
Runcible I

Vol. I Series V

Revised Edition

March, 1959

Staff

Computing Center

CASE INSTITUTE OF TECHNOLOGY
UNIVERSITY CIRCLE • CLEVELAND 6, OHIO

/'•

Revised Unified New Compiler with
IT- Basic language Extended

"They dined upon mince and slices
of quince,

Which they ate with a runcible
spoon;

And hand in hand, on the edge of
the sand , t

They danced by the light of the
moon, —

The moon;
They danced by the light of the

moon«tt

—Edward Lear

COMPUTING CENTER
Case Institute of Technology

Cleveland, Ohio

Abstract

In recent years several compilers have arisen for various computers as

steps towards automation in programming. A compiler, such as RUNCIBLE I,

comes as close as possible to the ideal of transforming a flow chart directly

onto cards and into a finished program. Coding for Runcible I is done in

wIT-language,* originally developed by Dr. A, J. Perlis, Mr. J, W. Smith,

and Mr. H. R„ Van Zoeren at Carnegie Institute of Technology, Pittsburgh.

Although the original IT-language will still work correctly with this com

piler, it has been expanded and simplified somewhat for greater convenience„

Runcible I will run on a basic 2000-word 650 which has only an alpha

betic attachment as an extra feature, but if desired it will give an output

program which utilizes the 655 floating point hardware, index registers, and

core storage. Neither the special character attachment or any additional

selectors are needed by the 553 plugboard, and the input statements may be

easily listed on a 402 tabulator. All routines will work with a 12-word

buffer if necessary. This program is designed to work together with the

SOAP III assembly program, but the user has the option of skipping the SOAP

phase and obtaining a five-instruction-per-card machine language deck

directly. RUNCIBLE I also introduces a number of devices which greatly

facilitate the debugging of a program which is in its initial stages. Hand

optimized subroutines used with the running program compare favorably in

speed and accuracy with those of any alternative general purpose system

for the 650 known to date.

The major purpose of the compiler is thus to enable a program to be

run speedily with but a minimum of preparation and headache on the pro

grammer's part. It is specifically designed to be used with algebraic

equations arising in typical mathematical and engineering problems.

-1-

Acknowled gments

RUNCIBLE I is a project of such a magnitude that it is imnossible to

acknowledge everyone who has contributed to the effort. As with Compiler II

the entire blame for the whole operation belongs with Nr. Frederick Way III '

ssistant Director of the Computing Center, who with George Haynam made the'
m °r deoisl°"s on the philosophy to be carried out. Bill Lynch did the

greater part of the work of converting the compiler to floating point instruc-

ions and expanding the language, and he worked hand in hand with the author

on producing the final deck in its multipurpose form} he has also done some

of the work on extensions. George Haynam is responsible for the clocking

eature and most of the coding in the basic packages, and he was also in

charge of board wiring. He and George Petznick, Jr. have prepared a large

number of extensions which produce extremely accurate results. Don Buyansky

drew up the 533 board wiring diagram, and almost every other member of the

sta.f at the computing center has had his hand in at one time or another.

onald Knuth, author of this manual, added the one pass feature and wrote the

relocation routine} he also designed the 24-operation-mode program and deck,

elped to hand optimize the basic packages and prepared the comments on the

symbolic program listings. Basic packages were optimized with HAND SOAP, a
modification of SOAP IIIC

ST' Wh/°h 13 "I'itten °0rr6Ctly ln °riginal ̂ -language or for
SOAP II Compiler (Case Institute, November 1957) will be processed

correctly by this routine without any changes except for slight substitutions

•eader card ano the data cards. No major revisions of RUNCIBLE I are

anticipated for several years j now in preparation is -'Runcible 0- which will

process directly from statements to answers without any intermediate punching
of a machine language program0

R U N C I B L E I

INTRODUCTION© The user of RUNCIBLE I need not be familiar with any

features of the 650 other than those to be described in this manualo

A compiler such as this program is probably the simplest and most con

venient way to solve problems on a computer without actually studying the

complexities of the machine. Those who state problems should not be

required to code thero; RUNCIBLE I takes the place of a professional pro

grammer and does the job itself0

THE LANGUAGEo There are many types of languages which enable communication

between people© Besides spoken tongues, there are the languages of music,

of mathematics, and so on0 RUNCIBLE I understands "IT-language," which is

very close to both English and mathematical formulae© The program which

will solve a problem is put onto cards in "IT-languagej" the compiler will

transform these into an intermediate "SOAP language" and punch it onto

cards in this form© These cards in turn are processed by the SOAP III program

to produce the "machine language" which the computer understands directly©1

The compiler programmer need not know any more of SOAP language than is given

in this manual© The first section of the manual deals with the vocabulary

and syntax of IT-language©

NUMBERS8 FIXED POINT AND FLOATING POINT© An IT-language program is a set

of numbers, words, and symbols arranged to give a complete description of

some problem© The numbers which are manipulated by RUNCIBLE I are of two

categories! fixed point and floating point©

Fixed point numbers are integers whose numeric value is less than one

billion© They may be positive or negative, but may never take on fractional

values© They are used primarily as indices or subscripts and only rarely

for arithmetic calculations©

Floating point numbers are normally used for arithmetical operations

because of their greater flexibility© Floating point numbers can be aero or

range from 10 to 10̂ in numerical value,̂ and are always rounded to eight

significant figures©

1© If desired, the SOAP phase may be bypassed; see Operation Modes©
2. rfhen using 653 instructions (see Operation Modes) they range from 10"51 to 10.

-3~

VARIABLESo Variables normally called x, y, z, p, etc® are always given the
names I, Y, or C with subscripts when using RUNOIBLE 15 e,ga, 1^, Y^, Y^,
Ciq> and so on® (The subscript is to be written next to the letter as
II, Y2, CIO,) Every variable must have a subscript,

I- variables are indexing variables and are always given fixed-point
(integral) values, Y- and C- variables are the problem variables and always
take on floating-point values. There is no difference in arithmetic between
a Y- variable and a C- variable; any distinction is made by the programmer
himself as an aid to keeping the names of his variables in order.

When working on the problem the machine keeps a table similar to the
table below. If, for example, the program uses variable Y3, the machine
looks into the table and sees that the floating point number -1,55 is to be
used in the calculation. It is possible to have variable subscripts, YT ,

h
Cj , etc, Yj (written YH) will be the variable Y2 in the example of the

table below, since II equals 2, In a similar manner, CI4 • CI •» 1000,
Subscripts must be fixed point numbers or fixed point variables,

TABLE

1 Y C
0 + 5 + 3,0000000 - 3,1415927
1 + 2 - 10,000000 + 1000,0000
2 + 1 0 -6,02000000x 10Z5

3 + 12 - 1,5500000 + 2,7182818
4 + 1 + 6155397,0
5 - 1040 + 4,1400000x 10~34

6 + 704

1. YII1 means YIj^ and this case YII1 • YI2 « Y1 - -10, This hierarchy
of subscripts may proceed to any depth, Compound subscripts of the form
Y(12+13) are also allowable; other examples of permissible subscripts are
1(113x19) and C [l(11+2)]; and even TnSINEF,C3Mo An alternate form for sub
scripts used in matrices is described in Appendix II0 Note that all legal
subscripts must be fixed.point,

-4-

CONSTANTS <» Constants used in a RUNCIBLE program are written as follows8
Floating-point constants are written as some number by a power of ten, with
a "B" to indicate what power of ten#"*" Examples?

6002 B 23 means 6 0 0200000 x 10^3

1066 B -11 means 1066 „ 0000 x 10'"11

The B may be omitted as long as the number can be represented in eight digits
without multiplying by a power of ten; for example,

3 # 1415927; <>156255 0#
When the B is omitted the number must contain a decimal point#
Fixed-point constants are written in the ordinary manner; "123" for example#
Notice that "123" is a fixed point constant while "123#" is floating point
because of the decimal point#
Any number of constants may be used in a program#^

MATHEMATICAL OPERATIONS# Mathematical expressions can be converted almost
at sight directly into IT-language, but it is best to describe this process
carefully so there will be no chance of a mistake#

Five binary operations are standard for RUNCIBLE expressions? addition,
subtraction, multiplication, division, and raising to a power; they are
called binary because they involve two quantities# These operations are
w r i t t e n i n t h e f o l l o w i n g m a n n e r (l e t t i n g C I r e p r e s e n t x a n d Y 1 s t a n d f o r y) s

Math# languages IT-language8
x + y CI • Y1
x - y CI - Y1

xy CI x Y1
y ci / n

x^ (x to y power) CI P II
Note how the IT—language scheme enables the writing of a formula as a string
of symbols all on one line# Putting the operations together, with a few
constants, we haves

Math# languages) * x4]y

y
IT-language% {[lO#4B28 + (CI P 4)]xYl} / (CI - Yl)

1. A floating point exponent (such as 5 B 3#14) is not permitted.
2. Actually 700 is the maximum allowable number but this may safely be
considered "infinite" for programs processed by RUNCIBLE# If more than
100 constants are used the last 100 are punched out and the program then
continues where it left off#

-5-

• Notice the use of parentheses in the last example.

When more than two quantities are involved, parentheses are needed to

avoid ambiguity. Parentheses are very important in IT-language because there
is no difference in priority or scope between any of the binary operations as

is usually understood in everyday mathematics. For example, the expression

Y1 x Y2 + C3 would mean + C3 to most people but RUNCIBLE understands it

to rtean + ̂ 3)° As another instance, in order to write x̂ y we would have

to write (CI P 4) x Y1 because CI P 4 x Y1 would mean x̂ . There is a very

simple MORAL to be learned from this? always place parentheses around the

quantities in an IT language expression until it can mean only one thing.

This cannot be stressed too heavily, for the vast majority of programming

errors for RUNCIBLE are caused by neglecting to place parentheses in the
proper way.1

As a reference, these are the rules by which RUNCIBLE determines to

which quantities each binary operation applies.

la On the left-hand side of the symbol, the binary operation

applies to the variable or constant immediately at its left,

unless the character next to the operator is a right parenthesis.

In the latter case, the entire quantity between the right paren

thesis and its matching left parenthesis is usedo

On the right-hand side of the symbol, everything up to

the end of the expression or to the first unmatched right paren
thesis is usedo ̂

Here are some examples showing application of these rules.

IT-language g

Y1 / Y2 * Y3

(Y1/Y2) + Y3

YIP Y2 + 3x Y3

(YlPY2)+3xY3

(Y1PY2+3)XY3

[(Y1PY2) +3J xYZ

4/ Y(11+12)-I3

means

means

means

means

means

means

means

Matho language 1
2i Y2 + Y3

Y2 13

YlY2+3?3

+ 3Y3

(T1Y2+3)Y3

(Tĵ +SJYS

4

X. Parentheses, braces, and brackets may be nested within each other not
more than nine deep but this limit is rarely met in practice.

?he T1?"® treated first as a unary operator (see below)
and then as a plus (+) binary operator.

-6-

Remember, it is always best to add parentheses to make your intentions
unquestionable—better safe than sorry. Adding parentheses where they
are unnecessary will not bother RUNCIBLE and no harm will be done.

In addition to the five binary operations there are two standard
"unary* operations: taking the absolute value and taking the negative of
a quantity. Letting CI <-> x and H <»> y as before, we have

Math. language s IT-language s

1*1 A CI
I * * 7 I A{ CI • 11)

~ x - CI
~ (x + 7) -(CI * ZL)
- I71 « A n

The unary operator A or - applies to the variable or constant at
the immediate right of the symbol only, unless the character to its
right is a left parenthesis. In the latter event, it operates on the
entire quantity inside the left parenthesis and the matching right
parenthesis. Examples:

IT-language: Math• language t

AH + CI / C2 | Z, | • El
c2

A(n + CI) / C2 |Yi • Cxi

An P -(AC1-X2)

^2

lTX|~^lC l |~y2)

T • 2 l r - - 1

AT(I3+1) + 2 |y
l3+l

Arithmetic.1 Runeible always "unwinds" statements by doing the innermost
parentheses first, just as in ordinary high school algebra. Once RUNG IBLE
is into the innermost parenthesis it drops the "ordinary* rules and does

P?®sible to intermingle fixed and floating constants and variables-
F.UflClBLE will not get mixed up; however this is generally inefficient and of
doubtful utility.

7

/y. /?•< (5?/

things from the RIGHT!

Examples?

<s—- 5x4 + 6 1 Y^ is given the value 50»0

Y^ -«•— 6 + 5x4 I Y^ is given the value 18 o0

Y]_ «— 6 + (5 x 4) j Y^ is given the value 18o0

Y3 «— (5 x 4) + 6 1 Y^ is given the value 18o0

Yx <— 6 = 3x4 + 2 1 Y^ is given the value -12 o0

Yx <— 6 - (5 x 4) + 2 1 Y^ is given the value -8,0
1

Y1 <— 6 / 4 / 2
1

1 Y^ is given the value 3.0 ? 3

Y1 «- (6 / 4) / 2 1 Y^ is given the value 0*0 ^ 1 v

Y1 <—(6.0 / 4o0) H 2„0 I Y^ is given the value 0.75

I7 <— (6.0 / 4o0) / 2 j Y^ is given the value 0.75

Yx <—(6 / 4) / 2o0 1 Y^ is given the value 0o5

From the above examples we can see that RUNCIBLE attempts to use the
arithmetic (fixed or floating) of the innermost parentheses and then tries
to keep on using that kind of arithmetic until it must do floating point -
at this stage$ and from this stage on5 it does everything floating point at
this parenthesis levelo The final substitution into the left hand side is
always forced to agree with the arithmetic of the left hand side.

Examples?

Ig * 6o0 + 5 - ? x 2o-0 j Ig is given the value =*5

Ir> <— 6 .0 + 5- 7x2 1 Ig is given the value -5

Y2 6.0 + 5 - 7 x 2 1 Y^ is given the value -5.0

C0 <— 60Q + 5oQ -(1 / 4) 1 Cg is given the value 9o0
I6 6o° " 5o° °"(1 / 4) 3 Ig if given the value 9

C6 «— 5o0 - (1 / 4) + 60.O 1 Gg is given the value 90Q

C6 <— (9 / 10) + 1,0 =(7 / 16) j Gg is given the value lo0

I6 <—(9 / 10) + lo0 «(7 / 16) 3 Ig is given the value 1

8

In summary then, if you 'taix" arithmetic by mixing fixed and floating

constants or variables, the rule is that RUNGIB IE always initializes its

arithmetic to FIXED at EACH parenthesis level and continues that way until

it encounters a floating variable or constant at the same level in which

case the arithmetic stays floating at that parenthesis level. The search

takes place from the RIGHT. The final substitution is done in the arithmetic

of the left hand side variable. Floating point answers are always rounded

to eight significant figures, but fixed point numbers are never rounded — all

figures to the right of the decimal point are dropped. (Thus, 3/g - 0 in

fixed point division!)^

2. The remainder of a fixed point division is usually dropped but it can
be saved if desired as described in Appendix III.

9

Extensionss In addition to these basic operations, a wide variety of

"extensions" can be added to the compiler, making it extremely versatile.

Rules for their use are given in the writeup supplied with each individual

extension which might be in the subroutine library at your installation

but a few general rules and examples will be illustrated here for clarity.

Reference to an extension is made with quotation marks followed by the

name o the extension and a commas these are followed by one or more inputs

and closing quotation marks. (The quotation marks are treated Just as

parentheses by Runcible except that they identify extensions.) The name

of each extension will end with either an "E» or «F," the former signifying

floating point output and the latter signifying a fixed point result.1

Three commonly used extensions are illustrated below, letting CI stand for x-

Math, languageg IT-language*

"RT2 E, Cl»

8111 x "SDJE, Cl»

ex
e "EXP E, Cl»

As a final example for this section on operations, here is the IT-

language representation of the "Wolontis function"

x./ ̂ - sin x
f(x) ®

=x3 * X +

We have f(x) - "SIRE, CX"/ "RT2 E, 1. • "EXP E,(-C1)P 3." "

STATEMENTS. The numbers, variables, and operators we have now learned

are put together into meaningful statements as instructions to Runcible.

Each Statement is given a number which is some integer less than 1000.

he order m which statements are executed has no relation at all to the

numbers on the statements - they are eventually carried out in essentially

the same order in which the original deck was compiled. It is sometimes

helpful, however, to make the numbers consecutive in case the cards should

ge mxxed up. Statement number zero is special -- this number is reserved

for statements which are not going to be referred to in the program, and as

many statements can be numbered zero as desired. Each nonzero statement

Lb£eisabeS?£°5̂ e 18 id9"tified * numb" " ̂ floating point if the

10

number, however, must never appear on more than one statement in a

program — it must be unique .

