T/ CArRTER

Runcible I

Vol.1 Series V

Revised Edition

March, 1959

Staff

Computing Center

CASE INSTITUTE OF TECHNOLOGY
UNIVERSITY CIRCLE - CLEVELAND 6, OHIO

Buncible 1

Revised Unified New Compiler with
IT- Basic Language Extended

"They dined upon mince and slices

of quince,
Which they ate with a runcible
spoon;
And hand in hand, on the edge of
the sand,
They danced by the light of the
moon, =
The moon;
They danced by the light of the
moon,®
~Edward Lear

COMPUTING CENTER
Case Institute of Technology
Cleveland, Ohio

PEPPPEEPPPPPPPEPPEEEPPPEPPEPEPEPPEP PP R PR R B P BB PEER R PR R R PP EBEEEPEEEEPEP

Abstract

In recent years several compilers have arisen for various computers as
steps towards automation in programming. A compiler; such as RUNCIBLE I,
comes as close as possible to the ideal of transforming a flow chart directly
onto cards and into a finished program. Coding for Runcible I is done in
"IT-language," originally developed by Dr. A. J. Perlis; Mr. J. W. Smith,
and Mr. H. R. Van Zoeren at Carnegie Institute of Technology, Pittsburgh,
Although the original IT-language will still work correctly with this com-
piler, it has been expanded and simplified somewhat for greater convenience,

Runcible I will run on a basic 2000-word 650 which has only an alpha-
betic attachment as an extra feature; but if desired it will give an output
program which utilizes the 653 floating point hardware, index registers, and
core storage. Neither the special character attachment or any additional
selectors are needed by the 533 plugboard, and the input statements may be
easily listed on a 402 tabulator. All routines will work with a 12-word
buffer if necessary. This program is designed to work together with the
SOAP III assembly program, but the user has the option of skipping the SOAP
phase and obtaining a five-instruction-per-card machine language deck
directly. RUNCIBLE I also introduces a number of devices which greatly
facilitate the debugging of a program which is in its initial stages. Hand
optimized subroutines used with the running program compare favorably in
speed and accuracy with those of any alternative general purpose system
for the 650 known to date.

The major purpose of the compiler is thus to enable a program to be
run speedily with but a minimum of preparation and headache on the pro=-
grammer's part. It is specifically designed to be used with algebraic
equations arising in typical mathematical and engineering problems.

Acknowledgments

RUNCIBIE I is a project of such a magnitude that it 1s impossible to
acknowledge everyone who has contributed to the effort. As with Compiler II,
the entire blame for the whole operation belongs with Mr, Frederick Way III,
Assistant Director of the Computing Center, who with George Haynam made the
major decisions on the philosophy to be carried out. Bill Lynch did the
greater part of the work of converting the compiler to floating point instruc-
tions and expanding the language, and he worked hand in hand with the author
on producing the final deck in its multipurpose form; he has also done some
of the work on extensions. George Haynam is responsible for the clocking
feature and most of the coding in the basic packages, and he was also in
charge of board wiring. He and George Petznick, Jr. have prepared a large
number of extensions which produce extremely accurate results, Don Buyansky
drew up the 533 board wiring diagram, and almost every other member of the
staff at the computing center has had his hand in at one time or another,
Donald Knuth, author of this manual; added the one pass feature and wrote the
relocation routine; he also designed the R4~-operation-mode program and deck,
helped to hand optimize the basic packages and prepared the comments on the
symbolic program listings. Basic packages were optimized with HAND SOAP, a
modification of SOAP IIT.

NOTEs Any program which is written correctly in original IT-language or for
the SOAP II Compiler (Case Institute, November 1957) will be processed
correctly by this routine without any changes except for slight substitutions
in the header card and the data cards. No major revisions of RUNCIBLE I are
anticipated for several years; now in preparation is "Runcible O" which will
process directly from statements to answers without any intermediate punching
of a machine language program,

INTRODUCTION., The user of RUNCIBLE I need not be familiar with any
features of the 650 other than those to be described in this manual,

A compiler such as this program is probably the simplest and most con-
venient way to solve problems on a computer without actually studying the
complexities of the machine., Those who state problems should not be
required to code them; RUNCIBLE I takes the place of a professional pro-
grammer and does the job itself,

THE LANGUAGE., There are many types of languages which enable communication
between people. Besides spoken tongues, there are the languages of music,

of mathematics, and so on. RUNCIBIE I understands "IT-language ," which is
very close to both English and mathematical formulae, The program which
will solve a problem is put onto cards in "IT~language;" the compiler will
transform these into an intermediate "SOAP language" and punch it onto

cards in this form. These cards in turn are processed by the SOAP III program
to produce the ™machine language" which the computer understands directly..1
The compiler programmer need not know any more of SOAP language than is given
in this manual. The first section of the manual deals with the vocabulary
and syntax of IT=-language.

NUMBERSs FIXED POINT AND FLOATING POINT. An IT-language program is a set
of numbers; words, and symbols arranged to give a complete description of
some problem, The numbers which are manipulated by RUNCIBLE I are of two
categories: fixed point and floating point.

Fixed point numbers are integers whose numeric value is less than one
billion. They may be positive or negative, but may never take on fractional
values. They are used primarily as indices or subscripts and only rarely
for arithmetic calculations.

Floating point numbers are normally used for arithmetical operations
because of their greater flexibility. Floating point numbers can be zero or
range from 10750 to 1049 in numerical value,2 and are always rounded to eight
significant figures.

l. If desired, the SOAP phase may be bypassed; see Operation Modes., -51

2+ When using 653 instructions (see Operation Modes) they range from 10 to 1048

-3-

VARIABLES. Variables normally called x, y; 2, j, etc. are always given the
names I, Y, or C with subscripts when using RUNCIBLE I; e.g., Il’ Yl, Yz,
°10’ and so on. (The subscript is to be written next to the letter as

I1, Y2, C10.) Every variable must have a subscript.

I- variables are indexing variables and are always given fixed-point
(integral) values. Y- and C~ variables are the problem variables and always
take on floating-point values. There is no difference in arithmetic between
a Y- variable and a C- variable; any distinction is made by the programmer
himself as an aid to keeping the names of his variables in order.

When working on the problem the machine keeps a table similar to the
table below. If, for example, the program uses variable Y3, the machine
looks into the table and sees that the floating point number =1.55 is to be
used in the calculation. It is possible to have variable subscripts, le,

Cr , ete. ¥ (written YI1) will be the variable Y2 in the example of the
4 1

table below, since Il equals 2. In a similar manner, CI4 = Cl = 1000.,1

Subscripts must be fixed point numbers or fixed point variables.

TABLE
I Y c
0 + 5 + 3,0000000 - 3,1415927
X +2 = 10.000000 + 1000, 0000
2 +1 0 -6.,02000000x 10°°
3 + 12 - 1,5500000 + 2,7182818
4 +1 + 6155397.0
5 - 1040 + 4,1400000x 10~
6 + 704

1. YII1 means IIIl and in this case YIIl = YI2 = Y1l = «10. This hierarchy

of aubscripts may proceed to any depth. Compound subscripts of the form
Y(I2+I3) are also allowable; other examples of permissible subscripts are
I(II3xI9) and C[I(I1+2)].and even Y"SINEF,C3*. An alternate form for sub-
scripts used in matrices is described in Appendix II, Note that all legal
subscripts must be fixed, point. ‘

.

CONSTANTS. Constants used in a RUNCIBLE program are written as followss
Floating-point constants are written as some number by a power of ten, with
a "B" to indicate what power of ten.1 Exarmpless

6.02 B 23 means 6,0200000 x 10%°

1066 B~11 means 1066.0000 x 10™-%
The B may be omitted as long as the number can be represented in eight digits
without multiplying by a power of ten; for example,

3.,1415927; 0156253 0,
When the B is omitted the number must contain a decimal point,
Fixed-point constants are written in the ordinary manner; "123" for example.
Notice that "123" is a fixed point constant while "123." is floating point
because of the decimal point,
Any number of constants may be used in a programo2

MATHEMATICAL OPERATIONS. Mathematical expressions can be converted almost
at sight directly into IT-language, but it is best to describe this process
carefully so there will be no chance of a mistake.

Five binary operations are standard for RUNCIBLE expressions:s addition,
subtraction, multiplication, division, and raising to a power; they are
called binary because they involve two quantities. These operations are
written in the following manner (letting Cl represent x and Y1 stand for y):

Math. languages IT-languages
X Y Gl =+ Yl
xX=-y Cl -7Yl

xy ClxYl
X

= 1

- cL/y1
xY¥ (x to y power) CLPY1l

Note how the IT-language scheme enables the writing of a formula as a string
of symbols all on one line, Putting the operations together, with a few
constants, we have:

28 4
Math, language: L(10-4x107°) + x'Jy

x -y
IT-languages {[10,4828 + (C1 P 4)]x 11} / (c1 - 1)

l. A floating point exponent (such as 5 B 3.14) is not permitted.

2. Actually 700 is the maximum allowable number but this may safely be

considered "infinite" for programs processed by RUNCIBLE. If more than

100 constants are used the last 100 are punched out and the program then

continues where it left off.
: w5~

o e a—

g

- Notice the use of parentheses in the last example,

When more than two quantities are involved, parentheses are needed to
avoid ambiguity. Parentheses are very important in IT-language because there
is no difference in priority or scope between any of the binary operations as
is usually understood in everyday mathematics, For example, the expression
Yl x Y2 + C3 would mean Y1Y2 + c5 to most people but RUNCIBLE understands it
to mean Yl(Y2 + cs), As another instance, in order to write x4y we would have
to write (C1L P 4) x Y1 because C1 P 4 x Y1 would mean x7, There is a very
simple MORAL to be learned from this: always place parentheses around the
quantities in an IT language expression until it can mean only one thing,
This cannot be stressed too heavily, for the vast majority of programming
errors for RUNCIBLE are caused by neglecting to place parentheses in the
proper way.l

As a reference, these are the rules by which RUNCIBLE determines to
which quantities each binary operation applies.

1. On the left-hand side of the symbol, the binary operation
applies to the variable or constant immediately at its left,
unless the character next to the operator is a right parenthesis.
In the latter case, the entire quantity between the right paren-
thesis and its matching left parenthesis is used.

2o On the right-hand side of the symbol, everything up to
the end of the expression or to the first unmatched right paren-
thesis is used, #

Here are some examples showing application of these rules.

IT-language: Math. languages
Y1 /Y2 + Y3 means Yg;glf;
(Y1/¥2) + ?3 means %% + Yz
Y1P Y2+ 3x Y3 means Y, 2118

; (YIPYR)+3xY3 means Y172+ 373
(Y1PY2+3)xY3 means (YlYz *ys
[(r1PY2)+3]xY3 means (Ylyz*s)ls
4/ Y(I1+12)-13 means y__4_'—_1-

(I3+12)7"3

l. Parentheses, braces, and brackets may be nested within each other not
more than nine deep but this limit is rarely met in practice.

2. Exception: the minus (=) is treated first as a unary operator (see below)
and then as a plus (+) binary operator.

Remember, it is always best to add parentheses to make your intentions
unquestionable-=better safe than sorry. Adding parentheses where they
are unnecessary will not bother RUNCIBLE and no harm will be done,

In addition to the fiwe binary operations there are two standard
"™unary" operations: taking the absolute value and taking the negative of
a quantity, thting Cl<=>xand Yl <=> y as before, we have

Math. language: IT=language:
|x| I e |

| x +y | A(ClL+1)
- X - Cl

- (x+y) «(c1+m)
- |yl -AM

The unary operator A or - applies to the variable or constant at
the immediate right of the symbol only, unless the character to its
right is a left parenthesis, In the latter event, it operates on the
entire quantity inside the left parenthesis and the matching right
parentheais, Examples:

IT-language: Math, language:
s y Cy
ATL % C1 / C2 15|+ %

A(@ +cC1) /c2 |T1 + G
2

AYL P -(AC1l-Y2)

AY(I3+1) + 2 |Y | +2
Iz41
Arithmetic.l Runcible always ™unwinds" statements by doing the innermost
parentheses first, just as in ordinary high school algebra. Once RUNCIBLE
is into the innermost parenthesis it drops the "ordinary" rules and does

1. It is possible to intermingle fixed and floating constants and variables=-

RUNCIBLE will not get mixed up; however this is generally inefficient and of
doubtful utility,

— > 7 a— — S = o _r——
things from the RIGHT!
Exampless

Y, =—3x4+6 3 Y, is given the value 30,0
Y,<~—6+3x4 ; Y1 1s given the value 18,0
Y, «— 6+ (3x4) 3 Y1 is given the value 18,0
Y, < (3x4)+86 3 Y, is given the value 18,0
Yl =8 =5 G +'Q 3 Y1 is given the value =12.0
Y, «—6-(3x4)+2 3 Y, is given the value =8,0
T, < 6/4/2 ; T, is given the value 3,0 § =
Y,<—(6/4)/2 ;3 Y; is given the value 0,0 2 ;
Y, «—(6.0 / 4,0) / 2,0 5 ¥, is given the value 0,75
Y, «— (6.0 / 4,0) / 2 ; Y, is given the value 0,75
Y, «—(6/4) /20 3 T, is given the value 0.5

From the above examples we can see that RUNCIBLE attempts to use the
arithmetic (fixed or floating) of the innermost parentheses and then tries
to keep on using that kind of arithmetic until it must do floating point =

at this stage, and from this stage on, it does everything floating point at
The final substitution into the left hand side is
always forced to agree with the arithmetic of the left hand side.

this parenthesis level,

Examples:
I2 = B0+ =Tx 2,0 3 I2 is given the value =5
12 €— 6,0 45 =7x 2 3 I2 is given the value =5
Y2 *— 6,0+3=7x%x2 3 Yz- is given the value =5,0
Cg <— 6.0 + 3,0 =(1 / 4) ; Cg is given the value 9,0
Ig <— 6.0 = 3,0 =(1 / 4) ; Ig it given the value 9
Cg < 8.0 =(1/4) + 6,0 ;5 Cg is given the walue 9,0
Cq <— (9 /10) + 1,0 =(7 /16) Cg is given the value 1,0
Ig <— (9 / 10) + 1,0 =(7 / 16) ; Ig is given the value 1

In summary taen, if you ™mix" arithmetic by mixing fixed and floating
constants or variables, the rule is that RUNCIBLE always initializes its
arithmetic to FIXED at EACH parenthesis level and continues that way until
it encounters a floating variable or constant at the same level in which
case the arithmetic stays floating at that parenthesis level., The search
takes place from the RIGHT. The final substitution is done in the arithmetic
of the left hand side variable, Floating point answers are always rounded
to eight significant figures, but fixed point numbers are never rounded ==~ all
figures to the right of the decimal point are dropped. (Thus, 8/¢ = 0 in
fixed point div:la:lonl)z

2. The remainder of a fixed point division is usually dropped but it can
be saved if desired as described in Appendix III.

S (A S——— S — . - gm—

Extensionss In addition to these basic operations s @ wide variety of
"extensions" can be added to the compiler, making it extremely versatile,
Rules for their use are given in the writeup supplied with each individual
extension which mipght be in the subroutine library at your installation,
but a few general rules and examples will be illustrated here for clarity,

Reference to an extension is made with quotation marks followed by the

l name of the extension and a cormma 3 these are followed by one or more inputs
and closing quotation marks. (The quotation marks are treated just as
, l parentheses by Runcible except that they identify extensions.,) The name
of each extension will end with either an "E" or "F." the former signifying
floating point output and the latter signifying a fixed point result..l
I . Three commonly used extensions are illustrated below, letting C1 stand for x:
Math, languages IT~-languages
l . 4 x ®RT2 E, C1®
sin x *SINE, Clw
e* "EXP E, C1%

As a final example for this section on operations, here is the IT-
language representation of the "Wolontis function®

sin x

l f(x) = -
.1 % 8-9;5
l We have f(x) = "SINE, C1"/ "RT2 E, 1. + "EXP E,(~C1)P 3.t n
. STATEMENTS, The numbers; variables, and operators we have now learned
are put together into meaningful statements as instructions to Runcible,
' Each statement is given a number which is some integer less than 1000,
l The order in which statements are executed has no relation at all to the

numbers on the statements -~- they are eventually carried out in essentially
the same order in which the original deck was compiled. It is sometimes
helpful, however, to make the numbers consecutive in case the cards should
get mixed up., Statement number zero is special == this number is reserved
for statements which are not going to be referred to in the program, and as
many statements can be numbered Zero as desired. Each nonzero statement

1. When a subroutine is identified by number it is floating point if the
number is below 500,

10

number, however, must never appear on more than one statement in a

program == it must be unique.

