1)

§

TRANSOAP~=~SOAP 111 MODIFICATION (PUTS SUBROUTINES
INTO "NORMAL FORM.')

THE USE OF TRANSOAP 15 EXAGCTLY THE SAME A8 THE USE
oF SOAP 1!l wWiITH THE FOLLOWING EXCEPTIONSS l

1« ALL ADDRESSES WHICH ARE NOT TO BE TRANSLATED MUSBT BE ABSOLUTE,
Gl . OR TAGGED WITH AN F,

2. THE PSEUDO-OPBRATIONS OFF, ONN, ONE, FIV, BLR, BLA, awo PST ALF
WILL NOT WORK iH THIS MODIFIED VERSI1ON.

3. PReceEDE THE DECK TO BE TRANSOAPED wi!TH CARDS HAYING PSEUDO~
OPERATION YYY AND HAVING THE CALLING NAMES OF THE SUBROUTINE
(E«G.y Q21 OR QSIN) PUNCHED ONE TO A GCARD, HAVING THE Q IN COLUMN
56 AND THE REST OF THE LETTERS (EXCLUDING THE FINAL E OR F)
PUNGHED IN THE FOLLOWING COLUMMS WI!THOUT BLANK SPACES.

L. THE LAST YYY CARD MUST BE FOLLOWED 2Y A GARD WITH PSEUDO-OP
909 AND ALL OTHER ADDRESSES BLANK,

5. ALL 800X INSTRUCTIONS MUST BE PLACED ON TYFE 2 CARDS.

6. INGCLUDE A CARD FOR EVERY TEMPORARY STORAGE LOCATION WHIGCH I8
TO BE TRANSLATED. THIS §8 IMPORTANT AS 1T 18 USED IN DETERMINING
THE NUMBER OF LOCATIONS USED BY THE SUBROUTINE.

7. SUB-SUBROUTINES: ALL SUB~SUBROUTINES TO BE "DUP"D MuST BE

PLAGED AT THE VERY END OF THE SUBROUTINE. THEY MUST BEGIN WITH

A DUP CARD wHICH HAS A D-ADDRESS OF aaABC (wHERE ABC 18 ANY
IDENTIFIGATION FOR THE SUB~SUBROUTINE AS USUAL) AND AN |~ADDRESS

WHICH IS THE LOCATION ADDRESS OF THE FIRST INSTRUCTION, IF THIS

1S A PROGRAM POINT A FORWARD PROGRAM POINT 18 USED On THE DUP caRDm.)
THE SUB~SUBROUTINE MUST END WITH A TYPE 3 CARD. DUP anp TVPE 3

MusT ¥¥ NOT BE USED FOR ANY OTHER PURPOSE. DON'T NEST SUB=SUBROUTINES.

8. THE FIRST LOCATION OF THE SUBROUTINES AND SUB=SUBROUTINES
MUST BE A PROGRAM Ffd%{ POINT OR SYMBOLIGC ADDRESS.

9. THE ENTIRE Decx MusT Be FOLLOWED B8Y A BLANK CARD.

0. Ox THE FIRST PASS THROUGH SCAP NOTHING WILL BE PUNGCHED EXCEPT
THE NUMBER OF LOCATIONS NEEDED BY THE SUBROUTINE. THI8 WwILL APPEAR
I8N THE L—~ADDRESS OF A DUP CARD FOR EACH SUBS-SUBROUTINE AND A 999
GARD FOR THE MAIN ROUTIMNE., OSUBSTITUTE THESE CARDS THEN FOR ALL
CORRESPOND ING DUP CARDS AND FOR THE 999 CcARD. THE SECOND PASS

WILL YIELD THE DESIRED OUTPUT DECK READY FOR USE.

L1. ERROR sTOP 0333 MAY INDICATE A VIOLATION OF ONE OF THESE RULES.
ALL RSSTRICTIONS ABOVE ARE CERTAINLY REASOMNABLE AND EASY 7O USE.
JUST FOLLOW THE SIMPLE RULES AND EVERYTHING ELBE WILL BE DONE

AUTOMAT 1 GALLY. DON KNUTH JuNe 11,1958
DK:scpP Y y 'vf(k‘ \ 3 : ;.,,.,/’.,) l‘}’ — Do 8BS
= 3 ha prdls o Yy VIMURC cpvidle., T polgkly wor m 0Vl wy i e
A u "“fw'f‘ W o p ! J
VA

(1595¢, 0909

TIME STUDY ROUTINE =-= September 9, 1958

This program is to be used with SOAPS or SOAPR output cardss the purpose
is to discover how many word times the 650 must wait while executing the

instructions of the program.