Substitution statements. There are many types of statements; perhaps

the most frequently used is a substitution statement0 In this state

ment a variable is given the value of any mathematical expression; a

new value is wsubstitutedn for its former one. The substitution

operation is denoted by a backwards arrow (<-). Examples?

Y1 <- Oo

CIO Y1 / (Y2 x YZ)

13 13 + 1

YI4 18 - 3

In the first case Y^ is set to zero. The second example sets C^q

equal to Y^ divided by Y^ squared. In the third illustration, 1^

becomes equal to one greater than its former valueo Hie last case

takes three less than the value of Ig and gives it to the Y- variable

which has subscript equal to the current value of 1^. Note that in

the last example RUNCIBLE will convert the fixed point right-hand

side automatically into a floating point number before inserting it

into YI4o Variables always retain their values until being changed

by a substitution statement or a READ statement (see below) or

perhaps an extension statement (see below)0

JUMP statementso RUNGIBLE normally executes statements in the order

it receives them, but this sequence can be broken with a JUMP state

ment which tells the compiler to jump to a certain statement and

continue from there0 A JUMP statement is written simply

JUMP TO k

where k is the number of the statement which should be executed next®
f-

A variable or a parenthesized arithmetic expression may also be used

instead of k as long as it is fixed point; e.g©, JUMP TO 12 or

JUMP T0(I2+3xIl)„ k must never be zero or negative. ,

READ statements. A READ statement is written

READ

This statement will cause the machine to read in one or more cards of

data for the problem. All data for a program other than constants enter

11

the 650 via a READ statement, The form of data cards is described later

in the section on formats*

Output statements. Answers are punched onto cards when an output statement

is given. There are two different kinds of PUNCH statements?

1„ PUNCH statement type one will put the current values of up to four

variables onto one card. The statement

PUNCH Y3

will cause the current value of variable 13 to be imprinted on a card;

PUNCH C4 PUNCH 16 PUNCH YS

will put the values of C4* Ig, and Yg all on the same card. Up to four

variables can be punched at a time in this manner,

PUNCH 1(14+ 1)

is also allowable — it will type the value of the variable specified by

(14+1), It is not legal* however* to give a statement like PUNCH (Y1+Y2)

or PUNCH AY70

Z0 If a large number of consecutive variables are to be punched*

a statement such as

PUNCH Y1 THRU Y15

may be given. When the word "THRU" is used like this* up to seven

answers will be put onto each card. The statement above* for example*

will put Y1-Y7 on the first card* Y8-Y14 on the second card, and Y15 on
a third card.

Formats of the output cards from a PUNCH statement are described in

a later section. They are identical to the formats required by the READ

statement, so answers may be used as data to another program.

When an output statement has statement number zero it will be

bypassed when the console switch of the 650 is set to plus during the

running phase; it will(be obeyed only when this switch is minus. This is

a handy device for obtaining intermediate answers when checking a program

out in its first few trial runs,

HALT statement, A HALT statement will stop the 650 if the programmed

switch on the console is set to STOP,1 It is written simply

HALT

1, Control will proceed to the next statement (if any) if the PROGRAM
START switch is depressed after a HALT, A programmed HALT can be
identified by its data address of 8005,

12

A number my be written after the word HALT like thisg
HALT 12

in this case the machine will stop displaying the number 12, This tech
nique may be used to differentiate between several KALTs in the same
prograrco

BCTASS statement. The BYPASS statement, written (as might be'jessed)
BYPASS

does absolutely nothing; it is simply bypassed during the running phase.
(Believe it or not, this statement can be useful^)

Extension^statements. Some extensions which may be used with the
compiler have no specific output. The form taken on by such statements
is specialized and varied; rules are given in the vriteup for each
ind ividual subroutine

Condition,. Anjr of the above statements may be made condia n f i

executed only if a certain relation holds true. There are three
allowable relations! >, > (equals, greater than, and greater than or
equal). The condition is preceded by the word IF, thuss

IF Y9 « C9
IF 14 > 2
IF A(C8-Y8) > 1 B -8

In the last example the relation is satisfied if the magnitude of
C8 - I8 is greater than 10"8. Here are some examples of statements
made conditionals

1. JUMP TO 1 IF Y3 - 0*
2.o READ IF 1 > CIO
5, HALT IF Y(I5+ 2) - Y(I5+ 1)
4, PUNCH 02 IF -(15/5) £ 4 x 15
5. C4 Y4/i0o IF C3 xC3 > Y4 P 8«4
6o JUMP TO 13 IF II » CI
7# Y5 3ol4l5927 IF "SINE, Y5" • 0ff IF Y5 > 10571

The lefthand portion of the statement is executed only if the relation
;'S satlsfied Sthe condition is not fulfilled the statement is treated
-ike a 3T?ASS. Note that fixed and floating point arithmetic my be mixed
as ,n example 6. The seventh case is interesting because the substitution
T_° Axaiaples of extension statements: STATISTthat o^Ar - « ~

=1 »«W 02, 1281231254, lUMttwJSf******

13

will be done only if both conditions hold.

Iteration statement,, The last type of statement to be discussed in this

section is a handy programmer's convenience for a sequence of operations

which occurs quite often in typical problems 0 An "iteration statement"

causes a number of other statements to be repeated over and over as a

variable is changed by a specified amounto1

Iteration statements look something like thiss

n, vl, v2, v3, v4,

vl is the variable (I, Y, or C) which is to be changed ; v2 is its starting

value and v4 is its finishing value; and v5 is the amount by which the

variable is to be changed before repeating the sequence of statements again®2

The n in this statement is a certain statement numbers All statements after

the iteration statement up to and including statement n will be repeated for

every value of the variable® (n must not be zero, nor should the statement

immediately following the iteration statement have number zero®) Please

note the comma after v4 — it must be included I

For example , the statement

5, Yl, 1, 2, 13,

means g execute all statements from the next one to statement 5 for II taking
on the values 1, 3, 5, 7, 9, 11, and 13®

It is possible to include an iteration statement within the scope of

another iteration statement — all the details will be handled automatically

by RUNCIBLE; this "nesting" of iteration statements may proceed to four deep.5

Iteration statements cannot be made conditional„

v2, v3, and v4 need not be constants; they may be variables or even

mathematical expressions® For example, the starting value might be something

like Y4/2® and the finishing value, C8P 13® A lot of liberties are allowable
here, the only restrictions beings

I® No more than five characters (excluding spaces) may appear between

any two adjacent commas in an iteration statement® Thus the statement

2, II, (Y2 x Y3), ~6®, 3o1415927,
is illeFal on two counts; v2 has seven characters — this may be cured by

dropping the parentheses; v4 has nine characters — the remedy is to let some

statementPr°CeSS ̂ alS° ̂ prograinmed> of cov̂ se9 without using an iteration

2. If v4-v2 is not exactly divisible by v3 the iteration orocedure will be
discontinued just before the value v4 is passed®

°f every "nation statement must be contained in the scope of
on 9tâ L̂ !r? u°c US6S its that is» if a certain statement iterates

a

X'^33-C-9 £>-'

t
/̂ . A

v«SV- 3*t t3S 3%3vt £> £*

C 3

H O t/J
/I £**A

/ C/ c,

3%3vt £> £*

C 3 £Y

> Cc

3 3# € fa 3 *f/ d?fi>~

/f I ?r¥ C/'^r

^t^L-f

sty*
gfrtsi

s Vr

*3

"/*

/c

6,

/?_
YY

&<_.*<*<3 (tz tccL.y-

9/3 J

9/8

9

£ / £

X-

5

9 it*

jT ~tc/Sx-*'-&<- f~S

u $x ' yf 3o

fs£ <&€*.*.*3 3-• i/3 £ 3o-f
' 3 t i f f , e " ~ " (f . - r « •

• At
J

x-'l

£&., £Xb , - <z, %
' 31 $ / *t +~ C* >,*•''J¥ r ';,,, 3v

3 A ̂5 ̂̂ ••' A v
«s=3̂

<:7>/
'' AS

4° "4" X

/ , \ "

&fg
2

V

J="

e V

X

variable, say 14, be set equal to 3.1415927 first and then use Y4 in the
iteration statement.

If v3 is negative it must start with the character if it is

positive it must not start with a minus.1 The example above illustrates

proper use of this rule; if v3 had been written (-6.) erroneous operation
would have resulted.

3. n must be a positive fixed point constant and vl must be a variable.

EXAMPLE PROBLEMS. TWO sample problems will be given here to demonstrate

some portions of IT-language as it has been described} more examples may be
found in Appendix VI.

Example 1. Calculate n! where n is a non-negative integer.

Solution — since is to be an integer we shall let II represent n in

this case for input data to the problem} nl (the answer) will be floating

point and we will call it Yl. We will do successive multiplications by a

variable CI which will rup through the integers up to n. A flow chart to

solve the problem would look something like this?

1. If v3 is zero the programmer should visit a psychiatrist.

IS •

kw I a'f ^

Av ^ L3^ 3
" ' ' d &s c*, a*

Ŝtô Tlâ C. C*9\ £?>C &*t <-%Z

/. tZs-zS- if. -if A.. £ C

; U - /) ̂ j r j / ;% r ^d l \ ; [^ :

C j'd + L & '-<Xf j * j ^ sa-z+^t-

C '(/O f* f f ¥ypO -/J

''! • t ?*" I (^ i i i 4 Z&'Ua/-

ti| £ * r f p ^ I —/

Translation of the flow chart into a series of statements is almost automatics
Numbers Statements Remarks?
1 READ (Read in II)
2 HALT IF 0 > H (Error stop if n negative)
3 Yl lo (Initialise Yl)
4 JUMP TO 9 IF 1 > II (01 - II - 1.)
5 CI <- Z* (Initialize CI)
® if Yl Yl x CI (Multiply successively
7 ^ CI <— CI + le. until CI - n)
8 JUMP TO 6 IF II £ CI

&
9 PUNCH II PUNCH Yl (Punch answer)

10 JUMP TO 1 (start over again)
Observe that the program parallels almost exactly the instructions you would
give to a person"*" telling him what you wish to be doneo

The following is the same program using an iteration statements
1 READ
Z HALT IF 0 > II
3 Yl 1.
4 JUMP TO 7 IF 1 Sr II
5 6, CI, Z 0 , lo, II, , & 2 y , -
6 Yl Yl x CI
7 PUNCH n PUNCH Yl
8 JUMP TO 1

2 Example 2P Suppose we want to evaluate the error function Q(x)« — e~^ dt
. ^rr)0 for arbitrary values of x using the approximation

Q(x) - 1 - JL (axn + agn2 + a3n5 + a4n4 + a5n5)e"^2

where n • l/l+px (p and the a's are numerical coefficients which we will
omit here)„ We will let ak' <-> Yk; x <»> CI; n <=> C2; Q(x) <-> C3 (the
answer); and p <"> Y60 2/Vtt - 1D12837910 We could simply evaluate the
equations directly with the following program?

1, This person would be of below average mentality, but would be expert
at arithmetic — just like a computer,.

16

Numbers Statements Remarks?

^ READ (read in â ., p, and x)

2 C2 lo/ jjU+ (Y6 x C1)J (calculate n)
3 C3 1. -(1.1285791 x {(YlxC2)+[Ŷ x(C2P2)] + fY3x(C2P3)] +

[Y4x (C2P4 J} + [Y5x(C2P5)]̂ x [2 „ 7182818P (-ClxCl)]

(calculate Q(x))"*"

4 PUNCH CI PUNCH C3 (punch answer)

5 JUMP TO 1 (read in another x and continue)

But the evaluation of the polynomial will be quite a bit more rapid if we

rewrite the expression Q(x)- l-̂ (n(a]L+n(a2+n(a3+n(a4+na5))) How

we could evaluate this new equation directly or set up a "loop" type of

routine which calculates the polynomial from the inside out. Careful

study of the program below will be very instructive 0

1 READ (read in p, and x)

2 C2 le/fl*+(Y6xCl)] (calculate n)

3 C4 <=• Y5 (initialize C4)

4 5, H, 45 -15 1, "(iteration to calculate C4 m

5 C4 <=• YI1+ (C2 x C4) a1+n(a2+n(a3+n(a4+na5))) >

6 C3 «- 1- [l01283791xC2xC4x»EXP Es-(ClxCl)*»]

7 PUNCH CI PUNCH C3 (punch answer)

8 JUMP TO 1 (read in another x and continue)

Of course an even shorter program would be

1 READ

2 C3 "ERF E,C1" (error function extension)

3 PUNCH CI PUNCH C3

4 JUMP TO 1

«o e but this is cheating0

BASIC PACKAGES. Standard subroutines such as floating-point arithmetic and

input-output operations have been incorporated into "basic packages" which

augment the finished program in its running stage0 There are many of these

packages, each of which has its own special purpose or goal, and the require

ments of each individual program will determine just which one to use. For

1. In this statement and the last not all of the parentheses are necessary.
The P operator is rather slow when doing floating point calculations since it
always requires finding a logarithm and antilogarithm — C2xC2xC2 would
actually be much faster than C2P3 as written—but the following program speeds
it up even more <> The extension EXP E might have been used here as it is in
the second version of the program.

17

instance, there are the "A" packages, designed for eight-digit accuracy and
legible error display* and the MSW packages, stripped down for speed. The
separate writeup for these packages goes into greater detail.

WHICH PACKAGE TO USE ?

If you are going to run your program on an "ordinary" 650, then you
must use one of the "A" packages* P1A, P2A, or P3A. If your program is to
be run on an augmented 650 (floating point, index registers, etc.) then you
use one of the »Y» packages* PIT, P2Y, or P3Y, All of the packages mentioned
so far include the necessary routines for READ, PUNCH, and other various and
sundry necessities of life for RUNCIBLE programs. The PI packages contain
a bare minimum of things and are used in most cases. The extra things in
cluded in the other two flavors are listed below:

: P3 :

P operator p operator
Logarithm (base e) LNE Log (base e) LNE
E^onential_£base_e2_EXPE S£222-ibase e2 EXPE

Sine (radian) SINE
Cosine (radian) COSE
Arctangent (rad) ARTE
Square root RT2E

The decision as to which one of the packages to use is now simply made
by examining the above lists. If your program does not use any of the things
in either list then use PI. If your program uses only things listed above
the dashed line—then use PS, if your program uses features below the line,
then use P3.

CARD PREPARATION AND FORMATS.

1. Data card format.

A. Four entries per card. On the four-per-card input, data is
entered on each card in "couples, * each consisting of an "IDENT" — the
name of a variable (17, XL, etc.) — and the VALUE of the variable itself.
The "IDENT" looks like this:

18

(0000 * s) (0000 + k)

where 01, 02, 03 are used for I, Y, or C respectively,1 and the number a
is the subscript value. The number k is an arbitrary personal identification
which may be attached by the programmer! it should be filled with zeroes if
not used for identification.

The VALUE of the variable differs for fixed and floating point
entries. For fixed point (I-) variables, write down the integer and add left
hand zeroes until it is ten digits long; this is the correct form for VALUE.
For floating point (f- and C-) variables, first write the number as

a.bbbbbbb x 10°

where c is some exponent between -SO and 49, and the decimal point is as
Shovn ("ith digit "a" non-zero). Then the correct form2for the floating
point VALUE is

(a) (bbbbbbb) (50 + c)
Thus, five would be written 0000000005 in fixed point and

S0000000S0 in floating point; fifty would be 0000000050 fixed and 5000000051
floating. Zero is always written as ten zeroes, whether fixed or floating.

iegioLr^spedSlyfNCIBLE programs' <*> °5' 06 stand for S, T, and P

dw!^- add^iftvwone ®lifh^ ™odified when using the 653 floating point
t0 the exP°rient instead of 50: e.g., five is

5000000051 and fifty is 5000000052 for floating point VALUES.

19

+ •£ -t + - " I
I 4 -f-

2 ••®!S«o »so mo aajaso ® o liisioo lisiaaaiiio »o o • o <»a o#
1 i, „, i rr; rin rrinTu srrrrrrr rr«r :r rrvr :r;r? ?* rrr ?;

3 I?l3»222222 22212 22 2222 22 12 22222 2|22 2 22222 22222 221222222222221

«"««"><«<«44444i444444|444 M44444 4444444444444444444444|44444444444444444.444 j

SSS»5SSSS*S5SS»SS5SSaS**SSSSS5lSSSSSSS|#S» » s S S S S S S S S t S S S S S S S S S S S S S S S ll5llSSiS9S<

• •ittiiiiiininitiiiiiitiiKintmiiiitHiHiiiinK,!,,,,,,,,,,,,,,,,,,,,,,,,

The sign of the number must always be punched over the right-roost (units)

digit of the VALUE! a 12- (Y) overpunch indicates a plus sign and an 11-

(X) punch indicates a minus sign. Signs must also be placed over the units
digit of the IDENTs either plus or minus is permissible.