Substitution statements. There are many types of statements; perhaps
the most frequently used is a substitution statement., In this state-
ment a variable is given the value of any mathematical expression; a
new value is "substituted" for its former one. The substitution
operation is denoted by a backwards arrow (<), Exampless

Yl « 0O,
Cl0 <« Y1 / (Y2 x YR)
o' @=L T8 1
Y14 <« I8 - 3
In the first case Yl is set to zero, The second example sets Clo

equal to Yl divided by Y2 squared, In the third illustration, 15
becomes equal to one greater than its former value. The last case
takes three less than the value of 18 and gives it to the Y- variable
which has subscript equal to the current value of I4° Note that in
the last example RUNCIBLE will convert the fixed point right-hand
side automatically into a floating point number before inserting it
into YI4. Variables always retain their values until being changed
by a substitution statement or a READ statement (see below) or
perhaps an extension statement (see below).

JUMP statements. RUNCIBLE normally executes statements in the order
it receives them; but this sequence can be broken with a JUMP state-
ment which tells the compiler to jump to a certain statement and

) continue from there. A JUMP statement is written simply

,) JUMP TO k

where k is the number of the statement which should be executed next.
A variable or a parenfhesized arithmetic expression may also be used
instead of k as long as it is fixed point; e.g., JUMP TO I2 or

{ JUMP TO (I2+ 3x I1), k must never be zero or negative,

READ statements. A READ statement is written
/- READ
This statement will cause the machine to read in one or more cards of
’ data for the problem. All data for a program other than constants enter

11

the 650 via a READ statement. The form of data cards is described later
in the section on formats.

Output statements. Answers are punched onto cards when an output statement
is given. There are two different kinds of PUNCH statements:
1. PUNCH statement type one will put the current values of up to four

variables onto one card. The statement
PUNCH Y3
will cause the current value of variable Y3 to be imprinted on a card;
PUNCH C4 PUNCH I6 PUNCH Y¢
will put the values of C4; Ig, and Yg all on the same card. Up to four
variables can be punched at a time in this manner.
PUNCH Y(I4+1)
is also allowable-- it will type the value of the variable specified by
(I4+1), It is not legal, however; to give a statement like PUNCH (Y1+Y2)
or PUNCH AY7,

2, If a large number of consecutive variables are to be »unched,

a statement such as

PUNCH Y1 THRU Y15
may be given. When the word "THRU" is used like this, up to seven
answers will be pu% onto each card. The statement above, for example,
will put Y1~ Y7 on the first card, Y8- Y14 on the second card, and Y15 on
a third card.

Formats of the output cards from a PUNCH statement are described in
a later section. They are identical to the formats required by the READ
statement, so answers may be used as data to another program,

When an output statement has statement number zero it will be
bypassed when the console switch of the 650 is set to plus during the
running phase; it will be obeyed only when this switch is minus. This is
a handy device for obtaining intermediate answers when checking a program
out in its first few trial runs.

HALT statement. A HALT statement wil% stop the 650 if the programmec
switch on the console is set to STOP, It is written simply
HALT

1. Control will proceed to the next statement (if any) if the PROGRAM
START switch is depressed after a HALT. A programmed HALT can be
identified by its data address of B8003.

12

S S v S —— G

A number may be written after the word HALT like thiss

HALT 12
in this case the machine will stop displaying the mmber 12. This tech-
nique may be used to differentiate between several HALTe in %he same
progran.

BYPASS statement. The BYPASS statement, written (as might be guessed)
BYPASS

does absolutely nothing; it is simply bypassed during the running chass.

(Believe it or not, this statement can be usefulj)

Extension statements. Some extensions which may be used with %he
compiler have no specific output. The form taken on by such atatements
is specialized and varied; rules are given in the writeup for each
individual subroutineﬁl

Conditions. Any of the above statements may be made conditional and
executed only if a certain relation holds true. There are three
allowable relations: =, >, > (equals, greater than, and greater than or
equal), The condition is preceded by the word IF, thus:
IF YO = C9
IF I4 > 2
IF A(CE-Y8) > 1 B -8
In the last example the relation is satisfied if the magnitude of
Cg =~ Yg is greater than 10'8° Here are some examples of statemenis
made conditionals
l, JUMP 70 1 IF Y3 = O,
2. READ IF 1 > C10
8o HALT IF Y(I5+2) = Y(I5+ 1)
4. PUNCH C2 IF -(I5/5) 2 4 x IS
5. C4 < Y4/10. IF C3 xC5> Y4 P 8.4
6, JUMP TO I3 IF I1 = C1
7o Y5 < 3.1415927 IF "SINE, Y5" = 0. IF Y5 > 1,571
The lefthand portion of the statement is executed only if the relation
is satisfied; when the condition is not fulfilled the statement is “reated
like a BYPASS., Note that fixed and floating point arithmetic may be mixed
as in example €, The seventh case is interesting becanse the embatitusion

1. Examples of extension statements: STATISTICAL READ 1,2; READ PROGRAM;
EDIT Cl THRV c2, 1231281234, 1112223334; COMVERT Yi THRU 50,

13

TSN

will be done only if both conditions hold,

Iteration statement. The last type of statement to be discussed in this
section is a handy programmer's convenience for a sequence of operations
which occurs quite often in typical problems. An "iteration statement"
causes a number of other statements to be repeated over and over as a
variable is changed by a specified amounto1

Iteration statements look something like thiss

n, vl; v2, v3; v4,
vl is the variable (I, Y, or C) which is to be changed; v2 is its starting
value and v4 is its finishing value; and v3 is the amount by which the
variable is to be changed before repeating the sequence of statements again.2
The n in this statement is a certain statement numbers All statements after
the iteration statement up to and including statement n will be repeated for
every value of the variable. (n must not be zero, nor should the statement
immediately following the iteration statement have number zero.) Please
note the comma after v4 -- it must be included}

For example, the statement
S; Y1, 1, 2, 183,
means: execute all statements from the next one to statement 5 for Yl taking
on the values 1, 3, 5, 7, 9, 11, and 13,

It is possible to include an iteration statement within the scope of
another iteration statement == all the details will be handled automatically
by RUNCIBLE; this "nesting™® of iteration statements may proceed to four deep.5
Iteration statements cannot be made conditional.

v2; v3, and v4 need not be constants; they may be variables or even
mathematical expressions., For example, the starting value might be something
like Y4/2. and the finishing value, C8P I3, A lot of liberties are allowable
here, the only restrictions beings

1. No more than five characters (excluding spaces) may appear between
any two adjacent commas in an iteration statement. Thus the statement

%s Y1, (Y2 x ¥3), ~6., 3.1415927, '
is illegal on two counts: v2 has seven characters =- this may be cured by
dropping the parentheses; v4 has nine characters =- the remedy is to let some

1. This process can also be programmed, of course, without using an iteration
statement.

2 If v4-v2 is not exactly divisible by v3 the iteration procedure will be
discontinued Jjust before the value v4 is passed.

3. The scope of every iteration statement must be contained in the scope of
any other iteration which uses it; that is, if a certain statement iterates
on statements 1 through 5, say, no meaningful iteration statement within these
bounds will terminate at any statement after five.

1

i

variable, say Y4, be set equal to 3,1415927 first and then use Y4 in the
iteration statement.

Re If v3 is negative it must start with the character =; if it is
positive it must not start with a minus.l The example above illustrates
pProper use of this rule; if v3 had been written (=6.) erroneous operation
would have resulted.

3. n must be a positive fixed point constant and vl must be a variable.

EXAMPLE PROBLEMS., Two sample problems will be given here to demonstrate
some portions of IT-language as it has been described; more examples may be
found in Appendix VI.

Example 1. Calculate n! where n is a non-negative integer.

Solution -- since is to be an integer we shall let Il represent n in
this case for input data to the problem; n} (the answer) will be floating
point and we will call it Y1. We will do successive multiplications by a
variable Cl which will rup through tl"te integers up to n. A flow chart to
solve the problem would look something like this:

/ 2

> READ IN IN —b-@ Il nagative? on !
START I Error /
9 = i 3

(PUNCH Y1 Is I1 0 or 17 Yle-1.

Is Cl preater
than I17

Z 4 [
, AMP,
Cl =« Cl+1jJ<—— Yl <« Y1xCl eu Lf;_:_:_’; 'Z" /

1. If v3 is zero the programmer should visit a psychiat:ist.
15 .

Translation of the flow chart into a series of statements is almost automatics

Number: Statement: Remarkss
1 READ (Read in I1)
2 HALT IF 0> 11 (Error stop if n negative)
3 Yl « 1, (Initialize Y1)
4 JIMPTO S IF1l >1I1 (0 =11 =1,)
5 Cl < 2. . (Initialize C1)
6 o Yl - Y1l x Cl (Multiply successively
7 ,Cl «=C1l+ 1, until C1 = n)
8 JUMP TO 6 IF I1 2 C1
9 PUNCH I1 PUNCH Y1 (Punch answer)
10 JUMP TO 1 (start over again)

Observe that the program parallels almost exactly the instructions you would
give to a personl telling him what you wish to be done.
The following is the same program using an iteration statement:
! READ
HALT IF 0 > 11
Yl -1,
JIPTO 7IFl1211
8, 01 2:5 1o5 I, e84, C
Yl «- Y1 x C1
PUNCH I1 PUNCH Y1
JUMP TO 1

® N O B P

X
22 -t?
Example 2. Suppose we want to evaluate the error function Q(x) \ﬁf e dt

(-]
for arbitrary values of x using the approximation

S B P 3 4 5
Q(x) = 1 = (a.ln + an” + ann” + a,n” + acn Je
where n = 1/1+px (p and the a's are numerical coefficients which we will
omit here). We will let 8, <=>Yk; x <=>Cl; n <=>C2; Q(x) <=> C3 (the
answer); and p <=> ¥6. 2/iW% = 1.1283791, We could simply evaluate the

equations directly with the following programs

—?

1. This person would be of below average mentality, but would be expert
at arithmetic == just like a computer.

16

Number: Statement: Remarkss:

& READ (read in a4 P, and x)
2 C2 <= 1./ [1.+ (Y6 x C1)] (calculate n)
3 €3 < 1. -(1.1283791 x {(Y1xCR)+[Y2x(C2P2)]+ [Y3x(C2P3)]+

[Yax(c2Pa)]+ [Yax(c2ps)]} x [2.7182818P(~C1xC1)]
(calculate Q(x))
4 PUNCH C1 PUNCH C3 (punch answer)
S JUMP TO 1 (read in another x and continue)

But the evaluation of the polynomial will be quite a bit more rapid if we
rewrite the expression Q(x)= 1-%(n(a1+n(a2*n(a3+n(a4+na5)))))e o Now
we could evaluate this new equation directly or set up a "loop" type of
routine which calculates the polynomial from the inside out. Careful
study of the program below will be very instructive.

1 READ (read in a.s Py and x)

2 C2 <« 1./[1.+(¥6xC1)] (calculate n)

3 C4 « Y5 (initialize C4)

4 Sy Il, dgi=ly 1, {iteration to calculate C4 =

5 C4 < YI1+ (C2 x C4) a1+n(a2+n(as+n(a4+na5))) -

6 €3 <« 1- [1.1283791xCRXCAX"EXP E,~(C1xC1)¥]

7 PUNCH C1 PUNCH C3 (punch answer)

8 JUMP TO 1 (read in another x and continue)
Of course an even shorter propram would be

d READ

2 C3 <~ "“ERF E,C1" (error function extension)

3 PUNCH C1 PUNCH C3

4

JUMP TO 1
: eoobut this is cheating,

BASIC PACKAGES, Standard subroutines such as floating-point arithmetic and
input-output operations have been incorporated irto "basic packages" which

augment the finished program in its running stage. There are many of these

packages, each of which has its own special purpose or goal, and the require-

ments of each individual program will determine just which one to use. For

l. In this statement and the last not all of the parentheses are necessary.,
The P operator is rather slow when doing floating point calculations since it
always requires finding a logarithm and antilogarithm -- C2xC2xC2 would

actually be much faster than C2P3 as written--but the following program speeds

it up even more. The extension EXP E might have been used here as it is in
the second version of the program.
17

N [L S e P —

instance, there are the "A"™ packages » designed for eight-digit accuracy and
legible error display; and the "S" packages, stripped down for speed. The
Separate writeup for these packages goes into greater detail,

WHICH PACKAGE TO USE ?

If you are going to Iun your program on an "ordinary" 650, then you
h must use one of the "A"™ packages; PlA, PRA, or P3A. If your program is to
H be run on an augmented 650 (floating point, index registers, etc.) then you
use one of the "Y" packages; P1Y, PRY, or P3Y, All of the packages mentioned
I 8o far include the necessary routines for READ, PUNCH, and other various and
| sundry necessities of life for RUNCIBLE programs. The Pl packages contain
I ' & bare minimum of things and are used in most cases, The extra things in-
cluded in the other two flavors are listed below:

. P2 3 P3 3

P operator P operator
| Logarithm (base e) LNE Log (base e) LNE
Exponential (base e) EXPE Expon_(base e) EXPE____

Sine (radian) SINE

Cosine (radian) COSE
I Arctangent (rad) ARTE

Square root RTRE

. The decision as to which one of the packages to use is now simply made
by examining the above lists, If your program does not use any of the things
in either list-~then use P1, If your program uses only things listed above

l . the dashed line=--then use PR, if your program uses features below the line,
then use P3,

I . CARD PREPARATION AND FORMATS.

l., Data card format.

A, Four entries per card. On the four-per=card input, data is
entered on each card in "couples,™ each consisting of an "IDENT" == the
name of a variable (17, Y1, etc.) == and the VALUE of the variable itself.
The "IDENT™ looks like this:

18

0l
{02} (0000 + s) (0000 + k)
03

where 01, 02, 03 are used for I, ¥, or C re:~3pect;:i.vellq,',l and the number s

is the subscript value, The number k is an arbitrary personal identification
which may be attached by the programmer; it should be filled with zeroes if
not used for identification,

The VALUE of the variable differs for fixed and floating point
entries, For fixed point (I-) variables, write down the integer and add left
hand zeroes until it is ten digits long; this is the correct form for VALUE,
For floating point (Y= and C~) variables, first write the number as

a.bbbbbbb x 10°
where ¢ is some exponent between =50 and 49, and the decimal point is as
shown (with digit "a™ non-zero). Then the correct foni;gior the floating
point VALUE is

(a) (bbbbbbb) (50 + ¢)
Thus, five would be written 0000000005 in fixed point and
5000000050 in floating points £ifty would be 00000000SO fixed and 50000000SL
floating., Zero is always written as ten Zeroes, whether fixed or floating.

1. In more advanced RUNCIBLE programs, 04, 05, and 06 stand for S, T, and P

gions, respectively,

42,.) These rules must be slightly modified when using the 653 floating point
dware: add fifty-one (51) to the exponent instead of 50; e.g,, five is

5000000051 and fifty is 5000000052 for floating point VALUES, .

19

r-qfﬂﬁﬁﬁ?ﬁﬂuﬁpUDDGDG34§530604UUJjbéﬁﬂﬂﬂooﬁéJSUUIUuﬂﬂuﬁdbuuauuéitEUOUUUDUa +

| (] g B g W\\
p = ; : i "
l'lllllllolllllllloolnlllilllﬂﬂlllllllnllﬂllolilllooulllllﬂillllllllll00°0!00000

¥ TR i'.';’:’?.‘.‘?.‘.".'?71’?’.”.‘77?i?‘.'Ti'.'i'7??il‘7:’:‘5?2’???i??i‘i‘???????????????i‘???7?1’7??
tzzzzzzzzzzzz:zzxt:l:lzzzt:zzzz:z1212222222212121:2'22222212213:2zzzzzzzzzzzzzz:
;33::3:3:3333:3a:ls:s3331:13333:l31333:3:l333313333:33333333333:33333:33333333;: -
lo444oocl40404444;Iccoccclactchctttcoctnttoc4444444444444!1440(4444440144604044,5
sssisssssssssssssssssssssssssslssséssslsssssssss$sssl§ssssssssssssssssssssssssss
01059100535500!solltslﬁsctussssssscctesstcssssesssssnssscsassssccllsolcsssslsisl
11171!1111111)111711711111171117111111111117111111111111111!1!1111111111111;1171
'llalailloltlllllcllclllulllllllltllulllalaaottlelslallalslacalallaolllllllclloll

.'lll.'.ll'.ll!llll!.!.‘SOll’ll’l!l!’!!!!l!!!G939.!ll’llﬂlﬁill’!!9.9!!9'.’9!.."
12348020 ouunouumrnvumunuunu-n-znn-aann:auunqncqnuunuuu-:nnn-unau--u.-nnnlns.nnnp ;

2

The sign of the number must always be punched over the right-most (units)
digit of the VALUE: a 12- (Y) overpunch indicates a plus sign and an 1l-
(X) punch indicates a minus sign. Signs must also be placed over the units
digit of the IDENTs -- either plus or minus is permissible,

Columns 1-20 contain IDENT 1 and VALUE 1

Columns 21-40 contain IDENT 2 and VALUE 2

Columns 41-60 contain IDENT 3 and VALUE 3

Columns 61-80 contain IDENT 4 and VALUE 4
If less than four variables are to be entered on a card, the IDENT following
the last VALUE must be filled with all zeroes and the remainder of the card
may be blank, /

A READ statement in RUNCIBLE will cause cards to be read until a

card with IDENT 1 negative is found. Any number of cards having IDENT 1
positive may precede the card having negative IDENT 1, which stops the READ
statement and signals for continuation of the program, .