A card is punched for every instrucbion and type 2 card in a program,
Pseudo-ons and comments cards are not reproduced but the card count is kept
go that it will match the count on the original progrem. Excepbions to this
rule ares the pseudo ong ALF and REP gince they result in machins language
werdss the pseudo-op NXT is also yeproduced since it affects optimization
to a great extent. '

The SOAP language input is reproduced cn the Time Study oulput cards, bub

the assembled "instruction"” containsg the tiring information. The D-address
conbains the rumbey of word times the machine wailts to £ind the data

address (a mumber from O to 49); and the I-address , the number needed to
arrive at the instruction address of an instruction. On ghify commands, the
D= and I-=addresses contain the number of words waltlng time irom the lower
and upper limits, respectively. If an instruction is well optimized Trom the
standpoint of the lower limit but not the upper limit, the number (upper limit
mimus 50) must be subtractez from the date address of the next instruction
evecubed to see the trve optimigaticn, The optimization information punched
is always based on the locations of the instructions alene, without regard

to whether they are being executed from some other drum level.

An entry of 9876 in address msang the Time Study program makes no attempt
Lo guess the naltlnn time or that there is no significance in the answer.
fumeric OP=codes on the SO0AP inpul are considered an indication of constants.

To run the program, read the deck in with 70 1851 XXXX2, overflow and errcr
sense. Soap output cards follow the time study deck Lnbo the machins, Set
the console to 56 0C03 0005 A when the 0363 stop occurs (sse below). Uss the
HAND SOAP board.

Stors: 0222 Leoad card or availab®lity table card. Turning to Program Run will
bypass all load cards.

0363 Set console to 36 0003 0008

8282 Normal machine error BEH3E detected by Error Sense.
Rerun Procedure: Start at location 0250.

Donald Knuth
Case Institute of Technology

1454. al
e

‘31
-

CLOCKWATCH BoH M R E R R E®REREH¥ Jan, 31, 1959

CLOCK WATCH is an added convenience for RUNCIBLE users when dsbugging a
progran, designed primarily for those who do not have a working lmowledge
of 650 basic machine language. The CLOCK WATCH routine punches a play-
by-play report of the program as it is running, including all intermediate
answers achieved.

I, When CLOCK WATCH is used, it laces the Extra Clocking Features
described in Appendix I of the mﬁm Mamal (p. 33f). An additional
98 locations of memory are used but they need not be added to the amounts

on the Header Card.

II, While compiling, digits m and p of the "klmn*" console code should be
set to 88 for Clock Watching. , '
III, CIOCK WATCH, when in operation, will pungh a card for almost every
statement executed. (The only statements it misses are non-substitution
statements which are followed by a statement numbered zero.) The output
cards have the following format:

NoneSubstitution Substitution
Statemen® Statement
word 1: ~ the letters CLO
word 23 002000nnnn
(where nnnn is the statement number)
word 3: 0000000000 IDENT explained below
word Le trash VALUE
wds, 5-8 0000000000000900000000000000000019571926

The IDENT displayed is that of the variable at the left of the substitution
arrow, which is being given the VALUE specified. The forms of the IDENT
and VALUE are exactly the same as those used in ordinary input data card
format* (see RUNCIBLE Manmual, p. 16). A listing of these cards will tell
the story of the compiled program.

IV. The Clock Watch deck is loaded at the beginning of step 16 in the
operating instructions (when your deck and the basic package are in and
the machine ig stopped with 1999 in the ADDRESS lights). Now put the
CLOCK WATCH deck in the read hopper, hit COMPUTER RESET and PROGRAM START,
and END OF FILE at the proper time, and you are ready to start with step
16 again according to normal procedure,

V. During the running phase of your program, after all decks except the
data cards have been run into the machine, the console setting is:

QXXXXXXAAAG:

where the X's and sign are arbitrary. (This setting is made as part of
step 16, right after the CLOCK WATCH deck is in,) Digit g controls operation

according to the rules

q=0,5,6,7,8, or 9: Minimm clocking only
q=1,2,3, or L: Clock<Watching will always occur

after statement AAA is encountered for the first time, If AAA is zero,
Clock<Watching will start immediately from the beginning,

VI. This routine will work with gny basic package, whether type X or T
operation, It may not work with "doctored" RUNCIBLE output~-see manual
o 33 note.
% 1O variables are in core. The number k (last four digits of the
IDENT) is the actual true machine location of the variable specified
by the rest of the IDENT, Variables in core are merely called 00 0000 k.

195%.02.2Y

RUNCIBLE ZERO - Brief explanation of its method

RUNCIBLE O places your program approximately into locations
0700-1384, and the compiler itself (filling the other locations) is
lgter overlaid by variables, extensions, and the basic package. If
varigbles and extensions do not all fit below location 0700, RUNCIBELE
puts as many of them as possible into the space between 1385 and the
first location of the basic package., Thus, the variables might not
be in consecutive order (I,Y,C) and a statement such as "PUNCH Y1 THRU
C10" msy not work as it would with RUNCIBLE I, The Error Search,
Clocking, and type X or Y options are all awvailable in Runcible Zero,
Optimization is sequential except for the first command in each non-zero
statement, Constants are placed in the region 1900-1997 unless full
clocking is used, In the latter case, they start at 1384 and work
downwards, The initialization, filling of the statement dictionary,

and error search procedures are all overlaid during operation.

