point) Arithmetic

The most significant factor that affects per-

formance is whether a machine has operators

for manipulating data in a particular format.

The inherent generality of a stored program

computer allows any computer by subroutine to

simulate another -
given enough time and mem-

ory. The biggest and perhaps only factor that

A NEW ARCHITECTURE FOR MINICOMPUTERS 257

separates a small computer from a large com-

puter is whether floating-point data is under-

stood by the computer. For example, a small

computer with a cycle time of 1.0 microsecond

and 16-bit memory width might have the fol-

lowing characteristics for a floating-point add,

excluding data accesses:

Programmed:

258 THE PDP-11 FAMILY

transactions operate independently of the bus

length and response time of the master and

slave. Since the bus is bidirectional and is used

by all devices, any device can communicate v^ith

any other device. The controlHng device is the

master, and the device to which the master is

communicating is the slave. For example, a

data transfer from processor (master) to mem-

ory (always a slave) uses the Data Out dialogue

facility for writing and a transfer from memory
to processor uses the Data In dialogue facility

for reading.

Bus Control. Most of the time the processor

is bus master fetching instructions and oper-

ands from memory and storing results in mem-

ory. Bus mastership is determined by the

current processor priority and the priority line

upon which a bus request is made and the phys-

ical placement of a requesting device on the

linked bus. The assignment of bus mastership is

done concurrent with normal communication

(dialogues).

Unibus Dialogues

Three types of dialogues use the Unibus. All

the dialogues have a common protocol that first

consists of obtaining the bus mastership (which

is done concurrent with a previous transaction)

followed by a data exchange with the requested

device. The dialogues are: Interrupt; Data In

and Data In Pause; and Data Out and Data Out

Byte.

Interrupt. Interrupt can be initiated by a

master immediately after receiving bus master-

ship. An address is transmitted from the master

to the slave on Interrupt. Normally, subordi-

nate control devices use this method to transmit

an interrupt signal to the processor.

Data In and Data In Pause. These two bus

operations transmit slave's data (whose address

is specified by the master) to the master. For the

Data In Pause operation, data is read into the

master and the master responds with data

which is to be rewritten in the slave.

Data Out and Data Out Byte. These two

operations transfer data from the master to the

slave at the address specified by the master. For

Data Out, a word at the address specified by the

address lines is transferred from master to slave.

Data Out Byte allows a single data byte to be

transmitted.

Processor Logical Design

The Pc is designed using TTL logical design

components and occupies approximately eight

8 inch X 12 inch printed circuit boards. The Pc

is physically connected to two other com-

ponents, the console and the Unibus. The con-

trol for the Unibus is housed in the Pc and

occupies one of the printed circuit boards. The

most regular part of the Pc is the arithmetic and

state section. The 16-word scratchpad memory
and combinational logic data operators, D
(shift) and D (adder, logical ops), form the most

regular part of the processor's structure. The

16-word memory holds most of the 8-word pro-

cessor state found in the ISP, and the 8 bits that

form the Status word are stored in an 8-bit reg-

ister. The input to the adder-shift network has

two latches which are either memories or gates.

The output of the adder-shift network can be

read to either the data or address parts of the

Unibus, or back to the scratchpad array.

The instruction decoding and arithmetic con-

trol are less regular than the above data and

state and these are shown in the lower part of

the figure. There are two major sections: the in-

struction fetching and decoding control and the

instruction set interpreter (which, in effect, de-

fines the ISP). The later control section operates

on, hence controls, the arithmetic and state

parts of the Pc. A final control is concerned

with the interface to the Unibus (distinct from

the Unibus control that is housed in the Pc).

CONCLUSIONS

In this paper we have endeavored to give a

complete description of the PDP-11 Model 20

A NEW ARCHITECTURE FOR MINICOMPUTERS 259

computer at four descriptive levels. These pre-

sent an unambiguous specification at two levels

(the PMS structure and the ISP), and, in addi-

tion, specify the constraints for the design at the

top level, and give the reader some idea of the

implementation at the bottom level logical de-

sign. We have also presented guidelines for

forming additional models that would belong to

the same family.

ACKNOWLEDGEMENTS

The authors are grateful to Mr. Nigberg of

the technical publication department at DEC
and to the reviewers for their helpful criticism.

We are especially grateful to Mrs. Dorothy

Josephson at Carnegie-Mellon University for

typing the notation-laden manuscript.

APPENDIX. DEC PDP-11 INSTRUCTION SET PROCESSOR DESCRIPTION (IN ISPL)

The following description gives a cursory description of the instructions in the ISPL, the initial

notation of Bell and Newell [1971]. Only the processor state and a brief description of the instruc-

tions are given.

Primary Memory State

M\Mb\Memory [0:2'^
- 1]<7:0>

Mw[0:2'5-l]<15:0>:= M[0:2'6- 1]<7:0>

Processor State (9 words)

R\Registers[0:7]<l5:0>

SP<15:0>:=R[6]<15:0>
PC<15:0> :=R[7]<15:0>

PS<15:0>

Priority\P<2:0> := PS<7:5>

CC\Condition-Codes<3:0> := PS<3:0>

Carry\C := CC<0>

Byte memory
Word memory mapping

Word general registers

Stack pointer

Program counter

Processor state register

Under program control; priority level of

the process currently being interpreted; a

higher level process may interrupt or trap

this process.

A result condition code indicating an arith-

metic carry from bit 15 of the last oper-

ation.

Negative\N := CC<3>

Zero\Z := CC<2>

A result condition code indicating last re-

sult was negative.

A result condition code indicating last re-

sult was zero.

260 THE PDP-11 FAMILY

OverflowW := CC<1>

TraceXT := ST<4>

A result condition code indicating an arith-

metic overflow of the last operation.

Denotes whether instruction trace trap is to

occur after each instruction is executed.

Undefined<7:0> := PS<15:8> Unused

Run
Wait

Denotes normal execution.

Denotes waiting for an interrupt.

Instruction Set

The following instruction set will be defined briefly and is incomplete. It is intended to give the

reader a simple understanding of the machine operation.

MOV(:= bop = 0001)-^

MOVB(:= bop =
1001)

(CC,D ^ S);

^ (CC,Db *- Sb);

Binary Arithmetic: D ^ D b S;

ADD (:= bop = 01 10) -. (CC,D ^ D + S);

SUB(:= bop = 1110)-(CC,D^D-S);
CMP (:= bop = 0010) - (CC <- D -

S);

CMPB (:= bop =
1010) - (CC ^ Db -

Sb);

MUL (:= bop = 0111)-. (CC, D ^ D X S)

DIV(:= bop = 1111)-»(CC, D^D/S);

Move word

Move byte

Add
Subtract

Word compare
Byte compare

Multiply, if D is a register then

a double length operator

Divide, ifD is a register, then a

remainder is saved

Unary Arithmetic: D <- uS;

CLR (:= uop =
0508) -» (CC,D <- 0);

CLRB (:= uop =
lOSOg) -* (CC,Db <- 0);

COM (:= uop =
OSlg) -^ (CC,D ^ -iD);

COMB (:= uop =
lOSlg) -* (CC,Db ^ -|Db);

INC (:= uop =
0528) -» (CC,D <- D + 1);

INCB (:= uop =
10528) ^ (CC,Db - Db + 1);

DEC (:= uop =
0538) -^ (CC,D <- D -

1);

DECB (:= uop =
10538) -^ (CC,Db <- Db -

1);

NEG (:= uop =
0548) -^ (CC,D <- - D);

NEGB (:= uop =
10548) ^ (CC,Db ^ - Db)

ADC (:= uop =
0558) -^ (CC,D <- D + C);

ADCB (:= uop =
10558) ^ (CC,Db ^ Db + C);

SBC (:= uop =
0568) - (CC,D 4- D -

C);

Clear word

Clear byte

Complement word

Complement byte

Increment word

Increment byte

Decrement word

Decrement byte

Negate

Negate byte

Add the carry

Add to byte the carry

Subtract the carry

A NEW ARCHITECTURE FOR MINICOMPUTERS 261

SBCB (:= uop =
10568) -^ (CC,Db <- Db -

C);

TST (:= uop =
0578) - (CC <- D);

TST (:= uop =
10578) -» (CC ^ Db);

Subtract from byte the carry

Test

Test byte

Shift Operations: D <- D X 2n.

ROR(: =

RORB (:

ROL(: =

ROLB (:

ASR(.=
ASRB(:
ASL(: =

ASLB (:

ROT(: =

ROTB (:

LSH(: =

LSHB (:

ASH (:
=

ASHB(: =

NOR(: =

sop =
= sop

sop
=

= sop

sop
=

= sop

sop =
=

sop
=

= sop =
= sop

sop =
= sop =

 sop =
= sop =

sop =

NORD(:= sop

SWAB(:= sop

0608) -^ (C D D ^ C D D/2{rotate});
=

10608) -» (C D Db «- C D Db/2{rotate});

0618) -^ (C a D ^ C D D X 2 {rotate});
=

10618) -» (C D Db 4- C D Db X 2 {rotate});

0628) -» (CC,D 4- D X 2);

=
10628) -* (CC,Db ^ Db/2);

0638) -^ (CC,D ^ D X 2);

=
10638) -^ (CC,Db ^ Db X 2);

0648) -^ (C D D ^ D X 2^);

=
10648) -. (C D Db ^ D X 2^);

0658) ^ (CC,D ^ D X 2^{logical});
=

10658) ^ (CC,Db *- Db X 2S{logical});

0668) ^ (CC,D ^ D X 2S);

=
10668) -^ (CC,Db ^ Db X 2 s);

0678-(CCD «- normalize (D));

(R[r'] -> normalizeL_jexponent (D));
= 10678 -» (Db ^normalize (Dd));

(R[r'] - normalize^exponent (D));

=
3) -. (CC,D ir- D<7:0, 15:8>)

Rotate right

Byte rotate right

Rotate left

Byte rotate left

Arithmetic shift right

Byte arithmetic shift right

Arithmetic shift left

Byte arithmetic shift left

Rotate

Byte rotate

Logical shift

Byte logical shift

Arithmetic shift

Byte arithmetic shift

Normalize

Normalize double

Swap bytes

Logical Operations

BIC(:= bop = 0100)-

BICB(:= bop =
1100)

BIS(:= bop = 0101)-
BISB(:= bop = 1101 -

BIT(:= bop = 0011)-
BITB(:= bop =

1011)

Branches and Subroutines Calling: PC <- f;

(CC,D-D-D A-iS);

262 THE PDP-11 FAMILY

BGT (:= brop =
06,6) ^ (n(Z V (N V)) - (PC ^ PC +

offset));

BCS/BHIS (:= brop =
87,6) ^ (C -^ (PC <- PC + offset));

BCC/BLO (:= brop =
86,6) -* ("iC -> (PC ^ PC + offset));

BLOS (:= brop =
83,6) -^ (C A Z -» (PC <- PC + offset));

BHI (:= brop =
82,6) ^ ((iC V Z) -. (PC ^ PC + offset));

BVS (:= brop =
85,6) -^ (V - (PC <- PC + offset));

BVC (:= brop =
84,6) -^ (-|V -. (PC <- PC + offset));

BMT (:= brop =
81,6) - (N - (PC ^ PC + offset));

BPL (:= brop =
80,6) -^ (-|N - (PC ^ PC + offset));

JSR(:= sop = 00408) -

(SP ^ SP -
2; next

M[SP] - R[sr];

R[sr] ^ PC; PC ^ D);

RTS(: =
i
=

0002008) -. (PC ^ R[dr];

R[dr] <- M[SP]; SP ^ SP + 2);

Less greater than (zero)

Carry set; higher or same (un-

signed)

Carry clear; lower (unsigned)

Lower or same (unsigned)

Higher than (unsigned)

Overflow

No overflow

Minus

Plus

Jump to subroutine by putting

R[sr], PC on stack and loading

R[sr] with PC, and going to

subroutine at D)

Return from subroutine

Miscellaneous Processor State Modification:

RTI (:
=

i
=

28)

HALT(
WAIT(
TRAP(

(PC^
SP<-

PS ^
SP^

=
i
=

0) -^ (Run
=

i
=

1) _ (Wait
=

i
=

3) -^ (SP ^
M[SP]*

M[SP];
SP + 2; next

M[SP];
SP + 2);

-0);

-1);
SP + 2; next

-PS;

Return from interrupt

SP <- SP + 2; next

M[SP]^PC;
PC ^M [348];

PS^M[12]);
EMT (:

= brop -
82,6) -* (SP ^ SP + 2; next

M[SP] i- PS;

SP <- SP + 2; next

M[SP] ^ PC;
PC ^M [308];

PS ^ M[328]);

lOT (:
=

i
=

4) -. (see TRAP)
RESET (:

=
j
=

5) -^ (not described)

OPERATE(: = i<5:15> =
5) -

(i<4> ^ (CC ^ CC V i<3:0>);
-1 i<4> -^ (CC ^ CC A —1 i<3:0>));

end Instruction.

Trap to M[348] store status

and PC

Enter new process

Emulator trap

I/O trap to M[208]
Reset to external devices

Condition code operate

Set codes

Clear codes

execution

Cache Memories for PDP-11

Family Computers
WILLIAM D. STRECKER

INTRODUCTION

One of the most important concepts in com-

puter systems is that of a memory hierarchy. A
memory hierarchy is simply a memory system
built of two (or more*) memory technologies.

The first technology is selected for fast access

time and necessarily has a high per-bit cost.

Relatively little of the memory system consists

of this technology. The second technology is se-

lected for low per-bit cost and necessarily has a

slow access time. The bulk of the memory sys-

tem consists of this technology. The use of the

hierarchy is coordinated by user software, sys-

tem software, or hardware so that the overall

characteristics of the memory system approx-
imate the fast access of the fast technology, and

the low per-bit cost of the low cost technology.
An example of a user software managed hier-

archy is core/disk overlaying; an example of a

system software managed hierarchy is core/disk
demand paging. The prime example of a hard-

ware managed hierarchy is a bipolar cache/core

memory system.

Until recently, the concept of cache memory
appeared only in very large scale, performance-
oriented computer systems such as the IBM

360/85 [Conti, 1969; Conti et al, 1968] and 370

models 155 and larger. Recently a small cache

was announced as an option for the DG Eclipse

[Data General, 1974] computer system. A
larger, internal cache memory is part of a re-

cently announced Digital PDP-11 family com-

puter system: the PDP-1 1/70 [DEC, 1975]. The

content of this paper is a summary of the re-

search done on the feasibility of using a bipolar

cache/core hierarchy in PDP-11 family com-

puter systems.

CACHE MEMORY

A cache memory is a small, fast, associative

memory located between the central processor

Pc and the primary memory Mp. Typically the

cache is implemented in bipolar technology

while Mp is implemented in MOS or magnetic

'Memory hierarchies can, of course, consist of three or more technologies. Discussion and analysis of these multilevel

hierarchies is a fairly obvious generalization of the discussion and analysis given here.

263

264 THE PDP-11 FAMILY

core technology. Stored in the cache are address

data AD pairs consisting of an Mp address and

a copy of the contents of the Mp location corre-

sponding to that address.

The operation of the cache is as follows.

When the Pc addresses Mp, the address is first

compared against the addresses stored in the

cache. If there is a match, the access is per-

formed on the data portion of the matched AD
pair. This is called a hit and is performed at the

fast access time of the cache. If there is no

match - called a miss - Mp is accessed as usual.

Generally, however, an AD pair corresponding

to the latest access is stored in the cache, usually

displacing some other AD pair. It is the latter

procedure which tends to keep the contents of

the cache corresponding to the Mp locations

most commonly accessed by the Pc. Because

programs typically have the property of locality

(i.e., over short periods of time most accesses

are to a small group of Mp locations), even rela-

tively small caches have a majority of Pc ac-

cesses resulting in hits. The performance of a

cache is described by its miss ratio - the fraction

of all Pc references which result in misses.

CACHE ORGANIZATION

There are a number of possible cache organi-

zational parameters. These include:

1 . The size of the cache in terms of data

storage.

2. The amount of data corresponding to

each address in the AD pair.

3. The amount of data moved between Mp
and the cache on a miss.

4. The form of address comparison used.

5. The replacement algorithm which de-

cides which AD pair to replace after a

miss.

6. The time at which Mp is updated on

write accesses.

The most obvious form of cache organization

is fully associative with the data portion of the

AD pair corresponding to basic addressable

unit of memory (typically a byte or word), as

indicated by the system architecture. On a miss,

this basic unit is brought into the cache from

Mp. However, for several reasons, this is not

always the most attractive organization. First,

because procedures and data structures tend to

be sequential, it is often desirable, on a miss, to

bring a block of adjacent Mp words into the

cache. This effectively gives instruction and

data pre-fetching. Second, when associating a

larger amount of data with an address, the rela-

tive amount of the cache storage which is used

to store data is increased. The number of words

moved between Mp and the cache is termed the

block size. The block size is also typically the

size of the data in the AD pair* and is assumed

to be that for this discussion.

In a fully associative cache, any AD pair can

be stored in any cache location. This implies

that, for a single hardware address comparator,

the Mp address must be compared serially

against the address portions of the AD pairs
-

which is too slow. Alternatively there must be a

hardware comparator for each cache location -

which is too expensive. An alternative form of

cache organization which allows for an inter-

mediate number of comparators is termed set

associative.

A set associative cache consists of a number

of sets which are accessed by indexing rather

than by association. Each of the sets contains

one or more AD pairs (of which the data por-

tion is a block). There are as many hardware

comparators as there are AD pairs in a set. The

 In a few complex cache organizations such as that used in the IBM 360/85, the size of the D portion of the AD pair (called a

sector in the 360/85) is larger than the block size. That potential will be ignored in this discussion.

CACHE MEMORIES FOR PDP-11 FAMILY COMPUTERS 265

understanding of the operation of a set associ-

ative cache is aided by Figure 1. The n bit Mp
address is divided into three fields of 1, i, and b

bits. Assume that there are 2' sets. The i-bit in-

dex field selects one of these sets. The A portion

of each AD pair is compared against the 1-bit

label field* of the Mp address. If there is a

match, the b-bit byte field selects the byte (or

other sub-unit) in the D portion of the matched

AD pair.

This strategy is termed write-through. Alterna-

tively, only the cache can be updated on a write

hit, and only when the updated AD pair is re-

placed on some future miss is Mp updated. This

strategy is termed write-back. The choice be-

tween these two strategies involves systems con-

siderations which are beyond the scope of this

paper.f

There are other possible asymmetries in the

handling of reads and writes. One possibility is

that after a write miss an AD pair correspond-

ing to that access is not stored in the cache. This

is termed no-write-allocate. The alternative is,

of course, termed write-allocate.

Figure 1 . Address fields for a set associative cache.

CACHE MEMORY SIMULATION

If there is no match, Mp is accessed and (gen-

erally) a new AD pair is moved into the cache.

Which of the AD pairs to be replaced in the set

is selected by the replacement algorithm. Typi-
cal replacement algorithms are: first in, first out

(FIFO); least recently used (LRU), or random

(RAND).
There are two limiting cases of the set associ-

ative organization. When the number of sets is

the cache size in blocks, only a single hardware

comparator is needed. The resulting organiza-
tion is called direct mapped. It is the simplest

form of cache organization. When there is only
one set, clearly a fully associative cache results.

So far in the discussion there has been no dis-

tinction made between read and write accesses.

When the Pc makes a write access, ultimately

Mp must be updated. There are two obvious

times when this can be done. First is at the time

the write access is made. Both Mp and the cache

(if there is a hit) are updated simultaneously.

The understanding of memory hierarchies

(and programs) has not reached the point where

cache performance can be predicted analytically

as a function of cache organizational parame-
ters. As a consequence, the studying of cache

memory behavior is done through simulation.

(Some cache simulation results for other com-

puter architectures are reported in [Conti et al,

1968; Meade, 1970; Bell et al.. 1974; Gibson,

1967].) For the purposes of this study, a two

part simulator was constructed.

The first part was a PDP-1 1 simulator. This is

a PDP-11 program which runs other PDP-11

programs interpretively. A variety of properties

of the interpreted programs can be collected, in-

cluding the sequence of generated Mp ad-

dresses. The latter is termed an address trace.

The address trace is processed by the second

part, the cache simulator. This is parameterized

by cache organization and determines the miss

ratio for a given address trace.

* Note that, in a set associative cache, only the label field must be stored in the cache AD pair
- not the entire Mp address.

tFor the PDP-1 1/70 system, write-through was chosen. The main impact of this is that each write access, as well as each read

miss, results in an Mp access. Data suggests that, in PDP-1 Is, about 10 percent of Pc accesses are writes.

266 THE PDP-11 FAMILY

CACHE SIMULATION RESULTS

Since the performance of cache memory is a

function not only of cache organization param-
eters but also of the program run, it is desirable

to run cache simulations with a wide variety of

programs. Multiplying these by a wide variety

of a cache's organizational parameters to be

simulated resulted in a considerable amount of

simulation data of which only the highlights are

reported here.

The first experiment was to determine the ap-

proximate overall size of the cache memory.
Plots of the miss ratio against cache size for sev-

eral programs* are given in Figure 2. (All sizes

in both the figures and the discussion are 16-bit

PDP-1 1 words.) A block size of two and a set

size of one were held constant. In general, the

miss ratio falls rapidly for caches up to 1024

words and falls less rapidly thereafter.

Figure 3 depicts the effect of set size (associ-

ativity) on cache performance. In order to clar-

ify the results. Figures 3 through 6 only contain

simulation data for a single program (the

Macro assembler) which had the highest miss

2 03

BLOCK SIZE = 2

SET SIZE = 1

MACRO
ASSEMBLER

FTN EX*
(FFT)

512 1024

CACHE SIZE

ratio in Figure 2. As expected, a larger set size

reduces the miss ratio. The largest improvement
occurs in going from set size one to set size two.

Although not shown, even going to fully associ-

ative cache has little further effect on the miss

ratio.

(0 0.1

i

BLOCK SIZE = 2

CACHE SIZE

Figure 3. Effect of set size on

miss ratio.

g 0.1

i

SET SIZE = 1

BLOCK SIZE

Figure 2.

miss ratio.

Effect of cache size on Figure 4. Effect of block size on

miss ratio.

*These programs are system and user programs running under the PDP-1 1 DOS operating system. They include a Macro

assembler, FORTRAN compiler, PIP (a file utility program), and FORTRAN executions of numerical applications. The

range of miss ratios is typical for the much wider group of programs actually simulated. Indeed, the miss ratio for the Macro

assembler for a given cache size was the worst of any program simulated.

CACHE MEMORIES FOR PDP-11 FAMILY COMPUTERS 267

S 0.05

1

NO ALLOCATE

ALLOCATE ON WRITE***

CACHE SIZE = 1024

SET SIZE = 2

BLOCK SIZE = 2

Figure 5. Effect of replacement

algorithm and write allocation on

miss ratio.

0.4

Hi

Buses, The Skeleton of

Computer Structures

JOHN V. LEVY

INTRODUCTION

A bus is a communication pathway con-

necting two or more electrical devices. In the

context of minicomputer design, buses are the

physical and electrical structures that determine

how the building blocks are interconnected.

In every computer system, there are many
buses: internal pathways connect the registers

and arithmetic logic of a central processor; in-

put/output pathways connect processors, mem-

ories, and peripheral devices; and external

communication buses attach computer systems
to the telephone and other data communication

pathways. In this chapter, the discussion is re-

stricted to buses that interconnect computer

system components that are designed by differ-

ent engineering groups.

This particular approach may sound out of

place, but one of the most important functions

of a bus is to provide a well specified interface

between complex subsystems. We exclude from

discussion internal processor register transfer

buses, as well as external buses whose specifica-

tions are determined by engineers not involved

in the minicomputer design process. Although
none of the examples in this chapter is drawn

from multiprocessor systems, most of the de-

sign experience presented is relevant to such

systems.

What Does a Bus Do?

A bus is a communication medium. Each one

exists in order to transfer information from

place to place within a computer system. In this

chapter, we attempt to illustrate the com-

plexities of bus design by drawing on the real

history of some PDP-11 Family designs.* In

computer systems being manufactured and

sold, the success of bus designs is measured by
the following criteria:

1. Does the bus successfully establish the

communication pathway required?

*AII of the real buses presented as examples are proprietary products of Digital Equipment Corporation, protected by
United States and foreign patents.

269

270 THE PDP-11 FAMILY

2. Is the bus well specified (and well docu-

mented), so that a series of interfaces de-

signed either concurrently or over a

period of time by different engineers will

in fact be compatible?

3. Does the bus avoid imposing unneces-

sarily strict performance constraints on

the system?

4. Is the cost of the bus and its connections

commensurate with the computer system
and the bus' role in it?

5. Does the bus design anticipate expan-
sion of the system in the future (without

excessive cost)?

6. Can the bus be manufactured and tested

in high volume production without ex-

cessive hand-crafting or tuning?

Beyond the scope of this chapter are some ad-

ditional functions of buses, such as providing a

means to diagnose and repair the system com-

ponents connected to it and to allow measure-

ment of system loads and performance.

Why Buses Are Important

As the above list of criteria suggests, there are

many ways in which poor bus design can spoil

the performance or cost/performance ratio of

an otherwise well designed computer system.

Failure to anticipate future expansion of a com-

puter system is a common problem in bus de-

signs. The PDP-11 Unibus, a very successful

bus, first became inadequate as the main inter-

connection pathway when processor and mem-

ory speeds surpassed the bandwidth capability

of the Unibus. Later, the Unibus 18-bit memory
address width became a limitation.

Computer design is driven by advances in

semiconductor technology. Every time the cost

of the components of a computer subsystem de-

creases by, say, 50 percent, the subsystem is

redesigned to take advantage of the lower cost.

While, at present, the performance/cost (or

storage capacity/cost) ratio for logic and mem-

ory is increasing at a rate of up to 100 percent

per year, the bandwidth/cost and other per-

formance ratios of interconnections are steady
or decreasing slightly. As a result, bus designs

tend to persist in time across several redesigns

of the other computer system components, thus

justifying the extensive engineering effort re-

quired in the initial design of a bus.

How Buses Are Designed

To design a bus, the engineer must first find

out what system components are to be inter-

connected. Then, studying the requirements of

communications between these components,
the engineer chooses a structure. Finally, the

cost constraints and available technologies lead

to a choice of implementation.
The five-function model given below is not a

set of bus designs but a functional model that

results from taking the commonly used mini-

computer building blocks and asking: What
communications need to occur between this

component and each other component? The

model shows the five types of communications

which were the answers to that question. The

five functional pathways are the maximum
number of interconnections that would be use-

ful in a conventional single-processor mini-

computer. Real bus designs combine these

functions in cost-effective implementations.

After choosing the structure and functions of

buses, the engineer must write a specification.

This is crucial to the success of bus design if it is

to be interfaced by a number of different engi-

neers. As an example of the details that can go
into a bus specification. Figures 1, 2, and 3

show how the Massbus Data Read operation

has been specified in a DEC internal engineer-

ing document.

After writing a specification, the engineer

builds a prototype and tests it. If other engi-

neers concurrently build interfaces to the bus,

discrepancies, errors, and misunderstandings

will be uncovered sooner. Finally, it is impor-

tant that the specification be maintained, up-

dating it to conform to the latest known design

constraints. A very useful appendix to a bus

BUSES. THE SKELETON OF COMPUTER STRUCTURES 271

DATA BUS READ SEQUENCE

1. A read command Is loaded into the Control register of the drive. If the

command is valid, the drive enables its data bus receivers and drivers

and asserts OCC.
2. Not more than 100 microseconds after step 1, tfie controller asserts

RUN
3. After a cable delay, the drive receives the RUN assertion. Disk drives

now begin searching for the desired sector. Tape drives begin tape mo-

tion.

4. When the drive has read the first data word, it generates parity for the

word: the data and OPA are gated onto the data lines and SCLK is

asserted.

5. After a cable delay, the controller receives the SCLK assertion.

6. The drive negates SCLK no less than T nanoseconds after assarting it,

where T is either 225 nanoseconds or 30 percent of the nominal burst

data period of the drive, whichever is greater. The Data lines should be

maintained valid for no less than one half of the SCLK interval after

SCLK is negated.

7. After a cable delay, the controller receives the SCLK negation. The

controller strobes the D lines and DPA and checks parity.

8. If there is more data to be read in this block, then not less than T

nanoseconds after step 6, the drive gates out the next data word onto

the D lines, generates DPA. and asserts SCLK. Steps 5, 6. and 7 then

follow.

9. After the negation of SCLK (step 6) on the last word of data in the

block, the drive asserts EBL.

10. After a cable delay, the controller receives the EBL assertion. At this

time, the controller must decide whether or not to have the drive read

the next block of data witfiout disconnecting from the data bus (the

controller may already have negated the RUN line).

11. If the controller decides not to read the next block, it negates the RUN
line not later than 500 nanoseconds after step 10.

12. After a cable delay, the drive receives the RUN negation (the RUN line

may already have been negated).

13. Not less than 1500 nanoseconds after step 9, the drive negates EBL. At

this time the drive strobes the RUN line. If RUN has been negated, the

drive disconnects from the data bus (the DRY bit should be set and

OCC negated at this time).

14. After a cable delay, the controller receives the EBL negation (the con-

troller may now generate an end-of-transfer interrupt and start another

data transfer).

Figure 1. The Massbus Data Read operation as

described in a bus specification.

specification is a list of the design problems that

came up during the engineering of connections

to it and the details of how they were resolved.

This was done for the Massbus, in a section of

the specification called "Design Notes."

FUNCTIONS OF BUSES IN COMPUTER
SYSTEMS: A FIVE-FUNCTION MODEL

The functional building blocks of computers
are central processing units, primary memory,

input/output controllers, and peripheral units.

Peripherals tend to be classed as either second-

ary memory or transducers (usually terminals).

Figure 4 shows these components in a tradi-

tional single-processor minicomputer system.
Five different paths are shown interconnecting
these components. These paths do not represent

CONTROLLER

Tread commanoj

ÂSSERT RUN

STROBE DATA

^CONTINUES V

NEGATE RUN

[ENOOF TRANSFER

RESET GO
SET DRY
SET ATA
ASSERT ATTN

ENABLE DATA BUS
ASSERT OCC
RESET DRY
RESET ATA

^^ 1600 I

DISABLE DATA BUS
NEGATE OCC
RESET GO
SET DRY

T = 225 ns OR 3P.

WHICHEVER IS GREATER
P = NOMINAL BURST
DATA PERIOD OF
DRIVE

NOTE:
Minimum time from one assertion of SCLK to the next it either

500 ns or P. whichever is greater: maximum unspecified.

Figure 2. The Data Read flowchart in the

Massbus specification.

actual buses. Instead, we have considered each

pair of components in the system and asked

whether they need to communicate with each

other. If so, a pathway between the pair has

been inserted. This leads to a model which has

an excess number of interconnection pathways.

272 THE PDP-11 FAMILY

0(0:
OPA "'}o

J
0(0:
OPA "•}•

n_n_n_n

n_n_n_xi

Ivl

1600

3761 600

!

~L

'Hm
t t t t !l I! It F. !I t! n 1! I M t t

> 7 6 7

(C) - AT THE CONTROLLER
(O) = AT THE ORIVE
(Tl ' TRANSMITTINQ
(R) c RECEIVING

NOTES
1. 100 m*' imx
2. 200)i%. max

10 11 12 13 14

U > UNSPECIFIED MAXIMUM
T = 226 OR 30% OF P WHICHEVER IS OREATER
P = NOMINAL BURST DATA PERIOD OF DRIVE

Figure 3. The timing (jiagram of a Data Read in the Massbus specification.

BUSES, THE SKELETON OF COMPUTER STRUCTURES 273

Table 1. Requirements for the Five Pathway Types

274 THE PDP-11 FAMILY

memory subsystem. Memory address bits are

no different from data bits, from the standpoint

of the bus designer. Both must be transmitted

from one bus connection to another. However,

type A pathways must transmit one address per

word accessed, while type B pathways need only

send one address per block of words. This dif-

ference can be exploited to gain lower cost

buses in systems which implement separate

buses for the A and B path functions.

The maximum number of connections to a bus

tells us how many signals must be used to select

a destination for a data transfer on the bus.

Typically, a bus will carry some number, n, of

"select" signals, and therefore be able to deliver

data to as many as 2" connections. On a type A

pathway, a CPU accesses connections which

contain memory. We do not typically need

more than four "select" signals, allowing up to

16 memory connections. In the case of multi-

processor shared-memory systems, it may be

necessary for some additional select codes to be

available to identify which processor is the des-

tination for data when it is delivered from mem-

ory.

Latency tolerance refers to how long a delay

(latency) a connection can tolerate, after it de-

cides to make a data (word) transfer, until the

transfer is complete. Bandwidth refers to how

many data (word) transfers per second can be

made.

Latency is different from bandwidth: latency

refers to the interval, for any one data word

transfer, from the time it is initiated until it is

completed. Bandwidth is the repetition rate at

which the initiation and completion of word
transfer requests can be sustained over a given

period of time. In particular, peak bandwidth -

the maximum possible repetition rate - is a pa-
rameter which strongly affects the cost of a bus,

and is the one we refer to here.

Type A pathways require both low latency

and high bandwidth. The performance of a

CPU-memory system depends heavily on the

rate (bandwidth) at which words can be deliv-

ered to the central processor. Furthermore, the

Comments on Unibus Addressing

Transfers on the Unibus are not di-

rected by the selection mechanism just
described. Instead, there is the single

concept of memory addresses. Each
data transfer (type A or type B) on the

Unibus is directed to or from a 1- or 2-

byte section of memory. The Memory
Address is broadcast to all connections.
If one of the connections recognizes the

address as being one of its own, then it

participates in the data transfer. This

anonymity allows a very large number
of connections to be made to the

Unibus, with each connection imple-
menting a locally determined number of

memory bytes.
For control transfers (type C), the

Unibus has a concept called "the I/O
page". A block of memory addresses

(the I/O page) is reserved for use in ac-

cessing control and status registers
which are located in peripheral con-
trollers and in the central processor.
The uppermost 8,192 bytes of memory
are never implemented in real memory.
Instead, small segments are assigned
(by administrative procedures) to each

I/O controller type. Each controller re-

sponds to data transfers to and from
addresses within its assigned segment.
No fixed amount of address space

need be allocated to a given controller.

If two controllers of the same type are

connected to a Unibus, one of them is

assigned to a "floating" address seg-
ment, an area reserved for such conflict

resolution.

Unibus I/O controllers that perform
Direct Memory Access (DMA) do so

by making data transfers to memory at

addresses below the I/O page. Block
transfers are performed a word at a

time to or from successive memory ad-

dresses, with the incrementing address

being maintained by the I/O controller.

An I/O controller on the Unibus
causes an interruption by a special con-
trol transfer whose destination is always
the CPU. The interrupting controller

transmits an "interrupt vector" as the

data. The address lines of the Unibus
are not used in this transfer.

BUSES. THE SKELETON OF COMPUTER STRUCTURES 275

CPU interpretation of instructions and memory
access times are typically closely matched.

Therefore, the performance of the system is also

very dependent on low latency in the CPU-

memory pathway. In this type of pathway, ef-

fective bandwidth and latency are directly (in

versely) related to each other.

On a type B pathway, high bandwidth is also

typically required. Usually, this is the path on

which disk and other mass storage data is

moved to and from memory. In most cases, the

rate at which data is transferred is determined

by the disk subsystem. In minicomputer sys-

tems developed through 1977, the bandwidth

required has not exceeded 1.2 megabytes per
second for an individual disk controller-to-

memory pathway.

Type B pathways, on the other hand, tolerate

relatively long latencies. If there is sufficient

buffering of data at the controller, system per-
formance is relatively insensitive to delays of as

much as 100 to 1000 microseconds in starting

up a block transfer. The insensitivity is due to

the dominance of relatively long delays already

present in disk data accessing (mechanical posi-

tioning, both rotational and radial, may take

tens of milliseconds in a typical disk access).

Type C pathways - the control and inter-

ruption links - do not require high bandwidth

compared with CPU instruction and DMA
data activity. I/O control commands are issued

relatively infrequently compared with the in-

struction execution rate in the CPU. Inter-

ruptions typically occur even less frequently.

However, latency tolerance is not very high on
the control pathway: it is important for inter-

ruptions to be delivered promptly, and CPU in-

structions that access I/O control and status

registers usually are prevented from completing
until the access has been completed. Therefore,
Table 1 shows latency tolerance as "medium"

(1 to 1 microseconds) for type C pathways: it is

permissible to take a little longer to complete an

I/O control instruction than other instructions,

but not so long as initiating a block transfer

from a disk.

Type D and E pathways handle interactions

which are a mixture of type B and type C.

Therefore, their requirements for latency and

bandwidth vary over the range shown for types

B and C.

Length refers to the maximum possible dis-

tance along the pathway from one connection

to another. Maximum length is important be-

cause it affects both performance and cost of a

bus. The CPU to memory pathway (type A) has

been shrinking in length in recent computer de-

signs because of the relationship between la-

tency and length. The speed of light (or, more

properly, of signals in a wire) sets the minimum

delay between request and response. As a result,

we see memories and central processors more

frequently packaged together or in very close

proximity. Fortunately, the continual size re-

duction of a given amount of CPU logic or

memory has encouraged this trend. The current

length range of a type A pathway for mini-

computers is approximately 0.1 to 3 meters.

High speed block transfer I/O controllers

also tend to be packaged closer to the memory
in recent system designs. But since there may be

many controllers, the length of the type B path-

way may have to be two to ten times longer
than the CPU-memory pathway (0.2 to 30 me-

ters).

Design Tradeoffs

Control pathways connecting the central pro-
cessor to all I/O controllers often have to be

extended out of the CPU-memory package to

reach peripheral subsystem packages. These

tend to be the longest pathways in a system.

Frequently, the design choice in connecting a

peripheral to a minicomputer system is be-

tween: (1) extending the main types B and C
buses out to reach the farthest peripherals and

(2) designing type D buses that extend from a

centrally packaged controller to a remote pe-

ripheral. Alternative (2) gives maximum flex-

ibility and performance. But it costs more than

276 THE PDP-11 FAMILY

(1) and may lead to a proliferation of buses in

the computer system. Figure 5 shows the two

alternatives.

All parameters shown in Table 1 contribute

to cost. The cost of a computer system could be

allocated in a simple way to power, logic, mem-

ory, electromechanical parts, and package. As

applied to the cost of buses, these become

power, logic complexity, and cable/connector
costs.

1

—

BUSES, THE SKELETON OF COMPUTER STRUCTURES 277

There are also considerations of physical and

electrical environment that affect costs. To

compensate for noisy environments, error de-

tection and correction circuits may be added at

each connection, adding to the complexity. Or
shielded or twisted-pair cables may be included,

adding to the cost of the interfaces. For phys-

ically stressful environments, cable costs may
become dominant as the cables are armored,

strengthened, or given noncorrosive wrapping.
In general, we can trade reduced bandwidth for

increased immunity to electrical noise, since

most noise-induced errors can be overcome by

repetition and redundant signaling. (At this

tradeoff, bus design merges with applied com-
munication theory.)

EVOLUTION OF THE HIGH
PERFORMANCE PDP-11 SYSTEMS

The Unibus, introduced with the PDP-11 in

1970, is a novel bus structure because it is a

single bus to which all system components are

attached. It can be extended indefinitely; more-

over, memory modules need not operate syn-

chronously with the rest of the system.
In this section the evolution of the high per-

formance descendants of the PDP- 11/20 is

traced, with emphasis on the development of

buses in response to design goals for each

model.

PDP-11/20

The Unibus design is integral to the PDP- 1 1

architecture in the handling of interrupts (the

priority level of the central processor affects ar-

bitration) and in the I/O page concept (control

registers appear as memory locations). But the

important aspect of Unibus design, as a bus, is

its support of modularity.
When the PDP- 11/20 (Figure 6) was de-

signed, it was natural to offer a bus that could

be interfaced to many types of equipment, in-

cluding users' laboratory devices. Digital of-

fered Unibus interfacing modules (such as the

DRll series) which users of the PDP-11 could

easily adapt to their own equipment.
The standardization of interfacing was also a

deliberate attempt to prolong the service lives of

Digital's peripheral equipment. As new mem-
bers of the PDP-11 family were introduced,

older peripherals could still be attached to the

Unibus without electrical modifications.

The asynchronous data transfer of the Un-
ibus has allowed DEC to introduce a series of

memory subsystems with progressively increas-

ing speeds without changing the Unibus timing
or data transfer protocol. In a single system,
various memory technologies can be inter-

mixed.

PDP-11/45

The goals of the PDP- 11/45 project (Figure

7) were to design a very fast central processor to

match the speed of the 300-nanosecond semi-

conductor memory which was becoming avail-

able.

Placing the semiconductor memory in close

proximity to the CPU and providing a private

type A path, the Fastbus, eliminated many of

the access delays present when a Unibus was be-

tween the CPU and memory. For compatibility,

however, it was necessary for the semi-

conductor memory to be accessible to DMA
transfers from outside the CPU. For this rea-

son, another Unibus was brought out of the

CPU cabinet.

With higher CPU speed came the need for

larger memory sizes. While the PDP-1 1/20 can

have up to 64 Kbytes of memory (less 8 Kbytes
reserved for the I/O page), the PDP-1 1/45 in-

troduced a memory management unit (the

I
"'"

I [

Figure 6. The PDP-1 1/20 Unibus configuration.

278 THE PDP-11 FAMILY

BUSES, THE SKELETON OF COMPUTER STRUCTURES 279

Without great modification to the CPU logic, a

cache memory was added with a width of 32

bits - twice the word size of the PDP-1 1 (Figure

8). The cache effectively interfaced to the PDP-
1 1/70 CPU over the same Fastbus that was pre-

sent in the PDP-1 1/45.

In order to gain memory bandwidth for in-

creases in both CPU and DMA performance, a

new "backing store" memory bus was added,

with a 32-bit wide data path. Closely related to

the memory bus was a backplane inter-

connection to the RH70 controllers (up to four

of them), which can carry 32 bits at a time. In

Figure 8 the RH70-to-memory path is shown

going through the cache because of a look-aside

feature of the cache memory.
The Massbus had been designed to provide

very high block transfer bandwidth, while keep-

ing the control registers accessible to the central

processor at all times. The successful splitting of

the type C path (the Unibus) and the type B

path (the backplane data path) in the PDP-

11/70 matched well with the Massbus design

goals, and this match accounts in part for the

relatively long life of the PDP- 11/70 system in

its marketplace.
The PDP-11/70 also required more memory

addressing capacity to balance its increased

speed. The KTll memory management unit

was easily expanded to address 4 megabytes of

memory, and the RH70 controllers were de-

signed to generate the required 22 bits of mem-

ory address directly.

Slower speed peripherals are still interfaced

to the Unibus, and in doing DMA transfers

from them, it is necessary to transform the 18^

bit address on the Unibus into a 22-bit main

memory address. To do this, a Unibus Map
module is inserted between the Unibus and the

cache memory. This path carries 16 data bits at

a time, and the bandwidth demands are rela-

tively low.

I
MAINFRAME CABINET n

I
MEMORY

•CABINET

BACKPLANE DATA PATH

MEMORY BUS

"!

I

I

_J

MASSBUSo rVIAbSBUS

-o

Figure 8. The PDP-1 1/70 configuration.

SBI .32

MASSBUS MASSBUS

Figure 9. The VAX-1 1/780 organization, based on the

SBI.

VAX-1 1/780

The VAX-1 1/780 (Figure 9) emerging in late

1977 returns to a single central bus organiza-

tion, based on the Synchronous Backplane In-

terconnect (SBI).

The SBI was originally conceived in 1974 for

use on a PDP-11 processor and was later

planned for use on a PDP- 10 processor. Those

processors were not released, but the SBI was

carried into the VAX-1 1/780 design and tai-

lored for the 32-bit environment.*

*The VAX-1 1/780 SBI is the subject of a patent application filed by Digital Equipment Corporation.

280 THE PDP-11 FAMILY

High DMA bandwidth is obtained by the SBI

short time-slot and by memory read operation

splitting which releases the bus during the mem-

ory read-access delay. To help overcome the de-

lay associated with having to do a full bus

transaction to start a memory read cycle, the

memory control logic is capable of receiving

and storing a queue of up to 4 memory read and

write requests while it is working on one of the

requests.

Compatibility with existing PDP-1 1 peripher-

als is provided by controllers that adapt the SBI

to a Unibus (the Unibus Adaptor (UBA) in Fig-

ure 9) and to several Massbuses (MBA).
On the SBI, the 1 -gigabyte address space is

divided in half with the Unibus I/O page con-

cept extended to cover the upper half. Within

this rather large address space are contained

control registers for all peripherals, an 18-bit

memory address space mapped onto the Un-

ibus, and a number of internal status and con-

trol registers, such as those that contain error-

reporting information.

Figure 10 shows an historical summary of the

buses used in the PDP-11 computers.

DISK
CONTROLLER
DATA BUSES

RH20

RH10

PDP-11

PDP-10

VAX' 11

PDP-1 1/04

POP 11/60

POP-11/45 (SOME MEMORY
NOT ON UNIBUS)

POP-11/70
(NO MEMORY
ON UNIBUS)

|z-BUs|

POP-11/66slV^^
"DRAGON"
(NOT
RELEASED)

SBI

VAX-1 1/780

UNIBUS
WITH

MEMORY

UNIBUS
WITHOUT
MEMORY

ARBITRATION METHODS

Since data transfer requests on a bus can

originate from more than one source, there

must be a means of deciding which source is to

use the bus next. This process is called arbi-

tration.

A connection follows a two-step procedure to

transfer data on a bus:

Figure 10. Genealogy of PDP-1 1 Family buses.

How? Allocation rules (Priority, Demo-

cratic, or Sequential).

When? Timing relationship of arbi-

tration to data transfer (Fixed or Vari-

able).

1 . Arbitration. Obtain the use of the bus.

2. Data Transfer. Transfer data on the bus.

To assist our examination of arbitration

methods, we define twelve categories, using
three discriminating criteria. The criteria are:

1 . Where? Location of the arbitration logic

(Centralized or Distributed).

Centralized arbitration means that a signal

must pass from a requesting connection to a

common arbitration point, and a response sig-

nal must return to the requesting connection be-

fore it may transfer data. In distributed

arbitration there is no single common arbi-

tration point. The Unibus, for example, has

centralized arbitration (with the exception

noted below). A contention-arbitrated serial

BUSES. THE SKELETON OF COMPUTER STRUCTURES 281

bus, like the Ethernet [Metcalfe and Boggs,

1975], has distributed arbitration. The resolu-

tion of conflicting requests is accomplished in

all arbitration methods by allocation rules. Pri-

ority arbitration means that in case of an appar-
ent tie in the race to request use of the data

transfer facilities, the rules always let one con-

nection (or group) go ahead of another con-

nection (or group). Democratic allocation

means that there are no priority rules. An ap-

parent tie is resolved arbitrarily or by some
"fairness" rule which attempts to keep any one
connection from monopolizing use of the data

transfer facilities. Sequential allocation insures

that there are never any apparent ties by giving

request opportunities to only one connection at

a time. (The sequence is not necessarily round-

robin.)

The Unibus has priority allocation, by
groups. Most contention-arbitrated serial buses

have democratic allocation. Centralized, se-

quential (polled) buses are frequently used as

type D pathways to connect character terminals

to a concentrator (see Example 4, to follow).

Finally, there is the question of the timing

relationship between the arbitration of a

request and the data transfer that occurs as a

result of the request. Arbitration fixed with re-

spect to data transfer means that a connection

must request the data transfer facilities at a

fixed time relative to the data transfer. This cat-

egory includes buses in which the same signal
lines are used for data transfer and for arbi-

tration.

Arbitration variable with respect to data

transfer means that a connection may request
use of the data transfer facilities at any time,

independent of the current state of the data

transfer facilities.

The Unibus has variable arbitration. Polled

buses have fixed arbitration because data trans-

fer always occurs in the time slot immediately
after the arbitration logic has polled a request-

ing connection. Contention-arbitrated serial

buses have fixed arbitration, too, in that the

data transfer is the request for use of the bus.

Table 2 summarizes the categories of arbi-

tration methods; five example buses belonging
to each category follow.

Example 1: Unibus

Figure 1 1 shows a simplified diagram of the

Unibus arbitration section with two controllers

sharing a Bus Request (BR) line. When Con-
troller 1 wants to use the bus for an interruption

transaction, it asserts the shared BR signal Hne.

When the processor is in a state capable of re-

ceiving an interruption, the arbitrator asserts

the Bus Grant (BG) signal.

The arbitration logic of Controller 1 is shown
in Figure 12. The timing of an arbitration se-

quence is shown in Figure 13. Controller 1 re-

ceives the assertion of BG and may make a data

transfer as soon as the ongoing data transfer is

complete. Controller 1 acknowledges its selec-

tion by asserting the Selection Acknowledge
(SACK) signal. Controller 1 can use any BG as-

sertion that arrives after the controller has as-

serted BR to perform an interruption
transaction. The serial wiring of BG could be

called a kind of priority arbitration, but it is

preferable to think of it as a sequential type of

allocation, in which the sequence begins on de-

mand and always starts at the controller closest

to the processor and arbitrator.

The Unibus actually has four groups of con-

trollers, each group connected to a Bus Request
line (called BR4, BR5, BR6, or BR7) and wired

as shown in Figure 11. In addition, every con-

troller capable of doing DMA data transactions

is connected into a fifth group called Non-Pro-
cessor Request (NPR) for data. All five groups
share a common SACK Hne.

Memory modules do not participate in arbi-

tration on the Unibus since they never initiate

data transfers.

282 THE PDP-11 FAMILY

Table 2. The Twelve Categories of Arbitration Methods

Arbitration Category

Fixed with Respect
to Data Transfer

Variable with

Respect to Data Transfer

Central, Priority

Central. Democratic

Central, Sequential

Distributed, Priority

Distributed, Democratic

Distributed, Sequential

Central, Priority, Fixed

Central, Democratic, Fixed

Central, Sequential, Fixed

Distributed, Priority, Fixed

Distributed, Democratic, Fixed

Distributed, Sequential, Fixed

Central, Priority, Variable (plus some as-

pects of distributed, sequential below)

Unibus, LSI-1 1 Bus

Central, Democratic, Variable

Central, Sequential, Variable

Polled Character-Input

Distributed, Priority, Variable

Distributed, Democratic, Variable

Distributed, Sequential, Variable

NOTE
The Massbus has no arbitration at all, because all control

transfers originate from one point.

BUSES, THE SKELETON OF COMPUTER STRUCTURES 283

In the most general case, a single controller

on a Unibus can participate in three types of

transactions:

1 . As the target of a control data transfer

(type C), the controller behaves as if it

were a memory. It receives commands
(as data writes) into control registers and
transmits status (as data reads) from sta-

tus registers this way. The controller

does not request the bus for these trans-

actions: it is the "slave" of the processor
which obtained the bus for this purpose.

2. As the originator of a DMA, type B data

transfer, the controller moves data to or

from memory. To obtain the bus for this

purpose, it asserts the shared NPR line,

and waits for a Non-Processor Grant

(NPG) signal to be passed to it from the

left.

3. As an interruption source (type C), the

controller sends an interrupt vector to

the processor. To obtain the bus for this

purpose, the controller asserts one of the

four BR lines (BR4, BR5, BR6, or BR7),
and waits for the corresponding BG sig-

nal (BG4, BG5, BG6, or BG7) to be

passed to it from the Arbitrator. Each
controller is assigned a single BR level at

the time of its installation in the system.

Thereafter, it never blocks any of the

other three BG signals.

Some controllers, such as simple terminal in-

terfaces, do no DMA transfers, but perform an

interruption transaction for each character of

input or output.

The priority arbitration of the Unibus is af-

fected directly by the priority state of the CPU.
The CPU program execution priority (PRI)
varies from to 7. The Unibus Arbitrator

grants use of the bus to non-CPU connections

by the following rules:

1. At any time, when assertion of NPR is

received, assert NPG. (Interpretation: a

controller may do DMA data transfers

at any time.)

2. Whenever the CPU is between instruc-

tions (i.e., is interruptable), then:

a. If PRI <7 and BR7 is asserted, then

assert BG7, else

b. If PRI <6 and BR6 is asserted, then

assert BG6, else

c. If PRI <5 and BR5 is asserted, then

assert BG5, else

d. If PRI <4 and BR4 is asserted, then

assert BR4.

(Interpretation: when the CPU is inter-

ruptable, it will accept interruptions
from a controller in a group whose pri-

ority is greater than the current program
execution priority of the CPU.)

The priority arbitration rules of the Unibus
involve both the processor priority and the rela-

tive priorities of the BR signals, among them-
selves. Assertion of a BR7, for example, blocks
the grant signals BG6, BG5, and BG4 until all

controllers asserting BR7 have accomplished
their interruption transactions. Therefore, we
classify the Unibus arbitration method as cen-

tralized and variable, with a mixture of priority
and sequential allocation rules.

Example 2: The LSI-11 Bus

The LSI- 1 1 Bus serves the same functions for

the LSI-11 system that the Unibus serves for

most of the other PDP-1 1 processors. The LSI-

1 1 bus is constrained to use fewer conductors

and, therefore, less power and logic than the

Unibus. It achieves the reduction from 56 sig-

nals to 36 signals primarily by time-multi-

plexing memory addresses and data on the same
conductors (accepting lower bandwidth in or-

der to achieve lower cost).

Arbitration for DMA transfers is essentially
identical to that of the Unibus (Figures 1 1 and

12). The corresponding signal names on the

LSI-11 Bus are SACK (for Unibus SACK),
DMR (for BR), and DMG (for BG).

Arbitration for the interruption transaction

has only one priority-group for all interrupting

284 THE PDP-11 FAMILY

controllers. When a controller wants to inter-

rupt the processor, it asserts the Interrupt

Request (IRQ) signal. This is similar to the BR
signals on the Unibus. However, the LSI-1 1 Bus

interruption transaction more closely resembles

a data transfer, so it will be described in the sec-

tion on data transfer synchronization. Arbi-

tration on the LSI-1 1 Bus, like the Unibus, is

classed as centralized, variable with a mixture

of priority and sequential allocation rules.

However, only one level of priority is used for

interruption transactions.

Example 3: Synchronous Backplane
interconnect (SBI), the VAX-1 1/780

Memory Bus

This memory bus is distinguished by its lim-

ited length and its master clock which synchro-

nizes all transactions on the bus, (The bus does

not extend beyond the etched backplane of the

computer cabinet.) The functions of the SBI are

the same as those of the Unibus. However, the

SBI differs in physical configuration because

every controller must be directly connected to

the backplane. Another difference between

Unibus and SBI is that all transactions on the

SBI are of fixed duration, which gives much

higher bandwidth for data transfer. (The SBI is

rated at 13.3 megabytes per second, while the

Unibus is capable of approximately 1.7 me-

gabytes per second when operating with equiva-

lent speed memory.) To achieve this bandwidth,

it was necessary to split the memory read oper-

ation into two bus transactions - one to trans-

mit an address to the memory, another to

transmit data back to the requesting con-

nection. In this way the SBI can accommodate
memories of various cycle times, as can the

Unibus, but the SBI requesting connection does

not occupy the bus facilities for the duration of

the cycle.

Arbitration on the SBI is distributed, prior-

ity, and fixed. Figure 14 shows a simplified dia-

gram of the signals involved in SBI arbitration.

A master clock, represented here by a single

signal, defines a sequence of time-slots on the

bus. Each slot (200 nanoseconds in the VAX-
1 1/780) is of long enough duration to complete
a transfer of data from one connection to any
other connection, but not for a reply signal to

be sent back.

There are four Transfer Request (TR) signals

in this simplified example: TRO, TRl, TR2, and

TR3. Each TR signal "belongs" to one con-

nection; that is, only one connection is permit-

ted to assert the signal.

Each TR signal has a priority associated with

it: TRO has highest priority. A connection

requests the use of the SBI data transfer facil-

ities by the following procedure:

1. At the beginning of the next time-slot

(after deciding to transfer data), assert

the TR signal that belongs to this con-

nection.

2. At the end of the time-slot, sense the

state of all of the higher priority TR
Hnes.

3. If none of the higher priority TR lines is

asserted, then at the beginning of the

next slot negate "my own" TR signal

and begin transmitting data.

If any of the higher priority TR lines is

asserted, then do not negate "my own"
TR signal, and go back to step 2.

TERMINATOR

BUSES, THE SKELETON OF COMPUTER STRUCTURES 285

Figure 15 shows a timing diagram for a

sample set of data transfers on the simplified

SBI of Figure 14. In this example, connection

number 3 (corresponding to TR3) requests the

bus during slot 1, and connection numbers 1

and 2 (corresponding to TRl and TR2) request

the bus during slot 2.

At the end of slot I, connection 3 detects no

higher priority TR signals, so it negates TR3
and transmits data during slot 2.

At the end of slot 2, connection 2 senses that

TRl is asserted, and therefore waits, leaving

TR2 asserted. At the same time, connection 1

senses no higher priority TR signals, so it ne-

gates TRl and transmits data during slot 3.

Some transactions on the SBI require that a

connection transmit on two or more con-

secutive slots. A connection that requires a slot

beyond its first one asserts TRO at the beginning

of its first data transfer slot. TRO, the highest

priority TR signal, is not assigned to any one

connection.

The example in Figure 15 shows connection 2

doing a two-slot data transfer. After waiting for

connection 1 to transfer, connection 2 "holds"

the bus for slot 5 by asserting TRO (hold signal)

at the beginning of slot 4. In the SBI of the

VAX- 11/780, connections are limited to trans-

mitting in no more than three consecutive slots.

We have shown four connections in this ex-

ample, although only three TR signals are as-

signed. The lowest priority connection, number

4, does not have a TR signal assigned to it be-

cause there is no need to sense a TR signal from

this lowest priority connection. Connection 4

transmits only when no other connection is re-

questing the next slot. Connection 4 gains an

advantage by being lowest priority: it may
transmit in any slot not used by the other SBI

connections without asserting a TR signal of its

own in the preceding slot. This gives it a shorter

memory-access latency. For this reason, the

CPU is usually given lowest priority on the SBI.

The master clock is crucial to the operation
of the SBI. In the VAX-1 1/780, the slots are

defined by combining the three clocks into four

equal-interval markers. All transmitted TR sig-

nals are asserted at the beginning of phase 1,

and all received TR signals are sensed at the be-

ginning of phase 4, three-fourths of the way
through the nominal slot period. This guaran-
tees that signals from nearby connections are

not sensed too early and that distant TR signals

are sensed early enough.

Example 4:

(Type D)

A Polled Character-Input Bus

Figure 16 shows a diagram of a hypothetical

simple character-input bus. The controller at

the left end accepts all input from the key-

boards. It "asks" each keyboard in turn

whether it has a character to send, and if so, the

controller accepts the character during the next

POLLED (CENTRAL, FIXED, SEQUENTIAL)

1

286 THE PDP-11 FAMILY

time slot. This arbitration scheme is centralized,

sequential, and fixed with respect to data trans-

fer.

Three signals are broadcast from the con-

troller to all terminals. One is the Clock, which

defines the time-slots. The other two signals,

called Unit and Unit 1, send out a two-bit

code which selects one of the four keyboards

during each slot. The coding is binary.

The controller changes the Unit Select signals

at the beginning of each slot. The keyboard se-

lected, if it contains a character to be trans-

mitted, asserts the Send signal, and transmits

the character at the beginning of the next slot.

In the timing diagram shown in Figure 17,

keyboard 1 transmits two characters and key-

board 2 transmits one character. In this type of

UNIT 1 I

-T^:^
FHOM 1 FROM 2

Figure 17. Timing diagram of a polled character-input

bus.

arbitration scheme, the polling (sequential sam-

pling) of possible sources of data (the key-

boards) eliminates the need for contention or

priority rules. The logic of each connection is

simple, but the scheme in this example limits

each connection (keyboard) to using a max-

imum of 25 percent of the data transfer band-

width.

Example 5: Massbus

The Massbus is a peripheral-to-controller

(type D) bus that has no arbitration at all. As in

the previous example, a single controller at one

end of the bus receives or sends on each data

transfer. Control information is transferred as

on the Unibus, but the "master" of the transfer

is always the controller. Data blocks are trans-

ferred using a peripheral-generated clock, and

the transfers are always initiated by writing a

control word into a register in the peripheral.

Interruptions to the CPU are generated by
the controller on demand from any peripheral.

For this purpose an Attention signal exists in

the control section of the Massbus. Each pe-

ripheral is capable of asserting this signal.

SYNCHRONIZATION OF DATA
TRANSFERS

Synchronization of a data transfer is coordi-

nating the timing between two bus connections

which are involved in a data transfer. The

method by which data transfer is coordinated

can be very different from the arbitration

method.

To classify the methods of data transfer syn-

chronization, we use two criteria:

1 . Source. The location of the source of the

synchronizing signals {centralized, one of

the sending or receiving connections, or

both connections).

2. Periodicity. The type of synchronizing

signals {periodic or aperiodic).

Table 3 shows the six resulting categories and

how the examples fit into them.

The location of the synchronizing signal or

signals may be at one of the connections send-

ing or receiving data (one) at both of the con-

nections (both), or at neither (centralized). The

Unibus data transfer is synchronized by signals

from both the sending and receiving con-

nections.

The synchronizing signal may be a clock (pe-

riodic), or it may be something else (aperiodic).

The Unibus uses an aperiodic "handshake."

BUSES, THE SKELETON OF COMPUTER STRUCTURES 287

Table 3. Data Transfer Synchronization
Methods

Location

288 THE PDP-11 FAMILY

variable delay in transmission of different sig-

nals from one connection to another. An addi-

tional set-up time is inserted to allow all slave

connections time to sense and compare against

the Address and Control signals.

The slave connection senses the Address and

Control signals at all times. In this example, the

address being transmitted by the controller

matches one of the memory addresses "owned"

by this memory connection. Therefore, this

slave responds to the assertion of MSYN by

sensing and storing the signals on the Data

lines.

Having captured the data, the slave asserts

the SSYN signal. When the master receives the

assertion of SSYN it knows that the data trans-

fer has been completed.
The master then stops transmitting the Ad-

dress and Control, Data signals, MSYN, and

BBSY.
Unibus Data-in is a read from memory. The

timing is similar to Unibus Data-Out, except

that data is transmitted on the data lines by

memory. The second part of Figure 19 shows

the Data-in timing.

Data transfer on the Unibus is aperiodic
-

there is no clock. Synchronization occurs by a

"handshake" interaction between the MSYN
and SSYN signals. In fact, two round-trips of

signaling occur. We could look at this signaling

in tabular form (Table 4).

The sequence of four events insures a fully

"interlocked" data transfer. The timing of a

transfer is variable, depending on the speed of

the slave's memory (for Data-in) and on the

speed of the logic at both connections. On the

Unibus, 75 nanoseconds are allowed for deskew

time and an additional 75 nanoseconds for set-

up, where noted.

Example 2: LSI-11 Bus

Data transfers on the LSI-11 Bus also serve

the functions of pathway types A and B. Syn-
chronization is from both sender and receiver

Table 4.

BUSES. THE SKELETON OF COMPUTER STRUCTURES 289

FROM Pc

ADDRESS

FROM Pc FROM Mp
ADDRESS DATA

Figure 20. LSI-11 Bus Data-in and Data-Out

synchronization.

FROM Pc FROM Mp
ADDRESS DATA

Figure 21. LSI-11 Bus Data-ln-Out synchronization.

The CPU transmits the memory address on

the DAL lines. After waiting for a fixed inter-

val, to allow for deskew and set-up time at the

memory, the processor asserts SYNC.
The memory senses the DAL lines when it re-

ceives the assertion of SYNC. The memory
matches the address received and decides that

the data word being addressed is in this memory
module.

After another fixed delay, to guarantee that

the SYNC assertion always arrives at the mem-

ory first, the central processor asserts DIN and

stops transmitting the address on the DAL
lines.

As soon as the memory receives the DIN as-

sertion, it knows that a read cycle is desired. It

retrieves the data word and transmits it on the

DAL lines. Meanwhile, it may assert the RPLY
signal as much as 125 nanoseconds before

transmitting the data.

When the central processor receives the

RPLY assertion, it waits at least 200 nanose-

conds to be sure that the data has arrived, and

then senses and stores the data. Then the pro-
cessor negates DIN.
As soon as the memory receives the DIN ne-

gation, it stops asserting RPLY. Not more than

100 nanoseconds later, the memory stops trans-

mitting the data on the DAL lines.

When the processor receives the negation of

RPLY, it negates SYNC. The bus is now avail-

able for the next data transfer.

The second part of Figure 20 shows the tim-

ing of a Data-Out (write to memory) transfer.

Figure 21 shows the timing of another type of

LSI-11 Bus data transfer, the Data-In-Out op-
eration. In this transfer, a data word is read

from memory, sent to the CPU, and then a

word is sent back to the same memory location.

This operation is useful for certain PDP-11

CPU instructions such as "increment memory,"
(INC) which modifies a single word in memory,
and ADD which stores a result at the address of

the second operand.
Bus transmission time is saved by not requir-

ing the address to be sent a second time for the

Data-Out portion of the cycle. On the other

hand, the CPU may delay the operation by an

arbitrary amount of time, while the word to be

written is generated.

Figure 22 shows the timing of the inter-

ruption transaction on the LSI-11 Bus. This

transaction includes both arbitration and the

transfer of a data word (an interrupt vector)

from a controller to the CPU.
All controllers share the single Interruption

Request (IRQ) line. It is similar to the Unibus

BR signals, causing an interruption when as-

serted.

290 THE PDP-11 FAMILY

Figure 22. LSI- 11 Bus interruption transaction

synchronization.

The Interruption Acknowledge (lAK) signal

is similar to the Unibus BG signals. lAK is

wired from the processor (arbitrator) serially

through all controllers, just like a Unibus prior-

ity group.

A controller may assert IRQ at any time.

When the processor is ready to receive an inter-

rupt vector, it begins a sequence which resem-

bles a Data-in transfer. However, the SYNC
signal is not used and no address is sent out on
the DAL lines.

CLOCK. The ID signals are used to identify the

destination of the transfer when the informa-

tion transferred is data. The other use of the ID

signals is explained below.

The Data lines carry 32 bits of information.

This information is either: (1) 32 bits of data, or

(2) 28 bits of address and 4 bits of command
code. The Flag signal is asserted to indicate case

(2). In this case, the destination of the transfer is

determined by the 28 address bits, in a way sim-

ilar to Unibus addressing. For these transfers,

the ID lines carry the identity of the source of

the transfer. The connection receiving a Read
command saves this source ID value, so it can

use it as a destination ID on a later data trans-

fer, i

Figure 23 shows the timing of the two SB!
transfers which make up a read operation from

memory. Remember that there is a master clock

which defines a series of time-slots. The Trans-

fer Request (TR) signals are shown again to il-

lustrate the fixed time relationship of

arbitration, before a transfer.

In Figure 23, the controller (connection 1)

decides at the beginning of slot 1 to initiate a

Example 3: Synchronous Backplane
Interconnect (SBI)

The SBI synchronization method is central-

ized and periodic. There is only one sequence of

events which causes information transfers on
the SBI, and that sequence is quite simple.

However, the information transferred from one
connection to another has two interpretations:

Command and Address, or Data. A memory
read or write operation always consists of two

sequences: one to transfer a command to the

memory connection, the other to transfer data.

The read operation is split, allowing other

transactions to take place while a memory is ac-

cessing data.

There are four groups of signals used to effect

data transfer: ID, DATA, FLAG, and

BUSES, THE SKELETON OF COMPUTER STRUCTURES 291

memory read operation. In slot 2 it transmits

the following bits:

ID =
1, the identity of the source

connection.

DATA = Read command code, plus 28

bits of memory address.

FLAG = asserted, indicating that

DATA contains command
and address.

At the end of slot 2, the memory connection

senses all of these bits and captures them in a

buffer register.

In fact, every connection on the SBI captures

all of these bits on every slot. Subsequently,

each connection matches the ID bits to deter-

mine if it should respond.

In this case, the memory connection detects

that the address refers to memory contained in

itself, and it therefore begins a read cycle.

The memory connection asserts its TR signal

(TR2) one slot before it is ready to transmit

data. The memory transmits its data to the re-

questing controller in the next slot, (slot 7):

we could attach a variety of memory sub-

systems with different access times to one SBI,

without serious performance degradation, as

long as the memory access times are sufficiently

large multiples of the slot-time.

The VAX- 11/780 system uses a slot-time of

200 nanoseconds and has a memory subsystem

access time of just under 800 nanoseconds (in-

cluding error detection). The four-slot access

time shown in Figure 23 is typical of this sys-

tem.

Figure 24 shows the timing of a memory
write operation on the SBI. The controller, con-

nection 1, transmits on the two consecutive

slots following arbitration. In the first slot (slot

10), FLAG is asserted to indicate that the Write

command and address information is present.

In slot 1 1, the data is transmitted. The memory
connection must be prepared to accept and cap-

ture the sequence of two transmissions.

The ID lines contain the identification of the

controller during slots 10 and 11, allowing the

memory to verify that both transmissions come

from the same source.

ID =
1, the identity of the destina-

tion connection.

DATA = 32 bits of data from memory.
FLAG = negated, indicating that

DATA carries data.

At the end of slot 7, all connections to the

SBI capture this information, and controller 1

recognizes the match between the ID bits and

its own identity. A memory read has now been

finished.

On the SBI, a memory may wait a variable

number of slots before replying to a Read com-

mand. Clearly there is a performance penalty

for memories that require slightly more than an

integral number of slot-times to access a word.

Therefore, the SBI clock is "tuned" to be an

integral submultiple of the access time of the

memory subsystem we intend to use. However,

ASSERTED BY 1

TRO "HOLD" I I

292 THE PDP-11 FAMILY

The two-slot write operation is kept con-

tiguous by using the highest priority TRO
"hold" signal to obtain use of the second slot.

The SBI minimizes the slot interval and max-

imizes bandwidth by eliminating all round-trip

delays.

Example 4: Polled Character- Input Bus

Data transfer on this bus was described in the

section on arbitration methods. The synchro-
nization method is centralized and periodic.

Data transfer occurs in time-slots just as on

the SBI. The time-slots are defined by a master

clock, and the receiver (always the controller)

must accept the data at the end of the time-slot.

In contrast to the SBI, this bus preallocates one

of every four slots to each keyboard connection.

The controller must keep internally an in-

dication of which character is received from

which keyboard.

Example 5 (a): Massbus Control Section

The Massbus actually consists of two sec-

tions: a Control Section for reading and writing

the contents of registers in the peripherals, and

a Data Section for moving blocks of data. All

transfers are between the controller and one of

the (up to eight) peripherals. The two sections

operate independently, except that a Control

Section write into a control register of a periph-

eral is required to initiate a block transfer on

the Data Section.

The Control Section of the Massbus is a min-

iature Unibus. However, the controller is al-

ways the master, and one of the peripherals is

always the slave in the transfer. Figure 25 shows

the Control Section signals involved in data

(i.e., control and status register) transfers. The
Demand (DEM) signal takes the place of

MSYN, and Transfer (TRA) takes the place of

SSYN. Instead of Address and Control lines,

there is an eight-bit address on the Massbus
Control Section: three bits of Drive Select (DS),

PER(PHERAL
CONTROLLER

BUSES. THE SKELETON OF COMPUTER STRUCTURES 293

Figure 26. Timing of a control read in the control

section of the Massbus.

294 THE PDP-11 FAMILY

CONTROLLER

BUSES, THE SKELETON OF COMPUTER STRUCTURES 295

Table 5. Error Control Methods Used By Example Buses

Bus

Check
Bits

(Parity) ACK Time-Out Retry Log

1.

296 THE PDP-11 FAMILY

The LSI- 11 Bus also has time-outs specified

for responses to the assertion of DIN and
DOUT. If a memory does not respond within

10 microseconds, the CPU or controller as-

sumes that the address is invalid.

Example 3: SBI

Data transfers on the SBI carry several parity
check bits. Parity is generated at the sending
connection and is checked at the receiving con-

nection.

The SBI also does acknowledgement on every
data transfer. A code is returned to the sending
connection two time-slots after the data was
sent. Separate Confirm (CNF) lines are used to

carry this code. The code indicates one of four

possible events:

CLOCK

TIME
SLOT

BUSES, THE SKELETON OF COMPUTER STRUCTURES 297

1 1 1 1 1

298 THE PDP-11 FAMILY

A shorter time-out, approximately 100 mi-

croseconds, is used to detect a failure in a pe-

ripheral after at least one SCLK signal

transition has been received. If this limit is

reached, the controller asserts EXC to tell the

peripheral to disconnect.

ACKNOWLEDGEMENTS

The chapter author wishes to acknowledge
the patience of J. Craig Mudge, the editor who

provided the impetus to produce this chapter,

and of Heidi Baldus, who spent a great many
hours overseeing the production of this work,

many of them on the telephone at a distance of

3000 miles from the author.

Robert Chen and Alice Parker contributed

greatly by their detailed reviews of the first

draft. Others who helped were Sas Durvasula,

Robert E. Stewart, Harold Stone, Mike Riggle

and Don Vonada. George Herbster, patent at-

torney and friend to many engineers, provided
reference materials on short notice.

Negated (nominal) - to be in the "false" state.

Negation (noun) - the transition from asserted

to negated.

Read (transitive verb)
- to move data from a reg-

ister, memory, or secondary storage.

Sense (transitive verb)
- to capture data from

bus signal lines. Synonyms: receive, gate in,

strobe.

Slot (noun) - a particular interval.

Time-out (intransitive verb)
- to wait for the end

of an interval and to take an action associated

with the failure of some event to occur within

the interval.

Transfer (transitive verb)
- to move data (a data

word).

Transmit (transitive verb)
- to place data on bus

signal lines. Synonyms: drive, gate out.

When (adverb)
- at the instant that.

Whenever (adverb)
-
every time that.

While (adverb) - throughout the interval that.

Write (transitive verb)
- to move data into a reg-

ister, memory, or secondary storage.

APPENDIX: A GLOSSARY OF TERMS

The definitions below are offered as an aid to

understanding the technical meaning of some

words used in this chapter.

Assert (transitive verb)
- to cause a signal to take

the "true" or asserted state.

Asserted (nominal) - to be in the "true" state.

Assertion (noun)
- the transition from negated

to asserted.

Bandwidth (noun)
- data transfer rate measured

in information units (e.g., bits, bytes, or words)

per unit time.

Connection (noun)
- an attachment to a bus and

the logic and functions of the attached sub-

system. Synonyms: node, interface.

Interval (noun) - an extent in time. Synonym:

period.

Negate (transitive verb)
- to cause a signal to

take the "false" or negated state.

ANNOTATED BIBLIOGRAPHY

For further reading on bus design in general,

the following references will provide an entry

into some of the published literature.

Blaauw, Gerrit A., Digital System Implementation,

Chapter 9, "Communication," pp 286-316; Pren-

tice-Hall (1976). [I/O channel architecture, data

synchronization]

Chen, Robert C.H., "Bus Communications Sys-

tems," Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University (January

1974). [synchronization, arbitration, and deadlock]

Enslow, Philip H., Jr. (ed.), Multiprocessors and Par-

allel Processing, Chapter 2, "Systems Hardware,"

pp. 26-80; Wiley (1974). [Multiprocessor bus or-

ganization: Unibus; tradeoffs in bus design; I/O to-

pology]

Ornstein, S.M., W.R. Crowther, M.F. Kraley, R.D.

Bressler, A. Michel, and F.E. Heart, "Pluribus -a
reliable multiprocessor," AFIPS Conference Pro-

ceedings, Vol. 44 (1975), National Computer Con-

ference, pp. 551-559. [Multiprocessor IMP for

ARPANET]

BUSES, THE SKELETON OF COMPUTER STRUCTURES 299

Thurber, Kenneth J., E. Douglas Jensen, Larry A.

Jack, Larry L. Kinney, Peter C. Patton, and Lynn
C. Anderson, "A systematic approach to the de-

sign of digital bussing structures," AFIPS Confer-
ence Proceedings (1972), Vol. 41, Part II, Fall

Joint Computer Conference, [polling, arbitration

methods, data synchronization; annotated bibliog-

raphy with 93 entries]

The following four references cover the Un-

ibus and some bus related aspects of the PDP-
1 1 architecture.

Bartee, T., Digital Computer Fundamentals (Fourth

Edition), Chapter 10, section 10.6, "Inter-

connecting System Components," and section

10.7, "Interfacing - Buses," pp. 455-470,
McGraw-Hill (1977). [bus structures, including

Unibus]

Cohen, J., Janson, P., McFarland, H., and Young, J.

Jr., Data Processing System, U.S. patent
3,710,324 (9 Jan 1973). [PDP-11 system and

Unibus]

Sutherland, Ivan E., and Carver A. Mead, "Micro-

electronics and Computer Science," Scientific

American, Vol. 237, no. 3 (September 1977), pp.

210-228. [interconnections, Unibus]

Tanenbaum, Andrew S., Structured Computer Or-

ganization, Chapter 4, section 4.12, "The PDP-

11/40 Microprogramming Level," pp. 196-204,

Prentice-Hall (1976). [PDP-1 1 /40 internal organi-

zation and Unibus operation]

Cohen, J., Janson, P., McFarland, H., and Young, J.

Jr., Data Processing System, U.S. patent
3,815,099 (4 Jun 1974). [PDP-11 memory and per-

ipherals]

The following references are the patents cov-

ering the Massbus design.

Jenkins S., Secondary Storage FaciHty for Data Pro-

cessing System, U.S. patent 4,047,157 (6 Sept

1977). [Dual- Unibus RHll Massbus controller]

Levy, J., Jenkins, S., Ku, V., McLean, P., and Hast-

ings, T., Drive Condition Detecting Circuit for

Secondary Storage Facilities in Data Processing

Systems, U.S. patent 3,911,400 (7 Oct 1975).

[Massbus Attention Summary register]

Levy, J., Jenkins, S., and McLean, P., Secondary

Storage Facility for Data Processing Systems,
U.S. patent 3,999,163 (21 Dec 1976). [Massbus]

McLean, P., Jenkins, S., and Ku, V., Diagnostic Cir-

cuit for Data Processing System, U.S. patent

3,91 1,402 (7 Oct 1975). [Massbus peripheral main-

tenance register]

Sergeant, O., Levy, J., Lignos, D., and Griggs, K.,

Drive for Connection to Multiple Controllers in a

Digital Data Secondary Storage Facility, U.S.

patent 4,007,448 (8 Feb 1977). [Dual-Massbus disk

drive]

The Honeywell Megabus, described in the

first reference below, was an independent devel-

opment that has some ideas similar to the SB!

and the Unibus. The second reference has a

short description of the SBL The third reference

contains an intellectual precursor to the SBI,

the "z-bus", which was implemented only in a

simulation.

Conway, J.W., "Approach to Unified Bus Archi-

tecture Sidestepping Inherent Drawbacks," Com-

puter Design (Jan 1977). [Honeywell Megabus]
Digital Equipment Corporation, VAX-1 1 / 780 Archi-

tecture Handbook, (1977), Chapter 2, section 2.2,

"The Synchronous Backplane Interconnect," p.

23. [SBI]

Levy, John V., "Computing with Multiple Micro-

processors," Report SLAC-161, Stanford Linear

Accelerator Center, (Apr 1973); (Ph.D. thesis,

Computer Science Department, Stanford Univer-

sity). [Z-machine and z-bus]

The next three references relate to a relatively

new development, the contention-arbitrated se-

rial bus. These are distributed-arbitration buses

which have a single signal used for both arbi-

tration and for data transfer. Further references

can be found in these publications.

MacLaren, Don, Contention-arbitrated serial buses,

Digital Equipment Corporation R&D Group in-

ternal memo (13 Sep 1977). [with 8 references]

Metcalfe, Robert M., Packet Communication, Re-

port MAC TR-114, Massachusetts Institute of

Technology Project MAC, (December 1973).

Metcalfe, Robert M. and David R. Boggs, "Ether-

net: Distributed packet switching for local com-

puter networks," report CSL 75-7, Xerox Palo

Alto Research Center (November 1975).

A Minicomputer-Compatible
Microcomputer System:

The DEC LSI-11

MARKJ.SEBERN

INTRODUCTION

In recent years, minicomputers have found

application in a wide range of areas. In so

doing, they have displaced larger computer sys-

tems in many traditional maxicomputer mar-

kets. At the same time, they have opened up

many new markets, primarily because of their

low cost, small size, and general ease of use.

Still, in spite of this remarkable success, mini-

computers are not without competition. In cost-

sensitive areas, the minicomputer is being eased

out of its dominant position by a new gener-

ation of LSI microcomputers; the new "proces-
sors on a chip" have found a warm reception

from designers seeking inexpensive computing

power. That warm reception sometimes cools,

however, when the user finds himself with a col-

lection of components, instead of a complete

computing system. The discovery that he is

largely on his own when it comes to software

and debugging support has a similarly chilling

effect. The entry into the world of programming
PROMs, using FORTRAN cross-assemblers

and simulators, and writing even simple soft-

ware routines from scratch can be a traumatic

experience indeed. Still, the advantages of LSI

microcomputers are very real, and many users

have found the difficulties well worthwhile.

Even so, some cannot help but wonder why
they cannot simply have the best of both

worlds: the cost and size of the microcomputer,
and the ease of use and performance of the

minicomputer systems with which they are fa-

miliar.

Therefore, the appearance of a new LSI mi-

crocomputer system that is fully compatible
with a line of 16-bit minicomputers is an event

of some significance. This new microcomputer,
the DEC LSI-11 (see Figure 1), is a complete
4 K PDP- 1 1 on a 2 1 .6 cm X 26.7 cm (8.5 inch X
10.5 inch) board; priced to compete with other

LSI microcomputers, it offers true mini-

computer performance and maxicomputer sup-

port. The LSI-11, while not meant to be yet

another low-end minicomputer, does bring

many minicomputer strengths to the new

microcomputer applications for which it is in-

tended.

To provide minicomputer performance at a

microcomputer price, the LSI-11 was designed

to optimize system costs, rather than com-

ponent costs. A one-chip central processor,

then, was not necessarily superior to a four-chip

301

302 THE PDP-11 FAMILY

Figure 1. On one 21.6 cm X 26.7 cm board, the LSI-

1 1 provides a complete PDP-1 1 processor, 4 Kwords of

16-bit memory, an ASCII console, a real-time clock, an

automatic dynamic memory refresh, and interface bus

control.

one; the choice was made on the basis of total

system cost and performance. On this basis, a

microprogrammed processor was selected, per-

mitting the inclusion of features like a "zero

cost" real-time clock and automatic dynamic

memory refresh. The built-in ASCII program-
mer's console was also made feasible by the

LSI-ll's microprogrammed nature.

Awareness of system costs and performance,

then, was a primary motivation in the LSI-11

design. System issues include cost and ease of

interconnection, the customer's investment in

training and software, and the availability of

design support for both hardware and software.

The impact of these system concerns should be-

come apparent in the following sections which

detail the LSI-11 design. Two viewpoints are

taken in this description: the first section treats

the internals of the LSI-11 from the computer

designer's point of view, while the second con-

siders the system from the user's perspective.

The former examines the architecture, organi-

zation, and implementation of the LSI- 1 1
, while

the latter discusses interfacing, special features,

and PDP-1 1 compatibility. Together, these two

viewpoints will provide the reader with an in-

troduction to the DEC LSI-11, the first micro-

programmed minicomputer-compatible LSI

microcomputer, which provides minicomputer

performance at a microcomputer price.

THE COMPUTER DESIGNER'S VIEW

For the purpose of this discussion, the design
of the LSI-11 will be studied at the following
three levels: (1) architecture - the machine as

seen by the programmer, (2) organization - the

block diagram view of subsystems and their in-

terconnection, and (3) implementation - the ac-

tual fabrication and physical arrangement of

the various pieces at the component level.

Architecture

Instruction Set. The architectural level of a

computer system includes its instruction set, ad-

dress space, and interrupt structure. The basic

LSI-1 1 instruction set is that of the PDP-1 1/40,

without memory mapping. These instructions

include several operations not found in other

small PDP-11 processors, such as Exclusive-Or

(XOR), Sign-Extend (SXT), Subtract One and

Branch (SOB), etc. Full integer multiply/divide

(Extended Instruction Set or EIS) and floating-

point arithmetic (Floating Instruction Set or

FIS) may be provided by the addition of a

single control read-only memory chip (to be dis-

cussed later). Unlike other PDP-1 Is, there are

two special operation codes which facilitate ac-

cess to the processor's program status word

(PSW). The instruction set is, then, more com-

prehensive than that of the PDP-1 1/05, while

the execution times (see Table 1) are a little

slower.