A 12- (Y) overpunch in column 4 is necessary to identify the four-per-card
format. The sample card shown assigns I7 = 342, Y4 = =-58.3, and C10 = .00125;
observe the IDENTs and VALUEs carefully,

- 20

I BB BEEREEEE

— 1 — — 1—7* o -

|)

(A0 20003

i ¥
i

5 !!!:.'.32!!!.'.!:!!3!!!!9!!;‘.2!.'.!!!!!3!3333333523?.333223233.’.2333333333:22::3:.‘,.‘.
[] "ll‘l‘l""l‘l||||||||'.!|||||‘l|||||i||||l|'l|lll'lllll||l|||’|||'||"'|
3322'.2111'!212222212,’313’32222?2217?22222222212222222?22222232?222221’33”'13’2
3.33‘!313'33'133333331131333’333’333333333333333333333333333333333333133f'333333
“““..“““““““““““““‘“““‘4““‘“““““4“"““‘“4“““.““‘
555’5555555.55555’55555555555535555555.555555555555555555555555555555355’555555‘
S836885650558668&6!003!608600655!8380860665666!56ll5555566080868668Gsliltlﬁtlltl
771777,717"77'TT"7’7317777'1’7777117'177"777717177)7777177177771717,7"7"17,
.'3"......‘.'..3"‘.."’..'.l'...'.'l.l.'l.laa'..l...‘l‘.."‘la..lﬂ.l‘...l..‘..

lll‘!!!!'!’!liﬂi!!!!99!!5'.’!96989!93990999!9099!99999999’990‘!9!909!9.39!'!“.

- -.-

ooy
1343
RRY 1

0l!illll..lﬂﬂﬂﬂu"uHlnﬂnﬂll"ﬂaIH”nlnI”I”.ﬂGd“dﬂ“ﬂ.“ﬂH“HU‘UU’.“QO“BIN.&D”H“ll.”l.. s

TN e AT i e e ‘\\
!

1 _gost

B. Seven entries per card. Up to seven variables may be entered on
one card if the subscripts are all consecutive. The IDENT for the first variable
is put in columns 1-10 in the same form as noted above except that k now must be

a number between 1 and 7 which specifies how many consecutive values are to be
loaded by this card. Then VALUE 1 (corresponding to subscript s of the IDENT)
is placed in columns 11-20, VALUE 2 (corresponding to subscript s + 1) is placed
in columns 21-30, VALUE 3 (for s + 2) into cols. 31-40, VALUE 4 (for s + 3) into
cols. 41-50 and so on, leaving unused columns blank if desired.

A 12~ (Y) overpunch in column 7 is necessary to identify the seven=-

per-card format. The sign of IDENT 1 again controls the reading of cards (see
four-per-card format); when IDENT 1 is negative as it is above it signifies the
last card of a series,

Seven-per-card and four-per-card formats may be used interchangeably,
The sample card shown assigns C12 = 2,58 x 1030, Cl3 = zero, and Cl4 = minus one.

2. Output card format. Output card format is precisely the sameé as input

-card format and can therefore be used as input to another program. With four-
per-card output, IDENT 1 is made negative on all cards » and the identification k
is the statement number of the PUNCH statement being executed. IDENT 1 is
negative only on the last card of the seven-per=-card output (when the word THRU
was used in the compiler statement).

2l

3+ RUNCIBLE Statements., Since the basic 650 for which this program is
designed recognizes only numbers and alphabetic characters--not equal signs
or quotation marks--an alphabetic code is used for these symbols when
punching the statements onto cards. Here is a complete list of symbols used
and their alphabetic equivalentslz

(] left parenthesis, bracket, or brace... L
) right parenthesis, bracket, or brace.. R
o decimal podntisisisissscdsvevossivics J
- BUbSHIEULRON 54kt adsdcddidddinhesos Z
- OQUALS | Whnblbabbisssisiaadididnesbbiiss U
> ENORter Lhan Loiiiiisidededaaishosssoses v
> greater than or equaleeceeveee w
’ COMMBA ‘soevesssssssesisasessevsioeseses E
" quotation marks (right or left)....... Q
+ PLUB soanedsdnsesansosiosessotassons S
- MINAD 3o s cvasmadoneesnsressveintoae s M
x LAMBE o.o'e s onvnessinsseosiot o iitas X
/ divided by ®eecsescceccssscsccccsncsnne D

Each statement must be punctuated by an F ("finish"), which is added at
the end. The very last statement of a program must end with an FF ("Final
finish"),

The statement mmber, n, is punched as (0000 + n) in columns 1-4.
Column 5 must contain both a 12(Y) punch and a 9 punch (this is the code for
the letter "I") to identify the format, and a 9-punch may be added in column §
to be picked up by tabulator board wiring for use in listing the deck. The
statement itself is punched in columns 43 through 69, and column 70 must contain
the F which terminates it, (If a statement is so long it does not fit on one card,
up to five cards may be used, In this case the "F" should appear only on the very
last card of the statement, and columns 43 through 72 may be used for characters
of the statement on all other cards, A statement may thus contain up to 148 charac-
ters, including the final F or FF as the case may be. Columns 1-4 need only be
punched on the first card of each statement.) Columns 6-42 and 73~-80 are ignored
by RUNCIBLE except columns 7 and 41 must not contain 12« (Y) pum:heas2 == but these

1. It may prove convenient at your installation to put these symbols directly onto
the keys of your keypunch keyboard; e.g.,

2. Column 10 should be blank if the 533 plugboard

has the added statistical features. @

22

e &

0003 : Y1 Z 10

F
f /7- ' i \

.'I..l...‘...lll...l.lll...l'.l.....l.llligl.ﬂ!.‘..lll.lll!.ll..llll....llll.‘.l
‘PO E NN I IR BN NAR I NON SN N Nen QN LA e e T L L L T T
‘l""'lll'|""|"illl""|l||"'|"|'|'||l|ll"t"'l'l'l'l"ll"ll‘lll"""l'
33!3!3"!3!'331'!3!33llll2231!3!!33!3!!22231!’13Ill!313!38!23223!2213!!!222!!222
33l"l‘llll’O"')’ﬂ'i'l')‘l"ll‘l’13"3333333'3333.8333"3l’ll‘i”’l’!!"’li‘!"

00‘040‘0CCOO“‘040000000140400000&4004000“0040000‘0‘0‘34040040l““‘(“‘OOCOOQf

.$lillillllllCll‘llllllllllllllllli.ll’lll!ilﬁ!lll'lilllll!llllllllSI!S!I!!IS!!!
: :

lCll..lll‘lllllllllllllllllllilllllllllllll‘llill.llllllllll.'lli!ll.‘ll.l.lIOCC
l!)"?l711311111,1771717)177771’!1’11777771!7!'17777,7!11111!177171117)117171771
..l.lllllll‘lllll‘l.llllllllll.llll..lllll'.lll.llillll.l.lllllllllllltl!lllllll

T W g3

columns are usually not used.

» Blank columns in the middle of a statement are always ignored; and they
may be inserted or deleted at wili. A substitution statement must start in
column 43, Here is example program one as it would be punched onto cards;

statement number three is shown above,

4

STATEMENT statmENy | 0 7Ae A i Ly ' ") SR
NUMBSR ¥
12345 | 4344454647484950 5152 55;?; 5256 5758 5960 6162 6364 6566 6768 69 70 7172
0001 RE 4D F
0002J Hiks TP O F Fh g vt 2 F
0003Y p o MRS EC A B i
0004Y ¢ YW P p 0 Ve e il S Wiy F
0005Y% 6 K NG LSRRI B IO LR F
0006 > i BV RS, (TR R F
0007y PO NGCH. T3 PU NG H .Y F
ocoosN J UNP:- 2.0 12 FF

Here (represents zero and O an alphabetic letter O, Appendix VII contains

another sample program punched on cards including the Header and Comments Cards,

23

LB

4. Header Card and Comments Card. Every RUNCIBLE program must be

preceded by two cards == the Header Card and the Comments Card., The
Header Card contains important control information, and its format is
as follows (all mumbers are in the form of fixed point VALUEs):

COLUMNS 1 = 10: the number of the maximum I= subscript

COLUMNS 11 = 20: the number of the maximum Y= subscript

COLUMNS 21 = 30: the number of the maximum C- subscript

COLUMNS 31 = 40: the highest statement number used

COLUMNS 41 « 50¢ the total number of special locations used by
extensions--this may be calculated by consulting
the writeup for each extension used. (These "special™
locations are those which, for some reason or other, are
supposed to be in sequential order.) Each extension now
has two magic numbers associated with it: The number
of special locations--this goes into columns 41=50=~and
the number of other locations--this goes into columns
61-70.

COLUMNS 51 = 60: the number of locations used by the basic package.
(This is 325 for P1A and 525 for P2A, 751 for P3A
the most frequently used packages; for other packages,

1

see their own write-up. A
COLUMNS 61 = 70: the total mumber of locations used by extensions
(excluding the basic package) == this may be calculated
by consulting the writeup for each extension used.
COLUMNS 71 = 80: all zeroes (unless using procedure of Appendix IV)
COLUMNS 10, 20, 30, 40, 41, 50, 60, 70, 80: 12= (Y) overpunches.
The punch in column 41 is necessary to identify the
header card.

Any of these mumbers may be made a little larger than the actual value (for
safety) but it is extremely important that none of them are smaller than the
true values for this is an unchecked error which can lead to mysterious and un=-
fortunate results,

l. .When using B-processing (see Operation Modes) this number must be at

" least 73, or at least 175 if any extensions are used, because of the Re=

Tocation Package used to load the program.

Dy 56 25

The example Header Card which appears on the next page is the one
determined by example program one, using basic package PlA,

The Comments Card is generally easier to prepare than the Header
Card: columns 1 = 42 and 73 = 80 are blank and the remaining columns
43 = 72 may be filled with anything the programmer's heart desires (as
long as it is acceptable to the alphabetic attachment) == the title of

26

lllllllllclllllllllollllllilltlllllllllﬂIllllllllllllllllitOlllllﬂllllllllllllll
I R i S R
13222222222222222222222222222022222222222222222222222222228222222222222222222222
33330233333333332330399033333323333223333233232323333332383332333322333232333333
T4 4 0000040 04000000 0440400400 0000400440000 00000030000004008080048844044040
Y s eSS 58a55585555855585955555555555555355555555555P55665555595555555558
L T L L Lttt LRt TLTTrT
R R R R R R R R R R R R RN R R S R R R R R R R R AR R PR SRR RRRRRRRRERRE)
OO RNBaNa8a00ReaIaNasanBEss0saenanlorasnatasaninaenansscancsessitessssanges

li!l'!ll!i!!!i!l!9!iS'!.SO’I!!!!!!!S!!O!.!9!l!l!!ﬂ!i!!‘iﬁ!!l!!ﬂis0!0"!90!!.!..!

NUANUBBUIANNCOHIBIRARNURUNSINDS

Oll.ll|lII'ﬂﬂlﬂlﬂl”Ihlnlbl"n”lﬂ..rlll"ﬂ“.O..U"

_:'!'. e — G =t At & = o g~y < gl e~ AR N T Bt 0 NSt Sl iy Sy < ¢ - - - e . - ~ly- R
O R R I8 RRTRTI TR O C ol O W O WA T i e T RSO A= S0 T T I 'F\,

wa soat

the program, his own name, or his girlfriend's name; or he may choose to be
obstinate about the whole thing and leave the card completely blank,1

MODES OF OPERATION., There are twenty-four different modes of operation to
choose from while compiling, and these are selected by setting switches on
the 650 console, .

1, Clocking. RUNCIBLE I's clocking feature is a major step forward for
the testing of a compiler program during its trial runs, "Minimum" clocking
keeps tabs on the number of the statement which is being executed® and will
display this number if the computer stops during the running phase (see Stops),
"Minimum" clocking does not require any more space in the 650°s memory than
the program would normally use; it does, however, add approximately .026
seconds machine running time to every non-zero statement executed.

Additional available clocking features (stopping at certain statement
numbers, flow tracing, and full tracing) are explained in detail in Appendix
I. There is a three-way choice while compiling: to use no clocking, minimum
clocking, or the full clocking, which allows any or all of the aforementioned

l, The Comments Card becomes a SOAP III comments card which is the first card
of the symbolic output.
2. If it is non=-zero.

27

extra features. The extra features require an additional 98 memory
locations.

Re X or Y operation. If a 653 floating point attachment is
available the program will run much faster using this hardware directly
rather than going through the floating arithmetic extensions. RUNCIBLE
will put the 653 to work if desired -= this we will call "¥® operation
for convenience, as opposed to ordinary compilation which we shall

designate "X" operation, The floating point exponents on input data
cards and output cards in the final program aré slightly different
(excess=51 rather thar excess-50) when using Y--operation,1

3. A or B operation. RUNCIBLE I normally turns out a SOAP III
symbolic program which must first be assembled by SOAP before the
finished deck is ready to run == this is called "A" operation, If
desired, however; the SOAP phase may be bypassed and RUNCIBLE will
turn out a machine language program immediately with five instructions

on each card ("B" operation),

B-operation is to be recommended for smaller scale problems and
when conservation of cards is more important than conservation of time,
A-operation is more versatile and is recommended for programs which
will be long runs. A B-program requires less than one-sixth the cards
of an A-type (multipass) program during the IT-language to machine
language translation, and takes approximately one=half the time to
assemble; however; it uses about 10 percent more time while running,
(More accurate timing has yet to be made for this comparison.)

Extensions: Programming is exactly the same for A or B processing
except that there are different maximum limits for extensions, In
type A, no more than nine named extensions may be given in any one
statement; type B restricts the programmer to a total of ten different
extensions (named or not in Pl or P2) in his entire program,

4, Error searching. There are many checks on programming errors
built into the RUNCIBLE program (see STOPS); these are sometimes
awkward to correct without beginning compilation over again. The
error search mode feature in RUNCIBLE I will check an entire program

1. Index register A (8005) is used to calculate variable subscripts
when Y-operation is used; but all index registers are free for use by
extensions.

28

for goofs without punching any of its normal output cards. In this
case any error which would normally have halted compilation will not
usually stop the computer == it will be punched onto a card instead,

Selecting the modes. These various modes of operation are
selected in the following manner: we will "buildg" a four-digit number
klmn2. Digit n is 9 if not clockingland 8 if clocking; and if clocking
is used, digit m is 9 for minimum clocking only and 8 for the expanded
clocking features described in Appendix I, For X-operation, digit 1l1is
set to 9, while it is 8 when Y-operation is desired. Digit k is 9
when multipass (A) operation is to be used and 8 when using the B
(single pass) feature. The number klm finally is plus when normal
output is called for and minus when searching out errors. ‘

All of these rules can be remembered more easily by the general
pattern that all four digits are 9 for basic operation, gnd changing
any one of them to 8 calls out a more special feature. Four eights
is more or less asking RUNCIBLE for the "works." The rules are
summarized in this chart:

A X Minirmum Don't Normal
Multipass ‘650 Clocking Glock Output

2l {8 (2L (&L [*]
One Pass 653 Full Clock Error
B Y Clocking Search

OPERATOR INSTRUCTIONS.

Step 1. Insert RUNCIBLE I plugboard into 533 unit, This board
will be used during the entire operation,

Step 2, Clear any cards out of the read feed and punch feed and
ready the punch feed with blank cards,

Step 3. Place the RUNCIBLE I deck in the read hopper, face down,
and place your program deck on top of it. The program deck consists of
1) Header Card 2) Comments Card and 3) Statements (n that order).