Donald Knuth
Case Institute
February L4, 1959

RU3CIRLE ZERS Feb, 1li, 1959

RUNCIBLE ZERO is a compiler which goes from statements to answers
without taking time to punch any interms program cards, Thus, one
less one-pass” compiler is all that is
required, Coding is exactly the same as for RUNCIBLE I--type B processing
except for the few exceptions noted below,

Since RUNCIBLE I requires 2000 memory locations and RUNCIBLE O mst be cut
to considerably less, a few restrictions on programs have been made,

%‘
;
g
§
é

faster with type A processing, T

Changes to RUNCIELE I rules:

1. . The following statemeats »ill not be acgeptable:
(a) Iteration statementa

(b) Matrix definition statements or any matrix notation
(c) "Set error correction" statements—-now treated as jump statements

Note that (a) and (b) were superflucus statements which were convenient but
could be programmed in terms of other statements, (c) was omitted because
RUNCIBLE I Type Ais recommended for long production runs,

2. Eaoh statement must fit on a IBI%%E card, However, no final F need be
punched in column 70, and columns [[3-72 may all be used for the statement.
(Because of this one~card restriction, parentheses nesting has been held
to a maximum of four deep.) The last statement should still terminate in
FF in the normal way, however, IT you want to punch the F's in colum 70
on any or all of your statements, you may do so without difficulty; in this
way your statements are admissible to RUNCIBLE I also,

3. When running the program, rules are the same except the input deck (for
step 3) is stacked in the following order:

RIUNCIBLE ZERO deck

Header Card

Comments Cerd

Statements

Relocation Package

Any extensions used in relocatable form
The basic package you want ;

BLANK CaRD

=3 AVLE W N
Nt N N N NP N NN

Omit steps 8 through 15 in the operator instructions, There are no rerun
procedures, ;

ks New Error Stops: The "1234" Error Stops now appear as "0123", New
stops ave -

8700 More than ten extensions and not in Error Search Mode
8701 Program too large for storage available and not in Error
Search Mode
8702 More than 98 constants and not in Error Search Mode with
Full Clocking
8703 Relocation Package not following "FF" statement
When using Error Search Hode the stops are the same as with RUNCIBLIE I,

NUMBER PERVERTER DEMONSTRATION CARD

Instructions for use:

Prepare console as follows:
Storage Entry 70 9000 9001 +

Half Cycle RUN
Address 8000

Control ADDRESS STOP
Display UPPER ACCUM

Place Perversion Card in read hopper.

Depress Computer Reset, Program Start.

Depress START and END OF FILE simvltaneously on card reader.

The program should now be stopped with 8000 on the Address Lights.
Chanse storage entry switches to 60 8004 9001 +.

Now the program is satisfactorily initialigzed,

Set 8004 to any number. Press Program Start, When the machine stopa, the
number will appear with its digits reading from right to lsft instead of
from left to right,

You may reset 8004 and depress Program Start again as often as you wish,

The card: 40 9007 8000
' 20 9009 2002

65 8003 9003

14 9004 9005

00 0000 0010

10 9009 80086

50 1000 9000

19 2004 2001

-Donald Knuth 8/15/59

AXOLOTZ ANOLOTY

As anyone could discover from reading Appendix IV of the SuperSoap Manual,
it is possible to put youwr assembled program immedistely onto disk tracke.
Now if you happen to have a mistake in that program, it will be difficult to
correct the mistake on the disk storage, THIS IS WHY AXOLOTL WAS INVENTED}
Axolotl will take any drum load and put it omto 34 consecutige tracks of
diisk storage —- with its own losding routine automatically.attached.

Here's how AXG@ROTL works: |

1, We start out when you have the drum filled with 2000 words of good
information, (All of this information must be valid, since it must be loaded
into the core by the Axolotl routine.) Your object is to put these 2000 words
into "safe™ keeping on the ram unit, in a self-loading form.

2. Set the console to 70 9000 FDA, where FDA (first disk address) is the
disk and track number of the first of 34 consecutive disks AXolotl is to use.
FDA may not be 0000,

3. Set the 8004 switches to the instruction which you will want to execute
after the drum has been loaded by its selfSloading routine,

4, Read in the Axolotl card. |

So Axolotl now takes over, puts the whole drum away, and punches 2 card.
(Caution: when it tries to punch a card, it is not done storing the drum yet~-
there is one more track to writs!)

6., When Axolotl is finished it goes immediately to the instruction on 8004.
The drum is unchanged from the way it was when Axolotl began.

7. The cerd that was punched will, at some future time, bring in the information
which was stored on the drum and will continue with the instruction you put on the
8004 switches when you originally Axolotlled the program,

Comparison between AXOLOTL and MOXIE:
Axolotl does not restore the accumulators or index registers. Moxie does.
Axolotl does not restore the core. Moxie does.,
Axolotl uses 34 disk tracks. Moxie uses 41,
Axolotl takes 9 seconds to store your program. Moxie takes 44 seconds.
Axolotl takes 7 seconds to load your program. Moxie takes 14 seconds,
When you reload your program it takes off immediately. With Moxie, you
must set the 8004 switches and hit program start.
Moxie destroys the drum after it has dumped it; Axolotl leaves it urmtouched.
Moxie checks the drum for invalid information. Axzolotl doesn't, but if there
are enough complaints, Axolotl might.