To take advantage of the microprogrammed
nature of the LSI-1 1, it may at times be desir-

able to invoke a user-written microroutine. This

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 303

Table 1. LSI-11 Instruction Timing

Instruction

Execution

Time (ms) Comments

ADDR1.R2 3.5

M0VR1,R2 3.5

MOVA(PC). B(R2) 11.55

TSTB(R1)+ 5.25

JMP(RI) 4.2

JSRPC.A(RI) 8.05

Bxx L 3.5

Register-register

PC-relative, indexed

Auto-indexed

Indirect

Subroutine call

Conditional branch

RT1

MUL*
FADD*
EMUL*
FDIV*

8.75-9.45 Rtn from interrupt

24-64
42.1

52.2-93.7

151-232

NOTES
R1, R2 =

Registers

A, B = Index constants

Bxx = Any conditional branch

L = 8 -bit offset

Third MICROM installed for EIS/FIS.

is made possible by a set of reserved instruc-

tions which cause branching to a fixed micro-

address. These reserved instructions cause an

illegal instruction trap to occur if user micro-

code is not present.

Address Space. Like other microcomputers
without memory mapping facilities, the LSI-1 1

virtual and physical address spaces are the

same, both being 16 bits, or 64 Kbytes. (Since

two 8-bit bytes make one 16-bit word, this is

equivalent to 32 Kwords.) As in other members

of the PDP-1 1 family, the top 4 Kwords of the

address space are normally reserved for periph-

eral device control and data registers. Thus the

nominal maximum main memory size is 28 K
16-bit words.

Interrupt Structure. The LSI-11 interrupt

structure is a subset of the full PDP-1 1 interrupt

system. Like other PDP-1 1 processors, the LSI-

1 1 features arbitration between multiple periph-

eral devices and automatic-service routine "vec-

toring." It differs, however, in having only a

single interrupt level. Interrupts on the LSI-11

are either enabled or masked, these states being

equivalent to PDP-1 1 processor levels and 4.

With this exception, however, interrupt oper-

ation follows the same familiar sequence. Upon
acknowledging an interrupt request, the proces-

sor stores the current processor status word

(PSW) and program counter (PC) on the stack

and picks up a new PSW and PC from a mem-

ory location (vector) specified by the inter-

rupting device.

Organization

PMS Level Description. The "organiza-

tion" of a computer system denotes the collec-

tion of building blocks that comprise it, and the

logical and physical links that connect them. A
block diagram of the LSI-11 organization is

shown in Figure 2. The LSI-11 CPU, being a

microprogrammed processor, is partitioned

logically and physically into three main sections

- data path, control logic, and micromemory.
Each of these units is, in fact, a separate LSI

chip. Interconnection of these chips is through
the microinstruction bus (MIB).

The Data Chip. The data chip contains an

8-bit register file and arithmetic logic unit

(ALU). The chip also provides a 16-bit interface

to the data/address lines (DAL) upon which the

external LSI-11 bus is built.

The register file consists of 26 8-bit registers;

of these registers, 10 may be addressed directly

by the microinstruction, 4 may be addressed ei-

ther directly or indirectly, and the remaining 12

may be addressed only indirectly. Indirect ad-

dressing is accomplished by means of a special

3-bit register known as the G register, which

may be easily loaded from the register address

field of the PDP-11 instruction. Addressing of

the register file is illustrated in Table 2.

The 12 indirectly addressed 8-bit registers are

used to realize the 6 PDP-11 general purpose

registers, RO through R5. The 4 registers which

may be addressed either directly or indirectly

304 THE PDP-11 FAMILY

Table 2. Micromachine Register File Addressing

File

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 305

contain the PDP-11 program counter (PC) and

stack pointer (SP), since they provide special

processor functions and are accessed very fre-

quently. The 5 remaining pairs of directly ad-

dressed registers are used for microprogram

workspace, and normally contain the following:

(1) the PDP-11 macroinstruction, (2) the bus

address, (3) the source operand, (4) the destina-

tion operand, and (5) the macro PSW and other

status information.

The 8-bit ALU operates on two operands ad-

dressed by the microinstruction. When a full-

word operation is specified, the data path is

cycled twice, with the low order bit of each reg-

ister address complemented during the second

cycle. Thus a 16-bit macrolevel register is real-

ized by two consecutive 8-bit registers in the

register file. An 8-bit operand may also be sign-

extended and used in a 16-bit operation, or an

8-bit literal value from the microinstruction

may be used as one of the operands.

In addition to the register file and ALU, the

data chip contains storage for several condition

codes. These include flags for zero or negative

results, as well as for carry or overflow; 4- or 8-

bit carry flags are also provided for use in deci-

mal arithmetic. Special flag-testing circuitry is

also provided for efficiency in executing PDP-
1 1 conditional branch instructions.

The Control Chip. The control chip gener-

ates MICROM addresses and control signals

for external I/O operations. It contains an 11-

bit location counter (LC), which is normally in-

cremented after each MICROM access. The LC

may also be loaded by "jump" instructions, or

by the output of the programmable translation

array. A one level subroutine capability is also

provided by an 11 -bit return register (RR),
which may be used to save or restore the LC
contents.

The programmable translation array (PTA),
the heart of the control chip, consists of two

programmable logic arrays (PLAs); the PTA

generates new LC addresses which are a func-

tion of the microprocessor state and of external

signals. Included in the microprocessor state is

the 16-bit macroinstruction currently being

interpreted; in this way, much of the macro-

machine emulation may be done with the high

efficiency provided by the PTA. The com-

binational logic of the two PLAs allows the

PTA to arbitrate interrupt priorities, translate

macroinstructions, and, in general, to replace

the conventional "branch-on-microtest" micro-

primitive. Since the microlocation counter is

one of the PTA inputs, it is normally unneces-

sary to specify explicitly the desired translation

or multiway branch; this information is implicit

in the address of the microinstruction which in-

vokes the PTA. External condition handling is

made possible by four microlevel interrupt lines

which are input to the PTA. Also feeding the

PTA are three internal status flags which are set

and reset under microprogram control.

The MICROM Chip. The micro read-only

memory, or MICROM, serves as the control

store for the microprocessor. The micro-

instruction width is 22 bits. Sixteen of these bits

comprise the traditional microinstruction; one

is used to latch a subroutine return address, and

one to invoke programmed translations; the re-

maining four bits (which drive TTL-compatible

outputs) perform special system-defined func-

tions.

Each MICROM chip contains 512 words, or

one-fourth of the 2 K microaddress space.

Proper "chip-select" decode is accomplished by

masking a 2-bit select code (along with the

microcode) into each MICROM at the time of

manufacture; no external selection logic is re-

quired.

The Microinstruction Bus. As seen in

Figure 2, microinstructions and microaddresses

share the microinstruction bus lines (MIB
00:21). Instructions thus fetched are executed

by the data chip while the next microaddress is

computed by the control chip. The bus design,

then, allows fully pipelined microinstruction ex-

ecution, with data and control operations over-

lapped.

306 THE PDP-11 FAMILY

Microinstruction Repertoire. Using the ac-

cepted distinction between horizontal (unen-

coded) and vertical (highly encoded) micro-

order codes, the LSI-1 1 may be classified as an

extremely vertical machine. In fact, the micro-

instruction set strongly resembles the PDP-11
code it emulates; the two differ largely in ad-

dressing modes, not in primitive operations.

(Microinstruction formats are depicted in Fig-
ure 3, while a number of operation codes are

tabulated in Table 3.) This similarity of instruc-

tion sets is not accidental; while general-pur-

pose emulation machines have a place, a

micromachine designed with the macro order

code in mind usually offers better performance.
Thus while many operations are general pur-

pose, like Add, Subtract, Compare, Decrement,

And, Test, Or, Exclusive-Or, etc., others serve

primarily in the emulation of the macrolevel

PDP-11 instruction set, such as Read and In-

crement Word By 2 and so on. I/O primitives

OP

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-1 1 307

The 4 Kword memory on board the CPU
module consists of sixteen 4 K dynamic n-chan-

nel random-access memories (RAMs). This

memory is implemented so as to logically ap-

pear on the external LSI- 11 bus, while being

Tables. Some LSI-1 1 Microinstructions

Arithmetic Operations
Add Word (byte, literal)

Test word (byte, literal)

Increment word (byte) by 1

Increment word (byte) by 2

Negate word (byte)

Conditionally increment (decrement) byte

Contitionally add word (byte)

Add word (byte) with carry

Conditionally add digits

Subtract word (byte)

Compare word (byte, literal)

Subtract word (byte) with carry

Decrement word (byte) by 1

Logical Operations
And word (byte, literal)

Test word (byte)

Or word (byte)

Exclusive-Or word (byte)

Bit clear word (byte)

Shift word (byte) right (left) with (without) carry

Complement word (byte)

General Operations
MOV word (byte)

Jump
Return

Conditional jump
Set (reset) flags

Copy (load) condition flags

Load G low

Conditionally MOV word (byte)

Input/Output Operations

Input word (byte)

Input status word (byte)

Read

Write

Read (write) and increment word (byte) by 1

Read (write) and increment word (byte) by 2

Read (write) acknowledge
Output word (byte, status)

physically resident on the CPU module. Acces-

sibility to the bus allows external Direct Mem-
ory Access (DMA) transfers to take place to

and from the basic 4-Kword memory. Further-

more, an optional jumper allows the CPU mod-
ule memory to occupy either the first or second

4 K block of the bus address space. That is, it

may respond to address 000000-017776 or

020000-037776 as desired.

Available Memory Options. The LSI-1 1

macromemory is available in several forms;

these include semiconductor random-access

memories (RAM), ROM (or PROM), and mag-
netic core.

Both static and dynamic semiconductor

memories are available. The MSVll-A is a

1024-word static RAM, packaged on a double-

height (21.6 cm X 12.7 cm) module. It may be

used when dynamic memory is not desired. The
MSVll-B is a 4-Kword dynamic memory,
again packaged on one double-height module.

The availability of automatic memory refresh

(discussed in a later section) will in many cases

make the dynamic memory a more attractive al-

ternative than core or static semiconductor

RAM.

The use of a ROM for program storage is of-

ten desirable; not only is the program safe from

unintentional modification, but no external de-

vice is needed to load the system each time it is

started. The LSI-1 1 instruction set is well suited

to ROM program storage, since program and

data are easily separable. To take advantage of

this, the LSI-1 1 series includes a ROM module

(designated the MRVll-AA); either a masked
ROM or a programmable ROM (PROM) may
be used. This memory uses standard 256 X 4 or

512X4 ROM or PROM chips, to a maximum
of 2 Kwords or 4 Kwords depending on the

chips employed. Programmable ROMs may be

used for program development, and less expen-
sive masked ROMs substituted for production
use.

308 THE PDP-11 FAMILY

For applications that require nonvolatile

READ/WRITE memory, a 4-Kword core

memory (the MMVll-A) is available. This

memory occupies two quad-height modules,

and must overhang the last slot in a backplane
unit.

THE USER'S OUTLOOK

Interfacing to the LSI-11

The LSI-11 Bus. The LSI-11 bus (Table 4)

serves as the link between the processor, mem-

ory, and peripheral devices. Narrower (in terms

of the number of signal lines) than some other

minicomputer buses, it was designed to allow

low cost peripheral interfaces for micro-

computer applications, rather than to support

the wide range of peripheral configurations

common in large minicomputer systems. The

wider PDP-11 Unibus, for example, is better

suited to larger systems in which CPU and

interconnection comprise a smaller part of the

total system cost.

To reduce the number of bus signals, sixteen

bidirectional lines (BDAL 00:15) are time-

multiplexed between data and address. Trans-

fers on these lines are sequenced by several con-

trol lines. BSYNC signals that a bus transaction

is in progress and clocks address decoding logic;

BDIN and BDOUT request input and output

transfers, respectively; BWTBT is used to dis-

tinguish word and byte output transfers;

BRPLY is returned by the bus slave when data

is ready or has been accepted. A special address

line, BBS7, indicates that the bus address is in

the range of 28 K-32 K; this simplifies periph-

eral device design by indicating that the "I/O

page" is being addressed.

Two bus signals, BIRQ and BIAK, are used

to control processor interrupts. An interrupting

device asserts BIRQ and waits for an interrupt

transaction from the CPU. When the proper

Table 4. The LSI-11 Bus

Bus Signal

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-1 1 309

conditions have been met, the CPU, which re-

mains bus master, strobes the interrupting de-

vices by asserting BIAK. During this bus cycle,

BIAK is "daisy-chained" through all peripher-

als, allowing priority arbitration to take place.

The selected device then places an interrupt vec-

tor address on the bus and returns BRPLY, ter-

minating the transaction. In a similar manner,

BDMR, BDMG, and BSACK are used to con-

trol requests for direct memory access transac-

tions by other peripherals desiring to become
bus master. The lines BINIT, BPOK, and

BDCOK are used for system reset and power-

fail/restart.

Three other bus lines perform additional sys-

tem functions; these are BREF, BHALT, and

BEVNT. BHALT is used to stop PDP-1 1 emu-

lation and enter console mode; BREF and

BEVNT are used for microcode refresh of dy-

namic memories and real-time clock operation,
to be discussed in a later section.

Standard Modules. To assist the system

designer, the LSI-1 1 series includes several

standard interface modules. Currently available

are both serial and parallel I/O interfaces. The
DLV-11 handles a single asynchronous serial

line at speeds of 50-9600 baud, while the DRV-
1 1 provides a full 16-bit parallel interface com-

plete with two interrupt control units. The
DRV-1 1 is completely compatible with the DR-
IIC interface used with other PDP-1 Is. In or-

der to facilitate program loading when volatile

memory is used, a flexible disk drive and inter-

face is also available. This unit, the RXV-11,

employs industry-standard media and format-

ting.

An Interfacing Example. The design of a

simple interface to the LSI-1 1 system is pictured
in Figure 4. Here, the problem is to interface an

analog-to-digital (A/D) converter and a four-

digit light-emitting-diode (LED) display. The

A/D converter is presumed to have a resolution

of 8-16 bits, and the LED display is driven as

four binary-coded-decimal (BCD) digits of four

/\ CSRO START CONVERSION

Cv """^

\7

A/D
CONV

INT REQ A-EOC

INT REQ B-PUSHBUTTON

Figure 4. An interfacing example.

bits each. To simplify the design further, the

standard DRV-1 1 parallel interface module is

employed.
On the input side, the data lines from the

A/D converter are connected to the input lines

(INOO: 1 5) of the DRV- 1 1
,
and the End-of-Con-

version signal (EOC) from the A/D is fed to

one of the interface's interrupt request lines

(INT REQ A). If the processor enables the in-

terrupt control in the interface, the EOC signal

will now cause an interrupt, and the CPU may
read in the data. To initiate sampling of the

analog input signal, a control line (Start Con-

version) is needed; this is controlled by an out-

put line (CSRO) from the DRV-1 1.

On the output side, the data lines (OUT
00:15) from the DRV-1 1 are fed directly to the

seven-segment decoder drivers which control

the LED displays. The processor may then

write out a single 16-bit word containing four

BCD digits, and the data will appear in the dis-

play. Since a second interrupt input (INT REQ
B) is available, an operator pushbutton is con-

nected to this line; by interrupting the proces-

sor, the user may request a new sample from the

A/D converter or perform some other function.

To aid the designer in applying the LSI-1 1,

detailed interfacing information is available

[DEC, 1975a; DEC, 1975b]; these manuals

cover both the standard interface modules and

310 THE PDP-11 FAMILY

the methods used to interface directly to the

LSI-1 1 Bus (Figure 5). In most cases, peripheral

interface design is a little simpler than in the

case of the traditional PDP-1 1 Unibus.

Special Features

Several special features of value in low cost

systems have been implemented in the LSI-1 1

microcode. These include an ASCII console, a

real-time clock, an automatic dynamic memory
refresh, flexible power-up options, and internal

maintenance features.

ASCII Console. The LSI-1 1 ASCII console

serves to replace the conventional "lights and

switches" front panel often associated with

minicomputer operation. The ASCII console

functions with a standard terminal device which

communicates over a serial or parallel link at

any desired rate. The available functions are

very similar to those of PDP-1 1 octal debugging

technique (ODT), which is familiar to users of

other PDP-11 systems. These include exam-
ination and alteration of the contents of mem-
ory and processor registers, calculation of

effective addresses for PC-relative and indirect

addressing, and the control functions of Halt,

Single-Step, Continue, and Restart. Internal

processor registers are also accessible, making
possible a determination of the type of entry to

the console routines (Halt instruction, etc.).

The advantages of the ASCII console include

low cost, remote diagnostic capability, and

high-level operator interface. The user retains

all the direct hardware control of a conven-

tional front panel, while being freed from
tedious switch register operation. This use of

the terminal device in no way conflicts with its

Figure 5. The LSI-1 1 series contains the LSI-1 1 CPU (center), together with parallel and
serial interfaces, and RAM and ROM memory modules. These modules may be housed in a

backplane assembly, connected by the LSI-1 1 bus.

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-1 1 31 1

normal use by the program being debugged.
The ASCII console routines also allow the user

to boot load from a specified device in a byte

transfer mode. All together, the ASCII console

routines occupy about 340 words of microcode;

since this space is available in the second

MICROM, the console functions are made pos-

sible at no extra cost.

Real-Time Clock. Many low-end con-

figurations require a real-time clock, driven by
the power-line frequency or other timing signal,

which is normally implemented with external

control logic. To save this expense, such a de-

vice has been programmed into the LSI-1 1 pro-

cessor microcode. To use this clock, the user

need only connect the timing signal to the pro-
cessor through the bus line BEVNT. Once con-

nected, this clock is identical to the KW-llL
line clock when used in an interrupt mode, ex-

cept that it may not be turned on and off. An
optional jumper disables the real-time clock if

its operation is not desired.

Automatic Dynamic Memory Refresh.

One disadvantage of using dynamic MOS mem-
ories is the necessity of refreshing their contents

at appropriate intervals. This refresh operation
is needed to replace the stored charge in each

memory cell which has been lost through leak-

age current. In typical dynamic MOS memo-
ries, each cell must be refreshed every 2

milliseconds. Most dynamic memories are im-

plemented in such a way that any normal mem-

ory access refreshes a group of cells (or "row")
on all selected memory chips. One access must
then be made to each row of every memory
chip; the 4 K memories used in the LSI- 11 sys-

tem require that 64 accesses be made. Nor-

mally, the logic to control the refresh operation
would include a 6-bit counter, a clock, and

memory access arbitration circuitry.

In order to minimize this control circuitry,

the LSI-1 1 CPU microcode features automatic

refresh control. When enabled by an optional

jumper, the CPU takes a refresh trap approx-

imately every 1.6 ms. At this time, it performs

64 memory references while asserting a special

bus signal, BREF. This signals all dynamic
memories to cycle at the same time. Direct

Memory Access (DMA) requests are arbitrated

between bus refresh cycles to reduce DMA
latency. External interrupts, however, are

locked out during the burst refresh time, tempo-

rarily increasing interrupt latency. (When this

latency can not be tolerated, external refresh

circuitry can drive the bus and assert BREF, al-

lowing use of either refresh method with the

same memory modules.) The automatic refresh

feature is not needed, of course, in systems
without dynamic memories.

Power-Fail/Restart Options. The flex-

ibility of the LSI-1 1 system is further enhanced

by the availability of several power-fail/restart

options. The power-fail sequence, which is nor-

mally of use only with nonvolatile main mem-

ory, is compatible with other members of the

PDP-11 family. Upon sensing a warning signal

from the power supply, the power-fail trap is

taken. The current PSW and PC are pushed on

the processor stack, and a new PC and PSW are

taken from a vector at octal location 24. Nor-

mally, the routine thus invoked would save pro-
cessor registers, set up a restart routine, and

HALT. When volatile memory is used, the reg-

ister may not be saved; in this case, the power-
fail trap allows an orderly system shut-down to

occur.

Four power-up options are selected by two

jumpers on the LSI-1 1 CPU module. The first

of these is to load a previously set-up PSW and

PC from the vector at location 24. Normally
used with nonvolatile memory to continue

execution from the power-fail point, this option
is compatible with the normal PDP-11 power-

up sequence. If ROM program storage is

employed, this option allows the program to be

started at an arbitrary address. If the BHALT
line on the bus (the HALT switch) is asserted

during this power-up sequence, the console

microcode will be entered immediately after

loading the PSW and PC.

312 THE PDP-11 FAMILY

The second power-up option causes an un-

conditional entry to the ASCII console rou-

tines. This allows remote system startup
without the necessity of controlling the bus Halt

line. The processor may then be started, as

usual, by an ASCII console command.
The last two options allow program execu-

tion to begin at a specified address in either

macrocode or microcode. Option three sets the

macro PC to 173 000 octal and starts normal

execution. Option four causes a jump to micro-

code location 3002 octal, in the fourth

MICROM page. Here, the CPU expects to find

a user-written microcode routine to perform a

special power-up sequence. The state of the

BHALT line is not checked in this last case until

the execution of the first macrocode instruction

is completed.

The Maintenance Instruction. For ease in

hardware checkout, a special maintenance in-

struction is included in the LSI- 11 repertoire.

This instruction stores the contents of five inter-

nal registers in a specified block in the main

memory. The information may then be used by
a diagnostic program to probe the internal op-
eration of the microlevel processor.

The LSI-11 as a Member of the PDP-11
Family

Upward Compatibility. Because the basic

instruction set of the LSI-1 1 processor is that of

the entire PDP-11 family, the user has an ex-

tremely large range of compatible processing

systems at his disposal. This range extends from

the LSI-1 1 on the low end to the PDP-1 1/70 on
the high end. The consistency of the instruction

set provides economies in training and docu-

mentation costs, as well as the ability to carry

specific application programs, or even complete

operating systems, from one family member to

another. Thus, a user currently employing a

small PDP-11, like the PDP-1 1/05, can easily

convert to the low cost LSI-1 1 without losing a

past investment in software development. This

compatibility also eases the program devel-

opment problems often associated with micro-

computer systems; assembly, compilation, and

initial debugging may be done on any PDP-11

system, with the generated code loaded into an

LSI-11 system for testing and final debug.

Through the use of the LSI-1 1 ASCII console, a

central PDP-1 1 system may initialize, load, and
start up a remote LSI-11 system over an asyn-
chronous serial line or other link.

Software Support. Other members of the

PDP-11 family, beginning with the Model 20

(Chapter 9), have been in service for some time.

Thus the system designer has at immediate

hand a large number of language processors,

utility routines, and application programs.

Many of these programs will run with little or

no modification on an LSI-11 system. This ex-

isting library of software provides the user with

a head start in the application of micro-

computers, at little or no development cost.

Network Capability. Since the LSI-11

shares a common set of data-types and file

structures with other PDP-11 systems, many
communication problems disappear. When
linked through line protocols such as DDCMP
(digital data communications message protocol

[DEC, 1974; DEC, 1974a]), LSI-1 Is may ex-

change programs and files with other PDP-lls
without adjustments for differing word sizes,

operating systems, file structures, etc. This fact

makes the LSI-1 1 the ideal choice for a network

node processor. Used with distributed pro-

gramming systems such as RSX-11, RSTS, or

RT-11, the individual LSI-11 processors may
not even require their own mass storage devices,

but rather share those of other network nodes.

A monitoring network might then consist of a

large central PDP-11 with disks, magnetic tape

units, and other peripherals, together with sev-

eral remote LSI-1 Is which would directly con-

trol transducers and communication lines. Yet,

even in such a functionally differentiated sys-

tem, all processors would be homogeneous in

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 313

instruction set; the distributed nature of the net-

work need not even be visible to the user.

SUMMARY

The LSI-1 1, then, is the first of a new class of

microcomputers and offers the user most of the

advantages of a full-blown minicomputer at a

significantly lower cost. It is, in fact, the first

member of the PDP-1 1 family ever offered as a

single-board component to original equipment
manufacturers and others. Gaining power and

flexibility from its microprogrammed design,

the LSI-1 1 provides a number of important sys-

tem features not yet found in other LSI micro-

computers. With its minicomputer-compatible
instruction set, the LSI-11 offers a new level of

microcomputer accessibility and ease of use.

Whether seen as low-end minicomputers or

high-end microcomputers, machines like the

LSI-1 1 serve to bridge the gap which has sepa-

rated minicomputer performance and conven-

ience from microcomputer economy and

flexibility.

And so, the computer revolution continues;

from the maxi to the mini to the micro, the

number and breadth of computer applications

continue to grow. The DEC LSI-11, a micro-

programmed minicomputer-compatible micro-

computer system, contributes to this growth.
The LSI-1 1 is an important step in this contin-

uing evolution; it will certainly not be the last.

For both designers and users of this new gener-

ation of computer systems, there remain many
interesting days ahead.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to

the many people who helped in the peparation
and review of this paper, especially S. Teicher,

M. Titelbaum. D. Dickhut, R. Olsen, and R.

Eckhouse.

Design Decisions for the

PDP-11/60 Mid-Range Minicomputer
J. CRAIG MUDGE

INTRODUCTION

Design evolution of a minicomputer family

usually proceeds along three basic dimensions:

cost, functionality, and size. That is, the mini-

computer becomes cheaper, more powerful,
and smaller with time. The underlying hard-

ware technology is the dominant factor in deter-

mining the evolution. In contrast to the

evolution of large computers, market factors

have less influence on the growth pattern of

minicomputers. However, minicomputer soft-

ware characteristics are affected by the market.

These requirements rapidly feed down to mod-

ify the hardware, given that the technology will

support user needs.

The DEC PDP- 11/60 serves to demonstrate

minicomputer designing with improved tech-

nologies. Being a mid-range machine, i.e., nei-

ther the lowest in cost nor the highest in

performance, its design is a rich source of

tradeoff examples. Its cache design illustrates a

price/performance trade; the decreasing cost of

read-only memories (ROMs) show how
hardware-microcode tradeoffs change over

time, and its integral floating-point arithmetic

unit exemplifies a software-hardware tradeoff.

DESIGN STYLES

Equipment history reveals that a member is

added to a minicomputer family whenever tech-

nology advances by a factor of 2; for example,

doubling of bit density on a memory chip. Over

the past 15 years, such an improvement has oc-

curred about every two years.

These advances in technology can be trans-

lated into either of two fundamentally different

design styles. One provides essentially constant

functionality at a minimal price (which de-

creases over time); the second keeps cost con-

stant and increases functionality. (Here, and in

the discussion to follow, the definition of func-

tionality has been broadened from its conven-

tional single component, speed, to include

components such as extended instructions and

self-checking.) Both design approaches coordi-

nate with the basic marketing philosophy of the

minicomputer industry: more computation for

more users at less cost. There have been ten

models, or implementations, of the PDP-11 ar-

chitecture since the unit was introduced in 1970

(Chapter 9). Figure 1 illustrates how the two de-

sign styles affected successive implementations
within this minicomputer family.

315

316 THE PDP-11 FAMILY

CONSTANT COST,
INCREASING FUNCTIONALITY-

CONSTANT FUNCTIONALITY,,
DECREASING COST

Figure 1 . Minicomputer family evolution. Advances in

technology translate into two design styles: constant

cost/increasing functionality and constant function-

ality/decreasing cost. The PDP-1 1/60 represents former

design style. Functionality added to PDP-11/40 is de-

picted by shaded area. Tradeoffs discussed occur within

this area.

PRIMARY
MEMORY

DESIGN DECISIONS FOR THE PDP-1 1/60 MID-RANGE MINICOMPUTERS 317

velopments. Memory is the most basic com-

ponent of a computer, and it is utilized

throughout the design. In addition to obvious

uses as main program and data memory, and as

file storage devices (disks and tapes), m.emory is

also located within the central processor in the

form of registers, state indicators, control, and

buffer storage between the central processor
and main (primary) memory. In input/output

(I/O) devices, there are buffers and staging

areas. Memory can be substituted for nearly all

logic by substituting table lookup for com-

putation.

The constantly increasing bit density men-

tioned previously has been the most dramatic

development in memories. For example, bi-

polar read-write or random-access memory
(RAM) chips have advanced as follows.

Year When First

318 THE PDP-11 FAMILY

more economical to use in a design. Both of

these curves are moving downward in cost with

time, but the curve for microprogrammed con-

trols is moving downward at a faster rate. Thus,

the intersection point of the two curves is grad-

ually shifting in favor of microprogrammed
controls because the two technologies are mov-

ing at different rates. The PDP-1 1 family offers

an example of this trend. At the time the 11 /20
was designed, the crossover point was to the

right of the PDP-11 instruction set on the ab-

scissa. Hence, the 11/20 used hardwired con-

trols. However, all subsequent implementations
have used a ROM-controlled micro-

programmed processor. O'Loughlin [1975] con-

trasts the control implementations of four

members of the family.

Instruction decode on the 1 1/60 provides an

example of a different use of ROMs. For the

secondary decode (the primary is done by com-

binational logic), part of the instruction register

addresses a ROM in which control-store-

address offsets are stored. This data-table ap-

proach offers both a component saving and a

more systematic design. Another example is a

ROM-stored table that inspects memory ad-

dresses to detect those that refer to locations in-

ternal to the processor.

Other advances in semiconductor technology

that have affected the minicomputer designer's

task include the development of 3-state logic de-

vices and greater levels of gate integration in

logic chips. Widely available in 1975, 3-state

logic encourages bus-oriented designs. Six 3-

state buses are implemented in the 11/60.

Examples are the 48-bit-wide control signal bus

in the CPU and the 60-bit-wide fraction data

and 10-bit-wide exponent data buses in the

floating-point processor.

Increased gate integration in logic chips had

its major impact on constant-cost mini-

computers when the design evolution moved
from the 1 1/20 to the 1 1/40. The latter machine

made heavy use of medium-scale integration

(MSI). The MSI available to 11/60 designers

had negligible density gains over that available

to the 1 1/40 designers. However, after the basic

technology decision for the 11/60 was made, a

significant step in gate integration occurred.

The bit-slice technology, as typified by the 4-

bit-wide bipolar AM2901 microprocessor slice,

became widely available. A 1977 technology de-

cision for a mid-range minicomputer would

clearly choose bit-slice components. For the

11/60, however, improvements came from the

introduction of 3-state logic and from avail-

ability of a wider range of Schottky logic com-

ponents.

Three semiconductor technology advances

contributed to the 1 1/60 price/performance de-

sign in differing degrees. Most important was

the cost reduction in ROMs, next was the den-

sity improvement in RAMs, and third was the

(minor) increase in random logic density.

PRICE/PERFORMANCE BALANCE
Two components, the cache memory and the

medium-bandwidth I/O structure, demonstrate

the price/performance balance characteristic of

the 1 1/60 mid-range minicomputer.
Cache is now a well-proven technique in

computer memory implementation. Its purpose
is to achieve the effect of an all-high-speed

memory by using two memories - one slow

(primary) and one fast (cache)
- and by taking

advantage of the fact that, most of the time,

data being used is in the fast or cache memory.

Programs typically have the property of local-

ity; that is, over short periods of time, most ac-

cesses are to a small number of memory
locations. The hardware algorithm managing
the cache attempts to keep copies of these loca-

tions in the cache. The term "hit ratio" is used

to describe the proportion of requests for data

or instructions that are satisfied by reference

only to the cache. Alternatively, "miss ratio" is

the complement of hit ratio. Performance is de-

termined by the hit ratio, which is a function of

several cache organizational parameters, in-

cluding: (1) cache size, (2) block size (amount of

DESIGN DECISIONS FOR THE PDP-1 1/60 MID-RANGE MINICOMPUTERS 319

data moved between the slow or primary mem-

ory and the cache), and (3) form of address

comparison used.

Strecker (Chapter 10) describes the research

that led to the use of a cache memory in the

1 1/70. His simulation models were also used in

the 1 1/60 design. By comparing the designs of

these machines, several tradeoffs made to ob-

tain a lower cost memory system appropriate to

the mid-range 11/60 can be noted.

The first parameter to be determined was the

amount of data to be moved between primary

memory and cache. This decision was closely

related to the width of the internal memory bus

connecting I/O devices to primary memory.
Since the 1 1/70 was planned to support several

high speed Direct Memory Access (DMA) de-

vices, (e.g., swapping disks operating con-

currently), its designers provided a 32-bit bus to

memory to supplement the 16-bit-wide Unibus.

Because the target 11/60 users do not require

such a large I/O bandwidth, the Unibus is used

for DMA traffic. The 11/70 cache has a block

size of two 16-bit words and transfers 32 bits

from memory to cache across its dedicated

memory bus. Since the 11/60 uses the 16-bit

Unibus as its memory bus, the simplest block

size - one 16-bit word - was chosen. Note that a

2-word block size can be achieved with a 16-bit

bus; the bus is cycled twice to effect a 2-word

transfer. Cache simulations showed that this

bus cycling would raise the hit ratio of the

1 1/60 from 87 to 92 percent. However, the asso-

ciated performance gain was judged not to be

worth the significant added cost of the extra

control logic needed to cycle the bus twice.

The next decision concerned the size of the

cache. Simulation results showed that the miss

ratio decreases rapidly for cache sizes up to

1024 words and less rapidly for larger sizes. But

how should the 1024 words be partitioned? Be-

cause a full-associative cache requires an expen-

sive content-addressed memory, the

partitioning choice for minicomputers is for a

set-associative cache. Since a complete dis-

cussion of associativity and replacement is be-

yond the scope of this article, the reader is

referred to the papers by Meade [1971] and

Strecker (Chapter 10).

Degree of associativity and total cache size

was dominated by the form factors of two can-

didate RAM chips (256 X 1 and 1024 X 1).

These factors are illustrated in Figure 4. The

following list shows the clear price/

performance advantage of the chosen 1024-

word, set-size-of-one cache.

RAM

320 THE PDP-11 FAMILY

TAG

DESIGN DECISIONS FOR THE PDP-1 1/60 MID-RANGE MINICOMPUTERS 321

of the 32-bit bus, (2) simpler cache organiza-

tion, and (3) semiconductor technology ad-

vances. These three factors contributed in

approximately equal proportions.

FREQUENCY-DRIVEN DESIGN

Because the 11 /60 implemented a stable, ma-

ture instruction set, several years of program-

ming experience were incorporated into the

system design. A simulator program was used

to gather execution statistics on a range of pro-

grams. Frequency distributions of operation

codes and addressing modes drove the design of

the base 1 1/60 and the floating-point processor

option.

Functions implemented in hardware, as

opposed to microcode, require less time to

execute. However, microprogrammed imple-

mentations are less expensive, as shown in

Figure 3. Frequency distributions of operation

codes guided the tradeoff. A balanced mixture

of hardwired and microprogrammed implemen-
tation of functions produced a central processor

that approached the speed of a computer with

completely hardwired control functions, but at

a lower cost.

Frequency distributions of floating-point

operands were also used. Sweeney [1965]

analyzed the execution of more than one mil-

lion floating-point additions and tabulated the

behavior of preshift alignment and postshift

normalization. Both distributions are highly

skewed toward low numbers of shifts. By ex-

ploiting these data, the floating-point processor

performs a double-precision add in 1 .02 micro-

seconds as compared with 1.68 microseconds

on a comparable unit that uses a conventional

algorithm.

To measure the price/performance advan-

tage claimed for the frequency-driven design

approach in the base 11/60, a similar machine

was needed for comparison. Obviously, such a

machine, realized in the same semiconductor

technology and designed so that the hardware

resources were divided equally among all in-

structions, was not available. However, data

was available on floating-point implementa-
tions. The floating-point processor design was a

four printed circuit board unit that exploited

the frequency distributions of operation codes,

addressing modes, and shift amounts. A theo-

retical comparison was made with another four

board design that did not use a frequency-

driven approach. The 1 1/60 floating-point pro-

cessor was estimated to exhibit a performance

gain of 30 to 40 percent on the standard set of

benchmark programs used throughout the de-

sign process.

INTEGRAL FLOATING-POINT
ARITHMETIC UNIT

Addition of an integral floating-point arith-

metic unit to the 11/60 was a direct con-

sequence of market feedback. In particular, it

was determined that the majority of the

machine's users would use FORTRAN IV as a

source language. In addition, among those

using that language, many were not interested

in heavy floating-point computation because in-

teger arithmetic dominated their applications.

The FORTRAN IV-PLUS compiler has been

optimized for execution speed (as opposed to

compile speed)
-
typically a factor of three over

other available FORTRAN IV compilers. This

compiler, however, employs the instruction set

and auxiliary registers of the PDP-11 floating-

point processors. Thus, to take advantage of the

compiler's efficiency without burdening the

user with the cost of a fast floating-point pro-

cessor, the central processor must provide those

floating-point instructions. This is done by

emulating the 46 instructions, including the 64-

bit data operations, of the full floating-point in-

struction set using the 16-bit-wide data path of

the base 11/60. For users who require
FORTRAN IV but have low floating-point

content in their programs, the integral floating-

point unit is all that is necessary.

322 THE PDP-11 FAMILY

Additional microcode and register space
added a few percent to the CPU cost. However,
for that small cost increase, FORTRAN IV per-

formance on integer programs was increased by
300 percent

- a dramatic increase.

CABINET-LEVEL INTEGRATION

Physical packaging of minicomputer systems
involves another set of tradeoffs. Several levels

of size integration are available, ranging from

the chip level (LSI- 1 1), through the board level

(1 1/04) and the box level (1 1/34), to the cabinet

level (11/60).

At the cabinet level, packaging techniques are

generally traditional. System fabrication is fre-

quently the result of determining methods to in-

stall subassemblies into standard racks. At this

configuration level, generalized subassembHes

are usually chosen for certain functions.

This generally evokes a cost. For instance,

there may be a great deal of unused space in

conventional industrial racks; in most cases this

excess space is simply covered with blank panel-

ing. The cooling system, however, must be de-

signed as if all the racks within the cabinet were

occupied with subassemblies.

It was projected that the majority of the con-

figurations sold would be system oriented; thus,

design optimization at the cabinet level would

be worthwhile. Therefore, the standard 1 1/60 is

cabinet packaged. Figure 6 shows how the

CPU, memory, disk units, power supplies, and

expansion backplane are packaged to gain the

advantages that stem from cabinet level in-

tegration. This integration also yielded added

volume, allowing a more powerful blower sys-

tem to be installed. Acoustic sound power emit-

tance is very low, considering that the rated

operating environment is DEC Standard 102

Class C (122° F) for the processor. Improved

power efficiency, appearance for the office envi-

ronment, and subassembly accessibility are also

provided.

USER MICROPROGRAMMING OPTION

User microprogramming was incorporated in

the system to meet growing market demands.

The option allows the user to create instructions

that tailor the central processor, particularly the

data flow, to his particular application.

Many potential applications of micro-

programming were considered during the de-

sign of the data path and control sections of the

1 1/60. They ranged from instruction set exten-

sions, e.g., translation, string, and decimal

arithmetic operations, to application kernels,

such as node manipulation in Hst processing

and fast Fourier transform in signal processing.

Merely substituting RAM for ROM control

LEGEND:
A - DISK DRIVES
B - MAINTENANCE CONSOLE
C - CARD CAGE SWUNG INTO MAINTENANCE-ACCESS POSITION
D - CARD CAGE IN CLOSED POSITION
E - REAR ACCESS MODULAR POWER SUPPLIES
F - BLOWER SYSTEM

Figure 6. Cabinet packaging. Primary design goals

were reliability and maintainability. System logic is

mounted on swing-out card cages C and D for easy ac-

cess. Rear access power supplies E are modular. Cable

routing reduces electrical noise and crosstalk. Blower

system F keeps all devices cool. Keypad B with numer-

ical display facilitates machine control and maintenance.

Disks A are top- or front-loading units.

DESIGN DECISIONS FOR THE PDP-1 1/60 MID-RANGE MINICOMPUTERS 323

does not result in a microprogrammable com-

puter. A microprogrammable computer system
should have the following:

1 . Extra address space in the control store.

2. Generality in the data path's processing
elements.

3. A means to load the writable control

store (WCS).
4. User-oriented hardware documentation.

5. Software to support writing and debug-

ging microprograms.
6. Integration of hardware and software

protocols.

All these capabilities were designed into the

11/60 WCS option.

A previously reserved operation code,
0767XX in the PDP-1 1 instruction set, has been

allocated for users. Its designation is XFC, ex-

tended function code. When this code is recog-

nized, the CPU transfers control to the upper
1024-word block of the 4096-word micro-

program address space. User-written microcode

may take over from there.

A second (asynchronous) type of entry to

user's microcode is also provided. This occurs

when a WCS-serviced interrupt is recognized by
the base machine. Thus, a user can write inter-

rupt service routines in microcode and invoke

them without the usual inerrupt overhead. Such
routines may even be complete I/O channel

emulations.

Implementation of the basic 11/60 demon-
strated flexibility of microprogramming. The

techniques were used in such diverse functions

as console service, error logging, floating-point

arithmetic, and cache initialization.

Microprogramming does not always result in

significant performance gains. Well-suited ap-

plications can gain by a factor of 5; poorly
suited ones may give only minimal improve-
ment. This is supported by measurements on

digital signal processing software reported by
Morris and Mudge [1977]. Prospective users

must carefully analyze the execution behavior

of the application to determine which parts are

"hot spots," i.e., most frequently executed. For

the average application, an overall factor of 2

improvement should be expected. This average,

found to be a useful rule of thumb, is derived by

assuming that all hot spots are micro-

programmed and the remainder of the program
is left unchanged.
Two user-microprogramming options are

available. The first is composed of the writable

control store module, software tools, and asso-

ciated manuals. The second is a board contain-

ing control logic and sockets ready for the

insertion of custom-programmable ROMs
(PROMs) containing microprograms developed
with the writable control store. This extended

control store (ECS) option is designed for situa-

tions where microcode integrity and/or mul-

tiple installations are required.

A novel structuring of the writable control

store allows it to be used to store data. Avail-

ability of data storage local to a processor, i.e.,

not accessed through a main, general purpose

memory bus, can increase system speed. Such

local store is usually implemented in some spe-

cial technology that has low capacity but high

performance. Writable control store has been

structured so that the 48-bit microinstruction

storage words can be read and written as 16-bit

data words. In addition to conventional writ-

able control store hardware, logic is available to

realize a local store address register (LSAR)
and a local store data register (LSDR).

Thus, the microprogrammer has fast local

store available. This storage is block-oriented.

A three-cycle overhead is needed to start a

block read (or block write); then, words are

read (or written) at the rate of one per micro-

cycle. The microprogram can be logically parti-

tioned into two sections: control store - 48-bit

control words; and local store - 16-bit data

words (three per microword). A common parti-

tioning would be 512 words of control store and
1536 words of local store.

324 THE PDP-11 FAMILY

RELIABILITY AND MAINTAINABILITY

Design decisions to allocate a portion of the

cost of the 1 1/60 to reliability and maintainabil-

ity, rather than to further improving perfor-

mance, were motivated by user and market

needs. Prime considerations were the increasing

labor cost associated with maintenance and the

growing use of minicomputers in applications

demanding more reliability.

The first goal was to increase the mean time

between failures (MTBF) by: (1) reducing the

occurrence and impact of normally fatal hard-

ware malfunctions, (2) providing error statis-

tics, and (3) providing operating alternatives to

keep the system running after failures occur, al-

beit at a lower performance.
The second goal was to reduce the mean time

to repair (MTTR) when hardware malfunctions

occur by: (1) hardware design and packaging
that facilitate error diagnosis and repair during
scheduled and nonscheduled maintenance, (2)

continuous logging of hardware errors during

system operation, and (3) provision of software

and microdiagnostic tools for problem isola-

tion.

MTBF

Reducing the incidence of fatal hardware

malfunctions was a joint effort by engineering
and manufacturing. The Schottky transistor-

transistor logic (TTL) used in the machine, hav-

ing been in widespread use for over five years, is

a well proven family of devices. Moreover, con-

servative electrical design practices were fol-

lowed.

Plotted against time, chip failure rate tends to

follow a bathtub-shaped curve, high at either

end of the life cycle. The 1 1/60 production pro
cess includes extensive thermal cycling to ensure

that "infant mortality" cases are discovered

early during manufacturing.
The cabinet is designed to minimize buildup

of hot air over the processor boards. Power sup-

plies are mounted at the rear of the cabinet,

away from the logic, so that radiant heating ef-

fects are minimized. A blower system cools the

logic card cage by drawing fresh, filtered air

down over the printed circuit boards such that

no board receives exhaust air from another.

Other physical packaging to reduce hardware

problems include cable troughs, impact-

absorbing casters, and special cabinet ground-

ing. A filter is attached to the maintenance con-

sole to reduce electrostatic noise interference.

Console microcode double checks every entry
to verify data received from the keypad. A sig-

nificant proportion of the 11/60 microcode

(Table 1) is devoted to logging microlevel state

upon the occurrence of a detected error. This

logged state can be accessed via a maintenance

examine and deposit (MED) instruction. Log-

ged information is used by an operating system
to compile error records, which aid in tracking
down intermittent errors.

To reduce the impact of hardware malfunc-

tions on the user environment, a number of fail-

soft capabilities have been implemented.

1 . If the cache fails, it is turned off and the

still-functioning primary memory is used

to keep the system running.
2. If a parity error occurs in WCS, the pro-

cessor disables that control store. Then
the operating system is notified, and pro-

gram execution can continue using the

basic PDP-11 instructions.

3. Systems can be programmed to fall back

onto the integral floating-point unit if an

error is detected in the floating-point

processor.

4. The bootstrap loader permits system

loading from an alternative device if the

primary bootstrapping device is dis-

abled.

MTTR

Error diagnosis is the most time-consuming

problem facing the field service engineer. Spe-

cial diagnostic tools, both hardware and soft-

ware, have been designed to reduce the time

spent in error isolation.

DESIGN DECISIONS FOR THE PDP-1 1/60 MID-RANGE MINICOMPUTERS 325

Table 1. Control Store Usage by Category

326 THE PDP-11 FAMILY

microaddress register, a single-step mode, and a

microbreak function.

Software diagnostic programs are used to

diagnose errors in system peripherals as well as

in all CPU subsystems, such as memory man-

agement unit and cache. User mode diagnostic

programs allow peripheral diagnosis to occur

while the system is available for other users.

Conventional standalone diagnostic programs
can also be used.

Physical packaging facilitates quick repair.

Hinged card cages and modular power supplies

allow easy access and module change.

SUMMARY
The design of a mid-range minicomputer has

been used as a concrete illustration of tradeoffs

made to effect a price/performance balance.

Designers use technology advances, e.g., dou-

bling of density on a memory chip, to produce
new designs in one of two design styles: con-

stant cost/increasing functionality or constant

functionality/decreasing cost. Increased use of

microprogramming, a factor of 3 in this case

study, is a trend that was observed.

By choosing a less powerful cache organiza-

tion, the 11/60 design obtained a factor of 5

component reduction. Cache design also illus-

trates how some design parameters are highly

interdependent. The frequency-driven design

approach used on the floating-point processor

can lead to a 40 percent performance gain.

Examples of added functionality in the con-

stant-cost style of design include greater relia-

bility and maintainability, and user micro-

programming.

Impact of Implementation

Design Tradeoffs on Performance:

The PDP-11, A Case Study
EDWARD A. SNOW and DANIEL P. SIEWIOREK

INTRODUCTION

As semiconductor technology has evolved,

the digital systems designer has been presented

with an ever increasing set of primitive com-

ponents from which to construct systems:

standard SSI, MSI, and LSI as well as custom

LSI components. This expanding choice makes

it more difficult to arrive at a near-optimal

cost/performance ratio in a design. In the case

of highly complex systems, the situation is even

worse since different primitives may be cost-ef-

fective in different subareas of such systems.

Historically, digital system design has been

more an art than a science. Good designs

evolved from a mixture of experience, intuition,

and trial and error. Only rarely have design

methodologies been developed (e.g., two level

combinational logic minimization, wire-wrap

routing schemes, etc.). Effective design method-

ologies are essential for the cost-effective design

of more complex systems. In addition, if the

methodologies are sufficiently detailed, they

can be applied in high level design automation

systems [Siewiorek and Barbacci, 1976].

Design methodologies may be developed by

studying the results of the human design pro-

cess. There are at least two ways to study this

process. The first involves a controlled design

experiment where several designers perform the

same task. By contrasting the results, the range
of design variation and technique can be estab-

lished [Thomas and Siewiorek, 1977]. However,
this approach is limited to a fairly small number

of design situations due to the redundant use of

the human designers.

The second approach examines a series of ex-

isting designs that meet the same functional

specification while spanning a wide range of de-

sign constraints in terms of cost, performance,
etc. This paper considers the second approach
and uses the DEC PDP-1 1 minicomputer line as

a basis of study. The PDP-11 was selected due

to the large number of implementations (eight

are considered here) with designs spanning a

wide range in performance (roughly 7:1) and

component technology (bipolar SSI, MSI,
MOS custom LSI). The designs are relatively

complex and seem to embody good design

tradeoffs as ultimately reflected by their

price/performance and commercial success.

The design tradeoffs considered fall into

three categories: circuit technology, control unit

implementation, and data path topology. All

327

328 THE PDP-11 FAMILY

three have had considerable impact on perform-
ance. Attention here is focused mainly upon the

CPU. Memory performance enhancements

such as caching are considered only in so far as

they affect CPU performance.
This paper is divided into two major parts.

The first part presents an archetypal implemen-
tation followed by the model-specific variations

from the archetype. These variations represent

the design tradeoffs. The second part presents

methodologies for determining the impact of

various design parameters on system perform-
ance. The magnitude of the impact is quantified

for several parameters and the use of the results

in design situations is discussed.

The PDP-1 1 Family is a set of small- to me-
dium-scale stored program central processors
with compatible instruction sets. The 1 1 Family
evolution in terms of increased performance,
constant cost, and constant performance suc-

cessors is traced in Figure 1. Since the 11/45,

11/55 and 11/70 use the same processor, the

KBll, only the 11/45 is treated in this study.

IMPLEMENTATION OF MEDIUM
PERFORMANCE PDP-lls

The broad middle range of PDP-lls have

comparable implementations yet their perform-
ances vary by a factor of 2. The processors mak-

ing up this group are the PDP-1 1/04, 11/10,*

11/20, 11/34, 11/40, and 11/60. This section

discusses the features common to these imple-
mentations and the variations found between

machines which provide the dimensions along
which they may be characterized.

Common Implementation Features

All PDP-11 implementations, be they low,

medium, or high performance, can be decom-

posed into a set of data paths and a control

unit. The data paths store and operate upon
byte and word data and interface to the Unibus,

permitting them to read from and write to

O PDP.11/60

PDP-11/10 ^^^ POP'11/34

Figure 1. PDP-11 Family tree.

memory and peripheral devices. The control

unit provides all the signals necessary to evoke

the appropriate operations in the data paths
and Unibus interface. Mid-range PDP-1 Is have

comparable data path and control unit imple-

mentations allowing them to be contrasted in a

uniform way. In this section, a basis for com-

paring these machines is established and used to

characterize them.

Data Paths. An archetype may be con-

structed from which the data paths of all mid-

range PDP-1 Is differ but minimally. This arch-

etype is diagrammed in Figure 2. All major reg-

isters and processing elements as well as the

links and switches which interconnect them are

indicated. The data path illustrations for indi-

vidual implementations are grouped with Fig-

ure 2 at the end of the chapter. These figures are

laid out in a common format to encourage com-

parison. Note that with very few exceptions, all

data paths are 16 bits wide (PDP-1 1 word size).

The heart of the data paths is the arithmetic

logic unit or ALU through which all data circu-

lates and where most of the processing actually

takes place. Among the operations performed

by the ALU are addition, subtraction, one's

*The 1 1/05 and the 1 1/10 are identical machines sold to different markets. This chapter refers to the machine as the 1 1/10.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 329

<B
-CE}

BUS
ADDRESS
-^ *

-»| spm|-

CONSTANTSIs^ I

ALEGMUXS *1^

MUX CONSTANTS.t
B LEG MUX

NOTE:
All data paths are 1 6 bits wide unless otherwise indicated.

Figure 2. Archetypal medium-range PDP-11 data

paths.

and two's complementation, and logical AND-
ing and ORing.
The inputs to the ALU are the A leg and the

B leg. The A leg is normally fed from a multi-

plexer (A leg MUX) which may select from an

operand supplied to it from the Scratchpad

Memory (SPM) and possibly from a small set of

constants and/or the Processor Status register

(PS). The B leg also is typically fed from its own
MUX (B leg MUX), its selections being from

the B Register and certain constants. In addi-

tion, the B leg MUX may be configured so that

byte selection, sign extension, and other func-

tions may be performed on the operand which it

supplies to the ALU.
Following the ALU is a multiplexer (the A

MUX) typically used to select between the out-

put of the ALU, the data lines of the Unibus,
and certain constants. The output of the A
MUX provides the only feedback path in all

mid-range PDP-11 implementations except the

1 1/60 and acts as an input to all major proces-
sor registers.

The internal registers lie at the beginning of

the data paths. The Instruction Register (IR)
contains the current instruction. The Bus Ad-
dress register (BA) holds the address placed on
the Unibus by the processor. The Program Sta-

tus register (PS) contains the processor priority,

memory management unit modes, condition

code flags, and instruction trace trap enable bit.

The Scratchpad Memory (SPM) is an array of

16 individually addressable registers which in-

clude the general registers (R0-R7) plus a num-
ber of internal registers not accessible to the

programmer. The B Register (B Reg) is used to

hold the B leg operand supplied to the ALU.
The variations from this archetype are minor

as discussed in the section entitled "Character-

ization of Individual Implementations." Varia-

tions encountered include routings for Bus

Address and Processor Status register, the point
of generation for certain constants, the posi-

tioning of the byte swapper, sign extender, and

rotate/shift logic, and the use of certain aux-

iliary registers present in some designs and not

others. In general, these variations are all pe-

ripheral to the major elements and inter-

connections of the data paths.

Control Unit. The control unit for all PDP-
11 processors (with the exception of the PDP-

11/20) is microprogrammed [Wilkes and

Stringer, 1953]. The considerations leading to

the use of this style of control implementation
in the PDP-11 are discussed in [O'Loughlin,

1975]. The major advantage of micro-

programming is flexibility in the derivation of

control signals to gate register transfers, syn-

chronization with Unibus logic, control of mi-

crocycle timing, and evocation of changes in

control flow. The way in which a micro-

programmed control unit accomplishes all of

these actions impacts performance.

Figure 3 represents the archetypal PDP-11

microprogrammed control unit. The contents

of the Microaddress Register determine the cur-

rent control unit state and are used to access the

next microinstruction word from the control

store. Pulses from the clock generator strobe

the Microword and Microaddress Registers

loading them with the next microword and next

microaddress respectively. Repeated clock pul-

ses thus cause the control unit to sequence

through a series of states. The period spent by
the control unit in one state is called a micro-

cycle (or simply cycle when this does not lead to

330 THE PDP-11 FAMILY

SYNCHRONIZATION
SIGNALS
FROM UNIBUS
INTERFACE

STATE
INFORMATION

FROM
DATA PATHS

LOGIC—
T"^to

NEXT
MICRO
ADDRESS

UNIBUS
AND
CLOCK

CONTROL
FIELD

DATA
PATH

CONTROL
FIELDS

MICRO
ADDRESS
REGISTER

MICROPROGRAM COUNTER

UNIBUS
^CONTROL
SIGNALS

ROM
CONTROL
STORE

BUT SELECT

Figure 3. Archetypal microprogrammed PDP-11

control unit.

confusion with memory or instruction cycles),

and the duration of the state as determined by
the clock is known as the cycle time. The Micro-

word Register shortens cycle time by allowing

the next microword to be fetched from the con-

trol store while the current microword is being
used.

Most of the fields of the microword supply

signals for conditioning and clocking the data

paths. Many of the fields act directly or with a

small amount of decoding, supplying their sig-

nals to multiplexers and registers to select rout-

ings for data and to enable registers to shift,

increment, or load on the master clock. Other

fields are decoded based upon the state of the

data paths. An instance of this is the use of aux-

iliary ALU control logic to generate function

select signals for the ALU as a function of the

instruction contained in the IR. Performance as

determined by microcycle count is in large mea-

sure established by the connectivity of the data

paths and the degree to which their function-

ality can be evoked by the data path control

fields of the microprogram word.

The complexity of the clock logic varies with

each implementation. Typically, the clock is

fixed at a single period and duty cycle; however,

processors such as the 1 1/34 and 1 1/40 can se-

lect from two or three different clock periods
for a given cycle depending upon a field in the

Microword Register. This can significantly im-

prove performance in machines where the

longer cycles are necessary only infrequently.

The clock logic must provide some means for

synchronizing processor and Unibus operation
since the two operate asynchronously with re-

spect to one another. Two alternate approaches
are employed in mid-range implementations.
Interlocked operation, the simpler approach,
shuts off the processor clock when a Unibus op-
eration is initiated and turns it back on when
the operation is complete. This effectively keeps

microprogram fiow and Unibus operation in

lockstep with no overlap. Overlapped operation
is a somewhat more involved approach which

continues processor clocking after a DATI or

DATIP is initiated. The microinstruction re-

quiring the result of the operation has a func-

tion bit set which turns off the processor clock

until the result is available. This approach
makes it possible for the processor to continue

running for several microcycles while a data

transfer is being performed, improving per-

formance.

The sequence of states through which the

control unit passes would be fixed if not for the

branch on microtest (BUT) logic. This logic

generates a modifier based upon the current

state of the data paths and Unibus interface

(contents of the Instruction Register, current

bus requests, etc.) and a BUT field in the micro-

word currently being accessed from the control

store which selects the condition on which the

branch is to be based. The modifier (which will

be zero in the case that no branch is selected or

that the condition is false) is ORed in with the

next microinstruction address so that the next

control unit state is not only a function of the

current state but also a function of the state of

the data paths as well. Instruction decoding and

addressing mode decoding are two prime exam-

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 331

pies of the application of BUTs. Certain code

points in the BUT field do not select branch

conditions, but rather provide control signals to

the data paths, Unibus interface, or the control

unit itself. These are known as active or work-

ing BUTs.
The JAM logic is a part of the microprogram

flow-altering mechanism. This logic forces the

Microaddress Register to a known state in the

event of an exceptional condition such as a

memory access error (bus timeout, stack over-

flow, parity error, etc.) or power up by ORing
all one's into the next microaddress through the

BUT logic. A microroutine beginning at the all-

one's address handles these trapped conditions.

The old microaddress is not saved (an exception

to this occurs in the case of the PDP-1 1/60);

consequently, the interrupted microprogram se-

quence is lost and the microtrap ends by restart-

ing the instruction interpretation cycle with the

fetch phase.

The structure of the microprogram is deter-

mined largely by the BUTs available to imple-
ment it and by the degree to which special cases

in the instruction set are exploited by these

BUTs. This may have a measurable influence

on performance as in the case of instruction de-

coding. The fetch phase of the instruction cycle

is concluded by a BUT that branches to the ap-

propriate point in the microcode based upon
the contents of the Instruction Register. This

branch can be quite complex since it is based

upon source mode for double operand instruc-

tions, destination mode for single operand in-

structions, and operation code for all other

types of instructions. Some processors can per-
form the execute phase of certain instructions

like set/clear condition code during the last

cycle of the fetch phase meaning that the fetch

or service phases for the next instruction might
also be entered from BUT IRDECODE. Com-
plicating the situation is the large number of

possibilities for each phase. For instance, there

are not only eight different destination address-

ing modes, but also subcases for each that vary
for byte and word and for memory modifying,

memory nonmodifying, MOV, and JMP/JSR
instructions.

Some PDP-11 implementations such as the

1 1/10 make as much use of common microcode

as possible to reduce the number of control

states. This allows much of the IR decoding to

be deferred until some time into a microroutine

which might handle a number of different cases.

For instance, byte and word operand address-

ing is done by the same microroutine in a num-
ber of PDP-1 Is. With the cost of control states

dropping with the cost of control store ROM,
there has been a trend toward providing sepa-

rate microroutines optimized for each special

case as in the 11/60. Thus, more special cases

must be broken out at the BUT IRDECODE,
making the logic to implement this BUT in-

creasingly involved. There is a payoff, though,
because there is a smaller number of control

states for IR decoding and fewer BUTs. Per-

formance is boosted as well since frequently oc-

curring special cases such as MOV register to

destination can be optimized.

Typical Instruction Interpretation Cycle.

To get a feel for the PDP-11 data paths and

control unit in operation, consider the inter-

pretation of a representative instruction by the

archetypal PDP-11. The instruction to be fol-

lowed is a word bit set (BIS), an instruction

which takes its source operand, logically ORs it

with the destination operand, and returns the

result to the destination. Register addressing
with register 2 is used for the source; indexed

addressing with register 7 is used for the desti-

nation.

What follows is the sequence of micro-

instructions evoked during the execution of the

macroinstruction described in Table 1. Each

microinstruction is numbered and consists of

the register transfers and any Unibus operation
or branch on microtest initiated by the micro-

word.

332 THE PDP-11 FAMILY

Table 1. Microinstructions Evoked During Execution of Macroinstruction

Phase Cycle Operation Explanation

FETCH 1 BA ^ PC;

DATI; CLKOFF
A read operation is initiated to fetch the instruction

addressed by the Program Counter.

IR <- BUSDATA The instruction is placed in the Instruction Register.

SOURCE

DESTINA-
TION

PC 4- PC + 2;

BUT IRDECODE

BUT IRDECODE

double operand word

source mode zero

SRCOPR <- RS;

BUT DESTINATION

BUT DESTINATION

modifying word;

destination mode b

BA ^ PC;

DATI

PC <- PC + 2;

CLKOFF

B *- BUSDATA

The Program Counter is incremented to address the

next location in the instruction stream (in this case

the location containing the index for the destina-

tion). The instruction (held in the IR) is decoded by

the BUT and found to be a double operand instruc-

tion causing a branch to the microcode for source

mode 0.

The contents of the register addressed by the source

field of the instruction (register 2) are copied into

the Scratchpad Register reserved for source oper-

ands. The next state is determined by the destina-

tion addressing mode and the fact that BIS is a

word instruction which modifies its destination.

A read operation is initiated to get the index word

(pointed to currently by the Program Counter) for

the effective address of the destination operand.

The Program Counter is incremented to point to the

next instruction. Note that this cycle is overlapped

with the DATI started in cycle 5.

The index is stored for use in the next cycle.

BA - RD + B;

DATIP; CLKOFF

B *- BUSDATA

The index is added to the contents of the destina-

tion register to form the effective address of the

destination operand. A DATIP is performed to read

the operand since the operand is to be modified and

then restored to its original location in mennory.

The destination operand is stored so it is available to

the B leg of the ALU.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1, A CASE STUDY 333

Table 1 . Microinstructions Evoked During Execution of Macroinstruction (Cont)

Phase Cycle Operation Explanation

EXECUTE 10 BUSDATA <- SRCOPR OP B;

DATO; CLKOFF;
BUT SERVICE

BUT SERVICE

The source and destination operands are logically

ORed together and put out on the Unibus to be writ-

ten into the memory location from which the desti-

nation operand was read. (Note that the destination

address is still in BA.) Upon completion of the

DATO, the control unit branches into the service

phase if a serviceable condition is pending; other-

wise, it branches back to repeat the fetch phase for

the next instruction. Although it performs an exe-

cute phase function, this microinstruction is part of

the same destination mode microroutine that gener-

ated cycles 5 through 9.

no service

request

next fetch

service

request

service phase

Notation used in microinstructions for Table 1:

B = B Register

BA = Bus Address register

BUSDATA = Unibus data lines

CLKOFF = Stop the processor clock

until a Unibus transaction

is completed; used for pro-

cessor/Unibus overlap
IR = Instruction Register

PC = Program Counter (Scratch-

pad Register 7)

RD = Scratchpad Register ad-

dressed by macroinstruc-

tion destination field

(IR<2:0>)
RS = Scratchpad Register ad-

dressed by macroinstruc-

tion source field (IR<8:6>)

SRCOPR = Scratchpad Register 10 (not

accessible to programmer);
used as a temporary for

source operands
a OP b = Operand a (on the A leg of

the ALU) and operand b

(on the B leg of the ALU)
are combined according to

the operation specified by
the macroinstruction. The
ALU function is selected by
the auxiliary ALU logic as

described in the subsection

"Control Unit."

a <- b = Register a is loaded with

operand b

At a detailed level, the instruction inter-

pretation process of each PDP-11 implementa-
tion varies significantly from that outlined in

334 THE PDP-11 FAMILY

Table 1
; however, the scenario is still highly rep-

resentative of the operation of the control unit

and data paths in the designs to be considered.

Characterization of Individual

Implementations

A set of common implementation features

may be used to characterize each mid-range
PDP-11 to provide the raw data upon which

comparisons may be based. A summary of these

characteristics is given in Tables 2 and 3.

PDP-11/20. The 11/20 was the first of the

PDP-1 1 family. The 1 1/20 is atypical in a num-

ber of important aspects. Because the semi-

conductor read-only memory technology which

makes microprogramming economically attrac-

tive was unavailable when the PDP-1 1/20 was

designed, control was implemented in random

logic in contrast to the microprogrammed con-

trol used in all the succeeding members of the

PDP-1 1 family. This causes control to be forced

into a very stylized form so as to minimize the

number of control unit states. Finally, the Un-

ibus control generates a number of signals con-

trolling the operation of the data paths. This

makes it necessary for the Unibus and proces-

sor control unit to operate in tight lockstep with

each other with no possibility of asynchronous
data transfer.

The absence of MSI also has significant im-

pact on the implementation of the data paths

(Figures 4 and 5). The extensive use of SSI logic

has several ramifications beyond increased cost

and complexity. The A leg and B leg MUXs are

set up to act as latches in addition to acting as

data selectors (Figure 5). One may think of a B

leg being placed between the B leg MUX and

the ALU. The ALU is a simple adder in con-

trast to the multifunctioned TTL MSI 74181

ALUs used in every other medium performance
PDP-11. Logical operations are carried out in

the A leg MUX/latch. The MUX can select ei-

ther the true or complemented form of oper-

ands to support logical NOT. Logical OR is

accomplished by gating the two operands into

the MUX simultaneously (one operand may
have been latched beforehand). Logical AND is

performed by making use of DeMorgan's Rule

(A~B = ~[~AV~B]). Since there is no logic

for complementing the output of the A leg

MUX/latch, two cycles are necessary: the first

to form ~AV~B, the second to run it through
the A leg MUX again to form the complement.
The rotate/shift/byte swap logic is built into

the MUX following the adder. A final peculiar-

ity of the 1 1 /20 is the separate paths provided
from the Unibus for the IR and PS. Inter-

estingly enough, even with all of these rather

striking differences in implementation, the

PDP-1 1/20 still shows a strong kinship to its

successors.

PDP-11/40. The PDP-11/40 was designed
to improve upon the performance of the PDP-
1 1/20 without an increase in price by taking ad-

vantage of the TTL MSI technology arising af-

ter the introduction of the 11/20. With the

exception of the PDP-1 1/60 (and the 11/20
which exceeds the 11/40 in cost), the 11/40 is

both the fastest and most expensive mid-range
PDP-11 processor.

The data paths of the 1 1/40 (Figure 6) corre-

spond closely to those of the archetype except in

the immediate vicinity of the ALU. What has

been indicated as the A leg MUX is really the

negative-logic wired OR of a number of signals.

Options such as the Floating-Point Processor

are added by simply tying them into the D
MUX output and A leg. Two paths exist out of

the PS: one running to the A leg MUX as in the

archetype and a second running directly to the

Unibus as in the 11/20. A path from the A leg

MUX directly to the D MUX (equivalent to the

A MUX of other models) exists allowing the

ALU (and thus the propagation delay incurred

by passing through it) to be bypassed in those

cases where the contents of the SPM or PS are

to be routed directly back to the B Register of

SPM. Single-bit shifts and rotates right are han-

dled in the D MUX in a fashion similar to the

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 335

5n
O

OL
o
a.

oi

2

> S
GQ V)

O X

c S

<o _
2 o^ E

5 5 f c

u ~
5. E

is5
<t -S -J

.t: !5

(0 X

^ Sio 5 ~
2 c „

° <B O c2 C TJ E

4- "C
0} c U

Z c

Soo
•D

ox .i^

? "S. ^2 S SO £ .5 - a

"> 2 c

2 s-B
c '<- «

E JS i:

|< .£

E ^ t3

O < i:

(A
O .i2

« 2 ^
tr ^ s:

00 5 -5

« 'o

00 >
5 m

OC a>

"^ "^ -^

X = ^
55 11

0) o •»

Z Q. (Q

o .^

01 £: ^

'
S

-» to

M jO

5 ^

E
2 « S
z -^ c

to "o t; "H
'^ S c 5

^ £ if &

s

_ w o :£

1 Q. £ o

2 o °^ c
nj y <« (o

•—

"O <s 3 o
« -c = ^ 2"

m a Q.
" o

o -6

Is

X £
^ 2

_3 _

« t -B^ re (o

re
"

.E

<N ^ -g o
00 9- E s
s: .9- o o

O)

-r? X x:

re 2

to Q. S

^

M (O

C O <n

Ir §
«> O) •-
= <" u

a> '^ w
m S .£

g X

U- <

0)

a -9

0)

O)

J3 re M
« o 7
OJ o «^
OC £ *:

5 X

u. <

£

336 THE PDP-11 FAMILY

O

Q.
o

Si (0

> S
CO V)

S >t

S ^
oc to

Co
U) UJ

s i

s I o

u ~

O (B

1 • T

t: .2 -J
s o n£ oc S

- E
3 O
O ±: a o = :?

"^
i2 S

T3 C

*^ s

s X
>iCO 2

a> Q. V
- 2

CO
-,

£ 5

~
o D

K < .£

CD
-3

£ 5

%/t o

5 >
5t (D

i 2

3 = (0
C (D «)

0)
*"

"2 O «
to (D > £

.- Q a §

" - D a -y i" " ^ S E i
< ir S E

0) «" 2 j2

d C 3 _i

s ;: a"'
^ 5 ^ I :- ?
^ 3 f^ J- a o)

w E w £ .E o

TO <D

u.

£5

c •= X

^ D 1- 11.

o -; o I
I- < I- w

« 8 g
CO M -S^ 00 j5w -

"S

(^ t^ 5

o ^
JS 2
S to

00 CN
«- 00

w 12
« » J.

_ ;: cNi 5 t >

5 •- t! w .t: o 75

l-'-SaQCSoo

I. 2J
^

i
-

55 1 ^ ^ I ^

° £ ~
E

00 -; a. £
«> i 5 E

CN s^ £ o

_• 00 w <o

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1. A CASE STUDY 337

>

E

Q.

e

c

s

a.
O
a.

w

^ o d:

u m

fc • "O "O

S Sol
^ S 3S ^

S ^

o
« o

2
w X

•K £ «
o .t:

<t 5^

dl= s

_ o

2 ^

i 8 S

2. S.

C M—
TJM ^

"> o

? 2
(0 «

E "E
- o
X 5« o

CN CO ^

X Q. 8

~ CN —

c

5

338 THE PDP-11 FAMILY

HZ]
BUS
ADDRESS

-I*

BUS
DATA

ADDER ROTATE/SHIFT/
BYTE SWAP

MUX

{>

lJ}'j*CZ]-^

B LEG MUX
AND LATCH

-^ BUS DATA

CONDITION
CODES

NOTE:
All data paths are 16 bits wide unlass otharwisa indicatad.

Figure 4. PDP-1 1/20 data paths.

A LEG MUX/LATCH

LATCH A <ie:00> H

GATE A ^H <16:01> H

GATE A ^ ~R <15:01> H—
GATE A ^ ~BD <15;00> H —i

R <03> H
(FROM SPM)

STPM <03> H
(CONSTANTS)

LATCH B <15:00> H

GATE B ^ BD <16:00> H

GATE B ^R <07;00> H

GATE B - STPM <16:00> H

ADDER
1/2 7482

CARRY
FROM
<02> L

-ADD <03> L

ROTATE/SHIFT MUX

ADD <11> L

ADD <04> L

ADD <02> L

GATE ADD <07:00> H

GATE BYTE <07:00> H

GATE RIGHT <15:00> H

GATE LEFT <1B:(X)> H

D <03> H
(TO REST OF
DATA PATHS)

"SIGNAL NAME" H-SIGNAL IS ASSERTED (1) WHEN HIGH
"SIGNAL NAME" L-SIGNAL IS ASSERTED (1) WHEN LOW

Figure 5. Detail of central part of PDP-1 1/20 data paths. One-bit (03) slice (adapted from

KC11 Processor Manual).

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 . A CASE STUDY 339

-CZI ^

MUX

CONSTANT

BYTE
SWAP/ 8 l-'^ """
SIGN
EXTEND

I M D REG 1-

-»BUS DATA

CONDITION
COOES

NOTE:
All data paths are 1 6 bits wide unless otherwise indicated.

Figure 6. PDP-1 1/40 data paths.

1 1 /20. Rotate/shifts to the left, however, are

performed in the ALU. Sign extension and byte

swapping are performed in the B leg MUX.
Since the Scratchpad Register may not be both

simultaneously read and written, the D Register

(D Reg) is used to hold results generated while

the SPM is being read in one processor clock

phase so that during a later phase they may be

written back into the Scratchpad. In this way
the D Register permits read-write access of the

SPM within a single cycle. A final feature is the

presence of two paths into the Bus Address reg-

ister, one from the A leg MUX and one from

the ALU. This is of benefit in such operations
as autoincrement and autodecrement address-

ing modes in which the contents of a register

can be modifed and either the premodification

(autoincrement) or postmodification (auto-

decrement) value of the register can be put into

the Bus Address register in a single cycle.

The 11/40 microprogrammed control unit is

quite elaborate to gain full benefit of the poten-
tial of the data paths. Among its features are

overlapped processor/Unibus operation and

three selectable microcycle clock periods. The
latter feature increases performance immensely
since the maximum cycle time of 300 nanose-

conds is needed only when a full circle from

Scratchpad through ALU and back to Scratch-

pad is made. In cycles which do not write into

the Scratchpad, a 200-nanosecond cycle may be

selected. When the data paths are unused and

only microbranching is involved, an even

shorter cycle time of 140 nanoseconds is pos-
sible. A final unique feature of the 11/40 is a

variation in the branch on microtest logic from

that of the archetypal control unit. To increase

microbranch speed, the microword BUT select

field is buffered in the Microword Register

rather than being routed directly from the con-

trol store to the BUT logic. This causes a one-

cycle delay in processing the branch and forces

all BUTs to be placed one microinstruction

ahead of where they are to take effect. In some

cases, dummy steps are required to provide suf-

ficient lead time for BUT action to occur, some-

what offsetting the speedup of this

arrangement.
One way in which the 1 1 /40 uses its proces-

sor/Unibus overlap feature to advantage is by

prefetching words from memory whenever pos-
sible. At the end of the fetch phase, a check is

made to see if the next memory reference fet-

ches an instruction or operand index. If it does,

the read access is begun immediately using the

contents of the PC as the address. Exceptions to

this are when the PC is used as a destination or

when a service request is pending, both of which

mean that the current value of the PC will not

be the address of the next instruction. Starting

the access early allows it to proceed in parallel

with the execution of the current instruction.

This reduces the time the processor idles wait-

ing for the accessed word. Updating of the PC is

deferred until the proper point in the instruc-

tion interpretation process is reached. This

guarantees that references to the PC will result

in the proper value being used.

PDP-1 1/10. The PDP-1 1/10 was designed
as a minimal cost processor. The implementa-
tion is again TTL MSI but stripped to the bare

essentials without the elaboration of the 11/40.

340 THE PDP-11 FAMILY

The data paths of the 11/10 (Figure 7) follow

the conventions of the archetype closely. A con-

stant zero may be selected onto the A MUX in

addition to ALU or Unibus data. The ALU A
leg multiplexer allows selection of the PS, some

constants, and some internal addresses as well

as the Scratchpad memory. The B Register is

implemented as a universal bidirectional shift

register so that single-bit shifts and rotates may
be performed without additional logic. The

-H]

-J SPM I-

-M a REG L

CONSTANT-

:D^

NOTE:
All data paths are 16 bits wide unless otherwise indicated.

Figure 7. PDP-1 1/10 data paths.

ALU B leg multiplexer includes the constants

one and zero and permits sign extension of the

low order byte of the B Register. The Scratch-

pad Memory may not be both read and written

in the same cycle; thus, operations such as in-

crementing the PC, which takes only a single

microcycle on other processors, takes two mi-

crocycles to complete on the 11/10. A byte

swapping path is absent in the 1 1/10. As a con-

sequence, odd-byte addressing and swapping
must be accomplished by a series of eight shifts

or rotates.

The 11/10 control unit has a relatively aus-

tere implementation. There is no Microword

Register in the control unit although there is

necessarily a Microaddress Register. As a con-

sequence, the output of the control store is used

directly to condition the data paths. This pre-

cludes the overlap of current microinstruction

execution with next microinstruction fetch.

Hence, the propagation delay of the control

store must be added to that of the data paths in

setting the microcycle time, causing it to be a

relatively long 300 nanoseconds. The simplicity

of the data paths allows the use of a microword

only 40 bits wide. The microcode contains very

few frills and gains very little in performance
from special cases. A notable example of this is

the jump address calculation for JMP and JSR
instructions. The 1 1/10 uses the same section of

microcode for JMP and JSR destination modes

as it uses to fetch conventional destination op-
erands. This costs an extra memory reference

over the separate microroutines used in other

PDP-11 processors because, in addition to the

effective address of the jump being calculated,

its contents are also fetched (the microprogram

logic precludes using this operand as a pre-

fetched instruction even though this is effec-

tively what it is). Overlapped processor/Unibus

operation allows some of the extra microcycles

necessitated by the data paths to be effectively

hidden by putting them in parallel with Unibus

accesses. The other concession to performance
is clock speed doubling during shift operations

to partially compensate for the performance
lost in the absence of a byte swapper.

PDP-1 1/04. The PDP-1 1/04 is the simplest

PDP-11 except for the LSI-11. Although

simple, the 11/04 embodies a very good set of

design tradeoffs. Figure 8 diagrams the 11/04
data paths. The Scratchpad Memory has a reg-

ister (SP Reg, part of the SPM shown in Figure

8) sitting between it and the A MUX. This reg-

ister allows the Scratchpad to support read-

modify-write accesses, saving a microcycle in

each such access over the 11/10. A multiplexer

sitting before the SPM implements the swap

byte operation, allowing the halves of a word to

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 341

be interchanged. This improves byte operation

performance considerably over the 11/10 and

obviates the need for the 1 1/10's fast shift logic.

Also eliminated is overlapped proces-

sor/Unibus operation because the savings from

it are reduced with the overall reduction in

number of microcycles.

The A MUX (the major data bus and the

multiplexer which drives it) can select the PS
and a number of constants in addition to ALU

be selected into the B leg of the ALU in a man-

ner identical to that of the B leg MUX of the

1 1/10. The B Register is also identical to that of

the 1 1/10 in that it is a bidirectional shift regis-

ter implementing rotate/shifts.

The final contributor to increased perform-
ance of the 1 1/04 is the decrease in cycle time

from 300 nanoseconds in the 11/10 to 260 na-

noseconds, made possible in part by pipelining

the microword fetch. On the whole, the 1 1/04 is

NOTE:
All data paths are 1 6 bits wide unless otherwise indicated.

NOTE:
All data paths are 1 6 bits wide unless otherwise indicated.

Figure 8. PDP-1 1/04 data paths. Figure 9 PDP-1 1/34 data paths.

output and Unibus data. Between the SPM and

ALU is a one's complementor so that the 74181

ALU may be used to perform the B leg minus A
leg operation used in the "subtract" instruction,

in addition to the A leg minus B leg operation
used in the "compare" instruction. The A leg

MUX also directly drives the Unibus address

lines without a Bus Address register (if proces-

sor/Unibus overlap had been used, a BA regis-

ter would have been necessary). Between the B

Register and ALU is a multiplexer which allows

the B Register, sign-extended low order byte of

the B Register, or the constants zero or one to

superior in performance to the 1 1 / 1 in all cases

except the fetch phase and certain addressing

modes where the use of its processor/Unibus

overlap capability is sufficient to put the 1 1/10
ahead.

PDP-1 1/34. The PDP-1 1/34 is an elabora-

tion of the 1 1/04. The 1 1/34 data paths (Figure

9) bear close resemblance to those of the 1 1/04.

The 11/04 complementor has been replaced in

the 11/34 by additional microcode which re-

verses the placement of source and destination

operands on the A and B legs of the ALU dur-

ing the subtract instruction from that of the

342 THE PDP-11 FAMILY

Other double operand instructions. This frees

the 1 1/34 from performing the adjustments that

must be made in the data paths of the PDP-11

processors to make the subtract instruction op-
erate correctly under the restrictions of the

74181 ALU. Added is a B Extension register

(BX register) which, when concatenated with

the B Register, forms a 32-bit register for

double-width operand and results manipulated

by extended instruction set operations such as

multiply and divide. Also notable is the reloca-

tion of the byte swapper to the tail of the A
MUX allowing odd-byte accessing to occur as

data is entered from or placed upon the Unibus

without the customary extra microcycle needed

in other implementations to right adjust the

byte. Included with the byte swapper is the sign

extension logic. Schottky TTL is used in critical

places in the data paths, notably the ALU, to

speed up microcycle time from the 260 nanose-

conds of the 11/04 to 180 nanoseconds. Addi-

tional hardware for memory management (not
shown in Figure 9) and extended instruction set

microcode are standard features.

The 11/34 microprogrammed control unit

makes some concessions to the improved per-

formance of the data paths. In addition to the

normal 180-nanosecond cycle, there is a 240-na-

nosecond cycle used primarily for Unibus oper-
ations. Again, there is no processor/Unibus

overlap feature because considerations of sim-

plicity (i.e., cost) outweighed the incremental

improvement in performance that would be net-

ted. Because of its additional logic, the PDP-

11/34 has a wider microword than the 11/04

(48 bits versus 40 bits). Also, since many more
cases are broken out by the BUT IRDECODE
in the 1 1/34 than in the machines preceding it,

the size of the control store has been increased

to 512 words, double that of earlier horizontally

microprogrammed implementations.

BUS
DATA

NOTES
1. All data paths are 16 bits wida unless otherwise indicated.

2. PS is implemented separately from data paths.

Figure 10. PDP-1 1/60 data paths.

PDP-11/60. The PDP-11/60 is the latest

implementation covered in this paper and in

many ways the most unique. Its design exploits

advances in circuit technology occurring since

the introduction of the earlier models giving it a

number of features which set it apart from other

PDP-11 family members. Two major enhance-

ments are a larger microcode addressing space,

making an integral floating-point instruction

set and a writable control store option feasible,

and a cache memory,* Both are possible due to

increases in the density and decreases in the cost

of bipolar ROM and RAM (see Chapter 13).

As illustrated in Figure 10, the 11/60 data

paths show significant differences from those of

other midrange implementations. A major dif-

ference is the presence of three Scratchpad
Memories feeding the ALU. Scratchpads A and

B are 32-word X 16-bit register arrays, each

having twice the number of registers of the

*The PDP-l 1/70 also uses a cache.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 343

single Scratchpad found in other mid-range de-

signs. As with the 1 1/45 (see the section entitled

"Implementation of a High-Performance PDP-

11"), the contents of the general registers are

kept in both Scratchpads allowing different reg-

isters to be read onto the A and B legs of the

ALU simultaneously within the same cycle.

This speeds register-to-register operations. The

additional registers in the A and B Scratchpads
are used as floating-point registers by the in-

tegral floating-point microcode, working stor-

age by user microprograms, and console,

maintenance, and status registers by the proces-

sor. Scratchpad C is a 16-word X 16-bit array

which holds bus data and constants used by the

processor and takes the place of the constants

ROM on the B leg of other midrange imple-

mentations. During exceptional situations these

constants may be overwritten with other infor-

mation but must be restored before execution of

the base machine microcode may be resumed.

The 1 1/60 is the first PDP-1 1 implementation
to make use of three-state devices to eliminate

many of the multiplexers used in other designs

(the 1 1 /40 uses open-collector logic on the A leg

bus to the same effect). For instance, instead of

actual A leg and B leg MUXs, the 11/60 uses

registers and combinational elements with

three-state outputs that can be independently
enabled onto a common bus for each ALU leg.

The ALU itself is the conventional 181 type
used in all of the other MSI implementations.
As in the 1 1/40, the D Register (D Reg) latches

the ALU output so that results may be rewrit-

ten to the Scratchpads during a later clock

phase of the microcycle in which they are gener-

ated. The output of the D Register is the major,
but not sole, feedback route in the data paths.

The Bus Address register (BA) is loaded from

the A leg bus as in the 11/04 and 11/34. The
Address Out bus is driven by the BA and sup-

plies addresses to the memory subsystem

(cache, relocation hardware, and Unibus inter-

face). The Data In (DIN) bus routes data into

the processor from the memory subsystem, in-

ternal registers accessed via Unibus addresses

such as the PS, and constants emitted by the

microinstruction word. Scratchpad C and the

Instruction Register are loaded directly from

DIN in a manner reminiscent of the 11/20. A
register in SPM C is set aside specifically for

transfers from memory to the data paths. Re-

sults are routed from the data paths back to the

memory subsystem and internal registers via a

separate bus data out (DOUT) bus.

As compared to the other mid-range ma-

chines, several data path elements are unique to

the 1 1/60. The counter (CNTR) is an iteration

counter used by the Extended Instruction Set

and floating-point microcode. The Shift Regis-

ter and Shift Register guard (shown together as

the SR in Figure 10) can be loaded in parallel

with D Reg and shifted one position right or

left. Either all or the low order seven bits of the

SR may be gated onto the A leg bus through the

X MUX (not shown). The shift tree is a net-

work of multiplexers used for byte swapping,

sign extension, and field isolation and position-

ing. It is unusual in that it allows right shifts of

from 1 to 14 bit positions combinationally in a

single microcycle.