1. When not clocking, digit m should also be a 9,

29

L N B

Step 4. Set the 650 console

SWITCH

STORAGE ENTRY
PROGRAMMED
HALF CYCLE

ADDRESS SELECTION
CONTROL
DISPLAY
OVERFLOW

ERROR

to the following:

SETTING
70 1951 klmn + (see Operation
Modes)
STOP
RUN

anything -- 1888 recommended
RUN
LOWER ACCUM
SENSE
STOP

Step 5. Depress the following buttons in order:
1) COMPUTER RESET
2) PROGRAM START
Step 6. Press both START buttons on the 533 unit,
Step 7, When the last card in the read hopper is halfway into the
machine, depress END OF FILE, Do not push the START button again until

the "End of File" light goes out.

Step 8, Run the cards out of the punch feed and throw away the
top and bottom cards., These cards are "garbage cards" and should have

been punched identically,

Step 9, Clear out the read feed and put the RUNCIBLE I deck back

into the file,

Step 10, If using B-operation (see Operation Modes) skip down to
step 14, Otherwise repeat step 5 and then run the SOAP III deck into
the machine (by pressing START and END OF FILE at the proper times).

Step 11, If your program uses extensions which are not included
in the basic package you are using, 1lift the first few cards from the '
output of step 8 which have 12~ (Y) punches in columns 76~ 80 and
insert the extensions in symbolic form into the output deck at this

place. Now, place in the read feed face down (in order):

30

1) The Reservation Package which accompanies your
basic package; e.g., R1A corresponds to PlA,

2) The output of step 8 —- with extensions inserted
if they are used.

3) A BLANK CARD.

Step 12, Repeat steps 6, 7, and 8; clear out the read feed and
put the SOAP deck, Reservation Package, and extensions back into the
file. The output you now have is a running program assembled at five
instructions per card.

Step 13. Repeat step 5 and run in your basic package followed by
the output of step 12. You are doing fine. Skip down to step 16}

Step 14. Place in the read feed, face down, in order

1) The Relocation Package (standard for type B

2) The output from step 8 operation)
3) Any extensions used in relocatable form

4) The basic package you want

5) A BLANK CARD

Step 15, Repeat steps 5, 6; and 7.

Step 16. When your deck is all in, the machine should be
stopped with 1999 in the ADDRESS lights. Turn the CONTROL switch to
ADDRESS STOP., Set the ADDRESS SELECTION switches to 1888, If you
are using any of the expanded clocking special features, change the
storage entry switches to the setting described in Appendix I; if
you are running on ERROR SENSE (Appendix III) make the desired console
settings otherwise leave everything on the console alone. Now, push
PROGRAM START (gg& COMPUTER RESET this times),

Step 17, If your program contains any READ statements, place the
data cards in the read feed in their proper order. Hit the START buttbn.

Step 18. Congratulations. If you have gotten this far, any output
may consist of the answers to your problem, Be sure to return all |
library decks to the files and to remove your other cards from the
machine.

31

= e ———

GENERAL InFORMATION FLow
"oR Runcisle T

ComPiLiNg Puase

(A Mooe) 5 i ot
ﬁgmkfuao
/ -

(F.RST carp | . A YOUR STATEMENTS
RUNCIBLE I | ~
ﬂ. - —RuncisLe Deek
QuTPUT
=
Soapr]ll

(Symeovic) Deck

32

COMPILING PHASE
(B MopE)

4//// INPUT

ﬁEADER CARD

/

YouR STATEMENTS
FIRST CARD
| RUNCIBLE 1
RuNcIBLE DECK
g CYTETRD) ! TPUT
e ina o e

MACHINE L ANGUAGE
(5 Per Carp) DEck

33

RUNNING PHASE
B Mobe OnNLy

e
DATA
(ILF ANY)

/ BLANK CARD

/

(BASIC PACKAGE

‘/ RELOCATABLE
/ EXTENSIONS
TPUT FROM MACHINE SHouLD STor
COM PILING PHASE
/ ReabinG Here. See -
FIRST CARD Step 16 ° PAGE 26.
RELOCATION
PACKAGE

i
ANS WERS

YV

(A Mobe ONLY) REMAINDER OF
COMPILING PHASE /gLANK e

OQUTPUT
“FIRST FEW CARDS" ot -

OF COMPILING PHASE e
OUTPUT (i.e. ALL OF L
THE ONES WITH Y

s

: ~ Soapr Puase
i

PUNCHES 1IN COLS.76

e

EXTENSIONS (IF ANY)

o pEanD IN SYMBOLIC SOAP T
S FORM (7.€. A MODE
‘ EXTENSIONS)

FIRST CARD

SOAP I "RESERVATION PACKAGE"

(MAY BE R1A,R2A,R3A,
R1Y, R2Y)
] SOAP I

/
| ?
MACHINE LANGUAGE

PROGRAM
S INSTRUCTIONS/CARD

35

RUNNING PHASE

A Mope OnLY

OUTPUT FROM
SOAP PHASE

/

[

BASIC "P"
PACKAGE

Rt B4
.,

. i"
%

b

T (ANSWERS

36

s /
MACHINE SHouLD STor
Reaping HERE. SEE

STer 16, Pace 26.

/

AWK IALLISO4
8 X 40 901 %0
O AG NOISING

SLHOIN NOILY¥3dO : "1'0
SLHOIT ssauaav : Ty

S108WAG
40 NOILYNYIdX]

1b°0d wolLion
39S "QansSING
38 AYW noA

SLI91a 8< WM
NIAWON anixidfe{ A
po 05¢ L naNOIXT

os->
LN3INQd X3

Tr 30V

2 ‘Ydvd4 33s A
"LIAWMOINL SYM
LUVLSIN ¥noL

=Ll SNWO10D
iV o001
*aaxiw sa¥ys

ANIWILVLS 44 LWH
V¥ Q3HIVAY 3AVM ¥O
W04 ABNWYD ATu3gONd

low ANLLAOYENS

V ONIQYOT 2wv NOA

PErOaTY TN, 3.
LOD¥O04 N0OA

H3A0
LYVYLS

A

JMNYIE 10 NH 1000 =10

IL=Q N

€

¥ 94 335
dOLS HIAWNN
ANawalvis

(®15%001)d015 40
HIAWANNOLY 1N
~WNOOVY d¥3am01

€=p
“NOISN3LX3 40
YIOWAN FHL St Wuu fag))
HOHYI 3HL 51 © AUIHM
7=0 +YYYY “uug bo
i = HALVINWN Y
B3IMOT *3a0W ONIXDIOTD
N NI 41 AN3IWaLVLS 40
MIAWAN S| MOLVINWNADDY
H3ddN *NOISNIALX3
QL AINIWN9YY LOdNI Nive
\=0 ~NOY AVW HOLNBI¥LSIO
N
@ A 6661-0000=TY
N
<dolS 888t .
NV 3AvH (A 8888="1y
A4S0 NOA d10
N
NOLLYYASO
X =7
arai; 82.8=1y
N N

39V0Vd [((AH S9L8=1'Y
d ONOYM

OL="

ASYRd
A ONIdYOS
NI

N

€

39Vd 3361083

XXX 1100 |0
¥aLSIoay
WYHOOUd

GNY YYVY OL W34
~SNVHL OL Lavay

¥IXx £008 10
H3LSH3IY
WYuSQud

AV1dSia

INULSN|
39WMIIVd 33¢

S3OWH.
N. ANISH

NO LHeM
Molngnysia

N4eig 1o

ADVHING
JISVE N dOLS

GIWNWYEO0Ud 68 aovd

30 doui

€

8881="1"y
N

108 =1’y
N

ANVIE 10

WOOHd
ONINND

AD0TONNIAL 0 ALNLUSNT 35¥) “ T INEIONNY HLIA 3sn wo4

¢ dOIS HILNdWOD 3IHL a10 AHM

ONINNAY MON
ANIHIYW

HOM 4oL
033408V

ERIF]
40 ON3|

avay
SSavd

AMVIS $53%d

8Ff 'Od 335
O $700 X23H)
W¥AGYO 40 4NO WO

ONISSIW S0¥YD

>

X6=T0

IL="1O

OL=70

10="0

00="10

S35V MOVd N

SNlavay

BN
ONIQv3

Rerun Procedures. There are severzl cases where one does not wish to

reload a large program deck when the program is already in the machine.
1. If RUNCIBLE is still in memory, and you are not changing from A to

B or from X to Y operation modes, vou may compile a second or successive
program by setting the STORAGE ENTRY switches to 70 1999 klmn * , placing
your program deck in the read feed, and continuing with step 5. Change
the console back to 70 1951 klmn + when step 10 is reached.

2. If SOAP III is still in the machine, you may SOAP a second or suc-
cessive program by setting storage entry to all zeroes, repeating step)
and cortinuing with step 11. Return the console to its previous setting
after the SOAP phase has been completed.

3. During the running phase of your program you may always start it over
from the beginning by setting console to 00 0000 1999 + and hitting COM-
PUTER RESET, PROGRAM START,

STOPS, The above operator instructions work fine for the unusual case
when the 650 does no stop. You have undoubtedly noticed the rules given
thus far for programming; they are certainly not unreasonable and, of
course, must be followed. Error checks are made by RUNCIBLE on almost
every rule. When the machine stops, an indication of which error has
been made appears in the display lights as described below.

. If the DISTRIBUTOR light is on, you most likely have a mistake punching
your card. Run the cards out of the hopper--it's the fourth last one out
you want to check,l

When the DISTRIBUTOR light is not 1lit, the next step is to look at
the OPERATION lights. If they are

1, 9 (address 9998),
* 01 (address 8989)°
there is a card missing or out of order. Remedy: try arain with a good

The program deck has not been loaded properly;

deck., If the 00 9998 stop has occurred, vour own five-per-card program
may be out of order if the basic package is already loaded properly; check
columns 7-10 on your cards. The numbers in these columns must start at
0001 and be consecutive. If you have dropped a deck, its loading routine

may be unscrambled by watching the 1R2-overpunches in columns 71-79.

1. If you are compiling you may restart by fixing the card, inserting

the entire statement again, and transferring control to location 1234.

While reading in data during the running phase, restart by transferring
to 1698 if using the A packages.

38

R« 70: The machine wants to read a card. Depress read START, or END
OF FIIE if the last card in the hopper is halfway in; however, if the CARD
FEED STOP light is on, panic,t

3. 71: The machine wants to punch a card. Depress punch START, If this
doesn't work, there is a bent ecard in the punch feed or the feed is filled to
capacity. In the latter case, relax and take all cards out of the feed as the
first portion of your output., But if there was a bent card, remove it and play
around until the unlabeled light goes out. You will have now one or more extra
garbage cards (see step 8 in operator instructions) in the middle of your output
which must be removed, \

4. In the 90's: You have not set the storage entry switches correctly.

Se Blank: Now you must check the ADDRESS lights, as follows: Compilation
phase. A, 1234: This is a correctable error in a RUNCIBLE statement; error cards
are punched for this type of mistake when in error search mode (see Operation
Modes). A 1list of these goofs will be given below, To restart, correct the
offending statement, place it first into the read hopper, and depress PROGRAM
START and read START.

B. 1953, 1954: Turn the OVERFLOW switch to SENSE and run the
deck again,

Ce 9500: Columns 31-40 of your Header Card are negative or
Zerojy or storage exceeded and not in error search mode.2 When tight for memory
space in a long program, always check by an error search first. Remedy: change
your header card and start over,

D. 9876: If your entire deck of statements has been processed,
cheer up, for this is no mistake 5 the compilation mode has been successfully come
pleted. If not, however, an FF occurred on the last statement processed; or you
are using B-operation and columns 71-80 of your Header Card are not Zero,

Remedy: start again,

CORRECTABLE ERRORS IN STATEMENTS: (1234 stop or error search output) If a 1234
stop occurs and the DISPIAY switch is turned to LOWER ACCUM, your error indication
will be as follows:

OnnnOaaodObhb
where nnn is the mmber of the offending statement and aa and bb are

1, You have a bemt card, Clear the read feed, and replace the last two cards out
into the hopper. Fix up the bent card and replace the deck; depress STOP and then
START (both keys).

2. On this error a display is given as in the 1234 stops (see 02 02 stop),

39

explained in the table below. You may correct your statement
immediately by making up the new card or cards necessary and replacing
the incorrect statement, putting your cards back in the read hopper,
pushing read START on the 533 and PROGRAM START on the 650,

If you are in error search mode, list any output cards on a
tabulator with the SOAP III control panel. Your statement number will
appear, followed by an entry in the table below, followed by that
portion of your statement which caused the trouble,

Here is the error table == if your error indication does not
appear to make any sense, check to see if you have punched the F's
correctly in colum 70,

Letters: aa * bb Error type:

00 00 A zero statement number immediately
following an iteration statement; or
more than five cards in a statement; or
statement too long--over 100 machine ~—
language instructions were necessary to
execute your statement (remedy: break
it into two statements).

Subscript or statement number over 999,

8 8
8 8

Problem too long--2000 memory locations
exceeded. You must start over if not in
error search mode. Either cut down
numbers on header card to bare minimm
or shorten or segment your program.

04 04 Constant larger or smaller than allowable,
(fixed point 2 1 billion or floating
point < 10~50 or 2 1050)

06 06 More than ten subroutines used in addition
to the basic package when using type B
operation,

07 07 Column 43 on first card of a substitution
5 statement not I, Y, or C; or too many
' named subroutines used in one statement;
or parentheses and quotation marks nested
over nine deep. y

08 08 Unmatched parentheses or quotation marks F
or a floating point number when it should
have been fixed; i.e., in a statement num=-
ber, an exponent, or a subscript.

E R 65 79 “CONVERT" when not using type A operation.
G F 67 66 “ARITHMETIC FLOATING® when not using type
AX operation.
Lo
— - e——— - E S — —— = i - i i = " —— S — — e ———— — — — —————————————

Letters:
I F
K F
L F
R L
0 K
0 0

aa
69

7R

73

79

90

90

bb

66

66

66

73

72

90

Error type: (continued)

"IF" not followed properly by one of the
relations U, .V, or W,

Iteration statements nested over four deep;
or more than five symbols between commas

an iteration statement; or too many
commas in an iteration statement; or bad
spelling at the beginning of a matrix
definition statement.

"ARITHMETIC DECIMAL" when not using type
AX operation,

Improper use of REMAINDER (see Appendix III);
or the invalid pair)(in a statement.

PUNCHing more than four variables in one
statement,

Erroneous substitution statement; or state-
ment does nothing, Examples:
Ilelel; I1+ 1<=1; I1,

eeoee and if not in the list so far,

?

61
62
63
64
65
66
67
68
69
71
7
73
74
75

K

ZRx NG HTE O EYOW >

i

??

aa

72

pB

or the word IF

(1[{

or T or the word PUNCH 88

Too many multiple input extensions nested
together; or HALT followed by a variable,

The code for aa and BB is explained in the
following table; they are two letters
which should not appear next to each

other in any meaningful RUNCIBLE statement}

7% 0
e
78 Q. .R
79 R)]} orU,V, W
8 S + orM U, V, W
85 T or the word PUNCH
84 I =
887 VAT >
86 W =2
87 X x
Y
Z <=

90 lefthand end of statementt

89 any integer 0-9 or a J

SOAPing phase, Assuming that properly written extension are being used,

no stops should ever occur until the end of the SOAP III phase. However,
if the OPERATION lights are blank you may have a stop of

0444: You for
066
077

got the reservation package.
g)s You got the compiler output jumbled up somehow.

9800: » You have successfully finished SOAPing; or (if all cards are

not processed)
by a punch jam)

you forgot to remove a garbage card (caused
from the middle of your deck. See 71 stop.

-1s In this case, BB represents the first symbol of the statement,

L1

e

Running Phase, 1. OPERATION lights not blank, ADDRESS lights:

8011: Overflow or underflow has occurred somewhere during
floating point arithmetic while using Y operation,.
The s tatement on which it occurred is in machine
location 0018 if clocking,

1888: Programmed stop in basic package., When using "A"
packages, the DISPLAY switch may be dialed to
indicate:

DISTRIBUTOR May or may not contain the input
argument to the extensionj when
it does not, it is the same as
the UPPER ACCUM,

UPPER ACCUM The number of the statement being
executed; zero if clocking not used.