Columns 1-20 contain IDENT 1 and VALUE 1

Columns 21-40 contain IDENT 2 and VALUE 2

Columns 41-60 contain IDENT 3 and VALUE 3

Columns 61-80 contain IDENT 4 and VALUE 4

If less than four variables are to be entered on a card, the IDENT following

the last VALUE must be filled with all zeroes and the remainder of the card
may be blank0

A. READ statement in RUNCIBLE will cause cards to be read until a
card with IDENT 1 negative is found. Any number of cards having IDENT 1

positive may precede the card having negative IDENT 1, which stops the READ
statement and signals for continuation of the program. .

A 12- (Y) overpunch in column 4 is necessary to identify the four-per-'oard

format. The sample card shown assigns 17 - 342, Y4 - -58.3, and CIO - .00125
observe the IDENTs and VALUES carefully.

20

i J POOO^,580DOOOS(]K)OOnrinnr;iVjiiiT,Cr!:''i'W!^" " " " "' * "" ' ' "—--v
• i i" \

I a
_J« i

» I « I 1 1 1 I 1 1 n t t 1 » 1 1 l i t f 1 1 1 1 1 1 M 1 1 1 , t i f 1 ! 1 1 1 ! , H 1 1 1 1 1 f i t 1 , 1 1 1 m J I n n 1 1 1 1 1 1 1 n 1 1 1
Z * 2 2 2 | 2 2 2 2 8* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

' ® " 3 3 3 3 3 1 3 3 3 3 3 3 ' J 2 2 3 2 2 3 «

44444 44 4444444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 « U 4 4 * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 |
5 5 5 # 5 5 5 S 5 5 5 i 5 5 5 S 5 5 5 5 5 5 § 5 l 5 5 5 5 5 S 5 5 5 5 5 5 5 l S 5 5 5 5 5 5 5 9 5 5 a 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 S 5 5 5 5 5 5 5 S 5 5 $ S

1886688886886888166888868686868886666686688688666688688666666 66 6 616 6 S&6 8
' 7 7 7 7 7 7 7 ' 7 7 7 * 7 7 7 7 H 3 ? 7 ? 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ? 7 ? 7 7 ? 7 ? 7 I T ?

iM) t »»m i s

B<> Seven entries per cardo Up to seven variables may be entered on
one card if the subscripts are all consecutive0 The IDENT for the first variable
is put in columns 1-10 in the same form as noted above except that k now must be
a number between 1 and 7 which specifies how many consecutive values are to be
loaded by this card. Then VALUE 1 (corresponding to subscript s of the IDENT)
is placed in columns 11-20, VALUE 2 (corresponding to subscript s +1) is placed
in columns 21-30, VALUE 3 (for s + 2) into cols, 31-40, VALUE 4 (for s + 3) into
cols. 41-50 and so on, leaving unused columns blank if desired,

A 12- (Y) overpunch in column 7 is necessary to identify the seven-
per-card format® The sign of IDENT 1 again controls the reading of cards (see
four-per-card format)) when IDENT 1 is negative as it is above it signifies the
last card of a series,

Seven-per-card and four-per-card formats may be used interchangeably.
The sample card shown assigns C12 - 2,58 x 1030, C13 - zero, and C14 - minus one.

2° ^tPut card format. Output card format is precisely the same as input
card format and can therefore be used as input to another program. With four-
per-card output, IDENT 1 is made negative on all cards, and the identification k
is the statement number of the PUNCH statement being executed. IDENT 1 is
negative only on the last card of the seven-per-card output (when the word THRU
was used in the compiler statement).

21

3, RUNCIBLE Statements, Since the basic 650 for which this program is
designed recognizes only numbers and alphabetic character®--not equal signs
or quotation marks—an alphabetic code is used for these symbols when
punching the statements onto cards. Here is a complete list of symbols used
and their alphabetic equivalents^!

(| left parenthesis, bracket, or brace... L
) 1 right parenthesis, bracket, or brace•• R

• decimal point j
<— substitution 2
• equals y
> greater than V
> greater than or equal W
9 comma # # g
n quotation marks (right or left) Q
* plus s

minus M
x times ^ j
/ divided by j)

Each statement must be punctuated by an F ("finish"), which is added at
the end. The very last statement of a program must end with an FF ("Final
finish").

The statement number, n, is punched as (0000 + n) in columns 1-4.
Column 5 must contain both a 12 (Y) punch and a 9 punch (this is the code for
the letter "I") to identify the format, and a 9-punch may be added in column 5
to be picked up by tabulator board wiring for use in listing the deck. The
statement itself is punched in columns 43 through 69, and column 70 must contain
the F which terminates it. (If a statement is so long it does not fit on one card,
up to five cards may be used. In this case the »«F» should appear only on the very
last card of the statement, and columns 43 through 72 may be used for characters
of the statement on all other cards. A statement may thus contain up to 148 charac
ters, including the final F or FF as the case may be. Columns 1-4 need only be
punched on the first card of each statement.) Columns 6-42 and 73-80 are ignored
by RUNCIBLE except columns 7 and 41 must not contain 12- (Y) punches2 — but these
1. It may prove convenient at your installation to put these symbols directly onto
the keys of your keypunch keyboard; e.g., ^
2. Column 10 should be blank if the 533 plugboard
has the added statistical features.

22

dcoj
s /7-

yi z 10

mimiiiniiimnmmiMiijmuiiiiimn,,,,,,,,,,,,,,,,,,,,!,,,,,!;,!,!!

• " • • • • » » " « « M » « U I H U I H » | | U „ „ | 4 l l „ l | l „ | 4 , | 4 | | 4 „ | 4 | 4 | | | | 4 | n j 4 | | | | | | M |

• • " • • • • • • " • • • • M M » I I I I I 4 4 4 4 I M » I . | . » 4 4 4 1 . I . 4 4 4 » » I H « 4 I 4 » I . I H 4 I » 4 4 4 4 I 4 4 . 4 I I 4 I

,»»>g»?i«,88i.,.l!8!{{,t8K8«iii8g»gaia»8!S!lMM8iaai««S«8S8SS;i!!Kit!il

STATEMENT
NUMBER

columns are usually not used*

' Blank columns in the middle of a statement are always ignored, and they
may be inserted or deleted at will. A substitution statement must start in
column 43. Here is example program one as it would be punched onto cardsj
statement number three is shown above„

i • v
12 3 4 5
0 0 0 1 2
0 0 0 2 s'

0 0 0 3 s
0 0 0 4 s

0 0. 0 • 5 3
0 0 0 61!!
0 0 0 7 2
0 0 0 8 2

STATEMENT

4I4i4£46 4748 49 50 5152 53 54 55 56 57 58 59 60 6162 63 64 6566 6768 69 70 7172
R E 4 D
H A L T I F 0
n z i j
J U M P T O 7
6K C 1 ? 2 J K
r i z r i x c
P U N C H I 1
J U M P T O 1

V II

IF 1
1 J K

W
I

I 1
1 K

P U N C H Y X

F
F
F.
F
F
F
F

ff
Here 0 represents zero and 0 an alphabetic letter 0. Appendix VII contains
another sample program punched on cards including the Header and Comments Cards.

/ /SX/ fU-e^C. /M><CS~£ ¥i-
(C-*rj • f /I /tf

/' (& & 7'V/c r r< ~x /'} •1. 4 *51 /£/ /, '/ O
/to JyZ/c-Ct\fn^T* 6 £7 3

4, Header Card and Comments Card. Every RUNCIBLE program must be
preceded by two cards — the Header Card and the Comments Card, The
Header Card contains important control information, and its format is
as follows (all numbers are in the form of fixed point VALUEs)?

COLUMNS 1 - 10s the number of the maximum I- subscript
COLUMNS 11 - 20s the number of the maximum Y- subscript
COLUMNS 21 - 30s the number of the maximum C- subscript
COLUMNS 31 - 401 the highest statement number used
COLUMNS 41 — 50r the total number of special locations used by

extensions—this may be calculated by consulting
the writeup for each extension used, (These "special"
locations are those which, for some reason or other, are
supposed to be in sequential order,) Each extension now
has two magic numbers associated with it: The number
of special locations—this goes into columns 41-50—and
the number of other locations—this goes into columns
61-70.
the number of locations used by the basic package."*"
(This is 325 for P1A and 525 for P2A, 751 for P3A
the most frequently used packages^ for other packages,
see their own write-up.
the total number of locations used by extensions
(excluding the basic package) — this may be calculated
by consulting the writeup for each extension used,
all zeroes (unless using procedure of Appendix IV)

COLUMNS 10, 20, 30, 40, 41, 50, 60, 70 , 80: 12- (Y) overpunches.
The punch in column 41 is necessary to identify the
header card.

Any of these numbers may be made a little larger than the actual value (for
safety) but it is extremely important that none of them are smaller than the
true values for this is an unchecked error which can lead to mysterious and un
fortunate results.

COLUMNS 51-60:

COLUMNS 61-70:

COLUMNS 71-80:

^ 1. When using B-processing (see Operation Modes) this number must be at
least 73, or at least 175 if any extensions are used, because of the Re-
location Package used to load the program.

/w //£"•

m
2$

O

The example Header Card which appears on the next page is the one
determined by example program one, using basic package F1A.

The Comments Card is generally easier to prepare than the Header
Cards columns 1 - 42 and 73 - 80 are blank and the remaining columns
43 — 72 may be filled with anything the programmer's heart desires (as
long as it is acceptable to the alphabetic attachment) — the title of

26

(•fwvyiw
",f •'•<Ui'1'"" I0U1 UULh.il.!! .11 iijij i I..ILU hi Lit »iAH^^uij!jnuOOOOOr»nonD!:a^eiO(iOOOOuOOGOOuddOO()r(?

I II

•iiuaiiiiiiiiianio iiiiimit aiiianin iiiiiMiiiiiiecii« •«iniiaiiiiiiiaiinai
, , 5 , 4 1 1 * " " 1 1 J*'2 1 « » » K « « J I M » » U M S * C « I « « w W O M H I I u UHiiuiisiitsii uoMtiKuuitiin mi H n mi n H H
• 1111 h 11 it n i n 111 fit ii 1111 n |n 11111111111111111111] 11 n 11 it j 111 j.ii H1111 it 11H
3 2 2 1 2 7 2 I 2 2 2 2 2 2 9 2

3 3 2 2 1) 1 3 3 3) 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 2 3 1 2 2 3 2) 3 3 3 J 2 # 2 2 . 3 1 3 2 2 3 3 3 2 2) 3 3 2 3 2 3 3 2 2 g
4 4 U 4 4 4 < 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 < 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 M 4 < 4 4 4 4 4 4 < 4 3 4 4 4 4 < 4 4 4 4 4 4 4 4 4 4 4 4 4 4 I 4 4 2
S 5 * * * * 3 * * 5 5 5 5 5 5 5 $ 5 5 5 S 5 5 5 5 5 5 5 5 5 5 $ 5 $ 5 5 5 5 5 5 5 5 S 5 5 5 $ 5 5 $ S $ S 5 5 5 & 5 5 | S 5 S § S 5 S 5 § 5 S $ 5 5 5 $ 5 S S 5
4 ! l 4 l 4 5 l l f t f i 5 f i $ 8 6 U 6 6 6 f i 6 f i l S f i f i f 5 5 S f i 5 f i f i f i 6 6 S 5 € 6 6 6 U l 6 f i l i S 8 4 i f i S 4 4 4 4 8 4 4 l f 6 l 4 6 6 U 6 f i 6 f i S S ' l

? 9 9 ' 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 I 7 7 7 7 7 9 7 7 7 7 7 7 7 > 7 7 7 7 7 7 7 7 7 7 7 f 7 7 7 f j 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

the program, his own name, or his girlfriend's name5 or he may choose to be
obstinate about the whole thing and leave the card completely blank,1

MODES OF OPERATION, There are twenty—four different modes of operation to
choose from while compiling, and these are selected by setting switches on
the 650 console.

1° Clocking6 RUNCIBLE Fs clocking feature is a major step forward for
the testing of a compiler program during its trial runs0 "Minimum'* clocking
keeps tabs on the number of the statement which is being executed2 and will
display this number if the computer stops during the running phase (see Stops)0

"Minimum" clocking does not require any more space in the 6505s memory than
the program would normally use; it does, however, add approximately „026
seconds machine running time to every non-zero statement executed,,

Additional available clocking features (stopping at certain statement
numbers, flow tracing, and full tracing) are explained in detail in Appendix
I, There is a three-way choice while compilings to use no clocking, minimum
clocking, or the full clocking, which allows any or all of the aforementioned

1* The Comments Card becomes a SOAP III comments card which is the first card
of the symbolic output,
2, If it is non-zero0

27

extra features,, The extra features require an additional 98 memory
locations«

20 X or Y operationo If a 653 floating point attachment is
available the program will run much faster using this hardware directly
rather than going through the floating arithmetic extensions« RUNCIBLE
will put the 653 to work if desired «— this we will call »YM operation
for convenience9 as opposed to ordinary compilation which we shall
designate wXiS operation0 The floating point exponents on input data
cards and output cards in the final program are slightly different
(excess-51 rather than excess-50) when using Y-operation*1

50 A or B operationo RUNCIBLE I normally turns out a SOAP III
symbolic program which must first be assembled by SOAP before the
finished deck is ready to run — this is called MAM operation«, If
desired, however, the SOAP phase may be bypassed and RUNCIBLE will
turn out a machine language program immediately with five instructions
on each card (WB" operation)„

B-operation is to be recommended for smaller scale problems and
when conservation of cards is more important than conservation of time*
A-operation is more versatile and is recommended for programs which
will be long runs„ A B-program requires less than one-sixth the cards
of an A-type (multipass) program during the IT-language to machine
language translation,, and takes approximately one-half the time to
assemble j however, it uses about 10 percent more time while running0

(More accurate timing has yet to be made for this comparison,,)
Extensions g Programming is exactly the same for A or B processing

except that there are different maximum limits for extensions0 In
type Ano more than nine named extensions may be given in any one
statement$ type B restricts the programmer to a total of ten different
extensions (named or not in PI or P2) in his entire program,,

4«> Error searching 0 There are many checks on programming errors
built into the RUNCIBLE program (see STOPS)j these are sometimes
awkward to correct without beginning compilation over again,, The
error search mode feature in RUNCIBLE I will check an entire program

lo Index register A (8005) is used to calculate variable subscripts
when Y-operation is used, but all index registers are free for use by
extensionso

28

for goofs without punching any of its normal output cards. In this
case any error which would normally have halted compilation will not
usually stop the computer — it will be punched onto a card instead.

Selecting the modese These various modes of operation are
selected in the following manners we will "build" a four-digit number
k3jTm-° DiSit B is 9 if not clocking^nd 8 if clocking; and if clocking
is used, digit m is 9 for minimum clocking only and 8 for the expanded
clocking features described in Appendix I. For X~operation, digit 1 is
set to 9, while it is 8 when T-operation is desired. Digit k is 9
when multipass (A) operation is to be used and 8 when using the B
(single pass) feature. The number kimn finally is plus when nornal
output is called for and minus when searching out errors.

All of these rules can be remembered more easily by the general
pattern that all four digits are 9 for basic operation, ^nd changing
any one of them to 8 calls out a more special feature. Four eigits
is more or less asking RUNGIBLE for the "workso" The rules are
summarized in this charts

M -iV* */ Minimum Don't Normal
Multipass 650 Clicking Clock Output

in I J I I ! L (I T in
One Pass 653 Full Clock Error

B Y Clocking Search

OPERATOR INSTRUCTIONSo

Step 1. Insert RUNGIBLE I plugboard into 533 unit. This board
will be used during the entire operation.

Step 2. Clear any cards out of the read feed and punch feed and
ready the punch feed with blank cards.

Step 3. Place the RUNG IBLE I deck in the read hopper, face down,
and place your program deck on top of it. The program deck consists of
1) Header Card 2) Comments Card and 3) Statements (in that order).