The PDP-1 1/60 control unit is horizontally

microprogrammed in much the same manner as

the other midrange implementations. Extensive

use of Schottky logic throughout the processor
allows a fixed 170-nanosecond microcycle time.

Processor/Unibus communication is inter-

locked unhke either the 11/40 or 11/45. There

are several significant differences from the more
conventional implementations. Many of these

differences are generalizations of the micro-

program flow control mechanism to allow more
functions of the base machine to be performed

by microcode rather than hardwired logic and

to create a user microprogramming environ-

ment which can be put to uses beyond executing
the PDP-11 instruction set. The 11/60 has a

larger and more generalized set of BUTs than

344 THE PDP-11 FAMILY

earlier machines. Also included for the first

time in a horizontally microprogrammed ma-

chine is a multilevel microsubroutine

call/return capability.

Increased reliance on microcode has ex-

panded the control store to 4,096 words by 48

bits. Of this, 2,560 words are used to implement
the basic machine. The remaining 1,536 words

are available to the user through a ROM con-

trol store option; 1 ,024 are available through a

writable control store option. Since addressing

the microstore requires 12 bits, a page-address-

ing scheme has been adopted to avoid widening
the microword. Page size is 512 words reducing

microaddresses to 9 bits within a page. Micro-

branches across a page boundary require that

an additional 3-bit page field be specified.

Another concept used extensively in the

1 1 /60 to reduce microword size is residual con-

trol. In this technique relatively static control

information is kept in set-up registers separate

from the microword. The microprogram must

load these registers to affect the data path ele-

ments which they control. Set-up registers are

used in the 11/60 to gate registers onto DIN
bus, enable data into registers from the DOUT
bus, select SR functions, and control certain ac-

tions of the shift tree.

The overlapping of a number of different

control fields by bit steering is a final means of

keeping the microword relatively narrow. Cer-

tain bits in the microword control the inter-

pretation of corresponding microword fields.

This allows a single field to control several dif-

ferent functions. The one drawback of this tech-

nique is that these functions become mutually
exclusive within a single microword since their

simultaneous use would involve two different

interpretations of the same microfield.

Hardwired logic in the memory subsystem
detects internal addresses in a manner similar to

other PDP-11 processors. However, the actual

access to these registers is accomplished

through microcode instead of additional con-

trol logic. Internal address access has been

added to the exceptional conditions detected by
the JAM logic of the 1 1/60. If the JAM micro-

routine finds that a microtrap has been caused

by an internal address access, an intraprocessor

transfer to or from the addressed register is per-

formed. Unlike other JAM sequences, such

transfers are terminated by resuming the inter-

rupted microprogram. Microcoded register ac-

cess requires much more time than the

corresponding hardwired access. Reading the

PS, for instance, takes 33 microcycles or 5.610

microseconds using microcode where a single

microcycle suffices for the hardwired approach.
This is justified, however, by the decreased cost

of microcode versus hardwired logic and by the

infrequent access made to these registers.

Like the 1 1/40, the 1 1/60 prefetches instruc-

tions and operand indices whenever possible.

Unlike the 1 1 /40, the PC is incremented at the

time the prefetch is performed. Because of this,

prefetching cannot be done when the current in-

struction uses the PC as either a source or desti-

nation register. A second difference is that

service requests are not polled until the end of

the current instruction, when the next instruc-

tion may already be prefetched and the PC up-

dated. When this occurs, two microcycles must

be spent to decrement the PC to restore its old

value before proceeding with the service phase.

IMPLEMENTATION OF A MINIMAL COST
PDP-11

The LSI- 11 (Chapter 12) is designed for the

low-end market where there is more concern for

low cost than high performance. Integrated cir-

cuit package count and printed circuit board

area, the main determinants of manufacturing

cost, are kept low through an n-channel MOS
LSI technology implementation of the CPU.
The result is a PDP-1 1 processor with four kilo-

words of semiconductor memory on a single 8.5

X 10.5-inch (standard DEC quad height)

printed circuit board which can execute the en-

tire PDP-1 1/40 instruction set.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 345

The constraints imposed by current semi-

conductor technology dictate much of the im-

plementation of the LSI-11. The entire CPU
consists of four LSI packages plus a number of

standard TTL SSI and MSI packages for clock

generation and bus interfacing. A system con-

trol chip provides microinstruction addressing

logic plus an interface to external signals used in

bus control. A data paths chip contains the reg-

isters and arithmetic logic unit of the machine.

Two chips are microcode ROMs (MICROMs).
Each contains 512 microinstruction words with

a width of 22 bits. An optional third MICROM
adds the Extended Instruction Set/floating-

point instruction set option of the PDP- 11/40.

To decrease the complexity of the machine, the

traditional Unibus was abandoned in favor of a

scheme requiring fewer bus lines. Most notable

is the multiplexing of both data and addresses

onto a single set of 18 data/address lines,

DAL< 17:00>. A significant savings over the 34

lines dedicated to data and address in the

Unibus results at the expense of bus cycle speed.

The 22-bit microinstruction word of the LSI-

1 1 is quite narrow compared to the microwords

of the horizontally microprogrammed PDP-1 Is

which range from 40 to 64 bits wide. Four bits

are not decoded and provide direct TTL-com-

patible signals which are used by logic external

to the CPU chips. Another two bits are used

within the CPU chips to control next micro-

instruction addressing. The remaining 16 bits

are decoded as a microinstruction by the CPU
chips. LSI-11 microinstructions differ little in

form from conventional minicomputer instruc-

tions with their operation code and operand

(which may be register, microcode address, or

literal) fields. These require a great deal more

decoding than the horizontal microinstructions

of other designs.

The LSI-1 1 microstore is larger than the con-

trol store of any other PDP-1 1 except the 1 1/60.

Since LSI-11 microinstructions lack the possi-

bilities for parallelism inherent in the horizontal

microinstructions, more LSI-11 micro-

instructions are needed to code a given oper-

ation. In addition, certain functions which are

handled with combinational logic in other

PDP-1 1 control units and data paths are micro-

coded in the LSI-11. Finally, the LSI-11 has

more elaborate console microcode than the

other implementations. As a result, the LSI-1 1

has 22,528 bits of microstore versus 14,336 bits

for the PDP-11/40, 16,384 bits for the PDP-
1 1/45, and 122,880 bits for the PDP-1 1/60. The

narrow microword is used in spite of its attend-

ant problems due to the limitation imposed by
the packaging of the MOS CPU chips. Only 40

pins are available to carry power and signals to

and from each chip, limiting the number of lines

available for transmitting the microword from

the MICROMs to the control and data path

chips.

Technology also imposes a serious constraint

on instruction decoding. The equivalent of a

branch on microtest allows only eight bits to be

decoded at a time. This is sufficient for decod-

ing the majority of instructions; however, the

remainder require additional decoding which

may consume as many as eight microcycles.

This is in marked contrast with all other PDP-

I Is which require only a single microcycle to do

the initial instruction decode at the end of the

fetch phase (BUT IRDECODE).* The effect

that this has on the average duration of the LSI-

I I fetch phase is evident from Table 4.

Figure 1 1 details the data paths around which

the operands of the macroinstruction level ma-

chine circulate. As with the medium-perform-
ance implementations, the ALU is the hub of

activity, operating upon quantities supplied

from the Scratchpad memory. The A MUX se-

lects from the output of the ALU, the high or

*The 1 1/60 requires two microcycles to decode certain instructions.

346 THE PDP-11 FAMILY

Table 4. Average PDP-11 Instruction Execution Times in Microseconds

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1. A CASE STUDY 347

into the Scratchpad Memory. In this, the LSI-

1 1 bears a curious resemblance to the PDP-

11/45 and 11/60. The difference is that while

the LSI- 11 uses this feature to eliminate cycles

that would be needed to load a B Register, there

is not sufficient logic to allow source and desti-

nation registers to be accessed simultaneously.

Consequently, multiple cycles are still required

to set up register/register operations on the

LSI-11.

The final important performance factor is

again a direct result of the circuit technology

employed. NMOS logic is not as fast as the

bipolar logic found in every other PDP-1 1 im-

plementation so that the microcycle time of the

LSI-11 is 400 nanoseconds or one-third slower

than the next slowest PDP-1 1. Coupled with the

larger number of microcycles necessary to exe-

cute a given macroinstruction, this causes the

LSI-11 to lag in performance.

IMPLEMENTATION OF A HIGH
PERFORMANCE PDP-11

though not the only one as in other implemen-
tations. The ALU is based upon the Schottky

equivalent of the 74181 chip used in most other

PDP-1 1 designs. The difference begins with the

multiplexers driving the A and B legs of the

ALU. These MUXs allow operands to be

routed directly to the proper leg without using

additional cycles to move operands from regis-

ter to register. KO MUX and Kl MUX (com-
bined in Figure 12) are multiplexers used in

conjunction with the B MUX to gate constants,

trap vector addresses, and branch offsets into

the B leg of the ALU.

Among the registers supplying the A MUX
and B MUX are the source and destination op-

erand registers (S Reg and D Reg, respectively).

These, in turn, are supplied by the SR MUX
and DR MUX which select data from individ-

ual Scratchpad Registers or the Program
Counter. Besides holding operands from the

general registers, the S Reg and D Reg act as

working registers. In particular, D Reg is a shift

The PDP-1 1/45 was designed for maximum

performance and followed the 1 1/20 to become
the second member of the PDP-1 1 family. Max-
imum performance is achieved with a complex
set of data paths allowing highly parallel oper-

ation and an optional high-speed semi-

conductor memory (bipolar or MOS) with its

own path into the processor called the Fastbus.

The extensive use of Schottky TTL in the pro-

cessor makes possible a 150-nanosecond cycle

time, half as long as that in some mid-range de-

signs.

The complexity of the PDP-1 1/45 data paths
is evident from Figure 12 even with several of

the special purpose registers and buses omitted

for clarity. The overall organization still bears

some resemblance to the mid-range PDP-11

data paths, however. The ALU remains the hub

of data path activity with its output the primary
feedback path to the processor registers, al-

"^
FASTBUS DATA

UNIBUS DATA

J^BUS

^JHZH

[1]—Jheih3 li .
ORMUX ^y |V,

CONSTANTS

5
NOTE;

All data paths are 16 bits wide unless otherwise indicated.

Figure 12. PDP-1 1/45 data paths.

348 THE PDP-11 FAMILY

register used to accumulate the less significant

half of results during multiply and divide.

Separate Scratchpads are maintained so that

source and destination general registers may be

read simultaneously and independently. This

necessitates both Scratchpads being written to-

gether to keep their contents identical. Each

Scratchpad is organized as 16 words of 16 bits

each. Fifteen words in each Scratchpad are ac-

tually used: two sets of general registers (RO

through R5) and three sets of stack pointers

(R6). Register set selection is controlled by sta-

tus bits in the PS.

The Program Counter is not maintained in

the Scratchpad Registers as in other PDP-lls.

Rather, it is held separately so that it may be

routed directly to the BA MUX while the S Reg
and D Reg are occupied with other operations.

Moreover, two Program Counters are imple-

mented. PCB holds the current value of the Pro-

gram Counter and is used as a general register

or bus address. PCA holds the new value of the

Program Counter allowing the PC to be up-

dated while the old PC value is still in use, after

which PCB is clocked to load it with the new
value contained in PCA.
The SHF MUX can right shift or byte swap

data from the ALU before it is clocked into the

Scratchpads. It also provides a route from PCB
to the S Reg and/or D Reg when the PC is used

as a general register. This arrangement pre-

cludes the shifting or byte swapping of data

being loaded into the PC that is possible with

data destined for one of the other general regis-

ters residing in the Scratchpads. As a con-

sequence, arithmetic shift left and byte swap

operations on the PC do not cause the PC to be

modified, although the condition codes are up-

dated as though it were.

Processor access to the Unibus, Fastbus, and

internal registers is via the Bus Register MUX
(BR MUX), the bus register (BR and BRA),
and the Data Out MUX (D MUX). The BR
and BRA (the duplication is due to electrical

loading considerations) are logically a single

register as shown in Figure 12. They receive all

incoming data and transmit almost all outgoing
data in addition to accumulating the more sig-

nificant half of results during multiply and di-

vide. The BR MUX selects the input to the BR
(and BRA) from among the two external buses

and internal input bus for input to the processor

and from the SHF MUX for output from the

processor via the BR and D MUX to the exter-

nal buses and internal output bus. The internal

buses connect a number of special registers and

an optional Floating-Point Processor to the

data paths. Of these, only the PS is indicated in

Figure 12. The Instruction Register (duplicated

as IR and AF IR, again for electrical loading

reasons) are also loaded from the BR MUX but

are clocked only when an instruction is fetched.

Bus addresses are applied directly to the

Unibus or to an optional memory mapping unit

by the Bus Address multiplexer (BA MUX). No
Bus Address register is needed since memory
access and processor clocking are fully inter-

locked except during an overlapped fetch in

which case the PCB is held selected while oper-

ations continue in other parts of the data paths.

The PDP- 11/45 control unit is horizontally

microprogrammed and is for the most part

quite similar to the archetype described for mid-

range PDP-11 implementations. The control

store is 256 words X 64 bits. The relatively wide

microword is necessary for generating the large

number of control signals used in conditioning

and clocking the complicated data paths. An
additional source of complexity is the timing

logic needed to produce and use the five proces-

sor clock phases.

There are two classes of microsequence-alter-

ing functions corresponding to the BUTs of

other PDP- 1 Is. The first class consists of simple

branches having four or fewer possible branch

addresses. These operate in the same fashion as

BUTs. The second class of branches consists of

three complex instruction decoding functions

called forks. The first, fork A, does the initial

instruction decode and corresponds to the BUT

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 . A CASE STUDY 349

IRDECODE of other implementations. Fork B

dispatches to an execute phase microroutine

following a destination operand fetch. Fork C
dispatches to a destination phase microroutine

following a source operand fetch. A fork enable

field in the microword is used to enable one

fork at most during a cycle. When a fork and

branch are combined in the same cycle, the fork

is disabled if the branch is taken. This permits
the implementation of certain functions without

the use of additional cycles.

The 11/45 microcode is structured to take

full advantage of the data paths and proces-

sor/Unibus overlap. Besides intensively exploit-

ing special cases in the addressing modes and

instruction set, the microprogram implements

operand and instruction fetch overlap in much
the same way as the 11/40. The one difference

between the two prefetch mechanisms is that

the 11/45 updates the PC value in PCB and
stores it in PCA at the time the prefetch is

started. References to the PC work correctly be-

cause PCB holds the old PC value until it is up-
dated at the appropriate time.

All the design decisions described above are

directed toward implementing the fastest sys-

tem possible. Tradeoffs involving circuit tech-

nology and control unit and data path
organization have all been made with this end

in mind.

MEASURING THE EFFECT OF DESIGN
TRADEOFFS ON PERFORMANCE

There are two alternative approaches to the

problem of determining just how the particular

binding of different design decisions affects the

performance of each machine:

1. Top-down approach. Attempt to isolate

the effect of a particular design tradeoff

over the entire space of implementations

by fitting the individual performance fig-

ures for the whole family of machines to

a mathematical model which treats the

design parameters as independent varia-

bles and performance as the dependent
variable.

2. Bottom-up approach. Make a detailed

sensitivity analysis of a particular
tradeoff within a particular machine by

comparing the performance of the ma-
chine both with and without the design
feature while leaving all other design fea-

tures the same.

Each approach has its assets and liabilities

for assessing design tradeoffs. The first method

requires no information about the implementa-
tion of a machine, but does require a suf-

ficiently large collection of different

implementations, a sufficiently small number of

independent variables, and an adequate mathe-

matical model in order to explain the variance

in the dependent variable to some reasonable

level of statistical confidence. The second

method, on the other hand, requires a great deal

of knowledge about the implementation of the

given system and a correspondingly great
amount of analysis to isolate the effect of the

single design decision on the performance of the

complete system. The information that is

yielded is quite exact, but applies only to the

single point chosen in the design space and may
not be generalized to other points in the space
unless the assumptions concerning the ma-
chine's implementation are similarly general-

izable. In the following subsections the first

method is used to determine the dominant

tradeoffs, and the second method is used to esti-

mate the impact of individual implementation
tradeoffs.

Quantifying Performance

Measuring the change in performance of a

particular PDP-11 processor model due to de-

sign changes presupposes the existence of some

performance metric. Average instruction execu-

tion time was chosen because of its obvious

relationship to instruction stream throughput.

350 THE PDP-11 FAMILY

Neglected are such overhead factors as Direct

Memory Access, interrupt servicing, and, on

the LSI-11, dynamic memory refresh. Average
instruction execution times may be obtained by

benchmarking or by calculation from instruc-

tion frequency and timing data. The latter

method was chosen due to its freedom from the

extraneous factors noted above and from the

normal clock rate variations found from ma-

chine to machine of a given model. This method

also allows the designer to calculate the change
in average instruction execution time that

would result from some change in the imple-

mentation. Such frequency-driven design has

already been applied in practice to the PDP-

11/60 (Chapter 13).

The instruction frequencies are tabulated in

Appendix A and include the frequencies of the

various addressing modes. These figures were

calculated from measurements made by Stre-

cker [1976a] on 7.6 million instruction execu-

tions traced in ten different PDP-1 1 instruction

streams encountered in various appHcations.
While there is a reasonable amount of variation

of frequencies from one stream to the next, the

figures in Appendix A should be representative.

Instruction times are tabulated in Appendix
B. These times were calculated from the engi-

neering documents for each machine. The times

vary from those published in the PDP-11 pro-

cessor handbooks for two reasons. First, in the

handbooks, times have been redistributed

among phases to ease the process of calculating

instruction times. In the appendix an attempt
has been to accurately characterize each phase.

Second, there are inaccuracies in the handbooks

arising from conservative timing estimates and

engineering revisions. The figures included here

may be considered more accurate.

A performance figure is derived for each ma-

chine by weighting its instruction times by fre-

quency. The results, given in Table 4, form the

basis of the analyses to follow.

Analysis of Variance of PDP-1 1

Performance Top-Down Approach

The first method of analysis described is em-

ployed in an attempt to explain most of the var-

iance in PDP-11 performance in terms of two

parameters:

1. Microcycle time. The microcycle time is

used as a measure of processor perform-

ance which excludes the effect of the

memory subsystem.

2. Memory read pause time. The memory
read pause time is defined as the period

of time during which the processor clock

is suspended during a memory read. For

machines with processor/Unibus over-

lap, the clock is assumed to be turned off

by the same microinstruction that in-

itiates the memory access. Memory read

pause time is used as a measure of the

memory subsystem's impact on proces-

sor performance. Note that this time is

less than the memory access time since

all PDP-11 processor clocks will con-

tinue to run at least partially con-

currently with a memory access.

The choice of these two factors is motivated

by their dominant contribution to, and (ap-

proximately) linear relationship with, perform-

ance. Keeping the number of independent

variables low is also important due to the small

number of data points being fit to the model.

The model itself is of the form:

tf
= kicu + kicii

where ti is the average instruction execution

time of machine / from Table 3. The microcycle

time of machine / is c\i (for machine with select-

able microcycle times, the predominant time is

used). C2i is the memory read pause time of ma-

chine /.

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 . A CASE STUDY 351

This model is only an approximation since it

assumes k\ and k2 will be constant over all ma-

chines. In general this will not be the case, ki is

the number of microcycles expected in a canoni-

cal instruction. This number will be a function

mainly of data path connectivity, and strictly

speaking, another factor should be included to

take that variability into account; however,
since the data path organization of all PDP-1 1

implementations considered here (excepting the

11/03, 11/45, and 11/60) are comparable, the

simplifying assumption of calHng them all iden-

tical at the price of explaining somewhat less of

the variance is made. The number of memory
accesses expected in a canonical instruction is

k2; it also exhibits some variability from ma-

chine to machine. A small part of this is due to

the fact that some PDP-1 Is actually take more

memory cycles to perform a given instruction

than do others (this is really only a factor in

certain 11/10 instructions, notably JMP and

JSR, and the 11/20 MOV instruction). A more

important source of variability is the

Unibus/processor overlap logic incorporated
into some PDP-11 implementations which ef-

fectively reduces the actual contribution of the

k2C2i term by overlapping more memory access-

time with processor operation than is excluded

from the memory read pause time.

Given the model and the dependent and inde-

pendent data for each machine (Table 5), a

linear regression is applied to determine the

coefficients k\ and k2 and to find out how much
of the variance is explained by the model.

Applying the regression over all eight proces-

sors: ki
= 11.580, k2

=
1.162, R2 = 0.904. /?2 is

the amount of variance accounted for by the

model or 90.4 percent. If the regression is ap-

plied to just the six mid-range processors, ki
=

10.896, k2
=

1.194, R2 = 0.962. /?2 increases to

96.2 percent partly because the LSI- 11 and

11/45 can be expected to have a different k

coefficients than the mid-range machines and

do not fit the model as well. Note that if two

mid-range machines, the 11/04 and the 11/40,
are eliminated instead of the LSI- 11 and 11/45,
r2 decreases to 89.3 percent rather than in-

creasing. The k coefficients are close to what

should be expected for average microcycle and

memory cycle counts. Since k\ is much larger

than k2, average instruction time is more sensi-

tive to microcycle time than to memory read

pause time by a factor of k\/k2 or approx-

imately 10. The implication for the designer is

that much more performance can be gained or

lost by perturbing the microcycle time than

memory read pause time.

Although this method lacks statistical rigor,

it is reasonably safe to say that memory and mi-

crocycle speed do have by far the largest impact
on performance and that the dependency is

quantifiable to some degree.

Table 5. Top-Down Model Parameters in

Microseconds

Dependent
Independent Variables Variable

Memory Average
Micro- Read Instruction

Cycle Pause Execution

Time Time Time

LSI-11

352 THE PDP-11 FAMILY

Measuring Second Order Effects: Bottom-

Up Approach

It is much harder to measure the effect of
other design tradeoffs on performance. The ap-

proximate methods employed in the previous
section cannot be used because the effects being
measured tend to be swamped out by first order

effects and often either cancel or reinforce one
another making linear models useless. For these

reasons, such tradeoffs must be evaluated on a

design-by-design basis as explained above. This

subsection evaluates several design tradeoffs in

this way.
Effect of Adding a Byte Swapper to the

11/10. It is evident that the lack of a byte

swapper on the PDP-1 1/10 has a negative effect

on performance. In this subsection, the per-
formance gained by the addition of a byte swap-
per either before the B Register or as part of the
B leg multiplexer is calculated. Adding a byte

swapper would change five different parts of the

instruction interpretation process: the source

and destination phases where an odd-byte oper-
and is read from memory, the execute phase
where a swap byte instruction is executed in

destination mode and in destination modes 1

through 7, and the execute phase where an odd-

byte address is modified. In each of these cases,

seven fast shift cycles would be eliminated and
the remaining normal speed shift cycle could be

replaced by a byte swap cycle resulting in a sav-

ings of seven fast shift cycles or 1 .050 micro-

seconds. None of this time is overlapped with

Unibus operations; hence, all would be saved.

This savings is effected, however, only when a

byte swap or odd-byte access is actually per-
formed. The frequency with which this occurs is

just the sum of the frequencies of the individual

cases noted above or 0.0640. Multiplied by the

time saved per occurrence gives a savings of
0.0672 microsecond or 1 .64 percent of the aver-

age instruction execution time. The in-

significance of this savings could well be used to

support the decision for leaving the byte swap-
per out of the PDP-1 1/10.

Effect of Adding Processor/Unibus Over-

lap to the 1 1/04. Processor/Unibus overlap is

not a feature of the 1 1/04 control ufit. Adding
this feature involves altering the control

unit/Unibus synchronization logic so that the

processor clock continues to run until a micro-

cycle requiring the Unibus data from a DATI
or DATIP is detected. A Bus Address register
must also be added to drive the Unibus lines

after the microcycle initiating the DATIP is

completed. This alteration allows time to be
saved in two ways. First, processor cycles may
be overlapped with memory read cycles as ex-

plained in the subsection on control units. Sec-

ond, since Unibus data is not read into the data

paths during the cycle in which the DATIP oc-

curs, the path from the ALU through the A
MUX and back to the registers is freed. This

permits certain operations to be performed in

the same cycle as the DATIP. For example, the

microword BA «- PC; DATI; PC ^ PC + 2

could be used to start fetching the word pointed
to by the PC while simultaneously incrementing
the PC to address the next word. The cycle fol-

lowing could then load the Unibus data directly
into a Scratchpad register rather than loading
the data into the B Register and then into the

Scratchpad on the following cycle as is neces-

sary without overlap logic. A savings of two mi-

crocycle times would result.

DATI and DATIP operations are scattered

liberally throughout the 1 1/04 microcode; how-

ever, only those cycles in which an overlap
would produce a time savings need be consid-

ered. An average of 0.730 cycles can be saved or

overlapped during each instruction. If all of the

overlapped time is actually saved, 0.190 micro-

second or 4.70 percent will be pared from the

average instruction execution time. This
amounts to a 4.93 percent increase in perform-
ance.

Effect of Caching on the 1 1/60. The PDP-

11/60 uses a cache to decrease its effective

memory read pause time. The degree to which

this time is reduced depends upon three factors:

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE; THE PDP-1 1 .
A CASE STUDY 353

the cache read hit pause time, the cache read

miss pause time, and the ratio of cache read hits

to total memory read accesses. A write-through

cache is assumed; therefore, the timing of mem-

ory write accesses is not affected by caching and

only read accesses need be considered. The per-

formance of the 1 1 /60 as measured by average

instruction execution time is modeled exactly as

a function of the above three parameters by the

equation:

t = k\ + kiik-^a + kA[\
-

a])

where t is the average instruction execution

time, a is the cache hit ratio, k\ is the average

execution time of a PDP- 11/60 instruction ex-

cluding memory read pause time but including

memory write pause time (1.339 microseconds);

ki is the number of memory reads per average

instruction (1.71 3); k->, is the memory read pause
time for a cache hit (0.000 microseconds); and

k^ is the memory read pause time for a cache

miss (1.075 microseconds).

The above equation can be rearranged to

yield:

t = {k\-¥ kik^)
- kiik^

-
k3)a

The first term and the coefficient of the sec-

ond term in the equation above evaluate to

3.181 microseconds and 1.842 microseconds, re-

spectively, with the given k parameter values.

This reduces the average instruction time to a

function of the cache hit ratio making it pos-

sible to compare the effect of various caching
schemes on 11/60 performance in terms of this

one parameter.

The effect of various cache organizations on

the hit ratio is described for the PDP-1 1 Family
in general (Chapter 10) and for the PDP- 11/60
in particular in Mudge (Chapter 13). If no cache

is provided, the hit ratio is effectively zero and

the average instruction execution time reduces

to the first term in the model or 3.181 micro-

seconds. A set associative cache with a set size

of 1 word and a cache size of 1,024 words has

been found through simulation to give a 0.87 hit

ratio. An average instruction time of 1.578 mi-

croseconds results in a 101.52 percent improve-

ment in performance over that without the

cache.

The cache organization described above is

that actually employed in the 11/60. It has the

virtue of being relatively simple to implement
and therefore reasonably inexpensive. Set size

or cache size can be increased to attain a higher

hit ratio at a correspondingly higher cost. One
alternative cache organization is a set size of 2

words and a cache size of 2,048 words. This or-

ganization boosts the hit ratio to 0.93 resulting

in an instruction time of 1.468 microseconds, an

increase in performance of 7.53 percent. This

increased performance must be paid for, how-

ever, since twice as many memory chips are

needed. Because the performance increment de-

rived from the second cache organization is

much smaller than that of the first while the

cost increment is approximately the same, the

first organization is more cost-effective.

Design Tradeoffs Affecting the Fetch

Phase. The fetch phase holds much potential

for performance improvement since it consists

of a single short sequence of micro-operations

that, as Table 4 clearly shows, involves a sizable

fraction of the average instruction time due to

the inevitable memory access and possible ser-

vice operations. In this subsection, two ap-

proaches to cutting this time are evaluated for

four different processors.

The Unibus interface logic of the PDP-11/04
and 1 1/34 are very similar. Both insert a delay

into the initial microcycle of the fetch phase to

allow time for Bus Grant arbitration circuitry

to settle so that a microbranch can be taken if a

serviceable condition exists. If the arbitration

logic were redesigned to eliminate this delay,

the average instruction execution time would

drop by 0.220 microsecond for the 11/04 and

354 THE PDP-11 FAMILY

0. 150 microsecond for the 1 1/34.* The resulting

increases in performance would be 5.75 percent

and 5.21 percent, respectively.

Another example of a design feature affecting

the fetch phase is the operand/instruction fetch

overlap mechanism of the 11/40, 11/45, and

1 1/60. From the normal fetch times in Appen-
dix B and the actual average fetch times given in

Table 4, the savings in fetch phase time alone

can be calculated to be 0.162 microsecond for

the 1 1/40, 0.087 microsecond for the 1 1/45, and

0.1 18 microsecond for the 1 1/60 or an increase

of 7.77 percent, 10.07 percent, and 8.11 percent

over what their respective performances would

be if fetch phase time were not overlapped.

These examples demonstrate the practicality

of optimizing sequences of control states that

have a high frequency of occurrence rather than

just those which have long durations. The 1 1/10

byte swap logic is quite slow, but is utilized in-

frequently causing its impact upon performance
to be small while the bus arbitration logic of the

1 1/34 exacts only a small time penalty, but does

so each time an instruction is executed and re-

sults in a larger performance impact. The use-

fulness of frequency data should thus be

apparent since the bottlenecks in a design are

often not where intuition says they should be.

SUMMARY AND USE OF THE
METHODOLOGIES

The PDP-1 1 offers an interesting opportunity

to examine an architecture with numerous im-

plementations spanning a wide range of price

and performance. The implementations appear
to fall into three distinct categories: the mid-

range machines (PDP-11/04, 11/10, 11/20,

11/34, 11/40, 11/60); an inexpensive, relatively

low performance machine (LSI-1 1); and a com-

paratively expensive, but high performance ma-

chine (PDP-11/45). The mid-range machines

are all minor variations on a common theme

with each implementation introducing much
less variability than might be expected. Their

differences reside in the presence or absence of

certain embellishments rather than in any major
structural differences. This common design

scheme is still quite recognizable in the LSI-1 1

and even in the PDP-11/45. The deviations of

the LSI- 11 arise from limitations imposed by
semiconductor technology rather than directly

from cost or performance considerations al-

though the technology decision derives from

cost. In the PDP-1 1/45, on the other hand, the

quantum jump in complexity is motivated

purely by the desire to squeeze the maximum

performance out of the architecture.

From the overall performance model pre-

sented in the section on top-down performance

analysis, it is evident that instruction stream

processing can be sped up either by improving
the performance of the memory subsystem or

the performance of the processor. Memory sub-

system performance depends upon number of

memory accesses in a canonical instruction and

the effective memory read pause time. There is

not much that can be done about the first num-

ber since it is a function of the architecture and

thus largely fixed. The second number may be

improved, however, by the use of faster mem-

ory components or techniques such as caching.

Performance of the PDP-11 processor itself

can be enhanced in two ways: by cutting the

number of processor cycles to perform a given

function or by cutting the time used per micro-

cycle. Several approaches to decreasing the ef-

fective microcycle count have been

demonstrated:

1. Structure the data paths for maximum

parallelism. The PDP-1 1/45 can perform
much more in a given microcycle than

any of the mid-range PDP-1 Is and, thus,

needs fewer microcycles to complete an

instruction. To obtain this increased

* These figures are typical. Since the delay is set by an RC circuit and Schmitt trigger, the delay may vary considerably from

machine to machine of a given model.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1, A CASE STUDY 355

functionality, however, a much more
elaborate set of data paths is required in

addition to a highly developed control

unit to exercise them to maximum po-
tential. Such a change is not an in-

cremental one and involves rethinking

the entire implementation.
2. Structure the microcode to take best ad-

vantage of instruction features. All pro-

cessors except the 11/10 handle

JMP/JSR addressing modes as a special

case in the microcode. Most do the same

for the destination modes of the MOV
instruction because of its high frequency.

Varying degrees of sophistication in in-

struction dispatching from the BUT IR-

DECODE at the end of every fetch is

evident in different machines resulting in

various performance improvements.
3. Cut effective microcycle count by over-

lapping processor and Unibus operation.

The PDP-11/10 demonstrates that a

large microcycle count can be effectively

reduced by placing cycles in parallel with

memory access operations whenever

possible.

Increasing microcycle speed is perhaps more

generally useful since it can often be applied

without making substantial changes to an entire

implementation. Several of the mid-range PDP-
1 Is achieve most of their performance improve-
ment by increasing microcycle speed in the fol-

lowing ways:

1. Make the data paths faster. The PDP-
1 1/34 demonstrates the improvement in

microcycle time that can result from the

judicious use of Schottky TTL in such

heavily travelled points as the ALU. Re-

placing the ALU and carry-lookahead

logic alone with Schottky equivalents

saves approximately 35 nanoseconds in

propagation delay. With cycle times run-

ning 300 nanoseconds and less, this

amounts to better than a 10 percent in-

crease in speed.

2. Make each microcycle take only as long
as necessary. The 1 1/34 and 1 1/40 both

use selectable microcycle times to speed

up cycles which do not entail long data

path propagation delays.

Circuit technology is perhaps the single most

important factor in performance. It is only stat-

ing the obvious to say that doubling circuit

speed doubles total performance. Aside from

raw speed, circuit technology dictates what it is

economically feasible to build as witnessed by
the SSI PDP-11/20, the MSI PDP-11/40, and

the LSI-11. Just the limitation of a particular

circuit technology at a given point in time may
dictate much about the design tradeoffs that

can be made - as in the case of the LSI-1 1 .

Turning to the methodologies, the two pre-

sented in the previous section can be used at

various times during the design cycle. The top-

down approach can be used to estimate the per-

formance of a proposed implementation or to

plan a family of implementations, given only
the characteristics of the selected technology
and a general estimate of data path and mem-

ory cycle utilization. The bottom-up ap-

proach can be used to perturb an existing or

planned design to determine the performance

payoff of a particular design tradeoff. The rela-

tive frequencies of each function (e.g., address-

ing modes, instructions, etc.), while required for

an accurate prediction, may not be available.

There are, however, alternative ways to esti-

mate relative frequencies. Consider the three

following situations:

1. At least one implementation exists. An
analysis of the implementation in typical

usage (i.e., benchmark programs for a

stored program computer) can provide
the relative frequencies.

2. No implementation exists, but similar sys-

tems exist. The frequency data may be

extrapolated from measurements made
on a machine with a similar architecture.

For example, the Gibson Mix [Bell and

356 THE PDP-11 FAMILY

Newell, 1971] provided the relative fre-

quencies of IBM 7090 functions from

which the relative frequencies of IBM
360 functions were estimated.

3. No implementation exists, and there are

no prior similar systems. From knowl-

edge of the specifications, a set of most-

used functions can be estimated (e.g., in-

struction fetch, register and relative ad-

dressing, move and add instructions for

a stored program computer). The design

is then optimized for these functions.

Of course, the relative frequency data should

always be updated to take into account new
data.

Our purpose in writing this paper has been

twofold: to provide data about design tradeoffs

and to suggest design methodologies based on

this data. It is hoped that the design data will

stimulate the study of other methodologies
while the results of the design methodologies

presented here have demonstrated their useful-

ness to designers.

APPENDIX A: INSTRUCTION TIME COMPONENT FREQUENCIES

Frequency Frequency

Fetch

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 357

Frequency Frequency

Single Operand
CLR
CLRB
COM
COMB
INC
INCB
DEC
DECB
NEG
NEGB
ADC
ADCB
SBC
SBCB
ROR
RORB
ROL
ROLB
ASR
ASRB
ASL
ASLB
TST
TSTB
SWAB
SXT

0.2286

0.0186

0.0018

0.

0.

0.0224

0.

0.0809

0.

0.0038

0.

0.0070

0.

0.

0.

0.0036

0.

0.0059

0.

0.0069

0.

0.0298

0.

0.0329

0.0079

0.0038

0.

No Destination

358 THE PDP-11 FAMILY

><

'5
C
oaa
<

o

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 . A CASE STUDY 359

a. r-

Q r
a. o

a. ID
Q r
0. o

a. <
o ^
a. T

a. <
Q eo

a. T

Q. 00

0. o

a. o
Q CO
a. d

D. (O

a. o

• o
-I o

2 3:

00 00 00 00 00 CO

CD r^r~-r^r-r~-r--cooop--r^ oommoooo
»- r^ csi rvi fsi c\i cn cn to to c\i fsi co co r^' r*' <n cm' r»" r~ r^ r-

r~

360 THE PDP-11 FAMILY

LSi-11 NOTES

Fetch:

All single-operand instructions except

SWAB, SXT, MFPS, and MTPS add 1

Aicycle (+0.400 ^s).

XOR, JMP, RTS, RTI, RTT, set/clear

condition codes add 1 /xcycle (+0.400 /is).

SWAB adds 2 //cycles (+0.800 ms).

SXT adds 5 /uscycles (+2.000 ms).

BPT, lOT add 6 Mcycles (+2.400 ^s).

MARK adds 8 ^cycles (+3.200 ^s).

Source:

(1) Byte addressing subtracts 1 /ucycle (-0.400

MS).

(2) Byte addressing adds 1 jucycle (+0.400 /ts).

(3) If register ?^ R6 or R7, byte addressing

adds 1 /icycle (+0.400 ixs).

Destination:

For MOV: DMO subtracts 1 /xcycle (-0.400

/is). DM 1-7 subtracts 2 jttcycles and mem-

ory read (-1.200 ms).

Byte addressing (DM 1-7) subtracts 1 /ttcycle

(-0.400 MS).

(1) If register
= R6 or R7, byte addressing

adds 2 /icycles (+0.800 ni) additive to the

time noted directly above.

Execute:

(1) DMO adds 1 /ucycle and subtracts memory
write (+0.000 ^s).

(2) DMO subtracts memory write (-0.400 /is).

(3) DMO subtracts 1 /ucycle and memory write

(-0.800 MS).

(4) DMO subtracts 3 /tcycles and memory
write (-1.600 /is).

(5) If new PS has bit 7 clear, add 1 /ucycle

(+0.400 /is).

(6) If new PS has bit 4 set, add 9 /tcycles

(+3.600 MS).

(7) If new PS has bit 4 set, add 10 Mcycles

(+4.000 MS).

(8) If new PS has bit 4 set, add 1 Mcycle

(+0.400 MS).

(9) If register not 7, then 1/15 (6.40 ms).

Times Assumed for All Calculations:

(1) Microcycle time is 0.400 ms.

(2) Microcycle time is extended by 0.400 ms

during DATI/DATIP/DATO/DATOB.
(Note: 1 extra wait Mcycle is actually gener-

ated for each memory access; however,

these Mcycles have not been tallied in the

microcycle counts above.)

PDP-11/04 NOTES

Source:

Odd-byte addressing (SMl-7) adds 2 Mcy-

cles (+0.520 MS).

Destination:

Odd-byte addressing (DM 1-7) adds 2 Mcy-

cles (+0.520 MS).

Execute:

(1) Destination odd-byte addressing (DM 1-7)

adds 2 Mcycles (+0.520 ms). DMO subtracts

memory write (-0.540 ms).

(2) DMO subtracts 1 additional Mcycle (-0.260

MS).

Times Assumedfor All Calculations:

(1) Microcycle time is 0.260 MS.

(2) Microcycle time is extended by 0.220 ms by

bus priority arbitration delay during BUT
SERVICE.

(3) Microcycle time is extended by 0.940 ms

during DATI/DATIP (MOS memory).

(4) Microcycle time is extended by 0.540 ms

during DATO/DATOB (MOS memory).

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1. A CASE STUDY 361

PDP-11/10 NOTES
Source:

Odd-byte addressing (SMI -7) adds 7 fast

shift (0.150 iis/ixcyde) and 1 regular jucycle

for a total of + 1 .350 ^s.

Destination:

Odd-byte addressing (DM 1-7) adds 7 fast

shift (0.150 fxs/ixcyde) and 1 regular /icycle

for a total of +1.350 ^s.

(1) MOV subtracts 1 ncyde (-0.300 us).

Execute:

(1) Destination odd-byte addressing (DM 1-7)

adds 7 fast shift /ticycles (0.150 Ms//iicycle)

for a total of +1.050 us. DMO subtracts 2

/xcycles and memory write (-1.200 ^is).

(2) Byte swap consists of 7 fast shift (0.150

/xs/yucycle) and 1 regular /Ltcycle for a total

of +1.350 MS.

Times Assumedfor All Calculations:

(1) Microcycle time is 0.300 //s.

(2) A CKOFF following a DATI/
DATIP/DATO/DATOB extends ^cycle
time by 0.600 ^s minus 0.300 /us for each

Mcycle that the CKOFF is removed from
the cycle initiating the bus transaction.

PDP-11/20 NOTES
Source:

Odd-byte addressing (SMl-7) adds 2

•cycles (+0.560 us).

Destination:

Odd-byte addressing (DM 1-7) adds 2 /icy-

cles (+0.560 MS).

Non-modifying instruction (CMP(B),
BIT(B), TST(B)) adds ^cycles (+0.100 us
for DATI in place of DATIP).

Execute:

(1) DMO subtracts 1 /ucycle and memory write

(-0.280 ixs). PS as destination adds 1 /ncycle

(+0.280 MS).

(2) Odd-byte addressing (DM 1-7) adds 2 Mcy-
cles (+0.560 MS).

Times Assumedfor All Calculations:

(1) Microcycle time is 0.280 ms

(2) Microcycle time is extended by 0.370 ms

during DATI.

(3) Microcycle time is extended by 0.270 ms

during DATIP.

(4) Microcycle time is extended by 0.000 ms

during DATO/DATOB.

PDP-11/34 NOTES
Source:

(1) DMO subtracts 1 Mcycle (-0.180 ms).

Destination:

MOV(B) and DM 1-7 changes long to short

Mcycle and subtracts memory read (-1.000

MS).

(1) MOV(B) subtracts an additional Mcycle

(-0.180 ms)

(2) Single-operand instruction except NEG(B)
subtracts 1 Mcycle (-0.180 ms).

Execute:

(1) DMO subtracts memory write and changes

long to short Mcycle (-0.600 ms).

(2) DMO subtracts memory write, changes

long to short Mcycle, and adds 1 Mcycle

(-0.420 MS).

Times Assumed for All Calculations:

(1) Microcycle times are 0.180 and 0.240 ms.

(2) Microcycle time is extended by 0.150 ms by
bus priority arbitration delay during BUT
SERVICE.

362 THE PDP-11 FAMILY

(3) Microcycle time is extended by 0.940 us

during DATI/DATIP (MOS memory).

(4) Microcycle time is extended by 0.540 us

during DATO/DATOB (MOS memory).

(5) Memory management unit delay is not

included (+0.120 /Lis/memory cycle when

enabled).

PDP-11/40 NOTES

Source:

Odd-byte addressing (SMl-7) adds 2 jticy-

cles (+0.340 MS).

Destination:

Odd-byte addressing (DM 1-7) adds 2 /xcy-

cles (+0.340 MS).

(1) Single-operand instruction or SMO sub-

tracts Mcycles (-0.440 us).

Execute:

If (single-operand instruction or SMO and

double-operand instruction except

MOVB), DMO, destination y^ register 7,

and no service request pending, then next

fetch is overlapped (-1 Mcycle/-0.640 ixs

from next fetch).

(1) If DMO, phase takes 3 /iicycles and memory
write is not done (0.480 us).

(2) If odd-byte addressing (DM 1-7), phase
takes 5 /ucycles (1.020 us).

(3) If odd-byte addressing (DM 1-7), phase
takes 5 ^cycles (0.820 us).

(4) If byte instruction and DM 1-7, phase takes

4 Mcycles (0.880 /us). For DMO: If word in-

struction, phase takes 2 ^cycles (0.340 ixs).

If byte instruction, phase takes 4 /^cycles

(0.680 MS).

(5) For DMO: If word instruction, phase takes

3 Mcycles (0.740 ms). If byte instruction,

phase takes 4 Mcycles (0.880 ms). In neither

case is memory write done.

Times Assumedfor All Calculations:

(1) Microcycle times are 0.140, 0.200, and

0.300 MS.

(2) A CLKOFF following a DATI/DATIP ex-

tends Mcycle time by 0.500 ms minus sum of

cycle times between DATI/DATIP (exclu-

sive) and CLKOFF (inclusive).

(3) A CLKOFF following a DATO/DATOB
extends Mcycle time by 0.200 ms minus sum
of cycle times between DATO/DATOB
(exclusive) and CLKOFF (inclusive).

(4) Memory management unit delay is not

included (+0.150 Ms/memory cycle when

enabled).

PDP-11/45 NOTES

Fetch:

Execute phase of previous instruction may
be overlapped with fetch. Consult execute

phase note for effect on timing.

Destination:

MOV and DM 1-7 subtracts memory read

(-0.000 MS). Odd-byte addressing (DM 1-7)

adds 1 Mcycle (+0.150 ms).

(1) Single-operand instruction or SMO sub-

tracts 1 Mcycle (+0.150 ms).

Execute:

(1) For DMO:
If double-operand instruction, destination

^ register 7, and SMI -7:

If odd-byte addressing, then phase
takes 2 Mcycles (0.300 ms), else phase
takes 1 Mcycle (0.150 ms). If no ser-

vice request is pending, then next

fetch is overlapped (-1

Mcycle/-0.150 ms from next fetch).

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-1 1 , A CASE STUDY 363

If double-operand instruction, destination

=
register 7, and SMI 1-7:

Phase takes 2 ^cycles (0.300 /us).

Otherwise (single-operand instruction or

SMO):
Phase takes 1 /icycle (0.150 /xs). If

destination ^ register 7 and no ser-

vice request is pending, then next

fetch is overlapped (-2 /icy-

cles/-0.300 ixs from next fetch).

No memory write is done.

(2) For DM 1-7, if destination fetch is via Fast-

bus and no service request is pending, then

next instruction fetch is overlapped (-1

/ucycle/-0.150 /us from next fetch),

(3) DM 1 -2 adds 1 /ucycle (+0. 1 50 /us). If no ser-

vice request is pending, then next fetch is

overlapped (-1 /ucycle/-0.150 /us from next

fetch).

(4) DMO subtracts 2 /ucycles and memory
write (-0.300 /us).

(5) Odd-byte addressing adds 1 /ucycle (+0.150

/us).

(6) If no service request is pending, then next

fetch is overlapped (-1 /ucycle/-0.150 /us

from next fetch).

(7) lOT 1.65 /us, BPT 1.8 ms.

Times Assumed for All Calculations:

(1) Microcycle time is 0.150 ^s.

(2) Memory access time does not influence mi-

crocycle times (bipolar memory).

(3) Memory management unit delay is not

included (+0.090 /us/memory cycle when

enabled),

PDP-11/60 NOTES

Fetch:

The following instructions take 1 addi-

tional Mcycle (+0,1 70ms) to decode: XOR,
SWAB, SXT, JSR, set/clear condition

codes, MARK, SOB, RTS, RTI, RTT,
lOT, EMT, TRAP, BPT, MFPI(D),
MTPI(D).

Fetch or execute phase of previous instruc-

tion may be overlapped with fetch. Consult

execute phase notes for effect on timing.

Source:

For SMl-7: Word instruction except MOV
and DM 1-7 adds 1 /ucycle (+0. 1 70 /us). Byte
instruction adds 2 /ucycles (+0.340 /us).

Destination:

Byte addressing (DM 1-7) adds 2 /ucycles

(0,340 /us),

(1) Single-operand instruction except SWAB
or SXT or SMO and double-operand in-

struction except XOR subtracts 1 /ucycle

(-0.170 /us).

Execute:

(1) If SMO, DMO, source j^ register 7, and

destination ^ register 7, then fetch overlap

is attempted. If no service request is pend-

ing at conclusion of instruction, then next

fetch is overlapped (-2 /ucycles/-0.340 /us

from next fetch); otherwise, add 2 /ucycles

(+0.340 /us) to service phase following in-

struction for PC rollback, add 1 memory
read (+0.000 /us) to next fetch for instruc-

tion refetch.

(2) If DMO and destination ?^ register 7, then

fetch overlap is attempted. If no service

request is pending at conclusion of instruc-

tion, then next fetch is overlapped (-2 /ucy-

cles/-0.340 /us from next fetch); otherwise,

add 2 /ucycles (+0.340 /us) to service phase

following instruction for PC rollback, add

1 memory read (+0.000 /us) to next fetch for

instruction refetch.

364 THE PDP-11 FAMILY

(3) If no service request is pending, then next

fetch is overlapped (-2 /Licycles/-0.340 ^s

from next fetch); otherwise, subtract 1

/Ltcycle (-0.170 ixs) from execute.

(4) For DMO: SMO subtracts memory write

(-0.830 /Lis). SMI -7 subtracts 1 /icycle and

memory write (-1.000 us).

(5) DMO subtracts 1 /icycle (-0.170 /xs).

(6) DMO subtracts 1 ^cycle and memory write

(-1.000 ms).

(7) DMO subtracts 2 /icycles and memory
write (-1.170 us).

(8) DM I -7 and byte addressing adds 1 /tcycle

(+0.170 MS).

(9) DM 1-7 and byte addressing adds 3 /^cycles

(+0.510 MS).

(A) DM3, 5-7 adds 1 Mcycle (+0.170 ms).

(B) SMl-7, DMO, and word addressing adds 1

Mcycle (+0.170 MS).

(C) SMO, DM 1-7, and byte addressing adds 1

Mcycle (+0.170 MS).

(D) SMO adds 1 Mcycle (+0.170 ms).

(E) If new PC odd: Microcontrol transfers to

writable control store if present and in-

struction timing does not apply; otherwise,

trap sequence continues normally with 3

extra Mcycles (+0.510 ms).

Accessing the following internal addresses in-

vokes microcode which adds additional micro-

cycles in all phases:

772300-16 Kernel Page Descriptor

Registers

772340-56 Kernel Page Address Regis-

ters

777540 Writable Control Store Sta-

tus Register

Turning Cousins into Sisters:

An Example of Software Smoothing
of Hardware Differences

RONALD F. BRENDER

INTRODUCTION

In 1970, the PDP-11 was Digital Equipment

Corporation's newly announced minicomputer
and its first offering in the 16-bit world. Among
the many software components needed to com-

plement the hardware, a FORTRAN system
was high on the list. A FORTRAN project was

begun in 1970 and the first release of the result-

ing product took place in mid- 1971. In the suc-

ceeding years, the number of PDP- 1 1 CPUs and

related options increased dramatically to pro-

vide a wide range of price/performance alterna-

tives. What makes the original FORTRAN
interesting, even today, is the extent to which

the basic implementation approach was able to

be extended gracefully to span the entire family

with modest incremental effort.

This paper describes the design concepts,

threaded code and a FORTRAN virtual ma-

chine, used to implement the original PDP-1 1

FORTRAN product. As the PDP-11 family of

processors expanded with new models and op-

tions, these original design concepts proved
both stable enough and flexible enough to be

employed successfully across the entire family.

When this FORTRAN was finally super-

seded in early 1975, it had two successors. One,

called FORTRAN IV, continued the threaded

code and virtual machine concepts of the earlier

product with similar execution performance
across the PDP-1 1 family, but offered much fas-

ter compilation rates in smaller memory. The

other successor, called FORTRAN IV-PLUS,

produced direct PDP-1 1 code and obtained sig-

nificantly improved execution performance for

the PDP-11/45, PDP-ll/70, and PDP-11/60
with FPU floating-point hardware relative to

both of the other FORTRANs.

In the Beginning

The PDP-1 1/20 was a significant advance

over other minicomputers of its time, but was a

bare machine architecture by today's standards.

There was no floating-point hardware of any
kind (even as an option) and integer multiply

and divide operations were available only by
means of an I/O bus option, the Extended

Arithmetic Element (EAE). (The EAE also pro-

vided multiple-bit arithmetic shift operations;

365

366 THE PDP-11 FAMILY

the PDP- 11/20 instructions provided only

single-bit shifts.)

The first disk-based operating system, DOS,
was designed for a minimum standard system
that included 8 Kwords (16 Kbytes) of memory.
After allowing typically 2 Kwords for the resi-

dent parts of the monitor, only 5 K to 6 K re-

mained for other use. Consequently, size

constraints played a major role in the FOR-
TRAN system design and implementation.
There were not many competitors at the time,

but at least one, the IBM 1 130, offered a disk-

based operating system and FORTRAN sys-

tem. To meet this competition, an important

goal was to deliver the PDP-1 1 FORTRAN sys-

tem to the market as quickly as possible, even at

the cost of performance, if necessary.

Neither Compiler nor Interpreter, but

Threaded Code

The fundamental design strategy to be deter-

mined was the structure of the executing code,

the "run-time environment" [DEC, 1974b;

DEC, 1974c].

We were leery of a compiler that generated
direct machine code primarily because of the

size of compiled code. Much of the compiled
code would necessarily consist of calls to float-

ing-point and other support routines, and on

the PDP-11, each subroutine call required two

words of memory, not counting argument
transmission.

An interpreter would easily solve the space

problem, but this had its own disadvantages.

The basic interpreter loop overhead was a con-

cern, but not crucial at that stage in our deliber-

ations. However, a disadvantage of interpreters

is that they must be "always present" even

though not all of the capabilities are being used.

For example, routines for complex arithmetic

are part of the interpreter even though the par-

ticular program in use does not perform com-

plex arithmetic. Further, we wanted to maintain

the traditional FORTRAN features of inde-

pendent compilation and linking of routines,

and easy writing of routines in assembler for in-

clusion in the program.
The solution was threaded code [Bell, J.,

1973]. Threaded code is a kind of combination

of an interpreter and compiled code with most

of the best features of each. On the PDP-11 it

works in the following way.
The "compiled code" consists simply of a se-

quence of service routine addresses. A single

register (we used R4) is chosen to contain a

pointer to the next address in the sequence to be

invoked. Each service routine completes by

transferring control to the next routine in the

sequence and simultaneously advancing the

pointer.

To illustrate, consider a service routine whose

purpose is to perform floating-point addition of

two real values found in a stack (we used R6,

the hardware stack pointer, for the value stack)

and leave the result on the top of the stack in

place of the parameters. The service routine

would look like the following.*

$ADR: < <code for floating point add> >

JMP@(R4)+

The JMP instruction with deferred auto-

increment addressing mode provides just the

*The brackets << and >> are used in examples in place of code to indicate the purpose of code that is too bulky and/or not

relevant for the example.

In the PDP-1 1 MACRO assembler language [DEC, 1976], identifiers may consist of up to six characters from among the

letters, numerals, "." and "$". Identifiers created by the FORTRAN compiler include either a period or dollar sign to

assure that they are distinct from FORTRAN language identifiers.

In the PDP-1 1 MACRO assembler language, a colon follows a label and separates the label from assembler instructions.

TURNING COUSINS INTO SISTERS 367

combination needed to sequence through the

table of addresses. It is a single one-word in-

struction.

The instruction corresponds to the basic loop
of an interpreter. Consequently, there is no cen-

tralized interpreter: the interpreter is distributed

throughout every one of the service routines.

Arguments to a service routine can also be

placed in-line following the routine address.

The routine picks up the arguments using the

pointer register, each time advancing the

pointer for the next use. For this, both the auto-

increment and deferred auto-increment ad-

dressing modes are ideal.

For example, the following service routine

copies onto the stack the value of an integer

variable whose address follows the call:

SPUSHV: MOV@(R4)+,-(SP)
JMP@(R4)-I-

Similarly, the following routine pops a value

from the stack and stores it in the variable

whose address follows the call:

$POPV: MOV (SP)+,@(R4)+

JMP@(R4)-h

Using the two primitives SPUSHV and

SPOPV, the FORTRAN assignment statement:

I = J

can be implemented by "compiling" code as

follows:*

SPUSHV ; Address ofSPUSHV routine

J
; Address of storage for J

SPOPV ; Address of SPOPV routine

I
; Address of storage for I

The principal disadvantage of a normal inter-

preter is avoided by representing the address of

a service routine in symbolic fashion as the

name of a module to be obtained from a library

of routines. Only those routines that are ac-

tually referred to are included in the program
when it is linked for execution.

We complete this introduction by briefly il-

lustrating how flow of control and changing
modes is accomplished.
A simple transfer of control, e.g., the FOR-

TRAN statement:

GOTO 100

can be compiled to:

SGOTO,.100

using the service routine:

SGOTO: MOV (R4),R4
JMP @(R4)-I-

The implementation of the FORTRAN-
computed GOTO statement is illustrated in

Figure 1. Notice that the count of the number

of labels is included in the arguments to the ser-

vice routine. The service routine checks that the

index value is in the correct range; if it is not, an

error is reported and control continues in-line

(no transfer takes place). In this example, regis-

ter 1 (Rl) is used as a temporary location within

the service routine.

To enter threaded code mode when executing

normal code, the following call is executed:

JSR R4,SPOLSH

"In subsequent examples, the arguments of a service routine will be written on the same line as the routine address. Thus, the

above would appear as:

$PUSHV,J
$POPV,I

This is more compact and suggestive of conventional assembler notations; the effect is identical to the previous example.

368 THE PDP-11 FAMILY

FORTRAN SOURCE

TURNING COUSINS INTO SISTERS 369

computed GOTO statement is representative of

the approaches taken. This correspondence be-

tween the language and the virtual machine

greatly simplified the compiler. Variations in

the order of arguments and/ or the introduction

of extra arguments (such as the label list count)

were made to aid the speed and/or the error

checking capability of the supporting service

routines.

One part of the machine had a more regular

structure - assignment statements and expres-

sion evaluation. We will focus our attention on

this part of the machine because this is where

the majority of FORTRAN execution time is

spent.

Many details of the machine are easily

sketched. It was a stack-oriented machine -val-

ues were pushed onto the stack, and operators

took their operands from the stack and replaced

them with the result. The hardware stack

pointer (SP) was used to control the value stack.

Consideration was given to using the PDP-1 1

general registers as fast top-of-stack locations.

However, this was rejected because it violated

the inherent simplicity of the pure stack model

and because analysis showed that the extra

overhead of managing these locations sub-

stantially eliminated any benefits.

Naming conventions were adopted for the

operators as a mnemonic convenience. The
arithmetic operators were named as illustrated

in Figure 2. For example, $ADR designated the

routine to add two single-precision (real) oper-

ands, while $ADC designated the routine to

add two complex operands, and so on.

Throughout this design process the size of the

generated code continued to be the most impor-
tant factor. This led to the most unusual aspect

of the machine design.

To push a value onto the stack required two

words: one for the push instruction and one for

FORM $sot

370 THE PDP-11 FAMILY

breakeven point was three uses for an integer

variable and five uses for a real variable.

Three uses of an integer variable were

deemed likely to be achieved in most programs,

especially in larger and more complex programs
where space would be most critical. The five

uses for a real variable were reduced by some

complex merging of code for multiple push rou-

tines for real, complex, and double-precision

variables. The compiler also maintained a bit in

the symbol table entry for each variable in-

dicating that a push routine was actually

needed. (It is fairly common for a particular

subroutine to reference only a few variables out

of a large COMMON block.)

Pop routines for each variable were also con-

sidered, but rejected. There are typically more

uses of a variable's value than assignments of

new values. Consequently, the breakeven point

is less likely to be consistently achieved. In-

stead, general pop routines for each data-type

(actually, each size of data value -
1, 2, 4, or 8

bytes) were used.

Figure 3 presents a complete example of the

compiled code produced by the compiler for

two sample assignment statements. The figure

includes push routines automatically generated

by the compiler, as well as the allocation of

storage for the variables of the program. All

service routines not shown are obtained from

the FORTRAN library when the program is

Hnked for execution.

It should be apparent from this figure that

the compiled code corresponds to the well-

known Polish postfix notation, which is a re-

arrangement of expression information suitable

for stack evaluation disciplines.

The Virtual Machine Across the PDP-1 1

Family

Even as the FORTRAN system was in its

early development phase, new models of the

PDP-1 1 family were under development by the

hardware groups. The next in line was the PDP-

11/45 with a floating-point hardware option.

How could the software development group
that had just produced a FORTRAN tailored

for an 8 K PDP-1 1/20 without even integer

multiply/divide instructions respond with an-

other FORTRAN for the high-performance

FORTRAN SOURCE

TURNING COUSINS INTO SISTERS 371

PDP- 11/45 with optional hardware floating

point? Fortunately, the virtual FORTRAN ma-
chine approach made it relatively easy. All that

was needed was to re-implement the virtual ma-
chine using the new and more extensive "micro-

code." The compiler did not even have to be

changed at all! How this was accomplished is

discussed below.

The PDP- 11/20, with its EAE option, re-

quired two implementations of the virtual ma-
chine. The PDP-1 1/45 added two more: one for

the floating-point option and another because it

added instructions for integer multiply/divide
and multiple bit shifting as part of the standard

instruction set.*

Later the PDP-1 1/40 added a fifth variation

for its Floating Instruction Set (FIS) option.f

By the time we were done, there were five ver-

sions of the FORTRAN machine which corre-

sponded to the family processors as follows:

1. Basic PDP-1 1/20, PDP-1 1/40

2. EAE PDP-1 1/20 with EAE, PDP-

11/40 with EAE

Integer multiply/divide

3. EIS PDP-1 1/40 with EIS, PDP-
11 /45

Integer multiply/divide

4. FIS PDP-1 1/40 with EIS and FIS

Integer multiply/divide and

single-precision floating point

5. FPU PDP-11/45 with FPU

Integer multiply/divide and

single/double precision floating

point

Later processors (PDP-1 1/70, 11/60, 11/34,
1 1/05, 1 1/04, and LSI-1 1) have all matched one

of these five categories.

Figure 4 illustrates the general logical struc-

ture of a typical floating-point service routine.

As presented in this logically extreme form, it

consisted offive completely independent imple-
mentations. They were combined in a single

source file to help manage and minimize the

proliferation of files. (This also significantly

IF NDF EAEIEISIFISIFPP

<<no option basic implementation>>
ENDC

IF OF EAE
<<EAE ver$ion>>

ENOC

IF DF EIS

<<EIS ver»ion>>
ENDC

IF DF FIS

<<FIS version>>
ENDC

IF DF FPP
<<FPP ver»ion>>
ENDC

END

NOTE:
In the PDP-11 MACRO assembler language, ."IF" in-

troduces a sequence of statements (instructions) that

are included in a given assembly only if a specified

condition is satisfied. The statement, ".ENDC" termi-

nates the sequence. Also, conditional sequences can

be tested within other conditional sequences, as illus-

trated in other figures. In this figure, the condition.

"DF EAE" is satisfied if the neme EAE has a defined

value. "DF EIS" is satisfied if EIS is defined, and so

on. The condition, "NDF EAEIEISI..." is satisfied if

none of the given names has a defined value.

Figure 4. General logical structure of

conditionalized FORTRAN operator routine.

*These Extended Instruction Set (EIS) operations were similar in function to the capability of the EAE, but were an integral

part of the instruction set instead of an I/O bus add-on. This was more efficient since the initialization necessary to begin
execution of these functions was less.

tOn the PDP-1 1/40, the EIS instructions were an option also.

372 THE PDP-11 FAMILY

aided maintenance.) This one file would be as-

sembled five times, each time with a different

conditional assembly parameter, to produce the

five different object files that implemented the

same operation on the different systems.

In practice, the separation of implementa-
tions was not as complete as shown. Some in-

structions, such as the computed GOTO,
remained independent of the hardware con-

figuration. Generally, the EIS and EAE ver-

sions were localized variations of the basic (no

option) implementation, while the FPU and

FIS versions tended to be totally distinct.

A more representative illustration of the kind

of conditionalization used is shown in Figure 5.

Notice that the conditional use of EIS or EAE
operations is nested within an outer condi-

tionalization for neither FIS nor FPU. The FIS

and FPl 1 versions are distinct.

IF NDF FISIFPP

<<basic jmplementation>>

IF OF EAE
<<EAE variation>>
ENDC

IF OF EIS

<<EIS variation>>

ENOC

IF NOF EISIEAE

<<no option variation>>

ENDC

<<batic iniplamentation>>
.ENOC :NDF FISIFPP

IF OF FIS

FADO SP
JMP @(R4)-I-

.ENDC OF FIS

IF DF FPP

SETF
LDF ISP)+ ,FO

ADOF (SP)+.FO

STF FO.-ISP)

JMP ^(R4|-l-

ENDC ;OFFPP

Figure 5. Partial detail of implementation of $ADR.

The FORTRAN Machine and the

PDP-11/40 EIS

Because of the incompatibility in operand ad-

dressing capability between the FPU and FIS,

the FIS option of the PDP-1 1/40 seems at best

an architectural curiosity and at worst an un-

fathomable aberration. In a broader per-

spective, however, it was an excellent

compromise between goals and constraints for

the combined hardware and software system at

the time it was introduced.

The marketing requirement was simple.

There must be at least a single-precision float-

ing-point option for the PDP-1 1/40 to maintain

competitive FORTRAN performance and it

must sell for no more than a given (relatively

low) price. The cost constraint, combined with

other engineering factors, precluded the imple-

mentation of even a simple subset of the FPl 1

instruction set.

Consultation between the hardware and soft-

ware engineers led to the resulting Floating In-

struction Set. The FIS provided four single-

precision floating-point instructions (add, sub-

tract, multiply, and divide) which corresponded

exactly with the FORTRAN virtual machine

requirements. As seen in Figure 5, the FIS ver-

sion of the FORTRAN $ADR service routine

consists of just two single-word instructions

(compared to the FPU variant that occupies

five words).

The FIS option for the PDP-1 1/40 accom-

plished everything that it was supposed to ac-

compUsh.

FORTRAN MACHINE - PHASE 2

While the FORTRAN product successfully

"supported" the full range of the PDP-11 fam-

ily, the design tradeoffs made for the original

and low end of the family were not valid at the

high end. Benchmark competition of FOR-
TRAN on the PDP-1 1/45 with FPU became

significant even though the underlying hard-

ware was the fastest available by clear margins.

The reason is easy to understand. The FOR-
TRAN virtual machine and its implementation
did not fully exploit the hardware capability.

TURNING COUSINS INTO SISTERS 373

To illustrate, consider the execution of the

statement, 1 = 1+ 1, as shown in Figure 3. This

statement compiled to five words of threaded

code (not counting the overhead of service or

push routines), and required 18 memory cycles

to execute. In conrast, the single PDP-11 in-

struction, INC I, would obtain the same effect

with only two words of code and three memory
cycles to execute. Similar overheads existed for

floating-point operations. As shown in Figure

5, the basic arithmetic operators had to copy
their operands from the stack into the FPl 1 reg-

isters to do the operation, and then immediately
return the result to the stack.

On the PDP-1 1/20, integer execution times of

20 microseconds instead of 4 microseconds did

not matter much when floating-point times

where typically 300 to 1000 microseconds.

However, with FPU times under 10 micro-

seconds for these operations, the tradeoffs are

much different.

Since the existing compiler was based totally

on the threaded code implementation, a com-

plete new compiler that generated direct PDP-
1 1 code would be needed to fully exploit the

hardware potential. In the meantime, some-

thing was needed to immediately improve per-

formance and relieve the competitive pressure.

That something was provided, not by dis-

carding threaded code, but by extending the

FORTRAN virtual machine architecture. The
extension devised was based on a combination

of systematic and ad hoc pragmatic consid-

erations.

The primary considerations were to:

1. Focus attention on operations for in-

teger, real, and double-precision data-

types. Logical and complex data-types
do not occur frequently enough to merit

much concern [Knuth, 1971].

2. Limit the impact on the compiler to as

small a portion as possible to limit the

programming effort. Fortunately, ex-

pression handling and assignment state-

ments were well modularized in the

implementation.

Addressing Modes

The principal concept that formed the basis

of the extended machine was the recognition

that operands could be in any of a number of

locations and that arithmetic operators should

be able to take operands from any of them and

deliver the result to any of them, instead of just

the stack. The principal locations identified

were:

• The stack.

• In memory at an address given as a pa-

rameter.

• In memory at an address given in RO as a

result of an array subscripting operation.

Other "locations" were formalized for particu-

lar groups of operators as will be seen later.

Conceptually, these locations became ad-

dressing modes associated with each operator.

However, any kind of decoding of addressing

modes during execution would destroy the per-

formance objective. Consequently, each com-

bination of operator and addressing modes was

implemented by a unique threaded service rou-

tine.

At this point, a new consideration came into

play. Not only would each routine take some

memory, but the number of global symbols that

must be handled by the linking loader would

rise dramatically. (The system linking loader

maintained its global symbol table in free main

memory; hence, the number of symbols that

could be handled was limited by main memory
size. Fortunately, the minimum system main

memory requirement had independently in-

creased from 8 Kwords to 12 Kwords; other-

wise, the approach would not have been

acceptable.) The above three modes for each of

three operand locations for each of the four

374 THE PDP-11 FAMILY

basic operations for each of the three important

data-types required 3*3*3*4*3 or 324 new

service routines. Care would be needed to keep

this explosive cross-product in bounds.

The memory size increase was offset by the

fact that in many cases the push routines of a

variable were no longer needed. This can be ap-

preciated better by looking at some examples.

The Extended Machine

Figures 6 through 1 1 detail most of the ex-

tended machine and give numerous sample

code sequences.

There were three principal groups of ex-

tended operations dealing with one-dimen-

sional array subscript calculation, arithmetic

operations, and general data movement. Once

again, naming conventions were used for mne-

monic aids. Generally, the first two or three let-

ters (after the "$") designated an addressing

mode, the next letter designated the kind of op-

eration and the final letter designated the data-

type. For example, the $ADR routine used in

previous figures acquired the name SSSSAR in

this new scheme.

As an example, consider the FORTRAN
statement:

I = J + K + L

FORM: SsbXz. sarg, barg

WHERE S = C If subscript is in mem-
ory (core) and directly

addressable (i.e., not a

parameter or array ele-

ment)

If subscript is pointed at

by RO at execution time

If subscript on execu-

tion stacit

If subscript is a parame-

If subscript is contents

of RO (i.e.. results of

function call)

If array is not a parame-

s A If array is a parameter

z = 1,2,4.8 Tlie array element size

in bytes

sarg = Argument address if s = C
= Argument list offset if s = P

= Not present otherwise

barg = Array address minus element size

if b = C
= Address of array descriptor block

(ADB) if b = A

SPECIAL CASES

tCCXO, address

Is generated when the subscript is a con-

stant and the array is not a FORTRAN
dummy argument. The final address is

computed at compile time and is the argu-

ment.

SKAXO, scaled-constant, adb-address

is generated when the subscript is a con-

stant and the array is a FORTRAN dummy
argument; the constant subscript is con-

verted to a byte offset at compile time.

Figure 6. One-dimensional array

subscripting instructions.

This would be compiled to:

$CCSAI,J,K

$SCCAI,L,I

;AddJ,Kand
; put result on stack

;
Add stack,L and

; put result in I

The PDP-11 code for these service routines is:

SCCSAI: MOV @(R4)+,-(SP)
ADD @(R4)+,@SP
JMP @(R4)+

SSCCAI: ADD @(R4)+,@SP
MOV (SP)+,@(R4)+
JMP @(R4)+

ASSUME

TURNING COUSINS INTO SISTERS 375

FORM: Sirdot. larg.

376 THE PDP-11 FAMILY

Notice that no push routines are needed for any

of the variables.

All subscripting operations resulted in the ad-

dress of the array element being left in RO at

execution time. Only one-dimensional arrays

were handled. Two- and three-dimensional ar-

rays continued to be handled as in the more

general Phase 1 implementation.

These forms can occur on both left- and

right-handed sides of assignment statements.

The arithmetic instructions are three address

instructions, taking two arguments and putting

the result in a designated place. These instruc-

tions are limited to +, -, *, / on integer, real,

and double-precision data.

Ad Hoc Special Cases

Within this general framework, a number of

additional ad hoc addressing modes were in-

corporated.
For each of the arithmetic operators and each

of the three data-types, the first operand ad-

dressing mode could be given as D to designate

that it was the same as the destination core ad-

dress and the destination parameter was elimi-

nated. This was not done for the second oper-

and based on the simple observation that pro-

grammers will almost always write assignments

as:

A = A + . . .

instead of:

A =
. . . + A

This added 12 more service routines.

For the integer operators only, the second

operand could be given as K to designate that it

was a constant given as the parameter instead of

the address of the value. This was not done for

the first operand for reasons similar to the case

above.

For integer add and subtract operators only,

the second operand could be given as 1 to desig-

nate that it is the constant value 1 and no pa-

rameter is present. This is simply a frequent

special case of the previous use of K.

By combining the above, the FORTRAN
statement:

K = K + 1

is compiled to:

$D1CAI,K

where the service routine is simply:

SDICAI: INC
JMP

@(R4)+
@(R4)+

This code occupies two words and requires

five memory cycles to execute. This is not quite

as good as the two words and three cycles

needed for direct PDP-11 code, but far better

than the five words and 18 cycles required by
the earlier implementation.

General Results

Execution improvement varied, of course,

with the particular programs used. Over a large

set of programs, the following guidelines were

obtained.

• Programs that were floating-point in-

tensive increased in speed by factors of 1 . 1

to 1.6, with 1.3 being representative.
• Programs that were integer intensive in-

creased in speed by factors of 1.4 to 2.4,

with 2.0 being representative. (One partic-

ularly simple benchmark increased in

speed by a factor of 4!)

Moreover, because of the reduced need for push

routines, most programs increased in size by

less than 10 percent.

TURNING COUSINS INTO SISTERS 377

The improvement for integer operations was

better than for floating-point operations for

several reasons. Integer operations were more

easily "optimized" because they took place in

the basic CPU general registers. The FPl 1 has a

separate set of floating-point registers, and

floating-point computations must be performed

only in those registers. Also, the FPl 1 operates
in either single-precision or double-precision
mode depending on a status bit; the compiler

implementation was not suitable for tracking
the state of this bit and, hence, each floating-

point operation continued to bear the overhead

of reestablishing the state as needed by that op-
eration. (This is the purpose of the SETF in-

struction shown in Figure 5.)

The performance improvements of the Phase

2 system with its extended virtual machine were

obtained with a design, development, and test-

ing effort of about three man-months. For that

effort, PDP-11 FORTRAN regained a strong

competitive position that held reasonably well

until FORTRAN IV-PLUS, an optimizing
PDP-11 code-generating system, replaced it 18

months later (in early 1975).

REAL MICROCODE AND THE FORTRAN
MACHINE

Clearly, the FORTRAN virtual machine de-

scribed above could be implemented in "real"

microcode instead of the PDP-11 instruction

set. This was considered during the design plan-

ning for the PDP- 11/60 which features a writ-

able control store microprogramming option

[DEC, 1977a]. But, while the analysis showed

that a significant improvement could be ob-

tained, the result, at best, would be comparable
to the performance already achieved by the

FORTRAN IV-PLUS product. Consequently,
it was not done.

The analysis proceeded along the following

lines. Execution time was considered in three

categories: instruction fetch and decode, oper-
and fetch and/or store, and execution time

proper. Since the analysis is a comparison of

different FORTRAN implementations for a

given machine, the basic execution times are as-

sumed to be the same and neglected. The result-

ing comparison, thus, shows the number of

words of memory and the number of memory
cycles for each implementation.

For this presentation we shall consider the

following two FORTRAN statements as rea-

sonably representative of FORTRAN as a

whole.

1 = J*K + L

A(I)
=

B(J) + 4

For these statements, the size and memory
cycles are easily determined by examination of

the code generated by FORTRAN and FOR-
TRAN IV-PLUS, respectively. These values are

shown in Table 1.

For the hypothesized micro-thread imple-

mentation, the code size is unchanged from

FORTRAN, while the memory cycle count is

Table 1 . Comparison of Size and Time Requirements of Sample Statements with
Different Implementation Techniques

378 THE PDP-11 FAMILY

reduced by eliminating the instruction fetches

that occur in the service routines. These results

are also shown in the table. Comparison of the

results shows that the micro-thread implemen-
tation is faster (as expected), but also that its

speed is no better than that of FORTRAN IV-

PLUS. Could this be coincidence or is there rea-

son to believe these results should be obtained?

To answer this, we formulated a simple in-

tuitive model for the expected size and speed of

code on an idealized FORTRAN machine. To
estimate the code size:

• Count one unit for each variable that is

referenced (e.g., A(I) counts as two).
• Count one unit for each operation per-

formed (e.g., assignment or subscripting

are unit operations).

To estimate the memory cycles for execution:

• Count one unit for each variable that is

referenced.

• Count one unit for each operation per-

formed.
• Count one, two, or four units for each

value fetch or store operation depending
on the size of the data.

This very simple model is appropriate only

for compilers that produce code based only on

isolated source information, which is true of the

original FORTRAN. Optimizing compilers,

such as FORTRAN IV-PLUS, do better than

suggested by this model by eliminating or sim-

plifying operations (for example, by constant

expression elimination or moving invariant

computations out of loops, and/or by keeping
values in registers instead of main memory, es-

pecially across loops). Consequently, the model

serves primarily as a relatively implementation-

independent frame of reference for comparing
alternative implementations.

The sizes and cycle counts from this model

for the sample statements are also shown in

Table 1 . These values are quite similar to values

for both the micro-thread and FORTRAN IV-

PLUS implementations.
We interpreted these results as a clear demon-

stration that a micro-threaded implementation
could not significantly outperform the existing

FORTRAN IV-PLUS implementation. Fur-

ther, effort expended for greater performance
would be better directed toward improved opti-

mization in FORTRAN IV-PLUS (which
would benefit existing hardware products) or

toward faster hardware per se.
*

There is also a broader interpretation of the

results that is worth reflection. The threaded

implementation was designed to be a good
FORTRAN architecture. Yet, when imple-

mented in microcode in a manner comparable
with the host PDP-1 1 architecture, the perform-

ance is close to that achieved by the FOR-
TRAN IV-PLUS compiler and also close to

that of an "ideal" model. One is led to speculate

that the PDP- 1 1 with FP 1 1 is also a good FOR -

TRAN architecture.

ACKNOWLEDGEMENTS
Many individuals contributed to the design,

implementation, and evolution of the PDP-11

FORTRAN product. The following were par-

ticularly involved in those aspects described in

this paper. Jim Bell, Dave Knight, and the au-

thor participated in the initial design evaluation

that led to the basic virtual machine. Dave was

project leader for the first versions of the prod-

uct. Rich Grove participated in the support of

the FPl 1 and FIS options. The extended virtual

machine design and implementation, and the

microcode feasibility analysis were done by the

author. Finally, Craig Mudge assisted in the

preparation of this paper with valuable dis-

cussion and criticism, and by not accepting

"no" for an answer.

*Note that Digital did both. FORTRAN IV-PLUS V2 and the FPl l-C were both released in early 1976 with each offering

significant performance improvements.

a

The Evolution of the PDP-11

C. GORDON BELL and J. CRAIG MUDGE

A computer is not solely determined by its

architecture; it reflects the technological, eco-

nomic, and organizational aspects of the envi-

ronment in which it was designed and built. In

the introductory chapters the nonarchitectural

design factors were discussed: the availability

and price of the basic electronic technology, the

various government and industry rules and

standards, the current and future market condi-

tions, and the manufacturing process.

In this chapter one can see the result of the

interaction of these various forces in the evolu-

tion of the PDP-11. Twelve distinct models

(LSI-11, PDP- 11/04, 11/05, 11/20, 11/34,

11/34C, 11/40, 11/45, 11/55, 11/60, 11/70, and

VAX-11/780) exist in 1978.

The PDP-11 has been successful in the mar-

ketplace: over 50,000 were sold in the first eight

years that it was on the market (1970-1977). It

is not clear how rigorous a test (aside from the

marketplace) the design has been given, since a

large and aggressive marketing organization,

armed with software to correct architectural in-

consistencies and omissions, can save almost

any design.

Many ideas from the PDP-11 have migrated
to other computers with newer designs. Al-

though some of the features of the PDP-11 are

patented, machines have been made with sim-

ilar bus and instruction set processor structures.

Many computer designers have adopted a uni-

fied data and address bus similar to the Unibus

as their fundamental architectural component.

Many microprocessor designs incorporate the

PDP-11 Unibus notion of mapping I/O and

control registers into the memory address

space, eliminating the need for I/O instructions

without complicating the I/O control logic.

It is the nature of computer engineering to be

goal-oriented, with pressure to produce deliv-

erable products. It is therefore difficult to plan

for an extensive lifetime. Nevertheless, the

PDP-11 evolved rapidly over a much wider

range than expected. An outline of a family

plan was set forth in a memo on April 3, 1969,

by Roger Cady, head of the PDP-11 engineer-

ing group at the time (Table 1). The actual evo-

lution is shown in tree form in Figure 1 and is

mapped onto a cost/performance representa-

tion in Figure 2.

379

380 THE PDP-11 FAMILY

0)

CO

a
<

o

0) "^

a
<q

w »

2.2 S

£ EK
» 2 D
r^ » O
00 ^ g

> < o
.t CD

ii z
<

<o O
£ u.

CQ H
< Sw O
< u.

6 z
"- <
0) OC

8 I

o a>
3 a

E
1. jQ O I. ^
^¥ 1^ 8.

(0 tf> E » .S

2 E

E '*

^ o

I, «^
o ^.t
o "a 5

s

THE EVOLUTION OF THE PDP-11 381

UNIBUS

Figure 1. The PDP-11 Family tree.

MAXIMUM
PERFORMANCE
DESIGNS

••"^ V. COST/
V 60 \ ^^—PERFORMANCE
\ \ DESIGNS

\ \ \ Njs^
LINES OF

\ V CONSTANT
'!t?* \ \ '^^- PERFORMANCE

\ lAND DECREASING\ PRICE!

T \»04 \\ \ \
NS ^. \ \. N \

\
l\

r 3001 BASED

\ \ \ \
72 75

^ J^ \.

Figure 2. PDP-1 1 models price versus time with lines

of constant performance.

EVALUATION AGAINST THE ORIGINAL
GOALS

In the original 1970 PDP-11 paper (Chapter

9), a set of design goals and constraints were

given, beginning with a discussion of the weak-

nesses frequently found in minicomputers. The

designers of the PDP-11 faced each of these

known minicomputer weaknesses, and their

goals included a solution to each one. This sec-

tion reviews the original goals, commenting on
the success or failure of the PDP-11 in meeting
each of them.

The weaknesses of prior designs that were

noted were limited addressability, a small num-
ber of registers, absence of hardware stack facil-

ities, limited interrupt structures, absence of

byte string handling and read-only memory fa-

cilities, elementary I/O processing, absence of

growth-path family members, and high pro-

gramming costs.

The first weakness of minicomputers was
their limited addressing capability. The biggest

(and most common) mistake that can be made
in a computer design is that of not providing

enough address bits for memory addressing and

management. The PDP-11 followed this hal-

lowed tradition of skimping on address bits, but

it was saved by the principle that a good design
can evolve through at least one major change.

For the PDP-1 1, the limited address problem
was solved for the short run, but not with

enough finesse to support a large family of

minicomputers. That was indeed a costly over-

sight, resulting in both redundant development
and lost sales. It is extremely embarassing that

the PDP-1 1 had to be redesigned with memory
management* only two years after writing the

paper that outlined the goal of providing in-

creased address space. All earlier DEC designs
suffered from the same problem, and only the

The memory management served two other functions besides expanding the 16-bit processor-generated addresses into 18-

bit Unibus addresses: program relocation and protection.

382 THE PDP-11 FAMILY

PDP-10 evolved over a long period (15 years)

before a change occurred to increase its address

space. In retrospect, it is clear that another ad-

dress bit is required every two or three years,

since memory prices decline about 30 percent

yearly, and users tend to buy constant price suc-

cessor systems.
A second weakness of minicomputers was

their tendency to skimp on registers. This was

corrected for the PDP-1 1 by providing eight 16-

bit registers. Later, six 64-bit registers were

added as the accumulators for floating-point

arithmetic. This number seems to be adequate:
there are enough registers to allocate two or

three registers (beyond those already dedicated

to program counter and stack pointer) for pro-

gram global purposes and still have registers for

local statement computation.* More registers

would increase the context switch time and wor-

sen the register allocation problem for the user.

A third weakness of minicomputers was their

lack of hardware stack capability. In the PDP-

11, this was solved with the autoincre-

ment/autodecrement addressing mechanism.

This solution is unique to the PDP-1 1, has pro-
ved to be exceptionally useful, and has been

copied by other designers. The stack limit

check, however, has not been widely used by
DEC operating systems.

A fourth weakness, limited interrupt capabil-

ity and slow context switching, was essentially

solved by the Unibus interrupt vector design.

The basic mechanism is very fast, requiring only
four memory cycles from the time an interrupt

request is issued until the first instruction of the

interrupt routine begins execution. Implemen-
tations could go further and save the general

registers, for example, in memory or in special

registers. This was not specified in the archi-

tecture and has not been done in any of the im-

plementations to date. VAX-11 provides

explicit load and save process context instruc-

tions.