LOWER ACCUM Displays the ten-digit number
Oa Onnn AAAA +

which may be found by referring to the writeup of the
extension. In the basic packages,

a = 1: Floating point exponent less than =503
pushing PROGRAM START will continue
calculation using zero as a result,

a = 2: Floating point exponent more than +493;
or attempting to fix a number of more
than eight digits.

a = 3: Division by zero or logarithm of a
non-positive quantity.

When the OVERFLOW light is not on, the program may be
restarted by setting the ADDRESS SELECTION switches equal
to AAAA, turning CONTROL to MANUAL OPERATION, punching
COMPUTER RESET and TRANSFER, turning CONTROL back to
ADDRESS STOP, resetting address switches to 1888, and
hitting PROGRAM START. Zero will be employed as an
answer to the calculation,

xox: Operation lights not blank, address not 1888 or 801l: If
Overflow light is on and DISTRIBUTOR contains zZero, you are
attempting fixed point division by gzero.

2. OPERATION lights blank, ADDRESS lights:

8765: Wrong basic package for your program, Dial PROGRAM REGISTER
== it contains Ol Onnn 8765 where nnn is the extension missing
from the package you are using,

8778: (Type B Operation) You are attempting to load a subroutine in
relocatable form which you did not properly call for in your
program, or HALT FF statement,

1., See next page for extension numbers in the basic packages, and extension
writeups for the number of a named extension, -

L2

. nnn is the number of the extension;l a is the error type

8888: You had a 1888 stop with OVERFLOW light not on and did
not restart as described above, or you forgot to turn
the switch to Address Stop at Step 16,

0000=1999¢ Stop caused by HALT statement in your program; if
you are displaying a number it is in LOJERIAGCIM.
PROG REGISTER should contain Ol 8003 X000K

Extensions in the basic packages which include error stops have the following
numbers:

nnn = 00l: ILog to base I0=-not in Pl
002: 10 to the X=-not in Pl
006t Floating point division
008: Floating point addition and subtraction
009: Floating point multiplication
010: Fl, pt, number to fl. pt. power (P)=-not in P1
011: Clocking '
0182 Natural logarithme-not in P1
019: e to the X==not in Pl
020: Square root=-not in Pl or P2
021: Sine=-not in Pl or P2
0R2: Cosine==not in Fl1 or P2
023: Tangent=-not in Pl or P2
033: Arctangent=-not in Pl or P2
500: Fix a floating point mmber
S0l: Fx. pt. number to fx, pt. power (P)=-not in Pl

"IF NOTHING ELSE WORKS, READ THE INSTRUCTIONS"

l. If this number is Ol 001l xxxx, you have a statemert number stop (see
Appendix I,

[
M
i
P
.
.
.
1
g
p

APPENDIX I

EXTRA CLOCKING FEATURES. “hile doing minimum clocking, the present
statement number is kept in machine location OOl7; the previous
statement number may be found in location 0018, The following
features may also be used while clocking == if any or all of these

are used, an additional 98 drum locations are needed. (These features
are primarily intended for those who have a more complete knowledge

of 650 machine language.)

1. Statement number stopping. The computer may be stopped just
before executing any statement whose number is nonzero.

2. Flow tracing. A card will be punched just before executing
every non-zero statement showing the contents of the accumulators.

3. Comnlete tracing. A card will be punched for every machine
language instruction executed except those in extensions, showing
contents of the accumulators and distributor.1 Extensions will be
run at full speed. Tracing may be stopped or started at any statement

number.

CAUTION: Iteration statements generate several zero statements
which when executed are not clocked or flow traced.

To use any of these extra features; digits m and n (see Operation
Modes) should be set to 8 while compiling, and the following console
setting is to be made while running the machine language programs

qr sfAAABBB#+
The sign controls conditional PUNCH statements as before, and digit £
is free for some use which is as yet unforeseen. Clocking is independent
of the sign or of digit f. Digit g tells what features are to be used:
q= 0orq>4: Minimum clocking only.
q = 13 Statement number stopping and clocking.

q = 2: Flow tracing, statement number stopping, and
clocking.

q = 33 Complete tracing, statement number stopping, and
clocking.

q = 4;: Complete tracing, flow tracing, statement number
: stopping, and clocking.

1. Complete tracing will correctly trace all RUNCIBLE output instructions
but will not handle branch-distributor-8 commands, references to 8001 or
8003 for instructions, or division with opposite signs. When “doctoring®
of compiler output is done, therefore, care should be used to stay away
from these instructions if complete tracing is also_desired.

L,

Statement number stops: The machine will halt just before executing
stetement number AAA if digit r is 8, and r must be 9 when this stop
is not desired. The machine will halt before executing statemert BBB
if digit s is 8, and 8 must always be 9 when this stop is not desired,
The halt command will have data address 0011, and the DISTRIBUTOR will
contain the statement number on which the stop occurred. The accumu-
lators do not contain anything of interest. To continue, depress
PROGRAM START,

Complete tracing will start up when statement AAA is encountered
and will be discontinued just before executing statement BBB. (1I£
AAA equals BBB, no tracing will occur.) Digit g may be changed while
running the program, but its effect will be noticeable only after
the present statement has been completed. Never change the console
setting unless the 650 is stopped.

Card formats: Flow tracing: Complete tracing:
Word 1= FLO the letters coM
Word 2: 000000nnnn 00kkkknnnn

(nnnn is statement number; kkkk
is location of instruction,)

Word 3: 0000000000 Instruction
Word 4: UPPER ACCUMULATOR

Word 5: LOWER ACCUMULATOR

Word 6: 0000000000 N
Word 72 0000000000 DISTRIBUTOR
Word 8: 0000000000

When flow tracing with type Y operation, word 7 of the output cards

will contain the contents of the DISTRIBUTOR if camplete tracing is not

being used simultaneously., Results of every substitution statement may be

found in the distributor, while only certain types of substitution statee-
ments leave the answer in the lower, :

L5

APPENDIX ITI

MATRIX NOTATION, There are two types of doubly=subscripted notation
available in RUNCIBLE I, and since they have somewhat different rules,
they will be discussed separately here. It is possible to program
matrix problems without this notation, but the machine language output
on matrix notation is usually much better and the notation is convenient
and quite easy to use.

1, VARIABLE-SIZE MATRICES. Two matrices having variable row length
may be useds the YN matrix and the CN matrix. The number~51 columns in
the YN matrix, whenever it is used, is always contained in the current
value of variable Il, and I2 contains the number of columns of the CN
matrix. Notation used in statements is

IN(vl ,v2)
where vl (the row) and v2 (the column) are any fixed point mathematical
expressions, Variable-size matrices start with row zero and column
Zero, and they overlap the other Y- and C- variables. YO is the same
as YN(0,0) and if I2 = 4, say, CN(1,0) is variable C4. This may be
seen more clearly in the following equivalence diagram, showing in this
case a 4 x 5 matrix:

Wo,0 Wo,1 Wy o Io ; Y,
M, M, W, =3l ¥, X
Moo Moy W, o Is I, Y5
W0 Mg Mgl 9 YTy

%o FIXED-SIZE MATRICES. Fixed-size matrices are the type most
frequently found in compilers prepared for other computers; the row
size must be specifieé by the statements of the program. There are ten
of these matrices availables N1, YN2, ..., ¥N5; CN1, esoy CN4, and
CNS. These matrices start with the more conventional element 1,1 in ‘the
upper left~hand corner. Notation used in statements is

YN2(vl ,v2)
where vl (the row) and v2 (the column) are any fixed point mathematical
expresgsions. Y- and c-'#ariables'aré overlapped by the fixed-size
matrices; the subscript number where e c' m: trix will start (element
1,1 of the matrix) is supplied by the programmer.

Lé

A matrix definition statement must precede the use of any

fixed-size matrices, or erroneous (urdetected) operation will
occur. Such a statement looks like thiss

YNn, COLS; ¢, START, s,
or CNn, COLS, ¢, START, s,

where n is a number from 1 through 5, ¢ is the number of columns in
the matrix, and s is the subscript number which should correspond
to element YNn(1,1). Note the commas and English words in the
statement; ¢ and s must be fixed=-point numbers without leading
zeroes. A matrix definition statement cannot be made conditional,
of course; when the program is running it is treated like a
BYPASS statement, and so it is usually given statement number zero,

The equivalence diagram below illustrates the overlay of a
4 x 5 matrix of fixed size.

5351,1 CRS, 2 °:51,5 co1s, 3, C32 Cs5 Cay
52,1 ON3p o CONS, o s 1] 85 Y36 P87

NS5 1 ON3; , CON3, . Csg Cx9 C40

oNs,’. ©Ns,, ONs, . ||START, 82,|[.5 59

A sample matrix problem is given in Appendix VI,

L7

A PPE N DI X TT X

EXTRA PROGRAMMING FEATURES. RUNCIBLE I contains, in addition to those
features described in the main portion of this manual, some secret
hidden tricks which are extra added attractions for the more advanced
programmer .

1. Remainder. The remainder of a fixed point division may be
saved instead of the quotient by enclosing the division and parentheses
and preceding it with the word REMATNDER ; @.g.,

REMAINDER (I3/ 5)
The expression inside the parentheses must be some fixed point division =
it may have a more complicated dividend and divisor as

REMAINDER [(I8+2)/(13P8)]
When used in a statement it is treated by RUNCIBLE as though the entire
thing were enclosed in parentheses, so parentheses need not be placed
again around the entire remainder expre ssion. REMDR or simply RR may
be used as an abbreviation for REMAINDER,

2. Variables in the core., Your variables may be placed into
immediate access (core) storage for faster operation by adjusting the
Header Card. Word 1, 2, or 3 of the header may be made negative (an 11~
punch replacing the 12-punch) and the corresponding variables, I, Y, or
C respectively, will be placed into the coz'et,:L There are a few restric=
tions, however: no matter which variables, I, Y, or C, are placed in
core, that one with subscript zero is put into 9000, subscript one into
9001, etc., so that no subscript greater than 59 may be used. Also if
more than one type of variable is put into core, overlagging occurs
betwaen those having equal subscripts; and so care must be taken that
no subscripts are duplicated between these two variables. For example,
if both the I's and the Y's are placed in core, and Il is used in the
program, Yl may not be used at the same time since the two variables'
are both kept in location 9001, :

8. Switching arithmetic. This is another step forward in
compiler offerings -- the floating point variables may be changed into
a fixed decimal po’i‘nt form with the number of decimal places to be saved

1. The other numbers in a negative word are ignored,
L8

left as a variable, This is useful in some calculations for speed of

oneration and for editing answers before punching, making them more
easily read. Switching arithmetic can be done only when using type A
and type X operation modes simultaneously. A group of extensions ;
is supplied for this operation; a full description of how to use

these features completely is given in their writeup. The compiler
statements ARITHMETIC DRCIMAL and ARITHMETIC FLOATING will change

from floating decimal to fixed decimal arithmetic or back from fixed
to floating, respectively; they may not be made conditional, Only

the arithmetic of Y- and C~ variables is affected. During the

running phase, variable IO (I-zero) will specify the number of
decimal digits desired; this can conveniently be changed from one
run to another until the correct scale for the problem is determined.

4. Error Sense Running. For production runs it may be found
economical to leave the ERROR switch on SENSE and then have a
built-in error restarting procedure in the program to bypass machine
errors when they occur. This may be done with RUNCIBLE, as followss

The error correction procedure is programmed as a block of
statements, and on the first statement of the restarting program the
number of the statement on which the error occurred is by now in
location 0018 if using minimum clocking. This value may be programmed
by asking for variable I(=1) if the I's are not in core; if they are
in core, call for I(-8982)! For example, the first statement might be

16 <« I(-1)

The error restart routine which you program will continue then perhaps by
attempting to correct any harm done; keeping count to see if the error
occurs repeatedly, and then going back into the main program.

This operating mode is set up by the statement

SET ERROR CORRECTION TO n

where n is the (fixed-point constant) number of the statement at
which the correction procedure should start if an error is sensed.
This number may be reset during different portions of the program by
other similar statements., The SET ERROR CORRECTION statement must

-

L9

precede any part of the program it is supposed to be operative onj it may
be made conditional. During the running phase of the program the console
switches must be set to NOP to 1998 to utilize this error sense operation.l

S. Spelling liberties. RUNCIBLE is not always very fussy about the
programmer's spelling of English words (this will come as a relief to many
people):

READ is any statement ending with a D (e.g., READ A CARD, or DONT READ)

HALT is any statement ending with a T or H; HALT n is identified by the
T=integer combination,

BYPASS is any statement ending with an S,

PUNCH may be replaced by the letter T; it may also be any group of

letters or numbers starting with P and ending with H as long as there is
only one P, (e.g., PINCH, or PEANUT GOULASH)

REMAINDER is anything beginning and ending with R without any R's in
the middle,

JUMP TO is anything ending in G or O not containing an E,

SET ERROR CORRECTION TO is anything ending in G or O containing the
letter E, (e.g., RESTARTING)

IF and THRU must be spelled exactly.

COLS and START are not looked at but they must be less than six symbols
in length,

ARITHMETIC DECIMAL and ARITHMETIC FLOATING are anything ending in L or G,
respectively.

READ PROGRAM is anything ending in M.

STATISTICAL READ is identified by the letters EAD or ED in sequence
followed by a number or var:i.able.2

EDIT is anything ending in I’l‘.2

CONVERT is anything ending with the letters ERT in sequence .2

6. Passing Soap Cards. (Type A Operation Only) Any nurber of cards
written in standard SOAP III coding may be placed just after the Comments Card
of a RUNCIBLE input program to be reproduced in the output. They will appear in
the place where extensions are normally to be inserted when Soéping (see Opera=
tor Instructions, Step II), Column 5 must not contain a 12-punch on these cards,

2

1. Notice that digit f (see clocking) still is arbitrary if we ever find a
use for it. :
2, See these extensions for use of the words,

APFPENDIX IV

CORRECTING ERRORS AFTER COMPLETING COMPILATION, Note: this procedure
may be used only with type A operation. If only a small number of

statements in a large program have to be changed after compilation,
first make a listing of the SOAP ITI symbolic program, At the very
end will be a list of constants terminating with 'ABCOO (or ABDOO, etc.)
-=- the symbolic locations will be in decreasing order. Take the
largest number following the ABC1 and put it into columns 71-80 of a
Header Card which is identical in all other respects with an ordinary
Header Card. (The control information in the other columns of this
Header Card may have to be changed; this information must apply to the
whole program, nct just the corrections.)

Now compile in the regular mammer the statements which correct
or supplement your original output., Put FF on the card of the final
statement compiled. The first few cards of your output == identified
by 12- punches in columns 76-80 ~-= should now replace the corresponding
cards of the original program. Remove also the old symbolic program
cards corresponding to the statements you want to replace -- they can
be located by checking the comments portion of the listing -- and
insert the new material into its proper place. Each statement begins
with the characteristic "statement dictionary entry" which has
location address (SC000+n) where n is the statement number. Append
any new constants (identified by location address ABC; ABD; ...)
at the end of the program. Continue then with the SOAP phase,

Caution: iteration statements become three statements when
compiling, one to initialize the variable and the other two (numbered
zero) to increment ani test it, occurring just after statement n, the
end of the iteration scope.

When compiled with clocking, linkages from statement to state--
ment are made with statement numbers, and so the first statement in
any block of consecutive correcting statements must have the same

number as the first statement it replaces, and the final statement
in this block must be followed with a BYPASS statement having the

1. If it is ABD, add an extra hundred; ABE, two hundred; and so on.
51

same number as the statement following the replaced statements.

Therefore a single statement may not be merely added into the listing
when compiled with clocking; one statement must always be removed (and
recompiled in this cacse) whenever a change is made. Example: suppose
it is desired to insert a new statement 20 between old statements 4
and 5, Remove statement 4 from the listing; compile statements 4 and
20 and a dummy statement 5: BYPASS in that order. Put the outpus from
statements 4 and 20 into the place formerly occupied by statement 4.

52

F

APPENDIX V

SUMMARY OF STATEMENTS.

1. BYPASS statement.¥ BYPASS
2. Error restarting. SET ERROR CORRECTION TO n
3. Extension statement.“ many forms--see writeups to extensions
4. HALT statement,” HALT
HALT n
5. Iteration statement, n, vl, v, v3, v4,
6. JUMP statement.” JUMP TO (fixed point expression)
7. Matrix definition, gNn, COLS, c, START, s,
8. PUNCH statement,™" PUNCH varl PUNCH var2 PUNCH var3 PUNCH vard
: PUNCH varl THRU var2
9, READ statement,™ READ

10, Substitution statement.” variable <= math. expression
11. Switch of arithmetic. ARTTHMETIC DECIMAL
ARITHMETIC FLOATING

% May be made conditional by adding IF expression > expression*
+ May be made conditional on sign of s ,
console switches by giving statement
number zero.