1. When not clocking, digit m should also be a 9.

2S>

Step 4® Set the 650 console to the following:

SWITCH SETTING

STORAGE ENTRY

PROGRAMMED

70 1951 klmn +

STOP

(see Operation
Modes)

HALF CYCLE

ADDRESS SELECTION

CONTROL

DISPLAY

RUN

anything — 1888 recommended

RUN

LOWER ACCUM

OVERFLOW

ERROR

SENSE

STOP

Step 5o Depress the following buttons in order:
1) COMPUTER RESET
2) PROGRAM START

Step 6o Press both START buttons on the 533 unit.
Step 7o When the last card in the read hopper is halfway into the

machine, depress END OF FILE® Do not push the START button again until
the "End of File" light goes out®

Step 80 Run the cards out of the punch feed and throw away the
top and bottom cards® These cards are "garbage cards" and should have
been punched identically®

Step 9® Clear out the read feed and put the RUNCIBLE I deck back
into the file®

Step 10o If using B=operation (see Operation Modes) skip down to
step 14® Otherwise repeat step 5 and then run the SOAP III deck into
the machine (by pressing START and END OF FILE at the proper times)®

Step 11® If your program uses extensions which are not included
in the basic package you are using, lift the first few cards from the 1

output of step 8 which have 12- (Y) punches in columns 76-80 and
insert the extensions in symbolic form into the output deck at this
place® Now, place in the read feed face down (in order):

30

_ -

1) The Reservation Package which accompanies your

basic package; e.g., R1A corresponds to P1A.

2) The output of step 8 — with extensions inserted

if they are usedo

3) A BLANK CARD*

Step 12. Repeat steps 6, 7, and 8; clear out the read feed and

put the SOAP deck, Reservation Package, and extensions back into the

file. The output you now have is a running program assembled at five

instructions per card.

Step 13. Repeat step 5 and run in your basic package followed by

the output of step 12. You are doing fine. Skip down to step 161

Step 14. Place in the read feed, face down, in order

1) The Relocation Package (standard for type B

2) The output from step 8 operation)

3) Any extensions used in relocatable form

4) The basic package you want

5) A BLANK CARD

Step 15. Repeat steps 5, 6, and 7.

Step 16. When your deck is all in, the machine should be

stopped with 1999 in the ADDRESS lights. Turn the CONTROL switch to

ADDRESS STOP. Set the ADDRESS SELECTION switches to 1888. If you

are using any of the expanded clocking special features, change the

storage entry switches to the setting described in Appendix I; if

you are running on ERROR SENSE (Appendix III) make the desired console

setting$ otherwise leave everything on the console alone. Now, push

PROGRAM START (not COMPUTER RESET this time*).

Step 17. If your program contains any READ statements, place the

data cards in the read feed in their proper order. Hit the START buttoi

Step 18. Congratulations. If you have gotten this far, any outpul

may consist of the answers to your problem. Be sure to return all

library decks to the files and to remove your other cards from the

machine.

31

G-ENFRAL INFORMATION FLOW

FOR RUNCIBI F I

COMPILING PHASE
(A MODE)

•
•

HEADER CARD

FIRST CARD
RUNC/BLE I

V

i
0
0
•
0
0
0

STATEMENTS

OUTPUT

=>

SOAPJE
(SYMBOLIC) DECK

32

1 •• — - I - —

COMPILING PHASE
(B MODE)

INPUT

MACHINE LANGUAGE
(5 PER CARD) DECK

FIRST CARD
RUNCIBLE I

RUNCIBLE DECK

OUTPUT

HEADER CARD

V

p \ I ~ t. •; j- ' • i
; . • • v f - • • • 4 * - . « . . . ' A i r » v ' f 4 < *>-* WC.T
ti " -V SFTT«I f h V"' ~ H*i ̂ *, 'u f Jt>< Sjl

* - | |11
1 is .* *3 » 'c

> ANSWERS

RUNNING PHASE
B MODE ONLY

BASIC PACKAGE

MACHINE SHOULD STOP
READING HERE.SEE —
STEP 16 , PAGE 26.

/ BLANK CARD

FIRST CARD
RELOCATION
PACKAGE

OUTPUT FROM
COMPILING PHASg

3h

SOAP PHASE
(A MODE ONLY) REMAINDER OF

COMPILING PHASE
OUTPUT

FIRST FEW CARDS
OF COMPILING PHASE
OUTPUT (i .e. ALL OF
THE ONES WITH Y
PUNCHES IN C0LS.76-8O

F I R S T C A R D
R — D E C K

FIRST CARD
SOAP m

EXTENSIONS (IF ANY)
IN SYMBOLIC SOAP 11
FORM (i .e. A MODE

EXTENSIONS)

"RESERVATION PACKAGE
(MAY BE R1A.R2.A.R3A,

RLY.RZY)

SOAP M

V

' , > Xl ' "C ̂
& & >/• -r i

A.-

C>

MACHINE LANGUAGE
PROGRAM
S INSTRUCTIONS/CARD

35

RUNNING PHASE
A MODE ONLY

DATA
(I F A N Y)

/ OUTPUT FROM
SOAP PHASE

BASIC "P"
PACKAGE

MACHINE SHOULD STOP
READING MERE. SEE
STEP 16,PAGE 26.

V

*

ft

<»#& .

<•* rM?' >
t';: t%v'l ' • .

' 'x , fax O ANSWERS

36

—

•
•
•
•

*
•i

*

Rerun Procedures» There are several cases where one does not wish to

reload a large program deck when the program is already in the machine.

1. If RUNCIBLE is still in memory, and you are not changing from A to

B or from X to I operation modes, you may compile a second or successive

program by setting the STORAGE ENTRY switches to 70 1999 klmn _+ , placing

your program deck in the read feed, and continuing with step 5. Change

the console back to 70 1951 klmn + when step 10 is reachedo

2. If SOAP III is still in the machine, you may SOAP a second or suc

cessive program by setting storage entry to all zeroes, repeating step 5

and co rfcinuing with step 11 . Return the console to its previous setting

after the SOAP phase has been completed.
3. During the running phase of your program you may always start it over

from the beginning by setting console to 00 0000 1999 + and hitting COM

PUTER RESET, PROGRAM START.

STOPS * The above operator instructions work fine for the unusual case

when the 650 does no stop. You have undoubtedly noticed the rules given

thus far for programming; they are certainly not unreasonable and, of

course, must be followed. Error checks are made by RUNCIBLE on almost

every rule. When the machine stops, an indication of which error has

been made appears in the display lights as described below.

. If the DISTRIBUTOR light is on, you most likely have a mistake punching

your card. Run the cards out of the hopper—it's the fourth last one out

you want to check.
When the DISTRIBUTOR light is not lit, the next step is to look at

the OPERATION lights. If they are

lo 01 (address 8989): The P1*0^811* deck bas not been loaded properly;
there is a card missing or out of order. Remedy: try again with a good

deck. If the 00 9998 stop has occurred, your own five-per-card program

may be out of order if the basic 'package is already loaded properly; check

columns 7-10 on your cards. The numbers in these columns must start at

0001 and be consecutive. If you have dropped a deck, its loading routine

may be unscrambled by watching the 12-overpunches in columns 71-79.

1. If you are compiling you may restart by fixing the card, inserting
the entire statement again, and transferring control to location 1234.
While reading in data during the running phase, restart by transferring
to 1698 if using the A packages.

38

2. 70- The machine wants to read a card. Depress read START, or END
OF FII£ if the last card in the hopper is halfway in? however, if the CARD
FEED STOP light is on, panic,

3. 71, The machine wants to punch a card. Depress punch START, If this
doesn't work, there is a bent card in the punch feed or the feed is filled to
capacity. In the latter case, relax and take all cards out of the feed as the
first portion of your output. But if there was a bent card, remove it and play
around until the unlabeled light goes out. You will have now one or more extra
garbage cards (see step 8 in operator instructions) in the middle of your output
which must be removed. N

4. In the 90'sr You have not set the storage entry switches correctly.
5. Blanks Now you must check the ADDRESS lights, as follows: Compilation

ghase. A. 1234: This is a correctable error in a RUNCIBLE statements error cards
are punched for this type of mistake when in error search mode (see Operation
Modes). A list of these goofs will be given below. To restart, correct the
offendine statement, place it first into the read hopper, and depress PROGRAM
START and read START.

B. 1953, 1954s Turn the OVERFLOW switch to SENSE and run the
deck again.

c. 9500: Columns 31-40 of your Header Card are negative or
zero; or storage exceeded and not in error search mode.2 When tight for memory
space in a long program, always check by an error search first. Remedy: change
your header card and start over.

D. 9876: If your entire deck of statements has been processed,
heer up, for this is no mistake; the compilation mode has been successfully com

pleted. If not, however, an FF occurred on the last statement processed; or you
are using B-operation and columns 71-80 of your Header Card are not zero.
Remedy: start again.

CORRECTABLE ERRORS IN STATEMENTS: (1234 stop or error search output) If a 1234
stop occurs and the DISPLAY switch is turned to LOWER ACCUM, your error indication
will be as follows i

O n n n O a a O b b 1

where nnn is the number of the offending statement and aa and bb are

irto V"*, rd\>,Cl.eaLthe r,ead feed> and replace the last two cards out
START (both toys). "P and rePlace the deck? depress STOP and then
2. On this error a display is given as in the 1234 stops (see 02 02 stop).

39

explained in the table below. You may correct your statement

immediately by making up the new card or cards necessary and replacing

the incorrect statement, putting your cards back in the read hopper,

pushing read START on the 533 and PROGRAM START on the 650,

If you are in error search mode, list any output cards on a

tabulator with the SOAP III control panel. Your statement number will

appear, followed by an entry in the table below, followed by that

portion of your statement which caused the trouble.

Here is the error table — if your error indication does not

appear to make any sense, check to see if you have punched the F's
correctly in column 70.

Letters t

E

G

R

F

aa

00

01

02

65

67

bb

00

01

02

04 04

06 06

07 07

08 08

79

66

Error types

A zero statement number immediately
following an iteration statement; or
more than five cards in a statement; or
statement too long—over 100 machine """"
language instructions were necessary to
execute your statement (remedy? break
it into two statements).

Subscript or statement number over 999.

Problem too long—2000 memory locations
exceeded. You must start over if not in
error search mode. Either cut down
numbers on header card to bare minimum
or shorten or segment your program.

Constant larger or smaller than allowable,
(fixed point * 1 billion or floating
point < 10~50 or % 1050)

More than ten subroutines used in addition
to the basic package when using type B
operation.

Column 43 on first card of a substitution
statement not I, Y, or C; or too many
named subroutines used in one statement;
or parentheses and quotation marks nested
over nine deep.

Unmatched parentheses or quotation marks;
or a floating point number when it should
have been fixed; i.e., in a statement num
ber, an exponent, or a subscript.

"CONVERT" when not using type A operation.

"ARITHMETIC FLOATING" when not using type
AX operation.

LettersI aa bb Error types (continued)

^ F 69 66 »XF,S not followed properly by one of the
relations'U^'V, or W0

^ ^ 7^ Iteration statements nested over four deep;
or more than five symbols between commas
in an iteration statement$ or too many
commas in an iteration statement; or bad
spelling at the beginning of a matrix
definition statemento

1 F 75 66 "ARITHMETIC DECIMAL" when not using type
AX operationc

R L 79 73 Improper use of REMAINDER (see Appendix III)
or the invalid pair jh[in a statement 0

9 K 90 72 PUNCHing more than four variables in one
statemento

0 0 90 90 Erroneous substitution statement; or state
ment does nothing0 Examples?
I1«KL«»1; 11+ l«-l| no

oeo and if not in the list so fary

K ?? 72 Too many multiple input extensions nested
together-y or HALT followed by a variable®

7 aa pp The code for aa and pp is explained in the
following table; they are two letters
which should not appear next to each
other in any meaningful RUNCIBLE statement;

61 A 76 0
62 B 7 <7 p
63 C 78 Q »

2 f 7? R UJ or D, V, W
«« w 4.u J ™ 82 S + or Ms U, V, W
66 F or the word IF 83 T or the word PUNCH
b7 G 84 U a
68 H
69 I

85 V >
86 W £
87 X x 71 J „

72 K , or Tor the word PUNCH 88 j.
73 L ([-[or A,C,I,Q,Y,orR®.®R 89 Z <~

]? 90 lefthand end of statement1
b N 99 any integer 0-9 or a J

SOAP ing phase o Assuming that properly written extension are being used,

no stops should ever occur until the end of the SOAP III phase® However,

if the OPERATION lights are blank you may have a stop of

0444? You forgot the reservation package ®
0666\ „
0777You got the compiler output jumbled up somehow®

9800? *You have successfully finished SOAPing; or (if all cards are
not processed) you forgot to remove a garbage card (caused
by a punch jam) from the middle of your deck® See 71 stop®

1. In this case, represents the first symbol of the statement®

hi

Running Phase, 1. OPERATION lights not blank. ADDRESS lights:
8011s Overflow or underflow has occurred somewhere during

floating point arithmetic while using Y operation.
The s tatement on which it occurred is in machine
location 0018 if clocking.

1888: Programmed stop in basic package. When using "A"
packages, the DISPLAY switch may be dialed to
indicate:

DISTRIBUTOR May or may not contain the input
argument to the extension5 when
it does not, it is the same as
the UPPER ACCUM.

UPPER ACCUM The number of the statement being
executed; zero if clocking not used.

LOWER ACCUM Displays the ten-digit number
Oa Onnn AAAA +

is the number of the extension;1 a is the error type
which may be found by referring to the writeup of the
extension. In the basic packages,

a = 1: Floating poirrt exponent less than -50;
pushing PROGRAM START will continue
calculation using zero as a result,

a = 2: Floating point exponent more than +49;
or attempting to fix a number of more
than eight digits,

a » 3: Division by zero or logarithm of a
non-positive quantity.

When the OVERFLOW light is not on, the program may be
restarted by setting the ADDRESS SELECTION switches equal
to AAAA, turning CONTROL to MANUAL OPERATION, punching
COMPUTER RESET and TRANSFER, turning CONTROL back to
ADDRESS STOP, resetting address switches to 1888, and
hitting PROGRAM START. Zero will be employed as an
answer to the calculation.

xxxx: Operation lights not blank, address not 1888 or 8011: If
Overflow light is on and DISTRIBUTOR contains zero, you are
attempting fixed point division by zero.

2. OPERATION lights blank, ADDRESS lights:

8765: Wrong basic package for your program. Dial PROGRAM REGISTER
tt contains 01 Onnn 8765 where nnn is the extension missing

from the package you are using.

8778. (Type B Operation) You are attempting to load a subroutine in
relocatable form which you did not properly call for in your
program, or HALT FF statement.

1. See next page for extension numbers in the basic packages, and extension
writeups for the number of a named extension.

h2

8888s Tou had a 1888 stop with OVERFLOW light not on and did
not restart as described above, or you forgot to turn
the switch to Address Stop at Step 16.

0000-19991 Stop caused by HALT statement in your program; if
you are displaying a number it is in LOWER, ACCOM.
PROG REGISTER should contain 01 8005 xxxx.

Extensions in the basic packages which include error stops have the following
numbers t

nnn 001
002
006
008
009
010
011
018
019
020
021
022
023
033
500
501

Log to base 10—not in PI
10 to the X—not in PI
Floating point division
Floating point addition and subtraction
Floating point multiplication
Fl.pt. number to fl. pt. power (P)—not in PI
Clocking
Natural logarithm—not in PI
e to the X—not in PI
Square root—not in PI or P2
Sine—not in PI or P2
Cosine—not in PI or P2
Tangent—not in PI or P2
Arctangent—not in PI or P2
Fix a floating point number
Fx. pt* number to fx. pt. power (P)—not in PI

"IF NOTHING ELSE WORKS, READ THE INSTRUCTIONSw

1. If this number ia 01 0011 xxxx, you have a statement number stop (see
Appendix I*

b3

A P P E N D I X I

EXTRA CLOCKING FEATURES. While doing minimum clocking, the present

statement number is kept in machine location 0017$ the previous

statement number may be found in location 0018# The following

features may also be used while clocking — if any or all of these

are used, an additional 98 drum locations are neededo (These features

are primarily intended for those who have a more complete knowledge

of 650 machine language,,)

1. Statement number stopping. The computer may be stopped just

before executing any statement whose number is nonzero.

Flow tracingo A card will be punched just before executing

every non-zero statement showing the contents of the accumulators.

3. Complete tracing. A card will be punched for every machine

language instruction executed except those in extensions, showing

contents of the accumulators and distributor."*" Extensions will be

run at full speed. Tracing may be stopped or started at any statement

number.