A fifth weakness of earlier minicomputers,

inadequate character handling capability, was
met in the PDP-1 1 by providing direct byte ad-

dressing capability. String instructions were not

provided in the hardware, but the common
string operations (move, compare, concatenate)
could be programmed with very short loops.

Early benchmarks showed that this mechanism

was adequate. However, as COBOL compilers
have improved and as more understanding of

operating systems string handling has been ob-

tained, a need for a string instruction set was

felt, and in 1977 such a set was added.

A sixth weakness, the inability to use read-

only memories as primary memory, was
avoided in the PDP-11. Most code written for

the PDP-11 tends to be reentrant without spe-

cial effort by the programmer, allowing a read-

only memory (ROM) to be used directly. Read-

only memories are used extensively for boot-

strap loaders, program debuggers, and for

simple functions. Because large read-only mem-
ories were not available at the time of the origi-

nal design, there are no architectural

components designed specifically with large

ROMs in mind.

A seventh weakness, one common to many
minicomputers, was primitive I/O capabilities.

The PDP-11 answers this to a certain extent

with its improved interrupt structure, but the

completely general solution of I/O computers
has not yet been implemented. The I/O proces-

sor concept is used extensively in display pro-

cessors, in communication processors, and in

signal processing. Having a single machine in-

struction that transmits a block of data at the

interrupt level would decrease the central pro-

cessor overhead per character by a factor of 3; it

* Since dedicated registers are used for each Commercial Instruction Set (CIS) instruction, this was no longer true when CIS
was added.

THE EVOLUTION OF THE PDP-1 1 383

should have been added to the PDP-1 1 instruc-

tion set for implementation on all machines.

Provision was made in the 1 1/60 for invocation

of a micro-level interrupt service routine in

writable control store (WCS), but the family ar-

chitecture is yet to be extended in this direction.

Another common minicomputer weakness

was the lack of system range. If a user had a

system running on a minicomputer and wanted

to expand it or produce a cheaper turnkey ver-

sion, he frequently had no recourse, since there

were often no larger and smaller models with

the same architecture. The PDP-11 has been

very successful in meeting this goal.

A ninth weakness of minicomputers was the

high cost of programming caused by program-

ming in lower level languages. Many users pro-

grammed in assembly language, without the

comfortable environment of high-level lan-

guages, editors, file systems, and debuggers
available on bigger systems. The PDP-11 does

not seem to have overcome this weakness, al-

though it appears that more complex systems
are being successfully built with the PDP-11
than with its predecessors, the PDP-8 and the

PDP-1 5. Some systems programming is done

using higher level languages; however, the opti-

mizing compiler for BLISS- 11 at first ran only
on the PDP-10. The use of BLISS has been

slowly gaining acceptance. It was first used in

implementing the FORTRAN-IV PLUS (opti-

mizing) compiler. Its use in PDP-10 and VAX-
1 1 systems programming has been more wide-

spread.

One design constraint that turned out to be

expensive, but worth it in the long run, was the

necessity for the word length to be a multiple of

eight bits. Previous DEC designs were oriented

toward 6-bit characters, and DEC had a large

investment in 12-, 18-, and 36-bit systems, as de-

scribed in Parts II and V.

Microprogrammability was not an explicit

design goal, partially because fast, large, and in-

expensive read-only memories were not avail-

able at the time of the first implementation. All

subsequent machines have been micro-

programmed, but with some difficulty because

some parts of the instruction set processor, such

as condition code setting and instruction regis-

ter decoding, are not ideally matched to micro-

programmed control.

The design goal of understandability seems to

have received little attention. The PDP-11 was

initially a hard machine to understand and was
marketable only to those with extensive com-

puter experience. The first programmers' hand-

book was not very helpful. It is still unclear

whether a user without programming expe-
rience can learn the machine solely from the

handbook. Fortunately, several computer sci-

ence textbooks [Gear, 1974; Eckhouse, 1975;

Stone and Siewiorek, 1975] and other training

books have been written based on the PDP-11.
Structural flexibility (modularity) for hard-

ware configurations was an important goal.

This succeeded beyond expectations and is dis-

cussed extensively in the Unibus Cost and Per-

formance section,

EVOLUTION OF THE INSTRUCTION SET
PROCESSOR

Designing the instruction set processor level

of a machine - that collection of characteristics

such as the set of data operators, addressing

modes, trap and interrupt sequences, register

organization, and other features visible to a

programmer of the bare machine - is an ex-

tremely difficult problem. One has to consider

the performance (and price) ranges of the ma-
chine family as well as the intended appli-

cations, and difficult tradeoffs must be made.

For example, a wide performance range argues
for different encodings over the range; for small

systems a byte-oriented approach with small

addresses is optimal, whereas larger systems re-

quire more operation codes, more registers, and

larger addresses. Thus, for larger machines, in-

struction coding efficiency can be traded for

performance.

384 THE PDP-11 FAMILY

The PDP-11 was originally conceived as a

small machine, but over time its range was

gradually extended so that there is now a factor

of 500 in price ($500 to $250,000) and memory
size (8 Kbytes to 4 Mbytes*) between the small-

est and largest models. This range compares fa-

vorably with the range of the IBM System 360

family (4 Kbytes to 4 Mbytes*). Needless to

say, a number of problems have arisen as the

basic design was extended.

Chronology of the Extensions

A chronology of the extensions is given in

Table 2. Two major extensions, the memory
management and the floating point, occurred

with the 1 1/45. The most recent extension is the

Commercial Instruction Set, which was defined

to enhance performance for the character string

and decimal arithmetic data-types of the com-

mercial languages (e.g., COBOL). It introduced

the following to the PDP-11 architecture:

1. Data-types representing character sets,

character strings, packed decimal

strings, and zoned decimal strings.

2. Strings of variable length up to 65 Kcha-

racters.

3. Instructions for processing character

strings in each data-type (move, add,

subtract, multiply, divide).

4. Instructions for converting among
binary integers, packed decimal strings,

and zoned decimal strings.

5. Instructions to move the descriptors for

the variable length strings.

The initial design did not have enough oper-

ation code space to accommodate instructions

for new data-types. Ideally, the complete set of

operation codes should have been specified at

initial design time so that extensions would fit.

With this approach, the uninterpreted oper-

ation codes could have been used to call the var-

ious operation functions, such as a floating-

point addition. This would have avoided the

proliferation of run-time support systems for

the various hardware/software floating-point

arithmetic methods (Extended Arithmetic Ele-

ment, Extended Instruction Set, Floating In-

struction Set, Floating-Point Processor). The
extracode technique was used in the Atlas and

Scientific Data Systems (SDS) designs, but

these techniques are overlooked by most com-

puter designers. Because the complete instruc-

tion set processor (or at least an extension

framework) was unspecified in the initial de-

sign, completeness and orthogonality have been

sacrificed.

At the time the PDP-1 1/45 was designed, sev-

eral operation code extension schemes were ex-

amined: an escape mode to add the floating-

point operations, bringing the PDP-11 back to

being a more conventional general register ma-

chine by reducing the number of addressing

modes, and finally, typing the data by adding a

global mode that could be switched to select

floating point instead of byte operations for the

same operation codes. The floating-point in-

struction set, introduced with the 11/45, is a

version of the second alternative.

It also became necessary to do something
about the small address space of the processor.

The Unibus limits the physical memory to the

262,144 bytes addressable by 18-bits. In the

PDP-1 1/70, the physical address was extended

to 4 Mbytes by providing a Unibus map so that

devices in a 256 Kbyte Unibus space could

transfer into the 4-Mbyte space via mapping

registers. While the physical address limits are

acceptable for both the Unibus and larger sys-

tems, the address for a single program is still

confined to an instantaneous space of 16 bits,

the user virtual address. The main method of

*
Although 22 bits are used, only 2 megabytes can be utilized in the 1 1/70.

THE EVOLUTION OF THE PDP-1 1 385

Table 2. Chronology of PDP-11 Instruction

Set Processor (ISP) Evolution

Model(s) Evolution

1 1 /20 Base ISP (1 6-bit virtual address) and

PMS (16-bit processor physical

memory address) Unibus with 18-bit

addressing

11/20 Extended Arithmetic Element (hard-

ware multiply/divide)

1 1/45 Floating-point instruction set with 6

(11/55,11/70, additional registers (46 instructions)

1 1/60,1 1/34) in the Floating-Point Processor

11/45 Memory management (KT11C), 3

(1 1/55,1 1/70) modes of protection (Kernel, Super-

visor, User); 18-bit processor phys-

ical addressing; 16-bit virtual

addressing in 8 segments for both

instruction and data spaces

1 1/45 Extensions for second set of general

(11/55,11/70) registers and program interrupt

request

11/40 Extended Instruction Set for multi-

(11/03) ply/divide; floating-point instruction

set (4 instructions)

11/40 Memory Management (KT11D), 2

(11/34,11/60) modes of protection (Kernel, User);

18-bit processor physical address-

ing; 16-bit virtual addressing in 8

segments

11/70 22-bit processor physical address-

ing; Unibus map for peripheral con-

troller 22-bit addressing

1 1/70 Error register accessibility for on-line

(1 1/60) diagnosis and retry (e.g., cache parity

error)

11/03 Program access to processor status

(11/04,11/34) register via explicit instruction (ver-

sus Unibus address)

1 1/03 One level program interrupt

11/60 Extended Function Code for in-

vocation of user-written microcode

VAX-1 1/780 VAX architectural extensions for 32-

bit virtual addressing; VAX ISP

11/03 Commercial Instruction Set (CIS)

1 1/70mP Interprocessor Interrupt and System
Timers for multiprocessor

dealing with relatively small addresses is via

process-oriented operating systems that handle

many small tasks. This is a trend in operating

systems, especially for process control and

transaction processing. It does, however, en-

force a structuring discipline in (user) program

organization. The RSX-11 series of operating

systems for the PDP-1 1 are organized this way,
and the need for large addresses is lessened.

The initial memory management proposal to

extend the virtual memory was predicated on

dynamic, rather than static, assignment of

memory segment registers. In the current mem-

ory management scheme, the address registers

are usually considered to be static for a task (al-

though some operating systems provide func-

tions to get additional segments dynamically).

With dynamic assignment, a user can address

a number of segment names, via a table, and

directly load the appropriate segment registers.

The segment registers act to concatenate addi-

tional address bits in a base address fashion.

There have been other schemes proposed that

extend the addresses by extending the length of

the general registers
- of course, extended ad-

dresses propagate throughout the design and in-

clude double length address variables. In effect,

the extended part is loaded with a base address.

With larger machines and process-oriented

operating systems, the context switching time

becomes an important performance factor. By
providing additional registers for more pro-

cesses, the time (overhead) to switch context

from one process (task) to another can be re-

duced. This option has not been used in the op-

erating system implementations of the PDP-1 Is

to date, although the 11/45 extensions included

a second set of general registers. Various alter-

natives have been suggested, and to accomplish
this effectively requires additional operators to

handle the many aspects of process scheduling.

This extension appears to be relatively unim-

portant since the range of computers coupled
with networks tends to alleviate the need by in-

creasing the real parallelism (as opposed to the

386 THE PDP-11 FAMILY

apparent parallelism) by having various inde-

pendent processors work on the separate pro-

cesses in parallel. The extensions of the PDP-1 1

for better control of I/O devices is clearly more

important in terms of improved performance.

Architecture Management

In retrospect, many of the problems associ-

ated with PDP-11 evolution were due to the

lack of an ongoing architecture management
function. As can be seen from Table 1, the no-

tion of planned evolution was very strong at the

beginning. However, a formal architecture con-

trol function was not set up until early in 1974.

In some sense this was already too late - the

four PDP-11 models designed by that date

(11/20, 11/05, 11/40, 11/45) had in-

compatibilities between them. The architecture

control function since then has ensured that no

further divergence (except in the LSI-11) took

place in subsequent models, and in fact resulted

in some convergence. At the time the Com-
mercial Instruction Set was added, an archi-

tecture extension framework was adopted.
Insufficient encodings existed to provide a large

number of additional instructions using the

same encoding style (in the same space) as the

basic PDP-1 1, i.e., the operation code and oper-

and specifier addressing mode specifiers within

a single 16-bit word. An instruction extension

framework was adopted which utilized a full

word as the opcode, with operand addressing

mode specifiers in succeeding instruction

stream words along the lines of VAX-11. This

architectural extension permits 512 additional

opcodes, and instructions may have an unlim-

ited number of operand addressing mode speci-

fiers. The architecture control function also had

to deal with the Unibus address space problem.
With VAX-11, architecture management has

been in place since the beginning. A definition

of the architecture was placed under formal

change control well before the VAX- 11/780
was built, and both hardware and software en-

gineering groups worked with the same docu-

ment. Another significant difference is that an

extension framework was defined in the original

architecture.

An Evaluation

The criteria used to decide whether or not to

include a particular capability in an instruction

set are highly variable and border on the artis-

tic* Critics ask that the machine appear ele-

gant, where elegance is a combined quality of

instruction formats relating to mnemonic sig-

nificance, operator/data-type completeness and

orthogonality, and addressing consistency.

Having completely general facilities (e.g., regis-

ters) which are not context dependent assists in

minimizing the number of instruction types and

in increasing understandability (and useful-

ness). The authors feel that the PDP-1 1 has pro-

vided this.

At the time the Unibus was designed, it was

felt that allowing 4 Kbytes of the address space

for I/O control registers was more than enough.

However, so many different devices have been

interfaced to the bus over the years that it is no

longer possible to assign unique addresses to

every device. The architectural group has thus

been saddled with the chore of device address

bookkeeping. Many solutions have been pro-

posed, but none was soon enough; as a result,

they are all so costly that it is cheaper just to live

with the problem and the attendant inconven-

ience.

Techniques for generating code by the human
and compiler vary widely and thus affect in-

struction set processor design. The PDP-1 1 pro-

vides more addressing modes than nearly any
other computer. The eight modes for source

*
Today one would use the S. M, and R measures and methodology defined in Appendix 3.

THE EVOLUTION OF THE PDP-1 1 387

and destination with dyadic operators provide
what amounts to 64 possible ADD instructions.

By associating the Program Counter and Stack

Pointer registers with the modes, even more
data accessing methods are provided. For ex-

ample, 18 varieties of the MOVE instruction

can be distinguished as the machine is used in

two-address, general register, and stack ma-
chine program forms. (There is a price for this

generality
-
namely, fewer bits could have been

used to encode the address modes that are ac-

tually used most of the time.)

How the PDP-11 Is Used

In general, the PDP-11 has been used mostly
as a general register (i.e., memory to registers)

machine. This can be seen by observing the use

frequency from Strecker's data (Chapter 14). In

one case, it was observed that a user who pre-

viously used a one-accumulator computer (e.g.,

PDP-8), continued to do so. A general register

machine provides the greatest performance, and
the cost (in terms of bits) is the same as when
used as a stack machine. Some compilers, par-

ticularly the early ones, are stack oriented since

the code production is easier. In principle, and
with much care, a fast stack machine could be

constructed. However, since most stack ma-
chines use primary memory for the stack, there

is a loss of performance even if the top of the

stack is cached. While a stack is the natural

(and necessary) structure to interpret the nested

block structure languages, it does not neces-

sarily follow that the interpretation of all state-

ments should occur in the context of the stack.

In particular, the predominance of register
transfer statements are of the simple 2- and 3-

address forms:

and

D^S

Dl(indexl)-f(S2(index2), S3(index3)).

These do not require the stack organization.
In effect, appropriate assignment allows a gen-
eral register machine to be used as a stack ma-
chine for most cases of expression evaluation.

This has the advantage of providing temporary,
random access to common subexpressions, a

capability that is usually hard to exploit in stack

architectures.

THE EVOLUTION OF THE PMS
(MODULAR) STRUCTURE

The end product of the PDP-1 1 design is the

computer itself, and in the evolution of the ar-

chitecture one can see images of the evolution

of ideas. In this section, the architectural evolu-

tion is outlined, with a special emphasis on the

Unibus.

The Unibus is the architectural component
that connects together all of the other major

components. It is the vehicle over which data

flow between pairs of components takes place.

Its structure is described in Chapter 11.

In general, the Unibus has met all expecta-
tions. Several hundred types of memories and

peripherals have been interfaced to it; it has be-

come a standard architectural component of

systems in the $3K to SIOOK price range (1975).

The Unibus does limit the performance of the

fastest machines and penalizes the lower per-

formance machines with a higher cost. Recently
it has become clear that the Unibus is adequate
for large, high performance systems when a

cache structure is used because the cache re-

duces the traffic between primary memory and

the central processor since about one-tenth of

the memory references are outside the cache.

For still larger systems, supplementary buses

were added for central processor to primary

memory and primary memory to secondary

memory traffic. For very small systems like the

LSI- 11, a narrower bus was designed.
The Unibus, as a standard, has provided an

architectural component for easily configuring

388 THE PDP-11 FAMILY

systems. Any company, not just DEC, can eas-

ily build components that interface to the bus.

Good buses make good engineering neighbors,

since people can concentrate on structured de-

sign. Indeed, the Unibus has created a second-

ary industry providing alternative sources of

supply for memories and peripherals. With the

exception of the IBM 360 Multiplexer/Selector

Bus, the Unibus is the most widely used com-

puter interconnection standard.

The Unibus has also turned out to be in-

valuable as an "umbilical cord" for factory di-

agnostic and checkout procedures. Although
such a capability was not part of the original

design, the Unibus is almost capable of con-

trolling the system components (e.g., processor
and memory) during factory checkout. Ideally,

the scheme would let all registers be accessed

during full operation. This is possible for all de-

vices except the processor. By having all central

processor registers available for reading and

writing in the same way that they are available

from the console switches, a second system can

fully monitor the computer under test.

In most recent PDP-1 1 models, a serial com-

munications line, called the ASCII Console, is

connected to the console, so that a program

may remotely examine or change any informa-

tion that a human operator could examine or

change from the front panel, even when the sys-

tem is not running. In this way computers can

be diagnosed from a remote site.

Difficulties with the Design

The Unibus design is not without problems.

Although two of the bus bits were set aside in

the original design as parity bits, they have not

been widely used as such. Memory parity was

implemented directly in the memory; this phe-
nomenon is a good example of the sorts of

problems encountered in engineering optimiza-
tion. The trading of bus parity for memory par-

ity exchanged higher hardware cost and
decreased performance for decreased service

cost and better data integrity. Because engineers
are usually judged on how well they achieve

production cost goals, parity transmission is an

obvious choice to pare from a design, since it

increases the cost and decreases the perform-
ance. As logic costs decrease and pressure to in-

clude warranty costs as part of the product

design cost increases, the decision to transmit

parity may be reconsidered.

Early attempts to build tightly coupled multi-

processor or multicomputer structures (by map-
ping the address space of one Unibus onto the

memory of another), called Unibus windows,
were beset with a logic deadlock problem. The
Unibus design does not allow more than one

master at a time. Successful multiprocessors re-

quired much more sophisticated sharing mecha-

nisms such as shared primary memory.

Unibus Cost and Performance

Although performance is always a design

goal, so is low cost; the two goals conflict

directly. The Unibus has turned out to be nearly

optimum over a wide range of products. It

served as an adequate memory-processor inter-

connect for six of the ten models. However, in

the smallest system, DEC introduced the LSI-

1 1 Bus, which uses about half the number of

conductors. For the largest systems, a separate

32-bit data path is used between processor and

memory, although the Unibus is still used for

communication with the majority of the I/O
controllers (the slower ones). Figure 1 summa-
rizes the evolution of memory-processor inter-

connections in the LSI- 11 Family. Levy
(Chapter 1 1) discusses the evolution in more de-

tail.

The bandwidth of the Unibus is approx-

imately 1.7 megabytes per second or 850 K
transfers/second. Only for the largest con-

figurations, using many I/O devices with very

high data rates, is this capacity exceeded. For

most configurations, the demand put on an I/O
bus is limited by the rotational delay and head

THE EVOLUTION OF THE PDP-1 1 389

positioning of disks and the rate at which pro-

grams (user and system) issue I/O requests.

An experiment to further the understanding
of Unibus capacity and the demand placed

against it was carried out. The experiment used

a synthetic workload; like all synthetic work-

loads, it can be challenged as not being repre-

sentative. However, it was generally agreed that

it was a heavy I/O load. The load simulated

transaction processing, swapping, and back-

ground computing in the configuration shown
in Figure 3. The load was run on five systems,

each placing a different demand on the Unibus.

Each run produced two numbers: (1) the time

to complete 2,000 transactions, and (2) the

number of iterations of a program called

HANOI that were completed.

8K

390 THE PDP-11 FAMILY

There are several attributes of a bus that af-

fect its cost and performance. One factor affect-

ing performance is simply the data rate of a

single conductor. There is a direct tradeoff in-

volving cost, performance, and reliability.

Shannon [1948] gives a relationship between the

fundamental signal bandwidth of a link and the

error rate (signal-to-noise ratio) and data rate.

The performance and cost of a bus are also af-

fected by its length. Longer cables cost propor-

tionately more, since they require more

complex circuitry to drive the bus.

Since a single-conductor link has a fixed data

rate, the number of conductors affects the net

speed of a bus. However, the cost of a bus is

directly proportional to the number of con-

ductors. For a given number of wires, time do-

main multiplexing and data encoding can be

used to trade performance and logic com-

plexity. Since logic technology is advancing fas-

ter than wiring technology, it seems likely that

fewer conductors will be used in all future sys-

tems, except where the performance penalty of

time domain multiplexing is unacceptably

great.

If, during the original design of the Unibus,

DEC designers could have foreseen the wide

range of applications to which it would be ap-

plied, its design would have been different. Indi-

vidual controllers might have been reduced in

complexity by more central control. For the

largest and smallest systems, it would have been

useful to have a bus that could be contracted or

expanded by multiplexing or expanding the

number of conductors.

The cost-effectiveness of the Unibus is due in

large part to the high correlation between mem-

ory size, number of address bits, I/O traffic,

and processor speed. Gene Amdahl's rule of

thumb for IBM computers is that 1 byte of

memory and 1 byte/sec of I/O are required for

each instruction/sec. For tranditional DEC ap-

plications, with emphasis in the scientific and

control applications, there is more computation

required per memory word. Further, the PDP-
11 instruction sets do not contain the extensive

commercial instructions (character strings) typ-

ical of IBM computers, so a larger number of

instructions must be executed to accomplish the

same task. Hence, for DEC computers, it is bet-

ter to assume I byte of memory for each 2 in-

structions/sec, and that 1 byte/sec of I/O
occurs for each instruction/sec.

In the PDP-11, an average instruction ac-

cesses 3-5 bytes of memory, so assuming 1 byte

of I/O for each instruction/sec, there are 4-6

bytes of memory accessed on the average for

each instruction/sec. Therefore, a bus that can

support 2 megabytes/sec of traffic permits in-

struction execution rates of 0.33-0.5 mega-in-

structions/sec. This implies memory sizes of

0.16-0.25 megabytes, which matches well with

the maximum allowable memory of 0.064-0.256

megabytes. By using a cache memory on the

processor, the effective memory processor rate

can be increased to balance the system further.

If fast floating-point instructions were added to

the instruction set, the balance might approach
that used by IBM and thereby require more

memory (an effect seen in the PDP- 11/70).

The task of I/O is to provide for the transfer

of data from peripheral to primary memory
where it can be operated on by a program in a

processor. The peripherals are generally slow,

inherently asynchronous, and more error-prone

than the processors to which they are attached.

Historically, I/O transfer mechanisms have

evolved through the following four stages:

1. Direct sequential I/O under central pro-

cessor control. An instruction in the pro-

cessor causes a data transfer to take

place with a device. The processor does

not resume operation until the transfer is

complete. Typically, the device control

may share the logic of the processor. The

first input/output transfer (lOT) instruc-

tion in the PDP-1 is an example; the lOT
effects transfer between the Accumula-

tor and a selected device. Direct I/O

simplifies programming because every

operation is sequential.

THE EVOLUTION OF THE PDP-1 1 391

2. Fixed buffer, 1-instruction controllers. An
instruction in the central processor
causes a data transfer (of a word or vec-

tor), but in this case, it is to a buffer of

the simple controller and thus at a speed

matching that of the processor. After the

high speed transfer has occurred, the

processor continues while an asynchro-

nous, slower transfer occurs between the

buffer and the device. Communication

back to the processor is via the program

interrupt mechanism. A single instruc-

tion to a simple controller can also cause

a complete block (vector) of data to be

transmitted between memory and the pe-

ripheral. In this case, the transfer takes

place via the direct memory access

(DMA) link.

3. Separate I/O processors
- the channel.

An independent I/O processor with a

unique ISP controls the flow of data be-

tween primary memory and the periph-

eral. The structure is that of the

multiprocessor, and the I/O control pro-

gram for the device is held in primary

memory. The central processor informs

the I/O processor about the I/O pro-

gram location.

4. I/O computer. This mechanism is also

asynchronous with the central processor,

but the I/O computer has a private

memory which holds the I/O program.

Recently, DEC communications options
have been built with embedded control

programs. The first example of an I/O
computer was in the CDC 6600 (1964).

The authors believe that the single-instruc-

tion controller is superior to the I/O processor
as embodied in the IBM Channel mainly be-

cause the latter concept has not gone far

enough. Channels are costly to implement, suf-

ficiently complex to require their own program-

ming environment, and yet not quite powerful

enough to assume the processing, such as file

management, that one would like to offload

from the processor. Although the I/O traffic

does require central processor resources, the ad-

dition of a second, general purpose central pro-
cessor is more cost-effective than using a central

processor-I/O processor or central processor-

multiple I/O processor structure. Future I/O
systems will be message-oriented, and the vari-

ous I/O control functions (including diagnos-
tics and file management) will migrate to the

subsystem. When the I/O computer is an exact

duplicate of the central processor, not only is

there an economy from the reduced number of

part types but also the same programming envi-

ronment can be used for I/O software devel-

opment and main program development.
Notice that the I/O computer must implement

precisely the same set of functions as the proces-

sor doing direct I/O.*

MULTIPROCESSORS

It is not surprising that multiprocessors are

used only in highly specialized applications

such as those requiring high reliability or high

availability. One way to extend the range of a

family and also provide more performance al-

ternatives with fewer basic components is to

build multiprocessors. In this section some fac-

tors affecting the design and implementation of

multiprocessors, and their effect on the PDP-
1 1, are examined.

It is the nature of engineering to be conserva-

tive. Given that there are already a number of

risks involved in bringing a product to the mar-

ket, it is not clear why one should build a higher
risk structure that may require a new way of

programming. What has resulted is a sort of

deadlock situation: people cannot learn how to

program multiprocessors and employ them in a

*The I/O computer is yet another example of the wheel of reincarnation of display processors (see Chapter 7).

392 THE PDP-11 FAMILY

single task until such machines exist, but manu-
facturers will not build the machine until they
are sure that there will be a demand for it, i.e.,

that the programs will be ready.

There is little or no market for multi-

processors even though there is a need for in-

creased reliability and availability of machines.

IBM has not promoted multiprocessors in the

marketplace, and hence the market has lagged.

One reason that there is so little demand for

multiprocessors is the widespread acceptance of

the philosophy that a better single-processor

system can always be built. This approach
achieves performance at the considerable ex-

pense of spare parts, training, reliability, and

flexibility. Although a multiprocessor archi-

tecture provides a measure of reliability,

backup, and system tunability unreachable on a

conventional system, the biggest and fastest ma-

chines are uniprocessors
-
except in the case of

the Bell Laboratories Safeguard Computer [Bell

Laboratories, 1975].

Multiprocessor systems have been built out

of PDP-lls. Figure 4 summarizes the design

and performance of some of these machines.

The topmost structure was built using 11/05

processors, but because of inadequate arbi-

tration techniques in the processor, the ex-

pected performance did not materialize. Table 3

shows the expected results for multiple 11/05

processors sharing a single Unibus and com-

pares them with the PDP- 11/40.

From the results of Table 3 one would expect

to use as many as three 11/05 processors to

achieve the performance of a model 11/40.

More than three processors will increase the

performance at the expense of the cost-effec-

tiveness. This basic structure has been applied

on a production basis in the GT40 series of

graphics processors for the PDP-11. In this

scheme, a second display processor is added to

the Unibus for display picture maintenance. A
similar structure is used for connecting special

E] El... ED... EHZh. E}

(a) Multi- Pc structure using a single Unibus.

g.

I
PC

j jp display-
1 |

Mp
|

K l-l-H T s [^.

'Us«d in GT4X series: alternatively

P SPECIALIZED (EG. FFTI
PISPECIALIZEDI

(b) Pc with P.display using a single Unibus.

H...

s s [^.

F1

—
j

T I—
I

K.clocli I

(c) Multiprocessor using nnultiport Mp.

;nT|'h'6T,°ri|T!
'•'^*°-^^--^^^'^'l

—

K l-i-l T Qtt
H.

(d) C.mmpCMU multi-miniprocessor computer
structure.

Figure 4. PDP-11 multiprocessor PMS structures.

signal-processing computers to the Unibus al-

though these structures are technically coupled

computers rather than multiprocessors.

As an independent check on the validity of

this approach, a multiprocessor system has

THE EVOLUTION OF THE PDP-11 393

Table 3. Multiple POP-11/05 Processors Sharing a Single Unibus

Number and

394 THE PDP-11 FAMILY

4. Several 16-bit processor-on-a-chip pro-

cessors, with an address space matching
and appropriate data-types matching the

performance, exist in 1978. Such a com-

modity can form the basis for nearly all

future computer designs.

5. The performance (instructions per sec-

ond) per chip, which is already greater

for MOS processor chips than for any
other kind, is improving more rapidly

than for large scale computers. This will

pull usage more rapidly into large arrays

of processors because of the essentially

"free cost" of processors (especially rela-

tive to large, low volume custom-built

machines).

Therefore, most subsequent computers will

be based on standard, high volume parts. For

high performance machines, since processing

power is available at essentially zero cost from

processor-on-a-chip-based processors, large

scale computing will come from arrays of pro-

cessors, just as memory subsystems are built

from arrays of 64 Kbit integrated circuits.

The multiprocessor research projects at

CMU have emphasized synthesis and measure-

ment. Operating systems have been built for

them, and the executions of user programs have

been carefully analyzed. All the multiprocessor

interferences, overheads, and synchronization

problems have been faced for several appli-

cations; the resultant performance helps to put

their actual costs in perspective. Figure 5 shows

the HARPY speech recognition program and

compares the performance of C.mmp and Cm*
with three DEC uniprocessors (PDP-10 with

KAIO processor, PDP-10 with KL 10 processor,

and PDP- 11/40).

C.mmp
C.mmp (Figure 6) a 16 processor (1 l/40s and

11 /20s) system has 2.5 million words of shared

primary memory. It was built to investigate the

programming (and resulting performance)

NUMBER OF PROCESSORS

Figure 5. A performance comparison of two multi-

processors, C.mmp and Cm*, with three uniprocessors

at Carnegie-Mellon University. The application used is

HARPY, a speech recognition program.

questions associated with having a large num-

ber of processors. Since the time that the first

paper [Wulf and Bell, 1972] was written,

C.mmp has been the object of some interesting

studies, the results of which are summarized be-

low.

C.mmp was motivated by the need for more

computing power to solve speech recognition

and signal processing problems and to under-

stand the multiprocessor software problem.

Until C.mmp, only one large, tightly coupled

multiprocessor had been built - the Bell Labo-

ratories Safeguard Computer [Bell Labora-

tories, 1975].

The original paper [Wulf and Bell, 1972] de-

scribes the economic and technical factors in-

fluencing multiprocessor feasibility and argues

for the timeliness of the research. Various prob-

lems to be researched and a discussion of par-

ticular design aspects are given. For example,

since C.mmp is predicated on a common oper-

ating systems, there are two sources of degrada-

tion: memory contention and lock contention.

THE EVOLUTION OF THE PDP-11 395

^ ^

\ s

^ ^

S.mp

^ ^

^ ^

Pc(O)

POP- 11/20

Pcd)
PDPH/40

Pc(4l

POP 11/20

Pc(3l

POP 11/40

Pc(6l

PDP 11/40

Pc(5l

PDP 11/40

Pc(8)

PDPH/20

Pc(7)

PDP 11/40

—
I
M local|

b^X J_,b_,XZL J_,ZL
I

Kibi I I
Kibi

I I
Kibi I I

Kibi
| |

Kibi
| | Kibi

\ \
Kibi | | Kibi |

PcdO)
POP 11/40

PcOl
PDP 11/40

I Klintr bus) |-

Pc(12)

POP- 11/40

Pcdil
PDPU/40

|M pagic

Im pagii

I Kibi I I Kibi
I I

Kibi I I Kibi I I
Kibi

I I Kibi I I Kibi I

Pc(13l

PDP- 11/40

|M pagii

Im paging

PcdS)
PDPH/20

Klinter Pc

interrupts)
LEVELS 4. 6. 7

I Kciock I
I

Klhalt. start, cont) I

NOTE.
Kibi stands for K(tnter-bus-interface).

Figure 6. A PMS diagram of C.mmp.

396 THE PDP-11 FAMILY

The machine's theoretical performance as a

function of memory-processor interference is

based on Strecker's [1970] work. In practice,

because the memory was not built with low-or-

der address interleaving, memory interference

was greater than expected. This problem was

solved by having several copies of the program

segments.
As the number of memory modules and pro-

cessors becomes very large, the theoretical per-

formance (as measured by the number of

accesses to the memory by the processors) ap-

proaches half the memory bandwidth (i.e., the

number of memory modules memory cycle

time) [Baskett and Smith, 1976]. Thus, with in-

finite processors, there is no maximum limit on

performance, provided all processors are not

contending for the same memory.

Although there is a discussion in the original

paper outlining the design direction of the oper-

ating system, HYDRA, later descriptions
should be read [Wulf et al, 1975]. Since the

small address of the PDP-11 necessitated fre-

quent map changes, PDP-11 /40s with writable

control stores were used to implement the oper-

ating systems calls which change the segment
base registers.

There are three basic approaches to the effec-

tive application of multiprocessors:

1. System level workload decomposition. If

a workload contains a lot of inherently

independent activities, e.g., compilation,

editing, file processing, and numerical

computation, it will naturally decom-

pose.

2. Program decomposition by a program-
mer. Intimate knowledge of the appli-

cation is required for this time-

consuming approach.
3. Program decomposition by the com-

piler. This is the ideal approach. How-

ever, results to date have not been

especially noteworthy.

C.mmp was predicated on the first two ap-

proaches. ALGOL 68, a language with facilities

for expressing parallelism in programs, has

since been implemented. It has assisted greatly

with program decomposition and looks like a

promising general approach. It is imperative,

however, to extend the standard languages to

handle vectors and arrays.

The contention for shared resources in a mul-

tiprocessor system occurs at several levels. At

the lowest level, processors contend at the

cross-point switch level for memory. On a

higher level there is contention for shared data

in the operating system kernel; processes con-

tend for I/O devices and for software processes,

e.g., for memory management. At the user level

shared data implies further contention. Table 4

points to models on experimental data at these

different levels.

Marathe's data show that the shared data of

HYDRA is organized into enough separate ob-

jects so that a very small degradation (less than

1 percent) results from contention for these ob-

jects. He also built a queueing model which

projected that the contention level would be

about 5 percent in a 48 processor system.

Oleinick [1978] has used C.mmp to conduct

an experimental, as opposed to theoretical,

study of the implementation of parallel al-

gorithms on a multiprocessor. He studied the

operation of Rootfinder, a program that is an

Table 4. References for Experimental Data on
Contention at Each of Three Levels in the

C.mmp System

Contention

THE EVOLUTION OF THE PDP-1 1 397

extension of the bisection method for finding

the roots of an equation.

A natural decomposition of the binary search

for a root into n parallel processes is to evaluate

the function simultaneously at n points. Under

ideal conditions, all processes would finish the

function evaluation (required at each step) at

the same time, and then some brief book-

keeping would take place to determine the next

subinterval for the n processes to work on.

However, because the time to evaluate the func-

tion is data dependent, some processes are com-

pleted before others. Moreover, if the

bookkeeping task is time consuming relative to

the time to evaluate the function, the speedup
ratio will suffer. Oleinick systematically studied

each source of fluctuation in performance and

found the dominant one to be the mechanism

used for process synchronization.

Four different locks for process synchro-

nization, called: (1) spin lock, (2) kernel sema-

phore, (3) PMO, and (4) PMl, are available to

the C.mmp user. The spin lock, the most rudi-

mentary, does not cause an entry to the

HYDRA operating system. It is a short se-

quence of instructions which continually test a

semaphore until it can be set successfully. The

process of testing for the availability of a re-

source, and seizing the resource if available,

could be called TEST-AND-LOCK. When the

resource is no longer needed, it is released by an

UNLOCK process. These two processes are

called the P operation and the V operation re-

spectively, as originally named by Edgar Dij-

kstra. The P and V operations in the C.mmp
spin lock are in fact the following PDP-1 1 code

sequences:

P: CMP SEMAPHORE,
#1

BNE P
DEC SEMAPHORE
BNEP

;SEMAPHORE=l?
;loop until it is 1

;Decrement SEMAPHORE
;If not equal go to P

V. MOV #1, SEMAPHORE ;Reset SEMAPHORE to 1

Although this repeating polling is extremely

fast, it has two major drawbacks: first, the pro-

cessor is not free to do useful work; second, the

polling process consumes memory cycles of the

memory bank that contains the semaphore.
The kernel semaphore, implemented in

HYDRA, is the low level synchronization

mechanism intended to be used by system pro-

cesses. When a process blocks or wakes up, a

state change for that process is made inside the

kernel of HYDRA. If a process blocks (fails to

obtain a needed resource) while trying to P (test

and lock) a semaphore, the kernel swaps the

process from the processor, and the pages be-

longing to that process are kept in primary

memory. The other semaphore mechanisms

(PMO and PMl) take proportionately more

time (> 1 millisecond).

C.vmp

C.vmp, is a triplicated, voting multiprocessor

designed to understand the difficulty (or ease)

of using standard, off-the-shelf LSI-1 Is to pro-
vide greatly increased reliability. There is con-

cern for increased reliability because systems
are becoming more complex, are used for more
critical applications, and because maintenance

costs for all systems are increasing. Because the

designers themselves carry out and analyze the

work, this section provides first-hand insight

into high reliabiHty designs and the design pro-

cess -
especially its evaluation.

Several design goals were set and the work
has been carried out. The C.vmp system has op-
erated since late 1977, when the first phase of

work was completed.
The goal of software and hardware trans-

parency turned out to be easier to attain than

expected, because of an idiosyncrasy of the

floppy disk controller. Because the controller

effects a word-at-a-time bus transfer from a

one-sector buffer, voting can be carried out at a

very low level. It is unclear how the system
would have been designed without this type of

controller; at a minimum, some part of the soft-

ware transparency goal would not have been

398 THE PDP-11 FAMILY

met, and a significant controller modification

would have been necessary.

A number of models are given by which the

design is evaluated. From the discussion of

component reliabilities the reader should get

some insight into the factors contributing to re-

liability. It should be noted that a custom-de-

signed LSI voter is needed to get a sufficiently

low cost for a marketable C.vmp. While the in-

tent of C.vmp development was not a product,

it does provide much of the insight for such a

product.

radical departures from conventional computer

systems - is given. The final, most important

part of the chapter evaluates the performance of

Cm* for five different problems.
Since the time that Chapter 20 was written,

construction of a 50 computer modules Cm*
has begun and will be operational by the end of

1978 for evaluation in 1979. The extension of

Cm* is known as Cm*/50 and is shown in Fig-

ure 7. It will be used to test parallel processing

methods, fault tolerance, modularity, and the

extensibility of the Cm* structure.

Cm*

Cm* is described in Chapter 20; however, be-

cause it is one of the three CMU machines

pointing to future technology-driven trends in

multiprocessor use of LSI- 11 architecture, it is

given some mention here. The Cm* work,

sponsored by the National Science Foundation

(NSF) and the Advanced Research Projects

Agency (ARPA), is an extension of earher

NSF-sponsored research [Bell et al., 1973] on

register transfer level modules. As large-scale

integration and very large-scale integration en-

able construction of the processor-on-a-chip, it

is apparent that low level register transfer mod-
ules are obsolete for the construction of ?11 but

low volume computers. Although the research

is predicated on structures employing a hun-

dred or so processors. Chapter 20 describes the

culmination of the first (10-processor) phase.

In Chapter 20 the authors base their work on

diseconomy-of-scale arguments. To provide ad-

ditional context for their research, computer
modules (Cm*), multiprocessors (C.mmp), and

computer networks are described in terms of

performance and problem suitability. They give

a description of the modules structure, together

with its associated limitations and potential re-

search problems.
The grouping of processor and memory into

modules and the hierarchy of bus structures -

LSI- 11 Bus, Map Bus, and Intercluster bus.

The PDP-11/70mP Experimental

Multiprocessor Computer

The PDF- 11 /70mP aims to extend the relia-

bility, availability, maintainability and per-

formance range of the PDP-11 Family. It uses

11/70 processor hardware and the RSX-llM
software as basic building blocks.

The systems can have up to four processors

which have access to common central memories

as shown in Figure 8. Each MOS primary mem-

ory contains 256 Kbyte to 1 Mbyte and a port

(switch) by which up to four processors may ac-

cess it. A failed memory may be isolated for re-

pair. Usually two processors share (have access

to) each of the I/O devices through a Unibus

switch or dual ported disk memories.

Failure of a high speed mass storage bus con-

troller, a processor, or one port of a device will

not preclude use of that device through the

other port. These devices can also be isolated

from their respective buses so that failure of a

device will not preclude access to other devices.

Each of the processor units has a write-

through cache memory. Through normal sys-

tem operation, data within these local caches

may become inconsistent with data elsewhere in

the system. To eliminate this problem, the oper-

ating system and the hardware components
have been modified. The RSX-llM system ei-

ther clears the cache of inconsistent data or

avoids using the cache for specific situations.

THE EVOLUTION OF THE PDP-11 399

INTERCLUSTERBUS

MAP BUS

POP'11 BUS

SERIAL UNES

DA LINKS ^
SLU TO HOST M-

SLUT0PDP10/D <I 1>

tm
SWAP
OEV

400 THE PDP-11 FAMILY

-PRIVATE I/O

MEMORY BUS

I MP
I I

MP
I I

MP
I I

Mp I

MULTIPOINT
MEMORIES

I
I/O

I [
IIST

j

J-. J_,
I

I/O
I I

IIST
I

I
Ms

I I
Ms 1

s
I

I/O
I I

IIST
I

Ms :- {disk or tape)

J-, JL
[

I/O
I I

IIST
I

'

Q
^

Q

SHARED I/O

DEVICES

C3

E^

Figure 8. Four-processor multiprocessor based on PDP-1 1/70 processors.

The software to manipulate the cache is con-

tained in the executive and is transparent to

user programs.
An Interprocessor Interrupt and Sanity

Timer (IIST) provides the executive software

with a mechanism to interrupt processors for

rescheduling. The IIST includes a timer for each

processor which is periodically refreshed by
software after execution of diagnostic check

routines. If the refresh commands do not occur

within a prescribed interval, the IIST will issue

an interprocessor interrupt to inform the other

processors of faulty operation. The IIST also

contains a mechanism for initially loading the

multiprocessor system.

The system design results in an extension to

the PDP-1 1 that is transparent to user programs
and yields increases in performance over a

single processor 11/70 system. This perform-
ance increase is due to the symmetry, such that

nearly any resource can be accessed by any pro-

cess with minimum overhead. Also, unlike mul-

tiple computer systems that communicate via

high speed Hnks, the large primary memory can

be combined and used by a single process.

Moreover, dynamic assignment of processes to

specific computer systems (Figure 9) can be

made.

The system has been designed to increase the

availability by reducing the impact of failures

on system performance through the use of mul-

tiple redundant components. In this way, failed

elements can be isolated for repair. The design

is such that the system may be easily reconfi-

gured so that system operation can be resumed

and the failed component repaired off-line.

Extensions to the diagnostic software and

hardware error detection mechanisms facilitate

quick location of faults. User-mode diagnostics

are run concurrently with the application soft-

ware; this permits maintenance of the disk and

tape units to be done on-line.

THE EVOLUTION OF THE PDP-11 401

I
Mp I Mp Mp I

(PDP 11/70)

r Ms 1 f Ms
J

-PRIVATE 1/0

[M [h-

I
HIGH

QH
SPEED

INTERCOMPUTER
LINK

Figure 9. Four-processor multicomputer system based on PDP-1 1/70 processors.

Now that the ll/70mP has implemented its

IIST and defined an architectural extension for

multiprocessing, another roadblock to the use

of multiprocessors has been passed; namely, an

extension for interprocessor signaling has been

defined. This might have been defined much
earlier in the life of the PDP-11. In the IBM
computers the SIGP instruction was not avail-

able on 360s until the 370 extensions.

PULSAR: A Performance Range mP
System

PULSAR is a 16 LSI-1 1 multiprocessor com-

puter for investigating the cost-effectiveness of

multiple microprocessors. It covers a perform-
ance range of approximately a single LSI-1 1 to

better than a PDP-1 1/70 for simple instruc-

tions.

The breadboard system (Figure 10) is based

on the PDP-11/70 processor-memory-switch

structure, including multiple interrupt levels

and 22-bit physical addressing. However, it

does not implement instruction (I) and data (D)

space or Supervisor mode, and it lacks the

Floating-Point Processors.

The processors (P-Boards) communicate with

each other, the Unibus Interface (UBI), and a

Common Cache and Control via a high-band-

width, synchronous bus.

The Common Cache and Control contains a

large (8 Kword), direct-mapping, shared cache

with a 2-word block size, interfacing to the 2- or

4-way interleaved 1 1/70 Memory Bus. This pre-

vents the memory subsystem from becoming a

bottleneck, in spite of the large reduction in

bandwidth demand provided by the cache. The

control provides all the mapping functions for

both Unibus and processor accesses to memory.
The Unibus map registers and the process map
registers for each processor are held in a single

bipolar memory.

402 THE PDP-11 FAMILY

COMMON CACHE
AND CONTROL

M.cache (8 Kwords)

K.map K.clock

THE EVOLUTION OF THE PDP-11 403

tration mechanism. Interfacing between these

independent mechanisms is by means of queues.

There are some operations that require more

than one access to the same resource in the

pipeline. These operations are effectively han-

dled as two transactions. Examples of such op-

erations are memory writes and internal I/O

page (memory-management register) accesses.

A memory write may need a second access to

the cache for update, while the Internal I/O

Page may need another access to the map array.

There are other operations in which the tim-

ing does not permit the use of a particular re-

source in the specific interval that is allocated to

that transaction. This happens, for instance,

when a read operation results in a cache miss.

The data is not available in time. In this case a

second transaction takes place, initiated when

backing store data becomes available.

Cost projections indicate that a multi-

processor will have an increase in parts count

over each possible equivalent performance

uniprocessor in the range. This will range from

a 20 percent increase for a two-processor, multi-

processor system to percent at the top of the

range. The 20 percent premium can be reduced

if no provision is made for expansibility over

the entire range. Clearly, a separate single pro-

cessor structure can be cost-effective (since this

is the LSI- 11). The premium is based on parts

count only and excludes considerations of cost

benefits due to production learning, common

spares and manuals, lower engineering costs,

etc.

A number of computer systems have been

built based on multiple processors in systems

ranging from independent computers (with no

interconnection) through tightly coupled com-

puter networks which communicate by passing

messages, to multiprocessor computers with

shared memory. Table 5 gives a comparison of

the various computers. Although n independent

computers is a highly reliable structure, it is

hard to give an example where there is no inter-

connection among the computers. The standard

computer network interconnected via standard

communications links is not given.

It is interesting to compare the multi-

processor and the tightly coupled multi-

computer configurations (Figure 8 and 9) where

the configurations are drawn in exactly the

same way and with the same peripherals. In this

way, columns 2 and 6 of Table 5 can be more

easily compared. The tradeoff between the two

structures is between lower cost and potentially

higher performance for the multiprocessor (un-

less tasks can be statically assigned to the vari-

ous computers in the network) versus somewhat

higher reliability, availability, and maintaina-

bility for the network computer (because there

is more independence among software and

hardware). Varying the degree of coupling in

the processors through the amount of shared

memory determines which structure will result.

The cost and the resultant reliability differen-

tials for the two systems are determined by the

size and the reliability of the software.

TECHNOLOGY: COMPONENTS OF THE
DESIGN

In Chapter 2, it was noted that computers are

strongly influenced by the basic electronic tech-

nology of their components. The PDP-1 i Fam-

ily provides an extensive example of designing

with improved technologies. Because design re-

sources have been available to do concurrent

implementations spanning a cost/performance

range, PDP-1 Is offer a rich source of examples
of the three different design styles: constant cost

with increasing functionality, constant func-

tionality with decreasing cost, and growth path.

Memory technology has had a much greater

impact on PDP-11 evolution than logic tech-

nology. Except for the LSI- 11, the one logic

family (7400 series TTL) has dominated PDP-

1 1 implementations since the beginning. Except

for a small increase after the PDP-1 1/20, gate

density has not improved markedly. Speed im-

provement has taken place in the Schottky

404 THE PDP-11 FAMILY

3a

in

ca

I-

•o

THE EVOLUTION OF THE PDP-1 1 405

TTL, and a speed/power improvement has oc-

curred in the low power Schottky (LS) series.

Departures from medium-scale integrated tran-

sistor-transistor logic, in terms of gate density,

have been few, but effective. Examples are the

bit-slice in the PDP-ll/34 Floating-Point Pro-

cessor, the use of programmable logic arrays in

the PDP-1 1/04 and PDP-1 1/34 control units,

and the use of emitter-coupled logic in some
clock circuitry.

Memory densities and costs have improved

rapidly since 1969 and have thus had the most

impact. Read-write memory chips have gone
from 16 bits to 4,096 bits in density and read-

only memories from 16 bits to the 8 or 16 Kbits

widely available in 1978. Various semi-

conductor memory size availabilities are given
in Chapter 2 using the model of semiconductor

density doubhng each year since 1962.

The memory technology of 1969 imposed
several constraints. First, core memory was

cost-effective for the primary (program) mem-

ory, but a clear trend toward semiconductor

primary memory was visible. Second, since the

largest high speed read-write memories avail-

able were just 16 words, the number of proces-

sor registers had to be kept small. Third, there

were no large high speed read-only memories

that would have permitted a microprogrammed
approach to the processor design.

These constraints established four design atti-

tudes toward the PDP-ll's architecture. First, it

should be asynchronous, and thereby capable
of accepting different configurations of memory
that operate at different speeds. Second, it

should be expandable to take eventual advan-

tage of a larger number of registers, both user

registers for new data-types and internal regis-

ters for improved context switching, memory
mapping, and protected multiprogramming.
Third, it could be relatively complex, so that a

microcode approach could eventually be used

to advantage: new data-types could be added to

the instruction set to increase performance,
even though they might add complexity.

Fourth, the Unibus width should be relatively

large, to get as much performance as possible,

since the amount of computation possible per

memory cycle was relatively small.

As semiconductor memory of varying price

and performance became available, it was used

to trade cost for performance across a reason-

ably wide range of PDP-11 models. Different

techniques were used on different models to

provide the range. These techniques include:

microprogramming for all models except the

11/20 to lower cost and enhance performance
with more data-types (for example, faster float-

ing point); use of faster program memories for

brute-force speed improvements (e.g., 11/45
with MOS primary memory, 1 1/55 with bipolar

primary memory, and the 11/60 with a large

writable control store); use of caches (11/70,

11/60, and 11/34C); and expanded use of fast

registers inside the processor (the 11/45 and

above). The use of semiconductors versus cores

for primary memory is a purely economic con-

sideration, as discussed in Chapter 2.

Table 6 shows characteristics of each of the

PDP-1 1 models along with the techniques used

to span a cost and performance range. Snow
and Siewiorek (Chapter 14) give a detailed com-

parison of the processors.

VAX-1 1

Enlarging the virtual address space of an ar-

chitecture has far more implications than en-

larging the physical address space. The simple
device of relocating program-generated ad-

dresses can solve the latter problem. The phys-
ical address space, the amount of physical

memory that can be addressed, has been in-

creased in two steps in the PDP-11 Family

(Table 2).

The virtual address space, or name space, is a

much more fundamental part of an archi-

tecture. Such addresses are programmer gener-

ated: to name data objects, their aggregates

(whether they be vectors, matrices, lists, or

406 THE PDP-11 FAMILY

Table 6. Characteristics of POP-11 Models with Techniques Used to Span Cost and Performance Range

Performance

Basic Floating-Point

Instructions Arithnwtic

Per Second (whetstone Memory
First (relative to instructions Range

Model Shipment PDP-11/03) per second) (Kbytes)

Range-Spanning Techniques

For High

Performance For Low Cost

Notable

Attributes

11/03 6/75

(LSI-11)

26 8-56 8 bit wide datapath;

LSI-11 Bus; tailored

PLA control

LSI-4 chips; ODT;

Floating-Point (FIS),

CIS, WCSnnid-life

kickers

11/04 9/75 2.8 18 8-56 Standard package;

ROM; PLA
Backplane compatible

with 11/34 for field

upgrade; built-in

ASCII console; self-

diagnosis

11/05

THE EVOLUTION OF THE PDP-1 1 407

shared data segments) and instructions (sub-

routine addresses, for example). Names seen by
an individual program are part of a larger name

space
- that managed by an operating system

and its associated language translators and ob-

ject-time systems. An operating system provides

program sharing and protection among pro-

grams using the name space of the architecture.

As the PDP-1 1/70 design progressed, it was

realized that for some large applications there

would soon be a bad mismatch between the 64-

Kbyte name space and 4-Mbyte memory space.

Two trends could be clearly seen: (1) mini-

computer users would be processing large ar-

rays of data, particularly in FORTRAN
programs (only 8,096 double precision floating-

point numbers are needed to fill a 16-bit name

space), and (2) applications programs were

growing rapidly in size, particularly large CO-
BOL programs. Moreover, anticipated memory
price declines made the problem worse. The

need for a 32-bit integer data-type was felt, but

this was far less important than the need for 32-

bit addressing of a name space.

Thus, in 1974, architectural work began on

extending the virtual address space of the PDP-
11. Several proposals were made. The principal

goal was compatibility with the PDP-11. In the

final proposed architecture each of the eight

general registers was extended to 32 bits. The

addressing modes (hence, address arithmetic)

inherent in the PDP-1 1 allowed this to be a nat-

ural, easy extension.

The design of the structure to be placed on a

32-bit virtual address presented the most diffi-

culty. The most PDP-11 compatible structure

would view a 32-bit address as 2'^ 16-bit PDP-
11 segments, each having the substructure of

the memory management architecture presently

being used. This segmented address space, al-

though PDP-11 compatible, was ill-suited to

FORTRAN and most other languages, which

expect a linear address space.

A severe design constraint was that existing

PDP-11 subroutines must be callable from pro-

grams which ran in the Extended Address

mode. The main problem areas were in estab-

lishing a protocol for communicating addresses

(between programs between the operating sys-

tems and programs on the occurrence of inter-

rupts). Saving state (the program counter and

its extension) on the stack was straightforward.

However, the accessing of linkage addresses on

the stack after a subroutine call instruction or

interrupt event was not straightforward. Com-

plicated sequences were necessary to ensure that

the correct number of bytes (representing a 32-

bit or 16-bit address) were popped from the

stack .

The solution was hampered by the fact that

DEC customers programmed the PDP-11 at all

levels - there was no clear user level, below

which DEC had complete control, as is the case

with the IBM System 360 or the PDP-10 using

the TOPS-10 or TOPS-20 monitors.

The proposed architecture was the result of

work by engineers, architects, operating system

designers and compiler designers. Moreover, it

was subjected to close scrutiny by a wider group
of engineers and programmers. Much was

learned about the consequences of strict PDP-
1 1 compatibility, the notions of degree of com-

patibility, and the software costs which would

be incurred by an extended PDP-11 archi-

tecture.

Fortunately, the project was discontinued.

There were many reservations about its via-

bility. It was felt that the PDP-1 1 compatibility

constraint caused too much compromise. Any
new architecture would require a large software

investment; a quantum jump over the PDP-11

was needed to justify the effort.

In April 1975, work on a 32-bit architecture

was started on VAX-1 1, with the goal of build-

ing a machine which was culturally compatible
with PDP-1 1. The initial group, called VAXA,
consisted of Gordon Bell, Peter Conklin, Dave

Cutler, Bill Demmer, Tom Hastings, Richy

Lary, Dave Rodgers, Steve Rothman, and Bill

Strecker as the principal architect. As a result of

408 THE PDP-11 FAMILY

the experience with the extended PDP-11 de-

signs, it was decided to drop the constraint of

the PDP-11 instruction format in designing the

extended virtual address space, or Native mode,
of the VAX- 11 architecture. However, in order

to run existing PDP-11 programs, VAX-11 in-

cludes PDP-1 1 Compatibility mode. This mode

provides the basic PDP-1 1 instruction set with-

out privileged instructions (as defined by the

RSX-llM operating system) and floating-point

instructions. Nor is the former memory man-

agement architecture (KT-11) preserved in this

mode.

Preserving the existing PDP-11 instruction

formats with VAX-1 1 would have required too

high a price in dynamic bit efficiency. Whereas

the PDP-1 1 has a high level of efficiency in this

area, adding the new operation codes for the

anticipated data-types, access modes, and dif-

ferent length addresses would have lowered the

instruction stream bit efficiency. An operation

code extension field would have been required.

It was also felt that data stream bit efficiency

could be improved. For example, measure-

ments showed that 98 percent of all literals were

6 bits or less in length.

Besides the desire to add the data-types for

string, 32- and 64-bit integers, and decimal

arithmetic, there were many other extensions

proposed. These included a common procedure
CALL instruction, demand paging, true in-

dexing, context-sensitive indexing, and more

I/O addressing.

Along the way, some major perturbations to

the PDP-1 1 style were considered and rejected,

often because they violated the notion of com-

patibility with PDP-1 1. Typed data and descrip-

tor addressing were rejected on the grounds of

dynamic bit efficiency. Although system soft-

ware costs may be lower with such archi-

tectures, it was not possible to quantify the gain

convincingly. Also, such an architecture de-

stroyed any compatibility, cultural or other-

wise, with PDP-11.

The experience with PDP-1 1 (floating point,

in particular) led the VAX designers to reject a

soft-machine architecture, i.e., one with an in-

struction set (and highly microprogrammed im-

plementations) for general purpose emulation.

Their PDP-1 1 experience showed that embedd-

ing a data-type (once it is understood) in the

architecture gives a higher performance gain

than embedding the higher level language con-

trol constructs. There was also a general objec-

tion to soft machines: the problem of

controlling a proliferation of instruction sets in-

vented by many small software groups was felt

to be unmanageable. Moreover, higher level in-

struction sets jeopardize the ability to commu-
nicate between programs that are written in

different languages. This compatibility is a ma-

jor goal of VAX.
A capabilities-based architecture was rejected

because it was not fully understood and because

there was no performance or reliability data

available from the few experimental machines

which had been built.

ACKNOWLEDGEMENTS

We gratefully acknowledge the suggestions of

Roger Cady, Dick Clayton, and Bruce Delagi

who were eminently qualified and intimately in-

volved in the PDP-1 1's evolution.

17

VAX-11/780:

A Virtual Address Extension

to the DEC PDP-11 Family
WILLIAM D. STRECKER

INTRODUCTION

Large Virtual Address Space
Minicomputers

Perhaps the most useful definition of a mini-

computer system is based on price: Depending
on one's perspective, such systems are typically

found in the $20 K to $200 K range. The twin

forces of market pull
- as customers build in-

creasingly complex systems on minicomputers -

and technology push - as the semiconductor in-

dustry provides increasingly lower cost logic

and memory elements - have induced mini-

computer manufacturers to produce systems of

considerable performance and memory capac-

ity. Such systems are typified by the DEC PDP-

11/70. From an architectural point of view, the

characteristic that most distinguishes many of

these systems from larger mainframe computers
is the size of the virtual address space: the im-

mediately available address space seen by an in-

dividual process. For many purposes, the 65-

Kbyte virtual address space typically provided
on minicomputers (such as the PDP-1 1) has not

been and probably will not continue to be a se-

vere limitation. However, there are some appli-

cations whose programming is impractical in a

65-Kbyte virtual address space and, perhaps
most importantly, others whose programming
is appreciably simplified by having a large vir-

tual address space. Given the relative trends in

hardware and software costs, the latter point
alone will ensure that large virtual address

space minicomputers play an increasingly im-

portant role in minicomputer product offerings.

In principle, there is no great challenge in de-

signing a large virtual address minicomputer

system. For example, many of the large main-

frame computers could serve as architectural

models for such a system. The real challenge lies

in two areas: compatibility
-
very tangible and

important; and simplicity
-
intangible but none-

theless important.

The first area is preserving the customer's

and the computer manufacturer's investment in

existing systems. This investment exists at many
levels: basic hardware (principally buses and pe-

ripherals); systems and applications software;

409

410 THE PDP-11 FAMILY

files and data bases; and personnel familiar with

the programming, use, and operation of the sys-

tems. For example, to preserve this investment

a major computer manufacturer just recently

abandoned a major effort for new computer ar-

chitectures in favor of evolving its current archi-

tectures [McLean, 1977].

The second, less tangible area is the preserva-

tion of those attributes (other than price) that

make minicomputer systems attractive. These

include approachability, understandability, and

ease of use. Preservation of these attributes sug-

gests that simply modeling an extended virtual

address minicomputer after a large mainframe

computer is not wholly appropriate. It also sug-

gests that during architectural design, tradeoffs

must be made between more than just perform-

ance, functionality, and cost. Performance or

functionality features which are so complex that

they appreciably compromise understanding or

ease of use must be rejected as inappropriate for

minicomputer systems.

VAX- 11 Overview

VAX- 11 is the virtual address extension of

PDP-11 architecture (Chapter 9) [Bell and

Strecker, 1976]. The most distinctive feature of

VAX- 11 is the extension of the virtual address

from 16 bits as provided on the PDP-11 to 32

bits. With the 8-bit byte as the basic addressable

unit, the extension provides a virtual address

space of about 4.3 gigabytes which, even given

rapid improvement in memory technology,

should be adequate far into the future.

Since maximal PDP-11 compatibility was a

primary goal, early VAX- 11 design efforts fo-

cused on literally extending the PDP-11: pre-

serving the existing instruction formats and

instruction set and fitting the virtual address ex-

tension around them. The objective was to per-

mit, to the extent possible, the running of

existing programs in the extended virtual ad-

dress environment. While realizing this objec-

tive was possible (there were three distinct

designs), it was felt that the extended archi-

tecture designs were overly compromised in the

areas of efficiency, functionality, and program-

ming ease.

Consequently, it was decided to drop the con-

straint of the PDP-1 1 instruction format in de-

signing the extended virtual address space or

native mode of the VAX- 11 architecture. How-

ever, in order to run existing PDP-1 1 programs,
VAX- 11 includes a PDP-11 compatibility
mode. Compatibility mode provides the basic

PDP-11 instruction set without privileged in-

structions (such as HALT) and floating-point

instructions (which are optional on most PDP-
1 1 processors and not required by most PDP-1 1

software).

In addition to compatibility mode, a number

of other features to preserve PDP-1 1 investment

have been provided in the VAX-1 1 architecture,

the VAX-1 1 operating system VAX/VMS, and

the VAX- 11/780 implementation of the VAX-
1 1 architecture. These features include the fol-

lowing.

1 . The native mode data-types and formats

are identical to those on the PDP-11.

Also, while extended, the VAX-1 1 native

mode instruction set and addressing

modes are very close to those on the

PDP-1 1. As a consequence, VAX-1 1 na-

tive mode assembly language program-

ming is quite similar to PDP-11

assembly language programming.
2. The VAX-1 1/780 uses the same periph-

eral buses (Unibus and Massbus) and

the same peripherals as the PDP-11.

3. The VAX/VMS operating system is an

evolution of the PDP-11 RSX-llM and

IAS operating systems. It offers a similar

although extended set of system services

and uses the same command languages.

Additionally, VAX/VMS supports most

of the RSX-llM/IAS system service

requests issued by programs executing in

compatibility mode.

VAX-1 1/780; A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 41 1

4. The VAX/VMS file system is the same
as that used on the RSX-1 IM/IAS oper-

ating systems, permitting interchange of

files and volumes. The file access meth-

ods as implemented by the RMS record

manager are also the same.

5. VAX-1 1 high level language compilers

accept the same source languages as the

equivalent PDP-11 compilers, and exe-

cution of compiled programs gives the

same results.

The coverage of all these aspects of VAX-1 1

is well beyond the scope of any single paper.
The remainder of this paper discusses the design
of the VAX-1 1 native mode architecture and

gives an overview of the VAX-1 1/780 system.

VAX-1 1 NATIVE ARCHITECTURE

Processor State

Like the PDP-11, VAX- 11 is organized
around a general register processor state. This

organization was favored because access to op-
erands stored in general registers is fast (be-

cause the registers are internal to the processor
and register accesses do not need to pass

through a memory management mechanism).
Also, only a small number of bits in an instruc-

tion are needed to designate a register. Perhaps
most importantly, the registers are used (as on

the PDP-11) in conjunction with a large set of

addressing modes which permit unusually flex-

ible operand addressing methods.

Some consideration was given to a pure
stack-based architecture. However, it was re-

jected because real program data suggests the

superiority of two or three operand instruction

formats [Myers, 1977]. Actually VAX-1 1 is very

stack-oriented, and although not optimally en-

coded for the purpose, it can easily be used as a

pure stack architecture if desired.

VAX-1 1 has 16 32-bit general registers (de-

noted RO through R15) which are used for both

fixed and floating-point operands. This is in

contrast to the PDP-11 which has eight 16-bit

general registers and six 64-bit floating-point

registers. The merged set of fixed and floating

registers was preferred because programming is

simplified and a more effective allocation of the

registers is permitted.

Four of the registers are assigned special

meaning in the VAX-1 1 architecture.

1. R15 is the program counter (PC) which

contains the address of the next byte to

be interpreted in the instruction stream.

2. R14 is the stack pointer (SP) which con-

tains the address of the top of the proces-

sor defined stack used for procedure and

interrupt linkage.

3 . R 1 3 is the frame pointer (FP). The VAX-
1 1 procedure calling convention builds a

data structure on the stack called a stack

frame. FP contains the address of this

structure.

4. R12 is the argument pointer (AP). The
VAX- 11 procedure calling convention

uses a data structure called an argument
list. AP contains the address of this

structure.

The remaining element of the user-visible

processor state (additional processor state seen

mainly by privileged procedures is discussed

later) is the 16-bit processor status word (PSW).
The PSW contains the N, Z, V, and C condition

codes which indicate, respectively, whether a

previous instruction had a negative result, a

zero result, a result that overflowed, or a result

that produced a carry (or borrow). Also in the

PSW are the IV, DV, and FU bits which enable

processor trapping on integer overflow, decimal

overflow, and floating underflow conditions,

respectively. (The trap on conditions of "float-

ing overflow" and "divide by zero" for any

data-type is always enabled.)

Finally, the PSW contains the T bit which,

when set, forces a trap at the end of each in-

struction. This trap is useful for program de-

bugging and analysis purposes.

412 THE PDP-11 FAMILY

Data-Types and Formats

The VAX- 11 data-types are a superset of the

PDP-11 data-types. Where the PDP-11 and

VAX- 11 have equivalent data-types, the for-

mats (representation in memory) are identical.

Data-type and data-format identity is one of the

most compelling forms of compatibility. It per-

mits free interchange of binary data between

PDP-11 and VAX-11 programs. It facilitates

source level compatibility between equivalent

PDP-11 and VAX-11 languages. It also greatly

facilitates hardware implementation and soft-

ware support of the PDP-11 compatibility

mode in the VAX-11 architecture.

The VAX- 1 1 data-types divide into five clas-

ses.

1 . Integer data-types are the 8-bit byte, the

16-bit word, the 32-bit longword, and the

64-bit quadword. Usually these data-

types are considered signed with nega-

tive values represented in two's com-

plement form. However, for most

purposes they can be interpreted as un-

signed, and the VAX-11 instruction set

provides support for this interpretation.

2. Floating data-types are the 32-bit float-

ing and the 64-bit double floating. These

data-types are binary normalized, have

an 8-bit signed exponent, and have a 25-

or 57-bit signed fraction with the redun-

dant most significant fraction bit not

represented.

3. The variable bit field data-type is to 32

bits located arbitrarily with respect to

addressable byte boundaries. A bit field

is specified by three operands: the ad-

dress of a byte, the starting bit position

(P) with respect to bit of that byte, and

the size (S) of the field. The VAX-1 1 in-

struction set provides for interpreting

the field as signed or unsigned.

4. The character string data-type is to

65535 contiguous bytes. It is specified by

two operands: the length and starting

address of the string. Although the data-

type is named "character string," no spe-

cial interpretation is placed on the values

of the bytes in the character string.

5. The decimal string data-types are to 31

digits. They are specified by two oper-

ands: a length (in digits) and a starting

address. The primary data-type is packed

decimal with two digits stored in each

byte (except the byte containing the least

significant digit contains a single digit

and the sign). Two ASCII character dec-

imal types are supported: leading sepa-

rate sign and trailing embedded sign. The

leading separate type is a "-H", "-", or

"<blank>" (equivalent to "+") ASCII

character followed by to 31 ASCII dec-

imal digit characters. A trailing em-

bedded sign decimal string is to 31

bytes which are ASCII decimal digit

characters (except for the character con-

taining least significant digit which is an

arbitrary encoding of the digit and sign).

All of the data-types except field may be

stored on arbitrary byte boundaries - there are

no alignment constraints. The field data-type,

of course, can start on an arbitrary bit bound-

ary.

Attributes of and symbolic representations

for most of the data-types are given in Table 1

and Figure 1.

Instruction Format and Address Modes

Most architectures provide a small number of

relatively fixed instruction formats. Two prob-

lems often result. First, not all operands of an

instruction have the same specification general-

ity. For example, one operand must come from

memory and another from a register, or one

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 413

Table 1. Data-Types

Data-Type

414 THE PDP-11 FAMILY

one- or two-byte* opcode followed by the speci-

fications for n operands (n > 0) where n is an

impHcit property of the opcode. An operand

specification is one to ten bytes in length and

consists of a one- or two-byte operand specifier

followed by (as required) zero to eight bytes of

specifier extension. The operand specifier in-

cludes the address mode and designation of any

registers needed to locate the operand. A speci-

fier extension consists of a displacement, an ad-

dress, or immediate data.

The VAX-1 1 address modes are, with one ex-

ception, a superset of the PDP-11 address

modes. The PDP-11 address mode autodecre-

ment deferred was omitted from VAX-1 1 be-

cause it was rarely used.

Most operand specifiers are one byte long

and contain two 4-bit fields: The high-order

field (bits 7:4) contains the address mode desig-

nator, and the lower field (bits 3:0) contains a

general register designator. The address modes

include:

1. Register mode, in which the designated

register contains the operand.
2. Register deferred mode, in which the des-

ignated register contains the address of

the operand.
3. Autodecrement mode, in which the con-

tents of the designated register are first

decremented by the size (in bytes) of the

operand and are then used as the address

of the operand.
4. Autoincrement mode, in which the con-

tents of the designated register are first

used as the address of the operand and

are then incremented by the size of the

operand. Note that if the designated reg-

ister is PC, the operand is located in the

instruction stream. This use of autoin-

crement mode is called immediate mode.

In immediate mode, the one to eight

bytes of data are the specifier extention.

Autoincrement mode can be used se-

quentially to process a vector in one di-

rection, and autodecrement mode can be

used to process a vector in the opposite
direction. Autoincrement, register de-

ferred, and autodecrement modes can be

applied to a single register to implement
a stack data structure: autodecrement to

"push," autoincrement to "pop," and

register deferred to access the top of the

stack.

5. Autoincrement deferred mode, in which

the contents of the designated register

are used as the address of a longword in

memory which contains the address of

the operand. After this use, the contents

of the register are incremented by four

(the size in bytes of the longword ad-

dress). Note that if PC is the designated

register, the absolute address of the op-

erand is located in the instruction

stream. This use of autoincrement de-

ferred mode is termed absolute mode. In

absolute mode, the 4-byte address is the

specifier extension,

6. Displacement mode, in which a dis-

placement is added to the contents of the

designated register to form the operand
address. There are three displacement

modes depending on whether a signed

byte, word, or longword displacement is

the specifier extension. These modes are

termed byte, word, and longword dis-

placement, respectively. Note that if PC
is the designated register, the operand is

located relative to PC. For this use, the

modes are termed byte, word, and long-

word relative mode, respectively.

7. Displacement deferred mode, in which a

displacement is added to the designated

register to form the address of a long-

word containing the address of the oper-

and. There are three displacement

*No currently defined instructions use two-byte opcodes.

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 415

deferred modes depending on whether a

signed byte, word, or longword dis-

placement is the specifier extension.

These modes are termed byte, word, and

longword displacement, respectively.

Note that if PC is the designated register,

the operand address is located relative to

PC. For this use the modes are termed

byte, word, and longword relative de-

ferred mode, respectively.

Literal mode, in which the operand spec-

ifier itself contains a 6-bit literal which is

the operand. For integer data-types, the

literal encodes the values through 63;

for floating data-types, the literal in-

cludes three exponent and three fraction

bits to give 64 common values.

Index mode, which is not really a mode
but rather a one-byte prefix operator for

any other mode which evaluates a mem-

ory address (i.e., all modes except regis-

ter and literal). The index mode prefix is

cascaded with the operand specifier for

that mode (called the base operand spec-

ifier) to form an aggregate two-byte op-

erand specifier. The base operand speci-

fier is used in the normal way to evaluate

a base address. A copy of the contents of

the register designated in the index prefix

is multiplied by the size (in bytes) of the

operand and added to the base address.

The sum is the final operand address.

There are three advantages to the VAX-
11 form of indexing: (1) the index is

scaled by the data size, and thus the in-

dex register maintains a logical rather

than a byte offset into an indexed data

structure; (2) indexing can be applied to

any of the address modes that generate

memory addresses, and this results in a

comprehensive set of indexed addressing

methods; and (3) the space required to

specify indexing and the index register is

paid only when indexing is used.

The VAX- 11 assembler syntax for the ad-

dress modes is given in Figure 2. The bracketed

({ }) notation is optional, and the programmer

rarely needs to be concerned with displacement
sizes or whether to choose literal or immediate

mode. The programmer writes the simple form;

the assembler chooses the address mode which

produces the shortest instruction length.

In order to give a better feeling for the in-

struction format and assembler notation, sev-

eral examples are given in Figures 3 through 5.

Figure 3 shows an instruction that moves a

word from an address that is 56 plus the con-

tents of R5 to an address that is 270 plus the

LITERAL

(IMMEDIATE)

416 THE PDP-11 FAMILY

contents of R4. Note that the displacement 56

can be represented in a byte while the dis-

placement 270 requires a word. The instruction

occupies six bytes. Figure 4 shows an instruc-

tion that adds 1 to a longword in RO and stores

the result at a memory address which is the sum

of A and four times the contents of R2. This

instruction occupies nine bytes. Finally, a "re-

turn from subroutine" instruction is shown in

Figure 5. It has no explicit operands and oc-

cupies a single byte.

The only significant instance where there is

nongeneral specification of operands is in the

specification of targets for branch instructions.

Since invariably the target of a branch instruc-

tion is a small displacement from the current

PC, most branch instructions simply take a one-

byte PC relative displacement. This is exactly as

if byte displacement mode were used with the

PC used as the register, except that the operand

specifier byte is not needed. Because of the per-

vasiveness of branch instructions in code, this

one-byte saving results in a nontrivial reduction

in code size. An example of the branch instruc-

tion branch on equal is given in Figure 6.

193

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 417

4. Replacement of common instruction se-

quences with single instructions. Exam-

ples of this include procedure calling,

multiway branching, loop control, and

array subscript calculation.

The effect of these decisions is reflected

through several observations. First, despite the

larger virtual address and instruction set sup-

port for more data-types, compiler (and hand)

generated code for VAX-1 1 is typically smaller

than the equivalent PDP-1 1 code for algorithms

operating on data-types supported by the PDP-
11. Second, of the 243 instructions in the in-

struction set, about 75 percent are generated by
the VAX- 11 FORTRAN compiler. Of the in-

structions not generated, most operate on data-

types not part of the FORTRAN language.
A complete list of the VAX- 11 instructions is

given in the appendix. The following is an over-

view of the instruction set.

1 . Integer logic and arithmetic. Byte, word,
and longword are the primary data-

types. A fairly conventional group of

arithmetic and logical instructions is

provided. The result-generating dyadic
arithmetic and logical instructions are

provided in two and three operand
forms. A number of optimizations are

included: "clear," which is a move of

zero; "test," which is a compare against

zero; and "increment" and "decre-

ment," which are optimizations of add

one and subtract one, respectively. A
complete set of converts is provided
which covers both the integer and the

floating data-types. In contrast to other

architectures, only a few shift-type in-

structions are provided; it was felt that

shifts are mostly used for field isolation

which is much more conveniently done

with the field instructions described

later. In order to support greater-than-

longword precision integer operations, a

few special instructions are provided:
"extended multiply," "divide," "add

with carry," and "subtract with carry."

2. Floating-point instructions. Again a con-

ventional group of instructions are in-

cluded with result-producing dyadic

operators in two and three operand
forms. Several specialized floating-point

instructions are included. The "extended

modulus" instruction multiplies two

floating operands together and stores the

integer and fraction parts of the product
in separate result operands. The "poly-
nomial" instruction computes a poly-

nomial from a table of coefficients in

memory. Both these instructions employ
greater than normal precision and are

useful in high accuracy mathematical

routines. A "convert rounded" instruc-

tion is provided which implements AL-

GOL rather than FORTRAN conven-

tions for converting from floating-point

to integer.

3. Address instructions. The "move ad-

dress" instructions store in the result op-
erand the effective address of the source

operand. The "push address" optimiza-
tions push on the stack (defined by SP)
the effective address of the source oper-

and. The latter are used extensively in

subroutine calling.

4. Field instructions. The "extract field" in-

structions extract a 0- to 32-bit field,

sign- or zero-extend it if it is less than 32

bits, and store it in a longword operand.
The "compare field" instructions com-

pare a (sign- or zero-extended if neces-

sary) field against a longword operand.
The "find first" instructions find the first

occurrence of a set or clear bit in a field.

5. Control instructions. There is a complete
set of conditional branches supporting
both a signed and, where appropriate, an

unsigned interpretation of the various

418 THE PDP-11 FAMILY

data-types. These branches test the con-

dition codes and take a one-byte PC rel-

ative branch displacement. There are

three unconditional branch instructions:

the first taking a one-byte PC relative

displacement, the second taking a word

PC relative displacement, and the third -

called "jump" - taking a general oper-

and specification. Paralleling these three

instructions are three "branch to sub-

routine" instructions. These push the cu-

rent PC on the stack before transferring

control. The single-byte "return from

subroutine" instruction returns from

subroutines called by these instructions.

There is a set of "branch on bit" instruc-

tions which branch on the state of a

single bit and, depending on the instruc-

tion, set, clear, or leave unchanged that

bit.

The "add compare and branch" in-

structions are used for loop control. A
step operand is added to the loop control

operand and the sum is compared to a

limit operand. Optimizations of loop
control include the "add one and

branch" instructions which assume a

step of one, and the "subtract one and

branch" instructions which assume a

step of minus one and a limit of zero.

The "case" instructions implement the

computed goto in FORTRAN and case

statements in other languages. A selector

operand is checked to see that it lies in

range and is then used to select one of a

table of PC relative branch dis-

placements following the instruction.

6. Queue instructions. The queue represen-

tation is a double-linked circular list. In-

structions are provided to insert an item

into a queue or to remove an item from a

queue.

7. Character string instructions. The general

move character instruction takes five op-

erands specifying the lengths and start-

ing addresses of the source and
destination strings and a fill character to

be used if the source string is shorter

than the destination string. The instruc-

tion functions correctly regardless of

string overlap. An optimized move char-

acter instruction assumes the string

lengths are equal and takes three oper-

ands. Paralleling the move instructions

are two "compare character" instruc-

tions. The "move translated characters"

instruction is similar to the general move
character instruction except that the

source string bytes are translated by a

translation table specified by the instruc-

tion before being moved to destination

string. The "move translated until es-

cape" instruction stops if the result of a

translation matches the escape character

specified by one of its operands. The "lo-

cate character" and "skip character" in-

structions find, respectively, the first

occurrence or non-occurrence of a char-

acter in a string. The "scan" and "span"
instructions find, respectively, the first

occurrence or non-occurrence of a char-

acter within a specified character set in a

string. The "match characters" instruc-

tion finds the first occurrence of a sub-

string within a string which matches a

specified pattern string.

8. Packed decimal instructions. A conven-

tional set of arithmetic instructions is

provided. The "arithmetic shift and

round" instruction provides decimal-

point scaling and rounding. Converts are

provided to and from longword integers,

leading separate decimal strings, and

trailing embedded decimal strings. A
comprehensive "edit" instruction is in-

cluded.

VAX- 11 Procedure Instructions

A major goal of the VAX- 11 design was to

have a single system-wide procedure calling

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 419

convention that would apply to all intermodule

calls in the various languages, calls for oper-

ating system services, and calls to the common
run-time system. Three VAX-1 1 instructions

support this convention: two "call" instructions

(which are indistinguishable as far as the called

procedure is concerned) and a "return" instruc-

tion.

The call instructions assume that the first

word of a procedure is an entry mask which

specifies which registers are to be used by the

procedure and thus need to be saved. (Actually

only RO through Rl 1 are controlled by the en-

try mask and bits 1 5: 1 2 of the mask are reserved

for other purposes.) After pushing the registers

to be saved on the stack, the call instruction

pushes AP, FP, PC, a longword containing the

PSW and the entry mask, and a zero-valued

longword which is the initial value of a condi-

tion-handler address. The call instruction then

loads FP with the contents of SP and AP with

the argument list address. The appearance of

the stack frame after the call is shown in the

upper part of Figure 7.

The form of the argument list is shown in the

lower part of Figure 7. It consists of an argu-

ment count and list of longword arguments
which are typically addresses. The CALLG in-

struction takes two operands: one specifying the

procedure address and the other specifying the

address of the argument list assumed arbitrarily

located in memory. The CALLS instruction

also takes two operands: one the procedure ad-

dress and the other an argument count. CALLS
assumes that the arguments have been pushed
on the stack and pushes the argument count im-

mediately prior to saving the registers con-

trolled by the entry mask. It also sets bit 13 of

the saved entry mask to indicate that a CALLS
instruction is used to make the call.

The return instruction uses FP to locate the

stack frame. It loads SP with the contents of FP
and restores PSW through PC by popping the

stack. The saved entry mask controls the pop-

STACK
 OHOWTH

420 THE PDP-11 FAMILY

the first two alternatives and nearly completed
for the third. The three alternatives were:*

1 . A paged form of memory management
with access control at the page level and

a small number (four) of hierarchical ac-

cess modes whose use would be dedica-

ted to specific purposes. This

represented an evolution of the PDP-

11/70 memory management.
2. A paged and segmented form with access

control at the segment level and a larger

number (eight) of hierarchical access

modes which would be used quite gener-

ally. Although it differed in a number of

ways, the design was motivated by the

Multics [Organick, 1972; Schroeder and

Saltzer, 1971] architecture and the Hon-

eywell 6180 implementation.
3. A capabilities [Needham, 1972; Need-

ham and Walker, 1977] form with access

control provided by the capabilities and

the ability to page larger objects de-

scribed by the capabilities.

The first alternative was finally selected. The
second alternative was rejected because it was

felt that the real increase in functionality in-

adequately offset the increased architectural

complexity. The third alternative appeared to

offer functionality advantages that could be

useful over the long term. However, it was un-

likely that these advantages could be exploited

in the near term. Further, it appeared that the

complexity of the capabilities design was in-

appropriate for a minicomputer system.

Memory Mapping

The 4.3-gigabyte virtual address space is di-

vided into four regions as shown in Figure 8.

PROGRAM
REGION

CONTROL
REGION

SYSTEM
REGION

y////////////////,
RESERVED FOR

FUTURE EXPANSION

PER-PROCESS SPACE

^(ONE FOR EACH
EXECUTABLE PROCESS)

Figure 8. Virtual address space.

The first two regions
- the program and control

regions
- comprise the per-process virtual ad-

dress space which is uniquely mapped for each

process. The second two regions
- the system

region and a region reserved for future use -

comprise the system virtual address space which

is singly mapped for all processes.

Each of the regions serves different purposes.
The program region contains user programs
and data, and the top of the region is a dynamic

memory allocation point. The control region

contains operating system data structures spe-

cific to the process and the user stack. The sys-

tem region contains procedures that are

common to all processes (such as those that

comprise the operating system and RMS) and

(as will be seen later) page tables.

