
f i l i f f . oc , })

TRANSOAP SOAP 111 MODIFICATION (PUTS SUBROUTINES
INTO "NORMAL FORM#")

THE USE OF TBAMSOAP IS EXACTLY THE SMZ AS THE USE
OF SOAP t i l WITH THE FOLLOW IN 8 EXCEPTIONS:

ALL A D D R E S S E S W H I C H A R E N O T T O B E T R A N S L A T E S MUST BE ABSOLUTE^
O R T A G G E D W I T H A N F.

2. THE PSEUBO~©PBRAT IONS OFF* ONN3 0NE? FIV, BLR? BLA? AND PST
WILL NOT WORK I N THIS M O D I F 5 E D V E R S ION®

3* PRECEDE THE DECK TO BE TRANSOAPEB WITH CARDS HAVING PSEUDO-
OPERATION YYY AMD HAVING THE GALLING NAMES OF THE SUBROUTINE
(E.G.9 Q21 OR QSIN) PUNCHED ONE TO A QARD^ HAVING THE Q IN COLUMN
56 AND THE REST OF THE LETTERS (EXCLUDING THE FINAL E OR F)
PUNCHED I N THE FOLLOWING COLUMNS WITHOUT BLANK SPACES.

THE LAST YYY CARD MUST BE FOLLOWED BY A CARD WITH PSEUDO-OP
999 AND ALL OTHER ADDRESSES BLANK.

* .!

5® ALL 800X "INSTRUCT IONS MUST BE PLACED ON TYPE 2 CARDS.

6® INCLUDE A CARD FOR EVERY TSMPORA&Y STORAGE LOCATION WHICH IS
TO BE TRANSLATED. THIS IS IMPORTANT AS IS USED IN DETERMINING
THE NUMBER OF LOCATIONS USED OY THE. SUBROUTINE© *

7. SUB-SUBROUTINES: ALL SUB-SUBROUTINES TO BE "DUP"B MUST BE
PLACED AT THE VERY END OF THE SUBROUTINE. T H EV MUST BEG 8N WITH
A DUP CARD WHICH HAS A D-ADDRESS OF^AABC (WHERE ABC 13 ANY
IDENTIFICATION FOR THE SUB-SUBROUTINE AS USUAL} AND AN I-ADDRE 38
WHICH IS THE LOCATION ADDRESS OF THE FIRST INSTRUCTION. (IF THIS
IS A PROGRAM POINT A FORWARD PROGRAM POINT 18 USED ON THE DUP GARB.)
THE SUB-SUBROUTINE MUST END WITH A TYPE 3 SARD* DUP AND TYPE 3
MUST NOT BE USED FOR ANY OTHER PURPOSE. DON'T NEST SUB—SUBROUT 5 N E § .

8. THE FIRST LOCATION OF THE SUBROUTINES AND SUS-SUBROUT«NES
MUST BE A PROGRAM POINT OR SYMBOL 10 ADDRESS.

9® THE ENTIRE DECK MUST BE FOLLOWED BY A BLANK CARD.

10. ON THE FIRST PASS THROUGH SOAP NOTHING WILL BE P U N C H E D EXCEPT
THE NUMBER OF LOCATIONS NEEDED 8 Y THE SUBROUTINE. T H I S WILL APPEAR
IN THE L-ADDRE SS OF A DUP CARD FOR EACH SU3-SUBR0UTPNE AND A 999
CARD FOR THE MAIN R0UT5NE. SUBSTITUTE THESE SARDS THEN FOR ALL
CORRESPONDING DUP CARDS AND FOR THE 999 CARD. THE SECOND PASS
«ILL YIELD THE DESIRED OUTPUT DECK READY FOR USE.