CAUTION* Iteration statements generate several zero statements

which when executed are not clocked or flow traced.

To use any of these extra features, digits m and n (see Operation

Modes) should be set to 8 while compiling, and the following console

setting is to be made while running the machine language program*

q r s f A A A B B B +

The sign controls conditional PUNCH statements as before, and digit f

is free for some use wMch is as yet unforeseen. Clocking is independent

of the sign or of digit f. Digit £ tells what features are to be used!

q » 0 or'q > 4 s Minimum clocking only.

q • Is Statement number stopping and clocking.

q « Z% Flow tracing, statement number stopping, and
clocking.

q • 3s Complete tracing, statement number stopping, and
clocking.

q • 4s Complete tracing, flow tracing, statement number
stopping, and clocking.

1. Complete tracing will correctly trace all RUNCIBLE output instructions
but will not handle branch-distributor-8 commands, references to 8001 or
8003 for instructions, or division with opposite signs. When '•doctoring"
of compiler output is done, therefore, care should be used to stay away
from these instructions if complete tracing is klso.desired.

bh

Statement number stopss The machine will halt Just before executing

statement number AAA if digit r is 8, and r must be 9 when this stop

is not desired. The machine will halt before executing statement BBB

if digit j? is 8, and s must always be 9 when this stop is not desired.

The halt command will have data address 0011, and the DISTRIBUTOR will

contain the statement number on which the stop occurred. The accumu

lators do not contain anything of interest. To continue, depress

PROGRAM START.

Complete tracing will start up when statement AAA is encountered

and will be discontinued Just before executing statement BBB. (If

AAA equals BBB, no tracing will occur.) Digit 3 may be changed while

running the program, but its effect will be noticeable only after

the present statement has been completed. Never change the console

setting unless the 650 is stopped.

Flow tracing: Complete tracing:

FLO the letters COM

000000nnnn OOkkkknnnn
(nnnn is statement number; kkkk
is location of instruction.)

0000000000 Instruction

UPPER ACCUMULATOR

LOWER ACCUMULATOR

0000000000 \

0000000000 DISTRIBUTOR

0000000000

When flow tracing with type Y operation, word 7 of the output cards

will contain the contents of the DISTRIBUTOR if complete tracing is not

being used simultaneously. Results of every substitution statement may be

found in the distributor, while only certain types of substitution state

ments leave the answer in the lower.

kS

Card formats?

Word It

Word 2:

Word 3s

Word 4 s

Word 5s

Word 6 s

Word 7t

Word 8s

T

A P P E N D I X I I

MATRIX NOTATION, There are two types of doubly-subscripted notation

available in RUNCIBLE I, and since they have somewhat different rules,

they will be discussed separately here. It is possible to program

matrix problems without this notation, but the machine language output

on matrix notation is usually much better and the notation is convenient
and quite easy to use,,

1° VARIABLE-SIZE MATRICESO TWO matrices having variable row length

may be used 8 the YN matrix and the CN matrix• The number~of columns in

the YN matrix, whenever it is used, is always contained in the current

value of variable II, and 12 contains the number of columns of the CN

matrix. Notation used in statements is

W(vl ,v2)

where vl (the row) and v2 (the column) are any fixed point mathematical

expressions,, Variable-size matrices start with row zero and column

zero, and they overlap the other Y- and C- variables« YO is the same

as YN(0,0) and if 12 - 4, say, CN(1,0) is variable C4, This may be

seen more clearly in the following equivalence diagram, showing in this
case a 4 x 5 matrix:

™0,0 ™0,1 ™0j2

™1,0 ™i,2
™2,0 ™2sl

™2s2

™5j0 HI
to

™3,2

II - 3
<*»»>

Y0 Y]

7 a8
Y10 Yll|

20 FIXED-SIZE MATRICES0 Fixed-size matrices are the type most

frequently found in compilers prepared for other computers; the row

size must be specified by the statements of the program. There are ten

of these matrices available? YN1, YN2, ..., YN5, CN1, CN4, and

CN5. These matrices start with the more conventional element 1,1 in "the

upper left-hand corner. Notation used in statements is

YN2(vl,v2)

where vl (the row) and v2 (the column) are any fixed point mathematical

expressions. Y- and C- variables are overlapped by the fixed-size

matrices; the subscript number where c c1 tts trix will start (element

1,1 of the matrix) is supplied by the programmer.

U6

T

^ m&trix definition statement must precede the use of any
fixed-size matrices, or erroneous (undetected) operation will
occur. Such a statement looks like this?

YNn, COLS, c, START, s,
or CNn, COLS, c, START, s,

where n is a number from 1 through 5, c is the number of columns in
the matrix, and s is the subscript number which should correspond
to element YNn(l,l). Note the commas and English words in the
statement; c and s must be fixed-point numbers without leading
zeroes. A matrix definition statement cannot be made conditional,
of course; when the program is running it is treated like a
BYPASS statement, and so it is usually given statement number zero.

The equivalence diagram below illustrates the overlay of a
4x3 matrix of fixed size.

CN31,1 CN31,2 CN31,3
CK32,1 CN32,2 C"32,3
CN33,! CN33,2 CN33,3
CH34,1 CN34,3

COLS, 3,
<amau>

START, 32,

A sample matrix problem is given in Appendix VI.

°32 C33 °34
C35 C36 C37
°38 C39 C40
C41 °4Z C43

hi

A P P E N D I X I I I

EXTRA PROGRAMMING 'FEATURES, RUNCIBLE I contains, in addition to those

features described in the main portion of this manual, some secret

hidden tricks which are extra added attractions for the more advanced
programmer 0

1« Remainder, The remainder of a fixed point division may be

saved Instead of the quotient by enclosing the division and parentheses

and preceding it with the word REMAINDER; e,g0,

REMAINDER (13/5)

The expression inside the parentheses must be some fixed point division

it may have a more conplicated dividend and divisor as

REMAINDER Rl8+2)/(I3P6)]

When used in a statement it is treated by RUNCIBLE as though the entire

thing were enclosed in parentheses, so parentheses need not be placed

again around the entire remainder expression, REMDR or simply RR may
be used as an abbreviation for REMAINDER,

2o Yariables in the core. Your variables may be placed into

immediate access (core) storage for faster operation by adjusting the

Header Card. Word 1, 2, or 3 of the header may be made negative (an 11-

puncn replacing the 12-punch) and the corresponding variables, I, T, or

C respectively, will be placed into the core.1 There are a few restric

tions, however? no matter which variables, I, Y, or C, are placed in

core, that one with subscript zero is put into 9000, subscript one into

9001, etc., so that no subscript greater than 59 may be used. Also if

more than one type of variable is put into core, overlapping occurs

between those having equal subscripts, and so care must be taken that

no subscripts are duplicated between these two variables. For example,

if both the I's and the Y's are placed in core, and II is used in the

program, Y1 may not be used at the same time since the two variables

are both kept in location 9001,

Switching arithmetic. This is another step forward in

compiler offerings - the floating point variables may be changed into

a fixed decimal point form with the number of decimal places to be saved

1. The other numbers in a negative word are ignored,

U8

left as a variable. This is useful in some calculations for speed of
operation and for editing answers before punching, making them more
easily read. Switching arithmetic can be done only when using type A
and type X operation modes simultaneously, A group of extensions
is supplied for this operation$ a full description of how to use
these features completely is given in their writeup, The compiler
statements ARITHMETIC DECIMAL and ARITHMETIC FLOATING will change
from floating decimal to fixed decimal arithmetic or back from fixed
to floating, respectively; they may not be made conditional. Only
the arithmetic of Y~ and C- variables is affected. During the
running phase, variable 10 (I-zero) will specify the number of
decimal digits desired; this can conveniently be changed from one
run to another until the correct scale for the problem is determined,

4o Error Sense Running, For production runs it may be found
economical to leave the ERROR switch on SENSE and then have a
built-in error restarting procedure in the program to bypass machine
errors when they occur. This may be done with RUNCIBLE, as follows:

The error correction procedure is programmed as a block of
statements, and on the first statement of the restarting program the
number of the statement on which the error occurred is by now in
location 0018 if using minimum clocking. This value may be programmed
by asking for variable I(-l) if the Ps are not in core; if they are
in core, call for I(-8982)« For example, the first statement might be

16 I(-l)
The error restart routine which you program will continue then perhaps by
attempting to correct any harm done, keeping count to see if the error
occurs repeatedly, and then going back into the main program.

This operating mpde is set up by the statement
SET ERROR CORRECTION TO n

where n is the (fixed-point constant) number of the statement at
which the correction procedure should start if an error is sensed.
This number may be reset during different portions of the program by
other similar statements. The SET ERROR CORRECTION statement must

A

1*9

precede any part of the program it is supposed to be operative onj it may

be made conditional. During the running phase of the program the console

switches must be set to NOP to 1998 to utilise this error sense operation

5. Spelling liberties. RUNCIBLE is not always very fussy about the

programmer fs spelling of English words (this will come as a relief to many

people):

READ is any statement ending with a D (e.g.* READ A CARD, or DONT READ)

HALT is any statement ending with a T or Hj HALT n is identified by the

T-integer combination,

BYPASS is any statement ending with an S,

PUNCH may be replaced by the letter T$ it may also be any group of

letters or numbers starting with P and ending with H as long as there is

only one P. (e.g., PINCH, or PEANUT GOULASH)

REMAINDER is anything beginning and ending with R without any R's in

the middle.

JUMP TO is anything ending in G or 0 not containing an E.

SET ERROR CORRECTION TO is anything ending in G or 0 containing the

letter E. (e.g., RESTARTING)

IF and THRU must be spelled exactly.

COLS and START are not looked at but they must be less than six symbols

in length.

ARITHMETIC DECIMAL and ARITHMETIC FLOATING are anything ending in L or G,

respectively.

READ PROGRAM is anything ending in M.̂

STATISTICAL READ is identified by the letters EAD or ED in sequence
2

followed by a number or variable.

EDIT is anything ending in IT.2

CONVERT is anything ending with the letters ERT in sequence.̂

6. Passing Soap Cards. (Type A Operation Only) n̂y number of cards
!

written in standard SOAP III coding may be placed Just after the Comments Card

of a RUNCIBLE input program to be reproduced in the output* They will appear in

the place where extensions are normally to be inserted when Soaping (see Opera

tor Instructions, Step II). Column 5 must not contain a 12-punch on these cards.

1. Notice that digit f (see clocking) still is arbitrary if we ever find a
use for it. —
2. See these extensions for use of the words.

5o

A P P E N D I X I V "

CORRECTING ERRORS AFTER COMPLETING COMPILATION. Notes this procedure
may be used only with type A operation0 If only a small number of
statements in a large program have to be changed after compilation,
first maKe a listing of the SOAP III symbolic program*, At the very
end will be a list of constants terminating with ABC00 (or ABDOO, etc.)
— the symbolic locations will be in decreasing order. Take the
largest number following the ABC1 and put it into columns 71-80 of a
Header Card which is identical in all other respects with an ordinary
Header Card. (The control information in th© other columns of this
Header Card may have to be changed j this information must apply to the
whole program, net just the corrections.)

Now compile in the regular manner the statements which correct
or supplement your original output. Put FF on the card of the final
statement compiled. The first few cards of your output — identified
by 12 punches in columns .?6="80 should now replace the corresponding
cards of the original program. Remove also the old symbolic program
cards corresponding to the statements you want to replace — they can
be located by checking the comments portion of the listing — and
insert the new material into its proper place. Each statement begins
with the characteristic "statement dictionary entry" which has
location address (SOCOO+n) where n is the statement number. Append
any new constants (identified by location address ABC, ABD, ...)
at the end of the program. Continue then with the SOAP phase.

Cautions iteration statements become three statements when
compiling, one to initialize the variable and the other two (numbered
zero) to increment and test it, occurring just after statement n, the
end of the iteration scope.

—— porcpiled with clocking^ linkages from statement to state-'
msnt are made with statement numbers, and so the first statement in
any block of consecutive correcting statements must have the same
number as the first statement it replaces, and the final statement
in this block must be followed with a BTPASS statement having the

1. If it is AED, add an extra hundred) ABE* two hundred) and so on.

51

same number as the statement following the replaced statements.
Therefore a single statement may not be merely added into the listing
when compiled with clocking3 one statement must always be removed (and
recompiled in this case) whenever a change is made. Example! suppose
it is desired to insert a new statement 20 between old statements 4
and 5* Remove statement 4 from the listing; compile statements 4 and
20 and a dummy statement 5: BYPASS in that order. Put the output from
statements 4 and 20 into the place formerly occupied by statement 4„

52

A P P E N D I X V

SUMMARY OF STATEMENTS.

* 1* BYPASS statement.

2. Error restarting,,*

3# Extension statement.

4. HALT statement.*

5. Iteration statement,

6. JUMP statement.*

7. Matrix definition.

8. PUNCH statement.*'*'

9. READ statement.*

10. Substitution statement,

11. Switch of arithmetic.

*

BYPASS

SET ERROR CORRECTION TO n

many forms—see writ eup s to extensions
HALT

HALT n

n, vl, v2, v3, v4,

JUMP TO (fixed point expression)

*Nn, COLS, c, START, s,

PUNCH varl PUNCH var2 PUNCH var3 PUNCH var4

PUNCH varl THRU var2

READ

variable <— matho expression

ARITHMETIC DECIMAL

ARITHMETIC FLOATING

» May be made conditional by adding IF expression > expression
• May be made conditional on sign of >

console switches by giving statement
number zero.

53

t \ 1 • i |

/rU' i~v $ r ;"" &' U ̂ ZV'V"". tAs

^ -
— — ™wwsw—«—_... ̂

U ̂
V

nc_"r,̂ ii.

1<l'̂ tI<+- S (M <> i + fe~ j f— j j c^~> .
#-- ••

i (Wrtj;

'Of

QD
/H <L

M /

A P P E N D I X v I

ADDITIONAL SANPIS wonn/m. (These programs are partly pilfered from
the original Carnegie Tech compiler manual; they are chosen for their
educational value*)

Example Sub-Program 1. Separate the Integral and fractional parts
of a floating point variable Yl.

1 II «- Yl
2 CI <- II
3 C2 Yl - CI

II is the integral part of Y1 in fixed point form; CI is the same in
floating point form; and C2 is the fractional (decimal) part of Yl in
floating point form.

Example Sub-Program 2. Represent the eight significant digits
of a floating point variable Y1 as a fixed point integer II.

1 JUMP TO 5 IF Yl > 1 B 8
2 JUMP T07IF1B7>Y1
3 II •*-Y1
4 HALT
5 Yl <*- Y1 / 10.
6 JUMP TO 1
7 Y1 «*•» Y1 x 10e

8 JUMP TO Z

Trickier, shorter, and probably slower, would be

1 JUMP T05IF1B8>Y1IFY1>1B7
2 Yl Y1 / 10e IF Y1 > 1 B 8
3 Y1 Y1 x 10, IP 1 B 7 > Y1
4 JUMP TO 1
5 n ^ Y1
6 HALT

%

Example Sub-Program 3, Find the maximum of a set of II numbers;
the numbers are Y- variables with consecutive subscripts; YI2 is the
first variable of the group. II > 10

1 CI YI2
2 13 •*- 12
3 II 12 + ii - i
4 8, 14, 12 + 1, 1, II,
5 JUMP TO 8 IF CI > YI4
6 CI <- YI4
7 13 <r- 14
8 BYPASS
9 JUMP TO 15

CI is the desired maximum and 13 is the subscript of the maximum Y of
the set. Statement 8 was necessary to end each iteration on a common
statement. Statement 3 was necessary because the expression 12 + II - 1
was too long to include in iteration statement 4. Note statement 9 at
the end — a variable JUMP statement enabling the main program to use
this sub-program several times and exit to different statements for
continuation.

Example Program 5. Generalized matrix multiplication of up to a
20 x 20 matrix. Multiply the 16 x 12 matrix YN1 by the 14 x 16 matrix
CN1 obtaining the product elements by the relation

16
\ - 2 CN1(13,15) x YN1(15,11)

15-1
punching the elements as they are being computed.

0 CN1, COLS, 20, START, 25,
0 YN1, COLS, 20, START, 25,
0 READ '
7 4, II, 1, 1, 12,
1 4, 13, 1, 1, 14,
6 Y1 <- 0o

2 3, 15, 1, 1, 16,
3 Y1 Y1 + CN1(I3,I5) x YN1(I5,I1)
4 PUNCH Y1 PUNCH 13 PUNCH H
8 HALT

The various outputs that may be obtained with this program are illustrated
in Appendix VII. Notice nesting of iteration statements.