A virtual address has the structure shown in

the upper part of Figure 9. Bits 8:0 specify a

byte within a 512-byte page which is the basic

unit of mapping. Bits 29:9 specify a virtual page
number (VPN). Bits 31:30 select the virtual ad-

dress region. The mechanism of mapping con-

sists of using the region select bits to select a

page table which consists of page table entries

(PTEs). After a check to see that it is not too

large, the VPN is used to index into the page

*It should not be construed that memory management is independent of the rest of the architecture. The various memory
management alternatives required different definitions of the addressing modes and different instruction level support for

addressing.

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 421

VIRTUAL ADDRESS

n -VIRTUAL PAGE NUMBER- -BYTE WITHIN PAGE-

PROGRAM REGION
1 CONTROL REGION

1 SYSTEM REGION
1 1 RESERVED

u
PHYSICAL ADDRESS

IT -PAGE FRAME NUMBER- -• BYTE WITHIN PAGE-

Figure 9. Virtual and physical addresses.

table to select a PTE. The PTE contains either:

(1) 21 -bit physical page frame number which is

concatenated with the nine low order bytes in

page bits to form a 30-bit physical address as

shown in the lower part of Figure 9, or (2) an

indication that the virtual page accessed is not

in physical memory. The latter case is called a

page fault. Instruction execution in the current

procedure is suspended and control is trans-

ferred to an operating system procedure which

causes the missing virtual page to be brought
into physical memory. At this point, instruction

execution in the suspended procedure can re-

sume transparently.

The page table for the system region is de-

fined by the system base register which contains

the physical address of the start of the system

region page table and the system length register

which contains the length of the table. Thus, the

system region page table is contiguous in phys-
ical memory.
The per-process space page tables are defined

similarly by the program and control region
base registers and length registers. However, the

base registers do not contain physical addresses;

rather, they contain system region virtual ad-

dresses. Thus, the per-process page tables are

contiguous in the system region virtual address

space and are not necessarily contiguous in

physical memory. This placement of the per-

process page tables permits them to be paged
and avoids what would otherwise be a serious

physical memory allocation problem.

Access Control

At a given point in time, a process executes in

one of four access modes. The modes from most

to least privileged are called Kernel, Executive,

Supervisor and User. The use of these modes by

VAX/VMS is as follows.

1. Kernel. Interrupt and exception han-

dling, scheduUng, paging, physical I/O,
etc.

2. Executive. Logical I/O as provided by
RMS.

3. Supervisor. The command interpreter.

4. User. User procedures and data.

The accessability of each page (read, write, or

no access) from each access mode is specified in

the PTE for that page. Any attempt to improp-

erly access a page is suppressed and control is

transferred to an operating system procedure.
The accessibility is assumed hierarchically or-

dered: If a page is writable from any given

mode, it is also readable; and if a page is acces-

sible from a less-privileged mode, it is accessible

from a more privileged mode. Thus, for ex-

ample, a page can be readable and writable

from Kernel mode, only readable from Execu-

tive mode, and inaccessible from Supervisor
and User modes.

A procedure executing in a less-privileged

mode often needs to call a procedure that exe-

cutes in a more privileged mode; e.g., a user

program needs an operating system service per-

formed. The access mode is changed to a more

privileged mode by executing a "change mode"
instruction that transfers control to a routine

executing at the new access mode. A return is

made to original access mode by executing a

422 THE PDP-11 FAMILY

"return from exception or interrupt" instruc-

tion (REI).

The current access mode is stored in the pro-

cessor status longword (PSL) whose low-order

16 bits comprise the PSW. Also stored in the

PSL is the previous access mode, i.e., the access

mode from which the current access mode was

called. The previous mode information is used

by the special "probe" instructions which vali-

date arguments passed in cross-access mode

calls.

Procedures running at each of the access

modes require separate stacks with appropriate

accessibility. To facilitate this, each process has

four copies of SP which are selected according

to the current access mode field in the PSL, A
procedure always accesses the correct stack by

using R14.

In an earlier section it was stated that the

VAX-1 1 standard CALL instruction is used for

all calls including those for operating system

services. Indeed, procedures do call the oper-

ating system using the CALL instruction. The

target of the CALL instruction is the minimal

procedure consisting of an entry mask, a change
mode instruction and a return instruction.

Thus, access mode changing is transparent to

the calling procedure.

Interrupts and Exceptions

Interrupts and exceptions are forced changes
in control flow other than those explicitly in-

dicated by the executing program. The dis-

tinction between them is that interrupts are

normally unrelated to the currently executing

program while exceptions are a direct con-

sequence of program execution. Examples of in-

terrupt conditions are status changes in I/O
devices; examples of exception conditions are

arithmetic overflow or a memory management
access control violation.

VAX-1 1 provides a 3l-priority-level interrupt

system. Sixteen levels (16 through 31) are pro-

vided for hardware while 15 levels (1 through

15) are provided for software. (Level is used

for normal program execution.) The current in-

terrupt priority level (IPL) is stored in a field in

the PSL. When an interrupt request is made at a

level higher than IPL, the current PC and PSL
are pushed on the stack and new PC is obtained

from a vector selected by the interrupt requester

(a new PSL is generated by the CPU). Inter-

rupts are serviced by routines executing with

Kernel mode access control. Since interrupts

are appropriately serviced in a system-wide con-

text rather than a specific process context, the

stack used for interrupts is defined by another

stack pointer called the interrupt stack pointer.

(Just as for the multiple stack pointers used in

process context, an interrupt routine accesses

the interrupt stack using R14.) An interrupt ser-

vice is terminated by execution of an REI in-

struction which loads PC and PSL from the top
two longwords on the stack.

Exceptions are handled like interrupts except

for the following: (1) because exceptions arise in

a specific process context, the Kernel mode
stack for that process is used to store PC and

PSL, and (2) additional parameters (such as the

virtual address causing a page fault) may be

pushed on the stack.

Process Context Switching

From the standpoint of the VAX- 11 archi-

tecture, the process state or context consists of:

1 . The 1 5 general registers RO through R 1 3

and R15.

2. Four copies of R 14 (SP): one for each of

Kernel, Executive, Supervisor, and User

access modes.

3. The PSL.

4. Two base and two limit registers for the

program and control region page tables.

This context is gathered together in a data

structure called a process control block (PCB)
which normally resides in memory. While a

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 423

process is executing, the process context can be

considered to reside in processor registers. To
switch from one process to another, it is neces-

sary that the process context from the pre-

viously executing process be saved in its PCB in

memory, and that the process context for the

process about to be executed be loaded from its

PCB in memory. Two VAX- 11 instructions

support context switching. The "save process

context" instruction saves the complete process

context in memory while the "load process con-

text" instruction loads the complete process

context from memory,

I/O

Much like the PDP-11, VAX- 11 has no spe-

cific I/O instructions. Rather, I/O devices and

device controllers are implemented with a set of

registers that have addresses in the physical

memory address space. The CPU controls I/O
devices by writing these registers, the devices re-

turn status by writing these registers, and the

CPU subsequently reading them. The normal

memory management mechanism controls ac-

cess to I/O device registers, and a process hav-

ing a particular device's registers mapped into

its address space can control that device using

the regular instruction set.

Compatibility Mode

As mentioned in the VAX-1 1 overview, com-

patibility mode in the VAX-1 1 architecture pro-

vides the basic PDP-11 instruction set less-

privileged and floating-point instructions.

Compatibility mode is intended to support a

user as opposed to an operating system environ-

ment. Normally a Compatibility mode program
is combined with a set of Native mode pro-
cedures whose purpose it is to map service

requests from some particular PDP-11 oper-

ating system environment into VAX/VMS ser-

vices.

In Compatibility mode, the 16-bit PDP-11
addresses are zero-extended to 32 bits where

standard native mode mapping and access con-

trol apply. The eight 16-bit PDP-1 1 general reg-

isters overmap the Native mode general

registers RO through R6 and R15; thus, the

PDP-11 processor state is contained wholly
within the native mode processor state.

Compatibility mode is entered by setting the

compatibility mode bit in the PSL. Com-

patibility mode is left by executing a PDP-11

"trap" instruction (such as that used to make

operating system service requests), and on inter-

rupts and exceptions.

VAX-1 1/780 IMPLEMENTATION

VAX-1 1/780

The VAX-1 1/780 computer system is the first

implementation of the VAX- 11 architecture.

For instructions executed in Compatibility

mode, the VAX-1 1/780 has a performance

comparable to that of the PDP-1 1/70. For in-

structions executed in Native mode, the VAX-

11/780 has a performance in excess of that of

the PDP-1 1/70 and, thus, represents the new

high end of the 11 family (LSI-11, PDP-11,
VAX-1 1).

A block diagram of the VAX-1 1/780 system

is given in Figure 10. The system consists of a

central processing unit (CPU), the console sub-

system, the memory subsystem, and the I/O

subsystem. The CPU and the memory and I/O

subsystems are joined by a high-speed synchro-

nous bus called the synchronous backplane in-

terconnect (SBI).

CPU
The CPU is a microprogrammed processor

that implements the Native and Compatibility
mode instruction sets, the memory manage-
ment, and the interrupt and exception mecha-

nisms. The CPU has 32-bit main data paths and

is built almost entirely of conventional Shottky
TTL components.
To reduce effective memory access time, the

CPU includes an 8-Kbyte write-through cache

424 THE PDP-11 FAMILY

CONSOLE
SUBSYSTEM

PORT FOR
REMOTE _

DIAGNOSIS

LSI'11

MICRO-
COMPUTER

CPU
WITH FULL

FLOATING-POINT
DECIMAL. AND

CHARACTER STRING
INSTRUCTIONS

CACHE MEMORY

n
.J

MEMORY SUBSYSTEM

' MEMORY I
j

1

I

CONTROLLER I 1 EC

x£^-r.

--| MEMORY I"—! 128 KB I

1 CONTROLLER
l--'j

ECCMOS I

UP TO

> 2M BYTES
MAXIMUM

I/O SUBSYSTEMS
i1.5 MB/s)

(133
I

L
MB/5) I

--I MASSBUS
--• ADAPTOR I--

UP TO 4 TOTAL

>
MASSBUS >

The CPU includes 12 Kbytes of writable di-

agnostic control store (WDCS) which is used

for diagnostic purposes, implementation of cer-

tain instructions, and for future microcode

changes. As an option for very sophisticated

users, another 12 Kbytes of writable control

store is available.

A second option is the Floating-Point Accel-

erator (FPA). Although the basic CPU imple-
ments the full floating-point instruction set, the

FPA provides high speed floating-point hard-

ware. It is logically invisible to programs and

affects only their running time.

Figure 10. VAX- 1 1/780 system.

or buffer memory. The cache organization is

two-way associative with an eight-byte block

size. To reduce delays due to writes, the CPU
includes a write buffer. The CPU issues the

write to the buffer and the actual memory write

takes place in parallel with other CPU activity.

The CPU contains a 128-entry address trans-

lation buffer which is a cache of recent virtual-

to-physical translations. The buffer is divided

into two 64-entry sections: one for the per-pro-

cess regions and one for the system region. This

division permits the system region translations

to remain unaffected by a process context

switch.

A fourth buffer in the CPU is the eight-byte

instruction buffer. It serves two purposes. First,

it decomposes the highly variable instruction

format into its basic components and, second, it

constantly fetches ahead to reduce delays in ob-

taining the instruction components.
The CPU includes two standard clocks. The

programmable real-time clock is used by the

operating system for local timing purposes. The

time-of-year clock with its own battery backup
is the long-term reference for the operating sys-

tem. It is automatically read on system startup

to eliminate the need for manual entry of date

and time.

Console Subsystem

The console subsystem is centered around an

LSI-1 1 computer with 16 Kbytes ofRAM and 8

Kbytes of ROM (used to store the LSI-1 1 boot-

strap, LSI-1 1 diagnostics, and console rou-

tines). Also included are a floppy disk, an

interface to the console terminal, and a port for

remote diagnostic purposes.
The floppy disk in the console subsystem

serves multiple purposes. It stores the main sys-

tem bootstrap and diagnostics and serves as a

medium for distribution of software updates.

SBI

The SBI is the primary control and data

transfer path in the VAX-1 1/780 system. Be-

cause the cache and write buffer largely de-

couple the CPU performance from the memory
access time, the SBI design was optimized for

bandwidth and reliability rather than the lowest

possible access time.

The SBI is a synchronous bus with a cycle

time of 200 nanoseconds. The data path width

of the SBI is 32 bits. During each 200-nano-

second cycle, either 32 bits of data or a 30-bit

physical address can be transferred. Because

each 32-bit read or write requires transmission

of both address and data, two SBI cycles are

used for a complete transaction. The SBI pro-

tocol permits 64-bit reads or writes using one

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 425

address cycle and two data transfer cycles; the

CPU and I/O subsystem use this mode when-

ever possible. For read transactions the bus is

reacquired by the memory in order to send the

data; thus, the bus is not held during the mem-

ory access time.

Arbitration of the SBI is distributed: each in-

terface to the SBI has a specific priority and its

own bus request line. When an interface wishes

to use the bus, it asserts its bus request line. If,

at the end of a 200-nanosecond cycle, there are

no interfaces of higher priority requesting the

bus, the interface takes control of the bus.

Extensive checking is done on the SBI. Each

transfer is parity-checked and confirmed by the

receiver. The arbitration process and general
observance of the SBI protocol are checked by
each SBI interface during each SBI cycle. The

processor maintains a running 16-cycle history

of the SBI; any SBI error condition causes this

history to be locked and preserved for diagnos-
tic purposes.

Memory Subsystem

The memory subsystem consists of one or

two memory controllers with up to 1 Mbytes of

memory on each. The memory is organized in

64-bit quadwords with an 8-bit ECC which pro-

vides single-bit error correction and double-bit

error detection. The memory is built of 4 Kbit

MOS RAM components.
The memory controllers have buffers that

hold up to four memory requests. These buffers

substantially increase the utilization of the SBI

and memory by permitting the pipelining of

multiple memory requests. If desired, quad-
word physical addresses can be interleaved

across the memory controllers.

As an option, battery backup is available

which preserves the contents of memory across

short-term power failures,

I/O Subsystem

The I/O subsystem consists of buffered inter-

faces or adapters between the SBI and the two

types of peripheral buses used on PDP-11 sys-

tems: the Unibus and the Massbus. One Unibus

adapter and up to four Massbus adapters can

be configured on a VAX- 11/780 system.

The Unibus is a medium speed multiplexer

bus that is used as a primary memory as well as

peripheral bus in many PDP-11 systems. It has

an 18-bit physical address space and supports

byte and word transfers. In addition to imple-

menting the Unibus protocol and transmitting

interrupts to the CPU, the Unibus adapter pro-

vides two other functions. The first is mapping
18-bit Unibus addresses to 30-bit SBI physical

addresses. This is accomplished in a manner

substantially identical to the virtual-to-physical

mapping implemented by the CPU. The Unibus

address space is divided into 512 512-byte

pages. Each Unibus page has a page table entry

(residing in the Unibus adapter) which maps
addresses in that page to physical memory ad-

dresses. In addition to providing address trans-

lation, the mapping permits contiguous
transfers on the Unibus which cross page
boundaries to be mapped to discontiguous

physical memory page frames.

The second function performed by the

Unibus adapter is assembling 16-bit Unibus

transfers (both reads and writes) into 64-bit SBI

transfers. This operation (which is applicable

only to block transfers such as from disks) ap-

preciably reduces SBI traffic due to Unibus op-

erations. There are 15 8-byte buffers in the

Unibus adapter permitting 15 simultaneous

buffered transactions. Additionally, there is an

unbuffered path through the Unibus adapter

permitting an arbitrary number of simultaneous

unbuffered transfers.

The Massbus is a high speed block transfer

bus used primarily for disks and tapes. The

Massbus adapter provides much the same func-

tionality as the Unibus adapter. The physical

addresses into which transfers are made are de-

fined by a page table; again, this permits con-

tiguous device transfers into discontiguous

physical memory.

426 THE PDP-11 FAMILY

Buffering is provided in the Massbus adapter
which minimizes the probability of device over-

runs and assembles data into 64-bit units for

transfer over the SBI.

ACKNOWLEDGEMENTS

Although the final architecture is the result of

several design iterations involving many hard-

ware and software engineers, the author would

like to acknowledge the other members of the

initial architectual group: Gordon Bell, Peter

Conklin, Dave Cutler, Bill Demmer, Tom Hast-

ings, Richy Lary, Dave Rodgers, and Steve

Rothman. Mary Jane Forbes and Louise Prin-

cipe deserve special thanks for typing this man-

uscript.

APPENDIX- VAX-11 INSTRUCTION SET

Integer and Floating-Point Logical

Instructions• iiaii uwii\#ii

VAX-1 1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 427

Packed Decimal Instructions n
MOVP Move Packed

CMPP3 Compare Packed 3-Operand
CMPP4 Compare Packed 4-Operand
ASHP Arithmetic Shift and Round

Packed

ADDP4 Add Packed 4-Operand
ADDP6 Add Packed 6-Operand
SUBP4 Subtract Packed 4-Operand
SUBP6 Subtract Packed 6-Operand
MULP Multiply Packed

DIVP Divide Packed

CVTLP Convert Long to Packed

CVTPL Convert Packed to Long
CVTPT Convert Packed to TraiHng
CVTTP Convert Trailing to Packed

CVTPS Convert Packed to Separate
CVTSP Convert Separate to Packed

EDITPC Edit Packed to Character String

Character String Instructions M

MOVC3 Move Character 3-Operand
MOVC5 Move Character 5-Operand
MOVTC Move Translated Characters

MOVTUC Move Translated Until Character

CMPC3 Compare Characters 3-Operand
CMPCS Compare Characters 5-Operand
LOCC Locate Character

SKPC Skip Character

SCANC Scan Characters

SPANC Span Characters

MATCHC Match Characters

Variable- Length Bit Field Instructions H

EXTV Extract Field

EXTZV Extract Zero-Extended Field

INSV Insert Field

CMPV Compare Field

CMPZV Compare Zero-Extended Field

FFS Find First Set

FFC Find First Clear

Index Instruction

INDEX Compute Index

Queue Instructions

INSQUE Insert Entry in Queue
REMQUE Remove Entry from Queue

Address Manipulation instructions

MOVA- Move Address (B, W, L = F, Q =

D)
PUSHA- Push Address (B, W, L = F, Q =

D) on Stack

Processor State Instructions

PUSHR Push Registers on Stack

POPR Pop Registers from Stack

MOVPSL Move from Processor Status

Longword
BISPSW Bit Set Processor Status Word
BICPSW Bit Clear Processor Status Word

Unconditional Branch and Jump
Instructions

BR- Branch with (B, W) Displacement
JMMP Jump

Branch on Bit Instructions

BLB- Branch on Low Bit (S, C)
BB- Branch on Bit (S, C)
BBS- Branch on Bit Set and (S, C) Bit

BBC- Branch on Bit Clear and (S, C)
Bit

BBSSI Branch on Bit Set and Set Bit In-

terlocked

BBCCI Branch on Bit Clear and Clear Bit

Interlocked

Loop and Case Branch

ACB- Add, Compare and Branch (B,

W, L, F, D)
AOBLEQ Add One and Branch Less Than

or Equal
AOBLSS Add One and Branch Less Than

SOBGEQ Subtract One and Branch Greater

Than or Equal
SOBGTR Subtract One and Branch Greater

Than
CASE- Case on (B, W, L)

428 THE PDP-11 FAMILY

Subroutine Call and Return Instructions

BSB-

JSB
RSB

Branch to Subroutine with (B, W)
Displacement

Jump to Subroutine

Return from Subroutine

Procedure Call and Return Instructions

CALLG Call Procedure with General Ar-

gument List

CALLS Call Procedure with Stack Argu-
ment List

RET Return from Procedure

Access Mode Instructions

CHM- Change Mode to (Kernel, Execu-

BLEQU Less Than or Equal Unsigned

BEQL Equal

(BEQLU) (Equal Unsigned)

BNEQ Not Equal

(BNEQU) (Not Equal Unsigned)
BGTR Greater Than

BGTRU Greater Than Unsigned

BGEQ Greater Than or Equal

BGEQU Greater Than or Equal Unsigned

(BCC) (Carry Clear)

BVS Overflow Set

BVC Overflow Clear

Privileged Processor Register Control

Instructions

REI

^AU

©F COMPUTEIR

Evolution of Computer Building Blocks

As discussed in Chapter 1
, a computer system can be viewed as a hierarchy of

structural levels, each level consisting of a set of elements that are aggregates of

those at the next lower level. From that point of view, the PDP-1 was constructed

from elements or building blocks that were DEC Systems Modules, each contain-

ing elements from the switching circuit level of the structural hierarchy (AND
gates, OR gates, etc.). When the integrated circuit was introduced, the number of

components in one indivisible package became an order of magnitude larger than

it had been with discrete components. The functionality contained in a single

DEC module increased accordingly, and it was not long before computers were

constructed using building blocks from the next higher level in the structural hier-

archy. At that level, the register transfer (RT) level, modules each contained regis-

ter files, multiplexers, arithmetic logic units, and so on. The functions available in

a single integrated circuit, and the functionality available in a single module, have

been dictated by the search for universal functions discussed in the section "LSI

dilemma," in Chapter 2.

While Chapters 4 and 5 are devoted to the history of DEC modules and the

circuit and logic level characteristics that developed in the various module fami-

lies as a result of the advances in semiconductor technology, the chapters in Part

IV emphasize the role of modules as digital systems and computer building

blocks. Thus, the emphasis is on the use of modules at the register transfer and

processor-memory-switch (PMS) levels of the structural hierarchy.

Two types of building block are discussed:

1. Module sets are building blocks used to construct digital systems, often

specialized computers, where short design time is the primary goal. For

example, they are used in constructing low volume special purpose equip-

ment, or in teaching.

2. Computer elements are mainstream building blocks used to construct

computers when the primary goal is cost/performance of the design and

design time is secondary.

REGISTER TRANSFER MODULES (RTMs)

The most complete examples of the module set building blocks are the Register
Transfer Modules (RTMs) produced by DEC in the late 1960s and the Macromo-
dules proposed by Wes Clark in 1967 [Clark, 1967; Ornstein et al, 1967]. The

Register Transfer Modules are of interest because they were building blocks of a

431

432 EVOLUTION OF COMPUTER BUILDING BLOCKS

EVOLUTION OF COMPUTER BUILDING BLOCKS 433

high level of functionality which were produced and marketed commercially.

Moreover, they offer an opportunity to assess design at the register transfer level

and to assess the use of design languages. The Macromodules are of interest be-

cause they preceded the Register Transfer Modules and differed from RTMs in

several important ways. Macromodules were five times as expensive as RTMs but

twice as fast. Macromodule systems were less permanent when constructed than

RTMs but were easier to wire. The two building block types also differed in

design style. The data memory system with general purpose arithmetic capability

available in Register Transfer Modules led to a central accumulator style of de-

sign, whereas Macromodules used a distributed data and memory style.

Table 1 . Register Transfer Module Types

KTypa

2-way Branch

8-way Branch

Bus Sense and Termination

Clock

Delay

Integrating Delay

Diverge (null)

Evoke

No Operation

Parallel Merge
2-way Serial Merge
4-way Serial Merge
Subroutine Call

Program Controlled

Sequencer

Data Operator

2-input AND, OR
4-input AND, OR
4-input Decoder

2-input EXCLUSIVE-OR
NOT
Flags (Boolean)

General Purpose Aritmetic

Transducers

Analog-to-Digital

Digital-to-Analog

General Purpose Interface

Input Interface

Lights and Switches

Output Interface

Serial Interface

Memory

Byte
Word Transfer

4-word Constants

24-word Constants

1 6-word Scratchpad
2 56-word Array

1 ,024-word Array

1 ,024-word Read-only

The RTM paper (Chapter 1 8) describes the module set and the design decisions

leading to it. Two design examples are given, the second being a small stored

program computer, a nontrivial test of the completeness of the set. The module

set consisted of 36 modules, of which 10 came from the standard DEC catalog.

Table 1 gives a list of the modules available.

Additional studies on Register Transfer Modules documented user experience

with RTMs. A 1973 workshop on the architecture and appHcation of digital mod-

ules is reported by Fuller and Siewiorek [1973], who compare the cost, perform-

ance, and design time of the modular systems to standard small- and medium-

scale integration systems. They note that modular systems were more expensive

because a substantial portion of their cost was a result of those features that made

434 THE EVOLUTION OF COMPUTER BUILDING BLOCKS

them modular. These included features to establish module protocol, to allow

word extendability, and to ensure electrical compatibility. It was estimated that

this cost was 50-70 percent of the total cost of Macromodules and 30 percent of

the total cost of RTMs. Systems built with modules cost between two and ten

times that of comparable systems built from small- and medium-scale integrated
circuits. Performance comparisons were also reported and included:

1. A PDP-8 designed with Register Transfer Modules performed at 40 per-

cent of the speed of the DEC-built PDP-8 and cost twice as much.
2. Matrix multiply programmed on a small machine built with RTMs took

400 microseconds, 5 microseconds on a CDC 7600, and 35 microseconds

in Macromodules.

3. The Fast Fourier Transform butterfly multiply implemented in Macromo-
dules was comparable in execution time to one programmed on a CDC
6600.

4. A program for the major path of an electrocardiogram preprocessor exe-

cuted in 7 microseconds on a CDC 6600 and 37 microseconds on a PDP-9.
A Macromodule system took 3 microseconds and a TTL design took a

projected 1.5 microseconds.

Register Transfer Modules clearly met their educational goal. Their use in Car-

negie-Mellon's Digital Systems Laboratory is reported in [Grason and Siewiorek,

1975]. Four student projects are described: a system to simulate the soft landing

of a rocket under computer control, real-time monitoring of an instrument flight

trainer, a computer-controlled transit system, and a computer-guided vehicle with

ultrasonic obstacle detection.

Module sets have been used in research on design automation at the register

transfer level. The work with the Carnegie-Mellon RT-CAD system, reported in

[Siewiorek and Barbacci, 1976], attempted to go beyond the conventional work

(register transfer level simulation and synthesis of designs from register transfer

level descriptions) into the realm of automated design space exploration.

While Register Transfer Modules were used in educational projects and in re-

search projects, the DEC-built computer using Register Transfer Modules, the

PDP-16, was not as commercially successful as had been hoped. Until 1965, the

DEC Modules sector of DEC's business had been as profitable as any other and

had been growing as fast. However, once integrated circuits became widely used

in 1966, the revenues from DEC Modules ceased to grow. Register Transfer Mod-
ules were an attempt to revive growth in modules by offering building blocks at

the right level, i.e., the one suggested by the underlying circuit technology. There

appear to have been two reasons for their lack of success. The first, as described in

[Grason, et al. 1973], was designer resistance to designing at the higher level; the

second was that Register Transfer Modules were introduced too late. The avail-

ability of complex functions in a single chip, particularly microprocessors such as

the Intel 8008 introduced in the early 1970s, cut short the life of the RTM.

EVOLUTION OF COMPUTER BUILDING BLOCKS 435

History might have been different if the module for microprogrammed control

had been available at the outset, but because low cost semiconductor read-only
memories were not available, it was not. A second reason for not using micro-

programming at the outset was that the parallelism inherent in the data-memory

part of a system could not be fully exploited unless an arbitrarily wide control

store could be built. Indeed, this limitation is experienced in the use of today's bit-

slice sequencers.

Perhaps the highest payoff from Register Transfer Modules, both an indirect

and intangible benefit, has been their influence on the bit-slice and other building

blocks such as the Fairchild MACROLOGIC and AMD 2900-series devices.

RTMs have provided experience in thinking about the process of design and have

stimulated thinking about the choices of primitives, notations, and levels. They
have influenced the choice of data-memory and processor elements and the use of

microprogrammed controls.

BIT-SLICES (FRACTIONAL REGISTER TRANSFER LEVEL MODULES)
AS BUILDING BLOCKS

Chapter 19 on the CMU-1 1 is important because it documents the experience
of testing a set of building blocks in a real design. Only by carrying out a complete

design (whether on paper or to the breadboard stage) can the suitability be mea-

sured. The paper is a strong case study; it provides good engineering data, such as

the breakdown of the package count for each of the three major parts of the

design: data, control, and Unibus.

The CMU-1 1 was built using Intel 30(X)-series bit-slices. Since the time that the

CMU-1 1 project was started, newer series of bit-slice components have become

available, most notably the AMD 2900-series. Today, these components are the

dominant mainstream building blocks and have been used in a variety of appli-

cations. For example, the 4 bit wide AM2901 slice was used in 1976 to implement
the 64 bit wide data path of the Floating-Point Processor for the PDP-1 1/34, and

bit-slices are now the technology of choice for mid-range PDP-11 processors

(Chapter 13).

The building blocks available in 1978 are reasonably represented by the follow-

ing:

1. Datapath sUce. A 4-bit-wide slice containing an arithmetic and logic unit,

16 registers in a two-port file, data buses, shifter, and multiplexers (the

AM 2901).

2. Microprogram control unit. A circuit which generates control store ad-

dresses; it contains the micro-level program counter, incrementer, a stack,

and the circuitry to select the machine state inputs (AM2909: 4 bits wide,

or AM2911: 12 bits wide).

3. Interrupt processing unit. (AM2914).
4. Interface circuits. The AM2917 is a typical circuit and contains bus trans-

ceivers for 4 lines, a data register, latch, and parity tree.

436 EVOLUTION OF COMPUTER BUILDING BLOCKS

Design aids include a microprogram assembler, an evaluation kit, and a micro-

program debugging and editing facility.

In late 1977, two new circuits with higher functionality were introduced. The

AM2903, a successor to the AM2901, has added multiplication and division

primitives, extended shifting, and an expandable register file [Coleman et al,

1977]; and the AM2904 to control shift register linkages, a micro-level status

register, and carry control. Given this wider range for the designer to choose

from, the proportion of a processor that can cost-effectively use bit-slices should

be higher than the 20 percent in CMU-1 1. However, it probably would not exceed

40 percent. For example, 29 percent of the CMU-1 1 cost (board area) is due to the

circuits for a Unibus interface which could not be implemented with acceptable

performance by the bit-slice components; even the newly available bit-slices

would not impact this area. Moreover, as more PDP-11 specific functions are

added, the area would decrease.

The bit-slices discussed above use Schottky TTL logic and result in a micro-

instruction cycle time of between lOQ and 300 nanoseconds (200 is average). Bit-

slices in other logic families exist, for example, the Motorola 10800, an ECL slice,

which has a microinstruction cycle time of 55 nanoseconds.

COMPUTER MODULES

As the underlying circuit technology moves to higher and higher levels of com-

plexity per chip, competition from modules at the next higher level of design

becomes viable. An example is the substitution of PMS level modules for RT level

modules (RTMs). Register transfer level module sets are then either abandoned

or applied in a different application area - the higher speed area.

The proposal for a set of PMS level system-building modules of about mini-

computer complexity was first made in [Bell et al, 1973], where they were called

"Computer Modules" (CMs). A CM consists of a processor and memory, to-

gether with several carefully designed ports, as shown in Figure 2. Given that the

di]-
TO TRANSDUCERS
AND OTHER

PORT CONTROLLERS -

Figure 2. PMS diagram of Computer Module.

EVOLUTION OF COMPUTER BUILDING BLOCKS 437

I/O and interrupt structure of conventional computers makes it difficult to con-

struct closely coupled networks, the port architecture was proposed. It was de-

signed to handle operations such as handshaking and buffering, executing

concurrently with the processor of the CM. The port was intended to allow con-

struction of CM systems covering a wide range of cost and performance.
The paper argued strongly, based on the increasing complexity and decreasing

cost of large-scale integrated circuits, for the investigation of large digital mod-
ules. The then current microprocessors of Intel, National Semiconductor, and

AMD were seen as precursors of computer modules. The Computer Module was

also viewed as part of the evolution of centralized computer structures into highly

distributed, intelligent networks.

The set of applications investigated included array processing (Fast Fourier

Transform processing, generalized array processing, and radar signal processing),

sorting, language processing (compilation and machine language interpretations),

and process control. In each case, the intermodule communications requirements
were emphasized, as was the range of performance that could be achieved by

varying the CM system structure. The following table gives some of the expected
characteristics of CM systems together with the actual values Cm*, the CMU
multiprocessor that is the subject of Chapter 20.

Attribute

438 EVOLUTION OF COMPUTER BUILDING BLOCKS

I
MP

I 1
S.local

I |K.map(1||
I Mp I 1 S.local 1

|K.map|1||

|K.map|0|j

INTER-CM
BUS L

INTER-CM
BUS M

[K.mip 12l|

i Mp I
I

S.local I iKmap

I Mp I 1
S.local

I |K.map|i||

JK.maplOlj

Figure 3. PMS diagram of four Computer Modules.

Modules are obsolete for the construction of all but low volume computers. Al-

though the research is predicated on structures employing a hundred or so proces-

sors, this chapter describes the culmination of the first (10 processor) phase.
The authors motivate their work by appealing to diseconomy-of-scale argu-

ments. To provide additional context for their research, computer modules

(Cm*), multiprocessors (C.mmp), and computer networks are described in terms

of performance and problem suitability. The chapter gives a description of the

modules structure, together with associated limitations and potential research

problems. The final, most important part of the chapter evaluates the perform-
ance of Cm* for five different problems.

It is interesting to note how the major focus has shifted from computer modules

per se to multiprocessors. Three separate efforts in the Cm* project can be identi-

fied:

1. Multiprocessor architecture research.

2. Solving the 16-bit addressing limitation of the PDP-11.

3. Operating systems primitives
-

capabilities.

EVOLUTION OF COMPUTER BUILDING BLOCKS 439

Table 2. Comparison of Computer Building Blocks

440 EVOLUTION OF COMPUTER BUILDING BLOCKS

A companion paper to the chapter on Cm* discusses the programming issues

raised by a computer module structure [Jones et al, 1978]. An operating system,
called "Star OS," manages a single Cm* cluster. It provides capability address-

ing, memory allocation, software module declaration, process management, mes-

sage transmission, processor multiplexing, and trap and interrupt handling. Star

OS is distributed in such a fashion that any kernel function can be executed in any
CM. To decrease average memory reference time, 8 Kbytes of what the designers
believe to be the most frequently executed Star OS software (interrupt handling,

process switching, and message communication) is duplicated in each CM.
Since the time that the article was written, construction of a 50 computer mod-

ules Cm* has begun and is planned to be operational by the end of 1978 for

evaluation in 1979. The extension of Cm* is known as "Cm*/50" and is de-

scribed in Chapter 16. It will be used to test ideas on parallel processing methods,
fault tolerance, modularity, and the extendability of the Cm* structure.

CONCLUSIONS

The four design methods presented in this part are compared in Table 2. As
stated in Chapter 2, the predominant design level in the future will be the PMS
level, using fifth generation components (microcomputers) as building blocks.

The challenge to designers and researchers is therefore to understand what com-
munication structures are needed to interconnect these building blocks.

The Description and Use of

Register Transfer Modules (RTMs)
C. GORDON BELL, JOHN EGGERT,

JOHN GRASON, and PETER WILLIAMS

INTRODUCTION

In the design of digital systems (e.g., com-

puters) the problem formulation and the design

solution are most likely carried out at a register

transfer concept level. Early and recent texts on

logical and computer design discuss the register

transfers as primitive components [Barteeer al.,

1962; Chu, 1970]. Logical design simulators

that use a register transfer language have been

written, and there have been several attempts to

carry out detailed sequential and combinational

logic designs from register transfer descriptions

[Friedman and Yang, 1969]. Despite the ac-

knowledgment that there are primitives based

on register transfers, there is yet to emerge a

common set of modules that are taken as primi-
tive in the same way we think of various flip-

flop types and NAND and NOR gates. How-
ever, Clark at Washington University, St.

Louis, Mo. [Clark, 1967], has been developing
and evaluating such a basic set of modules,
called Macromodules.

Register Transfer Modules are our first at-

tempt at providing a basic set of modules for

high level digital systems design. These modules
have been implemented by the Digital Equip-
ment Corporation (DEC). The design of RTMs

has been influenced by many of the above ap-

proaches and disciplines, and by programming
methods. This note presents the general prob-
lem RTMs are trying to solve, the factors con-

straining their design, a brief description of the

more important modules from a user's point of

view, and two examples of their use.

Several aspects of the RTM system are im-

portant.

1. Digital system design is carried out en-

tirely in terms of the modules; com-

binational and sequential switching
circuit design are not used. (The process

is akin to programming a sequential

computer.) Design time is significantly

less than with conventional logical de-

sign.

2. The most abstract representation, and

usually the only representation of a

given design, has enough information

for constructing the system. This repre-

sentation is a standard flowchart to spec-

ify the control flow, coupled to a data

part that holds the data and carries out

data operations.
441

442 EVOLUTION OF COMPUTER BUILDING BLOCKS

3. The Register Transfer Modules make ex-

tensive use of MSI circuitry and can use

LSI circuitry to provide even lower cost

modules.

MODULE DESIGN CONSIDERATIONS

The three problem classes for which the mod-

ules were designed are: special purpose,

computer-related, and educational digital sys-

tems. Although the initial motivation for the

modules was for education, they were not de-

signed solely for this purpose. The goals for

educational use place too many constraints on

the design. The main influence of the educa-

tional market has been to clarify the peda-

gogical nature; hence, the description of

systems is made easy. The special purpose

digital systems are larger than 20 MSI circuits,

but smaller than a stored program computer (a

typical RTM system would have 4~ 100 control

states, 1 ~4 arithmetic units, and a small mem-

ory of 16~1000 words). Computer-related ap-

plications range from computer peripherals to

the emulation of computers.
We make no attempt to show that the mod-

ules are an optimum set, according to an objec-

tive function. Because of the elementary nature

of the control and data operations, the set is

sufficient to construct digital systems. Table 1

shows the important design variables for

RTMs, together with many of the constraints.

Their design is described in Bell and Grason,

[1971].

THE RTM SYSTEM

The RTM system consists of about 20 differ-

ent modules and a method of interconnecting

modules via a common bus that carries data

and timing interlock signals for the register

transfers. Some of the modules (DM, T, and M
types) connect to the bus in order to transfer

data, and the remaining modules (K type) "con-

trol" when data are to be transferred. The mod-

ule name types are based on the structure

primitive types of Bell and Newell [1966; 1971].

A register transfer language, ISP (instruction

set processor) [Bell, Newell, 1966; Bell, Newell,

1971], is used to define the register transfer op-
erations of the RTMs. Here we use only the

parts of ISP that are commonly known by the

digital systems engineer and are similar to a

programming language (e.g., FORTRAN). The
four main module types are as follows.

DM-Type (Data Operation Combined with

Memory)

These modules are what we commonly think

of as being a digital system (or at least the arith-

metic unit). They are the register transfer gating

paths and combinational circuits for the simple

arithmetic and logical functions - hence the D
part (for data operations). The D part carries

out the evaluation of the right-hand side of an

arithmetic expression as in a programming lan-

guage in which an integer value is computed

prior to storing, e.g., <-A+B, <-A-B, <-A®B,
4-A+l. Thus, an expression "left-hand-

side<-right-hand side" (e.g., H<-C+D) is used to

indicate the integer value of the right-hand side

being read and placed in the register on the left-

hand side.

M-Type (Memory)

The memory (M) part is just the registers

(e.g., A, B) that hold data between statements;

these essentially correspond to the variables

that are declared in a program. The operations

on memory are usually reading (•<-M) and writ-

ing (M<-). Types ofDM and M modules are the

general purpose arithmetic unit, a single-trans-

fer register. Boolean flags (1-bit registers), read-

write memories, and read-only memories. The

memories hold two's complement 8-, 12-, or 16-

bit integers.

K-Type (Control)

The K modules are responsible for con-

trolling the transfer of data among the various

registers by appropriately evoking operations

THE DESCRIPTION AND USE OF REGISTER TRANSFER MODULES 443

Table 1 . Basic RT Design Decisions

1 . Logic: TTL (acceptable for speed and noise immunity; low cost).

2. Packaging: Printed circuit boards of 5 X 8-1/2 inches or 2-1/2 X 8-1/2 inches with 72 or

36 pins (DEC compatible).

3. Intermediate connection: Pre-wired buses; wirewrap and push-on connections over wire-

wrap pins.

4. Logic interconnection rules: One kind of control signal and data bus. Very small number of

rules compared to IC use.

5. Problem size: 4~100 control steps; 1 ~4 arithmetic registers; 16~ 100 variables; possibly

read-only memory.

6. Word length: 8-, 12-, and 16-bit (present de facto standard - can be extended).

7. Universality and extendability: The modules are not a panacea. There are provisions for

escape to regular integrated circuits, standard DEC modules, and DEC computers (and their

components).

8. Selection of primitives: Basic register, bus interconnection structure, and data representation

were first determined. The operations that formed a complete set for the data representation

were then specified. With this basic module set, designs were carried out for benchmark

problems and design iteration occurred.

9. Notations: PMS and ISP of Bell and Newell [1971 J.

10. Automatic (algorithmic) mapping of algorithm into hardware: The basic RT design archetype

representation is a flowchart. The register transfer operations are expressed in the ISP lan-

guage.

11. Parallelism and speed: Provision for multiple buses; the modules are asynchronous. (The

application classes put relatively low weight on speed.) For teaching purposes parallelism is

an important principle. (A decision to use a bus, and thereby limit parallelism to the number
of buses, was made for both cost and simplicity reasons.)

by DM and M types. The K modules are analo-

gous to the control structure of a program. The
K modules called K.evoke control the times

when the various operations of the DMs and
Ms are evoked (executed). The K,branch mod-
ules are used to make decisions about which op-
erations are to be evoked next. The
K.subroutine modules are used to connect a se-

quence of operations together as a subroutine.

K.serial-merge allows control flow to merge
into a single control flow when any flow input is

present. K. parallel-branch and K.parallel-

merge modules synchronize control where there

is more than one operation taking place at a

time. Other control modules include clocks, de-

lays, and manual start keys.

T-Type (Transducers)

These modules provide an interface to the en-

vironment outside RTM. These include the

Teletype interface, analog/digital converters,

lights, switches, and interfaces to computers.
These modules also connect to the common
data bus.

444 EVOLUTION OF COMPUTER BUILDING BLOCKS

The details of the modules will be introduced

by giving the four modules that are necessary
for nontrivial digital systems: K, evoke,

DM.gpa, K.branch, and K.bus.

K (Evoke)

K.evoke (Ke) is the basic module that evokes

a function consisting of a data operation and a

register transfer - in essence an arithmetic ex-

pression. When a Ke is evoked, it in turn evokes

the function, consisting of the data operation
followed by a register transfer, and when the

function is complete, Ke evokes the next K in

the control sequence. The diagram for Ke with

its two inputs and two outputs is shown in Fig-
ure 1 . In terms of a finite state machine, Ke is a

state with the ability to evoke an output action

and then make a transition to another state.

K.evoke is as follows.

STATE IMPLIED BY A K.evoke

6 -/OUTPUT ACTION

NEXT STATE

K (Branch)

K.branch (Kb) provides for the routing of

control flow based on the condition of a Boo-
lean input. The diagram for Kb with its two in-

puts and two outputs is shown in Figure 2. Each
time a branch control is evoked, it in turn

evokes either of the controls following it,

depending on whether the Boolean input is true

(a 1) or false (a 0). In terms of a finite state ma-

chine, Kb is a state with the capability of going
to either of two next states, depending on a

Boolean input. K.branch is as follows.

NEXT STATE IF ->b

STATE IMPLIED BY K Ijranch

DM (General Purpose Arithmetic/gpa)

The DM.gpa allows arithmetic function re-

sults (data operations) that have been per-
formed on its two registers A and B to be

written into other registers (using the bus). Re-

sults can also be transferred (written) into A
and B (A<-; B^). The data operations are: <-A,

^B, ^-iA, .e--,B, ^A+B, ^A-B, ^A-1, ^A+1,
^AX2, ^AAB, -^AVB, and ^A©B. An input
that evokes the function ^Result)/2 can be

combined with the previous function outputs to

give *-A/2, .^B/2, .^-(A+B)/2, etc. Two Boolean

inputs, shift in <16, -1>, allow data to be

shifted into the left- and right-hand bits on /2
and X2 operations, respectively. Bits of regis-

ters A and B are available as Boolean outputs.

 EVOKE THIS CONTROL/ev

Ke NAME OF FUNCTION TO BE EVOKEDt
EVOKE A FUNCTION/evfn

EVOKED FUNCTION COMPLETE/evfnC

[EVOKE THE NEXT CONTROL FUNCTION/evn

Figure 1. Diagram for the control module K.evoke.

K (Bus Sense and Control Module/Bus)

Each independent data bus in the system re-

quires a centralized control module. It has a

register. Bus, that always contains the result of

the last register transfer that took place via the

bus. K.bus carries out of several functions:

monitoring register transfer operations; provid-

ing for single-step manual control for algorithm

EVOKE THIS CONTROL

BOOLEAN INPUT

•vnl/(EVOKE NEXT IF

BOOLEAN IS

TRUE/1/YE8I

OvnO/(EVOKE NEXT IF

BOOLEAN IS

FALSE/0/NOI

NEXT STATE IF b Figure 2. Diagram for the control module K.branch.

THE DESCRIPTION AND USE OF REGISTER TRANSFER MODULES 445

flow checkout by the user; providing for sense

lights (indicators); providing for a word source

of zero, i.e., +-0; forming Boolean functions of

the Bus register; power-on initialization; man-

ual startup; and bus termination.

DESIGN WITH RTMs

Digital systems engineers are concerned with

formulating algorithms that, when executed by

hardware, behave according to the solution of

the original design problem. The solutions of

digital systems design problems using program-

ming, conventional logical design, and RTM
design are all similar. The three design and im-

plementation processes have the same goal: to

construct a program for a machine, or a hard-

wired machine to execute the algorithm stated

(or implied) in the problem. Thus, program-

ming and digital systems engineering are con-

cerned with interconnecting basic components
or building blocks for executing algorithms; the

building blocks are machine operations and

logical design components, respectively. RTMs
are a basic set of components for constructing

hardware algorithms. That is, they are the com-

ponents for digital systems design.

The design protocol using RTMs is very

much akin to that of designing a program. The

designer takes a natural language statement of

the problem and carries out the conversion to a

process description that acts on a set of data

variables (and any temporary data variables).

An RTM design has two parts: (1) the explicitly

declared data variables and the implied data op-
erations that are attached to these variables;

and (2) the control part, a finite state machine,

that accepts inputs and evokes the various oper-

ations on the data part. The control part is

shown as a combined flowchart-wiring dia-

gram.
Two examples show how this design is car-

ried out. The schematic for the first example, an

algorithm to sum integers, shows all wires and

modules and the schematic for the second ex-

ample, a small stored program computer, shows

the control flow and the data part but excludes

the connections between the control and data

parts.

Example: Sum of Integers to N

A small system to sum the integers to

N (S+-0+H-2+ ... +N) can be built that uses

the four aforementioned modules: DM.gpa,
K.bus, K.evoke, and K.branch together with a

switch register to enter N and a manual start

control module to start the system. The data

and control parts together are given in the

RTM wiring diagram (Figure 3); the data part

is shown on the right and the control part on

the left. The final result S and the variable N are

held in a general purpose arithmetic module

DM.gpa. N is held in the switch register T in-

itially. The control sequence is initiated by a

K.manual-start (a human presses a key). In-

stead of counting to N, we start with N and

count down to zero while tallying the sum S.

CONTROL PART DATA PART

I HUMAN INPUT TO START PROCESSK.manual-start

Ka ' K.«voka MODULE
Kb « Kbranch MODULE

CONTROL FLOW AND EVOKE WIRIt

VMM!M. BUS FOR DATA WIRES

-t 1
— aOOLEAN VARIABLE WIRES

Figure 3. RTM digital system to take a value from a

switch register input and to sum the integers to the input

value.

446 EVOLUTION OF COMPUTER BUILDING BLOCKS

The first control step reads T to register N
(N<-T). The second step initializes the sum S

(S+-0). The inner loop consists of the three func-

tions: &-S+N; N*-N-l; and a test for N=0.

Example: A Small Stored Program
Computer Design Using RTMs

Figure 4 shows an RTM diagram for a small

stored program computer that was initially con-

structed as an application experiment to dem-
onstrate the feasibility of the modules and to

investigate systems problems. The process of

specifying the machine took approximately two
hours (with three people). The computer was
wired and, aside from minor system/circuit

problems (for which the experiment was de-

signed), the computer operated essentially when

power was applied because there were no logic

CONTROL PART DATA PART

MA ^ P; REAu

MA - i<10:0>

r K.branch-8-way V ^

^^OP := i<1S:13>.J

AND
(OP = 0)

K.manual avoke:

START

K manual evoke:

CONTINUE

DCA
(OP = 31

CONSOLE
KEYS

K.bus 1

THE DESCRIPTION AND USE OF REGISTER TRANSFER MODULES 447

errors. The computer was designed for an ac-

tual application that had about 300 constants,

600 control steps, and about 16 variables. (An
alternative approach would have been to hard-

wire the 600 control steps directly, thereby op-

erating faster, but being more expensive and

less flexible.) The computer has only 24 evoke

and 16 branch controls. (By way of comparison,
RTM interpreters to emulate the PDP-8 and the

Data General NOVA computers require about

90 evoke and branch control modules, 2

DM.gpa's, and core memory.) Since the price

ratio of a single hardwired control to a single

read-only memory control word is approx-

imately 10:1, and since the overhead price of a

1000-word read-only memory is about 100 con-

trols, it was cheaper in the above application to

use RTMs to first build an interpreter, com-

monly called a stored program digital com-

puter, and then let the computer program
execute the control steps.

The data part of the machine is shown in the

upper right of Figure 4. Three DM-type RTMs
hold the processor state and temporary regis-

ters. The processor state, that part of memory
accessible and controlled by the program, in-

cludes: A, the accumulator; P, the program
counter; and L, a register used to hold sub-

routine return addresses (links). The temporary

registers needed in the interpretation of the in-

structions are: i, instruction holding register;

and B, used for binary operations on A (e.g..

Add, And). Also connected to the RTM bus are

the read-only and read-write memories and the

Teletype, as well as a special input/output regis-

ter interface to the remainder of the system.

The method of defining the interpreter can be

seen from the RTM diagram (Figure 4). The
control part consists of three subparts: the Start

and Continue keys that are used to initialize the

processor to start at location and to restart the

processor, the instruction fetch, and the instruc-

tion execution. The instruction fetch consists of

picking up the instruction from the memory
word addressed by the program counter P and

incrementing P to point to the next instruction.

The instruction is placed in the i register, which

has been specially wired to allow decoding of

the three most significant bits. Individual bits of

i can be tested for the Operate (OPR) instruc-

tion, and the address field i< 10:0> can be read.

After the instruction is fetched and placed in

i, Ke(MA*-i<10:0>) is evoked to address data

referenced by the instruction. Immediately fol-

lowing this evoke operation, an eight-way

K.branch allows control to move to the one

path corresponding to the operation code of the

instruction being interpreted; that is, the in-

struction is decoded, and control is transferred

to execute it. After the execution of the appro-

priate instruction, control returns to fetch the

next instruction. For example, executing the

Add (two's complement add) instruction con-

sists of loading the data from memory into the

temporary register B (i.e., B<-MB) and then

adding B to the accumulator A (i.e., A^A+B).

For the Operate instruction, which does not

reference memory, each bit of the address part

of the instruction specifies an operation to be

carried out on the accumulator ("test for - or

0," "clear," "complement," "add one," "shift

right or left," or "return from the subroutine").

Each bit is tested in sequence, and if a one, the

corresponding operation is carried out. If the

instruction code with OP=6 is given, the com-

puter halts; pressing Continue restarts it.

The instruction set is shown to be straight-

forward and simple. Subroutine return ad-

dresses are stored in a link register L. Thus to

call subroutines at a depth of more than one

level requires the called subroutine to save the

link register in a temporary location. But there

is no way of storing this register; thus it is diffi-

cult to call a subroutine and pass parameter in-

formation (e.g., the location of tables). Since

the computer requires a few minor changes to

allow nested subroutines and parameter pass-

ing, the reader is invited to make the appropri-

ate incremental changes.

448 EVOLUTION OF COMPUTER BUILDING BLOCKS

CONCLUSIONS

The concept of using high level building

blocks is not new, but we think this particular

implementation of a set of simple blocks is quite

useful to many digital systems engineers. The

design time using this approach is significantly

less than with conventional logical design. The
modules are especially useful for teaching

digital system design. We have solved many
benchmark designs with reasonably consistent

results. The modules can be applied quickly and

economically where there are between 4 and 100

control steps, a small read-write memory (100

words), and perhaps some read-only memory.

Larger system problems are usually solved bet-

ter with a stored program computer, although
such a computer can be designed using RTMs.
The user need only be familiar with the concept

of registers and register operations on data, and

have a fundamental understanding of a flow-

chart.

ACKNOWLEDGEMENT

These modules were formally proposed in

March 1970 in a form essentially described

herein by one of the authors, C. G. Bell. In June

1970 the project was seriously started by con-

structing the computer of the previous example

using them. The authors gratefully acknowl-

edge the organization and management contri-

butions of F. Gould, A. Devault, and S. Olsen

(Digital Equipment Corporation) without

whose goal-oriented commitment the RTMs
could not have been built. The authors are also

indebted to Mrs. D. Josephson of Carnegie-
Mellon University for typing the manuscript.

S)

Using LSI Processor Bit-Slices

to Build a PDP-11 -A Case Study
in Microcomputer Design
THOMAS M. McWILLIAMS, SAMUEL H. FULLER,

and WILLIAM H. SHERWOOD

INTRODUCTION

Several semiconductor manufacturers have

recently developed high speed LSI circuits that

are designed to simplify the construction of

microprogrammed processors and device con-

trollers. These integrated circuits are called

"bit-slices" because they implement 2 or 4 bits

of the registers, arithmetic units, and primary
data paths of a processor. This article presents

the design and evaluation of the processor built

at Carnegie-Mellon University [Fuller et al.,

1976] that uses the Intel 3000 bit-slices [Intel,

1975; Signetics, 1975] and that is micro-

programmed to emulate the PDP-11 computer
architecture [DEC, 1973].* The purpose of this

project was to investigate the assertions of semi-

conductor manufacturers that their LSI bit-

slices would in fact simplify the design and con-

struction of processors.

Rather than specify a new architecture (i.e.,

instruction set) for this experiment in processor

design, we decided to reimplement an estab-

lished computer architecture: the PDP-11. We

chose the PDP-11 architecture for several rea-

sons. Using an existing and well-known archi-

tecture allowed others to more easily evaluate

the results of our experiment and kept us from

consciously or unconsciously tailoring the pro-

cessor architecture to fit the capabilities and idi-

osyncrasies of the LSI bit-slices. PDP-1 Is are in

extensive use at Carnegie-Mellon University in

a wide variety of applications and, if our experi-

ment was successful, the processor could be put
to work on any one of several practical tasks. It

was this second reason that helped establish a

criterion that proved to be critical: we de-

manded that the processor we constructed sup-

port the standard DEC Unibus [DEC, 1973]

that is common to all PDP-1 Is except the LSI-

11 [DEC, 1975]. Finally, the PDP-11 archi-

tecture is an unusually good test of the

capabilities of a bit-slice circuit family because

it is a relatively complete architecture with nu-

merous addressing modes and instruction for-

mats.

*We gratefully acknowledge the donation of 3000 microcomputer sets by both Intel and Signetics Corporations.

449

450 EVOLUTION OF COMPUTER BUILDING BLOCKS

In the next section we begin with a descrip-

tion of the design of the CMU-1 1 processor. We
then discuss the performance, cost, and imple-

mentation difficuhies uncovered during the de-

sign and testing of the machine. In addition to

the evalution of the LSI bit-sHce circuits for

general purpose processors, we are interested in

the problems of computer design in general.

For this reason, a fairly complete set of digital

design automation aids are available at Car-

negie-Mellon University: an interactive drawing

package that generates engineering drawings.

wire-lists, and aids in engineering changes; a

digital simulation system that is interfaced to

the drawing system; and microprogram assem-

blers. Later sections review our experiences
with these design aids and we draw some con-

clusions concerning the process of designing
and debugging prototypes of digital systems
built with LSI circuits.

ORGANIZATION OF THE CMU-11

Figure 1 is a register transfer level diagram of

the CMU-11 microprogrammable processor.

O
INSTRUCTION
REGISTER

kiio

BYTE
SWAPPED

rk

-J PS<7:0>I •

./

~L
PS CONTROL

MICROPROGRAM CONTROL STORE
(B12 32BIT MICROINSTRUCTIONS)

IR<8:6>
IR<2:0>

1 r

^:

EIGHT 3002 CENTRAL
PROCESSING
ELEMENTS

SCRATCHPAD
REGISTERS
R0-R9. T

nxxLi
B MUX I I A MUX

I

ARITHMETIC P BUS
LOGIC UNIT

AC REGISTER

<xH< :

MEMORY
ADDRESS

UNIBUS TIMING
AND

CONTROL LOGIC

PS<3:0>

MIR<13:11> •

IR<15:00> •

H

<
AC<6:

I

F<6:

V

MICROBRANCH
LOGIC

T

-]

MICROINSTRUCTION
i

BUFFER REGISTER
MIR <24:00>

I

3001

MICROPROGRAM
CONTROL UNIT

ca Z

FLAGS
1

• PR LATCH

am
NEXT ADDRESS

LOGIC

MICROADDRESS
REGISTER

i "rn^

Figure 1. Register transfer level diagram.

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-1 1 451

The processor's components are arranged in the

diagram into three sections: the data part, con-

trol part, and Vnibus interface. We were able to

build the entire processor on a single board and

Figure 2 is a top view of the CMU-11.

The Data Paths and Working Registers

The data part of the processor is designed

around the 3002 (central processing element)

bit-slice. A single 3002 circuit implements a 2-

bit slice of the data paths and, hence, eight

3002s have been used in the CMU-1 1 . Ahhough
not explicitly shown in Figure 1, the 3003 carry-

lookahead circuit is also used. With the 3003,

the 3002 array is capable of cycling through

operations every 150 nanoseconds. However,

other delays in the clock and control part dic-

tate that the CMU-11 has a 200-nanosecond

microcycle time. The eight general purpose

working registers of the PDP-11 architecture

can be kept in the register scratchpad on the

3002s, and the three remaining internal regis-

ters, R8, R9, and T are sufficient for source and

destination operand computations as well as

other intermediate results. It was not possible to

locate the program status (PS) and instruction

register (IR) within the 3002s without a severe

loss in performance.
The relatively generous number of input and

output lines of the 3002s are used to good ad-

vantage. The D<15:0> and A<15:0> buses

feed the Unibus data and address lines respec-

tively. In addition, the D bus allows access to

the extra data paths necessary to include the PS

register and to facilitate the byte swap oper-

ation needed by many of the PDP-ll's instruc-

tions. The M<15:0> bus is used as the

principal data input bus. The function bus,

F<6:0>, specifies both the operation to be per-

formed by the arithmetic/logic unit as well as

the selection of the register in the scratchpad to

be involved in the operation. The K<15:0> bus

is used to input masks or constants from the

microinstruction. The 3000 circuit set makes

frequent use of the K lines to specify masks

(usually all zeros or all ones) that effectively ex-

tend the operation code on the function bus.

Figure 2. CMU-1 1 processor board. Figure 3. CMU-1 1 system with associated PDP-1 1.

452 EVOLUTION OF COMPUTER BUILDING BLOCKS

Control Part

The control part of the CMU-11 uses the

Microprogram Control Unit and a 512-word

control store* with 32-bit microinstructions.

Figure 4 shows the format of the micro-

instruction and Table 1 briefly describes the

function of each of the fields. A micro-

instruction buffer register was included in the

design to allow the overlap of the fetch of the

next microinstruction with the execution of the

current microinstruction, which is a common
technique to improve the performance of

microprogrammed processors.

The "next-address logic" of the 3001 has

been augmented by additional microbranch

control logic external to the 3001. This external

logic uses the contents of the instruction regis-

ter, the condition codes in the PS, and the PLA
field from the microinstruction register to deter-

mine the AC<6:0> lines to input to the 3001.

The other major section of control logic that

had to be added to the design was the processor
status logic to control the setting of the 4-bit

condition code in the PS register and control

access to the PS. In fact, the PS register is de-

fined as primary memory location 177776 in the

PDP-1 1 architecture and requires special logic
to load and store the PS.

Interface to the Unibus

A significant fraction of the components of

the CMU-1 1 are devoted to the support of the

Unibus. Given the demanding electrical re-

quirements of the Unibus, the tri-state A, D,
and M lines of the 3002 array could not be

directly attached to the Unibus. Instead, sepa-

rate transceiver packages had to be used to pro-

vide this buffering.

Due to the asynchronous operation of the

Unibus and interrupt and nonprocessor

AC<6 0>

JUMP CONTROL

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 453

requests (i.e., Direct Memory Access request

via the Unibus), it was not practical to drive the

Unibus directly from fields in the micro-instruc-

tion. Instead, a bus control and timing
section was added to the processor. The rest of

the processor interfaces to this control unit via

the UC<7:0> field in the microinstruction. See

Table 1 for a description of the functions of the

subfields within UC<7:0>.

Console Functions

In place of a standard front panel, the CMU-
11 has front panel functions accessible from a

Table 1. Description of Microinstruction Fields

MWS<1:0> :
= Ml<1:0>

K<8:0> :
= Ml< 10:2>

UC<7:0> :
= Ml<9:2>

UC<1:0>

UC<2>

454 EVOLUTION OF COMPUTER BUILDING BLOCKS

Standard Teletype attached to the Unibus.

Memory locations can be examined and loaded

by typing the octal address followed by a slash.

The current value is displayed and a new value

may be entered, if desired, followed by a car-

riage return. The processor may also be started

and continued from the Teletype, and there is a

halt switch on the front panel that causes the

machine to return to the console micro-

program.
This use of a Teletype for a console is similar

to the console Teletype used by the LSI-1 1

[DEC, 1975c]. In order to make it easier to

maintain the processor, we have added a micro-

processor console that displays the micro-

program address and allows the microprocessor
to be single-stepped. The microconsole proved
invaluable for debugging the prototype proces-

sor.

EVALUATION OF CMU-11 DESIGN

The critical questions to be asked about this

design concern cost and performance. It has

been fairly easy to evaluate the performance of

the CMU-11 by looking at several representa-

tive instruction times and by running a set of

benchmarks on the machine. Evaluating the

cost of the CMU-11 has been more difficult.

Rather than try to compare the price of existing

PDP-11 implementations with the cost of the

CMU-11, we chose instead to compare it with

other PDP-lls with respect to circuit com-

plexity. The other significant costs, i.e., devel-

opment costs, are discussed in a later section.

Performance of the CMU-11

The CMU-11 runs at a microinstruction cycle

time of 200 nanoseconds. The specifications for

the Intel 3000 microcomputer family state that

it is possible to build a 16-bit minicomputer

with a 150-nanosecond cycle time. However,

given our objective to design as cost-effective an

implementation as possible, we avoided the sen-

sitive and complex timing circuits that would be

required to approach a 150-nanosecond cycle

time.

If we had used clocks with sufficient buffer-

ing and pulse shaping, a worst-case analysis

shows that with the particular IC packages used

in the CMU-11, we could approach a 149-nano-

second cycle time with Intel 3000 packages and
a 126-nanoseond cycle time with Signetics' ver-

sion of the 3000 set. We have, in fact, replaced

the Intel 3000 circuits with the Signetics circuits

and although the CMU-11 continues to run re-

liably at 200 nanoseconds, we cannot reduce the

cycle time below 200 nanoseonds. The critical

path is in the control part and not the 3002 ar-

ray.

Tables 2 and 3 show the execution time for

six of the most frequently executed instructions

and the eight addressing modes of the PDP-11.

The instructions in Table 2 assume a register-to-

register operation (i.e., a source and destination

mode of 0). Table 3 shows the additional time

that is added to the instruction execution time

for the various source addressing modes.* The

Table 2. Execution Times of Common
Instructions

Basic Execution Time (in us)

Instruction

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-1 1 455

destination mode times are about the same as

the given source mode times.

In order to measure the performance of the

CMU-11 for various instruction mixes, several

benchmarks were collected and run on the

CMU-11, an LSI-11, and a PDP-11/40. Four

benchmarks were collected that attempt to span
a reasonable range of applications common to

minicomputers.

1. Quicksort. This is a program that uses

Hoare's quicksort procedure to sort a set

of 16-bit integers. The benchmark also

includes a pseudo-random number gen-
erator to provide the initial data.

2. Trigonometric functions. This is a set of

trigonometric, floating-point routines.

We do not assume the existence of a

floating-point option on any of the pro-

cessors and hence this benchmark heav-

ily exercises software floating-point
emulation routines.

Table 3. Execution Times for the Source

Addressing Modes

456 EVOLUTION OF COMPUTER BUILDING BLOCKS

Table 4. Performance of CMU-11 Relative to Other PDP-11 s

Execution Times Relative to PDP-11 /40*

Benchmarks LSI-11 11/10 11/20 CMU-11 11/40 11/45

Quicksort 2.88 (366)

Partial differential equation 3.48 (268)

Trigonometric functions 3.36 (111)

Text searching 2.76 (204)

1.48(188)

1.75(135)

1.57(52)

1.45(107)

1.0(127)

1.0(77)

1 .0 (33)

1 .0 (74)

Average

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 457

is a summary of the complexity (measured in

integrated circuits) of the CMU-11. There are

two columns in Table 5: a simple count of the

number of integrated circuit packages used in

the CMU-11, and a column that converts the

design to "16-pin equivalent" packages (a mea-

sure of the size of the design in a standard unit).

Table 6 gives a breakdown of the actual cost of

the CMU-1 1 at January 1976 prices.

It is surprising that less than 20 percent of the

design is now in the data part of the processor:

the part of the processor largely implemented
with the LSI bit-slices. A larger part of the de-

sign, 29 percent, is needed just to interface to

the PDP-11 Unibus.

In order to put the 144-package complexity
of the CMU-11 in perspective, the IC package

counts for other PDP-1 Is are: PDP-1 1/10
- 203

packages; PDP-1 1/40
- 417 packages; and

PDP-1 1/45
- 696 packages. The LSI-1 1 is able

to implement the basic processor in 42 packages
but does not interface to a Unibus. It is clear

that the bit-slices do not approach the economy
of the Western Digital NMOS microcomputer
circuits which were specifically designed to

emulate the PDP-11.

Another measure of the degree to which the

CMU-11 processor can efficiently emulate the

PDP-1 1 architecture is given by the size of the

microprograms. Table 7 gives the size of micro-

programs for several PDP-1 1 processors. It is

somewhat surprising that the CMU-11 uses

fewer bits in its control store than any of the

other processors except the LSI-1 1. This is in

Table 6. Cost Breakdown for CMU-1 1

458 EVOLUTION OF COMPUTER BUILDING BLOCKS

large part due to the fact the 1 1/10, 1 1/40, and

11/45 use MSI arithmetic/logic packages that

did not have as useful a set of primitive oper-
ations as the 3002 arithmetic logic unit (ALU),

SOME PITFALLS FOUND IN

IMPLEMENTING THE PDP-11 WITH THE
3000 BIT-SLICES

Since the CMU-11 project was started, a

number of different bit-slice chips have become
available whose organizations are significantly

different from the 3000 circuits and which pro-
vide an interesting contrast. Two of the more

interesting bit-slice chips are the Advanced Mi-

cro Devices AM2901 [AMD, 1975] and the

Monolithic Memories Inc. MM 16701. These

bit-slice chips have a very similar data path or-

ganization with only minor differences, the

AM2901 being the faster device. Because of the

similarity of these devices, we will limit the dis-

cussion here to the AM2901, but all of the mi-

croinstruction sequences discussed will work on

both bit-slice sets.

The basic data path of the AM2901 is shown
in Figure 5. The chip contains a register file of

16 4-bit accumulators and an accumulator ex-

tension register, the Q register. In one micro-

instruction, two operands can be read out of the

register file, passed through the ALU, the result

can be written shifted left or right, and written

back into the register file. In parallel with this,

there is an addressing mode which controls the

RAM and Q shifters, allowing the output of the

ALU and the Q register to be right shifted

simultaneously, which is well suited for the

inner loop of multiply or divide instructions.

I/O Buses

The main advantage of the 3000 bit-slice over

the AM2901 is its five fully parallel data buses

for transferring data in and out of the chip. It

has two tri-state output buses (the A and D
buses) and three input buses (M, I, and K). If

r ^
DATA
INPUT <15:0>

SCRATCHPAD
REGISTERS

R0-R1S

* t * t i

I
AMUX

^^y
ARITHMETIC/LOGIC

UNIT

a REGISTER

DATA '

^«1
OUTPUT—ej^ \
<1B:0>

I
^*^

MULTIPLEXER

SHIFT
"control

-A ADDR

-B AOOR

function
'

BUS

._\

Figure 5. The AM2901 - a 4-bit bipolar

microprocessor slice.

the minicomputer to be emulated has fairly

short I/O and memory buses, the 3000 buses

can directly drive them, resulting in a sub-

stantial savings in bus driver packages. In the

CMU-1 1, we needed to drive a DEC Unibus, so

we had to use separate bus drivers and re-

ceivers. Once external bus drivers are added, the

advantage of the two output buses for the

address and data is minimal, because an equiva-
lent external address register can be loaded as

fast as the existing internal address register and

combination bus drivers/latches are available

(e.g., AM2905). The savings realized by having
three input buses is the cost of adding eight dual

4-to-l line multiplexer chips at the input to the

bit-slice chips. The savings achieved with the

five buses in the 3000 bit-slices over the

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 459

AM290rs single-input and single-output bus is

twelve 16-pin circuits, plus 3 bits in the control

store (2 for the select lines on the input multi-

plexer, and 1 to control loading of the address

register).

Arithmetic Overflow with the 3000

One of the biggest problems encountered

with the PDP-1 1 implementation using the 3000

bit-slice was detection of arithmetic overflow.

The 3000 bit-slice has no overflow output, and

the signals needed to directly detect overflow

are not available at the external pin con-

nections. This results in considerable overhead

in emulating instructions that must detect over-

flow (e.g., instructions that set the V bit in the

PS register of the PDP-1 1). The CMU-1 1 over-

flow handling was implemented with two exter-

nal flip-flops that contain the signs of the source

and destination operands. After an instruction

is fetched, its operands are first fetched either

from memory or the register stack and are put
in the source and destination registers within

the 3002. As the operands are fetched, the

source and destination flip-flops are set to the

signs of the operands. When an instruction is

executed, the overflow logic can use the signs of

the operands and result to detect overflow. This

technique works well when the operands are

from memory, but really slows down the regis-

ter-to-register operations because the operands
have to be moved to the AC so their signs can

be latched in the external source and destina-

tion sign flip-flops.

The sequence of instructions needed to emu-
late a register-to-register ADD is shown in Fig-
ure 6. The first instruction in the sequence loads

the source operand into register AC, in order to

get its sign out of the chip. The next instruction

specifies for the source sign flip-flop to be set to

the sign of the AC, and to store the AC into the

T register. The following two instructions load

the destination operand into the AC and set the

destination sign flip-flop. The last two instruc-

ILR

460 EVOLUTION OF COMPUTER BUILDING BLOCKS

For the AM2901, the inner loop of the multi-

ply can be done in two microinstructions with

no external loop counter, and in one with an

external counter. This is possible because the

AM2901 in one microinstruction can add two

general registers together, shifting the result and

the accumulator extension register right 1 bit. A
similar speedup also occurs for division.

ADOrTIONAL COMMENTS ON THE
CMU-11 DESIGN

The 3000 microcomputer circuits are not the

only area in which to look for improvements in

the CMU-11 design. A major source of com-

plexity was the Unibus interface (29 percent of

processor's packages). The 3002 bit-slices pro-

vide tri-state drivers for their A and D lines and

if Unibus compatibility is not essential, the out-

puts from the 3002 circuits could directly drive

a memory and I/O bus of moderate size. If syn-

chronous operation of the memory bus is ade-

quate, further simpHfication of the bus interface

section of the processor is possible.

A number of integrated circuit packages are

now available that could help simplify the de-

sign of the control part of the processor. Most

significantly, 4 Kbit programmable read-only

memories (PROMs) appropriate for use in the

control store are now available with internal

latches for use as a microinstruction buffer.

This would eliminate the need for the separate

latches used in the CMU-ll's microinstruction

register. A related optimization to the CMU-1 1

would be to move from the partly encoded mi-

croinstruction format of the CMU-11 to a

wider, fully horizontal format. The random

logic needed to decode an encoded micro-

instruction is simply more expensive than the

extra bits in the control store needed for the

horizontal format.

We attempted to use programmable logic

arrays (PLAs) in our initial design, but con-

verted to ROMs when the PLAs we were de-

signing with were discontinued. By now,

however, several useful PLAs are readily avail-

able. For example, the Signetics FPLA, with its

16 inputs, is well suited to the decoding of PDP-
1 1 instructions.

The cumulative reduction in package counts

that might be expected in a second iteration of

the CMU-11 design are as follows:

CMU-11
Non-Unibus Design

Integrated ROM/MIR
and horizontal

microinstruction format

Convert to AM2900 circuits

160 IC packages
128

113

95

COMPUTER-AIDED DESIGN TOOLS

Aside from freeing the designer of book-

keeping and clerical tasks, the main advantage
of any design automation system is its inherent

ability to maintain correct and consistent docu-

mentation (schematic prints and wire-lists) and

the reduced turnaround time for design itera-

tions. The fact that the total prototype devel-

opment time for the CMU-1 1 was 39 (40-hour)

man-weeks is an example of the savings possible

with even modest design automation aids.

Description of Facilities Used at CMU

The Stanford University Drawing System

(SUDS) was used to enter the schematic print

set with a graphics display terminal. The draw-

ing package includes a set of satellite programs
to extract information for wire-lists and cross-

reference tables from its data base. In-

corporated in the system are libraries of in-

tegrated circuit definitions which contain not

only the pictorial representation of the gates but

also pin section information and some loading

data. Hard copy prints were conveniently gen-

erated by a digitally controlled Xerox Graphic
Printer (XGP). The wire-list program can

search the data base interactively for specific in-

formation or produce complete tables of run

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-1 1 461

lists, Stuff lists, error reports (wire-ANDing vio-

lations, etc.), and loading analyses, which all

proved extremely helpful.

The logic simulator used was Simulation of

Asynchronous Gate Elements (SAGE), which is

a 4-state (0, 1, high impedance for tri-state

buses, and undefined for initialization and

uncertainty in delay parameters) gate-level sim-

ulator. It reads the data base directly from the

output of the SUDS for utmost convenience,

since it allowed a turnaround time in the order

of five minutes for print set corrections. SAGE
has models in its libraries for the TTL and

Schottky families, and special routines were

written by us to emulate the 3000 micro-

computer set. This allowed improvements in the

efficiency of the simulation execution. Macro
facilities are also available for quickly defining
MSI circuits from more basic logic gates. The
results of the simulations are in the form of reg-

ister and signal reports and timing/trace dia-

grams.

Debugging with the Simulator

About 95 percent of the original design errors

were eliminated through the use of the simula-

tion program. Naturally, not all combinations

and sequences of instructions can be simulated,

but a standard PDP-1 1 diagnostic program was
run in addition to a number of other programs.
A total of about 100 milHseconds of CMU-1 1

compute time was simulated before debugging
on the actual hardware began.
The limitation here was that the SAGE simu-

lation of the CMU-1 1 required about 10^ sec-

onds of CPU time on a PDP-10 to simulate 1

second of CMU-1 1 execution. We simply could

not afford to consume more than about 30

hours of CPU time for this project.

Whatever amount of time is spent on simula-

tion, the simulations cannot be exhaustive and
the final set of errors must be tracked down
with more extensive tests on the real machine.

We discovered eight to ten errors in the actual

CMU-1 1. However, when an error was found in

the physical machine, the simulations were

again run to help track down the bug through
the use of timing traces and other results. The
correction was then entered into the machine

print set and the simulator was rerun before im-

plementing the change on the processor wire-

wrap board or in the microprogram.
An example of the worth of the computer-

aided design system came to light when a major

implementation change was made; several

ROMs were incorporated into the design to re-

place a discontinued programmable logic array

(PLA). Our design aids were essential in effec-

ting this change within four man-days. In order

to recover so quickly from such a massive wir-

ing change, an engineering change order (ECO)
wrap/unwrap program was run to compare the

old and new wire-lists produced by the drawing

package. Thus, at all times during development,
the processor reflected the exact connectivity of

the print set.

Several of the errors discovered on the real

machine were timing errors that were not re-

vealed in the simulation debugging. These

errors were not detected because the simulation

models did not consider the effects of loading
on the propagation delays and only maximum

delays in all gates were used as an approx-
imation to worst case conditions. In fact, if time

had permitted, minimum and "typical" (Gaus-

sian-distributed) parameters should also have

been tested. However, we again face a funda-

mental problem with simulation in that the

computation time becomes excessive as differ-

ent sets of delays are simulated to find worst-

case conditions.

CONCLUDING COMMENTS

The CMU-1 1 project was initiated as an ex-

periment in constructing general purpose (mini)

processors with LSI bit-slice components. Table

8 is a summary of the results. As the table

462 EVOLUTION OF COMPUTER BUILDING BLOCKS

Table 8. Summary of Comparison between CMU-11 and Other PDP-11
I mplementations

Parameter LSI-11 PDP-11/10 CMU-11 PDP-11/40

Microcycle time (ns)

Multi-Microprocessors:
An Overview and Working Example

SAMUEL H. FULLER, JOHN K. OUSTERHOUT, LEVY RASKIN,
PAUL I. RUBINFELD, PRADEEP S. SINDHU,

and RICHARD J. SWAN

INTRODUCTION

An interesting phenomenon over the past

several years has been the spontaneous growth
of interest in multiple-microprocessor computer

systems in many universities and research labo-

ratories. This interest is not hard to understand

given the inexpensive computational power of-

fered by microprocessors today and the cost-

performance improvements promised by those

to be delivered in the near future. Micro-

processors have had a dramatic impact on ap-

plications that require a small amount of

computing. They have been used in in-

struments, industrial controllers, intelligent ter-

minals, communications systems as special

function processors in large computers, and,
more recently, in consumer goods and games.
The question naturally arises as to whether

the microprocessor, which has proved so suc-

cessful in these diverse applications, can be used

as a building block for large general purpose

computer systems. In other words, can a suit-

ably interconnected set of microprocessors be

used for tasks that currently require large

uniprocessors capable of executing millions of

instructions per second? At present, there is no

definitive answer to this question, but there are

several reasons to believe that multiple-micro-

processor systems might indeed be viable.

A strong argument for a microprocessor-
based system is its potential cost-effectiveness.

This point is graphically demonstrated in Fig-

ure 1 which shows cost/performance as a func-

tion of computer system size.* Each point in

this figure represents a (uniprocessor) system

currently available and introduced between

1975 and 1977 [GML Corp., 1977]. For ex-

ample, the computer represented by the point
labelled A has a purchase price of about

$10,000. It is capable of transferring data be-

tween memory and the central processor at

about 200 Mbits/second, yielding a figure of

merit of 2 X 10^ bits/second/dollar. The figure

shows that with conventional methods of or-

ganizing computers, the cost/performance of a

'The measure of system size used here is its purchase price.

463

464 EVOLUTION OF COMPUTER BUILDING BLOCKS

system degrades as its size increases. If systems

were, instead, configured using micro-

processors, and if there was no additional cost

in interconnecting the microprocessors, then

the points would fall along an ideal multi-

processors line such as shown in the figure. In

reality, both costs associated with the physical

interconnect and performance degradation due

to synchronization overhead will cause the

price/performance curve to have a negative

slope (the realistic multiprocessors line in the

figure). In terms of Figure 1, the critical ques-

tion facing multiprocessors is whether the rea-

listic multiprocessors price/performance Hne

falls above or below the line for conventional

uniprocessor systems.

Another important attribute of a multiple-

processor computer system is its potential for

10*

10«

103

102

IDEAL MULTIPROCESSORS

ALISTIC MULTIPROCESSORS

10*

COST (DOLLARS)

Figure 1. Cost performance as a function of system
cost.

reliability. Computers are being applied in-

creasingly in situations where a failure might
have serious economic and even life-endan-

gering consequences. Since the basic ingredient
in the design of a reliable system using real com-

ponents is redundancy in one form or another,

a structure consisting of large numbers of iden-

tical processors represents the natural frame-

work in which to design reliable computers.
Prior to the advent of the microprocessor, it

was unrealistic to consider multiprocessor
structures involving more than a few processors
because the cost of building the individual pro-
cessors themselves was high.

Yet another factor that favors the use of mul-

tiple processors is the resulting modularity of

the system. There has always been a motivation

for making computer systems modular for rea-

sons of incremental expandability, ease of

maintenance, and enhanced production. A
computer system that is built using identical

processors, and a small set of interconnection

elements that have clean, well-defined interfaces

would benefit fully from a modularity in pro-

cessing power that is currently seen only in

memory units of computer systems.

In spite of the advantages offered by multi-

processor organizations, there have been few

commercially viable systems constructed to

date.* The reason for this is that a number of

problems and open issues remain to be resolved

before such systems are a practical alternative

to more conventional organizations. The major

problems currently facing such systems are as

follows.

1. Task decomposition. How should tasks

now executed on uniprocessors be de-

composed so that they can be run on a

set of smaller processors? Can compilers

* While the authors know of no commercially available multi-microprocessor systems, Pluribus [Heart et al.. 1973] and

Tandem [1977] are two multiple-processor systems based on a processor of minicomputer size that are commercially avail-

able.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 465

or specialized run-time systems be devel-

oped to do this decomposition automat-

ically or must the programmer do the

decomposition explicitly?

2. Interconnection structures. What are the

most effective types of proces-

sor/memory and processor/processor
interconnection structures, and what are

the related communication protocols?

3. Address mapping mechanisms. What
mechanisms are appropriate for per-

forming the virtual-to-physical address

translation? These mechanisms should

allow processors to share code and data

while ensuring adequate levels of pro-
tection and performance.

4. Software system structure. What soft-

ware structures are suitable for large sys-

tems containing hundreds of processors?

Among the important problems in this

area are resource management, software

distribution, protection, and reliability.

5. Interprocessor interference. Even after

tasks have been decomposed to run on

multiple processors, how should inter-

processor interference and contention

for memory and I/O resources be min-

imized?

6. Deadlock avoidance. With multiple pro-
cessors contending for resources, the po-
tential exists for a situation where each

of a group of processors is waiting for

resources assigned to other processors in

the group, and none of the processors in

the group is able to proceed until its de-

mands are satisfied. This situation,

known as deadlock, effectively disables

all the processors involved, and special

care must be taken in the design to avoid

it.

7. Fault tolerance. What hardware and

software structures will allow a multi-

processor system to realize its potential

for surviving the failure of components
in the system?

8. Input/output. How should input/output
devices in general, and secondary stor-

age devices in particular, be integrated

into a multi-microprocessor system?

The next section in this article surveys the

spectrum of multiple-processor systems that are

under active consideration and that hold some

promise for becoming viable organizations for

future computer systems. Given the relatively

ill-defined nature of many of the unresolved

questions listed above, the real potential and

limitations of a multi-microprocessor archi-

tecture can only be understood by considering a

specific system in depth. The section summariz-

ing the architecture of the Cm* system, which

has recently been developed at Carnegie-Mellon

University (CMU), is presented to highlight

some of the important considerations in imple-

menting and programming a real multi-

processor system. The detailed design and

implementation of Cm* are discussed in a re-

cent set of papers [Jones et al., 1977; Swan et

al, 1977; Swan et al., 1977a[. The principal con-

clusions of the performance studies of Cm* are

presented in the fourth section of this paper.

The structure of the virtual addressing mecha-

nism and the kernel operating system now run-

ning on Cm* are the subject of a paper by

[Jones et al, 1978].

OVERVIEW OF MULTIPLE PROCESSOR
STRUCTURES

There is currently no established method-

ology for interconnecting sets of processors for

the purpose of building large, general purpose
or even special purpose computer systems.

However, there does exist an interesting range
of possibilities and Figures 2 through 4 show

three generic organizations that span this range:

computer networks, multiprocessors, and mul-

tiple arithmetic unit processors. Other tax-

onomies of multiple-processor systems have

466 EVOLUTION OF COMPUTER BUILDING BLOCKS

been proposed [Flynn, 1966; Jensen and Ander-

son, 1977], but this relatively straightforward

grouping into three organizations is most suit-

able for the following discussion.

All of these organizations existed prior to the

advent of the microprocessor. The economics of

the microprocessor, however, open up the pos-

sibilities of using these structures in many new

application areas. In our review of these alter-

native computer organizations, we will refer-

ence some older computer systems built with

conventional components to help make the dis-

cussion more concrete.

Computer Networks

Figure 2 shows a computer network. In this

type of multiple-processor organization, each

processor is embedded in a conventional com-

puter system, and the computers are then inter-

connected via communication links. The inter-

computer communication links are often serial,

but in some cases, such as the channel-to-chan-

nel adapter of multicomputer IBM S/370 sys-

tems, high-bandwidth parallel buses are used.

COMPUTER

COMPUTER 2

MULTIPLEX
CONTROLLER

COMPUTER

/
\
s

PMS KEY

PC: CENTRAL PROCESSOR
Pio; INPUT-OUTPUT PROCESSOR
Mf>: PRIMARY MEMORY
Mi: secondary MEMORY

COMPUTER 1

Figure 2. A network of computers.