11. ERROR STOP 0333 ^AY INDICATE A VIOLATION OF ONE OF THESE RULES.
ALL R83TRICTION 3 ABOVE ARE CERTAINLY REASONABLE AND EASY TO USE.
JUST FOLLOW THE SIMPLE RULES AND EVERYTHING ELSE WILL BE BONE
AUTOMATICALLY. BON KMUTH JUNE 11F19>^
DK:SCP { ^ ^ r;vy j VT'-'IHC J P*U^ W IK ~~

^ J,\ VU 5V^

oicfi

TIME STUDY ROUTINE — September 9;;, 1953

This program is to be used with SOAPS or SO APE output cards 3 the purpose

is to discover how many word times the 850 must wait while executing the

instructions of the program*

A card is punched for every instruction and type 2 card in a program.
Pseudo-ons and comments cards are not reproduced but the card count is kept
so that it will match the count on the original program* Exceptions to this
rule are the pseudo ops ALF and REP since they result in machine language
words3 the pseudo-op NXT is also reproduced since it affects optimisation
to a great extent®

The SOAP language input is reproduced on the Time Study output cards 9 but
the assembled Hinstruction" contains the timing information. The D-address
contains the number of word times the machine waits to find the data
address (a number from 0 to 49)3 and the I-address 9 the number needed to
arrive at the instruction address of an instruction. On shift commands* the
D» and 3>addresses contain the' number of words waiting time from the lower
and upper limits a respectively. If an instruction is well optimised from"the
standpoint of the lower limit but not the upper limit5 the number (upper limit
minus 50) must be subtracted from the data address'of the next instruction
executed to see the true optimization. The optimisation information punched
is always based on the locations of the instructions alone g without regard
to whether they are being executed from soma other drum level*

An entry of 8878 in an address means the Time Study program makes no attempt
to guess the waiting time or that there is no significance in the answer.
Numeric OP -codes on the SOAP input are considered an indication of constants®

To rim the program̂ read the deck in with 70 1851 XXXX&, overflow and error
sense® Soap output cards follow the time study deck into the machine® Set
the console to 56 0005 0006 £ when the 0565 stop occurs (see below)® Use the
HARD SOAP board®

Stooss 0222 Load card or availability table card® Turning to Program Run will
bypass all load cards.

0565 Set console to 56 0005 0008
8988 Normal machine error SSfiSS detected by Error Sense®

Rerun Procedures Start at location 0250®

Donald Knuth
Case Institute of Technology

C L O C K W A T C H * * * * * * * * * * • * * # * * * J a n . 3 1 , 1 9 5 9

CLOCK WATCH is an added convenience for RUNCIBLE users when debugging a
program, designed primarily for those who do not have a working knowledge
of 650 basic machine language. The CLOCK WATCH routine punches a play-
by-play report of the program as it is running $ including all intermediate
answers achieved.

I* When CLOCK WATCH is used, it replaces the Extra Clocking Features
described in Appendix I of the RUfSftSjfiE I Manual (p© 33f)© An additional
98 locations of men»ry are used but they need not be added to the amounts
on the Header Card*

II.' While compiling, digits m and n of the "klma*11 console code should be
set to 88 for Clock Watching."*

III. CLOCK WATCH, when in operation, will punph a card for almost every
statement executed* (The only statements it misses are non-substitution
statements which are followed by a statement numbered zero.) The output
cards have the following formats

Non-Substitution Substitution
Statement Statement

word It the letters CLO
word 2s OOOOOOnnnn

(where nnrni is the statement number)
word 3: 0000000000 IDENT explained below
word ht trash VALUE
wds. 5«8 0000000000000000000000000000000019571926

The IDENT displayed is that of the variable at the left of the substitution
arrow, which is being given the VALUE specified. The forms of the IDENT
and VALUE are exactly the same as those used in ordinary input data card
format* (see KUNCIBLE Manual, p. 16). A listing of these cards will tell
the story of the compiled program*