55

A P P E N D I X V I I

LISTINGS OF OUTPUT „ On the following pages are shown the input to
and output from RUNCIBLE I as it works on Example Problem 5<> First
the program deck is shown„ Due to the shortness of the problem5 no
attempt was made to keep the number of variables down to a minimumQ

Word 1 of the header card was made negative for the type Y operation0

Statement number 3 Would have fit onto a single card but the extra
spaces were added for claritye

00001
00001
00001
00071
00011
00061
00021
00051

EXAMPLES MATRIX MULTIPLICATION
CN1K COLSK 2OK STARTK 25K F
YN1K COLSK 20K STARTK 25K F
READ F
4K I1K IK IK I2K
4K I3K IK IK 14K
YX Z OJ F

F
F

3K< I5K IK IK I6K F
YX Z Y1 S CN1LI3K I5R X YN1LI5

•I K IXR F
00041
00081 HALT

PUNCH Y1 PUNCH 13 PUNCH II F

FF

1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2 3 3 3 3 3 3 3 3 3 3 4 -4 4 ; 4 : 4 -4 .

y

E X A M P L E 3 M A T R I X M U L T I P L I B L R 1 9 0 0 1 9 9 7 F U L L R E G 1 0 0 2 0 0 0 3 0 F U L L
O O O l 0 0 0 0 0 0 0 0 1 9 R E G Y 0 0 3 1 0 4 8 1 0 0 0 2 0 0 0 0 0 0 0 0 3 0 R E G C 0 4 8 2 0 9 3 2 0 0 0 3 0 0 0 0 0 0 0 4 8 1 R E G S 0 9 3 3 0 9 4 2 0 0 0 4 0 0 0 0 0 0 0 9 3 2 R E G T 0 9 4 3 0 9 5 2 0 0 0 5 0 0 0 0 0 0 0 9 4 2 G O T O N O P 8 0 0 3 1 F S 0 0 0 0 L 0 D 1 E O i l CN1K 1 N O P 8 0 0 3 1 F 2 0 K S 0 0 0 0 L 0 D 1 E O i l Y N 1 K 1 N O P 8 0 0 3 1 F 2 0 K S 0 0 0 0 L 0 D 1 E O i l R E A D 1 L 0 D S 0 0 0 7 E 0 1 6 S 0 0 0 7 L 0 D 1 E O i l 1 1 T 0 0 0 7 L 0 D A B C 0 0 1 S T D 1 0 0 0 1 S 0 0 0 1 1

S 0 0 0 1 L 0 D 1 E O i l 1 3 T 0 0 0 1 L 0 D A B C 0 0 1 S T D 1 0 0 0 3 S 0 0 0 6 S 0 0 0 6 L 0 D 1 E O i l Y 1 Z T 0 0 0 6 L 0 D A B C 0 1 Y 1 Z
S T D Y 0 0 0 1 S 0 0 0 2 S 0 0 0 2 L 0 D 1 E O i l 1 5 T 0 0 0 2 L 0 D A B C 0 0 E O i l 1 S T D 1 0 0 0 5 S 0 0 0 3 S 0 0 0 3 L 0 D 1 E O i l Y 1 Z T 0 0 0 3 R A U 1 0 0 0 5 C N 1 L 1
M P Y A B C 0 2 R X Y A L 0 1 0 0 0 1 K 1 1 R S L T 0 0 0 4 K 1 1 R
A L 0 8 0 0 2 L 0 D Y 0 0 0 4 S T D W 0 0 0 0 R A U 1 0 0 0 3 M P Y A B C 0 2 A L 0 1 0 0 0 5 S L T 0 0 0 4 A L 0 8 0 0 2 R A L C 0 0 0 4

C A T I O N C L O C K

0 L S K T A R T 0 L S K T A R T

0 J

Y 1 K 1 L

56

- - - - -u. •

4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1
9 2
9 3

L 0 D W O O 0 0
S T D A C C
L 0 D E 0 0 9
R A L Y 0 0 0 1
L 0 D E 0 0 8
S T L Y 0 0 0 1 1 F

S 0 0 0 0 L 0 D 1 E O i l
1 R A L 1 0 0 0 5

A L 0 A B C 0 0
S T L 1 0 0 0 5 1 F

S 0 0 0 0 L 0 D 1 E O i l
1 R S L 1 0 0 0 5

A L 0 1 0 0 0 6
B M 1 S 0 0 0 4 S 0 0 0 3

S 0 0 0 4 L 0 D 1 E O i l
T 0 0 0 4 L 0 D A B C 0 3

E O i l

S T D P 0 0 0 0
L 0 D , A B C 0 4
S T D P 0 0 0 1
L 0 D A B C 0 5
S T D P 0 0 0 2
R A L A B C 0 6
L 0 D 1 F E 0 1 7

S 0 0 0 0 L 0 D 1 E O i l
1 R A L 1 0 0 0 3

A L 0 A B C 0 0
S T L 1 0 0 0 3 1 F

S 0 0 0 0 L 0 D 1 E O i l
1 R S L 1 0 0 0 3

A L 0 1 0 0 0 4
B M 1 1 F S 0 0 0 6

S 0 0 0 0 L 0 D 1 E O i l
1 R A L 1 0 0 0 1

A L 0 A B C 0 0
S T L I 0 0 0 1 1 F

S 0 0 0 0 L 0 D 1 E O i l
1 R S L 1 0 0 0 1

A L 0 1 0 0 0 2
B M 1 S 0 0 0 8 S 0 0 0 1

S 0 0 0 8 L 0 D 1 E O i l
T 0 0 0 8 H L T 8 0 0 3 8 7 7 8
A B C 0 6 0 0 0 0 0 3 0 0 0 4
A B C 0 5 0 0 0 0 0 2 0 0 0 1
A B C 0 4 0 0 0 0 0 1 0 0 0 3
A B C 0 3 0 0 0 0 0 1 0 0 0 1
A B C 0 2 0 0 0 0 0 0 0 0 2 0
A B C 0 1 0 0 0 0 0 0 0 0 0 0
A B C 0 0 0 0 0 0 0 0 0 0 0 1

1 5 Z L
1 R S
I 5

G O T O 0 0 0 3
1 F
R

L
W

1 6
1 5

P U N C H
U N C H
N C H 1

Y 1 P
1 3 P U
1 F

1 3
1
1 3

Z L
R S

G 0
1 F
R

T 0
L

W

0 0 0 6
1 4
i 3

1 1
1
1 1

Z L
R S

G 0
1 F
R

T 0
L

W

0 0 0 1
1 2
I 1

H A L T

57

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4 <
4 :
4 ;
4 :
4 '
4 I

E

0 0 0 1

0 0 0 2

0 0 0 3

0 0 0 4

0 0 0 5
G O T O
S 0 0 0 0
1
S 0 0 0 0
1
S 0 0 0 0
1
S 0 0 0 7
1

S 0 0 0 1
1

S 0 0 0 6
1

S 0 0 0 2
1

S 0 0 0 3
1

X A
R

R

R

R

M P
E G
0 0
E G
0 0
E G
0 0
E G
0 0

R E G
0 0

N O P
N O P
N O P
N O P
N O P
N O P
L 0 D
N O P
L 0 D
S T D
N O P
L 0 D
S T D
N O P
L 0 D
S T D
N O P
L 0 D
S T D
N O P
R A U
M P Y
A L 0
R A A
L 0 D
S T D
R A U
M P Y
A L 0
R A A
R A U
F M P
F A D
S T U

L E 3 M A T R I X M U L T I P L I C A T I O N
1 9 0 0 1

0 0 0 0
Y 0 0 2 0

0 0 0 0
C 0 4 7 1

0 0 0 0
S 0 9 2 2

0 0 0 0
T 0 9 3 2

0 0 0 0
8 0 0 3

1
8 0 0 3

1

1
1
1
A
I
1
A
I
1
A B C 0 1
Y 0 0 0 1
1

C O O
0 0 0 5

8 0 0 3

B C 0 0
0 0 0 1

B C 0 0
0 0 0 3

A B

I 0 0 0 5
A B C 0 2
1 0 0 0 1

8 0 0 2
Y 0 0 0 4
W 0 0 0 0
1 0 0 0 3
A B C 0 2
1 0 0 0 5

8 0 0 2
C 0 0 0 4
WO 0 0 0
Y 0 0 0 1
Y 0 0 0 1

1
1
1
1
1
1
E
1

1
1

9 0 0 0
0 4 7 0
0 0 1 9
0 9 2 1
0 4 7 0
0 9 3 1
0 9 2 1

0 9 3 1
F
F
F
F
F
F

0 1 6

1 F

C N 1 K
2 0 K

Y N 1 K
2 0 K

R E A D

I 1
1

I 3
1

C 0 L S K
S T A R T
C 0 L S K
S T A R T

1 F Y 1 Z 0 J

1 F F
1 F 1 5 Z

1
1 F
1 F Y 1 Z Y 1 S

C N 1 L 1 3 K 1 5
R X Y N 1 L 1 5
K I 1 R

1 F

58

4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9 6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9 8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7

N O P 1 1 F 1 5 Z L R A L 1 0 0 0 5 1 R S A L 0 A B C 0 0 i 5 R S
S T L 1 0 0 0 5 1 F M O P 1 1 F G 0 T O 0 0 0 3 R S L 1 0 0 0 5 1 F L I 6 A L 0 ! 0 0 0 6 R W 1 5 B M 1 1 F S 0 0 0 3 N O P 1 1 F P U N C H Y 1 P L 0 D A B C 0 3 U N C H 1 3 P U S T D P 0 0 0 0 N C H I 1 F L 0 D A B C 0 4 S T D P 0 0 0 1 L 0 D A B C 0 5 S T D P 0 0 0 2 R A L A B C 0 6
L 0 D 1 F E 0 1 7 N O P 1 1 F 1 3 R L R A L 1 0 0 0 3 1 R S A L 0 A B C 0 0 1 3 R S
S T L 1 0 0 0 3 1 F N O P 1 1 F G 0 TO 0006 R S L 1 0 0 0 3 1 F L 1 4 A L 0 1 0 0 0 4 R W 1 3 B M 1 1 F S 0 0 0 6 N O P 1 1 F i 1 Z L R A L 1 0 0 0 1 1 R S A L 0 A B C 0 0 I 1

R S
S T L 1 0 0 0 1 1 F N O P 1 1 F G 0 TO 0001 R S L 1 0 0 0 1 1 F L 1 2 A L 0 1 0 0 0 2 R W 1 1 B M ! 1 F S 0 0 0 1 N O P 1 1 F H A L T H L T 8 0 0 3 8 7 7 8 0 0 0 0 0 3 0 0 0 4 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1

5 9

E X A M P L E 3 M A T R s X M U L T ! P L 1 C A T I O N 1
R E G 1 9 0 0 1 2

0 0 0 1 0 0 0 0 0 0 9 0 0 0 3
R E G Y 0 0 2 0 0 4 7 0 4

0 0 0 2 0 0 0 0 0 0 0 0 1 9 5
R E G C 0 4 7 1 0 9 2 1 6

0 0 0 3 0 0 0 0 0 0 0 4 7 0 7
R E G S 0 9 2 2 0 9 3 1 8

0 0 0 4 0 0 0 0 0 0 0 9 2 1 9
R E G T 0 9 3 2 0 9 4 1 1 0

0 0 0 5 0 0 0 0 0 0 0 9 3 1 1 1
G O T O N O P 8 0 0 3 1 F 1 2
S 0 0 0 0 R A A 1 E O i l C N 1 K C 0 L S K 1 3
1 N O P 8 0 0 3 1 F 2 0 K S T A R T 1 4
S 0 0 0 0 R A A 1 E O i l Y N 1 K C 0 L S K 1 5
1 N O P 8 0 0 3 1 F 2 0 K S T A R T 1 6
S 0 0 0 0 R A A 1 E O i l R E A D 1 7
1 L 0 D S 0 0 0 7 E 0 1 6 1 8
S 0 0 0 7 R A A 1 E O i l 1 1 Z 1 9
T 0 0 0 7 L 0 D A B C 0 0 1 2 0

S T D 1 0 0 0 1 S 0 0 0 1 2 1
S 0 0 0 1 R A A 1 E O i l 1 3 Z 2 2
T 0 0 0 1 L 0 D A B C 0 0 1 2 3

S T D 1 0 0 0 3 S 0 0 0 6 2 4
S 0 0 0 6 R A A 1 E O i l Y 1 Z 0 J 2 5
T 0 0 0 6 L 0 D A B C 0 1 2 6

S T D Y 0 0 0 1 S 0 0 0 2 F 2 7
S 0 0 0 2 R A A 1 E O i l 1 5 Z 2 8
T 0 0 0 2 L 0 D A B C 0 0 1 • 2 9

S T D 1 0 0 0 5 S 0 0 0 3 3 0
S 0 0 0 3 R A A 1 E O i l Y 1 Z Y 1 S 3 1
T 0 0 0 3 R A U 1 0 0 0 5 C N 1 L 1 3 K 1 5 3 2

M P Y A B C 0 2 R X Y N 1 L 1 5 3 3
A L 0 1 0 0 0 1 K 1 1 R 3 4
R A A 8 0 0 2 3 5
L 0 D Y 0 0 0 4 A F 3 6
S T D W 0 0 0 0 3 7
R A U S 0 0 0 3 3 8
M P Y A B C 0 2 3 9
A L 0 1 0 0 0 5 4 0
R A A 8 0 0 2 4 1
R A U C 0 0 0 4 A 4 2
F M P w o o o o 4 3
F A D Y 0 0 0 1 4 4
S T U Y 0 0 0 1 1 F 4 5

so

S 0 0 0 0 R A A 1 E O i l 1 5 Z L 4 6
1 R A L 1 0 0 0 5 1 R S 4 7

A L 0 A B C 0 0 1 5 4 8
S T L 1 0 0 0 5 1 F 4 9

S 0 0 0 0 R A A 1 E O i l G 0 T 0 0 0 0 3 5 0
1 R S L 1 0 0 0 5 I F L i 6 5 1

A L 0 1 0 0 0 6 R W 1 5 5 2
B M I S 0 0 0 4 S 0 0 0 3 5 3

S 0 0 0 4 R A A 1 E O i l P U I M C H Y 1 P 5 4
T 0 0 0 4 L 0 D A B C 0 3 U N C H 1 3 P U 5 5

S T D P 0 0 0 0 N C H 1 1 F 5 6
L 0 D A B C 0 4 5 7
S T D P 0 0 0 1 5 8
L 0 D A B C 0 5 5 9
S T D P 0 0 0 2 6 0
R A L A B C 0 6 6 1
L 0 D 1 F E 0 1 7 6 2

S 0 0 0 0 R A A 1 E O i l 1 3 Z L 6 3
1 R A L 1 0 0 0 3 1 R S 6 4

A L 0 A B C 0 0 1 3 6 5
S T L 1 0 0 0 3 1 F 6 6

S 0 0 0 0 R A A 1 E O i l G 0 T 0 0 0 0 6 6 7
1 R S L 1 0 0 0 3 i F L 1 4 6 8

A L 0 1 0 0 0 4 R W 1 3 6 9
B M S 1 F S 0 0 0 6 7 0

S 0 0 0 0 R A A 1 E O i l I 1 Z L 7 1
1 R A L 1 0 0 0 1 1 R S 7 2

A L 0 A B C 0 0 1 1 7 3
S T L 1 0 0 0 1 1 F 7 4

S 0 0 0 0 R A A 1 E O i l G 0 T 0 0 0 0 1 7 5
1 R S L 1 0 0 0 1 ! F L 1 2 7 6

A L 0 1 0 0 0 2 R W i 1 7 7
B M 1 S 0 0 0 8 S 0 0 0 1 7 8

S 0 0 0 8 R A A 1 E O i l H A L T 7 9
T 0 0 0 8 H L T 8 0 0 3 8 7 7 8 8 0
A B C 0 6 0 0 0 0 0 3 0 0 0 4 8 1
A B C 0 5 0 0 0 0 0 2 0 0 0 1 8 2
A B C 0 4 0 0 0 0 0 1 0 0 0 3 8 3
A B C 0 3 0 0 0 0 0 1 0 0 0 1 8 4
A B C 0 2 0 0 0 0 0 0 0 0 2 0 8 5
A B C 0 1 0 0 0 0 0 0 0 0 0 0 8 6
A B C 0 0 0 0 0 0 0 0 0 0 0 1 8 7