Perhaps the most widely known computer
network is the ARPA network [Kahn, 1972],

but other computer networks have also been

implemented and are now in use. These include

the Ethernet [Metcalfe and Boggs, 1976], DCS
[Farber, 1975], and the Spider network [Fraser,

1975]. Furthermore, most large computer in-

stallations are really computer networks. Com-

puter manufacturers are establishing standard

network protocols, for example, IBM's system
network architecture (SNA) and Digital Equip-
ment Corporation's DECnet protocol, to facil-

itate the construction of computer networks

tailored to individual user needs.

An important attribute of a computer net-

work is the data transmission bandwidth be-

tween computers. This bandwidth ranges from

a few thousand bits per second up to about 10

Mbits/second. The other important attribute of

the inter-computer links is the access or latency

time for each unit of information sent between

computers. In describing interprocessor com-

munication capability it is common to refer to

the degree of coupling between processors in

the system. The ARPA network is an example
of a loosely coupled (and geographically dis-

tributed) computer network because of the 50

Kbit/second links between computers in the

network and the 100-250 ms latency times asso-

ciated with cross-network transmissions of

packets of information. A more tightly coupled

(and geographically centralized) network is the

Ethernet with 3 Mbit/second inter-computer
bandwidth and latency times of the order of a

small number of milliseconds. As more and

more closely coupled computer networks are

considered, however, another type of multiple

processor structure, the multiprocessor, be-

comes an increasingly competitive alternative.

Multiprocessors will be discussed shortly.

As microprocessors are incorporated into

computer terminals, point-of-sale terminals,

data acquisition transducers, and other such ap-

plications, the natural form of organization will

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 467

be a loosely coupled computer network. Closely

coupled microcomputer networks might pro-
vide an attractive organization for reliable sys-

tems,* systems that must manage a large data

base on many disks or other secondary storage,

or even as a computational structure tailored to

the data flow of a specialized application. It is

questionable, however, whether a multiple mi-

croprocessor organized in the form of a net-

work could replace a large conventional

uniprocessor.

Multiprocessor System

Figure 3 shows the basic structure of a multi-

processor. Its distinguishing characteristic is

that, unlike the processors in computer net-

works, the processors in a multiprocessor share

primary memory. Note that in the computer
network of Figure 2, each processor has its

own, private primary memory. Data is shared

in a computer network by passing inter-

processor messages, whereas in a multi-

processor, the central processors can directly

share data in primary memory. The concept of

a multiprocessor is not new; the Burroughs

j
MP

j I
WP

I I
MP

I
• • •

I
Mp

I

PROCESSOR/MEMORY SWITCH

CD uD • •• nn

Figure 3. The basic structure of a multiprocessor.

D825 (1962), Bendix G-21 (1963), GE 645

(1969), and IBM 360/65 (1969) provide early

examples. In these multiprocessors, conven-

tional, relatively expensive central processors

were used, making it uneconomical to have

more than a few processors. With small num-
bers of processors, it is not mandatory to de-

compose a single job into a set of concurrent,

cooperating processes to use all the central pro-

cessors at once; enough independent programs
are usually resident in the primary memory of a

conventional multiprogramming system to keep
a few processors busy. More recently, multi-

processors using minicomputers have been im-

plemented, and configurations now exist with

as many as 14 to 16 processors in a single com-

puter system [Wulf and Bell, 1972; Heart et ai,

1973]. To effectively utilize the processors in

such a system, a task must be explicitly decom-

posed to run concurrently on different proces-

sors.

One of the most challenging problems in de-

signing and implementing the hardware of mul-

tiprocessor systems, especially for large number
of processors, is the processor/memory switch-

ing structure. Many techniques have been tried

and used successfully in particular systems:

multiple ports per memory unit, electronic

crossbar switches, time-multiplexed common
buses, and combinations and hierarchies of sim-

pler switches.

Multiple Arithmetic Unit Processors

The third form of computer organization that

incorporates multiple processing elements is the

multi-arithmetic logic unit (ALU) processor.

The fundamental difference between this type

*
Examples of closely coupled computer networks built with minicomputers and designed for ultra-reliable applications
include the Tandem computer [1977] and the five processor system for NASA's space shuttle [Sklaroff, 1976; Cooper,
Chow, 1976].

468 EVOLUTION OF COMPUTER BUILDING BLOCKS

of Structure and multiprocessors is that all the

ALUs in the muhi-ALU processor support a

single instruction stream, as shown in Figure 4,

while each of the processors in the muhi-

processor supports its own instruction stream.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 469

Figure 5 illustrates the range of the degree of

coupling for the three types of multiple proces-

sor organizations considered here. The position

of an organization in this range has a strong in-

fluence on its suitability to a particular appli-

cation. An appHcation consisting of a set of

multiple processor structure that could be used

as a vehicle to investigate a range of multi-

processor and closely coupled network organi-

zations. Microprogrammed interprocessor
communication controllers provide the flex-

ibility needed for this experimentation.

MULTIPROCESSORS

multi-ALUs

1 ^o-^ 10-2 10 3 10* 10-6 10 6 10-^ 10-8

WORST CASE ACCESS TO SHARED DATA (SECONDS)

Figure 5. Degree of coupling of multiple-processor

organizations.

parallel processes that need to interact or share

data only every 10 to 100 seconds can clearly

run on a loosely coupled computer network. At

the other extreme, algorithms that require the

parallel execution of arithmetic operations
within single expressions force the interaction

times between processing elements to occur al-

most every instruction cycle. The large inter-

processor communication times in a computer
network, and probably even in a multi-

processor, make these organizations imprac-
tical for such applications. Hence, the average
time between interprocess interaction becomes

a critical "time constant" of an application and

provides a good indication of the type of mul-

tiple processor organization that will be most

suitable.

The Cm* multiple microprocessor computer

system described in the remainder of this article

supports time constants in the range of 5 to 50

microseconds. A motivating factor in the con-

struction of Cm* was to have an experimental

THE ARCHITECTURE OF Cm*

The structure of the Cm* system grew from a

consideration of system organizations like those

mentioned in the previous section, and from

several other notions. First, we wanted a system
that potentially could contain several hundreds

of processing elements since we wished to ex-

plore greater degrees of parallelism than had

previously been available. This required a dra-

matic change in the processor/memory inter-

connection structure. Tightly coupled
multiprocessors, with uniform access by all pro-

cessing elements to all of main memory, have a

switching structure whose cost grows as the

product of the number of processors and the

number of memory units. Thus, the proces-

sor/memory interconnect becomes prohibi-

tively expensive as the number of processing
elements and memory modules grows beyond
10 or 20.

A requirement, set early in the design, was

that each processor be able to address directly

all of main memory, rather than require a mes-

sage transmission for access to remote units as

in a network. We considered this important in

order to allow for experimentation with a vari-

ety of interprocess communication mecha-

nisms, both message-based and shared-

memory-based.

Uniformly fast access to all of memory by
each processor was not, however, considered

necessary, either for system performance or for

generality of experimentation. The success of

cache memories has shown that a processor's

memory references tend to cluster in a small

470 EVOLUTION OF COMPUTER BUILDING BLOCKS

portion of its address space [Gibson, 1974; Lip-

tay, 1978]. Results presented later in this article

indicate that for the processors used in Cm*,
instructions and temporary data usually ac-

count for between 90 and 99 percent of the

memory references. When a task is subdivided

so that several processors may perform differ-

ent parts of it in parallel, the shared global data

accessed by many or all of the processors often

accounts for most of the total main memory re-

quired by the task. However, our results in-

dicate that these global locations are accessed

so infrequently that it makes little difference if

their access times are substantially longer than

those for code and temporary data.

The structure of Cm* is depicted in Figure 6

and has been described in detail in [Swan et al,

1977; Swan et al.. 1977a]. The fundamental unit

of Cm* is a computer module (CM). Each CM
consists of a processing element, local memory,

input/output devices, and a local switch

(S.local) which provides a simple interface be-

tween the CM and the rest of the system. The

primary memory of the system consists exclu-

sively of the local memory of the CMs.

INTERCLUSTE
BUSES

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 471

ter-local in order to avoid saturation of the

intercluster buses.

An Example Program

The structure of Cm* suggests a complexity
in the processor/memory interconnection not

seen in more conventional machines. Although
we believe this type of switching structure is jus-

tified based on economic, performance, reliabil-

ity, and modularity considerations, it is

important that Cm* also be programmable.
Given the cost and difficulty of writing good
software systems for even the simplest of archi-

tectures, a structure that adds to the program-
mer's problems is highly suspect. Numerous

proposals have been made in recent years for

various multiple processor structures, and there

is no doubt that many of them could be con-

structed. However, a critical question is

whether they could be programmed in any prac-
tical sense. Much of the effort on Cm* has been

directed toward evaluating how effectively it

can be programmed. This issue is dealt with in

depth by Jones et ai, [1978], in which the oper-

ating system for Cm* and a large application

Pc

472 EVOLUTION OF COMPUTER BUILDING BLOCKS

memory of a Cm* system. When writing pro-

grams, the programmer thinks of a process' ad-

dress space as a large uniform piece of memory

exactly as if he were working on a conventional

uniprocessor. When the program is loaded onto

the Cm* machine, its component segments may
be placed anywhere in the physical memory of

the system; the relocation tables associated with

the processor that will execute the program are

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 473

MAIN calls procedure A, it sends inter-

processor messages to Pc2 and Pc3 to initiate

concurrent execution of copies of procedure A
on both of these processors. By passing the ap-

propriate parameters to Pc2 and Pc3, they can

each concentrate on a different part of array Z.

In this way, operations being repeated on the

whole array may be completed in substantially

less time than if a single processor were in-

volved. If array Z is sufficiently large, it may
make sense to initiate many more than two
other processors in parallel to operate on array

information in its relocation tables to direct

memory references from the processor either to

the local bus, providing simple address reloca-

tion while doing so, or out to the K.map for

external references. This address translation

performed by the S. local is illustrated in Figure
1 1. In addition, the S. local is capable of access-

ing the module's memory on behalf of the

K.map without intervention from the local pro-
cessor. Figure 12 is a photograph of one of the

CMs in the current system.

Although the identity of the processor that is

dispatched to execute a process and the physical
location of segments of memory can be made

transparent to the programmer, the decomposi-
tion of the program into parallel cooperating
tasks cannot. In fact, the whole problem of how
to decompose application programs into sets of

parallel cooperating processes is an active and

interesting area of research. Programming lan-

guages such as CONCURRENT PASCAL and

MODULA support constructs to express al-

gorithms with explicit parallelism [Hansen,

1975; Wirth, 1977]. In addition, there are some
efforts on Cm* [Hibbard, et al., 1978] and else-

where [Kuck et al., 1972] concerning ideas re-

lated to automatically decomposing algorithms
slated in higher level languages such as ALGOL
and FORTRAN.

Cm* Implementation Overview

The implementation of Cm* has been pre-
sented in detail in [Swan et al.. 1977a] and will

only be summarized here. Figure 10 depicts a

computer module. The processing element is

Digital Equipment Corporation's LSI-11; both
it and the memory and I/O devices on its local

bus are standard commercial components.
However, the processor has been modified to

allow the logical insertion of an S.local, which
was designed and built at CMU, between the

processor and its LSI-11 bus. The S.local uses

INTERMODULE SWITCHINO
STRUCTURE

EXTERNAL
REFERENCES

EXTERNAL REFERENCES
FROM OTHER CMs

LOCAL
SWITCHX

PROCESSING
ELEMENT

LOCAL
REFERENCES

I/O DEVICES

FigurelO. Structure of a computer module.

474 EVOLUTION OF COMPUTER BUILDING BLOCKS

^jSSssmmsmammmmmumammmM^

Figure 12. A computer module with its S. local

mounted on an extender.

We feel that this notion of a computer mod-

ule building block is appropriate for LSI imple-

mentation. Considering either the processor

S. local combination as a single chip (possible

using 1977 technology) or the processor, its

S. local, and the local memory as a single chip

(likely to be possible in 1980) is reasonable be-

cause of the small number of external con-

nections required. Although more than 100

wires are currently required in the LSI- 11 Bus

and Map Bus combined, this number could be

reduced enough to allow integration on a single

chip.

This new kind of building block requires a

minor change in perspective among integrated

circuit manufacturers. Current microprocessors
are being built with some memory on the micro-

processor chip and the capability to access off-

chip memory and I/O devices. However, apart

from a few notable exceptions [Forbes, 1977;

Intel Corp., 1977], it is either difficult or impos-
sible for off-chip units to access the on-chip

memory without direct processor intervention,

introducing unnecessary complications in the

design of the switching structure. Given com-

plete freedom, there are other characteristics of

the LSI- 11 microprocessor that we would like

to change.* However, the purpose of the Cm*
project has been to investigate alternate mul-

tiple microprocessor structures, not to design a

better microprocessor per se. The LSI- 11 was

chosen since it had an adequate architecture,!

and had no problems that could not be circum-

vented via logic in the S.local. Thus, we avoided

what may have been a two-year delay had we
decided to design and implement our own

microprocessor.
The K.maps of Cm* are microprogrammed

processors built at CMU which together form a

distributed and intelligent processor/memory

switching structure. Each K.map presides over

a single cluster and has complete control over

the processors and memory of that cluster. A
K.map's primary function is to process the ex-

ternal memory references of the modules in its

cluster, and in so doing to communicate with

the S. locals of the cluster and the K.maps of

other clusters.

Because the K.maps are responsible for the

mapping of external processor addresses to

physical memory, their microprograms define

the address translation mechanism and thus the

virtual memory architecture of the Cm* system.

The use of 2048-word writable control stores

The principal deficiency in the LSI- 1 1's architecture from the standpoint ofCm is the limited processor address space of 64

Kbytes. However, in 1975 there were no other microprocessors that had a larger address space.

tin 1973, during discussions of initiating a Cm*-like project at CMU, it was decided that none of the existing micro-

processors, e.g., the Intel 8080, had an architecture that could support a programmable multiple processor system.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 475

within the K.maps has allowed us to implement
and measure two different architectures. We ex-

pect to experiment with several others in the

near future.

Figure 13 shows the sequence of transactions

that occur on the Map Bus during the process-

ing of an external memory reference. The first

transaction on the Map Bus is initiated by the

S. local of the source CM when it recognizes

that the processor has made an external mem-

ory reference. The K.map accepts the processor

address from the S. local, performs the virtual-

to-physical address translation, and sends the

physical address, which includes the number of

the destination CM, out on the Map Bus. As-

suming that the reference is a simple read, the

destination CM accepts the address, reads the

indicated word from its local memory, and

then, in the third and final Map Bus transac-

tion, returns the data directly to the source CM.
In addition to the concurrency afforded in

the mapping mechanism by having multiple

clusters, the K.map is partitioned into three

units that allow pipeUning of the commu-
nication mechanism within a cluster. Figure 14

shows the components of the K.map: a map-

ping processor (P.map) is responsible for ad-

dress translation and directs the actions of the

other two components; a Map Bus controller

(K.bus) is master of all transactions on the syn-

chronous Map Bus and schedules activities for

execution in the P.map; the third component

(Line) is responsible for shipping and receiving

intercluster messages on the two intercluster

buses to which each K.map may connect. The
three components are relatively independent
and communicate via shared memory and a set

of hardware queues. The K.map contains a to-

tal of about 750 MSI integrated circuit pack-

ages on six cards.*

INTERCLUSTER
BUSSES

READ/WRITE

 SPACE

Cm PAGE OFFSET

L

12 miREAD/WRITE

m PHYSICAL ADDRESS

i

SOURCE Cm DESTINATION Cm

Figure 13. The mechanism for external references.

INTERCLUSTER BUS 1

JZ
INTERCLUSTER BUS

SERVICE QUEUE

fflt
RETURN QUEUE

PORTO
SEND
QUEUE

RUN QUEUE

P0RT1
SEND
QUEUE

Figure 14. The components of a K.map.

*Much of the complexity of the K.map is a direct result of our desire to ensure that the K.map was a flexible micro-

programmable unit that would allow maximum opportunity for experimentation. Over one third of the K.map is devoted to

the writable control store.

476 EVOLUTION OF COMPUTER BUILDING BLOCKS

Current Configuration

The current operating configuration of Cm*
is depicted in Figure 15. Ten LSI- lis, with 28

Kwords of memory each, are configured into

three clusters of sizes 4, 2, and 4. Figure 16

shows one of the four-CM clusters, with the

four CMs visible in the top rack and the K.map
and Hooks processor visible in the bottom rack.

For several of the benchmark programs, the

system was reconfigured into clusters of differ-

ent sizes. Two more LSI- 1 Is, called Hooks Pro-

cessors, have special control over the K.maps
and are used for microprogram loading and de-

bugging and hardware diagnosis; they are not

part of the Cm* system, but rather provide sup-

port processing. Each LSI- 11 is connected to a

PDP-1 1/10 Host via a serial line; the Host runs

a simple operating system built at CMU
[Scelza, 1977] to allow users at remote terminals

to load programs into LSI- 11 's from the Host's

IINTERCLUSTER

mr

HOST FRONT-END SERIAL LINK

FRONT-END
PROCESSOR
PDP-1 1/40

DECtape drives, to start and stop processors,
and to communicate directly with the proces-
sors via their serial lines. A front-end terminal

processor permits terminals anywhere within

the CMU computing environment to access the

Figure 1 5. The current configuration of Cm^ Figure 16. A four-CM cluster.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 477

Host, and thus Cm*, as well as the other CMU
computers.
Two versions of K.map microcode have been

written and evaluated to date. The first is a

simple version written to provide the bare min-

imum facilities needed for interprocessor com-

munication and memory sharing. Although

primarily written to enable system diagnostics

to be run, this version was also used for the

benchmarks described in the next section as it

was available eight months before the more

powerful second version. The second version of

K.map microcode provides a complete virtual

addressing system including protected execu-

tion environments and capability-based ad-

dressing. The facilities provided by this version

are presented in detail in Jones et ai. [1978] and

Swan et ai, [1977].

Under the simple microcode, each processor
is permitted to map any of its 16 virtual pages
onto any 2048-word physical page in the multi-

cluster system. A processor may specify
whether pages residing in its local memory are

to be referenced locally or externally (for test

and measurement purposes it was convenient to

be able to force references to local memory to

pass through the K.maps and then come back

to the local memory rather than being made

directly). Since control operations, e.g., inter-

processor interrupts, are invoked by referencing

special physical memory locations, this micro-

code provides completely general inter-

communication, although it does not

implement any protection. The total size of the

simple microcode is 505 80-bit micro-

instructions.

MEASUREMENT AND EVALUATION
OF Cm*

Multi-microprocessor computer structures

are sufficiently unconventional that standard

metrics of computer system performance are

hard to apply effectively. For example, a com-
mon measure of the performance of a computer

is the number of instructions per second that

the processor can execute. A single LSI-1 1 pro-
cessor in Cm* is capable of executing about

170K instructions/second; a 10-CM con-

figuration will, therefore, have the potential of

1700K instructions/second and a 100-processor

configuration a potential of 17M instruc-

tions/second. However, such linear scale-up in

performance is difficult to achieve when proces-

sors have to cooperate in performing a given
task. Overheads associated with ensuring coop-
eration usually cause the increase in perform-
ance to be less than linear.

Measurements on other multiprocessors
show that these overheads can become large

enough so that the performance of the system

actually degrades as more processors are added.

Anyone who has suffered through the deliber-

ations of a committee of more than two or three

people trying to make a decision should have an

intuitive appreciation for the fact that coordina-

tion can be expensive.

Initial performance measurements were made
on Cm* to quantify this overhead and to deter-

mine how it varies with the number of active

processors for various configurations. The eval-

uation was done using what is perhaps the only

practical method at the present time: writing a

set of benchmark programs and running them

on the bare machine. The programs used in the

evaluation are outlined below, and are dis-

cussed in greater detail in the appendix.

1. Partial differential equations
- a numer-

ical application. This program solves

Laplace's partial differential equation
over a rectangular grid. The method of

finite differences is used and is relatively

easily decomposed with each available

processor iterating over a separate re-

gion of the grid.

2. Sorting. This benchmark program is a

decomposition of the well known Quick-
sort algorithm into a set of asynchro-
nous parallel processes. Each sorting

478 EVOLUTION OF COMPUTER BUILDING BLOCKS

pass consists of dividing the current list

of elements into two and placing the

smaller sublist in a stack. Whenever a

processor is free, it removes a sublist

from the top of the stack and executes a

sorting pass over this sublist.

3. Integer programming - the set partition-

ing problem. Set partitioning is typically

solved by an enumeration algorithm that

searches a large, relatively sparse binary
matrix for a feasible solution. While it is

easy to initiate parallel searches in paths,

it is critical to retain the effectiveness of

pruning rules to limit the extent of the

search.

4. The HARPY speech recognition system.

This is a relatively large program that

searches a Markovian network to find

the most probable utterance given the

digitized input of a speech signal. The
HARPY algorithm has been studied ex-

tensively on uniprocessors [Lowerre,

1976] and is discussed in depth in the pa-

per by Jones et ai, [1978].

5. ALGOL 68 run-time system. Another

large programming system that now ex-

ists on Cm* is the run-time system for a

useful subset ofALGOL 68 [Hibbard, et

ai, 1978]. It allows low level activity

such as calls to standard functions, array

manipulations, and copying of large val-

ues to be performed automatically in

parallel without requiring the program-
mer to specify the parallel activity explic-

itly.

Measurement Techniques

Measurements on the stand-alone Cm* sys-

tem were made using both specially designed
hardware and standard measuring equipment.
Each K.map in the system was provided with a

hardware device called a Map Bus Monitor

(Figure 17), which allowed signals on the Map
Bus to be displayed selectively and counted.

Particular data or address values passing to and

from a given CM in the cluster could thus be

monitored. For example, the hit ratio to local

memory for a given processor was determined

by comparing the overall memory reference rate

of the processor to the nonlocal memory refer-

ence rate indicated by the Map Bus Monitor.

A standard logic analyzer was used to deter-

mine what fraction of the K.map's time was

being spent in each of its different operations.

This was done by connecting the logic analyzer

to the microinstruction address lines in the

K.map, and counting the rates at which the mi-

croroutines corresponding to the K.map's oper-

ations were being invoked.

Memory Reference Times and Hit Ratios

To determine the cost of various types of ref-

erences, benchmark programs have been mea-

sured running in three configurations: (1) with

all references local, (2) with all references non-

local but within the same cluster, and (3) with

all references proceeding across cluster bound-

aries. The times between successive memory ref-

erences measured under these conditions were

Figure 1 7. The Map Bus Monitor.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 479

3.5 microseconds for the local case (this was de-

termined by the LSI- 11 used as processing ele-

ment and was in no way affected by the Cm*

switching structure), 9.3 microseconds for the

intracluster case, and 26 microseconds for the

intercluster case.

Table 1 shows the results of our measure-

ments of memory reference patterns for three of

Table 1. Memory Reference Distribution for

Several Programs

Local Global

Program Code Stack Variables Variables

PDE 82% 11.5% 4% 2.5%

Sorting 71% 12.5% 6.5% 9.5%

Set

Partitioning 71.5% 23.5% 4% 1%

tention for the local memory of the CMs, a hit

ratio of 90 percent to local memory yields an

average access time of 4. 1 microseconds. These

hit ratios illustrate the value of developing

memory management and processor scheduling

strategies that attempt to keep code (and the

stack) local to the processor executing the pro-

gram.

Execution Speedup and Bus Contention

Figure 18 shows the average measured execu-

tion speedup as a function of the number of

processors allocated to the task for the five ap-

plication programs just discussed. For these

measurements the code, stack, and local vari-

able segments were local to each processor, and

only the access to global data structures re-

quired external references. The nearly linear

speedup experience by the PDE and Integer

Programming programs is very encouraging.

the five programs measured on Cm*. Code re-

fers to all the primary memory access resulting

from fetching instructions from memory. Stack

refers to all the accesses related to the pushing

and popping of operands from the processor's

primary stack. This stack is commonly used for

temporary variables as well as subroutine call

and return information. Local variables are op-

erands referenced only by a single copy of a

procedure and global variables are the basic,

shared data structures related to the problem or

flags and semaphores used by cooperating pro-

cesses to coordinate their activities.

For the remaining two programs, HARPY
and ALGOL 68, the fraction of references to

global data were 14 and 18 percent, respec-

tively. The somewhat surprising fact that can be

seen is that even if all accesses to the shared,

global variables are nonlocal memory accesses,

we can still achieve between 82 and 99 percent

references to local memory. Ignoring, for the

moment, interference on the Map Bus, and con-

NUMBER OF PROCESSES

Figure 1 8. Average speedup of five algorithms of Cm'

480 EVOLUTION OF COMPUTER BUILDING BLOCKS

The curves for HARPY, ALGOL 68, and

QUICKSORT, however, do not show a Hnear

speedup. The reason for this, in each case, is

that the problem does not have enough inherent

parallelism to keep more than a few processors

busy all the time, so that adding more proces-
sors does not result in proportionally large

speedups. To understand how many processors

might effectively be used in larger systems, a

number of experiments were conducted. These

experiments, which are summarized in the

graphs of Figures 19 and 20 were done for the

following memory reference patterns.

1 . All processors share code, stack, and all

data from the memory in a single CM. In

other words, the memory bandwidth of

an individual CM is the performance
bottleneck. This curve indicates that per-

formance cannot be improved by using
more than three or four processors. The
saturation reference rate of a single

CM's memory was measured to be 270K

references/second. Now consider more

practical cases in which most of the code

and local variables are in the local mem-

ory of each CM, and only the global
data structures are shared. Even if 10

percent of all memory references of the

active processors were to global data in

the memory of a single CM, the system
would saturate between 30 and 40 CMs.
To date, we have had no difficulty in dis-

tributing shared data structures over the

memory of several CMs so that the

memory bandwidth of a CM is not a

serious constraint.

2. All processors make external references

that are mapped back to their own local

memory. This case was used to study sat-

uration of the Map Bus and K.map. The
curve indicates that the K.map (and

Map Bus) saturated when six or seven

processors were simultaneously active in

this mode; the saturation rate of the

D ALL MAPPED AND SHARED
+ ALL MAPPED, ONLY GLOBALS SHARED
O CODE, STACK LOCAL; GLOBALS SHARED

NUMBER OF PROCESSORS

Figure 19. PDE execution time.

O ALL MAPPED AND SHARED
+ ALL MAPPED. ONLY GLOBAL SHARED
O CODE. STACK LOCAL. GLOBALS SHARED

/

NUMBER OF PROCESSORS

Figure 20. PDE speedup.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 481

Map Bus is about 550K refer-

ences/second. Assuming that the mea-

sured benchmarks represent typical

situations, and that a 90 percent hit ratio

to local memory can be achieved, we see

that a Map Bus and K.map can support
a cluster of about 60 CMs. The band-

width of the Map Bus is an important

limiting factor that constrains the num-

ber of CMs in a cluster, so that there is a

need to consider multicluster con-

figurations independent of reliability or

availability considerations.

3. All processors access their local memory
for the code, stack, and local variables,

and use the K.map only for mapping to

shared global data. This is the case al-

ready considered, and for up to eight

processors, negligible contention is expe-

rienced (Figure 18).

a LOCAL. CASE 1

+ LOCAL, CASE 2
• LOCAL. CASE 3
o LOCAL. CASE 4
A LOCAL. CASE 5

NUMBER OF PROCESSORS

Figure 21. Integer programming speedup.

From additional measurements, we estimate

the intercluster saturation rate to be about

287K references/second, with the source

K.map being the bottleneck component in the

system.

Figure 21 shows another interesting measure-

ment on Cm*. Here, a number of different

cases of the Integer Programming program are

shown as a plot of execution speedup versus the

number of available processors. Most of the

time, almost linear speedups were observed.

This is a consequence not of a breakthrough in

algorithmic design, but rather of the fact that

the time to find the optimal solution in a search

tree is dependent on the order in which the tree

is searched. In other words, some search orders

allow quicker, more radical prunes of the tree

than other search orders. Therefore, the chance

will always exist that one of the parallel paths

initiated will fortuitously find a good solution

and allow early pruning of the search tree.

Fundamentally, the multiprocessor cannot

expect speedups greater than linear in the num-
ber of available processors. If, for example, the

speedup of the Integer Programming problem
was observed to increase as the square of the

number of processors, then a new program
could be written for a uniprocessor that, in ef-

fect, emulated the operation of a set of parallel

processors by round-robin sharing of the

uniprocessor among the parallel processes. In

special instances, parallel processes may allow

the elimination of some overhead, but linear

speedup in the number of available processors

is the ideal situation.

Performance of Multiple Cluster

Configurations

The results of Figure 18 imply that many
more than ten CMs could be managed in a

single cluster before the Map Bus becomes a

performance bottleneck. However, since we are

interested in the potential of the Cm* structure

for much larger systems, we also examined the

482 EVOLUTION OF COMPUTER BUILDING BLOCKS

performance of multi-cluster Cm* con-

figurations to predict the performance degrada-

tions associated with intercluster references.

Figure 22 shows the performance of Cm* on

two different versions of the PDE program for

both single-cluster and multi-cluster con-

figurations. Note that nearly negligible degra-

dation was achievable, particularly in method 4,

which is an asynchronous version of the PDE
specifically designed to cope with processors of

NUMBER OF PROCESSORS

Figure 22. Single- and multiple-cluster execution time.

varying run times. The small degradation in go-

ing from the one cluster configuration to the

multi-cluster configuration gives considerable

hope that hierarchical switching structures like

the one used in Cm* can provide very nearly

the performance of much more expensive

switching structures that give uniformly fast ac-

cess to all of physical memory.

CONCLUDING REMARKS

The major accomplishment of the Cm* proj-

ect has been to bring an experimental multi-mi-

croprocessor system to an operational state,

and to demonstrate that almost-linear speedup
can be achieved with several applications.

Moreover, there have been no serious bot-

tlenecks or deficiencies in the proces-

sor/memory bus structure that preclude

configurations with 100 or more processors.

Many aspects of Cm*, and multi-micro-

processors in general, require further invest-

igation. Our own plans call for considering

alternative memory mapping and interprocess

control architectures, developing a large appli-

cation system on Cm* to test larger con-

figurations, and integrating a practical I/O
system into the Cm* structure.

As other multi-microprocessors become op-

erational and competing solutions are found to

some of the problems currently facing multi-

processors, the relative merit of the Cm* organ-
ization will be put into much better perspective.

A comparison of alternate multiprocessor or-

ganizations is especially important in the initial

stages when most investigations are necessarily

empirical, and no one solution may claim opti-

mality.

APPENDIX: DESCRIPTION OF THE
BENCHMARK PROGRAMS

Five programs from different application

areas were used in the initial performance eval-

uation of the Cm* system. Four of these pro-

grams are described here, and the HARPY
speech recognition program is described in

Jones et ai, [1978]. More detailed descriptions

of these programs may be found in Fuller et al,

[1977].

Partial Differential Equations, a Numerical

Application

This is the solution to Dirichlet's problem of

Laplace's partial differential equation (PDE) by

the method of finite difference. This program
solves the PDE:

d^uix.y) d^{x2y) ^
-I- =0

dx^ dy^

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 483

on a rectangular grid of size MX N, where only

the values at the outer edges of the grid are

given.

A finite difference method [Baudet, 1976]

that transforms the problem into a set of linear

equations Ax = b is used. Here, x is an MN
vector of all the points in the grid, A is an MN
X MN sparse matrix, and b is an MN vector

derived from the boundary conditions. This set

of linear equations is derived from the new ap-

proximate values of the points (in each itera-

tion) by averaging the values of the four

adjacent neighbors of each point. The solution

of this PDE is required in many application

areas (e.g., in electromagnetic fields, hydro-

dynamics). Other PDE problems can be sim-

ilarly solved using this method.

The computation is initially decomposed into

P processes, where P is equal to the number of

processors available. Each process (and proces-

sor) iterates on a fixed subset of MN/P com-

ponents out of the total MN components. One

processor, the "master" processor, initializes

and starts the other "slave" processors, and

prints the results when all have finished. Note

that the master participates in the computation

just like the slave processors.

Sorting

This problem concerns the decomposition of

the well-known QUICKSORT algorithm [Sin-

gleton, 1969] into asynchronous parallel pro-
cesses. The median for each sort pass was

chosen as the median of the first, middle, and

last elements in the sublist. During a sorting

pass, a processor partitions its list of elements

into two sublists: elements larger than the me-

dian of the original set and elements smaller

than the median. The processor then pushes the

address and size of the smaller of the two sub-

sets onto a stack shared by all the processors.

Making the smaller subset available to the other

processors tends to put more work onto the

shared stack in order to keep as many proces-
sors as possible busy. The processor proceeds to

further partition the remaining (larger) subset.

When the remaining subset cannot be parti-

tioned further, the processor selects the next

available subset from the shared stack.

Simple assumptions about the algorithm give

a theoretical sorting time of:

cN [{K - M)/P -1-2(1- (1/2)^)]

where A^ is the number of elements to sort, K is

Log2 N, CIS constant, P is the number of proces-

sors, and M is Log2 P.

When the number of processors is much
smaller than the number of items to be sorted,

almost linear speedup can be achieved. The per-

formance degrades considerably when the num-
ber of processors is large and asymptotically

approaches a speed of T = c Log N/2. See

Stone [1971] for a description of sorting meth-

ods that speed up as N/Log N for large num-
bers of processors.

Integer Programming - The Set Partitioning

Problem

The particular integer programming consid-

ered here is one of the most practical and appli-

cable methods. It is used, for example, in airline

crew scheduling [Bales and Padberg, 1976].

The set-partitioning problem is to solve:

min {c.x \Ax =
0, Xj

= or 1 for < y < jV}

where A is 2in M X N binary matrix, c is an A^

vector, and c =
(1 ... 1) A/ vector.

This problem typically is solved by per-

forming an A^-ary tree search on a large rela-

tively sparse binary matrix. As an example of

this method, consider the airline crew sched-

uling problem. The rows of the A matrix corre-

spond to a set of flight legs from city A to city B,

in time T to be covered during a specified pe-

riod, and the columns oiA correspond to a pos-

sible sequence of tours of flight legs done by one

crew; c is the vector of the associated cost of

each tour. A possible solution includes a set of

484 EVOLUTION OF COMPUTER BUILDING BLOCKS

tours that satisfies all the flight legs (one and

only one crew makes a flight leg). We are look-

ing for the solution with the lowest cost.

As in the previous applications, the master

processor initializes the computation, creates

the array according to user's specification, and

puts enough initial possible search-path solu-

tions in a global stack from which all the pro-

cessors pick their work. We arbitrarily choose

to put more than 10 X P path solutions into the

stack where P equals the number of processors

so the work is more evenly distributed between

the processors, and all are occupied for a large

percentage of the time.

To enhance pruning in the search, a global

variable contains the cost of the best solution

found so far by any of the processors, and all

compare their current cost value to it and begin

to backtrack in the search when that global cost

is lower.

ALGOL 68 System

A semantically rich subset of the program-

ming language ALGOL 68 was implemented on

Cm* [Hibbard, et ai, 1978]. In order to take

advantage of the parallel architecture of Cm*,
the language has been extended by including

several methods of specifying concurrent execu-

tion and synchronization of subtasks.

The run-time system measured runs upon a

small, special purpose kernel which provides

basic support for interrupt and I/O handling,

segment allocation and swapping, bootstrap-

ping, and the collection of performance statis-

tics. To facilitate locality of memory references,

the run-time system is loaded into the local

memory of each processor.

Modifications are being studied to provide
automatic decomposition of tasks into small-

grain subtasks. These modifications comprise a

software implementation of multiple parallel-

instruction pipelines, in which the instructions

are the primitive actions of the ALGOL 68 run-

time system, e.g., floating-point operations, ar-

ray indexing and other vector operations, and

assignments of large values. These actions are

executed by slave processors on behalf of the

master processors which are placing the actions

in the pipelines.

ACKNOWLEDGEMENTS

The Cm* project has greatly benefited from

interaction with other research projects and in-

dividuals at the Computer Science Department
at CMU; experiences gained from the C.mmp
project [Harbison and Wulf, 1977] have been

particularly useful. Among those who have

made direct contributions to the design and im-

plementation of Cm* are Andy Bechtolsheim,

Paolo Coraluppi, Kwok-Woon Lai, Pradeep

Reddy, and Daniel Siewiorek.

Opposite:

Top:
• KllO-based DECsystem-10.

Bottom, left to right:

• KLlO-based DECSYSTEM-20.
• PDP-6.
• KA10.

mmy

THE PDM© FAMILY

The PDP-10 Family

This final part of Computer Engineering contains only a single chapter, "The

Evolution of the DECsystem 10," It is a fitting conclusion because it summarizes

many of the aspects of computer engineering discussed in the rest of this book.

The introduction and historical setting with which the chapter begins are con-

densations of the historical information included in Parts I and II of this book;

the goals, constraints, and design decisions elaborated on in the remainder of the

chapter are specific examples of the concepts discussed throughout the book. The

paragraph headings, such as "logic," "fabrication," "packaging," and

"price/performance," have counterparts in earlier chapters.

The authors of this chapter, which first appeared as a paper in the January 1978

issue of Communications of the ACM, have been key figures in the evolution that

they describe. Thus, when they talk about design decisions and tradeoffs, they are

talking from first-hand experience.
The 36-bit Family has been important to DEC for a number of reasons. The

designers of these machines have realized that software development is very

costly, and have put a great deal of emphasis on making their systems easy to

program, even if additional hardware expense is involved. Furthermore, their

hardware has been very conservatively designed, with rigid design rules to assure

that the vast number of circuits required to implement each function operate

correctly under all conditions. Although the chapter conclusion suggests that the

PDP-10 engineers have transferred hardware technology to minicomputer engi-

neering, the technology transfer has been principally in the area of automated

design aids, as it has only been with the ECL logic of the KLIO that PDP-10

designs have used logic families or module technology not previously used in the

minicomputer segment of DEC. The paragraphs on "logic" and "packaging"
within the main body of the chapter elaborate on this.

The role of the PDP-6 in PDP-10 history is described in detail in the chapter,

but it has interesting aspects in addition to those mentioned. Because the PDP-6
was the first computer to offer elegant, powerful capabilities at a low price, a great

many of the PDP-6s built found their way into university and scientific environ-

ments, giving DEC a strong foothold in that market and providing both educated

customer input for future models and a source of bright young future employees
to assist in the hardware and software development for those future models. The

impact of the PDP-6 was particularly noteworthy because fewer PDP-6s were

built than any other DEC machine: only 23. The sales were sufficiently dis-

appointing to management, in fact, that a decision was made (but fortunately

487

488 THE PDP-10 FAMILY

reversed) not to build any more 36-bit machines. Since then, however, with the

possible exception of the KI 10 processor, each processor has been more successful

than the last, and the contributions of "large computer thinking" (design rules,

strict program compatibility, etc.) to the company as a whole have been extremely

useful. This final chapter is an excellent summary of computer engineering.

The Evolution of the DECsystem-10
C. GORDON BELL, ALAN KOTOK,

THOMAS N. HASTINGS, and RICHARD HILL

INTRODUCTION

The project from which the PDP-6, DECsys-
tem-10, and DECSYSTEM-20 series of scien-

tific, timeshared computers evolved began in

the spring of 1963 and continued with the deHv-

ery of a PDP-6 in the summer of 1964. Initially,

the PDP-6 was designed to extend DEC's line of

18-bit computers by providing more perform-
ance at increased price. Although the PDP-6
was not designed to be a member in a family of

compatible computers, the series evolved into

five basic designs (PDP-6, KAIO, KIIO, KLIO,
and KL20) with over 700 systems installed by

January 1978. During the initial design period,

we neither understood the notions and need for

compatibility nor did we have adequate tech-

nology to undertake such a task. Each succes-

sive implementation in the series has generally

offered increased performance for only slightly

increased cost. The KLIO and KL20 systems

span a five to one price range.

TOPS- 10, the major user software interface,

developed from a 6-Kword monitor for the

PDP-6. A second user interface, TOPS-20, in-

troduced in 1976 with upgraded facilities, is

based on multiprocess operating systems ad-

vances.

This paper is divided into seven sections. Sec-

tion 2 provides a brief historical setting fol-

lowed by a discussion of the initial project

goals, constraints, and basic design decisions.

The instruction set and system organization are

given in Sections 4 and 5, respectively. Section 6

discusses the operating system, while Section 7

presents the technological influences on the de-

signs. Sections 4 through 7 begin with a presen-

tation of the goals and constraints, proceed to

the basic PDP-6 design, and conclude with the

evolution (and current state). We try to answer

the often-asked questions, "Why did you do . .

.?", by giving the contextual environment. Fig-

ure 1 helps summarize this context in the form

of a timeline that depicts the various hard-

ware/software technologies (above line) and

when they were applied (below line) to the

DECsystem-10.

HISTORICAL SETTING

The PDP-6 was designed for both a time-

shared computational environment and real-

time laboratory use with straightforward inter-

facing capability. At the initiation of the proj-

ect, three timeshared computers were

489

490 THE PDP-10 FAMILY

DECsystein-10
FAMILY TREE

' \'' i"° i" 1*^ 1'° 1°° l^° . 1^' 1^* . 1^' I

2ND GENERATION

EARLY/LATE
2ND GENERATION

-3RD GENERATION-

EARLY/LATE
3RD GENERATION

' 4TH GENERATION

DP-6 /

KL10 1080/

/ \r^I 2 PROCESSO RV/ _

KI10 / 108° /~ 2040

-10 / 2 PROCESSOR

^
KA10 / /

SEMICONDUCTORS

DEC
TECHNOLOGY/
MACHINES

1
WIRE WRAP

(7090)
FIRST ICs TTL TTL/H, ECL10K TTL/SCHOTTKY

T DEC [system T PDP-1
]
PDP-4 Ti

I I MODULES I I I

PDP-5| WIRE-WRAP
(MINIS & FLIP-CHIP MODULES)

(OTHER MACHINES OMITTED)

SEMICONDUCTORS

GERMANIUM TRANSISTORS
SILICON

TRANSISTORS
FAST. R/W MEMORIES (IN BITS)

'"° I" y

MACRO
(BELL LABS)

(ON 704) LISP

FORTRAN
I PAPER

ALGOL 60

t—COBOL 60

APL PAPER JOHNIAC

FORTRAN STANDARDS
JOSS (RAND)

ON I
—SIMULA

PDP-6 APL/360 PASCAL

LANGUAGES & UTILITIES

I 111 I i„ 1 1 11
J FORT. IV

I
ALGOL APL BASKMACRO, FORTRAN II.—

EDITOR, LISP (MIT) AED (RAND-
PIP-PERIPHERAL JOSS BASE) L^ASIC
INTERCHANGE |

COBOL
PROGRAM SOS EDITOR (STANFORD)

BLISS

(CMU)
FORT
IV+

BASIC +2
PASCAL
-SIMULA

(APL/SS-DEC/APU-J DBMS (PL/I-BASE)

THE EVOLUTION OF THE DECsystem-10 491

system for computer-aided instruction, and the

BBN Tenex system all contributed concepts to

the DECsystem-10 evolution in the 1960s.

In architecture, the Manchester Atlas [Bell,

Newell, 1971:Ch. 23] was exemplary, not be-

cause it was a large machine that we would

build, but because it illustrated a number of

good design principles. Atlas was multi-

programmed with a well defined interface be-

tween the user and operating system, had a very

large address space, and introduced the notion

of extra codes to extend the functionality of its

instruction set. Paging was a concept we just

could not afford to implement without a fast,

small memory. The IBM Channel concept was

in use on their 7094; it was one we wanted to

avoid since our minicomputers (e.g., PDP-1)
were generally smaller than a single channel and

could outperform the 7094 in terms of I/O con-

currency and I/O programmability by a clean,

simple interrupt mechanism.

The DEC product line in 1964 is summarized

in Table 1. Sales totaled $11 million then, and it

was felt that computers had to be offered in the

$20,000 to $300,000 range. We were sensitive to

the problems encountered by not having

enough address bits, having watched DEC and

IBM machines exceed their addressing capaci-

ties.

On the software side, most programmers at

DEC had been large-machine (16 Kword to 32

Kword) users, although they had most recently

programmed minicomputers where program
size of 4 Kwords to 8 Kwords was the main

constraint. There was not a good understanding
of operating systems structure and design in ei-

ther academia or industry. MIT's Multics proj-

ect was just being formed and IBM's 360/TSS
project did not start until 1965. Generally, there

were no people who directly represented the

users within the company, although all the de-

signers were computer users. A number of users

in the Cambridge (Mass.) community advised

on the design (especially John McCarthy, Mar-

Table 1. DEC'S 1964 Computer Products

492 THE PDP-10 FAMILY

it was unclear what memory speed a processor
should support.

The notions of compatibility and family

range were not appreciated even though SDS

(which eventually became XDS and is now non-

existent) had built a range of 24-bit computers.
We adhered to the then-imposed convention of

the word length being a multiple of six bits (the

number of bits in the standard character code),

but designed the machine to handle arbitrary

length characters.

OVERALL GOALS, CONSTRAINTS, AND
BASIC DESIGN DECISIONS

Table 2 lists the initial goals, constraints, and

some basic design decisions. Presenting this list

separately from the design is difficult because

the goals and constraints were not formally re-

corded as such and have to be extracted from

design descriptions and our unreliable, self-jus-

tifying memories. Table 2 will be used in dis-

cussing the design.

The initial design theme was to provide a

powerful, timeshared machine oriented to sci-

entific use, although it subsequently evolved to

commercial use. John McCarthy's definition

[McCarthy and Maughly, 1962] of timesharing,

to which we subscribed, included providing

each user with the illusion of having his own

large computer. Thus, our base design provided

protection between the users and a mechanism

for allocating and controlling the common re-

sources. The machine also had to support a va-

riety of compiled and interpreted languages.

The construction was to be modular so that it

could evolve and users could build large sys-

tems including multiprocessors. It was intended

to enhance the top of DEC's existing line of 12-

and 18-bit computers. It was designed to be

simple, buildable, and supportable by a small

organization. Thus it should use as much DEC
hardware technology as possible.

THE INSTRUCTION SET
PROCESSOR

Our goals for an ISP were: to efficiently en-

code the various programs using both compiled
and interpreted languages; to be under-

standable and remembered by its users; to be

buildable in current technology at a competitive

price; and to permit a compiler to provide ef-

ficient program production.

Data-Types and Operators

Earlier DEC designs and the then-current six-

bit character standard forced a word length that

was a multiple of 6, 12, and 18 bits. Thus, a 36-

bit word was selected.

The language goals and constraints forced

the inclusion of integer and real (floating-point)

variables. We chose two's complement integer

representation rather than the sign-magnitude

representation used on the 7090 or the one's

complement representation on PDP-1. The

floating-point format was chosen to be the same

as the 7090, but with a format that permitted

comparison to be made on the number as an

integer in order to speed up comparisons and

require only a single set of compare instruc-

tions.

Special (common) case operators (e.g., V = 0,

V = V-f-l,V = V- l)were included to support

compiled code. Our desire to execute LISP

directly resulted in good address arithmetic. As

a result, both LISP and FORTRAN on DEC-

system-10 are encoded efficiently.

Since the computer spends a significant por-

tion of its time executing the operating system,

the efficient support of operating system data-

types is essential. A number of instructions

should be provided for manipulating and test-

ing the following data-types:

1. Boolean variables (bits).

2. Boolean vectors.

THE EVOLUTION OF THE DECsystem-10 493

Table 2. Initial Goals, Constraints, and Basic Design Decisions

User/Language/Operating System
Cheap cost/user via timesharing without inconvenience of batch processing
Timeshared use via terminals with protection between users

Independent user machines to execute from any location in physical memory
Unrestricted use of devices, e.g., full-duplex use of terminals

Support for wide range of compiled and interpreted languages
No special batch mode, batch must appear like terminal via a command file

Device-independent I/O so that programs would run on different configurations and I/O

could be shared among the user community
Direct I/O for real-time users

Primitive command language to avoid need for large internal state

Minimum usable system <16 Kwords

Modular software to correspond to modular hardware configurations

instruction-Set Processor (ISP)
• Support user languages by data-types and special operations

Scientific (i.e., FORTRAN) =4> integers, reals. Boolean

List processing (i.e., LISP) =$> addresses, characters

Support recursive and reentrant programming =^ stack mechanism
• Support operating systems

Effective as machine language =>> Booleans, addresses, characters, I/O

Operating system is an extension of hardware via defined operating codes
• Word length would be 36 bits (compatible with DEC's computers)
• Large (1/4 million 36-bit words =

1 million 9-bit bytes) address
• Require minimal hardware => simple
• General-register based (design decision) with completely general use
• Easy to use and remember machine language

Orthogonality of addressing (accessing) and operators

Completeness of operators

Direct (not base + displacement) addressing
Few exceptional instructions

• 2's complement arithmetic (multiple precision arithmetic)

PMS Structure
• Maximum modularity so that users could easily configure any system
• Easy to interface

• Asynchronous operation - system must handle evolving technology
• Multiprocessors for incremental and increased performance (2-4 in design)
• No Pios (IBM channels), use simple programmed I/O with interrupts and direct-memory

access for high-speed data transmission

implementation
• Simple; reliable

• Asynchronous logic and buses for speed in light of uncertain logic and memory speed
• All state accessible to field service personnel via lights
• Use DEC (10 MHz versus 5 MHz) circuit/logic technology (manpower constraint)
• Buildable without microprogramming (no fast, read-only memories in 1963)

Organizational/Marketplace
• Add to high end of DEC's computers
• Use minimal resources, while supporting DEC's minicomputer efforts

494 THE PDP-10 FAMILY

3. Arbitrary length field access (load/store

only).

4. Addresses.

5. Programs (loops, branching, and sub-

programs).
6. Ordinary integers.

7. The control of I/O.

A significant number of control instructions

were included to test addresses and other data-

types. These tests controlled flow by either a

jump or skip of the next instruction (which is

usually a jump). Loop control was a most im-

portant design consideration.

Table 3 gives the data-types and instructions

present in the various implementations. The

KAIO and PDP-6 processor instruction sets

were essentially the same, but differed in the im-

plementation. The PDP-6 had 365 instructions.

A double-precision negate instruction in the

KAIO improved the subroutine performance
for double-precision reals. The instruction,

"find first one in a bit vector," was also added

to assist operating system resource allocation

and to help in a specific application sale (that

did not materialize). Finally, double-precision

real-arithmetic instructions were added to the

KIIO using the original PDP-6 programmed
scheme. A few minor incompatibilities were in-

troduced in the KI to improve performance.
With the decision to offer COBOL in 1970,

better character and decimal string processing

support was required from the intruction set.

The initial COBOL performance was poor for

character and decimal arithmetic because each

operation required: (1) software character by
character conversion to an integer, (2) the oper-

ation (in binary or double-precision binary),

and (3) software reconversion to a character or

a decimal number. The KLIO provided much

higher performance for COBOL by having the

basic instructions for comparing character and

decimal strings
- where a character can be a

variable size. For arithmetic operations, in-

structions were added to convert between string

and double-precision binary. The actual oper-

ations are still carried out in binary. For add

and subtract, the time is slightly longer than a

pure string-based instruction, but for multi-

plying and dividing, the conversion approach is

faster.

Stack Versus General Registers

Organization

A stack machine was considered, based on

the B5000 and George Interpreter (which later

became the English Electric KDF9). A stack

with index register machine was proposed for

executing the operating system, LISP, and

FORTRAN; it was rejected on the basis of high

cost and fear of poor performance. The com-

promise we made was to provide a number of

instructions to operate on a stack, yet to use the

general registers as stack pointers.

An interesting result of our experience was

that one of us (Bell) discovered a more general

structure whereby either a stack or general reg-

ister machine could be implemented by extend-

ing addressing modes and using the general

registers for stack pointers. This scheme was the

basis of the PDP-l 1 ISP (Chapter 9).

We currently believe that stack and general

register structures are quite similar and tend to

offer a tradeoff between control (either in a pro-

gram or in the interpretation of the ISP) and

performance. Compilers for general register

machines often allocate registers as though they

were a stack. Table 4 compares the stack and

general register approaches.
A general register architecture was selected

with the registers in the memory address space.

The general registers (multiple accumulators)

should permit a wide (general) range of use.

Both 8 and 16 were considered. By the time the

uses were enumerated, especially to store inner

loops, we believed 16 were needed. They could

be used as: base and index, set of Booleans

(flags), ordinary accumulator and multiplier-

quotient (from 7090), subroutine linkage, fast

THE EVOLUTION OF THE DECsystem-10 495

Table 3. Data-Types of DECsystem-10/DECSYSTEM-20

Data-Type

Length Operators and

(bits) Machine [Number of Instructions] Operator Location

Boolean

496 THE PDP-10 FAMILY

Table 4. Comparison of Stack and
General Register Architectures

Stack General Register

Number of

THE EVOLUTION OF THE DECsystem-10 497

MOV

E
e Negjiivc

e Magnilude

e Swapped

Ha..wo,d|j;f

BLock Translei

EXCHange ac and memoiv

498 THE PDP-10 FAMILY

Multiprogramming/Monitor Facilities

The initial constraint (circa 1963) of a time-

shared computer with a common operating sys-

tem led to several hardware facilities:

1 . Two basic machine modes. User and Ex-

ecutive (each with different privileges).

2. Protection. Protection against oper-
ations to halt the computer or oper-
ations that affect the common I/O when
in User mode.

3. Communication. Communication be-

tween the user and operating system for

calling I/O and other shared functions.

4. Memory mapping. Separation of user

programs into different parts of physical

memory with protection among the

parts and program relocation beyond
the control of user.

An Executive/User mode was necessary for

protection facilities in a shared operating sys-

tem while providing each user with his own en-

vironment. Although there was a temptation

(due to having a single operating system) to

eliminate or make optional the Executive mode
and the general registers, we persevered in the

design and now believe this to be an essential

part of virtually every computer! (The only
other necessary ingredient in every computer is

adequate error detection, such as parity.) Sepa-
ration into at least two separate operating re-

gions (user and executive) also permits the more

difficult, time-constrained I/O programs to be

written once and to have a more formal inter-

face between system utilities and user.

The Unimplemented User Operation (UUO)
is an instruction like the Atlas Extracode and

IBM 360 SVC to call operating system func-

tions and common user-defined functions. It

also calls functions not present in earlier ma-
chines. Thus, a single operating system could be

used (by selecting the appropriate options) over

several models. This use appears to be more ex-

tensive than it is in the IBM System 360/370.

The goals of low cost hardware and minimal

performance degradation constrained the pro-
tection facilities to a single pair of registers to

relocate programs in increments of 1 Kwords.

Two 8-bit registers (base and limit registers)

with two 8-bit adders were required for this so-

lution. Thus, each user area was protected while

running, and a program could be moved within

primary or secondary memory (and saved) be-

cause user programs were written beginning at

location 0. This is identical to the CDC 6600-

7600 protection/relocation scheme.

In the KAIO, a second pair of registers were

added so that the common read-only segment
of a user's space could be shared. For example,
this enabled one copy of an editor, compiler, or

run-time system to be shared among multiple
users. Programs were divided into a 128 Kword
read-write segment and a 128 Kword read-only

segment. Since each user's shared segment had

to occupy contiguous memory, holes would de-

velop as users with different shared segment re-

quirements were swapped. This led to "core

shuffling," and, in a busy system, up to 2 per-

cent of the time might be spent in this activity.

The operating system was modified in the early

70s at the Stanford Artificial Intelligence Labo-

ratory so that the high, read-only segment could

share common, global data. In this way, a num-
ber of separate user programs could commu-
nicate to effectively extend the program size

beyond the 256 Kword limit. In retrospect, in-

structions to move data more easily between a

particular user region and the operating system
would have been useful; this was corrected in

KIIO and is described below.

With the availabiHty of medium-scale in-

tegrated circuits, small (32 word) associative

memories could be built. This enabled the in-

troduction of a paging scheme in the KIIO.

Each 512-word page could be declared sharable

or private with read-only or read-write access.

The basic two-mode protection facility was ex-

panded to four modes: Supervisor, Kernel,

Public, and Concealed. There are two monitor

THE EVOLUTION OF THE DECsystem-10 499

modes: Kernel mode provides protection for

I/O and system functions common to all users,

and Supervisor mode is specialized for a single

user. The two user modes are: Concealed for

proprietary programs, and Public for shared

programs. For protection purposes, the modes
are only changed at selected entry portals. The

page table was more elaborate than that of the

Atlas (circa 1960) whose main goal was to pro-

vide a one-level store whereby large programs
could run on small physical memories. In fact,

the first use of KIIO paging required all pro-

grams to be resident rather than having pages

being demand driven. A gain over the KAIO
was realized by not requiring programs to be in

a single contiguous address space. The KIIO de-

sign provided more sharing and increased effi-

ciency over the KAIO. The KLIO extended

KIIO paging for use in the TOPS-20 operating

system to be described later.

PMS* STRUCTURE

Table 2 gives the major goals and constraints

in the PMS structure design. This section de-

scribes system configurations, the I/O system,
the memory system, and computer-computer
communication structures.

System Configurations

We wanted to give the user considerable free-

dom in specifying a system configuration with

the ability to increase (or decrease) memory
size, processing power, and external interfaces

to people, other computers, and real-time

equipment. Overall, the PMS structure has re-

mained essentially the same as in the PDP-6 de-

sign, with periodic enhancements to provide
more performance and better real-time capabil-

ity. (A PDP-6 memory or I/O device could be

used on a KIIO processor, and a PDP-6 I/O de-

vice can be used on today's KLIO systems.) A
radical change occurred with the KL20 to a

more integrated, less costly design for the pro-

cessor, memory, and minicomputer I/O pre-

processors.

The PMS block diagram of a two-processor
PDP-6 is given in Figure 3. But for simple

uniprocessor systems, the PMS structure was

quite like that of our small computers with up
to 16 modules on both the I/O and Memory
Buses (Figure 4).

Interestingly, a unified I/O memory bus Hke

the PDP-11 Unibus was considered. The con-

cept was rejected because a unified bus designed
to operate at memory speed would have been

more costly.

The goal to provide arbitrary, modular com-

puting resources led to a multiprocessor struc-

ture with shared memory. The interconnection

between processors and memory modules was

chosen to be a cross-point switch with each pro-

cessor broadcasting to all memory modules.

An alternative interconnection scheme could

have been a more complex, synchronous, mes-

sage-oriented protocol on a single bus. More ef-

ficient cable utilization and higher bandwidth

would have resulted, but physical partitioning

into multiple processor/memory subsystems for

on-line maintenance would have been pre-

cluded. All in all, the cross-point switch deci-

sion was basically sound although more

expensive.

Figure 5 shows a PMS block diagram for the

KAIO and KIIO. There can be up to 16,

65 Kword, 4-port memory modules, giving a to-

tal of one Mword of memory. (Each processor
addressed four Mwords.) With high speed disk

and tape units (e.g., 250 Kwords/second) a pro-

gram-controlled I/O scheme would place too

much of a burden on the central processor.

'See Appendix 2.

500 THE PDP-10 FAMILY

MEMORY BUS

Mp(8 I 16

Kwords; 2 fis)

-/—Qr|-^

200 Kwords/s
I/O BUS

UPT02
MORE
Pc/Kc

(PAPER TAPE READER)

(PAPER TAPE PUNCH)

OTHER
CONTROLLERS FOR:
CARDS. LINE PRINTER,
TELETYPE, a/d/a

(COMMUNICATION) {j:}

1 "^ SERIAL
TELEGRAPH
TERMINAL
LINES

(GRAPHICAL DISPLAY)

NITOR) I... |<MONn

(MAGTAPE)

Ms
(MAGTAPE)

I

M«
(MAGTAPE)

(DATA CONTROL)

(DECtapa)

Ms
(OECtape)

THE EVOLUTION OF THE DECsystem-10 501

MEMORY BUS

I/O BUS

{222
Kwords/s ON KA10

370 Kwords/s ON KI10

CONTROLLERS FOR;
-CARDS, PRINTER, TELETYPE.

/"l/^ PLOTTER. A/D/A

. ^TOTERMI
.
•

127j

(MAGTAPEI
I

IDECtapa)

MS
IDECtapa)

MslDRUMI

I

"CHANNELS." I.E.. DATA BUFFERS

Figure 5. PMS diagram for KA10 and KI10 processor-based system.

Therefore, a direct port to memory was pro-

vided as in the PDP-6. In the KAIO/KIIO sys-

tems, a switch (called a multiplexer) was

introduced to expand the number of ports into

memory to four for each Memory Bus used.

The communications controllers were also ex-

panded to handle more asynchronous and syn-

chronous lines.

The KLIO was, by comparison, a radical de-

parture from previous PMS structures (Figure

6). In order to gain more performance, four

words from four low-order interleaved memory
modules were accessed in each cycle. The effec-

tive processor-memory bandwidth was thus

over four Mwords/second. The processor also

connects to as many as four PDP-11 mini-

computers [shown as C (1 1) in the figure]. Most

of the I/O is handled by these front-end com-

puters.

Each PDP-11 can access the KLIO memory
via indirect address pointers and transfer data

in much the same manner as the peripheral pro-

cessing units of a CDC 6600. Notice also that

the KLlO's console is tied to a PDP-11. This

PDP-11 can load the KLIO microprogram

memory, run microdiagnostics, and provide a

potential remotely operated console. Each of

the PDP-lls can achieve a word rate of 70

Kchar/second.

Up to eight DEC Massbus controllers are in-

tegrated into the processor. The Massbus is an

18-bit data width bus for block-transfer-orien-

ted mass-storage devices such as disks and mag-
netic tapes. Each Massbus can transfer 1.6

502 THE PDP-10 FAMILY

4W ,

ACCESS

Mp(6SK|...256KI

1 Mword././bu. '/O «"« "OK WORD/.

_JrTn
—h^

^ ^{FOR UNIT RECORD l/OI

^ MASS8US. 16 Mwords/s

Mt(MAGTAPEI ' 8lMt(MAGTAPEIh

MtlDISK)

zzi
—

2-PORT ACCESS

UP TO 16 MODULES
OR 4 Mwords Pc

11.8 MIPS: 2 Kword
16X8 DISTRIBUTED
(VIA MEMORY BUS)

CACHE: 8X16 CROSS-POINT SWITCH
GENERAL REGISTERS)

Figure 6. PMS diagram for KL10 processor-based system.

Mwords/second yielding a maximum 12.8

Mwords/second transfer rate for all channels.

However, contemporary disks need about 250

Kwords/second so that all eight channels only

require 2.0 Mwords/second of the 4

Mword/second memory bandwidth of four

modules. Individual disks and tapes can be con-

nected to a second port for increased con-

currency. For larger memory configurations, a

memory bandwidth of 16 Mwords/second is

not uncommon. A 2 Kword processor cache

provides roughly a 90 percent hit rate and re-

duces memory bandwidth demand by nearly a

factor of ten.

The cost-reduced KL20 evolved by in-

tegrating the Massbus controllers and PDP-11
interfaces onto a single high-speed, synchro-
nous bus. The model 2040 and 2050 computers
are based on the KLIO processor and integrate

256 Kwords of memory in a single cabinet with

the processor (thereby eliminating the external

Memory Bus). The I/O Bus is also eliminated,

and all I/O transfers are either via the Mass-

buses or the PDP-1 1 I/O computers. (It must be

noted that the 2040 structure is possible only
because of the drastic increase in logic and

memory density!)

I/O System

Relatively, low speed I/O (200 Kwords/
second) in the PDP-6 was designed to be under

central processor programmed control rather

than via specialized I/O processors (IBM Sys-

tem 360/370 Channels). This method had pro-

ven effective in our minicomputers and was

extended to handle higher data rates with lower

overhead than specialized I/O processors.

THE EVOLUTION OF THE DECsystem-10 503

The decision not to use the IBM-type channel

structure was based on high overhead (cost) in

both programming and hardware. Because I/O
record transmission usually caused a central

processor action, we felt the processor might as

well transfer the data while it had access to it.

This merely required a good interrupt and con-

text switching mechanism, not another special-

ized processing entity. However, when an

inordinately high fraction of the processor's

time went to I/O processing, a second, fully

general processor was added - not a processor

that was fundamentally only capable of data

transmission.

The PDP-6 interrupt scheme was based on

our previous experience with a 16-level and 256-

level interrupt mechanism for PDP-1. The
PDP-1 scheme was an extension of the Lincoln

Laboratory TX-2 [Clark, 1957]. The PDP-6 had

a 7-channel interrupt system, and each device

on the I/O Bus could be programmed to a par-

ticular level. Hence, a programmer could

change the priority of a particular device that

caused interrupts on the basis of need or ur-

gency. The PDP-6 also had an I/O instruction

("block input" or "block output") to transfer a

single data item between a block (vector) in

primary memory and an I/O device. Thus, as

each word was assembled by a controller, an in-

terrupt occurred; the block transfer was exe-

cuted for one word, taking only three memory
references (to the instruction, to increment the

address pointer and block counter, and to

transfer data). Most of the hardware to control

the count and address pointer was already part

of the processor logic.

In applications requiring higher data trans-

mission (e.g., swapping drums, disks, TV cam-

eras), a controller with a data buffer

(erroneously called an I/O Processor) and link

to memory was provided. This controller re-

quired only a single memory reference per data

transfer with the address pointer and block

counter in hardware. In the KAIO, the name
was changed to Channel, and parameters for

transferring contiguous records into various

parts of memory were part of the channel's con-

trol. The device control was via the I/O Bus;

hence, we ended up with a structure for high

speed device control not unlike the IBM chan-

nels we originally wanted to avoid.

Competitive pressure from the Xerox Sigma
series caused a change in the way interrupts

were handled beginning with the KIIO. Al-

though the Xerox scheme had many priority

levels, its main utility was derived from rapid

dispatch to attend to a particular interrupt sig-

nal. We kept compatibility with the 7-channel

interrupt by using a spare wire in the bus and

adding the ability to directly dispatch to a par-

ticular program when a request occurred. At

the interruption, the processor sent a signal to

requesting devices and the highest priority de-

vice responded with a 33-bit command (3-bit

function, 18-bit address, 12-bit data). The func-

tions were: (1) execute the instruction found at

addressed location, (2) transfer a word to/from
addressed location, (3) trap to addressed loca-

tion, and (4) add data to addressed location.

Little use was made of these functions (espe-

cially number 4), since only a small number of

devices were typically connected to a large sys-

tem, thus relaxing the requirement of rapid dis-

patch. Summarily, the problem of competition
was resolved when Xerox left the competitive
scene. In systems that had a large number of

devices, a front-end I/O processing mini-

computer was more cost-effective than central

processor controlled I/O.

Memory System

Because it was unclear how memory tech-

nology would affect memory speed, a com-

pletely asynchronous, interlocked Memory Bus

was designed. Thus, the 16 fast general regis-

ters, the initial 5-microsecond memory, and the

next generation 2 microsecond memory could

all operate on a single system. (Most memories

are now less than 1 -microsecond cycle time.)

504 THE PDP-10 FAMILY

The asynchronous bus avoided the problem of

distributing a single high-speed clock and al-

lowed interleaved memory operation.

Modularity was also introduced to clarify or-

ganizational boundaries within the company
and to make possible low cost, special purpose

production and engineering testers for the

memory and I/O equipment. We believe that

the concept of well defined modules was rela-

tively unique, especially for memory, and was
the basis for the formation of third party add-

on memory vendors. MIT and Stanford Uni-

versity purchased memories from Fabritek and

AMPEX, respectively, in the mid-1960s to start

this trend. (Note that this design style differed

from the IBM System/360 design with its rela-

tively bounded configurations and integrated

memory. Add-on memory did not appear until

the early 70s for the IBM machines because, we
believe, of the difficulty of the interface defini-

tion.)

The KIIO memory system was improved by

assigning signals to request multiple, over-

lapped memory accesses and to increase the ad-

dress size from 18 bits to 24 bits. The additional

physical memory addresses are mapped into a

program's 18-bit addresses via the core-held

page table.

The KLIO processor-memory organization
was a significant departure from the KIIO as

previously discussed. The KL20 eliminated the

original Memory Bus to provide an integrated

system. It should be noted that this evolution

was based on the drastic size reduction (a factor

of about 300) from a single cabinet (6 ft X 19 in

X 25 in or about 34,000 in^) for 16 Kwords to a

single logic module for 16 Kwords (15 in X 8 in

X 1 in or about 120 in^).

PMS Structures for Computer-Computer
Intercommunication

Throughout the evolution, a number of

schemes have been used to interconnect with

other (usually smaller) computers. The schemes

are given in Table 5. Note that the first four

Table 5. Computer Interconnection Structures

Scheme

THE EVOLUTION OF THE DECsystem-10 505

schemes were conventional, while the last

scheme was used in the KL 10/20 structure so

that an attached PDP-11 minicomputer could

transmit data directly into the memory of the

KLIO. This scheme was first used in the early

1970s for handling multiple communication

lines.

OPERATING SYSTEM

PDP-6 Monitor Design Goals and

Philosophy

The initial goals and constraints for the user

environment are summarized in Table 2. The
most important goal was to provide a general-

purpose timesharing system. The Monitor was

to allow the user to run in the mode most suited

to his requirements, including interactive time-

sharing, real-time, and batch. In timesharing,
there was no requirement for a human operator

per se. Instead, the operator's console was a

user terminal with special privileges. Real-time

programs had to be able to operate I/O
directly, locked in core, and batch was to be

provided as a special case of a terminal job.

Because of the modular expandability of the

hardware structure, the software system had to

be equally modular to facilitate varying system

configurations and growth. The core resident

timesharing monitor was only fixed at system

generation (i.e., IBM's SYSGEN) time when
software modules could be added to meet the

system requirements. The core space required
for monitor overhead had to be minimized.

Thus, job-specific functions were placed in the

user area instead of in the Monitor. The first 96

locations of each user job contained pertinent
information concerning that job. A temporary
area (stack) for monitor operations was also in-

cluded. In this way, the Monitor was not bur-

dened with information for the inactive jobs.
This structure permitted the entire job state to

be moved easily.

Adequate protection was to be given to each

user from other nonmalicious users. However,

the user was not protected against himself be-

cause various user status information in the job
area could be changed to affect his own job. Be-

cause common system resources were allocated

upon demand and deadlocks could occur, the

term "Gentlemen's Timesharing" was coined

for the first monitor.

The UUO or "system call" instruction, pro-
vided both Monitor-user communication and

upward hardware compatibility. In the latter

case, the instruction would use the hardware if

available; otherwise, the instruction would trap

to the Monitor for execution. For example,

double-precision hardware was available on

later CPU models. The number of UUOs im-

plemented in the Monitor for Monitor-user

communication has been significant. The initial

use of UUOs included requests for: core, I/O
assignment, I/O transmission, file control, data

and time, etc.

PDP-6 Monitor

Monitor was the name given to a collection of

programs that were initially core resident and

provided overall coordination and control of

the operating environment. A nonresident part

was later added with the advent of secondary

program swapping and file memories (i.e.,

drum and disk). The Monitor did not include

utilities, languages, and their run-time support.

The PDP-6 Monitor was constrained to run

in a 16 Kword (minimum) machtne with con-

sole printer, paper tape reader (for mainte-

nance) and two DECtape units. DECtape was a

128-word/block, block-addressable medium of

450 Kcharacters for which a file system was de-

veloped. Memory minimizing led to very spar-

ing use of shared tables. The key global variable

data was restricted to: core allocation table,

clock queue, job table, linked buffers for Tele-

type and other buffered I/O devices (e.g., DEC-

tape directory), and a directory of system

programs and Monitor facilities.

506 THE PDP-10 FAMILY

The original PDP-6 Monitor was less than 6

Kwords. The Monitor has increased at about 25

percent per year with the KAIO at 30 Kwords,
KIIO at 50 Kwords, and KLIO at 90 Kwords

(Figure 7). This increase provided increased

functionality (e.g., better files, batch, automatic

spooling), larger system configuration size,

more I/O options, increased number of jobs,

easier system generation, and increased reliabil-

ity (e.g., checking, retries, file backup).

I 128 -

S 32

Figure 7. Monitor and main utilities program
size versus time.

Note that with a 16 Kword memory, a 9

Kword FORTRAN compiler with 5 Kword
run-time package, and 1 Kword utility pro-

grams, two users could simultaneously reside in

PDP-6 memory and use the machine for pro-

gram creation and checkout. By keeping the

Monitor program size small, subsequent func-

tionality increases kept the Monitor module

sizes in bounds such that program swapping
was reduced. This provided high performance
for a given configuration with little Monitor

overhead.

Monitor Structure

Table 6 summarizes the development of the

Monitor with the various systems. The facilities

are arranged beginning with basics. The follow-

ing sections deal with the various facilities, in

turn.

Memory Protection Swapping. The basic

environment was discussed in the ISP section

on Multiprogramming/Monitor Facilities.

Facilities Allocator. The Facilities Alloca-

tor was a module called from a console or pro-

gram for an I/O device or memory space

request. This module would attach (or assign) a

given peripheral or contiguous physical mem-

ory area to a given job. Although this module

was relatively trivial initially, it evolved to a

more complex module because improper re-

sources allocation caused deadlocks.

The KAIO generation software introduced

queued operation. A line printer (output), pa-

per tape (input/output), and a card reader (in-

put) spooler were implemented. These spoolers

ran as timeshared jobs, accepted requests from

other user jobs, and managed the input/output

operation.

Program Scheduler. The scheduler was in-

voked by line frequency (50 or 60 Hz) interrupts

to examine run queues and to determine the

next action. The first Monitor employed a

round-robin scheduling algorithm. At the end

of a given time quantum of 500 milliseconds,

the next job was run. A job was runnable if it

was not stopped by the console and was not

waiting for I/O.
Because terminal response time is the user's

measure of system effectiveness, subsequent
scheduler improvements have favored inter-

active jobs. With the KAIO, separate priority

queues were added so that jobs with substantial

computation were placed in the lowest priority

and then run the longest without interruption.

This, in effect, approximated batched oper-

ation; for example, jobs from a card reader

would operate as a batch stream. Later, batch

operation was added for interactive users.

The introduction of disk/drum swapping
caused additional complexities since runnable

jobs might be located in secondary memory.

Table 6. Monitor Functions Evolution

THE EVOLUTION OF THE DECsystem-10 507

Facility PDP-6(1964) KA1 0(1967) KI10(1972) KL10{1975)

Protection

Program swap-

ping

One segment

per user

Core shuffling

Two segments with

shared program seg-

ment (required re-

entrant programs

Core shuffling; with

swapping (via drum

disk)

Four modes for shared Virtual machine with

segments shared segments

Paging used for core

management

Demand paging (job

need not be wholly resi-

dent to run)

Facilities alloca-

tor

Scheduler

Devices as-

signed to users

upon request

(deadlocks pos-

sible =>gentle-

men's time-

sharing)

Round-robin

scheduler

Spooling of line printer

and card reader

Scheduler to favor in-

teractive jobs using

multiple queues

Spooling of all devices

Fairness and swapping

efficiency consid-

erations

Parameters for sched-

uling set by system man-

ager; priority job classes

and "pie-slice" schedule

User files User files on

DECtape, cards,

and magnetic

tape

Significant enhance-

ment of file function;

on-line, random-access

disk-based files

Improved file structure

reliability, error recov-

ery, protection and

sharing; mountable

structures

Disk head movement op-

timization

Command con-

trol program

Batch

Simple (to im-

plement) requir-

ing little state

No real batch

Evolution to more pow-
erful, easier to use

command language

Remote and local

single-stream batch

Common Command
Language (CCL)

Multiprogramming
batch

Extensions to CCL

Improved multi-

programming batch

Terminal han-

dling and com-

munications

Asynchronous
task-to-task

communications

(for interactive

terminals) as

monitor module

Synchronous commu-
nications for remote

job and concentrator

stations; "birth" of

networks with simple

topologies; ARPA
network

Synchronous commu-
nications in complex

topologies; new pro-

tocol; IBM BISYNCfor

2780 emula-

tion/termination

DECnet commu-
nications*

Multiprocessing Dual processor support

(master/slave)

High availability

through bus switching

hardware

Symmetric multi-

processing

*DECnet is DEC'S computer network protocols and functions

508 THE PDP-10 FAMILY

The concept of "look-ahead" scheduling was

required, and a more complex queuing mecha-

nism was implemented. As the Monitor selected

the next job to be run, it would "look ahead" to

determine future queues and invoke the swap-

ping module if required to move a runnablejob
into core. Because of the higher swapping over-

head, it was essential to run large jobs longer
and less often. A "fairness" consideration also

assured that each job, whatever its size, received

enough run time to maintain responsiveness.

Recent enhancements permitted a Systems

Manager to set scheduling parameters including

established priorities of job classes. A "pie-

slice" scheduler is used where classes of users

are guaranteed fixed parts of the machine time

and resources.

User Files and I/O Device Independence.
In the initial PDP-6 design, resources such as

magnetic tapes, unit record devices (e.g., card

readers, line printer, paper tape reader/punch)
and DECtapes (which were file structured) were

requested by each user as they were required.

The Monitor allocated the device to a request-

ing given job until released.

I/O calls were evoked by the UUO call in-

structions. A particular device program call

could specify the number of I/O buffers to be

provided so that arbitrary amounts of over-

lapped I/O and computing could be realized.

In order to realize the goal of modularity,
each I/O device handler was implemented as a

separate module. These modules used a com-
mon set of subroutines. The device tables were

made as identical as possible to help achieve the

device independent goal. Thus, a user specified

an I/O channel, not a specific I/O device. The
channel-to-name assignment could take place at

various times from log-on to program run time.

In the original Monitor, a user was allowed

to assign file devices to his job and read and

write named files with the devices. Permanent,
on-line user files with automatic backup were

not implemented until the KAlO-generation
Monitors. The concept of project/programmer
number was adopted (after MIT's CTSS) in or-

der to provide increased file security and shar-

ing. A user was required to enter a

project/programmer number with his associ-

ated password. This not only established a job,

but identified the user to the Monitor. In addi-

tion to having resource privileges associated

with better ID numbers, the user received a log-

ical disk area for files. File access can be al-

lowed (by the creator of the file) to any of the

following levels with decreasing protection (in-

creasing privileges): no access, execute only,

plus read, plus append, plus update, plus write,

plus rename, and plus alter protection.

Significant evolution occurred in the user file

facility. Improved file structure reliability and

error recovery (such as writing pointer blocks

twice) were achieved. With moving head disk

availability, disk head movement optimization
for file transfers on single or multiple drives was

added. The concept of "mountable" structures

was implemented to allow disk packs to be

mounted and dismounted during a timesharing

operation as well as allowing a user to have a

"private" pack mounted. As the number of

users supported on the system and the diversity

of their applications grew to include "business

data processing," both hardware and software

allowed expansion of the number and capacity

of on-line disks.

Command Control Program. This pro-

gram processes all commands addressed to the

system from user terminals. Thus, terminals

served to communicate Monitor commands to

the system and to the user programs, and served

as an I/O device for user programs. Terminal

handling routines were an integral part of the

PDP-6 Monitor. The original commands were

designed to minimize the amount of state in the

Monitor. As a result, users had to type several

commands to control programs. A much more

powerful command language evolved.

THE EVOLUTION OF THE DECsystem-10 509

Batch Processing

Batch processing has evolved from the origi-

nal, fully interactive PDP-6, where a user was

expected to interactively provide commands for

each step in the generation/execution of a pro-

gram. The first batch on the KAIO was based

on a user-built command file that mimicked his

terminal actions. The user invoked this com-

mand file to execute his programs. Later, a mul-

tiprogrammed batch system was added, and the

job control syntax evolved to provide more
functions per command. However, batch/
interactive command commonality has been

preserved through the current Monitor ver-

sions. Still, batch control ran as a timeshared

job using queued batch control files. Thus, the

ability to log in a job, run to completion, and

log off is accomplished from a card reader or

any other storage or file device. Symbiant

(queued) operation allowed control of card

readers, line printers, etc., by the batch control

program so that the machine could be sched-

uled more effectively. During this batch evolu-

tion, little Monitor enhancement was necessary

to specifically address the batch environment.

Modules to improve efficiency (by multiple
strands and better scheduling) and increase

functionality were implemented as "user" jobs
and interprocess queuing allowed commu-
nication between the "user" modules.

A line printer spooler, for example, was run

as one of many jobs by the operator - a notion

that evolved beginning with the KAIO. If a spe-

cial form was required for a print job, the oper-
ator would be notified and act accordingly. The
user was relieved of this responsibility. Oper-
ator allocation, control, and media loading of

the card reader, magnetic tape, private disk

pack, DECtape, and plotter were provided in

theKIlO.

Terminal Handling and Communications.
We believe the users' perception of system effec-

tiveness related directly to his feeling that he

was interacting and was in control. The require-

ment to communicate effectively with the user

via the terminal was one of the most difficult

design constraints. The very first version of the

Monitor used half-duplex communication for

simplicity. But finally we decided to pay the ad-

ditional price to gain the benefit of full-duplex

communication, i.e., being able to continuously

input and output independently of system load.

These philosophies have guided subsequent
Monitor generations.

A hardware module was constructed to facil-

itate terminal communication. This hardware

was called the scanner because it looked at all

the interface lines connected to Teletypes and

interrupted the software when a character was

received or needed to be transmitted. These line

units, which we built on a single card, formed

the basis of the Universal Asynchronous Re-

ceiver/Transmitter (UART) LSI chip. A soft-

ware monitor, called Scanner Service

(SCNSER) handled interrupts from the hard-

ware. SCNSER provided the important func-

tion of logically coupling a physical terminal

with a job running under timesharing. The user

was never burdened with attempting to relate

his terminal with his job. This software module,

by far the most logical complex part of the

Monitor, has been rewritten twice to increase

terminal functionality.

Later, the KAIO terminal interface was im-

plemented via a "front-end" concentrator PDP-
8 computer for large numbers of terminals -

particularly where variable line speeds were in-

volved (up to 300 baud). This implementation
allowed some off-loading of the processor.

Characters were assembled (serial parallel con-

version) in the front-end PDP-8 and commu-
nicated with the KAIO via the I/O Bus on an

interrupt basis.

In 1971, a front-end PDP-1 1 provided direct-

memory access over the I/O Bus. This con-

nection provided high speed, full-duplex, syn-

chronous communications and was the

510 THE PDP-10 FAMILY

prototype for the current KLlO/PDP-1 1 front-

end computer. Software modules were added to

the Monitor to allow these synchronous lines to

terminate remote PDP-8 and communication

concentrator stations in simple point-to-point

topologies. A remote station (e.g., line printer)

is viewed by the user in the same manner as is a

local printer.

With the KIIO, a second front-end was pro-

duced which allowed BISYNC protocol of the

IBM 2780 terminal to be used. However, most

of our users were laboratory-oriented and

wanted greater performance and functionality.

Thus, concentrator/remote station capability

including route-through (i.e., communication

via multiple concentrators), and multiple hosts

were added. These formed the basis of some of

our understanding for subsequent DECnet pro-

tocol standards and functions. The use of DEC-
system-10 in the Advanced Research Projects

Agency (ARPA) funded projects formed an-

other key base for our DECnet protocols and

functions [Roberts, 1970].

DECnet- 10 now provides the capability of

having processes in different computers (includ-

ing PDP-8s and PDP-lls) communicate with

each other. These jobs appear to each other as

I/O devices in the simplest applications.

Throughout all of this communication func-

tionality evolution, the goal has been to free the

user from concern with the link, commu-
nication mode, hardware location, and pro-
tocol.

Multiprocessing

Although we predicated the original PDP-6
hardware on multiprocessing, the Monitor was

not designed explicitly for it. Lawrence Liver-

more Laboratory did build a two-processor sys-

tem with their own operating system and special

segmentation hardware. To meet the needs of

the predominately scientific/computation mar-

ketplace in achieving higher processor through-

put, a dual-processor KAIO was implemented

using a master/slave scheme with wholly shared

memory and one Monitor. The slave CPU
scanned the queue of runnable jobs, selected

one, and ran it. If a Monitor call was encoun-

tered, the job was placed in the appropriate

queue and the Monitor located another run-

nable job. The "master" handled all I/O and

privileged operations. In a CPU-bound envi-

ronment, the dual processor provided approx-

imately a 70 percent increase in system

throughput.
An offshoot (and evolved design goal) of the

dual-processor implementation was high avail-

ability. Monitor reconfigurability and bus-

switching hardware allowed redundant com-

ponents to be fully utilized during normal oper-

ation and, in the case of a hardware

malfunction, to be separated into an operating

configuration (with all available I/O) and a

maintenance configuration (consisting of CPU,
memory, and the faulty component).
At Carnegie-Mellon University (CMU), we

proposed to build a 16 to 32 PDP-10 structure

[Bell et al. 1971]. It would have 16 Mwords of

primary memory available via 16 ports at a

bandwidth of 2.1 to 8.6 gigabits/second. With

the use of processors larger than those of the

KLIO, performance would have been over 50

million instructions per second (MIPS). The 16

processor, C.mmp [Wulf and Bell, 1972], based

on PDP-1 Is at CMU, is a prototype of such a

system.