53

B
'
t
E

APPEENDIX NI

ADDITIONAL SAMPLE PROGRAMS. (These programs are partly pilfered from

the original Carnegie Tech compiler mamual; they are chosen for their
educational value,)

Example Sub-Program 1. Separate the integral and fractional parts
of a floating point variable Y1.

1 Il - Y1
2 Cl < I1
3 C2 = Y1 - C1

I1 is the integral part of Y1 in fixed point form; Cl is the same in
floating point form; and C2 is the fractional (decimal) part of Y1 in
floating point form,
Example Sub~Program 2, Represent the eight significant digits
of a floating point variable Y1 as a fixed point integer 11,
1 JUIMPTO S IF Y1 >1B 8
JIMPTO 7IF1B7>Y1
Il « 7Yl
HALT
Yl « Y1 /10,
JUMP TO 1
Yl <= Y1 x 10,
8 JUMP TO 2

N O o o

Trickier, shorter, and probably slower, would be

1 JMPTOSIF1B8>YLIFYL>1B 7
T1<Y1/10. FY1>1B8
M1«Y1x10, IF1B7>11
JUMP T0 1

Il - Y1

HALT

L= T B N 7 I)

5k

e S ————

Example Sub-Program 3. Find the maximum of a set of I1 numbers;

the numbers are Y- variables with consecutive subscripts; YI2 is the
first variable of the group, Il > 1,

Cl <« YI2

I3 - I2

Il «I2+1I1 -1

8, 14, I2 1,1, 11,

JUMP TO 8 IF C1 > YI4

Cl <« YI4

I3 - I4

BYPASS

JUMP TO IS5

Cl is the desired maximum and I3 is the subscript of the maximum Y of
the set. Statement 8 was necessary to end each iteration on a common

O ® 9 O vl D N

statement. Statement 3 was necessary because the expression I2 + I1 - 1
was too long to include in iteration statement 4. Note statement 9 at
the end ~- a variable JUMP statement enabling the main program to use
this sub-program several times and exit to different statements for
continuation,

Example Program 3. Generalized matrix multiplication of up to a
20 x 20 matrix. Multiply the I6 x I2 matrix YNl by the I4 x I6 matrix
CN1 obtaining the product elements by the relation

Y, - f? CN1(I3,I5) x ¥YN1(I5,I1)
I5=1
punching the elements as they are being computed.
0 CNl, COLS, 20, START, 25,
YN1, COLS, 20, START, 25,

Bkini
4 1,1, 1, 12,

4, I3, 1, 1, I4,

Yl « 0,

3, IS5, 1, 1, Ie,

Yl « Y1 + CN1(I3,I5) x YN1(I5,I1)

PUNCH Y1 PUNCH I3 PUNCH Il

HALT

The various outputs that may be obtained with this program are illuatrated
in Appendix VII. Notice nesting of iteration statements.

55

@ > ANV 90 0

APPENDIX VII

LISTINGS OF OUTPUT. On the following pages are shown the input to
and output from RUNCIBLE I as it works on Example Problem 3, First
the program deck is shown. Due to the shortness of the problem, no
attempt was made to keep the number of variables down to a minimum,
Word 1 of the heade; card was made negative for the type Y operation.

1

|

|

|

I

|

Statement number 3 would have fit onto a single card but the extra
spaces were added for élarity°

SN T S k-
00000000100000000450Q00000045000000000100000000006000000032SOOOOOOOOOOOOOOOOOOOd

70

EXAMPLE3 MATRIX MULTIPLICATION
00001 CNIK COLSK 20K STARTK 25Kk F
00001 YNIK COLSK 20K STARTK 25K F
00001 READ F
0007I 4K TIK 1K 1K I2K
00011 4K I3K 1K 1K 14K
00061 Y1 Z 0oJ
00021 3K. ISK 1K 1K I6K
0003T ' Yl Z Y1 S CNILI3K ISR X YN1LIS
T ' K TIR F
00041 PUNCH Y1 PUNCH I3 PUNCH Il F
00081 HALT FF

o B B L |

123456789012345678901234567890123456789012345
111111111122222222223333333333444444

=X X = X - (TolTo)
o O Do oo) =
=) 3 G)= L -t L
—_ OO) v Xv]
<O OnoOom N N o ~N >mM =
(&} -_>
-} ACHICNENE N NJ
o —HO-HO< ™ X —
(85 ZNZ0 W —f M i L =

L (&) >- (6 —] —-— > - >0 X x
-

=

Sro0Ho@HN QRO W YO = OH O+ Mo
SoMN-HOoOMMNOYMNMIDSY o YHelivd OH O O+ Ow

8002
8002

NOOYONATOONON O O OO0 0O 0O oo oo O
XHOOO0O0O0O0O0OOoOoOL W wuw o o o) Lo
—— HuH W H W W o Dul Dy My
o
L
SO0 HOROMOMON Nl ML Sl o el Sithl 5 aad ToMmame
| =HDRbob MosDolicol ol o 66 Bo on S5l 6ean cooococo o
_ RO D OEFONDNG OF Ioh 40 O DGMGD 100 Lol 6onE ocoo©voo o
2R 0BI0DC0 OO @ 0 O o B0 @6 oo OmMOO OOOmOoOOo O
w —_— > (&) aDn - L b | 181A|1A'1AY1A'1|.AII > < — o

M N DO O D DNEE it VO Q@ MM
O O oD 9 © oo o0 0 0o oo
QF & O B © oo oo ©CO0 oo oo

QN O 0o © © o oo OO0 OO0 oo
v OCODHDADHDIE- D D= OF ST

-

|
|
|

678901234567890123456789012345678901234567890123
444455555555556666666666777777777788888888889999

] M (0 S =l \O =1
(7} o Q. n o (7]
(@} 22 o
O\ W > M o M
~N o —_—— —_ N @ —— N0
(S)7 L - (& |
E=aiaE s QO = e
-4 S u =
n 79 O D= M M O i i
_—— — O - QD2 —] O - =
(o) YT o R = e o~ i O v
o (@] S bz | O i R | i O
QO © (@) eole] ole] (@) QO
L L o (' (®) ('
W W v W0 Ll L A @D i
o i L mnow ND\0 MO0 Mo M M O
o (@] (@) ellele] QOO olelolololoRe) OO O OO OO O
OO Q. O 00 (B0.0 OCoovopoooo OCCO oo OCO
o o o O MmO elole] DMOMO MO ML omo OO L Cmo
=< > Yl.lAllllSlAPAPAPAlllAllllll

o
o
(@)
o
@D~

© TN
o oo
o oo
o co
D O -

o
(@)
(=)
(@)

@D

o o
Qo o
o o
o o
@D @D

HALT

VYo HMHoOOoOH
OvFilcOOCOOoOMROO
ollel dolslelelolole)
© WMOOOOOO0OO
D

TSRO MMORHAHOOO

oo

© OO0OO0OO0OOOOO

COOC oOoOoOOOCOO0OOCO
COO moOoOOOCOOOO

—_C—d — — D

DoV HO
olelelololololofe)
ool ISR NSHSNSNS
OCOmmmmMmmmm
D << <C << <C << <x <

Sl

123456789012345678901234567890123456789012345
111111111122222222223333333333444444

> X X ToTo}

o Do D —-—

— < < w - T

= OO~ - X

<C (SHHRSN) N N (@) ~N >mM=

o —->

- XX XX N (S fead U

_ —HOHO =< < —

o ZRZQW) - 0 =

- S S = e T - >0y

=

—
ﬁ D SOOI 0 09

= or~HANMME@ ™M - Vo)

oo O o

* AV OOOONDL Lk it o el B e i W
. — A A AW AH o Hd e e o
4 o

=~ < <
| <THOOOHOMOMNOM M M O OM HH OB VLAHRTOMEQL MY O o
| SoonNoroMOMoo © o OO0 OO OO ©o o0oocoOCOOOOOOCOO
| CO0OYOOONOO © O QO Oo ©O VO VOO0

MOOOOOOOCOOCOW W ® L MO WO mo oo OCMOMOCOMOMOOOO

B % et £ b D b S S v S T S S e B it i S i OIS

=}

PGOGOGOGOGOPPPPPPDPDDPDDPDDPDDPUYOADDUYOAUPDU
MEOEOEOEOEOOOOOOOOOOTOOTOOTOOTOAPLAOTAPLAAMAT
o NNNNNNLNLSNLSNLSNLSNRMARLSRMARRFFS

Lo O© O | \O Q M
Qe O O o o o o o
Q @ & O O (@) o O (@
QOO "0 Q@ © o (@) o o
O DHD DD D+H D D DO

678901234567890123456789012345678901234567
444455555555556566666666777777777788888888

| M a. > - \O -~J i
»n (@] o w o (72) (@]
(@] el e o o
oWV >mM oN M oM
N —— s=inel N =t N o
O = O o
R O = - =
Z0I ~
0 w O L e=s il &) o e ilin Ly SHSISTE, A i O L <<
== iy RS2 =y O ——Refie— i e T
M S= \0 - oNHMHOoOOH
o A o © r~OOCoOoOMOO
o o o © MOOOOOOO
L. L b Ow L (TS O (Vi) ' SCLmwmooo0OOO
i o D Ll i D Al D
nmowm mwwo MO —HWLMO LRI P TES g TR ¢ O xR MMRHHO 0O
0o oo Oooocoo O0Oo oo OO0 oo OCOO0OO0CO0OO0O
OO 0O Coooovoo oo oo OO oo Coo0ooooo
OCmOC O0OL MOMOMOML OMO OO L OmMO O0OuL MO0OOOOOO
1|.A|.1.|lllAPAPAD:AlllA..ll"llllAlllll.ll

D.LOLD-LOlD-DDDDDDLDPLO.LP.LO'PLOLPLOIPTOOOOOOO
OALTOSLMOOTOTOTAOOALTOSLMOALTOSLMOLOOOOOOO
NRASNRABNLSLSLSRLNRASNRABNRASNRABNH

o O A o o o o ® VuuNMEOadHO
o o o o o o o O OO0OO0O0OO0OO
o o o o o o o ©C ovoooovoooo
(@) o o o o (@) o O mommomaom
D D @ D »0 D~ D DT T T <T <

59

HRMNYTOUOFOAOHAMNT DO DOAOHRNTOONODOAOHARMNTVOVONDOO QM D
Hrerdrdrd @ AQQQAQQRQRRREEERMM MM MMM SEE S

= X = X - FoNiTo]

o [GHe /o Wea D)= ==

— =<t 1 <c L =i L

— OO) X

<< ONnO®M ~N ~N o N, >M=

(&) —->

— M AN O N N

- —HOHO=< X —

(a1 ZNZ0 W M i n - =

— O > X — = > - >0 @xxXx

—

=l

2 oontHOH™HAd = H HOH H-E O+ Q- Mo

= oMM ANYM H O H HHdH O+ O+H O+H OH mv
OO ONONO\VOY O © OO0 OO0 OO OO0 oo

X OO O0O0O00O0OO0OO0OL b o o o o (' PU

— HuH W Dul Dul D O i

(o'

— << <C

<HOOOHOoOMONOM M M [~ Od OM HHH OW LERHNTOMALATO A
SO0 NO~rOMNMOMODO O © O OO0 OO0 OO0 OO0 0000000000000 O
COO0OOYOOOOMNOO O ©O O ©O ©Oo VO O 0ODLOOO0OOVLOOOCOOO

MOnOOOO0OO0O00O00OM ® M O MO MO MO MO OMOMOOCOMOMOOOO

e > O o - Yl H A<= LC—H LI > LC—H—C = > L= O > >

=1
PGOGOGOGOGOPAPAPADADDADDADDADDAUYOADDUYOAUPDU

MEOEOEOEOEOOAOAOAOAOTAOT.AOTAOTAAPLAOTAPLAAMAT
<< ¢ (6 R H o = 1 X Zrzoczoc Jrx 1N J0X J0X 1N orS<r oS <ool W o

=<
W « @ M ¢ 0WoO0 O O BN wHeH VOV A MK
OO O ONoS B Onoo S0 00 OO0
O B 0 QLo © O ot o 68 o0 oo
Qf @ Q@ AUoOOR © ONOe Vo Vo OS5
CDADADHD- D~ D= D= OF

i

|1‘

VOO -HAQRMYOOUNODAOAOCHANST MO ODOAOHQAMEWLONOOO HMM N DN
NYYYTOONHODOLOOLOWOLNOVOOOVOOVOVOOVOOONSNSNSNSNSSSMNOOOOOMO®

-3 M a > = 0 = | i
w (@) [a 8 w (@] w (@]
o - W o (@)
owvw >mM oM oM
N e == N -_—— N —_—
(e = - [| O3
- = O U =0 e =
=& O =
(o SRR U e O (= 1 1 D= M M Ol - - OLuw <C
-_ U —=x aD= —_d - U= == U= T
i — M o~ i O i — oYM -HOO
e — (@ i i O — OHM~ROOOONOO
o (@) (olle] (eol®) o oo (@) ool HololoNololoNe -
L (©) Lo o (. QL. VOOV Pb
L i w D L L W D 1w Y] Dy
Nowm LY MO HULAWO MomMm My YO HOO® MMAOAHEHOOO
_ OO0 OO0 0OO0OO0OOOO OO0 OO0 DO L 000 OO0 000
| OO 000 ©oLvowoo Q0 O QOO OO0 0000000
OMO ©OOC mONMOMOML OMO O0OL OMO 000 MOOOOOOO
A ——0VH<<0o <O <A <HH == — — = <= — —)

ALOLALOIADDDDDDLDALOLALO'ALOLALO[ATOOOOOOO
LI IF<<O I SO HFO OO JIFC<ND IS I IS<_ 10000000
RRASRRABRLSLSLSRLRRASRRABRRASRRABRH

(@] (@) A o o (®] o DOoOVULSTFM RO
o o oo (@) (@] o (@] e leoleolelolololole]
o (@] (ele) o o (@] o OCO0LVLLLLLOLOO
(= (@] oo o o o o COmmommMmmmm
0 [»0 - W (7p] D w0 D = <C <CT <CT <C <C <C <

108 8 ok

VEHOTATDTONONDO
aocoO~M~OVONBONN
AN RDOANOD
e O
aNvTomNmaTOoOOoONOm
nueTQNOUYEnNOLEENO
NAONAOCOVTOAODAOCOO
O000O0O-HO-HO0OO®
TONONAOVIYNOO
NOVHOVOVOONVON

MOANANONON-HOHYDOY
Moo~ VONUTMT T
L N N e R N R e W T R)

Rl R e R e e e e R]

NONOANONONHOH T O v
MODODDON~VOVNYTMNO
Ao OO
e B Bk R B e e e e e =]
HTTOV-HT-NNTO
AeMentNMATOAT Y
AN DAOONDOND
HO OHMHOOOHOO
OO OATVWOTOW
VWO w00 ONN~

TOMTOHOHORNNONY
oMo ~VVNLNYT YT
AN
el e

HOMAOVHODONSRMM N
OO\ O DO N0 OWWMNO
TOOOOOO- OO
Hearrr el -HOO
MMNHYT T T T OO O
oMmMmamMmorymMewamn
OO0 NON
O O000HO OOOw
VTOOMOAWY aLWwwo
NOVOMYr VHOY

M-NO~NN~NN~OVONENSD YT
OOMNADONGOVNVDNN T
OO
OHOHrHrrdHdrHO MO0

ONMMO-QNSNNOMNDN vt
Mo DONOVUNVLMNOO
oGO OO O
OO HHOHHO+HOO
OMNOMWVATOTNHNNRHNO
ooNMYMONONYINNNNOO
OO0 NOOOCHDOROOO
OWOO0OHOOOHHOHOOO
COoOvTaOULLWYMOYOTWVLOWOO
OONRVOHHNOVTNOVUYTHOO

NATHONDMNOMATHONY
COOMONNOVNVHH T YT
OO
OrirHrHOrdr e eHOO

AT FHE-NNONOMAOHOTO
HTOOADO--VONITHHOO
OCONNOARNAAADOARO O
OOHHHAdHArdHHH OO
COTOYTOUNHOHOITMNOMNO
OOYMNNOT-MNMATRNOO
CONNOOHDOOANODOO
0000000 rHOOOHOOOO
CONOTVMANONARNBVOO
COVONMHONHOVOVHVOO