61

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

70 1951 8999 +
0 0 0 1
0 0 0 0
1 9 9 5
0 9 3 8
1 9 8 8
1 9 8 4
1 9 7 9
1 9 7 4
1 9 6 9
1 9 6 4
19 6 0
1 9 5 5
1 9 5 0
1 9 0 5
0 9 5 0
0 9 4 5

0 0 0 0 0 0 0 0 1 9
0 0 0 0 0 0 0 9 4 4
6 9 0 9 4 4 1 9 9 4
0 0 0 9 3 8 1 9 9 1
2 4 0 0 2 4 1 9 8 7
3 5 0 0 0 4 1 9 8 3
1 9 0 9 4 6 1 9 7 8
6 9 1 8 7 7 1 9 7 3
2 0 0 0 3 1 1 9 6 8
1 5 0 0 2 5 1 9 6 3
6 9 0 9 4 8 1 9 5 9
6 9 1 9 5 4 1 8 4 0
1 5 0 0 2 3 1 9 1 1
6 6 0 0 2 0 1 9 1 6
0 0 0 0 0 3 0 0 0 4
0 0 0 0 0 0 0 0 0 0

0 0 0 2
1 9 9 9
1 9 9 4
1 9 9 1
0 9 3 5
1 9 8 3
1 9 7 8
1 9 7 3
19 6 8
1 9 6 3
1 9 5 9
1 9 5 4
1 9 1 1
1 9 1 6
0 9 4 9
0 9 4 4

0 0 0 0 0 0 0 0 3 0
0 0 8 0 0 3 1 9 9 7
2 4 0 0 2 0 1 9 9 3
6 9 0 9 4 5 1 9 9 0
0 0 0 9 3 5 1 9 8 7
1 5 1 9 8 2 8 0 0 2
1 5 0 0 2 4 1 9 7 7
2 4 0 0 0 0 1 9 7 2
6 5 0 0 2 4 1 9 6 7
4 6 1 9 6 2 0 9 3 5
2 4 1 8 5 1 1 9 5 8
6 5 0 0 2 2 1 9 5 3
4 6 1 9 2 2 0 9 3 8
1 5 0 0 2 1 1 9 2 7
0 0 0 0 0 2 0 0 0 1
0 0 0 0 0 0 0 0 0 1

0 0 0 3
1 9 9 7
0 9 3 3
1 9 9 0
1 9 8 7
1 9 8 2
1 9 7 7
1 9 7 2
1 9 6 7
0 9 3 6
1 9 5 8
1 9 5 3
19 2 2
1 9 2 7
0 9 4 8
0 9 4 4

4 8 1
8 0 0 3 1 9 9 6

9 3 3 1 9 9 3
2 4 0 0 3 1 1 9 8 9
6 0 0 0 2 4 1 9 8 6
6 9 0 0 3 4 1 9 8 1
3 5 0 0 0 4 1 9 7 6
6 9 1 9 7 1 1 7 5 8
1 5 0 9 4 4 1 9 6 6

9 3 6 1 9 6 2
6 9 0 9 4 9 1 9 5 7
1 5 0 9 4 4 1 9 5 2
6 5 0 0 2 0 1 9 3 3
4 6 1 9 3 8 0 9 3 3

1 0 0 0 3
1

4
1 9 9 6
1 9 9 3

9 3 4
1 9 8 6
1 9 8 1
1 9 7 6
1 9 7 1
19 6 6
19 6 2
1 9 5 7
1 9 5 2
1 9 3 3

9 4 0
9 4 7
9 4 4

9 3 2
6 9 1 9 9 5 1 7 9 0
6 9 0 9 4 4 1 9 9 2

9 3 4 1 9 8 9
1 9 0 9 4 6 1 9 8 5
2 4 1 8 7 7 1 9 8 0
1 5 1 9 7 5 8 0 0 2
6 5 0 0 3 1 1 9 7 0
2 0 0 0 2 4 1 9 6 5
6 9 0 9 4 7 1 9 6 1
2 4 1 8 5 2 1 9 5 6
2 0 0 0 2 2 1 9 5 1
1 5 0 9 4 4 1 9 4 4

9 4 0 1 9 3 8
1 0 0 0 1

1

70 1951 8998+
0 0 0 1
0 0 0 0
0 9 5 0
0 9 3 8
1 9 9 2
1 9 8 9
1 9 8 4
1 9 7 9
1 9 7 4
1 9 6 9
1 9 6 6
1 9 6 1
1 9 5 6
1 9 5 1
0 9 6 0
0 9 5 5

0 0 0 0 0 0 0 0 1 9
0 0 0 0 0 0 0 9 5 4
6 9 0 9 5 4 1 9 9 5
6 9 0 9 3 8 1 8 9 1
2 4 0 0 2 4 0 9 3 5
3 5 0 0 0 4 1 9 8 8
1 9 0 9 5 6 1 9 8 3
6 9 1 8 7 7 1 9 7 8
2 0 0 0 3 1 1 9 7 3
1 5 0 0 2 5 1 9 6 8
6 9 0 9 5 8 1 9 6 5
6 9 1 9 6 0 1 8 4 0
1 5 0 0 2 3 1 9 5 5
6 6 0 0 2 0 1 9 5 0
0 0 0 0 0 3 0 0 0 4
0 0 0 0 0 0 0 0 0 0

0 0 0 2
1 9 9 9
1 9 9 5
0 9 4 9
0 9 3 5
1 9 8 8
1 9 8 3
1 9 7 8
1 9 7 3
19 6 8
1 9 6 5
19 6 0
1 9 5 5
1 9 5 0
0 9 5 9
0 9 5 4

0 0 0 0 0 0 0 0 3 0
0 0 8 0 0 3 1 9 9 7
2 4 0 0 2 0 0 9 3 3
6 9 0 9 5 5 1 9 9 3
6 9 0 9 3 5 1 8 9 1
1 5 1 9 8 7 8 0 0 2
1 5 0 0 2 4 1 9 8 2
2 4 0 0 0 0 1 9 7 7
6 5 0 0 2 4 1 9 7 2
4 6 0 9 3 6 0 9 3 5
2 4 1 8 5 1 1 9 6 4
6 5 0 0 2 2 1 9 5 9
4 6 1 9 5 4 0 9 3 8
1 5 0 0 2 1 1 9 1 1
0 0 0 0 0 2 0 0 0 1
0 0 0 0 0 0 0 0 0 1

0 0 0 3
1 9 9 7
0 9 3 3
1 9 9 3
0 9 4 6
1 9 8 7
19 8 2
1 9 7 7
1 9 7 2
0 9 3 6
1 9 6 4
1 9 5 9
1 9 5 4
1 9 1 1
0 9 5 8
0 9 5 4

4 8 1
8 0 0 3 1 9 9 6

6 9 0 9 3 3 1 8 9 1
2 4 0 0 3 1 0 9 3 4
6 0 0 0 2 4 1 9 9 1
6 9 0 0 3 4 1 9 8 6
3 5 0 0 0 4 1 9 8 1
6 9 1 9 7 6 1 7 5 8
1 5 0 9 5 4 1 9 7 1
6 9 0 9 3 6 1 8 9 1
6 9 0 9 5 9 1 9 6 3
1 5 0 9 5 4 1 9 5 8
6 5 0 0 2 0 1 9 5 3
4 6 0 9 4 0 0 9 3 3

1 0 0 0 3
1

4
1 9 9 6

9 4 4
9 3 4

1 9 9 1
19 8 6
1 9 8 1
1 9 7 6
1 9 7 1

9 4 7
1 9 6 3
1 9 5 8
1 9 5 3

9 4 0
9 5 7
9 5 4

9 3 2
6 9 0 9 3 9 1 7 9 0
6 9 0 9 5 4 1 9 9 4
6 9 0 9 3 4 1 8 9 1
1 9 0 9 5 6 1 9 9 0
2 4 1 8 7 7 1 9 8 5
1 5 1 9 8 0 8 0 0 2
6 5 0 0 3 1 1 9 7 5
2 0 0 0 2 4 1 9 7 0
6 9 0 9 5 7 1 9 6 7
2 4 1 8 5 2 1 9 6 2
2 0 0 0 2 2 1 9 5 7
1 5 0 9 5 4 1 9 5 2
6 9 0 9 4 0 1 8 9 1

1 0 0 0 1
1

70 1951 8899 +
0 0 0 1
0 0 0 0
1 9 9 5
0 9 2 8
1 9 8 8
1 9 8 4
1 9 7 9
1 9 7 4
1 9 6 9
1 9 6 5
1 9 6 0
1 9 5 5
1 9 5 0
0 9 4 0
0 9 3 5

0 0 0 0 0 0 9 0 0 0
0 0 0 0 0 0 0 9 3 4
6 9 0 9 3 4 1 9 9 4
0 0 0 9 2 8 1 9 9 1
2 4 9 0 0 5 1 9 8 7
8 0 8 0 0 2 1 9 8 3
1 5 9 0 0 5 1 9 7 8
2 1 0 0 2 1 1 9 7 3
1 5 9 0 0 6 1 9 6 8
6 9 0 9 3 8 1 9 6 4
6 9 1 9 5 9 1 8 4 0
1 5 9 0 0 4 1 9 5 4
6 6 9 0 0 1 1 9 1 1
0 0 0 0 0 3 0 0 0 4
0 0 0 0 0 0 0 0 0 0

0 0 0 2
1 9 9 9
1 9 9 4
1 9 9 1
0 9 2 5
1 9 8 3
1 9 7 8
1 9 7 3
19 6 8
1 9 6 4
1 9 5 9
1 9 5 4
1 9 1 1
0 9 3 9
0 9 3 4

0 0 0 0 0 0 0 0 2 0
0 0 8 0 0 3 1 9 9 7
2 4 9 0 0 1 1 9 9 3
6 9 0 9 3 5 1 9 9 0
0 0 0 9 2 5 1 9 8 7
6 9 2 0 2 4 1 9 8 2
8 0 8 0 0 2 1 9 7 7
6 5 9 0 0 5 1 9 7 2
4 6 1 9 6 7 0 9 2 5
2 4 1 8 5 1 1 9 6 3
6 5 9 0 0 3 1 9 5 8
4 6 1 9 5 3 0 9 2 8
1 5 9 0 0 2 1 9 2 2
0 0 0 0 0 2 0 0 0 1
0 0 0 0 0 0 0 0 0 1

0 0 0 3
1 9 9 7
0 9 2 3
1 9 9 0
1 9 8 7
1 9 8 2
1 9 7 7
1 9 7 2
0 9 2 6
1 9 6 3
1 9 5 8
1 9 5 3
19 2 2
0 9 3 8
0 9 3 4

4 7 1
8 0 0 3 1 9 9 6

9 2 3 1 9 9 3
2 4 0 0 2 1 1 9 8 9
6 0 9 0 0 5 1 9 8 6
2 4 1 8 7 7 1 9 8 1
6 0 2 4 7 5 1 9 7 6
1 5 0 9 3 4 1 9 7 1

9 2 6 1 9 6 7
6 9 0 9 3 9 1 9 6 2
1 5 0 9 3 4 1 9 5 7
6 5 9 0 0 1 1 9 5 2
4 6 1 9 3 3 0 9 2 3

1 0 0 0 3
1

4
1 9 9 6
1 9 9 3

9 2 4
19 8 6
1 9 8 1
1 9 7 6
1 9 7 1
1 9 6 7
1 9 6 2
1 9 5 7
1 9 5 2

9 3 0
9 3 7
9 3 4

9 2 2
6 9 1 9 9 5 1 7 9 0
6 9 0 9 3 4 1 9 9 2

9 2 4 1 9 8 9
1 9 0 9 3 6 1 9 8 5
6 0 9 0 0 3 1 9 8 0
3 9 1 8 7 7 1 9 7 5
2 0 9 0 0 5 1 9 7 0
6 9 0 9 3 7 1 9 6 6
2 4 1 8 5 2 1 9 6 1
2 0 9 0 0 3 1 9 5 6
1 5 0 9 3 4 1 9 5 1

9 3 0 1 9 3 3
1 0 0 0 1

1

70 1951 8888+
0 0 0 1
0 0 0 0
0 9 4 0
0 9 2 8
1 5 6 9
1 5 6 6
1 5 6 1
1 5 5 6
1 5 5 1
15 2 2
1 5 2 7
1 5 3 2
1 5 3 7
0 9 5 0
0 9 4 5

0 0 0 0 0 0 9 0 0 0
0 0 0 0 0 0 0 9 4 4
6 9 0 9 4 4 1 5 7 2
8 0 0 9 2 8 1 8 9 1
2 4 9 0 0 5 0 9 2 5
8 0 8 0 0 2 1 5 6 5
1 5 9 0 0 5 1 5 6 0
2 1 0 0 2 1 1 5 5 5
1 5 9 0 0 6 1 5 5 0
6 9 0 9 4 8 1 5 3 3
6 9 1 5 3 8 1 8 4 0
1 5 9 0 0 4 1 5 4 3
6 6 9 0 0 1 1 5 4 8
0 0 0 0 0 3 0 0 0 4
0 0 0 0 0 0 0 0 0 0

0 0 0 2
1 9 9 9
1 5 7 2
0 9 3 9
0 9 2 5
1 5 6 5
15 6 0
1 5 5 5
1 5 5 0
1 5 3 3
1 5 3 8
1 5 4 3
1 5 4 8
0 9 4 9
0 9 4 4

0 0 0 0 0 0 0 0 2 0
0 0 8 0 0 3 1 5 7 4
2 4 9 0 0 1 0 9 2 3
6 9 0 9 4 5 1 5 7 0
8 0 0 9 2 5 1 8 9 1
6 9 2 0 2 4 1 5 6 4
8 0 8 0 0 2 1 5 5 9
6 5 9 0 0 5 1 5 5 4
4 6 0 9 2 6 0 9 2 5
2 4 1 8 5 1 1 5 4 4
6 5 9 0 0 3 1 5 4 9
4 6 1 5 0 4 0 9 2 8
1 5 9 0 0 2 1 5 0 9
0 0 0 0 0 2 0 0 0 1
0 0 0 0 0 0 0 0 0 1

0 0 0 3
1 5 7 4
0 9 2 3
1 5 7 0
0 9 3 6
1 5 6 4
1 5 5 9
1 5 5 4
0 9 2 6
1 5 4 4
1 5 4 9
1 5 0 4
1 5 0 9
0 9 4 8
0 9 4 4

4 7 1
8 0 0 3 1 5 7 3

8 0 0 9 2 3 1 8 9 1
2 4 0 0 2 1 0 9 2 4
6 0 9 0 0 5 1 5 6 8
2 4 1 8 7 7 1 5 6 3
6 0 2 4 7 5 1 5 5 8
1 5 0 9 4 4 1 5 5 3
8 0 0 9 2 6 1 8 9 1
6 9 0 9 4 9 1 5 0 5
1 5 0 9 4 4 1 5 1 0
6 5 9 0 0 1 1 5 1 5
4 6 0 9 3 0 0 9 2 3

1 0 0 0 3
1

4
1 5 7 3

9 3 4
9 2 4

15 6 8
1 5 6 3
1 5 5 8
1 5 5 3

9 3 7
1 5 0 5
1 5 1 0
1 5 1 5

9 3 0
9 4 7
9 4 4

9 2 2
6 9 0 9 2 9 1 7 9 0
6 9 0 9 4 4 1 5 7 1
8 0 0 9 2 4 1 8 9 1
1 9 0 9 4 6 1 5 6 7
6 0 9 0 0 3 1 5 6 2
3 9 1 8 7 7 1 5 5 7
2 0 9 0 0 5 1 5 5 2
6 9 0 9 4 7 1 5 1 1
2 4 1 8 5 2 1 5 1 6
2 0 9 0 0 3 1 5 2 1
1 5 0 9 4 4 1 5 2 6
8 0 0 9 3 0 1 8 9 1

1 0 0 0 1
1

G2

COMPILER III - SOAP III

BOARD WIRING

CONVENTION:
right, e.g.