Languages and Utilities

Monitor commands called the utilities and

languages. The utilities, called CUSP (for Com-
mon User System Program), and languages in-

cluded: EDIT, an editor for creating and editing

a file from a user console; PIP, the peripheral

interchange program to convert information

among the I/O media and files; LOADER to

load object modules; DESK, an interactive cal-

culator; MACRO, an assembler; and FOR-
TRAN II. Figure 1 shows these programs at

various times, together with their origins.

THE EVOLUTION OF THE DECsystem-10 511

Utilities and languages have taken advantage

of the interactive, terminal-oriented environ-

ment. Thus, highly interactive editing/

debugging facilities have evolved in terms of the

program's own symbols. The file/data transfer

utility, PIP (for Peripheral Interchange Pro-

gram) is still in existence today, although in a

much enhanced form. It has since been ex-

panded to support the peripheral devices and

the data formats encountered in the DECsys-
tem-10 memory and I/O devices. Such a utility

eliminated the need for a "library" of utilities

and conversion programs to transfer data be-

tween devices. Such tasks as a card-to-disk,

card-to-tape, tape-to-disk, etc., conversion are

controlled by a terminal using common PIP

commands. PIP evolved in a somewhat ad hoc

fashion from a 1 Kword or 2 Kword size in

1965 to 10 Kwords with substantial generality.

A powerful and sophisticated text editor,

TECO (Text Editor and Corrector) was initially

implemented at MIT using a graphics display.

TECO is character-string oriented and requires

a minimal number of keystrokes to execute

commands. It included the ability to define pro-

grams to do general string substitution. As the

sophistication of users was later perceived to

decline, the powerful editor created training

and use problems. Thus, a family of line- and

character-oriented editors evolved which was

easier to learn and remember. These were based

on other line-oriented editors, but especially

Stanford's SOS, which replaced the initial

DECline editor in 1970.

Many of the higher level languages were in-

itially produced by non-DEC groups and made
available through the DEC User Society

(DECUS). For example, APL, BASIC, DBMS,
and IQL (an interactive query language) were

purchased from outside sources and are now
standard, supported products.
BLISS (Basic Language for Implementing

System Software), developed at Carnegie-Mel-
lon University, became DEC's systems pro-

gramming language [Wulf et ai, 1971b]. A

cross-compiler was subsequently developed for

the PDP-1 1. Its use as a systems programming

language has been due to the close coupling it

provides to the machine, its general syntactic

and block structures, and its high-quality code

generator. BLISS has been used for various di-

agnostic programs, the BLISS Compilers, the

PDP-10 APL Interpreter, recent FORTRAN-
IV compilers for both PDP-10 and PDP-1 1, and

the BASIC PLUS TWO system. BLISS has also

been used extensively within DEC for com-

puter-aided design programs.

Tenex and the TOPS-20 Operating System

Bolt, Beranek, and Newman started a project

in 1969 to build an advanced operating system

called Tenex which was based on a modified

KAIO (including rather elaborate paging hard-

ware). This work was influenced by both the

Berkeley SDS 940 and the MIT Multics sys-

tems. Subsequently, Tenex influenced and im-

proved the KIIO design which became the base

of TOPS-20. The system was described by
Bobrow et al. [1972], and the three major goals

stated in the reference were:

I. State-of-the-Art Virtual Machine

a. Paged virtual address space

equal to or greater than the ad-

dressing capability of the proces-
sor with full provision for

protection and sharing.

b. Multiple process capability in

virtual machine with appropri-
ate communication facilities.

c. File system integrated into vir-

tual address space, built on mul-

tilevel symbolic directory
structure with protection, and

providing consistent access to all

external I/O devices and data

streams.

d. Extended instruction repertoire

making available many common
operations as single instructions.

512 THE PDP-10 FAMILY

II. Good Human Engineering

Throughout Systems

a. An executive command lan-

guage interpreter which provides
direct access to a large variety of

small, commonly used system
functions, and access to and con-

trol over all other subsystems
and user programs. Command
language forms should be ex-

tremely versatile, adapting to the

skill and experience of the user.

b. Terminal interface design should

facilitate intimate interaction be-

tween program and user, pro-
vide extensive interrupt
capability, and full ASCII char-

acter set.

c. Virtual machine functions
should provide all necessary op-
tions, with reasonable default

values simplifying common
cases, and require no system-cre-
ated objects to be placed in the

user address space.

d. The system should encourage
and facilitate cooperation
among users as well as provide

protection against undesired in-

teraction.

III. The System must be

Implementable, Maintainable,
and Modifiable

a. Software must be modular with

well defined interfaces and with

provision for adding or changing
modules clearly considered.

b. Software must be debuggable
and reliable, allowing use of

available debugging aids and in-

cluding internal redundancy
checks.

c. System should run efficiently, al-

low dynamic manual adjustment
of service if desired, and allow

extensive reconfiguration with-

out reassembly.

d. System should contain instru-

mentation to clearly indicate

performance.

Dan Murphy (one of Tenex's designers/

implementers) came to DEC and led the archi-

tecture and development effort that produced
TOPS-20. The effort at DEC has been to in-

crease the performance of TOPS-20 to be com-

petitive vk'ith the highly tuned Monitor while

not losing its generality. The TOPS-20 structure

does provide increased reliability and modi-

fiability.

HARDWARE IMPLEMENTATION

While logic and memory technology are often

considered the prime determinant of the per-

formance and cost of a computer system, fabri-

cation and packaging technology are equally

important. This section surveys logic, manufac-

turing, and packaging technology as it affected

the various DECsystem-10 models. Table 7

summarizes those various logic and packaging

technologies.

Logic

The PDP-6 used a set of logic modules that

evolved from the earlier PDP-1, which in turn

were derived from the Lincoln Laboratory cir-

cuits developed for the TX-0 [Mitchell, Olsen,

1956] and TX-2 [Clark, 1957] (Chapter 4) com-

puters as part of the air defense program. These

circuits were direct-coupled transistor logic and

included both series and parallel transistor cir-

cuits to give great flexibility in designs. The
PDP-1 circuits operated at a 5 MHz clock, and

new transistors enabled the PDP-6 circuits to

operate at 10 MHz. The computer's clock was
based on a delay line which carried pulses gen-
erated by a pulse amplifier using pulse trans-

formers (this too came from Lincoln

Laboratory via the early work at MIT on radar

and pulse transformers) The pulses were used

for register transfer operations (i.e., moving
data among the registers) and some logic gat-

ing.

THE EVOLUTION OF THE DECsystem-10 513

Instead of using a small number of lines in a

fixed, synchronous clock, many delay lines were

used. The route through the control path deter-

mined the state of the machine. At each deci-

sion point, the next line or chain (set of Hnes)

was selected. Hardware subroutines were also

unique with this implementation. A control

sequence consisting of a set of delay lines was

defined as a subroutine, and a calling module

marked the calling site (e.g., add, subtract, and

complement are at the lowest level). The basic

multiply subroutine used add or subtract; fi-

nally, floating multiply used the normalize and

multiply subroutines. In this way, the imple-

mentation was kept structured and turned out

to be quite straightforward. The flowcharts for

the PDP-6 were only 1 1 pages, where each page
has about 25 unique statements (actions), yield-

ing a total of only 250 microsteps (each step

causes 1 to 6 operations and corresponds

roughly to current microprogram statements).

The asynchronous adder was designed so that

on completion of all the carries, the sequence
would restart. Thus, we took advantage of the

observation made by von Neumann et al. in

1946, [Bell and Newell, 1971, ch. 4] that the av-

erage number of carries is log2 36 or slightly

over 5, versus the worst case of 36. An average

delay time of about 20 nanoseconds per carry

reduced the average add time to only 100 na-

noseconds versus 720 nanoseconds, yielding a

very simple and fast circuit.

The KAIO used essentially the same circuitry

but with significantly better packaging so that

automatic wire-wrap backpanels could be used.

Note that in Table 7, the existence of certain

semiconductors was the basis of new machines.

The TTL/H series logic appeared about 1969

and formed the basis of a machine (the KIIO)
with roughly the same power dissipation and

physical size as a KAIO, but with a factor of 2.2

more performance. In scientific applications re-

quiring double-precision computation, this per-

formance differential is much greater.

Ironically, the TTL/Schottky (TTL/S) series

was first available in production quantities at

about the time of the KIIO. The KIIO design

was started earlier and design options chosen so

as to preclude the subsequent advances in

speed, power, and density that the TTL/S gave.

The other important logic advances em-

ployed in the KIIO were the MSI register file

and associative memory packages. The register

file provided four sets of accumulators and thus

decreased the context switching time. (This

probably had a higher psychological than real

value but was useful where special devices were

operated on a high speed, real-time basis.) The

associative memory package permitted the con-

struction of a 32-word associative memory to

support a paged environment.

The KLIO provides almost a factor of 5 per-

formance improvement over the KAIO for pro-

grams using the basic instruction set. An even

larger performance improvement is realized for

COBOL or extended precision scientific pro-

grams. The organization and much of the base

work for the KLIO was done by Dave Poole,

Phil Petit, John Holloway, and Jack Wright at

the Stanford Artificial Intelligence Laboratory.

The KLIO is microprogrammed using a

memory based on the 1 Kbit bipolar RAM. A
cache memory is also constructed from the 1

Kbit chips. The KLIO is implemented in the

emitter coupled logic (ECL) lOK series rather

than in the TTL/Schottky of the original Stan-

ford design. It was felt that the ECL speed ad-

vantage with 3 nanoseconds gate delay versus 7

nanoseconds for Schottky was worth the extra

design effort especially because the ECL re-

quired more power and care to lay out the

board and backplane.

Fabrication

The Gardner-Denver automatic Wire-wrap
machine represented a significant advance in

the manufacture of machines. Automatic Wire-

wrap economically provided accurately wired

514 THE PDP-10 FAMILY

CO

o

E

u
lU

O

• O
E 0-

a
E

i< 2
• S

43

O

o

w

M

- ^
£ E

(/) E
^ (D— >

t °

X "g CO
DC O -
CO t w

a> 00

_i l:

O o

CO g

Q-'E

< <N

< 3

CM

d

Co .2 T^

q£
-^ U)
Q. W

E Z ^
o V =" <«

§ s-^5
® ^ CO Tt

a S5 ;^

i 5 + lO

V. — "*
s 2 ^

. ® T
CO 5 lO

C CM— a -^
"o !E T
2 V lo

THE EVOLUTION OF THE DECsystem-10 515

a

o

.E »

W 2

o >•
o o

lio

C
o
O

(0

o
a
Z

E

(A>
o
UJ

Q

c
»
E

E

(0

(Q© O
</5 ^

^ ° "5

^i±: CD ojoj^oQ-o c c

-^illill(0

2 ! ^ '^ -o

? "H ^ > c
i: O 03 S O
J3 £ E o ^

516 THE PDP-10 FAMILY

backpanels. As a more important side effect, it

made the high-volume, low-cost fabrication of

minicomputers possible! Some backpanel wir-

ing on the KIIO and KLIO processors using

twisted pairs cannot be done using the Gardner-

Denver machinery. For this, DEC developed a

semiautomatic wire-wrap machine which lo-

cates the pins and selects the wire length for an

operator.

Computer design aids have evolved to sup-

port computer implementations on an "as-

needed" basis, barely keeping ahead of the im-

plementations. These have included printed cir-

cuit board layout/routing, backplane layout/

routing, circuit/logic simulation, wire

length/logic delay checking, and various manu-

facturing aids. One notable exception to this

trend has been the Stanford University Draw-

ing System (SUDS) developed by the Standard

Artificial Intelligence Laboratory. SUDS was

used for drawing the entire KLIO design. The

design time and cost would have been signifi-

cantly greater ifSUDS had not been available.

Packaging

Semiconductor density is a major determi-

nant of the system size, and size in turn is a ma-

jor determinant of speed (e.g., shorter

interconnection paths). Seymour Cray stated in

a lecture given at Lawrence Livermore Labora-

tory (December 1974) that for each generation

of his large computers, the density has im-

proved by a factor of 5.

The packaging for the PDP-6 was identical to

that of the PDP-1, 4, and 5 and used a board

area of about 40 in^ with a 22-pin connector. A
logic density improvement of 2 was achieved

over the previous designs by using 6 special

function modules. However, this density turned

out to be too high for the number of pins. A
natural extension was a board twice as large

with 44 pins. The most interesting module was

the bit-slice of the working registers: Accumula-

tors, Multiplier-Quotient, and Memory Buffer.

This module required more than 44 pins, so the

extra signals were bused across the back of the

module. This busing increased module swap
time, and the mechanical coupling increased the

probability that fixing one fault would cause

another. Because of this, the designers of the

KAIO and KIIO became fearful of large boards.

Only with the KLIO in 1972 were large boards

reintroduced into the DECsystem-10. On the

other hand, large boards had been used in DEC
minicomputers since 1969. Multilayered boards

were required for the KLIO ECL logic. These

boards were adapted from the multilayered

boards developed for the TTL/S PDP-1 1/45

(1972).

Price/Performance

Surprisingly, over time, the various models of

the DECsystem-10 have been implemented at

an essentially constant cost. The option to ap-

ply technology at constant performance with re-

duced price was never examined as an

alternative strategy. In the minicomputer part

of the company, both alternatives were vigor-

ously pursued in order to provide a growing
business and stimulate design alternatives. The

relatively static DECsystem-10 strategy with

constant price stems, no doubt, from the highly

coupled interaction of: builders (wanting to go
on to provide the next highest level of perform-
ance which was the founding principle of the

group); the salespeople (many of whom came

from other companies and are only used to

working with a particular user class), users

(who want more performance so as to reduce

their overall cost/performance ratio), and mar-

keting (which integrates needs and alternatives).

This is illustrated in Figure 8. Here we give the

performance in terms of the number of general-

purpose users versus the system price.

Figure 9 gives a single price of the system for

each generation, together with the percentages

going of each for the system components. The

best cost/performance systems are shown (ex-

cept, in the case of the minimal PDP-6). Figure

10 gives the price of the various processors ver-

THE EVOLUTION OF THE DECsystem- 10 517

500 700 900 1100 1300

PRICE (KSI

Figure 8. Performance (in general purpose users)

versus price for each generation.

518 THE PDP-10 FAMILY

Ameio
4 X o.7-'^3
130% PRICE DECREASE
PER YEAR)

1972 1974
TIME (YEAR)

Figure 11. DECsystem- 10 primary

memory price per word versus time.

monitor of 25 percent per year, there was a pos-

itive improvement in the memory price per-

formance. In reahty, many functions for which

the user was explicitly responsible were moved
to the Monitor as basic operations. A similar

plot for secondary memory prices is given in

Figure 12.

CONCLUSIONS
We believe the existence of the DECsystem-

10 has been beneficial to the many environ-

ments for which it has provided real-time and

interactive computation, including the com-

puter science and computer engineering com-

munities. In turn, we have tried to respond to

the needs of these users. Its existence has also

been a positive force in encouraging alternative,

competitive products in what otherwise might
have been a dull, batch environment. The sys-

tem has also been used by and influenced mini-

computer (and now microcomputer)
development, including: hardware technology

(e.g., wire-wrap), support for machine devel-

opment (including simulation), and exemplary

design leading to timesharing systems (e.g.,

DEC'S TSS/8, RSTS) and user environments

(e.g., RT-11 and microcomputer systems).

We believe the key to the lO's longevity is its

basically simple, clean structure with ade-

quately large (one Mbyte) address space. In this

way, it has evolved easily with use and with

technology. An equally significant factor in its

success is a single operating system environ-

ment enabling user program sharing among all

machines. The machine has thus attracted users

who have built significant languages and appli-

cations in a variety of environments. These

user-developers are, therefore, the dominant

system architects-implementors.

In retrospect, the machine turned out to be

larger and further from a minicomputer than

we had expected. As such, it could easily have

died or destroyed the tiny DEC organization

that started it. We hope that this paper has pro-

vided insight into the interactions of its devel-

opment.

10K

S 8K

U 2K

% 8.000 X 0.8'-^ 3*3

(20% PRICE DECLINE
PER YEAR!

1972 1974

TIME (YEAR)

Figure 12. DECsystem- 10 secondary memory price per

Mwords versus time.

ACKNOWLEDGEMENTS

Dan Siewiorek deserves our greatest thanks for

helping with a complete editing of the text. The

referees and editors have been especially help-

ful. The important program contributions by
users are too numerous for us to give by name

but here are most of them: APL, BASIC,

BLISS, DDT, LISP, Pascal, Simula, SOS,

TECO, and Tenex. Likewise, there have been so

many contributions to the lO's architecture and

implementations within DEC and throughout

the user community that we dare not give what

would be a partial list.

An ISPS Primer for the

Instruction Set Processor Notation

MARIO BARBACCI

This appendix introduces the reader to the ISPS notation. Although some de-

tails have been excluded, it covers enough of the language to provide a "reading"

capability. Thus, although the primer by itself might not be sufficient to allow

writing ISPS descriptions, it should be detailed enough to permit the reading and

study of complex descriptions. We use the PDP-8 ISPS description as a source of

examples.
In the presentation of the PDP-8 registers and data-types the following conven-

tions are used: (1) names in upper case correspond to physical components on the

PDP-8 (e.g., program counter, interrupt lines, etc.); (2) names in lower case do not

have correspondent physical components (e.g., instruction mnemonics, instruc-

tion fields, etc.).

INSTRUCTION SET PROCESSOR DESCRIPTIONS

To describe the instruction set processor (ISP) of a computer, or any machine,

the operations, instructions, data-types, and interpretation rules used in the ma-

chine need to be defined. These are introduced gradually as the primary memory
state, the processor state, and the interpretation cycle are described. Primary

memory is not, in a strict sense, part of the ISP, but it plays such an important
role in its operation that it is typically included in the description. In general,

data-types (integers, floating-point numbers, characters, addresses, etc.) are ab-

stractions of the contents of the machine registers and memories. One data-type

that requires explicit treatment is the instruction, and the interpretation of in-

structions are explored in great detail.

519

520 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

Memory State

The description of the PDP-8 begins by specifying the primary memory that is

used to store data and instructions:

MXMemory[0:4095] <0: 1 1 > ,

The primary memory is declared as an array of 4,096 words, each 12 bits wide.

The memory has a name (M) and an alias (Memory). These aliases are a special

form of a comment and are useful for indicating the meaning or usage of a regis-

ter's name. As in most programming languages, ISPS identifiers consist of letters

and digits, beginning with a letter. The period character (.) is also allowed, to

increase the readability. The expression [0:4095] describes the structure of the

array. It declares the size (4,096 words) and the names of the words (0,1,...,

4094,4095).

The expression <0:11> describes the structure of each individual word. It de-

clares the size (12 bits) and the names of the bits (0,1, ...,10,11).*

Memory is divided into 128-word pages. Page zero is used for holding global

variables and can be accessed directly by each instruction. Locations 8 through 15

of page zero have the special property called auto indexing: when accessed in-

directly, the content of the location is incremented by 1. These regions of mem-

ory can be described as part of M as follows:

P.0\Page.Zero[0:127]<0:ll> := M[0:127]<0:11>,

A.I\Auto.Index[0.7]<0:ll> := M[8:15]<0:11>,

The word (and bit) naming conventions on the left-hand side of a field declara-

tion are independent from the word (bit) names used on the right-hand side.

A.I[0] corresponds to M[8], A.I[1] corresponds to M[9], and so on.

Processor State

The processor state is defined by a collection of registers used to store data,

instructions, condition codes, and so on during the instruction interpretation

cycle.

The PDP-8 has a 1-bit register (L) which contains the overflow or carry gener-

ated by the arithmetic operations, and a 12-bit register (AC) which contains the

result of the arithmetic and logic operations. The concatenation of L and AC

*It should be noted that bit and word "names" are precisely that, i.e., identifiers for the sub-

components of a memory structure. These "names" do not necessarily indicate the relative position

of the subcomponents. Thus, R<7:3> is a valid definition of a 5-bit register. The fact that the five

bits are "named" 7,6,5,4, and 3 should not be confused with the 7th, 6th, etc., positions inside the

register. Thus, bit 7 is the leftmost bit, bit 6 is located in the next position toward its right, etc., while

bit 3 is the rightmost bit.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 521

constitutes an extended accumulator LAC. The structure of the extended accu-

mulator is shown below:

LAC<0:12>,
L\Link<> := LAC<0>,
AC\Accumulator<0:ll> := LAC<1:12>,

The expression < > indicates a single, unnamed bit (L is only one bit long and

there is no need to specify a name for it.)

The Program Counter (PC) is used to store the address of the current instruc-

tion being executed as the machine steps through a program:

PC\Program.Counter<0: 1 1 >,

Twelve bits are needed in the PC to address all 4,096 locations of primary mem-

ory.

In the PDP-8, I/O devices are allowed to interrupt the central processor. When
a device requires service from the central processor, it emulates a subroutine call,

forcing the processor to execute an appropriate I/O subroutine. The presence of

an interrupt request is indicated by setting the INTERRUPT.REQUEST flag.

The processor can honor these requests or not, depending on the setting of the

INTERRUPT.ENABLE bit:

INTERRUPT.ENABLE< >,

INTERRUPT.REQUEST< >,

There are 12 console switches which can be read by the processor. These

switches are treated as a 12-bit register by the central processor:

SWITCHES<0:11>,

Instruction Format

As is the case with most data-types and registers on the PDP-8, instructions are

12 bits long:

i\instruction <0: 1 1 > ,

An instruction is a special kind of data-type. It is really an aggregate of smaller

information units (operation codes, address modes, operand addresses, etc.). The

structure of the instructions must be exposed by describing the format. Most

PDP-8 instructions contain an operation code and an operand address:

op\operation.code<0:2>
ib\indirect.bit< >

pb\page.0.bit< >

pa\page.address<0:6>

= i<0:2>,
= i<3>,
= i<4>,
= i<5:ll>,

522 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

The abstractions op, ib, pb, and pa allow the treatment of selected fields of the

PDP-8 instructions as individual entities.

PARTITIONING THE DESCRIPTION

In ISPS, a description can be divided into sections of the form:

** section.name **

< declaration>,

< declaration >,

** section.name **

<declaration>,

< declaration >,

Each section begins with a header, an identifier enclosed between ** and **. A
section consists of a list of declarations separated by commas. Section names are

not reserved keywords in the language; they are used to convey to the users of the

description some information about the entities declared inside the section. The

register and memory declarations presented so far could be grouped into the fol-

lowing sections:

**
Memory.State **

M\Memory[0:4095] <0: 1 1 > ,

P.0\Page.Zero[0:127]<0:ll> := M[0:127]<0:11>,

A.I\Auto.Index[0:7]<0:ll> := M[8:15]<0:11>,

** Processor.State **

LAC<0:12>,
L\Link<> := LAC<0>,
AC\Accumulator<0:ll> := LAC<1:12>,

PC\Program.Counter<0: 11 >,

RUN< >,

INTERRUPT.ENABLE< >,

INTERRUPT.REQUEST< >,

SWITCHES<0:11>,

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 523

** Instruction.Format **

i\instruction<0: 1 1 >,

524 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

EFFECTIVE ADDRESS

The effective address computation is an algorithm that computes addresses of

data and instructions:

** Effective.Address **

last.pc<0:ll>,

eadd\effective.address<0:ll> := Begin

Decode pb => Begin
:
= Begin

eadd = '00000 @ pa ,
! Page Zero

End
1 :

= Begin

eadd = last.pc<0:4> @ pa ! Current Page
End

End Next

If Not ib =$> Leave eadd Next

Ifeadd<0:8> Eqv#001 ^ Begin

M[eadd] = M[eadd] + 1 Next ! Auto Index

End

eadd = M[eadd]
End,

Since the memory of the machine is 4096 words long, addresses have to be 12

bits long. Of the 12 bits in an instruction, 3 bits have been allocated for the oper-

ation code (op), and there are only 9 bits (ib, pb, and pa) in the instruction register

left for addressing information. These bits, together with some other portions of

the processor state, are interpreted by the algorithm to yield the necessary 12 bits

of addressing.

Address Computation

Instructions and data tend to be accessed sequentially or within address clus-

ters. This property is called locality. The PDP-8 memory is logically divided into

32 pages of 128 words each. The concept of locality of memory references is used

to reduce the addressing information by assuming that data are usually in the

same page as the instructions that reference them. The pa portion of an instruc-

tion is the address within the current page. The pb portion on an instruction is

used as an escape mechanism to indicate when pa is to be used as an address

within page (M [0:127]) instead of the current page. The address of the current

instruction is contained in last.pc and is used to compute the current page num-

ber.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 525

The first step of the algorithm,

Decode pb =>> Begin
:
= Begin

eadd = '00000 @ pa,
*

! Page Zero

End
1 :

= Begin

eadd =
last.pc<0:4> @ pa ! Current Page

End
End Next

indicates a group of alternative actions, to be selected according to the value of

the expression following the Decode operator. The alternatives appear enclosed

between Begin and End and are separated by the comma character (,). The expres-

sions (0 :=) and (1 :
=

) are used to label the statements with the corresponding

value of pb. The alternative statements can be left unnumbered, in which case

they are treated as if they were labelled (0:=), (1:
=

), (2:=),..., etc.

The effective address (eadd) is built by concatenating a page number with the

page address (pa). The at sign character (@) of the operator is used to indicate

concatenation of operands. If pb is equal to 0, page is used in the computation.
If pb is equal to 1, the current page number is used instead.

Constants prefixed with the single quote character (') represent binary num-

bers. For example, '00000 represents a 5-bit string which is concatenated with the

7 bits of pa to yield the 12 bits needed.

The expression <0:4> is used to select bits 0,..,4 of last.pc. These 5 bits contain

the current page number, and, together with the 7 bits of pa, yield the necessary 12

bits.

Indirect Addresses

A full 12-bit target address can be stored in a memory location used as a

pointer, and the instruction only needs to specify the address of this pointer loca-

tion. Indirect addresses are specified via a bit in the instruction register (ib) that

indicates whether the address is direct (ib=0) or indirect (ib=l).

The second step of the algorithm.

If Not ib => Leave eadd Next

is separated from the previous by the operator Next. The statement(s) preceding

Next must be completed before the statement following it can be executed. The

'The transfer operator (
=

) modifies the memory or register specified on its left-hand side. If the right-

hand side has more bits than the left-hand side, the right-hand side is truncated to the proper size by

dropping the leftmost extra bits. If the right-hand side is shorter, enough bits are added on its left

until the length of the left-hand side is matched. Thus, the first conditional statement can be written

as := eadd =
pa.

526 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

first Step computed a preliminary effective address. The second step tests the value

of ib and if it is equal to 0, then the preliminary effective address is used as the real

effective address. If ib is equal to 1, the preliminary effective address is used to

access a memory location which contains the real effective address. In the former

case, the expression Leave eadd is used to indicate the termination of the pro-

cedure (this is similar to a RETURN statement in many programming lan-

guages).

Auto Indexing

Constants prefixed with the number sign (#) represent octal numbers. For ex-

ample, #001 represents the following 9-bit string: '000000001. The procedure
treats indirect addresses as special cases. If a prehminary effective address in the

range #00 10: #001 7 (8:15) is used as an indirect address (ib
=

1), the memory
location is first incremented and the new value used as the indirect address:

If eadd<0:8> Eqv #001 ^ Begin

M[eadd] = M[eadd] + 1 Next ! Auto Index

End

eadd = M[eadd]

By comparing the high order bits of eadd with #001 and ignoring the lower 3

bits, we are in fact specifying a range of addresses (#0010, #001 1, #0012,..., #0017).

Memory locations #0010:#0017 constitute the auto indexing registers.

Regardless of whether auto indexing takes place or not, the last step of the

algorithm uses the preliminary effective address (which could have been modified

by auto indexing) as the address of a memory location which contains the real

effective address: eadd = M[eadd].

INSTRUCTION INTERPRETATION

The instruction interpretation section describes the instruction cycle, i.e., the

fetching, decoding, and executing of instructions.

** Instruction.Interpretation
**

interpret := Begin

Repeat Begin
i
= M[PC]; last.pc

= PC Next

PC = PC + 1 Next

execute() Next

IfINTERRUPT.ENABLE And INTERRUPT.REQUEST => Begin

M[0] = PCNext
PC= 1

End
End

End,

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 527

The instruction cycle is described by a loop. The Repeat operator precedes a

block of statements that are to be continuously executed. The instruction cycle of

the machine consists of four steps:

1.

2.

3.

4.

A new instruction is fetched (i
= M[PC]).

The program counter is incremented (PC = PC + 1). It now points to the

next instruction. Under normal circumstances (i.e. unless a Jump takes

place), this will be the instruction to be executed next.

The instruction is executed (execute()).

Interrupt requests, if allowed, are honored. The cycle is then repeated.

The semicolon (;) separator is used to indicate concurrency, i.e., two statements

separated by (;) are executed concurrently:

i
= M[PC]; last.pc

= PC Next

Notice how the value of the program counter is saved in last.pc before it is

incremented. The effective address procedure relies on the fact that last.pc con-

tains the address of the current instruction.

The execute procedure describes the individual instructions:

execute := Begin

Decode op => Begin

#0\and

#l\tad

#2\isz

M[eadd] = M[eadd()] + 1 Next

If M[eadd] Eql => PC = PC + 1

End,

#3\dca

M[eadd()] = AC Next

AC =

End,

M[eadd()] = PCNext
PC = EADD + 1

End,

#5\jmp

#6\iot

#7\opr
End

End,

= AC = AC And M[eadd()],

= LAC = LAC + M[eadd()],

= Begin

:= Begin

:= Begin

= PC = eadd(),

=
input.output(),

=
operate()

528 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

Instruction mnemonics can be specified as aliases for the constants used to

specify the operation codes:

#3\dca := Begin

M[eadd()] = ACNext
AC =

End,

Operation Code 0\and: Logical And

If the operation code is equal to 0, the contents of the Accumulator (excluding
the L bit) are replaced by the logical product of the Accumulator and a memory
location. To indicate that the effective address computation must be executed in

order to obtain the memory address, eadd() is used.

Operation Code l\tad: Two's Complement Add

The tad instruction follows the pattern of the previous instruction. Notice,

however, that the complete Accumulator (including the L bit) is involved in the

operation. The L bit contains the overflow or carry out of the sign position of AC.

Operation Code 2\isz: Increment and Skip if Zero

This instruction is described in two consecutive steps. The first step indicates

that some memory location, specified by the effective address computation, will

be incremented by 1 . Notice the different uses of eadd in the statement:

M[eadd] = M[eadd()] + 1 Next

The effective address is computed once, eadd(), and is used to fetch the mem-

ory location, M[eadd()]. The result of the addition must be stored back in the

same memory location. This is indicated by using the effective address register,

eadd, on the left-hand side, M[eadd]. The eadd already contains the correct ad-

dress, and there is no need to recompute it. In fact, because of the auto indexing

operations performed during the effective address computation, the effective ad-

dress must be computed precisely once.

The second step of the instruction.

If M[eadd] Eql => PC = PC + 1

tests the result of the addition. If the result is equal to 0, the program counter is

incremented by one, thus in effect, skipping over the next instruction in sequence.

Once again, eadd is used instead of eadd() to avoid undesirable side-effects.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 529

Operation Code 3\dca: Deposit and Clear Accumulator

This instruction deposits the Accumulator in a memory location and then

clears the Accumulator (excluding the L bit).

Operation Code 4\jms: Jump to Subroutine

This instruction alters the normal sequence of instructions by modifying the

Program Counter so that the next instruction will not be the one following the

current instruction, but the one located at a memory location specified by the

effective address. The Program Counter is stored into the location preceding the

subroutine code (the result of eadd()). The Program Counter is then modified to

point to the first instruction of the subroutine (eadd + 1).

Operation Code 5\jmp: Jump

This instruction also modifies the normal sequence of instructions. It can be

used to jump to disjoint pieces of code. If we use ib=l and specify the address of

the location preceding the subroutine, the result of the effective address com-

putation yields the return address that was stored by the subroutine call.

Operation Code 6\iot: Input/Output

The input.output procedure describes two specific cases of I/O instruction,

namely, those used to control the interrupt mechanism:

input.output := Begin

Decode i<3: 11 > =^ Begin

#001\ion := Begin ! turn Interrupt ON
INTERRUPT.ENABLE =

1 Next

Restart interpret

End,

#002\iof := Begin ! turn Interrupt OFF
INTERRUPT.ENABLE =

End,

Otherwise := No.Op() ! not implemented
End

End,

The Otherwise operation can be specified in a Decode operation to indicate a

default action to be executed if none of the explicitly named cases (#001 or #002)

apply. All other I/O operations default to a predefined ISPS procedure

(No.Op()). This is done simply to keep the examples within the space limitations

of this appendix.

530 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

I/O operation #002 disables interrupts. It typically occurs as the first instruc-

tion of an interrupt handling routine. I/O operation #001 enables interrupts. It

typically occurs at the end of an interrupt handling subroutine. Its effect is de-

layed for one instruction (the return from the subroutine) to avoid losing the

return address if an interrupt were to occur immediately. This is achieved by

skipping over the last portion of the instruction interpretation cycle:

If INTERRUPT.ENABLE And INTERRUPT.REQUEST ^

The Restart interpret operation is used to indicate a return from the in-

put.output procedure, not to the place from were it was invoked (inside execute),

but to the beginning of the interpret procedure, thus bypassing the interrupt

trapping for one instruction.

Operation Code 7\opr: Operate

The Operate instruction encodes a large number of primitive micro-operations

in the address bits of an instruction. Some bits (e.g., cla) represent a micro-oper-

ation by themselves. Others (e.g., rt and ral) jointly represent a micro-operation.

There are several conditional skip micro-operations. These are grouped in a sepa-

rate procedure for readability:

skip< >,

skip.group := Begin

skip
= Next

Decode is =>> Begin ! invert skip condition

:= Begin
If snl And (L Eql 1) ^ skip

=
1

;

If sza And (AC Eql 0) => skip
=

1;

If sma And (AC Lss 0) ^ skip
= 1

End,
1 := Begin

IF szl@sna@spa Eql => skip
=

1;

If szl And (L Eql 0) => skip
= 1

;

If sna And (AC Neq 0) => skip
=

1;

If spa Aiid (AC Geq 0) ^ skip
= 1

End
End Next

Ifskip=»PC = PC + 1 !Skip

End,

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 531

Operate := Begin
Decode group => Begin

:= Begin
Ifcla=> AC =

0;

Ifcll^L = ONext
Ifcma^ AC = NotAC;
Ifcml => L = Not L Next

If iac ^ LAC = LAC + 1 Next

Decode rt =^ Begin
:= Begin

Ifrai=>LAC = LAC Sir 1;

Ifrar=>LAC = LAC Srr 1

End,

1 := Begin
Ifral=>LAC = LACSlr2;
Ifrar=>LAC = LAC Srr 2

End
End

End,

1 := Begin
Decode i<ll> => Begin

:= Begin

skip,group() Next

Ifcla=> AC =ONext
If osr =$> AC = AC Or SWITCHES;
Ifhlt=^RUN=0
End,

1 := Begin
Ifcla => AC = ONext

No.Op()

End
End

End
End

End

group 1

! rotate once or twice

! once

! twice

! groups 2 and 3

! group 2

! group 3

eae group

Several micro-operations can appear in the same instruction. Not all com-

binations are legal or useful. Micro-operations are executed at different points in

time thus allowing sequences of transformations applied to the Accumulator

and/or link bit. For instance, in the group 1 micro-operations, clearing AC/L is

done before complementing them; this is done before incrementing the combined

L@AC (LAC) register; and this in turn precedes the rotation of L@AC.

532 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

OTHER FEATURES OF ISPS

Not all the features of the notation have been presented in the example. This

section attempts to provide a list of the missing operations to aid understanding

of the larger descriptions in the book. A detailed explanation of the complete

language is in the reference manual [Barbacci et ai, 1977].

Constants

In general, a constant is a sequence of characters drawn from some alphabet
determined by the base of the constant. The base of a nondecimal constant is

given by a prefix character. The alphabets for the predefined bases in ISPS are:

Base Prefix Alphabet
2

'

0,1,?

8 # o!l!2,3,4,5,6,7,?

10 0,1,2,3,4,5,6,7,8,9,?

16
"

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,?

The question mark character (?) can be used to specify a "don't care" digit. Its

presence stands for any digit in the corresponding alphabet.

The length of a constant is measured in bits. Decimal constants are one bit

longer than the smallest number of bits needed to represent its value (beware that

the use of "don't care" (?) decimal digits results in constants of unspecified

length). Binary constants have one bit for each digit explicitly written. Octal con-

stants have three bits for each digit explicitly written. Hexadecimal constants have

four bits for each digit explicitly written:

Example

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 533

In all the signed representations, the sign bit is the leftmost position of the

operand (1 for negative numbers, for positive numbers). The above modifiers

can be attached to any arithmetic or relational operator to override a default.

They can also be attached to a procedure declaration to set a default throughout
the body. When attached to a section name the default applies to all the declara-

tions in the section:

test :
=

Begin {OC} ! Default for the body

End,

** Section. 1
**

{TC} ! Default for the section

X = Y + {SM} Z ! Instance

Always remember that the arithmetic representation is a property of the oper-

ator, not the operand. Thus, the same bit pattern can be treated as a two's com-

plement or an unsigned integer depending on the arithmetic context in which it is

used.

Sign Extension

All ISPS data operators define results whose length is determined by both the

lengths of the operands and the specific operator. Some operations require that

their operands be of the same length. This is usually accomplished by sign-extend-

ing the operands. In the context of unsigned magnitude arithmetic, sign-extension

is interpreted as zero-extension (i.e., padding with O's on the left). In one's and

two's complement arithmetic, the expansion is done by replication of the sign bit.

In sign magnitude arithmetic, the expansion is done by inserting Os between the

sign bit and the most significant bit of the operand.

Data Operators (in order of precedence)

Negation and Complement:
—

, NOT

Unary - generates the arithmetic complement of the operand (the operation is

invalid in unsigned arithmetic). The result is one bit longer than the oper-

and. The NOT operator generates the logical complement of the operand.
The result has the same length as the operand.

Concatenation: @

The @ operator concatenates the two operands. The length of the result is

the sum of the lengths of the operands.

534 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

Shift and Rotate: SIO, Sll, Sid, Sir, SrO, Sri, Srd, Srr

These operators shift or rotate the left operand the number of places speci-

fied by the right operand. The result has the same length as the left operand.

The operators have the format Sxy where x is either l(eft) or r(ight) to in-

dicate the direction of movement. The y is either 0, 1, d(uplicate), or

r(otate), to indicate the source of bits to be shifted in, Sxl shifts its left

operand, inserting Is in the vacant positions. SxO is similar to Sxl, but in-

serts Os. Sxd inserts copies of the bit leaving the position to be vacated (not

the bit being shifted out). Sxr inserts copies of the bit being shifted out (i.e.,

rotates the left operand).

Multiplication, Division, and Remainder: *, /, MOD

These operators compute the arithmetic product, quotient, and remainder

of the two operands, respectively. The lengths of the results are:

Operation Length of Result

 Sum of lengths

/ Left Operand (dividend)

MOD Right Operand (divisor)

Addition and Subtraction: +, —

The + and —
operators compute the arithmetic sum and difference of the

two operands, respectively. The shortest operand is sign-extended, and the

result is one bit longer than the largest operand.

Relational Operations: Eql, Neq, Lss, Leq, Gtr, Geq, Tst

These operations perform an arithmetic comparison between the two oper-

ands. The shortest operand is sign-extended, and the result is either 1 or 2

bits long. The first six operators (i.e., all except Tst) produce a 1-bit result

indicating whether the relation is True (I) or False (0). The Tst operator

produces a 2-bit result indicating whether the relation between the left and

right operands is Lss (0), Eql (1), or Gtr (2).

Conjunction and Equivalence: And, Eqv

These operators produce the logical product and coincidence operations of

the two operands. The shortest operand is zero-extended, and the result is as

long as the largest operand.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 535

Disjunction and Nonequivalence: Or, Xor

These operators produce the logical sum and difference operations of the

two operands. The shortest operand is zero-extended, and the result is as

long as the largest operand.

Logical and Arithmetic Assignment: =, -

The logical assignment operator (=) truncates or zero-extends the source

(right operand) to match the length of the destination (left operand). The
arithmetic assignment operator {*-) truncates or sign-extends the source to

match the length of the destination.

The PMS Notation

J. CRAIG MUDGE

The PMS notation provides a structural representation of a digital computer

system as a graph which has the system's components as the nodes and informa-

tion flows along the branches. These aspects of a digital computer system level

provide a description of the gross structure, including the amounts of information

held in various components, the distribution of control that accomplishes these

flows, and other interesting parameters (e.g., technology, function, cost, reliabil-

ity). Only those aspects of the notation that are used in this book are described; a

complete description is given in Bell and Newell [1971].

PMS PRIMITIVES

In PMS there are seven basic component types, each distinguished by the kinds

of operations it performs:

Memory, M. A component that holds or stores information (i.e., /-units) over

time. Its operations are reading /-units out of the memory and writing /-units into

the memory. Each memory that holds more than a single /-unit has associated

with it an addressing system by means of which particular /-units can be desig-

nated or selected. A memory can also be considered as a switch to a number of

submemories. The /-units are not changed in any way by being stored in a mem-

ory.

Link, L. A component that transfers information (i.e., /-units) from one place

to another in a computer system. It has fixed ports. The operation is that of

transmitting an /-unit (or a sequence of them) from the component at one port to

the component at the other. Again, except for the change in spatial position, there

is no change of any sort in the /-units.

537

538 THE PROCESSOR-MEMORY-SWITCH (PMS) NOTATION

Control, K. A component that evokes the operations of other components in

the system. All other components are taken to consist of a set of discrete oper-

ations, each of which, when evoked, accomplishes some discrete transformation iz_

of state.

With the exception of a processor, P, all other components are essentially pas-

sive and require some other active agent (a K) to set them into small episodes of

activity.

Switch, S. A component that constructs a link between other components, i

Each switch has associated with it a set of possible links, and its operations consist

of setting some of these links and breaking others.

Transducer, T. A component that changes the /-unit used to encode a given

meaning (i.e., a given referent). The change may involve the medium used to

encode the basic bits (e.g., voltage levels to magnetic flux, or voltage levels to

holes in a paper card), or it may involve the structure of the /-unit (e.g., bit-serial

to bit-parallel). Note that T's are meaning-preserving (in number of bits), since

the encodings of the (invariant) meaning need not be equally optimal.

Data-operation, D. A component that produces /-units with new meanings. It

is this component that accomplishes all the data-operations, e.g., arithmetic,

logic, shifting, etc.

Processor, P. A component that is capable of interpreting a program in order

to execute a sequence of operations. It consists of a set of operations of the types C.

already mentioned (M, L, K, S, T, and D) with the control necessary to obtain

instructions from a memory and interpret them as operations to be carried out

Each component has a set of attributes and associated values and takes on the h
f"™'-

H - IvUKKCtx ^ C- O^JjL ..

^

> -

X(a,:v|;a2:v2;...)-

There are alternative, shorthand ways of saying the same thing when the attri-

bute names are clear. For example:

M(function :primary) Complete specification.

M(primary) Drop the attribute name function, since it can be inferred

from the value.

M.primary A value can be concatenated with a component name us-

ing a dot convention.

M.p Use an explicitly given abbreviation, namely, primary\p

(only if it is not ambiguous).

THE PROCESSOR-MEMORY-SWITCH (PMS) NOTATION 539

\^

L\ Link (e.g.. Unibus)

KioM/O Controller

MC'M.cache cache memory
MpM.primary primary or program memory (e.g., core)

Ms M secondary secondary memory (e.g., disk)

Mt M.tertiary
Pc P.central central processor
SSwitch (e.g.. multiplexer)
T Transducer (e.g., typewriter)

Figure 1. An example of a PMS diagram of a computer, C.

Mp Drop the concatenation if it is not needed to recover the

component name.

Components of the seven types can be connected to make stored program com-

puters, abbreviated by C, as shown in Figure 1 .

Performance
C. GORDON BELL, J. CRAIG MUDGE

and JOHN E. McNAMARA

Performance parameters are a combination of architecture (the ISP), hardware

implementation, and resources (the PMS structure) being acted on by programs

(the use). Simplistic hardware measures, such as instruction times, can be used to

characterize machine performance for many cases. However, the ultimate per-

formance parameters have to be based on actual use parameters, otherwise there

is no way to correlate the primitive hardware measures to real performance.
Benchmarks of synthetic or real workload provide the only real test by which

performance can be compared. These might include standardized benchmarks

such as Whetstones for the algorithmic scientific languages and COBOL bench-

marks for commercial applications.

When one measures performance, there is a tacit assumption that sufficient

software exists to exploit a hardware structure, and that the transformation from

the basic hardware machine (the macromachine) to the user machine (as provided

by a language such as COBOL or FORTRAN) is relatively constant across vari-

ous architectures. As each level is crossed, a transformation requiring com-

putational work takes place. The form of the work with compiled languages is

direct execution via the processor and run-time support program. With inter-

preted languages, the processor executes an interpretation program which in-

directly interprets the data (i.e., final program).
At the lowest level, the internal micromachine provides the architectural fa-

cade, the ISP, operating at roughly 10 times the speed of the macromachine.

Thus, a macromachine executing 1 million instructions per second may have an

effective microcycle time of 100 nanoseconds for executing 10 million micro-

instructions per second. At the next level, a macromachine (ISP) executing 1 mil-

lion instructions per second is capable of perhaps 0.1 to 0.25 million higher level

FORTRAN language statements (instructions) per second depending on the mix

of built-in functions and external functions called.

541

542 PERFORMANCE

It is difficult to use the simplistic constant ratio measures across each level-of-

interpretation when comparing machines of differing classes (e.g., micro to super)

because there is no consistency of data-types (e.g., micros started out with no

built-in real arithmetic at a time when minis included them). However, for ma-

chines within a class (e.g., mini) where the data-types are implied by the class

name, simplistic comparison is probably all right, since the two machines most

likely have about the same data-types. Hence a count of the number of data-types

reflecting the built-in operations is one of the more significant architectural per-

formance indicators, whether it be for a micromachine, macromachine, or a lan-

guage machine.

PMS (RESOURCES) PERFORMANCE PARAMETERS

The PMS structure, with the corresponding attributes determining perform-
ance (memory cycle time, processor execution rate), provides the basis for under-

standing machines and comparing them with each other. Figure 1 gives a PMS
diagram of a basic computer, with the parameters that, to a first approximation,
characterize performance. Alternatively, one might use a more descriptive, or

tabular, form; but the goal is to provide a structural/performance basis for defin-

ing parameters and comparing and specifying the finite resources of the computer
so that performance can be determined against actual workload.

It is imperative to consider the resource constraints and the effect of their inter-

action as each layer of a machine is designed. For example, a certain line printer

requires buffer space (memory size) and central processing time which is then

unavailable at the next machine level (e.g., FORTRAN).
Bell and Newell [1971:52] argued that a machine (at any level) can be described

with any number of parameters, and carried out the exercise for up to five param-
eters (Table 1).

Information rate between the processor and memory is used as the processor

speed indicator instead of the more conventional instructions per second. Com-

pound indicators such as the product of processor speed times memory size to

indicate basic computational performance were not allowed.

The example in Table 2 shows three different architectures with two implemen-
tations of a stack architecture. One has the stack in the primary memory (Mp),
and the other assumes the stack is in the processor (Pc), using fast registers. The
hardware implementations are held roughly constant (the processor to primary

memory data rate) and the architecture is varied in order to compare the effect on

performance. Note the difference in the various measures in what should funda-

mentally be about the same performance for a simple benchmark problem.
The statement execution rate (the actual performance) is the highest for the 3-

address machine. In contrast, the conventional instructions per second measure

shows the 3-address machine to have the lowest performance (by a factor of 4). A
more subtle measure, operation rate, is correlated with the true benchmark state-

ment execution rate. It should be noted (ignoring the first machine, a stack ma-

chine with stack top in primary memory) that the information rate is a good

PERFORMANCE 543

performance indicator compared to the conventional, but poor, instruction rate

measure. For more unconventional machines, instructions per second tends to

become a significantly poorer measure. The various vector/array machines (e.g.,

ILLIAC IV, CDC STAR, CRAY-1) have single instructions to operate on at least

64 operands per instruction; hence instructions per second would be a poor mea-

sure. Hand-held calculators have single instructions such as Sin, Polar-to-Carte-

sian coordinate conversion; using anything but a final benchmark problem would

be unfair. Accesses per second used here are as a processor performance measure.

Mp(Size:(bvtes):

speed :*(bv/s)

LINKS FOR
INFORMATION
FLOW

Pc(speed ; (accesses/s);

data-types *:(#);

context-sw-rate:*

(#/s))

MsCSize: (bytes);

speed-range*: (by/si;

packing*;(By/rec))

REMOVABLE/
'not REMOVABLE

COMMUNICATION
WITH:

T.human

(spe«d:(by/sl:
media*: (name I

direction:

(hd I fd I sx))

T communications

(spead:(by/s)l

COMPUTERS VIA
-COMMUNICATION
LINKS

T external

(speed :(by/s);

media*:(name))

EXTERNAL
ELECTRO
MECHANICAL
PROCESSES

COMMUNICATION 1

'SECONDARY MEASURES

Figure 1. Basic PMS computer structure model with

six relevant performance/structure dimensions.

544 PERFORMANCE

Table 1 . Characterizing Computer Systems With 1 , 2, 3, 4, or 5 Parameters

Number of

Parameters

Allowed

PERFORMANCE 545

+
00

i

<
c
o
*co
(0
«
a
K
UJ

c

9
Q.

C

M
«
C
!E
u

M
3
_o

(Q

>

O

o
o
c
(S

E
o

9
a.

CM

9

a
I-

o
<
CO

o
oc

<
o
c
e

o
a.

j£ .E

Q.

ji .E

00

546 PERFORMANCE

secondary memory transfers and external interface transfers. For file systems

which require multiple accesses to secondary memory for single items, the file

access rate capability is needed in order to compute performance. Similarly, for

multiprogrammed systems which use secondary memory to hold programs, the

access rate is needed.

Communications capability with humans, other computers, and other electron-

ically encoded processes are equally important structure and performance attri-

butes. Each channel (e.g., a typewriter) has a certain data rate and direction (full

duplex for simultaneous two-way communication). Collectively, the data rates

and the number of channels connected to each of the three different environments

(people, computers, electronically encoded processes) signify quite different styles

of computing capability, structure, and, ultimately, use.

ISP (ARCHITECTURE) PARAMETERS

While the hardware structure and operation rates are the principal performance

determinants, the architecture is also important. Within a given machine class

(say minis), architecture has little effect on performance if the data-types are em-

bedded. The values for the data-types dimension in order of increasing complexity

are roughly:

word

integer

bit vector

instruction

character

floating or character string (depending upon scientific or commercial use)

program (including lists, stacks)

word vector

arrays

However, it is difficult to order the dimensions, except by complexity, because

performance is determined by whether a given problem requires the embedded

data-type.
In the U. S. Defense Department's Computer Family Architecture (CFA) study

[Barbacci et al.. 1911a; Burr et al, 1977; Fuller et al. 1911a; Fuller et al.. 1977b]

which leads to the selection of the PDP-11 as the standard architecture, bench-

marking was used to compare several architectures.

The measures were the number of bits statically required to encode the al-

gorithm {S measure) and the number of bits that dynamically flow between the

processor and primary memory (M measure). A third measure gave the activity of

the internal register processor {R measure).

The benchmarks (see Table 3; from Fuller et al [1977b: 149]), oriented to real-

time use were each programmed with assembly languages. The resultant pro-

grams were run on a simulator (instrumented to provide the 5, A/, and R mea-

sures) that interpreted the formal ISPS descriptions of the machines.

PERFORMANCE 547

Table 3. Test Programs

1 . I/O kernel, four priority levels. Requires the processor to field interrupts from four devices,

each of which has its own priority level. While one device is being processed, interrupts from

higher priority devices are allowed.

2. I/O kernel, FIFO processing. Also fields interrupts from four devices, but without consid-

eration of priority level. Instead, each interrupt causes a request for processing to be queued;

requests are processed in FIFO order. While a request is being processed, interrupts from

other devices are allowed.

3. I/O device handler. Processes application programs' requests for I/O block transfers on a

typical tape drive, and returns the status of the transfer upon completion.
4. Large FFT. Computes the Fast Fourier Transform of a large vector of 32-bit floating-point

numbers. This benchmark exercises the machine's floating point instructions, but principally

tests its ability to manage a large address space.

5. Character search. Searches a potentially large character string for the first occurrence of a

potentially large argument string. It exercises the ability to move through character strings

sequentially.

6. Bit test, set, or reset. Tests the initial value of a bit within a bit string, then optionally sets or

resets the bit. It tests one kind of bit manipulation.

7. Runge-Kutta integration. Numerically integrates a simple differential equation using third-

order Runge-Kutta integration. It tests floating-point arithmetic.

8. Linked list insertion. Inserts a new entry in a doubly linked list. It tests pointer manipulation.
9. Quicksort. Sorts a potentially large vector of fixed-length strings using the Quicksort al-

gorithm. Like FFT, it tests the ability to manipulate a large address space, but it also tests the

ability of the machine to support recursive routines.

10. ASCII to floating point. Converts to ASCII string to a floating-point number. It exercises

character-to-numeric conversion.

1 1 Boolean matrix transpose. Transposes a square, tightly packed bit matrix. It tests the ability

to sequence through bit vectors by arbitrary increments.

12. Virtual memory space exchange. Changes the virtual memory mapping context of the

processor.

The CFA project also developed a single architectural measure based on a

weighted average of various ISP parameters. The weightings were determined by
the CFA user community, and each parameter was evaluated in comparison with

several competitive architectures. The parameters and their weights are given in

Table 4 from [Fuller et al. 1977a: 140-144].
The measures are defined so that computer architectures maximize some and

minimize others. The measures that an architecture should maximize are V\, V2,

P\, Pi-, U, K, B\, B2, and D; the measures that should be kept to a minimum are

CSi, CS2, CMi, CM2, I, L, J\, and /2- In the composite measures, a maximal

measure, the inverses of those measures to be minimized were used.

Lloyd Dickman, of DEC, calculated the measures for four DEC computers as

follows:

VAX- 11

548 PERFORMANCE

Table 4. Criteria for CFA Evaluation

Absolute Criteria

1. Virtual memory support. The architecture must support a virtual-to-physical translation

mechanism.

2. Protection. The architecture must have the capability to add new, experimental (i.e., not

fully debugged) programs that may include I/O without endangering reliable operation of

existing programs.
3. Floating-point support. The architecture must explicitly support one or more floating-

point data-types with at least one of the formats yielding more than 1 decimal digits of

significance in the mantissa.

4. Interrupts and traps. It must be possible to write a trap handler that is capable of

executing a procedure to respond to any trap condition and then resume operation of the

program. The architecture must be defined such that it is capable of resuming execution

after any interrupt.

5. Subsetability. At least the following components of an architecture must be able to be

factored out of the full architecture:

Virtual-to-physical address translation mechanism

Floating-point instructions and registers (if separate from general-purpose registers)

Decimal instructions set (if present in full architecture)

Protection mechanism

6. Multiprocessor support. The architecture must allow for multiprocessor configurations.

Specifically, it must support some form of "test-and-set" instruction to allow the imple-

mentation of synchronization functions such as P and V.

7. Controllability of I/O. A processor must be able to exercise control over any I/O proces-

sor and/or I/O controller.

8. Extendability. The architecture must have some method for adding instructions to the

architecture consistent with existing formats. There must be at least one undefined code

point in the existing operation code space of the instruction formats.

9. Read-only code. The architecture must allow programs to be kept in a read-only section

of primary memory.

Quantitative Criteria Weight (%)

1. Virtual address space.

V'\ : The size of the virtual address space in bits. 4.3

V2: Number of addressable units in the virtual address space. 5.3

2. Physical address space.

P] : The size of physical address space in bits. 6.1

P2'- The number of addressable units in the physical address space. 5.1

3. Fraction of instruction space unassigned. 6.0

4. Size of central processor state.

CS 1 : The number of bits in the processor state of the full architecture. 4.9

CS2 The number of bits in the processor state of the minimum subset 3.7

of the architecture (i.e., without Floating-Point, Decimal, Protection, or

Address Translation Registers)

PERFORMANCE 549

Table 4. Criteria for CFA Evaluation (Cont)

Quantitative Criteria Weight (%)

CM'\. The number of bits that must be transferred between the pro- 6.0

cesser and primary memory to first save the processor state of the full

architecture upon interruption and then restore the processor state

prior to resumption.

CMx The measure analogous to CMy for the minimum subset of the 4.5

architecture.

5. Virtualizability.

K is unity if the architecture is virtualizable as defined in Popek and 5.6

Goldberg [19741; otherwise K is zero.

6. Usage base.

fl-|: Number of computers delivered as of the latest date for which 3.1

data exists prior to 1 June 1976.

Bx Total dollar value of the installed computer base as of the latest 2.5

date for which data exists prior to 1 June 1976.

7. I/O initiation.

/: The minimum number of bits which must be transferred between 12.4

main memory and any processor (central or I/O) in order to output one

8-bit to a standard peripheral device.

8. Direct instruction addressability.

D: The maximum number of bits of primary memory which one in- 10.2

struction can directly address given a single base register which may
be used but not modified.

9. Maximum interrupt latency.

Let L be the maximum number of bits that may need to be transferred 9.2

between memory and any processor (CP, IOC, etc.) between the time

an interrupt is requested and the time that the computer starts pro-

cessing that interrupt (given that interrupts are enabled).

10. Subroutine linkage.

J-\ : The number of bits that must be transferred between the processor 6.3

and memory to save the user state, transfer to the called routine, re-

store the user state, and return to the calling routine, for the full archi-

tecture. No parameters are passed.

J2. The analogous measure to CS1 above for the minimum archi- 4.5

tecture (e.g., without Floating-Point registers).

ACTUAL (COMPOUND PMS/ISP) PERFORMANCE MEASURE

In order to measure the performance of a specific computer (e.g., a PDP-

11/55), it is necessary to know the ISP, the hardware performance, and the fre-

quency of use for the various instructions. The execution time 7 is the dot product
of the fractional utilization of each instruction Ui times the time to execute each

instruction Ti.

550 PERFORMANCE

There are three ways to estimate the instruction utilization U and, hence, ob-

tain T - each providing increasingly better answers. The first defines either a

typical or average instruction. The second uses standard benchmarks to charac-

terize a machine's performance precisely. In this way, machines can be compared
with an absolute measure. Finally, since the actual use has not been characterized

in terms of the standard benchmark (and may even be difficult to characterize in

terms of it), a specific unique benchmark may be necessary. Such a character-

ization is quite possibly needed for real-time and transaction processing where

computer selection and installation is predicated on the job.

TYPICAL INSTRUCTIONS
The simplest, single parameter of performance is the instruction time for some

simple operation (e.g., add). These were used in the first two computer gener-

ations when high level languages were less used. Such a metric is an approx-
imation to the average instruction time and assumes that all machines have about

the same ISP and thus there is little difference among instructions, or that a spe-

cific data-type is used more heavily than another, or that a typical add time will be

given (e.g., the operand is in a random location in primary memory call rather

than being cached or in a fast register).

Although it is possible to take the average instruction time by executing one of

every possible instruction, since the instruction use depends so much on the data

interpreted, this average is relatively meaningless. A better measure is to keep
statistics about the use of all programs and to give the average instruction time

based on use on all programs. Again, such a measure, while useful for comparing
two machines' implementations of models of the same architecture, is relatively

useless for particular practices.

Many years ago, there were attempts to make better characterizations by

weighting instruction use (i.e., forming a typical U) as to what each one did (e.g.,

floating point versus indexing and character handling) to give a better perform-
ance measure. Instruction mixes were developed that began to better evaluate

performance. These mixes, from Bell and Newell [1971:50], are given in Table 5.

The Gibson mix, best known, is still used even today. It has a decidedly com-

mercial flavor and quite possibly reflects the proportion of machines executing

commercial, as opposed to scientific, mixes with character operations, switching,

and control, where proportionally more integer and floating-point data-types are

used. Such mixes are still better approximations than a single instruction average,

because use enters in. Note that if the data-type operation is not present in the

machine, the programmed subroutine time must be given
-

typically a factor of

10-20 times greater than for built-in operations.

STANDARD BENCHMARKS
The best estimate of real use comes from carefully designed standard bench-

marks that are understood and that are used by other machines. Several organiza-

PERFORMANCE 551

tions, particularly those that purchase or use many machines extensively, have

one or more programs that they believe characterize their own workload.

Whether a standard benchmark can be of value in characterizing performance

depends on the degree that it is typical of the actual use of the computer. A further

advantage of benchmarks is that they are the language that the computer is to use,

and, hence, reflect the application and characterize the language machine archi-

tecture. To illustrate the variability in the scientific FORTRAN benchmark met-

rics, the performance of a number of machines (VAX-11/780 with floating-point

accelerator option, PDP- 11/70, and DECSYSTEM 2060), executing about a

dozen such benchmarks, is compared in Figure 2. Two scientific benchmarks of

the National Physical Laboratory in the United Kingdom [Curnow and Wich-

Table 5. Instruction-Mix Weights for Evaluating Computer Power

552 PERFORMANCE

EXACT USE CHARACTERIZATION

If a machine has to be fully characterized before installation, there is no alter-

native to running the exact problem which will be run on the final system. This is

the most expensive alternative to characterize performance and should be avoided

because of the dynamic nature of use. Showing that an application yields a given

performance on a particular machine is a weak guarantee of performance if any

part of the problem changes.

3 2.0

4.0

[Advanced Micro Devices, Inc., 1975] AM 2900

Bipolar Microprocessor Circuits. Advanced Mi-

cro Devices, Inc., Sunnyvale, Calif. 1975.

[Advanced Micro Devices, Inc., 1977] AM 2900

Bipolar Microprocessor Family. Advanced Micro

Devices, Inc., Sunnyvale, Calif. 1977.

[Allmark and Lucking, 1962] Allmark, R.H., and
J.R. Lucking: Design of an Arithmetic Unit In-

corporating a Nesting Store. Proc. IFIP Congr.

pp. 694-698, 1962.

[Almes et ai, 1975] Almes, G.T., P.J. Drongowski,
and S.H. Fuller: Emulating the Nova on the PDP
11/40: A Case Study. Proc. IEEE Compcon
11:53-56, Sept. 1975.

[Amdahl et ai. 1964] Amdahl, G.M., G.A. Blaauw,
and F.P. Brooks, Jr.: Architecture of the IBM

System/360. IBM J. Res. Dev. 8(2):87-101, April
1964.

[Arbuckle, 1966] Arbuckle, R.A.: Computer Analy-
sis and Thruput Evaluation. Comput. Automat.

15(l):12-15and 19, Jan. 1966.

[Asimow, 1962] Asimow, M.: Introduction to Design.

Englewood Cliffs, N.J., copyright
® Prentice-Hall,

Inc., 1962.

[Balas and Padberg, 1976] Balas, E., and M. Pad-

berg: Set Partitioning
- A Survey. SIAM Rev.

I8(4):71 1-760, Oct. 1976.

[Barbacci et ai, 1977] Barbacci M.R., G.E. Barnes,
R.G. Cattell, and D.P. Siewiorek: The ISPS Com-
puter Description Language. Carnegie-Mellon

University, Department of Computer Science,

Pittsburgh, technical report, August 14, 1977.

[Barbacci et al.. 1977a] Barbacci, M.R., D. Siewio-

rek, R. Gordon, R. R. Howbrigg, and S. Zucker-

man: An Architectural Research Facility
- ISP

Descriptions, Simulation, Data Collection. Cont.

Proc. AFIPS NCC, pp. 161-173, 1977.

[Barnes et ai. 1968] Barnes, G., R. Brown, M. Kato,
D. Kuck, D. Slotnick, and R. Stokes: The

ILLIAC IV Computer. IEEE Trans. Comput.
C-1 7:746-757, Aug. 1968.

[Bartee et al, 1962] Bartee, T.C., I.L. Lebow, and

I.S. Reed: Theory and Design of Digital Machines.

New York, McGraw-Hill, 1962.

[Baskett and Smith, 1976] Baskett, F., and A.J.

Smith: Interference in Multiprocessor Computer
Systems with Interleaved Memory. Commun.
ACM 19(6):327-334 June, 1976.

[Baudet, 1976] Baudet, G.: Asynchronous Iterative

Methods for Multiprocessors. Carnegie-Mellon

University, Department of Computer Science,

Pittsburgh, technical report, Nov. 1976.

[Beckman et al., 1961] Beckman, P.S., F.P. Brooks,

Jr., and W.J. Lawless: Developments in the Log-
ical Organization of Computer Arithmetic and

Control Units. Proc. //?£ 49(1):53-66, Jan. 1961.

[Bell et al., 1969] Bell, C.G., A.N. Habermann, J.

McCredie, R. Rutledge, and W. Wulf: Computer
Networks. Computer Science Research Review.

Pittsburgh, Carnegie-Mellon University, 1969.

[BeW etal., 1970] Bell,C.G., R. Cady, H. McFarland,
B. Delagi, J.F. O'Loughlin, and R. Noonan: A
New Architecture for Minicomputers -The DEC
PDP-11. Conf. Proc. AFIPS SJCC 36:657-675,

1970. Reprinted as Chapter 9 of this text.

553

554 BIBLIOGRAPHY

[Bell and Newell, 1970] Bell, C.G., and A. Newell:

The PMS and ISP Descriptive Systems for Com-

puter Structures. AFIPS Conf. Proc. SJCC
36:351-374, 1970.

[Bell and Freeman, 1971] Bell, C.G., and P. Free-

man: Cai-A Computer Architecture for AI Re-

search. AFIPS Conf. Proc. SJCC. 38:779-790,

Spring 1971.

[Bell and Casasent, 1971] Bell, C.G., and D. Casa-

sent: Implementation of a Buffer Memory in

Minicomputers. Computer Design, pp. 83-89,

Nov. 1971.

[Bell and Grason, 1971] Bell, C.G., and J. Grason:

Register Transfer Module Design Concept. Com-

puter Design, pp. 87-94, May 1971.

[Bell and Newell, 1971] Bell, C.G., and A. Newell:

Computer Structures: Readings and Examples.
New York, McGraw-Hill, 1971.

[Bell and Newell, 1971a] Bell, C.G., and A. Newell:

A Panel Session - Computer Structure - Past,

Present and Future, Possibilities for Computer
Structures. AFIPS Conf. Proc. FyCC 39:387-396,

1971.

[Bell et ai. 1971] Bell, C.G., P. Freeman, M. Bar-

bacci, S. Bhatio, and W. Broodle: A Computing
Environment for AI Research - Overview, PMS,
and Operating System Considerations. Carnegie-

Mellon University, Department of Computer Sci-

ence, AD-737 531, Pittsburgh, technical report.

May 1971.

[Bell et ai, 1972] Bell, C.G., J. Grason, S. Mega, R.

Van Naarden, and P. Williams: The Description

and Use of the DEC Register Transfer Modules

(RTMs). IEEE Trans. Comput., pp. 495, May
1972.

[Bell et ai, 1972a] Bell, C.G., J. Grason, and A.

Newell: Designing Computers and Digital Systems

Using PDP-16 Register Transfer Modules. May-
nard, Mass., Digital Press, 1972.

[Bell et ai, 1972b] Bell. C.G., R. Chen, S. Rege: Effect

of Technology on Near-Term Computer Struc-

tures. IEEE Comp. 5(2}:29-38, March-April,
1972.

[Bell, J., 1973] Bell, J.R.: Threaded Code. Commun.
ACM 16(6):370-372, June 1973.

[Bell, et ai, 1973] Bell, C.G., R.C. Chen, S.H. Fuller,

J. Grason, S. Rege, and D.P. Siewiorek: The Ar-

chitecture and Applications of Computer Mod-
ules: A Set of Components for Digital Design.
IEEE Compcon 73:177-180, March 1973.

[Bell et ai, 1974] Bell, J., D. Casasent, and C.G. Bell:

An Investigation of Alternative Cache Organiza-
tions. IEEE Trans. Comput. C-23(4):346-351,

April 1974.

[Bell and Strecker, 1976] Bell, C.G., and W.D. Stre-

cker: Computer Structures: What Have We
Learned from the PDP-1 1? Proc. Conference: 3rd

Annual Symposium on Computer Architecture,

IEEE and ACM, 1976.

[Bell Laboratories, 1975] Bell Laboratories: The

Safeguard Data- Processing System: An Experi-

ment in Software Development. Bell Syst. Tech.

J., special supplement, 54:S199-S210, 1975.

[Best, 1957] Best, R.L.: Memory Units in the Lincoln

TX-2, Proc. WJCC. pp. 160-167, 1957.

[Bhandarkar, 1978] Bhandarkar, D.P.: Dynamic
MOS Memories: Serial or Random Access? IEEE

Compcon Digest of Papers, pp. 162-164, Feb.

1978.

[Blaauw, 1970] Blaauw, G.A.: Hardware Require-

ments for the Fourth Generation. In Fourth Gen-

eration Computers: User Requirements and

Transition. F. Gruenberger (ed.), Englewood
Cliffs, N.J., Prentice-Hall, pp. 155-168, 1970.

[Blaauw and Brooks, in preparation] Blaauw, G.A.,

and F.P. Brooks, Jr.: Computer Architecture, in

preparation.

[Bobrow et ai, 1972] Bobrow, D.G., J.D. Burchfiel,

D.L. Murphy, and R.S. Tomlinson: TENEX, A
Paged Time Sharing System for the PDP-10.

Comm. ACM 15(3): 135-143, March 1972.

[Buchholz, l962]Buchholz, W. (ed.): Planning a

Computer System. IBM Corp. New York,

McGraw-Hill, 1962.

[Bullman, 1977] Bullman, D.M. (ed.): Stack Com-

puters. IEEE Comput. 10(5): 14-52, May 1977.

[Burks et ai, 1962] Burks, A.W., H.H. Goldstine,

and J. Von Neumann: Preliminary Discussion of

the Logical Design of an Electronic Computing
Instrument, pt. II. Datamation 8(10):36-41, Oct.

1962.

BIBLIOGRAPHY 555

[Burr et ai. 1977] Burr, W.E., A.H. Coleman, and
W.R. Smith: Overview of the Military Computer
Family Architecture Selection. AFIPS Proc. Cont.

NCC. pp. 131-137, 1977.

[Case and Padegs, 1978] Case, R.P., and A. Padegs,
Architecture of the IBM System/370. Commun.
ACM. 21(l):73-96, Jan. 1978.

[Chaney and Molnar, 1973] Chaney, T.J., and C.E.

Molnar, Anomalous Behavior of Synchronizer
and Arbiter Circuits. IEEE Trans. Comput. C-

22(4):42 1-422, April 1973.

[Chu, 1970] Chu, Y.: Introduction to Computer Or-

ganization. Englewood Cliffs, N.J., Prentice-Hall,
1970.

[Clark, 1957] Clark, W.A.: The Lincoln TX-2 Com-
puter Development. Proc. WJCC. pp. 143-145,
1957.

[Clark and Molnar, 1964] Clark, W.A., and C.E.

Molnar: The LINC: A Description of the Labora-

tory Instrument Computer. Ann. N.Y. Acad. Sci.

115:653-668, July 1964.

[Clark and Molnar, 1965] Clark, W.A., and C.E.

Molnar, A Description of the LINC. In Com-

puters in Biomedical Research, (ed.) B.D. Wax-
man. New York, Academic Press, 1965. Vol. II,

Chapter 2.

[Clark, 1967] Clark, W.A.: Macromodular Com-
puter Systems. AFIPS Conf. Proc. SJCC
30:335-336, 1967.

[Coleman et al., 1977] Coleman, V., M.W. Econo-

midis, and W.J. Harmon, Jr.: The Next Gener-
ation Four-Bit Bipolar Microprocessor Slice -

The AM 2903. Westcon. Session 16-4, p. 1, 1977.

[Conti et al., 1968] Conti C.J., D.H. Gibson, and
S.H. Pitowsky: Structural Aspects of the Sys-

tem/360 Model 85. 1. General Organization. IBM
Syst. J., 7(1):2-14, 1968.

[Conti, 1969] Conti, C.J.: Concepts for Buffer Stor-

age. IEEE Comput. Group News 2(8), March 1969.

[Conway, 1971] Conway, M.: A Multiprocessor Sys-
tem Design. Proc. IFIP Cowgr., Yugoslavia, 1971.

[Cooper and Chow, 1976] Cooper, A.E., and W.T.
Chow: Development of On-Board Space Com-
puter Systems. IBM J. Res. Dev. 20(1):5-19. Jan.

1976.

[Corbato etal.. 1962] Corbato F.J., M. Merwin- Dag-
get, and R.C. Daley: An Experimental Time-

sharing System. AFIPS Conf. Proc. SJCC, pp.
335-344, 1962.

[Curnow and Wichmann, 1976] Curnow, H.J., and
B.A. Wichmann: A Synthetic Benchmark. Com-

put. J. 19(l):43-62, Feb. 1976.

[Data General, 1974] Eclipse Computer Systems.

Westboro, Mass., Data General Corp., 1974.

[Davidow, 1972] Davidow, W.H.: The Rationale for

Logic from Semiconductor Memory. AFIPS
Conf. Proc. SJCC, pp. 353-358, 1972.

[DEC, 1972] DEC PDP-11 documents. Programmer
Reference Manual and Unibus Interface Manual.

Maynard Mass., Digital Equipment Corporation,
1972.

[DEC, 1973] PDP-11 Peripherals Handbook. May-
nard, Mass., Digital Equipment Corporation,
1973.

[DEC, 1973a] PDP-11/05/10/35/40 Processor

Handbook. Maynard, Mass., Digital Equipment
Corporation, 1973.

[DEC, 1974] DDCMP -
Digital Data Commu-

nications Message Protocol. Maynard, Mass.,

Digital Equipment Corporation, 1974.

[DEC, 1974a] Introduction to Minicomputer Net-

works. Maynard, Mass., Digital Equipment Cor-

poration, 1974.

[DEC, 1974b] PDP-11 FORTRAN Compiler Func-

tional Specification. DEC-11-LFSCA-A-D. May-
nard, Mass., Digital Equipment Corporation,
1974.

[DEC, 1974c] PDP-1 1 FORTRAN Object Time Sys-
tem Functional Specification. DEC-11-LFSOA-
A-D. Maynard, Mass., Digital Equipment Corpo-
ration, 1974.

[DEC, 1975] PDP-1 1/70 Processor Handbook. May-
nard, Mass., Digital Equipment Corporation,
1975.

[DEC, 1975a] LSI-11, PDP-11/03 Processor Hand-
book. Maynard, Mass., Digital Equipment Cor-

poration, 1975.

[DEC, 1975b] LSI-11 - PDP-1 1/03 User's Manual

(EK-LSIll-TM-001), Maynard, Mass., Digital

Equipment Corporation, 1975.

556 BIBLIOGRAPHY

[DEC, 1976] MACRO-ll Reference Manual. DEC-
11-OMMAA-B-D, Maynard, Mass., Digital

Equipment Corporation, 1976.

[DEC, 1977] Logic Handbook, 1977-78. Maynard,
Mass., Digital Equipment Corporation, 1977.

[DEC, 1977a] PDP-11/60 Processor Handbook.

Maynard, Mass., Digital Equipment Corpo-
ration, 1977.

[Denning, 1968] Denning, P.J.: The Working Set

Model for Program Behavior. Commun. ACM.
1 1(5):323-333, May 1%8.

[Denning, 1970] Denning, P.J.: Virtual Memory.
Computing Surveys, pp. 153-189, Sept. 1970.

[Dennis, 1964] Dennis, J.B.: A Multiuser Com-

putation Facility for Education and Research.

Commun. ACM. 7(9):52 1-529, Sept. 1964.

[Dijkstra, 1968] Dijkstra, E.W.: Cooperating sequen-
tial processes. In Programming Languages. F.

Genuys (ed.). New York, Academic Press, pp.

43-112, 1968.

[Dijkstra, 1969] Dijkstra, E. W.: Structured pro-

gramming. In Software Engineering: Concepts and

Techniques. Peter Naur, Brian Randell, and J.N.

Buxton (eds.). New York, Petracelli/Charter,
1969.

[Eckhouse, 1975] Eckhouse, R.H.: Minicomputer

Systems: Organization and Programming (POP
11). Englewood Cliffs, N.J., Prentice-Hall, 1975.

[Eichelberger and Williams, 1977] Eichelberger,

E.B., and T.W. Williams: A Logic Design Struc-

ture for LSI Testability. Proc. 14th Design Auto-

mation Conference. June 20-22, 1977.

[Elliott et a!., 1956] Elliott, W.S., C.E. Owen, C.H.

Devonald, and B.G. Maudsley: The Design Phi-

losophy of Pegasus, a Quantity-Production Com-

puter. Proc. IEEE 103:188-196, pt. B, supp. 2,

1956.

[Everett, 1951] Everett, R.R.: The Whirlwind I Com-

puter AIEE-IRE Conference, pp. 70-74, 1951 (re-

printed in Bell and Newell, Computer Structures.

chap. 6, pp. 137-145).

[Fairchild Camera and Instrument Corp., 1976]

Macrologic Bipolar Microprocessor Databook.

Fairchild Camera and Instrument Corporation,
Mountain View, Calif., 1976.

[Farber, 1975] Farber, D.J.: A Ring Network. Data-

mation 21(2):44^6, Feb. 1975.

[Flynn, 1966] Flynn, M.J.: Very High Speed Com-

puting Systems. Proc. IEEE 54:1901-1909, Dec.

1966.

[Flynn, 1977] Flynn, M.J., The Interpretive Inter-

face: Resources and Program Representation in

Computer Organization. In High Speed Computer
and Algorithm Organization. Kuck, Lawrie, and
Sameh (ed.). New York, Academic Press, 1977.

[Forbes, 1977] Forbes, B.E.: Silicon-On-Sapphire

Technology Produces High-Speed Single-Chip
Processor. Hewlett-Packard J., pp. 2-8, April
1977.

[Forgie, 1957] Forgie, J.W.: The Lincoln TX-2 Udt

Input-Output System. Proc. WJCC. 1957.

[Forgie, 1965] Forgie, J.W.: A Time- and Memory-
Sharing Executive Program for Quick- Response,
On-Line Applications. Proc. FJCC 27:127-139,

599-610, 1965.

[Forrester, 1951] Forrester, J.W.: Digital Informa-

tion Storage in Three Dimensions Using Mag-
netic Cores. J. Appl. Phys. 22:44^8, 1951.

[Frankovich and Peterson, 1957] Frankovich, J.M.,

and H.P. Peterson: A Functional Description of

the Lincoln TX-2 Computer. Proc. WJCC. pp.

146-155, 1957.

[Eraser, 1975] Eraser, A.G.: A Virtual Channel Net-

work. Datamation 21(2):51-53, Feb. 1957.

[Friedman and Yang, 1969] Friedman, T.D., and

S.C. Yang: Methods Used in an Automatic Logic

Design Generator (ALERT). IEEE Trans. Com-

put. C-18:593-614, July 1969.

[Fuller, 1976] Fuller, S.H.: Price/ Performance Com-

parison of C.mmp and the PDP-10. IEEE/ACM
Symposium on Computer Architecture, pp.

195-202, Jan. 1976.

[Fuller and Oleinick, 1976] Fuller, S.H., and P.N.

Oleinick: Initial Measurements of Parallel Pro-

grams on a Multi- Mini-processor. 13th IEEE

Computer Society International Conference.

Washington, D.C., pp. 358-363, Sept. 1976.

[Fuller and Siewiorek, 1973] Fuller, S.H., and D.P.

Siewiorek: Some Observations on Semiconductor

Technology and the Architecture of Larger

Digital Modules. IEEE Comput. 6(10): 14-21, Oct.

1973.

BIBLIOGRAPHY 557

[Fuller et ai. 1976] Fuller, S.H., T. McWilliams, and

W. Sherwood: CMU-11 Engineering Documenta-

tion. Department of Computer Science, Carnegie-

Mellon University, Pittsburgh, Technical report,

1976.

[Fuller et ai, 1977 Fuller, S.H., A.K. Jones, and L.

Durham (eds.)'- Cm* Review, June 1977. Depart-
ment of Computer Science, Carnegie-Mellon Uni-

versity, Pittsburgh, Technical report, June 1977.

[Fuller et ai, 1977a] Fuller, S.H., P. Shaman, and D.

Lamb: Evaluation of Computer Architectures via

Test Programs. AFIPS Conf. Proc. NCC. pp.

147-160, 1977.

[Fuller et ai, 1977b] Fuller, S.H., H.S. Stone, and

W.E. Burr: Initial Selection and Screening of the

CFA Candidate Computer Architectures. AFIPS

Conf. Proc. NCC, pp. 139-146, 1977.

[Fusfeld, 1973] Fusfeld, A.R.: The Technological

Progress Function. Technoi Rev. 75(4)29-38, Feb.

1973.

[Gaskill et ai, 1976] Gaskill, J.R., J.H. Flint, R.G.

Meyer, L.J. Micheel, and L.R. Weill: Modular

Single-Stage Universal Logic Gate. /£££ 7. Solid-

State Circuits SC-ll(4):529-538, 1976.

[Gear, 1974] Gear, C.W.: Computer Organization and

Programming. 2d ed. New York, McGraw-Hill,
1974.

[Gibson, 1967] Gibson, D.H.: Considerations in

Block-Oriented Systems Design. AFIPS Conf.
Proc. SJCC 30:69-80, 1967.

[Gibson, 1974] Gibson, D.H.: The Cache Concept
for Large Scale Computers. In Rechnerstrukturen.

H. Hasselmeier and W.G. Sprath (eds.). New
York, Springer- Verlag, 1974.

[GML Corp, 1977] Computer Review. Lexington,
Mass., GML Corp., vol. 1, 1977.

[Grant, 1972] Grant, E.L.: Statistical Quality Con-

trol. 4th ed. New York, McGraw-Hill, 1972.

[Grason and Siewiorek, 1975] Grason, J., and D.P.

Siewiorek: Teaching with a Hierarchically Struc-

tured Digital Systems Laboratory. IEEE Comp.
8(I2):73-81, Dec. 1975.

[Grason et ai, 1973] Grason, J., C.G. Bell, J. Eggert:
The Commercialization of Register Transfer

Modules. lEEEComput. Oct. 6(10):23-27, 1973.

[Haney, 1968] Haney, F.M.: Using a Computer to

Design Computer Instruction Sets. Thesis, Col-

lege of Engineering and Science, Department of

Computer Science, Carnegie- Mellon University,

Pittsburgh, May 1968.

[Hansen, 1975] Hansen, P.B.: The Programming
Language Concurrent Pascal. IEEE Trans. Soft-

ware Eng. SE- 1(2): 199-207, June 1975.

[Harbison and Wulf, 1977] Harbison, S., and W.A.
Wulf: Reflections in a Pool of Processors. Depart-
ment of Computer Science, Carnegie-Mellon Uni-

versity, Pittsburgh, technical report, Nov. 1977.

[Heart et al.. 1973] Heart, F.E., S.M. Ornstein, W.R.

Crowther, and W.B. Barker: A New Mini-

computer/Multiprocessor for the ARPA Net-

work. AFIPS Conf Proc. NCC, 42:529-537, 1973.

[Hibbard, 1976] Hibbard, P.: Parallel Processing Fa-

cilities, New Directions in Algorithmic Lan-

guages, Operating Systems, Rocquencourt,
France, Institutde Recherche d'Informatique, pp.

1-7, 1976.

[Hibbard £>/ a/., 1978] Hibbard, P., A. Hisgen, andT.
Rodeheffer: A Language Implementation Design
for a Multiprocessor Computer System. ACM
IEEE 5th Annual Symposium on Computer Archi-

tecture, pp. 66-72, April 1978.

[Hobbs and Theis, 1970] Hobbs, L.C., and D.J.

Theis: Survey of Parallel Processor Approaches
and Techniques. In Parallel Processor Systems,

Technologies and Applications, L.C. Hobbs et al.

(eds.). New York, Spartan, pp.3-20, 1970.

[Hodges, 1975] Hodges, D.A.: A Review and Projec-

tion of Semiconductor Components for Digital

Storage. Proc. /£££ 63(8): 1 136-1 147, Aug. 1975.

[Hodges, 1977] Hodges, D.A.: Progress in Electronic

Technologies for Computers. National Bureau of

Standards Report T73219, March, 1977.

[Intel, 1975] Intel Schottky Bipolar LSI Micro-

computer Set: 3001 Microprogram Control Unit,

3002 Control Progressive Element, and 3003

Carry Lookahead Generator, Intel Corporation,
Santa Clara, Calif., 1975.

[Intel, 1977] Intel SBC 80/05, Single Board Com-

puter Hardware Reference Manual. Intel Corpo-
ration, Santa Clara, Calif., 1977.

558 BIBLIOGRAPHY

[Jensen and Anderson, 1975] Jensen, E.D., and G.A.

Anderson: Computer Interconnection Structures:

Taxonomy, Characteristics and Examples. Com-

puting Surveys l{A):\91-m, Dec. 1975.