IV. The Clock Watch deck is loaded at the beginning of step 16 in the
operating instructions (when your deck and the basic package are in and
the machine is stepped with 1999 in the ADDRESS lights). Now put the
CLOCK WATCH deck in the read hopper, hit COMPUTER RESET and PROGRAM START,
and END OF FILE at the proper time, and you are ready to start with step
16 again according to normal procedure»

V. During the running phase of your pro gram, after all (fecks except the
data cards have been run into the machine, the console setting is:

q X X X X X X A A A *

where the X^s and sign are arbitrary. (This setting is made as part of
step 16, right after the CLOCK WATCH deck is in.) Digit 3 controls operation

according to the rules

q*0,5>,6,7,8, or 9: Minimus clocking only
q«l,2,3* or U* Clock®Watching will always occur

after statement AAA is encountered for the first time* If AAA Is zero,
ClocMatching will start immediately from the beginning*

¥Ia This routine will work with any basic package, whether type X or I
ope ration* It may not work with "doctored" RUNCIBLE output--see manual
Pa 33 note*

no Variables are in core© The number k (last four digits of the
I DENT) is the actual true machine location of the variable specified
by the rest of the IDE NT* Variables in core are merely called 00 0000 k*

R U N C I B L E Z E R O — B r i e f e x p l a n a t i o n o f i t s m e t h o d

RUNCIBLE 0 planes your program approximately into locations

0700^1331?.» and the coirpiler itself (filling the other locations) is

later overlaid by variables, extensions, and the basic package • If

variables and extsnsions do not all fit below location 0700, RUNCIBLE

puts as many of them as possible into the space between 1335 and the

first location of the basic package. Thus, the variables might not

be in consecutive order (I,Y,C) and a statement such as "PUNCH XI THRU

CIO" may not work as it would with RUNCIBLE I. The Error Search,

Clocking, and type X or Y options are all available in Runcible Zero.

Optimization is sequential except for the first command in each non^sero

statement® Constants are placed in the region 1900=1997 unless full

clocking is used® In the latter case, they start at 138U and work

downwards0 The initialization, filling of the statement dictionary,

and error search procedures are all overlaid during operation®

Donald Xnuth
Case Institute
February U, 1959

R U J J G I B L E Z E R O Feb. 11*, 1959

RUNCIBLE ZERO is a compiler which goes directly from statements to answers
without taking time to punch any intermediate program cards* Thus, one
less pass than you need for a so-called none«passn compiler is all that is
required. Coding is exactly the same as for RUNCIBLE I—type B processing
except for the few exceptions noted below.

Since RUNCIBLE I requires 2000 memory locations and RUNCIBLE 0 must be cut
to considerably less, a few restrictions on programs have been made.
Capacity has remained almost the same—any program which would put out less
than 750 SOAP cards with type A processing and RUNCIBLE I can be handled
by RUNCIBLE 0 except in highly unusual cases. Running time is about 25#
faster with type A processing, however.

Changes to KPNCIBLE I rules:

1. . The following statements will not be acceptable:

(a) Iteration statements
(b) Matrix definition statements or any matrix notation
(c) "Set error correction" statements—now treated as jusp stateirents

Not© that (a) and (b) were superfluous statements which were convenient but
could be programmed in terms of other statements? (c) was omitted because
RUNCIBLE I Typo Ais recommended for long production runs.

2« Each statement must fit on a single card. However, no final F need be
punched in column 70, and columns SJ-uT"may all be used for tEes^tement.
(Because of this one-card restriction, parentheses nesting has been held
to a maximum of four deep.) The last statement should still terminate in
FF in the normal way, however, if you want to punch the F9s in colum 70
on any or all of your statements, you may do so without difficulty; in this
way your statements are admissible to RUNCIBLE I also.

3. When running the program, rules are Hie same except the input deck (for
step 3) is stacked in Hie following order:

1) RUNCIBLE ZERO deck
2) Header Card
3) Comments Card
h) Statements
5>) Relocation Package
6) Any extensions used in relocatable form
7) The basic package you want
8) BUNK CaRD

Omit steps 8 through 15 in the operator instructions. There are no rerun
procedures.