A11 hubs (except CONTROL INFORMATION) are numbered from left to

I o © ©

READ CARD B, Cols.
tt
t»

I e -9 4 3* 6 7 8 9 /o

it
•t
H
tt
tt
II
tt

It
»
tt
It
It
II
It

II
II
It
tt
It
II
ft

1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80

to
ii
it
»
n
II
ti
tt

If

It

II

II
II
II
II

II
II
II

II
II
It
II

B, Wd 1, Pos. 1-10 n Wd 2, » 1-10 tt Wd 3, it 1-10 •t Wd 4, it 1-10 tt Wd 5, » 1-10 tt Wd 6, tt 1-10 it Wd 7, n 1-10 it Wd 8, it 1-10
JACKPLUG: DI-C on DIGIT SEIECTOR READ (left hand side)

DI-C on DIGIT SELECTOR PUNCH (left hand side)
RSU
BC-QFF (if DPBC device is not used)

S TOGETHER: FIRST READING, Cols. 2^7, BEAD COLUMN SPLIT 1, 12-X and wire to

READ COLUMN SPLIT 2, C
PILOT SELECTOR 3, X PU
PILOT SEIECTOR 1, D PU # READ
COLUMN SPLIT 1, C
PILOT SELECTOR 2, D PU
ALPHABETIC FIRST READ, Wd 1

n
it
it
ii
tt
tt
n

FIRST READING, Cols. 4 to it it M 5 it H it tt 41 tt

It H It 42 it
II tt It 43-47 n II
)| It tt 48-50 it

H tt 51-55 n 11 tt tt 56 it
9 It n 57-61 i»
Ii II II 62 it H It it 63-67 it
it It » 68-72 tt

ENTRY B »

READ CARD C, Cols. 1-4 to it H tl it 41 II
it It It tt 43 It
W tt It it 44-47 M

it tt It it 48-50 It
tt II II n 51 II
tt It It tt 52-55 W

it » It n 56 tt it It tt it 57 II
it tt- H n 58-61 w

tt tt It it 62 II tt It tt tt 63-67 II
9 i 9 9 tt 68-72 it

n it Wd 4, Pos. 1< it w Wd 2 w It Wd 4, Pos. 4 it tt Wd 3
tt It Wd 4, Pos. 5
tt ft. Wd 5
tt tt Wd 6

PILOT SET ECTOR 4, Lower T

COSELECTOR 3, T,
PILOT SELECTOR 1
STORAGE ENTRY C,
COSELECTOR 3, N,
STORAGE ENTRY C,
STORAGE ENTRY C,

» it tt
it
ii
it
tt
it
»
it
n
ti

tt
n
H
n
n
it
it
it
it

Pos. 1-4
, Upper T

Wd 1, Pos. 6
Pos. 1-4 g
Wd 1, Pos. 7-10

Pos. 6-8
Pos. 6

it
it
ii
u
H
It
It
It
II

Wd 4,
Wd 2,
Wd 2,
Wd 8,
Wd 4,
Wd 3,
Wd 3,
Wd 9,
Wd 4,
Wd 5,
Wd 6,

Pos. 7-10
Pos. 7-10

9
6
7-10 /

Pos.
Pos.
Pos.
Pos. 7-10
Pos. 10
Pos. 6-10
Pos. 6-10

2

STORAGE ENTRY C, Wd 10, Pos..4
18 w w Wd 10, Pos« 5
* M " Wd 10, Pos. 6
n » » Wd 10, Pos. 10
" * H Wd 7, Pos« 7-10

to
it
a
»
i?

COSELECTOR 3, C, Pos. 5
PILOT SELECTOR 2, Lower C

* 1, Lower C
* w 1, Upper C

COSELECTOR 5, C, Pos. 1"4

CAI to PILOT SELECTOR 4, Upper N
ALPHA IN, W1 to PILOT SELECTOR 4, Upper 0

JACKPLUG: On ALPH IN, WL-W2; W2-W3; W3-W4; W4-W5; W5-W6

WORD SIZE 10 for B, Wds 1-8 C, Wds
" • 0 for B, Wd 9^Wd 10
* * 4 for C, Wds 7-9
" * . 7 for C, Wd 10

COSELECTOR 4, T, Pos. 4 to n tt tt tt 5 it
•

it " C » 3 it
it " C » 4 it

!• C » 5 it

PILOT SELECTOR 3, I PU n
n w 4, I PU $ X PU it
it » 5, I PU it
u w 6, I PU it
tt H 7, I PU it
H i * 8, I PU it
» i » 9, I PU it
it i 11 10, I PU n

Emit BEAD DIGIT 2 to PILCT SELECTOR 1, Upper

PILOT SELECTOR 5, Ujpper N to

COSELECTOR PICKUP 6
PUNCH CARD A, Cols. 41 •'
PUNCH CARD C, Cols. 41
PUNCH COLUMN SPLIT 8, 12-X
P+ 9 PILOT SELECTOR 10, Upper C
STORAGE EXIT C, Wd 8, Pos. 10

COSELECTOR PICKUP 3
READ COLUMN SPLIT 2, 12-X
CONTROL INFORMATION 3(numbered from Rt tc
CONTROL INFORMATION 3 Lt.)
PUNCH DELAY 2, OUT
COSELECTOR PICKUP 5
CONTROL INFORMATION 2
PUNCH B

N

H
It

It
tt
tt
It

tt
It
tt
It
II
It
It

M It Upper C n
It 6, Upper N t#

II it Upper C n
* 8, Ujpper N »
II it U^per C u
II 9 Upper T it
tt tt Upper N it
II it Upper C it
II 10, Upper T it
II 5, Lower C

6, Lower C »
It 10, Lower T »
It tt Lower N it

PILOT SEIECTOR 5, Lower N ft
w w 7, Upper C

PUNCH CARD. A, Cols. 78-80
PUNCH COLUMN SPLIT 4, 0-9 ft
STORAGE EXIT B, Wd 1, Pos. 10
PUNCH COLUMN SPLIT 4, 12-X
COSELECTOR 7, C, Pos. 2
PUNCH COLUMN SPLIT 7, 12-X
PILOT SELECTOR 10, Lower C $ PSU
ALPH OUT, Wd 2
ALPH OUT, Wd 1
P+
PUNCH CARD A, Cols. 75-77
PUNCH COLUMN SPLIT 6, 12-X
PSU
ALPH OUT, Wd 6

"3

COSEIECTOR PICKUP 4
" It c „ 6S
" It y
It « 8

PILOT SELECTOR HOLD 1
M It H 5

READ HOLD TO PILOT SELECTOR HOLD 4
PUNCH HOLD TO PILOT » » iq

JACKPLUG: PILOT SELECTOR HOLD, 1-2; 2-3; 3-
COSELECTOR HOLD, 4-S; 5-6; 6-7;

COSSLECTCR HOLD 2 to COSELECTOR HOLD 8

to
it
tt
»
it

it
ii

CONTROL INFORMATION 5
ti II <7

COSELECTOR HOLD 3
ft 4

4;
7'

6-7;
5-6 ;/7

-8

4
1
6

8; 8-9; 9-10

PUNCH CARD A, Cols. 1110 to H II II Cols. 17-20 ti
42 ii

•1 II tl 43-47 ii
II H It 48-50 it
It II II 51-55 it
II
ft It N 56 ii

tl tt 57-61 ii
H II It 62 n
H. II It 63-67 it
II II II 68-72 ii
tl It II 74 it

STORAGE EXIT A, Wd 4, Pos. 9
" w Wd 4, Pos. 10

PUNCH CARD B, Cols,
»» n it

n
it
H
it
n

w
ti
u
it
ii
ii
n
ii

it ii
it it
ii ii
it it

tt n
it ii

ti tt
ii ii
n ii

1
2
3
4
5-6
7
8-10
41
11-20
21-30
31-40
42-50
51-60
61-70
71-80

STORAGE EXIT S, Wd 1, Pos,
M M » Wd 1, ?os,
" " M Wd 1, Pos,

w » Wd 5, Pos,
" " w Wd 9, Pos,

1
4
7-9
1
7-10

tt
n
it
it
it
«
ti
it
ti
ii
ti
it
it
it
ii

ii
it
it
ii
ii

COSELECTOR 6,
STORAGE EXIT
COSELECTOR 8,
PUNCH CARD C,
STORAGE EXIT A

ii ii »
II it it

COSELECTOR 7,
STORAGE EXIT
COSELECTOR 7,
STORAGE EOT

«i it
COSELECTOR 7

T, Pos. 5
Pos,

, Pos e 5 t
ColSo 42

A, Wd 9,
C

Wd 1,
Wd 4,
Wd 2,

C, Pos.
A, Wd 3,

C, Pos.
A, Wd 5,

Wd 6.
C. Pos,

Pos,
Pos,
Pos,
4
Pos,
5
Pos,
PoSo
3

COSELECTOR 7, N, Pos„ 4
" " N, Pos e S

PUNCH COLUMN
STORAGE EXIT

» ti
PUNCH COLUMN
STORAGE EXIT
PUNCH COLUMN
COSEIECTOR 5,
PUNCH COLUMN
STORAGE EXIT

«
n

•s
7,

SPLIT 8,
B, Wd. 1
n Wd x

SPLIT 6,
B, Wd 1
SPLIT
C, Pos.

SPLIT 5,
B, Wd 2,

Wd 3,
Wd 4,
Wd 5,
Wd 6,
Wd 7,
Wd 8,

C
s Bos

, Pos
C
Pos .
C
3-5
C
Pos*
Pos.
Pos.
Pos.
POS.
Pos.
Pos.

7-10

6-10
6-8
6-10

6-10

6-10
6-10

, 2
3

5-6

1-10
1-10
1-10
2-10
1-10
1-10
1-10

PUNCH COLUMN SPLIT 8, 0-9
n n H 6, 0-9

COSELECTOR 5, N, Pos. 2-4
PUNCH COLUMN SPLIT 5, 0-9
COSELECTCR 5, T, Pos. 2-5

PUNCH COLUMN SPLIT 4, C
" " n 7, 0-9

PUNCH CARL C, Cols. 74
PUNCH COLUMN SPLIT 1, C

it rr t» 2 C
PUNCH CARD C, Cols. 7-10
PUNCH COLUMN SPLIT 5, 12-X

» . * 10f 12.x

PUNCH COLUMN SPLIT 3, C
STORAGE EXIT C, Wd 9, Pos. 7-10

» n w Wd 8, Pos. 3-6
M " " Wd 7, Pos. 1-9

PUNCH COLUMN SPLIT 10, C
STORAGE EXIT C, Wd 1, Pos. 6-10

» » '» Wd 4, Pos. 6-8
" w » Wd 2, Pos. 6-10
» i* » Wd 4, Pos. 9
" M " Wd 3,, Pos. 6-10
* » " Wd 4, Pos. 10
" H w Wd 5, Pos. 6-10
* " Wd 6, Pos. 6-10

PUNCH COL. SPLIT 10, 0-9

PUNCH DELAY 1, IN to CONTROL INFORMATION 3
PUNCH A to CONTROL INFORMATION 10
PUNCH B to CONTROL INFORMATION 8

JACKPLUG: ALPH OUT, W2-W3;. W3-W4; W4-W5; W5-W6

EMIT READ-TIMED DIGITSr

8 in COSELECTOR 3, T, Pos. 5
8 in PILOT SELECTOR 1^2, Lower T
9 in COSELECTOR 3, N, Pos. 5
9 in PILOT SELECTOR 1^2, Lower N
X in PILOT SELECTOR 4, Lower C
0 in STORAGE ENTRY C, Wd 10, Pos. 7-9

EMIT PUNCH-TIMED DIGITS:

Y in COSELECTOR 4, T, Pos. 3
Y in PILOT SELECTOR 5, 7 I 8, Upper T
Y in » » 5^6, Lower T
Y in COSELECTOR 7, T, Pos. 2
Y in " 8, T, Pos. 3
Y in M » N, Pos. 4
Y in PUNCH COLUMN SPLIT 1, 2^3, 12-X
X in PILOT SELECTOR 6, Upper T
X in COSELECTOR 8, T, Pos. 4^5
X in »' 6, C, Pos. 1
9 in PUNCH CARD A, Cols. 73
9 in COSELECTOR 7, T, Pos. 3

COSELECTOR 5, N, Pos. 5 to n ti c, Pos. 2 ti
n 6, T, Pos, 1 19
it ti T, Pos. 5 It
n it N, Pos. 5 It
it II c, Pos. 2-5 It
i» 8, c, Pos. 3 It
i* II C, Pos. 4 II

PUNCH CARD C, Cols. 1 It
II n ti n 17-20 II
ii n » n 23-26 II
n n n n 31-39 If
it n u II 40 II
II n II it 43-47 II
II ti it ti 48-50 It
N it it it 51-55 II
II it II ti 56 H
II » it II 57-61 tr
It it n II 62 it
It n II II 63-67 it
II it u it 68-72 it

STORAGE EXIT C , Wd 7, Pos 10 it

5*

In PUNCH CARD A, Cols. 2-9 emit the following punch-timed digits—00000800
tt PUNCH CARD C, tt 2-6 it tt tt tt tt tt —91954
It it it tt It 21-22 tt It tt tt II tt —24
It tt »• tt tt 27-29 tt tt tt tt tt tt —800

In COSELECTOR 6, T, Pos. 2-4 emit the following punch-timed digits—800
w " » N, Pos. 2-4 M " w w » » —195
* PUNCH COLUMN SPLIT 1, 2f3, (0-9) n it tt tt _036

' I N D E X

A Operation # 28
Absolute Value. 7
Addition .[Ill 5
Arithmetic 7

Arithmetic switching l±Qf

B Operation . 28
3, Use of HI ^
Basic Packages17f 1|3
Binary Operations £ff
Buyansky, D. V 2
BYPASS Statement 13

C- Variables .. ^
Card Preparation i8ff
Cheating ^7
Clocking Ill'27 f. 10if
Comma llj.
Comments Card 26f
Conditional Punch 12
Conditions 13f 53
Constants ' 3
Core, Variables in ^8

D 22
Data Cards l8ff
Decimal Point £ op
Division ' £
Division, Fixed Point [[[8f

Equals 33
Error Correction 39
Error Search Operation 28f^ kOf
Error Sense Running
Example Program 1 l5f, 23
Example Program 2 I6f
Example Program 3 ..., 55f f
Example Subprograms .'
Exponentiation 5

Extension Statements 13
Extensions 10, 13,, 28

L, 22
IT : • •••• 22
Fixed Point Constants ••••••.•.. 5
Fixed Point Division 8f
Fixed Point Numbers 3
Fixed Point VALUE 19
Fixed Point Variables Ij.

Floating Point Attachment 28
Floating Point Constants 5
Floating Point Numbers •••.•••. 3
Floating Point VALUE 19
Floating Point Variables U
Flow Chart 35
Formats I8ff

Garbage Cards 30
Greater Than 13
Greater Than Or Equal 15

HALT Statements 12
Haynam, G. E * 2
Header Card 25ff

I- Variables h
IDENT xQf
Input Statement Cards 22f
Intermixed Fixed and Floating 7, 11, 13
IT-Language 3ff
Iteration Statements ll^f

J 22
JUMP Statement n

I; 22
Klm+ 29
Knuth, D. E 2

J* 22
Listings 55ff
Lynch, W. CIll 2

M 22
Machine Operating 29ff
Mathematical Operations 5ff
Matrix Notation j^6f, 53
Modes of Operation 27ff
Multipass 28
Multiplication 5

1

Negation 7
Numbers 3.

Operation Modes ••••••••....... 27ff
Operations f
Operator Instructions 29ff
Output Cards 21
Output Statements 12, 21

65

•£\ P, Use of 5, 18
Parentheses £ff

/ Parentheses, Importance of 6f
Perlis, Dr« A. J. 1
Petznick, G. W., Jr 2

/ Polynomial Evaluation 17
Priority of Binary Operators 6
Psychiatrist . 15
PUNCH Statements 12, 21
PI 18, 25, U3
P2 18, 25, U 3
P3 18, 25, U3

Q . . 22
Quotation Marks 10

R 22
Raising to Power 5
READ Statement llf, 20
Relations 13f, 53
Remainder 1*8
Rerun Procedures 38
Runcible 0 2

S 22
. Scope of Binaiy Operators 6

Sine 10
Single Pass Operation 28
Smith, J. W. 1
Spelling Liberties 50
Square Root 10
Statement Numbers 10, 12, 22
Statements lOff, 22f
Statements on Cards 22f
Stops 37ff
Subscripts •••••••••••••••...•••• k
Substitution Statement .••••.••••••••• 11
Subtraction 5
Summary of Statements 53
Switching Arithmetic Ij8f
Symbols, Code for ••.••...••*••••••••. 22

r

THRU 12, 21
Tracing ^f

IJ 22
Unary Operators 7

V 22
Value I8f
Van Zoeren, H. R. 1
Variable Subscripts
Variables .•••••••••••• U
Variables in Core Storage Ii8

66

Way III, F . .. 2
Wolontis Function ••••••••..... 10
X and X Operation 28
Y- Variables ^
Zero Statements 10
123lt Stops y]s 39ff

C

67