[Jones et ai, 1977] Jones, A.K., R. Chansler, Jr., I.

Durham, P. Feiler, and K. Schwans: Software

Management of Cm* - A Distributed Multi-

processor. AFIPS Conf. Proc. 46:657-663, 1977.

[Jones et ai, 1978] Jones, A.K., R.J. Chansler, Jr., I.

Durham, P. Feiler, D. Scelza, K. Schwans, and

S.R. Vegdahl: Programming Issues Raised by a

Multiprocessor. Proc. IEEE. 66(2):229-237, Feb.

1978.

[Juran, 1962] Juran, J.M.: Quality Control Hand-

book. 2d ed. New York, McGraw-Hill, 1962.

[Kahn, 1972] Kahn, R.E.: Resources-Sharing, Com-

puter Communication Networks. Proc. IEEE

60(1): 1397-1407, Nov. 1972.

Kilburn et ai, 1962] Kilburn, T., D.L.G. Edwards,

M.J. Lanigan, and F.H. Sumner: One-level Stor-

age System. IRE Trans. EC-11 (2):223-235, April

1962.

[Knight, 1966] Knight, K.E.: Changes in Computer
Performance: A Historical Review. Datamation

12(9).40-54, Sept. 1966

[Knudsen, 1972] Knudsen, M: PMSL: A System for

Understanding Computer Structures, Ph.D.

Thesis, Computer Science Department, Carnegie-

Mellon University, Pittsburgh, 1972.

[Knuth, 1971] Knuth, D.E.: An Empirical study of

FORTRAN Programs. Software Prac. Exper.

1(2): 105-1 33, April-June 1971.

[Krutar, 1971] Krutar, R.: personal communication,
1971.

[Kuck et ai, 1972] Kuck, D.J., Y. Muraoka, and

S.C. Chen: On the Number of Operations Simul-

taneously Executable in Fortran-Like Programs
and Their Resulting Speed-up. IEEE Trans. Com-

put. C-21 (12):1293-1310, Dec. 1972.

[Landman and Russo, 1971] Landman, B.S., and

R.L. Russo: On a Pin Versus Block Relationship
for Partitioning of Logic Graphs. IEEE Trans.

Comput. C-20(l 2)1469- 1479, Dec. 1971.

[Lee, 1969] Lee, F.F.: Study of 'Look-Aside' Mem-
ory. IEEE Trans. Comput. C-18(l 1): 1062-1064,

Nov. 1969.

[Liptay, 1968] Liptay, J.S.: Structural Aspects of the

IBM System/360 Model 85. II. The Cache. IBM
Syst. J. 7(1):15-21, 1968.

[Logue et ai. 1975] Logue, J.C., N.F. Brickman, F.

Howley, J.W. Jones, and W.W. Wu: Hardware

Implementation of a Small System in Program-
mable Logic Arrays. IBM J. Res. Dev.

19(2):110-119, March 1975.

[Lonergan and King, 1961] Lonergan, W., and P.

King: Design of the B5000 system. Datamation

7(5):28-32, May 1961.

[Lowerre, 1976] Lowerre, B.: The HARPY Speech

Recognition System. Ph.D. Thesis, Department
of Computer Science, Carnegie-Mellon Univer-

sity, Pittsburgh, April 1976.

[Louie era/., 1977] Louie, G., Wipfli, J., Ebright, A.:

A Dual Processor Serial Data Central Chip.

Digest of International State Circuits Conference,

Philadelphia, IEEE, pp. 144, 145, 1977.

[Luecke, 1976] Luecke, J.: Overview of Semi-

conductor Technology Trends. Digest of Papers.

13th IEEE Comp. Soc. Internat. Conf., Washing-

ton, D.C., pp. 52-55, 1976.

[Lunde, 1977] Lunde, A.: Empirical Evaluation of

Some Features of Instruction Set Processor Ar-

chitecture. Commun. /ICM 20(3): 143-1 53, March

1977.

[Marathe and Fuller, 1977] Marathe, M., and S.H.

Fuller: A Study of Multiprocessor Contention for

Shared Data in C.mmp. ACM SIGMETRICS
Symposium, pp. 255-262, 1977.

[Marill and Roberts, 1966] Marill, T., and L.G. Rob-

erts: Toward a Cooperative Network of Time-

shared Computers. AFIPS Conf. Proc. FJCC
29:425-432, 1966.

[Maurer, 1966] Maurer, W.D.: A Theory of Com-

puter Instructions. J. ACM 13(2).226-235, April

1966.

[McCarthy and Maughly, 1962] McCarthy, J., and

J.W. Maughly: Time Sharing Computer Systems.

In Management and the Computer of the Future.

M. Greenberger (ed.). Cambridge, MIT Press, pp.

221-248, 1962.

[McCarthy et ai, 1963] McCarthy, J., S. Boilen, E.

Fredkin, and J.C.R. Licklider: A Timesharing

Debugging System for a Small Computer. AFIPS

Conf Proc. SJCC 23:51-57, 1963.

[McCracken and Robertson, 1971] McCracken, D.,

and G. Robertson: C.ai (L*) - An L* Processor

for C.ai. Department of Computer Science, Car-

negie-Mellon University, Pittsburgh, technical re-

port, 1971.

BIBLIOGRAPHY 559

[McCredie, 1972] McCredie, J.: Analytic Models as

Aids in Multiprocessor Design. Department of

Computer Science, Carnegie- Mellon University,

Pittsburgh, technical report, 1972.

[McLean, 1977] McLean, J.: Univac Disbanding Fu-

ture Systems Plan. Electronic News 12:1-28, Dec.

1977.

[McWilliams et al., 1977] McWilliams, T.M., S.H.

Fuller, and W.H. Sherwood: Using LSI Processor

Bit-Slices to Build a PDP-11 - A Case Study.
AFIPS Conf. Proc. NCC,

pp. 243-253, 1977. Re-

printed as Chapter 19 of this text.

[Meade, 1970] Meade, R.M.: On Memory System

Design. AFIPS Conf. Proc. F/CC 37:33-43, 1970.

[Meade, 1971] Meade, R.M.: Design Approaches for

Cache Memory Control. Camp. Des. 10(l):87-93,
Jan. 1971.

[Metcalfe and Boggs, 1976] Metcalfe, R.M., and

D.R. Boggs: Ethernet: Distributed Packet Switch-

ing for Local Computer Networks. Commun.
ACM 19(7):395-404, July 1976.

[Mitchell and Olsen, 1956] Mitchell, J.L., and K.H.
Olsen: TX-0: A Transistor Computer. AFIPS
Conf. Proc. EJCC 10:93-101, 1956.

[Moore, 1976] Moore, G.E.: Microprocessors and

Integrated Electronic Technology. Proc. IEEE
64(6):837-841, June 1976.

[Morris and Mudge, 1977] Morris, L.R., and J.C.

Mudge: Speed Enhancement of Digital Signal

Processing Software Via Microprogramming a

General Purpose Minicomputer. Conference Re-

cord, IEEE Internat. Conf. Acoustics, Speech,
and Signal Processing, May 1977.

[Mudge, 1977] Mudge, J.C: Design Decisions

Achieve Price/ Performance Balance in Mid-

Range Minicomputer. Comp. Des. 16(8):87-95,

Aug. 1977. Reprinted as Chapter 13 in this text.

[Murphy, 1972] Murphy, D.L.: Storage Organiza-
tion and Management in Tenex. Proc. AFIPS
FJCC. Vol. 41, pt. 1, Montvale, N.J., AFIPS
Press, pp. 23-32, 1972.

[Myers, 1977] Myers, G.J.: The Case Against Stack-

Oriented Instruction Sets. ACM Sigarch News,
Aug. 1977.

[Myer and Sutherland, 1968] Myer, T.H., and I.E.

Sutherland: On the Design of Display Processors.

Commun. ACM 11(6):410-414, June 1968.

[Nakano et al., 1978] Nakano, T., O. Tomisawa, K.

Anami, M. Ohmore, I. Okkura, and M. Nakaya:
A 920 Gate Masterslice. Digest of Technical Pa-

pers, IEEE Solid-State Circuits Conference, pp.

64-65, 1978.

[Needham, 1972] Needham, R.M.: Protection Sys-
tems and Protection Implementations. AFIPS
Conf Proc. FJCC. pt. 1,41:571-578, A720, 1972.

[Needham and Walker, 1977] Needham, R.M., and
R.D.H. Walker: The Cambridge CAP Computer
and its Protection System. Proc. Sixth Symposium
on Operating Systems Principles, 1977.

[Noyce, 1977] Noyce, R.N.: Large Scale Integration:
What is Yet to Come? Science 195:1102-1106,
1977.

[Noyce, 1977a] Noyce, R.N.: Microelectronics. Sci.

Am. 237(3):62-69, Sept. 1977. Copyright
© 1977

by Scientific American Inc. All rights reserved.

[Nussbaum, 1975] Nussbaum, E.: New Technologies
and the Local Telephone Companies. National

Electronics Conf Proc, p. 42, 1975.

[Oleinick, 1978] Oleinick, P.N.: The Implementation
of Parallel Algorithms on a Multiprocessor.
Ph.D. Thesis, Computer Science Department,
Carnegie- Mellon University, Pittsburgh, 1978, in

preparation.

[O'Loughlin, 1975] O'Loughlin, J.F.: Micro-

programming a Fixed Architecture Machine. Mi-

croprogramming and Systems Architecture.

Maidenhead, Infotech State of the Art Report 23,

pp. 205-221, 1975.

[Organick, 1972] Organick, E.I.: The Multics Sys-
tems: An Examination of Its Structure. Cam-

bridge, M.I.T Press, 1972.

[Ornstein et al., 1967] Ornstein, S.M., M.J. Stucki,

and W.A. Clark: A Functional Description of

Macromodules. AFIPS Conf. Proc. SJCC
30:337-355, 1967.

[Ornstein et al., 1972] Ornstein, S.M., E.E. Heart,
W.R. Crowther, H.K. Rising, S.B. Russell, and
A. Michael: The Terminal IMP for the ARPA
Computer Network. AFIPS Conf Proc. SJCC
40:243-254, 1972.

[Parke, 1978] Parke, N.G.: Personal Commu-
nication, 1978.

[Parnas, 1971] Parnas, D.L.: On the Criteria to be

Used in Decomposing Systems Into Modules. De-

partment of Computer Science, Carnegie-Mellon

University, Pittsburgh, technical report, 1971.

560 BIBLIOGRAPHY

[Patil, 1978] Patil, S.S., and T. Welch : An approach
to Using VLSI in Digital Systems. In 5th Annual

Symposium on Computer Architecture. New York,

ACM, pp. 139-143, April 1978.

[Phister, 1976] Phister, M.: Data Processing Tech-

nology and Economics. Santa Monica Publishing

Co., Santa Monica, Calif., 1976.

[Popek and Goldberg, 1974] Popek, G.J., and R.P.

Goldberg: Formal Requirement for Virtualizable

Third Generation Architectures. Commun. ACM
17(7):41 2-421, July 1974.

[Rajchman, 1961] Rajchman, J. A.: Computer Mem-
ories: A Survey of the State-of-the-Art. Proc. IRE,

pp. 104-127, Jan. 1961.

[Redmond and Smith, 1977] Redmond, K.C., and
T.M. Smith: Lessons from "Project Whirlwind."

IEEE Spectrum 14(10):50-59, Oct. 1977.

[Roberts, 1970] Roberts, L.G. (ed.): Computer Net-

work Development to Achieve Resource Sharing.
AFIPS Conf. Proc. SJCC 36:543-549, 1970.

[Rossman et al., 1975] Rossman, S.E., C.G. Bell,

M.J. Flynn, P.P. Brooks, Jr., S.H. Fuller, H. Hel-

lerman: A Course of Study in Computer Hard-
ware Architecture. IEEE Comput. pp. 44-63, Dec.

1975.

[Rothman, 1959] Rothman, S.: R/W 40 Data Pro-

cessing System. International Conference on Infor-

mation Processing and Auto- Math. Los Angeles,

Ramo-Wooldridge, 1959.

[Scarott, 1965] Scarott, G.G.: The Efficient Use of

Multilevel Storage. Washington, D.C., Spartan,

p. 137, 1965.

[Scelza, 1977] Scelza, D.: The Cm* Host Users Man-
ual. Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, July 1977.

[Schroeder and Saltzer, 1971] Schroeder, M.D., and
J.H. Saltzer: A Hardware Architecture for Imple-

menting Protection Rings. Proceedings, 3rd Sym-
posium on Operating System Principles. Commun.
ACM 15(3): 157-170, 1972.

[Shannon, 1948] Shannon, C.E.: A Mathematical

Theory of Communication. Bell Syst. Tech. J.

27:379-423, 623-656, 1948.

[Sharpe, 1969] Sharpe, W.F.: The Economics ofCom-

puters. New York, Columbia University Press,

1969.

[Siewiorek and Barbacci, 1976] Siewiorek, D.P., and
M.R. Barbacci: TheCMU RT-CAD System -An
Innovative Approach to Computer-Aided Design.
AFIPS Conf Proc. A^CC 45:643-655, 1976.

[Siewiorek et al., 1976] Siewiorek, D.P., M. Canepa,
and S. Clark: C.vmp: The Analysis, Architecture

and Implementation of a Fault Tolerant Multi-

processor. Computer Science Department, Car-

negie-Mellon University, Pittsburgh, technical

report A038633, Dec. 1976.

[Signetics, 1975] Introducing the Series 3000 Bipolar

Microprocessor. Sunnyvale, Calif., Signetics Cor-

poration, 1975.

[Simon, 1969] Simon, H.A.: TTie Sciences ofthe Arti-

ficial. Cambridge, M.I.T Press, 1969.

[Singleton, 1%9] Singleton, R.C.: Algorithm 347: An
Efficient Algorithm for Sorting with Minimal

Storage. Commun. ACM 13(3): 185-1 87, March
1969.

[Sklaroff, 1976] Sklaroff, J.R.: Redundancy Manage-
ment Technique for Space Shuttle Computers.
IBM J. Res. Dev. 20(l):20-28, Jan. 1976.

[Soha and Pohlman, 1974] Soha, Z., and W.B. Pohl-

man: A High Performance, Microprogrammed
NMOS-LSI Processor for 8- and 16-bit Appli-
cations. NEREM pt. 2, 16:10-19, Oct. 1974.

[Spencer, 1978] Spencer, R.F.: VLSI and Mini-

computers. IEEE Compcon, Spring 1978.

[Stone, 1971] Stone, H.S.: Parallel Processing with

the Perfect Shuffle. IEEE Trans. Comput. C-

20(2):153-161, Feb. 1971.

[Stone and Siewiorek, 1975] Stone, H.S., and D.P.

Siewiorek: Introduction to Computer Organization
and Data Structures: PDP-11 Edition. New York,

McGraw-Hill, 1975.

[Strachey, 1960] Strachey, C: Timesharing in Large
Fast Computers. Proceedings of the International

Conference on Information Processing, 15-20 June

1959, Paris, UNESCO, pp. 336-341, 1960.

[Strecker, 1970] Strecker, W.D.: Analysis of the In-

struction Execution Rate in Certain Computer
Structures. Ph.D. Thesis, Carnegie-Mellon Uni-

versity, Pittsburgh, 1970.

[Strecker, 1976] Strecker, W.D.: Cache Memories for

PDP-11 Family Computers. Proceedings of the

3rd Annual Symposium on Computer Architecture,

pp. 155-158, 1976. Reprinted as Chapter 10 in this

text.

BIBLIOGRAPHY 561

[Strecker, 1976a] Strecker, W.D.: personal commu-
nication, 1976.

[Strecker, 1978] Strecker, W.D.: Optimal Design of

Memory Hierarchies. Proceedings of the 11th

Hawaii International Conference on System Sci-

ences, Western Periodicals Co., p. 78. 1978.

[Swan et at., 1977] Swan, R.J., S.H. Fuller, and D.P.

Siewiorek: Cm* - A Modular, Multi-Micro-

processor. AFIPS Conf Proc. 46:637-644, 1977.

[Swan et ai, 1977a] Swan, R.J., A. Bechtolsheim,
K.W. Lai, and J.K. Ousterhout: The Implementa-
tion of the Cm* Multi-Microprocessor. AFIPS
Conf Proc. 46:645-655, 1977.

[Sweeney, 1965] Sweeney, D.W.: An Analysis of

Floating-Point Addition. IBM Syst. J. 4(1)31-42,
1965.

[Sutherland, 1963] Sutherland, I.E.: Sketchpad: A
Man-Machine Graphical Communication Sys-
tem. M.I.T. Lincoln Lab., Cambridge, technical

report 296, May 1965. Abridged version AFIPS
Conf Proc. S/CC 23:329-346, 1963.

[Tandem, 1977] Tandem 16 System Introduction.

Cupertino, Calif., Tandem Computers, 1977.

[Thomas and Siewiorek, 1977] Thomas, D.E., and
D.P. Siewiorek: Measuring Designer Performance
to Verify Design Automation Systems.Z)e5;g/7
Automat. Conf Proc. 14:411-418, 1977.

[Toombs, 1977] Toombs, D.: personal commu-
nication, 1977.

[Turn, 1974] Turn, R.: Computers in the 1980s. New
York, Columbia University Press, 1974.

[Vacroux, 1975] Vacroux, G.: Microcomputers. Sci.

Am. 232(5)32-40, May 1975.

[van de Goor et ai, 1969] van de Goor, A.D., C.G.

Bell, and D.A. Witcraft: Design and Behavior of

TSS/8: A PDP-8 Based Time-Sharing System.
IEEE Trans. Comput. C-18(11): 1038-1 043, Nov.
1969.

[von Hippel, 1977] von Hippel, E.: The Dominant
Role of the User in Semiconductor and Electronic

Subassembly Process Innovation. IEEE Trans.

Engineer. Management EM-24(2):60-71, May
1977.

[Wilkes, 1949] Wilkes, M.V.: A personal commu-
nication from M.V. Wilkes to S.H. Fuller Jan. 13,

1977, which confirmed that the quote (Chapter 1)

which appeared in a British Computer Society's

History of Computing in 1949 was accurate.

[Wilkes, 1953] Wilkes, M.V.: The Best Way to De-

sign an Automatic Calculating Machine. Report
of Manchester University Computer Inaugural

Conference, July 1951, Manchester, 1953.

[Wilkes and Stringer, 1953] Wilkes, M.V., and J.B.

Stringer: Microprogramming and the Design of

the Control Circuits in an Electronic Digital

Computer. Proc. Cambridge Phil. Soc, pt. 2,

49:30-38, April 1953.

[Wilkes, 1965] Wilkes, M.V.: Slave Memories and

Dynamic Storage Allocation. IEEE Trans. Com-

put., pp. 270-271, April 1965.

[Wirth, 1977] Wirth, N.: Towards a Discipline of

Real-time Programming. Commun. ACM
20(8):577-583, Aug. 1977.

[Wulf, 1971] Wulf, W.: Programming Without the

Goto. Proc. IFIPCongr., Yugoslavia, 1971.

[Wulf et ai, 1971] Corbin, K., W. Corwin, R. Good-
man, E. Hyde, K. Kramer, E. Werne, and W.
Wulf: A Software Laboratory: Preliminary Re-

port. Department of Computer Science, Carnegie-
Mellon University, 1971.

[Wulf et ai, 1971a] Corbin, K., W. Corwin, R.

Goodman, E. Hyde, K. Kramer, E. Werne, and
W.A. Wulf: Bliss Reference Manual. Department
of Computer Science, Carnegie-Mellon Univer-

sity, Pittsburgh, technical report, 1971.

[Wulf et ai, 1971b] Wulf, W.A., D. Russell, and
A.N. Habermann: BLISS: A Language for Sys-
tems Programming. Commun. ACM 14(1 2):780,

Dec. 1971.

[Wulf and Bell, 1972] Wulf, W.A., and C.G. Bell:

C.mmp - A Multi-Mini-Processor. AFIPS Conf
Proc. FJCC pt. II, 41:765-777, 1972.

[Wulf e/ al., 1975] Wulf, W.A., Levin, R., and Pier-

son, C: Overview of the Hydra Operating System

Development. Proc. Fifth Symposium on Oper-

ating System Principles, New York, ACM, 1975.

12-bit machines, 175-208

packaging, 197

performance, 194

power, 200

price, 193-199

second generation, 194, 195

third generation, 195

18-bit machines, 123-174

card handling equipment, 174

disks, 174

displays, 174

evolution, 174

I/O bus structure, 174

implementations, 171

market, 170

packaging, 170, 171

performance, 169

price, 168, 169

36-bit family, 487-518

680/1, 73

7400-Series integrated circuits, 116

A-Series modules, 113

access time disk memories, 48

Accumulator, 142, 433

PDP-1, 104

PDP-4, 146

acknowledgement for error control, 295

acoustic noise, 68, 322

adder, asynchronous, 513

address computation, PDP-8, 524, 525

address mapping, Cm*, 465

address space

PDP-10, 382

PDP-11, 231, 381

LSI-1 1,303
VAX-1 1,420-422

addressing
as a design constraint, 242

Unibus, 274

VAX-1 1,412-416

addressing modes, PDP-1 1, 373

advanced development, 59

Advanced Research Projects Agency (ARPA), 398,

437,473, 510

ALGOL, 473

ALGOL 60, 143

ALGOL 68, Cm*, 478, 479

algorithm

Computer Family Architecture Study, 546

ALU {See arithmetic logic unit)

AMD 2900 Series bit-slices, 31, 435

AMD 2901, 458

bit-slices, 458

Multiply instruction, 459, 460
AMD microprocessors, 437

Amdahl V6, central processing unit, 4, 5

Amdahl's Rule, 390

American Research and Development, 123

Ampex Memories, 504

Anderson, Harlan, 129

APL, 511

applications

Cm*, 471-473

multiprocessor, 396

packaging levels-of-integration, 6

563

564 INDEX

Applications- Functional View of Computer Systems,
15-18

business use, 15-18

commercial use, 15-18

communication and message based computers,
15-17

communication use, 15-18

control use, 15, 16

data-type, 15-18

file control use, 15-18

front ends, 17

high reliability, 16

minicomputers, 17, 18

on-board computers, 17

operating system, 15

packaging, 15

PMS level configurations, 15

scientific, 15

terminal use, 15, 16

timesharing use, 15, 16

word processing, 15-18

applied research, 59

arbitration methods

buses, 280-286

Direct Memory Access, 281, 283

interrupt, 283

LSI- 11 Bus, 283, 284

Massbus, 286

SBI Bus (VAX 1 1/780), 284, 285

Unibus, 281-283

architecture

Blaauw Characterization, 24-26

capabilities, 408

Cm*, 469, 477

compatibility, 26

language, 25, 26

management, 386

microprogrammed machine, 24

operating system, 24

PDP-4/PDP-7, 148

PDP-11, 24, 231

performance, 541, 546-549

archival memory, 53

areal density of disk memories, 49

arithmetic, general purpose, register transfer

modules, 444

arithmetic logic unit, 39

CDC 6600, 468

IBM 360/91,468
PDP-11, 328, 329

PDP-11/60, 329

arithmetic operations

PDP-1, 108

arithmetic overflow

INTEL 3000 Series bit-slices, 459

arithmetic representation

ISPS, 532, 533

ARPA {See Advanced Research Projects Agency)

array processing, 437

Artificial Intelligence Laboratory,

(Stanford University), 498

ASCII, 242

ASCII Console, 302, 310, 311

Asimow, Morris, 18-20

Assembler, VAX-1 1,415, 416

associative memories, 53

PDP-10, 498,513

asynchronous data transfer, Unibus, 277

Atlas, Extracode, 51, 53, 140, 384, 491, 498

Atomic Energy of Canada Limited, 139, 178

attributes of PMS components, 537, 538

auto index registers

PDP-8, 215, 524

auto increment, 141, 367

PDP-11, 382

VAX-1 1,414

availability

Carnegie-Mellon multiprocessors, 393

design goal, 23

PDP-1 1/70 mP, 398

B
B-Series modules, 148

back-end processor, 164

backplane level

packaging, 71

wire-wrap, 71

backplanes

PDP-8/ E, 75

third generation, 79

bandwidth, 298

buses, 274

PDP-11/40, 389

PDP-1 1/60, 389

PDP-1 1/70, 389

Barbacci, Mario, 433

BASIC, Dartmouth College, 490, 511

Bastiani, Vincent, 73

batch multiprogramming, 140

batch processing, 164

battery backed-up power, 81

Bell, C. Gordon, 81, 141, 238

Bell Laboratories, 151

IBM 7094 Operating System, 490

Safeguard Computer, 392, 394

INDEX 565

benchmarks, 541, 546, 550

COBOL, 551

Gibson Mix, 550

National Physical Laboratory, 551

performance, 541

Bendix Corporation
G-15 computer, 139

G-21 computer, 467

Berkeley (University of California) SDS 940, 490

Best, Richard L., 95, 123, 125

bit density, magnetic tape, 50

bit-slice architecture

PDP-4, 146

PDP-5, 178

bit-slices, 31

AMD 2900 series, 435

AMD 2901, 458

Intel 3000 series, 435

Motorola 10800 ECL, 436

use in LSI -
1 1, 449-462

use in PDP- 11/34, 435

Blaauw, Gerrit A., 24-26

Blaauw Characterization of Computer Systems,
24-26

architecture, 24-26

implementation, 24-26

realization, 24-26

BLISS, 26, 511

Carnegie- Mel Ion University, 511

BLISS-11, 383

Bolt, Beranek, and Newman, 136, 140, 141, 147,490
Tenex, 490

bottom-up design, 349

box level packaging, 68

boxes, packaging levels-of-integration, 6

breadboard, 59, 85

Brender, Ronald F., 238

British Science Museum, 124

Brooks, Frederick P., Jr., 26

Burroughs Corporation
B5000 computer, 494

D825 computer, 467

multiprogrammed system, 490
Bus Address register, PDP-1 1, 329
bus contention, Cm*, 479-481
bus monitor. Cm*, 478

buses, 232, 269-299

arbitration methods, 280-286

bandwidth, 274

cable costs, 276

connections, 274

cost constraints, 270

data transfer arbitration, 295

data transfer synchronization, 286-294

design, 270, 271

design notes, 271

design problems, 271

design tradeoffs, 275

Direct Memory Access, 273

electrical noise, 277

error control, 294-298

interrupt, 273

latency tolerance, 274

memory addressing, 273

parity error, 296

PDP-11, 387

PDP-1 1/45, 277, 278

PMS notation, 537-539

power requirements, 276

propagation delays, 276

VAX-11, 424, 425

business use of computers, Applications-Functional
View, 15-18

byte swap logic, PDP-11/10, 352, 354

C.mmp (Carnegie-Mellon University)
contention for shared resources, 394

, crosspoint switch, 396

Hydra Operating System, 396

signal processing, 394

C.vmp (Carnegie-Mellon University), 397

cabinets

Packaging Levels-of-Integration, 6

PDP-1, 137

PDP-4, 137

PDP-5, 137

cabinet level packaging, 66

cable costs, buses, 276

cabling, PDP- 15, 159

cache, 52, 56, 232, 263-267, 278, 342, 352, 353, 389,

390, 398, 401

fully associative, 264

locality, 264

microprogramming, 52

miss ratio, 264

PDP-8, 56, 202

PDP-11, 232, 390

PDP-1 1/34A, 405

PDP-11/60, 318, 342, 352, 353, 389, 405

PDP-1 1/70, 56, 279, 405

PDP-11 /70m P, 398

PULSAR, 401

replacement algorithm, 264, 265

set associative, 264

566 INDEX

simulation, 265-267

size, 264

Cady, Roger, 379

capabilities, architecture, 408

capacitor-diode gates, 108

card-handling equipment, 18-bit machines, 174

Carnegie-Mellon University, 180, 203, 238, 465

availability, 393

BLISS, 511

C.vmp, 397

Cm*, 393, 398, 465

Digital Simulation System, 450

maintainability, 393

multiple PDP-lOs, 510

multiprocessors

availability, 393

maintainability, 393

PDP-8 with cache, 56

RT-CAD System, 434

Casasent, David, 203

CDC computers
CDC 160, 58, 141, 175

CDC 6600, 39, 63

arithmetic logic units, 468

Fast Fourier Transform vs. RTMs, 434

I/O computer, 391

packaging, 63

peripheral processing units, 501

protection/relocation, 498

CDC 7600, 39

Matrix Multiply vs. RTMs, 434

packaging, 63

protection/relocation, 498

CDC STAR
performance, 543

central processing unit, 4, 5

CFA Study {See Computer Family Architecture

Study)

Channels, IBM 360/370, 502

character handling, PDP-11, 382

character-string instructions, PDP-11, 382, 384

charge-coupled devices, 47, 53, 58

check bits, error control, 295

Chin, Derrick, 151

chip level packaging, 71

circuit generation, 28, 29

circuit level, 95, 96

design, 327

modules, 431

PDP-8, 224-228

structural levels, 2, 3

circuit technology, design tradeoffs, 327

circuitry

module, 103-118

PDP-6, 512

TX-2, 97-102

Clark, Wesley A., 127, 141, 178, 431

Clayton, Richard J., 175

Cm*, 393, 398

address mapping, 465

ALGOL 68, 478, 479

application, 471-473

architecture, 469-477

bus contention, 479, 481

bus monitor, 478

Carnegie-Mellon University, 465

computer networks, 465

CONCURRENT PASCAL, 473

cost effectiveness, 463, 464

deadlock avoidance, 465

fault tolerance, 440, 465

I/O, 465

implementation, 473-475

interference, interprocessor, 465

interconnection structures, 465

LSI- 11, 473,474
LSI- 11 Bus, 398,473

modularity, 440, 464, 473

multiprocessors, 463, 465

parallel processing, 440

performance, 477-482

PMS structure, 470

serial line, 476, 477

task decomposition, 464

virtual addressing, 465

CMOS-8, 181, 190

packaging, 74

programmable logic array, 190

register transfer, 190

stack, 217

CMU-11,435
computer-aided design, 460, 461

console, 453, 454

control part, 451, 452

data part, 451, 452

microprocessor, 454

microprogramming, 450-453

Multiply instruction, 459, 460

packaging, 457

performance, 454, 459

programmable logic arrays, 460

read-only memories, 460

Stanford University Drawing System, 460, 461

Unibus interface, 451-453

INDEX 567

COBOL, 55,491,494
benchmarks, 451

performance, 451

Columbia University, 144

combinational logic, 226

structural levels, 3

commercial instruction set, PDP-1 1, 384

commercial use, Application-Functional View,
15-18

communication and message based computers

Applications-Functional View, 15-18

compatibility

architecture, 26

LSI-11, 386

PDP-1 /PDP-4, 147

PDP-4/PDP-7, 148

PDP-9/PDP-15, 159

PDP-11, 407, 408

PDP-1 1/05, 386

PDP-1 1/20, 386

PDP-1 1/40, 386

PDP-1 1/45, 386

TX-O/PDP-1, 128

VAX-11, 409,410, 423

Compatible Time Sharing System (CTSS), 140, 508

compiler, 416

computer-aided design, 164, 460, 461

CMU-11, 460,461

Computer Family Architecture Study, algorithm,
546-549

computer-on-a-chip, packaging, 74, 75

Computer Automation Corporation, Naked (Mini)
Mini computer, 8

computer classes, 12-14

mainframe, 12

maxicomputer, 12

microcomputer, 12, 13, 542

midicomputer, 12

minicomputer, 12-14

submicrocomputer, 12

supercomputer, 12, 542

computer conferencing, 17

computer engineering, 488

Computer Family Architecture Performance Study,
546-549

computer generations

Marketplace View, 9-14

packaging, 71

computer modules, 436-440, 473-475

computer networks. Cm*, 465

computer packaging generations, 72-75

computer systems level, packaging, 65, 66

CONCURRENT PASCAL, Cm*, 473

condition codes, PDP-11, 329

connections, buses, 274

console

CMU-11, 453, 454

LINC, 175

LSI-11, 302, 310, 311

PDP-1 5, 160

VAX-11, 424

contention

bus contention, 479-481

lock, 397

memory, 397

shared resources in C.mmp, 394

context registers, 52

context switching, 385

design constraints, 242

VAX-11, 382, 385,422, 423

control

PMS notation, 538

Register Transfer Modules, 442

control part, CMU-11, 451, 452

control unit

design tradeoffs, 328

implementation, 328

PDP-11, 329-331

control use, Applications-Functional View, 15, 16

controllers, I/O, 391

cooling, 64, 65

module level, 71

PDP-7, 75

PDP-9, 75, 153-155

PDP-1 1/60, 324

power, 81-83

core memories, 47, 58, 154, 167, 206, 208, 220, 226

18-bit machines, 167

PDP-8, 220, 226

PDP-9, 154

PDP-14, 206

Whirlwind, 124

Corning Glass Company, 143

cost

Flip Chip modules, 80

life cycle, 23

module testing, 80

power supplies, 81-83

printed circuit board, 80

programming, 38, 41

semiconductor memory, 41, 42

cost constraints, buses, 270

cost effectiveness, Cm*, 463

cost (system) vs. cost (component), 22

568 INDEX

Cray, Seymour, 4, 63, 175, 516

Cray 1, 39,468
central processing unit, 4

performance, 543

packaging, 63

cross talk, module level, 71

crosspoint switch, C.mmp, 396

CTSS {See Compatible Time Sharing System)
custom design of LSI chips, 44

cyclical memories, 47

D
Dartmouth College BASIC, 490

data break, PDP-8, 215

data encryption, 31

data flow, 24

Data General Corp.
ECLIPSE, 263

NOVA, 447

data operation
PMS notation, 538

Register Transfer Modules, 442

data part, CMU-1 1,451

data path organization exceptions
PDP-1 1/03, 351

PDP-11/45,351
PDP-1 1/60, 351

data path speed, PDP-11/34, 355

data path parallelism, PDP-1 1/45, 354, 355

data path topology, design tradeoffs, 327

data paths, PDP-11, 328, 329

data rate, 390

data transfer arbitration, buses, 296

data transfer synchronization
LSI-11 Bus, 288-290

Massbus, 292-294

SBI Bus (VAX- 11/780), 290-292

Unibus, 287, 288

data-types, 15-18, 251, 519

Applications-Functional View, 15

PDP-10, 492

performance, 542

VAX-11,412
data-type extensions, PDP-11, 232

DBMS, 511

DC-12, 141

DDT, 141, 147

deadlock avoidance. Cm*, 465

debugging, 461

DEC 338 Display Computer, 201

DEC backplanes, 75

DEC boxes, packaging, 75

DEC cabinets, packaging, 75

DEC Distributed Museum Project, 127

DEC module product line growth, 434

DEC modules, 78-80, 103-1 18

DEC Users Society, 511

DeCastro, Edson, 178

decimal arithmetic data-types, PDP-1 1, 384

DECnet-10, 511

DECnet protocol, 466

DECsystem-10 {See also PDP-10), 489-518

DECSYSTEM-20 {See also PDP-10), 489-51!

DECSYSTEM-2020, modules, 78, 118

DECSYSTEM-2060, 551

FORTRAN, 551

performance, 551

DECtape, 175, 215

DECUS {See DEC Users Society)

deferred auto increment, 367

Denning, P. J., 53

Dennis, Jack B., 126

density, semiconductor, 31

design

buses, 270, 271

circuit level, 327

computer, 21, 22

computer-aided design, 460, 461

custom design, 44

design constraints, 242-244

digital system design, 441

frequency driven design, 321

gate array, 42, 43

integrated circuits, 42

LSI-11, 233

maintainability, 23

operating environment, 24

PDP-1, 128

PDP-8, 222

PDP-10, 492

PDP-11, 257

performance, 23

product life, 23

producibility, 23

reliability, 23

register transfer level, 441, 442

Register Transfer Modules, 445-447

standard cell design, 44

top-down design, 349

design alternatives

Marketplace View, 9-14

satisficing alternatives, 20

design constraints

addressing, 242

context switching, 242

design, 242-244

general registers, 242

I/O processing, 242

INDEX 569

interrupt, 242

machine language programming, 242

range of models, 242, 243

read-only memory, 242

stack, 242

string handling, 242

design maturity testing, 86

design notes, buses, 271

Design, Practice of. View of Computer Systems
18-24

design problems, buses, 271

design protocol. Register Transfer Modules, 445

design tradeoffs

buses, 275-277

circuit technology, 327

control unit, 327

data path topology, 327-331

impact on performance
PDP-11, 327-364

desk top computer, 193

development process, 59

development times, 168

device level, structural levels, 2

diagnostic programs, 86

Dickhut, Duane, 233

Dickman, Lloyd, 247

Digital Simulation System, Carnegie-Mellon

University, 450

digital system design, 441

diode-capacitor-diode gate, 112

Direct Memory Access, 127-129, 145, 155, 164, 185

arbitration methods, 281, 283

as overhead factor, 350

Massbus, 278

PDP-8, 211, 215

PDP-11/40, 389

PDP-11/60, 319

Unibus, 274

disk supply process, 59

disks

18-bit machines, 174

access time, 48

areal density, 49

displays, 201

18-bit machines, 174

color, 123

high precision, 123

LINC, 136

PDP-6, 136

PDP-12, 136

documentation, PDP-4, 146

Doriot, General Georges F., 123

dual-inline package, 71, 115, 156

dual processor {See multiprocessor)

ECL {See emitter-coupled logic)

ECL bit-slices, 436

economy-of-scale, 56

modules, 80

effective address, PDP-8, 524-526
electrical noise, buses, 277

electromagnetic interference; module level, 68, 71, 80

emitter-coupled logic (ECL), 104, 110, 116, 155,203,
487

PDP-10, 513

semiconductor use, 39, 40

emitter follower, 97

emulation, 408

engineering
software engineering, 85

systems engineering, 85

engineering breadboards, 85

engineering prototypes, 86

English Electric KDF9 Computer, 494

environmental testing, 86

error control

acknowledgement, 295

buses, 295-298
check bits, 295

error reporting and logging, 295

LSI- 11 Bus, 295, 296

Massbus, 297, 298

retry, 295

SBI Bus (VAX-1 1/780), 296

Unibus, 295

Ethernet, 466

event counting, 144

evolution

18-bit machines, 164-174

PDP-10, 382, 489-491

PDP-11, 231, 381, 382, 385

programming, 39, 40

exceptional condition, 31

extendability, 440

Extracode, Atlas, 498

Fabritek Memories, 504

family tree, semiconductor, 27-29
Fast Fourier Transform, 15, 322, 437

CDC 6600 vs. RTMs, 434

Register Transfer Modules, 434, 435

Fastbus, PDP- 11/45, 348

fault-finding procedure, 91

fault tolerance. Cm*, 440, 465

field programmable logic array, 45

field service, 85

fifth generation, packaging, 74

570 INDEX

file control use, Applications-Functional View,

15-18

file memory, 53

file processor, 164

final assembly and test, 87

fixed head disks, 58

Flexowriter, Friden, 125

word processing antecedents, 17

Flip Chip, 74, 78, 80, 112, 148, 179

costs, 80

packaging, 112

flip-flop, 105

TX-2, 99, 100

floating point

PDP-11, 256, 384

PDP-11/45, 384

PDP-1 1/70, 238, 385, 389,390

floating-point hardware, 365

PDP-11, 365

PDP-1 1/20, 370-372

PDP-1 1/40, 370-372

PDP-1 1/45, 370-372

performance, 377, 378

Floating-Point Processor

PDP-8/A, 187

PDP-1 1/34, 405

PDP-1 1/45, 238

PDP-1 1/60, 238, 321

PDP-1 1/70, 238

PDP-15, 161

Forgie, J. W., 127

Forrester, Jay, 124

FORTRAN, 143, 238, 365, 473, 491, 492

DECSYSTEM-2060, 551

PDP-1 1/70, 551

performance, 551

VAX-11/780, 417, 418, 551

FORTRAN-IV PLUS, 321, 383

FORTRAN Cross Assembler, LSI-11, 301

FORTRAN virtual machine, 365, 366, 368-370

fourth generation, packaging, 74

Foxboro Corporation, 141, 143, 178

FPLA {See field programmable logic array)

frequency-driven design, PDP-1 1/60, 350

Friden Flexowriter (See Flexowriter)

front-ends, Applications-Functional View, 17

Fuller, Samual H., 433

Fusfeld, A. R., 54

G-Series modules, 113, 114

Gardner-Denver {See Wire-Wrap)

gate arrays, 29, 44

Amdahl, G. M., 39

design, 42-44

IBM, 39

testing, 89

gate level simulators, 461

gates

capacitor-diode gates, 109

diode-capacitor-diode gates, 112

General Electric, GE 645 computer, 467

General Motors, 203

general registers, 52, 377

design constraints, 242

floating point, 377

PDP-11, 382,384, 385, 387

PDP-1 1/20, 371

PDP-1 1/40, 371

PDP-1 1/45, 371

generate and test, 21

generation circuit, 28, 29

GenRad Tester, 89

gentlemen's timesharing, 518

George Interpreter, 494

germanium alloy transistors, 145

germanium transistors, 104, 113

Gibson Mix, 355, 550

goals

PDP-11, 231, 381

understandability, 383

Grason, John, 434

Gurley, Ben, 123, 125

H
HARPY Speech Recognition Program, 394

Harris Semiconductor, 190

Helenius, Al, 164

Hewlett-Packard, HP35 calculator, 63

hex modules, PDP8/A, 187

high level languages, PDP-11, 383

high reliability, Applications-Functional View, 16

high speed channel {See also Direct Memory Access)

history

PDP-1, 123, 124

PDP-4, 141, 147

PDP-5, 178, 179

PDP-7, 147-153

PDP-8, 179-182

PDP-9, 153-156

PDP-1 4, 203-208

PDP-15, 156-162

PDP-1 5/76, 162-164

Hodges, D. A., 37

INDEX 571

Holloway, John, 513

home based computers, 17

Horizontal microprogramming, LSI-11, 345

Hully, Richard, 164

human factors engineering, packaging, 60

Hydra operating system, C.mmp, 396

I

I/O
18-bit machines, 164, 172-174

Cm*, 475

controllers, 391

design constraints, 242

I/O computer, 129, 158, 391

IBM Channel, 391

PDP-1, 128, 129, 134, 390

PDP-4, 143-145

PDP-5, 179

PDP-6, 503

PDP-7, 148

PDP-8, 211

PDP-8/E, 182, 184, 185

PDP-9, 155

PDP-10, 499, 503

PDP-11, 185, 382, 386

PDP-15, 158, 159, 160

TX-2, 125, 126

VAX-1 1,425, 426

I/O Bus daisy-chain, 155

I/O connections, semiconductor, 37

I/O device independence, PDP-6, 508

I/O interfacing, 18-bit, 164

I/O page, Unibus, 274

IBM Corporation
709 computer, 25

1130,366
3330 disk, 278

3850 Mass Storage System, 15

7030 computer (STRETCH), 491

7090 computer, 25, 140, 356, 492

Channels, 129

7094 computer, 491

Bell Laboratories, 490

operating systems, 490

7441 Buffered Terminal Control Unit, 46
Channel I/O, 391,491
Model B Typewriter, 143

STRETCH (7030 computer), 491

System 360 computers, 356, 407

attached support processor, 164

channels, 491

general registers, 250

memories, 48, 504

Model 40, 187

Model 65, 467

Model 85, 51, 56, 263

Model 91 arithmetic logic units, 468

Multiplexer/Selector Bus, 388

range, 384

SVC, 498

TSS, 491

System 370 computers
channel-to-channel adapter, 466

Model 155,263
ILLIAC IV, 468

performance, 543

implementation
18-bit machines, 171

Blauuw View, 24-26

Cm*, 473-475

LSI-11, 306,307, 344-347

control unit, 327

Norden 11/34M,25
PDP-4/PDP-7, 148

PDP-8, 181

PDP-10, 512,513

PDP-11, 23,235
PDP-11 using Intel bit-slices, 458^60
PDP-1 1/04, 327, 340, 341

PDP-1 1/10, 328, 331,339,340
PDP-1 1/20, 248, 328, 334

PDP-1 1/34, 328, 341, 342

PDP-1 1/40, 328, 334, 339

PDP-1 1/45, 347-349, 354

PDP-1 1/60, 328, 331, 342-344

performance, 541

stack, 542

VAX-1 1/780, 423^26
Index Registers, 141

PDP-15, 158

indirect addressing, PDP-8, 525, 526

industrial modules, 114, 115

infant mortality testing, 91

information units (/-units), 537

Input-Output Register, PDP-1, 129

instruction decoding diagram, PDP-8, 216

instruction format, PDP-8, 521-523

instruction frequencies, 350

instruction interpretation

PDP-8, 526-531

PDP-11, 97,98
instruction interpretation of microprogram, PDP-1 1 ,

331-334

572 INDEX

instruction prefetch

PDP-11/40, 353, 354

PDP-1 1/45, 353, 354

PDP- 11/60, 353, 354

Instruction Register, PDP-11, 329

instruction set design, 386

instruction set processor (See ISP)

interference, interprocessor. Cm*, 465

integrated circuit technology

7400-series, 116

KIIO Processor (PDP- 10), 116

KL 10 Processor (PDP- 10), 116

PDP-8/E, 116

PDP- 10, 116

PDP-1 1/20, 116

PDP-1 1/45, 116

integrated circuits

design, 42

packaging level s-of-integration, 7, 71

Intel, 474

3000 Series bit-slices, 435, 449

arithmetic overflow, 459

Carnegie-Mellon University, 449

implementation of PDP-11, 458-460

Multiply instruction, 459-460

8086, 32

microprocessors, 436-438

packaging levels-of-integration, 8

intelligent terminal, 190

interconnection structures. Cm*, 465

interfacing, LSI-11, 309, 310

internal registers, PDP-11, 329

International Telephone and Telegraph, 139

interpreter, 3, 366

interrupts (See also sequence break), 127-129, 139,

164

arbitration methods, 283

buses, 273

design constraints, 242-244

LSI-11, 303

Massbus, 286

PDP-8, 218

PDP-10, 503

PDP-11, 382

PDP-1 l/70mP, 398

VAX-1 1,422

interrupt response, PDP-11, 242

Intersil, 190

ISP, 24, 86, 129, 519-522

notations, 3

PDP-1, 130-134

PDP-4, 130-134

PDP-8, 209, 215-218

PDP-10, 494

PDP-11, 249-257, 383-387

PDP- 11/05, 302

PDP-14, 204

Register Transfer Modules, 442-444

TX-0, 126

VAX-1 1, 411-423

ISP influence on performance, 546-548

ISPS, 519

arithmetic representation, 532-535

PDP-8, 519

K
K-Series modules, 114, 115

PDP-14, 115

KAIO Processor (PDP-10), 394, 489, 494, 499

HARPY, 394

memory control, 503

performance, 513

wire-wrap, 513

KBll Processor (PDP-11), 328

KIIO Processor (PDP-10), 488, 489, 494

integrated circuit technology, 116

memory protection, 489, 499

paging, 498

KLIO Processor (PDP-10), 116, 394, 487, 489, 494

HARPY, 394

integrated circuit technology, 116

microprogram, 496, 513

performance, 513

KL20 Processor (DECSYSTEM-20), 489

Kotok, Alan, 178

L-1 computer, 141, 142, 178

Laboratory Instrument Computer {See LINC)
Laboratory Modules, 103-118

logic system, 104

language
architecture, 25

machine, 26

language processing system, onion skin levels, 3

languages, packaging levels-of-integration, 6

latency tolerance, buses, 274

Lawrence Livermore Laboratory, 139

learning constants, 54

learning curves, 54, 59, 61

Levels-of- Interpreters, View of Computer Systems
3-6

Levy, John V., 233

Librascope, LGP-30 computer, 139

life cycle, 85-87

INDEX 573

LINC, 175,211

console, 175

display, 136

performance, 243

personal computer, 175

PMS, 175

tape unit, 175, 215

LINC-8, financial, 147

Lincoln Laboratory, 123, 175, 512

TX-2, 97-102, 104, 503

line switching power supplies, 81

linear predictive coding, 31

link bit, 142

PMS, 537

LISP, 491,492

lithography, 32

Live Register, TX-0, 129

locality, 51, 52

Lockheed Corporation, SUE computer, 393

logic

Schottky TTL, 115, 116

logic design level, PDP-8, 222-224

logic diagrams, 105

logic elements, 105-107

logic, emitter follower, 97

logic gates, 105

logic level, structural levels, 2, 3

logic system

Laboratory Modules, 103

pulse, 105, 106

Systems Modules, 103

logical design, PDP-11, 257, 258

LSI-11, 303-313, 388, 398

address space, 303

bit- slices, 449-462

Cm*, 473-476

compatibility, 312, 386

console, 302,310, 311

design, 233

FORTRAN Cross Assembler, 302

horizontal microprogramming, 345

implementation, 306, 307, 344-347, 354

I/O Bus, 308-310

interfacing, 308-310

interrupt, 303

LSI circuitry, 355

maintenance, 312

memory, 307, 308

memory refresh, 311, 350

microcomputer, 301

microprogramming, 303, 457

modules, 80

packaging, 74, 455-457

packaging levels-of-integration, 8

performance, 455

PMS, 303

programmable logic array, 305

real-time clock, 311

register transfer level, 303

software support, 312

VAX-1 1,424
LSI-11 Bus, 308-310

arbitration methods, 283, 284

Cm*, 398, 473

data transfer synchronization, 288

error control, 295, 296

LSI-11/2, 234

modules, 3-9

LSI dilemma, 37-39,431

Luecke, Jerry, 37

M
M-Series modules, packaging, 116

M.I.T., 123, 141, 147

CTSS, 1508

Multics, 490

memory purchases, 504

M.I.T. Lincoln Laboratory {See Lincoln

Laboratory)
machine language programming, design constraints,

242

Mackenzie, John, 126

macromachine ISP, performance, 541

macromodules, 431-433

MADT transistors, 109, 145

magnetic bubble memories, 47, 53, 58

magnetic tape, 50

bit density, 50

mainframe computer class, 12

maintainability

Carnegie-Mellon multiprocessors, 393

design, 23

PDP- 11/60, 324

maintenance

LSI-11, 312

PDP-4, 146

TX-2, 95, 99

manufacturing, 84-91

PDP- 15, 159

TX-2, 95, 99

manufacturing process flows, PDP-11/60, 87

mapping, program mapping, 52, 53

Marathe, M., 396

margin checking, TX-2, 100, 101

market, 18-bit machines, 170

marketing, 85

574 INDEX

Marketplace View, 9-14

computer generations, 10

design alternatives, 10-12

minimal computer, 1 1

price/performance ratios, 9

program compatibility, 10

Massbus, 270, 292-294

arbitration methods, 286

data transfer synchronization, 292-294

error control, 297, 298

interrupts, 286

master clock

SBl Bus (VAX-1 1/780), 284, 285

master slice, 29

Matrix Multiply vs. RTMs, 434

CDC 7600, 434

maxicomputer class, 12

McCarthy, John, 492

medium-scale integration

Memorex Corporation, 49

memories
archival memory, 53

associative memory, 53, 513

cache memory, 51, 52, 278, 398, 401

charge-coupled device, 53. 47. 58

content addressed, 319

core memory, 47, 58, 154, 167, 220, 226

cyclical, 47

DEC 12-bit machine, 48

disk, 48, 49

file memory, 53

IBM System 360, 48

magnetic bubble, 47, 53

magnetic tape, 50

memory hierarchies, 50, 51

microprogram, 52

modularity, 504

multiport memory, 141, 162

paging, 53

PDP-10, 48

PDP-1 1/45, 405

PDP-1 1/55, 405

programmable read-only, 41

read-only, 41, 58, 382

Register Transfer Modules, 442

relays, 1 14

rope memory, 154, 203

Whirlwind, 124

write-once, 46

memory addressing

buses, 273

PDP-1 1/70, 279

Memory Bus

PDP-8, 211

PDP-10, 499, 504

memory control, KAIO Processor (PDP-10), 503

memory hierarchies, 50, 51, 263

memory locality, 51, 52

memory management
PDP-11, 329, 381

PDP-1 1/45, 384

memory protection, 140

KIIO Processor (PDP-10), 498, 499

memory refresh, LSI-11, 311, 350

memory state, PDP-8, 520

memory technology, 27-62, 403, 45

Memory Test Computer, 124

memory timing, performance parameters, 350

message switching applications, 139

PDP-8, 180

microcomputer class, 12

micro-alloy diffused transistor, 109, 145

Microaddress Registers, PDP-11, 329

microcoded instructions, PDP-8, 217

microcomputer, LSI-11, 301-313

microcomputer class

computer classes, 542

performance, 542

microcycle time, performance parameters, 350, 351

microcycle timing selectivity

PDP-1 1/34, 355

PDP-1 1/40, 355

microdiagnostics, 86

micromachine
onion skin levels, 3

performance, 542

programming, 155

microprocessor, CMU-11, 452-454

microprocessor-on-a-chip, 31

microprocessors, effects on RTMs, 434

microprogram
18-bit, 155, 167

KLIO Processor (PDP-10), 496

LSI-11, 302, 303

memories, 52

microprogrammed control, 405

PDP-8/A, 187

PDP-8/E, 185

PDP-11, 329

microprogrammed machine

architecture, 25

onion skin levels, 3

microprogramming, 38

cache, 52

CMU-11, 450-453

KLIO Processor (PD P- 1 0), 5 1 3

LSI-11, 52,449-453

PDP-8, 217

INDEX 575

PDP-9, 52

PDP-11, 45, 244, 383

PDP-11/10, 457, 458

PDP-1 1/40, 451,458

PDP-11/45, 457,458
PDP-1 1/60, 52, 235

Register Transfer Modules, 435

TX-0, 126

microprogramming, horizontal, 345

microword register, PDP-11, 329

mid-life kicker, 62

midicomputer class, 12

minicomputer, 58, 241

Applications-Functional View, 18

computer classes, 12-14

definition, 14

design constraints, 14

packaging, 63-84

minimal computer. Marketplace View, 1 1

multiprocessors, 238

modularity
Cm*, 440, 464

memories, 504

PDP-11, 243, 383

module level

cooling, 71

cross talk, 71

electromagnetic interference, 71

packaging, 71

module mounting
PDP-4, 137

PDP-5, 137

module testing, cost, 80

modules
A-Series modules, 113

B-Series modules, 113, 148

circuit level, 431

computer modules, 436-440

DEC modules, 103-118

DECSYSTEM-2020, 118

economy-of-scale, 80

electromagnetic interference, 80

Flip Chip, 78, 112

Flip Chip module costs, 80

G-Series Modules, 113, 114

hex modules, 187

industrial modules, 114, 115

K-Series modules, 114, 115

Laboratory Modules, 103-107

LSI-11, 80

LSMl/2, 80

M-Series modules, 116

noise immunity, 1 14

packaging, 1 14

packaging levels-of-integration, 7

PDP-1, 104

PDP-7, 113

PDP-8, 116

PDP-8/E, 80, 118

PDP-8/I, 80, 116, 118

PDP-8/I, 118

PDP-10, 113. 116

PDP-11, 258

PDP-1 1/20, 80, 116

PDP-15, 118

pin limitations on modules, 80

PMS level, 431,436
R-Series modules, 112

register transfer level, 431

S-Series modules, 112

second generation, 78

Systems Modules, 79, 103

testing, 80

third generation, 79

VAX- 11/780, 78, 118

VHF modules, 116

W-Series modules, 114

Molnar, Charles, 175

Monitor {See also operating systems)

PDP-10, 505, 506

PDP-6, 505, 506

Motorola, 10800 ECL bit-slices, 436

MSI, 498

PDP-11, 405

PDP-1 1/40, 355

Multics, M.I.T., 490

multicomputers, 238

multiple PDP-lOs, Carnegie-Mellon University, 510

Multiplier Quotient Register, PDP-1, 129

Multiply instruction

AMD 2901, 459

CMU-1 1,459
Intel 3000 Series bit-slices, 459

multiport memory
memories, 141, 162

PDP-6, 141

PDP-15, 162

multiprocessing

PDP-6, 510

PDP-10, 510

multiprocessors, 388, 391-403

application, 396

Carnegie-Mellon University, 393-398

Cm*, 463, 465

PDP-15, 162

PDP-15/76, 164

performance, 542

task decomposition, 464, 465

576 INDEX

multiprogrammed system, Burroughs B5000, 490

multiprogramming
PDP-10, 498, 499

PDP-15, 157

Murphy, Daniel, 512

N
National Biscuit Company (Nabisco), 143

National Physical Laboratory, benchmarks, 551

National Science Foundation, 398, 437

National Semiconductor Company, 437

microprocessors, 437

noise immunity, modules, 1 14

Norden 11/34M, 24, 25

implementation, 25

North American Rockwell, packaging levels-of-

integration, 8

notations, ISP, 3

Noyce, Robert, 8, 9

O
OEM business, PDP-8, 180

Oleinick, Peter, 396

Olsen, Kenneth H. 95, 123, 124

Omnibus, 181, 185

on-board computers. Applications-Functional View,
17

one's complement, 142

onion skin levels

central processing unit, 3

language processing system, 4

micromachine, 3, 4

microprogrammed processor, 4

operate instructions, PDP-8, 530, 531

operating environment, design, 24

operating system

Applications-Functional View, 15

architecture, 25

IBM 7094, 490

packaging levels-of-integration, 7

PDP-6, 505

PDP-10, 489, 505

operation rate, performance, 542, 543

operator maintenance console, PDP-1, 134, 137

original equipment manufacturers {See OEM)

P
P. Display 338, 211

packaging, 63, 84

12-bit machines, 197

18-bit machines, 170, 171

applications, 7

Applications-Functional View 15

backplane level, 71

box level, 68

boxes, 7

cabinet level, 66

cabinet level electromagnetic interference, 68

cabinet level safety, 68

cabinets, 7

CDC 6600, 63

CDC 7600, 63

chip level, 71

CMOS-8, 74

CMU-1 1,451

computer, 72

Computer Automation Naked Mini, 8

computer generations, 72

computer-on-a-chip, 74, 75

computer systems level, 65, 66

Cray 1, 63

DEC boxes, 75

DEC cabinets, 66, 68

dual-inline package, 71

fifth generation, 74

Flip Chip modules, 112

fourth generation, 74

general, 63, 64

human factors engineering, 66

integrated cicuit level, 71

integrated circuits, 7

Intel, 8

languages, 6

LSI-11, 8,457
M-Series modules, 115, 116

minicomputer, 63-84

module level, 71

modules, 7, 114

North American Rockwell, 8

operating systems, 7

PDP-1, 73, 74

PDP-5, 75

PDP-6, 73

PDP-7, 71, 75, 150

PDP-8, 64, 73

PDP-8/A, 64

PDP-8/E, 186

PDP-8/I, 79

PDP-8/S, 75

PDP-9, 155

PDP-10, 65, 513, 517, 518

PDP-11, 8

PDP-11/10, 457, 458

PDP-1 1/20, 8

PDP-11/40, 457, 458

PbP-11/45, 457, 458

PDP-1 1/60, 322

PDP-I4, 204, 205

INDEX 577

PDP-15, 159

Register Transfer Modules, 446, 447

semiconductors, 7

View of Computer Systems, 6-9

wire-wrap, 112

paging, KIIO Processor (PDP-10), 498, 499

paging memories, 53

Papian, William, 125

parallel processing. Cm*, 440

parallelism, 385

parameters, semiconductor, 28

parity error, buses, 296

PDP-1, 128, 164,490, 512

Accumulator, 108

arithmetic operations, 108

cabinets, 137

design, 128

history, 123-141

I/O, 129, 134, 137, 138

Input/Output Register, 129

ISP, 130-134

modules, 103

Multiplier Quotient Register, 129

operator maintenance console, 134, 137

packaging, 73, 74

PDP-l/PDP-4 compatibility, 147

register transfer, 107

timesharing, Stanford, 490

UART function, 73

PDP-2, 141

PDP-3, 141

PDP-4, 164

Accumulator, 146

bit-slice architecture, 146, 178

cabinet, 137

documentation, 146

history, 141, 147

I/O, 143-144

ISP, 130-134

maintenance, 146

module mounting, 137

performance, 169

PDP-4/PDP-7

architecture, 148

compatibility, 148

implementation, 148

realization, 148

PDP-5, 58

bit-slice architecture, 178

cabinet, 137

financial, 147

history, 178, 179

I/O -Bus, 179

module mounting, 137

packaging, 75

performance, 243

PDP-6, 489, 494

circuits, 512

display, 136

financial, 147

I/O Bus, 503

I/O device independence, 508

Monitor, 505-508

multiport memory, 141

multiprocessing, 510

operating systems, 505-508

packaging, 73

user files, 508

PDP-7, 164

cabinet, 75

cooling, 75, 152, 153

history, 147-153

I/O Bus, 148

modules, 113

packaging, 71, 75, 150

PMS structure, 148

wire-wrap, 71

PDP-8, 58, 241

address computation, 524, 525

auto indexing, 215, 526

cache, 56, 202, 203

circuit level, 224-228

Carnegie-Mellon, 56

core memory, 220, 226

data break, 215

design, 222-224

Direct Memory Access, 211, 215

effective address, 524-526
Gardner-Denver Wire-wrap, 1 80

history, 179, 182

I/O, 211

implementations, 181

indirect address, 525, 526

instruction decoding diagram, 216

instruction format, 521-523

instruction interpretation, 526-535

interrupt system, 218

ISP, 209, 215-218

ISPS, 519

logic design level, 222

Memory Bus, 211

memory state, 520

message switching applications, 180

microcoded instructions, 217, 218

microprogramming, 217, 218

modules, 1 16

OEM business, 180

operate instructions, 530, 531

578 INDEX

packaging, 64, 73, 75

PMS, 209, 210-215

processor-on-a-chip, 187, 190

processor state, 520, 521

register transfer level, 218-222

S-Series modules, 112

Structural levels, 209-228

timesharing, 181

PDP-8 emulation. Register Transfer Modules, 434,

447

PDP-8/A, 182

Floating-Point Processor, 187

hex modules, 187

microprogrammed control, 187

packaging, 164

semiconductor memories, 187

PDP-8/B, 187

PDP-8/E, 102, 187

backplanes, 75

I/O, 182, 185

integrated circuit technology, 116

modules, 1 18

microprogrammed control, 185

packaging, 186

read-only memories, 185

PDP-8/I, 181, 204

modules, 80, 116

packaging, 79

UART, 73

PDP-8/L, 181

modules, 1 18

PDP-8/M, 182, 186

PDP-8/S, 181

packaging, 75

PDP-9, 164, 167,434

cooling, 75, 155

core memory, 154

history, 153-156

I/O Bus, 155

microprogramming, 52

packaging, 155

PMS, 154

register transfer level, 154, 155

rope memory, 154

PDP-9/PDP- 15, compatibility, 159

PDP-10, 110,407,489-518
address space, 382

associative memories, 498

data-types, 492, 494

design, 492

ECL, 513

evolution, 382, 489, 492

Family, 487

general registers, 251

I/O, 499, 502, 503

implementation, 512-518

integrated circuit technology, 116

interrupt, 503

ISP, 492-499

memories, 48

Memory Bus, 499, 503

modules, 1 10

Monitor, 505-508

multiprocessing, 510

multiprogramming, 498, 499

operating systems, 489, 505-508

packaging, 65, 513-516

PDP-lO/PDP-1 1,499
PMS structure, 499-505

price/performance, 516-518

range, 489, 490

stack, 251

UUO, 498

PDP-11
address space, 381, 231

addressing modes, 373, 374

architecture, 25, 26, 231

arithmetic logic unit (ALU), 328, 329

auto increment, 382

bus, 387

Bus Address Register, 329

cache, 232, 389, 390

character handling, 382

character-string instructions, 384

commercial instruction set, 384

compatibility, 386, 408

condition codes, 329

control unit, 329-331

data paths, 328, 329

data-type extensions, 232

decimal arithmetic data-types, 384

design, 257, 258

Design Tradeoffs, Impact on Performance,
327-364

evolution, 231, 381, 382, 385

Family, 231

floating point, 256, 257, 384

FORTRAN, 365-378

general registers, 251, 255, 256, 382, 384, 385, 387

goals, 231, 381

high level languages, 383

I/O, 185, 382, 386

implementation, 24-26, 458-460

implementation using Intel bit-slices, 449-462

instruction interpretation of micro-

program, 331-333

Instruction Register, 329

internal registers, 329

INDEX 579

interrupt, 258, 382

interrupt response, 242

ISP, 249-351, 383-387

KB 11 Processor, 328

logical design, 257, 258

memory management, 329, 381

Microaddress Register, 329

microprogrammed control, 329

microprogramming, 45, 244, 383

Microword Register, 329

modularity, 243, 383

modules, 258

MSI, 405

packaging levels-of-integration, 8

performance, 242, 243

performance range, 327

PMS level, 244-249

PMS structure, 387-391

processor priority, 329

Program Status Register, 329

range, 231, 368, 383

read-only memories, 382

reentrant programming, 382

registers, 382

RSTS, 181

Scratchpad Memory, 329

stack, 254, 255, 368, 387

status register, 329

technology, 403-405

two address machine, 256

understandability, 383

Unibus, 231

virtual memory, 231

word length, 242

PDP- 11/03, data path organization exceptions, 351

PDP- 11/04

implementation, 328, 340, 341

Processor Unibus overlap, 352

programmable logic arrays, 405

Unibus interface logic, 353

PDP- 11/05

compatibility, 16-17

ISP, 302

PDP-11/10
byte swap logic, 354

byte swapper, 352

implementation, 328, 331, 339, 340

microprogramming, 457, 458

packaging, 457, 458
PDP- 11/20

compatibility, 386

financial, 147

floating point, 370, 371

FORTRAN, 370-373

implementation, 248, 329

integrated circuits, 116

modules, 80, 118

packaging levels-of-integration, 8

SSI, 334, 355

Unibus, 277

PDP- 11/34
bit-slices, 405, 435

data path speed, 355

Floating-Point Processor, 405

implementation, 328, 341, 342

microcycle timing selectivity, 355

programmable logic arrays,405
Unibus interface logic, 353

PDP-11/34A, 232

cache, 405

PDP- 11/40

compatibility, 386

Direct Memory Access, 389

floating point, 370-372

FORTRAN, 370-372

HARPY, 394

implementation, 328, 334, 339

instruction prefetch, 344, 353, 354

microcycle timing selectivity, 355

microprogramming, 457, 458

MSI, 339, 355

packaging, 457, 458

performance, 455-457
PDP- 11/45

compatibility, 386

data path organization exceptions, 351

data path parallelism, 354

Fastbus, 348

floating point, 238, 370-373, 384

FORTRAN, 370-373

implementation, 347-349, 354

instruction prefetch, 353, 354

integrated circuit technology, 116

microprogramming, 457, 458

memory, 465

memory management, 384

packaging, 457, 458

Unibus, 278

PDP- 11/55

Floating-Point Processor, 238

memory, 405

PDP-11/60, 232, 235, 315-326

arithmetic logic unit, 328, 329

cache, 318, 342, 352, 353, 389, 405

data path organization exceptions, 351

frequency-driven design, 350

FORTRAN, 321

floating point, 238, 315, 321

580 INDEX

implementation, 328, 331, 342-344

instruction prefetch, 344, 353, 354

manufacturing process flows, 87

microprogramming, 52, 235, 315, 317, 377

writable control store, 322, 323, 342, 383

PDP- 11/70, 232, 263

cache, 56, 278

Hoating point, 238, 385, 389, 390

FORTRAN, 551

memory addressing, 279

performance, 409

Unibus, 389

Unibus Map, 384

PDP-ll/70mP
availability, 398

cache, 398

interrupt, 400

maintainability, 398

performance, 400

reliability, 398

RSX-llM, 398

PDP-11 /PDP- 10, 499

PDP- 12, 175

display, 136

PDP- 14

core memory, 206, 208

financial, 147

history, 203, 208

ISP, 205

K-Series modules, 114, 115

packaging, 204

rope memory, 204

PDP- 15

cabling, 158-160

console logic, 160

Floating-Point Processor, 161

history, 156-162

I/O, 160

I/O Processor, 158

Index Register, 158

manufacturing, 159

modules, 118

multiport memory, 162

multiprocessor, 162

multiprogramming, 157

packaging, 159

PMS, 159

range of sizes, 168

use of integrated circuits, 167

PDP-15/76
history, 162-164

multiprocessor, 162

PMS, 162

performance
12-bit machines, 194

18-bit machines, 169

architecture, 541, 546-549

benchmarks, 541, 546

calculators, 543

CDC STAR, 543

Cm*, 477, 482

CMU-11,454, 455

COBOL, 541, 555

Computer Family Architecture Performance

Study, 546

Cray 1, 543

data-types, 542

DECSYSTEM-2060, 551

design, 23

FORTRAN, 377, 378, 541, 551

ILLIAC IV, 543

implementation, 541

ISP influence on performance, 546-549
KAIO Processor (PDP- 10), 513

KLIO Processor (PDP-10), 513

LINC, 243

LSI- 11, 455

macromachine ISP, 541

microcomputer class, 542

micromachine, 541

multiprocessors, 544-546

operation rate, 542

PDP-4, 243

PDP-5, 243

PDP-11, 243

PDP-1 1/40, 455

PDP-1 1/70, 409, 551

PDP-11 /70m P, 398

stack, 542

supercomputer class, 542

three-address machine, 542

transaction processing, 550

use, 541

VAX-1 1/780, 551

workload, 541

performance parameters

memory timing, 350, 351

microcycle time, 350, 351

performance quantifying, 349, 350

performance range, PDP-11, 327

peripheral base, 148

Peripheral Interchange Program (PIP), 510

peripheral processing units, CDC 6600, 501

personal computer
LINC, 175

Petit, Phil, 513

INDEX 581

Phister, Montgomery, 20

physical address, 384

physical address space, 405

pilot run, 81

pin limitations on modules, 80

PL/1, 55

PLA (See programmable logic array)

PMS
attributes of PMS components, 538

bus, 538

control, 538

Cm*, 470

data operation, 538

LINC, 175

LINK, 537

LSI-11, 303

PDP-7, 148

PDP-8, 209, 210-215

PDP-9, 154

PDP-10, 499-505

PDP-11, 387-391

PDP-15, 159

PDP-15/76, 162

processor, 538

switch, 538

transducer, 538

PMS level

modules, 431, 436

PDP-11, 244-249

structural levels, 3

PMS level configurations,

Applications-Functional View, 15

PMS notation, 537-539

PMS primitives, 537-539

pocket calculators, 63, 64

Pohlman, W.B., 233

Poole, David, 513

power, 80-83

12-bit machines, 200

battery backed-up power, 81

cooling, 83, 84

line-switching power supplies, 81

power-line monitoring, 81

volumetric efficiency, 83

power distribution, 68

power-line monitoring, 81

power requirements, buses, 276

power supplies, 80-83

cost, 81

prefetch of instructions

PDP- 11/40, 344

PDP- 11/60, 344

price
12-bit machines, 193

18-bit machines, 168

primary memory, 47, 405

printed circuit board costs, 80

process control, 143, 385

process maturity testing, 86

processor, PMS, 538

processor-memory-switch (See PMS)
processor, multi-micro, 463-484

processor-on-a-chip, 394, 497

PDP-8, 187

processor priority, PDP-11, 329

processor state registers, 52

processor Unibus overlap, PDP- 11/04, 352

productibility, design, 23

product announcement, 86

product life, 59, 85, 86, 168

design, 23, 24

product rejuvenation, 62

program and data relocatability, 140

program compatibility (See compatibility)

program controlled I/O transfers, 129

program mapping, 52, 53

program segmentation, 52, 53

Program Status Register, PDP-11, 329

programmable logic array, 29, 45, 46

CMOS-8, 190

CMU-1 1,460

LSI-11, 305

PDP- 11/04, 405

PDP-1 1/34, 405

programmable read-only memories, 41

programming
cost, 38, 41

evolution, 39, 40

PROMs (See programmable read-only memories)

propagation delays, buses, 276

protection/relocation
CDC 6600-7600, 498

PDP-10, 498

Pugh, Earl, 126

PULSAR, 401-403

cache, 401

pulse logic system, 105, 106, 512

pulse height analysis, 139, 144, 180

R-Series modules, 113

radar signal processing, 437

Radio Corporation of America, RCA control

computer, 143

582 INDEX

range

design constraints, 242, 243

IBM 360, 384

PDP-10, 489, 490

PDP-11, 231, 368, 383

Raytheon Company, 43

reentrant programming, 142, 187

PDP-11, 382

read-only memories, 41, 45, 58, 185, 382

CMU-1 1,460

design constraints, 242

PDP-8/E, 185

PDP-11, 382

realization

Blaauw Characterization, 24-26

PDP-l/PDP-7, 148

register transfer

CMOS-8, 190

PDP-1, 107

register transfer level, 24

design, 441-448

LSI-11, 303

modules, 431

PDP-8, 218-222

PDP-9, 154, 155

structural levels, 3

register transfer level structures, 107

Register Transfer Modules, 441-448

arithmetic, general purpose, 444

computers, 446, 447

control, 442, 443

data operation, 442

design, 442, 445-447

design protocol, 445

Fast Fourier Transform, 434

ISP, 442-445

memory, 442

microprogramming, 435

packaging, 446, 447

PDP-8 emulation, 434, 447

PMS, 447

transducers, 443, 444

registers

Bus Address Register, 329

context registers, 52

general registers, 52, 377, 382, 384

Instruction Registers, 329

internal registers, 329

Microaddress Registers, 329

Microword Register, 329

PDP-11, 382

Processor State Registers, 52

Program Status Register, 329

relay logic, 205

relay memories, 114

release to manufacturing, 86

reliability

design, 23, 324

PDP-1 l/70mP, 398

relocatability, 140

replacement algorithm, cache, 264

research, 59

retry, error control, 295

ROMs {See read-only memories)
rope memory

PDP-9, 154

PDP-14, 204

RSTS (PDP-11 timesharing), 181

RSX-llM, 408

PDP-1 l/70mP, 398

RT CAD System, Carnegie-Mellon University, 434

S-Series modules, 112

PDP-8, 112

Safeguard Computer, 392, 394

SAGE (See simulation of asynchronous gate

elements)

satisficing alternatives, design, 20

SBI Bus {See Synchronous Backplane Interconnect)
scientific use of computers, Applications-Functional

View, 15

Scientific Data Systems, SDS 940 (Berkeley), 384,

490, 492

Scientific Engineering Institute, 141

scientific environment, 487

Scratchpad Memory, PDP-11, 329

Sebern, Mark J., 233

second generation
12-bit machines, 195

modules, 78

TX-2, 97

segmentation, program, 52, 53

Seligman, Larry, 153

semiconductors, 393

cost, 33, 34

density, 31, 32

family tree, 27, 28

I/O connections, 37

memories, 47, 48, 58, 187

memory cost, 33, 34, 49

packaging levels-of-integration, 7

parameters, 28

PDP-8/A, 187

performance, 35

reliability, 37

technology, 27-62, 95

INDEX 583

ECL, 35, 36, 39

FL, 35, 36

MOS, 35, 36

PDP-10, 35, 36

SOS, 35, 36

TTL, 35, 36

sequence break, 127, 129

sequential logic, structural levels, 3

serial line, Cm*, 476

Siewiorek, Daniel P., 235, 433

Sigma Series, XDS, 492, 503

signal processing, C.mmp, 394

silicon transistors, 113

Simon, H.A., 20, 21

simulation of asynchronous gate elements (SAGE),
461

size, cache, 264

Smithsonian Institution, 264

Snow, Edward A., 235

software base, 148

software engineering, 85, 365-378

software support, 85

LSI-11, 312

Sogge, Richard, 155

Soha, Z., 233

Solid State Data Systems, 73

spectrum analyzers, 180

Speech Recognition Program (HARPY), 394

SSI

PDP- 11/20, 334,355
stack

CMOS-8, 217

design constraints, 242

implementation, 542

PDP-10, 251

PDP-11, 254, 255, 366, 369, 387

performance, 542

standard cell design, 44

Stanford University, 141

Artificial Intelligence Laboratory, 498

Drawing System, use on CMU-11, 460, 461

memory purchases, 504

PDP-1 timesharing, 490

timesharing, 490

state-of-the-art line, 58, 59, 60

Status Register, PDP-11, 329

Strecker, William D., 50, 232, 350, 387, 396

STRETCH, 140, 491

string handling, design constraints, 242

string instructions, 382

structural levels

circuit level, 2

combinational logic, 3

device level, 2

logic level, 2

PDP-8, 209-228

PMS level, 3

register transfer level, 3

sequential logic, 3

switching circuit level, 2

View of Computer Systems, 2, 3

submicrocomputer class, 12

subscript calculation, 374

supercomputer

computer classes, 12, 542

performance, 542

supervisor program, 140

surface barrier transistor, 124

Sutherland, Ivan E., 128

switch, PMS, 538

switching circuit level, structural levels, 2

synchronizer problem, 162

Synchronous Backplane Interconnect

arbitration methods, 284, 285

data transfer synchronization, 290-292

error control, 296

master clock, 284, 285

VAX- 11/780, 279, 280

systems engineering, 85

Systems Modules, 79, 103-118

logic system, 105

task decomposition
Cm*, 464, 465

multiprocessors, 465

technology
PDP-11, 403-405

improvements, 59

innovation, 55

progress, 53

push, 27

substitution, 57, 58

TECO (See Text Editor and Corrector)

teleprinters, 180

Teletype, 58, 143, 148, 168

word processing antecedents, 17

Telex, word processing antecedents, 17

Tenex {See TOPS-20)
terminal use, Applications-Functional View, 15

testing, 87, 89, 91

design maturity testing, 86

environmental testing, 86

fault-finding procedure, 91

gate arrays, 89

GenRad Tester, 89

infant mortality, 91

modules, 80

584 INDEX

process maturity testing, 86

Text Editor and Corrector (TECO), 511

third generation
12-bit machines, 195

backplane, 79

modules, 79, 80

threaded code, 365, 366-368

three-address machine

performance, 542

Three Cycle Data Break, 144, 154, 155

timesharing, 128, 140, 489

gentlemen's timesharing, 505

PDP-8, 181

RSTS, 181

Stanford, 490

timesharing use. Applications-Functional View, 15

Titelbaum, Mike, 233

toggle switches, 124

Toombs, H. Dean, 47

top-down design, 349

TOPS- 10, 489

TOPS-20, 489, 499, 511, 512

transaction processing, 385

performance, 550

transducers

PMS, 538

Register Transfer Modules, 443

transfer of hardware technology, 487

transistor-transistor logic {See TTL)
transistor inverter, 97

transistors

germanium alloy transistors, 145

germanium transistors, 104, 113, 491

micro alloy diffused transistors, 109, 145

silicon transistors, 113

transparency, 238

TSS/8, 180

TTL, 115, 116, 156

TTL/H (high speed), 513

TTL/S (Schottky), 115, 116, 203, 513

Turn, R., 48

two-address machines, PDP-11, 256

two's complement, 142

TWX, word processing antecedents, 17

TX-0, 124, 125, 126, 512

ISP, 126

Live Register, 129

microprogramming, 126

TX-O/PDP-1, compatibility, 128

TX-2, 97-102, 124, 127

circuitry, 97-102

nip-flop, 99, 100

I/O structure, 127

maintenance, 99, 100

manufacturing, 99, 100

margin checking, 100, 101

M.I.T. Lincoln Laboratory, 104, 503

second generation, 97

U
UART chip (See Universal Asynchronous
Receiver/Transmitter)
UART function

680-1, 73

PDP-1, 73

PDP-8/I, 73

understandability

goals, 383

PDP-11, 383

VAX-1 1,410

Unibus, 244, 257, 258, 379, 386-390, 449, 458

addressing, 274

arbitration methods, 281-283

asynchronous data transfer, 277

data transfer synchronization, 287, 288

direct memory addressing, 274

error control, 295

I/O page, 274

PDP-11, 231

PDP-1 1/20, 277

PDP-1 1/60, 319

PDP-1 1/70, 389

Unibus as diagnostic tool, 388

Unibus interface

CMU-1 1,451-453
PDP-1 1/04, 353

PDP-1 1/34, 353

Unibus Map, PDP-1 1/70, 384

Unimplemented User Operation (UUO), 498

Universal Asynchronous Receiver/Transmitter, 31,

73, 190

universal logic arrays, 44, 45

university environment, 487

use, performance, 541

user files, PDP-6, 508

user microprogramming, 52

UUO (See Unimplemented User Operation)

vacuum tubes, 98

van de Goor, Adrian, 180

VAX-1 1, 14, 238, 239, 386, 405-408, 409-428

address space, 420-422

addressing, 412-416

assembler, 415, 416

auto increment, 414

bus, 424, 425

INDEX 585

compatibility, 409, 410, 423

console, 424

context switching, 382, 422, 423

data-types, 412

FORTRAN, 417, 418, 541, 551

I/O, 425, 426

implementation, 423-426

interrupts, 422

ISP, 411-423

LSI-1 1,424
master clock, 284, 285

modules, 78

performance, 551

procedure instruction, 418, 419

Synchronous Backplane Interconnect (SBI), 424,

425

understandability, 410

VHE modules, 110

video disks, 46

View of Computer Systems, 1-26

Applications-Functional View, 15-18

Blaauw Characterization, 24-26

Design, Practice of, 18-24

Levels-of-Interpreters, 3-6

Marketplace View, 9-14

Packaging Levels-of-Integration, 6-9

Structural Levels, 2, 3

Virtual Address, 53, 239, 384, 405

Cm*, 465

virtual machine, 53

virtual memory, PDP-11, 231

volumetric efficiency, power, 83

von Neumann machine, 250

Vonada, Donald, 24

VT78, 190

W
W-Series modules, 114

Western Digital Corporation, 190

Western Union, word processing antecedents, 17

wheel of reincarnation, 201, 391

Whirlwind, 47, 123, 124

White, Donald A., 184

Wilkes, Maurice, 24

Williams, Jack, 151

Wilson, Ronald, 151, 153

wire-wrap, 58, 74, 151, 152, 164

backplane level, 1 1, 75

KAIO Processor (PDP-10), 513

packaging, 1 12

PDP-7, 71

PDP-8, 180

Wolf Research and Development, 124

word length

PDP-11, 242

word processing

antecedents, 17

Flexowriters, 17

Teletypes, 17

Telex, 17

TWX, 17

Western Union, 17

Applications-Functional View, 17

working set, 53

workload (See benchmarks)
write-once memories, 46

writable control store, PDP-1 1/60, 342, 383, 322, 323

Wulf, William A., 511

Xerox Data Systems (XDS), 492

Sigma Series, 503

Zereski, Donald, 151

C. Gordon Bell is Vice President df Engineering
for Digital Equipment Corooration with respon-

sibility for the connpany's research, design, and

development activities in computer hardware,
software and systems He received his B S,

(1956) ano MS (1957) from Massachusetts
Institute of Technology In 1958 he went to

Australia as a Fulbnght scholar and later worked
as a staff researcher at Ml T s Speech Labo-

ratory Mr Bell joined Digital in 1960 and

managed computer design until 1966 when he
left to join the faculty of Carnegie-Mellon Uni-

versity as Professor of Electrical Engineering
and Computer Science He rejoined the com-

pany in 1972 as Vice President of Engineering
Mr Bell has published numerous articles and
books in the computer field including Com-
puter Structures: Readings and Examples,
co-authored with Allen Newell He has de-

signed several of the DEC computers In addi-

tion to his industrial and academic interests,

Mr Bell has served on various U S government
advisory committees He is a member of the

American Association for the Advancement
of Science, the Association for Computing
Machinery, a Fellow of the Institute of Electncal

and Electronic Engineers, and a member of

the National Academy of Engineers

J. Craig Mudge is a Consulting Engineer with

Digital EquipmentCorporation Onassignment
to California Institute of Technology, he is a

Visiting Associate Professor in the Computer
Science Department He was educated at

Australian National University and the Univer-

sity of North Carolina at Chapel Hill where he
received his PhD in Computer Science Dr

Mudge's experience includes CPU develop-
ment (PDP-11 and VAX-11 systems) and pro-

gramming with International Computers
Limited and the Commonwealth Scientific and
Industrial Research Organization, Canberra.
He has taught at Carnegie-Mellon University
and California Institute of Technology His

research interests are computer systems
architecture, the design of VLSI systems, and
the modelling of processors and workloads
He IS a member of Sigma Xi. the Institute of

Electrical and Electronic Engineers, and the

Association for Computing Machinery

John E. McNamara is a Principal Engineer in

Research and Development at Digital Equip-
mentCorporation He received his B,S.(1964) in

Electrical Engineering from Massachusetts
Institute of Technology and his MS (1972) in

Electrical Engineering from Northeastern Uni-

versity He began his career in communications

by working on a telephone system which
served the MIT dormitories From 196>4

through 1968 he was employed at M I.T.'s

Lincoln Laboratory as a Communications Engi-
neer Sincejoinmg DEC in 1968 Mr McNamara
has worked on communications options for the

PDP-8 and two of the larger communications

multiplexers for the PDP 11 the DH11 and the

DV11 He holds a patent in conjunction with this

work Mr McNamara has lecturedat M.I T inthe

Electrical Engineering and Computer Science

Department and is the author of Technical

Aspects of Data Communication.