HOMDOVITATATONOWOW
CoOnMOO-~VOVOVNNONnYT
OO
OO0OHOHHrrdrirtdrrO0O

HAMNTOOVUEDAO-NN TINDO
il

WO SI95] (B0 et

MriDNATOADAOHOHDO
Tonooot~owvoonne~-n
ADAORNONDARROD
O ©
aNTOoONTwTOoOOoNOM
nanmaMNoOe~-unoONEo
Ao OOTOHODOOOO
000000 HOHOOO®
OATONOLAVIVNOVO
vRVriVVVOVORVON

nmovTnwomwowmorNr~-N-HOY

MOATOADONSNSVONNNGY

Lo e N N e e R e e
W el

NOTHOUAWNO NN
MO DONSN-VOVNOO
OO DOANONNOOODO
v e A O A A A HO
AT TOOHT NN TO
MOMNUOD>FEOMUNDENT
NN DAROONDONN
0000 HOOOHOOO
AT ONOATONO
VOOrHNHONONNAO

TOTTAOHOH-NONON~Y
OTMNADO-T O YW
AR OO
- il et

HOHAY H OO MO
DO DO-AOVIMNO
TOOAAOAAS-ADANOID
HeH OO0
MNH YT TOUTONATOO -
onMmanor~uMuInEe T
ONOOOCOOOOOON
MOOO0OO0OHOOOOOO
ATONANANOANNO
VRNOVOMNOVHOVOHOY

MENMONRCNOTATHO T
oaMaTODONMMUNOHWBOW
L= e e N e e N e N T N e e 0 e
OO OrHAHrOrd100

ONMM AN TOND
nmoanacoONMONMHOO
OO DONNAAROANOO
OHOA A OHAAOHOHOO
OO TOTOVANT RO
OOoONLNDNONMALNOO
OO0 OOODMONOOO
CWOOOHOOOOHOHOOO
COVvOOMBTVYOTINVNOO
OOoONVUVHHNOVITNOVYT —HOO

NAVOANOMNOMNODNOWVON T
CONTNOOMMOVOOVWBWN
OONNOORNNNAND GO
OO0 MO0

ATNHOLODMNOMNOVONOYTO
AN DO~ VOINNOO
OCOAODANNNANAANRDAND O
OOHHOHMHHrHArH" OO
OCOoOvTOYTYNHNOOMOMO
CoOMMANOL-MNNRNOVNNDO
OCOONOONDOOAMOOOO
0000000 HOOOHOOOO
COMMTVLOROLARNVWOO
OOVVNMNHOVONHOVOHOVOO

HOODMNAYTOATAOVHOHOWN
COWNMONDDE-~1000WNW oW
OO
CO0OFHHHHHHAH-H00O

HOAMTOUOSOAO-NMT DY
el

193 BT

/O

.l|III]IIIIIIIIIII|II|IIIIIIllll‘llllllllllllllllllllJ

VHOYTATOWVOMODO
oo~~~ VYVOVOO~N
AR
vt -0
AN rHOHNOOM M
nMoMmoMmomnmeooo
AOOHROCODODNMNOOO
OO OHOOON®
TONMONNVTNOVO
NOVHMONVON

MOANANOVNOVHOMO Y
NODDD-~VOMMNM
Lol e R e e W W W N Y

et At

NONOAMOWVOVHOH M
NOAOADOOIS~-VONIONO
o~ O
HreHel A A A HO
meTonN~N~NMTO A
omaMnor~romnomnm
OO DOONDOND
O OOrOOHOC

O OO OYOWw

VO wHOMNWONN~

TOMTOH OO Y
CAONOD~~0VOVNWLMMK
A
o e

HOMAOUH O~ -
SOAODODDI~~-VONO
TOHAOOOOOO OO
R R b e R e R R I =1=
MM AT OO0
oMo r-M~MaaMMO M
CO0OBTROOOD
® O0HMNO OCOH
NOTOWw OWLWYO
NOVNOVY VO w

MEMONNGNOMNOM DT
OCONRADDIL~ MO NN
OO ANOAARNOD
OHOrHHHHOHHHHOO

O-MOMNMSNMO O N e
N DO-~NONRNOO
OO OO
Ol 1A 1O {000
ONH TV HMNMEND
OCOoOOMNMANOOVNOWMOOO
OO0 NOOCOWONDOO
CONOONDAHMHOAH OO
OCOVTAOOOWMVTWVWOVOINOO
CONVOVWIOUTNOYTHOO

RATHOMDOMNOTRT AT
CoOnND-VOOW M
OONAAOOANAOAOOO O
OrHHOH M HOO

OYYritbMNODMNOTOTHTO
OCMNOADRT-VOTVHOO
OO OO
AOriMrrer " OO
COTOLNVHYDAT MO
coNNoOoCoNOoOMNOOOO
ODONMNOOOCOONNOOOO
CO0O0NDAONOHANOO
COMOTOUNHLAOAWVMOVUOO
COVONDHNHOYVUHOOD

HOVMDOTATOANOLOOWN
COMNDO~~VO VNN TM
OO
COMHOrHr ittt HOO

HOUMTLO~ODAOHRN TN
i

/0 [95] 8833+

MriOAOH O~ DO
MOANVOOVOVDN QMM
aAOAnULLVLVLLLNN
HOrMrriri =@
AMETHOHNOOMNHM
NOwOwTQNOWMWnOOO
AOOONOODAOAOOO
oo OOMHOOON®
QYONONRVYTNVO
ODROVHHMNONOON

VAHN>RCNAO OO
NS-MOUVVOHEHONNT T T
(TR T BT BT RVa BTy NS VL NE, N0 WL N

- e e

NOHEANANNAVH O
NOAOAVYVIDHHNONOO
OMLOLVLLLLOO
vt el -O
v TVN~L~NMNTO
NITRTOOTWNOTM
OO DMOADOONO
QOO0 O OO
anonoaoaToOno
woDHOMNNONN-®

TMeYTOMOMN~NOWNONYT
MMV ONUMNOHrNT T
OO OO
- e il

HREHTOMNOMHDOoOWUMMN -
OANVOUNNACHHNO
NNOONNLVDOLOAO
HrEOrH - OO
MDD TONT O
oMo~ TRNTTOM
OhoOoODMTROOOOO
DOORKHNOOOONMD
OYOTONMOONNY
DNOVNOrHDO-OYT

MTYNOVTATOVTOTOOT
oMMV TTOO T YT
OLANAMULAWVINVIWLO O
OHOHOHHHOHHMHOO

OTMOATOATTODON v
NENOAVVNANTITNOOO
OHANDOVNANANOO
OriOHrH "t 1 HOrH OO O
OMEHWITNVOHMNTRRO
COOTRNOONWOOOOO
OOO0ONMOOONTOWOOO
OCODNOONDANDHAHNDO
OCOTAOAOMVYWVNOOD
CONVPVODOVTNOT HOO

NANMANLOVOMDMOO Y
ocoar-MNVOMMMT T T T
OOV G
OO0 rrrrdrrrd«iO0O

O N-HOVOLOMOMODTO
OY-ONOVUNNMITTOO
OCONDAVMDVDVOWVNOOD
AOHHO i O0O
COTHMNNHODDT MO
OOTNOOONOTMOOOO
COOMOOO0O0OM VOO0
COOO0ORDMAOAOROrOODD
COoOnOYTOoOUMHOLOAONNMOVOD
COVDNDHNHOVOHOOO

HOODAVHOYHNNN-OW
OO NOVWOVOYVNUMNMN T
SOOIV
CO0O0rMrrridridH=O0O

HOMTLONDAOHNMNTY
e

e, ———

—

—_—

—_—

SR 8. 3§ F % B

-
IBM) INTERNATIONAL BUSINESS MACHINES CORPORATION Case Institute of Technology Form No. 22.6207.1
Prioted in USA
i READ-PUNCH UNIT, TYPE 533 CONTROL PANEL RUNCIBLE I, SOAP ITI
(USED WITH TYPE 450 MAGNETIC DRUM DATA-PROCESSING MACHINE) 4-22-58
Nete: Bor(-) over digit means “timed to read Feed” y r
’ ? 3 . s . r . » 9 T 9 = o 4 9 “ 9 0 N 2 e ND B M OB N Y w1y 0w Q 9 MM 8 u v ﬁ W > W D M Ny M M w0 o« S e
Do e } T ‘T
» o ' 1 TIRGT WES DN w— 10 P PN ARD A " /o
0 0 0 0 0 0 ¢ oo.o»n-ou.‘. 0.8 0 a1, Al Ol .Aa:.o 5 G-] Eb k .OJ&ODQO 7y W S e ey .
n n » 3 E - @ ﬂw . | = %) u £ = o8 S o g g
.,w SURRL: “ TR R % B Wk ¥ P) 27 B = c % A . w0] Wn
u o o S “ o o -] o h - 1< o i 1:“ - - A v\ : ~ ﬂ 'l'l’ll”’l‘ ’lAv.O I‘Ajﬂ .n
e I n.. 18 - sramase —L<-.4>luaru 2 " LOT_SELECTORs - - .!11 wor SELECro o stomas ﬂ% 2 a ~ .
© 6 o o o B 3 . % %)@ﬁ& on. ; @V\ 5 : #gen o i ;
0 & J o & ¢ ¢ o2 o 5] o o t N ‘hjnu s -
wono 3 .00 & "y AND Loundt ot Lw ! PUAND COUMLL (mir mowe § N
o 0 & o n.oooo s o v of SAGS B lacltl lllllll .n'u\n\.. l@ll"i. 2 0 4 5 @ tofo v..onrlllrltv- /. %
© 06 0 0 I £ ¢ v ot = YXYY AU G O o 2 (Laccﬁ@ ye¢olo 3% D ot .
woap - 04D 10 ~ = - — wOND 10
g0 9 3 0, 9 ° SEo od \@\ QL 3,0 0 0 ¢ . 2 o $
01 STOMRGE ENTAY o Ee—— .Y 1 A N, v tur womn 2 ~ -
Ve woRD ¢ ﬂ“ -
:Vfg F= : 3
= m woAD &
t [Iv
= ~ |:0-; u—ﬁaa-%.l : -
ﬁu, N :.m wNﬂ 5. n‘,.H wo.. —Om o
- “ u
lrr “ Y W 4 » o o
-

| A2 M L 1% 6

° <

eIt T

g

AEAD CA%D ¢ 3 50 o remmmmnran o0t stogcrons 3 9es couw
L T kA . . ‘
;8 o 5 3 6 . © 0 * 3 0 0o ©
Ld B L4 COMMON
£ . o - 9 9 0.0 0 0O .
ﬂ SOf & A ¢ Bt som— NG B0 EHES - mOLNCH BAUANES 2
c0 - S S < - o O 0 0 o o o
B n 0 » “©
> o5 & ¢ 3 e 0 o o |w “ " 06 00 © 0 o
slaflu “ 0) “©
¢ > D=k D - - o 0 9 © 0 0 0 0 o
v |2 e . o) 0
< o y 3 O B o a 06 6 0 0 0 o
- P e D¢t ENIR T e—) - e % 8. oL atar 3
A - <) - < 3 3 o o o 5l Q o o
—y BE LT ENTRY OF CF [117 mms) ey P 1| — 0 LT INTRY O OP LY — 1)
: > - K O @ 06 0 0 © D 06 o o
S SET CovTRGL] 8 DET CONTAGL 74
rplrlnb\\ o @ T © 2 9 00 0 0 6 0 ©
" OF 8 B0 DET ENTHY c—30) s e T W TS A O] S ——
-—_ 4 [: 3. © @ ~| 0 0o 06 00 6 0 0 0 ¢
- » BC 00T INtRY 08 O LY —_— o J| — L LT ENTRY ORGP LT — 0
ﬂ o N - | - o & o a O 0 00 0 6 0 0 0 ©
ALPHABLTIC ¢ 85T SEAD 8 ET CovTA o b M B0 OUT CONTAOL e 40
[, —) =¥ @ 0 0 | O © 0 o 0 O 0 O ¢
e $008 27 8 00 00T (NTHY e 30 o] s 34 E N A LI — B
—owdpa\ Lo s s e h. U s 8 D .o Ia 0 9 O 0 00 0 6 ©
BC2ET Intee NP Iny —_—]"Ix DET INTRY OF W Cant — O
4 - N 5 = ¢ |w] © 0 0 6 & 0 © 0 o
0 207 Contan ISL e 8 — 1C GET CONTROL e 5 |
||||| - S ™ © 29 0 0 9 0 0 0 © o©
»ea0 eyl st ENTA Y s 1) ot o 1) s 38 % B OCT N T Y s 5
||||| -0 IR L W TR G o e - T ST T
e e n A S o T p———
3 © g 5 & o Ju 9 0 0 0 o 0.0 0 ©
R S —— | n B OAT CONTAG, s 80
() \) 1 0 B/@ 0 & 0 0 0 0 & ([« © © 0 9 0 © 06 o o
PRINTED W USa _
.-.o-‘.-6..5_..05-.oo3~.=:-3!..l~.8rt ¥ M ow ow oy

COMPILER III - SOAP III
BOARD WIRING

CONVENTION: All hubs (except CONTROL INFORMATION) are numbered from left to
right, e.g.

IOOOOOOQOOOT

| 29 4 56789 /o

READ CARD B, Cols. 1-10 to STORAGE ENTRY B, Wd 1, Pos. 1-10
» o i T 11-20 . " ROWE Ndu2r - % =190
" [BRI 21-30 " " RN, Y 1-10
) LA TR T Ty " " W W4, P 1.10
" " n 41-50 " " WS, Y 10
n n L " 51_60 " " " n wd 6, n 1..10
NN SR TG " . N7, Y =10
" e b " 71-80 " " " % was, * 1-10

JACKPLUG: DI-C on DIGIT SEIECTOR READ (left hand side)
DI-C on DIGIT SELECTOR PUNCH (left hand side)
RSU

BC-QFF (if DPBC device is not used)
BUS TOGETHER: FIRST READING, Cols, 2¢ 7, READ COLUMN SPLIT 1, 12-X and wire to

LOAD,
FIRST READING, Cols. 4 to READ COLUMN SPLIT 2, C
" " " 5 " PILOT SELECTOR 3, X PU
" " "4 " PILOT SEIECTOR 1, D PU§ READ
: COLUMN SPLIT 1, C
n " " 42 " PILOT SELECTOR 2, D PU
L " " 43-47 " ALPHABETIC FIRST READ, Wd 1
" " " 48-50 n " " " Wd 4, Pos, 1-3
y " * 51-55 " " ® e Wd 2
n " " 56 " " " " Wd 4, Pos. 4
" " n 57=-61 " " L " Wd 3
" " " 62 " » " " Wd 4, Pos. 5
" . L 63~67 " " n » Wd 5
" » " 68-72 " s "M Wi
ENRY B " PILOT SELECTOR 4, Lower T
READ CARD C, Cols, 1-4 to COSELECTCR 3, T, Pos, 1-4
" L 41 " PILOT SELECTOR 1, Upper T
" - AW 43 n STORAGE ENTRY C, Wd 1, Pos. 6
Wt RS 44-47 " COSELECTOR 3, N, Pos, 1-4 ¢
‘ STORAGE ENTRY C, Wd 1, Pos, 7-10
n I T 48-50 " STORAGE ENTRY C, Wd 4, Pos, 6-8
" " on . s " " " "™ Wd2, Pos, 6
n LI T 5255 " " " ® Wd_2, Pos. 7~10 I 3
* " " Wd 8, Pos, 7-10
" wooim W 56 " " " " Wd4, Pos. 9
" W 57 " " " ® Wd 3, Pos, 6
P ® W e gg.gy " " " " Wd 3, Pos, 7-10 [4
o " " ® Wdo9, Pos, 7-10
n " n 62 " " * " Wd 4, Pos., 10
" L B 6367 " " " ® Wd 5, Pos. 6-10
" LI 68-72 L " ® " Wd 6, Pos., 6-10