New Error Stops: The "123^" Error Stops now appear as "0123". New
stops are

8700 More than ten extensions and not in Error Search Mode
8701 Program too large for storage available and not in Error

Search Mode
8702 More than 98 constants and not in Error Search Mode with

Pull Clocking
8703 Relocation Package not following nFFn statement

When using Error Search Mode the stops are the same as with RUNCIBLE I.

I

N U M B E R P E R V E R T E R D E M O N S T R A T I O N C A R D
IJO •"Iff" ' IIIIW1M—WW <»* •!« I IIMI ill lllllll I 1IIIM 'III II II ' T - "in- 1 I III Mill aMMMMMMO

Instructions for use:

Prepare console as follows:

Place Perversion Card in read hopper.
Depress Computer Reset, Program Start0

Depress START and END OF FILE simultaneously on card reader»
The program should now be stopped with 8000 on the Address Lights0

Change storage entry switches to 80 8004 9001 *<>
Now the program is satisfactorily initialized &

Set 8004 to any number« Press Program Starts When the machine stops, the
number will appear with its digits reading from right to left instead of
from left to righto
You may reset 8004 and depress Program Start again as often as you wish*

Address
Control
Display

Storage Entry
Half Cycle

70 9000 9001 *
RUN

8000
ADDRESS STOP

UPPER ACCUM

The card: fJ 40 9007 8000
20 S009 9002
65 8003 9003
14 9004 9005
00 0000 0010
10 9009 9006
50 1000 9000

A iY 19 9004 9001

-Donald Knuth 8/15/59

(^ 1 0°[. oo

AX o LOT/- AXOLOT/L
As anyone could discover from reading Appendix IV of the SupsrSoap Manual,

it is possible to put your assembled program imed:iately onto disk track©*

Now if you happen to have a mistake in that program., it will be difficult to

correct the mi stake on the disk storage 0 THIS IS WHY AXOLOTL WAS INVENTED!

Axolotl will take any drum load and put it onto 54 consecutive tracks of

disk storage — with its own loading routine automatically ̂attached*

Here's how AX©$0TL works %

lo We start out when you have the drum filled with 2000 words of good

information0 (All of this information must be valid, since it must be loaded

into the core by the Axolotl routine .) Your object is to put these 2000 words

into "safe" keeping on the ram unit, in a self-loading form*

2* Set the console to 70 9000 FDA, where FDA (first disk address) is the

disk and track number of the first of 54 consecutive disks AXolotl is to use.

FDA may not be 0000«

5e Set the 8004 switches to the instruction which you will want to execute

after the drum has been loaded by its self-loading routine 0

4a Read in the Axolotl card.

So Axolotl now takes over, puts the whole drum away, and punches a cardo

(Caution: when it tries to punch a card, it is not done storing the drum yet-

there is. one more track to write I)

6^ When Axolotl is finished it goes immediately to the instruction on 8004*

The drum is unchanged from the way it was when Axolotl began.

7. The card that was punched will, at some future time, bring in the information

which was stored on the drum and will continue with the instruction you put on the

8004 switches when you originally Axolotlled the program a

Comparison between AXOLOTL and MOXIEs

Axolotl does not restore the accumulators or index registers,, Moxie does.

Axolotl does not restore the core. Moxie does*

Axolotl uses 54 disk tracks• Moxie uses 41.

Axolotl takes 9 seconds to store your program*, Moxie takes 44 seconds.

Axolotl takes 7 seconds to load your program. Moxie takes 14 seconds.

When you reload your program it takes off immediately. With Moxie, you

must set the 8004 switches and hit program start.

Moxie destroys the drum after it has dumped it| Axolotl leaves it untouched.

Moxie checks the drum for invalid information. Axolotl doesn't, but if there
are enough complaints, Axolotl might a