2
STCRAGE ENTRY C, Wd 10, Pos..4 to COSEIECTOR 3, C, Pos, 5
"W 10, Pos. § " Pn.or SELECTOR 2 Lower c
" ® " Wd 10, Pos. 6 " L 1, Lower C
: ® ® Wd1lo, Pos. 10 " » w 1, Upper ©
" " " Wd 7’ POS. 7-10 " COSELECTOR 5’ c’ POS. 1-4
CAI to PILOT SELECTOR 4, Upper N
ALPHA IN, W1 to PILOT SELECTOR 4, Upper C
JACKPLUG: On ALPH IN, W1-WR; WR-W3; W3-W4; W4-WS; W5~W6
HORD SIZE 10 for B, Wds 1-8 C, Wds 1-\6
® O for B, Wd 9¢ Wd 10
» » 4 for C, Wds 7=9
. ® T o C,Wd 10
COSELECTOR 4, T, Pos. 4 to COSELECTOR PICKUP 6 .
" % Wwilie |lg " PUNCH CARD A, Cols, 41 '
\ PUNCH CARD C, Cols. 41
" ®LIc R Six " . PUNCH COLUMN SPLIT 8, 12-X
" " c w 4 " P+§ PILOT SELECTOR 10, Upper C
" RE N ls " STORAGE EXIT C, Wd 8, Pos. 10
PILOT SELECTOR 3, I PU " COSELECTCR PICKUP %
" 4, TPU$XPU " READ COLUMN SPLIT 2, 12-X
" L 0% - " CONTROL INFORMATION 3(numbered from Rt to
" " 6, I PU " CONTROL INFORMATION 3 Lt.)
" R W 2 " PUNCH IELAY 2, OUT :
" * 8, IPU " COSELECTOR PICKUP 5
" ®» 9, IPU " CONTROL INFORMATION 2
U * 10, IPU " PUNCH B

Emit BEAD DIGIT 2 to PILOT SELECTOR 1, Upper N

PILOT SELECTOR 5, Upper N to PILOT SEIECTOR 5, Lower N ¢
. 7, Upper C

" " ® Upper C o PUNCH CARD A, Cols. 78-80

" " 6, Upper N " PUNCH COLUMN SPLIT 4, 0-9 §
STORAGE EXIT B, Wd 1, Pos. 10

" " " Upper C " PUNCH COLUMN SPLIT 4, 12-X

" L 8, Upper N W COSELECTQOR 7, C, Pos, 2

" U " Upper C . PUNCH COLUMN SPLIT 7, 12-X

" " 9 Upper T " PILOT SELECTOR 10, Lower C§ PSU

" " " Upper N n ALPH OUT, Wd 2

" " ™ Upper C LN ALPH OUT, Wd 1

8 " 10, Upper T " P+

" " 5, Lower C " PUNCH CARD A, Cols. 75-77

" " 6, Lower C " PUNCH COLUMN SPLIT 6, 12-X

L " 10, Lower T " PSU

" " " Lower N

" ALPH OUT, Wd 6

COSELECTOR PICKUP 4 to CONTROL INFORMATION 5
" " 5 " n " 7
" " 6 " " " 4
n " 7 n " " 1
" L] 8 n "]} 6

=

PILOT SELECTGR HOLD 1
n " ok "

READ HOLD TO PILOT SELECTOR HOLD 4

PUNCH HOLD TO PILOT " A9

COSELECTOR HOLD 3
n " o4

6~7;
JACKPLUG: PILOT SELECTOR HOLD, 1-R; 2-3; 3-4 5-6;/@-8; 8-9; 9~10;
8

;
COSELECTOR HOLD, 4~5; 5-6; 6-7; 7-
COSELECTCR HOLD 2 to COSELECTOR HOLD 8

PUNCH CARD A, Cols. 19 10 to COSELECTOR 6, T, Pos. 5
" " " Cols. 17-20 " STCRAGE EXIT A, Wd 9, Pos. 7-10
42 L COSELECTOR 8, C, Pos, 5 #

PUNCH CARD C, Cols, 42

" "o 43-47 " STORAGE EXIT A, Wd 1, Pos., 6~10
" "n n 48-50 " " " " Wd 4, Pos. 6-8
" “ o 51-55 " " * " Wd2, Pos, 6-10
" " ow 56 " COSELECTOR 7, C, Pos, 4
" " " 57-61 " STORAGE EXIT A, Wd 3, Pos. 6~10
n "o 62 J COSEIECTOR 7, C, Pos, 5
" "o 63=67 " STORAGE EXIT A, Wd 5, Pos. 6-10
" "now 68-72 " " U Wd 6, Pos, 6~10
" L 74 " COSELECTOR 7, C, Pos, 3
STCRAGE EXIT A, Wd 4, Pos. 9 e COSELECTOR 7, N, Pos, 4
" " Wd 4, Pos. 10 y " " N, Pos, 5
PUNCH CARD B, Cols, 1) PUNCH COLUMN SPLIT 8, C
" "on 2 " STORAGE EXIT B, Wd, 1, Pos. 2
n now 3 " n n " wd 1, Pos, 3
" " on 4 " PUNCH COLUMN SPLIT 6, C
" " ow 5-6 " STCRAGE EXIT B, Wd 1, Pos. 5~6
" "o 7 " PUNCH COLUMN SPLIT 7, C
" R 8-10 " COSEIECTRR 5, C, Pos., 3-5
" UL 41 t PUNCH COLUMN SPLIT 5, C
" LI 11-20 " STORAGE EXIT B, Wd 2, Pos. 1=10
" L 21-30 . " W ®Wa 3, Pos, 1=i0
" " ou 31-40 " " " " W44, Pos, 1-10
" "ow 42-50 " " " % W45, Pos., 2-10
" " on 51-60 " " " " Wde6, Pos, 1-10
n L 61=70 " " " " Wd 7, Pos. 1-10
" "o 71-80 " " " " Wd 8, Pos, 1-10

STORAGE EXIT B, Wd 1, Pos. 1 " PUNCH COLUMN SPLIT 8, 0-9
" " " W41, Pos. 4 " " Rl NG (0=9
" " " Wd1l, Pos., 7~9 " COSELECTOR 5, N, Pos, 2-4
" " ™ Wd5, Pos., 1 2 PUNCH COLUMN SPLIT 5, 0-9
" " " Wd9, Pos, 7-10 "

COSEIECT®R 5, T, Pos., 2-5

COSELECTOR 5, N, Pos, 5 to
" " C, Pos. 2 "

» 6, Ty Pos. 1 -

" " T, Pos, 5 "

" " N, Pos, & "

" " C, Pos, 2=5 "

" 8, C, Pos, 3 "

" » C, Pos. 4 "
PUNCH CARD C, Cols, 1 !
" n " n 17_20 n

n L " L] 25.26 L

L n L] n 51-39 n

" ”n n " 40 ”

" n " n 4347 n

"n " LJ L 48"'50 n

" " n n 51-55 n

n n L " 56 "

L n "] 57-61 "

L "n n n 62 "

n " n " 63=67 n

. . Wasty 68~72 "
STORAGE EXIT C, Wd 7, Pos 10 "

PUNCH DELAY 1, IN to CONTROL INFORMATION 3

PUNCH A to CONTROL INFORMATION 10
PUNCH B to CONTROL INFORMATION 8

PUNCH COLUMN SPLIT 4, C
] n " 7, 0=9
PUNCH CARD C, Cols. 74
PUNCH COLUMN SPLIT 1, C
n n N o e
PUNCH CARD C, Cols. 7-10
PUNCH COLUMN SPLIT 5, 12-X
" n " 10, 12-X

PUNCH COLUMN SPLIT 3, C

STORAGE EXIT C, Wd 9, Pos.
L » " Wd 8, Pos.
" ¥ ® Wd'7, Pos,

PUNCH COLUMN SPLIT 10, C

STORAGE EXIT C, Wd 1, Pos.
. L] "

n wd 4, Pos,
" " " Wd 2, Pos,
" " % w44, Pos,
o N % -Wd 3, Pos,
» RN Wd 4, Pos,
" " ® Wd 5, Pos,
" " " w46, Pos.

PUNCH COL., SPLIT 10, 0=9

JACKPLUG: ALPH OUT, W2<=W3; W3=Wdy W4=W5; W5=WE

EMIT READ-TIMED DIGITS:

8 in COSELECTOR 3, T, Pos. 5

8 in PILOT SELECTOR 1 ¢ 2, Lower T
9 in COSELECTOR 3, N, Pos, 5

9 in PILOT SELECTOR 1 ¢ 2, Lower N
X in PILOT SELECTOR 4, Lower C

0 in STORAGE ENTRY C, Wd 10, Pos. 7-9

EMIT PUNCH-TIMED DIGITS:

COSELECTOR 4, T, Pos., 3
PILOT SELECTOR 5
" - 516, Lower T

COSELECTOR 7, T, Pos, 2

" 8, Ty Pos, 3

" " N, POS. 4
PUNCH COLUMN SPLIT 1, 243, 12=X
PILOT SELECTOR 6, Upper T
COSELECTOR 8, T, Pos. 445

" 6, Cy, Pos, 1
PUNCH CARD A, Cols, 73
COSELECTOR 7, T, Pos, 3

B b e e

e b
S ps

e R e e

e e b e
S8h

7 ¢ 8, Upper T

7-10
3=8
1-9

6=10
6-8
6=10

6-10
10

6«10
6«10

In PUNCH CARD A, Cols, 2-9 emit the following punch-timed digits--00000800

" PUNCH CARDC, * 2-6 " n % --91954
n n " n " D1 =29 "N " " ﬂ n | L VT
" » " n " 27=29 L " L] "] L] -=800

In COSELECTOR 6, T, Pos, R-4 emit the 1ollowing punch-t.imed digits~=800
" * N, Pos, 2-¢ "] " --195
® PUNCH COLUMN SPLIT 1, 2¢3, (0-9) " " " " --036

‘I NDEX

A Operation L R T R T T 28
t\bSOlute Value. Secsssrsssssnnnnne 7
l.\ddition Srsccrvssvotevoscrvrns 5
Arith"ﬁtic ®eescssscrssvevsssnsse {f
Arithmtic Witching Goseccnvsoes haf

B Operation Seevsevscssssnsssnses 28
B’ Use of ®evccssrevsncessssssnnse

Basic Packages oooo;oooocooo.ol?f, h3
Binary Operations ®0cevo0ssccsnnse Sff
BuyanSky, D5 Ve *eesersoccsnncane 2
BYPASS Statement Seocenscnssnsnss 13

Cem Variables o0 resersvvrssensnse h
Card Preparation eecsscsscssnee 1Off

Cheatinﬂ $esoevencsvsevecscnsces 17
CIOCking ®evevosrsvovesencoss 27f’ h}-‘f
Coma $ressvccrrrroncneeresnnes 1h

Comments Card seeececescenssess 26f
Conditional Punch ®o0sssencssvsone 12
COnditions ®0ceveevessnnnsse 13f’ 53
Constants Peeesssveccnsssnnssses 5
Core, Variables in ®ecvsvsevssons ha

D .I.lo00..‘0.....-0..00-....0.0 22

Data Cards (invasvessedsssvecesae IBEF
Decimal Point eececceseosescs 5, 22
Division ®ecececvscrnsscesssnses S
Division, Fixed Pointceeee 8f

Equals .0000'00‘000000;000000..0 13
Error Correction .eevseeeees 39, 51F
Error Search Operation .,... 28f, LOf
Error Sense Running Lof
Example Program 1 15f, 23
Example Program 2 cesscesescses 168
kxample Program 3 cessececessss 55FF
Examle Subprograms Gecvscsscnse sllf
Exponentiation eesescescecocses 5
Extension Statements seeveesees 13
Extensions seceeeeseseese 10, 13, 28

F0....... 22

FF ..O......l..l'............... 22

Fixed Point Constants .eeeeeeeos 5
Fixed Point Division ®sevccsscoes 8f
Fixed Point Numbers *cccsccncoe 3
Fixed Point VALUE ¢evevcoscrsone 19
Fixed Point Variables seseeeeeo. b

65

Floating Point Attachment
Floating Point Constants
Floating Point Numbers
Floating Point VALUE seeeeecees
Floating Point Variables
Flow Chart *Pesvsscsevesvenenone
Formats Sesvevsssssersscsesenses

Garbage Cards si.sesssnssecssss
Greater Than *esecssvesenvrnnns
Greater Than Or EQUal se..eeees

HALT Statements ®escvsccnccsnnesn
Hmam, G. E.'.
Header Card ®esssesvsenensnsnee

I- Variables Gescsvvenvnnovsonse
IDENTl.......
Input Statement Cards esecscose
Intermixed Fixed and Floating 7,
IT—Lang‘uage *ecseconesccscensnese
Iteration Statements eseevssnvee

J .'...‘..................C....

JIW statemntO.........

K.............‘.....‘..........

Klm $Pcsesssvrsrrevnvsvesnsans

Knu.t-h’ D. E. .l...'..'....‘....

L ...l...............ll.....‘..
LiStingS LR N R YRR
Ly'nCh, w. C. SOessevevrnovevrene

M'..................
Machine Operating ®svecseccscee
Mathematical Operations se.....
Matrix Notation seesesee.s L6F,
Modes of Operation ®evvccessnoae
MO D aBE e s cnsnnaiesisdans
Multiplicatlon $escscsccccccroe

Negation Poeresescrevsvnnesvosnes
Numhers ®eveecsreecsscsnscnssasae

Operation Modes eescvecvcncsnce
Operations ®ececsccesescssccnns
Operator INStructions eeececess
Outpu‘b Cards ®ereecesccescnvsnne
Output Statements esscsovcne 12’

28

19

1S
18ff

30
13
15

12
25ff

18¢
22f
315776
3ff
1Lt

22
11

22

27£f
Sff
29ff
21
21

P, Uge 0f Sisesecsvecssssessesscseises 5’
Parentheses ccecccscesscssscscenccss
Parentheses, Importance of seeecececceee
Perlis, Dr. A. J. LR L I B R)
PetzniCk, G, wo, Jdr, eesesscesessnevee
Polynomial Evaluation sesseeessssseses
Priority of Binary Operators vcsescene
PSYChiatriSt ®esosscsscssccccnssssenen
PUNCH Statements “ssescccosncscnne 12’
Pl AL AL B A R R) 18’ 25’
P2 ®resesverseecscecsossensse 18’ 25,
P3 ®0ocsvcsececssscsonsnctsee 18’ 25’

Q PO PRI PNRNOROIRNOOPIIORIOONIIPIOROBOIPOIRLOIORDYS

Quotation Marks ®ecrceconcvecesetotnen

R $ 0000000000000 000000sNs0sRR BB RBOBLGS
Raising to Power Sessscesnvescroneoses
READ Statement N llf,
Relations Sresesvssasresssnensene 13f’
Remainder R T N R RN NN R
Rerun Procedures .sceesescacossscscses
Runcible O Stresssecrscsnsnsnssssensne

S LA R RN RN N RN RN N NN N

. Scope of Binary Operators eeccececceee

Sine PP LA P00V LROLLIRIOIIBROINOIRORNOINROOIRNRDS
Single Pass Operation Gecscovescscsnne
Smith, Je W, I R I I T I
Spelling Liberties Gesevencvecnsnecsse
Square Root ®0eesscscssccsevesnoseseee
Statement Numbers ...eeseeeesss 10, 12,
Statements Peesssnenssseencrnsne IOff’
Statements on Cards e0eesssvecevsscnase
Stops R TR EY
Subscripts PPeP0PeevoRenoveRse0ssRRBR0
Substitution Statement ...eevcecccsecs
Subtraction ®eescesenccccssceccsnevssnoe
Summary of Statements ecescecssssscsne
Switching Arithmetic Pesossccascsencsne
sy“bOIS, Code for Sevessecsscscnssnvees

mR[] SO IPRORNINLIOBONIRNONIOOOORIOIOOBDOLIRLDYS 12’

'ITaCing BP0 0CRPOCPRRNOPOIOIROIERNOIRITOIOIOLIOROIOTS

II LA AR R R R R R RN R R N NN RN R

Unary Operators cseessavaesssaseesveess

V‘..'.....;.............
value G000 0T 0RPOOROOIRBOOOIOIOROIBIPONIOIOACOCORBOOTYS
Van Zoeren, He R ®oevesvscsecenncoces
Variable Subscripts sessscecvsncscenne
Variables ®eevscsesesessornosesennenes

AVariables ip Core Storage Gsvscsnnosnce

66

18
Sff
6f

17

15
21
L3

L3

22
10

22

20
53
L8 -
38

22

10
28

50

10

22

22f

22f

31EL
L

11

53
L8f
22

21
LLf

22

22
18f

L8

w .Q.!0.l...l..........l.l..........0. 22

Way III, F #e0rr0000r00rev0ecsvccnrsne 2
Wolontis Function ¢ecssssescscssesscnses 10
XandYOperation Sevrersccsnecnssnense 28
Y- Variables ®treeccevrevrnsaccensness h
Zero Statements ®evssscsssssassnvncnes 1O
123’4 StOPB ®e000cscorecavenonsses 37’ 39ff

67

